Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

UNITED STATES
DEPARTMENT OF AGRICULTURE
HENRY C. WALLACE
SECRETARY

AGRICULTURE YEARBOOK

1923

GUVERNMENT PRINTING OFFICE
WASHINGTON

Organization of the U. S. Department of Agriculture.

Corrected to March 1. 1924.

Secretary of Agriculture, Meniv C. Wadrace.
Assistant Secretary of Agriculture, Hownmi M. Gore.
Director of Scientific Work, E. D. Balt.
Director of Extension Work, C. W. Warblerton.
Director of Regulatory Work, W. G. Campbell.
Solicitor, Robert W. Williams.
Administrative Assistant and Budget Officer. W. A. Jump.
Chief Clerk, R. M. Reese.
Oflice of Experiment Stations. E. W. Allen. ('hief.
Publications, L. J. Haynes, In Charge.
Press Service, F. M. Russeld., In Charge.
Office of Farmers' Cooperative Extension Work. (… S. Smith. Chief.
Office of Exhibits, J. W. Hiscox, ('hiej.
Office of Motion Pictures, F. W. Perkins, C'hief.
Weather Bureau, Chamies F. Marvin, Chief.
Bureau of Animal Industry. John R. Mohler. Chief.
Bureau of Plant Industry, Whllam A. Taytor, Chief.
Forest Service, William B. Greelfy, Forester and Chief.
Bureau of Chemistry, Charies A. Browne, Chief.
Bureau of Soils, Milton Whitney. C'hief.
Bureau of Entomology, L. O. Howard, Chief.
Bureau of Biological Survey, Edward W. Nelson, C'hief.
Bureau of Public Roath. Tmomas H. MacDonald. Chief.
Bureau of Agrieultural Economies. Hexry (. Tarlor. Chief.
Bureau of Home Economics, loyise Stanlex, ('hief.
Packers and Stockrards Administration Chester Morbill. Assistant to the
Grain Futures Administration_-_---- Secretary of Agriculture.
Insecticide and Fungicide Board, J. K. Haywood, ('hairman.
Federal Horticultural Board. C. I. Marlatt. ('hairman.
Fixed Nitrogen Research Laboratory, F. G. Cottrell. Director.
Division of Accounts and Disbursements, A. Zappone, ('hief.
Librarian, Claribel. R. B.arnett.

1923 Yearbook Committee.

The Yearbook has been prepared under the general supervision of a committee consisting of Dr. O. E. Baker, Dr. F. A. Pearson, and Dr. L. C. Gray, of the Bureau of Agricultural Economics, in collaboration with other persons whose names appear in connection with the articles included in the book. Dr. O. L. Baker served as editorial secretary.

FOREWORD.

When the present administration came into office in the spring of 1921 the agriculture of the United States was experiencing a severe economic depression. In riew of this it was determined to devote the available space in the Yearbooks to a consideration of the economic situation as it affected the farmer, and to present careful studies of the principal crops, both as to production and profitable marketing.

The first of this series of Yearbooks was that of 1921, which dealt with wheat, corn, beef, and cotton. and prorided a graphic summary of agricultural production as shown by the 1920 Census. The Yearbook for 1922, following the same plan, contained comprehensive studies of conditions iffecting hogs, dairy products, tobacco, small grains other than wheat, and forestry.

This volume contains similar studies as to sugar, the sheep industry, our forage resources, the utilization of land for crops, pasture, and forests, and the economic aspects of land tenure, prefaced by the annual report of the Secretary dealing with the agricultural situation in a general way and with some of the regular work of the department. Included in the present volume is the special report on the wheat situation made to the President November 30. 1923. These articles are followed by the statistical portion which has again been enlarged to include important additional material, particularly on livestock production, fertilizer production and consumption, forestry, and domestic and foreign prices of farm products.

It is evident that the agriculture of the country is undergoing important changes. The lower returns to agricultural workers as compared with workers in other fields of endeavor are compelling important readjustments. It is hoped that these systematic studies of the economic aspects of some of the more important lines of agricultural industry will be helpful in the formulation of an adequate agricultural policy to the end that the farmer may once more get his fair share of the national income and continue to feed our people at reasonable prices.

Studies such as are presented in this and the two preceding volumes are to be continued in the Yearbook of 1924.

Henry C. Wallace, Secretary of Agrioulture.

CONTENTS.

Page.
1
The Year in Agriculture
Henry C. Waltace.
The Wheat Situation 95
W. A. Schofnfeld, Nils A. Olsen, Erecutive Secretary, O. C. Stine. H. R. Tolley, V. N. Valgren. O. F. Baker, W. F. Callander, and R. H. Wilcox.
Sugar. 151
E. W. Brandes, C. O. Townsend, P. A. Yoder, S. F. Sherwood. R. S. Washburn, G. B. I. Arner, O. E. Bakrr, F. (. Stevens, F. H. Chittenden, and C. F. Langworithy.
The Sheep Industry 229
D. A. Spencer, M. C. Hall, C. D. Marsh, J. S. Cotton, C. E. Gibbons, O. C. Stine, O. E. Baker, V. N. Valgren, R. D. Jen nings, G. K. Holmes, W. B. Befl, and W. C. Barnes.
Our Forage Resources 311
C. V. Piper, H. N. Vinatif, R. A. Oakley, Lyman Carkier, O. E. Baker, J. S. Cotton, O. A. Juve, Nettie P. Bradshaw, E. W. Sheets, C. D. Marsif, W. C. Barnes, and W. B. Beld.
The Utilization of Our Lands for Crops, Pasture, and Forests 415
I. C. Gray, O. E. Baker, F. J. Marschner, B. O. Wettz, W. R. Chip- line, Ward Shepard, and Raphael Zon.
Farm Ownership and Tenancy 507
L. C. Gray, Giarles I. Stewar't, Howard A. Turner, J. T. Sanders, and W. J. Spilliman.
Agricultural Statistics 601
J. A. Becker, L. B. Flohr, G. B. L. Arner, W. F. Callander, and O. A. Juve.
Bread Grains 602
Grains Other than Bread Grains 662
Fruits and Vegetables 731
Crops Other than Grains, Fruits, and Vegetables 790
Farm Animals and their Products-Part I. Cattle and Hogs 879
Farm Animals and their Products-Part II. General, Horses, Sheep, and Poultry 981
Forestry and Forest Products 1050
Imports and Exports of Agricultural Products 1094
Miscellaneous Agricultural Statistics 1137
Index 1223

Washington, D. C., November 15, 1923.

To the President :
It is a satisfaction to be able to record marked improvement in agriculture during the past year. Prices of many agricultural crops are higher. Cost of production has been lower, and there has been some reduction in prices of the things farmers buy.

In 1923 farmers planted $341,000,000$ acres of the 14 principal crops. This was an increase of more than $2,000,000$ acres over 1922. The production of these 14 crops is estimated to aggregate $265,000,000$ tons, which is about the same as in 1922 and $11,000,000$ tons greater than the 10 -year average.

Taking the value of the 11 crops-corns, wheat, oats, barley, rye, buckwheat, flaxseed, potatoes, sweet potatoes, hay, and cotton-as of October 1, except in the case of corn (which is taken at the December future prices as recorded for the first 15 days of October), we find that this value was $\$ 5,289,000,000$ for $1921, \$ 5,711,000,000$ for 1922 , and $\$ 6,947,000,000$ for 1923. In neither year does the sum indicated include the total value of farm crops grown, but for comparative purposes the values of these 11 crops for the years mentioned indicate the substantial increase in the money received by farmers in 1923 as compared with 1922 and 1921.

Not only will the total general farm income be considerably greater for the year 1923, but this income will buy relatively more of the things farmers need than for some years past. The purchasing power is greater. Hence farmers generally are better off both actually and relatively, and this is reflected in their increased purchases, which in turn has helped general business. The farm productive plant has seriously depreciated during the past six years, first because of war conditions and later because of forced economies. As the farm income increases, therefore, farmers will buy more and more freely of the things they need.

The Crops of the Year.
The wheat crop for 1923 is estimated at $782,000,000$ bushels, compared with $815,000,000$ bushels in 1921 and $862,000,000$ bushels in
1922. The quality of wheat this year is somewhat below the average, owing to weather conditions and the ravages of plant diseases.

The corn crop is estimated at $3,021,000,000$ bushels, as compared with $3,069,000,000$ bushels in 1921 and $2,891,000,000$ in 1922. The quality of corn in some regions has been materially injured by early frosts.

The cotton crop gives promise of being a half million bales greater than that of last year, the October 25 estimate being $10,248,000$ bales, compared with $7,954,000$ bales in 1921 and $9,672,000$ bales in 1922. The cotton acreage was larger this year than last, and the cotton production would have been appreciably above the October estimate had it not been for unfavorable weather and heavy rains, exceptional damage to grown bolls by the weevil, and the heaviest abandonment on record.

An estimate based upon the first nine months of the present year indicates a slight increase in the number of cattle and calves slaughtered, and that a total of perhaps $78,000,000$ hogs will be slaughtered in 1923, compared with $62,000.000$ in 1921 and $67,000,000$ in 1922.

Fig. 1.-Heavy production combined with war prices raised the value of all crops produced in the United States to over $\$ 16,000,000,000$. Low prices, with an average crop, reduced the total value of all crops in 1921 to less than six and a half billion dollars. Prices of some crops have shown a gradual increase since 1921 , with a consequent increase in total value of all crops.

In some lines of production prices have been fairly satisfactory, while in other lines low prices have added to the accumulating financial difficulties of the farmers.

The farm price of wool is more than twice the pre-war level. The farm price of wool in August, 1921, was but 15.4 cents per pound and in September, 1923, was 37.1 cents. The reduction in the number of sheep, the diminution of stocks of wool and woolen goods during the post-war adustment, and last, but not the least, the resumption of a protective tariff have stimulated prices of wool.

Cotton prices continue at a relatively high level. The farm price is now two and a quarter times the pre-war level. The huge surplus of cotton which was carried over at the end of the crop year, July 31,1921 , has been reduced to a point verging upon an actual shortage and the quantity carried into the new season was the smallest in a number of years. The world consumption of American cotton during the year (1922-23) was over $12,500,000$ bales and American production was less than $10,000,000$ bales. The present status of the cotton farmer is not always fully understood. The planter is interested in the price and purchasing power of cotton per pound,
but he is more interested in the returns per acre. The rarages of the boll weevil have reduced the production of cotton per acre sufficiently to discount to some extent the high prices paid for cotton. Elsewhere in this report reference is made to control measures of this pest. The purchasing power of cotton per acre, which is above the pre-war average, is a better index of the southern planter's economic condition than the present high price of cotton. Districts in the south with a fair yield are in a splendid condition. On the other hand, districts like southern Georgia, suffering severely from the boll weevil, are in dire straits.

The prices of dairy products did not suffer so much from the drastic deflation following the post-war period as did other farm products. Butter, cheese, and milk have sold at prices remunerative to farmers. Butter is now higher than the general price level. Cheap feed in western butter districts, and high prices and some curtailment of production in milk districts have enabled the dairy farmer to weather the storm with less adversity than those farmers

FARM PRICES OF WOOL AND COTTON COMPARED WITH THE GENERAL LEVEL OF FARM PRICES.

Fig. 2.-During the World War cotton and wool sold for relatively more than most other farm products. Dlthough cotton and wool prices experienced an unprecedented decline in 1920 , they recorered in 1922 and 1923 , and are now well above the general level of farm prices.
producing commodities a part of which must be exported. Poultry and eggs have also continued on a fairly profitable basis.

Besides wool, cotton, chickens, and butter previously mentioned, beans, apples, broomcorn, cabbage, onions, cottonseed, and lambs are higher than the general price level.

Horses rye, barley, timothy seed, oats, hogs, wheat, hay, veal calves, beef cattle, milk cows, corn, clover seed, buckwheat, sweet potatoes, flaxseed, and potatoes are still below the general price level, but many of these products have experienced appreciable advances in price this past year. Flax rose from $\$ 1.88$ in 1922 to $\$ 2.12$ in 1923. Oats rose from 34.5 cents to 38.6 cents. Hay from $\$ 10.58$ to $\$ 12.42$. Milk cows, $\$ 51.62$ to $\$ 56.13$. During no month of 1922 did veal calves sell for as much as in September, 1923.

Corn prices have had a very appreciable advance during the past year. The low receipts at primary markets and the low visible sup-
ply of corn have resulted in rising prices despite the large farm stocks and heavy production during the three years 1920-1922. Corn prices advanced from 61.6 cents for October, 1922, to 85.7 cents in 1923. If all corn could be sold at this price the corn farmer would find himself in a relatively fortunate position, but since it is the demand for corn to finish the large numbers of hogs in preparation for the market that creates the relative shortage of corn and makes this price possible, and since not over 20 per cent of the crop will be sold as corn, prices of hogs must always be considered in connection with prices of corn. The past year was characterized by enormous increases in hog production, marketing, and slaughter, and by large increases in domestic consumption and foreign trade in lard and pork.

FARM PRICES OF BEEF, HOGS, AND HORSES COMPARED WITH THE GENERAL LEVEL OF FARM PRICES.

The liquidation in the industry that followed the decline in the price of hogs reduced our hog population to a very low point, and this reduction was immediately followed by three bumper corn crops in succession. This resulted in a surplus of corn and a deficiency in hogs and the hog-corn ratio was the highest in many years. As usually occurs after a period of large corn crops, hog production was given a great impetus, and the marketing of hogs for the year ending June 30, 1923, exceeded that for the preceding year by more than $9,000,000$ head. As a consequence, hog prices receded sharply and corn fed to hogs is now bringing lower prices than corn sold on the market.

Bad Wheat Situation.

The discouraging wheat situation is due in part to in reased acreage in response to patriotic appeals and the extraordinary demands for wheat by the war administration. By similar appeals the war administration reduced bread consumption in the homes and took it
off the restaurant table. This has definitely reduced the per capita consumption. The evil results of these policies continue. The world wheat production is too great in proportion to the restricted consumption. The great wheat producing areas in the United States, Canada, Argentina, and Australia increased their annual exports $336.000,000$ bushels. At the present time the exports of wheat from these countries are more than twice their pre-war exports and more than compensate the former exports from Russia and the Danube Basin and the decreased Indian exports.

War has had a marked effect upon the bread grain consumption of some European countries as well as of the United States. The standard of living in some countries has been lowered and cheaper foods substituted for wheat. Wheat has been conserved by "long milling," mixing, and by feeding less to livestock. The per capita consuraption of wheat in the United Kingdom has remained remarkably constant during the last 14 years, but declined slightly during the war. In France per capita wheat consumption, including seed, was reduced from an average of 9.3 bushels during the period 1909-1913 to an average of 7.4 bushels during the war period of 1914-1918. Since then the average has increased to 7.7 bushels. Milling restrictions requiring the mixing of from 8 to 10 per cent of substitutes with wheat flour are still in force. The per capita supply of bread grains has also been considerably below normal in Germany and Austria. Thus in selling their surplus wheat the farmers of the United States have to meet increasingly keen competition in a foreign market where the demand has declined.

Cattle and Sheep.

The 640 -acres-grazing homestead act and tariff reduction on wool some years ago depleted the number of sheep on the ranges and stimulated cattle production. The pre-war price of range cattle was $\$ 6.74$. In 1922 the price was $\$ 6.60$. The war stimulation of the range-cattle industry and the consequent advance in cattle values led many producers of range cattle to overextend themselves and make large use of their credit, which was easy at that time. The shrink in values since, combined with unfavorable weather conditions in some sections, have resulted in severe financial losses. As a result throughout the range country liquidation has been and still is being forced, and large numbers of cattle, cows as well as steers, have been thrown on the market at ruinous prices. Loans on cows are being called and new loans on cows very generally refused. This forces too many cows on the market now and tends toward a shortage later.
On the other hand, cattle feeders who finish on grain for market have fared very well during the past year. Prior to the war cattle ranging in weight from 1,200 to 1,350 pounds were about 17 per cent above the price of range cattle. In 1922 cattle of this weight sold about 36 per cent above the price of range cattle. In 1922 good to prime cattle were about 50 per cent above the price of feeder steers, while in September, 1923, they ranged to about 70 per cent above. The high industrial activity has given a good market for good beef and has stimulated a demand for the higher grades of cattle which come finished from the feed lots of the Corn Belt.

State of Agriculture in General.

The general agricultural improvement noted is most gratifying to everybody and gives renewed hope to millions of farmers who have struggled against most distressing conditions. This does not warrant the assumption, however, that the state of agriculture in all sections is now satisfactory, viewed either from the standpoint of the farmer or from the standpoint of national interest. In many regions agriculture still is at a disadvantage. The adverse influences of which mention was made in my report of a year ago still exist, though less powerful than at that time. The ratio between prices of most farm products and prices of other commodities is still far out of line. Industrial wages continue at war-time levels and thus help to maintain high prices for most of the things the farmer buys.

COMPARISON OF FARM AND CITY WAGES.

Fig. 4.-During 1920 farm wages with board were $\$ 46.89$, or 223 per cent of the 1914 level, while New York factory wages were 226 per cent. During the agricultural depression farm wages dropped to 139 per cent of the 1914 wages, while city wages fell to only 201 per cent. I uring 1921,1922 , and 1923 the disparity between farm and city wages was remarkably uniform.

High freight rates still prevail, and, while not the cause of low farm prices, place one more additional burden upon the farmer which he can ill afford to pay in view of the prices he must take for his products; also they place him at a disadvantage with his foreign competitors in world markets in the case of those farm products which we export. Unfavorable exchange rates with European countries, together with financial difficulties in those countries which need our surplus, make it more difficult for them to buy, and our export outlet for farm commodities is narrowing. Aside from this difficulty, it is to be expected that as the countries of Europe get on their feet, they will strive to produce more of the things they need and buy less from us, and this must be considered in planning our own production. The costs of retail distribution of farm products are unreasonably large, thus enhancing the price to the consumer and depriving the farmer of the benefit of increased consumption which ought to follow lower prices which result from large production.

Studies by this department indicate that 42 per cent of the farmers feel that their financial difficulties are due to low prices of farm
products; to high taxes, 17 per cent; high costs for farm labor, 11 per cent; high freight rates, 10 per cent; high interest, 10 per cent: reckless expenditures during boom period, 6 per cent; and too much credit, 4 per cent.

Too frequently persons who have not inquired into the matter express the opinion that the farmers' difficulties are due to reckless expenditures for land, speculative securities, and other purposes during the flush years. The percentage who suffered in this way, however, does not seem to be very large. The farmers' troubles are due primarily to the low prices of their farm products and the high prices for the services and articles they must buy.

PRIMARY FACTORS AFFECTING FINANCIAL DIFFICULTIES OF THE FARMER.

Fig. 5.-It is the opinion of farmers, based on reports received directly from them, that low farm prices is the dominant factor in the present depressed state of agriculture.

Taxes and Interest.

In addition to the handicaps just mentioned there is underlying this agricultural situation the fundamental factor of the lowered price level which has shrunk the purchasing power of the farmer's income. Economic justice would require that the price level during the years when the debtor is paying individual and public debts should be as high as when these debts were incurred, thus making it possible for him to meet his fixed payments of taxes, interest, and principal with about the quantity of labor or the products of labor required to meet them at the time the debts were incurred. This is not the case now with the farmer. It is not possible to adjust the price level with that nicety which will do justice to everyone, but in so far as it is possible it should be done. Our investigations lead us to estimate the property taxes and interest combined paid by agriculture in the year of 1920 at about $\$ 1,457,000,000$; in 1921 at $\$ 1,684,000,000$; and in 1922 at $\$ 1,749,000,000$.

In 1920 practically the entire value of the wheat and tobacco crops, or about two-thirds of the wheat and cotton crops, were required to pay property taxes and interest charges. This was during the period of high prices and lagging charges for taxes and interest.

In 1921 property taxes and interest were equal to the entire value of the wheat, oats, potato, and tobacco crops. The wheat and cotton
crops combined would pay but five-sixths of the taxes and interest. This was during the period of low prices and rising charges for taxes and interest.
In 1922 the value of the wheat, oats, and tobacco crops, and onehalf of the potato crop, were required to pay taxes and interest. In that year although cotton was very high in price, taxes and interest charges were equivalent to the entire value of the cotton crop plus two-thirds of the wheat crop. Property taxes increased from \$532,000,000 in 1920 to $\$ 797,000,000$ in 1922.

Unfortunately reliable estimates of taxes and interest charges are not available for the pre-war years. It is estimated, however, that property taxes alone in 1914 aggregated about $\$ 344,000,000$, which was equivalent to less than two-fifths of the 1914 wheat crop, while in 1922 taxes totaled $\$ 797,000.000$. which was approximately equiva-

Flis. 6.-Property taxes paid by farmers doubled from 1917 to 1923. The marked increase in taxes which occurred immediately after the war was due to the adjustment of local and State governmental costs to the new price level. as well as to a material expansion in public improvements, which had been postponed during the war, or were initiated early in the post-war period, when high prices and a spirit of optimism generally prevailed.
lent to the total value of the 1921 or the 1922 wheat crops. The wheat crop is approximately equal to the pre-war value, but taxes have more than doubled. It should be kept in mind that the increase in taxes is due to local and State governments, not Federal.

Under such a situation farmers who are out of debt can get along fairly well, but those who are heavily in debt, and especially those roung farmers who have not become thoroughly established, are having great difficulty in meeting interest and principal on public and private debts.

It would seem to be distinctly in the public interest that the price level during these years when we are working out of war difficulties be maintained at from 60 to 70 per cent above the pre-war level. Just as sound money requires a gold basis, so sound business requires an equitable and stable price level.

Rural Population Influenced.

The result of the conditions which have prevailed during these years of agricultural deflation is reflected in the steady drift from
the farms to the towns. Our estimates indicate that the net change in population from the farm to the town in 1922 was around 1,200 ,000 . This drift is taking place not alone in those sections where agricultural depression is being felt most keenly just now but throughout the country. This is illustrated in a number of ways. For example, 4.7 per cent of the habitable farmhouses were vacant in 1920; 5.7 per cent in 1921; and 7.3 per cent in 1922. A recent study indicates that in 1922 farmers occupied 86.3 per cent of the habitable farmhouses as compared with 88.4 per cent in 1921 and 89.7 per cent in 1920. Because of the scarcity of houses available for them nearer their work, many farmhouses within reasonable distances of cities are being occupied by people who work in the cities.
In Michigan a special survey made this summer covering a large number of farms indicates that fully 10 per cent of these farms were vacant, and about 13 per cent more were only partially worked. This survey also showed that there were also 16 per cent fewer workers on the farms in Michigan than a year ago and that 91 per cent of those leaving the farms did so to better their financial condition, 6 per cent because of old age, and 3 per cent because of other causes.

During the year ending February, 1920, it is estimated that 22,000 workers net left the New York farms; in 1921, 24,000 net. For the year ending February, 1922, this number had decreased to 3,000 , the explanation being that the unemployment in the cities during 1921 caused many persons to move to the farms. For the year ending February 1, 1923 , this movement had swung back, and the net movement to the cities was 26,000 . It is reasonable to believe that a similar movement from the farms to the cities is general throughout the country, although reliable figures such as have been quoted with reference to New York are not available for other States. Perhaps the movement has not been so large in some other States as in Michigan and New York, which are so highly industrial.

Financial Difficulties.

This year the Department of Agriculture instituted an inquiry through both bankers and farmers as to the number of farm owners and farm tenants who lost their farnis or property through foreclosure or voluntary relinquishment.

It was found that of the owner farmers in 15 corn and wheat producing States on an average almost 4 per cent had lost their farms through foreclosure or bankruptcy, while nearly 4.5 per cent had turned over their farms to creditors without legal process, making a total of about 8.5 per cent who had lost their farms with or without legal proceedings. In addition, about 14.5 per cent were in fact bankrupt, but were holding on through leniency of their creditors. Considered by groups of States, the percentage of owner farmers who lost their farms since 1920 was found to be as follows: For 5 east North Central States, nearly 6 per cent; for 7 west North Central States, nearly 9 per cent; and for 3 Rocky Mountain States, over 20 per cent. The percentage of tenants who lost their property ran materially higher.

The records of the Department of Justice indicate that in the prewar years 5 per cent of all bankruptcy cases were farmers, but in

1922 it had grown to 14 per cent. In some of these States, where in pre-war years the farmers' bankruptcy cases represented about 7 per cent of all such cases, this percentage in 1922 had risen to nearly 30 .

These losses have not been due to inefficiency on the part of the farmers. Practically all of them were incurred by men who had been doing fairly well until they entered the period of drastic deflation. Some few were caused by overexpansion in the purchase of land during the period of high prices. In general, however, the trouble has been due to the deflation in prices of farm products and the increased cost of production and of the necessaries farmers must buy.

BANKRUPTCLES AMONG FARMERS. PERCENTAGE OF ALL BANKRUPTCIES, 1910-1923.

Fig. 7.-Between 1910 and 1920 the relative number of bankruptcies among farmers remained fairly constant. Since 1920 there has been a marked increase in farm failures, especially in the spring wheat region, where the percentage of farm to total bankruptey cases rose from about 18 per cent in the fiscal year 1920 to 54 per cent in 1923. The situation is only partially reflected in these figures, since farmers as a rule do not resort to the bankruptcy courts when surrendering property to creditors.

The Drift to the Cities.

This drift from the farms to the cities is due in part to inability to make a decent living on the farm and in part to the fact that the Nation has been willing to pay higher wages relatively for workers in the industries of various sorts than for workers who are producing food. As long as the unfavorable ratio between agriculture and urban occupations continues an abnormal movement from the farms is not only to be expected but desired. It is one of the ways by which normal balance between agriculture and industry in time may be restored.

From the national viewpoint, however, this movement is to be deplored both because of the conditions which seem to make it necessary and because it is draining from the country such a large percentage of the more intelligent and ambitious young farmers. Agriculture always produces a large surplus population, and under normal conditions feeds into the cities large numbers of the less
intelligent, who because of this are not well adapted to modern farming, which requires intelligence of a high order, but are better off in the cities which provide them supervised work. It also sends many young men of superior intelligence who seek wider opportunities than exist in the country. In the past both classes have gone to the cities without detriment to either the urban centers or the open country, but conditions which have prevailed for the past three or four years have made drafts upon the best the country produces altogether heavier than is good for either the country or the Nation.

Fig. 8. -In 1910 the Negro migrants born in Alabama moved largely to adjacent Southern States. In 1920 the direction of migration had changed and the Negroes born in Alabama migrated to northern industrial States east of the Mississippi.

Decline in Morale.

The Nation has suffered in another way. The drastic economies which have become necessary on the farms have greatly reduced farm standards of living. They have compelled overwork by the farmers, unaccustomed farm work by farm mothers, increased work by children kept out of school-in too many cases the older children taken out for good. Continued disappointment on the part of all members of the family, worry and discouragement, added to privations, have resulted in the breaking up of many a home. Retrenchment in support of school and church and restricted recreation and public entertainment became necessary. The farm population of the Nation, although less than 30 per cent of the total, is carrying more than 35 per cent of the child population. The farm is charged with the duty of educating this excess of youth and turning it over to the cities at the producing age. During this period of depression both the children who are to remain on the farms and those who are to be turned over to the cities have been deprived to too great an extent of the spiritual and mental training which is so necessary to make them citizens of the right sort.

The Nation has suffered equally in depressed morale. There has been no satisfaction in the minds of the farmer or in the minds of
the city dwellers over this agricultural depression. The farmer has no challenge to heroism. The farm wife has no glory in her sacrifice and disappointment and long days of toil. The result has been a social and political unrest which has not contributed to national welfare. The undeserved fate and the powerlessness to pull out of difficulties has lessened hope and developed an unrest which will be felt for a long time. The farmer does not wish to complain, but he is driven to it; and at the same time he resents the condition which makes it necessary to complain.

Improvement and Some Reasons for it.

In speaking thus briefly of some of the adverse conditions, it is not with the purpose of painting a dismal picture but solely with the thought that a bad condition can not be corrected unless it is understood. As I said in the beginning, the agricultural situation to-day is very much better than a year ago, while the advance made over the terribly discouraging conditions which were precipitated in 1920 and reached the climax in 1921 is nothing short of remarkable. In general there has been steady improvement since the low point in 1921.

No small part of this improvement must be credited to wise legislation and to helpful administration. Agriculture and the needs of the farmer have received more thoughtful and sympathetic consideration by legislative and administrative agencies during the past two and a half years than at any previous period in our history. It is not out of place here again to refer to some of this legislation.

The emergency tariff, enacted promptly in 1921, checked the dumping on our markets of surplus agricultural products which had accumulated in other countries.

The provisions for emergency credit which was made available through banks and cooperative associations saved large numbers of them and their farmer patrons from bankruptcy.

The extension of Government supervision over the livestock markets and market agencies has resulted in putting a stop to innumerable unfair practices, has given assurance of open and competitive markets, and gives opportunity to make a thorough study of the packing and distribution of meats.

The law which brings the grain future trading markets under Government supervision has afforded an opportunity for an investigation and study of these markets which in time should lead to bencficial results.

Cooperative marketing associations have been given protection from unjust prosecution and encouraged to function freely, with the view to enabling their members to reduce marketing costs and market their crops in an orderly manner.
The agricultural credits act enables the Federal reserve system to handle agricultural paper for longer time, increases the amount which may be loaned on farm mortgage to the individual farmer, and provides a system of intermediate credit especially adapted to farm needs. This act when under full operation should not only vastly improve farm credit facilities but materially reduce interest rates.

These and other laws of real but lesser importance than the ones mentioned have been very helpful in improving agricultural conditions. Those who may have hoped that the depression could be turned all at once into a period of prosperity by some sort of legislative magic have perhaps been disappointed, but those who realized that our difficulties grew out of the period of disorganization resulting from the terrible World War have been able to note beneficial results from this legislation.

All the administrative agencies of the Government have been at work with vigor and good judgment to help overcome the farm troubles, through enlarging consumption at home, extending abroad the markets for the farm surplus, promoting the readjustment of production so far as practicable, gathering and making known information concerning world consumption and production, and in innumerable other ways which it is not necessary to set forth here but which will be dealt with later in this report.

PER CENT OF FARM AND URBAN POPULATION IN SPECIFIED AGE GROUPS, 1920.

Fig. 9.-The farm has a surplus of nonproducers or partial producers of approximately $4,000,000$ under 21 years of age as compared with an equivalent urban population. This suiplus population, reared and educated in the country, is turned over to the cities as producers.

Need of Further Improvement.

Notwithstanding the progress made toward better times, and notwithstanding all that has been done so well by both legislative and administrative agencies, it ought to be understood clearly that there is still room for much improvement in the state of agriculture and that we can not reasonably expect to attain to that condition of national prosperity for which we hope so earnestly until the farm group, which comprises about 30 per cent of our total population, gets its fair share of the national income and is able to sell the products of its labor at prices fairly relative to prices of what it buys. Industry, commerce, and industrial labor may prosper for a time at the expense of agriculture, as indeed they have during the past three years, but the longer that continues the more hurtful to the Nation will be the results. The truth of the statement that in the United States national prosperity must rest on a sound and prosperous agriculture stands unchallenged.

Producers of those crops which are practically all consumed at home are in the main finding themselves able to make such readjustments as are necessary to meet changing markets and prices and are doing so with a courage that commands admiration. In the case of some crops time will be required to make these readjustments, especially in regions remote from markets which were brought under production because of favorable freight rates covering long distances. The advance in freight rates has worked great hardship in some of these regions, and if maintained will make necessary a change of markets or of crops. By and large, however, growers of home-consumed crops will gradually adapt themselves to changed conditions, even though at considerable loss.

The case is very different, however, with producers of those crops of which we export a considerable surplus and the price of which is largely influenced by large exports from competing countries

INDEX NUMBERS OF PRICES PAID TO PRODUCERS OF FARM PRODUCTS IN IOWA AND INEW YORK, 1913-1923.

Fig. 10.-Prices paid to producers of farm products in New York and Iowa were very similar until 1920. During the agricultural depression prices in Iowa fell below the 1913 level. while prices in New York fell to only 125 per cent of the 1913 level. During the post-war adjustment farm prices fell greatest in sections farthest from market.
which enter the world stream as it flows to points of consumption. Under present conditions these producers find themselves producing at costs beyond their control and which make it impossible for them to compete and live decently. The condition of the wheat grower serves to illustrate the difficulty. He has been producing at practically war costs and is meeting competition which forces him to sell at prices well below the actual cost of production. The result is that those farmers who depend mainly, or evenly largely, on wheat as a source of income are going back steadily year by year. Thousands of them already have gone bankrupt, and more are well on the way.

The Wheat Situation.

There has been prepared in this department a very complete report on the wheat situation in all of its aspects. This report is
republished in this Yearbook, but it may be well to note here some of the suggestions which have been made by various persons as to ways by which the wheat grower might be helped out of his distressing situation.

Reduction of acreage. Since the acreage was largely increased to meet war demands, and since we now have a surplus, reduced production is looked to at once as the obvious cure.

Diversification-the growing of other crops from which part of the necessary income may be derived.

The organization of the wheat growers into a powerful cooperative.

The fixing by the Government of an arbitrary price which will cover cost of production.

WHEAT PRODUCTION AND ACREAGE IN THE UNITED STATES, 1912-1923.

Fig. 11.-The wheat acreage reached the peak in 1919 under war conditions. Since that time the acreage has declined toward the pre-war level. The acreage sown for harvest in 1924 shows a decline of over 12 per cent from the acreage sown in the previous year.

Liberalizing the immigration law to bring in farm laborers and thus reduce cost of production. Also to bring in industrial workers in the hope of reducing industrial wages.
An increase in the tariff.
The purchase of the surplus by the Government and storing it against a time of short production.
The sale of fifty to one hundred million bushels to European Governments whose people can not afford to buy, but who are in urgent need of food.

The purchase of the surplus by a Government agency and selling it at a lower price in the world market.

Combination of two or more of the suggestions made.
Reduction of acreage has been taking place at a rate much greater than is generally realized. The acres of wheat harvested increased from $47,000,000$ before the war to a peak of $75,000,000$ in 1919. From that high point the acreage has shrunk to $58,000,000$ the cur-
rent year. This shrinkage has been due to the substitution of other crops for wheat where such substitution offered a possible profit, to the abandonment of wheat farms in regions where because of repeated crop failures or financial stress such abandonment was forced, and to the reduction of acreage on other farms and ranches because of shortage of labor at a price the wheat grower could afford to pay. The acreage in wheat is still larger than is necessary to meet the needs of home consumption, assuming that we have normal crop years, and reduction is going on. It must be kept in mind, however, that in large areas of the West and Northwest soil and climate are better adapted to the production of wheat than any other crop. Farmers in those sections are fixed for growing wheat, their farm equipment is adapted to it. They can not all at once change to another crop, even if some other crop gave fair assurance of profit. On the whole, the shrinkage in acreage has been as rapid as could be expected.

In many sections of the country which heretofore have specialized on wheat substantial progress has been made in diversification. A study of the tables and graphs which will be found in our special wheat report tells this story very clearly. But diversification in any large way requires that more of the land be fenced, more buildings provided, more machinery of a different kind purchased. It also requires a better knowledge of general farming methods. In short, the wheat farmer must have both time and money to shift into more general farming, even in regions where that is clearly the best thing to do. Most of them, however, probably can and should produce on their own farms more of the milk, butter, eggs, meat, and vegetables which they need for their own tables and thus cut down a substantial part of the out-of-pocket expense. Cooperation of Federal and State agencies with local committees to help worthy farmers help themselves ought to be productive of good results.

The idea that the Government can arbitrarily fix a price that will cover cost of production and by this means restore prosperity to the wheat grower is no longer entertained by any considerable number. It is clear that such a course would simply stimulate production, not alone in the wheat country proper but in the great humid sections which can produce large crops of winter wheat, and will if the price is more attractive than the prices of corn and oats. A Government fixed price would make it necessary for the Government to be prepared to buy at that price, and without some means of disposing of the surplus bought our last state would be worse than the present.
The bringing in of foreign farm laborers with the thought of reducing production costs through cheaper farm labor seems visionary. The pull of higher industrial wages would operate about as effectively on them as on our own people. If they should stay on the farms and thereby increase production, that would hurt rather than help, for we already have more farm production in important crops than can be sold at a fair price. A large increase in labor in the industrial centers might tend to reduce costs of the things the farmer buys and would add that many more mouths to be fed here.
The purchase and holding by the Government of our surplus wheat might prove of temporary help, provided an advance in price, which is the object sought, should be protected by the necessary advance in the tariff. The existence of a large surplus, however, would exert a
constant downward pressure on the price of the next crop, large or small. Unless production is controlled, an annual crop, except for a reasonable carry over, must be sold annually.

The proposal to sell a considerable part of our surplus to some country which can not buy for cash but which is in urgent need of food is worthy of consideration. This would involve selling on long time and taking evidences of indebtedness, issued by State or municipal governments, calling for payment over a term of years. Commercial exporters can not extend credit for the length of time needed nor safely take the risks involved, but the Government, through some suitable agency, might well consider it. Such plan contemplates the free distribution of the wheat, or preferably flour, by the purchasing government and the amount thus sold would be taken out of the competing market.

The existing tariff has given a substantial measure of protection to the growers of certain varieties of wheat but not sufficient to make good the difference in cost of production and marketing here and in some competing countries when all factors are considered. Any effort which has the effect of advancing wheat prices at home must be supported by an advance in the tariff on wheat. A study of the conditions which influence the cost of wheat production in the United States and Canada has already been submitted to you.

The organization of wheat growers into a successful powerful cooperative marketing association might enable them to control the flow of wheat to market more effectively and to reduce marketing costs. It ought to be possible, although admittedly difficult, to adapt to wheat marketing the methods which have proved successful in the marketing of many other farm products. But the amalgamation of the many existing associations into one powerful body and bringing into it the large number still unorganized is the work of years. Even if it were done now, the fundamental difficulties of the wheat grower right now are too deep-seated to be eliminated by such an organization.

The proposal, which has been advanced and considered from time to time for two years past, to set up a Government agency with broad powers to buy and export wheat and other agricultural commodities of which we produce a large exportable surplus, is in my judgment one of the proposals which like several others is worthy of renewed consideration at the present time. The objective to be attained is to secure for wheat and other agricultural products an exchange value approximately equal to what it was before the war. As has been said often, one of the chief causes of the agricultural depression is that farm commodities are relatively far cheaper than before the war. The price of wheat in dollars at terminal markets is not far from pre-war prices in dollars, but a bushel of wheat on the farm will buy much less of the things farmers need or desire than before the war. The end sought, therefore, is to put farm products on a price plane comparable with the price plane of other commodities.
The proposal in question contemplates the setting up of a Government export commission charged with the duty of disposing of the surplus in the form of wheat or flour in such a manner that the domestic price may rise behind an adequate tariff barrier to the point of restoring the pre-war purchasing power of wheat in the
domestic market. Such an agency would need money with which to operate, and it is proposed to start it with a working capital of, say, $\$ 50,000,000$, that being the approximate sum which the Government made in the way of profit by its war-time handling of wheat and fiour when the price of wheat was arbitrarily controlled and held below the price at which it, would have sold without such control. In case losses should be incurred because of the character of its operations, it is proposed to recover the losses through the levy of an excise tax on the crop of wheat itself. In the end the cost would be paid, not out of the Public Treasury but from assessment on the growers benefited and should not be large.

That in briefest form is the essence of the plan suggested. It is not a proposal for price fixing, as that is generally understood. It might be described as a plan to give the wheat grower the measure of protection which is given to so many other groups by making fully effective the principle of the protective tariff on a commodity of which we produce a surplus and which is suffering from destructive competition in a depressed foreign market. Or it may be described as a plan by which the Government, without material loss to itself, undertakes to do for the wheat growers what they can not now do for themselves-bring them into a general wheat pool through the operation of which they may secure a fair price.

The proponents of this plan suggest that it avoids the stimulus to overproduction which is a serious objection to arbitrary price fixing, and that the mechanism of marketing wheat now existent need not be seriously interfered with, assuming that exporters evidenced a willingness to cooperate with the export corporation. This is important, because the reason for the corporation should gradually disappear as the reestablishiment of normal conditions through natural economic forces restores normal price ratios.

While the plan proposed could be applied more easily to wheat than to some other agricultural products, obviously if favorably considered it should not be confined to dealing in wheat alone. It should include all agricultural products of which we have a considerable exportable surplus and the prices of which are substantially out of line. Especially should provision be made for handling pork products, of which we export large quantities and which also were brought under Government control during the war.

Many objections, some of' real merit, can be urged against the scheme proposed. It is conceivable that there are some obstacles which may not be easy to overcome. However, there seems to be so much merit in the proposal that it is worthy of the most painstaking analysis and the most critical scrutiny. The principles invoked are such as have been successfully applied in times past by private initiative by industries which have successfully disposed abroad of an embarrassing surplus.

If farmers could control their production as does organized industry, or if they could exact a price for their labor as does organized labor, unusual action by Government might not be demanded so urgently. It is just as well to keep in mind that both industry and labor are beneficiaries of Government action and that such action during the war and the two years following has added not a little to the farmer's difficulties.

It is well to remember also that our population is growing rapidly and that before many years there will be a home demand for even more of farm products than we are now producing. If, during this period of agricultural distress, we permit production to be shrunk to present needs by driving farmers from the land and into the cities, we shall be under the necessity of reclaiming at large expense the productive land which is now being abandoned. And if we should experience one or two years of short crops while this process is going on, the consuming population will find itself compelled to pay prices for farm products which will impose upon it a burden comparable to that under which the farmer has been groaning.

On the assumption that it is the national purpose to keep ourselves on a self-sustaining basis agriculturally, wisdom would seem to justify going to some trouble to help farmers bridge over a period of depression caused by an economic cataclysm. Precisely that thing has been done in the case of labor and of some industries. Those who urge that economic laws should now be permitted to have free play with agriculture do not give full consideration to what happened during the war and for two years afterwards.

Helping Farmers to Help Themselves.

Whatever may or may not be done by Government, it is perfectly clear that the success of the individual farmer will depend on his own efforts. That he must work hard goes without saying, but under present conditions it must be work with the head as well as the hands. The crops to be grown and the kind of farming to be followed must be determined not alone with an understanding of the conditions which influence production but with some knowledge of the prospective demand for those crops and some study of the conditions which are likely to influence the price. The Department of Agriculture is trying to help the farmer help himself both in determining what to grow and how to grow it and in putting in his hands the kind of information concerning domestic and foreign conditions which he needs to produce and market to the best advantage.

The change in railway rates has led to the necessity of readjusting the agriculture in the regions surrounding many of our cities. Food products which were formerly produced under more favorable soil and climatic conditions and shipped great distances can, with present freight rates, be produced on the neighboring farms and delivered to these cities with profit. A start has been made in helping the farmers around certain centers of population to solve their problems of readjustment to these changed conditions. Joint market demand and farm management surveys have been made for: Altoona, Pa.; Boston and Springfield, Mass.; New York City, and Tulsa, Okla. It is believed that owing to lack of information with regard to local demands, foods are often shipped great distances when they might be sold with greater profit close at hand. The purpose of these surveys is to help farmers make the readjustments in their farming and marketing which will enable them to provide the local markets, so far as they can profitably do so, with such food products as have formerly been shipped great distances. In the larger cities the study of market demand has a broader significance than providing information for the near-by producers. The mar-
ket analysis research which has been conducted for the past two years in New York City and Boston looks toward the development of methods of measuring and forecasting the market demand in these consuming centers. Other consuming centers, particularly those located in the one-crop producing areas, should be surveyed in a similar manner. It is hoped that State agencies will take up these studies, as it is impossible for this department to pursue them in any large portion of the country.

World Demand for Farm Products.

To compete successfully the farmers of the United States need to know the world demand for the commodities of which they produce a surplus for the world markets and the conditions under which their competitors are producing. To meet this need a world crop and market reporting service has been developed for the purpose of collecting, summarizing, and interpreting information as to demand and competition in foreign markets.

The international Institute of Λ griculture has greatly improved its reporting service to the Department of Agriculture in the past year. The institute has promptly cabled reports of conditions and estimates of important crops and livestock from all of the countries of the world reporting to the institute. For example, an estimate of the wheat crop in Argentina is cabled to the institute within a few hours after the estimate has been released in Argentina and in turn is cabled to the United States, and the same day this report is broadcasted from the Department of Agriculture by radio, telegraph, and press release. In this way the farmer may know as soon as the trader the size or condition of the crop in other parts of the world. Greater use will be made of this and other information on agriculture in foreign countries as its value to agriculture in this country is more fully recognized.

Survey of World Agriculture and World Markets.

To continue to adjust American agriculture to meet the needs of an ever-changing world market situation, it is necessary to know the trend of production in foreign competing countries. The war had a profound effect upon many of our competitors as well as upon our own markets. As in the United States, the conditions of production in these countries are continually changing. To meet the need for such information a world survey of agricultural production has been inaugurated.

A close study has been made of agricultural conditions in Europe with a view to a better undersanding of the rapidity with which the peoples of western Europe were reestablishing their pre-war normal in agricultural production, and particularly in order that the American farmers might be informed regarding the revival of those lines of agriculture in eastern Europe which compete with the American farmer on the western European markets. Detailed studies have been made of the agriculture of the Danube Basin, and a survey of western Europe is now in progress. Detailed reports have also been made on agricultural competition and demand in Argentina, Chile. and Peru.

Representatives of the department are stationed in England and Germany for the purpose of reporting on agricultural and other conditions affecting the demand for farm products. These representatives, through their contacts with importers of farm products, with Government officials who know agricultural conditions, and through direct study of the agriculture of the countries in which they are located, have kept the department informed by radio and by cable of the important developments in foreign crop and market conditions.

Representatives of the department are sent abroad from time to time to help our foreign buyers to a better understanding of the United States grades and standards which form the basis of commercial transactions in farm products exported from the United States. Thus the foreign work not only provides information which facilitates the better adjustment of American agriculture to world conditions but services are rendered also which facilitate the marketing of our agricultural surpluses.

Forecasts of Crop and Livestock Production.

The value of accurate forecasts of crop and livestock production can not be questioned. The more that is known of what is likely to occur in the future, the more intelligently can plans be made. This is particularly true regarding agricultural production, for which the machinery, when once put in motion, must usually be kept going throughout the season, regardless of the fact that production may be greatly in excess of the demand at prices that will be profitable to the producer.

Intention-to-Plant Surveys.

Producers need information to guide them in making proper adjustments between the acreage planted to the various crops. The department began last spring to furnish this information. This was done by securing from many thousands of farmers prior to spring planting statements of the number of acres of various crops which they intended to plant. A similar report relating to fallsown crops was issued in August. These reports will be issued semiannually hereafter. When the purpose and value of these reports on intentions to plant are thoroughly understood they will exert an important influence and assist materially in adjusting acreage by preventing the over or under planting of particular crops. Although this is the first year that this work has been attempted, favorable results have already been noted.
A study is under way to ascertain in a scientific manner the factors which should be considered in forecasting the price of a particular product. There are signs of price changes which appear before the changes occur and serve as advance indications of the price movements. The practical purpose of the price analysis work is to give the farmer the benefit of a scientific analysis of price movements so that he may be able to make the best estimate possible from the facts available.

Farmers of necessity make production and price forecasts. On the basis of their forecasts they plan what they will undertake for
the coming year, how much land they will use, the acreage they will put into each of the various crops, the iivestock they will keep, and when they will market their products. While forecasts have always been made by farmers, it is believed that facts can be furnished which will make their forecasting more accurate than it ever has been.

The "intentions-to-plant" reports are not in any sense forecasts of acreage or yield, although they have sometimes been taken as such. They indicate what is in the farmer's mind at the time the report is made. When the general intention is made known individual farmers can then change their intention in the light of the new information.

Following the reports on "intentions-to-plant" mentioned above, it was felt that a comprehensive estimate of the general outlook would be a special value to producers. A group of well-known economists and statisticians were invited to meet in Washington on April 20 last to consider the report on intended crop plantings and other materials relating to demand, and to prepare a statement on the general factors now underlying the agricultural situation with a view to furnishing all possible bases for intelligent adjustment of production to demand. This committee drafted a concise statement on the general economic outlook which it is believed has been of material aid to all agricultural interests.

This group met again on July 11 to consider the foreign and domestic demands for farm products, the wheat situation, and the corn-hog situation. A valuable report was prepared, consisting largely of the presentation and interpretation of data collected by the Bureau of Agricultural Economics, which set forth the salient facts governing the agricultural outlook at that time. This report has been received with much interest by farmers, bankers, traders, and many others interested in the agricultural situation.

Comparative Estimates a Guide to Marketing.

Producers also need information to guide them in determining when to sell their crops and livestock. This need the department is striving to meet by issuing promptly after harvest, as a supplement to the regular forecasts of production, an estimate of the quantity of each crop produced, together with comparisons with previous years. In order to give a more complete picture, information concerning foreign production is also gathered and published. Thousands of farmers study these reports from month to month and are guided in their marketing operations by them.

Pig Surveys.

The special pig report which was issued in June, a year ago, showed a marked increase in the intentions of the farmers to breed for fall pigs, the increase amounting to 49 per cent in the Corn Belt States. When the report was made in December showing the actual number of fall farrowings, it indicated that this intention had been practically cut in two. Undoubtedly the information furnished by the department as to the increase had an important effect in reducing the fall pig crop to a more reasonable basis.

The report of July 1 of this year showing intentions to breed for fall pigs again showed an increase for fall farrowings, but judging from the large number of sows which have been going to market during the summer, farmers changed their plans when they learned the general intention and the actual fall farrowings will fall much below the expressed intentions of the farmers. That is the result to be desired from these reports.

Receipts at the various markets, which permit the checking up of these estimates, indicate that it will be possible to forecast quite accurately the probable movement of hogs to market several months in advance of the actual movement.

Fig. 12.-The number of sows farrowed in 11 Corn Belt States in the spring of 1922 was 22.8 per cent above the number farrowed in the spring of 1921. The increase in the spring of 1923 over 1922 was 8 per cent. The December, 1923, survey showed a decline of 6.1 per cent from the number farrowed in the fall of 1922. This survey also showed a considerable decline in the intentions to breed for spring pigs in 1924 compared with the actual farrowings in 1923.

Acreage Estimates Improved.

The problem of estimating acreage is one of the most difficult confronting the crop forecaster. In order to secure greater accuracy, therefore, a measuring instrument has been devised for attaching to an automobile by which the linear measurement of all fields in various crops bordering on highways can be easily and quickly made. By covering sufficient territory a very accurate ratio between the areas in different crops can be determined and by covering the same highways year after year, the change in acreages in various crops can be worked out. Successful experiments have been made with this instrument and it will be used in practically all States hereafter.

Livestock Reporting.

This year a long step in advance has been taken in the work of livestock reporting. Practically a new service has been started for the purpose of estimating actual production for market, available supplies, and movement of cattle and sheep. Estimates were issued on December 1, January 1, and March 1 last, of the number of cattle and sheep on feed in the Corn Belt as well as in the western States. Weekly: reports were issued during the height of the season of the lamb movement in the Colorado-Nebraska district, showing the actual movement to market. The total number of lambs shipped
out of this district checked very closely with the estimates made at the beginning of the season. Reports of the available supply of feeder cattle for spring and fall shipment were made for a number of western States, and hereafter will be made for all States which ship feeders. Reports were also made monthly for 17 western States showing pasture and feed conditions, as well as the condition of livestock on the ranges. An immense amount of historical data for previous years was compiled from the records of railroads, stockyards, concentration points, local packing establishments, and other such agencies, in order to secure a background for the quantitative estimates of movement.

Cost of Production.

Cost data form the basis of the selection and combination of livestock and crops so that the largest net return may be secured by the farmer. Through cost studies farmers learn how to reduce their costs through more efficient management. Cost of production data are being gathered in representative areas throughout the United States with this object in view. The material is being used by large numbers of producers in these areas in the organization and operation of their farms.

The department is building a structure of index numbers of costs of production, national in scope, which will give the trend of production costs for all the important farm products entering into domestic and foreign commerce. The factors of production, such as labor, equipment, machinery, and fertilizer are being obtained in quantity as well as value units, which make possible a comparison of the basic requirements in agriculture with those of manufacture and public utilities. These agricultural cost trends should be very valuable to our legislators in deciding agricultural policies, to the farmers in helping them forecast probable cost trends, and to those industries directly dependent upon the farmer in planning their production programs. Knowledge of price and production trends helps farmers decide what to produce and helps to stabilize production. Standards of production are being worked out also from which farmers can judge the efficiency of their own operations.
Cost studies are furnishing information of specific value at the present time in the boll-weevil-infested areas of the South. The gradual expansion of the boll-weevil area has led to a study of the cost of the cultural methods and practices and crop rotation systems which best combat the weevil. On the basis of these studies systems of cotton farming are being worked out with a view to securing the highest net return per unit of expenditure.

The disastrous financial condition of so many of the range cattle producers at the present time has led to the general belief by many western cattle producers that possibly some changes in their methods of meat production should be made. In an endeavor to be of assistance to the beef producers, field work in ranch costs and management was begun in the spring of 1922 . These ranch studies are being combined with similar studies on cattle using the national forest ranges. From this work the department will be in a position to make known the methods of handling and systems of beef production which will produce the best results under present conditions.

Readjusting the Farm Program.

Hand in hand with the cost of production studies are the studies of farm management and farm practice. The work in farm management in the past has been largely the studying of normal agriculture. This year we have turned our attention to applying the results of our studies of normal agriculture to unusual conditions which exists in many sections.

For example, the northern Great Plains area has suffered severely. The Department of Agriculture during the past year was called into conference with the agricultural colleges in this region with a view to devising some measure of relief for the farmers in the Northwest. This region during the last years of the war, when the price of wheat was high, suffered an unprecedented series of dry seasons which greatly reduced agricultural production, and more recently the price of wheat has been far below the cost of production. As a consequence land values have depreciated, farmers have become discouraged, and the prosperity of the region has been in grave jeopardy. Recognizing the seriousness of the situation, a spring wheat regional council was organized in the department about a year ago.

Spring Wheat Council.

This council appointed two committees to cooperate with similar committees representing the agricultural colleges in the spring wheat States, one committee dealing with production and the other with the marketing of agricultural commodities in that region. At a conference held in St. Paul last January a report was prepared containing recommendations of measures which it was believed would help provide immediate relief to the farmers of the region.
A comprehensive study of farm organization and land utilization in the region has been begun by the department in order to determine in just what parts of the region a permanently profitable agriculture can be established and just what types of farming are best suited to the different parts of the region.

Agricultural Credit.

The agricultural credits act of 1923 established 12 intermediate credit banks, one to serve each of the Federal land-bank districts. It increases from six months to nine months the term of discount on agricultural and livestock paper by the Federal reserve banks. It broadens the definition of agricultural paper so as to include credit used in the preparation for market and the marketing of agricultural products by farmers' cooperative associations. It increases from $\$ 10,000$ to $\$ 25,000$ the maximum mortgage loan to individual farmers by the Federal land banks. It gives the borrowers from the land banks a measure of control of these institutions. It authorizes the organization of national agricultural credit corporations which will prove of special benefit to the parts of the country where the livestock industry is most prominent.

While the law does not authorize direct loans to individual farmers, local agricultural credit corporations may be organized by such farm-
ers in order to obtain discount privileges. In some States evidently the State laws must be amended before farmers can get the full benefit of the Federal law in this way. Bankers and business men in communities where present facilities are inadequate may also organize such corporations. Only in localities where present credit facilities are inadequate or where local banks, by reason of the limitation upon interest rates provided in the law, or for other reasons, refuse to avail themselves of the facilities for intermediate credit afforded them by the new banks, is it believed necessary or desirable that agricultural credit corporations should be established.
This agricultural credits act if vigorously administered should be most helpful in furnishing the sort of credit needed to meet the peculiar needs of the farmer.

MONTHLY AVERAGE NUMBER OF LOANS CLOSED BY FEDERAL LAND BANKS, 1917-1923.

Fig. 13.-The first charter to a national farm loan association was granted March 27, 1917. By October 31, 1923, the Federal Land Banks had closed 284,095 loans amounting to $\$ 846,030,954$. The lending operations of the banks during 1920 and 1921 were curtailed by litigation involving the constitutionality of the Federal Farm Loan Act.

Increased Activity Under the Warehouse Act.

Changes have been taking place in methods of marketing and financing farm products due to the increased credit facilities which have been extended to farmers and the development of the federally licensed warehouse. For example, the cotton which was formerly sold abroad quickly and financed abroad is now held in this country, warehoused and financed in this country, and sold gradually.

The year 1923 marked the greatest progress in the licensing of public warehousemen under the United States warehouse act for the storage of agricultural products since its passage in 1916. This is shown in the following table.

Number of licensed warehouses.

Kind of warehouse.	To April 1, 1921.		To June 30, 1922.		To June 30, 1923.	
	Number.	Capacity.	Num- ber.	Capacity.	Number.	Capacity.
Cotton. .	238	429,975 bales.......	270	1,210,000 bales.	331	2,639,200 bales.
Grain...	56	2,108,400 bushels ..	265	14,450,000 bushels...	231	20,297,047 bushels.
Wool....	5	24,375,000 pounds..	18	27,500,000 pounds..	15	32,100,000 pounds.
Tobacco.			14	68,400,000 pounds.	51	219,475,000 pounds.

Much of the progress made is attributable to the attitude taken by growers' cooperative associations and bankers toward receipts

INCREASE IN THE CAPACITY OF WAREHOUSES LICENSED FOR STORING COTTON, GRAIN, WOOL, AND TOBACCO UNDER THE UNITED STATES

 WAREHOUSE ACT, 1920-1923.

FIG. 14.-The license capacity for storing cotton from April 1, 1920, to December 31. 1923 , was increased 64 times. Jicensed capacity for grain during the same period increased 249 times. Although during April, 1923 , there were no waiehouses licensed for storing wool, on December 1, 1923, the licensed capacity was sufficient to store one-sixth of the wool clip. No tobacco warehouses were licensed until early in 1922. On December 31, 1923, licensed warehouses could accommodate approximately three and one-half million pounds of tobacco.
issued under the law. A number of cotton and tobacco growers' cooperative associations refuse to place cotton or tobacco in any warehouse not licensed by the department. Resolutions favoring the licensing of warehouses under the United States warehouse act
have been adopted by many banking and clearing-house associations. The Federal Farm Loan Board, in administering the intermediate farm credits act of 1923, in its perliminary rules and regulations included a rule reading as follows: "Intermediate credit banks will accept the receipt of any warehouse licensed and bonded under the Federal warehouse act."

The formation of cooperative growers' associations, the improved credit facilities made available by the Government, and the attitude of large banks are all encouraging the producer to hold his crops for a ionger period after harvesting and thus encouraging more orderly marketing. The Federal warehouse act has clearly demonstrated its value in this movement.

Until February 23, 1923, the act applied only to cotton, grain, wool, and tobacco. On that date the law was amended so as to apply to such agricultural products as might be considered properly storable under the act. The department has since received requests from many sections for licensing warehouses for the storage of beans, eggs, and other cold-storage products, apples, potatoes, and many other products. Just as fast as the necessary trained men can be found to add to the staff, warehouses for the storage of additional products will be proclaimed licensable.

Market News Service Expansion.

This year marks the first substantial expansion in the market news service of the department since the funds were curtailed at the close of the World War. For the present fiscal year Congress increased the appropriation for this work by nearly $\$ 300,000$, this increase being granted for the purpose of extending the service to the far West and to the South. On July 1 the leased wire was opened to San Francisco, passing through Denver and Salt Lake City, and on September 1 a similar wire was opened to Atlanta, Ga., passing through Richmond, Va., and Raleigh, N. C. Offices at Los Angeles and Portland, Oreg., were opened on July 1, and are reached by radio and commercial wire service from San Francisco.

New branch offices were opened in both the West and South to collect and disseminate market information. While this expansion does not restore the nation-wide system that existed during the waremergency period, the extension to the far West and to the South are making our market reports available to a very large number of producers. This extension has imposed a heavy burden upon the working force in the larger market centers, however, and further additions to these forces will be necessary in order to maintain the scope and quality of the work.

Before the extension to the Pacific coast can be of the greatest usefulness it will be necessary to increase our program by reporting a number of crops, such as prunes, which heretofore have not been covered. Urgent demand has been made upon the department also for the reopening of branch offices in a number of important eastern markets, but until additional funds are made available it will not be possible to meet this demand.

Radio News Service.

Radio broadcasting as a means of disseminating market information has been given a thorough trial during the past year and has
fully demonstrated its value. Through the cooperation of the Navy Department the high-powered radio stations at Arlington, Va., Great Lakes, Ill., and San Francisco, Calif., have been used in transmitting market information which has reached a large portion of the country.

The secondary broadcasting by radio telephone has been further developed, and now any farmer who has an adequate receiving set may get full market reports from the air in practically every part of the United States. An inquiry among county agents showed that the number of receiving sets on farms is rapidly approaching a quarter of a million and that through the distribution of these reports by local schools, farmers' organizations, business houses, etc., the market information is becoming available to a large proportion of our farmers.

Increased Demand for Information on Agricultural Situation.

Conditions during the past year throughout the country have tended to increase the demands made upon the Department of Agriculture for facts and figures which help to interpret the constantly changing situation. In line therewith the department has attempted to make still more effective its machinery for disseminating timely economic information. Through its extension organization it has succeeded in maintaining excellent contact for this purpose with farmers and farm leaders. Charts and statistical summaries have been sent out at regular intervals and these have been widely used by individuals and the press. A condensed summary has been prepared each month, showing the trend of important economic factors, such as production, consumption, movement and prices. This monthly summary has been issued as a mimeographed circular under the title, "The Agricultural Situation." This circular contains a terse statement of the month's developments in production, prices, movement to market, exports, cold storage, and business factors reflecting demand for farm products.

Shipping Point Inspection Service.

For the fiscal year 1923 Congress authorized this department to inspect fruit and vegetables at shipping points. This opened the field for a new service of supreme importance to the fruit and vegetable industry, as it makes it possible for producers and shippers wherever the service is available to secure an inspection by a Federal inspector before the produce is shipped. This service is permissive only. The certificates issued are prima facie evidence in the courts of the United States as to the grade and quality of the product inspected. In many shipping areas the demand for this service was already loud and insistent.

To meet this active and potential demand it is estimated that no less than 1,000 inspectors will ultimately be necessary, although a majority of them will be part-time men. It should be noted that over 550 inspectors have been licensed during the first three months of the current fiscal year. It is expected that this work will pay its own way through the fees collected, but these fees must be made reexpendable or there must be provided a fund of about $\$ 1,000,000$ annually upon which to draw for salaries and expenses. The act, however, carried not a dollar of increase for the inspection item,
alihough the work to be done at shipping points is fully ten times as extensive as that previously done in the terminal markets, where an a verage of 50 inspectors were employed.

The department was therefore limited to such work as could be done through cooperative agreements with certain States, especially those whose officers could operate revolving funds. Under these agreements the inspectors have been employed and paid by the State, and the fees have been assessed by, paid to, and reexpended by the State. We have licensed these inspectors, supervised their work, and charged the State a fee, which has gone to the United States Treasury as miscellaneous receipts.

Although active work has been possible in less than half the States, certificates were issued on 72,666 carloads of produce at shipping points and on 28,169 cars in terminal markets. This means that every one of these shippers held prima facie evidence of having made a good delivery if he based his sale on the Federal certificate. It

Fic. 15.-The above map shows that the greatest demand for shipping point inspection of fruits ang vegetables was from heavy producing States which are far from the principai consuming centers. The number of inspections requested is determined largely by local conditions. State legislation encouraging and in some cases requiring inspection was very influential in determining the amount of cooperative Fedcrai-State inspection work pertormed.
means also that every buyer who demanded "Government certificate attached to bill of lading" bought with assurance that a competent and impartial inspection had determined the variety and grade of the fruits or vegetables offered him.

The economic results of this innovation have been spectacular in the swiftness of their development. They promise to be well-nigh revolutionary in their ultimate effect upon fruit and vegetable marketing.

First, the true meaning of standardization has been brought home to the grower as never before.

Second, the growers' organizations have improved the quality of their offerings and have found a new and acceptable basis for pooling.

Third, potato growers especially have learned what sort of stock should not be shipped at all except in years of extremely high prices.

Fourth, the shipper has a new basis upon which to offer his prodduct and has no fear that the prospective buyer will discount his statements.

Fifth, the buyer can order in safety without seeing the goods.
Sixth, the certificate acts as a general insurance policy in case of loss or damage in transit.

The trade quickly realized that this service made possible a new system of car-lot marketing. Auction companies have been formed in both eastern and western cities which sell only cars in transit and on which certificates have been issued. The success of this system has been marked from the start. On the first 500 cars of cantaloupes thus sold the commissions were only one-third as high as those generally prevailing at the time. The final destination of the car was determined during its first day on the road, and it moved without indirection or delay to the place of consumption. Meantime the

CAR-LOT INSPECTIONS AT RECEIVING MARKETS FOR PAST FIVE YEARS.

Fig. 16.-After the year 1918-19, during which the inspection service was being organized, the number of inspections requested in receiving markets has varied according to weather and crop conditions. The severe winter of 1919-20 resuited in thousands of requests being filed for inspection covering transit freezing injury. Epidemics of field diseases of certain crops have also influenced the number of inspections requested.
shipper had his money, transmitted by telegraph, within 48 hours after loading his car. Thus has the road between producer and consumer been shortened and straightened, and a clear saving of 10 per cent of the f. o. b. price has been effected by the shipper.

Prior to last year our inspection service in terminal markets had never earned in fees more than five-sevenths of the appropriation made by Congress for this work. Last year, without curtailing the city service and without a dollar of increase for this item, we more than trebled the number of cars inspected and have returned to the Treasury six-sevenths of the amount appropriated. When considered in connection with the profound reforms and economies to which the work has given rise, this is one of the most marked accomplishments of the year in our entire field of economic service.

Standardization of Farm Products Universally Accepted.

The benefits from well defined and generally accepted standards for farm products are no longer seriously questioned. With premiums being paid for products of uniform grade, coupled with
high costs of transporting and handling nonstandardized products, farmers have come to realize the value of this work. Standardization of fruits and vegetables received fresh impetus from the inauguration of the shipping point inspection, as uniform standards are fundamentally necessary to the successful operation of an inspection service. At the present time Federal standards are being used for a large number of the most important fruits and vegetables, and many of these standards have been made mandatory under State laws.

After several years of intensive work, Federal grades were recommended for a number of the most important types of hay. These grades have been very well received on the part of producers and the trade, and are used as the basis for the inspection service on hay which was inaugurated on July 1 of this year.

On February 23, 1923, the warehouse act was amended so as to permit of the storage of any agricultural product, considered by this department to be properly storable, in a federally licensed warehouse. As a preliminary step to the enforcement of this act, it is necessary to establish Federal standards for all products to be stored in licensed warehouses.

Tentative standards have been established covering dark-fired, flue-cured and sun-cured types of tobacco of Virginia and the Carolinas and the dark-fired tobacco of Kentucky. Other tentative standards have been recommended and investigations are being continued.

The department's market classification for livestock has been further revised and is without doubt the most complete classification for meat animals ever attempted and constitutes a long step forward in standardization. Classes and grades of dressed meats have also been prepared which are proving of great benefit to the livestock and meat trade.

In response to strong appeals from both the domestic and foreign trade, Federal grades for rye were promulgated on July 1 of this year. These grades have received hearty indorsement from all branches of the trade. The demand for these grades by buyers in Europe, as well as by the domestic trade, indicates a wholesome confidence in the value of inspection certificates issued by licenses of this department.

Universal Standards for American Cotton.

An outstanding accomplishment of the year has been the establishment of universal standards for American cotton. With the passage of the United States cotton standards act on March 4, 1923, requiring the use of the official cotton standards of the United States in interstate and foreign commerce, the desirability of an international agreement on standards became increasingly evident. Accordingly, a conference was called at Washington on June 11, 1923, at which representatives from the leading cotton exchanges of Europe met representatives of the American cotton trade and officials of the Department of Agriculture, and reached an agreement that the official cotton standards of the United States for grade and color with some slight modifications should be adopted as universal standards for American cotton.

It was agreed that in so far as commerce in American cotton is concerned the entire world will use identical names to represent standard qualities. Contracts covering the agreements and rules under which the foreign trade in American cotton is to be conducted have been signed by the Liverpool Cotton Association, Manchester Cotton Association, the Havre Cotton Association, Bremen Cotton Association, Barcelona Cotton Association, and Rotterdam Cotton Association. By this agreement the international cotton business will be greatly simplified and the cause for disputes and reclamations largely eliminated, as the same standard will be applied to the cotton throughout its entire course from the time it leaves the farmer until it reaches the spinner in any part of the world. The path between

Frg. 17.-Every important cotton market in Europe and the United States has adopted and is now using universal standards for American cotton. Even the trade in American cotton in the Orient is based on these standards and purchases are usually consummated in the United States. Exporters representing eastern interests accept delivery here and ship the cotton under foreign ownership. It seems probable that Russia, Australia, Brazil, and Argentina may adopt these or similar standards for comparable varieties of cotton.
the farmer and the consumer will be shortened, with the result that the producer will receive a larger share of the proceeds from the sale of his cotton to the European spinner.

Grain-Cleaning Demonstrations.

One of the most serious problems in connection with the grading of wheat has been the question of dockage. Records for the past 18 years show that the wheat arriving at terminal markets has been marketed with increasing amount of trash and foreign material. For example, with respect to hard red spring wheat produced in the central spring-wheat belt, records covering a recent crop movement show that there was marketed with the wheat over $10,000,000$ bushels of trash and foreign material. This is a burden upon the producer of wheat and represents an economic waste which this department has been working to overcome with a view to putting more dollars into the farmer's pocket for the wheat he produces. To accomplish this, the department has developed a cleaning device designed for attachment to threshing machines. Educational work is
being carried on to bring about the general use of this device and to demonstrate the value of marketing clean grain, as it will insure enormous financial benefit to the wheat grower.

Authentic Farm Population Statistics.

A detailed study of the movement of farm population in eight rural counties of the United States from census reports of 1920 is practically completed. This study, to be published by the Bureau of the Census, will furnish authentic information as to shifts of population from farms to villages and cities and vice versa, as well as "moves" from farm to farm in various sections of the United States.

Farmers' Standard of Living Studied.

The main purpose in connection with studies on the farmers' standard of living is to determine what farm families use and what they pay for the various materials such as food, clothing, rent, fuel, and other things. Another purpose is to learn what proportion of the expenditure goes for each of the various classes of goods consumed. Still other purposes are to obtain information concerning living conditions actually prevailing in certain selected areas, and to determine the relation of success of farming, of value of house and its furnishings, and of several of the more social factors to the family living. Such information gathered from various parts of the United States is needed by institutions attempting to direct agricultural development on a sound basis. It will help to answer some of the questions regarding the advantages of city versus country life, so far as the material well-being of the families is concerned.

Farmers' Mutual Insurance.

The department has aided and encouraged further improvement in the methods of operating the farmers' mutual insurance companies in all parts of the country and has brought about the extension of

AMOUNT OF OUTSTANDING INSURANCE OF FARMERS' MUTUAL FIRE INSURANCE COMPANIES, 1914-1521.

Fig. 18.-In 1921 there were 1,952 farmers' mutual fire insurance companies in the United States, and the risks in force in that year show an increase of 59.8 per cent over 1914 . The average cost covering all losses and expenses was 27 cents per $\$ 100$ of insurance.
this sound and economical form of insurance protection to those of the Southern States where as yet little development of this kind has taken place. In many of the States of the South fire-insurance rates as quoted by commercial companies are so high as to make the cost of protection to a considerable percentage of the farmers well-nigh prohibitive. Experience has demonstrated that through local cooperation expenses can be materially reduced and the loss ratio can be greatly lowered by the elimination of all moral hazards, as well as the elimination of some of the physical hazards involved.

Crop Insurance.

Special interest has been evident recently in the problem of insurance on growing crops. Several of the larger joint-stock fire-insurance companies have in recent years been experimenting with a broader form of insurance coverage for crops than that involved in so-called hail insurance, which has been extensively written for a number of years. The department has been glad to cooperate with the Senate committee appointed to investigate the subject of crop insurance in the United States and to contribute to the statistical and other data sought by this committee. The growing of crops is surrounded by a wide variety of hazards. The uncertainty of weather conditions, plant diseases, insect and animal pests give rise to a risk against which it would be highly desirable for the farmer to be in position to protect himself. In commerce and industry insurance protection against hazards over which the individual has no control is now very generally available. It seems reasonable and proper that the producer of crops should also be in position to safeguard himself against total or serious loss of his annual investment of capital and labor after doing everything possible on his own part to bring about a harvest.

Agricultural Cooperation.

During the past three years farmers in the United States have turned to cooperation for the solution of their marketing difficulties in ever-increasing numbers. In a period of rapid expansion it is only natural that the essential principles and limits of cooperation at times should be overlooked. The department believes, therefore, that its most helpful activity in this field consists in collecting and compiling the essential facts with regard to the cooperative movement and employing these data as the basis of careful studies of the older and more successful cooperative organizations. In this way an understanding of the general movement may be gained, and the principles which have guided well-established organizations made available to newcomers in the field.

The department has undertaken, consequently, to collect and compile the vital facts regarding existing cooperative organizations. Out of an estimated 10,000 associations in the United States information regarding form of organization, financial status, kind of products sold and purchased, volume of business, marketing methods, and similar features is available for approximately 6,000 . Information regarding well-established cooperatives is even more complète than the figures given would indicate. Current material
is made available to those interested in cooperation through the publication every two weeks of a 16-page mimeographed circular containing economic, legal, and statistical information regarding cooperation in the United States and foreign countries.
Detailed studies of a cooperative sales agency for cranberries and a cooperative citrus-fruit marketing agency were completed during the year. The purpose of the studies is to point out, first of all, the general principles which have made these organizations successful; to point out also the particular problems each organization has had to meet and the way in which these problems and other special conditions have. affected its development. A study is also being made of cooperative organizations which have failed, in an effort to determine the causes for failure of cooperation.

The objective of the department's work in cooperation, in brief, has been to collect the facts regarding the cooperative movement, to

FIG. 19.-The 12,000 farmers business organizations functioning at the close of 1923 had a membership estimated at $1,500,000$. While these members were scattered orer the entire United States they were especially numerous in the dairy sections of New York, Wisconsin, and Minnesota, the tobaccoproducing regions of Kentucky, Virginia, and the Carolinas in the Cotton Belt States, and in sections of California where the fruit industry is highly developed.
ascertain by careful study the principles which will serve as guideposts for the inovements, and the factors which point toward danger and possible failure.

It is important to remember that there have been previous periods of expansion and decline in cooperative activity in the United States. Cooperative sentiment is always stimulated by agricultural depression. The first great cooperative movement in agriculture reached its apex about 1874, but lasted for only a few years thereafter. Local work went forward in the later years of the nineteenth century, but it was not until after 1900 that the present period of expansion began. It increased gradually for a number of years, gaining momentum about 1914, and is now at a maximum.

There have been many failures of cooperative associations, although there is no reason to believe that the number of failures
of such organizations during a given period varies materially from the number of failures in other enterprises under analogous conditions. It was only natural that the number of failures of cooperative associations should be especially large following the World War, during the period of falling agricultural prices, just as the number of business failures in cities should be and was very large. The causes of the failures appear to be similar to the causes of failure in other lines. The main cause was falling prices. Other causes were poor management, inadequate financing, and too small a volume of business in proportion to the overhead expenses. Some associations purchased, largely on credit, buildings and equipment at war prices, and the subsequent decline in the value of such property, coupled with the decline in the price of agricultural products, was largely responsible for their failure.

Business failures in cities are a natural economic phenomenon which we record statistically from day to day. It is a barometer

DISTRIBUTION OF COOPERATIVE SELLING ASSOCIATIONS, 1923.

Fig. 20.-Reports received by the Department of Agriculture from farmers' business organizations have been classified according to the kind of enterprises being conducted. It is estimated that there were approximately 12,000 active business organizations at the close of 1923 , and that during that year their total volume of business was in excess of $\$ 2,000,000,000$.
of business activity. It is taken as a matter of course. When a cooperative enterprise composed of farmers fails it flashes across the metropolitan press in glaring headlines. Business failure is the cut and dried method by which society has decreed that the unnecessary enterprises be eliminated.

The Capper-Volstead Act, which became a law on February 18, 1922, specifically recognizes the right of farmers to associate for the purpose of marketing their products. This act clears the way for cooperative effort.

A principle which can not be too strongly emphasized is that cooperative associations will succeed or fail in proportion as they are efficient. The measure of their success will be determined by their ability to perform the marketing functions which they undertake fairly, economically, and efficiently. Success will necessarily be governed by the skill and energy of the management. The State
agricultural colleges could render helpful service by strengthening their courses in economics and marketing and by offering special courses for the training of cooperative managers.

Outlet for Meat Widened.

Through efforts of this department and the Department of State during the past year a wider market for domestic meats, particularly pork, has been made available. The most recent evidence of this is the opening the Netherlands to shipments of pork. This new market, together with the English market, which was opened to the same products about 18 months ago, now gives the farmers of this country a considerable additional outlet at a time when production is at a high point.

The Government of the Netherlands requires that fresh pork shipped to that country shall be handled under certain specified conditions. These conditions have been met as a result of modifications agreed upon after suggestions were made by this department. It is expected that this new arrangement will result in a great deal of new business, just as resulted from arrangements made with England which removed any doubts regarding the wholesomeness of American fresh pork.

Up until about a year and a half ago there had been no fresh-pork trade between this country and England, but during the past year this trade amounted to practically $20,000,000$ pounds, the equivalent of well over 100,000 mature hogs.

It is hoped that other importing nations may come to understand the exceptional cheapness and wholesomeness of our pork and be willing to remove the restrictions which seem to work to the disadvantage of their consumers as well as our producers.

New Organization in Effect.

Adjustment of the work of the department to the new plan of organization which went into effect July 1, 1923, has been going forward satisfactorily. Broadly speaking, the new organization provides for the coordinating of the three main divisions of department work, each under a directing head. The offices of director of scientific work and director of regulatory work were provided for prior to the past year. The newly created office was director of extension work.

The director of scientific work is expected to coordinate and supervise all activities looking to the finding of new scientific facts. The director of extension work has charge of all branches active in the sending out of these new facts and other information to the public. This work is done largely through extension agents in cooperation with agricultural colleges. The director of regulatory work has charge of the administration of the numerous laws coming under the department. His work is very closely associated with scientific work, as research along scientific lines is necessary in the administration of many laws.
Another important feature of the plan of reorganization is the establishment of the Bureau of Home Economics. This bureau is in charge of a woman, scientifically trained and experienced, and
has a program outlined which will greatly strengthen our scientific knowledge of foods and problems affecting the women of this country.

The editorial and distribution work, formerly the division of publications, has been placed in charge of an assistant directly responsible to the Secretary. This position was provided for by the last Congress and makes it possible to materially strengthen this phase of our work.

Home Economics Work Strengthened.

With the establishment of the new Bureau of Home Economics coordination and cooperation of the work already being carried on has been made possible. Plans have been made to begin research in new fields which must be explored scientifically if the department is to render the greatest service to the home maker. Problems will be undertaken according to their relative importance to home makers as far as the department is able to determine them.

At a conference of home-economics specialists called by the department last summer it was expressed and agreed upon that the new bureau should undertake research work in the following subjects: Food and nutrition, clothing and textiles, economics (including household management), equipment, eugenics, and art in the home. Among these recommended subjects we hope to stress particularly economic studies, experiments in the field of textiles, and clothing and equipment studies. Under the economic phase of this work standard-of-living studies appear to be greatly needed to furnish information of fundamental importance. The factors entering into clothing costs are not sufficiently established, and detailed study along this line is highly important. There is a wide field of work in the continuation and extension of the economic use of food. Studies of the cost of housing are at present acutely needed. Very little information is now available to the housewife to help her in choosing textile materials and clothing, and it appears very urgent that something should be done to furnish the housewife with reliable guidance in her purchases of household equipment.

These are only representative of the many problems confronting this new bureau, and indicate the great field of research work which this department should explore if it is to be of the utmost help to farm and city women.

Scientific Research.

In the field of scientific research many things have been done during the year which are valuable contributions to both scientific and practical agriculture, and to various industries. Many of the new discoveries are plainly contributions which should make living easier and more comfortable. It is not possible to enumerate all of these additions to knowledge which cover a great variety of subjects, including plants and animal breeding, cultural methods, means of fighting insect, animal fungus, and bacterial enemies of crops and animals, and new methods for handling crops after they have left the farm. The reports of the various bureaus contain much detailed information and are available in limited numbers.

Results of research work on animal parasites afford striking evidence of the practical value of scientific experimentation. One of the most conspicuous examples is the discovery that carbon tetrachloride is an effective remedy for the removal of hookworms of dogs, a discovery which has led to the wholesale application of this treatment against hookworms of human beings with great success in many parts of the world. Investigations regarding roundworms of sheep and swine have made it possible to overcome, to a large extent, the enormous losses caused by these parasites.

A unique, practical method for the prevention of damage to the harvested fruit of Florida oranges and grapefruit by stem-end rot during transportation, storage, and distribution has been developed to the stage of commercial application. The economic importa ce of this reduction of distribution hazard and prevention of waste of wholesome fruit is readily apparent when it is remembered that these two crops in Florida alone now yield from $13,000,000$ to $16,000,000$ boxes each year.
Recent studies of the salts carried in irrigation water have given a somewhat different point of view for the consideration of alkali troubles in irrigated lands. In many districts the chief concern of the irrigation farmer is to prevent accumulation of alkali salts in harmful quantities in good land, rather than to reclaim salty land for use in crop production. These observations indicate the importance to the irrigation farmer of understanding the character of the soil solution and of using irrigation water in such a way as to prevent the accumulation of excessive quantities of soluble material from the soil.

Two different methods have been developed for determining the total quantity of colloidal material in soils and it has been found that colloids constitute a far larger part of the whole soil than previously had been thought, some of the heavier soils containing from 60 to 70 per cent. Progress also has been made in determining the properties of the colloids present in different soils. With these facts established it should be possible to gain a more correct insight into the chemical processes of the soil than has hitherto been possible. It is now possible to get a better insight into the nature of soil composition, and the new methods are applicable in the study of agricultural soils, of material used for building levees and foundations, of drainage and irrigation conditions, and of geologic formations.

By modifying the process ordinarily used in the preparation of ammonium phosphate so as to include the use of commercial potassium chloride, as well as phosphoric acid and ammonia, it has been found that a product containing all of the essential constituents of fertilizer, and of corresponding concentration, may easily be obtained. Chemical and physical properties of this material make the new method admirably suited for preparing fertilizer material for transportation. Manufacturing concerns have taken such an interest in this process as to express a willingness to test it out on a commercial scale.

A laboratory to develop work on the chemistry of crops was established during the year. There is need for work concerning the influence of environment on the chemical composition of crops, including certain features of fertilization, such as the relation of composition of crop to the time of fertilizer application. Past work
on the composition of agricultural crops has been directed chiefly toward what may be termed the quantity viewpoint. The new work is directed more toward the subject of quality. The chemist is now seeking to learn whether or not there is danger of producing quantity at the expense of nutritive quality. For instance, it is known that the application of a certain fertilizer, say, sodium nitrate, at a definite time, as one month after sowing, to a crop like corn will increase the yield quantitatively. However, practically nothing is known about quality relations; that is, whether the proteins, vitamins, or mineral components of the corn so fertilized are superior or inferior for animal and human nutrition. The economic value of improvements in quality resulting from this research may exert a marked influence upon future agricultural practices.

The physical investigations conducted at the Arlington Experiment Farm, Arlington, Va., and elsewhere, with and without the cooperation of other agencies are fast providing a scientific basis for highway design, reducing uncertainty to a minimum and assuring a greater degree of economy in highway construction expenditures. As a result of observations made at the Bates road in Illinois, a design for one of the types of highway surface has been formulated which will reduce the cost by $\$ 1,500$ a mile without decrease of strength. The department cooperated with the Illinois Department of Public Works and Buildings in this investigation.

Insect Enemies.

The fight against insect enemies, which grows year by year, involves the use of various methods for eradication and control and for preventing the introduction of new kinds from other

DUSTING COTTON WITH AIRPLANE.
Fig. 21.-Experimental work with airplane has given assurance that calcium arsenate can be applied by this system more cheaply than by hand under satisfactory conditions.
countries. During the past year progress has been made in introducing insect enemies of the corn borer from Europe. During 1922 more than a million specimens of one species were liberated in the New England area. Arrangements have been perfected with
the Canadian department of agriculture to supply colonies of this parasite for possible establishment in southern Ontario, where the corn borer occupies a large part of the peninsula bordered by Lakes Ontario, Erie, and Huron. Another parasitic species which first

ADULT BOLL WEEVIL AND LARVA.
Fig. 22.-The adult weevil lays its eggs under the surface of the squares or bolls where they hatch their young larve. The larva hatches from the egg inside the boll and begins to feed on the tissues, thus destroying the form and preventing maturing of the fruit.
was liberated in Massachusetts in the fall of 1922 has been recovered from the field in several different localities in New England, and the establishment of this species there seems now assured. There were no developments of great importance in the corn borer situation during the past year.

Study of calcium arsenate dusting methods for checking cotton boll weevil infestation showed that some success has been achieved by this means. Severe weevil infestation in 1922 caused a more extensive use of calcium arsenate than ever before, and a shortage of this material developed. A special investigation was made of the results secured by approximately 1,100 farmers. who dusted altogether 125,485 acres of cotton. These farms were quite uniformly distributed over practically all of the Cotton States. Slightly more than 96 per cent of the farmers using calcium arsenate were successful in controlling the weevil to the extent of making the operation profitable. The average increase in yield upon these farms was 339 pounds of seed cotton per acre. Special studies were conducted to determine the minimum yield per acre on land where dusting with calcium arsenate would be justified by the results obtained. It was found that in general the season's dusting on any particular farm should cost not to exceed the current value of 100 pounds of seed cotton per acre in order to make a profit by the dusting method.

Black Stem Rust of Wheat.

The barberry eradication campaign, the objective of which is the control of the black stem rust of wheat and other cereals through the eradication of the common barberry, which is the intermediate host
of this destructive fungus disease, has been systematically prosecuted during the year in 13 States of the Mississippi Valley and the Great Plains region, where it was begun in the spring of 1918. The initial survey has been completed in Wyoming, and but few counties remain to be covered in Colorado and Montana. During the entire campaign more than five and three-quarter million bushes have been located on more than 55,000 properties. These are destroyed by thorough uprooting or by the application of common salt or diluted sodium arsenite where the conditions render these materials practicable and safe.

White-Pine Blister Rust.

Field surveys during the past season by Federal, State, and Dominion scouts have disclosed that the destructive rust of five-leaved pines, which in western North America was first observed on pines and currant bushes in southwestern British Columbia in the autumn of 1921, is widespread throughout the coast belt of British Columbia. As several large areas in that Province have been found where the disease is epidemic on pines, and the advance infections have been found on pines within 100 miles of the international boundary and on cultivated black currants within 35 miles of that boundary, the situation must be regarded as serious. The climatic and topographic conditions of the western region and the host plants involved are markedly different from those in the east, so that eastern methods will presumably require considerable modification to adapt them to the western conditions.

War on Tuberculosis.

Rapid advances were made in the cooperative campaign to eradicate bovine tuberculosis. An increase of 76 per cent was made in the number of herds of cattle officially accredited as free from tuberculosis. At the close of the fiscal year there were 28,536 such herds, comprising 615,156 cattle, and there were under supervision more than 400,000 herds containing nearly four and a half million

Fig. 23.-Rapid strides have been made in the eradication of bovine tuberculosis. The number of accredited cattle increased from practically nothing in 1918 to over 615,156 head in 1923.
$\dagger 85813^{\circ}-\mathrm{ybz} 1923-4$
cattle. Unfilled applications for testing nearly a million additional cattle were on file.

The plan of eradicating tuberculosis from circumscribed areas, with the county as the unit, has met with marked success. Fifty additional counties were freed during the year, raising the total to 81. Arrangements have been made to accord special facilities for shipping cattle from counties known as " modified accredited areas" without the usual quarantine restrictions. In the course of the year's work the tuberculin test was applied to nearly three and a half million cattle. Those found diseased were slaughtered under inspection, as a rule, and indemnity was paid to the owners. Larger financial support is being provided by States and counties, and the work is growing in favor with cattle owners.

Improvements in Breeding and Feeding.

The systematic effiort to improve domestic animals in the country, which began nearly four years ago under the slogan "Better SiresBetter Stock," continues to grow and is now a project of considerable size and importance. At the close of the fiscal year, 11,533 livestock owners had filed with the department written pledges to the effect that they have placed their farms on a strictly purebred-sire basis and agreed to use good purebred sires exclusively in their breeding operations for all classes of animals kept.

Results of a questionnaire study on current livestock problems and how farmers are meeting them show briefly that in the experience of nearly 500 livestock owners the general economy of rations, the cost of grains, and more specifically the cost of protein, represent more than half of all feeding difficulties. The question of balancing rations is next most important. Livestock of improved breeding were reported in the great majority of cases as making greater gains or producing more than scrubs or common stock when fed in the same way. The average superiority of improved stock in the use of feeds, as shown by financial returns, was 39.6 per cent over common stock.

Wild Animal Pests.

From the beginning the department has maintained that eventually it would be practicable to destroy completely some of the worst animal pests, and thus forever eliminate the heavy losses they have been causing. Through the campaigns against them, prairie dogs have been exterminated on considerable areas, and the large wolves, of which 4,900 have been killed, are being so reduced in numbers that over most, if not all, of the West their end is in sight.

The best evidence of the growing appreciation of the practical value of campaigns against animal pests in the West was given by the legislatures of 13 States in the winter of 1923, which made total appropriation of about $\$ 647,000$ for cooperation in the work during the following biennium.
Improved poison combinations and their systematic distribution have been so successful that poisoning is rapidly superseding other methods of predatory-animal control. The great increase in territory that can be covered by poisoning campaigns, as now conducted, for the first time offers a possibility of eliminating coyotes over vast areas. This has hitherto appeared doubtful, owing to the numbers
and wide distribution of these pests. More than 200,000 square miles were covered by organized poisoning operations during the year, and at carefully established poison stations on this area more than $1,703,000$ specially prepared poison baits were distributed.

Clearing the ranges of coyotes is proving a boon to the cattlemen as well as to the sheepmen, for with the practical elimination of the gray or timber wolf over much of the range country of the Western States, cattlemen have discovered that heavy losses of calves, heretofore attributed to wolves, have evidently been due to coyotes.

A national drive undertaken against house rats, both through publicity and demonstrations, has developed widespread community sentiment against these destructive rodents, as evidenced by the steady growth of organized campaigns to destroy them and to eliminate their sources of food and harborage.

Importance of Weather Work.

The department is making its weather work pay back to the Nation many hundreds of dollars for each dollar expended. The forecasts issued twice daily for all sections of the country and.

Fig. 24.-For forecasting purposes the country is divided into five districts, with forecasting centers at Washington, Chicago, New Orleans, Denver, and San Francisco. Radio is now used extensively in the distribution of these forecasts. Naval radio stations, 27 in number, are used primarily for broadcasting forecasts and warnings for ships at sea. Interior stations, 117 in number, located in 38 States, broadcast daily weather forecasts, frosts, cold waves, heavy snows, and other warnings. Storm-warning displays (flags and lanterns) are made at 167 coastal points on the Atlantic, 65 on the Gulf, 44 on the Pacific, and 109 on the Great Lakes.
warnings of frosts, cold waves, storms, heary snows, whenever conditions warrant, all of which are widely and effectively distributed through newspapers, by telephone, telegraph, radio, maps, bulletins, cards, and other means, meet general requirements, but the rapidly increasing utilization of weather information by many business industries is resulting in requests for more special forecasts and direct service.

In addition to the hundreds of thousands of receiving-set owners who receive the forecasts by radiophone, large numbers of whom can obtain them in no other way, many repeat them to their neigh-
bors by telephone. This latter form of service has become so potential that arrangements are in hand for a definite form of organization which will replace the telegraphing of forecast messages now sent to centers for distribution. It is expected that more effective service will be accomplished thereby and that considerable economy will result.

It is estimated that the value of perishable products saved as a result of cold-wave warnings issued last winter for the Chicago district alone exceeded $\$ 10,000,000$, although the winter was not an unusually severe one. Reports from Alaska, made available through the cooperation of the Signal Corps of the Army and office of communications of the Navy, were an important factor in making the warnings timely and accurate. Alaskan observations were an equal factor in the cold-wave warnings issued in other commercial dis-

Fig. 25.- There are 27 naval stations and 117 general broadcasting stations which disseminate the daily forecasts of weather, cold waves, frosts, heavy snows, and other weather warnings. Distribution from naval stations is by radiotelegraph and covers forecasts for the entire country. Broadcasts from other stations are by radiophone and include forecasts for the sections within their runge. Under favorable conditions the ranges are much greater than those indicated on the map. Radiophone broadcasts are primarily for the benefit of farmers who can not receive the forecasts promptly by any other method of distribution.
tricts. An organized unit of the Weather Bureau has been in operation in Alaska since 1916, and its activities have been of great value to the commercial and marine interests of the United States.

Flood warnings proved of great value during the year. During the Arkansas Valley flood livestock and other property to the value of $\$ 1,350,000$ was reported as having been saved by flood warnings sent out well in advance. The total reported flood losses during the year were $\$ 36,591,362$, while the value of portable property saved by flood warnings was given, in admittedly incomplete returns, as $\$ 4,240,465$.

During the year schemes for forecasting river stages and floods have been completed for the Willamette River system of Oregon, the Connecticut River, and the Brazos River of Texas. Other schemes will be undertaken as time will permit, mainly for the smaller rivers, as those for the larger rivers and their tributaries are virtually complete.

With the advent of the practical navigation of the air a whole new service is now demanded, a service of flying weather forecasts and weather advices to aviators. This compels the bureau to get above the surface and extend its observations, measurements, and

Fig. 26.-The district centers issue river forecasts and flood warnings; also, in the western mountain districts forecasts in the spring of the amount of water from the accumulated snow that will be available for irrigation and water-power purposes. River forccasts are made not only for the purpose of giving warnings of floods but also as aids to navigation all times of the year.
advices into the free air, which is being done in a very limited way at the present time by means of kites and little so-called pilot balloons.

Headway with Highways.

Eight thousand eight hundred and twenty miles of Federal-aid roads of all types were completed during the fiscal year, which, added to the mileage completed prior to the fiscal year, brought the

FEDERAL AID TO STATES ON PROJECTS COMPLETED AND UNDER CONSTRUCTION.

Fig. 27.-The Federal-add roads are jointly financed by the Federal Government and the States. Federal-aid payments amount to about 43 per cent of the total cost of Federal-aid roads. The total payments made by the Federal Government prior to June 30, 1923, exceeded $\$ 236,000,000$.
total of completed projects up to 26,536 miles. The projects under construction at the close of the year amounted to 14,772 miles and were estimated as 53 per cent complete.

The total amount of Federal aid actually appropriated for use up to and including the fiscal year 1923 was $\$ 375,000,000$. Of this amount, $\$ 364,250,000$ was apportioned among the States.

The total mileage of highways in existence at the time of the passage of the Federal highway act, as certified by the State highway departments, was $2,859,575$ miles. Under the law the maximum mileage that can be included in the entire system is 200,170 miles. The mileage included in the 35 systems approved up to the close of the year was 111,699 miles, and the total length of the whole system, when it is finally designated and approved, will probably not exceed 179,000 miles.

Analysis of the approved systems for the 35 States shows that of the 1,111 cities of 5,000 population or more in these States 1,049 of them lie directly on the approved system. When the Federal-aid

A CONCRETE FEDERAL-AID ROAD NEAR EASTON, PA.
F'tG. 28.-More than 26,000 miles of Federal-aid roads have been completed as a part of the Federal-aid highway system of 170,000 miles to be improved by the Federal Government in cooperation with the States.
system is correlated with roads constructed by the States and counties, as it doubtless will be, the remaining cities of this class will certainly be connected with the main interstate system, and one will be able to travel from any point in the country to almost any hamlet, however remote, without leaving an improved road for more than a few miles at most.

The indications are that these roads, when they are completed, will pass within 10 miles of the homes of 90 per cent of the people of the United States, considering the country as a whole. In some States the percentage of the population thus served will be still greater, reaching close to 100 per cent in a number of instances.

Tobacco Growers Benefited.

Field tests conducted on "tobacco-sick" soils in the Connecticut Valley have brought out marked differences in the effects of various crops on the growth of tobacco following in the rotation.

In extensive field test in the southern manufacturing and export tobacco districts it has been demonstrated that mixed fertilizers containing 2 to 3 per cent potash and applied at the usual rate of 800 to 1,000 pounds per acre frequently do not supply sufficient potash for the tobacco crop. As a result, characteristic symptoms of potash hunger are frequently observed in the field. On light soils, and especially in comparatively wet years, equally unfavorable results may be expected when a sufficient quantity of magnesia is not contained in the fertilizer or otherwise added to the soil. .The quantity of magnesia required by the crop, however, is comparatively smallperhaps not more than half that of the potash which is needed. With constantly decreasing supplies of cottonseed meal and other similar materials containing appreciable quantities of magnesium, it is apparent that there will be greater necessity for making special provision for magnesium in the fertilizer mixture.

Possibilities of Rubber Production.

On the basis of a special appropriation for this purpose, more extensive investigations of rubber-producing plants are being undertaken to determine the possibilities of producing rubber in the United States or in adjacent tropical regions. The need of developing other sources of supply is shown by the rapidly increasing consumption in the United States and the serious danger of supplies from the East Indies being interrupted. About nine-tenths of the world's supply of crude rubber now comes from the East Indian plantations, while three-quarters of the total supply is used in the United States. These two facts are a standing challenge to both agricultural scientists and business men.

In view of the large number of plants that are known to produce rubber and of the wide range of diversity among such plants in habits and conditions of growth, adequate determinations of cultural requirements and possibilities are not to be expected until many observations and experiments have been made. Facilities for experimental work are being extended in the different regions where rubber-producing plants can be grown, and expeditions are being sent to foreign countries to study the habits of the plants under native conditions and to secure the best stocks for propagation and breeding purposes, so that vigorous, high-yielding strains may be developed as the basis of production.

Under the existing world conditions it is clearly desirable that a thorough study of the potential rubber-producing plants of the world be carried forward vigorously and without interruption, with a view to ascertaining the most promising sources of increased supplies of rubber to meet the increasing requirements of our industries and of the users of rubber, who now constitute practically the entire population of the country.

Binder-Twine Fibers.

Some years ago cooperative work was organized by the office of fiber investigations and the Philippine Bureau of Agriculture, the
purpose of which was to encourage the increased production of sisal and maguey fiber in the Philippine Islands. In view of the rapidly increasing consumption of abaca (Manila hemp) for binder-twine purposes, this cooperative work has been expanded to include necessary work with abaca. It is entirely possible, if not probable, that the ultimate solution of our binder-twine fiber problem will be an increasing substitution of abaca for henequen in the manufacture of binder twine.
In cooperation with the Philippine Bureau of Agriculture and with the bureau of science and the college of agriculture, preliminary steps have been taken during the present year to organize this work. An increased use of abaca for binder-twine purposes will benefit both the United States and the Philippine Islands, and should be encouraged in every way possible.

Continued improvement has been made in the quality of the Philippine machine-cleaned maguey fiber. American manufacturers report that this fiber is now entirely satisfactory for binder-twine purposes.

Important Manufacturing and Handling.

Work on production of cane sirup of uniform quality was carried forward, as a result of which farmers producing cane sirup were enabled to consolidate their output on a sufficiently large scale and into such a uniform product as directly to interest brokers and wholesale grocers in the distribution of their product in a systematic manner. A central blending and canning plant, with a daily maximum capacity of 5,000 gallons, equivalent to 500,000 gallons for a 100 days' operating season, was designed for the Texas Farm Bureau Ribbon Cane Growers' Association. This plant was erected at Lufkin, Tex., and operated during the season of 1922-23. Cane sirup from various sections of eastern Texas was shipped by members of the association to the Lufkin plant, where it was graded, mixed to insure uniformity of grade, treated by the invertase process perfected by the department to prevent crystallization, canned, labeled, crated, and marketed. Technically the operation was an unqualified success. A study was made of the manner of producing cane sirup on the farms, and directions showing how the quality of the product could be improved were distributed to farmers.
Work on methods for profitably utilizing cull and surplus oranges and lemons has been done. Investigations in previous years helped to establish industries manufacturing useful products from oranges and lemons that otherwise would go to waste. In the last (fiscal) year effort has been directed toward perfecting methods for the commercial production of pectin from waste orange and lemon peel. Pectins produced by various methods have been standardized as to their jellying power, and work has been done on the production of jellies of different consistency. Attention has been given to the preparation of marmalades and jellies from dehydrated oranges. $\Lambda \mathrm{s}$ a result of the studies on the production of pectin, new methods for the preparation of marmalade and orange butter have been evolved.
A method for determining the degree of maturity of cantaloupes, depending upon the sugar and solids content of the fruit, was developed by the Bureau of Chemistry and used with gratifying results
by growers and shippers of cantaloupes. A criterion of maturity for selecting the time to pick melons has long been sought by melon growers.

The Extension Service.

There was noteworthy progress during the year toward the adjustment of the cooperative extension work of the department to new conditions, with a view to its functioning under the supervision of a director of extension work, as provided for by act of Congress. The effort has been to unify the work for the men, women, and boys and girls on the farms and to enlist all extension agents in the promotion of the enterprise as a whole. Probably the most marked development in the extension work during the past year was the increased emphasis given to the development of unified farm and home extension programs based upon the actual needs and interests of each community.

Fig. 29.-The above map shows the location and extent of organized extension work in agriculture and home economics carried on by the Department of Agriculture in cooperation with state agricultural colleges.

Approximately 4,670 persons are now employed in the cooperative extension service in agriculture and home economics carried on by the department in cooperation with the State agricultural colleges. About 2,100 counties have agricultural agents, 840 have home-demonstration agents, and 160 have agents working exclusively with farm boys and girls. In addition, 800 specialists in different phases of agriculture and home economics are employed to aid the county extension workers and to give advice and assistance in special and emergency situations. It is estimated that farms and farm homes adopted not less than $4,000,000$ improved practices through the efforts of the extension workers during 1922, of which at least 924,000 were brought about through home-demonstration work. The total enrollment in boys' and girls' club work during 1922 was approximately 600,000 , and 358,000 reports meeting all requirements were received. The total value of all products reported produced by club members was approximately $\$ 8,650,000$. There was an increase dur-
ing the year in the number of negro extension agents employed. There are now 294 negro field agents, and substantial progress in the work of these agents is reported.

The exhibits prepared to illustrate the department's work and the best agricultural practices have proved their value by the great increase in the demand for them from fairs, expositions, conventions, farmers' weeks at State colleges, and from various other sources. A conservative estimate places the number of persons who viewed these exhibits in 1922-23 at 8,836,000 and the number of exhibitions at.114. Specially designed exhibits have been used for calling attention to methods for controlling the white-pine blister rust, the eradication of tuberculosis in livestock, the prevention and control of forest fires, the desirability of good roads, the saving of land from erosion, maintaining the health of farm animals, and for various other purposes. The exhibits are all prepared after discussions by

BOYS' AND GIRLS' CLUB WORK.
Fig. 30 - One of the 600,000 young farm folks who took an active part in boys' and girls' club work during the past year. The combined value of their products was in excess of $\$ 8,000,000$.
men in the various bureaus, and consequently they represent the best information to be had on each subject.
The increase in the demand for exhibits over the preceding year shows the department has found in them a very desirable method for reaching the people who can make use of its information. There was a 26 per cent increase in the number of persons viewing them and an increase of 63 per cent in number of exhibitions.

The past 12 months have been a notable period in the history of the motion-picture work of the Department of Agriculture. The motion-picture office and laboratory now occupies a modern, fireproof building. An outstanding development is the striking increase in the known audience reached by the films. Every user is asked to report the number of people to whom he shows them. The audience, as actually reported for 1922 , was $1,937,570$; as actually reported
for 1923, $4,460,077$. Allowance should be made for possible exaggeration, but this consideration is balanced by the fact that many users failed to report their showings. In addition, there are no figures available in regard to the exact size of the audiences reached by the department films that have been bought by cooperating or outside institutions. As such purchased films outnumber the films owned and circulated by the department, and as many of the purchasers are known to be actively and continually circulating the films to large audiences, figures on this circulation probably would compare favorably with the figures reported to the department.

The growth of distribution would seem to be a fair indication of the value of motion pictures in the department's work, but the figures are not more impressive than the written expressions that come frequently from users of the films. These statements in general are to the effect that the films have a remarkable effect in attracting large crowds to meetings, stimulating interest in the subjects under discussion, giving clear conceptions of unfamiliar ideas, and furnishing inspirational impetus to campaigns for community betterment.

Packers and Stockyards Act.

In accordance with the general policy of the department to administer all regulatory statutes assigned to it in a constructive and helpful manner and under the broad general authority provided in the packers and stockyards act, a study of economic conditions and problems applicable to the livestock and meat-packing industry has been made both in this country and abroad. These studies have related chiefly to methods of distribution and competitive practices and conditions, and an effort has been made to give the public assurance of the wholesomeness and desirability of meat in the diet.

Some important cases involving the activities of leading packers of the country were handled during the fiscal year. One of these was pending at the first of the year in connection with which complaints had been made alleging unfair, unjustly discriminatory, and deceptive practices. The case was considered through formal hearings and special investigations, and an appropriate order was issued to cease and desist from following certain practices and methods which appeared to be in violation of Title II of the act. Another case involves the validity of the acquisition of the assets, business, and good will of Morris \& Co. by Armour \& Co. It is the contention of the department that this action will lessen competition in the purchase of livestock and the sale of the products thereof, but the respondents contend that such acquisition was an industrial and economic necessity. This case is pending.

Arbitration of livestock commission rates at six of the principal markets was under way at the end of the fiscal year as a result of a complaint by the leading livestock producers' organizations. Representatives of the complainants and respondents agreed to submit the whole question to arbitration, and two members of the staff of the packers and stockyards administration were agreed upon as arbitrators. An exhaustive investigation was made by the department to furnish the arbitrators with the necessary information for an impartial decision, and a preliminary report was made, the final report coming after the end of the fiscal year.

Cooperative shipping of livestock is generally regarded as an established feature of livestock marketing, and while the cooperative selling of livestock is comparatively a recent development, it has become a substantial factor in the marketing process. With the establishment of these cooperative agencies at some of the principal markets there appeared to be a feeling on the part of some of the old-line agencies that they were justified in fighting this form of competition through the practice of boycotting. Whereupon the administration found it necessary to take action and bring about an understanding that open-market principles must prevail in every respect at public markets.

Other activities have been correction of reweighing charges at a number of stockyards; the valuation of stockyards property as a basis for study of rates and charges; the securing of better prices for bruised, crippled, diseased, and dead animals, and for cattle reacting to the tuberculin test; improvements in the handling of stock in loading and unloading; and audits of the records of commission men at 23 principal markets and of the records of stockyard companies at 18 large markets.

Grain Futures Act.

The grain futures act, after a contest by the Chicago Board of Trade, on April 16, 1923, was held constitutional by the Supreme Court of the United States. The necessary action has been taken by this department and the grain future exchanges, including the Chicago Board of Trade, to continue their operations under this law without interruption. The law requires the prevention of the dissemination of false and misleading information regarding crop or market conditions and prohibits attempts to manipulate or corner the market. It forbids discrimination against cooperative associations of producers in the matter of membership. It gives the Government an opportunity to ascertain the facts of the business through reports and actual inspection of the records and transactions.

Yet when this department, following the Supreme Court's decision, issued regulations to carry into effect these provisions by requiring daily reports and access to the records, propaganda immediately developed from within the exchanges that the grain futures administration was responsible for the decline in the price of wheat. It was contended that the new regulations had decreased the volume of trading and, therefore, the price of wheat, on the ground that in effect the regulations placed a limit on trading and that speculative buyers were frightened away because their names and volume of business transactions might become known, notwithstanding that this would be at least equally discouraging to speculative sellers. As a matter of fact, no limit upon trading was specified and neither the law nor the regulations interfere with the volume of either hedging or speculation, so long as there is no attempt to manipulate or corner the market. No satisfactory explanation was given by those responsible for the propaganda as to why the price of corn rose under the same law and administration. They did not attribute a later rise in the price of wheat to the law or its administration, notwithstanding the fact that there had been no change in either.

Steps have been taken to coordinate governmental sources of information so as to combat the dissemination of false and misleading information about crop and market conditions. Supervisors
are stationed at Chicago and Minneapolis and contacts arranged with the other markets to enable the department to keep in touch with current business operations. The administration is informing itself, as rapidly as a suitable organization can be developed for the purpose, in regard to the facts of the business, so that when a reasonable time has elapsed it may be able to assure Congress and the public that it has actual facts upon the general phases of future trading that are of public concern.

Insecticide and Fungicide Act.

The enforcement of the insecticide and fungicide act has had a marked effect upon the industry engaged in the manufacture and sale of insecticides and fungicides, and each year sees progress in the direction of more truthful labels and a higher standard of quality in the products on the market.

During the year the board has devoted a large part of its time to campaigns designed to improve the quality and labeling of Bordeaux mixture and Bordeaux-lead arsenate mixture, campaigns against disinfectants which were adulterated or the labels of which bore false or misleading claims, calcium arsenates which were deficient in active ingredients or which contained ingredients injurious to vegetation, so-called pine-oil disinfectants and coal-tar dips which were adulterated with mineral oil, insect powders adulterated with powdered daisies, and alleged boll-weevil remedies.

The industry has made tremendous strides since the inception of the regulatory work, and the board is constantly confronted with new problems. Each year sees a new crop of insecticides and fungicides. Some represent new manufactures of the recognized standard remedies, but there is always a certain percentage of new theories of treatment represented by these new articles. As a result of the widespread ravages of the cotton boll weevil, various new so-called remedies have appeared on the market. The board has attempted to collect all of these with the idea of submitting them to analysis and test. This is a tremendous undertaking, and it will probably take several years' work before this situation is cleaned up and worthless preparations driven off the market.

The National Forests.

Receipts from the national forests exceeded those during the preceding year by $\$ 267,290.71$, although the normal revenue from grazing was materially cut down by the depressed conditions in the livestock industry. There was a surplus of $\$ 200,000$ in income over the regular expenditures for protection and administration, excluding construction and maintenance of improvements, other development work such as timber surveys and tree planting, and emergency expenditures in fire fighting. If the deferred payments of grazing fees allowed during the last three years are credited to the years in which they fell due instead of the years in which final settlement of these open accounts was made, there is shown an actual increase in revenue-producing business last year over the fiscal year 1922 of more than $\$ 1,000,000$, and over 1920 , the year in which receipts were previously at their highest, of more than $\$ 540,000$.

Not only were receipts from the sale of timber 33 per cent greater than in the best former year, with a total of $\$ 2,721,876.20$, but such
progress was made in laying out new operating units and preparing for the increased demand for national forest timber, due to the westward movement of the lumber industry and growth in western consumption, as practically to assure a steady increase in future business. At the same time, each new unit where operations are begun is being kept on a perpetual-yield basis.

Fires on the national forests, during a year of more than average hazard, were held down for the third year in succession to a point where only a little more than two-tenths of 1 per cent of the total area was burned over and the loss caused was less than one-tenth of 1 per cent of the total value of the destructible resources protected.

The grazing regulations were worked over to make the system of regulated range use one which will contribute most to the stability of the-livestock industry dependent on the forests while maintaining the full authority of the Government to control this use as the public interests may require.

Fig. 31.-The receipts from the national forests have gradually increased until 1923, when for the first time they exceeded $\$ 5,000,000$. Receipts from the sale of timber were greater than in the best previous year and the grazing receipts were almost as high as in 1919 .

The establishment of two new forest experiment stations gives. larger opportunity for the research fundamental to the development of the best forestry practice, both public and private.

Economic investigations brought into clearer relief the character and extent of the public burden imposed by devastated and idle forest lands, the relation between timber requirements and our possible timber production, and the future relative need for the agricultural use of land as against forest use.

In the field of industrial investigations an accomplishment of farreaching importance was scored in the completion of standardized lumber grades for yard lumber and structural timber of all commercial species, both softwood and hardwood. Several important lumber-trade organizations have accepted the proposed standards as practical and desirable to replace the considerable number of widely varying rules or specifications hitherto employed. This work was done in cooperation with the Central Committee on Lumber Stand-
ards, representing lumber manufacturers, distributers, consumers, and professional groups, such as architects and engineers, with the Department of Commerce and the Department of Agriculture acting in an advisory capacity.

Grazing on the National Forests.

The use of the forage resources in the national forests during the past year has reflected the depressed conditions in the livestock industry of the Western States, which have been particularly acute among cattle growers. Enforced liquidation among livestock producers has, at various points, reduced the numbers of stock using national forest ranges and the income from this source; and a small percentage of grazing permittees, particularly in the Southwest, have been unable to pay the fees required by the Forest Service.

STOCK GRAZED UNDER PERMIT ON NATIONAL FORESTS, 1905-1922.

Fig. 32.-Grazing permits granted to local stockmen, to whom a permit is given covering the number of stock to be grazed, together with a description of the range to be occupied. The increase in the number of stock, which began in 1917 and reached a maximum in 1918, was due to efforts of the Government to increase the production of livestock during the war. During the emergency the ranges were crowded to their full carrying capacity. The downward trend since the close of the war was due to the withdrawal of the emergency livestock.

The department has handled this situation in a sympathetic way, with a view to aiding the industry to tide over its present difficulties and recover its normal status. Extensions of time for the payment of grazing fees have been allowed in many cases in connection with unbroken use of the ranges. At the same time it has been necessary to protect the Government in the ultimate payment of the amounts due and to maintain grazing permits on a business basis.
During the year special attention has been given to the revision of the policies and regulations governing grazing on the national forests. This work has been undertaken with a view primarily (1) to aid in the stabilization of the livestock industry in so far as it is dependent upon national forest ranges, and (2) to adapt the use of this pasturage to the economic needs and tendencies of the livestock industry in the Western States, particularly in relation to the most effective use of land. These two objects are, of course, closely related.

When the Department of Agriculture assumed charge of the national forests in 1905 the tide of agricultural settlement was still active in the regions adjoining many of them. In fact, one of the major problems then confronting the department was the classification of the national forests themselves and the segregation of areas which should be made available for agricultural use. The initial grazing regulations were drafted with special attention to the encouragement of the new settler in the many localities where the use of public range was essential to the successful development of farming lands. In many instances this policy necessitated a gradual but material curtailment in the herds of former users of the national ranges and a process of redistributing the grazing privileges among an increasing number of stockmen, including the small herds of new settlers.

The Department of Agriculture should always make the encouragement of rational land settlement a primary object in the administration of both the grazing and timber resources of the national forests. And it should always seek to obtain the closest possible correlation between the use of forage in the forests and the development of adjacent range and agricultural lands. The conditions affecting agricultural development in the regions where it can be aided by the forage on the national forests, however, have changed materially during the last 18 years. The main tide of new agricultural settlement has largely spent itself. At some points, indeed, homestead settlement is receding, owing to the failure of attempts at dry farming. While additional areas will, of course, be placed under cultivation as time goes on, in connection with irrigation developments or otherwise, it is evident that land settlement is not as large a factor as in 1905. It is also evident that by granting longer permits for range privileges the department will not only promote the welfare of the livestock business, and particularly its financial rehabilitation following the present crisis, but also will promote sound economic development and permanency of settlement in these regions as a whole.

The revision of the grazing regulations has consequently been directed primarily (1) toward stabilizing the use of the ranges under permits extending for a period of 10 years, and (2) toward stabilizing the livestock enterprises which the national forests support in part by conditioning the retention of grazing privileges upon the ownership of ranch property or improvements sufficient to afford a well-balanced and efficient stock-raising business. In authorizing grazing privileges under these terms, provision will be made for such redistribution of range use as may be necessary in the future to care for needs of new settlers.

Furthermore, while encouraging more stable use of the national forest ranges in connection with the stock ranches dependent upon them, the Government does not and can not, in any sense, recognize a vested right, or servitude, attaching to the use of the range. The national forests are public properties, created primarily for the production of timber and the protection of water sources. They must be administered so as to render the maximum degree of public service through wise utilization of their varied resources. If the grazing of livestock in any particular locality should clearly become harm-
ful to the regrowth of timber or the security of valuable water resources, the department must be able to reduce or adjust the grazing use or, if need be, to eliminate it altogether. If the economic development of particular regions requires reduction in the herds of old users to make room for the livestock of settlers who need range in developing their homes, the department must have full authority to make such redistribution of the grazing privileges as the circumstances require. The value of the range must be protected, even if that should at times require reduced grazing or a complete temporary withdrawal from use. Adjustments for these purposes should be made only after full consideration of their effect upon interested parties; but the department must retain a free hand to deal with problems or conflicts of this nature as the most vital interests to be served may dictate, and it can not be hampered in such adjustments by the creation of any servitudes on the land which have the nature of vested rights. Within this essential limitation, it is the purpose of the Department of Agriculture to stabilize the use of the national forest ranges in connection with established and dependent stock ranches to the fullest practicable degree.

Grazing Fees.

The question of the fees paid for grazing privileges has an important bearing upon the policy of stabilizing range use. Most of the range areas now embraced in national forests were grazed for many years as open commons. When the first grazing fees were established in 1906 they were designedly low, representing approximately the cost of administration rather than the intrinsic value of the forage consumed. A revision of the grazing fees initiated in 1916 and ultimately completed in 1919 increased the charges materially to a point more nearly approaching the commercial value of the forage after making liberal deductions for the past uncertainty of tenure and the cost of compliance with the regulation of the Forest Service.

An extended investigation of the value of western range lands upon. which to base a readjustment of the fees charged for national forest grazing permits was initiated in 1921. One of its purposes was to get away from the flat, or blanket, fees charged and to value the individual grazing allotments or districts in accordance with their accessibility, the quality of their forage, their water resources, and other factors obviously affecting their worth to the stockgrower. This is an adjustment necessary as a matter of equity between the different grazing permittees. Another purpose of the reappraisal is to ascertain the actual value of the forage in the national forests as determined largely by comparison with the rates paid for comparable range lands in private ownership in the same localities. With the data collected as a basis, the department is now in consultation with the various groups of stockmen who use the national forests, trying to work out a new schedule of grazing fees which shall represent a fair and reasonable appraisal of the individual allotments, having always in mind the economic status of the livestock industry and the effect of the policies and restrictions enforced by the Government. Owing to the present upset conditions in the livestock industry, no change in grazing fees will be made for the present.

In stabilizing the use of the national forest ranges under the beneficial 10 -year permits, it is essential that the relations of the holders of these privileges with the Government be established upon a sound and unquestionable business footing. The forage in the national forests is a commercial resource, exactly as their timber is a commercial resource. The utilization of this resource by a well-established industry no more justifies obtaining it at something less than its actual worth than the lumber industry would be justified in obtaining the timber on the national forests at less than its actual market value.

In other words, the very stability which the livestock industry desires and should have in the use of the national-forest ranges demands that users pay the public fairly for value received. A permanent and settled program of range use which will command public confidence and go forward without interruption can not be predicated on any other basis. The Department of Agriculture is not seeking to charge for the use of national-forest ranges more than a just price. It stands for the allocation of the forage to the stockgrowing enterprises most dependent upon it and most logically situated for its efficient use. It stands for a stabilization of this use to the fullest possible degree, so that the livestock industry may prosper and establish favorable credit and banking relations. And, as an integral part of this program, it must require payment for the value of the public resurces so utilized as determined reasonably and equitably on accepted business principles.

SHEEP GRAZING ON THE NATIONAL FOREST.
Fig. 33.-Forest rangers count all livestock entering the national forests for grazing thereon. In some instances where scab is prevalent among the sheep owners must furnish the forest officer with a certificate that the sheep are free from scab, which is signed by an inspector of the Bureau of Animal Industry of the Department of Agriculture.

A Constructive Forest Policy Needed.

The difficulties against which the farmers of the country are struggling to-day are dovetailed with the need for a constructive program to increase the production of timber. Many agricultural products
do not bring a fair return upon the capital and labor employed in their production, and cultivation is contracting on many areas of the less fertile or more poorly situated land. At the same time, the country is rapidly draining its diminished supply of timber and adding to the area of idle, cut-over lands which have no possible

NATIONAL FOREST TIMBER SALE AREA.
Fig. 34.-An example of the method of cutting in a pine forest under Forest Service regulations. The young trees have been left to grow. The brush has been piled for burning to reduce fire hazard.
agricultural utility. The disposal of logged-off land is becoming a more and more serious problem to its owners, while to the public the economic retrogression resulting from idle land and the burdens resulting from the shortage of timber supplies grows more formidable.

The relative requirements of the country for farm and forest products call for maintaining a forest area approximately equal to the present total, including second-growth, burned, and cut-over land and abandoned farms in timber-growing belts. The cost of forest products, already oppressive, is mounting. Our present supplies of merchantable timber are fast diminishing. Our stock of young timber is wholly inadequate to supply our needs when the grown timber is gone. The forest products obtainable from our entire area of $470,000,000$ acres of actual or potential forest land, were it all producing timber at maximum capacity, would only bring production into an approximate balance with present use. At best there will be a long and acute delay before new timber crops equal to our requirements can be matured. And while there is much room for economy in the use of wood and considerable room for use of substitutes, these two palliatives taken together will probably no more than offset the increased consumption which growth in population will demand. We should therefore press forward with all possible speed to bring about the full use of all suitable timber-growing land.

This is a matter of particular importance to agriculture. Farmers are our leading class of wood consumers. Because of the present high cost of lumber the construction, repair, and replacement of farm buildings is seriously in arrears, handicapping production and lowering standards of living. In addition to their consumption of lumber, farmers require very large quantities of wood for fencing, fuel, and the like. Furthermore, the migration of forest industries from many former locations, leading to decreased assessable property values, decadence of rural economics and social life, and reduced opportunities for profitable employment, are consequences of forest destruction that weigh heavily on many farmers.

It is not merely farmers, however, who are adversely affected by accumulating idle lands and rising prices of forest products. Outside of portions of the South and West, the whole country is suffering from the effects of timber depletion. Unfortunately, the average

NATURAL REGROWTH IN A DOUGLAS FIR FOREST.
Fig. 35.-If further fires are kept out many burned-over forests will restock themselves with valuable trees and thus avoid the costly process of artificial reforestation.
citizen does not see clearly these effects, because he pays for most of his share of the country's consumption of wood indirectly; it is hidden in the price of nearly everything that he eats, wears, and buys. Except when he undertakes to build a home, he does not realize how much he is paying because of national improvidence in the use of our forests. No simple remedy that will cure the idleness of land and shortage of timber can be prescribed. The problem must be attacked concertedly from all sides.

Extension of Public Ownership of Forests Essential.

One line of attack will certainly have to be an increase of publicly owned forests. That it is entirely practicable for the public to acquire woodland on terms that make its management profitable has
been fully proved by the Federal Government, which has purchased more than $2,000,000$ acres. The average price of these lands has been $\$ 5.29$ per acre. Their market value is to-day materially greater than their cost; they are the source of a considerable revenue from the sale of timber products, and they are growing new forests at a satisfactory rate. Similar business considerations testify to the soundness of the policy of forest purchases undertaken by a number of States.

The amount of denuded forest land in the Eastern States is enormous. While much of it can and should be brought back to productiveness'on the initiative of its present owners, there are millions of acres which, either because of the relatively slow rate at which trees will grow, the cost of reclamation, or inaccessiblity to markets, will not for a long time, if ever, be reforested through private enterprises.

The public can promote timber production where private owners can not. One reason for this is that a reasonable return on public capital invested in such an enterprise falls below what private capital would expect. Another reason is that the returns in economic prosperity and varied forms of public service can be made so great that the success of the enterprise does not stand or fall solely on its treasury receipts.. Any comprehensive plan for dealing with our timber situation must include large acquisitions by the public of forest lands which in no other way can be made productive within a reasonable time.
The National Forest Reservation Commission should be empowered through appropriate legislation to extend Federal acquisition of forest land. If it seems necessary to rest this policy wholly upon the constitutional ground of protecting the flow of navigable streams, the Congress should prescribe a broad limitation to that effect, but should not handicap the judicious selection of areas by a specific form of determination in each instance. Since local as well as national welfare is at stake, every reasonable encouragement should be given to the States to cooperate with the Federal Government in buying idle forest land which can be restored to productive use only through public ownership. The vast denuded areas in the northern Lake States and in parts of the southern pineries offer particularly urgent fields for the application of this policy.

Federally Owned Lands Should Be Included in Forests.

The extension of public forests is not wholly a matter of acquiring lands now privately owned. There are some five and one-half million acres of unreserved public lands in the continental United States chiefly valuable for timber production or watershed protection. There are 600,000 acres of similar land within military reservations adopted to administration for forest production without conflict with its present use by the Army. There are extensive forest holdings in State ownership still in process of destructive lumbering or distribution into private lands. The reversion of delinquent tax lands, stripped of their timber, is on the increase. A national policy of forestry calls for measures that will place all of these public lands under permanent Federal or State management designed to conserve their capacity for timber production.
Occasional additions to the national forests embracing public timberlands hitherto unreserved are made by specific acts of Congress. This piecemeal attack upon a problem of such general national im-
portance is tardy and inadequate. Other special measures have been before Congress from time to time with reference to the forested lands in military reservations, but thus far have failed of enactment.

Responsibility rests upon the National Government to do its full part in meeting our shortage of timber growth, particularly by placing lands which the Government already owns under the right form of administration. This should be done in a complete and comprehensive way. The President should be authorized by law to place within the national forests any unreserved public lands chiefly valuable for the production of timber or the protection of watersheds; and he should be further authorized by law to place within national forests any portions of military reservations chiefly valuable for the production of timber, subject to the unhampered use of such areas for military purposes as may be needed.

In order to provide reasonably for the extension of the national forests by purchase on areas where the public interests will be best served by this form of ownership, including denuded lands whose restoration to timber growth will otherwise be exceedingly remote if not impossible, not less than $\$ 2,000,000$ should be provided annually for forest purchases, and the Congress should authorize the National Forest Reservation Commision to make such purchases at any points within the watersheds of navigable streams where in its judgment the public interest in the protection of stream flow or the production of timber will be promoted thereby.

The Part of Private Ownership.

By itself, however, public ownership of timberlands can not suffice to meet the national needs for wood. Nor is it necessary. Private and public forestry go hand in hand in every European country where stable timber production has come about. Both are necessary in the United States, and both are feasible. The pressure of high timber values has already brought about a substantial de-

LOGGED-OFF AND BURNED-OVER LAND IN NORTH CAROLINA.
Fig. 36.-"The country is rapidly draining its diminished supply of timber and adding to the area of idle, cut-over lands which have no possible agricultural utility."
gree of private reforestation in parts of the Northeast. The commercial use of land for growing wood is slowly but surely spreading through the Atlantic States, in the more favorable portions of the South, and even on the Pacific coast. The outstanding fact in

RECREATIONAL USE OF NATIONAL FORESTS.
Fig. 37.-More than $6,000,000$ persons seeking rest and recreation visited the national forests during 1923. The Forest Service welcomes these visitors and imposes but one obligation on them, namely, that they exercise care in the extinction of their camp fires.
our national progress in forestry during the past 10 years is the extent to which timber growing as a private commercial enterprise has come about and the much greater extent to which it will be carried if reasonable forms of public assistance are rendered.

Stopping Forest Fires the First Thing.

The most urgent step for the encouragement of private forestry is organized protection against forest fires. Men do not care to buy timber which may be burned the next year. The risk to young growth from forest fires is formidable unless joint action by property owners can be brought about, and, further, unless the community itself takes an aggressive part in reducing it. Educational measures to lessen carelessness with fire and police measures to reduce the negligent or intentional setting of fires are perhaps the most important need of all. In spite of the progress that has been made, we still are a nation of woods burners.

The path to fire prevention on all forest lands has been blazed. Under the wise legislation already on the statute books the Federal Government is cooperating with 26 States, and is about to cooperate with one more, to maintain organized systems of protection. There was spent last year on this work nearly $\$ 400,000$ from the National Treasury and about $\$ 2,000,000$ of State and contributed private funds. Twelve States having considerable forest areas, however, do not maintain protective organizations, and of those which do a number can give protection to only a part of their forest area for lack of adequate funds. It is estimated that the annual cost of adequately protecting all our forest lands, exclusive of the national forests, would approximate $\$ 9,250,000$.

Promotion of Forest Planting Necessary.

With fires kept out, many of our cut-over forests will restock themselves with valuable trees. But where devastation has been severe (usually through repeated fires), tree planting is essential. Various States now maintain tree nurseries and sell trees at or sometimes below the cost of growing and shipping them. Forest planting on a commercial scale is not possible without cheap plants and the present demand for small trees is far in excess of the capacity of the State nurseries to supply them. This form of public assistanite to the private timber grower should be largely extended.

The Taxation Problem.

Present methods of taxation discourage the growing of timber. The problem of adjusting taxation to the use of land for producing a crop which matures only after many years, growing more and more valuable from an assessment standpoint yet yielding the owner no current income from which to pay carrying charges, is a rery knotty one; for the cost of local government must somehow be met each year.

The capital invested in timber production should bear a tax burden neither less nor greater than that imposed on capital invested in other productive enterprises; but the owner of forest lands can not faily be called upon to pay a yearly tax on his investment plus a steadily enhancing yearly levy-forty or fifty times-on a single crop. Λ solution would seem to be either in taxing the land only at its full value for timber production, or in taxing the timber crop at the time of harvesting it, or possibly in some combination of these two principles.

The Need for Better Knowledge of Forest Growing and Forest Use.

There are other investigations that must be vigorously prosecuted if we are to make our forests supply the national needs. Like agriculture, forestry must be based on a store of accumulated knowledge if full use of the soil is to be secured. Much remains to be learned about growing timber crops. There is also large room for bettering our practices in the use of forest products. In my previous reports I have mentioned the need for more research, through which alone can be obtained the technical information essential for bringing wood use and wood growth into any sort of reasonable balance. This need grows steadily.

Practical Forestry by Small Owners.

Almost one-third of our forest lands are owned by farmers. If the practice of forestry were as well developed among them as are the cultural practices applied in growing field crops, both their own returns and the quantity and quality of timber grown would be larger. In parts of the Northeast rural prosperity is closely related to the profitable use of the poorer land, which it does not pay to cultivate and which, even when kept in woods, is seldom as productive as it should be. In consequence, the machinery created under the Smith-Lever Act should be utilized to bring about better han-
dling of farm woodlands through the method of demonstration and practical example. There is much that can be done along extension lines to increase timber production at the very point where it would most effectively aid the general agricultural situation by affording a profitable employment of inferior soils.

An Immediate Legislative Program.

It is not possible at the present time to foresee just how far the efforts of the Federal Government to promote the growing of timber should be carried. Far-reaching changes in our national conceptions of land use can not be brought about overnight. Necessarily they come about by a process of evolution. The first great step toward a permanent timber supply was the creation of national forests from the public domain. A second step was taken by the Weeks law in the extension of the national forests in the Eastern States through purchase. A third significant step was initiated by the same measure in providing for limited cooperation between the Federal Government and the States in the protection of privately owned forest lands on the headwaters of navigable streams.

The time is opportune for another forward step in national forestry policy, whose specific aim should be to give the freest possible play to the economic forces already tending to make timber a staple crop on private land, so that the movement toward reforestation as a commercial enterprise may attain all the momentum of which it is capable.

National assistance in private timber growing can be extended most effectively in four ways, which might well form the major planks in a new Federal law. These are:
(1) Provision for nation-wide cooperation with the States and private landowners in the protection of forest lands from fire, under an equitable distribution of the financial burdens entailed. Such cooperation should not be limited to the watersheds of navigable streams, but based squarely on the national benefits of reforestation, including the conservation of water sources. The maximum Federal expenditure authorized for this purpose should be not less than $\$ 2,500,000$ per annum.
(2) Provision for Federal cooperation with the States in investigating the effects of prevailing methods of taxing forest lands, and in devising forms of taxation which will promote deforestation without inequity to other taxpayers. Tax legislation necessarily rests with the States concerned; but nation-wide study and leadership in this matter will be of the utmost benefit.
(3) Provision for Federal cooperation with the States in growing and distributing forest-planting material at cost or such other reasonable rates as will promote forest planting by private landowners on a large scale. The need for this form of public assistance is now imperative. It is possible thereby to multiply by several fold the present rate at which denuded lands are being replanted.
(4) Provision for Federal cooperation with the States in extension work to teach and demonstrate timber-growing methods, with special reference to timber growing on farms and other small holdings. Here also a tremendous opportunity exists for rapidly increasing the current rate of wood production in the United States.

With these developments in the national forestry policy, and to a large degree underlying and supporting all of them, must go more comprehensive research in timber growing and in economy in the use of timber. The research facilities with these objects in view already existing in the Department of Agriculture have made notable progress, but should be expanded to meet the growing need for sound technical data on which the whole forestry movement depends.

The Need for Extending Regulation of Range Use.

Adjoining many national forest ranges are large areas of the public domain suited only for grazing purposes. Just as the accumulation of cut-over lands has been a force making for overdevelopment of farming on soil of inferior productiveness, so has the public policy with respect to these open-range lands of the West worked in the same direction. Settlement of these lands has been encouraged without consideration of the economic and social waste that results when the settler locates on land from which a decent living can not be made through cultivation because of adverse natural conditions. But a point has now been reached beyond which no substantial further development of agriculture is possible. There are still 175,000,000 acres of unreserved public lands which remain unentered. They are used in the main as grazing commons. The greater part of this land is arid or semiarid in character and supports no tree growth. It is land on which, by and large, 60 years' experience has demonstrated that there is no possibility of agriculture except as limited areas may now and then be embraced within irrigation developments. For the most part, it is land whose natural productivity is low and has been steadily declining by reason of excessive and unregulated grazing. On much of it at the present time the natural forage grown on 20 or 30 acres will no more than furnish yearlong pasturage for a single cow. Much of it is land which the stockman could not afford to own and carry.
This vast area is now no man's land in very truth. The Government owns it, but exercises no control over it. The sheep or cattle owned by near-by ranchmen or by itinerant herders graze it as they can. The first comer gets the best of the forage; later comers take the leavings, if there are any. Under this unregulated and destructive use most of the land has lost a large part of its original forageproducing value.

Public Ranges Should be Used and Improved.

These open public ranges have played a conspicuous part in the picturesque history of the livestock industry of the West. Their deterioration represents, in the aggregate, an enormous loss in the natural resources on which only the industry can be maintained. Furthermore, the free and open status of these lands injects a large element of instability and uncertainty into the livestock business. The production of livestock under western conditions normally requires ranch lands where hay is grown for winter feeding and available areas of low open range for spring, or spring and fall, grazing, as well as other available areas of higher range for summer grazing. In many cases at the present time but two elements in this year-
round program are assured, the privately owned ranch with its winter forage and the summer cange in the national forest administered by the Department of Agriculture. During the intervening seasons, which may comprise one-third or more of the year, the stockman must hazard the safety of his herds and the success of his business upon the availability of open ranges on the public domain over which he has no control and for which he must compete in a general scuffle, with no administration by the Government.

In some cases national forest ranges have been of necessity overgrazed, and particularly grazed too early in the year, on account of the pressure from local ranchmen whose old spring range on open public lands is largely gone. In other words, unregulated spring range has become the neck of the bottle. Winter feed and summer pasturage are available for more stock than can be subsisted during the interval unless the spring range on the open domain can be protected from overgrazing and utilized in a coordinated way with the other and stable factors in the round of the year.
To restore and perpetuate one of the great natural resources of the West and at the same time to reduce the losses and uncertainties in western livestock production, the remaining open public ranges should be placed under a form of supervision analogous to that of the Department of Agriculture over the range lands within the national forests. The main objects of this administration should be (1) to adjust the number of livestock and the seasons of use so that the forage produced on these areas may increase in volume and quality rather than deteriorate and (2) to provide for an orderly allotment of grazing privileges to the livestock producers most entitled to them by reason of the location of their ranches and their necessary yearly rotation on spring, summer, and fall ranges. Experience offers no prospect that the orderly and intelligent use of these range lands and the conservation of their forage-producing capacity can be accomplished under any scheme of distribution into private ownership. The task is one that must be assumed by the National Government.
Placing the open public ranges under regulation will in no sense be inimical to the interests of the recent homesteader or the future settler wherever settlement is possible. On the contrary, the settlers will gain more from range regulation than any other class. A fixed point in grazing administration on the national forests is to recognize the settler whose ranch development requires outside pasturage as having a prior claim upon the use of the grazing lands adjacent to his homestead. The milk and work animals of all settlers in or near the national forests are allowed free and undisturbed grazing therein. As the settler accumulates other livestock he is given the range allotments most naturally and economically utilized in connection with his home, and is protected in the use of such allotments as against stockmen living farther away and from the nomadic herds of distant owners which move about the country picking up forage wherever it may be found.

Settlers in or near the national forests who have sought to establish themselves in the livestock business have been in a far more advantageous position to benefit from public range than newcomers in other regions where the unreserved public grazing lands were at all crowded. In fact, many settlers have been unable to establish
themselves on public lands because they could not obtain the range needed to supplement their homesteads and have been driven out of the country because the public range lands surrounding them were completely eaten out by the large herds of the established livestock producers in that vicinity.

The same principles should govern grazing administration on the unreserved domain. Any land that has or may develop agricultural value should be available for settlement exactly as similar land has been made available for settlement within the national forests. And settlers whose home building depends upon livestock should be given priority in the allotment of range accessible for their use. While the bulk of the remaining public lands are not capable of settlement and must, as far as can now be foreseen, remain primarily range lands for all time to come, a system of public range regulation would promote and foster settlement wherever it may become feasible to a far greater extent than under the present unregulated and destructive use of these areas.

No group of men understands this situation or realizes the necessity for action more clearly than the western stock growers themselves. They know that their business can not be satisfactorily organised or accorded an adequate basis for credit until stable tenure in the use of the open public ranges can be secured and the deterioration of these pastures brought to an end. There is a general demand from the livestock interests of the West that some form of grazing administration be extended over the unreserved public lands. In many cases local livestock interests have petitioned Congress to add considerable areas to the national forests, not because they had any value for timber production but because these people wanted the benefits and protection of the national-forest system of grazing administration. One or two additions of this character have been made by acts of Congress in response to local public sentiment. Many areas of open public range lands which form logical portions of grazing units now partly within the national forests could, in fact, be most economically and effectively administered by adding them to the forests. The Department of Agriculture regards this as a sound and commonsense extension of the national forest system in meeting obvious present-day needs of the West; but to the extent that such a policy is adopted it should be with a clear understanding that the bulk of the lands involved are treeless and have no prospective value for growing trees. If they are added to the national forests it will not be ordinarily for the production of timber or the protection of water sources, but primarily for the protection and regulated use of range.
There are many other areas of open public land which do not adjoin national forests, and which, if placed under public administration, should constitute separate and distinct units, which might be called national ranges. The experience and judgment of the local livestock growers themselves will ordinarily afford the best index to the necessity either for the addition of grazing lands to the national forests or for the creation of separate national ranges. The problem involves enormous areas and a considerable variety in the local conditions and circumstances to be considered. It would not be wise to attempt its solution by blanket legislation applying simultaneously to all lands of the character described. It would be the wiser course
to define a national policy, leaving its application to develop area by area and region by region and recognizing the principle of local option on the part of the livestock growers directly affected.

Range Management an Agricultural Problem.

The administration of the western ranges for the production of livestock is essentially an agricultural activity. Its effective development requires much in the way of research to determine how depleted ranges can be restored, how the more nutritious forage plants can be brought back, to what extent artificial seeding can be profitably employed, what is the carrying capacity of many different types of pasturage and browse, and how intensive use of this forage can be so adjusted, by seasons and otherwise, as to maintain and build up the productivity of the resource. The results of such research must be applied in the actual administration of grazing as rapidly as may be possible without serious injury to the economic interests dependent upon the range. These are all problems of scientific agriculture; and they are problems upon which the various bureaus of this department have done a vast amount of work in connection with the administration of the national forests and other activities in the Western States.

During the past 18 years, furthermore, the Department of Agriculture has developed public-range administration on $100,000,000$ acres of forage-bearing land in the national forests. It has perfected an organization for this purpose, in both its technical and administrative phases, which now has many years of practical experience behind it and is recognized for leadership in open-range grazing. The work to be done on the unreserved public-grazing lands in both its scientific and administrative aspects is simply an extension of the grazing work on the national forests. The grazing on all lands in public ownership must be coordinated, since in a large proportion of cases the same livestock uses both national forest and outside lands in the course of the season's pasturage. It would obviously be in the interest of efficiency and public economy to have one organization handle both parts of the common task. The problem as a whole is part of the general agricultural development of the country.

The specific legislation which is recommended is a law which would-
(1) Authorize the President, by Executive order, upon petition from a majority of the stockmen using the area concerned and after full investigation, to add to the national forests contiguous unreserved public lands chiefly valuable for the grazing of livestock for the purpose of conserving and regulating the use of their forage.
(2) Authorize the President, by Executive order, upon a petition from a majority of the stockmen using the area concerned and after full investigation, to create and designate national ranges comprising unreserved public lands valuable chiefly for the grazing of livestock, such national ranges to be administered by the Secretary of Agriculture in so far as their use and occupancy for the grazing of livestock or purposes directly connected with the grazing of livestock may be concerned.

For many years, while the Government has gone forward constructively in the conservation and sane use of the greater part of
the timber on its public lands, and of the forage resources embraced in the national forests as an incident to the protection of timber and stream flow, we have disregarded the perpetuation and conservative use of the vast forage resource on the public domain. No small part of the insecurity and hazardous nature of the livestock industry in the West at the present time is due to inaction on this vital question. There should be no further delay in meeting this situation. The destruction of the grazing value of the public domain can not be defended.

The Forest Problem Only One Part of a General National Problem of Land Utilization.

In reality, the problems of forestry and the better regulation of the grazing resources on the public domain are merely phasesthough very important phases-of the broad problem of land utilization. As the timber is cut millions of acres are thrown out of use. Some of this land is now suitable for use as farming land, some of it will be needed for that purpose in the course of time, but most of it is permanently unsuited to use for farming purposes. Of the arid or semiarid open public grazing lands, relatively little is physically capable of growing crops except where irrigation may be possible, no matter how pressing the national need for crop land may become; and under present conditions it is steadily declining in capacity for use for the only form of use to which it can be put, while being held open for entry under the homestead laws. It is clear that a proper distribution of our reserve areas between the three uses-forests, grazing, and crops-implies some kind of policy of giving direction to the utilization of our land resources.

TREND IN PER CAPITA ACREAGE OF CROPS, PASTURE AND FOREST, AND AMOUNT OF LIVESTOCK, UNITED STATES, 1880-1920.

Fig. 38.-The acres of crops per capita of the United States increased 12 per cent between 1880 and 1900, and then decreased to an amount in 1920 1 per cent below that in 1880. The per capita acreages of both pasture and forest land, on the other hand, have declined since 1880 , and are now only 40 per cent as great as 40 years ago. The per capita amount of livestock increased till 1890, and has since decreased at almost as rapid a rate as pasture.

Land Utilization Policy.

While many of the agricultural difficulties of the past three years have been due in part to surplus production resulting from overstimulation during the war, it is evident that before very many years our population will have grown to a point which will enable it to consume not only all we produce at the present time but considerably more. Where this increased production is to come from and how our

Fig. 39.-About five-sixths of the improved farm acreage under lease is rented by tenants, the remainder being rented by part owners. In some Western States part owners rent nearly as much land as do tenants. There are 11 States in which over half of the improved land is rented. The percentage of improved farm land is greatest in the Cotton, Wheat, and Corn Belt States. Nearly half of the improved acreage under lease in the United States is in 17 Western States. Over half of this acreage is in States between the Rocky Mountains and the Mississippi River.
national land resources may be best used is therefore a matter of major importance. Some two years since I appointed a departmental committee, consisting of representatives of various bureaus, to consider present and future needs for crop land, forests, and pastures; the extent and location of areas that can be made available for these various uses; and the governmental policies that should be adopted to adjust use to needs.

The more immediate problems of the adjustment of type of use to climate, soil, and economic conditions in the semiarid regions of the West have received the major part of the attention of the section working on land utilization problems. Particular attention has been given to the Great Plains as a whole and the spring wheat section as a part of the larger field. Frequently recurring seed loans are not a solution of the problem; this lies rather in a change in the type of agriculture and farm organization.

War prices, propaganda urging increased food production, and local desire for the development of unused resources have brought about the reclamation by irrigation and drainage of large areas of land on some of which it is being found difficult to repay the cost of reclamation. Effort has been made during the past year to coordinate the policy of the Reclamation Service with the studies of this department in directing land utilization and settlement. The Secre-
tary of the Interior has recognized the desirability of obtaining the judgment of the Department of Agriculture concerning the agronomic and economic feasibility of proposed reclamation projects and has referred such projects to this department for consideration.

Tenancy on farm lands has been increasing. Studies of the extent of tenancy and of the various forms of contract under which tenants operate have been made with a view to promoting farm ownership and the use of equitable forms of rental agreements.

Farm credits are based primarily on land values. The proper appraisal of farm lands is of great importance in order that the farmer may obtain the credit to which he is entitled and at the same time that credit agencies may have adequate security. During the year much attention has been given to a determination of the influence of the various factors affecting land values as a basis for developing scientific methods of appraisal.

Fig. 40.-From a half to two-thirds of the farms in the eight Southern States from Oklahoma and Texas to South Carolina are operated by tenants. These States contain more tenants than the other States. About a third of the tenants in these States are croppers, whose work stock is furnished by their landlords. When croppers, who usually have no legal hold upon the land, are excluded from the tenant classification, the relative number of tenants in Southern States is not strikingly larger than in the Corn Belt.

It is hoped that the report of this departmental land committee will be ready for inclusion in the Yearbook of the department for 1923, and it is expected that this Yearbook will be available for distribution early in the spring of 1924.

Housing Situation.

In previous reports I have called attention to the unsatisfactory housing of the department and have recommended a building program to meet this situation. It has not yet been possible, however, to secure an appropriation to begin work on this program. Concentration into fewer and larger buildings of a more suitable character than the existing widely scattered structures, providing proper housing for present activities, is the most important need of the department at the present time, and I again urgently recommend that provision be made to this end.

Last year I asked the Bureau of Efficiency to study the housing problem in the department, in the hope that something could be done in the reassignment of available space. This bureau made an exhaustive investigation of the situation in cooperation with department representatives, with the result that it was found inadvisable to reassign office space, as the removal and installation of a large amount of laboratory and other heavy equipment would be involved. The recommendation of the committee regarding one building where available space was found has, however, been favorably acted upon.

The department continues to occupy more than 40 buildings in various parts of Washington. Efficient and economical administration of its affairs remains impossible while this condition exists. During the past fiscal year the Government spent \$177,726.92 for rental of buildings occupied by this department in the District of Columbia.

RENTAL FOR BUILDINGS OCCUPIED BY THE DEPARTMENT OF AGRICULTURE IN WASHINGTON, D. C.

Fig. 41.-The total rental for buildings to house the staff of the Department of Agriculture increased from about $\$ 100,000$ in 1914 to over $\$ 190,000$ in 1919. Since that time the rentals have decreased despite the increasing activities of the department. Since 1920 the department has been assigned temporary nonfireproof war buildings, upon which there is no rental and which are wholly inadequate.

A number of laboratories have had to be housed in rented or other temporary quarters of nonfireproof construction not intended or designed for laboratory installations or for permanent occupancy. The installation of essential apparatus and equipment for efficient work usually requires permanent foundations, costly plumbing and electric wiring, or special provision for the maintenance of constant temperatures. The present temporary character of the department's housing arrangements in some cases precludes the possibility of providing much-needed apparatus. With the development of the department's work its housing situation is becoming more and more acute, and it will be impossible to hold outstanding research workers or do efficient work in many lines until such intolerable conditions have been recognized and steps taken to remedy them. Another illustration in the need for additional space is found in the effort

[^0]new being made to centralize control of purchases. Progress in this work is blocked by the lack of a warehouse to serve as a central depot of supplies.

General Administration.

Continued attention has been given by the department to the adoption of ways and means of insuring the most effective and economical methods in the expenditure of public funds. Efforts are being made continually to improve the business administration of the department and to inaugurate economies wherever consistent with effective results. In my last report specific instances of savings were cited. The same effort has been in evidence during the past year and many additional steps have been taken to better the service and reduce cost. One of the branches of the office of the Secretary has been organized in such a way as to advise and assist the administrative and accounting offices of the various bureaus in the survey of existing methods and in effecting changes in business organization where nceded. Further special attention has been given to the development and supervision of the purchase and sales work under an expert in this line who has been employed for this specific purpose. Reserves have again been set up wherever practicable against the various appropriations, and these and other unused balances of appropriations were turned back into the Treasury at the end of the fiscal year.

Salary Classification.

The number of employees in the department June 30, 1923, was 20,261 . More than 16,000 of these were engaged in work outside of Washington.

Careful attention has been given to the activities necessitated by the provisions of the classification act of 1923. A personnel classification officer was designated to coordinate and supervise the large volume of work incident to the classification of the department personnel.

A consideration of what has been accomplished thus far indicates that the prospects which classification offers for the adjustment of present inequalities in pay and the enlargement of opportunity for advancement are acting as a strong incentive for the continuance of effort and the rendering of efficient service. The critical analysis and evaluation of the duties and responsibilities of department employees which is now being made to insure their just and equitable allocation under the classification plan should lead to more effective administrative organization and stimulate department workers to maintain a high standard of efficiency.

Respectfully,

Henry C. Wallace, Secretary of Agriculture.

Financial Statement.

The net cost to the Federal Government of the regular activities of the department during the fiscal year 1923 was approximately $\$ 34,500,000$, as indicated by the following table:

Federal Funds for Regular Work of the Department.

	Appropriations available, fiscal year 1923.	Expenditures, fiscal year 1923.	Outstanding obligations.	Unobligated balances.
Agricultural appropriation act, 1923 (exclusive of appropriations made direct to States for research work under the Hatch and Adams Acts and for extension work under the Smith-Lever Act, and appropriation for the acquisition of lands by the National Forest Reservation Commission). \qquad	\$33, 584, 173.00	\$28, 540, 386.90	\$4, 226, 005.92	\$817, 780.18
Deficiency appropriation acts (July 1, 1922, Jan. 22, 1923, and Mar. 4, 1923).	774, 980.00	651,322. 01	48,915. 84	74, 742.15
Supplemental appropriation for increase of compensation (act of June 29, 1922).	3,232,863.00	2,935, 862.96	218,943.62	78,056.42
Permanent annual appropriation for meat inspection (act of June 30, 1906)	3,000,000.00	3,000,000.00		
Revolving fund for classification of cotton..	134, 538.29	80,287. 63		54,250.66
Allotment for fixed nitrogen research ($\$ 500$,000 transferred from appropriation placed at disposal of the President by the national defense act of June 3, 1916, and \$275,903.46 unexpended balance of allotment previously transferred).	775, 903. 46	212,976. 17	24,961. 13	537,966. 16
Eradication of foot-and-mouth and other contagious diseases of animals (reappropriation of unexpended balance from 1922) \qquad	353, 824. 93	53,392. 49	. .	300,532. 44
Control of white-pine blister rust (available balance of continuing appropriation made in 1922).	124, 663. 12	119,812. 72	866.61	3,983. 79
Control of insect infestations on national forests (available balance of continuing appropriation made in 1922). \qquad	109,184. 73	39,373. 78	25, 953.18	43, 857.77
Other continuing appropriations for regular work.	90, 155. 58	8,217. 74	$7,004.34$	74, 933.50
Total..................................-. -	42, 180,386. 11	35, 641, 632.40	4,552,650.64	1,986, 108.07

Expenditures, as shown above	\$35; 641, 632.40	
Outstanding obligations, as shown above.	4,552, 650.64	-
Total expenditure, fiscal year 1923, when all obligations are paid		\$40, 194, 283.04
Less:		
Receipts, 1923, deposited in United States Treasury to credit of miscellancous receipts fund (sce below)	\$5,576,904.55	
Reimbursement by dealers for cost of classifying cotton	66,711. 21	
		5.643, 615.76
Net cost of regular work		34, 550, 667. 28

Of the total expenditure of $\$ 40,200,000$ for the regular work of the department, approximately $\$ 9,000,000$, or 22.5 per cent, was used for research; $\$ 2,400,000$, or 6 per cent, for extension; $\$ 20$,500,000 , or 51 per cent, for service and regulatory activities; and

Fig. 42.-Over one-hairi of the expenditures of the Department of Agriculture involves public service and regulatory work, and less than one-fourth is devoted to research work for the deveiopment of agriculture.
$\$ 8,300,000$, or 20.5 per cent, for campaigns for the control or eradication of various animal and plant diseases and pests.

Direct Income to Government in Connection with Work of Department of Agriculture, Fiscal Year 1923.

Incident to the department's work during the fiscal year 1923, direct receipts aggregating $\$ 9,986,908$ were covered into the Treasury, and fines were imposed and judgments recovered by the courts amounting to $\$ 247,895.57$ in connection with the enforcement by the department of the regulatory acts which devolve upon it for administration and execution, as follows:

```
Receipts:
    Deposited to credit of miscellaneous receipts
        fund-
            From business on the national forests_- $4, 807, 249.07
            From other sources
                                769, 655.48
    Deposited to credit of miscellaneous receipts
        fund but subsequently appropriated as spe-
        cial funds for use of Forest Service-
            Ten per cent of net receipts from busi-
                    ness on the national forests, for forest
                    road and trail construction in 1924__
            Contributions from private sources, used
                    mainly for the construction of forest
                    roads and trails
                                528, 569.06
                            1, 517, 467.46
                            2, 046, 036. 52
    Deposited to credit of appropriations for regular work of
        department
                                402, 588. 58
    Deposited to credit of appropriations admin-
        istered by but not used in prosecuting
        regular work of department-
            Reimbursement for cost of distributing
                surplus war materials to States for use
                in road construction work
                $573, 183.95
            Repayments by farmers of seed-grain
                loans
                1, 388, 194.40
                                    1,961,378. }3
            Total receipts
                                    9,986, 908.00
Fines imposed and judgments recovered by the courts in connec-
    tion with violations of statutes intrusted to Department of
    Agriculture for enforcement
                            247, 895. 57
        Total direct income to Government resulting from
        activities of Department of Agriculture
                            10,234, 803.57
```


Federal Funds Administered by Department but not Used for its Regular Work.

In addition to the expenditures for conducting the investigative, regulatory, and other regular activities of the department, $\$ 88,514,-$ 578.60 was expended during the fiscal year 1923 from appropriations administered by the department but not used for the prosecution of its regular work as follows:

	Appropriation available, fiscal year 1923.	Expenditure, fiscal year 1923.	Unexpended balance, June 30, 1923.
Extension work in agriculture and home economics:			
Provided by Smith-Lever Act of May 8, 1914	\$4, 580, 000.00		
Supplementary fund provided by agricultural appropriation act for 1923............	$\begin{array}{r} 1,300,000.00 \\ 154,472.77 \end{array}$		
	6, 034, 472. 77	${ }^{1} \$ 5,810,449.45$	\$224, 023.32
Research work of State agricultural experiment stations provided by agricultural appropriation act			
for 1923)...............	1, 440, 000. 00		
Balances from prior years.	210. 10		-
	1,440, 210. 10	${ }^{1} 1,439,999.59$	210.51

[^1]| | Appropriation available, fiscal year 1923. | Expenditure, fiscal year 1923. | Unexpended balance, June 30, 1923 |
| :---: | :---: | :---: | :---: |
| Federai-aid road construction (pro-
 vided by acts of July 11, 1916;
 Feb. 28, 1919; Nov. 9, 1921; and
 Jan. 22, 1923): | | | |
| | | | |
| | | | |
| Rural post roads- | | | |
| Appropriated for fiscal | | | |
| | | | |
| | | | |
| | 203, 703, 521. 43 | \$71, 601, 752. 72 | \$132, 101, 768.71 |
| Roads and trails within or adjacent to national forests- | | | |
| Λ ppropriated for fiscal year 1923. | 11, 000, 000. 00 | | |
| Ten per cent of national forest receipts for 1922, available for road and trail building in 1923.. | 338, 576. 96 | | |
| Balances from prior years. | 6, 408, 586. 52 | | |
| | 17, 747, 163. 48 | 6, 467, 630. 69 | 11, 279, 523. 79 |
| Payments to States from national forest receipts for benefit of | | | |
| | | | |
| Refunds to users of national forest | | | |
| resources of moneys deposited by them in excess of amounts re- | | | |
| Acquisition of lands by National 101, ${ }^{\text {a }}$ | | | |
| Forest Reservation Commission for protection of forested watersheds of navigable streams: | | | |
| Provided by agricultural ap- | | | |
| Balances from prior years..... | 1, 458, 455.35 | | |
| | 1, 908, 455. 35 | 768, 391. 84 | \$1, 140, 063. 51 |
| Expenses of National Forest Reservation Commission (provided by | | | |
| act of Mar. 1, 1911): | | | |
| Appropriation for fiscal year$25,000.00$ | | | |
| Balances from prior years..... | 48, 242.21 | | |
| | 73, 242.21 | 537. 06 | 72,705. 15 |
| Cooperative work, Forest Service, consisting principally of forest road and trail construction (paid from contributions from private | | | |
| sources): | | | |
| | 1, 517, 467. 46 | | |
| Balances from prior years..... | 381, 495.75 | | |
| | 1, 898, 963. 21 | 1, 299, 782.88 | 599, 180. 33 |

[^2]Appropriation
available, fiscal year 1923.

Expenditure, Unexpended balfiscal year 1923. ance, June 30, 1922.

Farmers' seed-grain loans: Appropriations provided by deficiency acts of July 1, 1922, and Mar. 4, 1923, for collection of loans.
Collections during 1923 of loans made in 1921 and 1922.....
Previously collected.
$\$ 75,000.00$
$1,388,194.40$
693, 173. 64
$2,156,368.04$
$\$ 69,226.66$
$\$ 2,087,141.38$
3.31

Exchange of lands, State of Washington.
Work done by Department of Agriculture for other departments at their request, under authority of section 7, fortifications act of May 21, 1920:

Allotments from other departments, fiscal year 1923......
Balance of allotments made in prior years.

12, 623.00
62, 453.35

72, 687. 59
$\$ 2,388.76$
79.61
${ }^{1} 512,248.65$

Total Federal appropriations administered by department but not used for its regular work $236,533,832.71 \quad 88,514,578.60 \quad 148,019,254.11$

Summary of all appropriations available to the Department of Agriculture during flscal year 1923.

Title of appropriation.	Amount appropriated.	$\begin{aligned} & \text { Expenditures } \\ & \text { to June 30, } \\ & 1923 . \end{aligned}$	Unexpended balance, June 30, 1923.
Agricultural act for fiscal year 1923.	\$36, 774, 173.00	\$31,388, 336.97	\$5, 385, 836. 03
Supplementary appropriations contained in deficiency acts of July 1, 1922, Jan. 22, 1923, and Mar. 4, 1923:			
Suppressing spread of pink bollworm of cotton.....	75,000. 00	75,000. 00	
Fighting forest fires.	375,000. 00	375,000.00	
Protection of lands in Oregon and California Railroad forfeiture suits.	16,480. 00	13,987.61	2,492. 39
Motor boat for Alaskan forests.	8,500.00		8,500.00
Citrus canker eradication.	100,000. 00	100,000.00	
White-pine blister rust cont	30,000.00	30,000.00	
Nut culture.	5,000. 00	5,000.00
Investigating sources of crude rubber...............	100,000.00	4,305. 57	. 95, 604.43
Boll weevil poisoning by airplane.	40,000. 00	29,207. 54	10,792.46
Preventing spread of Japanese beetle	25,000.00	18,731.29	6,268.71
Supplemental appropriation for increase of compensa- tion (act of June 29, 1922)	3,232, 863.00	2, 935, 862.96	297, 000.04
${ }^{1}$ Turned into surplus fund June 30, 1923.			

Summary of all appropriations available to the Department of Agriculture dur. ing fiscal year 1923-Continued.

Title of appropriation.	Amount appropriated.	Expenditures to June 30, 1923.	Unexpended balance, June 30, 1923.
Permanent specific appropriations:			
Meat inspection (act of June 30, 1906)	\$3,000,000.00	\$3, 000,000.00	
Cooperative agricultural extension work (act of May			
8, 1914)	4,580,000.00	4, 510, 449.45	\$69,550.55
Cooperative construction of roads and trails, national forests (act of July 11, 1916). \qquad	1, 000, 000.00		1,000,000.00
National Forest Reservation Commission (act of Mar. 1, 1911)	25,000.00	496.69	24, 503.31
Continuing appropriations:			
Cooperative construction of rural post roads (deficiency act of Jan. 22, 1923).	25,000,000.00	152,511.28	24, 847, 488.72
Forest highways (act of Nov. 9, 1921)	7,000,000. 00	342,504. 53	6,657,495. 47
Forest road development (act of Nov. 9, 1921)	$3,000,000.00$	859, 919. 22	2, 140, 080. 78
indefinite appropriation. Refunds to depositors, national forests fund	101, 824.19	101, 824.19	
Special funds:			
Roads and trails for States, national forests fund....	338, 576. 96		338,576.96
Payments to States and Territories, national forests fund	846,442. 41	846,442. 41	
Payments to school funds, Arizona and New Mexico, national forests fund.	35, 761.60	35,761. 60	
Cooperative work, Fores	1, 517,467.46	918,287. 13	599, 180. 33
Revolving fund for classification of co	66, 711.21	12,460. 55	54,250. 66
Fund from seed-grain loans collected during	1,388, 194. 40		1,388, 194.40
Appropriation for collection of seed-grain loan	75,000.00	69, 226.66	5,773.34
Allotment for nitrate plants.	500,000.00		500,000.00
Allotments from other departments:			
Insect control, Kaibab National Forest...............	1,000.00	1,000.00	
Air Service, Army, 1923.	10,000.00	9,797.13	202.87
Breeding experimental animals, Army, 1923.	1,000.00	753.57	246.43
Investigations for Federal Power Commission, 1923.	450.00	230.01	219.99
Manufacture of arms.	173.00	140.63	32.37
Total, current appropriations and funds (exclusive of balances from prior years).	89, 269, 617.23	45, 837, 326.99	43, 432, 290.24
Unexpended balances of appropriations and funds for prior fiscal years remaining available for expenditure			
Appropriations in agricultural acts for fiscal years 1921 and 1922	\$5, 683, 344.45	\$2, 747, 852.18	1 \$2, 935, 492.27
Reappropriation of unexpended balance for eradication of foot-and-mouth disease, etc.	353, 924.93	53, 392.49	300, 532.44
Supplemental appropriations for fiscal years 1921 and 1922-			
White-pine blister rust control (1922-23)	124, 663.12	119, 812.72	4,850.40
Insect infestations, national forests (1922-23)	109, 184 '73	39,373.78	69,810.95
Enforcement of packers and stockyards act.....	47, 410.93	20, 497.27	26, 913.66
Enforcement of future trading act...............	33,616.18	6,304.77	27,311.41
Operation of Center Market..........................	44,552.10	22, 219.44	22,332.66
Salaries and expenses, wool division, War Industries Board.	2,500.00		2,500.00
Protection of lands, Oregon and California Railroad forfeiture suits. \qquad	112.40	112.40	

1 Of these balances, $\$ 1,702,859.80$ was turned into the surplus fund of the Trassury at the end of the year.

Summary of all appropriations available to the Department of Agriculture during fiscal year 1923-Continued.

[^3]Acreage of crops in the United States.

Crop.	Annual average, 1910-1914.	1915	1916	1917	1918	1919	1920	1921	$1922{ }^{1}$	$1923{ }^{1}$ (preliminary estimate).
Cereals.										
Corn	105, 240, 000	105, 197,000	105, 296,000	116,730,000	104, 467,000	97,170,000	101,699, 000	103, 740, 000	102, 428, 000	103, 112, 000
Wheat	48, 953, 000	60, 469, 000	52, 316, 000	45,089,000	59,181, 000	75,694,000	61, 143, 000	63,696, 000	61,630, 000	58,253, 000
Oats.	38, 014,000	40,996,000	41,527,000	43,553, 000	44, 349,000	40, 359, 000	42, 491, 000	45, 495, 000	40, 313, 000	40,768, 000
Barley	7,593,000	7,148, 000	7,757,000	$8,933,000$	9,740,000	6,720,000	7,600,000	7,414,000	7,390,000	7,980,000
Rye...	2,305,000	3,129,000	3,213,000	4, 317,000	6,391, 000	6, 307, 000	4, 409, 000	4,528, 000	6,210,000	5,234,000
Buckwheat	826,000	769,000	828,000	924,000	1,027,000	700,000	701,000	680, 000	785, 000	772, 000
Rice.	733, 000	803,000	869,000	980,900	1,118, 550	1,063, 000	1,336,000	921,000	1,055,000	883,000
Grain sorghums.		4,153,000	3,944, 000	5, 153,000	6,036,000	5,060,000	5,120,000	4,635,000	5,051, 000	5,516,000
Totas	203, 664,000	223,664,000	215,750,000	225,679,900	232,309,550	233,073, 000	224, 499, 000	231, 109,000	2.24, 862,000	222,518, 000
VEGETABLES.										
Potatoes	3,686,000	3,734,000	3,565,000	4,384,000	4,295,000	3,542,000	3,657, 000	3,941,000	4,331,000	3,892,000
Sweet potatoes.....	611,000	731,000	774,000	-919,000	940,000	,941,000	'992, 000	1,066, 000	1,116, 000	1,007, 000
Beans (commercial)	61,00	928,000	1,107,000	1,821, 000	1,744,000	1,060,000	8477,000	'777, 000	1,043, 000	1, 255, 000
Onions (commercial)				64,580	-65,400	-52,830	65, 550	58, 070	64,780	, 62, 660
Cabbage (commercial)				93, 090	111, 940	94,300	121, 421	104, 060	136, 860	102, 070
Total	4, 297, 000	5,393,000	5,446,000	7,281,670	7,156, 340	5,690, 130	5,682, 971	5, 946, 130	6,691, 640	6,318, 730
Cranberries (3 States)		23, 100	26,200	18,200	25,400	25,000	25,000	25,000	25,000	25,000
Flaxseed.	2, 402,000	1,387,000	1, 474, 000	1,984, 000	1,910,000	1,503, 000	1,757,000	1,108, 000	1,251, 000	2,285,000
Sugar beets	498,122	1,611,301	-665,308	, 664,797	1594,010	1,692,455	1871,676	1814,988	1530,247	732, 000
Tobacco.	1, 209, 000	1,369,900	1,413,400	1,517,800	1,647, 100	1,951,000	1,960, 000	1,427, 000	1,725, 000	1,762, 000
All hay	66,356, 000	67,904, 000	72, 356,000	71, 415,000	71, 120, 000	74, 038,000	73, 888, 000	74, 401, 000	77, 050,000	76, 029,000
Cotton.................	35, 330, 000	31, 412,000	34,985, 000	33, 841, 000	36, 008,000	33, 566, 000	35, 878, 000	30, 509, 000	33, 036, 000	38, 287, 000
Sorghum cane for sirup Peanuts.				415,200 $1.842,000$	421,600 $1.865,000$	487,000	536,000	518,000	448, 000	402, 000
Pranuts...		230, 100	$1,043,000$ 235,200	$1,842,000$ 345,000	$1,865,000$ 366,000	$1,132,000$ 352,000	1,181, 000	1,214, 2200	986,000 257,000	918,000 492,000
Clover seed			939, 000	821,000	820,000	942, 000	1,082, 000	889,000	1,126, 000	739,000
Grand total.	313,756, 122	331, 994, 401	334, 333, 108	345, 825, 567	354, 243, 000	353, 451, 585	347, 636, 147	348, 183, 118	347, 987, 887	350, 507, 730

${ }^{1}$ Subject to revision in December, 1923.

Crop production in the United States.
[The figures are in round thousands-i. e., 000 omitted.]

Crop.	Annual average, 1910-1914.	1915	1916	1917	1918	1919	1920	1921	$1922{ }^{1}$	$1923{ }^{1}$
Cereals.										
Corn.....................bushels. .	2,732,457	2,994,793	2,566,927	3,065,233	2,502,665	2, 811, 302	3,208,584	3,068, 569	2, 890, 712	3,029,192
Wheat.......................do....	728,225	1,025,801	636,318	636, 655.	921, 438	-967,979	833, 027	814,905	862, 091	781,737
Oats...........................d. do....	1,157,961	1,549,030	$1,251,837$ 182,309	1,592,740	1,538,124	1,184, 147,608	$1,496,281$ 189,332	$1,078,341$ 154,946	1, 201, 186	$1,302,453$ 199,251
Barley......................d. do....	186, 208	228,851	182,309 48,862	22,933	251, 041	145,483	60,490	61,675	95, 497	64,774
Rye..............................	17,022	15,056	11,662	16,022	16,905	14,399	13,142	14,207	15,050	14, 511
Buckwheat.....................d. ${ }_{\text {do }}$	17, 378	28,947	40, 861	34,739	38, 606	41,985	52,066	37, 612	41,965	32,737
Grain sorghums.do		114, 460	53, 858	61,409	73,241	130,734	137, 408	113,990	90,381	103,506
Total.	4, 883, 819	6,010,988	4,792,634	5,681, 490	5, 438, 245	5,373, 520	5,990,330	5,344, 245	5,383, 250	5,528,161
Potatoes bushels..	360,772	359,721	286, 953	442,108	411,860	322,867	403,296	361,659	451,185	416,722
Sweet potatoes. do...	57,117	75,639	70,955	83, 822	87,924	97,126	103,925	98, 654	109, 534	97,429
Beans (commercial).........d.do....		10,321	10,715	16,045	17,397	13, 349	9,185	9,150	11, 893	14,936
Onions (commercial) do....		7,664	8,562	12,376	19,336	11,398	23,525	14,440	19,129	16,503
Cabbage (commercial)...... tons..		671	255	475	498	357	982	678	1,117	824
Peaches................bushels..	45,842	64,097	37,505	48,765	33,094	53,178	45,620	32,602	56,705	45, 515
Pears........................do....	11, 184	11, 216	11,874 193,905	13,281 166,749	13,362 169,625	15,006 142,086	16,805	11,297 99,002	18,661 201,252	15,335 193,855
Apples.................... do....	197, 898	230, 011	193,905 471	166,749 249	169,625 352	142,086 549	223,677 $\cdot 449$	99,002 384	201,252 568	193, 855
MISCELI.ANEOUS.										
Flaxseed.................bushels. .	18,353	14,030	14,296	9,164	13,369	7,256	10,774	8, 029	11,668	19,343
Sugar beets.................tons. .	5,391	6,511	6,228	5,980	5,949	6,421	8,538	7,782	5,183	6,667
Tobacco. pounds. .	991,958	1,062, 237	1,153, 278	1,249, 276	1, 439, 071	1,465, 481	1,582, 225	1,069,693	1,324, 840	1,436, 738
All hay..................... .tons. .	81, 640	107, 263	110,992	98, 439	91, 139	104, 760	105, 315	97,770	112,791	102,914
Cotton. bales. .	14, 259	11, 192	11, 450	11,302	12, 041	11, 421	13, 440	7,954	- 9,762	10,248
Sorghum sirup...............galls. .	14,974	14, 823	13,668	37, 472	-33,387	119,413 783	-49,505	45,566 829	36,532	33,643
Peanuts................. pounds..			919,028	1, 432, 581	1,240, 102	783, 273	841, 474	829,307 38	623,507 35	647, 589
Broomeorn. tons. ${ }_{\text {Clover }}$.		52	1,706	1,488	1,197	1,484	1,944	1,538	1,875	1,121

[Reports of Bureau of Foreign and Domestic Commerce, United States Department of Commerce.]

Article exported.	Annual average, 1910-1914.	Year ending June 30-							
		1916	1917	1918	1919	1920	1921	1922	1923
Wheat. bushels..	56,913,228	173,274, 015	149,831, 427	34,118,853	178, 582,673	122,430,724	293,267,637	208, 321, 091	154,950,971
Wheat flour.......... barrels..	10, 678, 635	15,520,669	11,942, 778	21, 879,951	24,181,979	21,651, 961	16,179,956	15,796, 824	14, 882, 714
Oats.................bushels..	8, 304, 203	95, 918, 884	88,944,401	105, 837, 309	96, 360,974	33, 944,740	4,302,346	15,987, 264	18,573, 603
Rye....................... do.	854,765	14,532,437	13,260,015	11,990, 123	27, 540,188	37, 463,285	45, 735, 052	29,683,602	51,411,550
Barley.................... do.	7,895, 521	27,473,160	16,381,077	26,285, 378	20, 457, 781	26,571,284	20,457, 198	22, 400, 393	18,192, 809
Corn...................... do	39,809, 690	38,217,012	64,720, 842	40,997, 827	16,687,538	14,467,926	66,911,093	176,385, 614	94, 064, 053
Total, 5 cereals and flour...........pounds..	8,429,735, 124	20, 780, 577, 136	19, 330, 110,628	13, $951,418,808$	21, 996, 905, 576	16, 859, 428, 924	28, 195, 134, 292	28, 722, 130, 372	21, 828, 314, 100
Sugar...................do.....	70,976,908	1,630, 150, 863	1,248, 908,286	576, 483, 050	1,115, 865, 161	1,444,030,665	582,698,488	2,002,038,652	749, 855, 325
Dairy products:									
Butter............... do....	4,277,955	13,487,481	26, 835, 092	17,735,966	33,739,960	27,155, 834	7,829,255	7,511,997	9, 409, 837
Cheese..............d. do....	4,915,502	44, 394,301	66,050, 013	44,303, 076	18,791,553	19,378, 158	10, 825, 603	7,471, 452	8,446, 321
Milk (condensed)	15, 773,900	159,577,620	259, 141, 231	528, 759, 232	728,740, 509	710,533, 270	266,506,031	288, 628, 298	159,956,707
products .pounds..	24,967,357	217,459,402	352,026, 336	590,798,274	781, 272,022	757,067,262	285, 160, 889	303,611,747	177,812,865
Meat and meat products:									
Canned beef........do. ${ }^{\text {do.. }}$	9,392, 122	50, 803, 765	67,536,125	97,343,283	108, 459,660	31, 133, 918	10,762,986	3,748,486	2,301,499
Fresh beef.......... do....	29, 452,302	231, 214,000	197, 177, 101	370, 032,900	332,205,176	153, 560,647	21, 084,203	3, ${ }^{\text {3, }} 993,449$	4,077,002
Pickled beef. do....	32,893, 172	$38,114,682$ $102,645,914$	58,053,667	54, 467,910	45, 065,641	32, 383, 501	23, 312,856	26,774, 124	24,185, 263
Oleomargarine........d. do.		102,645	67, 110,11	56, 603,388	59, 292, 122	74,529, 494	106, 414, 800	117,174,260	104, 956, 378
Stearin..............d.do	3,268, 279	5,420,221	5, 51,267	6, 309, 896	18,570,400	20,952, 180	6,219, 165	1,989,421	2,027,546
Tallow.................d. do.	-39, 008	13, 288,247	12,936, 357	10, 360,030	11, 537, 284	22,505,602	19, 177, 311	32,560, 766	70,767,939
Canned pork........d.do.	29,027,086	16,288, 73	15, 209,369	5, 14,964	16, 177, 111	32,937, 026	16, 843, 868	27,658, 097	25,664,985
Fresh pork.d.do.	2,023,911	9,610, 32	5,896, 120	5,194,468	5,273, 329	3,261,967	1,118,967	2,263, 102	2,761, 121
Bacon... do.	182,474,092	63, ${ }^{\text {208, }} 24$	50, 435,615	21,390, 288	19,644, 388	27,224,941	57,075, 446	25, 911, 193	43,501, 610
Hams and shoulders.do.	166,813, 134	579, 808,786	606, 151,972	81, 294,424	1,238,247, 321	803,666, 861	489,298,109	350,548,952	408, 282,065
Pickled pork.........do.	48,274,929	663,460,713	266,656,581	419,571, 869	667,240,022	275, 455, 931	172,011,676	271,641,786	319, 186, 689
Lard do.	474, 354,914	427, 011, 338	444,789, 540	33, 221,502	31,503,997	41,643, 119	33, 286, 062	33,510, 146	40, 933, 756
Lard, neutral.........do.	${ }^{2} 43,571,550$	34, 426,590	444, 69,540	392,506, 305	724,771,383	587,224,549	746, 157, 246	812,379,396	952,641,705
Lard, compounds. . .do....	67, 318,857	52,843.311	17, 359,493	4,258, 289	17, 395, 888	23, 202,027	22, 544, 303	19, 572, 940	26, 494, 079
			56,350, 43	31, 278, 382	128,157, 327	44, 195, 842	42, 155, 971	30, 328, 176	11, 139,730

Sausage, canned..... do. Sausage, other.......... Sausage, casings.	$6,369,268$ $30,674,928$	$\begin{array}{r} 6,823,085 \\ 8,590,236 \\ 14,708,893 \end{array}$	$\begin{aligned} & 6,294,950 \\ & 9,134,471 \\ & 6,118,060 \end{aligned}$	$\begin{aligned} & 5,787,108 \\ & 9,239,341 \\ & 6,173,578 \end{aligned}$	$\begin{array}{r} 8,503,580 \\ 9,721,925 \\ 13,524,093 \end{array}$	$\begin{array}{r} 7,034,150 \\ 14,750,963 \\ 24,379,414 \end{array}$	$\begin{array}{r} 4,429,723 \\ 4,926,552 \\ 29,894,681 \end{array}$	$\begin{array}{r} 1,963,548 \\ 7,207,829 \\ 27,768,795 \end{array}$	$\begin{array}{r} 2,693,636 \\ 7,719,026 \\ 20,043,425 \end{array}$
Total, 18 meat products pounds.	1,416,546,331	2,000,053, 391	2,001,059,766	2,344,048,215	3,455, 285, 647	2, 220, 042, 132	1,806,713, 925	1,796, 994, 466	2,069,377,454
Total of food products mentioned above..lbs.	9,942, 225, 720	24, 628, 240, 792	22,932, 105, 016	17,462, 748, 347	27,349, 328,406	21, 280, 568, 983	30, 869, 707, 594	32, 824, 775, 237	24, 825, 359,744
Cotton..............do	4,419, 802, 157	3,084, 070, 125	3,088, 080, 786	2,320, 511, 665	2,762, 946, 754	3,543, 743, 487	2, 811, 388,710	3,358, 878, 748	2,626,732,147
Tobacco.............do.	392, 183, 071	443, 293, 156	411, 598, 860	289, 170,686	629, 287, 761	506, 526, 449	462,797,351	463, 388, 521	454, 410, 294
Grand total.......do...	14, 754, 210, 948	28, 155, 604, 073	26, 431, 784,662	20,072, 430,698	30, 741, 562, 921	25,330, 838,919	34, 143, 893,655	36,647, 042, 506	27, 906, 502, 185

1 2-year average.
2 4-year average.

Publications of the Department.

The accompanying table gives a summary of new and reprinted publications issued by the department during the fiscal year ended June 30, 1923.
Of the bulleting, circulars, and Yearbooks there were 477 new titles and 783 reprints, making a total of 1,260 separate titles. The total editions of these amounted to $26,519,542$ copies, of which 21,649,398, or more than 80 per cent, were popular Farmers' Bulletins. The following new publications were issued during the year: 62 Farmers' Bulletins, 105 department bulletins, 57 departmental circulars, and 40 soil surveys.

Of the publications of a periodical and statistical nature 7,373,465 copies were printed. These publications include the "Experiment Station Record," "Official Record," "Clip Sheet," "Weather, Crops, and Markets," and the "Journal of Agricultural Research," as well as reprints from the latter publication.

Publications issued by the Department of Agriculture during the fiscal year ended June 30, 1923.

Name series.	New.		Reprinted.		New and reprinted.	
	Number of titles.	Number of copies.	Number of titles.	Number of copies.	Number of titles.	Number of copies.
Bulletins, circulars, Yearbook, etc.:		- ${ }^{\text {c }}$				
Farmers' Bulletins.	62	2, 226,915	574	19, 422, 483	636	21, 649, 398
Department bulletins	105	553,089	46	84,500	151	637, 589
Department circulars..............	57	874, 720	23	324, 520	80	1,199,240
Secretary's Annual Report.......	1	5,000			1	5,000
Soil surveys.......................	40	40,000			40	40,000
Yearbooks (1921 and 1922).......	2	40,472			2	40, 472
Bureau bulletins	8	30, 500	8	5, 000	16	35, 500
Bureau circulars.	1	2,500	7	10,500	8	13, 000
Statistical bulletins	1	4,500			1	4,500
Miscellaneous circulars...........	10	69,000	3	28, 000	13	97, 000
Service and regulatory announcements.	58	390,500	6	16,000	64	406,500
Miscellaneous......................	132	1,810,518	116	580, 825	248	2, 391, 343
Total.	477	6, 047, 714	783	20, 471, 828	1,260	26, 519,542
Periodical and information publications:						
Experiment Station Record.....	23	165, 650			23	165, 650
Official Record.....................	53	833, 200			53	833, 200
Clip Sheet..........................	51	255, 000			51	255, 000
Weather, Crops, and Markets ...	53	6,007, 000	2	14,000	55	6, 021,000
Journal of Agricultural Research.	17	34, 000			17	34, 000
Separates from Journal of Agricultural Research.	44	63,615	1	1,000	45	64,615
Total.	241	7,358, 465	3	15,000	244	7,373, 465
Grand total .	718	13, 406, 179	786	20, 486, 828	1, 504	33, 893, 007

List of New Farmers' Bulletins, Department Bulletins, and Department Circulars Published During Fiscal Year 1923.

Following is a list of new Farmers' Bulletins, Department Bulletins, and Department Circulars issued during the fiscal year 1923, classified by general subject matter. Farmers' Bulletins are indicated by "F. B.," department bulletins by "D. B.," and department circulars by "D. C."
Bees:
Beekeeping in the Buckwheat Regions F. B. 1216
Beekeeping in the Tulip Tree Regions F. B. 1222
The Insulating Value of Commercial Double-Walled Beehives_ D. C. 222
Eirds and Game:
Game Laws for 1922 F. B. 1288
Laws Relating to Fur-Bearing Animals, 1922 F. B. 1293
Beaver Habits, Beaver Cóntrol, and Possibilities in Beaver Farming D. B. 1078
Migration Records from Wild Ducks and Other Birds, Banded in the Salt Lake Valley, Utah D. B. 1145
Silver-Fox Farming D. B. 1151
Annual Report of the Governor of Alaska on the Alaska Game Law, 1921 D. C. 225
Directory of Officials and Organizations Concerned with the Protection of Birds and Game, 1922 D. C. 242
Annual Report of the Governor of Alaska on the Alaska Game Law, 1922 D. C. 260
The Purpose of Bird Censuses and How to Take Them D. C. 261
Cotton:
Cotton Dusting Machinery F. B. 1319
One-Variety Cotton Communities D. B. 1111
Self-Fertilization and Cross-Fertilization in Pima Coton D. B. 1134
Spinning Tests of Cotton Compressed to Different Densities D. B. 1135
Comparative Spinning Tests of Superior Varieties of Cotton (Grown Under Weevil Conditions in the Southeastern States; Crop of 1921) D. B. 1148
Boll-Weevil Cotton in Texas D. B. 1153
The Uniformity of Pima Cotton D. C. 247
Grounding Cotton Gins to Prevent Fires D. C. 271
Forestry and Trees:
Slashed Pine F. B. 1256
Tree Planting in the Great Plains Region F. B. 1312
Utilization of Basswood D. B. 1007
Longleaf Pine D. B. 1061
Oleoresin Production: A Microscopic Study of the Effects Pro- duced in the Woody Tissues of Southern Pines by Different Methods of Turpentining- D. B. 1064
Natural Reproduction of Western Yellow Pine in the Southwest_ D. B. 1105
The Western Yellow Pine Mistletoe, Effect on Growth and Sug- gestions for Control_- D. B. 1112
Development of Cooperative Shelter-Belt Demonstration on the Northern Great Plains D. B. 1113
Lumber Cut of the United States, 1870-1920 D. B. 1119
The Formation and Pathological Anatomy of Frost Rings in Conifers Injured by Late Frosts D. B. 1131
Kiln-Drying Handbook D. B. 1136
Forest Products Laboratory D. C. 231
State Forestry Laws of 1921 D. C. 239
The National Forests of New Mexico D. C. 240
Forest Fires in California, 1911-1920: An Analytical Study D. C. 243
Turpentine and Rosin, Distribution of the World's Production, Trade, and Consumption D. C. 258
Forage Crops:
Important Cultivated Grasses F. B. 1254
Business Methods of Marketing Hay F. B. 1265
The Velvet Bean F. B. 1276
How to Grow Alfalfa F. B. 1283
Cowpeas: Marketing the Seed Crop F. B. 1308
Alfalfa-Root Studies D. B. 1087
History and Seed Production of Purple Vetch D. C. 256
Fruits:
Apple-Orchard Renovation F. B. 1284
The Handling, Shipping, and Cold Storage of Bartlett Pears in the Pacific Coast States D. B. 1072
Fruits-Continued.
Inspection of Fruit and Vegetable Canneries D. B. 1084
The Saidy Date of Egypt: A Variety of the First Rank Adapted D. B. 1125
The Freezing Temperatures of Some Fruits, Vegetables, and CutFlowersD. B. 1133
Evaporation of Fruits D. B. 1141
By-products from Citrus Fruits D. C. 232
Grain Crops:
The Hard Red Winter Wheats F. B. 1280
The Hard Red Spring Wheats F. B. 1281
Foreign Material in Spring Wheat F. B. 1287
The Bulk Handling of Grain F. B. 1290
The Common White Wheats F. B. 1301
The Club Wheats F. B. 1303
The Durum Wheats F. B. 1304
The Soft Red Winter Wheats F. B. 1305
Use of Water by Spring Wheat on the Great Plains D. B. 1004
Classification of American Wheat Varieties D. B. 1074
Farm and Terminal-Market Prices: Wheat, Corn, and Oats D. B. 1083
Methods of Winter-Wheat Production at the Fort Hays (Kansas) Branch Station

D. B. 1094
Some New Varieties of Rice D. B. 1127
A Physical and Chemical Study of Milo and Feterita Kernels_ D. B. 1129
Significance of Wheat Hairs in Microscopical Examination of
D. B. 1130 Flour
D. B. 1139
Storage of Water in Soil and Its Utilization by Spring Wheat
D. B. 1155
D. B. 1155
Rice Experiments at the Biggs Rice Field Station in California-
Influence of Spacing on Productivity in Single-Ear and Prolific Types of Corn D. B. 1157
Trebi Barley, A Superior Variety of Irrigated Land D. C. 208 D. C. 208
Wild Rice D. C. 229
United States Grades for Grain Sorghums. Recommended by the United States Department of Agriculture D. C. 245
United States Grades for Rye. Recommended by the United States Department of Agriculture D. C. 246
Home Economics:
Corn and Its Uses as Food F. B. 1236
Farm Manufacture of Unfermented Apple Juice F. B. 1264
Uses of Rural Community Buildings F. B. 1274
How to Get Rid of Rats F. B. 1302
Good Proportions in the Diet F. B. 1313
Canaries: Their Care and Management F. B. 1327
Digestibility of Cod-Liver, Java-Almond, Tea-Seed, and Water- melon Seed Oils, Deer Fat, and Some Blended Hydrogenated
D. B. 1033
D. B. 1033 Fats Fats
D. B. 1075
D. B. 1075
The Whipping Quality of Cream
The Whipping Quality of Cream
D. B. 1082
D. B. 1082
The Production of Tulip Bulbs
The Production of Tulip Bulbs
D. B. 1091
D. B. 1091 Life History of the Kangaroo Rat Life History of the Kangaroo Rat
D. B. 1138
D. B. 1138
Vitamin B in the Edible Tissues of the Ox, Sheep, and Hog-
Absorption and Retention of Hydrocyanic Acid by Fumigated
D. B. 1149
D. B. 1149
Food Products
Food Products
D. B. 1161
D. B. 1161
Effect of Composition on the Palatability of Ice Cream
Effect of Composition on the Palatability of Ice Cream
D. C. 237
D. C. 237
Some Experiments with a Boric-Acid Canning Powder---
Homemade Apple and Citrus Pectin Extracts and Their Use in Jelly Making D. C. 254
Livestock and Dairying:
Breeds of Swine F. B. 1263
Sheep-killing Dogs F. B. 1268
Renting Dairy Farms F. B. 1272
The Stock-poisoning Death Camas F. B. 1273
Organization and Management of Cooperative Livestock Ship- ping Associations F. B. 1292
Cost of Using Horses on Corn Belt Farms F. B. 1298
Cleaning Milking Machines
D. B. 973
Livestock and Dairying-Continued.
Influence of Season of Freshening on Production and Income from Dairy CowsShrinkage of Soft Pork Under Commercial ConditionsD. B. 1086
Reindeer in AlaskaD. B. 1089
The Effects of Inbreeding and Crossbreeding on Guinea Pigs D. B. 1090
Producers' Cooperative Milk-Distributing Plants D. B. 1095
The Effect of Silage on the Flavor and Odor of Milk D. B. 1097
A Method of Determining Grease and Dirt in Wool D. B. 1100
Unit Requirements for Producing Market Milk in Delaware D. B. 1101
The Detection of Hypochlorites and Chloramins in Milk and Cream D. B. 1114
The Effects of Inbreeding and Crossbreeding on Guinea Pigs.III. Crosses Between Highly Inbred FamiliesD. B. 1121
Proportioning the Ingredients for Ice Cream and Other Frozen Products by the Balance Method D. B. 1123
Dry-Land Pasture Crops for Hogs at Huntley, Mont D. B. 1143
Cost of Milk Production on Forty-eight Wisconsin Farms D. B. 1144
The Livestock Industry in South America D. C. 228
Utility Value of Purebred Livestock D. C. 235
Defects in the Quality of Butter D. C. 236
Food Animals and Meat Consumption in the United States D. C. 241
Tuberculin Testing of Livestock D. C. 249
Woolly-Pod Milkweed: a Dangerous Stock-Poisoning Plant D. C. 272
Miscellaneous:
Farmers' Telephone Companies: Organization, Financing, and Management F. B. 1245
Farm Land Available for Settlement F. B. 1271
Plain Concrete for Farm Use F. B. 1279
Quack Grass F. B. 1307
Effect of Borax in Fertilizer on the Growth and Yield of Po- tatoes D. B. 998
Farm Management and Farm Organization in Sumter County Ga D. B. 1034
Coal-Tar and Water-Gas Creosotes: Their properties and Methods of Testing D. B. 1036
Tests of Drainage Dumping Plants in the Southern States D. B. 1067
Farm Ownership and Tenancy in the Black Prairie of Texas_-. D. B. 1068
Farm Management in Catawba County, N. C. D. B. 1070
Portland Cement Concrete Roads D. B. 1077
Pedigreed Fiber Flax D. B. 1092
By-Products from Crushing Peanuts D. B. 1096
Legal Phases of Cooperative Associations D. B. 1106
Tables for the Microscopic Identification of Inorganic Salts D. B. 1108
Sales Methods and Policies of a Growers' National Marketing Agency D. B. 1109
The Farmers' Short-Box Measuring Flume D. B. 1110
Absorption by Colloidal and Noncolloidal Soil Constituents D. B. 1122
The Marketing of Mill Feeds D. B. 1124
The Effect of Borax on the Growth and Yield of Crops D. B. 1126
The Results of Physical Tests of Road-Building Rock from 1916 to 1921, inclusive D. B. 1132
Soy and Related Fermentations D. B. 1152 D. B. 1152
List of Serials Currently Received in the Library of the United States Department of Agriculture, January 1, 1922 D. C. 187
The Work of the Yuma Reclamation Project Experiment Farm in 1919 and 1920 D. C. 221
Home Tanning D. C. 230
Motion Pictures of the United States Department of Agriculture, D. C. 233
Status and Results of County Agent Work in Northern and West- ern States, 1921 D. C. 244
Status and Results of Extension Work in the Southern States, 1903-1921 D. C. 248
Federal Legislation, Regulations, and Rulings Affecting Land Grant Colleges and Experiment Stations D. C. 251
Ireparation of Peat Composts D. C. 252
$85813^{\circ}-$ нвк $1923-7$
Miscellaneous-Continued.
Statistics of Cooperative Extension Work, 1922-23 D. C. 253
Status and Results of Boys' and Girls' Club Work, Northern and Western States, 1921 D. (. 255
Composition of Filter Press (Lime) Cake D. C. 257
Frost Resistance in Flax D. C. 264
Plant Insects:
The More Important Apple Insects F. B. 1270
Weevils in Beans and Peas F. B. 1275
Nicotine Dust for Control of Truck Crop Insects F. B. 1282
Lime-Sulphur Concentrates: Preparation, Uses, and Designs for Plants F. B. 1285
The Red-necked Raspberry Cane-Borer F. B. 1286
The European Corn Borer and Its Control F. B. 1294
Insect Enemies of Chrysanthemums F. B. 1306
Control of the Common Mealybug on Citrus Fruits in Cali- fornia F. B, 1309
The Corn Earworm: Its Ravages on Field Corn and Sugges- tions for Control F. B. 1310
The Striped Cucumber Beetle and How to Control It F. B. 1322
The Green June Beetle D. B. 891
Curculios that Λ ttack the Young Fruits and Shoots of Walnut and Hickory I. R. 1066
Biology of the Lotus Borer D. B. 1076 D. B. 1076
Experiments with Spray Solutions for Preventing Insect Injury to Green Logs D. B. 1079
Effect of Low Temperature on the Hatching of Gipsy-Moth Fggs D. B. 1080
Biology of the Papaya Fruit Fly, Toxotrypana Curvicauda D. R. 1081
Broad-Nosed Grain Weevil D. B. 1085
Zygobothria Nidicola, An Important Parasite of the Brown-Tail Moth D. B. 1088
The Gipsy Moth on Cranberry Bogs D. B. 1093
Impounding Water in a Bayou to Control Breeding of Malaria Mosquitoes_ D. B. 1098
Summary of Insect Conditions Throughout the United States During 1921 D. B. 1103
The Lead-Cable Borer or "Short-Circuit Beetle" in California D. P. 1107
Chemical Changes in Calcium Arsenate During Storage D. B. 1115
Natural Control of the Citrus Mealybug in Florida D. B. 1117
Citrus Scab: Its Cause and Control D. B. 1118
The Deterioration of Felled Western Yellow Pine on Insect- Control Projects D. B. 1140
The Barrier Factors in Gipsy Moth Tree-Banding Material D. B. 1142
Chemical, Physical, and Insecticidal Properties of Arsenicals_ D. B. 1147
Feeding Habits of the Japanese Beetle which Influence its Con- trol D. B. 1154
Studies of Contact Insecticides D. B. 1160
Length of the Dormancy Period of the Sugar-Beet Nematode in Utah D. C. 262
Preliminary Report on Control of San Jose Scale with Lubri- cating Oil Emulsion
Dispersion of the Boll Weevil in 1922 D. C. 266
Dusting for the Cotton-Boll Weevil D. C. 274
Plant Diseases:
Diseases of Watermelons F. B. 1277
The Control of Sap-Stain, Mold, and Incipient Decay in Green Wood with Special Reference to Vehicle Stock D. R. 1037
Kernel Spot of the Pecan and Its Cause D. B. 1102
Internal Browning of the Yellow Newtown Apple D. B. 1104
Seedling Blight and Stack-Burn of Rice and the Hot-Water Seed Treatment D. B. 1116
Investigations of Heat Canker of Flax D. B. 1120
Decays and Discolorations in Airplave Woods D. B. 1128
Symptoms of Wheat Rosette Compared with Those Produced by Certain Insects D. B. 1137
Plant Diseases-Continued.
The Influence of Copper Sprays on the Yield and Composition ofIrish Potato TubersD. B. 1146
Investigations of Potato Wart D. B. 1156
Anthracnose of Muskmelons D. C. 217
White-Pine Blister Rust in the Western United States D. C. 226
Eastern Blue-Stem of the Black Raspberry D. C. 227
Bacterial Spot of Cucumbers D. C. 234
Commercial Control of Citrus Melanose D. C. 259
Kill the Common Barberry* with Chemicals D. C. 268
Barberry Eradication Prevents Black Rust in Western Europe D. C. 269
Tractors and Motor Trucks:
Tractors on Southern Farms F. B. 1278
What Tractors and Horses Do on Corn Belt Farms F. B. 1295
Changes Effected by Tractors on Corn Belt Farms F. B. 1296
Cost of Using Tractors on Corn Belt Farms F. B. 1297 F. B. 1297
Shall I Buy a Tractor? F. B. 1299
Choosing a Tractor F. B. 1300
Motor Trucks on Corn Belt Farms F. B. 1314
Truck and Garden Crops:
Celery Growing F. B. 1269
The Preparation of Fresh Tomatoes for Market F. B. 1291
Marketing the Early Potato Crop F. B. 1316
Greenhouse Construction and Heating F. B. 1318
The Production of Cucumbers in Greenhouses F. B. 1320 F. B. 1320
Seed Potatoes and How to Produce Them F. B. 1332
Group Classification and Varietal Descriptions of American Va-rieties of Sweet PotatoesD. B. 1021
A Study of Sweet-Potato Varieties with Special Reference to Their Canning Quality D. B. 1041
Frost Injury to TomatoesD. B. 1099
United States Grades for Potatoes Recommended by the UnitedStates Department of AgricultureD. C. 238

A REPORT TO THE PRESIDENT BY THE SECRETARY OF AGRICULTURE. ${ }^{1}$

The Price and Purchasing Power of Wheat.

THE farm price of wheat is down nearly to pre-war level and the purchasing power of a bushel is far below. The farm price August 1, for the first time since the beginning of the war, fell below the average for the corresponding month in the period 1909-1913, being 84 cents, compared with 91 cents. Since August prices have risen and are now slightly above the pre-war level. The November 1 average farm price was 95 cents. If the seasonal price movement for this year 1923-24, parallels that of last year, prices will continue to rise slightly, reaching the highest point of the season in the early spring.

The purchasing power of a bushel of wheat is more significant than the price of wheat. Although the average farm price of November 1 was above the 1909-1913 average for November, it is equivalent to only about 60 cents per bushel in the pre-war period. A suit of clothes which cost the farmer in North Dakota 21 bushels of wheat in July, 1913, cost him 31 bushels in 1923, and a wagon which then cost him 103 bushels would now cost him 166. The cost of nearly everything the farmer buys is necessarily very high because freight rates and industrial wages which enter not only into the cost of manufacturing but also the cost of transportation are far above their level before the war. With the November farm price of wheat only 107 per cent of the pre-war average price, the wholesale price of all commodities which is generally taken as a measure of the price level

[^4]was 153 per cent in October. ${ }^{2}$ On the basis of this price level the a verage farm price of wheat should have been about $\$ 1.35$ per bushel for November to give wheat pre-war purchasing power at wholesale prices.

The low price and purchasing power of wheat directly affects the income of about $2,000,000$ farmers. In large areas of North Dakota, South Dakota, Kansas, Nebraska, Montana, Idaho, and Washington farmers depend almost entirely upon wheat for their cash income. According to the census of 1919, 80 per cent of the farmers in North Dakota, 76 per cent in Kansas, and 66 per cent in South Dakota grew wheat. A farm survey in the Palouse district

[^5]

Figure 3.
of Idaho and Washington for the three years 1919-1921 showed that approximately 80 per cent of the cash income of the farmers in that district was derived from wheat; and, in 1922, 78 per cent of the income of farms surveyed in Sheridan and Daniels Counties in Montana was from wheat. As a direct source of cash income the wheat crop of the United States is more important than the corn crop, a large part of which is fed to livestock. In five years ending with 1922 farmers sold on the average $711,000,000$ bushels of wheat and $544,-$ 000,000 bushels of corn. Moreover, a large part of the corn sold is from one farmer to another for livestock feed. Many wheat farmers produce other commodities than wheat, but the prices of many of these, such as oats, barley, and rye, are below pre-war prices. The specialized wheat farmer, as a rule, does not produce, or produces only for home use, the commodities such as corn, butter, eggs, cotton, and wool, which are now selling at relatively high prices.

The low price and purchasing power of wheat is far-reaching in its effects, for not only the wheat farmer but practically all classes

of business men whose income depends to any extent upon the prosperity of the wheat farmer are adversely affected.

The World Bread-Grain Situation.

The price which the farmer of the United States receives for his wheat is determined largely by the world supply of wheat. $\Lambda \mathrm{s}$ exporters, farmers in the United States receive for wheat the price paid in the world markets less the cost or charges for placing wheat or flour in those markets. Chicago prices follow closely the price in Liverpool and other large world markets, and farm prices follow closely Chicago prices.

The present prospects are that the total world production of wheat 'outside of Russia in the year 1923-24 may be over $3,400,000,000$ bushels, ${ }^{3}$ or $300,000,000$ bushels greater than last year and $500,000,000$

[^6]greater than the pre-war average production of the same countries. Since Russia exported annually 1909-1913 (crop movement years) only $164,000,000$ bushels of wheat, the increase in production outside of Russia makes up for the loss of Russian exports and increases the supply by more than $300,000,000$ bushels. The world production of rye, which has an important influence upon the wheat market, especially in Europe, may be $970,000,000$ bushels, or 131,000,000 bushels greater than last year, but $64,000,000$ below the prewar production in the same territory. Since Russia annually exported $29,000,000$ bushels before the war, the world production outside of Russia is still $93,000,000$ bushels short on rye. Adding together wheat and rye, the indicated supply of bread grains for

the year 1923-24 outside of Russia is over $400,000,000$ bushels greater than last year and more than $200,000,000$ in excess of the average pre-war supply.

The Consumption of Bread Cereals in Europe.

War has had a marked effect upon the bread grain consumption of some European countries as well as of the United States. The present population of Europe is about the same as 10 years ago. The standard of living in some countries has been lowered and cheaper foods substituted for wheat. Wheat has been conserved by " long milling," mixing, and by feeding less to livestock. The per capita consumption of wheat in the United Kingdom has remained remarkably constant during the last 14 years but declined slightly during the war. In France per capita wheat consumption, including seed, was reduced from an average of 9.3 bushels during the period 1909-1913 to an average of 7.4 bushels during the war period 1914-1918. Since then the average has increased to 7.7 bushels. Milling restrictions are still in force requiring the mixing of from 8 to 10 per cent of substitutes with wheat flour. The per capita supply of bread grains has been considerably below normal also in Germany and Austria. Notwithstanding that the European production of wheat outside of Russia in 1922 was nearly $300,000,000$
bushels less than the pre-war average and that prices were relatively low, the net import of these countries in the year 1922-23 was only about $200,000,000$ bushels greater than the pre-war net import. ${ }^{4}$ The import of rye also has failed to make up for the decrease in production in importing countries.

Some increase in European consumption may be expected. It is significant that a large part of the increase in production this year as compared with last is in Europe. Outside of Russia the European wheat crop is about $245,000,000$ bushels or 23 per cent greater and the rye crop $165,000,000$ bushels, also 23 per cent greater than last year. The producers in many European countries are now complaining of low prices and may consequently market a smaller proportion of the crop than was marketed last year. Low prices both at interior markets and at import points may encourage a larger per capita consumption by the urban population. The reduction in the potato crop this year as compared with last will also contribute to an increase in the wheat and rye consumption. The experience of the last two years supports these assumptions. The European wheat crop of 1921 was estimated to be $1,216,000,000$ bushels, only $70,000,000$ below the estimates for the present year, and Europe imported about $515,000,000$ net; whereas last year with a crop of only $1,026,000,000$ bushels, but with a very large potato crop, net imports amounted to only approximately $567,000,000$ bushels. It seems, therefore, that notwithstanding some increase in production, European importing countries may import $500,000,000$ bushels of wheat in 1923-24. If the per capita consumption of European countries is not increased over last year an importation of $400,000,000$ bushels will meet all requirements.

European surplus producing countries are prepared to supply deficit countries with from $40,000,000$ to $80,000,000$ bushels of wheat. The five important surplus-producing countries outside of Europe could supply the European countries the maximum quantities that they will take, export $150,000,000$ bushels to countries outside of Europe and have larger quantities than last year to consume or carry over in stocks.

Foreign Competition Increasing.

Looking ahead beyond this season, prospects are not good for marketing a surplus of wheat at satisfactory prices. European agriculture is returning to pre-war productiveness. Last year Russia exported some rye and a little wheat. The area of all cereals this year is estimated to be 20 per cent greater than last, but yields are lower and the total crop probably will be about the same as last year. Great efforts are being made to export both wheat and rye, and already this year's exports exceed the total for last year. The increase in the area of crops in Russia is a definite indication of a tendency to return to an export basis.

High prices during the war period greatly stimulated production in Canada. Since the war low prices for cattle in Australia and Argentina have encouraged the production of more wheat. In

[^7]Canada, since the western Provinces are better suited to produce wheat as a cash crop than to produce anything else for market, the area and production of wheat continue to expand. With small populations these countries must either find foreign markets for a large part of their crops or abandon a considerable area of wheat production. It is evident, therefore, that competition for the European markets will be increasingly keen and will tend to eliminate those countries in which the relative cost of production is highest.
Foreign competition is becoming increasingly keen, not only in quantity but also. in quality of wheat and flour produced. The return of Russia will bring back into the market a large supply of Durum wheat in competition with the United States and North Africa. The expansion of production in Canada increases the quantity of high-grade hard wheat available to European markets, and the flour made from this wheat is gaining in reputation in Europe.

The commercial, financial, and political relations of some European buyers make it more advantageous for them to purchase wheat from our competitors ihan from the United States. In so far as business interests follow the flag, the colonies and dependencies of the United Kingdom and France are in favorable positions for marketing their surplus wheat, and the war has strengthened their positions. The purpose of the recent negotiations between business men in Germany and in the United Kingdom with Russian organizations is to facilitate the exchange of manufactured goods for grain and other Russian raw materials.

High and fluctuating exchange rates also handicap the United States in trading with European countries. In the past year German grain dealers have had great difficulty in financing imports, not only because of the fluctuations in exchange bat also on account of restrictions upon the purchase of exchange. In some cases exporters of other countries are more liberal in terms of sale than are the exporters of the United States. For example, it is reported that whereas Canadian mills are quite satisfied to accept cash documents, Hamburg, American mills will sell only on New York sight draft, which handicaps the German importer who would buy from the United States.

American credit advances on favorable terms to German importers would facilitate the sale of American grain and flour in Germany. German importers need short-time credit at reasonable rates. A large grain importing company has expressed a keen interest in any possibility of securing American credit on easier terms for the handling of grain imports into Germany. This company reports that the restricted capital which they have available for extending credits limits sales of American wheat and flour, that they could sell much more if they had "gold capital" with which to work. They further report that the company has been doing a good and steady business in both wheat and flour with America and Canada, and that even in the first week in October, when German business seemed at a standstill, they had continued to do a steady business. They were able to carry on this business, however, only by taking up foreign documents and giving short-term credit to a selected list of mills and wholesalers. The losses on credit ad-
vances thus far have been almost negligible in relation to the volume of their business.

German banking and credit organizations also have made proposals for the financing of American grain in Germany. By their suggestion banks would arrange to provide securities for an American exporter, or they would take over the documents as trustee and cover these documents by special contract or acceptance against the mills receiving the grain, which would remain the property of the seller until payment was made.

To summarize briefly, changes in international, commercial, financial, and political relations, as well as the increase in quantity and improvement in quality of wheat produced by competing countries, have increased the difficulty of selling our surplus wheat.

Distribution of the Wheat Crop of the United States.

The estimated production of wheat in the United States, plus estimated carry over in the form of both wheat and flour, amounts to $893,000,000$ bushels or $57,000,000$ bushels less than the available supply of domestic wheat for last year.
The amount of wheat that farmers retain on the farm for seed, feed, and reserves varies so much from year to year that no definite figure can be given as the requirement for this year. It is estimated that nearly $89,500,000$ bushels of last year's crop was used for seed. In August of this year the winter wheat producers declared their intention to reduce the acreage in wheat about 15 per cent. A favorable seeding season in some parts of the winter wheat belt has probably encouraged farmers to sow a little more wheat than they had intended. If they reduce 10 per cent, the amount of seed required will be about $80,000,000$ bushels. In a recent survey, however, farmers estimated seed requirements for the year at 9.3 per cent or $72,700,000$ bushels. Farmers have declared their intention to feed this year 11.6 per cent of the crop. Feeding this percentage of the crop would take off the market $90,700,000$ bushels. At the time this survey was taken the price of corn was high and the price of wheat so low that in parts of the country it was economical to feed wheat rather than corn. If the price of wheat improves toward the end of the year and the price of corn declines as the new crop comes into the market, the amount of wheat fed may be less than the amount intended. Stocks on farms at the end of last year amounted to over $35,600,000$ bushels. Farmers will have to retain on the farms $199,000,000$ bushels if declared intentions as to feeding and seeãing are carried out and stocks on farms at the end of the year are the same as last year. This is probably a maximum figure and may be reduced to $150,000,0000$ bushels by failure to carry out fully expressed intentions.

On the basis of the above estimates, at the beginning of the year between $694,000,000$ and $743,000,000$ bushels of wheat were available for food and reserves in the United States and for export. There is no exact measure of the annual food consumption. The per capita consumption last year computed on the basis of flour production and disappearance was 4.7 bushels. The per capita disappearance of wheat for food and feed was about 5 bushels. Reports from farmers indicate that the usual feeding is 3.5 per cent less than the intentions
for this year. Applying this estimate to last year's production would reduce the per capita food consumption to 4.35 , which seems too low. At the higher rate of 4.7 per capita, $523,000,000$ bushels would be required for food, leaving between $171,000,000$ and 220 ,000,000 bushels for reserves and exports. Of this amount between $95,000,000$ and $134,000,000$ bushels could be exported without reducing stocks below the amount on hand at the end of last year. The amount exported may be increased, of course, by reducing stocks or maintaining a per capita consumption lower than that for which allowance has been made.

Farm marketing this year has progressed about as usual. By October 1, 48 per cent of the crop had been marketed as compared

SEASONAL MARKETING OF WHEAT FROM FARMS, SEASONAL RECEIPTS AT 11 MARKETS, AND SEASONAL EXPORTS. AVERAGE, JUNE, 1910-JUNE, 1920.

Figure 6.
with 50 per cent for the same period last year, 57 per cent in 1921, and 41 per cent in 1920. Approximately 70 per cent of the farm sales for the year will have been made by December 1.
Exports in the first four months of the year amounted to 74,000 ,000 bushels, as compared with $115,000,000$ bushels last year. Last year 52 per cent of the total exports was shipped in the first four months of the year. At this rate of exportation the total exports for this year would be about $142,000,000$ bushels. Since crops in Europe are good this year, it is doubtful that this rate will be maintained. In 1921-22 the exports in this period were 58 per cent of the total, on the basis of which the exports for this year would be only $128,000,000$ busheils.

The above export figures do not take into account imports which amounted to $20,000,000$ bushels last year. An increase in the imports would, of course, make possible larger exports.

Location and Character of Our Wheat Supply.

The location of production, the class and the quality of wheat are important factors in marketing it. Only five States east of the Mississippi River produced in 1923 more than they would consume at the pre-war rate of consumption, and the surplus in these States would be far short of supplying the needs of the other States east of the river. As a matter of fact some of this wheat is exported, and wheat and flour from territory between the Mississippi and the Rocky Mountains are shipped east to replace exports and to make up deficiencies in production.

The production of wheat west of the Rockies is estimated to be $143,000,000$ bushels, which is $43,000,000$ bushels greater than last year. On the basis of apparent average annual consumption as food and

Figurif 7.
feed in the last five years, 1918-1922, this region could export 92,000,COO bushels in the form of wheat and flour. ${ }^{5}$ If the amount fed to livestock in this part of the country is increased by $5,000,000$ bushels, the amount a vailable for export would be $87,000,000$ bushels, provided the food consumption of wheat is not increased. The production east of the Rockies this year is $117,000,000$ bushels less than last year. However, on the basis of the average disappearance in 1918-1922, this region could export approximately $83,000,000$ bushels. If feeding east of the Rockies is increased by $22,000,000$ bushels, the amount available for export would be $61,000,000$ withont reducing stocks or increasing food consumption. Even though there were only enough wheat east of the Rockies to supply domestic needs, under present conditions some wheat would be exported and other wheat would be imported from Canada. The special demand for Hard

[^8]Red Spring wheat causes some of this class to be imported even though some of the soft wheats have to be sent to markets outside of the United States.
Comparing estimates of production by classes this year with last year we find that there has been a considerable decrease in the production of Hard Red Spring wheat, Durum, and Hard Red Winter. On the other hand there has been an increase in the production of Soft Red Winter and White wheats. The records of Federal grain inspection throw some light on the marketing of the different classes. Unfortunately for the purpose of this study, the exports of flour can not be distributed to classes of wheat.

The 1923 crop of Hard Red Spring is estimated to be about 134,000,000 bushels, which is $23,000,000$ bushels less than the average of the three years 1920-1922. Exports, including inspections at Gulf and seaboard points and estimates of shipments through Canada and of shipments mixed with other wheat, averaged in this period about

Figure 8.
$25,000,000$ bushels. Imports from Canada have contributed to the available supply about $28,000,000$ bushels per year, $50,000,000$ in 1920-21, and smaller amounts since then. The average disappearance in the United States, therefore, for the years $1920-1922$ was greater than the estimated production for 1923. Presumably some of this wheat was exported in the form of flour, but we have no measure of the amount. It is evident that there is a shortage of Hard Red Spring wheat to meet the mill demand in the United States for such wheat, and consequently the market for this wheat is now upon an import basis, with prices determined to a large extent by the price at which Canada will sell spring wheat plus the tariff and other costs of bringing it into this country.
Notwithstanding that the crop of Durum wheat this year is but little more than one-half of the crop last year, being $46,000,000$ bushels compared with $85,000,000$ bushels, the market for this wheat is upon an export basis. The average production for the three years 1920-1922 was $59,000,000$ bushels, of which approximately $35,000,000$

Figure 9.
bushels were exported, leaving only about $24,000,000$ bushels for use in the United States. Therefore, unless consumption is increased over the average, approximately $22,000,000$ bushels may be exported in 1923-24 without reducing stocks. About one-half of this amount was exported in the first four months of the year.
In recent years Hard Red Winter wheat has constituted a considerable part of our exports. The production of this wheat in 1923 was approximately $220,000,000$ bushels, which is $48,000,000$ bushels less than last year and $59,000,000$ bushels less than the average of 1920-1922. The average export in the three years 1920-1922 has amounted to about $95,000,000$ bushels. The reduction in the crop leaves only about $46,000,000$ bushels available for export without reducing the average available, supply. Some increase in feeding and in the use of this wheat to mix with hard spring in the manufacture of flour will provide an outlet for some of the balance other-

Figurn 10.

Figure 11.
wise available for export. Over $13,000,000$ bushels of this wheat have been exported and our markets are still on an export basis, although good premiums are being paid for hard winter wheat with high gluten content, which indicates that there is a strong domestic milling demand for the best quality of this wheat.

Both the Soft Red Winter and the White wheats are on an export basis. The production of the Soft Red Winter is estimated to be about $265,000,000$ bushels, which is $21,000,000$ bushels above the average of 1920-1922. Exports amounted to about $30,000,000$ bushels. The increase in production would therefore increase the amount available for export to about $50,000,000$ bushels. The production of White wheat is $20,000,000$ bushels in excess of the average of the past three years, making a total of $117,000,000$ bushels, of which about $50,000,000$ may be exported without reducing stocks or domestic consumption. Increased feeding will reduce the exportable

Figure 12.
surplus of these two classes of wheat by about $15,000,000$ bushels, leaving about $85,000,000$ to be exported unless further reduced by increased food consumption.

The export of flour also must be taken into account in considering the market for wheat. The exports of flour in the past three years have averaged $15,620,000$ barrels, or an equivalent of $70,290,000$ bushels of wheat. The exports of flour in four months this year have amounted to $6,000,000$ barrels, or $27,000,000$ bushels. It is evident that unless millers pursue the policy of dumping flour into foreign countries at prices somewhat below the domestic price, the price that they can pay for wheat to make flour is determined by the market for the wheat abroad as well as the market for the flour. A considerable amount of flour exported, however, is of the lower grade. The selling of the lower grade at relatively low prices is one means of disposing of the surplus flour while retaining in the country the wheat offals and the best grade of flour for domestic consumption. As long as the domestic demand for high-grade flour and wheat offals is strong, millers may pay better prices for wheat than they could afford to pay if the market for a considerable amount of the best grade of the flour had to be found abroad.

To summarize the situation relative to a market for surplus wheat, it may be said that for this year it is necessary to find a market for a considerable quantity of Soft Red and Soft White, some Hard Red Winter and Durum wheat. Domestic millers will pay relatively good prices for the highest grades of wheat to be used in the manufacture of flour for the domestic market. The market for Hard Spring is on an import basis, whereas the markets for other wheats are on an export basis with premiums for some of the best wheat. At the present rate of export it is probable that before the end of the year the market for some of the other classes of wheat also may be on an import basis, at least for some grades:

The problem of disposing of the surplus wheat will diminish from year to year as the population increases and consequently the demand for domestic consumption increases. It must not be expected, however, that the demand will immediately return to the pre-war basis and increase in proportion as the population increases. There was before the war an apparent reduction in per capita consumption. Such data as are available indicate that the urban consumption of wheat is less than the rural consumption. As the proportion of industrial population increases the consumption per capita may decrease. At the rate of 5 bushels per capita for food, which is slightly less than the pre-war average and a slight increase over last year, about $670,000,000$ bushels of wheat would be required for seed, the usual feed and waste, and for food in the United States in 192425. With a ten-year average yield per acre of 14.4 bushels, nearly $47,000,000$ acres would be required to produce it. Allowing for a verage losses in winter wheat area, about $52,000,000$ should be sown. This is a reduction from the area seeded last year of $13,000,000$ acres, or 20 per cent. This reduction properly distributed among growers of Durum, Hard Winter, Soft Red, and White Winter wheat would take all classes off the export market basis except in years when yields were above the average. The area may be increased annually by about 1 per cent to meet the increase in demand by growth of population.

PRICES OF WHEAT, WHEAT FLOUR, AND BREAD AT MINNEAPOLIS AND OF WHEAT FLOUR AT NEW YORK CITY, 1913-14 TO 1922-23.

The Decreased Consumption of Wheat.

Decrease in consumption of wheat flour in this country has contributed to the large exports of the war and post-war periods. The war appeal to save bread, aided by high prices, formed food habits which have remained with us. The pre-war custom of serving bread free with every a la carte order in restaurants, hotels, and dining cars was abandoned during the war period and has not been generally revived. "Free bread" is undoubtedly consumed more liberally than bread at the rate of two slices with a nickel order of bread and butter. At the rate of a cent and a half per slice, the cafeteria patron pays between 25 and 30 cents for a pound loaf of bread. In hotels, restaurants, and dining cars, where the charge for an order of bread and butter may be as high as 20 cents, the consumption of bread has been materially reduced.

The retail price of bread in cities has not fallen with the price of wheat and flour. A pound loaf of bread in Minneapolis which cost 5.3 cents in 1913-14 cost 9 cents in 1922-23, whereas a barrel of flour which cost $\$ 4.43$ in 1913-14 cost $\$ 6.89$ in 1922-23. Allowing 280 loaves of bread to the barrel of flour, the margin between the price of the flour and that of the bread produced from it increased from $\$ 10.40$ to $\$ 18.30$. Doubtless a narrowing of the margin between the prices of flour and bread would lead to more liberal use of bread and to some increase in the per capita consumption of wheat flour, with a consequent reduction in the surplus of wheat.

Freight Rates as a Factor in the Wheat Situation.

The increase in the cost of transportation from the farm to consuming centers is a very important factor in the present situation. The rates from country shipping points to primary markets are about 45 per cent above the pre-war rates. For example, the rate from Larimore, N. Dak., to Minneapolis in 1913 was 7.2 cents per bushel; the present rate is 10.5. From McPherson, Kans., to Kansas City the rate was 7.6 cents per bushel in 1913 as compared with the present rate of 11.4. Export rates in general have been increased more than 45 per cent. In 1913 the export rate from Chicago to New York amounted to 7.8 cents per bushel; to-day it is 13.5 cents, or 73 per cent above the pre-war rate. The export rate from McPherson, Kans., to Galveston was 15.6 cents in 1913; the present rate is 27 cents, or 73 per cent above the 1913 rate.

War conditions caused freight rates to be raised, reaching the high point in 1920. Unfortunately the highest rates of the period were put into effect after prices had begun to fall. It was no more burdensome to pay 19.8 cents for transporting a bushel of wheat from Chicago to New York while the price was $\$ 2.20$ and above than it was to pay 7.8 cents before the war when the price was about $\$ 1$ at Chicago. Since 1920 prices of wheat have fallen nearly to the prewar level, whereas freight rates remain 45 per cent and more above pre-war rates.

Relatively high freight rates from producing regions of the United States to the seaboard are a serious handicap in competition with other countries in the markets of the world. The freight rates from points in Montana to Duluth are from 7 to 10 cents a bushel higher than the rates in Canada for the same distances to Port Arthur and

Fort William at the head of the Lakes, from which the rates to Liverpool under normal conditions are substantially the same as from Duluth.

Freight rates on wheat for like distances from points in Montana to Duluth and Canadian points to Port Arthur.

Via Canadian National Railways.			Via Great Northern Railway.			Excess, United States over Canada, per bushel
From Canadian points.	To Port Arthur, Ontario.		From Montana points.	$\begin{aligned} & \text { To Duluth, } \\ & \text { Min. } \end{aligned}$		
	$\begin{aligned} & \text { Dis- } \\ & \text { tance. } \end{aligned}$	Freight rate per bushel.		Distance.	Freight rate per bushel.	
Saskatchewan.						
Maryfield.	649	10.8	Snowden...	650	18.0	7.2
Buchanan.	754	11.4	Frazer	750	20.4	9.0
Regina.	794	12.0		797	21.6	9.6
Briercrest.	854	12.0	Wagner.	856	22.5	10.5
Dalmeny..	936	15.0	Havre.	${ }^{333}$	23.7	8.7
Conquest.	1,002	15.0	Teton	1,004	25.2	10.2

The highest rate to the head of the Lakes from any point in western Canada, as shown in the 1922 report of the Grain Trade of Canada, is 17.4 cents per bushel from Athabasca, Alberta. From Calgary, Alberta, to Port Arthur, a distance of 1,339 miles, the rate is 15.6 cents per bushel. In the United States the rate from Teton, Mont., to Duluth, a distance of 1,004 miles, is 25.2 cents, a difference of 9.6 cents in favor of the Canadian wheat grower of Calgary.

While the foregoing comparisons are not intended to represent the rates which apply to the average distances to the head of the Lakes from wheat regions on each side of the border, the comparisons nevertheless emphasize the inequality of freight rates in so far as they affect the wheat grower in Montana. Whether Montana wheat is exported to foreign markets or shipped to the Minneapolis mills is not material, so far as its effect on the price received by the farmer is concerned. In either event the price paid to the Montana farmer is substantially the price at the primary markets at Duluth and Minneapolis, less the cost of handling and transportation from the country shipping point.

It is of interest in this connection that while freight rates in the United States are still 45 per cent and more above the 1913 level, Dominion rates from the western Provinces to Port Arthur are practically on a pre-war basis. In line with the policy of the United States, the Canadian freight rates were increased several times between 1916 and 1920. Beginning with January 1, 1921, however, reductions were made from time to time so that by July 6 , 1922, rates were only from 1 to 4 cents per hundred pounds in excess of the 1913 rates. The reduction made July 6, 1922, amounted to in many cases from 9 to 11 cents per hundred pounds or a decrease of from 26 to 28 per cent. This reduction offsets in part the affect of the tariff duty imposed by the United States upon the importation of wheat. For example, at Scobey, Mont., wheat grown
both in Canada and in the United States must pay 22.5 cents per bushel freight to Duluth, while wheat from Regina, a point on a Canadian railway 90 miles farther from the head of the Lakes, pays only 12 cents to Port Arthur. Adding 3 cents for lake freight to Buffalo, the transportation charges on a bushel of wheat from Regina to Buffalo plus duty is 45 cents, whereas the transportation charges alone from Scobey amount to 25.5 cents, leaving a differential against the Canadian grower at Regina of only 19.5 cents per bushel or 10.5 cents less than the tariff.

In comparison with the central wheat-growing regions of the United States, Canada has an advantage in that the bulk of the Canadian wheat for export moves to the seaboard via the Great Lakes. This cheap water transportation for a good portion of the inland haul, together with the lower rail rates, brings many of the Canadian wheat growers nearer to Liverpool than the producers of central Kansas. For example, the combined rate from Regina to Liverpool through New York amounts to 29 cents per bushel, whereas the combined rate from McPherson, Kans., to Liverpool through New Orleans or Galveston is 35.5 cents. ${ }^{6}$
Argentine wheat, which must pay higher rail rates per mile, but only for a short distance, enjoys an advantage of approximately 10 to 12 cents per bushel in the combined rail and ocean rate to Liverpool.

In the war period scarcity of shipping and high ocean rates placed the United States and Canada in very advantageous positions for marketing wheat in Europe in competition with Argentina and Australia. This advantageous position was an important factor in stimulating a great expansion of the wheat production in Canada and in the United States, whereas Argentina and Australia reduced production because they could not advantageously sell the wheat. Since the war, keen competition among ocean carriers has reduced the rates so greatly that they are in most cases practically on a prewar basis. This is encouraging a revival and expansion of production of wheat in Argentina and Australia. On the other hand, high railroad freight rates place the United States wheat growers in a position even less favorable, with respect to the European markets, than the position which they held before the war.
A reduction of freight rates practically to the pre-war level would be necessary to place the United States in the pre-war position to compete with Canada in transportation costs to European markets. Such a reduction also would again place the Kansas farmer approximately in the same position to compete with the Argentine farmer that he held before the war.

It is recognized that some railroads depend largely upon wheat for revenue. It seems evident, however, that in the long run such roads may profit by carrying wheat in a period of depression at little or no profit in order that agriculture may be maintained as a source of revenue in periods of prosperity. Low freight rates have aided in the settlement and development of a large part of the wheat growing regions. Low rates may be as necessary to maintain this development through periods of depression as they were to secure the settlement and development.

[^9]It is recognized also that a reduction of freight rates to pre-war levels would not raise the price of wheat sufficiently to give the wheat grower pre-war purchasing power. A reduction, however, would contribute to an improvement in the situation and should be made without delay, to remain in effect until the prices of wheat are more nearly on a par with the prices of other products. Economically it would seem wise to reduce the burden of freight rates upon lowpriced commodities such as wheat, and to make up for the loss in revenue by increasing rates upon high-priced commodities.

Canadian Competition in Wheat Production and the Tariff.

Canada in recent years has greatly expanded her production of wheat, and is now our most formidable competitor in the markets of the world. Her wheat crop this season is almost $470,000,000$ bushels, as compared with an annual average production of 197,000 ,000 bushels in the period 1909-1913. This represents an increase of $273,000,000$ bushels, or 138 per cent. The population of Canada in 1921 numbered a little less than $9,000,000$. Canada's wheat production is hence greatly in excess of domestic requirements. She must, therefore, find and hold foreign markets for her wheat or materially reduce her acreage. As a competitor in the world markets, the position of Canada is measured by her exports of wheat and flour, which in the year 1922-23 amounted to $274,000,000$ bushels net, as compared with a pre-war average of $94,000,000$. The United States exported in 1922-23 less than 202,000,000 bushels net, as compared with 103,000,000 before the war.
The prairie Provinces of Manitoba, Saskatchewan, and Alberta account for most of the expansion in Canadian wheat production. These three Provinces contain 97 per cent of the 1923 wheat acreage and have produced about 95 per cent of the crop. The average wheat area of these Provinces before the war was about $9,000,000$ acres; in 1923 it is reported at over $21,500,000$.

Although rapid progress has been made during recent years in the settlement of western Canada, large bodies of virgin land suited to wheat production are still undeveloped. Various estimates place the arable land in these Provinces at figures ranging from 170,000 ,000 to $270,000,000$ acres. At present less than $40,000,000$ acres are in cultivation, of which 55 per cent is in wheat. A net work of railroads covers the southern half of the region and extensive tracts of virgin land lie within reach of transportation.
The further development of these lands hinges in no small measure upon an increase in population. Immigration to Canada, which was relatively heavy preceding the war, declined materially during the years 1916 to 1919, but has since revived considerably. During the fiscal years 1920 and 1921 the immigrant arrivals in Canada numbered over 265,000. One-third of these immigrants went to the prairie Provinces, and a large number of them no doubt engaged in farming. Shortly after the war, the Western Canada Colonization Association was formed with the purpose of promoting the settlement of large numbers of immigrants on the vacant lands of western Canada. In developing this program, that association, according to an official statement, has secured the cooperation of the Imperial Government as well as the Dominion and Provincial authorities and the transcontinental railway companies.

Comparative Advantages of Canada in Wheat Production.

The Canadian wheat farmer enjoys substantial advantages over the American producer in the matter of yields, land values, the quality of wheat he produces, and lower freight rates from points equally distant from markets.

The yield of wheat, which is a very important factor in the cost of production, is materially higher in western Canada than in many of our wheat-producing States. The average yields of spring wheat in the prairie Provinces during the ten-year period 1913-1922 varied from 15 to 16 bushels per acre. In Minnesota, North Dakota, South Dakota, and Montana for the corresponding period they ranged from 10.6 to 14.3 bushels. Winter wheat yields on harvested acreage in Nebraska, Kansas, Colorado, Oklahoma, and Texas averaged, for the same period, from 12.6 to 16.2 bushels. These figures do not reflect the losses resulting from abandoned acreage. In the Pacific Northwest yields have been somewhat higher than in Canada, but this advantage has been offset to a considerable extent by higher land values. The significance of Canada's higher yields is apparent. A recent study of wheat costs in the United States brings out the fact that the cost per bushel for farmers who had yields ranging from 19 to 25 bushels per acre was 31 per cent less than for those who had yields varying from 7 to 13 bushels.

The capital invested in land is also materially lower in Canada than in the United States. The average value of farm lands in 1922 for Canada as a whole was $\$ 40$ per acre as compared with $\$ 79$ for the United States. In the prairie Provinces average land values ranged from $\$ 24$ to $\$ 32$; in 11 of the western wheat States the range was from $\$ 46$ to $\$ 110$. Montana is the only important wheat State in which the average value of land is not materially higher than in the prairie Provinces. It is significant also that land values in Canada during the war were marked up to a relatively slight degree. Between 1914 and 1920 the average value of land in the United States increased $\$ 35$ per acre; in Canada the average increase was only $\$ 11$. In the same period lands in the prairie Provinces advanced on the average from $\$ 7$ to $\$ 11$ per acre; in 11 western wheat States the increase ranged from $\$ 10$ per acre in Colorado to $\$ 61$ in Nebraska. It is evident, therefore, that the American wheat farmer has a much heavier per acre investment in land than his Canadian competitor and a correspondingly larger interest burden.

Canadian farmers have another advantage in the superior quality of their wheat. It is high in protein and much valued by foreign millers for mixing with softer wheats. The hard spring wheat of Canada for many years has sold at small premiums over both American Hard Spring and Hard Winter wheats in Liverpool, although at times the price has fallen slightly below. During the past two years the premiums paid for No. 1 Northern Manitoba over American No. 2 Hard Winter wheat in Liverpool when prices on both grades were reported have averaged 9 cents. Sales of American Hard Spring wheat in Liverpool have been limited and quotations are scattered. When quoted during 1923 the premium on No. 1 Northern Manitoba has been about 5 cents over No. 2 Dark Northern Spring. wheat in Liverpool. The excellent quality of the Canadian wheat is attested also by the fact that American millers purchase
and import it in considerable quantities even though subject to a duty of 30 cents. Canada's more advantageous position in the production of hard spring wheat is apparent. The present Canadian spring wheat crop is placed at $450,000,000$ bushels. This volume of superior hard spring wheat competes with the spring wheat crop of Minnesota, North Dakota, South Dakota, and Montana, which is estimated this season at $143,000,000$ bushels.
As indicated in greater detail elsewhere, more favorable freight rates give the Canadian wheat farmer substantial advantages over a great many American producers. Most of the wheat exported from Canada moves from the head of Lake Superior to Montreal and the Atlantic seaboard of the United States via the Great Lakes. This aflords cheap water rates for a good portion of the haul to the seaboard. Canadian wheat also enjoys the advantages of a relatively lower freight rate from the western Provinces to the head of the Lakes, compared with the rates to Duluth from corresponding distances in the Northwest.
While satisfactory comparisons between the cost of producing wheat in Canada and the United States can not be made on the basis of available studies, it is quite apparent that the Canadian farmer has advantages which enable him to produce wheat at materially lower costs per bushel than the American farmer.

The Effect of the Tariff on Wheat Prices.

The tariff has been effective in protecting the spring wheat farmer. In Liverpool, Canadian spring wheat ordinarily sells at a small premium over American spring wheat. On the other hand, a comparison of prices for comparable grades of spring wheat in American and Canadian markets which have practically the same transportation rates to Liverpool shows a margin in favor of American prices which can only be explained as an influence of the tariff.

The Minneapolis price of No. 1 Northern Spring in the period from 1909 to 1913; when a 25 -cent tariff was in force, ranged in general from 5 to 10 cents above Winnipeg No. 1 Northern. Under a reduced tariff of 10 cents per bushel, prices at the two markets from 1913 to 1916 were practically on a level. From 1916 to 1920, controlled prices and other conditions incident to the war destroyed normal price relationships.

With the release of Government control, Winnipeg prices, in the latter part of 1920 , when no tariff was in effect, rose to a level with, and at times somewhat above, Minneapolis. After the emergency tariff went into effect, in May, 1921, however, Winnipeg fell to around 25 to 30 cents below Minneapolis, remaining near that level for the balance of the year. The difference narrowed early in 1922, and the Canadian market since that time has fluctuated from 6 cents above to 22 cents below Minneapolis.
Winter wheat prices appear to be less affected by the tariff. American winter wheat at Kansas City is usually above Canadian spring wheat from October to May or June and below during the summer months, when the bulk of the American crop is moving to market. Under the 25 -cent tariff existing before the war the average monthly margins in the two periods practically offset one another in amount, but under the 10-cent duty in force from 1913-1917 Win-
nipeg prices averaged from 5 to 7 cents above Kansas City. Under our post-war tariffs Winnipeg prices from June, 1921, to September, 1923, averaged 5 cents above Kansas City, but this average in favor of Canadian wheat has been due to the high margins that obtained during the summers of 1921 and 1922. Kansas City Hard Winter wheat prices have averaged 2 cents above Winnipeg during the past twelve months, and in the month of October averaged 14 cents above Winnipeg.

MARGINS OF AMERICAN OVER CANADIAN HARD SPRING WHEAT PRICES, SEPTEMBER, 1920-SEPTEMBER, 1923.

The beneficial influence of the tariff is also illustrated by comparing prices of wheat in Liverpool with prices in producing countries plus cost of transportation to Liverpool. Prices of Canadian wheat in Liverpool averaged for the year 1922, 10 cents, and for nine months of 1923, $6 \frac{3}{4}$ cents above Winnipeg prices plus freight on the basis of an all-rail rate to seaboard. During the month of October,

1922, they averaged as high as 30 cents per bushel above Winnipeg plus freight. Liverpool prices of American hard winter wheat, on the other hand, averaged during 1922 only 2 cents more than Kansas City plus freight, and during the early months of the year

MARGINS OF AMERICAN WINTER WHEAT OVER CANADIAN SPRING WHEAT PRICES, SEPTEMBER, 1920-SEPTEMBER, 1923.

were considerably below. In January, 1923, Liverpool again dropped below Kansas City plus freight, and has averaged from 1 cent to 2 cents under during the first nine months of the year. American hard spring wheat, on the other hand, as shown by the limited data
obtainable, has sold in Liverpool during the first half of 1923 at prices ranging from 3 to 15 cents below Minneapolis plus freight (all-rail). The average for the first four months, in fact, was about 13 cents below. Even No. 1 Manitoba, which usually sells above No. 1 Northern in Liverpool, was below No. 1 Northern Hard Spring at Minneapolis plus freight. These figures show that, on a Liverpool basis, Hard Red Spring wheat prices have been high throughout 1923 , and indicate roughly the extent to which the tariff has raised prices of this wheat above world levels. It also appears that prices of hard winter wheat in the Kansas City market at times are favorably influenced by the tariff.

The present tariff has not prevented the importation of Canadian wheat for domestic consumption. Our total imports of Canadian wheat from May, 1921, when the emergency tariff went into effect, to June 30,1923 , amounteu to $32.567,664$ bushels, of which 22 ,642.059 bushels were imported in 1922. Forty-seven per cent of this was milled in bond and exported as flour. Drawback was paid on only 4,638 bushels. The balance was consumed in the United States.

The transit movement in bond of Canadian wheat through the United States for export from our seaports is not affected by the tarifl and should not affect prices in this country. This novement is, however, much larger than our actual import trade. It mounted up during the war years, reaching as high as $127,000,000$ bushels in 1916. In 1918, 1919, and 1920 it fell to $25,000,000$ and below, but has since revived and is now approaching the hundred million mark.

The margin between prices of Canadian and American spring wheat has widened materially in the past several weeks. The price of Minneapolis No. 1 Northern Spring a veraged 17 cents over Winnipeg No. 1 Northern for the month of September. This spread has increased to 22 cents for the month of October. On November 1 the margin of Minneapolis No. 1 Dark Northern over Winnipeg No. 2 Northern was 30 cents. This widening of the spread between American and Canadian prices is resulting in larger importations of Canadian wheat duty paid. In the face of larger world supplies the price of Canadian wheat is being depressed to the point where Canadian wheat can be expected to flow over the tariff wall in large volume and directly compete with American hard spring wheat unless the duty is materially increased.

The Financial Situation of Farmers in the Wheat Regions.

The indebtedness of farmers in various parts of the United States, especially in the West, has grown to burdensome proportions. There are a number of causes which account for this situation. Land values in the Middle West rose sharply during the war and some land was purchased by farmers at inflated prices. The number of farmers, however, who bought land during these years is not as large as usually thought. Surveys that have been made indicate that from 10 to 15 per cent of the farms in the United States changed hands during the years 1916 to 1920. It should also be noted that a great many farmers who purchased at exhorbitant levels have already lost their land. Still other farmers who did not buy land marked up the value of their land and other property, placed too much reliance upon

Figure 16.
this new and fictitious wealth and incurred liabilities in excess of their normal earning capacity.

Frequently the scale of farm operations and expenditures was materially expanded to meet the demand for increased production as well as to reap the benefit of war prices. In many parts of the dry-land wheat regions an extradordinary series of crop failures was experienced during the years 1917 to 1921. Farm operations in these years were conducted at maximum costs, and instead of profiting by high prices farmers piled up additional debts. The financial situation in these dry-land wheat regions became, in fact, so serious that Federal funds to the amount of $\$ 8,500,000$ were provided in 1918, 1921, and 1922 for seed and feed loans to enable farmers to continue their operations.

The degree to which farm debt has been increased is shown to some extent by the census. The average mortgage debt per owneroperated farm, which in 1910 ranged from $\$ 1,960$ to $\$ 2,364$ for the

Figure 17.
principal wheat regions, about doubled by 1920. These census figures do not include the mortgage debt on farms operated by managers and tenants. In addition to the farm mortgage encumbrance, a substantial part of farm indebtedness is represented by personal bank, and merchant credit, for which separate data are not available.

The evidence does not indicate that the total volume of farm indebtedness is in itself of alarming dimensions. Its significance lies more especially in its distribution. In some parts of the more specialized wheat regions the burden of farm debt is much heavier than in others. Within every community there are farmers who have very little or no debt, while others are very deeply involved. The situation on the average appears to be most serious in the semiarid regions where wheat farming is conducted as a specialized industry and under conditions of high crop risk. On the other hand, many farmers in the better wheat regions purchased land at inflated prices or incurred other heavy liabilities during the war and are now carrying burdensome debts.

When price deflation came in 1920, farmers who had accumulated large debts were seriously embarrassed. While the majority of them
have been successful in tiding over their financial diffculties, a substantial number have not. This situation is brought out in a special inquiry made by the Department of Agriculture in the spring of 1923. Reports were secured from 15 States covering the period January, 1920, to March, 1923. Out of over 68,000 owner farmers included in this survey 4 per cent lost their farms through foreclosure or bankruptcy, 4.5 per cent lost their farms without legal proceedings, and a little over 15 per cent had been spared such loss up to March, 1923, only because of the leniency of their creditors. Out of almost 26,000 tenant farmers, 7.2 per cent lost property through foreclosure or bankruptcy, 7.8 per cent lost property without legal proceedings, and 21.3 per cent retained their property merely as a result of the leniency of creditors.
According to this survey, the losses of farms and farm property were relatively most numerous in the Great Plains region. Applying the results obtained from these reports to the 1920 census figures for owners and tenants, it was estimated that the percentage of farmers who since 1920 had lost farms or other property ranged from 8.9 per cent of all farmers in Kansas to 28.3 per cent in Montana.

The seriousness of the situation is further reflected in the records of the bankruptcy courts. While the total number of bankruptcy cases among farmers is not large, it must be remembered that farmers as a rule do not resort to the bankruptcy courts when forced to give up property to creditors. The significance of the record lies, therefore, in the increase and distribution of such cases rather than in their absolute number. The records of the Department of Justice show that during the three pre-war years 1912-1914 an average of 5.5 per cent of all bankruptcy cases were farmers, while in 1922 the percentage was 14.4. The resort by farmers to bankruptcy courts was especially pronounced in the more specialized wheat regions. In the western winter wheat region farmer bankruptcy cases in the pre-war years averaged 8 per cent of all cases; in 1922 this percentage had increased to 25 . In the spring wheat region the percentage increased from almost 22 per cent of all cases in the prewar years to 48.9 per cent in 1922. The increase in bankruptcy among farmers in the Pacific Northwest States is also marked, particularly in Idaho, where almost 47 per cent of all cases put through the bankruptcy courts in 1922 involved farmers. The percentage of bankruptcies among farmers in 1922 was especially high in Iowa, Kansas, Nebraska, Colorado, North Dakota, South Dakota, Montana, and Idaho, ranging from 32.6 per cent of all cases in Nebraska to 78.5 per cent in North Dakota. Preliminary reports indicate that bankruptcies of farmers for the fiscal year ending June 30,1923 , will materially exceed those of 1922 .

Further illustration of the financial distress of farmers in various parts of the West is found in the accumulation of delinquent farm taxes. Tax payments in some sections are in arrears from one to four years. In some of the wheat-growing areas of Kansas, for example, delinquent taxes since 1917 have increased in volume several hundred per cent.
The movement of population from country to city is in this connection very significant. In 1922 there was a net shift of $1,120,000$ persons from farms to city, or about 3.6 per cent of the rural agri-
cultural population at the beginning of the year. This cityward movement is a result of attractive urban wages, on the one hand, and inadequate returns in agriculture, on the other. From a survey of vacant farmhouses it appears that the percentage of all inhabitable farmhouses not occupied in the United States increased from 4.7 per cent in 1920 to 7.3 per cent in 1922. This abandonment of farmhouses was high in various sections of the country, but especially so in several States of the Great Plains region and the Pacific Northwest.

Cost of Producing Wheat.

The cost of the principal factors in the production of wheat advanced during the war less rapidly than the price of wheat, and a margin of profit was realized by farmers who obtained fairly good yields.

With the break in general prices in 1920 wheat declined much more rapidly than the cost of production. While the price of wheat is now slightly above the pre-war level, the factors of cost are relatively much higher. This difference between wheat prices and production costs has resulted during the last few years in heavy losses to wheat farmers generally, and has borne down with special weight upon those who accumulated large debts during the war.

Practically all costs which enter into the production of wheat are considerably higher than before the war. Average monthly farm wages for the United States on July 1, 1923, were 59 per cent above the 1913 level. Day wages at harvest time had increased even more. In Kansas the day wage in harvest was 82 per cent above 1913. This fact is of special importance in commercial wheat-producing regions where the bulk of the harvest labor is supplied by day hands. Interest charges which farmers must pay have increased with the accumulation of debts. Wholesale prices of the more common farm implements were this season from 45 to 59 per cent higher than in 1913, and retail prices were considerably higher. Threshing rates in various sections of the wheat territory ranged this fall from 7 to 15 cents per bushel, or 50 per cent more than in 1913.

The burden of taxes in many regions has become excessive. Taxes on farm lands in Kansas increased 171 per cent between 1913 and 1921, in South Dakota, 129, and in the eastern 20 counties of Washington, 237 per cent. With the exception of South Dakota, taxes in these States have continued upward since the war. It should be observed that a substantial part of public funds is expended for local improvement purposes, such as roads, and that from 80 to 90 per cent of such taxes in Kansas and South Dakota, for example, are levied by local government units. The remedy for high taxes in some regions, therefore, rests in large measure with farmers themselves. No doubt the ready market for tax-exempt securities also accounts in part for some of the ill-advised expenditures in local improvements.
Cost of Wheat Production in Representative Winter and Spring Wheat Regions, 1913-1923.
In 1919 the Department of Agriculture made extensive studies of the cost of producing wheat in representative winter and spring wheat areas of the country. From basic material gathered in this
study it has been possible to show the approximate fluctuations in wheat costs for the period 1913 to 1923.

In the winter wheat States of Kansas, Nebraska, and Missouri, the relation of the price of wheat to the cost of production, excluding land rent, was favorable to the producer until 1921. During the last three years, however, wheat farmers in these States have had no return for the capital invested in wheat land and have lacked from $\$ 0.70$ to $\$ 2.60$ per acre of receiving enough to pay the other costs of production.

In the spring wheat States of North and South Dakota and Minnesota the price of wheat has been sufficient to cover the net cost, excluding land rent, for seven of the past eleven years, although during some of these years very little was left for use of land after paying other costs. Since 1919 the price has been insufficient to pay for the use of land and has lacked from $\$ 0.10$ to $\$ 3.42$ per acre of covering other production costs.

More favorable yields in the winter wheat regions have been the main factor in making winter wheat production less expensive

FARM PRICE OF WHEAT AND THE COST OF IMPORTANT FACTORS IN PER CENT

Figure 18.-Data for 1923 as of September 1.
than that of spring wheat. For the eleven-year period 1913-1923 in the spring wheat region the computed average net cost of wheat production, exclusive of land rent, varied from $\$ 0.59$ to $\$ 2.19$ per bushel, whereas in the winter wheat region covered by the study the variation was from $\$ 0.52$ to $\$ 1.44$ per bushel.
Relative Costs of Wheat Production in Subhumid and Semiarid Regions.
A substantial part of both winter and spring wheat is produced in the semiarid regions of the West where, owing to low and uncertain precipitation, winter killing, hail, and other causes, the risk is high.

Ford County, Kans., is representative of semiarid conditions in the winter wheat region. In this county, in ten out of the last twelve years, there has been an abandoned acreage ranging from 6
to 92 per cent. The abandonment has been extremely high for individual years, as in 1917, 1918, and 1923 when it was 92,90 , and 80 per cent, respectively. During the twelve-year period 19121923 the abandonment of seeded acreage has been 37.1 per cent. The yield of wheat in this county during the last twelve years has a veraged 7.2 bushels per seeded acre. It is true that comparatively high yields are not infrequently obtained on these semiarid lands, and in such years the profits in wheat growing are good. On the other hand, successive years of crop failure often occur and unless a reserve of capital has been provided the farmer finds it a difficult problem to tide himself over such periods.

In McPherson County, situated in the subhumid wheat region of Kansas, the abandoned wheat acreage since 1912 has averaged 9.4 per cent. The acreage of wheat abandoned in Ford County has been nearly six times that abandoned in McPherson. The average yield of wheat in McPherson has been 13.1 bushels, or almost twice as great as that for the semiarid county. Under such conditions production costs per bushel in Ford County have been very much higher than in McPherson. The physical requirements, such as seed and man and horse labor prior to harvest, remain fairly constant, and in high-risk areas the larger amount of abandoned acreage carries with it a heavy expenditure for these items. Since 1912 man labor prior to harvest has varied from 0.15 to 17.7 hours per bushel. In McPherson County this variation has been from 0.20 to 1.01 hours per bushel. For seven of the twelve years more man labor was required to produce a bushel of wheat in Ford County than in McPherson; in four of the years the man labor per bushel was from four to sixty times greater. Similar ranges existed with respect to the amount of horse labor and seed wheat per bushel.

In a comparison of the relative profitableness of wheat production in these subhumid and semiarid counties, the returns per farm should be considered. By the use of large machinery and extensive methods of cultivation the wheat farmer in the semiarid section operates on the average a considerably larger wheat acreage than the farmer in the subhumid region. According to a study made in 1919 the seeded wheat acreage per farm was 318 acres for Ford County as compared with 143 acres for McPherson. On the basis of these acreages the total wheat production per farm in Ford County has in some years been considerably larger than in McPherson. The average production per farm during a period of ten years, however, has been nearly the same for both counties, and in view of the higher average production costs per bushel in the semiarid county it appears that with present methods the dry-land wheat farmer, at least in some sections, competes at a disadvantage with the wheat farmer in the more humid regions of the country.

Cost of Producing Wheat in 1922.

In 1922 the average cost of producing wheat as reported on 2,417 farms in the United States was $\$ 1.23$ per bushel. The cost of production showed considerable variation as between geographical divisions. The net cost, including land rent, varied from an average of $\$ 0.98$ per bushel in the spring wheat States of Minnesota, North and South Dakota, and Montana to an average of $\$ 1.38$ for the States of New York, Pennsylvania, Maryland, Virginia, and West Virginia.

In all of these regions many farmers produced wheat at a loss. It should be remembered, however, that this does not represent an actual cash loss, since a substantial part of the total cost of production does not involve a cash outlay. In cost accounting, costs include charges for the labor of the farmer and his family and for the use of land, and if the price received for wheat is sufficient to cover these costs the farmer receives going wages for his time and interest on capital invested.

Figure 19.

The cost of producing wheat varies widely between individuals as between regions. The average cost for the total production, as shown by some investigations, covers the cost of a little more than half of the crop, and a wheat price which only equals this cost will not permanently maintain the industry. To place wheat growing on a stable basis, the price for wheat must be sufficiently high to yield satisfactory returns on the bulk of the production. This price wheat farmers have not received during the last several years.

Costs and Other Factors in the Marketing of Wheat.

The spread between the price paid to the producer of wheat and the price paid by the consumer of bread has widened very materially since 1913.
The retail price of a 16 -ounce loaf of bread in Washington, D. C., has increased from 5.45 cents in September, 1913, to 9 cents in September, 1923. This advance in bread prices has not benefited the farmer. The portion received in 1913 by the wheat grower for the wheat equivalent of flour used in baking the Washington loaf was about one-fifth of the retail price of bread; in 1923 it amounts to less than one-sixth. While the wheat grower's portion of the retail price of bread has increased during this period less than one-third of a cent, the margins above have increased a total of 34 cents.
The margins between the mill and the retailer are, therefore, of most interest to the consumer, but the margins between the farm and the terminal market are of special concern to the farmer. According to the best available evidence the margins for the services of local and terminal handling agencies as well as those of trans portation agencies bear down heavily upon the wheat grower.
The Department of A griculture has made an analysis of the operations during 1921-22 of 40 country elevators in north central Kansas. The gross margin of these elevators ranged as high as 9.6 cents per bushel, and averaged a little better than 4 per cent of the terminal

- selling price. The transportation costs to Kansas City averaged about $12 \frac{1}{2}$ cents per bushel or a trifle over 10 per cent of the terminal price.

The operating cost of these 40 Kansas elevators varied from 1.9 cents to 7.4 cents per bushel. This wide variation in operating expense is largely due to the variation in the volume of grain handled by the several elevators. The tendency for costs to decline with increase in volume of grain handled is quite marked.

The information at hand suggests the need of reducing both local and terminal margins in the marketing of wheat. A reduction of the country elevator margin can be effected in considerable measure by increasing the volume of grain handled by each elevator. This would necessitate a reduction in the number of elevators at points where there are two or more competing elevators. It should not be overlooked, however, that in the case of privately operated elevators the increased volume thus obtained might to some extent at least be offset by lower prices resulting from decreased competition.

Such investigations as have been made indicate that the cooperative farmers' elevator efficiently operated is an effective factor in reducing local buying margins. It is not so important to have competition in the case of patronage dividend elevators, since all profits over and
above operating expenses are ultimately returned to the patrons. Since 1904 the organization of cooperative elevators has proceeded rapidly. Between 1914 and 1921 the number of such organizations in 12 North Central States increased from 1,942 to 4,442.

During the last two years an effort has been made to reduce the margins at terminal markets and bring about a better seasonal marketing of wheat through the operations of grain marketing associations. Fourteen State associations of this kind have been formed,

DISTRIBUTION OF THE RETAIL PRICE OF A 1-POUND LOAF OF BREAD IN WASHINGTON, D. C.

Figure 20.-Based on bread formulas for the years 1913 and 1923.
and last August nine of them were affiliated in a national sales agency. Owing to their recent organization it is not possible to measure the influence of these associations on marketing margins and prices received by farmers.

Quality of Wheat in Relation to Price.

The price which wheat will command is to a considerable extent influenced by its quality and grade. It is, of course, a well known fact that the lower grades, especially of certain classes of wheat, sell normally at a material discount under the better grades. Quality and grade, moreover, are determined to a considerable extent by weather conditions over which the farmer has no control. Yet, on the other hand, much may be done by the farmer himself to improve the grade of his wheat and better the price he receives.

In the northwest spring wheat region heavy and unnecessary losses are sustained by wheat farmers in growing and putting on the market wheat containing a large amount of foreign material which can be removed. According to the records of the Minnesota State Grain Inspection Department dockage has gradually increased from 1.9 per cent of all wheat shipped to Minnesota markets in 1902 to 4.2 per cent in 1922. During the 21 years covered in this period it is estimated that almost $110,000,000$ bushels of dockage were shipped to these markets. If shipped separately to market, this dockage, it is estimated, would have required over 84,000 freight cars for its transporation. Farmers of the Northwest shipped to Minnesota markets in the crop year of 1922 alone over $7,500,000$ bushels of dockage, using for this purpose about 5,800 cars. Had this equipment been available for the shipment of clean wheat, the car shortage in the Northwest in the crop movement season of 1922-23 would no doubt have been less serious. It should also be observed that market receipts do not fully measure the amount of dockage since a part of it is removed at the farm and at local elevators.

Spring wheat farmers are taking heavy losses on their dockage in more ways than one. Weeds are reducing wheat yields and some lands have become so foul that they are no longer profitable for wheat production. Harvesting and threshing weeds with the wheat adds materially to the cost of wheat production. At a threshing rate of 7 cents per bushel, it is estimated that farmers in Minnesota, North Dakota, South Dakota, and Montana paid over $\$ 675,000$ to thresh the dockage in their 1922 wheat crop.

A still more important item of loss is the cost of freighting dockage to market. The average dockage assessed per car in 1922 by the Minnesota State Grain Inspection Department was 54 bushels. The freight charges on this dockage between Larimore, N. Dak., and Minneapolis amounted to $\$ 5.67$ per car. If, for illustration, the LarimoreMinneapolis freight rate be taken as an average rate on wheat shipped to Minnesota markets and be applied to the total dockage assessed in 1922 it appears that the enormous sum of almost $\$ 800,000$ was paid to the transportation companies to haul the dockage of that season to these markets. An effective way, in short, to reduce transportation costs is to remove the foreign material before shipment is made.

Losses resulting from foreign material in wheat may be materially reduced by better crop rotations and cultural methods as well as by cleaning both seed and market wheat. The one-crop system in the Northwest has resulted in weed-infested lands, dirty wheat, and reduced yields.' The practice of sowing seed wheat containing a high percentage of weed seed has been altogether too common. A survey made in Minnesota and the Dakotas in 1921 disclosed the fact that 96 per cent of the farms visited were drilling with the wheat from 1,000 to 500,000 foreign seeds per acre. The employment of cleaning devices which have been perfected for farm, threshing machine, and elvator will materially reduce this financial leakage in the farm business.
Throughout the Pacific Northwest wheat regions smut is an important factor in reducing the quality of wheat; in the Eastern States garlic causes material damage. Losses from these sources may be materially reduced by cleaning the wheat both for seed and for market. In the Southwest improper farm storage of wheat is responsible for much of the loss in quality. Where the combine-harvester is used, wheat containing too much moisture is often stored under improper conditions with resulting deterioration. This loss may be prevented by proper ventilation of bins.

The importance of producing and putting on the market the best possible grade of wheat can not be overemphasized. In foreign markets our lower grades of wheat meet in competition the best wheats of other lands and sell at a discount. On the other hand, the demand in our domestic markets is for the wheats which have the highest milling value. The poorer grades usually sell, therefore, at substantial discounts, particularly when the percentage of such grades is relatively large.

Terminal prices reflect quite accurately the variations in the quality of wheat; local prices frequently do not. Farmers must know what factors determine the grade of their wheat in order to bargain for the best possible price. In recent years wheats of high gluten content and quality have commanded special premiums. On the Kansas City market car lots of hard winter wheat, grading No. 2, 3, or 4, but of high gluten content or quality, often sell above No. 1 for the same day. Even car lots grading No. 5 occasionally bring the highest price for the subclass. For a recent day on that market when No. 1 Hard Winter was quoted at $\$ 1.18$, the highest quotation for No. 4 was $\$ 1.16$ and for No. $5 \$ 1.19$. The producer as a rule does not know the gluten content of his wheat, and may, hence, be at considerable disadvantage in making his sale to the local buyer. Special efforts should be made by producers to acquaint themselves better with the market value of their wheat.

Feeding Low-Priced Wheat to Livestock.

At prevailing prices some wheat can be profitably substituted for corn in the feeding of livestock in many sections of the country. The relative prices at which wheat economically may displace corn in feeding is shown in the following table:

Corn prices per bushel and equiralent wheat prices based on their relative feeding values. ${ }^{1}$
[Experimental data, Bureau of Animal Industry.]

Corn.	Wheat.			Corn.	Wheat.		
	Poultry and sheep.	Hogs.	Beef cattle.		Poultry and sheep.	Hogs.	Bcef cattle.
Cents. 50	Cents.	Cents.	Cents. ${ }_{62}$	Cents. 80	Cents. 86	Cents. 90	Cents.
55	59	62	68	85	91	96	105
60	64	67	74	90	96	101	111
- 65	70	73	80	95	102	107	117
- 70	75	79	86	100	107	112	123
75	80	84	92				

[^10]According to these ratios, when corn is 80 cents a bushel on the farm, for example, 86 -cent wheat can be fed profitably to all animals, including poultry; 90 -cent wheat can be fed to cattle and hogs but not to sheep and poultry; while 99 -cent wheat is profitable for beef cattle only. These ratios do not take into account the cost of grinding the wheat, a necessary measure in feeding it.
The corn situation is at present very unusual. The visible supply of corn in the United States on November 3 was 809,000 bushels compared with $8,806,000$ last year and $18,935,000$ in 1921. The November 1 visible supply averaged $3,763,000$ bushels in the period 1914-1920 and 3,352,000 during the pre-war years 1909-1913. At no time since 1900 has the visible supply of corn for November been so low as it is at present. This situation has placed the prices of old corn this fall on very nearly the same level with wheat prices. For the month of October the spread between the average farm price of No. 2 corn and No. 4 wheat at representative shipping points in Kansas, Nebraska, Missouri, Iowa, and Illinois ranged from 0 to 8 cents and between No. 2 corn and No. 2 wheat from 3 to 12 cents. At these prices No. 4 and lower grades of wheat can be profitably substituted for corn in the feeding of hogs and cattle and even No. 2 wheat can be fed to beef cattle with profit. As noted above, however, wheat should be ground or crushed before feeding, and should also be supplemented with other feeds.

Wheat Production and Agricultural Readjustments in the Principal Wheat Regions.

Under the stimulus of war prices and in response to the demand for large food supplies, the production of wheat was increased enormously during the years of the war. The initial rise in price following the declaration of war in 1914 encouraged the expansion of our wheat area. This large acreage, together with a favorable season, caused the wheat crop of 1915 to be the largest we ever harvested. Other countries also secured large crops that season, and as a result the price of wheat dropped to practically the pre-war level and remained low through the crop year 1915-16. A marked decline in wheat plantings followed, and with the heavy abandonment in 1917

FARM PRICE OF WHEAT, RYE, FLAX, POTATOES, BUTTER, AND EGGS, 1914-1923.

the acreage harvested that year fell to a point slightly below the prewar average.

With the bottling up of the Russian surplus the Allies had to depend upon overseas countries, especially North America for their wheat. The price of wheat advanced sharply in the fall of 1916 and continued to rise through the forepart of 1917. After the United States entered the war, measures were taken to regulate the price of wheat, and minimum prices were fixed for the 1917, 1918, and 1919 crops. Under continuous appeals for production of food, the production of wheat rose from an average of $690,000,000$ bushels in the period 1909-1913 to $968,000,000$ in 1919, an increase of 40 per cent, and the wheat area expanded from an average of 47,000,000 acres to $75,000,000$ in 1919.
In order to provide land for wheat, rye, oats, tame hay, and some other crops, of which there was an increase, the corn acreage was

FARM PRICES OF WHEAT, CORN, OATS, BARLEY, CATTLE, SHEEP, AND HOGS, 1914-1923.

materially reduced, and a large amount of pasture and meadow land in the older regions and wild grass land in the newly settled regions was drawn into cultivation.

When general deflation of prices began in the summer of 1920 , wheat prices broke sharply and have continued to decline into the present season. As a result substantial reductions have taken place in both acreage and production of wheat. Nevertheless, the crop for 1923 is $781,000,000$ bushels or 13 per cent greater than the average before the war, and the acreage is about 24 per cent larger. The corn acreage which was replaced by wheat has now recovered most of this loss, but is still slightly under the pre-war average. While there has been some reduction in cultivated crops, the total crop area of the country is still between $30,000,000$ and $40,000,000$ acres larger than before the war.

The States included in the Corn Belt, western winter wheat region, spring wheat region and Pacific Northwest, contain over 85 per cent of the 1923 wheat acreage and are, therefore, of special im-

Figuri 24.
portance. Winter wheat accounts for the major portion of our expansion in production. Of the $28,500,000$ acres increase in total wheat area during the war about $22,000,000$ were winter wheat.
In the Corn Belt wheat increased $7,000,000$ acres and displaced about $3,000,000$ acres of corn. Although substantial adjustments in crop acreages have been made since 1919, the wheat area is still almost $2,900,000$ acres over the average before the war and the corn acreage is about $1,722,000$ acres below. Some lands in the Corn Belt have also been returned to pasture and meadow.

The largest addition to the winter wheat area was made in the Great Plains States of Nebraska, Kansas, Colorado, Oklahoma, and Texas. By 1919 the wheat acreage in these States had been expanded by over $13,450,000$ acres. Corn was reduced $8,275,000$ acres, and

Figure 25.
better than $11,000,000$ acres of meadow and wild pasture land were plowed up and planted to crops. Much of the new land sown to wheat was located in the semiarid part of the region where the harvested wheat acreage between 1909 and 1919 more than trebled. Crop acreages in the region as a whole are still considerably out of line with their pre-war relationships. The wheat area is $7,240,000$ acres above and that of corn is about $4,600,000$ below the pre-war average. No reduction appears to have been made in the total area of cultivated land which at the present time is almost $12,500,000$ acres over the average before the war.

The area suited to spring wheat in the United States is more restricted than that for winter wheat and the expansion of the former has been, therefore, much smaller in amount. Less than $6,500,000$

Figurif 26.

Figure 27.
acres were added to the spring wheat area during the war and all of this increase has since been lost.

The States of Minnesota, North Dakota, South Dakota, and Montana account for about 4,150,000 acres of the increase in spring wheat during the war. These States as a group at the same time materially enlarged their rye, corn, oats, and tame hay production and made important reductions only in the case of barley and flax. This crop expansion was brought about by plowing up some pastures and meadows in Minnesota and North and South Dakota, but more especially wild pasture lands in the semiarid sections of the western part of the Dakotas and in Montana. The region as a whole has reduced its 1923 wheat area to 700,000 acres less than the average before the war. This reduction has taken place, however, in the eastern part of the Dakotas and in Minnesota where farmers have

Figuee 28.

Figure 29.
turned to livestock and dairying as important lines of production. Although there has been considerable abandonment of lands during the past several years in the semiarid sections of North Dakota, South Dakota, and Montana, the harvested wheat acreage in these areas is this season about 176 per cent greater than in 1909, and for the region as a whole the area in cultivated crops has continued to expand since the beginning of the war.

The wheat area in the Pacific Northwest was enlarged to the extent of $1,250,000$ acres, in considerable measure by decreasing the amount of summer fallow and by plowing up wild pasture lands, and only slightly through the replacement of other crops. Here again a substantial part of the additional acreage sown to wheat was semiarid land. Only slight reductions in the wheat acreage have been made since 1919.

Ftgure 30.

Figure 31.
Three aspects of our acreage shifts during the last decade may be emphasized. The area of land used for cultivated crops has been greatly extended, and large amounts of meadow and pasture have been brought into cultivation. The wheat area was very greatly expanded, displacing corn more than any other crop, and while considerable readjustment has been made, pre-war crop relationships have not been reestablished. Finally, within the semiarid regions of the West where crop hazards are high large bodies of wild pasture land have been broken and planted to wheat. In the one-crop system of these semiarid regions wheat holds a dominant place and has stubbornly resisted reduction.

Figure 32.

Agricultural Readjustments in the Principal Wheat Regions.

The increasing foreign competition in wheat production points to a relatively low level of prices for wheat and to the advisability of materially reducing the acreage. Our wheat production should be placed gradually on a domestic basis and then should keep pace with our growth in population and domestic demand. In those regions where wheat displaced other crops in response to war-time prices, the acreage of wheat should be reduced as fast as profitable alternatives can be found.

[^11]Most crops which can be substituted for wheat are feed crops and any marked increase in their production must be accompanied by more livestock. The prices of cattle and hogs are low, while those for dairy and poultry products, sheep and wool, are much better. Adjustments in crop acreages must take into account the relative price trends of farm products.

Figurf 34.-The 19 crops comprise about 95 per cent of total crop acreage in the United States.

Conditions vary widely between farmers as between regions, and what may apply to one individual may not apply to another. Wheat may have an important place in the rotation of some farms and further reduction may not be practicable, and the economical use of labor and equipment may make it desirable to maintain a relatively large acreage of wheat. Many wheat farmers, in short, are restricted in their choice of alternative crops, and, furthermore, are not financially able to change materially their type of farming. Under such conditions adjustments must be largely in the direction of economy and more efficient production.

Wherever possible, lands which give relatively low returns in cultivated crops should be seeded to meadow or be allowed to revert to pasture. Cash outlays in the production of crops can often be reduced. A part of the hired labor on some farms may be eliminated

and more of the supplies for the household as well as feed for livestock may be produced on the farm. In some sections it even may be possible to supplement the farm income from sources outside of the farm.

Farmers in the Corn Belt and other eastern States have made substantial progress in readjusting their crops. The wheat area, however, is still in excess of the pre-war average, while that of corn is considerably below. The value of corn per acre in the region is usually greater than that of small grains which are included in the cropping system to permit the fuller utilization of farm labor and equipment and serve as nurse crops for pasture and hay. The spread between the average value of corn per acre in Ohio and that of either wheat or oats was greater in 1922 than it had been since 1913 , and an acre of corn this year promises to be worth nearly twice
as much as either wheat or oats. At present prices, therefore, it appears that Corn Belt farmers will find it profitable to keep their corn acreage at the highest point consistent with a balanced labor program and the maintenance of soil fertility. It should not be overlooked, however, that the present relatively high prices for corn may not be maintained if the prices of cattle and hogs remain at present levels.

Conditions in the eastern humid parts of Nebraska and Kansas are very similar to those in the corn States to the east. A sub-

humid belt in which the rainfall is lower than in the eastern humid region cuts across the central portion of the western winter wheat States. Wheat yields in this belt are more dependable than those of corn, and wheat has occupied, therefore, a more important place in the system of farming. The value of an acre of wheat in McPherson County, Kans., which is representative of the subhumid region, has been higher than that of corn since 1913, and in a majority of years has exceeded also that of oats, barley, and rye. The spread between the acre value of wheat and corn was less in 1922 than it had been since 1917, and on the basis of a verage yields present prices place corn very nearly on an equality with wheat in value per acre. On the basis of average yields and present prices the value of an acre of wheat less the cash costs of producing it is about $\$ 3$ under the corresponding value of an acre of corn. Since the demand of wheat and corn for labor do not seriously conflict, it appears that in so far as corn can be profitably utilized as feed or can supply a local demand it deserves a more important place in the cropping system of the region. As grain sorghums are more dependable in dry years than corn, farmers will usually find it advantageous to grow some sorghums to assure themselves feed in dry years.

In the humid portions of Minnesota and South Dakota where dairying and hog production have become the leading enterprises on most of the farms, wheat has already been displaced to a large extent by other crops.

Wheat has been the principal crop in the subhumid portion of the spring wheat region largely because the acre value of wheat has usually been greater than that of other crops. With present prices, howerer, more attention should be given to the production of feed crops, especially corn, and likewise to the production of flax. The one-crop system of wheat farming, hitherto largely followed, has resulted in weed-infested land, reduced soil fertility and in heary losses in years of crop failure.

The production of flax in the United States is now confined almost entirely to the spring wheat region. Flax production has been below domestic consumption in every year since 1909, and while the acreage this year is the highest since 1913, the indications are that the consumption during the present year (July 1, 1923 to July 1, 1924) will be at least double this year's domestic production. The present tariff of 40 cents per bushel has resulted in an increase in price to growers in the United States, and so long as production is below consumption and the tariff remains in effect flax prices will probably be attractive.

The average value per acre of the 1922 flax crop in North Dakota was $\$ 9$ more than the average value per acre of the wheat crop. This is a greater difference in favor of flax than had existed since 1916. Present indications are that the spread between the value per acre of the two crops this year will be nearly as great as it was last year.

Records from 150 farmers in northeastern Montana show that the average yield of wheat for the 10 -year period 1913-1922 was 13 bushels and that of flax 6 bushels per acre. At these yields flax will be more profitable than wheat whenever the price per bushel of flax is more than twice as great as the price of wheat. Flax usually does best as the first crop on newly broken sod, but it probably is
advisable to confine the growing of flax to those farms where it can compete successfully with wheat on old but clean land.

In effecting adjustments in the agriculture of the semiarid regions special consideration must be given to the financial situation. Although financial difficulty is widespread among farmers in many regions where wheat is extensively grown, the situation is no doubt at its worst in the semiarid sections extending from western Kansas and eastern Colorado to the Canadian border. In these dry-land areas during the last few years farm indebtedness has grown in

INCREASE AND DECREASE IN ACREAGES OF IMPORTANT CROPS IN

Figere 37.-Spring wheat region (Minnesota, North Dakota, South Dakota, Montana).
volume; delinquent farm interest and taxes have accumulated; foreclosures and bankruptcies have multiplied; and the capital and credit of farmers have been so depleted that it has been necessary to provide county, State, and Federal funds for seed and feed loans. With the failure of crops year after year business concerns have failed, a large number of banks have closed, and the financial stability of local government units in some cases has been severely tried.
This condition of things is the outcome of several causes, the results of which have been cumulative. The semiarid country of
the West was opened to settlement under a land policy which was not suited to the region. As a result a great deal of land which is poorly adapted for crops has been homesteaded and sown to wheat, frequently by settlers who were not equipped to cope with the problems of the region. In some years, when wheat prices were at war levels, crops in many sections failed. On the other hand, production costs remained high and long hauls and high freight rates to market bore down upon the dry-land farmer with special weight. Moreover, during the early years of the war, when crops were good, the high prices of wheat coupled with easy credit led to over-extension on the part of many in the purchase and renting of land and in outlays for more extensive equipment. The one-crop system of wheat farming, however, which has been so largely followed, is one of the most important factors in the situation. The complete failure of the wheat crop has frequently left the farmer without funds for living and other expenses. As one crop failure succeeded another,

INCREASE AND DECREASE IN ACREAGES OF IMPORTANT CROPS IN THE PACIFIC NORTHWEST REGION, 1909-1913-1922.

Figure 38.-Pacific Northwest region (Idaho, Washington, Oregon).
many farmers increased their wheat acreage in the hope of recouping previous losses and thereby often merely increased their indebtedness.

The situation varies materially within the semiarid wheat regions. Soil and climate are much more favorable to wheat production in some areas than in others, and in every region individual farmers may be found who because of their methods and business ability have met with a fair measure of success.

Fundamental and far-reaching adjustments must be made in the agriculture of this region. Wheat in the past has been the dominant crop and will probably retain an important place in the dry-land farming of the future. It is evident, however, that the one-crop system of wheat farming in general has failed under the methods commonly employed. A safer type of farming must be developed. The land now in cultivation which is not suited to field crops should be allowed to revert to pasture. Some forage crops should be grown on every farm and reserves of feed, livestock, and capital must
be carried from one year to another to tide over periods of crop failure. Both livestock and poultry will help stabilize the farm income. A considerable amount of wild pasture land in some sections is available for grazing purposes and should be utilized in so far as conditions will permit to supplement the farm income. Economical cropping and tillage practices which conserve moisture should be developed and used. Since average yields on dry land are relatively low, the farm business should be organized with a view to utilizing the maximum acreage consistent with good farm methods and the financial ability of the farmer. It is also important that there be developed a system of farming in which the dependence upon highpriced migratory labor is reduced to the minimum.

As a result of foreclosures or abandonment a large number of farms in various parts of the semiarid region are now in the possession of mortgage holders. Some of this land, no doubt, can be profitably cropped if capitalized at reasonable prices and if suitable farm methods are employed. There is much of it, however, which under present price levels will probably not yield satisfactory returns from field crops and should revert to pasture. For the development of a stable agriculture in the semiarid regions it is imperative that a true appraisal be made of the uses to which these lands can be put most profitably.

A change to a more stable form of agriculture in the semiarid regions will be gradual and assistance during the period of transition will be needed. Some farmers are now so deeply involved that further credit extensions will not benefit them. On the other hand there are many dry-land farmers whose loans should be extended under a long-term payment plan at a reasonable rate of interest, and who should also receive such additional credit as may be necessary to effect essential changes in the type and organization of their farming.

Summary and Conclusions.

The wheat industry of the United States is in a period of serious depression. A great many farmers have already lost their farms or other property and the financial condition of others is critical. This condition of things has resulted from the decline in wheat prices, the relatively high level maintained in the prices of other commodities and services, and also from the maladjustments which exist in the wheat industry itself.

Present low prices are caused by the large world supply of wheat. for which there is not an effective demand at higher price levels. The total world crop outside of Russia is estimated at $3,400,000,000$ bushels, which exceeds the production of last year by $300,000,000$ bushels and the pre-war average by $500,000,000$, excluding Russia. Both importing and exporting countries whose production fell during the war are resuming rapidly the position they previously held as wheat producers. Moreover, the evidence indicates that competition in wheat production will increase very materially. Russia is gradually restoring her agriculture and is already exporting some bread grains. Argentina, Australia, and especially Canada are selling abroad large amounts of wheat and will in all probability continue to expand their wheat exports. These countries enjoy material advantages over the United States in the production of wheat. So
long as the United States produces a surplus, the prices of American wheat will be determined largely in the markets of the world and American farmers as exporters of wheat must be prepared to meet the keen competition of foreign producers for these markets.

Although wheat prices have dropped to pre-war levels, prices of manufactured commodities and of services remain high. The costs which enter into the production and marketing of wheat are so high that, at present prices for wheat, the farmer can not continue to pay them and remain in business. Taxes, machinery, wages, freight rates, and prices of food and clothing are out of proportion to the price of wheat and the earnings of the wheat farmer.

A number of factors within the wheat industry itself also have contributed to the present wheat crisis. Lands on which wheat can not under present economic conditions be grown profitably have been brought into cultivation in some regions. This fact coupled with the dependence placed upon wheat as a cash erop accounts for the losses of some farmers. Furthermore, high prices and the appeal for larger food supplies during the war induced many farmers to expand unduly their farm operations and to incur liabilities which since the break in wheat prices they have been unable to carry. The financial distress which has come as a result of these various causes is considerably aggravated by losses which are due to inefficient farm management. Many farmers are growing and marketing wheats which do not fulfill the highest market requirements and consequently fail to yield maximum net returns. On some farms, furthermore, excessive emphasis on wheat carries with it an unsatisfactory seasonal distribution of farm labor with resulting heavy expenditures for hired help. The financial difficulties of many, in short, would be reduced if their farm business were operated along more efficient lines.

It is important to bear in mind that the solution of present agricultural difficulties depends quite as much upon the efforts of farmers themselves as upon any Government action. There are fundamental and far-reaching adjustments in production and marketing which farmers themselves must make as a part of a long-time program. A survey of the situation indicates that well-considered action in a number of directions will bring wheat farmers a substantial measure of relief.

A large number of wheat producers are on the verge of bankruptcy. Many of them are, no doubt, beyond the point where further credit extensions would benefit them. On the other hand, a larger number can and should be saved by the renewal of loans or by additional credit on reasonable terms. Where a large volume of personal credit exists and the mortgage status of the farm permits, outstanding short-time loans should be funded into long-term mortgage loans at lower rates of interest. In this connection full advantage should be taken of the facilities afforded under the Federal Farm Loan Act. Moreover, the new credit facilities provided in the Federal intermediate credit banks should be utilized to reduce the cost of personal credit to the farmer. In this bankers should lend a willing hand even where such action does not increase their immediate profits. The constructive country banker will readily see that in the long run such action benefits him as well as the farmer.

To meet successfully foreign competition in some markets in which exchange rates and opportunities for exchange of commodities favor purchases of wheat from other sources, easv credits on Amer-
ican purchases may be necessary. The War Finance Corporation should make special efforts to finance the exportation of wheat in line with the joint resolution of Congress, January, 1921, reviving the activities of that corporation.

The wheat surplus may be reduced materially by increasing domestic consumption. The per capita consumption of wheat flour and bread has been lessened by the war-time campaign to save food, coupled with the high prices for bread which have since been maintained. A reduction in the price to consumers by narrowing the margin between wheat flour and bread would, no doubt, increase the consumption, and a return by public eating houses and dining cars to the custom of serring bread free with orders would contribute to the same end. Furthermore, at present prices, wheat can be economically substituted for corn as livestock feed in many parts of the country, and its use for this purpose may be increased to advantage.

Figlere: : 39.
American freight rates, which are still 45 per cent and more above those of 1913, have not been adjusted to meet the decline in farm prices, whereas Canadian rates are now practically back to their pre-war level. To meet the emergency a reduction of at least 25 per cent in interstate rates on wheat and wheat products originating in the distressed wheat areas would be helpful, these rates to remain effective until wheat prices shall have more nearely reached a parity with the prices of other commodities or until a readjustment has been made in all freight rates. In order to determine a proper basis for this adjustment, the Interstate Commerce Commi-sion or a special commission composed of representatives of railroads and shippers, and created for that purpose, should review without delay the entire structure of interstate railroad rates and should make or submit recommendations for adjustments which will return adequate revenues to the railroads and as well afford some relief in the way of reducing the cost of transporting agricultural products.

Farm taxes in many sections of the country have become a serious burden, especially in regions where farmers are in financial distress, and a downward revision is essential. The partial substitution of taxes based on income for the present property taxes would provide
a measure of relief. Further shifting of the cost of good roads to those who make most use of them, through taxes on gasoline and motor vehicles, offers still another means of a more just distribution of the tax burden.

Changed market conditions necessitate important readjustments in crops. $\Lambda \mathrm{s}$ foreign outlets for American wheat become more restricted, the production of wheat should be gradually placed on a domestic basis, and the wheat acreage should be reduced as fast as profitable alternatives can be found.

Adjustments in agricultural production should be made in accordance with differences in regional and farm conditions. In some parts of the wheat territory some shift from wheat to corn probably will be profitable. Oats for local consumption might be substituted for wheat to a slight extent. With present prices flax will be a profitable alternative on suitable land for a small portion of the wheat acreage in the Northwest. Since the prices of dairy products have continued relatively strong, further emphasis should be placed on dairying and the production of feed crops. This increase in diversity of crops and livestock will in general result in better organization of the farm business and also help to stabilize the farm income.

A safer type of farming must be developed for the semiarid regions. Lands which are unsuited to field crops should be dropped from cultivation and revert to grass land. Some forage crops and livestock should be grown on every dry-land farm. Reserves of feed, livestock, poultry, and capital should be carried from year to year to tide over periods of crop failure, and the farm business should be so organized as to secure the maximum returns per inan.

Each farmer should carefully review the possibilities which lie before him. Undoubtedly diversification will result, from careful thought on this subject, in many of the States where the surplus wheat acreage is found. On the other hand, in those regions where wheat is grown as a part of a diversified system of farming, it may be that eren at the present price it is more profitable than any alternative crop.

In the present critical situation it is very essential that wheat farmers adopt methods which reduce production costs and conserve the cash income. This may be accomplished by avoiding out-ofpocket cost. by growing on the farm in so far as possible the feed supplies for the stock and provisions for the family, a policy which is made more urgent by the increase in freight rates and the high cost of processing and retail distribution, by utilizing to the fullest possible extent the arailable labor supply and the farm equipment through a well-balanced diversification of crops and a better distribution of labor throughout the year, by keeping land of low production in grass and other crops demanding but little labor or expense, and by devoting labor and capital to such crops and livestock enterprises as promise to give the greatest profits.

Improvement in the quality of wheat produced will materially increase profits in the wheat industry. Certain classes of milling wheats are in special demand and should be substituted for less desirable wheat wherever conditions are favorable. Moreover, heavy and unnecessary losses are incurred by farmers in producing and marketing dirty and low-grade wheat. The production and marketing of dockage is expensive. Wheat should be cleaned before sow-
ing and marketing, care should be exercised in its storage, and such seed selection and farm practices in growing and harvesting should be adopted as will result in the best market grades of wheat.

Prices paid at terminal markets reflect quite accurately the variations in quality of wheat; prices paid at country points frequently do not. Farmers must know the quality and grade of their wheat in order intelligently to bargain for the best market price. Wheats of high gluten content usually command premiums at terminal markets. While the Federal grades for wheat through subclass specifications indicate broadly the ghuten content, the only practicable method of measuring it requires extensive laboratory equipment. It is desirable, therefore, that State authorities, in cooperation with the Federal Government, undertake to determine and make available as early as possible in the harvest season information in regard to the gluten content of wheat in the important wheat-producing areas. Wheats may vary widely in gluten content within local areas; farmers should, therefore, have individual tests made of their wheats by the agencies set up for this purpose.

Concerted and coordinated action in the form of producers' organizations should improve the production and marketing of wheat. Higher returns may be obtained by standardizing the production of wheat in conformity with market demands, and substantial economies may be made in the cost of wheat marketing. Cooporative organizations efficiently managed will contribute to this end and their development should, therefore, be still further encouraged.

The movement of farmers into other occupations which is now under way will help to restore the balance between agriculture and other industries. Every farmer who is not able to make a living where he is should review carefully his own possibilities, but should not make a blind move into other types of farming or into city occupations. There are, however, thousands of farmers skilled in the industries of the city who will doubtless turn to their former occupations for relief.
The adjustments that have been indicated are part of a long-time program for agriculture and must be made in considerable measure through the efforts of the farmers themselves. Yet all of these means will not go far toward promptly restoring the purchasing power of the farmer's dollar, which has been unreasonably reduced by the rapid deflation which agriculture was least able to resist.

Since the immediate difficulty in the present situation is the maladjustment in price ratios, what is most needed right now is some way to restore the proper ratios either by increasing the prices of farm products or by reducing the prices of other commodities.

The prices of farm equipment. food, clothing, and building materials, as well as farm wages, are influenced by the costs of mining, transportation, and manufacturing, and by the ability to adjust production to that limit of supply which can be sold in the domestic market at a price to yield a profit.

One of the largest elements in the production cost of manufactured products as well as in transportation cost is the wages of labor. Wages have remained high since the war. The immigration and Adamson laws, together with the policies of organized labor, have been potent factors in maintaining wage scales. On the other hand, the domestic market for the products of the manufacturing indus-
tries makes it possible for them to continue production at a profit even with high wages for industrial labor. Under these conditions organized industry can maintain high prices in the domestic market and dump surpluses in foreign markets at low prices.

The question may be raised whether protection to labor and industry shall be withdrawn in order that the inflow of foreign labor and manufactured products may reduce the prices of the products which farmers buy to the level of farm products or whether some better remedy should be sought. The better and more practical alternative may be to try to improve prices of farm products of which we have an exportable surplus and which are, therefore, unduly depressed. Abundance of work at good wages gives assurance of good demand for farm products, but justice requires that the farmer be helped so far as possible and proper to secure relatively good wages for his labor. Indeed, industry and labor can not hope long to enjoy a disproportionately high price level for their products for the simple reason that farmers constitute about 30 per cent of the purchasers of such products and if the farmers' ability to buy is materially lessened for any length of time, both industry and labor suffer through lessened demand and prices will be forced lower.

Cooperation among farmers has been suggested as a means of attaining the end sought. While cooperation is to be encouraged as one of the best means of improving marketing methods and reducing marketing costs, as well as of improving the quality of farm products, it does not appear possible, and certainly not within a short period of time, to organize the producers of the great staples of American agriculture so effectively as to give them that control over supply which is necessary substantially to influence price.

The sale or gift of a substantial part of our surplus wheat to countries which are not able to buy, and which would, therefore, take out of the ordinary channels of trade and competition the wheat sold or given, would unquestionably have a helpful effect upon domestic prices of wheat, provided larger tariff protection were given. Before such rale or gift could be consummated, however, more than two-thirds of this year's wheat crop will have passed out of the hands of the farmers.

Inasmuch as the first step looking toward increasing the domestic price requires the disposition of the surplus over and above domestic needs, and inasmuch as the facts presented in the foregoing pages indicate that the world production of wheat will probably be overlarge for another year or so, the suggestion that the Government set up an export corporation to aid in the disposition of this surplus is worthy of the most careful consideration. Such a corporation neessarily would need rather broad powers. It would not be necessary that it should undertake to handle the entire crop, and it could probably carry on its activities in cooperation with existing private agencies. If it should be found necessary to arrange for the sale of the surplus exported at a price much lower than the domestic price, the loss so incurred would properly be distributed over the entire crop.

The prime duty of such an export corporation would be to restore, so far as possible, the pre-war ratio between wheat, and other farm products of which we export a surplus, and other commodities. Its activities would therefore expand or contract according as the relative prices for farm products varied with other commodites, and it would cease to function as pre-war ratios become fairly well restored.

By E. W. Brandes, C. O. Townsend, ${ }^{1}$ P. A. Yoder, and S. F. Sherwood, Bureau of Plant Industyy; ${ }^{2}$ R. S. Wishburn, G. B. L. Arner, ${ }^{3}$ and O. E. Baker, Bureau of Agricultural Economics; F. C. Stevens, ${ }^{4}$ Louisiana College of Agriculture; F. H. Chittenden, Bureau of Entomology, and C. F. Langworthy, Bureau of Home Economics.

SUGAR provides about 13 per cent of all the energy obtained from food consumed by the people of the United States (fig. 1). The average amount eaten is 2 pounds per person per week. This includes the sugar used in candies, sweet drinks, and other foods not prepared in the home. The amount which would be used in cooking and on the table averages about $1 \frac{1}{2}$ pounds per person per week. For a family consisting of a father and mother, both doing active muscular work, and three children, 9,6 , and 4 years old, the average consumption amounts to between 6 and 7 pounds of sugar a week. The amount of sugar consumed is now higher in the United States than in most other parts of the world, the per capita consumption having increased during the last 100 years from 10 pounds to over 100 (fig. 2). There are no statistics to show how the increased per capita consumption is used, but it seems safe to assume that a considerable proportion goes into candies and sweet drinks.

It is well known that pure sugar provides none of the nitrogenous or mineral substances needed to make muscle or other body tissues. These important substances, and also the vitamins, must be supplied by meat, milk, eggs, cereals, vegetables, fruits, and other food materials. When used in proper proportion to other foods, sugar is a

[^12]valuable article of diet. As a source of fuel, sugar is extremely economical. A pound yields 1,820 calories of energy. At 6 cents a pound it provides 100 calories of energy for one-third cent, a figure which is lower than that for almost any other of the familiar food materials.

In addition to the energy value of sugar it imparts at the same time an agreeable flavor to food. If it were not for the presence

FUEL VALUE AND COST OF SUGAR IN THE DIET.

Fig. 1.--Sugar supplies about 13 per cent of the energy or fuel value of the foods consumed in the United States; but its costi at retail, including candy, is only about 6 per cent of the total expenditure for food. ${ }^{1}$

Abstract

${ }^{1}$ Quantity of foods consumed based on statistics of production plus imports minus exports: percentages of fuel or energy value of vegetable products computed from tables in Paarl's "Our Nation's Food," and of animal products from estimates of United States Department of Agriculture far 1918-1922; percentages of money value are based on Bureau of Labor's retail price for 1918-1922, except that farm prices were used for half the poultry and eggs. milk and dairy products, and potatoes, while values of fruits and vegetables were based on census and other data. A study made by the Department of Agriculture of the diet of 500 families shows the following percentages supplied by foods of different sorts. For discussion see United State Department of Agriculture Miscellaneous Circular No. 6 (1923).

Table 1.

Food material.

TOTAL AND PER CAPITA CONSUMPTION OF SUGAR, CONTINENTAL UNITED STATES, 1823-1922.
TOTAL CONSUMPTION SHORT TONS IN MILLIONS

5

0
Fig. ؛.--The consumption of sugar in the United States has increased during the past century from less than 10 pounds to more than 100 pounds per capita, while the total consupmtion in the United States has increased from a few thousand tons to more than 500.000 tons.
of sugar the diet would be less palatable to most persons and the use of flavoring extracts, spices, and other flavoring materials would probably be much increased, which would add to the cost of the diet without adding directly to its food value.
The annual cane and beet sugar production in the continental United States supplies only about $1,200,000$ tons, or scarcely onefourth of the total of over $5,000,000$ tons of sugar consumed annually in this country. Combined with the production of sugar from cane in Porto Rico, the Territory of Hawaii, and the Philippines, the production of sugar under the American flag does not quite reach half of the amount consumed by the American people (figs. 3 and 48). Notwithstanding this inadequate domestic production, our continental and insular sugar industry is one of vast proportions utilizing millions of acres of land and occupying the time of millions of persons (Table 2).

Historical Development.

Sugar cane was introduced into the New World shortly after its discovery, and it is recorded that in 1518 many sugar mills were in operation on the island of Santo Domingo. It was not until 1751,

SUGAR PRODUCTION IN THE UNITED STATES AND INSULAR TERRI-

Fig. 3. -The sugar-cane production of Hawaii. Porto Rico, and the Philippines has increased more rapidly thar that of Loulisiana. The production of each of these insula: territories is now greater than the cane sugar production of the continental Inited States. Likewise, beet-sugar production has increased more rapidiy than that of cane sugar in the continental Cnited States, and is now nearly four times as great as the production of cane sugar.
however, that the plant was grown in continental America as a result of the importation of cuttings by Jesuits in Louisiana. From that time it was cultivated in a desultory manner until the end of the eighteenth century, when the failure of indigo and other crops forced the Louisiana planters to turn their attention to the manufacture of sugar as a source of revenue. Establishment of the American sugar-cane industry may be said to date from 1795 , when the first successful mill began operations on a plantation about 6 miles above New Orleans. Other mills soon followed and from that time an almost continuous extension of the industry was experienced until about 1894. Production then remained about constant till 1911, and in recent years has been somewhat lower (fig. 4).

LOUISIANA SUGAR PRODUCTION, 1823-1922.

Fig. 4.-The production of cane sugar in Louisiana increased rapidly until the beginning of the Civil War. During the period of the war cane-sugar production in the Southern States was reduced practically to nothing. From that time there was a more or less constant increase in cane-sugar production until about 1904, after which date the production has decreased somewhat with wide annual variations.

The establishment of the sugar-beet industry on a paying basis has been a comparatively recent development in American agriculture. Attempts to launch the industry were made as early as 1838 , but all efforts met with failure until 1879, when a factory erected at Alvarado, Calif., proved to be a profitable undertaking. By 1890 several factories were operating, and from that time, stimulated by the policy of taxing imported sugar, the production of beet sugar has increased, until at present it amounts to about a million tons per annum, as compared with one-fourth that amount manufactured from cane (figs. 5 and 6).

Table 2.-Acreage and production of sugar beets and sugar cane, and quantity of sugar produced, continental United States and Insular Territories, 1919.

SUGAR BEETS.

States.	Farm census reports.						Sugar factories reports. 1			
	Farms reporting.	Per-centage of all farms.	$\begin{gathered} \text { Area } \\ \text { har- } \\ \text { vested. } \end{gathered}$	Area per farm re-porting.	Beets produced.	Yield per acre.	$\begin{gathered} \text { Area } \\ \text { har- } \\ \text { vested. } \end{gathered}$	Beets sliced.	Sugar produced.	Pro-duction per acre.
	$N o$.		Acres.	Acres.	Tons.	Tons.	Acres.	Short tons.	Short tons.	Lbs.
California	1,488	1.3	88, 257	59.3	666, 866	7.56	107, 000	805,000	131, 000	2,440
Colorado	7,604	12.7	165, 840	21.8	1,658, 167	10.00	183, 000	1,656,000	194, 000	2,120
Idaho.	2, 760	6.6	37, 334	13.5	260, 309	6.97	30, 000	197,000	26, 000	1,740
Michigan	14, 812	7.5	106, 450	7.2	1,025, 550	9.63	123, 000	1,032,000	130,000	2, 120
Nebraska	1,531	1.2	54, 486	35.6	554,646	10.18	59,000	554,000	61,000	2,060
Ohio.	3,684	1.4	33, 561	9.1	365, 415	10.89	31, 000	292, 000	32, 000	2, 060
Utah.	8,398	32.7	93, 359	11.1	930, 427	9.97	103,000	908, 000	101,000	1,960
Wisconsin	3,495	1.8	12, 737	3.6	136, 208	10.69	12,000	106,000	11,000	1,840
All other.	3,439	. 3	44, 410	12.9	395, 821	8.91	44,000	338, 000	40,000	1,820
United States..	47,211	. 7	636, 434	13.5	5,993, 409	9.42	692, 000	5, 888, 000	726, 000	2, 100

SUGAR CANE.

States.	Farms reporting.	Per centage of all farms.	$\begin{gathered} \text { Area } \\ \text { har- } \\ \text { vested. } \end{gathered}$	Area per farm re-porting.	Quantity of cane produced.	Yield per arre.	Quan- tity of sugar pro- duced.	Sugar produced average per acre.	Quantity of sirup produced.	Sirup pro- duced aver- age per acre.
	No.		Acres.	Acres.	Tons.	Tons.	Tons.	$L b s$.	Gallons.	als.
Alabama.	56,604	22.1	25, 302	0.45	208, 342	8. 23			3, 235, 231	128
Mrizona		. 1	10	. 90	60	6.00			758	76
Arkansas	3,686	1.6	2,406	. 65	9,695	4.03			165,947	69
Florida	24, 331	45.1	20, 413	. 84	179, 573	8.80			3, 675, 249	180
Georgia	72,740	23.4	41, 558	. 57	365, 603	8.80			7,052, 984	170
Lollisiana.	36, 421	26.9	2234,049	6.42	22, 435, 683	10.41	2121,000		1,899, 423	
22 sugar-producing parishes.	12, 296	31.1	${ }^{3} 221,204$	18.00	32,325,004	10.50	121,000	41,340	326, 474	
Other parishes..	24, 125	25. 1	12, 845	. 53	111,679	8. 69			1,572, 949	122
Mississippi........	44, 795	16.5	25,256	. 56	186, 283	7.38			3, 015, 956	119
South Carolina	13, 600	7.1	5, 537	. 41	34,947	6. 31			563, 953	102
Texas.	19, 090	4.4	18, 407	. 91	2124,493	6.76	1,125		1,631, 459	89
United States	271, 278	4. 2	372, 938	1.37	3, 544, 679	9.53	122, 125		21,240,960	135
Hawaii.	1,310	24.8	123, 165	94. 02	4, 862, 707	39.48	556, 343	9,034		
Porto Rico.	8, 839	21.5	227, 815	25. 77	3,961, 984	17. 39	485, 071	4,258	${ }^{5} 262,729$	
Virgin Islands ${ }^{6}$.	286	66.5	8,685	30.37	84,129	9.69	8,149	1,877		
Philippine Islands?			598, 424				562, 362	1, 880		

[^13] scale and now far exceeds cane sugar in importance.

In our insular possessions sugar-cane culture is relatively more important than in the continental United States, but as it is impossible to cover adequately within the scope of this paper all of the many features peculiar to different regions, the detailed discussion will be limited to the industry as it is carried on at home (fig. 3). Our sugar-beet industry is confined entirely to continental United States.

Practically the only point of similarity between sugar cane and sugar beets is the fact that both plants at maturity contain a high per cent of sucrose or "cane sugar." The area devoted to these two crops is widely separated owing to fundamental differences in the climatic requirements of the plants. The practices employed in growing the crops are likewise radically different, and even the methods of recovering the sugar at central factories or mills, while alike in some-respects, are dissimilar in essential details. In view of these facts, the two crops will be discussed separately.

Fig. 6.-The development of the beet-sugar industry in the United States has been rapid since its establishment in 1879. The production has increased more rapidly than the acreage, and both more rapidly than the number of factories.

Factors Influencing Sugar-Cane Culture.

As sugar cane is a tropical plant, grown in the United States somewhat beyond its natural climatic zone, it is here more sensitive to climatic conditions than in the Tropics. While it grows on a variety of soils, they must possess definite characteristics for successful cane culture. Other factors of importance are topography, water supply, drainage, and the presence of injurious insects and diseases. Factors essential for profitable production are a supply of satisfactory labor, close proximity to the central mill, good roads, and railroads. The price of labor, and frequently of land also, is normally higher in the United States than in tropical countries, so that the closest attention must be given to the cost of production. Since the growing of sugar cane is usually the principal and often the only enterprise on the farm or plantation, the sugar-cane grower is more seriously affected by
changes in market price of sugar and changes in the factors influencing costs than the sugar-beet grower, who usually grows several other crops. These factors will be briefly discussed in the following pages.

Effect of Climatic Conditions on Sugar-Cane Production.
Sugar cane requires a uniformly high temperature, ample sumshine, and a large and constant supply of moisture to keep the plants growing rapidly. At any time up to harvest, cool, cloudy, or dry conditions will reduce the tonnage. The optimum rainfall for the crop in Louisiana is about 60 inches. The more nearly the weather approaches humid tropical conditions, such as heavy precipitation followed almost immediately by bright sunshine rather than a succession of overcast, cool days with drizzling rain, the better will be its effect on the rapidly growing crop. Practically continuous sunshine is indispensable always, but irrigation water may be substituted for

Fig. 7.-Cane-sugar production in the Enited States is confined almost entirely to the subtropical Mississippi Ielta district of southern Louisiana. A small amount of sugar is produced annually in Texas, and three sugar-cane mills have been erected in Florida.
rainfall in some localities. For ripening, sugar cane is benefited by dry and cooler weather and a shortening of the days or periods of sunshine.

In the sugar-cane district of Louisiana the summer temperature averages 81° F. and the frost-free season is over 250 days. As sugar cane is cut in an immature condition in Louisiana, the longer it is left standing, the higher the sugar content. Growers formerly suffered much loss from the fall freezes, but with the present excellent warning service cane is allowed to stand until a forecast of a minimum temperature of about 26° or $27^{\circ} \mathrm{F}$. is issued by the Weather Bureau. A large force of men is then put in the fields and all of the seed cane and as much of the mill cane as possible is windrowed. Sometimes a warning of damaging temperatures will result in windrowing of cane valued at over $\$ 10,000,000$.

In competition with tropical cane-producing countries, Louisiana is at a disadvantage in many respects, not the least of which is the alternation of growing and dormant seasons. The tropical planter is free from the heavy expense involved in protecting the seed cane and the mill cane from frost damage, which causes diminished germi-

Fig. 8.-Sugar cane is grown in eight of the Southern States, much the largest acreage being Louisiana, with Georgia, Alabama, Mississippi, Florida, and Texas following in the order named. Of the cane sugar produced in this country over 95 per cent is made in Louisiana. The balance of the cane grown in the Southern States is used almost exclusively for sirup producfion. (Maps of IIawaii and Porto Rico are on a larger scale than that of the United States. Kauai is one of the Hawaiian Islands.)
nation of the former and inversion or "souring" of the latter. Furthermore, on account of the frost hazard in Louisiana harvesting time becomes a high-pressure period for the labor, since the planting cr windrowing must be done concurrently with the cutting, transporting, and milling. In most tropical countries the necessity for immediate planting is not so urgent, in fact planting often extends over a period of five or six months. In countries like Java and Formosa, where the "seed" is obtained from a crop of immature cane grown specially for the purpose, planting is done before the mills begin to grind and these two operations are therefore entirely divorced. This plan is impracticable in Louisiana for the obvious reason that planting would need to begin so far in advance of harvesting for the mill that the cane would sprout and be winter-killed. A portion of the crop is planted in the fall in advance of grinding but the planting material is mature and dormant cane. Until practical labor-saving devices are perfected, the harvesting season in Louisiana will continue to be a time when even the best efforts of all hands fall short of accomplishing the many tasks in a satisfactory manner.

Thus it is seen that climate is the principal limiting factor which restricts the successful production of sugar to certain well-defined areas in the United States. These areas are southern Louisiana, southeastern Texas, and southern Florida. Up to the present, the industry is comparatively unimportant in the two latter States (figs. 7 and 8) but an attempt is being made to promote sugar production in Florida.

Growing sugar cane for sirup is not so restricted by climate, owing to the fact that the noncrystallizable sugars which are present in immature cane are desirable in sirup. Cane is grown for this purpose in the majority of the counties in Florida, the eastern half of South Carolina, the southern half of Georgia, Alabama, and Mississippi, central and northern Louisiana, and eastern Texas.

Sugar-Cane Soils.

Sugar-cane growing for sugar manufacture is confined almost altogether to the lower Mississippi Delta region of Louisiana, where, in addition to the long frost-free season, the soils are more suitable than elsewhere in the United States. The Sharkey clay in its better drained phases is the principal sugar-cane soil in the sugarproducing area. Other important sugar-cane soils are the silt loam, silty clay loam, and clay members of the Iberia series, and the fine sandy loam and silt loam of the Olivier series. These are all soils of high natural fertility and have nearly flat surface features. Similar soils occur very extensively farther north in Mississippi and Arkansas, but the growing season there is considered too short for maximum yields of sugar cane. Nearly all of these soils are very retentive of moisture, a feature of considerable importance for the sugar-cane plant, which during its period of rapid growth demands large quantities of water. Light soils and sandy soils are quite unsuited for the production of sugar cane unless they are irrigated and heavily fertilized.

In addition to high natural fertility and water-retaining capacity of the top soil, it is essential that the subsoil permit rapid drainage. A stiff, impermeable clay subsoil, particularly if near the surface, holds the water so that the plants will suffer from lack of aeration.

On some soils sugar cane will tolerate flowing surface water for long periods, but when the water is standing cane is more quickly injured. The soils of southern Louisiana are almost ideal for sugar-cane growing, a fact which compensates in some measure for its somewhat unsuitable climate. In contrast to these alluvial soils of the Mississippi Delta, soils of volcanic origin are extensively used for sugarcane production in many parts of the world, notably in Java and Hawaii. With irrigation and intensive fertilization such soils sometimes yield a very high tonnage of cane.

Of considerable interest is the recent attempts to utilize the muck and peat soils of the Florida Everglades for growing sugar cane. The better-drained muck soils, found mostly near Lake Okeechobee, support a very rank growth of cane, but it remains to be seen whether this luxuriant vegetative growth will yield juices rich in cane sugar over a series of years. No doubt slow maturing varieties of cane will eventually be found more appropriate for these highly productive muck soils. The peat or " saw-grass" land, of which the bulk of the Everglades is formed, has not, up to the present, shown promise by the methods now employed.

The small patches of sugar cane for sirup making in the Gulf States are planted mostly on soils naturally very productive, such as alluvial lands along streams, depressed areas where the soils are dark, and the mere fertile uplands. It is generally known, however, that a lighter colored and a better quality sirup is produced from cane grown on light-textured, well-drained soils, such as the sandy loam and fine sandy loam types of the Norfolk, Tifton, and Kalmia series.

Drainage and Irrigation of Cane Lands.

The high proportion of clay in the alluvial soils of the Mississippi Delta prevents a rapid downward percolation of water, and makes the closest attention to proper drainage a matter of great importance. Drainage is accomplished by means of open ditches which are wasteful of land and expensive to maintain, but owing to the character of the soil and the absence of sufficient fall it is very difficult to prevent tile drains from silting up. It would be almost impossible to overdrain the plantations, and improper balance of water and soil is usually traceable to errors in the direction of inadequate drainage. The frequent torrential downpours nust not be allowed to accumulate and stand on the fields, a condition which is sometimes due to inadequate ditches, but more often to neglect in keeping existing ditches clean and in working order.

Notwithstanding the fact that irrigation plants could be installed on Louisiana plantations perhaps more cheaply than in almost any other cane region, many planters are content to rely on rainfall and are reluctant to make the necessary investment in pump, syphon. and irrigation ditches to raise the water over the levee and distribute it over the fields. Where irrigation has been employed in Hawaii, Java, Formosa, Egypt, British India, Peru, Mauritius, and southern Porto Rico, it has almost invariably been found to pay. Of course, in many places irrigation is absolutely essential owing to arid conditions, but even where rainfall is ample in annual volume, but unevenly distributed, the certainty of providing water at critical times is sufficient justification for providing irrigation where the outlay is
not large. Since about 85 per cent of subnormal crops in Louisiana are attributable to drought, the benefit to be derived from irrigation is apparent.
Owing to the immensity of the undertaking, the drainage of the Everglades has not advanced to the point where immunity from inundations has been attained. It is hoped that this danger will be overcome, as work on the great drainage canals is progressing steadily. These canals are expected to furnish a source of water during periods of drought, and here, as well as in Louisiana, the flat character of the land offers no unusual difficulty in the operation of either drainage or irrigation systems, once the proper water level is established and maintained. Irrigation is not employed in the small scale operations in connection with growing cane for sirup.

Sugar-Cane Varieties in the United States.

The principal varieties of sugar cane planted in Louisiana are the Louisiana Purple, Louisiana Ribbon, and D-74, the last being an improved seedling variety of erect habit obtained in Demarara by germination of the minute seeds occasionally produced by some varieties of cane under the proper conditions. All varieties at present grown in the South on a large scale for manufacture of sugar are of the wide-leaf, thick-stalk, and relatively soft and juicy type, belonging to the species Saccharum officinarum. Up to now these varieties have given reasonably satisfactory results, but it has become increasingly apparent during the past few years that production is declining in some districts on account of susceptibility to disease. Considerable apprehension was caused during the winter of 1922-23 on account of an unusual degree of seed-cane deterioration caused by rot-producing organisms, and increased infection of the growing plants by the organisms causing root disease and by " mosaic" has been very noticeable. The varieties now grown are neither immune to these diseases nor very tolerant of the injurious effects caused by them. Varieties which are immune, or at least resistant to root disease and mosaic, are being grown in this country experimentally and may prove to be acceptable for commercial sugar production, but this point has not yet been demonstrated.

In growing cane for sirup on the numerous and scattered one and two horse farms of the Gulf and adjoining States, a slenderstalk type of cane has lately come into prominence. Varieties of this type are similar to the Uba, grown in Natal for sugar manufacture. The stalks are intermediate in size between those of Saccharum offcinarum and the so-called Japanese forage cane. These varieties of the Uba type probably were originally cultivated in southeastern China, and for convenience should be called "Chinese" canes. The Cayana-10, grown in Georgia and Florida, is of the Chinese type. The Chinese canes are, as a rule, slow maturing and in our climate have not up to now been used to any great extent for sugar production, owing to the presence in the immature plants of relatively large percentages of other sugars (invert sugar) which tend to retard crystallization of cane sugar. For sirup production, however, the performance of Chinese varieties in comparison with varieties of S. officinarum indicates that certain advantages may be claimed for them.

1. In producing the first crop, i. e., the plant-cane crop, the planting expense for seed cane is a very large item for the largestalk varieties and only a moderately large item for the Chinese varieties. However, the haryesting and grinding expenses for Chinese varieties greatly exceed those for the large-stalk varieties.
2. The yields from the Chinese varieties exceed those from the large-stalk varieties, especially in the case of the stubble, or ratoon, crops. The yields from the large-stalk varieties rapidly drop off after the first year, and the third crop (second stubble crop) usually ceases to be profitable. With the slender-stalk varieties of the Chinese type the yield of the first stubble crop is usually as high as that of the plant-cane crop, and sometimes considerably higher. The second stubble crop, if well cared for, usually yields about as much as the plant-cane crop.
3. The Chinese varieties are either immune or highly resistant to mosaic and to root disease, while the large-stalk varieties in common use are seriously affected by both of these maladies.

The selection of proper varieties of cane for either sugar or sirup is of utmost importance to the planter, but unfortunately it is a point which usually does not receive proper consideration. Often existing varieties do not meet the requirements. This is a task for the plant breeder, and will be briefly discussed under " Improvement of sugar plants by breeding and selection," page 203.

Practices and Labor Requirements in Growing and Transporting Sugar Cane.

The propagation of sugar cane differs from that of most field crops in that the planting material consists of sections of the stalk of the cane. This material required for planting constitutes a considerable portion of the previous crop, and thus involves a much larger planting expense than is required for most other field crops. Furthermore, in the United States and other countries in the temperate zones, a much greater amount of planting material must be used than in tropical countries because of deterioration during the dormant season.

The cane plant is a perennial grass. Where conditions are favorable the plants will sprout up from the roots after harvest for an indefinite number of years, depending on favorable climate, freedom from disease, and renewal of plant food. These successive crops secured without planting are called "ratoon" or "stubble" crops. In Louisiana the "plant" cane, or crop arising from the planting of seed cane, yields a higher tonnage than the succeeding crop of first stubble. It is not customary to permit a crop of second stubble to grow, although it is sometimes done. Due to the elimination of a large percentage of the stools by disease and other causes, second stubble yield a very thin stand. The heavy replanting necessary for filling of the empty spaces is not practicable, since it would result in a ragged or uneven stand and would interfere with the accepted practices for the renewal of plant nutrients by means of green manures. Small patches of cane on virgin soil in southern Florida have been known to ratoon for 10 years or more. In commercial plantings on a large scale investigation usually shows that the fields claimed to have been ratooned for 10 or 20 years have been replanted
to such an extent that hardly any of the original plants remain. Thus, even in the Tropics on virgin soil of high fertility, it is to be expected that the original plants will gradually disappear, owing to the accumulation of disease organisms and insect pests, the drain on mineral nutrients, and periods of unfavorable weather.

Planting the Cane.

Sugar cane in Louisiana is planted either in the fall or in the spring. For fall planting, the preparation of the land, or bedding, generally begins in late August and continues through the fall. It is temporarily suspended, either wholly or in part, during the latter half of September in order to harvest the corn, hay, and such other feed crops as have been produced. Planting begins about October 15 and continues unabated until the harvest or grinding season begins, when all hands and mules are used to rush the cane to the mills before freezing weather arrives. It is thus evident that there is considerable conflict in the demand for labor in the fall between the planting of cane and the harvesting of cane for the factory.

For this reason spring planting must, from force of circumstances, be resorted to in many cases even though it is slightly more expensive and entails some very disagreeable field labor, due to a greater amount of rainfall at this season. There are some lands which, because of poor drainage or unusual soil conditions, are unsafe for fall planting and so must be spring planted. Seed cane is very susceptible to injury if fall planted in soil which is either too wet or too "dry. If planted in soil which is too wet there is danger of "wet" rot, while if the soil is too dry, the seed cane will dry out and shrivel, thus lowering its vitality and making it more subject to decay from fungous invasion. This holds true whether cane is fall planted or windrowed for spring planting. The advocates of spring planting claim an advantage in that the cane taken from the windrow can be examined and the inferior canes discarded before planting, thus making possible more perfect stands than are obtained when cane is planted in the fall.

The cane is not thoroughly mature when fall planting begins, but because of a desire to get as much planted as possible before grinding commences there is a tendency to advance the date as far as can safely be done. Especially has this been true during recent years because of the labor shortage.
Table 3.-The operations commonly performed in preparing land for planting of cane, together with the acres cocered per day and the man and mule labor required per acre. ${ }^{1}$

[^14]There is little difference in either man or mule labor required per acre or unit for cultivating and harvesting sugar cane, whether the crop be spring or fall planted. Because of variations in soil types, there is, however, some difference in the labor required in caring for the seed cane, the sandy soil adjacent to streams being easier to work than the stiffer clay soils lying farther inland. In caring for the seed cane the requirements for spring planting average 90 per cent greater for man labor and 58 per cent greater for mule labor than the labor requirements for fall planting. In the preparation of the seed bed there is 21 per cent more man labor and 20 per cent more mule labor on the clay than on the sandy land. Presuming that half the cane crop is grown on sandy and half on heavy soil the average amount of labor required for this class of work will be for man labor 0.95 day and for mule labor 1.73 days per acre (Table 3).

Planting is performed with two crews of laborers, one stripping and cutting the seed cane and the other planting. The planting is done

PLANTING SEED CANE IN GEORGIA.
Fig. 9.-Commercial sugar-cane seed consists of sections of cane stalks, which are laid in furrows and later covered by means of a plow or other suitable implement.
by men with 2 -mule plows opening the rows, passing up and down the row throwing the soil to each side, or perhaps with small middle busters doing the same work by passing once across the field; another man follows with a team and plow or block finishing up the furrow. The canes are usually thrown directly from the wagon into the furrow by two or three men called "droppers" (fig. 9). Following them are the "whackers," who cut or whack the crooked or extra long stalks into a number of pieces and see that the seed stalks lie straight in the bottom of the bed. Whacking is done not only to prevent the plows in the spring cultivation from catching the ends and ripping the entire cane from the row, but also to check the destruction of the seed by the cane borer. It is claimed by some
planters, however, that this means of checking the cane borer is offiset by the added opportunity for entrance and encroachment of fungous and bacterial diseases. The whacking is performed by women, girls, or boys equipped with cane knives. After it has been whacked the cane is covered by throwing four furrows over each row. When the soil is dry, the rows are rolled with either a 2 or 3 horse roller in order to retain the soil moisture. The last of the planting operations is the opening of the quarter drains, a system of open ditches, which are necessary because of the heavy rains of this region.

The fall planting of cane, including stripping and cutting of the seed cane and hauling it to the place of planting, requires, on the average, 11.21 man and 6.8 mule days per acre. Of this amount 3.6 man days may be charged as harvest labor performed on the crop furnishing the seed, and 7.61 man and 6.8 mule days as labor directly to planting operations.

Table 4.-The size of crews and duty of each crew for work on seed cane and fall planting.

[^15]Seed cane for spring planting is wintered in windrows or mats. The method of windrowing is usually to cut and throw the cane from two rows into a center furrow and then cover with two furrows to the row. Mats are similar to windrows except that more than two rows are thrown together. Spring planting is usually done in January, February, and March, and sometimes even as late as April. The preparation of the seed bed, as well as the planting of spring cane, is practically the same as for fall planting. The only real difference is the operation of removing the seed cane from the windrows. This is usually done by first scraping the dirt off with a plow, stubble shaver, or small road-grading machine, and then pulling the seed cane out of the bed with one mule hitched to a two-hooked implement called a monkey.

Table 5.-The size of crews and duty of each crew for work on seed cane and spring planting.

Operation.	Crew.		Tons per day.	$\begin{gathered} \text { Acres } \\ \text { per } \\ \text { day. } \end{gathered}$	Days per acre.		Total days per acre.	
	Men. ${ }^{1}$	Mules.			Man.	Mule.	Man.	Mule.
Harvesting seed cane:								
Cut and lay in windrows.	3		15	1.25	2.40		22.40	
Storage operations: Fall-								
Cover (2 times to row)	1	2		5	. 20	0.40		
Hoe, cover butts and tips	1			5	. 20			
Plow and shovel drains.	2	2		12	.17	. 17		
Spring-								
Remove soil cover.	1	2			. 20	. 40		
Pull canes with monkey	1	1	8	. 75	1. 33	1.33		
Shuck cut...............	2		8	.75	2.67			
Load and haul	4	4	8	. 75	5. 33	5.33	10.10	7.63
Planting operations:								
Open row (2 times to row)	1	2		5	. 20	. 40		
Open row (1 time to row).	1	2		10	.10	. 20		
Lay and whack..........	4		8	2	2.00			
- Cover (4 times to row)	1	2		2. 50	. 40	. 80		
, Plow and shovel drains	2	2		12	. 17	. 17		
Water boy.	1	1		3.3	. 30	. 30	3.17	1.87
Total days per acre- 3 groups of operations							15.67	9.50

${ }^{1}$ The terms "men" and "mar"' are used in showing labor requirements as a composite including men, women, and children.

2 This labor is charged to the erop furnishing the seed. It is shown here as a part of the labor actually involved in the propagation of sugar cane.

Cultivation.

The cultivation of plant cane extends through the spring and summer, from March to July for the native Louisiana cane, and into August for the variety known as D-74. With the latter variety, because of its upright habit of growth, the rows do not close early and shade the centers well, and hence later cultivation and hoeing are required in order to maintain soil moisture and prevent weed growth. With the exception of minor differences in cultivation, due to variety planted, there is very little difference in the culture of spring and fall planted cane.

Tabte 6.-The size of creus, and duty of the crews, necessary in cultirating a crop of spring or fall planted cane.

With stubble cane there is no preparatory labor, the only field operations being tillage and harvesting. In the cultivation of this cane most of the operations are the same as those used in the production of plant cane. There are, however, the additional operations of removing a part of the soil from above the cane roots, known as shaving the stubble, which is followed by an operation called digging, which loosens up the soil about the stubble. A specially constructed machine is used for each operation. The labor normally required in these operations, together with that of opening drains, is noted in Table 7.

Table 7.-The operations of cultivation for stubble cane in aldition to those for planted cane.

Operation.	Times done.	Crew.		$\begin{gathered} \text { Acres } \\ \text { per } \\ \text { day. } \end{gathered}$	Days per acre.	
		Men .	Mules.		Man.	Mule.
Shave stubble (1 time to row)	1	1	2	6	0.17	0.33
Dig stubble (1 time to row)..	1	1	2	10	. 10	. 20
Shovel drains.-..................-. --		1		12	. 08	
Additional labor as shown for planted cane in Table 6.					12.04	5.72
Total cultivation labor per acre for stubble cane, days					12.39	6.25

Fertilization and Rotation.
The fertility of the alluvial soils of the Mississippi Delta is maintained by the application of commercial fertilizers and by plowing in green manures. Approximately half of the cane grown in Louisiana receives fertilizer of some kind. The application of commercial fertilizers, when used, varies from 400 to 600 pounds per acre for plant cane and somewhat more for stubble cane. A part or all of the commercial fertilizer for plant cane is applied in the row at time of planting. Should only a part of it be applied at the time of planting, the rest is used as a side application after the first cultivation. Stubble cane is usually fertilized just following the first or second time it is barred off.

It is the intention of the cane planter to sow about one-third of his crop land to peas each year, in order to furnish a green-manure crop which will improve the texture and fertility of the soil and thus aid in maintaining the yield of cane. The land intended for peas is usually planted to corn in the spring and the peas sown between the corn rows at the last cultivation. The yield of corn is ordinarily low because the spacing of the rows is the same as that for cane, which is 5 or 6 feet, and the corn receives little attention owing to the labor requirement on cane, which comes at the same season. The advantages of planting corn are that its culture prepares the seed bed for peas, it produces a small amount of grain, it furnishes support for the peas, and the cornstalks, together with the pea vines, furnish considerable fall and winter pasture for the mules.

Frequently the nitrogen supplied by a crop of cowpeas is not quite enough to restore that removed by a plant-cane crop and one or two stubble crops. The deficiency is made up by applying nitrogenous fertilizers, usually in the form of cottonseed meal.

On the light textured soils of the sirup-producing sections heavier applications of fertilizers are made, often 800 to 1,800 pounds per
acre, except for the small patches of cane for which sufficient barnyard manure is available or for which the land is especially enriched by penning cattle on it previous to planting it to cane.

Ordinarily, peas in the cane-producing sections of Louisiana do not produce a seed crop but are turned under and followed by plant cane. Nlthough occasionally some hay is removed from land planted to peas, it is believed that the cost of the seed peas may safely be considered a direct charge against the cane crop, since the value of the hay so obtained is seldom worth more than the cost of harvesting.

Table 8.-The labor required per acre for hauling, mixing, hauling to the field, and distributing ferlilizer then the rates of application are 400 to 600 pounds, per acre, respectively.

Operation.	Crew.		Acres per day.		Days per acre.			
	Men.	Mules.	$\begin{gathered} \text { At } \\ 4001 \mathrm{bs} . \end{gathered}$	$\begin{gathered} \text { At } \\ 600 \mathrm{lbs} . \end{gathered}$	At 400 lbs .		At 600 lbs .	
					Man.	Mule.	Man.	Mule.
Haul to farm, 4 tons a day..	2	2	20	$13 \frac{1}{2}$	0.10	0.10	0.15	0.15
Mix and sack, 5.7 tons a day	2		28	19	. 07		. 10	
Hanl to field.................	1	2	50	50	. 02	. 04	. 02	. 04
Distribute..	4	8	50	50	. 08	. 16	. 08	. 16
Total labor, all distributed at one time.					. 27	. 30	.35	. 35
Total if put out in two applications.....					. 37		.45	

Harvesting Cane.

The usual harvesting operations are stripping the leaves from the stalk, topping the cane, cutting it at the ground, and hauling to the station or factory. The time required for these operations will yary with the yield, condition of cane, and the weather. The heavier yields will require slightly more labor per acre, but less labor per ton for harvesting. Harvesting of lodged or crooked cane will also retard operations. In many sections it is the custom now to let cutting and stripping out on contract at 50 cents per ton, while in others all this work is done by day labor.

Table 9.-Approximate labor requirements for harvesting sugar cane per acre and per ton with varying yields. ${ }^{1}$

						oor rec per	ireme on.	
Operation.		w.	$\underset{\text { per }}{\text { quire }}$	ments cre.		yield tons cre.	Wit of 1 per	yield tons cre.
	Men.	Mules.	Man days.	Mule days.	Man days.	Mule days.	$\begin{aligned} & \text { Man } \\ & \text { days. } \end{aligned}$	Mule days.
Strip, top, and cut	19		7.17		0.60	- - . . .	0.42
Hand load 2....	3		1.14		. 09		. 07	
Haul.............	3	12	1.14	4. 56	. 09	. 37	. 07	0.27
IIoist and weigh ${ }^{3}$ Water boy.....	3	1	1.14	. 38	. 09	. 03	.07	. 02
Water boy.....	1	1	. 38	. 38	. 03	. 03	. 02	. 02
All operations.	29	14	10.97	5.32	. 90	. 43	. 65	. 31

[^16]
Character of Implements and Labor Employed.

In the production of cane in Louisiana many special implements are used, including extra large plows and middle-breakers, high double cultivators, stubble shevers, and stubble diggers, and, on some plantations, mechanical loaders. Special hand tools of inexpensive design are used to do the harvesting (fig. 10): Where sugar cane is a minor crop, as is the case in the principal sirup-producing sections, the cultivating implements are practically the same as for other crops.

In this discussion, laborers are spoken of as men. It should be remembered, however, that large numbers of women, girls, and boys are employed on cane plantations, the girls and boys ranging in age from 15 to 18 years and drawing about the same wage as women. Such operations as stripping, cutting, hoeing, shucking, whacking, and carrying water are usually performed by this type of labor.

The size of the crews for planting and other operations may vary, depending on the acreage to be planted and the time available for the work. In this discussion the crews are treated on an acre basis. The number of mechanical appliances for handling cane also affects the size of crews. On some plantations the loading of wagons is accomplished with small hoisting machines mounted on trucks, together with a gasoline engine, the outfit being drawn about the field by four mules. The same machine, with

IMPLEMENTS FOR HARVESTING SUGAR CANE.
Fig. 10.-In harvesting sugar cane the leaves are first stripped from the stalk by using the back of a cane knife, C. Sometimes the special tool represented by A and B is used for stripping. The stalk is then topped and cut off at the surface of the ground with the cane knife. A hoe, D, may be used for the latter operation. somewhat different appliances, is sometimes used instead of a mule and monkey for pulling the seed came from the windrow. Small road-grading machines are sometimes used for uncovering the windrowed seed cane and are also used for opening drain ditches. Trac-
tors have replaced mules on some plantations in the performance of operations where the draft is great and the growth stage of the cane and the condition of the soil will permit.

Total Labor Requirements.

Field investigations made on the 1922 sugar-cane crop in Louisiana show that an acre of fall-planted cane receiving no fertilizer required, on the average, 15.8 days of human labor and 9.45 days of mule labor from the time the seed stalks were put in the ground up to the time of harvest. The human labor consisted of men, women, and children. The harvesting operations, which include stripping, topping, cutting, loading, hauling, hoisting, and weighing, add 10.97 days of human labor and 5.32 days of mule labor for a 17 -ton-per: acre crop, making a total of 26.77 days of human labor and 14.77 days of mule labor to grow and harvest fall-planted cane producing that yield. In order to make these figures comparable to those which follow on spring-planted cane, we must add the time required to load the seed cane and haul it to the place of planting. This will increase the man labor 4.8 days and the mule labor 4.8 days per acre, making a grand total of 31.57 days of human labor and 19.57 days of mule labor per acre.

Table 10.-Summary of man and mule labor per acre for fertilized and unfertilized sugar canc.
[Days of labor shown for cane harvested for the mill and for seed.]

Operation.	Cane for the factor:						Cane fir seed.			
	17 tons per acre.				12 tons per acre cane.		17 tons jer acre plantcane.		12 tons per acre cane.	
	$\begin{aligned} & \text { Fall- } \\ & \text { planted } \\ & \text { cane. } \end{aligned}$		Springplanted canc.							
	Man.	Mule.								
Storage, and transporting seed cane	4. 80	4. 80	10. 10	7.63			7.45	6.21		
Fitting land.	. 95	1.73	$\stackrel{.95}{8 .}$	1.73			2.95	1.73 1.94		
Planting...	2.81	2. 5.72	3.17 12.04	1.87 5.72	12.39	6. 25	12.04	1.94 5.72	12. 39	6. 25
Harvesting.	10.97	5. 32	10.97	5.32	10.97	5. 32	${ }_{2} 3.00$		8.40	4. 80
Labor per acre, unfertilized cane.	31.57	19.57	37.23	22. 27	23. 36	11. 57	26.43	15.60	20.79	11.05

[Addition for fertilized cane.]

Labor per acre, unfertilized cane Applying fertilizer.............	$\begin{array}{r} 31.57 \\ .45 \end{array}$	$\begin{array}{r} 19.57 \\ .55 \end{array}$	$\begin{array}{r} 37.23 \\ .45 \end{array}$	22.27 .55	$\begin{array}{r} 23.36 \\ .45 \end{array}$	$\begin{array}{r} 11.57 \\ .55 \end{array}$	26.43 .45	$\begin{array}{r} 15.60 \\ .55 \end{array}$	$\begin{array}{r} 20.79 \\ .45 \end{array}$	$\begin{array}{r} 11.05 \\ .55 \end{array}$
Labor per acre, fertilized cane.	32.02	20.12	37.68	22.82	23.81	12.12	26.88	16.15	21. 24	11.60

[^17]Cane planted in the spring required 16.16 days of human labor and 9.32 days of mule labor to plant and cultivate up to the time of harvest, if no fertilizer was used on the crop. Harvesting a 17 ton crop of spring-planted cane added 10.97 days of man labor and 5.32 days of mule labor, making a total of 27.13 days of man labor and 14.64 days of mule labor per acre of spring-planted cane without fertilizer. To this should be added the labor of windrowing the seed cane in the fall and removing it from the windrows in the spring, which can be called storage operations. These operations add 10.1 days of man labor and 7.63 days of mule labor, making a grand total of 37.23 days of man labor and 22.27 days of mule labor to produce and harvest an acre of unfertilized spring-planted cane.

It required 12.39 days of human labor and 6.25 days of mule labor to cultivate an acre of stubble cane. To harvest a 12 -ton crop of stubble cane required 10.97 days of human labor and 5.32 days of mule labor per acre. The total human labor per acre on unfertilized stubble cane throughout the entire season was 23.36 days, while the mule labor totaled 11.57 days per acre.

If fertilizer was used, approximately one-third of a day of man labor and a like amount of mule labor per acre was required, whether the cane was fall planted, spring planted or stubble (fig. 11).

DAYS OF MAN LABOR PER ACRE SPENT ON FIELD OPERATIONS OF PRODUCING SUGAR CANE, LOUISIANA, 1922.

Fig. 11.-The production of spring-planted cane required over 5 days more man labor than fall-planted cane, and stubble cane about 8 days less labor. It required almost twice as much labor to store, transplant, and plant spring cane as it did fall cane. Stubble cane required a little more labor for cultivation on the average than plant cane, but somewhat less labor for harvesting.

Rates for Labor.

Customarily, laborers are employed on cane plantations on a daily wage basis, the amount of pay being governed by the kind of work that is performed. Before and after the harvesting and grinding season, field work is handled by local help that works on the plantation throughout the year. During the harvesting and grinding season, there is a large influx of additional labor that helps in the heavy rush of work which comes at that time. In general, all the laborers on the cane plantations during this rush period receive a daily wage from 25 to 75 per cent higher than wages paid during
the other seasons. In Table 11 is shown the trend of daily wages paid during the past seven years for laborers during the grinding season (which corresponds to the harvesting season) and the remainder of the year.

Table 1.1.-Showing the prevailing plantation rates for labor through a series of years, grouped as to class and season. ${ }^{1}$

Year.	During grinding.			Before and after grinding.		
	Men.	Women.	Drivers.	Men.	Women.	Drivers.
1916.	81.25	\$1.00	\$1.50	\$0.80	\$0.60	80.90
1917.	1.25	1.15	1.50	. 90	. 70	1.10
1918.	2.25	1.75	2.50	21.00	2.70	21.40
1018.				${ }^{3} 1.25$	3.80	${ }^{3} 1.50$
1919.	2.25	1.75	2.50	1.25	. 90	1.50
1920				21.40	21.00	${ }^{2} 1.65$
1920	2.25	1.75	2.50	${ }^{4} 1.50$	41.10	${ }^{4} 1.75$
1929.				51.75	51.25	52.00
1921.	1.25	1.00	1.50	1.00	. 80	1.25
1922.	1.25	1.00	1.50	1.00	. 80	1.25

${ }_{2}^{1}$ Perquisites granted laborers not included.
2 January to April.
${ }^{3}$ A pril to time of grinding.
${ }^{1}$ April to May.
${ }^{5}$ May to time of grinding.

Cost of Production.

In the study of cane production and in showing labor used in the several operations it has been considered that harvest labor should

```
COST, EXCLUDING RENT OF LAND, OF PRODUCING ONE ACRE OF SUGAR CANE NOT FERTILIZED, LOUISIANA, 1922.
```


Fig. 12.-The cost of producing an acre of sugar cane is high compared with other fiedd crops. The large amount of hand labor lequired is largely responsible for this. In addition, the cost of seed cane is particularly high in the United States. The cost of labor does not include value of perquisites. Sometimes rent of cabin, land for garden, wood for fuel, etc., are supplied free. Their values vary on different plantations and at different times.
only include the labor necessary to bring the cane to the point of acceptance by the factory, whether it be the field hoist, the barge, or by wagon direct to the factory hoist. In this discussion, therefore, the labor in the factory has not been considered. The total cost of the manual labor necessary to produce and deliver cane to the factory
is the largest single item of expense, and during 1922, for planted cane, constituted from 42 to 47 per cent of all expenditures, excluding the rent of land. In the production of stubble cane manual labor made up from 53 to 58 per cent of all expenses in production, excluding land rent. As an average for all cane upon a plantation which consists of approximately one-fourth fall planted, one-fourth spring planted, and one-half stubble cane, manual labor made up in 1922 from 48 to 52 per cent of all costs other than land rent (fig. 12).

From the limited number of observations made in Louisiana upon the crop produced in 1922 the following table upon direct cost of production has been drawn up. . Such items of indirect cost as overseeing, loss in procuring and holding labor, perquisites given, and cffice expense are not included. The data cover the growing of approximately 4,000 acres of sugar cane.

Table 12.-Average cost, excluding land rent, of growing and harcesting for the factory, 1 acre of sugar cane on individual plantations in Louisiana, 1922. ${ }^{1}$

Item.	Fall plant.	Spring plant.	Stubble.	Weighted average. ${ }^{2}$
-				
Man labor ${ }^{3}$.	\$39.46	\$46.54	\$29.20	\$36.10
Contract labor	1.00	1.00	1.00	1.00
Mule labor ${ }^{3}$..	15. 66	17.82	9.26	- 13.00
Seed cane.	21.60	27.00		12.15
Green manure-peas	2.43	2.43	1.42	1.92
Machinery..........	4.96	4.96	4.96	4.96
Total-unfertilized	85.11	99.75	45.84	69.13
Fertilizer.....	4.34	4.34	6.17	5.25
Man labor for fertilizing	. 56	. 56	. 56	. 33
Mule labor for fertilizing..	. 44	. 44	. 44	. 44
Total-fertilized.	90.45	105.09	53.01	75.39
A verage vield-tons.	17	17	12	14.5
Cost per ton....	\$5. 32	\$6.18	\$4.42	\$5. 08

${ }^{1}$ Exclusive of overhead supervision and interest on investment in land.
2 Assuming one-fourth in fall-plant, one-fourth in spring-plant and one-half in stubble.
${ }^{3}$ Man labor at $\$ 1.25$ per day and mule labor at $\$ 0.80$ per day. Value of perquisites not included.
The labor and machinery costs in Table 12 include only that portion used in production, and do not include any factory labor or equipment. At the usual rates of planting it requires 4 tons of seed cane per acre for fall planting and approximately 5 tons of seed cane per acre for spring planting. To keep about half of the cane acreage in plantcane each year consumes, therefore, a considerable portion of the crop. About 15 per cent of the total cane yield is used for seed each year.

Transporting the Cane to the Mill.

Sugar manufacture from cane in the United States in competition with other sugar-producing countries is feasible only by operating at high efficiency, and this is possible only by extensive operations, involving the investment of half a million or more dollars in the railroad and mill (figs. 13 and 16). To supply such a mill the cane must be the main crop on an extensive area, 5,000 acres or more, near the factory. The manufacture of sugar from cane is therefore an industry not adapted to sections where soil and climate are not well suited to making sugar cane the main crop. When the cane is ready
to harvest it must be cut, stripped, topped, and transported to the mill in the shortest possible space of time, and this requires a coordination of big-scale operations not approached by any other agricultural enterprise. The necessity for speed is urgent in Louisiana and other temperate zone countries, because of the danger of frost and the consequent inversion of cane sugar. In the Tropics, the same efficient transportation to the mill after cutting is necessary, because of the activity of ever-present microorganisms which cause inversion at a rapid rate in warm climates, once the cane has been cut and ceases to carry on its normal physiological functions.

These facts impose the necessity for organization of a transportation system and a rigid discipline in all related activities comparable in its efficiency to the service of supply in a modern army. Field superintendents receive their orders for cutting from the supervising field manager, who in turn must cooperate with the mill adminis-

RAILROAD BRIDGE ON A SUGAR-CANE PLANTATION.
Fig. 13.-The cost of building private railways is a large item of expense in sugar-cane production.
trator. If, for instance, the precrusher in the mill should break down, this intelligence must be communicated without delay to the remotest field where cane is being cut to prevent an accumulation of loaded cane trains in the mill railroad yards. The cut cane would spoil even after a short delay in milling operations. Roads must be maintained in condition to enable heavily loaded carts or wagons to pass from the fields to the railroad sidetracks in an orderly procession. The railroad traffic manager must keep the loaded cane trains moving to the mill and provide "empties" where needed, despite the traffic accidents which are bound to occur on the unballasted and sometimes portable tracks, which are used everywhere except for the main lines.

Among the factors mentioned at the beginning of this discussion was the necessity for close proximity of land to the mill. Economic operation demands that the fields be not too distant on account of
the time consumed in making long hauls, the extra fuel burned in making these hauls, and the extra investment in trackage and rolling stock necessary. The ideal arrangement is for the mill to be placed at the center of an approximately circular feeding area with the public railroad passing near the sugar-storage warehouse of the mill. This arrangement is often interfered with by local conditions, such as the presence of swamps, lakes, rivers, and land unavailable or unsuited for cane cultivation.

The Labor Situation.

The Louisiana planter is confronted with an emergency in the farm labor situation to-day. Sugar cane is a crop that requires a vast amount of hand labor. The sugar plantations of the South were originally worked by slaves. Since the Civil War the labor problem has in successive stages become more acute until at present it may be truthfully characterized as the problem for which, more than for any other, a solution is urgently needed. The labor conditions of to-day result from the competition between the northern manufacturer and the southern planter, and the planter is unable frequently to attract and hold labor in the face of inducements offered by the manufacturer. Migration from the southern farm to the northern factory has therefore been going on at an increasing rate for several years. No labor-saving machinery of sufficient practicability has come into use to compensate for this loss. The solution may lie in the direction of breaking up the plantation into small privately owned farms, as in the beet sections.

Moreover, Louisiana comes into competition with countries where labor is almost unbelievably abundant and cheap. While the wage scale in Cuba, Porto Rico, and other West Indian islands has advanced during the past few years, it is still below that in the United States. The Philippine laborer gets from one-fourth to one-half the wages of the southern negro, and the coolies of Java and Formosa, drawn from an almost inexhaustible supply, receive from onetenth to one-fifth the amount paid in Louisiana. It should be stated, however, that this difference is compensated in some measure by the fact that Malay labor is not so efficient as our negro, and that the low price paid to the more capable Chinese coolies on Formosan plantations is partially offset by the poverty of their soils as compared with ours.

Diseases of Sugar Cane in the United States.

It is not possible in the limits of this article to mention all the fungous, bacterial, and other diseases of sugar cane reported as occurring in the United States. The presence of these diseases constitutes one of the hazards which confront the cane growers, coordinate in its effect with unfavorable weather or adverse economic conditions. Not all of the serious diseases of cane are yet present here, and it is to be hoped that owing to the quarantine regulations now in force, with the cooporation of American cane growers, certain cane diseases of other sugar regions will be excluded. Among the diseases not present here, which seriously curtail production or add to the cost of production elsewhere, are Sereh, Fiji disease, gumming disease, downy mildew, smut, and rust. Some of these destructive diseases have necessitated a complete change of varieties, impor-
tant changes in cultural practices, and minor modifications in milling methods.
On account of our temperate climate with its annual alternation of growing and dormant periods for the cane plant, it is possible to classify cane diseases into those which exert their greatest influence on the growing crop, and those which affect the seed cane during the winter while it is banked or lying in the ground. Injury due to the

EFFECT OF MOSAIC DISEASE ON STALKS OF A VERY SUSCEPTIBLE
FIG. 14.-Mosaic is one of the many infectious diseases of sugar cane in America. The injurious effect of mosaic is somewhat similar to the effects of soil poverty or drought; the slight stunting of the plants in many cases is overlooked by planters. In the illustration a healthy stalk is shown in the center for comparison.
latter type of disease is more readily computed than the former. The amount of seed cane necessary to obtain a good stand in this country, as compared with tropical countries, is an index of the injury caused by the disease organisms which work during the dormant period. In the Tropics, where the dormant period is almost negligible, $1 \frac{1}{2}$ tons of seed per acre will produce a good stand. In Louisiana 4 to 6 tons of seed are required, largely on account of destruction of "eyes" by various fungi and bacteria. Improved methods for storing the seed cane, and attention to the possibility of spread of infection in windrows, would certainly diminish this annual loss of 350,000 to 500,000 tons of cane.
Of the diseases affecting the growing crop, the root disease, the mosaic disease, and the leaf-spotting diseases may be mentioned. Root disease, in which the young root tips are invaded and killed by fungi, until the roots are so reduced as to be unable to supply the plant with nutrients or provide anchorage, is generally considered responsible for the failure of stubble crops here. The parasitic organisms survive in cane trash and soil of cane fields, so that direct methods of control are not practicable. Since some varieties, such as some of the P. O. J. seedlings from the Pasoeroean, East Java, Experiment Station are resistant to this disease, the root disease problem must eventually be solved by substitution of these or similar varieties of cane.

The mosaic disease is a good illustration of the effect of careless importation of sugar-cane varieties from foreign countries. This destructive disease, which affects corn, sorghum, and millet, as-well as sugar cane, must have been introduced into the United States about 10 years ago. Careful records of its occurrence here, dating from 1919, when it was first observed in Louisiana, prove that it has spread from definite local points at an astonishing rate since that time. Mosaic disease causes destruction of the chlorophyl, or green coloring matter of leayes, and consequent stunting of the plants (fig. 14). Notwithstanding the efforts of the United States Department of Agriculture and State agricultural agencies, this disease has been practically ignored by cane planters everywhere, except in the peninsular section of Florida, where destruction of diseased plants, made compulsory by the Florida Plant Board, promptly and effectively stamped it out at the eight infected centers. Elsewhere, with the exception of a few small areas, the disease is now beyond control. Sereral varieties of sugar cane are known to be immune to it, however, and although the known immune varieties are not suitable for Louisiana, one of them is now being extensively grown in Georgia.

Insect Pests of Sugar Canc.

The primary insect pest of sugar cane in the United States is the sugar cane moth borer (Diatraea saccharalis cramb̈idoides). As indicated by the name, the "borer" is the larva of a moth. The exact date of its appearance in the United States is unknown. It appears to have been first noticed in the Parish of St. John the Baptist, La., in 1865. It is probable that the pest was introduced in shipments of cane either from the West Indies or South America.

The injury to cane by this insect consists of tunnels about an eighth of an inch in diameter and sometimes several feet long made by the larva in the interior of the stalk (fig. 15). For the most part
the injury is not readily noticed as the cane leaves remain green. Sometimes, however, in the case of young plants, the injury is so severe that the death of the plant occurs within a few days after it has been attacked. The insect passes the winter in the larval stage within its host. It is therefore important to plant only borer-free

INJURY TO CANE STALKS BY BORERS.
Fig. 15.-The sugar-cane borer penetrates the cane stalk and remains within the stalk until it reaches maturity. It then emerges and produces another brood of borers. Several broods of this pest may be produced during a single season. seed cane if possible. The mature insect emerges in the spring to start another generation. Four or five generations occur annually in Louisiana. It has been computed that the loss in production of sugar upon one Louisiana plantation because of borer infestation amounts to 1,000 pounds per acre.

Certain parasites of the moth borer are found in the "trash" leaves, or "shucks," left on the fields after cutting the cane. It is recommended that instead of burning this débris, it be lightly covered with earth in the fall and plowed under in the spring. This practice allows the parasites to winter over successfully and attack the moth borers the following season.

It has been demonstrated by the Department of Agriculture that the borer larvæ within seed-cane stalks can be killed by treatment with hot water for 20 minutes at $52^{\circ} \mathrm{C}$. without injuring the cane. This treatment is practicable for treating seed cane previous to shipping into noninfested territory. Hotwater treatment of seed cane on a large scale for field planting has been tried; in addition to eliminating the borer, it stimulated the cane to earlier germination and more rapid growth.

The sugar cane mealybug (Pseudococous calciolariae) has a wide distribution in the United States, being particularly abundant in the important sugar-growing parishes of Louisiana near New Orleans. It is present, however, in all of the other parishes where sugar cane is grown on large areas and in Georgia and Florida as well. The colonies of this insect may be recognized by the presence of white woolly patches situated usually on the
stalks in the vicinity of "eyes" where they are protected by the leaf sheaths. When infested cane is cut for seed the colonies remain in this position and frequently the insects increase in numbers to such proportions that the tender eyes are killed by their feeding. Feeding is accomplished by sucking the juice from the tender growth. Many of the stunted plants in badly infested fields of young cane have been checked in growth by the mealybug. The insects are distributed to uninfested territory on seed cane. An intimate relation between the mealybug and the Argentine ant has been proved. The mealybugs increase enormously when tended and protected by this ant. Eliminating the ant by poison bait therefore reduces the mealybug infestation. It has recently been shown that seed cane can be completely freed of the mealybugs by immersion of the cane in water at $52^{\circ} \mathrm{C}$. for 20 minutes. Spread of the pest into new territory may be prevented in this way.

Manufacture of Sugar from Cane.

The juice is extracted from the cane by means of heavy steel horizontal crushers and rollers driven by powerful steam engines. The cane passes first between two crushers, which are rollers with interlocking teeth of various design on their faces. Here the cane is pressed into a mat of even thickness. It passes by means of an endless carrier to the first set of rollers which are arranged in a

A TYPICAL CANE MILL.
Fig. 16.-The development of the modern cane mill has kept pace with the most progressive of industrial enterprises. The efficiency and capacity of these mills have been greatly increased in recent times.
group of three-two below and one above. In most modern mills there are three to four such groups of rollers arranged in tandem. As the mat of cane passes in a horizontal direction from one set to the next, it is sprayed with hot water to dilute the remaining juice and facilitate a more complete extraction. After passing the last roller the mat of extracted cane fiber, or bagasse, is carried on an-
other endless conveyer to driers or directly to the furnace, where it is used for fuel to operate the mill (fig. 16).

The juice flowing downward from the sets of rollers is first strained to remove suspended matter. It passes through a juice heater, where the temperature is raised to $190-200^{\circ} \mathrm{F}$., thence into settling tanks. After about one-half hour the fairly clear juice is drawn off, leaving a deposit of dirt in the bottom of the tank. The juice is further clarified by the addition of lime. Sulphurous acid or other chemicals may also be used, depending on the methods followed in individual mills. All methods have for their purpose the precipitation of impurities, which are afterwards filtered out, or the decomposition of reducing sugars into organic acids. The settlings and scums from juice heaters and settling tanks are treated separately, and the clear liquor recovered from them is added to the main body of clear juice, which is evaporated to sirup under partial vacuum in

MAKING SIRUP ON A SMALL FARM.
Fig. 17.-The old-time sirup mill is still to be found in the Southern States. The rollers are operated by means of mules and the juice is evaporated to sirup in the open kettle. There are now many modern mills in which steam or electric power is used and improved forms of evaporators are employed in making cane sirup.
the so-called "effects." The sirup may or may not be further clar1fied and filtered at this point, depending on details of the process used. It now passes into the vacuum pans where it is boiled at low temperatures under greatly reduced atmospheric pressure. After long-continued boiling the sirup becomes very thick and concentrated, due to evaporation of water, and small crystals of sugar begin to appear in the heavy viscous liquid. These crystals grow in size with the introduction from time to time of fresh sirup. When the crystals are of proper size the magma of crystals and mother liquor known as "massecuite" is passed on to the centrifugals, where the next operation of separating crystals from the mother liquor (molasses) takes place. Usually the molasses is not entirely exhausted of sugar and is returned and boiled again in the vacuum pan, either
alone or with the addition of fresh sirup. The process may be repeated several times.

The centrifugal machines, of which there are usually a large number, known technically as a "battery," consist of vertical cylindrical baskets inclosed in jackets. The sides of the baskets are perforated and in addition are lined with fine-mesh wire-gauze strainers. The baskets are revolved at high speed and the molasses is thrown out against the sides of the outer jacket and drops into a gutter below. The crystals are retained in the baskets and are washed quickly with water while revolving to remove the film of molasses. The sugar is scraped with paddles from the sides of the baskets as they revolve and is carried through tubes to driers, then to a spout where it is bagged or barreled.

The entire process of sugar manufacture from cane is subject to great variation of details, but all methods are based on the above fundamental principles. Sugar produced in this manner varies greatly in the amount and nature of impurities still contained. Those of high purity, polarizing as high as 99.6 at $30^{\circ} \mathrm{C}$., are sometimes sold as direct consumption sugars. Others containing greater amounts of glucose, ash, and organic impurities are sent to refineries for further purification. The by-products of a cane factory, derived principally from bagasse and molasses, will be discussed under "Byproducts of sugar manufacture."

Manufacture of Sirup.

The manufacture of table sirup, as it is carried on in the South, requires only a small investment in equipment, consisting usually of a small three-roller mill driven by an internal combustion engine and an open evaporating pan placed over a furnace and heated by means of a wood fire. The cane juice is first settled and the fairly clear liquid is then introduced into the pan and evaporated to sirup. During evaporation the juice is continually skimmed and certain impurities are removed, but usually no chemical clearing agents are used (fig. 17).

Extension of the market for cane sirup has been retarded by the fact that, as it is produced by a large number of individuals on a relatively small scale, the sirup has varied greatly in quality. Furthermore, cane sirup evaporated to fairly high density will crystallize, while on the other hand sirup of sufficiently low density to prevent crystallization inevitably ferments unless heated and preserved in air-tight containers. Correction of these difficulties will materially assist in increasing the market for cane sirup.

Crystallization of cane sirup is due to the presence of too great a proportion of sucrose or cane sugar and may be prevented by a process recently developed in the Department of Agriculture. This consists of using invertase, an enzyme obtained from yeast, in such manner as partially to invert cane sugar, thereby producing a mixture of cane sugar and invert sugar of increased solubility. By partially inverting the cane sugar in cane sirup by this method it is also possible to produce a noncrystallizing sirup of such high density as to greatly minimize the danger of fermentation. This last procedure is recommended for sirup shipped in barrels or held in bulk during
warm weather. The process is also advantageous for preventing crystallization of sirup of moderate density packed in cans. The value of the method has been demonstrated in commercial practice. The cost for invertase is approximately one-half cent per gallon of sirup.

For the purpose of producing sirup of uniform quality the organization of cooperative associations offers attractive possibilities. A movement in this direction has been fostered during the last year by the farm bureau federations in a number of Southern States. Except in localities where a large amount of cane is available within easy hauling distance, a cooperative mill is hardly feasible. The most practical plan for most sections is to deliver finished sirup at a central blending plant, the sirup from the various individual producers being there mixed on a sufficiently large scale to insure uniformity of the various grades. The sirup can also be given such further treatment as is practicable. Experimental work indicates the feasibility of filtering the finished sirup at the central plant and by this means improving the quality of low-grade sirup.

Extension of the market for cane sirup would make profitable for the farmer an increased acreage of sugar cane, which is highly desirable in view of the need for greater diversification of crops in the South.

Factors Influencing Sugar-Beet Culture.

The commercial production of sugar beets depends upon soil, topography, climate, water supply, drainage, and seepage. In addition to the foregoing natural factors which may be considered of importance in selecting a locality for sugar-beet production, many other factors influence the production of this crop. Various pests and diseases have become so prevalent in certain areas that successful beet culture is impossible. Among the agronomic factors affecting beet production may be mentioned crop rotations, especially their influence upon soil fertility, date of plowing, preparation of seed bed, date of planting, thinning, and other operations, as well as the application of fertilizers and the care exercised by labor in performing the various operations involved in the growing of the crop. The sugar-beet areas of the United States lie in part within humid regions, dependent upon rainfall, and in part within the semiarid and arid regions, where most of the crop is grown under irrigation.

Effect of Weather on Sugar-Beet Culture.

While the temperature must be sufficient to keep sugar beets growing, it has been found that moderate temperatures and long hours of daylight are necessary to produce a high sugar content. Beets are very sensitive to frost when young, but can stand rather cold weather as they approach maturity. The crop should have a growing period of about five months.

The sugar beet requires for its development and growth a uniformly warm and moist soil and a warm atmosphere during the early and middle portions of its growing period. Cooler weather with large diurnal variations in temperature is needed during the ripening period.

The most successful beet districts in the United States are in the regions where the mean temperature during the summer months is not far from $70^{\circ} \mathrm{F}$. Figure 18 shows the belt in which the mean summer temperature is between 67° and $72^{\circ} \mathrm{F}$. It will be noted that most of the sugar-beet factories are located in this belt.

A uniform supply of moisture is needed for sugar beets, as drought retards growth, while excessive moisture in the soil is followed for several days by a reduced sugar content of the beet roots. Comparatively dry weather should prevail during ripening. In the Great Plains, Rocky Mountain, and intermountain regions the rainfall is not sufficient to produce a satisfactory crop of beets and irrigation is necessary. In these regions drainage as well as irrigation is usually essential to success.

Fig. 18. - Sugar beets thrive best in localities where the temperature during the summer (average of June, July, and August) does not vary greatly from $70^{\circ} \mathrm{F}$. Nearly all of the beet-sugar factories in the United States are located betwern the isotherms of 67 and $72^{\circ} \mathrm{F}$. summer temperature. Owing to great variations in altitude in the Western states, the shaded area includes a wide range of climatic conditions in these States.

Sugar-Beet Soils.

Soils have a marked influence in determining the extent of development and distribution of the sugar-beet crop. The chief beet-growing centers east of the Mississippi River are in two well-defined areas. One of these is about Saginaw, Mich., the other extends from southeastern Michigan across northwestern Ohio. These are mostly old glacial lake plains which are flat or only slightly uneven in topography. They are characterized in large part by medium loams to heavy clays, dark gray to black at the surface and with gray mottled subsoils becoming distinctly calcareous at depths of 2 to 3 feet. It has been found that the best average results with sugar beets are secured on the dark colored silt and clay loams, and it is probable that these soils carry over 75 per cent of the crop. Similar soils occur in the smaller centers of production about Decatur, Ind., in southeastern Wisconsin, and in Hancock County, Iowa.

Light colored, better drained soils, and even light sandy types, are used to some extent for sugar-beet production, but in most cases their
use is incidental, resulting from their occurrence in small areas intermingled with the dark soils. The yields are lighter and more variable than on the dark soils, although as a rule the percentage of sugar carried is higher. Muck soils also are used in a limited way, but they never have been rated among the best soils for sugar-beet production. Even if large yields are secured, this may be more than offset by a low sugar content.

In the West a greater variety of soils are used for sugar-beet production. The industry has been extended to a number of widely scattered areas, each of which has soils more or less peculiar to itself. In general, lighter textured soils are used there than in eastern areas. By far the greatest acreage is carried on sandy loams, fine sandy loams and silt loams. with considerable development on clay loams. These soils are grayish brown to brown, or in a few cases dark brown in color, have friable subsoils and fair to good underdrainage. Sand types are not used to any extent because of their poor waterholding properties even under irrigation, and soils of heavy texture often have adobe-like properties which make them very difficult to handle. Heavy soils also tend to accumulate harmful quantities of alkali.

One of the essentials of successful beet production is high soil fertility. It is not only necessary that a satisfactory type of soil le sclected for the growing of beets, but that the soil should be well supplied with available plant foods. The necessary plant foods may be supplied either in the form of stable manure, or of so-called commercial fertilizers, and green manure crops are helpful. In many of the sections where beets are grown under humid conditions considerable quantities of commercial fertilizers are used with apparently satisfactory results, but scarcely any fertilizer is used as yet in the irrigated districts.

Crop Rotations.

While beets may be grown for several years in succession it is a practice not usually followed, since it results in the accumulation of diseases and insect pests which eventually destroy or reduce the crop below a profitable basis. The systems of crop rotation vary with the locality and the individual farmer. For example, on farms where dairying is one of the principal industries, more attention is given to the production of feeds of a certain type than upon farms where other kinds of farming are practiced. In general, beans and sugar beets rotate well in areas where both of these crops are satisfactorily grown. Potatoes and beets are successively rotated in several sugar-beet areas, but care must be taken to a void the introduction of potato scab (Oospora scabies) since the same disease attacks both beets and potatoes. Small grains are satisfactory rotating crops, especially when grown after sugar beets. The tilth of the soil seems to be improved by the cultivation and harvesting of the beets, so that small grains grown after the beet crop will almost universally produce larger yields.

In certain areas where crops grown in rotation with sugar beets are particularly successful they may become competing crops, and in some instances make it difficult to procure the required acreage of
beets necessary to operate a beet-sugar mill. Just as it is unwise to grow sugar beets after sugar beets for a long series of years, it is also unwise to grow continuously any one of the competing crops. Among the crops that most strongly compete with sugar beets under present conditions are beans, potatoes, and alfalfa, and in some instances the grain crops, especially corn. In general, the best results are obtained in the long run by growing crops in rotation, not only because of the effect upon the soil and the prevention of the accumulation of dangerous diseases and insect pests, but also because by so doing more uniform and satisfactory marketing and price conditions may be maintained.

Production of Sugar-Beet Seed in Amcrica.

In contrast to sugar cane, beets for the tactory are grown from seed instead of from cuttings. The same care in selection of the planting material is required, for if the resulting crop falls below certain limits in sucrose content, it could not be worked up economically at the factory and would be unusable for sugar manufacture. Thus poor beet seed results in greater loss than is the case with other crops in which diminished yield is usually the only result of inferior seed. Since variation in quality of beets is permissible only within narrow limits, and since considerable technical skill is required in the selection of seed mother plants to maintain high quality, the production of seed is an operation which is not practicable for individual farmers on a small scale. The beets from a lot designed for seed production are analyzed by removing representative portions from individual beet roots without destroying the latter. The promising beets are then stored over winter and their progeny from seed are analyzed the second year following. Those not eliminated by this second test are stored and are planted out the fourth year to produce the " mother seed." This seed is planted the following spring, and the resulting beet roots or "Stecklinge" are stored and planted out the sixth year to produce marketable beet seed. The types of beets used in the United States are for the most part those known as Vilmorin and Kleinwanzleben (fig. 19).

Previous to the World War practically all of the seed used in America came from the large beet-seed companies in Europe. During the war the quality of seed from Europe deteriorated, and in addition much of it was found to be adulterated with stock-beet seed. This resulted in a considerable amount of seed being produced, mostly by the increase of seed of European origin, by large beet-sugar companies in America. Since the close of the war the importers of European seed are again assured of seed of good quality, and importation has increased (fig. 20). Much of the seed produced here during the war was of good quality, but it is evident that it can be purchased abroad more cheaply, owing no doubt to the greater experience of foreign producers and availability of cheaper labor in Europe. The advantages of a domestic supply of beet seed are obvious and were emphatically demonstrated during the war. It is almost needless to enumerate all of the advantages of a home supply of seed, but it may be pointed out that the require-

[^18]ments of the local beet-producing areas are very different. It is a recognized fact that in the improvement of cultivated plants by breeding, many types are produced that are successful on some areas but not at all suitable for others. It is reasonable to suppose, therefore, that beet types evolved for use in definite local areas would be superior to those imported from remote regions, even though the latter give approximately satisfactory results.

A BEET SEED PLANT.

Fig. 19.-Sugar-beet seed is produced the second season, the root being grown the first year and planted out the following spring for seed production. The seed plants grow to a height of from 4 to 6 feet and each plant produces from several ounces to more than a pound of seed, depending upon the season and upon the type of plant.

Practices in Growing Sugar Beets.

In the growing of sugar beets many of the implements used for the production of other crops are employed, such as plows, drags, harrows, and the like. A few special implements are necessary if beets are to be grown continuously or on a commercial scale. The principal special implements are the beet-seed drill, beet cultivator, beet lifter, and a special wagon for hauling the roots to the factory or loading station. Beet-seed drills are usually constructed so that they will plant four rows at a time. The bect rows are usually from 18 to 22 inches apart and the drills are made so that they can be adjusted to the width of the row desired. Because of the narrow rows special cultivators are made for cultivating sugar beets. In planting beet seed care should be taken to cover the seed to a uniform depth and to make the rows as nearly straight as possible. Many good stands of keets are severely injured by cutting out beets when cultivating, and

SUGAR-BEET SEED FRODUCTION, CONSUMPTION, AND IMPORTATION, 1911-1922.

Fig. 20... The quantity of sugar-bcet seed used in the Cnited States has incroascd with the increased acreage of beets planted. Intil the outbreak of the World War practically all sugar-beet seed used in this country was imported from Europe. With the outbreak of the war, sugar-beet seed production was taken up and for several years the domestic supply was nearly half of the United States requirement. In 1922 the domestic production of beet seed was very small. (The quantity of seed used each year is an estimate based on acreage sown and averages about 20 per cent less than the total of imports and domestic production. This surplus is accounted for by acreage reseeded, stocks of seed on hand, losses by deterioration, etc.)
this is much more generally the case if the rows are not straight. In order to insure a uniform depth of planting, the seed bed should be thoroughly prepared until it has a uniform firmness over its entire surface.

Sugar beets are cultivated just as soon as the rows can be followed, and the beets are then blocked and thinned so that they will stand one plant in a place at intervals of from 10 to 12 inches in the row. The blocking and thinning of the beet crop is ore of the most important factors in the production of a satisfactory yield. Many good stands of beets are permanently injured by blocking and thinning the
beets too far apart, or by improper thinning, so that two or more beets remain where there should be but one. Sugar beets should be cultivated often enough to keep down all weed growth and maintain a mulch over the surface of the ground. Occasional hoeings between the beets in the row are performed to keep the rows clean. When the beet leaves cover the ground the crop is laid by, and nothing further is required until the beets are full grown. Then samples are taken at random throughout the fields and tests made with reference to sugar content and purity. As soon as the sugar in the beet is greater than 12 per cent, and the purity coefficient is 80 or more, the beets are considered fit for harvesting (fig. 21). A purity coefficient below 80 indicates that the beets are not mature and that they should be allowed to remain in the ground for a longer time before they are harvested. The weather conditions greatly influence the maturity of

A FIELD OF BEETS READY FOR HARVEST.
Fig. 21.-When sugar beets are mature the foliage, if uninjured, is dense and has a yellowish tinge. The leaves and crowns of the beets, which are left in the field at harvest time, produce a large amount of stock feed.
beets, the most satisfactory condition being cool nights and warm days.

In harvesting the beets the first operation consists of lifting or loosening them from the soil. They are then thrown into piles or windrows. Usually from 12 to 20 rows of beets are used to make one row of piles or one windrow. After the beets are piled they are topped, and again thrown in piles where the ground is free from leaves and other trash. In topping the beets they are cut at the point where the lowest leaves were attached. This operation is usually performed by means of large straight knives, one stroke being sufficient to top a beet. After the beets are topped and piled they are loaded onto wagons and hauled to the sugar mill or loading station. The distance which it will pay to haul beets depends upon the con-
dition of the roads, that is, whether hilly or level, soft or hard, but usually it is not advisable to undertake to haul beet roots more than 4 or 5 miles. Farmers living at a greater distance from the sugar mill are commonly provided with loading stations or dumps at convenient points along the railroad.

Sugar-Bect Discases.

There are four diseases of the sugar beet which are of special interest to sugar-beet growers, namely, curly-top, root rot, leaf-spot, and wilt.

Curly-top, the cause of which is not definitely known, is found only in the western part of the United States. It is carried from plant to plant and from field to field by means of a leaf hopper. The most promising line of control of this disease is through the development of a curly-top resistant strain of beets. Distinct progress is being made by the Department of Agriculture in the development of such a strain.

Root rot, produced by a fungus known as Phoma, is found more or less generally distributed over the entire sugar-bect area of the United States. It occurs also in foreign countries. It is influenced largely in its development by weather conditions, excessive moisture and high temperature being the principal factors favoring it. The only control measures known are crop rotation and uniformly favorable growing conditions.
Leaf-spot is more or less prevalent on sugar beets each year in the eastern and north central portion of the United States. Iit is caused by a fungus, and injury may be reduced by a deep fall plowing and crop rotation. Leaf-spot may also be controlled by spraying with Bordeaux mixture and by the development of leaf-spot resistant strains of beets.

The sugar-beet wilt, produced by the sugar-beet nematode, has been found in several Western States, where it does serious damage annually. The cause of this disease is a minute wormlike organism which lives in the soil and feeds upon the sugar beet and, to a less extent, upon many other plants. The only remedy for this disease is crop rotation. Care should be taken to avoid spreading the nematode from field to field by farming implements, animals, or man. The dump dirt which clings to the beets when they are harvested and delivered should be deposited where it can not find its way into sugar-beet fields.

Several minor diseases of the sugar beet do considerable damage annually in certain local areas. The total damage produced by sugar-beet diseases amounts to millions of dollars.

The Principal Sugar-Bcet Insect Pests of the United States.

Prominent among the injurious insects of sugar beets are the sugar-beet webworm, beet army worm, beet wireworm, beet leaf beetle, beet leafhopper, root lice or aphids, false chinch bug, and cutworms.

The sugar-beet webworm is a serious beet pest and the most troublesome of those which subsist upon foliage. It is an imported species, introduced on the Pacific coast, and has spread to all sugar-
beet sections in the United States and Canada. Ordnarily this webworm subsists on weeds, such as lamb's-quarters, pigweed, and Russian thistle, in addition to beets, but when it becomes abundant it feeds on a variety of vegetables. After the webworms hatch they begin feeding on the foliage of beets, which they soon strip, causing severe losses, that become apparent in the low yield of roots per acre at harvest time. Losses as high as $\$ 2,000,000$ per annum, it has been estimated, are apt to occur unless control measures are instituted as soon as infestation is observed. This webworm can be controlled by arsenicals, Paris green and zinc arsenite having proven perfectly satisfactory. Arsenate of lead and of lime are not as satisfactory. The Department of Agriculture has succeeded in effectively controlling the pest by spraying beet fields with 3 pounds of Paris green to 100 gallons of water, while other institutions have used as high as four times this amount. Careful work needs to be done to determine the most economical formula.

The beet army worm, also an imported pest, has spread into nearly all the sugar-beet districts. It is larger than the sugar-beet webworm, causes similar damage, and can be controlled by the same methods. Wireworms are particularly destructive to beet roots on the Pacific coast. A certain amount of exemption from injury can be obtained by the collection of the "worms" with baits and by using some of the usual wireworm remedies.

The bect leaf beetle, or "alkali bug," does its principal injury in alkali regions and attacks beets after the removal of its natural food plants, such as sea blite and lamb's-quarters. It is well known to growers, but seldom destroys large acreages. A knowledge of the fact that the beetle passes the winter under bunches of grass, especially "tickle grass," heaps of weeds, straw, and the like, is of value in its control, which is accomplished by providing similar artificial shelters in infested fields and burning them during the winter. Large numbers of hibernating beetles are thus destroyed. Arsenicals and other insecticides are not entirely satisfactory.

The sugar-beet leaf hopper, the vector (transmitter) of "curlytop" or "curly-leaf," exists in all fields through the growing season. This disease becomes manifest when the beets bunch up or form rosettes. It has been estimated that in 1914 the malady transmitted by this insect was the cause of a loss of over $\$ 1,000,000$ in the Salinas Valley of California alone, and that in years of serious outbreaks losses in the United States may total $\$ 2,000,000$. This species has been the subject of investigation for a period of years, but definite, practical results are lacking, the insect seeming to defy all attempts to combat it successfully. Spraying with Bordeaux mixture, an economic method of controlling the related potato leaf hopper and nicotine dust, valuable against most all sucking insects, have proved ineffective. The most promising control method being investigated is the cultivation of resistant strains of beets.

Beet root lice or aphids range orer the entire sugar-beet area of the United States. No direct remedies are indicated. Crop rotation, irrigation, and the destruction of cottonwoods, which harbor the winged form of the pest, are helpful as methods of control.

The false chinch bug is a pest of wide distribution and is usually periodical as regards injury. It is not confined to sugar beets, attacking many other plants, but when abundant it swarms over sugar-
beet fields and is then difficult to combat. The best methods for controlling it consists in killing the bugs by means of contact poisons and capturing them on a form of sticky shield, a variation of the "hopperdozer" used for grasshoppers.

Cutworms are quite destructive to young beets, but if work is undertaken at the outset of attack they may be easily controlled by the use of poisoned baits.

In the control of all insects injurious to sugar beets clean culture is a necessity, and the eradication of weeds at all times is of great importance, because many weeds, especially such as grow in irrigated alkali regions, serve as a natural breeding place for practically all of the pests which have been mentioned, as well as for others.

Cost of Producing Sugar Beets.

Sugar beets, when produced on an extensive scale, require much more capital than most other crops. Some special beet equipment is necessary, and the crop is grown on relatively high-priced land. In addition, intensive methods, involving a relatively large cash outlay

Fig. 2\%.-Location of areas where cost studies of sugar-beet production have been made. These areas include most of the typical sugar-beet districts of the United States.
for labor to perform the handwork, are essential to the successful production of this crop. Since the price for sugar beets is settled before the crop is planted, the grower should attempt to adjust his operations so as to produce at a cost which will return a profit at the contract price.

The areas in which studies of the cost of production have been made are shown in Figure 22. ${ }^{5}$

[^19]
Elements of Cost.

The principal items entering into the cost of sugar-beet production are man and horse labor, seed, fertilizer, irrigation water, taxes, use of land, and equipment.
Under eastern humid conditions, as represented by Michigan, Ohio, and Wisconsin, the percentage distribution of the various cost items grouped under four general classes is about as follows: Man and horse labor, 65 per cent; materials, 10 per cent; use of land, 20 per cent: and all other costs, 5 per cent. In the irrigated areas, represented by Colorado, Utah, Idaho, and Montana, and for Pacific coast irrigated and nonirrigated conditions represented by California: Man and horse labor constitute about 55 per cent; materials, 10 per cent; use of land, 30 per cent; and all other costs, 5 per cent of the total cost of production. The relatively lower land values in Michigan, Ohio, and Wisconsin serve to reduce the percentage of total costs represented by land rental and to increase the percentage that labor is of the total cost of sugar-beet production in these States.

Cost items expressed as money units are subject to considerable change, especially during periods of wide price fluctuations. The same items when expressed in terms of quantity requirements of labor and materials, such as hours, pounds, and the like, are more stable and lend themselves better to analytical study. The items which can be shown in this manner in the case of sugar beets are man labor, horse labor, seed, manure, and commercial fertilizer, the combined cost of which represents from 83 to 91 per cent of the total operating expense of producing an acre of sugar beets. (Fig. 23 and Table 13.)

The sugar beet is an intensive crop and requires a large amount of man labor, especially during the thinning and harvesting periods. About six times more man labor is required to raise an acre of sugar beets than an acre of corn and twelve times more than is required to raise an acre of hay. The number of acres a grower can handle is limited by the amount of hand labor available at the thinning and harvesting periods. When large acreages are grown, the hand labor is usually employed on a contract basis, a stipulated sum per acre being paid for blocking and thinning, hoeing, pulling, and topping. The hand labor constitutes from 60 to 80 per cent of the total man-labor expense.

Considerable variation existed in the labor requirements for the sugar-beet districts shown in Figure 23 and Table 13. The man hours per acre were relatively low in California, while the horse hours per acre were relatively low in Michigan and Ohio. The large size equipment used in the California districts was one of the chief factors tending to reduce the man-hour and to increase the horsehour requirements, while in Michigan and Ohio small equipment was used, requiring more man hours but relatively fewer horse hours per acre. In Colorado, Utah, and Idaho the extra work, because of irrigation, served to increase the man-hour requirements. Because sugar beets are a bulky, heavy product, the yield per acre is an important factor in determining the labor requirements.

An example of the seasonal distribution of man and horse labor in a representative district of Colorado is given in Figure 24. The

SUGAR BEETS: QUANTITY COST FACTORS PER ACRE, 1914-1916.

Fig. 23.-Differences in yields and in the practices of growing and handling the crop caused considerable regional variation in the hours of man and horse labor required, and in amounts of seed, manure, and commercial fertilizer used. In the Western States no commercial fertilizer was used, and in California very little stable manure was applied. The ratio of the cost of the quantity factors to the total operating expense was slightly lower in Utah, Idaho, and California than in Ohio, Michigan, and Colorado.
seasonal demand for labor on sugar beets in this district is rather uneven and fits in well with the production of barley, oats, and alfalfa. The growing of these crops serve to fill in profitably the otherwise slack periods during June and July.

Table 13.--sugar beets: Quantity cost factors per acre, 191亿-1916.

Region.	Yield per acre.	Man labor.	Horse labor.	Seed.	Manure.	$\underset{\text { mercial }}{\text { Com- }}$ fertilizer. ${ }^{2}$	$\begin{aligned} & \text { Percent- } \\ & \text { age } \\ & \text { quantity } \\ & \text { cost } \\ & \text { factors } \\ & \text { are } \\ & \text { of total } \\ & \text { oper- } \\ & \text { ating ex- } \\ & \text { pense.s } \end{aligned}$
California:	Tons.	IItours.	IIours.	Pounds.	Tons.	Pounds.	Per cent.
Los Angeles.	14.5	87.7	109.3	20.7	(1)		84
Oxnard.	9.5	79.5	111.5	16.6	(1)	(4)	85
Salinas.	15.6	101.2	124.3	14.6	(1)	(${ }^{\text {(}}$	85
Utah and Idaho:							
Garland.	14.8	133.3	98.5	14.7	5.1	(4)	87
Provo....	15.0	130.8	117.1	14.9	7.0	(4)	86
Idaho Falls.	13.6	119.4	79.3	14.7	6.3	(4)	83
Colorado: Greeley.	15.6	123.9	104.5	18.0	8.3		91
Frort Morgan	13.6	118.1	103.0	21.1	4.4	(4)	88
Rocky Ford.	13.0	117.3	132.7	21.7	3.6	(4)	90
Michigan:							
Caro.	9.7	105.5	80.0	15.6	2.0	92	90
Alma.	11.4	114.8	95.3	15.3	2.7	62	90
Grand Rapids.	10.2	111.3	93.8	14.2	2.8	94	99
Northwestern Ohio.	13.2	113.4	79.1	15.2		61	89

[^20]The labor of hauling to loading station or sugar factory constituted about 12 per cent of the total man hours and 35 per cent of the total horse hours required to produce and deliver the crop. Studies that have been made in various sugar-beet districts indicate that the average haul is about 3 miles. The relation of the distance hauled to the labor cost of hauling is shown in Figure 25. The expense of transportation serves to concentrate the production of sugar beets within a relatively short haul from the loading station or beet-sugar factory.

The arerage amount of beet seed used per acre was slightly less in Utah, Idaho, Michigan, and Ohio than in California and Colorado (fig. 23). The seed requirements for all California districts and the Fort Morgan and Rocky Ford districts of Colorado include a small amount of replanting.

Barnyard manure was used in all districts, but only to a slight extent in California and Ohio. In the California areas the supply of farm manure was limited; in Ohio the growing of sugar beets in rotation with clover partly accounted for the small amount used in that State. In Utah, Idaho, and Colorado, where winter feeding of sheep and beef cattle was largely practiced, considerable manure was available for use on sugar-beet land.

MONTHLY DISTRIBUTION OF SUGAR-BEET LABOR PER ACRE: FORT MORGAN DISTRICT, COLORADO, 1914-15.

Fig. 24.--The heaviest requirements for man labor in the production of the beet crop occur in May and October, during the thinning and harvesting periods; the "peak loads" for horse labor are in April and October at the seeding and harvesting season. Much of the man labor required-in these operations is hired on a contract basis.

Commercial fertilizer was applied only in the Michigan and Ohio districts. The actual application varied from an average of 130 pounds in the Caro districts to 170 pounds per acre in northwestern Ohio.

The Use of Quantity Requirements of Labor and Materials in Computing

 Costs.A knowledge of the quantity requirements of labor and materials makes it possible to compute approximate costs for a given year, providing prices and yields are known. Table 14 shows how current rates may be applied to these requirements in computing the average regional cost of producing sugar beets in 1922 for the districts under consideration.

LABOR COST OF DELIVERING SUGAR BEETS, UTAH AND IDAHO, 1918-19.

[^21]Table 14.-Computed cost of producing sugar bcets, 19??.

Item.	Ca!ifornia-Oxnard district.			Colorado-Creeley district.			Michigan-Cars district.		
	Amount per a(re.	Rate.	Cost per acre.	Amount per acre.	Rate.	Cost per acre.	$\begin{gathered} \text { Amount } \\ \text { per } \\ \text { acre. } \end{gathered}$	Rate.	$\begin{aligned} & \text { Cost } \\ & \text { per } \\ & \text { acre. } \end{aligned}$
Man labor (hours) ${ }^{1}$	19.5	\$0.30	\$5. 85	44.2	\$0.25	\$11.05	38.5	\$0.25	\$9. 62
Contract hand labor			18.30			18.00			18. 50
Horse labor (hours) ${ }^{1}$	107.1	. 125	13.39	93.7	. 15	14.06	78.2	. 17	13.29
Seed (pounds) .-......	16.6	. 15	2.49	18.0	. 20	3.60	15.6	. 15	2.34
Commercial fertilizer (pounds)							92.0	\$32 T.	1.47
Manure (tons)..................				8.0	. 65	5.20	3.0	. 90	2.70
Total			40.03			51.91			47.92
Per cent these items were of total operating expense, 1915	85			91			90		
Total operating expense (100 per cent)			47.09			57.04			53. 24
Use of land.	8300	7\%	21.00	\$180	7\%	12.60	\$125	6%	7.50
Total cost per acre.			68.09			69.64			60.74
Yield per acre (tons), 1922 Total cost per ton	8		\&. 51	10.25		6.79	9		6.75

${ }^{1}$ Adjustments of man and horse-hour requirements were made on the basis of yield.
So long as the cost of the total quantitative requirements maintains a fairly constant relation to the total operating expense and constitutes a relatively large per cent of it, these requirements provide a valuable basis for estimating costs. If it is desired to esti-

VARIATION IN COST PER TON OF PRODUCING SUGAR BEETS, UTAH AND IDAHO, 1918-19.

Fik. 26.-The largest number of farmers in these districts produced beets in 1918 at a cost of $\$ 9$ and $\$ 10$ per ton, but two farmers produced at a cost of $\$ \overline{5}$ per ton, while one farmer had a cost of $\$ 35$. Yield per acre was the principal factor which enabled some growers to produce at a cost materially below the average, yet undoubtedly a part of these lower costs was the result of a more economical use of labor and the other factors of production.
mate the cost on a particular farm, the actual requirements for that farm should, of course, be used.

Variations in Cost.

Farm cost figures, as a rule, have been shown as averages. It is a matter of common observation, however, that land values and the amounts and prices of labor and materials in a given region vary

INFLUENCE OF YIELD PER ACRE ON COST OF PRODUCING SUGAR BEETS, UTAH AND IDAHO, 1918-19.

F'ic. 27.-The farmers with the highest yield per acre produced beets at the lowest cost per ton. As the yields increased the cost per acre increased, but the cost per ton decreased at a much faster rate. The cost groups indicate that in these years the methods of production were not sufficiently intensive to result in an increasing cost per ton.
from farm to farm and that yields fluctuate widely. These differences result in wide variations in production costs. A comparison of a grower's own costs with an array of costs for a group of farms indicates where his farm stands in the array and should serve to encourage him to study his costs with a view of reducing them wherever possible.

Figure 26, showing an array of costs in Utah and Idaho for the years 1918 and 1919, is presented as an example to illustrate the wide range that may exist in the cost of producing sugar beets. The average cost was $\$ 9.49$ per ton for an average yield of 13.7 tons per acre, while the range in cost was from $\$ 5$ to $\$ 35$ per ton. Yield per acre was the dominant factor in the grouping of these farms according to cost. The grower with the highest cost had a yield of only 3 tons per acre, while the grower with the lowest cost had a yield of 24 tons per acre. Approximately 80 per cent of the growcrs, 81 per cent of the harvested acreage, and 89 per cent of the total production were included in a cost of $\$ 12$ or less per ton.

In general, for a constant acre yield an increase in beet acreage per farm within reasonable limits results in a decrease cost per ton. For most profitable production a grower should have sufficient
acreage to make the sugar-beet enterprise an important one in the farm business. With a certain market and a guaranteed price per ton, an effort should be made to obtain good yields, which are associated with thorough tillage methods, a good cropping system, and the exercise of care in the performance of the handwork, especially blocking and thinning, upon which a good stand largely depends.

An example of the influence of yield per acre on the cost per acre and per ton is shown in Figure 27. With few exceptions an increase in yield results in some increase in cost per acre, but a very much greater decrease in cost per ton. With an increase in yield of from 9 to 24 tons per acre, the cost per acre increased from $\$ 119$ to $\$ 160$, or 34 per cent, while the corresponding cost per ton decreased from $\$ 14$ to $\$ 7$, or 50 per cent.

Sugar-Beet Land Tenure.

Studies of the tenure of sugar-beet land in the principal sugarbeet districts of the United States show that in Ohio, Michigan, Utah, and Idaho a greater percentage of the beet land was operated by owners than by tenants, while in Colorado and California the opposite was the case.

In these areas both the cash and share methods of rental were followed in leasing sugar-beet land. Under the cash rental method the landlord paid the land tax and all building and fence maintenance, and the tenant furnished all work stock and equipment, paid all operating expense, and received all of the crop produced. Several methods of share leasing of sugar-beet land were practiced, and much variation existed as to the division of the expense and the share of the proceeds from the sale of the crop that was received by the landlord and tenant, the landlord receiving one-half, one-third, onefourth, one-fifth, or two-fifths of the crop according as the expenses were shared by each. Of these the one-fourth and one-half share method of rental were most general. Under the one-fourth share, which was the most common method of leasing sugar-beet land in California, Colorado, and Utah, the landlord paid the land tax and the tenant furnished all work stock and equipment, paid all operating expense, and gave the landlord one-fourth of the proceeds from the sale of the crop. The half share method of rental prevailed in Michigan and Ohio. Under this system the usual custom was for the landlord to maintain the buildings and fences, pay the land tax and half of the expense for seed, fertilizer, and hand labor, and to receive half of the proceeds from the sale of the crop, the tenant furnishing the work stock, equipment, and all labor except half of the hand labor.

Relation of Sugar Beet Prices to the General Price Level.

In order that the sugar company may know the approximate tonnage that will be available for the "campaign " and that the grower may have a definite market for his product, it has become the unirersal practice for the sugar company and the grower to execute an agreement relative to the acreage to be planted and the price to be paid by the company for the crop when produced. The price usually involved a sliding scale based upon the sugar content.

In Figure 28 the index number of the wholesale price of all commodities is taken as a measure of the general price level and compared with the index number of the farm price of sugar beets. In order to provide a standard of pre-war conditions for measuring price changes, these index numbers were computed using the year 1913 as a basis. A comparison of the prices received for sugar beets with the general price level for all commodities serves to measure whether the price received for sugar beets is relatively high or low.

The general trend in the price level of all commodities and the average farm price received for sugar beets over the period 1911 to 1915 was fairy constant. During the next four years, the trend in price of all commodities and of sugar beets was upward; but the price of things that farmers buy, as measured by the general price level of all commodities, increased at a faster rate than did the price of sugar beets, so that the growers' purchasing power, as measured by sugar beets, was lower during and after the World War than for

TRENDS OF PRICE OF SUGAR BEETS AND OF ALL COMMODITIES, 1911-1922.

Fig. 28.-The price of sugar beets in 1922 was slightly below the price in 1913 whereas the average price of all commodities was nearly 50 per cent above the 1913 price. Consequently, the purchasing power of a ton of beets in 1922 was only about two-thirds of its purchasing power in 1913. This was the lowest for any year during the period 1911 to 1922.
the period immediately preceding. In 1922 the price index for all commodities was 149 , while the price index for sugar beets stood at 99 .

Manufacture of Sugar From Beets.

Sugar beets, like sugar cane, are transported for manufacture into sugar to large factories which, for the reasons given in the discussion of cane, should be centrally located with reference to the beet-growing area (fig. 29). Private railways are in almost universal use on cane plantations, but this is not the case with beets, which are grown mostly on small independent farms, and hauled in wagons to the
mill or to loading stations on the main railway. At the factory the beets are dumped into V -shaped bins at the bottom of which is a flume covered with removable boards. As needed, the beets are carried into the factory by the swift current of the flume.

Briefly, the process of manufacture consists of cleaning and slicing the beets, placing the slices in large cylinders and extracting the sugar by diffusion. This is accomplished by successive treatments with hot water. Here is where the process differs essentially from extraction from cane. The extract is clarified by treatment with suitable chemicals, the sludgelike precipitated material removed by filtering, and the clean juice evaporated under reduced pressure until a mass of sugar crystals has been formed. The sugar is finally separated from the other liquor or molasses. After several strikes of sugar have been obtained, the molasses is further desugarized by other processes. The Steffen process is generally used in this country.

A TYPICAL BEET-SUGAR FACTORY.
Fig. 29.- Modern beet-sugar factories in the United States are capable of slicing from 500 tons to more than 3,000 tons of beet roots per day. The average slicing capacity of the beet-sugar factories in the United States is approximately 1,000 tons daily. When the factory is started it operates continuously until the entire crop of beets has been sliced.

Owing to variations in the composition of beets, due largely to storage and variations in degree of maturity, it has been necessary to discard molasses from time to time in operating the Steffen process, the net result being that only 65 per cent of the beet molasses produced has been treated for recovery of sugar. The remaining 35 per cent has been used in the past largely for feeding purposes, a relatively small amount having been used for manufacture of alcohol. Owing to the recent drop in price of this discard molasses, the question of increased efficiency in desugarization has become very important. The Department of Agriculture is investigating this problem at the present time and also devising improved analytical
methods, which will make it possible to determine more accurately the amounts of sugar entering the factory and the losses which occur during the process of operation. More accurate chemical control makes possible further reduction of sugar losses (fig. 30).

Improvement of Sugar Plants by Breeding and Selection.

Competition between the sugar-producing countries of the world has resulted in attention being directed toward increasing the amount and quality of sugar plants produced from a given unit of area. The early years of the sugar-beet industry in Europe were marked by successful efforts to raise the sugar content of the beets by selection in order to compete with cheap sugar imported from the cane plantations of the Tropics. At present these efforts are not confined to competition between beet and cane growers. Both industries are established on permanent footings. The attempts directed toward

SUGAR BEETS, PURITY AND EXTRACTION, AVERAGE FOR UNITED STATES, 1904-1922.

Fig. 30.-The purity coefficient, which is determined by dividing the amount of sugar in a given quantity of beet juice by the total solids in the same quantity of beet juice, should be not less than 80 if the beets are mature. The extraction of sugar from beets depends upon the quality of the beets, the coefficient of purity, and the efficiency of the factory equipment and operators. The percentage of extraction increased appreciably between 1904 and 1915.
amelioration of sugar plants is evident among the cane regions in competition with one another and among the beet regions of the world as well. There are 18 Government-maintained experiment stations devoted wholly or in part to the improvement of sugar-cane varieties. A still larger number of private experiment stations are supported by cane-sugar companies or associations of companies. All of the large sugar-beet seed companies that produce their own seed must engage in the breeding of desirable strains, and many Government institutions also give attention to this problem.

Keeping in mind the relatively high value of land suitable for sugar plants and the great expense required in growing them, the essential object to be attained is seen to be production of a large

[^22]amount of sugar per acre. Practices in growing the crops may cause great variation in yields, but the characteristics of the plants themselves are fundamentally important. Reduced to a simple statement, they must yicld a large amount of raw material rich in sucrose. Many other factors, such as the time required to reach maturity and resistance to cold, drought, and other adverse conditions must be considered. A large yield of sugar per acre from a great tonnage of raw material may be less profitable owing to the expense in handling the latter than a somewhat smaller yield of sugar recovered from a small tonnage richer in sugar. In the case of sugar cane some varieties extremely rich in sugar yield too small an amount of sugar per

TREND OF YIELD PER ACRE OF CANE AND SUGAR, JAVA COMPARED WITH LOUISIANA, 1895-1922.

Fig. 31.-The gradual increase in yield of cane and sugar per acre in Java is owing largely to adoption of superior varieties evolved by experiment stations and nurserymen. Practically all of the sugar produced by Java to-day is made from hybrid seedling varieties.
acre on account of the small size and weak stooling properties of the plants. The habit of growth of sugar "ane, such as prolific stooling and early shading of the ground or "closing of the rows," results in a reduction of expense in cultivating. Erect growth, freedom from irritating bristles in the leaf sheath, and ease in removal of the leaves or "trash" are characteristics that facilitate harvesting.
In the case of sugar bects, and sugar cane as well, immunity from the attacks of certain diseases and insect pests is a matter of utmost importance.

The presence of nonsugar compounds and sugars other than sucrose and their effect in preventing or complicating the recovery of sucrose must be considered. These poinss, together with many others, must be taken into account by the sugar-plant breeder.

Sugar beets being grown commercially from seed, the desirable strains as described in the discussion of beet-seed production are bred by selection of pure lines rich in sucrose. The flowers are open-fertile and failure to select the desirable strains would soon lead to deterioration in subsequent generations. Sugar cane, on the other

CANE SEEDLINGS IN GREENHOUSE.
Fig. 32.-Thousands of sugar-cane seedlings are produced annually by the Department of Agriculture. Their performance is tested by checking against that of standard varieties. Viable seed has been obtained in the United States only in southern Florida.
hand, is grown commercially only from cuttings. By this vegetative method of reproduction no obvious deterioration has been demonstrated. Recently the practice of obtaining improved varie-

CANE SEEDLINGS ABOUT SIX WEEKS OLD.

Fig. 33.-The minute seeds from cane which has " arrowed" is sown on sterilized soil in flats or pots. The amount of germination varies greatly with different varieties. Some varieties are quite sterile. The seedings at the left are hybrids resulting from the crossing of a standard variety with a variety immune to mosaic.
ties from seed in Java and Barbados has, however, necessitated the adoption of hybridization and selection by competing countries (fig. 31).

Much of the work in improving varieties of sugar cane has been haphazard, largely owing to the extreme technical difficulties encountered in crossing varieties and germinating the minute seeds. In many regions viable seed are not produced. With proper study of the characteristics of parents and intelligent application of the principles of genetics, much has been accomplished, but the possibility of further improvement still exists. Seedlings from self-fertilized plants, especially hybrids, are sometimes better than the parents (figs. 32-34).

Consideration is being given to the possibility of improving sugar cane by bud selection. True bud mutations or "sports" are

CANE-SEEDLING TRANSPLANTS.
Fig. 34.-After the roots are well established the seedlings are picked out and transplanted to pots accommodating about 10 plants. As they develop in size individual plants are then transplanted successively into pots of increasing size, and those which survive are eventually designated by number and planted in the field.
rare, however, and authentic cases, as far as have been proved, are simply color variations. Individual plants of the same variety vary greatly in size of stalks, tillering, etc., under apparently the same conditions. The desirable ones may be plus variants rather than mutations, and it is yet to be proved whether in the cases of a crop which is replanted every few years a selection of these plants is commercially practicable. Bud selection has been notably successful in the case of long-lived citrus and other trees.

Production of Sucrose by Sorgo and Maple.

Sucrose is produced in considerable quantities by sorgo and maple, being utilized mostly in the form of sirups. There are many varie-

A FIELD OF SORGO.

Fig. 35.-The sorgos, from which the sorgo sirup is produced, are grown in nearly all States. When the sorgo is mature it is harvested in a manner similar to sugar cane and milled, generally in farm or custom mills and not in large factories.
ties or strains of sorgo grown in this country. One or more varieties are grown commercially in each of the 48 States (fig. 36). Owing to the readiness with which sorgo plants cross-pollinate, existing varieties are badly mixed. Rapid progress is being made in the breeding of pure and improved strains suited to the great variety of soil and climatic conditions of this country (fig. 35). At the outbreak of the World War the production of sorgo sirup had fallen to below

Fig. 36.-The production of commercial sorgo sirup is confined almost exclusively to the Southeastern and South Central States. Large quantities of sorgo sirup are produced for home consumption, however; as far north as Wisconsin and Minnesota. The map shows total production of sorgo sirup in the more important States. In the Gulf States and Georgia about twice as much sirup is made from sugar cane as from sorgo.

PRODUCTION OF SORGO SIRUP IN THE UNITED STATES, 1859-1919.

Fig. 37.-The production of sorgo was stimulated in the late seventies and the early cighties by the hope that sugar could be made from this plant. From that period the production of sorgo sirup declined until just previous to the World War, when less than $15,000,000$ gallons were produced annually. With the outbreak of the World War the production of sorgo sirup again increased until in 1919 it amounted to $39,400,000$ gallons, and in 1921 reached the maximum of approximately $45,500,000$ gallons. By 1923 the production had declined to $33,600,000$ gallons. These estimates for 1919,1921 , and 1923 were made by the Department of Agriculture; for other years the figures are from census reports.
$15,000,000$ gallons, but by 1917 it had increased to $37,472,000$ gallon's, and in 1921 it reached a total of $45,554,000$ gallons (fig. 37). Production declined to $33,600,000$ gallons in 1923.

The amount of maple sirup and sugar produced in the United States declined 20 per cent between 1909 and 1919 , but the total value

Fig. 38.-Maple sugar and sirup are produced in 23 States; but 13 States, located in the northcastern quarter of the United States, produce 95 per cent, and 3 States (Vermont, New York, and Ohio) produce over 70 per cent. No maple sugar or sirup is made outside of the United States and Canada. The production in the United States of maple sugar and sirup (jointly equivalent to about 20,000 tons of sugar in 1919) is insignificant compared with sugar from beets and cane (about $1,000,000$ tons).
increased 120 per cent. Seven thousand fewer farms reported the production of maple sirup and sugar in 1919 than in 1909, a drop of 8 per cent, and $1,440,000$ fewer trees were tapped. Vermont and New York are close rivals in production. In general the sugar groves

MAPLE GROVE IN VERMONT.

Fig. 39.-Maple trees normally grow in groves. The large tree in the foreground in the above picture shows the method of collecting sap for sugar or sirup production.
in Vermont are considerably larger than those in other States, the larger production in New York being due to a greater number of small groves. The total production of maple sugar and sirup in 1919 was equivalent to $4,700,000$ gallons of sirup, valued at over $\$ 12,300,000$ (figs. 38 to 40).

Production of Other Sugars.

Glucose is manufactured in large amounts from cornstarch, and is sold for table sirup and other purposes. It is prepared by a chemical process which consists of hydrolizing the starch into glucose by means of acids. Frequently part of the output of a glucose plant is blended with maple sirup or other flavoring materials. The resulting mixtures are palatable and nutritious, but do not possess the caloric value nor the sweetening power of sirups having a larger per cent of sucrose, such as cane, maple, and sorghum sirups. The value of these products increased from $\$ 32,930,918$ in 1909 to $\$ 134,548,109$ in 1919.
Other sugars that previous to 1914 were largely or entirely imported, but which are now manufactured in the United States in sufficient quantities for domestic needs, are lactose (milk sugar),

MAPLE SUGAR PRODUCTION, 1839-1919, AND MAPLE SIRUP PRODUCTION, 1859-1919.

Fig. 40.-The production of maple sugar has decreased greatly since 1889 , while the production of sirup has increased considerably during that period. The production of maple sugar and sirup is dependent upon the season, as well as upon the number of trees tapped.
used in the preparation of infant foods, etc.; levulose, used in place of sucrose in the foods of persons suffering from diabetes, etc.; and the so-called " rare" sugars, such as maltose, xylose, melezitose, melibiose, trehalose, rhammose, etc., used almost entirely in chemical and bacteriological investigations. The production of these sugars varies from about $6,000,000$ pounds in the case of lactose to possibly less than 1 ounce in the case of some of the rare sugars, and the price varies from about 20 cents per pound in the case of lactose to $\$ 25$ or more per ounce in the case of certain of the rare sugars.

By-Products of Sugar Manufacture.

With the centralization of sugar-cane and sugar-beet enterprises, and the accompanying increase in the size of mills and factories, the enormous amount of by-products became more apparent and their utilization more practicable. Until recently the great bulk of these by-products, produced in small amounts by the innumerable small inefficient mills, were wasted. The principal by-products common to both cane and beet sugar factories are molasses and products
derived from it, such as alcohol and rum. In addition to the output from the beet factories of the West and Middle West and the cane mills of the South, a great quantity of blackstrap molasses is imported each year from Cuba (fig. 41). It is used largely as stock feed, principally in feed mixtures. Many farm animals relish these mixtures, which consist for the most part of roughage sprinkled with dilute molasses. Good results have been obtained in the fattening of beef cattle with both beet and cane molasses." Since molasses is rich in carbohydrates, it should be fed with alfalfa or other protein feed in order to make a balanced ration. Cane molasses is more or less constipating, while beet molasses, owing to the high per cent of salts, has a laxative action. Excessive amounts, therefore, should not be used.

Molasses is also used for the manufacture of industrial alcohol, and it is anticipated that the demand for this product will increase. In

IMPORTATION OF MOLASSES INTO THE UNITED STATES, 1875-1922.

Fig. 41.-Considerable molasses was imported into the United States, mostly for human consumption, as early as 1875 , but the imports decreased to almost nothing in the late nineties. During the past 10 years the importations have very greatly increased. These imports, however, are mostly black-strap molasses, which is used principally for stock feed and the production of alcohol. Nearly all of this black-strap molasses comes from Cuba. Small quantities of molasses are imported from Santo Domingo and the British West Indies. Some of this molasses is fit for human consumption.
Natal a satisfactory motor spirit is obtained by the distillation of fermented molasses, and in many countries rum is made in large quantities. When the market price of molasses is low it is sometimes mixed with bagasse and used as fuel and sometimes put back on the land as fertilizer.
A number of by-products peculiar to beet manufacture are of such value as stock feed that stock raising has become a profitable adjunct of the industry. After the saccharine matter is extracted from the sliced beets in the sugar factory a fibrous mass remains which is known as pulp. This is fed either wet as it comes from the factory or as dried pulp. Wet pulp is used largely by beef and dairy cattle and by sheep. It is consumed almost entirely near the sugar factories, Fig. 42.

Many of the beet factories have equipment for drying the green pulp. The moisture is reduced from 95 per cent to 12 per cent without injury to the feeding value. Dried pulp can be shipped satisfactorily and is becoming a popular feed. Various experiments have demonstrated that dried beet pulp compares favorably with corn. Dried beet pulp produces larger gains in growing animals, but corn makes more rapid gain during the finishing period. Dried pulp has given good results when fed to the various classes of livestock at the following rates per day: Fattening steers (1,000 pounds), 6 pounds; dairy cows, 4 pounds; horses, 3 pounds; fattening sheep, 1 pound; and hogs, 1 pound.
Wet pulp is especially suitable for feeding old ewes and cattle. Ten times the weight of that given for dried pulp may be fed in wet form. Wet pulp which is fed either fresh, as it comes from the fac-

CATTLE EATING SUGAR-BEET TOPS.
Fig. 42.-Sugar-beet pulp and tops are excellent feeds for livestock, especially for dairy cows. These feeds are most economically fed in large strong troughs.
tory, or in the fermented state, as it comes from silos, is usually too bulky for younger animals.

Beets are purchased by the sugar companies with the tops and crowns removed, because certain salts accumulate in the crown which interfere with the recovery of sugar from the juices. The tops and crowns are left in the field at harvest time and later are either pastured or gathered and fed as forage or used for silage. In the sugar-beet producing areas of Colorado, Idaho, and Utah these tops are fed largely to sheep and cattle. The tops are palatable, but because of their cathartic character must be fed cautiously. The best way to feed beet tops is in the form of silage. The silage is succulent and palatable and makes a desirable ration when supplemented with some legume, hay and grain. The cathartic properties of the beet tops are largely corrected in the fermentation process in the silo. Beet-top silage has given good results in both beef and mutton production.

Waste lime is used to some extent as fertilizer, but most of it is discharged into the sewage ditches.

The bagasse from cane mills was formerly too wet for burning under boilers. At the present time it is so completely extracted by modern mills that, with the addition of a small quantity of crude oil, it supplies the fuel needs of most plants, and sometimes there is an excess. This material is also used in the manufacture of cheap paper, insulating material, wall board, packing material, etc. The ash from bagasse contains large amounts of phosphates and potash and is usually returned to the soil as fertilizer. Filter press cake, rich in nitrogen and phosphates, is also used for fertilizer.

The green cane tops are fed to cattle in many cane countries, particularly to carabaos in the Orient, but up to the present this material is not extensively used for feed in America. It may be satisfactorily used as silage. While the cane-top silage has not proved as satisfactory as that from corn, soybeans, sorgo, and cowpeas, it is a valuable feed in many areas where the latter crops can not be grown successfully. In some countries where, owing to overpopulation, the struggle for existence is more intense than here, the dead cane leaves and trash are carefully gathered and used as fuel for cooking.

World Production and Movement of Sugar.

The production of sugar forms a part of the agricultural economy of nearly every important country of the world. Since the cane is a tropical plant and the beet is at home in the temperate zones, sugar is produced in commercial quantities in every continent, and from Natal and Argentina in the Southern Hemisphere to Canada and Sweden far to the north (fig. 43).

The reported world production increased very rapidly in the years just before the World War, and in 1912-13 reached 20,700,000 short tons. In the next seven years, in spite of the war and subsequent unsettled conditions, the minimum production was $17,700,000$ short tons in 1919-20, with a maximum of $19,600,000$ tons in 1917-18.
In 1921-22, and again in 1922-23, the world sugar output was in round numbers $20,000,000$ short tons. But while the total production has remained so remarkably constant, there has been a radical shift in the chief resources of supply (fig. 46). In 1912-13, 9, 000,000 tons, or 45 per cent of the world's supply of sugar, was produced in continental Europe, which not only supplied its own demand and that of Great Britain but exported considerable quantities to the United States and the Near East. Following the war in 1919-20, the European production was less than $3,000,000$ tons, or 17 per cent of the world production, and even in 1922-23 Europe has produced only $4,500,000$ tons, or 23 per cent of the total. Germany and France are now importing more sugar than they export, and only Czechoslovakia has any considerable surplus for export. The United Kingdom, with its large demand for foreign sugar, has been obliged to turn to Cuba, Java, and other producing centers in the Tropics (fig. 44).
This shift in production has also meant a shift from beet sugar to cane sugar. In the five years just preceding the World War, out of an average world production of $18,400,000$ short tons, 8,500000 tons, or 46 per cent was beet sugar. In the five years since

Fig. 43.-The production of sugar is widespread throughout the world. Cane sugar is produced in tropical and subtropical zones and beet sugar in temperate latitudes as far north as Sweden. Since the beginning of the World War sugar production has increased most rapidly in tropical countries, particularly in Cuba. Over one-fifth of the world's sugar is produced in Cuba. The

Fig. 44.-The two largest sugar-exporting countries are Cuba and Java, with secondary sources of supply in Hawaii, the Philippines, Porto Rico, Czechoslovakia, Formosa, Brazil, and Peru. The United States and the United Kingdom fre the most important sugar-importing countries, followed in importance by British India, China, France, and Canada. The United States imports sugar from Cuba to supplement the domestic supply and shipments from its insular territories, while the United Kingdom and
western Europe import more largely from Java and the minor surplus countries.
the close of the war, with an average world production of $18,800,000$ short tons, only $4,750,000$ tons, or 25 per cent, was produced from beets. This shift may be shown by a comparison of two countries, Germany and Cuba. Germany in 1909-10 to 1913-14 produced an average of $2,296,000$ short tons of beet sugar, while in the same years Cuba produced an average of $2,295,000$ short tons of cane sugar. In the years 1918-19 to 1922-23, Germany produced an average of $1,220,000$ tons, while Cuba produced an average of 4,350,000 tons (fig. 46).

Since Europe had relied so largely upon beet sugar, the sudden change to a cane sugar basis found the importing countries of Europe lacking in adequate cane-sugar refineries. Therefore, much of the cane sugar destined for European consumption has been refined in the United States, and appears in the trade statistics as

WORLD PRODUCTION OF SUGAR, 1853-1922.

Fig. 45. The commercial production of sugar first became important in the last half of the nineteenth century. Froduction increased rapidly until 1914, when it was checked by the World War. Beet-sugar production, at first unimportant, was stimulated by bounties and tariffs and was approximately cqual to that of cane sugar from 1884 until 1914. Since 1914 cancsugar production has continued to increase, while beet sugar has declined in relative importance to less than one-third of the total sugar supply of the world.
exported from the United States to Europe. Consequently, the sugar exports of the United States increased from an average of 80,000 tons in the years 1909-1913 to an average of 650,000 tons in the four years 1919-1922, thereby making the United States in these years not only the largest sugar-importing country, but the third largest sugar-exporting country, exceeded only by Cuba with exports of $4,200,000$ tons, and Java with $1,700,000$ tons (fig. 47). Next to the United States, the largest sugar-importing countries in the years 1919-1922 were the United Kingdom, France, Canada, British India, and China. (See corner graph of fig. 44.)

The sources of the net sugar supply of the United States, making allowance for raw sugar imported and later exported as refined sugar, were for the years 1918-1922, inclusive, approximately as follows; Cuba, 50 per cent; domestic beet, 18 per cent; Hawaii, 11.4
per cent; Porto Rico, 8.2 per cent; domestic cane, 4.7 per cent; Philippine Islands, 2.7 per cent; other sources, 5 per cent (fig. 48). In the fiscal year ending June 30, 1923, the dutiable imports of

SUGAR PRODUCTION IN PRINCIPAL SUGAR-PRODUCING COUNTRIES, 1890-91 TO 1922-23.

[^23]IMPORTS AND EXPORTS OF SUGAR, CONTINENTAL UNITED STATES, YEARS ENDING JUNE 30, 1875-1922.

Fig. 47.-While the amount of sugar imported into the Cnited States has varied somewhat from year to yrar, the general tendency has been toward larger importations from decade to decade. Sugar exports were very small until about 1914. Since that date the sugar exports have been larger. The exports of sugar consist mostly of shipments to the United States for refining to be later reshipped.
sugar into the United States amounted to $3,929,000$ short tons, of which $3,865,000$ tons came from Cuba. In addition, 277,000 tons were imported without tariff duties from the Philippines; 598,000 tons were brought in from Hawaii; 355,000 tons from Porto Rico, and 5,000 tons from the Virgin Islands. These amounts added to the domestic production of 970,000 tons give a total gross supply

SOURCES OF SUGAR SUPPLY OF THE CONTINENTAL UNITED STATES.

Fig. 48. -In the five years from July 1, 1917, to June 30, 1922, the sources of the sugar supply of the United States were varied. In these years 50 per cent of the net supply was obtained from Cuba, 22.7 per cent was produced in continental United States. 11.4 per cent came from Hawaii, 8.2 per cent from Porto Rico, 2.7 per cent from the Philippine Islands, 0.8 per cent from Dominican Republic, 1.6 per cent from Central and South America, and 2.5 per cent from other countries of which Java was the most important. Under normal conditions the United States receives practically no sugar from foreign countries except Cuba.
for the year of $6,134,000$ tons. The exports in the same period were 391,000 tons, leaving $5,743,000$ tons for consumption, or 29 per cent of the world's supply.

Price and Consumption of Sugar.

Cuban sugar has long been the controlling factor in the United States sugar market. Prices of raw sugar and of refined sugar in the United States during the last 21 years have closely paralleled the price of raw sugar in Cuba. Except for abnormal foreign demand, as in the later years of the World War, the price of sugar in Cuba has in turn been dominated by the Cuban sugar supply.

The parallel upward trend of production and price, as shown in Figure 49, indicates that the demand for Cuban sugar has expanded as rapidly as production has increased. The upward trend in the general price level has also contributed to the rise in sugar

PRICES AND SUPPLY OF RAW SUGAR IN CUBA, 1904-1923.

Fli. 49. Roth price and supply of sugaz in Cuba show an upward trend since
1904. This trend was appaient before 1914 , but production in subsequent years was greatly stimulated by the high prices of the war years. If we disregard this upward trend, the inverse correlation between price and supply is apparent, the price tending tọ be low when the supply is large.
prices. The high peak of supply shown for the grinding year 1922 (including, as usual, about one month of the preceding callendar year) was due to an abnormally large carry-over from the previous crop which, owing to the collapse of the raw sugar market, had not been moved. The drop in the supply from 1922 to 1923 is due not solely to the actual decline in production, but as well to the moving of these large accumulations of stocks. It is important to note in this connection that there is no measure of unconsumed stocks of sugar in the channels of trade except in Cuba and at refiner's ports in the United States. It should not be assumed, therefore, that all of the sugar statistically accounted for as consumption was necessarily actually consumed in the year.

[^24]

The close parallel normally maintained between the price of raw sugar in Cuba and raw and refined sugar in the United States is shown in Figure 50. While the general trend of both consumption and price in the United States has been upward during the last 21 years, the quantity of sugar apparently consumed per capita has

SUGAR CONSUMPTION AND RELATIVE RETAIL PRICES, UNITED STATES, 1913-14 TO 1922-23.

Fif. 51.-- Since 1919-14 the consumption of sugar in the United States has generally shown an inverse correlation to the price. The most striking exception to this rule was in the year 1919-20, when prices increased so rapidly that people were led to speculate in sugar and hoard it in anticipation of still higher prices. It is probable that the recent increase in sugar consumption is to some extent a result of the adoption of the prohibition amendment.
been generally lowest in years in which retail sugar prices have been highest relative to the prices of all foods. The per capita consumption amounted for the first time to as much as 104 pounds in 1921-22, when the average retail price of sugar was relatively lowest. The outstanding exceptions to this relationship, shown in Figure 51, were in the fiscal years 1919-20 and 1922-23. It the pre-war market with restrictions on consumption and price relaxed, and with uncertainty as to supplies, the apparent consumption for the year 1919-20 increased to a new record even while retail prices of sugar averaged fully 50 per cent higher than the retail prices of all foods. And again in 1922-23, when apprehension of impending shortage resulted in a relative price of sugar fully one-third higher than in the preceding year, consumption per capita was barely checked at the same level.

Sugar Legislation.

Among the factors influencing sugar production in the United States the tariff was mentioned. For one reason or another taxes have been levied on imported sugar since the early days of the Republic. The first act relative to tariff on sugar was passed by Congress in 1789, before sugar had been made in this country and many years before it had become an important commercial product. Sugar was considered a luxury in those days and the tax was purely a luxury tax designed for additional Government income. Sugar was placed on the free list in 1792, but this act was repealed in 1794, and since then an import duty has'been collected on all sugar from foreign countries, gradually becoming an almost traditional policy of protection for the American sugar industry. On account of the enormous quantities of sugar still imported into this country and on which full preferential duty is paid, the Government receives no inconsiderable income. From the standpoint of the producer, legislation has been more or less favorable, varying greatly with different administrations, all of whom, however, acted on the presumption that protection was necessary for the survival of the industry. In 1890 an act was passed giving producers of sugar a bounty of 2 cents per pound under certain conditions. This was repealed in 1894. The question of tariff has lately become very complicated due to conflicting interests of producers both at home and in insular territories and protectorates, refiners and consumers. In 1876 an act was passed admitting sugar from the now Territory of Hawaii free of duty, and by proclamation of the President, sugar from Porto Rico was placed on the free list July 25, 1901. In 1902, import duty on sugar from the Philippines was fixed at 75 per cent of existing foreign rates, and since 1913 sugar actually produced in the Philippines has been admitted free of duty. In 1903 import duty on sugar from Cuba was reduced to 80 per cent of that from other foreign countries. In view of the importance of this'legislation, it seems appropriate to include a list of tariff acts of the United States which have been passed mostly for the protection of the sugar industry (Table 15).

Table 15.-Ratcs of duty on imports of sugar under the tariff acts, 1789-1922.

Date of act (and when effective).

Tuly 4, 1789 (Aug. 1, 1789) Aug. 10, 1790 (Dec. 1, 1790). May 2, 1792 (July 1, 1792)... June 5, 1794 (Oct. 1, 1794)... June 7, 1794 (July 1, 1794)... Jan. 29, 1795 (Apr. 1, 179.5)..

Mar. 3, 1797 (July 1, 1797)...
May 13, 1800 (July 1, 1800).. July 1, 1812 (July 1, 1812)... A pr. 27, 1816 (July 1, 1816).
Tuly 14, 1832 (Mar. 4, 1833)..
Mar. 2, 1833 (Jan. 1, 1834)..
Aug. 30, 1842 (Aug. 31, 1842).
July 30, 1846 (Dec. 2, 1846)..
Mar. 3, 1857 (July 1, 1857)..
Mar. 2, 1861 (Λ pr. 2, 1×61)..

Aug. 5, 1861 (Aug. 6, 1861).

Dec. 24, 1561 (Dec. 25, 1861)
July 14, 1862 (Aug. 2, 1862)..

Apr. 29, 1864 (Apr. 29, 1×64). June 30, 1864 (July 1, 1864)...

July 14, 1870 (Jan. 1, 1871)..

Dec. 22, 1870 (Dec. 22, 1870).

Mar. 3, 1875 (Mar. 4, 1875)...
Aug. 15, 1876 (Sept. 9, 1876). Mar. 3, 1883 (July 1, 1883)...

Oct. 1, 1890 (Apr. 1, 1891)...

Aug. 27, 1894 (Aug. 1, 1894).

July 24, 1897 (July 24, 1897).

Apr. 12, 1900 (Apr. 12, 1900).
A Pr. 30, 1900.

Tuly $25,1901$.
Mar. 8, 1902 (Mar. \&, 1902)...
Dec. 17, 190:3 (Dec. 27, 1903).
fug. 5, 1909 (Aug. 6, 1909).

Rates of duty.

Brown, 1 cent per pound; loaf, 3 cents per pound; other $1 \frac{1}{2}$ cents per pound. Brown, $1 \frac{1}{2}$ cents per pound; loaf, 5 cents per pound: other $2 \frac{1}{2}$ cents per pound. All sugar free.
Refined, 4 cents per pound.
Clayed or lump, 1 cent per pound.
White clayed or white powdered, 3 cents per pound; other clayed or jowdered, $1 \frac{1}{2}$ cents per pound.
Brown, $\frac{1}{2}$ cent per pound.
Brown, 1 cent per pound.
Existing rates dombled until one jear after the war
White clayed or powdered, 4 cents per pound; lump, 10 cents per pound; loaf, 12 cents per pound; brown, 3 cents per pound.
White clayed, $3 \frac{1}{2}$ cents per pound; brown, $2 \frac{1}{2}$ cents per pound.
Existing rates exceeding 20 per cent to be reduced to 20 per cent by yearly reductions to July 1, 1842.
Raw and brown clayed, $2 \frac{1}{2}$ cents per pound; other, not refined, t cents per pound; refined, 6 cents per pound.
All kinds, 30 per cent.
All kinds, 24 per cent.
Brown (muscovado), white and clayed, unrefined, $\frac{3}{4}$ cent per pound; refined, 2 cent per pound; refined, linctured, colored, adulterated, 4 cents per pound.
Brown and sugars not advanced above No. 12 Dutch standard, 2 cents per pound; above No. 12, not refined, $2 \frac{1}{2}$ cents per pound; refined, 4 cents per pound; refined and tinctured, 6 cents per pound.
Brown and sugars not above No. 12 Dutch standard, $2 \frac{1}{2}$ cents per pound; above No. 12, not refined, 3 cents per pound; refined, 5 cents per pound; refined and tinctured, 8 cents per pound.
Not above No. 12, $2 \frac{1}{2}$ cents per pound; above No. 12 to No. 15, 3 cents per pound; above No. 15 to No. 20, $3 \frac{1}{2}$ cents per pound; above No. 20,4 cents per pound; refined and tinctured, 10 cents per pound.
Existing rates increased 50 per cent for 60 days.
Not above No. 12, 3 cents per pound; above No. 12 to No. 15, $3 \frac{1}{2}$ cents per pound; above No. 15 to No. 20, 4 cents per pound; above No. 20, 5 cents per pound; refined and tinctured, 15 cents per pound.
Raw not above No. 7, 13 cents per pound; above No. 7 and other sugars not above No. 10, 2 cents per pound; other sugars above No. 10 to No. 13, 21 cents per pound; other sugars above No. 13 to No. 16, 23 cents per pound; other sugars above No. 16 to No. 20, $3 \frac{1}{4}$ cents per pound; all sugar above No. 20 and all rofined, 4 cents per pound.
All sugar not above No. 7, $1 \frac{3}{4}$ cents per pound; above No. 7 to No. 10, 2 cents per pound; above No. 10 to No. 13, $2 \frac{1}{4}$ cents per pound; above No. 13 to No. 16, $2 \frac{3}{4}$ cents per pound; above No. 16 to No. $20,3 \frac{1}{4}$ cents per pound; above No. 20 and refined, 4 cents per pound.
Rates of December 22, 1870, increased 25 per cent; melada hereafter to be "sugar" dutiable according to the rates for the Dutch standard.
"Sandwich Island sugar" free.
All sugars not above No. 13 and melada, beet and cane juice, etc., testing by polariscope not above 75°, 1.4 cents per pound; for each degree over 75°, 0.04 cent per pound additional. All sugar above No. 13 to No. 16, 2.75 cents per pound; above No. 16 to No. 20,3 cents per pound: above No. 20, 3.5 cents per pound; refined, tinctured, etc., 10 cents per pound.

Bounty to Unitc d States producers to July 1, 1895, sugar not below 90° by polariscope from beets, sorghum, sugar cane, and maple sap, 2 cents per pound; below 90° and not below 80°, $1 \frac{3}{4}$ cents per pound. Duties-all sugars above No. 16, 0.5 cent per pound; not above No. 16, and melada, sirups of cane juice, etc., free; refined, tinctured, etc., 5 cents per pound.
Bounty law repealed. All sugars, melada, sirups of beet and sugar cane, etc., 40 per cent; all sugars above No. 16 and all discolored sugars, $\frac{1}{8}$ cent per pound additional.
Sugars not above No. 16, melada, sirups of cane juice, etc., testing by polariscope not above $75^{6}, 0.95$ cent per pound; for each additional degree 0.035 cent per pound additional; above No. 16 and all sugar which has gone through a process of refining, 1.95 cents per pound; refined and tinctured, 4 cents per pound and 15 per cent; maple sugar and sirup, 4 cents per pound.
Shipments from Porto Rico to United States: 15 per cent of existing rates. Territorial Government of Hawaii established and any dutiable article the growth, production, or manufacture of that territory may enter United States free.
Shipments from Porto Rico to United States free. (Proclamation by President.)
Imports from Philippine Islands of articles grown and produced there, 75 per cent of existing rates. (Ceased Aug. 6, 1909.)
Imports from Cuba of products of soil or industry of that country, 20 per cent below existing rates. N ot subsequently repealed.
Sugars not above No. 16, melada, sirups of cane juice, etc., testing by polariscope not above $75^{\circ}, 0.95$ cent per pound; for each additional degree, 0.035 cent per pound additional; above N 0.16 and all sugar which has gone through a process of refining, 1.9 cents per pound; refined and tinctured, 4 cents per pound and 15 per cent; maple sugar and sirup, 4 cents per pound. Rates apply to Philippine Islands to this extent, imports of sugar in any fiscal year exceeding 300,000 gross tons.

Table 15.-Rutes of duty on imports of sugar, etc.-Continued.

Date of act (and when effective).Oct. 3, 1913 (Mar. 1, 1914)...	Rates of duty.
	gars, melada, sirups of cane juice, etc., testing by polariscope not above
	75° d. 0.71 cent per pound; for cach additional degrec, 0.026 cent per pound
	additional; on and after May 1, 1916, free. Maple sugar and sirup, 3 cents
	, 1916, free. All articles the growth or
May 27, 1921 (May 28, 1921).	Sugars, melada, sirups of cane juice, etc., testing by polariscope not above
	$75^{\circ}, 1.16$ cents per pound; for each additional degree, 0.04 cent per pound
Sept. 21, 1922 (Sept.22, 1922).	Sugars, melada, sirups of cane juice, ctc., testing by polariscope not above
	75°, and all mixtures of sugar and water testing above 50° to $75^{\circ}, 1.24$
	cents per pound; for zach additional degree, 0.046 cent per pound ad-
	ditional; refined sugar, tinctured, 40 per cent. Maple sugar and sirup,
	free. All rates subject to change by President after invcstigation of cost
	of production, domestic and foreign.

$\Lambda \mathrm{s}$ has been noted, the United States has become one of the principal sugar refining and exporting countries of the world, in addition to being the greatest consumer of this product. A discussion of the duties imposed by foreign countries at the present time therefore possesses interest. Practically all sugar-producing countries have passed laws taxing imported sugar for the protection of their industry; and other countries, almost without exception, have such laws for purposes of revenue. Sugar is, in fact, one of the most universally taxed articles of commerce the world over. It is on the free list in a few unimportant countries, such as the federated and some of the unfederated Malay States, and in free ports, such as Curaçao, Singapore, Hongkong, etc. Internal conditions of industrial competition have raised local differences of opinion in some countries and resulted in bitter controversies on tariff policies. As a case in point, the extensive jam trade of Australia, making use of imported sugar for the manufacture of their product, which is largely exported, comes into conflict with the interests of sugar producers in northeastern Australia. Such instances of internal interests not in consonance on the subject of sugar tariff could be multiplied. In view of its bearing on export of sugar from the United States, a table of custom duties imposed by some foreign countries is appended (Table 16).

Table: 16.-Ratess of duty on imports of sugar for various countries.

Country and description.	Actual duty in money and wei	Date when duty was in force.	Duties con- verted in dollars per 100 pounds (exchange ason date of duty listed).
Argentina (law of 1906, as increased 1920): ${ }^{1}$	${ }^{9}$ pesos per 100 legal 6) kilos.	\Aug. 7,1923	$\left\{\begin{array}{l}3.085 \\ 2.056\end{array}\right.$
cluding the sack.........................			
Australia (law of 1920):	$\left.\underset{\text { Free }}{9-6-8}\}^{12}\right\}_{\text {pounds per long }}^{\text {ton. }}$	Aug. 13, 1923	$\left\{\begin{array}{l}\text { 2.447 } \\ \text { 1.903 } \\ \text { Freee }\end{array}\right.$
Sungar, produced of sugar cane			
Molasses.			
	48 gold crowns per 100kilos.	\}Aug. 7,1923	
Candy sugar.............			1.458
${ }^{1}$ There is a surtax of 7 per cent of the yalue. 2 Duties to be paid in gold.			

'rable 16.—Rates of duties on imports of sugar for rarious countries-Contd.

Country and description.	Actual duty in money and weight of each country.	Date when duty was in force.	$\begin{aligned} & \text { Duties con- } \\ & \text { verted in } \\ & \text { dollars per } \\ & 100 \text { pounds } \\ & \text { (exchange } \\ & \text { as on date of } \\ & \text { dutylisted). } \end{aligned}$
Belgium (law of 1913, as increased 1921):			
Juices and raw sugars, of beet and cane	franes per 100 kilos.	Aug. 13, 1923	0.819
Brazil: ${ }^{\text {Refined sugars }}$	francs per 100 kilos.	Aug. 13, 1923	. 819
Brazil: ${ }^{8}$			
Sugar, candy Sugar, ot her.	135)milreis per 10 $266.8\}$ kilos.	...do.	$\begin{array}{r} 7.489 \\ 14.826 \end{array}$
Canada (law of 1907 amended May, 1921 and 1923):			
All sugar above No. 16, Dutch standard in color,			
and all refined sugars of whatever kinds, grades,			
135^{4} (graduated scale increasing by from 2 to			
ion)-			
When not exceeding 88° of polarization.....	1.50 Canadian dollars		1.4659
When exceeding 98° but not exceeding 99°..	$1.89\}$ per 100 pounds.	Aug. 7, 1923	1.8476
Sugar above No. 16, Dutch standard in color, when imported by a recognized sugar refiner, for refining purposes only, under regulations	for refining purposes only, under regulations		
by the Minister of Customs and Inland Reve-			
Dutch standard in color, sugar drainings or			
pumpings, drained in transit, melada or concentrated melada, tank bottoms, sugar con-			
When not exceeding 76° of polarization	0.8108 Canadian dol-		. 7915
When exceeding 97° but not exceeding 98°.	$1.3432\}$ lars per 100		1.312
When exceeding 98°. .	1.425 pounds.		1.3926
Chile:			
Sugar not sperified, with following saccharose			
More than 98 per cent but not over 99\% per cent.	${ }^{6}$ (pesos per 1 wo kilos 3_{3} not.	Aug. 7, 1923	.3289 $.164 ?$
China: ${ }^{6}$			
Sugar, brown	0.23)IItaikwan tae	(10.	. 1389
Sugar, white.	$0.32 \int$ per picul.	do.	. 1932
Colombia: 7 l ${ }^{7}$			
Sugar, muscodado or centrifuga	${ }^{8}$ ¢ pesos per 100 kilos.	do.	3.3883
Sugar, "corriente" nol refin	16 colons per 100 kilosdo.....	1.6744 6.9790
Refined sugar	$60)$ gross.	. 1	6.2790
Cuba:			
Raw sugar...	$1.00{ }^{\text {dollars }}$ per 100		
Refined sugar	0.937i) kilos.	do	. 421
Czechoslovakia:			
Beet sugar and all sugar of similar kinds (cane sugar) in every condition of purity, except molasses.			4. 4629
Sugar of other kinds, e. g., glucose, starch sugar grape sugar, fruit sugar, milk sugar and the like, sugar for coloring purposes (for eoloring beets), ete.	338 crowns per kilos.	do.	4. 4629
Sugar in loaves, sheets, cakes, and the like, whole, undivided, also powdered sugar with a polarization of over 98 per cent, grape or starch sugar.	10 . ${ }^{\text {crowns }} \begin{gathered}\text { kilos. }\end{gathered}$	do.	. 8253
Powdered sugar with a polarization of over 86 per cent not over 98 per cent.	6.5		. 3364

3 Sacks, gross; other packing 15 per cent tare.
4 Provided that refined sugar shall be entitled to entry under the British preferential tariff upon evidence sat isfactory to the Minister of Customs and Inland Revenue, that such refined sugar has been manufactured wholly from raw sugar produced in the British colonies and possessions, and not otherwise.
5 Provided that all raw sugar, including sugar specified in this item the produce of any British colony or possession shall be entitled to entry under the British preferential tariff, when imported direct into Canada from any British country.

6 Custom duties to be paid in IIaikwan tael.
7 There is a surtax of 7 per cent of the duty with an additional surtax of 10 per cent of total import duty which includes the surtax. Exchange is given as per quotation of Apr. 18, 1923.
8 There is a surtax of $2 \frac{1}{2}$ centavos per gross kilo; also a surtax of 2 per cent of the duty in all Provinces except Limon, where it is 5 per cent of the duty. Duty is per gross weight.

* Duty is per legal weight.

Table 16.—Rates of duties on imports of sugar for various countries-Contd.

Country and description.

Mexico (law of 1916, as increased 1922): ${ }^{16}$ Common sugar.
Netherlands ${ }^{17-s u g a r: ~}$
(b) Loaf, lumps and not specified.
(a) Raw, of 98 per cent purity and over
(d) Raw, of less than 98 per cont purity, fir every degree of purity * * * but the duty shall not be less than 0.15 florins per 100 kilos net.
Norway ${ }^{18-\text { sugar and sirup: }}$
Sugar of all kinds, including dissolved and liquid sugar and juice from which sugar has been separated.
Common sirup and molasses with a sugar content of less than 70 per cent ad valcrem.

Peru: ${ }^{19}$ Refined sugar
Poland: ${ }^{20}$
Raw sugar.
Refined sugar
Pcrtugal ${ }^{21}$-sugar:
Above No. 20 Duteh standard, net.
Not specified, net

Rumania:

Raw sugar and sirup and gluccse
Refined sugar
Actual duty in money
and weight of each and weig
country.

Date when duty was in force.	$\begin{aligned} & \text { Duties con- } \\ & \text { verted in } \\ & \text { dollars per } \\ & \text { 100 pounds } \\ & \text { (erchang? } \\ & \text { as ondated } \\ & \text { ?utrlisted). } \end{aligned}$
\}Aug. 7, 1923	2. 5595
do	Free.
Aug. 1, 1923	4. 467
\}May 5,1923	$\left\{\begin{array}{l}\text { 1.4587 } \\ \text { Free. }\end{array}\right.$
\}July 27, 1923	$\left\{\begin{array}{l}1.5683 \\ 1.0422\end{array}\right.$
Aug. 1, 1923	$\left\{\begin{array}{r}.922 \\ 1.436 \\ 1.236 \\ 1.568 \\ 1.715\end{array}\right.$
\}Aug. 7,1923	159
.do.	10 per cent ad valorem. 3. 2579
\}Ang. 1,1923	$\left\{\begin{array}{c}3.98 \\ 3.98 \\ .039\end{array}\right.$
$\left\{\begin{array}{l}\text { Aug. 7,1923 } \\ d o ~\end{array}\right.$	$\left\{\begin{array}{c} 1.610 \\ \text { to } 6.442 \\ \text { Free to } 55 \\ \text { per cent } \\ \text { ad valo- } \\ \text { rem. } \\ 3.717 \end{array}\right.$
d	$\left\{\begin{array}{r}.7796 \\ 1.60 .3\end{array}\right.$
\}May 5,1923	$\left\{\begin{array}{l} 0.8752 \\ 1.4586 . \\ 0.7293 \\ 1.2155 . \end{array}\right.$
Aug. 7, 1923	$\left\{\begin{array}{l} 0.3887 \\ 0.6775 \end{array}\right.$

10 Import permit required.
${ }_{11}$ Duties are paid in gold. When paid in paper, duties on sugar are to be multiplied by 6.
12 Duties to be paid in gold or in paper at current exehange.
${ }^{13}$ Sugar temporarily imported free of duty until further notice (by cable of May 14, 1923). Duties to be padin gold.
${ }_{14}$ No rates of exchange could be obtained Aug. 14, 1923.
${ }^{15}$ Latvian gold franes per 100 pounds.
16 There is an additional surtax of 12 per cent of the duty. Duty is per gross weight.
${ }^{17}$ Domestic industry protected by royal edict imposing restrictions on sale of foreign and Javan sugar for domestic consumption.
18 The minimum rates are applied to imports from the United States.
${ }^{10}$ Surtax at Callas are 19 per cent of duty; at Salaverry, Paite and Pisco and Talara, 20 per cent of duty: all other parts of Peru 18 per cent of duty. Duty is per gross weight. Exehange is given as per last quotation, Dec. 13, 1922, 10 sols is appioximately 1 libre, for which quotations are given.
${ }_{20}$ When paid in paper current, coefficient is applied.
${ }^{21}$ Duties are paid in gold. Minimum rates are applied to imports from the United States.

Table 16.—Rates of duties om imports of sugar for rarious countrics—Contd.

Country and description.

${ }^{22}$ All imports are under license. Duties are paid in paper at official conversion rates.
${ }^{23}$ The second tariff is one-half rate of first tariff. The lower rates apply to goods from the United States. ${ }^{24}$ There is an additional surtax of 56.5 per cent of duty. Exchange is given as per last quotation, Sept. 5, 1922.

The Outlook For the Sugar Industry in the United States.

The total acreage devoted to cane in the United States for both sugar and sirup does not exceed 500,000 acres, while the acreage devoted to cane for sugar production alone does not normally exceed half of that area. While sugar-cane culture for sugar is limited climatically to the lower portions of the States bordering on the Gulf of Mexico, the area under cultivation is capable of considerable expansion even with the present varieties of cane. Production of cane for sirup, not so sharply delimited by climate, could be greatly increased if justified by demand; and attention to the technical problems involved in insuring a uniform product would no doubt result in an increasing demand. The production of sugar in Porto Rico has reached the point where fluctuation in acreage planted from year to year will depend largely on the market price of the product. The marked correlation between price and acreage during the past fiveyear period seems to indicate that price is the main factor governing the variations in production. In the Hawaiian Islands also this factor, together with availability of labor, is largely responsible for the annual fluctuations in the acreage planted to cane. The total area of the islands is not large, and most a a ailable land is already utilized for this purpose. Pineapples, the chief competitive crop, are fre-
quently grown on land that might be used for cane, but agricultural interests in general would be best served by maintaining this diversity of products. In the Philippines, on the other hand, great tracts of land which appear to offer every natural advantage for cane culture remain undeveloped.

Particularly on the island of Mindanao opportunities for agricultural development seem very great, and attention has been recently directed toward the possibility of growing sugar cane, rubber, cinchona, cassava, and other crops as well. With the steady increase in the world's consumption of sugar it becomes apparent that potential sources of supply ought not be overlooked, and investigation of the practicability of sugar-cane culture on this island, which is almost as large as Java, is desirable and justified. The labor problem in such a thinly populated region would have to be met by importation of laborers from neighboring islands, or by the use of transient coolies.

In the Western States sugar beets occupy only a small percentage of the acreage of suitable soils in those localities in which beets are grown, and no doubt they could be grown in many sections where they have not been introduced. The agronomic possibilities for extending sugar-beet growing in the North Central States seem very great, since there is a large acreage of dark soils in that section of the United States similar to those now used for this crop. In addition to the sugar-beet States listed in Table 17, parts of several other States lie within the climatic zone suited to sugar-beet production, as is shown in Figure 18.

Table 17.-Land in crops and acres in sugar beets in the present sugar-beet States, 1919.

State.	$\begin{aligned} & \text { Land in } \\ & \text { crops, } 1919 . \end{aligned}$	Irrigated area. 1919.	Area in sugar beets.	Sugar-beet acreage, percentage of.		$\begin{gathered} \text { Beet- } \\ \text { sugar } \\ \text { factories. } \end{gathered}$
				Acreage of all crops.	Value of all crops.	
California	Acres. 6, 850, 805	Acres. 4, 219, 040	Acies. 88, 257	Per cent. 1.29	Per cent. 1.47	Number.
Colorado.	5,416,712	3,348, 385	165,840	3.06	9.61	15
Idaho..	2,797, 943	2, 488, 806	37,334	1.33	2.16	6
Illinois.	21,462,852		2,830	. 01	. 04	1
Indiana.	13,223, 256		4,119	. 03	. 09	1
Iowa....	21,609,534		7,009	. 03	. 06	1
Kansas..	22,843, 587	47,312	1,682	. 01	. 01	1
Michigan..	10,000, 611		106,450	1.06	2.92	16
Minnesota.	17,149, 813		3, 509	. 02	. 05	1
Montana.	3,924, 337	1,681,729	8,600	. 22	1.16	1
Nebraska.	19,432,145	442,690	54,486	. 28	1.12	4
Ohio.......	13,934, 239		33,561	. 24	. 63	5
South Dakota	15,313,006	100,682	1,106	. 01	17.04	
Washington.	4, 251, 170	1, 529,899	- ${ }^{\text {5,363 }}$	8.13 .13	. 22	2
Wisconsin.	10, 265, 998		12,737	. 12	. 33	4
Wyoming.	1,210,250	1,207, 982	9,935	. 82	3.36	3
Other States.	184, 674,316	3,753, 540	275			
Total.	375, 431, 734	19, 191, 716	636, 434	. 17	. 45	89

It is not to be assumed that all of the improved land in the sugar-beet States, nor the land in crops, is capable of producing satisfactory yields of sugar beets; but if even 10 per cent of the crop
area is suitable for sugar-beet culture, there is a wide margin for the further development of the sugar-beet industry.

Increase in the production of sugar from both cane and beets is not necessarily limited to extension of the cultivated area. Improved methods of cultivation and improvement of the plants by breeding and selection offer possibilities which have not as yet been fully investigated for all regions. In some regions where accurate records have been kept over a long series of years, the benefits to be derived from breeding have been clearly demonstrated. A pronounced increase in yield has been obtained in this way in Java with cane and in Germany with beets. Such results have been obtained elsewhere, but in lesser degree. It becomes increasingly difficult to evolve better types of plants as the upper limit of production is approached, and it is to be expected that progress will be slower and slower. Rapid increase in production would follow the application of this method in regions where it has been neglected, and such regions include mucli of our own territory.

In general, the natural conditions of soil and climate in American cane and beet regions can not be considered the factors which limit expansion of the sugar industry. The limiting factors appear to be economic rather than agronomic. Labor supply, market price, crop competition. and assurance of protection are among the important factors which govern the production of sugar in the United States and its insular possessions. The American farmer, accustomed to the use of labor-saving machinery, is loath to perform the large amount of hand labor necessary for successful growing of sugar crops. The problem of securing and holding an adequate supply of labor on cane plantations in the South must be solved before any increase in production can be expected. The solution may lie in smallfarm production by owners rather than by day labor under supervision. Such a system, however, puts difficulties in the way of coordination of effiort so necessary for successfully conducting the large-scale plantation and mill operations.

Sugar-beet and sugar-cane culture will be expanded only when more profitable than the other crops with which these sugar crops must compete. Competition of other cash crops for the land is more severe in the beet regions, where long-time rotations are practiced, than on the cane plantations, where the other crops are largely consumed or utilized on the plantation.

The outlook for sugar production in the United States is further affected by the production of sugar in other countries and the competition of this foreign-grown sugar in our markets. It may be truthfully stated, however, that no sugar-producing country is without its own peculiar problems, which are frequently very different from ours, but just as difficult of solution. They tend to curtail production, or increase the cost of production, which from the standpoint of capital invested amounts to the same thing. Since no country can be considered ideal for sugar production, the more successful ones in the future will be those which give the greatest attention to systematic and intelligent study of the factors limiting production.

By D. A. Spencer, M. C. Hall, and C. D. Marsh, Bureau of Animal Industry; J. S. Cotton, C. E. Gibbons, O. C. Stine, O. E. Baker, V. N. Valgren, R. D. Jennings, and G. K. Holmes, Bureau of Agricultural Economics; W. B. Bell, Bureau of Biological Survey; and Will C. Barnes, Forest Service.

SHEEP HUSBANDRY is one of the most important, as well as one of the oldest, of the world's agricultural enterprises. Wool ranks next to cotton in importance among the fibers and has played probably a more important part than cotton in the spread of civilization. The wearing of clothes made from wool, which is a nonconductor of heat and does not readily absorb moisture, has made it possible for man to withstand the rigorous winters that prevail over much of the earth's surface. The present world production of wool is only about 2 pounds per capita. As most of the people living within the Tropics use but little of this commodity, the supply a vailable to the people living in the colder regions is somewhat larger. The American people are among the heaviest users of wool, the annual per capita quantity being over 5 pounds.

From the dawn of history the flesh of sheep has been an important item of food for man. Lamb and mutton are among the most healthful, nutritious, and palatable of meats. However, the consumption of these meats varies widely in different countries. In the United States the average annual per capita consumption of lamb and mutton for the 10 -year period 1912-1921 was 6.2 pounds; Canada in 1910 averaged 9 pounds; the United Kingdom in the period 1895-1908 averaged 26.7 pounds; France in 1904 consumed 9 pounds per person, and Germany in 1904-1913 only 2.2 pounds per year. In the respective periods mentioned the consumption of lamb and mutton constituted the following percentages of the total meat consumption: 4.35 per cent for the United States, 5.57 for Canada, 22.25 for the United Kingdom, 11.25 for France, and only 1.91 per cent for Germaty.

Sheep raising has always been one of the world's leading pioneer enterprises. In the past, sheep kept primarily for the production

Fig. 1.-The leading sheep-producing countries are Australia, Russia, Argentina, United States, India, Union of South Africa, Cnited Kingdom, and New Zealand. The distribution of sheep in Russia and the Tnited States is less dense than in the other countries. Four of the six densest centers of sheep raising-Australia, the Argentine-Uruguay area, the Union of South Africa, ant New Vealand-are in the Southern Hemisphere. These are relatively new lands with sparse population. In the Mediterranean countries topography and limate favor the shecp industry, which is seminomadic in character. In Great Britain the large area of pasture makes mutton and wool production a prominent industry in spite of dense population and high-priced land.

TREND IN NUMBER OF SHEEP IN IMPORTANT COUNTRIES.

FIG. 2.-In Australia, the greatest sheep-producing country of the world, the number of sheep increased very rapidly from 1860 to 1890. Since 1890 wheat production and cattle raising have been displacing sheep. The sheep industry of Argentina is, likewise, giving way to grain production and cattle raising. New Zealand continued to increase its number of sheep until quite recently, but dairying vast soon vast terion, still maintains an important sheep industry.
of wool have been raised very cheaply in regions remote from civilization because, owing to their herding instinct, they could be handled in large bands, and wool could readily be transported for long distances without serious danger of spoilage and at relatively small cost. Although the pioneer phase of the industry is passing, the above factors, together with the adaptability of sheep to a wide range of climatic conditions, their ability to go for several days and even weeks without water when on succulent feed, as well as their fondness for shrubby and weedy types of forage not consumed by most domestic animals, make it possible to keep sheep in regions that would otherwise be unutilized. This is especially true of the arid regions.

In the United States sheep production is of special importance in the grass-producing regions of the Eastern and Central States, particularly in rolling and hilly sections, in the more arid portions of the West, in the rugged range territory adjacent to and including the national forests, and in the fenced range area of southwestern Texas. Sheep are fond of a great many varieties of weeds and underbrush which cattle and horses do not relish; thus they are useful in keeping fields and fence corners clean and in the utilization of farm and range forage not so well adapted to other kinds of livestock. On rugged pasture lands the flock of sheep will always be found on hills or knolls during the hours of rest, so that most of the manure is left, in those parts of the field where it is most needed for the maintenance of soil fertility.

World Distribution of Sheep.

Of the six densest areas of wool and mutton production fourAustralia, New Zealand, Argentina, and South Africa-are in the Southern Hemisphere. The two remaining centers, the British Isles and the Mediterranean region, are in the Northern Hemisphere (fig. 1).
Australia is about the same size as the continental United States, but has a much larger area that must be devoted to grazing purposes, as the annual precipitation over three-fifths of the continent is less than 15 inches. Sixty per cent of the land area is best adapted to sheep raising. In the semiarid regions where the feed, because of its weedy and shrubby character, is not suited to cattle, and where transportation facilities are inadequate, Merino sheep, which are kept primarily for the production of wool, prevail. In the farming regions the crossbreds (sheep of the fine wool and mutton cross) are very popular, and the growing of mutton for export trade is becoming important. Australia now ranks third in mutton exportation.

As practically all the Crown lands (public lands) suitable for grazing are leased for long periods and in areas sufficient for extensive operation, the Australian flockmasters are on a much more stable basis than are those of the western United States. Australia is, however, subject to severe droughts, and occasionally very heavy losses are sustained from which it usually takes several years to recuperate fully. In parts of the country rabbits are a serious pest, while in other sections prickly pear is destroying much of the range.
New Zealand leads in the production of mutton, its exports averaging about $250,000.000$ pounds annually. A luxurious growth of
forage, which is available for grazing purposes throughout the greater part of the year, covers most of the islands. Sheep raising has been the dominant industry in these islands since their settlement. The dairy industry, however, is becoming a strong competitor. The rapid rise in land values in recent years, together with the breaking up of large holdings, has given a great impetus to dairying and it has made a rapid growth.

Most of the New Zealand sheep are kept in regions where the rainfall is less than 50 inches. Considerable use, however, is being made of the western side of South Island, where the rainfall is very heavy, sheep from the east being driven through the mountain passes when the trails are opened in the spring. Sheep are encroaching also on the volcanic plains of the central part of North Island.

In Argentina the number of sheep has declined from a total of $80,000,000$ head in 1880 to less than half that number in 1920 (fig. 2).

RELATION OF SHEEP TO POPULATION AND TO LAND AREA IN 11 IMPORTANT COUNTRIES.

Fig. 3.-The leading countries in the number of sheep for each 100 inhabitants are all in the Southern Hemisphere. These countries are sparsely populated. Great Britain, although densely populated, leads in the number of sheep per square mile, New Zealand standing next. The Ralkan States, represented by Groce and Yugo-Slavia, rank high both in number of sheep per inhabitant and per square mile. Spain, the home of the Merino, similarly stands relatively high. Russia, which is -second in the total number of sheep, and the United States, which ranks fourth, both have a relatively low number of sheep per inhabitant and per square mile.

For some time past cattle and grain farming have been forcing some of the sheep to the more arid regions to the south and west. The production of fine wool is now largely confined to the arid Provinces of southern Argentina. About 75 per cent of the total sheep in the country are of the mutton types. These mutton types of sheep still occupy a prominent place in the agricultural Provinces. In the Province of Buenos Aires, where nearly 50 per cent of the sheep are located, all of the sheep are of mutton breeding. Argentina stands next to New Zealand in the exportation of frozen mutton.
In British South Africa, except for the coast areas, the rainfall is low and prolonged droughts are common. Most of the rain occurs during the summer, the winter being very dry, especially over much of the plateau area of the interior. For this reason, most of the
land is best suited to grazing purposes and primarily to the production of wool. Practically all of the good land has been under private ownership for many years. The Crown lands are barren areas which, for lack of water, are not capable of carrying stock. Large areas of this land could be made available for sheep grazing by providing watering places and by irrigation. The Merino is the dominant breed.

The United Kingdom is one of the few countries of dense population where sheep still persist (fig. 3). The moist, mild climate is favorable to the production of a luxurious growth of grass, and, as the winters are mild, stock can be grazed most of the year. The agriculture of the islands is largely pastoral, and sheep have occupied a prominent place since a very early date. As the English people have always consumed large quantities of mutton, especial emphasis has been given to the development of mutton types of sheep, this country being the home of the mutton breeds. For many years England sent a constant stream of improved breeding sheep of the mutton type to all parts of the world. Recently there has been a small decline in the number of sheep. They are apparently being displaced by dairy cows needed in the production of milk for urban use.

Although Spain does not stand high in the total number of sheep. it deserves mention because it was the original home of the fine-wool breeds. About the year 1500 Spain and England were the leading sheep countries of the world. Sheep still occupy a prominent place in Spanish agriculture, and the growers still possess grazing rights granted in medieval times. Compelled to migrate from the hot, dry, lowland pastures into the northern mountains each spring to obtain summer grazing, the Merino developed into a very hardy breed with fine quality of fleece, but with poor mutton qualities. The adaptability of this breed to dry, remote range has been an important factor in the demand for Merino blood in newly settled countries.

In the Balkan States and in Asia Minor the arid or semiarid plains and mountain highlands, as well as the more or less nomadic habits of the people, have caused sheep and wool production to occupy an important place among the rural industries.
Russia stands second in total number of sheep, but relatively low in the number per square mile and per capita of population. Little is known concerning the present situation of the sheep industry in that country.

The United States ranks fourth in total number of sheep, but, like Russia, the country taken as a whole- stands relatively low in the number of sheep per square mile and per inhabitant. There are, however, areas of dense concentration of sheep, as in the fine-wool section of Ohio, and in portions of the western intermountain region.

Development of the Sheep Industry in the United States.

Sheep were introduced into Virginia in 1609, into Massachusetts about 1630 , and are reported to have been introduced into the other Colonies soon after they were founded. Conditions in the Colonies were not favorable for rapid increase in the number of sheep. Predatory animals, Indians, and severe winters made serious inroads on their numbers. At first the few sheep were kept within town
inclosures, or on islands or peninsulas fenced off from the mainland. Wherever sheep ran at large, herders were necessary to protect them. It was customary for one or more herders to take care of the flock of the entire settlement.
Sheep were important to the Colonies of the North as their source of clothing material. The wool was mostly worked up by the family that owned the sheep. Doubtless there was some trade in the wool, some families exchanging their surplus of wool with other families and some making clothing for exchange with others. There was no demand for mutton, except as meat for the family table. In the South cotton took the place of wool to a certain extent in the manufacture of clothing. In the North the sheep were so important that colonial governments did much to encourage the keeping of sheep.

During the eighteenth century the character of the American sheep remained unchanged. Sheep were kept primarily to supply the demand for wool for homespun clothing. In some communities more homespun was produced than was necessary to supply the local needs and the products of this industry entered into commerce to some extent, but there was practically no manufacture of woolen clothing outside the homes. The first woolen mill having more than one loom was established in Hartford, Conn., about 1788. Woolen clothing continued to be imported from England. During the Revolutionary War, when this supply was curtailed or cut off, there was a marked growth in the household industry. This gave a temporary impetus to the keeping of sheep. However, in 1800 the typical farm flock in New England contained from 10 to 20 sheep, which clipped about 2 pounds of coarse wool per head.

After the Revolution woolen goods of British manufacture again appeared on the colonial markets, but by the Embargo Act of December, 1807. and the Nonintercourse Act of 1809, this country again was thrown on its own resources in meeting the domestic demand for clothing. The number of woolen mills began to increase rapidly to supply the grades of clothing better than homespun, which hitherto had been imported. In 1810 it was estimated that there were about $7,000,000$ sheep in the United States.

The almost complete stoppage of foreign commerce during the War of 1812 accelerated the growth of wool manufacturing and further increased the price of wool. Between 1810 and 1814 the number of sheep is estimated to have increased from $7,000,000$ to $10,000,000$ head. After the country reverted to a peace footing, in 1815, foreign manufacturers again flooded the American market with woolen goods. Most of the American factories soon shut down or operated but a part of the time for several years. These adverse conditions were accentuated by the panic of 1819 , and the result was a severe depression in the sheep industry of the country.

Soon after 1820 the woolen industry began to improve, and by 1824 it was in a fairly prosperous condition. Although the factory production of coarse woolens had become important by 1830, the largest market for coarse wool still was the home manufacturer. At least half of the domestic wool clip was being used in the household. Poor transportation facilities were an important factor in maintaining the household manufacture of woolen clothing.

FIG. 4.-The greatest sheep-raising center in the United States in 1840 was in Vermont. Sheep were numerous along the eastern bank of the Hudson River and in western New York, in southwestern Pennsylvania, and eastern Ohio. The blue-grass districts of Kentucky and Tennessee also had a number of sheep. There were only a few sheep in the South and practically none in the western Enited States as then constituted.

During the period from 1830 to 1837 the woolen mills doubled their output. A general application of power and the use of improved machinery greatly lowered the cost of the manufacture of cloth. The growth of cities rapidly increased the demand for the factory product. As transportation facilities improved, enabling the merchandise of the cities to be carried into the country, the home manufacture of clothing rapidly lost ground.

With the rapid development of wool manufacturing there was a change in the status of the sheep industry. Previously only small flocks had been necessary to supply the home needs for clothing. The factories, however, demanded large quantities of wool, and the prices paid by them induced many farmers to specialize in wool production, especially those farmers who lived in outlying districts.

Fig. 5.-Between 1840 and 1860 the number of sheep declined greatly in New England and New York, being displaced largely by dairy cows. Ohio has become the leading state: and several million sheep are found in Texas, New Mexico, and California. The number has also increased several fold in Michigan and the upper Mississippi Valley.

Fig. 6.-Ohio, southwestern Pennsylvania, and southern Michigan constituted the most important sheep-producing region in 1880. The increase in numbers in the far West has been much greater than in the East. Two-fifths of the sheep are now west and southwest of the Missouri River. The decrease in New England and New York continues, whereas the number of sheep is Ohio. Michigan, and Wisconsin has increased.

Wool growing developed rapidly in western Massachusetts, Vermont, and New York in the thirties. It was undoubtedly stimulated by the high prices prevailing between 1830 and 1840. The industry along with other agricultural enterprises, however, suffered from the panic of 1837. The prices of wool began to decline about 1840 .

The first accurate figures available relative to the number of sheep are those for 1840 , when the census enumerated $19,000,000$ head. The greatest center of sheep production was in Vermont. Western New York was also an important center of sheep raising. The industry as yet had not developed to any great extent west of the Alleghanies, although a beginning had been made in southwestern Pennsylvania and in eastern Ohio. (See fig. 4.)

Fig. 7.-In 1900 nearly three-fifths of the sheep were in the western range country. The increase in numbers in the Great Plains and intermountain regions since 1880 has been very great, but the industry began to decline in California and western Oregon soon after 1880. The number of sheep in New England and New York continues to decrease, and a decline has set in also in Ohio and Michigan.

Following 1840 there was a decline in the high prices of farm products that had prevailed during the late thirties. The growing of grain became for the time generally unprofitable throughout the Middle West, where the transportation charges to the East were very heavy. As wool, relative to its value, could be transported easily and cheaply, there was a rapid shifting of the sheep industry from the East to the West. Many sheep raisers moved their flocks from New England to Ohio and Michigan, and some drove on farther west. The sheep farmers remaining in the East reduced their flocks.
The eastern sheepmen also began to turn their attention to the production of mutton as well as wool, particularly after 1850. The change to the mutton type was most rapid near the cities. As the farmers selected and improved the mutton qualities of their sheep the demand for mutton increased. Instead of being a secondary consideration mutton soon became a determining factor in the selection and production of sheep in the East. By 1850 the center of wool production had shifted to the West, and Ohio had become the leading sheep raising State of the Union.

During the decade of 1850-1859, the sheep industry made little progress. In the East the dairy industry continued to displace sheep. However, the increase of the mutton breeds, especially for the production of early lambs, continued quite rapidly. Many mutton-type wethers were fed in the East during the winter to be marketed early in the spring. Sheep for winter feeding were driven east from Kentucky and south from eastern Canada, where mutton breeds were kept almost exclusively. In the West sheep husbandry met with severe competition from other farm enterprises, especially grain production, cattle, and hogs. With the opening up of the European markets shortly after 1845 a considerable export trade in grain developed. This, together with a rapid increase in transportation facilities and the reduction of shipping costs, made farming again profitable.

Where the land was level and easily brought under cultivation, the sheep industry did not succeed in holding its place on the frontier in competition with wheat, corn, cattle, and hogs. Consequently, sheep raising as a pioneer industry passed rapidly across the level prairies to the far West. Sheep have persisted, however, to the present day on the rough or uneven lands of eastern Ohio and southern Michigan. The first development in the far West was the growth of the industry from Texas and New Mexico northward. The sheep industry of New Mexico had been in existence since an early date. As early as 1700 , sheep were driven from New Mexico to California. In the expansion of the western industry New Mexico was drawn upon for much of the foundation stock, which has been gradually improved by the introduction of Merino blood. As early as 1860 there were many sheep in both Texas and California (fig. 5).

The first effect of the Civil War was to increase the price of wool and stimulate the sheep industry. This increase in price was due to the demand for woolen goods for military use. Moreover, for a time the supply of cotton from the South was cut off and woolen goods had a monopoly of the clothing market. The number of sheep increased rapidly, not only in the newly developed agricultural regions but even in the old sheep-producing centers of the East.

The war had an opposite effect on hogs and dairying, and some of the producers of these products turned to the production of sheep.

The end of the war, however, caused a crisis in the sheep industry. A sharp decline in the price of wool followed shortly (1866) after the close of the war. With the end of the war cotton began to come back. Large stocks of Army woolens had been accumulated and were offered for sale. There was an oversupply of wool and woolen goods. To add to this situation there was a heavy influx of foreign wools in 1866. On the other hand, the prices of some other commodities improved relatively owing to the restoration of the southern markets. Eastern farmers again turned from sheep raising to other farm enterprises. Large numbers of sheep were driven westward. By 1870 the sheep industry in the Eastern States had declined to about the same condition as in 1860 . There had been a great increase in the Southwest and far West. In these regions remote from markets sheep raising still continued to be the most profitable enterprise.

Following 1870 there was a rapid expansion in the far West, where free grazing could be obtained throughout the entire year, so that the only expense was for labor and supplies, and the only investment involved was in the sheep and a camp outfit. This western expansion of the sheep industry continued until most of the range country was overcrowded. The maximum number of range sheep seems to have been reached about 1884, at which time the number in California began to decline (fig. 6). In some sections, however, the maximum number was not reached until much later, Montana reaching its highest number in 1903. The year 1884 also marks the high point of the industry for the United States as a whole. There were reported to have been $50,627,000$ sheep, exclusive of lambs, in that year. The decline in the number of western sheep has been due partly to deterioration of the range because of overstocking, but more largely to the settlement of vast areas of grazing lands for farming purposes.

During the period of greatest expansion of the western-range industry wool production also was expanding rapidly in other parts of the world, especially in Australia and Argentina. As it was generally impossible for eastern farmers to compete in wool production with either our West or those countries, most of them were compelled to give up sheep raising or to turn their attention to the production of mutton. The annual exports of wool from Australasia increased from an average of $148,000,000$ pounds in the 10 years ended in 1870 to $647,000,000$ pounds for the five years ended 1899. The production and exportation of wool from Argentina also increased very rapidly. The price of wool and the price of sheep fell steadily from 1870 to 1896.

By 1900 sheep raising in the East was largely confined to areas where, because of-much rough land or soil conditions, most of the farm was kept in pasture, as in southwestern Pennsylvania, eastern Ohio, and portions of Kentucky, southern Michigan, and southern Iowa (fig. 7). Since that date the sheep industry has been subject to severe competition throughout the United States. In the East dairying has continued to make inroads upon the sheep industry, and in those sections of the West where dry farming is important, cattle have replaced sheep to a considerable extent (fig. 8).

The fattening of range sheep for market began in the western part of the Corn Belt and the region tributary to the big flour mills of Minnesota in the early eighties, and developed rapidly during that decade and the one following. It first the business was mostly in the hands of large operators who gencrally purchased all their feeds. Λ little later farmers began feeding sheep as a means of utilizing large quantities of roughage, and in the Corn Belt some oftheir surplus corn. This practice was greatly encouraged by the development of the great packing centers in the upper Mississippi Valley. The far West was shipping sheep to these packing centers, and it soon became evident that it was profitable to give some of these animals a "better finish" before they were slaughtered. In the early stages the sheep were almost wholly wethers. Later, as the demand

Fif. 8.-By 1920 sheep had largely disappeared from the Atlantic coast. Vermont, which was the densest center of sheep production in 1840, con tains only a few thousand head. Large numbers of sheep are still found in the Ohio fine-wool region, in the valleys of the Appalachian Mountains, and in southern Michigan. A notable decline has occurred in the Great Plains region, except in the fecding districts, owing largely to the advance of dry farming.
for lamb increased and the numerous wether, which were largely unprofitable, disappeared from the range, the feeders turned their attention to the fattening of lambs.

During the recent World War the demand for immense quantities of wool for military uses greatly stimulated the industry. Shortly after the close of the war the allied nations found that they had immense stocks of woolen goods on hand for which there was no further need, while the British and United States Governments also hat accumulated large supplies of raw wool, most of which was of the coarser type. This heavy supply did not become burdensome until 1920, when, owing to a falling off in consumption, there was a break in the price of the coarser wools. This was soon followed by a sharp break in the price of all wools during the period of general deflation.

In the spring of 1921 many sheepmen found themselves with a clip of wool on hand, and some, who had held the 1920 clip for better prices, had two clips, for which there was virtually no market. Heavy importations of lambs fiom New Zealand at this time greatly
depressed the lamb market. A large number of eastern growers, especially those who had taken up sheep production during the war, immediately liquidated their flocks, in some instances causing a severe congestion of mutton on the markets.
The western sheepmen were severely hit. A large percentage of these men had borrowed heavily in order to increase their flocks to war-time neecis. The southwestern range men had just passed through a three-year drought period in which there had been heary losses. The northern men had suffered from an unusually dry summer (1919) which was followed by a severe winter. As they were already in a very precarious condition, the calling of loans in 1920 resulted in many sheepmen being thrown into bankruptcy, while the majority of the remainder were for the most part obliged greatly to curtail

Fig. 9.-The decrease in the number of sheep in the United States is due to several factors. In the more densely populated farming sections the dairy cow has been steadily displacing sheep. The heavy decrease of range sheep in Montana and Wyoming is owing largely to the severe climatic conditions of 1917-1919, and to the rapid occupation of much of the range by homesteaders. In New Mexico a three years' drought (1916-1918) caused heavy liquidation. There was an increase of over 100 per cent in Texas. The number of sheep in Arkansas remained practically unchanged.
their operations. With the passing of the financial stringency, those who were able to survive have gradually been getting on their feet. The accumulated stocks of wool have been used up and the sheep business is again on the upward swing.

In the meantime foreign competition has diminished rather than increased. Other important sheep-raising countries have had experiences similar to that of the United States. Grain farming and cattle ranching are displacing sheep ranching in Argentina and Australia. There remains no important sheep-raising country, excepting possibly South Africa, in which it appears that the number of sheep will increase notably.

Improved Types of Sheep.

Early in the nineteenth century the demand for fine wool encouraged the development of Merino sheep in the United States. New England, particularly Vermont, became famous for the heavyshearing, wrinkled type, for in those early days wool was para-

SHROPSHIRE RAM.

Fig. 10.-Shropshire sheep are popular for mutton and wool production on the farm. Sbropshires constitute nearly one-third of all the purebred sheep in the country. They are widely distributed over the mutton-sheep-producing areas of the farm States. The northeastern quarter of the country contained three-fourths of all purebred Shropshires in 1920.

RAMBOUILLET RAM.

Fig. 11.-The Rambouillet is sometimes called French Merino, as the foundation of this breed was developed in large measure by the French Government at Rambouillet, France. It is a popular breed in fine-wool regions, both in the East and West, and is the dominating fine-wool breed of the western range. A large percentage of our crossbred range sheep are founded on the Rambouillet.

HAMPSHIRE RAM.
Fig. 12.-Hampshires are bred on both farm and range. Their robust vigor, plump mutton form, and early maturing qualities make them valuable for market-lamb production where feed is abundant. Hampshire rams are used extensively on the western range for mating with crossbred and fine-wool ewes for the production of market lambs to be sold for slaughter direct from the range.

LINCOLN RAM.

Fig. 13.-Lincolns are large mutton-type sheep that produce heavy fleeces of long but rather coarse wool. The common practice on the range of mating Rambouillet ewes with Lincoln rams results in a crossbred type especially valuable for mutton and wool production under range conditions, provided grazing forage is sufficiently abundant for the production of lambs.
mount and mutton a by-product. But as the century wore on manufacturing and population increased rapidly in the East, sheep moved westward and by the close of the nineteenth century a healthy demand for mutton had developed. Wool was then produced at less expense on the western range and the East attempted to meet this western competition by producing more mutton. However, the provision of transportation facilities throughout the country and the continued demand for mutton created the need for a mutton type in the western range country as well as in the farm States. Even fine-wool breeders are now striving for mutton development in the Delaine Merino and Rambouillet. Wool remains important, but mutton is now yielding as much of the returns as wool, and, in many of the farm States, it yields more.

Shropshires (fig. 10) are widely distributed in the farming sections of the North and West, but they are especially popular in the

Fig. 14.-In the farm-flock region the purebred sheep business is largely concentrated in the North Central States, notably Ohio and Michigan. In the range area a large proportion of the purebreds are found in the Snake River Valley of Idaho and eastern Oregon and the Salt Lake Valley of Utah.

Corn Belt and Great Lakes regions. In 1920 the Middle Atlantic and North Central States reported 73 per cent of all the purebred Shropshires. Rambouillets (fig. 11) are bred successfully in some of the farm States, notably Ohio and Michigan, but they are more extensively produced in the West. The 12 far western range States reported 90 per cent of all the purebred Rambouillets. Merinos are bred most extensively in the Ohio fine-wool region. The States of Ohio, West Virginia, Pennsylvania and Michigan reported 56 per cent of all the purebred Merinos (chiefly Delaines), and Ohio alone reported 40 per cent of them. They are also bred to quite an extent in Oregon, California, New Mexico, and Texas. Hampshires (fig. 12) are found to some extent in New York, Pennsylvania, Michigan, Missouri, Virginia, and Kentucky, but 59 per cent of the purebred Hampshires were in the 12 western range States. Oxfords were most numerous in the North Central States; Lincolns (fig. 13) in the Mountain and Pacific States; Dorsets near hothouse-lamb mar-
kets in the Middle Atlantic and East North Central; Southdowns in Tennessee, Kentucky, West Virginia, Ohio, Pennsylvania, and New York; Cheviots in New York; Leicesters chiefly in the Northeastern and North Central States; and Suffolks are scattered sparsely in both farm and range States.

As stated above, the Rambouillet has gained a strong foothold on the western range. Much has been accomplished in the development of the mutton tendencies together with the maintenance of hearyshearing qualities in this breed, and it has proved to be well adapted to hazardous range conditions. In those regions where range forage is sufficiently abundant to produce finished market lambs, Rambouillet and Delaine ewes have been bred to Lincoln and other longwool rams for the production of lambs that mature for the market at an earlier age and with more pronounced mutton form than would

Fis, 15.-The proportion of purebred sheep to all sheep is greatest in the North Atlantic States. According to the 1920 census, 54.1 per cent of all purebred sheep in the United States were of the medium-wool breeds, 42.2 per cent were fine wool, and 3.7 per cent long wool. Shropshires made up 31.5 per cent of the purebreds; Rambouillets, 27.07 ; Merinos, 15.17 ; LIampshires, 13.13 ; Oxfords, 4.20 ; Lincolns, 3.51 ; Dorsets. 2.13 ; Southdowns, 2.12 ; Cheviots, 0.75 ; Leicesters, 0.19 ; and Suffolks, 0.18 per cent.
be possible for the average fine-wool lambs. Moreover, the LincolnRambouillet crossbreds and similar crosses yield heavy fleeces of comparatively light-shrinking wool. This wool is of medium fineness and sells to advantage. During the last 10 years a great deal has been done toward the establishment of this type. Work of this nature, conducted by the United States Sheep Experiment Station, Dubois, Idaho, has resulted in the development of what is known as the Columbia (fig. 16). This has been accomplished by mating Lincoln-Rambouillet crossbred ewes with rams of the same cross. The Corriedale, a similar type of crossbred, which was developed in New Zealand by crossing Lincoln rams on Merino ewes, is now considered an established breed. Some choice Corriedales have been imported into the United States since 1914 for use on western ranges. Another similar crossbred type known as the Panama, which was founded by crossing Lincoln ewes and Rambouillet rams, was
developed in south-central Idaho during the last decade. The use of Hampshire rams on crossbred and fine-wool range ewes has also been extensively practiced, especially in regions having an abundance of forage. Hampshire-sired lambs mature early and on the slaughter market they sell exceedingly well.

CROSSBRED EWES ON THE WESTERN RANGE.
Fig. 16.-These ewes represent the Columbia type, derived from crossing Lincoln rams with Rambouillet ewes. They shear heavy fleeces of readily salable wool of medium fineness; and when mated with rams of their own type or with mutton-type rams they produce lambs that mature for the market more rapidly than fine-wool lambs. Their Rambouillet inheritance furnishes enough of the flocking instinct and rugged constitution to insure adaptability to the range, while the Lincoln blood improves the size, mutton form, and length of staple in the fleece. The camp wagon is the sheep herder's home.

Karakul sheep were introduced from central Asia in recent years for the production of fancy furs in the form of lambskins. They are very few in number and their importation is expensive, but they seem to be adapted to a wide range of conditions, and Karakul lambskins have been in great demand.

Sheep Management.

Sheep management in the United States is divided into three distinct systems; (1) the keeping of small flocks on farms, (2) the running of sheep in large bands to utilize extensive range areas, and (3) the fattening of range sheep on irrigated and Corn-Belt farms.

Farm Flocks.

Eastern farm flocks are most frequently found in the hilly and mountainous regions where much of the land is too rough to farm and must be kept in pasture. In regions distant from large cities, sheep frequently form one of the major farm enterprises. In districts where dairying predominates, they are seldom kept except on farms having an excess of pasture. In the level areas, where most of the land is tilled; farm flocks are rather infrequent. With the ex-
ception of flocks that are kept for the production of purebred stock, it is seldom that any special crops are grown for the sheep. They are generally turned onto pasture as soon as the grass begins to grow in the spring and remain there until the crops have been harvested, when they are usually given the run of the fields to graze on aftermath and clean up the weeds, where they remain until snow comes. They are then carried through the winter on hay and some of the unsalable roughages, receiving little or no grain.

The sheep are kept primarily for the production of lambs, and are mostly of the mutton breeds, Shropshires predominating. Most of the lambs are born in the early spring when the pastures begin to grow, and are generally marketed in September and October, about the time the pastures begin to fail. There is a decided tendency to give the sheep insufficient care, with the result that many inferior lambs are produced. As inferior lambs are not readily salable, they are generally unprofitable to their owners. Furthermore, as the market is usually congested in these months, they seriously affect the price of the better-quality lambs that have been more carefully raised.
North Atlantic States.-Sheep farming at one time occupied an important place in the North Atlantic States. However, the growth of cities with a consequent increasing demand for dairy products, soon made dairying more profitable. As wool could be more cheaply grown on the free western grazing lands, sheep in the East have been steadily displaced by dairy cows. The increasing cost of producing western wool now makes it seem advisable to increase the number of eastern flocks. While there is doubtless an economic place for many more farm flocks, efforts at stimulating the industry have not been wholly successful. In fact, during the last decade there was a 15 per cent decline in the North Atlantic States. The hesitation on the part of eastern farmers to keep more sheep is pri-

SHEEP ON A NEW ENGLAND FARM.
Fig. 17.-Sheep are valuable in the better utilization of eastern pastures. They relish many plants which cattle will not eat, and which consequently have a tendency to crowd ont the more valuable grasses. On steep hillside pastures they utilize and improve the rougher parts which cattle neglect.
marily due to a lack of knowledge as to their care, to losses from disease, and especially the fear of trouble from dogs.

In the bean-growing and fruit districts of western New York, sheep, although occupying a secondary place, are an important farm enterprise. They utilize the pastures and the unsalable rough feeds, particularly bean straw, fully as well as dairy cattle, and require much less attention during the summer months when all of the farmer's time is needed in caring for crops.

A number of men in this section and in Ohio specialize in producing winter or "hot-house " lambs. These lambs are born in the late fall or early winter and are marketed from Christmas to Easter time, usually bringing fancy prices. Such lambs are expensive to produce, as much grain and special care are needed, while consider-

SHEEP ON A CORN-BELT FARM.
Fig. 18.-Small flocks can be used to clean up weeds, fence corners, and waste places. Such flocks do not require constant care during the crop-growing season ; consequently, they can usually be run very cheaply. However, they can not be neglected.
able difficulty is experienced often in getting the ewes to breed at the proper season. Moreover, the demand is quite limited, being largely confined to the first-class hotel and dining-car trade, so that the business can easily be overdone. During the past six or eight years this business has been on the wane, as production costs have been prohibitive.

North Central States.-In the rougher sections of the Corn Belt, where much of the land is pasture, flocks of 50 sheep or more are common, and are usually associated with herds of breeding beef cattle. This is especially true in the more broken regions of northern Missouri and southeastern Iowa. There are also numerous flocks in parts of northeastern Indiana and southern Michigan. While there are many fine-wool sheep, as in southwestern lowa, the mutton breeds, especially the Shropshires, generally prevail.
In preference to keeping permanent flocks a considerable number of Corn-Belt farmers have followed the practice of purchasing each
fall a bunch of western range ewes that have been discarded because of age. Such ewes will do well for a year or two longer on farms where the feed is more succulent and more easily obtained. These ewes are generally bred to mutton rams. After the lambs have been shipped the ewes are generally fattened and sold.

Although Ohio is still one of the leading wool-producing States, its sheep have declined steadily in numbers since 1883. The decline has been about 30 per cent during the last decade. This is due partly to the low value of wool prior to 1917 and the steady substitution of dairy cows. In southeastern Ohio, the "panhandle" of West Virginia, and the adjacent counties of southwestern Pennsylvania, there is a large area of hilly country where only about one-fourth of the land is cultivated. In this section (known as the Ohio finewool region) sheep, mostly Delaines, are kept extensively, along with beef cows. In this region there has been a tendency to displace sheep with cattle, but it has not generally been successful, as cattle do not graze the steep, hilly pastures to the best advantage.
There has been a tendency also to substitute mutton and crossbred animals for the fine-wool sheep. 'However, they are not so well adapted to the conditions. Furthermore, this region produces an excellent quality of fine wool that commands the highest market price. While the flocks have generally decreased in size, the Delaines still persist. The former practice of keeping wethers, however, has largely been discontinued. The present practice is to fatten the wether lambs during the winter and sell them in the spring, although some are held until after the second fleece has been shorn. The ewe lambs are mostly retained or sold for breeding purposes.

South Atlantic and South Central States.-Sheep have never been important in the South Atlantic and South Central States, except in parts of the Virginias, Kentucky, and Tennessee and in the southwestern prairie country where range methods prevail. In the four States just mentioned there are districts where the production of carly lambs has reached a high stage of development. In the western part of Virginia, the adjacent part of West Virginia, and to some extent in North Carolina, there are numerous mountain valleys where the limestone and certain other soils produce rich bluegrass pasturage and where most of the land is kept in sod (fig. 19). These pastures are primarily utilized for fattening cattle. On nearly all of these farms sheep are run as a secondary enterprise for the production of lambs, which are marketed in June and July. The ewes are run on the rough hillsides during the summer and fall months, being brought down to the bluegrass pastures for the winter, where they are kept until after the lambs are sold. While they get most of their winter subsistence from the bluegrass pastures, they are sometimes fed a little hay and grain and in some instances grazed on grain pastures.

Much the same method is used in the bluegrass district of Kentucky, except that there are no mountain pastures. In central Tennessee the ewes get most of their winter grazing from wheat fields. They are taken from these areas in April in time for the wheat to mature and produce a good crop of grain.

In these regions approximately half the producers sell all the lambs and maintain the breeding flocks by purchasing mature ewes. These purchased ewes are obtained from the neighboring mountain
districts, from the Piney-Woods region of the South, and from the western ranges, and are bred to rams of the mutton breeds. Because of the succulent nature of the pasture grasses which insures an abundance of milk, the lambs, which are born from January 15 to Λ pril 15, make a rapid growth and are ready for the May, June, and July markets. $\Lambda \mathrm{s}$ there is a relatively small supply at this time. they usually command a good price.

In the Appalachian Mountains outside the limestone areas there are many small flocks, which seldom exceed 50 head. The sheep. which are of a nondescript type, are allowed to run wild most of the year, although they are usually given the run of the farm during the winter months, occasionally receiving a little additional feed. Because of depredations and hardships, flock increase is not very great and the owners depend mostly on the wool. While the receipts from the sale of wool are low, nevertheless they are of considerable

Fig. 19.-The production of lambs for the early markets is highly specialized. In the valleys of California, where there is excellent winter grazing, the production of lambs for the April and May market is rapidly developing. In the Pacific Northwest many lambs are produced for the June and July market. In the blue-grass districts of Kentucky, Tennossee, and the Virginias early lamb production is also an important industry. In Michigan. Indiana, and Ohio lambs are usually fattened in barns. In the Centrai West lambs are fattened in cornfields. Farther west, where open winters prevail, lambs are fattened in yards. In the upper Ohio Valley, where the country is much broken, Delaine shcep are kept for the production of wool. The practice of allowing sheep to run wild in the Piney Woods section of the South is declining. The keeping of shecp in wolf-proof fenced pastures is rapidly growing in Texas.
importance to owners who have a very limited income. The number of these mountain sheep is declining.

In the Cotton Belt less than 3 per cent of the farmers have sheep and the farm flocks are generally small. Most of the improved acreage is devoted to the production of tilled crops, principally cotton and corn, with some small grain and hay. The few pastures that exist are hardly sufficient for the necessary work stock.

In the Piney-Woods region, which borders the Cotton Belt on the east and south, there are large areas of undeveloped land that are utilized as open range (fig. 19). Although the grass is somewhat sparse and of inferior quality, this land carries considerable stock. In this region sheep, cattle, and hogs, which are mostly in the hands
of large land owners, are allowed to run wild throughout the entire year. Each spring the sheep are rounded up, shorn, branded, and the ram lambs castrated. They are of a nondescript type which shear an average of about 3 pounds of coarse wool. As there is a heavy loss from internal parasites, predatory animals, and insufficient feed during the winter, the death rate in the past has been nearly as large as the birth rate. At present there is a tendency to give them a little more care and to improve their quality. There are some sales of ewes to the early lamb districts but most of the income is from wool, which, although low in value, costs but little to produce.

Western Farm Flocks.-In recent years numerous flocks of from 25 to 50 head and more have been springing up on the irrigated farms of the West. In the small, irrigated valleys which lie in the center of extensive range areas, farming is generally based on the production of winter feed for range stock. On the larger irrigation projects, such as the Yakima Valley, Washington, and projects along the Snake River in Idaho, where a great surplus of feed can be produced, it is necessary to grow other crops, such as fruits and sugar beets. In order that such farms may be kept at their highest efficiency it is generally necessary to keep some farm livestock to help utilize unsalable products and to furnish manure with which to maintain soil fertility. The sale of dairy products is somewhat limited and beef cattle do not fit in well on such small farms. It has, therefore, been found that sheep, which can be used to excellent advantage in keeping the ditch banks free from weeds and to graze waste corners, have an important place, especially as they require but little labor during the busy season. For this reason it is probable that their numbers will rapidly increase in the near future. In the northwestern irrigated valleys, where they occur most frequently on farms of 80 or more acres, the mutton types, especially Hampshires, prevail. Many of the flocks are purebred, the best males being sold to range operators. Most of the lambs, however, are sold as early spring lambs. In the Willamette Valley, long-wooled sheep prevail. These sheep are especially well adapted to the mild but humid climate and are very useful in keeping the pastures, many of which are cut-over lands, free from shrubby growth.

Range Sheep.

The western practice of running sheep in large bands was developed as a means of utilizing the vast areas of free grazing lands in the Plains and Mountain States. Bands of from 2,000 to 5,000 head were common, each band being under the care of a herder who remained with them constantly to guard against wild animals, to prevent loss through straying, and to direct their grazing. There was also a camp tender for every one to three bands who brought in supplies and moved camp. In the larger companies there were foremen who had general supervision over every 5 to 10 bands and who hunted for the good grazing areas. In a small outfit the owner frequently served as camp tender or foreman.

The sheep were primarily kept for their wool and were run on the open range throughout the entire year. They frequently traveled long distances, there being record of bands that were driven from the Pacific coast to Missouri River points, taking a couple of years en
route. The business was wholly nomadic, there being no investment in land or buildings. The only investment was for a camp outfit, costing from $\$ 200$ to $\$ 400$, and for the sheep, which were worth about $\$ 2$ a head. Practically the only expense was for labor, which at that time was comparatively inexpensive, and for necessary camp supplies. The operating expenses were, therefore, very low, it being stated that some flocks were run as cheaply as 50 to 75 cents per head per year.

With the gradual taking up of the best grazing lands for farming purposes, the livestock were steadily pushed back to the rougher and more arid areas where competition for range became very severe. The cattlemen, especially the large companies, were the first to feel this competition and many were forced to discontinue. This was partly because the cattle, not being herded, could not easily be shifted

COUNTING SHEEP ON A NATIONAL FOREST.
Fig. 20.-About $8,000,000$ sheep are grazed each summer in the national forests of the West. They enter the forests in May and June, and in September and October the breeding stock are driven down toward irrigated valleys or desert ranges for the winter, while the lambs not retained for breeding purposes are shipped to market.
from congested and overgrazed areas, and also because sheep, which graze more closely, could get feed where cattle could not. Later, as large areas of range were patented and consolidated into numerous holdings, cattle, which can be handled in small numbers, in turn began crowding out the sheep, as under range conditions sheep can be economically run only in comparatively large numbers. This is especially true of the Great Plains region, where small herds of cattle kept in connection with dry farming have rapidly displaced sheep. In Montana and Wyoming, which were the last to feel this movement, there was a decline in number of sheep of 59 per cent and 62 per cent respectively during the period 1909-1919. This decline was partly due to the dry season of 1919 and the financial difficulties following, but more largely to the rapid homesteading of land under the law granting 640 -acre homesteads.

In order to remain in business most of the range operators have been compelled to purchase or lease sufficient land to control their range. In some instances this has meant the acquiring of a sufficient number of small holdings to control the watering places. In other cases it has meant the purchasing or leasing of the greater part of the range. In many instances it has been necessary to develop more watering places, build warehouses for the storage of feed, and in other ways develop these holdings. It is now necessary to own improved ranch property before one can obtain permission to use the national forests. This investment in land and improvements has greatly increased the necessary capitalization. In some localities this capitalization is as high as $\$ 14$ per sheep. At present an investment of not less than $\$ 13.500$ is usually needed in order to

SUMMER GRAZING IN A WESTERN FOREST.
Fig. 21.-The sheep thrive on the soft, lush feed of the high mountains, many remaining most of the summer close to or above timber line. The cattle, on the other hand, graze mostly in or near the parks and open timber areas.
engage in the range sheep business. This would be apportioned somewhat as follows:

	Low.	High.
800 to 1,000 breeding ewes at $\$ 8$ to $\$ 10$ each (one band)	\$6,400	\$10,000
20 to 25 rams.	600	1,000
Camp outfit.	600	1,000
Home ranch to serve as operating base..	5,000	5,000
Cash with which to meet current expenses.	1,000	1,000
	13, 600	18,000

While there are numerous bands with a much lower investment, these are generally operated by persons of foreign birth or descent who are willing to live very cheaply, and who usually act as herders or camp tenders. In order that a man may make a managerial wage he should have at least two bands.

This constant crowding has necessitated the retirement of many range operators and a considerable curtailment of most of the range flocks, until at the present time (1923) there are only about $21,000,000$ sheep in the 11 far Western States. The sheep, with the exception of those on southern ranges, have been forced, in large measure, into those regions that include desert lands, which can be used only in win-
ter when snow and water are available, and also afford summer grazing in the mountains. The greater part of the summer grazing areas are now included in the national forests, where grazing is regulated by the United States Department of Agriculture.

Operating expenses have also greatly increased. The crowded conditions make it necessary, except on the southern ranges, to provide considerable winter feed, the amount varying with the locality and with the season. The labor costs per sheep are also much greater. This is partly because it has become necessary to reduce greatly the size of the bands, which now vary from as low as 600 head up to 2,000 head, seldom exceeding 2,500 . It is also necessary to use more men, as most operators now have a camp tender with each band, who

OPEN-RANGE LAMBING SUPPLEMENTED BY TENTS.
Fig. 22.-Large tents, warmed by stoves and lighted with lanterns, receive ewes whose lambs are likely to arrive during the long cold nights. A man is always at hand to look out for the ewes.
spends most of his time in helping to herd. There has also been a considerable increase in the wages paid.

These increased operating expenses have made the production of wool alone generally unprofitable. Fortunately, the increasing demand for mutton, especially lamb, has made it possible for the range operators to change from a strictly wool-producing basis to that of producing both wool and lamb. At the outbreak of the World War the majority of range operators were giving more attention to the production of lambs than of wool. The first step in meeting the higher operating expenses was the elimination of the numerous bands of wethers, which were kept primarily for their wool. The development of a type of ewe that would produce a good market lamb and a readily salable grade of wool, and at the same time maintain the herding instinct of the Merinos, was accomplished by breeding Ram-
bouillet ewes to coarse-wool rams. In many cases this crossing with coarse-wool animals was carried to such a point that at the outbreak of the war many of the ewes were losing their herding instincts and had very inferior fleeces. With the high prices for wool that prevailed from 1914 to 1920, there has been a tendency to breed back to the fine-wool type. As it is difficult to keep the desirable characteristics of the first cross, various efforts have been made to secure a fixed type of crossbred sheep.

In order to keep the breeding stock ${ }^{-1}$ at standard strength it is generally necessary to replace about one-fourth of the flock each year. The early lamb raisers usually make this replacement by direct purchase, but most flockmasters save a sufficient number, about half of the ewe lambs, for this purpose. Under ordinary range conditions crossbred ewes must usüally be discarded by their sixth year, while Merinos last from one to two years longer. These discarded ewes usually sell for about half of their original value when entering the band. In spite of the discarding of aged ewes there is a considerable annual loss by death and occasional heavy losses due to droughts or severe winter storms.

The breeding expense, when figured separately, usually runs a little over 50 cents per ewe. This is made up of two items. First, the expense of keeping the rams, which is much heavier than for ewes inasmuch as the rams must be run in small bands of from 350 to 500 head, and must be given more care. The second item is for the purchase of rams, there being about 20 to 25 rams to every 1,000 ewes. The majority of the sheepmen purchase yearlings, as ram lambs are usually not hardy enough. These yearlings cost approximately from $\$ 30$ to $\$ 40$ a head, depending on their quality. The approximate period of usefulness of such an animal is about five years, at the end of which time he has practically no sale value. However, as there is about a 20 per cent annual loss, few last so long.

The New Mexico-Arizona Region.-The fewest operating changes have taken place in the southern range States, where, because of the very low rainfall, there has not been much interference from dry farming. In southern New Mexico, where the climatic conditions at breeding and lambing time are frequently unfavorable, the lamb crop averages approximately 60 per cent. For this reason fine-wool sheep predominate. In order to operate successfully in this region it is usually necessary to control land on which water can be developed.

In northern New Mexico and southern Colorado many of the sheep are owned by persons of Mexican descent, some of whom operate on a very small scale. The flocks, which are mostly Merinos, usually range from 500 to 1,000 head. Although the feed is somewhat sparse, the climatic conditions are more favorable for the production of lambs. The majority of these lambs are shipped to the eastern Colorado and Corn-Belt feed yards. The sheep are kept on the open range throughout the year and travel comparatively short distances to and from the summer and winter ranges.

The Arizona sheep are run mostly on the high plateau area in the northern half of the State during the summer season. About 70 per cent of them are within the national forests, the rest running on patented (mostly railroad) lands and Indian reservations. As water
is scarce, it is necessary to build large storage reservoirs costing from $\$ 1,000$ to $\$ 15,000$ each, where the run-off from the occasional rains can be stored. During the winter season most of the sheep are grazed in adjacent valleys and protected areas, while about one-third are driven or shipped to the foothills and desert areas in the southwestern and western parts of the State. In years when there are favorable rains, the sheep get about six weeks of excellent grazing on the deserts. If the rains fail, much trouble is experienced in getting sufficient feed and water for the flocks.
As most of the feed throughout Arizona is too sparse to make it possible to produce fat lambs, and as much of the range is so brushy that the sheep must be closely herded, the Rambouillet predominates. The operators who depend on using the deserts for a part of their winter grazing generally aim to have the lambs born in February, so as to be ready to rush onto these areas as soon as the rains come. Some of them breed their ewes to Hampshire rams, shipping all of these lambs to the early market. In the northern districts the lambing season usually comes in May and the lambs are sold in the late fall most of them as feeders. In years when prices are unsatisfactory, or when the lambs make a poor growth, they are sometime held another year.
All of this southern range is subject to occasional droughts, some of which are of long duration. At such times it is necessary to buy large quantities of feed in order to carry the sheep through, and to ship large numbers of them out of the country. In spite of these efforts there are sometimes heavy losses through starvation.

Central Range Region.-In most of Wyoming, Utah, Nevada, and in parts of northwestern Colorado and southern Idaho and Oregon sheep are run in the mountains to a considerable extent, generally within the national forests, from about the middle of June to the middle of October. They are then grazed toward the winter ranges, usually remaining in the foothills until about December 1. As soon as there is sufficient water and snow available, they are driven on to the desert areas where they remain as long as the water lasts. Whenever possible, the operators generally provide sufficient feed to carry the sheep through periods of stormy weather. Those grazed near irrigated districts are frequently fed considerable hay. In April they begin moving toward the summer ranges, from 50 to 150 miles away. The lambing season usually comes in April and May and shearing in late May and June while the sheep are on the intermediate range.
As on the southern ranges lambing is usually conducted on the open range, efforts being made to select camps that are reasonably protected from storms and where there is plenty of feed and water. In some instances tent shelter is provided. The lambs are usually weaned about the time the sheep leave the national forests. The lambs not retained for breeding purposes are then shipped, most of them going to the primary markets. As the feed is more luxuriant than farther south, many of the lambs are fat enough to go direct to the slaughterers. A very large proportion, however, are finished in feed yards.

California Region.-In California the methods of handling sheep are quite diverse. In the northern half of the State the same general methods that prevail in the central range district are found. The
majority of sheep are run on the national forests or privately owned or leased land during the summer. The rest of the year they are largely kept on privately owned range, in stubble fields, or wherever suitable grazing can be found.

In the southern part of the State the sheep are handled in much the same manner as in Arizona. During the summer months all that can be accommodated are grazed on the national forests. The rest are run wherever suitable range can be found. In the winter and early spring they are run on the desert areas, if there is sufficient rainfall for the feed to grow. They are also grazed in stubble fields, in vineyards, or wherever forage can be found.
Formerly a large percentage of the lambs were born in the spring and marketed in the fall, but in recent years the practice of lambing in midwinter has grown rapidly. The production of these winter lambs started about 15 years ago in the Imperial Valley of California and in the Salt River Valley of Arizona. Farmers in these

SHEEP ON SPRING RANGE NEAR OWENS VALLEY, CALIF.
Fig. 23.-Sheep, through their ability to go without water several days, and even weeks, when on succulent feed, are oftentimes able to get much feed from desert areas that have no other use.
valleys would purchase aged range ewes, breed them to mutton rams, and graze them on alfalfa pastures. The lambs which were born in December were ready for the April and May markets. Since the World War many of the alfalfa pastures have been plowed up for the production of cotton. However, the demand for such lambs has been so keen that many sheep growers in the San Joaquin and Sacramento Valleys have begun producing winter lambs. The lambs are marketed during April and May, the majority of them being shipped between April 15 and May 15. It is estimated that in 1923 approximately 300,000 lambs were marketed during this period. Most of them were shipped to Chicago and Kansas City, although the coast cities consumed a considerable number. The California lambing season now extends from November and December in the Imperial Valley into May in the northern counties of the State.
Northern Range Region.- The greatest changes in management have taken place in the northern range States. The majority of the sheep now remaining in Montana and northeastern Wyoming graze during the summer on the national forests and are run on privately
owned land or on Indian reservations during the remainder of the year. In many cases it is necessary to feed them for a period of from three to five months.

A few of the sheep in Washington and northeastern Oregon are able to get some winter grazing from the semidesert areas. However, the greater number are grazed on privately owned land (much of which is in the wheat-growing sections), that is too rough for cultivation, except for a period of three or four months in summer when they are in the mountains. Most of the sheep in central Washington are fed alfalfa hay for a period of from three to five months in winter. In order to meet the consequent high operating costs, many of the sheepmen have turned their attention in recent years to the production of early spring lambs.
This spring-lamb industry has reached its highest development in Idaho, where the sheepmen have succeeded in developing a type

NOONTIME IN MONTANA.
Frg. 24.-Range sheep usually begin grazing at early dawn. It is customary for them to rest from about the middle of the forenoon, when it begins to get warm, until late afternoon. Then they continue grazing until dark, when they settle down for the night.
of lamb that seems well adapted to market requirements. Very nearly half of the Idaho sheep raisers are now engaged in early lamb production. The irrigated valleys produce large quantities of alfalfa hay for which a market must be found. As there is not sufficient desert land, except in the southern part of the State, on which to winter their sheep, and as the spring and fall range is also limited, the Idaho flockmasters have come more and more to depend on winter feeding.

The ewes, which are a cross between the long-wool breeds and the Rambouillet, are brought onto the irrigated farms in the late fall and fed alfalfa for a period of three to five months during the winter. A large percentage of them are bred to Hampshire rams sufficiently early to lamb in February, the lambing operations being conducted in specially constructed sheds (fig. 25). The lambing equipment on
the better organized farms usually represents an investment of about $\$ 1.50$ per ewe. The raisers of early lambs in Washington and Oregon, having a more broken range, are compelled to use Rambouillet ewes, which are generally bred to Hampshire rams.
Not only does this Washington-Oregon-Idaho early lamb district produce a high-quality lamb, but, because of the better care which the ewes receive, a much larger lamb crop is generally obtained than under ordinary methods of range management. This lamb crop frequently exceeds 85 per cent and many flockmasters report occasional crops slightly in excess of 100 per cent. The lambs are generally shipped in June, July, and August, at which time they command top prices. As most of the flocks, because of the lack of sufficient fall range, must be reduced to a minimum as soon as they come out of the forests, and as the ewe lambs, because of their mixed breeding, would not be suitable for range purposes, the entire crop

LAMBING SHED AND CORRALS, UNITED STATES SHEEP EXPERIMENT STATION, DUBOIS, IDAHO.
Fig. 25.-This shed is on open range at an elevation of 5,900 feet and illustrates the general type used for early lambing in the Northwest. The central portion has a capacity for 1,600 lambing ewes. By means of sheds early lambing is possible and large numbers of lambs are saved from losses that occur on the open range. The shepherd's cottage is at the left in the foreground.
is sold. The breeding flocks are largely maintained by purchasing ewes from districts which have difficulty in producing fat lambs.
Southwestern Texas.-Texas leads the States in the total number of sheep. There is no public domain since Texas, when it entered the Union, retained title to all public lands, and practically all the grazing lands have been sold to livestock producers. Many of the ranchers have put up wolf-proof fences, constructed concrete water tanks, and made other improvements. A large part of the sheep industry is, therefore, conducted in a manner somewhat intermediate between the western range and the eastern farm systems.

The principal sheep-raising area is the Edwards Plateau, adjacent districts, and westward. Cattle and goats are frequently grazed
on the same land with the sheep. In the northern part of the area cattle predominate and only enough sheep are kept to graze the weeds and other feed that cattle will not touch. As the sheep do not displace any cattle, and, in fact, when properly run have a tendency to improve the cattle range, their inclusion increases the gross carrying capacity of these pastures. To the south, as the grass is replaced by shrubs, sheep become more numerous and only enough cattle are run to utilize the grasses that the sheep do not care for. On the more brushy ranges goats in turn predominate, while sheep are a secondary enterprise, there being only a few cattle.

The majority of the sheep in this district are in small units averaging from 600 to 1,000 head. Many of them are herded in much the same manner as in New Mexico. However, in recent years, the practice of turning the sheep loose in pastures which have been fenced against predatory animals has been rapidly increasing. While such fences are very costly ($\$ 250$ to $\$ 300$ per mile, pre-war prices), it has been found that a pasture will carry nearly double the number of sheep when they are allowed to run loose than when they are herded, as there is much less destruction of feed through trampling. It has also been found that one man can handle nearly twice as many sheep. Furthermore, large lamb crops and better lambs are generally obtained than where the sheep are herded.

Sheep ranching in this district is on a wool-growing basis, as difficulty is experienced in getting good lamb crops. The lambs are generally born in April and May. Most of them are retained, the ewes for breeding purposes and the wethers until one or more crops of wool have been obtained. In favorable seasons the wethers are generally fattened on winter pasture before selling. Partly because of the brushy character of the range and partly because of the comparatively warm winters, about one-third of the sheep are sheared twice annually, in April and in September or October. They shear an average of about 8 pounds per head per year.

Fattening Sheep for Market.

Fattening sheep for market is extensively followed in several sections of the Corn Belt and adjacent areas, and in many irrigated districts. There are three general systems of finishing: (1) Fattening in cornfields in the Corn-Belt States; (2) open-yard feeding west of the Missouri River; (3) fattening in barns in the East Central States.

F'attening in Cornfields.-The practice of fattening lambs by turning them into the cornfields and allowing them to harvest the crop is followed in districts throughout the entire Corn Belt. It is, however, most common in Iowa and northeastern Nebraska, where it is the prevailing type of sheep finishing. Most of the lambs are purchased at the central markets, Omaha and Chicago principally, in September and October, although some are taken in August. The lambs are usually given the run of the pastures and hay fields and allowed to clean up weeds and waste corners for a period of a week or two. They are then turned into the cornfields in which rape has usually been planted, and are allowed to harvest the crop (fig. 26). Most of them are sold in the latter part of November and in December. The lambs that are not fat enough are held over and fed ear corn on pasture or in dry lots and shipped in January. This practice
has the advantage of requiring but little labor and practically no equipment. The death rate is usually greater than in open yard or barn feeding.

Open Yard Feeding.-The practice of feeding in open yards prevails west of the Missouri River where there is comparatively little stormy weather during the early part of the winter. The most extensive feeding district is in Weld and Larimer counties and vicinity, in northeastern Colorado, where from 500,000 to $1,000,000$ head are fed annually. Other extensive feeding districts are the Arkansas Valley in southeastern Colorado, the Scotts Bluff district in western Nebraska, and along the Platte River in Buffalo, Hall, and Merrick counties, in Nebraska. There are other small areas in Nebraska and Kansas, and also in the irrigated valleys of the far West (fig. 27).

SHEEPING DOWN CORN.
Fig. 26.-This practice saves labor in harvesting corn, as well as in feeding sheep. It can be followed only in regions where there is but little rain during the fall months. Lambs fattened in this way fill in the market gap between the fat-range lambs and those from the feed yards.
The fattening of lambs occupies an important place in the beetgrowing districts as it helps to provide a market for the large quantities of alfalfa which must be grown in the rotation system and also for the utilization of the beet tops. The manure is highly prized in helping to maintain sugar-beet yields. As corn is grown only to limited extent in these districts it is shipped in from Nebraska and Kansas. Barley, oats, and even wheat are fed also in the early stages of the fattening process. In Nebraska the lambs not only help to provide a market for alfalfa, but also help in utilizing some of the surplus corn.

A large percentage of the lambs are fed in bunches that vary from 250 to 5,000 head. There are, of course, men who operate on much more extensive scale. These are usually large landholders who distribute their sheep about on different farms, seldom having over 5,000 to 10,000 sheep in a single yard. Most of the lambs are put in the yards in October and November. The northern range lambs usually
weigh about 60 pounds and the southern lambs from 50 to 55 pounds when delivered. They are fed for a period of four to five months, during which time they make a gain of from 25 to 30 pounds. It is generally figured that during the feeding process a lamb will consume about 250 pounds of hay and 150 pounds of corn or its equiralent. As the lambs do not finish evenly, it is a practice, especially in the larger yards, to sort out the fat lambs from time to time so that they are generally marketed in several shipments. These shipments usually begin in February, the bulk of the lambs going in March and April and sometimes there are shipments in May. Some of the operators also handle a limited number of aged ewes and wethers.

LAMB FATTENING ON CORN AND ALFALFA HAY, CENTRAL NEBRASKA.
Fig. 27.-Lamb feeding not only furnishes a home market for some of the hay and corn, but also provides gainful occupation for farm help during the winter, when the help otherwise would be idle.
Feeding in barns.-In the East Central States, where there is much stormy weather in the late fall and winter months, lamb feeding is usually carried on in barns. While barn feeding is practiced in parts of Illinois, it is most extensively followed in northeastern Indiana and southern Michigan, in parts of Ohio, and, to a limited extent, in western New York. Although charges for labor and equipment are much higher than where the lambs are fattening in cornfields or in open yards, barn feeding furnishes gainful occupation for the farmer during the winter months when ordinarily there is not much farm work. There is also much less risk as the sheep are given more attention. The majority of these farmers handle only 150 to 300 head, and plan to get lambs that will finish evenly. The majority of lambs are purchased at Chicago. They are fed from four to five months and then shipped to Buffalo, Pittsburgh, or other eastern markets. As the cost of grain is higher than farther west, these eastern farmers find it difficult to compete with the Corn Belt and Colorado feeders. They feel, however, that they can afford to feed on a very close margin for the sake of the manure, which is much needed in maintaining soil fertility.

Losses Among Sheep.

The annual losses among sheep are from various causes (fig. 28). In the farming States most of the losses are from parasitic diseases, -although there are some losses from lack of care and shelter. Dogs also inflict much damage. In the Piney-Woods region of the South there are considerable losses from predatory animals and from lack of feed in winter. In the range States the annual losses are principally due to straying from the band, poisonous plants, predatory animals, and parasites. Such losses vary from year to year and according to the character of the range. They average from 7 to 8 per cent on the northern ranges and a little higher on the southern. In addition there are also periodic losses, due to drought or unusually severe winters. In the early days loss from sudden, severe storms was of frequent occurrence and sometimes very devastating. In

FIG. 28.-On the western range predatory animals, poisonous plants, and exposure on hazardous grazing grounds cause considerable loss. In the farming States internal parasites constitute an important cause of loss, particularly among lambs. Lamb losses are generally larger than those for mature sheep, especially in the humid regions. Much of this loss occurs at lambing time during cold rainy weather.
recent years it has been possible to avoid much of this loss by providing winter feed and by more careful methods. Even with the best of care such losses can never be wholly eliminated. The losses due to straying depend largely on the herder and on the character of the country. These losses are unavoidable in a rough country, and are frequently large when inexperienced or careless herders are employed. On the other hand, they are generally small when the sheep are in the hands of careful herders and in an open country.

Poisonous Plants.

There are a great many plants that cause sickness and death among sheep. These occur in all parts of the United States. Because of the greater number of sheep and because of the method of handling them on the range, the losses of economic importance are largely confined to the western range country. Sheep, like other animals, if left to themselves or if grazed in loose formation, seldom eat enough
of any poisonous plant to suffer from its effects; but, under the system of close herding that prevails in many regions, where they cat practically all the regetation as they move along, they are much more liable to poisoning and sometimes heavy losses occur. Many sheep are lost on driveways. The first bands passing over a driveway usually consume all the good forage. Succeeding bands, especially if they are hungry, will take such poisonous plants as may be there. Sheep having passed over trails where there is little forage and emerging on patches of poisonous plants frequently gorge themselves on these plants with fatal results.

There are three groups of plants on the western ranges which are especially destructive to sheep. Of these the locoes, of which the White loco is especially poisonous to sheep, were formerly the most harmful. These are found in the Great Plains area extending from Canada into Mexico. In the southern range area they also extend westward into California and north into Utah. With the homestead settlement of the plains country the sheep have been driven out of much of the region where these plants grow.

Second in importance, and in late years perhaps first, are the species of death camas. These are found in the higher parts of the Great Plains area and west to the Pacific. Some of them grow in damp meadows, others on rather dry hillsides. These plants cause most of the losses from poisoning that occur in the spring and early summer. The lupines, of which there are many kinds, doubtless rank third. These are even more widely distributed than the death camas. They are not all equally poisonous, but it is not known which are harmless. Lupine leaves rarely, if ever, injure sheep, but heavy losses have been produced by eating the pods and seeds. The losses occur in the summer and fall months.

There are other groups of poisonous plants whicn are common to the East and West. Among these are the laurels, of which there are several kinds, which cause a considerable loss among sheep grazing in the eastern United States. Some western laurels are especially destructive to sheep. The leaves of wild cherries also take a considerable toll, especially among sheep that are driven over a trail where very little other feed is obtainable. Although the aggregate losses from wild cherries are not great, in some places they may be very heavy.

The milkweeds, the rayless goldenrod of New Mexico and Texas, the Colorado rubber plant of Colorado and New Mexico, and the coffee bean of Texas, are some of the other plants which also cause losses. The western sneezeweed is a serious menace in Utah and portions of the Southwest. ${ }^{1}$

There is no way of determining the magnitude of the losses among sheep from poisonous plants, as such losses are seldom reported. There are numerous records of individual herds where the losses have been 50 per cent or greater. It has been stated that the losses in Colorado amount to $\$ 1,000,000$ annually. At the present time there is no practicable method of eradicating most of these plants. However, a careful and experienced herder, who is familiar with the plants and the places where they occur, can do much to prevent such losses.

[^25]
Predatory Animals.

The western livestock owners suffer heavy losses from depredations of predatory animals, these losses being formerly estimated to amount to from $\$ 20,000,000$ to $\$ 30,000,000$ annually. Wolves, coyotes, and bobcats are the greatest offenders, and in many localities inflict such heavy and continuous losses as to make sheep raising an unprofitable enterprise (fig. 29). In the earlier days the individual stockman endeavored to combat these predatory animals on his own range by employing hunters to shoot, trap, and poison them. The payment of bounties for animals taken was also resorted to. These individual efforts were not satisfactory and demonstrated the necessity for organized effort in order to secure adequate results. The coordination of the efforts of all those directly interested in the problem was then undertaken. As the Department of Agriculture had charge of the control and eradication of predatory animals in the national forests and on the public domain, and as it had already

Fig. 29.-Predatory animals at one time exacted a heavy toll from the western livestock industries. In recent years, through concerted efforts of various local and State organizations and the United States Department of Agriculture, losses from this source have greatly decreased.
developed methods of eradication which had proved eminently successful, the work is now largely conducted under its general supervision.

At present the department is cooperating with many States, county officials, and livestock associations in well-organized campaigns for the destruction of these pests. Congress has appropriated $\$ 274,000$ for fighting these animals during the fiscal year 1924, while 13 States, mostly western, have appropriated $\$ 285,000$ for cooperation during this period. Additional funds have also been provided by stockmen's associations. A well-organized force of hunters, who are supervised by capable and experienced men, and who have been thoroughly trained in the most up-to-date and efficient methods of trapping, poisoning, and den hunting, are employed. Substantial headway has already been made and stockmen report greatly improved conditions, with losses entirely eliminated in some instances and markedly reduced in others. Approximately 500,000 predatory animals have been destroyed since 1915 .

In the greater part of the farming region losses from wild animais are comparatively small. Throughout all of this region, however, farmers suffer severe losses from predatory dogs. While dogs do considerable damage to all classes of livestock, their depredations on sheep are especially severe. No accurate figures are available as to the damage caused by them. However, as a result of an investigation conducted in 1913 it was estimated that a total of 108,000 sheep which had been killed by dogs the previous year were paid for out of State and county funds. This figure does not take into consideration the damage to the rest of the flock which, from a monetary standpoint, is usually much greater than the actual killings. Sheep which have been frightened seldom do well, and if this occurs in the late fall there is usually a heavy loss of lambs the following year as well as a much reduced wool clip. The fear of damage from dogs keeps many men out of the business who otherwise would be glad to engage in it. Most of the States now have laws for the control of dogs. In a number of States the county pays for the animals actually killed, while in others the owner of the dog is held liable for all damage done by it. Nearly all States make it illegal to keep a sheep-killing dog, while a few States have laws making it a misdemeanor to allow dogs to run at large. Some States, notably Michigan, have laws that are proving to be a real protection to sheep.

Parasitic Diseases.

Sheep probably suffer more from animal parasites than do any other kind of livestock, although ordinarily they are but little subject to diseases caused by bacteria and viruses. Most of these losses occur among lambs, as these young animals are usually more heavily parasitized and appear to be more seriously injured by a given infestation than are the older animals. Parasites of sheep are of two general types, external and internal.

External parasites.-The external parasites are those which live on the skin or in the skin or hair follicles, such as lice, ticks, and scab mites, or which attack the exterior of the animal from time to time, such as blood-sucking flies. The most important of these external parasites are the scab mites and sheep ticks.

Scabies is one of the oldest known, most contagious, and most injurious diseases affecting sheep (fig. 30). Its history dates back to the earliest age of civilization. It is easily transmitted from one sheep to another and spreads very rapidly after being introduced into the flock. When allowed to spread, sheep scab causes financial loss to the industry, (1) by a decrease in the quantity of wool produced, (2) by the unthrifty condition of the animals, and (3) by the death of large numbers of infested sheep. It was formerly the greatest drawback to the sheep industry of the United States. The migratory character of the western sheep business was very favorable to the spread of this parasite. The sheep were frequently exposed to the disease by infected ranges and trails, by " picked-up strays" from other infested flocks, and in many other ways.

Although scab is highly contagious, insidious in its nature, and severe in its effects, it yields rapidly to proper treatment and is easily cured. It is, therefore, highly desirable to eradicate the disease so far as possible. For this reason the Department of Agriculture has extended aid to the industry by controlling the inter-
state movement of sheep to prevent the carrying of infection from one State to another. Cooperative work has also been carried on with the livestock authorities of the various States concerned, with the intention of completely eradicating the disease. This work has been in progress for 17 years. During this time the disease has been very greatly reduced over most of the previously infected area. However, taking the country as a whole, considerable expense is involved in keeping it under control.

The sheep tick, which is really a wingless parasitic fly, is widely distributed in many of the sheep-growing countries of the world. In this country it is found in practically every State. It is most prevalent, however, on the western ranges where sheep are herded in large flocks, the northern two-thirds of the range country being the most heavily infested. The previous custom, in a majority of the principal sheep-growing States, of dipping the flocks regularly for scab evidently served at the same time to control the tick. With the eradication of scab in many States, dipping, especially in the Northwest has been discontinued to a great extent. Subsequently,

Fig. 30.-Sheep scab is most common on the range, but occurs in the Central States as far south as southern Missouri and Kentucky. The Atlantic Coast States, with the exception of New York, and most of the Southern States are free from the disease. Although scab spreads rapidly and requires energetic measures for its control, its elimination from Montana, one of the largest sheep-producing States, shows what can be accomplished by persistent and energetic measures.
the ticks have spread rapidly and become so prevalent that compussory dipping again has become necessary in order to eradicate them. In the Southwestern States, where sheep owners still continue to dip their flocks more or less regularly, ticks are not so plentiful. Many of the farm flocks also_harbor these parasites.

Other external parasites which cause considerable losses are the screw worm and the various wool maggots. These are especially bad in the warm, humid climate of the South. To avoid serious losses, shearing cuts and other wounds must be properly protected from them. These maggots are also likely to infest sheep suffering from diarrhea.
Internal parasites.-Internal parasites live in the tissues, cavities, and tubes of the host animal. In the case of the sheep these parasites
include roundworms, lungworms, flukes, tapeworms, the maggot known as grub in the head, and some microscopic forms.

Of the various roundworms, the stomach worm is probably the most common and important. This parasite, which is found in the fourth stomach, occurs over almost the entire world where there are sheep, goats, cattle, or other suitable host animals. In the United States it is most plentiful in the South, where it is favored by abundant warmth and moisture. It is also a serious pest in the Northeastern and Middle Western States and in low, wet areas throughout the entire country. It is present in smaller numbers and does less damage in the high, dry, and cool areas of the Rocky Mountain region.

It is impossible to estimate with accuracy the losses caused by the stomach worm. However, it is probable that this parasite causes more loss to the sheep industry than any other disease, and that the total loss from it is very large. The stomach worm is probably one of the leading factors in preventing the expansion of the sheep industry in the South; and, together with dogs, it has undoubtedly been responsible for much of the decline of the sheep industry in the Northeastern and Central States. Losses from this cause are greatest among lambs, especially after they are weaned from their mothers and turned on infested pastures. Not only is there a considerable loss by death, but because of this worm infestation a large percentage of the farm lambs have to be marketed in an unthrifty condition. Such lambs always bring a low price in the markets.

The sheep become infected while grazing on pasture. The eggs of this parasite pass out of the body of the sheep in the droppings and are scattered broadcast over the pasture. The young worms which hatch from the eggs feed upon the organic matter in manure and grow until they are nearly one-thirtieth of an inch in length. Further development then ceases until the worm is swallowed by a sheep or other ruminant after which the worm again begins to grow and reaches maturity. The chances of the young worms being swallowed are greatly increased by the fact that they crawl up blades of grass whenever sufficient moisture is present and the temperature is favorable. While the infestation can be avoided to a certain extent by a careful rotation of pastures this method is not entirely effective. These worms can be controlled by the administration every three or four weeks of a 1 per cent solution of copper sulphate in suitable doses. ${ }^{2}$

The liver fluke is common in certain portions of the United States, especially along the South Atlantic and Pacific coasts and the Gulf of Mexico. It was a serious disease of sheep in California as early as 1833. It is especially prevalent in Oregon. As the flukes require snails for their intermediate hosts, prevention is largely a matter of a voiding wet pastures. Not only is there a considerable loss of sheep resulting from this disease, but there is an additional loss sustained by the packing houses from the large number of diseased (fluky) livers that are condemned at the time of slaughter.

Nodular worms live in nodules in the intestines of sheep. Not only do these cause an unhealthy condition in the sheep, and sometimes death, but where these nodules are numerous, they destroy the value of the intestines as sausage casings. Nodular disease at the present

[^26]time is so prevalent in this country that it is necessary to import casings at considerable cost from other countries where the parasites producing this condition are less prevalent. Nodular disease is spreading in the United States and unless suitable control measures are found and applied it is only a question of time when the production of casings from sheep intestines will be reduced to a negligible item.

Gid, which is a disease due to a bladderworm or larval tapeworm occurring in the brain or spinal cord, has caused heavy losses in Montana, where it is most prevalent. Grub in the head is due to a maggot in the nostrils and frontal sinuses. The irritation due to this causes the profuse flow of mucus from the nostrils. Keeping the sheep's nose smeared with pine tar or some similar preparation during the fly season is a valuable preventive. Among the numerous other internal parasites are the blood-sucking hookworm, and worms which occur in the lungs of sheep, causing a bronchitis characterized by a husky cough.

Much can be done in the prevention of parasites in sheep by not keeping them too long on the same pasture. Fairly frequent changes of pasture are desirable, not only for the sheep but also for the pasture. Clean barns and yards, clean feed, and a good, safe supply of drinking water are always important. Dogs are responsible for conveying a number of parasites (tapeworm and tongueworm) to sheep, as well as other farm animals. Stray or unrestrained dogs running over the farm are a source of livestock infestation.

Cost of Producing Mutton and Wool.

The most extensive studies on the cost of producing mutton and wool are those made by the Tariff Board (appointed by President Taft) for the year 1910, and by the United States Tariff Commission for the years 1918-1920. These two studies covered the western range industry and included costs on a total of $3,000,000$ and $1,419,000$ sheep, respectively. The Tariff Board also made a comprehensive study of the cost of producing wool in the farming States, especially in those sections producing fine wool. The figures published are based on the cost of producing a pound of wool, and no segregation of the individual items of expense has been made. The best figures a vailable concerning recent costs of keeping farm flocks are, (1) an investigation by the United States Tariff Commission in 1918 on the cost of keeping Merino sheep on 18 farms in the Ohio fine-wool séction, and (2) a 4 -year cooperative study conducted by Purdue University and the United States Department of Agriculture on 42 Indiana farm flocks. The Indiana figures are believed to be representative of Corn-Belt conditions.

Considerable information has been obtained by the Department of Agriculture relative to the cost of fattening range sheep for market. The figures obtained are for a number of the leading feeding centers and cover nearly 400,000 sheep, principally lambs.

Cost of Carrying Range Sheep.

The average cost of running a range sheep for a year under pre-war conditions (1910) was $\$ 2.11$. For the 3 -year period, 1918-1920, which was the peak period of high costs, these figures had risen to $\$ 8.30$. The operating costs in 1923 were less than for the period of

VARIATION IN COST FACTORS OF KEEPING SHEEP- 10 RANGE STATES, 1919.
PER CENT OF TOTAL COST
FEES \& INTEREST DECREASE IN INVENTORY

Fig. 31.-Labor constituted approximately one-third of the total cost, varying from 20 per cent in Arizona. where cheap Mexican labor was obtainable, to over 40 per cent in Wyoming, where because of difficulties with new settlers considerable help was necessary. Interest on investment in sheep and land is the next heaviest item of expense, ranging from approximately 10 per cent in States where but little of the range land is owned, to over 30 per cent in Texas, where interest and rental fees constitute nearly half the total cost. In where the sheep are seldom fed, to over 30 per cent in Idaho, where winter feeding prevails. The heavy decrease in inventory in New where the sheep are seldom fed, or over expanding their business. (Data from report of the United States Tariff Commission, "The Wool-Growing Industry," Table XXX.)
greatest inflation, but much higher than in 1910. This is because it is now necessary, owing to the more crowded condition of the range, to run the sheep in smaller bands and to depend more and more on the use of supplemental feeds during the winter, and especially because of the generally much heavier investment in land than in 1910.
A comparison of the various items of expense shows that in both periods labor constituted approximately one-third of the total cost (fig. 31). It was generally the largest item, except in Texas in 19181921, where the practice of herding was giving way to that of turning the sheep loose in large wolf-proof fenced pastures. In both periods the item of feed amounted to about one-fifth of the total cost. This item varies greatly with the region. In the southern range States, where sheep are kept on the open range throughout the entire year, the feed costs are generally small, except during periods of drought. In the more northern regions, as in Washington and Idaho, where most of the sheep are fed for a period of four or five months during the winter, feed is the largest item of expense.
Interest on the investment in real estate has in recent years become a heavy expense to most operators. In Texas, where many of the sheep are now run in inclosed pastures the year round, interest constitutes nearly one-third of the total cost.

Cost of Keeping Farm Flocks.

Figures obtained for 1910 by the Tariff Board on 543 farm flocks (109,000 sheep) in the Ohio region showed the average cost per head, when feed is figured at the cost of raising, to be $\$ 2.44$. Figuring the

> TREND OF FARM PRICE OF WOOL IN OHIO COMPARED WITH PRICES OF ARTICLES FARMERS BUY AND OF OHIO FARM WAGES, WITHOUT BOARD, 1910-1923.

Flg. 32.-Farm prices of wool in Ohio were lower in the last half of 1913 than at any other like period since these prices have been reported by the Department of Agriculture. In June. 1911, and again in October, 1921, prices were nearly as low. High prices prevailed from 1917 to 1920 , and were also relatively favorable to Ohio woolgrowers during 1923. The money price in 1923 averaged more than double the 1913 price. Farm wages without board in Ohio and prices of articles farmers buy (general index numbers) were fairly stable until they began to rise early in 1915 and reached the high point in 1920, since which time they have receded to a position about 50 per cent higher than in 1913. (Prepared by S. W, Mendum.)
feed at its selling price on the farm, the average cost was $\$ 3.37$ per head.

In 1918 the cost of keeping sheep in the Ohio fine-wool section (a part of the same region), based on data obtained from 18 farms, on 16 of which sheep were the major enterprise, was $\$ 7.11$. This is approximately double the 1910 costs. As a number of the sheep were wethers, 67 per cent of the receipts was from wool and 33 per cent from lambs.

The average cost of keeping a ewe a year on 42 Indiana farms for the 4-year period, 1918-1921, was approximately the same, amounting to $\$ 7.18$. An average of 1.06 lambs and a $7 \frac{1}{2}$-pound fleece was produced per ewe. Two-thirds of the gross income was from lambs and one-third from wool. The average size of the flock was 40 ewes, 9 ewe lambs and 1 ram. In both instances the charge for dry feed was the greatest item of expense, amounting to nearly 50 per cent, while that for pasture came second, amounting to 30 per cent of the total cost in Indiana and 20 per cent in Ohio.

The Indiana sheep were fed an average of 94 pounds of grain, mostly corn and oats, and 204 pounds of roughage, about half of which was alfalfa and clover hay. They were pastured for about eight months. In addition to the regular pasture, they were given the run of the farm and allowed to clean up the fence rows and fields from which crops had been taken.

Cost of Fattening Lambs for Market.
The data available on the cost of finishing lambs for market are for three systems of feeding, as follows: (1) Open-yard feeding west of the Missouri River; (2) fattening in cornfields in the Corn Belt; and (3) feeding in barns in the eastern part of the Corn Belt and in New York. The figures obtained are mostly for the feeding seasons of 1916-17 and 1917-18, although one study includes an average for the five consecutive feeding years of 1912-1917.

The feeding season of 1916-17 was one of the most profitable ever experienced by sheep feeders, as the lambs were purchased at practically pre-war prices and were fed on a steadily advancing market at a time when nearly all agricultural enterprises were highly profitable. The season of 1917-18 was generally quite the reverse. The majority of the lambs were purchased at a prohibitive price, and many were sold at the end of a three to five months' feeding period for less than their original cost.

From the standpoint of the operator, the initial cost-the cost of the feeder lamb delivered at the feed yard-is the heaviest item of expense (fig. 33). This charge, which varies considerably from year to year and also with the distance from the source of supply, usually constitutes from 55 per cent to 70 per cent of the total cost. For this reason it is very important that much care be used in buying the sheep. A mistake in judgment as to their value, or how they will fatten, may cause the feeder a heavy loss. The next largest item of expense is for feed, which constitutes approximately onefourth to one-third the total. This cost varies not only according to seasonal prices but also with the locality. Hay is generally very cheap in the western irrigated valleys and rather high in the Eastern States. In the eastern feeding districts grain also is more expensive.

The feed used varied with the locality. On the average, 546 pounds of concentrates and 994 pounds of roughage were used by the open-yard feeders in securing 100 pounds of gain. In fattening sheep in the cornfields, 713 pounds of concentrates and 110 pounds of dry roughage (not including cornstalks) were reported as consumed for each 100 pounds gain by the sheep. The amount of corn was unusually high owing to the fact that most of it was soft, having been damaged by frost. The lambs fattened in barns consumed on the average 572 pounds of concentrates and 608 pounds of roughage per 100-pound gain.

State experiment station literature on lamb feeding often reports lower feed requirements. However, the lambs in these experiments
dISTRIBUTION OF THE MAJOR COST ITEMS IN FATTENING LAMBS.

Fig. 33.-The initial cost, which is the cost of the feeder lamb delivered at the feed yard, varied from a little over half the total cost of the fattened lamb for the winter of 1916-17, when lambs were purchased on a pre-war value, to as high as 73 per cent for lambs fattened in cornfields in the fall of 1917, when feeder lambs were at the highest price ever known. The relatively high initial cost of the lambs fattened in cornfields, as compared with those fattened in barns (61 per cent) for the same year, is due largely to the much lower cost of feed and of operating expenses for that type of feeding. Miscellaneous expenses, which varied from about 5 per cent for the lambs fattened in cornfields to a little over 11 per cent for barn lambs of Michigan and Indiana in 1916-17, include labor, interest on investment, risk, taxes. and equipment charges. Marketing expenses, including freight, varied from nothing for the New York lambs sold at the barns to over 4 per cent for the yard-fed lambs.
usually have been carefully selected for the proper weight and feeder condition to secure rapid and economical gains. Skillful feeding and short feeding periods on which some of the experimental data are based also favor especially economical gains.

In the winter of 1916-17 the Indiana Experiment Station fed 224 lambs having an average initial weight of 59.5 pounds. ${ }^{3}$ These lambs were on feed 120 days and required 407 pounds of concentrates and 806 pounds of roughage per 100 pounds of gain. The following year 199 lambs having an initial weight of 56.1 pounds were fed. ${ }^{4}$. These lambs in a 90 -day feeding period consumed, on an average, 404 pounds of concentrates and 828 pounds of roughage. Again, in the

[^27]winter of 1921-22, 200 lambs having an average initial weight of 61 pounds, and which were kept on feed 90 days, took 361 pounds of concentrates and 877 pounds of roughage. ${ }^{5}$ In these Indiana experiments, corn was the principal concentrate and silage constituted approximately one-half to three-quarters of the roughage.

The Nebraska Experiment Station reports that during a 65 -day feeding period in the winter of 1914-15 a lot of 50 lambs required 367 pounds of shelled corn and 238 pounds of alfalfa hay per 100 pounds gain, while another lot of 50 lambs required 366 pounds of shelled corn, 205 pounds of alfalfa hay, and 121 pounds of corn silage. ${ }^{6}$ The initial weight of these lambs was 53 pounds. The same station reported that in a feeding test, in the fall and winter of 1917, one lot of 35 lambs having an average initial weight of 58.5 pounds kept on feed 58 days required only 298 pounds of shelled corn together with 612 pounds of alfalfa hay for 100 pounds gain. ${ }^{7}$ It will be noted that these Nebraska lambs were comparatively light and their short feeding periods favored rapid gains that were unusually economical in feed requirements.

Financing the Sheep Industry.

In the raising of sheep as in other lines of production, it is the exception rather than the rule that the man in position to give his time and efforts to the industry has sufficient capital of his own to enable him to produce on a profitable scale. This is, of course, particularly true of the rancher, who specializes in sheep production, as contrasted with the operator of a diversified farm who raises sheep more or less as a side line to his general farming.

Suitable credit facilities for the sheep producer constitute a part of the larger problem of livestock credit. As compared with cattle, sheep as security for loans are frequently looked upon with rather less favor. Advantages and disadvantages of these two classes of livestock security appear, however, to be fairly well balanced. An important consideration in favor of sheep is that they mature and are ready for market in about one-fourth the time required for beef cattle. Furthermore, the wool clip in the spring provides an income usually sufficient to cover much, if not the whole, of the maintenance cost. Sheep loans, therefore, liquidate themselves much more quickly than do cattle loans, so far as flocks or herds of breeding animals are concerned. On the other hand, sheep are more subject to sudden loss by reason of inclement weather and depredations of beasts of prey. Sheep are also less readily identified, since they can not be branded in the manner so successfully used with cattle.
The sources of credit for sheep producers are commercial banks, wool warehouse companies, and specialized credit agencies generally known as livestock loan companies. While some livestock loan companies lend money on cattle exclusively, others specialize to a considerable extent in sheep loans. In amount the credit extended is usually limited to two-thirds, or at most three-fourths, of the value of the flock. Occasionally, however, loans more nearly approaching actual value are granted where the owner is a man of established

[^28]business integrity and well equipped in all respects to handle his flocks to best advantage. In such cases the relatively certain and rapid increase in the growth and value of the flock is held to justify a temporary disregard of the usual margin between the amount of the loan and the value of the security.

In the past the credit facilities have been adapted to the needs of the feeder or finisher of livestock rather than to those of the grower. The term of the loan rarely exceeded six months. In the case of the grower or producer of livestock, one or more renewals have generally been expected by both parties to the credit agreement, and in normal times such renewals have, of course, readily been obtained. The difficulty has been that in times of financial stress, such as followed our period of war and post-war inflation, a sudden consciousness of overextended credits gave rise to more or less frantic efforts at retrenchment and liquidation. Lt such times the rancher has often found his loans falling due and renewals refused him, making it necessary to sacrifice his flocks at heavy loss to himself and to the detriment of the industry.

It seems reasonable to expect that the added credit facilities established and authorized by the agricultural credits act of 1923 will, in large measure, remove the credit difficulties under which the livestock grower has labored. The extension of the term of discount by the Federal reserve banks on agricultural and livestock paper from 6 months to 9 months, and the creation of 12 Federal intermediate credit banks with their powers to make discounts and advances for periods of 6 months to 3 years, should make available to the livestock interests, as well as to agriculture in general, a more ample supply of'credit under all conditions and greatly reduce the necessity of relying on frequent renewals of technically short-term loans. The same act also authorizes the organization under Federal charter of privately financed and managed national agricultural credit corporations which have in view primarily the credit needs of the rancher or livestock man.

Marketing Sheep and Wool.

Sheep raising involves the production of both wool and mutton, each of which constitutes a distinct commodity. While there is always a close correlation and interdependence between these two commodities, they differ so widely in nature, use, price, and ultimate distribution, that it is not only desirable but necessary to consider them separately.

The problem is still further complicated by the shifts in relative importance which have occurred in the course of development of the industry. In the early history of the United States sheep were raised almost exclusively for wool. Later mutton became an important market commodity, whereas more recently the production of lamb has assumed a dominating place in the industry. In 1899 sales of sheep and lambs provided 52.3% of the flock receipts in the United States and sales of wool 47.7%. In 1909 the percentages stood at 56.4% and 43.6% respectively, and in 1919 they were 56.6% and 43.4%.

As late as the middle of the last century wool was so preeminently the reason for the existence of the sheep industry that when, because of a depressed market for that commodity many sheep men
abandoned the business, whole flocks were slaughtered and the carcasses fed to hogs. In contrast to this are the prices paid in February, 1924. During that month the market value of an average weight fleece of wool was about $\$ 4.12$. The live sheep weighing 90 pounds was worth $\$ 7.88$ and the mutton carcass $\$ 4.81$. A live $80-$ pound lamb, however, was valued at $\$ 11.96$ and the carcass of dressed lamb resulting from its slaughter $\$ 9.04$.

Wool is a commodity which enters into world trade and its price is, in general, determined by world conditions of supply and demand. Mutton, however, so far as the United States is concerned, is almost wholly dependent on the domestic market, as the people of this country prefer strictly fresh, rather than frozen, lamb and mutton. Furthermore, the character of mutton is such that, without freezing, it can not be stored satisfactorily for more than two or three weeks.

Fig. 34.-Owing to large numbers of sheep on the western range, the center of mutton production is nearly 700 miles west of the center of slaughter. The center of consumption is close to the center of human population, and only about 200 miles cast of the center of slaughter. In reality, the regions of greatest consumption are the North Atlantic States and the far West.
Because of this difficulty in keeping fresh lamb and mutton in merchantable condition for any considerable time, and despite the fact that during the last 40 years the center of sheep production has been farther removed from the center of consumption than has been true of any other class of meat animals, and despite the further fact that heavy loss through shrinkage and other causes results from long hauls, live sheep and lambs are frequently transported nearly across the continent in order that they may be slaughtered and dressed as near the point of consumption as possible (fig. 34).

Marketing Sheep and Lambs.

Although very early in the history of America some sheep were slaughtered, the production of mutton was merely incidental to the major interprise of producing wool with which to clothe the colonists' families. For many years there was a decided prejudice against mutton as food. This prejudice still exists to a marked degree in many rural communities, particularly in the more sparsely settled portions of the South and Central West. Apparently this
prejudice is due largely to inefficient and unsatisfactory methods of slaughter and dressing. Another reason for the existence of such prejudice in the early days was the fact that most of the sheep raised were not of the mutton type, and did not produce meat of the best quality and flavor. Still another reason was that most sheep were not slaughtered until they were 4 or 5 years old, when the meat was likely to be tough and unpalatable. Even after the fine-wool breeds were crossed with sheep of the mutton type for the purpose of producing a better animal for slaughter, it was many years before mutton became an important item of trade. Up to the middle of the last century mutton was of so little consequence that when flocks were slaughtered, on account of the wool prices falling below the cost of production, the pelt and the tallow were the only portions of the animal salvaged. The larger centers of population have always furnished the principal market for lamb and mutton.

The consumption of mutton increased greatly after 1870. This increase was due partly to improved methods of slaughter, but chiefly to the development of artificial refrigeration and more particularly refrigerated transportation. The invention of refrigeration made it possible to slaughter sheep and lambs in the Middle West and transport the carcass meat by rail to the Atlantic coast cities. From that time on the sheepman had two strings to his bow, and was no longer wholly dependent on wool for his flock returns. The first change from a strictly wool basis consisted largely in an effort to market ewes in a fairly merchantable condition after they had outlived their usefulness for breeding purposes, and to market wether sheep after they had produced from four to five clips of wool.

Although some lambs were marketed in the nineties they were of so little consequence as a market commodity that no sustained or continuous price quotation records were kept. By 1900, " lamb" had taken a permanent place as an article of commerce and provided the sheepman with a third item of revenue. Since that time lamb marketing has increased greatly. Lambs now constitute from 75 to 90 per cent of the receipts of ovine stock at the principal livestock markets.

One of the striking features of the sheep industry of the last 30 or 40 years is the progressive lowering of the slaughter age. This same tendency is also shown in the cattle and swine industries. Whether the demand for meat from younger animals was responsible for changing production methods, or whether producers developed this demand by slaughtering at an earlier age, it would be difficult to say. In any event, the tendency to market and slaughter animals at a progressively younger age has fitted in well with the producers' increasing costs as well as with the taste of the consuming public. Whereas in 1890 probably 75 per cent of the ovine stock marketed consisted of sheep ranging from 4 to 8 years of age, at the present time approximately 80 per cent of such marketings are lambs ranging from 4 to 12 months old.

Receipts at the public stockyards.-From 30 to 90 per cent of the sheep and lambs marketed in different sections of the country are sent to public stockyards, and probably in the country as a whole fully 75 per cent of the marketing is conducted in this manner. Although practically every public stockyard handles some sheep, as might be expected, the bulk of the offerings goes to those markets
which are either located nearest the areas of production or are situated on the direct route from the producing areas of range States to the consuming centers along the Atlantic seaboard.

During the nine years from 1915 to 1923 the receipts of sheep and lambs at public stockyards averaged about $22,353,000$ head annually. The peak was reached in 1919 when $27,256,000$ head were marketed. The lightest movement occurred in 1915 when receipts totaled only 18,435,000 head. At that time the World War had been in operation nearly a year and the resulting advance in wool prices provided a strong incentive to retain a much larger proportion of ewe lambs than usual.

As is true of other classes of meat animals, a very large proportion of the sheep and lambs marketed pass through a few of the larger markets. For example, during the nine years from 1915 to 1923 five markets, Chicago, Omaha, Denver, Kansas City and Jersey

Fig. 35.-Chicago, the premier sheep and lamb market of the country, draws its supplies from the range and from most of the Corn Belt. The Missouri River points, which, in the aggregate, receive more sheep and lambs than Chicago, secure most of their supplies from the range country, with a few from the feed yards. Denver and the other western markets depend principally on range sheep. At Jersey City, Buffalo, and the other eastern markets the receipts are mostly from eastern farm flocks, with some barn-fed lambs.

City, received more than 54 per cent of the total number of sheep and lambs sent to public stockyards in the country. Of the total, Chicago handled 19 per cent, Omaha 14 per cent, Denver and Kansas City each $7 \frac{1}{2}$ per cent, and Jersey City about 6 per cent (fig. 35).

Seasonal variation in receipts.-The marketing of sheep and lambs is largely a seasonal matter. This is especially true of lambs, because so large a percentage are marketed as grass-fed stock. When the grass season ends they must go to market. Using the eight years, 1916-1923 as a basis, October stands out as the month of heaviest receipts of sheep and lambs at public markets. During the period mentioned 14.4 per cent were marketed in October. September was second with 12.6 per cent; whereas August and November were tied with 10 per cent each. February was the lightest month with 5.8 per cent, followed by April and March with 5.9 and 6 per cent, respectively. The percentage marketed during each of the remaining five months varied from 6.6 to 7.6 per cent (fig. 36).

Source of market lambs.-The first range lambs to arrive in numbers are the lambs born in sheds in Idaho, Oregon and Washington. They begin coming to market by the middle of June and continue through July. During the next three months the movement from the range increases steadily until it reaches its peak in October. Some lambs are marketed from the range in November, but in many of the heaviest-producing areas winter storms and destruction of summer forage have sent the bulk of stock to market before that time. In October and November many farm sheep and lambs go to market for similar reasons. In December receipts consist largely of short-fed stock, which were bought late in the summer or early in the fall and sent out to clean up stubble fields and farm roughage, and lambs which have been fattened in cornfields. In January most lambs coming to market are from feed lots. In February, March, and part of April practically all of the lambs come from feed lots. In very recent years California spring lambs, which are marketed in Λ pril and May,

Fig. 36.-October is usually the month of heaviest movements of sheep and lambs. Over a period of eight years October receipts constituted 14.4 per cent of the total movement for the year. February is generally the lightest month, though March and Λ pril frequently show movements fully as light as the shortest month of the year.
have become an important factor. These are followed by the early lambs from Tennessee and Kentucky, which are marketed in considerable numbers in May and June. In fact, lambs from these two widely separated producing areas are frequently offered on the market at the same time. By the middle of June the northwestern "shed lambs" have again started to market.

Feeder sheep shipments.-Not all the sheep and lambs marketed are slaughtered immediately, a considerable proportion of them being returned to the country for further finishing. During the eight years $1916-1923$, the number of feeders shipped out of central markets varied from $6,956,000$ in 1919 to $3,095,000$ in 1921. The movement for 1923 was $4,478,000$ head. Combined feeder shipments for the eight years constituted 20 per cent of the receipts (figs. 35 and 37).

The different markets vary widely in importance as distributing centers for feeder sheep. On the basis of number reshipped, Omaha is the leading feeder-sheep market of the country with average an-

Fig. 37.-Omaha is the leading distributing point for feeder sheep and lambs. Denver shipments go largely to feed yards in eastern Colorado and Nebraska. Chicago, which ranks third, is the main distributing point for the eastern Corn Belt. Kansas City receives large numbers of sheep and lambs from the Southwest, which are distributed for feeding in the lower Missouri Valley. During the six years, 1916-1921, these four markets handled 79 per cent of the feeder sheep and lambs that passed through public stockyards. The circles in the map above represent a much smaller number of sheep for the same area of circle than in fig. 35 .
nual shipments during the above eight years of 1,143,236 head. Denver is second with $1,016,324$, Chicago third with 745,458 , and Kansas City fourth, with 479,281 head. These four markets handle nearly 74 per cent of the feeder sheep and lambs that pass through public stockyards. On the basis of percentage of receipts which are returned to the country as feeders, Denver stands out preeminently. During the eight years mentioned Denver reshipped 56 per cent of its receipts as feeders or breeders; Omaha 37 per cent; Kansas City 28

Fig. 38.-The majority of the range sheep are shipped east for slaughter to the large packing houses at Chicago and Missouri River points, all of which are under Federal inspection. Most of the shcep and lambs from the Central States are also slaughtered at these plants. 1 large proportion of the dressed carcasses are then shipped east for consumption in the industrial centers. The packing houses on the Atlantic coast depend upon the States from Ohio and Michigan eastward for their supplies.
per cent, and Chicago 17 per cent. These four markets combined shipped 31 per cent of their receipts back to the country.

Feeder-sheep shipments are largely confined to the four months August to November, during which time more than 70 per cent of such shipments from central markets usually occur. The heaviest movement takes place in September and October, when the movement of range sheep to market is at its height. Nearly 45 per cent of the feeder shipments for the year occur in these two months. March is the month of lowest shipments.

While the greater number of the feeder lambs pass through central markets, a considerable number are sent direct from the range to feed lots. In some years these feeder lambs are contracted for several months in advance.

Concentration of slaughter.-Sheep and lamb slaughter is more centralized than the receipts figures indicate. Considering total slaughter, both federally inspected and otherwise, during the four years 1920 to 1923, the four markets, Chicago, Jersey City, ${ }^{8}$ Omaha, and Kansas City slaughtered over 63 per cent. During that period Chicago slaughtered 26 per cent of the total, Omaha and Jersey City each 14 per cent, and Kansas City 10 per cent. A larger proportion of the sheep and lambs slaughtered in the United States are handled under Federal inspection than of any other class of livestock. Out of a total slaughter in 1923 amounting to $14,818,200,11,528,550$, or 78 per cent were slaughtered under Federal inspection. In that same year only 66 per cent of the cattle and 65 per cent of the hogs slaughtered were féderally inspected (fig. 38).

Fig. 39 .-In the western range country large numbers of sheep and lambs are slaughtered by herders and camp tenders. In the East, notably the North Atlantic States, farm-dressed mutton and lamb are used for the country home and small town consumption. A dot on this map represents a much smaller number of sheep than a dot of the same size in fig. 38.
The slaughter of sheep and lambs on farms is comparatively light (fig. 39). Such slaughter in 1919 totaled only 434,533 or 3 per cent of the total slaughter of sheep and lambs for that year. The comparatively small size of sheep and lambs makes them especially suitable for farm slaughter, as there is little difficulty in disposing of all the meat while it is still in prime condition. However, sheep

[^29]raisers of the farm States have not formed the habit of depending very largely on lamb or mutton for their meat supply. In recent years the relatively high prices of market lambs has naturally encouraged farmers to sell their lambs and slaughter lower-priced beef and pork for home use. Comparatively few local butchers in the smaller towns and villages of the Middle West handle lamb and mutton regularly. These meats are consumed mostly in restaurants, hotels, and city homes of industrial centers.

Market Prices of Sheep and Lambs.

The more important factors which determine the market price of sheep and lambs are available supplies, consumptive demand, grade of the animal, and the price of wool.

Fig. 40.-Of the total lamb and mutton available for consumption in the United States approximately 35 per cent is consumed in the North Atlantic States. However, the heaviest per capita consumption is in the Western States. The lowest per capita consumption is in the South Atlantic and the West North Central States. These regions jointly consume only about 15 per cent of the Nation's supply.

Available supplies.-As previously, noted, the supply of sheep and lambs at market centers varies widely, not only with the season of the year but from year to year. An eighth of the annual receipts usually arrive in each of the two months, September and October, one-tenth each in August and November, and only about one-fifteenth in each of the other eight months. The variation from year to year is less but still very large. During the nine years 1915 to 1923 receipts at public markets show an extreme variation of $8,821,000$ head, or about 48 per cent of the receipts in the lowest year. However, this wide variation was largely due to war conditions.

Consumption of lamb and mutton.-The consumption likewise varies from year to year. In the 17 -year period for which figures are available, 1907-1923 the per capita consumption ranged from 4.6 pounds in 1917 to 8.2 pounds in 1912, an extreme variation of 3.6 pounds per capita, or more than 74 per cent. The importance of such a variation becomes apparent when the further fact is taken into account that there is practically no foreign trade in lamb and mutton, the sheep producer being dependent almost entirely on domestic consumption for an outlet. Table 1 shows that
the variation in per capita consumption of lamb and mutton, though less in number of pounds from year to year than in other meats, is much greater relatively.

Consumption of lamb and mutton also varies widely in different sections of the country (fig. 40). It is greatest in the northeastern and far western sections, least in the South Atlantic and West North Central States. In the western range country the per capita consumption by the rural population is decidedly greater than in the farm States. This is particularly true of Nevada, New Mexico, Utah, and Wyoming, where the average in 1919 was 22.2 pounds, 15 pounds, 8.3 pounds and 7.8 pounds, respectively. East of the Rocky Mountains the per capita consumption by the rural population averages less than 1 pound.

Table 1.-Annual per capita consumption of lamb and mutton, beef, veal, pork, and lamb, 1907-1923.

Year.	$\begin{aligned} & \text { Lamb } \\ & \text { and } \\ & \text { mut- } \\ & \text { ton. } \end{aligned}$	Beef.	Veal.	Pork, ex-cluding lard.	Lard.	Year.	Lamb and mut- ton.	Bcef.	Veal.	Pork, ex-cluding lard.	Lard.
	$L b s$.	Lbs.	Lbs.	$L b s$.	Lbs.		$L b s$.	$L b s$.	Lbs.	Lbs.	Lbs.
1907.	6.4	79.7	7.1	74.1	12.5	1916.	6.2	57.3	5.3	73.1	14.4
1908.	6.2	72.4	6.8	85.4	14.3	1917	4.6	61.1	6.5	58.5	11.9
1909.	6.6	76.2	7.5	68.6	11.6	1918	4.7	65.2	7.4	67.6	13.6
1910.	6.5	71.8	7.4	60.3	10.5	1919.	5.8	58.0	7.7	68.6	12.8
1911.	7.8	68.4	7.0	75.1	11.8	1920.	5.0	61.2	7.9	69.0	13.1
1912.	8.2	61.7	7.0	70.6	11.4	1921.	6.2	57.8	7.0	72.9	11.3
1913.	7.6	60.8	5.0	72.5	11.7	1922	5.0	61.4	7.3	76.0	14.1
1914.	7.5	59.3	4.4	70.3	12.1	1923.	5.2	62.5	7.9	91.4	16.4
1915.	6.4	56.0	4.3	70.2	13.2						

Grades of sheep and lambs.-Although the general price level of sheep and lambs is largely determined by supply and demand conditions combined with the price of wool, the price of any given lot of sheep or lambs depends chiefly on the grade of the animals which comprise the lot. The grade of sheep and lambs intended for slaughter is determined largely by variations in quality, conformation, and finish. Quality refers to the degree of fineness of bone and relative freedom from coarseness. Fineness and character of fleece also sometimes serve as an index of quality. Conformation refers to the general form, build, or outline of the animal. Finish pertains to the amount and distribution of fat. Lambs are graded as prime, choice, good, medium, common, cull, and inferior in the order named; wethers, prime to cull; and ewes, choice to canner. A canner ewe corresponds to an inferior lamb. Lamb prices at Chicago during October, 1923 , averaged $\$ 12.30$ per 100 pounds for those grading medium to prime, and $\$ 9.90$ for those grading common to inferior. (Fig. 41.)

Effects of wool prices.-Wool is the third factor which enters strongly into the determination of sheep and lamb prices. Perhaps this commodity is the source of more complications than any other single item. This is due partly to comparatively wide fluctuations in the price of wool, but more particularly to the extreme variations in the amount of wool carried by the animal at various seasons of the year. For example, late in the spring an animal may carry from 5 to 8 pounds of wool. If wool is worth 40 cents a pound the value of the fleece alone will range from $\$ 2$ to $\$ 3.20$. Assuming a weight of 85
pounds for the lamb and a price of 12 cents a pound, the total value of the animal would amount to $\$ 10.20$. Of this amount, however, from $\$ 2$ to $\$ 3.20$ represents the value of the wool that the lamb carries, which amounts to approximately 25 to 30 per cent of the total value of the animal. It may happen, however, that although at a given time the animal carries a greater weight of fleece than it did previously, the price of wool has declined in the meantime so that

MARKET GRADES OF LAMBS.

Fig. 41.-Conformation, quality, and finish largely determine the market grades of lambs. Experienced buyers when considering wooled lambs seldom determine grade solely on observation; they invariably handle the animals to discover deficiencies and to determine the degree of fatness or finish. The above cuts illustrate three grades of lambs before and after shearing: A, Choice lamb (wooled) ; B, choice lamb (shorn) ; C, medium lamb (wooled) ; D, medium lamb (shorn) ; E, cull lamb (wooled) ; F, cull lamb (shorn).
the increased amount of wool may be worth no more than the smaller amount earlier in the season.

Long-time variations in prices.-In studying sheep and lamb prices over a period of time, one characteristic stands out strongly. Largely because of the fact that lamb and mutton still are considered by some people as luxuries, lamb and sheep prices show a much greater sensitiveness to rariations in general business, trade, and economic conditions than do most commodities.
^ study of yearly average sheep prices at Chicago from 1893 to 1023 inclusive, indicates that average prices reached their lowest 1 oint in 1894, the price for that year being $\$ 2.80$ per 100 pounds. The highest price occurred in 1918 when the average for the year stood at $\$ 12.15$. Lamb prices followed a virtually parallel course. For 1894, the Chicago average price was $\$ 3.55$, and in 1918 it was $\$ 16.60$ per 100 pounds (fig. 43).

Fig. 42.-Although a lamb carcass produces fewer retail cuts than either beef or pork, a larger proportion of it is used as chops than is true of any other class of meat. This fact, together with the comparatively small size of the various retail cuts, makes lamb particularly suited to the needs of small families and to the mode of living of the average city dweller.
A comparison of both of these sets of prices with indexes of general commodity prices shows that whereas the sheep and lamb market reached the lowest point in 1894, general commodity prices did not reach bottom until two years later, or in 1896. The highest point in the sheep and lamb market was touched in 1918, whereas general commodities did not reach the peak until two years later, or in 1920. This would seem to indicate that, in general, the sheep and lamb market anticipates rather than follows fluctuations in general trade conditions.

I'1G. 43.-Yearly average prices of live lambs advanced more or less steadily from 1894 to 1914 , but the purchasing-power price remained at about the same level from 1895 to 1914 . Money prices then rose rapidly, but the purchasing-power price declined after 1915 , reaching a low point of $\$ 6.46$ in 1920. Since 1921 the price has risen rapidly, reaching a purchasing-power price of $\$ 9.09$ in 1922 , which is higher than in any previous year for which quotations are available.

It may be of value in this connection to compare actual market prices with the purchasing power of such prices expressed in terms of general commodity prices. In the case of shcep, although the lowest market price was registered in 1894, the lowest purchasing power occurred in 1921. On the other hand, both the highest price and the highest purchasing power occurred in 1918. In the case of lambs the situation was somewhat different. Both the lowest market price and the lowest purchasing power of the period considered occurred in 1894. Although the highest market price occurred in 1918, the highest purchasing power was reached in. 1922.

Fig. 44.-Prices of lambs in 1923 were almost double the average price for 1911-1915, which years are fairly representative of pre-war prices, and were nearly as high as the average price during the period 1916-1920. Lamb prices usually reach their seasonal peak in May, though in 1923 the high point occurred about the middle of June. The lowest quotations generally occur in June, owing partly to the fact that many of the lambs going to market at that time are clipped.

Not only are sheep and lamb prices subject to sudden fluctuations, but over a period of time such variations are extremely wide. For example, in the 31 years, 1893 to 1923, yearly average sheep prices varied from $\$ 2.80$ to $\$ 12.15$ per 100 pounds-a range of $\$ 9.35$, or 334 per cent, using the lower number as a base. Lamb prices during the same period varied from $\$ 3.55$ to $\$ 16.60$-a range of $\$ 13.05$ or 368 per cent.

Seasonal variations in prices.-As is true of market movements of sheep and lambs, so also market prices move in fairly well-defined cycles. Some of these cycles as noted are dependent chiefly on changes in general economic conditions. Others depend largely on seasonal supply conditions.

A study of weekly average prices of lambs at Chicago for two 5 -year periods, 1911 to 1915 and 1916 to 1920, shows that, as a rule, prices are lowest somewhere between the middle and the end of

DISTRIBUTION OF CONSUMER'S LAMB AND BY-PRODUCTS DOLLAR.

Fig. 45.-Out of the dollar which the average consumer paid for dressed lamb in July and August, 1923, 63.1 cents went to the producer, 14.5 cents were retained by the retailer; 13.1 cents went to the packer; 8 cents were paid to the transportation companies; and 1.3 cents to the various central market agencies, such as commission men and stockyard companies. The proportion of the consumer's dollar received by the various agencies of production and distribution varies somewhat from time to time, with changes in market prices, freight rates, and other charges.
June, and highest around the middle of May (fig. 44). It seems probable, however, that this close proximity of the highest and lowest prices of the year is more apparent than real. By the middle of June most of the lambs coming to market are shorn, whereas a month earlier the bulk of the lambs carry a full fleece. The importance of this feature becomes apparent when shorn lambs first reach the market. The difference between wooled and shorn stock frequently amounts to as much as $\$ 1$ or $\$ 1.50$ per 100 pounds and sometimes more.

Because of the varying quantities of wool carried by animals at different seasons of the year, it seems probable that dressed-lamb prices should serve as a better index of the trend of true lamb prices than do the quoted prices of live lambs. Such a study of weekly a verage lamb prices at New York City over a period of years indicates that, as a rule, dressed lamb prices reach their peak in March or April
and are lowest in September and October. This corresponds very closely with normal fluctuations in market supplies. Live lamb prices average highest in May, not only because the supply is small and a large portion of the lambs at that time carry full fleeces, but also because virtually all of the lambs marketed at this season of the year are either lambs which have been on feed for several months and are therefore in a finished condition, or are spring lambs which sell at a premium because they are relatively scarce.

Abnormal variations in prices.-No study of present-day sheep and lamb marketing would be complete that did not include some reference to the period of liquidation which occurred during 1920 and 1921. Sheep and lamb prices started downward from five to nine months earlier than those of cattle and hogs. This decline had been preceded by an abrupt collapse of the wool market, which in turn caused a heavy liquidation and a glutting of the mutton market. The lamb market was further demoralized by heavy importations of lamb and mutton from New Zealand and Argentina, amounting during 1920 to about 10 per cent of the domestic production.

Lamb prices reached their peak late in January, 1920, when the weekly average at Chicago stood at $\$ 20.80$ per 100 pounds. From that point, with certain minor fluctuations, the market declined until a low point of $\$ 8.35$ was reached for the third week in February, 1921. Sheep prices, on the other hand, did not reach their peak until the fourth week in April, 1920, when the weekly average stood at $\$ 14.90$. From that point, however, the market dropped precipitously, declining approximately $\$ 7$ per 100 pounds within a 10 -weeks period. As was true of lambs, after a slight recovery in July, 1920, sheep prices again moved downward until February, 1921.

It is noteworthy also that despite a decline of $\$ 12.45$ in 13 months, lamb prices never quite equaled the level of the five pre-war years, 1910 to 1914. Sheep prices, on the other hand, touched that level during the fourth week of December, 1920, and by the first week of the following February had dropped 81 cents below it.

Widening differential between prices of sheep and lambs.-It has already been pointed out that in the course of development of the sheep industry there has been a gradual lowering of the slaughter age. This has been due partly to a change in taste of the consuming public. Relative prices usually serve as an excellent index of relative desirability of different commodities. This is developed rather strikingly by a study of prices over a period of years.

The great bulk of meat animals of the ovine species fall into one or another of three general classes: Sheep, yearlings, and lambs. A comparison of the price of each of these classes from 1899 to 1923 shows that there has been a steady widening of the differential between them. For example, in 1899, yearlings averaged 45 cents per 100 pounds higher than mature sheep, the premium paid for yearlings amounting to 10 per cent of the sheep price. In 1923, however, the year in which the premium was greatest, yearlings brought a premium of $\$ 4.05$ per 100 pounds, or over 55.5 per cent over sheep.
Following this study a step further, lambs in 1899 brought $\$ 1.15$ per 100 pounds more than sheep, the premium amounting to 26
per cent. In 1921, although the differential was only $\$ 4.75$, the per cent of premium paid for lambs as compared with sheep amounted to 93 per cent. In 1922 when the differential expressed in dollars was greatest, lambs brought a premium of $\$ 6.30$ per 100 pounds, or 87 per cent. In 1923 the differential was $\$ 6.20$ and the premium in favor of lambs 85 per cent.

Problems in Marketing Sheep and Lambs.

One of the greatest problems in marketing sheep and lambs is that of avoiding the congested markets which occur during the three months, August 15 to November 15. During this period the receipts at the leading markets are frequently much greater than can be readily absorbed. As such gluts almost invariably cause a break in prices, all possible steps should be taken to avoid this condition. Probably the greater number of range operators will always find it necessary to ship at this time. There are, however, many operators

HAULING WOOL ACROSS THE PLAINS.
Fig. 46.-In the western range country wool is frequently hauled for a distance of 100 or more miles to the railroad. Owing to its high value per pound, it can be hauled farther than almost any other agricultural commodity.
who can just as well get their lambs on an earlier market, or if the lambs are not suitable for slaughter, hold them in valleys for a few weeks or ship direct to the feed lots. That efforts are being made to avoid shipping during this period of peak supplies is evidenced by the large percentage of the Pacific coast and Idaho growers who aim to market their lambs from April through July.

The autumn congestion is still further aggravated by the large number of native lambs, a large percentage of which are of inferior quality, that are marketed at this time. These inferior native lambs have a decidedly depressing influence on the market. Not only do they hurt the sale of good lambs, but because of their inferior condition due to poor breeding, insufficient feed, internal parasites, or lack of castration and docking, they yield a poor quality of meat and are
generally produced at a loss. This problem is one of giving the sheep more and better attention as well as giving more attention to the market requirements.

Sheepmen also are confronted with the problems of relatively high transportation and marketing charges. On some classes of sheep these charges reduce profits to a dangerously small margin.

Marketing Wool.

Wool is one of the important items of world commerce. In the early days virtually every family produced sufficient wool to meet its own needs. There was, therefore, little or no marketing of wool. With the division of labor, however, and the concentration of population in the cities there came the demand for specialization in wool production.

Fig. 47.-The freight rate in December, 1922, on 100 pounds of wool in the grease from Pocatello, Idaho, to Boston was $\$ 2.44$; from Pendleton, Oreg., $\$ 1.78$; and from Portland, Oreg., $\$ 1.50$. The rate from Salt Lake City, Utah, was $\$ 2.36$; from Winnemucca, Nev., $\$ 2.66$; and from San Francisco, $\$ 1.50$. The rate from Phoenix, Λ riz., was $\$ 2.61$; from Albuquerque, N. Mex., $\$ 1.99$; from San Angelo, Tex., $\$ 2.61$; from Kansas City, Mo., $\$ 1.24$; from St. Louis, Mo., $\$ 1.15$; and from Columbus, Ohio, 78 cents. The rate from Rawlins, Wyo., was $\$ 2.03$; from Billings, Mont., $\$ 2.12$; from Bloomfield, Iowa, $\$ 1.08$; from Chicago, 99 cents; and from Rochester, N. Y., 52 cents. It appears that the zone of highest freight rates to Boston extends from western Montana and eastern Idaho through Utah and Nevada to Arizona.

Separating the center of production from that of consumption gives rise to marketing. Generally speaking, the farther these two points are from each other the more complicated marketing becomes. Wrool generally can be produced more cheaply in regions that are undeveloped agriculturally. Due to its relatively high value per pound it can be transported long distances and still yield a profit to the producer. Because of these facts wool production has been mostly a frontier enterprise. Wool consumption, on the other hand, is greatest in the more densely populated regions. For these reasons it is probable that wool is transported over longer distances than any other important commodity (figs. 46 and 47).

International Trade in Wool.

Nearly half of the world's present supply of wool is produced in the Southern Hemisphere. On the other hand, the greater part of

the wool is consumed in the Northern Hemisphere, the latter being much more densely populated. The leading countries in the exportation of wool are Australia, Argentina, New Zealand, British South Africa, and Uruguay, in the order named. (Fig. 48.)
The leading importing countries are the United Kingdom, France, Germany, United States, Belgium, and Japan. The United Kingdom and the United States are both heavy producers and large importers of wool. British India exports considerable quantities of wool, which is mostly carpet wool. It imports, however, nearly as much as it exports, most of the imported wool being used for clothing purposes.

The United Kingdom is the greatest wool-handling country of the world. A large percentage of the colonial wools and also a consider-

SOUTH AMERICAN WOOL ON COMMONWEALTH PIER, BOSTON, MASS.
Fig. 49.-Interior view of Commonwealth Pier, Boston, showing 24,700 bales of South American wool, valued at $\$ 12,500,000$, just as it was unloaded from the boat on January 28, 1917. The second floor of the pier contained, in addition, wool valued at $\$ 1,750,000$.
able amount from South America and other countries are shipped to that country for sale. Bimonthly auction sales are held at the London Wool Exchange in which a large assortment from all parts of the world is available. While much of the wool is sold for domestic consumption, large quantities are reexported to the United States and to continental Europe. World prices for wools used in the manufacture of clothing are virtually established at the London market. Similar sales are held at Liverpool and other cities. Liverpool is the leading exchange market for carpet wools.

In recent years there has been a growing tendency for the importing countries to buy directly from the exporting countries, and the Australian auction sales have reached considerable importance. The wools of South America are sold largely by private contract. Before
the World War most of the wool imported by the United States was purchased on the British markets. In 1919, however, Great Britain stood sixth from the standpoint of exports to this country, Argentina standing first. (Fig. 49.) The following year, however, the United Kingdom was back in second place, where it has since remained.

Although the United States ranks third in the production of wool, the average for the last 35 years amounting to approximately 300 ,000,000 pounds per annum, it has never produced sufficient quantities to meet its needs. For some years prior to the World War yearly imports of wool to the United States averaged about $200,000,000$ pounds. In 1918, the peak year, they amounted to $453,72 \mathrm{~T}, 000$ pounds. Boston, which is the second largest wool market of the world, is preeminently the leading wool market of the country. Receipts of foreign and domestic wool at that point amounted to

Fig. 50.-The manufacture of woolen goods is very largely concentrated in the North Atlantic States. Nincty per cent of the mill consumption of wool in the United States is in these States. The industry centers mostly around Boston and I'hiladelphia. Massachusetts leads in consumption, manufacturing ncarly a third of the total. The remaining 10 per cent of mill consumption is not reported separately by States in fhe census. The consumption in Vermont therefore can not be shown. The figures are based on mill purchases, part of which is in the grease and part scoured.
$507,000,000$ pounds in 1917, and $416,000,000$ pounds in 1923. In some years Boston handles as much as 75 per cent of the domestic wool and occasionally as high as 70 per cent of the imported wool (fig. 50). Philadelphia handles considerable quantities of domestic and foreign wools, while New York receives considerable quantities of imported wools. ${ }^{9}$

Methods of Marketing Wool in the United States.

The methods of marketing wool in this country have changed somewhat from time to time, and there are also some variations in differ-

[^30]ent parts of the country. However, until recent years the general plan of marketing did not differ materially from that in use in the early days of the country.

The more important agencies involved in getting wool from the producer to the consumer are the country buyer, the country assembler, the central market dealer, the commission merchant, the broker, and the manufacturer. In the farm States the country buyer gathers up small lots of wool and either sells them to some merchant in town or holds the wool in his own warehouse. The central market dealer sends his agents through these smaller towns or concentration points and buys such of the wool as is suited to his needs. The wool is then shipped to some large center, where it is graded on the basis of mill requirements, and finally sold to the manufacturers.

Another form of marketing is one in which the growers consign their wool to wool warehouse companies and usually obtain advances amounting to a certain per cent of the market price of their wool. The warehouse company grades the wool and holds it for the inspection and purchase of the broker or mill agent. When the wool is sold the warehouse company remits to the grower the price obtained less any advances that may have been made, interest due on money already advanced, and a certain charge per pound for grading and carrying.

Recently the cooperative idea has been applied to wool marketing. Great quantities of wool are now assembled annually by wool pools which are, generally speaking, cooperative organizations made up of woolgrowers. The wool of the individual growers is assembled and pooled at some point, where it is graded and held for the inspection of wool buyers. Frequently advances are made on the wool so pooled. The buyers, who may represent brokers or mills, visit the points where wool is assembled and bid on the wool either in job lots or by grade, depending upon how the wool has been handled by the pool.

In the range States wool selling is quite different from that in farm flock-regions. Contracting the sale of the clip before shearing has been practiced by many ranchmen, especially when the contract provided for an advance payment, or at times when there appeared to be danger of a decline in wool prices. However, wool growers have usually lost heavily by this system, and in general they now consider it unbusinesslike. Much of the range wool is sold to eastern dealers at shearing time or very soon thereafter, the buyers dealing directly with the wool grower at his shearing shed or warehouse. This method is sometimes handled by sealed bids, each buyer offering his bid under seal, each ranchman or group of ranchmen reserving the right to accept or reject any or all bids. Much wool from the range is also consigned to commission houses in large wool centers, most of it going to Boston, Philadelphia, Chicago, St. Louis, and other Missouri River points. Part of that consigned from the Washing-ton-Oregon-Idaho district goes to Portland, Oreg.

Much effort has been spent in attempts to work out systems of cooperative marketing of range wool, and considerable progress has been made, though naturally the movement has not developed to the same point in the range country that it has in some of the farm-flock areas. Many systems have been tried out, ranging from very simple and temporary organizations handling sealed bids that are accepted

INCREASE IN AVERAGE WEIGHT OF FLEECE, VERMONT, OHIO, OREGON, AND NEW MEXICO.

Fig. 51.-By introducing new strains and by careful selection for heavy shearing qualities in the breeding flocks woolgrowers have increased the average fleece weight from about 2 pounds in 1840 to 7 or 8 pounds by 1920 in Vermont, the Mid-West and the far Northwest. In New Mexico the average fleece weight has increased from about 2 pounds in 1880 to almost 6 pounds at present.

Fig. 52.-In recent years fleece weights of 7 or 8 pounds are the rule, except in the Southeastern States, where the weight ranges from 3 to 5 pounds, and in the North Atlantic States, where the average fleece ranges from 5 to 7 pounds. The weight of the fleece varies somewhat from year to year, depending upon feed and climatic conditions.

Fig. 53.-Fleeces from the desert range shrink on scouring about 60 to 70 per cent, while fleeces from the farming States shrink only about 40 to 50 per cent. The heaviest fleeces in the grease come from the northern range States (fig. 52), whereas the heaviest fleeces after scouring are from the North Central States. It is worthy of note that the southwestern fleeces are little heavier than those from the Southeast after scouring.
or rejected by the sales committee, to permanent, incorporated organizations serving in the capacity of commission houses and dealing on the basis of binding, legal contracts with the growers. When the wool market is in a healthy condition there is a fair degree of competition among buyers in those parts of the range area that yield large quantities of desirable wool, and a number of buyers are attracted to a given community. The results of some of the cooperative selling indicate that it helps to make competition among buyers even more keen and facilitates business-like transactions. It promises also to alleviate, to a certain degree, heavy overloading and serious depression of the market.

A striking peculiarity of the wool market of the United States is the fact that although from $550,000,000$ pounds to $750,000,000$ pounds

Fig. 54.-The farm value of fleeces is usually highest in Ohio and Montana, followed by Oregon and Michigan, and is lowest in the Southeastern States. In the other States the average farm value of fleeces ranged mostly between $\$ 2$ and $\$ 3$ in 1923.
of wool with a total valuation ranging from $\$ 112,000,000$ to $\$ 350$,000,000 are handled annually, there is no established public market for the commodity. Practically all of this vast quantity of wool is bought and sold by private agreement. Another peculiarity is that while there is no open public or auction market a very large proportion of the wool passes through two or three leading centers. In other words, the marketing of wool is probably more concentrated than that of any other important commodity.

Grades of Wool and Their Uses.

Wool is extremely complex and varied in its characteristics. As a commodity of commerce it is one of the most difficult to classify and grade for the systematizing of trade. While the variation in wool occurs somewhat in correlation with the types and breeds of sheep, wide variations exist within the breeds. Fleeces having the same fineness (diameter of fiber) often vary greatly in strength of fiber, spinning properties, length, and the contents of grease (natural wool oil) and dirt. Soil, climate, and feed have far-reaching influence on the production of wool. In some sections of the western range where grass is sparse and sand storms are frequent, fleeces of Merino or Rambouillet sheep may shrink as much as 65 to 75 per cent or more in grease and dirt, when scoured or cleaned preparatory to manufacture, while fleeces from sheep of these same types when grown on excellent bluegrass pastures where sand storms seldom, if ever, occur, may shrink only 50 to 60 per cent (figs. 52 and 53). Such characteristics as strength of fiber, spinning property, and length of staple are also affected by the conditions of soil, climate, and feed.

Commercial grades of wool are based primarily on fineness or diameter of fiber. The very finest of wool is known by the grade term "fine." Wool of this grade is produced by Merino or Rambouillet sheep. "Half-blood" wool is the next grade coarser than fine, but it is commonly considered a fine wool; that is, the fibers have smaller diameter than those of the wool which is commonly called medium wool. A large percentage of the half-blood wool is grown on sheep having considerable Merino or Rambouillet inheritance. It should be understood that the word "blood" is a wool grade term and has no reference to the breeding of the sheep, but the use of a fraction in connection with the word blood indicates a certain fineness or diameter of fiber. "Three-eighths blood" is the finest and "quarter blood" the coarsest of what is known as medium wool. These grades are produced chiefly by the medium-wool mutton breeds such as Southdowns, Shropshires, and Hampshires; also by the crossbreds resulting from mating the fine and long-wool breeds, which is extensively done on the western range. "Low-quarter blood" is coarser than "quarter blood," but the finest of what is known as coarse wool. "Common" is medium in coarseness, and " braid" the coarsest of coarse wool. Oxfords produce a great deal of "lowquarter blood" as well as " quarter blood," and all grades of coarse wool are grown on the long-wool breeds, such as Lincolns, Leicesters, and Cotswolds.

Fine and half-blood wools are used in the finest of dress goods, and choice wool of these grades is usually in strong demand. The modern tendency toward mutton production is increasing the propor-
tion of three-eighths and quarter-blood wools, and in a relative sense the supply of fine and half-blood is being reduced. The three-eighths and quarter-blood wools are used in the manufacture of coarser clothing for which there is a large demand under normal conditions.

Low-quarter blood, common, and braid are used in the coarsest of goods such as heavy overcoating, blankets, and carpets. Both demand and prices for the three coarsest grades are less, and they are not produced so abundantly in America as the fine and medium wools. Wool of good length (about $2 \frac{1}{2}$ to 3 inches long) is desired for the manufacture of choice, durable worsted goods. When wool has fibers only about 1 to 2 inches long, it is used largely in the manufacture of woolens or flannels.

Grading of wool by the grower was very uncommon in this country prior to the World War. There is to-day, however, a marked tendency on the part of those who pool or consign their wool to sell by grade. Selling any commodity ungraded is bound, in the long run, to work to the advantage of the buyer. This must be true bectiuse the buyer is naturally in a better position to judge the true value of ungraded commodities than is the average producer. The United States Department of Agriculture has established grades for wool based on diameter of fiber.

Prices of Wool.

Wool prices, like those of sheep and lambs, have followed a rather tortuous course during a period of years. Fluctuations in wool prices, while not so wide as those for mutton and lamb, have exceeded in extent and violence those in most other important commodities. One reason for these wide variations is the fact that wool is a world commodity and its price level is, to a considerable extent, determined by world conditions of supply and demand. Another reason is the fact that almost from the founding of the country wool has been the

YEARLY AVERAGE PRICE, PRODUCTION, AND IMPORTS OF WOOL, 1890-1922; PERCENTAGE OF THE AVERAGE FOR 1909-1914.

Fig. 55.-As a rule there is a close relationship between wool prices and imports into the United States. Both prices and imports reached their highest points in 1918. Domestic production of wool has been fairly constant during the past 30 years.

PRICE OF " WASHED" MEDIUM OHIO FLEECE WOOL AT ATLANTIC SEABOARD MARKETS, AND PURCHASING POWER, 1824 TO 1922.

Fig. 56. Since 1824 there have been two long-time cycles of falling and rising prices-the first from 1836 falling until 1843 and rising until 1864 ; the second falling from 1864 until 1896 and rising again until 1918. In general, wool prices have followed the trend of the general price level. Within these long-time cycles there are short cycles with annual fuctuations, which are the result largely of expanding and contracting wool production. The Civil War and the recent World War caused prices of wool to rise quickly, and these high prices were followed by sudden drops at the close of these wars. Panics, such as those of 1837 and 1893, also affect the price of wool.
subject of various legislative enactments. Probably no tariff bill has been enacted in the United States that did not either impose, raise, lower, or eliminate import duties on wool. These artificial influences have had a tendency to modify the natural play of economic forces, and have resulted in materially changing available supplies of wool in the United States and, therefore, in raising or lowering prices (fig. 55).

A study of yearly average prices of medium-grade wool over a period of 100 years shows that the market averaged lowest in 1896, when washed, medium, Ohio fleece wool was quoted in eastern markets at 19.5 cents a pound; and was highest in 1918, when the same grade averaged 91.5 cents. The range between these two extremes amounted to 72 cents or 369 per cent (fig. 56).

If the market price of the above-named grade of wool is compared with its purchasing power in terms of all commodities, one is likely to be impressed with the rather close correlation which, under normal conditions, exists between the two. Although the market price and the relative price are rarely identical, it is believed that during a period of time the purchasing power of wool comes as near equaling the market price as do most important agricultural commodities. In other words, the wool market is, generally speaking, a fair index of the general level of commodity prices.
In 17 of the first 18 years beginning with 1824, the market price of wool exceeded somewhat its purchasing power in terms of other commodities. During the next 20 years, however, the purchasing power exceeded the market price. During the Civil War although wool prices advanced sharply they did not keep pace with prices of other commodities. By 1877 the market price had again dropped below the purchasing power and remained so until 1912. From 1915 through 1923 the market price was consistently higher than the purchasing power (figs. 55 and 57).

[^31]YEARLY AVERAGE PRICE OF "UNWASHED" OHIO FINE WOOL AND 3/8 BLOOD, AT BOSTON; AND PURCHASING POWER IN TERMS OF THE 1913 DOLLAR, 1890-1922.

Fig. 57.-The trend of wool prices was downward from 1890 to 1896 , upward from that year to 1905, fairly stable till 1909, and then slightly downward until 1914. In the latter year a sharp advance began which culminated in 1918. The purchasing power of wool in terms of the 1913 dollar exceeded the money price until about 1910. In 1915 a wide divergence between the two began, and for the peak year of 1918 the vearly average price of 77 cents had a purchasing power of only 40 cents in terms of all commodities. In 1923 the average money price was 55 cents and the purchasing-power price was 36 cents. These 1923 figures were received too late to include in the graph.

War invariably stimulates the demand for wool, and therefore advances prices. During the Civil War period wool sold up to $\$ 1$ a pound. In 1867 the market broke sharply, but during 1871 and 1872 prices rose to a relatively high level, the Franco-Prussian War in Europe being an important factor in the advance. In 1873 a business panic occurred, and from that time until 1879 wool prices declined rather steadily. The revival of business which occurred in 1879 resulted temporarily in higher prices for wool, but with

MONTHLY AVERAGE PRICE OF "TERRITORY" AND "FLEECE" WOOL AT BOSTON, 1910-1923.

Fig. 58.-Wool prices were fairly steady from 1910 to 1914 . In 1915 the market started definitely upward and, so far as medium grades were concerned, reached the peak in 1918. After a secondary advance during the speculative period of 1919 prices broke sharply and reached the low point about the middle of 1921 . Since 1921 prices have more than doubled.
certain fluctuations, wool prices declined after 1880. By this time increased wool production in the Southern Hemisphere began to have its effect on wool markets and by the middle eighties there was a pronounced decline in wool prices, and the panic of 1893 hastened this downward movement. In the next few years the prices increased slightly. However, the average for the period of 1901 to 1910 was lower than that of the years from 1840 to 1890 , if the Civil War period be excluded. In 1913 the trend of wool prices was downward, but there was a recovery in the following year.

During the World War prices broke all previous records, fine staple territory wool on a scoured basis at one time selling at $\$ 1.85$ per pound at Boston. On the signing of the armistice, prices broke but recovered rather quickly after the reopening of the London wool sales in April, 1919. During February and March, 1920, prices advanced to $\$ 2.05$ per pound. Presently the market turned extremely dull and prices started downward. As a matter of fact, quotations from June to December of that year were largely nominal, there being but few actual sales.

Although the wool trade revived somewhat in 1921, prices were comparatively low. The average price at Boston of three-eighths blood, unwashed Ohio and Pennsylvania wool was 26 cents a pound for the three months, July, August, and September. The average price for the year was 28 cents compared with 53 cents in 1920, 67 cents in 1919, and 77 cents in 1918. Toward the end of the year trade improved and prices advanced somewhat. Generally speaking, the market was active throughout 1922 and 1923. The average price for the full year 1922 was 17 cents higher than that of 1921 ; and the average for 1923, 10 cents higher than 1922, or 27 cents over that of 1921 (fig. 58).

Problems in Marketing Wool.

Largely because of the dual character of the industry in which he is engaged, the sheepman probably is confronted with more serious marketing problems than either the cattle or hog producer. To conduct his marketing intelligently, the sheepman must keep in touch with conditions prevailing in two markets which differ widely in almost every respect. One of the commodities which he produces enters extensively into world trade. The other depends for an outlet almost entirely on domestic requirements.

In general, prices for wool and those for dressed lamb and mutton follow somewhat parallel courses (fig. 59). This is probably due largely to the fact that although wool is more of a necessity than lamb and mutton, the prices of both, as a rule, follow rather closely the trend of general business prosperity or depression.

Wool, although a world commodity, is imported rather than exported. The sheepman therefore is vitally concerned with any import duties which may be imposed on foreign wool and in the removal or modification of such duty.

Another problem with which the sheepmen must deal is the lack of an open public wool market corresponding with the London wool

AVERAGE PRICE OF LIVE AND DRESSED LAMB AT CHICAGO, AND 3/8 BLOOD UNWASHED WOOL AT BOSTON, 1903-1923.

Fig. 59.-The relationship between prices of live and dressed lambs is usually very close and fluctuations in the one are, as a rule, very promptly reflected in the other. Wool prices are subject to less sudden fluctuations than either live or dressed lamb, showing usually rather broad upward and downward swings. These broad movements in wool prices, however, have a rather pronounced effect on the trend of live lamb prices, and fluctuations in live lamb prices are quickly reflected in the dressed-lamb market. It should be noted that the percentage increase in price of wool during the war years was little, if any, greater than the percentage increase in price of lambs.
auction sales. During the World War the Government assumed control of all wool stocks in the country, and after the war considerable quantities were disposed of by the auction sale method. The prevailing system of disposing of wool by private sale makes it difficult for the wool grower to obtain accurate information concerning the market price for a given grade of wool.

Another problem consists in the fact that until quite recently most wool growers sold their product ungraded, the grading being done in the larger wool centers by brokers, whose business it was to sort and grade the wool in accordance with the requirements of the different mills. Under this system the grower who produced relatively clean wool of high quality was frequently penalized because his wool was purchased in a lot with that of other less careful growers.

NUMBER OF FLEECES REQUIRED TO BUY A SUIT OF CLOTHES.

Fig. 60.-In 1914, when wool and clothing were both comparatively cheap, the farmer needed 11 fleeces to exchange for a suit of clothes. In the fall of 1920, when prices of farm commodities were at a low level and when clothes were still high in price, approximately 27 fleeces were needed to purchase the same kind of a suit. By 1922 conditions in the wool and clothing market had become readjusted, so that practically the same number of fleeces were needed to buy a suit of clothes as before the war.

Wool Import Duties.

During the colonial and early national eras there was no tariff on wool. Prior to 1800 comparatively little attention had been given to sheep raising. Between 1800 and 1815 numerous importations of Spanish Merino sheep were made, and during this same period a number of woolen mills were established, which began to create a demand for more wool. Both the raising and the manufacturing of wool were greatly stimulated by the Embargo Act of 1807, the Nonintercourse Act of 1809 , and the War of 1812. Shortly after the close of that war, the British began exporting large quantities of woolens to this country, which seriously depressed the woolen industries. The first tariff legislation on wool was enacted in 1816 when a duty of 15 per cent ad valorem was placed on wool, and 25 per cent on woolen goods.

The act of 1824 placed a duty of 15 per cent ad valorem on wool valued at 10 cents a pound or less; 20 per cent on other wools the first year, 25 per cent the second year, and 30 per cent thereafter. In 1828 a combination of specific and ad valorem rates was tried, the rates being higher than in the previous act. In 1854 wool from Canada was admitted free under the reciprocity treaty. In 1857 it was practically put on the free list through a provision that all wool costing
less than 20 cents at the place of exportation was to come in without duty.

The tariff act of 1861 introduced the principle of compensating duties on woolen goods. This compensation was based on the fact that 4 pounds of wool from some of the heaviest shrinking fleeces of South America were needed to make a pound of cloth. As most of the wool imported under this act was admitted on a duty of 3 cents a pound, the compensating duty on woolen cloth was 12 cents.

In 1867 the "blood classification" was introduced. This classification was based on the "blood" or breeds of sheep as follows: Class 1 , wool showing any trace of Merino blood and down clothing wools; Class 2, combing wool from "English" breeds; Class 3, native wools, that is, wools from unimproved sheep. An attempt was also made to describe these classes more accurately by designating Class 1 as clothing wools, Class 2 as combing wools, and Class 3 as carpet wools. The act also provided for the naming of the countries from which the wools originated, making virtually a three-fold classification. As improved machinery had made a change in the usage of some of these wools, the terms clothing, combing, and carpet were dropped in 1890.

Between 1867 and 1894 changes were made from time to time in the rate of duty. In 1894 wool was placed on the free list while the duty on woolen goods was considerably reduced.

A duty was again placed on wool in 1897. In this act, a difference was made between unwashed wool and scoured wool, the duty on washed wool being double and on scoured wool treble that on unwashed wool.

The act of 1913 again placed wool on the free list. During the World War period there was a tremendous demand for nearly all kinds of wool. The close of the war was soon followed by a severe depression and a resulting surplus of wool. In the emergency tariff bill of 1921, duties were again enforced on wools of Classes 1 and 2 , while Class 3 or carpet wools were admitted free. The present schedule was enacted in 1922. It provides for a duty on ", wool not improved by the admixture of Merino or English blood" (carpet wools) of 12,18 , and 24 cents, depending on whether in the grease, washed, or scoured. Such wools may be imported under bond, and if used for the manufacture of rugs, carpets, or other floor coverings are admitted free. The rate on all other wools (used principally in the manufacturing of woolens and worsteds), whether in the grease or scoured, is 31 cents a pound on the basis of clean content (scoured weight). This act also provides for additional ad valorem duties, or for a change of duties, if deemed expedient by the President. In passing this bill, it was believed that making a specific tax on the clean content of the wool would do away with the inequalities due to difference in shrinkage in fleeces from variours parts of the world. Provision for the changing of the rates by executive orders was to make possible adjustments that might become necessary because of changed world conditions.

Table 2.-Rates of duty on wool imports under the tariff acts 1789-1922.

Date of act (and when effective).	Rates of duty.
178	Fr
April 27, 1816 (July 1,	First act. 15 per cent ad valorem.
$\begin{aligned} & \text { May 22, } 1824 \text { (July 1, } \\ & 1824 \text {). } \end{aligned}$	Value of 10 cents a pound or less, 15 per cent; other wool, 20 per cent until June 1, 1825; 25 per cent until June 1, 1826; 30 per cent thereafter.
$\begin{aligned} & \text { May 19, } 1828 \text { (September } \\ & -2,1828) . \end{aligned}$	4 cents a pound plus 40 per cent to June 30,1829 ; plus 45 per cent to June 30 , 1830; plus 50 per cent thereafter.
July 14, 1832 (March 4, 1833).	Value of 8 cents a pound or less, free; other wool, 4 cents a pound plus 40 per
March 2, 1833 (January 1,1834).	Duties exceeding 20 per cent to be reduced to 20 per cent by yearly reductions to July 1, 1842.
Sept. 11, $1841)$ 1841 (Oct. 1,	All rates below 20 per cent to be 20 per cent.
August 30, 1842 (August 31, 1842).	Value of 7 cents a pound or less, 5 per cent; other wool, 3 cents a pound plus 30 per cent.
July 30,1846 (December 2,1846).	30 per cent.
$\begin{gathered} \text { March } 3,1857 \text { (July 1, } \\ 185 \text {). } \end{gathered}$	Valued at 20 cents a pound or less free. All other, 24 per cent.
$\begin{aligned} & \text { March 2, } 1861 \text { (April 2, } \\ & 1861 \text {). } \end{aligned}$	Value of 18 cents a pound or less, 5 per cent; value over 18 cents to 24 cents, 3 cents a pound; value over 24 cents, 9 cents a pound.
$\begin{aligned} & \text { June 30, } 1864 \text { (July 1, } \\ & \text { 1864). } \end{aligned}$	Value of 12 cents a pound or less, 3 cents a pound; value over 12 cents to 24 cents, 6 cents a pound; value over 24 cents to 32 cents, 10 cents a pound, plus 10 per cent; value over 32 cents, 12 cents a pound plus 10 per cent. Scoured wool, three times these rates.
$\begin{aligned} & \text { March 2, } 1867 \text { (March 3, } \\ & \text { 1867). } \end{aligned}$	Class 1 (clothing wool), value of 32 cents a pound or less, 10 cents a pound plus 11 per cent; value over 32 cents, 12 cents a pound plus 10 per cent. Class 2 (combing wool), value of 32 cents a pound or less, 10 cents a pound plus 11 per cent; value over 32 cents, 12 cents a pound plus 10 per cent. Class over 12 cents, 6 cents a pound. Washed, Class 1, twice these rates; scoured, all classes, three times these rates.
June 6, 1872). 1872 (August 1,	All wools, 10 per cent reduction of former rates.
March 3, 1875 (March 4, 1875).	10 per cent reduction of June 6, 1872, repealed.
$\begin{aligned} & \text { March } \\ & \text { 1883). } \end{aligned}$	Class 1, value of 30 cents a pound or less, 10 cents a pound; value over 30 cents, 12 cents a pound. Class 2, value of 30 cents a pound or less, 10 cents a pound; value over 30 cents, 12 cents a pound. Class 3 , value of 12 cents a pound or less, $2 \frac{1}{2}$ cents a pound; value over 12 cents, 5 cents a pound. Washed, Class 1 , twice these rates; scoured, all classes, three times these rates.
October 1, 1890 (October 6,1890).	Class 1, 11 cents a pound. Class 2, 12 cents a pound. Class 3, value of 13 cents a pound or less, 32 per cent: value over 13 cents, 50 per cent. Washed, Class 1, twice this rate: scoured, Classes 1 and 2, three times these rates.
August 27, 1894 (August 1, 1894).	Free.
July 24, 1897 (July 24, 1897).	Class 1,11 cents a pound. Class 2, 12 cents a pound. Class 3, value of 12 cents a pound or less, 4 cents a pound; value over 12 cents, 7 cents a pounc. wasked, for carding or spinning, Class 3 , three times these rates.
August 5, 6,1909).	Class 1, 11 cents a pound. Class 2, 12 cents a pound. Class 3, value of 12 cents a pound orless, 4 cents a pound; value over 12 cents, 7 cents a pound. Washed, Class 1, twice this rate; scoured, Classes 1 and 2, three times these rates: fit for carding or spinning, Class 3, three times these rates. Foregoing rates are in the minimum tariff; the maximum tariff is 25 per cent higher and is to be in force to March 31, 1910, and thereafter, unless the President by proclamation declares no discrimination by particular countries.
October 3, 1913 (December 1, 1913).	Free.
May 27, 1921). 2	Clothing wool, unwashed, 15 cents a pound; washed, 30 cents a pound; scoured, 45 cents a pound.
September 21, 1922 (Sep- tember 22, 1922). tember 22, 1922)	Wool not improved by admixture with Merino or English blood, in the grease, 12 cents a pound; washed, 18 cents a pound; scoured, 24 cents a pound. If used for carpets, rugs, or other floor coverings, duty refunded. Other wool, in the grease or unwashed, 31 cents a pound of clean content; scoured, 31 cents a pound. (All rates subject to change by President after investigation of cost of production, domestic and foreign.)

Outlook for the Industry.

The history of the sheep industry is made up of periods of abounding prosperity followed by periods of extreme depression (figs. 55 and 61). War has always played a prominent part in creating instability. It develops an abnormal demand for wool to which the sheepman always responds to the limit of his resources. Just as
surely, however, as he has profited temporarily by war, he has suffered by its termination. No instance is recorded in recent centuries in which the signing of peace did not find the sheep industry vastly overexpanded. On such an occasion not only are the number of sheep invariably in excess of peace-time needs, but there is always an accumulation in the world of both raw and manufactured wools.

The majority of the world's sheep have in the past been kept on the outskirts of civilization, where they have met frequently with severe competition from cattle. The continuous occupation of the more arable grazing lands for the growing of farm products needed by an increasing population, as these areas have become available through improved transportation facilities, has resulted in large numbers of cattle and sheep being constantly shifted to areas hitherto unoccupied. In such movements the sheep were generally forced to the less accessible areas.

Until very recently new regions were being made available for livestock production at frequent intervals. As the sheep, which were kept almost wholly for wool, could be run very cheaply, and since during prosperous times money with which to finance the industry could easily be secured, there were periods of rapid expansion to the point of overproduction. Such periods of overproduction were almost invariably followed by corresponding periods of depression and liquidation. Again, as much of the business was of an exploitive character and as provision against adverse climatic conditions was seldom made, there were frequent and heavy losses.

The pioneer phase of the industry is rapidly passing and with it, it is believed, much of its consequent instability. There is relatively little unoccupied land in the world to which the industry can turn. In general any future world expansion will be largely at the expense of cattle or wheat production. As wool is necessary to the welfare of the race, and as the present production is hardly more than sufficient for present needs, there is bound to be a growth in the industry as population increases. It is somewhat problematical, however, whether the growth of the sheep industry will keep pace with that of population.

World Trend.

Practically all of the large producing centers, unless it be parts of South Africa and Asia, seem to have reached their maximum number of sheep. In fact, in most of the leading countries, as in Australia, Argentina, and the United States, there has been a notable decline in the number of sheep in recent years. It would seem, considering the world-wide need of wool, that this decline would soon reach its limits, if it has not already done so.
While practically all the available land is now in use, it is probable that ultimately considerable areas of semidesert lands that are now inaccessible to livestock, because of an insufficient water supply, notably parts of South Africa, will be made available to sheep by the provision of wells and reservoirs.
In the past the sheepmen who produced only wool could not meet competition from other agricultural enterprises unless they were located on very cheap land. The sheepmen of to-day, except in the semiarid regions, are no longer solely dependent on wool. Consider-
ing the industry as a whole, lamb production is now a highly important and profitable feature, while there is usually a good market for mature mutton.

In the readjustments that are taking place, the sheep industry of the world seems to be settling down to three general types: (1) The production of fine wool with lambs as a secondary consideration in the arid regions; (2) the production of lambs and wool in the semiarid regions; and (3) the production of lambs, with the wool of secondary importance, in the humid and subhumid regions.

In the arid regions where stock water is scarce, where vegetative conditions are less favorable to other stock, especially cattle, and where transportation facilities are limited, sheep of the fine-wool type, which are kept primarily for the production of wool, will continue to be, for several years at least. the leading agricultural enterprise.

In the semiarid regions of the world where grazing meets with competition from the growing of small grains, but where intensive agriculture is not practicable, sheep will probably continue to be one of three, or possibly more, major enterprises. As most of the sheep will be kept on privately owned land, the operating expenses will be higher than in the arid regions. In order to meet these larger operating costs, most of the sheep will be of the crossbred type and will be kept for the production of both lambs and wool, the latter being less important. World-wide efforts are being made to establish breeds of the crossbred type that will have the necessary characteristics for the production of marketable lambs and uniform fleeces, suitable for the manufacture of worsteds.

In the humid regions where general farming prevails, the majority of the sheep will be kept primarily for the production of lambs. In such regions wool is usually secondary and seldom forms more than about one-third of the total receipts. In regions of intensive agriculture, sheep will occur generally in small flocks and as one of a number of farm enterprises. The dairy cow will continue to be their greatest competitor.

Trend in the United States.

The pioneer phase of the sheep industry, in which sheep are extensively kept on new and comparatively cheap land, is passing. A large percentage of the sheep are now grazed either on owned or leased pastures and in national forests for at least a part of the year. The investment in stock and equipment is so great that wasteful methods will lead to failure. Sheep must now be handled with the ntmost care and along the lines of the most scientific thought if the venture is to prove profitable.

Although the future holds promise of a much greater stability for the industry than has been true in the past, the sheepman of the United States will always find competition. He must compete not only with woolgrowers in other parts of the world, but also with other meats for a place in the diet, and, finally, with producers of other livestock for land, labor, and all the intricate machinery of production.. He must expect also recurring cycles of prosperity and depression. When prices are low producers, particularly on farms, reduce the size of their flocks or go out of business. This temporarily

POPULATION OF THE UNITED STATES, P P $O O D U C T I O N$ AND NET IMPORTS OF WOOL, NUMBER OF SHEEP, 1850-1922; CONSUMPTION OF WOOL AND NUMBER OF SHEEP PER CAPITA, 1870-1920.

Fig. 61.-The number of sheep in the United States kept pace with the increase in number of people until 1884, which year marked the high point of the industry. The number per capita is now only two-fifths as great as in the early eighties. It is interesting to note the wavelike character of the curve of number of sheep since 1884 , the crests being 8 to 10 years apart. It is also noteworthy that despite the decrease in number of sheep the production of wool has remained more or less constant till recently, owing to increasing weight of fleece. The per capita consumption of wool has been maintained by a great increase in imports. The peaks of imports in 1897 and 1909 appear to have been occasioned by anticipation of tariff acts, while that of 1915 to 1919 was owing to war demands.
increases the number of sheep marketed, which further depresses the price. Later, the supply of wool is found to be approaching exhaustion and the supply of mutton is so low that prices rise. As this occurs producers, especially on farms, begin to increase their flocks, causing prices to continue to rise until a little later an increase in the supply of wool and mutton causes prices to fall and the same cycle is repeated.

It would seem that the industry reached a low point during the recent period of financial depression and that it is again building up. As during recent years more than half of the wool used in this country, including carpet wool, has been imported and as the demand for mutton is continuing strong, there is need for a considerable expansion of the industry. This expansion as already noted will probably be characterized by less violent fluctuations than in the past, because unused lands are no longer available. Considerable expansion can come with better utilization of western grazing areas and improved management of farm flocks.

NUMBER OF SHEEP TO EVERY EIGHT PEOPLE.

Fig. 62.-The ratio of number of sheep to human population in the United States has been declining since 1884 . In the 5 -year period, 1899-1903, there were approximately 5 sheep for every 8 people. Ten years later there were only 4 . For the period of 1919-1923 there were only 2.8 sheep for every 8 people, or about one-third of a sheep per person.

The Outlook for Sheep in the East.
The eastern and midwestern farmer, with good markets close at hand, can more easily meet the competition of the western range operator, as their costs are approximately equal. In fact, there are many farms where sheep, kept largely on farm by-products, can be more cheaply produced than under some of the western range conditions. The limiting factors in any rapid increase in the number of eastern farm flocks seems to be the general lack of knowledge concerning the care of sheep, especially the prevention of diseases, competition with established and successful farming systems, inadequate fencing, and the fear of dogs. The rapid growth of small farm flocks in the irrigated sections of the West shows that sheep can be advantageously fitted into general farming systems.

In those localities where the greater part of the land is kept in cultivation, the sheep will seldom occupy more than a secondary place. This is especially true in the corn-producing section, where
hog raising and the fattening of livestock will continue for some time as the main livestock enterprise. In localities near large centers of population dairying will predominate. In regions where, because of the broken character of the land, it is desirable to keep fully half or more of the farm in hay and pasture, sheep are finding an important place. This is especially true of those regions that are somewhat. remote from centers of dense population. Under such conditions sheep will generally be associated with either dairy or beef cattle and will probably be one of the major enterprises, not infrequently the leading one. While such sheep will generally be of the mutton type, there are regions, such as the upper Ohio Valley, where sheep for some time to come will be kept primarily for the production of wool.

There is room also for considerable expansion of the industry in the South. However, any growth will probably be slow, as this region is especially adapted to the growing of tilled crops. The lack of adequate pastures and the difficulty of handling parasitic diseases are also severe handicaps at the present time.

The Outlook for the Industry in the West.
In the West expansion will generally be on the basis of much higher operating expenses than formerly. The sheepmen, however, are already meeting these conditions. In the first place a large percentage of the operators are keeping flocks of the crossbred type. In such flocks the lambs furnish approximately 55 per cent of the revenue, as against 45 per cent for wool. They are also giving their sheep better care, and as a result are generally securing better lamb crops as well as heavier fleeces. Better management of the sheep and of the range is also making it possible to carry additional stock on the same extent of range.

One serious handicap in the expansion of the business is that of securing adequate range. Many operators are finding it difficult to secure sufficient range for their present needs. Others who are operating wholly on the public domain are faced with the uncertainty as to how much longer these lands, some of which are deteriorating, will be available to them.

The rapid deterioration of the remaining public domain, because of constant unrestricted grazing, is given much concern. Nearly all livestock producers recognize the need of some stabilized policy of protection, in order that further destruction of these areas may be prevented. Various plans for the better control and utilization of the remaining public domain, not suitable for farming purposes, have been suggested. While many prefer private ownership or long-term leasing, the plan that is being given most consideration is that of creating grazing districts and alloting stock among resident users under a permit system somewhat similar to that now in the national forests. Under proper systems of grazing the carrying capacity of these areas can be increased greatly. An adequate and settled land policy would make it possible to place the Western sheep business on a much more stable basis than has previously existed, and would probably result in a considerable increase in the number of sheep.

By C. V. Piper, H. n. Vinall, R. A. Oakley, and Lyman Carrier, Bureau of Plant Industry; O. E. Baker, J. S. Cotton, O. A. Juve, and N. P. Bradshaw, Bureau of Agricultural Economics; E. W. Sheets and C. D. Marsh, Bureau of Animal Industry; W. C. Barnes, Forest Service; and W. B. Bell, Bureau of Biological Survey. ${ }^{1}$

$\stackrel{1}{N}$EVEN-TENTHS of the $365,000,000$ acres of land in the United States occupied by crops harvested in the census year 1919, or approximately $257,000,000$ acres, were used to produce forage, that is, concentrates and roughage for livestock. ${ }^{2}$ About two-tenths, or $76,000,000$ acres, produced food for human consumption; and nearly one-tenth, or $32,000,000$ acres, was used for other purposes, principally to produce cotton fiber, tobacco, and flax. In addition, our livestock consumed the product of about $60,000,000$ acres of humid improved pasture, probably of $171,000,000$ acres of humid unimproved grassland pasture, over half of which was in farms, and of about $237,000,000$ acres of forest and cut-over pasture land in farms or under other private ownership and in our national forests, besides that of perhaps $587,000,000$ acres of arid or semiarid grazing land in the West. ${ }^{3}$

[^32]It seems safe to say that livestock ${ }^{4}$ consume about three-fourths of the product of the improved land and practically all the product of the unimproved pastures and grazing lands within and without farms (fig. 1).

In this connection it should be noted that the "hay and forage ${ }^{*}{ }_{5}$ crops of the census occupied in 1919 only 19 per cent of all improved

Fig. 1. -About 69 per cent of the total land area of the United States was used in 1919 for the production of forage. Some of this, for instance the forest land that was pastured, contributed other products than forage. The above statement merely indicates the immensity of the land area required for the support of the Nation's livestock. The $257.000,000$ acres producing crops for feed yielded slightly more sustenance than the $1.05 \overline{5}, 000,000$ acres used for pasture. More than half of this pasture is arid western range and nearly a fourth more is forest and cut-over land which, in general, has a low carrying capacity.

[^33]land and about 27 per cent of all cropped land. The census classification does not include many crops used mostly for forage. It excludes corn (except fodder), for instance, the most important of all crops used for forage, and thus presents a very incomplete picture of our forage resources, when the word "forage" is used in its broad significance.

Proportions of the Total Crop Acreage Used to Produce Forage, Food, and Other Products.

The proportions of the total crop acreage used to produce the different classes of crop products, herein described, are based on the percentage of those products consumed as forage, as food, as fiber, and in other ways. These percentages as well as the actual acreage vary widely in different parts of the United States. (Compare figs. $2,3,4$, and 5.) In the Cotton Belt about 53 per cent of the crop land in 1919 was devoted to the production of feed for livestock, mostly corn, cowpeas, velvet beans, and peanuts, about 37 per cent to cotton, ${ }^{6}$ tobacco, and other crops not used as feed for livestock or food for man, except incidentally, and less than 10 per cent to produce food consumed directly by man. Corn is used for both forage and food in this region, the estimated consumption by livestock being 90 per cent of the crop, and by the human population 10 per cent.

In the corn and winter wheat region, which lies between the Cotton Belt on the south and the Corn Belt to the north, nearly three-fourths of the crop land in 1919 produced forage for livestock and the remaining fourth food, except for 2 per cent of the crop area that was devoted to tobacco. In the Corn Belt, where all the hay and nearly all the corn and oats are fed to livestock, about 84 per cent of the crop land produced forage for farm animals and 16 per cent food for man, wheat being the most important food crop. Only onefifth of 1 per cent of the crop acreage was used for other than feed or food crops.

In the hay and dairying regions to the north and east hay is the dominant crop, occupying about 33 per cent of the crop land, while corn for fodder and silage occupies nearly 6 per cent more. The acreage used for feed of oats, of corn (harvested for grain), of barley, and of other crops, including a pro rata acreage of the wheat based on the percentage of mill feed, totals over 30 per cent of the crop land. About 30 per cent more is devoted to crops used for human food, principally wheat (for flour), fruit, rye, potatoes, and vegetables. Only 1 per cent is used for other crops than those grown for feed or food. This is mostly flax, grown in the eastern Dakotas and in Minnesota and used to make linseed oil.

In the humid eastern half of the United States considered as a whole, one-fourth of the crop land is used to grow corn for grain, another fourth to produce hay, fodder, and silage, and a fifth is devoted to oats and other crops used as feed. The remaining 30 per cent produces most of the food used directly for human consumption in the United States, and over half of the cotton fiber of the world.

[^34]

Fig. 2.-A very large proportion of our harvested forage is produce in the eastern or humid part of the United States. In this eastern half crops are much more important than pasture, while in the western half the reverse is true. The Corn Belt and the Great Plains States, it will be noted, are the principal regions of feed production. Compare this map with Figure 3, also with Figure 10.

The western half of the United States is largely semiarid or arid, and is consequently mostly pasture or range land. Only about 6 per cent of the land is in crops, but over three-fifths of this is devoted to producing feed for livestock. It will be noted, however, that this is a smaller proportion of the crop land than in the East (fig. 3), owing largely to the fact that wheat is one of the best semiarid crops. Wheat occupied nearly a third of the harvested crop land in the western half of the United States in 1919. Fruit, also, is relatively more important in the West than in the East.

When the different States are considered individually, it is found that in all but one State 50 per cent or more of the crop acreage is

Fig. 3.-About seven-tenths of the land in harvested crops in 1919 was used to produce forage for livestock. "In only one State did the proportion fall below 50. per cent, and in six it was 85 per cent or more. The total quantity of forage thus produced was sufficient to feed all livestock only a little more than half the year. Pasture supplies the remainder of the forage needed by our farm animals.

Fig. 4.-Only a little over one-fifth of the land in harvested crops in 1919 was used to produce breadstufts, fruit, vegetables, and other human food. The percentage of crop land devoted to the production of foodstuffs was highest in the wheat and fruit-growing areas and lowest in Nevada and Vermont and in the Cotton Belt.
used to produce feed for farm animals (fig. 3). In six States 85 per cent or more of the harvested produce is used as forage. These percentages relate only to harvested crops and do not include pasturage.

Relative Values of Forage, Food, and Other Crop Products.

Although it required about seven-tenths of the total crop acreage to produce our harvested forage, this forage constituted only a little over half of the farm value of all crops in 1919. (Fig. 6.) The average value of the crops used for forage in that year was $\$ 30.87$ per acre, as compared with $\$ 60.33$ for the crops used as food (wheat, fruits, vegetables, etc.), and $\$ 83.82$ for the fiber and other crops. Though in

Fig. 5.-The percentage of the crop land devoted to the production of plant products other than feed for livestock and human food is almost negligible in the States north of the Cotton Belt. In 1919 only 9 per cent of all the cropped land in the United States whe devoted to the production of such products.
all but one State more than half the crop land was used to produce forage for livestock, in only 24 States did the value of this forage equal half the farm value of all crop products.
In the Cotton Belt the value of the forage produced by crops constituted only about 25 per cent of the value of all crops, whereas it required 53 per cent of the acreage for its production. In the corn and winter-wheat region the forage produced by crops constituted about 40 per cent of the value of all crops, and in the Corn Belt about 80 per cent. In the hay and dairying region the value of the forage was nearly 60 per cent of the value of all crops; and in the western regions, where pasturage is more important than crops, the harvested forage constituted about 45 per cent of the value of all crops.

The farm value of the crops and crop products used for forage in the United States in 1919 was nearly $\$ 8,000,000,000$, whereas the value of the crops and crop products used for food was about $\$ 4,650,000,-$ 000 , and of the crops and crop products used for fiber and other

FARM VALUE OF THE CROP PRODUCTS USED AS FEED FOR LIVESTOCK, HUMAN FOOD, FIBER, ETC., AND ACREAGE REQUIRED TO GROW THESE PRODUCTS, UNITED STATES, 1919.

Fig. 6.-The farm value of the crops and crop products used as feed for livestock is less than twice that of the crops and crop products used for human food, although the former requires over three times as much crop land for its production as the latter. To produce the fiber and other nonedible crop products required less than one-seventh as much land as that devoted to producing feed for livestock, but these fiber and other crop products had a farm value one-third that of the feed.
purposes about $\$ 2,620,000,000$ (fig. 6). The census statistics for 1909 indicated that the total value of forage was approximately the same as the farm value of all animals sold for slaughter or slaughtered on the farm and of all livestock products, notably milk, wool, and mohair, but excluding the value of horse and mule labor.

The Development of Forage Production.

The importance of forage-producing crops in the agriculture of a nation depends not only upon climatic and soil conditions, but also upon the stage of agricultural development. As in the industrial evolution of other peoples the hunting stage has generally been followed by a pastoral husbandry, this in turn by grain growing, and only in a late stage of development by the cultivation of forageproducing crops; so in the history of American agriculture we find the pioneer depending in large measure on game for a livelihood supplemented by the products of a few cattle and sheep grazed in
the woods or on the prairies, then, with the coming of the canals and railroads, grain production became profitable, and, finally, grain farming was followed by systems of general farming in which crops that produced forage were dominant.

As people become more numerous and land becomes scarcer it must be made to produce more per acre. Because crop land usually produces more forage to the acre than does pasture land, the normal trend with the growth of population is to increase crop land at the expense of pasture. During the past 40 years pasture land in the United States has decreased about $3,000,000$ acres per year on the average, while crop land has increased about $4,500,000$ acres per year. In other words, two-thirds of this increase in crop land has come from pasture and one-third from forest. However, of the 46,000,000 acres increase of crop land between 1909 and 1919 apparently less than $5,000,000$ acres came from forest.

The greatest per capita acreage of pasture and range land in the United States (acres divided by total population) was reached before 1880, the greatest per capita number of livestock (animal units) about 1892, and the greatest per capita acreage of crops about 1900 (fig. 7). The human population has increased at the rate of 8,000 ,000 to $16,000,000$ people each decade since 1850 , whereas the animal population has increased but little since 1894 and there has been an actual decrease in the numbers of beef cattle and sheep. This divergence in the trends of human and animal population is shown in Figure 8.

The final stage of this agricultural evolution can be seen in Japan, China, and India, where there is almost no pasture, livestock occupy a very minor place in the systems of farming, and the forage consists largely of crop residues and wastes. However, in portions of Great Britain and Ireland, in northern France, and in much of Germany, where population is much denser than in the United States, forage crops are almost, if not fully, as important in relation to other crops as in the United States.

The superiority of a general system of farming based on forage crops and livestock over specialized systems, such as wheat farming, cotton farming, or fruit farming, is being increasingly recognized. No artificial fertilizer can fully replace animal manures in maintaining crop yields. Moreover, many of the forage crops are legumes which in decaying add nitrogen to the soil (fig. 9). The grasses, too, as their roots decay, supply nutriment for bacteria that gather nitrogen from the air and add it to the soil. Their extensive root systems, the fine threads of which ramify throughout the soil, leave humus upon their decay and tend to keep the soil in excellent tilth. In brief, forage crops and livestock, under present conditions, constitute the best basis of a permanent agriculture.

A general system of farming tends to maintain not only the productivity of the soil but also economic stability. This fact is well illustrated by the present situation in the wheat-producing areas of the Great Plains. This region was one of the last to be developed agriculturally in the United States, and the western portion particularly is only now passing from the pastoral into the wheat farming stage of development. Owing to low prices for both wheat and beef the present distress in this region is acute.

Fig. 7.-The per capita production of the nine principal crops (combined on the basis of the average price during the 34 years, 1889-1922) shows an upward trend from the Civil War years to about 1890 , then remained more or less constant till 1915 ; and has since declined slightly. In order to maintain this per capita production of the crops as population increased forests have been cleared and pasture land broken for crops. In recent years most of the increase of crop land has been at the expense of pasture (see article on Land Utilization). Owing to this decrease in actual area of pasture while population was increasing, the decline in per capita acreage of pasture has been very rapid. The number of animal units per person was almost as high in 1892 as in 1850 , but has since decreased rapidly, being affected, apparently, more by the decline in per capita pasture acreage than by the fairly well maintained per capita crop acreage.

TREND IN POPULATION COMPARED WITH TREND IN NUMBER OF CATTLE, SWINE, AND SHEEP, 1850-1922.

Fig. 8.-The marked divergence in the trends of human and animal population indicates a gradual change in our national diet. The numerical relation between people and livestock continued much the same from 1850 to the decade 1884-1893. The number of sheep show a downward trend since 1884. The number of swine have remained about stationary since the eighties. The number of beef cattle have decreased 22 per cent since 1894 , whereas the human population has increased 62 per cent. Dairy cattle are the only kind of livestock (other than poultry) to show a consistent increase in numbers throughout the entire period represented on the chart. From 1890 to 1920 the number of dairy cattle, however, increased only 27 per cent, as compared with 68 per cent increase in population.

The agricultural development of the northern Great Plains in particular is delayed in a measure by the lack of a forage crop adapted to the cool semiarid conditions. In the southern Great Plains the introduction of the sorghums has made possible the utilization of millions of acres of land for crops that would otherwise have remained in less productive pasture; but in much of the northern plains the growing season is too short for sorghum, and only dwarf early varieties of corn will mature. The lack of satisfactory forage crops is one of the reasons the present agricultural depression is more severe in the northern plains than elsewhere.

The trend in American agriculture during the past 30 years has been toward the increase of forage-producing crops principally at the expense of pasture, and this trend appears likely to continue. Land is becoming more expensive; and unless the pastures are im-

BEEF CATTLE ON CLOVER PASTURE.
Fig. 9.-Red clover is noted as a " soil builder." Plowing under the entire crop secures the greatest possible manurial value, but as a rule it is more economical to graze the clover and plow under the residue. Most of the clover is grown mixed with timothy.
proved and made to yield larger returns, they will slowly give place to crops. But after the production of forage crops has been developed to the utmost, there will remain vast areas of arid or rough land in the West suitable only for grazing, probably $600,000,000$ acres in all, or nearly one-third of the land area of the United States. These lands are dedicated by nature to the production of beef cattle and sheep. They provide cheap forage and give assurance that however great the population may become, the American people will never be wholly without meat. In the humid eastern portion of the United States also, there is much land better suited to pasture than to crops. Many of these pastures, however, being located in regions of denser population and more intensive agricultural production,

Fig. 10.-Nearly half the animal units in the United States are in the Corn Belt and Great Plains States. Yet even the castern Corn Belt does not produce enough livestock to supply its needs for meat and other animal products. (See fig. 11.) It will be noted that livestock are most abundant in the regions of heavy crop production (see fig. 2) rather than in the West, where arid grazing land predominates.
will be used mostly for dairy cattle and horses, and, to a lesser extent, for hogs and poultry.

Relations between Livestock and Human Population.

The numerical relations between people and domestic animals are complex and the subject has been but little explored. ${ }^{7}$ The number

Fig. 11.-In the United States there was approximately one animal unit for each person in 1919. The above map shows for each State the number of animal units in excess or in deficiency of a number equal to the national proportion. Illinois had a deficiency because of the large industrial population of Chicago and vicinity, while Arkansas, Mississippi, and Vermont show a surplus chiefly because these States are without any large cities. The Great Plains and the western part of the Corn Belt produce most of the surplus meat which goes to support the manufacturing centers in the East (compare with fig. 10).

[^35]of animals in any country or in any State is the result of constant adjustment to economic conditions; some areas produce a surplus for export, others are dependent on imports.

If all the domestic animals in the United States are reduced to hypothetical "animal units " ${ }^{s}$ equal to adult cattle in feed requirements, there were in the United States January 1, 1920, nearly $106,000,000$ animal units, or almost exactly one such animal unit to each person. The average number of animals for 1919 was about 4 per cent greater than on the above date, or $110,000,000$ animal units. In the different States the proportions vary widely, some States having a surplus over the national average, others a deficiency. In States where there is a very large urban population in proportion to rural population, the number of animals per capita tends to be reduced correspondingly. These variations are shown in Table 1 and in Figures 10 and 11.

Table 1.-Human population and livestock (animal units), January 1, 1920.

Division and State.	$\underset{\text { population. }}{\text { Human }}$	Livestock (animal units).	$\begin{aligned} & \text { Ratio } \\ & \text { ito- } \end{aligned}$	Surplus of animal units.	Deficiency of animal units.
United State	Number. 105, 711, 000	Number. $105,688,000$	1.0	Number.	Number.
Geographic divisions:					
New England.	22, 261,000	1, ${ }^{1,8823,000}$. 27		$5,519,000$ $16,325,000$
East North Central	21,476, 000	18, 390,000	. 86		3, 086,000
West North Central	12,544, 000	$31,128,000$	2.48	18, 584, 000	
South A tlantic...	$\begin{array}{r}13,990 \\ 8,893 \\ \hline 1000\end{array}$	8, 8192,000	. 60		5, 568,000
Weast South Central	$8,893,000$ $10,242,000$	15, ${ }^{8}, 197,000$	$\begin{array}{r}.92 \\ 1.50 \\ \hline\end{array}$	5, 108, 000	696,000
Mountain...	3, 336,000	11, 032,000	3.31	7,696,000	
Pacific.	5,567,000	5,352, 000	. 96		215,000
New England: Maine	768,000	459,000	. 60		309, 000
New Hampshi	443, 000	231, 000	. 52		212,000
Vermont...	352, 000	526,000	1.49	174,000	
Massachusetts	3,852,000	366, 000	. 10		3,486, 000
Rhode Island.	604,000	51, 000	. 08		5553,000
Connecticut.	1,381, 000	249, 000	. 18		1,132,000
New York.	10,385, 000	2,986,000	. 29		7,399,000
New Jersey.	3, 156, 000	353,000	- 11		2, 803,000
Pennsylvania	8,720,000	2,597, 000	. 30		6,123,000
East North Central: Ohio.	5,759,000	3,619,000	. 63		2,140,000
Indiana.	2,930,000	3,073, 000	1.05	143,000	
Illinois.	6, 485, 000	$5,223,000$. 81		1,262,000
Michigan.	3,668,000	2,521,000	. 69		1,147,000
Wisconsin	2,632,000	3, 954,000	1.50	1,322,000	
West North Central: Minnesota	2,387,000	4,307,000	1.80	1,920,000	
Iowa.	2, 404, 000	7, 251, 000	3.02	4, 847, 000	
Missouri.	3,404,000	4, 893,000	1. 44	1,489, 000	
North Dako	647,000	2, 163, 000	3.34	1, 516, 000	
South Dakot	637,000	3,416,000	5. 36	2,779, 000	
Nebraska.	1, 296,000	4,634, 000	3. 58	3,338, 000	
Kansas.....	1,769,000	4, 464,000	2.52	2,695, 000	
South Atlantic:	223,000	101, 000	. 45		122,000
Maryland.	1,450,000	573, 000	. 40		877,000
District of Columbia	1438,000	7,000	. 02		431,000
Virginia.	2, 309,000	1,580, 000	. 68		729,000 516,000
West Virginia. North Carolina	$1,464,000$ $2,599,000$	1948,000 $1,377,000$. 65		1,182,000

[^36]Table 1.-Human population and livestock (animal units), January 1, 19:20Continued.

Division and State.	Human population.	Livestock (animal units).	Ratio 1 to-	Surplus of animal units.	Deficiency of animal units
South Atlantic-Continued.	Number.	Numb		Number.	Vumber.
South Carolina	1,684,000	920,000	. 55		764,000
Georgia.	2,896,000	2, 059,000	. 71		837,000
Fast South Central:	968,000	857,000	. 88		111,000
Kentucky...	2, 417,000	2,159,000	. 89		258,000
Tennessee.	2, 338, 000	2, 243, 000	. 96		95,000
Alabama.	2, 348, 000	1, 784, 000	. 76		564,000
$\xrightarrow{\text { Mississippi....... }}$	1,791, 000	2,010,000	1.12	219, 000	
Arkansas..	1,752, 000	1,934,000	1.10	182,000	
Louisiana	1,799, 000	1, 384,000	. 77		415,000
Oklahom	2, 028, 000	3, 315, 000	1.63	1,287, 000	
Texas.	4,663,000	8,716,000	1.87	4,053,000	
Montana.	549, 000	2,085,000	3.80	1,536,000	
Idaho.	432,000	1, 316,000	3. 05	1, 884,000	
W yoming	194,000	1, 224,000	6. 31	1, 030,000	
Colorado.	940,000	2,362,000	2.51	1,422,000	
New Mexic	360,000 334,000	1,654,000	4.59	1, 294,000	
Arizona	334,000 449	1,052,000	3.15 1189	718,000	
Nevada	77,000	8490,000	1.89 6.36	413,000	
Pacific:		-0,00		413,000	
Washington	1, 357,000	1, 0225,000	.76 .78		332,000
California	3,427,000	1, $2,936,000$	1.78 .86	608,000	491,000

Note.-Due to rounding the figures the differentitems do not in every case add to the total, but the totals are correct.

In Canada the ratio of animal units to population is about 1.4 to 1. In Australia and New Zealand the ratios are 5.3 to 1 , and 5.2 to 1 , respectively. In these countries low death rates, absence of illiteracy, large per capita wealth and similar criteria indicate a high degree of widespread well-being, but the productive wealth is very largely agricultural, the percentage of income from manufacturing being much smaller than in the United States and Canada. Exports of agricultural products from Australia and New Zealand are relatively larger and manufactured products are received in exchange. Under these conditions of large pastoral area and small manufacturing development, it is to be expected that the number of animal units per capita of the population would be several times higher than in the United States and Canada. Canada, however, exports a much larger proportion of her agricultural products than the United States, roughly 30 per cent at present as compared with about 15 per cent for the United States.

In western European countries before the World War the number of farm animals per person was less than in the United States, except in Denmark where there were relatively more animals than in the United States (Table 2). In general, after allowing for imports of meat and dairy products, there seems to have been a consumption of animal products equivalent to about two-thirds of an animal unit for each person. In all of western Europe before the war, there were apparently only a slighly greater number of animal units than in the United States.

Table 2.-Ratios of human population to animal population in western Europe.

Country.	Population, 1911.	```Livestock (animal units) aver- age, 1911- 1913.```	$\begin{gathered} \text { Ratio of } \\ \text { fersons } \\ \text { to animal } \\ \text { units, } 1 \\ \text { to- } \end{gathered}$
Germany	Number. 64, 925;000	Number. 31, 182, 000	0.48
Belgium.	7, 424, 000	2,419,000	. 33
France.	39, 602, 000	22,156,000	. 56
Great Britain and Ireland	45, 221, 000	19,062,000	. 42
Spain.-	19, 951, 000	7, 818, 000	. 39
Denmark.	2,757, 000	3,295, 000	1. 20
Netherlands	5, 858, 000	2,811, 000	. 48

Relation of Different Classes of Livestock to Human Population.
Ratio of dairy cattle to population.-Dairy cattle, from the standpoint of value, are now the most important class of livestock on American farms. If we consider gn average family to be five people, there is one milk cow to-day for each family in the United States. This ratio, however, varies considerably in different regions (fig. 12). In the Cotton Belt there is 1 dairy cow to 5.8 people, in the corn and winter wheat region 1 to 6.3 people, in the Corn Belt 1 to 3.4 people, and in the hay and dairying region 1 to 5.6 people. (See Table 3.) This last region, however, contains nearly two-fifths of the population and dairy cows of the nation. In the western half of the United States there is 1 dairy cow for every 5 people.

Table 3.-Ratios of dairy cattle to human population in the different agricultural regions of the United States, January 1, 1920.

Region.	Population.	Dairy cattle (all ages).	Dairy cows 2 years old and over.	People per head	
				Dairy cattle.	Dairy cowis.
United States.	Number. 105, 710, 620	Number. 31,364, 459	Number. 19, 675, 297	Number. 3.4	Number. 5.4
Subtropical coast.	2, 682, 450		151, 914	10.8	17.7
Cctton belt............	18, 179, 211	5, 536, 022	3,117, 859	3.3	- 5.8
Corn and winter wheat	21, 097, 430	5,147, 168	3,347, 233	4.1	- 6.3
Corn Belt	12, 263,229	5, 773, 957	3, 612, 164	2.1	3.4
Hay and dairying belt	$41,032,968$ $2,662,822$	11, 2911,651	7, ${ }_{864,} \mathbf{8 1 3 5}$	3.6	5.6
Rocky Mountain.	1,313,228	1, 3378,513	809,494 299	2.0 3.5	3.3 5.7
Arid interior plateaus	1,556, 132	475, 279	272, 391	3.3	5.7
South Pacific.	2, 826,599	610, 465	395, 925	4.6	7.1
North Pacific. .	2,099, 551	567, 916	373, 883	3.7	5.6

In European countries the ratios of dairy cows ${ }^{9}$ to people is much the same as in the United States. Previous to the war this ratio in

[^37]

Fig. 12.-The principal regions of surplus livestock production are the Corn Belt and the Great Plains. These two regions produce a surplus of all classes of livestock. The area of gratest deficit is the Hay and Dairying region, where the large urban population region, depend in part upon other portions of the United States for its Animal Foodstufts, especially for its beef and pork. This region, depend on the Corn Belt and Great Plains for a large part of their beef.

France, Germany, and Austria was 1 cow to 5 or 6 people; in Ireland, and Sweden (also in Canada), 1 to 3 , and in Denmark 1 to 2 people. In Great Britain it was 1 cow to 15 people. England imports much of its dairy supplies from Ireland and the Scandinavian countries.

Ratio of beef cattle to population.-Beef cattle are slightly more numerous than dairy cattle in the United States, but their value is less. The number of people was almost exactly three times that of beef cattle on January 1, 1920. This ratio of beef cattle to human population is highest in the Great Plains region (over three head per person) and lowest in the hay and dairying region (15 persons per head). (See Table 4.) The Great Plains and the Corn Belt are the principal regions of surplus beef production (fig. 12).

Table 4.-Ratios of beef cattle to human population in the different agricultural regions of the United States, January 1; 1920.

Ratio of horses and mules to population.-Next to the dairy cow, the numerical relation of people to work animals (horses and mules) seems to be most constant. There are approximately 4 people in the United States to each horse or mule, including those in cities. In most European countries the ratio is much higher. In France, there are 12 people to 1 horse or mule, in Germany 15 to 1 , in Great Britain 20 to 1 . This relative scarcity of horses and mules in western Europe is due in part to the large industrial population and in part to the greater use of man labor on farms. In our hay and dairying region; which contains many large cities, the ratio is 10 to 1. In the Great Plains region, on the other hand, there are about as many horses and mules as there are people.

Of equal significance is the fact that there were 17 acres of harvested crops in the United States to each mature horse and mule on farms in 1919. As horses and mules constitute the principal source of power on farms, this ratio of acreage of crop land to number of horses and mules in the different regions of the United States is interesting. The number of acres in crops per work animal is remarkably uniform in the different agricultural regions. (See Table 5.)

Table 5.-Ratios of horses and mules on farms to human population in the different agricultural regions of the United States, January 1, 1920.

Region.	Population.	Mature horses and mules (2 years old and over).	People per head of horses and mules.	Acres of crops per mature horse and mule on farms.
United States.	Number. $105,710,620$	Number. $21,872,594$	Number. 4.8	Number. 17.2
Subtropical coast.	2, 682, 450	248, 230	10.8	15.0
Cotton Belt.	18, 176, 211	4, 575, 392	4.0	16.8
Corn and winter wheat belt	21, 097, 430	4, 170, 818	5.1	16.6
Corn Belt	12, 263, 229	4, 809, 384	2.5	18.6
Hay and dairying belt.	41, $032, \mathrm{e68}$	4, 012, 762	10.2	19.3
Great Plains.	2,662, 822	2, 235, 677	1.2	16.1
Rocky Mountain.	1,313, 228	569, 143	2.3	13.8
Arid interior plateaus	1,556, 132	728, 105	2.1	8.8
South Pacific.	2, 826, 599	343, 035	8.2	17.3
North Pacific.	2,099, 551	180, 048	11.7	12.6

In the United States there are about 2 work animals (mature horses and mules) on farms per person engaged in agriculture, whereas in Great Britain the ratio is about 1 to 1, and in Germany there are 2 people engaged in agriculture to each work animal. In Italy there are over 4 persons engaged in agriculture to each work animal.

Ratios of hogs and sheep to population.-On January 1, 1920, there were about 2 persons in the United States to each head of swine, the largest ratio, 1 person to 2 hogs, being in the Corn Belt. In the Cotton Belt there were 3 persons to 2 head, and in the corn and winter wheat region there were 2 persons to 1 head. The Corn Belt usually supplies whatever deficiency in pork and lard may exist in other portions of the United States, and also contributes nearly all the exports.

Sheep and goats are found mostly on the arid and semiarid lands of the West, the highest ratio to human population (5 sheep per person) being in the arid interior plateaus region. The average for the United States is 1 sheep to 3 persons.

Poultry are found mostly in regions of abundant feed production, particularly in the Corn Belt and the corn and winter wheat region.

Relations Between Livestock and Forage Production.

Although the function of livestock as consumers of waste on the farm and as a means of utilizing forage on extensive grass areas is apparent, this use of animals affords no adequate explanation of their numerical status in modern agriculture. Even if we add to this the fact that farm animals tend to keep up soil productivity, much yet remains to be said. The importance of the primary products of domestic animals, namely, meat, hides, milk, eggs, wool, and of the use of such animals as beasts of burden, is clearly evident, and it is for these that farm animals are mainly utilized and not for the incidental relations to productivity. On no other theory is the fact intelligible that the product of seven-tenths of our tilled land is fed to animals.

The distribution of livestock in the United States is determined primarily by the quantity and kind of forage available, and secondarily by location with reference to markets and suitability of the land for other agricultural purposes. The introduction of refrigerator cars and the development of large central packing plants have made location, with respect to the ultimate market, of less importance in the production of animal products than the forage supply. Most of the pork consumed in the Atlantic seaboard cities comes from the Corn Belt; most of the beef from the Corn Belt and Great Plains regions; and much of the mutton from the far western States, threefourths of the distance across the continent. Abundance of corn has made possible the vast development of pork production in the Corn Belt; the grass of the Great Plains, supplemented by the corn of the Corn Belt, has made these two regions the principal centers of beef

Fig. 13. - Corn is by far our most important forage crop. It supplies over half the harvested forage produced in the United States and is the real foundation of our vast meat-packing industry. More than half of the crop is produced in the Corn Belt (see fig. 12) ; but corn is the leading crop in value also in the corn and winter wheat region, and is the all-important cereal in the Cotton Belt.
production; and sheep are found on the arid grazing lands of the West, because they can best utilize the scanty forage. Dairying is about the only livestock industry that shows a tendency to develop near the centers of consumption, and the location of the intensive dairying districts mostly in the northeastern quarter of the United States is due as much to favorable conditions for the production of hay and silage as to the proximity of large markets. Intensive poultry production is, in part, located near large markets, but its distribution in the United States is correlated principally with grain production.

Forage Production in the Different Agricultural Regions.

The quantity of forage produced in different sections of the United States varies widely, according to the suitability of the soil and climate to a general system of farming and the influence of cost of production and price upon the selection by the farmer of competing
crop and livestock enterprises. The principal agricultural regions are outlined in Figure 12.

The Corn Belt produces more forage, probably, than any other area of equal size in the world. It may not inappropriately be called the heart of American agriculture. Into it flow the stocker and feeder cattle from the West for fattening, to supplement its homegrown stock, and out of it flow more than two-thirds of the beef and pork consumed in the eastern, northern, and, to a lesser extent, in the southeastern sections of the country (fig. 12). It supplies, moreover, most of the large exports of pork and lard; and, in addition, ships corn and hay in vast quantities to the eastern and southern markets. Although the Corn Belt includes only 8 per cent of the land area of the United States, it produced over 50 per cent of the Nation's corn crop in 1919 (fig. 13), and possessed over 20 per cent of the cattle, 25 per cent of the horses, and 41 per cent of the hogs of the Nation. It contained, on January 1, 1920, about 21,500,000 animal units, or 94 animal units per square mile, which is equivalent to a horse or steer for every 6.8 acres.

The Corn Belt produces on the average 5,000 bushels of corn per square mile, and in addition about 2,500 bushels of oats (fig. 27), over 1,000 bushels of wheat (fig. 35), more than one-quarter of which becomes mill feed for stock, 150 tons of hay and fodder (fig. 14), and provides about 150 acres of pasture. Several counties in the Corn Belt produce annually over 10,000 bushels of corn per square mile in addition to other crops, or over 40 bushels per acre of land in corn.

The next most important forage-producing region is the hay and dairying region, which adjoins the Corn Belt on the north and east, and may now be made to include the former spring-wheat area of western Minnesota and the eastern Dakotas. This region includes about one-seventh of the land area of the United States, and possesses about one-third of the dairy cows and one-fifth of the horses and poultry, but less than one-eighth of the sheep, one-tenth of the hogs, and only one-twentieth of the beef cattle. The region contained over 18,000,000 animal units on January 1, 1920, an average of 45 animal units per square mile. In some of the richer counties, however, there are over 100 animal units per square mile. It produced in 1919 about 125 tons of hay and fodder per square mile (fig. 14), largely timothy and clover (figs. 31 and 33) ; and, in addition, about 600 bushels of corn, mostly grown along the southern margin, 670 bushels of oats, 400 bushels of wheat, 120 bushels of barley, and 400 bushels of potatoes, of which, however, probably less than 10 per cent is used for feeding stock. In addition to the corn grown for grain and for fodder (figs. 13 and 15), a large acreage is cut for silage (fig. 16). Only 29 per cent of the land area was in harvested crops in 1919.

Of almost equal importance in the production of feed is the corn and winter wheat region, which occupies the area between the Corn Belt and the Cotton Belt and extends up the Atlantic coast as far as New York City. In this region, agriculture is intermediate in character between the northern and southern systems. The average production of corn per square mile of land area is about 1,400 bushels, of wheat 900 bushels, of oats 300 bushels, and of hay and forage 80 tons. Only about one-third of the land is in crops, the remainder being used for pasture and forest. The region includes a little over 10 per cent of the land area of the United States, and contains about

Fig. 14.-" Hay and forage" crops in the census reports include only the crops that are used as roughage for livestock, principally hay, fodder, silage, and roots. The distribution of these crops is heaviest in the north-central and northeastern quarter of the United States, especially around the margin of the Corn Belt and in the hay and dairying region. These regions produce a large proportion of our meat and dairy products.

23 per cent of the horses and mules, 12 per cent of the cattle, 17 per cent of the hogs, 7 per cent of the sheep, and 25 per cent of the poultry. These livestock totaled $15,000,000$ animal units on January 1, 1920, an average of 48 per square mile.

The Cotton Belt contains almost as much livestock as the corn and winter wheat region-about $15,000,000$ animal units in all. The average number of animal units per square mile, however, is only 34, the Cotton Belt having a larger area. Horses and mules constitute a larger proportion of the livestock than in the other agricultural regions since cotton and corn, which require much more horse and mule labor than the other major crops, constitute nearly three-

Fig. 15.-The practice of harvesting corn as fodder is less common in the areas of intensive corn production than it is on the outskirts of the Corn Belt. This method of harvesting results in a higher feed value for the crop, but requires too much labor to become popular on farms with a large corn acreage. It is probable that the corn from two-thirds of the acreage shown on this map was husked ifrom the cured fodder and utilized separately as grain.
fourths of the crop land. Corn is the principal feed, the production averaging about 870 bushels per square mile in 1919. In addition, the region produced 200 bushels of oats per square mile, 115 bashels of wheat, mostly in the Texas and Oklahoma portion, 17 tons of hay and fodder, and 12 tons of cotton seed. Only 28 per cent of the land was in crops in 1919.
Extending along the Gulf and South Atlantic coast from Matagorda Bay, Tex., to Charleston, S. C., there is a coastal strip from 30 to 100 miles wide which has an agriculture distinct from that of the Cotton Belt. In much of this subtropical coast region forage crops have become very important, but as only 6 per cent of the land area is in crops, the production of forage per square mile is small. Corn is the principal forage crop, occupying 36 per cent of the crop land in 1919, and hay and roughage, mostly velvet beans, cowpeas, peanuts, and Bermuda grass, occupied nearly 20 per cent. Beef cattle constitute 55 per cent of the total animal units in this region, which is about the same proportion as in the Great Plains region and more

Fig. 16.-The distribution of silage production is correlated closely with the intensity of the dairy industry. The storing of corn and the sorghums in silos is also now becoming common in many of the dry-farming areas of the central and southern Great Plains region and in the irrigated districts of the West.
than double the proportion in any other eastern region. There are many large cattle ranches in southern Florida and along the Texas coast.

These five regions constitute the eastern or humid half of the United States. The rainfall is more or less evenly distributed throughout the year, except that in the western and southeastern sections a larger amount occurs during the summer than in other seasons. In these humid regions the harvested crops-the cereals, hay, fodder, straw, and silage-contribute much more to the sustenance of the livestock than do the pastures. In the western half of the United States, which is largerly semiarid or arid, the pastures provide the larger proportion of the forage. This western half of the nation, like the eastern, may be divided into five agricultural regions; however, moisture and altitude are here the principal factors in determining the use of the land and the systems of agriculture, hence the agricultural regions
in general extend north and south, following the mountain ranges, rather than east and west, as they do in the Eastern States where latitude and soil are the determining factors.
The Great Plains is a semiarid region with summer rainfall. It extends from the Rocky Mountains eastward to about the 100th meridian, or, to be more precise, to where humid systems of farming become dominant and the acreage of crop land exceeds the acreage of pasture. Wheat constituted 29 per cent of the crop acreage in 1919 (fig. 35), hay 25 per cent, corn for grain, fodder, and silage 12 per cent, sorghums 8 per cent (fig. 38), rye 5 per cent, oats 4 per cent, barley 3 per cent. All the feed crops (including 30 per cent of the wheat acreage) totaled about two-thirds of the crop land. However, only about 12 per cent of the land area was in crops, most of the land being used for pasture. The region contained on January 1, 1920 , over $11,000,000$ animal units, 55 per cent of which were beef cattle. This is an average of 24 animal units per square mile, or half the number in the eastern regions as a whole, and only about one-fourth the number per square mile in the Corn Belt.

Fig. 17.-"Hay and forage" crops as considered by the census include only those crops which are used as roughage. The percentage of cultivated land devoted to such crops is highest in New England, Wyoming, and Nevada, ranging from 66 per cent to 90 per cent in these States. In most of the States north of the Cotton Belt the proportion is between 20 and 40 per cent.

The Rocky Mountain, arid interior plateau, and south Pacific regions consist, in general, of partially forested mountains with subhumid to arid slopes, plateaus and valleys, many of which contain a considerable acreage of irrigated and dry-farmed land. The north Pacific region, however, possesses a humid climate, except during summer, and is largely in forest. From the crest of the Rocky Mountains westward, except in New Mexico and eastern Arizona, the rains come in the late fall, winter and spring, and the summers are practically rainless.

These four regions include over one-third of the land area of the United States. About 80 per cent of the land in these regions is pasture and range, very largely arid and of low carrying capacity, and only $3 \frac{1}{2}$ per cent is in crops. About 35 per cent of the crop land

[^38]was in "hay and forage" in 1919 (fig. 17), mostly alfalfa, wild hay, and grain hay (fig. 22), with a little timothy and clover in the moister valleys (figs. 31 and 33); 30 per cent was in wheat, 7 per cent was in fruit, $4 \frac{1}{2}$ per cent in oats, 6 per cent in barley, $2 \frac{1}{2}$ per cent in potatoes and vegetables, 2 per cent in corn, and 1 per cent in sugar beets. Nearly two-thirds of the crop land is used to produce forage. The four regions contained on January 1, 1920, about 12,000,000 animal units, 44 per cent of which were beef cattle and about 20 per cent sheep. The average number of animal units per square mile was less than 12, which is half of the density in the Great Plains region, one-fourth that in the humid eastern portion of the United States, and one-eighth that in the Corn Belt.

Harvested Forage.

Forage is commonly divided into two broad groups-roughages and concentrates. The latter group includes all forage of high feeding value per unit of weight, such as grains, while roughage consists of feed materials of relatively low nutritive value. Six classes of roughage are commonly recognized; (1) Hays and fodders, (2) straws and stovers, (3) silage and roots, (4) green feed or soilage, (5) mature crops pastured off, and (6) pasturage.

Pasturage is so important and so different in character from the other classes of roughage that it is discussed separately in the latter part of this article. The practice of soiling or feeding crops cut green is not common in the United States, but is sometimes resorted to by dairymen for short periods of time when other roughage is scarce. However, there is no information on which to base even an approximate estimate of the quantity of feed utilized in this manner, and it is believed that much of the feed obtained in this way has been included under other items in the census classification. In this section, therefore, only the production and relative importance of the concentrates, of the three principal classes of harvested roughage, and of mature crops pastured off are considered.
Feed units.-In order to measure even roughly the relative importance of such diverse feeds, it is necessary to estimate the feeding value of each. The Danish or Scandinavian feed-unit system has been used, because it is simple and seems to be best adapted to the requirements of this article. ${ }^{10}$ It is realized that this system, like all

[^39]others, has its defects, but it is believed to be sufficiently accurate for the purpose in view.

It is, of course, not implied that an animal could thrive satisfactorily on any one feed alone, whether grain, hay, straw, or silage; but the number of animals that definite amounts of these four feeds will sustain is the same, whether calculated each by itself or combined into a balanced ration. In other words, the number of animal units that the whole forage supply will maintain, based on the yearly rations indicated, will not be changed by figuring on the basis of practicable rather than on theoretical rations, nor if 2 animals for 6 months each be assumed rather than 1 animal for 1 year.

To provide for satisfactory growth and fattening, these theoretical rations might need to be increased materially for some farm animals. The theoretical ration used is the closest estimate that could be made of the average plan of nutrition of all livestock in the United States. That these rations are approximately correct is indicated by comparing the results of the calculations of the feed value of the crops used for forage and of the grazing capacity of the pastures with the aggregate number of animal units in the United States, as shown by the census. These calculations were made entirely independently of each other and resulted in estimates that the crops fed to livestock in 1919 had a feed value sufficient to support about $55,000,000$ animal units and the pastures sufficient to support $52,000,000$ animal units, a total of $107,000,000$. The census enumeration indicates an aggregate of 106,000,000 animal units on farms and in cities on January 1, 1920, and after allowance is made for slaughter, deaths, and births by months during the year, it appears that the average number of animal units during the 12 months of 1919 was about $110,000,000$.

Classes of Harvested Forage.

The concentrates supply more feed than all of the other classes of harvested forage combined, the hays and fodders furnish less than 30 per cent of the total harvested feed, and the aggregate feed value of the straws and stovers, silages and roots, and mature crops pastured off, is only about 13 per cent of the total. (See Table 6 and fig. 18.)
Table 6.-Classes of forage (excluding pasture): Production, estimated quantity fed, and aggregate feed value in 1919.

Classes of forage.	Production.	Estimated quantity eaten by livestock.	Animal units each item would theoretically support for one year.
Concentrates.	Tons. $122,433,000$	Tons.	Number. $31,862,000$
Hays and fodders..	106, 558,000	101, 918,000	15,761,000
Straws and stovers.			
Silage and roots.........	$44,147,000$ $6,035,000$	$34,263,000$ $4,978,000$	2,034,000
Mature crops pastured off	6,035,000	4,978,000	855,000
Total.			54,813,000

Concentrates or Concentrated Feeds.
The concentrates include grains, seeds, and the by-products of grain mills, such as bran, rice polish, and oat feed; of breweries and distilleries, such as malt sprouts and brewer's grain; of oil mills,
such as the meal and cake from cottonseed, flaxseed, peanuts, and soybeans. The by-products of packing houses, such as blood meal, tankage, and fish meal, are also considered concentrates, but as these are animal products they are not included in this discussion of forage resources.

Estimates of the quantity of grain and other concentrated feeds produced in the United States and consumed by farm animals in 1919, and the approximate number of animal units each item would theoretically support for one year are shown in Table 7. Certain minor concentrates, including seed screenings, sunflower seed, and molasses are omitted.

Table 7.-Concentrated feeds: Acreage, production, quantity eaten by livestock, and aggregate feed value in 1919. ${ }^{1}$

Concentrates.	Acreage.	Production.	Production, less seed and net exports.	$\begin{gathered} \text { Esti- } \\ \text { mated } \\ \text { quantity } \\ \text { eaten } \\ \text { by live- } \\ \text { stock. } \end{gathered}$	Theoretical annual ration.	Animal units each item would theoretically support for one year.
	Thous-	ands of	ands of	ands of		Thous-
	ands.		tons.	tons.	Tons.	
Corn.	87,772	65,683	65, 083	${ }^{6} 58,576$	2.65	22,109
Oats	37,991 73	16,883 28,362	14,743 19 19	14,256 76,555	2.85 2.75 2.	5,002 2,38
Sorghum (grain)	3,619	2,018	1,997	1,997	2.85	701
Barley......	6,473	2,929	1,932	${ }^{6} 1,519$	2.65	573
Cottonseed (meal and cake).		${ }^{2} 1,817$	1,592	986	2.10	470
Rye....	7,679	2,128	711	510	2.65	19
Flaxseed (meal and cake)		${ }_{311}^{121}$	${ }^{1} 241$	241 280	2.10 2.75	110
Mixed grains..	577	311 175	311 175	280	2.75 2.75	1
Rice..........	911	725	308	890	2.85	32
Peanuts:						
Nuts..	1,125	302	367	18	2. 10	9
Cake and meal		${ }^{8} 82$	82	62	2.10	30
Emmer and spelt.	167	83	${ }_{65}^{67}$	67 52	$\stackrel{2.65}{2.85}$	18
Field peas....	$\begin{array}{r}183 \\ 1,162 \\ \hline\end{array}$	81	$\begin{array}{r}65 \\ 440 \\ \hline\end{array}$	52 44	2.85 2.65	18
Sweet corn.	272	91	90	30	2.65	11
Soybeans:						
Seed..	113	33	10	8	2.65	3
Velvet beans......			58	8	${ }^{2.75}$	3
Velvet beans. Cowpeas.....	${ }_{633}$	${ }_{91}$	10	5	2.85	5 2
Total.	221,976	122, 433	107,982	85,494		31,862

${ }^{1}$ For methods employed in calculating the figures given see footnotes under Tables 13 to 20
${ }_{2}$ From report of the Federal Trade Commission on Commercial Feeds, March 29, 1921.
${ }^{3}$ Accurate data regarding the production of peanut cake and meal are not available. This estimate is based on the quantity of peanut oil produced by domestic mills in 1919.
4 Imports of flaxseed and products exceed exports.
${ }^{6}$ There were 8,000 tons of soybean cake imported in 1919, according to the reports of the Department of Commerce, Bureau of Foreign and Domestic Commerce, 1910-1920.
${ }^{6}$ Includes brewers' grains and malt sprouts.
7 Mill feed mostly.
${ }^{8}$ Bran and polish with the accompanying broken grains or "grits."
It appears that the concentrates alone would theoretically feed nearly $32,000,000$ adult cattle for one year, whereas all other harvested feed actually eaten would support about $23,000,000$. Among the concentrates corn is by far the most important, providing about

RELATIVE IMPORTANCE IN LIVESTOCK PRODUCTION OF THE FIVE PRINCIPAL CLASSES OF HARVESTED FORAGE, UNITED STATES, 1919.

Fig. 18.-The concentrates alone provide sufficient feed to sustain over $32,000,000$ animal units for one year, which is almost exactly twice the number that could be maintained on the hays and fodders, and is greater than the total of all other harvested forage.

70 per cent of the total feed value of the concentrates; oats constitute about 16 per cent, and mill feeds from wheat over 7 per cent (fig. 19). On the basis of feed value nearly half of the concentrates are produced in the Corn Belt.

```
PRODUCTION OF IMPORTANT GRAINS AND THE PROPORTION FED TO FARM ANIMALS, UNITED STATES, 1919.
```


Fig. 19.-Corn is by far the most important grain feed of livestock in the United States. Oats rank second, although the total production is less than that of wheat. The wheat represented as fed to livestock consists of the bran, middlings, and other by-products of the flour mills, and an estimated 2 per cent of the grain fed to poultry and other farm animals.

Fig. 20.-The production of hay is greatest in the hay and dairying region, in the western Corn Belt, and in the irrigated valleys of the West. New York. leads all other States in production followed closely by Minnesota, Iowa, Nebraska, Wisconsin, and Kansas. These States produce one-third of the entire hay crop of the country.

Hay and Fodder.

The total area devoted to hay and fodder crops in 1919 was a little over $82,000,000$ acres and the production about $107,000,000$ tons, according to the census ${ }^{11}$. The production of hay, it will be noted in

PRINCIPAL HAYS AND FODDERS: PRODUCTION AND AGGREGATE FEED VALUE, UNITED STATES, 1919.

Fig. 21.-Alfalfa hay, on account of its high feeding value per unit of weight, leads all the hays and fodders in the number of animal units it will theoretically support for one year. The production of timothy hay is considerably greater than that of clover hay, but the latter outranks it in aggregate feed value. The production of timothy and clover mixed, as reported by the census, is assigned half to timothy and half to clover.

[^40]Figure 20, is heaviest in the hay and dairying region, in the western part of the Corn Belt, and in the valleys of the West. The leading States in hay production in 1919 were New York, Minnesota, Iowa, Nebraska, Wisconsin, and Kansas in the order named. These States produced approximately one-third of the total hay crop of the United States. In Table 8 are given the acreage, production, estimated quantity eaten by livestock, and approximate feeding value of each of the hay and fodder crops. They are arranged in the order of the number of animal units each would support for a single year. In the feeding of hay the wastage is from 10 to 15 per cent, and this has been considered in determining the annual ration. Figure 21 shows the production and feeding value of the principal classes of hay and fodder in 1919.

Table 8.-Hays and fodders: Acreage, production, quantity eaten by livestock, and aggregate feed value in 1919.

Kind of hay or fodder.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoreti- cally sup- port for one year.
Alfalfa.	Thousands. $8,625$	Thousands of tons. 18,853	Thousands of tons. 18, 853	Tons. ${ }_{5}$	Thousands. $3,771$
Clover ${ }^{1}$.	12,835	16, 818	16, 818	5	3,364
Timothy ${ }^{1}$	20,616	25,470	25,470	8	3, 184
Wild grass.	17, 126	15, 631	15, 631	8	1,954
Corn (fodder) ${ }^{2}$..	4,500	8,100	5,670	7	810
Miscellaneous tame grass ${ }^{3}$	6,056	6,404	6,404	8	800
Sorghum (fodder) ${ }^{4}$.	4,747	7,913	5, 539	8	692
Oat5..	2, 300	2, 300	2,300	7	329
Wheat ${ }^{5}$.	1,700	1,700	1,700	7	243
Cowpea ${ }^{6}$	1,100	990	-990	5	198
Barley ${ }^{5}$.	1,500	1,313	1,313	7	188
Soybean ${ }^{6}$.	287	287	287	5	57
Peanut ${ }^{6}$..	307	230	230	5	46
Velvet bean 7	193	193	193	5	39
Rye ${ }^{5}$.	175	150	150	7	21
Field bean ${ }^{6}$	64	92	92	5	18
Field pea ${ }^{6}$..	59	69	69	5	14
Vetch ${ }^{6}$.	30	45	44	5	9
Hay, net imports ${ }^{8}$.			165	7	24
Total.	82, 220	106, 558	101, 918	15,761

[^41]The relative importance of different kinds of hay in the Northeastern, Southeastern, and Western States is indicated in Figure 22. Timothy and clover mixed is the principal hay crop of the Northeastern States and timothy seeded alone stands second on the list. In the Southeastern States a large proportion of the total is con-
tributed by "other tame grasses" and by annual legumes. In the Western States alfalfa and the native grasses provide the larger part of the hay with the small grains ranking third.

FIG. 22.-In the northeastern humid region (the States north of the Cotton Belt and east of the Great Plains) timothy constitutes nearly half the acreage of hay, and mixed with clover nearly a quarter more. In the Southeastern, States the census group known as "other tame and cultivated grasses" (in this region largely Bermuda and Johnson grass) and the annual legumes are the most important hay crops, constituting each about one-quarter of the acreage. In the Western States alfalfa is the dominant hay crop, with wild hay second in importance.

Straws and Stovers.

Straws and stovers ${ }^{12}$ are the least nutritious of all substances used as feed, if estimated on the basis of dry weight. The best of them

Frg. 23.-An estimate of the quantity of straw produced in each State has been made chiefly by calculating it from known ratios of straw to grain for the different cereals. Much of the straw is wasted or used for other purposes than for feeding livestock; yet on account of the immense quantity produced it forms no inconsiderable part of our forage resources. The centers of straw production are the Corn Belt and Great Plains States and the western portion of the hay and dairying region.

[^42]are scarcely good enough to keep an animal alive for any considerable period when they constitute the sole ration. Nevertheless, utilized in connection with other feeds they are far from valueless, and taken as a whole they have a feeding value over one-fourth that of the hays and fodders. In Table 9 is shown the estimated production of the principal straws and stovers, an estimate of the amount of each actually eaten, and the number of animal units that each would theoretically support for one year.

Table 9.-Straws and stovers: Acreage, production, quantity eaten by livestock, and agyregate feed value in 1919.

Kind of straw or stover.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Corn (stover) ${ }^{1}$	Thousands. 87, 772	Thousands of tons. 75,000	Thousands of tons. 25, 000	Tons. ${ }_{10}$	Thousands. $2,500$
Oat.....	37, 991	34, 000	10,000	11	909
Wheat.	73, 099	43, 000	4,300	15	287
Sorghum (stover) ${ }^{1}$	3,957	4,946	2,473	10	247
Cotton (seed hulls) ${ }^{2}$.		1,143	1,029	12	86
Field bean..	1,162	581	523	8	65
Peanut.	1,125	563	422	7	60
Barley..	6,473	3, 000	750	13	58
Cowpea.	633	316	237	8	30
Rye...	7,679	5,000	250	15	17
Mixed grains	577	508	152	11	14
Field pea...	233	116	87	8	11
Rice......	911	911	90	11	8
Soybean.	113	56	42	8	5
Flax.	1,261	315	65	15	4
Total.	222, 986	169,455	45, 420		4,301

[^43]The most important items, it will be noted, from the standpoint of feed utilized are corn stover and oat straw. The corn stover is necessarily most abundant in the Corn Belt, and the oat straw in a crescentshaped area bordering the Great Lakes (figs. 13 and 27). The relative importance of the States in the production of straw is shown in Figure 23.

Silage and Root Crops.

These products differ from other harvested feeds in their high water content, and hence are called succulent feeds. Silage is particularly important in connection with dairying. Most of the silage is made from corn, but an important fraction from sorghum. The geographic distribution of crops cut for silage is shown in Figure 16.

Sugar beets, although grown principally as a source of sugar, furnish a by-product, beet-pulp, which is an important item of forage. Usually only cull potatoes are used for feed in the United States. These, together with potato peclings commonly fed to livestock or poultry on farms, are estimated at about 10 per cent of the crop available for consumption. It is similarly estimated that about 20 per cent of the sweet potatoes are used for feed. Root-crops are unimportant in the United States. They are grown mostly in regions.
of cool summer climate-New England, New York, the Lake States, and the North Pacific coast. The total production in 1919, of silage, wet beet-pulp, potatoes and sweet potatoes, and other root crops such as mangels, rutabagas, and turnips, the estimated amount consumed by livestock, and the number of animal units each item will support for one year are shown in Table 10.

Table 10.-Silage, noot-crops, and other succulent feeds: Acreage, production, quantity eaten by livestock, and aggregate feed value in 1919.

Kind of forage.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Corn silage.	Thousands. $\text { 3, } 924$	Thousands of tons. $29,284$	Thousands of tons. 29, 284	Tons. ${ }_{16}$	Thousands. $1,830$
Beet pulp (wet)		2,550	2,550	32	80
Potatoes...	3,252	8,713	797	20	40
Sweet potatoes.	804	2,343	440	16	28
Sorghum silage	79	398	398	16	25
Root crops....	88	599	599	32	19
Canning pea silage ${ }^{1}$.	104	260	195	16	12
Total.	8,251	44, 147	34, 263		2,034

${ }^{1}$ This consists of the refuse from pea canneries.
Unmarketable fruits and vegetables used for feed have been omitted. The quantity is not known, but the feeding value is undoubtedly small. It will be noted that silage is nearly tenfold as important as all the other succulent feeds.

Mature Crops Pastured Off.

An increasing proportion of the corn and annual legume crops is being utilized by turning the livestock into the fields to pasture off

Fig. 24.-The acreage of mature crops pastured off is composed very largely of corn in the Northern States and of cowpeas, velvet beans, and peanuts in the Southern States. In many cases these legumes are interplanted with corn in the South, and in the Corn Belt, the practice of planting soybeans in the corn which is to be " hogged off" is becoming quite common. The acreage indicated in the San Luis valley of Colorado is very largely field peas or field peas and some small grain grown in mixture.
the crop. This saves labor, which is now so expensive, and results in the utilization of almost as large a proportion of the crop as though it were harvested by man.

The census reports 3,107,000 acres of " crops hogged off" in 1919 (fig. 24). In the North these crops were almost wholly corn and a small acreage of soybeans; but in the South much of the acreage consisted of peanuts, cowpeas, and velvet beans, grown alone or mixed with corn. In Table 11 the total acreage of the several crops is greater than the census total shown, owing to interplanting, but allowance has been made in the estimated production for the mixed crop acre yields. The proportioning among the different crops of the total acreage given by the census and the estimates of production are

Fig. 25.-Corn contributes as much feed for our livestock as all other crops taken together. Corn originated in the Western Hemisphere, and was the chief food grain of the American Indian when this country was discovered by the white man. While it has not retained its primitive importance among the food crops, it now occupies a dominant position among the feed crops and indirectly, in the form of pork, lard, beef, poultry, eggs, and milk, it provides a large proportion of the animal foods consumed by the American people.
based on returns from about 50,000 crop reporters of the Department of Agriculture.

TABLE 11.-Mature crops pastured off: Acreage, production, quantity eaten by livestock, and aggregate feed value in 1919.

Crop plant.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Corn.	Thousands. $2,350$	Thousands of tons. 13,525	Thousands of tons. 12, 468	Tons. 7	Thousands. 353
Cowpeas	1,000	800	800	5	160
Velvet beans.	800	800	800	5	160
Peanuts.	1,125	750	750	5	150
Soybeans.	174	160	160	5	32
Total.	3,107	6,035	4,978	855

${ }^{1}$ See notes 3 and 4 under Table 13.

The Principal Forage-Producing Crops.

Nearly every crop grown in the United States is partly or wholly used to feed farm animals. Several crops are utilized partly in one way, partly in another, as corn for grain, fodder, stover, and silage. The total contribution of each important crop to the national supply of forage therefore seems worth noting. In Table 12 are shown the principal crops that produce forage in the order of number of animals each would support for one year. It will be noted that corn produces as much forage as all other plants combined, and that oats are nearly as important as timothy and the clovers combined (fig. 25). Some of these crops also supply pasturage during a portion of the year. An estimate of the value of this pasturage is given in Table 22.

Table 12.-Relative importance in livestock production of the principal cropplants producing harvested forage, 1919. ${ }^{1}$

[^44]
Corn.

Nearly all our corn (maize) is produced in the eastern half of the United States where the nights are warm and the summers are moist (fig. 13). More than half of this crop is produced in the Corn Belt; but corn is the leading crop in value also in the corn and winter wheat region, and is the most important cereal in the Cotton Belt. Nearly 90 per cent of the nation's corn acreage is found in these three regions, where it constitutes over one-third the acreage of all crops. Corn is a very productive crop, yielding in general about twice as many pounds of grain per acre as wheat, oats, barley, or rye. An analysis of the corn crop from a forage standpoint is presented in Table 13.

FATTENING HOGS ON A CORN-BELT FARM.
Fig. 26.-The production of hogs in the United States goes hand in hand with corn production. No other crop product seems to be so well suited to the growth and fattening of this farm animal. Hogs are abundant in the States almost in direct proportion to the quantity of corn produced.

Corn is not only the most important of all the crops in the United States, but it is also the greatest producer of forage. About 90 per cent of the grain, possibly more, is consumed by animals. Over 87,000,000 acres were harvested as grain in 1919 and the resultant stover is an important forage. About $14,500,000$ acres were cut as fodder in 1919, some of it fed as such, but apparently about $10,000,000$ acres of this fodder were reported also in the grain acreage and in the computed yield of grain production. Nearly $4,000,000$ acras were utilized as silage, and over $2,000,000$ acres were pastured off. The various items of the corn crop fed to animals furnished sufficient feed to sustain for one year over $27,500,000$ animal units (table 13). In other words, approximately half of the harvested forage needed to support our livestock is supplied by corn (fig. 25).

Table 13.-Corn: Acreage, production, quantity eaten by livestock, and aggregaite feed value in 1919.

Kind of forage.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one ycar.
	Thousands.	Thousands of tons.	Thousands of tons.	Tons.	Thousands.
Grain.	87, 772	65, 683	58,576	2.65	22,104
Fodder	4,500	28,100	5,670	7.00	810
Stover.	87, 772	75, 000	25.000	10.00	2,500
Silage..	3, 924	29, 284	29, 284	16.00	1,830
Pastured off	2,350	${ }^{3} 3,525$	${ }^{4} 2,468$	7.00	353
Sweet corn	272	91	30	2.65	11
Total.	${ }^{1} 98,818$				27,608

${ }^{1}$ The acreage of stover is included also in the grain acreage, hence it is omitted from the total.
${ }^{2}$ A verage yield of corn plus the average yield of stover.
${ }^{3}$ Average yield of corn plus the average yield of stover reduced by one-sixth forinterplanting of leguminous crops in the South.
${ }^{4}$ It is estimated that 70 per cent of the crop, the same as for fodder, is eaten by livestock.
Oats.
Oats are grown mostly in the moderately cool and humid northeastern quarter of the United States with a less dense acreage extending down the prairies to central Texas (fig. 27). Three-fourths

Fig. 27.-Oats rank second to corn among the crops producing harvested forage. The threshed grain is valued especially for feeding work animals. Production of oats is heaviest in the northern portion of the Corn Belt, but the crop is very important also in the hay and dairying region and in eastern Kansas, Oklahoma, and Texas.
of the oats are grown in the Corn Belt and the hay and dairying region (fig. 12). The oats in the Corn Belt are not grown because of peculiarly favorable climatic conditions, but rather because of the need of a grain to feed work animals and of a spring grain nursecrop for clover which will not require attention when labor is needed for the corn and hay crops. In parts of the Corn Belt soybeans are now rapidly replacing oats. An analysis of the oat crop from a forage standpoint is presented in Table 14.

Table 14.-Oats: A,creage, production, quantity eaten by livestock, and aggregate feed value in 1919.

Kind of forage.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Grain. Hay... Straw.	$\begin{array}{r} \text { Thousands. } \\ 37,991 \\ 2,300 \\ 37,991 \end{array}$	Thousands of tons. $\begin{array}{r} 16,883 \\ 2,300 \\ 34,000 \end{array}$	Thousands of tons. $\begin{array}{r} 214,256 \\ 2,300 \\ 10,000 \end{array}$	Tons. $\begin{array}{r} 2.85 \\ 7.00 \\ 11.00 \end{array}$	$\begin{array}{r} \text { Thousands. } \\ 5,002 \\ 329 \\ 909 \end{array}$
Total.	140, 291				6,240

${ }^{1}$ The acreage of straw is included also in the grain acreage, hence it is omitted from the total.
2 This quantity represents the production less that used for seed and food and the net exports.
Oats are second in importance to corn in the production of forage. Less than 5 per cent of the grain, according to the best interpretation of the Census of Manufacturers, is used for food. The grain is, therefore, nearly all fed to livestock and the $14,250,000$ tons are sufficient to support $5,000,000$ animal units one year. Probably more oats are cut green for hay than any other small grain. The amount is roughly estimated at $2,300,000$ tons for 1919. Oat straw is also much used as a feed, being considered superior to the straw of any other cereal. It is estimated that $10,000,000$ tons were eaten by livestock in 1919. Taken as a whole, the oat crop furnished the equivalent of a full year's ration in 1919 for about $6,240,000$ animal units.

Alfalfa.

Alfalfa as a hay crop is exceeded in total tonnage produced only by timothy and clover mixed, but owing to its high feeding value, alfalfa leads the hays in number of animal units it will support. The

Fig. 28.-Kansas and Nebraska led in alfalfa acreage in 1919. The climate in these States is subhumid and the soil is fertile and well supplied with lime. Most of the alfalfa west of the one hundredth meridian is grown under irrigation. On the irrigated lands it is commonly the leading crop. Less than $\mathbf{9}$ per cent of the alfalfa acreage of the United States is east of the Mississippi River and only $13 \frac{1}{2}$ per cent cast of the ninety-fifth meridian, which is approximately the eastern boundary of Kansas.
crop of 1919 was sufficient to support (theoretically) 3,771,000 animal units for one year. At present alfalfa constitutes over 19 per cent of the total hay crop of the country and 45 per cent of the hay harvested west of the eastern line of the Dakotas, Nebraska, and Kansas. Since 1899 the acreage of alfalfa in the United States has practically doubled every 10 years; and while the acreage will continue to grow, it is not at all probable that the present rate of increase will be maintained. The increase of acreage in the past 20 years has been promoted by a very active and intensive propaganda favoring alfalfa. This propaganda is now much less widespread and in many sections practically discontinued; furthermore, in the future, new land suitable for the production of alfalfa is not likely to become available in sufficient quantity so that any large increase in alfalfa acreage may be expected from this source. Notwithstanding the extensive campaign conducted in behalf of alfalfa in the eastern part of the United

ALFALFA IN STACK ON IRRIGATED FARM.
Fig. 29.-Alfalfa is the premier hay crop on the irrigated lands of the Western States. It can be cut from two to six times during the year, $\dot{\text { aepending on }}$ the length of the growing season and the adequacy of the water supply. On account of its quick recovery after cutting the yield per acre is larger than that of any other hay plant and the feeding value of the hay is very high.
States there is now only $13 \frac{1}{2}$ per cent east of the 95 th meridian which approximates the eastern boundary of Kansas. The climatic and soil relations of alfalfa, particularly the former, are very largely responsible for the relatively small acreage in the East. The distribution of the alfalfa acreage in 1919 is shown in Figure 28 and its relative standing among the crops which produce harvested forage is shown in Tables 8 and 12.

The average yield of alfalfa hay in the entire United States is 2.2 tons per acre. Most of the hay produced is fed on the farms where it is grown or sold for local use, but it finds a ready sale in all parts of the country where it is known. It is quoted regularly on the markets of Kansas City, Omaha, Minneapolis, Chicago, San Francisco, and St. Louis. During 1920 and 1921 alfalfa hay sold at a higher price per ton than shelled corn on the

Fig. 30.-It is said that the best interests of a permanent agriculture require about 20 per cent of the cultivated acreage to be in clover or a similar crop every year. In 1919 only 2.7 per cent of the cultivated land on farms in the Corn Belt was devoted to clover. If half the acreage of timothy and clover cut for hay is considered as clover, the percentage is raised to 10 , or only half the desired acreage.
Kansas City market, and appreciably above the price commanded by timothy and other hays. In New York City, where alfalfa hay is less well known, it sells at a lower price than timothy. It is estimated that approximately 300,000 tons of alfalfa hay are ground into meal. This meal is sold as it comes from the mills or is used as an important constituent of mixed feeds.

Clovers.

The clovers rank fourth among the forage-producing crops of the United States. They will (theoretically) support $3,364,000$ ani-

Fig. 31.-Timothy and clover, mixed, is the premier hay crop of the northeastern quarter of the United States. The total production of this mixed alone. Timothy and clover do not thrive in dry regions except when irrigated. The crop is well suited to the Puget Sound district, and is increasing in importance there. Compare with maps of alfalfa (fig. 28) and of wild hay (fig. 37).
mal units for one year. (See Tables 8 and 12.) In 1919 there were produced $4,147,050$ tons of clover hay (fig. 30) and $25,341,314$ tons of mixed clover and timothy hay (fig. 31) on a total of $22,509,820$ acres. Of this total 93 per cent was produced in the territory east of the Dakotas, Nebraska, and Kansas, and north of the southern boundary of Missouri, Tennessee, and North Carolina. This is the great clover region of the United States, though clovers are grown in other States; sometimes in small isolated sections, as in Louisiana and in the mountain valleys of the Rockies, and again over considerable areas, as in the Pacific Northwest and along the eastern fringe of the Great Plains States.

Clover hay, as reported by the census, includes that made from red, alsike, crimson, and sweet clover, and, in the Southern States, that made from lespedeza or Japan clover and bur clover. While no exact figures of the quantity of hay produced by each clover are available, it seems probable that in the main clover region about 65 per cent is red, 30 per cent alsike, and 5 per cent crimson and sweet clover. In the northeastern quarter of the United States the red and alsike clovers are by far the most important legumes (fig. 22) ; but in other sections they are of minor importance, except along the north Pacific coast.

Sweet clover is little used for hay, though the practice of cutting the first season's growth late in summer is increasing. Its chief use is as a rotation pasture crop. Sweet clover thrives and is used on a wide variety of soils. It has been found especially profitable on the two extremes of high-priced rich soil and low-priced poor soil; in the first because it carries more animals per acre than most other crops, and in the second because it is one of the few crops that can be profitably grown. It is eaten by all classes of livestock, but is especially valuable for beef and dairy cattle and horses.

HAYMAKING IN OHIO.
Fig. 32.-Haying machinery, such as the power stacker, the automatic loader, and the buck rake, are not used in the harvesting of timothy hay to the same extent that they are employed in stacking alfalfa hay. Much of the timothy crop is still harvested by the method shown here.

Timothy.
Timothy is by far the most important perennial hay grass in American agriculture, producing each year more than twice as much hay as all other tame grasses (not legumes), both annual and perennial, and including the small-grain hays. In estimating the total acreage and production of timothy, half of the census figures for "Timothy and clover" are credited to timothy (see Table 8). The

Fig. 33.-Timothy is practically confined to the northeastern quarter of the United States, except for a scattered acreage in the cool, moist valleys of the Rocky Mountain region. There were nearly $1,500,000$ acres devoted to timothy cut for hay in Ohio in 1919, and M1ssouri and Illinois each are credited with over $1,000,000$ acres. In general, timothy is grown on somewhat poorer or heavier soils than clover or timothy and clover mixed.
acreage and production of timothy show little change since 1909, the first year for which timothy figures are available. The average yield per acre, according to the census figures, is 1.24 tons. The timothy crop alone will theoretically support for one year $3,184,000$ animal units.

One of the most important factors in the widespread popularity of timothy is its excellence as a market hay. For many years it has been regarded as the standard for all grass hays in the markets of large cities, partly owing to its good shipping qualities and general uniformity but more perhaps to the fact that it is valued very highly as roughage for work animals, particularly for driving horses. The market demands of large cities as well as climate have had their influence on the distribution of the timothy acreage, which is shown in Figures 31 and 33.

Wheat.

Wheat is the most important cereal used for human food, but furnishes in addition a great amount of feed for animals. According to the Census of Manufacturers, flour constituted only about 71 per cent of the wheat milled in 1919. The principal by-products are bran, shorts, middlings, and screenings. These mill feeds will theoretically support for one year $2,384,000$ animal units and cause wheat to rank third in importance among our crops as a producer of concentrates. Very little wheat is fed as grain to livestock, except that some lowgrade grain is fed to poultry, probably about 2 per cent of the crop. Wheat hay is an important forage, particularly in the Pacific Coast

Fig. 34.-In regions where other hays are scarce a considerable acreage of the small grains is cut for hay, usually to provide roughage for work stock on the farm. Some grain hay finds its way to the city markets, however, principally on the Pacific coast. Of the $5,462,853$ tons of grain hay produced in 1919 , it is estimated that about 42 per cent was oat, 31 per cent wheat, 24 per cent barley, and 3 per cent rye. There was an unusually large acreage of small grains cut for hay in the northern Great Plains in 1919 on account of the failure of these crops to produce a profitable grain yield.

States, and in the northern Great Plains region also in 1919, owing to the drought (fig. 34). Wheat straw has low feeding value, and probably not more than 10 per cent is eaten by animals. Much of the straw is destroyed by burning. In Kansas and adjacent States much of the young fall wheat is pastured lightly in the winter. The value of this forage is discussed under pastures. Measured by the animal units that the various wheat products used for feed will support (Table 15), this crop ranks sixth in importance among the crops producing forage.

Fig. 35.-Wheat is, of course, most important as human food. However, the bran, middlings, and other by-products of the flour mills, the low-grade grain, the straw, the wheat cut for hay, and the fall pasturage of wheat fields in the winter wheat areas, altogether provide a generous contribution to our forage supply.

Table 15.-Wheat: Acreage, production, quantity eaten by livestock, and aggre gate feed value in 1919.

Kind of forage.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration	Animal units each item would theoretically support for one year.
Grain. Hay.. Straw	Thousands. 73,099 13,700 73,099	$\begin{gathered} \text { Thousands } \\ \text { of tons. } \\ 28,362 \\ 1,700 \\ 43,000 \end{gathered}$	Thousands of tons. $\begin{array}{r} 6,555 \\ 1,700 \\ 4,300 \end{array}$	Tons. $\begin{array}{r} 2.75 \\ 7.00 \\ 1.00 \end{array}$	$\begin{array}{r} \text { Thousands. } \\ 2,384 \\ 243 \\ 287 \end{array}$
Total..	${ }^{2} 74,799$				2,914

1 This quantity was estimated as indicated in the preceding text discussion.
${ }^{2}$ The acreage of straw is included also in the grain acreage, hence it is omitted from the total.
There are four principal areas of wheat production in the United States: (1) The soft winter wheat area, extending from Maryland

Fig. 36.-The expenditure for feed, as reported by the census, includes mill feed, mostly wheat bran and middlings, grain, hay, and other feed not raised on the farm. The expenditure is greatest in the hay and dairying region, especially the eastern portion, where the production of grain is deficient, and in the Corn Belt, where large quantities of bran and middlings are used and where corn is freely bought and sold by the farmers. Although the figures include much more than mill feeds, the map indicates in a general way the regions where the by-products from the milling of wheat are used
and Pennsylvania to Missouri ; (2) the hard winter wheat area of Kansas and adjacent States; (3) the spring wheat area of the Dakotas, western Minnesota, and eastern Montana; and (4) the mixed winter and spring wheat area of Washington, Oregon, and California (fig. 35). Of the $612,000,000$ bushels of wheat milled in 1919 , over $450,000,000$ bushels, or about three-fourths, were made into flour and mill feed in the Mississippi Valley, mostly in the upper and central portion. Statistics for the consumption of this mill feed are not available by States; but Figure 36 shows that the regions of heaviest expenditure for feed in 1919 were in the North Atlantic States and the Corn Belt.

Wild or Native Hay.

The wild hay crop is gradually becoming relatively less important, because the acreage has remained practically constant during the last decade while that of most other forage crops increased. The native grasses still contribute, however, an important part of our hay supply, ranking fourth among the hay crops and seventh in the list of all crops producing forage (Tables 8 and 12). From the days of the first settlements of America by the white man to the present time wild hay grasses have aided largely in the settlement of the country. They have made it possible for the pioneer to take his livestock with him as he has pushed the limits of settlement westward. The grasses and sedges of the tidal and other marshes of the Atlantic coast were of great value to the early colonists before

Fig. 37.-The importance of wild, salt, and prairie grasses for hay production will be appreciated when it is noted that they occupied in 1919 almost twice the acreage devoted to alfalfa and produced nearly as much hay. About three-fourths of the acreage of wild hay is found in the Dakotas, Nebraska, Minnesota, and Kansas. The value of these grasses as a forage resource of the northern Great Plains and spring wheat areas can scarcely be overestimated.
they could clear away the timber and grow tame forage. Now they are of relatively little importance from the forage standpoint, since more valuable hay can be produced from cultivated grasses.

At present the northern Great Plains region and contiguous portions of the spring wheat belt constitute the most important native hay area of the United States (fig. 37). South Dakota, Nebraska, North Dakota, Minnesota, Kansas, Oklahoma, and Iowa have more than three-fourths of the total acreage and produce more than twothirds of the tonnage of the entire country. In this group of States native hay constitutes approximately 35 per cent of the entire hay crop.

Native or prairie hay is sold regularly on the markets of Kansas City, Minneapolis, Chicago, and St. Louis, where it sells for more than 75 per cent as much as timothy hay of corresponding grades. While in the aggregate a large tonnage of native hay finds its way to the city markets, by far the larger part of it is consumed on the farm. If it were not for the native hay grasses in the drier parts
of the Great Plains region and westward the livestock industry would be greatly limited, because of the scarcity of cured forage with which to feed the stock during winter.
The quality of native hay varies greatly. That produced in the castern part of Oklahoma, Kansas, southern Nebraska, and in similar latitudes where the rainfall is relatively high, will scarcely more than maintain cattle and horses. Westward and northward the native hay is much more nutritious and valuable for feeding livestock through the long periods in the winter or other seasons when it is impossible for the animals to subsist by grazing. Practically all the native hay of the Great Plains and westward is regarded as very valuable horse hay. It can be fed in unlimited quantities without causing digestive disturbances and is an excellent roughage for horses at hard work or those kept for driving.
In the eastern part of the large native-hay area extending from northern Oklahoma to the Canadian border and eastward into Minnesota and Wisconsin, the most important species of grasses are Bluejoint (Calamagrostis canadensis), Big bluestem (Andropogon furcatus), Little bluestem (4. scoparius), Indian grass (Sorghastrum nutans), and Switch-grass (Panicum virgatum). These species, with the exception of the first mentioned, are important as far as the western edge of the prairies; but from the 100th Meridian westward, Western wheat grass (Agropyron occidentale or A. Smithii), Slender wheat grass (A. tenerum), Side-oats grama (Bouteloua curtipendula), and other species of Bouteloua become increasingly important. In Montana, especially in the Milk River Valley, Western wheat grass is the most important species. In the southwestern part of the State this species and Bluejoint are the most important wild hay species. In the high mountain parks of Colorado, Wire grass (Juncus baltious) is an important hay plant. In northern Nevada, California, and southeastern Oregon the valuable wild-hay grasses include Bunch wheat grass (Agropyron spicatum), Nevada bluegrass (Poa nevadensis), Short-ligule bluegrass (Poa brachyglossa), and Beardless rye grass (Elymus triticoides). Over much of California the introduced and wide-spread wild oats produces large crops of valuable hay.

Sorghums.

The term sorghum, as here used, embraces the sorgos or sweet sorghums; the grain sorghums, such as kafir, milo, and feterita; and also broomcorn, which furnishes some forage after the brush has been harvested. A small acreage of sugar cane and Japanese cane is used as forage in the Gulf Coast States. Most of this is made into silage. In the census reports sugar cane was included with the sorghums harvested for forage, but the quantity thus used is relatively so small that it can be disregarded without serious error in the present broad consideration of forage production.

The sorghums, unlike corn, are not native on this continent. Most of the varieties now being grown in the United States originated in Africa. On account of their drought-resisting qualities they have become very important in the southern Great Plains-Kansas, Oklahoma, Texas, and the eastern portions of Colorado and New Mexico. The distribution of sorghum acreage in 1919, according to the census

Fig. 38.-This map shows the combined acreage of all sorghums, except those grown for sirup production and broomcorn. It will be noted that the sorghum crop is confined chiefly to the southern Great Plains and the irrigated valleys of Arizona and California. The sorghums are very drought resistant and can be depended upon in the southern Great Plains to supply both fodder and grain to support the livestock industry.
data, is shown in Figure 38. That year there were over $9,000,000$ acres devoted to sorghums, 482,043 acres of this being used for sirup and 337,806 acres broomcorn. This leaves a total of more than $8,000,-$ 000 acres devoted almost exclusively to the production of feed for livestock (fig. 38). The production in tons and the number of cattle which this acreage of sorghums would support for one year are shown in detail in Table 16.

HARVESTING SORGHUM FOR FODDER IN KANSAS.
Fig. 39.-In early days sorghum was harvested for fodder and silage almost wholly with a corn knife. Since the advent of the corn binder, sorghum can be quickly and economically tied in bundles, ready to shock or haul to the silo without hand labor. The acreage of the sorghums doubled from 1900 to 1910 and almost doubled again between 1910 and 1920.

The importance of this introduced crop is even greater than it appears, because of the fact that the sorghums thrive in a region of heavy livestock production where corn and other crops used as forage are uncertain, and thus provide an insurance against absolute failure of feed in years of extreme drought. About 90 per cent of the coarse forage in the southern Great Plains is derived from the sorghums, and they rank eighth in the list of forage-producing crops for the entire United States.

Table 16.-Sorghums: Acreage, production, quantity eaten by livestock, and aggregate feed value in 1919.

Kind of forage.	Acreage. ${ }^{1}$	Production. ${ }^{2}$	Estimated quantity eaten by livestock. ${ }^{3}$	Theoretical annual ration.	Animal units each item would theoretically support for one year.
		Thousands	Thousands		
Grain.	$\begin{array}{r} \text { Thousands. } \\ 3,619 \end{array}$	of tons. 2,018	of tons. 1,997	Tons. ${ }_{2}$	Thousands.
Fodder.	4, 747	7,913	5,539	8.00	692
Stover.	3,957	4,946	2,473	10.00	247
Silage.	79	398	398	16.00	25
For sirup	482	1,644			
Total.	9,265				1,665

[^45]
Barley.

Most of the barley in the United States is grown in the hay and dairying region, notably in the spring wheat section, and in the South

Fig. 40.-Barley ranks ninth among the forage-producing crops. Its value as a substitute for corn in the feeding of farm animals is becoming more generally recognized, especially in sections where corn is not well adapted to climatic conditions. The principal centers of production are the western portion of the hay and dairying region and the South Pacific region. It should be noted that a dot on this map represents only half as many bushels as on the maps of oat and wheat production (figs. 27 and 35) and one-third as much as on the map of corn production (fig. 13).

Pacific region, where the climate is also cool during the winter season when the barley is growing (fig. 40). In California and in North Dakota and northwestern Minnesota barley is in large part a substitute for corn as a concentrated feed.

Of the grain produced by barley it is estimated that approximately 52 per cent is fed as grain to livestock. The report of the Commissioner of Internal Revenue shows that in 1919 about $23,375,000$ bushels of barley, or 19 per cent of the crop was used in brewing and distilling. There remained as a by-product about 208,000 tons of dry brewers' grains, and 23,000 tons of malt sprouts, which jointly have a feeding value equal to about $7,700,000$ bushels of grain. Barley straw is more nutritious than that of any other small grain except oats and rice, and about one-fourth of it, probably, is consumed by livestock. In the West, particularly in California, much barley is cut green for hay. In all it is estimated that the barley crop of 1919 supported the equivalent of 819,000 animal units (Table 17). This places it ninth in rank among the forage-producing crops.

Table 17.-Barley: Acreage, production, quantity eaten by livestock, and aggregate feed value in 1919.

Kind of forage.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Grain. Hay. Straw.	Thousands. $\begin{aligned} & 6,473 \\ & 1,500 \\ & 6,473 \end{aligned}$	Thousands of tons. $\begin{aligned} & 2,929 \\ & 1,313 \\ & 3,000 \end{aligned}$	Thousands of tons. $\begin{aligned} & 1,519 \\ & 1,313 \\ & 750 \end{aligned}$	Tons. $\begin{array}{r} 2.65 \\ 7.00 \\ 13.00 \end{array}$	Thousands. 573 188
Total.	${ }^{1} 7,973$		------.....	819

${ }^{1}$ The acreage of straw is included also in the grain acreage, hence it is omitted from the total.

Miscellaneous Tame Hays.

The census item, "Other tame or cultivated grasses cut for hay," includes a number of different grasses. In Table 18 an effort has been made, on the basis of field knowledge, to estimate the acreage and yield of the principal grasses included. Both acreage and production of these miscellaneous tame grasses in the United States have increased about 50 per cent, since 1909. The geographic distribution of this acreage in the census year, 1919, is shown in Figure 41. The combined production of this group of grasses was sufficient to support 800,000 animal units for one year.

Table 18.-Miscellaneous tame grasses cut for hay: Estimated acreage, production, and aggregate feed value in 1919. ${ }^{1}$

Kind of grass.	Estimated acreage.	Estimated production.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Redtop Orchard grass Millets. Kentucky bluegrass Sudan grass. Crab grass. Bermuda grass. Johnson grass. Miscellancous.........	Thousands 1,000 800 750 650 600 600 400 400 853	Thousands oftons. $\begin{array}{r} 800 \\ 800 \\ 1,000 \\ 400 \\ 1,050 \\ 500 \\ 400 \\ 500 \\ 954 \end{array}$	Tons. 8 8 8 8 8 8 8 8 8	Thousands. 100 100 125 50 131 63 50 62 119
Total.	6,056	6,404	.-...	800

1 These estimates of the acreage and production of the different tame grasses, which were included by the census under the one item, "Other tame or cultivated grasses cut for hay," were made by C. V. Piper and others in the Office of Forage Crop Investigations. They are proposed only as tentative estimates to indicate the probable importance, as hay plants, of these miscellaneous grasses.

Fig. 41.-The miscellaneous tame grasses cut for hay, which include orchard grass, redtop, Kentucky blue grass, Bermuda grass, Johnson grass, Sudan grass, millet, brome grass, and others, cover an acreage only a little more than half as large as the acreage devoted to timothy alone. Nevertheless, these grasses are important because they provide hay in localities where other hay crops, such as timothy, clover, and alfalfa, do not thrive.

Cotton.

Cotton is primarily a fiber crop; but the seed, a by-product, is an important source of oil, cake, and meal. The cake and meal are valued highly as concentrates in feeding livestock. The production of cottonseed in 1919, according to the Bureau of Census, was $5,074,000$ tons, of which $4,013,000$ tons were crushed during the year ended July 31, 1920. This operation resulted in the production of $161,529,000$ gallons of oil, used mostly for human food, of $1,817,000$ tons of cake and meal, and of $1,143,000$ tons of hulls. About 90 per cent of the hulls, it is estimated, was fed to livestock. There were
exported 225,000 tons of cake and meal, leaving a balance of $1,592,000$ tons in this country. It is estimated that 986,000 tons of the cake and meal which remained in the United States were used as feed and 606,000 tons as fertilizer. The amount fed, supplemented by the hulls, would theoretically support about 556,000 animal units for one year, placing cotton eleventh among the crops producing feed for livestock.

Although there has been ample justification heretofore to use cottonseed meal as fertilizer, as it gave different results from chemicals carrying nitrogen, it seems in the light of recent investigations that fertilizers containing magnesium will at least in certain cases give the same results as cottonseed meal. If this proves true, it is better economy to use the cottonseed meal as feed.

Rye.
About $41,530,961$ bushels of rye, or 54.7 per cent of the 1919 crop, were exported and $5,458,245$ bushels were fed as grain to livestock. According to the Census of Manufacturers, $17,693,250$ bushels were milled in the United States. Of the rye milled 51 per cent became flour and 49 per cent mill feeds and screenings, both of which are used mostly as feed for animals. Rye straw is very poor forage and it is roughly estimated that only 5 per cent was used for feed. It is estimated that in 1919 about 175,000 acres of rye were cut green for hay. The pasturage afforded by fields of young rye is an important item not considered in this place. Altogether the harvested forage obtained from rye in 1919 was capable, theoretically, of supporting 230,000 animal units for a year, as shown in Table 19.

Table 19.-Rye: Acreage, production, quantity eaten by livestock, and aggregate feed value in 1919.

Kind of forage.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Grain. Mray... Straw.	Thousands. $\begin{array}{r} 7,679 \\ 175 \\ 7,679 \end{array}$	Thousands of tons. $\begin{array}{r} 2,128 \\ 150 \\ 5,000 \end{array}$	Thousands of tons. 510 150 250	Tons. $\begin{array}{r} 2.65 \\ 7.00 \\ 15.00 \end{array}$	Thousands. 192 21 17
Total.	${ }^{1} 7,854$				230

${ }^{1}$ The acreage of straw is included also in the grain acreage, hence it is omitted from the total.
Sugar Beets.
In localities where the sugar beet is grown, the pulp from sugar factories forms an important part of the feed for livestock. There were 175,000 tons of dried pulp and $2,550,000$ tons of the wet pulp available for feeding animals in 1919. Experience has shown the dry pulp to be about equal to corn, oats, or the other cereal grains in feeding value. The wet pulp is similar in feeding value to other root crops and less valuable than silage. The sugar-beet crop
as a whole supplied sufficient feed in 1919 to support about 144,000 units for one year, ranking sixteenth among the crops which produce forage.

Flax.

Flax is important chiefly as a source of oil and fiber, but the meal obtained as a by-product of the oil mills is a highly prized concentrate or stock feed. The production of flaxseed in 1919 was $6,653,200$ bushels, and in addition there were imported $14,019,000$ bushels more than were exported. There were milled in the United States 631,458 tons, resulting in the production of 409,141 tons of cake and meal. Of this last item 168,168 tons were exported during the fiscal year ended June 30, 1920, and approximately 241,000 tons fed in the United States. It is apparent that about three-fifths of the total linseed meal or cake manufactured in the United States is fed here. The general situation is therefore very similar to that of cottonseed meal and cake, so far as feed is concerned, but no linseed meal is used as fertilizer. Apparently the large exports of these two oil meals are due to the relatively low expense of their transportation and handling.
The 241,000 tons of linseed meal, on account of its high feeding value, is sufficient to support approximately 115,000 animal units for one year. Only a small part of the flax straw is fed to animals, so that the crop as a whole is capable of supporting only about 119,000 animal units.

Mixed Grain.

" Mixed crops," according to the census, were produced in 1919 on 577,078 acres. The principal acreages were in Minnesota, 193,864; New York, 128,477; Wisconsin, 95,302; Iowa, 45,573; Michigan, 19,879; Nebraska, 16,230; and Oregon 15,591. In Minnesota and Wisconsin the mixtures were largely wheat and oats and a little oats and peas, also wheat and flax. About 16 per cent of these mixed grains was separated after harvest and sold. In New York, Michigan, Nebraska, and Iowa the mixture was mainly oats and barley, and the mixed grain was used almost wholly as feed. In Oregon the mixtures were oats and vetch and wheat and vetch. The vetch seed is either separated or the mixture used for new seedings. It is estimated that about 90 per cent of the total of mixed grains is used as feed and that this is sufficient to support about 102,000 animal units for one year.
The straw from these mixed crops is roughly estimated at 508,000 tons and the quantity eaten at 30 per cent, or 152,000 tons. This straw would support an additional 14,000 animal units, making a total feed value of 116,000 animal units for one year.

Annual Legumes.

The annual legumes used in part for feed include cowpeas, field or Canada peas, soybeans, field beans, peanuts, vetch, and velvet beans. The refuse of pea canneries is also used for feed. Most of these crops are grown both for hay and for grain and large quan-
tities are pastured off.` The straw remaining after threshing the grain is also a valuable forage. The census reports contain statistics of soybeans, other beans, Canada peas, cowpeas, and peanuts, harvested for seed, but furnish statistics only of the total acreage of animal legumes cut for hay (fig. 42). This total acreage cut for hay, as reported by the census, ${ }^{13}$ has been proportioned among the

FIg. 42.-The annual legumes included in the acreage shown on the above map are cowpeas, soybeans, field peas, peanuts, and vetches. These crops are most important in the Southeastern States. That portion of the crop cut for hay represents only a small part of the total acreage of these legumes. Large acreages of cowpeas, soybeans, and vetches are plowed under as green manure or harvested for seed, while the greater part of the peanut crop is either " hogged off" or the nuts gathered for use as human food.
different kinds, according to the best information available. Similarly estimates have been made of the acreage of the different annual legumes " hogged off." These estimates are given in Table 20. The acreage of soybeans has increased greatly since 1919, particularly in the Corn Belt. Estimates of the acreage and production of certain annual legumes in 1922 and 1923 are given in the statistical appendix of this volume.

Cowpeas.

The cowpea is the best known and most extensively grown leguminous plant in the Southern States, but during the past few years the acreage has decreased to some extent. In many parts of the Corn Belt and Southern States soybeans have almost entirely replaced the cowpea, and the introduction of velvet beans has also tended to reduce the acreage of cowpeas in the Gulf States. The cowpea is grown principally for soil improvement, hay, and pasturage, necessitating the use of a large part of the seed for planting purposes. The seed, other than that required for the next year's

[^46]Table 20.-Annual legumes: Acreage, production, estimated quantity eaten by livestock, and aggregate feed value in 1919.

Crop and kind of forage.	Acreage (partly estimated).	Production (partly estimated).	Production less seed and net exports (partly estimated).	Estimated quantity eaten by livestock.	Theoretical annual ration.	Λ nimal units each item would theoretically support for one year.
Cowneas:	Thousands.	Thousands	Thousands	Thousarids		
Grain.	Thousands.	of tons. 91	oflons. 10	oftons. 5	Tons. 2.85	Thoustnds.
Straw	633	316	316	237	8.00	30
Hay.	1,100	990	990	990	5.00	18
Pastured off	1,000	800	800	800	5.00	100
Total.	${ }^{1} 2,733$				390
Peanuts:						
Grain.	1,125	302	367	18	2.10	3
Mealand cake.		82	82	62	2.10	30
Straw.	1, 125	563	563	422	7.00	60
Hay..	+307	230	230	230	5.00	46
P'astured off	1,125	750	750	750	5.00	150
Total.	12,557					295
Velvet beans:						
Grain........	150 800	36 800	15 800	15 800	2.75 5.00	5 160
Hay...	193	193	193	193	5.00	39
Total	1, 143			--------.-		24
Soybeans:						
Grain	113	33	10	8	2.65	3 3
Cake (import)	113	56	56	+88	2.75 8.00	5
Hay.	287	287	287	287	5.00	57
Pastured off	174	160	160	160	5.00	32
Total	1574	-............	.-..	-...........	--...........	100
Field beans:						
	1,162	581	581	523	2.00	65
Hay	64	92	92	92	5.07	18
Total.	${ }^{1} 1,226$				103
Field peas:						
	233	116	116	87	8.00	11
Hay.	59	69	69	69	5.00	14
Total	${ }^{1} 292$	-..........	43
Canning peas:						
Vetch: Hay	30	45	45	44	5.00	9
Total (all above legumes).	8,659					1.153

1 The acreage of straw is included also in the grain acreage, hence it is omitted from the total.
seeding, is used extensively as human food in the Southern States. In 1919 the various products of the cowpea crop used to feed livestock it is estimated were sufficient to support 390,000 animal units for one year.

DAIRY CATTLE PASTURING COWPEAS IN GEORGIA.
Fig. 43.-A field of cowpeas planted for green-manure purposes in a pecan orchard in Florida. After being pastured off, the residue is plowed under to enrich the soil. Soybeans, velvet beans, and peanuts are likewise pastured off in this manner, mostly by cattle or hogs.

Peanuts.

Peanuts have much the same climatic range as cowpeas. They are used quite largely for human food in the form of oil, confections, and peanut butter, or merely roasted. The crop is, however, very important from a forage standpoint. It is estimated that over $1,000,000$ acres were "hogged off" in 1919, and approximately 300,000 acres cut for hay. Besides these two items there were about 82,000 tons of peanut meal produced as a by-product of the oil mills. This meal is esteemed very highly as a concentrated feed for dairy cows. It is estimated that the crop, including the part "hogged off," will furnish sufficient feed to support 295,000 animal units for one year. More than 95 per cent of the peanut crop is produced in the Southeastern States, including Virginia.

Velvet Beans.

The relatively recent development of early maturing varieties of velvet beans has done much to extend the region in which this crop is grown. The States leading in velvet-bean acreage in 1923 were Georgia, Alabama, Florida, South Carolina, Mississippi, Louisiana, Texas, and North Carolina, in the order named. According to the estimates of the Department of Agriculture the total for these eight States was $2,315,000$ acres. The velvet bean is interplanted in fields of corn and Japanese cane very extensively in the above-named

States, and the crop "hogged off" when the beans are ripe. Probably 75 per cent of the crop is used for pasture and green manure. No other legume appears so well adapted to the climatic conditions prevailing in the Gulf States. It produces heavy crops of seed of high feeding value, which are particularly free from insect injury and but little affected by the moisture and heat that make it so difficult to store seed grains in the Southern States. An estimate, based on census data, indicates that the velvet bean crop in 1919 was sufficient to support 204,000 animal units for one year.

Soybeans.

The large recent increase in the acreage of the soybean crop (see statistical appendix) seems to indicate that it will become in the near future a farm crop of much greater importance in the United States. Although used mainly as a forage crop, for which purpose the acreage has grown steadily, there has been a considerable increase in the acreage for seed production, especially in the Corn Belt States. In some parts of this region the soybean has proved a more profitable crop than oats, which it is replacing in many rotations. In the central Corn Belt mills are now being erected and others equipped with machinery for extracting oil from soybeans. It seems likely that an appreciable part of the crop will in the future be used in this way to produce oil for human food and industrial purposes. The by-product, oil meal, will be used mostly as stock feed. It has been estimated that the different products of the soybean crop were sufficient in 1919 to provide an annual ration for 100,000 animal units.

Field Beans.

The straw is the most important part of the field-bean crop used for forage, but the cull beans, estimated at 10 per cent of the crop, are also used for feed. The bean straw in the New York and Michigan districts is largely used for feeding sheep. The total contribution of the crop to the sustenance of farm animals is estimated as sufficient to support 100,000 animal units for one year.

Field Peas.

The field pea can be grown successfully only in a cool climate, and its utilization as a summer crop is confined principally to the States bordering on the Great Lakes, the Pacific Northwest, and to high altitudes in the Rocky Mountain region. It is grown to a limited extent as a green manure crop in California and the Gulf States. No accurate estimate of the field-pea acreage is possible. It appears, however, that there were in 1919 about 233,000 acres harvested for seed and about one-fourth that much cut for hay. When grown for hay purposes, the field pea is usually seeded in mixture with some small grain. It is estimated that field peas furnished sufficient forage to support 43,000 animal units in 1919, not taking into consideration that small portion of the crop pastured off.

Vetch.

There are several kinds of vetches, the most important of which are the common or spring vetch and the hairy vetch. The vetches are
ordinarily seeded with some small grain, such as rye or oats, and are cut for hay, plowed under for green manure, or harvested for seed. They are grown chiefly on the Pacific coast, around the Great Lakes and in the Southeastern States. A much larger acreage of vetch would be sown in the United States if the seed were less expensive. It is estimated that approximately 30,000 acres of vetch are cut for hay annually, and that the product of this acreage will support 9,000 animal units for one year.

Rice.

Rice is essentially a food crop and is only of minor importance as a forage producer. Very little of the crop except parts of the mill waste, known in the trade as rice bran and rice polish, is fed to animals. The census of manufacturers reported 71,492 tons of rice bran and 18,099 tons of rice polish produced in 1919.

Feeding experiments in Texas, Arkansas, and Louisiana indicate that these rice products can be profitably fed in combination with other feeds, but can not be successfully employed as the sole concentrate in a ration. Very often commercial rice bran or polish contains as much as 25 per cent of "grits" or broken grains. The contribution of the rice crop toward the support of our animal population in 1919 is shown in Table 21.

Table 21.-Rice: Acreage, production, quantity eaten by livestock, and aggregate feed ralue in 1919.

Kind of forage.	Acreage.	Production.	Estimated quantity eaten by livestock.	Theoretical annual ration.	Animal units each item would theoretically support for one year.
Grain. Straw.	Thousands. 911 911	Thousands of tons. 795 911	Thousands of tons. 90 90	Tons. 2.85 11.00	Thousands. 32 8
Total.	${ }^{1} 911$				40

${ }^{1}$ The acreage of straw is included also in the grain acreage, hence it is omitted from the total.

Potatoes.

In years of low prices large quantities of potatoes are fed to livestock in the United States, but normaily only cull potatoes are so used. In western Europe, on the other hand, potatoes are an important forage. Although the proportion fed to livestock in the United States is small, estimated to average about 10 per cent, the large quantity produced results in an estimated feed value sufficient to support 40,000 animal units for one year.

Sweet Potatoes.

In the Southern States sweet potatoes are a much more important crop than potatoes. Although they are grown primarily for human food, it is estimated that about 20 per cent are fed to livestock. Their feeding value is somewhat higher than that of potatoes, so that the proportion of the crop fed is estimated to be capable of supporting 28,000 animal units for one year.

Emmer and Spelt.
The total acreage of emmer and spelt reported by the Bureau of Census for 1919 was 166,829 and the production was $2,607,868$ bushels. Practically all the grain, except that required for seeding, and perhaps 10 per cent of the straw, were fed to livestock. The crop was sufficient to support 25,000 animal units one year, not taking the straw into consideration. Most of the emmer and spelt is grown in the Great Plains region and the Lake States.

Root Crops.

Root crops for forage ordinarily include beets or mangels, rutabagas, turnips, carrots, artichokes, and parsnips. They are grown extensively for forage in northern Europe and eastern Canada, but are of little importance as forage in the United States. The total area of root crops grown for forage in 1919 was only 88,333 acres and the production 598,945 tons. This would be sufficient to support about 19,000 animal units for one year. The low place which roots occupy in our long list of forage crops is due partly to the lack of extensive areas with moist, cool summers, such as prevail in northern Europe, and in part to the large amount of hand labor required in growing and harvesting.

Pasturage. ${ }^{14}$

The area of land in the United States used for grazing, excluding crop land pastured part of the year, is about $1,055,000,000$ acres, or 55 per cent of the total land area of the country. This is over four times the area of crops used for feed, but the total sustenance supplied by pasturage is somewhat less than that produced by crops. 'The low productiveness of our pasture land compared with crop land is owing in part to the fact that over half is arid grassland and desert shrub land too dry for crop production; over one-fifth is forest and cut-over land, the use of which for pasture is usually less important than its use for the production of wood; and more than one-tenth is hilly upland in humid regions, mostly too rough and stony for the production of crops (fig. 44). Only a little over one-tenth of the total area is improved land in rotation pasture or in permanent pasture which could be used for crops.

This low productiveness is also due to the neglect of pastures which has characterized American agriculture since pioneer times. Pasture was cheap along the frontier, and was especially abundant on the prairies and plains, in which areas most of our agricultural expansion has occurred during recent decades. This low valuation of pastures has persisted among farmers. Recent studies show that the gains made by cattle on pasture cost, in general, only one-half to one-fourth as much as those made when the animals are fed crops (page 412), owing in large part to the low rentals charged for pasturage.

The neglect of the pastures by American farmers is further shown by comparing the carrying capacity of improved pastures in the humid northeastern portion of the United States with that of the

[^47]pastures in northwestern Europe. Although the average acre-yields of the crops in the United Kingdom, France, and Germany, considered jointly, are only about a half greater than those in the United States, the carrying capacities of the pastures are, apparently, fully double the capacities of comparable kinds in the United States. ${ }^{15}$.

Pastures in the United States have not received from the agricultural scientists the attention they deserve. One would expect that a method of land utilization which contributes nearly as much to the sustenance of our livestock as all the crops combined would have been made the subject of much study and investigation. Although some good work has been done, the scientific literature relating to pastures is small compared with that concerning crops.

ESTMMATED AREAS OF HUMID AND ARID GRASSLAND AND FOREST
PASTURES, IN FARMS AND NOT IN FARMS, UNITED STATES, 1919.

Fig. 44.-Although improved pasture in farms occupies a smaller acreage than any other class of pasture shown in the graph, it carries about $25,000,000$ animal units during the 6 -months season, or nearly one-fourth of the total animal units in the United States (see Table 22). Unimproved pasture in farms carries another quarter of the livestock for a somewhat longer season on the average. Grassland and semi-desert shrub land not in farms includes a larger acreage than that of both improved and unimproved pasture in farms. This class of pastures, however, carries a much smaller number of animal units than either of the above classes of farm pasture; but it is grazed, in general, during a longer season. The forest and cut-over lands used for grazing contribute only about one-tenth of the sustenance supplied by all pastures.

Relegated largely to land too poor or too rough to till, neglected commonly by the farmer, often abused by the grazier, ignored by most investigators, our permanent pastures, both tame and wild, still furnish nearly four-tenths and our rotation and temporary pastures over one-tenth of all the feed consumed by domestic animals. Pasture is the key to the profitable utilization of millions of acres of semiwaste land now lying idle or unproductive. "Better pastures" should be made the keynote in the promotion of American agricultural progress.

Probably less than 10 per cent of the total pasture area, or about $100,000,000$ acres, is suitable for crops in its present condition and, therefore, comparable with crop land in productivity. ${ }^{16}$ The carry-

[^48]ing capacity of this $100,000,000$ acres is between 3 and 4 acres per animal unit for a 6 -months' season, whereas it required only $2 \frac{1}{3}$ acres of crops to support an animal unit for six months in 1919. The pasture land that may be used for crops often occupies the less productive fields. In general, the amount of feed per acre produced by pasture is somewhat less than that produced by crop land of the same quality. This conclusion is supported by the figures secured in farm management surveys in Pennsylvania, New York, Ohio, Minnesota, and North Dakota. The labor required for the maintenance of pasture is, of course, very much less than that required for the production of crops.

Area and Carrying Capacity of Certain Classes of Grazing Land.

Grazing conditions vary according to the type of vegetative covering and its use. Open grasslands used exclusively for pasture normally have a higher carrying capacity than forest areas, where

PASTURE AND RANGE LAND IN THE UNITED STATES CLASSIFIED ACCORDING TO OWNERSHIP, 1919.

FIG. 45.-Over two-thirds of the land used for grazing is privately owned. Of the privately owned grazing land slightly over half is in farms. The privately owned land not in farms includes a vast area in the West, belonging to railroad and lumber companies and to large livestock producers, and a smaller area in the East of forest and cut-over land used for grazing, belonging to lumber companies and individuals. Over 40 per cent of the publicly owned or administered grazing land is in the public domain and 30 per cent more is in the national forests. The Indian lands are not publicly owned, but they are administered by a. Government agency.
the trees reduce the growth of forage plants. They also furnish more grazing than crop lands pastured in the fall after the crop has been harvested. Each kind of pasture varies according to the amount of rainfall, the length of growing season, and the soil conditions. For these reasons it has been helpful in estimating the amount of livestock the various types of land will support to classify the grazing lands into four general groups: (1) Humid grassland, (2) semiarid and arid grazing land, (3) forest and cut-over pasture land, and (4) temporary pastures. These classes in turn have been subdivided into various groups based partly on their ownership and partly on their productivity (Table 22).

RELATIVE AREAS OF THE PRINCIPAL CLASSES OF PASTURE, IN FARMS AND NOT IN FARMS, UNITED STATES, 1919.

Frg. 46.-Although pasture land in farms includes only 36 per cent of the total grazing land of the United States, it carries 60 per cent of the total animal units grazed (excluding temporary pasture). Improved pasture is the most productive. It includes only 7 per cent of the total pasture area (in farms and not in farms), but contributes 25 per cent of the total sustenance obtained by grazing. Pasture not in farms is almost equally divided between publicly owned and privately owned land. Nearly two-thirds of each kind is grassland and desert shrub land and one-third is forest and woodland.

The area of privately owned grazing land is more than double that of publicly owned (fig. 45), and the number of animal units the privately owned pastures would maintain for one year is seveneighths of the total for all pasture land. Nearly half the privately owned pasture land is not in farms, consequently the area of pasture not in farms is much greater than that in farms (fig. 46). The average carrying capacity per acre of the pasture land in farms, however, is nearly double that of the pasture not in farms. The two principal

Fig. 47.-The Corn Belt and the Great Plains States contain the largest areas of improved pasture. In the Western States a considerable amount of arid and semiarid pasture which has been fenced has been included evidently in improved land. The proportion of this arid pasture, as shown on the map, is only a rough estimate. This map and Figure 48 are based on tabulations of 1909 census returns, altered to allow for changes since, as indicated by tabulations now in progress of the pasture returns of the 1920 census.
classes of pasture land in farms are improved and unimproved. The distribution by States of these two kinds of pasture is shown in Figures 47 and 48. The improved pasture, although it includes only about one-fifth of the pasture land in farms, contributes nearly half the sustenance supplied by farm pastures.

Table 22.-Animal units carried by pasture in the United States. ${ }^{1}$
[Estimated number in the year 1919.]

	Acres.	Acres per animal unit and length of season.	Number of animal units carried.	
			Scason.	Year long equivalent.
Humid grassland: Improved in farms. Unimproved in farms-East. Unimproved in farms-West Privately owned not in farms. National forest (alpine) Indian reservations. Other publicly owned. \qquad Total	Thousands.		Thousands.	
	$60,000$	$2 \frac{1}{2}$ for 6 months.	$24,000$	$12,000$
	73,000	5 for 6 months...	24, 14,600	12,000
	15,000 70	10 for 9 months. .	1,500	1,125
	70,000 2,000	10 for 9 months.	7,000	5,250
	3,000	6 for 3 months. 8 for 9 months.	333 375	83 281
	8,000	10 for 9 months.	800	600
	231, 000		48,608	26,639
Semiarid and arid grazing land: ${ }^{2}$ Grassland and dessert shrub- Improved in farms. Unimproved in farms. \qquad Privately owned not in farms. National forests. \qquad Indian reservations. \qquad Other publicly owned. \qquad Public domain (excluding next item and woodland).. Mohave-Gila Desert. \qquad			48,608	26, 63
	10,000	10 for 6 months.	1,000	500
	142,000	15 for 9 months....	9,466	7, 100
	146,000	20 for 9 months....	7,300	5,475
	14,000	18 for 6 months...	, 778	-389
	38,000	38 for year long.	1,000	1,000
	27,000	27 for 8 months.	1,000	-667
	116,000	55 for 6 months.	2,109	1,054
	13,000	55 for 2 months.	${ }_{2} 236$	1,059
Pinon-juniper and chaparral woodland (including $30,000,000$ acres in national forests ${ }^{3}$)				
	81,000	50 for 9 months.	1,620	1,215
Total...	587,000		24,509	17,439
In farms.	66,400	20 for 6 months.	3,320	
Privatcly owned not in	98,000	25 for 6 months.	3,920	1,960
National forests......	65,000	24 for $5 \frac{1}{2}$ months.	3,700	1,960
Indian reservations	5,600	24 for 6 months..	2, 233	1, 117
State forests.	2,000	25 for 6 months.	80	40
Total..	237,000		10,261	5,018
Temporary crop land pastures: Hay aftermath				1,000
Stubble fields ${ }^{5}$	24,000 45,000	3 for $1 \frac{1}{2}$ months 5 for 2 months.	8,000 9,000	1,000 1,500
Winter grain fields..	8,000	5 for 3 months.	1,600	1,500
Total..	77,000		18,600	2,900
Total pasture	1,132,000			${ }^{6} 51,996$

[^49]Although the humid grassland pastures include only about onefifth of the total grazing area, the amount of forage supplied by them is more than half the total for all pasture and range. On the other hand, the arid and semiarid grazing lands, although including
over half the total pasture and range area, supply only about onethird of the total feed; and the forest and cut-over lands used for grazing, which include over one-fifth of the total grazing area, contribute only one-tenth of the total feed. Temporary crop-land pastures, the least important of the four major classes, are none the less of great significance; and cost of production studies (page 410) suggest that the estimates in Table 22 of the extent to which hay and grain fields are used for pasture in the fall and winter are probably too small.

Fig. 48.-The Great Plains and Rocky Mountain States contain most of the unimproved pasture in farms. Much of this pasture in the Great Plains, Rocky Mountain, and Arid Interior regions is arid or semiarid. In the East it is mostly upland pastures, often hilly and stony. In the Lake States and along the North Pacific coast it is largely stump land and poorly drained land used for pasture. The carrying capacity per acre of the humid unimproved pasture in the East averages about three times that of arid unimproved pasture in the West.

Terms Relating to Pastures.

The preceding classification of grazing land was necessarily determined in large part by the available statistics, which were tabulated geographically. From an agronomic standpoint, the classification is inadequate, and although statistics are almost wholly lacking for the following kinds of pasture, it is necessary to recognize the distinctions made and define the meaning of the terms used in this discussion.

Definition of Pasture Terms.

Permanent or long-lay pastures are those covered with perennial or self-seeding annual plants, usually both, and are kept in grass for a long period of years. In many cases such pastures are seldom or never plowed. Rotation or short-lay pastures are those sown to perennial grasses for one to three years' lay and then plowed up. Temporary pastures are those used for grazing during a few weeks. These include miscellaneous crop-land pastures, such as seedling pasture, stubble pasture, aftermath pasture, fallow pasture, and crop pasture.

Tame pastures are those composed largely of domesticated grasses. Native, wild, or natural pastures are areas covered wholly or mainly with native plants useful for grazing; when extensive, such an area
is called a " range." Shrub or brush pastures are those covered largely or mainly with shrubs; on such pastures the feed is called "browse," and the act of feeding, "browsing." A forest or woodland pasture is one in which more or less grass and other forage plants grow in among trees. A stump or cut-over land pasture is one on land which has been deforested, and may or may not be growing a new crop of trees.

Periods and Degree of Grazing.

(1) Season-long grazing-grazing a pasture continuously during the whole season; if grazed during entire 12 months, then called " yearlong " grazing.
(2) Continuous grazing-grazing constantly throughout the season.
(3) Rotation grazing-grazing two or more pastures or areas in regular order, with definite resting periods. This method, where only two fields are involved, is sometimes called "alternate" grazing.
(4) Intermittent grazing-grazing a pasture now and then, regardless of definite periods.
(5) Premature grazing-turning animals on the pasture too early in the season, before the ground is firm and before the grasses have gained a sufficient start.
(6) Deferred grazing-keeping animals off a pasture until after the seed crop is mature, primarily to insure natural reseeding, but also in many cases to stimulate vegetative reproduction.
(7) Season-long resting-no grazing during one whole season, and incidentally natural reseeding.

Of the above, deferred grazing and season-long resting definitely provide for natural reseeding, while the others do not include such provision.

The above terms relate to the period of grazing. Other terms are used mostly to denote the degree of grazing.
(8) Carrying capacity is the ratio of animals to the unit of area that will furnish ample sustenance; thus 1 cow to 2 acres; 3 sheep to 1 acre.
(9) Close or heavy grazing-pasturing as many animals on a given type of pasture as will furnish good feed to the animals and at the same time not injure or destroy the plants.
(10) Overgrazing-grazing which results in the destruction of desirable vegetation, sometimes called " destructive grazing."
(11) Undergrazing or light grazing-pasturing below the carrying capacity of the area. In humid regions undergrazing often results in pasture deterioration by the ingress of weeds.

Systems of Grazing.

In a series of fields or pastures any one of the grazing-period methods may be used first on one field and then on another. This grazing may be continuous or intermittent, light or heavy, as may be desirable. The animals may be all of one kind or of two or more, grazed together, or in succession. A definite method of grazing used in respect to two or all of these three factors-periods of grazing, rate of grazing, and kind or kinds of animals used-may be called a grazing system. There are many possible systems of grazing and there yet remains a great field of investigation to determine the best for each type of pasture.

Grazing Systems in Different Pasture Regions.

In the northern humid region the farm animals are usually kept on pasture throughout the grazing season or until all the forage has been utilized. During the fall months, the regular pastures are generally supplemented by giving the livestock the run of various farm fields for a month to six weeks. Occasionally, farmers are found who move their animals from one pasture to another in order that the pastures may be rested for a time, or who change the classes of livestock from year to year, as from sheep to cattle. Many dairymen have what is termed "a night pasture," where for convenience the cows are allowed to graze and rest during the night.

In the Southern States, where there are still vast areas of unfenced land, much of the livestock is allowed to run loose throughout all or the greater part of the year. In recent years the establishment of permanent tame pastures and the growing of special winter pasture crops have been increasing.

In the far Western States, where there are large areas of land usable only for grazing purposes, most of the livestock is grazed during as much of the year as possible. A number of farmers, especially in the semiarid Great Plains region, divide their lands into summer and winter pastures. On some of the larger cattle ranches these are further subdivided into a number of pastures. They may run cows in one pasture, yearlings in another, and the older steers in still a third. In some sections the more progressive cattlemen also follow the practice of using pastures in rotation, whereby given areas are grazed for only a definite part of the year. Sometimes one of the pastures is held until the grasses have matured a seed crop before being grazed. The practice of running more than one class of animals on the same pasture is also becoming common, especially in Texas.

Kinds of Pasture.

The different kinds of pastures are classified, first, according to the length of time they are to be used into permanent, rotation, and temporary; second, on the basis of the plants that make up the pasturage into tame and wild.

Permanent Pastures.

Permanent pastures are most common on land that can not wisely be tilled. Such lands include steep hillsides, which erode easily, and lands too dry, too wet, too poor, or too remote from markets to produce crops profitably. On permanent pastures two types of grasses need to be distinguished, as they differ greatly in character: Bunch grasses, those which grow in clumps and have no creeping branches; and creeping grasses, those with horizontal branches either on the surface or below the surface. Typical bunch grasses are timothy, orchard grass, broom sedge, wire grass, and many of the western range grasses (fig. 49). Characteristic creeping pasture plants include bluegrass, white clover, Bermuda grass, carpet grass, and some of the wild short grasses of the West-notably buffalo grass and mesquite grass (fig. 50). Bunch grasses weaken greatly under continuous mowing or constant grazing, so that sooner or later many of the plants die. Orchard grass and sheep's fescue apparently withstand continuous grazing better than the other bunch

CATTLE ON BUNCH-GRASS PASTURE IN COLORADO.
Fig. 49.-A bunch-grass pasture in one of the valleys of the Uncompahgre National Forest of Colorado. This illustrates the better class of pastures which are found in the mountain valleys of the West. They provide much of the grazing in the national forests.
grasses. The creeping grasses are rarely killed out by heavy continuous grazing. Two of the larger creeping grasses, howeverJohnson grass and quack grass-almost disappear under continuous grazing or constant mowing. With creeping grasses or other plants, close grazing is the best practice, provided it is not begun too early in the spring. Bunch grass pastures must be grazed carefully, as

A BLUE-GRASS PASTURE IN VIRGINIA.
Fig. 50.-Blue-grass pastures of southwest Virginia. The cattle usually graze the higher areas and the fields in the valley are used for corn and hay.
they will not withstand continuous grazing unless it is light or moderate up to the time of seed maturing. They may then be grazed close or heavy as previously defined.

Growing with either type of perennial grasses there may be various annuals such as lespedeza, hop clovers, crab grass, wild oats, alfilaria, bur clover, and black medick. Annual plants may be either rinter annuals, as bur and hop clovers in the South, and alfilaria in California, or summer annuals, as lespedeza and crab grass. The most valuable annual plants for pasture produce seed even when kept closely grazed. Some, indeed, when closely mowed or grazed, produce creeping branches, as do the crab grasses.

Rotation or Short-Lay Pastures.

Rotation pastures are fields in a cropping system that have been sown to perennial grasses. These pastures are most important in the Corn Belt and the southern portion of the hay and dairying region north and east of the Corn Belt. The common rotation in these regions is corn, oats or wheat, clover and timothy, the last frequently being pastured for one or two years before being plowed up for corn. In New England and eastern New York orchard grass, redtop, and the bent grasses partially replace timothy. There are about $140,000,-$ 000 acres of crops in these regions, but not all this acreage is in a rotation involving pasture. It appears likely that about $30,000,000$ acres in these regions are in rotation pasture, and that there are, probably, $5,000,000$ acres in other parts of the United States. This total of $35,000,000$ acres would include over half of the improved humid pasture of the country (see Table 22).

Temporary Pastures.

Temporary pastures are very diverse in type and are here considered to include various types of crop fields used as pastures for short periods.
Fallow pastures.-Fallow land is often pastured to keep down weeds. This practice is common in Oregon and Washington.
Seedling pastures.-Fields of young wheat, rye, oats, clover, etc., are frequently grazed for a time in the fall and winter, and in particular regions this is regarded as beneficial to the subsequent grain or hay crop. The largest acreage of wheat pastured in this way is found in Kansas and adjacent states. It is roughly estimated that about $8,000,000$ acres of winter grain are pastured in this way. Some plants may be pastured continuously from the seedling stage to maturity. Thus, rye is frequently sown wholly for pasturing during the cool part of the year, and Sudan grass is much employed for summer pasture.

Stubble pastures.-This term refers to fields other than meadows from which the main crop has been harvested and the stubble and weeds then pastured. This practice is common with small grain crops, which altogether occupy about $127,000,000$ acres. It is estimated that $45 ; 000,000$ acres of small grain fields are pastured after harvest. This figure is largely a guess, but stubble pasture on the whole is an important item.

Aftermath pastures.-Hay meadows are very commonly pastured in the fall after the hay is cut. The proportion pastured varies in different parts of the United States and with the kind of hay, prob-
ably over half the wild hay land being pastured and less than onefourth of the alfalfa. It appears safe to assume that one-third of all hay land is thus incidentally used for pasture. There were nearly $73,000,000$ acres in hay in 1919, and it is roughly estimated that about $24,000,000$ acres were pastured.

Crop pastures.-Mature or well-developed crops are often utilized by pasturing. Such might be considered either as pasturage or as crops. From a statistical standpoint they are here regarded as crops and are thus discussed (see p. 340). A considerable proportion of the cowpeas, velvet beans, soybeans, rape, and peanuts is pastured off when green or approaching maturity, but the proportion of the acreage is impossible to estimate.

Fig. 51.-Of the various tame grasses and legumes which form the vegetation of permanent tame-grass pastures in the United States, Kentucky blue grass constitutes about one-third of the total, while white clover, redtop, Bermuda grass, timothy, Canada blue grass, and orchard grass jointly form 38 per cent. The remaining 28 per cent is made up of numerous other plants. Detailed statistics not being available, the above figures represent the best estimates of six well-qualified students of the subject. Their estimate is based on the assumption that 65 per cent of all the permanent tame pasture is in the northern humid region, 15 per cent in the southern humid region, and 20 per cent in the West.

Tame Pastures.

Tame pastures include all rotation pastures and such permanent pastures as are composed principally of tame grasses. The tame pastures of the United States constituted probably three-fourths of the improved pasture in farms in 1909, or about $60,000,000$ acres, and probably a little over one-third of the unimproved pasture (excluding woodland pasture), or $40,000,000$ acres (fig. 52). The total area in 1909 , therefore, may be roughly estimated at $100,000,000$ acres. The acreage is probably somewhat less to-day, since much improved pasture which was plowed up for crops during the war has not yet been restored to grazing.

Fig. 52.-Most of the tame-grass pastures are in the northern humid region. In the Corn Belt, where tame grasses constitute 80 per cent or more of all pastures, rotation pastures, largely timothy and clover, are very important. In the South little attention has been given to tame pastures in the past, but owing to the depredations of the cotton-boll weevil greater interest is now being taken in their establishment. In the West much of the country is too arid for tame grasses. These are important, however, in the humid

The principal grasses and other plants which make up these tame pastures and their importance are shown in Figure 51. The carrying capacity of some of these pastures is as high as one steer per acre for six months. Good bluegrass pasture will carry one steer to 2.5 acres for six months and furnish considerable feed for two or three months longer. For all of the tame pastures it is assumed that 3 acres will carry a steer for 6 months. In parts of the East, especially in certain more humid portions, observations and experiments indicate that the average tame pasture composed of creeping grasses is grazed at little more than half of its capacity. The farmer fears pasture shortage and hence tends to undergraze his tame pastures, overlooking the fact that in these regions the grass that is allowed to grow tall is never grazed. Tame pastures of creeping grasses in this region are seldom "overgrazed" in the sense that injury results to the grasses. Indeed, heavy grazing keeps such pastures in far better condition than does the light grazing ordinarily practiced, because such closely grazed grass keeps green and growing, whereas if allowed to flower and to seed it becomes dormant. Undergrazing is often harmful, too, because it encourages the growth of weeds, which tend to kill the grass by shading. With more intelligent management tame pastures of creeping grasses in humid or irrigated regions will carry at least 50 per cent more animals and the pastures will be improved by such heavier grazing.

Wild Pastures.

Native or wild grass pastures cover about 10 times as large an acreage as tame-grass pastures and supply fully twice as much sustenance. They include the forest and cut-over land pastures of the more humid portions of the country, the native tall-grass pastures of the prairies, the short-grass pastures and range lands of the Great Plains and other semiarid portions of the West, the bunch grass areas of the western plateaus, foothills, mountains and valleys, and the desert-shrub areas of the arid regions (fig. 53). The carrying capacity of the best humid prairie pastures along the edge of the Corn Belt is as high as that of tame pasture, but in most of the West it requires from 10 to 100 acres to maintain one steer during the grazing season. Whereas some of the tame-grass pastures of the more humid regions of the East are undergrazed and deteriorating as a consequence, much of the wild-grass range of the West is overgrazed and deteriorating even more rapidly. The problems of pasture improvement are very different in different portions of the United States, consequently it is necessary to consider the pasture situation by regions.

The Pasture Regions.

From the standpoint of pasture utilization the United States may be divided into three main regions and one lesser region: The northern humid region, the southern humid region, the western range, and the Pacific humid region. The first two regions embrace all of the humid grassland areas, except the belt along the northern Pacific coast, and small scattered areas in the range States. They also include two-thirds of the forest and cut-over lands used for grazing. The western range region covers practically all of the arid and semiarid grassland and desert shrub areas, limited areas of the humid grassland, and nearly one-third of the forest and woodland pasture.

Fig. 53.-Forests, including semiarid woodland (pinon, juniper, mesquite, chaparral, etc.), originally covered about $830,000,000$ acres in the United Siates. About $270,000,000$ acres have been cleared for agriculture and $350,000,000$ acres have been cut over or devastated. About $670,000,000$ acres of land in the United States were covered originally with grass, interspersed commonly with other herbaceous plants. Nearly $200,000,000$ acres of this grassland have been plowed up and used for crops or for pasture in rotation with crops, including about $7,000,000$ acres irrigated. Semi-desert vegetation characterized about $400,000,000$ acres of land in the United States of which about $12,000,000$ acres have been reclaimed by irrigation. Half of the present area of forest and cut-over land is pastured, practically all of the grassland and nearly all of the semi-desert.

In the northern humid region the pasture lands are mostly included in farms and are used largely to supplement the crop lands. In the southern humid region, where the livestock industry is, in general, not yet highly developed, grazing is largely on unimproved lands, considerable areas of which, although privately owned, are open range. In the western range country much of the agriculture is based on the utilization of the vast areas of grazing lands, largely unfenced, and some of which are publicly owned. Pasture lands in the Pacific humid region are handled in much the same manner as those of the northern humid region.

The Northern Humid Region.

The northern humid region includes practically all lands lying north of the Cotton Belt and extending westward to where conditions

Fig. 54.-Kentucky blue grass is the most important pasture plant in the northern humid region and is undoubtedly the leading tame-pasture grass in the United States. It is also important in the valleys of the Pacific humid region, and occurs in many of the irrigated pastures and some of the mountain meadows of the northern range States, where its use is increasing.
become too dry for the successful growth of timothy and Kentucky bluegrass. For convenience in discussion, the southern boundary of Virginia, Kentucky, and Missouri may be taken as the dividing line on the south, although the region properly includes the southern Appalachian area in western North Carolina, eastern Tennessee, and northern Georgia, also the mountains of northwestern Arkansas. The 98th meridian is approximately the western boundary.

The pasture grasses.-Originally this region was forested, except for the triangular prairie portion extending from central Illinois northwestward to North Dakota and southwestward to Oklahoma (fig. 53). Interspersed throughout the timbered region were numerous openings, often the result of Indian occupation, where native grasses, such as the lyme grasses and broom sedges, prevailed. In the prairie country the dominating grasses were the bluestems, and these grasses are still largely used for both hay and pasture in Minnesota and the eastern Dakotas. Nebraska, and Kansas.

In the forested parts of the region, after the land was cleared of timber and converted into farms, various tame grasses became es-

FIG. 55.-White clover occurs in most pastures of the northern humid region. It grows much farther south than Kentucky blue grass, extending in places to the Gulf of Mexico. It is also found in many of the humid valleys and mountain areas of the West.
tablished. These introduced grasses have replaced wholly or in large part the native grasses. In this northern region the principal introduced grasses are Kentucky bluegrass, white clover, redtop. Rhode Island bent, and Canada bluegrass. These introduced plants are far superior to the native plants as producers of pasturage, and add materially to the average carrying capacity. They are mostly of a creeping habit, whereas the native species were bunch grasses.

Kentucky bluegrass (sometimes called "June grass ") is the leading tame pasture plant of the region (fig. 54). It tends, however, to occupy only the richer soils. White clover stands next to Kentucky bluegrass in importance. It occurs with more or less frequency in most bluegrass pastures, although it does not form so large a percentage of the total sod. This plant also extends southward to the Gulf of Mexico in Louisiana (fig. 55). Redtop fre-

Fig. 56.-Redtop (including the bent grasses) occupies a prominent place in many of the pastures of the northern humid region and the more mountainous portions of the southern humid region. In west-central Ohio, central Indiana and Illinois, and in most of Iowa, where more than 50 per cent of the tame-grass pasture is rotation pasture and where the land has been pretty well drained, this grass is not reported as important in pastures.
quently forms the basis for pasture sods on the poorer and undrained soils where Kentucky bluegrass does not thrive (fig. 56). In southern Illinois, on heavy clay soils, redtop tends to dominate. In New England, Rhode Island bent is the most abundant grass on the poorer lands, where it is generally accompanied by redtop, white clover, and hop clover. Canada bluegrass also occupies a prominent place in many of the poorer areas where conditions are not favorable to the growth of Kentucky bluegrass and white clover. Orchard grass is important in New England, eastern New York, and the southern Appalachians.

The grazing season.-In the northern humid region the grazing season varies according to the length of time the ground is free from snow, the duration of the growing season, the occurrence of drought, and the kind of vegetation. In the northern part the normal season is about five months, while in the southern part it lasts nearly seven months, the average for the whole region being not far from six months (fig. 57). In the western part the pasture season is

Fla. 57.-The average length of grazing season for the entire United States is about $6 \frac{3}{2}$ months. In the hay and dairying region of the North and in those parts of the Corn Belt where late summer droughts are frequent and the feed used up early in the fall the grazing season is less than 6 months. In the mountains of the West the grazing season also is mostly under 6 months. In the corn and winter wheat belt and on the plateaus of northern Nevada and southern Oregon and Idaho the season is from 6 to 7 months. In regions where there are extensive areas of pasture and where the ground is fairly free from snow the grazing season lasts from 7 months to a year. Along the southern margin of the United States and in most of California there is yearlong grazing.
usually cut short by a dry period in late summer. In many portions of the region, especially the western, the grazing season is often extended by two to six weeks grazing on the various crop fields.

Throughout the northern half of this region the cattle are usually turned on pasture during the last week in April or the first two weeks in May, at which time the grass has attained a fair growth. In the more northern sections many farmers wait until the middle of May. In the southern half most of the cattle are turned out during the first three weeks in April. Cattle are generally taken off pasture during the last week in October or the first week in November, except in the western part of the region where they may be transferred to other fields early in October and sometimes in

Fig. 58.-In the northern part of the eastern humid region cattle are mostly turned on pasture about May 1 , at which time the grass has made a fair start. In the southern part they are mostly turned out in April, except where they are allowed to graze throughout the entire year. In sections when the pasture gives out early because of shortness of feed, due to dry weather or insufficient acreage, cattle are taken off pasture as carly as October 1 . Where there is an abundance of feed they may be left out until snow falls. in the fall.

FIG. 59.-In the Corn Belt and in the southwestern portion of the hay and dairying region, where the soil is naturally rich and where there is ample rainfall, most of the pastures will carry an animal unit on 1 to 2 acres. The lowest carrying capacity, over 75 acres per animal unit, is in the arid interior plateau region and in the dense forests of the North Pacific coast. A comparison with Figure 51 shows that the areas having the greatest percentage of tame pastures generally have the highest carrying capacity.

September (fig. 58). Where bluegrass pastures are especially luxuriant they are frequently grazed until December and even January.

Carrying capacity.-The permanent pastures in this region will carry an animal unit for a 6 -months' season on from 1 acre to 5 acres or more. The average is probably close to 3 acres. Rotation pastures will average about $2 \frac{1}{2}$ acres per animal unit. In Iowa the carrying capacity of rotation pastures, averaging the 350 reports for the State, is about 1.7 acres, as against 1.8 for permanent tamegrass pastures. In New York and Pennsylvania the figures are 2.5 as against 2.8 . The average carrying capacity of the dominant type of pasture is shown in Figure 59. Among the temporary pastures, the stubble fields that are pastured will carry apparently about 1 animal unit to 5 acres for 6 to 10 weeks, and cornstalk fields commonly carry an animal to the acre for nearly a month. The

SHEEP ON A NEW ENGLAND HILLSIDE PASTURE.
Fig. 60.-A pasture in northern Vermont on which sheep have been grazed for several years. It has an excellent stand of bue grass and is comparatively free from weeds.
aftermath pasture of hay fields may be roughly estimated at 3 acres per animal during a 6 weeks' period. The forest and cutover land pastures in this region average about 20 acres to the animal unit for the 6 to 7 months' season; the brush-land pastures average a somewhat smaller acreage per animal.

The place of pasture in the agriculture of the region.-In the northern humid region forage crops are very important; and, in general, pasture occupies a secondary position as a source of feed. The region produced in 1919 over two-thirds of the crops fed to livestock and over three-fifths of the vegetable food for man harvested in the United States. It also possesses about three-fifths of the total animal units in the nation.

With the exception of the forest and cut-over areas of the Lake States and some of the more mountainous areas, there is little grazing land outside of farms and this is of relatively low carrying capacity.

Of the land in farms about one-third is in pasture. The relative amounts of land in pasture and the kinds of pasture vary greatly within the region. In the New England States and eastern New York, where the area of crop land is relatively small and where much of the farming is based on the production of dairy products, all of the rougher lands not covered with timber are utilized as pasture. Some of these pastures are fairly productive (fig. 60), but the majority are on rather poor soil or are more or less covered with brush and timber. It is probable that these pastures furnish about half of the total subsistence of the dairy cows during the six warmer months. In the central and southern Appalachian areas, which include southern New York, most of Pennsylvania, eastern Ohio and West Virginia and parts of Virginia, North Carolina, Tennessee, and Kentucky, pastures are also important. In regions accessible to in-

JACK PINE PLAIN IN MICHIGAN.
Fig. 61.-Jack pine and scrub oak are characteristic of the sandy plains of northern Michigan, Wisconsin, and Minnesota. So long as these pine plains are subject to fires they are incapable of either forest or pasture improvement. In their present condition they afford only very poor grazing.
dustrial centers these pastures are largely used by dairy cows, but in the more remote sections beef cattle and sheep dominate. In the cut-over section of the Lake States much of the pasture is land that has not been sufficiently cleared for crop production. In the sandy jack-pine areas the pastures are very scanty owing to the poor soil (fig. 61). These cut-over lands are not fully utilized as a rule, because not enough feed crops are grown to carry the animals through the winter.

In the Corn Belt and in part of the corn and winter wheat region, permanent pastures are largely confined to the rougher land or shallow soils. The less rolling lands are kept mostly in crops and rotation pasture. In the Corn Belt, where large quantities of roughage are available, the hayfields in the rotation system are used for a year or two longer as pasture, the livestock being fattened on corn.

The Southern Humid Region.

Nearly all of this area was originally covered with timber, and over half is still in timber or has been cut over and is growing up to brush and trees. As in the northern humid region, there were oc-

Fig. 62.-The principal areas of cut-over land available for grazing purposes are in the piney-woods regions of the south Atlantic and Gulf coastal plain and the upper Lakes region of Michigan, Wisconsin, and Minnesota. Much of this land is sandy, although good soils are also to be found. There are smaller areas of cut-over land in the Pacific Northwest.
casional prairies where broom sedges, panic grasses, and wire grasses grew.

In practically all of this region relatively little attention has been given to the development of tame-grass pastures and the production of livestock. The farmers have devoted most of their time to the growing of cotton, corn, and tobacco. Until recently a large percentage of them did not even grow sufficient feed for their own work

Fig. 63.-Bermuda grass is unquestionably the best summer-pasture grass of the South, where it occupies the same relative position as Kentucky blue grass in the North. It also occurs in many of the irrigated valleys of California and Arizona. On the best lands it frequently has a carrying capacity, between frosts, of two cows to the acre.
animals, much of the grain and hay being shipped in from the WestCentral States. As there was plenty of unimproved land in the hilly areas, in the swamps, and in the vast areas of forest and cut-over lands (fig. 62), the animals were generally able to find sufficient feed to maintain themselves. The livestock were often given the run of the crop lands during the winter months.

Fig. 64.-Lespedeza occupies a prominent place as a pasture plant in most of the Southeastern States. While it will grow on poor soils, it does best on rich loams. It is spreading over a large area of the southern cut-over 1mnds, where it furnishes excellent feed after the wire grass has become unpalatable. On the more productive valley lands of the Cotton Belt it is sometimes cut for hay.
In recent years, especially after the advent of the boll weevil, greater interest has been taken in the production of livestock, principally hogs and cattle. This, in turn, has made it necessary to give more attention to the growing of feeds and the improvement of pastures. The enactment of laws which prohibit the turning out of livestock to range at will has also compelled farmers in many sections to improve their pasture lands.

Fig. 65.-Carpet grass is becoming one of the most important pasture grasses in the southern humid region. On many soils it has demonstrated its ability to crowd out most other grasses. It is common around small towns where burning the pastures is not customary and close grazing is practiced.

The pasture grasses.-Introduced species have not replaced the native grasses in this southern humid region to nearly the extent that they have in the northern. However, Bermuda grass, carpet grass, lespedeza, Dallis grass, and crab grass are rapidly spreading in the forest and cut-over lands. Most of these introduced grasses are destroyed by the annual burning of the forests and poorer pasture lands, a common practice in the South, whereas few of the native grasses are injured by this practice. Indeed, the purpose of this burning is to destroy the unpalatable old growth and to encourage the young growth of the native grasses. When the fires are kept out and the pastures closely grazed, carpet grass and lespedeza tend to displace the native plants, especially on the better soils. However, these native grasses, of which broom sedges and wire grasses are the most important, still supply most of the grazing in the open forests and

CHARACTERISTIC FLORIDA FLATWOODS RANGE.
Fig. 66. -Typical forest range in the lake region of central Florida. The longleaf pine, palmetto, and wire-grass vegetation is characteristic. Cattle, hogs, and sheep are allowed to run loose throughout the year. Wire grass and broom sedge furnishes most of the grazing. Approximately 10 acres of such range are needed to carry a stẹer a year.
other unimproved land, especially during the spring and early summer months.

Although there are comparatively few permanent tame pastures in this region, it is not difficult generally to establish such fields, except on the very sandy soils. With the increasing interest in livestock production, the acreage of tame pasture will undoubtedly increase greatly in the next few years. Bermuda grass is the leading tame pasture grass and occupies much the same relative place in the South that Kentucky bluegrass does in the North (fig. 63). White clover (fig. 55), lespedeza (fig. 64), and carpet grass (fig. 65), on the better soils are also being used quite commonly in improved pastures.

The grazing season.-The season in the Cotton Belt lasts from 7 to 12 months, depending on local conditions and practices (fig. 57). The period of turning out to pasture is somewhat variable. Those
who do not practice yearlong grazing generally turn their animals out during the latter half of March or the first week in April (fig. 58). Usually the animals are allowed to run on pasture until about the first of January. In the Gulf coast region, where the growing season is long, and where there is a vast extent of grazing land, livestock are generally allowed to run on pasture throughout the year.

In the Cotton Belt the practice of using unimproved pasture during the summer season generally prevails. However, in the late summer and fall, when the native pasture grasses become dry and woody, the livestock are frequently turned into fields of corn, often mixed with cowpeas or velvet beans, and allowed to graze on the cornstalks and legumes after the corn is harvested. Peanuts are extensively grown to be pastured off by hogs. Many farmers now seed vetch, crimson clover, rye, and winter oats in the fall to serve as winter pasture.

Carrying capacity.-The pastures of the South vary greatly in carrying capacity. The " piney woods," and, indeed, most of the forest and cut-over lands used for pasture, probably average about 20 acres per animal unit. In the more open woodlands the grazing capacity may rise to 10 acres per steer on yearlong range (fig. 66). The best Bermuda pasture, on the other hand, will carry as high as two animal units to the acre. The carrying capacity of improved pastures is in general 2 to 3 acres per animal unit (fig. 59), and of the unimproved pastures, mostly forest and cut-over land, 5 to 25 acres.

The place of pastures in the agriculture of the region.-Throughout the greater part of the South, farm pastures, which are largely unimproved, occupy a relatively unimportant place. The vast areas of unfenced forest available for grazing, and the greater remuneration to be derived from growing cotton, have prevented the development of improved pastures. But with the coming of the boll-weevil conditions have changed, and undoubtedly improved pastures will become more common. The pastures will be supplemented during the fall and winter by turning the animals into fields of velvet beans, cowpeas, and other forage crops.

Nevertheless, the forest, cut-over, and other unimproved grazing lands will doubtless provide for many years a greater aggregate quantity of feed than the improved pastures. There are over 100,000,000 acres of cut-over land in the South, a large part of which is now unproductive and rapidly growing up to brush. The best of these lands will undoubtedly be cultivated in time, but as there is little demand for new lands at present and as clearing is an expensive process, large areas can still be best. utilized for grazing, or for grazing while timber is becoming established. Even after all the lands available for grazing have been developed, there will remain large areas of sandy or sterile soils of more value for forest than for any other purpose.

The Pacific Humid Region.

The Pacific humid region, except for a few prairie districts, was originally heavily forested and largely remains so. The more accessible forests have been and are being cut; but much of this cut-over land, owing to the high cost of clearing, is reverting to forest and brush, especially the rougher lands. Some, however, is being cleared,
and pastured meanwhile by cattle, sheep, and goats. Farm land in this region, other than forest, constituted only 11 per cent of the land area in 1919.

The general usage of pastures in this region is not greatly different from that in the northern humid region. The native prairie grasses, mostly lyme grasses, fescues, bluegrasses, bents, and bromes have been largely replaced by introduced tame grasses. The most important of these grasses from the pasture standpoint are Kentucky bluegrass (fig. 54), white clover (fig. 55), Italian and perennial rye-grasses, velvet grass, and the bent grasses. Because of the moist, mild climate, the grazing season lasts the greater part of the year (fig. 57). The improved pastures have a relatively high grazing capacity, the best pastures varying from one-half acre to $1 \frac{1}{2}$ acres per cow. The forest lands used for pasture, on the other hand have, in general, a very low grazing value, owing to the dense stand of trees. Most of the forest land is not pastured, and some that is pastured has a capacity of only one animal unit to 75 or 100 acres. The cut-over lands (fig. 62) will carry an animal unit on 25 to 35 acres.

The Western Range Region.

The western range region embraces practically all of that part of the country west of the 98th meridian, except the humid belt along the North Pacific coast. In the eastern part of this region lie the semi-

A SHORT-GRASS RANGE IN THE MOUNTAINS OF ARIZONA.
Fig. 67.-A "park" or open space in the yellow-pine forests of the higher plateau region of Arizona. Grama grass and other short grasses prevail, although some weeds and browse occur. These parks, which sometimes contain several hundred acres, are used mostly as summer range for cattle and sheep.
arid Great Plains, a vast expanse of grassland. Along the eastern edge of the plains tall prairie grasses prevail, but the greater part of the area is covered by short grasses, notably grama grass in the northern part, buffalo grass in the central plains, and mesquite grass south of the Red River. In the Rocky Mountains and other high mountain areas, where there is adequate moisture, forests and woodlands occupy much of the area. Scattered throughout these forests
are numerous parks or open places, which are covered with grasses and other herbaceous plants that furnish excellent summer grazing.

Between the Rocky and the Sierra-Cascade mountains is an arid intermountain region consisting mostly of high plateaus and basins, both cut through by narrow river valleys. Sage brush is the characteristic vegetation of the northern and central portions of this intermountain region, and creosote bush and cacti of the southern portion (fig. 53). The Columbia Basin is almost encircled by forested mountains. The Blue Mountains of eastern Oregon nearly cut off the Columbia Basin from the Great Basin to the south. On the higher plateaus of the Columbia Basin and on the foothills of the mountains to the north, east, and west of the Great Basin, the pasturage is largely bunch wheat grass. On the plateaus of western New Mexico and northern Arizona, short-grass vegetation prevails, mostly grama in the northern and mesquite grass in the southern portions (fig. 67).
The valleys of California, like the moister portions of the Columbia Basin, were originally covered with a bunch-grass vegetation. These native grasses were early overgrazed and largely destroyed. They have been replaced by annual grasses and other plants introduced

DRY FOOTHILL RANGE IN UTAH.
Fig. 68.-One of the numerous small valleys of Utah. These are best utilized in the production of hay and other crops that are fed in winter to the livestock using the surrounding range. The foothills furnish spring and fall grazing for the animals, and the higher mountain areas provide summer grazing.
from Europe, especially from the Mediterranean region. In the Cascade and Sierra Nevada Mountains, the highlands are covered with timber with numerous grassy parks intervening and alpine meadows above timber line. In the north, the eastern foothills of these mountains are covered largely with the bunch wheat grasses, but in the south both slopes at the lower levels are largely covered with thickets of woody shrubs, called chaparral.

The grazing season.-In the greater part of this region the livestock are grazed for as much of the year as possible, and the animals may travel many miles in going from one grazing ground to an-

Fig. 69.-The great variety of climatic and soil conditions existing in the Western States results in very decided differences in the possible grazing seasons as well as the character and value of the herbage. The higher mountains furnish from 3 to 6 months of excellent grazing in summer (when the ground is free from snow). Although the foothills and plateau areas are available for grazing most of the year, the extent of the range is not sufficient generally to carry the animals grazing upon these areas for more than six to eight months without a change of pasture, except on the southern range. The desert or winter ranges, because of lack of water, are available to livestock, principally sheep, only during the winter months. Some of the Arizona-California desert region is, because of a lack of water, practically unusable for livestock. Much of the range livestock is now fed in irrigated valleys during the winter.
other. During the summer months much of the livestock is grazed in the mountains; the spring and fall months will find them in the foothills and higher plateau areas, and in winter many of them will be on the desert or semi-desert lands, in the irrigated districts, and on the stubble fields of the dry-farming areas. In areas where there is insufficient winter range, the animals are often fed for a period of from three to five months (fig. 68).

The time of the year that a given range area is grazed depends largely on when it is available for use and partly on the general system of livestock production followed. In general, the western range country may be subdivided according to the season of its availability as (1) summer range; (2) yearlong range, and (3) winter range (fig. 69).

A MOUNTAIN MEADOW IN CALIFORNIA.
Fig. 70.-A typical mountain meadow (altitude 7,000 feet) in the Sierra Nevada. The meadows and surrounding open-timber areas furnish excellent summer grazing for cattle. The top of the ridge in the background is better adapted to sheep.

Summer range.-The summer ranges are mostly in the mountains and, because of the shortness of the growing season, are available only during the warmer months (fig. 70). The grazing season varies from approximately three months in some of the higher altitudes in the northern range States to about six months in the mountains of the Southwest. Most of these lands are in the national forests, although some summer grazing is obtained in forest areas belonging to lumber companies and others.

Yearlong range.-The " yearlong ranges" are those areas where grazing can be carried on during practically the entire year. Most of the yearlong ranges are covered with grass, and in the northern range States are fairly free from trees and brush. A large portion of the less rolling yearlong range in the northern Great Plains and Columbia Basin, where there is sufficient rainfall for the growing of crops, has in recent years been converted into farms.

In the semiarid Great Plains region the grazing season is now largely dependent on the farm practice. Formerly yearlong grazing prevailed throughout the region. The rapid settlement of much of this region in recent years has so greatly reduced the area available for pasture that it has generally become necessary to shorten the pasture season and resort to winter feeding. A ranchman who is primarily engaged in the production of livestock and who has extensive pasture lands will graze his animals throughout the greater part of the year and, except in unusually severe winters, will give them comparatively little supplemental feed. Under such circumstances the range is frequently divided into summer and winter pastures. On the other hand, a small farmer with a limited acreage and with only a small number of animals seldom has sufficient pasturage to last longer than six to eight months.

A TYPICAL SAGE-BRUSH RANGE.
Fig. 71.-Characteristic sage-brush range of southeastern Oregon. Although such lands can be grazed the year round, they are now, because of insufficient range, mostly used during the spring and fall months. From 50 to 100 acres of such range are needed to carry a cow a year.

In the northern portion of the Great Basin the range, although it can generally be grazed throughout the greater part of the year, is now so restricted in area that it will carry only a part of the total livestock. For this reason it is generally reserved for spring and fall grazing, and serves to a large extent as an intermediate range for animals traveling between the summer range and the winter range or feed lots (fig. 71).

In the southern range States, where conditions are generally too arid for farming, there are still large areas of yearlong range (fig. 72). Here, however, it is often customary to use the higher levels during the warmer season, and the lower levels in winter. The distance traveled from one to the other is comparatively short, frequently being only a few miles.

Winter range.-The winter ranges are restricted mostly to the valleys and basins of the intermountain and southern range States, where the rainfall is light and where water or snow is available for livestock only during the winter months. The vegetation in such areas consists largely of shrubs and weedy annuals, many of which are not relished by cattle but are readily grazed by sheep. In the more northern desert areas the winter ranges are available for a 4- or 5-months' period, whereas in the Mohave-Gila desert the grazing period is usually restricted to a few weeks in the late winter and early spring. In case the spring rains fail, these latter areas are usually unavailable.

In the irrigated and dry-farming districts, much late fall and early winter grazing is obtained by giving the animals the run of stubble fields, the aftermath of hay fields, especially alfalfa, and by pasturing them on marshy lands. In fact, in California many of the sheep get their entire winter subsistence by grazing on crop lands after harvest, or in orchards and vineyards.

SEMI-DESERT RANGE IN ARIZONA.
Fig. 72.-Semi-desert grassland range with considerable browse. The grasses are mostly perennials that cure standing and the browse plants are usable at any time. Such lands are best used as yearlong range for cattle, though they are sometimes used temporarily for sheep when the adjacent desert range fails.

Carrying capacity.-Owing to the very diverse moisture and temperature conditions, the carrying capacity varies widely in different parts of the range region. It is shown in a general way in Figure 59 , and is summarized for some of the more important grazing districts in Table 23. This table also indicates briefly the character of the pasture and duration of the grazing season.

Table 23.-Character of forage and estimated capacity of the western grazing areas of the United States.

Areas.	Chief forages.	Length of season.	Area to support a cow.
		Months.	Acres.
Northern Great Plains	Grama, buffialo, needle, and wheat grasses	5 to 10	10 to 30
Southern Creat Plains.	Grama, buffalo, bluestem, beard, and mesquite grasses; scrub oaks.	8 to 12	15 to 35
Black Hills	Grama, buffalo, and bluestem grasses...........	3 to 5	25 to 39
Central Rocky Mountains.......	Blue, fescue, wheat, brome, and redtop grasses; Baltic rush; and "weeds." ${ }^{1}$	3 to 6	15 to 25
New Mexico-Arizona mountains..	Grama, fescue, beard, and wheat grasses; scrub oak, mountain mahogany.	5 to 8	12 to 25
West-central Montana foot hills and high plains.	Fescue, wheat, blue June, porcupine, brome, and grama grasses.	5 to 7	5 to 30
Northern Rocky Mountains....	Pine, wheat, blue, brome, and fescue grasses. . .-	3 to 6	20 to 150
Central Idaho...................	Pine, wheat, brome, fescue, and blue grasses ${ }^{\text {Wheat }}$ porcupine		25 8 8
Wasatch, Uinta, and Wyoming Mountains.	Wheat, porcupine, fescue, and blue grasses; bluebells and other "weeds;" 1 browse.	3 to 7	8 to $2 \overline{5}$
Northeastern Nevada, southern Idaho, and central Oregon.	Wheat, blue, and fescue grasses; sagebrush, shadscale, greasewood.	4 to 8	35 to 40
East-central Nerada mountains. -	Wheat, blue, and fescue grasses; browse......	4 to	25 to 50
W yoming semideser	Salt grasses; sagebrush, shadscale, greasewoo	2 to 6	35 to 100
Utah, Nevada, Arizona deserts.	Salt, grama, three-awn, and annual grasses; annual "weeds;" 1 sagebrush, winter fat, greasewood, shadscale, mesquite, palo verde, cacti.	2 to 5	50 to 150
New Mexico-Arizona foothills and basins.	Grama, tobosa, galleta, three-awn, muhlenbergia, and salt grasses; sagebrush, shinnery, and other browse.	4 to 12	15 to 75
San Luis Valley of Colorado.	Blue, salt, and fescue grasses; Baltic rush; sagebrush		30 to 40
Utah foothills and valleys.	Wheat, porcupine, and June grasses; sagebrush..	5 to	20 to 30
Nevadas	Salt, and lyme grasses; greasewood, shadscale, sagebrush.		
Southeastern Oregon and Snake River plains.	Fescue, wheat, and lyme grasses; sagebrush.....	2 to	50 to 100
Columbia River Basin.	Blue, fescue, wheat, lyme, and salt grasses; sagebrush, greaswood.		
Eastern California mountains.	Short, blue, wheat, needle, oat, and brome rasses.deerbrush and other browse	3 to	$15 \text { to } 35$
Western Oregon mountains.......	Fescue, brome, wheat, pine, and bent grasses; deerbrush and other browse.	3 to	30 to 100
Southwestern California moun-	Deerbrush and other browse.	6 to 12	40 to 60
California, and southwestern Oregon foothills and valleys.	Browse; "weeds"; 1 annuals, including wild oat, rye, brome, barley, and fescue grasscs; bur and wild clovers; alfilaria.	6 to	15 to 50

${ }^{1}$ On the range "weeds" refers to miscellaneous herbaceous plants.

Improvement of Methods in the Western Range Region.

While the western range lands include over half of the grazing lands of the United States, they support at present only about onethird of the total livestock carried on pasture. This is largely owing to the prevailing arid conditions, but also much of the range land has been overgrazed and its carrying capacity greatly reduced. The experience of numerous ranchmen and the work of State and Federal investigators prove that these lands can be restored to their original carrying capacity and be thus maintained. The methods that have proved most effective deserve mention.
Avoidance of premature grazing. -The keeping of livestock from the range until the grass has had a chance to get a fair growth will tend to increase its total carrying capacity. On the national forests, the prevention of premature grazing has had much to do with range improvement.
Prevention of over grazing.-Not only is too close grazing harmful to the range, but it is usually reflected in the lack of gains made
by the animals. However, a pasture on which stock cattle are run can be slightly overgrazed without causing any appreciable effect on the animals. Whether a range is being overgrazed can generally be determined by watching the gradual disappearance of the grasses and their replacement by less desirable vegetation. Recent experiments with range pastures at Mandan, N. Dak., composed largely of grama grasses and needle grasses, lead to the conclusion that from 15 to 25 per cent of the foliage covering should remain on this type of pasture at the close of the season, if overgrazing is to be prevented. This conclusion applies also to ranges farther west covered with perennial bunch grasses.

Deferred grazing.-On some types of grasslands, notably in the mountains, the use of deferred grazing methods have resulted in great improvement. The plan is to permit the desirable grasses on a portion of the range to mature seed before grazing is commenced. Thus, quantities of seed are scattered and to some extent trampled into the soil.

Rotation grazing.-In the improvement of ranges it is a desirable practice to graze a series of pastures in a regular succession, leaving each year one field for deferred grazing. This method gives the grasses and other forage plants a better chance to reestablish themselves. Usually it is only necessary to defer the grazing on any particular area once in three years in order to maintain the stand of desirable plants. Sometimes it is desirable to use the same field for deferred grazing two years in succession.

Grazing with two or more kinds of animals.-Two or more kinds of animals are often used on the same range, either at the same time or in succession. In Texas it has been found on many ranches that a certain number of sheep and goats can be run in addition to the cattle without decreasing the number of cattle; in fact, in some instances the carrying capacity for the cattle has been slightly increased. On such ranges the sheep prefer the weedy plants that the cattle do not care for and prevent these plants from encroaching on the grasses. On some of the Texas ranges where there is much browse which neither sheep nor cattle felish, the addition of goats has been helpful in keeping the oaks and mesquite from crowding out the grasses.

Improved methods of grazing sheep.-An important step in improving ranges where sheep are run is to avoid having the animals "bed down" in the same place for more than two or three nights in succession. The constant traveling between the bed grounds and the grazing areas results in the destruction of much vegetation through trampling. It has also been found that sheep do much better and that less damage is done to the vegetation where, instead of being " close herded," they are allowed to scatter while grazing. In Texas it has been found that nearly twice as many sheep can be carried on the same area when they are allowed to run lose in fenced pastures than under the herding system.

Development of watering places.-The development of well-located and adequate watering places is important. Without plenty of water within a reasonable distance animals can not make satisfactory gains. The watering places should be so distributed, if possible, that cattle do not travel much over 2 miles in going to water, and in a very rough country not much over half a mile. Frequent watering places
aid also in preventing the formation of trails, which in time form rain channels and may lead to erosion. Well-located watering places are helpful also in opening up areas that were formerly but little grazed.

Proper distribution of salt.-On cattle ranges much can be done in equalizing the grazing by placing salt at suitable distances from the watering places and in such localities as to draw the cattle away from the heavily grazed areas to those only lightly grazed. Systems of salting have been found to be an excellent means of regulating grazing on unfenced ranges.

Building trails.-The grazing capacity of many ranges can be increased by building trails in rough country or through timber to open up numerous small areas which, because of their inaccessibility, are little grazed. Many stockmen have found that it is profitable to build trails which save the energy of the animals and prevent trampling of the vegetation.

The importance of introduced range plants.-The idea has often been expressed that better pasture plants can be found that will thrive in the different section of the western range country. Judging from what has happened in other parts of the country there are reasons for the belief that properly chosen introduced plants will greatly increase the carrying capacity of the range lands. In the northeast quarter of the United States the pastures are entirely made up of introduced grasses-bluegrass, white clover, redtop, timothy, etc.-all from Europe and all so aggressive that the native vegetation can not compete. In the South, Bermuda grass, carpet grass, lespedeza, Johnson grass, Dallis grass, and others have been of similar importance. In California 80 per cent of the lowland forage is now produced by introduced plants mainly from the Mediterranean region, such as wild oats, bur clover, wild barleys, alfilaria, and many others, all introduced by chance. Many of these plants are now spreading in the Columbia River Basin. It is true that some plants introduced by chance in each region are undesirable. However, by using proper precautions it is not likely that undesirable plants will be introduced.
Important results may be obtained in the range region by introducing desirable plants from regions with similar climatic conditions. For the most of our range lands the source is central Asia, from whence came alfalfa and sweet clover, the two most valuable forage plants of the West; also Russian thistle, rosy saltbush, and tumbling mustard, which have spread of their own accord over large areas of the ranges in less than 10 years. These last three plants are not particularly desirable, but there can be little question that excellent forage plants which will spread with comparable vigor can be found by intelligent search. There is every reason to expect that desirable wild range plants from central Asia will add as much wealth to the West as did alfalfa, the great cultivated forage from the same region. One of these, crested wheat grass, is already giving very promising results.

Seeding with tame-pasture plants.-The cultivated grasses and legumes now in use in this country are not adapted to the greater portion of the western range country. Excepting in the more humid areas, most of the seeding experiments have yielded poor results. The cheapest and apparently the best method of reseeding with native grasses is by the method of deferred grazing. In many of the

Fig. 73.-Prairie dogs and ground squirrels eat the more valuable grasses throughout the area in which they occur. Where they are numerous pasturage is commonly reduced from 10 to 25 per cent and at times the forage value of infested land is entirely destroyed. Organized community campaigns have proven effective in destroying these animals and have resulted in marked betterment of the range.
mountain meadows, however, the conditions are very favorable for such plants as bluegrass, redtop, the fescues, and white clover, and it is highly probable that these plants will eventually become important in such areas.

Elimination of rodents.-In increasing the carrying capacity of the range, much can be accomplished by the destruction of the various rodents, particularly prairie dogs, ground squirrels, jack rabbits, pocket gophers, and mice. Prairie dogs and ground squirrels select the richer valley and bench lands, and are direct competitors with livestock for the use of the more palatable and nutritious forage (fig. 73). Prairie dogs often destroy the grass roots and denude

Fig. 74.-Jack rabbits often become excessively numerous over great areas and destroy much growing forage. As many as 10,000 are sometimes killed in a single organized drive. Pocket gophers greatly reduce the quantity of feed available by burrowing under ground, eating and breaking off grass roots, thus injuring the stand; and by piling up mounds of dirt which cover considerable areas of grass. They frequently so undermine the ground that the trampling of the burrows by livestock causes permanent injury to the range.
the lands, rendering them barren wastes occupied only by plants of little or no forage value and subjecting them to permanent damage by erosion. Their constant migrations into new feeding grounds result in the establishment of new towns and the extension of their devastation. Ground squirrels, because of their greater numbers and more general distribution (fig. 73), consume even larger quantities of grass.

Jack rabbits, which inhabit most of the range country (fig. 74), also subsist largely on the grasses. Their numbers fluctuate greatly from time to time, and consequently the amount of damage caused by them. Meadow mice and pocket gophers also destroy grass, and when numerous the gopher burrows interfere seriously with handling the livestock.

Effective and economical methods for poisoning and otherwise destroying these pests have been worked out, and extensive poisoning campaigns inaugurated in recent years in nearly all of the range States. These are conducted by the United States Department of Agriculture (Biological Survey) in cooperation with the various State agencies and organizations of stockmen and farmers. Several million acres of grazing land have been freed of rodents, and a marked increase in forage production has resulted. In Arizona a 3year united effort on the part of over 800 stockmen cooperating with the Biological Survey to exterminate prairie dogs, was entirely successful, an area 120 miles long and from 10 to 20 miles wide being wholly freed of this pest.
The elimination of predatory animals and wild horses.-It is estimated that predatory animals, until recent years, took an annual toll of $\$ 20,000,000$ to $\$ 30,000,000$ worth of livestock on the western ranges. The Department of Agriculture (Biological Survey) is now cooperating with State and county officials and livestock associations in the destruction of these wild animals, approximately 500,000 having been destroyed since 1915 (see page 265 of preceding article, "The Sheep Industry"). The destruction of the large numbers of wild and practically worthless horses, which on some areas number thousands, would also increase the capacity of the range in many districts. Their presence not only decreases the number of valuable livestock, but they are an actual source of injury to the range. In many instances they are so wild and the country is so rough that it is impossible to round them up or remove them. Even if rounded up they have no commercial value, except for fertilizer or for poultry feed.

The elimination and avoidance of poisonous plants.-Poisonous plants cause heavy loss among western livestock, especially sheep and cattle. These losses are much more prevalent on the western ranges than on eastern pastures, because the animals graze in large herds and the plants sometimes grow in dense masses. It is important that livestock producers be able to recognize the poisonous plants, in order that so far as possible they may prevent their animals from grazing upon them. The most important are the death camases, milkweeds, larkspurs, and locoes.
Some of the milkweeds, which are rather widely distributed (fig. 75), are exceedingly poisonous. They kill not only sheep, but also many cattle and some horses. Larkspurs, which grow on all of the mountain ranges of the West, as well as in some of the Eastern

Fig. 75.-Asclepias pumila, A. galiodes, and A. mexicana are all whorled milkweeds. The A. pumila grows in the Great Plains region and does comparatively little harm. The A. galioides, the worst of the whorled milkweeds, is confined to the Southwestern States, while A. mexicana is limited to Nevada and the Pacific Coast States. A. eriocarpa, the woolly-pod milkweed, is a broad-leafed milkweed of a specially dangerous character and is limited to the coastal region of California. These milkweeds are especially destructive to sheep.
States (fig 76), are the most dreaded by cattlemen of all of the poison plants. There are several kinds, but apparently all are poisonous. As cattle must eat about 3 per cent of their weight in order to be poisoned by these plants, scattered patches of larkspur do little harm. The plants sometimes grow in canyons in thick masses, and it is when hungry cattle drift into these places that heavy losses occur. The destruction of these large patches helps greatly to lessen losses. The saving of cattle resulting from the destruction of large patches of these plants in the national forests has much more than paid for the work involved. It is not feasible wholly to exterminate

Fig. 76.-The locoes, larkspurs, and death camases are widely distributed in the western half of the United States. The death camases are particularly characteristic of the foothill regions. The larkspurs are largely mountain plants and are distributed over practically all of the western mountain regions and to a limited extent in the East. The locoes, which may be considered as the most destructive of all stock-poisoning plants, are characteristic of the Great Plains region.
larkspur, but the danger from it can be greatly lessened. As horses and sheep are not poisoned by larkspur some of the infested ranges can be used by these animals.

The locoes, which have perhaps caused more losses than all the other poisonous plants combined, are widely scattered throughout the Great Plains country (fig. 76). Of the several different species, the white loco or rattle weed, the purple or woolly loco, and the blue loco are the most important. Much of the area where these plants occur has been taken up for farming purposes within the last few years, and the losses though still large are much less than formerly. It has been shown to be profitable to dig out the loco plants in inclosed pastures, but there is no feasible method of controlling loco trouble on the open range.

Not only is it important to know which plants are poisonous, but also that, generally speaking, the greatest losses usually occur at times of feed shortage. Losses seldom occur when the animals have sufficient good pasturage.

Control of Grazing Lands in the Western Range Region.
The majority of livestock producers in the northern half of the range country now own or lease the greater part of their grazing lands. During the past 20 or more years they have purchased large areas of railroad lands and patented homesteads. They have also leased considerable areas of State, Indian, and lumber company lands. A large proportion of the stockmen depend on running as many as possible of their cattle and sheep on the national forests during the summer months. Those who have access to the unrestricted public domain usually try to use these lands for a part of the year. As there is generally insufficient range for all, a large number of them now depend on feeding their animals for from three to five months of the winter.

In the southern range States (excluding Texas, where all the lands are privately owned) the percentage of land owned by livestock producers is considerably less. This is owing largely to the greater aridity of the land, so that the inducement for homesteading has been less. It is also partly because much of the land is too unproductive to justify any great expenditure in acquiring control of it. However, the majority of the producers own, in addition to a headquarters ranch, at least sufficient land on which water can be developed, so that they can control the remaining range. Many of these men lease large areas of railroad, State, and Indian lands. A large number of them depend on grazing a part of their stock on the national forests for at least a part of the year. They also use considerable areas of the remaining free range. For the most part they do not use supplemental feeds, except during periods of severe drought.

Control of the Federal, State, and Indian Lands.

About half of the western grazing lands are publicly owned or controlled. These may be classified according to their control, as State lands, Indian lands, national forests, and unreserved, unappropriated public domain.

Fig. 77.-Approximately $2,250,000$ cattle and horses (animal units) and over 7,000,000 ewes with about three-fourths as many lambs are grazed annually on the national forests. This is about one-fifth of the cattle and one-third of the sheep in the 11 far Western States. In the more northern forests permits are issued in periods ranging from three to six months, while on some of the southern forests yearlong permits are granted. The average length of grazing season is probably not far from six months.

State lands.-The State lands are areas ceded by the Federal Government to the States for various purposes and are generally scattered in small tracts throughout the entire region. Those not suitable for farming purposes are generally leased for a term of years by stockmen.

Indian lands.-Much of the land lying within the Indian reservations that is not suitable for farming purposes, or is not used by the Indians, is leased to cattle and sheep men, usually in large tracts. In order to prevent overgrazing, the leases usually specify the number of stock that are to be grazed.
The national forests.-The national forests occupy about $133,000,-$ 000 acres of the western range region. Of this it is estimated that about $100,000,000$ to $110,000,000$ acres furnish more or less grazing. These forests were primarily established for the maintenance of a supply of timber and to protect the forest cover which regulates the flow of streams. Grazing as well as all other uses of the forests must of necessity be subservient to these two fundamental needs. However, their use for grazing purposes is now very important to the livestock industry, as nearly two-thirds of the grazing lands that can be used only in the summer in the 11 far Western States lie within these areas (fig. 77).

As the number of livestock listed in applications for the use of these grazing lands is much in excess of the number of animals that can be supported, and in order that farmers and graziers may have opportunity to use the range in proportion to their needs, it has been necessary to establish certain restrictions. Preference is given to United States citizens who own and reside on improved ranch property which is dependent on the national forests, and who own stock within certain exemption limits. These exemption limits vary according to the district. Maximum limits are also established, which, in general, are 400 cattle and 2,500 to 4,000 sheep in the Northwest, and usually 2,000 cattle or 8,000 sheep in the Southwest. Second choice is given to prior users who do not own improved ranch property, and persons owning such property who own stock in excess of the established exemption limit. These are largely men whose main source of income is from livestock.

The grazing permits are granted for periods of one or five years for a definite number of animals, which are, so far as possible, assigned to definite areas. In general the fees charged are less than those charged for the use of similar pasturage in the immediate vicinity.

Public domain.-This area now includes $180,000,000$ acres, located mostly in the Arid Intermountain Region and in the Southwest. These unappropriated lands have a rather low carrying capacity, as the best estimates indicate that at the present time 55 acres of such land, on the average, are needed to carry a steer for six months. These lands have been subjected to years of misuse until they have deteriorated greatly in carrying capacity.
One of the important problems connected with the better utilization of the western ranges is that of the control of the remaining " unappropriated and unreserved" public domain. It is essential that, with a steady growing population, such areas instead of being destroyed, should ultimately be developed to their highest carrying capacity. It is also equally important that the present users, many
of whom are in a precarious financial condition, be given some legal means of control over these lands and thus promote the stabilization of the industry. Under existing conditions they are unable to do this, for any regulations they may attempt among themselves are ineffective, as they can not be enforced.

Practically all of this land can be used only as grazing land, and because of its low grazing capacity it must be used in large units. There are, however, no laws that will permit the use of these grazing lands, either permanently or temporarily, by the stockmen in areas sufficiently large to make their use profitable. Associated with these public lands in the kelts included in the railroad grants are similar grazing lands owned in alternate sections that have passed to private ownership. These are subjected to the same low standard of management as the uncontrolled public lands because of the lack of properly designed legislation.

Livestock producers and scientific investigators are in agreement that the control of the remaining public arid grazing lands and subdivision of the range into proper-sized units by means of fences, provided the value of the range justifies the expense, is sure to bring about an increased productivity of the land and marked improvements in the organization of the range livestock industry. Such control would not only result in stopping the deterioration of the range lands which is now going on, but would also lead to a great increase in the present grazing capacity and, consequently, in the quantity of animals and animal products.

Several methods for the stabilization of the open range have been suggested. Among these are the following: (1) Sell the remaining lands; (2) continue the policy of enlarging the area granted as a grazing homestead; (3) lease the lands; (4) consolidate private and Federal holdings by exchange; (5) give the remaining Federal lands to the States in which they lie; and (6) establish a permit system somewhat similar to that used in the national forests. Each of these policies has its own limitations, its own advantages and disadvantages. None of them is new; all have been tried to some degree.

The method of selling the land is that adopted by Texas long ago with fairly satisfactory results. In the other Western States, where any Government land remains unappropriated and unreserved, ownership of land not to exceed 640 acres by an individual can now be secured under the present grazing homestead act. There are, however, certain limitations as regards the areas subject to entry under this act. The leasing system is that used on most Indian reservations and on State lands. The method of grazing permits is that used in the national forests with satisfactory results. Much of the unappropriated public domain is winter range which must be used in conjunction with the summer range in the national forests.
It is greatly to the interest of every State and individual concerned that the range lands be utilized at their highest permanent efficiency, and that the livestock industry of the West be stabilized. These lands constitute a great national resource and it is manifestly to the interest of all concerned that legislation be enacted which will permit their most efficient use.

Economic Importance of Farm Pastures.

The proportion of farm land in pasture varies greatly with the region and also with the type of farming. Over half of the total farm land of the country is used for pasture during a portion of the year, and practically a third of the land is used solely for pasture. However, only 10 per cent of the farm area was classified in the census of 1909 as improved pasture. The amount of pasture land in farms in that year varied from a little over 9 per cent in North Carolina, South Carolina, and Georgia, where but little attention is given to pasture, to 83 per cent in Nevada, where agriculture is primarily based on the production of livestock.

For nine scattered localities located mostly in the northern humid region, in which farm-survey records have been obtained, the amount of pasture varies from 21 per cent of the farm area for the farms surveyed in Clinton County, Ind., and Chester County, Pa., to about 50 per cent in Washington County, Ohio, Mercer County, Pa., and Hillsboro County, N. H. (Table 24). In Hillsboro County the acreage in pasture was double that in crops, and in Mercer and Washington Counties it exceeded that in crops. In the Iowa counties, on the other hand, the pasture acreage varied from 45 to 75 per cent of that of the crops.

The kind of pasture also varied widely, depending largely on the character of the country. In the Hillsboro district nearly all the pasture land was untillable, 40 per cent of it being in •woodland. The Mercer County district, where dairying leads, and the Washington County area, where general livestock farming prevails, are also quite hilly. Although 28 per cent of the pasture land in Washington County is classified as tillable land, it is kept in permanent pastures in order to prevent erosion. In the Chester County district half the pasture was tillable, half untillable. The country is rolling. Milk is produced for Philadelphia and as much of the land as possible is kept in crops. However, some of the bottom lands, which are heavily fertilized, furnish luxuriant pasturage. Clinton County, Ind., and Tama County, Iowa, being in a comparatively level country, have large areas in crops, especially corn. In these counties rotation pastures, which constitute about 12 per cent of the farm area, fit in advantageously with the cropping system and furnish grazing for the hogs and beef cattle which are fattened on the corn. In the Dane County, Wis., district, dairying and hog raising are the leading enterprises. Here half of the land is in crops, 15 per cent is in rotation pasture, and 20 per cent in other kinds of pasture.

Table 24.-Proportion of total farm area in crops and in pasture in nine farmsurvey districts in the northern humid region. ${ }^{1}$

District.	Farms.	Year.	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { farm } \\ & \text { area. } \end{aligned}$	Farm crops.	Farm area in pasture.				
					$\begin{aligned} & \text { Rota- } \\ & \text { titan } \\ & \text { pas- } \\ & \text { ture. } \end{aligned}$			$\begin{gathered} \text { Woods } \\ \text { pas- } \\ \text { ture. } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { pas- } \\ & \text { ture. } \end{aligned}$
	$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$		Acres.	P.ct.	P.ct.	P.ct.			
	$\begin{array}{r}136 \\ 378 \\ \hline\end{array}$	1918							
Mercer County, Pa. ${ }^{4}$	349	1916	101	47		13	30	10	${ }_{53}$
Lenawee County, Mich. ${ }^{\circ}$.	300	1911	104	57	10	8	6	9	33
	60	1913-17	148	55	15	4	7	9	${ }^{35}$
Washington County, Ohio ${ }^{\text {\% }}$.	14	$\begin{array}{r}1912-22 \\ 1910 \\ \hline\end{array}$	157	29	2	28	19	1	50
Clinton County, Ind.8.......	100	$\left\{\begin{array}{l}1913-19\end{array}\right.$	127	74	12	2		6	20
	209 183	1918 1918	219 177	65 52 5	13 4	9 18	${ }_{13}^{6}$	$\stackrel{2}{5}$	30 40
Warren County, Iowa ${ }^{10} \ldots$.	183	1918	177	52	4	18	13	5	40

[^50]
Relation of Cost to Pasture Rental.

Pasture Rental.-Studies made by the Department of Agriculture ${ }^{17}$ to determine as accurately as possible the relation of pasture costs to pasture rentals are available for 182 farms in 10 districts (Table 25). In these studies the permanent pastures have generally been valued at considerably less than the crop lands. These values, which include fence investment, vary from $\$ 34$ for the Montana district to $\$ 139$ for Cottonwood County, Minn. In the Wisconsin district the permanent pasture is valued at a little less than half that of crop land. Rotation pastures range in value from $\$ 113$ in the South Dakota district to $\$ 160$ in the Cottonwood County, Minn., district. In computing interest charges on these values, conservative mortgage rates have been used. The figures show that almost no money was spent for pasture equipment or for maintaining or improving these fields.

Table 25.-Acreage and value per acre of land in pasture per farm, 1922, for 182 farms in 10 districts.

State.	County.	$\begin{aligned} & \text { Num- } \\ & \text { ber } \\ & \text { farms. } \end{aligned}$	Total. acreage per farm.	Acres in pasture.			Value per acre, dollars.		
				Permanent.	Rotation.	Total.	Permanent.	Rotation.	Total average.
Kentucky.		23	236.6	36.2	24.9	61.1			137.20
Ohio.	Greene.	20	155. 4	13.2	21.6	34.8	100.00	125.00	115. 53
Ohio..	Medina.	15	131.0	38.7		38.7	68.43		68.43
Wisconsin	Walworth	23	141.6	39.9	6.5	46.4	65.33	138.63	75.61
Minnesota	Steele.	${ }^{1} 20$	186.6	42.7	2.4	45.1	127.25	140.00	127.90
Minnesota.	Cottonwood	119	170.0	38.5	. 5	39.0	138.81	160.00	139.00
South Dakot	Kingsbury .	20	289.2	18.5	15.1	33.6	103.13	113.06	107.58
Kansas.	Jackson.	17	206.6	75.8		75.8	101. 57		101.57
Kansas	McPherson	17	308.2	50.0		50.0	122.67		122.67
Montana	Galla	8	326.50	96.84		96.84	34.00		34.00

In 1921.
${ }^{17}$ These studies were made in cooperation with the agricultural colleges in the several States.

The slight variation in the various costs in the districts studied is noteworthy (Table 26). Interest charge varies more than any other factor, ranging from $\$ 2.48$ in Gallatin County, Mont., to $\$ 7.27$ in Steele County, Minn. The Montana district has the lowest average cost, but the greatest range in costs of any of the 10 districts. This is owing to the fact that while most of these farmers are using cheap land for their pastures, there are others pasturing high-priced irrigated land. The Minnesota counties have relatively high costs per acre in comparison with the other areas shown. In Steele County this is the result of the land charge and in Cottonwood County of a rather high fencing cost. The miscellaneous costs are interesting, in that they show how little is spent for pasture maintenance or improvement.

Table 26.-Pasture costs per acre, 1922.

County and State.	Fences. ${ }^{1}$					Land charges.			Mis-cellaneous. costs.	Total costs.	Range in costs.	
	Man and horse labor.			Cash outlay.	Total.	$\begin{aligned} & \text { Inter- } \\ & \text { est. } \end{aligned}$	Taxes.	Total.				
	Man hoars.	Horse hours.	Cost.								High.	Low.
Kentucky.					\$0.32	\$6. 86	\$1.07	\$7.93		\$8. 25	\$16.69	\$3.12
Greene County, Ohio...	1.65	. 67	\$0.58	\$1.11	1.69	5.76	1. 24	7.00	\$0.03	8.72	13.35	6.26
Medina County, Ohio. -	. 93	. 15	. 30	. 23	. 53	3. 42	. 75	4.17	. 01	4.71	10.76	2.60
Walworth County, Wis.	1. 59	. 46	. 45	. 39	. 84	3.78	. 93	4.71	. 01	5. 56	9. 47	1.74
Steele County, Minn....	2.83	1.07	. 60	. 14	. 74	7.27	. 85	8.12	. 03	8.89	10.84	6.11
Cottonwood County, Minn.....................	2.28	. 71	. 90	. 72	1.62	6.55	. 81	7.36	. 01	8.99	13.21	7.82
Kingsbury County, s. Dak.	2.43	. 77	. 64	. 38	1.02	6. 45	. 79	7.24		8.26	11. 71	2.96
Jackson County, Kans.	1. 78	. 72	. 45	. 19	. 64	4.07	. 80	4.87	.01	5. 52	12.13	1. 42
McPherson County, Kans.................	2.54	. 54	. 72	. 17	. 89	4.91	. 53	5. 44	. 01	6. 34	8.98	5.40
Gallatin County, Mont.					. 20	2.48	. 17	2.65	. 01	2.86	16.05	1.19

${ }^{1}$ Fencing costs include both the cost of replacement and repairs.
The rental from these pastures (Table 27) is derived by charging each class of livestock for the use of pasture at current monthly pasture rates in the community. In none of these districts did the rental of the pastures equal the cost, when interest is included on
Table 27.-Relation of the charge for pasturage to total feed cost per farm and rental return per acre for regular pastures.

	Total charge for feed and pasture per farm.	Totalpasturecharge(includ-ing fallpas-ture.)	Total rental from regular pasture per farm. ${ }^{2}$	Per cent total pasture charge was of total feed cost.			Per cent regular pasture charge was of total feed cost.			Rental returns from regular pasture per acre.		
				Average.	High.	Low.	Average.	High.	Low.	Average.	High.	Low.
Kentucky Ohio:	\$1, 941. 21	\$471. 21	\$378.95	24.4	53.7	10.9	19.7	45.0	8.0	\$6.20	\$15.77	\$2.36
Greene County.	2,536. 79	354.31	193.76	14.0	20.4	8.3	7.6	14.1	1.3	5.57	8.96	3. 24
Medina County	1, 892.53	210.60	162.78	11.1	18.9	6.6	8.6	15.5	. 4	4.20	10.70	2.80
Minnesota: Steele County..	2, 268. 29	182.06	175.13	8.0	15.5	2.8	7.7	15.5	1.6	3.89	6. 89	2.04
Cottonwood	2, 268.20	182.06	17.13	9.9	18.5	6.8	9.3	18.5	5.6	3.89 5.76	6.89	2.04
South County......	2,412. 20	232.97	224.47	9.7	18.0	6.8	9.3	18.0	5.6	5.76	14.66	2.52
South Dakota,	1,890. 51	249.88	191.06	13.2	17.3	9.2	10.1	16.4	5.9	5.69	11.60	3.15
Kansas:												
Jackson County McPherson	2, 047. 58	311.74	166. 48	15.2	26.6	9.0	8.1	16.9	3.2	2.20	12.90	. 72
County.	1,175.67	165. 48	132.60	14.1	33.8	3.5	11.3	24.1	2.2	2.65	12.80	. 91
Montana, Gallatin County				16.6	30.9	11.3	14.2			2.77		1. 20
County	1,573.	313.85	267.78	16. 6	30.9	11.3	14.2	29.8	11.0	2. 77	12.00	1.20

[^51]the appraised land values. In fact, in only two districts, Gallatin County, Mont., and Medina County, Ohio, was the rental sufficient to cover interest charges at current rates on the capital invested.

While the annual rental rates of these pastures did not return a sufficient income to meet all costs, nevertheless, in most of the

PASTURE COST AND RENTAL VALUE PER ACRE, 10 COST-OF-PRODUCTION AREAS, 1922.

Fig. 78.-In only two districts, Gallatin County, Mont., and Medina County, Ohio, does the rental value equal the interest charge. In these two districts it very nearly equals the annual pasture costs. In Steele County, Minn., and the two Kansas districts the rental value was very low. In the other areas there seems to be a fairly close relationship between the rent and the interest charge. Taxes, as may be expected, show about the same relative fluctuation as interest.
areas the return on land investments, after all other costs had been deducted, compared favorably with the usual returns on land devoted to crops. In Medina County, Ohio, for instance, pasture rental was sufficient to return 4.4 per cent upon the value of land after the maintenance and fencing costs had been cared for. In Montana the pasture rates charged against livestock returned 3.8 per cent on the land valuation; pastures in South Dakota returned 3.6 per cent, and those in Kentucky 3.5 per cent. Although these

FREQUENCY OF PASTURE COSTS AND RENTAL VALUES PER ACRE, NINE COST-OF-PRODUCTION AREAS, 1922.

Fig. 79.-There is wide variation in the pasture costs, these ranging from a little over $\$ 1$ per acre to almost $\$ 17$. The normal cost, however, seems to center around $\$ 6$ to $\$ 8$," which was the average cost for 25 per cent of the farms. The income per acre had very nearly the same range. The normal income, however, was between $\$ 3$ and $\$ 5$, 38 per cent of the farms falling in this group.
returns are not high, it will be remembered that often a large proportion of the land used for pasture is of such a character that it can not be put to other productive uses. Furthermore, the low interest return realized on capital invested in pasture is, in part at least, offset by reduction in the labor cost necessary in caring for livestock while on pasture.

The average rental charge for permanent or rotation pasture per farm varied from $\$ 133$ in McPherson County, Kans., where it constituted about 11 per cent of the feed bill, to $\$ 378$ in Kentucky, where it made nearly one-fifth the total (Table 27). In addition to the regular pasture the animals on most of the farms were given the run of the crop land in the fall. The value of the grazing obtained from aftermath, stubble fields and cornfields varied greatly. It averaged $\$ 7$ and $\$ 9$ per farm each for the two counties in Minnesota. In Green County, Ohio, it averaged $\$ 160$, or 45 per cent of the total pasture charge, and in Jackson County, Kans., \$146 (fig. 80). This variation in the value of crop land pasturage is due to the length of pasture season, the amount of permanent and rotation pasture available, the kind of forage in the pastures, and the livestock kept. Work horses and hogs did not use pastures to the same extent as did cattle and sheep.

The length of the grazing season greatly influences the extent to which pastures are utilized in different areas and upon different farms. This is one reason why the Kentucky district leads the others both in the proportion of total feed cost represented by pasturage and in the average rental return per acre. The Minnesota counties were low in the ratio of pasturage to total feed cost, but compare

PERCENTAGE THAT PASTURE COST WAS OF TOTAL FARM FEED COST,
NINE AREAS IN 1922

Fig. 80.-Pasture rental constituted less than 10 per cent of the total feed bill for the two Minnesota districts, where this charge was very low. In both these districts but little value was assigned to the grazing obtained from the crop fields after harvest. In Kentucky the pasture charge. was nearly 24 per cent of the total feed bill. In the Green County, Ohio, and Jackson County, Kans., districts fall pasturage on crop lands was a very important source of cheap feed.
favorably with other similar areas in the per cent of feed derived from regular pastures. Farmers in those counties are not so extensive users of fall pastures as those in Kentucky, Ohio, and Kansas. In Kansas the extensive use of fall pasturage is in part responsible for the very low rate paid for regular pastures.

Economic Importance of Pasture on Dairy and Beef Cattle Farms.

The proportion of the total sustenance furnished by pastures on dairy and beef producing farms studied by the Department of Agriculture is much greater than the income from these pastures would indicate. In the seven districts where studies were made concerning requirements for the production of market milk, pasturage furnished very nearly one-third the total sustenance for the cows (Table 28). On these same farms the pasture cost was only oneseventh of the total feed cost.

Records secured for the years 1914-1916 on 478 Corn-Belt farms which produced beef calves, showed-that the breeding cows obtained their entire living from pasture for 200 days and from roughage and concentrates for 165 days. The total annual feed bill for these cows was $\$ 24$ of which pasture constituted $\$ 8.50$. In other words pastures which were furnishing a little over half the total sustenance were credited with only one-third of the feed bill.

The above figures would indicate that farm pastures are generally contributing more of the total sustenance of livestock than the value assigned to them would indicate. Partly because of the low rental value generally assigned to pasture, and also because many of the pastures, especially the mismanaged ones, do not produce as much feed per acre as when crops are grown on the land, there is a tendency to believe that pastures which are arable should be plowed up and put into crops. Many persons, however, do not take into consideration the much greater expense attached to the growing of crops. Unquestionably, there are conditions under which arable pasture lands should be put to more intensive use. On the other hand, there are also conditions where some of the crop land should be in pasture. These factors depend partly on topography and soil conditions, partly on distance from market and partly on labor conditions. There is much hillside land being used for crops which is gradually being eroded, and which in the course of time will be completely ruined. From the standpoint of long-time usefulness such land should be conserved by being kept in grass as much of the time as possible.

Table 28.-Fced units per dairy cow obtained in a year from concentrates, roughage, and pasture in seven widely scattered districts. ${ }^{1}$

State and time of study.	Year.	Number of cows.	Feed units per cow.				A ver-ageproduc-tion ofmilkpercowperyear.	Feed units per pound of milk.	Per cent of total feed furnished by pasture.	
			$\begin{aligned} & \text { Con- } \\ & \text { cen- } \\ & \text { trates. } \end{aligned}$	$\begin{aligned} & \text { Rough- } \\ & \text { age. } \end{aligned}$	Pasture. ${ }^{2}$	Total for year.				
North Carolina(1915-17).	\{First....	301	1,711	2,046	1,170	4,927	Pounds ${ }^{\circ}$	1. 004	23.7	7.1
							4,908			
		256	2,486	2,216	856	5,558	4,922	1. 129	15.4	5.2
Indiana (1915-	First....	334	1,898	2,295	1,481	5, 674	6, 877	. 825	26.1	17.5
17).....	Second..	404	1,902	2,454	1,400	5,756	6,987	. 824	24.3	11.5
Vermont (1916-	FFirst....	444	999	2,255	2,184	5, 438	5,415	1. 004	40.1	10.6
19)	Second.-.	403	1,023	2,381	2,134	5,538	5,111	1. 083	38.5	9.6
Washington	First....	533	-937	2,216	2,062	5,215	7,369	. 707	39.5	24.2
(1917-20).....	Second. .	514	1,297	2,393	2,284	5,974	8,323	. 717	38.2	20.7
Nebraska (1917-	First....	268	1,510	2,418	1,336	5,264	5,806	. 906	25.3	19. 8
20)	Second..	266	1,221	2,617	2,170	6,008	5, 843	1. 028	36.1	22.3
Louisiana (1918-	First....	452	2,079	281	282	2,642	2,994	. 882	10.6	10.6
20)............	Second..	441	2,452	332	546	3, 330	3,263	1. 020	16.4	5.9
Delaware (1919-	FFirst....	249	1,984	1,404	2,077	5,465	5, 556	. 983	38.0 43.0	11.9 20.0
21)............	Second.	282	1,467	1,465	2,220	5,152	5,326	. 967	43.0	20.0
Total.		5,147						Av.	29.6	14.1

[^52]The principle of recurring effeciency is also involved in determining the proportion of the farm area that should be kept in pasture. When a farm is too large for one man to handle efficiently, but is not large enough to justify the hiring of an additional man, it generally would not pay to develop such a place to a 2 -man intensity. Under such conditions the area to be kept in pasture is the amount in excess
of what.the one man can handle efficiently. The same rule applies on farms needing two or three men and so on up, except that as the number of men increases the proportional amount of land kept in pasture would tend to narrow.

Value of Pastures in the United States.

Estimates of the rental value of pastures in the United States and the sustenance supplied by them, as compared with the value of the crops fed to livestock and the sustenance supplied, leads to the same conclusion as the farm survey records-that pasture is a very cheap source of feed. After making liberal estimates of the rental value of the various classes of pasture itemized in Table 22 it appears that the aggregate rental value of these $1,132,000,000$ acres of pasture in 1919 did not exceed $\$ 1,000,000,000 .{ }^{18}$. This averages about 90 cents per acre, or nearly $\$ 10$ per animal unit for a 6 -months' grazing season. The farm value of crops fed to livestock, on the other hand, was nearly $\$ 8,000,000,000$ (fig. 6). Inasmuch as the sustenance supplied by pastures was nearly equal to that supplied to livestock by the crops, it is evident that pasturage is a very cheap source of feed.

Crops in 1919 commanded a very high price, their aggregate value in that year being nearly three times the value in 1909 and over twice the aggregate value in 1923. Rental value of pasture, on the other hand, is more conventional and less fluctuating. However, after making allowance for the lesser response of pasture to the high price levels of crops and livestock existing in 1919, it appears probable that the annual value of the crops fed to livestock is at least three to four times as great as the rental value of all pastures. Many millions of acres of pasture lands are remote from market and hence are held at a low price, other vast areas are too rough or too dry for the production of crops and have no other competing use. Other areas are free range, as on the public domain of the West, or almost free range, as in the forest and cut-over lands of the South. Yet after these and other factors have been taken into account, it is evident that our pastures have not been given due credit by the farmers and graziers for the feed which they supply.

[^53]
Bulletins Relating to Hay, Fodder, and Pasture.

The Department of Agriculture has available for distribution a number of bulletins which deal with methods of production, management and utilization of hay and fodder crops and of pastures, including the western ranges. These publications can be secured free in small numbers from the Division of Publications, Department of Agriculture, or may be purchased in quantity at the prices quoted below from the Superintendent of Documents. Government Printing Office, Washington, D. C.

Hay and Fodder.

Farmers' Bulletins. (Free from United States Department of Agriculture if supply permits; otherwise, 5 cents each from Superintendent of Documents.)
1125. Forage for the Cotton Belt. 1283. How to Grow Alfalfa. 1229. Utilization of Alfalfa. 757. Commercial Varieties of Alfalfa. 1158 . Growing and Vtilizing Sorghums for Forage. 973. The Soy Bean: Its Culture and Vses. 886 . Harvesting Soy Beans for Seed. 1148. Cowpeas: Culture and Varieties. 1153. Cowpeas: Utilization. 515. Vetches. 967. Purple Vetch. 690. The Field Pea as a Forage Crop. 1276. Velvet Beans. 969. Horse Beans. 1365. Clover Failure. 1339. Red Clover Culture. 797. Sweet Clover: Growing the Crop. 820. Sweet Clover: Ctilization. 836. Sweet Clover: Harvesting the Seed Crop. 1151. Alsike Clover. 1142. Growing Crimson Clover. 579. Crimson Clover: Vtilization. 646. Crimson Clover: Seed Production. 693. Bur Clover. 730. Button Clover. 1143. Lespedeza as a Forage Crop. 990. Timothy. 1048. Rhodes Grass. 1126. Sudan Grass. 1130. Carpet Grass. 814. Bermuda Grass. 726. Natal (irass. 1254. Important Cultivated Grasses. 1433. Cultivated Grasses of Secondary Importance.

Dcportment of Agriculture Bulletins. (Free if supply permits; some can be secured from Superintendent of Documents at price quoted.)

Abstract

981. Sudan Grass and Related Species (out of print). 1260. Sorghum Experiments in the Great Plains (in press). 1244. Forage Crops in Relation to Agriculture of the Northern Great Plains (in press). 439. Utilization of Sor Beans (5 cents). 1174. Hungarian Vetch (5 cents). 876. Hairy Vetch Seed Production in the United States (10 rents). 617. Australian Saltbush (5 cents). 1045. The Sunflower as a Silage Crop (10 cents).

\section*{Pasture and Range.}

Department of Agriculture Bulletins. (Free from Department of Agriculture if supply permits; available in quantity from Superintendent of Documents at prices quoted.) .7.5. Important Range Plants (40 cents). 791. Plant Succession in Relation to Range Management (15 cents). 700. Climate and Plant Growth in Certain Vegetative Associations (15 cents). 201. Native Pasture Grasses of the Cnited States 15 cents). 772. The Genera of Grasses of the United States (40 cents). 626. Pasture Land on Farms in the Cnited States (10 cents). 1170. Effects of Different Systems and Intensities of Grazing Cpon the Native Vegetation at the Northern Great Plains Field Stations (15 cents). 728. Certain Desert Plants as Emergency Stock Feed (10 cents). 575. Stock Poisoning Plants on the Range (50 cents). 592. Stock Watering Places on Western Grazing Land (5 cents). 1001. The Relation of Land Tenure to the Uses of Our Grazing Land of the Southwestern States (15 cents). 790. Range Management on the National Forests (35 cents). 827. Cut-over Pine Lands in the South for Beef Production (15 cents).

Miscellaneous.

Atlas of American Agriculture. Zon.-Natural Vegetation Section. (In press.) Yearbook, 1921. Separate No. 874. Our Beef Supply. (20 cents.)
Yearbook, 1906. Separate No. 419, Range Management.

Bulletins no longer available, except in Iibraries.

[^54]

By L. C. Gray, O. E. Baker, F. J. Marschner, and B. O. Weitz, Bureau of Agricultural Economics, and W. R. Chapline, Ward Shepard, and Raphael Zon, Forest Service.

THE DOMINANT characteristic of American economic life has been abundance of land resources. The assumption of this abundance has colored our habits of thought and become the essential foundation for our economic policy, both individual and public. This national tradition was first seriously challenged by the conservation movement, which caused our people to pause and consider whether our amazing population growth and two centuries of exploitation of natural resources might have altered the outlook. However, that movement directed attention principally to the forests, mineral resources, and water powers, whereas the object of this article is to consider our present situation and future outlook in regard to our resources available for growing the food and raw materials that must be supplied by our crop lands, pastures, and forests. ${ }^{1}$

This will involve (1) a summary of our present land resources and of the extent and character of present uses, and (2) an estimate of future requirements-particularly those of the next few decadesand the relation of these requirements to the potential area available for the various uses.

[^55]The three principal agricultural us:s of the land are for crops, for pasture, and for forest. It is important to consider these three uses jointly, because they are partly competitive and partly complementary in their land requirements. Thus, a large part of the humid land of the United States is physically capable of being employed for each of these three uses. The arid or semiarid land is

Fig. 1.-Crops harvested in 1919 occupied 19 per cent of the land area of the United States. Pasture (excluding both temporary crop pasture and forest land used incidentally for pasture) occupied 43 per cent, and forest and cutover land about 25 per cent of the total area. However. the fifth of the land area in crops yielded a vastly greater annual product measured by value than the two-thirds in pasture and forest. The remaining 13 per cent of the land area was almost equally divided between land in farms not used for crops, pasture, or forest (mostly crop land lying idle, crop failure farmsteads, lanes, and waste areas), and nonagricultural land outside farms (mostly urban land, absolute desert, rocky areas, and land used for roads and railroads). Many of the figures in the graph are estimates.
not suitable for growing forests, ${ }^{2}$ but nearly all of it may be employed for grazing; and the portions where rainfall, topography, and soil are suitable, may be used for crops. Again, the three uses are in part complementary, for much of our forest lands may be used at the same time for grazing, and our crop land may generally be improved by including pasture in the crop rotation. Furthermore, crops and pasture are alternative sources of feed for livestock.

Present Uses of Our Land Resources.

No attempt at a complete economic classification of the land area of the United States has ever been made. Consequently, in the following discussion it has been necessary to rely largely on estimates made by the writers of this article. ${ }^{3}$

Fig. 2.-The total area shown by the two circles as not at present employed for crops harvested in 1919 , pastures or forests is $237,000,000$ acres, almost equally divided between land in farms and land not in farms. It should be noted, however, that the items under land in farms includes an estimated $15,000,000$ acres of crop failure in 1919 , which was a very dry year in the spring-wheat region of the Northwest, and an estimated $25,000,000$ acres of crop land lying idle or fallow. If these $40,000,000$ acres are subtracted there remain only $75,000,000$ acres of land in farms not used for crops, pasture. or forests. The $6,000,000$ acres of national parks include about $3,000.000$ acres of forest, which is not utilized as such. Of the entire $237,000,000$ acres of such land in farms and not in farms it is estimated that about one-half is physically capable of use in the future for crops. pasture, or forest.

The estimated division of our total land area of approximately $1,903,000,000$ acres, ${ }^{4}$ from the standpoint of the present uses of the surface, is summarized in Figure 1.

[^56]It will be noted that, of the total area, only about $237,000,000$ acres, or a little over 12 per cent, are not already in use for crops, pasture, or forest (fig. 2). More than half of this land, about $122,000,000$ acres, is outside the boundaries of farms, while about $115,000,000$ acres are land in farms not employed at present for any of the three uses mentioned. However, this last includes an estimate of $15,000,000$ acres of crop land not harvested, because of crop failure, and an estimate of $25,000,000$ acres of crop land idle or fallow. ${ }^{5}$

Of the $237,000,000$ acres not used at present for harvested crops, pasture, or forest, it is estimated that less than one-half may some time be employed for one or more of these purposes, leaving $134,000,000$ acres that can not be employed for crops, grazing, or forests in the future, either because devoted to other uses or because physically unsuitable. ${ }^{6}$

Thus, it appears that there is an area of less than $1,800,000,000$ acres $(1,769,000,000)$ capable of being used for either crops, pasture, or forest, although for part of it some form of reclamation would be necessary. Ultimately, of course, the increase of population will require the employment of somewhat larger areas of land for cities and villages, roads, and farmsteads. When the maximum population of the Nation is attained, it is probable that about $35,000,000$ acres more may be needed for these uses, reducing

[^57]the area ultimately available for crops, pasture, and forest to approximately $1,734,000,000$ acres of land. ${ }^{7}$

Land Now Used for Crops, Pasture, and Forest.

About $1,666,000,000$ acres, or 94 per cent of the $1,769,000,000$ acres available for crops, pasture, and forest, are now employed for one or more of the three uses (fig. 1). ${ }^{8}$ However, very large areas are of low productiveness and will be always, even allowing for future progress; and other large areas are greatly under-used.

Thus, it is estimated that $587,000,000$ acres, or nearly a third of the total available area, are arid or semiarid pasture and range. All of this land is in the West. For the most part, the carrying capacity is very low, requiring an estimated average of 24 acres to maintain an animal unit for the grazing season. In spite of the enormous magnitude of the area, amounting to more than six times the farming area of Germany before the World War, it is estimated that in 1920 it supplied pasture for the grazing season sufficient to maintain without supplemental feed only a little more than $24,000,000$ animal units, ${ }^{9}$ or about 22 per cent of the total livestock on farms and

Fig. 3.-The largest acreage of unimproved pasture in farms, including woodland pastures, as reported to the census enumerators in 1910 , was in the subhumid to arid Great Plains region, notably in Texas, and in the valleys and plateaus of the Pacific Coast States. In addition to the unimproved pastures in farms in the West there is a much larger acreage of similar but usually more arid land not in farms. Since 1910 a large area of range-land in the West has been added to the farming acreage. Large acreages of unimproved pasture will also be noted in the steeply rolling to rough lands of the upper Mississippi Valley and in the hilly New England States. Similar information was gathered in the 1920 census, but has been tabulated as yet only for a few States.
ranges in the United States. Allowing for the winter feed needed. this pasture and range land supplied approximately 16 per cent of the sustenance needed during the year by all livestock.

[^58]A small part of this area of semiarid and arid pasture (about $44,000,000$ acres, much of which is piñon-juniper and chaparral) is included in the national forests (see top bar of figure 1). This area is used for grazing under careful regulations which make for efficient use. Another area subject to public restrictions is the semiarid grazing land included in Indian reservations. About 141,000,000 acres of semiarid grazing land are in the unreserved public domain, and are used as an unrestricted grazing commons, which results in the most inefficient utilization and which has caused a great deterioration in the quality of the range. Somewhat better employed are the $67,000,000$ acres of other publicly owned land, mostly belonging to the States, and the $172,000,000$ acres privately owned but not in farms. However, over much of this land the range is almost as badly overgrazed as in the public domain. The $163,000,000$ acres in farms, of which $10,000,000$ are reported improved, are not subject to the devastating effects of competitive grazing by rival stockmen;

FIG. 4.-The largest acreage of improved pasture in 1910 was in the upper Ohio Valley, the western portion of Corn Belt, the southern part of the hay and dairying region, and the eastern portion of the Great Plains; in other words, in the best general farming and livestock-producing sections of the United States. The concentration of pasture acreage shown in certain Texas counties in the map above, and also in Figure 3, is largely due to the census reporting total acreage of ranches as being located in the same county as the ranch headquarters are located, and includes, therefore, ranch land lying in adjacent counties. These maps are based on a special tabulation of the census schedules made by the Department of Agriculture and published in department Bulletin 626 .
but, for the most part, the ranchers have not developed conservative methods of using their land (fig. 3). ${ }^{10}$

Humid grassland pasture-that is, humid pasture other than woodland-occupies an area estimated at $231,000,000$ acres; with a carrying capacity averaging about one animal unit per 5 acres. Of this area about $60,000,000$ acres are improved pastures in farms (fig. 4), consisting mostly of rotation pastures and permanent seeded pastures with an estimated average carrying capacity of one animal unit to $2 \frac{1}{2}$ acres for a 6 -month season. About $88,000,000$ acres are unimproved pasture in farms (fig. 1), with an average carrying capacity estimated at one animal unit to $5 \frac{1}{2}$ acres. ${ }^{11}$ The

[^59]

Fig. 5.-This generalized map of forest areas, including cut-over and burned-over lands and arid woodland, was prepared in cooperation with the Forest Service. The figures given in the table are merely tentative. As a result of more recent estimates the statistics for individual States are somewhat different from estimates previously published. The estimates for the originally forested atistics portion of the United States, except for several States in which forest surveys have been made, are based largely on deductions from the statistics of the 1920 census. These compilations were made by counties. of the 483,000 oon acres of forest and cut over land in the United States, about one-half is in the South, one-eighth in the Northeastern States, one-eighth in the cutStates, and nearly onequarter in the West, mostly in the Rocky Mountain and north Pacific regions. Howere over the Lakes $138,000,000$ acres of virgin saw timber is in the West.

Fig. 6.-Over five-sixths of the crop land is in the humid eastern half of the United States, and nearly two-thirds is concentrated in a triangular-shaped area, the points of which are located in western Pennsylvania, central Texas, and north central North Dakota. In this area, which includes only about one-fourth of the land of the United States, are produced four-fifths of the corn. threefavorable natural conditions for the growth of corn, and few regions possess so favorable conditions for the culture of the small grain and hay crops.
remaining area is publicly owned land or privately owned land not in farms. (See bottom bar of figure 1.)

Another large area is classed as forest (including cut-over and burned-over land), estimated at $483,000,000$ acres, or 27 per cent of the total area available for the three uses (fig. 5). However, of this amount $81,000,000$ acres are cut-over land not restocking, that is, not becoming reforested, and $142,000,000$ acres are timber of cordwood size. About $260,000,000$ acres are saw timber, of which only $138,000,000$ are virgin forest. ${ }^{12}$ Of the total forest, cut-over and burned-over area, it is estimated that about $237,000,000$ acres are employed for grazing. Almost one-third of this is in the national forests and Indian reservations, about one-third is wood lots in farms used for grazing, and the remainder is privately owned land not in farms. The carrying capacity of this forest and cut-overpasture is very low, estimated at an average of about 23 acres per animal unit for a 6 -month season.

In addition to the $483,000,000$ acres classed as forest, there is an area of about $80,000,000$ acres of mesquite, piñon-juniper, live oak. and chaparral, nearly all of which is included in the area of semiarid grazing land. The wood on this land is useful for fuel and fence posts, and will undoubtedly be more widely used when the price offered justifies transportation to centers of consumption. (See fig. 5.)

Land in crops harvested in 1919 is estimated at $365,000,000$ acres (fig. 6), or only a little over one-fifth of the total area available for the three uses. However, there is always a considerable area of land planted to crops not harvested, mainly on account of crop failure. This is estimated roughly at $15,000,000$ acres for 1919 . There was also an area of crop land lying idle or fallow estimated at $25,000,000$ acres. Some of this probably consists of old fields recently abandoned. ${ }^{13}$

Land Potentially Available for Crops, Pasture, or Forest.

With the agricultural derelopment of the United States, the acreage of crops has been more or less constantly expanding, in earlier periods largely at the expense of forest, and more recently mostly at the expense of pasture (see fig. 20). This process will probably continue with the increase of population, and although it is unlikely that the limits set by physical conditions to the expansion of crop land will ever be reached, it is helpful in studying the problems of crop-land utilization to determine what these extreme physical limits are. From this point of view, the estimated potential areas of land capable of being used for crops are shown in Figure 10.

[^60]

Fig. 7.-The area of irrigated land increased $5,000,000$ acres, or one-third, between 1909 and 1919 ; and the irrigation enterprises were capable of irrigating $7,000,000$ acres more than were actually irrigated in 1919. There is sufficient water in the West to irrigate double the area that existing enterprises were capable of irrigating in 1920 , or about $50,000,000$ acres, when higher prices of farm products justify the constantly increasing cost per acre of construction of irrigation works. California, Colorado, and Idaho farm in irrigated acreage at present; but Montana rises into second place in the estimate of total irrigable area. Estimates of irrigable area were supplied by R. P. Teele.

Fig. 8.-This map is based largely upon drainage reports available in the Division of Agricultural Engineering (Drainage Investigations) and upon maps of the United States Soil Survey, United States Geological Survey, and the General Land Office. These reports and maps were compared with statistics of drainage enterprises and of land in farms needing drainage, available for the first time in the 1920 census, by L. A. Jones, of the Bureau of Public Roads, and F. J. Marschner, of the Bureau of Agricultural Economics. Two-thirds of the land unfit for caltivation without drainage is in the Southern States and one-half of the remainder is in the three Lakes States. Nearly all of the wet land in the South, except the Florida Everglades and prairies, tidal marshes, and Gulf coastal prairies, is forested, and requires both drainage and clearing; but much of, the wet land in the Lakes States consists of unforested peat bogs. Of the $91,000,000$ acres or more of wet land it is estimated that only $75,000,000$ acres can be drained at a cost that
will ever prove feasible.

FIG. 9.-This map is based on compilations by counties for the eastern forest region, including a marginal woodland belt containing about $19,000,000$ acres, along the western edge of the forest regi on in Texas and Oklahoma. The study also included the Pacific Coast States, the Idaho Panhandle, and northwestern Montana. Most of the region in between is either arid or so mountainous that forest land suitable for crops is available only in small areas characterized for the most part by a very short growing season, and is insignificant in amount. Only a smalises land even of fair quality. Much of this land would require heavy expenaiture for fertilization in the finded States pense for clearing. By far the greater part consists either of sands or light sandy loams ered by the Soil Survey and descriptive data in the (reneral Land Office survey records, and was prepared by F. J. Marschner, Bureau of Igricultural Fconomics (Division of Land Feonomics).

It appears that about $100,000,000$ acres more of improved land, mostly improved pasture, are potentially available for crop production. The rapid increase in crop acreage during the World War came largely from this improved pasture land. There are also about $30,000,000$ acres more of land in the West which it is possible to irrigate (fig. 7) and about $75,000,000$ acres more of potential crop land unfit for crops without drainage, though the greater part of it must also be cleared of timber or stumps (fig. 8). A large area of humid unimproved land, estimated at $235,000,000$ acres, is physically capable of crop production without drainage. About $170,000,000$ acres of this are forest and cut-over land, located mostly in the South and in the Lake States (fig. 9). Finally, there are about $52,000,000$ acres of subhumid lands, mostly in the Great Plains region,

Fig. 10.-In addition to the $365,000,000$ acres of land in harvested crops in 1919 , it is estimated that there are also about $600,000,000$ acres physically capable of being utilized for crops some time in the future. This includes practically all the land that is not too rough, rocky, sandy, cold, or dry, or that is not now employed for uses other than agriculture and forests. Consequently it includes some land that it will not be economical to reclaim for crops even when we reach our maximum population. It also makes no allowance for pasture, except semiarid pasture too dry for crops and a small amount of humid pasture too rough for cultivation, nor for land needed for the expansion of urban areas, roads, railroads, etc. Undoubtedly, a part of this potential crop area will always be employed for pasture. Most of the figures are based on estimates.
and possibly $116,000,000$ acres of semiarid land, mostly east of the Rocky Mountains, which could, if necessary, be utilized for dryland crops. ${ }^{14}$

There are in all, therefore, about $608,000,000$ acres of potential crop land, which, added to the $365,000,000$ acres in harvested crops, orchards, vineyards, etc., make a total of $973,000,000$ acres (fig. 10). When one recalls the fact that the crop area of the German Empire before the World War was only about $70,000,000$ acres, ${ }^{15}$ the above area appears enormous. Howerer, for a number of reasons the estimate of potential crop area gives an entirely unreal and illusory conception of our available resources.

In the first place, as noted above, this is the area of land that is physically capable of being employed for crops when our need shall become so extreme that considerations of cost of utilization are relatively secondary. Thus, of the land capable of being employed for crops, pasture, and forest in the originally forested region of the eastern half of the United States, there is excluded only the land too rough for crops and about $16,000,000$ acres of loose sands which it was considered proper to regard as suitable only for forest (fig. 11). The area indicated as capable of being employed for crops is mostly land that would have to be cleared of timber or of brush and stumps, much of it at heavy cost. Only about $32,000,000$ acres are classed as heavy soils. The remainder consists of $162,000,000$ acres of soils of medium texture and $26,000,000$ acres of fine sands. Most of the former area is light sandy loam. Without doubt practically all of the area of fine sands and a large proportion of the medium-textured soils are of low productivity; but. they constitute a reserve area of considerable importance for vegetables, fruits, and other intensively cultivated crops, notably cotton and tobacco. Probably heavy annual fertilization will be required for most of this land. Moreover, a considerable part of the area, though not absolutely too rough to be used for crops, is so

[^61]

Fig. 11.-Most of the $220,000,000$ acres in the region capable of use for crops without drainage is now forest or cut-over eastern originally forested land. There are about $9,000,000$ acres more of such land in the Prairie States. The light soils will, in general, need more fertilizer than the heavy soils. The soils of medium texture are mostly sandy loam. The swamps and other wet lands are also forested for the most part, and will, therefore, require clearing in addition to drainage. At least 15 per cent of these swamp lands, owing to adverse conditions, is unlikely ever to be drained. Some of the rough, mountain land can be used for orchards, provided the slopes are kept in sod; but the amount of land likely to be so used is very small. Similarly some of the loose sands can be used for crops provided fertilizer is liberally applied, but the extent of such land will remain very small so long as better lands are available. Undoubtedly most of these $457,000,000$ acres of land will not be needed for crops until at least another crop of timber can be cut (see p. 495).
rolling that erosion would probably result in serious soil depletion. Some of this land in the northern portion of the Lake States is also subject to summer frosts. Most of the potential crop land in the eastern forest region is either in the Southern States or in the northern parts of Minnesota, Wisconsin, and Michigan (fig. 9).

Of the estimated $75,000,000$ acres capable of being employed for crops after drainage (fig. 8), probably about 68 per cent would also have to be cleared of trees or stumps and brush. Much of the drainable land is fertile, but considerable areas are either deficient in fertility or the soils are of undesirable texture.

The reclamation of arid land by irrigation (fig. 7) also involves heavy costs. The steady increase in average cost per acre for irrigation, which was about eight times as high for projects begun in the decade 1910-19 as for projects begun prior to 1890, suggests that the easier projects were first undertaken and that much of the remaining area classed as irrigable will require extremely heavy costs for construction of dams and ditches.

Of the $100,000,000$ acres of so-called improved land not used for crops, a considerable part is probably potential crop land of fair quality. In fact, an estimated $15,000,000$ acres is land actually employed for crops but not harvested in 1919. Much of this is land in the semiarid crop regions of the West, however, where crop failure because of inadequate rainfall is frequent. About $25,000,000$ acres is crop land which is idle or fallow. This is found mostly in the semiarid wheat areas of the West, where bare fallowing to conserve moisture is practiced, and in the South and East, where many unprofitable fields have been allowed to grow up to broom sedge and weeds. Much of the $60,000,000$ acres of improved land in pasture is pasture in rotation with crops, probably the equal of the crop land in fertility; and most of the remainder is fertile permanent pasture. However, to devote any large part of this area to crops without providing a substitute by the improvement of pasture now classed as unimproved would result in the serious disturbance of the necessary relationship of pasture to crops in the systems of farming.
The potential crop land in the subhumid prairies comprises land which hitherto has not been employed for crops or for improved pastures, either because of rough topography or the presence of stone or because the soil is shallow or infertile. Most of this area is in central Texas and Oklahoma.

The potential crop land in the semiarid portion of the Great Plains region has mostly so low a rainfall that an average yield of wheat year in and year out would probably be not more than 7 bushels to the acre. The price of wheat would need to be much higher than at present to make its production profitable under these circumstances In fact, much of the land in this region which has been planted to wheat has proved to be unprofitable at the present level of prices. However, when the population of the nation becomes much greater than at present, considerable portions of this area may be used for grain production, supplemented by the raising of livestock on forage crops, range pasture, and the straw and stubble.
Of the estimated area of $18,000,000$ acres of potential crop land west of the Great Plains not irrigable or drainable, about one-third is humid or subhumid land in the Pacific Coast States or in mountain parks. Most of this humid land is covered with heavy forests or
with the large stumps left after lumbering. The cost of clearing is very heavy. The remaining two-thirds is largely semiarid land.

It is also important to keep in mind the fact that most of the potential crop area shown in Figure 10 is now used either for forest or for grazing, and if used for crops would not be available for these other uses. As previously noted, about $1,769,000,000$ acres are available for all three uses. Of this amount, $468,000,000$ acres are land so

Fig. 12.-Of the $1,903,000,000$ acres in the Cnited States, about $468,000,000$ acres are arid range, suitable only for grazing, with very low-carrying capacity. About $328,000,000$ acres are humid land, of which $262,000,000$ acres are so rough or sandy that the land is primarily valuable only for forests, and $66,000,000$ acres are too rough for cultivation, but used for pasture and not forested at present. About $973,000,000$ acres are physically capable of use for either crops or pasture, but probably a considerable portion will remain in forest. (See fig. 10.) With the increase of population the area devoted to cities, roads, farmsteads, etc., will need to be increased somewhat. The figures are based largely on estimates.
arid that it is capable of being used only for grazing (fig. 12). Another area of $262,000,000$ acres is capable of being used only for forest. Most of this is mountainous or other land of rough topography (fig. 13). Thus, if all of the $973,000,000$ acres of potential crop land were employed for crops, there would remain $66,000,000$

Fig. 13.-The study on which this map is based, as in the case of Figures 9 and 11, included county compilations only for the eastern half of the United States and the Pacific Coast States. Within these regions the land lad cossed as suitable only for for the eastern
of the areas too rough for crops and the areas of coarse consists of the areas too rough for crops and the areas of coarse sand. The total is about $152,000,000$ acres in the East and $67,000,000$
acres in the Paclfic Coast States, to which have been added 53000000 ares in the Rock acres in the Paclfic Coast States, to which have been added $53,000,000$ acres in the Rocky Mountain region suitable only for forests.
There are, in addition, probably $200,000,000$ acres of land that can There are, in addition, probably $200,000,000$ acres of land that can be more economically used for forests than for other purposes Uning the next few decades."The increase of "improved" and cleared "unimproved" farm land in the forested portions of the in the rate of clearing during the next few decades. 1910 and 1920 , and there seems little likelihood that there will be any great increase
acres of humid pasture land other than forest or cut-over pasture. It is obvious that even a nation of very dense population would not maintain so small a proportion of pasture to crop land. In Germany, where the density of population is many times as great as it is in the humid portion of the United States, pasture, other than woodland pasture, comprises an area about two-thirds as large as the area of land in crops.

As will be shown later, the $262,000,000$ acres of forest would provide, even under the best of conditions, for growing a supply of timber, for only a small part of our present per capita consumption of timber and timber products. Furthermore, in the next few decades we shall by no means need for crops all of this area of potential crop land. Consequently, the problem of future land utilization becomes one of relative requirements for the several uses. A primary object of the present study is to determine these requirements for the next few decades as a basis for indicating the nature of the land policy required.

Increasing Scarcity of Land Resources and Nature of This Scarcity.

As long as a large portion of our national domain remained unused for crops, pasture, or forest, the potential competition of these uses for our national area was not apparent. For some decades, however, we have been using for crops or for grazing the greater part of the land not occupied by forests, and during this period there has been practically no important reserve area for the expansion of any one of the three uses except at the expense of the others. Consequently, the growth of our population has resulted in an ever-increasing scarcity of our available land area, and it is important to consider some of the evidences of this scarcity.

Decrease in Per Capita Acreage of Land in Farms, of Improved Land, and of Land in Crops.

According to the census of 1920, the area of land in farms had increased more than threefold since 1850 , while the area of improved land had increased nearly fivefold (fig. 14). Howéver, the per capita acreage of farm land reached a maximum at the outbreak of the Civil War (fig. 15). The decade in which the Civil War occurred resulted in a notable decline in per capita acreage of farm land. In 1900 the per capita acreage of farm land was larger than in 1870, mainly as a result of the tremendous expansion of the area of land in farms from 1890 to 1900 , but thereafter decreased. The per capita acreage of improved land in farms was at the maximum in 1880 and 1890. The per capita acreage of crop land has declined since 1900.

The decline in the per capita acreage of improved land and of crop land during the last few decades is attributable partly to the limited area of the United States available for crops, pasture, and forest. But it has been due even more to the difficulty of enlarging our crop area by the addition of land of a quality capable of being profitably used for crops.

The decline in the per capita area of farm land, improved land, and land in crops is the result of a number of factors. The cen-

Fig. 14.-While the increase in the area of land in farms from 1850 to 1920 was greater than the increase of improved land, the rate of increase for the former was less than for the latter. However, since 1880 the ratio of improved land to farm land has been more or less constant at about 1 to 2. From 1880 (when census figures of crop acreage became available) to 1920 the harvested area of the principal crops increased at a more rapid rate than the area of all farm land or of improved farm land. In other words, the proportion of the improved land which is in crops was increasing, and the proportion in pasture was decreasing accordingly.

PER CAPITA AREA OF LAND IN FARMS AND OF IMPROVED FARM LAND, THE UNITED STATES, 1850-1920; PER CAPITA HARVESTED AREA OF 14 PRINCIPAL CROPS, 1880-1920; AND INDEX OF PER CAPITA PRODUCTION OF 9 PRINCIPAL CROPS (5-YEAR AVERAGES CENTERED ON CENSUS YEARS), 1870-1920.

Fig. 15.-The per capita acreage of land in farms has shown a decreasing trend since 1850. The per capita acreage of improved îarm land was about the same in 1920 as in 1850 , but has decreased in each decade since 1890 , when the maximum was attained. The per capita area of land in the 14 principal crops increased slightly from 1880 to 1900 , but was less in each succeeding decade. The index of per capita production of 9 principal crops increased from 1870 to 1900 , but was less in 1920 than in 1900 . The data on acreage of land in farms, improved land, and crop land are from the census. The data on per capita production represent 5 -year averages of Department of Agriculture estimates, centered on census years. The crops are combined on the basis of the aggregate value obtained by multiplying the total product of each by the 43 -year average price. Comparable data for all decades are available for only nine crops, comprising, however, nearly 90 per cent of the total crop area.
sus of 1920 revealed the fact that, since 1910, in that part of the United States east of the Great Plains, there had occurred a widespread decrease in the acreage of land in farms, amounting to 7,000 ,1000 acres, with an increase only in a few scattered localities, the most important of which were the northern portion of the Great Lakes States, the Mississippi River bottoms, particularly in Missouri and Arkansas, and a few other districts where the reclamation of land by drainage or clearing was taking place (figs. 16 and 17). This decrease was offiset by a widespread increase in the area of land in farms in the western half of the United States, amounting

Figs. 16 and 17. With the exception of the northern portion of the Great Lakes States, Florida, and southeastern Oklahoma, there was no notable increase in the acreage of land in farms east of the Great Plains. In the latter region and other parts of the West the great expansion of the area of land in farms was owing largely to the enactment of the enlarged homestead act, in 1909 , and the grazing homestead act, in 1916 , which authorized entry of 320 and 640 acres of land, respectively. With the exception of the areas mentioned, and a few other scattering districts where reclamation of one kind or another occurred, decreasing acreage of land in farms was the general tendency east of the Great Plains. The marked decreases in Texas were probably mostly nominal, being due largely to shifts of the headquarters of large cattle ranches from one county to another.
altogether to $84,000,000$ acres. A large proportion of this land has proven suitable for grazing rather than for crops. In fact, the total increase of improved land in the West between 1910 and 1920 was 24,000,000 acres, much of it being the result of the improvement of land already in farms.

In spite of the general decrease of land in farms in the eastern half of the country, there was a net increase in crop land in this section amounting to nearly $25,000,000$ acres, while in the western half of the country the increase was about $20,000,000$ acres (figs. 18 and 19). Although this increase in crop acreage in the eastern half of

[^62]the country may include small additions to both farm area and crop area through drainage or clearing of land, it more largely comprises the using for crops of improved pasture land in farms. The fact that improved land in the United States increased only $25,000,000$ acres during the decade, while the area of land in crops increased about $45,000,000$ acres, indicates that a large proportion of the increase in crop area came from improved pasture land.

Since 1920 the area of farm land and of improved land has increased very little, possibly not at all, and the acreage in crops has decreased since 1919. Population, on the other hand, has probably increased somewhat more rapidly than during the decade 19101919, which included the war years and epidemics of influenza. The rate of decrease of per capita acreage of farm land, improved land, and crop land, therefore, has probably been more rapid since the World War than before.

Has this decrease for more than two decades in the acreage of crops per capita meant also a decline in production per capita, or may not the decrease of per capita acreage have been offset by a larger yield per acre? The answer to both questions probably must be in the negative. The index of average production per acre increased considerably from the 5 -year period 1883-87 to that of 1903-07, but from the latter period until 1918-22 there was, if anything, a slight decrease in the index (fig. $4 \dot{5}$). ${ }^{17}$

Decrease in Area of Pasture.

The significance of the decline in the per capita acreage of crop. land during the past two decades is emphasized all the more by the fact that it has been accompanied by an even more marked decrease in the per capita area of grazing land, including that without as well as within the boundaries of farms. For, whereas the area of farm land during the period was increasing, albeit, not with sufficient rapidity to keep up with the increase of population, this very increase involved a decrease in the total area of land not in farms. Nearly all the land not in farms suitable for grazing has been grazed since 1890. ${ }^{18}$.Within the area of land in farms, crops have encroached constantly on the pasture land. Crop land increased 11.3 per cent between 1909 and 1919, whereas farm land increased only 8.8 per cent. It appears almost certain that half of the increase in crop land during this decade was at the expense of improved pasture, and much of the remaining half from unimproved pasture within or without farm boundaries. The clearing of forest land in farms and the use of this land for pasture ${ }^{19}$ has not been nearly so

[^63]extensive as the expansion of crop land. In fact, the actual area of land used for pasture has probably decreased since 1880, and almost certainly since 1890 (fig. 20). The estimated amount of decrease per decade in pasture area since 1890 is as follows: ${ }^{20}$

On the basis of these estimates it appears that the per capita acreage of humid pasture (exclusive of woodland) and semiarid pasture was reduced from 14.28 acres to 7.75 acres, or nearly half during the 30 years. Moreover, the carrying capacity of the pasture

TREND IN THE USE OF THE LAND AREA FOR CROPS, PASTURE, AND FOREST, UNITED STATES, 1880-1920.

Fig. 20.-The area of land in harvested crops has steadily increased at the expense of forest and cut-over land, on the one hand, and of pasture, on the other band. During recent years the increase has been mostly at the expense of improved pasture. The area of other uses and waste has been practically constant, while the area for cities, farmsteads, roads, etc., has increased, this increase is probably offset by the decrease in area of waste land.
per acre probably decreased also, since the pasture land put into crops was undoubtedly the best pasture.

The growing scarcity of land available for grazing is reflected in the statistics of livestock. The per capita number of livestock in 1922 was less than two-thirds that in 1894 (fig. 21). This was largely caused by decreases in the per capita numbers of sheep, beef cattle, horses, and mules. The expansion of the livestock industry across

[^64]the central and far West between-1850 and 1900, and its stationary condition since, are shown in Figures 22 to 29.

TRENDS OF TOTAL AND PER CAPITA NUMBERS OF LIVESTOCK, UNITED STATES, 1850-1922.

Fig. 21.-Since about 1894 there has been but little increase in the total number of livestack in the United States, and consequently the number per capita in 1922 was only about two-thirds that of 1894 . In order to reduce the different classes of livestock for any given year to a single figure, the number of head of each class was given a relative weight equivalent to its $56-y e a r$ average price. The curve probably contains a certain margin of error due to defects in basic statistics, as revealed by the sudden variations from trend shown at cerfain periods, as, for instance, between 1906 and 1907.

Increasing Land Values as an Indication of Increasing Scarcity of Farm Land.

An increase in the average valuation of land per acre is not a conclusive proof of the increasing scarcity of land in a particular country. It may be a result of other influences, such as a decrease in the rate of capitalization or influences outside of the country affecting the world market. Again, an increase in average valuation per acre for the country as a whole may reflect the influences of the addition of new cheap lands in the process of expansion. However, changes in land values may tend to confirm other indications.

The trend in the value of farm real estate per acre from 1850 to 1920, according to the decennial census, is shown in Figure $30 .{ }^{21}$

When land valuation is expressed in current dollars without reference to changes in the value of the dollar itself, without regard to the relationship between the valuation of land expressed in dollars and the valuation of other commodities expressed in dollars, it appears that the valuation per acre of farm land has increased during every decade except from 1890 to 1900 . This upward trend has occurred in spite of the fact that each decade has seen included in the land area of the nation a large acreage of new and cheap farm land.

However, when the valuation of land per acre is expressed in current dollars, the upward movement may reflect merely inflation

[^65]

Figs. 22 to 25 .-In 1850 only the eastern portion of the Corn Belt was occupied by livestock, and that sparsely, and only a beginning had been made in the extreme southern part of the great dairy States, Wisconsin and Michigan. There were no livestock reported in Iowa, except the extreme eastern part, nor in Minnesota, the Dakotas, Nebraska, and Kansas. A beginning had been made in eastern Texas. Between 1850 and 1880 the Corn Belt, the southern parts of the Great Lakes States, Texas, and the more desirable parts of the Pacific coast and the Rocky Mountains were largely occupied by livestock, but little progress had been made in the Dakotas and Oklahoma, and the vast arid range lands of the western half of the United States were only partly utilized

Figs. 26 to 29.-Between 1880 and 1920 the principal extensions in the territory occupied by livestock were the Dakotas and Montana east of the mountains, the western third of Texas, and Oklahoma. Most of this increase was between 1880 and 1890 . Between 1890 and 1920 there appears to have been some decrease in the quantity of live stock in much of the Corn Belt. In this series of maps (figs. 22 to 29, inclusive) the various classes of livestock are converted to a single unit of measurement, based on the average values of 56 years, in order to show the expansion of the livestock industry considered as a whole. The statistics were compiled by Dr. Sewell Wright, Bureau of Animal Industry.
of the currency and be a part of a general increase in the prices of all commodities. When we divide the average valuation of farm land per acre by the index number of prices of all commodities (land not being included), we get a rough measure of the changes in the value of land; that is, of the purchasing power of land in terms of other commodities. The figures thus calculated indicate a decrease in the average value of land per acre during three decades since 1850: 1860-69, 1890-99, and 1910-19. ${ }^{22}$

The average figure for the nation as a whole is complicated by the continuous inclusion of new land. A more significant indication of the trend is that available for Ohio by years (fig. 31). This curve

AVERAGE VALUATION PER ACRE OF FARM REAL ESTATE, UNITED STATES, 1850-1919.

Fig. 30.-The general trend of the valuation of farm real estate has been upward since 1850 , so far as it is revealed by decennial census figures. The upward movement was especially rapid from 1900 to 1920 , but from 1910 to 1920 the increase in the valuation of land was not as rapid as the upward movement of general commodity prices. Consequently the valuation of farm land expressed in dollars of the purchasing power of 1913 decreased. This decrease was largely due to the tendency for the movement of land values to lag somewhat behind the movement of general commodity prices.
shows the strong upward movement beginning about 1900, but it also shows a slight downward trend preceding 1900.

The trend in the value of farm land up to 1920 appears to confirm the conclusion, supported also by other facts, that the nation reached and passed the apogee of agricultural land supply in proportion to population about three decades ago, and that we have entered a period which will necessarily be marked by a continually increasing scarcity of land. For, although the present area of land in farms is only about one-half the total land area of the United States and the improved farm land is only about one-quarter,

[^66]nearly all of the area suitable for agricultural purposes is now in use either for crops or for pasture, or is forest and cut-over land, and was probably so employed at least three decades ago. The needs of the increased population, which are two-thirds greater than they were three decades ago, have been met in recent years by a large increase in the total though not in the per-capita area of crop land, mostly at the expense of pasture; and by a decrease in the per-capita area required to maintain livestock, principally due to reductions in the per-capita number of sheep, beef cattle, and horses and mules.

> TREND IN AVERAGE VALUATION PER ACRE OF FARM REAL ESTATE IN OHIO COMPARED WITH TREND OF PRICES OF WHOLESALE COMMODITES IN THE UNITED STATES (DEPARTMENT OF LABOR INDICES), 1877-1921.

FIG. 31.-Unlike the curve of land valuation shown for the United States as a whole in Figure 30, the curve for Ohio does not reflect the influence of the development of large areas of new farm lands within the State, for Ohio was fully settled before 1877. Instead of an upward movement in the curve of real estate prices throughout the period, as was shown for the United States as a whole, the curve for Ohio follows the downward movement of commodity prices from the eighties to about 1897. From about 1903 to the outbreak of the World War, the curve of real estate prices advanced more rapidly than the curve of commodity prices. This was apparently a period when the value, as distinguished from the price, of land was increasing, probably reflecting the growing scarcity of available farm land of good quality.

Conditions That Tend to Obscure the Increasing Scarcity of Land Resources.

The trend toward increasing scarcity of land resources available for crops, pastures, and forests has been obscured temporarily by the existing agricultural depression and by the fact that we are still cutting our timber largely from a stored crop.

The Overdevelopment of Farm Production for Export Temporarily Disguises the Increasing Scarcity of Farm-Land Resources.

It seems incongruous to talk of the increasing scarcity of land a vailable for crops, pastures, and forest at a time when certain important farm products are almost a drug on the market. Since this

TREND OF NET EXPORTS OF 10 PRINCIPAL CROPS (COMBINED ON BASIS OF 43-YEAR AVERAGE PRICES), UNITED STATES, FISCAL YEARS 1891-1922.

Fig. 32.-The annual variation in the volume of exports is shown by the dashed line, while the solid line is a 5 -year moving average centered on the middle year, except for the last two years, which represent 4 -year and 3 -year averages, respectively. A comparison of the two curves indicates that about 1897 there began a rapid decrease in the volume of exports, which continued until 1903. While the large exports of 1906 were an exception to the downward movement, the general trend appears to have been toward lower averages until 1910. Then began a general upward movement which continued until the outbreak of the World War, followed by a downward movement, which continued until 1917, followed by another increase, which continued until 1921. In general, the level of exports from 1912 to 1922 was higher than in the period from 1902 to 1911.
depression made its appearance, public attention has associated it with the export surplus of farm products. At first the public noticed that the exports of farm products measured in dollars had

TREND OF ACREAGE, PRODUCTION, AND NET EXPORTS OF WHEAT, TOTAL AND PER CAPITA, UNITED STATES, 1909-1922.

Fig. 33.-Small percentages of change in the production of wheat (whether due to variations in acreage or in yield) result in large percentages of change in exports. The general trend of acreage, production, and exports of wheat was upward from 1910 to 1914 . There followed a decline until 1917, and then a marked upward movement culminating in 1919 for acreage and production and in 1920 for exports. From 1920 to 1922 there was but little change in wheat acreage or production, but a large decrease in exports.
decreased. There immediately resulted the impression that our exports were being dammed up in this country because the normal channels of outlet were blocked by the chaotic conditions of credit and international exchange. Subsequently, however, attention was directed to the fact that our physical exports were still much larger than in the pre-war period, and the conviction has developed that the trouble is due to an excessive production of agricultural products.

In order to make clear the fundamental conditions responsible for the development of the present depression and for its continuance, it is necessary to answer certain basic questions: (1) In what degree is the physical export volume of farm products abnormal? (2) What conditions are responsible for the expansion of our exports; is the

TREND OF ACREAGE, PRODUCTION, AND NET EXPORTS OF CORN, TOTAL AND PER CAPITA, UNITED STATES, 1909-1922.

Fig. 34.-The illustration shows the enormous relative expansion in the total and per capita exports of corn in 1921. However, the normal percentage of exports to total product is so small that a slight percentage of increase in the total volume of production, due to increase in acreage or yield, may result in a very large percentage of increase in the surplus available for export. This explains the fact that the large rise in the export curves from 1919-1921 does not coincide with a correspondingly large increase in the curves for acreage and production. For 1913 there were no net exports of corn; hence the break shown in the export curve.
expansion due to increased acreage per capita, to increased production per acre, or to decreased consumption per capita? (3) Was the sudden decrease in prices of farm products due to the enlargement of the volume of exports?

Extent to which the volume of exports is abnormal.-The United States has always had a surplus of farm products for export. The trend in volume of this surplus is shown in Figure 32.
The trend in the volume of exports was downward from about 1897 until about 1909, with a slight interruption due mainly to the large exports of 1906. About 1910 there began an upward trend. This upward movement was interrupted by a downward movement from
about 1914 to 1917, followed by another large increase, mainly due to the enlarged exports of certain cereals. The average annual exports of wheat were over twice as great from 1919-22 as in the five years, 1909-13 (fig. 33). Comparing the same periods, the exports of rye, formerly of little consequence, increased from about $1,000,000$ bushels to nearly $43,000,000$, the direct exports of corn increased from $40,000,000$ bushels to $82,000,000$ (fig. 34), and the indirect exports of corn in the form of pork products were largely increased. There was also a considerable increase in the exports of tobacco. On the other hand, the exports of cotton since 1915 have been only 50 to 75 per cent of the average exports during the 5 -year pre-war period (fig. 35).

The expansion in the volume of exports which followed the outbreak of the World War also corresponded to an increase in the crop acreage devoted to production for export ${ }^{23}$ (fig 36). On

TREND OF ACREAGE, PRODUCTION, AND NET EXPORTS OF COTTON, TOTAL AND PER CAPITA, UNITED STATES, $1909-1922$.

Fig. 35.-While there have been annual fluctuations in cotton acreage, there has been no marked trend either above or below the average for the five years just preceding the World War. However, the per capita acreage has decreased considerably. As a result of this, of the decreased yield due to the ravages of the boll weevil and of the decreased purchasing power of Europe, there has been a notable decline in exports of cotton since 1914.
the basis of 5 -year averages the acreage devoted to production for export decreased from the 5 -year period 1899-1903 through that of 1909-13, and in the latter 5 -year period was only 80 per cent of the average for the period 1899-1903, inclusive. During this period of decreasing exports, there was apprehension that our nation would soon cease to be a net exporter of farm products. However, as a result of the stimulus of war demand, the average acreage devoted to export production for 1919-22 was 40 per cent greater than for the period of 1909-13 and over 13 per cent greater than in the preceding high period 1899-1903. ${ }^{24}$

Conditions which have made possible the increase in acreage employed in producing for export.-One might suppose that the great increase in the volume of cereal exports during the decade 1913-22 was made possible by a sudden expansion of the per capita area of

[^67]land in crops. However, as already noted, in the period from 1900 to 1922 the trend of crop acreage per capita was downward. In the period 1919-22 the per capita acreage in 12 principal crops was 10 per cent less than for 1899-1903. Furthermore, as pointed out before, the increase in exports was not due to an enlargement of the average yield per crop acre.

FIG. 36.-The area devoted to these 12 principal crops has increased each decade, but the area per capita was less in the period 1919-1922 than in the period 1899-1903. The area per capita devoted to export production was less in the 1919-1922 period than in the earlier period, but in the 1919-1922 period, the export acreage per capita was a considerably larger proportion of the total per capita acreage than in any period since 1899 1903.

The expansion in the acreage devoted to export production, in spite of the downward trend of per capita crop acreage and the slight decrease in average yield per crop acre, took the form of increase in the area of the cereals, especially wheat, at the expense of other crops. Of the $23,000,000$ acres by which the average area of the five cereals for 1919-22 exceeded that of 1909-13, wheat accounted for more than $18,000,000$ acres. Most of the remainder is accounted for by increase in the acreage of rye, amounting to more than 100 per cent, together
with a slight increase in the acreage of oats. On the other hand, this is partly offset by slight decreases in the acreage of barley and of corn. ${ }^{25}$

The larger volume of exports made possible by reduction in acreage employed for domestic uses.-Since there has been neither an increase in the per capita area of crop land, nor, as compared with the average for 1903-1907, any increase in the yield per acre either of all the land devoted to crops or of the land devoted to the cereals, it is evident that the expansion in acreage devoted to production for export must have been made possible by a reduction in the acreage employed in producing for domestic uses. After subtracting the acreage devoted to direct exportation of crops from the total crop acreage, the remaining area per capita decreased from 3.15 acres in

TREND OF TOTAL ACREAGE AND PER CAPITA ACREAGE OF ALL CROPS FED TO LIVE STOCK, UNITED STATES, 1909-1922.

Fig. 37.-The per capita acreage of crops fed to livestock was steadily decreasing from 1910 to 1914. The World War resulted in considerable increase both in total and per capita acreage, but since 1917 there has been a rapid decrease in both regards.

1909-13 to 3.02 acres in 1919-22, or about 4 per cent. When the crop acreage required for the production of livestock and livestock products exported is also subtracted, the per capita area employed in producing for domestic uses decreased from 3.09 to 2.92 acres between these periods; and, finally, when allowance is made for the acreage used to support the horses and mules required to produce the crops and livestock products for export, the per capita acreage employed for domestic consumption declined from 2.99 to 2.82 , or nearly 6 per cent.

As noted above, this reduction in the per capita acreage of crops employed for domestic consumption is largely accounted for by the smaller acreage used in producing feed for livestock, made necessary by the increased pressure on the crop area. As a consequence,

[^68]the per capita acreage in crops employed in producing feed for livestock decreased from an average of 2.6 for the years 1909-13 to 2.4 for $1919-22$ (fig. 37). If the same per capita acreage had been employed in feeding livestock as in the former period, about $22,000,000$ acres more would have been required, and this acreage is practically equivalent to the expansion in the area of the cereals during this period. ${ }^{28}$

The diversion of most of the acreage thus economized to increasing the production of wheat and rye was partly the result of the stimuli of the high prices and patriotic appeal of the war period; however, with the passing of these stimuli, the acreage has not returned to normal. The wheat crop of 1920, planted before the fall of prices in the latter part of 1920 , was nearly $11,000,000$ acres less than the area employed for the wheat crop of 1919 ; but during the next three years, following the fall of prices, there was no material reduction. ${ }^{27}$ Notwithstanding the substantial decrease in wheat acreage in 1920 the acreage planted in 1923 was still 27 per cent larger than the average of the five years before the war. In spite of the discouragements of low prices and unfavorable seasons the farmers, especially in the regions of the Great Plains where there was notable expansion of the farming area mainly for wheat production, have found it difficult to effect a contraction of acreage in wheat. After the range was broken up, houses built, livestock and implements purchased, and heavy debts incurred, it has meant bankruptcy to let the land go back to pasture, and it has been difficult to shift to other crops.

Decreased demand in Europe a factor in causing the surplus of wheat.-It is important not to lose sight of the fact that there is a world market for wheat. It is well known that the war resulted in eliminating Russia temporarily as a large exporter of wheat, and in decreasing the production of other European countries. The increased supply from the United States and Canada was required to help fill this gap. After the war there was no increase in the world supply of wheat or other cereals sufficient to account for the slump in the world price. According to the world balance sheet prepared by the International Institute of Agriculture at Rome, the average annual production of wheat and rye available for the consumption of the world outside of Russia was about 8 per cent less for 1919-21 than for 1909-13. This decrease occurred in spite of an 11 per cent increase in the area devoted to the production of wheat and rye. ${ }^{28}$ Yet the price fell far below the war-time average.

The cause of this phenomenon was largely decreased ability of the people of certain European countries to buy as much wheat and rye as formerly at the level of value per bushel which prevailed during the war or even during the pre-war period. Wildly fluctuating exchange rates, unstable currencies, political uncertainties, reduced production, tremendous changes in distribution of wealth, and in

[^69]some countries protracted unemployment have forced drastic economies even in such vital essentials as the cereals. For instance, the four countries included in Figure 38 were not able to purchase enough more net imports, even at the bargain prices of the past few years, to offset the decrease in their own production.

Fig. 38.-The consumption of cereals in the four countries was far below the pre-war average, though the deficit was less for the bread cereals (wheat and rye) than for other cereals; and less for wheat than for rye. After allowing for the slight increase in population, it is evident that in the years following the war the people in these countries were eating only about 80 per cent as much bread cereals and had available for consumption only about 60 per cent as much other cereals as in the years just preceding the war. These deficits in consumption were partly made necessary by the great falling off in production and partly (except in the case of the bread cereals) to the falling off of imports. While the imports of bread grains were somewhat larger than in the pre-war period, this was not sufficient to make up for the heavy deficits in production and in the importation of other cereals.

In short, the interruption in the manifestations of the trend toward increasing scarcity of land in the United States was due partly to a gradual reduction in the per capita acreage of crop land employed for producing livestock for domestic consumption and in maintaining horses, partly to the overexpansion in the per capita acreage of wheat and rye at the expense of the per-capita area in other crops, and partly to a sudden decrease in ability of the Euro-
pean peoples to purchase the accustomed quantity of our wheat and pork at prices which permit a profit to our farmers. Temporarily these conditions have made our available crop acreage appear superabundant.

Some years may be required to restore the normal balance between acreage in cultivation and demand for farm products. The buying capacity of the nonagricultural populations of Europe, reduced by disturbed political and financial conditions and by unemployment, is still not showing signs of immediate improvement; but European agriculture has been steadily recovering and the tendency toward a greater degree of self-sufficiency increasing. Russia may shortly regain a part at least of its former importance as an exporter of wheat. The great increase of wheat acreage in Canada from an average of $9,945,000$ acres for $1909-13$ to an average of $21,155,000$ acres for 1919-23 was accomplished almost entirely by the expansion of the total acreage of land in crops. ${ }^{29}$ There has been little tendency to reduce this acreage, in spite of the discouragements of low prices, and there is reason to believe that the greater part of this new Canadian wheat acreage is permanent.
Offsetting this somewhat "bearish" outlook is the fact that the population of the world is increasing at the rate of about $20,000,000$ a year, and the population of the United States about 1,500,000 a year. ${ }^{30}$ Within a few years the increase in population is likely to bring to an end this temporary deviation from the long-time trend toward an increased pressure of population on land resources. A great war might temporarily cause higher prices, and bad crop seasons in important producing countries might also raise the price level.

The Cutting of Forest Products From a Stored Crop Has Also Obscured the Actual Relation Between Land Supply and Land Utilization.

Since the first settlement of our country we have been cutting our timber from the stored-up product of past years. To use a now familiar expression, our timber supply has been treated as a " mine" instead of as a "crop." Since the original settlement of the country we have reduced our area of virgin timber from an estimated $822.000,000$ acres to about $138,000,000$ acres. While we have been engaged in cutting from our virgin forests, there has grown up largely spontaneously a supply of second-growth timber, amounting at present to about $122,000,000$ acres of saw-timber size and 142,000 ,000 acres below saw-timber size (suitable for cordwood, ties, posts, etc.). (See figures 1 and 41.) However, we are still cutting timber from our forests at a rate nearly four times the annual aggregate amount of growth of timber. Moreover a considerable part of the former forest area has been devoted to improved farm land; consequently the area of forest has constantly decreased (fig. 39).
The effect of this cutting of our timber mainly from a stored supply is to create while it lasts an apparent abundance of land available for crops and pasture. We are removing the timber from land at the rate of approximately $10,000,000$ acres a year, and since we are not deliberately devoting this area to reforestation the surface po-

[^70]ACREAGE OF FOREST LAND CONTRASTED WITH ACREAGE OF IMPROVED FARM LAND, UNITED STATES, 1850-1920.

Fig. 39.-The steady increase in the area of improved farm land has been accompanied by a continual but much smaller decrease in the area of forest land. However, less forest land is being cleared for crops or pasture each decade. From 1910 to 1920 only 5 per cent of the increase of "improved", and "other unimproved" land in farms, or about $5,000,000$ acres, occurred in forested areas, most of the increase being in the Great Plains region and other grassland areas of the West. (See fig. 16.) At the rate of clearing between 1910 and 1920 it would require several centuries to clear the area of forest which has been cut over during the past 20 years. The figures for improved land are from the census, but the figures of forest area are estimates.
tentially available for the other uses is being correspondingly increased. However, only a small proportion of this area annually denuded is being cleared for crops or pasture. Much of the cut-over area is of poor quality of soil, and the expenses of clearing and in

PER CAPITA ACREAGE OF FOREST LAND CONTRASTED WITH THAT OF IMPROVED FARM LAND, UNITED STATES, 1850-1920.

FOREST AND CUT-OVER LAND IMPROVED FARM LAND
Fig. 40.-The estimated per capita area of forest land in 1920 was about a sixth as large as it was in 1850. The per capita area of improved farm land was nearly the same for the two periods, but it was somewhat less in 1920 than it had been in 1880.
some cases of drainage do not at present justify its use for the production of crops. Theoretically, this land would be suitable for grazing. In some sections, notably in the Lake States, clover and other nutritious grasses thrive. However, the natural pasture is for the most part inferior in those sections of the country where the process of cutting is at present most rapid, as in the South and the Pacific coast. The trees and brush, usually growing more rapidly than the grasses, soon shade the ground, and destroy most of the herbaceous vegetation.

As long as we can depend for our timber on a stored supply, disregarding the advancing prices forced by increasing scarcity, and making no provision for growing new forests, we can get along with a much smaller forest acreage than if we were actually growing a crop of timber to supply our needs. Under this policy of denuding our timberlands we are rapidly reducing the area of land devoted to forests, even allowing for the fact that some of the cut-over forests spontaneously grow a second crop, and some, notably those in public ownership, are managed for continuous growth. The denuded land adds to the already large reserve supply of land potentially capable of being used for crops, pasture, or intensive timber growing but actually not being employed for these purposes.

Such are the conditions which seem to create for the time being a "fool's paradise" of abundance of land resources available for the three important uses under consideration. But we are unquestionably nearing the end of this phase of our economic evolution (fig. 40). If we should be willing to cut our timber supply right up to the last tree, with no provision for the future, we should reach the end of the road within a few decades at the present rate of cutting; for, even allowing for annual growth, our stock of saw timber would hold out less than 50 years, and our stock of smaller timber, only a little more than 30 years. This makes no allowance for any increase in the annual cut due to increasing population, and therefore implies a diminution in per capita consumption.

The advancing prices of timber and timber products due to the increasing scarcity and remoteness of the supply will cause us to curtail our per capita consumption much below the present amount, and will force us to devote abandoned cut-over lands to timber growing, expecially in the East. This may result in a sharp competition between timber on the one hand and crops or pasture on the other hand, at least for marginal lands. A large part of the remaining reserve is on the Pacific coast much farther from the present centers of consumption (the Northeast and Middle West) than our former main supplies (fig. 41). Much of our reserve of timber is in rough mountain regions. Long freight hauls and costly logging are resulting in higher prices for timber, and in a gradual reduction of per capita consumption.

Owing to the long time required to grow timber- 30 or 40 years for pulpwood and 40 years and up for saw timber-an unnecessarily severe reduction in per capita consumption of timber and timber products and even a near approach to almost complete deprivation can be avoided only by measures that will place our lumber industry on a basis of providing for the replacement by reforestation of timber removed. The growing national pressure toward a definite forest

FIg. 41.-In six of the eight regions, all in the East, only about 40 to 53 per cent of the forest area consists of merchantable timber. In these regions the area of virgin timber ranges from 7 to 26 per cent of the total. On the other hand, in the Rocky Mountain In these regions the area of virgin timber ranges from 7 to 26 per cent of the total. On the other hand, in the Rocky Mountain
and Pacific coast regions the area of virgin timber constitutes about two-thirds of the total. In the Pacific Coast States less than one-fourth of the area is nonmerchantable forest.
policy, and later the tendency toward private timber growing that will be stimulated by rising prices, must be relied on to bring about reforestation. Provisions for growing our timber supply, of course, will tend to reduce the area of idle cut-over land that appears to be available for crops and pasture.

The magnitude of the readjustment that is involved in the inevitable change from the present reliance on cutting from a stored crop to the basis of growing the greater part of our supply may be illustrated by a simple calculation. At the present rate of per capita consumption and waste, and rate of growth in our growing forests, $1,465,000,000$ acres would be required to grow timber for a population of $150,000,000$ people-more than three-fourths of our entire land surface and about a third more than our entire humid area.

The manifest impossibility of the conclusion emphasizes the fact that we shall shortly find it necessary to make drastic modifications in our rate of consumption of timber, in our rate of growth, or in both. The probable extent of these readjustments and the land requirements involved can best be considered at a later stage of this discussion.

Relation of Foreign Trade to Present Land Requirements.

Before considering the effect of increasing population on our requirements of land for crops, pasture, and forest, it is desirable to determine what proportion of our productive area is employed in production for export; for it is clear that, as our need for land increases, it might be possible to divert to domestic use the products of at least some of the land now employed in producing for export. Furthermore, we may well determine to what extent the importation of agricultural and forest products reduces the amount of land that would otherwise be required to supply existing needs.

Crop Land Required to Produce the Exports of Agricultural Products.
The acreage of crop land employed in producing for export falls into three classes: (1) That which is employed in producing crops for direct export either in the original or in manufactured form, as, for instance, wheat or wheat flour; (2) the acreage used for feeding livestock the products of which are exported; (3) the land required to produce feed for work stock employed in producing for export.

Crop land required to produce the crops directly exported.Table 1 and Figure 36 show the crop area used for direct exportation, but not that employed indirectly for export production. The 12 crops included in the table occupy nearly 90 per cent of the total area used in crop production, and they represent practically all of the area devoted to the production of crops directly exported. Columns F and G show the remaining crop acreage after deducting the crop acreage employed for crops directly exported.

Table 1.-Total and per capita acreage utilized for total production, domestic consumption, and net exports of 12 important crops of the United States.

Period.	Production acreage.		Acreage equivalent of net exports. ${ }^{1}$	Acreage equivalent of direct net exports ${ }^{2}$ of surplus commodities.		Remaining acreage ${ }^{3}$ (employed for domestic uses, including the feeding of livestock).	
	A	B	C	D	E	F	G
Average, 1889-1893	$\begin{aligned} & 1,000 \\ & \text { acres. } \\ & 206,668 \end{aligned}$	Per capita acres. 3. 22	$\begin{aligned} & 1,000 \\ & \text { acres. } \\ & 29,496 \end{aligned}$	1,000 acres. 30, 055	Per capita acres. 0.47	1,000 acres. 177, 172	Per capita acres. 2.76
Average, 1894-1898	231, 884	3.27	36, 362	36, 921	. 52	195, 522	2. 76
Average, 1899-1903	258, 372	3.32	38,003	38,550	. 50	220, 369	2.83
A verage, 1904-1908	269, 269	3.14	32, 002	32,811	. 38	237, 267	2.76
Average, 1909-1913	291, 396	3.11	30, 583	33,158	. 35	260, 813	2.78
Average: 1914-1918	312,080	3. 10	36,874	41, 102	. 41	275, 206	2. 73
1919	325,463	3.10	38, 102	46, 460	. 44	287, 361	2. 74
1920	320, 732	3.01	41, 839	50, 016	. 47	278, 893	2.62
1921	322, 228	2.99	54, 336	59,325	. 55	267, 892	2. 48
1922	322, 105	2.95	37,352	43, 295	. 40	284, 753	2.61

[^71]Crop land required to produce the livestock and livestock products exported.-It is estimated that about 70 per cent of our crop area is employed in feeding livestock. Of the total crop area indicated by the census of 1920 , approximately $257,000,000$ acres, or 2.43 acres per capita, were employed for this purpose (fig. 37). ${ }^{31}$

Of the total of $257,000,000$ acres, the various classes of livestock shared in approximately the following proportions: ${ }^{32}$

In order to ascertain what proportion of the above acreage is devoted to the production of livestock for export, it is necessary to determine the proportion of the various kinds of livestock and livestock products exported in terms of live animals.

The exports of animal foodstuffs from the United States at present are practically confined to pork products and animal fats. During the half decade preceding the war our net exports of pork and pork products were about 11 per cent of the total production. The war demand caused an expansion to a maximum of about 24 per cent in 1919. In 1920 the net exports of pork products were equivalent to $9,100,000$ hogs, or about 15 per cent of the total production.

[^72]Up to and including the first years of the twentieth century the United States exported a considerable amount of beef, including live cattle. The exports of beef then steadily declined until, during the half-decade just preceding the war, they amounted to slightly more than 1 per cent of the total beef production. During the war our net exports of beef rose to 4 per cent of the production, but they have been steadily declining since the war, and allowing for net imports of live cattle into the United States, it appears that we are now net importers of beef.

The other meat products produced in the United States have little or no significance in our foreign trade. Our exports and imports of mutton and lamb have been virtually negligible in recent years. ${ }^{33}$ We are, of course, largely dependent on foreign sources of supply for wool. The production of veal is comparatively small, and the entire amount produced is consumed in the United States.

The net balance of trade for dairy products before the war showed that the United States was a net importer to the extent of about 0.05 per cent of the national production for 1909-13. Our exports of dairy products increased steadily during the half-decade 1914-18, reaching a peak in 1919. But the volume of exports has since declined, and during 1923 the United States was again a net importer of dairy products.

In brief, the United States is at present a surplus producer in only one important class of animal products. pork products including lard. Since it is estimated that the product of about $63,000,000$ crop acres annually is fed to hogs, it appears probable that our average exports of pork and lard for the years 1914-22 (about 15 per cent of the total production) required the employment of about $9,500,000$ acres of crops.

The average area from 1914-22 devoted to crops for direct exportation was $39,550,000$ acres. Adding to this the above estimate of crop acres used for producing livestock or livestock products for export, we may conclude that our export trade represented in round numbers $49,000,000$ acres of crops.

Crop land required to feed the work stock employed in producing agricultural exports.-However, allowance should also be made for the crop acreage required to maintain the horses and mules employed to produce the crops and livestock or livestock products exported. Since about 13.4 per cent of the crop acreage is required to produce the crops and livestock products exported, it would seem fair to assume that an allowance of 13.4 per cent of the $90.000,000$ acres required to feed horses and mules should be included in the acreage required to produce the agricultural exports. This would amount to about $12.100,000$ acres, making a total of $61,100,000$ acres of crop land directly or indirectly used for export production, which is nearly 17 per cent of the total crop acreage, leaving about $304,000,000$ acres employed for domestic consumption, on the basis of the acreage of harvested crops in 1919 (fig. 42).

Consequently, if we could devote our total crop acreage to production for our own use we might maintain, on the basis of the crop acreage of 1919, an increase of population amounting to about

[^73]$21,000,000$ people, and that without modifying our standard of consumption. ${ }^{34}$
However, even when the pressure of population on land resources becomes much greater than at present, it is not likely that all the

Fig. 42.-While the acreage in crops directly exported was a little less than $40,000,000$ in the period 1914-1922, inclusive, account must also be taken of'the acreage employed in producing livestock and livestock products for export and in maintaining horses employed in producing for export. Including estimates for these items, it appears that about $61,000,000$ acres of harvested crops was employed directly or indirectly in production for export, or nearly 17 per cent of the total acreage of harvested crops' in 1919 , and a little over 20 per cent of the estimated acreage employed in production for domestic consumption. Of the area used in producing for domestic consumption less than $16,000,000$ acres consists of crops not used for feed for livestock or for human food, and allowing for the horses used in producing these crops, about $21,000,000$ acres, or less than 7 per cent of the total acreage employed in producing for domestic consumption, were in crops not used for food, directly or indirectly.

[^74]acreage now employed in producing for export will be devoted to domestic uses. There are certain commodities for which we have peculiar natural advantages. For instance. we are likely for a long time to produce some cotton for export even if we find it necessary to enlarge our imports of other farm products to make up for the acreage used in producing cotton for foreign consumption. In short, during the next few decades we shall likely divert part of our export acreage to domestic uses, but undoubtedly not all of it unless we restrict severely the importation of farm products.

Relation of imports of farm products to requirements of crop land.-In general, our innports may be considered to economize acreage, but this conclusion involves certain reservations. Some of our imports, such as coffee, cocoa, rubber, and sisal, are practically incapable of being produced in our own country. If we do not import them, our alternative is to do without them. Except as they may serve to replace by substitution other commodities that we can produce, their importation can scarcely be said to economize our land requirements. Certain other articles of importation, such as coconut oil, can not well be produced in this country in considerable quantities, but we can produce close substitutes. Consequently, to all intents and purposes the imports economize the acreage employed for domestic consumption. A large volume of imports consists of commodities, such as sugar, silk, tea, flax fiber, and wool, which, so far as physical conditions are concerned, could be produced in this country, but which are produced abroad more economically. In part this is due to more favorable physical conditions in other countries; in part to more favorable economic conditions, particularly cheaper labor.

All in all, many of our imported agricultural products could be produced in the United States or are substitutes for other things that could be produced here so far as physical conditions of production are concerned. Hence, the importation of these things may be considered to economize whatever acreage of crop and pasture land would be required to produce them or their substitutes. If circumstances required us to provide for complete national self-sufficiency in agricultural production, it would be necessary to add to our percapita acreage an additional acreage sufficient to make provision for our present imports.

In the calculations of land requirements for domestic consumption attempted in this article, it appears best to assume as constant the present relative dependence on foreign imports. As our population increases, under such an assumption, the total volume of imports would increase in proportion, but the per capita quantity would remain the same.
Total and Per Capita Area of Pasture Employed in Producing Livestock
for Export and for Domestic Consumption.
Our only important class of livestock exports-pork and pork products-involves a relatively small use of pasture, and that only of humid pasture. A rough estimate indicates that probably $7,500,-$ 000 acres of humid pasture is employed in producing our net exports of livestock and livestock products. This is about 3 per cent of our total area of humid pasture. In addition to this, however,
allowance must also be made for a larger item, namely, the pasture used by horses employed in producing crops or livestock products which are exported, estimated at about 14,500,000 acres (fig. 43).

Fig. 43.-The average exports of livestock and livestock products for the period 1914-22 required only a small proportion of our pasture area, and the entire amount has been imputed to humid pasture, because the products exported were essentially the products of humid regions. The acreage of pasture employed in maintaining horses and mules used in producing for export is also imputed to humid pasture, because the semiarid pasture is essentially a limited quantity, humid pasture being the principal variable element in our supply of pasture land. Altogether, about $22,000,000$ acres, or less than 10 per cent of the area of humid pasture other than woodland, are employed in production for export.

Relation of Foreign Trade in Forest Products to Land Requirements.
As in the case of pasture, so in the case of forest land, our foreign trade makes but little difference so far as land requirements are concerned. At the present time our exports and imports of forest
products nearly balance one another, and in proportion to the total cut of the United States neither is a large amount. Consequently, it will be fair to assume that the present annual cut measures approximately our national consumption of timber products.

Furthermore, it is believed by students of forestry that we can not hope to rely to a large extent on importation as a means of meeting our needs of timber in the future. This conclusion rests partly on the great costs involved in transporting. so bulky a product long distances, and partly on the scarcity of accessible timber in the rest of the world in relation to world needs. The timber consumption of the United States is already nearly half that of the entire world. It is scarcely probable that a large proportion of this consumption could be derived from sources outside this country. ${ }^{35}$

Land Requirements in Relation to Increasing Population.

We have become accustomed in this country to the continued increase of population. Since the decade 1850-1859, when population growth was at the rate of 35.6 per cent, there has been a general tendency toward a decrease in the percentage of increase, although up to 1910 the actual increase was larger each decade. However, from 1910 to 1920 the absolute increase in population was only $13,738,354$ as compared with $15,977,691$ from 1900 to 1910 , and the rate of increase fell from 21 per cent to 14.9 .

The restriction of immigration and the uncertainty as to the future policy have complicated the problem of estimating the increase of population. However, it has long been believed that immigration does not add to the population by the full number of immigrants, for immigration appears to retard the natural rate of increase of the native population. ${ }^{36}$

The total population increase of $13,738,354$ from 1910 to 1920 included an increase by net immigration of $3,467,000 .{ }^{37}$ If this volume of increase were continued during the next three decades, our population would be $150,000,000$ people by about the middle of the century. Even the rate of natural increase for the past few years (estimated at approximately 10 per 1,000), without any addition from immigration, would, if continued, result in $150,000,000$ people shortly after 1950. The employment of a mathematical formula for projecting population growth on the basis of past experience suggested by Professor Raymond Pearl would indicate a population of $150,000,000$ by 1952.
It seems probable, therefore, that we shall have that number of people dependent on our land resources within a few decades, if not exactly by the middle of the century, and it is well to estimate the land required to maintain such a population.

If we should continue to employ for a population of $150,000,000$ the same per capita amounts of crop and pasture land as are now

[^75]used for domestic consumption, the land requirements for these two uses would be as shown in Table 2.

The only items that have been varied in the following table as compared with present requirements are crop land and " other humid pasture." The present area of semiarid pasture is practically a maximum that can not be increased to any considerable extent. If anything, it will be decreased somewhat during the next few decades as a result of the encroachment of crop land; but the total reduction in acreage is not likely to be large, and the carrying capacity of this land is so low that the relative reduction in livestock maintained is a very small quantity. Consequently, throughout the subsequent estimates the item is kept constant.

Table 2.-Crop and pasture land that would be required for 150,000,000 people assuming no change in per capita consumption and production per acre, also no exports of agricultural products and no change in per capita imports.

${ }^{1}$ As a result of assuming the acreage of semiarid pasture and woodland pasture to remain constant, the area of other humid pasture is increased in greater proportion than the increase of population.

The same practice has been followed with respect to forest and cut-over pasture. If we knew what areas of land will be in forests 30 years from now it might be easier to determine the probable increase or decrease in the area of woodland pasture. According to the present trend, the area of forest land appears to be decreasing. However, most of the area of forest reduced by cutting will be either reforested or will be suitable only for grazing. In either case woodland pasture is potentially land that is likely to be continuously employed for grazing. Moreover, its carrying capacity is so low that a large increase or decrease in area does not result in a very marked modification of the number of livestock that would need to be provided for by other kinds of pasture.
It has already been noted that if the present policy continued the area of land in forests, beginning with approximately $402,000,000$ acres of standing timber, will rapidly diminish until the point of approximate exhaustion is reached. On the other hand, if we wish to provide enough forest land to grow our timber, a much larger quantity of land will be required; at the present rate of growth and of waste and consumption per capita the enormous area of $1,465,000,-$ 000 acres would be needed for a population of $150,000,000$ people. The impossibility of such an outlook is emphasized by combining this area with the $1,591,000,000$ acres of crop and pasture land which, as shown above, would be required under similar assumptions. The total resulting requirement would be $2,819,000,000$ acres after allowing for duplications, or about 48 per cent more than the present land area of the continental United States.

The result suggests that if we are to maintain our present degree of self-sufficiency, for a population of $150,000,000$ we must increase
the average production per acre of our crop, pasture, and forest land, effect marked reductions in per capita consumption of farm and forest products, or make changes in both regards. Therefore, some consideration of the probable extent of these changes is important; not only because of the significance of the changes, but also on account of their bearing on land requirements for the several uses.

Economy in Land Requirements Through Increase of Yield Per Acre.

Crop Land.

In the past our agricultural progress has been largely by way of economizing in the use of labor, rather than in the use of land, by substituting machinery and other labor-saving devices for man power. The great progress in productivity per man is indicated in Figure 44. Since 1870 the product per unit of man labor appears

> TRENDS OF TOTAL POPULATION, OF NUMBER OF PERSONS ENGAGED IN AGRICULTURE, AND OF AGGREGATE VOLUME OF PRODUCTION FOR 10 PRINCIPAL CROPS, UNITED STATES, 1870-1920.

Fig. 44.-The chart indicates that the ratio of population to crop production has not changed greatly since 1880 , but that since 1870 the volume of crop production has increased much more rapidly than the number of persons engaged in agriculture. In fact, in 1920 the index of crop production was more than double the index for persons engaged in agriculture. Some allowance should be made for the fact that the date of the census was changed from April 15 in 1910 to January 1 in 1920, a time of year when the number of persons reported as engaged in agriculture is likely to be a minimum. However, it seems clear that the amount of crops per capita and the amount per man engaged in agriculture were both considerably larger in 1920 than in 1870.
to have approximately doubled. It is true, we must not reckon this as an exact measure of increased efficiency. Much of the labor saved in agriculture by using machinery is offset by the employment of labor in cities in producing the machines or represents the transfer to cities of various lines of production and services formerly carried on in the country.

Some progress has also been made in yield per acre (fig. 45). Between the 5 -year periods 1883-87 and 1903-07 the average acre yield of nine important crops increased about 19 per cent; but between the latter date and the 5 -year period 1918-22 there seems to have been a decrease, so that in the last-mentioned period the average yield per acre was a little over 16 per cent above that of 1883-87. This is small compared with an apparent increase in the productivity of man labor since 1870 of about 100 per cent.

INDEX OF YIELD PER ACRE OF EACH OF SIX IMPORTANT CROPS AND COMBINED INDEX OF NINE IMPORTANT CROPS, BY 5-YEAR AVERAGES, UNITED STATES, 1883-87 TO 1918-22.

Fig. 45.-The five-year average yield per acre was higher in 1918-22 than in 1888-87 for all of the six crops except cotton. However, the average yield for 1918-22 was lower than it was in 1903-07, not only of cotton but also of wheat, oats, and hay. The composite curve for nine principal crops, shown by the heavy black line, also indicates a slightly smaller average yield in 1918-22 than in 1903-07; though about 16 per cent above the average yield for 1883-87. The composite curve was made by weighting the yield of each crop by its relative acreage in the period 1908-12.

An analysis of the changes in yield per acre of some of the crops making up the above average will be helpful in explaining the trend. The failure of the increase in yield per acre to continue after the period 1903-07 appears to be attributable mainly to cotton and wheat. In the case of cotton the result is probably owing largely to
the boll weevil. In the case of wheat the decrease in average yield is due, in part at least, to the expansion of the crop area onto the less productive lands of our semiarid region. The trend in the yield of corn and oats during the past two decades has been so erratic as to make explanation difficult.

In general, the changes in average acre yields of the several crops must be regarded as the result of a number of forces, some working toward higher yields and others in the opposite direction. On the one hand, we have scientific progress and the more widespread use of improved methods, together with the greater employment of fertilizers; but apparently there has been a tendency for these forces to be offset by the declining fertility of some of our old crop land, by the spread of plant disease and insect pests, and possibly also by the necessity of expanding our crop area by the inclusion of lands of fertility lower than the average for lands formerly employed.

It is important also to reckon with the inertia of large masses of agricultural population, partly due to innate conservatism, partly to lack of information, partly to inadequate capital, and partly to other limiting conditions. Even the development of a most elaborate system of educational extension can not be expected to raise the average yield in practice to the point theoretically possible on the basis of improved methods known to the best agriculturists. Finally, it is probable that because of the comparative abundance of land resources in this country our farmers have not as yet found it profitable to adopt methods of increasing production per acre which require an increased expenditure for labor, fertilizers, and other factors in proportion to the product.

The course of events since the beginning of the World War has appeared to intensify the tendency to economize labor rather than land. The war resulted in the withdrawal of large numbers of farmers and farm laborers for military-service or to satisfy the demands for war workers; and for about two years after the armistice the higher relative prices of industrial products, as compared with farm products, continued to place a premium on the withdrawal of labor from farming and to stimulate the employment of extensive, rather than intensive, methods of farming.

Some increase in the productiveness of our land per acre may be accomplished by methods which do not increase, but may even reduce, the cost per unit of product; but it is also possible to increase the productivity per acre largely by increasing the cost per unit of product. The experience of nations has shown that sooner or later the increasirrg pressure of population forces the employment of the latter class of methods.

Among the most important means of increasing the yields of crops are: (1) The selection of crops better adapted to the available soils; (2) the employment of suitable rotations; (3) the use of better adapted varieties; (4) the reduction or elimination of losses from the depredations of insects and diseases; (5) control of weeds; (6) better or more thorough methods of preparing the land and cultivating the crop; (7) larger or more effective use of fertilizers; and (8) the substitution of crops which give a larger yield per acre for those which give a smaller yield. The first four of these methods may not greatly
increase acre costs, but considerable additional expense is likely to be incurred in weed control, the use of better methods of cultivation, and the increased use of fertilizers.

By the application of these methods what is the outlook for the increase of yield per acre under the influence of increasing pressure of population? There are certain optimists who are fond of taking the results of some striking instances of large yields per acre achieved on a small acreage under highly favorable conditions in perhaps a single year and frequently with little regard to cost as a basis for calculating the total future productivity of the nation. The very statement of the conditions indicates the dangers of this method. It is clearly better to give a great deal of weight to the average results obtained over wide areas by countries which have been compelled by pressure of population to employ intensive methods of cultivation

AVERAGE YIELDS PER ACRE, 1909-13, OF SEVEN IMPORTANT CROPS IN FOUR EURUPEAN COUNTRIES EXPRESSED IN PERCENTAGE OF AVERAGE YIELDS IN THE UNITED STATES.

Fig. 46.-The average yield per acre for the four European countries-United Kingdom, France, Germany, and Belgium-is higher than that for the United States in the case of each of the seven crops. The combined average yield for all seven crops, weighted in each case by the relative importance as shown by acreage, is a little over 41 per cent higher for the European countries than for the United States.
and which have employed those methods intelligently and in the light of scientific experimentation, but at the same time with due regard to costs of production. This does not mean that in countries such as Germany and Great Britain, for instance, every farmer is conducting his agricultural operations in the most intelligent and scientific manner. The point is that this is not to be expected. The actual level of practice in any country, no matter how well developed the educational machinery, is certain to be far behind the ideal.

The comparative yields per acre of certain European countries (Germany, France, Belgium, Great Britain, and Ireland) and of the United States are shown in Table 3 and Figure 46.

Table 3.-Average yield per acre of various crops in certain countries, as compared with the yield per acre in the United States, 1909-13. ${ }^{1}$

Crop.	Yields per acre.						
	Germany.	France.		Belgium.	A verage weighted by crop acreage.	United States.	Superiority in yield.
Wheat	Bush. 31. 8	Bush. ${ }_{\text {19.6 }}$	Bush. ${ }_{31}$	Bush. ${ }_{3}$	Bush.	Bush.	Per cent.
Rye.	29.0	16.6	30.1	35. 2	${ }_{26.5}^{23.5}$	15.6	61.40
Barley.	38.5	25.8	35.3	51.1	34.7	24.0	44.96
Oats	54.9	36.2	50.7	66.1	47.4	30.4	55.96
Potatoes.	203.7	127.4	216. 2	277.2	157.2	97.0	62.12
Tobacco	Pounds.	$\begin{aligned} & \text { Pounds. } \\ & 1,231.2 \end{aligned}$	Pounds. 936.8	Pounds. 2, 034. 2	Pounds. $1,481.0$	Pounds. 820.8	80.43
Sugar beets.	Tons. 12.6	Tons. 10.7	Tons.	Tons. 12.3	Tons. 12.0	Tons. 10.1	19. 28

${ }^{1}$ From Annuaire International De Statistique Agricole (Rome, 1922).
The last column of the above table shows the percentage by which the average yield per acre in the four countries of Europe exceeds that of the United States. ${ }^{38}$ If France were excluded the percentages of comparison, as indicating the possibility of expanding our production per acre, would be much greater. It is believed, however, that the inclusion of France gives a figure which represents much more accurately a measure of the possibility of enlarging our production per acre than if the other three countries alone were considered. ${ }^{39}$

Two of our most important crops, corn and cotton, as well as a number of minor crops, are not extensively produced in all of the above countries. Likewise, statistics for hay have not been obtained for all these countries.

Satisfactory statistics for hay production are available for the United Kingdom. ${ }^{40}$ The average yield per acre of hay in the United Kingdom for the 5 -year period 1909-13 was 1.63 tons. For the same period, the average yield per acre in the United States was 1.34 tons, indicating a higher yield for the United Kingdom of 21.6 per cent. In view of the fact that the climate of the United Kingdom is comparatively favorable for hay production and that special attention has been given to the scientific improvement of the meadows, including a considerable use of fertilizers, it is doubtful if we could safely count on a larger percentage of increase in the American yield per acre.

[^76]With corn, it is difficult to make satisfactory comparisons. There is no extensive area of corn in the more progressive countries of western Europe. Indeed, our production is nearly two-thirds of the production for the entire world, and our average yield per acre is greater than the average yield of the world. In only a few countries is the yield per acre in the United States surpassed, and in a number of these the area involved is so small that it can scarcely be regarded as a fair basis of comparison. Although southeastern Europe is the most important corn-producing section of the world, after the United States, Hungary is the only country in that region with a considerable area in corn which shows a larger yield per acre than that of the United States. Our yield per acre is exceeded by about 40 per cent on considerable areas in Peru and Egypt, but in these countries the crop is mostly irrigated. It is most significant that on about 310,000 acres (mainly in southern Ontario) the Canadians have achieved an average approximately double our own average. It would be a mistake, however, to assume that even if similar methods of production were employed throughout the United States they would produce so high an average, for, corn is raised on large areas of light sandy soils in the Southern States and in other regions, and also under semiarid conditions in considerable areas of the Great Plains. New England, where the climate is not best adapted to corn, shows a 10 -year average product ranging from 41 to 47.5 bushels per acre for the various States, as compared with a national average of 26.4 bushels and only 37.3 bushels for Iowa. As in Canada, of course, the product in New England is on a comparatively small acreage. However, Pennsylvania, on an area more than four times that employed for corn in Canada maintained an average of 41.7 bushels.

In view of these facts and considering the great area and diverse physical as well as social conditions involved in corn production in America, it may be doubted whether we shall be able to increase our corn yield per acre above 50 per cent.

In considering cotton we encounter somewhat the same difficulty as with corn, namely, the lack of an adequate basis of comparison. India, which after the United States is the most important cottonproducing country, is characterized by comparatively crude methods of production as well as inadequate rainfall in the regions of cotton production, so that the average product per acre is less than half that of the United States. Egypt, the next largest producer, maintains an average yield of 348 pounds per acre, more than double our average product, but the Egyptian industry is confined almost entirely to irrigated alluvial land of high quality. Brazil maintains an average yield of 258.7 pounds per acre- 52.6 per cent above our average. However, the conditions of soil, climate, and types of cotton are all different from those prevailing in America.

As a result of the boll weevil, our average yield per acre for the five years 1918-22 was 22 per cent lower than the average yield for the five years 1888-92. In other words, if we should return to the average acre yield of the former period, we should increase our yield about 28 per cent above the average of 1918-22. This may be regarded as measuring roughly the probable improvement in productivity that might be achieved if we should be so fortunate
as to discover a means of completely eliminating losses due to the boll weevil.

In the absence of a comparative basis for estimating the probable increase in production per acre, and with due regard for the physical and social conditions prevailing in the Cotton Belt and for the fact that on large areas of the poorer land artificial fertilizers are already extensively employed, a further increase of more than 35 per cent would appear doubtful.

We have reached conclusions with respect to the probable increase for 10 important crops, which occupy nearly 90 per cent of our entire crop area. If we weight the percentages by the average area in each of the respective crops for the 5 -year period 1909-13, we obtain an average percentage of 46.8 , which we may regard as representing the practicable increase in production per unit of crop area when economic conditions shall justify the requisite cost of production. ${ }^{41}$
If this increase in yield of crop land could be achieved by the time our population reaches $150,000,000$, we should require for domestic consumption only $269,662,000$ acres, about $34,000,000$ acres less than we used for domestic consumption in $1920 .{ }^{42}$

This would be a somewhat roseate outlook if it were probable that so large an increase would be made in less than three decades; but when we remember that there has been no increase in average yield per crop acre in the past two decades, so large an increase seems highly improbable. Furthermore, even if it could be attained, it would probably involve a considerable increase in expense per unit of product.

Pasture Land.

The comparison of carrying capacity of pasture in the United States with that of western Europe is beset with great difficulties, for the statistical classifications of pasture land in the various countries differ considerably. The United States is very different from western Europe, by reason of the fact that we employ so large an area of arid and semiarid land for pasturage. Spain is the only country in western Europe which even approaches the United States in this characteristic. It will be better, then, to reserve arid grazing land for separate consideration.

The areas in different classes of pasture and the ratio of livestock units to the total area of pasture are shown for various European countries in Table 4 and Figure 47.

[^77]Table 4.-Areas of land employed for pasture and the production of fodder crops and number of acres of pasture per animal unit in various European countries. ${ }^{1}$

[^78]
AREA OF HUMID PASTURE (OTHER THAN WOODLAND) PER ANIMAL UNIT, UNITED STATES AND VARIOUS EUROPEAN COUNTRIES.

Fig. 47.-The areas of humid pasture per animal unit range from less than 1 acre for Belgium to nearly 4 acres for the United States. However, these differences are not wholly due to differences in carrying capacity, but, to a large extent, reflect differences in the degree of dependence on pasture, as contrasted with other kinds of feed, in the livestock husbandry of the several countries. In calculating the ratios the estimated number of liveseveral countries. In calculating the maintained on semiarid pasture and woodland pasture in the United States was excluded, and in all the countries the area of woodland pasture was excluded. To a small extent this makes the comparison unfair to the United States, for the number of livestock carried on woodland pasture in the European countries is not excluded from the calculation. However, because of intensive methods of forestry, the proportion of livestock maintained by woodland pasture in European countries is believed to be very small.

In the six European countries the average number of acres per animal unit is 1.81 . On the basis of the estimated acreage of humid pasture in the United States and of the estimated number of animal units in the humid as distinguished from the semiarid parts of the country, there are 4.22 acres of humid pasture per animal unit. This appears to indicate that we employ 133 per cent more acres of humid pasture per animal unit than the average of the six European countries.

The following is a summary of the percentages by which the acres of humid pasture per animal unit for the United States exceed the corresponding ratio for each of the six European countries:

Per cent.			Per cent.
Great Britain and Ireland	59	Denmark	189
France	105	Germany	240
Netherlands	184	Belgium	364

It will be clear that these differences do not measure differences in carrying capacity of pasture. The pastures of Great Britain and Ireland are probably not greatly inferior in carrying capacity to the pastures of the other countries shown in the table. The differences reflect largely variations in degree of dependence on pasture.

Further light is thrown on the problem by studying comparative figures on carrying capacity for the various kinds of pasture. Through the courtesy of the Prussian Ministry of Agriculture the estimates of the carrying capacity of German pastures, shown in the left-hand side of Table 5, are made available, based on the works of Professor Falke, a high authority on animal husbandry. In the right-hand side of the table are parallel estimates supplied by Professor Hansen, of the Berlin Agricultural High School, a recognized authority on pasture economy.

Table 5.-Estimated average carrying capacity of German pastures.

Professor Falke's estimate.	Kind of stock and ages.	Professor Hansen's estimate.
Number per acre.		Number per acre
2. 04-3. 33	Cattle of $\frac{1}{2}$ to 1 year	1. 61-2. 70
1.35-2. 04	Cattle of 1 to 2 years	1. 16-1. 61
1.16-1.61	Cattle of 2 to 3 years	0.90-1.35
0.81-1.61	Cows	0.68-1. 00
1.35-1. 62	Horses of 1 year	1. 16-1. 35
0.90-1. 16	Horses of 1 to 2 years	0. 81-1. 00
0.81-1. 01	Horses of 2 to 3 years	0.68-0.90

In commenting on these figures, officials of the German Ministry of Agriculture expressed the opinion that Professor Falke's figures apply to permanent pastures located in Schleswig-Holstein, East Friesland, Mecklenburg, Pomerania, and-East Prussia, as well as to the better pastures in the mountains of Bavaria. Most of these pastures receive some care, and fertilizer is extensively used. On the other hand, most of the mountain pastures do not have so high a carrying capacity. These officials believed Professor Hansen's estimates more nearly represent averages of carrying capacity for all German pastures.

As a result of the study of about 10,000 questionnaires concerning the carrying capacity of humid grassland pasture in the United States, the conclusion has been reached that the average carrying capacity for the usual grazing season (averaging about 6 months) is 2.3 acres per animal unit, or about 0.45 animal units per acre. This excludes woodland and also brush lands and rocky mountain tops. It is true, we have pasture land with a considerably higher carrying capacity. Here and there a township may be found where pasture will carry as much as an animal unit per acre. However, in the American States reporting the highest carrying capacity, the average is but little more than half of an animal unit per acre-that is, less than half the average for all Germany.

According to Professor Hansen's estimate, the average carrying capacity for mature horses and cows ranges from 0.85 to 1.17 animal units per acre. The mean of Professor Hansen's estimates is practically 1 acre per animal unit. On this basis, the carrying capacity of German pastures is about 122 per cent greater than the estimated average carrying capacity for the humid grassland pastures of the United States. Apparently, if we may take Germany as an indication, the superiority of European pasture in productivity as compared with that of the United States is strikingly greater than in the case of crop land.
Data for determining the amount of possible increase in the grazing capacity of our semiarid pasture lands are not yet available. Experiments have been conducted, such as those at the Jornada Range Reserve in New Mexico, where on 200,000 acres an increase of 50 per cent in carrying capacity was effected by a 5 -year period of management, ${ }^{43}$ and an average increase of 100 per cent in production for each animal unit carried resulted during an 8-year period. ${ }^{44}$ Another experiment carried on in southern Arizona resulted in an increased carrying capacity of 100 per cent from five years' management. ${ }^{45}$ However, the above were obtained under experimental conditions which are not likely to conform to the broad average of practice. On a much larger scale the experience accumulated on 100,000,000 acres of national forest ranges of the West indicates a general improvement of 25 to 30 per cent through controlled grazing. Of course, these lands are partly humid or subhumid. Nevertheless, it is probable that this experience reflects the possible increase in productivity that might shortly be attained by substituting regulated grazing for the present promiscuous use of open range. It is probable that the productivity of the national forest ranges could be increased another 25 per cent in course of time through the employment of a higher grade of livestock, better care, closer coordination of range forage and other feed, and the further extension of improved principles of range management, such as proper time and intensity of use or "deferred and rotation grazing." On the public grazing lands not now subject to regulation, a conservative estimate of increased productiveness through regulation is 50 per cent. On

[^79]privately owned range lands, it is probable that the potential increase in productivity is much less. Experience has shown that it is a slow process to bring up the average of individual practice. Probably it is not wise to count on an increase of more than 25 to 30 per cent in productivity on the semiarid range pastures not in public ownership.

It is doubtful if the future will see a considerable increase in the carrying capacity of the area of forest and woodland pasture. More than a fourth of it is in national forests already grazed under careful regulation. The remaining area consists largely of cut-over land or second-growth timber. The development of timber-growing in these areas will increase the density of timber stands and reduce the amount of forage, and in many cases may lead to the reduction or exclusion of livestock. Even in the national forests the protection and encouragement of young growth have necessitated the exclusion of livestock in some areas.

The above estimates of possible increase in carrying capacity of pasture are not intended to suggest that we shall actually achieve so high a standard of pasture management in the next three or four decades, for this is highly improbable; but it may be worth while to calculate the area of humid grassland pasture that would be needed for a population of $150,000,000$ on the assumption of an increase of 122 per cent increased carrying capacity on humid pastures other than woodland, and 50 per cent on semiarid pastures. This will give at least a conception of the minimum area that would be needed to maintain present standards of consumption. Allowing for these increases and assuming the areas of semiarid and woodland pasture to remain constant (as explained above), approximately only $120,700,000$ acres of humid grassland pasture would be required for a population of $150,000,000$, as compared with $209,000,000$ acres of this type of pasture now employed for domestic consumption. Actually, of course, for a population of $150,000,000$ we shall need an area between .this minimum of $120,700,000$ and a maximum of $336,000,000$ acres in order to maintain the present standards of consumption of livestock products. ${ }^{46}$

Forests.

At the present time a large part of the $483,000,000$ acres classed as forest and cut-over land is not growing timber. On the 138,000,000 acres of virgin timber it is estimated that annual growth is about balanced by the loss from death and decay; these forests have reached, roughly speaking, a natural balance. About 81,000,000

[^80]acres are not restocking because of fire or other causes. On the $264,000,000$ acres of growing timber the annual rate of growth is estimated at only 24 cubic feet per annum, a rate only about half that which prevails in well-cared-for forests of certain European countries (fig. 48). As a consequence, the annual growth amounts

RATE OF GROWTH PER ACRE IN GROWING FOREST AREA OF THE UNITED STATES CONTRASTED WITH THAT OF TOTAL FOREST AREA IN VARIOUS EUROPEAN COUNTRIES.

Fig. 48.-The rate of growth of growing forests in the United States is less than half that of Belgium, the Netkerlands, and Germany. The rate of growth for the United States is calculated only on the basis of the $\mathbf{2 6 4 , 0 0 0}, 000$ acres of actually growing forest, omitting the area of virgin forests and the denuded areas not restocking. On the other hand, for the European countries the total estimated growth is divided by the total forest area, including small areas of denuded land not yet reforested. However, this does not seriously reduce the rates.
to only about one-fourth of the present annual consumption. Our present annual consumption and wastage of forest products is $24,-$ $785,000,000$ cubic feet per annum. However, of this $2,380,000,000$ cubic feet represents estimated loss from fire, insects, diseases, and windfall (fig. 55). Assuming that in the next few decades we shall be able to eliminate this wastage, we should require for a population of $150,000,000$ people an annual cut of $31,793,000,000$ cubic feet per annum to maintain the present rate of consumption. If we should manage to increase the rate of growth per acre to that which prevails, say, in Germany or the Netherlands, that is, to 50 cubic feet, we should require $636,000,000$ acres of growing forest or 32 per cent more than our present forest area including the area denuded and not restocking.
The maintenance of so high a standard of productivity will involve, of course, the intensive application of labor, not only in the careful harvesting of mature timber so as to insure natural reproduction, but also in protecting, thinning, and other cultural operations in the new forest throughout its life. In these respects the cultivated forest of the future will be as different from the wild, volunteer forests of to-day as farm land is from wild land. Protection from fire and reliance chiefly on chance reproduction or on a few seed trees in the more difficult types will not assure this high
productivity; in fact, it is estimated that such measures would increase the annual growth per acre of growing forest from only about 24 to 29 cubic feet.

Owing to the fact that a large part of our forest is in private ownership, we can not expect a rapid development of the most intensive forestry in a short time. The existence of our still large reserve of virgin timber retards the economic forces that would otherwise more rapidly lead to profitable timber growing. In addition, there is much conservatism, traditional apathy, and inertia to prevent as rapid an increase in timber growing as we need. Unquestionably economic forces are being stimulated and traditional obstacles removed by the widespread awakening to the danger of future timber shortage. However, intensive forestry of the European type can not be developed rapidly enough, especially in our privately owned forest lands, during the next few decades to offiset this shortage. Even in the lands publicly owned the huge problems involved in fire protection, in administration, and in marketing the less accessible timber retard the development of the most intensive methods of forestry.

Conditions of Increased Productivity Per Unit of Land Employed.

It has already been suggested that the experience of older countries has shown that the increased productiveness per acre required to maintain a dense population is obtained at a greater cost, partic-

NUMBER OF PERSONS EMPLOYED IN AGRICULTURE PER THOUSAND ACRES OF CROP LAND (EXCLUDING WILD HAY), SELECTED EUROPEAN COUNTRIES AND STATES OF THE UNITED STATES.

Fig. 49.-The larger yields per acre characteristic of European nations involve a heavy cost in human labor. To some extent the contrasts reflect differences in fhe character ot the crops. Thus the large relative amount of labor in Italy is partly due to the prevalence of such intensive crops as silk, wine, olives, citrus fruits, etc., and in South Carolina to the predominance of such intensive crops as. cotton and tobacco. In part, it is due to the smaller number of horses and other work stock per thousand acres in the continental countries, as compared with Great Britain and the United States. In part, also the farm population in the continental countries is employed in domestic industries as well as in farming. However, after all these allowances are made, it is still true that the European nations employ much more labor per thousand acres of crops than is found economical in the United States. For the United States the data are from the census of 1920. For the European countries the latest official statistics were employed.
ularly of labor, not only per unit of land but also per unit of product. It is true, we may effect some increase by a more widespread adoption of improved methods of increasing the productiveness of land without correspondingly increased expense. Furthermore, our progress in saving labor by development of new mechanical devices would offset somewhat the increase in costs involved in more intensive farming; and there is always the possibility of some epochmaking discovery that will revolutionize the possibility of increasing product per acre without proportionately increasing costs.

In spite of these possibilities, it is foolish to underestimate the significance of the fact that the superiority of the agriculture of western Europe in productivity per unit of land, as compared with the United States, is attained by a considerably greater expenditure of labor (fig. 49). As compared with a population engaged in

NUMBER OF WORK ANIMALS PER THOUSAND ACRES OF CROP LAND (EXCLUDING WILD HAY), THE UNITED STATES, SELECTED EUROPEAN COUNTRIES, AND STATES OF THE UNITED STATES.

Fig. 50.-While the United States uses more work animals per thousand acres of crop land than the European countries, except England and Wales, the percentages by the United States exceeds the respective countries in this regard are not as large as the percentages by which they exceed the United States in the quantity of labor per thousand acres of crop land (see fig. 49). The number of work stock per thousand acres of crop land in England and Wales is larger than for the United States, but the ratio of work stock to persons engaged in agriculture is smaller. The figures for the United States are based on the census of 1920 . For the European countries the latest official statistics were employed.
agriculture, in the United States averaging 41 per thousand acres of crop land, there are nearly 6 times as many in Italy, nearly 4 times as many in Germany, over 3 times as many in France, and more than $2 \frac{1}{2}$ times as many in England and Wales in spite of the prevalence of a pasture economy in the last-mentioned country.

Of course, our agriculture is relatively more intensive than a mere comparison of proportions of persons per thousand acres of crop land would seem to indicate; for, in place of some of the persons directly engaged in farming in Europe, we employ some persons in our cities in making a greater quantity of machinery and implements per thousand acres of crop land than are used in European countries. Furthermore, we use a greater number of horses and mules per thousand acres of crop land than are employed in most European countries (fig. 50).

Not only is the superiority of western European countries in yield per acre achieved at the expense of a greater quantity of man labor per acre; but the evidence indicates that the extra expenditure is proportionately much greater than the increase of yield, so that the yield per unit of labor is much smaller than in the United States. Let us take for comparison the four countries--the United Kingdom, Germany, Belgium, and France. Their average product per acre for seven important crops was found to be about 41 per cent greater than for the United States. However, their agriculturally employed population per thousand acres of crop land was 278 per cent greater than for the United States. ${ }^{47}$ It is true, they used slightly fewer work horses and mules per thousand acres of crop land than in this country (78 as compared with 80), but this slight difference is almost certainly made up by the proportionately greater use in the European countries of supplementary work animals such as oxen and dogs. Moreover, it is probable that the expenditure for fertilizer per acre is much greater than in the United States.

It may be unfair, therefore, to compare the productivity of the seven crops per unit of human labor in these four countries with that of the United States. On this basis it appears that whereas the yield per acre for the four European countries was 41 per cent greater than for the United States, the yield per person directly employed in agriculture was 159 per cent greater for the United States than for the four European countries. ${ }^{48}$

It does not necessarily follow that in order to increase our average yield per acre 41 per cent, we shall have to increase our number of laborers from 41 per thousand acres of crop land to 155 per thousand acres, or 278 per cent. Our agriculture is organized on the basis of a large number of work stock in proportion to human labor. Thus, in America there are approximately two horses or mules to one agricultural worker. On the other hand, in the four European countries there are two workers to each horse or mule. In short, our present ratio of horse labor to human labor is about four times that prevailing in the four European countries.

This contrast partly grows out of our system of farm organization. Of the four European countries, all but the United Kingdom are characterized by large numbers of small peasant farms which employ horse labor very sparingly.

Our own farm organization is more similar to that of England, involving larger units than prevail on the continent. It will be noted

[^81]that in England and Wales the ratio of horses to laborers is as 118 to 100 . When we have reached the probable extreme of intensity of cultivation our figures both for man labor and for horse labor per acre of crops are likely to resemble more closely the English than the continental ratios. Even this would mean increasing man labor per acre 215 per cent and horse labor 61 per cent.

It is probable that with our aptitude for mechanical devices we shall increase our man labor in somewhat less extent and employ a somewhat greater proportion of horse labor or its equivalent in other forms of power. It is also probable that progress in science and invention will result in more efficient methods of production; but this is not predictable and, indeed, is an immeasurable factor and one that should not be too greatly relied on in making our plans for the future.

It might be said that part of the present superiority of America in productiveness per man is due to superiority in intelligence and skill of our population and that this will make it unnecessary to pay so heavy a price for increased yield per acre as the European countries have paid. However, we have no more right to assume that all or any part of our superiority in production per man is due to our superior efficiency, than the people of the above-named countries have to assume that their superiority in productiveness per acre is due to the same cause. The fact is that a high degree of skill in America is directed to the economy of labor, while in western Europe probably equally as much skill and intelligence are devoted to the problem of economizing land.

The facts point to the conclusion that after a certain average of productivity per acre is attained, probably somewhat higher than that now prevailing in this country, a marked increase in average product per acre is attained only by a much greater expenditure of labor. This may explain why our farmers in the past two decades have made so little progress in production per acre.

The above facts also point strongly to the conclusion that unless the future shall result in exceptional progress in scientific invention and discovery, making possible a larger yield per acre without the corresponding penalties in increased costs now required, we may need to increase considerably the proportion of our population engaged in agriculture; but this change is hardly likely to begin to be manifest during the next few decades.

It is also safe to count on a considerable increase in the number of work animals either made necessary by expansion of crop area or greater intensity of cultivation on old lands. Judging from the experience of the United Kingdom an increase of at least 40 per cent in number of horses per thousand acres would be necessary in order to effect an increase of 47 per cent in yield per acre. ${ }^{46}$

[^82]
Economies in Acreage Requirements That Might be Effected by Certain Changes in Our National Standards of Consumption.

In the following estimates of the economy in acreage resulting from changes in standards of consumption, the present yields per acre have been assumed, so as not to confuse for the moment the effects of changes in productivity. Later, the possible economies in land area resulting from both causes may be considered in conjunction.

Crop and Pasture Land.

Since livestock require so large a part of our total farm acreage, it is natural to look to this phase of our consumption as affording the principal opportunity for economy-a fact that has been demonstrated by the experience of more densely populated countries.
The food scarcities of the war period resulted in very careful estimates of per-capita consumption for two countries, the United Kingdom and Germany, which give us a basis of consideration of the problem.

In Table 6 is given the per capita consumption for the United Kingdom and the United States of food products from livestock. ${ }^{50}$

Table 6.-Per capita consumption of food products from livestock, the United Kingdom and the United States. ${ }^{1}$

Products.	United Kingdom (pounds per capita).	United States (pounds per capita).	Per cent the British is of the American.
Beef and veal	64.0	68.36	93.6
Mutton and lamb	29.1	5.34	544.9
Pork, bacon, ham and lard	41.6	83. 80	49.6
Poultry (and game)	2. 7	220.20	14.4
Eggs	12.5	28.30	44.2
Milk (including cream and condensed milk	246. 4	418. 80	58.8
Butter ----------------------------------	15. 6	15. 23	102.4
Cheese --.---	7. 2	3. 45	208.7
All dairy products in terms of milk for hum	646.0	773.13	83.6
Fish----	41.4	17.00	243.5

[^83]From the standpoint of nutrition, of course, it is necessary to consider the entire diet of a people-vegetable products and fruits, as well as meats. Taking into consideration all its elements, the committee above referred to estimated the British food supply, as represented by the average for 1909-13, to be somewhat above the minimum necessary to maintain the population in an efficient working condition. The actual supply consumed was estimated to be in

[^84]excess of requirements, by 11 to 14 per cent of proteins, 25 to 30 per cent of fats, and 10 to 14 per cent of carbohydrates.

If these conclusions are correct, we should be amply nourished as a nation though not necessarily wisely nourished, if we should adopt the British standard. The most important difference, so far as livestock products are concerned consists in the much greater consumption per capita of mutton in the United Kingdom, offset in the United States by a relatively greater consumption per capita of pork and pork products, poultry, eggs, and dairy products.

For the present investigation the important question is: Would there be an economy in the requirements of crop and pasture land if we employed the British standard of consumption of livestock and livestock products? A careful estimate indicates that, in providing for a population of $150,000,000$ people, we should save about $43,000,000$ acres of crop land, compared with the requirements under our present standard of consumption. ${ }^{51}$
On the other hand, assuming that the area of semiarid pasture and woodland pasture are constant, as in previous estimates, we should find it necessary to provide about $37,000,000$ acres more of humid pasture, other than woodland, than would be required for 150,000,000 people under the American standard. ${ }^{52}$

The apparent anomaly that under the British standard we should economize in crop area but require an increase in pasture area is due to the fact that the largest economies under the British standard are in hogs and poultry, which require relatively large amounts of crop land but relatively small amounts of pasture; while, on the other hand, the British requirement for sheep is 445 per cent above our own, and sheep require comparatively little crop area but large areas of pasture.

As a matter of fact, the British standard is not a normal one for a self-sufficing nation of dense population. It is made possible by the policy of depending largely on foreign sources of supply. A much more normal example of the adjustments in consumption of

[^85]livestock and livestock products is afforded by Germany, for which country fortunately we have carefully prepared statistics. ${ }^{53}$
The pre-war food consumption of the German Empire (1912-13) comprised a much smaller use of meat per capita than that of the United Kingdom, but higher than that of France and other continental countries. Nevertheless, the German people were adequately nourished. It is estimated that the caloric value consumed each day per " average man " ${ }^{54}$ was about 15 per cent in excess of the requirement as estimated by the Inter-allied Scientific Food Commission. Allowing for the importation of food, concentrates, and fertilizers, about 85 per cent of the food supply was domestic production and 15 per cent imported. ${ }^{55}$

The contrasts in the food consumption of Germany and of the United States in terms of percentage of total energy units (calories) derived from different kinds of food are shown in Figure 51. Table 7 shows the per-capita consumption of different kinds of food in the two countries measured in pounds, and the percentage of excess and deficiency of the American as compared with the German standard.

Fig. 51.-The German diet in the years just preceding the World War was ample in nourishment, but represented certain economies made necessary partly by scarcity of land and partly by a lower per capita income as compared with the United States. The combined consumption of cereals and potatoes for Germany comprised a much larger percentage of the total than n United States, although our consumption oı wheat was a larger percentage of the total than in Germany. The percentages of energy units obtained from pork and dairy products are not greatly different for the two countries, but beef and sugar have a considerably larger place in the American than in the German diet.

[^86]Table 7.-Comparative per capita consumption of foodstuffs in Germany and the United States.

ANIMAL PRODUCTS.

Kind.	Germany. ${ }^{1}$	United States. ${ }^{2}$	Per cent German figure is of American figure.
	Pounds.	Pounds.	
Beef and veal	39.40	68.36	57.6
Pork and pork products (including lard)	75. 45	83.80	90.0
Mutton and lamb----------------	2.00	5.34	37.5
Poultry	4. 82	20. 20	23.9
Eggs	15. 99	28. 30	56.5
Milk	283.30	418. 80	67.6
All dairy products in terms of milk	711.34	773.13	92.0
Butter---------------------------	15. 44	15. 23	101. 4
Cheese	10.38	3.45	300.9
Fish.	19.56	17.00	115.1

VEGETABLE PRODUCTS.

[^87]On the basis of these comparative figures it is estimated that under the German standard of consumption of animal products there would be an economy of about $64,000,000$ acres in the amount of crop land that would be required under the present American standard of consumption of animal products. However, the economy in crop land under the German standard of livestock consumption is offset somewhat by the relatively larger requirements of crops employed directly for human consumption. For the crops shown in Table 7 it is estimated that there would be needed for a population of $150,000,000$ people about $27,000,000$ acres more under the German standard of consumption of vegetable products than under the American standard. Whereas the Germans have a smaller per capita consumption of wheat and sugar and eat practically no maize, this is more than offset by their much larger consumption of potatoes and the other cereals, especially rye. ${ }^{56}$ In short, the net saving in crop

[^88]acreage under the German standard is about $37,000,000$ acres. The greatest saving, however, would be in the case of pasture. It is estimated that under the German standard the requirement of humid pasture other than woodland would be $121,000,000$ acres less than under the American standard, owing to the large economies in the use of the pasture-consuming animals-sheep and beef cattle.

Consumption of Forest Products.

As shown by Figure 52, the possibilities of reducing our per-capita consumption of forest products are very great. As between the 234 cubic feet per capita of standing timber annually used or wasted in the United States ${ }^{57}$ and the 27 cubic feet of France and Germany, or

ANNUAL PER CAPITA CONSUMPTION OF WOOD, UNITED STATES

 COMPARED WITH VARIOUS COUNTRIES AND REGIONS.

Fig. 52.-The per capita consumption of timber is closely related to the abundance or scarcity of it in the various countries. It is especially large in countries which are still cutting from a stored-up supply, or where so large a proportion of the total area is mountainous that the population is small in propgrtion to the total land surface, as well as to the total area of forest, as in Norway. The per capita consumption tends to be small in countries of dense population, especially where it is necessary to rely on annual growth, such as Germany and France. It is also small in countries of sparse population but slight industrial development, such as Guatemala, Bolivia, and Spain. In the last two countries another factor is the considerable area of semiarid land, which tends to reduce the proportion of forest to the total area. The figure for the United States includes wastage from fire, while this loss is not included in the consumption figures of the other countries, the loss from this cause being very small for most of them. Because a large part of the supply is imported, the figure for the United Kingdom represents mainly sawed and hewed timber.
the 15 cubic feet of the United Kingdom, there is obviously a great gap which may be considered not absolutely essential to the maintenance of civilization.

However, the mere fact that some of the European nations find it physically possible to get along with from 15 to 27 cubic feet per capita, while we employ 212 no more means that a reduction to the European level is economically desirable than the fact that a certain man of limited income manages to exist on $\$ 1,000$ makes it desirable

[^89]for a man with an income of $\$ 10,000$ to reduce his expenditure to the level of the less fortunate individual.

If we were willing to reduce our living standards drastically and to curtail our industrial consumption of wood to the level of Germany or France, the present rate of growth in our growing forests would provide for a population of about $235,000,000$ people. If, on the other hand, we cared to use the intensive methods of forestry of Germany and employed only land too rough or too poor for use in crops (see p. 474), we could supply timber for about 485,000,000 people, according to the French or German standards of consumption, or more than we could probably supply with food and clothing under a reasonable standard of comfort. If our entire present forest area were in growing timber, and assuming no change in rate of growth, we could maintain for a population of $150,000,000$ a per capita consumption of 76 cubic feet, which is over one-third our present per capita consumption (fig. 53). This is merely another

```
PERCENTAGES OF PRESENT PER CAPITA CONSUMPTION OF STANDING TIMBER THAT WOULD BE AVAILABLE FOR 150,000,000 PEOPLE BY UTILIZING OUR PRESENT AREA OF FOREST LAND AT VARIOUS RATES OF GROWTH.
```


Fig. 53.-On our present forest area, including the $81,000,000$ acres denuded and not restocking, it would be possible to provide for $150,000,000$ people. at present rates of growth on the growing area only a little more than a third of our present per capita consumption. The elimination of fire would increase the supply by about one-fifth. If the average rate of growth for the German forest area could be attained, our present area could supply annually three-fourths of our present per capita consumption. However, this would involve very intensive systems of forestry on an area about fourteen times that of the forests of Germany.
way of saying that so drastic a reduction in per capita consumption is likely to be unnecessary.
Moreover, the reduction in our per capita consumption of forest products to that prevailing in Germany and France would involve costly substitutions, as well as serious deprivations in the standard of living of our population. The people of those countries have been schooled for centuries in the scanty use of wood, whereas in the United States our whole social and economic structure has been based on the use of wood in abundance. Indeed, leaving out of account the present unnecessary wastes, it would appear undesirable to make any reduction in our per capita consumption of timber that is not required by the lack of available land.

It is true, our large per capita consumption can be somewhat reduced with less real than apparent hardship, by eliminating some of the unnecessary wastes and the less important uses. Of our total annual cut of $22 \frac{1}{2}$ billion cubic feet of standing timber, only about one-third is sawed lumber, including dimension material and sawed ties •(fig. 54). Most of the remainder consists of such items as fuel wood, hewed railroad ties, pulpwood, mine timbers, and similar products. Wood used for fuel alone amounts to nearly two-fifths of our timber cut.

Moreover, in the United States large amounts of such products as fuel wood, mine timbers, pulpwood, and fence posts come from

AVERAGE ANNUAL REMOVAL OF STANDING TIMBER FROM THE FORESTS OF THE UNITED STATES ASSIGNED TO VARIOUS TYPES OF USE OR CAUSES OF DESTRUCTION.

[^90]small trees that are potential saw timber, and often indeed from trees of saw-log size. Yet, much of these materials could come from the immense quantities of wood now wasted in the form of tops, limbs, stumps, and small or crooked logs, and of small trees that, with benefit to the remaining forest, could be taken out as thinnings. Thus, Sweden has built up a large paper industry, which derives its raw material almost solely from classes of wood that we now waste in woods and factory. The salvaging of this waste would release immense quantities of young growth for ultimate use as saw timber. The annual loss to standing timber from fire, windfall, insects, and disease is estimated at $7 \frac{1}{4}$ billion board feet, most of which could be avoided by proper protective measures.

Equally conspicuous are the easily possible savings in the most valuable part of our timber supply, the saw-log material (fig. 55). Even a moderate reduction of the waste now occurring in the manufacture and use of saw timber and from fire and decay of lumber in use would add 7 billion board feet a year to our lumber supply. This is almost a fifth of our present lumber cut and is equivalent to the present growth of saw timber on $170,000,000$ acres of forest land.

If in the near future we should adopt a crude system of forestry consisting chiefly of protection against fire and the provision of seed trees where needed, we could expect by 1950 , on the area probably available for growing timber, a total annual growth of about 10 billion cubic feet, or about 4 billion more than the present annual volume of growth. This supposes that some of our forest area will still be in virgin timber, and consequently will not be available for growing timber. This growth, if relied on as our total supply,

AVERAGE ANNUAL REMOVAL OF STANDING TIMBER IN THE UNITED

Fig. 55.-It is estimated that of the $25,000,000,000$ cubic feet of standing timber annually removed from the forests of the continental United States nearly one-half represents waste. About one-tenth of the total removal is due to fire or insects and disease. The greatest volume of waste is in manufacture and use, comprising more than a third of the timber annually removed. However, most of this waste is not now avoidable without increasing considerably the cost of utilization.
wouid give a per capita consumption of about 67 cubic feet for a population of $150,000,000$. This figure, however, will be increased by reason of the reserve supply of virgin timber, which may last well into the latter half of the present century, though of course it will become increasingly scarcer and more inaccessible and consequently higher priced. It may also be increased by imports, though at present imports and exports are about balanced. Large imports are probably out of the question, because of high transportation charges and growing competition for the timber of foreign countries, particularly conifers. It may also be somewhat further increased by the use of more intensive forestry in public forests, and in the more favorably situated private forests. But that by 1950 our per capita consumption will be markedly below what it now is seems inevitable. The trend of prices in itself creates a strong economic pressure toward lower per capita consumption. Compared with 1840 the average
price of lumber is now more than five times what it was then, whereas the average prices of all commodities are less than one and one-half times as great. One of the large elements in the high prices of lumber is the cost of freight, which has increased steadily with the increasing length of haul.

The fact is our per capita consumption of lumber had been declining for some time prior to 1920. In was higher in 1870 than in 1920. It rose steadily until 1906; from 1906 to 1920 it declined steadily at an average yearly rate of 2.8 per cent. Since 1920 consumption has been increasing, partly no doubt because of the resumption of construction activity suspended during the World War.

The future trend of consumption is impossible to predict, though there are certain tendencies that will permit us to make a fair estimate. The chief limiting factors will be, as in food production, the land available and the amount of labor and capital that will be devoted to timber growing. As we shall show, it is unlikely that our present forest area of $483,000,000$ acres will need to be decreased in the next half century. If the present area were all in growing timber and were managed as intensively as the better managed forests of Germany, it could be made to produce about 28 billion cubic feet a year, which would give for a population of $150,000,000$ a per capita supply of 180 cubic feet, and for $200,000,000,135$ cubic feet.

The production of 28 billion cubic feet a year within the next four or five decades is, however, entirely impossible. Even granted the land, the labor, and the capital necessary, it would require a long time to get all our forested land, including the $138,000,000$ acres of virgin forest that still remain to be cut before growth starts, into productive condition, for most of our forests are badly understocked.

Probable Changes in Land Requirements During the Next Few Decades.

The preceding discussion has indicated the acreage of crops, pasture, and forest land that would probably be required to provide for domestic consumption under each of three extreme assumptions: (1) No reduction in per capita consumption and no increase in rate of yield per acre; (2) increasing yield of crop land to the average now prevailing in four countries of western Europe, and of pasture and forest to the averages characteristic of Germany in the period before the World War; and (3) decreasing per capita consumption to the standard prevailing in Germany before the recent war. The areas of land required for $150,000,000$ people under each of the three assumptions may be summarized as follows:

Table 8.-Land requirements for a population of $150,000,000 .{ }^{1}$

Type of land use.	Assuming no capita consumption, or in the averageper acre of crop land, carrying capacity per acre of pasture land, growth per acre of forest land.		A s suming nochanges in per capita consump-tion, but an increase to Furopean standards of crop land, carrying capacof pasture land, growth per acre of forest land. ${ }^{2}$		Assuming no changes in yield per acre of crops carrying capacity of pasture, and growth of forests per acre; but a reduction in per capita consump tion of food and forest products to the standard pre vailing in Germany prior to the World War.	
	Total (thousands of acres).	$\begin{gathered} \text { Acres } \\ \text { per } \\ \text { capita. } \end{gathered}$	Total (thousands of acres)	Acres per capita.	Total (thousands of acres).	Acres per capita.
Crop land.	431, 000	2.87	270, 000	1.80	394, 000	2.63
Humid grass land pasture	336, 000	2.24	121, 000	0.81	215, 000	1. 43
Semiarid pasture (constant)	587, 000	3.91	587, 000	3.91	587, 000	3. 91
Woodland pasture (const	237, 000	1. 58	237, 000	1. 58	237, 000	1,58
Forest ${ }^{\text {- }}$	1,465, 000	9. 77	636, 000	4. 24	169, 000	1.13
Provisional total	3, 056, 000		1, 851, 000		1,602, 000	
Less duplication of forest and woodland pasture						
Net total	2, 819, 000	18.79	1, 614, 000	10.76	1, 433, 000	9.55

${ }^{1}$ With no allowance for exports and assuming the same proportion of our natio nal consumption of farm products obtained from imports as for the present population.
${ }_{2}$ For maximum increase in crop yields, the basis of determination was the average yields, for four European countries; in humid pasture the carrying capacity of pastures in Germany; for semiarid pasture, the results of certain experiments under public management in this country; and for forests the average annual growth in the forests of Germany (see pp. 463-475).
${ }^{3}$ Area required for growing the timber consumed instead of cutting from a stored supply.
Each of the three columns in Table 8 is based on extreme assumptions. Nevertheless, they are exceedingly useful in defining some of the limits of the problem of land utilization. The first column emphasizes the fact that without important changes in methods of production, standards of consumption, or both, we could not provide for a population of $150,000,000$ people. The second and third columns rest on the assumption that one type of adjustment will be exclusively employed-that is, either increase in production per acre or modification in standards of consumption. However, by the time a population of $150,000,000$ people is reached, it is exceedingly unlikely that we shall increase the productivity of our crop land by 47 per cent, the carrying capacity of our humid grassland pasture by 122 per cent, and of arid pasture by 50 per cent, and more than double the average annual growth of our growing forests. On the other hand, it is scarcely probable that we shall modify our consumption of food products to approximate the economies of the German standard or reduce our annual per capita consumption of timber to only one-eighth of the present requirement.
Obviously, both adjustments in some measure will be made. These extremes are useful in showing the maximum economies that might be accomplished by each method, and thus indicate the limits within which an estimate of probable requirements may be made. The essential problem is to determine to what extent we shall employ each of the two methods of economv. It is, of course, obvious that in at-
tempting to answer this question we enter a field of prediction where the elements of uncertainty are numerous. However, one fact is clear, we shall be nearer the truth by assuming any combination of the two changes which are between the two limits of no change in either respect, on the one hand, or of a full change in both respects, on the other hand.

As to the relative importance of the two methods of economy, in the case of crop and pasture land, there are certain considerations which apparently indicate roughly the probable course the nation is likely to pursue. In the first place, the element of sacrifice involved in the German standard of consumption would be very much less than that involved in increasing production to the extremes assumed above. At most, the former involves the reduction of our per-capita consumption of mutton from 5.3 pounds to 2 pounds, ${ }^{58}$ of beef and veal from 68 pounds to 39 pounds, of pork and pork products from 84 pounds to 75 pounds, of eggs from 28 pounds to 16 pounds, and of dairy products (in terms of milk) from 773 pounds to 711 . There would also be certain changes in crop consumption, such as a reduction in consumption of sugar and increase in the consumption of cereals and potatoes. This is the extreme. It is not probable that we shall need to go this far in modification of habits of consumption, for it is reasonable to expect some increase in the production per acre of crops and of livestock products. However, it appears both desirable and probable that we shall go a considerable distance in the direction of this extreme economy of consumption, a probability that is emphasized by considering the extent of the task of effecting by increased efficiency of production most of the requisite economy.

Probable Changes in Production in Next Four Decades.

To increase our average crop production per acre 47 per cent may sound easy, but when we remember that this is an average increase to be attained for all of the crop land of the United States, the magnitude of the task that must be accomplished in perhaps little more than three decades if this method of economy alone were employed appears stupendous. Moreover, it should be noted that our record thus far indicates a very slow rate of progress in productive efficiency, so far as concerns increased yield per acre, ${ }^{59}$ whereas, on the other hand, the increasing scarcity of grazing land has already resulted in a considerable decrease in number of livestock per capita.

Furthermore, the experience of Europe has shown that the high level of yield per acre achieved in those countries has been accomplished at exceedingly heavy cost as compared with this country. It involves a quantity of human labor per acre which is several times that of the United States, together with almost an equal quantity of animal power, and probably a considerably greater expenditure for fertilizer (see p. 475). While allowance must be made for differences in agricultural organization in this country and in Europe, all things point toward the probability that a marked increase in yield per acre is likely to involve an increase in costs per acre in considerably greater proportion.

[^91]In regard to crop land another important consideration is the fact that there remains a large area of humid land of fair productivity which can be added to the existing crop area by clearing operations no more costly than have been employeü in that part of our agricultural expansion which preceded the expansion into the prairies and the Great Plains, as well as considerable areas of drainable and irrigable land of high fertility, not to mention the possibilities of expanding the crop area in the dry-farming regions. Much of the land referred to is now put to very low use. The value of the uses displaced by crops for the land needed during the next few decades, together with necessary capital charges for clearing, draining, or irrigating, are likely to be proportionately much lower than the increase in costs that would be involved in attaining by increased intensity of cultivation a degree of productivity comparable with that of Europe. It seems reasonable to believe that in the next three or four decades we may increase the yield of crop land by the use of some additional fertilizer, but probably without greatly increasing otherwise the intensity of field processes. In view of the above considerations, it would not appear wise to count on an increase in the average productivity of crop land by more than, say, 10 per cent in the next three or four decades, though unforeseen circumstances might result in a greater increase.

It has been noted that the possibilities of increase in carrying capacity of humid pasture other than woodland are very great, if we may judge by the example of Germany. The economy in the use of pasture area may take several forms: The substitution of forage and root crops for pasture is one of these. This tendency may be illustrated by the fact that in Germany the area of pasture other than woodland is a little over 60 per cent of the crop area, while in this country the area of humid pasture other than woodland, together with its equivalent in semiarid pasture, is about 118 per cent of the area of land in crops (fig. 56). It will be noted that the substitution of forage crops for pasture involves a larger labor requirement per thousand acres of both crops and pasture, although it does not necessarily imply an increase in the intensity of cultivation of crop land or an increase in its yield per acre. Again, increase of carrying capacity of pasture may be achieved by laying down permanent pasture instead of depending on spontaneous growth. This also involves a larger labor contribution in the national farm economy. The increased productivity of pasture may be achieved by better selection of pasture plants; better preparation of the land and more careful methods of laying down pasture; better adjustment of the time and intensity of use; and, in the sections where the pasture economy has become intensive, by the use of fertilizer on permanent pastures, as well as on rotation pastures. Finally, pasture economy may be furthered by more efficient methods of livestock husbandry, such as adopting high-grade livestock and employing such practices as will attain a maximum number of offspring, minimum losses, and maximum growth. These measures are especially important on the western ranges.
While the full employment of all these various methods may ultimately much more than double the carrying capacity of our humid pasture other than woodland and increase it by possibly 50
per cent on our semiarid range, it may be doubted if in the next three or four decades we shall succeed in raising the average level of productivity by more than 20 or 25 per cent throughout our enormous area of semiarid and humid pasture exclusive of woodland. Throughout large areas it is improbable that any considerable increase in productiveness will occur, for, the policy of relying on spontaneous pasture growths is likely to prevail. The use of fertilizer on permanent pastures is not likely to become general within that period, nor is it probable that the available supplies of fertilizer would make possible its general employment over so large an area. It is unlikely that the carrying capacity of woodland pasture will increase by any considerable amount.

Fig. 56.-As the density of population in a country increases there is a tendency to rely more largely on crops rather than on pasture for the maintenance of livestock. The area of crops and pastures used for the United States excludes acreage employed in producing for export. If allowance were made for the crops imported and fed to livestock, the ratios of pasture land to crop land for Germany and France would be still smaller. The area of semiarid pasture in the United States has been converted to humid pasture on the basis of relative carrying capacity. For all three countries woodland is excluded, although used to some extent for pasture. It is probable that the proportion of total livestock units maintained by woodland pasture is slightly larger for the United States than for Germany and France.

Any forecast of the probable rate ot increase in the average growth per acre of growing forest during the next few decades is complicated by numerous difficulties, particularly by the ownership of forest land. About 21 per cent of our timberland (exclusive of scrub forest) is in public ownership, and of this about 93 per cent is being handled to assure continuous growth of timber. About 79 per cent of our forests (and potentially among the most productive) is privately owned. Of this amount, 40 per cent is in farm wood lots and 60 per cent in other forms of ownership, chiefly large commercial holdings.

It may be safely predicted that all public forests will be more and more intensively managed, and will be largely added to from lands that would be much less productive if left in private ownership. Public ownership will thus add materially to the average annual growth per acre. Another factor that will probably increase our net total growth is the conversion of virgin forests, where growth is largely offset by decay, into young, growing forests. At present, however, a large proportion of the national forests consists of virgin
timber, which in many cases will not be in great demand until more accessible supplies are exhausted. Consequently, cutting off the old timber and getting a new crop started will necessarily be a gradual process.

The chief problem, then, is with respect to the private timberlands. At what rate may we expect these lands to be made more productive? Productive methods with farm woodlands, occupying some 150,000,000 acres, are hampered by the general lack of knowledge by farmers of the means to be employed. On the whole, for this important portion of our area of forest land we may perhaps expect a decrease in acreage and only a slow increase in rate of growth per acre.

For large commercial holdings the outlook is somewhat different. The increasing pressure of economic forces making for better forest management and higher yields is unmistakable. In several parts of the country, notably the Northeast, high prices of lumber and long freight hauls are making it profitable for the private land owner to grow timber as a crop. There is a well-defined movement to prevent in the public interest the denudation of private forests. Still more apparent is the trend toward public and private cooperation, on an adequate scale, for the control of forest fires. Such control is the first and most indispensable step toward making our forest land productive. Efforts are being made here and there by private industries to assure a continuous supply of timber by the careful cutting of their mature timber and by buying up lands stocked with young growth. However, the tendency toward private forest management is only in a formative stage. Only 43 per cent of our private timberlands have even partial protection from fire; and an almost negligible fraction get the benefit of more intensive measures for timber production.

Compared with the production of other crops, there is a far greater chance for increasing forest yields at a comparatively small expenditure. Under the crudest measures, chiefly protection against fire and leaving seed trees in some of the forest types, our annual growth on all forest lands, including virgin forests yet to be cut over, could be increased by 1950 from the present 6 billion cubic feet to 10 billion cubic feet. If these same crude measures should be permanently practiced, we could, on our present forest area, ultimately reach an annual growth of, something like 14 billion cubic feet, about 56 per cent of our present forest drain.

The various measures mentioned probably will gradually ameliorate the outlook for our timber supply. At what rate this amelioration will occur depends so largely on psychological factors, public policy, and other unpredictable conditions as to make a forecast impracticable. It appears unlikely that within that period there can be so marked an increase in the average rate of growth per acre in our growing forests and in our gross yield as to offset the decrease in consumption forced by forest destruction.

Probable Changes in Consumption in Next Few Decades.

Some of the probable changes in consumption of crop products during the next 30 or 40 years should also be considered. In the first place. it is quite unlikely that we shall curtail our consumption of
sugar to the German standard. Even if we do not increase the proportion, of the supply imported, it would not require a very large addition to our crop acreage to maintain the present per-capita consumption; in other words, the acreage required is comparatively small in proportion to the consumption utility involved. Again, it is doubtful if the cereal consumption habits of the American people will be greatly modified. The pressure of population in the next four decades will not be great enough to compel so prosperous a nation to substitute potatoes largely for bread or to shift from a wheat bread to a rye bread diet, and but little economy in land would result. There may be some tendency to shift to corn bread, because of its relatively greater cheapness. It is likely that some little increase may occur in the per capita consumption of potatoes and cereals to offset some of the probable reduction in the consumption of certain livestock products.

The principal changes, therefore, are to be looked for in the consumption of livestock products. The per capita consumption of dairy products is not likely to decrease very much, if at all. We have noted that even in so densely populated a country as Germany the per capita consumption of milk and milk products is but little less than in the United States. The consumption of mutton is very small in the United States. The greater proportion of our sheep are raised principally on pasture. If we should raise the same proportion of our wool supply as at present, this would enable us to maintain approximately the present per capita consumption of mutton, since the imports and exports of mutton are negligible. If we may judge from the experience of Germany the per capita consumption of pork and pork products is likely to decrease but little. Because of their ability to thrive on various forage crops yielding a large feed product per acre, and because of their comparatively small adaptability to the ordinary types of pastures, the relative importance of hogs is likely to increase as it becomes necessary to employ forage crops more and more in order to economize pasture; and, if anything, this relative increase is likely to be at the expense of classes of livestock better adapted to a pasture economy, such as beef cattle or sheep. Even in Germany the per capita consumption of pork and pork products is only about 10 per cent less than in the United States. It is probable, then, that when our population reaches $150,000,000$ our per capita consumption of pork and pork products will be at least 95 per cent of the present consumption.
The per capita consumption of eggs in Germany is only a little more than half as great as in the United States. However, even before the World War, Germany was a relatively poor country, as compared with the United States. It is not likely to be a scarcity of land that will compel a serious curtailment in consumption of eggs and poultry, for in proportion to food produced, poultry require relatively little land and much labor, as compared with cattle and sheep. Consequently, they are especially adapted to the economy of a dense population. If the consumption of poultry and eggs per capita should seriously decrease, it is more likely to be due to the increased pressure of other food costs on the family income than because of the demands made by poultry on the supply of land.

If we approximated the German standard, we should consume only about three-fifths as much beef as at present. A population of $150,000,000$ would not be dense enough to compel a reduction to the German standard. Moreover, the people of British origin who have so largely moulded our national standards, have exhibited great tenacity in clinging to a high per capita consumption of beef. However, we have already reduced our per capita consumption of beef considerably in the last two decades, and the increasing scarcity of pasture is likely to reduce it still more. As a basis for estimating land requirements, we may not be far wrong in assuming a reduction of 20 per cent in the number of beef cattle per capita.

It seems wise to consider that the number of horses and mules per thousand acres of crop land will continue as at present. The probable increase in productivity of crop and pasture land assumed above is not likely to increase the requirement per thousand acres of crop land by more than enough to offset the continued substitution of tractors and motor vehicles.

As already noted, our stock of timber would last for several decades even at the present rate of per capita consumption. However, the increasing remoteness or undesirability of remaining supplies is likely to result in increasing values and, therefore, probably in a continuation of the tendency toward a decrease in per capita consumption. For the period following the next few decades our per capita consumption depends very largely on what measures we take by way of providing for reforestation, promoting growth of timber, and reducing waste. It has been shown that on our present forest area it would be possible by methods of production relatively not very costly to grow annually by, say, 1950 about 10 billion cubic feet. This would give for $150,000,000$ people a per capita supply of about 66 cubic feet, or more than double the per capita consumption of Germany or France. However, this presumes the early adoption of a vigorous forest policy. Moreover, while some of our stock of virgin timber will undoubtedly still remain uncut in 1950, it is likely to be in the more remote locations.

We have now made certain assumptions that will enable us to estimate roughly the probable land requirements when our population has increased to $150,000,000$ people. On the basis of the assumptions of probable modifications in per capita consumption and of increase in productiveness of crop land, and in the carrying capacity of pasture, we shall require for a population of $150,000,000$, three or four decades hence, about $373,000,000$ acres of crop land and about 222, 000,000 acres of humid pasture other than woodland, the areas of semiarid pasture and of woodland being held constant as in previous estimates. This estimate makes no allowance for exports and assumes the continuance of the present per capita imports of agricultural products. ${ }^{60}$

[^92]Although the requisite increase in crop acreage to provide for $150,000,000$ people, as compared with the acreage now employed for domestic consumption, is only a little larger than the acreage in crops now employed in producing for export (including the acreage required for maintaining work stock used in export production), it is not likely that we shall divert all of the land now used in producing for export to production for domestic consumption. Our country is especially adapted to the production of certain kinds of crops needed by the rest of the world, particularly cotton. It is not improbable, therefore, that (including the acreage required for work stock) we shall continue for several decades to devote to export production at least half the acreage we now employ for that purpose. This would add about $30,000,000$ acres to the requirement of crop land, making a total of $403,000,000$ acres. This is about $38,000,000$ acres more than the acreage of harvested crops ${ }^{61}$ in 1919, and requires the addition of about $1,000,000$ acres a year. The allowance of half the present export acreage would also make necessary an addition of about $11,000,000$ acres of humid pasture other than woodland, making a total requirement of $233: 000,000$ acres of humid pasture, or about $2,000,000$ acres more than the present area.

It therefore appears that, provided we can make the very moderate modification in standards of consumption and productive efficiency assumed as a basis of these estimates and devote to domestic production about half the area now employed in producing for export, our needs for expansion of the farming area to provide for 150,000,000 people would be satisfied by adding about $40,000,000$ acres of crop land and improved pasture to the farming area. ${ }^{62}$

The very moderate requirements for crop land and pasture will leave a very large area available for forests. It will be recalled

[^93]that after allowing for the present requirements for roads, cities, railways, farmsteads, etc., and for the land that is physically incapable of being employed for crops, pasture, or forests, there remains an area of $1,769,000,000$ acres available for the three uses. Allowing about $10,000,000$ acres of land for the expansion of the area required for cities, roads, etc., during the next few decades, there remains available, $1,759,000,000$ acres. Subtracting from this the $587,000,000$ acres of semiarid pasture, the $403,000,000$ acres of estimated requirement for crop land, an allowance of about 40,000,000 acres of crop land for annual crop failure and crop land fallow, and the $233,000,000$ acres estimated to be required for humid pasture, there remain $496.000,000$ acres of surface not required for any other use than forests. or $13,000,000$ acres more than are now included in the area of forest and of cut-over land not restocking. In other words, with the reasonable economies and changes in foreign trade assumed above, it will be possible to meet the needs of a population of $150,000,000$ for crop land and pasture and still have left an area larger than the present forest area. ${ }^{63}$

This does not mean that the $496,000,000$ acres of surface left would all be adapted to forests. Some of this land would have to be reclaimed by drainage at an expense so excessive that it probably may never be reclaimed, even when the maximum population of the nation is attained; and a little of it also is too dry for trees. Consequently, it seems probable that the land available for use as forests during the next forest cycle will not be larger than the present forest area of $483,000,000$ acres, which includes, it will be recalled, about $81,000,000$ acres of cut-over land not restocking.

The Direction of Expansion of the Area of Farm and Forest Land During the Next Few Decades.

For the additional $38,000,000$ acres of crop land there are available a little over $600,000,000$ acres of potential crop land from which to choose, after allowing for the area of land suitable only for forest or semiarid pasture. Allowing for an area of forest land equal to the present forest area, there remain nearly $400,000,000$ acres of potential crop land. Practically all of this is either inferior in quality or requires drainage or irrigation.

It is obvious that to obtain $38,000,000$ acres from this great area should involve careful selection. Moreover, each of the several classes of potential crop land is likely to contribute toward the required amount. It will be recalled that the forested regions of the eastern half of the country are estimated to contain $220,000,000$ acres of land capable of use for crops without drainage (see figs. 9 and 11). besides $151,000,000$ acres of land so rough or so sandy that it may be considered suitable only for forests. Of the former area, $32,000,000$ acres are classed as heavy soil. This is more than the $22,000,000$ acres required for the expansion of crops during the next few decades; but a good deal of this land, while not absolutely too rough for use in

[^94]crops, is quite rolling, and some is infertile. However, it would seem possible by careful selection to obtain a large proportion of the required $38,000,000$ acres either from the heavy land of the cut-over region or from the best of the $162,000,000$ acres of medium-textured soils or from semiarid land. In view of these possibilities it would seem hardly necessary to reclaim a large area by irrigation or drainage for the expansion of agriculture during the next few decades, and certainly there would be no justification in undertaking such reclamation except in the case of projects where the economy of reclamation could be demonstrated unequivocally.

Maximum Population That Could Be Maintained by Our Resources of Crop, Pasture, and Forest Land.

The statistics worked out in the preceding discussion also supply a basis for estimating the maximum population that may be maintained by our existing land resources, assuming no greater relative dependence on imports than at present. Starting with the per capita acreages required under the extreme economies represented by the pre-war German standard of food and timber consumption, and allowing for the maximum economies in production shown to be possible by European experience, we may estimate the minimum acreage required per capita for the several uses. The sum of the per capita areas for crops and humid pasture divided into the total area available for these purposes will indicate approximately the maximum population under these assumptions. However, it is necessary to make allowance for the fact that the area of semiarid pasture will be not only about $119,000,000$ acres less than at present, but, together with woodland, will carry proportionately a much smaller part of the total livestock units, even allowing for an increase of 50 per cent in its carrying capacity, thus throwing a somewhat greater burden on humid pasture.

When all these allowances are made a maximum population of $350,000,000$ is indicated. ${ }^{64}$
Another method of estimating maximum population is by means of the areas per capita employed for crops and pasture in Germany. Of course, Germany was more dependent on importation than we are in the United States (fig. 57). In the case of 10 principal crops largely grown in the country, a careful estimate indicates that Germany was about 79.3 per cent self-sufficient in crop production. ${ }^{65}$ No

[^95]estimate is available for the degree of self-sufficiency in pasture production; but if this be assumed to be the same as for crops, the per capita requirement for Germany was approximately 1.4 acres of crops and pasture (other than woodland) per capita. Assuming that Germany was 80 per cent self-sufficient in the years just preceding the World War, the per capita acreage required to maintain her

PER CAPITA ACREAGE IN CROPS, HUMID PASTURES (AND EQUIVALENT), AND FORESTS USED FOR DOMESTIC CONSUMPTION, UNITED STATES, FRANCE, AND GERMANY.

Fig. 57.-The acreages of crops and humid pasture for the United States do not include land employed in producing for export. No allowance is made for the acreage in France and Germany that would be required to produce the farm products imported. The column showing pasture area per capita for the United States includes an allowance for semiarid pasture converted to terms of humid pasture on the basis of relative carrying capacity. In all of the countries some use is made of forest for pasturage of livestock. In comparing the forest area per capita of the United States with the corresponding figures for the two European countries it is important to note that the former country is cutting largely from a stored crop, while the forest acreage of the two European countries is employed mainly in growing annual crops of timber. Furthermore, nearly 17 per cent of the so-called forest area of the United States consists of cut-over land not restocking.
population under the average conditions of production prevailing in that country was about 1.75 acres. After excluding land required for cities and other nonagricultural uses, ${ }^{66}$ the area of land usable only for semiarid pasture or for forests, and waste land, there would remain a total of about $1,004,000,000$ acres. On this basis our land area available for crops or humid pasture could be made to maintain a population of $574,000,000$ people, even if no allowance be made for the additional aid supplied by our semiarid pasture.

The large difference between the two estimates is due to the fact that the first estimate was made on the basis of the assumption that the average yield per acre of crops may be increased by 46.8 per cent, which is based on averages for four European countries, with

[^96]supplemental estimates for corn, hay, and cotton. The average, however, is considerably lower than the percentage by which the average yield of crop land in Germany exceeds the average for the United States. However, on account of the large area of semiarid crop land, it is very improbable that we could attain the average yields of Germany throughout our crop area. Consequently the average yields for the four countries previously employed is a more conservative basis of estimate. If allowance be made for the differences, a maximum population of about $345,000,000$ is indicated.

This would seem to indicate that the preceding method of estimate is reasonably sound. As a matter of fact, both methods exaggerate somewhat the probable maximum population, or saturation point, for a number of reasons.
In the first place, the $1,004,000,000$ acres of land available for crops and humid pasture includes all land that is physically capable of being employed for crops and pasture (not counting semiarid pasture). About $105,000,000$ acres requires drainage or irrigation and includes large areas of land for which the expense of reclamation would be enormously costly; in other words, it is physically reclaimable but probably not economically available even under the pressing demands of a dense population. Again, the total area of $1,004,000,000$ acres includes much land of low productivity either because of the character of the soil or because of aridity. It may be granted that the pressure of population would justify the expenditure of labor necessary to make and keep the poor soils of the humid region as productive as the average soils now in use will be made when necessity compels, but the total area includes more than $120,000,000$ acres of semiarid land that probably can never by any economical expenditure of labor be made to produce on the average more than a fifth of the potential average product on the other lands of the United States. If these allowances be made and the available productive area be reduced to the equivalent in potential productivity of the area now in use under intensive agriculture, the available acreage would be about $908,000,000$ instead of $1,004,000,000$. On the former basis, the maximum population maintainable according to the first method of estimate would be about $319,000,000$, while on the basis of the German requirements in per capita acreage it would be about $519,000,000$. However, if the allowance be made, as above, for the difference in average yield of crop land for Germany as compared with the average for the four European countries, the maximum population would be about $312,000,000$. Probably, all things considered, the maximum number maintainable under the standards of consumption prevailing in pre-war Germany and of production in the four European countries previously discussed would be not far from $300,000,000$ people. ${ }^{67}$ This would involve a severe reduction in

[^97]general standard of living because of the heavy costs of utilization; and consequently the so-called saturation point, that is, the point beyond which population would no longer increase, may be reached considerably short of $300,000,000$.

Conclusions.

The Problem of Forest Utilization.

The data that have been presented have indicated that during the next forest cycle an area of humid land as large as the present acreage of forest and cut-over land will not be needed for crops and pasture. An area of this magnitude would include not only the lands unsuitable because of hilly conditions or rough surface for any other use than forests, but also practically all of the sandy lands in the humid portion of the country and even a few million acres of the heavier soils. Probably small portions of this great area with special advantages in access to market may be devoted to trucking and fruits, but it would appear to be the part of wisdom to regard the area as a whole as suitable only for forest land during at least the next forest cycle of, say, 50 years and to take the necessary steps for reforesting as much of it as practicable.

This task is too large to leave wholly to private initiative and too urgent to leave to economic chance. Our forest wealth has melted away before our immense agricultural and industrial development, which caught us unprepared to take this fundamentally new step in our development, the cultivated forest. Only a beginning has been made in changing the national point of view from the idea of wasteful and unrestricted use to the idea of careful forest husbandry based mainly on the principle of growing our annual supply. Still less has been the advance in better forest management itself, for, aside from the one-fifth of our forest area in public ownership, relatively minor progress has been made either in stopping forest devastation or in the elementary steps toward adequate reforestation. Meanwhile, without a drastic and immediate change in policy, there looms a sharp curtailment of timber consumption below anything our population or our industries can easily be adjusted to. It is therefore obvious that a comprehensive policy is needed, the main elements of which may be stated as follows:

The growth problem.-Some of our public forest lands have not yet been brought under management for continuous timber production. This should be done as rapidly as possible. In order to help tide over the era of timber shortage, the standard of productivity of all public forests should be increased by better protection from fire, insects, and disease; by a more adequate technical service both in forest research and in forest management; and by large-scale planting of now idle lands. As our public forests are largely in Federal ownership, this is chiefly a Federal problem.

The problem of increasing the yields on private lands is much more complex and difficult. One large part of that problem is the better handling of our $150,000,000$ acres of farm wood lots. The first essential step is to educate the farmer to apply to his wood lot the same idea of continuous cropping that he applies to his
fields. He will have to learn to use selective cutting, to exclude or restrict grazing in his woodlands, and to keep out fire. He will need assistance in marketing his timber products and in obtaining cheap nursery stock for planting. Public leadership is needed in all these ways.
Increasing the yields of private lands implies first of all that the public will step in and put a halt to forest denudation. Irrespective of who will in future own these lands or who will harvest the final crop, the present owner must be required, in cutting his timber, to leave the land in productive condition, that is, restocked or restocking with young growth. To permit him to do this, however, with a reasonable chance of profit, the public must do its share to reduce the risks. The chief risk, fire, must be met by a concerted effort by the National and State governments and by private owners to reduce fires to the point where all forests have a fair chance of escaping destruction somewhere on the road from youth to maturity. The risk to the individual may also be lessened by providing an adequate system of timber insurance. The development of systems of credit adapted to the special conditions of timber ownership by private agencies is another thing needed for encouraging private initiative, especially for small holders. It is also essential to encourage the private timber grower by supplanting the present property tax on growing timber crops with a more efficient form of taxation. The property tax is collected annually even though the crop may not be ready to sell for many years, and will be increasingly burdensome as private reforestation becomes more general. A third way in which public agencies can help increase yields is through more adequate research in methods of timber growing and forest management, and by educational efforts to get those methods into use.

The waste problem.-Public leadership is needed to reduce the large waste of merchantable timber from fire, insects, disease, and windfall. Still larger are the problems of wood waste in manufacture and use, all the way from the woods to the finished product. These problems require research and public leadership on a larger scale than we have at present.

In short, the forest problem requires rapid action on a large scale, for we are compelled within a few years to effect a veritable revolution in the point of view and methods involved in the utilization of land for forests.

The ownership problem.-It is desirable to develop private enterprise in forestry as rapidly as possible, as outlined above, but it is well to recognize that we should not rely on this as the major means of providing for the era of prospective shortage. Time is necessary to develop the requisite interest, and the potent stimulus of high values for timber and timber products is becoming influential only gradually.

To meet the need for rapid action within the next few decades to make provision against the severe shortage that is in prospect it will be necessary to rely heavily on public ownership and operation. The public forests-Federal, State, county, and municipal-now constituting only about one-fifth of our forest area should be largely in-
creased (fig. 58). Of our $483,000,000$ acres of forest and cut-over land half should be in public ownership. This would involve an increase of $150,000,000$ acres, or several million acres each year.

Fig. 58.-In the eastern forest region, which comprises 75 per cent of the total forest area of the United States, the national forests are only 1.3 per cent of the total, and all publicly owned forest land in this region is only a little more than 3 per cent. Two-fifths of the area is in farm-wood lots and the remainder consists of privately owned forests. In the western region about 70 per cent of the forest area is owned by the Federal Government, while 28 per cent consists of privately owned forests.

Land Classification Essential to the Systematic Selection of Land for Crops, Pasture, and Forests.

The above conclusion implies that the areas that are to be devoted to reforestation, as well as the areas that should be reserved during the next forest cycle for pasture and for crops, should be determined by deliberate selection. To this end it has been recognized for some time that a systematic classification of our reserve land area is requisite. Such a classification would serve not only to separate farm land from forest land in humid regions but also to distinguish farm land from range land in semiarid regions, and this would afford a basis for systematic direction to the necessary expansion of American agriculture.

The Misdirection of Agricultural Expansion.

Land settlement no longer consists of the spontaneous migration of population to virgin public lands of high quality. At present it is largely induced by the ceaseless activity of various classes of landselling agencies seeking to profit by the sale of land. Owners of land however unsuitable for farming, are strongly impelled through the constant pressure of taxes and other carrying charges to sell it if possible. Local communities appear to benefit by the immigration of settlers even if they are unsuccessful in maintaining themselves on the land, and the unsuccessful settlers themselves are often eager to "unload" on another wave of immigrants. If outside in-
vestors or public agencies can be induced to undertake works of reclamation, there results at least a temporary increase in community prosperity as a result of the expenditure of the funds in the community. Furthermore, experience has shown that with sufficiently strong selling methods it is possible to find buyers for land entirely unsuitable for farming.

These forces and methods have resulted in the continual misdirection of land utilization and settlement. Land that should be kept in forests for at least the next forest cycle has been forced into occupation by settlers. Large areas in the West, more suitable for grazing than for crops, have been sporadically settled to the detriment of the established range industry.

The misdirection as to time and rate of settlement has been no less costly than the misdirection as to place. Settlement activity is always most extensive at times when agriculture is "booming." At such times, when land values are inflated and costs of reclamation, buildings, livestock, and machinery are at high levels, settlers in large numbers incur these high costs only to be compelled shortly to enter a period of depression under a heavy load of indebtedness.

Tendency to Overexpansion of Agriculture.

Furthermore, as a result of the desire of settlers to benefit by increase in land values, stimulated still more by the activity of agencies striving to effect the sale of land, expansion in land area tends to run ahead of the need for land. The evil results of this tendency are manifold. The enormous losses incurred by settlers in abortive attempts to obtain a foothold on the land and the consequent disappointment and disillusionment are paralleled by the losses of financial agencies engaged directly or indirectly in promoting land settlement. But even more serious is the tendency to lower the average level of profitableness for the established farming industry.

So continuous has been this tendency to overexpansion throughout the period of our national development that there has come to be a sort of cynical resignation to the evils involved and an acceptance of them as the inevitable price of national expansion. This is reflected in the widespread belief that at least three waves of settlers are necessary in order to settle a new region. Sometimes the attempt is made to justify the costliness of our let-alone policy in land settlement by pointing to the rapid expansion and growth in national area, population, and wealth. It should be recognized, however, that our tremendous progress has been due to our unusual advantages in national and in human resources, and would not have been seriously checked by reasonable restrictions designed to give direction to the currents of expansion and to reduce somewhat the wastefulness and costliness of the process.

In order to justify a policy of expansion without reference to whether basic economic conditions are favorable or unfavorable to such expansion, much is made of the sentimental argument, "We need more farm homes." To this one might make the somewhat oracular reply, "We do not need more farm homes than farms"that is, it is useless to multiply farm homes which can not be adequately supported by the farms, and particularly to multiply them
under schemes which involve the assumption of heavy indebtedness by the farmers.

Driven from the sentimental position just described, the advocates of undue expansion sometimes resort to the suggestion that there can not be too many farm homes in which the family is fed from the farm. This is intended to justify the increase of farms on the ground that self-sufficing farmers will not compete with farmers already established. However, if the new farmers are persons now engaged in industry, their diversion to farming must result in increasing the competition of existing farmers, for a certain number of consumers are thereby brought to produce their own food. If the new farmers are immigrants from abroad, they bring their consuming power with them, it is true, but they will not long be content to remain where they get nothing but food and hard work. Moreover, the establishment of self-sufficing farm homes by any policy involving reclamation or other initial capital expenditures is practically out of the question if the costs must be assumed by the purchaser of the farm.

Some advocates of undue and ill-timed expansion of the farming area of the nation accept the assumption already mentioned that such expansion is inevitably wasteful and attended by heavy financial losses to those who undertake it, and on the basis of these assumptions boldly argue the necessity of a policy of subsidizing expansion. It should be pointed out, however, that it is the tendency toward the over-expansion of the farming area which, by reducing the profitableness of farming, makes the policy of subsidy necessary. The subsidy tends to overstimulate the expansion of the farming area, and this in turn makes the subsidy increasingly essential. Thus, like a drug addict, we must go on and on increasing the dose.

Need for Systematic Direction to Agricultural Expansion.

In order to prevent as far as possible the evils of over-expansion and misdirected expansion it would be necessary to develop a policy of unified and systematic direction to land settlement.

Such a policy would be, in general, essentially different from the land policies of the past. For more than a century the characteristic policy was the distribution of the public domain among private individuals, with little or no reference to the need for the land or the suitability of land for settlement. Since the passing of this phase of our land policy the most important feature of our policy of land settlement has been the reclamation system. This policy has been carried out with little attempt to relate the rate of reclamation to the Nation's needs for farm land. Moreover, in its application the policy has been sectional rather than national, and in some cases the areas settled have not been best adapted to the development and maintenance of successful agriculture. This tendency has been increased by the indirect subsidy involved in the exemption of settlers from interest on construction costs, a subsidy which has been estimated at approximately $\$ 70,000,000 .{ }^{69}$

[^98]In a national policy of directing land settlement due consideration should be given to the needs; both national and local, for land to be devoted to crops, pasture, and forests, and also to the relative advantages of all parts of the Nation for the various uses of land. Another important consideration is the economic value of wild life. In addition to the value of forests for timber production, it is important to consider their value in providing a home for many kinds of useful birds and other forest-loving animals; and in deciding upon the drainage of marshes and shallow lakes, their value in the natural state as breeding places of fish, birds, and fur-bearing animals should be adequately considered. The recreational value of wild lands, as well as their direct economic value in the wild state, should not be overlooked.

Clearly, the interests involved are too great to be left to chance, for the let alone policy of the past few decades has been a source of enormous economic waste, and social misery. Nor can such interests be left entirely to the individual States, for it frequently appears to be to the interest of a particular State to attract settlers from other States, with little reference to the bearing of such action on the national needs for the various uses of land or to whether the change is for the better from the standpoint of the welfare and efficiency of the settlers.

In view of these considerations, emphasis is given to the suggestion of the National Agricultural Conference of 1922 that some Federal agency be granted authority to work, in cooperation with the States, in giving systematic direction to the expansion of American agriculture, on the basis of a scientific land classification.

Importance of Taking Steps to Increase the Productivity of Crop and Pasture Land.

The facts presented in this article emphasize the importance of increasing somewhat the productivity of crop and pasture land, if the requirements of expanding population during the next few decades are to be met. To a large extent this progress must be achieved through the aid and stimulus afforded our farmers and ranchmen by means of research and extension activities. However, in the case of the large area of public land now used as open range, it is generally recognized that the present system of unrestricted free use of these lands is lessening the value of large areas of grazing land and is seriously crippling the range stock industry. The effect of the enlarged homestead and grazing homestead acts was to still further demoralize the industry. It is believed that by creating grazing districts operated under a permit system of regulated grazing, as in the national forests, an increase in the carrying capacity such as has been accomplished in the national forests could be achieved.

Need for Administrative Unification of National Land Policy.

A consideration of the group of programs that have been suggested above indicates that they can not be regarded as isolated policies, each of which can be effectively carried out by separate agencies. On the contrary these policies are closely interrelated, and
the essential need is for a unification in the future development of our national land policies. Unfortunately during the past 100 years the different functions connected with land policy have been distributed among various governmental agencies. As one looks into the future, however, it becomes apparent that we are entering an economic era in which the various functions involved in working out the new policies are vitally interrelated, requiring unification in administration. Only by such unity of policy and of execution can ill-considered and excessive expansion and rapid but wasteful utilization be supplanted by deliberate selection, careful economy, and constructive development with due reference to the long-time requirements of the nation.

By L. C. Gray, Charles L. Stewart, Howard A. Turner, J. T. Sanders, and W. J. Spillman, Bureau of Agricultural Economics.

THE general attitude toward the subject of land ownership and tenancy in this country has been determined by our very recent emergence from the pioneer stage of agricultural development. In that stage farm land was superabundant and its ownership easily acquired. There was little necessity for farmers to obtain the use of land by renting it from others, and those who continued long as tenants were largely of the less efficient and enterprising class. As land in the older communities became scarce, the more enterprising of the younger generation who were unlikely to inherit land pushed on to new regions where farm ownership could be easily acquired. The competition of the newer areas of virgin soil prevented an abnormal increase in the value of land in the older regions and made it relatively easy to achieve land ownership.

Largely as a result of these earlier conditions farm ownership by the farmer has come to be regarded as normal, and tenancy as abnormal. The increase of tenancy has been "viewed with alarm" by many people, and there has been a tendency to attribute in an indiscriminate manner to institutions of tenancy nearly all of the economic and social ills that manifest themselves in the rural community. Now that we have passed beyond the pioneer stage and have entered upon a more mature phase of national development, it is desirable to attempt to get a well-rounded conception of the significance of farm tenancy, which is by no means peculiar to the United States, but is found to some extent in all civilized nations, and particularly in English-speaking countries (fig. 1). Endeavoring, then, to approach the subject with an open mind, let us first take stock of the present extent and relative importance of the different classes of land tenure ${ }^{1}$ and trace briefly the recent trends with reference to land ownership and tenancy as shown by census and farm-survey statistics.

[^99]PERCENTAGE OF FARMS AND FARM ACREAGE OPERATED BY TENANTS, SELECTED COUNTRIES; INCLUDING PART OWNERS IN UNITED STATES, FRANCE, CHINA, AND CANADA.

Fig. 1.-Farming by tenants and other lessees is less prevalent in the United States than in England, Australia, New Zealand, or Belgium ; is of about the same prevalence as in Japan, France, or China; and is more prevalent than in Germany, Canada, or Denmark from the standpeint of the proportion of farmers who are tenants and also from that of the proportion of acreage rented. The information shown is the latest available. In France and Canada the acreage shown as rented includes that of part owners as well as that of tenants. The percentages for the Tnited States include only land in farms. The proportion of the land operated by those farmers who do not own it is probably higher than shown above. (See pp. 521-52.2.)

Relative Extent of Different Classes of Tenure-The United States as a Whole.

Land is either owned by the farmer or rented under one or more of the various methods of leasing used in this country. There is some variation in the different States as to the legal rights and privileges involved in ownership, but these differences are incidental rather than of basic economic significance. There are also some differences as to the legal status of tenancy. But for the most part, the great contrast in the forms of tenure in different parts of the United States are economic rather than legal.

Some farm operators own all of the land they operate (owner farmers), others own none of it (tenants or croppèrs), and still others own part and rent part (part owners or owners additional). Sometimes farm operators employ managers to direct the business of

TENURE OF FARM REAL ESTATE MEASURED IN FOUR WAYS, UNITED STATES, CENSUS OF 1920.

Fig. 2.-More than half the farms in the United States are operated by full owners, but somewhat less than half of the land or of the value of farm real estate. Although tenants who rent all the land they operate constitute over 38 per cent of all farmers, they operate less than 28 per cent of the farm land, only about 35 per cent of the improved land, and about 36 per cent of the value of farm real estate. Manager-operated farms average five times as large in total acreage as other farms, have about $2 \frac{1}{2}$ times as much improved land, and are valued, on the average, at nearly four times as much.
farming. Our census statistics classify farmers into these four groups, and in the census of 1920 croppers in the Southern States, who supply no work animals and in most cases are laborers paid by a part of the crop rather than in cash, were separated as a subgroup under tenants.

The relative importance of these four classes of farmers may be measured not only in terms of the proportion of farms operated by each class, but also from the standpoint of the proportion of the acreage of all farm land, of improved land, and of the valuation of farm real estate operated by each of these tenure classes. These four methods of measuring the relative importance of the four tenure classes give somewhat different results (fig. 2).

Relative Importance of the Tenure Classes at Present.

Although over half the farms in 1920 were operated by farmers who own all the land, less than half the farm land was in these full-owner farms, and an even smaller proportion of the improved
land and of the valuation of the farm real estate. But if part owners be included, whose farms are much larger than those of full owners, the percentage of the total farm land operated by these two classes rises to 66.6 , as compared with 60.8 per cent of the number of farms. On the other hand, tenants constituted over 38 per cent of

PERCENTAGE OF FARM HOMES RENTED COMPARED WITH OTHER HOMES, UNITED STATES, CENSUS OF 1920.

Fig. 3.-The proportion of the farm homes rented is only about two-thirds as large as the proportion of city and village homes rented. The proportion of farm homes free of mortgage encumbrance and occupied by the owners is also larger than in the case of other homes. Farm homes comprise the homes of persons engaged in farming and located on farms. Homes occupied by farm managers are included under farm homes rented.
the farmers of the United States, but operated less than 28 per cent of the improved land and of the valuation of farm real estate. As shown in Figure 3, the proportion of farm homes rented by the occupants is smaller than in the case of urban homes. Moreover, some of these farm tenants own other farms. While no census statistics bearing on this point are available, local surveys in 15 States indicate that about 10 per cent of the tenants owned farm land.

The relative importance of manager-operated farms, like those of part owners, is greater than their number would indicate, for such farms are not only larger in average area and valuation than other

OWNERS, PART OWNERS, MANAGERS, AND TENANTS; $\underset{\text { OF }}{\text { POTAL }}$ PERCENTAGE

Fig. 4.-In 1880 and 1890 owners, part owners, and managers were not separated in the census statistics. The increase in percentage of tenancy between 1880 and 1900 was $3 \frac{1}{2}$ times the increase between 1900 and 1920 .
classes of farms, but also in the South there are many plantations worked by croppers and tenants, under the close supervision and direction of a manager. Even though the entire plantation is so operated, each tenant or cropper holding would be reported in the census as a farm, but the estate as a whole would not be reported as operated by a manager.

The same condition tends to exaggerate the relative importance of tenant farming as compared with owner farming, for many of the plantations of the South, as well as a considerable number of large farms in other parts of the country, although divided up into socalled farms worked by tenants and croppers, are actually under the close supervision and management of the owners. Excluding croppers classified in Southern States only, tenant farms in the country as a whole comprised only 32.2 per cent of the total number of farms in 1920 and white tenant farms only 28.7 per cent of the farms operated by whites. ${ }^{2}$

The Trend in Relative Importance of the Tenure Classes.

In 1880, when census statistics of tenure first became available, about one-fourth of the farms in the United States were operated by

Fig. 5.-On account of changes in the time of year of taking the census, the percentages shown above, particularly those showing the number of farm laborers, are not exactly comparable. The first three census enumerations were taken as of June 1, and indicate that the rapid increase in the percentage of tenant farms' was partly at the expense of the proportion of owner farmers and partly at the expense of farm-wage laborers. The census of 1920 was taken as of January 1, and as a result a much smaller number .of laborers were reported than would have been reported if it had been taken June 1. On the other hand, the figures as of April 15, 1910, may have resulted in exaggerating the number of farm laborers.
tenants. The proportion has increased in each decade since that time, but the increase in the proportion of tenants from 1900 to 1910

[^100]was not marked, and from 1910 to 1920 was still smaller (fig. 4). Moreover, when the percentages are calculated on the basis of persons engaged in agriculture, instead of on the basis of number of farms operated, it appears that the increase in the percentage of tenant farms was not entirely at the expense of the proportion of owner farmers, but may have been partly at the expense of farm wage laborers (fig. 5).

The geographic distribution of this increase in percentage of tenant farmers is significant (fig. 6). In New England and the North Atlantic States tenants have decreased in relative numbers, whereas in the Cotton Belt States and the Corn Belt there has been a notable increase, particularly in the earlier decades. During the decade preceding 1920 the greatest increase occurred in the Great Plains and Rocky Mountain States. As will be shown later, in newly developed regions such as these, it is to be expected that the proportion of tenants will rapidly increase as the pioneer farmers retire or pass away.

Figure 7 shows the counties in which the percentage tenants constituted of all farmers increased or decreased between 1910 and 1920. It is evident that the number of tenant farmers has, in general, ceased to increase in most of the longer-settled sections of the East, in much of the Cotton Belt outside the Coastal Plain, in Missouri, eastern Kansas and Oklahoma, and in many counties of California.

From 1910 to 1920 the relative importance of tenant farming in the United States as a whole increased somewhat more from the point of view of farm area, either total or improved, or valuation of real estate, than from the point of view of number of farms: and the relative importance of farming by full owners decreased correspondingly. The relative importance of farming by part owners decreased slightly when measured in terms of number of farms, acreage of improved land, and valuation of real estate, but from the standpoint of total area of land in farms there was a considerable increase in the relative importance of farming by this class, owing largely to the rapid increase of part-owner farms in the Great Plains region; where the average area of farms is comparatively large (fig. 14).

By adding the land rented by part owners to that rented by tenants it is possible to obtain as far back as 1900 approximate figures of the acreage of farm land and of improved land, and also of the valuation of farm real estate operated under rent contracts. ${ }^{3}$ The change in the proportion of the valuation of farm real estate operated by the four tenure classes between 1910 and 1920 is shown in Figure 8. Between 1900 and 1920 the acreage of rented land increased from 34.2 per cent of all farm land (excluding land operated by managers) to 39.3 per cent, while the proportion of the improved land rented increased from 37.5 to 43.8 per cent and the proportion of the valuation of the rented real estate increased from 35.4 to 43.6 per cent of the total valuation of farm real estate (Table 1).

[^101]

Fig. 6.-In all the States north of North Carolina and east of Ohio and Kentucky, with the exceptions of New York and Pennsylvania, the percentages of farms operated by tenants were smaller in 1920 than in 1880 . In most of these States the maximum percentages were attained about 1900. In Kentucky and Tennessee there was little change after 1900 . In the other Southern States, except Louisiana, the increase in the percentage of farms operated by tenants continued up to 1910 . In the next decade the increase was less marked in some of the States of this group, while in others a decrease occurred. In most of the newly developed States of the West the increase of tenancy, which normally has followed the early years of settlement, was still continuing in 1920 . The increase

 eastern Washington, and Arizona. There was a notable increase in certain parts of the Corn Belt, especially northern Iowa. There Was also some increase in those parts of the South where there has been a comparatively recent agricultural development. In short, expanding, or where such oxpansion is of comparatively recent occurrence.

Table 1.-Percentages of total farm area, improved land, and valuation of farm real estate (excluding that controlled by managers) operated under rent contracts, U'nited States, 1920, 1910, and 1900. ${ }^{1}$

	Date.	Acreage.		Value of real estate.
		Total.	Improved.	
1920		39.3	43.8	43.6
1910		35. 6	41.0	39.5
1900		34.2	37.5	35.4

${ }^{1}$ Since it is not known what proportion of manager-operated land is owned by the person employing the manager and what proportion is rented by him, this class is excluded from the basis in calculating the above percentages. The figures for 1920 are based in part on estimates.

VALUE OF FARM REAL ESTATE CLASSIFIED BY TENURE, UNITED STATES, 1910 AND 1920.

Fig. 8.-The proportion of all farm real estate rented by tenants and part owners in 1920 was 42 per cent, and the proportion of all farm land, excepting that in farms of managers, was nearly 44 per cent. Less than half the farm real estate was owned by full owners in 1920, and but little more than half was owned by full owners and part owners combined. A marked increase of land renting between 1910 and 1920 is shown when the real estate is classified in terms of valuation. The ratio of rented land to all land in the farms of part owners is assumed to be the same in 1920 as in 1910.

Geographic Distribution of the Various Classes of Tenure.

Farms operated by tenants and croppers are most numerous, absolutely and relatively, in the Cotton Belt (fig. 9). Practically all of the cotton-producing region formerly operated by negro slaves under the plantation system is now occupied very largely by negro farmers classed as tenants or croppers (fig. 10). Adjacent to this old plantation region are certain extensions of the cotton-producing area, made for the most part since the close of the Civil War and now operated largely by white tenants and owners (figs. 11 and 13), with a considerable sprinkling of negro tenants and owners (figs. 10 and 12). Taken altogether, the region of cotton production contains approximately half the tenant farmers in the United States.

There is no other large region in the United States where tenant farmers are in the majority, but there are certain counties in the Corn Belt where this is the case. In the greater part of Iowa, north central Illinois, eastern South Dakota, and Nebraska, and central Kansas, tenant farmers are nearly half the total number of farmers. Outside the Cotton Belt, the Corn Belt, and the wheat areas of the eastern plains, tenant farmers constitute, in general, fewer than 25 per cent of the number of farmers (fig. 9). Where tenants are found, they commonly occupy land well adapted to crop production, and they are especially numerous in regions where the farming systems consist largely in the production of staple crops. In dairy-

Fig. 9.-The percentage of farms rented is highest in the Cotton Belt, where tenant farms constitute usually from one-half to nine-tenths of the number of all farms. In the Corn Belt and the eastern portions of the winter wheat and spring wheat regions tenant farms comprise from one-fourth to three-fourths of the number of farms. Measured by acreage, tenancy in these regions is relatively more important and in the South less important than when measured by number of farms. Outside these areas tenants, in generai, constitute less than one-fourth of all farmers.

Fig. 10.-The Negro tenant and cropper farms or holdings are located mostly in the Yazoo-Mississippi Delta, in the Black Prairie of Alabama, and in the upper Coastal Plain and Piedmont of Georgia and the Carolinas-districts having the richest soils in the old South. Many of these "farms" are merely allotments to croppers on plantations, the owner of the plantation furnishing the cropper with his mule, his farm implements, and sometimes even with food until the crop is " made " in the fall añd the proceeds divided between them. The dots shown in California represent mostly Japanese and Chinese tenant farmers.
ing and other forms of livestock husbandry, tenant farming is relatively less prevalent.
Owner farmers (compare fig. 9 with figs. 12 and 13) predominate (1) in New England; (2) in areas of dairy farming, notably in New York and in the southern portions of the Lake States; (3) in rough lands of the Appalachian and Ozark Mountain regions, where a relatively small proportion of the land is in crops; (4) in many areas of cut-over land, particularly in the northern Lake States, where land settlement has been recent; (5) in certain areas where farming is characterized by specialty products requiring a high

Fig. 11.-The regions of greatest density for farms operated by white tenants are the upper Piedmont of the Carolinas, Georgia, and Alabama, and the Black Waxy Prairie of Texas. In these districts negroes are less numerous than to the south and east, and the cotton is grown mostly by white farmers. A large number of white tenants are shown in Kentucky and western Ohio, especially in the tobacco districts and throughout the corn Belt.

Fig 12.-The regions of greatest density for farms operated by Negro owners are eastern Virginia, southeastern South Carolina, and northeastern Texasall of them areas of cheap land. In Virginia there are almost twice as many farms operated by Negro owners as by Negro tenants, and in Florida the numbers are about equal: but in the Cotton Belt tenants greatly exceed owners in number (see fig. 10). There are very few Negro farmers in the Northern States, but nearly three-fourths of these farmers own their farms. as compared with one-fourth in the South. This high percentage of ownership is striking proof of the tenure progress of the Negro race in the past half century. The dots in the Western States represent mostly farms owned and operated by Indians, Chinese, and Japanese.
degree of skill in production and marketing. such as the fruit regions of the Pacific States and Florida, and trucking districts in various parts of the United States; (6) on much of the cheap sandy lands of the Atlantic and Gulf coastal plains; (7) in the rolling and less fertile parts of Tennessee and Kentucky, and southern portions of Ohio, Indiana, and Illinois: (8) in the marginal portions of the

Fig. 13.-The regions of greatest density for farms operated by white owners are those occupied by the Germans of southeastern Pennsylvania and eastern Wisconsin, the mountaineers of western Pennsylvania, eastern Tennessee, and western North Carolina. by the farmers of Kentucky, Indiana. Ohio, and southern Michigan, and by the pioneers in the West. The fewer number of owner farmers in the prairie portion of the Corn Belt, as compared with the originally forested portion, is noteworthy. This is due. in part, to the larger, consequently fewer, farms, and in part to the larger proportion of tenants (see fig. 9). The thinner distribution in northern New England, the upper Lakes region, and the West is owing to fewer farms and not to a smaller proportion of farms operated by owners.

Fig. 14.-More than a half million farms were operated by part owners in 1920. They were most numerous in the States of the Middle West, especially in the marginal portions of the Corn Belt and in the wheat-growing areas of the eastern plains.

Corn Belt; (9) in the spring wheat and winter wheat areas of the plains, but with a strong tendency to decrease in relative importance in these areas (fig. 6), and (10) throughout the livestock ranching regions of the West.

Part owners are farm owners who rent additional land. Their farms are usually larger than those of owners who rent no additional land. The regions of greatest density for farms of part owners include Indiana and adjacent portions of Ohio, southern Michigan, and southern Illinois, as well as northern and western Missouri and eastern Kansas. Part owners farm a much larger proportion of the land in the West than in the East, especially in the Great Plains region, where, owing largely to failure to adapt the homestead policy to

FIG. 15.-The relative importance of part owners in the western half of the country, expressed in terms of farm acreage, is much greater than is shown in Figure 14. In the Western States part owners operate from a sixth to nearly two-fifths of the farm area; in the eastern and central Corn Belt from a sixth to a tenth; and in the Eastern and Southern States less than one-tenth.

Fig. 16.-In New England and some of the Middie Atlantic States a good many of the farms operated by managers are country estates of wealthy men in the cities. Others are large truck farms. flower farms, and fruit farms.
the semiarid lands of this region, the farms as taken up were ton small and many farmers have had to rent additional land (fig. 15).

Managers operate mostly large farms, notably large estates in the East and livestock ranches in the West. These farms are most numerous along the Atlantic coast from Massachusetts to Maryland, in the Corn Belt, and in California (fig. 16). However, the percentage of the total farm acreage operated by managers is largest in the Southwest where such farms comprise from one-eighth to one-third of the total farm area (fig. 17).
Statistics of land ownership and tenancy require special interpretation in the western half of the country. In this area much of the improved land is in irrigated districts, and in these districts tenancy

Fig. 17.-In nearly all parts of the country the percentage of the farm acreage operated by managers is much larger than the percentage of the number of farms so operated, because manager-operated farms are larger than other farms. This is especially the case in some of the New England and Middle Atlantic States: in Florida. Louisiana. and Texas; and in most of the Mountain and Pacific States. In fact, the relative importance of manager-operated farms in the West is probably greater than the map indicates because of the inclusion of land not reported in the census. (See pp. 521-522.)
has developed with notable rapidity during the last few years. However, most of the rented land in this section is unimproved grazing land.

In the Rocky Mountain and Pacific States, part owners in 1920 rented about 1 acre of improved land to every 3 acres rented by tenants. Part owners operated under lease almost as much improved land as did full tenants in Montana, Wyoming, and Utah. Part owners and tenants rented over half the improved acreage in Washington and over a third in California, Oregon, and Colorado. These two classes of operators rented over 95 million acres of unimproved land in farms in the 17 Western States, and in 10 of these States part owners rented more than did tenants (fig. 18). Managers operated about 7 per cent of the improved land in the two western divisions referred to, but the area of both improved and unimproved farm land operated by managers in 1920 was 11 per cent of the re-

Fig. 18.-Over two-thirds of the unimproved farm acreage under lease is in the 17 Western States, the 6 stretching from North Dakota to Texas containing two-fifths of all such land. In the half of the United States lying west of meridian 100 nearly all of the unimproved farm land under lease is used for grazing. In the North Central States unimproved land is rented in about the same percentage as improved land. In the Southern States, however, the proportion of unimproved acreage that is under lease is much less than the corresponding proportion for improved land. It should be noted that the rented acreage includes that rented by part owners.
ported area of farm land and was as high as one-third of the total farm area in Nevada (fig. 17).

The tenure of unimproved land in the West is not shown adequately by census reports. The census definition of a farm appears to have been so applied as to leave out of account much of the land leased for grazing by Indians under the guardianship of the United States Government, by State governments and institutions, and probably by railways and other large owners (figs. 21, 22, and 23). Statistics from other than census sources as to the amount of land leased by Indians, railways, and States indicate in at least one State an acreage over three times that which the census classifies as leased farm land.

When allowance is made for these factors in the land tenure of the Western States, for upwards of 150 million acres of Federal public land used as free range, and for large areas of national and State
forests used under permit systems or otherwise (figs. 19 and 20), it is apparent that the proportion of farm and ranch land in the Western States which is owned by the operators is much smaller than is indicated by census statistics.

North Dakota, South Dakota, Nebraska, and Kansas are semiarid in their western portions and humid in their eastern portions. Ten-

Fig. 19.-About $186,000,000$ acres of unappropriated and unreserved land remained in the Federal public domain on July 1. 1923. Over 185,000,000 acres were in the States shown above. In some counties of Wyoming. Nevada, and Oregon over 60 per cent of the land area is still in the Federal domain and open to homesteading. However, there is but little remaining land in the public domain that is suitable for crop production. The greater part is used for grazing, though without the regulation exercised in the national forests. Owing to this lack of control the land is overgrazed and the carrying capacity is deteriorating rapidly. In Texas all public lands were reserved to the State at the time of its admission to the Union.
ure conditions in the western counties of these States are not widely different from those existing in the semiarid portions of the Rocky Mountain and Pacific regions.

Causes of the Development of Tenant Farming-I. The Conditions That Cause Land to be Owned by Landlords.

The amount of farm land rented at any time is a result of conditions in what we may call the rent market. Our problem is to explain why land is offered in this market for rent, and why men, either

Fig. 20.-Out of $156.000,000$ acres in national forests, about $110,000,000$ acres, practically all in the Western States, is included in the grazing allowances. practically all in the western States, is in lise livestock, excluding work stock. in the West is grazed during the pasture season. The percentage of grazed land is lowest where the forests are densest. The map does not take account of the animals grazed free, which are 10 per cent as numerous as the animal units paid for and shown here. Permits issued by the Forest Service for grazing livestock on national forest lands do not grant the permittees a tenure in the land. They allow many farmers, however, to extend mittees a tencre grazing operations in much the sime way as if owning or renting this land.

FIG. 21.-In 1920 approximately $17.000,000$ acres of Indian land, mainly in the western half of the country, were leased for cultivation and grazing under the auspices of the Federal Government. The amount of such land reported for the year ended June 30,1923 was about $15.000,000$ acres. Of reported for the year ended June 30,1923 , was about 15 . the area thus under lease in 1923 about 60 per cent consisted of unallotted or tribal lands. Seven-eighths or more of the total area leased was used for grazing. Practically all of the leases were for cash. This information is made available through the courtesy of the Commissioner of Indian Affairs.
85813° - YKK $1923-34$
through necessity or from preference, are willing to rent land for the purpose of farming it. Briefly, who are the landlords ${ }^{4}$ and who are the tenants? What conditions determine the supply of land offered for rent in the rent market and the extent of the demand for such land?

Fig. 22.-Practically all of the State-owned lands leased for cultivation and grazing are in the 17 Western States, amounting to about $30,000,000$ acres. In Texas, New Mexico, and California the available information does not admit of the location of the land by counties. In Texas the $2,000,000$ acres shown belong to the State university. The information shown in the map was obtained partly from published reports and partly through the courtesy of State officials.

Public Ownership and Leasing of Land.

A good deal of leased land in the United States is owned by public agencies. Broadly speaking, it has not been the policy of the Federal Government to lease its land to the users. At present practically all of the public land suitable for farming has been disposed of, but there still remains an area of about 186 million acres, largely consisting of arid land in the Southwest and Inter-Mountain regions, most of which is used free of rent as a grazing commons by cattle and sheep graziers ${ }^{5}$ (fig. 19). The privilege of grazing livestock on approximately 110 million acres in the national forests is granted to

[^102]private individuals under the permit system (fig. 20). Since the permit technically is not a lease, these lands naturally do not appear in our census statistics of rented land. ${ }^{6}$

As trustee for its Indian wards the Federal Government also acts as landlord for a large number of tenant farmers. Land in the Western States administered by the United States in behalf of Indians amounted in 1923 to 15 million acres leased for agricultural and grazing purposes (fig. 21).

Fig. 23.-Approximately $17,000,000$ acres of land leased for cultivation and grazing is owned by the principal landowning railroads in the 17 Western Srazing is owned by the principas leased for grazing. The information was states. Nearly all of this area irteased for grazing. of the railroads conmade available through the courtesy of the officials of the railroads concerned. Outside of the area shown ar grazing by other railroads in the ''nited States. For location see Farmers' Bulletin No. 1271, page 43.
The States, particularly those in the western part of the country, as noted above, are large landlords, renting approximately 30 million acres (fig. 22). West of meridian 100 these lands are leased mostly for grazing and haying purposes.

Private Ownership and Leasing of Land.

Some of the railroads, particularly in the western half of the country, are also large landed proprietors, principally as a result of railway land grants. It has been their policy to use their holdings to

[^103]induce settlement and to await the increment in value that comes with settlement. Pending this development, they have been leasing in recent years approximately 17 million acres of their land, mostly to stockmen (fig. 23).
With the exception of the West, most of the land leased for agricultural use in the United States is privately owned. This land is rearly all in farms and is used for the production of crops more largely than for grazing. The reasons which cause farm owners to let part or all of their land deserve brief notice.

TEMPORARY INABIITY OF PRIVATE OWNERS TO OPERATE THEIR LAND.

Even if we suppose a newly settled region in which every farmer owns his land, it is clear that this condition could scarcely continue. Some operators might desire a vacation or be compelled on account of illness or business to leave home for more or less prolonged absences, during which they would be likely to offer their land for rent pending their return. In other cases, operating owners who have recently acquired new tracts might prefer to allow the former operators to remain in charge for a time under rent arrangements while the new purchasers adjust their business affairs.

Still other circumstances may make it necessary for a farm operator to reduce the size of the area operated. It may be impaired health; the fact that his sons have left home and can not adequately be replaced by hired laborers; or the pressure of other business interests. It is not always practicable to sell the excess acreage, for it may be an important part of a definite farm unit or it may be that none of the adjacent farmers is ready or able to purchase the tract. It is probable that a good deal of the land rented by the class of part owners is made available by some of these or similar conditions.

CONDITIONS WHICH CAUSE LANDOWNING FARMERS TO LEAVE THEIR FARMS PERMANENTLY.
All farmers must ultimately leave their farms permanently through change to other business, retirement, or death. A certain amount of renting will inevitably result from such changes.
Let us consider first the circumstances arising from death. The settlement of estates sometimes involves long periods due to litigation, to the fact that all of the heirs are not yet of age, and to other causes. During such intervals the executors may rent the estate, frequently to one of the heirs. Similarly, it often happens that it would be necessary to divide a farm into several uneconomic units in order to make a fair division among the various heirs. The problem is frequently solved by arranging for one of the heirs to rent the farm from the others or by letting the farm to a third party and dividing the rental among the heirs.

Even when an estate passes to a widow or heir who desires to sell it, immediate sale is not always feasible for some of the reasons hereafter mentioned (page 528), and temporary renting is likely to result.

It is clear that the larger the percentage of native, farm-born population in cities the larger will be the proportion of cases in which the change in the ownership of farm land necessitated by death will result in the title passing by inheritance, marriage, or otherwise, to non-farmers. The large increase in proportion of urban
population in the United States has greatly increased the chances that the heirs of deceased farm owners will be persons engaged in non-farming occupations, and this probably has been intensified by the movement of the children of farmers into other occupations.
In periods of agricultural depression considerable areas of farm land pass into the ownership of creditors. The laws of many States give the debtor a privilege of redemption lasting from four months to two years, and during this interval of uncertainty the land is. likely to be offered for rent, éven though the ultimate purpose of the creditor is to dispose of it by sale.
Many farmers retire more or less from active farming in later life (fig. 24). Sometimes the severance from active connection with farming is sudden and complete, but more generally it is gradual, and justifies the expression, "the retreat from the land." With the approach of age or infirmity the experienced farmer is likely to rent part or all of his land to a tenant, retaining supervision over the

AGE OF MORTGAGE-FREE OWNER FARMERS; UNITED STATES, 1920; AND AGE AT WHICH LANDLORDS 40 YEARS OLD AND OVER IN 1920 RETIRED FROM FARMING, CENSUS OF 1920.

Fig. 24.-Death and retirement combined reduce the proportion of ownerfarmers in age groups above 55 years. The number of farmers retiring increases with each successive age group. The left-hand portion of the graph is based on the 1920 census, while the right-hand portion is based on reports from 7.583 landlords received by the Bureau of Agricultural Economics, Division of Land Economics.
details of the business. If his holdings are large he is likely to cease direct operation gradually by increasing from time to time the area rented. This is suggested by Figure 25, which indicates that in the regions where the process of gradual retirement is characteristic the percentage of farms operated by men of 55 years and over decreases with the increase in the size of farms. This kind of landlordism is a very large factor in most of the important farming regions of the United States where tenancy is prevalent. (Fig. 34).

Frequently retiring farmers rent their farms to sons or other relatives who will ultimately inherit all or part of the property. This method of associating a prospective heir with the original owner of the business under the nominal and temporary status of a tenant accounts for a good deal of renting of farm land in some sections of the country. In a recent study of nearly 57,000 tenants widely distributed throughout the country it was found that 23 per cent were
related to landlords, the percentage ranging from 12 in nine Southern States to 36 in five States of the North Central group. (Fig. 26).

CONDITIONS WHICH CAUSE OWNERS OF LAND TO RETAIN OWNERSHIP WHEN THEY DO NOT OPERATE IT.

It is important to determine why owners of farms, when they cease to be active operators, retain the ownership of their land and let it to tenants rather than sell it. Closely related to this is the

Fig. 25.-Men who are not beyond middle age usually prefer the larger-sized farms, and rent such farms if they can not buy. Elderly farmers who own the larger farms find it possible to retire and live on the rent which younger farmers are willing to pay for the use of the larger farms. A phase of the retreat of elderly farmers from the land is their more general occupancy of the smaller farms, these farms making less demand on their bodily vigor than farms of the larger sizes.
explanation of why others buy farm land which they do not intend to operate.

In the first place, it is not always possible to sell land immediately on favorable terms. The land market may be sluggish. In many rural communities opportunities for sale at satisfactory prices are infrequent. In parts of the South the land market is rather narrowly restricted to the landlord class, for most of the tenant farmers have neither the means nor the credit to purchase a farm.

There are also motives which may cause the farmer or his heirs to retain ownership from preference. These motives may be senti-
mental, as, for instance, attachment to an old homestead and to the associations of the community: they may be social, as, for instance, the desire to acquire the social prestige attached to land ownership; they may be economic or financial: or there may be some combination of the several classes of motives. In this country economic motives are by far the most important, and later will require more detailed consideration.

 to approximately 57,000 tenants. For the Tnited States as a whole about 23 per cent of the tenants were related by blood or marriage to the landlord, most of them being sons or sons-in-law. The proportion is lowest in the South and highest in the North Central States, in some of which it is as much as 40 per cent.

Concentration of Land Ownership.

The concentration of land ownership in large holdings is favorable to landlordism and tenancy. It is true, the owner may operate the entire farm by means of hired labor, but such operation has many economic disadvantages. The most important of these are the uncertainty of the labor supply; the large element of risk involved in incurring heavy wage expenditures in anticipation of a return so precarious and uncertain as that from farming; and the difficulties of directing adequately a large labor force in an industry so ill adapted to standardization and routine.

The landlord may solve the problem by finding tenants capable of supplying the operating capital and the ability to conduct farm operations without supervision. However, if the tenants are unable to supply the necessary capital or direction, it will be necessary for the landlord or some other agency to furnish one or both of these important factors; and, very generally, if operating capital or means of subsistence must be advanced, the advancer considers it desirable to maintain more or less supervision over the business.

```
CONCENTRATION OF OWNERSHIP OF FARM LAND IN THE SOUTH.
```

The conditions just described prevailed in the former plantation regions of the South at the close of the War between the States. The land was owned in holdings considerably larger than would be

THE PLANTATION REGION OF THE UNITED STATES.

Fig. 27.-For the most part the plantation area of the South is identical in location with the area of the antebellum plantation system. The plantation system occupies the regions of more fertile soils. The typical plantation is operated as a comparatively large farming unit, mostly by means of hired laborers and croppers under close supervision. However, not infrequently share tenants proper, standing renters, and cash renters, under more or less supervision, are found on plantations. In the alluvial lands of the Mississippi River the plantation units are, in general, larger than in other parts of the South, and are also characterized by the most intensive supervision. The regular decennial census does not recognize plantations as statistical units, but a special census in 1910 , on which the above map is largely based, showed 39,073 plantation organizations.
needed for a " family farm." The newly emancipated laborers not only lacked operating capital but even the means of livelihood while growing the crop. Furthermore, they were without experience and unaccustomed to self-direction. There was no banking system to supply the needed capital and many of the planters were lacking in

> PERCENTAGE OF RENTED FARMS OWNED BY LANDLORDS HOLDING TITLE TO SPECIFIED NUMBERS OF RENTED FARMS; UNITED STATES, SOUTHERN STATES, AND NORTH CENTRAL STATES, CENSUS OF 1900 .

Fig. 28.-In the above graph concentration of ownership is shown in terms of number of farms, with evidence of heavier concentration in the Southern States, due to the plantation system. The concentration of ownership measured by acreage and valuation was less than when measured by number of farms. The census of 1900 affords the only complete information for the country as a whole concerning the concentration of ownership of rented farms.

Fig. 29.-Landlords owning two or more rented farms each comprised a fifth of all landlords, but owned a little over half of all the rented farms in 1920. The graph is based on a special study of 275,000 rented farms in selected counties of 24 States made by the Bureau of Agricultural Economics, Division of Land Economics. In the case of this figure and the four figures immediately following, the word "farms" is used in place of the words "ownership parcels." As shown by a study of 106,000 of the above parcels, all but 7 per cent are in themselves complete farms.
money capital, making it difficult to set up a wage system. The system of marketing had largely developed to serve the needs of large plantations rather than small farms. Moreover, the freedmen were restless and unstable as hired laborers.

The large landowners resorted to the policy of giving the laborers a share of the crop instead of a fixed money wage, supplying operating capital, the means of livelihood during the making of the crop, and a degree of supervision almost as close as that which they had formerly exercised over the slaves. When the landowner was unable, to supply operating and subsistence capital, this function was assumed by local merchants, who also supplied supervision through hired managers or riding bosses. This post-bellum plantation system has continued in most of the old plantation regions until the present (fig. 27). Each decennial census has shown a decrease in the average size of Southern farms, owing in part to the division of large plantations into groups of cropper or tenant farms, frequently without any change in the actual operation of the whole; and, correspondingly, each decade up to 1910 has shown a large increase of socalled tenant farms. The results of the census of 1920 seem to indicate that these tremendous changes have either reached their approximate completion or else have temporarily been suspended.

Fig. 30.-The special study of the ownership of 275,000 rented farms, mentioned in Figure 29 . showed that in 1920 a little more than one-fourth of all the rented farms were owned by a little less than one-thirtieth of the landlords. Most of this concentration of ownership was in the southern plantation region.

In certain respects these changes have tended to emphasize unduly the national problem of tenancy. One result has been the numbering as tenants of over a half million persons who are not independent farm operators and to class as their landlords persons who are the actual operators of the so-called tenant farms. Furthermore, the nominal increase in the number of tenants really represents what in many respects comprises a higher status for the so-called tenants under the plantation system than they formerly occupied as hired laborers, and in still earlier times as slaves.

```
PROPORTION OF RENTED FARMS OWNED BY LANDLORDS HOLDING
    FIVE OR MORE RENTED FARMS; AREAS IN NORTHERN AND SOUTH-
    ERN STATES COMPARED, }1920
```


Fig. 31.-Outside of the South, rarely more than 5 per cent of the rented farms belong to landlords who own five or more rented farms each. In the South the concentration of ownership is much greater, ranging as high as 80 per cent in the Yazoo Delta. The source of the information is the same as for Figure 29.
The plantation system in the South is largely responsible for the concentration in ownership of farm land for the nation as a whole (figs. 28 and 31).

TREND IN CONCENTRATION OF OWNERSHIP.
There has been no census report showing the concentration of farm ownership since 1900. However, a study of the ownership of 275,000 farm parcels, based on reports from tenants listed in the census schedules for 1920 , affords more recent information for selected regions where tenancy is prevalent. In general, a comparative study of the 1900 and 1920 statistics does not indicate any great change in the degree of concentration for the nation as a whole. (Compare fig. 28 with figs. 29 and 30.) In both periods about half the rented farms were owned by landlords owning only one farm. In 1900 nearly 15 per cent of the total rented farm acreage and 22 per cent of the farms were owned by landlords who held title to five or more rented farms. In 1920 about 25 per cent of the farms in selected regions studied were thus owned.
There are several reasons why there has been no pronounced trend toward increased concentration of farm-land ownership. The rapid development of American industrialism has tended to attract large capitalists to the cities and to prevent them from acquiring large
farming estates for investment. The laws of inheritance in American States are based on the principle of equal partition among children, as in France, subject to the rights of the widow; and the practice of bequests appears to have been strongly influenced by the laws of inheritance. Up to the present time there has been no widespread tendency for farm land to be excessively subdivided, as in France, because of the practice of probate courts in this country to effect various kinds of settlements that pass property to successors in units suitable for economic operation. On the other hand, as available farm land becomes scarcer and the demand for it more intense these inheritance laws might tend toward excessive subdivision, as in France. To be sure, other forces might give rise to increased concentration.

CONCENTRATION OF OWNERSHIP OF LAND NOT IN FARMS.

The greatest concentration of land ownership in the United States occurs in the case of land not in farms and consists of large holdings by railways, acquired through earlier grants in aid of construction, and the large holdings of timber and mining companies. Most of these lands are not greatly in demand for farming. Except for the tendency, already noted, to rent temporarily to stockmen for grazing purposes, the policy of these large holders, for the most part, is to hold their lands for ultimate sale in small tracts to settlers, or to other concerns which intend to market the land to small purchasers.

> RESIDENCE OF LANDLORDS.

To what extent do American landlords live sufficiently near their farms to exercise adequate control over the property? For the country as a whole information on this point is available only for 1900. At that time 78.8 per cent of rented farms were owned by landlords who resided in the same county in which the rented

Fig. 32.-Only 9 per cent of 275.000 tenant farms in 24 States were owned by landlords who resided neither in the same county nor in an adjoining county. It is probable that this 9 per cent measures approximately what we may call absentee landlordism; that is, the cases where the owner's residence is too remote to permit frequent visits to the property, although in some of these cases the owner is adequately represented by a resident manager or local agent. Source of data is the same as for Figure $\mathbf{2 9}$.
farms were located. ${ }^{7}$ In the special study of 275,000 tenant farms in 1920 , previously mentioned, it was found that 80 per cent of the rented farms were owned by landlords who resided in the same county, and an additional 11 per cent by landlords residing in

[^104]counties adjoining the one in which their farms were located. This leaves only 9 per cent of the rented farms owned by landlords living at greater distances (fig. 32).

The proportion of cases in which landlords were remote from their farms is found to be considerably greater in the North and

PLACE OF RESIDENCE OF LANDLORDS OF RENTED FARMS.

Fig. 33.-In the Northern States more than a third of the landlords reside on farms, while in the South the proportion is more than two-thirds. In the North about half of the landlords living in cities and villages are retired farmers (fig. 34). The graph is based on returns from 23,000 landlords in 24 States to a special inquiry made by the Bureau of Agricultural Economics, Division of Land Economics.

West than in the South. For instance, in a group of counties in Illinois 25 per cent of the rented farms were owned by landlords who lived outside of the same counties, while 10 per cent were owned by landlords who lived outside of the same or adjoining counties,

OCCUPATIONS OF LANDLORDS OF RENTED FARMS.

Eig. 34.-The proportion of landiords still classed as farmers is much larger in the South than in the North, but if retired farmers, many of whom in the South than in the North, but if retired farmers, mapere farmers, the difference is not so great. About a third of the farm landlords of the two regions appear to be engaged in nonagricultural occupations. This figure is based on reports from 23,000 landlords, mentioned in Figure 33.
whereas in the Yazoo Delta the corresponding percentages were 12 and 5. Furthermore, the percentage of cases in which landlords were remote from their farms is higher in some of the more recently developed farming regions than in some of the older farming regions. Thus, in eastern North Dakota 40 per cent of the tenant farms were owned by landlords not residing in the same county, and the proportion is nearly as large in central Kansas and in Oklahoma. In the Middle Atlantic States the percentages for six groups of counties varied from 13 to 26 ; in southern Wisconsin, the percentage was 19 ; in western Ohio, 21; in Illinois, 25 ; and in Iowa 28.

The larger proportion of landlords remote from their farms in the newly developed regions of the West is related to the Federal land policy in the distribution of the public domain and explains in part why States so recently settled quickly develop high percentages of tenancy. The throwing open of large tracts of farm land to homesteading attracted many people whose principal concern was to acquire a valuable farm property but with no intention of permanent residence on the farm. For instance, Oklahoma was settled by homesteaders little more than two decades ago, yet, in 1910 and 1920, tenant farms were over 50 per cent of the total number of farms. ${ }^{8}$
In the North and West a much larger proportion of the landlords reside in cities and villages, nearly two-thirds in fact, whereas in the South about two-thirds of the landlords live on farms (fig. 33).

OCCUPATIONS OF LANDLORDS.

The proportion of landlords who reported farming as their regular occupation was smaller than the proportion residing on farms (fig. 34). The proportion actively engaged in farming was more than twice as large in the South as in the North, emphasizing the conclusion that in the South landlordism is largely a phase of plantation operation, while in the North it is more largely a phase of retirement or retreat from the land. Among northern landlords considerable difference is indicated between those in the Corn Belt and Middle Atlantic States and those in the Dakotas and Kansas. In the latter areas the landlords are engaged in farming operations in a larger proportion of cases than in the States farther east.

FARMING EXPERIENCE OF LANDLORDS.
To what extent are landlords men of farming experience? Inquiry on this point from upwards of 20,000 male landlords revealed the fact that only 8 per cent of them had never been engaged in any kind of farming occupation (fig. 35).

METHODS BY WHICH LANDLORDS ACQUIRED THE OWNERSHIP OF THEIR FARMS.

Apparently, the great majority of landlords acquired the ownership of their farms by purchase. Direct acquisition by inheritance or by marriage was responsible for only 14 per cent of the acreage acquired by the male landlords (page 536). but for 38 per cent in the

[^105]
TENURE EXPERIENCE OF LANDLORDS OF RENTED FARMS, 1920.

Fig. 35.-The figure shows the previous tenure experience of about 20,000 male landlords who replied on this point. Nearly three-fourths had been operating owners and two-fifths had been both tenants and owner-farmers. Source of data is the same as for Figure 33.
case of female landlords. The female landlords, however, constituted only 15 per cent of the 24,000 landlords who replied to the inquiry (fig. 36).

TENURE OF FARM LAND BY CORPORATIONS.

Corporate land tenure is shown by about 7,700 replies to a special inquiry by the Bureau of Agricultural Economics to have become more prevalent in 1923 than in 1913 in most parts of the country. Where diminished, however, this decrease is probably due partly to high Federal and State corporation and income taxes as well as increasing local taxes on real estate, and partly to State laws using other methods than taxation to prohibit corporate ownership or leasing of farm land. Farming corporations in 1921, the latest year for which Federal income-tax statistics are now available, were reported from every State (fig. 37). Marked variation exists between States in the number of corporations thus reporting, and this variation apparently bears little relation to the legal position corporations owning farm land occupy in the various States.

Fig. 36.-Fourteen per cent of the male owners and 58 per cent of the female owners of rented farms had acquired their lands by inheritance or marriage and 2 per cent of each class by homesteading, the remainder having purchased their lands. It should be noted, however, that these figures made no allowance for the fact that a considerable part of the wealth used to purchase farms was acquired by inheritance, marriage, or gift (see p. 563). Source of data is the same as for Figure 33.

A certain amount of farm real estate is held by corporations whose agricultural activities are incidental to their operations, as in the case of canneries, refineries, or manufactories of other kinds.

There are numerous corporations having a temporary tenure relationship to particular areas of farm land. These include lumber companies, land development companies, and money-lending corporations. Institutions of the last-mentioned variety have appar-

Fig. 37.-A classification of 1,689 of the 7.428 farming corporations is as follows: Cotton farming, 11, or 0.7 per cent; grain farming, 23, or 1.4 per ment; stock farming, 711, or 42.1 per cent; and fruit farming. 944, or 55.9 per cent. Of the 7,428 farming corporations, 2,684 reported net income. the aggregate being $\$ 34,266,175$, and 4,744 reported net deficits in an aggregate of $\$ 63.334 .248$ for the year 1921. However, this year was less productive of income for farmers than the years immediately preceding. Corporations are distributed among the States according to the location of the internal revenue offices in which their income tax returns are filed. Corporations reporting from New Jersey, for example. may have owned or leased property located in several States, and in some cases may have owned or leased no property in that State except to maintain an office.
ently increased their holdings in some sections, presumably because of taking farm land in satisfaction of debt.

OWNERSHIP OF LAND BY PERSONS OF FOREIGN bIrth.
Under the common law aliens are not permitted to own land. However, this rule has been modified by statutory enactments in all of the States. In 18 States aliens are given the unrestricted right to the ownership of land. In others the right is limited. In a number of States aliens are permitted to acquire landownership by inheritance, but are compelled to dispose of the title within a specified number of years. In some States the restrictions are made to turn on the question of residence or nonresidence. By treaties with certain countries the Federal Government has accorded the rights of ownership to their nationals for limited periods and purposes. Through its definition of citizenship and determination of requirements for naturalization, the Federal Government has also exerted an indirect influence, which, by existing legislation in a number of States, has been directed against the tenure of land by certain
classes of aliens. This has been a factor of large importance on the Pacific coast.

According to the census of 1900 , there were only 699 nonresident aliens owning rented farms in the United States. They owned 1,093 farms. No more recent statistics are available for the United States as a whole concerning the ownership of land by nonresident aliens. In 1920, however, 10.6 per cent of all white farm operators in the United States were of foreign birth, including those naturalized and unnaturalized. Of these foreign-born operators, 79.9 per cent were either owners or part owners, while only 65.6 per cent of the nativeborn operators were owners and part owners.

> SUMMARY OF THE CHARACTERISTICS OF LANDLORDISM IN THE UNITED STATES.

We may now summarize the characteristics of farm landlordism in America. All but a small proportion of the landlords have grown up from the soil and possess direct experience with farming. More than a third are engaged in agricultural occupations, nearly another third are retired farmers, and the remaining third are in nonagricultural occupations, mostly country bankers, merchants, and professional men in the country towns and villages who have either come into farm ownership through inheritance or marriage, or have purchased farms for purposes of investment or speculation. Fifteen per cent of the owners of rented farms are women, for the most part widows or daughters of deceased farmers. Corporations do not comprise an important class of landlords. Probably not more than 10 per cent of the rented farms are owned by absentee landlords, and apparently there has been little change in this regard since 1900. There is but little concentration of ownership, except in the plantation region of the South, and apparently for the country as a whole there has been no increase in concentration. However, there is enough both of absenteeism and concentration of ownership to justify real concern. There is comparatively little ownership of farm land by nonresident aliens.

Causes of the Development of Tenant Farming-II. Conditions Which Determine That Persons Will Become Tenants.

temporary conditions causing men to prefer to rent rather than to own the land they operate.

Under certain conditions men prefer to rent temporarily rather than to own the land they operate. For instance, the farm owner expecting shortly to retire from farming or to engage in another business may have a favorable opportunity to sell the farm he owns before he is quite ready to quit farming, and may prefer to rent a farm rather than to purchase for the short remaining period. Others who propose to buy farms, especially in new regions, may desire to become acquainted with the neighborhood and its opportunities or to acquire more experience as farm operators before venturing to purchase. This latter motive for renting operates particularly in the case of sons or sons-in-law who will ultimately inherit the ownership of the farms.

While some farmers remain tenants deliberately, even though they have sufficient capital to purchase a farm, the great majority become tenants and many continue as tenants because they do not command sufficient capital and credit to purchase a farm and provide the requisite operating capital. Therefore, tenancy is closely connected with the valuation of farm real estate.

Relation of Tenancy to the Valuation of Farm Real Estate.

It has sometimes been said that tenancy and high farm real estate valuation "go together," with the suggestion that the latter is largely responsible for the former, but the matter is not quite so simple as this. It is true that a high percentage of tenancy is frequently associated with high land valuations, but the exceptions are quite numerous (compare figs. 9 and 38). A mathematical coefficient of correlation calculated for each of the States of the Union on the basis of the relationship of percentage of tenancy to average value of farm real estate per acre, by counties, shows that in at least a score of States the coefficient is either negative or too low to indicate a significant correlation. In only about a dozen States is the relationship well marked.
One assumption that sometimes underlies the idea that high farm real estate valuations are likely to result in a high percentage of tenancy is that it must be harder, or else take longer, to pay for a farm consisting of high-valued land than for one consisting of lowvalued land. If the farm is to be paid for out of the earnings attributable to the farm real estate, however, and if these earnings are proportionate to the valuation of the land, it should not be more difficult to pay for a fạrm in a section where valuations and earnings are high than in a section where both are low. The valuation of farm real estate does not always vary in exact proportion to income attributable to it, as will be shown later, but that the relationship is very close is indicated by the results of more than a score of local farm surveys. Moreover, a study of the average number of years spent as farm wage earners and as tenants by those who passed through both stages before becoming farm owners indicates that the period is not longer in the sections of high land valuations than in those of low land valuations.
In general, the greatest difficulty in acquiring a farm is in securing a sum sufficient for the initial payment, and it is sometimes argued that the higher valuation of farm real estate compels the farmer to accumulate a larger sum for initial payment, thus forcing him to remain a longer time as a tenant before attempting to buy a farm and also to command a larger volume of credit in order to finance the remaining indebtedness. There is a considerable degree of truth in this, but it is possible to give the point exaggerated importance. As between different periods the change in the valuation of farm real estate measured in terms of the current purchasing power of money may reflect largely a change in the value of the money itself. Temporarily, this may or may not increase the period of waiting before buying, depending on a number of circumstances, such as the effect of the change in the value of money on the power of tenants and other prospective owners to accumulate and on the amount and value of their savings. As between areas of high-

Fig. 38.-The average valuation of farms, including buildings, machinery, and livestock, in the prairie portion of the Corn Belt and the southern part of the spring wheat region was about $\$ 40,000$ in 1920 . The high valuations shown in western Texas and northern Nevada are mostly of cattle ranches, which are few in number and large in area, often including thousands of acres of arid range sist of expensive orchards or of bean or surar-beet land rhe very low-priced farms shown in the erstern cotton belt ire in larg part, small cropper or tenant holdings in plantations. The light areas in Kentucky and Tennessee represent poor mountain farms In most parts of the [nited States there has been a marked decrease since 1920 in the prices of farms and equipment. especially of land.
valued and those of low-valued real estate, high valuations are frequently associated with high net worth on the part of tenants. Thus, an Iowa survey in 1918 showed the average net worth of farm tenants in a selected region of high land valuation to be $\$ 9,552$, which was more than the average total farm capital of owner farmers in many other parts of the United States. While the census since 1900 has not classified farms in accordance with their valuation, except mortgaged farms of owner farmers in 1920, the relative diversity of valuations, when livestock, implements and machinery are included with land and buildings, is indicated in Table 2, derived from the census of 1920 .

Table 2.-Classification of counties by average valuation of farm property,
including real estate, livestock, implements, and machinery, 1920.

Range of average total valuation of farm property per farm, by counties.	Number and percentage of counties.		Range of average total valuation of farm property per farm, by counties.	Number and percentage of counties.	
	Number.	Per cent.		umber.	Per cent.
Under \$5,000	821	26.7	\$35,000 to \$39,999.	80	2.6
\$5,000 to \$9,999	747	24.3	\$40,000 to \$44,999	56	1.8
\$10,000 to \$14,999	435	14.2	\$45,000 to \$49,999	51	1.7
\$15,000 to \$19,999.	329	10.7	\$50,000 to \$54,999	35	1.9
\$20,000 to \$24,999	193^{*}	6. 3	\$55,000 and over	60	1.2
\$25,000 to \$29,999	162	5.3			
\$30,000 to \$34,999	102	3. 3	Total	3, 071	100.0

${ }^{1}$ Based on census statistics.
Although it is possible to give exaggerated importance to real estate valuations as an influence toward the development of tenancy, there are a number of regions in the United States of very low land valuations where tenancy is conspicuous for its absence, as for instance, in some of the sandy lands of the Atlantic and Gulf coastal plains and in the Appalachian and Ozark plateaus. Frequently, the high percentage of landowning farmers in these regions is an expression of the fact that agriculture still continues more or less in the self-sufficing stage, yielding too small a money income to permit the farm owner to retire and lease the farm to another.
Influence of the Ratio of the Income to the Capital Valuation of Farm Real Estate.
It appears probable that a marked increase in the valuation of farm real estate is a more significant influence than the high farm real estate valuations themselves, and that where high real estate valuations and a high percentage of tenancy are associated, this association is largely due to the influence of the increases in valuation more than to the high valuations in themselves.

The rapid increase in the valuation of farm real estate since 1850 is shown in Figure 39. How large a factor this increase has been from the standpoint of an investor may be more clearly shown by expressing the increase in investment terms. Thus, the average increase in the valuation per acre of farm real estate in the United States from 1900 to 1920 (fig. 40) is equivalent to an annual interest rate of 6.47 per cent compounded annually on the average valuation in 1900, and this is in addition to the annual rental earned by the property during the interval. In the case of Iowa, the increment from 1850 to 1920 is equivalent to an interest rate of 5.31 per cent compounded annually, while the increment from 1900 to

CHANGES IN THE AVERAGE VALUATION OF FARM REAL ESTATE PER ACRE AND PER FARM, AND OF AVERAGE ACREAGE PER FARM; UNITED STATES, IOWA, PENNSYLVANIA, AND GEORGIA, CENSUS 1850-1920.

Fig. 39.-For the United States as a whole the average valuation of farm real estate increased from $\$ 11$ an acre in 1850 to $\$ 20$ an acre in 1900 , but in the next 20 years it increased to $\$ 69$. During these two decades the increase in the valuation of land was closely related to the upward novement of general prices, which characterized the period and which was greatly accelerated in the last fow years by the inflation that developed during the World Wrar. Since 1920 land valuations have declined in most parts of the Cnited States.

Fig. 40.-The percentage of increase in the census valuation of farm real estate per acre between 1900 and 1910 was large in the Great Plains region and in many of the irrigated areas of the West. In the East the greatest percentage increases in valuation were in the South Atlantic and Gulf coastal plain, but the greatest absolute increases in valuation were in the Corn Belt. Only 16 counties
out of nearly 3,000 in the United States showed a decrease in valuation. The increase in the New England and Middle Atlantic States, however, was small as well as in many counties of the Lake States and of Kentucky, Tennessee, and eastern Texas. The average increase in valuation for the United States as a whole was 100 per cent. The percentage of increase exceeded that in the wholesale price of all commodities (Bureau of Labor statistics), and consequently it represented an increase in the purchasing powe of farm real estate. For corresponding map showing changes from 1910 to 1920, see page 119 (fig. 16 in The Wheat Situation).

1920 is equivalent to an interest rate of 8.64 per cent compounded annually.

Part of the increment in valuation was due to improvements made by the owners, such as buildings, clearing and drainage of land, and contributions indirectly through taxation toward the building of roads and other community improvements. Even allowing for all this, the increment was large in many parts of the country.

With the exception of a few scattered grazing areas of the West, increases in the valuation per acre of farm real estate occurred in practically all parts of the United States from 1910 to 1920. In the greater part of the general farming region of the North and Northeast the increase was less than the increase in the general price level of commodities during the same period, except in a region centering in the corner where the boundaries of Iowa, Minnesota, and South Dakota meet. In portions of the South, particularly where the boll weevil infestation was either not serious or became serious late in the period, there were percentages of increase greater than those for commodity prices. The decreases in the West are notable and are to be explained in part, at least, by the expansion of the farm area to include large amounts of low-priced semiarid lands. For the United States as a whole the valuation of farm land, as measured by the purchasing power of money, was less in 1920 than in 1910.

This rapid increase in the valuation of farm real estate per acre, based largely on anticipation of increasing income from the real estate, has disturbed to a marked extent the relationship between the present income from real estate and its valuation in some parts of the United States. When a man buys a farm, whether for purposes of renting it to others or of operating it himself, it is because he expects it to yield him income. The price he is willing to pay depends on the expected income and on the percentage of return which he is willing to take on an investment of this character. If the income does not remain constant but is expected to increase for some time, many buyers will undoubtedly take this expected increment into account and will be willing to pay more accordingly. As a result, present income frequently will be a smaller percentage of the average valuation of farm real estate than the percentages of return ordinarily obtained from alternative investments having reasonable security.

Recent studies have shown that this condition developed in some of the most important farming sections of the United States, as indicated by the low ratios of cash rent to real estate valuations ${ }^{10}$ (fig. 41).

[^106]

Fig. 41.-In many counties in the Corn Belt cash rents averaged about 3 per cent of the valuation of farm real estate on January $1,1920$. In most of the remainder of that region, as well as in parts of the winter wheat and spring wheat regions, it was under 4.5 per cent. The return was 6 to 8 per cent in much of New England, eastern New York, and the South. It reached the highest ratio, 10 per cent and over, in the Yazoo Delta and adjacent bottom lands of Arkansas. On the Pacific coast cash rents returned in general from 3 to 6 per cent. Out of these cash rents taxes and repairs had to be paid. The map is based on a special study made by the Bureau of Agricultural Economics, Division of Land Economics, based on the census schedules of tenant farms of 10 acres or more rented for cash in the counties snown.

When allowance is made for taxes and costs of repairs and depreciation the ratios of net cash rent to the valuations of farm real estate are found to be considerably lower than the corresponding ratios for gross cash rents. Special studies to determine the net ratios, made by areas as numbered in Figure 41, gave the results shown in Table 3.

Table 3.-Ratios of net cash reint to farm real estate raluations for selected cash-rented farms in groups of counties as shoun in Figure , 思.

In so far as net cash rent may be regarded as measuring the net earning power of the real estate for the farmer of average managerial ability, it will be apparent that buying farm real estate by borrowing money at regular interest rates with the purpose of paying for the real estate out of the earnings must be difficult for the tenant farmer of average resources and ability in regions where net returns from the real estate average only 3 to 4 per cent. It is true, if the expected increments in incomes materialize, they will tend

AVERAGE CASH RENT PER ACRE; SELECTED AREAS IN NORTH CENTRAL STATES, 1905-1920.

Fig. 42.-The upward trend of rentals on these farms in the Corn Belt and on the margins of the Corn Belt throughout the period shown is remarkable. Exactly comparable figures are not available for the years since 1920, but undoubtedly cash rents have declined in the past three years. Although undoubtedly cash rents have declined in the past three years. 16 years shown, land valuations increased even more rapidly. The graph is based on reports from landlords in the States named to the Bureau of Agricultural Economics, Division of Land Economics.

RATIO OF CASH RENT TO FARM REAL ESTATE VALUATION, OHIO, 1900-1920.

Fig. 43.-A ratio high to begin with and markedly advancing is shown for gross cash rents in relation to the valuation of real estate that prevailed in 1900. A ratio high to begin with but persistently declining is shown when these rents are measured against very rapidly rising real estate valuations. Persons buying farm real estate early enough in the present century to get the advantage of both rising rents and rising valuations were in a much more favorable position than those buying after the valuations had not only reached high absolute figures but figures especially high in relation to the rents.
to ease the situation for the purchaser, but it is obviously a very uncertain foundation on which to build a business if the farmer must depend in large part on borrowed money (figs. 42 and 43). Many a tenant, of course, was bold enough to take the plunge, and after surviving the difficulties of the earlier years, was carried upward by the tide of increments in incomes and valuations to a secure financial position. But many others, especially those of poor credit ratings or conservative dispositions, were undoubtedly deterred from embarking on a venture involving so large an element of speculation. In fact, local studies have revealed many cases of tenants with sufficient capital to buy land who rented land from preference. Still other tenants ventured too late, and were wiped out in the decline of prices which began in 1920.

An increase in the valuation of farm real estate may also tend to increase tenancy by hastening the process of retirement of landowning farmers, enabling them to retire earlier than would have been possible if the increase had not occurred. The rising valuation of farm real estate has probably also tended to encourage the holding of this form of property by those who came into possession by inheritance, marriage, or foreclosure, and who are not in a position to operate it.

In short, for a number of reasons it is probable that the increase in realty valuations and the passing of large areas out of the stage of pioneer development, which have been especially notable during the last three decades, have been conditions favorable to the increase of tenancy.

The Tenure Ladder.

It has been found convenient to regard working as a wage-earner, as a tenant, and as an owner farmer as successive rungs on a ladder
of individual progress in agriculture. The comparison is useful in some regards, for it suggests a movement from stage to stage which constitutes an important fact in the economic life of the farming classes.

We may recognize at least the following important steps, arranged in the usual order of progress: (1) farm wage laborers; (2) croppers, especially in the South; (3) tenants other than croppers; (4) part owners, mortgaged; (5) part owners, free of mortgage; (6) owner farmers, mortgaged; (7) owner farmers, free of mortgage.

In applying the analogy of a ladder to such an artificial scheme, there must be a number of reservations. In the first place, the various successive stages may not always represent progress. It is probable that the various stages do represent some progress in independence of control, although not always, for an owner under heavy mortgage may be less independent than a tenant who is out of debt. Moreover, progress in independence does not always mean progress in well-being. Many a tenant who is subject to the supervision of a capable and honest landlord may be better off than a farm owner who has not sufficient experience or capital to operate his farm efficiently.

Wealth of Persons in the Tenure Stages.

Those who employ the ladder analogy frequently have in mind that each succeeding step indicates higher financial standing, or net worth. It is obvious, however, that a mortgaged owner farmer may have a smaller equity in the farm capital than a tenant or part owner free of mortgage. Moreover, a tenant in some parts of the United States possesses more property on the average than an owner in other parts. For instance, in Iowa the average valuation per farm of machinery and livestock (usually owned by the tenant) was $\$ 4,212$ in 1920, which is more than the average value of land, buildings, implements, and livestock for farms operated by their owners in certain other States (fig. 44).

However, in a given area the average net worth of the individual is likely to approximate the order of stages in the tenure ladder. An estimate of the per capita net worth of persons actively engaged in farming in the United States, as of January 1, 1920, showed the following division of wealth between four of the classes mentioned above ${ }^{11}$: Croppers, $\$ 354$; tenants (other than croppers), $\$ 4,315$; part owners, 12,829 ; owner farmers, $\$ 13,476$.

AGE OF PERSONS IN THE TENURE STAGES.

Each of the different stages of the agricultural ladder has its peculiar age distribution. Owner farmers, for instance, show an age grouping more advanced than that of tenants (fig. 45). The relation of the several stages to age is shown in Table 4.

[^107]AVERAGE VALUATION PER FARM OF LAND AND BUILDINGS AND OF MACHINERY AND LIVESTOCK; UNITED STATES AND SELECTED STATES, CENSUS OF 1920.

FIg. 44.-The average investment in machinery and livestock per farm required to become a tenant in Iowa is larger than the valuation of the entire farm in much of the South and in parts of New England and the upper Lakes region (fig. 38). The valuation of machinery and livestock per farm, much of which is usually supplied by the tenant, ranged from $\$ 2,000$ to $\$ 4,000$ in 1920 in the Northern and Western States and from $\$ 500$ to $\$ 1,000$ in the Southern States. The valuation of the land and buildings owned by the landlord is five to ten times as large. In the North and West the tenant farms usually have higher average valuations than those farmed by their owners, but in the South, where many of the so-called tenant farms are merely cropper holdings, the reverse is true.

Table 4.-Percentage of farmers in each age group, by tenure, United States, 1920. (Figures in heavy type represent the age group in each tenure clas. which shows the highest percentage).'

Age group.	Share and sharecash tenants.	$\begin{gathered} \text { Cash } \\ \text { and } \\ \text { unspeci- } \\ \text { fied ten- } \\ \text { ants. } \end{gathered}$	Part owners.	Full owners mortgaged.	Full owners not mortgaged.	Total (excluding managers).
Under 25 years	63.4	12.4	5. 0	7.6	10. 2	98.6
25 to 34 years.	42. 7	13.8	8.9	17.1	16. 2	98.7
35 to 44 years.	28.7	11.1	10.5	22.0	26. 6	98.9
45 to 54 years.	21.1	9.0	9.8	21.6	37.6	99.1
55 to 64 years.	14. 2	6. 5	7.7	19.7	51.2	99.3
65 and over.	10.8	5. 7	4. 7	14.1	64.1	99.4

[^108]Table 4 tends to exaggerate somewhat the impression of movement from group to group. For instance, the steady increase in the percentage of each age group found in the class of full owners not mortgaged is by no means due entirely to the rise of farmers from preceding tenure stages. It is undoubtedly due in considerable part to the fact that heirs who have been working on their fathers' farms without wages or as hired laborers have become full owners free from mortgage directly, without passing through the other stages. These accessions to the numbers in this class from outside classes tend to reduce the percentages of the farmers in corresponding age groups in the other tenure classes even if the actual numbers in each group were not diminished. However, in spite of these limitations the table does indicate strongly (a) that the attainment of farm ownership is connected with relatively advanced age, and (b) that from age group to age group there is a movement which follows somewhat the order of stages from left to right in the table, although particular individuals need not necessarily pass through all the tenure stages consecutively.

It is interesting to note that in the case of colored farm tenants the percentage in each age group does not diminish from the 25-35 age group onward, as with white tenants, but reaches a maximum in the 35-45 age group, and that each older age group is relatively larger than with white tenants (fig. 46).

RELATION OF THE TENVRE STAGES TO AVAILABLE CDPITAI.

The preceding indication of a connection between progress in wealth and progress up the tenure ladder, on the one hand, and advancing age, on the other hand, suggests two tentative interpretations: (1) The several stages represent economic adjustment to the farmer's equipment in wealth and experience; and (2) since experience can be acquired in a comparatively short period, movement up the tenure ladder is largely dependent on progress in wealth. Each of these two interpretations requires further consideration.

Obviously, farm workers who have no capital must usually remain either as laborers or as croppers until a sufficient amount has been accumulated or otherwise acquired to enable them to purchase the livestock, implements, and other materials necessary to become tenants. As already noted, the average requirement may vary from a

WHITE TENANTS COMPARED WITH WHITE OWNER FARMERS, PERCENTAGES IN SPECIFIED AGE GROUPS; UNITED STATES, CENSUS OF 1920.

Fig. 45.-The graph shows a larger proportion of white tenants in the younger age groups and of owners in the older age groups. Nearly a third of the tenants are between 25 and 35 years of age and nearly nine-tenths are under 55 years of age. On the other hand, nearly a third of the owners are over 55 years old.
few hundred dollars for some of the small cotton farms of the South to $\$ 5,000$ or more for some farms in the Corn Belt (fig. 44).

Generally, it is poor management to purchase a farm when the result is to leave inadequate operating capital. ${ }^{12}$ Frequently, it is a

Fig. 46.-A much larger percentage of colored tenants are in the older age groups than of white tenants (see fig. 45). The percentage of owners in the older age groups is likewise somewhat larger. In other words, a relatively large proportion of colored tenants attain ownership at an advanced age or not at all.

[^109]mistake for a farmer to buy a farm when he must assume a heary hurden of indebtedness. Farming is a business involving many risks, and a mortgage may prove a millstone around the farmer's neck. Furthermore the farmer has less freedom of movement if he has bought a farm than if he is a tenant.

TENANT FARMERS CLASSIFIED BY PREVIOUS FARMING EXPERIENCE AS REPORTED IN THE CENSUS OF 1920.

Fig. 47.- Nearly half of the tenant farmers (including croppers) in the United States have never had experience either ans farm-wage laborers or as farm owners, although they may have worked without wages on their parents' farms. The class who become tenants directly without previous farm experience is especially large in the South because of the large number of farmers who are croppers or who rent land involving but small contributions of capital.

Fig. 48.-Forty-six per cent of the farmers who became tenants from 1915 to 1920 had previously been farm-wage hands. The percentage was much lower in the South than in the North and West, largely because of the small amounts of capital required in many parts of the South to become tenants or croppers, making it comparatively easy in that section to become a tenant without previously working as a hired laborer.

It may also be a mistake to purchase a farm when, because of limited capital, the farmer buys a farm too small for economical operation. If, however, there is rentable land adjacent, part ownership may be an alternative, and therefore, a definite stage in the progress of the farmer toward full ownership of an adequate farm.

```
EXTENT OF MOVEMENT FROM STAGE TO STAGE OF THE TENURE LADDER.
```

According to the 1920 census, 47 per cent of the tenant farmers in the United States had had no farm experience as wage hands or

Fig. 49.-The average age at which farmers who were tenants in January, 1920, and who had been farm-wage earners during the preceding five years, became tenant farmers shows a range of about 10 years in the State averages. The averages for the States in the East and in the West are higher than for the States more centrally located. The inclusion of croppers as tenants in the South and the small amount of capital required to become a tenant apparently account in some considerable measure for the low figures in those States.
owner farmers (fig. 4 $\overline{7}$). The proportion varied from 25 to 55 per cent in the different States. Another large proportion of tenant farmers, varying from 40 to 70 per cent in the several States, had previously worked on farms for wages (fig. 48). The average age of becoming tenants for those farmers who made the transition from the status of farm laborer to that of tenant between 1915 and 1920 was about 29 years for the country as a whole, but varied widely between the various sections (fig. 49). A small part of this group. ranging from 2 to 20 per cent of the total number of farmers, had been both wage hands and owner farmers before becoming tenants: while a similar proportion reported that they had had previous farm experience only as owner farmers.

In the United States as a whole 11 per cent of the farm tenants had once been owner farmers. For various States the proportion ranges from as low as one-twentieth to as high as one-third of all tenants.

Fig. 50 .-Although some of this group of tenants are persons who have been compelled through inefficiency ov misfortune to revert to the tenant class, the heavy concentration in the West suggests that some are men who have sold their farms elsewhere and on migrating have become tenants for a season until they are better acquainted with the new conditions. The small proportion in the South reflects the fact that tenancy is a less important stage in the progress of farmers to farm ownership than in the North ond west.

This class of tenants includes, of course, a considerable number of persons who have attempted to rise into the class of owners, but who on account of inefficiency or misfortune have been forced to revert again to the tenant class. However, a study of the geographic distribution of this class indicates at once that other important factors are involved (fig. 50).

In the United States as a whore, 42 per cent of the owner farmers reported no previous farm experience as wage hands or tenants (fig. 51). Probably the great majority of these were sons or sons-inlaw of farm owners and most of them had worked on their parents' farms without wages ${ }^{13}$. The percentage is high in New England, where tenancy is an unimportant step in the tenure ladder, and is also

[^110]high in the South, where few owner farmers have worked as wage hands, owing, doubtless, in large part to the plantation system.

In the United States as a whole only 14 per cent of the owner farmers reported farm experience as wage hands only. In the South-

OWNER FARMERS CLASSIFIED BY PREVIOUS FARMING EXPERIENCE
PER CENT OF OWNER FARMERS

Fig. 51.-A large proportion of owner farmers became owners direct without having worked previously as farm-wage laborers or as tenants. Probably the majority of this group had worked without wages on parents' farms. Only a fifth of the farmers in the United States passed through both stages. The proportion is somewhat higher in some of the North Central States and lower in the New England States and the South. In New England many have stepped directly from wage hand to ownership, but in the South very
few.
S5813 ${ }^{\circ}$ - IBK 1923—— $\mathbf{3 6}$
ern States the percentage belonging to this group falls as low as 5 or 6 ; on the other hand, it is well above the national average in New England, the Middle Atlantic States, and most of the States in the western half of the country.

About a fourth of the owner farmers in the United States reported farm experience as tenants only, and a fifth reported farm experience both as tenants and as laborers, making about 45 per cent altogether who had passed through the tenant stage. Outside the South, the

Fig. 52.-The percentage of owner farmers who had once been farm tenants is lowest in New England, only 15 per cent, and reaches a maximum, about 75 per cent, in the tier of States from South Dakota to Texas, inclusive, and in Iowa and Arkansas. In practically all the other States of the Middle West, as well as in the South, half or more of the owner farmers had once been tenants. Probably migration of tenant farmers to regions where farms were to be obtained at comparatively low prices has been a factor in causing high percentages in the tier of States from the Dakotas to Texas.

States of high average farm real estate valuations were those in which a large percentage of owner operators reported previous tenant farm experience (fig. 52).

RATE OF MOVEMENT ON THE TENURE LADDER.

It is probable that the group of owner farmers who have previously been both farm wage laborers and farm tenants will most closely approximate a group of persons who, starting with little or no capital, have succeeded in acquiring the ownership of one or more farms; for the acquisition of wealth from inheritance, gift, or marriage is undoubtedly of less significance in this group than in the groups of farm owners without previous farm experience or with experience as farm tenants only.

The average number of years spent in each stage by persons who became farm owners between 1915 and 1920 is shown for several States in Figure 53. In the United States as a whole, owner farmers who had previously been both farm wage laborers and tenants had spent an average of 5.8 years in the first stage, and 8.9 years in the second, a total of nearly 15 years. The average age at which farmers who had been both farm laborers and tenants became owners is shown by States in Figure 54. The earlier age in the northwestern
portion of the country is doubtless due in part to the migration of young farmers into this region (fig. 55).

The mere increase in the percentage of farmers who are tenants does not in itself demonstrate that the rate of progress to farm ownership has become lower or attended with greater difficulty. It might be due to a number of other causes which have little relation to the economic difficulty involved in acquiring the ownership of a farm. Thus, it has been noted that a large percentage of tenants in the United States are persons who make no effort to climb to farm ownership, and that their number has increased through the process of converting farm laborers into croppers. Again, it has been noted that tenancy is closely related to the process of retirement or retreat of owner farmers from the land, a trend which might increase the percentage of tenancy without implying necessarily that the acquisition of farm ownership had increased in difficilty. Furthermore, the last three decades have witnessed the settlement of large areas of new farm land. On the one hand, this process may tend to reduce the percentage of tenancy in the Nation as a whole, but it has been noted that after the pioneer period of operation by owners there is almost certain to be a trend toward an increase of tenancy in a newly developed region.

Indeed, even if it could be shown that the farmers who start with little or no capital and achieve unmortgaged ownership require

Fig. 53.-The average age of attaining ownership is shown to be 38 years, preceded by an average farm experience of about 15 years as wage laborer and tenant. but varying in different States. It should be noted that the years spent in childhood or nonagricultural work included in most cases work on parents' farms without wages.

Fig. 54.-The map shows no wide range of difference in the averages for the several States, the lowest being 32 years for Utah and the highest 43 for Rhode Island. The average age of acquisition cends to be lowest in the group of States in the northwestern third of the United States. That this is partly due to the influence of migration of young farmers toward the Northwest is indicated by Figure 55.
a longer period than formerly, one might still be in doubt as to the significance of this fact, because of changes in the amount of wealth represented by the average farm. If an average of 15 years were required to rise to full ownership when the average price of a farm is $\$ 10,000$, and an average of 20 years were similarly required when the average price has increased to $\$ 20,000$, the change would not necessarily imply retrogression in the opportunity for individual financial progress in the farming industry.

Attempts have been made to determine whether the rate of progress up the tenure ladder is changing by comparing the age grouping of owner farmers or of tenants in different census years. This is illustrated by Figure 56. Apparently the decrease from 1890

Fig. 55.-The influence of migration from the old-established regions of the Northeast to the newer regions of the Northwest is suggested in this map. In the South the practice of classing croppers as tenants and the small amount of capital required to become a tenant in many parts of the region are responsible for the large proportion of farmers under 35 years of age.
to 1920 for the first three age groups, and particularly for the youngest group, was relatively much greater than for the two oldest age groups. However, this might be due to a large relative increase in the number of tenants in the younger age groups through the

PERCENTAGE OF OWNER FARMERS IN SPECIFIED AGE GROUPS; UNITED STATES, CENSUS 1890-1920.

Fig. 56.-Apparently for every age group the percentage of owner farmers was less in 1920 than in any preceding decade. However, when it is recalled that the percentage of owner farmers (including part owners and those operating through managers) declined from 71.6 in 1890 to 61.9 in 1920 , it is clear that the tendency indicated was due largely to the fact that the declining percentage of ownership is distributed throughout every age group in successive decades. It should be noted that in the first two census enumerations the percentages are for farm homes, while for the last two decades they are for farms.
process of converting laborers into tenants, especially in the South. Again, it might reflect a retardation in the rate of retirement of the owner farmers in the older age groups.

Other attempts have been made to show the changes at different periods in the arerage length of time required to attain ownership,
ILLUSTRATION OF EFFECTS OF DOUBLE CLASSIFICATION OF FARM-
EXPERIENCE STATISTICS WITHOUT ALLOWANCE FOR REMOVAL BY
DEATH, CHANGE TO OTHER INDUSTRIES, OR RETIREMENT. BASED
ON SURVE REPORTS FOR 269 OWNER FARMERS IN KENTUCKY,
TENNESSEE, AND TEXAS, 1919.

Fig. 57.-The graph shows that because of ignoring the influence of mortality, change to other occupations, and retirement, exactly opposite conclusions are obtained according as one groups the farmers in the order of the decades when ownership was acquired or in the order of the decades when they began the upward climb to ownership. The first system of grouping makes it appear that the period of acquiring ownership has increased nearly threefold. This is due largely to the fact that of those who became owner farmers several decades ago all who required a long time to acquire ownership have died or retired, while those who have recently acquired ownership include a much larger proportion of the slow climbers. On the other hand, when the farmers are grouped in the order of the dates of beginning their earning life, it is made to appear that the average period needed to acquire ownership has steadily decreased. This is due to the fact that in the case of those who began the climb to ownership at an early date the slow, as well as the fast, climbers have had time to achieve ownership, while in the case of those who have recently begun their climb to ownership only the rapid climbers are included in the group, for only these have had time to achieve ownership. Only owner farmers who had received no gratuitous assistance by inheritance, gift, or marriage are included in the graph.
by classifying the owner farmers who have formerly been farm wage laborers and tenants in accordance with the length of time they have been owners and by determining the length of time spent in the preownership stages (fig. 57). However, unless allowance be made for mortality, and change to other industries or retirement, the method is inconclusive.

Figure 58 illustrates a possible method of allowing for the influence of mortality. However, the method employed and any other method which involves allowance for mortality only is necessarily defective because it makes no allowance for retirement or change to other occupations. Theoretically, retirement tends to warp the figures in the same direction as does mortality, namely, by eliminating
the slow climbers, leaving a larger proportion of fast climbers among the survivors. ${ }^{14}$

SOME FACTORS THAT INFLCENCE THE RATE OF PROGRESS IN CLIMBING TO FARM OW NERSHIP.

Studies in methods of acquiring farm ownership have usually accounted only for the direct acquisition of farms by purchase, inheritance, gift, or marriage. The results of a number of such studies are summarized in Table 5. The surveys show a good deal of variation in results. The most extensive survey was that of 24,000 landlords in 24 States. This showed that 79 per cent of the acquired acreage owned was by purchase, 15.3 per cent by inheritance, 3.3 per cent by marriage, and 2.4 per cent in other ways, principally by comesteading. In all the surveys, except the middle western, the percentages of acquisition by inheritance range from 9 to 15.3, but in this survey both inheritance and marriage are relatively more important. Omitting the cases of acquisition by homestead, which were of considerable importance in Nebraska, the farms acquired by owners through inheritance, gift, or marriage range from about 12 to 19

```
AVERAGE YEARS OF FARM EXPERIENCE AS WAGE EARNERS AND TENANTS REPORTED IN 1920 BY OWNER FARMERS IN KENTUCKY, TENNESSEE, AND TEXAS, CLASSIFIED BY NUMBER OF YEARS THEY HAD BEEN OWNER FARMERS BEFORE 1920, WITH CORRECTION FOR REMOVAL BY DEATH AND REPLACEMENT BY YOUNGER FARMERS.
```


Fig. 58.-The black portion of the column is based on census statistics of the amount of preownership firm experience of owner farmers who before attaining this stage had been both farm-wage earners and farm tenants. Those who had become owner farmers in recent years reported longer terms of preownership farm experience than those who had become owner farmers several decades before. From this fact it might seem that there had been an extension of the apprentice period ordinarily required of those becoming owner farmers. Such a conclusion can not be drawn with confidence from reports given in at any single date, however, because the reports come only from survivors whose experience is less typical of their fellows of past decades the more remote the point of time for which it is sought to make a statistical showing. Allowance must be made for removals and replacements associated with retirements from the occupation, migrations from areas surveyed, and deaths. The probable effect is shown here only for the mortality factor. To allow for this, differences between slow, rapid, and fast climbers, and the proportion of owner farmers in each proup were ascertained for at least one survey area in each of the three States and standard mortality statistics applied to the several groups.

[^111]per cent, except for the five North Central States (No. VII), where 33.2 per cent of the farms were reported as acquired by inheritance or marriage. In general, from two-thirds to five-sixths of the farms are shown to have been purchased.

Table 5.-Method of acquisition of farm land as reported in various local
surveys.

Survey or source.	Bases of computation.	Per cent acquired by-				
		Purchase.	Inheri- tance.	Gift.	Marriage.	Other ways, principally home-steading.
I. Wisconsin ${ }^{1}$	2,051 farms	80.6	9.0	3.5	1.4	5. 5
	8,122,828 acres .-.--	79.0	15.3	${ }^{3}$)	3.3	2.4
III. Kentucky and Tennessee: ${ }^{4}$						
1. Owners, 845 transactions -	71,495 acres.	81.2 96.8	12.3 2.7	${ }_{0}^{0.6}$	5.9 0.5	0
	17,999 acres	96.8	2.7 22.8	0 2.5	0.5 1.4	0 0
IV. Massachusetts ${ }^{5}$----------------------	710 land transfers.	73.2	22.8	2.5	1. 4	0
- 1. Owned by tenant farmers .-.-.	60 farms	6<. 9	12.3	0	3.5	19.3
2. Rented farms owned by owner farmes.	384 farms------------	82.6	11.4	3.4	0.8	1. 8
VI. Texas: ${ }^{7}$						
1. 109 owners	18,544 acres-------	88.2	5.7	0	6. 1	
VII 2. 29 tenants	2,867 acres-------	91. 6	$\begin{array}{r}7.7 \\ \hline 8\end{array}$	0	0.7	0
VII. Five Nortt. Central States ${ }^{8}$	Reports of 2,112 farmers.	64.5	24.8	0	8.4	2.1

${ }^{1}$ First farm acquired; questionnaires sent to owner farmers. U. S. Bureau of Agricultural Economics, Division Land Economics, and Wisconsin Agricultural Experiment Station cooperating, 1922; data unpublished.
${ }^{2}$ From questionnaires answered by farm landlords, about three-fourths in the Northern States. Bureau of Agricultural Economics, Division Land Economics, 1920; data unpublished.
${ }^{3}$ Included under "Inheritance."
${ }^{4}$ Local surveys by Bureau of Agricultural Economics, Division Land Economics, in cooperation with agricultural experiment stations in respective States, 1919 and 1920; data unpublished.
5 Local surveys by Massachusetts Agricultural College. Results published in Journal of Farm Economics, Vol. 5, No. 4, October, 1923.
${ }^{6}$ Local surveys by Bureau of Agricultural Economics, Divisions Land Economics and Farm Population, and Nebraska Agricultural Experiment Station cooperating, 1923; data unpublished.
${ }^{7}$ Local survey by United States Department of Agriculture, 1919. See Department Bulletin 1068, Farm Ownership and Tenancy in the Black Prairie of Texas.
${ }^{8}$ Local surveys by United States Department of Agriculture, summarized in American Economic Reviex, Vol. IX, No. 1, December, 1918.

Since many of the farms reported as acquired by inheritance, gift, or marriage were encumbered with debt, the actual equities acquired by the farmers were considerably less. Averages for 10 local surveys in various parts of the United States ${ }^{15}$ indicate that the actual equities in farm real estate obtained directly by inheritance, gift, or marriage were about 12 per cent of the net worth of owner farmers, and 8 per cent of the net worth of tenants. By far the largest source of gratuitously acquired wealth was increase of land valuations, which amounted to 43 per cent for owner farmors and 11 per cent for tenants. Operating owners had "earned" 45 per cent of their net worth and tenants, 76 per cent.

These figures take into account only the proportion of the farms or of the net worth of the farmers represented by the equities in farms owned at the time of the surveys. Such a cross-section does not give a complete history of the farmers' financial progress. In

[^112]local surveys made in Texas, Tennessee, and Kentucky, figures were obtained concerning every farm that had ever been acquired by the farmers interviewed and concerning all wealth gratuitously acquired by them and the extent to which this wealth had contributed to farm ownership.

Of the 968 acquisitions of farm land, much of which had been resold, only 15.7 per cent of the total acreage was reported as acquired directly by inheritance, gift, or marriage ; but of the total valuation of the 968 farms at the time they were acquired, 32.5 per cent was wealth received by inheritance, gift, or marriage. However, many of these farms were obtained by means of wealth gratuitously acquired, the land having been held for a time and then sold at a large advance in price, and the original amount plus its net increase again invested in land. The original amount of wealth gratuitously acquired, plus its net increase when used for purchasing land, amounted to 47.1 per cent of the total acquisition valuation of these 968 farms. ${ }^{16}$ This is approximately three times the percentage of acreage shown to be directly acquired by inheritance, gift, or marriage.

The receipt of wealth gratuitously also enhances the individual's power of accumulation. The studies in Texas, Tennessee, and Kentucky show that 64 per cent of the farmers succeeded in acquiring the ownership of their first farms without the assistance of wealth acquired gratuitously. There were 141 farmers who received gratuitous assistance and who at the time of beginning as owner farmers controlled an average wealth of $\$ 8,050$. They had obtained an average of $\$ 3,847$ gratuitously and had borrowed $\$ 2,180$, leaving $\$ 2,023$ which is to be accounted for by accumulation. There were 255 farmers who climbed to ownership without gratuitous assistance and who at the time of beginning as owner farmers controlled an average wealth of $\$ 4,311$. These had borrowed an average of $\$ 2,049$ and had accumulated an average of $\$ 2,262$. But the first group had been 10 years in the process, while the latter group had required nearly 15 years. Stated in another way, the receipt of the gratuitous wealth increased the rate of accumulation 31 per cent.

The Possibilities of Acquiring Farms Out of the Income from Farming.

By analyzing the incomes of farmers, as indicated by local surveys, some students of the subject have reached the conclusion that climbing to farm ownership without the aid of wealth gratuitously acquired has become a protracted and difficult process. ${ }^{17}$ Table 6 summarizes the results of a large number of local surveys. The surveys cover a period of about eight years, but it is probable that taken as a whole they indicate the nature of the financial problem of acquiring a farm in the United States. ${ }^{18}$ The table shows the average amount of initial payment that would be necessary in order that the entire valuation of the farm may be amortized in given periods of time, allowing for interest on indebtedness at the rate prevailing on farm mortgages in the particular regions, and deducting certain amounts for family living expenses.

[^113]Table 6.-Size of initial payment that would be necessary at time of purchase in order to amortize debt on farm in 10, 20, or 30 years, when family uses $\$ 300$ or $\$ 600$ annually from farm income for expenses. ${ }^{1}$

Regions studied.	Date of survey.	A verage capital per farm.	Farm income.	```Mort- gage interest rate (per cent).```	Initial payments required to amortize debt in the following number of years with the indicated annual allowance for expenses.					
					10 years.		20 years.		30 years.	
					\$300	\$600	\$300	\$600	\$300	\$600
New Hampshire, Hillsborough County	1918	\$8, 054	\$879	5. 5	\$3, 689	\$5,951	\$1,134			
New York, Tompkins County	1911		\$879	5. 5	$\$ 3,089$ 2,115	$\$ 5,951$ 4,365	$\$ 1,134$ 107	$\$ 4,720$ 3,661	$\$ 1,092$ 0	$\$ 3,999$ 3,275
New Jersey, Monmouth County	1916	19,165	1,699	5. 8	8,774	11,003	2, 856	3, ${ }^{3}, 253$	0	3,275 3,712
Pennsylvania, Chester County	1916	10,486	1,313	5. 8	2,964	5, 193	2, 0	2,180	0	3, 605
Ohio, Washington County .--	1919 1919	27, 885	3,049	6.0	7,652	9,860	0	0	0	0
Do..---------........	${ }_{1920}^{\text {1912-1916 }}$	5,652 11,049	443 778	6. 1	4, 607	${ }^{(2)}$	4,027	${ }^{(2)}$	3, 716	$\left.{ }^{2}\right)$
Indiana:	1920	11,049	778	6.1	7,546	9,745	5, 611	9, 024	4, 539	8, 625
Clinton and Tipton Counties	1914	17,535	1,187	6.2	11, 233	13,419	7,535		5, 588	
Clinton County.	1918	25, 958	1,856	6.2	14, 612	15, 799	8,398	11, 783	5, 4,988 , 990	9, 627 9,032
Case and Menard Counties	1914	51,091	3,176	6.0	29,918	32, 126	18,100	21, 542	11,493	
Kane County	1918	37, 896	2,766	6. 0	19, 747	-31,955	18,100 9,578	21, 13,019	11,493 3,950	15,623 8,080
Green and Guthrie Counties.	1914	23, 193								
Tama, Blackhawk, and Grundy Counties	1918	63, 926	1,450 4,578	5.9 7.5	14,686 34,562	16,904 36,621	9,897 18,957	13,366 23,350	7,192 13,400	11, 364
Nebraska, Madison, Platte, Merrick, and Rich	1916	26, 646	1,717	7.1	34, 748	36, 621 18,846	18,957 11,781	23, 14,931	13,400 9,283	18,277 12,961
Kentucky, Blue Grass Counties	1917	37, 793	2, 576	7.1	21, 892	23, 988	13, 902	14,931 17,052	9, 988	12,961 13,562
Michigan, Lenawee County	1918	9,033 11,756	822 1,068 1	6. 8	5,335	7, 461	3,429	6,653	2,427	6, 218
Wisconsin, Green County	1918	11, 036	1,068	6.6 5.8	6,322 18,848	8,468 21,077	3,374	6, 650	1,845	5,716
Minnesota, Rice County.	1907	14, 636	1,940 1,170	5. 6.8 6.8	18,848 8,467	21,077 10,593	11,924 5,288	15, 421	7,999	12, 217
Georgia, Sumter County	1917	15, 781	1, 712	6.8 8.7	8, 605	10,593 8,555	5, 288 2,619	8,512 5,415	3,640 946	7,432 4,097
Deorgia, Brooks County	1918	27, 118	3,711	8.7	4,939	6,889	2, 0	5,415	946 0	4,097 0
South Carolina, Anderson County	1918	8, 992	952 404	8.7	4,752	6, 703	2,917	5,713	2,038	5,190
Florida:	1918	5,529	404	8.4	4,843	$\left.{ }^{2}\right)$	4,535	$\left.{ }^{2}\right)$	4,402	(2)
Hillsborough County	1921	7,475	1,221	9.0	1,562	3,488	0			
Polk County	1921	44, 813	5,845	9.0	9, 214	11,140	0	1,806	0	1,095 0
Texas, Ellis County Montana:	1918	16, 019	1,457	9.0	8,596	10,521	5,472	8, 209	4,208	7, 273
Gallatin Valley	1914	27, 173	2, 185	10.0	16, 205					
Billings area	1915	14,904	1,653	10.0	16,205 6,590	18,048 8,433	11,120 3,385	13,674 5,939	9,554 2,151	12,395 4,979
	1918	11, 688	1, 1 , 312	10.0 9.0	6,590 5,196	8,431	3, 385	5,939 5,354	2,151 1,348	4,979 4,413
Arizona, Salt River Valley	1918 1918	20, 706 22,699	2, 370 1,322 1,	9.4	5,196 7,647 15	$\begin{array}{r}7,121 \\ 9,593 \\ \hline 17855\end{array}$	2,453 2,270 12,697	$\begin{array}{r}5,354 \\ 4,931 \\ \hline 15,613\end{array}$	$\begin{array}{r}1,348 \\ 315 \\ \hline\end{array}$	4,413 3,270
Washington and Idaho, Palouse area	1920	22, 45978	1, 1,766	8.0 8.0	15,842 36,141	17,855 38,154	12,667 31,684	15,613 34,529	11,190	14,567

1 This table is reprinted from Farmers' Bulletin 1385, "Buying a Farm in an Undeveloped Region."

[^114]In a sense, the deduction of a fixed amount of income for family living places some of the low-ralued farms at a disadvantage as compared with high-valued farms. This is shown by comparing the Illinois farms averaging $\$ 51,091$ with the South Carolina farms a veraging $\$ \check{5}, 529$. In the first case, $\$ 600$ is less than one-fifth of the total farm income, while in the second case $\$ 600$ a year is really more than the average farm can afford, being larger than the average farm income.

In none of the survey areas, except the Pennsylvania area, is it possible, on the average, to employ $\$ 600$ for living expense and to pay for the farm in 10 years without a much larger initial payment than usually is possible. Farmers in the two Georgia areas could probably pay out in 10 years by initial payments of approximately 50 per cent, if the interest on indebtedness were, say, 6 per cent instead of approximately 9 per cent.

In the Illinois areas an initial payment amounting to only a third of the purchase price would be required in order to pay out in 20 years, but eren so, the initial payment is very large, amounting to $\$ 21,542$. On the other hand, in the Nebraska area, an initial payment of more than 50 per cent would be required (partly due to the somewhat higher interest rate), but because of the lower price of the real estate the initial payment would amount to only $\$ 14,931$. Various other surveys in the northern portions of the Middle West indicate that, on the average, farms could be paid for in 20 years by making initial payments varying from 35 to 60 per cent of the purchase price and in amounts varying from $\$ 7,000$ to $\$ 15,000$. In some portions of the South and West employment of the lower rates made possible by the land banks of the Federal farm loan system should make a more favorable showing.

It is true that the above figures assume a deduction of only $\$ 600$ for family expenses, but in practically all of the cases this would be in addition to the living furnished by the farm. Furthermore, the value of labor of members of the farm family other than the operator was deducted as an expense in arriving at farm income. This amount would be available either to increase the allowance for family living or to augment accumulations.

It must be noted also that the figures given in Table 6 are averages. Undoubtedly many farmers, more efficient than the average, were capable of paying for a farm more rapidly than the rate shown in the table. Others below the average in efficiency probably were unable to make more than living expenses.

The figures in Table 6 may arouse either optimism or pessimism according to the point of view. On the one hand, it may be a good showing that in most of the districts surveyed it is possible to accumulate from two-fifths to four-fifths of the valuation of a farm within a period of 20 years, provided one has the remaining fraction of the purchase price to deposit as an initial payment. But it should be noted that for the man who starts without capital there is also to be added the long period required to accumulate the initial payment; and the rate of accumulation in this period is necessarily much slower than it is after the initial payment has been accumulated.

The largest and most difficult step in the land tenure ladder has been that from tenant to mortgaged owner (fig. 59). After two IOWA COUNTIES, 1918.

FIG. 59.-In both counties there is an increase in the average amount of operator's equity in farm capital in each successive stage of the tenure ladder with the exception that the equity of full owners in debt is no larger than that of part owners out of debt. The large difference between the average equity of tenants and that of owner farmers suggests the magnitude of the problem of accumulation of wealth prior to the attainment of farm ownership. Statistics are from a survey in 1918 made by United States Department of Agriculture (Office of Farm Management and Farm. Economics) cooperating with the Iowa Agricultural Experiment Station.
decades or more of rising prices of farm products and real estate it is not surprising, however, that in 1920 many farmers were owners of farms which they had purchased under encumbrance (figs. 60 and 61). Let us assume that tenants earn the average farm incomes shown in Table 6 and start without capital, but agree to pay rentals at the same rates as the mortgage rates of interests shown in Table

Fig. 60.-In 1920 about 40 per cent of the farms of full owners reporting were mortgaged. The mortgage indebtedness averaged $\$ 3,356$, or 29.1 per cent of the average valuation of these mortgaged farms. Mortgage indebtedness may be an indication either of adversity or of activity in climbing to ownership, in improving farm real estate, and in acquiring more efficient forms of operating capital. The greatest percentages in 1920 are found in newer sections or in sections where the valuation of farm real estate had increased rapidly.

6 for the respective districts. How long a period would be required to accumulate the initial payment necessary to make it possible to pay for the remainder of the farm capital in 20 years? An analysis of the figures shows that in only one district, the Pennsylvania area, would it have been possible under these assumptions to accumulate anything at all. In all the other districts there would be deficits averaging from $\$ 13$ to $\$ 1,132$ per annum, after deducting the mortgage rate of interest on the total farm capital and $\$ 600$ per year for family living. In five of the districts the deficit would be more than $\$ 600$; in the others, less, indicating the possibility in the latter districts of making something toward family living after deducting interest on the farm capital, but not deducting as much as $\$ 600$ per year.

It may be alleged that tenants do not have to pay rental rates as high as the prevailing rates on mortgage indebtedness. This is true

Fig. 61.-In 1920 about half of all part owners reporting were operating farms of which the parts owned by them were mortgaged: No information is available in the census as to the mortgages on the rented portion of such farms or concerning mortgages on farms operated by tenants. A comparison of the above map with Figure 61 shows that the regions where mortgages are most prevalent are much the same for part-owner farms as for farms operated by full owners.
of cash rentals in some of the regions. Figure 41 indicates that in most of the North Central districts the ratios of cash rents to real estate valuations average only about half or less than half the mortgage rates shown for the same districts in Table 6. Although the figures on average cash rents are not available for the precise areas covered in the above surveys, a verage cash rents in the North Atlantic States, the South, and the Western States do not appear to be much, if any, lower than the mortgage rates shown for the corresponding districts. Furthermore, it is probable that even in the Corn Belt average ratios of share rents to real estate valuations are at least as high as the mortgage rates of interest shown in the table.

The above facts seem to point to the following conclusions. If tenants are to accumulate enough to make the initial payment on a farm under the conditions shown in Table 6, they must do so by one or more of the following means: (1) Make their farms earn higher incomes than the averages shown in Table 6; (2) obtain the use of
the farm real estate at rental rates lower than the mortgage rates of interest prevailing in the respective regions; (3) own part or all of their operating capital when they become tenants-a condition characteristic of the majority of tenants; (4) live on less than $\$ 600$ per year in addition to what the farm supplies in kind; ${ }^{19}$ (5) reduce the expenses of production below those given in Table 6 by employing the labor of members of the family without wages. This last is a possibility of considerable importance, for, as noted, the farm incomes shown in the table were calculated by deducting an estimated wage for the unpaid labor of the farm family (not including that of the operator) as an expense of production. Studies of the labor contributed by members of the families show that over a series of years such labor had an average annual valuation of $\$ 211$ on a group of 60 Wisconsin farms. This is 21 per cent of the expenses on these farms. On a group of 25 Ohio farms the average was $\$ 96$, or 20 per cent of all expenses, and on a group of 100 Indiana farms it was $\$ 81$, or 9 per cent of all expenses.

That by some of the above means tenants in large numbers have succeeded without gratuitous assistance in accumulating the necessary funds for making the initial payments required for the purchase of farms is shown abundantly by the statistics as to progress on the agricultural ladder. On the other hand, the analysis of the income figures have demonstrated that under average conditions the process has become one of no small difficulty in many parts of the United States. In fact, there is reason to believe that increase in the valuation of land has been a large factor in enabling purchasers of farms to refund or repay the indebtedness incurred, even though it may have tended to discourage many from attempting to buy and to increase the difficulty of the purchaser in the early stages of repayment.

Summary of Classes of Tenants in the United States.

The preceding discussion has indicated that the farm tenants of the United States include a number of quite different classes:

1. Persons who are statistically classed as tenants, but who generally are not tenants at all in law and who from an economic point of view are probably more logically considered as laborers than as tenants. This class (croppers) comprised in 1920 nearly 23 per cent of all so-called tenants.
2. A large group of farmers, including probably the majority of the croppers, who may never rise to ownership largely because of personal limitations, such as lack of adequate education and training, thriftlessness, inertia, instability, and unwillingness to assume risks.
3. A large group for whom tenancy is either an initial or an intermediate step toward ownership.
4. A smaller group who, having become operating owners, have reverted to tenancy through inability to maintain the position of owners.
5. A comparatively small group, who, although financially able to purchase farms, prefer to be tenants either because of certain tem-

[^115]porary circumstances mentioned above or because they prefer other forms of investment for their capital.

Relation of Types of Tenure to Efficiency in Farm Operations.

In considering the financial problem which confronts the tenant farmer in accumulating the means of paying for a farm, it was assumed for illustrative purposes that, on a given class of farms, tenants could earn, on the average, as large a farm income, that is, income from both the owned and rented capital as owner farmers earn on the corresponding capital. This raises a question on which a certain amount of information is available. At the outset we are confronted by the fact that in certain parts of the country the kinds of farms operated by the various tenure classes differ considerably.

Differences in Acreage.

First, there are differences in size of farms operated by tenants as companed with owners (fig. 62). In the South, the average size

Fig. 62.-The larger average acreage both of improved and of unimproved land operated by owners in the south as compared with tenants is partly due to the practice of counting as farms the various subdivisions of plantations worked by croppers and partly to the continuance in the South of large farms and plantations worked by hired laborers. In the North and West the larger acreage, both total and improved, operated by tenants and part owners is owing partly to the fact that they need less capital to increase the acreage farmed than do full owners and partly to the fact that the larger farms provide the larger incomes. The unusually large average size of partowner farms is also due partly to the prevalence of such farms in subhumid regions and other regions where the average size of all classes of farms is larger than for the country as a wholc.
of tenant farms is much smaller than that of owner farms, while the opposite condition generally prevails in the North and West. The census of 1920 showed that in 20 States the average size of tenant farms was less than that of farms operated by full owners. Fifteen of these were Southern States, three were in New England, and the other two were Missouri and Utah. On the basis of the average improved acreage per farm the tenant farms were smaller only in the South and in Maine.

The average size of so-called tenant farms in the South is to be traced in part to the anomalous statistical results occasioned by the plantation system. Thus, if a Southern planter operates a thousand acres by wage labor-and there are many such large units in the South-the entire area is counted a single farm; but if the planter operates the same thousand acres by means of 30 croppers, even though he controls and directs the management of the whole as before, the entire unit is counted as 30 farms. If the assumed plantation is composed of 400 acres of crop land and 600 acres in timber or suitable only for grazing or crops other than cotton, the planter is likely to let only the cotton land to croppers and tenants, retaining the remainder under direct operation. In short, the great contrast between North and South in size of farms operated by owners and tenants is owing in large part to the practice of counting as separate farms small tracts of crop land which are integral parts of large cotton plantations or tobacco farms.

In the North the tendency for tenant farms and those operated by part owners to be larger, on the average, than those of owning operators reflects several factors. In the first place, a larger proportion of owner farmers are old men who are gradually retiring from farming and reducing the size of their holdings or selling out and buying smaller farms. Also, many owners have been prevented, from lack of capital or through inertia, from acquiring by purchase holdings as large as they could operate effectively. On the other hand, the fact that a man rents additional land shows that he is attempting to expand his holding to a more efficient size, and in renting land both tenants and part owners are less hampered by lack of capital in expanding their holdings than are owner farmers.

Figure 62 also indicates the tendency, characteristic of all but 3 of the 48 States, for tenant farms to contain a larger proportion of improved land than those of other classes of operators. This reflects the fact that a combination of circumstances causes tenancy to predominate in sections of the country where a large proportion of the land is adapted to crop production. However, in a number of good farming regions of the North, as shown by local surveys, the difference between tenants and owner farmers in this regard is not important.

Differences in Importance of Livestock.

Livestock is a smaller factor in the organization of tenant farms than in that of farms operated by owners. This difference is the occasion for a great deal of the concern with which tenancy is viewed in this country. In 1920 for the United States as a whole the valuation of livestock on tenant farms per acre of improved land was only 79 per cent of the corresponding figure for farms operated by owners, while the valuation of livestock on tenant farms per $\$ 100$ worth of farm real estate was only 74 per cent of the corresponding figure for owner farms. Viewing the matter by States the same tendencies generally prevail. The valuation of livestock per acre of improved land was notably greater for tenant farms only in some of the New England States where tenant farms are but a small proportion of the total number. However, in several of the Middle Atlantic States, and in Ohio, Kentucky, Michigan, and Wisconsin, the two classes

Fig. 63.-Eleven Western States are excluded from this graph because a large acreage of the pasture land is not in farms and is consequently not reported by the census. In the States shown here it is apparent that while owner farmers usually show higher average valuations of livestock per acre than do tenants, a few of the State averages show the reverse. Excluding work stock reduces the relative favorableness of the tenant showing. Much of the apparent disadvantage under which tenants stand in State averages used in comparisons of this sort lies in the fact that tenants are more prevalent in those parts of the States in which neither tenants nor owner farms engage in livestock production than in those parts where livestock is an important fictor in farm economy.
are nearly equal in the valuation of livestock per acre of improved land. In most of the other Northern States east of the Rocky Mountains the valuation of livestock per acre of improved land on tenant farms ranges from 80 to 90 per cent of the corresponding figure for the farms of operating owners. In some of the Southern

PROPORTION OF TOTAL FARM INVESTMENT IN LIVESTOCK OTHER THAN
WORK STOCK, OWNER FARMERS COMPARED WITH TENANTS; FOUR
FARM SURVEY AREAS.

Fig. 64.-The relative place occupied by dairy cattle and meat animals is not always smaller in the case of farms operated by tenants than for farms operated by owners in the same localities. Moreover, tenants in some local ies employ such livestock much more extensively than do owner farmers in other localities. The results shown are for a single year in each survey.

States and the western range States the valuation of all livestock per acre on tenant farms is less than on farms operated by owners (fig. 63). When work animals are deducted, the tendency in some States for the valuation of livestock per acre to be greater on tenant farms than on farms operated by owners is less evident. Results of a number of surveys also show that in some of the districts surveyed the proportion of total farm capital invested in livestock other than work animals is larger for the tenant farms, or at least for certain classes of tenant farms than for farms operated by owners (fig. 64).

The statistics by States reflect the disproportionate distribution of owners and tenants in parts of the country where livestock are numerous in proportion to the acreage of improved land. Thus, tenants are a comparatively small percentage of farm operators in the great range areas of the West, in the pasture lands of the Appalachian and Ozark regions, and in the dairy regions of New England, New York, and Lake States. The predominance of farming by owners in regions of livestock production tends to weight the average valuation of live stock per acre of improved land unduly in favor of this class of farms. When the two tenure classes are compared in regions where livestock husbandry prevails, as, for instance, in the dairy States, the disparity indicated above is not necessarily shown. In the South, so-called tenant farming is frequently an arrangement by which a plantation operator employs croppers to work the crop land under the planter's direction, while he maintains the livestock by employing wage laborers. In short, the fact that men rent land instead of owning it is not in itself a fundamental reason why they can not engage extensively in livestock husbandry. In England, for instance, a country where livestock is a large factor in farm economy, nearly 90 per cent of the farms are operated by tenants.

Differences in Diversification of Crops.

It is frequently assumed that tenant farming results in less diversification of crops than does farming by owners. Averages for the United States as a whole or for particular sections appear to sustain such a conclusion. However, this is largely due to the fact that tenant farms predominate in regions where the so-called one-crop system of farming prevails and to the tendency on Southern plantations to work the cotton or tobacco land by means of croppers and tenants. In the general farming regions of the North local surveys do not indicate that tenant farmers uniformly practice less crop diversification than is practiced by owner farmers in the same localities (fig. 65).

Differences in Yields per Acre.

The comparative efficiency of tenants and owners may be partly reflected in yield per acre of crop land. It is clear that general comparisons for large statistical units such as States may result in misleading conclusions for the reason already mentioned, namely, the unequal distribution of the tenants and owners on land of different character and quality. Even for local surveys it is not always clear that the two classes of farmers occupy farm land of the same average quality. However, comparisons of yield per acre for a number of surveys do not point to definite conclusions. In some surveys tenant farms show a higher average yield, while in other
surveys the advantage is with owner farmers (fig. 66). In short, it appears that the question whether tenants or owner farmers are the

CROP DIVERSITY AS INDICATED BY PERCENTAGE OF CROP LAND IN
DIFFERENT CROPS, OWNERS COMPARED WITH TENANTS; FIVE FARM
SURVEY AREAS.

Fig. 65.-In the Pennsylvania and Iowa surveys no important differences are shown in crop selection as between tenants and owner farmers, except that cash tenants place a little more emphasis on corn than do other classes of operators. In the three regions characterized by the one-crop system-that is, wheat in the Palouse area and cotton in the two Southern areas-there is slightly more concentration by tenants on the principal money crop. In the South this frequently represents a deliberate division of enterprises on plantations operated as units, the croppers and tenants being employed in the production of cotton, while the plantation operator carries on by hired labor such crop diversification, as well as livestock production, as he considers economically desirable from the standpoint of the plantation as a whole. The results shown are only for a single year in each survey.
more efficient as measured by crop production per acre can not be conclusively answered except with reference to the particular locality under consideration.

YIELD PER ACRE OF CORN, OATS, HAY, AND COTTON, OWNER FARMERS COMPARED WITH TENANTS; FIVE FARM SURVEY AREAS.

Fig. 66.-This graph shows the danger of generalizing as to yields per acre on rented as compared with owner-operated land even within the same localities. Just as tenants usually occupy a proportion of the highly productive land in a State or geographic division that is larger than their numbers alone might indicate, so also they often lease a disproportionately large amount of the more productive land in local areas. When showing higher average yields than owners, little proof is afforded that the tenants themselves are better farmers than the owner farmers. The reverse holds in like manner: The results shown are only for a single year in each survey.

Differences in Farm Income.

The relative efficiency of the several classes of farmers may also be compared in terms of ability to make the farm yield farm income, that is, net income for the business as a whole without reference to its distribution in the form of rent and interest among the several classes who furnish the farm capital or in the form of wages for the farmer's time. In order to allow for possible differences in the size of the business as between the several classes, farm income is expressed as a percentage of farm capital (fig. 67). The results of the surveys shown in this graph, as well as the results of other surveys, indicate that in the northern areas tenants are not notably inferior to owner farmers in their ability to make their farms yield farm income, and in a number of surveys are shown to be slightly superior. In the southern surveys tenants earned larger average farm incomes than did owner farmers employing croppers, and share or share-cash tenants earned farm incomes approximately equal to or exceeding those of owner farmers operating without croppers.

In general, the available statistics indicate that efficiency is less a matter of the class of tenure than it is of the personal qualities of the farmer, the character of the land, and the adequacy of farm equipment and operating capital.

Interrelation of Form of Tenure With Progress in Accumulation, Education, and Standard of Living.

Various local tenure surveys have supplied a steadily increasing body of statistics which show contrasts in the educational advantages, and standard of living of tenants as compared with owner farmers.

Comparative Educational Advantages.

The interdependence of success in accumulating wealth with the educational advantages of various classes of farm operators and their children is shown in Table 7.
Table 7.-The relation of education to tenure and ability to accumulate wealth from earnings, 1,066 farm operators and their families, in Texas, Tennessee, and Kentucky, 1919-1920 ${ }^{1}$.

Farmers classified by tenure and by rank as accumulators of wealth. ${ }^{2}$	Average grade in school attained by farmers.		A verage grade in school attained by wives of farmers.		A verage grade in school attained by children above 21 years.	
	Number.	Average grade.	Number.	Average grade.	Number.	Average grade.
Croppers:	70	3. 3	63	4.2	79	5. 6
Poorest.-	76	3. 6	75	4. 9	40	4.1
Best.----	76	4.6	68	5.2	18	4.3
Tenants:						- 6.7
Poorest.	132	5. 0	126	5. 6	79	6. 7
Medium	128	5. 0	122	5. 4	77	7.1
Best..-.-	132	6.2	120	7.1	41	8.1
Owners:						
Poorest.-	151	5. 7	137	6. 4	178	8.9
Medium	152	6. 3	143	7.0	170	8.3
Best.----	149	7, 4	139	8.0	110	10.7

Each class of owner farmers had attained a higher grade in school than the corresponding class of tenants, and each class of tenants had attained a higher grade than the corresponding class

RATIO OF FARM INCOME TO TOTAL FARM CAPITAL AND PERCENTAGE LANDLORDS RECEIVED ON THEIR RENTED PROPERTY; FIVE FARM SURVEY AREAS.

FIG. 67.-The percentage of farm income to farm capital in an area is a rough measure of the comparative efficiency of the several tenure classes. In the northern areas the percentages of farm income to farm capital for the various classes of tenants are higher than for full owners, but somewhat less than for part owners. In the southern areas owners working with croppers made a much poorer showing than did owners without croppers. The results, of course, are only for a single year, and therefore are not conclusive.
of croppers. Within each tenure class the average school grade reached was found to be directly related to efficiency in accumulation, the best accumulators having previously attained the highest grade; the medium accumulators the next highest; and the poorest accumulators the lowest. However, progress in accumulation may be due in part to the superior educational advantages, and in part to the greater facility of accumulation made possible by gratuitous receipt of wealth. Moreover, the results shown may reflect to some extent a selective process which causes the more intelligent to profit by the opportunity for education afforded by progress in accumulation, while the latter is in a sense a result of superior intelligence. The school advantages of the wives of the various members of the groups paralleled those of the husbands. Moreover, for each accumulator group, the children over 21 years of age of owner farmers had attained a higher grade in school than was the case for the corresponding group of tenants, and the children of 21 years of age and over belonging to tenant families had enjoyed greater school advantages than the corresponding group of croppers. One hopeful indication is the fact that the children, except those of the best and medium croppers, had attained a higher average grade in school than their parents.
The comparative educational advantages of various classes of farm operators and of their children are shown from a somewhat different point of view for both southern and other areas in Table 8.

Table 8.-Percentage of farmers and farmers' children, excluding children still in school, who reported high school or college education, $1919{ }^{1}$.

	Total.	Owners.		Tenants.		Croppers.	Hired men.	Managers.
		Full.	Part.	$\underset{\text { lated. }}{\mathrm{Re}-}$	Unrelated.			
Farmers:								
Southern areas (5)	13. 0	20.0	13. 9	27.8	9.5	11.1	4. 5	50.0
Other areas (9)	22.8	20.2	34.6	37.0	14.8		31.3	92.3
Farmers' children who had left school:								
Southern areas (5).	25.6	40.8	31.8	43.3	19.5	10.0	5. 6	
Other areas (9) ---	47.0	48.5	51.5	35. 7	43.7		33.3	66.7

[^116]As shown in Table 8, the proportion of farmers having high school or college education is 13 per cent in the southern areas and 23 per cent in areas in the States of the North and West. In the southern areas a larger proportion of the full-owner farmers (20 per cent) reported high school and college education than of the part-owner farmers (14 per cent); but in the other areas the reverse was the case, part owners reporting high school and college education more generally than did full owners (35 per cent, as compared with 20 per cent). In both the southern areas and the other areas a larger proportion of the tenants who were related to their landlords reported high school and college education (28 and 37 per cent, respectively) than of tenants not so related (9 and 15 per cent, respectively). Croppers, found only in the southern areas, reported high school and college education in 11 per cent of the cases,
thereby exceeding the corresponding percentages for hired men in southern areas (4 per cent) but not for hired men in other areas (31 per cent).
Excluding children still in school, the proportion of children having high school or college education is shown in Table 8 to be 26 per cent in southern areas and 47 per cent in areas in the States of the North and West; or almost exactly twice as high in the case of each group of areas as shown for the farmers themselves. The proportion of children with completed schooling who had high school and college education was above average in both groups of areas in the case of children of both full owners and part owners and children of related tenants in southern areas. The proportion in the case of unrelated tenants in areas in the North and West (44 per cent) was over twice the corresponding proportion (20 per cent) in the case of unrelated tenants in southern areas, and exceeded the proportions shown for hired men in both groups of areas (33 per cent in northern and western areas and 5.6 per cent in southern areas).

Magazines and Newspapers.

Somewhat similar contrasts are revealed by statistics concerning periodicals and newspapers taken by various classes of farm operators, as shown in Table 9. The percentage for owner farmers is higher than for tenants in the case of every class of periodicals. The differences are much greater in the southern than in the northern surveys.

Table 9.-Percentages of owner farmers and of tenant farmers taking various classes of periodicals; 10 surveys.

WHITE OWNER FARMERS.
[See end of table for footnotes]

Survey and date. ${ }^{1}$	Number of farmers in survey.	Percentage of all farmers taking-				
		Dailies.	Agricultural papers.	Weeklies. ${ }^{2}$	$\begin{aligned} & \text { Maga- } \\ & \text { zines. } \end{aligned}$	Others.
Southwestern Ohio, 1912	273	${ }^{3} 94.9$	57.9	${ }^{3} 13.2$	$\left\{\begin{array}{l}427.1 \\ 513.6\end{array}\right.$	${ }^{6} 14.3$
North Carolina, 1922	436	40.1	45.6	69.0	48.1	72.8
Nebraska, 1920	406	84.0	77.8	38.9	518.7	${ }^{7} 3.2$
Texas, 1919	106	867.9	59.0	62.1	53.3	--------
Kentucky, 1919	122	91.8	61.5	57.4	41.8	-------
Madison County, Tenn., 1919	63	74.6	69.8	47.6	38. 1	
Montgomery County, Tenn., 1920	87	59.8	57.5	36. 8	42. 5	
Williamson County, Tenn., 1919	100	70.0	66.0	72.0	37.0	
Total or average.----------	1,593	70.8	60.9	59.8	43.2	5.7

NEGRO OWNER FARMERS.

North Carolina, 1922 Virginia, 1921 Total or average	54 149	1.9 816.8	37.0 69.8	31.5	5. 6 2.0	73.7
		12.8	61.1	31.5	3.0	3.7

Table 9.-Percentages of owner farmers and of tenant farmers, etc.-Contd. WHITE TENANT FARMERS.

Survey and date.	Number of farmersin survey.	Percentage of all farmers taking-				
		Dallies.	Agricultural papers.	Weeklies.	Magazines.	Others.
Southwestern Ohio, 1912.	203	${ }^{3} 89.7$	42.8	${ }^{3} 4.9$	$\left\{\begin{array}{r}421.7 \\ 54.4\end{array}\right.$	${ }^{6} 11.8$
North Carolina, 1922	297	10.1	25.6	16.2	- 27.6	${ }^{7} 1.3$
Nebraska, 1920.	384	82.6	72.7	29.2	$\left\{\begin{array}{l}419.8 \\ 5,16.1\end{array}\right.$	${ }^{7} 2.1$
Texas, 1919.	248	${ }^{8} 52.0$	46.3	54.5	42.4	
Kentucky, 1919	148	84.2	43. 9	33.1	12. 2	
Montgomery County, Tenn., 1919	77	9.1	22.1	18. 2	18. 2	
Madison County, Tenn., 1920	84	17. 9	41.7	17. 9	11.9	
Williamson County, Tenn., 1919	52	38. 5	46. 2	44. 2	17.3	
Total or average	1,493	55.1	46.7	29.9	28.8	4.1

NEGRO TENANT FARMERS.

North Carolina, 1922	$\begin{aligned} & 227 \\ & 112 \end{aligned}$	2.2 82.7	$\begin{aligned} & \text { 13. } 7 \\ & 36.9 \end{aligned}$	$\begin{array}{r} 5.7 \\ 11.4 \end{array}$	3.1 1.8	
Total or averag	339	2.4	21. 3	7.9	2. 7	

[^117]
Expenditures for Family Living.

Although amount of expenditure is not an adequate measure of standard of living, it furnishes a partial basis for comparison. Some statistics available from local surveys are summarized in Table 10.
Table 10.-Average family living expenses for white farm families in New York, Kentucky, Texas, and Tennessee, 1919-1921. ${ }^{1}$

Survey and tenure.	Average of total family living values.	Per cent of all family living furnished by farm.	Value of food.	Per cent of all food values furnished by farm.	A verage amounts spent for-					$\begin{gathered} \text { Miscel- } \\ \text { lane- } \\ \text { ous. } \end{gathered}$
					Clothing	Health.	Ad-vancement.	Insurance.	Personal items.	
New York, 1921: Tenant	\$2, 098	35	\$839	47	\$293	\$102	\$327	\$46	\$25	\$466
Owner.......	1,983	37	778	51	273	76	318	41	23	474
Kentucky, 1919: Cropper	1,290	31	666	42	230	72	27	14	10	271
Tenant	1, 732	38	839	58	255	87	75	37	15	424
Owner	2,003	41	840	63	284	91	156	47	14	571
Texas, 1919: Cropper		30			243	45	- 24	17	22	197
Cropper------------	1,111	30 34	633	58	264	70	37	41	21	268
Owner.	1, 809	34	750	64	381	69	113	48	21	427
$\begin{aligned} & \text { Tennessee, } 1919- \\ & 1920 \text { : } \end{aligned}$										
Cropper.	591	44	341	56	98	23	15	7	7	100
Tenant.---------	899	44	436	66	174	19	55	24	14	177
Owner.	1,325	40	489	70	232	68	124	42	17	353

[^118]In the southern districts the total a verage living expenses of tenant families are considerably less than those of owners. In the New York surveys the expenses of tenants exceed those of owners by more than $\$ 100$ per year. In the New York and Kentucky surveys the proportion of the family living furnished by the farm is higher for owner farmers than for tenants, and in the Texas survey the proportions are equal. The proportions of the total expenditures used for food and for clothing are somewhat greater for croppers and tenants than for owners, but the actual expenditure is less, except in New York. In the southern districts the proportions devoted to advancement expenditures (books, magazines, music, education, social life, etc.) are much larger for owners than for croppers and tenants. The proportions devoted to the personal expenditures of the operator (mainly tobacco) are much the same in New York and Texas.

Housing Conditions and Home Conveniences.

As would be expected, housing facilities for tenants are generally less adequate than for owner farmers. The average valuation of dwellings of owner farmers in Texas, Tennessee, Kentucky, and Nebraska was found to be nearly twice that for tenants. ${ }^{20}$

Reports from several thousand owner farmers and tenants in various parts of the United States indicate that owners occupy houses that are somewhat older than those occupied by tenants. Information on the state of repair of houses derived from surveys in three Southern States previously referred to, indicate that 69 per cent of the houses occupied by owners were in good repair, 22.6 per cent in medium repair, and 8.4 per cent in poor repair; while of the tenant houses 37.5 per cent were in good repair, 31.8 per cent in medium repair, and 30.7 per cent in poor repair.
On the basis of averages from a considerable number of surveys (Table 11) it does not appear that overcrowding is, in general, a serious evil either for owners or for tenants. The average number of rooms for owner farmers was found to be 6.3 and for tenants 5.6 . However, in certain parts of the areas surveyed as well as in other parts of the country, it is known that there is not enough room in farm tenant houses. As shown in Table 11 small percentages of tenants, and from a fifth to a tenth of the owner farmers, enjoy the conveniences that are taken for granted even in the poorer class of city houses.

Various surveys made between 1919 and 1921 show that in the North an average of about 70 per cent of the owner farmers and about two-thirds of the tenants had telephones. In the South conditions were more variable. In the Black Prairie of Texas and the bluegrass region of Kentucky about two-thirds of the owner farmers and from a third to two-fifths of the tenants had telephones. On the other hand, among white farmers of North Carolina only 14 per cent of the owner farmers and less than 2 per cent of the tenants had telephones. Similarly low percentages for tenants were ob-

[^119]tained in surveys made in the tobacco and cotton-producing sections of Tennessee. Of 112 negro tenants included in a Virginia survey not 1 had a telephone.

Table 11.-Percentages of homes of owner farmers and of tenants provided with certain conveniences. ${ }^{1}$

Kinds of conveniences.	$\begin{gathered} \text { 2,871 } \\ \text { owner } \\ \text { farmers. } \end{gathered}$	1,973 tenant farmers.
Ranning water in houses..	19.6	7.4
Bath rooms	18.0	5.7
Indoor toilets.	12.9	4.4
Electric or gas lighting systems.	17.7	8.0
Central heating systems..	8.1	4.1
Refrigerators...-......-	20.7	6.7
Oil stoves for cooking.	41.9	28.8
Vacuum cleaners.	11.7	6.7

${ }^{1}$ Surveys in Tennessee, North Carolina, Nebraska, Iowa, and various local studies made under the auspices of the Inter-Church World Movement. (Citations given under Table 8.). The bases of the percentages are not the same for all the items, as not all of the persons surveyed reported on every item.

The various contrasts in educational advantages and standard of living that have been considered above appear generally, though not invariably, unfavorable to tenants. However, such contrasts can not be adequately explained as due merely to difference in form of tenure. If tenants as a class are characterized by less literacy, are less adequately housed, read fewer books and magazines, have poorer sanitary facilities, and enjoy fewer household conveniences, as compared with owner farmers in a given region, it is not merely because they are tenants.

Generally, the disabilities and disadvantages which, on the average, characterize the class of tenants to a greater extent than the owner farmers grow out of the fact that tenants as a class are financially less advanced than owner farmers, partly because they include a large percentage of young men who will ultimately acquire more adequate financial resources, partly because a smaller proportion of tenants have benefited by receipt of wealth through inheritance, gift, or marriage, and partly because in the processes of economic and social selection the group contains a larger proportion of those who through various forms of personal inadequacy or misfortune, either fail to rise into ownership or to maintain their position as owners.

Principal Kinds of Contracts Between Landlordș and Tenants.

Up to this point we have generally spoken of tenancy as if it were a uniform system of land tenure. As a matter of fact, there are a number of kinds of tenancy involving numerous differences in detail.

Relative Statistical Prevalence of Different Kinds of Tenant Contracts.

For statistical purposes the different types of tenancy are divided into two great groups, share tenancy and cash tenancy. However, a number of statistical subgroups have come to be distinguished, which,

Fig. 68.-In 1920 share tenancy was the principal form of tenancy in four-fifths of the counties and five-sixths of the States. Cash tenancy predominated in New England, western Pennsylvania, and the northern parts of the Lake States, but in none of these areas was there a large percentage of tenants, and therefore cash tenants were not numerous. Three of the most important regions of cash tenancy
were Iowa, southwestern Alabama, and the Pacific coast. Croppers are more numerous than other tenants in southeastern Arkansas. were Iowa, southwestern Alabama, and the Pacific coast. Croppers are more numerous than other tenants in southeastern Arkansas,
northeastern Louisiana, and western Mississippi, in southeastern Alabama, and southern Georgia. In several counties of Georgia and northeastern Louisiana, and western Mississippi, in

Fig. 69.-Cash tenancy is the system second in importance in New York, much of Pennsylvania, and in most portions of the North Central States, where it is not first in importance (see fig. 69). In parts of Illinois, Iowa, the I)akotas, Nebraska, and Kansas share-cash renting either predominates or is second in importance. in the Rocky Mountain and Pacific States cash renting is second where it is not first, and is relatively an important system in this part of the country. In the South cropper farms, where
not first are generally second in number.
to designate them by the terms applied to the persons renting, include share-cash tenants, standing renters, and croppers (figs. 68 and 69).

In 1920, three-fourths of the farm tenants (73.6 per cent of all and 75.5 per cent of those of known status) worked their land on shares, including share-cash tenants and croppers (fig. 70). Though outnumbered by share tenants in each census report from 1880 to 1920, the proportion of cash tenants increased from 1880 to 1900. Since 1900 the proportion has decreased. ${ }^{21}$

In some of our States there are considerable numbers of tenants who pay as rent a stated amount of farm commodities, usually cotton. The payment of standing rent, to use the census term, is especially prevalent in Georgia and South Carolina, largely because all classes of share tenants in those States are legally held to be

Fig. 70.-Only in five New England States and in Iowa, California, and Nevada are share tenants (including croppers) less than half of all tenants. In many States they are over three-fourths of all tenants, and they are also slightly over threc-fourths for the Nation as a whole.
laborers and are not accorded the legal rights of tenants; but in none of the other States are standing renters as important relatively as cash tenants paying a money rent.

Farms rented partly on shares and partly for cash (share-cash) comprise one of the important subclasses included statistically under share tenancy, and are most prevalent in parts of the North Central States. Where cash rent is paid on farms partly rented on shares, the acreage leased for money rent is usually pasture and hay land, the sharing basis being applied generally to the grain land.

Sharing by croppers is sufficiently different from other types of sharing to justify special consideration. As pointed out previously, croppers are ordinarily quite destitute of capital, owning neither land, buildings, work animals, nor farming tools, and must be furnished with these requisites and usually with subsistence for the

[^120]family during the months preceding harvest. ${ }^{22}$ The majority of croppers work under the close supervision of the plantation operators. Furnishing only human labor and sometimes a share of the fertilizer and seed, they commonly receive half of the cotton or tobacco, but in some districts the'share is only one-third.

Conditions Influencing the Kind of Tenant Contract Employed.

The form of the tenant contract is determined largely by the ability or willingness of the respective parties to supply capital, provide supervision, or assume risks. When tenants are able to pay cash in advance or can be trusted for subsequent payment of cash, landlords are more likely to be willing to rent for cash than when the opposite conditions prevail. When the element of risk is large and the tenant is inexperienced or incompetent as a manager, share renting is likely to prove to the interest of both parties, especially if the landlord is able to provide advice or supervision. This is particularly the case when the tenant has but little capital or credit. Under such conditions when crops are poor or prices low, the landlord might be unable to collect a cash rent, but in favorable periods would find his rent limited to the stipulated amount. Under a share system the landlord's risk with such a tenant is no greater in unfavorable periods than under a system of cash renting, but in favorable periods he enjoys a share of the increased returns. Moreover, if the landlord is compelled to supply the more perishable forms of operating capital, such as machinery and livestock, he will usually find it necessary to maintain close supervision and control. If this is the case he is not likely to be willing to accept a fixed cash rent. In general, landlords who rent on shares. live near their farms and keep a watchful eye on the methods of farming and also on the amount and division of the crops.

Other things equal, the relations of landlords to tenants may be classified by the relative amount of risk assumed by the respective parties under the various classes of renting contracts. Viewing the matter from the standpoint of the landlord, cash renting involves the least amount of risk. In the North, the cash tenant usually has sufficient capital and credit so that the landlord does not ordinarily incur great risk of not receiving his rent, even in unfavorable years (fig. 71). In fact, in a number of States the landlord's rent is legally protected by provision giving him a statutory lien on the crops. Similar rights are sometimes provided for in the case of livestock and other personal property. Somewhat greater risk for the landlord is involved in standing rent, for, although the amount of the crop to be received is fixed in the agreement, he is subject to the variations in the price received for his part. In the ordinary cropshare lease, when the landlord supplies only the land and buildings but does not furnish any of the working capital, he is subject to the variations in yield and prices as reflected in the fractional share of the crop agreed upon as rent. In the case of the cropper arrange-

[^121]

Fig. 71.-Cash tenants are relatively though not absolutely numerous in New England and eastern New York, in the cut-over areas of the Lake States, in western Pennsylvania and West Virginia, and in much of the West, especially along the Pacific coast. These are areas in which dairying or cattle ranching are generally predominant. Cash tenants are both relatively and absolutely numerous in Iowa, northern Illinois, and northeastern Nebraska; also in the south Atlantic and Gulf coastal plain, especially in Florida and southern Alabama.
ment, the landlord's risk is very much greater, for, in addition to furnishing the real estate, he incurs heavy expenses for supplying and maintaining the operating equipment, furnishing part of the seed and fertilizer, and supervision. Indeed, the risk of the landlord is scarcely less than if he were operating the farm with hired labor, for he must advance the croppers their living while making the crop.

Returns to Landlord in Different Forms of Tenancy.

Inasmuch as the risk and responsibility of the landlord vary so greatly under the different systems mentioned above, it is inevitable that the terms will be such normally as to make the return correspond more or less closely with the landlord's risk and responsibility. Theoretically, the landlord should receive a higher percentage of return in share renting than in cash renting, and a higher percentage of return from croppers than for other forms of share tenancy. Local surveys generally confirm these conclusions (see the right-hand part of Figure 67).

To some extent landlords supply not only the use of the real estate but also part or all of the operating capital. As already noted, under the cropper system the landlord furnishes the working capital as well as the land, with occasional exceptions in the case of fertilizing and ginning expense. In the North the tenant, who may be a son or other relative of the landlord, may arrange to buy the operating equipment largely on credit from the landlord. In other cases, the tenant may agree to pay the landlord a correspondingly larger share, commonly two-thirds of the crop, for the use of operating equipment as well as the real estate. There are also systems of tenancy, especially prevalent where livestock husbandry is an important element in the system of farming, which involve the landlord in a large share of responsibility for operating capital, current expenses, and supervision. Very frequently such arrangements, commonly known as "stock share " or "crop and livestock share " leases, provide for a half-and-half division of all receipts, and an equal division of all expenses, except for land and labor.

To a considerable extent in the North, and to a large extent in the South, the landlord furnishes little, if any, capital, other than the real estate. Under these circumstances the share paid as rent is largely determined by custom in the community, but differs in accordance with the kind of crop which constitutes the principal basis of farming. Very intensive crops, like cotton and tobacco, for example, involve usually a smaller share rent than less intensive crops, such as corn and small grain.

In regions where corn and small grain predominate as the principal basis of the farming system, it is customary in most districts for the tenant furnishing labor and work stock to pay from onethird to one-half of the grain. The share depends not only on such considerations as the location of the farm, the quality of the land, the character of the improvements, and the amount of pasture and hay land available, but also on the arrangements with respect to furnishing seed, threshing expense, binder twine, and other items.

If the landlord pays half of the threshing bill and contributes the seed it is not uncommon for him to receive half the grain. In some sections a rent share of two-fifths is customary. Where land is poor or rainfall scanty, the landlord's share may be as little as one-fourth, if he does not furnish the seed grain.

Although hay is one of the most important crops in the United States, it is commonly not a money crop in most of the important general-farming regions. Where other crops and livestock are the main sources of money income, especially in the region east of the Appalachians, the share tenant may not be required to share the hay unless he sells it. As already noted, however, especially in the Corn Belt, it is frequently customary to pay cash for the hay land while sharing the grain crops. In sections where hay is an important money crop, as in the irrigated districts of the West, a share of the hay up to one-half or more may be paid as rent.

In considerable areas of the Middle Atlantic States the farming system is extremely diversified, involving not only the production of grain and hay and the keeping of livestock, but also the raising of specialty crops such as beans, potatoes, tomatoes, sweet corn, peas, and considerable fruit, as well as dairy and poultry products. Not infrequently the renting contract is expressed in terms of a single fractional share of certain specified crops, such as half, but there is the utmost diversity in the contributions of landlord and tenant with regard to fertilizers, spraying materials, twine, threshing bills, the use of hay and pasture, the landlord's receipt of milk, eggs, vegetables, and many other items.
In fact, various local studies have shown that there is much greater flexibility in share systems of renting than the uniformity of the fractional share customary over wide areas might suggest. This is illustrated by the analysis of the respective contributions of landlords and tenants in the case of 30 farms in Clinton County, Indiana, nearly all rented in 1918 for a half share of the receipts (Table 12). This flexibility is involved in some of the items of expense or special privileges, and not infrequently is the basis for the free play of bargaining. However, when all allowance is made, custom has undoubtedly prevented that precision of adjustment in the rental contract which is justified by differences in quality of land, proportion of land improved, kind of buildings and other improvements, the experience and ability of the tenant and other factors.

Relation of Tenure to the Shifting of Farm Operators From Farm to Farm.

Most of the evils attributed to tenancy in the United States are connected in one way and another with the instability of tenant farmers or with their insecurity of tenure.

Extent of Shifting.

It is estimated that in the United States 27 per cent of the tenant farms and 6 per cent of the farms operated by owners changed occupants in 1922 (figs. 72 and 73). The average for all farms

Fig. 72.-It is estimated that during the year ended December 1, 1922, 27 per cent of the tenant farms had changed tenants. It will be noted that the proportion was much larger in the South than in the North and was smallest in New England and the West. The proportion may have been somewhat higher than normal in the North Central and some of the Western States because of the agricultural depression. The map is based on information supplied by about 11,000 crop reporters of the Bureau of Agricultural Economics.
was 19 per cent. The nine States in which more than a fourth of the farms, including those both of owners and tenants, were operated by new occupants are all in the South, and the six States in which fewer than 10 per cent of the farms had new occupants are those of the New England group. In most of the Corn Belt and Western States the percentages fall between 10 and 15. Much the same sectional contrasts are reflected in the census statistics of 1910 showing period of occupancy and those of 1920 showing period of operation (figs. 74 and 75).

Fig. 73.-In the year ended December 1, 1922, less than one-fourth as many farms changed owners as changed tenants. Undoubtedly the agricultural depression, especially in the northern plains and Rocky Mountain States, caused more sales of farms than usual. Hased on reports from about 11,000 crop reporters of the Bureau of Agricultural Economics.

Table 12.-Variations of the landlora-tenant contracts on farms rented on shares
(mostly half-share orop leases), 30 farms, Clinton County, Ind., 1918.

${ }^{1}$ Where the proportion is between none and half, it is recorded in the column headed "One-third," and where it is between half and all it is recorded in the column headed "Twothirds." See subsequent foot-
notes for details of these cases.
${ }^{2}$ One tenant kept one-third of the clover and one-half of other crops; another tenant kept half of the corn and one-third of the hay; and the third tenant kept one-third of all crops.
${ }^{3}$ Tenant kept half the corn and three-fifths of the other crops.
${ }^{4}$ Tenant furnished half the feeders and all of the other livestock designated.
${ }^{5}$ Some tenants furnished half of the feed raised and all of the purchased feed and some other tenants furnished half of the small grain fed but more than half of the corn.

Fig. 74.- Both the census of 1910 and that of 1920 afford information indicating that both tenants and owner farmers in the South and West occupied their farms for shorter periods than was the case in the northeastern section of the country. In the West the process of settlement has much to do with explaining the short periods of occupancy. In the South a good deal of the apparent instability of farm operators is accounted for by the practice of shifting croppers and other tenants from tract to tract on the plantation. If the plantation were regarded as the farm unit instead of the particular tract assigned the cropper, much of this apparent shifting in the South would be eliminated from the statistical results.

The reported average period of occupancy for 1910 was 8.4 years, and the estimated average for 1920, 9.2 years. The figures are not strictly comparable, partly because of differences in method of enumeration and partly because of differences in time of year when the

Fig. 75.-The map indicates that the percentage of tenants who had operated the same farms for five years or more was highest in the Corn Belt, the New England States, the Middle Atlantic States, Maryland, Virginia, West Virginia, and Michigan. In 1920, for the United States as a whole, 18.4 per cent of tenant farmers reporting period of occupancy had operated the same farms less than 1 year; 25 per cent, 1 year; 31.2 per cent, 2 to 4 years; 14.6 per cent, 5 to 9 years; and 10.8 per cent, 10 years and over.
respective enumerations were made. ${ }^{23}$ In spite of these difficulties of measurement, the conclusion appears to be justified that the average period of occupancy was longer in 1920 than in 1910.

The averages in the preceding discussion refer only to periods of occupancy or operation up to the time the census was taken. Operators were due to continue their occupancy for periods ranging from days to decades. The uncompleted periods of occupancy reported in the census may have accounted for less than half of the full period of occupancy for the operators in the short-occupancy groups, but probably exceeded half of the full period for operators reporting in the longer-occupancy groups. Owing to the predominance of the latter in the aggregates and averages, it is probable that complete periods of both past and future occupancy were less than twice the terms reported in the census. The estimates of the full average period of occupancy in 1920 might thus be placed between 12 and 14 years instead of 9.2 years. ${ }^{24}$

The average number of years of occupancy by farmers reported when the census of 1910 was taken varied widely between tenure classes. The averages for the five tenure classes reported are as follows: Owners free of mortgage, 14 years; mortgaged owners, 9.2; part owners, 8.6 ; managers, 4.4 ; cash tenants, 3.8 ; and share tenants, 2.6. The variations in period of occupancy in different parts of the United States are shown in Figure 76.

Relation of Color to Shifting of Farm Operators.

In 1910, except in the case of owners free of mortgage debt, colored farmers had periods of past occupancy exceeding those of white farmers for corresponding tenure classes from a third of a year to a year and a half. ${ }^{25}$ Although averages are not available for 1920, approximately similar conclusions are indicated. While the differences in methods of enumeration and in time of year when the enumeration is made render it very difficult to ascertain whether colored farmers had been in occupancy longer in 1920 than in 1910, the statistics strongly point in that direction in the case of tenants, and less conclusively in the case of owner farmers. The distribution of croppers by periods of occupancy shows a larger proportion in the short periods and a much smaller proportion in the long periods than is the case with other classes of colored share tenants. However, the white croppers reported much shorter average periods of occupancy than the colored croppers.

Causes and Significance of Shifting.

Some of the conditions responsible for the relatively short periods of occupancy of all classes of farmers in the United States, as com-

[^122]pared with those of European countries, ${ }^{26}$ also account in part for the comparatively short periods of occupancy by tenant farmers in this country. The general causes are given on the following page.

AVERAGE YEARS OF FARM OCCUPANCY, TENANTS COMPARED WITH OWNER FARMERS, CENSUS OF 1910.

Fig. 76.-In the United States as a whole and in each of the 48 States the average period of occupancy for owner farmers is higher than for tenants. The period for cash tenants is longer than for share tenants, but the differences outside of the South are not very great. The period of occupancy of both owners and tenants is longer in the Northern and Eastern States than in the West.
${ }^{28}$ In some of the countries of central and eastern Furope recent extensive agrarian changes have probably altered considerably the average periods of occupancy.
(1) The attractiveness of new areas of virgin agricultural land successively made available for development and the habits of migration formed in the process of expansion of an agricultural area across the continent. In some regions these tendencies have been connected with farming practices resulting in soil depletion, thus intensifying the tendency toward migration to regions of virgin soil.
(2) The greater extent to which farm land has been an object of purchase and sale for speculative and investment motives as compared with European countries where social and traditional considerations and the habits formed by centuries of relatively unchanging conditions have caused farms to be looked upon as permanently attached to particular families, whether of large landlords or of peasants.
(3) The rapid industrialization of different parts of the United States, resulting not only in a steady movement of farm population into other industries, but also in constant changes in market opportunities and, therefore, in necessary readjustment in systems of farming and size of farms.
(4) The greater extent to which different tenure groups in this country represent stages in an agricultural ladder than is the case in many European countries.

In short, the great fluidity of American economic and social life is largely responsible for the relative instability of our tenure classes. It should also be noted that this greater fluidity tends to create conditions favorable to its continuance. As contrasted with farmers in European countries where shifts are comparatively infrequent, a farmer in this country who is dissatisfied with the farm he occupies or with the community need not be deterred from moving because of uncertainty of finding another farm available for occupancy. Moreover, the shifts themselves may lead to other shifts. The movement of relatives and friends to a district neighborhood may constitute a reason why a particular family will wish to follow them in order to maintain long-established social relations.

Consequently, while some of the shifting in this country is more or less aimless, and some of it largely habitual, much of the fluidity of American farm life represents desirable economic and social readjustments.

Reasons Assigned for Shifts.

The fact that shifting represents economic and social readjustments is reflected in the reasons for shifting given by operators themselves, as obtained in certain local surveys made in the South. The number of operators included was 1,093 , of whom 882 , or 80.7 per cent, had changed farm locations at some time since they began to earn money for themselves. The total number of shifts made was 3,360 . The number of reasons reported was $3,528 .{ }^{27}$ Some of the classes of reasons given are not mutuallý exclusive, and some-as, for instance, migration from another section-are not reasons at all. However, the classification of reasons has considerable significance. In the first place, an overwhelming predominance of economic motives is indicated. In the case of tenants and croppers, progress up the tenure ladder is indicated as a primary reason in nearly 20 per

[^123]cent of the cases. A combination of several classes of replies indicates that either partial or complete failure was responsible for moves in at least 14 per cent of the cases for croppers, 9 per cent for tenants, and 12 per cent for owner farmers. To obtain a farm which was better adapted in size, quality of land, or character of improvements to the requirements of the farmer was a very prevalent class of reasons, amounting to 25 per cent of the reasons for moves of croppers, 31 per cent for tenants, and 40 per cent for owner farmers.
The greater instability of tenants as compared with owner farmers may be explained as follows:
(1) Since tenancy is an intermediate stage for farmers climbing the ladder, the tenant class is composed partly of laborers or young farmers who have just entered that stage, while tenants are constantly terminating their occupancy as tenants in order to ascend into the class of owner farmers.
(2) In the tenant class is included a large proportion of the incompetent, the thriftless, the restless and migratory elements, who are unable to climb to farm ownership or to maintain themselves in that status. Naturally, such elements are characterized by instability.
(3) In the case of tenancy two parties have to be satisfied, the tenant and the landowner. The probability that there will be dissatisfaction on the part of at least one of the parties, and consequently termination of the period of occupancy is naturally greater than in the case of owner farmers.
(4) Having a smaller stake in the land, it is easier for tenants than for owner farmers to change to other industries or farms.

Social and Economic Consequences of Shifting.

The evil consequences commonly attributed to the short period of occupancy of tenant farmers are partly social and partly economic. As to the first, it is alleged that tenants remain in the community so short a time that they fail to identify themselves with its social activities and institutions. It should be noted, however, that a majority of the moves made by farmers are from farm to farm within the community and do not necessarily involve breaking their social connections (fig. 77). On the whole, it is probable that to a considerable extent the shorter periods of occupancy of tenants reduce somewhat the degree of social integration in communities where tenants are a large proportion of the farm population.

It is not clear to what extent the relatively more frequent shifts by* tenants are responsible tor undesirable economic consequences. It is observable that in many parts of the country tenant farming is inefficient and characterized by methods which impair fertility of the soil. Without doubt, where such conditions prevail a large part of the responsibility is attributable to the short periods of occupancy, the uncertainty of the tenant as to his period of occupancy, and the lack of interest which he has in the maintenance of soil fertility. In England, where nearly 90 per cent of all farm operators are tenants, as well as in other European countries, the systems of tenant farming are characterized by a considerable degree of efficiency and permanence.

Even the insecurity and short duration of tenant occupancy in America can not be blamed with all the undesirable consequences sometimes associated with tenant farming. Sometimes, inefficient and wasteful systems of farming are characteristic of owner farmers, as well as of tenants, and represent exploitative methods or habits of farming which have grown up by reason of the earlier abundance of virgin land. The fault lies sometimes with the tenant himself and not with the system of tenure; that is, sometimes the tenant is the kind of man who would employ inefficient methods under any system of tenure.

Such conditions can not be removed in great degree by legislation and will be eliminated only through gradual changes in basic economic conditions and gradual progress in intelligence on the part of

Fig. 77.-From 56 to 67 per cent of the moves made by farmers in the districts surveyed were within the same community. Owners appear to shift more widely than do tenants, and therefore a larger percentage of the moves by owners result in breaking their established community relations.
certain classes. One of the basic difficulties, the great fluidity of American farm life, is likely to be gradually reduced with the passage of time.

Conclusions.

The preceding discussion has not been directed to the purpose of indicating that tenancy is a superior form of tenure. If this should appear to be the case, it is owing to the necessity of submitting facts to disprove the all too general assumption that tenancy is always, in itself, an inferior and undesirable form, and to attribute to it a great many evil conditions which are really due to other causes. These conditions include unequal distribution of wealth, habits of land exploitation and instability of occupancy largely the outgrowth of the comparative abundance of land resources in our recent past, the persistence in certain sections of a one-crop system of farming, and the personal illiteracy, inexperience, thriftlessness, and inertia
of certain individuals. To assume that some artificial plan for converting tenants into landowning farmers would remove all of these conditions is to follow an illusion.

Farm tenancy, considered as a method of acquiring the use of land, is adapted to the special circumstances of a large proportion of farmers, because of their lack of experience and available capital. However, this point of view does not imply that all existing forms of tenancy in this country are ideal, or that a do-nothing policy is justified. In fact, there is need for the development of a positive and constructive policy with respect to American land tenure, a policy that would necessarily involve the cooperation of the Federal Government and the States. Such a policy would not consist of any single panacea, but would involve a number of coordinated measures, which can here be considered only in brief outline.

Facilitating Progress to Farm Ownership.

It would be unfortunate to make the road to farm ownership so easy that farm ownership could be achieved by those who are unready. However, it is widely recognized that it would be good public policy to remove unnecessary obstacles to the achievement of ownership by employing methods such as the following:

CREDIT FACLIITIES FOR TENANTS.

By reason of its low rate of interest and arrangements for amortization the Federal farm loan system is unquestionably of material assistance in facilitating the progress to ownership by tenants and other persons, especially in certain parts of the country. However, there is need for a measure more specifically adapted to the special requirements of tenants in purchasing land. A few States have gone somewhat farther than the Federal Government, but it is probable that comprehensive measures providing for the extension of credit to tenants purchasing farms would be an important phase of a constructive policy for land tenure.

> A POLICY OF LAND SETTLEMENT.

Because of the future necessity of expansion in our crop area, a constructive policy of land settlement would go far toward smoothing the road to ownership for those attempting to establish themselves in new regions. Such a policy would involve suitable guidance and direction by public authorities and protection against unwise and ill-considered projects on the part of private land-settlement agencies. A constructive policy of land settlement might well involve also measures for the reorganization of agriculture in regions where changed economic conditions emphasize the need for extensive readjustments in size of farms, the farming personnel, and the system of farm organization.

STANDARDIZATION OF LAND TITLES.
About 19 or 20 States have passed special measures for simplifying and standardizing land titles and insuring their validity. An extension of such measures to other parts of the country would ren-
der somewhat easier the purchase of farm land, especially in the case of small tracts or land of low value.

> IMPROVED METHODS OF LAAND VALUATION.

No small part of the hazard in purchasing land, or in lending money on land as security, consists in the inadequacy of existing systems of land valuation. Much is still obscure as to the forces that determine the price of farm real estate, but progress is being made through systematic research. In Great Britain and other European countries the valuation of farm real estate has become an established profession for which extensive training of a specialized character is required. The increasing complexity of agricultural economic relations in this country will justify similar measures for standardizing methods and facilities for the valuation of farm real estate.

MODIFYING THE SPECULATIVE ELEMENT IN FARM LAND VALUATIONS.

From time to time there spring up periods of frenzied speculation in farm land which are a serious detriment to the agricultural industry. It has been suggested that in part at least a tax on resales within a short period after purchase might prevent such manifestations.

It may also be noted that the practice of making the property tax one of the variable elements in State and local finance serves to increase the uncertainty of the purchase of farm land. It has been suggested that if the land tax were transformed into a fixed or cadastral levy, with certain special exceptions, and other sources of revenue were employed to give elasticity to the fiscal system, the hazards of the farming industry and of farm ownership would be somewhat diminished.

Improvement of the Tenant Contract and the Relations of Landlord and

 Tenant.As already indicated, in many parts of the country the prevalence of customary methods of renting has prevented the precision of adjustment in landlord-tenant relations that is desirable under modern competitive conditions. Individual farms and farmers in the same community may differ so greatly that there is need for modifications in existing renting agreements. Careful study of the operations of renting agreements by means of accounting is important, and in some states this is being promoted by experiment stations and extension agencies.

ORGANIZATIONS OF LANDLORDS AND OF TENANTS.

It is probable also that under proper conditions organizations of landlords and of tenants may be beneficial. In the receat past a considerable number of such organizations varying widely in character have sprung up in different parts of the United States. These include such widely different types as the following: (1) Local organizations of tenants aiming to compel a reduction of rent by employing the methods of labor unions; (2) counter organizations of landlords; (3) organizations catering to small farmers, especially
tenant farmers, and attempting to influence legislation under the impulse of ideals that would be classed as radical; (4) temporary organizations to promote a single piece of legislation; (5) land-lord-tenant conferences for improving the tenant contract. ${ }^{28}$

The first four kinds are largely class-conscious in character. The fifth class has been developed mainly in the Corn Belt under the leadership of county agricultural agents. Separate meetings of landlords and of tenants are held to consider and formulate the points of view of the respective groups. Then one or more joint meetings are held. The general tone of these meetings is that of rational discussion for mutual understanding. It is too early to judge of their merits, but in so far as they can be made to operate in a spirit of mutual fairness, cooperating with public extension agencies in the effort to attain a better understanding of local renting arrangements, they may help to focus local public opinion on the problem of improving landlord-tenant relations, particularly in the interest of better systems of farming.

LEGISLATIVE METHODS OF STANDARDIZING AND IMPROVING THE TENANT CONTRACT.

As noted above, the Federal Government, the States and quasipublic institutions are large landlords and the responsibility rests upon them for developing model leasing arrangements for the land they control. However, it may be found desirable to establish by legislation arrangements for guaranteeing to tenants reimbursement for improvements made by them, and for insuring landlords against dilapidations by tenants. It may also be desirable to provide for protecting tenants against arbitrary and unwarranted disturbance as well as to compensate landlords for unwarranted desertion by tenants.

[^124]
AGRICULTURAL STATISTICS.

UNITED STATES DEPARTMENT OF AGRICULTURE YEARBOOK-1923.
Prepared under the direction of the Statistical Committee, Joseph A. Becker, Lewis B. Flohr, G. B. L. Arner, W. F. Callander, and O. A. Juve.

INTRODUCTION.

Statistics of acreage, yield per acre, and production in the United States are estimates made by the Division of Crop and Livestock Estimates. For the years 1879, 1889, 1899, and 1909, acreages are as reported by the Bureau of the Census; acreages in 1919 are based upon the census, supplemented by State enumerations. In the intercensal years previous to 1909, and from 1911 to 1915, estimated acreages were obtained by applying estimated percentages of decrease or increase to the published acreage in the preceding year, except that a revised base was used for applying percentage estimates whenever new census data were available. For the years 1890 to 1908, acreages have been revised to be consistent with the preceding and succeeding censuses. The estimates from 1915 to 1918, and from 1919 to date are based upon acreage changes from year to year as shown by a sample of approximately 2 per cent of the crop acreages in each year, supplemented by State enumerations. Yields per acre are estimates based upon reports of one or more farmers in each agricultural township, on the average yield per acre in their localities. Production is acreage times yield per acre. Production estimates are in some cases revised in the following year on the basis of State enumerations and records of shipments.

Estimates of farm stocks, shipments, quality, crop condition, and miscellaneous information concerning crops are based either upon sample data or upon estimates of crop reporters for their localities. The sources of these data are indicated in the notes accompanying the tables.

Farm prices on the specified dates are based upon reports of farmers and country dealers on the average price paid to farmers, and do not relate to any specified grade. Farm value as shown is computed by applying the December 1 farm price to the total production. The average price received for the portion of the crop sold may be greater or less than this price, depending on the price changes previous and subsequent to December 1 and the amount of the crop sold in the corresponding periods.

Numbers of livestock on farms on January 1 in 1870, 1880, 1890, and 1900, correspond to the census enumerations on June 1 of those years; in 1910, the enumeration as of April 15. The number on January 1, 1920, is based upon the census enumeration as of that date, supplemented by enumerations by State agencies, such as assessors and brand inspection boards. In the intercensal years prior to 1910, and from 1911 to 1916, the numbers of livestock were obtained by methods identical with those used for crop acreages. Estimates from 1917 to 1919, and from 1920 to date are based upon a sample of approximately 2 per cent, supplemented by trends derived from assessors' enumerations, reports of brand inspection boards, market movements, and stockyard receipts. The census bases are not always comparable from one decade to another through both changes of dates and classifications.

The average price per head on January 1 is estimated from reports of correspondents relating to livestock in their vicinity. The farm value on January 1 is computed by applying the average price per head to the number of head on farms.

Certain statistics represent enumerations made by the department in connection with the administration of regulatory and inspection laws. Certain other statistics represent enumerations made by the department in compliance with general legislation authorizing the collection and dissemination of information on agricultural products.

Statistics relating to supplies, movements, and market prices of agricultural products in the United States are derived from official sources as far as available; otherwise from reliable unofficial sources. In all cases wherein the data presented did not cover the field or a major sample thereof, data mest representative of the various commodities, movements, and markets have been selected.

With some crops marketing and movement into consumptive channels takes place entirely within the calendar year in which the crop was produced. For many crops marketing takes place during portions of two calendar years. For a few crops, as potatoes, marketing extends beyond a 12 -month period. In order that the movement and prices of the particular crop may be followed through, the months in which the crop moved have been used as the "year."

Weighted averages of prices are shown in all cases where a weighting factor was available. For instance, the weighted price of wheat in Chicago is based on the number of carload sales reported, which ranges from 42 to 55 per cent of all receipts on that market. In the case of hogs at Chicago, the weighted average price is based on total sales of butcher hogs to slaughterers. With many commodities, however, data as to quantities sold are unobtainable; in all such cases average prices are based on price quotations without reference to quantity.

It should be remembered that, due to changes in market conditions or quality of delivery in different years on or under the same grade description or specifications, prices derived from different sources may not be strictly comparable, although for most general purposes they are entirely satisfactory. For instance, the changes in the description of many kinds of livestock which were made July 1, 1923, while not affecting certain price series, made others only fairly comparable and made comparison impossible in other cases. The data as to commercial stocks and movements of various commodities are as nearly complete as practicable and feasible, and are considered fairly representative.

Data originating with other departments and agencies are included because of their general interest to the agricultural industry. The sources of such data are given in connection with the tables. Care has been taken to quote only such sources as are generally considered reliable.

Statistics of acreage and production in foreign countries are compiled as far as possible from official sources and are therefore subject to whatever errors may result from shortcomings in the reporting and statistical services of the various countries. Inaccuracies also result from differences in nomenclature and classification in foreign countries, and through the conversion of foreign units into domestic equivalents. Except where otherwise stated, pre-war data refer to pre-war boundaries. Yields per acre are calculated from acreage and production, both rounded to thousand units, and are therefore subject to a greater possibility of error when calculated for countries with small acreage.
The tables of international trade cover substantially the international trade of the world. The total imports and the total exports in any one year can not be expected to balance, although disagreements tend to be compensated over a series of years. Among the sources of disagreement are: The different periods covered by the "year" of various countries; imports received in the year subsequent to the year of export; lack of uniformity in classification of goods as among countries; different trade practices and varying degrees of failure in recording countries of origin and ultimate destination; different practices in recording reexported goods; and different methods of treating free ports. The exports given are domestic exports and the imports given are imports for consumption, whenever it is possible to distinguish such imports from general imports. While there are some inevitable omissions, there may be some duplication because of reshipments which do not appear as such in the official reports. In the trade tables, figures for the United States include Alaska, Porto Rico, and Hawaii, but not the Philippine Islands.
Since the statistics for the current year are in many cases preliminary and subject to revision on the basis of later and fuller information, the reader is cautioned to use always the figures as they appear in the latest issue of the Yearbook.

WHEAT．

Table 1．－Wheat：Acreage，production，value，exports，etc．，in the United States， 1869－1923．

$\begin{aligned} & \text { Calen- } \\ & \text { dar } \\ & \text { year. } \end{aligned}$	Acre－ age har－ vest－ ed．	Aver－ age yield per acre．	Produc－ tion．	Aver－agefarmpriceperbush－elDec．1．	Farm value Dec． 1	$\begin{gathered} \text { Value } \\ \text { per } \\ \text { acre. } \end{gathered}$	Chicago cash price per bushel No． 2 Northern spring．${ }^{2}$				Domestic exports， including flour，fis－ cal year beginning July $1 .{ }^{8}$	Imports， including flour，fis－ cal year beginning July $1 .{ }^{3}$	Per cent of crop port－ ed．
							Decem－ ber．		Following May．				
							$\underset{\sim}{8}$	$\begin{aligned} & \text { 品 } \\ & \text { 保 } \end{aligned}$		$\begin{aligned} & \text {. } \\ & \text { 葡 } \end{aligned}$			
	1，000	Bush．of											
	$a c$	lbs．	bushels．	Cents．	dollars．		Cts.	Cts.	Cts.	Cts.	Bushels．	Bushels．	$e^{e n t} .7$
1870	18， 993	12． 4	235， 885		222， 767	11．73	91	98	113	120			22.3
1871	19， 944	11.6	230， 722	114.5	264， 076	13． 24	107	111	120	143	38，995， 755	2，410， 738	16.9
1872	20， 858	12.0	249， 997	111.4	278， 522	13． 35	97	108	112	122	52，014， 715	1，841， 049	20.8
1873	22， 172	12.7	281， 255	106．9	300， 670	13． 56	96	106	105	114	91，510， 398	2，116， 777	32.5
1874	24， 967	12.3	308， 103	86.3	265， 881	10．65	78	83	78	94	72，912， 817	367， 987	23． 7
1875	26， 382	11.1	292， 136	89.5	261， 397	9． 91	82	91	89	100	74，750， 682	1，664， 138	25．6
1876	27， 627	10.5	289， 356	97.0	280， 743	10． 16	104	117	130	172	57，043， 936	366， 061	19.7
1877	26， 278	13.9	364， 194	105． 7	385， 089	14． 65	103	108	98	113	92，141， 626	1，390， 713	25.3
1878	32， 109	13.1	420． 122	77.6	325． 814	10． 15	81	84	91	102	150，502， 506	2， 074,321	35． 8
1879	35， 430	14．1	499， 893	110.6	552， 884	15． 60	122	$133 \frac{3}{3}$	$112 \frac{1}{2}$	119	180，304， 181	488， 687	36． 1
1880	37， 987	13． 1	498， 550	95． 1	474， 202	12． 48	933	$109{ }^{10}$	101	$1122^{\frac{5}{8}}$	186，321， 514	212， 600	37.4
1881	37， 709	10．2	383， 280	119.2	456， 880	12． 12	124 ${ }^{\frac{3}{1}}$	129	123	140	121，892， 389	865， 467	31．8
1882	37，067	13.6	504， 185	88.4	445， 602	12． 02	$91{ }^{\frac{1}{3}}$	$94{ }^{3}$	108	$113 \frac{3}{3}$	147，811， 316	1，087， 011	29．3
1883	36， 456	11.6	421， 086	91.1	383， 649	10． 52	$94 \frac{5}{8}$	99	85	943	111，534， 182	32， 474	26.5
1884	39，476	13．0	512， 765	64． 5	330， 862	8． 38	$69{ }^{6}$	$76{ }^{7}$	$8{ }^{85}$	$90 \frac{3}{4}$ 7	132，570， 366	212， 312	25.9
1885	34， 189	10.4	357， 112	77． 1	275， 320	8． 05	$82 \frac{1}{8}$	89	$72{ }^{\frac{1}{3}}$	79	94，565， 793	388， 415	26． 5
1886	36， 806	12.4	457， 218	68.7	314， 226	8.54	$75 \frac{1}{8}$	$79 \frac{1}{2}$	$80 \frac{3}{4}$	883	153，804， 969	282， 400	33． 6
1887	37， 642	12.1	456， 329	68.1	310， 613	8． 25	$75 \frac{1}{1}$	$79{ }_{1}^{1}$	$81{ }^{1}$	89	119，625， 344	594， 860	26． 2
1888	37， 336	11.1	415， 868	92.6	385， 248	10． 32	$96 \frac{5}{8}$	$105 \frac{1}{2}$	${ }_{89}{ }^{1}$	$95 \frac{1}{2}$	88，600， 743	135， 851	21.3
1889	38，580	12.9	434， 383	69．5	301， 869	8． 99	$76{ }^{3}$	${ }^{80}$	${ }^{89}$	100	109，430， 467	162， 546	25． 2
1890	34， 048	11． 1	378， 097	83． 3	315， 112	9． 25	$87 \frac{1}{3}$	$92{ }^{\frac{3}{4}}$	${ }_{80}^{98}$	$108 \frac{1}{2}$	106，181， 316	583,826 2462,365	28． 1
1891	37， 826	15.5	584， 504	83.4	487， 463	12． 89	$89 \frac{3}{8}$	93 ${ }^{\frac{1}{4}}$	80	85	225，665， 811	2，${ }_{962} \mathbf{9 6 8 , 1 2 5}$	38.6 36.3
1892	39， 552	13． 3	527， 985	62． 2	328， 331	$\begin{aligned} & 8.30 \\ & 603 \end{aligned}$	$\begin{aligned} & 69 \frac{1}{2} \\ & 59 \mathbf{x}_{0}^{2} \end{aligned}$	73	681 50 51	764 601 	191，912， 635		36.3 38.4
1893	37， 934	11.3	427,553 516,485	53.5 48.9	228， 599	6.03 6.41 7	${ }_{59}^{59}$	6431		${ }_{80}^{60}$	164，283， 129	1，182， 864	38.4 28.0
1894	39， 42	13.	516， 485	48．9	252， 2809	6． 71	$53{ }^{3}$	${ }_{64}{ }^{\frac{3}{7}}$	$57 \frac{1}{8}$	678	126，443， 968	2，116， 303	22.2
1896	43， 916	12.4	544， 193	71.7	390， 346	8． 89	$74{ }^{\frac{3}{8}}$	$93 \frac{1}{8}$	$68 \frac{3}{4}$	$97 \frac{7}{8}$	145，124， 972	1，544， 242	26.7
1897.	46， 04	13.3	610， 254	80.9	493， 683	10．72	92	109	117	185	217，306， 005	2，058， 938	35． 8
1898.	51， 007	15.1	772， 163	58.2	449， 022	8． 80	623	70	68	$79 \frac{1}{2}$	222，618， 420	1，875， 173	28.8
1899－－	52， 58	12.1	636， 051	58.6	372， 982	7.09	64	$69 \frac{1}{2}$	$63 \frac{5}{8}$	$67 \frac{1}{2}$	186，096， 762	320， 194	29.3
1900	51，387	11.7	602， 708	62.0	373， 578	7.27	$69 \frac{1}{4}$	$74 \frac{5}{8}$	70	$75 \frac{1}{1}$	215，990， 073	603， 101	35．8
1901	52， 473	15．0	788， 638	62． 6	493， 766	9． 41	73	79	$72{ }^{3}$	761 80 8	234，772， 516	120，502	29．8
1902	49,649 51,632	14．6	724， 808	63.0 69.5	456,851 461,439	9． 20				80흥	202，905， 598	1，${ }_{2170,682}$	28．0
1903	51， 632	12.9	663， 923 596,911	69．5 9	461,439 551,788	11． 54	$115{ }^{7}$	122	$8{ }_{8}^{87}$	$113{ }^{\frac{3}{4}}$	$120,727,613$ $44,112,910$	3，286， 189	18.4 7.4
1905	49， 38	14.7	726， 819	74.6	542， 543	10.99	$82 \frac{1}{2}$	90	$80^{\frac{1}{4}}$	$87 \frac{1}{4}$	97，609， 007	261， 908	13． 4
1906	47， 800	15.8	756， 775	66.2	501， 316	10． 49			84	106	146，700， 425	590， 092	19．4
1907	45， 116	14.1	637， 981	86.5	552， 074	12． 24					163，043， 669	519， 785	25.6
1908－－	45， 970	14.0	644， 656	92.2	594， 128	12． 92	$106 \frac{1}{2}$	12	126⿺𠃊⿳亠丷厂犬	137	114，268， 468	456， 940	17.7
1909		15.		98.4			106	1193	100	1191 ${ }^{\frac{1}{4}}$	87，364， 318	815， 617	12.5
1910	45， 681	13.9	635， 121	88.3	561， 051	12． 28	104	110^{4}	98	106	69，311， 760	1，146， 558	10.9
1911	49，543	12.5	621， 338	87.4	543， 063	10． 96	105	110	115	122	79，689， 404	3，413， 626	12.8
1912	45， 814	15．9	730， 267	76．0	555， 280	12． 12	85	$90{ }^{\frac{3}{4}}$	$90 \frac{1}{2}$	96	142，879， 596	1，282， 039	19．6
1913	50， 184	15． 2	763， 380	79.9	610， 122	12． 16	$89 \frac{1}{2}$	93	96	100	145，590， 349	2，383， 537	19.1
Aver	47， 097	14．7	690， 108	85.7	591， 725	12．56	97.	104.7	99.	108.	104，967， 085	1，808， 27	15．2
1914	53， 541	16.6	891， 017	98.6	878， 680	16． 41	115	131	141	$164 \frac{1}{2}$	332，464， 975	715,369	37． 3
1915	60， 469	17．0	1，025， 801	91.9	942， 303	15． 58	106	1282	116	126	243，117， 026	7，187， 650	23.7
1916	52， 316	12． 2	636， 318	160.3	1， 019,968	19．50	1551	190	258	340	203，573， 928	24，924， 985	32.0
1917	45， 089	14．1	636， 655	200.8	1，278， 112	28.35	220	220	220	220	132，578， 633	31，215， 213	20．8
1918－－	59， 181	15.6	921， 438	204.2	1， 881,826	31.80	220	220	245	280	287，401， 579	11，288， 591	31.2
1919－－	75， 694	12.8	967， 979	214.9	2，080， 056	27.48	280	325	295	345	219，864， 548	5，495， 516	22．7
1920－－	61， 143	13.6	833， 027	143.7	1，197， 263	19.5	164	18	142	178	366，077， 439	57，398， 002	43．9
Aver．	58， 205	14.5	844， 605	156.	1，325， 458	22.77	80.	200.2	202.	236.	255，011， 161	19，746， 47	30.2
1921	63， 696	12.8	814， 905	92.6	754， 834	11． 85	$118 \frac{1}{2}$	138	127	173	279，406， 799	17，251， 482	3． 3
1922	62， 317	13．9	867， 598	100.7	873， 412	14． 02	121	1393	$120 \frac{1}{4}$	$129{ }_{4}^{1}$	221，923， 18	19，944， 934	6
$1923{ }^{4}$－	58，308	13.	785，741	3	725， 501	12． 44	110	1191					

[^125]Table 2.-Winter and spring wheat: Acreage sown and harvested, production, and farm value, United States, 1910-1923.

Calendar year.	Winter wheat.						Spring wheat.				
	Acreage sown in preceding fall.	Acreage harvested.	Aver age yield per acre.	Production.	Average farm price Dec. 1.	Total farm value Dec. 1.	Acreage.	$\begin{gathered} \text { A ver- } \\ \text { age } \\ \text { yield } \\ \text { per } \\ \text { acre. } \end{gathered}$	Production.	Aver- age farm price Dec. 1.	Total farm value Dec. 1.
	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	Bush.	1,000 bushels.	Cents.	1,000 dollars.	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	Bush.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	Cents.	$\begin{aligned} & \text { 1,000 } \\ & \text { dollars. } \end{aligned}$
1910	31, 659	27, 329	15. 9	434, 142	88.1	382, 318	18, 352.	11. 0	200, 979	88.9	178, 733
1911	32, 648	29, 162	14.8	430, 656	88.0	379, 151	20,381	9.4	190, 682	86.0	163, 912
1912	33, 229	26, 571	15. 1	399, 919	80.9	323, 572	19, 243	17. 2	330, 348	70.1	231, 708
1913	33, 124	31, 699	16. 5	523, 561	82.9	433, 995	18, 485	13. 0	239, 819	73.4	176, 127
1914	37, 248	36, 008	19.0	684, 990	98.6	675, 623	17, 533	11.8	206, 027	98.6	203, 057
1915	42, 431	41, 308	16. 3	673, 947	94.7	638, 149	19, 161	18. 4	351, 854	86.4	304, 154
1916	39, 245	34, 709	13.8	480, 553	162.7	781, 906	17, 607	8. 8	155, 765	152.8	238, 062
1917	38, 359	27, 257	15. 1	412, 901	202. 8	837, 237	17, 832	12.5	223, 754	197. 0	440, 875
1918	43, 126	37, 130	15. 2	565, 099	206. 3	1, 165, 995	22, 051	16. 2	356, 339	200. 9	715, 831
1919	51, 051	50, 494	15. 1	760, 377	210.5	1,600, 805	25, 200	8. 2	207, 602	230.9	479, 251
1920	44, 861	40, 016	15.3	610, 597	148.6	907, 291	21, 127	10.5	222, 430	130.4	289, 972
1921	45, 625	43, 414	13.8	600, 316	95.1	571, 044	20, 282	10.6	214, 589	85.6	183, 790
1922	49, 787	42, 358	13.8	586, 878	104. 7	614, 399	19, 959	14. 1	280, 720	92.3	259, 013
1923	46, 100	39, 522	14.5	572, 340	95. 0	543, 825	18, 786	11.4	213,401	85.1	181, 676

Division of Crop and Livestock Estimates.
Table 3.-Wheat: Acreage, production, and total farm value, by States, calendar years, 1921-1923:

State.	Thousands of acres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of dollars.		
	1921	1922	19231	921	1922	19231	1921	1922	19231
M	11			187	100	${ }^{56}$	327	170	184
Vermon	9	矿	$\stackrel{4}{4}$		84 8,966	$\begin{array}{r}84 \\ 159 \\ \hline 1\end{array}$	158 9.868	122 10 1880	118 8.974
New Jorse	81	77	74	1,539	1,540	1,480	1,739		1,628
Pennsylì	1,365	1,339	1,233	23,850	24,722	24, 338	24, 266	27, 194	24, 338
elaw	13	109	106	1, 300		1, 1,908	+1,274	10,907	1,908
Marylan	$\begin{array}{r}159 \\ 847 \\ \hline\end{array}$	578 838	${ }^{543} 8$	8,301	10,375	11, 145	${ }_{9}^{8,629}$	12,658	12,260
West Virgi	250	240	228	3,125	2,760	2,964	3,656	- 3,367	- $\begin{aligned} & \text { 3, } \\ & 7 \\ & 7\end{aligned}$
orth Car	600	${ }^{600}$	544	4, 500	5, ${ }^{5} 100$	6,038	6,480 2,700		29
South Carol	118	190	189	${ }_{1}^{1,449}$	1, 520	1,739	2, 536	$\stackrel{2,280}{2,}$	${ }_{2}^{2,556}$
Ohio.	2,434	2,526	2,350	30, 185	35, 374	42,783	32,600	41,388	42,355
Indiana	2,016	1,996	$2,077$.	24, 192	28, ${ }_{5128}$	34, 248	25, 844	32, 399	33, 563 58,756
${ }_{\text {Mi }}$ Ilinois	2,909	${ }^{3} 1,196$	3, ${ }^{\text {9776 }}$	46, 4 , 840	14,326	16,576	15,433	16,475	15,913
${ }_{\text {Wisconsin }}$	${ }_{214}$	${ }_{1}^{1,176}$	119	2,812	3,006	1,970		3,096	
Minnesota	2,371	1, 889	1,728	22, 838	${ }_{17}^{27,276}$	20,785	22, 249	27, 448	19,746
Mowa	3,206	731 3,105	2,919	34,952	16,452	-	34, 602	- 40,759	36,809
North	9,500	8,980	8,262	80,750	126, 618	58,660	68,638	113, 956	50,
South Dak	2,845	2,989	${ }_{2}^{2,812}$	25, 980	-40,012		22, 680	+36,811	-21, ${ }^{293}$
Nebrask	-3,967	${ }_{9}^{4,756}$	8, ${ }_{89}$	128, 695	122,861	83,804	119, 687	120, 404	76,202
Kansas			${ }_{620}$	6,340	7,475	7,688	7,291		
Tennessee	450	472	42	4,500	4,484	4,508	5,400	5, 515	84
Alabama	${ }^{20}$	20 5	${ }_{4}^{20}$	84	218 60	60	109	87	6
Mississip	${ }^{2}{ }^{6}$	1,249	1,559	20,810	9,992	16,370	20,810	10,991	16,861
Oklahoma	3,786	3,300	3,300	47, 325	31,350	36, 770	40, 700	30, 723	3,759
Arkansas		78	70		52,714	52,486	28,416	46,916	43, 039
Montana	2, 193	${ }^{3,618}$	3, 175	${ }_{3,316}$	2,506	2,785	2,620	2,055	2, 228
Coborado	1,719	1, 105	1,390		21,776	18,000 1,300	- $\begin{array}{r}17,662 \\ 3,242 \\ \hline\end{array}$	-	-
New M	40	49	42	${ }^{3} 840$	1,274	1,092	1,050	1,465	${ }^{1,529}$
Utah	${ }_{2}^{276}$	${ }_{91}^{294}$	${ }_{20}^{272}$	6, ${ }^{693}$	5, 585	507	${ }^{4}, 7425$, 176	${ }^{\text {5, }} 588$
Nevad	1,123	1, 123	1,052	26,952	24,275	30, 115	19; 405	${ }^{21,847}$	${ }^{24,092}$
	2,550	2, 186	2,470	58, ${ }_{\text {che }}$			50,091 21 15050	20,412	
Oregan-	1, ${ }_{557}$	1,712		28, 355	15, 308	16, 157	8,940	17,604	17,450
United S	63, 696	62, 317	58,308	814, 005	887, 598	785, 741	754, 834	873, 412	725, 501

[^126]${ }^{1}$ Preliminary.

Table 4.-Winter and spring wheat: Aerbage sown and harvested, production, and farm value December 1, by States, in catendiar year 1923.

State.	Winter wheat. ${ }^{1}$						Spring wheat. ${ }^{1}$				
	Acreage sown in preceding fall.	$\begin{gathered} \text { Aere- } \\ \text { age } \\ \text { hast- } \\ \text { vested. } \end{gathered}$	Aver age yield per acre.	Pro-duction.	$\begin{array}{\|c\|} \hline \text { Aver- } \\ \text { age } \\ \text { farm } \\ \text { price } \\ \text { Dee. } \\ 1 . \end{array}$	Total farm value Dec. 1.	Acreage.	Average yield per acre	Pro-daction.	Average farm price Dec. 1.	Total farm Dec. 1.
Maine.	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	$\begin{aligned} & \text { t,000 } \\ & \text { acres. } \end{aligned}$	Bush.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	Cents.	$\begin{gathered} 1,00 \theta \\ \text { doltars. } \end{gathered}$	$\begin{array}{r} 1,000 \\ \text { acres. } \\ 6 \end{array}$	$\begin{aligned} & \text { Bursh. } \\ & 26.0 \end{aligned}$	$\begin{gathered} 1, \theta \theta \theta \\ \text { bushels. } \\ 156 . \end{gathered}$	$\begin{gathered} \text { Cents. } \\ 1118 . \end{gathered}$	1,000 dollars. 184
Vermont							4	21. 0	84	140	118
New York	400	387	20: 4	7,895	110	8,684	16	18. 5	264	110	290
New Jersey	76	74	20.0	1,480	110	1,628					
Penmsylvania	1,305.	1,272	19.0	24, 168	100	24,168	11	15.5	170	100	170
Debaware	109	106	18.0	1,908	109	1,908					
Maryland	581	543	19. 2	10, 426	100	10,426					
Virgimia.	859	838	13: 3	11, 145	110	12, 260					
West Virgima	236	228	13. 0	2,964	116	3,438					
North Carolina	555	544	11. 1	6, 038	128	7, 729					
South Carolina	179:	175	11. 0	1,925	154	2,984					
Georgia	199	189	9.2	1, 739	147	2,556					
Ohio---	2, 674	2,340	18. 2	42, 588	99	42, 162	10	19.5	195	99	193
Indiana	2, 204	2, 072	16.5	34, 188	98	33, 504	4	15.0	60	98	59
Illinois	3, 559	3, 363	18.0	60, 534	94	56, 902	116	17.0	1,972	94	1, 854
Michigan	1, 014	968	17.0	16, 456	96	15,798	8	15.0	120	96	115
W isconsin	69	66	17. 0	1, 122	98	1, 100	53.	16.0	848	98	831
Minnesota	111	94	16. 0	1,504	95	1, 429	1,634	11.8	19, 281	95	18,317
Iowa--	780	741	18.5	13,708	89	12, 200	46	14. 0	644	89	573
Missouri	2,967	2, 914	13.0	37, 882	97	36,746		13. 0	65	97	63
North Dakota							8, 252	7.1	58, 660	86	50, 448
South Dakota.	128	77	12.0	924	81	748	2,735	9. 5	25, 892	81	21, 015
Nebraska	3, 763	2, 822	10. 0	28, 220	83	23,423	352	9. 0	3, 168	83	2, 629
Kansas.	11,507	8, 285	10. 1	83, 678	91	76, 147	14	9.0	126	91	115
Kentueky	842	620	12.4	7, 688	108	8, 303					
Tennessee	453	442	10. 2	4,508	115	5, 184					
Akzbama	22	20	10.0	200	130	260					
Mississippi	4	4	15. 0	60	110	66					
Texas	1,695	1,559	10.5	16, 370	103	16, 861					
Oxlahoma	3, 626	3, 300	11.0	36, 300	93	33, 759					
Arkansas	73	79	11.0	770	108	832					
Mentana	$9{ }^{90}$	738	17.0	12,543	82	10, 288	2, 793	143	39,340	82	32,751
Wroming	18	15	15. 0	225	80	180	160	18. 0	2, 560	80	2,048
Colorado.	1, 582	1,060	12.0	12,729	83	10, 558	330	16. 0	5,280	83	4,382
New Mexi	94	47	9.5	446	108	482	61	14.0	854	108	928
Arizona	46	42	26: 0	1, 092	140	1,529					
Utah.	152	148	19.9	2,945	91	2,680	124	29.2	3,621	91	3,298
Nevada	3	5	25.7	77	115	89	17	25. 3	430	115	494
Idaho	409	393	28.0	11, 004	80	8,803	659	29.0	19, 111	80	15,289
Wastingt	1,417	1,346	27.5	37, 015	85	31, 463	1, 124	220	24, 728	85	21, 019\%
Oregon	808	869	25.0	21, 725		19,118	242	22.0	5, 082	88	4,472
Californ	813	748	21.6	16, 157	108	17, 450					
United States_	46, 100	39, 522	14.5	572, 340	95.0	543, 825	18, 786	11.4	213, 401	85.1	181,676

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 5.-Durumb wheat ${ }^{1}$: Estimated yield per acre and production in four States.

Calendar year.	Yield per acre.					Production.				
	Minnesota.	North Dakota.	South Dakota.	Montana.	Four States.	$\begin{aligned} & \text { Minne- } \\ & \text { Sota. } \end{aligned}$	North Dakota.	South Dakota.	Montana.	Four States.
	${ }^{\text {Bu }}$.	Bu.	${ }^{B u}$.	Bu.	Bu.	1,000 bu.	1,000 but.	1,000 bu.	1,000 bu.	$1,000 \mathrm{~b} u$
1918	120.0 20.0	14.0	19.5	9.09	10.9 15.2	1,560	14,168 30	12, 403	1,343	50, 235
1919	11.9	7.9	9.8	4.5	8.2	1,485	21, 720	6, 848	943	30, 996
1929	12.0	10. 5	12.4	11.5	10.9 .	1,383	29, 209	7, 131	4, 231	41,954
1921	11.9	9. 7	11. 0	11. 2	10.1	1,754	36, 741	10, 570	4, 259	53, 324
1922	16. 0	15. 0	15. 5	147	15.2	3, 960	56, 978	21,979	4,106	87, 023
1923	11.5	8.8	12. 0	10.5	9.8	2, 438	27, 627	15,096	1,457	46, 618

Division of Crop and Eivestock Estimates.

${ }^{1}$ Also included in spring wheat, table 4.

Table 6.-Wheat: Yield per acre, calendar years, 1908-1923.

State						13	$\begin{aligned} & \mathrm{AV} . \\ & 1909 . \\ & 1913 . \end{aligned}$								$\begin{array}{\|l} \text { A } \bar{\prime} . \\ 191- \\ 1920 . \end{array}$				
	Bu.			Bu.	$B u$.	Bu.	$B u$.	Bu.	$B u$.	$B u$.	Bu	Bu.	Bu.	.	$B u$.		Bu		
rm						0							16	9.		14.0	19		
W Yo						${ }^{2} 17$		22.											
New Jers					8. 5														
Delaware		4. 0	17					20.5	15.0	15.0	16.5	513.01	12						
Mar						13.3													
					11.6	13.6		514.5	13.8	12.7	713.0	12.01	11						
West V																			
North C								,											
South																			
Georg																			
In								17.4											
III		0.17 .4						718.5	13.0	11.0	18.7								
Michig			18.0		10.0	5. 3		619.7	22.3	16.6	${ }^{1}$	4. 2							
								19.	22	17.6									
Minne								10.6											
Iowa																			
orth D		14.7	13.8		125		11.8	11	18.3		8.0	17.	6						
South D																			
Nebrask				13.															
Kans	12	14.	14.1	10.	15.			2.5	12.5	120	12.	14.1	12.			12.2	,		
Kentuck																			
								5											
								13.0									${ }^{0}$		
Mississip																			
${ }_{\text {O }}$																			
Ar						13.0		13.											
Montana	24	30.	22.0	28.	24.1	123.8		22.2	26.5	19.3	10.					12. 3	14		
		28.	25.0	26.	28.7	725.0		822.9	26.5	21.6	621.2	25.4	14.		21.7	17. 2	2140		
			22.3	318.92				23.	23.81	19.8	${ }^{22}$						$\begin{array}{r} 13.4 \\ 8.4 \end{array}$		
Newr																			
			${ }^{22} 2.3$	122															
Neva								${ }_{2}^{29 .}$	29.6	28.9	27. 8	25.	21. 2			23.	20		
Idaho		27.	22.6	630.	28.	$6{ }^{27 .}$		${ }^{26}$	28	23.	20.								
			6. 9																
																	17		
Californi		6.14 .0		18.01								815.0							
Unite			13.91	912.51	15.9	\|15.2		\|16.6				214.1		12.8	813.6	14.	12.8		

Division of Crop and Livestock Estimates.
Table 7.-Winter wheat: Yield per acre in States producing both winter and spring wheat, calendar years, 1908-1923.

State.

State.															$\left\lvert\, \begin{array}{c\|c\|} \hline \text { Avi } \end{array}\right.$			23
							1913								20			
		B	$B u$.	Bu	Bu.	Bu. Bu.	Bu.	Bu.	n. $B u$.	a. Bu.	t. Bu.			Bu.	$B u$.	$B u$.	Bu.	u.
New Y																		
Pennsy				13.5	518.0 0 8.0	8. 01818.0	$\begin{array}{\|} 16.7 \\ 14.8 \end{array}$	$\begin{aligned} & 18.18 \\ & 18 \end{aligned}$		$: 5113.0$		50177.0	017	$\begin{array}{l\|l\|l\|} 5 & 16.6 \\ 0 & 12.7 \end{array}$		17.5		
			15.6	14.7					17.2	212.0	018.5	521.0	015.0	012.0		12.0		
		17	15.			8.318.7		118.5			018.5			5.1		16. 2		
Michigan		18.8	18.0	18.0	010.	8. 0115	16.0	019.7	721.3	316.6	618.0	014.0	020.3	315.6		16.0	014.	
W isconsin	19.5			17.						019.0	024.		19.6	622		16.0	018. 6	
Minnes									519.5	514.0	018		15.					
Iowa	21.		21.2		23.0	3. 023.4		821.6	621.5	518	517.5		18.3	3				
M issour					712.5				2	.	S		$2{ }^{13} 5$	512.5				
South D						9.0			02051	5185	514.0	017.0	013.0	014.5		5		
Nebrask						. 5118.6		${ }_{6} 112.318$	${ }_{512}^{318.518}$	${ }_{512.0}^{520} 0$	${ }_{0}^{012.0}$	${ }_{2}^{0} 11.1$	${ }_{1}^{134.8} 8$	817.4		2. 2	14.5	
Kansas--					15.5	5.513 .0		${ }_{3} 20.5$	5125	512.0	012	$2{ }_{0}^{14.1}$	${ }_{7}^{13.8}{ }^{13}$					
				361.7	724	. $0^{255} 6$		324.0	${ }_{26}^{27}$	${ }^{21.5}$	${ }^{5} 2130$	$0{ }^{124} 0$	${ }_{0}{ }_{12}^{5.0}$	${ }_{0}^{2120.0} 0$		18.0		
Colorado				18.0	024.5	521.1		325.0	0220	020.	023.		513.2	217		12.0	013.	
New				25.0	020	0.18			022.0	0,18. 5	,	010.0	0 19.1					
Utah	23.0			20.	24.0	4. 023.	22.3	3250	025.0	022.	014.0	116	6127	715.		519.9	914.0	
Nevada			24.0	23.0	027.5	7. 523.0			026.0	024.5	526.0	29.	019.7			720.2	219	
	30.		23	31.5	528.7	727.4		i 27.5	529.	024.0	018.0	022.0	0.18 .5	520.0		24.0	019. 5	528.0
			2.	27. 3	327.6	7.627.0		${ }_{6} 220.5$	5 27. 6	622.5	51.5	523.5	52.1	124.0		27.9	915.6	${ }^{6} 27.5$
Oregon			23.7		226	6.8 21.4		022.0	024.0	023.0	017.5	517.0	O21.2					
Unite	14.4																	

Table 8.-Spring. wheat: Yield per acre in States producing both winter and spring wheat, calendar years, 1908-1923.

State.	1908	1909	1910	911	1912	1913	1909	1914	1915	1916	1917	1918	1919	1920	A v: 1914 1920	1921	1922	1923
															920			
	$B u$.	Bu.	Bu.	Bu.	$B u$.	Bu.	Bu.	$B u$.	Bu.	Bu.	$\left.\begin{array}{\|c\|} \hline B u \\ 21.0 \end{array} \right\rvert\,$			$\begin{gathered} B u . \\ \hline 18.0 \\ \hline \end{gathered}$	$B u$.	$\begin{array}{\|c\|} B u \\ 14.5 \end{array}$	$\left\lvert\, \begin{aligned} & B u \\ & 16.0 \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & B u . \\ & 16.5 \end{aligned}\right.$
W York												17.0	15. 0^{1}	16.		15.0	15.0	15.5
Ohio												23.5	16. 0	13.		12.51	15.0	19. 5
Indiana											20.0	${ }^{23 .} 0$		12.0		12.0	0	17.0
Illinois														16. 5			14. 5	
Michigan						18.6	17.9											
Wisconsin		8	18.7	14.5	15.5	18.6	14.9	10.							$\begin{aligned} & 18.1 \\ & 13.2 \end{aligned}$	${ }_{9} 5$	13.7	11.8
Minne	$-\begin{gathered} 12.8 \\ 15.51 \end{gathered}$	14.8	16.9	13	17.5	17.0								11.3	14.8	10.3	14.3	14.0
	15.5										9. 0	15.6	8. 5	13.0		12.0	3. 5	13.0
South Dak	12.		12.8	4.0	14.2-2	9.0	10.8	9.0	17.0		14.0	19.0	8. 0					9. 5
Nebraska	13.	14.0	13. 9	10.0	14.1	12.0	12.8	11.5	16.0	12.5		11. 9						9. 0
Kansas		${ }^{11.5}$			15.0	8. 5	9.5	15.0	12.0	10.5								9. 4
Monta	24.2			25.2		25.5	24. 21							20.0	22.0		4. 0	16.0
W yomin	21.	29.	21.9	19.5	24.0	21.0	23.2			19.5	22.0	17.5	15.4	19.4	19.6	19.0	15.	16.0
New ${ }^{\text {M }}$	25.0	24.5	20.	20.5	22.0	19.0	21.2	23.	22.	21.5	18. 0	24.0	18.7	18. 5				14.0
Utah	27.5	28.5	25.3	27.0	29.2	28. 0		25.	28.	25. 0		23.		23.7				
Nevada	30.0	${ }^{28 .} 7$	29. 0	32.5	30.2	${ }^{31.0}$												
Idaho-			20.4	${ }^{29 .} 0$	${ }^{28.3}$								13.0	11.9	16.0	15.0	9.3	22.0
Washingt Oregon.	16.5	${ }^{20.6}$	14.5	17.7	19.5	19.5	18.7	16.	17.	23.0	11.0	11.0	13.0	17.	15	17.0	11.5	21.0
			11.0	9.4	17.2	13.0	13.	11.8	18.4	8.8	12.5	16.2	8.2	10.5	12.	10.6	14.	11.4

Division of Crop and Livestock Estimates .

Table 9.-Winter and spring wheat: Condition of crop, United States, 1 st of month, yield per acre, and per cent of winter wheat area abandoned, calendar years, 1890-1923.

Calendar year.	Winter wheat.							Spring wheat.				
	De-cember of previous year.	Apr.	Area abandoned.	May.	June.	July. ${ }^{1}$	Yield per are.	June.	July.	Aug.	Sept. ${ }^{1}$	Yield per acre.
		P. ct.	P ct.	P. ct.	P. ct.	P. ct.	Bush.	$P . c t$.	$P . c t$.	P. ct.	P Pt.	Bush.
1890	P. ${ }_{95.3}$ ct.	P. 81.0	P. ct.	80.0	78.1	76. 2	10.9	91. 3	94. 4	83.2	79.7	11.4
1891	98.4	96.9		97.9	96. 6	96.2	14.7	92.6	94.1	95.5	97.2	16. 7
1892	85.3	81.2		84.0	88.3	89.6	13. 7	92.3	90.9	86.7	81.2	2. 7
1893	87.4	77.4		75.4	75.5	77.7	12. 0	86. 4	74.1	67.0	68.9	112
1894	91.5	86.7		81.4	83.2	83.9	14. 0	88.0	68.4	1	69.9	1.5
1895	89.0	81.4		82. 9	71.1	65.8	11.6	97.8	102. 2	9	94.9	18. 0
1896	81.4	77.1		82.7	77.9	75.6	11.8	99.9	93.3	78. 9	73.8	5
1897	99.5	81.4		80.2	78.5	81.2	14.1	89.6 100.9	91.2 95.0	86.7	80.8 91.7	12.0
1898		86.7		86.5	90.8	85.7 65.6	14.9	100.9 91.4	91.7	83. 6	77.2	13.3
189	92.6	77.9		76. 2	67.3	65.6 80.8	13. 3	87.3	55.2	56.4	56.1	10.6
1900	97.1	82.1		88.9	82.7	80.8 88.3	13. 3	87.3 92.0	95. 9	88.3	78.4	14.7
1901	97.1	91.7	6.3	94.1	87.8	88.3	15.2	92.0	92.4	89.7	87.2	14.7
1902	86.7	78.7	15. 1	76.4	76.1	77.0	14.4	95.4 95.9	82.5	77.1	78.1	14.0
1903	99.7	97.3	2.8	92.6	82.2	78.8	12. 3	95.9 93.4	82.5 93.7	87.5	66.2	12.8
1904	86.6	76.5	15.4	76.5	77.7	78.7	12.4	93.4	93.7 91.0	87.5	87.3	14.7
1905	82.9	91.6	4.6	92.5	85.5	82	14.	93. 7	91.4	86.9	83.4	13.7
1906	94.1	89.1	5. 5	90.9	82.7	85.6	16. ${ }^{14.6}$	88.7	87.2	79.4	77.1	13.2
1907	94.1	89.9	11. 2	82.9 89.0	77.4 86.0	78. 3 80.6	14.6	95. 0	89.4	80.7	77.6	13.2
1908	91.1	91.3	3.9	89.0	86.0	80.6				91.6	88.6	
1909	85.3	82.2	7.4	83.5	80.7	82.4	15.8	95.2	92.7 61	61.0	63.1	11.0
1910	95.8	80.8	13.7	82.1	80.0	81.5	15.9 14.8	92.8 94.6	61.6 73.8	61.0 59.8	68.7 56.7	9.4
1911	82.5	83.3	10.7	86.1	80.4	76.8	14.8	94.6 95.8	79.8 89.3	90.4	90.8	17.2
1912	86.6	80.6	20.0	79.7 91.9	74.3 83.5	73.3 81.6	16. 5	95.8 93.5	73.8	74.1	75.3	13.0
1913.	93.2	91.6	4.3	91.9	83.5	81.6		4	78.2	75.4	74.9	13.3
Av. 1909-1913	88.7	83.7	11.2	84.7	79.8	79.1	15.6	94.4				
1914	97.2	95.6	3.3	96.0	92.7	94.1	19.0	95.5	92.1	75.5	68.0	11.8
1915	88.3	88.8	2.6	92.9	85.8	84.4	16. 3	94.9	93.3	93.4	94.6 48.6	18.4 8.8
1916	87.7	78. 3	11.6	82.4	73.2	75.7	13.8	88.2 91.6	83.6	68.7	71.2	12.5
1917	85.7	63.4	28.9	73.2	70.9 83.8	75.9 79.5	15. 2	91.6	88.1	79.6	82.1	16.2
1918	79. 3	78.6	13.9	86.4	83.8 94.9	79.5 89.0	15. 1	95.2 91.2	80.9	53.9	48.5	8.2
1919	98.5	99.8	1.1	100.5	94.9 78.2	89.0 79.7	15. 3.	88.1	88.0	73.4	64.1	10.5
1920	85.2	75.6	10.8	79.1	78.2	79.7	15.3	8.1				
14	88.8	82.9	10.3	87.2	82.8	82.6	15.7	92.2	87.6	72.6	68.2	12.3
				88.8	77.9	77.2	13.8	93.4	80.8	66.6	62.5	10.6
1921	76. 0	91.0 78.4	4.8 14.9	83.5	81.9	77.0	13.8	90.7	83.7	80.4	80.1	14.1
1923	79.5	75.2	14.3	80.1	76.3	76.8	14.5	90.2	82.4	69.6	65.1	11.4
1924	88.0											

Division of Crop and Livestock Estimates.

Table 10.-Wheat: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1923.

- Calendar year.	Deficient moisture.	$\begin{array}{\|c\|} \text { Ex- } \\ \text { cess- } \\ \text { iye } \\ \text { mois- } \\ \text { ture. } \end{array}$	Floods.	$\left\lvert\, \begin{aligned} & \text { Frost } \\ & \text { or } \\ & \text { reeze. } \end{aligned}\right.$	Hail.	Hot winds	Storms.	Total cli-matic.	Plant disease.	Insect pests.	Animal. pests.	De-fective seed.	Total. ${ }^{1}$
	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	$\boldsymbol{P} . c t$.	P.ct.	P. ct.	P.ct.	P.ct.	P.ct.	P. ct.
1909	8.5	3.2	0.7	2.4	2.0	1.2	0.6	18.9	1.6	1.1	0.2	0.3	22.8
1910	18.9	. 9	. 2	6. 6	. 5	2.6	. 2	30.0	. 9	1.9	. 4	. 4	33.8
1911	25.5	. 8	${ }^{(2)}$	1.5	. 4	3. 8	.1	32.3	1.9	1. 9	. 2	. 2	37.8
1912	8. 1	1. 8	. 3	9.5	1. 5	1. 8	. 4	24.0	1. 8	2.3	. 3	. 2	29.5
1913	14.2	. 4	. 2	1.9	. 7	1. 7	. 3	20.0	. 3	2. 2	. 1	. 1	23.5
1914	6. 7	1. 4	. 1	1. 1	1.0	2.7	. 2	13.4	3.0	2.6	. 1	. 1	19.8
1915	1. 3	7. 3	1. 0	1. 2	1.6	. 1	. 4	13.0	2. 4	3. 6	. 1	. 1	19.7
1916	6. 9	3. 8	. 6	5.1	1. 3	2. 7	. 2	21.2	12.6	4.0	. 1	. 1	38.7
1917	19.1	. 4	. 1	11.8	1. 0	1. 6	. 2	34.4	. 7	. 7	. 1	. 1	38.3
1918	14.6	. 3	. 1	3. 8	1. 1	2. 0	. 2	22.4	1.5	1.1	. 3	. 1	25.7
1919	12.3	6. 2	. 4	1. 3	. 8	2.9	. 3	24.3	10. 2	2.5	. 1	${ }^{(2)}$	37.6
1920	8. 1	2. 3	. 2	1. 0	1. 0	1. 5	4	17. 6	9.5	4. 4	. 1	. 1	32. 2
1921	13.3	2. 0	2	1. 8	1. 4	3.6	. 3	23.9	5. 2	3. 6	. 1	. 1	33.1
1922.	13.1	2.0	.4	. 6	2.0	1.4	1.2	21.4	3.4	3.4	. 1	. 1	28.7

Division of Crop and Livestock Estimates.
${ }^{1}$ Includes all other causes.
${ }^{2}$ Less than 0.05 per cent.
Table 11.-Winter wheat: Percentage of acreage abandoned, ${ }^{1}$ calendar years, 1908-1923.

Division of Crop and Livestock Estimates.

${ }^{2}$ Based on percentages reported abandoned to May 1 by crop reporters.

Table 12.-Wheat: Acreage and yield per acre in undermentioned countries.
NORTHERN HEMISPHERE.

Table 12.-Wheat: Acreage and yiedd per acre in undermentioned countries-Con. SOUTHERN HEMIBPHERE.

Cauntry.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ 1909- \\ 1913 . \end{gathered}$	1920-21	1921-22	1922-23	1923-24	$\begin{gathered} \text { Aver- } \\ \text { age } \\ 1909- \\ 1913 . \end{gathered}$	1920-21	1922-22	1922-23	1923-24
Peru	1192	232		230		114.9	12.9			
Chile	1., 003	1,258	1,314	1,285	1,379	20.0	18.4	18.0	18.5	
Uruguay	\% 791	700	812	1663	979	98. 2	11.1	12. 2	5.5	
	16, 051	15, 014	13, 927	16, 081	17, 216	9. 2	10.4	13. 7	11.8	14.4
Union of Bouth Africa.---.---	${ }^{2} 803$	875	839			${ }^{2} 7.5$	8. 4	10.0		
	7, 603	9, 072	9, 719	9,781	10,000	11.9	16.1	13.3	11.2	120
New Zealand	241	220	353	276	183	28.7	31.2	29.9	30.4	
Total comparable 19091913	26, 684	27, 371								
Total comparable 1923.-	25, 689	26, 264	26,125	28,086	29, 757					
World total, comparable 1909-1013	270, 316									
World total, comparable 1923	192, 196	204, 708	211, 675	214, 204	216, 470					

Division of Statistical and Fistorical Research. Compiled from official sources and International Institute of Agriculture. Five-year averages are of the crops harvested during the calendar years 1909-1913 in the northern bemisphere, and during the crop seasons 1909-10 through 1913-14 in the southern hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }^{1}$ Two-year average.
One year only.
${ }^{3}$ Old boundaries.
4 Three-year average.
5 Territory of former Kingdom of Serbia.

6 Includes Bessarabia.
7 Preliminary estimate of former Russian territory within 1923 boundaries.
${ }^{3}$ Estimate of U.S. Dept. of Agriculture.

- Four-year average.

Table 13.-Wheat: Production in undermentioned countries.
NORTHERN HEMISPHERE.

Country.	Production.							
	A verage 1009-1913 1909-1913.	1917	1918	1919	1920	1921	1922	1923, preliminary.
NORTH AMERICA.	$\begin{gathered} \text { 1,000 } \\ \text { bushels. } \\ \text { 197, } 119 \end{gathered}$	$\left.\begin{gathered} 1,000 \\ \text { bushels. } \\ 233,743 \end{gathered} \right\rvert\,$	$\begin{gathered} 1,000 \\ \text { bashels. } \\ \text { 189, } 185 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 193,200 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 263,189 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 300,888 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 399,786 \end{gathered}$	1,000 bushels. 469, 761
United States	${ }_{1}^{690} 1108$	638, 655	921, 438	987,979 214,239	833,027 214,951	814, 905	867,598	785, 741
Mexieo.-	${ }^{1} 11,481$			2 14, 239	214,951			
Total comparable 1909	898, 708			1, 175, 478	1,111,167		1,281, 10	
Total comparable 1923 -	887, 227	870,398	1, 110,513	1, 161, 239	1, 096,216	$\underline{1,115,763}$	1, 267, 384	1,255,851
EO								
United Kingdom:						69,776		
England and Wales Scotland	55,770 2,273	57, 2,432	84,249 3,216	63,808 3,064	53, 258	2, 568	2, 520	2 2,368
Ireland.	1,597	4, 573	5,690	2,452	1,403	1,451	1,417	
Norway	307	430	1,087	1,071	999	972	643	49
Sweden.	8,103	6,929	8,888	9,351	10, 322	12,335	9, 381	11, 648
Denmark	${ }^{3} 5,117$	${ }^{2}$	${ }^{3} 6,330$	${ }^{2} 59838$		11, 145		
Netherlands	4,976	3,949	5,431 4,919	5,856 10,585	$\begin{array}{r}5,993 \\ 10 \\ \hline\end{array}$	8,562 $\mathbf{1 4 , 4 9 5}$	6, 10 10 615	
Belgium-.-	14,894	5, ${ }_{345}$	4,919 509	10, ${ }_{466}$	10, 274	14,495 621.	10,615	12,590
Fraxemburg	2 317,615 61	${ }^{4} 137,096$	4228,688	${ }^{187} 18.091$	236,829	323, 467	243, 315	290,474
Spain	130,446	142, 674	135, 709	129, 250	138, 605	145, 150	125, 460	157, 110
Portugal	${ }^{5} 11,850$	8 7,429	9,584 ${ }_{\text {9, }}$	8, 8178	1810,376	${ }_{6}{ }^{9,418}$		
Italy-..-.-	$\begin{array}{r} 8183,334 \\ 3,314 \end{array}$	8 139,999 ${ }^{\mathbf{3}, 031}$	3183,294 5 5	' ${ }^{\text {\% }} 169,769$	3 141, 337 3,586	' ${ }^{6} 194,071$	161,641 2,348	224,838 3,593
Switzeriand	${ }^{3} 152,118$	${ }^{7} 81,791$	${ }^{7} 85,865$	779,701	82,583	107, 798	69, 725	103, 604
Austria.	60,841	5, 983	5,158	5, 114	5, 434	6,530	7, 722	8\%,826
Czechoslovakia					26, 38	38,682 52	(34,720,	67, 67
Yugoslavia	8,9 14, ${ }^{164}$				43, 011	51, 809	44, 472	61, 893
Greece. -	${ }^{5} 12,620$	11, 505	13.722	9, 808	11, 188	11, 170	9, 553	13,506

[^127]- Includes 1,235,000 bushels grown in Venezia Tridentina and Venezia Giulia.
7 Excludes Alsace-Lorraine.
8 Three-year average
Territory of former Kingdom of Serbia.

Table 13.-Wheat: Production in undermentioned countries-Continued. NORTHERN HEMISPHERE-Continued.

Country.	Production.							
	$\begin{gathered} \text { A verage } \\ 1909-1913 . \end{gathered}$	1917	1918	1919	1920	1921	1922	$\begin{aligned} & \text { 1923, } \\ & \text { prelim- } \\ & \text { inary. } \end{aligned}$
EUROPE-continued.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$ ${ }^{3} 42,174$	1,000 bushels. 29, 067	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$ $29,775$	$1,000$ bushels. $30,003$	1,000 bushels. 29, 239	1,000 bushels. 37, 704	1,000 bushels. 38, 783
Rumania	10 108, 212		21, 460	66,020	61, 309	78, 563	92, 008	102,514
Poland	$11(28,629)$				22, 741	37, 409	42,378	53, 351
Lithuania	$11(2,857)$			2,646	2,199	2,840	3,274	3, 166
Latvia	$11(1,455)$				389	784	958	1,273
Esthonia	11 (344)			472		427	761	
Finland.	137	228	218	262	267	280	296	472
Russia, including Ukraine and Northern Caucasia_	${ }^{11}(609,078)$						158, 418	
Total comparable 1909- 1913	1,943, 086						1, 199, 345	
Total comparable 1923.	1,326, 950				938, 084	1,202,828	1,029,500	1,269, 752
Morocco	$12(17,000)$	15,656	22,697	16,391	17,947	23, 241	12, 894	23,549
Algeria	35, 161	28, 979	49, 236	21, 003	8,433	34, 906	18, 233	35, 611
Tunis.	6,224	7,312	11, 944	6,981	5,229	10,619	3, 674	9, 921
Egypt	33, 662	29,834	32, 140	30, 137	31, 710	37,010	36, 648	40,654
Total comparable 1923_	92, 047	81, 781	116,017	74,512	63,319	105, 776	71,449	109,735
ASIA.					2, 266	2,425	2, 563	
India	351, 841	382, 144	370, 421	280, 261	377,888	250,357	366, 987	369, 204
Russia (Asiatic)	151, 113						45, 359	
Japanese Empire:	25,088	34,745	32,923	32, 561.	30, 155	28,575	27,617	26,483
Chosen	6,898	9,153	9,897	8, 8 , 53	10, 984	10, 705	9,922	9, 204
Formosa	169	125	152	150	141	110		
Kwantung	40	27	52	31	30	62		
Total comparable 1909- 1913	537, 365							
Total comparable 1923.	383, 827	426, 042	413,250	321, 375	419,027	289, 637	403, 526	404,951
Total Northern Hemisphere comparable 1909-1913	3, 471, 206							
Total Northern Hemisphere, comparable 1923. \qquad	2,690, 051				2, 516, 646	2, 714, 042	2, 771, 859	3, 040, 289

SOUTHERN HEMISPHERE.

Country.	Average, 1909-1913.	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24
Peru	${ }^{5} 2,866$	2, 621	2,282	2, 357	3, 001	2,800		
Chile	20, 062	23, 120	20,280	19,920	23, 190	23, 636	23, 815	
Uruguay	16,519	13, 061	6,890	5,948	7,768	9,944	3, 674	
Argentina	147, 059	223, 636	180, 182	216, 954	156, 133	191, 012	189, 046	248, 752
Union of South Africa ${ }^{13}$	6 6, 034	9,790	7,979	$\begin{array}{r}5,129 \\ 45 \\ \hline\end{array}$	7,323 145,874	8,419 129,089	6,696 109,261	
Australia---	90,497 6,925	114,734 6,808	75,638 6,568	45,975 4,560	145,874 6,872	129,089 10,565	$\begin{array}{r} 109,261 \\ 8,395 \\ \hline \end{array}$	120,000
Total comparable 1909 1913	279, 962	393, 770	299, 819	300, 843	350, 161	$375,465$		
Total comparable 1923.	237, 556	338, 370	255, 820	262, 929	302, 007	$320,101$	298, 307	368, 752
World total, comparable 1909-1913.	3, 751, 168							
World total, comparable 1923	2, 927, 607				2, 818, 653	3, 034, 105	3; 070, 166	, 409, 041

Division of Statistical and Historical Research. Compiled from official sources and International Institute. Parenthesis denote interpolated figures. Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.

[^128]Table 14.-Wheat: Area and production, prairie Provinces of Canada.

							Per Canadia	of total
- Province.	$1909-$ 1913.	1919	1920	1921	1922	1923	$\begin{gathered} \text { Average } \\ 1909- \\ 1913 . \end{gathered}$	1923
AREA.								
	1,000	1,000	1,000	1,000	1,000	1,000		
	acres.	acres.	acres.	acres.	acres.	acres.		
Manitoba.	2, 861	2, 880	2,706	3, 501	3,126	2,916	28.8	12.9
Saskatchewan	4,894	10,587	10,061	13, 557	12, 332	12,791	49. 2	56.4
Alberta....-	1,201	4, 283	4, 074	5,123	5,766	5,959	12.1	26.3
Total	8,956	17,750	16, 841	22, 181	21, 224	21, 666	90.1	95.6

PRODUCTION.

	1,000	1,000	1,000	1,000	1,000	1,000		
	bushels.	bushels.	bushels.	bushels.	bushels.	bushels.		
Manitoba	53, 174	40,975	37, 542	39, 054	60,051	36, 481	27.0	7.8
Saskatchewan	97, 954	89,994	113, 135.	188, 000	250, 167	. 252,622	49.7	53.8
Alberta.	24, 783	34, 575	83, 461	53, 044	64, 976	157, 467	12. 5	33.5
Total	175, 911	165, 544	234, 138	280,098	375, 194	446, 570	89. 2	95.1

Table 15.-Wheat: World production, 1894-1923.

Year.	Produc-tion incountriesreport-ing allyears$1894-1923$.	Production as reported.	Estimated world totals.	Selected countries.						
				Russia. ${ }^{1}$	Italy.	France.	India.	Argentina:	Australia.	Canada.
	$1,000$ bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels.	1,000 bushels.	1,000 bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$
18	1,730, 605	2,357, 727	2, 515, 616	477, 199	121, 595	344, 180	271, 375	61, 361	27, 856	
1895	1,574, 080	1, 276, 811	2, 440, 445	309, 660	117, 762	339, 595	261, 293	46, 407	18, 270	
1896	1, 628, 012	2, 328, 627	2, 468, 629	412, 038	145, 233	340, 268	200, 866	31,599	20, 880	
1897	1, 561, 792	2, 112, 010	2, 233, 593	340, 170	86, 919	242, 227	200, 229	53, 388	28, 241	
1898.	2, 113, 124	2, 867, 948	3, 012, 350	459,289	137, 345	364, 905	269, 113	104, 981	41, 428	
1899	1,929, 387	2, 643, 177	2,773, 061	454, 145	137, 912	365, 449		2	48, 353	
1900	1,787, 154	2, 478, 739	2, 633, 405	422, 994	147, 341	325,542 310,913	264, 825	56,379	38, 562	
1901	2, 017, 031	2, 701, 163	2, $9,117,721$	427, 782	181, 512	310, 898	227, 380	-103, 758	12, 378	
1902	1, 983, 191	2, 913, 652	3, 1272,721	607, 6270	100, 2048	362, 968	2297, 601	129, 671	74, 150	
1903	2, $236,017,180$	3, 0006,388	3, 144,436	666, 752	184, 819	299, 639	359, 936	150, 743	54, 536	
1905	2, 110, 003	3,130, 443	3, 309, 345	636, 287	176, 735	334, 838	283, 076	134, 930	68, 521	
1906	2, 279, 413	3, 253, 930	3, 493, 206	543, 481	194, 372	328, 697	317, 950	155, 991	66, 421	
1907	2, 158, 965	3, 012, 480	3, 189, 191	570,570	195, 475			156, 162	62, 591	112,434
1908	2, 000,064	3, 077, 785	3, 171, 263	627, 6988	167,917	316,684 359,174	228, 197	131, 010	90,414	166,744
1909	2, 216, 491	$3,551,056$ $3,477,180$	$3,625,128$ $3,575,891$	846, 168	190, 378	252, 963	359, 647	145, 981	95, 112	132, 049
1910	2, 091,735	3, 477, 180	$3,575,891$ $3,570,369$	836,242 563,485	193, 493	222, 339	375, 629	166, 190	71, 636	230,924
1911	2, 232, 3278	3, 382,788	3, 3 , 857,488	801, 497	165, 720	324, 333	370, 515	187, 391	91, 981	224, 159
1913	2, 334, 362	4, 011, 754	4, 087, 654	1, 027, 662	214, 772	319, 370	368, 219	104, 723	103, 344	231,717
1914	2,267, 111	3, 588, 988	3, 625, 388	${ }^{2} 827$ 82, 756	169, 582	282, 689	312,368 376,992	169, 174	179, 036	169, 284
1915	2, 579, 924	4, 267, 983	4, 289, 583	2826,784	170, 541	2204,908	376, 9945	169,015 80	152, 420	262, 781
1916	1,968, 736	$2,515,591$ $2,426,838$	$3,288,291$ $3,133,838$		139, 999	3 137, 096	382, 144	223, 636	114, 734	233, 743
1917	1,965, 624	2, 774, 877	3, 147, 677		183, 294	${ }^{3} 228,688$	370, 421	180, 182	75, 638	189, 074
1919	2, 190, 147	2, 668, 701	2, 997, 051		169, 769	3187,091	280, 261	216, 954	45, 975	193, 260
1920	2, 202, 538	2, 892, 988	3, 033, 438		141, 337	${ }^{3} 236,929$	377,-888	156, 133	145, 8	263, 189
1921	2, 296, 739	3, 105, 089	3, 258, 689		31	${ }^{3} 323,467$	250, 387	191, 012	109, 261	399, 786
1922	2, 242, 821	3, 345, 362	3, 348, 099		3 3 3 3 224,839		369, 264	248, 752	120, 000	469, 761
1923	2, 426, 115	3, 409, 041	3, 691, 761		224, 839	290, 474	369, 204	248, 75	120, 00	-2,

Division of Statistical and Historical Research. For each year is shown the production during the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }^{1}$ Includes all Russian territory reporting far years named. Further information of the territory included is given in Notes 3 and 6 on Table 16.
${ }_{2}$ Excludes Poland.
3 New boundaries.

Table 16.-Wheat: Productian in selected foreign countries, 1899-1923.

[^129]Table 16.-Wheat: Production in selected foreign countries, 1899-1923-Contd.

Division of Statistical and Historical Research. Compiled from official sources and International Institute of Agriculture. For each year is shown the production in the Northern Hemisphere during the calendar year and the succeeding harvest in the Southern Hemisphere.
${ }^{4}$ Excludes Poland.
$\boldsymbol{E}_{\text {Asiatic R }}$ Russiz during 1899 to 1905 included statistics from 4 govermments of Siberia, 4 provinces in Central Asia, and the small government of the Black Beain Transcaueasia. In 1906 no statistics were available for Akmolinsk, one of the 4 provinces of Central Asia which had been previously reported but to the other gavernments and provinces reporting were added statistics for Ural, 3 provinces of Turkestan, and 10 governments and provinces of Transcaucasia. Subsequently Asiatic Russia included 8 governments. and provinces of Siberia; 4 provinces of the Steppes, 4 provinees of Turkestan, and Ural in Central Asia; and 11 governments and provinces of Transcaucasia. The territory supplying statistical data remained the same after 1906 although in the annual publication of the Division of Rural Economics and Agricultural Statisties of the Ministry of Agrieulture for 1915 (published in 1917) the Central Statistical Committee departed from its usual grouping of the provinces of the Steppes and of Turkestan.

Ircludes estimates for all governments and provinces of Russia for which statistics are available.
Table 17.-Wheat: Monthly marketings by farmers, 1917-1923.

[^130]Table 18.-Wheat: Farm stocks, shipments, and quality, 1895-1923.

Year beginning July 1.	Stocks in mills and elevators July $1 .{ }^{1}$	Old stocks on farms July $1 .^{2}$	Crop.			Total supplies (except visible).	Stocks on farms following. ${ }^{2}$	$\|$Stocks in mills and elevators Mar. 1, follow- ing. 1	Shipped out of county where grown. ${ }^{5}$
			$\begin{aligned} & \text { Quan- } \\ & \text { tity. } \end{aligned}$	$\left\|\begin{array}{c} \text { Weight } \\ \text { per } \\ \text { bushel. } \end{array}\right\|$	Quality. ${ }^{4}$				
		1,000	1,000		Per	1,000		0	
	bushels.	bushels.	bushels.	Pounds.	cent.	bushels.	bushels.	bushels.	bushels.
		29, 007	569, 456		85.7	598, 463	151, 395		334, 557
1896-		48, 524	544, 193	57.6	84.4	592, 717	113, 139		284, 315
1897		29, 239	610, 254	57.1		639, 493	138, 068		308, 298
1898-99		20, 196	772, 163	57.7	87.9	792, 359	224, 575		453,675
1899-190		71, 861	636, 051	56.9	83.7	707, 912	183, 286		351, 062
1900-1		58, 363	602, 708	56.3	87.8	661, 071	147, 674		322, 982
1901		35, 140	788, 638	87.5	88.8	823, 778	181, 673		389, 275
1902		54, 616	724, 808	57.6		779, 424	174, 664		420, 279
1903		45, 262	663, 923	57.3		709, 185	136, 811		386, 589
1904		37, 422	596, 911	57.4		634, 333	111, 072		327, 960
1905		25,545	726, 819	57.5		752, 364	163, 866		428, 000
1906		47, 393	756, 775	58.3		804, 168	211, 910		447, 589
1907		55, 438	637, 981	58. 2	89.9	693, 419	148, 392		379, 999
1908		33, 188	644, 656	58.3	89.4	677,844	137, 628		392, 441
1903		14, 171	700, 434	57.9	90.4	714, 605	163, 371		428, 262
1910-11		36,725	635,121	58.5	93. ${ }^{1}$	671,846	162, 705	98,597	352,906
1911-12		34, 071	621, 338	57.8	88.3	655, 409	122, 041	95, 710	348, 739
1912-13		${ }^{23,876}$	730, 267	58. 3	${ }_{90}^{90} 0$	754, 143	156, 471	118,400	449, 881
1913-		35, 515	763, 380	58.7	93.2	798, 895	151, 795	93, 627	411, 733
191		32, 236	891, 017	58.0	89.7	923, 253	152, 903	85, 955	541, 198
1915-16		28, 972	1, 025,801	57.9	88.4	1, 054,773	244, 448	155, 027	633, 380
1916-17		74, 731	636, 318	57.1	87.0	711, 049	100, 650	89, 173	361, 088
1917-18		15, 611	636,655	58. 5	92.4	652, 266	107, 745	66, 138	325, 500
1918-19		8, 063	921, 438	58.8	93.1	929, 501	128, 703	107, 037	541, 666
1919-20	19,672	19, 261	967, 979	56.3	82.1	1, 006, 912	169,904	123, 233	591, 552
1920-21	37,304	49,546	833, 027	57.4	88.9	919, 877	217, 037	87, 075	491, 035
1921-22	27, 167	56,707	814, 905	57.0	85.8	898, 779	134, 253	75, 071	502, 470
1922-23.	28, 756	32,359	867, 598	57.7	87.6	928, 713	155, 474	92, 538	584, 089
1923-24 ${ }^{6}$	36,458	35;894	785, 741	57.4	87.5	858, 093	133,871	90,396	498,215

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on percentage of crop as estimated by about 3,500 mill and elevator operators.
${ }_{2}^{2}$ Based on percentage of crop on farms as estimated by crop reporters.
a Based on estimates of crop reporters on Nov. 1.
${ }^{4}$ Percentage of "a high medium grade" as estimated by crop reporters at time of harvest.
${ }^{5}$ Based on percentage shipped out as estimated by crop reporters.
${ }^{6}$ Preliminary.
Table 19.-Wheat: Supply and distribution and per capita disappearance in the United States.

Item.	Year beginning July 1.					
	Average 1899-1908.	Average 1909-1913.	Average 1914-1920	1921-22	1922-23	1923-24
Supply	$\begin{gathered} \text { 1,000 } \\ \text { bushels. } \\ \cdot 43,608 \end{gathered}$	1,000 bushels. 28, 841	1,000 bushels. 32, 631	$\begin{aligned} & 1,000 \\ & \text { bushels. } \\ & 56,707 \end{aligned}$	$\begin{gathered} \text { 1,000 } \\ \text { bushels. } \\ 32,359 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$
- Stocks on farms July 1 .						
Stocks in country mills and elevators July 1	27,000	29,000	24, 854	26,767	28,756	36,458
Commercial visible (Bradstreet's) July 1		24, 168	19,290	9,966	20,342	29,403
Stocks of flour (in terms of wheat)	32, 194					
July 1 -	$\begin{array}{r} 7,114 \\ 677,927 \end{array}$	$\begin{array}{r} 7,960 \\ 690,108 \end{array}$	$\begin{array}{r} 8,251 \\ 844,605 \end{array}$	$\begin{array}{r} 6,808 \\ 814,905 \end{array}$	$\begin{array}{r} 7,461 \\ 867,598 \end{array}$	$\begin{array}{r} 10,049 \\ 785,741 \end{array}$
New crop						
June 30	746	1,808	19, 746	17,252	19,945	119,945
Total supply	788, 589	781,885	949, 377	932,405	976,461	917,230
Distribution: Exports July 1 to June 30 (flour in- cluded) Estimated seed requirements	$\begin{array}{r} 152,623 \\ 68,995 \end{array}$	$\begin{array}{r} 104,967 \\ 72,383 \end{array}$	$\begin{array}{r} 255,011 \\ 88,600 \end{array}$	$\begin{array}{r} 279,407 \\ 93,247 \end{array}$	$\begin{array}{r} 221,923 \\ 89,336 \end{array}$	----------
Carryover on June 30-	$\begin{aligned} & 38,709 \\ & 25,300 \end{aligned}$	$\begin{aligned} & 32,276 \\ & 31,000 \end{aligned}$	$\begin{aligned} & 36,127 \\ & 24,678 \end{aligned}$	$\begin{aligned} & 32,359 \\ & 28,756 \end{aligned}$	$\begin{aligned} & 35,634 \\ & 36,458 \end{aligned}$	-----
In country mills and elevators Commercial visible (Bradstreet's)		31,0025,0418,555	$\begin{array}{r}18,265 \\ \mathbf{1 8}, 972 \\ \hline\end{array}$			
Commercial visible (in terms of wheat) -.-.-----	$\begin{array}{r} 28,476 \\ 6,990 \end{array}$			20, 342	$29,403$	
Total distribution	321, 093	274, 222	430,653	461, 572	422, 803	-------
Disappearance for food and feed	$\begin{array}{r} 468,403 \\ 82,614 \end{array}$	$\begin{array}{r} \hline 507,663 \\ 94,378 \end{array}$	$\begin{aligned} & \hline 518,724 \\ & 102,880 \end{aligned}$	$\begin{aligned} & 470,833 \\ & 108,541 \end{aligned}$	$\begin{aligned} & \hline 553,658 \\ & 109,956 \end{aligned}$	111,371
Population---.---						
Per capita disappearance, food and feed, bushels	5. 67	5.38	5.04	4.34	5. 04	

Division of Statistical and Historical Research. ${ }^{1}$ The same amount as in 1922, supplied to balance.

Table 20.-Wheat: Receipts and shipments, 11 primary markets, 1909-1922.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 \text {. } \end{aligned}$	Chicago.		Milwaukee.		Minneapolis.		Duluth.		St. Louis.		Toledo.	
	$\underset{\text { ceipts. }}{\mathrm{Re}-}$	Shị̀pments.	$\begin{gathered} \mathrm{Re}- \\ \text { ceipts. } \end{gathered}$	Shipments.	Receipts,	$\left\lvert\, \begin{gathered} \text { Ship- } \\ \text { ments. } \end{gathered}\right.$	$\xrightarrow[\text { ceipts. }]{\mathrm{Re}}$	Shipments	$\xrightarrow[\text { Re- }]{\text { Reipts }}$ ceipts.	Shipments.	$\underset{\text { Re- }}{\mathrm{Re}-}$	Shipments.
	1,0	1,0			1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bush.	bush.	bush.	bush.	bush.	bush.						
1909-10	27, 542	20, 586	8, 482	2,757	92, 833	20, 546	54, 687	50, 280	22, 064	19, 622	4,426	1,474
1910-11	27, 400	17, 259	10, 062	7, 875	90, 774	20, 866	28, 628	25, 352	20, 127	20,082	4, 122	1,556
1911-12	35, 563	30,003 43	8,497	3,411	-96,889	$\begin{aligned} & 52,745 \\ & 32,761 \end{aligned}$	$\left\|\begin{array}{\|c\|c\|} \hline 30,598 \\ 83,530 \end{array}\right\|$	$25,571$	$\begin{gathered} 15 ; 336 \\ 38 \\ \hline 102 \end{gathered}$	12, 790	6,930 4,734	$\begin{array}{r}\text { 4, } \\ 2 \\ 2,474 \\ \hline\end{array}$
$\begin{aligned} & 1912-13 . \\ & 1913-14 . \end{aligned}$	$\begin{aligned} & 44,168 \\ & 50,884 \end{aligned}$	$\begin{aligned} & 43,325 \\ & 47,905 \end{aligned}$	$\begin{array}{r} 10,337 \\ 6,372 \end{array}$	5,685	126, 181	$\begin{aligned} & 32,761 \\ & 28,994 \end{aligned}$	$\left.\begin{aligned} & 83,530 \\ & 62,799 \end{aligned} \right\rvert\,$	$\begin{aligned} & 75 ; 435 \\ & 64,799 \end{aligned}$	38,792 27,244	27, 2742	4,734	2,475 3,704
$\begin{gathered} \text { A verage 1909- } \\ 1913 \text { - } \end{gathered}$	37,111	31,816	8,750	4,634	02, 067	31, 182	52,048	48, 287	24, 713	20,38	5,203	2,771
14	107, 70	91, 11	9,5	7,010	12,716	39,510	62, 268	59, 867	34, 19	26,913	7,081	4,168
15-16	85, 81	61, 53	7,337	3, 505	163, 202	54,932	95, 674	82, 540	42, 22	31,046	9,9	5,571
16-17	56, 708	47, 342	10, 595	8,099	119, 701	39, 689	30, 978	36, 789	41, 02	33, 080	5, 719	2, 590
1917-18	13,735	8,118	13, 138	1,336	82, 229	19, 072	16,602	13, 646	17, 02	13, 234	4	1,379
1918-19	54, 533	67, 122	15, 535	12, 575	117, 787	38, 174	88,383	86, 932	42, 54	25, 621	5, 94	1,348
1919-20	74, 167	57, 215	7,006	3, 674	119, 419	37, 468	18,317	13, 664	45, 266	32, 956	8, 046	2,285
1920-21	30,615	27, 886	4, 424	2.556	18,57	50,724	45,083	43, 272	45,316	31,479	5, 052	1,400
$\begin{aligned} & \text { Average } \\ & 1920 . \end{aligned}$	60, 469	51, 475	9,655	5,536	19,090	39,938	51, 044	48, 101	38, 228	27,761	6,628	2,677
1921-22	51,548	45,80	9,676	7,464	105, 3	43,	49, 226	49,8	39,009	29, 404	6,75	, 622
192	51, 60	44, 203	3,681	3,145	133,830	48, 648	65, 541	55, 03	40, 60	33, 561	10,472	5,524
$\text { July } 1922 .$	8,780	4,	141	3	5,		2, 266	2, 92	5, 013	3, 464	1,076	122
August	16,574	18,629	502	281	10, 993	4, 61	3,004	1,48	7,060	6, 335	975	22
Septemb	4,743	5,078	491	296	18, 865	6, 80	16, 225	9,689	3, 461	2, 539	785	14
October	4, 492	2,640	419	203	17, 002	4, 820	9, 8381	${ }_{8}^{9,458}$				482
November	3, 203	2, 623	${ }_{227}^{416}$	${ }_{220}^{266}$	17, 683	4,942 4,271	7,451 6,314	8, 8 , 979	4, 279 3,174	$\stackrel{3}{2,641}$	2, 417	804
December 1923.	2,890	1,735	227	220	17, 663	4,271	6,314	6,979	3,174 3,469	2, 712	2,412	70
January	2, 844	1,611	463 277	290	15, ${ }^{\text {6, } 292}$	5, ${ }^{\text {2, } 632}$	3, 3292	672	3,469 2,301	2,772	283	296
March	1,629	1, 341	213	203	${ }_{9}, 568$	3, 846	2,206	229	2, 104	1,874	302	612
April	1,956	1,197	201	325	7,372	3, 748	3, 495	209	2, 024	1,994	316	122
May	1, 320	1,132	193	25	5,135	2, 950	3, 474	8,391	2,216	2,187 1,760	415	813
ane	1,078	1,847	138	199	5,947	2,51	4,277	6,307	1,631	1,760	415	$\underline{ }$

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 . \end{aligned}$	Detroit.		Kansas City.		Peoria.		Omaha.		Indianapolis.		Total.	
	$\underset{\text { ceipts. }}{\mathrm{Re}-}$	Shipments.	$\begin{gathered} \mathrm{Re}- \\ \text { ceipts. } \end{gathered}$	Shipments.	Re ceipts.	Shipments.	Receipts.	Shipments	$\begin{gathered} \text { Re- } \\ \text { ceipts. } \end{gathered}$	Shipments.	$\begin{gathered} \mathrm{Re}- \\ \text { ceipts } \end{gathered}$	ship-
	1,000		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bush.	bush.	bush.	bush.						bush.	bush.	bush.
1909-10	1, 821	167	34, 092	22, 057	1,304	1,002	${ }_{(1)}^{1}$	(1)	(1)	${ }^{(1)}$	247, 2541	138,491
1910-11	2,003	105	40, 537	26, 709	$\xrightarrow{1,225}$	1,074	11, 030	9,690	176		233, 025	
1911-12	2,861	401	23, 627	${ }^{16,970}$	$\xrightarrow{1,518}$	1, 106	${ }_{20,193}^{11,030}$	-9,690	1, 560		380, 777	236, 201
$\begin{aligned} & 1912-13 \\ & 1913-14 . \end{aligned}$		715	$\begin{array}{\|} 48,374 \\ 32,152 \end{array}$	$\begin{aligned} & 33,415 \\ & 23,70 \end{aligned}$	1,951	1, 424	16,453	11,958	1,898	812	310, 354	209, 852
$\begin{aligned} & \text { A verage 1909- } \\ & 1913 \end{aligned}$	1,821	446	35, 756	24, 576	1,525	1,244	15, 892	11, 594	1,211	82	279, 257	172,585
1914-15	2,763	2,012	77,745	65, 65	3,786	3, 527	17,767	11, 639	3,028	916	438, 616	312,324
1915-16	2,809	1, 580	70, 442	51,632	4, 503	5,336	25, 613	16, 215	4,851	1,967	512, 4411	315, 855
1916-17	2,724	1,082	68, 720	62, 878	2, 870	2, 468	31, 194	29, 221	2, 890		373, 123	264, 167
1917-18	1,597	260	22, 226	8,255	${ }^{2}, 195$	1,422		- ${ }^{6,096}$	6, 477	2, 1980	184, 883	288, 340
1918-19	1,608	306	54, 106	$\underset{\varepsilon}{35}, 696$	$\begin{aligned} & 3,405 \\ & 2, ~ \end{aligned}$	3,371 4,285	19,730	151, 992	7, ${ }^{6}, 471$	1, 340	403, 843	230, 841
$\begin{aligned} & 1919-20 \\ & 1920-21 \end{aligned}$	1,688 1,656	289 149	$\left.\begin{array}{\|} 92,215 \\ 87,148 \end{array} \right\rvert\,$	$\begin{aligned} & 55,677 \\ & 64,637 \end{aligned}$	$\begin{aligned} & 3,663 \\ & 2,199 \end{aligned}$	2,011	28, 192	24,372	4,491	458	372, 755	248,944
$\begin{aligned} & \text { A verage 1914- } \\ & 1920 \end{aligned}$	2,121	811	67,515	49,203	2,232	3,203	22, 521	17,807	4,600	1,269	385, 102	247,783
19	578	234	90,574	69,085	2, 564	1,709	25,310	25, 559	4,056	890	385, 637	276, 850
1922-23	1,797	80	77,684	52, 464	4,355	4,070	25,356	19, 505	5,185	909	420, 166	267, 145
$\begin{array}{r} 1922 . \end{array}$		14	11,089	5,156		57	3,099	1,595	1,414	95	39,449	21, 401
August	226	9	11, 605	10,686	1,303	1,338	4, 413	3, 512		43	57, 348	47, 351
September	120	7	8,230	5,419	400	556	$\stackrel{2}{2} \mathbf{7} 20$	1,901	401	143	56, 4	32,490
October	188	10	${ }^{6,834}$	4, 432	383	379	2, 455		397	149	40, 290	26, 851
November	189	10	${ }_{8,965}^{6,546}$	4,411 4,818	305 206	197	2, 2,441	2, 1,531	288	${ }_{35}^{99}$	44, 743	23, 423
	158	2	8,965	4,818 4 4 4	206	197	2, 441		480			17, 299
January	163	6	7,010 3,980	4,475 2,458	182	149	1,960		249	50	20,77	10, 385
February	$\begin{array}{r}97 \\ 160 \\ \hline\end{array}$	4	3, 388	3,458	114	146	1, 297	1,126	233	26	21, 312	12,479
April	121		3,906	2,529	91	92	1, 365	1,490	209	31	21, 056	12,341
May	123	11	2,983	3, 052	59	4	806	1,187	271	-18	16, 88	
une-	93	1	3, 050	1,954	90	90	769	824	240	9	17,7	15,874

Division of Statistical and Historical Research. Compiled from the Chicago Daily Trade Bulletin and the Annual Reports of the Chicago Board of Trade.
${ }^{1}$ No report.

Table 21.-Wheat: Estimated requirements, surplus and deficiency, by States, 1923-24.

Geographic division and Btate.	```Popula- tion Jan. 1, 1924.```	Estimated per capita consumption.		Estimated requirements for food and feed.		Estimated seed re-quirements. ${ }^{(3)}$	Total requirements.		Dec. 1 1923, pro-duction estimate.	Surplus (+) or deficiency (-) for export and increased feeding, 1923-24.			
				1911 food and feed basis plus seed.	Average, 19181922 food and feed basis. plus seed.								
								Aver-					
			Aver				1911			$\begin{gathered} 1911 \\ \text { per } \\ \text { capita } \\ \text { basis. } \end{gathered}$	$\begin{gathered} \text { A verage, } \\ \text { 1918-1922 } \\ \text { per } \\ \text { capita } \\ \text { basis. } \end{gathered}$		
			age				per	${ }_{1922}^{19}$					
		11	$\begin{aligned} & 1918 \\ & 1922 . \end{aligned}$				capita	1922					
			${ }^{1922}$				basis.						
								basis					
New England: Maine	778, 579	$\begin{aligned} & B u . \\ & \text { 4. } 7 \\ & 5.0 \end{aligned}$	$\begin{aligned} & B u . \\ & 4.2 \end{aligned}$	1,000	1,000	$1,000$ bush.	1,000	1,000		1,000			
					bush.		bush.	bush.$3,290$		bushels. $-3,523$			
				3,659	3, 270	20			bush. 158		bushets.		
New Hampshi	448, 237		4.5	2,241	2,017		- $\begin{aligned} & 2,24 \\ & 1,94\end{aligned}$	$\begin{aligned} & 3,290 \\ & 2,017 \end{aligned}$	17 -------	- 2, 241	- 2, 017		
Vermont.	357, 357	5. 4	4.8	1,930	1, 7.15	16		1,731	${ }^{-\cdots--78}$	- 1, 862	- 1,647		
Massachusett	4, 052, 572	5. 0	4. 5	20, 263	18, 237		20,263	18, 237		-20, 263	-18, 237		
Rhode Island	629, 854	4.3	3.8	2,708	2, 393		2,708	2,393	---	- 2,708	- 2,393		
Connecticut	1,490, 176	4.5	4.0	6,706	5,961		6,706	5,961		- 6,706	$-5,961$		
New York	10,909, 152	54	4.8	58,908	52,364	845	59, 754	53, 209	$\begin{aligned} & 8,159 \\ & 1,480 \end{aligned}$	$\left\lvert\, \begin{aligned} & -51,595 \\ & -15,700 \end{aligned}\right.$	$-45,060$$-13,995$		
New Jersey	3, 410, 829	5. 0	4. 5	17, 054	15, 349	126	17, 180	15, 475					
Pennsylvania	9, 154, 657	5.8	5.2	53, 097	47, 604	2, 381	55, 478	49,985	24, 338	-31, 140	$-25,647$		
E. North Central:	0,154,	6.2	5. 5	38, 243	33, 925	4,213	42, 456	38,138	42,783	$+327$	+ 4,645		
Indian	3, 024, 955	5. 7	5.1	17,242 15,427		2,770	$20,012$		44, 248	$+14,236$	$+16,051$$+24,521$		
Illinois	6,834, 129	5. 6	5. 0	38,271 34		3,814	$42,085$	$37,985$	34,248 62,506	$+20,421$			
Michigan	4,022,021	5. 05.2	4. 5	20, 110	18, 099	1,648	$\begin{aligned} & 21,758 \\ & 14,563 \end{aligned}$	$\begin{aligned} & 19,747 \\ & 12,910 \end{aligned}$	$\begin{array}{r} 16,576 \\ 1,970 \end{array}$	$\begin{aligned} & -5,182 \\ & -12,593 \end{aligned}$	$\begin{array}{r} +24,521 \\ -3,171 \end{array}$		
Wisconsin	2, 754, 932		5.2 4.6		14,326	12, 673					1,237	$-10,940$	
W. North Central:													
Iowa -	2, 477,434	5.3			4.7	13, 133	$11,646$	1,057	14, 190	12,703	20,785 14,352	+ $162+1,649$	
Missouri	$\begin{array}{r} 3,449,673 \\ 675,637 \end{array}$	5. 2 4. 6		17, 938	3,107	$\begin{aligned} & 14,190 \\ & 21,045 \end{aligned}$		$18,975$	37, 947	$\begin{aligned} & +16,902+1,049 \\ & +18,972 \end{aligned}$			
North Dakota		7. 2		4,865 4, 324		10, 737	$15,602$	15, 061	58, 660	$+43,058+43,599$			
South Dakota.	658, 244	6. 5 5.		4,279 3, 818		3,8203,928	$8,099$	7, 638	26, 306				
Nebraska	1,339, 286	5.8	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{array}{r} 7,768 \\ 10,449 \end{array}$	$\begin{aligned} & 6,964 \\ & 9,368 \end{aligned}$		$\begin{aligned} & 11,896 \\ & 22,161 \end{aligned}$	$\begin{aligned} & 10,892 \\ & 21,080 \end{aligned}$		+19,692	+20,498		
Kansas	1,801, 522					$\begin{array}{r} 3,928 \\ 11,712 \end{array}$			83, 804	+61, 643	+62,724		
South Atlantic:													
Delaware	231, 524	5. 0	4. 5	1,158	1,042	208	1,366	1,250	1,908	$+542$	$+658$		
Maryland	1, 513, 242	5.0	4.5	7, 566	6,810	815	8,381	7,625	10, 426	+ 2,045	+ 2,801		
District of $\mathbf{C o}$ lumbia													
Virginia.	2,411, 192	4. 5	4. 7	10, 2550	2,087	1,084	11, 934	10,729	11, 145	- 2, 78	+ 2,0876		
West Virgi	1,563, 650	5. 7	5. 1	8, 913	7, 975	323	9, 236	8, 298	2,964	- 6,272	- 5, 334		
North Garolina	2, 704, 497	4. 5	4. 0	12, 170	10, 818	756	12, 926	11, 574	6, 038	-6,888	$-5,536$		
South Carolina	1, 753, 077	4. 3	3. 8	7,538	6, 662	238	7,776	6,900	1,925	$-5,851$	- 4,975		
Georgia	3,013, 961	4.0	3. 6	12,056	10, 850	251	12,307	11, 101	1,739	-10,568	- 9, 360		
Florida	1, 057, 403	4.5	4.0	4,758	4, 230		4,758	4,230		- 4,758	- 4,230		
E. South Central:		4.5	4.0	11,110	75					-			
Tennessee	2, 400, 962	4.1	3.7	9,844	8,884	454	10, 298	9,338	4,508	- 5,790	- 4,830		
Alabama	2, 434, 731	4.0	3.6	9, 739	8, 765	56	9,795	8,821	200	- 9,595	$-8,621$		
Mississippi	1, 816, 021	4.0	3.6	7,264	6, 538	10	7,274	6,548	60	- 7,214	- 6, 488		
W. South Cen													
Arkansas	1, 825, 441	4.0 4.5	3.6 4.0	7,302	6, 572	99	7,401	6,671 7,428	770	- 6, 631	$-5,901$ $-7,428$		
Oklahoma	2, 181, 194	6. 0	5.4	13, 087	11,778	3,756	16,843	15, 534	36,300	+19,457	$+20,766$		
Texas	4, 979, 117	5.4	4.8	26,887	23,900	1,543	28,430	25, 443	16,370	$-12,060$	$-9,073$		
Mountain:													
Montana.	620, 101	5. 8	5. 2	3,597	3, 225	4,600	8,206	7, 834	52,486	+44, 280	+44,652		
Idaho.	475, 651	6. 5	5.8	3,002	2,759	1,232	4,324	3,991	30, 115	+25,791	+26, 124		
W yoming	214,358	6. 3	5. 6	1,350	1,200	276	1,626	1, 476	2,785	+ 1,159	+ 1,309		
Colorado.	997, 561	6. 0	5.4	5,985	5,387	2, 530	8,515	7,917	18,000	+9,485	+10,083		
New Mex	373, 967	7. 9	7. 1	2,954	2,655	122.	3, 076.	2,777	1,300	- 1,776	- 1,477		
Arizon	387, 645	7.2	6. 4	2,791	2,481	57	2,848	2, 538	1,092	$-1,756$	- 1,446		
Utah	480, 729	6. 1	5. 4	2, 932	2,596	433	3, 365	3, 029	6,566	+ 3,201	$+3,537$		
Nevada	78, 544	6.1	5.4	479	424	32	511	456	507				
Pacific:													
Washington	1,445, 054	6. 0	5.4	8,670	7,803	2,987	11, 657	10,790	61,743	+50,086	+50,953		
Oregon	828,967	6. 1	5. 4	5, 057	4,476	1,702	6,759.	6, 178	26,807	+20,048	+20,629		
Califor	3,859, 194	5. 6	5. 0	21,611	19,296	1,220	22,831	20,516	16, 157	-6,674	- 4, 359		
United States	111,371, 056	5.31	4.74	590,772	527, 453	78,440	69,212	605, 893	785, 741	+116,529	+179,848		

Division of Statistical and Historical Research.

${ }^{1}$ The consumption figures in this column were obtained by a survey in 1911 by the Bureau of Crop Estimates.
${ }^{2}$ Years beginning July 1. The figures in this column shown for the individual states were computed on the ratio between the United States consumption in 1911 (5.31 bushels) and the per capita disappearance during the five years 1918-19 to 1923-24 (4.74 bushels). The average disappearance for the latter period was 89.27 per cent of the 1911 disappearance.
${ }^{3}$ The seed requirements are based on the spring acreage of 1923 and the 1923 fall sowing according to the "Intention to plant" release of August 15, 1923. Therate of seeding in each State was applied to the acreage in that State.

Table 22.-Wheat: Visible supply in the United States, 1889-1923. ${ }^{1}$

Year beginning July 1.	July.	ug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Ap	May.	June.
	1,00					1,00	1.000	1,000	1,000	1,000		
										bush.	bush.	
1890-9	20, 174	18,363	17, 840	17.059	21, 235	24, 529	25, 603	23, 592	22,928	22,484	20,	
${ }^{18991-92}$		16.76			36, 232	43,		43,	41, 111			
1803-94-	- ${ }_{\text {24, } 316}$	59, 349	56,881	60, 528	${ }_{71,388}^{61,69}$	78, 091	80, 228	79,8	75, 568	71,458	66, 5	94
18		60,0	66, 9	13	80,027	85,		$83,376$	78,7			
189	44		35, 438	40, 768	52, 990	63, 903	69, 8	66,	64,	60		
		${ }^{46}$		50,116			54, 651	49,	43,797	38,	34, 412	
1898-99-	14,	9, ${ }^{1783}$	7,147	263	15,476	24, ${ }_{\text {24, }}^{34}$	26,893	28, ${ }^{3684}$	-34,088	- ${ }_{29,987}$	28, 28.28	87
1899-19	33, 587	36, 019	34,768	42,143	51,001		5§, 291	54, 3és				
1900-1	46, 442	47, 594	50, 294	55,409	60, 032	62,	61,	59.	57, 234			
- $19002-3$	30, 793	${ }^{30,369}$	${ }^{27,796}$	- 35,	41, 322	45, ${ }^{52}$,	$\stackrel{58,}{49}$					
1903-4.	15,970	13, 414	13, 203	19,489	22, 216	30, 140	38, 204	39, 76	135,599	31,7	30, 35.	3
1994-5	14,0	13, 093	12,814	17,576	${ }_{8}^{28,495}$		40,619	38,	35,565	32,	28,	
	14,	13, 354	12, 140	17, 898	29, 975		42. 95	48,		46		
${ }_{1}^{19966-7}$	25,8,	48, 318	30, 49,459	-33, 750	37,972 43,683			${ }_{46}^{44}$	${ }_{42}^{44,}$			
	13, 832	16, 174	16, 297	34, 281	48,0	48, 9	31,759	44, 875	38, 2	36,	29,	19,786
$1909-10$	${ }^{\text {9, }}$, 756	7. 709	9,166	19,	27, 001			26, 463	25, 5	29, 8		
1910-1	${ }_{23,}^{12,034}$	11,	26,457	52, ${ }^{34}$,	${ }^{45} 519$		70	43, 6	37,	34, $\begin{aligned} & 34, \\ & 51\end{aligned}$		
-					41,	5,	,	,	17,80	51,0		
191	30, 163	37,67	44,530	52, 061	55, 10	58,8	63, 743	60,8	57,02	51, 6	43 ,	75
1909	19,833	23.564	29, 55	168	45,827	51, 638	54,319	51, 172	48, 554	45,013	3i, 215	28,809
1914			31, 534	51, 586	65, 92	74,	72. 861	60,	49,6	39,		
1915-16	7,948	6.	7, 767	57, 100	22, 63	48, 79	E7, 31	68,4	63, 53	57, 38	48,	44,463
(19:6-17	14, 4209	40, ${ }^{\text {c }} 819$		57,789					${ }_{9}^{44,7}$			
1918-19	785	17. 155	48, 821	90,623	122, 6	121, 5	119.71	130,	18,2	92, 5		
1919-20				84,909	96, 35	89, 74		60, 35				
192	19, 799	17.48	20, 75	27, 391	35, 50	43, 127	+3,063	34, 212	28, 1	18,		8,334
1314	15, 328	19,797	32, $20+$	47, 945;	59, 804	65, 767	¢5. 254	59, 498	¿2, 164	42, 4	29, 8.3	23, 246
			741	52, 79,	54,			42, 280		5,8		
1423-24	26,312	19,663	26,541	63,93	69, 189		3r,673		47,	45,		
23-24.						7, 8						

Compiled from the annual reports of the Chicago Board of Trade to December, 1922. January, 1923, to date from the Chicago Daily Trade Bulletin. Reported on the Saturday nearest the first of the month.
${ }^{\text {i }}$ From 1889 to November 28,1908 stocks at the principal points in Canada were included. The Chicago Board of Trade "risible"'includes grain stored east of the Rockies only. It covers 22 interior and seaboard points of large accumulation and grain in transit by canals and lakes.
${ }_{2}$ From the Chicago Daily Trade Bulletin.

1909-10	12, 771	12,611	15,514	28, 589	37, 820	41,688	37, 949	36,638	34.461	37, 558	33, 77	24,795
1910-11	16,396	17, 053	38, 352	48, 437	53, 420	57, 002	59, 369	56, 357	50, 566	42, 697	34, 65゙5.	32, 769
1911-12	29,639	46, 389	54, 581	61,500	73, 792	81, 215	81,501	70, 748	66, 982	59, 826	48, $0=2$	35, 994
1912-13	27,615	23, 595	26,862	40,958	52, 494	67,575	77, 471	76, 131	78, 895	69, 000	53, 50	43, 697
1913-14	34,420	43, 198	51, 989	61, 485	66, 663	72, 061	74, 854	71, 264	66, 191	59, 931	49, 327	33, 662
Av. 1909-1913.	24, 168	28,569	37,458	48,202,	56,838	63,908	66, 229	62, 228	58, 419	53, 802	43, $85{ }^{\circ}$	34, 183
1914-15	17, 136	36,456	39, 964	61,784	76, 262	86, 332	85.957	81, 776	58, 923	46, 287	31, 40 .	22, 871
1915-16	10, 734	9,361	12,679	22, 498	33, 338	60,678	80, 150	77, 834	73, 748	66, 691	57, 635	52, 512
1916-17	50, 515	49,591	65, 754	70, 420	75, 455	76, 191	73,584	59, 477	54, 160	48, 525	32, 831	34, 876
1917-18	19,901	11, 692	10,315	13, 072	22, 855	29, 633	26, 476	20, 436	15,484	10, 180	6, 656	4,379
1918-19	2,465	20, 462	54, 236	98, 155	131,852	131, 584	129,627	140, 607	127, 207	100, 505	55, 24.	27, 626
1919-20	10, 873	25, 968	65, 479	95,550	107,783	101, 058	85,117	68, 494	58,632	51, 909	47, 755	41, 233
1920-21	23, 404	20,226	24, 195	32, 169	41, 506	48,273	47,797	38, 475	31,945	22, 229	17, 581	10,598
Av. 1914-1920	19,290	24, 822	38, 946	56,235	69,877	76,250	-5, 530	62, 586	60, 014	49,475	35, 59	27, 728
1921-22	9, 966	28,727	47,159	62, 758	62, 767	53, 507	E6, 776	48, 802	46, 714	42, 287	36, ¢ 44	31, 497
1922-23	20,342	23, 077	32,479	33, 025	39, 023	39, 764	43, 850	53,823	54, 562	51, 862	49,521	37, 203
1923-24	29, 403	40,526	63, 922	72, 930	79,034	82, 269						

[^131]Table 23.-Wheat, flour included: "World" visible supply 1 st of each month, 1892-1923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 \text {. } \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау.	June.
	1,000	1, 1 buo	1, 1000	1,000	1,000	1,000 bush.	1,000	1,090	l, $\begin{aligned} & \text { 1,000 } \\ & \text { bugh }\end{aligned}$	1,000	1,000 bush.	1.000
189	132, 060	122, 968	145, 738	166, 331	1196, 271	1231,575	5 237.42	234,	229,	${ }_{321,696}$	215, 500	- ${ }_{\text {bush, }} \mathbf{0 3 9}$
1893	183, 744	178, 073	; 183,845	5 195, 713	220, 724	235,389	1232065	232, 978	[222, 391	1216,545	5.206, 914	195, 763
1894-95	173, 012	2174, 492	[189, 549	, 205, 151	220, 788	218, 857	7227.975	5: 223,	6212, 446	61188,047	7186,523	171, 169
1899-96	160,331	1158, 043	1152, 268	176, 638	219, 858	218, 787	224. 798	8202, 83	191, 887	7180,630	161, 111	147, 563
1896	136, 456	124, 293	126, 487	[152, 972	190, 761	202, 330	184, 618	8173,49	1155. 505	139, 011	121, 490	107, 338
1897-98	88, 740	77,900	87, 073	119,635	139,313	156, 516	6.157	152, 042	2 140, 571	1132,038	111, 229	109, 845
1898-99	86, 774	70, 103	66, 511	1 83, 090	106, 886	135, 852	[147, 197	7145,62	151, 124	4144, 938	[139, 909	136, 952
1899-1900	140, 300	134, 975	142, 577	162, 877	191, 191	1203, 478	200, 306	6 189, 35	181, 607	7184, 141	1175,766	157, 709
1900-1	149, 841	150, 193	1164, 629	188, 200	200, 715	203, 237	211.06	4201, 161	204, 353	[197, 013	135, 43	160, 498
190	142, 417	138, 201	146, 030	$0,165,149$	$9_{j} 1 i 7,395$	210, 024;				183, 323	158, 732	133, 173
1002	105, 827	94, 973	103. 484	135,540	174, 035	185, 729	175, 482	173, 678	170, 558	1155, 562	135, 126	120, 373
	103, 531	93, 266	105, 837	140, 934	164, 389	174, 085	175. 274	169, 718	163, 361	1157, 453	154, 537	142, 706
190	123, 327	111, 152	124.977	56, 869	185, 161	99, 881	89. 21	179, 47	181, 576	1172, 9	155, 655	135, 811
	126,610	[115, 533	122, 394	$4150,015$	$5170,679$	201, 855	205, 909	203, 769			172, 840	151, 119
1906	133, 702	131, 780	6, 473	182, 924	207, 959	19,048	220. 457	208,	214, 7	207,	8	90, 351
140	164, 849	155, 351	$1{ }^{161,038}$	163, 814	181, 549	181, 342	181. 938	186, 00	193, 837	7189, 08	162, 620	128.899
1908	99, 331	97, 821	108, 430	149, 789	176, 246	182, 040	181.147	177.651	180,377	170,585	136,844	116, 695
1909	90,470	79,38	93, 7×3	139, 286	176,969	184, 68	177.881	184, 193	'201, 836	202,430	179,003	156, 841
1910-11	188,942	111, 015	154, 399	214, 52f;	237, 5.58	237,60	234. 057	236,0	235, 5	226,883	193, 983	172843
1911-12	151, 664	164, 547!	172,913	191, 474	227, 889	240,490	243. 399	229, 09	190. 189	:234, 157	214, 721	187.416
1912-13	152, 266	129,007	-132. 38	165, 37	213, 0	239, 7	245. 093	251, 665	273, 077	207, 502	224, 642	13¢ 773
1913-14	158, 376	148, 710	164, 764	162, 378	228, 792	242, 58	252. 632	261, 961	259, 06	243, 97	159, 524	129. 219
Av., 1909-1913	134, 344	126, 532	144.648	174, 60:	216.827	229, 022	230.614	232, 589	231, 935	222, 99	194, 375	157. 018
1914-15	130, 878	144, 884	147, 713	204, 74	34. 041	242, 22	242, 915	218, 723	216, 7	203, 805	184,	152977
1915-16	118, 046	93, 401:	93, 972	127, 207	900. 56.5	246, 105	291.145	1319, 341	281, 758	356, 797	326,41	31+,096
1916-17	280, 461	249, $90 \cdot{ }^{\text {a }}$	249, 539	251, 204	2\%6, 71.5	292, 5963	315. 880	308, 490	288, 093	269,031	291, 164	236. 985
1917-18	213, 968	240, 841	232, 676	235, 874	2fi, 823	289, 10'	271.008	255,882	248, 101	321, 675	303, 351	27-398
1918-19	252, 8!	267, 09:	329, 364	383, 6×8	490, 009	439, 052		474, 609	453, 99	414, 270	363, 423	
1919	287, 278	306, 600	345. 630	380, 93.5	3:8, 392	360, 972	322. 739	280, 324	280, 305	248, 870	239, 908	238, 791
1920-2	192, 310	175, 14	155, 4633	183, 0.12	214, 569	221, 177	226: 287	251, 169	286, 83	270, 615	215, 590	199,992
A - .,1914-1920	210, 833	211, 126	222, 0.52	252, 385	24, 172	298, 734	301. 442	301, 220	293, 689	'297, 866	274, 934	242, 779
1921-22	163, 0662	377	6, 738	221, 749	-54, 683	247, 365	233. 412	212, 190	272, 921	260, 248	223, 488	190.133
1922-23	141, 9831	124, 321'	126, 607	176, 57 s	244, 359	288, 336	301, 138	341, 339	341, 24	310, 173	273, 062	206, 912
$1923-24$	$171,996$	$16 i, 278$	$161,916$	$214,511 \frac{2}{2}$	$27 i, 713$	313, 226						

Division of statistical and Historical Researet. Compiled frem Bartels Red Book and Chicago Daily Trade Bulletin. Includes "afoat" for United Kingdom, for Continent, and for orders; "in store" in United Kingdom, France, Germany, Belgium, Iolland, Russie, Canala, and United States, 1892, through Decenber, 1900. Argentina added in Jenuary, 1901; Australia in March, 1905. Beginning with March, 1916, France, Germany, Belginmi, Holland, and Russia omitted.
${ }^{1}$ Australia not included February, 1914, to January, 1915.
Table 24.-Wheat crop chessified by grades, ${ }^{1}$ crops of 1921-1923.
SPRING WHEAT.

State.	No. 1.	No. 2.		No. 3.			No. 4.			No. 5.			Below No. 5.	
	1921 1922:1923	1921	1922'1923	1921	1922	1923	1921	1922	1923	1921		1923	1921	19221923
	P.ct P.ct P.ct	P.ct	P.ct P.ct	P.ct	P.ct	P.ci		P.ct	P.ct	P.ct	P.ct	P.ct	P.ct	$P . c t P . c t$
Minnesota	5.6 49.414 .7	12.32	24.222 .1		14.5 ${ }^{1}$	28.0			18. 5	17.0	3.1		5. 3	1. 14.9
North Dakota	14. 053.510 .5	22. 2	26.418 .9	29.7	12.9	29. 4	20.5	4.8	22. ${ }^{\text {c }}$	10.0		12.1	3.6	. 56.4
South Dakota	15. 751.8 6. 2	22. 72	25. 217.7	30.5	15.330	30. 9	17.0		23.9	9.9		14.9	4.2	. 4 G. 4
Nebraska	11.210 .14 .0	29.6	37. S'14. 4	26. 9	37. 71	19. 1	17.4		26.8	9.4		18.7	5.5	1.517 .1
Montana	$74.784 .063 .2$	18.2	$12.120 .6$	5.6	3.1	12. 1	1.4	. 5	3.8		. 3			
Colorado.	$38.335 .925 .5$	37.3	$33.227 .5$	13.8	22.0	18.	7.2	6.1	10.7	1. 5	1.4	8.2	1.9	1. 410.1
Utah	33.631.0:27.2	40.1	44.948.2	17. 1	18.3 1	17. 3	5.6		5.9	3.4			. 2	. 4.4
Idaho.-.	37. 3, 35. 5, 37.6	41. 5	49.543 .1	13. 5	10.91	14.3	3. 8	2. 0	2. 3	2.7	${ }_{9}^{9}$		1.2	$\begin{array}{lll}1.0 & 1.7\end{array}$
W ashingto	22. 0 7. 2, 39. 2	44. 2	24.644.2	25.9,	30. 71	12.4	5. 9	20.0	3. 3	1.2	9.2	. 4	8	3.3 . 5
Oregon...	50.0 27. 6'60.6	37.6	38. 5.26 .9	9.6	23.2	9. 3	2.3	6.2	2. 1	. 5	2.5			2. 0.6
United States.	24.1 52.118 .8	25. 6	$\|$20.4	24. 2			$i 5.1$		16.3	7.9	2.0	8.8	3.1	.7:5.6

Division of Crop and Livestock Estimates

${ }^{1}$ Based on percentage estimates oi about 3,501 mill and elevator operators.

Table 24.-Wheat crop classified by grades, ${ }^{1}$ crops of 1921-1923-Continued. WINTER WHEAT.

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on percentage estimates of about 3,500 mill and elevator operators.
Table 25.-Dockage assessed on wheat at Minnesota markets, 1859-1922.

Year beginning Sept. 1.	Number of cars on which dockage is assessed.	Amount of wheat in cars. ${ }^{1}$	Amount of dockage assessed. ${ }^{2}$	Per-centage of docksessed.	Year beginning Sept. 1.	Number of cars on which dockage is assessed.	Amount of wheat in cars. ${ }^{1}$	Amount of dockage assessed. ${ }^{2}$	Per-centage of dockage assessed.
			Bushels.	Per cent.			Bushel	Bushels.	Per cent.
1899-1900	163, 824	$\begin{aligned} & \text { Busnels. } \\ & 212,971,200 \end{aligned}$	4, 365, 909. 4	2.0	1911-12	103, 399	134,418, 700	4,054, 964.1	3.0
1900-1.	111, 742	145, 264, 600	3, 558, 982.7	2.4	1912-13	182, 800	237, 440,000	6, 495, 493.3	2.7
1901-2					1913-14	137, 4837	178, 727, 900	6, 553, 356. 3	3. 7
1902-	129, 154	167, 900, 200	3, 190, 103.8	1.9	1914-15-	126, 897	164, 966, 100		3. 8
1903-4	111, 0150	144, 319, 500	3, 175, 029.0	2.2	1915-16-	219, 164	284, 914, 500	10, 8266, 093.1	3.8
1904	109, 160	141, 908, 000	2, 743, 554.6	1.9 2.9	1916-17-	-94,942	115, 479, 000	4, 041, 765. 0	3. 5
${ }_{1906-7}$	140,546 134,298	174, 887 , 400	5, 2988, 5877.9	3.3	1918-19.	157, 452	204, 687, 600	4,776, 044.0	2.3
1907-8	95, 917	124, 692, 100	4, 218, 749.4	3.4	1919-20 -	85, 657	111, 354, 100	5, 010, 934. 5	4.5
1908-9	117, 909	153, 281, 700	3, $525,479.1$	2.3	1920-21-	127, 976	166, 368, 800	7, 486, 596.0	4. 8
1909-10--	150, 699	195, 908, 700	5, 354, 837.8 $2,272,276.5$	1. 1.9	1922-23.	137, 668	180, 268, 400	7, 589, 299. 6	4.2
1910-11	91, 995	119, 593, 500	2, 272, 276. 5	1.9	1922-23 -	138, 688	180, 208, 400	7, 58, 29.6	

Division of Statistical and Historical Research. Compiled from Minnesota State Grain Inspection Department data.

$$
{ }^{1} \text { Based on } 1,300 \text { bushels to the car. }
$$

${ }^{2}$ Based on 60 pounds to bushel.

Table 26.-Wheat: Classification of cars graded by licensed inspectors, all inspection points.

Year beginning July 1.	Total of all classes and subclasses under each grade, annual inspections 1917-1922.													
	Receipts.							Shipments.						
	No. 1.	No. 2.	No. 3.	No. 4.	No. 5.	Sample.	Total.	No. 1	No. 2.	No. 3.	No. 4.	No. 5.	Sample.	Total.
1917-18.	Cars. 60, 848	Cars. 91, 143	Cars. 59, 421	$\begin{aligned} & \text { Cars. } \\ & 23,435 \end{aligned}$	Cars. 15, 766	$\begin{aligned} & \text { Cars. } \\ & 15,402 \end{aligned}$	$\begin{gathered} \text { Cars. } \\ \text { 266, } 015 \end{gathered}$	$\begin{aligned} & \text { Cars. } \\ & 17,926 \end{aligned}$	$\begin{aligned} & \text { Cars. } \\ & 26,559 \end{aligned}$	Cars. 17, 833	$\begin{gathered} \text { Cars. } \\ 6,503 \end{gathered}$	Cars.	Cars.	$\begin{aligned} & \text { Cars. } \\ & 76,745 \end{aligned}$
1918-19.	300, 264	203, 965	63, 827	26,660	10, 017	18,247	622,980	246, 577	87,173	17, 106	-6, 496	1,519 1,59	-3, ${ }_{3}^{3,181}$	357, 052
1919-20.	45, 427	192, 003	187, 533	101, 279	49, 423	28,799	604, 464	16,602	143, 770	86,744	18,460	6,335	4,648	276, 559
1920-21.	153, 069	241, 339	124, 184	49, 703	38,367	49,675	656, 337	44, 837	268, 752	44, 407	18,889 7	8,930	7,724	384, 539
1921-22	91, 844	269, 250	147,537	51,763	27, 690	59, 290	647, 374	21, 414	255, 512	34, 243	7,864	4, 753	11, 662	335, 448
1922-23.	138, 020	210, 527	131, 368	48, 466	15, 626	38, 998	583, 005	28,387	226, 008	37,610	6, 421	2,823	6,495	307, 744
Class.	Total inspections, by grade and class, July 1, 1922, to June 30, 1923.													
Hard Red Spring	85, 187	21,703	11, 584	5,380	2,276	1,324	127, 454	20,067	14,753	2,189	641	265	288	38, 203
Durum.	9,776	28, 983	9, 213	4,646	1,290	1,016	54, 924	2,076	26, 660	1,534	710	233	162	31, 375
Hard Red Winter.	21,302	94, 155	66, 412	20, 271	6,282	19, 087	227, 509	4, 189	103, 827	21,673	2, 513	1,021	3,077	136, 300
Soft Red Winter	2,779	22, 965.	22, 224	9, 621	2, 962	12, 231	72, 782	608	28, 511	8,523	1,413	698	1,434	41, 187
White Wheat	5,695	10, 860	6, 416	1,786	${ }^{4} 406$	1253	25, 516	319	11, 319	${ }^{8} 516$	${ }^{1} 4$	2	1, 2	12, 162
Mixed.	13,281	31,861	15, 509	6,762	2,410	4,987	74, 810	1,128	40, 938	3,175	1,140	604	1,532	48, 517
Year beginning July 1.	Total of all classes and subclasses under each grade, annual inspections 1917-1922.													
	Per cent.													
1917-18.	22.9	34.3	22.3						34.6		8.5	5. 6	4.7	100
1918-19-	48.2	32.7 31.8	10.2 31.0	4.3 16.7	1.6 8.2	3.0 4.8	100	69.1	24.4	3.9	1.3	0.4	0.8	100
1920-21.	23. 3	36.8	18.9	7.6	5. 8	4.8 7.6	100	11.7	52.0 69.9	31.3 11.5	6.7 2.8	${ }_{2}^{2.3}$	${ }_{2}^{1.7}$	100 100
1921-22-	14.2	41.6	22.8	8.0	4.3	9.1	100	6. 4	76.2	11. 2	2.6 2.3	1.4	3.5	100
1922-23	23.7	36.1	22.5	8.3	2.7	6.7	100	9.2	73.5	12.2	2.1	0.9	2.1	100
Class.	Total inspections, by grade and class, July 1; 1922, to June 30, 1923.													
Hard Red Spring.	66.8	17.0	9.1	4. 2	1.8	1.1	100	52.5	38.6	5.7	1.7	0.7	0.8	100
Durum-1....	${ }_{9}^{17.8}$	52.8	16.8	8.5	2.3	1.8	100	6.6	85.0	4.9	2.3	0.7	0.5	100
Soft Red Winter.-	3.8	31.6	29.2 30.5	13. 29	4.1	$\begin{array}{r}8.4 \\ 16.8 \\ \hline\end{array}$	100	3. 1.5	76.2 69.2	15.9 20.7	1.8 3.4	0.7 1.7	2.3 3	100
White Wheat	22.3	42.6	25.1	7.0	1. 6	16.4 1.4	100	1. 2.6	${ }_{93.1}^{69.2}$	4.3	3.4	1.7	3.5	100 100
Mixed.	17.8	42.6	20.7	9.0	3.2	6.7	100	2.3	84.4	6.5	2.4	1.2	3. 2	100

Grain Division

Table 27.-Wheat: Exports from United States, 1910-1924. plourincluded.

Year ending June 30.	July.	Aug.	Sept.	Oct.	Nov.	Dee.	n.	b.	Mar.	Apr.	May.	June.	Total:
			beg										
	$\begin{aligned} & b u s h . \\ & 4.629 \end{aligned}$	butsh.	12, 472	bersh.	brish.	bush.	bush.	${ }_{\text {3,527 }}^{\text {bush. }}$		5,330	4,977	bush. $2,864$	bush. $87,364$
1910	3, 130		6, 186				7,000	5,120		5, 244		3,960	69,315
1911-12		0, 177	10, 700	8,820	6, 574	7,980	5, 814	5, 0334	5, 852	4,923	4,388	3,146	
1912-13	12,996	28, 3461	16, 178	20, 745	$\stackrel{1}{6,155}$	14, 62	${ }^{13,445}$	9,194 7,556	6,799	10,820	11, 178	$\begin{array}{r} 9,148 \\ 11,247 \end{array}$	$\begin{aligned} & 142,867 \\ & 145,593 \end{aligned}$
A verage 1910	6,000	12, 243	12,771	12,805	10,419	10,053	8,18	6,088	6,192	6,671	7,462	6,073	104, 964
1914-15---........-													
15		,		23, 768	9, 26	2, 4	20,805	21,066	4,	22, 424	20, 59	2,	43, 119
1916-17	10, 38	14, 921	8,	16,	9,	,	2, 00	13, 561	,	8,50	16, 21	,	203, 576
1917-18			718	11, 522	10, 618	5, 300	12, 448	10, 494	12, 2	12, 384	10, 91	1,375	32, 580
1918	11, 156	19, 494	8, 348	24, 532	1, 99	33, 540	22, 107	15, 84	20, 31	31, 130	26, 30	,	05
1939			, 28	2,977	23,396	5,	12.27	10,581	16,88	2,720	25, 80	21, 752	222, 562
1920-2	34,656	32, 678	34, 996	43,034	30,990	30, 18	27, 105	23, 077	20,766	24,800	31, 62	32, 19	366, 103
A verage 1915-1921.	17,553	20,910	24,339	23, 661	21,594	24,384	21,551	18,007	19,261	21,738	21,690	20, 714	255,402
1921-2	3,			25, 21		15, 014	14,982	10,991	14,371	10,244	14,267	18,200	$\overline{279,169}$
1922	19, 124	38,	1,	25, 0	17, 579	16, 428	12, 519	12, 197	10,725	10, 195	14, 396	12, 881	221,906
1923-24 ${ }^{1}$	12, 822	19, 929,	22, 465	18,60	12, 147	12,9	12,	10,019					

FLOUR NOT INCLUDED.

1909-10	2,783	6,157	7,156	8,566	8, 427	3,727	1,428	1,166	1,204	2,953	2,487	626 46, 680
1910-11	2, 862	2,131	2, 226	3,261	2,505	3,409	2,802	1,347	1,883	1,315	1,371	617 23, 731
1911-12	3, 260	6,253	5, 088	3,350	2, 299	3,084	2,043	1,244	1,352	1,386	603	199 30, 161
1912-13	535	5, 800	13, 153	15, 255	10,584	9,490	8,441	4, 357	4,569	6,590	7,159	5,661 91, 594
1913-14	9, 404	24,346	11,971	7, 434	3, 851	5,727	4,985	3,947	3, 457	3, 066	6,810	7,395 92,393
A verage 19	3, 369	8,937	7,919	7,573	5,533	5,087	3,940	2,413	2,493	3,062	3,686	2,900 56,912
1914-15	26, 357	24, 341	25,867	19,578	19, 182	28,876	24, 008	24, 332	20,541	22,758	14,227	9,396 259, 563
1915-16	7,956	16, 838	21, 526	18, 040	13, 500	12, 624	13, 461,	15, 054	17, 294	16,506	14, 571	5, 905173,275
1916-17	6,355	11, 060	13, 108	11,985	14, 279	14, 473	18, 906	10, 384	7, 885	14, 233	11, 359	15,804 149, 831
1917-18	5, 059	5,170	2, 613	5, 415	4, 878	4,491	1,914	1,048	1, 688	17, 024	1453	.467 34, 120
1918-19	5 225	15, 120	26, 848	21,319	16, 087	25, 084	9,943	5,992	10,208	17, 338	14, 028	$16,390178,582$
1919-20	5, 834	12, 941	17, 090	13, 687	15, 116	9,520	8, 480	4,938	6, 939	4, 176	10, 864	$12,846122,431$
1920-21	23,838	27,694	30, 771	35, 803	26, 035	25,903	21,345	18,469	14,601	17, 641	25, 932	25, 235293,267
A verage 1915-1921.	10,803	16,166	19,689	17,975	15,582	17, 282	14,008	11, 474	11,308	13,382	13, 048	12, 292173,010
1921-22	24,842	58,537	30,842	$\overline{18,206}$	13,955	10,451	10,038	5, 577	7,645	4.856	9,366	14,006 208,321
1922-23 1	14,979	33, 703	25,987	18,282	16,577	9, 676	7,296	5,991	4,291	4,943	9, 973	9, 252 154,950
1923-24 1	8, 843	14, 198	15, 408	9, 239	4, 148	4,941						

Division of Statistical and Historical Research. Compiled from Monthly Summary of Foreign Commerce, Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Preliminary.
Table 28.-Wheat: Production and exports; inspection for export, by classes, July 1, 1920-December 31, 1923; and production, 1920-192s.

Class.	July 1, 1920, to June 30, 1921.		July 1, 1921, to June 30, 1922.		July 1, 1922, to June 30, 1923.		July 1, 1920, to June 30, 1923. ${ }^{1}$		July 1, 1923, to Dec. 31, 1923.	
	$\left\|\begin{array}{c} \text { Esti- } \\ \text { mated } \\ \text { produe- } \\ \text { tion. } \end{array}\right\|$	Exports, gross.		$\underset{\text { Ex- }}{\text { ports, }}$ gross.	Estimated produc- tion. 2	$\underset{\text { ports, }}{\text { Ex- }}$ gross.	Estimated produt ${ }^{2}$ tion. ${ }^{2}$	Exgross.	Estimated produc- tion.	
Reported inspec-	1,000	$\begin{gathered} 1,000 \\ \text { bughels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { brishels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushets. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { buthels. } \end{gathered}$	$1,000$ butshels.	$\left.\begin{gathered} 1,000 \\ \text { bushels } \end{gathered} \right\rvert\,$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels.
Hard red spring.	153,878	10, 081	140, 163	20, 145	180, 975	8,718	158, 339	12,982	136,973	765
Darum.	41, 954	4, 872	53, 324	8, 697	87, 023	12, 271	60, 767	8,613	46, 618	400
Harà red winter	294, 536	132, 701	276, 629	78; 477	206, 222	51, 654	278, 929	87, 810	219, 785	15,568
Soft red	247, 102	34, 281	257, 818	18, 758	$\begin{array}{r}243,438 \\ 89 \\ \hline\end{array}$	20,848	242 97,689	$\begin{array}{r}24,708 \\ 5 \\ 5 \\ \hline 182\end{array}$	117,419	10,054
White	95, 557	68, 618	107, 371	18,963		25, 047	97,	37, 542	17,	3, 154
Typesample		26, 546		42, 894				23, 146		
Not classified		87,798		90, 475		89, 785		89, 352		
Tota	833,027	366, 077	814,	279, 407	867, 598	221,923	838, 510	289, 13	785, 7	99, 005

Division of Statistical and Historical Res earch.
 ${ }^{1}$ Three-year average.

${ }^{2}$ Based on estimate of percentage classification by States as reported in 1921, Division Crop and Livestock Estimates.
${ }^{9}$ From July 1, 1921, to Jume 30, 1923, 70 per cent of the exports of mixed wheat is estimated as durum. Mixed wheat exports in 1920-21 were largely soft and hard winter wheats shipped through Calf ports: $20,030,000$ bushels of durum were estimated mixed with spring wheat in 1920-21.
+Prior to July 1; 1922, practically all wheat exported from Pacific coast was shipped on basis of "Portland (Oreg:) Chamber of Commerce type sample." Since July 1, 1922, all wheat exported from Pacific coast has been inspected on the basis of Federal grades and classes.
Exports of wheat other than reported as "Federal inspected" and flour in terms of wheat.

Table 29.-Wheat, including flour: Exports from the United States by customs districts, 1921-1923.

District.	Year ending June 30.								
	Wheat.			Wheat flour.			Wheat, including flour.		
	1920-21	1921-22	1922-23	1920-21	1921-22	1922-23	1920-21	1921-22	1922-23
	1,000 bushels.	1,000 bushels.	1,000 bushels.	1,000 barrels.	1,000	1,000 barrels.	1,000 bushels.	1,000 bushels.	1,000 bushels.
Canadian and Lake ports \qquad	bushels.	bushels.	bushels.	barrels. 16	barrels.	barrels.	bushels. $12,419$	bushels.	bushels. $32,571$
Atlantic coast.	87, 636	45, 294	53, 790	10,353	7,782	6, 935	134, 225	80,314	84,998
Gulf coast	163, 096	86, 091	48, 239	2,717	3,757	3,439	175, 324	102,999	63,716
Mexican border	, 519	1,111	726	141	81	92	1, 152	1, 474	1,140
Pacific coast.	29, 670	44,466	19,825	2,953	4,093	4,372	42,857	62, 883	39, 498
Total	293, 268	208, 321	154, 951	16, 180	15,797	14,883	365, 977	279,407	221, 923

Division of Statistical and Historical Research. Compiled from reports of the Bureau of Foreign and Domestic Commerce.

Table 30.-Wheat, flour not included: Imports into the United States from Canada, 1918-1923.

Year beginning July 1-	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bush.												
1913		${ }^{(1)}$	$\left.{ }^{2}\right)$	231	104	127	885	175	235	13	73	43	1,890
1914-15	35	69	7	3	102	5	14	47	35	13	19	21	270
1915-16	60	441	348	1,755	796	470	386	218	194	258	504	243	5,673
1916-17	128	394	943	1,507	2, 606	838	805	1,337	2,993	3,125	5,459	3,574	23, 709
1917-18	1,954	1,398	840	1,712	5,674	3,732	7,339	27	218	71	958	. 761	24,684
1918-19	508	24	27	55	176	168	39	42	44	281	1,474	1, 893	4,731
1919-20	118	28	143	564	404	309	753	534	526	50	410	124	3, 963
1920-21	36	170	1,842	9,800	9, 522	11, 185	4,504	4, 403	2, 671	4,564	1,902	89	50, 688
1921-22	713	239	81	878	1, 184	2, 052	3, 120	199	2, 673	483	1,231	1,610	14, 463
1922-23	3, 070	1,152	782	2, 566	3, 176	2,616	252	211	345	2, 812	946	122	18, 050
1923-24	1,836	596	1,234	2, 832	5, 264								

Division of Statistical and Historical Research. Compiled from Monthly Summary of Foreign Commerce, Bureau of Foreign and Domestic Commerce.

$$
{ }^{1} 37 \text { bushels. } \quad 2297 \text { bushels. }
$$

Table 31.-Wheat, Canadian: Shipments through the United States in transit for export, 1908-1923.

Year ending June 30.	July.	August.	September.	October.	November.	December.
	Bushels.	Bushels.	Bushels.	Bushels.	Bushels.	Bushel
1907-8.	2, 008, 348	2, 374, 791	1, 354, 539	746, 356	596, 582	2, 323, 690
1908-9	196, 948	375, 220	293, 334	1,411,966	4, 976, 070	5, 661, 697
1909-10	149, 079	47, 072	128, 461	2, 271, 026	3, 936, 849	6, 815, 713
1910-11	405, 777	369, 879	169, 202	2, 454, 251	4, 103,756	2, 853, 058
1911-12	1,245, 123	1,556,059	1,843, 632	2, 850, 293	6, 817, 884	5,741,686
1912-13.	4, 798, 849	3, 267, 057	1,103, 581	822, 445	5,791,397	6,947, 147
1913-14	3, 022, 204	1,607,918	576, 187	8, 394, 434	12,742, 195	10, 300, 988
1914-15	1,970, 116	693, 347	847, 479	2, 587, 898	2, 664, 700	3, 649,473
1915-16	1,786, 025	1,196, 921	2,094, 792	14, 156, 283	24,039,780	22, 034, 619
1916-17	17, 214, 550	13, 420, 235	7, 912, 271	3, 382, 021	6, 814, 761	4, 790, 585
1917-18.	4, 937, 699	3, 238, 134	45, 032	747, 333	3,772,431	5, 479,905
1918-19	206, 896			351,714	61,783	3, 541, 148
1919-20.					2, 532, 429	2, 023, 286
1920-21.				398, 482	7, 384, 934	11, 984, 856
1921-22.	185, 320	472, 937	1, 261, 641	8, 552,416	10,745, 169	14, 060, 184
1922-23.	4, 680,890	2, 994, 596	2, 299, 062	3, 911, 564	17,618, 609	17, 895, 393

Table 31.-Wheat, Canadian: Shipments through the United States in transit for export, 1908-1923-Continued.

Year ending June 30.	January.	February.	March.	A pril.	May.	June.	Total.
1907-8	Bushels. 3, 388, 139	Bushels. $2,292,873$	Bushels. 1, 432, 209	Bushels. $630,401$	Bushels. $1,434,751$	Bushels. $1,180,066$	Bushels. 19, 762, 745
1908	3, 3689,982	1, 923, 038	1, 849, 464	1, 058, 552	1, 469, 758	1, 701, 459	23, 487, 488
1909-10	4, 114, 828	2, 260, 732	1, 539, 623	1, 407, 327	3, 367, 419	1, 091, 342	27, 129, 471
1910-11	1,380, 745	1, 847, 176	2,932, 295	1, 790, 647	3, 280, 249	2, 425, 193	$24,192,228$
1911-12	4,962, 375	3, 766, 567	3, 606, 272	5, 092, 380	7, 645, 257	10, 290, 325	55, 417, 853
1912-13	9, 224, 642	5, 134, 431	3, 660, 099	3, 243, 337	5, 513, 141.	7,243, 576	56, 749, 702
1913-14	9, 618, 935	6, 675, 743	6, 499, 831	3, 605, 203	5, 766, 809	2, 832, 951	71, 643, 398
1914-15	3,493, 415	3, 615, 553	3, 654, 029	3, 540, 711	2, 927, 745	2, 513, 660	32, 158, 217
1915-16	17, 440, 067	13, 483, 801	12, 426, 937	9, 449, 951	$18,511,435$ $8,008,279$	$2,095,577$ $17,087,040$	$138,716,188$ $104,953,682$
1916-17	8, 474, 752	4, 557, 824	7,512, 190	5,779, 174	8, 008, 279	$17,087,040$ 96,248	$104,953,682$ $38,207,776$
1917-18	6, 372, 455	3, 239, 331	4, 854, 521	$3,856,696$ $4,107,282$	$1,567,991$ $3,158,907$	96, 248	$\begin{aligned} & 38,207,776 \\ & 16,961,663 \end{aligned}$
1918-19	$1,862,786$ $1,552,458$	$1,587,948$ 174,000	2, 083, 199.	4, 107, 282 $1,428,718$	$3,158,907$ 10,330		16, 961, 603
1920-21	10, 423, 280	6, 642, 019	5, 609, 961	3,747, 239	2, 180, 544	1, 136, 199	49, 507, 524
1921-22	15, 439, 396	6, 498, 342	9,362, 172	4, 240, 705	8, 113, 753	4, 255, 370	83, 187, 405
1922-23	15, 552, 317	13, 772, 838	8,038, 450	11, 521, 340	5, 498, 122	6,906, 186	110, 689, 367

Division of Statistical and Historical Research. Compiled from data of Bureau of Foreign and Domestic Commerce.

Table 32.-Wheat, including flour: International trade, 1910-1923.

Country.	Year ending July 31.									
	Average, 1910-1914.		1920-21		1921-22		1922-23, preliminary.			
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.		
PRINCIPAL EXPORTING COUNTRIES.	$\begin{array}{r} 1,000 \\ \text { bushels. } \\ 639 \\ 3 \\ 7 \\ 208 \end{array}$	1,000 bushels.	1,000 bushels. 6, 530	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 985 \end{gathered}$	1,000 bushels. 1, 698	$1,000$ bushels: 5, 884	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 14,167 \end{gathered}$	1,000 bushels. 22,542		
Algeria----		$\begin{array}{r} 5,936 \\ 95,243 \end{array}$		193, 099		62, 399	-----	$\begin{array}{r} 141,930 \\ 49,625 \end{array}$		
Argentina ${ }^{3}$		49, 732		87, 340	---72-	116, 466	------777-			
Australia ${ }^{\text {British Indi }}$		49, 488	$\begin{array}{r}5 \\ 3 \\ \hline\end{array}$	-14,945	16, 728	2, 810		28, 8.5		
Bulgaria.-		11, 182	${ }^{(5)}{ }_{455}$	1,758167,217	${ }^{(6)} 372$	4,477 185,768	------781-	4274, 886		
Canada.	448	95, 828	455			185, 768	4381			
Chile ${ }^{3}$		$\begin{array}{r} 2,593 \\ 49,116 \end{array}$	44 241	1, 368	6 5	2, 150	----1224	5,154		
Hungary			241	235 3,692	5	9, 2,793	1224			
Yugoslavia	$\begin{array}{r} 196 \\ 556 \\ 1,607 \end{array}$	$\begin{array}{r} 54,630 \\ 164,862 \\ 110,076 \end{array}$	16	$\begin{aligned} & 3,692 \\ & 1,400 \end{aligned}$	${ }^{5}$)	$\begin{aligned} & 2,793 \\ & 3,494 \end{aligned}$	--------	1,595		
Russia.			---75,754	361,839	19,425	-267, 855	${ }^{4} 19,945$	4221,923		
United States										
PRINCIPAL IMPORTING COUNTRIES.										
Austria.	$\begin{aligned} & 11,402 \\ & 73,398 \\ & 20,495 \end{aligned}$	$\begin{array}{r} 871 \\ 23,045 \end{array}$	14,348 34,056 1,895		18,739 70 45,289 4,783		$\begin{array}{r} 12,986 \\ 441,025 \end{array}$	$\begin{array}{r} 199 \\ \times 1,766 \end{array}$		
Belgium										
Brazil ${ }^{3}$		$\begin{aligned} & 15,879 \\ & 18 \\ & \hline 197 \end{aligned}$		$\begin{array}{r} 250 \\ 22 \\ 481 \end{array}$	$17,230$		-11,947	--11,592		
Czechoslova	$\begin{aligned} & 7,155 \\ & 8,244 \end{aligned}$	---- 597	18, 027		1,408 4,191	275	4 6, 249	$\begin{array}{r} 1313 \\ +20 \end{array}$		
Egypt.			11, 348		6,918	(5) 328	4 7, 326			
Finland			2,69446949		19, 779	2, 632	444,016	$\begin{array}{r} 2,779 \\ 623 \end{array}$		
France.	$\begin{aligned} & 44,822 \\ & 91,338 \end{aligned}$	1,20323,264		1,134						
Germany			60,378 10,673	6604 137	$\begin{aligned} & 70,681 \\ & 13,233 \end{aligned}$	$\begin{array}{r} 1,176 \\ 5 \end{array}$	$\begin{aligned} & 42,676 \\ & 418,479 \end{aligned}$	- 41,776		
Greece	$\begin{array}{r} 56,784 \\ 4,116 \end{array}$	$-7,-782$28		134 128	101, 030	51251	$\begin{array}{r} 112,003 \\ 14,092 \end{array}$			
Italy			99,621 5,887		101, 24,815			$\begin{array}{r} 1488 \\ 15 \\ 43,365 \end{array}$		
Japan.			5, 868		24,815		1871			
Netherlands	$\begin{array}{r} 80,702 \\ 3,674 \end{array}$	-58, 435	21,5333,822	2,7286	$\begin{array}{r} 22,974 \\ 5,090 \\ 1,270 \end{array}$	3,286	25,93546,43372,474			
Norway.						3 94		129		
Poland.		-------219-				94	72,474			
Portugal------------	2,630				-7,282	257				
Spain --.	6,262	70 23	20,558 6,863	299	4, 547	699	48,976	4703		
Sweden--------------	7,080 16,937	23 14	$\begin{array}{r} 12,883 \\ 1,930 \end{array}$	299	4, 13,216	${ }^{(5)}$	${ }^{8} 16,017$	11		
Switzerland.---------	1,746	960		618	13, 645	2, 266	12,001	1308		
Unionof South Africa ${ }^{3}$	$\begin{array}{r} 6,274 \\ 220,570 \end{array}$	$\begin{array}{r} 253 \\ 3,768 \end{array}$	$\begin{array}{r} 8,533 \\ 201,824 \end{array}$	$\begin{array}{r} 114 \\ 2,843 \end{array}$	$\begin{array}{r} 1,863 \\ 212,186 \end{array}$	$\begin{array}{r} 81 \\ 5,214 \end{array}$	$\begin{array}{r} 2,920 \\ 4209,290 \end{array}$	$\begin{array}{r} 17 \\ 46,465 \end{array}$		
United Kingdom.-.--										
Total countries reported	674, 677	805, 578	673, 984	846, 144	645, 611	685, 133	615, 372	746, 866		

Division of Statistical and Historical Research. Compiled from International Institute of Agriculture, except figures with footnotes (3) and (4), which are compiled from official sources.

[^132]Table 33.-Wheat, including four: Net imports and net exports of principal countries, 1907-1923.

Year ending July 31.	Imports.						Exports.					
	United Kingdom.	Belgium.	France.	Germany.	Italy.		United States. ${ }^{1}$	Canada. ${ }^{1}$	Argentina. ${ }^{2}$	Australia. ${ }^{3}$		$\begin{aligned} & \text { Rus- } \\ & \text { sia. } \end{aligned}$
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	butsh.	bush.										
1906-7	208, 504	49, 446	13, 404	71, 380	44, 601	18, 989	146, 110	40, 894	89, 128	37, 884	31,930	97, 655
1907	206, 300	41, 172	6,850	74, 667	91, 804	18,767	162, 524	51, 274	104, 955	36, 270	20, 089	59, 945
1908-9	189, 657	45, 772	18	60, 178	44, 933	17, 062	113,812	56, 449	139, 354	20, 381	26, 819	102, 789
1909-10	217, 317	41, 926	4, 278	75, 737	40, 230	22, 010	86, 549	67, 797	98, 273	37, 514	34, 170	236, 876
1910-11	209, 555	56, 051	88, 046	70, 276	59, 541	22, 474	68, 165	61, 582	75, 050	54, 180	57, 502	230, 122
1911-12	209, 531	55, 359	26, 684	58, 550	47, 226	18, 942	76, 276	92, 800	89,986	63, 213	56, 579	79, 460
1912-13	237, 498	48, 077	44, 800	68,950	72, 760	23, 092	141, 598	114,927	103, 253	40,316	66, 922	105, 954
1913-14	210, 115	49, 104	54,503	66, 860	45, 745	24, 818	143, 207	132, 291	109, 634	53, 099	33, 214	169, 116
1914-15	204, 749	${ }^{4}$)	61, 779	${ }^{4}$	59,671	30, 119	331, 750	93, 265	39, 278	5, 022	37, 053	7, 576
1915-16	211, 983	(4)	100, 375	(4)	77, 687	22,848	235, 929	244, 299	98, 155	29, 737	8,545	13, 774
1916-17	1207,206	(4)	117, 649	$\left.{ }^{4}\right)$	${ }^{1} 156,128$	124,783	178, 649	192, 522	91, 625	68, 621	147,305	${ }^{4}$)
1917-18	1175,486	(4)	74, 141	${ }^{4}$)	${ }^{1}$ 194,104	1 1, 806	101, 363	174, 105	40, 043	40, 158	147,416	$\left.{ }^{4}\right)$
1918-19	1 166,869	(4)	73, 189	(4)	1264,645	14, 198	276, 113	88, 256	119, 026	66, 758	15,885	(4)
1919-20	211, 692	29,786	87, 606	(4)	79, 535	18, 648	214, 369	98, 051	137, 351	106, 243	2, 142	(1)
1920-21	198,981	32, 161	68, 316	59,773	99, 378	18, 805	308, 679	168, 922	193, 098	87, 336	14, 942	$\left({ }^{4}\right)$
1921-22	206, 972	40,506	17,147	69,505	100, 518	19,689	262, 155	179, 448	62, 399	116, 464	13,938	(4)
1922-23	167, 543	39, 771	45, 896	38, 020	117, 687	27, 245	201, 978	274, 505	141, 930	49, 594	28, 862	(${ }^{4}$

Division of Statistical and Historical Research. Compiled from International Yearbook of Agricultural Statistics, 1915-16, 1922, and from official sources.
1 Year ending June 30.
${ }^{2}$ Calendar years 1906-1922.
${ }^{3}$ Calendar years 1906-1913; years ending June 30, 1915-1923.
Table 34.-Wheat: Farm price per bushel, 1si of month, United Siates, 1908-1923.

Year begining July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted av.
1908	$\begin{gathered} \text { Cts. } \\ 89.5 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 90.4 \end{gathered}$	$\begin{gathered} C t s . \\ 88.7 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 90.4 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 91.5 \end{gathered}$	$\begin{aligned} & \text { Cts. } \\ & 92.8 \end{aligned}$	Cts. 93.5	$\begin{gathered} C t s . \\ 95.2 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 103.9 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ \text { 107. } 0 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 115.9 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ \text { 123. } 5 \end{gathered}$	Cts. 94.8
1909-10	120.8	107. 1	95.2	94. 6	99.9	98.6	103. 4	105. 0	105. 1	104.5	99.9	97.6	100.9
1910-11	95.3	98.9	95.8	93. 7	90.5	88.3	88.6	89.8	85.4	83.8	84.6	86.3	91.6
1911-12	84.3	82.7	84. 8	88. 4	91.5	87.4	88.6	90.4	90. 7	92.5	99.7	102.8	88.8
1912-13.	99.0	89.7	85.8	83.4	83.8	76. 0	70. 2	79.9	80. 6	79.1	80.9	82.7	83.2
1913-14	81.4	77. 1	77.1	77.9	77.0	79.9	81.0	81.6	83. 1	84.2	83.9	84.4	79.4
Av. 1909-1914	96.2	91.1.	87.7	87.6	88.5	6.08	86.4	89.3	89.0	88.8	89.8	90.8	88.8
1914-15	76.9	76. 5	93.3	93.5	97.2	98.6	107.8	129.9	133.6	131.7	139.6	131.5	102.0
1915-16	102.8	106. 5	95.0	90.9	93.1	91.9	102.8	113.9	102.9	98.6	102.5	100. 0	98.3
1916-17	93.0	107.1	131.2	136. 3	158. 4	160.3	150.3	164. 8	164. 4	180. 0	245.9	248. 5	150.8
1917-18	220.1	228.9	209.7	200. 6	200. 0	200. 8	201.9	201. 2	202. 7	202. 6	203.6	202. 5	206.4
1918-19	203.2	204. 5	205. 6	205. 8	206. 0	204. 2	204.8	207.5	208. 0	214.2	231.1	228. 4	207.8
1919-20	222.0	217.2	205. 7	209. 6	213. 2	214.9	231.8	235.7	226.6	234.0	251.3	258.3	222.3
1920-21	253.6	232. 2	218. 7	214. 3	188.0	143. 7	149.2	149.3	147.2	133.5	110.7	127.4	184.5
Av.1914-1921	167.4	167.6	165. 6	164. 4	165.1	159.2	164. 1	171.8	169.3	170.7	183.5	185. 2	167.4
1921-22	112. 2	104. 8	101. 2	105. 6	94.2	92.6	93.3	97.0	116.9	117.0	121.0	116.5	102.9
1922-23	102. 6	97.1	88.1	90.4	97.8	100. 7	105.6	103. 7	105. 1	106.9	109.8	106.6	98.3
1923-24	95.1	84.2	88.7	93. 2	95. 1	92.3							

Division of Crop and Livestock Estimates.

Table 35.-Wheat: Farm price per bushel, December 1, calendar years, 1908-1925, and value per acre 1923.

State.	1808	1909	1910	1911	1912	[1913	$\begin{aligned} & \text { AV. } \\ & 1909- \\ & 1913 . \end{aligned}$	-1914	1915	1916	1917	1918	1919	1920	$\begin{gathered} \text { Av. } \\ 1914- \\ 1920 . \end{gathered}$	1921	1922	1923	
	Cts.	Cts	Cts.	Dolls.															
	104	110	102	110	103	101	105	109	112	187	235	237	220	230	190	175	170	118	30. 68
Vt	99	120	103	99	98	100	104	100	107	165	236	231	227	200	181	125	145	140	29. 49
N.	99	111	96	95	99.	93	99	108	101	168	210	215	215	175	170	108	118	110	22.22
N.	101	109	98	95	98	96	99	109	106	164	213	215	220	205	176	113	110	110	22.00
Pa	99	169	-92	92	95	91	96	104	104	162	205	214	216	170	168	103	110	100	19.00
De	100	104	90	90	96	88	94	109	109	162	208	222	213	171	171	98	108	100	18.00
M	98	110	92	91	95	89	95	106	105	171	207	219	215	165	170	103	112	109	19.20
Va	101	115	97	96	101	96	101	108	108	165	216	219	224	180	174	116	122	110	14. 63
W.	103	113	102	102	101	100	104	108	108	160	217	221	220	190	175	117	122	116	15. 08
N. C	107	127	110	102	111	106	111	117	120	176	234	230	233	210	189	144	136	128	14. 21
S.	130	146	126	123	119	130	129	145	138	189	290	260	258	255	219	208	157	154	16. 94
Ga	121	145	130	114	122	120	126	134	129	186	290	266	263	240	215	175	150	147	13. 53
Ohio	99	112	90	91	98.	90	96	105	104	169	204	212	212	165	167	108	117	99	18. 02
Ind.	98	110	87	89	93	88	93	103	102	169	203	208	210	167	166	106	112	98	16. 17
	97	104	88	89	88	86	91	101	100	165	201	208	210	161	164	100	107	94	16. 92
Mich	97	112	89	88	96	89	95	103	101	167	204	209	210	168	166	104	115	96	16. 32
Wis.	92	96	92	90	83	82	89	109	95	160	202	205	215	154	162	97	103	98	16. 27
Minn	94	96	94	92	73	76	86	102	90	162	202	204	250	130	163	97	101	95	11. 40
Iowa.	88	93	85	88	78	76	84	96	87	156	199	200	200	140	154	88	99	89	16. 20
Mo	93	105	87	88	90	84	91	98	98	165	195	205	209	160	161	99	105	97	12,61
N. Dak	92	92	90	89	69	73	83	101	87	152	200	203	241	130	159	85	90	86	6.11
S. Dak	92	90	89	91	69	71	82	94	86	150	196	199	240	115	154	87	92	81	7.78
Nebr	84	89	80	87	69	71	79	95	84	160	195	197	202	131	152	83	98	83	8. 22
Kans	88	96	84	91	74	79.	85	95	89	164	198	199	215	130	156	93	98	91	9.19
Ky	98	111	93	92	99	96	98	103	105	166	212	214	211	191	172	115	118	108	13. 39
Tenn	98	115	98	96	100	98	101	105	108	169	222	214	222	195	176	120	123	115	11. 73
Ala	107	130	113	120	113	115	118	126	125	185	270	245	245	230	204	153	160	130	13. 00
Miss	103	121	116	100	97	95	106	125	105	175	300	250	250	213	203	130	145	110	16. 50
Tex	98	118	98	100	93.	94	101	99	107	173	210	215	200	172	168	100	110	103	10. 82
Okla	88	101	87	92	75	82	87	92	89	167	194	201	205	135	155	86	98	93	10. 23
Ark	95	110	94	90	94	90	96	99	101	163	201	207	202	190	166	100	106	108	11. 88
Mont	86	87	86	77	64	68	76	01	78	161	192	194	235	128	154	85	89	82	12. 22
Wyo	85	99	95	94	80	72	88	89	78	145	200	189	212	135	150	79	82	80	12.72
Colo	88	93	82	84	73	78	82	87	80	100	193	195	202	135	140	76	89	83	10. 71
N. M	94	117	100	100	90	97	101	90	90	150	215	210	200	140	156	105	120	108	12.96
Ariz	120	139	120	95	110	110	115	125	115	150	210	240	225	282	190	125	115	140	36. 40
Utah	85	90	84	70	75	73	78	86	86	152	178	188	210	153	150	75	90	91	12.93
Nev.	113	104	109	95	100	82	98	95	95	140	180	206	214	180	159	130	120	115	29.21
Idah	74	87	72	66	66	63	71	87	80	146	182	192	205	125	145	72	90	80	22.88
Wash	82	93	78	71	68	73	77	100	82	143	193	196	214	135	152	86	104	85	21. 25
Oreg	84	93	84	75	72	75	80	102	84	145	182	201	212	130	151	85	108	88	21. 21
Calif	102	111	94	88	93	95	96	104	95	152	200	216	204	180	164	107	115	108	23.33

Division of Crop and Livestock Estimates.
${ }^{1}$ Based upon farm price Dec. 1.
Table 36.-Wheat: Weighted average price per bushel of reported cash sales.
NO. 1 DARK NORTHERN SPRING, MINNEAPOLIS, 1917-1923.1

Year beginning July 1.	July.	Aug.	Sept.	Oct.	N0\%.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted average.
1917-18.		\$2. 50	\$2. 21	\$2. 21	\$2. 21	\$2. 21	\$2. 21	\$2. 21	\$2. 21	\$2. 21	\$2, 21	\$2. 21	
1918-19	\$2. 21	2. 29	2. 24	2. 23	2. 25	2.25	2.25	2. 29	2.41	2. 63	2. 68	2.56	2.36
1919-20	2.72	2. 71	2. 77	2.84	3.00	3. 25	3. 34	2. 90	2. 97	3. 23	3. 26	3.01	3. 00
1920-21	2. 94	2.59	2. 65	2. 21	1.82	1. 72	1. 81	1.74	1.72	1.57	1. 67	1. 74	2.08
1921-22	1.81	1. 57	1. 56	1. 37	1. 30	1.33	1. 39	1. 58	1. 59	1. 66	1.71	1. 53	1. 48
1922-23	1. 57	1. 22	1. 20	1.21	1. 28	1. 31	1. 28	1. 31	1. 29	1.35	1. 32	1. 22	1. 30
1923-24	1. 18	1. 22	1. 26	1. 26	1. 19	1. 19							

Table 36.-Wheat: Weighted average price per bushel of reported cash sales-Con.
NO. 1 NORTHERN SPRING, MINNEAPOLIS, 1899-1923. ${ }^{1}$

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 . \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted average.
1899-190	\$0.70	\$0. 70	\$0.69	\$0. 69	\$0. 65	\$0. 65	\$0. 65	\$0. 65	\$0. 65	\$0. 66	\$0.66	\$0.71	\$0. 67
1900-1.	. 78	. 74	. 76	. 76	. 74	. 73	. 75	. 74	. 74	. 72	. 73	. 69	. 74
1901-2	. 65	. 69	. 68	. 62	. 70	. 74	. 76	. 74	. 72	. 73	. 75	. 75	. 71
1902-3	. 78	. 72	. 67	. 70	. 72	. 73	. 76	. 77	. 76	. 76	. 78	. 84	. 75
1903-4	. 86	. 93	85	. 82 -	. 80	. 82	. 88	. 97	. 97	93	. 94	94	89
1904-5	. 97	1. 14	1.17	1.15	1. 07	1.09	1.14	1. 13	1. 11	1. 02	1. 13	1. 10	1. 10
1905	1. 08	. 98	. 81	. 86	. 84	. 85	. 83	. 81	. 77	. 79	. 83	. 84	. 86
1906-	. 79	75	. 74	. 76	80	80	. 80	. 82	. 80	84	96	1.01	82
1907	1.02	1. 00	1.08	1.12	1.03	1. 07	1.10	1.06	1. 07	1.03	1. 09	1.08	1.06
1908	1. 14	1. 12	1.03	1.04	1.06	1. 10	1.09	1.13	1.15	1. 24	1.31	1. 34	1. 15
1909-10	1. 29	1.06	1. 04	1. 04	1.05	1. 12	1. 14	1. 14	1.15	1.11	1.10	1.09	1.09
1910-11	1. 21	1. 13	1.09	1. 08	1.04	1.03	1. 06	1. 02	. 98	. 96	. 99	. 97	1.05
1911-12	. 99	1.05	1. 09	1. 10	1. 05	1.02	1. 06	1. 06	1. 08	1. 10	1. 16	1.13	1.07
1912-13	1.09	. 98	. 89	. 90	. 84	. 82	. 89	. 87	. 85	. 88	. 91	. 92	. 87
1913-14	. 91	. 88	. 87	. 84	. 85	. 86	. 87	. 93	. 92	. 91	. 94	. 92	. 88
Av. 1909-1913	1. 10	1. 02	1.00	. 99	. 97	. 97	1.00	1.00	1.00	. 99	1.02	1.01	. 99
1914-15	92	1.10	1.12	1.11	1.18	1.20	1.38	1. 52	1. 49	1. 58	1. 58	1.35	1.20
1915-16	1. 44	1. 18	. 97	1. 02	1.02	1. 14	1. 29	1. 26	1. 14	1. 22	1. 22	1. 11	1.09
1916-17	1. 21	1. 64	1. 64	1. 79	1. 95	1. 79	1. 93	1. 86	2. 03	2. 38	2. 96	2. 73	1. 76
1917-18	2. 66	2. 47	2. 17	2. 17	2. 17	2. 17	2. 17	2. 17	2. 17	2. 17	2. 17	2. 17	2. 20
1918-19	2. 17	2. 23	2. 23	2. 19	2. 22	2.22	2. 21	2. 24	2. 36	2. 56	2. 59	2. 48	2.25
1919-20	2. 66	2. 59	2. 56	2. 67	2.85	3. 07	3. 01	2. 67	2.84	3. 06	3. 09	2. 93	2.72.
1920-21	2. 89	2.56	2.54	2. 16	1.80	1. 68	1.79	1. 72	1.66	1. 53	1.55	1. 69	2.07
Av. 1914-1920	1.99	1.97	1.89	1.87	1. 88	1.90	1.97	1.92	1.96	2.07	2. 17	2.07	1. 90
1921-22	1. 67	1. 48	1. 51	1.34	1. 25	1. 30	1. 34	1. 51	1. 51	1. 58	1. 56	1. 46	1.43
1922-23	1. 49	1. 11	1. 10	1. 15	1. 23	1. 25	1. 23	1. 26	1. 24	1. 30	1. 28	1. 17	1. 20
1923-24.	1.12	1. 18	1. 21	1. 20	1. 14	1. 16							

NO. 2 RED WINTER, CHICAGO, 1899-1923. ${ }^{2}$

1899-1900	\$0. 72	\$0.72	\$0.71	\$0. 72	\$0.69		\$0.67	\$0.69	\$0.69	\$0. 70	\$0. 70	\$0.75	
1900-1	. 77	. 77	. 76	. 77	. 74	\$0.74	. 76	. 75	. 75	. 75	. 74	. 72	\$0.76
1901-2	. 68	. 71	. 70	. 72	. 75	. 82	. 85	. 83	. 82	. 82	. 81	. 79	. 72
1902-3	. 73	. 71	. 81	. 82	. 76	. 75	. 75	. 76	. 74	. 78	. 78	. 80	. 75
1903-4	. 78	. 82	. 82	. 82	. 84	. 88	. 94	1. 04	1. 03	1.05	1.07	1. 05	83
1904-5	. 97	1.01	1.10	1.19	1.16		1. 20		1.15	1.07	. 92	1. 04	
1905-6	. 90	. 85	. 85	. 88	. 87		. 88	. 84	. 82	. 87	. 89	. 86	
1906-7	. 78	. 73	. 72	. 74	. 74	. 74	. 74	. 76	. 77	. 79	. 93	. 95	. 77
1907-8	. 92	. 87	. 97	1.01	. 95	. 99	1. 01	. 94	. 98	. 95	1.03	. 92	. 90
1908-9	. 92	. 96	1.00	1. 01	1.05	1. 05	1. 07	1. 20	1. 22	1.33	1. 48	1. 60	. 96
1909-10	1. 10	1. 04	1.07	1. 20	1. 18	1.25	1. 26	1. 23	1.18	1.11	1.11	1.01	1.10
1910-11	1.07	1. 02	. 99	. 96	. 93	. 94	. 98	. 91	. 90	. 90	. 96	. 91	1.02
1911-12	. 86	. 90	. 93	1.00	. 96	. 96	. 97	1. 01	1.03	1. 09	1. 16	1. 10	. 90
1912-13	1.05	1. 03	1.03	1.06	. 99	. 86	1. 09	. 99	. 95	1. 02	1. 03	1. 00	1.03
1913-14	. 87	. 88	. 93	. 92	. 92	. 94	. 97	. 97	. 95	. 95	. 99	. 82	. 88
Av. 1909-1913.	. 99	. 97	. 99	1. 03	1. 00	. 99	1.05	1. 02	1.00	1, 01	1. 05	. 97	. 99
1914-15	82	. 92	1.11	1. 12	1.15	1. 20	1. 39	1. 57	1. 52	1. 59	1. 55	1. 24	1.08
1915-16	1. 13	1. 11	1. 08	1.12	1.12	1. 23	1. 30	1.23	1.13	1. 22	1.15	1. 05	1.13
1016-17	1. 23	1. 43	1. 53	1. 66	1. 85	1. 76	1.89	1. 74	1.99	2. 43	2. 94	2. 76	1. 68
1917-18	2. 50	2. 30	2. 17	2. 17	2. 17	2. 17	2. 17	2. 17	2.17	2. 17	2.16	2. 17	2.25
1918-19	2.22	2.21	2. 25	2.25	2. 24	2.29	2. 34	2. 28	2. 36	2.52	2.76	2. 32	2.22
1919-20	2. 23	2. 24	2. 24	2. 24	2.29	2. 44	2. 64	2.42	2. 55	2.63	3.10	2. 89	2.24
1920-21	2. 59	2. 50	2. 53	2. 20	2.01	2. 02	1.94	1.85	1.65	1.41	1. 67	1.47	2. 22
Av. 1914-1920	1.82	1.82	1. 84	1.82	1.83	1. 87	1.95	1.89	1.91	2. 00	2.19	1. 99	1.83
1921-22	124	1. 22	1. 29	1.18	1. 23	1.18	1. 21	1. 34	1.38	1.40	1. 34	1.18	1. 25
1922-23	1. 14	1. 07	1.06	1.18	1. 27	1.33	1.30	1.35	1.31	1.32	1.28	1.16	1. 14
1923-24	1.00	1.00	1.05	1. 11	1.06	1.09							

[^133]$\mathrm{T}_{\text {able }}$ 36.-Wheat: Weighted average price per bushel of reported cash sales-Con.
NO. 2 RED WINTER, STT. LOUIS, 1899-1923.8

Year beginning July.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted average.
1899-1900	\$0. 71	\$0. 71	\$0. 70	\$0. 72	\$0. 70	\$0.71	\$0. 71	\$0. 72	\$0. 72	\$0. 72	\$0.71	\$0. 77	\$0.72
1900-1	. 75	. 73	. 76	. 74	. 73	. 72	. 74	. 74	. 75	. 74	. 75	. 69	. 74
1901-2	. 66	. 71	. 71	. 72	. 74	. 84	89	. 86	. 82	. 80	. 81	. 78	. 73
1902-3	. 71	. 66	. 67	. 70	. 69	. 72	. 75	. 76	. 73	. 72	. 75	. 79	. 71
1903-4	. 80	. 81	. 85	. 87	. 87	. 92	. 93	1. 04	1. 05	1.06	1.08	1. 07	86
1904-5	. 97	1.01	1.15	1. 18	1.15	1. 15	1. 18	1. 18	1.15	1.09	1.08	1. 05	1.04
1905	. 89	. 85	. 80	. 92	. 92	. 93	. 94	. 92	. 91	. 95	. 94	. 88	. 90
1906-7	. 75	. 70	. 72	. 76	. 75	. 76	. 77	. 78	. 77	. 78	. 89	. 94	. 76
1907-8	. 89	. 87	. 95	1.03	. 96	1.00	1.03	1. 12	1.02	. 99	1.02	. 96	. 96
1908-9	. 92	. 95	1.02	1.03	1.07	1.08	1.11	1. 24	1.30	1. 36	1. 39	1. 57	1.04
1909-10	1.13	1.12	1.14	1. 23	1. 22	1. 28	1.30	1. 27	1. 23	1. 12	1.16	1.02	1. 13
1910-11	1.07	1.02	1.02	1.00	. 96	. 98	1. 03	. 96	. 93	. 90	. 94	. 88	. 99
1911-12	. 84	. 88	. 94	1. 00	. 96	. 97	1. 02	1.01	1.04	1.13	1. 21	1.11	94
1912-13	1.03	1.04	1.03	1.09	1. 04	1. 07	1.11	1.09	1.08	1.09	1.04	. 99	1.05
1913-14	. 85	. 88	. 94	. 93	. 94	. 95	. 96	. 95	. 95	. 94	. 96	. 84	. 89
Av. 1909	. 98	. 99	1.01	1. 05	1. 02	1.05	1.08	1.06	1.05	1.04	1.08	. 97	1.00
1914-15	87	. 93	1.10	-1.10	1.11	1.18	1.40	1. 57	1. 50	1.54	1. 50	1. 19	1.10
1915-16	1.17	1.14	1.14	1. 21	1.16	1. 23	1.34	1.30	1. 17	1. 22	1. 20	1. 10	1.20
1916-17	1. 25	1. 45	1. 60	1.73	1.87	1. 83	1.96	1.88	2. 05	2.66	3.04	2.65	1. 63
1917-18	2. 36	2. 32	2. 15	2. 15	2.15	2.15	2.15	2.15	2. 15	2.15	2.15	2.15	2.23
1918-19	2. 21	2.21	2. 19	2. 22	2. 22	2. 32	2.41	2.38	2. 55	2. 71	2.60	2.41	2.23
1919-20	2.22	2. 20	2. 21	2. 24	2. 29	2.48	2. 70	2.55	2. 58	2.76	2.99	2.89	2.30
1920-21	2. 70	2. 47	2. 56	2. 25	2. 03	1.99	2. 02	1.90	1.66	1. 41	1. 58	1. 50	2.18
Av. 1914-1920	1.83	1. 82	1.85	1. 84	1.83	1.88	2.00	1.96	1.95	2.06	2.15	1.98	1.84
1921-22	1. 23.	1. 23	1.36	1. 26	1. 20	1.21	1.16	1.32	1.35	1. 44	1.38	1. 18	1.27
1922-23	1.12	1.08	1.14	1.23	1. 29	1.36	1.36	1. 39	1.36	1. 41	1.33	1. 23	1. 28
1923-24	. 97	. 99	1.09	1.16	1. 12	1. 14							

NO. 2 HARD WINTER, KANSAS CITY, 1899-1923. ${ }^{4}$

[^134]Table 36.-Wheat: Weighted average price per bushel of reported cash sales-Con. NO. 2 HARD WINTER, NEW YORK, 1900-1923. ${ }^{6}$

Year beginning July.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weight ed average.
1909-10	\$1. 31	\$1.12	\$1.12	\$1. 20	\$1. 19	\$1. 24	\$1. 26	\$1.33	\$1. 27	\$1. 19	\$1. 14	\$1.05	\$1. 20
1910-11	1.14	1. 10	1.06	1.04	1. 02	1. 02	1.08	1. 03	1.00	. 98	1.03	. 97	1.04
1911-12	. 98	. 98	1.04	1.10	1. 05	1.07	1.11	1.13	1. 13	1. 19	1. 24	1. 20	1. 10
1912-13	1. 10	1. 03	1.01	1.02	. 98	. 99	1.06	1. 04	1. 00	1.03	1. 02	1. 04	1.03
1913-14	. 99	. 97	. 98	. 95	. 98	1.00	. 93	1. 02	1. 02	1. 02	1.05	1. 00	. 99
Av. 1909-1913	1. 10	1.04	1. 04	1.06	1. 04	1.06	1.09	1.11	1.08	1.08	1.10	1.05	1. 07
1914-15	. 92	1.01	1. 13	1. 12	1. 23	1.31	1. 52	1. 72	1.66	1.67	1.65	1. 37	1. 36
1915-16	1. 36	1. 22	1. 20	1. 24	(7)	${ }^{7}$)	1. 40	1. 42	1. 25	1. 29	1.24	1.15	1. 28
191¢-17	1. 26	1. 57	1. 68	1. 84	2. 00	1.87	2. 09	2. 00	2. 16	2.63	3. 07	${ }^{(7)}$	2. 02
1917-18	2. 44	2.46	2. 28	2. 64	2.81	2. 62	2. 26	2. 26	2. 26	2. 26	2. 26	2. 26	2. 40
1918-19	2. 31	2. 38	2. 38	2. 38	2. 38	2. 38	2. 38	2. 38	2. 38	2. 38	2. 38	2. 38	2. 37
1919-20	2. 38	2. 38	2. 38	2. 38	2. 38	2. 38	2. 37	2. 37	2.51	3. 02	3.09	2. 98	2. 55
1920-21	2. 92	2. 62	2.65	2.33	2. 06	1.95	2. 00	1.90	1.81	1. 59	1. 75	1. 67	2. 10
Av. 1914-1920.	1. 94	1.95	1. 96	1. 99			2. 00	2. 01	2. 00	2. 12	2. 21	1. 97	2.01
1021-22	1.46	1.36	1.38	1. 20	1.16	1. 25	1. 23	1.43	1.45	1.51	1.49	1.30	1.35
1922-23	1.32	1.23	1.19	1.33	1. 36	1. 37	1.32	1.30	1.33	1. 37	1. 34	1. 25	1.31
1923-24.	1.16	1. 14	1.16	1. 22	1.19	1. 22							

NO. 1 NORTHERN SPRING, WINNIPEG, 1909-1923. ${ }^{8}$

1909-10	\$1. 31	\$1. 19	\$1.00	\$0.97	\$0.97	\$0.98	\$1. 03	\$1. 03	\$1.04	\$1.03	\$0.98	\$0.93	\$0. 96
1910-11	1.08	1.07	1. 03	. 98	. 92	. 90	. 94	93	90	. 90	. 95	. 97	. 96
1911-12	. 95	1.01	1.01	1. 00	. 99	. 95	. 95	. 97	. 98	1. 01	1. 04	1.06	99
1912-13	1.07	1.06	1.00	. 91	. 85	. 80	. 82	. 84	. 85	. 89	. 93	. 96	92
1913-14	97	. 95	. 89	. 81	. 83	. 84	. 85	. 88	. 90	. 90	. 93	. 94	89
Av. 1909-1913	1.08	1.06	. 99	. 93	. 91	. 89	. 92	. 93	. 93	. 95	. 97	. 97	94
1914	. 90	1.04	1.13	1.11	1.18	1.18	1.32	1.51	1.49	1. 54	1.61	1.32	1. 28
1915-16	1.35	1.25	. 95	. 96	1.02	1. 07	1.18	1. 26	1.10	1. 04	1. 17	1. 11	1.12
1916-17	1. 14	1. 42	1. 59	1. 68	1.93	1. 76	1.80	1. 68	1. 85	2. 11	2.75	2. 49	1.85
1917-18	2. 34	2.40	2. 25	2.21	2. 21	2. 21	2.21	2. 21	2. 21	2. 21	2.21	2. 21	2. 24
1918-19	2. 21	2. 21	2. 24	2. 24	2. 24	2.24	2.24	2. 24	2. 24	2. 24	2.24	2. 24	2. 24
1919-20	2. 24	2. 24	2.15	2. 15	2. 16	2.15	2.15	2.15	2.15	2.15	2.15	2. 15	2.17
1920-21	2.15	2.15	2. 72	2. 32	2. 03	1.94	1.94	1.88	1.91	1. 76	1. 86	1.89	2. 05
Av. 1914-1920.	1. 76	1.82	1.86	1.81	1. 82	1. 79	1.83	1.85	1.86	1.86	2.00	1. 92	1.85
1021-22	1.86	1. 74	1.46	1. 14	1.11	1. 13	1. 14	1. 36	4. 41	1. 43	1.46	1. 33	1.38
1922-23	1. 35	1.17	. 99	1. 01	1. 10	1.08	1. 07	1. 10	1.10	1. 19	1.15	1. 12	1. 12
1923-24	1.05	1.10	1. 94	. 96	96	. 91		----					

Division of Statistical and Historical Research.
${ }^{6}$ Compiled from New York Journal of Commerce; not weighted; average of daily quotations.
${ }^{7}$ Nominal.
${ }^{8}$ Compiled from Winnipeg Farmers' Advocate; not weighted; average of the daily cash close.

Table 37.-Wheat: Weighted average price ${ }^{1}$ per bushel of reported cash sales of all classes and grades combined at markets named, 1918-1923.

MINNEAPOLIS.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighs ed average.
	Cents.												
1918-19	212.8	221.3	219.0	218.6	220.5	220.0	218.9	221.2	230.5	245.3	251.8	239.8	222.4
1919-20	248.9	230.1	234.0	240.9	261.6	278. 5	276. 5	245. 6	254.8	285. 3	297.0	278. 7	257.6
1920-21	274. 6	247.1	244.9	203. 9	172.4	163. 0	167.8	156. 3	151. 5	135.1	144. 5	146. 0	187.
1921-22	145.3	132.2	138.6	121. 5	117.3	117.7	120.2	138.9	141.3.	148.2	149.7	136. 5	131.
1922-23	140.5	114.2	111.0	113.8	122.3	123. 1	119.2	120.8	121.2	126.5	124. 8	115.8	119.2
1923-24	110. 7	111.2	114. 6	115.3	109.4	108.9							

KANSAS CITY.

1918-19	220.2	215.5	214. 0	213. 2	212.4	217.5	223.1	218.6	227.1	252.0	248.0	233.8	218. 1
1919-20.	219.3	264.4	215.9	221.2	235. 9	252. 2	266. 3	233.4	241.5	263. 5	286.3	273.5	244.9
1920-21	267.4	245.6	246. 0	206.6	176. 3	170.2	173.0	164.6	154.6	133. 5	147. 5	139. 7	190.2
1921-22	117.0	115. 0	120.4	109.8	107.6	108. 2	111.1	127.4	131.4	132.3	125.9	113. 2	118.2
1922-23	111.0	103.2	104.1	111. 1	114. 5	116.3	114.0	115.1	115. 4	119.7	115.9	104. 1	110.8
1923-24.	94. 9	98.2	102.6	107. 1	101. 3	90. 9							

CHICAGO.

1918-19	225.0	223.0	220.6	220.6	220.6	223.2	222. 3	220.1	230.8	250. 0	252.5	232.8	223.0
1919-20	223.9	222. 2	221.9	225. 7	242. 0	249.5	272. 2	235. 5	242.0	289. 8	295. 8	280.5	228.1
1980-21	264.9	248.8	249.8	209.9	280.7	173.4	178.6	171.9	157.3	139.7	156. 5	142.7	216.3
1921-22	124. 1	119.8	124. 4	112.0	107.9	110.5	112.7	128.6	129.7	132.4	1327	115.9	121. 6
1922-23	113.4	107.0	104. 5	113.4	119.0	123. 6	117.6	120.6	120.0	124.8	119.3	109.3	112.2
1923-24	99.1	99.6	101. 0 ,	106. 8	103. 1	105.3							

ST. LOUIS.

	221.6	221.0	221. 2	222.0	221. 7	230.5	230. 2	231. 2	252. 3	282. 3	257.8	239.5	223.6
1919-20	220.7	218. 6	218. 3	220.9	224. 8	224. 9	252. 5	247.4	253.5	275.8	293.1	283. 0	225. 2
1920-21	273.3	249.9	253. 1	219.2	197. 2	191. 2	194. 7	183.7	163.8	139.8	155.0	148. 2	210.1
1921-22	120. 3	116. 3	122. 6	111.6	107. 7	109.0	115.3	131. 3	133.1	133.3	130.6	113.1	120.4
1922-23	107.4	103. 4	107. 2	116.7	121.6	126. 0	124. 5	128.0	125.8	129.6	124.8	114.3	115.8
1923-24	96. 6	97. 1	102.6	111.4.	106. 9	108.6							

FOUR MARKETS COMBINED.

1918-19	221.2	219.9	248. 5	218. 3	219.4	220.6	220. 7	221.3	232.4	249.2	251. 7	238. 2	221.7
1919-20	223.1	235.9	223. 6	229.3	246. 5	256.8	267. 0	240.1	248.6	278. 2	292.3	277.0	.241.8
1920-21	270.6	247. 3	246. 6	205.8	175. 1	167. 2	172. 4	183. 2	154.3	135. 3	147.6	144. 1	193.3
1921-22	122.9	121. 7	128. 5	117.3	113.1	113.8	115. 8	131. 4	136. 1	138.5	135.0	122.5	123.7
1922-23	117. 1	107. 6	108. 6	113.4	120. 0	121.3	118.3	120.0	120.4	125.0	122. 2	112.6	118.0
1923-24	99.8	102. 7	109.5	112.6	107.3	108.4						-----	

Division of Statistical and Historieal Research. Compiled from daily trade papers of markets named.
1 The prices in this table are comparable with the farm prices. The farm prices are averages of the several prices reported which covered all ciasses and grades sold from the farm.

Table 38.-Wheat: Good average quality imported red, average spot prices per bushel of 60 pounds at Liverpool, 1879-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver.	High.	Low.
1879	1.29	1.29	1. 36	1. 32	1.35	1. 32	1.38	1.35	1. 46	1.68	1.64	1.69	1.43	1. 75	1.64
1880	1. 57	1.59	1.63	1. 53	1. 43	1.38	1.35	1.31	1. 28	1.34	1. 40	1.40	1. 43	1. 64	1. 26
1881	1.41	1.37	1.42	1. 43	1.38	1.42	1. 44	1.55	1. 64	1.65	1. 61	1. 57	1. 49	1. 68	1. 35
1882	1. 59	1. 58	1. 50	1.55	1. 52	1. 52	1. 52	1.37	1. 25	1. 25	1. 26	1. 29	1. 43	1. 61	1.20
1883	1.33	1.39	1.35	1.32	1.32	1.31	1. 30	1.36	1. 33	1.28	1. 28	1. 28	1.32	1.40	1. 26
1884	1. 24	1.24	1. 24	1.14	1. 14	1.16	1. 14	1.15	1.00	. 97	. 97	1.02	1.12	1. 26	. 95
1885	1. 08	1.03	1. 06	1.16	1. 12	1.06	1. 06	1.07	1.06	1.09	1. 06	1.05	1.08	1. 20	1. 02
1886	1. 07	1. 06	1. 01	1. 03	1.03	. 97	. 97	. 99	. 99	. 98	1. 02	1. 08	1. 02	1. 09	. 95
1887	1.09	1.07	1.06	1.03	1. 06	1.02	. 95	. 90	. 88	. 94	. 98	1. 00	1.00	1. 13	. 86
1888	. 99	. 98	. 98	. 99	1.00	. 99	1.00	1.10	1.15	1. 22	1. 25	1. 21	1.07	1.26	. 97
1889	1.16	1.14	1.12	1. 04	. 95	94	1.00	1.03	1.02	1.03	1.02	1. 02	1.04	1.17	. 93
1890	1.03	1. 03	1.03	1.05	1.06	1.03	1.04	1.05	1.04	1.04	1.03	1. 03	1. 04	1.07	1. 02
1891	1.12	1.12	1. 19	1. 24	1. 25	1.19	1. 14	1.23	1. 19	1. 20	1. 26	1. 23	1. 20	1. 30	1.11
1892	1.16	1.14	1.14	1. 09	1. 02	1. 04	1. 02	. 91	. 86	. 88	. 86	. 83	1. 00	1.20	80
1893	. 85	. 85	. 81	. 81	. 84	. 82	. 82	. 79	. 80	. 78	. 76	. 78	. 81	. 89	73
1894.	. 76	. 74	. 71	. 70	. 67	. 64	. 65	. 61	. 61	. 60	. 67	73	. 67	. 78	. 58
1895	. 67	. 64	. 68	. 73	. 81	. 82	. 77	. 79	. 72	. 74	. 75	. 75	. 74	. 86	. 63
1896	. 80	. 83	. 80	. 80	. 81	. 79	. 76	. 75	. 81	. 95	. 99	. 99	. 84	1.03	. 73
1897	. 96	. 91	. 89	. 86	. 86	. 83	. 90	1.10	1. 15	1. 10	1.09	1. 09	. 98	1. 22	. 81
1898	1.08	1.18	1. 14	1. 28	1. 57	1. 28	. 96	. 89	. 84	. 89	. 89	. 87	1.07	1.71	. 78
1899	. 86	. 83	. 79	. 81	. 86	. 87	. 82	. 80	. 84	. 86	. 83	. 81	. 83	. 89	. 77
1900	. 86	. 87	. 86	. 93	. 95	. 91.	. 91	. 86	. 91	. 86	. 87	. 86	. 89	. 95	. 84
1901	. 89	. 87	. 87	. 86	. 86	. 84	. 82	. 83	. 81	. 83	. 84	. 90	. 85	. 94	. 78
1902	. 90	. 89	. 89	. 90	. 92	. 89	. 91	. 91	. 86	. 85	. 85	. 88	. 89	. 94	. 83
1903	. 90	. 91	. 90	. 89	. 90	. 91	. 89	. 91	. 90	. 89	. 88	. 88	. 90	. 94	. 86
1904	. 89	. 90	. 95	. 95	. 92	. 89	. 89	. 90					. 91	. 98	. 85
1905			1. 01	. 99	. 97				. 94	. 96	. 97	.96	. 97	1.01	. 93
1906	1. 03	1. 03	1. 04	. 99	. 95	$\begin{array}{r}.95 \\ \hline 1.04\end{array}$.96 1.04	.92	. 91	. 91	. 90	$\begin{array}{r}.90 \\ \hline 18\end{array}$	$\begin{array}{r}.96 \\ \hline 102\end{array}$	1.04	. 89
1907	. 89	. 92	. 92	. 92	$\begin{array}{r}.98 \\ \hline\end{array}$	1.04	1.04 1.09	1.05 1.08	1.11	1.14 1.12	1.12 1.15	1.13 1.16	1.02 1.10	1.23 1.20	.87 1.02
1908.	1.16	1.07	1.04	1.11	1.09	1.08	1.09	1.08	1.11	1.12	1.15	1. 16	1.10	1.20	1.02
1909	1.16	1.21	1. 23	1.32	1.38	1. 34	1.37	1.30	1.10	1.15	1.21	1.21	1.25	1.42	1.07
1910	1.24	1.23	1.21	1.18	1.10	1. 04	1.08	1.15	1.12	1.08	1.04	1.04	1.13	1.25	. 98
1911	1. 07	1. 07			1. 03	1.04	1.04	1.04	1.07	1.08	1.05	1. 07	1.06	1.10	1.03
1912	1.11	1.15	1. 20	1. 23	1. 23	1. 22	1. 24	1.15	1.16	1. 16	1.11	1.09	1. 17	1. 27	1. 07
1913	1.11	1.12	1. 12	1.13	1.12	1.11	1.10	1. 07	1.04	1.02	1. 04	1. 05	1. 09	1.15	1.02
Av. 19091913.	1.14	1.16	1.19	1.22	1.17	1.15	1.17	1.14	1.10	1.10	1.09	1.09	1.14		
1914	1. 02	1. 04	1.07	1. 07	1.11	1. 09	1.05	1. 28	1.29	1.28	1.38	1. 47	1.18		
1915	1.67	1.95	1.91	1. 94	1.98	1. 65	1. 63	1. 61	1. 67	1. 71	1. 59	1.73	1. 75		
1916	1. 94	1. 90	2. 00	1. 93	1. 71	1. 55	1. 58	1. 96	2. 00	2. 15	2. 22	2. 39	1. 94		
1917----	2. 39	2. 43	2.42	2. 46	2. 46	2.46	2. 50	2. 50	2. 38	2. 26	2.26	2.26	2.40		
1918	2. 32	2. 32	2. 39	2. 32	2.32	2. 32	2. 32	2.32	2.32	2. 39	2.46	2.46	2. 36		
1919	2. 46	2. 46	2. 43	2. 41	2.41	2. 39	2.29	2.21	2. 16	2. 16	2. 11	1.95	2. 29		
1920	1. 90	1.75	2. 11	2. 37	2.34	2. 40	2. 34	2.20	2. 13	2. 34	2. 53	2. 39	2. 23		
Av. 1914- 1920	1.96	1.98	2. 05	2.07	2.05	1.98	1.96	2.01	1.99	2. 04	2.08	2. 09	2. 02		
1921	2. 33	2. 14	2. 14	2. 13	2. 18	1.96	1.71	1. 59	1.56	1.31	1. 26	1.37	1.81		
1922	1.37		1. 58	1. 58	1.59	1. 44	1.49	1.35	1. 29	1. 44	1. 52	1.54	1.47		
1923	1. 42	1.41	1.40	1.46				1. 26	1. 22	1. 23	1.25				

Division of Statistical and Historical Research. 1879-1903, compiled from Broomhall's 1904 Year Book, p. 144; 1914-1920 from Broomhall's 1921 Year Book. Remainder of table from Corn Trade News. High and low not given 1914-1923. Conversions at par 1879-1912; current exchange rate for remainder of period.

Table 39.-Wheat, Barletta: ${ }^{1}$ Average prices per bushel of 60 pounds at Buenos Aires, 1912-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1912	\$1.01	\$1.00	\$1.00	\$1. 03	\$0.96	\$0. 99	\$0.99	\$1.01	\$1.02	\$1. 01	\$0. 96	\$0.92	\$0.99
1913	. 91	1.00	. 93	. 99	. 95	1.02	1.02	1.01	${ }^{2} 1.07$	${ }^{\text {s }} 1.03$	${ }^{3} 1.08$. 95	1.00
1914	95	99	98	95	1.01	99	1.01	1.22	1.23	${ }^{4} 1.12$	${ }^{4} 1.24$	${ }^{4} 1.22$	1.08
1915	1.26	1.42	1. 39	1.44	1. 48	1.35	1.33	1.29	1.31	1.36	1.31	1. 20	1.34
1916	1.05	1.06	. 96	. 95	. 85	. 83	. 84	1.06	1.19	1.49	1.74	1. 48	1.12
1917	1. 65	1. 64	1.67	1.72	2.00	2.21	2. 23	2. 02	2.00	2.02	2. 10	1.79	1.92
1918	1.56	1.55	1.58	1. 59	1.57	1.56	1.50	1.41	1.42	1.41	1.46	1. 49	1.51
1919	1.31	1.31	1. 27	1.27	1.33	1.34	1.82	1. 94	1.85	1.66	1.71	1.63	1.54
1920	1.65	1.75	2.02	2.55	2.79	2. 58	2.85	2.43	2.48	2. 58	${ }^{3} 2.75$	1.86	2.36
Av. 1914-1920	1.35	1. 39	1.41	1.50	1.58	1.55	1.65	1.62	1.64	1.66	1.76	1.52	1. 55
1921.	1.76	1.58	1. 62	1.46	1.48	1.50	1.45	1.43	1.50	1.22	1.05	1.05	1.42
1922	1.04	1.26	1.32	1.30	1.32	1.22	1.27	1.20	1.16	1.22	1.20	1. 22	1. 23
1923	1. 20	1. 22	1.20	1.21	1. 17	1. 13	1.05	1.00	1.05	1.09	1.13	1.04	1.12

Division of Statistical and Historical Research.
Prices and monthly exchange rates from International Yearbook of Agricultural Statistics, 1922. Exchange after July, 1921, from Federal Reserve Bulletin, supplemented by Review of the River Plate.
${ }^{1}$ Barletta is a semihard wheat. ${ }^{2}$ No. 1 Rosario wheat. ${ }^{3}$ Description "Pan." (New crop.
Table 40.-Wheat, white: Spot prices per bushel of 60 pounds at Karachi, India, 1912-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1912	\$0.90	\$0.94	\$0.94	\$0. 96	\$0. 93	\$0. 89	\$0. 88	\$0.89	\$0. 88	\$0. 89	\$0. 89	\$0.89	\$0. 91
1913	. 92	. 97	. 97	. 93	. 92	. 90	. 90	. 87	. 87	. 86	. 88	. 88	. 91
1914	91	. 93	. 91	92	. 94	. 91	. 90	. 96	1.08	1. 09	1. 22	1. 23	1. 00
1915	1. 27	1.43	1. 22	1. 21	1.07	1. 02	1. 02	1. 06	1. 12	1. 10	1.09	1. 07	1.14
1916	1. 09	1.03	. 97	. 89	. 88	. 86	. 95	1. 05	1.03	1. 04	1. 10	1.15	1. 00
1917	1. 19	1. 14	1.13	1. 12	1. 04	1. 05	1.08	1. 07	1.14	1. 13	1.22	1. 26	1.13
1918	1. 22	1. 23	1. 24	1. 24	1. 25	1. 23	1. 26	1. 31	1.41	1. 57	1. 61	1. 63	1. 35
1919	1. 82	1. 82	1.91	1. 78	2. 07	2.01	2. 06	2. 16	2. 14	1.93	2.04	2. 16	1. 99
1920	2.12	2. 09	1.91	1.90	1. 74	1. 62	11.49	${ }^{1} 1.35$	1. 34	1.36	1.32	1. 22	1. 62
Av. 1914-1920	1. 37	1.38	1. 33	1. 29	1. 28	1. 24	1. 25	1. 28	1. 32	1.32	1. 37	1. 39	1. 32
1921	1. 28	1. 29	1. 26	1. 26	1.33	1.31	1. 29	1. 52	1. 86	1.73	1. 57	1. 60	1.44
1922	1. 50	(2)	${ }^{(2)}$	${ }^{2}$)	1. 36	1.36	1. 25	1. 22	1.11	. 89	. 91	1.17	1.20
1923	1. 20	1.12	1.12	1. 17	1.13	1.07	1. 03	. 91	. 96	. 97	. 99	1.01	1.06

Division of Statistical and Historical Research. Compiled from Indian Trade Journal. Converted at par of $\$ 0.3244$ per rupee to 1919, and current exchange rate as given by Federal Reserve Bulletins 1919 to date.
${ }^{1}$ First week of month, from Review of the Trade of India.
${ }^{2}$ Not quoted.
Table 41.-Wheat: Average price per bushel of 60 pounds at Port Adelaide, Australia, 1912-1922.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1912	\$0.88	\$0.87	\$0. 88	\$0.96	\$0.96	\$0. 98	\$0.96	\$0.96	\$0.99	\$1.00	\$0.96	\$0. 86	\$0.94
1913	. 85	. 86	. 86	89	. 88	. 87	. 86	. 87	. 86	. 84	. 84	. 84	. 86
1914	86	87	. 90	90	. 92	93	93	1.00	1.12	1. 14	1.21	1.40	1.02
1915	1.48	1.65	1.74	1.76	1.80	1.81	1. 82	1. 79	1. 78	1. 41	1. 05	1. 23	1.61
19161	1. 13	1.14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14
19171	1. 14	1. 14	1. 14	1. 14	1. 14	1.14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14
19181	1.14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14	1. 14.	1. 14	1. 14	1. 14	1. 14	1. 14
19191	1. 14	1.19	1. 18	1.16	1.16	1. 15	1.11	1.07	1.05	1.15	1.12	1.13	1. 13
1920	1. 19	1. 29	1. 45	1.50	1. 48	1.51	1. 48	1.39	1.35	1.33	1.31	1.34	1.38
Av. 1914-1920	1.15	1.20	1. 24	1.25	1.25	1.26	1.25	1. 24	1.25	1.21	1.16	1.22	1.22
$1921{ }^{1}$	1.69	1.74	1.76	1.77	1.79	1.70	1.63	1. 64	1.68	1.74	${ }^{21.70}$	1.87	1.73
1922	. 99	1.07	1.18	1.15	1.27	1. 20	1.19	1.15	1.14	1.15	1.15	1.17	1.15

Division of Statistical and Historical Research. Compiled from Statistical Register of South Australia, 1920-21 and 1921-22.
${ }^{1}$ The prices from 1916-1921 are those fixed for home consumption, the average prices on the whole transaction of the Wheat Harvest Board during each year being: 1916, $\$ 1.13 ; 1917, \$ 1.14 ; 1918, \$ 1.14 ; 1919$, \$1.31; 1920, \$1.70; and 1921, \$1.52.
${ }^{2}$ These prices for old wheat; new wheat price; November, \$0.93; December, \$1. 02.

WHEAT FLOUR.

Table 42.-Flour, wheat: Average wholesale price per barrel at markets named, 1909-1923.
MINNEAPOLIS-SPRING PATENTS. ${ }^{1}$

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Average.
1909-10	\$6. 21	\$5.89	\$5. 14	\$5. 29	\$5. 22	\$5. 48	\$5. 58	\$5. 45	\$5. 52	\$5. 38	\$5. 42	\$5. 33	\$5. 49
1910-11	6. 20	5. 79	5. 75	5. 21	5. 03	5.01	5. 28	4.91	4. 75	4. 64	4. 89	4.81	5.19
1911-12	4. 88	4.88	4. 98	5. 25	5.05	5.05	5. 00	5. 10	5. 10	5.10	5. 43	5. 60	5. 12
1912-13	5. 43	5. 24	4.68	4. 63	4. 59	4.13	4. 26	4.43	4.43	4. 43	4. 43	4.63	4. 61
1913-14	4.66	4. 57	4. 45	4. 33	4. 18	4.15	4. 26	4. 52	4. 54	4.51	4.51	4. 51	4.43
Av. 1909-1913	5. 48	5. 27	5. 00	4. 94	4.81	4. 76	4.88	4.88	4. 87	4.81	4. 94	4. 98	4. 97
1914-15	4. 62	5.78	6.02	5. 58	5.79	6.01	6.86	7. 54	7. 16	7.61	7. 41	6. 78	6. 43
1915-16	6. 78	6. 42	5. 13	5.23	5.28	5.98	6.23	6.13	5. 70	5. 90	5. 79	5. 29	5.82
1916-17	5. 68	7.69	8. 26	9.08	9.56	8. 60	9.00	8.45	9. 44	11. 33	14. 09	13.08	9. 52
1917-18	12.86	13.22	11. 15	10.84	10. 24	10.07	9.85	10. 05	9.89	9. 90	9. 42	9. 89	10. 62
1918-19	10. 45	10.53	10.49	10. 44	10. 41	10. 44	10. 42	10. 69	11.22	12.09	12. 52	12. 00	10.98
1919-20	12.15	12.13	11. 54	12.03	13. 20	14. 48	1497	13. 73	13.41	14. 69	15.49	14.64	13. 54
1920-21	14.12	13.33	13.02	11.45	9. 74	9. 28	9.94	9. 38	9.10	8.30	9.04	9.40	10. 51
Av. 1914-1920.	9. 52	9.87	9.37	9. 24	9.17	9.27	9.51	9.42	9.42	9.97	10.54	10.15	9.63
1921-22	9. 27	8.34	8. 62	7. 67	7.39	7. 26	7.33	8. 17	8.27	8.46	8. 32	7. 71	8. 07
1922-23	7.95	7. 22	6. 68	6. 76	6. 88	6. 86	6.71	6. 72	6. 72	7.00	6.8	6.35	9
1923-24	6.21	6.37	6. 45	6. 43	6.21	6.30							

ST. LOUIS-SOFT WINTER PATENTS. ${ }^{2}$

1909-10	\$5. 80	\$4. 92	\$5. 14	\$5. 75	\$5.68	\$5. 82	\$5.77	\$5.80	\$5. 75	\$5.40	\$5. 29	\$5.11	\$5. 52
1910	5. 20	4.85	4.76	4. 68	4. 58	4.58	4.86	4. 64	4.52	4. 38	4. 39	4. 36	4.65
1911-12	4.17	4.25	4.40	4. 69	4.68	4. 62	4. 74	4. 70	4. 72	5. 07	5. 54	5. 43	4. 75
1912-13	5. 26	4. 49	4. 54	4. 70	4. 67	4.70	4.84	4.86	4.68	4. 59	4. 52	4. 45	4. 69
1913-14	4. 12	3.88	3.98	3. 95	4.08	4.14	4. 20	4.11	4.02	3.85	3. 92	3. 74	4.00
Av. 1909-1913	4.91	4.48	4.55	4. 75	4. 74	4. 77	4.88	4. 82	4.74	4. 66	4. 73	4.62	4. 72
1914-15	3. 47	4.16	5.04	4.86	4. 91	5. 03	6.18	6. 98	6. 57	6. 65	6. 66	5.56	5. 51
1915-i6	5. 56	4.87	-4.83	5. 08	5. 18	5. 39	5. 60	5. 79	5. 24	5. 32	5. 20	4. 91	5. 25
1916-17	5. 24	6.85	7.31	7.84	8. 72	8.31	8. 67	8. 44	8. 83	11. 29	13.91	12. 53	9. 00
1917-18	10.64	10.78	10.36	10.33	10.26	10.28	10.46	10. 74	11. 40	11. 39	10.94	10. 72	10.69
1918-19	10. 25	10. 25	10. 25	10. 25	10. 25	10. 25	11. 22	11.65	10.71	11. 45	11. 41	10. 28	10.68
1919-20	10.80	10.13	9.90	9.95	10.12	11.31	12.08	11. 49	11. 59	12. 34	13.93	13. 18	11. 40
1920-21	11.98	11.99	12. 09	11.38	10.13	9.44	9.73	9.71	8. 76	7.10	7.81	7. 98	9.84
Av. 1914-1920.	8.28	8.43	8. 54	8. 53	8.51	8. 57	9.13	9. 26	9.01	9.36	9.98	9.31	8.91
1921-22	6. 61	6.63	6. 94	6.60	6. 25	6. 25	5. 99	6. 69	7.05	6. 79	7.07	6.48	6. 61
1922-23	5. 94	5. 75	5.86	6. 29	6. 50	6. 62	6.50	6.62	6.50	6. 66	6. 53	6.05	6.32
1923-24.	5. 59	5. 71	5.39	5. 71	5.75	5.75							

CHICAGO-WINTER PATENTS. ${ }^{3}$

1909-10	\$6. 08	\$5. 07	\$4. 72.	\$5. 28	\$5. 41	\$5.40	\$5. 48	\$5. 42	\$5.48	\$5. 27	\$5.05	\$4. 75	\$5. 28
1910-11	4.92	4.87	4. 72	4. 57	4. 40	4.41	4. 53	4.31	4. 09	4. 06	4.20	4. 16	4.44
1911-12	4. 08	4.12	4. 32	4. 64	4. 61	4. 85	4. 40	4. 58	4. 58	4. 76	5.21	5. 17	4. 61
1912-13	4. 86	4. 52	4. 69	4. 52	4. 56	4.59	4. 62	4. 67	4. 50	4. 48	4. 48	4. 41	4. 58
1913-14	4.25	4.12	4.16	4.21	4.21	4. 22	4.25	4. 25	4. 25	4. 22	4.21	4.24	4. 22
Av. 1809-1913	4.84	4.54	4. 52	4. 64	4.64	4.68	4. 66	4.65	4.58	4. 56	4. 63	4. 55	4.63
1914	3. 80	4. 54	5. 36	5. 16	5. 23	5.22	6. 28	7. 42	7. 01	7.18	7. 19	5. 69	5. 84
1915-16	5. 16	5. 24	5. 10	5. 26	5. 23	5. 39	5. 92	6. 11	5.38	5.76	5. 54	5. 37	5. 46
1916-17	5. 23	6. 55	7. 30	7.78	8. 82	8. 20	9. 08	8.44	9.10	11. 20	14.91	13.80	9. 20
1917-18	11. 77	12. 25	11.74	10.68	10.38	10.44	9.92	10.45	11.00	10.95	10.82	10.88	10.94
1918-19	10. 88	10.68	10. 20	10.08	9. 58	10. 22	10. 55	10.42	10. 36	11. 44	12.99	11. 82	10. 77
1919-20	11.02	10. 54	10.80	11.35	11.81	13.00	13. 68	12.88	12. 08	12. 30	13.68	13. 42	12. 22
1920-21	12.48	11. 79	12. 22	11. 60	10.40	8. 78	10.19	9. 26	9.05	7.91	7. 84	8. 76	10.02
Av. 1914-1920	8.69	8.80	8. 96	8. 76	8.79	8. 75	9.38	9. 28	9.14	9.53	10.42	9.96	9.21
1921-22	7. 12	7.00	7.01	6. 95	6. 51	6. 44	6. 01	6.97	6.81	6. 95	7. 54	7.11	6.87
1922-23	6. 76	6.10	6. 24	6. 48	6. 44	6.67	6.39	6. 20	6. 26	6.19	6. 02	5.80	6.30
1923-24	5. 31	5.39	5. 75	5. 74	5. 30	5.30							

[^135]${ }^{1}$ Compiled from the Minneapolis. Daily Market Record.
Compiled from St. Louis Annual Statements of Trade and Commerce and St. Louis Market Reporter.
${ }^{3}$ Compiled from Chicago Board of Trade and Daily Trade Bulletin.

Table 42.-Flour, wheat: Average wholesale price per barrel at markets named, 1909 to 1983-Continued.
CHICAGO-SPRING PATENTS. ${ }^{3}$

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1909-10.	\$6. 17	\$5. 31	\$6. 08	\$5. 92	\$6. 13	\$6. 45	\$6. 41	\$6. 35	\$6. 46	\$6. 28	\$6. 27	\$6. 18	\$6. 21
1910-11	6. 76	6. 65	6. 37	6.31	6. 18	6. 28	6. 42	6. 05	5. 56	5. 36	5. 62	5.44	6.08
1911-12	5. 53	5.83	5.89	6. 12	5. 95	5. 80	5. 82	5. 86	5.80	5. 88	6. 38	6. 40	5. 94
1912-13	6. 10	5.78	5. 65	5. 36	5.14	4.84	4.60	4.66	4. 64	4.71	4. 88	4.81	5. 10
1913-14	4.89	4.80	4.73	4.62	4. 58	4.65	4. 68	4.80	4.86	4.71	4.74	4.72	4.73
Av. 1909-1913	5. 89	5.78	5. 74	5. 67	5. 60	5.60	5. 59	5. 54	5. 46	5. 39	5.58	5.5	5. 61
1914-15	4. 58	5. 62	18	5. 71	5.79	5. 90	6. 97	7.62	7. 41	7.62	7.85	6. 62	6.49
1915-	6. 66	6.76	5. 40	5.60	5. 69	5.84	6. 51	6.74	5. 87	6. 16	6. 11	5. 99	6. 11
1916-17	5.96	7.63	8.15	9.84	9.79	9.02	9. 54	9.01	9.75	12.02	15.34	17.46	10. 29
1917-18	12.53	13.03	11. 46	10.89	10.55	10.45	10.08	10.75	11.25	11.50	11.15	10.88	11.21
1918-19	10. 65	11. 00	10. 62	10.40	9.58	10.50	10. 42	10. 28	10. 20	11.45	13. 10	11. 25	10.79
1919-20	11. 62	12.25	11.40	11.52	13. 00	13. 95	13.88	14.42	13.18	13.75	15.40	14.50	13. 24
1920-21	13.35	13.10	12. 42	11.75	10.75	8.32	10.00	8.82	8.75	8. 48	8.42	9.60	10.31
Av. 1914-1920	9.34	9.91	9. 38	9.39	9.31	9.14	9.63	9.6	9.49	10.14	11.05	10.90	9.78
1921-22	8.82	9.00	8.10	7.75	7.38	7.32	6.78	7.84	7.55	7.60	8. 00	7.65	7.82
1922-23	7.73	7. 25	6. 99	6.86	6.78	7.00	6.85	6. 68	6. 68	6. 64	6. 69	6. 22	6.88
19	5.80	5. 97	6. 15		5. 99								

NEW YORK-WINTER PATENTS.4

1009-10	\$6.52	\$6. 28	\$5.43	\$5. 77	\$5. 78	\$5. 74	\$5.96	\$5. 95	\$5.96	\$5. 82	\$5. 74	\$5.40	\$5.86
1910-11	5. 44	5.36	5.07	4. 92	4.81	4.88	5.02	4.92	4.78	4.63	4. 67	4.65	4.93
1911-12	4.68	4. 67	4. 71	4.90	4.90	4. 90	4. 96	5. 06	5. 08	5. 32	6. 00	6. 00	5. 10
1912-13	5. 79	5. 28	5.34	5.33	5.33	5. 33	5.55	5.75	5. 44	5.50	5. 50	5. 54	5.47
1913-14	5. 58	5. 42	4. 39	4.91	4.90	4.90	4. 92	4.97	5.00	4.88	5.00	4.98	5.03
Av. 1909-1913	5.60	5. 40	5. 09	5.17	5.14	5. 15	5.28	5.33	5. 25	5.23	5.38	5.31	5.28
1914-15	4. 90	5. 22	5.81	5. 80	5. 80	5.86	6.79	7.88	7.56	7.39	7.55	6.64	6.43
1915-16	6. 48	6. 62	5. 68	5.89	5. 90	6. 20	6. 70	6.62	6.28	6. 24	5.91	5.48	6.17
1916-1	5.63	7.34	7.86	8. 30	8. 90	8.60	9.09	8.87	9.53	11.41	14.57	12.98	9.42
1917-18	11.72	11.12	10.94	10.64	10. 51	10.45	10.44	10.43	10.91	11.00	10.98	10.98	10.84
1918-19	11.35	10.71	10. 40	10.28	10.25	10.53	10.48	10.25	10.55	11.40	11.38	11.19	10. 73
1919-20	11.11	10.53	10.52	10. 22	10.18	10.68	10. 99	10.98	10.91	11.47	12.90	13.67	11.18
1920-21	12.46	11. 20	11. 22	10.14	9.38	8.82	8.87	8.36	8.15	7.00	7.09	7.39	9.17
Av. 1914-1920	9.09	8.96	8.92	8.75	8. 70	8. 73	9.05	9.06	9.13	9.42	10.05	9.76	9.13
1921-22	6. 50	6. 24	6. 32	6.02	5.73	5. 68	6.00	6. 66	6. 99	6. 57	6.32	5.93	6.25
1922-23	7. 10	6. 49	6. 57	6. 76	6. 98	6. 79	6. 67	6. 63	6. 56	6.72	6.45	6. 34	6. 67
1923-24	5.69	5.93	6.31	6.33	6. 20	6.18							

NEW YORK-SPRING PATENTS. 4

1909-10	\$6. 45	\$6. 31	\$5. 62	\$5.51	\$5. 56	\$5. 63	\$5. 80	\$5. 76	\$5.82	\$5. 66	\$5.62	\$5. 42	\$5. 76
1910-11	6.05	5.78	5. 71	5. 52	5.33	5.40	5. 46	5. 25	5.08	5. 02	5. 23	5. 10	5.41
1911-12	5. 13	5.36	5. 44	5. 42	5. 45	5. 22	5.42	5.43	5.40	5. 54	5.88	5.73	5.45
1912-13	5.51	5.37	5.11	4.87	4.80	4. 60	4.66	4. 70	4.80	4. 66	4.89	4.95	4.91
1913-14	4.98	4. 98	4. 75	4.50	4.52	4.56	4.61	4.76	4.90	4.66	4. 72	4.79	4.73
Av. 1999-1913	5. 62	5. 56	5. 33	5. 16	5. 13	5. 08	5. 19	5. 18	5. 20	5.11	5.27	5. 20	5.25
1914	4. 59	5. 78	6. 09	5. 78	5.83	6. 02	7.03	7.78	7.41	7.63	7.79	6. 50	6.52
1915-16	6.82	6. 91	6. 44	5. 58	5. 62	6. 10	6. 69	6. 64	5.99	6.32	6. 27	5. 78	6. 26
1916-17	6.09	7.80	8.36	8.94	9.69	8.99	9.49	9. 06	9.80	11.66	14. 99	13. 68	9. 88
1917-18	12. 32	12.46	11. 69	11.31	10.93	10.86	10.63	10.63	10.94	11.00	10.98	10.98	11. 23
1918-19	11.41	11.26	11.07	10.92	10.82	10.90	10.64	10.69	11.27	12.09	12.51	11.93	11. 29
1919-20	12.12	12. 35	11.73	12.20	13.11	14. 25	14.49	13. 25	13.07	13.88	14.83	14.20	13. 29
1920-21	13.93	13. 06	12.82	11.34	9.77	9.12	9.58	8.98	8.82	8.12	8.61	9.07	10. 27
Av. 1914-1920	9.61	9. 95	9. 74	9.44	9.40	9.46	9. 79	9. 58	9.61	10. 10	10.85	10.31	9.82
1921-22	9.03	8.48	8.31	7.50	6. 97	6. 94	6. 85	8. 05	7.95	7.96	8.18	7.63	7.82
1922-23	7.69	7.00	6.64	6.85	6. 99	6.93	6.68	6. 62	6. 56	6. 79	6.68	6.37	6.82
1923-24	6. 07	6. 38	6. 40	6. 36	6. 17	6. 20							

[^136]Table 42.-Flour, wheat: Average wholesale price per barrel at markets named, 1909 to 1923-Continued.
KANSAS CITY-HARD WINTER PATENTS. ${ }^{5}$

$\begin{aligned} & \text { Year beginning } \\ & \text { July } \overline{1} \text {, } \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Average.
1909-10	\$5. 42	\$4. 72	\$4. 68	\$4. 88	\$4.68	\$4. 77	\$4. 78	\$4. 78	\$4. 83	\$4. 84	\$4. 84	\$4. 60	\$4. 82
1910-11	4.85	4.70	4.70	4. 54	4. 46	4. 46	4. 52	4.30	4. 20	4. 05	4. 26	4.18	4.44
1911-12	4.06	4.19	4. 30	4.65	4. 60	4. 54	4.80	4. 72	4. 69	4. 79	4. 90	4.90	4.60
1912-13	4.50	4.10	4.10	4.03	3.90	3.86	3. 92	3. 94	3. 88	3.99	4. 02	4.15	4.03
1913-14	4.10	4.07	4.19	4.01	3.95	3.95	3.95	3.95	3.98	4.00	4.00	3.98	4.01
Av. 1909-1913	4.59	4.36	4.39	4.42	4.32	4.32	4.39	4.34	4.32	4.33	4.40	4.36	4.38
1914-15	3. 58	4. 23	5. 37	5. 08	4.98	5.19	6. 24	7.02	6.78	6. 80	6. 68	5.81	5.65
1915-16	5. 58	5. 38	4.91	4.90	4.98	5. 18	5. 75	5. 74	5. 12	5. 20	5. 08	4.81	5. 22
1916-17	5.14	6. 90	7.40	8.08	9. 07	8. 02	8. 82	8. 38	9.30	11.91	14. 44	12. 84	9. 19
1917-18	11.95	12. 41	10.74	10. 50	10.31	10. 02	10. 10	10. 25	10.31	10.31	10. 38	10. 38	10. 64
1918-19	10. 59	10. 27	10.15	10. 14	10.25	9.93	9. 83	10. 06	10. 49	11.94	12.99	12.01	10. 72
1919-20	11. 11	10. 70	10.98	11.56	12. 02	13. 52	14. 08	12. 64	12. 26	13. 09	14. 23	13.37	12.46
1920-21	12.98	12. 25	11.88	10.69	9.15	8. 81	9.06	8. 65	8. 60	7.54	8. 15	7.88	9.64
Av. 1914-1920.	8. 70	8.88	8.78	8. 71	8.68	8.67	9.13	8. 96	8.98	9.54	10.28	9.59	9.08
1921-22	7.15	6.61	7.08	6. 57	6.05	6. 15	6. 13	6. 85	7.14	7. 28	7.44	6.81	6.77
1922-23	6. 71	6. 02	6. 00	6.14	6. 38	6. 40	6. 20	6. 20	6. 20	6. 33	6. 21	5. 72	6. 21
1923-24	5. 39	5. 59	5.66	5.89	5. 68	5. 68							

Division of Statistical and Historical Research.
${ }^{6}$ Compiled from Northwestern Miller, Kansas City Daily Price Current, and Kansas ${ }^{\circ}$ City Grain Market Review.
Table 43.-Bread: Average retail price per pound (baked weight), 1913-1923. NEW YORK.

- Calendar year.	$\begin{gathered} \text { Jan. } \\ 15 . \end{gathered}$	Fèb. $15 .$	Mar. 15.	Apr. 15	$\begin{array}{\|c} \text { May } \\ 15 . \end{array}$	June 15.	July $15 .$	$\begin{gathered} \text { Aug. } \\ 15 . \end{gathered}$	Sept. 15.	Oct. 15.	Nov. 15.	Dec. 15.	$\begin{array}{\|c} \text { A ver- } \\ \text { age. } \end{array}$
1913	Cents.												
	6. 0	6.0	6. 0	6.0	6.0	6.2	6. 4	6.1	6.0	6.0	6.0	6.1	6.1
1914	6.1	6.1	6. 2	6.1	6. 1	6. 1	6. 1	6.4	6. 2	6.2	6. 3	6. 3	6. 2
1915	6.4	7. 2	6.6	6. 6	6. 6	6.8	6. 9	6.9	6. 6	6.6	6. 6	6. 6	6.7
1916	6. 6	6.8	6. 6	6. 6	6. 6	6. 6	6. 6	6. 6	7. 1	7. 7	7.8	8. 1	7.0
1917	8. 0	8.1	8. 7	8. 9	9.8	9.9	9. 9	9.9	9.9	9. 9	9.9	8.8	9.3
1918	9.1	8.9	8.9	10.0	10. 0	9.9	10. 0	9. 9	9.9	10.0	9.9	9.9	9.7
1919	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10. 0	10.0	10.0	10.0	10.0
1920	10.5	11.1	11.1	11.6	11.8	11.9	11.9	11.9	11.9	11.9	11.9	11.6	11.6
Av. 1914-1920.	8.1	8.3	8. 3	8.5	8.7	8.7	8.8	8.8	8.8	8.9	8.9	8.8	8.6
1921	11.0	10.7	10.8	10.6	9.9	10.0	10. 1	10.2	10.1	10. 1	10.0	9.9	10.3
1922	9.8	9.0	8.9	8. 9	8. 9	9.7	9.7	9.7	9.8	9.8	9.8	9.7	9.5
1923	9. 7	9.7	9.7	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6

CHICAGO.

1913	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
1914	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.2	6.2	6.2	6.3	6.1
1915	6.4	7.2	7.2	6.5	6.5	6. 5	6. 5	6. 5	6. 5	6.5	6.5	6.5	6.6
1916	6. 5	6.5	6.5	6.5	6. 6	6. 6	6. 6	6. 6	6. 6	7.3	7.9	8. 0	6.8
1917	8.1	8. 2	8.2	8.6	9.6	10. 5	10.5	10. 5	10. 5	10.5	10.1	9.0	9.5
1918	9.2	9.6	10. 1	10.2	10.2	10. 2	10. 2	10.2	10. 2	10.2	10. 2	10.2	10.1
1919	10.2	10.2	10.2	10.0	10.0	10.0	10.0	10.0	10.0	10.7	10. 6	10.7	10.2
1920.	10. 6	11.6	11.6	11.6	12.3	12.4	12. 4	12.4	12.4	12.4	12. 4	11. 5	12.0
Av. 1914-1920.	8. 2	8.5	8.6	8.5	8.8	8.9	8.9	8.9	8.9	9.1	9.1	8.9	8.8
1921	11.3	11.3	11.3	11.2	9.9	9.9	9.8	9.8	9.8	9.8	9.8	9.8	10.3
1922	9.9	8. 9	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.6
1923.	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.8	9.8	9.7	9.7

MINNEAPOLIS.

Table 43.-Bread: Average retail price per pound (baked weight), 1913-1929— Continued.
UNITED STATES (AVERAGE OF LEADING CITIES).

Calendar year.	Jan. 15.	Feb. 15.	Mar. $15 .$	Apr.	$\begin{gathered} \text { May } \\ 15 . \end{gathered}$	June 15.	July 15	$\begin{gathered} \text { Aug. } \\ 15 . \end{gathered}$	Sept. 15.	Oct. $15 .$	Nov. 15.	Dec. 15.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
	Cents.												
1913	5. 6	B. 6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6
1914	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.3	6.4	6.4	6.4	6.5	6.3
1915	6.8	7.1	7.1	7.1	7.2	7.2	7.1	7.1	7.0	7.0	6.9	6.9	7.0
1916	6.9	7.0	7.0	7.0	7.0	7.0	7.0	7.1	7.7	8.1	8. 4	7.8	7.3
1917	7.9	8.0	8.1	8.4	9.5	9.6	9.9	10.2	9.9	9.9	9.9	9.3	9.2
1918	9.4	9.5	9.6	9.8	9.9	10.0	10.0	9.9	9.9	9.8	9.8	9.8	9.8
1919	9.8	9.8	9.8	9.8	9.8	9.9	10.0	10.1	10. 1	10.1	10.2	10.2	10.0
1920	10.9	11.1	11.2	11. 2	11.5	11.8	11.9	11.9	11.9	11.8	11.6	10.8	11.5
Av. 1914-1920	8.3	8.4	8.4	8.5	8.7	8.8	8.9	8.9	9.0	9.0	9.0	8.8	8.7
1921	10.8	10.6	10.5	10.3	9.9	9.8	9.7	9.7	9.6	9.5	9.3	9.1	9.9
1922	8.8	8.6	8.7	8.7	8. 8	8.8	8.8	8. 7	8.7	8. 7	8.7	8. 6	8.7
1923	8.7	8.7	8. 7	8. 7	8. 7	8.7	8.8	8. 7	8. 7	8.7	8. 7	8. 7	8. 7

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.
Table 44.-Daily milling capacity, flour output, wheat milled and wheat production, by States.

State.	Daily capacity. ${ }^{1}$		Output. ${ }^{2}$		Wheat ground. ${ }^{2}$		Wheat production. ${ }^{3}$		Wheat ground as a percent- age of wheat produc- tion.	
	$\begin{aligned} & \mathrm{Jan} .1, \\ & 1920 . \end{aligned}$	$\begin{gathered} \text { Jan. 1, } \\ 1923 . \end{gathered}$	1919	1921	1919	1921	1919	1921	1919	1921
			1,000	1,000	1,000	1,000	1,000			
Alabama	Barrels.	$\begin{gathered} \text { Barrels. } \\ 600 \end{gathered}$	barrels.	barrels.		bushels.		bushels.	P.ct.	P. cit
Arizona.	1,925	825	150	132	669	619	950	840	70	74
Arkansas	7,235	7,200	355	180	1,644	887	2, 432	958	68	93
California	17, 525	16,475	3,383	1,974	15, 701	9,582	16, 848	8,355	93	115
Colorado	11, 975	12,300	1,481	1,481	6,943	6,645	18, 196	23, 239	38	29
Delaware	1,975	1,700	111	90	576	455	1,512	1,300	38	35
Georgia	5,575	5,550	491	542	2, 209	2,468	1,480	1,449	149	178
Idaho.	9,625	9,850	1,105	787	5,119	3,676	20,775	26, 952	25	14
Illinois.	55, 250	49,300	7,262	5,215	33, 430	23,992	70, 170	46, 822	48	51
Indiana	48,650	46, 200	4, 305	3,254	20,042	15, 749	41,751	24, 192	48	65
Iowa	22,750	22, 650	1,252	912	5,925	4, 898	21, 245	9,944	28	49
Kansas	85, 800	96, 300	16, 157	17, 337	73, 942	82, 390	160, 276	128, 695	46	64
Kentucky	28, 725	26,550	2, 690	2, 033	12, 450	9,490	9, 660	6, 340	129	150
Maryland	12, 025	11,975	1,282	936	5,706	4,453	8, 964	8,260	64 59	${ }_{68}^{54}$
Michiga	36,775	30,925	2,537	2, 122	12, 021	10, 119	20, 445	14, 840	59	68
Minnesota	178, 825	182, 875	28,505	23,733	130, 865	111, 620	35,731	22,938	366	487
Missouri	91, 275.	'99, 600	7,132	6,270	32, 739	28, 945	61, 568	34, 952	53	83
Montana	13,875	13,850	1,272	1,276	5,730	5,634	9,889	33, 430	58	17
Nebraska	25,850	26, 275	3, 416	2, 342	15, 947	11, 151	60, 675	59, 878	8	17
Nevada	725	00	88	17	397	83	466	493	85	17
New Jersey	2,925	2,925	123	145	594	727	1,530	1,539	39	47
New Mexico	1,625	1,175	94	72	4354	357 37 880			17	12
New Y ork	60,900 12	59, 875 15,100	9,053	8,394 1,341	$\begin{array}{r}43,337 \\ 6,228 \\ \hline\end{array}$	37,880 6,580	9,753 5,570	9,137 4,500	444 112	415 146
North Carolin	12,425 17,375	15,100	2, 225	1, 1,994	6,228 10,089	6, 427	62, ${ }^{\text {5, }} 776$	80, 850	16	12
Ohio	64, 875	60, 150	5,790	3, 844	27, 348	18, 514	58, 196	30, 185	47	61
Oklaho	20, 850	22, 250	3, 464	2,781	15,787	12, 705	66, 052	47, 325	24	27
Oregon	26,100	28,400	3, 342	2, 528	14,991	11, 538	20,739	25,364	72	45
Pennsylvania	37, 825	38,950	3, 313	3, 007	15, 947	14, 801	24, 898	23,850	64	62
South Carolina	1,125	1,000	50	62	299	313	1,250	1,298	22	42
South Dakot	9,865	6,500	630	354	3,005	1,764	31,793	25, 980	6	40
Tennes	31,850	30,625	3,085	2,233	13, 122	10,794	6,370	4,500	206	240
Texas	33,950	36,625	4,584	4, 009	21, 338	18, 541	40,178	20, 810	${ }^{53}$	89
Utah	9,425	12,075	545	742	2, 6887	3,478 8,373	4, ${ }_{\text {4, }}^{13} \mathbf{1 3 0}$	6, 299	65 90	${ }^{55}$
Virginia	21,700	24, 025	2,208	1,761	10,468	8,373	11,694	8,301	90	101
Washington	36,475	36,800	5,911	4,470	26,836	21, 021	41, 888	58, 245	64	36
West Virginia	10,000	10,725	5886	, 376	2, ${ }_{\text {2, }}$	1,678	4,023	3,125 2,812	73 176	$\begin{array}{r}54 \\ 284 \\ \hline\end{array}$
W isconsin.	26,100 2,800	27,850 2,575	2,809 104	1,702 217	13,337 487	7,988	7, 2,613	2, 812	176 19	284 30
Wyoming	2, 800	2,575 1,150	104	2178	1,015	1,003	2,643	-397	108	222
Tota	84,985	98, 100	32, 466	10,846	612,562	521,234	967, 979	814,905	63	64

[^137]Table 45.-Rye: Acreage, production, value, exports, etc., in the United States, 1869-1923.

Calendar year.	$\begin{gathered} \text { Acreage } \\ \text { harvest- } \\ \text { ed. } \end{gathered}$	A verage yield per acre.	Production	Aver- age farm price per bushel Dec. 1.	Farm value Dec. 1.	Value per acre. ${ }^{1}$	Chicago cash price per bushel No. 2. ${ }^{2}$				Domestic exports incfuding rye flour, fiscal year beginning July $1 .{ }^{3}$
							December.		Following May.		
							Low.	High.	Low.	High.	
	1,000	Bush.of	$1,000$	Cents.	$\begin{gathered} \text { 1,000 } \\ \text { dallars. } \end{gathered}$	Dollars.	Cts.	Cts.	Cts.	Cts.	Bushels.
	acres.			Cents.		Dollars.	Cts.	771	78	831	Bushels.
1869	1, 658	13.6	22,	77.0	17,342	10.46	6	$74{ }^{2}$	81	91	199, 87
1879	1,176	13.2	15, 474	73.2	11,327	9. 63	67	74	75	93	174
1871	1,070	14, 4	15, 366	71.1	10,928	10. 21	62	$63 \frac{3}{4}$	681	7	832, 689
1872	1,049	14.2	14, 889	67.6	10,071	9. 60	$57 \frac{1}{2}$	\%10	$68 \frac{1}{2}$	70	611, 749
1873	1,150	13. 2	15, 142	70.3	10,638	9.25	70	81	91	102	1,923,404
1874	1,117	13.4	14, 991	77.4	11, 610	10.39	93	$99 \frac{1}{2}$	103	$107 \frac{1}{3}$	267, 058
1875	1,360	13.0	17,722	67.1	11, 894	8.75	67	683	$61 \frac{1}{2}$	$70 \frac{1}{2}$	589, 159
1876	1,468	13.9	20,375	61.4	12,505	8.52	$65 \frac{1}{2}$	73	70	- $92 \frac{1}{2}$	2, 234, 856
1877	1, 413	15.0	21, 170	57.6	12, 202	8. 64	$55 \frac{1}{2}$	$56 \frac{1}{2}$	54	60	4, 249, 684
1878	1,623	15.9	25, 843	52.5	13, 566	8.36	44	$44 \frac{1}{2}$	47	52	4, 877,821
1879	1,842	13.7	25, 201	67.6	17, 040	9. 25	$73 \frac{1}{2}$	81	$73 \frac{1}{2}$	85	2, 943, 894
1880	1,768	13.9	24, 541	75.6	18, 565	10. 50	82	${ }_{98}{ }^{1}$	115	118	1,955, 155
1881	1, 789	11.6	20, 705	93.3	19,327	10. 80	961 ${ }^{\frac{1}{2}}$	98	77	83	1, 003, 609
1882	2, 228	13.4	29, 960	61.5	18,439	8.28	57	$58 \frac{1}{2}$ 60	${ }_{601}^{62}$	${ }_{67}^{67}$	2, 206, 212
1883	2,315	12.1	28,059	58.1	16, 301	7.04	$56 \frac{1}{2}$	60	$60 \frac{1}{2}$	$62 \frac{1}{2}$	6,247, 590
1884	2, 344	12. 2	28, 640	51.9	14, 857	6. 34	51	52	68	73	2, 974, 390
1885	2,129	10.2	21, 756	57.9	12, 595	5. 92	$58 \frac{1}{2}$	61	58	61	216, 699
1886	2,130	11.5	24, 489	53. 8	13, 181	6. 19	53	541	${ }_{63}{ }^{24}$	$56 \frac{1}{2}$	377, 302
1887	2, 053	10. 1	20, 693	54. 5	11, 283	5. 50	551	${ }_{52}{ }^{\frac{1}{2}}$	63 39	68 411	94,827 309,266
1888	2,365	12.0	28,415	58.8	16,722	7.07	50	52	39	$41 \frac{1}{2}$	309, 266
1889	2,172	13.1	28, 378	42.3	11, 991	5.52	44	$45 \frac{1}{3}$	$49 \frac{1}{2}$	54	2, 280, 975
1890	2, 184	12.1	26,414	62.6	18, 536	7. 57	${ }^{64}{ }^{2}$	$68 \frac{1}{2}$	83	92	358, 263
1891	2,234	14.7	32, 761	77.1	25, 264	11.31	86	92 51	701	69	$12,068,628$ 1, 493, 924
1822	2,251	13. 0	29, 253	53.6	15, 674	6.96	46 45	51 $47 \frac{1}{2}$	442	48	$1,493,924$ 249,152
1893	2,178	13.1	28,592	50. 2	14, 360	6.59	45	$47 \frac{1}{2}$	$4{ }^{2}$	48	249, 152
1894	2, 164	13. 7	29,613	49.4	14, 622	6. 76	471 ${ }^{2}$	$\stackrel{49}{353}$	${ }_{32}{ }^{2}$	67 361	32,045 1, 011,128
1895	2, 153	14.5	31, 139	42. 2	13, 151	6. 11	32 37	353	33	361 351	1, 011, 128
1896	2,126	13. 6	28,913	38.8	11. 231	5. 28	37	$42 \frac{1}{2}$	$32{ }^{3}$	$35 \frac{1}{2}$	8, 575, 663
1897	2,077	16. 1	33, 433	43. 2	14,454	6. 96	453	${ }_{5}^{47}$	48	75	$15,562,035$ $10,169,822$
1898.	2,071	15. 9	32, 888	44.5	14,640	7.07	$52 \frac{1}{2}$	$55 \frac{1}{2}$	$56 \frac{1}{2}$	62	10, 169, 822
1899	2,054	14.8	30, 334	49. 6	15, 046	7.33	49	52	53	$56 \frac{1}{4}$	2, 382, 012
1900	2,042	15. 1	30,791	49.8	15,341	7. 51	$45 \frac{3}{4}$	493	$51 \frac{1}{2}$	54	2, 345, 512
1901	2,033	15. 3	21, 103	55.4	17,220	8.47	59	65 年	$54 \frac{1}{2}$	${ }_{501}$	2,712, 077
1902	2, 051	17. 2	35, 255	50.5	17,798	8. 68	48	493 52 52		${ }_{78}$	$5,445,273$ 784,088
1903	2,074	15.4	31, 990	54.0	17, 272	8. 33	$50 \frac{1}{2}$	$52 \frac{1}{2}$	$69 \frac{3}{4}$	78	784,068
1904	2, 085	15. 3	31,805	68.9	21, 923	10.51	73	75	70	84	29,749
1905	2, 141	16. 4	35, 168	60.4	21, 241	9.92	64	68	58	62	769, 717
1906	2, 186	16.7	36, 559	58.5	21, 381	9.78	61	65	69 79	$87 \frac{1}{2}$	769,717
1907	2, 187	16.4	35, 455	72. 5	25,709	11. 86	75	82	79 83	86 90	2, 444, 588
1908	2, 175	16.4	35, 768	72.8	26, 023	11. 96	75	771	83	90	1, 295, 701
1909	2,196	16. 1	35, 406	72. 2	25,548	11. 63	72	80	74 90	80 113	242,262 40,123
1910	2,185	16. 0	34, 897	71.5	24, 953	11. 42	80	82 94	90	113	㐌, 31,384
1911	2,127	15. 6	33, 119	83.2	27, 557	12. 96	91 58	94 64	60	94^{4}	$1,854,738$
1912	2,117	16.8	35, 664	66.3	23,636 28,220	11.16 10.25	58 61	64	62	67	$\begin{aligned} & 1,854,738 \\ & 2,272,492 \end{aligned}$
1913	2, 557	16.2	41,381	63.4	28, 220	10. 25	61	65	62	67	2,262, 492
A $\overline{\text { a }}$ 1900-1913.	2,236	16.1	36, 093	70.9	25, 583	11.44	72.4	77.0	75.2	83.9	888, 200
1914	2, 541	16.8	42,779	86.5	37, 018	14. 57	1071	1121 ${ }^{\frac{1}{3}}$	115	122	13, 026, 778
1915	3, 129	17.3	54, 050	83.4	45, 083	14. 41	$94 \frac{1}{2}$	$98 \frac{1}{2}$	$96 \frac{1}{2}$	993	15, 250, 151
1916	3,213	15.2	48,862	122.1	59, 676	18. 57	130	151	200	240	13,703, 499
1917	4,317	14.6	62,933	166.0	104, 447	24. 19	179	185	180	260	17, 186, 417
1918	6,391	14.2	91, 041	151.6	138, 038	21. 60	154	164	$145 \frac{1}{2}$	173	36,467, 450
1919	6,307	12.0	75, 483	133.2	100, 573	15. 95	150	182	198	229	41,530,961
1920	4,409	13.7	60, 490	126.8	76, 693	17.39	144	167	$135 \frac{1}{2}$	167	47,337,466
A.7.1914-1920.	4,330	14.4	62, 234	128.9	80,218	18.53	136.4	151.3	152.9	184.4	26, 357, 532
1921	4,528	13.6	61,675	69.7	43, 014	9. $50{ }^{\circ}$	84	90	971 ${ }^{2}$	111	29, 943, 852
1922	6,672	15.5	103, 362	68. 5	70, 841	10.62	837	924	72	83	51,662,968
1923 4	5, 157	12. 2	63, 023	64.7	40,804	7.91	695	724			

Division of Crop and Livestock Estimates; figures in italics are census returns.

[^138]Table 46.-Rye: Acreage, production, and total farm value, by. States, calendar years, 1921-1923.

State.	Thousands of acres.			Production, thousands: of bushels.			Total value, Basis Dec. 1 price, thousands of dollars.		
	1921	1922	1923 1	1921	1922	19231	1921	1922	$1923{ }^{1}$
Massachusetts_	2	3	3	30	57.	54	52	80	73
Connecticut.	5	5	5	95	100	90	142	150	112
New York	52	55	58	806	880	945	798	854	860
New Jersey	57	61	65	998	1,159	1,157	1,018	985	1,088
Pennsylvania	200	220	215	3,200	3, 740	3, 655	3, 040	3,254	3, 326
Delamare	4	6	6	44	85	86.	44	89	83
Maryland	17	17	17	238	258	269	219	284	${ }^{261}$
Vinginia	38	40	42	418	460	504	397	414	539
West Virginia	10	10	10	120	120	100	114	114	103
Nonth Carolina	39	60	58	273	480	603	341	576	814
South Carolina	5	6	7	50	60	74	125	108	128
Georgia.	12	18	20	108	171	180	189	231	342
Ohio-	83	87	84	1,079	1,235	1,302	906	1, 025	1,016
Indiana.	306	350	299	3, 978	4, 200	4, 186	2,904	3,318	3,056
Hilinois.	197	256	230	3,349	4, 096	3,450	2, 679	3, 072	2,588
Michigan	642	642	467	8,346	8,218	6,538	5, 842	6,246	4, 054
Wisconsin	371	489	342	5, 046	7,139	5,062	3, 583	5,140	3, 290
Minnesota	640	1,154	912	11,209	21, 926	12,312.	6,944	14, 910	6, 525
Iowa.	35.	55	54	564	1,084	923	412	759	609
Missouri.	30	28	26	336	336	325	289	312	286
North Dakota.	930	1,800	1,288	10, 230	28,980	10, 046	5,933	17, 388	4,822
South Dakota	191	506	304	3, 056	9, 108	3, 496	1,772	5, 283	1,713
Nebraska.	151	188	132	1, 918	2,106	1,584	1,151	1, 369	
Kansas	101	71	41	1,141	788 230		776 202	552 253	241
Kentucky.	18.	20	20	180	230	234	202	253	241
Tentressee	$19:$	20	20	152	180	200 :	205	214	232
Alabiama	1	1	1	12	${ }^{5}$	12	19	8	19
Texas..	$13:$	13.	17	158	117.	204.	156	146	200
Otimama	34	35	37	408	350	444	269	280	400
Arkanses	1	1	1	9	12	9	12	12	11
Mortana	116	240	192	1,299	3,380	2,112	688	1, 814	1,077
W yoming.	24	35	24	504	490	312	292	255	206
Colorado	92	97.	73	1,058	873	876	635	576	491
New Mexico.	5	2	2	70	10	24	49	10	22
U'tah	15.	12	11	140	120	125	98	72	112
Idaho	12.	13	14	216	195	266	151	131.	181
W ashington	21.	19	23	294	190	361	191	180	
Oregon.-.	39	37	37.	554	444	555	37.	37.	516
United State	4,528	6, 672	5,157	61,675	103, 362	63, 023	43, 014	70,841	40,804

Division of Crop and Livestock Estimates.
${ }_{1}$ Preliminary.

Table 47.-Rye: Yield per acre, by States, calendar years, 1908-1923.

Stat	1908	1909	1910	1911	1912	19131	$\begin{aligned} & \text { Av. } \\ & 1909 \end{aligned}$	1914	1915	1916	19171	1918	1919	1920	1914	1921	1922	1923
State	1908	1909	1910	1911	1912	1913	1913								1920			
	Bu.	$B u$.	Bu.	Bu.	Bu.	Bu.	Bu.	$B u$.	Bu.	Bu.	$B u$.	Bu.	Bu	$B u$.				
Massachuse	16. 5	16.2	17.0	16. 0	18. 51	18.5	17.2	19. 0	20.01	18. 51	19.0	20.0	23.0	18. 0	19.6	15.0	19.0	18.0
Connecticut	18.5	18.7	20. 01	18. 5	17.51	19.3	18. 8	19.0	21. 51	19.6	20. 5	22. 0	20.0	18.0	20.	9.0	20.0	
New York	16.5	17.0	18. 31	16. 71	16. 5	17. 2	17.11	17. 7	18. 7	18. 01	19.0	16.5	16. 0	17.5	17.	15. 5	16. 0	3
New Jerse	16.2	16.3	18.0	16. 41	17.51	18.0	17.2	18. 5	20. 0	19.0	18. 51	18. 5	16. 0	17.5	18.3	17.	17.	8
Pennsylvan	16. 5	15.3	17.0	15.1 1	17.5	17. 5	16.5	18.0	18.0	17.01	17.01	17.0	16.0	16.0	17.0	16.0	17.	17.0
		14.0	15.5	15.0	14.0	14.0	. 5		15.5	15.0	16.01	14.5	13.0	15.0	15. 2	11.0	14.1	14.4
Maryla	15.0	14.1	16.1	14.51	15.5	14.4	14.9	17.0	16.5	15.51	16.0 ${ }^{1}$	15. 0	14. 0	15.4	15. 6	14.0	15.2	15.8
Virginia	12.5	12.3	13.51	11.5	12. 5	12.3	12.4	13.0	14.5	12.5 1	15. 0	12. 0	11. 51	12.0	12.9	11.0	1.	12.0
West Virg	13. 0	13.5	12.9	11.0	13. 0	13.5	12.8	14.5	14.0	16. 0	13. 51	13. 7	13. 0	11. 0	13.7	12.0	12. 0	0.0
North Caroli	8.9	9.4	10.0	10.0	9.3	10.3	9.8	10.0	11.5	9.71	10.0	9.0	8.9	9.5	9.8	7.0	8.0	4
	9.	9.8		10.0	9.5	10.5	10.0	11.5	10.0	9.8	10. 01	11. 2	10.0	11.0	10.5	10.0	10.0	10.5
Georg	8. 7	9.0	10. 4	9.5	9. 2	9.5	9. 5	9.3	9. 2	9.5	8. 3	8.8	8.9	10.0	9.11			. 0
Ohio	16.5	17.2	16. 5	15.51	15. 5	16.5	16. 2	17. 0	17. 5	14.5	18. 01	17.0	16.	14. 4	16.	13		. 5
Indiana	15.0	16.5	15. 8	13.71	14.5	15. 2	15.1	16.3	16. 0	14.0	15. 01	16.5	14.0 1	14.0	15.1	13.0	1	0
Illinois	17.1	17.8		16.818	16.0	16.5 14.3					17.5	19.0 14.3	16.5	15.6 14.7	16.9	17.0 13.0	16.0	15.0 14.0
Michiga		16.		17.0	18.3	17. 5	17.0	16.5	18. 5	16. 2	18. 51	17.6	15. 8	16.0	17.0	13. 6	14.6	14.8
Minneso	18.5	19.0	17.0	18.7	23.0	19.0	19.3	18.8	19.5	15. 0	18. 5	20.0	15.0	17.0	17. 7	17.5	19.0	13.5
Iowa.	20. 0	17.8	18. 5	18.0	19.0	18. 2	18.3	19.0	18. 5	17.0	18. 01	19. 0	15. 9	17.0	17.8	16.1	19.7	. 1
Missouri--	12.8	($\left\lvert\, \begin{aligned} & 15.0 \\ & 18.4\end{aligned}\right.$		14.1	14.8	15.0					14. 71	14.0		12.	13.0	$\left[\begin{array}{l}11.2 \\ 11.0\end{array}\right.$	1	2.5 7.8
North Dakota	18.0	18.4	8.5	16.6	18.0	14.4	15. 2	17.1						13. 5				7.8
South Dakota	17. 5	17. 5	17.0	10.	19.	13.2	15.4	17.0	19.	18.0	16. 0	12	13.	13.5 14.1		16.0	11.	5
Nebraska.-	16. 0	16. 5	16. 0	13.	16	14.5	15. 2	16.0	17.5	16. 0	15.6	12.9 ${ }^{14.3}$	16. 3	14. 1	14.5	12.7	11.	8. 5
Kansas.	13.3	14. 2	14.0	11.0	15. 9	12. 4					12. 5	13.6	12.0	12.0	12.4	10.0	11.5	11.7
Kentucky				12.0		12.4			$\left(\begin{array}{l}12.0 \\ 10.5\end{array}\right.$	(11.2	12.5	13.6	12.0	12.0 9.0	12.4 10.0	10.0 8.0	1.5	11.7 10.0
	10.0	11.3	12.0	10. 0	11.	11.0	11.2	13.0	10.0	13.0	9.5	11.0	9.5	10.9	11.0	12.0	5.	12.0
Texas	15.5	11.2	11.5	10.0	16.6	15. 0	12.9	14.8	17.0	10.0	10.0	5. 4	17.0	16.0	12.9	12. 0	9.0	12.0
Oklahoma	13.5	513.5	13.7	9.5	12. 0	9.5	11. 6	16.0	13.5	10.0	10.0	11.0	14. 0	15.0	12. 8	12.0	10. 0	12.0
Arkansas.	10.0	10.5	512.0	10.0	10.5	11.5	10.9	10.5	10. 5	10.0	13.5	10.5	9.5	10.0	10.6	9.0	12.0	9.0
										20.5	12.7	12.0	3.0		14.2	11.2	14.0	11.0
Wontana					19.0	19.0	20. 5	17.0	20.0	15. 5	14.0	18.0	9. 0	18.0	15.9	21.0	14.0	13.0
W yoming	15.5	$5{ }^{22.0}$	${ }^{18.5} 14$	12.0	19.5	17.0	16.9	17.5	17.5	14.0	16.0	7.0	8.8	11.8	13. 2	11.	9.0	12.0
Colorado	15.5	22.0	14.0	12.0	19.5	17.0	16.	17.5	17.5		1.0					14.0	4.8	12.0
																		11.4
Utah	15.5	522.0	018.5	15. 5	15.0	17.0	17.6	17.5	15. 5	12.0	8. 0	13.0	7.		16.5			19.0
Idaho	20.0	21. 5	520.0	22. 5	22.0	22.0	21.6	20.0	18.	14.5					13.8			15. 7
Washingto	19.5	$5{ }^{21.0}$	20.5 15.1	22. 0	20.0	21.0	20.9 17.0	16. 0	18. ${ }^{18}$	14.5 17.0	12.7	11.0	12. 4	12.0	13.6	14.2	12.0	15.0
Oregon.-	18.0	17.0	015.1	19.5	16.0	17.5	17.0	16.0	18.	17.0	12.7	11.0	8.4	12.0	13.6	14.	12.	15.0
United St	16. 4	416.1	116.0	15.6	16.8	16.2	\|16.1	16.8	$\left.\right\|^{17.3}$	15.2	14.6	14.2	12.0	13.7		13.6	15.5	12.2

[^139]Table 48.-Rye: Condition of crop, United States, 1 st of month, and yield per acre, calendar years, 1866-1923.

Year.	De-cember of previous year.	Apr.	May	June.	July. ${ }^{1}$	Yield per acre.	Year.	De-cember of previous year.	Apr.	May.	June.	July. ${ }^{1}$	Yield per acre.
	P. ct.	$P . c t$.	$P . c t$.	P. ct.	$P . c t$.	Bush.		P. ct.	P.ct.	P.ct.	P. ct.	P.ct.	Bush.
1866				87.8	93.7	13.5	1901 -	99.1	93.1	94.6	93.9	93.0	15. 3
1867.-	103.5			117.6	115.6	13.7	1902--	89.9	85.4	83.4	88.1	90.2	17.2
1868.-	97.8			103.0	104. 1	13. 6	1903 --	98.1	97.9	93.3	90.6	89.5	15. 4
1869.-	100.2			101.9	103.9	13. 6	1904--	92.7	82.3	81.2	86.3	88.9	15.3
1870.-	99.4			90.8	91.8	13.2	1905--	90.5	92.1	93.5	94.0	93.2	16.4
1871--	102. 2			102.7	102. 3	14.4	1906	95.4	90.9	92.9	89.9	91.3	16. 7
1872--	94.7			88.0	95.0	14.2	1907--	96.2	92.0	88.0	88.1	89.7	16. 4
1873--	99.5			95.6	95.2	13.2	1908.-	91.4	89.1	90.3	91.3	91.2	16.4
1874--	99.9			97.6	99.3	13.4							
1875.-	101.9			87.7	92.2	13.0	1909.-	87.6	87.2	88.1	89.6	91.4	16.1
							1910--	94.1	92.3	91.3	90.6	87.5	16. 0
1876.-	99.0			94.8	97.6	13.9	1911--	92.6	89.3	90.0	88.6	85.0	15.6
1877--				101. 1	103.3	15.0	1912--	93.3	87.9	87.5	87.7	88.2	16.8
1878--				102.0	101. 0	15.9	1913.-	93.5	89.3	91.0	90.9	88.6	16.2
1879--		96.0		91.0	92.3	13.7							
1880.-	99.3	97.6		95.0	93.4	13.9	Aver.	92.2	89.2	89.6	89.5	88.1	16.1
1881--	98.5	97.0		93.0	95.2	11.6	1914.-	95.3	91.3	93.4	93.6	92.9	16.8
1882-		100.0	96. 0	99.8	99.9	13.4							
1883.-	99.5	93.1	95.3	95.2	97.3	12.1	1915	93.6	89.5	93.3	92.0	92.0	17.3
1884--	100.3	98.0	96.0	97.0	97.0	12.2	1916.-	91.5	87.8	88.7	86. 9	87.0	15. 2
1885--	94.9	86. 5	86.0	83.0	87.0	10.2	1917--	88.8	86.0	88.8	84.3	79.4	14.6
							1918--	84.1	85.8	85.8	83.6	80.8	14. 2
1886--		96. 0	95.7	94.4	95.6	11.5	1919--	89.0	90.6	95.4	93.5	85.7	12.0
1887--	95.1	92.0	90.8	88. 9	88.0	10. 1							
1888--	96.0	93.5	92.9	93.9	95.1	12. 0	1920--	89.8	86.8	85.1	84.4	83.5	13.7
1889--	97.2	93.9	96. 5	95. 2	96.7	13. 1							
1890--	96.4	92.8	93.5	92.3	92.0	12.1	Aver.	90.3	88.3	90.1	88.3	85.9	14.8
1891-	99.0	95.4	97.2	95.4	97.0	14. 7	1921--	90.5	90.3	92.5	90.3	86.9	13.6
1892--	88.8	87.0	88.9	91.0	92.9	13.0	1922.-	92.2	89.0	91.7	92.5	89.9	15.5
1893--	89.4	85.7	82.7	84.6	83.8	13. 1	1923--	84.3	81.8	85.1	81.1	75.0	12.2
1894--	94.6	94.4	-90.7	93.2	93.9	13.7	1924.-	89.9					
1895--	96.2	87.0	88.7	85.7	82.2	14.5							
1896--	94.9	82.9	87.7	85.2	83.8	13. 6							
1897--	99.8	88.9	88.0	89.9	95.0	16. 1							
1898-	91.0	92.1	94.5	97.1	93.8	15.9							
1899.-	98.9	84.9	85.2	84.5	85.6	14.8							
1900--	98.2	84.8	88.5	87.6	80.4	15.1							

Division of Crop and Livestock Estimates.
1 Condition at time of harvest.

Table 49.-Rye: Aereage and yield per acré in undermentioned countries. NORTHERN HEMISPEERE.

Country.	Acreage.					Yield per acre.				
	$\begin{gathered} \text { Aver- } \\ \text { age } \\ 1999- \\ 1913 . \end{gathered}$	1920	1921	1922	$\begin{array}{\|c\|} \hline 1923, \\ \text { pre- } \\ \text { lim- } \\ \text { inary. } \\ \hline \end{array}$	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { 1909- } \\ 1913 . \end{gathered}$	1920	1921	1922	$\begin{gathered} 1923, \\ \text { pre- } \\ \text { lime } \\ \text { inary } \\ \hline \end{gathered}$
NORTH AMERICA.	1,000 acres. 117	1,000 acres. 650 4,409	1,000 acres. 1,842 4,528	1,000 acres. 2,105 6,672	1,000 acres. 1,448 5,157	Bushels. 17. 9 1.6. 1	Bushels. 17. 4 13. 7	Bushels. 11.6 13. 6	Bushels. 15.4 15. 5	Bushels. 18. 6 12.2
United States.	2,236	4,409	4,528	6,672	5,157	16. 1	13.7	13.6	15. 5	12. 2
Total eomparable 1923	2, 353	5, 059	6,370	8, 777	6,605				----	
EUROPE. Ereland	8	6	6	19		29.9	22.7	23.5	25.6	
Norway	37	36	36	30	30	26. 3	26.9	29.0	28. 7	27.7
Sweden.	977	914	913	872	869	25.5	24. 5	29.1	25.9	29.2
Denmark	1,2607	560	559	547	574	${ }^{1} 27.1$	23. 6	21.8	26.1	
Netherlands	, 557	492	499	500	515	29. 5	30. 1	36. 0	34.3	29.9
Belgium	648	523	559	531	558	35.3	34.7	38.1	34. 6	35.0
Luxemburg	26	19	21	20	20	25.0	17.8	21.0	12.5	20.4
France.	22,960	2, 148	2, 227	2, 195	2,171	16. 6	16. 1	19.9	17.5	17.0
Spain	1,988.	1,799	1,786	1,757	1, 801	13.9	15. 5	15. 7	14.9	15. 6
Portugal	3271	532	573	665	665		9.7	8. 0	8. 0	8. 1
Italy	2303	2282	2287	320	311	17.6	16. 1	22.7	17.4	20.7
Switzerian	60.	50	57	48	48	29.7	32.4	27.4	31.0	34.3
Germany	${ }^{2} 15,387$	10, 589	10,539	10,236	10,785	28.9	18. 3	25.4	20.5	26.2
Austria	${ }^{2} 5,019$	714	758	834	921	22.0	14. 1	17.4	16. 3	17.0
Czechoslovakia		2, 238	2,181	2, 174	2, 125		14.7	24.6	23.5	24.4
Hungary	${ }^{2} 2,749$	1,475	1,341	1, 663	1,650	18. 6	13. 9	17.3	15. 1	19.5
Yugoslavia-.------------	${ }^{3},{ }^{4} 124$	489	461	498	395	${ }^{3} 13.0$	12. 5	12.6	9.1	15.0
Greece ------------------------	${ }^{1} 13$	73				116.8	14. 2			
Bulgaria	${ }^{2} 523$	464	466	442	457	15.9	13. 5	13.1	16. 8	18.6
Rumania	5833	780	807	659	650	14.7	12.1	11.3	14.0	15.7
Poland	${ }^{6}(8,077)$	7, 236	8,866	11, 225	11, 380	15. 6	10. 2	18. 9	17.6	22.6
Lithuania	6 (1,259)	1, 227	1,248	1,369	1,442	14. 6	13. 6	16. 9	17.7	17.3
Latvia	${ }^{6}$ (770)	486	561	590	630	15. 5	9. 6	17. 5	11. 6	16.7
Esthonia	6 (365)	351	353	392	388	18. 4	17.6	16.7	14.8	17.6
Finland.	589	576	606	578	583	17.8	12.3	17.1	13.5	16.2
Russia, including Ukraine and Northern Caucasia \qquad	${ }^{6}(59,396)$			44,482		12.1			10.6	
Total comparable 1909-1913	103, 546									
Total comparable 1923	44,129	33, 980	35,704	38, 145	38,988			-		
AFRECA AND ASIA. Algeria Russia (Asiatic)	3 3,309	${ }^{7}$)	${ }^{7}$)	$\begin{gathered} \stackrel{(7)}{()^{2}} \\ 1,649 \end{gathered}$	1					
Total Northern Hemisphere, comparable 1909 1913.	109,211									
Total Northern Hemisphere, comparable 1923.	46, 482	39, 039	42,074	46,922	45,603	-------	------	-----	----	-

SOUTHERN HEMISPHERE.

Country.	$\begin{gathered} \text { Average } \\ 1909- \\ 1913 . \end{gathered}$	1920-21	1921-22	1922-23	1923-24	$\begin{gathered} \text { Aver- } \\ \text { age } \\ 1909- \\ 1913 . \end{gathered}$	$1920-$ 21	$\begin{gathered} 1921- \\ 22 \end{gathered}$	$\begin{gathered} 1922- \\ 23 \end{gathered}$	$\begin{gathered} 1923- \\ 24 \end{gathered}$
Chile...-		(7) 4	(7) 3	(7) 3	${ }_{(7)} 3$	22.2	18.5	19.3	21.0	
Uruguay	(7)	${ }^{(7)}{ }_{218}$	${ }^{(7)}{ }_{242}$	${ }^{(7)}{ }_{215}$	${ }^{(7)} 315$	814.1	3. 8	7.0	10.0	11.7
Union of South Africa	1108	133				16.7	5. 9			
Australia	9	6	4			12.7	13. 5	12.5		
New Zealand	14	1	1	1		${ }^{1} 28.5$	16.0	32.0	18.0	
Total comparable 1909-1913	211									
Total comparable $1923 .$	90	222	245	218	318					
World total comparable 1909-1913	109, 422									
World total comparable 1923	46, 572	39,261	42,319	47, 140	45,921	------		---		---

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated. Parentheses denote interpolated figures. Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the southern hemisphere.
${ }^{1}$ One year only. ${ }_{6}^{2}$ Old boundaries. ${ }^{2}$ 'Three-year average. ${ }^{4}$ Former Kingdom of Serbia.
O Pressarainary estimate for former Russian territory within 1923 boundaries.
${ }^{7}$ Leess than 500. ${ }^{8}$ Four-year average.

Table 50.-Rye: Production in undermentioned countries. NORTHERN HEMISPHERE.

Country.	Production.							
	$\begin{gathered} \text { A verage, } \\ 1909 \\ 1913 . \end{gathered}$	1917	1918	1919	1920	1921	1922	$\begin{gathered} \text { 1923, } \\ \text { preimim- } \\ \text { nary. } \end{gathered}$
NORTH AMERICA.		1,000	1,000	1,000	1,000	1,000	1,009	
Canada	2,094							bushels.
United Stat	36,093				11, 306	21,455	32, 373	6,937
Total comparable 1923								
	-38,187	66,790	99,545	85, 690	71,796	83, 130	135, 735	89,960
	23997424,900	2231,159	1,242	143	136		179	
Norway					$\begin{array}{r} 130 \\ 970 \\ 22,434 \end{array}$	${ }_{1,043}^{141}$		$\begin{array}{r} 832 \\ 25,353 \end{array}$
Sweden-		18,870	19,292			$26,558$	22, 628	
Denmark	${ }^{1} 17,772$		${ }^{12} 12,726$	114, 908	$\begin{aligned} & 22,434 \\ & 13,242 \end{aligned}$			
Belgium		15, 050	13,445	14,714	13, 79	$\begin{aligned} & 12,204 \\ & 17,987 \end{aligned}$	14, 284	15,393
Laxembur	22,847			$14,505$	$\begin{aligned} & 18,168 \\ & 338 \end{aligned}$	$\begin{array}{r} 21,273 \\ 441 \end{array}$	$18,384$	19,538 409
France	$\begin{array}{r} 651 \\ 149,025 \end{array}$	$\begin{array}{r} 2566 \\ 25669 \end{array}$	$\begin{array}{r} 387 \\ 230,100 \end{array}$	$\begin{array}{r} 230,577 \\ 23,296 \end{array}$	$\begin{aligned} & 34,492 \\ & 27,830 \end{aligned}$	$\begin{array}{\|} 44,392 \\ 28,118 \end{array}$	38, 412	38,91428,075
Spain	27, 636	$\begin{array}{r} 225,669 \\ 24,203 \\ 3,548 \end{array}$	30, 445					
Portug			4, 4 , 838	$\begin{array}{r} 23,296 \\ 3,856 \end{array}$	$\begin{aligned} & 27,830 \\ & 5,154 \end{aligned}$	$\begin{array}{r} 28,118 \\ 4,564 \end{array}$	26,252	- 5, 372
Italy--	15,329	$\begin{array}{r} 3,548 \\ 14,460 \\ 4,400 \end{array}$	${ }^{1} 5,232$	$\begin{gathered} 14,571 \\ 1,747 \\ \operatorname{cosin} \end{gathered}$	$\begin{aligned} & 14,539 \\ & 1,622 \end{aligned}$	$\left\lvert\, \begin{array}{r} 8 \\ \mathbf{6}, 519 \\ 1,559 \end{array}\right.$	$\begin{aligned} & 5,563 \\ & \mathbf{1 , 4 8 8} \end{aligned}$	$\begin{array}{r}6,449 \\ 1,646 \\ \hline\end{array}$
Switzerlan	1,7831445,2221110,213	$\left.\begin{array}{r} 1,283 \\ 427,677 \\ 10 ; 922 \end{array} \right\rvert\,$	1262,832					
Germany				$\begin{array}{r} +240,161 \\ 9,035 \end{array}$	194,25510,098	$\begin{array}{r} 1,559 \\ 267,648 \end{array}$	- $\begin{array}{r}1,488 \\ 209,519\end{array}$	282,452
Austria-			10,604			13, 161	13,589	15,63451,813
Creehoslov	1110, 213	$\begin{array}{r} 10 ; 922 \\ 10 \end{array}$			10,0981		51, 097	
Hungary					20, 564	23, 177		32,5,911
Yugoslavi	$\begin{array}{r} 151,051 \\ 801,613 \\ 7219 \end{array}$	6955,379			6,091	5,816	4,523	
Greede-			1, 012	6,123				
Bulgaria	18,290812,277		$\begin{aligned} & 4,018 \\ & \mathbf{4}, \mathbf{3 1 8} \end{aligned}$		$\begin{aligned} & 6,277 \\ & 9,445 \end{aligned}$		7,4539,206197,372	
Rumania		5,379		10,046		$\begin{array}{r} 9,081 \\ 167,558 \end{array}$		$\begin{array}{r} 10,190 \\ 257,545 \end{array}$
${ }_{\text {Poland }}$	- ${ }^{\circ}(12,700)$	----	1,0.-		$\begin{array}{r} 9,445 \\ 73,659 \end{array}$			
Lithuani				17,273	$\begin{array}{r} 16,688 \\ 4,689 \end{array}$	21, $\begin{array}{r}\text { 9, } 808 \\ \hline\end{array}$	$\begin{array}{r}24,249 \\ 6,845 \\ \hline 8\end{array}$	24,92410,992
Latvia--	(18, 382)							
Esthonia	${ }^{\bullet}(6,732)$		8,648	$\begin{aligned} & 5,058 \\ & 8,656 \end{aligned}$	$\begin{aligned} & 6,165 \\ & 7,098 \end{aligned}$	$\begin{array}{r} 5,908 \\ 10,385 \end{array}$	$\begin{aligned} & 5,797 \\ & 7,775 \end{aligned}$	6,8479
Finland, including Ukraine and	10,490	$\xrightarrow{-1,914}$						
Russia, including Ukraine and Northern Caucasia	${ }^{\circ}(718,905)$						473,382	-
Total comparable 1900	1, 688, 569	---		---	518, 312		698, 845	856, 334
Total comparable						7-75, $87 \mathbf{7}$		
	$\begin{array}{r} 39 \\ 32,677 \\ \hline \end{array}$	- 3	- 6	5$-\cdots---1$	4	5	$\begin{array}{r} 4 \\ 16,634 \end{array}$	17\cdots
Russia, Asiatie								
Total eomparable 1909-1913.Total comparable 1923.	$\begin{array}{r} 32,716 \\ 39 \\ 1,759,472 \end{array}$	3		-----------------		- 5	$\begin{array}{r} 16,638 \\ 4 \end{array}$	-----17
Total Northern Hemisphere comparable 1909-1913								
Total Northern Hemisphere, comparable 1923.					590, 112	829, 008	834, 584	946,311

SOUTHERN HEMISPHERE.

Country.	$\begin{array}{c\|} \hline \text { Average, } \\ 19093 . \\ 1913 . \end{array}$	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24
Chile	111	176	53				63	
Uruguay---	${ }_{10} 11389$			${ }_{(1)}^{868}$	${ }_{821}$	(11) 69	2147	3.701
Union of South Africa	${ }^{1} 724$	931		596	${ }_{788}$	1,677		
Australia---		49	35	35	81	50		
New Zealand.	714				16	32	18	
Total comparable 1909-1913								
Total comparable 1923--1--3-	1,398			868	821	1,692	2,147	3,703
Worfd total comparable 1909								
W orld total comparame 1923--					590,933	830,698	836,731	950.012

Division of Statistical and Historical Research.

Official sources and International Institute of Agriculture unless otherwise stated. Parentheses denote interpolated figures. Five-year averages are of the crops harvested during the calemdar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.

1 Old boundaries.
${ }^{2}$ Includes production in Alsace-Lorraine.
${ }^{8}$ Includes 886,000 bushels grown in Venezia Tridentina and Venezia Guilia.
Excludes production in Alsace-Lorraine.
${ }^{5}$ Three-year average.

- Former Kingdom of Serbia.
${ }^{7}$ One year only.
${ }^{8}$ Includes Bessarabia.
- Preliminary estimate for former Russian territory within 1923 boundaries.
${ }^{10}$ Four-year average.
${ }^{11}$ Less than 500 bushels.

Table 51.-Rye: World production, 1894-1923.

Year.	Production in countries reporting all years 1894-1923.	Production as reported.	Estimated world totals preliminary.	Selected countries.			
				Russian Empire.	Germany.	Austria.	France.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bushels.						
1894	598, 680	1, 615, 256	1,630, 057	931, 156	328,447	82, 872	74,926
1895	555, 602	1,407, 233	1,422, 636	772, 711	304, 113	64,889	71, 833
1896	599, 039	1,472, 487	1,492,092	789, 562	335, 967	73, 781	69,766
1897	553,480	1,277, 277	1,289, 029	654, 281	321, 656	63, 051	47, 737
1898	623, 328	1,437,887	1,450, 476	737, 501	355, 577	79,686	66, 921
1899	607, 429	1,595, 285	1,607, 186	911, 633	341,547	85, 267	67,223
1900	574, 361	1, 563, 841	1, 579,937	920, 134	336, 621	54, 792	59,397
1901	584, 998	1,412, 160	1, 431, 740	754, 927	321, 346	75, 514	58, 386
1902	620, 234	1,619, 875	1, 638, 557	919, 019	373, 764	82, 481	45, 660
1903	654, 390	1, 653, 933	1,665, 588	911, 944	389, 919	81, 129	58, 127
1904	656, 528	1,744, 033	1,750,938	1,008,440	396, 071	91, 684	52,669
1905	668, 874	1, 499, 862	1, 507, 134	737, 443	378, 200	98, 185	58,586
1906	669, 999	1,429, 513	1,440, 852	667, 605	378, 945	99, 245	50,888
1907	659, 599	1,541, 662	1,553, 063	815, 086	384, 146	86, 451	56,462
1908.	725, 304	1,597, 515	1, 605, 055	790, 098	422, 688	113, 308	51, 691
1909	765, 781	1,758, 609	1,762, 744	903, 622	446, 763	114, 433	55,689
1910	701, 725	1,676, 414	1,680, 193	875, 135	413, 802	108, 938	43, 883
1911	714, 883	1,579,536	1, 582, 591	768, 650	427, 776	104, 114	46,749
1912	747, 850	1,898, 177	1,900, 437	1,050, 837	456, 600	117, 112	48,746
1913	779, 689	1,889,313	1, 892, 513	1,011, 316	481, 169	106, 469	50,055
1914	670, 362	1, 618, 879	1, 624, 341	${ }^{2} 869,657$	410, 478	74, 555	43, 884
1915	591, 387	1, 585, 620	1,590. 294	2 909, 943	360, 310	60, 674	33, 148
1916	561, 476	593, 750	1, 494, 975		351, 826	50, 233	33, 351
1917	439, 541	470, 433	1, 228, 503		${ }^{3} 274,677$	${ }^{8} 10,922$	${ }^{3} \mathbf{2 5 , 6 6 9}$
1918	471, 435	513, 509	1, 170, 187		${ }^{3} 262,832$	${ }^{3} 10,604$	${ }^{3} 30,100$
1919.	439, 039	517, 015	1,057, 894		${ }^{3} 240,161$	${ }^{3} 9,035$	${ }^{3} 30,577$
1920	389, 664	615, 305	1, 970, 356		${ }^{3} 194,255$	${ }^{3} 10,098$	${ }^{3} 34,492$
1921	491, 202	847, 011	1, 211, 062		${ }^{\text {a }} 267$, 648	${ }^{3} 13,161$	${ }^{3} 44,392$
1922	457, 065	1,343, 653	1, 344,469		${ }^{3} 209,519$	${ }^{3} 13,589$	${ }^{3} 388,412$
1923	495, 845	952, 674	1, 431, 748		${ }^{3} \mathbf{2 8 2 , 4 5 2}$	${ }^{3} 15,634$	${ }^{3} 36,914$

Division of Statistical and Historical Research. For each year is shown the production during the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }^{1}$ Includes all Russian territory reporting for years named. Further information of the territory included is given in notes 3 and 6 on Table 16.
${ }^{2}$ Excludes Poland.
${ }^{3}$ New boundaries.
Table 52.-Rye: Monthly marketings by farmers, 1917-1923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 \end{aligned}$	Percentage of year's receipts as reported by about 3,500 mills and elevators.												
	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Season.
1917-18.	2.8	14.8	20.5	17.1	11.3	7.6	5.8	6.4	7.6	3.4	1.7	1.0	100.0
1919-20	8.2	-15.0	13. ${ }^{-1}$	12.4	7.8	9.1	8.5	4.7	6.2	6.4	4.3	4.1	100.0
1920-21	7.3	20.7	18.1	12.2	8.8	7.0	6.6	4.7	4.3	3.7	3. 3	3.3	100.0
1921-22	13.9	20.8	17.6	10.6	6. 3	5.9	4.5	4.8	4.9	4.0	4.2	2.5	100.0
1922-23.	10.7	20.5	14.8	12.3	10.2	8.7	6.5	5.3	4.0	2.9	2.2	1.9	100.0

Division of Crop and Livestock Estimates.

Table 53.-Rye: Receipts at markets named, 1909-1922.

Year beginning July 1.	Minneapolis.	Duluth.	Chicago.	Milwaukee.	Omaha.	Ft. William and Port Arthur. ${ }^{1}$
	1,000 bush.					
1909-10.	2,444	902	1,362	965		
1910-11	1,518	134	1, 121	1,033		
1911-12	2,453	759	2,077	2, 582		
1912-13	5,943	2, 341	3, 299	2, 336		
1913-14	5,538	1,357	3,206	2,836		
A verage 1909-1913	3,579	1,099	2,213	1,950	---------	----1.-----
1914-15	5,737	4,323	3,274	3,608		
1915-16.	6,774	4, 216	5,651	3, 872		
1916-17.	7,118	2,812	5,459	3, 050	1,048	
1917-18.	11, 923	3, 482	3, 766	2, 947	1,121	212
1918-19	16, 467	16; 115	8,467	4,472	1,782	970
1919-20	9,325 5,428	17,027	6,119 4,132	4, 4,604	1,630	1,172 2,832
Average 1914-1920	8,967	8,944	5,267	3, 664		
1921-22	4,754	17,446	4,235	2,282	2,048	5,297
1922-23.	15,111	42,619	7,585	3, 241	1,916	11, 552
1922-23.						
July-...	1,711	9, ${ }_{\text {913 }}$	353 1,068	263	263	
September	1,174	9,882	1,272	194	186	3, 064
October-	1, 875	4,611	410	327	251	2,124
November.	1, 168	3, 688	1,392	406	279	1,766
December--	2, 071	3,412	567	488	215	1,106
January	2,610	2, 636	1,020	521	286	663
February	1,303	1,893	948	371	186	212
March	863	1,890	382	252	102	384
April.	724	2, 069	${ }^{545}$	229 78		493 593
May	416 598	1, 1324	153 475	78	34 24	$\stackrel{378}{278}$
July.						347
August---						552

Division of Statistical and Historical Research. Compiled from Minneapolis Daily Market Record Chicago Daily Trade Bulletin, Grain Dealers Journal, and Canadian statistics.
${ }^{1}$ Crop year begins in September.
Table 54.-Rye, including flour: Net imports and net exports of principal countries, 1907-1922.

Year ending July 31.	Imports.					Exports.				
	Belgium.	Denmark.	France.	Netherlands.	Norway.	Germany.	$\xrightarrow[\text { Ru- }]{\text { Rania }}$	Russia.	$\begin{aligned} & \text { Can- } \\ & \text { ada. } \end{aligned}$	United States
						1,000	1,000	1,000	1,000	$1,000$
	bushels.									
1906-7	1,725	5, 941	925	8, 509	10, 427	9,426	(1)	36, 954	238 249 248	770 2.445
1907-8	, 97	5,781	4 ${ }^{1}, 574$	6,416	8,799 10	4,912 29	(1)	35, 999	${ }_{2}^{249}$	2,445 1,296
1908-9	1,371	6,751 8,624	1182 86	8, 288 8,760	10, 103	22,988	(1)	25, 322	30	242
1910-11	6,467	7, 910	6,808	13,802	10,879	13, 136	(1)	51, 179	51	40
1911-12.	4, 241	7, 274	2,372	11, 914	9, 897	28, 180	4,132	17,080	${ }^{2} 37$	31
1912-13	4,944	7,676	4, 625	10, 835	10,758	37, 496	2, 472	22, 458	${ }^{1} 100$	1,855
1913-14	6,630	8,443	2,696	13, 029	10,699	36,209	2, 296	26, 950	179	1,273 $13 ; 027$
1914-15	(1)	2,988	25	1,380	7,414	${ }^{(1)}$	734	9,430	179	13,027
1915-16	(1)	2, 302	47	2,126	7,699	${ }^{1}$	2,112	13,442	782	15, 250
1916-17	(1)	1, 038	${ }_{4} 16$	763	7,400	(1)	(1)	${ }^{2} 2,655$	${ }^{3} 1,047$	13,703
1917-18	(1)	49	1,286	20	2,152	(1)	(1)	(1)	- ${ }^{3} 1,045$	17,186
1918-19.	(1)	${ }^{4} 160$	712	956	4, 865	${ }^{(1)}$	${ }^{(1)}$	${ }^{(1)}$	${ }^{3} 586$	36, 437
1919-20.	5,135	4 1,086	8,347	4 1,087	5,802	(1)	${ }^{2} 20$	(1)	2, 524	41,531
1920-21	753	4318	9, 615	67	6,293	${ }^{2} 23,668$	5,211	(1)	3, 205	47,337
1921-22	251	2, 297	41,275	125	7,110	5,967	1,212 20	(1)	4, ${ }^{4,211}$	29, 51,663
1922-23	275	4,641	627	3,729	6,866	243,430	20	()	9,811	51,603

Division of Statistical and Historical Research. Compiled from International Yearbook of Agricultural, Statistics 1915-16, 1922 and from official sources.

[^140]Table 55.-Rye, including four: International trade, 1910-1923.

Division of Statistical and Historical Research. Compiled from International Institute of Agriculture, except figures with foot-notes $\left(^{(3)}\right.$ and (${ }^{4}$, which are compiled from official sources.

$$
\begin{array}{ll}
1 \text { Less than } 500 \text { bushels. } & 6 \text { The month of July, 1914, is not comprised in the average. } \\
\text { 2 Ten months ending May 31. } & 7 \text { Eight months, August-December, 1920, and May-July, } 1921 . \\
\text { Calendar years 1900-1922. } & 8 \text { Eleven months. } \\
\text { 'Years ending June } 30 . & 9 \text { 1914 only. }
\end{array}
$$

Table 56.-Rye: Farm price per bushel, 1st of month, United States, 1908-1923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted av.
1908-9	Cts. 75. 4	$\begin{aligned} & \text { Cts. } \\ & 74.2 \end{aligned}$	Cts. 22.8	$\begin{aligned} & \text { Cts. } \\ & 74.1 \end{aligned}$	$\begin{gathered} \text { Cts. } \\ -73.7 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 73.6 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 73.4 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cts. } \\ & 73.8 \\ & \hline \end{aligned}$	Cts. 75.0	Cts. 77.3	$\begin{gathered} \text { Cts. } \\ 78.8 \end{gathered}$	$\begin{aligned} & \text { Cts. } \\ & 81.2 \end{aligned}$	Cts. 74.3
1909-10	81.7	78.5	72.4	72.8	73.6	71.8	74.8	76.1	76.5	76.6	74.9	74.8	74.8
1910-11	74.6	74.4	74.1	72.8	71. 6	71.5	73.3	73.1	71.9	75. 4	75.8	77.9	73.1
1911-12	76.9	75. 5	76.9	79.7	83.1	83.2	82. 7	84.4	84.0	85.1	84.6	86.1	81.4
1912-13	83.6	77.9	70.8	70.1	68.8	66.3	63.8	68. 9	63.2	62.9	62.4	64.1	68.5
1913-14	63.2	60.7	63.0	64.8	63. 2	63.4	62.5	61.7	61.9	63.0	62.9	64.4	63.1
Av. 1909-1913	76.0	73.4	71.4	72.0	72.1	71.2	71.4	72.8	71.5	72.6	72.1	73.5	72.1
1914-15	63. 1	61.0	75. 4	79.0	80.1	86.5	90.2	100.6	105.4	100.4	101.9	98.1	84.6 85.0
1915-16	93.7	89.0	85.5	81.7	85.7	83. 4	85. 3	88.31	85. 6	83. 6	83.7	83.8	85.9 115.4
1916-17	83.3	83. 4	99.7	104. 1	115.3.	122.1	118. 5	123. 5	126.0	135.6	164.1 221.1	187. 0	115.4 175.6
1917-18	177.1	178.1	161.9	169.8	168. 8	166.0	170.3	174.8	201.0	235. 14	221. 15.	187.6	175.6 152.0
1918-19	169.9	163. 9	159.3	154. 0	152. 6	151. 6	150.7	140. 4	132.2	145.8	155.5	143.7 183.9	152.0 1429
1919-20	138.6	149.7	138.3	13.5 .8	129.8	133. 2	152.3	154.5 131.5	126. 0	158.1 118.7	183.1 105.3	183.9	142.9 143.6
1920-21	189.0	168.6	168.9	162.3	142.1	126.8	124. 7	131.5	126. 1	118.7	105.3	112.2	143.6
A 7. 1914-1920	130.7	127.7	127.0	126.7	124.9	124. 2	127.4	130.5	131.6	139.3	145. 0	141.8	128.4
1921-22	103.8	98.1	80.9	88.6	74.6	60.7	69.6	70.4	83.5	84.2	87.6	88.0	81.5
1922-23	77. 6	70.5	63.3	63.2	67.2	68.5	72. 2	71. 2	70.8	69.4	72.1	66.3	67.8
1923-24	58.2	54.4	66.2	58.2	59.5	64.7							

[^141]Table 5/--Rye: Farm price per bushel, December 1, calendar years, 1908-1923, and value per acre, 1923.

State.							$\left\lvert\, \begin{aligned} & 1909-1 \\ & 1913 \end{aligned}\right.$			1916	1917	1918	1919	1920	$\left\|\begin{array}{c} \text { AV. } \\ 1914- \\ 1920 \end{array}\right\|$				$\left\lvert\, \begin{gathered} \text { Value } \\ \text { par } \\ \text { pare } \\ 1923, \end{gathered}\right.$
ass	Cts			${ }_{95}{ }^{\text {cts }}$	$\begin{gathered} C t s, \\ 100 \\ \hline 00 \end{gathered}$			$\begin{aligned} & \text { Cts. } \\ & 101 \end{aligned}$	$\begin{gathered} C t s \\ i=102 \\ 1020 \end{gathered}$	${ }_{12}{ }_{12}$	${ }_{220}$	$\begin{gathered} c \\ 227 \\ 278 \end{gathered}$	${ }_{175}{ }^{7}$		${ }_{16 i} 1$		140		30
Y	$\begin{aligned} & 90 \\ & 81 \end{aligned}$	80	74			${ }_{75}^{92}$	$\stackrel{91}{99}$				184	${ }_{172}$	150	174	139				14. 83
	8	79.			79		${ }_{80} 8$			碞	175	173	5	170					${ }_{16.73}^{15}$
Pa	77	80	73		77	74	${ }^{77}$	83	84	103	170	165	157	140	130	5	87		
Del	82	75	5	8	81	79		88	${ }_{88}^{99}$	123	178	171	160	$\begin{gathered} 136 \\ 156 \end{gathered}$	${ }_{134}^{137}$	${ }_{92}^{100}$			13.82
		84	75	89		81	84	${ }_{90}$	${ }_{93}^{88}$	107	175	175	170	155	帾		90	107	12.84
W. V		90	90	90	84	87		105	205	119	208	198		190	163	125		135	14.04
N: C	98	103	101	100	105		101	105	105	130						125			
S.C	137	141	146	145	145	150	145	150	140	180	270								16
${ }_{\text {Gab }}$	125	150	142	85	140				140		161	210	172	${ }_{135}^{211}$	202.	175			${ }_{12.09}$
Ind	74	74	2		${ }^{68}$	62	70	85	${ }^{82}$	119	185	150	140	130	124		${ }^{79} 7$	${ }_{75}^{73}$	10. 22
	73	${ }^{7}$	71	81	7		${ }^{72}$						130						
Mich	71	${ }^{68} 8$	${ }_{77}^{68}$	84	$\begin{aligned} & 65 \\ & 65 \\ & 6 . \end{aligned}$		$\begin{gathered} 70 \\ 68 \end{gathered}$						123	130	127	77			${ }_{9}{ }^{\text {8. } 22}$
Minn	63	60		78						127	187	150	132	122	24.				7.16:
Mowa	${ }_{76}^{64}$	${ }_{82}^{63}$	75	88	80	75	$79 .$	${ }_{87} 7$	86	123	165	163	150	125	128	86	93	88	11.00
	65		63	76	47	45		84	79	125	164	145	${ }^{122}$	119	120	58	68		4
Nebr	${ }_{60}^{59}$	${ }^{*}$	${ }_{60}^{61}$	75	5	50	${ }^{60}$	74	${ }_{73}^{76}$	${ }_{116}$	155	13	115	103	110		65	56	6.72
Kans	71	75	73	81		75	${ }^{74}$	80		110	175	170	175	100		12		703	${ }^{6.28}$
Ky.	85						88		${ }^{4}$										
Tenn	${ }_{123} 9$	136	2	125		140	${ }_{131}^{97}$		${ }_{135}^{103}$	175	${ }_{268}^{195}$	${ }_{261}^{192}$	200	1200	159	160		1160	
${ }_{\text {Texas }}$		${ }_{123}^{136}$	${ }_{103}^{120}$	${ }_{107}^{125}$	110		109			120	196	${ }^{23}$	150	115	129	${ }_{66}^{100}$			11.76
Ork Ark	$\begin{aligned} & 80 \\ & 90 \end{aligned}$	${ }^{93} 105$	${ }_{98}^{81}$	${ }_{90}^{104}$	${ }^{87} 105$	${ }_{95}^{86}$	93	${ }^{95}$	100	115	170	${ }_{210}^{181}$	1500	220	157	130	100	120	10:80
																		51	
yo	71	90		90						108	156		180	115	${ }_{109}^{128}$				8. ${ }^{\text {c }} 72$
C	70			70						105	146			105	109				10:80
Utah.															31			90	26
	68	70		67	60								175		15		67	68	92
Wash																			95
																			${ }^{7.91}$

Division of Crap and Livestock Estimates.

${ }^{1}$ Based upon farm price Dec. 1.
Table 58.-Rye No. 2: Weighted average price: per bushel, Chicago, 1909-1923.

Year beginning July 1-	July.	Aug.	Sept	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	Fune	Weighted average.
1909-10	\$0. 79	\$0. 71	\$0.72	\$0. 73	\$0.74	\$0.77	\$0.81	\$0. 81	\$0.79	\$0.79.	\$0.77	\$0.76	\$0. 76
1910-11	+ 67	. 7.5	. 74	. 76	. 79	. 81	. 84	. 82	. 89	. 95	1. 02	. 90	. 84
1911-12	. 84	. 85	. 91	. 97	. 95	. 93	. $94{ }^{\text {²}}$. 92	. 91	. 94	. 93	. 83.	. 91
1912-13	. 74	. 72	. 69	. 69	. 64	. 61	. 64	. 62	. 60	. 62	. 62	. 62	. 63
1913-14	. 63	. 66	. 67	. 65	. 64	. 63	. 61	. 62	. 61	. 62	. 65	. 63	. 64
Av. 1900-1913	. 75	. 24	. 75	. 76	. 75	. 75	. 77	. 76	. 76	. 78	. 80	. 75	. 76
1914-15	64	. 84	. 95	. 92	1.02	1. 10	1.19	1. 23	1.17	1.17	1.19	1. 17	1. 05
1915-16	1.08	1.00	. 96	1. 01	. 99	. 97	1.01	$\begin{array}{r}.97 \\ \hline 1\end{array}$	${ }^{\text {. } 93}$. 96	-98	$\begin{array}{r}1.17 \\ +.98 \\ \hline\end{array}$	1.99
1916-17	. 98	1.13	1.20	1.33	1.47	1.41	1.43	1.46	1. 61	1. 87	2. 20	2.40	1.54
1917-18	2.27	1.90	1.86	1.84	1.78	1.82	2.01	2.39	2.84	2.64	2.20	1.80	2.11
1918-19	1. 73	1.67	1.63	1.63	1.68	1.59	1.61	1.38	1.61	1.73	1. 59	1.46	1.61
1919-20	1.55	1.54	1.40	1.38	1.42	1.66	1.76	1.56	1. 72	1. 99	2.13	2. 27	1.70
1920-21	2. 04	1.90	1.99	1.69	1.59	1.61	1.63	1. 47	1.46	1.35	1.47	1.32	1.62
Av. 1914-1920	1.47	1.43	1.43	1.40	1.42	1.45	1.52	1.49	1.62	1.67	1.68	1. 63	1.52
1921-22	1. 27	1.07	1.04	. 86	. 79	. 86	. 81	. 97	1.02	1. 04	1.06	.90	. 97
1922-23	. 82	1.73 .	. 72	. 78	. 87	. 88	. 87	. 86	. 83	. 86	. 78	. 70	. 81
1923-24	. 65	. 67	. 70	. 72	. 71	. 70							

Division of Statistical and Historical Research. Compiled from Chicago Daily Trade Bulletin.

THE WHEAT SITUATION.

Tables 59 to 91 reprinted from Secretary's report to the President on "The Wheat Situation," the text of which appears on pages 95 to 150 of the 1923 Yearbook. Other statistical data of that report are covered by tables appearing regularly in the Yearbook.
Table 59.-Total winter wheat acreage, production, and percentage of acreage abandoned in represeñtative counties of high and low crop risk in Kansas, 1912-1923.

Year.	Ford County (area high crop risk).					McPherson County (arca low crop risk).				
	Arca seeded.	Area harvested.	Total production.	Average yield per seeded acre.	Percentage of seeded acreage abandoned.	Area seeded.	Area harvested.	Total production.	Average yield per seeded acre.	Per- centage of seeded acreage abandoned.
	Acres.	Acres.	Bushels.	Bushels.	Per cent.	Acres.	Acres.	Bushels.	Bushels.	Per cent.
1912.	237, 907	223, 633	3, 130, 862	13. 2	6.0	141, 184	76, 239	914, 868	6. 5	46.0
1913	243, 943	134, 169	670, 845	2.8	45.0	163, 041	158, 150	2, 214, 100	13.6	3.0
1914	270, 668	270, 668	5, 142, 692	19.0	0. 0	192, 368	192, 368	4, 424, 464	23.0	0.0
1915	252, 583	212, 170	2, 546, 040	10. 1	16.0	193, 282	164, 290	$2,135,770$	11.0 8.8	15.0
1916---	249, 690	222, 224	3, 111, 136	12.5	11.0	186, 138	163, 801	1, 638, 010	8. 8	12.0
1917.	317, 739	25, 419	127, 095	. 4	92.0	177, 394	127, 724	$1,915,860$	10.8	28.0
1918.	284, 261	28, 426	85, 278	. 3	90.0	204, 051	193, 848	3, 489, 264	17. 1	5.0
1919	297, 800	297, 800	3, 275, 800	11.0	0.0	223, 250	223, 250	2, 679, 000	12. 0	0.0
1920	320, 239	237, 043	1, 896, 344	5.9	26.0	204, 236	181, 770	2, 544, 780	12.5	11.0
1921.	306, 398	240, 737	2, 648, 107	8. 6	21.4	223, 774	210, 348	2, 734, 524	12.2	6.0
1922	320, 100	192, 000	1, 728, 000	5.4	40.0	245, 000	245, 000	4, 410, 000	18.0	0.0
1923.	314, 200	62, 800	251, 200	. 8	80.0	232, 500	225, 500	2, 255, 000	9.7	3.0
All	3, 415, 528	2, 147, 089	24, 613, 399	7.2	37.1	2, 386, 218	2, 162, 288	31, 355, 640	13.1	9.4

Division of Cost of Production. Compiled from Biennial Reports, Kansas State Board of Agriculture.
Table 60.-Hours of man and horse labor prior to harvest, and amount of seed wheat required per bushel of production in representative counties of high and low crop risk in Kansas, 1912-1923.

Year.	Man labor prior to harvest.		Horse labor prior to harvest.		Seed.	
	Ford County (area high crop risk).	McPherson County (area low crop risk).	Ford County (area high crop risk).	McPherson County (area low crop risk).	Ford County (area high crop risk).	McPherson County (area low crop risk).
1912.	Hours.	Hours. 1.01	Hours.	Hours. 4.22	Bushels. 0.06	Bushels. 0.24
1913.	1.45	. 34	6.21	1.42	. 40	. 08
1914.	. 15	. 20	. 63	. 82	. 04	. 05
1915.	. 32	. 47	1.38	1.97	. 09	.11
1916.	${ }_{13} .25$. 57	1.07 57.60	2.39 2.23	3.70	. 13
1917.	13.44	. 53	57.60 76.00	1.15	4.88 4.87	. 07
1918.	17.73 .25	. 38	1.09	1.57	. 07	. 09
1920.	. 59	. 40	2.56	1.67	. 16	. 09
1921.	. 70	. 39	1.69	1.63	. 11	. 09
1922..	.73 6.30	. 25	1.11 27.00	1.04 2.00	.20 1.73	. 11
1923.	6.30	. 48	27.00			

[^142]Table 61.-Cost of producing wheat, 1902-1921. ${ }^{1}$

Region.	Year.	Cost per acre.		Yield per acre.	Cost per bushel.		$\begin{aligned} & \text { Average } \\ & \text { farm } \\ & \text { price per } \\ & \text { bushel. } \end{aligned}$			
		Excluding land rent.	Includ- ing land rent.		Excludrent.	Includ- ing land rent.				
Minnesota:		Dollars.	Dollars.	Bushel.			Dollars.			
Rice County ${ }^{8}$.	1902-1907	${ }^{6.36}$	9.86	15.0	0.42	0.66	0.74			
Lyon County ${ }^{8}$	1902-1907	5.39	8.39	12.6	. 43	. 67	. 74			
Norman County	1902-1907	4.88	6. 98	12.4	. 39	. 56	. 74			
Rice County County ${ }^{1}$ i.	1908-1912	8.54 8.59	12.60 12.04	15.9 22.0	-. 39	. 87	90			
Norman County ${ }^{4}$	1908-1912	7.37	10.37	16.6	. 44	. 62	. 90			
Wisconsin ${ }^{5}$.	1909-1918	8.62	12.10	17.0	. 51	. 71	1.35			
North Dakota ${ }^{\text {S }}$	1911-1916	8.89	11.22	13.2	. 67	. 85	. 87			
	1917	13.40	15.75	13.2	1.02	1.19	2.00			
New York ${ }^{6}$.	1913	24. 92	28.88	27.4	. 91	1.05	. 93			
New York ${ }^{6}$.	1914	18.20	23.19	23.0	. 79	1.01	1.08			
Missouri ${ }^{7}$..	1910-13	7.28	12.30				. 87			
1919 Winter wheat: ${ }^{8}$										
Ford County.	1919	18.03	24.30	13.3	1.36	1.82	1.99			
Pawnee.County........	1919	15.11	23.06	13.9	1.09	1.65	2.01			
McPherson County	1919	21.55	30.20	12.7	1.70	2.38	1.94			
Saline County	1919	20.93	35.28	16.3	1.28	2.17	2.01			
Jasper County..........	1819	24.10	34.64	19.2	1.26	1.80	1.89			
St. Charles County.....	1919	22.49	34.13	19.6	1.15	1.74	2.10			
Nebraska- Phelps County	1919	16.72	23.84	10.8	1.55	2.20	1.89			
Saline County............	1919	25:66	39.54	18.1	1.42	2.19	2.09			
Keith County.............	1919	18.83	28.52	18.1	1.04	1.57	1.95			
Average.	1919	18.99	27.80	14.9	1.27	1.87	1.99			
1919 Spring wheat: 8 Minnesota-										
Clay County..	1919	16. 29	22.91	8.1	2.01	2.82	2.09			
Traverse County.	1919	17.21	23.61	8.4	2.05	2.80	2.21			
Grand Forks County...	1919	17.37	21.88	9.8	1.77	2.24	2.17			
Morton County.........	1919	16.47	18.83	4.4	3.74	4.26	2.47			
South DakotaSpink County.	1919	15.80	23.70	9.9	1.60	2.40	2.13			
Average.	1919	16.61	22.40	8.4	1.98	2.65	2.17			
1920 Winter wheat: ${ }^{9}$ Missouri-										
Missouri- Pike County.	1920	24.46	32.56	13.5	1.81	2.42	2.46			
Carroll County.	1920	24.30	35.37	17.6	1.38	2.01	2.35			
Nebraska-										
Gage County.	1920	22.28	37.24	21.5	1.04	1.73 2.57	2.17			
Clay County......	1920	19.76	${ }^{33.60}$	13.1	1.51	1.5 1.43				
Kansas- Chenne County.	1920	18.87	27.25	19.0	. 99	1.43	1.90			
Thomas Gounty.	1920	12.85	17.83	14.1	. 91	1.20	1.95			
McPherson County	1920	18.59	29.62	14.6	1.27	2.03	2.22			
Oklahoma-										
Woodward County	1920	18.67	21.82	9.5	1.97	2.30	2.12			
Average.	1920	18.72	26.30	14.9	1.26	1.80	2.09			
	1919	34.69	53.72	31.6	1.10	1.70	2.09			
Washington: Whitman County	1920	34.42	54.32	36.6	. 94	1.48	1.29			
Washiggton. Whitman County	1921	29.65	47.29	31.6	. 11	1.50	1.90			
Oregon: ${ }^{\text {a }}$ Sherman County......	1920 1921	23.26 21.13	32.92 30.55	20.9 27.8	1.11 .76	1.58 1.10	1.65 1.00			

Division of Cost of Production.
${ }^{1}$ Gross costs are shown prior to 1919. From 1919 through 1921 a deduction has been made for the value of straw and pasture, resulting in a net cost per bushel and per acre.
${ }_{2} 1902$-1913, State averages as reported by the United States Department of Agriculture; 1919-1921 prices recelved on farms studied.
${ }_{8}$ United States Department o 1 Agriculture, Bureau of Statistics, Bulletin No. 73.
4 Minnesota Agricultural Experiment Station, Bulletin No. 145.
6 Unpublished data in the files of the United States Department of Agriculture.
6 New York Department of Agriculture, Bulletin No. 86.
7 Missouri Agricultural Experiment Station, Bulletin No. 125.
8 United States Department of Agriculture, Bulletin No. 943.

- Preliminary reports on cost of producing wheat, United States Department of Agriculture. Winter wheat after summer fallow.

Table 62.-Cost of producing wheat, 1922.

Division of Cost of Production. Based on returns to mail questionnaires sent to crop reporters.
${ }^{1}$ Average yields on farms reporting.
${ }^{2}$ A.verage for all farms reporting.
${ }^{5}$ New York, Pennsy.lvania, Maryland, Virginia, and West Virginia.
4 Ohio, Indiana, Mlinois, and Iowa.
${ }^{5}$ Min

- Missouri, Kansas, Nebraska, Ozlahoma, and Texas.
r Idaho, Washington, and Oregon.
Table 63.-Cost of production, excluding land rent, and farm price of spring wheat, 1913-1923.

Year.	North Dakota, South Dakota, Minnesota. ${ }^{\text {P }}$						
	Net cost per acre (excluding land rent).	Farm value of wheat per.acre.	Difference between farm value and cost per: acre (excluding land rent).	Value per scre of all land with improvements.	Yield per acre.	Net cost per bushel (excluđing land rent).	Farm price per bushel.
1913.	Dollars. 8.4	Dollars. 8.89 8. che	Bollars.	Dollars. ${ }_{49}$	Bushels. 11.7	Dollars. 0.72	Dollars. ${ }^{\text {a }}$. 6
1914.	8.31	10.60	$+2.29$	52	10.5	. 79	1.01
1915.	10. 42	16. 54	+6.12	54	17.0	. 59	- 94
1916	8.76	88.87	+.11 +10.35	57 62	11.8	1.41	1.43
1917.	13. 25	23.60 33.46	+10.35 +16.69	${ }_{65}^{62}$	11.8. ${ }^{18}$	1.122.	2.00
1919.	17.12	17.94	+.82	72	7.8	2.19	2.30
1920.	18: 22	15. 65	-3. 27.	95	9.1	2.08	1. 72
1921.	12.36	8. 94	-3:42	94	8.8	1. 44.	1.04
1922.	11.64	11. 54	-. 10	81	13.9	$1.84{ }^{1}$. 81
1923 3...	10.76	8.10	-2.66	73	8.9	1. 21.	. 91

[^143]Table 64.-Cost of production, excluding land rent, and farm price of winter wheat, 1913-1923.

Year.	Kansas, Nebraska, Missouri. 1						
	Net cost per acre (excluding land rent).	Farm value of wheat per acre.	Difference between farm value and cost per acre (excluding land rent).	Value per acre of land with improvements.	Yield per acre.	Net cost per bushel (excluding land rent).	Farm price per bushè.
1913.	Dollars. 9.62:	Dollars. 11.70	Dollars. $+2.08$	Dollars. 60	Bushets. 15.2	Dollars. 0.68	Dollars. 0.77
1914.	10.18	18. 03	$+7.85$	61	19.6	. 52	. 92
1915.	9.98	13. 34	+3.36	61	13.9	. 72	. 96
1946.	10.19	18.36	+8.17	66	13.4	. 76	1.37
1917.	13.50	27.72	$+14.22$	70	13.2	1.02	2.10
1918.	17.12	28.34	+11.22	77	14.1	1.21	2.01
1919.	19.47	28.76	+9.29	85	13.5	1.44	2.13
1920.	20.48	26.93	+6.45	106	15.3	1.34	1.76
1921.	15.02	12.85	-2.17	99	12.6	1.19	1.02
1922.	12.01	11.31	$-.70$	79	13.0	. 92	. 87
1923 ².	12.09	9.49	-2.60	77	10.1	1.20	. 94

Division of Cost of Production.

1 Costs computed from basic requirements as shown in Bulketin Ne. 943; 1913-1921 prices are averages of prices from July to June; 1922-1923 prices are for Oct. 1.

21923 figures subject to revision.
Table 65.-Index numbers of cost of production, excluding land rent, and farm price of spring wheat, 191s-192s.

Year.	North Dakota, South Dakota, Minnesota.					
	Net cost per acre (excluding land rent).	Farm value of wheat per acre.	Value per acre of all land with improvements.	Yield per acre.	Net cost per bushel (excluding land ront).	Farm price per bushol.
1913.	Per cent. 100	Per cent 100				
1914.	98	119	106	90	110	133
1915.	123	186	110	150	82	124
1916.	104	100	116	53	198	188
1917.	157	265	128	101	156	263
1918.	199	376	133	140	142	268
1919.	203	202	147	67	304	303
1920.	224	176	194	78	289	226
1921.	146	101	192	74	200	132
1922.	138	130	165	119	117	109
1923...	127	91	149	76	168	129

Division of Cost of Production.
Table 66.-Index numbers of eost of production, excluding land rent, and farm price of winter wheat, 1913-1923.

Year.	Kansas, Nebraska, Missouri.					
	Net cost per acre (exeluding land rent).	Farm value of wheat per acre.	Value per acre of land with improve ments.	Yield per acre.	Net cost per bushel (exeluding land rent).	Farm price per bushel.
	Per cent.	Per cent.	Per cent.	Per cent. 100	Per cent.	Per cent. 100
1914.	106	154	102	129	83	120
1915...	104	114	102	91	114	125
1916.	106	157	110	88	124	178
1917.	140	237	117	87	182	278
1918.	178	242	128	93	192	231
1919..	202	246	142	$8{ }^{89}$	229	278
1929.	213	230	177	101	213	220
1927....	156	110	165 138	${ }_{86}^{83}$	189	118
1922......	125	81 81	${ }_{128}^{138}$	${ }_{68}^{86}$	190	12

[^144]Table 67.-Value of farm land per acre, United States and Canada, 1914-1922.

Country and subdivision.	1914	1915	1916	1917	1918	1919	1920	1921	1922
United States ${ }^{1}$.	Dollars. 94	Dollars. 79							
Minnesota....	66	70	75	83	87	94	124	126	110
North Dakota..	33	34	37	39	41	43	50	50	46
South Dakota..	57	58	60	63	66	80	110	106	87
Montana........	38	35	34	35	37	39	42	35	25
Idaho............	63	66	64	71	87	97	125	125	105
Washington....	110	99	102	100	115	115	150	145	100
Oregon.....	80	75	70	82	104	95	120	135	100
- Nebraska.	74	71	76	80	92	105	135	120	90
Kansas.	51	53	58	60	64	69	80	80	69
Colorado.	65	65	60	62	64	66	75	75	70
Oklahoma.	30	29	31	35	41	43	55	55	48
Texas....	39	39	39	45	52	55	69	65	56
Canada ${ }^{2}$...........	37	35	36	38	41	46	48	40	40
Manitoba........	32	30	32	31	32	35	39	35	32
Saskatchewan..	24	24	23	26	29	32	32	29	28
Alberta.........	21	23	22	27	28	29	32	28	24

Division of Statistical and Historical Research.
${ }^{1}$ Based on estimated value per acre of "all land with improvements" as reported by crop reporters to Division of Crop and Livestock Estimates.
2 "All occupied farm land with improvements" as reported by Dominion Bureau of Statistics.
Table 68.-Index numbers of farm price of wheat and of costs of important factors of production and marketing in the United States, 1913-1923.

Division of Cost of Prodnction.
Implement prices from International Harvester Co. of America.
${ }^{1}$ 1913-1921: Average of prices from July to June: 1922-23 prices for October 1.
1923 wage index: January 133, April 140, July 159, October 154.
Table 69.-Index numbers of farm price of wheat and costs of important factors of production and marketing in Kansas and North Dakota, 1913-1923.

Year.	Winter wheat (Kansas).						
	Average farm price of wheat. ${ }^{1}$	Monthly wages of farm labor without board.	Wholesale prices 13 representative farm implements.	Binder twine average, United prices.	Threshing rate (shock threshing bundle grain).	Value of all land with im-provements.	Freight rates from McPherson, to Kansas City, Mo.
	Per cent. 100	Per cent.	Per cent. 100				
1914.	118	104	101	102	100	102	100
1915.	124	107	105	105	100	106	100
1916.	177	113	110	132	100	116	100
1917.	${ }^{273}$	136	131	193	150 150	120	100 125
1918.	256 276	167	178	222	150 200	128 138	125 125
19192.	222	${ }_{230}$	196	175	200	160	169
1921.	132	150	185	140	160	160	169
1922.	110	${ }^{139}$	152	114	150 150	138	149
1923....	122		154	123	150	136	

[^145]Table 69.-Index numbers of farm price of wheat and costs of important factors of production and marketing in Kansas and North Dakota, 1913-1923-Continued.

Year.	Spring wheat (North Dakota).						
	Average farm price of wheat. 1	Monthly wages of farm labor without board.	Wholesale prices 13 representative farm implements.	Binder twine average Stated prices.	Threshing rate (shock threshing bundle grain).	Value of all land with im-provements.	Freight rates froma Larimore, N. Dak., to Minneapolis, Minn.
	Per cent.	Per cent.	Per cent. ${ }^{100}$	Per cent.	Per cent. 100	Per cent.	Per cent. 100
1914.	136	106	101	102	100	106	109
1915.	124	107	105	105	100	110	100
1916.	189	111	110	132	100	119	100
1917.	265	141	131	193	150	126	100
1918.	273	169	178	232	150	132	125
1919.	311	187	188	226	200	139	125
1920.	240	228	196	175	200	161	174
1921.	137	142	185	140 114	160 150	161	171 146
1922.	111	(2) 131	152 154	114 123	150 150	148 135	146

Division of Cost of Production.
Implement prices from International Harvester Co. of America.
1913-1921 indices are averages of prices from July to June; 1922-1923 are for Oct. 1.
:1923 wage index, Kansas: January, 132; April, 142; July, 146; October, 151. North Dakota: January, 101; A pril, 125; July, 144; October, 147.
Table 70.-Wheat, hard spring-margins between the prices in the United States and Canada, 1921-1923. ${ }^{1}$

Year and month.		Winnipeg No. 2 Northern. ${ }^{2}$	Duluth No. 1 Dark Northern.	Minneapolis No. 1 Dark Northern.	Margins American over Canadian prices.		
		Duluth.			Minneapolis.		
	1921.		Cents.	Cents. ${ }_{178}$	Cents. ${ }_{179}$	Cents.	Cents. 11
January...		168	178 170	179	10	7	
March....		165	169	166	4.	1.	
April.....		152	151	148	-1	-8	
May.......		164	158	156	-6	-8	
June......		165	162	161	-3	-	
July.....		159 135	154 148	165	-5 13	6 18	
August		135	148 154	148	13 26	${ }_{24}^{13}$	
October..		103	134	134	31	31	
November.		99	128	128	29	29	
December. .		99	130	130	31	31	
	1922.						
January...		104	$\begin{array}{r}131 \\ 153 \\ \hline 1\end{array}$	153		228	
Mabruary...		132	157	155	25	28	
April.....		135	164	161	29	28	
May......		137	162	161	25	2	
June........		128	147	147		18	
August...		112	122	124	10°	12	
September		99	113	113	14	14	
October..		100	115	116	15	${ }_{15}^{18}$	
November.		108	123 128	123	15 22	${ }_{23}^{16}$	
December..	106	128	127			
	1923.			124	16	18	
January...	...	108	123	126	15	18	
March....		109	123	125	14	16	
April...		118	129	130	11	12	
May....		114	126	128	12	12	
June.....		111				6	
July......		103	116	116	10	10	
August...		109 99	123	118	24	19	
October...		94	124	126	30	32	
November.		93	120	119	${ }^{27}$	26	
December..	.	88	118	119	30	31	

[^146]Table 71.-Wheat-Average spot prices in Liverpool, June, 1921-December, 1923. ${ }^{1}$

	Year and month.	No. 1 Northern Manitoba per bushel.	No. 2 Hard Winter (American) per bushel.	Margin of Canadian over American winter wheat, perbushel.
June	1921.	Cents.	Cents.	Cents.
October.		136.4	125.4	10.0
November.		134.6	124.8	9.8
December.		146.8	135.2	11.6
	1922.			
January..		145.1		
March.....		179.1		
April....		171.1	157.4	13.7
May....		170.9	158.3	12.6
Jone...		157.7	143.3	14.4
July..		165.5	148.9	16.6
August.		159.3	141.3	18.0
Septembe		148.3	130.0	18.3
October...		154.2	140.2	14.0
December.		144.9 148.1	152.4	-7.5
	1923.			
January..		143.6	141.8	1.8
February.		143.7	142.0	1.7
April.		146.0	145.3	1.7
May...		150.4		
June...		142.1		
July...		138.9		
August.		135.4	126.0	9.4
September.		141.8		
November.		140.1		
December .		128. 0		

Division of Statistical and Historical Research. Compiled from Broomhall's Corn 'frade News.
${ }^{1}$ Monthly averages for days on which prices for both classes of wheat were quoted. Quotations converted at exchange for the month.

Table 72.-Chicaga prices to dealers for five representative farm implements, 1913-1923. ${ }^{1}$

Implement.	1913	1914	1915	1916	1917	1918	1919	1920	192	1922	1923
	Dol-	Dol-	Dol-		Dol-	Dol-	Dot-	Dol-	Dol-	Dal-	Dol-
Grain binder (6-foot with bundle carrier)	$\begin{array}{\|l\|l\|} \text { lars } \\ 95.43 \end{array}$	$\begin{aligned} & \text { lars. } \\ & 95.43 \end{aligned}$	$\begin{aligned} & \text { lars. } \\ & 95.43 \end{aligned}$	$\begin{aligned} & \text { lars. } \\ & 100.09 \end{aligned}$	$\begin{aligned} & l a r s . \\ & 120.25 \end{aligned}$	166.25	$\begin{aligned} & \text { lars. } \\ & 1.25 .25 \end{aligned}$	$\begin{gathered} \text { lars. } \\ 156.75 \end{gathered}$	$\begin{aligned} & \text { lars. } \\ & 163.40 \end{aligned}$	$\begin{aligned} & \text { Zars. } \\ & 138.70 \end{aligned}$	
Grain drill (12 by 7, singie disk)	54	54.40	0	55.33		5		5		79.80	79.56
Corn planter(with 80 rod wire)	31.62	. 62	15	33.72						49.40	49.64
Corn binder (with bundle carrier)									163.40	138.70	138.70
Mower (5-foot, plain lift)..	33. 52	34.45	34.45	36.31	44.40	61.75	61.75	58.90	62.46	53.20	53.20

Bureau of Agricultural Economics. Implement prices from International Harvester Co. of America. ${ }^{17}$ F.o.b.

Table 73.-Index numbers of Chicago prices to dealers for representative farm implements, 1913-192s. ${ }^{1}$

Implement.	1913.	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
		Per									
Group of 13 representative farm implements ${ }^{2}$	$\begin{gathered} \text { cent } \\ 100 \end{gathered}$	cent.	$\begin{gathered} \text { cent. } \\ 105 \end{gathered}$	cent. 110	cent.	cent.	cent.	cent.	cent. 185	cent. 152	${ }_{154}$
Grain binder (6-foot with bandle											
carrier).....................	100	100	100	105	126	174 169	174 169	164 169	171 173	145	145 148
Grain drill (12 by 7, single disk)..	109	100 100	109 99	102	126	169 176	169 176	169	173 173	147.	148
Corn planter (with 80 rods wire).-	100 100	100 100	99 100	107 105	135 126	176 174	176 174	176	173 171	156 145	157 145
Mowers (5-foot, plain lift)..........	100	103	103	108	132	184	184	176	186	159	159

Bureau of Agricultural Economics. Price data furnished by International Harvester Co. of America. 1F.o.b.
${ }^{2}$ The group includes one each of the following implements: grain binder, mower, self-dump hay rake, hay loader, corn planter, corn binder, ensilage cutter, grain drill, disk harrow, spring-toeth harrow, spiketooth harrow, cream separator, standard 3 \}-inch wagen.

Table 74.-Some factors influeneing the price of wheat (hard winter wheat at Kansas City).

AUGUST 26, 1922.

OCTOBER 29, 1923.

Dark hard..No. 4..............	1.18	13.72 per cent protein; Colorado.
	1.12	12.60 per cent protein; Colorado.
Hard.........No. 1.	1.18	12.64 per cent protein; Kansas; 611 ${ }^{\text {d }}$ pounds.
No. 2..............	1. 20-1. 22	12.90-13.50 per cent protein; near dark.
	1.18	12.42-12.58 per cent protein; good territory, Kansas.
	1.12-1.15	12.30-12.60 per cent protein; intermediate character.
	1. 05-1.09	12.25 per cent or less protein; medium to ordinary quality.
No.3..	1.19-1.21	12.90-13.75 per cent protein; choice.
	1.12-1. 16	12.50-13 per cent protein; medium to fair character.
	1.05-1.09	12-12.40 per cent protein; medium quality.
	1. 03-1. 05	12 per cent or less protein; ordinary.
No. 4..	1.14-1.16	12.90-13.73 per cent protein; fair to good.
	1.08-1.11	12.45-12.85 per cent protein; intermediate.
	1.03-1.07	12-12.40 per cent protein.
	. .98-1.03	Under 12 per cent protein.
	.98-1.00	Extremely common.
No. 5..	1.19	14 per cent protein; fancy; $53 \frac{1}{2}$ pounds.
	1.12	13.12 per cent protein.
	1.07	Near 13 per cent protein.
	1. 03-1.04	12.70 per cent protein.
	1.00	12 per cent protein; 53 ponnds.
	.92-.96	

Division of Statistical and Historical Research. Compiled from Kansas City Grain Market Review.

Table 75.-Wheat, estimated prices of No. 1 Northern Spring if pre-war price ratios were established at price levels of 1921, 1922, 1923.

Month.	Index wholesale prices, all commodities, Bureau Labor Statistics, $1909-1913=100 .{ }^{1}$			Minneapolis prices per bushel. ${ }^{2}$	1909-1913 prices per bushel raised with index wholesale prices. ${ }^{8}$			Prices received per bushel. 4		
	1921	1922	1923	$\begin{gathered} 1909- \\ 1913 \end{gathered}$	1921	1922	1923	1921	1922	1923
	Perct.	Perct.	Per ct.	Dollars.						
January.	177.5	144.1	162.8	1.048	1. 860	1. 510	1. 706	1.81	1.39	1.28
February	167.0	147.2	163.9	1. 044	1.743	1. 537	1.711	1.74	1. 58	1.31
March.	161. 8	148.2	166.0	1. 042	1.686	1. 544	1. 730	1.72	1. 50	1.29
April.	-154.5	149.3	166. 0	1.058	1.635	1.580	1.756	1. 57	1.66	1.34
May.	151.4	-154.5	162.8	1. 094	1. 656	1.690	1.781	1.67	1.71	1.32
June.	148.2	156.6	159.7	1. 090	1. 615	1.707	1.741	1.74	1.53	1.22
July.	147.2	161. 8	157.6	1. 098	1. 616	1.777	1. 730	1.81	1. 57	1.18
August	148.2	161. 8	156.6	1. 020	1. 512	1.650	1.597	1. 57	1.22	1.22
Septembe	147. 2	159.7	160.8	. 996	1. 466	1. 595	1. 602	1. 56	1. 20	1.23
October.	148.2	160.8	159.7	. 992	1.470	1. 591	1. 584	1.37	1. 21	1.26
November	147.2	162.8	158.7	. 966	1. 422	1. 573	1. 533	1.30	1.28	1.19
December	146.1	162.8	157.6	. 970	1.417	1. 579	1. 529	1.33	1.31	1.19
Year	153.4	155.5	160.8	1.035	1.588	1.609	1.664	1.60	1.43	1.26

Division of Statistical and Historical Research.
${ }^{1}$ Bureau of Labor Statistics index converted to 1909-1913 base.
${ }^{2}$ A verage cash price.
${ }_{3}$ A The average price for the month in 1909-1913 multiplied by the index number of wholesale prices for the corresponding month.
${ }^{4}$ A verage of reported sales No. 1 Dark Northern, Minneapolis.
Table 76.-Wheat, estimated prices of No. 2 Hard Winter if pre-war price ratios were established at price levels of 1921, 1922, 1923.

Month.	Index wholesale prices, all commodities, Bureau Labor Statistics, $1909-1913=100 .{ }^{3}$			$\begin{array}{\|c} \text { Kansas } \\ \text { City } \\ \text { prices } \\ \text { per } \\ \text { bushel. } 2 \end{array}$	1909-1913 prices per bushel raised with index wholesale prices. ${ }^{8}$			Prices received per bushel. 4		
	1921	1922	1923	$\begin{gathered} 1909- \\ 1913 \end{gathered}$	1921	1922	1923	1921	1922	1923
	Per ct.	Per ct.	Per ct.	Dollars.						
January	177.5	144.1	162.8	1.008	1.789	1.453	1.641	1.72	1.13	1.14
Februar	167.0	147.2	163. 9	1.000	1. 670	1.472	1.639	1.62	1.29	1.15
March.	161.8	148.2	166.0	1.008	1.631	1.494	1.673	1.55	1.34	1.16
April.	154.5	149.3	166.0	1.046	1.616	1.562	1.736	1.33	1.35	1.29
May	151.4	154.5	162.8	1.066	1.614	1.647	1. 735	1.47	1.34	1.16
June	148.2	156.6	159.7	1.060	1.571	1.660	1.693	1.38	1.17	1.01
July..	147.2	161.8	157.6	. 958	1.410	1. 550	1.510	1.14	1.13	. 96
August	148.2	161.8	156. 6	. 934	1.384	1.511	1.463	1.15	1.04	1.01
September	147.2	159.7	160. 8	. 942	1.387	1.504	1.515	1.22	1.04	1.09
October.	148.2	160.8	159.7	. 954	1.414	1.534	1.524	1.10	1.13	1.12
November	147.2	162. 8	158.7	. 922	1.357	1.501	1.463	1.10	1.17	1.09
December.	146.1	162.8	157.6	. 942	1.376	1.534	1.485	1.09	1.17	1.09
Year	153.4	155.5	160.8	. 987	1.514	1.535	1.587	1.32	1.19	1.10

Division of Statistical and Historical Research.
${ }^{1}$ Bureau of Labor Statistics index converted to 1909-1913 base.
${ }^{2}$ Average cash price.
${ }^{2}$ Average cash price. the corresponding month.
${ }^{4}$ Average of reported sales, Kansas City

Table 77.-Wheat, estimated prices of No. 2 Red Winter if pre-war price ratios were established at price levels of 1921, 1922, 1923.

Month.	Index wholesale prices, all commodities, Bureat of Labor Statistics, $1909-1913=100.1$			Chicago prices per bushel. ${ }^{2}$	1909-1913 prices per bushel raised with index wholesale prices. ${ }^{3}$			Prices received per bushel. 4		
	1921	1922	1923	$\begin{gathered} 1909- \\ 1913 \end{gathered}$	1921	1922	1923	1921	1922	1923
	Perct.	Per ct.	Per ct.	Dollars.						
January..	177.5	144.1	162.8	1.074	1.906	1. 548	1.748	1.94	1.21	1.30
February	167.0	147. 2	163.9	1. 068	1. 784	1. 572	1.750	1.85	1.34	1.35
March.	161.8	148. 2	166.0	1. 056	1. 709	1.565	1. 753	1.65	1.38	1. 31
April.	154.5	149.3	166. 0	1. 090	1. 684	1. 627	1. 809	1.41	1. 40	1.32
May.	151.4	154. 5	162.8	1.148	1. 738	1.774	1. 869	1.67	1.34	1. 28
June	148.2	156.6	159. 7	1.124	1. 666	1.760	1.795	1.47	1.18	1.16
July.	147.2	161.8	157.6	. 990	1.457	1.602	1.560	1.24	1.14	1.00
August	148. 2	161.8	156.6	. 974	1.443	1.576	1. 525	1.22	1.07	1.00
September	147.2	159.7	160.8	. 990	1. 457	1. 581	1.592	1.29	1.06	1. 05
October.	148.2	160.8	159.7	1. 028	1. 523	1.653	1. 642	1.18	1.18.	1.11
November	147.2	162.8	158.7	. 996	1. 466	1.621	1.581	1.23	1.27	1.06
December.	146.1	162.8	157.6	. 990	1.446	1.612	1. 560	1.18	1.33	1.09
Year	153.4	155.5	160.8	1.044	1.601	1.623	1.679	1.44	1. 24	1.17

Division of Statistical and Historical Research.
${ }^{1}$ Bureau of Labor Statistics index converted to 1909-1913 base.
${ }^{2}$ Average cash price.
${ }^{3}$ The average price for the month in 1909-1913 multiplied by the index number of wholesale prices for the corresponding month.
${ }^{4}$ A verage of reported sales, Chicago.
Table 78.-Estimated prices of contract grades of corn, if pre-war price ratios were established at price levels of 1921, 1922, 1923.

Month.	Index wholesalc prices, all commodities, Bureau of Labor Statistics, 1909-1913 $=100.1$			Chicago prices per bushel. ${ }^{2}$	1909-1913 prices raised with index wholesale prices. ${ }^{8}$			Prices received per bushel. 4		
	1921	1922	1923	$1909-$ 1913	1921	1922	1923	1921	1922	1923
	Per ct.	Per ct.	Perct.	Dollars.						
January.	177.5	144.1	162.8	0.574	1.019	0.827	0.934	0.682	0.484	0.711
February	167.0	147. 2	163.9	. 577	. 964	. 849	. 946	. 665	. 572	. 737
March.	161.8	148. 2	166.0	. 590	. 955	. 874	. 979	. 649	. 575	. 740
April.	154.5	149.3	166.0	. 622	. 961	. 929	1. 033	. 578	. 588	. 793
May.	151.4	154. 5	162.8	. 652	. 987	1.007	1.061	. 616	. 618	. 809
June	148.2	156.6	159.7	. 645	. 956	1.010	1. 030	. 614	. 609	. 839
July..	147.2	161. 8	157.6	. 664	. 977	1. 074	1.046	. 614	. 643	. 857
August	148. 2	161. 8	156.6	. 692	1. 026	1.120	1.084	. 570	. 622	. 876
Septembe	147.2	159.7	160.8	. 678	. 998	1.083	1. 090	. 539	. 635	. 884
October.	148.2	160.8	159.7	. 634	. 940	1.019	1.012	. 478	. 691	1.011
November	147.2	162.8	158.7	. 625	. 920	1.018	. 992	. 482	. 722	. 842
Decomber	146.1	162.8	157.6	. 600	. 877	. 977	. 946	. 482	. 734	. 730
Year	153.4	155.5	160.8	. 629	. 965	. 978	1.011	. 580	. 624	. 821

Division of Statistical and Historical Research.
${ }^{1}$ Bureau of Labor Statistics index converted to 1909-1913 base.
${ }^{2}$ Bureau of Labor Statistics.
a The average price for the month in 1909-1913 multiplied by the index number of wholesale prices for the corresponding month.
${ }^{4}$ Chicago; from Bureau of Labor Statistics.

Table 79:-Estimated prices of hogs, if pre-war price ratios were established at price levels of 1921, 1922, 1923.

Month.	Index wholesale prices, all commodities, Bureau of Labor Statistics, $1909-1913=100.1$			Chicago prices per hun-dredweight. ${ }^{2}$	1909-1913 prices per hundredweight raised with index wholesale prices. ${ }^{3}$			Prices received per hundredweight. ${ }^{4}$		
	1921	1922	1923	$\begin{gathered} 1909- \\ 1913 \end{gathered}$	1921	1922	1923	1921	1922	1923
	Per ct.	Per ct.	Per ct.	Dollars.						
Jamuary	177.5	144.1	162.8	7.26	12.89	10.46	11.82	9.41	8.02	8.29
February	167.0	147.2	163.9	7.43	12.41	10.94	12.18	9. 42	9.90	8.02
March.	161.8	148.2	166.0	8.02	12.98	11.89	13. 31	10.00	10.43	8.18
April.	154.5	149.3	166.0	8.04	12.42	12. 00	13. 35	8.50	10.31	8.08
May.	151. 4	154.5	162.8	7.81	11.82	12. 07	12.71	8.35	10.48	7.53
June.	148.2	156.6	159.7	7.90	11.71	12. 37	12.62	8.19	10.33	6.92
July.	147.2	161.8	157.6	8.00	11.78	12.94	12. 61	9.69	9.70	7.04
August.	148.2	161.8	156.6	8.00	11. 86	12.94	12. 53	9.26	8.01	7.65
September	147.2	159.7	160.8	8.15	12.00	13. 02	13.11	7.61	8.75	8.35
October.	148.2	160.8	159.7	. 7.93	11.75	12. 75	12.66	7.72	8.80	7.42
November	147.2	162.8	158.7	7.48	11.01	12. 18	11.87	7.01	8.07	6.85
December	146.1	162.8	157.6	7.50	10.96	12. 21	11.82	6.92	8.18	6.87
Year	153.4	155.5	160.8	7.77	11.92	12.08	11.49	8.51	9.22	7.55

Division of Statistical and Historical Research.
${ }^{1}$ Bureau of Labor Statistics index converted to 1909-1913 base.
Average cash price.
${ }^{3}$ The average price for the month in 1909-1913 multiplied by the index number of wholesale prices for corresponding month.
${ }^{4}$ A verage cost of packer and shipper purchases, Chicago.
Table 80.-Estimated prices of lard, if pre-war price ratios were established at price levels of 1921, 1922, 1923.

Month.	Index wholesale prices, all commodities, Burean of Labor Statistics, $1909-1913=100 .{ }^{1}$			Chicago prices per hun-dredweight. ${ }^{2}$	1909-1913 prices per hundredweight raised with index wholesale prices. ${ }^{3}$			Prices received per hundredweight. ${ }^{2}$		
	1921	1922	1923	$\begin{gathered} 1909- \\ 1913 \end{gathered}$	1921	1922	1923	1921	1922	1923
	Per ct.	Per ct.	Per ct.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollafs.
January	177.5	144.1	162.8	10.29	18.26	14.83	16.75	16. 03	11.19	13.20
February	167.0	147.2	163.9	10.18	17.00	14.98	16.69	14.91	12.59	13. 25
March.	161.8	148.2	166.0	10. 60	17.15	15. 71	17.60	14.48	13.50	13.87
April.	154.5	149.3	168.0	10. 33	15.96	15.42	17.15	13.07	12. 62	13. 42
May.	151.4	154.5	162.8	10.68	16. 17	16. 50	17.39	11.88	13.15	13. 12
June.	148. 2	156.6	159.7	10.77	15.96	16. 87	17.20	12. 03	13.22	13.18
July..	147.2	161.8	157.6	10.75	15. 82	17.39	16.94	13.94	13. 06	12. 84
August.	148.2	161.8	158.6	10.89	16. 14	17.62	17.05	13.65	13.30	12.83
September	147.2	159.7	160.8	11.24	16. 55	17.95	18.07	13.51	13.00	15.06
October.	148.2	160.8	159.7	11.20	16.60	18. 01	17.88	12.16	14.12	15.22
November	147.2	162.8	158.7	10.92	16. 07	17.78	17.33	11.62	13. 78	15. 72
December.	146.1	162.8	157.6	10.71	15.65	17.44	16.88	11.25	13.31	15.04
Year	153.4	155.5	160.8	10.72	16. 44	16. 67	17.24	13.21	13.07	13.90

[^147]Table 81.-Tax per acre and percentage increase on agricultural land outside of incorporated places in South Dakota for 1913, 1919, and 1921. (General property tax.)

Area.	Tax per acre. ${ }^{1}$			Increase.		
	1913	1919	1921	1913-1919	1913-1921	1919-1921
	Dollars.	Dollars.	Dollars.	Per cent.	Per cent.	Per cent.
32 western counties ${ }^{3}$	0.30 .15	0.79 .33	0.73 .33	120	120	- 0
All counties..	.24	. 54	.35	125	129	2

Division of Agricultural Finance. Compiled from 1914 State Auditor's Report, vol. 2, and the Annual Reports of State Tar Commission for the years 1914, 1920, and 1921-22.
${ }_{2}{ }^{T}$ Tax levies of 1913, 1919, and 1921 for psyment in 1914, 1920, and 1922, respectively.
${ }^{2}$ The counties included in the eastern division are: Aurora., Beadle, Bon Homme, Brookings, Brown, Charles Mix, Clark, Clay, Codington, Davison, Day, Deuel, Douglas, Edmunds, Faulk, Grant, Gregory, Hamlin, Hand, Hanson, Hutehinson, Jerauld, Kingsbury, Lake, Lincoln, McCook, McPherson, Marshall, Miner, Minnehaha, Moody, Roberts, Sanborn, Spink, Turner, Union, and Yankton.
${ }^{3}$ All counties not listed in note 2 are included in the western division.
Table 82.-Analysis of taxes levied on agricultural land outside incorporated places in South Dakota, 1913, 1919, and 1921. (General property tax.)

Area.	Year.	Distribution.					
		State.	County.	Township.	School.	Miscellaneous.	Total.
37 eastern counties $\{$	$\left\{\begin{array}{l}1913 \\ 1919 \\ 1921\end{array}\right.$		Per cent. 100.				
		13.4 16.9	$\begin{aligned} & 33.0 \\ & 37.0 \end{aligned}$	$\begin{aligned} & 14.2 \\ & 11.1 \end{aligned}$	$\begin{aligned} & 38.4 \\ & 35.0 \end{aligned}$	1.0 .0	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$
		12.9	27.0	10.4	49.7	. 0	100.0
	${ }_{1919}^{1912}$	8.1	43.3	7.0	40.6	1.0	100.0
		11.2	41.5	5.7	41.6	. θ	100.0
32 western counties	1919 1921	7.6	38.9	5. 6.	47.9	. 0	100.0
All counties	1913 1919	11.8	36.2	12.0	39.0	1.0	100.0
	All counties......................... $\left\{\begin{array}{r}1919 \\ 192 \mathrm{I}\end{array}\right.$	15.3 11.3	38.3 30.7	9.6 9.0	3998 49.0	. 0	100.0 100.0

Division of Agricultural Finance. (See notes to Table 81.)
Table 83.-Estimated tax per acre and percentage increase on improved farm land for the east-side counties of Washington, by drstricts, 1914 and 1921. (General property tax.)

Areas.	Tax per acre. ${ }^{1}$		Increase, 1914-1921.
	1914	1921	
	Dollars.	Dollars.	Per cent.
Big Bend (5 counties) ${ }^{2} \ldots \ldots .$.	0.19 .49	0.63 1.36	232 178
Palouse area (6 counties) ${ }^{4}$......	. 37	1.24	235
Central counties (5 counties) ${ }^{\text {b }}$. 92	3.88	322
Average east-side (20 counties).	. 35	1.18	237

Division of Agricultural Finance. Compiled from Third Biennial Report of State Tax Commission of Washington.
1 Owing to the lack of complete data, the assessed value of improved agricultural land reported in 1920 was used as the basis of calculations for 1921 .
${ }_{2}$ Counties of Lincoln, Adams, Franklin, Grant, and Douglas.
${ }^{8}$ Counties of Pend Oreille, Stevens, Ferry, and Okanogan.
4 Counties of Spokane, Whitman, Garfield, Asotin, Columbia, and Walla Walla.
${ }^{5}$ Counties of Chelan, Kittitas, Yakima, Klickitat, and Benton.

Table 84.-Increase in delinquent taxes, Kansas, 1917-1922.
[1917 delinquent taxes $=100$ per cent.]

Table 85.-Tax per acre and percentage increase on farn land in Kansas for 1913, 1919, and 1921. (General property tax.)

Area.	Tax per acre. ${ }^{1}$			Increase.		
	1913	1919	1921	1913-1919	1913-1921	1919-1921
84 eastern counties ${ }^{2}$.	Dollars. 0.24	Dollars. 0.39	Dollars. 0.54	Per cent.	Per cent.	Per cent.
21 western counties ${ }^{3}$.	. 04	. 12	. 21	200	425	75
All counties.......	. 17	. 33	. 46	94	171	39
McPherson County.	. 22	. 55	. 57	150	159	4
Thomas County..	. 08	. 14	. 17	75	113	21

Division of Agricultural Finance. Compiled from the Fourth, Seventh, and Eighth Biennial Reports of the State Tax Commission of Kansas.
${ }^{1}$ Tax levies of 1913, 1919, and 1921 for payment in 1914, 1920, and 1922; respectively.
${ }^{2}$ All counties not listed in note 3 are included in the eastern division.
: The counties included in the western division are: Cheyenne, Finney, Gove, Grant, Gray, Greeley, Hamilton, Haskell, Kearney, Lane, Logan, Morton, Rawlins, Scott, Seward, Sherman, Stanton, Stevens, Thomas, Wallace, Wichita.

Table 86.-Analysis of taxes levied on farm land in Kansas for 1913, 1919, and 1921. (General property tax.)

Area.	Year.	Distribution.					
		State.	County.	Town- ship.	School.	$\begin{aligned} & \text { Drain- } \\ & \text { age. } \end{aligned}$	Total.
84 eastern counties		Per cent. 0.8	Per cent. 100.				
	1919	16.8	41.6	16.0	25.0	. 6	100.0
	1921	18.0	38.5	14.4	28.6	. 5	100.0
	1913	13.4	40.1	8.5	38.0	. 0	100.0
21 western counties	1919	12.1	45.0	8.5	34.4	. 0	100.0
	1921	12.5	35.9	9.1	42.5	. 0	100.0
All counties	1913	16.9	35.3	18.1	28.9	. 8	100.0
	1919 1921	16.5 17.6	41.8 8.3	15.5 14.0	25.6 29.6	. 6	100.0 100.0

Division of Agricultural Finance. (See notes to Table 85.)

Table 87.-Financial condition of farmers in 15 States of the Middle West, January, 1920, to March, 1923.

State and Division.	Percentage of farmers who lost farms or property.													
	Owner farmers.					Tenant farmers.				Owner and tenant farmers.				
	Lost farms through foreclosure or bankruptcy.			Retained farms through leniency of creditors.			Lost property without foreclosure or bankruptcy.			Lost farms or property through foreclosure or bankruptcy.	Lost farms or property without foreclosure or bankruptcy.			
	P.ct.	P.ct.	$P . c t$.	P.ct.	$P . c t$.	$P . c t$.	P. ct.	P.ct.	$P . c t$.	$P . c t$.	P.ct.	P. ct.	$P . c t$.	P.ct.
Ohio	2.29	2.97	5. 26	6. 68	1. 52	3. 73	5.81	9.54	11. 36	2. 72	3.82	6. 54	8. 08	0.60
Indiana	2. 20	3.26	5.46	10. 57	2.01	5. 44	6.29	11. 72	18.90	3.25	4. 24	7. 49	13. 26	. 36
Illinois	2.34	3.16	5. 50	13. 42	1.64	4.30	5. 22	9.52	21. 38	3. 19	4. 05	7.24	16. 87	38
Michigan	2. 60	4. 07	6.67	13.12	1.37	7. 74	15.47	23. 21	15. 28	3. 52	6.11	9.63	13.51	. 19
W isconsin	2. 13	3.42	5. 55	9.80	2.19	10.62	12. 05	22.67	13.34	3.37	4.68	8.05	10. 32	19
East North Central ${ }^{1}$	2.31	3. 38	5. 69	10.53	1. 74	5. 36	7. 38	12.74	16. 94	3.18	4.51	7.69	12. 35	. 36
Minnesota	4. 43	3.69	8.12	13. 12	4.35	12. 37	7.16	19.53	24.47	6.41	4. 56	10. 97	15.95	. 28
Iowa--	3. 84	5. 30	9.14	12. 18	5. 71	6. 24	6.79	13.03	18. 69	4.85	5. 93	10. 78	14.93	. 62
Missouri	2. 90	4.69	7. 59	16. 76	3. 12	6.02	9.04	15.06	28. 13	3.81	5. 95	9.76	20. 06	. 41
North Dakota-	9.78	5. 80	15. 58	32.50	1. 82	12. 01	10.63	22. 64	34. 94	10.36	7. 05	17.41	33.13	. 60
South Dakota.-	6. 20	6. 42	12. 62	20.78	4. 72	10.65	10.95	21.60	29.10	7.77	8.02	15. 79	23.71	. 52
Nebraska	5. 06	4.17	9.23	14. 86	3.48	7.19	5.80	12.99	20. 28	5. 98	4.88	10. 86	17.21	. 87
Kansas	2. 94	2. 89	5.83	12. 22	1. 79	5.91	7.47	13.38	18.23	4. 15	4.76	8.90	14.67	. 49
West North Central ${ }^{1}$.	4.34	4. 52	8.85	16.02	3.65	7.61	7.76	15.37	23.01	5.47	5.64	11.10	18. 43	. 52
Montana	16. 71	11. 07	27. 78	33.86	2.13	17.07	14.90	31.97	29.09	16. 75	11.51	28. 26	33.31	22
W yoming	4.39	6.95	11. 34	37.92	2. 05	16.09	12. 41	28.51	33.33	5.89	7. 65	13.54	37.33	2.05
Colorado.	7.11	7. 42	14.53	25.90	5. 76	9.55	11. 66	21. 22	26.92	7.68	8.41	16.09	26.14	1. 06
Mountain (3 States) ${ }^{1}$	11. 20	9. 05	20. 25	31. 05	3.62	12.33	12.68	25.01	28. 12	11.39	9.66	21.06	30. 55	. 81
$\text { States } \left.^{1}\right)_{---}$	3.83	4.28	8.11	14.40	2.72	6.78	7.75	14.53	20.54	4.74	5.34	10.08	16. 28	. 46

Division of Agricultural Finance. Data secured from 2,360 selected farmers who reported on 68,533 owner-farmers and 25,994 tenant-farmers in their immediate neighborhoods.
${ }^{1}$ Based on number of farms reported by the Census, January 1, 1920.

Table 88.-Wheat: Disposition of crop in principal States.

State.	Usual disposition of the crop.				Intended disposition of the 1923 crop.			
	Used for seed.	Fed to livestock.	$\begin{gathered} \text { Milled } \\ \text { in } \\ \text { county. } \end{gathered}$	Shipped out of county.	Used for seed.	Fed to livestock. ${ }^{1}$	$\begin{gathered} \text { Milled } \\ \text { in } \\ \text { county. } \end{gathered}$	Shipped out of county.
New York Pennsylvania. Maryland. Virginia North Carolina	Per cent. $\begin{array}{r} 10 \\ 9 \\ 9 \\ 10 \\ 10 \end{array}$	Per cent. $\begin{array}{r} 24 \\ 18 \\ 9 \\ 8 \\ 7 \end{array}$	Per cent. $\begin{aligned} & 35 \\ & 40 \\ & 29 \\ & 64 \\ & 80 \end{aligned}$	Per cent. $\begin{array}{r} 31 \\ 33 \\ 53 \\ 18 \\ 3 \end{array}$	Per cent. $\begin{array}{r} 9 \\ 9 \\ 9 \\ 10 \\ 10 \end{array}$	Per cent. $\begin{array}{r} 29 \\ 23 \\ 13 \\ 10 \\ 7 \end{array}$	Per cent. $\begin{aligned} & 33 \\ & 41 \\ & 30 \\ & 61 \\ & 80 \end{aligned}$	Per cent. $\begin{array}{r} 29 \\ 27 \\ 48 \\ 19 \\ 3 \end{array}$
Ohio \qquad Indiana Inlinois. \qquad Michigan Minnesota	10 9 7 9 10	9 6 6 11 7	$\begin{aligned} & 30 \\ & 27 \\ & 18 \\ & 32 \\ & 20 \end{aligned}$	$\begin{aligned} & 51 \\ & 58 \\ & 69 \\ & 48 \\ & 63 \end{aligned}$	a 8 7 9 10	16 10 10 17 9	29 28 16 31 20	46 54 67 43 61
Iowa Missouri North Dakota South Dakota Nebraska.-	9 8 8 11 10 8	8 8 1 4 4	18 26 6 7 74	65 58 82 79 74	8 7 13 11 9	10 14 4 6 8	17 25 6 6 5 15	65 54 77 78 68
Kansas Kentucky.- Tennessee Texas.-.--.	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 9 \end{array}$	4 5 7 4	16 70 704 26	70 15 19 61	17 9 10 10	9 8 8 10 12	17 69 64 26	57 14 16 52
Oklahoma Montana Colorado. Utah...-----	10 8 7 7	$\begin{array}{r}8 \\ 5 \\ 8 \\ 82 \\ \hline\end{array}$	12 8 17 40	70 79 68 32	$\begin{aligned} & 9 \\ & 8 \\ & 8 \\ & 7 \end{aligned}$	13 7 15 25	12 8 17 38	66 77 60 30
Idaho Washington Oregon California \qquad	$\begin{aligned} & 5 \\ & 6 \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 18 \\ & 10 \\ & 12 \\ & 18 \end{aligned}$	9 14 14 11 19	68 70 72 72 50	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 8 \end{aligned}$	18 8 14 21	8 17 11 18	68 70 70 53
27 States	8.6	8.1	20.5	62.8	9.3	11.6	20.4	58.7

Division of Crop and Livestock Estimates. Based on estimates of crop reporters, November, 1923.
${ }^{1}$ Because of unsatisfactory wheat price situation at time of inquiry the estimates of "fed to livestock" may be slightly excessive. The ratio of 1923 to usual, however, is felt to reflect the changed situation as it existedin November. The degree to which these expressed intentions materialized was probably affected by subsequent price changes.
Table 89.-Wheat: Imports from Canada; for consumption, duty paid; for milling in bond and export; and imports on which drawback has been allowed, June 1, 1921, to December 31, 1923.

[^148]Table 90.-Canadian freight rates on wheat, 1913, 1920, and 1923.

To Fort William and Port Artbur-	1913, per bushel. ${ }^{1}$	Sept. 13, 1920, per bushel. ${ }^{2}$	1923, per bushel. ${ }^{3}$
From points in: Manitoba-	Cents.	Cents.	Cents.
Brandon	7.8	14.1	9.6
Portage la Prairie.	7.2	12. 9	9.0
Winnipeg--------	6. ${ }_{9} 0$	11.4 15.9	8. ${ }^{8} 8$
Saskatchewan---			10.8
Broadview.	9.6	17.4	10.8
Shelbrook	414.4	24.3	15.6
Regina---	108	19.5	12.0
Saskatoon.	14.4	22.8	14.4
Yorkton-	10.2	-18.3	11.4
AlbertaA thabasca	${ }^{4} 16.2$	26.7	17.4
Calgary.-	14.4	24.3	15.6
Edmonton.	16. 8	24.3	15.6
Medicine Frat	13.2 13.8	22.8 23.4	14.4

Division of Statistical and Historical Research. Compiled from data of Dominion Bureau of Statistics.
${ }^{1}$ Effective October 7, 1903.
${ }^{3}$ Effective July 6, 1922.
2 This rate continued in effect until January 1, 1921. 4 January 1, 1916.
$\mathrm{T}_{\text {able }}$ 91.-Export rail and water rates to Liverpool on wheat from the producing regions of the United States, Canada, and Argentina, 1923.

To Liverpool-	Miles.	Rate per bushel.	Total rates per bushel.			
from canada.	794	$\begin{array}{r} \text { Cents. } \\ 12.0 \\ 13.0 \\ 9.1 \end{array}$	Cents.			
Regina via Port Arthur to Buffalo:						
1. Regina to Port Arthur-						
2. Port Arthur to Buffalo						
Total rate to seaboard.		24.124.8	28.9			
4. New York to Liverpool.						
from united states.						
Scobey, Mont., via Duluth to Buffalo:	708	22.53.0				
1. Scabey to Duluth-						
2. Duluth to Buffalo--						
		$\begin{array}{r} 34.6 \\ 24.8 \end{array}$	39.4			
4. New York to Liverpool						
2. Galveston to Liverpool	974	27.0 28.6	35.6			
1. McPherson to New Orleans	771	27.028.6	-------75. ${ }^{-1}$			
2. New Orleans to Liverpool						
brom argentina.	111	$\begin{array}{r} 9.5 \\ 14.8 \end{array}$	--...-.- 24.3			
1. Corral de Bustos to Rosario						
2. Rosario to Liverpool...						
Average haul to Buenos Aires: ${ }^{\text {a }}$						
1. Southern Ry------	$\begin{aligned} & 106.25 \\ & \text { 194.00 } \\ & 121.00 \\ & 122.00 \\ & 186.00 \end{aligned}$	8.6612.148.689.53911.24				
3. Central Argentine Ry --.						
4. Central of Cordoba Ry--						
5. Buenos Aires \& Western Ry						
A verage to Buenos Aires	$\begin{aligned} & 145.85 \\ & 140.04 \end{aligned}$	$\begin{array}{r} 10.05 \\ 9.96 \\ 213.8 \end{array}$	23.8			
Average for Argentina.-.						
6. Buenos Aires to Liverpool						

[^149]
GRAINS OTHER THAN BREAD GRAINS.

CORN.
Table 92.-Corn: Acreage, production, value, exports, etc., United States, 18691923.

Calendar year.	$\begin{aligned} & \text { Acre- } \\ & \text { age. } \end{aligned}$	Averageyield俗 per acre.	$\begin{gathered} \text { Produc- } \\ \text { tion. } \end{gathered}$		FarmvalueDec. 1.	$\begin{gathered} \text { Value } \\ \text { per } \\ \text { acre. } \end{gathered}$	Chicago cash price per bushel, No. 2 mixed. ${ }^{2}$				Domestic exports including corn meal, fiscal year beginning July $1 .{ }^{3}$	Imports, fiscal year beginning July $1 .{ }^{3}$	Percentofcropex-por-ted.
							December.		FollowingMay.				
							Low	High	Low				
	1,	Bu. of 56 lbs.				Dol-							
	acres.		bu		dollars.		$\begin{array}{r} \text { rts. } \\ 56 \end{array}$	Cts.	$\begin{gathered} \text { Cts. } \\ 73 \end{gathered}$		$\begin{aligned} & \text { Bushels. } \\ & 2,10,487 \end{aligned}$	80	0.2
	38,64	28.3	1, 094, 255	49.4	540, 520	13. 99	41	59	46	52	10, 673, 553	111, 080	1.0
1871	34, 091	29.1	991, 898	43.4	430, 356	12.62	36	39	38	43	35, 727, 010	58, 56	3. 6
1872	35, 527	30.8	1, 092, 719	35.3	385, 736	10.86	27	28	34	39	40, 154, 374	61, 53	3.7
1873	39, 197		932, 274	44.2	411, 961	10.51	40	49	49	59	35, 985,834	76, 003	3.9
1874	41,03		850		496, 271	12.	64	76	53	67	30, 025, 036	38,	3.5
1875	44, 8		1,321, 069	36.7	484, 675	10.81	40	47	41	45	50, 910	51,79	
1876	49, 033	26.	1,283, 828	34.0	436, 109	8.89	40	43	43	56	72, 652, 611	30, 902	7
1877	50,369	26.7	1, 342, 558	34.8	467, 635	9.	41	49	35	41	87, 192, 110	13,423	6. 5
1878	51, 585	26.9	1, 388, 219	31.7	440, 281	8.54	30	32	33	36	87, 884, 892	33, 869	. 3
	62, 369		1,823,	37.	676	10.84	39	431	$32{ }^{\frac{3}{5}}$	361	99, 572, 329	58,876	5.5
	62, 318	27.6	1,717,	39.6	679, 714	10.91	355	42	$41 \frac{1}{2}$		93, 648, 147	75, 155	5
188	64, 262	18.	1, 194, 916	63.6	759, 482	11.82		${ }_{61} 63$		76	44, 340, 683	69, 621	3. 7
1882	65, 660	24.	1, 617, 025	48. 5	783, 867	11.94		631	${ }_{52}^{53}$	$56{ }^{3}$ 57	$41,655,653$ $46,258,606$	25,989 4,894	2. 6
	68, 302	22.	1, 551, 067	42.4	658, 051		$54{ }^{2}$	$63 \frac{1}{8}$	52		46, 258, 606	4,894	3.0
	69,684		1, 795, 528	35.7	640, 736	9.19	342	$40{ }^{1}$	$44{ }^{3}$		52, 876, 456	07	2. 9
	73, 130	26. 5	1, 936, 176	32.8	635, 675	8. 69	36	${ }^{42}{ }^{\frac{3}{4}}$	$34{ }^{34}$	${ }_{3}^{36}$	64, 829,617	16, 104	5
	75, 694	22.0	1, 665, 441	36. 6	610, 311	8. 06	${ }_{47} 3$					37,493	1.7
1887	72, 393	20.	1, 456, 161	44.4	646, 107	8.92 8.95	331	${ }_{35}{ }_{3}^{1}$	${ }_{33}{ }_{3}^{1}$		$25,360,869$ $70,841,673$	37,493 2,401	. 6
	75, 673		1, 987, 790	34.1			$33^{\frac{1}{2}}$	$35 \frac{1}{8}$	${ }_{32} 33_{\frac{3}{4}}^{4}$	35	70,841, 67	1,626	2
	70, 39	20.7	460 ,	50.0	729, 647	10.37	47	53	55	$69 \frac{1}{3}$	32, 041, 529	2,111	2
1891	74, 496	27.6	, 055, 823	39.7	816, 917	10.97	$39{ }^{\frac{3}{5}}$	59	403	100	76, 602, 285	15, 290	. 7
1892	72, 610	23.	,713, 688	38.8	664, 390	9.15	40	$42{ }^{\frac{2}{5}}$	39	$4{ }^{42}$	47, 121, 894		7
1893	74, 434	22.	1, 707, 572	35.9	612, 998	8. 24	$34 \frac{1}{2}$	$36 \frac{1}{2}$	36		66,	2, 19	3.9
	69		, 339,680			8.71	$44{ }_{3}$	472	473	$55 \frac{1}{2}$	28, 585, 405	16,57	2.1
	85, 567	27.0	2, 310, 952	25.0	578, 408	6.76	25	263	$27 \frac{1}{2}$	293	101, 100, 375	4,33	.
	86, 56		503, 484	21.3	532, 8	6.16	$22{ }^{2}$	${ }_{27}^{23}$	${ }_{32}^{23}$	25	178, 817, 417		
1897	88, 127	24.	2, 144, 553	26.0	558,	6.		${ }_{38} 27$	32 32 				9.9 7.8
	88,304		, 2	28.4	642, 747		33 ${ }^{\frac{1}{2}}$		32 2	34.	177, 255, 046	4, 17	
1899	94	25.9	2, 454, 628	29.9	734, 916	7.74	30	$31{ }^{3}$	36		$\left\lvert\, \begin{aligned} & 213,123,412 \\ & 181-405,473 \end{aligned}\right.$	$\begin{aligned} & 2,480 \\ & 5,169 \end{aligned}$. 7
1900	95, 042	26.4	2, 505, 148	60.1	878, 243	10. 24					$181,405,473$ $28,028,688$	$\left.\begin{array}{r} 5,169 \\ 18,278 \end{array} \right\rvert\,$. 7
$\begin{aligned} & 1901 \\ & 1902 \end{aligned}$	-94, 636	17.0 27.4	1, 613, 5288	60.1 40.1	$\begin{array}{r}969,285 \\ 1,049 \\ \hline\end{array}$	10. 24 10	${ }_{43}{ }^{4}$	${ }_{57} 5$	${ }_{44}{ }_{4}^{8}$	${ }_{46}{ }^{4}{ }^{3}$	76, 2839,261	40,919	2. 9
1903	¢		2, 346, 897	,	987, 882	10.90	41	$43 \frac{3}{4}$	$47 \frac{1}{4}$	50	58, 222,	6, 633	2.5
	93, 340		2, 528	43.	1,105	11.8	$43{ }^{2}$	49	48	$64 \frac{1}{2}$	90, 293	15,443	3.6
1905	93,		748		$1,120,513$	11.97	42	$50 \frac{1}{4}$	$47 \frac{1}{2}$	50	119, 893, 833	10, 127	4.4
1906	93, 643	0.9	2, 897, 662	39. 3	1, 138, 053	12.15	40	46	492	56	86, 368, 228	10,818	0
190	94, 971	der	2, 512, 065	${ }_{60} 50$	1, 277, 607	13. ${ }^{15}$	561	${ }^{62}$	$7{ }^{67}$	82	55, $37,665,860$.
	95,603	26.	2,544, 957	$60 .$	$\underline{1,527,679}$	15.98	56	$62{ }^{2}$	72	76	37,665, 040	258, 065	
1909			572,	58.6	1,507	15.32	$62 \frac{1}{2}$	66	56	63	38,128, 498		1.5
1910	104, 035	27.7	2, 886, 260	48.0	1, 384, 817	13.31	$45 \cdot$	50	524	55	65, 614, 522		. 3
1911	105, 825	23.9	2, 531,488	61.8	$1,565,258$	14. 79	68	70	$76{ }^{2}$	${ }_{60} 82$	41, 797, 291	903, 062	. 6
1912	107, 083	29.1	3, 124, 746	48.7 69.1	$1,520,454$	14. 20						2, 367,369	
	105, 820	23.1	2, 446,988	69.1	1,692,092	15.	64	73_{2}			25,		
	104, 229	26.0	2, 712, 36		1,533,	72	57.5	62.7	61.	66.6	41, 409, 25	2,664,77	1.5
	103, 435	25.8	2, 672,804	64.4	1,722, 070	16.65	6	68	$5{ }^{5}$	56	50, 688,	9,897,	1.3
1915	106, 197	28.2	2, 994, 793	57.5	1,722,680	16. 22	$69 \frac{1}{2}$	75	69	$78 \frac{1}{2}$	39, 896, 928	5,	
1916	105, 2	24.4	2, 566, 927	88.	2, 280, 729	21. 66	88	96	152	174	66, 753, 2	2, 287, 299	
1917	116, 730		3, 065, 233		3, 920, 228	33.58	160	190	150	170	49, 073, 263	3, 196, 420	
1918	104, 467	24.0	2, 502, 665	136.	3, 416, 240	32.70	135	155	${ }^{1602}$	185	23, 018,82	3, 311, 211	
919.	97, 170	28.9	2, 811, 302	134.	3, 780, 597	38. 91	42	60	189	17	16,707, 447	229, 249	
1920	101, 699	31.	3, 208, 584	67.	2, 150,332	21.1	$70 \frac{1}{2}$	86	59	66	70, 905, 781	,	
Aver	104, 999	27.0	2,831,758	95.8	2,713,26	25.84	103.9	118.6	118	135	45, 289, 12	5, 693, 42	
	103, 740		3, 068, 569	42.3	1, 297, 213	12.50	46	51	593	65	179, 490, 442	124, 5	5.8
192	102, 846	28.3	2, 906, 020	65.8	1,910,775	18.58	$69 \frac{1}{2}$	77	78	$87 \frac{1}{2}$	96, 599, 093	137, 52	3.
1923	104, 158		3, 054, 395		2, 222, 013	21.							

Division of Crop and Livestock Estimates. Figures in italics are Cens us returns.
1 Based upon farm price Dec. 1. 4Coincident with "corner."
${ }_{2}$ Chicago Daily Trade Bulletin. No. 2 to 1908. Contract to 1915. 6 Preliminary.
${ }^{3}$ Compiled from reports of Bureau of Foreign and Domestic Commerce.

Table 93.-Corn: Acreage, production, and farm value in six leading States, 1866-1923. ${ }^{1}$

$\begin{aligned} & \text { Calen- } \\ & \text { dar } \\ & \text { year. } \end{aligned}$	Acreage.	$\begin{gathered} \text { Yield } \\ \text { per } \\ \text { acre. } \end{gathered}$	Production.	Farm price per Dec. 1.	Farm value Dec. 1.	$\begin{gathered} \text { Calen- } \\ \text { dar } \\ \text { year. } \end{gathered}$	Acreage.	Yield per acre.	Production.	Farm price per bu. Dec 1.	Farm value Dec. 1.
	1,000		1,000		1,000		1,000		1,000		1,000
	acres.	Bush.	bushels.	Cents.	dollars.		acres.	Bush.	bushels.	Cents.	dollars.
1866	14,307	33.9	484, 490	32.8	159.007	1901	44, 000	19. 4	854, 700	55.8	476, 642
1867	13, 077	27.5	359, 943	48.5	174, 496	1902	44, 100	36. 0	1,586, 655	34.5	547, 853
1868	12, 696	33.8	428, 719	36.5	156, 663	1903	40, 150	30. 2	1,211, 020	36.0	435, 987
1869	15, 806	27.1	428,500	48.0	205, 659	1904	42, 750	32.4	1, 385, 135	38.0	526, 365
1870	16,953	35.1	595, 847	34.8	207, 374	1905	42, 350	36.4	1,540, 860	36.5	562, 287
1871	14, 658	38.6	565, 739	29.6	167, 573	1906	41,900	36. 9	1, 546, 895	34. 6	534, 941
1872	15, 815	39.1	617, 839	23.6	145, 596	1907	42, 350	31.5	1, 335, 330	44.8	598, 742
1873	18, 859	25.6	482, 942	32.7	158, 130	1908	41, 850	30. 5	1, 277, 785	56.0	715, 100
1874	19, 832	23.3	461, 894	48.9	225, 914						
1875	22, 479	35. 0	786, 000	28.7	225, 536	1909	42, 472	32. 3	1, 370, 094	52.2	715, 537
1876	641		500	28.2	199, 542	1910	43, 405	34.9	516,		
1877	24, 610	30.5	750, 500	28.6	214, 572	1911	43, 575	30.1	1, 313, 765	55.5	728, 864
1878	25, 194	31.6	795, 369	23.9	190, 196	1912	44, 958	36. 9	1, 658, 635	40.3	667, 979
1879	29,814	36.1	1,076, 944	28.8	309, 992	1913	44, 185	26.8	1, 186, 312	63.1	748, 416
1880	29,877	31.5	939, 786	33.6	315, 724	Aver	43,719	32.2	1, 409, 117	49.1	691, 328
1881	30, 398	21.8	661, 382	54. 2	358, 648						
1882	29, 234	27.7	811, 143	43.8	355, 365	1914	43, 493	30.5	1, 327, 840	58.7	778, 890
1883	30, 182	26. 7	805, 529	36.1	290, 459	1915	42, 675	33. 3	1, 422, 150	52.5	747,191
1884	31, 171	32.3	1,007, 244	27.6	277, 954	1916	43, 162	29.7	1, 280, 295	83.1	1,063,962
1885	32, 669	33.1	1, 081, 640	26.0	281, 399	1917	47, 656	35. 0	1, 666, 556	115.7	1,928,148
						1918	41, 747	29.9	1, 248, 696	124.7	1,557,436
1886	33, 557	26. 0	873, 502	30. 0	262, 159	1919	40, 355	35. 2	1, 418, 481	125. 2	1,776,447
1887	31, 192	22.6	703, 878	38.3	269, 718	1920	42,384	38.3	1,623, 991	54.3	881, 423
1888	32, 661	34. 3	1, 121, 5888	27.8	$\begin{array}{r}311,370 \\ 254 \\ \hline\end{array}$						
1889	33, 777	34. 0	1, 147, 578	22.2	254, 208	Aver	43, 067	33.1	1,426, 858	87.4	1,247,642
1890	33, 400	24.5	816, 710	44.4	362,914	1921	41, 267	35.2	1, 452, 111	34.5	501, 127
1891.	35,700	33.7	1,204, 090	34. 0	409, 267	1922	41, 317	35. 5	1, 465, 381	59. 6	873, 069
1892	34, 200	27.9	954, 930	34.9	333, 532	$1923{ }^{2}$	43, 274	36. 7	1,588, 939	63.8	1,013,584
1893.	35, 075	27.5	965, 700	30.2	292, 014						
1894	30, 500	21. 7	661, 150	40.6	268, 468						
1895	40, 440	31.9	1, 290, 754	20.8	268, 360						
1896	41, 280	36.8	1,519, 740	16. 8	255, 317						
1897	41,780	29.9	1,248,975	20.3	253, 620						
1898	41, 000	30. 2	1, 236, 900	24.7	304, 897						
1899	43, 154	32.0	1,380, 602	26. 0	358, 618						
1900----	43, 950	34.0	1, 493, 100	30.8	459, 374						

Division of Crop and Livestock Estimates.
${ }^{1}$ Iowa, Illinois, Nebraska, Missouri, Indiana, and Ohio.
${ }^{2}$ Preliminary.

Table 94.-Corn: Acreage, production, and total farm value, by States, calendar years, 1921-1923.

State.	Thousands of acres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of dollars.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
Maine	30	19	18	1,500	779	684	1,155	779	766
New Hampshire.-	24	27	26	1,272	1,161	1,092	954	871	1,212
Vermont--------	81	85	84	4, 455	3,570	3,276	3, 386	3,249	3, 604
Massachusetts..--	65	61	59	3, 120	2, 440	2,537	2,402	2,294	2,918
Rhode Isfand.----	14	13	12	644	520	456	708	624	524
Connecticut	74	77	76	3, 848	3,465	3,116	3,463	3,326	3,334
New York.-	798	798	758	36, 708	28, 329	24, 559	24,594	23, 513	24, 559
New Jersey	241	231	236	11, 327	9, 702	9,440	6,003	6,791	8,968
Pennsylvania..---	1, 589	1,573	1,541	76, 272	69, 212	61, 640	41,950	49,833	56, 092
Delaware...------	185	189	183	6,845	5,557	6,057	3,080	3,890	4,906
Maryland	645	642	642	25, 155	25, 680	25, 231	12,326	17,462	20,689
Virginia --	1,904	1,866	1,847	47, 600	52, 248	53,563	32, 844	41, 276	50,349
West Virginia	, 592	604	592	20, 128	20, 536	20,128	15, 096	17, 250	19, 927
North Carolina	2,552	2,577	2, 603	49, 254	51,540	58,568	38, 418	45, 871	59,739
South Carolina.	2, 022	2,062	1,980	32, 352	29,899	32, 670	23,940	26, 012	34, 304
Georgia	4,665	4,385	4,034	69,975	52, 620	49,215	37, 087	45, 253	52,680
Florida	788	775	820	11, 032	10, 850	10, 250	5,847	9, 440	10, 250
Ohio.	3, 785	3, 823	3,899	155, 185.	149, 097	159, 859	63, 626	98, 404	118, 296
Indiana	4,718	4, 765	5, 003	169, 848	176, 305	192, 616	62, 844	98, 731	119, 422
Illinois.	8,999	8,819	8,995	305, 966	313, 074	337, 312	116, 267	187, 844	219, 253
Michigan...-.-.---	1, 703	1,720	1,686	66, 417	60, 716	58, 167	31, 880	40,680	45, 370
Wisconsin.-.-...--	2,110	2,209	2, 253	97, 482	98, 300	83, 361	44, 842	61, 929	66, 689
Minnesota	3, 820	3, 979	4,297	156, 620	131, 307	154, 692	48, 552	73, 532	94, 362
Iowa.	10, 250	10, 364	10,571	430, 500	466, 380	430, 240	129, 150	261, 173	266, 749
Missouri	6, 096	6, 250	6,562	183, 880	178, 125	196, 860	73, 152	121, 125	145, 676
North Dakota	620	780	842	17,360	21,450	28, 207	5,902	11,368	15, 232
South Dakota.	3,926	3, 861	4, 208	125, 632	110, 038	145, 176	32, 664	55, 019	75, 492
Nebraska	7,419	7, 296	8,244	207, 732	182, 400	272, 052	56, 088	105, 792	144, 188
Kansas.	4,358	5, 098	5, 629	96, 748	98, 391	122, 149	29, 992	60, 019	78, 175
Kentucky	3,209	3,145	3,083	82,150	88, 060	87, 866	45, 182	60, 761	74, 686
Tennessee	3, 516	3, 280	3, 018	90, 713	75, 440	73,941	47, 171	59,598	69,505
Alabama.	4, 042	3, 636	3,310	58, 609	50, 904	48,988	36, 338	45, 814	52,907
Mississippi...-----	3, 172	2,855	2,327	57,096	49, 962	33, 742	31, 974	42, 468	36, 104
Louisiana--------	1, 796	1,706	1, 604	35, 022	29, 002	24, 702	22, 764	24, 072	25, 937
Texas.	6, 227	5, 729	5,213	156, 920	114, 580	96, 440	84, 737	95, 101	96, 440
Oklahoma	3, 077	3, 200	3, 264	76, 925	57, 600	37, 536	24, 616	40,320	32,656
Arkansas	2,640	2, 250	2,002	58, 080	43, 875	39, 039	33, 106	37, 294	39, 429 :
Montana	190	228	365	3,800	5,540	9,490	2,546	2,936	6, 168
W yoming	56	112	150	1,232	2,688	4, 050	616	1,613	2,835
Colorado.	1,102	1,145	1,490	15,979	18,320	37, 250	4,953	12,091	24, 212
New Mexico.....--	290	236	221	6,380	3,210	3,624	5,742	2,632	3,443
Arizona----------	35	39	33	1,015	1,170	990	1,015	1,346	1,188
Utah	21	32	31	517	781	772	393	664	733
Nevada.	1	1	1	29	21	23	35	22	29
Idaho	47	52	73	1,645	1,976	3,066	822	1,561	2, 361
Washington	64	67	74	2,560	2, 747	2,738	2, 202	2, 884	2, 601
Oregon-	66 116	69	71	1,980	2,277	2,485	1, 663	2,072	2,236
California	116	116	128	4, 060	4,176	4,480	3,126	4,176	4,838
United States .-	103, 740	102, 846	104, 158	3, 068, 569	2,906, 020	3, 054, 395	1,297, 213	1, 910, 775	2, 222, 013

[^150]Table 95.-Corn: Yield per acre, by States, calendar years, 1908-1923.

Division of Crop and Livestock Estimates.

Table 96.-Corn: Condition of crop, first of month, and yield per acre, United States, 1866-1923.

Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.	Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.
	P.ct.	P. ct.	P.ct.	P.ct.	Bush.		P.ct.	P. ct.	P.ct.	P.ct.	Bush.
1866	93.5	113.4	1075	90. 4	25. 3	1896	92.4	96. 0	91.0		28.9
1868	101. 6	113.4	104.3	103.8	23.0	1898	90.5	87.0 87	84	78.1	24.3
1869	89.7	87.5	80.5	88.0	23.6	1899	86.5	89.9	85.2	82.7	25.9
1870	104.1	104.7	111.2	111.2	28.3	1900	89.5	87.5	80.6	78.2	26.4
1871	105.9	100. 6	97.3	99.1	29.1	1901.	81.3	54.0	51.7	52.1	17.0
1872	96.8	105. 2	106. 2	108.0	30.8	1902	87.5	86. 5	84.3	79.6	27.4
1873	90. 2	90.8	82.8	84.0	23.8	1903	79.4	78.7	80.1	80.8	25.9
1874	99.2	90.0	83.0	86.0	20.7	1904	86.487.3	87.389.0	84.689.5		27.1
1875	96.0	96.0100.0	97.0	99.9	29.5						
						1905.				89.2	29.4
${ }_{1876}^{187}$				101.2	26.2	${ }_{1906}$	87.5	88.0	90.2	90.1	30.9
1877	85.0	92.0	91.0		26.7	1907	80.2	82.8	80.2	78.0	26.5
1878	95.0	96.0	92.0	96.0	26.9	1908	82.8	82.5	79.4	77.8	26.6
1880-..--.------	100.0	98.0	95.0 91.0	-----	27.6	1909.------.--	89.385.48	84.479.3	74.6	73. 8	26.127.7
			91.0								
1881.	90.0	77.0	60.0	66.0	18.6	1911	80.1	69.6	70.3	70.4	23.9
1882	85.0	83.0	83.0	81.0	24.6	1912	81.5	80.0	82.1	82.2	29.2
1883	88.0	89.0	84.0	78.0	22.7	1913	86.9	75.8	65.1	65.3	23.1
1885-.------.	94.0	96.0	95.0	95.0	25. 8		84.6	77.8	74.1	74.4	26.0
					26.5	Av. 1909-1913					
1886	95.2	80.7	76. 6	80.0	22.0	1914	85.8	74.8	71.7	72.9	25.8
1887	97.7	80.5	72.3	72.8	20.1	1915	81.2	79.5	78.8	79.7	28.2
1888	93.0	95.5	94.2	92.0	26.3	1916	82.0	75.3	71.3	71.5	24.4
1890	90.3	94.8	90.9	70.6	20.7	1917	81.1	78.8	76.7	75.9	26.3
	93.1	73.3	70.1			-	$\begin{aligned} & 87.1 \\ & 86.7 \\ & 84.6 \end{aligned}$	$\begin{aligned} & 78.5 \\ & 81.7 \\ & 86.7 \end{aligned}$	67.480.08	68.681.3	24.028.9
1891											
1892	81.1	8.5	79.6	79.8	23.6	1920.-.-.-.-.--			86.4	89.1	31.5
1893	93.2	87.0	76.7	75.1	22.9	Av. 1914-1920	84.1	79.3	76.0	77.0	27.0
1894-.-----	95. 0	69. 1	63.4	64.2	27.0		$\begin{aligned} & 91.1 \\ & 85.1 \\ & 84.9 \end{aligned}$	$\begin{aligned} & 84.3 \\ & 85.6 \\ & 84.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 85.1 \\ & 78.6 \\ & 83.3 \end{aligned}$	$\begin{aligned} & 84.8 \\ & 78.4 \\ & 82.0 \end{aligned}$	$\begin{aligned} & 29.6 \\ & 28.3 \\ & 29.3 \end{aligned}$
1895-...-.-.---	99.3	102.5	96.4	95.5							

Division of Crop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.
Table 97.-Corn: Percentage reduction from full yield per acre, from stated causes, as estimated by crop reporters, 1909-1922.

Calendar year.	Deficient moisture.	Excessive moisture.	Floods.	$\begin{gathered} \text { Frost } \\ \text { or } \\ \text { freeze. } \end{gathered}$	Hail.	Hot winds.	Storms	Total climatic.	Plant disease.	Insect pests.	$\begin{gathered} \text { Ani- } \\ \text { mal } \\ \text { pests. } \end{gathered}$	Defective seed.	Total. ${ }^{1}$
	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct	P.ct.						
1909	13.0	7.3	1.5	1.0	0.5	1. 6	0.7	25.8	0.2	2. 3	0.4	0.3	29.6
1910	13.9	3.0	. 8	. 9	. 4	1. 6	. 5	21.3	. 2	2. 3	. 4	1. 2	26.0
1911	23.4	1. 6	(2)	. 4	. 2	3. 4	. 1	29.6	. 2	2.3	. 2	. 4	33.7
1912	8.7	4.6	. 9	1. 7	. 5	1. 0	. 3	18.1	. 3	4.8	. 3	2.3	26.3
1913	27.1	1.2	. 4	1.0	. 3	3.1	. 4	33.7	. 1	3.7	. 2	. 4	38.9
1914.	20.8	1.3	. 4	. 4	. 5	2.1	. 4	26.1	. 1	3.6	. 1	. 2	30.6
1915	3.0	11.9	2.1	6.9	. 6	.2	1. 1	26.5	.3	2.1	.1	. 2	29.9
1916	18.5	5.8	1.7	1.7	. 4	1.7	1.1	31.3	.3	2.0	. 1	. 6	34.7
1917	12.1	2.9	. 6	13.5	.6	1. 2	. 3	31. 6	.3	1. 4	. 1	. 2	33.8
1918.	22.1	. 9	. 5	2.0	. 4	6.3	3.2	32.8	.3	2.6	. 1	1.5	37.7
1919	10.8	7.3	1.4	$\stackrel{.}{ }+1$. 3	1.0	. 4	21.4	. 4	3.1	. 1	. 2	25.4
1920	5.4	3.3	. 6	. 7	. 5	. 3	. 4	11.3	.3	3.6	. 1	.3	15.9
1921	10.6	1. 1	. 3	. 2	. 4	1.0	. 6	14. 1	. 8	3.4		. 1	18.7
1922.	14.2	2.3	. 5	. 2	1.0	1.0	. 2	19.3	. 4	3.0	. 1	. 2	23.0

[^151]Table 98.-Corn: Area and yield per acre in undermentioned countries.
NORTHERN HEMISPHERE.

[^152]Table 98.-Corn: Area and yield per acre in undermentioned countries-Con. SOUTHERN HEMISPHERE.

Country.	Acreage.					Yield per acre. ${ }^{1}$				
	Average 1913.	1920	1921	1922	$\begin{aligned} & \text { 1923, } \\ & \text { pre- } \\ & \text { limi- } \\ & \text { nary } \end{aligned}$	A ver- age, 1909- 1913.	1920	1921	1922	1923, pre-liminary.
Chile	1,000 actes. 561 551	1,000 actes. 552	1,000 acres.	1,000 actes.	$1,000$ acres. $\begin{array}{r} 68 \\ 771 \end{array}$	$\begin{array}{\|r\|} \text { Bush. } \\ 26.0 \\ 10.9 \end{array}$	Bush. 23.3 11.9	Bush. 24.4 9.3	Bush. $\begin{array}{r} 22.5 \\ 8.6 \end{array}$	Bush. 26.9 11.2
Argentina-----.-..-	${ }_{2} 8,710$	8, 184	8,090 3,815	7,344	7,851	22.0	31.6	28.5	24.0	19.5
Union of Sonth Africa..	2 2 2 2 2 161	4,003 173	3, 186	181	220	14.6 11.4	8.4 23.1	9. ${ }^{\text {93. }} 4$	13.1	23.5
Java and Madura.		4,785	4, 885	3,887	4,030		12.8	12.2	12.2	12.4
Australia.	353	265	284	305		28.5	25.5	25.6	25.7	
New Zealand.	${ }^{6} 5$	9	12	11	10					
Total comparable with 1909-1913	12, 126	13,248	12,950							
Total comparable with 1923		13, 765	13,736	12,049	12,950					
World total comparablewith 1909-1913. \qquad	157, 237									
Worlds total comparable with 1923		135, 549	137, 947		137, 294					

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated. Calendar years.
${ }^{1}$ Yield per acre not computed when acreage is less than 12,000 acres.
${ }^{2}$ One year only.
${ }^{6}$ Two-year average.

Table 99.-Corn: Production in undermentioned countries. NORTHERN HEMISPHERE.

Country.	$\begin{gathered} \text { A verage, } \\ 1909- \\ 1913 \end{gathered}$	1917	1918	1919	1920	1921	1922	1923, preliminary.
NORTH AMERICA. Canada	1,000 bushels. 17, 297	1,000 bushels. 7, 763	1,000 bushels. 14, 205	1,000 bushels 16, 941	1,000 bushels. 14, 335	1,000. bushels 14, 904	1,000 bushels. 13, 798 2,906, 020	1,000 bushels. 16, 376
United States...	2, 712, 364	3, 065, 233	2, 502, 665	2, 811, 302	3, 208, 584	3, 068, 560	2,906, 020	3, 054, 395
Mexico-.----	${ }^{1} 82,519$		75, 985			61, 020	68, 260	
Guatemala	15,090	10, 384	7,641	4,939	4, 062	5, 674	5,412	7,874
Total comparable with 1909-1913.	2, 817, 270		2, 600, 496			3, 150, 167	2,993, 490	
able with 1923	2, 734, 751	3, 083, 380	2, 524, 511	2, 833, 182	3, 226, 981	3, 089, 147	2, 925, 230	3, 078, 645
EUROPE.								
France.	${ }^{2} 22,289$	14,902	9,760	9,976	15, 267	10,393	12, 676	11,857
Spain	26, 548	29,369	24, 141	25,555	27, 692	24,897	26, 832	23,925
Poitugal		9,907	9,345	9,753	11, 721	11, 374		
Italy	100, 317	82, 771	76,590	85,846	89, 298	92, 325	76,830	83, 995
Switzerland	- 113	276	358	287	280	218	185	165
Austria	24,488	2,810	2,291	2,115	2,129	2,521.	3,477	3,671
Czechoslovakia					9, 648	9, 432	9,884	10,455
Hungary	${ }^{2} 194,063$				50, 156	31,703	48, 725	55,158
Yugoslavia					101, 136	73, 788	89, 136	
Greace	${ }^{1} 5,952$	6, 112	6,466	7, 551	9, 133	7,874		
Bulgaria	${ }^{2} 27,375$	17,423	8,463	25, 457	20, 851	16,380	15, 479	22,007
Rumania	${ }^{3} 134,447$		31,318	141, 352	182, 031	110, 933	110, 562	174, 124
Poland.	42				1,082	2, 286	2,776	
Russia (including Ukraine and Northern Caucasia)	${ }^{4} 36,392$						67, 427	
Total comparablewith 1909-1913	551, 986							
Total comparable with 1923					397,352	298,802	304,640	385,357

${ }^{1}$ One year only.
${ }^{2}$ Old boundaries.
${ }^{3}$ Includes Bessarabia.
${ }^{3}$ Preliminary estimate of former Russian territory within 1923 boundaries.

Table 99.-Corn: Production in undermentioned countries-Continued.
NORTHERN HEMISPHERE-Continued.

Country.	A verage; 1909 1913.	1917	1918	1919	1920	1921	1922	$\begin{aligned} & \text { 1923, } \\ & \text { prelimi- } \\ & \text { nary. } \end{aligned}$
Moroceo-Western	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels. 4, 793	1,000 bushels. 4, 605	1,000 butshels. 3,114	1,000 bushels 3, 904	1,000 bushels. 5,900	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 4,564 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$
Algeria-.-------	598	302	194	236	254	354	276	155
Tunis	228	354	307	256	110	354		284
Egypt.	64, 273	63, 955	65, 483	67, 604	63, 976	70,568	73, 505	
Total comparable with 1909-1913	65,099	64, 611	65, 984	68, 096	64, 340	71, 276		
Total comparable with 1923 .				492	364	708		439
India-British	5 82, 620	93, 800	96,640	71,292	103,440	83, 320	96, 240	
Russia (Asiatic)	${ }^{4} 15,793$							
Japanese Empire:								
Chosen------------	$\stackrel{3}{3,391}$	3, 791	3,320	3, 996	3, 947	4, 241		
Philippines---	$\begin{array}{r}\text { 6 } \\ \hline\end{array}$	14,545	3, 12,190	13,095	2,485 16,978	15,854	$\begin{array}{r} 2,902 \\ 14,777 \end{array}$	16, 663
Total comparable with 1909-1913	111, 501							
Total comparable with 1923	7,461	14, 545	12, 196	13, 095	16, 978	15, 854	14,777	16, 683
Total Northern Hemisphere comparable with 1909-1913.	3, 545,856							
Total Northern Hemisphere comparable with 1923.					3,641, 675	3, 404,511		3,481, 104

SOUTHERN HEMISPHERE.

Chile.	$\begin{aligned} & 1,000 \\ & \text { bushels. } \\ & 1,455 \end{aligned}$	1,000 bushsis. 1,338	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 1,446 \end{gathered}$	1,000 bushels. 1, 284	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 1,446 \end{gathered}$	$\begin{gathered} 1,009 \\ \text { bu\&hels. } \\ 1,685 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 1,777 \end{gathered}$	$\begin{gathered} t, 000 \\ \text { bushels. } \end{gathered}$ $1,832$
Uruguay	6, 026	4,604	6,815	7,526	6,574	4,000	4,722	8, 628
Argentína	191, 698	58,839	170,660	224, 239	- 258, 686	230, 420	176, 171	153,141
Union of South Africa	${ }^{6} 33,517$	34, 964	45, 148	30,986	33,461	34, 906	35, 195	50,390
Southern Rhodesia..-	${ }^{1} 1,834$	3, 350	2, 113	3, 178	4,002	4,360	2,367	5,178
Java and Madura --		51, 166	49,862	49,585	61, 251	59, 619	47,501	50, 116
Australiáa	10, 057	8,527	8,843	6,912	6, 764	7, 259	7, 840	
New Zealand	${ }^{5} 265$	274	368	- 414	406	501	, 505	508
Total Southern Hemisphere comparable with 1909-1.913.	244, 852	111, 896	235, 388	274, 519	311, 339	283, 731	228, 578	
Total Southern Hemisphere comparable with 1923 \qquad	21,852	154,535	276, 407	317, 202	365, 826	336, 091	228,578	269,791
World total comparable with 1909 1913	3, 790, 708							
World total comparable with 1923					4, 007, 501	3, 740, 602		3, 750, 805

Division of Statistical and Historical Reserach. Official sources and International Institute of Agriculture unless otherwise stated. Calendar years.
${ }^{1}$ One year only.
4 Preliminary estimate of former Russian territory within 1923 boundaries.
${ }^{5}$ Two-year average.
${ }^{6}$ Four-year average.

Table 100.-Corn: World production, 1900-1923.

Calendar year.	Production in countries reporting all years 1900-1923.	Production as reported.	Estimated world totals (preliminary).	Three selected countries.		
				United States.	Italy.	Argentina.
	1,000 bush.					
1900	2, 657, 479	3, 145, 539	3, 445, 529	2, 505, 148	87, 969	. 55,611
1901	1, 784, 780	2, 328, 687	2, 637, 787	1, 613, 528	100,455	98, 841
1902	2, 755, 097	3, 274, 417	3, 552, 137	2, 619, 499	71, 028	84, 018
1903	2, 640, 948	3, 133, 418	3, 417, 243	2, 346, 897	88, 990	148,946
1904	2, 673, 669	3, 066, 601	3, 339, 736	2, 528, 662	90,545	175, 187
1905	2, 920, 433	3, 464, 564	3, 743, 794	2, 748, 949	97, 265	140, 707
1906	3, 042,894	3, 703, 932	3, 980, 577	2, 897, 662	92, 904	194,910
1907	2, 667, 113	3, 354, 363	3, 628, 813	2, 512, 065	88,412	71, 768
1908	2, 702, 729	3, 266, 956	3, 705, 956	2, 544, 957	95, 845	136, 055
1909.	2, 740, 791	3, 390, 685	3, 703, 585	2, 572, 336	99, 289	177, 155
1910.	3, 056, 689	3, 709, 655	3, 951, 255	2, 886, 260	101, 722	175, 187
1911	2, 683, 121	3, 547, 596	3, 790, 396	2, 531, 488	93, 518	27, 676
1912	3, 287, 886	4, 220, 154	4, 329, 454	3, 124, 746	98, 668	295, 849
1913	2, 616, 156	3, 557, 132	3, 743, 632	2, 446, 988	108, 388	196, 642
1914	2, 844, 850	3,939, 799	4, 041, 799	2, 672, 804	104,967	263, 135
1915	3, 174, 515	3, 990, 557	4, 142, 557	2, 994, 793	121, 824	325, 178
1916	2, 699, 694	3, 176, 062	3, 475, 462	2, 566, 927	81, 547	161, 133
1917	3, 197, 869	3, 719, 215	4, 049, 715	3, 065, 233	82, 771	58, 839
1918	2, 615, 641	3, 279, 232	3, 469, 832	2, 502, 665	76, 590	170, 660
1919	2, 935, 030	3, 671, 630	3, 962, 630	2, 811, 302	85, 846	224, 239
1920.	3, 343, 224	4, 292, 421	4, 437, 421	3, 208, 584	89, 298	258, 686
1921	3, 199, 059	3, 995, 272	4, 075, 772	3, 068, 569	92, 325	230, 420
1922	3, 026, 111	3, 941, 909	3, 972, 028	2, 906, 020	76, 830	176, 171
1923.	3, 177, 990	3, 531, 212	4, 201, 912	3, 054, 395	83,995	153, 141

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated.
Table 101.-Corn: Farm stocks, shipments, and quality, United States, 1897-1923.

Year.	Old stocks on farms Nov. $1 .{ }^{1}$	Crop.				Total supplies.	Stocks on farms Mar. 1 following. ${ }^{1}$	Shipped out of county where grown. ${ }^{1}$
		Quantity.	Quality.	$\begin{array}{r} \text { Pro } \\ \text { merch } \end{array}$	ortion antable. ${ }^{1}$			
	1,000 bush.	1,000 bush.	Per cent.	Per cent.	1,000 bush.	1,000 bush.	1,000 bush.	1,000 bush.
1897-98	320,488	2, 144, 553	86.3	86.8	1,861, 838	2, 465, 041	878,063	1,000 472, 426
1898-99	156, 330	2, 261, 119	83.8	82.2	1, 858, 027	2, 417, 449	937, 016	478,991
1899-1900	134, 995	2, 454, 628	87.2	86.7	2, 127, 460	2, 589, 623	904, 586	420, 739
1900-1.	106, 198	2, 505, 148	85.5	86.8	2, 175, 608	2, 611, 346	927, 423	585, 701
1901-2.	116, 016	1, 613, 528	73.7			1, 729, 544	471, 609	166,612
1902-3	31, 494	2, 619, 499	-80.7	76.0	1,991, 866	2, 650, 993	1, 091, 534	580, 139
1903-4.	137, 602	2, 346, 897	83.1	75.6	1, 774, 099	2, 484, 499	871, 712	449, 719
1904-5	83, 379	2, 528, 662	86.2	84.5	2, 136, 927	2, 612, 041	972, 077	565, 287
1905-6	83, 105	2, 748, 949	90.6	88.3	2, 427, 996	2, 832, 054	1,124,905	696, 365
1906-7	122, 732	2, 897, 662	89.9	89.3	2, 587, 506	3, 020, 394	1, 287, 066	690, 490
1907-8	129, 786	2, 512, 065	82.8	77. 2	1, 939, 877	2,641, 851	931, 503	470, 046
1908-9	69, 251	2, 544, 957	86.9	88.2	2, 244, 571	2, 614, 208	999, 235	565, 510
1909-10	77, 403	2, 572, 336	84.2	82.7	2, 126, 965	2, 649, 739	980, 848	620, 057
1910-11	113, 919	2, 886, 260	87.2	86.4	2, 492, 763	3, 000, 179	1, 165, 378	661, 777
1911-12.	123, 824	2,531, 488	80.6	80.1	2, 027, 922	2, 655, 312	884, 059	517, 766
1912-13.	64,764	3, 124, 746	85.5	85.0	2,654, 907	3, 189, 510	1, 290, 642	680, 831
1913-14.	137,972	2,446,988	82.2	80.1	1,961, 058	2,584, 960	866,352	422,059
1914-15.	80, 046	2, 672, 804	85.1	84.5	2, 259, 755	2, 752, 850	910, 894	498, 285
1915-16	96,009	2,994, 793	77.2	71.1	2, 127, 965	3, 090, 802	1, 116,559	560, 824
1916-17	87, 908	2, 566, 927	83.8	83.9	2, 154, 487	2, 654, 835	782, 303	450, 589
1917-18	34, 448	3, 065, 233	75. 2	60.0	1, 837, 728	3, 099, 681	1, 253, 290	678, 027
1918-19.	114, 678	2, 502, 665	85.6	82.4	2, 062,041	2, 617, 343	855, 269	362, 589
1919-20.	69, 835	2, 811, 302	89.1	87.1	2, 448, 204	2, 881, 137	1, 045, 575	470, 328
1920-21.	139, 083	3, 208, 584	89.6	86.9	2, 789, 720	3, 347, 667	1,564, 832	705, 481
1921-22	285, 769	3, 068,569	84.0	87.5	2, 684, 634	3, 354, 338	1, 305, 559	587, 893
1922-23	177, 287	2,906, 020	85.0	88.3	2, 567, 044	$3,083,307$	1, 093, 306	518, 779
1923-24 ${ }^{2}$	83, 856	3, 054, 395	79.4			3, 138, 251		

[^153]Table 102.-Corn: Receipts and shipments, 11 primary markets, 1909-1922.

Year beginning Nov. 1.	Chicago.		Milwaukee.		Minneapolis.		Duluth.		St. Louis.		Toledo.	
	$\begin{array}{\|c\|} \mathrm{Re}- \\ \text { ceipts. } \end{array}$	Ship-	$\begin{gathered} \mathrm{Re}- \\ \text { ceipts. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Ship- } \\ \text { ments. } \end{gathered}\right.$	$\xrightarrow{\mathrm{Re}-}$ ceipts.	Shipments.	$\begin{gathered} \mathrm{Re}- \\ \text { ceipts. } \end{gathered}$	$\begin{array}{\|c\|} \text { Ship- } \\ \text { ments. } \end{array}$	$\underset{\text { ceipts. }}{\mathrm{Re}}$	Shipments	$\underset{\text { ceipts }}{\mathrm{Re}-}$	Shipments
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bush.											
1909-10	88, 428	66, 011	6, 535	5,893	6, 564	5, 047	$\begin{array}{\|c} 883 \\ 1897 \end{array}$	943	22, 913	16, 383	4, 001	1,840
910	113, 808	92, 652	7, 895	7, 625	8,948	5,370	1,697	1,697	23, 766	15, 422	6, 236	3,290
1911-12	108, 431	73, 940	9,410	6,506	5, 423	3, 264	12	12	25, 176	15, 492	4,121	2, 037
1912-	131, 792	94, 311	11, 613	7,887	6,258	4, 374	492	492	22, 762	12, 257	2, 996	1,885
1913	84, 838	57, 528	15,804	10, 727	10,710	8,776	8	362	16, 961	10, 119	4, 560	2,314
Av. 1909-1913.	105, 459	76,888	10,251	7,728	7,581	5,366	792	701	22,316	13,935	4,38	2, 273
14-15	116,348	80, 256	19, 609	16,985	14, 699	11,997	036	3, 036	18, 626	10, 206	4,582	2, 594
1915-16	101, 325	62, 148	9,887	6, 943	5, 661	3, 927	()	$\left.{ }^{1}\right)$	17, 974	8, 678	4, 656	1,422
1916-17	78, 723	40, 497	12, 755	8, 681	9, 550	7,779	32		21, 312	13, 191	2, 882	1,190
1917-18	98, 786	34, 540	12, 374	7,006	16, 715	9, 636	177	170	25, 354	16, 130	2, 609	1,160
1918-19	61, 366	32, 019	6,784	3, 697	6, 621	4,773	6	${ }^{(1)}$	19, 219	11, 956	1,127	549
1919-20	87, 641	37, 236	14, 652	7,079	9, 192	6, 384		(1)	27, 595	15, 975	2,122	1,298
20	167, 241	113, 374	27, 455	21, 823	12, 066	8, 483	4,834	3,777	25, 924	17, 044	3, 194	1,349
Av. 1914-1920.	101, 633	57, 153	14,788	10,316	10,643	7,568			22, 286	13,311	3, 02	1,366
1921-22	186, 815	115, 700	25, 630	22, 168	15, 920	12,048	14, 111	14, 034	33, 809	22,713	3, 994	1,795
1922-23	115, 960	65,890	15, 280	11, 748	7,531	4, 828	688	639	29,856	20,243	3,149	1,118
1922. November	10,380	6, 205	631	577	436	246	16	123	2,162	1, 426	378	135
Decembe	20,972	5, 121	1,494	492	1,124	448	194	25	2, 332	1,154	368	135
1923.												
January	15,714	10, 153	2,488	1,869	1,231	722	22	31	3, 820	2, 385	426	160
Februa	15, 258	5, 965	2, 305	1,448	766	444	139		3,122	2, 148	324	136
March	11,406	5,147	1,327	1,385	712	506	69		2, 670	2,169	358	130
April	5, 290	4, 437	1,071	937	518	531	69		2,184	1,760	234	64
May	2, 844	8, 969	268	1,031	354	300	3	287	1,620	1,164	196	75
June	3, 554	4, 513	858	242	723	444	6	2	2, 345	1,685	139	53
July	6, 465	3, 520	1,514	876	466	532	140	- 129	2, 615	1,809	209	88
August	8,894	4, 253	1,287	1,025	439	237	23	42	2, 582	1,987	218	102
Septembe	7,890	4, 506	1,526	1,455	287	133	4		2,405	1,474	159	12
Octob	7,293	3, 101	511	411	475	285			1,999	1,082	0	28

Year beginning Nov. 1.	Detroit.		Kansas City.		Peoria.		Omaha.		Indianapolis.		Total.	
	Receipts.	Shipments.	Receipts.	Ship ments.								
	1,000	1,000	1,000		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bush.											
1909-10	2, 477	1,412	15, 102	12, 873	15, 387	11, 009	${ }^{1}$)	${ }^{1}$)	${ }^{(1)}$	${ }^{1}$)	162, 290	121, 411
1910-11	3, 860	1, 930	16, 026	13, 395	16, 477	11, 141	(1)	(1)	(1)	(1)	198, 713	152, 522
1911-12	2, 857	1,888	19,646	14, 971	19, 041	14, 292	20, 817	15, 404	13, 687	1,947	228, 621	149, 753
1912-13	2, 757	1,615	16, 992	10, 614	17, 923	11, 202	22, 618	17, 732	15, 974	3, 637	252, 177	166, 006
1913-14	2, 835	1,636	27, 494	19, 192	14, 723	6,651	37, 108	33, 040	14, 118	5,183	230, 029	155, 528
Av. 1919-1913.	2, 957	1,6	19,	14, 209	16, 710	10,859					214, 366	149, 044
1914	4, 058	3, 021	16,396	11, 914	16, 736	6,831	24, 599	23,117	15, 087	6, 498	253, 776	176, 455
1915-16	4, 726	3, 139	25, 837	22, 459	35, 948	13, 722	21, 496	15, 948	22, 790	11, 073	250, 300	149, 459
1916-17	3, 192	2, 425	12, 743	8,469	31, 533	11, 870	29, 820	25, 179	24, 421	14, 801	226, 963	134, 088
1917-18	4,361	717	31, 366	24, 481	36, 176	17, 062	46, 159	36, 355	20,583	9,206	294, 660	156, 463
1918-19	1,633	626	16, 146	10, 345	18, 511	10, 530	21, 805	21, 197	4, ${ }^{4}, 905$	7, 130	169, 123	102, 822
1919-20	1,671	481	11, 218	5, 034	22, 449	17, 660	23, 227	18, 604	19, 991	7, 170	219, 763	116, 921
1920-21	1, 663	261	14, 137	9, 742	16,091	9,823	20, 012	17, 356	17, 505	6,353	310, 122	209, 385
Av. 1914-1920.	3 ,	1,524	18, 263	13, 206	25,349	12, 5	26, 731	22, 537	19, 469	8,890	246,387	149,370
1921	2,	903	16,	10,242	24, 116	18, 295	29, 583	26, 047	21, 665	7, 053	374, 160	250,998
1922-23	1,957	289	15, 499	7,239	21, 157	6,2781	22, 730	20,266	18, 317	6,161	252, 124	154,699
November	241	31	879	334		2,112	2, 284	979	2, 220	846	21, 882	13, 014
December	279	48	1,597	225	2,843	2, 362	2,416	1,927	2, 195	986	35, 814	12,923
192						2,309	3,398	2, 396	2, 536	768		
January	255	49	1,953	452	2, 1,730	1,244	2, 441	1,936	1, 428	539	29,556	
February	156	45	1,887	503	1,730	1,244	2,441	1,936	1, 1,671	634	22, 987	14, 476
A pr	135	21	1,773	1,223	1, 151	1945	1,790	2,754	1,387	543	15, 602	13, 215
May	123	19	1,169	796	-952	494	1,266	1,200	1,207	406	10, 002	14, 741
June	65	7	1, 226	618	1,314	894	1,976	1,758	1,057	274	13, 263	10,490
July	66	5	1,135	439	1,480	1, 023	1,412	1,624	1, 366	324	16, 868	10, 369
Augus	105	9	991	694	1,852	1,349	1,877	1, 443	1, 131	376	19,399	11, 517
Septembe	180	7	718	442	1,499	1,052	1, 052	1, 183	1, 246	311	16,966	10,575
October.-	172	12	719	659	1,733	979	1,284	966	973	154	15, 202	7,677

[^154]Table 103-Corn: Monthly marketings by farmers, United States, 1917-1922.

Year beginning Jaly 1.	Percentage of year's receipts as reported by about 3,500 mills and elevators.												
	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	son.
1917-18	5.3	4.0	3.4	3.8	8.8	12.2	14.2	16.1	13. 7.	7.1	5.6	5. 8	100.0
1918-19	6.7	6. 9	8.4	6. 7	7.3	12.0	15.0	7.2	7. 5.	8. 2	8. 0	6. 1	190.0
1919-20	4.5	5.6	4.9	5. 6	9.2	15.0	12.9	9.5	8. 7.	5.9	7.6	10.6	100.0
1920-21	5.4	5. 6	6.9	5. 3	7.1	11.3	14.3	11. 7	8.9	5. 6	8. 5	9.4	100.0
1921-22	4.9	7.3	8.6	6. 7	6. 6	12. 4	13. 8	12.4	7.5	4.7	7. 6	7.5	100.0
1922-23.	6.8	7.5	9.1	8.2	8. 7	13.6	10. 7	11.0	6.6	5.3	6. 1	6.4	100.0

Division of Crop and Livestock Estimates.
Table 104.-Corn: Visible supply in United States, first of month, 1909-1923.

$\begin{gathered} \text { Year } \\ \text { beginning } \end{gathered}$ Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,009	1,000	1,000
	bush.											
1909-10	2, 653	3, 289	8,465	9, 764	13, 480	13, 778	10, 603	5,940	5, 146	3, 770	2,750	5,011
1910-11	3, 510	1,545	5,099	9, 145	11, 794	11, 166	7,047	4, 685	7, 482	7, 100	6, 724	6, 339
1911-12	1,703	2, 054	5, 140	6, 900	14, 257	15, 914	7,490	5, 699	8,204	2,451	1, 823	3, 101
1912-13	2, 689	1,525	5, 879	9, 717	17, 918	21, 494	7, 270	2,549	11, 479	6,380	2,612	7,308
1913-14	6, 206	2, 026	12, 126	16,505	18, 374	18, 812	9, 380	4,409	7,589:	3, 203	3, 923	5,461
Av. 1909-1913.	3, 352	2, 088	7, 342	10, 406	15, 165	16,233	8,358	4,656	7,980	4,583.	3, 566	5,444
1914-15	3, 114	3,382	19,703	34, 156	41, 238	32, 877	20, 203	12,795	5,225	2, 306	2,382	3,444
1915-16	3, 288	4,387	8,919	14,773	24, 605	27, 697	21, 004	14,505	6, 870	5, 167	3, 330	5,093
1916-17	2, 361	2, 677	5, 838	10, 671	12,931	11, 974	7,173	2, 629	3,277	2,841	2, 371	1, 163
1917-18	1,277	1, 932	3, 155	4, 623	8, 939	19, 016	16, 111	13, 038	11, 487	9, 466	5,232	5, 503
1978-19	4, 733	2, 216	2, 415	5,549	4,483	2, 514	4,245	2, 600	4, 038	2, 461	958	2,163
1919-20	1,484	1,477	2, 921	3,575	4, 951	5,669	5, 035	2, 740	4, 364	6, 152	2, 564	7,587
1920-21	10, 085	4,597	5, 409	14, 297	22,333,	32, 896	23, 018	15, 103	24, 304	14,584	11,500	11,785
Av. 1914-1920.	3, 763	2,953	6,909	12,521	17, 069	18, 949	13, 837	9, 059	8,509	6,140	4,048	5,245
1921-22	18, 891	15,518	23, 279	30,778	44,792		35,564	27, 046	29,337	19,509	7, 314	12, 206
1922-23	8,806	11,072	16,760	21,658	27, 529	28, 742	22, 339	6,734	3, 36a	2, 373	1,587	2, 052

[^155]Table 105.-Corn: Classification of cars graded by licensed inspectors, all inspection points.

Grain Division.

Table 106.-Corn, including meal: International trade, calendar years, 1909-1922.

Country.	Average, 1909-1913.		1920		1921		$\begin{gathered} \text { 1922, } \\ \text { preliminary. } \end{gathered}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL FXPORTING COUNTRIES.	1,000 bushels.	1,000 bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$
Argentina	2	115, 749		176, 159		111, 603		109, 101
Bulgaria.	44	9,307	$\left.{ }^{1}\right)$	4,185	${ }^{(1)}$	${ }^{2} 2,195$	${ }^{(1)} 69$	${ }^{2} 1,654$
China.-.	${ }^{3} 38$	${ }^{3} 148$	79	686 17 329	${ }_{\text {(1) }} 356$	-119	69	11,482
Union South Africa	143	30,934 3,952	359	2, 899	18	18, 325	18	11, 881
United States.	1,226	45, 054	7,784	21, 230	164	132, 186	113	166, 131
Yugoslavia.				${ }^{2} 5,003$	296	${ }^{2} 12,490$		
PRINCIPAL IMPORTING COUNTRIES.								
Austria			5,124	${ }^{2} 38$	6,699	${ }^{2} 34$	${ }^{2} 3,447$	${ }^{2} 5$
Austria-Hungary	13, 877	268						480
Belgium .	25, 801	8, 130	10,513	2, 327	19, 386	7,157	16, 513	180
Canada	10,629	25	10,793 2 314	113 21	12,455 4,794	(1) 110	13,358 3,868	122 221
Cuechoslovakia	746	(1)	$\begin{array}{r}2 \\ \\ 3,214 \\ \\ \hline\end{array}$	21	4, 794	(1)	3, 868	2
Denmar	11,440	6	9, 822	4	18,181	9	17,182	
Egypt	471	61	948	1	2, 261	396	81	104
France.	18,708	82	17, 609	858	13, 355	600	21, 170	145
Germany	32, 160	1	16,099	$\left({ }^{1}\right)$	${ }^{2} 73,639$	${ }^{4} 46$	42, 731	5
Greece.			342	${ }_{2}^{210}$	1,027 242	${ }_{21}^{2} 134$	${ }_{2} 191$	217
Hungary			${ }_{12}{ }^{1}$) 599	212 4	$\begin{array}{r}1 \\ \hline 17,965 \\ \hline\end{array}$	${ }^{2} 1,134$	2 19 19 8 859	217 22
Italy.--	14, 895	206	12, 599	4	17,965	11	19,859	22
Mexico---	$\begin{array}{r}4,404 \\ 29,580 \\ \hline\end{array}$	82 8,750		37	35, 643	355	34, 831	294
Netherland	29,580 1,079	8,750	15,566 2,623	37	$\begin{array}{r}3,643 \\ 3,558 \\ \hline\end{array}$	355	3,483	
Poland.					${ }^{2} 1,776$	(1)	${ }^{2} 524$	${ }^{2} 19$
Portugal	1, 674	5	${ }^{2} 1,257$	$\left.{ }^{1}\right)$				
Spain---	9,775	44	7, 719	188	11,906	576	17,595	1
Sweden	1,476	26	1,505	(1) 41	4,158 5,107	66	1,986 5,007	
Switzerland	3,987	11	$\begin{array}{r}1 \\ \hline 1,219\end{array}$	${ }^{(1)} 5$	5, 772	21	5,007 396	${ }^{1} 11$
Tunis--	82446	11	1,219 71,057	67	78,194	65	79, 048	1
United Kingdom	82, 976	96 201	71,057 21,203	(1) ${ }^{67}$	7,194 266	${ }^{2} 209$	${ }^{2} 81$	2124
Uruguay	2, 898	$\begin{array}{r}\text { 9, } \\ 981 \\ \hline 821\end{array}$	$\begin{array}{r}21,203 \\ 3,620 \\ \hline\end{array}$	5, 546	2, 2,045	8,118	1,924	7,231
Total	270,991	271, 026	202, 765	236, 743	314, 043	326, i15	286, 878	303, 798

Division of Statistical and Historical Research. Official sources except where otherwise noted. Maicena or maizena is in cluded as "Corn and corn meal."

1 Less than 500 bushels.
${ }_{2}$ International Institute of Agriculture.

Four-year average
4 Eight months, May-December.

Table 107.-Corn: Farm price per bushel, 1 st of month, United States, 1908-1923.

Year beginning Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Weighted av., crop year.
1908	$\begin{gathered} \text { Cts. } \\ 63.5 \\ \hline \end{gathered}$	$\begin{aligned} & C t s . \\ & 60.6 \end{aligned}$	$\begin{aligned} & \mathrm{Cts} . \\ & 60.7 \end{aligned}$	Cts. 61.4	Cts. 64.7	Cts. 67.5	$\begin{gathered} \text { Cts. } \\ 71.9 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cts. } \\ & 76.3 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Cts. } \\ 77.0 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 75.2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cts. } \\ & 71.0 \end{aligned}$	$\begin{aligned} & \text { Cts. } \\ & 67.1 \end{aligned}$	Cts. 66.2
1809-10	62.2	57.9	62.3	65.2	65.9	65.5	63.5	65.2	66.2	67.2	66.3	61.1	63.7
1910-11	52.6	48.0	48.2	49.0	48.9	49.7	51.8	55.1	60.0	65.8	65.9	65.7	53.1
1911-12	64.7	61.8	62.2	64.6	66.6	71.1	79.4	82.5	81. 1	79.3	77.6	70.2	4
1912-13	58.4	48.7	48.9	50.6	52.2	53.7	56.8	60.6	63.2	65.4	75.4	75.3	5
1913-14	70.7	69.1	69.6	68.3	69.1	70.7	72.1	75.0	75.5	76.8	81.5	78.	9
A $\nabla .1909-1913$	61.7	57.1	58.2	59.5	60.5	62.1	64.7	67.7	69.2	70.9	73.3	70.1	62.9
1914-15	70.6	64.4	66.2	72.8	75.1	75.1	77.7	77.9	77.7	78.9	77.3	70.5	72.4
1915-16	61.9	57.5	62.1	66.7	68.2	70.3	72.3	74.1	75.4	79.4	83.6	82.3	69.0
1916-17	85.0	88.9	90.0	95.8	100.9	113.4	150.6	160. 1	164. 6	196. 6	175. 5	175. 1	121.2
1917-18	146.0	127.9	134.8	138. 8	154. 3	153.6	155.7	152.5	153.7	159.7	165. 7	159.5	146.7
1918-19	140.3	136.5	144.7	138. 1	137. 2	149.6	162.6	171.2	176.5	191.2	185. 4	153.9	152.1
1919-20	133.4	134.5	140.4	146. 8	148. 5	158.6	169. 6	185.2	185.6	163.7	155.7	121.3	150.6
1920-21	87.3	67.0	66.7	62.4	64	63.0	59.5	62.5	62.2	61.7	56.2	51.0	64.1
Av. 1914-1920	103.5	96.7	100.7	103.1	107.0	111.9	121.1	126.2	128.0	133.0	128.5	116.2	110.9
1921-22	41.1	42.3	43.4	45.8	54.8	56.9	59.7	61.6	62.2	64.4	62.7	61.6	52.2
1922-23	62.9	65.8	69.6	70.7	74.3	76.3	83.0	85.0	86.5	87.4	86.6	85.7	75.6
1923-24	83.9	72.7											

Division of Crop and Livestock Estimates.

Table 108.-Corn: Farm price per bushel, December 1, calendar years, 1908-1923, and value per acre, 1923.

State.	1908	1909	1910	1911	1912	1913	$\begin{gathered} \text { AV. } \\ 1909 \\ 1913 . \end{gathered}$	1914	1915	1916	1917	1918	1919	1920	$\begin{aligned} & \mathrm{A} \nabla . \\ & 1914- \\ & 1920 . \end{aligned}$	1921	1922	1923	$\left\{\begin{array}{c} \text { Value } \\ \text { per } \\ \text { acre } \\ 1923.1 \end{array}\right.$
	Cts.	C'ts.	Cts.	Cts	Cts.	Dolls.													
Me	84	. 80	71	90	75	87	81	88	85	119	228	167	195	128	144	77	100	112	42.56
N. H	79	76	69	82	75	81	77	82	76	115	217	150	170	145	136	75	75	111	46. 62
V t	78	73	66	80	72	81	74	81	84	110	213	170	175	126	137	76	91	110	42.90
Mas	81	81	70	83	77	85	79	85	80	120	215	170	172	125	138	77	94	115	49. 45
R. I	90	97	83	95	88	99	92	98	100	138	236	180	186	180	160	110	120	115	43. 70
Con	80	75	68	83	77	85	78	89	85	120	215	171	180	140	143	90	96	107	43. 87
N. Y	80	74	63	77	70	81	73	83	78	110	198	175	166	116	132	67	83	100	32. 40
N. J	69	71	60	71	68	75	69	76	75	100	170	150	153	85	116	53	70	95	38. 00
Pa	73	70	59	68	63	72	66	73	70	97	153	155	147	100	114	55	72	91	36. 40
	59	58	52	61	51	59	56	62	62	89	140	136	145	75	101	45	70	81	26.81
M	62	65	58	63	55	65	61	68	61	89	140	135	140	81	102	49	68	82	32. 23
	71	74	65	73	71	76	72	81	71	93	153	160	169	100	118	69	79	94	27. 26
W.	77	74	68	77	65	80	73	83	74	101	170	180	164	116	127	75	84	99	33. 66
N. ${ }^{\text {c }}$	79	85	76	82	83	88	83	86	77	110	170	177	185	113	131	78	89	102	22. 95
S. C	91	90	82	91	85	97	89	92	87	113	192	195	197	116	142	74	87	105	17. 32
	82	86	78	83	85	91	85	85	78	100	160	165	160	105	122	53	86	107	13. 05
Fla	82	83	85	80	79	82	82	80	73	90	140	138	140	100	109	53	87	100	12. 50
Ohio	63	56	46	58	45	63	54	61	56	90	136	130	121	68	95	41	66	74	30. 34
Ind	60	50	40	54	42	60	49	58	51	84	125	119	125	59	89	37	56	62	23. 87
	57	52	38	55	41	63	50	61	54	84	110	120	130	59	88	38	60	65	24. 38
Mich	64	61	53	65	57	67	61	67	68	95	182	130	138	82	109	48	67	78	26. 91
Wis	61.	60	52	60	51	60.	57	65	68	92	163	130	125	77	103	46	63	80	29. 60
Min	55	49	45	53	37	53	47	52	62	80	110	111	120	51	84	31	56	61	21. 96
Iow	52	49	36	53	35	60	47	55	51	80	108	122	120	47	83	30	56	62	25. 23
Mo	57	59	44	60	46	74	57	68	57	90	114	143	138	64	96	40	68	74	22. 20
N. Dak	60	55	58.	60	43	52	54	58	67	84	151	130	140	72	100	34	53	54	18. 09
S. Dak	50	50	40	53	37	56	47	50	49	77	120	110	119	42	81	26	50	52	17.94
Nebr	51	50	36	55	37	65	49	53	47	78	120	128	122	41	84	27	58	53	17.49
Kans	55	54	45	63	40	78	56	63	51	90	125	149	140	44	95	31	61	64	13. 89
$\mathbf{K y}$	65	62	53	63	55	76	62	64	56	87	121	146	155	82	102	55	69	85	24. 22
Tenn	64	70	56	61	61	77	65	68	58	94	120	145	157	87	104	52	79	94	23. 03
Ala	83	85	71	78	79	89	80	80	69	102	125	148	159	98	112	62	90	108	15. 98
Mis	83	81	63	72	71	77	73	73	65	98	138	151	160	102	112	56	85	107	15. 52
La	70	69	55	70	68	77	68	75	64	94	146	161	150	85	111	65	83	105	16. 17
Tex	59	76	63	80	64	82	73	74	58	104	167	176	118	84	112	54	83	100	18. 50
Okla	51	55	51	70	41	72	58	64	46	93	147	164	127	54	99	32	70	87	10.00
Ark	66	72	58	72	67	78	69	80	64	98	140	180	164	97	118	57	85	101	19.70
Mon	90	86	95	80	70	77	82	76	69	93	175	135	165	80	113	67	53	65	16. 90
W yo	76	78	66	76	64	80	73	70	67	90	175	140	165	56	109	50	60	70	18. 90
Colo	71	70	60	78	50	73	66	60	55	90	125	135	142	70	97	31	66	65	16. 25
N: Mex	80	90	90	84	75	75	83	80	73	113	188	180	151	110	128	90	82	95	15. 58
Àriz	105	100	110	97	100	110	103	120	115	140	190	210	200	170	164	100	115	120	36. 00
Utah	72	87	84	81	75	70	79	75	80	115	170	181	150	150	132	76	85	95	23. 66
Nev		87	100	90	98	118	99	110	93	125	150	210	140	160	141	120	105	125	29. 12
Idaho	70	75	71	85	70	68	74	72	65	100	155	183	165	100	120	50	79	77	32.34
Wash	76	86	75	79	77	80	79	73	77	100	162	170	185	125	127	86	105	95	35. 15
Oreg	77	80	80	80	75	70	77	82	82	95	150	155	155	130	121	84	91	90	31. 50
Calif	88	91	80	90.	85	88	87	87	88	124	185	193	179	120	139	77	100	108	37.80
U.	60.0	58.6	48. 0	61.8	48.7.	69.1	57. 2		57. 5			136. 5		67.0	96.7		35. 8	72. 7	21. 33

Division of Crop and Livestock Estimates.
${ }^{1}$ Based upon farm price Dec. 1.

Table 109.-Corn, all classes and grades combined: Weighted average price per bushel of reported cash sales at markets named, 1918-1923.

CHICAGO.

Year beginning Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Weighted average.
	Cts.												
1918-19	118. 6	138.6	131. 4	122.0	144. 2	160. 1	174.0	173. 7	191.8	193.2	156. 6	140.0	150.4
1919-20	143.8	141.6	144.9	139.5	155. 1	159. 7	197.4	183.3	155. 3	154.9	132. 2	95. 9	144.1
1920-21	78.8	72.5	62.1	59.9	60.7	54.5	61.2	59.1	59.4	56.2	53.2	46.2	56.6
1921-22	46.7	47. 1	47.3	54.0	57.1	58.2	61. 4	60.0	63.7	62.0	63.6	69.0	56.9
1922-23	71.1	72.4	70.1	72.5	72.8	79.3	81.8	84.0	87.1	88.2	88.8	102.4	78.1
1923-24.	76. 1	69.8											

ST. LOUIS.

1918-19	126.5	139.7	134. 5	126. 1	143.5	160. 2	174.8	179.1	193.0	194. 8	155.8	141. 9	151.5
1919-20	146.4	144.5	147.4	142.5	155. 3	171.8	194.9	186. 8	160.6	158. 1	129.3	93.5	155.4
1920-21.	82.1	71.9	62.1	61.2	60.7	56.2	59.9	60.5	60.7	54.3	51. 6	45.4	57.5
1921-22	46.0	47.8	47.5	54.7	57.7	57.9	61.3	60.0	64.0	61.4	62.5	69.9	57.6
1922-23	71.4	72. 6.	71.0.	73.5.	74.3	80.1	84.2	86. 1	87.4	87.0	89.9	101. 5	79.6
1923-24	76.9	69.4											

OMAHA.

1918-19.	131.6	142.8	136.0	123.6	142.4	159.3	167.6	170. 7	186.1	184. 0	152. 2	136.1	151.2
1919-20.	139. 3	135. 6	135.9	131.9	146.3	161. 7	181.4	175. 5	149.3	150.3	118. 2	81.4	147.6
1920-21	70.7	60.7	54.7	52.2	53.1	47.6	52.6	53.6	50.3	45.3	42.5	36. 2	50.0
1921-22	39.4	39.2	40.8	49.5	51.2	51.9	54.2	54.4	57.1	53.7	55. 8.	64.0	50.9
1922-23.	68. 4	66. 8	65.8	67.5	68.9	77. 2	80.1	80.5	80.0	79.6	82.8	94.3	73.3
1923-24.	68.8	62.5											

KANSAS CITY.

1918-19	139.5	148.8	136.5	127.9	147.9	165.1	172.6	176. 7	189. 5	189.0	155. 2	141.7	152.0
1919-20	138.3	141. 0	142. 1	136. 5	149.1	166. 9	185. 1	171.1	149.5	146. 2	126. 8	86. 1	147.5
1920-21.	67.1	63.3	58.5	57.1	56.8	51.1	57.0	55.5	52.4	45. 6	45.3	39.0	53.8
1921-22	41.8	42.1	43.7	52.9	54.0	55.0	57.4	57.0	56.0	55. 2	58.9	68.9	53.2
1922-23.	72.5	70.5	69.8	71.4	72.7	81.9	84.0	84.2	83.0	81.5	86.6	95. 3	77.7
1923-24.	73.9	65.1											

MINNEAPOLIS.

1918-19
1919-20
1920-21
1921-22
1922-23-

(INNEAPOLIS.

CINCINNATI. ${ }^{1}$

1919-20			147.5	145.9	159.3	173.8	196.0	191. 5	164.4	159.0	137.9	102. 7	
1920-21	80.3	69.7	65.7	65.5	63.9	57.8	63.9	63.4	65.3	63. 6	55.4	50.8	61.8
1921-22	49.5	49.2	49.1	55.8	60.8	60.5	64.5	62.2	68.2	65.4	65.6	73.1	59.7
1922-23.	69.9	74. 0	73.8	76.3	77.3	85.7	87.0	88.9	92.1	92.5	93.6	99.5	82.7
1923-24.	73.5	67.6											

SIX MARKETS COMBINED. ${ }^{2}$

1918-19.	122.5	140.4	133.0	123. 0	143.1	160.6	172.2	173.9	189.9	191.5	156.1	139.9	150.3
1919-20	143. 2	140.4	143.2	137.9	153. 1	163.8	191. 7	181. 0	154. 8	153. 2	130. 1	94. 3	146.5
1920-21.	76.5	68.6	60.3	58.1	58.8	52.9	58.9	48.3	57.5	54.0	51.9	45. 2	55.5
1921-22	45.6	45.7	46.0	53.3	55.4	56.5	59.6	59.3	62.1	60.1	62.3	69.4	55.7
1922-23.	70.8	71.6	69.2	71.6	72.4	79.0	82.1	83.1	85.6	86.4	88.3	100.3	77.4
1923-24	74.9	67.5											

These prices are comparable with farm prices.
Division of Statistical and Historical Research. Compiled from Chicago Daily Trade Bulletin, St. Louis Daily Market Reporter, Omaha Daily Price Current, Kansas City Grain Market Review, Minneapolis Daily Market Record, Cincinnati Daily Trade Bulletin.
${ }^{1}$ No reports until January, 1920.
${ }^{2}$ Wrom November, 1918 through December, 1919 inclusive, Cincinnati is not included.

Table 110.-Corn, No. 3, yellow: Weighted average price per bushel of reported cash sales, 1899-1923.

CHICAGo.

Year beginning Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	$\begin{aligned} & \text { Weight- } \\ & \text { ed aver- } \\ & \text { age. } \end{aligned}$
1899-190	\$0.31	\$0.30	\$0.30	\$0. 32	\$0.36	\$0. 39	\$0.38	\$0.40	\$0. 41	\$0.40	\$0.40	\$0. 42	\$0. 36
1900-1	. 37	. 35	. 36	. 37	. 39	. 42	. 43	. 42	. 48	. 56	. 56	. 56	. 43
1901-2	. 60	64	. 62	. 59	. 59	. 62	. 62	. 63	. 65	. 60	. 59	. 60	62
1902-3	. 53	. 46	. 43	. 43	. 41	. 41	. 46	. 49	. 51	. 53	. 51	. 45	. 47
1903-4	. 44	. 44	. 43	. 46	. 46	. 49	. 49	. 50	. 49	. 52	. 53	. 55	49
1904-5	. 48	. 43	. 42	. 44	. 47	. 48	. 50	. 55	. 57	. 54	. 53	. 53	48
1905-6	. 45	. 42	. 42	. 42	. 40	. 42	. 47	. 49	. 52	. 54	. 47	. 46	44
1906-7	. 43	. 42	. 41	. 43	. 43	. 44	. 52	- 73	. 54	. 57	- 64	- 67	5
1907-8	. 59	. 58	. 53	. 54	. 63	. 65	. 73	. 72	. 76	. 81	. 80	. 77	. 68
1908-9	. 63	. 59	. 64	. 65	. 66	. 69	. 73	. 75	. 72	. 70	. 69	. 59	.65
1909-10.	. 59	. 59	. 64	. 63	. 61	. 57	. 60	. 59	. 62	. 64	. 58	. 50	. 59
1910-11	. 49	. 45	. 45	. 45	. 45	. 50	. 54	. 55	. 63	. 65	- 67	. 73	. 53
1911-12	. 68	. 61	. 62	. 64	. 68	. 78	. 79	. 75	. 68	. 79	. 74	. 65	. 71
1912-13	. 52	. 46	. 46	. 48	. 49	. 55	. 57	- 60	. 62	. 74	. 75	. 70	. ${ }_{7} 5$
1913-14	. 72	. 66	. 62	. 62	. 64	. 67	. 70	. 72	. 71	. 82	. 79	. 73	. 70
Av., 1909	. 60	. 55	. 56	. 56	. 57	. 61	. 64	. 64	. 65	. 73	71	. 66	. 61
1914-15	. 67	. 64	. 71	. 74	. 72	75	. 77	. 74	. 78	. 81	. 74	. 65	70
1915-16	. 63	. 69	. 74	. 74	. 73	. 76	. 75	. 74	. 81	. 85	. 86	. 96	. 79
1916-17	. 98	. 92	. 98	1.00	1. 09	1.40	1. 59	1.70	1.99	2.06	2. 10	2.03	1. 11
1917-18	2.21	1. 77	1.77	1.81	1.70	1.65	1.60	1.62	1. 70	1. 72	1. 58	1. 41	1. 63
1918-19	1.33	1.45	1.43	1.27	1. 53	1.62	1. 74	1.78	1.92	1. 95	1. 55	1.41	1. 62
1919-20.	1. 46	1. 47	1.51	1.46	1.58	1.69	2.02	1.89	1.58	1.58	1.31	. 91	1.59
1920-21.	. 77	. 74	. 65	. 63	. 62	. 57	. 60	. 63	. 60	. 56	. 53	. 45	62
Av., 1914-1920	1.15	1.10	1.11	1.09	1.14	1.21	1.30	1.30	1.34	1.36	1.24	1.12	1.15
1921-22	. 47	. 47	. 48	. 55	. 57	. 58	. 62	. 61	. 64	. 62	. 64	. 69	. 55
1922-23	. 71	. 73	. 70	. 72	. 73	. 79	. 82	. 84	. 88	. 88	. 89	1.04	73
1923-24	. 82	. 71											

Compiled from Chicago Daily Trade Bulletin.
KANSAS CITY. ${ }^{1}$

Compiled from the Kansas City Daily Price Current.

Division of Statistical and Historical Research.
${ }^{1}$ Prior to May 11, 1903, the prices were obtained under mixed corn.
${ }^{2}$ 1901, compiled from the Kansas City Star.

Table 110A.-Corn, No. B, yellow: Weighted average price per bushel of reported cash sales, 1909-1923.

ST. LOUIS.

Year beginning Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	$\begin{gathered} \text { Weight- } \\ \text { ed aver- } \\ \text { age. } \end{gathered}$
1909-10	\$0. 58	\$0. 61	\$0. 65	\$0. 63	\$0. 60	\$0. 58	\$0.62	\$0. 59	\$0. 63	\$0. 62	\$0. 55	\$0. 49	\$0.61
1910-11	. 47	. 44	. 45	. 44	. 45	. 48	. 53	. 55	. 65	. 63	. 66	. 72	. 48
1911-12	. 65	. 61	. 60	. 64	. 70	. 80	. 79	. 74	. 74	. 76	. 73	. 64	. 70
1912-13	. 48	. 46	. 48	. 48	. 50	. 57	. 58	. 60	. 64	. 73	. 75	. 71	. 52
1913-14	. 73	. 67	. 63	. 62	. 66	. 68	. 71	. 71	. 73	. 83	. 79	72	. 68
Av. 1909-19	. 58	. 56	. 56	. 56	. 58	. 62	. 65	. 64	. 68	. 71	. 70	. 66	. 60
1914-15	. 66	. 65	. 72	. 74	. 72	. 76	. 77	. 74	. 78	. 78	74	. 64	72
1915-16	. 64	. 68	. 75	. 75	. 73	. 75	. 74	. 74	. 81	. 86	. 86	. 93	. 75
1916-17	. 96	. 91	. 98	. 99	1. 12	1.45	1.63	1. 67	1. 94	1.75	2. 04	1. 91	1.11
1917-18	2. 00	1. 75	1. 76	1. 82	1. 68	1. 66	1. 62	1. 60	1. 69	1.75	1. 63	1. 45	1. 67
1918-19	1. 40	1. 50	1. 44	1.33	1. 54	1. 62	1. 74	1.78	1. 99	1.93	1. 52	1. 42	1. 59
1919-20	1. 49	1. 49	1.51	1.48	1. 60	1. 73	2. 00	1.87	1. 62	1.57	1. 30	. 92	1. 64
1920-21	. 79	. 74	. 64	. 63	. 62	. 57	. 62	. 61	. 59	. 54	. 52	. 46	. 60
Av. 1914-1920	1.13	1. 10	1.11	1.11	1. 14	1.22	1.30	1. 29	1. 35	1.31	1. 23	1. 10	1. 15
1921-22	. 47	.48	. 48	. 54	. 58	. 57	. 61	. 60	. 65	. 61	. 63	. 69	. 57
1922-23	. 71	. 72	. 70	. 73	. 74	. 80	. 84	. 86	. 86	. 92	. 90	1. 00	. 75
1923-24	. 82	. 71											

Division of Statistical and Historical Research. Compiled from the St. Louis Daily Market Reporter.
Table 111.-Corn, American mixed. Average spot price per bushel of 56 pounds at Liverpool, 1912-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1912	\$0.92	\$0.95	\$0.94	\$0.95	\$0.95	\$0.95	\$0.93	\$0.99	\$0.99	\$0.99	\$0.91	\$0.86
1913	. 82	. 82	. 81	. 82	. 82	. 82	. 82	. 90	. 95	. 89	. 90	. 91
1914	. 91	. 91	. 91	. 91	. 91	. 92	. 93	1. 13	1. 11	1. 04	1.00	98
1915	1. 04	1.11	1. 10	1.09	1. 13	1.08	1. 10	1.18	1.16	1.16	$\left.{ }^{1}\right)$	1. 23
1916	1.40	1. 47	1. 43	1. 43	1. 47	1. 28	1.37	1.44	1.41	1.48	1. 71	1.83
1917	1.95	2.00	2. 05	1. 98	2. 03	2. 05	2.05	2.05	2. 05	2. 05	2.05	2.05
1918	2. 16	2. 16	2.16	2.16	2. 16	2.16	2. 34	2.52	2. 52	2. 52	2. 53	2. 53
1919	2.11	2.11	1. 65	1.63	1. 63	1. 61	1. 55	$\left.{ }^{1}\right)$	${ }^{1}$ (1)	(1)	(1)	(1)
1920	(1)	1.93	2. 14	2. 16	2. 04	2. 06	$\left.{ }^{1}\right)$	$\left.{ }^{1}\right)$	$\left.{ }^{1}\right)$	1.63	1. 58	1.38
1921	1.49	1.15	1.13	1. 01	. 95	. 97	. 98	. 92	. 85	. 71	. 78	. 85
1922	. 81	. 90	85	. 83	. 84	. 84	. 98	. 92	. 90	1. 00	1.00	1.00
1923	. 99	1.00	1.00	1.06	1.07	1. 09	. 95	1.16	1.16	$\left.{ }^{1}\right)$	$\left.{ }^{1}\right)$	(1)

Division of Statistical and Historical Research. Compiled from Broomhall's Corn Trade News. For rate of exchange used in conversion from shillings see Table 696, p. 1164.
${ }^{1}$ No quotations.
Table 112.-Corn: Spot price per bushel of 56 pounds at Buenos Aires, 1912-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1912	(1)	(1)	(1)	\$0. 58	\$0. 53	\$0. 52	\$0. 51	\$0. 52	\$0. 50	\$0. 51	\$0. 52	\$0. 53	\$0. 52
1913	\$0. 54	\$0.54	\$0. 54	. 56	. 55	. 55	. 55	. 55	. 62	. 59	. 58	. 58	. 56
1914	. 55	. 56	. 56	. 54	. 59	. 55	. 57	2.56	. 55	. 49	. 53	. 54	55
1915	. 54	. 61	. 56	. 57	. 54	. 50	. 51	. 49	. 51	. 51	. 54	. 52	. 53
1916	. 56	. 60	. 56	. 51	. 45	. 43	. 45	. 51	. 55	. 70	1. 03	. 93	. 61
1917	1. 07	1. 07	. 99	1.03	1. 27	1. 46	1. 43	1. 27	. 87	. 85	. 95	. 88	1. 10
1918	. 79	. 79	. 74	. 59	. 53	. 57	. 64	. 68	. 65	. 63	. 63	. 63	. 66
1919	. 57	. 52	. 47	. 55	. 55	. 55	. 96	1.07	. 91	. 79	. 74	. 71	. 70
1920	. 70	. 71	. 83	1. 03	1. 13	1.10	. 96	. 90	. 92	. 83	. 77	. 82	. 89
Av. 1914-1920.	. 68	. 69	. 67	. 69	. 72	. 74	. 79	. 78	. 71	. 69	. 74	. 72	72
1921	. 88	. 91	. 91	. 78	. 61	. 63	. 65	. 66	. 65	. 58	. 61	. 63	71
1922	. 63	. 73	. 79	. 77	. 75	. 71	. 78	. 78	. 76	. 74	. 70	. 74	. 74
1923	. 80	. 82	. 81	. 80	. 77	. 75	. 73	. 69	. 74	. 78	. 81	. 79	. 77

[^156]Table 113．－Corn，yellow，La Plata：Spot price per bushel of 56 pounds at Liver－ pool，1912－1923．

Calendar year．	Jan．	Feb．	Mar．	Apr．	May．	June．	July．	Aug．	Sept．	Oct．	Nov．	Dec．	$\begin{aligned} & \text { A ver- } \\ & \text { age. } \end{aligned}$
1912	（i）	${ }^{(1)}$	（1）	（1）	\＄0．97	\＄0． 87	\＄0． 71	\＄0． 75	\＄0． 78	\＄0．72	\＄0．68	\＄0． 67	\＄0． 77
1913	\＄0．71	\＄0．75	\＄0．76	\＄0．74	． 72	． 69	． 67	． 67	． 70	． 66	． 63	． 67	－ 70
1914	． 65	． 66	． 68	． 68	． 74	． 76	． 78	． 97	． 93	． 83	． 78	． 83	． 77
1915	． 98	1.06	1． 02	1． 06	1.11	． 97	． 92	． 90	． 85	． 94	1． 06	1． 19	1.00
1916	1． 40	1.44	1.42	1.43	1.47	1.33	1.45	1.54	1．39	1.48	1． 69	1.81	1.49
1917	${ }^{2} 1.89$	1.92	2． 00	2． 16	（1）	2.17	2． 17	2． 17	2.17	2.17	2． 17	2． 17	2.11
1918	2． 23	2． 23	2． 23	2． 23	2.23	2． 23	2． 42	2． 61	2． 61	2． 61	2． 61	2． 61	2． 40
1919	2.04	2． 04	1.75	1． 74	1． 74	1.72	1.65	1． 66	1． 69	1． 68	1.65	1． 52	1． 74
1920	${ }^{3} 1.49$	${ }^{41} 77$.	${ }^{4} 1.96$	1.97	1.81	1.67	1.53	1． 43	1.60	1． 49	1． 15	1． 25	1． 59
1921	1． 28	1.22	1.30	1． 28	1.18	1.09	1.05	． 93	． 83	． 72	． 78	． 88	1.04
1922	． 92	1． 08	1． 08	1.03	1.06	1.01	1． 10	1． 10	1.09	1.08	． 96	1.00	1． 04
1923	． 99	1． 04	1.05	1.09	1． 14	1.10	1.02	． 94	． 98	． 97	． 96	1.02	1.02

Division of Statistical and Historical Research．Compiled from International Yearbook of Agricultural Statistics，1912－21．Subsequently Broomhall＇s Corn Trade News．

For rate of exchange used in conversion from shillings，see Table 696，p． 1164.
${ }^{1}$ Not quoteá．$\quad{ }^{2}$ Trading in maize controlled January 5，1917．${ }^{3}$ Afloat price．${ }^{4}$ Nominal．

OATS．

Table 114．－Oats：Acreage，production，value，exports，etc．，United States， 1869－1923．

Calendar year．	Acre－ age har－ vest－ ed．	Aver－ age yield per acre．	Produc－ tion．	Aver－ age farm price per bush－ el Dec． 1.	Farm value Dec． 1.	Value per acre．${ }^{1}$	Chicago，cash price per bushel， No． 2 white．${ }^{2}$				Domestic exports，in－ cluding oatmeal， fiscal year beginning July $1 .{ }^{3}$	Imports， fiscal year be－ ginning July， $1 .{ }^{4}$
							De－ cem－ ber．		$\begin{gathered} \text { Follow- } \\ \text { ing } \\ \text { May. } \end{gathered}$			
							$\begin{aligned} & \dot{8} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \frac{8}{60} \\ & \text { 荷 } \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { मi } \\ & \text { 品 } \end{aligned}$		
	－1，000	Bush．of 32 lbs．	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	Cents．	$\begin{gathered} \text { 1,000 } \\ \text { dollars. } \end{gathered}$	Dol－ lars．	Cts．	Cts	Cts．		Bushels．	
1869	9，461	32.5 	288， 334	38．0	109， 522	11.58	40	443	46t	53 i	Bushels．	Bushels．
1870	8，792	28.1	247， 277	39.0	96， 444	10.97	373	41	$47 \frac{1}{4}$	51^{2}	147， 572	2， 599,514
1871	8，366	30.6	255， 743	36.2	92， 591	11.07	303	33	$34 \frac{3}{2}$	421 ${ }^{2}$	262， 975	535， 250
1872	9， 001	30.2	271， 747	29.9	81， 304	9.03	231	253	30^{*}	34	714， 072	225， 555
1873.	－9，752	27.7	270，340	34.6	93， 474	9.59	34	40 $\frac{5}{8}$	44	$48 \frac{1}{2}$	812，873	191， 802
1874	10， 897	22.1	240， 369	47.1	113， 134	10.38	513	$54 \frac{1}{2}$	571	$64 \frac{3}{2}$	504，770	1，500，040
1875	11， 915	29.7	354， 318	32.0	113， 441	9.52	$29 \frac{1}{3}$	$30 \frac{1}{2}$	$28 \frac{5}{8}$	$31 \frac{1}{2}$	1，466， 228	121， 547
1876	13， 359	24.0	320， 884	32.4	103， 845	7.77	31	341	37 ${ }^{\frac{1}{4}}$	45 ${ }^{\frac{2}{4}}$	2，854， 128	41，597
1877	12， 826	31.7	406， 394	28.4	115， 546	9.01	$24 \frac{1}{\text { B }}$	27	23	27	3，715， 479	21， 391
1878	13， 176	31.4	413， 579.	24.6	101， 752	7.72	$19 \frac{5}{8}$	$20 \frac{3}{8}$	$24 \frac{3}{8}$	$30 \frac{1}{2}$	5，452， 136	13，395
1879	16， 145	27.9	450， 745	33.3	150， 178	9.30	329	368	293	$34{ }^{\frac{7}{8}}$	766， 366	489， 576
1880	16， 188	25.8	417， 885	36.0	150， 244	9.28	291	$33 \frac{1}{2}$	361	$39 \frac{1}{2}$	402， 904	64， 412
1881	16， 832	24.7	416， 481	46． 4	193， 199	11． 48	431	46	－483		625， 690	1，850，983
1882	18， 495	26． 4	488， 251	37.5	182， 978	9：89	34 良	41눈	38	423	461， 496	815， 017
1883.	20，325	28.1	571， 302	32.7	187， 040	9.20	$29 \frac{5}{8}$	361	30	34\％	3，274， 622	121， 069
1884	21， 301	27.4	583， 628	27.7	161， 528	7.58	221	$25 \frac{1}{2}$	341	37	6，203， 104	94，310
1885	22， 784	27.6	629， 409	28.5	179，632	7.88	27	29	$26 \frac{1}{4}$	295	7，311， 306	149，480
1886	23， 658	26.4	624， 134	29.8	186， 138	7.87	253	273	251	271	1，374，635	139，575
1887	25， 921	25.4	659， 618	30.4	200， 700	7.74	28\％	$30 \frac{1}{5}$	32	$38{ }^{2}$	1，573， 080	123， 817
1888．．．．－－－－－	26，998	26．0	701， 735	27.8	195， 424	7.24	25	26 $\frac{7}{8}$	21	23部	1，191， 471	131，501

Division of Crop and Livestock Estimates．Figures in italics are census returns．Exports and im－ ports from Bureau of Foreign and Domestic Commerce．
${ }^{1}$ Based on Dec． 1 price．
${ }^{2}$ Chicago Daily Trade Bulletin．Quotations are for No． 2 to 1906；for contract 1906－1915．
${ }^{3}$ Oatmeal not included until 1882.
－Oatmeal not included 1869－1882，and 1909.

Table 114.-Oats: Acreage, production, value, exports, etc., United States, 1869-1929-Continued.

Calendar year.	$\begin{aligned} & \text { Acre- } \\ & \text { age } \\ & \text { har- } \\ & \text { vest- } \\ & \text { ed. } \end{aligned}$	Acreage yield per acre.	Production.	Average farm price per bushel Dec. 1.	Farm value Dec. 1.	$\begin{gathered} \text { Value } \\ \text { per } \\ \text { acre. } \end{gathered}$	Chicage, cash price per bushe1, No 2 white. ${ }^{2}$				Domestic exports, including oatmead. fiscal year beginning July $1 .{ }^{3}$	Imports, fiscal year beginning July $1{ }^{\text { }}$
							De-cember.		Follow- ing May.			
							穻	-	$\begin{aligned} & \text { ni } \\ & \text { 品 } \end{aligned}$	+		
	1,000	Bush.of	$1,000$									
	acres.	$32 \mathrm{lbs} \text {. }$	bushets.	Cenis.	dollars.	lars.	Cts.		Cts.	Cts.	Bushets.	Bushets.
188	28, 321	28.3	801, 586	21.9	175, 801	6. 21	20	21	${ }^{24} 4$	30	15, 107, 238	
1890	28, 102	20.4	572, 671	41.7	239, 047	8.51	397	${ }^{43}$	45	54	1,382, 836	41,848
1891	27, 604	30.4	839,995	30.6	257, 251	9.32	311	$33 \frac{5}{8}$	281	331	10, 586, 644	47,782
1892	28, 023	24. 8	695, 277	31.5	218, 983	7.81	258.	314	288	$32{ }^{3}$	2,700, 793	49, 433
1893	28, 452	23.8	676, 151	29.1	196, 437	6.90	274	291.	$32 \frac{1}{2}$	36	6, 290, 229	31,759
1894	28, 362	25.2	715, 535	32.1	229,451	8.09	283	29 ,	$27 \frac{1}{3}$	303	1,708, 824	330, 318
1895	29, 379	30. 2	885, 959	19.4	172, 198	5.86	$16 \frac{5}{8}$	$17 \frac{1}{2}$	18	193	15, 156, 618	66,602
1896	29, 645	26.3	780, 124	18.3	142, 772	4.82	$16 \frac{1}{2}$	$18 \frac{3}{3}$	167 ${ }^{\text {\% }}$	183	37, 725, 083	131, 204
1897	28, 353	27.9	791, 442	20.8	164, 836	5.81	21	$23{ }^{\frac{7}{8}}$	26	32^{4}	73, 880, 307	25, 093
1898.	28, 769	29.3	842, 747	25. 2	212, 482	7.39	26	$27 \frac{3}{4}$	24	$27 \frac{3}{4}$	33, 534, 362	28, 098
1899	29, 540	31.3	925, 555	24.5	226, 588	7. 67.	$22 \frac{1}{4}$	23	$21 \frac{1}{4}$	$23{ }_{4}^{4}$	45, 048, 857	54,576
1900	30, 290	30.2	913, 800	25.4	232, 074	7. 66	$21 \frac{3}{4}$	223	$27 \frac{1}{8}$	31	42, 268, 931	32, 107
1901	29, 894	26.0	778, 392	39.7	308, 796	10.33	42	$48 \frac{1}{4}$	41	$49 \frac{1}{2}$	13, 277, 612	38, 978
1902	30,578	34.5	1,053, 489	30.6	322, 423	10.54.	291	32	33	$38 \frac{1}{4}$	8,381, 805	150,065
1003.	30, 866	28.2	869, 350	34.0	295, 232	9.56	$34 \frac{1}{4}$	38	$39 \frac{5}{8}$	443	1, 960, 740	183, 983
1904	31, 353	32. 2	1, 098, 931	31.1	313, 488	10.00	$28 \frac{1}{4}$	32	$28 \frac{5}{3}$	32	8, 394, 692	55,699
1905	32, 072	34.0	1, 090, 236	28.9	314, 868	9.82	$29 \frac{1}{2}$	323	32 ${ }^{\frac{1}{8}}$	$34 \frac{3}{4}$	48, 434, 541	40, 025
1906	33, 353	31.0	1, 035, 576	31.9	329, 853	9.89	33	35	$44 \frac{1}{3}$	$48 \frac{1}{1}$	6, 386, 334	91, 289
1907	33, 641.	23.9	805, 108	44.5.	$358,421$.	10.65	$46 \frac{1}{2}$	$50 \frac{7}{8}$	523	561	2, 518, 855	383,418
1908	34, 006	25.0	850,540	47.3.	402, 010	11.82	$48 \frac{3}{8}$	$50 \frac{1}{2}$	$56 \frac{1}{4}$	$62 \frac{1}{2}$	2, 333, 817	6, 091, 700
1909	35,159	30.4	1, 068,289	40.6	433, 869	12.34	40	45	361	$43 \frac{1}{6}$	2, 548, 726	1, 034, 511
1910	37, 548	31.6	1, 186, 341	34.4	408, 388	10.88	31	$32 \frac{1}{2}$	317	36	3, 845, 850	107, 318
1911	37, 763	24.4	922, 298	45.0	414, 663	10.98	461	$47 \frac{3}{8}$	$50 \frac{1}{2}$	58	2, 677, 749	2, 622, 357
1912	37, 917	37.4	1, 418, 337	31.9	452, 469	11.93	31	$31 \frac{3}{4}$	$35 \frac{1}{8}$	43	36, 455, 474	723, 899
1913	38, 399	29.2	1, 121, 768	39.2	439, 596	11.45	$37 \frac{5}{8}$	$40 \frac{1}{8}$	37	422	2, 748, 743	22, 273, 624
Av. 190 1913	37, 357	30.6	1, 143, 407	37.6.	429, 797	11.51	37. 2	30.4	38.2	44.6	9,655, 308	5, 352, 342
1914	38, 442	29.7	1, 141, 060	43.8	499, 431	12.909	$46{ }^{\text {d }}$	498	$50 \frac{1}{2}$	56	100,609, 272	630, 722
1915	40,996	37.8	1, 549, 030	36.1	559, 506	13.65	40\%	44	391	493	98, 960,481	665,314
1916	41,527	30.1	1, 251,837	52.4	655, 928	15.80	$46{ }^{3}$	54	591	74	95, 105, 698	761, 644
1917	43, 553	36.6	1, 592, 740.	66.6	1,061, 474	24.37	702	80	72	$79 \frac{1}{2}$	125,090, 611	2, 591, 077
1918	44, 349	34.7	1, 538, 124	70.9	1, 090, 322	24. 59	68	742	67 ${ }^{\text {b }}$	74 ${ }^{\frac{1}{4}}$	109, 004, 734	551, 355
1919	40, 359	29.3	1, 184, 030	70.4	833, 922	20.66	783	89	100	117 ${ }^{\frac{1}{4}}$	43, 435, 994	6, 043,834
1920	42, 491	35. 2	1,496,281.	46.0	688,311	16. 20	47.	52	36	$43 \frac{1}{4}$	9,391, 096	3,795,638
1820	41,674	33.4	1,303, 300	55.3	769,842	18. 47	56.7	63.4	60.9	70.5	83, 085512	2, 148, 512
1921	45, 495	23.7	1, 078, 341	30. 2	325, 954	7. 16	$34 \frac{1}{2}$	421	$37 \frac{1}{4}$	45	21, 236, 742	1,733, 282
1822	40, 790	29.8.	1, 215, 803	39.4	478, 948	11.74	$43 \frac{1}{2}$	50	43	7413	$25,413,343$	293,208
$1823{ }^{5}$	40, 833	31.8	1,299,823.	41.5	539, 253	13.21						

[^157]Table 115.-Oats: Acreage, production, and total farm value, by States, calendar years, 1921-1923.

State.	Thousands of acres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of do!lars.		
	1921	1022	$1923{ }^{1}$	1921	1922	19231	1921	1922	1923 \%
Maine	124	120	125	4,340	4,560	4,625	2,387	2,143	2,590
New Hampshir	18	18	18	630	684	675	378	410	432
Vermont.-----	81	99	88	2,673	3,060	3,080	1,577	1,714	1,940
Massachusetts	9	10	9	279	340	315	165	214	198
Rhede Istand.	1		1	28	31	32	17	19	19
Connecticut	11	11	10	330	308	290	198	200	180
New York	1,038	1,059	1,017	24,912	31,770	32,747	11,709	16, 203	18,041
New Jersey	72	72	68	1,728	2, 232	1,632	7788	1,228	. 898
Pennsylvania	1,238	1,170	1,170	35, 283	39, 780	33, 930	15,877	19, 094	17,644
Delaware		7		168	161	182	77	82	109
Maryland	60	58	59	1,620	1,740	1,758	729	887	949
Virginia.	163	166	163	3,342	3,320	3, 586	1,872	1,959	2,259
West Virginia	210	200	196	4,620	4,600	4,704	2, 402	2, 668	2,964
North Carolina	170	220	231	3,060	4,620	5,082	2, 142	3, 095	3,761
South Carolina.	338	406	447	8,112	9,744	10,728	5, 922	7,405	8,797
Cteorgia	412	474	521	8,652	8, 532	9, 378	5, 537	6,309	7,971
Florida	41	37	33	533	481	396	346	370	317
Ohio-	1,550	1,472	1,516	35,650	39,744	52,302	11,764	17,88.5	23,536
Indiana	1,912	1,506	1,739	45, 888	31, 626	48,692	13, 308	12,650	18,990
Ilinois.	4,594	3, 860	3,860	121, 741	110, 010	135, 100	35, 305	42,904	52,683
Michigan.	1,544	1,498	1,528	28, 101	50,932	48,896	10,116	20,882	21,035
Wisconsin	2,632	2,465	2, 539	63, 958	101, 558	92, 166	21, 106	39,608	39,631
Minnesot	4,145	4, 021	4,142	99,480	142, 746	153, 254	22,880	45, 679	52, 106
Iowa.	6,340	5,874	5,639	164,840	217, 925	203, 004	37,913	76, 274	75, 111
Missouri	2,148	1,200	1,380	42,960	19,200	34, 500	12,888	8,448	15, 525
North Dakota	2,568	2, 388	2,388	48,792	78, 804	54,924	10,246	20,439	15,379
South Dakota	2,650	2, 400	2,304	58,300	74,400	78, 336	11, 660	23,808	24, 284
Nebraska	2,585	2,408	2,456	70,054	56,106	81,048	14, 711	19,076	27,553
Kansas	1,894	1,494	1,338	38,827	27,639	34,922	10, 483	11,332	15, 018
Kentucky	293	234	225	5,567	4,282	4,725	2,672	2,398	2,646
Tennessee	260	229	205	5,330	4,122	4,305	2,558	2, 185	2, 583
Alabama	308	277	277	6,776	5,540	4,792	4,404	4,155	3,834
Mississippi	147	125	120	2,940	2,375	2,280	1,882	1,568	1,733
Louisiana	55	56	56	1,205	1,249	1,232	886	862	${ }_{8}^{838}$
Texas.	1,865	1,455	1,470	33, 570	33, 465	47,040	13, 092	18,405	26,813
Oklahoma	1,765	1,500	1,200	35,300	30,000	24,000	9,531	13,500	12,480
Arkansas	300	264	269	6, 600	6, 600	6,187	2,970	3,762	3,836
Montana	618	660	673	14, 832	21, 120	22, 209	5,043	7,814	8, 439
W yorning	150	158	175	4,500	4,898	5,950	1,710	1,959	2,796
Colorado.	217	185	198	6,727	4,625	6,336	2, 220	2, 081	2, 315
New Mexi	61	53	58	1,690	827	1,160	811	480	812
Arizona	18	20	19	630	620	570	410	422	45 a
Utah	79	86	81	2,876	3,354	3,062	1,064	1,576	1,776
Nevada	3	2	3	113	74	106	85	56	86
Idaho.	180	162	170	7,749	6,156	7,820	2,477	2,832	3,441
W ashingto	210	202	210	10,500	7,918	11,970	4,410	4,592	K, 985
Oregon	272	287	270	8,704	6,675	10,530	3, 308	3, 805	4,738
California	140	150	- 162	3,780	5,250	5,265	1,928	3,360	3,159
United States	45,495	40,790	40, 833	1,078, 341	1,215, 803	1,299,823	325, 954	478, 948	339, 253

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

Table 116.-Oats: Yield per acre, by States, calendar years, 1908-1923.

Division of Crop and Livestock Estimates.

Table 117.-Oats: Condition of crop, 1st of month, and yield per acre, United States, 1866-1923.

Calendar year.	June.	July.	Aug.	Sept. ${ }^{1}$	Yield per acre.	Calendar year.	June.	July.	Aug.	Sept. ${ }^{1}$	Yield per acre.
	P. ct.	P.ct.	P. ct.	\boldsymbol{P}. ct.	Bush.		P.ct.	$P . c t$.	P. ct.	$P . c t$.	Bush.
1866	90.3	105.6	113. 3		30.2	1901	85.3	83.7	73.6	72.1	26.0
1867	96.3	101. 9	109. 0	106. 7	27.6	1902	90.6	92.1	89.4	87.2	34.5
1868	102. 6	109. 6	104. 0	92.2	26.4	1903	85.5	84.3	79. 5	75.7	28.2
1869	100.5	114. 5	108.5	111.6	30.5	1904	89.2	89.8	86.6	85.6	32. 2
1870	95.2	93.4	94.5	96.1	28.1	1905	92.9	92.1	90.8	90.3	34.0
1871	96.0	93.8	95.1	97.6	30.6	1906	85.9	84.0	82.8	81.9	31.0
1872	99.3	103.2	99.6	97.4	30.2	1907	81.6	81.0	75.6	65. 5	23.9
1873	96.7	90.3	93.7	92.0	27.7	1908	92.9	85.7	76.8	69.7	25.0
1874	94.2	90.0	72.5	86.0	22.1						
1875	93.5	100.7	90.0	87.0	29.7	1909	88.7	88.3	85.5	83.8	30.4
18						1910	91.0	82.2	81.5	83.3	31.6
1876	98.9	100.0	86.0	81.0	24.0	1911	85.7	68.8	65.7	64.5	24.4
1877	95.1	101. 7	98.0	106. 0	31.7	1912	91.1	89. 2	90.3	92.3	37.4
1878	103. 0	101. 0	100. 0	97.0	31.4	1913	87.0	76.3	73.8	74.0	29.2
1879	81.0	87.0	91.0	91.7	27.9						
1880	93.0	96.0	90.6	88.0	25.8	Av.1909-1913	88.7	81.0	79.4	79.6	30.6
1881	92.0	98.0	97.0	92.3	24.7	1914	89.5	84.7	79.4	75.8	29.7
1882	101. 0	103.0	102. 0	100. 0	26.4	1915	92.2	93.9	91.6	91. 1	37.8
1883	96.0	99.0	100.0	99.0	28.1	1916	86.9	86.3	81.5	78. 0	30. 1
1884	98.0	98.0	94.0	95.0	27.4	1917	88.8	89.4	87.2	90.4	36.6
1885	94.0	97.0	96.0	93.0	27.6	1918	93.2	85.5	82.8	84.4	34.7
						1919	93.2	87. 0	76.5	73. 0	29.4
1886	95.9	88.8	87.4	90.9	26.4	1920	87.8	84.7	87.2	88.3	35.2
1887	91. 0	85.9	85.6	83.4	25.4						
1888	95.4	95.2	91.7	87: 2	26. 0	Av.1914-1920	90.2	87.4	83.7	83.0	33.4
1889	93.8	94.1	92.3	90.0	28.3						
1890.	89.8	81.6	70.1	64.4	20.4	1921	85.7 85.5	77.6 74.4	64.5 75.6	61.1 74.9	23.7 29.8
1891.	85.1	87.6	89.5	90.7	30.4	1923	85.6	83.5	81.9	80.3	31.8
1892	88.5	87.2	86. 2	78.9	24.8						
1893	88.9	88.8	78.3	74.9	23.8				.		
1894	87.0	77.7	76.5	77.8	25. 2						
1895..	84.3	83.2	84.5	86.0	30.2						
1896	98.8	96.3	77.3	74.0	26.3						
1897	89.0	87.5	86.0	84.6	27.9						
1898	98. 0	92.8	84.2	79.0	29.3						
1899	88.7	90.0	90.8	87.2	31.3						
1900	91.7	85.5	85.0	82.9	30.2						

Division of Crop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.
Table 118.-Oats: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1922.

Calen dar year.	Deficient mois- ture.	Excessive mois-	Floods.	$\begin{aligned} & \text { Frost } \\ & \text { or } \\ & \text { freeze. } \end{aligned}$	Hail.	Hot winds.	Storms.		$\begin{aligned} & \text { Plant } \\ & \text { dis- } \\ & \text { ease. } \end{aligned}$	$\begin{aligned} & \text { Insect } \\ & \text { pests. } \end{aligned}$	$\begin{gathered} \text { Ani- } \\ \text { mal } \\ \text { pests. } \end{gathered}$	Defective seed.	Total. ${ }^{1}$
			P.ct.										
1909	7.9	5. 2	0.6	0.8	1.1	0.9	0.8	17.7	2.4	0.5	0.1	0.4	22.2
1910	17.0	. 8		. 7	. 4	1.7	${ }^{3}$	21.4	$\cdot 9$. 6	${ }^{2}$	${ }^{2}$	24.0
1911	27.6	1.0	${ }^{(2)}$. 5	. 3	5.1	. 1	35.4	.7	1.5	1	$\stackrel{2}{2}$	39.5
1912-	7.2	3.1	. 3	. 5	1.0	1.8	.5	$\stackrel{14.1}{14}$.6 .5	1.1	. 1	.1	30.3
1913	22.7	. 7	.2	. 2	. 6	1.8	. 2						
1914	15.7	2.2	. 2	. 3	. 8	2.6	. 4	22.7	2.0	1.7	.1	1	27.5
1915	1.4	8.5	.9	.4	1.0	. 1	. 8	13. 2	2.1	$\cdot 3$	${ }^{1}$	${ }^{1}$	16.3
1916	10.1	4.0	. 4	. 6	. 8	2.8	${ }^{5}$	19.7	5.1	1.3	(2)	(2) 1	19.2
1917	11.8	1.2	.2	2.7	. 8	1.0	${ }^{3}$	18.2 18.1	1.8	. .4	(2)	${ }^{\text {. }} 2$	20.7
1918.	12.9	. 5	. 2	1.3	. 9	1.8	. 3	18.1	1.1	. 9			
	11.5	5.7	. 4	.4	7	2.8	4	22.3	4.9	2.2	${ }^{(2)}$	1	29.9
1920	6.4	2.7	. 3	. 4	. 8	. 9	. 4	12.1	2. 3	1.4	. 1	1	16.8
1921.--	18. 3	2.3	.2	2.6	8	5.9	${ }^{6}$	31.0	5. 2	1.8	1	1	${ }_{27.6}$
1922	14.6	3.8	. 4	. 4	1.2	1.4	.3	22.0	3.2	1.8	1	1	27.6

Division of Crop and Livestock Estimates.
${ }^{1}$ Includes all other causes.

[^158]Table 119.-Oats: Area and yield per acre in undermentioned countries.
NORTEERN HEMISPHERE.

[^159][^160]Table 119.-Oats: Area and yield per acre in undermentioned covneries-Con. SOUTHERN HEMISPGERE.

Country.	Area.					Yield per acre.				
	$\begin{gathered} \hline \text { Aver- } \\ \text { age } \\ 7909- \\ 1913 . \end{gathered}$	1020-21	1821-22	1922-23	1923-24	$\begin{aligned} & \text { A ver- } \\ & \text { age } \\ & 1909 . \\ & 1913 . \end{aligned}$	1920-21	1921-22	1922-23	1923-24
Chile	$\begin{aligned} & 1,000 \\ & \text { acres. } \\ & 78 \end{aligned}$	$\begin{array}{r} 1,000 \\ \text { acFes. } \\ 79 \end{array}$	$1,000$ acres. 60	$\begin{array}{r} 1,00 \theta \\ \text { acres. } \\ 75 \end{array}$	1,000 acres. 68	Bushels. 42.7	Bushels. 39.9	Bushets. 48.2	Bushels. 40.4	$\begin{gathered} \text { Bu.st. } \\ \text { els. } \end{gathered}$
Uruguay	765	128	107	$\begin{array}{r}87 \\ \hline\end{array}$	${ }_{2}^{161}$	${ }^{7} 19.8$	19.5	19.3	11.5	
Argentina	2,396	2, 061	2,105	2, 618	2, 747	22.5	23.1	15.7	20.9	21.3
Union of south Africa	1810	609	530			111.9	9.7	9.8		
Australia	545	937	733				24. 7	20.7		
New Zealand.	366	148	171	143	141	49.1	44.1	49.6	29.7	
Total comparable with 1909-1913	4, 260	3,962	3,706							
Total comparable with 1923		2,416	2,443	2,923	3,117					
World total comparable with 1008-1913 \qquad	141, 714									
World total comparable with 1923		101, 468			102, 133					

Division of Statistical and Historical Research. Oficial sources and International Institute of Agriculture unless otherwise stated. Parenthesis denote interpolated figures.

Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }^{1}$ One year only
${ }^{7}$ Four-year average.
Table 120.-Oats: Production in undermentioned countries.
NORTHERN HEMISPHERE.

Country.	$\begin{gathered} \text { A verage, } \\ 1909- \\ 1913 . \end{gathered}$	1917	1918	1919	1920	1921	1222	$\begin{aligned} & 1923, \\ & \text { prolimi. } \\ & \text { nary. } \end{aligned}$
NORTH America.	1,000	1,000	1,000	1,000	1,000	1,000		
	bushets.	bushels.	bushels.	bushels.	bushels.	bushels.	bushels.	bushel3.
Canada	351, 690	403, 010	-425, 312	394,387	-530, 710	426,233		531,378
United State	1, 143, 407	1, 592, 740	1, 538, 124	\|1, 184, 030	:, 496, 281	1, 078, 341		1,299,823
Total comparable with 1923	1,495,097	1, 995, 750	1,964, 436	1,578,417	2, 026, 991	1,504, 574	1,707, 042	1,831,201
United Kingdom:			,					
England and		105, 934.	139,805	111,316	104, 774	97,822	90,568	92,898
Scotland	44, 507	53, 108	62, 956	51, 724	(50, 281	46,732	46, 917	145,884
Ireland	65,169	94, 662	101, 399	85, 540	65, 388	56, 238	61, 389	
Norway	10, 276	17, 004	16, 582	15, 106	15, 078	12,960	13,380	10,002
Sweden	86,050	61,400	56, 084	74, 094	69, 914	75,070	78, 853	66,758
Denmark	${ }^{2} 53,576$	37, 653	41, 571	47, 583	50, 794	52, 158	58,403	
Netherland	18,070	17,858	18,617	18,500	.20,443	20,001	17,817	23, 913
Belgium	42, 595	12, 834		27,360	33, 865	35, 225	35, 783	36, 356
Luxemburg	3, 382	1,616	1,550	1, 700	1,829	1,243	1,527	2,503
France.	${ }^{2} 355,278$	${ }^{3} 220,336$	${ }^{3} 180,553$	${ }^{3} 179,823$	291, 406	244,455	288,264	377, 47 l
Spain	29, 110	33, 061	30, 474	32, 915	37,772	35, 615	31,214	40, 43 s
Portuga		4,541	4,563	$\begin{array}{r}4,620 \\ \hline\end{array}$		5,616 438,415 4		
Italy-..--	236,945 4,784	$2.33,889$ 4,209	245,353 5,009			488,415 3,035	30,465 2,466	39,800 3,059
Switzerlan	4,784 $2.591,996$	4,209 549,964		2,811 ${ }_{5} 309,587$	3,121 332,490	3,035 344,812	2,466 284,567	411, 676
Germany	2.591,996	5249, 964 10,901	5301,839 12,933	- 309,587	332,490 16,008	34,812 19,000 7	284,567 18,317 7	- 21,078
Czechosiova					59,654	74, 087	71, 552	86, 265
Hungary	290, 896				22, 307	21,964	22, 553	25, 547
Yrroslavia	673,079				22, 244	18,907	18,272	19,353
Greece	${ }^{8} 2,228$	3, 566	4,540	3, 827	4, 187	4,134		5,964
Bulgaria	$2{ }^{2} 9,595$	5, 991	3, 579	5,791	7, 005	6, 657	9, 144	10, 052

[^161]Table 120.-Oats: Production in undermentioned countries-Continued. NORTHERN HEMISPHERE-Continued.

Country.	$\begin{gathered} \text { A verage, } \\ 1909- \\ 1913 . \end{gathered}$	1917	1918	1919	1920	1921	1922	$\begin{gathered} 1923, \\ \text { prelimi- } \\ \text { nary. } \end{gathered}$
EUROPE-continued.	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 933,097 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels. 5,890	1,000 bushels. 22, 824	1,000 bushels. 68, 349	1,000 bushels. 66, 356	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 92,074 \end{gathered}$	1,000 bushels. 63, 701
Poland.-------------------	${ }^{10}(105,755)$				129,061	150, 286	172, 621	259, 867
Lithuania	${ }^{10}(18,203)$			15,315	14, 223	18, 154	28, 943	23, 324
Latvia	${ }^{10}(18,205)$				7,790	16,843	18, 171	20,518
Esthonia	${ }^{10}(8,695)$			7,702	8, 022	8,840	10, 058	9,800
Finland.	20,391	18,802	19,228	20, 286	11,247	28,029	28, 199	21, 288
Russia, including Ukraine and Northern Caucasia	${ }^{10}(824,615)$						319, 570	
Total comparable with 1909-1913.....	2, 737, 879							
Total comparable with 1923.	1, 794,519				1,355, 293	1, 388, 643		1,722, 466
\triangle FRICA.								
Moroceo		165	267	201	228	555	1,180	1,151
Algeria - ------------------	13, 489	18, 601	21, 564	10, 743	6, 855	10, 334	5,570	15,949
Tunis---------------------	3,642	3,996	4,271	3,100	1,481	4,134	792	2,756
Total comparable with 1909-1913....	17, 131	22,597	25, 835	13,843	8,336	14,468	6,362	18,705
Total comparable with 1923	--	22,762	26, 102	14,044	8,564	15,023	6,542	19,856
Cyprus ASIA.	515	371	407	210	240	255	264	
Russia (Asiatic)	107,687							
Japanese Empire: Chosen	${ }^{7} 2,202$	3, 610	4,730	2,432	4,184		5,136	-------
Total comparable with 1909-1913...-	110,404					--------	41,494	
Total Northern Hemisphere, comparable with 1909-1913.	4,360, 511	.					,	
Total Northern Hemisphere, comparable with 1923					3, 390, 848	2,908, 240		3,573,523

SOUTHERN HEMISPHERE.

Country.	Average, 1909-1913.	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24
Chile	3,333	3,177	2, 020	2, 590	3,155	2, 893	3,029	
Uruguay	${ }^{11} 1,284$	3,697	1,288	1,479	2,502	2,069 3,		
Argentina	54, 246	75, 783	33, 762	57, 113	47, 619	32,973	54,666	58,560
Union of South Africa ${ }^{12}$ \qquad	${ }^{8} 9,661$	10,475	6,389	4,686	5,909 23	5,186 15,184		
Australia------------------	17, 768 17,977	12,984 6,178	13,051 8,606	15,695 8,710	23, 151 6,531	15,184 8,441	7,110	
Total comparable with 1909-1913	104, 269	112, 294	65, 116	90, 273	88,867	66,746		
Total compara- ble with 1923 .	54, 246	75, 783	33, 762	57, 113	47,619	32, 973	54, 666	58,560
World total comparable with 1909-1913	4, 464, 780							
World total comparable with 1923					3, 438, 467	2,941, 213		3,632, 083

[^162]Table 121.-Oats: World production, 1894-1923.

Year.	Production in countries reporting all years 1894-1923.	Production as reported.	$\begin{aligned} & \text { Estimated } \\ & \text { world totals } \\ & \text { (prelimi- } \\ & \text { nary). } \end{aligned}$	Three selected countries.		
				Russia. ${ }^{1}$	Germany.	France.
	1,000 bushels.					
1894			$3,039,717$ $3,213,431$	743, 953	${ }^{433} \mathbf{4 3 2 8}$	294, 344
1895	$2,039,081$ $1,868,604$		$3,213,431$ $3,113,148$	717,314 799,833	430,205 411,259	$\begin{array}{r}305,742 \\ 296 \\ \hline\end{array}$
1897	1,810,951	2, 680, 919	2, 889, 281	663, 714	393, 979	253, 257
1898	2, 045, 803	2, 995, 851	3,181, 262	687, 534	465, 317	321, 562
1899	2, 099, 348	3,333, 003	3,620, 889	995, 307	474, 174	307, 914
1900	2, 086, 228	3, 226, 625	3, 470, 581	853, 697	488, 590	285, 313
1901	1, 902,240	2, 810, 028	2,960,683	624, 098	485, 711	254,900
1902	2, 304,423	3, 557, 569	3, 812, 029	930, 679	514, 447	319,691
1903	2,178, 550	3, 326, 743	3,621, 951	799, 785	542, 427	344, 329
-1904	2, 162,947	3, 561, 205	3, 832,755	1, 124, 266	477,847	290,902
1905	2, 248, 847	3, 474, 967	3, 752, 142	936, 665	451, 013	305,736
1906	2, 374, 494	3,430, 518	3, 713, 918	714, 272	580, 869	295, 110
1907	2, 264, 041	3, 526, 136	3,775, 336	921,175	630, 318	352, 712
1908	2,165, 982	3, 729, 862	3,783,767	959, 414	530, 126	327, 159
1909	2,570,179	4, 530,467	4,546, 147	1,163, 076	628, 712	383, 139
1910	2, 520, 718	4, 252, 783	4,257, 893	1, 064, 516	544, 287	331, 866
1911	2, 257, 513	3, 964, 808	3, 978 , 991	876, 013	530, 764	349,247
1912	2, 822, 328	4,738,090	4,756,725	1,089, 365	586, 987	355, 089
1913	2, 647, 659	4, 781, 258	4, 798, 558	1,250, 590	669, 231	357,049
1914	2, 492, 811	4, 131, 958	4,148, 447	2914,913	622, 674	318, 333
1915	2, 604, 450	4, 513, 559	4, 581, 429	${ }^{2} 1,022,107$	412, 400	238, 551
1916	2, 424, 824	3,126,676	4, 023, 526		484, 007	277, 117
1917	2, 382, 705	3,122, 116	3, 882, 136		${ }^{3} 249,964$	8220,336
1918	2, 382, 177	3,113, 316	3,777, 336	----------	${ }^{3} 301,839$	${ }^{8} 180,553$
1919	2, 006, 599	2,772,076	3,283, 092		${ }^{3} 309,587$	${ }^{8} 179,823$
1920	2, 437, 471	3, 606, 466	3, 836, 484		${ }^{3} 332,490$	${ }^{3} 291,406$
1921	2, 000, 212	3, 089, 253	3, 323, 268		${ }^{3} 344,812$	${ }^{3} 244,455$
1922	2, 106, 189	3, 684,938	3, 709, 954		${ }^{3} 284,567$	${ }^{8} 2888,264$
1923	2, 422, 121	3, 632, 083	4, 142, 849		${ }^{3} 411,676$	${ }^{8} 377,470$

Division of Statistical and Historical Research.
For each year is shown the production during the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern.
${ }^{1}$ Includes all Russian territory reporting for years named. European Russia includes 50 governments in Europe, 10 governments of Poland, and 1 government and 2 provinces of Northern Caucasia; Asiatic Russia during 1899 to 1905 included statistics frons 4 governments of Siberia, 4 provinces in Central Asia, and the small government of the Black Sea in Transcaucasia. In 1906 no statistics were available for Akmolinsk, one of the 4 provinces of Central Asia which had been previously reported but to the other governments and provinces reporting were added statistics for Ural, 3 provinces of Turkestan, and 10 governments and provinces of Transcaucasia. Subsequently Asiatic Russia included 8 governments and provinces of Siberia; 4 provinces of the Steppes, 4 provinces of Turkestan, and Ural in Central Asia; and 11 governments and provinces of Transcaucasia. The territory supplying statistical data remained the same after 1906, although in the annual publication of the Division of Rural Economics and Agricultural Statistics of the Ministry of Agriculture for 1915 (published in 1917) the Central Statistical Committee departed from its usual grouping of the provinces of the Steppes and of Turkestan.
${ }^{2}$ Excludes Poland.
¿New boundaries.
Table 122.-Oats: Monthly marketings by farmers, United States, 1917-1922.

Year beginning July 1.	Percentage of year's receipts as reported by about $3,500 \mathrm{mills}$ and elevators.												
	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Season.
1917-18.	4.7	16.4	13.5	11.1	7.7	7.8	8.3	8.0	7.1	6. 5	4.0	4.9	100.0
1918-19	8.0	19.6	11.9	9.9	7.2	6. 7	6.7	4.5	5.5	6.3	7. 0	6.7	100. 0
1919-20	14.4	18.4	10.1	9.2	5.8	8.3	8. 2	6.6	4.9	4.3	5. 2	4.6	100.0
1920-21	8. 3	18.7	13.8	9.5	5. 5	5.8	6. 6	6.6	6.0	4.6	6.8	7.8	100.0
1921-22	15.1	16.5	11.8	7.9	5.3	6.1	7.3	6.9	5.6	4.3	7.2	6. 0	100. 0
1922-23.	8.9	15.7	11.9	10.1	7.8	8.6	7.4	7.1	6.5	4.7	5.4	5.9	100.0

[^163]Table 123.-Oats: Farm stocks, shipments, and quality, United States, 1897-1923.

Year.	Old stocks on farms Aug. ..	Crop.			Total supplies.	Stocks on farms Mar. 1 following.	Shipped out of county where grown. ${ }^{1}$
		Quantity.	Weight per bushel. ${ }^{2}$	Quality. ${ }^{3}$			
	1,000 bush.	1,000 buesh.	Pounds.	Per cent.	1,000 bush.	1,000 bush.	1,090 bush.
1897-98	80, 153	791, 442	30. 5	87.6	871, 595	309, 043	245, 469
1898-99	51,352	842, 747	29.7	84.5	894, 099	338, 684	233, 096
1890-190	59, 060	925,555	31.3	89.5	984, 615	338, 383	274, 146
1900-1	64, 420	913, 800	31.1	89.2	978, 220	332, 364	288, 997
1901-2	55, 128	778, 392	30.7	83.7	833, 520	241, 506.	152, 962
1902-3.	32,449	1,053,489	31.0	86.7	1,085, 938	390, 872	256, 233
1903-4	78,598	869, 350	29.7	79.9	947,948	304, 128	250, 192
1904-5	46, 394	1,008, 331	31.5	91.4	1,055, 325	392, 861	300, 534
$1905-6$	62, 872	1,090, 236	32.7	92.4	1, 153, 108	437, 300	819,871
1906-7	77, 573	1,035, 576	32.0	88.2	1,113, 149	413, 480	229,441
1907-8.	73,196	805, 108	29.4	77.0	878, 304	258, 104	221, 147
1908-9	40, 528	850, 540	29.8	81.3	891, 068	294, 082	253, 929
1909-10	27,478	1,068, 289	32.7	91.4	1,095, 767	385, 705	343, 968
1910-11	66, 666	1, 186, 341	32.7	93.8	1, 253,007	442,665	363, 103
1911-12	67, 801	922, 298	31.1	84.6	990, 099	289, 880	265, 944
1912-13	34,875	1, 418,337	33.0	91.0	1,453, 212	604, 249	438, 130
1913-14	103, 916	1,121,768	32.1	89.1	1,225, 684	419,481	297, 365
1914-15	62,467	1,141, 060	31.5	86.5	1,203,527	379, 369	335, 539
1915	55,607	1, 549, 030	33.0	87.5	1, 604, 637	598, 148	465, 823
1916-17	113, 728	1, 251, 837	31.2	88.2	1,365,565	394, 211	355, 092
1917-18	47, 834	1, 592, 740	33.4	95.1	1, 640, 574	599, 208	514, 117
1918-19	81, 424	1,538, 124	33.2	93.6	1,619,548	590, 251	421, 568
1910-20	93, 045	1, 184, 030	31.1	84.7	1,277, 075	409, 730	312, 364
1920-21	54, 819	1,496, 281	33.1	93.3	1,551, 190	683, 759	431,687
1921-22	161, 108	1, 078,349	28.3	74.7	1,239, 457	411, 934	258, 259
1922-23	74, 513	1,215, 803	32.0	87.7	1,290, 316	421, 118	303, 950
1923-24 ${ }^{4}$	70,965	1,299, 823	32.1	87.9	1,370, 788	444,810	320, 859

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on percentage of crop as reported by crop reporters.
${ }_{2}^{2}$ Average weight per measured bushel as reported by crop reporters.
${ }^{3}$ Per cent of a "high medium grade" as reported by crop reporters.
${ }^{4}$ Preliminary.
Table 124.-Oats: Visible supply in United States, first of month, 1909-1923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000				
	bush	bush-	bush-	bush-	bush-	bush-	bush-	butsh-	bush-		bush-	buish-
1910-11												4,24
1911-12	11, 203	20, 742	21, 044	22, 600	20, 315	18, 754	15, 431	14, 366	13, 429	11, 991	8 8,052	3,69
1912-13	1, 031	4, 160	9, 260	10,552	10,774	8, 457	9,646	12, 343	13, 115	8,704	8, 105	14,756
1913-14.	17, 131	24, 662	30, 718	31,684	29, 664	26, 909	24, 450	21, 489	19,755	13, 262	8,144	7,210
Av. 1909-1913.	7,185	13,460	18, 525	19, 024	17,969	16, 286	14, 857	14, 521	13, 869	10, 748	7, 866	7,89
191	6,48	20, 124	27, 285	31, 866	32, 471	32, 956	33, 173	33, 258	27, 284	23, 022	12,62	4,345
1915-16	1,309	2,924	14,381	15,730	20, 928	21, 081	20, 175	20, 265	17,892	12,096	16, 192	12,452
1916-17	8, 537 6,679	27, 691	38, 866	45, 585	47, 467	48, 823	42, 675	36, 740	34, 191	28, 033	17,45	9,741
1918-19	7,876	19, 300	24, 689	22, 050	29, 143	34, 828	30, 505	27,666	22,882	21, 507	- 15 , 827	18,094
1919-20	20,481	19, 411	19, 552	19, 196	16, 922	13, 080	11, 550	10, 401	9, 576	6,813	8,642	3, 623
1920	3,786	8,149	27, 602	34, 414	33, 961	32, 194	33, 632	34, 142	33, 903	30,740	28, 426	34,401
A v. 1914-1920.	7, 879	14, 984	23,791	26, 613	28, 498	28,660	26, 513	25, 203	23, 404	20, 717	17, 141	13, 698
1921-22	37, 562	60, 455	65, 843	69, 998	69, 198	67,728	68, 010	68,529	64,644	55, 837	47, 950	42, 7.43
1922-23	36,667	38, 355	35, 968	34, 077	32, 940	32, 391	30,861	27, 683	24, 044	21, 932	13, 514	8,523
1923-24	5,477	10, 111	16, 514	20, 488	18, 686							

[^164]Table 125.-Oats: Receipts and shipments, 11 primary markets, 1909-192.

Year beginning Aug. 1.	Chicago.		Milwaukee.		Minneapolis.		Duluth.		St. Louis.		Toledo.	
	$\begin{array}{\|c} \text { Re- } \\ \text { ceipts. } \end{array}$	Shipments	$\underset{\text { ceipts. }}{\text { Re- }}$	$\left\lvert\, \begin{aligned} & \text { Ship- } \\ & \text { ments. } \end{aligned}\right.$	$\begin{array}{\|c\|} \text { Re- } \\ \text { ceipts. } \end{array}$	$\left\lvert\, \begin{aligned} & \text { Ship } \\ & \text { ments. } \end{aligned}\right.$	$\underset{\text { ceipts. }}{\mathrm{Re}}$	Shipments.	$\begin{gathered} \text { Re- } \\ \text { ceipts. } \end{gathered}$	Shipments.	Receipts.	$\begin{aligned} & \text { Ship- } \\ & \text { ments. } \end{aligned}$
		1,0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
					bush-							
			${ }_{9,4}{ }^{\text {els }}$		els.			els. $7,432$		els. $14,765$	$\begin{aligned} & e l s . \\ & 3,670 \end{aligned}$	$\begin{aligned} & \text { els. } \\ & 3,162 \end{aligned}$
r910-1	107, 902	89, 705	14,844	14, 873	18, 419	13, 845	2,434	2,824	20, 517	15, 323	3, 700	3, 435
1911-12	87, 623	70, 090	10, 863	8, 194	10, 555	10, 043	4, 529	4, 639	16, 879	11, 280	2, 872	2,611
1912-13	117, 103	116, 275	16, 252	20, 180	19,031	16,397	9, 350	8,351	23, 785	16, 592	3, 63	4,365
1913-1	105, 738	98, 141	18, 434	17, 172	22, 995	24, 272	5,795	6,761	25,967	19, 497	3,655	2, 819
A v. 1909-1913	100, 873	89,342	13, 978	13, 570	17,320	15,818	5,983	6,001	21,439	15, 49	3, 50	3,278
1914-15	143, 813	130,938	29,9	31, 179	23, 042	23, 147	9, 005	8,325	21,419	16,240	6,0	5,089
15	151, 168	122, 280	35, 252	34, 389	45, 778	45, 024	4, 844	4,528	17, 518	11, 63	4, 707	3,501
1916-17	145, 075	08, 152	32, 707	28, 649	31, 322	23, 075	3, 184	, 493	24, 616	18, 940	4,926	2, 642
1917-18	134, 310	86, 725	31, 766	20, 128	42,017	42, 181	766	680	37, 431	32, 129	5, 303	3, 194
18-19	115, 714	83, 719	34, 727	30, 548	37, 031	33, 019	2, 663	2, 378	30, 812	23, 836	9, 010	8,820
19-2	82,141	60, 792	26, 572	17, 766	17, 054	19,033	1,035	1,084	31,391	22, 77	3, 221	1,601
1920	79, 430	54, 598	19,065	13, 297	26, 003	14,600	6,241	455	30,103	21,38	5,848	2,339
Av. 1914-1920	121, 654	92, 458	30,007	25,137	31,750	28,583	3,963	2,992	27,613	20,99	5, 58	3,884
1921-22	77,828	63,418	23,241	17, 86	32, 307	28,260	6,065	10,129	25,949	20,16	4, 604	2,348
1922-23	84,451	65,055	21, 057	17, 162	24,870	38,320	1,372	2,130	32, 220	26, 66	3,786	2, 230
1922 August	10, 5	7,7	1,5		4,006	2, 727	207	459	2,580	,	398	
Septemb	9, 493	6,907	1, 833	1,290	3, 733	3, 973	417	硅	1,760	1,309	230	
October	9, 235	5,045	2, 236	1,549	3, 421	4,307	$7{ }^{\text {a }}$	131	2, 810	2,001	390	249
November	8, 200	7,292	1,936	1,558	2,203	3,013	79	280	2,986	2,403	242	122
December	8,435	4,847	2, 121	1,902	2, 430	3, 809	4	19	2, 636	1,656	742	
1923							6	9			30	
Februa	5,677	5, 4 4 489	1,947	1, 1,413	1,467	2,242	53	41	1,908	1,906	167	C?
March	6,367	6,167	1,690	1,465	1,697	2, 437	32	39	2, 926	2, 426	247	2
April	4,737	4, 109	1,251	1,439	1,284	3, 080	17	6	2, 824	2,818	193	57
May	4,696	5, 107	1,132	1,501	730	3,167	37	4	2, 532	2, 079	${ }^{238}$	117
June	4,477	4,465	1,623	996	930	3, 359	41	318	2, 748	${ }_{2}^{2,283}$	370	53
y	6,154	3, 564	1, 774	1,145	67	2, 998	284	582	2, 452	2, 274		38

Year beginning Aug. 1.	Detroit.		Kansas City.		Peoria.		Omata.		Indianapolis.		Total.	
	$\begin{gathered} \mathrm{Re}- \\ \text { ceips. } \end{gathered}$	Ship-	$\begin{gathered} \text { Re- } \\ \text { eipts. } \end{gathered}$	Ship- ments.	$\begin{gathered} \text { Re- } \\ \text { ceipts. } \end{gathered}$	Ship-	$\left\lvert\, \begin{gathered} \mathrm{Re}- \\ \text { ceipts. } \end{gathered}\right.$	Ship- ments.	$\begin{gathered} \text { Re- } \\ \text { ceipts. } \end{gathered}$	$\begin{aligned} & \text { Ship- } \\ & \text { ments. } \end{aligned}$	$\begin{gathered} \text { Re- } \\ \text { ceipts. } \end{gathered}$	Ship-
1909-10	$\begin{array}{\|c\|} \hline 1,000 \\ \text { bushl } \\ \text { ous } \\ 2,488 \\ 2,488 \\ \hline, 07 \end{array}$		$\begin{array}{\|c\|} 1,000 \\ b u s h-1 \\ \text { cels } \\ 5,165 \\ 5,165 \\ \hline \end{array}$	$\begin{gathered} 1,000 \\ \text { bush- } \\ \text { els } \\ 4,508 \\ 1,508 \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { bush } \\ & \text { eus. } \\ & 10,875 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { bush } \\ & \text { cus. } \\ & 11,705 \end{aligned}$	$\begin{gathered} 1,000 \\ \text { bush. } \\ \left.\begin{array}{c} \text { els. } \\ \text { (1) } \end{array}\right) \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { bush } \\ & \text { els. } \\ & \text { (1) } \end{aligned}$	$\begin{gathered} 1,000 \\ \text { bushl } \\ \text { els. } \\ \text { c1) } \\ \text { c1) } \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { bush } \\ & \text { els. } \\ & \text { (1) } \\ & \hline 11) \end{aligned}$	$\begin{gathered} 1,000 \\ \text { bush- } \\ \text { els } \\ 161,146 \\ 187 \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { bush } \\ & \text { els. } \\ & 136,420 \end{aligned}$
1910-11	3, 073 2 2 182	${ }_{348}^{265}$	-6,280	5,071	$\underset{\substack{10,130 \\ 6,658}}{1}$	10,895	(1) ${ }_{8} 868$	(1)	${ }^{(1)} 976$	${ }^{(1)} 394$	187, ${ }^{158,} 5931$	${ }^{135,231}$
1912-13	3, 535	514	7,704	7,523	11,447	13, 188	14,958	14,802	8,136	2,876	234,	221,063
1913-14	3,807	649	11, 325	11,032	12,152	13, 804	15,977	18,575	5,392	1,808	231, 237	214, 530
Av. 1909-1913	3, 131	432	7,298	440	10,252	11,666					194, 643	171,582
1914	4,	1,123	7,338	6,107	11,	11,726	13,648	13,916	5,8	4,349	275,	252,139
1915-16	5,173	2, 292	4,882		11,364	11,8	11, 212	10, 961	13,79	8,677	305,	${ }^{257,708}$
${ }^{1916-17}$	3,677	${ }_{607}^{93}$	10,059 18,344	12, 826	20, 170	17,541	${ }_{23,673}^{118}$	21,945	19,822	13,705	337,	${ }_{251}^{251,661}$
1918-19	8 8,179	1,756	16,688	11, 343	8,535	8 8,212	20,661	20,559	14,820	4, 516	298,	228, 706
1919-2	2, 34	551			10, 636	13,096	13, 118	${ }_{1}^{21,110}$	13, 969	4,023	209, 070	158,008
1920-21	3, 345	750	7, 137	5, 132	9, 176	7,906	10, 223	8,423	16,509	6,099	213,080	134,986
Av. 1914-1920	4,390	1,145	10,295	7,614	12,090	11,624	15,837	15,044	14, 234	7,466	277, 42	216,936
1921-22	2,285	330	7,262	5,043	14, 210	12,254	10,665	9,768	13, 052	6,247	217, 468	175,826
1922-23-	3,444	326	10,568	6,147	15,555	15,147	14,772	16,174	10,585	3,471	222,680	192,826
1922	316	49	650	375			1,258	, 322		232	24, 482	
Septembe	${ }^{302}$	46	599		1,245		1,162		936	328	21,710	16, 792
October	${ }^{270}$	32		406	$-1,762$	1,559	1, 340	1,068	846	${ }_{218}^{268}$	${ }_{21}^{23,405}$	16,615 18,293
Novemb	354		1,468	488	1,590	1,607	1,744	1,308	846 382	218 190	20,656	${ }_{15,514}^{18,293}$
December	356	12	1,043	460	1,457	1,374	1,050	1,221	382	190	20,656	15, 514
January-	433	52	1,163	${ }_{6}^{658}$	1,870	1,768	1,366	1,694	1,308	${ }_{318}^{244}$	21, 044	18, 875
February	240 281	61 40	${ }_{936}^{861}$	618 767	1848 1,348 1	1763 1,499		1, 1,748	${ }_{960}$	434	17,96	17,246
	34	16	1,504	672	1,143	1,122	1,674	2,038	8	454	15, 69	16, 326
May	252		${ }_{617}^{617}$	636	747	${ }^{822}$		1,434	${ }_{724}^{980}$	408	${ }_{13}^{12,611}$	15, 1838
June	${ }_{202}^{204}$	$\stackrel{2}{4}$	606 338	${ }_{297}^{465}$	$\xrightarrow{1,085}$	1, 1,148	1, 102	1,304	724 472	240 137	\|14,840	14, 1370

Division of Statistical and Historical Research. Compiled from the Chicago Daily Trade Bulletin and the annual reports of the Chicago Board of Trade.

Table 126.-Oats: Classification of cars graded by licensed inspectors, all inspection points.

Year beginning Aug. 1.	Total of all classes and subclasses under each grade, annual inspections, 1919-1922.											
	Receipts						Shipments.					
	No.1.	No. 2.	No.3.	No. 4.	Sam- ple.	Total.	No. 1	No. 2.	No.3.	No. 4.	Sample.	Total.
	Cars.											
1919-20	5, 662	52, 094	96, 039	15, 887	3, 589	173, 271	3, 167	41, 094	62, 764	4,100		111, 817
1920-21	8,803	60,169	73, 072	14,766	6,831	163, 641	3, 600	45, 099	31, 811	2, 821	2, 220	85, 551
1921-22	2,519	31, 643	105, 103	31, 774	6, 664	177, 703	2,384	49, 117	72, 955	4,305	1,675	130, 436
1922-23	2,548	47, 347	95, 984	17, 004	4,640	167, 523	1,738	45, 563	62, 601	6,112	1,235	117, 249
Class.	Total inspections by grade and class, August 1, 1922, to July 31, 1923.											
White.	2,101	45, 333	94, 390	16,559	-4, 011	162, 394	1, 601	44, 457	62, 157	6, 059		115, 244
Red.	329	1, 531	1,272	340	- 124	3,596	116	934	409	34	8	1, 501
Gray	46	31	27	25		136	1					
Mixed	72	452	295	80	498	1,397	20		35	19	257	501
Year beginning Aug. 1.	Total of all classes and subclasses under each grade, annual inspections, 1919-1922.											
	Receipts.						Shipments.					
	No. 1.	No. 2.	No. 3.	No. 4.	Sample.	Total.	No. 1.	No. 2.	No.3.	No. 4.	Sample.	Total.
	Per	Per cent.	Per	Per cent.	Per cent.	Per	Per cent.	Per Per .	Pent.	Per cent.	Per cent.	Per cent.
1919-20	3.3	30.0	55.4	9.2	2.1	100	2.8	36.8	56.1	3.7	0.6	100
1920-21	5. 4	36.8	44.6	9. 0	4. 2	100	4.2	52.7	37.2	3.3	2.6	100
1921-22	1.4	17.8	59.1	17.9	3.8	100	1.8	37.7	55.9	3. 3	1.3	100
1922-23.	1.5	28.3	57.3	10.1	2.8	100	1.5	38.9	53.4	5.2	1.0	100
Class.	Total inspections by grade and class, August 1, 1922, to July 31, 1923.											
White	1.3	27.9	58.1	10.2	2. 5	100	1.4	38.6	53.9	5. 3	0.8	100
Red.	9.1	42.6	35.4	9. 5	3. 4	100	7.7	62.2	27.3	2.3	0.5	100
Gray	33.8	22.8	19.9	18. 4	5.1	100	33.3	66.7				100
Mixed	5.1	32.4	21.1	5. 7	35.7	100	4.0	33.9	7.0	3.8	51.3	100

Grain Division.

Table 127.-Oats, including oatmeal: International trade, 1910-1923.

Country.	Year ending July 31.							
	Average, 1910-1914.		1920-21		1921-22		$\begin{aligned} & \text { 1922-23, } \\ & \text { reliminary. } \end{aligned}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING countries. Algeria	$\begin{array}{r} 1,000 \\ \text { bushels. } \\ 79 \\ 55 \\ 898 \\ 487 \end{array}$	$\begin{array}{r} 1,000 \\ \text { bushels. } \\ 4,102 \\ 42,569 \\ 270 \\ 443 \\ 178 \\ 14,771 \\ 2,469 \end{array}$	$\begin{array}{r} 1,000 \\ \text { bushels. } \\ 4,190 \\ 20 \\ 186 \\ 1 \end{array}$	$\begin{gathered} \text { 1,000 } \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 286 \end{gathered}$	1,000 bushels. 10, 123	1,000 bushels. 1.509 ${ }^{1} 509$	1,000 bushels. 2, 081
Argentina ${ }^{2}$				28,425				
Australia ${ }^{3}$				1,205	25	428		
British India				1, 51	1	37		${ }^{3} 67$
Bulgaria.-				- ${ }^{2}$	${ }^{(5)} 354$	- 20	3964	${ }^{3} 26,115$
Chile ${ }^{\text {2 }}$	$\stackrel{9}{2}$		$\stackrel{31}{31}$	25, ${ }_{196}$	${ }^{3} 7$	1,832		
Finland.			26	39		132	${ }^{3} 590$	${ }^{3} 421$
Hungary	1,420	12,416		509	- 68	572 10	112 312,243	11,344 $\mathbf{3 6}$ 1
Italy-:	8,212	65	9, 018	2	4,688 33	${ }_{218}^{10}$	${ }^{3} 12,12{ }^{173}$	11,473
Rumania-	${ }^{-7}{ }^{-7}$	-10,493		7, 310		12, 592	${ }^{(1)}{ }^{5}{ }^{5}$	20,800
Russia.	1,206	70,466						
Tunis.-.--		2, 875	70	1,472	2	3,403	${ }^{1} 61$	722
Union of South	366	434	389	114	183	283	173	143
United States -	5,184	8,312	3, 104	4, 1314	1,738	19,685	${ }^{3} 293$	${ }^{3} \mathbf{2 5 , 4 1 3}$
Yugoslavia				914				
PRINCIPAL IMPORTINGCOUNTRIES.								
Austria.-	$\begin{aligned} & 2,295 \\ & 8,486 \\ & 626 \end{aligned}$	11452	$\begin{array}{r} 521 \\ 7,293 \\ \hline 42 \end{array}$	1		()20	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 8,656 \end{aligned}$	118233
Belgium					10, 205			
Czechoslovakia-----------			280226	559	1, 207	${ }^{(0)} 10$	1538	--1195
Denmark.	$\begin{array}{r} 4,687 \\ 29,972 \\ 36,977 \end{array}$	$\begin{array}{r} 152 \\ 115 \\ 33,744 \end{array}$		94	765	148	${ }^{3} 1,048$	
France..			$\begin{array}{r} 5,828 \\ 104 \end{array}$	8,99170	$\begin{array}{r} 26,317 \\ 7,269 \end{array}$	656 564	${ }^{8} 17,599$	81,0318117
Germany						564	${ }^{8} 7,126$	
Greece			$\begin{array}{r} 413 \\ 2 \\ 2,821 \\ 290 \end{array}$	$\begin{array}{r} (5) \\ 26 \\ 405 \\ 182 \end{array}$	136 3		$\begin{array}{r} 131 \\ 35,191 \end{array}$	--------
Japan-.-.-.-	$\begin{array}{r} 5 \\ 38,862 \\ 8497 \end{array}$	$\begin{array}{r} 42 \\ 30,771 \\ 8727 \end{array}$			4,485	-611		
Netherlands					${ }^{4} 981$	3	${ }^{3} 588$	${ }^{3} 20$
Poland						14	143	18
Sweden-	$\begin{array}{r} 6,468 \\ 12,464 \\ 63,624 \end{array}$	$\begin{array}{r} 1,899 \\ 13 \end{array}$	$\begin{array}{r} 7,525 \\ 2,419 \\ 30,230 \end{array}$	$\begin{array}{r} 191 \\ 66 \\ 441 \end{array}$	$\begin{array}{r} 2,169 \\ 7,917 \\ 30,777 \end{array}$	$\begin{array}{r} 3,851 \\ 88 \\ 882 \end{array}$	$\begin{array}{r} 31,436 \\ \begin{array}{r} 3 \\ 0,541 \\ 3 \\ 36,610 \end{array} \end{array}$	$\begin{array}{r} 31,763 \\ 11 \\ 8339 \\ 8 \end{array}$
Switzerland								
United Kingdom.								
Total countries reported.---	222, 036	236, 392	70,038	81, 701	101, 553	114, 551	106, 520	102, 750

Division of Statistical and Historical Research. Compiled from International Yearbook of Agricultural Statistics, 1922, except figures with footnotes $\left(^{(2)}\right.$ and ${ }^{(3)}$, which are compiled from official sources.
${ }^{1}$ Ten months ending May 31.
2 Calendar years, 1909-1922.
3 Years ending June 30.
4 Average for the seasons 1911-12 to 1913-14
${ }^{5}$ Less than 500 bushels.
${ }^{0} 1913$ only.
${ }^{7}$ Eight months, Aug.-Dec. 1920, and May-July, 1921.
${ }^{8}$ Season 1913-1914.
e Eleven months.

Table 128.-Oats, including aatmaead: Net imports and net experts, principal countries 1907-1993.

Year ending July 31.	Imports.						Exports.				
	Belgium.	France.	Italy.	Neth- er-- lands.	Swit-zerland.	United Kingdom.	$\begin{array}{\|c\|} \text { Ruma- } \\ \text { nia. } \end{array}$	$\begin{aligned} & \text { Rus- } \\ & \text { sia. } \end{aligned}$	$\begin{gathered} \text { Cana- } \\ \text { da. } \end{gathered}$	United States. ${ }^{1}$	Alger- ia.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bushels	buishels	bushels	bushels							
1906-7	1,856	27, 792	3,816	1,758	9,206	43,437	${ }^{(2)}$	34,772	11, 340	6, 295	3, 660
1907-8	3, 172	7,631	4,216	3, 457	9, 661	cid, 879	${ }^{2}$)	28, 590	4, 574	2,135	3,942
18108-9	3,529	16, 602	5, 124	3,955	9, 542	55, 746	${ }^{(2)}$	59, 617	7, 381	${ }^{3} 4,358$	4,343
1009-10	6, 930	18, 470	6,559	9, 829	12, 354	74.411	${ }^{(2)}$	80,324	8, 929	1,514	3, 238
1910-11	8, 433	40, 841	11, 239	4,951	12,795	61,771	${ }^{(2)}$	107, 592	8,063	3,739	5,179
1911-12	6, 186	18,674	6, 844	8,283	11, 824	68, 288	11, 891	-58, 575	11, 755	55	4,637
1912-13	1.2, 426	29, 957	11, 711	8,998	13, 387	78,432	1,101	53, 772	15, 524	35, 732	1,691
1813-14	7, 7.78	41,249	4,371	8,593	11, 963	59,000	18, 271	37, 034	38, 537	${ }^{3} 19,525$	5,377
1914-15	${ }^{(2)}$	32, 164	15, 150	1,868	7, 592	57,772	374	378	12, 265	99, 979	3,296
1915-16	$\left.{ }^{2}\right)$	58, 016	34, 203	4,412	5,397	49,960	6,437	${ }^{3} 37$	57, 159	'98, 295	6,371
1916-1	${ }^{(2)}$	74, 699	${ }^{1} 30,275$	${ }^{1} 5,563$	${ }^{1} 5,682$	137,309	(2)	${ }^{(2)}$	157,985	94, 344	1 7, 5772
1917-18	(2)	33, 898	122,187	1167	1 2, 402	150,280	${ }^{2}$)	${ }^{(2)}$	145,238	122, 500	${ }^{1} 5,596$
1918-18	1,954	35, 843	${ }^{1} 20.940$	1893	12,387	142, 666	${ }^{3} 210$	${ }^{2}$	${ }^{1} 15,729$	108, 453	1.7,014
1910-29	4,549	29,923	1,086	2,268	6, 564	22, 569	${ }^{3} 123$	${ }^{(2)}$	14, 673	37, 392	4,572
1920-21	7, 289	53,164	9, 016	2,417	2,414	29, 789	7, 306	${ }^{(2)}$	24, 619	5,595	${ }^{3} 3.418$
1921-22	10, 185	25, 661	4,679	3, 874	7,916	29,895	12,592	$\left.{ }^{2}\right)$	31, 190	19,503	9,837
1922-23	18,538	16, 567	112,236	${ }^{1} 4,508$	4 9,540	${ }^{136,271}$	20,800	$\left.{ }^{2}\right)$	${ }^{1} 25,151$	25, 120	41, 573

Division of Statistical and Historical Research. Compiled from International Yearbook of Agricultural Statisties 1915-16, 1922, and official sources.
${ }^{1}$ Year ending June 30.
4 Ten months ending May 31.
${ }^{2}$ Not available.
${ }^{3}$ Net import.
5 Net export.

Table 129.-Oats: Farm price per bushel, 1st of month, Urited States, 1908-1828.

Division of Crop and Livestock Estimates.

Table 130.-Oats: Farm price per bushel, December 1, calendar years, 1908-1923, and value per acre, 1923.

State.	1908	1909	1910		1912	9113	$\begin{gathered} \text { Av. } \\ 1909 \\ 1913 . \end{gathered}$	1914	1915	1916	1917	1918	1919	1920	$\begin{array}{\|c\|} \hline \text { Av. } \\ 1914- \\ 1920 . \end{array}$	1021	1922	1923	$\begin{aligned} & \text { Value } \\ & \text { per } \\ & \text { acre, } \\ & 1923.1 \end{aligned}$
	Cts.	Cts	Cts.	Dolls.															
Maine	60	58	48	54	51	55	53	57	45	67.	85	90	92	85	74	55	47	56	17. 86
New Hampshire	59	64	51	61	48	56	56	58	54	69	84	87	85	75	73	60	60	64	22.80
Vermont--	62	50	50	59	48	52	52	55	53	65	85	90	90	75	73	59	56	63	19. 04
Massachusetts.-	62	58	50	58	47	54	53	56	51	66	81	91	90	80	74	59	63	63	21. 42
Rhode Island.--	64	53	48	58	45	50	51	58	50	68	75	90	95	80	74	60	60	60	18. 60
Connecticut	58	53	44	56	49	55	51	55	55	69	79	90	88	75	73	60	65	52	18. 20
New York	56	49	42	51	42	47	46	51	45	62	75	84	83	67	67	47	51	55	15. 30
New Jersey	55	50	44	50	44	47	47	54	48	61	70	79	80	75	67	45	55	55	17.05
Pennsylvani	55	50	41	50	41	46	46	51	44	57	73	80	80	66	64	45	48	52	16. 32
Delaware	54	48	43	47	45	51	47	50	51	62	78	87	90	70	70	46	57	60	13.11
Marylan	53	49	46	49	45	48	47	52	49	61	75	86	82	70	68	45	51	54	15. 30
Virginia	55	54	49	54	52	52	52	58	55	63	84	100	100	81	77	56	59	63	11. 80
West Virginia	56	54	50	56	47	51	52	55	51	64	79	91	91	79	73	52	58	63	13. 34
North Carolina-	63	66	60	63	62	61	62	65	62	74	93	108	106	96	86	70	67	74	14. 07
South Carolina-	75	72	65	72	66	71	69	71	67	80	100	118	110	103	93	73	76	82	18. 24
Georgia	72	71	64	70	65	68	68	70	66	79	117	119	115	108	96	64	75	85	13. 50
Florida	72	75	65	75	70	70	71	70	70	71	98	115	120	60	86	65	77	80	8.84
Ohio	49	41	35	45	33	40	39	45	36	53	64	70	72	50	56	33	45	45	12. 15
Indian	47	39	31	43	30	38	36	43	34	51	63	67	69	46	53	29	40	39	8.40
Illinois	47	38.	30	42	30	38	36	44	35	51	65	67	70	43	54	29	39	39	11.12
Michigan	49	41	35	46	33	39	39	45	35	53	64	69	71	48	55	36	41	43	13.94
Wisconsin	47	39	34	45	32	37	37	43	36	51	66	67	70	49	55	33	39	43	16. 07
Minneso	43	35	32	40	26	32	33	40	32	47	63	63	64	36	49	23	32	34	11. 36
Iow	42	35	27	41	27	34	33	41	32	48	63	64	64	36	50	23	35	37	12. 98
Missouri	45	43	32	45	35	45	40	44	38	53	61	70	71	49	55	30	44	45	7.04
North Dakota--	42	33	37	41	22	30	33	37	27	44	62	61	67	35	48	21	26	28	8. 68
South Dakot	41	34	30	43	25	34	33	38	28	46	61	59	63	33	47	20	32	31	9.92
Nebrask	41	35	28.	43	30	38	35	40	31	47	61	65	65	37	49	21	34	34	7. 92
Kansas	45	43	34	45	35	45	40	42	37	55	64	73	73	39	55	27	41	43	7.58
Kentucky	54	51	45	50	44	52	48	53	48	60	76	90	91	73	70	48	56	56	10.25
Tennesse	53	53	46	50	47	53	50	53	50	62	83	93	93	78	73	48	53	60	9. 54
Alabama	66	70	60	66	62	69	65	69	63	75	102	107	105	88	87	65	75	80	15. 00
Mississipp	67	68	55	65	60	63	62	65	60	74	94	107	105	87	85	64	66	76	12. 54
Louisana	64	62	49	65	51	57	57	63	55	68	94	99	100	82	80	70	69	68	15. 39
Texas	52	62	47	54	43	51	51	48	42	61	82	92	64	66	65	39	55	57	12.65
Oklahom	45	46	37	48	34	45	42	41	35	57	75	84	70	44	58	27	45	52	9. 00
Arkansa	53	59	46	53	50	53	52	53	52	68	75	88	88	78	72	45	57	62	14. 25
Montana	49	42	46	40	35	32	39	39	32	47	81	80	91	51	60	34	37	38	11.84
W yoming	50	50	50	50	37	40	45	48	43	60	80	80	112	62	69	38	40	47	12. 40
Colorado.	54	53	46	48	38	44	46	45	41	60	76	80	90	60	65	33	45	46	11. 25
New Mex	64	66	62	57	45	60	58	45	50	67	84	89	95	80	73	48	58	70	9.05
Arizona	74	79	90	60	70	50	70	70	64	80	96	120	100	96	89	65	68	80	21.08
Utah	48	52	48	47	49	40	47	43	45	61	85	97	98	80	73	37	47	58	18. 33
Nevada	65	59	63	62	52	65	60	55	55	75	96	118	100	120	88	75	75	81	27.90
Idaho	47	50	42	40	35	32	40	38	34	54	77	94	98	68	66	32	46	44	17. 48
Washing	48	48	48	45	40	40	44	42	37	51	81	98	93	72	68	42	58	50	22. 74
Oregon	47	52	47	44	41	38	44	45	37	49	75	96	92	65	66	38	57	45	14. 25
California	67	66	50	59	55	60	58	53	50	72	85	94	96	80	76	51	64	60	22.40
United States_			34.4	45.0	31.9	39.2		43. 8	36.1	52.4	66.6	70.9	71.5	46.0		30.2	39. 4	41.5	11.74

Division of Crop and Livestock Estimates.
${ }^{1}$ Based upon farm price Dec. 1.

Table 131.-Oats, No. 3 white: Weighted average price per bushel of reported cash sales, 1899-1923.

CHICAGO.

$\begin{aligned} & \text { Year beginning } \\ & \text { Aug. 1. } \end{aligned}$	Aug.	Scpt.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	
1899-1900	\$0. 22	\$0. 23	\$0. 25	\$0. 25	\$0. 24	\$0. 24	\$0.25	\$0. 26	\$0. 26	\$0. 25	\$0. 25	\$0.25	\$0.24
1900-1901	. 23	. 24	. 24	. 25	. 25	. 26	. 27	. 27	. 28	. 29	. 29	. 35	. 26
1901-2	. 37	. 37	. 38	. 42	. 47	. 47	. 44	. 44	. 44	. 44	. 48	. 49	. 43
1902-3	. 35	. 33	. 32	. 31	. 32	. 34	. 35	. 34	. 34	. 35	. 39	. 38	. 34
1903-4	. 35	. 37	. 36	. 36	. 36	. 39	. 43	. 40	. 41	. 42	. 42	. 40	. 38
1904-5.	. 34	. 32	. 30	. 31	. 30	. 31	.31	. 32	. 31	. 32	. 32	. 32	. 32
1905	. 27	. 28	. 29	. 31	. 31	. 31	. 30	. 30	. 32	. 34	. 38	. 37	. 31
1906	. 31	. 32	. 33	. 33	. 35	. 36	. 40	. 42	. 42	. 45	. 45	. 45	. 37
1907	. 46	. 49	. 49	. 47	. 50	. 50	. 51	. 52	. 52	. 53	. 51	. 55	50
1908-9	. 49	. 49	. 48	. 49	. 50	. 50	. 54	. 54	. 55	. 59	. 56	. 48	. 52
1909-10	. 38	. 39	. 40	. 40	. 44	. 48	. 47	. 44	. 42	. 40	. 38	. 41	. 42
1910-11	. 35	. 34	. 32	. 32	. 32	. 33	. 31	. 31	. 32	. 34	. 39	. 44	. 33
1911-12	. 41	. 45	. 47	. 48	. 47	. 50	. 52	. 53	. 57	. 55	. 53	. 49	. 50
1912-13	. 33	. 33	. 33	. 32	. 33	. 33	. 33	. 32	. 35	. 38	. 40	. 40	. 35
1913-14.	. 42	. 43	. 40	. 40	. 40	. 39	. 39	. 39	. 39	. 40	. 40	. 37	. 40
Av. 1909-1913.	. 38	. 39	. 38	. 38	. 39	. 41	. 40	. 40	. 41	. 41	42	. 42	. 40
1914-1915	. 42	. 48	. 46	. 48	. 49	. 53	58	. 57	. 57	. 54	. 49	. 53	50
1915-16	. 41	. 34	. 36	. 36	. 42	. 48	. 45	. 42	. 44	. 43	. 39	. 41	. 41
1916-17	. 44	. 46	. 49	. 55	. 53	. 57	. 56	. 61	. 69	. 70	- 67	. 78	. 54
1917-18.	. 61	. 60	. 60	. 65	. 77	. 82	. 89	. 93	. 89	. 77	. 77	. 77	. 71
1918-19	. 70	. 72	. 69	. 72	. 72	. 65	. 58	. 63	. 70	. 69	. 70	. 78	. 70
1919-20	. 73	. 68	. 70	. 73	. 82	. 86	. 86	. 93	1. 01	1.09	1.13	. 91	. 80
1920-21	. 70	. 62	. 54	. 51	. 48	. 44	. 42	. 42	. 36	. 39	. 37	. 34	. 51
Av. 1914-1920	. 57	. 56	. 55	. 57	. 60	. 62	62	. 64	. 67	. 66	. 65	. 65	. 60
1921-22.	. 32	. 35	. 31	. 33	. 34	. 34	. 36	. 36	. 38	. 38	. 37	. 36	.35
1922-23.	. 32	. 38	. 42	. 43	. 44	. 43	44	. 45	. 46	. 45	. 43	. 40	. 41
1923-24.	. 38	. 40	. 43	. 43	. 44								

Compiled from the Chicago Daily Trade Bulletin.
KANSAS CITY.

1899-1900	\$0. 22	\$0. 22	\$0. 23	\$0. 24	\$0. 24	\$0. 24	\$0. 24	\$0. 24	\$0. 26	\$0. 24	\$0. 24	\$0. 25	\$0.24
1900-1 1	. 22	. 23	. 24	. 24	. 24	. 25	. 26	. 27	. 29	. 30	. 29	. 38	. 26
1901-2 ${ }^{1}$. 39	. 38	. 38	. 43	. 47	. 47	. 45	. 45	. 45	. 44	. 45	. 47	. 43
1902-3.	. 32	. 32	. 32	. 31	. 32	. 35	. 34	. 34	. 33	. 34	. 44	. 37	. 34
1903-4	. 34	. 38	. 35	. 34	. 35	. 37	. 41	. 39	. 40	. 42	. 40	. 40	. 37
1904-5.	. 35	. 32	. 30	. 30	. 31	. 31	. 32	. 32	. 30	. 32	. 31	. 33	. 32
1905	. 26	. 27	. 28	. 30	. 31	. 31	. 31	. 31	. 32	. 34	. 37	. 37	. 31
1906-7	. 30	. 32	. 33	. 33	. 34	. 36	. 40	. 41	. 42	. 45	. 45	. 45	. 38
1907-8	. 48	. 48	. 48	. 44	. 49	. 49	. 49	. 51	. 49	. 51	. 51	. 50	. 49
1908-9	. 48	. 48	. 47	. 48	. 49	. 50	. 51	. 53	. 54	. 56	. 55	. 50	. 51
1909-10.	. 41	. 41	. 40	. 39	. 44	. 48	. 46	. 45	. 42	. 40	. 35	. 40	. 42
1910-11	. 34	. 33	. 32	. 32	. 32	. 32	. 31	. 30	. 32	. 32	. 39	. 43	. 34
1911-12	. 41	. 46	. 49	. 48	. 48	. 50	. 53	. 53	. 57	. 54	. 52	. 44	. 50
1912-13	. 34	. 33	. 32	. 34	. 33	. 38	. 39	. 36	. 48	. 40	. 40	. 38	. 37
1913-14-	. 40	. 47	. 45	. 47	. 47	. 34	. 33	. 33	. 35	. 36	. 39	. 37	. 40
Av. 1909-1913	. 38	. 40	. 40	. 40	. 41	. 40	. 40	. 39	. 43	. 40	. 41	. 40	. 41
1914-15	. 47	. 47	. 45	. 47	. 48	. 53	. 56	. 57	. 55	. 54	. 46	. 51	. 54
1915-16	. 38	. 35	. 36	. 39	. 42	. 44	. 47	. 43	. 44	. 43	. 39	. 45	. 40
1916-17	. 45	. 46	. 48	. 55	. 54	. 56	. 58	. 63	. 71	. 71	. 67	. 75	. 58
1917-18	. 59	. 60	. 60	. 67	. 76	. 83	. 90	. 91	. 91	. 77	. 72	. 74	. 72
1918-19	. 74	. 72	. 70	. 69	. 72	. 67	. 61	. 66	. 71	. 71	. 70	. 69	. 66
1919-20	. 73	. 66	. 69	. 74	. 81	. 87	. 89	. 92	1. 06	1. 12	1. 11	. 91	. 83
1920-21	. 72	. 63	. 55	. 51	. 49	. 46	. 43	. 43	. 37	. 40	. 37	. 35	. 50
Av. 1914-1920.	. 58	. 56	. 55	. 57	. 60	. 62	. 63	. 65	. 68	. 67	. 63	. 63	. 60
1921-22	. 32	. 35	. 32	. 32	. 33	. 36	. 37	. 37	. 37	. 39	. 37	. 36	. 34
1922-23	. 33	. 38	. 42	. 44	. 45	. 44	. 44	.46	. 47	. 45	43	. 40	43
1923-24	. 40	. 40	. 43	. 42	. 44								

Compiled from Kansas City Daily Price Current.
Division of Statistical and Historical Research.
${ }^{1} 1901$ compiled from Kansas City Star.

Table 131A.-Oats, No. 3 white: Weighted average price per bushel of reported cash sales, 1909-1923.

MINNEAPOLIS.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	$\begin{aligned} & \text { Weight } \\ & \text { ed } \\ & \text { average. } \end{aligned}$
1909-10	\$0.36	\$0. 37	\$0. 36	\$0. 38	\$0.41	\$0. 46	\$0. 45	\$0.43	\$0. 40	\$0. 39	\$0.36	\$0. 42	\$0. 39
1910-11	. 35	. 36	. 30	. 31	. 30	. 31	. 29	. 29	. 32	. 33	. 37	. 42	. 33
1911-12	41	. 44	. 46	. 46	. 46	. 48	. 50	. 52	. 54	. 54	. 50	. 47	. 47
1912-13	. 34	. 31	. 31	. 29	. 30	. 31	. 31	. 30	. 32	. 35	. 38	. 38	. 33
1913-14	. 40	. 40	. 37	. 37	. 37	. 36	. 36	. 37	. 36	. 38	. 38	. 35	. 38
Av. 1909-1913	. 37	. 38	. 36	. 36	. 37	. 38	. 38	. 38	. 39	. 40	. 40	. 41	. 38
1914-15	. 42	. 46	. 44	. 46	. 46	. 52	. 56	. 56	. 55	. 52	. 46	. 50	. 48
1915-16	. 37	. 33	. 34	. 35	. 40	. 46	. 45	. 41	. 42	. 42	. 38	. 38	. 38
1916-17	. 44	. 44	. 47	. 53	. 49	. 55	. 56	. 60	. 67	. 69	. 66	. 75	. 52
1917-18	. 55	. 58	. 58.	. 62	. 76	. 81	. 88	. 92	. 88	. 74	. 75	. 74	. 71
1918-19	. 68	. 69	. 65	. 69	. 69	. 64	. 56	. 60	. 68	. 66	. 66	. 74	. 66
1919-20	. 70	. 65	. 67	. 69	. 80	. 83	. 82	. 89	1.08	1.05	1.15	. 94	. 80
1920-21.	. 66	. 58	. 51	. 47	. 44	. 41	. 39	. 39	. 33	. 36	. 34	. 34	. 48
Av. 1914-1920	. 55	. 53	. 52	. 54	. 58	. 60	. 60	. 62	. 66	. 63	63	. 63	. 58
1921-22.	. 31	. 33	. 28	. 29	. 30	. 32	. 35	. 34	. 35	. 36	. 33	. 32	. 32
1922-23.	. 29	. 33	. 38	. 39	. 41	. 40	. 40	. 41	. 42	. 41	. 39	. 36	. 36
1923-24	. 35	. 37	. 40	. 39	. 40								

Division of Statistical and Historical Research. Compiled from Minneapolis Daily Market Record.
Table 132.-Oats, No. 3 white: Price per pound expressed as percentage of price per pound for No. 3 yellow corn, Chicago, 1909-1923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr	May.	June.	July.	Average.
	P.ct.	P. ct.	P.ct.										
1909-10	95	99	119	119	130	131	131	126	129	117	113	116	119
1910-11	96	103	112	114	124	128	121	121	112	110	124	122	116
1911-12	110	118	113	124	135	141	142	136	128	122	124	126	127
1912-13	73	78	89	108	126	126	120	114	111	117	117	113	108
1913-14	99	100	100	97	106	110	110	107	102	100	97	91	102
Av. 1909-1913.	95	100	107	112	124	127	125	121	116	113	115	114	114
1914-15	90	106	110	125	134	131	137	138	133	123	116	119	122
1915-16	89	80	97	100	106	114	106	101	101	100	92	89	98
1916-17	91	94	89	98	101	102	98	98	86	77	69	69	89
1917-18	52	50	52	51	76	81	86	96	94	84	83	79	74
1918-19	71	80	86	95	87	80	80	72	76	69	69	71	78
1919-20	66	77	87	87	98	100	103	103	105	94	105	101	94
1920-21	78.	83	104	116	114	118	117	119	111	114	103	99	106
Av. 1914-1920.	77	81	89	96	102	104	104	104	101	94	91	90	94
1921-22	100	116	121	123	127	124	115	111	115	107	106	98	114
1922-23	82	90	96	96	98	100	96	108	102	96	90	80	94
1923-24	76	79	72	92	98								

Division of Statistical and Historical Research. Compiled from the Chicago Daily Trade Bulletin.

BARLEY.

Table 133.-Barley: Acreage, production, value, exports, etc., United States, 1869-1923.

Calendaryear.	$\begin{gathered} \text { Acre- } \\ \text { age } \\ \text { hest- } \\ \text { vested. } \end{gathered}$	$\begin{gathered} \text { Aver- } \\ \text { quge } \\ \text { yield } \\ \text { per } \\ \text { pere. } \end{gathered}$	$\begin{aligned} & \text { Pro- } \\ & \text { Proc- } \\ & \text { dion. } \end{aligned}$	$\begin{gathered} \text { Avver } \\ \text { ger } \\ \text { farm } \\ \text { price } \\ \text { per } \\ \text { bushel } \\ \text { Dec. } . \end{gathered}$	$\begin{gathered} \text { Farm } \\ \text { value } \\ \text { Dee. } 1 . \end{gathered}$	$\begin{gathered} \text { Value } \\ \text { per } \\ \text { acre. } \end{gathered}$	Chicago, cash price per bushel, low maltiag to fancy. ${ }^{2}$				$\begin{gathered} \text { Domestic } \\ \text { exports } \\ \text { escal year } \\ \text { esegnning } \\ \text { july } 1 . .^{3} \end{gathered}$	$\begin{aligned} & \text { frrports, } \\ & \text { fisisg year } \\ & \text { beginning } \\ & \text { July } 1.3^{3} \end{aligned}$
							Dece		$\begin{aligned} & \text { Following } \\ & \text { May. } \end{aligned}$			
							Low.	High.	Low.	High.		
	,000				1,000	Iars						
869		27s. 9	buzhels.	$C_{70, n i s,}$	dollars.		Cts.	$\begin{gathered} \text { Cts. } \\ 85 . \end{gathered}$	Cts.	$\begin{aligned} & \text { Cts. } \\ & 62 . \end{aligned}$	Bushels.	Bushels.
1870	109	23.7	20, 295	79.1	20, 792	18.75	68	80	72	95	340, 093	4, 85
1871	14	24.0	26, 718	75.8	20, 264	18. 19	${ }^{531}$	64	55	71		
1872		19.2	26, 846	68.6	18, 416	${ }^{13.18}$		70	71	85	482, 410	4, 244, 751
1873	1,38	23.1	32, 044	86.7	27, 794	20.04	132	158	130	155	320, 399	4, 891, 189
1874	1,581	${ }_{20}^{20.6}$	32,552	$\begin{aligned} & 86.0 \\ & 74.1 \\ & \hline 1 \end{aligned}$	$\begin{gathered} 27,998 \\ 9728 \end{gathered}$	17.71	${ }_{81}^{120}$	${ }^{1292}$	${ }_{622}^{115}$	${ }_{7}^{137}$	91, 118	$\begin{gathered} 6,255,033 \\ 10,255,857 \end{gathered}$
${ }_{1875}^{1875}$	1,799	${ }_{21}^{20.6}$	- ${ }^{36,780}$	$\begin{aligned} & 74.1 \\ & 63.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 27,368 \\ & 24,403 \end{aligned}$		${ }_{631}^{81}$	${ }_{68 \frac{1}{2}}^{88}$	${ }_{80}^{62 \%}$	${ }_{85}{ }^{72}$	1, 186, 129	$10,285,957$ $6,702,965$
1877	1,669	21.4	35,638	6.5	22, 287	13.	${ }^{561}$		$46{ }^{\frac{1}{2}}$	${ }_{73}^{523}$	3, 921,501	6,764,228
1878	1,790	23.6	42, 246	57.9	24, 454	13.66	91	100	64	73	715, 336	5,720,979
1879	1,998	24	48, 721	59.4	28,939	14.48	86	92	75	80	1, 128, 923	7,135, 25
			45, 165		30,	16. 33	100	120	95	105	885,	9,528, 61
1881 1882	-	${ }_{21}^{20}$	41, 4161	82.3 62.9	33,8 30	17. 51	${ }^{101}$	$\begin{array}{r}107 \\ 82 \\ \hline\end{array}$	100 80	$\begin{array}{r}100 \\ 80 \\ \hline\end{array}$	205,930	2, 182, 722
1883	2, 379	21.1	50, 136	58.7	22, 420	12.	62	67	65	74	724, 955	8, 596,122
1884	2,609	23.5	61, 203	48.7	29, 779	11.41	53	58	65	65	629, 130	9, 986, 507
	2, 729	21.4	${ }_{58,}^{58}$	56. 3	32,	12. 04	${ }_{5}^{62}$	${ }_{54}^{65}$	${ }_{5}^{58}$	${ }_{5}^{60}$	252, 183	10, 197, 115
		${ }^{22.4}$	59,428	53.6	31, 841	12.00	80	80	57 69	57 77	1,305, 300	10, 355, 594
1888	2,996	21.3	63, 884	59.0	37,672	12.57					1, 440,321	11, 368, 414
1889	3, 221	24.	78	41.6	32, 5	10	58	58			1,40	11,332,543
		21.4										
1891	3,705	26. 1	${ }_{9}^{96}$	51.8	50,051	13.51					2, 800, 075	3, 146, 32
1892			92, 337	46	42, 790	10. 99	${ }_{5}^{65}$	67 54	65 55	${ }_{60}^{65}$	边 ${ }^{3,035,267}$	7910, 12
1893	3,855	21.7	83, 760	40.5	33, 922	8.80	52	54	55	60	5, 219, 405	791, 06
1894.	4,0	19.5	78, 051	43.51	33, 924	8.47	$53 \frac{1}{2}$	$55 \frac{1}{2}$	51	52	1,563, 754	2,116
189	4	26.9	114, 732	32.0	35. 678	8. 60	33	40	25	35	7,680, 331	837
	4, 1	${ }_{24}^{23.8}$:99, 394	30.0 35.2	[3, ${ }_{3}^{23,814}$	${ }_{8}^{7} 15$		${ }_{42}^{37}$	${ }_{36}^{24,}$	-35	20, 030,301	1,271,78
${ }_{1888}$	4, 4,238	23.5	193, 92	${ }^{35} 2$	39, ${ }^{303}$	9.21	${ }_{40}^{252}$	${ }_{50 \frac{1}{2}}^{42}$	${ }_{36}^{36}$	${ }_{42}$	${ }_{2} 2.267,40$	120,475
1899	4,470	26.1	116, 552	39.0	45, 479	10.17	35	45	36	44	23,661,66	189,757
	, 72	21.1	96, 041	45	38, 896	${ }^{8} 156$			${ }^{37}$		6, 6 , 2931	5)
1901	4, 742	2	121, 78	45. 2	55,088	11. 61			64	72	8,714,	57,40
	5,126	29.1	149,	45.5	67, 944	13. 25	36 42	${ }_{61} 71$	48 38	59	-8,429,	56, 46
1903	5,568	26.4	146, 8	45.4	66, 700	11.		$61 \frac{1}{2}$	38	59	10, 881,	90, 78
1904	5,912	27. 4	162, 105	. 6	67, 427	11.41			40		10,661,	81,02
1909	6, ${ }^{6,250}$	27.	170,089 192	39.4 41.6	66,959 80,069	${ }_{11.90}^{10.71}$	${ }_{44}^{37}$	53 56	42 66	${ }_{85}^{505}$	17, $8,238,842$	18, 38
${ }_{1987}^{1096}$	6,730 6	24.	170, ${ }^{198}$	41.6	112, 685	16. 23.	78	102	60 60	85	4, 349,078	199, 741
1898	7,294		184, 857	55.2	102,037	13.99		$64 \frac{4}{2}$	66	75	6,580, 39	2,644
M99	${ }^{7,695}$	24.4	187,973	54.8	102,947	13.37	${ }_{5}^{55}$	72		${ }^{88}$	4, 311, 566	
1910	7,743	22.5	173, 832	57.8	100, 426		72	${ }^{90}$	75	${ }_{115}$	9,399, 34	
1911	7,	21.	160, 240	$\begin{array}{r}86.9 \\ 50 \\ \hline\end{array}$	139, 182	18.00	102	${ }^{130}$	${ }_{45}^{68}$	${ }_{1}^{132}$	1,585, 242	
$\begin{aligned} & 19122 \\ & 1913 \end{aligned}$	7, 7 7,990	${ }_{23.8}^{29}$	278, 189	53.7	${ }_{95}{ }^{1121}$	12.77	4	7	40	66	6, 644, 747	
$\begin{gathered} \text { Av. } 1909- \\ 1913 \end{gathered}$	7,620	24.3	184, 812	59.7	110, 249	14.47	64.	89.	57.	89.	7,895,521	
1914	7,565	25.8	194, 953	54.3	105, 903	14.00	60	75	74	82	26, 754, 522	
1915	7.148	32.0	228, 851	51.6	118, 172	16. 53	${ }_{6}^{62}$	${ }^{77}$	70	85	27, 473, 160	
1916	8, ${ }^{7} .937$	${ }_{23,7}^{23.5}$	182, 317	${ }_{13} 81.7$	${ }^{160,646}$		${ }^{95}$	125 163	128	176	16, 1881,077	
1918	9,740	26.3	${ }_{256,25}^{21,}$	${ }_{91.7} 7$	234, 942	24.12	88	${ }_{105}^{103}$	110	130	20, 555,78	
1919	6,720	22.0	147, 608	120.6	178, 03		125	168	140	190	26, 671, 2	
1920	7,600	24.	189, 332	71.3	135, 883	17.77	50	98	56	75	20, 457, 19	
$\begin{gathered} A \nabla \cdot 1914- \\ 1920 \end{gathered}$	7,923	25.	201, 577	83.2	167,655	21.16	86.	115.9	7.	28.	23, 497, 200	
21	7,4	20.9	154, 946									
19234		24.9	182, 038	52.5	95, 560	13. 06	66	75	63	72	21, 910, 495	
1923	7,903		198, 185		106, 955							

Division of Crop and Livestock Estimates.

[^165][^166]Table 134.-Barley: Acreage, production, and total farm value, by Siates, calendar years, 1921-1923.

State.	Thousands oí acres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of dollars.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
Maine	4	3	3	104	84	90	89	84	99
New Hampshire	1	1	1	23	28	26	25	27	22
Vermont.	9	9	9	225	261	261	180	253	248
New York	158	158	190	3,318	4,108	5,092	2, 057	3, 040	3, 819
Penmsylvania	13	12	12	280	306	269	174	198	194
Maryland	4	4	4	120	128	132	80	96	106
Virginia.	9	9	10	207	248	270	149	198	216
Ohio	97	73	74	2,522	1,424	1,998	1,286	926	1,259
Indiana	65	30	30	1,235	510	690	593	296	448
Illinois_	173	190	228	4,550	5,605	6,612	2, 093	3, 251	3,835
Michigan	200	140	150	3, 500	3,598	3,600	1,995	2, 339	2,304
Wisconsin	473	443	465	10,642	14, 220	13,252	5,427	8, 105	8,084
Minnesota	935	908	962	18, 700	24, 062	24, 050	6,358	11,309	10,582
Iowa.	136	161	161	3, 196	4, 605	4,572	1,342	2, 256	2, 377
Missouri	7	5	6	154	115	162	100	83	126
North Dakota	1,096	1,008	1,361	16, 988	25, 704	23, 818	4,927	10, 025	9,051
South Dakota	1,120	881	890	19,040	20,263	20,025	5,522	8, 510	8,010
Nebraska	199	242	339	4,915	4,356	9, 492	1,376	2, 047	4, 176
Kansas	728	1,074	967	14, 560	18, 580	21, 467	4,222	8,361	10, 519
Kentucky	6	6	- 7	144	168	189	88	143	159
Tennessee	9	14	17	189	315	391	189	252	391
Texas.	78	93	108	1,872	1,767	2,592	842	1,149	1,763
Oklahoma	122	129	129	2, 684	2, 193	2,838	1,208	1,208	1,987
Montana	75	92	$\theta 7$	1,538	2, 300	2,474	923	1,150	1,188
W yoming -	9	20	28	261	560	868	170	336	564
Colorado	202	186	221	4,444	3,534	6,409	1,644	2, 085	3, 461
New Mexico	10	9	11	240	135	209	146	128	167
Arizona	29	25	36	928	825	1,260	742	701	1,197
Utah	16	18	22	512	630	893	246	346	625
Nevada	6	6	6	187	176	152	150	176	120
Idaho.	87	85	93	2,784	2,890	3,999	1,308	1,878	2, 319
Washingtor	80	74	85	2, 944	1,776	3,884	1,531	1,314	2, 330
Oregon	70	80	88	2, 240	2, 160	3, 080	1,120	1,598	2,064
California	1,188	1,129	1, 095	29,700	34, 434	33, 069	16, 632	.21, 693	23, 148
United States	7,414	7,317	7,905	154,946	182, 068	198, 185	64, 934	95, 560	106, 955

Division of Crop and Livestock Estimates.
1 Preliminary.
Table 135.-Barley: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1922.

Oalendar year	Deficient moisture.	Excessive moisture.	Floods	$\begin{gathered} \text { Frost } \\ \text { or } \\ \text { freeze. } \end{gathered}$	Hail.	Hot winds.	Storms	Total climatic.	Plant disease.	Insect pests.	Ani- mal pests.	Defective seed.	Total. ${ }^{1}$
	P. ct.	P.ct.	P. ct.	P.ct.	P.ct.	P. ct.	P.ct.	P.ct.	P.ct.	P.ct.	$P . c t$.	P.ct.	P. ct.
1909	8. 9	3.6	0.3	1.0	2.1	2. 3	0.8	19.0	1.4	0.4	0.5	0.2	22.8
1910	34.0	. 2	. 1	. 9	. 9	4. 3	. 1	40.7	. 4	. 8	. 5	. 1	43.1
1911	30.0	1.2		. 8	. 4	5. 7	. 1	38.1	.9	-. 9	. 3	. 2	- 41.3
1912	8.4	1.8	. 1	. 9	1. 9	1. 7	. 5	15.9	. 9	. 5	. 5	. 3	19.6
1913	24.5	. 7	. 1	. 4	1.0	3.2	. 3	31.1	. 2	1.2	. 2	. 2	34.3
1914	8. 2	2.3	. 2	. 6	1.5	4. 6	. 4	18.4	2. 3	. 6	. 2	. 1	22.7
1915	1. 3	3.2	. 3	. 7	1. 7	. 3	. 5	8.0	. 9	. 2	.2	. 1	10.0
1916	8.0	3.4	. 3	. 7	1.5	5. 0	. 5	20.2	8.5	. 7	. 1	. 1	30.6
1917	26. 6	. 8	$\left({ }^{2}\right)$	1. 0	1.1	2. 3	. 2	32.1	. 5	. 4	. 1	. 1	33.6
1918	20.7	.4	. 1	. 7	1.1	2.3	. 3	25.9	. 6	1.6	. 2	${ }^{(2)}$	28.8
1919	18.0	3.4	. 5	. 2	1.8	3.8	. 3	28.2	5.3	4.3	. 1	. 1	38. 5
1920	10.4	2.2	. 2	. 4	1.1	2. 0	.2	16. 7	3. 0	1.3	. 2	. 0	21.7
1921	20.2	1.4	. 1	1. 3	1. 2	6.6	. 1	31.4	2.9	1.3	. 1		36.0
1922	13.5	1.3	. 1	. 3	1.6	1.6	. 2	19.0	1.3	1.4	. 1	. 1	22.2

Division of Orop and Livestock Estimates.
1 Includes all other causes.
${ }^{2}$ Less than 0.05 per cent.

Table 136.-Barley: Yield per acre, by Staies, calendar years, 1908-1923.

State.	1908	1809	1910	1911	1912	1913	$\left\|\begin{array}{c} \mathrm{Av} . \\ 1999 \\ 1913 \end{array}\right\|$	1914	1915	1916	1917	1918	1919	1920	$\begin{array}{\|c\|} \text { Av. } \\ 1914- \\ 1920 \end{array}$	1921	1922	1923
	Bu .	$B u$.	Bu.	Bu.	$\overline{B u}$.	$\overline{B u}$.	Bu.	$\overline{B u}$.	Bu.	$\overline{B u}$.	$\overline{B u}$.	.						
Maine	28.0	28.5	31.0	28. 0	26. 2	28.0	28.3	30.0	26. 5	26.0	21.0	025.0	28.0	26.0	26.1	26. 0		30.0
New H	24.0	25. 0	26. 0	24.0	28. 0	28.0	26.2	32.0	30.0	28. 0	25. 0	032.0	24.8	26.0	28.3	23. 0	28. 0	26.5
Vermon	33. 0	30.0	31. 0	30.5	35. 0	32.0	31. 7	34.5	35. 0	27.5	29.0	031.0	25.	28.0	30.	25. 0	29.	9. 0
New Y	26.	24.8	28.3	25.0	26. 0	26. 7	26.	28	32.	23. 3	28.	31.5	22. 0	29.0	27.	21	6.	. 8
Pennsylva	26. 0	21.8	26.5	25. 0	${ }_{2}^{27.5}$	26. 0	25.4	28.0	29.5	25.0	28. 0	028.0	24. 5	24. 0	26. 7	30	,	22.4
Maryland	30.0	32.0	31. 0	23.0	27.0	29. 0	28. 4	33. 0	34. 0	32. 0	25. 0	031.0	33.0	27.5	30.8	30. 0	32.	33.0
Virginia	28.0	28. 5	29.3	23.0	25. 0	26.0	26.4	26. 0	29.0	0	5	$0 \mid 27.0$	25.0	27. 0	27.4	23.0	$27 .$	27.0 27.0
Ohio--	27.5	25. 9	28.5 27.0	27. 2	31.0 29.5	24. 0	27.3 26.3	$\left\lvert\, \begin{gathered} 25.0 \\ 25.0 \end{gathered}\right.$	0	27.8	33.0	$031 .$ $537 .$	$5 \left\lvert\, \begin{gathered} 23.0 \\ 0 \\ 25.0 \end{gathered}\right.$	27.7	$\begin{aligned} & 28.4 \\ & 28.5 \end{aligned}$	$\begin{gathered} 26.0 \\ 19.0 \end{gathered}$	$19 .$	27.0 23.0
Indiana	23. 23	23. 5	27.0	26. 28	29. 5	25.0	$\begin{aligned} & 26.3 \\ & 28.7 \end{aligned}$	25	$0 \mid 28 .$	0	30	36.0	$\begin{gathered} 25.0 \\ 027.0 \end{gathered}$	27.0	$\begin{aligned} & 28.5 \\ & 32.3 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 26.3 \end{aligned}$	17.	23.0 29.0
Michig	25.	24.7	26. 0	24. 0	26.0	24.8	25.1	26.0	29.5	24.5	24.4	430.0	17.0	26. 0	25.3	17. 5	25.	24.0
Wiscons	30.	28.	25.9	25.	29.	25. 0	26.8	27.3	35. 5	30.0	32.0	035.7	26. 5	31.7	31. 2	22.	32	28.5
Min	25.0	23.6	21.0	19.0	28.2	24. 0	23.2	23. 0	$3{ }^{30 .}$	19.0	27. 0	031.0	20. 0	25. 0	$25 .$	20.0	28.	25.0 28.4
Iowa-.-	27.0	22. 0	29.5	21.9	31.0	25. 0	25.9	26. 0	31. 0	29.5	35. 0	$0,31.5$	25.	27.5	$29 .$	$\begin{aligned} & 23 \\ & 22 \end{aligned}$		27. 4
Missouri	23.0	25.0	27.0	20.0	24.8	22.0	23.8	24.0	25.0	20. 0	25.	25.	30	28.0	$25 .$	$22 .$		17.0
North Dakota	19.5	21.0	5. 5	19.5	29.9	20.0	19.2	19.5	32.0	15. 5	12.5	521.	11. 5	18.0	18. 6	15.	25.	17.5
South Dakot	26.5	19.5	18.2	5. 4	26. 0	17. 5	17.3	23. 0) 32.	22. 7	27. 0	,	22. 0	25. 0	25.9	17.0	23.0	22.5
Nebrask	23.5	22.0	18.5	11.0	22. 0	16. 0	17.9	23.	31.0	28.0	26.	6.	25. 7	29.0	25.3	24.7	7	28.0 22.2
Kansas,	16.0	18.	18.0	6. 5	23.5	5 8.1	14.8	24.	31.0	16.			27.	25.4	$\begin{aligned} & 20.3 \\ & 27.6 \end{aligned}$		7.3	27.2
Kentucky	25.0	24.0	24. 0	28. 7	26.0	26. 6	$25 .$			$0 \left\lvert\, \begin{gathered} 26.0 \\ 23.7 \end{gathered}\right.$				28.0	$\begin{aligned} & 27 . \\ & \hline \end{aligned}$	$21 .$	$22 .$	27.0 23.0
Tennessee	25. 0	19.	23.0	28.	26.	25. 0	$\begin{aligned} & 25 . \\ & 24 . \end{aligned}$	27.0	24. 0	$0 \begin{aligned} & 23.7 \\ & 17.0 \end{aligned}$	15.0,		35.	23.0	$\begin{gathered} 22 . \\ 2, \end{gathered}$	$21 .$	12.	23.0 24.0
Oklahon	23.0	23. 0	30.0	10.0	20.0	9. 0	18.4	25.0	26.5	12.	18.	17. 0	30. 0	24.0	21.9	22.	7.	22.0
Montana	35. 0	38. 0	28.0	34. 5	36. 5	31.0	33.6	30.5	34.	28.0	15.	022.	5. 6	18. 0	21. 9	20.	25.0	25.5
W yoming	35.0	31. 0	30.0	34. 0	34.0	30. 5	31. 9	33.0	36. 0	33. 0	36.		5.	36. 0	32.3	29.	28.0	31.0
Colorado	33. 0	36. 0	32. 0	29. 0	39. 0	32. 5	33.7	38.5	36. 0	32.				24. 5	28.7	22.		29.0 19.0
New Me	42. 0	40. 0	25.0	33. 0	35. 0	24.0	31.4	34. 0	3370	35.				23. 6	28.3	${ }_{2}^{24}$		
Arizona	38.0	40.0	36. 0	36. 5	40.0	38. 5	38.3	36. 0	37. 0	35. 0	37.0	35.0	22. 9	34. 2	$\begin{aligned} & 35.1 \\ & 35.7 \\ & 3 \end{aligned}$	32.0	35.	35.0 40.6
Nevada	30.0	38. 0	40. 0	40.0	41. 0	41.0	40.0	47. 0	48.0	41. 0	35. 0) 34.0	26.5	30.0	37. 4	31.	29.	25.4
Idaho.	41.0	40.0	33.0	42.0	43.5	42.0	40.1	38.0	40.5	39.0	29.0	128.0	26.0	35. 0	33.6	32. 0	34. 0	43.0
W ashington	30. 5	39.5	29.0	37.0	43.0	40.5	37. 8	39.0	41. 5	41.3	29.	5.	30.	35. 3	33. 0	36. 8	24.	45.7
Oregon...	29. 0	31.5	31.5	34.0	36. 0	35. 0	33. 6	30.0	36. 0	38. 5	29.	25.	23.	32.2	30.5	32.0	27.	
California	23.5	26.5	31.0	28.0	30.0	26.0	28.3	30.0	29.0	28.	29.	06.027	27	23.0	27.4	25.0	30.	
Unite	25. 3	24	22.5	21.0	29.7	\|23.8	24. 32	25.8	32.0	23.5	23.7	26. 3	22.0	24.9	25. 5	20.9	24. 9	25.1

Division of Crop and Livestock Estimates.
Table 137.-Barley: Condition of crop, 1 st of month, and yield per acre, United States, 1866-1923.

Calendar year.	June.	July.	Aug.	Sept. ${ }^{1}$	Yield per acre.	$\begin{gathered} \text { Calendar } \\ \text { year. } \end{gathered}$	June.	July.	Aug.	Sept. ${ }^{1}$	Yield per acre.
	P. ct.	P.ct.	P.ct	P.ct.	Bush		P.ct.	P.ct.	P.ct	P.ct.	Bush.
1866	100.0	109.5			22.9	1898	78.8	85.7	79.3	79.2	23.5
1867	98.3	99.6	104.0	105. 5	22.7	1899	91.4	92. 0	93.6	86.7	26.1
1868	103.1	105. 8	98.5	95.2	24.4	1900	86.2	76.3	71.6	70.7	21.1
1869	101.0	100.7	102. 2	103.6	27.9	1901	91.0	91.3	86.9	83.8	25.7
1870	91.4	90.0	92.2	94.6	23.7	1902	93.6	93.7	90.2	89.7	29.1
1871	99.3	96.4	92.6	92.7	24.0	1903	91.5	86. 8	83.4	82.1	26.4
1872	97.7	98.7	97.7	96.9	19.2	1904	90.5	88.5	88.1	87.4	27.4
1873	93.4	88.1	90.3	90.4	23.1	1905	93.7	91.5	89.5	87.8	27.2
1874	99. 2	98.9	96.7	92.0	20.6	1906	93.5	92.5	90.3	89.4	28.6
1875	85.7	94.5	879	85.0	20.6	1907	84.9	84.4	84.5	78.5	24.5
1876	100.3	98.2	92.3	90.0	21.9 21.4	1908	89.7	86.2	83.1	81.2	25.3
1877.	100. 0	95.1	94.4	98.0	21.4						
1878.	102. 0	101. 0	94.1	95.0	23.6	1909	90.6	90.2	85.4	80.5	24.4
1879	91.0	91.7	95.5	95.5	24.4	1910	89.6	73.7	70. 0	69.8	22.5
1880	99.0	99.0	97.7	96.9	24.5	1911	9.2	72.1	66.2	65.5	21.0
1881	94.0	96.9	92.7	94.3	20.9	1912	91.1	88.3	89.1	88.9	29.7
1882	96.0	95.0	95.0	95.0	21.5	1913	87.1	76. 6	74.9	73.4	23.8
1883	97.0 98.0	97. 0	95.0 98.0	100.0 97.0	21.1						
1884	98.0 89.7	98.0 92.0	98. 9	97.0 88.0	23.5 21.4	Av. 1909-1913	89.7	80.2	77. 1	75.6	24.3
188	89.7 100.0	92.0	92.0	88.0 92.7	21.4	1914	95.5	92.6	85.3	82.4	25.8
1887	87.0	82.8	86.2	83.0	19.6	1915	94.6	94.1	93.8	94.2	32.0
1888	88.8	91.0	89.4	86. 9	21.3	1916	86.3	87.9	80.0	74. 6	23.5
1889	95.6	91.9	90.6	88.9	24.3	1917	89.3	85.4	77.9	76.3	23.7
1890	86.4	88.3	82.8	78.6	21.4	1918	90.5 91.7	84.7 87.4	82. 78	81.5 69.2	26.3
1891	90.3	90.9	93.8	94.3 87 87	26.1	1919	91.7 87.6	87.4 87.6	84.9	82. 5	24.9
1892	92.1 88.3	92.0 88.8	91.1 84.6	87.4 83.8	23.6 21.7	Av. 1914-20-----	90.8	88.5	82.5	80.1	25.5
1894	82.2	76. 8	69.8	71.5	19.5						
1895	90.3	91. 9.	87.2	87.6	26.9	1921	87.1	81.4	71.4	68.4	20.9
1896	98.0	88.1	82.9	83.1	23.8	1922	90.1	82.6	82. 0	81.2	24.9
1897.	87.4	88.5	87.5	86. 4	24.9	1923	89.0	86.1	82.6	79.5	25.1

Division of Crop and Livestock Estimates.

[^167]Table 138.-Barley: Area and yield per acre in undermentioned countries.
NORTHERN HEMISPHERE.

Table 138.-Barley: Area and yield per acre in undermentioned countriesContinued.

NORTHERN HEMISPHERE-Continued.*

Country	Area.					Yield per acre.				
	$\begin{aligned} & \text { Aver- } \\ & \text { age, } \\ & 1909- \\ & 1913 . \end{aligned}$	1920	1921	1922	1923, pre- limi- nary.	$\begin{aligned} & \text { Aver- } \\ & \text { age, } \\ & 1909- \\ & 1913 . \end{aligned}$	1920	1921	1922	1923, pre- limi- nary.
Cyprus...--	$1,00 \theta$ acres.	$\begin{array}{r} 1,000 \\ \text { acres. } \\ -110 \end{array}$	1,000 acres. 130	1,000 acres. 118 7,	1,000 acres.	Bush.	Bush.	Bush.	Bush.	Bush.
India.-	${ }^{7} 7,842$	7,419	6,203	7, 356		${ }^{7} 5.5$	20.2	18.9	19.8	
Russia.	2,912			454		12.6			9.8	
Japanese Empire:	3, 042	2,987	2,929	2, 746	2,515	29.4	28.4	28.1	31.7	32.4
Chosen	1, 662	2,150	1,979			20.7	18.4	16. 7		
Formosa.	1, 5	2, 5	1			12.6	11. 2	9.2		
Kwantung-------	${ }^{1} 1$	1	2			18.0	12.0	13.0		
Total eomparable with 1909-1913.-.--	15, 464									
Total comparable with 1923	3, 042	2,987	2,929	2,746	2, 515	------				
Total Northern Hemisphere, comparable with 1969-1913.	80,576	,								
Total Northern Hemissphere, comparable with 1923.		43,968			47, 278				.	

SOUTHERN HEMISPHERE.

Country.	Average 19091913.	1920-21	1921-22	1932-23	1923-24	$\begin{gathered} \text { A ver- } \\ \text { age } \\ 1969- \\ 1913 \end{gathered}$	1920-21	1921-22	1922-23	1923-24
Chile.	111	143	128	147	136	36.8	35.2	35.6	36.6	
Uruguay	87	5	3	3	10	${ }^{8} 11.1$	16. 4	14.0	9.3	
Argentina---------	230	617	620	600	637	${ }^{8} 17.6$	6.0	9.6	12.8	14.4
Union of South Africa	2109	97	87			${ }^{2} 11.7$	10.8	14.7		
Australia--------------	154	335	298			19.6	22.3	21.3		
New Zealand	35	47	33	17		36. 1	35. 2	36.4	36.6	
Total comparable with 1909-1013.-.-	646	1,244	1,169							
Total comparable with 1923	348	765	751	750	783	------	--------	-------		
World total comparable with 19091913	81, 222					,			1	
World total comparable with 1923....		44, 733			48, 081					

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated.

Five-year averages are of the crops harvested during the calendir years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the sacceeding harvest in the Southern Hemisphere.
1 Three year average.
7 Two-year average.
${ }^{8}$ Four-year average.

Table 139.-Barley: Production in undermentioned countries.
NORTHERN HEMISPHERE.

${ }^{1}$ Commercial estimate.

2 Old boundaries.
Includes production in Alsace-Lorraine
Includes 758,000 bushels produced in Venezia Tridentina and Venezia Giulia.
Excludes production in Alsace-Lorraine.
6 Three-year average.
Former Kingdom of Serbia.
: One year only.
${ }^{9}$ Includes Bessarabia.
${ }_{10}$ Preliminary estimate of former Russian territory within 1923 boundaries.

Table 139.-Barley: Production in undermentioned countries-Continued.
NORTHERN HEMISPHERE-Continued.

SOUTHERN HEMISPHERE.

Country.	$\begin{gathered} \text { Average, } \\ 1909-1913 . \end{gathered}$	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24
Chile	4,090	3, 304	3,664	3,691	5, 035	4,556	5, 380	
Uruguay	1278	108	72	76	82	42	- 28	
Argentina.-.------.-	124,395			2,555	3,682	5,982	7, 656	9,186
Union of South Africa ${ }^{13}$	81,274	2, 025	1,029	720	1,046	1,282		
Australia.	3,021	4,163	4,962	4,467	7,454	6,339		
New Zealand	1,264	592	741	850	1,653	1, 200	623	
Total comparable with 1909-1913	14, 122			12,359	18, 952	19,401		
Total comparable with 1923	4,395			2,555	3,682	5,982	7,656	9,186
World total, comparable with 1909-1913	1,598, 618							
World total, comparable with 1923					955, 559	969, 177		1, 137, 721

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated. Parentheses denote interpolated figures.

Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }_{8}^{6}$ Three-year average.
${ }^{8}$ One year only.
${ }_{12}^{11 \text { Two-year average. }}$
${ }^{12}$ Four-year average.
${ }^{13}$ Excludes native locations which produced 38,550 bushels in 1917-18 and 29,057 in 1920-21

Table 140.-Barley: World production, 1894-1923.

Year.	Production in countries reporting all years, 1894-1923.	Production as reported.	$\begin{gathered} \text { Estimated } \\ \text { world totals } \\ \text { (prelimi- } \\ \text { nary). } \end{gathered}$	Three selected countries.		
				Russian Empire. ${ }^{1}$	Germany.	Japan.
	1,000 bush.					
1894	${ }_{616}^{607,282}$	1,031, 839	1, 209, 725	277, 464	130, 858	81, 133
1896	616, 057	970, 564	1, 125, 471	226, 134	128, 325	79, 646
1897	551, 097	999, ${ }^{9615}$	$1,127,085$ $1,045,892$	253,630 238,651	125,254 117,783	70, 545
1898.	635, 270	1,090,672	1,327, 512	306, 922	129, 939	83, 338
1899	628, 739	973, 216	1,143,901	226, 909	137, 047	77, 309
1900	620, 639	984, 210	1, 168, 630	236, 981	137, 888	82, 420
1901	679, 376	1,046, 723	1,222, 624	239, 917	152, 535	83, 352
1902	702, 761	1,182, 478	1, 365, 344	338, 251	142, 391	74, 078
1903.	666, 922	1,195, 298	1, 356, 104	357, 471	152, 652	59,737
1904.	657, 150	1,140, 319	1,313, 769	346, 255	135, 408	80, 794
1905	651, 638	1,158, 453	1, 313, 903	346, 966	134, 203	77, 473
1906	758, 275	1, 262, 809	1, 456, 706	330, 962	142, 900	83,967
1907.	725, 374	1,261, 256	1, 438, 416	377, 031	160, 649	90, 480
1908	709, 335	1, 293, 613	1, 434, 561	402, 258	140,538	87, 138
1909	778, 074	1,522, 309	1,648, 697	501, 869	160, 551	87, 185
1910.	707, 237	1, 396, 972	1, 518,917	487, 919	133, 330	81, 953
1911	728, 017	1, 449, 535	1,541, 983	436, 569	145, 133	86, 480
1912	772, 145	1, 575, 130	1, 619,575	496, 352	159, 924	90, 559
1913.	783, 690	1, 726, 095	1,778,842	600, 232	168, 709	101, 477
1914.	718, 089	1, 514,983	1, 557, 233	${ }^{2}$ 432, 615	144, 125	85, 774
1915	691,862	1,563, 397	1, 585, 154	${ }^{2} 429,161$	114, 077	94,959
1916	669, 754	1,048, 089	1,514, 614		128, 450	89,335
1917	612, 658	982, 142	1,434, 642		${ }^{3} 89,886$	88,896
1918	694, 950	1, 128, 067	1, 488, 567		${ }^{8} 93,504$	87,769
1919	536, 432	927, 303	1, 136, 303		${ }^{3} 87,741$	89, 356
1920	580, 268	1,156, 526	1,244, 526		${ }^{3} 82,344$	84,909
1921	574, 819	1, 136, 761	1, 224, 261		${ }^{8} 89,056$	82,323
1922	555, 961	1,305, 414	1,327, 674		${ }^{3} 73,013$	87,139
1923	657, 950	1,137, 721	1,460, 721		${ }^{3} 99,162$	81, 371

Division of Statistical and Historical Research. For each year is shown the production during the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }^{1}$ Includes all Russian territory reporting for years named. Further information of the territory included is given in notes on Table 121.

Excludes Poland.
: New boundaries.
Table 141.-Barley: Farm stocks, shipments, and quality, United States, 19101923.

Year.	Old stocks on farms Aug. $1 .{ }^{1}$	Crop.			Total. supplies.	Stocks on farms Mar. 1 following. ${ }^{1}$	Shipped out of county where grown. ${ }^{1}$
		Quantity.	Weight per bushel. ${ }^{2}$	Quality. ${ }^{3}$			
1910-11	1,000 bushels. 8, 075	1,000 bushels. 173, 832	Pounds. 46.9	Per cent. 88.1	1,000 bushels. 181, 907	1,000 bushels. 33, 498	$\begin{aligned} & \text { 1,000 } \\ & \text { bushels. } \\ & 86,955 \end{aligned}$
1911-12	5, 763	160, 240	46.0	84.9	166,003	24, 754	91, 620
1912-13.	2,591	223, 824	46.8	86.2	226, 415	62, 301	120, 143
1913-14	11, 252	178, 189	46.5	86.4	189, 441	44, 126	86, 262
1914-15.	7, 609	194, 953	46.2	87.5	202; 562	42, 889	87, 834
1915-16.	6, 336	228, 851	47.4	90.5	235, 187	58, 301	98,965
1916-17	10,982	182, 309	45. 2	84.4	193, 291	33, 244	79, 257
1917-18	3, 775	211,759	46.6	90.9	215, 534	44,419	84, 056
1918-19	4,510	256, 225	46.9	89.8	260, 735	81, 746	99, 987
1919-20.	11,897	147, 608	45.2	84.8	159, 505	33, 820	50,471
1920-21	4,122	189, 332	46.0	88.2	193, 454	65, 229	68, 663
1921-22.	13,487	154, 946	44.4	82.5	168, 433	42,294	55, 738
1922-23	7,497	182, 068	46. 2	88.5	189, 565	42,469	66, 560
1923-24 ${ }^{4}$	6,805	198, 185	45.3	86.6	204, 990	44, 844	68, 589

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on percentage of entire crop as reported by crop reporters.
\& Average weight per measured bushel as reported by crop reporters.
${ }^{8}$ Percent of a "high medium grade" as reported by crop reporters.

- Preliminary.

Table 142.-Barley: Monthly marketings by farmers, United States, 1917-192\&.

$\begin{aligned} & \text { Year } \\ & \text { beginning } \\ & \text { July } 1 . \end{aligned}$	Percentage of year's receipts as reported by about 3,500 milis and elevators.												
	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Season.
1917-18	2.2	15.0	23.4	16. 5	8.5	8. 6	6. 5	7.5	6.1	2.9	1.8	1.0	100.0
1918-19	24	9.7	8.4	4.4	7.8	3. 3	1. 3	. 7	2. 9	27.5	30.7	1.0 .9	100.0
1919-20	18.5	19.2	14.3	9.9	6. 4	7.5	5. 4	3. 1	3.7	3.4	3. 0	5. 6	100.0
1920-21	7.0	16.5	15.0	9.9	9.9	7. 2	6. 7	5. 5	6. 5	4. 2	5. 7	5. 9	100.0
1921-22-23-	35.0 17.4	14.0	10.5	7.8 10.8	4.4 5.2	4. 20	3.9 4.8	4. 3	4. 2	3.0 1.9	4. 4	4.3 7.0	100.0 100.0
									3.5		2.7	7.0	100.0

Division of Crop and Livestock Estimates.
Table 143.-Barley: Receipts at markets named, 1909-1922.

[^168]Table 144.-Barley: Net imports and net exports of principal countries, 19071923.

$\begin{aligned} & \text { Year ending } \\ & \text { July 31. } \end{aligned}$	Imparts.					Exports.				
	$\begin{gathered} \text { Bel- } \\ \text { gium. } \end{gathered}$	France.	$\begin{gathered} \text { Ger- } \\ \text { many. } \end{gathered}$	Nether lands.	United Kingdom.	$\xrightarrow{\mathrm{Ru}} \mathrm{mania}$	Russia.	$\begin{aligned} & \text { Co- } \\ & \text { a } \end{aligned}$	United States.	Algeria.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,00
1900-7	bushels	buskels.	bushel	$\begin{gathered} \begin{array}{c} \text { bushels } \\ 7,509 \end{array} \end{gathered}$	bushels	bushels.	${ }_{\text {b }}^{\text {bushel8. }}$		bushel	${ }_{5,335}$ bushels.
	12,808	2,011	92, 675	6,812	40, 237	(2)	104, 674	2, 051	4, 149	3,704
${ }_{1009-10}$	13,847	${ }_{3}^{2,983}$	${ }_{124,938}^{103}$	${ }_{\text {c }}^{\text {9, }} 1$	47, ${ }^{507}$	(2)	-	2, $\begin{aligned} & \text { 1,900 } \\ & 1\end{aligned}$	${ }_{4}^{4,578}$	-
1910-11	15,353	8,823	161, 627	15, 739	44,615	(2)	199, 423	1,040	9,399	7, 289
1911-12-	17, 380	6,945	152,771	88,319	${ }_{53} 8881$	19,435	139,910	2,641	1, 585	7,552
1912-13	15, 1508	2,779	${ }_{173}^{133} 713$	8, 8 174	-53,654	11,847	${ }_{199,632}^{154,519}$		17, 6375	¢ 6 6138
${ }_{1914-15}$	(2)	1,412	${ }^{173}{ }^{(2)}$	4, 172	${ }_{31,737}^{46}$	4,680	${ }_{215}^{199,62}$	2,808	26,755	1,502
1915-16	${ }^{(2)}$		${ }^{(2)}$	5,474	40,396	24, 344		8,851	27,473	5,268
1916-17	(2)	'9,920	(2)	44,989	${ }^{5} 26,686$	(2)	(2)	${ }^{6} 8.878$	16,381	${ }^{7}$ 7, 2688
1917-18	(2)	${ }^{18} 8,745$	${ }^{(2)}$		$5{ }^{50,770}$	(2)	(2)	${ }^{6} 66,607$	26, 285	${ }^{7} 1,770$
1918	${ }^{(2)}$	${ }^{3} 12,248$	${ }^{(2)}$	4 2,327	${ }^{5} 9,264$	${ }^{(2)}$	(2)	${ }^{6} 5.398$	20,458	13
1919-20-	${ }_{5}^{2} 852$	10,365	${ }_{8,935}{ }^{(2)}$	4, 4 , 965	- $\begin{aligned} & 37,509 \\ & 3268\end{aligned}$		(2) ${ }_{(2)}$	11,891	26,571	-6,395
${ }_{1921-22}$	- ${ }^{\text {5, }}$, 4928	- $\begin{array}{r}1,423 \\ 4,118\end{array}$		6,261	33, 111	15, 222		12, 861		
1922-23	9,799	446	15,789	6,955	34, 571	35, 141	(2)	10,902	18, 193	-3,919

Division of Statistical and Historical Research. Compiled from International Yearbook of Agricultural Statistics, 1915-16, 1922, and from official sources.
${ }^{1}$ Year ending June 30-Commerce and Navigation of the United States and Monthly Summary of Foreign Commerce of the United States, Bureau of Foreign and Domestic Commerce.
${ }^{2}$ Not available.
${ }^{2}$ Y ear ending June 30-Documents Statistiques sur le Commerce de la France.
Y Year ending June 30-Maandcijfers Netherlands.
${ }^{5}$ Year ending June 30-Trade and Navigation of the United Kingdom.

- Year ending June 30-Monthiy Reports of the Trade of Canada.
${ }^{7}$ Year ending June 30-International Crop Reports and Crop Statistics.
8 Net exports.
${ }^{9}$ Net imports.
Table 145.-Barley: Farm price per bushel, 1st of month, United States, 1908-1923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Weighted av.
1908	$\begin{gathered} \text { Cts. } \\ 57.1 \\ \hline \end{gathered}$	Cts. 56. 1	$\underset{55,3}{\boldsymbol{C t s .}}$	$\begin{gathered} \text { Ct8. } \\ 53.7 \end{gathered}$	$\begin{gathered} \mathrm{Cts}_{\mathrm{it}} \\ \text { 55. } \end{gathered}$	$\begin{gathered} C t s . \\ 56.5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 58.3 \end{gathered}$	Cts. 59.4	$\underset{61.2}{C t s .}$	$\underset{\text { Cts. }}{ }$	$\underset{\text { 67. }}{\text { Cts }}$	$\begin{gathered} \text { Cts. } \\ 67.0 \end{gathered}$	Cts. 57.0
09-10	61.2	54.	53.4	53.3	54.0	57.6	59.3	60.2	59.7	56.5	55.7	53. 9	55.7
1910-11	54.7	57.2	56.1	55.3	57.8	59.8	64.1	63.0	69.1	74.0	73.8	70.1	59.5
1911-12	69.3	77.0	81.7	84.9	86.9	86.4	91.2	91.0	92. 3	96. 2	91.1	81.9	83. 6
1912-13	66.8	53.5	54.8	53.8	50.5	49.9	51.4	49.0	48.5	48.3	52.7	537	53.1
1913-14	50.8	55.2	56.8	54.7	53.7	52. 2	52.4	51.1	51.7	49.3	49.1	47,5	53.6
Av. 1909	60.6	59.5	60.6	60.4	60.6	61.2	63.7	62.9	64.3	64.9	64.	61.4	61.1
1914-15	45.1	52.5	51.8	51.7	4.3	54.3	62.9	. 7		63.8	62.	55.8	55.
1915-16	56.7	51.9	46.8	50.1	51. θ	54.9	61.7	62. 6	57.2	59.6	59.6	593	3.
1916-17	59. 3	72.9	76. 5	83.2	88.1	87.1	92.7	96. 9	102.3	120. 1	119.3	106. 6	85.2
1917-18	114.5	110.0	113.9	111.3	113.7	126. 5	131.9	161. 1	170.2	158.5	135.4	118.4	122.6
1918-19	110.0	100.9	95. 5	94.9	91.7	91.3	86.8	85.4	92.7	103.9	109.2	108.4	95.9
1919-20	118.7	115. 6	115.3	117.1	120. 6	130. 2	137. 1	129.3	140.0	146. 4	148.3	142.0	123.8
1920-2	121.0	105. 0	91.2	81.7	71.3	64.4	57.2	56.8	54.4	49.2	51.6	50.6	79.1
Av. 1914-1920.	89.3	87.0	84.4	84.3	84.5	87.0	90.0	93.8	97.4	100.2	97.9	91.	87.
1921-22	49.4	47.0	45.4	41.7	41.9	43.7	44.3	49.6	52.8	56. 3	57.7	52.2	46. 1
1922-23	49. 7	45. 7	46.7	51.6	52. 5	58.6	55.0	57.4	58.6	60.7	60.9	55.7	52.1
1923-24	53.7	50.7	53.1	56.3	54.0								

Division of Crop and Livestock Estimates.

Table 146.-Barley: International trade, 1910-1923.

Division of Statistical and Mistorical Research. Compiled from International Yearbook of Agricultural Statistics, 1922, except figures with footnotes (2) and (3) which are compiled from official sources.

1 Ten months ending May 31.
${ }^{2}$ Calendar years, 1909-1922.
${ }^{3}$ Years ending June 30.
4 Less than 500 bushels.
${ }^{6}$ Three year average, 1910-1912.
${ }^{6}$ Eleven months.
7 Three-year average, 1912-1914.
8 The month of July 1914 is not included in average.
9 Two-year average, 1913-1914.
${ }^{10}$ Eight months: Aug.-Dec., 1920 and May-July, 1921.

Table 147.-Barley: Farm price per bushel, December 1, calendar years, 19081923, and value per acre, 1923.

State.										51916	1917	1918	1919	20			1922 1923	Value
	Cts	Cts.	cts.	cts.			Cts.				cts.	C_{18}	Cts.	Cts.	Cts.		Cts. Cts.	
Me											130		178	${ }^{138}$	121	86	100100	${ }^{0}$
V		77						75	57	5100	140	153	150	120	116	80	${ }_{97}{ }^{95}$. 55
N.	T0	69	70			69	75	71	75	510	130	126	${ }^{136}$	99	105	${ }_{62}^{62}$	74	10
												120	128	${ }^{90}$	00		72	
V_{a}		${ }_{71}^{64}$	$\begin{aligned} & 61 \\ & 67 \\ & 67 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{array}{l\|l\|l\|} \hline 0 & 68 \\ 0 & 75 \\ \hline \end{array}$		$\stackrel{63}{71}$	${ }_{80}^{66}$	75	${ }^{5} 8$	${ }_{139}^{130}$	${ }_{160}^{120}$	130	100	110	${ }_{7}^{67}$	80	${ }_{21} 60$
Ond		61	${ }_{56}^{60}$	${ }_{75}^{84}$	${ }_{60}^{55}$		64	(${ }_{67} 6$	${ }^{9}{ }^{565}$	75	118	103	118	88	\%	5	65 63 58	${ }_{95}$
11	65	52	56	92	53	57	62	61	1	103	121	90	121	82	91	46	58	82
Mich		61	58		65		66	65		291		100	118		92	${ }^{57}$	${ }^{65}{ }^{64}$	36
Mini	告 4		${ }_{60}^{64}$	${ }_{96}^{99}$	41		588	$\stackrel{62}{53}$	${ }^{2}{ }^{56}$	105	124	80	116	62	92 80	[54	${ }_{47}^{57}{ }_{4} 61$. ${ }^{38}$
	51	46	56	93	66	${ }_{60}{ }^{55}$	66 6	65	63	-93 ${ }_{93}^{91}$	${ }_{94}^{117}$	${ }^{85}$	132	${ }_{98}$	${ }_{94}^{82}$	65	7278	${ }^{14.77}$
$\begin{aligned} & \text { N. } \mathrm{D}_{2} \end{aligned}$	${ }_{47}^{46}$	$\begin{aligned} & 43 \\ & 45 \\ & 45 \end{aligned}$	55	888							$\begin{aligned} & 100 \\ & 110 \\ & 98 \end{aligned}$		115				42 47 48 48	
${ }_{\text {K }} \mathrm{Nan}$	${ }_{54}^{46}$	43	45	${ }_{60}^{60}$	40		481	47	74	${ }^{7}$	115	${ }^{85}$	100	45	74	1	45	10.88
Kу---	72	76										140						
Tenn		100	80	${ }_{93}^{90}$	80	7							180					
Oex	788	105	${ }_{54}^{90}$	${ }_{6} 98$	$1{ }^{178}$		88 68 58	53	350	${ }^{8} 100$	148	${ }_{124}^{123}$	122	72	96	5	780	40
	${ }^{6}$	63																
Wyo	65	74	$\begin{aligned} & 67 \\ & 60 \end{aligned}$	75	$\begin{aligned} & 62 \\ & 50 \end{aligned}$			${ }_{5}^{64}$		5 8 82 82	130						$\begin{array}{lll}60 & 65 \\ 59 \\ 54\end{array}$	20.15 15.66
N. M	$\begin{gathered} 65 \\ 79 \end{gathered}$	100	80	70	71	72	79	75	570	100	139	110	110	75		61	${ }^{95}$	15. 20
Ariz-	$\begin{aligned} & 85 \\ & 54 \end{aligned}$		${ }_{60}^{90}$	87 68	87 59	73 55	$\begin{array}{r}85 \\ 61 \\ \hline\end{array}$	60 50		${ }^{6} 108$	120	130	141	100	97	48	$55 \quad 70$	28.42
		75	70		87								150		117		10083	21.08
Idah	53	59	50	70	51	48	56		$5{ }^{52}$		105	13	140	75		47	${ }_{7}^{65}$	${ }^{94}$
	- ${ }_{59}^{68}$	${ }_{66}^{64}$	${ }_{62}^{57}$	65	55	55	${ }_{6}^{5}$	${ }_{61}$	$1{ }^{6} 2$	880	115	136	150	100	101	50	746	23
	${ }_{74}$	${ }_{74}$	55	85	${ }^{5} 7$		70	59	62	2	120	115	141	100	99	56	6370	21.14
																	0	13.53

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on farm price Dec. 1.
Table 148.-Barley, No. 2: Weighted average price per bushel, Minneapolis, 1909-1923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Weighted average.
1909-10	\$0. 45	\$0.48	\$0.49	\$0.52	\$0. 57	\$0.61	\$0.60	\$0. 58	\$0. 54	\$0. 54	\$0. 53	\$0. 60	\$0. 54
1910-11	. 61	. 63	. 63	. 66	. 70	. 77	. 74	. 81	. 88	. 75	. 77	. 87	74
1911-12	. 85	. 94	. 95	. 98	. 91	1.05	1.00	. 95	1.01	. 99	. 76	. 60	92
1912-13	. 46	. 49	. 50	. 47	. 45	. 49	. 48	. 46	. 46	. 50	. 52	. 48	48
1913-14	. 58	. 61	. 56	. 53	. 50	. 52	. 50	. 48	. 47	. 48	. 47		51
Av. 1909-1913.	. 59	. 63	. 63	. 63	. 63	. 69	. 66	. 66	. 67	. 65	. 61	. 60	. 64
1914-15.	. 59	. 58	. 55	. 59	. 57	. 68	. 75	. 70	. 70	. 70	. 66	. 68	. 65
1915-16	. 59	. 48	. 51	. 56	. 61	. 70	. 66	. 65	. 68	. 70	. 68	. 69	. 63
1916-17.	. 81	. 81	1.03	1.11	1.07	1.17	1.17	1. 21	1.36	1.48	1.38	8	17
1917-18	1. 31	1. 33	1.28	1. 27	1. 49	1.56	1.88	2.12	1.82	1. 46	1. 23	1. 18	49
1918-19	1. 02	. 95	. 91	+ 94	+92	.90 +59	1.87 1	.93 1.51	1. 1.60	1.13 1.74	1.12 1.49	1. $1.16{ }^{\circ}$	1.43
1919-20.	1. 33	1. 27	1. 29	1.33 .82	1.52 .74	1.52 .69	1.37 .65	1.51 .67	1.60 .61	$\begin{array}{r}1.74 \\ .59 \\ \hline\end{array}$	1.49 .57	1.16 .62	1.43 .74
1920-21.	1.02	. 99	. 92	. 82	. 74	. 69	. 65	. 67	. 61	. 59			
Av. 1914-1920.	. 95	. 92	. 93	. 95	. 99	1.03	1.05	1.11	1.12	1.11	1.02	1.00	1.02
1921-22	. 58	. 55	. 50	. 54	. 47	. 51	. 56	. 58	. 61	. 62	. 56	. 56	. 55
1922-23	. 49	. 54	. 57	. 60	. 61	. 57	. 60	. 59	. 64	. 61	. 58	. 59	. 58
1923-24.	. 56	. 58	. 60	. 61	. 62								

Division of Statistical and Historical Research. Compiled from Minneapolis Market Record.

FLAX AND FLAX SEED.

Table 149.-Flaxseed: Acreage, production value, exports, etc., United States, 1849-1923.

Calendar year.	Acreage.	Average yield per acre	Production.	Average farm price per bushel Dec. 1.	Farm value Dec. 1.	Value per acre. ${ }^{1}$	Domestic exports, fiscal year beginning July $1 .{ }^{2}$	Imports, fiscal year beginning July $1 .{ }^{2}$
	Actes.	Bush. of 66 lbs.	Bus	Cents.	Dollars.	Dollars.	ushels.	ushels.
1849			562, 000				2, 501	667,369
1859			567,000				2, 715	00
1869			1, 730,000				35	, 195
1879			10, 171,000				14, 678	$1,464,195$ $2,391,175$
1889	1,919,000	7.8	10,250,000				14,678	
1899	2,111,000	9.5	19,979,000				2, 830, 991	67, 379
1902	3, 740, 000	7.8	29, 285, 000	105.2	$30,815,000$ 292 10	8.24 6.90	4, 128, 130	129,089 213,270
1903	$3,233,000$ $2,284,000$	8.4 10.3	${ }_{23,401,000}^{27,301,00}$	81.7 98	$22,242,000$	6. 10.26 10.	1,338	296,184
1904	$2,264,000$ $2,535,000$	11.2	28, 478, 000	84.4	24, 049, 000	9.49	5, 988, 519	52, 240
06.		10.2	25, 576, 000	101.3	25,899,000	10.33	6,336,310	90, 356
1907	2, 864, 000	9.0	25, 851,000	95.6	24, 713,000	8.63	4, 277,313	57,419
1908	2, 679, 000	9.6	25, 805, 000	118.4	30, 577, 000	11.41	882, 889	593, 668
1909	2, 083,	9.5	19, 699, 000	152.8	30, 093, 000	14.45	65, 193	5, 002, 496
1910	2, 467, 000	5.2	12,718, 000	231. 7	${ }_{3}^{29,472,000}$	11. 95	$\begin{array}{r}976 \\ 4.323 \\ \hline\end{array}$	$10,499,227$ $6,841,806$
1911	2, 757, 000	7.0	19,370,000	114.1	35, 272, 000	11. 29	16,894	5, 294,296
1912	$2,851,000$ $2,291,000$	9.8 7.8	$28,073,000$ $17,853,000$	114.7 119.9	21, 399,000	12.39 9.34	305, 546	8, 653,235
1913	2, 291, 000							
Av. 1909-1913	2, 490, 000	7.8	19,543, 000	151.9	29, 888,000	11.92	78, 586	7, 258, 212
1914	1, 645, 000	8.4	13, 749, 000	126.0	17, 318, 000	10.53	4,145	10, 666, 215
1915	1, 387, 000	10.1	14, 030,000	174. 0	24, 410,000	17.60	2,614	$14,679,233$ 12 193
1916	1, 474, 000	9.7	14, 296, 000	248. 6	35,541, 000	${ }_{13}^{24 .} 70$	21,481	${ }_{13,366,529}$
1917	1, 984, 000	4. 6		296.6 340.1	45, 470,000	${ }_{23.81}^{13 .}$	15,574	8,426,886
1918.	1, 910, 000		$\begin{gathered} 13,369,000 \\ 7 \\ 756 \end{gathered}$	340.1 438.	$45,470,000$ $31,802,000$	21.16	24, 044	23, 391, 934
1919	$\begin{aligned} & 1,503,000 \\ & 1,757,000 \end{aligned}$	4.8 6.1	$\begin{array}{r} 7,256,000 \\ 10,774,000 \end{array}$	176.7	19, 039, 000	10.84	1,481	16, 170, 415
. 1914-1930	1,666,000	7.1	11, 805, 000	242.9	28,680, 000	17. 21	10,051	14, 156, 457
1921	1, 108, 000	7.2	8, 029, 000	145.1	11,648,000	10. 51	2,267	13, 632, 073
1922	1, 113, 000	9.3	10,375, 000	211.5	21, 941, 000	19.71		25,005, 936
1923 -	2,061,000	8.5	17, 429,000	210.8	36, 733, 000	17.82		

Division of Crop and Livestock Estimates. Figures in italics are census returns.
1 Based on farm price Dec. 1.
2 Compiled from reports of B.
${ }_{2}$ Compiled from reports of Bureau of Foreign and Domestic Commerce.
${ }^{3}$ Approximate.
4 Preliminary.

Table 150.-Flaxseed: Acreage, production, and total farm value, by States, calendar years, 1921-1923.

State.	Thousands of acres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of dollars.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
Wisconsin	6	4	8	63	\% 52	97 5	$\begin{array}{r}94 \\ 4 \\ \hline 04\end{array}$	94 6.758	11, 204
Minnesota	314	310	527	2,983	3,100	5,270	4,504	6,758	11, 225
Iowa...--	8	8	$\begin{array}{r}9 \\ \hline\end{array}$	\% 79	83 4.845	8, 824	3,997	10,368	17, 859
North Dakota	430	521	$\begin{array}{r}1,094 \\ \hline 284\end{array}$	2,795	4,845 1,539	8,424	3,992	10,093	5; 021
South Dakota	216	162 3	284 4	$\begin{array}{r}1,404 \\ 24 \\ \hline\end{array}$	$\begin{array}{r}1,539 \\ \mathbf{2 4} \\ \hline 1\end{array}$	2,414	$\begin{array}{r}1,952 \\ \hline 36\end{array}$	- 46	5 92
Nebraska	3 20	3 20	4 24	24 134	${ }_{124}$	182	181	223	391
Kansas	20 110	20	24 110	5	605	902	770	1,092	1,741
Montana	110	84	110 1	500 6	$\begin{array}{r}605 \\ \hline\end{array}$	10	7	1, 13	19
	1,108	1,113	2,061	8, 029	10,375	17,429	11, 648	21,941	36,733

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

Table 151.-Flaxseed: Yield per acre, by States, calendar years, 1908-1923.

State.	1908		1910	1911		1913	Av.	1914	1915	1916	1917	1918	1919	1920	Av. 1914	1921	1922	1923
-							1913								1920			
	Bra.	Bu.	Bu.	$B u$.	Bu.	Bu.	Bu.	Bz.	$B u$.	Bu.	Bu.	$B u$.	$B u$.	$B u$.	Bu.	Bu.	Bu.	Bu
Wisconsin.	16.0	14.5	10.0	12.0	12.5	14.0	12.6	13.5	13.5	12.0		11.0	10.5	11.0		10. 5	13.0	12.1
Minneso	10.6	10.0	7.5	8.0	10.2	9.0	8.9	9. 3	10.5	8.5	9. 5	10.4	8. 0	9.5	9.4	9. 5	10.0	10.0
Iowa	10.9	9.8	12. 2	8.0	11. 5	9.4	10.2	9. 5		10.0	11.0	11.0	16.01	12.0	11.2			9.5
North Dako	90	9. 3	3.6	7. 6	9. 7	7.2	7.5	8. 3	9.9	10.3	3.9	7.8		5.3	7.2	6. 5	9. 3	7.7
South Dak	10.7	9. 4	5.0	5.3	8. 6	7.2	7.1		11.0	9. 3	7.0	9. 5		0. 0	8.8	6. 5		8.5
Nebraska	11.0	8.5	8.0	5. 0	9. 5	6. 0	7.4		11.0	8. 0	5. 5	9. 5	5. 0	9.0	7.9	8.0	8.0	11.0
Kansas.	6. 5	7.0	8.2	3. 0	6. 0	6. 0	6.0	6. 0	5.7	5. 8	7.0	5.0	6. 3	6. 9	6. 1	6. 7	6.0	7. 6
Montana	11.5	12.0	7.0	7.7	12.0	9.0	9.5	8.	10.5	9.5	3.0	3.0	1.3	2.6	5.4	5. 0	7.2	8.2
W yoming									13.0	7.0	6.5	9.0	4.0	8.2	8. 0	5. 7		10.0
United Stat	9.6	9.5	5. 2	7.0		7.8	7.9		10.1	9.7	4.6	7.0	4.8	6.1	7.2	7.2	9.3	8.5

Division of Crop and Livestock Estimates.
Table 152.—Flaxseed: Condition of crop, 1st of month, and yield per acre, United States, 1903-1923.

Calendar year.	July.	Aug.	Sept.	Oet. ${ }^{1}$	Yield per acre.	Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.
	P. ct.	P.ct.	$P . c t$.	P. ct.	Busk.		P.ct.	P. ct.	P.ct.	P. ct.	Bush.
1903	86. 2	80.3	80.5	74.0	8. 4	1914	90.5	82.1	72.9	77.4	8.4
1904	86.6	78.9	85.8	87.0	10.3	1915	88.5	91.2	87.6	84.5	10.1
1905	92.7	96.7	94.2	91.5	11. 2	1916	90.3	84.0	84.8	86.2	9.7
1806	93.2	92.2	89.0	87.4	10.2	1917	84.0	60.6	50.2	51.3	4.6
1907	91.2	91.9	85.4	78.0	9.0	1918	79.8	70.6	72.6	70.8	7.0
1908	92.5	86.1	82.5	81. 2	9.6	1919	73.5	52.7	50.5	52.6	4.8
						1920	89.1	80.1	63.8	62.8	6.1
1909	95.1	92.7	88.9	84.9	9.5						
1910	65.0	51.7	48. 3	47.2	5.2	Av. 1914-1920	85.1	74.5	68.9	69.4	7.2
1911	80.9	71.0	68.4	69.6	7. 0						
1912	88.9	87.5	86.3	83.8	9.8	1921	82.7	70.0	62.3	66.8	7.2
1913	82.0	77. 4	74.9	74.7	7.8	1922	87.6	84.7	82.7	82.6	8.3
Av. 1909-1913	82.4	76.1	73.4	72.0	7.9						

Division of Crop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.
Table 153.-Flaxseed: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1910-1922.

$\begin{gathered} \text { Cal- } \\ \text { endar } \\ \text { year. } \end{gathered}$	Deficient moise.	$\begin{aligned} & \text { Ex- } \\ & \text { ces- } \\ & \text { sive } \\ & \text { mois- } \\ & \text { ture. } \end{aligned}$	Floods.	Frost and freeze	Hail.	$\underset{\text { winds. }}{\text { Hot }}$	Storms.	Total matic.	Plant disease.	Insect pests.	$\begin{aligned} & \text { Ani- } \\ & \text { mal } \\ & \text { pests. } \end{aligned}$	De-fective seed.	Total. ${ }^{1}$
	P.ct.	P ct.	P.ct.	P.ct.	P.ct.	P. ct.	P.ct.	P. ct.	P.ct.	P. ct.	P. ct.	P. ct.	P. ct.
1910.	49.4	(2)		2.5	0.9	6.2	0.1	59.3	1.3	1.7	${ }^{(2)}$		63.1
1911	16. 4	1.1		8.4	. 9	2.8	. 1	30.5	2.2	1.7	${ }^{(2)}$.2	36.3
1912	5. 1	2.9	0.2	5.9	2.8	1.1	. 8	19.0	3.7	.4	0.4	1.4	23.6
1913-	24.3	. 7	. 1	1.0	1.7	2. 2	.2	30.6	1.6	. 2		.4	34.5 29.1
1914--	11.4	1.7	. 2	2.0	1.9	6.6	.3	24.1	2.2	. 5	2	4	29.1
1915.	21	20	. 3	8.5	2.1	4	. 2	16.1	2.6	. 1	${ }^{(2)}$	${ }^{(2)}$	20.0
1916	3.3	2.3		1.4	1.7	2.8	. 3	12.4	3.9	. 1	(2)	.1	17.2
1917--	51.3	.3	$\left.{ }^{2}\right)$	2.9	1.2	2.9	${ }^{(2)}$	59.3	1.2	1.2	(2)	. 1	62.3
1918--	26.2	.2	. 1	3.3	2.3	2.5	.2	34. 8	1.0	2.6	(3)	. 1	39.3
1919.-	38.0	7	. 1	. 5	2.0	4.1	${ }^{(2)}$	45.5	3.7	10.6	. 1	(2)	60.2
1920.-	23.2	1.2	.3	. 6	1.7	4.2	.2	31.7	4. 5	3.7		. 1	41.4
1921.-	25.2	. 8	.2	${ }^{4}$	1.9 2.4	6.6 1.7	.12	36.3 14.8	4.3 2.6	3.1 3.9	(2)	.1	21.4
1922.	9.6	.4		$\cdot 3$	2.4	1.7	. 2	14.8					

[^169]Table 154.-Flax: Area in undermentioned countries, 1909-1923. NORTHERN HEMISPHERE.
-

Country.	Area.									
	A verage, 1909-1913.	1920	1921	1922	1923					
NORTH America.	$\begin{gathered} \text { Acres. } \\ 1,035,000 \\ 2,489,800 \end{gathered}$	$\begin{aligned} & \text { Acres. } \\ & 1,428,164 \\ & 1,757,000 \end{aligned}$	$\begin{gathered} \text { Acres. } \\ 533,147 \\ 1,108,000 \end{gathered}$	$\begin{array}{r} \text { Acres. } \\ 565,479 \\ 1,113,000 \end{array}$	$\begin{aligned} & \text { Acres. } \\ & 629,938 \\ & 2,061,000 \end{aligned}$					
Canada										
EUROPE.										
United Kingdom:										
England and Wales	5380	22, 300	7,800	9,360	9,446					
Sweden	53,000 3,841	127, 198	39, 845	34, 032						
Netherlands	33,000	60, 179	21, 510	23,954	24,300					
Belgium.	48, 930	125, 344	37, 164	40,700	45, 200					
France.	${ }^{1} 61,540$	86, 048	43, 163	45, 429						
Spain	${ }^{2} 7,349$	2, 978	4, 097	4,200	4, 200					
Italy	${ }^{3} 41,513$	49, 914	52, 632	52, 385	49,400					
Germany	${ }^{11} 41,266$	139, 458	117, 795	114, 580						
Austria-	196,525	7,554	8,357	9,200						
Czechoslovakia		54, 406	58, 409	56, 151	55, 059					
	1720	1,290	638	1,700	1,300					
Rumania.	${ }^{1} 52,266$	24, 582	27, 225	26, 800	30, 500					
Poland.		120, 825	175, 095	251, 500	255, 600					
Lithuania		166, 076	126, 800	126, 500	128, 700					
Latvia		75, 363	84, 335	93, 300	139,500					
Esthonia		50,048	50,342	59, 200	59, 200					
Finland.	${ }^{4} 12,236$	15,985	16,828	13,600	10,600					
Russia, including Ukraine and Northern Caucasia	${ }^{15} 3,409,345$	1,538, 000	${ }^{6} 1,775,000$	1,862, 000						
africa.										
Morocco (French, Western)		96, 147	43, 663	31,700	39,500					
Algeria	1,366	988	741	700	800					
Tunis.-		8,317	9,180	3,800	7,400					
Egypt.		5,765	1,384	1,400	1,700					
ASIA.										
India	3, 818, 080	3, 103, 000	2, 269, 000	3, 011, 000	3,358, 000					
Russia, Asiatic.	${ }^{1} 376,000$	213, 000		298, 000						
Japan...	12, 139	103, 201	76, 428	39,100						

SOUTHERN HEMISPHERE.

Country.	Area.				
	A verage, 1909-1913	1920-21	1921-22	1922-23	1923-24
Chile	Acres. $3,149$	Acres. 897	Acres. 500	Acres. 800	Acres.
Uruguay-	126, 528	78,867	60,935	84, 500	102,500
Argentina	$4,004,058$ 21,056	$4,769,030$ 1,072	3,891, 825	4, 194, 028	
New Zealand	${ }^{4} 2,565$	9, 662	5,881	10,600	
World total comparable with 19091913	15, 777, 409	14, 183, 008			
World total comparable with 1923.-		12, 025,535	8, 591, 116	9, 771, 557	12, 273, 238

Division of Statistical and Historical Research.
Official and International Institute of Agriculture, unless otherwise stated.
Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }^{1}$ Pre-war boundaries.
${ }^{2}$ Two years.
${ }^{8}$ Three-year average.
${ }^{4}$ One year.
${ }^{5}$ Pre-war Poland included in Russia, Austria, and Germany.
${ }^{6}$ From an unofficial source.

Table 155.-Flax: Production in undermentioned countries, 1909-1923. NORTHERN HEMISPHERE.

Country.	Seed.				Fiber.			
	$\begin{gathered} \text { A verage } \\ 1909-1913 . \end{gathered}$	1921	1922	1923	Average 1909-1913.	1921	1922	1923
NORTH AMERICA.	1,000bushels. 12,04019,543	1,000bushels. 4,1128,029	1,000 bushels. 5,00910,375	1,000bushels. 6,94217,429	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
United States EUROPE.								
United Kingdom: England and Wales.								
Ireland.-.-...					23,701	10,725	12,390	
Sweden-	${ }^{1} 14$	17	11		${ }^{1} 1,128$.	1, 512	1,098	
Netherlands	374	249	250		17, 276	10, 853	9,691	
Belgium---		328	356	396	${ }_{3}^{2} 51,888$	20,027	33,480	40,370
France--		288 46	223 51	51	3 30,623 21,995	23,333 1,157	30,185 1,420	1,170
Italy.	329	516	413	433	6,289	5,930	4,982	5, 510
Austria	${ }^{3} 694$	45	48		${ }^{3} 53,116$	6,739	7,130	
Czechoslova		300 73	312 41	427		28,693 7,618	27,731	30,078
Hungary--- Yugoslavia	196	73			${ }^{3} 20,547$	7,618 $\mathbf{1 6 , 6 8 0}$	5, $\mathbf{1 5 , 2 7 0}$	
Serbia, Croatia-Slavonia and BosniaHerzegovina	${ }^{3} 21$				${ }^{3} 10,564$			
Bulgaria.-.-...-...----	88	. 3	15	11	${ }^{13} 447$	169	650	550
Rumania	8467	128	194		${ }^{3} 4,864$	2, 670	3,110	
Poland.	(${ }^{\text {) }}$	1,287	1,995		${ }^{(4)}$	92, 614	113,770	
Lithuania		909	1,108	1,026		41,470	45, 190	45, 978
Latvia.-		625 275	563 328	${ }_{304}^{982}$		$\begin{array}{r}30,675 \\ 15 \\ \hline\end{array}$	37,560 20,750	54,180 19,800
Esthonia Finland.		275	328			15 3,486	- 3 3, 527	19,800
Russia, including Ukraine and Northern Caucasia.	${ }^{34} 21,338$		7,866		3,41,255,973		429, 995	
africa.								
Morocco (French)...-		418	267					
Algeria...	13	11	6	10	${ }^{5} 188$			
Tunis..	37	59	4	47				
Kenya.-.......		35	33			2, 545		
ASIA.								
India---..--	19, 870	10, 800	17,440	21, 280	- 127,613		61,392	
Asiatic Russia	12,123 198	634	1, 275		5,174	24, 980	10,710	

SOUTHERN HEMISPHERE.

Country.	Seed.				Fiber.			
	$\begin{gathered} \text { Average } \\ 1909-1913 . \end{gathered}$	1921-22	1922-23	1923-24	$\begin{gathered} \text { Average } \\ 1009-1913 \end{gathered}$ $1909-1913 .$	1921-22	1922-23	1923-24
Chile.	$1,000$ bushels. 35	$1,000$ bushels. 8	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels.	$\begin{array}{r} 1,000 \\ \text { pounds. } \\ 43 \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds. } \\ 210 \end{array}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	1,000 pounds.
Uruguay.-	976	519	719					
Argentina-------------	31, 117	36, 046	44, 280	63, 225				
Australia	${ }^{5} 9$	10			${ }^{6} 128$	49		
New Zealand.--------		113	205					
World total comparable with 1909-1913	110, 331				1,621, 557	--------		
World total comparable with 1923. \qquad		62, 059	80, 260	112, 563		144, 027	171, 763	197,628

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated.

Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.

[^170]Table 156.-Flaxseed: Monthly marketings by farmers, United States, 1917-1922.

Year beginning July 1.	Percentage of year's receipts as reported by about 3,500 mills and elevators.												
	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Season.
1917-18	1.8	3.6	21.5	28.1	17. 6	7.6	4. 7	4.0	4. 8	1.8	1. 6	2.9	100.0
1918-19	1.8	2.9	14.8	21.5	15.0	10.9	5. 2	4.4	5. 8	4.3	5. 0	8.4	100.0
1919-20	3. 6	8. 0	20.6	22.2	11.1	7. 4	5. 0	6. 3	3. 1	3.1	2. 6	7.0	100.0
1920-21	2.1	4. 7	23.6	28. 6	13.0	6. 2	5. 0	3.3	3. 1	2.1	3. 4	4.9.	100.0
1921-22	6. 4	10.9	20. 7	25. 7	12.0	6. 9	4. 3	2. 8	3. 0	2.4	2.1	2.8	100.0
1922-23	2.5	13.4	27.6	23.3	11.4	5.9	4.7	3.0	2. 7	2.3	1.6	1. 6	100.0

Division of Crop and Livestock Estimates.
Table 157.-Flaxseed: Receipts at Minneapolis, 1910-1923.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	bush.												
1910-11	. 854	-1,530	1,292	535	338	300	232	112	118	122	133	191	5,757
1911-12	563	1, 212	1, 570	1,716	531	459	397	468	571	440	487	160	8, 574
1912-13	700	1,657	1,520	2,245	1,450	1,146	1, 057	742	518	514	432	281	12,362
1913-14	756	1, 686	1,505	1,131	711	478	592	270	139	165	233	117	7, 783
1914-15	901	1,800	1,247	1, 016	599	443	384	142	77	146	239	115	7,199
1915-16	347	1, 038	1,506	1,113	319	399	810	486	440	363	441	199	7,461
1916-17	316	2, 380	1,694	1, 045	544	442	441	384	263	565	325	92	8,491
1917-18	265	980	I, 112	614	533	553	527	283	349	648	208	94	6,166
1918-19	536	915	857	788	558	473	829	439	436	942	642	196	7,611
1919-20	753	570	568	492	344	368	409	159	295	522	554	297	5, 331
1920-21	580	1, 444	861	699	298	269	364	434	578	572	338	289	6,726
Av. 1914-1920.	528	1,317	1, 121	824	457	421	538	332	348	537	392	183	6, 998
1921-22	500	1, 144	375	354	308	200	254	196	360	220	157	288	4,296
1922-23	909	1, 121	580	577	494	238	316	456	393	458	382	884	6,808
1923-24	2, 553	2, 025	1,360	865									

Division of Statistical and Historical Research. Compiled from Minneapolis Chamber of Commerce reports and Daily Market Record.

Table 158.-Flaxseed; including linseed oit: Production, imports, exports, and net supply in the United States, 1911-1922.

Year beginning July 1.	Production.	Imperts of seed.	Imports of	Exports of seed (domestic and foreign).	Exports of oil (domestic and foreign). ${ }^{1}$	$\begin{aligned} & \text { Net sup- } \\ & \text { ply. } \end{aligned}$
1911-12		Bushels.	Bushets.	Bushels.	Bushels.	Bushels.
1912-13	28, 073,000	5, 294,296	-69, 476	17,062	693, 579	32, 726131
1913-14-	17, 853, 000	8, 653,235	76, 913	305, 796	95, 775	26, 181, 577
1914-15.	13, 749, 000	10, 666, 215	214, 116	67, 173	484, 857	24,077,301
1915-16.	14, 030, 000	14, 679, 233	20, 059	2, 631	285, 648	28, 441, 013
1916-17	14, 296, 000	12, 393, 988	44, 323	1,017	480, 622	26,252, 672
1917-18.	9, 164,000	13, 366, 529	20,331	22,332	476, 216	22, 052,312
1918-19.	13, 369,000	8, 426, 886	395, 225	15, 618	439, 173	21, 737, 020
1919-20	7, 256, 000	23, 391, 934	1,820, 156	48,980	456, 806	31, 262,304
1920-21	10, 774, 000	16, 170, 415	798, 634	1,486	224, 514	27, 517,049
1921-22	8, 229,000	13, 632,073	8, 997, 620	2, 281	148, 605	30, 507, 807
1922-23.	10, 375, 090	25, 005, 936	3,027, 399	${ }^{2} 216$	165, 605	38, 242, 514

[^171]Table 159.-Flaxseed used in the production of oil, United States, 1919-1923.

Year.	July-Sept.	Oct.-Dec.	Jan.-Mar.	Apr.-June	$\begin{aligned} & \text { Year end- } \\ & \text { ing June } 30 . \\ & \hline \end{aligned}$
1918-19.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels. 1, 041	1,000 bushels. 4, 785	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$
1919-20	6,899	7,684	6,336	6,407	27, 326
1920-21	6,542	6,341	6, 343	6, 332	25, 558
1921-22	5,812	7,539	6,713	3,441	23, 505
1922-23	5,583	8, 602	8, 292	8,689	31, 166
1923-24	8,223	8,970			

Division of Crop and Livestock Estimates. Compiled from reports of the Bureau of the Census. Converted to bushels of 56 pounds.
Table 160.-Flaxseed: Imports into the United States by countries, 1910-1923.

-	Year ending June 30.	Argentina.	Canada.	British India.	Other countries.	Total.
		1,000 batsh. 3, 029	1,000 busk. 1,410	1,000 bush. 194	$1,000$ bush.	1,000 bush. 5, 002
1909-10-		3,029	1,410	2. 334	369 893	5,002 10,499
1910-11		5, 2121	2,2511	2, 1,525	595	10,482
1912-13.		429	4,732	129	4	5,294
1913-14.			8,647	(1)	6	8,653
1914-15.		3,928	6,630	40	68	-10,666
1915-16.		11,468	3, 695		116	14, 679
1916-17.		5,009	7,015	123	247	12,394
1917-18		7, 432	5,501		434	13, 367
1918-19.		6,977	1,304	11	135	8,427
1919-20.		22, 242	816		334	23, 392
1920-21		13, 145	2,635		390	16, 170
1921-22		10, 409	3,013	12	198	13, 632
1922-23.		22, 331	2, 191	--------	484	25,006

Division of Statistical and Historical Research.
${ }^{1}$ Less than 500 bushels.
Table 161.-Flaxseed: International trade, calendar years, 1911-1922.

Country.	Average 1911-1913.		1920		1921		1922, preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING countries. Argentina	$1,000$ bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 25,562 \end{gathered}$	$1,000$ butshels. $\begin{array}{r} 3 \\ 380 \end{array}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 41,829 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \\ 53,549 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels. 36,453
Aritish India	${ }_{1} 323$	1 14, 409	280	7,839	283	4, 264	260	12,404
Canada	89	10,645	617	1,519	270	3,728	45	2,073
China				$\stackrel{242}{9}$	${ }^{2} 47$	2181	${ }^{1} 74$	1,331 1899
Moroceo (French)		338		706		590		${ }^{2} 225$
Ramania	19	120						
Russia	(3) 80	$\begin{array}{r} 5,739 \\ \hline 99 \end{array}$	1		${ }_{\left({ }^{2} 2\right.}^{2}$	79	(3)	
Uruguay.		994		784		${ }^{2} 887$		${ }^{2} 500$
PRINCIPAL IMPORTING COUNTRIES. Australia	103	(3)			712			
Austria---------			224	(3)	24	(8)	21	(3)
Austria-Hungary	1,913 9,313	5,965						
Belgium	9, 313	5,965	1,586 102	(3)	6,273 2 1	${ }_{\text {(\%) }}{ }^{\text {d }}$	2,934 802	(3) 102
Denmark	110		1,049	(3)	1,106	(\%)	602 142	${ }^{(3)} 21$
Finland	110 6,304	${ }^{(3)} 60$	$\begin{array}{r}104 \\ 1,284 \\ \hline\end{array}$	67	139 4,280	12	142 5,288	47
Germany	15, 312	210	2,080	13	- 5, 908	445	4,061	2
Erungary	1,698		871	(3)	21 749	(3)	1,217	2
Japan	${ }_{5} 52$	${ }^{5} 27$	114	74	162	103	${ }^{2} 139$	
Netherlands.	8,741	2, 488	3, 826	179	10,788	210	9, 862	201
Norway --.-.	445		3,332 1,085		438 1,061		1,042	
Sweden United Kingdom....-.	911 -15908	7	1,085 15,520	(3)	1,061 18,528	1	1,042 14,093	
United States-.--	7,298	101	24,641	16	12, 326		14, 913	2
Other countries.-.-.--	575	139	32	74	32	212	25	209
Total	69, 171	67, 533	54, 121	53,498	63,705	66,571	56, 272	54, 087

[^172]Table 162.-Flaxseed: Farm price per bushel, 1st of month, United States, 1908-1923.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Weight ed av., crop year.
1908-9------------	$\begin{gathered} \text { Cts. } \\ 109.6 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 107.0 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 108.3 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 118.4 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ \text { 123. } \end{gathered}$	$\begin{gathered} \text { Cts. } \\ \text { 129.8. } \end{gathered}$	$\begin{gathered} \text { Cts. } \\ \text { 141. } 3 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ \text { 145. } 6 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 148.7 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 153.4 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 153.2 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 137.0 \end{gathered}$	Cts. 118.4
1909-10	123.1	122.8	139.8	152.9	171.2	192.9	193.1	193.9	209.5	195. 5	183.5	209. 7	153.2
1910-11	220.0	234. 3	229.4	231.7	221.1	233.9	240.7	234.6	241.9	225.0	205. 6	199. 2	229.4
1911-12	203.6	205.0	210.6	182. 1	187.1	190.8	183.9	191.3	181.0	205.0	198. 4	175. 2	197. 1
1912-13	162.6	147. 7	133.4	114. 7	106. 2	109. 3	119.0	113.6	114. 3	115.8	113.4	118. 6	125.9
1913-14	127.8	122.6	118.7	119.9	124.2	127.8	132.5	132.8	134.7	136.8	136.0	150.7	123.2
Av. 1909-1913..--	167.4	166.5	166.4	160.3	162.0	170.9	173.8	173.2	176.3	175.6	167.4	170.7	165.8
1914-15	139.3	127.4	118.7	126.0	134.8	163.7	157.9	167.7	169.6	169.5	152.5	144.6	132.0
1915-16	143.5	148.1	162.9	174.0	185.9	210.9	202.5	202.1	191.8	176. 5	163.2	178.1	170.6
1916-17	190. 2	199.2	234. 7	248.6	250.7	253. 7	253.1	266.1	300.6	298. 8	278.0	271.6	239.4
1917-18	302.8	308. 5	295.9	296.6	310.8	326. 7	349.8	379. 7	373.3	363.6	349.3	410.5	311.0
1918-19	381. 2	380.9	333. 8	340.1	327. 7	310.1	327.4	348. 7	361.4	389.3	444. 1	540.6	349.2
1919-20	517.5	438. 2	382.3	438.3	433.6	456.5	472.7	455. 7	448. 2	421.1	359.6	303. 7	421.4
1920-21	290.3	279.7	240.1	176.7	163.7	156.3	150.4	142.6	125.7	145. 7	145.8	162.1	208.4
Av. 1914-1920..-	280.7	268.9	252.6	257.2	258.2	268.3	273.4	280.4	281.5	280.6	270.4	287.3	261.7
1921-22	164.8	162.9	145.0	145. 1	151.1	173.1	216. 2	218. 7	230.6	236.9	223.0	211.4	161.2
1922-23	190.1	188. 1	210.7	211.5	224. 2	235.6	255.1	268. 0	291.0	255. 2	241.7	215.9	216.0
1923-24	204.8	212.1	212.1	210.8									

Division of Crop and Livestock Estimates.

Table 163.-Flaxseed: Farm price per bushel, December 1, calendar years, 19081923, and value per acre, 1923.

State.	1908	1909	1910	1911	1912	1913	Av. 19091913	1914	1915	1916
	Cts.									
W is consin	115	135	220	185	127	123	158	125	180	240
Minnesota	120	150	230	182	120	123	161	128	176	240
Iowa..	110	130	220	185	124	123	156	120	150	215
North Dakota	119	157	235	184	114	121	162	128	178	252
South Dakota	119	151	229	178	113	120	158	123	167	247
Nebraska..	112	122	225	185	128	110	154	119	147	230
Kansas .	102	110	210	190	130	116	151	125	145	234
Montana W yoming.	100	160	240	180	112	115	161	120	170	248
									145	225
	118.4	152.6	231.7	182.1	114.7	119.9	160.2	126.0	174.0	248.6
State.										
		1917	1918	1919	1920	Av. 19141920	1921	1922	1923	
	-	Cts.	Dollars.							
W isconsin	-		330	430	212		150	180	210	25.41
Minnesota		295	341	445	183	258	151	218	213	21.30
Iowa		275	320	420	180	240	153	185	210	19.95
North Dakota		300	345	441	178	260	143	214	212	16.32
South Dakota		299	325	425	165	250	139	201	208	17.68
Nebraska.		250	330	400	155	233	150	190	210	23. 10
Kansas .-		290	330	380	180	241	135	186	215	16. 34
Montana		295	338	440	175	255	140	197	193	15.83
W yoming		261	325	350	135	240	118	190	190	19.00
		296.6	340.1	438.3	176. 7	257.2	145. 1	211.5	210.8	17.82

Division of Crop and Livestock Estimates.
${ }^{1}$ Based upon farm price Dec. 1.

Table 164.-Flaxseed: Average closing price per bushel, Minneapolis, 1899-1923.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Average.
-					\$1.45	\$1. 55	\$1. 59	\$1. 68	\$1.75	\$1.75	\$1. 63	\$1.35	
1900-1	\$1. 49	\$1. 70	\$1.71	\$1. 62	1.65	1.60	1.54	1. 68	1.75	1. 75	1.85	1.60	\$1.66
1901-2	1. 50	1.45	1.42	1. 47	1.65	1.70	1.72	1.75	1. 75	1.74	1.52	1. 42	1.59
1902	1.31	1.20	1.18	1.19	1.19	1.15	1.12	1. 10	1.14	1.07	. 97	. 97	1.13
1903	1. 00	. 98	. 94	+ 97	1. 06	1.15	1.14	1.12	1.06	1.07	1.19	1. 24	1.08
1904	1.22	1.14	1.16.	1.23	1.23	1. 27	1. 39	1.39	1. 42	1.47	1.47	1. 42	1.32
1806	1.04	. 97	98	1. 1.19	1. 16	1. 14	1. 13	1.15	1.14	1.11	1.10	1. 11	1. 09
1907	1.22	1.27	1.13	1.12	1.17	1.16	1.16	1.17	1.23	1.23	1. 21	1. 29	. 28
1908	1.23	1.22	1.38	1.45	1.56	1.64	1. 64	1.65	1.72	1. 77	1.59	1. 42	1. 52
1909	1.41	1.57	1.75	1.93	2.18	2.18	2.25	2.38	2.22	2.04	2.34	2.47	2.06
10-1	2.66	2.62	2.61	2.42	2.60	2. 68	2.60	2. 56	2.47	2. 24	2.10	2.34	2.49
1911-12	2.47	2.35	2.04	2.06	2.15	2. 06	2.06	2.15	2.23	2.25	1.97	1.86	2. 14
1912	1.76	1. 60	1.35	1.25	1. 29	1.34	1. 26	1.29	1.30	1.31	1.38	1. 47	1.38
1913	1.45	1.38	1.35	1. 44	1.49	1. 53	1.58	1.54	1. 56	1. 59	1.68	1.64	1.52
Av. 190	1.95	1.90	1.82	1.82	1.94	1.96	1.95	1.98	1.96	1.89	1.89	1.96	1.92
1914-15	1.51	1.33	1.45	1.54	1.83	1.86	1.91	1.93	1.95	1.76	1.67	1.67	1.78
1915-16	1. 70	1. 86	1.99	2.07	2.31	2.32	2.27	2.13	1.96	1. 80	1.96	2. 15	2.04
1916-17	2.11	2.54	2.78	2.84	2.89	2.81	2.90	3.18	3.33	3.11	3.01	3. 46	2. 91
1917-18	3. 38	3.16	3. 29	3. 40	3.60	3.74	4.08	4.09	3. 93	3.86	4. 40	4. 39	3. 78
1918-19	4.09	3. 59	3.77	3. 54	3.41	3.45	3. 75	3.88	4. 12	4.86	5. 94	5. 87	4. 19
1919-20	4. 92	4.32	4.83	4.99	5. 12	5.09	5.02	4.68	4.53	3.92	3. 48	3. 28	4.52
1920-21	3. 23	2. 83	2. 27.	2.06	1.96	1.82	1.78	1. 58	1.84	1. 86	1.89	2. 01	2. 09
AV. 191	2.99	2.80	2.91	2.92	3. 02	3.01	3.10	3.07	3.09	3.02	3. 19	3. 26	3.03
1921-22	2.03	1.81	1.81	1.89	2.13	2.46	2.57	2.70	2.80	2.50	2. 59	2.29	2.19
1922-23	2. 28	2.38	2.48	2. 62	2. 80	3.04	3.07	3.40	2.94	2. 80	2. 70	2.34	2. 58
1923-24_	2. 38	2. 48	2. 41	2. 46									

Division of Statistical and Historical Research. Complied from Annual Reports of the Minneapolis Chamber of Commerce and the Minneapolis Daily Market Record. From Jan. 1, 1921, prices are weighted averages.

LINSEED OIL.

Table 165.-Linseed oil: International trade, calendar years, 1909-1922.

Country.	Average 1909-1913. ${ }^{1}$		1920		1921		1922, preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORT- ING COUNTRIES. Argentina	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 886 \end{gathered}$	$\begin{gathered} 1,000 \\ p_{\text {ound }} \\ 2.2 \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { pounids. } \\ & 522 \end{aligned}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 3,013 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 747 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$
Belgium.-	10, 233	26,790	7,795	16, 117	11,205	25, 623	1,272	19, 831
Denmark			845	5,777	865	2, 281		391
Netherlands			2,137	59,239	2,124	145, 569	62	157,928
United Kingdom.	58,018	58, 013	3,358	108, 463	110	123, 764	9, 103	133, 388
PRINCIPAL TMPORTing countries.								
Australia	12, 252		3, 487	320	5,737	55		
Austria			${ }^{1} 2,847$		${ }^{1} 6,863$			
Austria-Hungary	16,367	6, 542						
Brazil.	8,726		8, 769		4,617			
British Ind	3, 430	1,967	2, 594	3,125	1, 953	399	2,792	${ }_{94} 9$
Canada	2, 279		8, 323		254	58	1,058	94
Chile---1-----1	2, 854	15	-3,112		7777			
Crechoslovakia	43,199		$\begin{array}{r}15,557 \\ 6,643 \\ \hline\end{array}$	17	7,070	${ }^{1} 320$	${ }^{5} 2,220$	
Egypt.-	3,467		2, 034	6	2,615		3,134	
Finland.	812		295		1,642		2,695	
France	3, 382	10,931	26, 630	3, 856	29,511	3, 035	9, 062	3,371
Germany	5,231	4,377			${ }^{1} 77,016$	${ }^{14,325}$	64,458	3,394
Greece	1,246 1,042	165	1, 9206	395	1, 2667	47	915 6,617	196
Hungar			1450		${ }^{1} 2,484$			
Japan	1,023		150			275		
New Zeala	4,188		4,783		3, 318		2, 701	
Norway.--	1,609	${ }^{6} 5$	2, 303	49	8, 104	19	5,666	
Philippine Islands Sweden	$\begin{aligned} & 809 \\ & 933 \end{aligned}$		1,653 1,148		1,037	7	852	
Switzerland	7, 825	16	4,607	1,842	8, 189	396	8, 584	29
Union South Africa	3, 449		3,650	${ }^{7}$)	3, 312		2, 930	1
United States...-.	2, 605	4,105	35, 200	5,366	60, 091	3, 512	144, 137	2, 703
Other countries.	6,539	1,460	7,182	191	4,513	145	2,142	144
Total	162, 041	188, 075	156, 300	207, 841	256, 846	311, 004	270, 400	323,860

Division of Statistical and Historical Research. Official sources except where otherwise noted.
(Conversions made on the basis of 7.5 pounds to the gallon).
${ }^{1}$ International Institute of Agriculture, for Oleaginous Products and Vegetable Oils, 1923.
2 Four-year average.
Two-year average
Includes re-exports.
${ }^{8}$ Not separately stated. ${ }^{6}$ Java and Madura only. ${ }^{7}$ Less than 500 pounds.
85813°-YBE 1923-46

Table 166.-Linseed oil: Average price per gallon at New York, 1910-1923.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	Jane.	July.	Aug.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1910-11	\$0.90	\$0.90	\$0.95	\$0.95	\$0.95	\$0.96	80.96	\$0.91	\$0.91	\$0. 89	\$0. 87	\$0. 80	\$0.91
1911-12	. 87	. 88	. 84	. 71	. 74	. 71	. 70	. 73	.73	. 76	. 77	. 66	. 76
1912-13	. 66	. 62	. 56	. 43	. 42	. 46	. 45	. 44	. 46	. 45	. 47	. 49	. 49
1913-14	. 50	. 47	. 46	. 48	. 48	. 48	. 50	. 51	. 50	. 50	. 52	. 59	. 50
1914-15	. 57	. 49	. 44	. 45	. 48	. 56	. 55	. 58	. 62	. 63	. 54	. 50	53
1915-16	. 52	. 55	. 60	. 61	. 68	. 72	. 77	. 76	. 75	. 67	. 63	. 71	. 66
1916-17	. 70	. 82	. 90	. 92	. 94	. 95	. 94	1. 07.	1.21	1.21	1.12	1.18	1.00
1917-18	1. 25	1. 18	1.15	1.21	1.29	1. 29	1.41	1.57	1.57	1. 57	1.64	1.88	1. 42
1918-19	1. 90	J. 83	1. 55	1.58	1. 50	1.45	1.48	1. 54	1.61	1.81	2. 10	2. 22	1.71
1919-20	2.04	1.79	1.75	1. 82	1.77	1. 77	1.80	1.83	1.69	1.65	1. 52	1.41	1.74
1920-21	1.22	1. 20	. 98	. 82	. 78	. 68	. 66	. 61	. 70	. 75	. 75	. 74	. 82
Av. 1914-1920	1.17	1.12	1.05	1.06	1.06	1.06	1.09	1.14	1.16	1.18	1.19	1.23	1. 13
1921-22:	. 74	. 68	. 67	. 67	. 72	. 82	. 82	. 84	. 90	. 84	. 89	. 87	. 79
1922-23.	. 88	. 89	. 88	. 89	. 89	. 95	1.02	1.16	1. 15	1.12	1.04	. 97	. 99
1923-24	. 90	. 94	. 92	. 92									

Division of Statistical and Historical Researeh. Figures for 1910-1915 from Monthly Labor Review; 1916-19:18 from W ar Industries Board Price Bulletin; 1919-1923 from Oil, Paint, and Drug Reporter.

Table 167.-Rice, rough: Acreage, production, value, exports, etc., United States, 1904-1923.

Calender year.	Acreage.	A verage yield per acre.	Production.	Average farm price per bushel Dec. 1.	Farm value Dec. 1.	Value per acre. ${ }^{1}$	Domestic exports, fiscal year beginning July 1. ${ }^{2}$	Net imports, fiscal year beginning July $1 .{ }^{2}$
		Bush. of 45 lbs.			Dollars.			
1904	662,000	31. 9	$21,096,000$	65.8	$13,892,000$	Dolls. 20.98	$\begin{aligned} & \text { Bushels. } \\ & 5,964,814 \end{aligned}$	$\begin{aligned} & \text { Bushels. } \\ & 3,501,337 \end{aligned}$
1995	482, 000	28.2	13, 607, 000	95.2	12, 956, 000	26. 88	3, 612, 289	5, 593, 750
1906	575, 000	31.1	17, 855, 000	90.3	16, 121, 000	28. 04	3,790, 080	7,264, 859
1907	627, 090	29.9	18, 738, 000	85.8	16, 081,000	25.65	3, 033, 788	7,333, 910
1908	655,000	33.4	21, 890, 000	81.2	17, 771, 000	27. 13	3, 406, 070	7, 760, 164
1909	610,000	33.8	20,607,000	79.5	16,392,000	26.87	4, 487, 287	7, 820, 843
1910	723, 000	33.9	24, 510, 000	67.8	16, 624,000	22. 99	5, 134, 355	7, 292, 960
1911	686, 000	32.9	22, 534, 000	79.7	18, 274, 000	26. 26	5, 824, 598	6, 467, 505
1912	723,000	34.7	25, 054, 000	93. 5	23, 423, 000	32. 40	5,672, 996	7, 539, 206
1913	827, 000	31.1	25, 744, 000	85.3	22, 090, 000	26. 71	5,871, 289	9, 806, 684
A v. 1909-1913.	716,000	33.2	23,770,000	81.5	19, 361, 000	27.04	5,398, 105	7, 785, 400
1914.	694, 000	34.1	23, 649,000	92.4	21, 849, 000	31.48	7, 334, 389	7, 848, 181
1915	803, 000	36.1	28, 947, 000	90.6	26, 212, 000	32. 64	9,506, 099	6,931, 061
1916	869, 000	47.0	40, 861, 000	88.9	36, 311, 000	41. 78	12, 315, 486	6, 180, 934
1917	981, 000	35.4	34, 739, 000	189.6	65, 879, 000	67.16	11, 885, 265	13, 095, 243
1918	1, 119, 000	34.5	38, 606, 000	191. 8	74, 042, 000	66. 17	12, 892, 196	5,309, 014
$19: 9$	1,063, 000	39.5	41, 985, 000	266.6	111, 913, 000	105. 28	22, 899, 774	3, $001,362$.
1920	1,336, 000	39.0	52, 066, 000	119.1	62, 036, 000	46.43	22, 449, 930	1, 267, 391
Av. 1914-1920.	981, 000	38.0	37, 265, 000	152.7	56, 892, 000	57.99	14, 183, 306	6,233, 312
1921	921,000	40.8	37, 612, 000	5. 92	35, 802, 000	38.87	33, 834, 616	721, 411
1922	1,055, 000	39. 2	41, 405, 000	93.1	38, 562,000	36.55	21,583, 818	1,332, 360
$1923{ }^{3}$	892, 000	37.3	33, 256, 000	110.3	36, 686, 000	41.13		1,332,360

Division of Crop and Livestock Estimates. Figures in italics are census returns.
${ }^{1}$ Based upon farm price Dec. 1.
${ }^{2}$ Bureau of Foreign and Domestic Commerce. Domestic exports here include also shipments from the United States to Porto Rico and Hawaii; net imports are total imports minus reexports. Bushels are computed from pounds as reported in original by assuming 1 bushel of raugh rice to yield 27^{7} g pounds of cleaned rife.
${ }^{3}$ Preliminary.

Table 168.-Rice, rough: Acreage, production, and total farm value, by States, celendar years, 1921-1923.

State	Theusands of aeres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of dollars.		
	1921	1922	$1923{ }^{1}$	1921	1922	19231	1921	1922	$1923{ }^{1}$
South Carolina	7	8.	8	175	208	200	170	239	240
Georgia...	3	3	3	78	72	68	72	84	90
Florida	4	3	2	88	75	46	85	88	62
Mississippi	1	1	1	20	19	18	24	21	21
Irouisiana	480	555	480	17, 280	18,980	15; 840	14, 861	17,782	16,949
Texas.-.--	166	191	159	5, 989		6,360 5,254			7,314 5,884
Arkansas	125	154	138	6,688 7,290	7,392 7,700	5,254 5,470	6,153 8,384	6, 8,470	5,884 6,126
	921	1, 055	892	37, 612	41, 405	33, 256	35, 802	38, 562	36,686

Division of Crop and Livestack Estimates.
${ }^{1}$ Preliminary.
Table 169.-Rice, rough: Yield per acre, by States, calendar years, 1908-192צ.

State.	1908		1910	191.1	1912	1913	$\left\|\begin{array}{c} \mathrm{A} \nabla \\ 1909 \\ 1913 \end{array}\right\|$	1914	1915	1916	1917	1918	1919	1920	$\left\|\begin{array}{c} \text { Av. } \\ 1914- \\ 1920 \end{array}\right\|$	1921	1922	1923
	$B u$.	$B u$.	Bu.	Bu	Bu .	$B u$.	$B u$.	Bu.	Bu	Bu.	Bu.	Bu.	Bu.	Bu.	Bu.	$B u$.	Bu.	u.
South Carolina	24.0	25. 6	21.0	11.7	25.0	30.0	22.7	26.0	24.3	14.0	25.0	23.0	24.0	25.0	23.0	25.0	26.0	25. 0
Georgia	25. 0	23.9	22.0	26. 8	30.0	32.0	26.9	28. 0	29.3	20.0	30.0	26. 0	24.0	26.0	26. 2	26.0	24.1	22.7
Florida	25.0	25.0	21.0	25.0	25. 0	25.0	24.2	25.0	${ }^{25 .} 0$	25.0	${ }^{26.0}$	24.0	26. 0	24.0	25.	22.0	25. 0	${ }^{23.0}$
Mississipp	31.0	30.0	30: 0	36. 0	35. 0	28.0	31.8	30.	25. 0	28. 0	30.	23.0	29. 1	31.0	28.0	${ }^{20.0}$	19.0	18.0
Louisiana	33.0	33. 8	34. 4	31.5	33. 5	${ }^{29} 0$	32. 4	32. 1	134.2	46. 0	31.0	28.8						
Texas...	31. 5	34.0	33.0	34. 3	35.5	32.0		33.8	830.5	$\begin{aligned} & 45.0 \\ & 50.5 \\ & 50 \end{aligned}$		37.9	32.0	49.0	33.9 4 	53. 5	31. 2	49. 5
Arkansa Californi	41.0	40. 0	40.0	39.0	37.5	38.0	38.5	53.3	848. 4	59.5	41.0	65. 5	46.0	41.0	44.7 60.5	54. 0	58.0	39. 6
Unit		33.8	33.9	32.9	34.7	31.1	33.3	34.1	36.1	47.0	35.4	34.5	39. 5	39.0	37.9	40.8	39.2	7.3

Division of Crop and Livestock Estimates.
Table 170.-Rice, rough: Condition of crop, 1 st of month, and yield per acre, United States, 1894-1923.

Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.	Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield. per acre.
	P. ct.	P. ct.	P.ct.	P. ct.	Bush.		P. ct.	P.ct.	$P . c t$.	P. ct.	Busì.
1894	91.1	91.0	89.4	89.8		1912	86. 3	86.3	88. 8	89.2	34.7.
1895	84.4	84.1	94.5	90.3	53.0	1913	88.4	88.7	88.0	80.3	31.1
1896	82.9	77.2	76.5	68.6	35.7						
1897	94.3	83.4	86. 2	83.4	29.8	Av. 1909-1913.	87.9	87.1	87.5	84.8	33.3
1898.		101.7	99.3	93. 2	29.8	1914	86.5	87.6	88. 9	88.0	34.1
1899:		92: 6	88.4	91.4	34.1	1915	90.5	90.0	82.3	80.9	36.1.
1900		96. 3	89.5	85.7	29. 9	1916	92.7	92.2	91.2	91.5	47.0
1901		92. 3.	91.0	91.0	32.5	1917	85.1	85. 0	78.4	79.7	35.4.
1902	82. 2	77.5	80.0	72.2	26.9	1918	91.1	85.7	85.7	85.4	34.5
1903	93.5	92.0	93.6	90.6	32.7	1919	89.5	90. 4	91.9	91.3	39.5
						1920	90.0	88.7	88.3	88.1	39.0
1904	88. 2	90. 2	89.7	87. 3	31.9						
1905	88. 0	92.9	92.2	89.3	28.1.	Av. 1914-1920.	89.3	88.5	86.7	86.4	37.9
1906	82. 9	83. 1	86.8	87. 2	31.1						
1907	88.7	88.6	87. 0	88.7	29.9	1921	88. 0	86.5 86.9	83.8 85.5	84.6 85.3	40.8
1908	92.9	94. 1	93.5	87.7	33.4	1922------------------	88.6 86.4	86.9 84.8	85.5 82.9	85.3 83.0	$\begin{aligned} & 39.2 \\ & 37.3 \end{aligned}$
1909	90.7	84.5	84.7	81.2	33. 8						
1910	86.3	87.6	88.8	88.1.	33. 9 :						
1911	87.7	88.3	87.2	85.4	32.9						

Division of Crop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.

Table 171.-Rice: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1922.

Year.	Deficient mois- ture.	Ex- cessive moisture.	Floods	$\begin{gathered} \text { Frost } \\ \text { and } \\ \text { freeze. } \end{gathered}$	Hail.	Hot	Storms	Total matic	$\begin{gathered} \text { Plant } \\ \text { dis- } \\ \text { ease. } \end{gathered}$	Insect pests.	$\begin{gathered} \text { Ani- } \\ \text { mal } \\ \text { pests. } \end{gathered}$	Defective seed.	Total. ${ }^{1}$
	P.ct.	$P . c t$.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.						
1909.	4. 6	0.1				1.1	6.6	12.4	2.7	0.9	0.2	0.1	17.0
1910	7.2	1.7		0.1		. 1	1.0	10. 1	3.4	. 4	1.2	. 3	17.3
1911	6. 5	3.2		. 2		. 7		10.6	. 7	. 6	. 5	. 1	14.5
1912	3.1	1.1	6.2			. 6	. 5	11.6	2.5	2.0	. 5	. 6	19.6
1913	3.9	14.3	5.8			${ }^{(2)}$		24.1	. 1	. 7			28.5
1914	5. 3	2.3	. 1		${ }^{(2)}$. 6	. 6	10.1	. 1	1.3	${ }^{(2)}$. 3	17.5
1915	7.0	. 6	. 1	. 3		. 4	8.1	16. 7	. 4	. 2		${ }^{(2)}$	19.4
1916	4.8	. 2		4		.3	. 2	6.2	1.1	.3		. 2	9.5
1917.	17.3	. 7	. 1	1.5	0.1	. 1	. 1	20.0	. 5	2		. 1	25.4
1918.	7.2	7.2	2.5	. 2		. 4	1.5	18.8	. 3	1.0	${ }^{(2)}$		21.7
1919	1.0	12.8	1.1	3		1	2.6	18.4	. 3	. 5	. 7	. 1	20.0
1920	5	8.0	. 4	1.2	. 2			10.3	3.2	1.6			16.7
1921	4.5	. 2		.3		.2	1	5.3	1. 6	2.7		. 1	11.8
1922	3.8	4.2		.1		.1		8.2	3.4	1.0	.1		14.4

Division of Crop and Livestock Estimates.
${ }^{1}$ Includes all other causes.
${ }^{2}$ Less than 0.05 per cent.
Table 172.-Rice: Area and yield per acre in undermentioned countries.
NORTHERN HEMISPHERE.

Table 172.-Rice: Area and yield per acre in undermentioned countries-Contd. NORTHERN HEMISPHERE-Continued.

Country.	Area.					Yield per acre.				
	$\begin{aligned} & \text { Av. } \\ & 1909 \\ & 1913 . \end{aligned}$	1920	1921	1922	$\begin{array}{\|c\|} \text { prelimi- } \\ \text { nary. } \end{array}$	Av. 19091913.	1920	1921	1922	1923, prelim prelimi nary
\%. ASIA.	$1,000$ acres.	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	$\begin{aligned} & \text { 1,000 } \\ & \text { acres. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.
India	67, 004	78,952	81, 662	81, 533	${ }^{8} 75,455$	${ }^{1,099}$	785	912	911	
Andaman and Nico- bar \qquad		2	3	4						
British North Borneo-			54	58				438		
French establishments in India	40	43	43	46		657	934	610	704	
Russia (Asiatic)	572					584				
Japanese Empire:	7, 300	7,662	7,680	7,697		2,163	2, 591	2, 257	2,477	
Chosen (Kor ea	2,905	3, 812	3, 753	3,818	${ }^{9} 3,582$	- 1,133	1,227	1,202	1,239	1,363
Formosa (Taiwan) Kwangtung	1,193	1, 236	1,860 2	1,253		1,183	1,231	840	1,459	1,
Kwangtung ----	2 8, 550	11, 761	11, 984	1012,000	${ }^{1011,000}$	${ }^{2} 858$	534	662		
Siam	114,666	115,890	11 6, 000	12 7,000	126,000	1,167	1,130	1,038		
Federated Malay States \qquad	1118	197	200	196		${ }^{2} 637$	626	593	655	--------
Unfederated Malay States	${ }^{3} 153$	157	202	236			64	163	144	
Straits Settlements.-	93									
Philippine Islands..-	2, 753	3, 669	4, 135	4, 105		423	612	620	653	
Ceylon......--....----	2, 695	, 757	799	850	800	686	635	618	615	370

SOUTHERN HEMISPHERE.

Country	Area.					Yield per acre.				
	Av. 19091913.	1920-21	1921-22	1922-23	$\begin{gathered} 1923-24 \\ \text { prelimi- } \\ \text { nary. } \end{gathered}$	$\begin{aligned} & \text { Av. } \\ & 1909- \\ & 1913 . \end{aligned}$	1920-21	1921-22	1922-23	1923-24, preliminary.
Peru	$\begin{gathered} 1,000 \\ \text { acres. } \\ \quad 2131 \end{gathered}$	$\begin{aligned} & \text { 1,000 } \\ & \text { acres. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	1,000 acres. 70	$\begin{aligned} & 1,000 \\ & \text { actes. } \end{aligned}$	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.
Brazil		905		599			1,446			
Argentina.-.	${ }^{411}$									
Belgian Congo------		8	7							
Madagascar.	4979			-------		1916				------
Java and Madura Irrigated Non-irrigated	5,953	$\begin{aligned} & 6,835 \\ & 1,129 \end{aligned}$	$\begin{array}{r}6,472 \\ \hline 751 \\ \hline\end{array}$			1,206	$\begin{array}{r}1,129 \\ \hline 559 \\ \hline\end{array}$	$\begin{array}{r}1,073 \\ 556 \\ \hline\end{array}$		
Total Java and Madura Australia \qquad	5,953 ${ }_{\text {(5) }}$	7,954	$7,223$ ${ }^{(5)}$	${ }^{11} 8,236$	${ }^{11} 8,402$					
Fiji Islands....	11	10	11	-------			-	------		------
Total comparable with 1909-1913 ...	104,956									
Total comparable with 1923.	91, 205	111, 030	113, 072	114,937	106, 753	,				

[^173] culture. Yield per acre not calculated where total acreage is below 15,000 acres.
Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }_{2}$ Two years only.
${ }^{3}$ One year only.
4 Four years only.
${ }^{5}$ Less than 500 acres
7 Total area estimated from area reported for the summer or main crop which was 154,000 acres in 1923 compared with 24,000 acres in 1922 . This crop in 1921 was 93 per cent of the total area devoted to rice in Egypt
${ }_{8}$ Sceond forecast compared with $78,455,000$ acres at the same time last year.
${ }_{10}$ Unofficial source. as $8,416,000$ acres in 1923 compared with $8,881,000$ acres in 1922.
${ }^{11}$ Area cultivated.
12 Total area estimated from that reported for Bisnuloke and the six inner Provinces where rice for export is chiefly grown. The area in these Provinces was 3,230,000 acres for 1923 compared with $3,589,000$ in 1922. In 1921 the area under rice in these Provinces amounted to roughly about 50 per cent of the total area devoted to rice in Siam.

Table 173.-Rice: Production in undermentioned countries (in terms of cleaned NORTHERN HEMISPHERE.

Country.	$\begin{aligned} & \text { Average } \\ & 1909-13 . \end{aligned}$	1917	1918	1919	1920	1923:	1922	1923, preliminary.
NORTH AMERICA.								
United States	$660,272$	$\begin{gathered} \mathbf{9 6 4}, 972 \end{gathered}$	$\begin{aligned} & 1,000 \text { los. } \\ & 1,072,389 \end{aligned}$	$\begin{aligned} & 1,000 \text { lbs. } \\ & 1,166,250 \end{aligned}$	$\begin{aligned} & 1,000 \text { lbs. } \\ & 1,446,278 \end{aligned}$	$\begin{gathered} 1,000 \mathrm{lbs} . \\ 1,044,778 \end{gathered}$	$\begin{aligned} & 1,000 \mathrm{lbs} . \\ & 1,150,139 \end{aligned}$	$\begin{aligned} & 1,000 \mathrm{lbs} . \\ & 923,778 \end{aligned}$
Mexico.	198,016		24, 787			1, 9, 796	1, 44, 489	
Hawaii	${ }^{2} 25,820$			18, 254				
CENTRAL AND SOUTH AMERICA AND WEST INDIES.								
Guatemala	${ }^{3} 2,208$	20,733	16,997	5, 180	2, 226	2,651	3,882	4,080
Salvador			8, 328	8,895				
British Guiana	53, 865	108, 864	49, 616	100,330	55, 999]	67,072	44,957	
Dutch Guiana	2,254	5,449	3, 832	11, 623	10, 000	12, 041	13, 202	
Porto Rico	${ }^{2} 4,298$			3, 308	10,			
Trinidad and Tobago								
EUROPE.								
France.	2,017					${ }_{1} 1$		
Spain	299, 703	322, 130	282, 581	411, 924	393, 752	355, 967	373, 339	330,099
Portugal		22, 835	31, 656	27, 955	32, 251	14, 650	27, 771	330,
Italy.	646, 465	716, 359	712, 412	662, 333	614, 022	641, 375	631, 985	680,438
Yugoslavia-----------					3, 640	3, 414	2,944	680, 38
Bulgaria ------------	${ }^{4} 8,215$	14, 513	8, 30f	5,178	6,776	7,403	7,381	8,290
Russia (northern Caucasia)	1,218							
AFRICA.								
French Guinea					762, 084			
French Senegal					56, 426			
Sierra Leone.				138, 270	248, 886		235, 059	
Egypt	547, 972	487, 163	691, 966	243, 604	282, 667	471, 903	540,000	5300,000
Kenya Colony ${ }^{6}$				578	842	464		
ASIA.								
Turkey	24165,846							
	$64,144,192$	80, 637, 760	54, 526, 080	71, 742, 720	61, 962,880	74, 446, 400	$74,294,080$	
Andaman and Nicobar Islands.		2, 419	2,343					
French establish-		2, 419	2, 343 .	1,283		2, 431	2,780	
ments in India	26, 268	33, 589	32, 388	18,758	40, 160	26, 250	82, 378	
British North Borneo.		23, 280	24,399	12, 230		23, 587		
Russia (Asiatic).-	${ }^{4} 334,061$							
China		70, 218, 667			52, 788, 000			
Japanese Empire:	15,787,020	7, 142,858						
Japan. Chosen (Korea)	$15,787,020$ $3,292,776$	$17,142,858$ $4,300,128$	17, 184, 019	19, 106, 360	19, 849, 197	17, 335, 796	19, 066, 742	18, 302, 547
Formosa (Tai-	3, 292, 776	4, 300, 128	4, 804, 729	3, 992, 354	4, 675, 374	4, 511, 834	4, 730, 531	4,883, 142
wan)	1, 412, 504	1, 518, 569	1, 455, 232	1,546, 663	1, 521, 250	1, 563, 330	1, 827, 711	1, 633, 609
Kwantung--.------	1, 1, 074	1, 563	1, 3, 193	2, 498	2, 911	1, 3, 131	, 827, 711	1, 833,603
French Indo-China-	27,332, 350	6, 313,430	6, 301, 999	6, 532, 000	6, 283, 684	$7,931,000$	7,777,000	7,000, 000
	${ }^{5} 5,447,671$	${ }^{8} 6,823,374$	$86,413,745$	86,859, 588	${ }^{8} 6,658,107$	6, 225, 000	- 7,000, 000	
Federated Malay States	79,015		92,689	82,605	123,254	118, 665	128,168	
Unfederated Malay States			32, 68	82, 60	123,254 10,138	118,605 33,005		
Straits Settlements					10, 138	33, 005	33, 910	
Philippine Islands	1, 165, 298	1,745, 489	2, 213, 435	2, 088, 934	2, 247, 368	2, 584,881	2, 681,303	2, 702, 835
Ceylon---------------	476, 536	484, 108	449,869	487, 914	480, 388	493, 792	522, 706	296, 296

${ }^{1}$ Three years only.
${ }^{2}$ One year only.
${ }^{3}$ Two years only.
${ }^{4}$ Old boundaries.
${ }^{5}$ Total production estimated from production reported for the summer or main crop which amounted to $266,012,000$ pounds in 1923, compared with $33,469,000$ in 1922.
${ }_{5}^{5}$ Cultivated by natives only.
${ }^{7}$ Total production estimated from production reported for Annam, Cochin-China, and the first crop in Tonking as $4,735,696,000$ pounds, compared with $5,179,342,000$ pounds in 1922 . This amounted approximately to 70 per cent of the total 1922 crop.
${ }^{8}$ Production estimated from official average yields for different grades of land as classified for revenue purposes according to fertility. These production figures are probably a little too high as the area cultivated is always greater than that actually harvested.
${ }^{9}$ Total production estimated from that reported for Bisnuloke and the six inner provinces where rice for export is chiefly grown. These produced $3,286,974,000$ pounds in 1923 , compared with $3,271,114,000$ pounds in 1922. This appears to be roughly about 50 per cent of the total rice production of Siam.

Table 173.-Rice: Production in undermentioned countries (in terms of cleaned rice)-Continued.
SOUTHERN HEMISPHERE.

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture.
Five-year averages are of the crops harvested during the ealendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.

$$
{ }^{1} \text { Three years only. } \quad{ }^{2} \text { One year only. } \quad{ }^{3} \text { Two years only. }
$$

Table 174.-Rice: World production, 1900-1922 (in terms of cleaned rice).

Years.	Production for countries reporting all years, 1900-1922. ${ }^{1}$	Production as reported.	Estimated world totals exclusive of China.	Production in the chief producing countries. ${ }^{2}$		
				India.	Japan.	Java and Madura.
1901-2	65, 336,796	65, 363,899	77,000, 000	43, 040, 939	14, 738,427	5, 680,809
1902	71, 319, 301	74, 174, 773	$85,000,000$	52, 582, 298	11, 602, 474	5, 372, 666
1903	72, 177, 655	75, 548, 201	87, 000, 000	49, 199, 438	14, 599, 842	6, 229, 076
1904-5	75, 101, 790	79, 117, 049	$90,000,000$	50, 227, 520	16, 157, 087	6, 430, 781
1905	67, 519, 575	72, 528, 630	$84,000,000$	48, 511, 680	10, 421, 342	6, 267, 897
1906	71, 298, 387	75, 988, 426	$87,000,000$	47, 906, 880	14, 546, 194	6, 330,068
1907	67,049, 878	72, 523, 092	$84,000,000$	42, 598, 080	15,409, 976	6, 532, 935
1908-9	69, 553, 467	74, 895, 930	87,000,000	43, 877, 120	16, 315, 318	6, 902, 969
1909	89, 793, 800	99, 328, 460	108, 000, 000	63, 869, 120	16, 473, 579	7,065, 690
1910-11.	88, 487, 400	99, 935, 172	108, 000, 000	64, 552, 320	14, 650, 132	7, 084, 033
1911-12	90, 164, 338	103, 527, 182	111, 000, 000	63, 943, 040	16, 245, 745	7,516, 953
1912-13	88, 972, 299	109, 162, 633	111, 000,000	$63,801,920$	15, 777, 677	7, 187, 265
1913-14	90, 948, 842	113, 686, 746	$115,000,000$	64, 554, 560	15,787, 969	7, 951, 044
191	89, 373, 481	114, 376, 495	116, 000, 000	61, 109, 440	17, 908, 918	7, 826, 026
1915-18	101, 439, 746	124, 876, 819	$126,000,000$	73, 315, 200	17, 569, 018	7, 963, 749
1916-17	107, 298, 131	129, 146, 272	131, 0000,000	78, 520,960	18, 359, 997	7,911,997
1917-18	109, 236, 413	${ }^{3} 201,777,415$	134, 000,000	80, 637, 760	17,142, 858	$48,893,288$
1918-	83, 142, 262	106, 431, 57.0	109, 000, 000	54, 526, 080	17, 184, 019	4,978, 106
1919-20	103, 279, 803	128, 278, 366	128,000, 000	71, 742, 720	19, 106, 360	4, 9, 798, 080
1920-21	92, 698, 525	${ }^{3} 170,217,972$	118, 000,000	61, 962, 880	19, 849, 197	8, 347, 724
1921-22	101, 715, 810	127, 576, 151	129, 000, 000	74, 448, 400	17, 335, 796	7, 360, 901
1922-23	102, 657, 645	127, 097, 797	131, 000, 000	74, 294, 080	19, 066, 742	6, 450, 586

Division of Statistical and Historical Research.
The figures for each year include the crop harvested in the Northern Hemisphere within the calendar year and the following harvest in the Southern Hemisphere.
${ }^{1}$ India, Japan, Java and Madura, Formosa, Dutch Guiana, Spain, and Italy.
${ }^{2}$ China would rank among the three chief rice producing countries, but owing to lack of official statistics has been omitted.
${ }_{3}$ Large increase due to the fact that an estimate was available for China, i. e., $52,788,000,000$ pounds in 1920 and $70,218,667,000$ in 1917.
${ }_{4}$ Includes non-irrigated rice, for which statistics were first given in 1917.

Table 175.-Rice: International trade, calendar years, 1909-1929.

Country.	A verage 1909-1913.		1920		1921		1922, preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES.								
Brazil-------------	$\begin{gathered} 1,000 \mathrm{lbs} . \\ 24,753 \end{gathered}$		1,000 los. 14	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 296,758 \end{array}$	1,000 lbs.	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 124,790 \end{array}$	1,000 lbs.	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 83,477 \end{array}$
British India	278, 272	5, 337, 516	176, 082	2, 390, 397	280, 334	2, 740, 866	302, 760	4, 836, 325
Chosen (Korea)	217,830	${ }^{2} 130,446$	217,882	${ }^{2}$ 226, 615	2 5, 919	2 906,407	${ }^{2} 54,919$	${ }^{2} 827,989$
French Indo-Chin	41	2, 288, 040	2643	2, 604, 906		${ }^{2} 3,393,428$		${ }^{2} 2,382,823$
Italy.	4,415	-142, 239	3	1,325	17, 511	55, 490	1,484	230, 017
Siam		1, 928, 507	5	621, 398	186	2, 799, 953	21	2, 810, 004
Spain	5,467	18, 063	7	119, 323	15	145, 831	86	53, 756
United States	209, 814	16, 215	131, 647	392, 613	76,237	600, 059	62, 371	411, 542
PRINCIPAL IMPORTING COUNTRIES.								
Austria			28, 912	483	55, 616	309	${ }^{2} 47,068$	${ }^{2} 1,220$
Austria-Hungar	183, 411	461						
Belgium --..-	180, 830	99, 948	116, 777	6,227	166, 289	60,069	69, 324	10, 487
British Mala	21, 999, 672	${ }^{2} 1,299,475$	${ }^{2} 1,153,262$	${ }^{2} 396,543$	1, 008, 640	470, 360	${ }^{2} 1,682,177$	${ }^{2} 937,127$
Canada	32, 109	2, 354	52, 623	4,891	38, 174	1,997	41, 403	335
Ceylon	821, 654		678, 555		719, 017	${ }^{(3)}$	850, 981	9
China	704, 992		153, 567	41, 578	874, 835	2, 857	1, 576, 640	3,713
Cuba	262, 207		482, 279					
Czechoslovakia			2 53, 371	2271	116, 213	107	90, 352	124
Dutch East Indies	1, 178, 111	132, 400	491, 783	4,066	1, 685, 518	4,961	4883,593	4 43, 285
Egypt	98, 690	53, 700	272	10,067	59, 923	43, 977	${ }^{2} 86,511$	${ }^{2} 38,375$
France	517, 861	79, 087	197, 119	36, 991	383, 746	62, 804	372, 002	71,558
Germany	913, 772	396, 628	280, 041	2,207	${ }^{2} 688,588$	${ }^{5} 65,860$	417, 858	33, 399
Hongkong							2, 614, 836	2, 316, 167
Hungar			${ }^{2} 5,921$		230,000		${ }^{2} 26,515$	${ }^{2} 336$
Japan.	655, 676	61,936	157, 028	25,682	531, 793	31, 414	${ }^{2} 1,006,591$	213,425
Mauritius	132, 543	${ }^{6} 1,446$	142, 047		101, 044		145, 635	
Netherlands	778, 682	476, 276	49,618	2, 490	189, 948	27, 889	162, 152	29,249
Philippine Islands:--	412, 781	74	170, 491	69	131, 235	715	93, 243	892
Russia.	250, 461	5, 746	${ }^{2} 2,219$		${ }^{2} 32,385$		${ }^{2} 52,327$	
United Kingdom	768,853	90, 564	422, 231	32, 263	759, 058	18, 606	77, 345	19, 041
Other countries	1, 007, 053	159, 692	917, 117	136, 490	1,066, 177	101, 457	846, 338	124, 253
Total	11, 439, 950	12, 720, 845	5, 881, 516	7,653, 653	9, 018, 417	11, 660, 206	11, 564, 532	15, 278, 928

Division of Statistical and Historical Research. Official sources except where otherwise noted.
Mostly cleaned rice. Under rice is included paddy, unhulled, rough, cleaned, polished, broken, and cargo rice, in addition to rice flour and meal. Rice bran is not included. Rough rice, or paddy, where specifically reported, has been reduced to terms of cleaned rice at ratio of 162 pounds of rough or unhulled to 100 pounds of cleaned. "Rice, other than whole or cleaned rice," in the returns of United Kingdom is not considered paddy, since the chief sources of supply indicate that it is practically all hulled rice. Cargo rice, a mixture of hulled and unhulled, is included without being reduced to terms of cleaned. Broken rice and rice flour and meal are taken without being reduced to terms of whole cleaned rice.

1 Three-year average.
2 International Institute of Agriculture.
${ }^{3}$ Less than 500 pounds.
4 Java and Madura only.
8 Eight months, May-December.
6 Two-year average.
${ }^{7}$ One year only.
Table 176.-Rice, rough: Farm price per bushel, December 1, calendar years, 1908-1923, and value per acre, 1923.

State.	1908	1909	1910	1911	1912	1913	$\left\|\begin{array}{c} A v \\ 1909 \\ 1913 \end{array}\right\|$	1914	1915	1916	1917	1918	1919	1920	$\left\|\begin{array}{c} \mathrm{A} \nabla \\ 1914- \\ 1920 \end{array}\right\|$	1921	1922	1923	Value per acre, 1923.
	Cts.	Dolls.																	
S. C	106	91	75	75	93	90	85	92	90	90	195	195	300	290	179	97	115	120	30.00
Ga	109	87	75	77	90	83	82	89	88	87	195	175	275	225	162	92	117	132	29.96
Fla	92	80	72	75	90	60	75	70	75	75	195	140	263	175	142	97	130	135	31.05
Mis	83	80	70	77	90	70	77	85	88	80	190	150	190	200	140	118	110	115	20. 70
La.	78	79	67	79	93	84	80	93	90	90	190	195	271	110	148	86	89	107	35.31
Tex	83	78	68	80	94	86	81	92	89	86	200	197	280	125	153	101	90	115	46.00
Ark	92	90	70	82	94	90	85	90	95	96	190	180	240	131	146	92	88	112	44. 24
Calif			65	75	91	100		100	90	78	175	190	267	121	146	115	110	112	57. 79
U. S	81. 2	79.4	67.8	79.7	93.5	85. 8	81.2	92.4	90.6	88.9	189.6	191.8	266.6	119.1	148.4	95.2	93.1	110.3	41.13

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on farm price Dec. 1.

Table 177.-Rice: Wholesale price per 162 pounds, 1900-1923.
Lake charles (ROUGH).

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.
1900-1901.						\$2. 48	\$2. 48					
1901-2.		\$2. 75	\$2. 75	\$2. 75	\$2. 50	2. 38	2. 38					
1902-3		2. 70	2. 58	2. 60	2.52	2. 58	2. 58	\$2. 58				
1903-4		2. 80	2.68	2.42	2. 25	2. 25	2.12	1.88	\$1.75	\$1.62	\$1.62	\$1.62
1904-5	\$1.62	1. 62	1.55	1.55	1. 50	1. 50	1. 50	1.68	1. 62	1.75	1.75	1.75
1905-6.	2.12	2. 62	2.62	2.88	2.92	3.05	3.05	3.05				
1906-7	3.18	3.18	3.05	2.88	2.62	2.75	2. 75	2.88	2. 38			
1907-8		2.98	3.22	3.25	2.95	3.00	3.12	3.29				
1908-9	3.00	2.80	2.75	2.92	2. 58	2.75	2.82	2.94	2.92	2.70	2. 38	
1909-10		2. 38	2. 75	2. 50	2. 40	2. 50	2. 50	2. 30	2.10	2.05	2.18	2. 12
1910-11	2. 22	2.42	2. 28	2.45	2. 25	2.25	2.18	2.18	2.25	2.25		
1911-12	2.45	2.45	2.58	2. 62	2.82	3. 16	3.10					
1913-14		2.65	2.98	2.88	2.82	2. 90	2. 40	2.50	2.75	3.02	3.22	3. 28
1914-15	3. 78	4.02	3.50	3.00	2. 78	3. 48	3. 75	3.81				
1915-16	3. 26	3. 26	3.08	3.41	3.32	3.00	3.28	3. 32	3.51	3. 64	4.00	
1916-17		2. 99	3.02	3. 50	3.42	3.05	3.38	3.72	4.90	5.55		5.75
1917-18	6.09	6.00	6. 72	6. 52	6. 27							
1918-19						7.00	6.75		6. 50	6.50	6. 75	7.50
1919-20	13.00	11.00										
1920-21							2. 00	1. 75	1.50	2. 50	2. 00	2. 50
1921-22	2. 75	4.00	4.25	2.75	3. 50	3.05	3.50	3. 90	4.00	3.75	3.85	4.00
1922-23	4. 25	3. 30	3. 30	3.25	3. 25	3.25	3. 20	3. 50	3.40	3.10	3. 40	3.35
1923-24	3. 50	4.21	4.00	4.00	3.90							

Division of Statistical and Historical Research.
Table 178.-Rice: Wholesale price per pound, 1900-1923.
NEW YORK (DOMESTIC, FANCY HEAD).

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Average.
	Cents.												
1900-1901	4. 8	4.8	4.8	4.9	5.0	5.0	4.9	4.9	4.9	4.9	4. 9	4. 9	4.9
1901-2	5.0	5.0	5.0	4. 9	4.8	4.8	4.8	4.8	4. 8	4. 9	5.1	5. 1	4.9
1902-3	4. 9	4. 9	4.9	4. 9	5.0	4.9	5.0	5.2	5. 2	5.2	5.2	5.2	5.0
1503-4	5. 2	5.0	4. 7	4. 4	4.2	4. 2	4.0	4.0	4. 0	3. 9	3. 7	3.6	4.2
1904-5	3.5	3.4	3. 4	3.4	3.4	3. 4	3.4	3. 4	3. 4	3. 4	3.6	3.8	3.5
1505-6	3.8	3.9	4. 1	4. 1	4.5	5. 1	5.1	5. 0	4.9	4. 9	5. 1	5.4	4. 7
1906-7	5. 2	5. 2	5. 4	5. 3	5.1	5. 1	5.1	5.1	5. 2	5. 4	5.6	5. 9	5.3
1507-8	5. 9	5.9	5. 6	5. 4	5.1	5.1	5.4	5. 7	5.8	5.8	6. 1	6.2	5.7
1908-9	6.4	5.9	5. 4	5.1	5.1	5. 2	5.6	5. 8	5. 8	5.8	5. 8	5.6	5.6
1909-10	5.9	5.2	5.1	4.9	4.8	5.0	4.8	4. 6	4. 1	4. 4	4. 4	4.4	4.8
1910-11	4.4	4.6	4. 4	4.1	4.1	4. 2	4.0	3. 9	3.8	3.8	3. 7	3.8	4.1
1911-12	3.9	4.2	4. 3	4. 2	4.2	4. 4	4.7	4. 9	4. 9	5. 1	5.1	5.1	4. 6
1912-13	5.0	4.9	4.9	4.9	4. 9	4. 9	4.9	4.9	4. 9	4.9	4.9	5.0	4.9
1913-14	5.1	5.1	5. 1	5. 1	5.0	4.9	4. 9	4. 9	4.9	4.9	4.9	4.9	5.0
Av. 1909-1913	4.9	4.8	4. 8	4.6	4.6	4. 7	4. 7	4. 6	4.5	4.6	4. 6	4.6	4.7
1914-15	5.3	5. 7	5. 6	5. 6	5. 4	5.2	5.4	5.4	5. 4	5. 4	5. 4	5.4	5.4
1915-16	5. 2	4.9	4.9	5.1	5.1	5.1	5.1	5. 1	5.1	5. 1	5. 1	5.1	5.1
1916-17	5.2	5.2	5.2	5. 2	5. 4	5. 4	5.4	5. 6	7.1	8. 8	8. 6	8.4	6.3
1917-18	7.9	7.8	8.2	9. 0	8.9	8.9	8. 9	9. 4	9. 6	9.9	10.0	10. 1	9.0
1918-19	10.1	10.1	10.2	10.5	10.5	10. 4	10.4	10. 4	10. 4	10.7	11.7	13. 7	10.8
1919-20	14.3	14.1	13.6	13.8	14. 2	14.8	14.8	14.8	14.8	14.8	14. 8	14.4	14.4
1920-21	14.0	13.2	11.1	7. 4	8. 5	7.5	6.9	6. 9	6. 5	6.1	6.5	6. 5	8.4
Av. 1914-1920.	8.9	8. 7	8.4	8.1	8. 3	8. 2	8.1	8. 2	8.4	8. 7	8.9	9.1	8.5
1921-22	6.7	7.0	7.0	7.0	7.0	7.0	7.0	7. 0	7.0	7.1	7.5	7.5	7.1
1922-23	7.5	7.5	7.6	7.4	7.4	7.8	7.8	7. 7	7.6	7.9	7.9	7.9	7.7
1923-24	7.9	7.7	7.6	7.6	7.6								

Division of Statistical and Historical Research. Compiled from daily quotations in the New York Journal of Commerce.

Table 178.-Rice: Wholesale price per pound, 1900-192s-Continued. NEW ORLEANS (HONDURAS, CLEAN, FANCY).

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Average.
	Cents.	Cents.	Cents.	Cents.	Cents	Cents.							
1900-1301	5.4	5.2	5.1	5.1	5.1	4.1	4.1	4.4	4.1	4.5	4.4	4.8	4.7
1901-2	4. 4	4.3	4. 0	3.9	3.9	4.0	4.0	4.0	8.9	3.9	3.8	4. 2	4.0
1902-3	3.8	3.8	3. 7	3.8	3.8	3. 9	4. 0	4.1	4.2	4. 1	4.2	4. 5	4.9
1903-4	4.1	4.0	3. 6	3.3	3.1	3. 2	3.1	2. 9	2.7	2. 9	2.8	3.0	3.2
1904-5	3.4	3. 0	3. 1	3.1	3.2	3.1	2. 9	2. 9	2.6	2.9	3.6	3. 4	3.1
1905-6	3.5	3.7	3. 9	3.9	3. 6	4. 0	3. 9	3. 8	4. 1	3.6	3. 9	3.9	3.8
1906-7	4.2	4.0	3. 9	3.8	3.8	3. 9	3.9	3.5	3.6	3.8	4. 1	4.3	3.9
1907-8	4.2	4.2	4. 1	3.9	3.9	4. 0	4. 1	4. 2	4. 4	4.4	4. 2	5.1	4.2
1908-9	4.8	3.9	3. 9	3.8	3.8	3.6	4.0	4.1	4.1	4.2	4.0	4. 2	4.0
1909-10	4.1	3.6	3. 8	3.7	3.7	3.8	3.8	3.4	3.2	3.6	3. 5	3.7	3.7
1910-11	3.8	3.6	3. 4	3.1	3.2	2.9	3.1	2.9	3.0	2.9	2. 9	3. 6	3.2
1911-12	3. 6	3.5	3.3	3.4	3.4	3. 8	3.9	4. 0	3.9	4.6	4. 2	4. 6	3.8
1912-13	4.1	4. 1	3. 5	3.8	4. 1	4.1	4.0	3. 9	4.0	4.1	4.1	4.4	4.0
1913-14	4.4	3.8	3. 8	3.6	3.7	3.9	3.8	3.7	3.6	3.9	3.8	3.7	3.8
Av. 1909-1913	4. 0	3. 7	3. 6	3.5	3.6	3.7	3.7	3.6	3.5	3.8	3. 7	4.0	3.7
1014-15	4.1	4.2	3. 6	3.4	3.6	3.9	4.1	4.1	4.0	4.1	4.2	4.2	4.0
1915-16	3.6	3.3	-3.8	3.8	3. 8	3.5	3. 6	3.9	3.8	4.0	4. 2	3. 9	3.8
1916-17	3. 8	3. 5	3. 8	3.9	3. 9	3.9	3.9	4.1	5.2	5. 9	6. 3	6.3	4.5
1917-18	6.1	6. 4	6. 7	6. 6	6. 8	6.8	7.0	7.6	8.2	8.3	8.3	8. 4	7.3
1918-19	7.6	7.6	7.5	7. 3	7. 5	7.8	7.7	8.0	7. 9	7.0	9. 2	10. 1	7.9
1919-20	10.9	12.2	11.8	11.9	12.3	12. 7	12.8	12.5	12.3	12. 2	12. 3	12.5	12. 2
1920-21	10.6	9.6	7.9	6.9	6.6	4.6	4.7	5.4	5.3	5. 5	5.8	5.6	6.5
Av. 1914-1920.	6.7	6.7	6.4	6.3	6.4	6.2	6. 3	6.5	6. 7	6. 7	7.2	7.3	6.6
1921-22	5.7	5.4	5.3	5.4	5. 7	5. 7	5. 7	5.9	6. 4	6.4	6.4	6.4	5.9
1922-23	6. 6	6. 6	6. 5	6.5	6. 5	6.6	6. 6	6.3	6.4	6.4	6. 5	6. 5	6.5
1923-24	6. 5	6.4	6. 3	6. 3	6. 4								

Compiled from the New Orleans Times-Picayune.
HOUSTON (HEAD, CLEANED).

Houston Cotton Exchange. Division of Statistical and Historical Research.
${ }^{1}$ A verage for 5 months.
2 Average for 7 months.
${ }^{8}$ A verage for 6 years.

BUCKWHEAT.

Table 179.-Buckwheat: Acreage, production, value, exports, etc., in the United States, 1849-1923.

Division of Crop and Livestock Estimates. Figures in italics are census returns.
${ }^{r}$ Based on farm price Dee. 1.
${ }^{2}$ Compiled from reports of Bureau of Foreign and Domestic Commarce. Including buckwheat flour Jan. 1 to June 30, 1922.
${ }^{3}$ Preliminary.

Table 180.-Buckwheat: Acreage, production, and total farm value, by States, calendar years, 1921-1923.

State.	Thousands of acres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of dollars.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
Maine	13	8	9	351	216	207	351	238	197
New Hampshire.	1	1	1	21	25	22	18	31	22
Vermont.-.-.--	4	4	4	88	96	72	79	88	72
Massachusetts.	1	1	1	18	21	20	22	29	23
Connecticut.-	2	2	2	35	36	32	49	50	35
New York	193	208	214	4,150	4,368	4,066	3,444	4,368	3,903
New Jersey	8	10	10	168	220	210	168	253	200
Pennsylvania	225	225	227	5,175	4,725	4,880	3,881	3,780	4,441
Delaware..-.	7	8	8	5 98	153	144	74	122	131
Maryland	9	9	9	171	185	199	145	159	199
Virginia	17	18	18	357	351	347	293	288	330
West Virginia	31	33	33	682	693	660	559	589	634
North Carolina	5	7	8	85	140	176	72	136	190
Ohio.---	21	25	23	525	500	460	551	400	432
Indiana.	6	6	6	114	90	102	114	90	97
Illinois_	4	6	6	70	84	90	77	71	91
Michigan	39	62	53	624	868	753	487	694	633
W isconsin	40	25	28	596	360	392	447	313	349
Minnesota	28	75	49	448	1, 050	637	314	840	573
Iowa.-	5	5	5	75	70	75	60	88	70
Missouri	1	1	1	14	13	13	21	16	15
South Dakota	8	12	9	112	96	126	90	67	108
Nebraska..	1	1	1	16	16	18	13	14	15
Kentucky	8	9	9	160	144	162	160	130	162
Tennessee.	3	3	3	54	44	57	51	35	62
United States..-	680	764	737	14, 207	14, 564	13, 920	11, 540	12, 889	12,984

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 181.-Buckwheat: Yield per acre, by States, calendar years, 1908-1923.

State.	1908	1909	1910	1911	1912	1913	$\left\|\begin{array}{c} A \nabla \\ \hline 1909 \\ 1913 \end{array}\right\|$	1914	1915	1916	1917	1918	1919	1920	$\begin{array}{\|c} \text { A } \nabla \text {. } \\ 1914- \\ 1920 \end{array}$	1921	222	1923
	$B u$.	Bu.	Bu	Bu.	$B u$.	Bu	$B u$.	$B u$.	Bu.	Bu.	$B u$.	Bu.	Bu.	Bu	$B u$.	$B u$.		
Main			32.5	30.0	29.4	432.0		429.0	26.0	24.0	21.5	20.0	24.0					
New Hamp	21.5	22.0	31.0	27.3	31.0	031.0	28.5	525.0	30.0	20.0	16.0	17.0	18.	20.0				
Vermont		22.0	24.0	24.3	30.0	025.0		128.0	27.0	17.5	20.0	21.0	22.0	21	22	22.	24	0
Massachuset	18.0	19.3	22.0	21.0	21.0	17.0	20.1	118.5	516.	16. 0	15.0	16. 0	d	19.0	17.	18.	21.	0
Connecticut																		
New York																		. 0
New Jere	20.	21.8	21. 5	20.0	22.0	22.0	21.	21.	21.0	19.0	18.0	18.	18.0	18.0				1.0
Pennsylv	19.2	19.5	19.5	21.9	24.2	218.5	20.7	720.5	21.0	14.0	18.0	18.0	21.6	18.0	18.	23.0	21.	${ }^{21.5}$
Delawar	30.	19.8	20.5	19.0	16.0	17.0		19.0	18.5	19.0	20.0	20.5			19.0	14.	19.	18.0
Marylan																		
Virginia	18.																	. 3
West Virgi	18.0	22.7		24.0	24.0	21.0			22.0	18		19		19.5	20.			
North Car	16.4	19.8	19.0	19.0	17.5	519.3	18.9	919.0	17.5	17.5	20.0	20.0	17.		18.			22.0
,	18.5	21.2		21.0	19.5	518.0		24.	23.0	17.7		16. 0	23. 2	20.9	20.3	25.0	20.0	20.0
India						18.5		${ }^{17.5}$	14.0		15.0			20.0				
Illinois													8.	1.				15.0
Michiga	13.	14.3	15.3	18.0	17.0	15	15.	17	514.	11. 0	9.0	10.0	13	14.5	13.	0	14.	14.2
Wisconsin	15.2	12.3	14.0	17.5	17.0	16.5	15.5	517.5	13. 0	14.0	12.2	15.9	16.2	16.0	15.	14.	14.4	14.0
Minnes	18.2	15.2	16.0	18.0	21.0	16.5	17.3	17.0	17.5	15.0	14.0	17.0	19.0	16.0	16.5	16.0	14.0	13.0
Missou	20.	21.0				11	14.7				15.0	13.0	15.0	16.0	14.8	1.		3. 0
South Da																14.		
Nebraska	18.0	16.0		16.0	18.0	20.0	18.0	18	20	17.0	16.0	14.0	16.0	1	16.	16.0	16.0	18.0
Kentucky													13. 0	15.0		20.0	116.0	18.0
Tennessee		15.0	15.0	16.	18.0	15.0	15.8	82.	18	18.0	17.0	18	15	16.5	17.		14.	19.0
Unite	19.4	20. 5	20. 5	21.1	22	17.	20.	21.3	19.61	14.1	17.	.	20.6	7	18.3	20.8	9.1	18.9

Division of Crop and Livestock Estimates.

Table 182.-Buckwheat: Condition of crop, first of month, and yield per acre, United States, 1867-1923.

Calendar year.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.	Calendar year.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.
	P.ct.	P.ct.	P. ct.	Bush.		P.ct.	P. ct.	P.ct.	Bush.
1867.	98.2	95.3	94.9	17.4	1897	94. 9	95. 1	90.8	20.6
1888.	92.3	95. 1	95. 0	17.8	1898	87. 2	88.8	76. 2	17.2
1869	101.5	93.3	93.1	16.9	1899	93.2	75.2	70.2	16.1
1870	94.4	95. 4	89.8	18. 3	1900	87.9	80.5	72.8	14.9
1871	97.5	90.7	90.4	20.1	1901	91.1	90.9	90.5	18.4
1872	100.9	99.5	95.1	18.1	1902	91.4	86.4	80.5	17.9
1873	95.9	98.4	94.9	17.3	1903	93.9	91.0	83.0	17.5
1874.	96.7	91.8	95.0	17.7	1904	92.8	91.5	88.7	18.6
1875	98.6	98.0	97.0	17.5	1905	92.6	91.8	91.6	18.8
1876.	97.3	81.6	86.6	14.5	1906	93.2	91.2	84.9	18.2
1877.	100.5	98.0		15.7	1907	91.9	77.4	80.1	17.7
1878	98.2	96. 0		18. 2	1908	89.4	87.8	81.6	19.4
1879	97.6	98.0		20.7					
1880	94.2	94.0		17.8	1909.	86.4	81.0	79.5	20.5
1881	94.9	70.0		11.4	1910	87.9	82.3	81.7	20.5
					1911.	82.9	83.8	81.4	21.1
1882	99.0	92.4			1912	88.4	91.6	89.2	22.9
1883	99.0	88.0	63. 6	8.9	1913	85.5	75.4	65.9	17.2
1884	96.0	93.1	87.0	12.6		86.2			
	94.1	89.8	86.5	12.9	Av.1914.	86. 2	82.8	79.5	20.4
						88.8	87.1	83.3	21.3
1887	93.3	89.1	76.6	11.9	1915	92.6	88.6	81.9	19.6
1888	92.5	93.7	79.1	13. 2	1916	87.8	78.5	66. 9	14.1
1889	95.2	92.1	90.0	14.5	1917	92.2	90. 2	74.8	17.3
1891	90.1	96. 6	${ }_{92.7}$	15.0	1918	88.6	83.3	75.6	16.5
	97.3				1919	88.2	90.1	88. 0	20.6
					1920	90.5	91.1	85.6	18.7
1893	92.9 88.8	89.0 77.5	85.6 73.5	14.7 14.7	Av. 1914-1920	89.8	87.0	79.4	18.3
1894	$\begin{aligned} & 82.3 \\ & 85.2 \end{aligned}$	69.2	72.0	15.9					
1896.		93.2	84.8	19.9	1921.	87.2	85.6	87.4	20.9
	96.0		86.0	18.5	${ }_{1923}$	89.7 82.7	85.7 80.5	83.8 77.6	19.1 18.9
					1923	82.7	80.5	77.6	18.9

Division of Grop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.
Table 183.-Buckwheat: Farm price per bushel, first of month, United States, 1908-1923.

Year beginning Sept. 1.		Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Weighted av., crop year.
1908-9	$\begin{gathered} \text { Cts. } \\ 80.0 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 77.2 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 77.1 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 75.6 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 74.3 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 74.2 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 75.5 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 76.2 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 78.8 \end{gathered}$	$C t s$ 83.4	$\begin{gathered} C t s . \\ 86.9 \end{gathered}$	$\begin{gathered} \text { Cts. } \\ 82.9 \end{gathered}$	Cts. 77.6
1909-10	76.9	75.0	71.6	70.1	70.0	72.0	70.6	73.4	71.0	73.7	78. 0	74.8	72.4
1910-11	72.6	71.3	65.9	66.1	65.8	64.4	64.1	65.3	65.8	70.1	72.4	76.0	67.6
1911-12	74.0	69.6	73.0	72.6	73.7	73.6	76.9	76. 9	79.9	84.8	86. 2	83.6	75.2
1912-13	76.6	69.7	65.5	66.1	66.8	69.4	67.0	68.3	71.4	70. 8	72.9	72. 4	68.4
1913-14	70.0	74.1	75.5	75.5	76.6	75.6	75.1	76.9	77. 3	79.0	85.5	81.2	76.3
Av. 1909-19	74.0	71.9	70.3	70.1	70.6	71.0	70.7	72.2	73.1	75.7	79.0	77.6	72.0
1914-15	79.8	78. 7	78.0	76.4	77.9	83.7	85.5	85.3	84.6	86.9	92.1	89. 2	80.9
1915-16	81.4	73.7	78.5	78.7	81.5	80.7	83.2	83.1	84.9	87.0	93.1	89.0	81.1
1916-17	86.4	90.4	102.9	112.7	117.2	114.6	124.8	128. 3	150. 6	183. 7	209.2	189. 3	123.2
1917-18	164.3	154.4	154.2	160.0	162.7	161. 9	168. 2	170.1	176. 0	191. 0	200.8	192. 7	165.8
1918-19	190.3	180.0	173.0	166. 5	162. 9	158. 1	148. 4	149. 6	147.3	165. 6	160.8	165. 9	166.5
1919-20	159.8	162. 0	151.0	146.1	150.7	154.9	155. 7	163. 1	168. 8	180.2	202. 7	181.3	159.0
1920-21	176.3	159.4	131.0	128.3	125. 4	118.7	116. 3	109.3	115. 9	116. 1	115. 3	119.7	129.7
Av. 1914-192	134.0	128.4	124.1	124.1	125. 5	124.7	126. 0	127.0	132.6	144.4	153.4	146.7	129.5
1921-22.	114.4	106. 0	83.9	81.2	83.5	85.4	85.8	92. 6	93.3	97.5	102.6	95.7	90.3
1922-23	86.3	84.1	80.3	88.5	89.5	87.5	89.8	95.4	94.5	102.2	102.4	100.3	89.0
1923-24.	98.5	94.7	93.6	93.3									

[^174]Table 184.-Buckwheat: Farm price per bushel, December 1, calendar years, 19081923, and value per acre, 1923.

State.	1908	1909	1910	1911	1912	1913	$\begin{gathered} \text { A.7. } \\ 1909 \\ 1913 \end{gathered}$	1914	1915	1916	1917	1918	1919	1920	$\left\lvert\, \begin{gathered} \text { A } \nabla . \\ 1914- \\ 1920 \end{gathered}\right.$	1921	1922	1923	Value per acre, 1923.
	Cts.	Cts:	Cts:	Cts.	Ctt.	Cts:	Cts.	Cts:	Cts.	Cts.	Cts.	Dols:							
Me.	75	70	68	70	70	56.	67	60	70	95	150	150	175	153	122	100	110	95	21.85
N ${ }^{\text {E }}$	80	76	62	81	72	66	71.	70	81	100	183	208	156	122	130	88	125	100	22. 0^{8}
Vt	70	76	70	85	72	80	77	82	82	105	150	160	17.0	135	128	90	92	100	18.08
Mas	80	75	85	89	85	80	83	84	95	140	166	198	168	140	140	125	138	115	23.06:
Conn	80	100	83	95	88	95	92	95	96	120	200	210	200	160	154	139	140	110	17.60
N: Y	76	69	65	73	64	81	70	76	88	122	160	175	145	140	128	83	100	96	18: 24
N	75	74	69	75	72	76	73	83	83	108	158	170	159	150	129	100	115	95	19.95
Pa	75	68	62	69	64	73	67	76	78	111.	163	169	140	120	121.	75	80	91.	19.58
Del	72	$6{ }^{6}$	65	65	66	69	65	76	75	118	148	148	160	120	120	75	80	91.	16.38
Md	76	74	66	67	71	75	71	81.	72	110	165	165	155	133	126	85	86	100	22.10
Va	72	76	77	70	75	80	76	84	80	95	150	163.	153	140	124	82	82	95	18.34
W. V	81	78	77	85	75.	78	78	83	80	101	170	173	170	140	131	82	85	96	19:20
N, C	78	80	80	80.	85	78	81.	83	82	85	130	150	140	110	111	85	97	108	23. 76
Ohie	82	78	75	78	70	76	75	76	77	110	153	156	155	105	119	105	80	94	18.88
Ind.	78	77	70	74	73	7.5	74.	78	80	112	155	160	150	120	122	100	100	95	16.15
III	90	80	90	95	80	80	85	95	90	130	170	180	180	136	140	110	85	101.	15. 15
Mich	71	68	62	71	O5	70	67	71	72	115	147	170	137	109	117	78	80	84	11.93:
Wis	76	78	75	75.	66	69	73.	78	83	116	174	165	150	120	120	75	87	89	12.46
Minn	73	71	72	76	65.	64	70	70	75	112	135	170	130	106	114	70	89	90	11. 78
Iowa	78	85	83	90	75	81.	83.	7.7	80	125	200	180	169	134	138	80	125	94	14. 10
Mo.	85	90	87	105.	95	85	92	93	90	133	144	180	184	155	140	150	125	1.18	15.34
S Diak																80	70	86	12.04:
Nebr	83	96	90	95.	90	79	89	84	95	110	150	165	180	100	120	80.	85	85	15.30
K:y											145			100		100	90	100	18.00.
Tenn	80	79	86	79.	78	7.5	79	78	78	100	150	140	150	130	118	95	80	109	20.71
U.	75.7	70.2	66.1	72.6 6	66.17	75. 5	70. 17	76. 4	78. 7	112. 7	160.0	166.5	146. 1	128.3	124. 1	81. 2	88. 5	93: 3	17.62

Division of Crop and Livestock Estimates.
${ }^{1}$ Basedion farm price Dec. 1.
Table 185.-Buckwheat: Average price per 100 pounds.
BUFEALO. ${ }^{1}$

Year beginning Oct. 1.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Average.
1914-15	\$1. 60	\$1.55	\$1. 75 :	\$1.85	\$2. 21	\$2.07	\$1.84
1915-16.	1. 50	1.81	1.81	1.85	1:80	1.70	1.74
1916-17	1.86	2.92	3.15	2. 86	3. 00	3.03	2.80
1917-18	3. 22	3. 50	3. 52	3. $60-$	3. 73	4. 50	3: 68
1918-19	3.84	3. 70.	3.32	2. 93	250	2.35	3.11
$1918-20$	2.98	2.84:	3. 16	3. 25	3: 45	3.47	3.19
1980-21	2.73	2.52.	2.51.	2:48	2.40	2. 60	2.54
Average, 1914-1920:	2.53	2.69	2. 75	2.68	273	2.82	2.70
192土-22	1.75	1. 64	I 78	1.94	208	2.59	1.96
1922-23	1. 79	2.04	2.13	2.05	210.	2.12	2.04
1923-24.	2. 20	2.12	2.06				

MANNFEAPOETS: ${ }^{2}$

Division of Statistical and Historical Reseanchr.
${ }^{1}$ From the Weekdy Northwestern Miller. Average of weekly quotations: 1922-23 and after from Commercial Bulletin, Buaffalo Corn Fxchange.

2'fromi Minneapolis: Daily Market Record: Average of daily quotations.

GRAIN SORGHUMS. ${ }^{1}$

Table 186.-Grain sorghums: Acreage, production, and total farm value, United States, 1915-1923; by States, 1922 and 1923.

Calendar year, and State.	Thousands of acres.		Average yield in bushels per acre.		Production, thousands of bushels.		Average farm price, Nov 15, cents per bushel.		Farm value, thousands of dollars.			
1915	4,153		27.6		114,460		44.7		51, 157			
1916	3, 944		13.7		53,85861,409		105.9161.9		57,02799,433			
1917	5,153		11.912.1									
1918			73, 241	150.0		$109,881$						
1919	5, 060				25.8		130,734137,408		127.4			
1920									$127,629$			
1921	$\begin{aligned} & 0,120 \\ & 4,635 \end{aligned}$		24.6		113, 990		39.1		$44,575$			
Leading. States.	1922	$1923{ }^{2}$	1922	1923	1922	19232	1922	1923	1922	$1923{ }^{2}$		
Total	5,064	5,776.	17.9	18.3	90, 524	105, 619	87.8	94.1	79,503	99, 353		
Iowa	8	6	24.0	33.0	144	198	55	100	79	198		
Missouri	15	13	20.0	21.0	300	273	85	100	255	273		
Nebraska	19	26	18.0	25.6	342	666	74	88	253	588		
Kansas.-	1, 039	1, 598	19.5	17.7	20; 260	28, 285	74	82	14,992	23, 194		
Texas	1,970	1,891	20.0	22.0	39,400	41, 602	100	105	39, 400	43, 682		
Oklahoma	1,450	1,523	13.5	12.0	19,575	18, 276	80	92	15, 660	16, 814		
Colorado	247	336	15.0	20.0	3, 705	6, 720	70	80	2, 594	5,376		
New Mexico	158	205	11.0	18.0	1,738	3, 690	80	90	1,390	3,321		
Arizona	30	35	30.0	34.0	900	1,190	80	100	720	1. 190		
California	130	143	32.0	33.0	4,160	4, 719	100	100	4, 160	4, 719		

Division of Crop and Livestock Estimates.
${ }^{1}$ Kafirs, milo maize, feterita. ${ }^{2}$ Preliminary.
Table 187.-Grain sorghums: Condition of crop, first of month, and yield per acre, United States, 1906-1923.

Calendar year.	July.	Aug.	Sept.	Oct.	Yield per acre.	Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.		
		P.ct.	P. ct.	P. ct.	Bush.		P. ct.	P. ct.	P.ci.	P.ct.	Bush.		
1906	90.2	91.3	92.4			1914	90.5	84.4	84.5				
1907	84.8	85. 6	83.1			1915	87.1	89.1	90.8	90.5	27.613.7		
1908	85.3	86.5	85.1		---------	1916	83.2	73.1	62.3	65.2			
	89.482.7	85.0			-		69.8		50.1	49.0	11.9		
1909.			72.8					1918---------------------			78.7	65.8	12.1
1910		71.1	79.2			91.1	90.4		88.0	94. 7	25. 8		
1911	64.5 89.4 8	72.985.073.1	$\begin{aligned} & 74.4 \\ & 85.4 \\ & 57.9 \end{aligned}$				89.5	87.5	91.0		26.8		
1913	84.7				Av. 1914-1920_		84.3	78.4	76.8	75.6	19.6		
Av.1909-1913.	82.1	77.4	73.9			1921	88.9	88.5	84.6	85.3	24.6		
						1922	87.2	79.3 74.7	65.5	64.9 67.5	17.9		

Division of Crop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.

Table 188.-Kafir, No. 2 White: Weighted average price per 100 pounds of reported cash sales, Kansas City, 1909-1923.

$\begin{aligned} & \text { Year beginning } \\ & \text { Nov. } 1 \text {. } \end{aligned}$	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	$\begin{aligned} & \text { Weight- } \\ & \text { ed } \\ & \text { everage. } \end{aligned}$
1909-10	\$1. 20	\$1.31	\$1. 53	\$1. 42	\$1. 37	\$1. 32	\$1. 46	\$1. 50	\$1. 53	\$1. 81	\$1. 78	\$1. 19	\$1.45
1910-11	1.12	. 96	. 96	${ }^{93}$. 94	. 94	1.06	1.24	1.42	1.34	1. 27	-1.21	1.12
1911-12	1.06	. 99	1. 19	(1)	1. 29	1.43	1. 44	1.25	1.63	1. 68	1.36	1.13	1.31
1912-13	. 98	. 86	. 85	. 83	81	82	. 88	1.11	1.09	1.41	1. 53	1.51	1.06
1913-14	1.57	1.63	1.72	1.72	1.76	(1)	2. 00	(1)	(1)	(1)	(1)	(1)	
Av. 1909-1913.	1. 19	1.15	1. 25	--	1. 23		1.37						
1914-15	1.04	1.14	1.33	1.38	1.28	1. 18	1.14	1.20	1.16	1.09	1.04	1. 06	1.17
1915-16	. 91	. 99	99	. 96	. 93	1. 06	1. 05	1. 11	1.22	1. 58	1.71	1.84	1. 19
1916-17	2.34	2.11	2. 43	2. 48	2. 66	3. 17	3. 79	3. 36	4.00	4. 48	4. 34	3. 69	3.24
1917-18.	3.40	3. 25	3. 33	3.69	3. 84	3.37	2.93	2. 65	3.03	3. 40	3. 40	3. 27	3.28
1918-19	2. 96	2.61	2. 60	2. 70	2. 56	2. 67	2.97	3. 42	3.51	3.61	2. 41	2. 34	2.86
1919-20	2.67	2.93	2. 49	2. 17	2.31	2. 38	2.65	2. 52	2.36	2. 43	2. 24	1.81	2.41
1920-21	1.39	1.17	. 98	. 91	. 85	. 80	1. 03	1. 12	1.21	1. 13	1.13	1. 02	1.06
Av. 1914-1920.	2. 10	2.03	2. 02	2.04	2.06	2.09	2. 22	2. 20	2. 36	2. 53	2. 32	2.15	2.17
1921-22	. 85	. 90	90	1. 29	1. 32	1. 20	1. 28	1.38	1.66	1. 72		83	1.36
1922-23	1. 78	1. 63	1. 59	1. 60	1.66	1.72	1.76	1. 67	1. 50	1.48	${ }^{1}$)	(1)	
1923-24	(1)	1. 27											

Division of Statistical and Historical Research. Compiled from Kansas City Price Current and Market Review.
${ }^{1}$ No quotations.
Table 189.-Kafir: Farm price per bushel, 15th of month, United States, 1916-1923.

Year begining Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	$\begin{aligned} & \text { Weight- } \\ & \text { ed } \\ & \text { average. } \end{aligned}$
	Cts.												
1916-17	102.4	101. 5	119.1	129.0	147.0	152.0	188.0	206. 3	214. 0	243.3	187. 7	174.1	152.6
1917-18	160.6	166.7	170.8	185. 7	193.5	204. 0	211.0	179.6	165. 6	177.2	181. 0	175.9	182.3
1918-19.	150.5	154.8	153. 7	156.9	150.9	162. 1	173.6	174. 1	175.9	176.9	153.7	139.7	160.4
1919-20	133.6	144.3	137.3	138.7	129.8	145.4	154.5	153.9	135.2	150.0	124.8	95.5	140.4
1920-21.	95.5	81.7	65.6	57.8	67.3	53.8	51.5	62.0	51.0	58.0	54.9	48.3	63.6
1921-22	35. 8	33. 8	41.4	48. 0	60. 5	63. 2	61. 2	63.8	68.7	87.7	77.1	85.6	54.8
1922-23	89.2	89.3	89.0	92.1	98.6	108.2	96.4	100.2	109.8	102.2	94.1	100.8	96.6
1923-24	95.4												

Division of Crop and Livestock Estimates.
Table 190.-Kafir: Monthly and yearly receipts at Kansas City, 1909-1922.

Year beginning Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Yearly total.
	1,000	1,	1,000	1,000	1,000	1,000	1,00	1,000	1,000	1,000	1,000		
				lbs.	lbs	lbs.			lbs.	lbs.	libs.		
1909	5,940	2, 820	7,020	8, 400	9,000	2, 520	1,800	1,140	660	420	300	200	40,220
1910-1	6,000	16, 050	12,550	10, 050	4, 800	2, 900	4,000	3, 150	1,700	2, 350	1,050	3,450	68, 050
1911-12	11, 300	18, 100	14, 291	22, 945	10, 718	11, 088	10, 410	6, 776	4,189	2,587	3, 450	5, 790	121, 644
1912-13	24, 948	36, 098	34, 188	18, 665	6, 222	8, 439	7, 207	12, 505	5, 051	616	1,848	1, 478	157, 265
1913-14	1,232	2,957	7,454	4,004	1, 417	862	924	862	185	62	493	2,341	22,793
Av.,	9,884	15,205	15,101	12,813	6,431	5,162	4,868	4,887	2,357	1,207	1,428	2,652	81,994
1914-15 ${ }^{1}$	17, 433	40,286	37, 022	34, 619	10,5	27,227	14,	10,	$\stackrel{11,519}{ }$	11,396	6,283	7,269	28, 165
1915-16 ${ }^{1}$	20, 574	62, 524	32, 088	32, 424	35, 616	3, 376	30, 352	33, 88	21, 504	9, 576	5, 600	2, 016	319, 530
1916-17	1,512	5,432	10, 780	15, 338	4,004	2,526	2,156	493	431	431	308	308	43, 719
1917-18	4, 928	15, 585	25, 995	21, 560	28, 336	18, 049	5,482	5,975	2, 218	1, 602	493	370	130, 593
1918-19 ${ }^{1}$	2, 834	9, 117	8, 562	9, 425	21, 498	18, 418	21, 006	5,298	8, 932	3, 634	4,866	4,497	118, 087
1919-20	1,232	13, 059	41, 703	40, 410	51, 519	25, 133	30, 246	45, 769	42, 997	13, 182	8, 932	6,899	321, 081
1920-21	6,283	36,652	54, 886	25, 934	31, 847	16, 078	16,878	36, 036	13, 121	16,386	6,714	11, 704	272, 519
Av., 1	7,828	26, 094	30,148	25,673	26,202	20,115	17,175	19,694	14,389	8,030	4,742	4,723	204, 813
1921	14,722	$\overline{19,589}$	26,365	30,061	21,930	17, 494	$\overline{11,149}$	$\widetilde{11,889}$	8,378	$\overline{4,682}$	1, 971	6,714	174,944
1922-23	9,425	24, 886	25, 670	14, 246	10,349	8, 467	4,637	3, 024	4,234	2, 151	1,142	1,075	109, 306

[^175]
FRUTS AND VEGETABLES.

APPLES.

Table 191.-Apples: Production in the United States, 1889-1923.

Calendar year.	Production.	Calendar year.	Production.	$\begin{aligned} & \text { Calendar } \\ & \text { year. } \end{aligned}$	Production.	Calendar year.	Production
	Bushels		Bushels.		Bushels.		Bushels.
1889	143, 105, 000	1898	118,061,000	1907	119,560, 000	1916	193, 205, 000
1890	$80,142,000$ $198,907,000$	1899	175, 997,000	1908	148, 940, 000	1917	166, 749, 000
1892	120, 536,000	1901	135, 500,000	1909	$146,122,000$ 141,640	1918	169, 625,000
1893	114, 773, 000	1902	212, 330, 000	1911	214, 020, 000	1920	223, 677,000
1894	134, 648, 000	1903	195, 680, 000	1912	235, 220, 000	1921	99, 002, 000
1895	${ }^{219,600,000}$	1904	233, 630, 000	1913	145, 410,000	1922	202, 702,000
1896	232, 600,000	1905	136, 220, 000	1914	253, 200, 000	19	196, 770, 000
1897.	163, 728, 000	1906	216, 720, 000	1915	230, 011, 000		

Division of Crop and Livestock Estimates. Census figures are in italies.
Table 192.-Apples: Production and farm prices December 1, by States, calendar years, 1919-1923.

State.	Total crop, thousands of bushels.					Farm price per bushel Dec. 1 (cents).				
	1919	1920	1921	1922	$1923{ }^{1}$	1919	1920	1921	1922	1923
Maine	4,829	1,680	4,060	1, 250	2, 300	117	120	115	107	96
New Hampshi	1,364	1, 200	700	- 775	800	160	150	175	135	140
Vermont.--	, 960	-993	600	960	592	175	150	195	160	170
Massachusetts	3, 187	3,575	1, 125	3, 010	3,015	200	120	240	145	150
Rhode Island	334	390	63	200	450	195	200	250	110	135
Connecticut	1,395	2,375	758	1, 300	1,700	170	125	240	120	150
New York	14, 350	47, 087	13, 500	36, 000	24, 000	200	75	205	81	120
New Jersey	1, 666	2, 942	667	2,610	2,203	200	120	270	95	140
Pennsylvania	5,513	18, 584	2, 208	11, 400	10,855	225	90	260	96	100
Delaware.-.	606	822	68	1, 414	1,200	200	95	220	90	100
Maryland	1, 519	2, 600	225	1,500	2,300	200	78	195	90	86
Virginia.	8, 943	13,744	570	8,960	9,800	160	90	255	90	94
West Virginia	4, 189	8, 040	420	5, 625	8, 320	180	125	260	102	100
North Carolina	2, 000	6, 320	593	6, 000	2, 700	187	105	250	90	140
South Carolina	216	440	293	383	274	280	184	230	140	180
Georgia	417	1,270	698	1,135	864	245	165	200	100	150
Ohio	2, 976	13, 960	3,390	7, 298	12, 395	262	115	225	130	105
Indiana	1, 190	4,596	1, 029	4, 148	5, 035	267	143	230	123	115
Illinois.	4, 673	5, 866	2, 381	9, 720	7, 370	230	140	250	105	115
Michigan	5, 844	16,500	6,317	11, 850	13, 159	220	77	195	88	85
Wisconsin	1,545	2, 250	1,050	2, 024	2, 340	220	170	242	118	115
Minnesota	1,336	1,350	900	1, 020	1,520	250	200	260	200	130
Iowa.	1, 810	4,410	630	4,410	3, 750	275	191	274	117	118
Missouri	5,132	4,724	480	9,400	7,072	190	170	255	82	92
South Dakota	168	180	126	263	212	300	260	280	170	177
Nebraska	907	797	125	1, 620	880	250	230	270	120	145
Kansas.	1,835	1,144	172	3,280	2, 166	210	220	250	100	120
Kentucky	1,281	5, 022	636	5, 070	2,625	250	160	250	130	140
Tennessee.	1,259	4, 280	754	4,250	1, 311	225	142	245	116	150
Alabama	577	1,186	890	1,098	731	250	175	200	145	170
Mississippi	218	190	145	216	120	235	190	240	170	158
Louisiana.	44	34	35	37	31	200	200	200	225	200
Texas	487	274	274	264	270	190	200	190	150	155
Oklahoma	1,600	585	486	1, 140	1,240	175	230	210	135	120
Arkansas.	7, 164	3,900	120	2, 400	3, 025	170	140	200	102	110
Montana	850	825	975	610	990	175	180	150	100	130
W yoming	30	18	19	40	- 35	350	200	250	200	180
Colorado.	3,418	2, 830	3,200	4,250	3, 010	185	140	170	75	95
New Mexico	1, 100	434	483	750	1, 400	200	180	200	130	180
Arizona.	125	80	47	77	128	225	250	250	205	180
Otah	760	1, 064	1,037	1, 085	1,119	170	120	130	80	78
Nevada	53	36	24	35	56	300	275	260	160	140
Idaho	3, 800	3,420	4,500	3,900	5,600	180	145	130	72	75
W ashington	25, 295	21, 502	29, 062	25, 775	31, 357	155	140	125	100	77
Oregon.	6, 921	4, 158	6, 667	6,300	8, 000	140	125	115	95	85
California	8,200	6,000	6,500	7,850	8,450	145	160	135	90	75
United States	142, 086	223, 677	99, 002	202, 702	196, 770	183.6	114.8	168.0	98.6	102.2

[^176]${ }^{1}$ Preliminary.

Table 193.-Apples (commercial crop): Production, by States, calendar years, 1919-1923.

State.	1919	1920	1921	1922	$1923{ }^{1}$	State.	1919	1920	1921	1922	19231
	1,000	1,000	1,000	1,000	1,000		1,000	1,000	1,000	1,000	1,000
	barrels.	barrels.	barrels.	barrels.	barrels.		barrels.	barrels.	barrels.	barrels.	barrels.
Me	675	230	657	232	425	Iowa	211	420	25	220	188
N. H	187	170	110	119	120	Mo.	1,010	924	30	1,250	850
Vt.	203	190	116	128	89	S. Dak	3	5	0	4	3
$\begin{aligned} & \text { Mass } \\ & \text { R.I. } \end{aligned}$	33565	75	$\begin{array}{r}172 \\ 8 \\ \hline\end{array}$	46120	50	Nebr	180	110	17	130	103
											O
Conn	119	215	70	108	160	$\mathbf{K y}$	57	218	31	169	70
N.	2, 975	6,500	3,300	6,000	3,900	Tenn	68	204	45	95	30
N. J	456	848	132	552	470	Ala.	9	20	15	18	12
	759	1,547	221	1,216	1,266	Tex-........-	37431,100				
	155	219	14	380	340	Okla------------		29	21	158	15
M	177	399	20	280	460	Ark		724	16	520	656
W. Va-------	1, 653	1, 340	80	-881	1,350	Mon	140	128	175	115	123
	, 648		130								803
N.	92	250	25	236	100	N. M	264	108	123	1, 150	315
Ga	35	106	58	95	60	Ariz	15	10	6	9	14
Ohio	280	1,445	360	608	1,033300	Utah	121	196	198	198	260
Ind	137		109	277							
Ill		1,369	397	1,450	1,351	W W ash	1, 008	756 5,734	1,359	${ }^{1}, 150$	1,600 9,198
Mieh.	1,050	3, 167	1,208	1, 699	2,118	Oreg	1, 357	, 832	1,667	1,260	1,750
W is.	168	161	64	101	136	Cali	1,200	1,230	1,352	1,399	1,732
Minn-						United States	26, 159	33, 005	21, 557	31,945	34, 303

Division of Crop and Livestock Estimates. Included in "Apples" (preceding table).
By commercial crop is meant that portion of the total crop which is sold for consumption as fresh fruit. One barrel is equivalent to three boxes.
${ }^{1}$ Preliminary.
Table 194.-Apples: Condition of crop, first of month, United States, 1866-1923.

Calendar year.	June.	July.	Aug.	Sept.	Oct.	Per cent of a full crop.	Calendar year.	June.	July.	Aug.	Sept.	Oct.	Per cent of 9 fall crop.
	P.ct.	$P . c t$.	P.ct.	P.ct.	P.ct.	$P . c t$.		P.ct.	P.ct.	P.ct.	$P . c t$.	$P . c t$.	P.ct.
1866	98.9	92.8				89.1	1896	71. 0	64.6	65. 7	67.0	66.7	65.5
1867	120.7	108. 2	100.0	100.5		97.2	1897	74.8	66.8	60.3	56.9	57.2	53.3
1868	99.4	94.6	89.9	71.8		80.1	1898	73. 0	57.5	48.8	42.0	36. 6	35.6
1869	105. 8	101. 9	96.6	94.7		101.9	1899	75. 2	58.7	56.8	52.0	46.4	44.2
1870	87.3	88.1	83.9	89.3		86.8	1900.	83.4	75.4	71.0	67.8	61.2	56.3
1871		81. 2	80.4	82.1		82.6	1901	80.3	65. 7	45.8	44.9	46.4	44.0
1872	105. 6	102. 1	100. 2	101.6		109. 7	1902	67.9	62.3	59.3	61.6	63.8	61.3
1873	84.5	72. 3	64. 0	62.7		57.9	1903	62.6	56.5	54.3	56. 2	56.4	53.0
1874	100. 6	91. 4	85.4	78.0		86.9	1904	79. 5	71.5	63.8	64.7	65.4	64.2
1875	67.2	61.2	56.6	59.6		58.4	1905	70.6	61.1	53.4	50.3	50.0	41.1
							1906	76. 6	70.5	68. 2	70.6	69.2	69.1
1876	95.0	93.5	88.4	92.4		107.0	1907	50.1	44.0	39. 4	34.7	33.8	32.1
1877	84.4	76. 2	73.7	73.5			1908	66.0	57.6	52. 2	52.1	48.4	43.4
1878	87.1	84.7	79.7	78. 4			1909	61.4	54.6	46.3	44.5	43.9	52.5
1879	71. 7	66. 8		65.6			1910	53.0	49.6	47. 8	46.8	4.4	43.5
1880	93.6	94.7	95.4	94.8			1911	68. 5	57.9	53. 9	56. 2	59.8	62.4
							1912	72.3	67.9	65.8	67.9	67.8	69.9
$\begin{aligned} & 1881 . \\ & 1882 . \end{aligned}$	80. 2	73.0 88.3	63.7	75.6		74.5	1913	67.1	59.4	52. 2	47.7	46.6	44.6
1883	78.5	70. 2	58. 2	52. 5		52.8	Av.1909-1913	64.5	57.9	53.2	52. 6	52.9	52.6
1884	93.2	83.6	79.7	78. 9		78. 5							
1885	88.4	77.8	73.0	70.7		73.0	191	73.7	64.2	61.3	61.9	69.1	72.8
							1915	70.1	63.3	61.5	62.7	63. 0	65.6
1886	89.2	83.8	79.0	75.9		67.7	1916	76.0	68.1	62.3	58.7	57.2	57.5
1887	73.7	68.4	58.0	50.9		47.8	1917	73.9	64.0	55.4	51.1	50.7	50.4
1888	87.4	84.0	81.3	80.7		80.7	1918	69.8	59.7	55. 9	54.3	54.7	54.2
1889	82.7	76.7	74.6	68.5		67.0	1919	67.8	56. 6	52. 2	51.0	52.1	48.1
1890	76.3	60.8	48.1	40.7		42.2	1920	79.3	70.7	70.4	72.4	74.7	77.3
1891	84.4	81.0	76.8	77.2		77.3	Av.1914-1920	72.9	63.8	59.9	58.9	60.2	60.8
1892	83.2	65.2	55.4	48.9		45.3							
1893	68.8	56.9	46.2	42.0		38. 6	1921	42. 2	35.3	34.8	34.5	35.0	33.0
1894	60.7	47.6	44.0	40.8		41.7	1922	72.7	66.8	67.4	68.2	67.6	88. 5
1895	76. 0	70.2	71. 2	72.8	70.6	71.1	1923	75.5	67.0	63.8	63.6	64.2	65.6

Division of Crop and Livestock Estimates.

Table 195.-Apples: Percexdage redtuction from full yield, frome stated causes, as reported by crop correspondents, 1912-1922.

Calendar year.	Deficient meistare.	Excessive moisture.	Floods	Frost and freeze.	Hail.	Hot winds.	Storms	Total climatic.	Plant disease.	Insect pests.	Animal pests.	Total. ${ }^{1}$
	P.ct.	P.ct.	$\boldsymbol{P} . c t$.	P.ct.	P.ct.	P. ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.
1912	2. 5	0.9	0.3	10. 2	0. 7	Q. 3	Q. 9	16. 9	4.2	3.1	Q. 1	32.4
1913	10. 3	. 4	. 4	25.3	. 6	. 9	. 6	39.9	1.0	5.2	(2)	53.5
1814	6.5	. 3	(2)	6.4	. 6	. 4	. 6	15. 1	. 8	5.0	. 1	28.2
1915	I. 2	1. 9	. 2	15. 8	. 9	. 1	1. 2	21. 8	5. 2	3.0	. 1	35.4
1915	5. 4	3. 2	. 2	9. 9	. 9	. 6	1.4	22. 8	5.6	3.0	. 1	38. 6
19.17	4. 1	3.9	. 1	15. 2	1.1	. 3	1. 1	27.0	4. 7	2.8	. 1	44. 2
1918	7.5	. 7	. 2	19. 1	. 8	1.0	.. 7	30.7	4. 2	2. 9	. 2	44. 9
1919	4.3	2. 9	. 1	29. 1	. 6	. 6	1. 0	39.1	5.1	2.7	. 1	52.7
1920.	2. 2	. 8	.2	10. 2	. 8	. 2	. 7	16.5	4.4	1.9	. 1	25.9
1921	5. 0	7		49. 0	. 6	. 3	. 6	57.7	3.0	1.9	. 1	65.1
1922	4.1	1. 3		13.4	. 8	. 4	. 7	21.3	4.8	2.4	. 1	28.6

Division of Crop and Livestock Estimates.
1 Heludes all other causes. E Eess than 0.05 per eent.
Table 196.-Apples: Carlot shipments, by States of origin, 1917-1922.

State.	Year beginnüag June 1.					
	1917-18	1978-19	1919-20	1920-21	1921-22	1922-23
WESTERN AREA.	Cars.	Cars.	Cafs.	Cars.	Cars.	Carrs.
Montana	171	292	509	430	686	351
Colerado.	2, 094	1,984	3,225	2, 861	3,886	3, 385
New Mexico	636	407	859	279	615	438
Utah.	355	447	199	619	735	718
Idsho	3,528	536	3,943	2,881	5, 811	4,222
Westington	15, 837	18, 232	27, 169	21, 6ET	32,961	23, 295
Oregon..-	3,448	云, 248	5,443	3, 17\%	6,543	3, 893
California	1,630	3,473	4,153	4,503	5, 055	4,966
Total	27, 663	25,5811	45,591	36, 370	56,292	46,268
Maine	1, 248	257	2,343	414	4,308	278
New Hiampanire	276	120	507	249	321	187
AMassachusetts -	358	252	407	627	159	286
New York	5,867	22,900	10,286	33, 860	17, 735	29,966
New Jersey	1,001	. 938	737	850	179	447
Pemsylvania	913	1,794	1,206	3, 492	226	2, 038
Delaware --	349	375	498	751	126	1,751
Maryland, Eastern Shore	${ }^{1} 436$	29	36	139	48	418
Maryland, other	(2)	685	-564	1, 498	92 328	706 6,975
Virginia ---	4,589	4, 227	7,075	8, 782	323	6,975 $\mathbf{2} 242$
West Virginia	1, 280	2,919	2,849	4,880	801	2, 2424
Ohio -	274	448	255	976	615	484
Iflimois.	5,554	2,676	2, 235	3,471	- 445	4, 840
Mfiehigan	1,385	2,862	3,435	6, 212	5,992	6,015 3,079
Missouri	2, 600	I, 167	2, 155	1,725	${ }^{(3)} 8$	3,079
Kansas	1,131	398	535	738	(3) 62	1,083
Arksmsas	1,545	I, 068	4, 553	2, 686	${ }^{(8)}$	2,620
All other.	1,931	939	1,098	1,684	594	2,644
Total	30,737	44,049	41, 444	72, 910	32, 022	65,999
Total, United States.	58, 406	69, 630	87, 65	109, 280	88, 314	112, 267

Division of Statistical and Historical Research Compited from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.
${ }^{1}$ Includes Maryland "other." ${ }^{2}$ Included in Maryland Eastern Shore. ${ }^{3}$ Included in all other.

Table 197.-Apples: Monthly carlot shipments, by States, 1917-1923.

State, and crop movement season. ${ }^{1}$	June.	July.	Aug	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June.	Total
New York:	Cars.													
1917-18			19	397	1,339	1,149	439	444	693	685	470	186	46	5,867
1918-19		8	486	2,026	7,662	4,199	2, 388	2,215	1,951	1,130	564	228	43	22,900
1919-20		23	169	978	3, 195	1,171	829	632	992	1,218	576	447	56	10, 286
1920-21		4	747	2,488	9, 125	7,996	3,376	2, 600	3, 254	2,655	1,074	449	292	33, 860
1921-22		98	970	3, 064	5, 855	1,206	839	1,090	1, 485	1, 472	970	563	123	17, 735
1922-23		68	1, 360	3,502	7,988	5, 711	1,968	2,193	2,241	2, 399	1,482	888	166	29,966
1923-24.		5	280	1,572	4,159	3, 099	1,146							
Pennsylvania: 1917-18			12	36	526	145	62	28	42	18	39	5		913
1918-19		25	39	253	839	247	124	143	73	45	6			1,794
1919-20		2	14	170	699	121	76	93	62	21	3	5		1,266
1920-21		27	27	190	1, 379	674	382	299	262	151	10	1		3,402
1921-22			,	67	109	9	7	7	15	9	2			226
1922-23		19	23	270	840	372	220	177	71	21	17	8		2, 038
1923-24		20	39	359	1,398	892	276							
Virginia:														
1917-18	6	36	115	1,091	1, 887	548	131	131	250	211 83	$\begin{array}{r}156 \\ 92 \\ \hline\end{array}$	27 49		4,589 4,227
1918-19		29	100	867 1,933	1, 5689	740 592	235	283	171	83 308	$\begin{array}{r}92 \\ 114 \\ \hline\end{array}$	49 72	9	4,227 7,075
1919-20		43	238	1,933	2, 732	- 592	894	313	336	308 354	114	72 116		7,075 8,762
1920-21		46	102	1,523	3, 143	1,275	811	680	468	354	219	116	25	8,762 323
1921-22			9	126	87	17	34	16	10	16	8			323 6975
1922-23	5	32	300	1,741	2,349	1,139	465	342	133	94	98	160	117	6,975
1923-24		49	131	1,887	3, 610	1,385	740							
West Virginia: 1917-18		9	24	231	478	223	98	37	87	66	27			, 280
1918-19		23	71	504	1,254	718	202	78	34	32		3		2,919
1919-20		23	90	620	1, 267	365	160	95	82	71	61	15		2,849
1920-21		63	75	744	2, 269	874	209	179	118	146	109	84	10	4,880
1921-22		4	18	412	176	19	27	15	42	59	27	2		801
1922-23	10	28	75	451	1, 005	310	141	84	37	36	38	27		2, 242
1923-24		78	120	1, 020	3, 064	1,477	301							
Itlinois:														
1917-18	12	353	140	1, 242	$3,001$	664	3	12	49	33	37 46			5,554
1918-19	24	244	81 79	518	$1,210$	219	46 11	66 73	100 90	111	46 47	39 55	${ }^{3} 14$	2, 676 2,935
1919-20	36	340	79	807	1,142	131	11	$\begin{array}{r}73 \\ 45 \\ \hline\end{array}$	90	111	47 69	55 26	13	2,935 3,471
1920-21	50	528	217	789	1, 268	296	34	45	28	113	69 7	26	8	3,471 445
1921-22-23	35	24	51	114	94	8	9	33	46	12	7	12		445 4.840
1922-23-	312	526	253	1,294	1,557	492	58	65	85	88	61	48	1	4,840
1923-24 Michigan:	22	429	145	1,043	2,125	554	66							
Michigan:										10				1,385
$\begin{aligned} & 1917-18 \\ & 1918-19 \end{aligned}$		88	127	480	1, 532	${ }_{511} 307$	27	5	4	10	1			2, 862
1919-20		12	608	1,040	1, 587	175	7	2		+	1	2		3,435
1920-21		55	1,152	1, 188	2, 102	1, 300	175	51	92	70	26	1		6,212
1921-22		516	1,219	1, 772	2, 327	112	15	12	11	7	1			5,992
1922-23		307	913	, 997	2,717	854	95	42	33	35	20.	2		6,015
1923-24		39	1, 189	1, 334	3,432	1,719	178							
Washington:										967				
1917-18			56	409	5, 280	4, 582	1, 447	1, 700	1, 814	420	211	60	15	16, 232
1918-19		22	138	1, 023	6, 209	4, 481	2,139	1,800		$\begin{array}{r} 420 \\ 1,864 \end{array}$	1,133	493	19	
1919-20-20-21		35	164	1,763	9, 701	6,682 4,967	1, 875	1, 1,123	1, 1,681	1,498	1, 056	700	${ }^{4} 197$	21, 627
1921-22		33	1110	2, 506	12, 758	7, 749	3, 124	2, 070	2,368	1, 994	- 636	491	112	32, 961
1922-23		33	78	2, 187	6, 792	5,596	3, 298	4, 194	3, 007	2, 004	780	297	29	28, 295
1923-24		65	202	2, 492	13, 106	7, 819	2, 772							
Oregon:														
1917-18			,	43	$\begin{gathered} 629 \\ 792 \end{gathered}$	1, 2076	627 359	219	260	335	117	7		
1918-19		2	9	59	723	746	359	126	128	$\begin{array}{r}72 \\ \\ 232 \\ \hline\end{array}$	15	80		2, 246
1919-20		4	10	192	1, 354	1,478	781	798	406	232	108	80		5, 443
1920-21		1	3	36	961	1, 079	452	260	207	116	43	12		3,170
1921-22		9	11	300	2, 340	1, 897	1, 032	496	298	109	44	6	1	6,543
1922-23		1	1	98	867	1,238	706	451	314	191	23	3		3,893
1923-24.		19	20	459	2, 239	1, 914	628							
California:														
1917-18.		112	173	514	404	216	62	22	34	36 81	30 42	25	2	1,630 3,473
1918-19	6	66	468	486	797	585	501	198	226	81	42	41	5	3,473 4,153
1919-20	5	273	441	877	908	709	370	155	148	173	48	41	5	4, 153
1920-21	6	244	723	967	1, 018	765	373	106	84	73	79	56	9	4,503
1921-22	13.	352	690	1, 224	1,494	699	181	120	. 117	101	42	21	1	5, 055
1922-23	2	220	998	782	918	887	494	179	103	168	107	78	30	4,966
1923-24	61	1,290	986	1,259	1,415	772	2							

${ }^{1}$ The crop movement season normally begins in June and extends through June of the following year, with irregular shipments continuing into July.
${ }_{2}$ Includes 3 carsin July.
${ }^{3}$ Includes 2 cars in July.
${ }^{4}$ Includes 10 cars in July.

Table 197.-Apples: Monthly carlot shipments, by States, 1917-1923-Contd.

State, and crop movement season. ${ }^{1}$	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June.	Total.
All other	Cars.	Cars.	Cars.	Cars.	Ca	s.			rs.	rrs.	Cars.	ars.	Cars.	
1917-18.	36	241	638	1,485	7, 919	4, 920	1,101		351		258	12		
1918-19	148	642	553	$1,854$	4, 885	1, 321		230	178	127	138	32		
1919-20	${ }_{107}^{61}$	${ }_{854}^{592}$	899	$\|3,879\|$	10,381 8,498	4, 4361	798 994	378 703	422	379 519	$\begin{array}{r}138 \\ 134 \\ \hline\end{array}$	0	18	19,393
1920-21	107	854	$\begin{aligned} & 704 \\ & 295 \end{aligned}$	2, 4608	8, 817	2, 748	994	703 340	384	124	+26	22		17, 732
1922-23	545	1,358	922	3, 648	8,932	4,028	1,371	846	587	466	181	89	13	22, 986
1923-24	70	1,314	812	4, 117	11, 407	5,766	1,431							
Total: \qquad								2,362	3, 232	2, 882	, 647	347	51	58, 406
1918-19	178	1,149	2,359	8, 070	26, 680	13, 563	6,320	4, 044	3,679	2,063	1, 006	430	89	69, 630
1919-20	102	1, 347	2,712	12, 259	32, 666	15, 854	5,301	4, 393	4,419	4, 378	2, 229	1,276	99	87, 035
1920-21	163	1,855	3, 861	11, 043	37, 284	23, 087	8, 875			$5,695$			${ }^{6} 359$	109,280
1921-22-23	${ }^{5} 76$	1, 207	$\left\lvert\, \begin{array}{l\|l\|} 3,384 \\ 4 \end{array}\right.$	$\begin{aligned} & 12,653 \\ & 14,970 \end{aligned}$	$\begin{aligned} & 35,057 \\ & 33,065 \end{aligned}$			4,199 8,573	4,756 6,611	$\xrightarrow{2,903}$	1, 763	1,117 1,600	243	87, 813
1922-23-24	874	2, 392		14, 542	45, 955	25, 297	8, 816	8,573	6,611	5, 502	2, 807	1,600	356	112, 216
1923-24.	153	3,308	$3,3,924$	15, 542	45,955	25, 397	7, 759							

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.
${ }^{1}$ The crop movement season normally begins in June and extends through June of the following year, with irregular shipments continuing into July.
${ }_{5}$ Includes 1 car in May.
${ }^{6}$ Includes 15 cars in July.
Table 198.-Apples: Cold storage holdings in United States, 1915-1923. ${ }^{1}$

Year beginning Oct. 1.	Oct. 1.	Nov. 1.	Dec. 1.	Jan. 1.	Feb. 1.	Mar. 1.	Apr. 1.	May 1.	June 1.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	barrels.	barrels.	barrels.	barrels.	barrels.	barrels.	barrels:	barrels.	barrels.
1915-16		3, 689	5,441	4, 813	4,236	3, 242	1,984	1,035 808	365 205
1916-17		3, 260	4,492	4, 132	3, 385	2, 442	1, 783	808	159
1917-18.		3, 296		4,599 4,294	3, 357	1,830	1, 986	678 380	125
1918-19	971	3,752 4,523	4,928	4,294 5,529	- 4,105	1,772 3,162	1, ${ }^{959}$	806	213
1919-20									
1920-21	544	4,475	6,787	6, 386	5,105	3, 650	2,210	1,119	445
1921-22-	792	3, 643	5,739	5,429	4, 313	3, 090	1,930	944	314
1922-23	1,452	5, 521	6,743	6, 481	5,376	3,877	2,314	1,070	277
1923-24	927	6,914	10,099	9,641					

Division of Statistical and Historical Research.
${ }^{1}$ Apples in barrels, boxes and baskets combined; 3 boxes or bushels equivalent to 1 barrel.
Table 199.-Apples: Farm price per bushel, 1st of month, United States, 19101923.

| Year beginning
 June 1. | June. | July. | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | Weight- |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ed av. | | | | | | | | | | | | | |

Table 200.-Apples: Monthly average jobbing prices per barrel and per box, at 10 markets, 1920-192s.
BARRELS.

Market, and year beginning Sept. 1.	September.		October.		November averase.	December average.	January average.	February average.	March average.	April.		May ${ }^{1}$	
	Range.	Average	Range.	Average.						Range.	Average.	Range.	Average.
New York:													
1920-21	\$2.75-\$8.00	\$4.86	\$2.00-\$9.00	\$5. 83	\$5. 66	\$4. 71	\$4.80	\$5. 01	\$6. 01	\$3.50-\$10.00	\$6. 79	\$4.00-\$13.50	\$8. 03
1921-22	5. $50-13.00$ $1.50-7.50$	8. 3. 3	5. $00-11.00$ 2. $00-8.80$	7.72 4.63	7.18 4.94	7.82 4.67	8.23 5.08	8.62 5.09	7.64 8.87	5.00-12.00	7.44	35-8.50	B5
1923-24	2.00-7.50	5.16	2. 00-10.00	4.80	4.58	4.71	5.0	5.	\%. 8	$3.00-8.50$	6.68	3.70-8.50	6. 5
Chicago:													
1980-21	3.50-8.00	5. 86	3. $50-9.00$	6. 28	6.29	5. 23	5. 36	5.15	5. 38	4.50-8.00	5. 55	'5.00-9.00	6. 53
1921-22	7.00-10.00	8. 26	6. 00-10.50	8. 00	7.97	8.10	8.48	9.07	8.49	6. $00-9.00$	7.86		
1922-23--	2.00-6.00	3. 58 4.60	2.25-7.00	4.41 5.06	4.68 5.12	4.90 4.96	4.58	4.84	5. 17	$4.00-7.00$	5. 43	4.00-9.50	6. 40
Philadelphia:	$2.75-7.00$	4.60	3.50-6.25	5.06	5.12	4.96							
1920-21.	2. 00-7. 50	5.00	2. 50-8. 50	4.93	4. 49	4.13	4.05	4.17	4.44	$2.85-7.00$	5.07	4.00-7.50	6.00
1921-22	4.50-10.50	7. 44	4.00-12.00	6.63	6.57	6.65	7.38	7. 44	7.01	4.25- 8.90	6. 64		
1922-23	1.50-5.50	3.39	2. $00-7.00$	8. 65	3.86	4.13	4.33	4.72	4.91	4.00-6.50	5. 24	4.25-8.50	5.81
1923-24	1.75-7.00	4.28	1.75-6.50	3.77	3.83	3.64							
Pittsburgh:													
1920-21	3.00-6. 3. 25- 9.00	4.99 7.22	3.00-6.00 5. $00-9.00$	4.46 7.16	4. 81	4.68 6.25	4.89 7.63	4.73 7.42 4	5.06 7.07	$\begin{array}{lll}8.25- & 6.50 \\ 8.75- & 8.00 \\ \text { S. }\end{array}$	5.34 7.02	4.50-8.50	6. 31
1922-23	2.50-4.00	3.25	2. $50-5.00$	3.51	3. 99	4. 38	4.29	4.38	7.84 4.84	$\begin{array}{lll}\text { 3. } \\ \text { 3. } & 00-6.60\end{array}$	7. 4.80	$4.00-7.00$	5.44
1823-24	2.50-5.50	4.06	3.00-5.50	3.54	3.49	4.05							
St. Louis:													
1020-21.	3.00-7.25	5.34	2.75-7.50	4.67	4.97	4.83	4.68	4.88	5.23	4.75-8.50	5. 82	5. $50-10.00$	6.68
1921-22			4.85-8.25	6. 48	5. 44								
1922-23-	2.00-4.85	3.40	1.75-4.75	3.36	3.15	4. 53	4.61	4.53	4.89	8.50-7.50	4.89		
1023-24.	1.75-5.25	4.07	1.75-5.25	3.60	3. 29	4.15							
Cincinnati:													
1920-21-	4. $00-6.00$ $7.00-9.00$	5.40 8.12	2. $75-6.00$ 5. $00-8.50$	4.63 7.64	4.45 6.98	4.87 6.72	4.46 7.44	4.65	5.31	4.25- 8.00	6. 02	5. $00-7.75$	6.70
1922-23.	2.50-4.00	3. 15	2.00-4.75	3.32	6.98 4.15	4. 41	7.44 4.46	7.62 4.72	7.56 5.08	6. $00-8.50$ $4.00-6.50$	7. 76	4.65-6.50	5.98
1923-24.			3.00-5.50	4.07	4.30	4.88							
St. Paul:													
1920-21.	7.00-12.50	8. 79	5. 50-10.00	7.81	5.85	5. 53	5.31	5.69	5. 87	4.75-7.50	6.39		
1921-22			7.00-8.50	7.37	7.73	7. 97							
$1022-23$ $1023-24$			4.00-6.50 5. $50-6.50$	5.11	4.55 5.40	4. 34 5.61	4.59	5. 20	4.95	5.00- 5.50	5.19	5.00- 5.50	5. 46
Minneapolis:													
1920-21	6. 50-11. 50	9.63	5. 75-11. 00	8.88	7.85	5. 84	6.13	6.17	6.14	$6.00-7.50$	6.78	7.00- 8.25	7. 51
1921-22			7. $50-10.00$	8. 78	9.77	8.89	8. 57	9. 56	9.87			$7.00-8.25$	
1822-23	3.25-6.00	4. 73	3. 50-6.50	5.12	4.80	5. 05	5. 29	5. 27	5. 49	5.00-6. 25	5. 39	5.25-6.00	5.73
1923-24.			4.00-8.00	6.16	5.08	5. 14							

$\begin{array}{r} \text { Kansas City: } \\ 1920-21 . \end{array}$	7. 50-9.00	8.45	5.00-8.00	7.25	5.95	5. 66	5. 58	5.97	5. 73	5.75-7.00	5. 91	5.75-6.00	5. 88
1921-22-	10. 00-12. 00	11.00											
1922-23-24.	3.00-4.00 $4.00-6.50$	3.62 5.02	$3.75-5.00$ $3.25-5.50$	4. 33 4.78	4. 4 4.30	4. 58 4.35	4.53	4.38	5.05	4.50-7.50	5.82	4.75-5.00	4.88
Washington:													
1920-21 ${ }^{2}$	3. $500-7.50$	5.90 8.88	3. $00-14.00$	5. 74 9.23 .8	5. 46 8.42	5. 52	4. 68 88 8.28	4.71 8.24	5. 19	$3.50-7.50$ $6.00-90$ 9.00	5.56 8.38	4.00-10.00	6.61
1922-23 ${ }^{-}$	${ }^{\text {5. }}$. $00-5.75$	8. 3.86 18	2. $00-6.50$	4. 79	4. 76	4. 42	4.41	4.43	4.96	6. $4.00-7.50$	5.61	3.75--7.00	6. 23
1923-24.-	4.00-9.00	5.20	3.50-7.50	4.85	4. 40	3.95							

BOXES.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline New York: 1920-21 \& \$4.00-\$5. 25 \& \$4. 40 \& \$2.25-\$5. 50 \& \$3.68 \& \$3. 29 \& \$3. 88 \& \$3. 70 \& \$3. 90 \& \$3. 77 \& \$2. 50-\$6. 00 \& \$3. 98 \& \$2.75-\$5.00 \& \$3. 87 \\
\hline 1921-22 \& 2.25-6.00 \& 4. 06 \& 2.00-5.50 \& 3. 36 \& 2. 80 \& +3.12 \& 3. 01 \& 3. 35 \& 3. 41 \& 2.75-4.75 \& 13.54
3.54 \& \$2.75-\$5.00 \& \\
\hline 1922-23 \& 1. \(50-4.50\) \& 2. 65 \& 1. \(40-5.25\) \& 2. 85 \& 2. 36 \& 2. 42 \& 2. 41 \& 2. 35 \& 2. 57 \& 1. \(90-3.75\) \& 2. 74 \& 2. \(25-4.75\) \& 3.45 \\
\hline 1923-24. \& 1.50-4.50 \& 2.95 \& 1.15-5.00 \& 2.41 \& 2. 09 \& 2.13 \& \& \& \& \& \& \& \\
\hline Chicago: \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 1920-21- \& 4.00-5.25 \& 4.62 \& \& \& 3. 67 \& 3. 75 \& 3. 14 \& 3. 30 \& 3. 62 \& 2. \(25-5.25\) \& 3. 23 \& 2. \(50-4.50\) \& 3. 23 \\
\hline 1921-22 \& \& \& 2.00-4.75 \& 3.43 \& 3.05 \& 3.00 \& 3.16 \& 3. 34 \& 3. 36 \& 2. \(00-4.50\) \& 3. 45 \& \& \\
\hline 1922-23 \& \({ }^{2} 1.00-2.80\) \& \({ }^{3} 1.89\) \& 1.50-3.75 \& 2. 69 \& 2. 48 \& 2. 61 \& 2.69 \& 2. 71 \& 3.07 \& 2. 25-5.00 \& 2. 96 \& 1.85-5.00 \& 2.91 \\
\hline 1923-24-- \& 2.50-4.00 \& 3. 10 \& \(1.50-3.75\) \& 2. 39 \& 2. 42 \& 2.55 \& \& \& \& \& \& \& \\
\hline 1920-21. \& \& \& 2.00-4.75 \& 3.16 \& 2.72 \& 2.52 \& 3. 44 \& 3. 83 \& 3. 06 \& \& \& 2. \(00-4.00\) \& 3.11 \\
\hline 1921-22 \& \& \& 1.38-5.00 \& 2.88 \& 2. 41 \& 2. 49 \& 2.77 \& 2.96 \& 3. 32 \& 2. \(25-3.75\) \& 3.13 \& \& \\
\hline 1922-23. \& \& \& 1.25-3.50 \& 2.34 \& 1. 93 \& 2.10 \& 2. 07 \& 2.06 \& 2. 39 \& 2. \(00-3.25\) \& 2. 65 \& \& \\
\hline 1923-24 \& \& \& 1. \(00-3.25\) \& 1.82 \& 1.77 \& 1.76 \& \& \& \& \& \& \& \\
\hline Pittsburgh: \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 1920-21- \& \& \& 3. \(50-5.50\)
\(2.00-4.75\) \& 4. 28
3.22 \& 3.64
2.85 \& \& 2.60
3.07 \& 3.28 \& 3. 11 \& 2. \(25-3.75\)
2. \(25-4.50\) \& 3.04
3.13 \& 2. 25-4.00 \& 3. 18 \\
\hline 1922-23. \& \& \& 1.50-3.00 \& 2. 17 \& 2.00 \& 2. 32 \& 2.22 \& 2. 28 \& 2. 49 \& 2.00-3.50 \& 2.71 \& 2. \(25-3.80\) \& 2.96 \\
\hline 1923-24. \& \& \& 1.25-4.50 \& 2. 39 \& 2.09 \& 2. 27 \& \& \& \& \& \& \& \\
\hline St. Louis: 1921-22 \& \& \& \& \& \& \& 2. 70 \& 3.09 \& 2. 97 \& \& \& \& \\
\hline 1923-23- \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 1923-24- \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Cincinnati: \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 1920-21. \& \& \& \& \& \& \& 2. 40 \& \& \& \& \& \& \\
\hline 1921-22 \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 1922-23. \& \& \& \& \& \& 2. 05 \& \& \& \& \& \& \& \\
\hline 1923-24- \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline St. Paul: \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 1920-21- \& 2. \(25-3.75\) \& 2. 81 \& 3. \(25-3.75\)
3. \(00-4.25\)
1. \& 3.50
3.62 \& \begin{tabular}{l}
3.34 \\
3.56 \\
\hline
\end{tabular} \& 3. 23
3
36 \& 3. 09 \& 3. 54 \& 3.28
3.33 \& 3. \(00-3.75\)
\(3.00-3.50\)

2. \& 3. 29 \& 3.00-3.50 \& 3. 27

\hline 1922-23 \& 3 2.25-2.50 \& 32.38 \& 1.80-3.50 \& 3.62
2.20 \& 2. 84 \& 2. 45 \& 2. 27 \& 3. 21 \& 2. 41 \& 2. $40-2.75$ \& 2. 58 \& 2. $50-2.85$ \& 2. 72

\hline 1923-24. \& \& \& 2. $00-3.00$ \& 2. 42 \& 2. 50 \& 2. 59 \& \& \& \& \& \& \&

\hline
\end{tabular}

${ }^{1}$ Last quotation May 12, 1923. $\quad{ }^{2}$ Sales direct to retailers. $\quad{ }^{3}$ First quotations in 1922-23 were, Sept. 26 for Chicago, Sept. 21 for St. Paul, and Sept. 20 for Minneapolis
Fruits dond Vegetables:

Table 200.-Apples: Monthly average jobbing prices per barrel and per box, at 10 markets, 1920-1923-Continued.
BOXES-Continued.

Market, and year beginning Sept. 1.	September.		October.		November average.	December average.	January average.	February average.	March average.	A pril.		May. ${ }^{1}$	
	Range.	Average.	Range.	Average.						Range.	Average.	Range.	Average.
Minneapolis:													
1920-21-22	\$2.25-\$4.75	\$3. 22	$\$ 3.40-\$ 4.40$ $2.90-4.75$	$\$ 3.80$ 3.75	$\$ 3.74$ 3.57	\$3. 59	\$3.18	\$3. 45	\$3. 41	\$3.00-\$3.75	\$3.38	\$3.00-\$3. 75	\$3. 38
1922-23	${ }^{\$ 2} 2.40-3.37$	${ }^{3} 2.59$	1. $75-3.50$	2. 50	2. 70	2. 62	2. 59	2. 40	2. 58	2.50-3.00	2. 79	2. $50-3.00$	2.78
1923-24			1.30-3.15	2. 55	2. 49	2.37							
Kansas City:													
1920-21-			3. $00-4.50$ 2. $75-4.50$	3.61 3.54	3.60 3.63	3. 07	2.84 3.49	3. 29	3. 53	3. $50-4.50$	4.00	3.50-4.50	4.00
1921-22-	3.75	3.75	2.75-4.50 $1.75-3.50$	3.54 2. 76	3.63 2.78	3.52 2. 75	3.89 2.74	3. 59	3.75	3. $00-4.50$	3. 48		
1922-23.	2.50-3.25	2. 74	$1.75-3.50$ $1.25-4.00$	2.76 2.69	2.78 2.38	2.75 2.38	2. 74	2. 70	3.18	2. $75-4.00$	3.32	2.75-3.25	3.00
W ashington:													
1921-22 ${ }^{2}$			2.25-5.00	3.75	3. 64	3. 38	3.06	3. 52	3.44	3. $00-4.50$	3.54		
1922-23-24.-	1.50-3.50	2.85	1.25-3.75	2. 77	2. 29 2.69	2. 2.64	2. 62	2. 38	2. 39	2.00-3.25	2. 65	2. $50-4.25$	3. 05

Table 201.-Apples: Monthly average wholesale prices per barrel at New York; 1900-1929.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.
1900-1	\$1.93	\$1.97	\$2. 53	\$3.10	\$2. 75	\$3. 15	\$3. 55	\$3.81	. 72
1901-2	3.41	3.62	4.78	5. 00	5. 00	5. 06	4.90	4. 25	4.40
1902-3	1.91	1.97	2. 20	2.00	2.37	2.59	2.12	2.00	2.52
1903	2.69	2. 43	2.94	2.71	2.90	2.97	3.06	3. 02	2.91
1904-	2.00	2.03	1.96	2. 25	2.38	2.44	2.75	2.43	2. 97
1905-6	3.18	2.97	3.75	3.75	3.75	4.50	4.82	6. 06	5. 59
1906	2.67	3.32	3.06	2.62	2.88	3.25	3.22	3.66	5. 00
1907	3.72	3.56	3. 55	3. 34	3. 46	3.52	3.22	3. 00	2.60
19	2.68	3.04	3.16	3.50	4.09	4.53	4.68	5. 00	5.02
1909-10	3.72	4.22	3.81	3.69	3.82	3.21	3.28	3.48	3.71
1910-11.	3. 50	3.65	3.75	4.14	4.12	4.50	4.75	5.35	5.31
1911-12	2. 55	3.06	2.71	3.12	2.84	2.96	3.39	4.20	4.00
1912-13	2.66	3. 06	2.75	2.62	2.71	2. 78	2.70	3.12	4. 00
1913-14	3. 29	4.43	3.75	4.00	4.06	4. 79	4.75	5.34	5.14
Average 1909-1913	3. 14	3.49	3.35	3.51	3.51	3.65	3.77	4. 30	4.43
1914-15.	2.38	2.22	2.78	3.12	2.80	2.91	2.84	3.56	3.65
1915-16	2.38	2.95	3.12	3.06	3.05	3.19	3. 33	3. 12	2.96
1916-17	3.30	3. 38	4.18	4. 60	5.00	5. 38	5.91	5. 53	5. 28
1917-18.	4.08	4.44	4.94	5.10	5.00	4. 88	4.92	5.75	6.75
1918-19	5.38	6.03	5.98	6.31	6. 50	7.88	9.55	10.00	10. 80
1919-20	6.12	7.81	7.55	7.50	7.00	8.06	7.50	7.08	9.25
1920-21	5.38	6.25	6. 33	6.38	5. 40	4.88	5.56	6.32	¢. 38
A verage 1914-1920	4.15	4.73	4.98	5.15	4.96	5.31	5.66	5.91	6.30
1921-22.	6. 06	8.10	6.91	6.80	6. 62		7.67	6.98	7.06
1922-23	4. 16	4. 62	4. 48	5. 50	5.78	5. 22	6.47	6.56	7.06
1923-24.	4.94	5.92	5. 55	4.42					

Division of Statistical and Historical Research. Compiled fiom the American Agriculturist.
Table 202.-Apples: Wholesale prices per barrel at New York for October 15, January 1, and March 1, 1881-1923.

Division of Statistical and Historical Research. Compiled from the American Agriculturist.
Table 203.-Oranges: Production and value, 1915-1923.

Year	United States.			Florida.			California.		
	Production.		$\begin{aligned} & \text { Farm } \\ & \text { value } \\ & \text { Dec. 1. } \end{aligned}$	Produc	$\left\|\begin{array}{\|c\|} \hline \text { Average } \\ \text { price } \\ \text { per box } \\ \text { Dec. 1. } \end{array}\right\|$	$\begin{aligned} & \text { Farm } \\ & \text { value } \\ & \text { Dec. } . \end{aligned}$	Production.		Farm Dec. 1.
	1,000		1,000 dollars.	1,000		1,000	1,000		1,000 dollars.
1915	linexes.	$\begin{array}{r} \text { ollars. } \\ 2.39 \end{array}$	dollars.		Dollars. 1.88		boxes.	Dollars.	dolars.
1916	24,433	2.52	61, 463	6, 933	2. 05	14, 213	17, 500	2.70	47, 250
1917	10, 593	2.60	27, 556	3, 500	2. 30	8, 050	7, 093	2.75	19,506
1918	24, 200	3.49	84, 480	5,700	2. 65	15, 105	18,500	3.75	69,375
1919	22, 528	2. 67	60, 202	7,000	2.50	17, 500	15, 528	2,75	42, 702
1920.	29, 700	2.19	64, 908	8,100	2.20	17,820	21,600	2. 18	47, 088
1921	20, 300	2.51	51, 600	7,300 9,700	2. 20	14,600 22,310	13,000	2.80 2.00	36, 400
1922	30,200 34,800	2.10 1.84	63,310 64,080	$\begin{array}{r}\text { 9, } \\ 12000 \\ \hline\end{array}$	2.30 1.35	22,310 16,200	20,500 122,800	2.00	41, 47
1923	34, 800	1.84							

Table 204.-Citrus fruats: Carlot shipments, by States of origin, calendar years. 1918-1928.

GRAPEERUIT.

State.	1948	1919	1920	1921	1922	1923
Florida	$\begin{gathered} \text { Cars } \\ 5,289 \end{gathered}$	$\begin{gathered} \text { Cars. } \\ 6, .328 \end{gathered}$	Cars. 11, 498	Cars. 11, 795	$\begin{aligned} & \text { Cars. } \\ & 13,626 \end{aligned}$	Curs. 18,673
Alabama						
Texas ----						59
Arizona	9	17	54	54	65	${ }^{93}$
California	352	'279	477	426	491	497
Total.	5,650	6,624	12, 229	12, 275	14, 182	18,72\%

LEMONS.

Florida						
Mississipp						
					9,874	8,430
Tota	6,913	8,823	9, 373	11,887	9,875	8,430

ORANGES.

Florida	12, 184	13, 264	19,27371	18, 914	17,435401	$\begin{array}{r} 25,285 \\ 577 \\ 10 \end{array}$
Alabama						
Mississippi						
Texas---	71	98	49	73	75	98
Oalifornia	16, 183	35, 957	30,906	46,759	28, 61.5	45,001
Total	28, 444	49, 324	50, 299	65, 891	46, 526	71, 971

TOTAL CITRUS FRUITS (GRAPEFRUIT, LEMONS, AND ORANGES).

Fiorida	17,473	19,592	30,773	30, 709	31, 061	43, 358
Alabama	17, 6	5	71	145	401	. 577
Mississippi						10
Texas						59
Arizona	80	115	103	127	141	196
California	23, 448	45, 059	40,754	59,072	38, 983	54, 323
Total	41, 007	64, 771	71, 701	90, 053	70, 583	99, 128

Division of Statistical and Historical Research. Compifed from data of the Fruit and Vegetable Division. .Shipments as shown in carlots inelude those by boat reduced to carlot basis.
Table 205.-Grapefruit, Floridas (excluding russets): Monthily average wholesale prices per box at New York, 1908-1923.

Calendar year.	Jan.	Feb.	Mar	Apr.	May.	Jane.	Jaly.	Oet.	Mov.	Wec.
1008	\$5. 40	\$5. 75	\$5. 94	\$5.50	\$4.90			\$3.88	\$3.62	\$3. 53
1909	3. 15	3.12	3.12	3. 90	5. 25	\$5. 25		3. 21	3.47	3.53
1910	3.50	4.34	4.28	4.38	4.39			5.00	4.59	3.65
1911	3. 50	8. 58	3. 69	3.34	8.75	4.90		6.44	4.69	4.78
1912	4.00	4.7.5	4.95	6.44	7.38			4.00	3. 62	3.47
1913	2.95	3.58	3.12	3.38	3. 90	5.75		5.08	4. 78	3.62
Average 1909-1913	3. 42	3.85	.3. 83	4.29	4.91			4. 74	4. 23	3.80
1914.	3.80	3.81	3. 78	4.06	3. 45	3. 06		3.06	2.78	2. 53
1915	2.38	2.38	2. 25	2. 62	2.81	3. 88		5. 25	4.16	3.45
1916	3.56	3.38	3. 50	3.62	3. 50	4. 38	\$4. 75		4.50	4.35
1917	3. 75	4.12	4.12	4.12	4.12	4. 50.	4.75			
1918			4. 02	4.62	4.62				4.75	4.75
1919	4.75	4.75	4. 88	6. 56	7. 25	7.75			4.75	4.75
1200	4.75	4. 6	4.00	4. 40	5. 56	4. 38	4.15		6. 25	6. 25
A Ferage 1914-1920			3. 88	4.29	4. 47					
1921	6. 25	6. 25	6. 25	6. 25	6. 25	6. 0 -	5. 25	5. 38	5. 38	5.38
1922	6.12	6. 12	6. 12	6.12	6. 12	6. 12				

Dlvision of Statiatical and Historical Research. Compiled from Friday or Saturday issues, New York Journal of Commerce.

Table 206.-Lemons, California: Monthly average wholesale prices per box at New York, 1908-1923.

Caiendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1908	\$3.10	\$3. 25	\$3.06	\$2. 91	\$3. 02	\$3. 25					\$4. 72	\$3. 19
1909	3. 70	3.88	3.20	3.42	3.62	3. 12	\$5.80				5.75	5. 2.5
1819	4.62	3.84	3.44	3.78	4.00					\$6. 97	6.17	3. 88
1911.	3. 50	4.82	3.88	3. 94	4.75	5. 88	4.75		\$4.94	5.97	5. 91	4. 49
1912	3. 62								10.00	7.66	7.60	6.22
1913	4.75											
1914									4.75	4. 56	4. 25	3.00
1915	2.52	2. 59	2.75	2.84	3. 30	3.28	2. 08	\$2. 69	3.03	3. 90	4. 31	4. 18
1916	4.19	3.62	2.90	3.19	3.50	4.15	5. 69	8.12	7.62	7. 38	6. 56	4. 70
1917	3.12	3. 50	3.72	4.62	4.62	5. 25	6. 75	8.85	10. 25	7.34		5.88
1918	5. 88	5. 88	5. 88	5. 56	6. 08	8.28	8. 38	8. 38	8. 38	8. 38		4. 81
1919	3.62 6.00	4.59 6.00	4. 68	4.41	4. 62 4.50	3. 2. 27	4.53 3.05	5. 50 3.25	5.88 3.25	8.75 3.25	6.00 3.25	6.00 3.25
1920	6. 3. 25 	6.00 3.25 3.	6. 25 3.25	6.25 3.25	4. 50	2.75 7.43	3.05 9.82	3. 25 7.50	3.25 7.50	3.25 7.50	3.25 7.50	3.25 7.50
1922	4.00	4.00	4.00	4.00	4. 00	4.00	4.00	4.00	4.00	9.00	9.00	8. 60
1923	6.75	6.75	6.75	6.75	6.75	6.75	6.75	7.05	6.62	6. 62	6.62	6. 62

Division of Statistical and Historical Research. Compiled from Friday or Saturday issues, New York Journal of Commerce.

Table 207.-Oranges, California Navels: Monthly average wholesale prices per box at New York, 1908-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Dec.
1908	\$3. 22	\$3. 25	\$2. 97	\$3. 02	\$3. 50	\$4.38	\$4. 38	\$3.38
1909	3.28	3.25	3.03	3. 28	3.00	3. 16	3.62	
1910	2.88	3.19	3.12	3.18	3.56	3.72	4.00	3.62
1911	3.22	3. 32	4. 12	3.42	3. 78	3.82 3.69	3.56	3. 50
1012	3. 54	3.72 3.55	3. 30 4.16	3. 44 4.72	3. 5.15		3.56	3. 38
Average 1909-1913		3.41	3. 55	3.61	3.74			
1914.	3. 28	3.09	3.03	3.12	3. 50	2.81		3.19
1915	2. 73	2. 90	2. 79	2. 96	3. 19	3.44		3. 79
1916	3. 38	3. 38	3. 02	3. 66	3. 50	4. 00		3. 06
1917	3. 25	3. 72	3. 98	4. 38	4. 38	4.38	4.38	4. 25
1918	4.25	5.00	5.95	6.75	6.75			
1919		4.91	5.69	5.75	5.62			
1920				4. 00				5. 00
1921	6. 31	6.00	6.00	6. 00	6. 09			7.75
1923	7.75	7.75	7.75	7.75	7.75	7.75		6. 09

Division of Statistical and Historical Research. Compiled from Friday or Saturday issues, New York Journal of Commerce.

Tabie 208.-Oranges, California Valencias: Monthly average wholesale prices per box at New York, 1908-1923.

Calendar year.	Jan.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1908.		\$5. 12	\$5. 25	\$5. 25	\$5. 25	\$5. 50	\$7.00	
1909.			4.88	4.94	5.44	5.98	6.50	\$6. 50
1910			6. 22	6. 94	6. 95	7.50	8.41	9.50
1911		4.38	4.91	5.66	5. 72	6.78	7.03	9.25
1912	\$9.38	4.75	5.16	5.15	5.56	5.91	6.62	
1913		6.22	7.03	6.60	6.44	7.80	8.12	
A verage 1909-1913.			5. 64	5.86	6.02	6.79	7.34	
1914		3.58	3.95	4. 31	3.94	4.15	4. 97.	6. 56
1915			4. 92	5.41	6.09	6.88	7. 50	8.38
1916		5.00	5.12	5.44	6.48	7.12	6. 94	6. 75
1917				5.75	5.75	5.47	6. 25	4. 81
1918	3.38	7.94	7. 75	7.75	7. 75	9.84	12. 72	11.00
1919	11. 00	5. 56	5. 53	7.35	7.50	7.55	7.75	7. 75
1920	7.75		8. 50	7.56	7. 25	7.75	8.50	10.50
Average 1914-1920				6.22	6.39	6.97	7.80	7.96
1921		5. 25	5. 32	6.25	6.25	6.25	6.25	6.25
1922		10. 75	10.75	10. 75	10.75	11. 00	11. 25	11.25
1923			6.50	6.35	6.12	6.12	6.12	6.12

Division of Statistical and Historical Research. Compiled from Friday or Saturday issues, New York Journal of Commerce.

OLIVE OIL.

Table 209.-Olive oil (including inedible): International trade, calendar years, 1909-1922.

Country.	Average, 1909-1913. ${ }^{1}$		1920		1921		$\begin{gathered} \text { preliminary. } \end{gathered}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES. Algeria \qquad	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 2974 \end{gathered}$	$\begin{gathered} 1,000 \\ p_{2}, \underline{u n d} \mathbf{1 1 , 5 6 6} \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 110 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 1,720 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 288 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ \mathbf{4 , 1 2 0} \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 246 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 20,831 \end{gathered}$
Greece		22, 272	813	3,916	206	25,004	127	20, 36
Italy	${ }^{2} 6,643$	75, 130	2, 631	23, 374	25, 196	30, 908	9, 321	40, 510
Spain		86, 454	21	119, 754		105,768		102,472
Tunis.	2, 020	18,090	70	1,311	8	58, 322	20	68,319
PRINCIPAL IMPORTING COUNTRIES.								
Argentina	48,248		31, 538					
Australia	510	11	523		305	1		
Belgium	${ }^{2} 4,295$	${ }^{2} 582$	1,676	293	1,373	186	2,375	207
Brazil	8,409		9, 733		1,224			
Canada	1,593		1,459		1,557		1,744	
Chile	7,255		5, 425		3,941			
Denmar	146		11,232 1202			9		
Egypt.	4, 803		1,591		3,164	18	3,223	13
France.	${ }^{2} 42,502$	12,935	20, 250	4, 812	44, 847	10,009	58, 300	13, 742
Germany	6, 085				${ }^{1} 1,192$		769	
Japan_-	126		427		134			
Morocco. Netherlan	${ }_{2}^{268}$	$\begin{array}{r} 375 \\ 205 \end{array}$	3,647 37	36	5, 5151	43	139	24
New Zealand	68		87		54	4	13	
Norway.-	3, 458		2,227	111	873	14	4,429	
Peru-	${ }^{2} 684$	277	1,496		825		481	
Philippine Islands	360		125		115		177	
Sweden---			$\stackrel{305}{226}$	33 14	, 255	15		
Switzerland	4,138 22,950	71 823	1,226 9,052	14 668	2, 9,854	19 164	2,914	190
United States..-.	39,903		31,087		53, 881		87,974	
Uruguay	4,249		${ }^{1} 5,132$		15,477			
Other countries	53,766	30, 132	9,155	33	6,837	320	150	
Total	264, 653	258, 758	151, 277	155,976	169, 981	234, 890	189, 534	282, 777

Division of Statistical and Historical Research. Official sources except where otherwise noted. (Conversions on basis of 7.5 pounds to the gallon).

[^177]Table 210.-Fruits and nuts: Production and value in California and Florida, 1919-1923.

CALIFORNIA.

Crop and year.	Production.	Farm value, Dec. 1.		Crop and year.	Production.	Farm value, Dec. 1.	
		Per unit.	Total.			Per unit.	Total.
Apples:				Grapes (table):	Tons.		
1919	$8,200,000$	\$1. 45	\$11, 890, 000	1919	$200,000$	75. 00	15,000,000
$\begin{aligned} & 1920 . \\ & 1921 \end{aligned}$	6, 6000,000	1.60 1.35	$9,600,000$ $8,775,000$	${ }_{1921}^{1920}$	190,000 210,000	75.00	14, 250, 000
1922	7, 850, 000	$\begin{array}{r}.90 \\ \hline\end{array}$	7,065, 000	1922	'308,000	52.00	16, 016,000
1923	8, 450, 000	. 75	6, 338, 000	1923	340, 000	35.00	11,900, 000
Pears:	Tons. 115,000			Grapes (wine): 1919			
1919. 1920.	115,000 102,000	72.00 90.00	$8,280,000$ $9,180,000$	$\begin{aligned} & 1919=. \\ & 1920 . \end{aligned}$	400,000 375,000	50.00 75.00	20, 0000,000
1920	102,000 86,009	90.00	9, 180,000 $5,375,000$	1920	375,000 310,000	75. 00	28, 125, 000
1922	150, 000	50.00	7,500, 000	1922	450, 000	65.00	29, 250, 000
1923	128, 000	50.00	6, 400, 000	1923	428, 000	40.00	17, 120, 000
Peaches:	430	60.00	25, 800, 000	Oranges: ${ }^{2}$	Boxes.	2.75	42, 702, 000
1920	360, 000	76.00	27, 360, 000	1920	21, 6000000	2.18	47, 088,000
1921	310, 000	42.00	13, 020,000	1921	13, 000, 000	2.80	36, 400, 000
1922	410, 000	45.00	18, 450, 000	1922	20, 500, 000	2.00	41, 000,000
1923	380, 000	24.00	9, 120, 000	$1923{ }^{3}$	22, 800, 000	2.10	47, 880, 000
Apricots:				Lemons: ${ }^{2}$			
$\begin{aligned} & 1919 \\ & 1920 \end{aligned}$	175,000 110,000	80.00 85.00	$14,000,000$ $9,350,000$	1919.	$3,499,000$ $4,955,000$	2. 2.00	$6,998,000$ $14,469,000$
1921	100, 000	50.00	5, 000,000	1921	4, 050,000	3.45	13, 973,000
1922	145, 000	70.00	10, 150, 000	1922	3, 400, 000	3.30	11, 220, 000
1923	170, 000	25.00	4, 250, 000	$1923{ }^{3}$	4, 800, 000	1.90	9, 120, 000
Prunes: ${ }_{1919}$	135, 000	240.00	32, 400, 000	Figs: 1919	Tons.	150.00	, 800, 000
1920	97, 250	130.00	12, 643, 000	1920	12, 300	90.00	1, 107, 000
1921.	100, 000	130.00	13, 000, 000	1921	9,600	145.00	1,392, 000
1922	110, 000	140.00	15, 400, 000	1922	11,000	120.00	1,320, 000
1923	80, 000	100.00	8,000,000	1923	9, 000	90.00	810, 000
Plums:				Olives: 1919			
${ }_{1920}^{1919}$	42,000 35,000	60.00 90.00	2,5,50,000 $-\quad 3,150,000$	1919 .1920	8,800	160.00 95.00	1, 76080000
1922	48,000	50.00	2, 400,000	1922	10,000	125.00	1, 250,000
1923	69,000	30.00	2, 670.000	1923	17,000	65, 00	1, 105, 000
Cherries:	12,400	150.00	1,860,000	Almonds:	7,250	440.00	3,190,000
1920	17,500	200.00	3, 500, 000	1920	5,500	360.00	1,980,000
1921	13, 000	125. 00	1, 625, 000	1921	6,000	320.00	1,920,000
1922	14, 000	180.00	2, 520, 000	1922	8,500	290.00	2, 465, 000
1923	14, 500	160.00	2, 320, 000	1923	11,000	260:00	2, 860, 000
Raisins: ${ }_{1919}$	182, 500	210. 00	38, 325, 000	Walnuts:	28, 100	550, 00	15, 455,000
1920	177, 000	235. 00	41,595,000	1920	$21,000$.	400.00	8, 400, 000
1921	145, 000	190.00	27, 550, 000	1921	19,500.	400.00	7, 800, 000
1922.	237, 000	105.00	24, 885, 000	1922	27,000	360.00	9, 720,000
1923	237, 000	80.00	18, 960, 000	1923	25, 000	400.00	10,000,000

FLORIDA.

Division of Crop and Livestock Estimates; California estimates in cooperation with California Department of Agriculture. 1923 estimates are preliminary.
${ }^{1}$ Dried basis.
${ }^{2}$ Representing the commercial crop year beginning Oct. 1; the numbers for 1923, for instance, represent the fruit that set during the season of 1923 and will be picked and marketed from Oct. 1, 1923, to Sept. 30, 1924.
${ }^{2}$ Freeze during January, 1924, promises to reduce the stated figures for oranges by about one million boxes. Damage to lemons still undetermined.

CRANBERÉIES.

Table 211.-Cranberries: Acreage, production, and farm value, United States, 1914-1923; by States, 1922 and 1923.

Calendar year and state.	Acreage.		Average yield, in barrels, per acre.		Production, thousands of barrels.		A verage farm price per barrel Dec. 1.		Farm value, thousands of dollars.	
1914	22,00023,10026,20018,20025,40025,40025,00025,000		$\begin{aligned} & 31.7 \\ & 19.1 \\ & 18.0 \\ & 13.7 \\ & 13.9 \\ & 23.9 \\ & 28.0 \\ & 18.0 \end{aligned}$		097441471249352549449384		$\begin{array}{r} \$ 3.97 \\ 6.59 \\ 7.32 \\ 10.24 \\ 10.77 \\ 88.37 \\ 12.28 \\ 16.99 \end{array}$		$\begin{aligned} & 2,766 \\ & 2,908 \\ & 3,449 \\ & 2,550 \\ & 3,791 \\ & 4,597 \\ & 5,514 \\ & 6,526 \end{aligned}$	
1915										
1916										
1917										
1918										
1919										
1920										
1921.										
Leading States.	1922	19231	1922	1923	1922	19231	1922	1923	1922	19231
Total	25, 060	25, 000	22.4	24.4	560	610	10. 18	7.25	5, 702	4,423
Massachusetts.	12,000	12,000	25.4	29.2	305	350	10. 50	6. 50	3,202	2,275
New Jersey.	11,000	11, 000	18.2	20.0	200	220	9.75	8.00	1,950	1,760
Wisconsin.	2,000	2,000	27.5	20.0	55	40	10.00	9.70	550	388

Division of Crop and Livestoek Estimates.
${ }^{1}$ Preliminary.
GRAPES.
Table 212.-Grapes: Estimated production, by States, calendar years, 1922 and 1923.

State.	1922	$1923{ }^{1}$	State.	1922	$1923{ }^{1}$
	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$1,000$ pounds.	Kansas	1,000 paunds.	1,000 pounds.
New Hampshire	${ }_{204}$	${ }^{176}$	Kentuoky	2,000	1,690
Vermont.--...--	90	74	Tennessee	4,574	2,065
Massachusetts.	860	913	Alabama.	1,400	1,470
Rhode Island.	369	552	Mississippi	468	504
Conneeticut	1,760	1, 955	Louisiana	57	50
New York	210, 000	122, 220	Texas	1,674	2,325
New Jersey.	4,505	4,488	Oktahoma	3,713	2,940
Pennsylvania	50,000	33,000	Arkansas	2,400	1, 920
Deleware.	1,620	1,539	Colorado	576	594
Maryland.	1,000	1,760	New Mexico	910	1,170
Virginia----	2,900	4,032	Arizona	680	680
West Virginia	1,944	2, 183	Utah	1,269	1,378
North Carolina	11,760	11,664	Nevada	300	
South Carolina	2, 706	2, 952	İaho.	57.0	:600
Georgia	3,040	3;000	Washington	3,784	3,899
Ohio...	45,000	38,710	Oregon-	3,060	2,730
Indiana.	8,836	7,980	California	3, 602, 000	3,622,000
Michigan	$\begin{array}{r} 12,740 \\ -127,500 \end{array}$	$\begin{aligned} & 10 ; 988 \\ & 88,560 \end{aligned}$	United States	4, 152, 342	4,015,609
Wisconsin	693	576			
Minnesota	150	148			
Iowa	13,000	11,880			
Missouri	14,700	12,600			
Nebraska	2, 700	2, 640			

Table 213.-Grapes: Carlot shipments, by States:of origin, calendar years, $1917-$ 1923.

State.	1917	1918	1919	1920	1921	1922	1223
	Cars.	Cars.	Cars.	Cars.	Cers.	Cars.	Gars.
New York	3, 621	2, 017	3,751	6, 079	$2 ; 451$	7,728	4, 239
Pennsylvania	801	367	881	1,2455	-300	1,558	854
Ohio.-	196	50	87	$\begin{array}{r}50 \\ \hline\end{array}$. 68	80	76
Michigan	3, 298	1,635	3, 783	4, 607	1,237	6,020	4, 034
Iowa.	85	68	108	106	88	238	207
Missouri	28	21	36	26	4	128	72
Washington	31	59	37	8	67	47	${ }^{56}$
California..	13, 251	16, 639	21, 605	26,974	32, 879	43, 884	53, 477
All ether.	:68:	59	61	110	38	177	202
Total	21,879:	-20,915	30,340	39, 205	37, 202	89,858	68,247

Division of statistical and Historieal Research. Compiled from tata of the Frutt and Fegetable Division. Shipments as shown in carlots include those by boat reduced to earlot basis.

PEACHES.
Table 214.-Peaches: Production, United States, 1899-19思s.

Calendar year.	Production.	Calendar year.	Production.	Calendar year.	Production.
	Bushels.		Bushels.		
1899	15, 4338,000	1908	$48,146,000$	1916	37, 505,000
1900	49, 438, 000	1909	35, 470,000	1917	48, 765, 000
1901	46, 445, 000	1910	48, 171, 000	1918.	33, 094, 000
1902	37, 831,000	1911	34, 880, 000	1919	53, 178, 000
1903	$28,850,000$	1912	52, 343, 000	1920	$45,620,000$
1904	41, 070,000	1913	39, 707, 000	1921	32, 602,000
1905	36, 634,000	1914	54, 109, 000	1922	55, 852, 000
1907	$\begin{aligned} & 44,104,000 \\ & 22,527,000 \end{aligned}$	1915	64, 097, 000	1923	45, 702, 000

Division of Crop and Livestock Estimates. Census figures in italics.
Table 215.-Peaches: Production and farm prices, by States, calendar years, 19191923.

State.	Total crop, thousands of bushels.					Farm price per bushel Sept. 15-				
	1919	1920	1921	1922	19231	1919	1920	1921	1922	1923
New Hampshir	39		29			Cents.	Cents.	Cents.	Cents.	Cents.
Massachusetts.	213	4	185	32	40	210	400	317	248	162
Rhode Island.-.-.---	29	3	18	28	31	350	415	${ }_{3} 357$	270	195
Connecticut..	195	10	290	262	232	250	425	371	285	264
New York.-.-------	1,262	2, 600	1,700	3,400	1,700	270	225	255	110	181
New Jersey	1,653	2, 134	347	2,000	2, 642	270	220	335	185	209
Pennsylvania	1, 100	2,000	350	1,560	1,907	300	250	345	180	183
Delaware	227	203	7	320	225	190	225	300	80	150
Maryland	564	692	59	495	631	190	210	300	170	150
Virginia..	682	1,092	52	764	504	200	185	300	170	210
West Virginia	760	992	48	715	526	220	225	300	200	205
North Carolina	575	1, 539	644	1, 010	260	210	184	235	170	200
South Carolina	390	832	566	845	550	220	200	145	150	240
Georgia	5,895	3,799	6, 550	4,900	5,248	250	171	160	146	178
Florida	148	150	130	130	120	250	300	210	350	192
Ohio -.	618	3,238	335	1,584	1,386	330	215	365	176	187
Indiana	82	405	26	650	445	330	258	352	178	231
Illinois	450	770	76	1,109	675	270	317	371	175	264
Michigan	448	1,500	358	1,440	1,125	310	230	290	150	179
Iowa	2	100	30	200	40	330	347	341	172	200
Missouri	1,263	1,427	0	2,300	1,040	200	254		110	174
Nebraska			0	81	45	310	403		150	270
Kansas.--	214	187	24	630	78	260	400	320	170	252
Kentucky	480	988	80	1,218	450	240	225	300	140	164
Tennessee.	1,285	1,590	320	2, 002	460	180	180	230	108	190
Alabama	1,083	974	1,230	810	779	170	175	165	120	138
Mississippi	776	412	322	375	260	150	175	150	200	195
Louisiana	382	269	264	180	175	190	275	250	167	300
Texas	4, 621	800	2, 200	1,920	1,700	180	310	165	220	217
Oklahoma	2,924	180	360	2, 070	1,290	140	250	150	115	159
Arkansas.	3,340	117	435	2, 040	1, 110	160	235	160	100	163
Colorado	722	670	810	900	792	250	250	175	100	171
New Mexico	204	6	8	98	189	200	250	325	200	200
Arizona	140	48	54	128	90	180	350	300	190	250
Utah.	884	471	763	885	802	160	250	171	50	129
Nevada.	6		4	6	5	270	300	250	75	200
Idaho.	293	42	150	244	282	180	290	175	155	108
Washington	1,545	155	772	950	1,333	170	280	182	106	134
Oregon	504	100	105	300	500	140	330	250	125	168
Califormia	17, 200	15, 200	12, 910	17,080	15, 830	150	190	100	108	58
United States	53, 178	45, 620	32, 602	55,852	45, 702	189.0	210.4	158.7	133.8	140.0

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

Table 216.-Peaches: Condition of crop, United States, 1st of month, 1868-1923.

Calendar year.	June.	July.	Aug.	$\begin{gathered} \text { Per } \\ \text { cent } \\ \text { of a full } \end{gathered}$ crop.	Calendar year.	June.	July.	Aug.	Per cent of a full crop.
	P.ct.	P.ct.	P.ct.	P.ct.		$P . c t$.	P.ct.	P.ct.	P.ct.
1868	113. 9	103.2	105. 0	91.5	1898	70.8	61.8		63.6
1869	97.8	97.4	90.9	91.0	1899.	25.6	23.6		19.6
	79.2	80.3	72.1	68.4	1900	88.2	85.4		78.0
1871	96.1	96.1	87.6	92.2	1901	88.5	82.5		70.1
1872	91.8	90.7	85.4	86.3	1902	66.0	62.8	59.0	57.8
1873	59.0	55.4	47.0	44.6	1903	48.2	44.9	42.7	40.8
1874	95.3	94.5	86.2	84.8	1904	63.1	60.7	59.1	58.9
1875	57.5	54.6	50.3	46.2	1905	59.0	55.8	54.4	54.3
1876.	60.3	57.5	49.6	48.3					
1877	90.8	89.8	84.9	82.8	$\begin{aligned} & 1906 . \\ & 1907 \end{aligned}$	$\begin{array}{r} 72.3 \\ { }_{27} \end{array}$	66.2 35.7	66.1 33.4	64.0 30.7
1878.	97.9	96.2	87.7	91.3	1908	73.0	359.7	67.1	67.5
1879	62.3	56.4		52.4					
1880	85.4	81.9	80.6	80.6	1909	54.1	50.0	45.4	43. 6
1881	65.6	63. 2	54. 7	48.0	1910	62.0	62.1		64.0
1882	80.0	85.7	79.9	77.7	1911	52.1 63.7	44.6 68.5	42.7 65	44.3 68.4
1883	67.0	67.0	59.3	55.6	1913	55.7	52.3	48.2	47.6
1884	73. 6	71.3	66.5	56.1					
1885	76.7 60	71.1 67	65.7 60.2	72.7 60.4	1909-1913	57.5	55.5	52.7	53.6
18887	60.5 70.9	67.2 66.9	60.2 60.3	60.4 54.1	1914	61.7	56.2	55.9	63.0
					1915-	75.8	73.0	72.2	78.6
1888.	83.6	79.8	78.3	79.2	1916	55.4	52.2 55	48.5 52.9	45. 5 52.6
1889	85.4	85.0	81.5	74.4	1917	60.5	55.2	52.9	52.6
1890	47.8	37.5	28.0	26.9					
1891	78.2	79.9	77.4	79.3	1918				
1892	68.2	58.6	54.6	49.5	$\begin{aligned} & 1919- \\ & 1920- \end{aligned}$	73.1 64.9	$\begin{aligned} & 69.0 \\ & 61.8 \end{aligned}$	$\begin{aligned} & 66.7 \\ & 60.7 \end{aligned}$	70.8 61.2
1893	77.9	71.0 24	62.0 22.3	58.7 21.1	1914-1920	63.3	59.1	57.5	59.5
1895	66.0	66.4	83.3	84.1					
1896	64.7	51.8	48.1	42.8	1921.	45.6	42.8	42.6	46.7
1897.	67.0	62.5	58.0	60.5	${ }_{1923}^{1922}$	77.1 66.7	$\begin{aligned} & 74.3 \\ & 63.5 \end{aligned}$	74.7 61.3	78.1 61.2

Division of Crop and Livestock Estimates.
Table 217.-Peaches: Carlot shipments, by States of origin, calendar years, 19171923.

State.	1917	1918	1919	1920	1921	1922	1923
	Cars.						
New York	7,308	1,057	1,434	4,666	2,840	6,862	2,764
New Jersey	1,218	748	1,148	1, 307	5	1,595	1,758
Pennsylvania	879	257	366	316	45	268	554
Virginia.-	125	63	137	370		265	70
W est Virginia	990	322	425	458		19	177
North Carolina	65	56	66	343	589	1,452	250
Georgia	4,098	7,995	7, 236	5, 663	10, 636	7,368	8,717
Michigan.	445	76	270	2, 275	198	1,650	994
Tennessee.	10	- 152	116	149	218	248	53
Texas....-	825	1, 579	1,940	62	964	25	102
Oklahoma	278	244	866		42	155	94
Arkansas.	1, 597	190	2, 335	20	596	1,521	747
Colorado.	1,347	1, 111	1,334	773	1,219	1,420	1,264
Utah	1, 146	577	1, 102	402	. 839	1,261	1,174
W ashington	1,920	647 518	2,219	204 7	1,097	-990	10,611
California.	2, 858	4,518	7,846	7,354 2,605	1,606 408	9,085 4,107	10,059 2,766
All other.	2, 128	817	2,083	2,605	406	4,107	2, 766
Total	27, 237	20,409	30,923	26, 967	27, 300	38, 291	33, 154

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

Table 218.-Peaches: Monthly carlot shipments, by States, 1917-1923.

State and calendar year.	May.	June.	July.	Aug.	Sept.	Oct.	Total.
New York: 1917	Cars.	Cars.	Cars.	Cars.	Cars. 4,292	Cars. ${ }^{1} 3,016$	Cars. 7,308
1818				18	-999		1, 057
1919			5	97	1,289	43	1,434
1920				22	3,442	1,202	4, 666
1921				1,663	1,173	4	2, 840
1922			3	106	$\stackrel{5}{-}, 953$	800	6, 868
$\xrightarrow{1923}$				10	2, 138	616	2, 764
Georgia:							
1917. 1918.	37 1,036	1, 076	$\begin{array}{r}2,983 \\ 3,438 \\ \hline\end{array}$	$\stackrel{2}{10}$			4,098 7,995
1919	${ }^{1} 295$	3, 073	3, 863	5			7,236
1920	41	1,315	4,157	150			5, 663
1921	1,402	3,659	5, 564	11			10,636
1922	682	3, 002	3, 681	3			7,368
1923	1	2, 238	5,898	580			8,717
Arkansas:		10	1,099	485	3		1,597
1918			179	11			190
1919	2		1,375	956	2		2,335
1920				20			20
1922	2	3	591				- 596
1922		5 2	1,264 198	254			1, 521
Colorado:							
1917.-				51	922	374	1,347
1918.			5	670 860	434 470		
1919				860 62	470 708	4 3	1, 373
1921				554	659	6	1,219
1922				455	965		1,420
1923				567	695	2	1,264
California:		154	173	2,136	361	33	2,858
1918	1	201	762	2,396	1,122	36	4, 518
1919	4	205	1,520	4,363	1,753	. 1	7,846 7
1920	2	222				${ }^{6}$	
1921		43 64	1,672	4,231 5,258	1,652 3,352	8 284	7,606 9,085
1922		110	4,367	3,842	1,691	49	10,059
All other:							
1917	$\begin{array}{r}3 \\ 82 \\ \hline\end{array}$	$\begin{array}{r}54 \\ 309 \\ \hline\end{array}$	894 1,952	3,069 2,080	5,453 1,070	$\begin{array}{r}2556 \\ 45 \\ \hline\end{array}$	10,029 5,538
1919	27	235	2,453	4, 996	2, 971	56	10,738
1920	2	51	410	2, 844	4,754	${ }^{2} 430$	8,491
1921	25	307	1,560	865	1,632	14	4,403
1922	13	113	2, 465	5,812	3,508	124 90	12,035 9,603
1923 -...-.---		34	392	4,205	4,882	90	9,603
Total 1917 --------	41	1,294	5,149	5,743	11, 031	\% 3,979	27, 237
1918.	1,119	4, 021	6, 336	5,185	3, 625	123	20, 409
1919	328	3,513	9,216	11, 277	6,485	${ }_{2} \stackrel{104}{104}$	30,923
1920	45 1,429	1,588 4,012	6, 9881 188	6,284	10,528 5,116	21,641 32	27, 2700
1921	1,429	4, 184 184	7,540	11,886	13,778	1,208	38, 291
1923	1	2,384	10,855	9,751	9,406	757	33, 154

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.
${ }^{1}$ Includes 8 cars in November. ${ }^{2}$ Includes 3 cars in November. ${ }^{8}$ Includes 11 cars in November.
Table 219.-Peaches: Farm price per bushel, 15th of month, United States, 19101923.

Calendar year.	June	$\begin{gathered} \text { July } \\ 15 . \end{gathered}$	$\begin{gathered} \text { Aug. } \\ \text { 15. } \end{gathered}$	$\begin{aligned} & \text { Sept. } \\ & 15 . \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 15 . \end{aligned}$	Weighted average.	Calendar year.	June	$\begin{gathered} \text { July } \\ 15 . \end{gathered}$	$\begin{gathered} \text { Aug. } \\ 15 . \end{gathered}$	$\begin{aligned} & \text { Sept. } \\ & 15 . \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 15 . \end{aligned}$	$\begin{gathered} \text { Weight- } \\ \text { ed } \\ \text { average. } \end{gathered}$
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts		Cts.	Cts.	Cts.	Cts.	cts.	
1910			110.9	115.1	122.8	113.3	1917	170.3	144.8	143.3	143.8	160.6	148.0
1911	135.0	151. 0	138.0	129.0	131.0	138.2	1918	165. 1	169.4	178.9	185. 3	193. 2	176.6
1912	119.2	112. 1	108.3	110.0	105.0	111.2	1919	191. 1	201. 6	199. 6	205. 7	211.7	200.9
1913		130.5	126. 2	136.3	145.0	131.3	1920	236.8	226. 9	235.0	219.8	244.2	2288
1914		120.4	105.0	202.2	105.3	108.7	1921	189.3	205.3	216. 3	227.5	244.3	213.5
1915		99.5	85.4	81.1	85. 2	88.2	1922	172.0	161.4	143.7	143.5	150.4	15.3
1916	119.6	109.1	114.9	118.3	112.1	115.0	192	178.6	181.4	171.8	173.0	0	175.8

Division of Crop and Livestock Estimates.

Table 220.-Peaches: Average jobbing prices per 6-basket carrier and per bushel at 10 markets, 1921-1923.

Market, and calendar year.	6-basket carriers.				-		Bushels.			
	May. ${ }^{1}$	June.	July.	Aug.	May. ${ }^{1}$	June.	July.	Aug.	Sept.	Oct. ${ }^{2}$
1922	\$3.72	3. 05	${ }_{2} 2.57$	2.16			2. 29	\$1.90	\$1.78	\$1.43
1923		3.31	2.10	2.03			2.18	2. 16	2. 48	1.94
Chicago:										
1922	3.50	2. 72	2.65			2. 76	2.51	1.91	1.70	1.38
1823		279	2.39	2.56			2.76	3. 06	2.11	2. 25
Philadelphia:										
1922.	2.81	2.65	2. 44	2.14				1.88	1.60	1.67
1923		2.98	2. 24	2.70					2.08	2. 18
1922	3. 50	2.78	2. 58	2. 20			2.89	2.47	1. 62	1. 84
1923		3.15	2.22	2.75			2.32	2. 79	2.01	2.09
St. Louis:										
1922.		2. 74	2.48			2.50	2. 59	1. 89	1.95	1. 54
1922		2. 21	2. 13		\$2. 50	2.05	2. 59	2.17	1. 69	1.90
1923		2.55	1.96	2. 20			2.28	3.21	2.35	2. 31
St. Paul:										
1922								2. 17	2.03	1.70
1923----										
Minneapolis:										
1822 -			2. 49					2. 21	1.99	1. 56
Kansas City:										2.20
Kansas City:		2.59				4.04	3. 29			
$\begin{aligned} & 1922 . \\ & 1923 . \end{aligned}$		2.60	2.58				2.48	2.15 3.24	1. ${ }^{1.99}$	1.01 1.98
1921		3. 04	3. 29	4.75						
${ }_{1923}^{1922}$		3. 3. 97	2.43 2.64	2. 27 2. 68				2.55 3.12	2.30 2.48	2. 07 2.20
1923		3.90	2.64	2.68				3.12	2.48	

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division.
Average prices as shown are based on stock of good merchantable quality and condition only; they are simple averages of selling prices.

1 Quotations began May 25, 1822.
${ }^{2}$ Last quotation Oct. 11, 1922, and Oct. 13, 1923.
${ }^{3}$ Sales direet to retailers, except September and October, 1923, for bushels.

PEARS.

Table 221.-Pears: Production, United States, 1909-1923.

Calendar year.	Production.	Calendar year.	Production.	Calendar year.	Production.
	Bushels.		Bushels.		Bushels.
1909	8,841,000	1914.	12, 086, 000	1919.	15,006, 000
1910	10, 431,000	1915	11, 216, 000	1920	16,805, 000
1911	11, 450, 000	1916	11, 874, 000	1921	11, 297, 000
1912	11, 843,000	1817	13, 281, 000	1922	20,705, 000
1913	10, 108,000	1818	13, 362, 000	1923.	17, 390, 000

Division of Crep and Livestock Estimates. Census figures in italics.

Table 222.-Pears: Production and farm prices, by States, calendar years, 19191923.

State.	Total crop, thousands of bushels.					Farm price per bushel Nov. 15-				
	1919	1920	1921	1922	$1923{ }^{1}$	1919	1920	1921	1922	1923
Maine	14	10	15	14	7	Cents. 240	Cents. 225	$\begin{gathered} \text { Cents. } \\ 200 \end{gathered}$	Cents. 200	Cents. 200
New Hampshir	17	18	17	24	12	240	225	250	200	200
Vermont........	10	10	6	10	6	240	280	330	220	225
Massachusetts.	84	83	45	84	58	240	250	300	147	220
Rhode Island	11	11	6	12	10	240	250	150	100	250
Connecticut.	57	61	50	60	37	240	250	200	100	225
New York.	1,830	2,700	1,650	3, 200	1,000	240	105	170	65	188
New Jersey	402	690	185	405	662	140	110	150	80	109
Pennsylvania	421	845	220	576	612	230	130	245	100	121
Delaware-..-	98	140	9	158	370	150	25	200	25	50
Maryland.	287	421	35	256	374	130	60	200	50	109
Virginia	288	438	30	270	200	160	95	200	100	136
West Virginia	40	66	2.	38	41	230	175	300	160	130
North Carolina	120	208	100	110	65	210	161	182	130	171
South Carolina	99	120	115	104	88	220	150	150	120	130
Georgia.	178	173	171	202	192	180	145	165	105	116
Florida.	43	24	40	50	35	180	150	125	100	125
Ohio...	157	478	126	450	332	280	120	275	80	106
Indiana	107	375	70	300	334	180	99	196	75	75
Illinois.	375	603	100	510	307	170	125	270	100	94
Mjichigan	405	1,044	532.	1,500	909	180	90	175	80	107
Wisconsin.	20	24	16	19	16	190	175	320	80	131
Iowa-.	30	90	5	75	62	190	145	600	124	111
Missouri	431	418	4	450	475	140	150	250	105	95
Nebraska	25	22	2	27	24	250	275	300	140	206
Kansas	221	41	7	243	134	170	215	275	140	161
Kentucky	55	132	4	150	70	180	195	233	155	132
Tennessee.	115	200	65	180	83	200	165	205	120	162
Alabama	163	158	180	176	174	160	164	137	133	152
Mississippi-	125	167	167	190	90	160	200	132	125	150
Louisiana	59	47	38	48	45	125	175	229	171	170
Texas...-	637	338	406	390	340	140	231	190	117	157
Oklahoma	250	42	36	197	100	190	200	200	150	175
Arkansas..	123	42	39	100	45	170	190	160	160	200
Montana	6	6	7	8	8	300	200	300	100	200
Colorado.	345	386	502	519	400	220	190	220	75	156
New Mexico	67	32	24	18	49	230	250	250	150	240
Arizona	20	12	16	18	18	380	250	300	125	240
Utah.	76	87	81	98	64	250	250	250	106	132
Nevada.	4	5	3	4	7	250	300	250	150	190
Idaho.	49	58	55	72	72	175	276	200	175	176
Washington.	I, 781	1,140	1,710	1,740	2, 600	170	130	170	134	110
Oregon.	761	760	836	1,400	1,540	150	175	150	140	108
California	4,600	4, 080	3,570	6,250	5,332	180	275	150	120	120
United St	15, 006	16, 805	11, 297	20, 705	17, 390	184.0	165.8	170.6	106.0	121.1

Division of Crop and Livestock Estimates.

1 Preliminary.
Table 223.-Pears: Condition of crop, United States, 1st of month, 1908-1923.

Calendar year.	June.	July.	Aug.	Sept.	Oct.	Per cent of a full crop.	Calendar year.	June.	July.	Aug.	Sept.	Oct.	Per cent of a full crop.
1908	$\begin{aligned} & P \cdot c t . \\ & 70.9 \end{aligned}$	$\begin{aligned} & \text { P.ct: } \\ & 69.7 \end{aligned}$	$\underset{70.6}{P .6 t .}$	$\begin{aligned} & P . c t . \\ & 74.1 \end{aligned}$	$\begin{aligned} & \text { P.ct: } \\ & 75.0 \end{aligned}$	$\begin{gathered} P_{73 .}, c t . \end{gathered}$	1916.	$\begin{aligned} & \hline P . c t . \\ & 66.6 \\ & 77.1 \end{aligned}$	$\begin{aligned} & P . c t . \\ & 6 \dot{\theta} .8 \\ & 66.2 \end{aligned}$	$\begin{aligned} & P . c t . \\ & 59.0 \\ & 61.9 \end{aligned}$	$\begin{aligned} & \hline \text { P.ct. } \\ & 61.2 \\ & 65.3 \end{aligned}$	$\begin{aligned} & \text { P. ct. } \\ & 61.8 \\ & 66.3 \end{aligned}$	$\begin{array}{r} \text { P.ct. } \\ 61.8 \\ 68.2 \end{array}$
1909	61.8	57.5	55.0	53.6	54.2	54.3							
1910	63.2	61.0	61.3	63.9	64.7	66.3	1918	62.7	58.2	56. 4	60.3	60. 6	62. 1
1911	65. 1	60.4	59.5	64. 0	66. 9	71.9	1919	66. 3	60.6	60.5	66. 8	68. 0	68. 2
1912	70.9	66. 2	65. 0	70.8	71.8	73.3	1920	73.4	68.4	71.0	76.1	78.5	82.9
1913	59.7	55.9	55.4	59.1	58.1	61.8	A $\bar{\square}$						
$\begin{gathered} \text { A verage } \\ 1909-1913 \end{gathered}$	64.1	60. 2	59.2	62. 3	63.1	65.5	921	69.1	62.7	61.7	66.3	67.5	69.0
									40. 9	41. 7	45.3	48.1	48.2
1914	68.4	62.4	60.9	67.4	69.5	73. 0	1922	72.8	69: 8	73.0	77. 4	80.2	86.3
1815	69.2	62.3.	62.0	66.8	67.8	66.8	1923	68.6	63. 2	61.8	64.0	66.4	68: 8

Division of Crop and Livestock Estimates.

Table 224.-Pears: Carlot shipments, by States of origin, 1917-1922.

State.	Year beginning June 1.					
	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23
New York	Cars. $1,746$	$\begin{gathered} \text { Cars. } \\ 1,226 \end{gathered}$	$\begin{gathered} \text { Cars. } \\ 1,506 \\ \hline, 50 \end{gathered}$	$\begin{gathered} \text { Cars. } \\ 3,962 \end{gathered}$	$\begin{gathered} \text { Cars. } \\ 2,855 \end{gathered}$	Cars. 5,418
New Jersey --	62	52	121	42	21	40
Delaware----	461	413	55	267		151
Maryland	54	43	18	36		36
Idianna---	45	47 11	$\begin{array}{r}5 \\ 49 \\ \hline\end{array}$	54	17	96 44
Illinois.-.	334	97	324	1,140		468
Michigan	696	343	127	1,142	610^{-}	1,860
Texas	18	127	100	-88	96	47
Colorado	382	347	524	604	733	774
Utah	27	34	25	75	31	82
W ashington	1,700	2,421	2,452	1,906	2,827	2,678
Oregon	699	799	930	847	974	1,862
California	5,191	4, 002	3, 661	4, 594	4, 431	6,461
All other	170	208	257	202	142	314
Total	11,614	10, 170	10, 154	15, 037	12,737	20,331

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

Table 225.-Pears: Farm price per bushel, 15th of month, United States, 19101923.

Calendar year.	$\begin{aligned} & \text { Aug. } \\ & \text { 15. } \end{aligned}$	Scpt.	$\begin{aligned} & \text { Oct. } \\ & 15 . \end{aligned}$	$\begin{array}{\|c} \text { Nov. } \\ 15 . \end{array}$	$\begin{gathered} \text { Dec. } \\ 15 . \end{gathered}$	Weighted aver. crop year	Calendar year.	Aug.	$\begin{aligned} \text { Sept. } \\ 15 . \end{aligned}$	Oct.	$\begin{gathered} \text { Nov. } \\ 15 . \end{gathered}$	Dec. $15 .$	Weight ed aver. crop year.
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.		Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1910		100.9	98.6	100.8	122.4	100.9	1917	132. 2	125.0	118. 2	116.1		127.4
1911	118. 0	103.8	97. 2	85. 1	111.0	109.3	1918	168.4	157.8	147.5	140.1	156.6	161.1
1912	106. 3	100.0	83.1	79. 3	92.8	100.4	1919	188. 4	183.0	181.3	182.0	219.5	185.7
1913	109. 9	119.3	95.6	93.0	97.9	111.2	1920	195. 5	197.9	184. 2	170.0	164. 5	194. 1
1914	98. 8	92.8	80. 4	77.5	82.5	93.7 .	1921	165. 2	175.1	186. 4	194. 9	198. 7	172. 2
1915	80.8	83. 8	82.7	89. 8	89.7	82.5	1922	147.1		116. 2	119.8	118.7	139.7
19	109.0	102.7	96.9	93.3	105.6	104.8	19	168.3	172.5	165. 1	150.2		

Division of Crop and Livestock Estimates.

STRAWBERRIES.

Table 226.-Strawberries: Carlot shipments by States of origin, calendar years, 1917-1923.

State.	1917	1918	1919	1920.	1921	1922	1923
	Cars.						
New York	210	242	112	362	244	328	290
New Jersey	829	445	326	559	425	274	187
Delaware-	2, 340	828	430	640	856	940	924
Maryland	2,193	838	611	787	1,069	1,646	1,916
Virginia.-	1,352	342	208	349	697	1,670	1,193
North Carolina	696	585	484	446	479	1,101	1,667
Florida	193	79	21.	153	108	322	1, 035
Illinois.	347	125	80	98.	74	260	249
Michigan.	475	272	391	439	455	640	408
Missouri.	673	620	1,081	318	466	1,963	872
Kentucky	676	410	132	239	387	772	826
Tennessee.	1,781	1,234	1,099	1,182	1,693	3,607	3,289
Alabama.	196	279	229	147	285	460	693
Louisiana	1,100	556	682	858	1,531	1, 576	1,678
Arkansas	1, 096	${ }_{5}^{651}$	1, 034	896	1,094	2,165	1,342
California	245	509	703	569	291	201	193
All other	663	443	482	448	541	791	1,134
Total	15, 065	8,452	8,105	8,490	10,695	18,716	17,896

[^178]Table 227.-Strawberries: Average jobbing prices per quart at 10 markets, 19211929.

Market, and calendar year.	Mar. ${ }^{1}$	Apr.	May.	June. ${ }^{2}$	Market, and calendar year.	Mar. ${ }^{1}$	Apr.	May.	June. ${ }^{2}$
New York:					Cincinnati: -				
	\$0. 47	\$0. 41	\$0. 27		1921.	\$0. 33	\$0. 27	\$0. 23	
1922	-60	.37 .43	.21 .20	\$0.16	1922	. 53	. 18	. 12	
Chicago:			, 2		St. Paul:	. 48	. 30	. 15	\$0.10
1921	. 31	. 37	. 24		1921.	. 38	. 44	. 28	
1922	. 45 c	. 29	. 14	. 12	1922		. 30	.19	. 16
Philadelphia:	. 45	. 41	. 20	. 15	${ }_{\text {Minneapor }}$. 44	.25	$\stackrel{10}{ }$
1921.-...	. 33	. 34	. 23		1921.	. 37	. 41	. 31	
1922	. 53	. 32	. 18	. 17	1922		. 29	.18	.14
Pittsburgh:	. 55	. 40	. 18	. 15	$\xrightarrow{1923}$. 58	.45	.26	. 19
1921--	. 34	. 34	. 26		Kansas 1921 -----	. 33	.36	23	
1922	. 50	. 34	. 17	. 18	1922		. 31	.16	. 13
St ${ }^{1923}$--	. 62	. 41	. 22	. 16	1923	. 46	. 40	. 21	. 16
St. Louis:	. 31	. 33	. 23		Washington: ${ }^{1921}$				
1922	. 54	. 26	. 14	. 16	1922	. 55	. 27	. 20	.14
1923	. 49	. 40	. 18		1923	. 42	.34	. 17	. 11

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Average prices as shown are based on stock of good merchantable quality and condition only; they are simple averages of selling prices. In some cases conversions have been made from larger to smaller units or vice versa, in order to obtain comparability.
${ }^{1}$ Quotations began Mar. 23, 1922, and Mar. 28, 1923
${ }^{2}$ Last quotation June 6, 1922, and June 13, 1923.
${ }^{3}$ Sales direct to retailers.
CABBAGE.
Table 228.-Cabbage: Commercial acreage, yield per acre, and production, in carloads containing 12.5 tons each, 1921-1923.

State.	Acreage.			Yield per acre.			Production.		
	1921	1922	$1923{ }^{1}$	1921	1922	1923	1921	1922	$1923{ }^{1}$
Early:	Acres.	Acres.	Acres	Tons.	Tons.	Tons.	Cars.	Cars.	
California	7,320	7,320	5,300	7.0	6.0	7.0	4,099	3,514	$2,968$
Florida	5,370	11,280	2,070	6.0	7.0	8.0	2, 578	6,317	1,325
Louisiana	1,580	1, 670	1,640	6.4	6. 0	4.5	2,809	, 802	1, 590
Texas	11,210	14, 880	4,070	4.0	5.0	5.0	3,587	5,952	1,628
Tota	25,480	35,150	13,080	5.4	5. 9	6.2	11,073	16,585	6,511
Intermediate: $=\sim \sim=$									
Alabama	1,600	2, 200	2, 200	8.0	8.5	7.5	1,024	1,496	1,320
Georgia	, 250	520 +880	+220	7.0	5. 0	5.5	- 140	, 208	1, 97
Illinois	1,620	1,880	1,400	5.0	8.0	5. 0	648	1,203	560
Iowa----	600 350	1,840 300	1, 200	5. 0	8. 0	5. 5	240	1, 178	528
Karyland	350 2,060	1800 2,750	300 2,000	6. 0	6. 0	5. 0	168	144	120
Mississipp	1, 420	4, 640	4, 240	6. 0	5.0 5.0	6.0 3.5	791	1,100 1,856	960 187
Missouri.	700	700	800	8.1	7.0	6. 0	454	1, 392	, 384
New Jersey	4,220	4, 500	4, 100	6.5	8.0	5. 5	2,194	2,880	1,804
New Mexico	130	400	300	8.0	9.0	7.0	2, 83	2, 288	168
New York (L. I.)	4,150	4,500	4,200	6. 6	11.0	7.0	2, 191	3, 960	2, 352
North Carolina	+ 450	350	, 440	6.5	6.0	7.5	2, 234	, 168	264
South Carolina	3,970	4,100	3,450	9.7	7.5	11. 5	3,081	2, 460	3,174
Tennessee - ----	720	1,500	1,200	6.1	7.0	7.0	${ }^{3} \mathbf{3 5 1}$	2, 840	3, 672
Eastern Shore.	4,200	3,500	3,750	8.8	8.0	6.0	2,957	2, 240	1,800
W ashington.	920	950	, 890	8.0	9.0	8.0	2, 589	2, 684	1,800
Total	27, 360	34,630	30,690	7.2	7.6	6.5	15,827	21,097	15,960
Late:									
Colorado	4,000	5,240	5,270	11.7	12.0	11.0	3, 744	5, 030	4,638
Indiana.	1,090	1, 660	1,300	6.0	7.0	10.0	${ }^{3} 523$	5,930	1,040
Michigan	1,990	3,570	3,290	6. 5	11.0	9.8	1,035	3,142	2,579
Minnesot	2,740	3,840	3,260	5. 0	9.0	7.5	1,096	2,765	1,956
New Y	22,900 2,360	24, 900	22, 680	6. 5	9.0	7.5	11,908	17,928	13, 608
Oregon	2, 780	2,870 900	3,220 900	5. 7 9.5	8.2 7.0	8.5 5.0	1,076 593	1,883 504	2, 190
Pennsylvania	2, 720	2, 800	2,750	6. 0	7.0	5. 0	1,306	1,568	1,100
Virginia (southwest)	2, 500	2, 670	2, 620	6. 0	9.0	7.0	1,200	1,922	1,467
Wisconsin	10,660	16,560	13,340	6.0	11.0	9.5	5,117	14, 573	10,138
Total	51,740	65, 010	58, 630	6. 7	9.7	8.3	27, 598	50,245	39,076
Grand total	104, 580	134, 790	102, 400	6.5	8.2	7.5	$\overline{54,498}$	87,927	61,547

[^179]Table 229.-Cabbage: Carlot shipments, by: States of origin, calendar years, 19171929.

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.
${ }^{1}$ Long Island included with New York, other, in 1919, 1921, and 1923
Table 230.-Cabbage: Farm price per 100 pounds, 15 th of month, United States, 1910-1923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{aligned} & \text { Weight- } \\ & \text { ed } \\ & \text { average. } \end{aligned}$
	Dollds.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls	D lls .	Dolls.	Dolls.	Dolls.	Dolls.
1910-11	2. 27	1. 89	1. 94	1. 58	1.38	1. 49	1. 56	1. 48	1. 29	1. 33	1.38	2.46	1.57
1911-12	2. 93	2.47	1. 94	1. 58	1. 51	1.83	1.89	2. 24	2. 88	3. 17	2.98	2. 67	2. 23
1912-13	2. 29	1. 88	1. 25	1. 08	1. 04	1.15	1. 26	1.17	1. 03	1.15	1. 58	2. 18	1. 28
1913-14	2. 64	2. 15	1. 79	1.69	1. 58	1. 75	1.87	2.07	2.03	2. 24	2. 05	2. $\hat{6}$	1. 95
Av. 1910-1913	2. 53	2.10	1.73	1. 48	1. 37	1. 56	1. 64	1. 74	1.80	1. 97	2. 00	2. 48	1. 76
1914-15	2. 66	1. 74	1. 50	1.31	1. 14	1.26	1. 36	1. 41	1.38	1. 99	2. 53	2. 34	1. 60
1915-16	1. 95	1. 61	1. 24 -	1. 00	. 97	1. 07	1. 17	1.21	1. 38	1. 50	1.93	2. 27	1. 33
1916-17	2. 15	2. 26	2.17	2. 40 :	2. 61	3. 04	3.95	5. 65	6. 77	7. 61	7. 53	5. 10	4.45
1917-18	3. 23	2. 19	1. 76	1.79	2.66	2. 28	2. 74	3. 26	2. 86	2.98	3. 23	3. 55	2. 62
1918-19	3. 41	2. 96	2. 45	2. 16	1. 99	2. 05	2. 19	2. 33	2. 71	3. 79.	4.97	4: 68	2. 83
1919-20	4. 23	3. 73	3. 08	2.88	2. 74	3. 49	4.31	5. 05	5. 25	5. 59	6. 75	5: 47	4.31
1920-21	4.71	3. 28	2.03.	1.95	1.67	1. 77	1.91	1. 88	1. 71	2. 03	3. 10	4.04	2. 19
Av. 1914-1920.	3. 19	2. 54	2.03	1. 93	1.97	2. 14	2. 52	2.97	3.15	3. 64	4: 29	3.92	2. 76
1921-22	3. 95	3.16	2. 61	2. 39	2. 42	2. 77	3.05	3.09:	3.02	3. 10	3.68	3:36	2. 92
1922-23	2. 96	2. 12	1.72	1. 55	1. 46	1. 63	2. 11	2. 42	3.00	3.62	4.01	4. 11	2. 44
1923-24.	3. 85	3. 20.	2:90	2: 59 :	2. 12	2. 30							

[^180]Table 231.-Cabbage, Danish: Range and average jobbing prices, per 100 pounds, at 10 markets, 1920-1923.

Market, and. year beginning October 1.	October.		November.		De-cember, average.	$\begin{aligned} & \text { Janu- } \\ & \text { ary, } \\ & \text { aver- } \\ & \text { age. } \end{aligned}$	February. .		March.	
	Range.	Average:	Range.	Average.			Range.	Average.	Range.	A ver. age.
New York:	\$0.88-\$1.00	\$0.99	\$0.75-\$1.13	\$0. 94	\$0. 76	\$1.00	\$0.68-\$0.83	\$0. 73	\$0.68-\$0.95	
1921-22	1.82-2. 05	1.98	1.78-2.40	2.08	249	2. 60	1.75-2.25	2. 02	1.75-2.50	2.11
1922-23	. $90-1.25$	1.01	. $50-1.25$. 79	1. 18	1.33	1. $60-3.00$	2.08	2. $25-3.50$	3.16
1923-24.	1. 10-1.60.	1.33	.75-1. 40	1.01	1.36					
Chicago:										
1920-21-	1.75-2.25	2.02		- 2.47	2. 75	2. ${ }^{21}$	$.47-.83$ $1.50-2.15$	1. 71	. $30-\mathrm{l} 8$. 64
1922-23			. $75-1.10$. 83	1.21	1.51	1. $90-3.75$	2. 40	1. $70-3.50$	3.01
1923-24			. $50-1.20$. 85	1. 13					
Philadelphia:	70	81	55-1.18	82	62	93	55-. 80	69.	55-. 83	
1921-22.	1. $50-2.00$	1. 87	1.50-2. 38	1.91	2. 42 :	2.39.	1. $25-2.25$	1.77	8. $00-2.50$	2. 22
1922-23.	. $75-1.10$	87	. $35-1.15$. 71	1. 99	1.25	1. 25-3. 00	1.78	1. 00-3. 75	2.38
1923-24..	1.00-1.65	1.32	. 75-1.25	. 95	1.27					
Pittsburgh:										
1920-21.-	88-1.40	1. 12	. $70-1.50$	1. 00	. 69	1. 04	. $70-.95$. 80	${ }^{\text {. }} 55-\mathrm{F}$. 78	${ }^{66}$
1921-22.	2. 15-2.75.	2.48	2. $25-2.88$	$\begin{array}{r}1.87 \\ 2.86 \\ \hline\end{array}$	2.67 1.57	2. 1.28 1.25	1. $1.90-2.75$	2. 2.06	1. ${ }^{\text {2 }} 50-2.4 .50$	2. 36 3.16
1922-23.	1. 50-2. 50 1. 15-2 00	1.91 1.51	. $40-1.50$ $.75-1.40$	1. 10	11. 34		1. 25-3. 50		2. 50-4. 50	
St. Louis:										
1920-21.					. 91	1.12	. $75-1.25$	99	.63-1. 25	. 96
1921-22.	1. $69-2.75$	2. 15^{\prime}	1.81-2.50	2.30	2. 65	2. 57	1. 50-2. 25	2.02		
1922-23-					1. 30	1.37	2. 00-4. 25	2.84	2. 75-4. 50	3. 32
1923-24			. $60-1.50$	1.08	$1: 39$					
Cincinnati:										
1980-21-			. 55-1. 33	$\begin{array}{r} .96 \\ 2.10 \end{array}$	2. ${ }^{.} 72$.	1. 03 2. 59		1. 05.	. $50-1.13$. 82
1921-22.-			1. $50-2.50$	2.10	2.73 1.31	1. 2.59 1.46	1.75-2.50	2. 2. 31 1		
$\begin{aligned} & 1922-23 \\ & 1923-24 \end{aligned}$	$\begin{array}{r} .90-1.40 \\ 1.25-1.90 \end{array}$	1.21 1.58	$\xrightarrow{.50-1.00}$	1.71 1.16	1.31 1.39	1.46	1.85-3. 50	2.31	2. $50-3.75$	3. 18 :
St. Pqual: 1921-22										
Minneapolis:						3.				
1221-22...						3.32				
Kansas: City:										
$\begin{aligned} & 1920-20 \\ & 1921-22 \end{aligned}$	1. 50-2. 50	2.09 .	1. 75-3:25	2.61	3. 15	1.39	2:00-2.75	1.05	. $50-1.00$. 78
1922-23.-	-60-1. 25	. 90	. 50 - 85	. 68.	1. 22	1.62	2: 00-4.00	2.85	3. $25-5.00$	3.84.
1923-24.	. $90-1.50$	1.18	. $90-1.50{ }^{\text {a }}$	1.07	1.24					
W ashington:						1.93	1. 25-1.50	1.47	1.00-1. 50	1.25
1921-22 ${ }^{1}$			$2.00-9.00$	2.53	3.03	1.41	2. $50-4.00$	3. 01		
1922-231	1. $50-2.25$	1.97	1.00-2.00	1. 43	1. 82	1.88	2. 00-3.00	2.47		
1923-24.	1. 75-2: 50	1.98 :	1.25-2.00	1,44	1. 88 :					

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Average prices as shown are based on stock of good merchantable quality and condition only; they are simple averages of selling prices. In some cases conversions have been made from larger to smailer units or vice versa, in order to obtain comparability.
${ }^{1}$ Sales direct to retailers.

CANTALOUPES.

Table 232-Cantaloupes: Carlot shipments by States of origin, calendar years, 1917-1923.

State:	1917	1918	1919	1920	1921	1922	1923
Delaware	Cars. 702	Cars. 429	Cars: 580	Ears: 581	Cars. 943	Cars. 843	Cars. 818
Maryland	865	490	835	77.1	1,206	1,233	1,271
North Carolina	1,106	418	523	359	821	700	619
South Carolina	157.	31	100	110	299	270	70
Georgia.-.	789	551	314	389	640	1,632	222
Indiana	684	443	462	635	644	894	653
Miehigan	42	37	204	299.	17.6	465	302
Arkansas:	797	699	1,106	986	1,501	990	336
Colorado.	1,898	1, 888	3, 132	2, 454	3,215	4, 420	2;314
New Mexieo.	227	256	378	937	421	275	386
Arizona	1, 215	$1{ }^{1} 169$	1, 832	1,164	1,474	1, 558	1,209
Washington	145	110	100	329	209	371	198
California	8,258	6,848	12, 010	13, 100	13, 177	15, 304	16, 390
All other.	57.5	320	453	403	843	962	1,022
Total	17, 430	13,619	22,039	22, 377	25, 569	29,917	25, 791

Division: of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

CELERY.

Table 233.-Celery: Carlot shipments by States of origin, calendar years, 1917-1923.

State.	1917	1918	1919	1920	1921	1922	1923
	Cars.						
New York	1,563	1,614	1,523	2,675	3, 110	3, 347	3, 496
New Jersey	108	155	177	105	216	119	213
Pennsylvania	143	199	33	176	225	212	224
Florida-.-.-	2, 222	2, 461	2, 051	3,010	4,172	4,955	6,409
Michigan	436	461	598	604	1,013	1,612	1,372
Colorado.	183	225	212	283	211	222	115
California	1,877	2, 262	1,796	2, 384	3, 405	3,474	4,473
All other	45	35	59	71	131	210	285
Total	6,577	7,412	6, 449	9,308	12, 483	14, 151	16,587

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

CANNED CORN.

Table 234.-Corn, canned: Production in the United States, calendar years, 1905-1923.

State.	1905			906		907		1908		1909	1910		
Maine	$\begin{gathered} \text { Cases. }^{1}{ }^{1}, 348,751 \end{gathered}$		$\begin{gathered} \text { Cases. }{ }^{1} \\ 939,698 \end{gathered}$		$\begin{gathered} \text { Cases. }{ }^{1} \\ 1,090,624 \end{gathered}$		$\begin{aligned} & \text { Cases. }{ }^{1} \\ & 970,000 \\ & \left({ }^{2}\right) \end{aligned}$		Cases. ${ }^{1}$$698,000$		$\begin{aligned} & \text { Case8. }^{1} \\ & 1,487,000 \end{aligned}$		
									$\begin{aligned} & \left(^{2}\right) \\ & 1,145,000 \end{aligned}$				
New York			$\begin{array}{r} 1,583,969 \\ 220,022 \end{array}$		1, 422, 012		659, ${ }^{-791}$			$620,000$		$\begin{gathered} \left({ }^{(2)}\right. \\ 634,000 \end{gathered}$	
Pennsylvania		99, 920				68, 570		$\left.{ }^{(2}\right)$		${ }^{(2)}$	$\underset{\left({ }^{2}\right)}{1,145,000}$		
Delaware		$\begin{gathered} 220 ; \\ 05 \\ 0202 \end{gathered}$		10, 040		75, 000		$\left.{ }^{2}\right)$		(2)	${ }^{2}$)		
Maryland	1,676, 240		1,058	58, 492		875, 506		010, 000		432, 000	970,000		
Ohio...	1, 140, 631			48, 796		61, 560		933, 000		677, 000	936, 000		
Indiana	1,025, 606			21, 433		31, 778		301, 000		405, 000	746,000		
llinois	1, 963,617		1,243	43, 106		19, 525		856, 000		134, 000	2, 027, 000		
Michigan		1, 145, 152		19, 300		68, 300		${ }^{(2)}$		${ }^{2}$)	${ }^{(2)}$		
Wisconsin	443, 055			11,711		69, 120		343, 000		422, 000	222,000		
Minnesot	272, 000			1,933		23, 945		124, 000		78, 000	200, 000		
Iowa	2, 557, 104		1,815	5, 900		48, 725		085, 000		902, 000	1,720, 000		
Missouri		47, 100		29, 100		18, 600		${ }^{(2)}$			${ }^{2}$)		
Nebraska	441, 000			1, 300		64,000	(2)			${ }^{(2)}$	${ }^{(2)}$		
Kansas.	53, 887		32, 819		23, 400				${ }^{(2)}$		(2)		
Ali othe		5,231		12, 400		7,000		542,000		405,000	610,000		
United State	13, 018, 665		9, 136, 960		6,654, 044		6, 784, 000			, 787, 000	10,063, 000		
State. 191			1912		1913		1914		1915		1916		
Maine.-			801, 000		650, 000		1,114,000		942,000		782,000		
New York			1,009, 000		393, 000		771,000		1,016,000		280,000		
Maryland	${ }^{3} 1,673,000$		1,517, 000		1, 023, 000		1,364, 000		1,609,000				
Ohio.	1, 412, 000		1,376, 000		-984, 000		1,203, 000		1, 144, 000		$1,448,000$ 930,000		
Indiana		, 000	1, 23	35, 000		85, 000		694, 000		785, 000	797,000		
Illinois	2, 771, 000		2, 438,000		1,330, 000		1, 515, 000		2, 081, 000		1, 540, 000		
Wisconsin	351,000		519,000		-377, 000		342,000		208, 000		$\begin{array}{r} 1,9 \pm, 000 \\ 322,000 \end{array}$		
Minnesot	301,000$2,744,000$		$\begin{array}{r} 321,000 \\ 2,961,000 \end{array}$		188, 000		224, 000		121, 000		$278,000$		
Iowa				884, 000		573, 000		, 223, 000	1,730, 000				
All othe		1, 044, 000			932, 000		669,000		989,000		995, 000		1, 023, 000
United States	14, 337, 000		13, 109, 000		7, 283, 000		9, 789, 000		10, 124, 000		9,130,000		
State.	1917	1918		1919		1920		1921	1922		1923		
Maine	566, 498	1, 112, 912		1,652,000		1, 588, 000		911,000		1,066,000	923, 000		
New York	257, 296	488, 912		1, 014,000		829, 000		- 564,000		616,000	$434,000$		
Maryland	$2,001,544$$1,200,131$	2,032	2, 944	2,081,	000	2, 217,		1, 130, 0		1,944,	$2,256,000$		
Ohio.		1, 584, 064		1, 360, 000		1,544, 000		-850,000		1, 073,000	1,390,000		
Indiana	$1,200,131$ 742,491		2, 688	586,		861,		709, 00		665,	0 1, 208,000		
Illinois	2, 421, 953	2, 199, 344		2, 225, 000		2, 271, 000	1, 711, 000			1, 939, 000	2, 833,000		
Wisconsin		- 372, 924		635, 000		290, 000				625,000598,000	$\begin{aligned} & 648,000 \\ & 898,000 \end{aligned}$		
Minnesota	165,492 201,969		9, 136	456,		643,							
Iowa	2, 280, 366	$\begin{array}{r} 2,300,241 \\ 808,695 \end{array}$		2, 496, 000		3, 246, 000		$\begin{array}{r} 1,190,000 \\ 629,000 \end{array}$		$\begin{array}{r} 1,959,000 \\ 934,000 \end{array}$	$\begin{aligned} & 2,382,000 \\ & 1,134,000 \end{aligned}$		
All othe				1,045,	, 000	1,251,							
United States	10,803, 015	11, 721, 860		13,550,000		15, 040, 000		8, 843, 000	11, 419,000		14, 106,000		

Division of Statistical and Historical Research. Compiled from National Canners' Association data.
${ }^{1}$ Stated in cases of 24 No. 2 cans. ${ }^{2}$ Included in all other. ${ }^{3}$ Includes Virginia.

LETTUCE

Table 235.-Lettuce: Carlot shipments by States of origin, calendar years, 19171923.

State.	1917	1918	1919	1920	1921	1922	1923
	Cars.						
New York	1,423	1, 334	1,761	2, 138	3, 361	3,167	3, 811
New Jersey	215	171	245	515	478	571	454
North Carolina	181	226	319	265	448	622	718
South Carolina	161	375	395	356	583	987	577
Florida...--	1,116	2, 352	2, 134	3,120	2, 286	3, 323	3, 054
Texas	53	17	90	176	114	113	102
Arizona	64	64	41	165	166	678	1,044
Washington			19	345	632	812	1,081
California -	2,013	2, 051	2, 731	6,350	9, 746	9, 744	15, 148
All other	202	369	283	391	802	2, 223	3,297
Total	5, 428	6,959	8,018	13, 821	18, 616	22, 240	29,286

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

ONIONS.

Table 236.-Onions: Commercial acreage, yield per acre, and production, 19211923.

State.	Acreage.			Yield per acre.			Production.		
	1821	1922	$1923{ }^{1}$	1921	1922	1923	1921	1922	$1923{ }^{1}$
Early (Bermuda):	Acres.	Acres.	Acres.	Bush.	Bush.	Bush.	Cars. ${ }^{2}$	Cars. ${ }^{2}$	Cars. ${ }^{2}$
California.-----	2,000	2,950	1,340	245	320	297	980	1,888	796
Louisiana.	1, 010	1,100	1,100	206	300	106	416	660	233
Texas.	10,500	11,920	12, 680	207	197	129	4,347	4,696	3,271
Total	13, 510	15,970	15, 120	213	227	142	5,743	7, 244	4,300
Intermediate:									
Kentucky	1, 000	1,000	1,000	300	225	298	600	1, 450	596
New Jersey	2, 380	2, 360	2, 290	250	250	194	1, 190	1, 180	889
Virginia	1, 120	1,320	1,290	280	225	254	627	594	$\begin{array}{r}655 \\ \hline \text {, }\end{array}$
Washington	1,280	1,530	1,500	300	320	450	768	979	1,350
Total	7, 020	7,820	7,620	263	283	303	3,693	4,427.	4,614
California	7,900	6,720	7, 010	225	250	300	3, 555	3,360	4, 206
Colorado	1, 300	1,900	2, 360	300	280	250	780	1, 064	1, 180
Idaho-	140	, 300	300	470	460	425	132	276	255
Illinois	1,040	1,250	1,080	210	300	289	437	750	${ }^{624}$
Indiana	4, 180	5, 620	5,900	265	413	276	2, 215	4, 642	3,257
Massachusetts	4,500	4,560	3, 360	280	275	345	2, 520	2, 508	2,318
Michigan	1,350	1,750	1,840	225	511	267	608	1,788	983
Minnesota	1, 430	1,470	1, 050	200	350	220	572	1, 029	462
New York	7,280	7, 740	7, 390	300	270	418	4, 368	4,180	6, 178
Ohio	5, 080	5, 680	5, 700	225	400	253	2, 286	4,544	2, 884
Oregon	870	880	600	300	300	295	- 522	528	354
Pennsylvania	340	350	280	270	380	200	184	266	112
Utah	120	250	400	440	400	375	106	200	300
W isconsin	1, 010	1, 030	1,090	300	350	279	606	721	608
Total.	36, 540	39,500	38, 360	258	327	309	18,891	25, 856	23,721
Grand total	57, 070	63, 290	61,100	248	296	267	28, 327	37, 527	32, 635

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
£500 bushels to car.

Table 237.-Onions: Carlot shipments, by States of origin, 1917-1922.

State.	Crop movement season, March 1 through June of succeeding year.					
	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23
	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.
Massachusetts	2, 766	2, 883	2, 835	3, 834	2, 224	1,912
New York.-	2, 104	2, 784	2, 702	3, 089	2,891	2,812
New Jersey	567	597	634	635	427	479
Virginia--	158	95	133	181	140	371
Ohio -.-	1,475	2,008	1,913	3,212	1,743	- 4,492
Indiana	1,204	1,817	1,005	3,448	1,834	4,683
Hlinois...	230	334	123	360	253	487
Michigan	253	590	224	795	417	1, 887
W isconsin	240°	309	95	406	89	330
Minnesota	626	822	439	276	172	500
Iowa.	708	968	488	870	411	918
Kentucky	177	195	339	303	361	257
Louisana.	174	450	101	106	79	91
Texas ${ }^{1}$	5,898	3, 575	2,876	5, 086	4,208	4,629
Colorado	239	230	207	134	443	651
Washington.	315	477	596	790	649	765
Oregon....-	196	238	202	19	347	263
California, northern district ---	2,835	3, 627	4,887	3,169	2, 657	2,376
California, southern district ${ }^{1}$--	663	400	522	1,233	928	1,266
All other	215	150	228	277	434	610
Total	21, 041	22,549	20,549	28, 223	20, 707	29,759

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in cariots include those by boat reduced to carlot basis.

1 Shipments from Texas and from the southern district of California were principally Bermudas. For Texas various common varieties comprised approximately 80 cars in 1917-18, 69 in 1918-19, 40 in 1919-20, 101 in 1920-21, 172 in 1921-22 and 215 in 1922-23; for the southern district of California they comprised 2θ in 1918-19, 178 in 1919-20, 56 in 1920-21, 30 in 1921-22, and 13 in 1922-23.

Table 238.-Onions: Farm price per bushel, 15th of month, United States, 19101923.

Year beginning July 1.	July.	Ang.	Sept.	Oct.	Nov.	Dee.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted av.
	Cts.												
1910-11	104.5	99.8	99.4	93.2	94.6	98.8	101. 0	104: 0	105.0	119.0	129.0	134. 0	100.8
1911-12	122. 0	116.0	104. 0	102.0.	103.0	113.0	117.0	140.0	167.0	175.0	177.0	155. 0	123.6
1912-13	114. 0	100: 0	89.0	85.0	84. 0	84.0	81.6	77.5	77.0	79.0	87.2	95.6	88.2
1913-14	101. 7	105. 1	103.9	110. 2	114.9	114.9	121. 0	140.7	155. 2	159.2	152.6	140.8	124.0
Av. 1910-1913	110.6	105.2	99.1	97.6	99.1	102. 7	105: 2	115.6	126.0	133. 0	136. 4	131. 4	109.2
1914-15	170.4	137.9	103.3	88.3	84.4	92.3	88. 9	97.6	95.3	104. 4	102.9	102.9	106. 1
1915-16	93.0	86.3	82. 8	94.8	94.8	99.6	113. 2	126. 3	130.3	123. 5	123.3	133.8	104.5
1916-17	147.3	133.5	122. 9	131. 4	153.8	175. 7	208. 4.	357.9	476. 2	495.6	398. 0	308. 0	241.7
1917-18	201. 0	154. 7	142. 9	157.5	174.6	177.0	178.9	183. 2	147.0	134.1	134. 7	138.7	156.7
1918-19	162.6	1.4.7	163: 3	143. 2	143.1	131. 7	133. 5	154.7	199.8	202.1	229.9	234.1	171. 3
1919-20	232. 0	225.8	195.4	196. 4	212. 5	245. 8	280. 8	307. 3	325.6	344.2	337.6	264. 2	257.0
1920-21	204.8	176. 4	172.9	158.9	143.8	132.0	135. 2	131. 2	114.2	98.4	106. 7	138.2	145.6
Av. 1914-1920	173.0	154.2	140. 5	138.6	143.9	150.6	162. 7	194. 0	212.6	214. 6	204. 7	188.6	169.0
1921-22	147. 7	159. 1	168. 5	186. 6	219.9	245.2	263. 8	325.3	365. 7	469.6	331. 4	270.9	252.5
1922-23	204. 5	156. 9	126. 9	118. 8	123.6	131.7	159.8	173: 0	173.8	196. 5	200.7	220.5	160.7
1923-24	207.7	185. 2	179.3	185.6	174.6	178. 4							

Division of Crop and Livestock Estimates.

Table 239.- Onions: Average jobbing prices per 100 pounds, at 10 markets, 19201923.

Market, and year beginning Aug. 1.	Various common varieties.								Bermudas.					
	Aug. ${ }^{1}$	Sept.	Oet.	Nov.	Dec.	Jant	Feb.	Mar.	Apr.		May.		June. ${ }^{2}$	
									Yellow.	Crystal White Wax.	Yellow.	$\begin{gathered} \text { Crys- } \\ \text { tal } \\ \text { White } \\ \text { Wax. } \end{gathered}$	Yellow.	Crystal White Wax.
New York: ${ }^{\text {- }}$									\$4,34		\$3.15			\$3. 01
1920-21		\$2. 24	\$1. 56	\$1. 55	\$1. 23	\$1. 31	\$0.98.	80.81	\$4:34	\$3. 46	\$3.15	\$3.79	\$2. 93	\$3.01 3.54
1921-22	\$2.80	3. 43	5.06	5. 63	5. 45	7.34	8. 25	8. 21	7.66	6. 20 .	4. 14.	3.79	3.91	3. 54
1922-23	2.08	1. 52	1. 72	2. 00	2.99	2.83	2.45	2.98			5.31	5. 19		
1923-24.	2.68	3.21	3.26	2.75	2.76									
Chicago: 1920-21.		1. 94	1. 59	1. 56	1. 31	1. 16	. 98	93	3. 48	4. 37	2. 79	3. 73	2. 53	3. 27
1921-22	2. 58	3. 61	4. 47	5. 11	5. 62	7. 09	7. 64	8. 53	6.21	6.47	4. 05.	4. 20	3. 43	3.80
1922-23	2. 12	1. 61	1. 70	2. 22	2. 29	2. 56	3. 44	3.38	5. 96		5. 15	5. 79		
1923-24.	3. 19	3. 48	3. 29	3.22	3.07									
Philadelphia: $1920-21$		2. 03	1. 49	1. 51	1. 23	1. 27	. 98	. 87	4. 04	3.88	3. 26	3. 70	2.75	2.61
1921-22	3. 02	3. 80	4. 80	5. 34	5. 52	6. 93	8. 09	8. 98	7. 03	6. 00	4. 13	4.04	4.07	
1922-23	2. 19	1. 63	1. 57	1.82	2. 73	2.90	2. 54	3. 20	6. 03					
1923-24	3.07	3.45	3.09	2.73	2.61									
Pittsburgh: 1920-21.		2.30-	1. 74	1. 65	1. 05	1. 26	. 89.	. 90	4.03	4. 58	3. 22	3.91	2. 95	3. 35
1921-22	$3: 05$	3. 82	4.86	5. 44	5. 57	6. 73	7.88	8.89	6.81	7.17	4. 52	5. 29	3. 54	3. 88
1922-23	2. 36	1. 56	1. 52	1. 63	2. 74	2. 95	2.70	- 3.33	6. 95		5. 49	5.98		
1923-24	2. 98	3.50	3. 34	2. 73	2. 46									
St. Louis:			1. 55		1. 06	1. 17	91	76	3. 30	4. 40	2.83	3. 47		3.20
1921-22-	2. 95	3.70	4.88	5. 45	5. 68	6. 97	7. 90	8. 52	5. 95	5.67	3. 17	4.19	3.37	
1922-23	2.		1.89	2. 20	2.30	2. 92	2. 52	3. 14			5. 05	5. 20		
1923-24	2.55	3.45	3.45	3. 23	, 3. 05									
Cincinati:										49	3. 17	3. 95	2. 72	
1920-21.		1. 76	1.48	1. 45	1.30	1. 25	1.13	8.88	3.43 5.93	6. 44		3.95	3. 40	3. 76
1921-22:	2.92	3.74	5. 19	5.59 1.96	5. 45 2.87	6.90 3.08	8. 29	-8.68	5. 93	6.44	4. 67 5.38	5.71	3.40	3.76
1922-23		43	1.78	1. 96	2.87	3.08	2.93	3. 94			5. 38	5.71		
St. Panal:	2.9	3.43 1.99							3. 55					
1920-21----		1. 3.49				6.42	7. 75	8.61	3. 55		3. 23 4.39	4. 52	3. 12	3.82 3.35
1921-22-23	2.85	3. 49	4.92	4.83	4.44	6.4	7.75				5. 65	6.15	3.	3.35
1923-24		3.35	3. 66	3.11	2.71									
Minneapolis:														
1920-21		2. 12							4.02	4.66	3. 38	4. 41	2.49 3.17	4.05 3.55
1921-22	2. 70	3.34	4.76	4.81	4. 60	6.62	8.11	8.83			4. 62 5.90	4. 86	3. 17	3. 55
1922-23-	2.73	3. 44	3.72	3. 14	3. 22						5. 90	6.21		
Kansas City:	2.7													
1920-21 ...		1.98	1. 68	1.67	1. 52	1.35	1. 13	. 66	3. 60	4. 27	2. 78	3. 46	2. 39	3. 41
1921-22	2.97	3.60	4.38	5. 40	5.42	6. 94	8. 06	8.50	6. 56	6. 92	3.91	4. 46	2.76	3.29
1922-23			2.12	2. 02	2. 56	3. 25	3.45	3.22						
1923-24...--	262	348	3.65	3. 30	2.96									
W ashington:											4.21			
1920-21 ${ }^{3}$		2.61	1.95	1.92	1. 86	1.88	1. 53	1. 35	5. 87		4.21		4.36	
1921-22 ${ }^{3}$	3. 64	4. 27	4. 93	5.93	5.78	${ }^{7} .10$	8. 61	19.55	8.00	7.36		5.17	4. 36	4. 36
1922-23 ${ }^{3}$	2. 64	2. 07	1.75	2.72	2.77	3.38	3.30	3.58			6.07			
1923-24-----	3.44	3.90	3.62	3.32	3.11									

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division.
Average prices as shown are based on stock of good merchantable quality and condition only; they are simple average of selling prices. In some cases conversions have been made from larger to smaller units or vice versa, in order to obtain comparability.
${ }^{1}$ Quotations began Aug. 22, 1921, and August 14, 1923.
${ }^{2}$ Last quotation June 14, 1922.
${ }^{3}$ Sales direct to retailers.

CANNED PEAS.

Table 240.-Peas, canned: Production in the United States, calendar years, 19061923.

State.	1906	1907	1908	1909	1910	1911	1912	1913	1914
	Cases. 1	Cases ${ }^{1}$	Cases. ${ }^{1}$	Cases. 1	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. 1	Cases. ${ }^{1}$	Cases. 1
New York	1, 314, 832	1, 509, 997	1, 325, 000	1, 378, 000	1,356, 000	1, 145, 000	1,514, 000	2, 252,000	1,934, 000
New Jersey	-125, 931	149, 900	101,000	125, 000	(2)	${ }^{(2)}$	(${ }^{2}$)	${ }^{(2)}$	${ }^{3} 295,000$
Delaware	46, 900	141, 036	110,000	107, 000	${ }^{4} 299,000$	${ }^{4} 192,000$	4270,000	4173,000	
Maryland	333, 590	468, 073	343, 000	226, 000	200,000	305, 000	380, 000	318, 000	502, 000
Ohio	87, 000	45, 721	199, 000	113, 000	170,000	128, 000	276, 000	343, 000	748, 000
Indiana	364, 085	766, 972	492,000	447, 000	261,000	259, 000	323, 000	419, 000	470.000
Illinois.									${ }^{(5)} 5000$
Michigan	342,901 $1,409,497$	578,000	492,000	-373, 000	1, 422,000	1, 323, 000	760,000	3, 830,000	3, 459, 5500
Wisconsin Utah	1, 409, 497	1, 507, 710	2, 200, 000	1,878, 000	1, 086, 000	1, 520, 000	2, 658, 000	3, 348, 000	$\begin{array}{r} 3,555,000 \\ 350,000 \end{array}$
California									${ }^{(5)}$
All other	550, 272	367, 655	315, 000	381, 000	553, 000	660, 000	1,126, 000	1,087, 000	1,034, 000
United States.	4, 575, 008	5, 535, 064	5, 577, 000	5, 028, 000	4, 347, 000	4, 532, 000	7, 307, 000	8,770, 000	9,347, 000
State.	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Cases. 1	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. 1	Cases ${ }^{1}$	Cases. 1	Cases. ${ }^{1}$	Cases. 1
New York	2, 218, 000	1,084, 000	1, 394, 171	1, 870, 161	1,040, 000	2, 381, 000	1, 382, 000	2, 137,000	2, 541, 000
New Jersey ${ }^{\text {a }}$	371, 000	312, 000	567, 432	331, 869	248, 000	549, 000	345, 000	153, 000	199, 000
Maryland	574, 000	468, 000	721, 160	683, 007	509, 000	696, 000	533, 000	489, 000	591, 000
Ohio.	289, 000	131, 000	321, 624	441, 842	306, 000	282, 000	241, 000	225, 000	384, 000
Indiana	544, 000	412, 000	522, 532	454, 229	381, 000	271, 000	182, 000	268, 000	367, 000
Ilkinois	381, 000	248, 000	421, 213	978, 434	433, 000	460, 000	331, 000	516, 000	586, 000
Michigan	514, 000	280, 000	604, 470	476, 650	425, 000	549, 000	317, 000	455, 000	392, 000
Wisconsin	3, 469, 000	2, 763, 000	3, 569, 185	4, 519, 934	4, 317, 000	5, 804, 000	4, 063, 000	7, 042, 000	6, 961, 000
Utah..	303, 000	275, 000	754, 673	491, 963	395, 000	595, 000	376, 000	751, 000	918, 000
Californi	210, 000	228, 000	349, 910	252, 836	205, 000	(${ }^{5}$)	84, 000	496, 000	239, 000
All other	399, 000	385, 000	593, 783	397, 288	426, 000	730, 000	353, 000	510, 000	770, 000
United States.	9,272, 000	6, 586, 000	9, 820, 153	10,898,213	8, 685, 000	12,317,000 8	8, 207, 000	$13,042,000$	$13,948,000$

Division of Statistical and Historical Research. Compiled from National Canners' Association data.
$\begin{array}{ll}{ }_{2}^{1} \text { Stated in cases of } 24 \text { No. } 2 \text { cans. } & { }^{3} \text { Includes Delaware. }\end{array}{ }^{5}$ Included in all 0^{+}her.

POTATOES.

Table 241.-Potatoes: Acreage, production, value, exports, etc., United States, 1869-1923.

Calendar year.	Acreage.	Average yield per acre.	Production.	Aver- age farm price per bushel Dec. 1.	Farm value Dec. 1.	Value per acre. ${ }^{1}$	Chicago cash price per hundredweight, fair to fancy. ${ }^{2}$				Domestic exports, fiscal year beginning July 1.	Imports, fiscal year beginning July 1.
							December.		FollowingMay.			
							Low.	High.	Low.	High		
	1,000	Bush	1,0							Ct		
	acres.	els.	bushels.	Cents.	dollars.	Dollars.	Cts.	Cts.	Cts.	Ct	$596,968$	$\begin{aligned} & \text { eshels. } \\ & 75,336 \end{aligned}$
1869	1,222	109.5	133, 886	42.9.	57, 481 74,621	47.04 56.32						458, 758
1870	1, 325	86.6 6	114,775 120,462	65.0 53.9	74,621 64,905	56.32 53.16					553, 621,537	458,758 96,259
1871	1,221 1,331	98.7 85.3	120,462 113,516	53.9 53.5	64,905 60,692	53. 16 45.60					515, 306	346, 840
1873	1, 295	81.9	106, 089	65.2	60, 154	53. 40					497, 413	549, 073
187	1,310	80.9	105, 981	61.5	65, 223	49.79					609, 642	188,757
1875	1, 510	110. 5	166, 877	34.4	57,358	37. 99					704, 379	92, 148
1876	1,742	71. 7	124, 827	61.9	77, 320	44. 39					529, 650	3, 205, 555
1877	1,792	94.9	170, 092	43. 7	74, 272	41.45					744, 409	528, 584
1878	1,777	69.9	124, 127	58.7	72, 924	41.04						
1879	1,837	98.9	181, 626	43.6	79, 154	43.09					696, 080	721, 868
1880	1,843	91.0	167, 660	48.3	81, 062	43.98					638, 840	2, 170, 372
1881	2,042	53.5	109, 145	91.0	99, 291	48.62					408, 286	8, 789, 860
1882	2, 172	78.7	170, 973	55.7	95, 305	43. 88					439, 443	2, 362, 362
1883	2, 289	90.9	208, 164	42. 2	87, 849	38.38						
1884	2, 221	85.8	190,642	39.6	75, 524	34.00					380, 868	658, 633
188	2,266	77.2	175, 029	44.7	78, 153	34.49			55	83	494, 948	1, 937, 416
1886	2, 287	73.5	168, 051	46. 7	78, 442	34. 30	73	78	108	150	434, 864	$1,432,490$ $8,259,538$
1887	2, 357	56.9	134, 103	68.2	91, 507	38. 82	117	138	108 40	75	5	-253, 380
1888	2, 533	79.9	202, 365	40. 2	81, 414	32.14	50	2	40	75	-	883, 380
1889	2,601	77.4	201, 200	35.4	71,294	27.41	55	75	50	100	406, 618	3, 415, 578
1890	2, 653	56.7	150, 494	75.3	113,291	42. 70	137	155	158	183	341, 189	5, 401, 912
1891	2, 732	93.7	256, 122	35.6	91, 229	33. 39	50	67	50	83	557, 022	186,871 $4,317,021$
1892.	2, 650	62.1	164, 516	65. 5	107, 835	40.69	100	120	117	163	845,720 803,111	$4,317,021$ $3,002,578$
1893	2, 722	71.7	195, 040	58.4	113,886	41.84	85	100	107	147	803, 111	3, 002, 578
18	2,891	63.6	183, 841	52.9	97, 330	33.67	72	97	67	117	572, 957	1, 341, 533
1895	3, 101	102.3	317, 114	26.2	83, 151	26. 81	30	40	17	38	680, 049	175, 240
1896	2,975	91.4	271, 769	29.0	78, 783	26. 48	30	43	32	43	926, 646	246, 178
1897	2, 813	67.9	191, 025	54.2	103, 442	36. 77	83 50	103	100 55	87	605,187 579,833	171,378 530,420
1898.	2,841	77.0	218, 772	41.5	90,897	31.99	50	60	55	87	579,833	530, 42
1899	2,939	88.6	260, 257	39.7	103, 365	35. 17	58	77	45	65	809, 472	155, 861
1900	2,987	82. 9	247, 759	42. 3	104, 764	35.07	67	80	58	100	741, 483	
1901	2, 996	66.3	198, 626	76.3	151, 602	50. 60	125	$\begin{array}{r}137 \\ 80 \\ \hline\end{array}$	97 70	167	528, 484	$7,656,162$ 358,505
1902	3, 078	95.5	293, 918	46.9	137, 730	44.75 51.82	70 100	80 110	158	193	843, 042	3,161, 581
1903.	3,080	85.1	262, 053	60.9	159,620	51.82	100	110	158	193	484, 042	3,161,581
1904	3,172	111.1	352, 268	44.8	157, 646	49.70 53.31	53 92	63 110	33 80	42 122	$1,163,270$ $1,000,326$	186,199 $1,948,160$
1905	3,195	87.3	278, 885	61.1	170, 340	53.31	92 67	110	80 92	122	$1,000,326$ $1,530,461$	1, 948, 160
1906	3,244	102. 2	331, 685	50.6	167, 795	51.72 58.63	67 77	97	83	133	1, 203, 894	403,952
1907	3, 375	95.7	322, 954	61.3	197, 863	58.63 60.13	77 100	97 128	117	250	1, 763, 651	8, 383, 966
1908.	3, 503	86.2	302, 000	69.7	210,618	60.13	100	128	117	250	763, 651	8,383, 36
1909	9,669	107.5	394, 553	54.2	213, 679	58. 24	33	97	27	57	999, 476	353, 208
1910	3,720	93. 8	349, 032	55.7	194, 566	52.30	50	80	58	125	2, 383, 887	218, 984
1911	3, 619	80.9	292, 737	79.9	233, 778	64.60	117	167	150	333	1, 23	
1912	3, 711	113.4	420, 647	50. 5	212, 550	57. 28	67	108	55	117	2, 028, 261	337, 230
1913	3,668	90.4	331, 525	68.7	227, 903	62.13	83	117	100	150	1,794, 073	645,993
Average 1909-1913	3, 677	97.3	357, 699	60.5	216, 495	58.88	70	114	78	156	1,688, 595	3, 658, 022
14		110.5		48.7	199, 460	53.75	50	110	57	250	3, 135, 474	270, 942
1914	3, 734	110.5 96.3	359, 721	61.7	221, 992	59.45	88	158	133	183	4, 017, 760	209,532
1916	3,565	80.5	286, 953	146. 1	419, 333	117.62	208	317	333	625	2, 489, 001	3, 079,025
1917	4,384	100.8	442, 108	122.8	542, 774	123.81	155	225	80	250	3, 453, 307	1,180,480
1918	4,295	95.9	411, 860	119.3	491, 527	114.44	90	225	125	250	3, 688, 840	3, 534, 076
1919	3,542	91. 2	322, 867	159.5	514,855	145. 36	280	360	685	925 500	3, 723, 434	$6,940,930$ $3,423,189$
1920	3,657	110.3	403, 296	114.5	461, 778	126.27	120	225	40	500	4, 803, 159	3, 423, 189
Average				108.2	407, 388	106. 06	142	231	208	426	3, 615, 854	2, 662, 596
1914-1920.	3,841	98.1	376,675	108.2	407,388	106.06						
1921	3, 941	91.8	361, 659	110.1	398, 362	101. 08	100	245	190	235	2, 327, 147	2, 109, 537
1922	4,307	105.3	453, 396	58.1	263, 355	61. 15	75	175	90	70	2,980,	572
$1923{ }^{3}$	3,816	108.1	412, 392	82.3	339, 322	88.92						

Division of Crop and Livestock Estimates; figures in italics are census returns.
${ }^{1}$ Based on farm price Dec. $1 . \quad{ }^{2}$ Burbank to $1910 . \quad{ }^{3}$ Preliminary.

Table 242.-Potatoes: Acreage, prodiuction, and total farm value, by States, calendar years, 1921-1923.

State.	Thousands of acres.			Production, thousands of bushels.			Total value, basis Dec 1 price, thousands of dotlars.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
Maine	129	135	124	38,442	25, 245	31, 902	32, 676	11,360	22; 394
New Hampshire	14	14	13	2,240.	1.400	2.405	3,024	1,470	2, 766
Verment.	25	25	24	3,750\%	3,000	4,320.	3,900	2,790	4,320.
Massachusetts	29	29	26	3,335:	2, 610	4, 550	5,069	2,480	6, 142
Rhede Island.	3	3	2	345	270	330	552	243	429
Conneeticut	23	24	23	2,369.	3,360	3, 565	3,554	3, 360	5, 241
New York	330	340	323	33, 990	37, 400	39, 729	36,709	22, 440	37, 743
New Jersey	95	95	80	9;025	16, 435	7, 600,	12, 816	11, 833	9,500
Pennsylvani	251	254	249	21, 580.	27, 432	26, 145	28,709	20, 574	27, 452.
Delaware:-	10	10	10	500:	960	800:	550	672	816
Maryland.	49	51	49	3,185	5, 151	3,920	3,504	3,091	3,920
Virginia	149	155	152	16,092	16,585	14,136	17, 701	10,780	14,136
West Virginia	48	49.	49	4,080	4, 851	5,880.	6, 650	4, 220	6, 174
North Carolina	46	50	46	4, 048.	4,700	3,956	5,789	4,747	4,747
South Carolina	30	33	32	2,550	2, 508	3, 136	3, 825	3,210	5, 018
Georgia	23	25	22	1,725.	1,700	1,540.	$\stackrel{2}{2,846}$	2, 380	2, 464
Florida.	17	26	19	1,564	2,860	1,748	2, 972	5,005	3, 321
Ohio	120	126	126	64,960	11, 214	12,348.	10,788	10,093	12,348.
Indiana.	70	74	75	3, 570	5, 624	7,875.	5, 176	4,724	6,772.
Illinois.	121	107	104	6, 413	6; 741	9,568	8,978	6,067	8,420
Michizan.	340	357	314	27, 2000	37, 842	3.5, 796	25; 840	12, 866	17,888:
Wisconsin	315	328	272	21, 220	40, 672	26, 112	20,349	13, 422	13,056
Mimesota	430	486	399	32,250.	43, 740	38,304.	29, 025	15, 309	21, 067.
Iown.-	96	85.	81	4,128	8,925	6; 804	5,779	5, 980	5,239
Missouri	82.	90	93	4,756:	5; 400	9,300	6; 421	4,968	8, 184
North Dakota:	124	210	158	11,904	18,909	13, 114	8,333	5,859	4, 590:
South Dakota	90	110	88	5, 490	8,580	7,744	5,874	3,775	3, 872
Nebraska.	102	139	111	8, 160	11,676	8,880	9,792	5,488	7, 104
Kamsas	65	65	69	4, 160.	4, 160	5,160	5,616	3, 827	5, 108
Kentucky	58	59	58	3, 77.0	4. 720	4,930	6,220	4,720	5,916
Tennessee -	35	32	32	1,820	2,560	2, 880:	3,003	2,816	3, 2286
Alabama.	32	48	44	2, 400	3, 840	3, 520	4, 080	5,760	5,280
Mississippi	16.	16	15	1,088.	1,360	1,110	2,176	2, 176	1,709.
Louisiara	27	27	26	1,809:	1.755	1,638	3, 256	2,632	2, 457
Texas...-	37	39:	35	2,072	2,418	1, 925	3,937	3,869	3, 080
Oklahoma	36	40	42	2,088	2,720	2,772	3, 863	3,346	3, 548.
Arkansas.-	33	35	33	1,815	2, 380	1,947	3, 267	3, 094	2, 648
Montana	41.	45	36	4; 715	5,670	3, 960	3, 772	2,268	2, 891
W yoming	19	22	18	2,052	2,420	1,710.	2, 421	1,210	1,590
Colerado.	113	142	110	14, 916.	18,460	13,530.	10,889	6,830.	8,794:
New Mexico.	4	4	3	240	200	150	432	290	240:
Arizona.	4.	6.	4.	460.	510	240.	644	459	336
Utah	15.	21	16	2,415	4, 137	2,688.	2,053	1,655	1,882.
Nevadia	4	5	5	592.	870	870	710	522	914
Idaha	64	81	${ }^{67}$	11, 840	14,985	11, 725	9, 117.	4,645	5,862
Washington	60:	65	52	8, 100	9; 425	8.060	8, 019	4, 241	5, 642.
Oregor	43	49	44	3; 870.	5, 145	4,180:	4,218	2; 675	2,926
California	74	76	52	10,360	9,880	7,800	13, 468	7,114	10; 140
United: Sta	3,941	4,307	2, 816	361, 659	453; 396	12; 392	398; 362	283, 355	339, 322

Division of Crop und Livestock Estimates.

${ }^{1}$ Preliminary.

Table 243.-Potatoes: Yield per acre,by States, calendar years, 1908-1923.

State.	1908	1909	1910	1911	1912	1913	$\left\|\begin{array}{c} A v . \\ 1909 \end{array}\right\|$	1914	1915	1916	1917	1918	1919	1920	Av. 1914	1921	1922	1923
	Bu.	$B u$.	Bu.	$B u$.	$B u$.	Br.	Br.	Bu.	${ }^{\text {Are. }}$	Br.	Bu.	Brt.	$B t$.	But	$B u$.	Bu.	$B u$.	a.
Maina	225	225	220	180	198	220	209	260	179	204		200	230	177	196			258
NewHampshire	100	130	150	125	140	122	133	159	95	120	107	140	102	127	121	160	100	185
Vermont..	73	155	130	105	140	127	131	168	108	112	100	130	100	130	121	150	120	180
Massachusetts -	95	125	125	93	130	105	116	155	120	91	115	133	90	125	118	115	90	175
Rhode Island.-	150	125	136	110	113	130	123	165	110	74	135	130	100	110	118	115	90	165
Connecticut.	80	120	125	85	107	92	106	140	95	95	110	95	75	115	104	103	140	155
New Yark	82	120	102	74	106	74	95	145	62	70	95	98	109	125	101	103	110	123
New Jersey	72	90	105	73	108	95	94	108	130	122	114	92	96	156	117	95	173	95
Pennsylvania--	72	78	88	56	109	88	84	105	72	70	92	8	100	115	91	88	108	105
Delaware...----	82	96	103	60	100	87	89	80	95	90	95	87	83	108	91	50	96	80
Maryland	77	80	95	45	112	87	84	78	97	95	100	80	94	102	92	65	101	80
Virginia	88	92	98	45	87	94	83	65	125	130	99	94	114	120	107	108	107	93
West Virginia_-	84	98	92	45	112	83	86	54	117	88	115	87	90	120	96	85	99	120
North Carolina	79	74	89	48	85	80	75	52	90	95	90	95	80	91	85	88	94	86
South Carolina.	81	85	90	70	90	80	83	70	80	75	96	102	85	100	87	85	76	98
Georgia	78	81	82	72	78	81	79	60	65	60	84	70	70	74	69	75	68	70
Florida	83	95	90	90	93	76	89	80	80	74	91	100	76	105	87	92	110	
Ohio	77	93	82	65	112	64	83	95	82	45	100	69	61	100	79	58	89	98
Indiana	57	95	84	58	114	53	81	80	95	44	92	80	44	96	76	51	76	105
Illinois.	71	91	75	50	101	46	73	60	110	58	90	72	52	65	72	53	63	2
Michigan.	72	105	105	94	105	96	101	121	59	48	95	84	90	105	86		106	114
W iscensia	80	102	95	116	120	109	108	124	87	47	114	110	94	108	98	68	124	96
Minnesota	76	115	61	115	135	110	107	114	106	60	112	105	87	99	98		90	96
Iowa--	80	89	72	74.	109	48	78	86	105	42	95	72	46	110	79	43	105	84
Missouri	80	85	86	27	84	38	64	45	98	60	87	61	75	82	73	58	60	100
North Dakota.-	85	110	41	120	128	85	97	109	90	93	43	99	63	79	82	96	90	83
South Dakota--	90	80	44	72	105	78	76	90	115	68	90	91		108	87			
Nebraska	78	78	60	52	80	48	64	80	105	73	85	86	5	99	8	8		88
Kansas	80	79	57	22	82	40	${ }_{75}^{56}$	62	83	88	${ }_{96}^{57}$	75	76	89 99	8	65	88	85
Kentucky-.	62	92	92	39	101	49	75	45	126	84	96	75	\%	99				
Tennessee	80	75	80	41	88	64	70	43	88	82	94	70	67	83	75	52	80	90
Alabama	85	80	80	78	81	84	81	79	80	90	72	80	80	67	78	75	80	80
Mississippi.	91	87	85	83	89	80	85	80	90	65	78	80	85	87	81	68	85	74
Louisiana	82	75	55	69	73	70	68	70	51	65	64	79	64	65	$\stackrel{65}{59}$	${ }^{67}$	65	${ }_{55}^{63}$
Texas....	71	50	51	57	63	52	55	61	65	50	60	55	73	52	59	56	62	55
Oklahoma	78	70	60	18	60	60	54	70	85	53	69	34	75	74	66			66
Arkansas.	82	70	84	55	70	72	70	60	90	65	80	50	73	78	71	55	68	59
Montana	138	180	120	150	165	140	151	140	155	125	95	135	60	110	117	115	126	110
W yoming.	158	160	100	42	140	140	116	108	150	130	155	150	80	125	128	108	110	95
Colorado..	125	16	100	35	95	115	101	120	135	138	160	160	115	130	137	132	130	123
New Mexico..-	100	85	47	80	100	68	76	100	100	102	116	100	58	75	93	60	50	50
Arizona	110	90	92	95	125	75	95	110	95	115	105	85	70	90	96	115	85	60
Utah	160	180	142	140	185	180	165	140	125	180	189	180	136	189	163	161	197	168
Nevada.-.-.-.--	120	180	150	160	178	160	166	130	172	190	207	171	135	135	163	148	174	174
Idaho	130	200	142	180	185	170	175	155	125	150	156	185	155	180	158	185	185	175
Washingtor	120	170	131	160	167	123	150	128	135	165	125	13	125	155	138	135	145	155
Oregon.	90	160	105	130	155	135	137	97	115	150	108	110	94	130	115	90	105	95
California	107	130	130	135	130	119	129	138	130	141	145	143	130	140	138	140	130	150

Bivision of Crop and Livestock Estimates.

Table 244.-Potatoes: Condition of crop, 1st of month, and yield per acre, United States: 1866-1923.

Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.	Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	$\begin{gathered} \text { Yield } \\ \text { per } \\ \text { acre. } \end{gathered}$
	P. ct.	P. ct.	P.ct.	P.ct.	Bush.		$P . c t$.	P.ct.	P.ct.	$P . c t$.	Bush.
1866	104. 0	105.0		98.8	100. 2	1896	99.0	94.8	83.2	81.7	91.4
1867	97.3	100.0	90.9	87.9	82.0	1897	87.8	77.9	66.7	61.6	67.9
1868	103.5	104.0	83.6	90.6	93.8	1898	95.5	83.9	77.7	72.5	77.0
1869	106.8	110.5	106. 0	105. 2	109. 5	1899	93.8	93.0	86.3	81.7	88.6
1870	96.9	91.0	85.4	83.0	86.6	1900	91.3	88.2	80.0	74.4	82.9
1871	98.4	99. 6	95.6	97.6	98.7	1901	87.4	62.3	52.2	54.0	66.3
1872	102. 1	102. 2	96.1	92.6	85.3	1902	92.9	94.8	89.1	82.5	95.5
1873	90. 2	93.4	95.0	89.0	81.9	1903	88.1	87.2	84.3	74.6	85.1
1874	97. 5	92. 8	83. 0	86.0	80.9	1904	93.9	94.1	91.6	89. 5	111. 1
1875	101. 2	105.9	110.0	106. 7	110.5	1905	91.2	87.2	80.9	74.3	87.3
1876	98.3	94.0	79.6	77.0	71.7	1906	91.5	89.0	85.3	82.2	102.2
1877	104. 2	105. 0	99.0		94.9	1907	90.2	88.5	80.2	77. 0	95.7
1878	100. 7	94.0	85.3		69.9	1908	89.6	82.9	73.7	68.7	86.2
1879	88.0	97.0	95.0	90.0	98.9						
1880	99.1	98.0	90.0	88.0	91.0	1909	93.0	85. 8	80.9	78.8	107.5
						1910	86.3	75. 8	70.5	71.8	- 93.8
1881	100. 3	92.0	70.0	67.0	53.5	1911	76.0	62.3	59.8	62.3	80.9
1882	102. 0	101. 0	92. 0	90.7	78.7	1912	88.9	87.8	87.2	85.1	113.4
1883	101.0	101. 0	95.0	93. 0	90.9	1913	86.2	78.0	69.9	67.7	90.4
1884	96. 2	94. 0	91.0	88.0	85.8						
1885	97.0	95.0	93.0	82.0	77.2	Av. 1909-1913.	86.1	77.9	73.7	73.1	97.2
1886	96.6	88.3	81.4	81.0	73.5	1914	83.6	79.0	75.8	78.3	110.5
1887	93.2	80.8	67.3	61.5	56.9	1915	91.1	92.0	82.7	74.2	- 96.3
1888	95.7	93.2	91.6	86.8	79.9	1916	87.8	80.8	67.4	62.6	80.5
1889	95.1	94.3	81.7	77.9	77.4	1917	90.1	87.9	82.7	79.0	100.8
1890	91.7	77.4	65.7	61.7	56.7	1918	87. 6	79.9	74.5	73.7	. 95.9
1891.	95.3	96.5	94.8	91.3	93.7	1919	87.6	75.1	69.5	67.9	91.2
1892	90.0	86.8	74.8	67.7	62.1	1920	89.3	87.0	84.3	82.7	110.3
1893	94.8	86.0	71.8	71. 2	71.7						
1894	92. 3	74.0	62.4	64.3	63.6	Av.1914-1920.	88.2	83.1	76.7	74.1	97.9
1895	91.5	89.7	90.8	87.4	102. 3	192	83.4	65.8	63.7	66.5	91.8
						1922--------------	87.3	84.3	79.9	77. 3	105.3
						1923	86.4	80.5	77.7	78.2	108.1

Division of Crop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.
Table 245.-Potatoes: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1922.

Calendar Year.	Deficient moisture.	Excessive moisture.	Floods	$\begin{gathered} \text { Frost } \\ \text { or } \\ \text { freeze. } \end{gathered}$	Hail.	Hot winds.	Storms.	Total climatic	Plant discase.	Insect pests	Ani- mal pests.	De-fective seed.	Total. ${ }^{1}$
	P. ct.	$P . c t$.	$\boldsymbol{P} . c t$.	P.ct.	P. ct.	P.ct.	$P . c t$.	P. ct.	P. ct.	P. ct.	P. ct.	P. ct	$P . c t$.
1909.	11.3	2.8	0.3	1.8	0.2	0.2	(2)	16. 7	1. 7	1.7	0.1	0.2	21.3
1910	15.4	1. 7	2	1.1	. 1	. 3	$\left.{ }^{2}\right)$	19.2	3. 9	5. 0	. 1	. 4	29.8
1911	25. 8	2. 0	(2)	1. 9	. 1	3.2	(2)	33. 5	2. 7	2. 6	. 1	. 6	42.4
1912	5. 3	3.3	. 4	. 6	. 1	. 2	0.1	10.5	5. 8	3.9	. 2	. 3	21.7
1913	20.8	1.6	. 2	2.0	. 1	. 7	$\left.{ }^{2}\right)$	26.0	1. 7	3.9	. 1	. 5	34.5
1914	10.2	2. 1	. 1	. 8	. 1	. 4	${ }^{(2)}$	14. 0	1. 7	3. 3	$\left.{ }^{2}\right)$. 3	21.2
1915	2. 2	8. 7	. 5	2.2	. 1	. 1	. 1	14. 0	13. 0	2.4	(2)	. 1	30.4
1916	19.7	6. 5	.4	1.9	. 2	1. 4	. 1	31. 5	5. 6	4.5	(2)	. 2	43.6
1917	8.8	3.5	.2	3. 0	. 2	. 3	$\left.{ }^{2}\right)$	16. 3	4. 1	2.4	(2)	. 1	23.8
1918	14.7	1.0	. 2	1.5	1	. 6	$\left.{ }^{2}\right)$	18.4	5. 3	3.3	$\left.{ }^{2}\right)$. 2	28.3
1919.	16. 3	5. 0	. 4	. 7	. 1	. 7	. 1	23.6	8. 8	4.7	${ }^{(2)}$. 3	38.1
1920	6. 7	2. 2	. 3	6	. 2	. 2		10.2	8.1	2.8	. 1	2	21.8
1921	21. 7	1. 0	. 1	1.2	. 2	1.8		26.1	5. 7	3.5	(1	. 3	36: 2
1922	10.6	2. 8	. 4	. 3	. 3	2		14.7	5. 7	2.6	(2)	. 2	23.4

Division of Crop and Livestock Estimates.
1 Ineludes all other causes.
${ }^{2}$ Less than 0.05 per cent.

Table 246.-Potatoes: Area and yield per acre in undermentioned countries. NORTHERN HEMISPHERE.

Country.	Area.					Yield per acre. ${ }^{1}$				
	Average, 19091913.	1920	1921	1922	1923, pre-liminary.	$\begin{aligned} & \text { A ver- } \\ & \text { age, } \\ & 1909- \\ & 1913 . \end{aligned}$	1920	1921	1922	1923, pre- limi- nary.
	1,000	1,000	1,000	1,000	1,000					
NORTH AMERICA.	acres. 483	acres. 785	acres. 702	acres. 684	acres. 561	Bush. 161. 2	Bush. 170. 1	Bush. 152.9	Bush. 135. 8	Bush. 203. 2
United States	3,677	3,657	3,941	4,307	3,816	$\begin{array}{r}161.2 \\ 97.3 \\ \hline\end{array}$	110.3	$\begin{array}{r}152.9 \\ 91.8 \\ \hline\end{array}$	105.3	$\text { 108. } 1$
Total comparable with 1923	4,160	4,442	4,643	4,991	4,377					
EUROPE. United Kingdom: England and Wales	434									
Scotland -----------	144	545 162	558 154	561	467	230.2	215.8	197.9	267.0	220.3
Ireland.---	588	584	${ }_{568}^{154}$	570	137	240. 8	285. 1	252. 1	283.2	223.5
Norway			130	126	126	203.9	127.0	168.0 200.0	223.8 259.5	227.1
Sweden	${ }^{2} 377$	364	363	400	392	152.7-	164. ${ }^{-7}$	177. 8	187. 0	155.3
Denmark	34151	228	208	204	204	205. 0	198. 8	241.2	241.4	
Netherlands	411	427	441	477	397	253.2	284.6	243.4	340.3	200.7
Belgium.-	388	366	419	445	374	277.0	226. 5	170.7	324. 6	237.6
Luxemburg	$\begin{array}{r}36 \\ \hline\end{array}$	33	35	37	374 35	178.9	160. 1	170.6	324. 6 189.4	237.6 176.4
France.	${ }^{4} 3,838$	3, 560	3, 595	3, 619	3,560	127. 5	120. 1	84.9	128. 4	98.4
Spain	4641	841	779	783	757	176. 3	128. 2	131. 2	138.7	126. 2
Portuga		63	45	68			98.7	134. 6	95.8	
Italy--.--	710	744	763	861	890	85.6	70.2	76. 5	62.4	70.2
Switzerlan	${ }^{8} 115$	124	113	112	111	214.5	227.8	224. 5	221.6	209.8
Germany	48,251	5,986	6,541	6, 725	6,735	203.8	171. 1	146. 9	222.2	177.7
Austria------	4 3, 094	291	327	403		147.5	84.9	93.6	127. 5	
Czechoslovakia		1, 494	1,574	1,606	1,574		123. 0	101. 1	207. 5	146.8
Hungary	4 1,707	626	, 665	- 635	${ }^{6} 637$	118.5	121. 4	69.0	76.4	99.0
Yugoslavi	${ }^{\prime} 628$	504	516	532		61.5	81.5	50.7	58. 5	0.0
Bulgaria--------------	48	20	20	20	24	61.5	48. 6	52. 0	68.0	50.8
Rumania-----------------	769	241	493	355	408	128.2-2	92.8	103. 4	106. 2	50.8
Poland---	${ }^{8}(3,397)$	4,061	4,796	5,409	5,632	132. 2	163. 7	128. 7	229.3	160.4
Lithuania	${ }^{8} 8(274)$	320	326	326	353	103. 5	147.3	156. 2	208. 3	156. 3
Latvia.	${ }^{8}(188)$	122	146	171		124. 8	112. 9	169. 6	145. 1	
Esthonia	${ }^{8}(174)$	157	$\bigcirc 160$	187	187	149.5	164. 4		141. 0	126.0
Finland.		176	168	185	168	14.5	116. 5	136.-3	146.5	94.1
Russia, including Ukraine and Northern Caucasia--	${ }^{8}(6,930)$		168	6,096		104. 1	116.5	13.3	80.5 114.0	94
Total comparable with 1909-1913	31, 953			30,691						
Total comparable with 1923			22,301	23, 230	23,168		-----	-	---	
AFRICA. Algeria Tunis \qquad \qquad	44	43 3	46 2	42 3	46 3	42.0	22.9	14.2	51.1	18.0
ASIA. Russia (Asiatic)	445			229		79.3			95.4	
Japanese Empire:						7.3			95.4	
Japan------------	169	297	256			146. 4	133.8	154.3		
Chosen-------------	1065	186	187	---	--1	107. 1	99.3	98.2	-----	

SOUTHERN HEMISPHERE.

Chile Trugu--	69	83 9	83 9	83		123.3	144.4	139.6	131.7	
Argentina-	217	390	336			140.6				
Union of South Africa	${ }^{3} 62$	45	3			49.5	80.0			
Southern Rhodesia---	(11)	2	$\overline{3}$	3			8.0			
Australia---	144	140	149			100.5	99.5	97.		
New Zealand.-	28	22	19	20		205. 8	214.9	220.3	212.5	
World total comparablewith 1909-1913	37,356									
World total comparable with 1923 .		---	6, 992	28, 266	27,594					

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated. Calendar years.

[^181]${ }^{7}$ Includes Bessarabia.
${ }^{8}$ Preliminary estimate of former Russian territory within 1923 boundaries.
${ }^{9}$ Estimate of U. S. Department of Agriculture.
${ }^{10}$ Two-year average.
${ }^{11}$ Acreage less than 500 acres.

Table 247.-Potatoes: Production in undermbntioned countries.

 NORTHERN HEMEISPHERE.| Countries. | $\begin{array}{\|c\|c\|} \text { Average, } \\ 1909-1913 . \end{array}$ | 1917 | 1918 | 1919 | 1920 | 1921 | 1922 | 1923, preliminary. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NOBTH AMERICA | 1,000 | | | | | | | 1,000 |
| Canada | bushels. 77, 843 | bushels.
 79, 892 | 104, 347 | Ustete. | $\begin{gathered} \text { bushels: } \\ 133,498 \end{gathered}$ | bushels. | 92, 908 | ushels.
 113, 991 |
| United States.-. | 357, 699 | 442, 108 | 411,860 | 322, 867 | 403, 296 | 361, 659 | 453, 396 | 412, 392 |
| Total comparable with 1909-1913.... | 435,542 | 522, 000 | 516, 207 | 448, 442 | 536,794 | 469, 006 | 546, 304 | 526, 383 |
| ited | | | | | | | | |
| E | | | | | | | | |
| Wales | 99,893 | 124, 731 | 157, 136 | 102, 032 | 117, 637 | 110, 432 | 149, 781 | 102, 891 |
| Scotland | 34, 674 | 41, 440 | 42,971 | 31, 061 | 46, 181 | 38, 827 | 44, 464 | 30, 613 |
| Ireland | 119, 874 | 155, 036 | 144, 231 | 102, 555 | 74, 141 | 95, 424 | 127, 579 | |
| Norway | ${ }^{1} 25,179$ | 39,700 | 28, 954 | 37, 912 | 31, 076 | 25, 995 | 32, 699 | 28,610 |
| Sweden | 57, 581 | 74, 252 | 67, 344 | 73, 537 | 59,801 | 64, 543 | 74, 788 | 61,251 |
| Denmark | ${ }^{2} 30,953$ | ${ }^{2} 312,882$ | ${ }^{2} 40,605$ | ${ }^{2} 53,087$ | 45, 316 | 50, 173 | 49, 249 | |
| Netherland | 104, 051 | 123, 978 | 130, 288 | 127, 403 | 121, 514 | 107, 346 | 162, 328 | 81,948 |
| Belgium. | 107, 479 | | | 103, 930 | 82, 912 | 71,534 | 144, 453 | 88,853 |
| Luxemburg | 6,439 | 5,500 | 5, 104 | 6, 696 | 5, 284 | 2, 856 | 7, 007 | 6,173 |
| France. | ${ }^{2} 489,377$ | 399, 962 | 251, 600 | 312, 708 | 427, 610 | 305, 324 | 464,661 | 350, 311 |
| Spain. | ${ }^{3} 112,997$ | 113, 477 | 95, 562 | 101, 019 | 107, 833 | 102, 224 | 108, 598 | 95, 497 |
| Portuga | | 6, 080 | 5, 600 | 5, 654 | 6, 218 | 6, 058 | 6,512 | |
| Italy .- | 60, 806 | 48, 112 | 51, 804 | 50, 989 | 52, 260 | 58,359 | 53, 689 | 62,404 |
| Switzerlan | ${ }^{4} 24,664$ | 38, 573 | 34, 304 | 30, 313 | 28,248 | 25,371 | 24, 820 | 23, 292 |
| Germany | 2 1, 681, 959 | 1, 264, 377 | 1, 070,772 | 760, 548 | 1, 024,301 | 960, 889 | 1, 494, 181 | 1, 197, 119 |
| Austria. | ${ }^{2}$ 456, 492 | 32, 890 | 21, 495 | 20, 022 | 24, 707 | 30, 607 | 51,378 | |
| Czechoslov | | 90, 899 | 85, 334 | 84, 091 | 183, 810 | 159, 068 | 333, 236 | 231, 063 |
| Hungary | ${ }^{2} 202,207$ | | | | 75, 967 | 45, 898 | 48,490 | 63, 043 |
| Yugoslavi | ${ }^{6} 61,721$ | | | | 41,079 | 26, 184 | 31, 100 | |
| Bulgaria | ${ }^{2} 454$ | 651 | 535 | 813 | | 1,040 | 1,360 | 1,220 |
| Rumania | 78,849 | | | 10,441 | 22,363 | 50, 987 | 37, 692 | |
| Poland. | ${ }^{9}(449,034)$ | | | 386, 315 | 664,920 | 617, 272 | 1, 240; 418 | 903,443 |
| Lithuan | ${ }_{8}^{8}(28,347)$ | | | 32,738 | 47, 127 | 50, 926 | 67, 903 | 55, 171 |
| Latvia | ${ }^{8}(23,470)$ | | | | 13, 771 | 24, 758 | 24, 806 | |
| Esthonia. | ${ }^{8}(26,008)$ | | | 18,349 | 25, 813 | - 25,000 | 26, 373 | 23,567 |
| Finland.- | 18, 443 | 19, 118 | 19,548 | 19, 953 | 20,497 | 22, 891 | 16, 009 | 15,816 |
| Russia, including Ukraine and Northern Caucasia | $8(721,219)$ | | | | | | 695, 122 | |
| Total comparable with 1909-1913..... | 4, 892, 170 | | | | | | 5; 512, 184 | |
| Tatal comparable with 1923 | | | | | 3, 123, 764 | 2, 795, 795 | 4, 495, 258 | 3, 422, 345 |
| AFRI | | | | | | | | |
| Algeria | 1, 847 | 2,756 | | 920 | 985 | 653 | 2,146 | |
| Tunis.. | | 92 | 220 | 138 | 147 | 147 | 165 | 147 |
| | 296 | | | | | | 21, 855 | |
| Japanese Empire: | | | | | | | | |
| Japan.- | 24, 738 | 47, 616 | 44, 634 | 67, 236 | 39, 736 | 39,506 | | |
| Chosen....... | ${ }^{3} 6,960$ | 13, 484 | 15, 584 | 15, 138 | 18, 471 | 18, 371 | | |

SOUTHERN FEMISPHERE.

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated. Calendar years.

[^182]6 Former Kingdom of Serbia.
7 Includes Bessarabia.
8 Preliminary estimate of former Russian territory
within 1923 boundaries.
${ }^{9}$ Estimate of U. S. Department of Agriculture.

Table 248.-Potatoes: Stocks on hand January 1, 1919-1923.

State and year.	Total production.	Merchantable stocks Jan. 1.		Per cent of stock held Jan. 1 by-		Farm price perbushel.	
		Per cent of crop.	Quantity.	Growers.	Dealers.	Dec. 1.	Mar. 1.
19 surplus late potato States: 1	1,000 bush.	Per cent.	1,000 bush.	Per cent.	Per cent.	Cents.	Cents.
1919-20.	225, 248	26.0	58,530	79.4	20. 6	151. 0	234.2
1920-21.	209, 222	35.3	95,061	85.2	14.8:	103. 1	65.6
$\begin{aligned} & \text { 1921-22. } \\ & 1922-23 \end{aligned}$	263, 052 325,479	31.4	82, 657	80.0	20.0	99.9	105. 2
1923-24.	288, 659	36. 3	118. 151	85.8 86.7	14.2	46.2	50.7
16 deficient late potato States: ${ }^{2}$			96, 799	86.7	13.3.	71.3	
1919-20.	73, 291	9.4	6,875	74.4	25.6	181.1	254.7
1920-21.	107, 644	12.0	12,930	81.7	18.3	130.5	105. 2
1921-22.	74,928	9.8	7,366	76.9	23.1	139.5	141. 3
1922-23.	98,406	11.5	11, 312	77.2	22.8	81.6	87.7
Total; 35 States:	99,171	11.3	11, 178	85.0	15.0	101.3	
1919-20.....	298, 539	21.9	65, 405.	78.8	21.2	158.8	239.5
1920-21	376, 866	28.7	107, 991	84.6	15.4	110.2	75.9
1921-22	337, 980	26.6	90, 023	79.6	20.4	110.1	114.5
1922-23.	423, 885	30.5	129,463	84.8	15.2	55.4	60.3
1923-24.-...------	385, 830	28.0	107, 977	86.4	13.6	79.1	
Leading surplus States:							
1919-20	25,530	44.5	11, 373	78	22	140	200 -
1920-21	21, 771	44. 6	9,699	88	12	125	55
1921-22.	38,442	43.7	18,814	81	19	85	96
1932-23-	25, 245	47.0	11, 865	84	16	45	60
1923-24	31, 992	50.0	15, 996	84	16	70	
1919-20.	33,790	30.2	10, 218	90.	10	145	220
1920-21.	40,625	40.3	16,380	91		118	63
1921-22	33,990	29.0	9,850	92	8	108	116
1922-23	37,400	32.8	12, 252	92.	8	60	72
1923-24.	39,729	38.0	15, 096	95	5	95	
Pennsylvania- $1919-20$	23,400	16.5	3,861	80	20	154	223
1920-21	28, 290	24.2	6,846	91	9	124	78
1921-22	21, 586	19.2	4,155	81	19	133	130
1922-23	27,432	23.1	6,340	80	20	75	77
Michigan-	26, 145	28.0	7,321	86	14	105	
Michigan- 1919-20	27,000	21.0	5,670	77	23	135	228
1920-21	36, 225	38. 4	13,910	83	17	92	52
1921-22	27, 200	30.0	8, 160	- 81	19	95.	96 :
1922-23	37, 842	37.2	14, 066	88	12	34	40
Wisconsin-	35,796	39.0	13; 981	87	13	50	
1919-20.	28,388	21.6	6,132	78.	22	140	227
1920-21	33, 264	37.2	12, 374	88	12	80	62
1921-22.	21, 420	39. 6	8,482	,74	26	95	109
1922-23.	40, 67.2	39.6	16, 106	88	12	33	32.
Minnesota-	26, 112	33.0	8, 616	88	12	50	
1919-29	28, 884	21.5	6, 196	76	24	153	237
1920-21	31,581	32.5	10, 264	80°	20	80	54
1921-22.	32, 250°	30: 1	9,707	73	27	90	94
1922-23.	43, 740	41.1	17,912	74	26	35	33.
1923-24	38, 304	$33.0-$	12, 640	76	24	55	
North19-20	5,229.	10.5	549	86	14	160	243
1920-21	6,557	16.5	1,082	62	38	98	9 F
1921-22.	11,904	13.7	1,625	63	37	70	93
1922-28.	18,900	30.0	5,670	83	17	31	38
1923-24.	13, 114	23.0	3,016	78	22	35	
South Dakota- 1919-20:	4050	16.2	656	80	20	190	254
1920-21	7,950	17. 5.	1,395	82	18	197	${ }_{92} \mathbf{9}$:
1921-22	5,490:	10.0:	549	82	18	107	108
1922-23.	8,580	15.3	1,313	91	9	44	52
1923-24-	7,744	13.0	1,007	85	5	50	
Nebraska- $1919-20$	5,720:	25.0	1,430	78	22	190	275
1920-21	8,415	20.0:	1, 683	85	15	120	106
1921-22	8,160	26.4	2,154	73	27	120	137
1922-23.	11,678.	$25.0{ }^{\circ}$	2,919	88	12	47	54
$\xrightarrow{\text { 1923-24- }}$	8,880	16.0	1,421	94	6	80	
1919-20.	8; 855	28.5	2, 524	89	11	170	245.
1920-21	9,490	36. 8	3,488	92	8	80	53
1921-22	14,916	44.2	6, 600	90	10	73	${ }^{65}$
1922-23	18, 460	43.5	8, 030	${ }_{92}^{95}$	5 8	37 65	25
1923-24.	13, 530	36.0	4,871	92	8	65	

[^183]Table 248.-Potatoes: Stocks on hand January 1, 1919-1923-Continued.

State and year.	Total production.	Merchantable stocks Jan. 1.		Per cent of stock held Jan. 1 by-		$\underset{\text { Farm price per }}{\text { bushel. }}$	
		Per cent of crop.	Quantity.	Growers.	Dealers.	Dec. 1.	Mar. 1.
Leading surplus States-Con. Idaho-	1,000 bush.	Per cent.	1,0003ush.	Per cent.	Per cent.	Cents.	Cen's.
1919-20-.	6,665	28.7			37		
1920-21	8,100	49.0	3, 969	90	10	68	48
1921-22-23	11,840 14,985	40.2 47	4,757	82	18	${ }_{31} 7$	89
1922-23-	14,985 11,725	47.0 38.0	7,043 4,455	98 89	2 11	31 50	55

Division of Crop and Livestock Estimates.
Table 249.-Potatoes: Carlot shipments, by States of origin, 1917-1922.

State.	Crop movement season.											
	1917-18	1918-19	1919-20	$0^{1920-21}$	$1921-22$	Quarters, 1922-23.						
						$\begin{aligned} & \text { Apr.- } \\ & \text { June. } \end{aligned}$	$\begin{aligned} & \text { July- } \\ & \text { Sept } \end{aligned}$	$\begin{aligned} & \text { Oct.- } \\ & \text { Dec. } \end{aligned}$	$\begin{aligned} & \text { Jan.- } \\ & \text { Mar. } \end{aligned}$	Apr.-	Total.	
Maine	$\begin{gathered} \text { Cars. } \\ 14,794 \end{gathered}$	$\begin{gathered} \text { Cars. } \\ 19,026 \end{gathered}$	$\underset{23,444}{\text { Cars. }}$	$\begin{aligned} & \text { Cars. } \\ & 17,817 \end{aligned}$	Cars.$38,037$	Cars.	$\begin{aligned} & \text { Cars. } \\ & 1,976 \end{aligned}$	$\begin{aligned} & \text { Cars. } \\ & 8,111 \end{aligned}$	$\begin{aligned} & \text { Cars. } \\ & 9,012 \end{aligned}$	$\begin{gathered} \text { Cars. } \\ 15,286 \end{gathered}$	$\begin{gathered} \text { Cars. } \\ 24,385 \end{gathered}$	
New York:-------------1-1	$\begin{aligned} & 4,939 \\ & 5,171 \end{aligned}$	$4,350$		-5,501		--						
Long İ?					$\begin{array}{r} 4,959 \\ 14,029 \end{array}$		$\left\lvert\, \begin{gathered} 2,586 \\ 92 \end{gathered}\right.$	$\begin{aligned} & 3,538 \\ & 4,550 \end{aligned}$	$\begin{aligned} & 1,058 \\ & 6,058 \end{aligned}$	34 11,579	$\begin{array}{r} 7,216 \\ 12,079 \end{array}$	
Other-		5,739 5 5 2	$\begin{array}{r} 10,409 \\ 3,742 \end{array}$	$\begin{array}{r} 17,147 \\ 6,489 \end{array}$								
Pennsylvani	11,709 3,727	$\begin{aligned} & 5,889 \\ & 2,119 \end{aligned}$			$\begin{array}{r} 10,476 \\ 3,564 \end{array}$		$\begin{array}{r} 15,377 \\ 1,017 \end{array}$	$\begin{aligned} & 2,653 \\ & 3,052 \end{aligned}$	1,278	$\begin{array}{r} 81 \\ 1405 \end{array}$	$\begin{array}{r} 18,335 \\ 5,752 \end{array}$	
Maryland:	$\begin{array}{r} 2,286 \\ 625 \\ 22 \end{array}$	$\begin{aligned} & 703 \\ & 233 \end{aligned}$	$\begin{gathered} 1,434 \\ 667 \end{gathered}$	2, 259	$\left.\begin{array}{r} 2,123 \\ 529 \\ \\ \\ 27 \end{array} \right\rvert\,$	206	2, 847	223	40	79	3,0.53	
Eastern Shore, first.												
Eastern Shore, second				799								
Other.		8, 10	9, 235	11,948		5,450	8,282			19		
Eastern Shore, first	14, 123							185	103			
Eastern Shore, second	$\begin{array}{r} 214 \\ 5,003 \end{array}$	2, 285	, 2982,285	1,9732,995						12, 322		
Norfolk, first					$\begin{array}{r} 359 \\ 5,192 \\ 525 \end{array}$	2,663	1,430	114	56	41	4,093211	
Norfolk, secon	$\begin{aligned} & 328 \\ & 372 \\ & 7 \end{aligned}$	591	$\begin{aligned} & 174 \\ & 102 \end{aligned}$			--190						
Other					407		155				385	
North Carolina	4,713	5,605	3, 306	$\begin{aligned} & 3,513 \\ & 3,070 \end{aligned}$			$\begin{array}{r} 434 \\ 5 \\ 3 \\ 1,292 \end{array}$	5	7	73		
South Carolin	2, 4 4, 49	2, 812	1,217		2,5092,344					-------	4, 4,345	
Florida-		11,062	$\begin{array}{r} 2,275 \\ 12,23 \\ 12,237 \end{array}$	17,119		$\begin{array}{r} 4,337 \\ 25,039 \end{array}$			$\begin{array}{r} 2 \\ 3 \\ 5,051 \end{array}$	- 7 7, 0 -	5, 04619,829	
Michigan	$\begin{array}{r} 4,494 \\ 9 ; 431 \\ 13,852 \end{array}$				15, 222							
Wisconsi		20,655	21, 975	18, 661	11, 045		1, 582	7, 338	7,393	${ }^{1} 5,450$	21,763	
Minnesota	$\begin{array}{r} 16,477 \\ 462 \\ 353 \\ 9.63 \\ 2,026 \end{array}$	23, 515	22, 058	23, 214	29,568		$\begin{array}{c\|c} 6,107 & 10,187 \\ 235 & 576 \\ 1,051 & 3,959 \\ 757 & 1,675 \\ 1,365 & 1,740 \end{array}$		$\begin{array}{r} 7,471 \\ 25 \\ 1,803 \\ 69 \\ 1,679 \end{array}$	$\begin{array}{rl} 1 & 5,143 \\ 1 & 7 \\ 1 & 1,538 \\ & 201 \end{array}$	$\begin{array}{r} 28,908 \\ 8,93 \\ 8,351 \\ 2,702 \end{array}$	
Iowa-		943	251	922	91							
North Dak		2,530	2, 229	1,846	10, 522							
South Dak		1,291	689	1, 926	3,345							
Nebrask		3, 823	1,661	3, 071	5,331				780	5,564		
Kansas.	$\begin{array}{r} 844 \\ 805 \\ 641 \\ 1,076 \\ 1,693 \end{array}$	$\begin{array}{r} 824 \\ 758 \\ 579 \\ 4,032 \end{array}$	1, 132	1,982	2,380	$\begin{array}{r} 61 \\ 30 \\ 1,912 \\ 1,013 \end{array}$	2, 328	40			$\begin{array}{\|l\|l\|} 4 & \cdots \cdots- \\ \hline \end{array}$	2,433
Kentucky			866	1, 132	${ }_{641}$			10	54	483		
Alabama			90 559	308 88	${ }_{1} 696$					1, 025		
Texas...		2, 312		738	1,107	1,410	43 10	$\begin{array}{r}14 \\ 3 \\ \hline\end{array}$	13		1,083	
Oklahoma	$\begin{aligned} & 665 \\ & 371 \end{aligned}$	$\begin{aligned} & 350 \\ & 280 \\ & 2 \end{aligned}$	$\begin{aligned} & 677 \\ & 186 \\ & 352 \end{aligned}$	$\begin{aligned} & 592 \\ & 236 \end{aligned}$	$\begin{aligned} & 281 \\ & 138 \end{aligned}$	$\left.\begin{gathered} 945 \\ 317 \end{gathered} \right\rvert\,$	52 11				1,000	
Arkansas								6	7	$\begin{array}{rr} \\ & 554 \\ 1 & 158 \end{array}$	1,3411,4121,037	
Montana	355	771		949	1,834		65	611407	182			
W yoming	12, 462	13,647	8,810	11,345	17958		1943,227		278			
Colorado								4, 282	5,607	12,354	15, 470	
Utah	8161,417		426	563	1,074	3	1,325	498	48	161	2, 036	
Nevada		726	689	415	465			367	259	11	744	
Idaho-	7, 120	7,727	6, 853	8, 143	14, 670		2, 760	4,132	4, 376	14,945	16, 213	
W ashing	2, 630	2, 924	3, 098	3,765	6, 194		609	1,279	1, 449	1,728	5, 065	
Oregon	1,903	1,628	786	1,756	1,386		451	386	302	703	1, 842	
California:												
Northern district	7	8, 151	7,118	8, 403	6, 500	530	1,466	1,978	1,659	227	5, 860	
${ }^{\text {S }}$ Southern district	()	2, 200	1, 369	1, 687	2, 741	431	1,374	40	44	16	1,905	
All oth	1,980	1,667	1, 123	1,336	1,593	729	520	386	277	146	2,058	
Tot	161, 596	76, 552	167, 870	199, 165	238, 546	28, 95	61, 416	68, 678	56, 270	48, 81C	254, 127	

[^184]Table 250.-Potatoes: Carlot shipments, by States of origin, 1917-1923.

State, and crop movement season beginning Apr. 1 .	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr	May.	June.	July.	Total.
Maine:	Cars.	Cars.	Cars.	Cars.	Ciars.				Cars.	Cars.	Cars.	Cars.	Cars.	Cars.			
1917-18.					71	$1,699$	$1,986$	1,331	1, 390	1,808	$1,673$	$2,020$	1,530	Cas.	445	Cars 16	$14,794$
1918-19					91	2,076	2, 466	1, 596	1, 700	1,979	1, 417	2,471	2, 281	1, 618	1, 271	60	19, 026
1919-20					947	2,211	3, 338	2, 543	2, 465	2,837	1,474	2, 796	3,493	1, 208	1, 132		23, 444
1920-21					91 579	1,126	2,170	2, 046	1, 478	2, 478	2,036	2, 495	1, 778	1, 643	458	18	17, 817
1921-22-23-					579 198	4,452 1,778	4,681	2, 882	2, 768	3, 569	3, 386	4,473	4, 814	4,459	1,918	56	38, 037
1922-23-					198 281	1,778 3,943	3,077 5,737	2, 675 3,742	2, 359 2,995	2, 717	2, 782	3,513	2,589	1,523	1,131	43	24, 385
New York:					281	3,943	5, 737	3, 742	2,995								
1917-18				36	733	1,052	2, 228	1,043	478	913	1, 145	1,104	891	413	74		10, 110
1918-19				80	608	1,169	2,067	1,265	875	902	1,687	1,012	927	374	116	7	10,089
1919-20				117	782	+ 516	2,920	2, 071	982	1,298	1,153	1,929	817	214	15	- 3	12, 817
1920-21-22-				$\begin{array}{r}15 \\ 203 \\ \hline\end{array}$	336 1,360	999 2,121	2, 363	2, 636	1,008	1, 316	1,787	2,317	2,063	1,429	192	3	16, 502
1922-23				203 93	1,360 815	2,121	4,914 3,396	1, 2,646	1,356 1,830	2, 138	1,517	1,818	1,129	428	57	1	18, 988
1923-24.			6	52	1,867	1, 634	2, 270	1,905	979		-	1	5	354	97	3	19,295
New Jersey:					1,867	1,634	2, 270	1,									
1917-18.				112	4,669.	3,919	1,979	563	76	57	84	105	111	27	7	-----	11, 709
1918-19			2	303 618	3,075	1,641 3,292	368 970	223 410	110 56	27	32	48	41	13	6		5, 889
1920-21				1,567	5,942	3,282	970 2,747	410	56 118	32 37	2 24	50 109	$\begin{array}{r}3 \\ 3 \\ \hline\end{array}$	5			10,409
1921-22				2, 107	5,854	1, 634	377	284	49	23	55	75	16	2			17,142 10,476
1922-23			7	2, 234	8,387	4,756	1,971	609	73	34	9	174	72	9			18, 335
Pennsylvania				86	3,869	1,704	357	183	19								
1917-18					16	371	1,051	578	257	347	299	286	377	125	20		3,727
1918-19					14	264	- 489	309	161	175	158	192	240	116	1		2,119
1919-20-21					80	549	743	964	320	351	236	274	151	71	3		3,742
1920-21-22.				1	7 69	331 426	1,316 1,182	1,879 578	418	550	397	717	564	291	15	3	6,489
1922-23					r 124	426 893	1,182	1878 1,176	241 44	412	286 290	211	121	36 74	12	1	3, 564
1923-24.					30	196	1, 569	-835	269		290		316	74	12	3	5,752
Virginia:																	
1917-18		4	4, 962	11, 487	3,026	288	110	207	76	22	63	65	101	16	13		20, 440
1918-19		1	2,470	7,570	936	124	16	410	135	83	43	74	54	13			11, 929
1919-20			3,955	7,311	330	22	13	419	82	19	12	11	20				12, 194
1920-21			4,813	8,220	1,801	236	123	784	171	125	55	73	200	29			16, 630
1921-22-		400	9,728	7,993	468	59	61	397	86	43	56	131	98	44			19, 564
1922-23		16	8,287 5,198	9,142 9,443	651 572	74 64	49 26	246 284	40 17	60	43	58	75	2			18, 743
North Carolina:			5,108	¢, 44	572	64	26	284	17								
1917-18		221	3,925	554		1	6	2				3		1			
1918-19		32	4,077	1, 421	12	3	4		15	3	3	16	11	8			5,605
1919-20		3	2, 415	812	59	6	1	2	7	1							3,306
1920-21-		30	3, 288	152	2	2	13	18		1		3	4				3,913
1921-22-		404	2,515 3,479	515 392	115	21	14	6	2	2	7	1	7	1			3,597
1923-24-		201	3,479 3,139	392 215	41 66	19	14 4	6		2	2	3	3				4,144

Table 250.-Potatoes: Carlot shipments, by States of origin, 1917-1923-Continued.

State, and crop movement season beginning Apr. 1.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June:	July,	Total.
South Carolina: 1917-18	Cars.	Cars. 1, 7.70	Cars. 670	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars. 2, 440
1918-19 -		1, 800	1,927	85													2, 2,812
1919-20		341	838	38													1, 217
1920-21	2	852	2, 209	6						1							3, 070
1921-22		2, 035	451	14						3		6					2,509
1922-23		3, 293	1, 044	4	1				1	2							4,345
Florida: ${ }_{\text {1923 }}$		1,848	2,347	11													
1917-18.	${ }^{1} 1,472$	2,618	190	4						3	5	2					4, 294
1918-19	${ }^{2} 1,264$	2,950	584	36	--	2				3							4,839
1919-20	2734	1,499	42														2,275
1920-21	148	2, 335	924	42				2									3,351
1921-22	${ }^{3} 1,775$	539	28							2							2,344
1922-23.	4 5 5 5 1, 1,712	2,214 2,291	113	3	3		1			3							5, 046
Michigan:	1,089	2,291	108	3				1									
1917-18.					16	388	1,572	1,296	598	458	751	938	1,326	1,553	531	4	9, 431
1918-19					20	328	1,547	2, 072	743	790	592	1,154	1,725	1,291	770	30	11, 062
1919-20					50	601	2, 687	2,329	1,043	1,099	1,011	1,714	1,134	. 543	26		12, 237
1920-21				2	39	577	2, 210	3,116	1,253	1,630	1990	1,657	2,174	2,632	813	26	17, 119
1921-22					${ }^{3}$	789	3,210	1,886	880	1,516	1,240	2, 041	1,522	1,414	718	3	15, 222
1922-23-					76	1,216	2, 6,00	2, 475	1,380	1,468	1,415	2, 168	2,920	2,321	1,633	${ }^{6} 157$	19, 820
Wisconsin:					50	864	2, 333	2, 359	1, 088								
1917-18.					118	1,158	3, 707	1,383	575	887	1,461	1,643	1,452	1,011	447	10	13, 852
1918-19				1	134	2,768	4,630	2, 464	1,545	2, 460	1,598	2,122	1,608	963	362		20,655
1919-20					127	3, 250	7, 019	2, 810	1,567	2, 137	1,754	1,923	893	-344	148	3	21, 975
1920-21					18	450	3, 189	2, 878	1, 214	2,337	1,933	2, 385	2,234	1,592	431	2	18, 661
1921-22					76	754	2, 125	. 719	, 626	1,367	1,201	1,993	1,166	. 755	260	3	11, 045
1922-23					205 185	$\begin{array}{r}1,377 \\ \hline 982\end{array}$	3,685 2,458	2,018 1,415	1,635 1,040	2, 495	1,906	2,992	2,716	1,735	944	55	21, 763
Minnesota:							2,										
1017-18				15	1,312	1,918	4,074	1,445	675	1,261	1,510	2,119	1,328	625	179	16	16, 477
1918-19.				96	3, 099	4,573	4, 623	1,733	758	1,839	1,359	2,365	1,612	1,018	434	6	23, 515
1919-20				83	2, 438	5, 359	5, 817	1,324	693	1,875	1,162	1,900	1,027	262	117	1	22, 058
1920-21				64	1,344	2,770	6,870	3, 279	934	1, 469	1,723	2,542	1,133	863	214	9	23, 214
1921-22				508	1960 1,432	4,869 4,167	9,029	2, 197	892	1, 894	1,442	4, 443	2, 514	1,080	248		29,568
1923-24				15	1,754	5, 980	7,936	2, 650	1,120	1,	1, 53	4,215	3, 274	1,350	458	21	28, 908
Nebraska:																	
1917-18.					38	27	652	668	74	98	224	190	37	17	1		2,026
1918-19.					110	450	1, 063	709	264	370	204	320	235	87	11		3,823
1919-20				1	96	182	712	257	59	173	84	71	22	4			1, 661
1920-21				1 267	152	338	$\begin{array}{r}924 \\ \hline 1.265\end{array}$	600	141	306	284	261	52	11	1		3, 071
1921-22-			1	267	446	938	1,265	390	294	495	342	456	238	184	15		5, 331
1922-23.				51 12	570 266	744 387	903 656	461 712	376 279	743	432	504	530	210	40	--------	5,564

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

[^185]- Fncludes 36 cars in March
- Includes 9 cars in August.

7 Includes 20 ears in March.
8 Includes 115 cars in March.

Table 251.-Potatoes: International trade, calendar years, 1911-1922.

Country.	A verage, 1911-1913.		1920		1921		$\stackrel{1922,}{\text { preliminary. }}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
Principal exporting countries.	$1,000$ bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels.	1,000 bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$	1,000 bushels.	1,000 bushels.
Canada	525	1,207	923	5,583	466	3, 258	347	3,609
Czechosiovaki	36	288	1860	${ }_{1}^{192}$	283	272 165	319	$\begin{array}{r}\text { 2, } \\ \hline 834 \\ \hline 88\end{array}$
Denmark	40^{-}	928	30	7, 954	55	2, 322	123	2, 244
Esthonia				1923		1719		${ }^{1} 1,712$
France.	7, 143	8,683	2, 465	7,903	5, 870	8,667	13, 544	5,167
Italy--	242	3,975		3, 074	706	4, 260	3	${ }_{1}^{4}, 526$
Japan-..-.--	1, 952	440 16,451	44	14, 424	350	18, ${ }^{240}$	735	1235 11,538
Portugal	273	$\begin{array}{r}16,400 \\ \hline 15\end{array}$	1770	1, 124				
Spain.-		1,835		326		899	506	1,346
Sweden	700		208.	1,535	657		78	${ }^{1} 750$
United States	5,707	1,814	6, 062	4, 154	2, 018	3,500	1,775	2, 897
PRINCIPAL IMPORTING COUNTRIES.								
Algeria.	1,218	931	1,631	473	994	720	1,200	614
Argentina	1,337	543	191 6,037	${ }_{(2)}^{1,560}$	4,148	24	13,666	2
Austria-Hungary	4,070	1, 751						
Belgium.-	4, 921	8,692	1,520	2, 371	10,946	677	6,641	2,975
Brazil	939	${ }^{(2)}$	276	${ }^{(2)}$	80	18		
British In			752	7	769	10	874	12
Cuba	2, 001	2	2, 802					
Egypt	599	${ }^{3} 28$	785	4	${ }_{6}^{624}$	13	${ }_{5}^{594}$	${ }_{11}^{215}$
Finland.	29, 489	12,412	- 172	2,109	19,728	${ }^{4} 2148$	6, $\begin{array}{r}527 \\ 6,158\end{array}$	
Hermany	29,180	12,412	26,852	1 1,051	- ${ }_{1} 12$	${ }_{1}^{21787}$	${ }_{1}^{6} 1403$	
Norway	215	60	97	568	499	21	398	77
Philippine Islands	334 309		291 1527		$\begin{array}{r}352 \\ 1469 \\ \hline\end{array}$		300	
Russia ----	3,172	7,42	+ 456	584	1, 082	51^{-1}	2, 260	19
Tunis	${ }_{5} 594$	52	316	3	313	3	320	4
United Kingdom	11,382	6, 246	9, 719	690	5, 678	2, 825	6, 405	${ }^{1} 5,433$
Uruguay --.-	${ }^{3} 7888$	${ }_{77}^{1}$	$\left.\begin{array}{r} 11,418 \\ 2.139 \end{array} \right\rvert\,$	871	$\begin{array}{r}1955 \\ 1818 \\ \hline\end{array}$	1,280	$\begin{array}{r} 11,325 \\ 849 \end{array}$	455

Division of Statistical and Historical Research. Compiled from official sources except where otherwise noted

> 1 International Institute of Agriculture. $\begin{aligned} & 2 \\ & 2\end{aligned} \quad$ Eight months, May-December. 8 One year only. 500 bushels.

Table 252.-Potatoes: Farm price per bushel, 1st of month, United States, 19081923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July 1- } \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted av.
1908	Cts. 77.8	$\underset{83.6}{C_{8}}$	cts. 78.0	$\begin{aligned} & \text { Cts. } \\ & \text { 74. } 8 \end{aligned}$	$\begin{gathered} \text { Cts. } \\ 69.2 \end{gathered}$	$\begin{aligned} & \mathrm{Cts.}^{2} \\ & 70.6 \end{aligned}$	$\begin{gathered} C t s . \\ 72.0 \end{gathered}$	$\underset{\text { 73. }}{\substack{\text { Cts. }}}$	Cts. 80.0	$\begin{gathered} \text { Cts. } \\ 86.3 \end{gathered}$	Cts. 97.3	$\begin{gathered} C_{978 .} \\ 97 . \end{gathered}$	${ }_{77.0}$
09	91.0		71.5		57.8		56.0	56.2				37.	
1910-11	40.1	64.	72.9	67.8	55.7	55.7	54. 1	55.1	55. 3	55. 5	62.	63.3	5
1911-12	96.3	136.0	113.7	88.3	76. 3	79.9	84.5	94. 4	102.0	117. 1	127.3	119.7	96.0
1912-13	103.6	86.5	65.0	51.1	45.5	50.5	50.6	53. 1	52.0	50.3	48.2	55. 2	${ }^{55.2}$
1913-14	49.8	69.2	75.3	73.9	69.6	68.7	68.4	69.7	70.7	70.0	71.4	71.3	70.0
Av. 1900	76.2	88.	79.	69.	61.0	1.	62.	65.	66.9	68.	69.	69.	68.
1914-15	81.5	87.	74.9	64.7		48. 7	49.	50.4	,	47.8	50.	50.8	58.3
1915-16	52.1	56.3	50.5	48.8	60.8	61.7	70.6	88.0		97. 6	94.	98.8	66.8
1916-17	102. 3	95. 4	109.3	112. 0	135.	146. 1	147. 3	172. 4	240. 7	234.7	279. 6	274.0	155.2
1917-18	247.9	170.8	139.1	122.1	127.8	122.8	121. 0	122.	120. 3	92.6	80.	75.5	126.4
1918-19	94.9	141.6	148.8	143. 6	127. 2	119.3	116. 1	114.	109. 4	105. 4	118. 9	121.	126.2
1919-20	128.4	192.8	187.5	164. 2	152.8	115. 5	178. 6	217.6	$\begin{gathered} 243.5 \\ 84.0 \end{gathered}$	$\begin{array}{r} 295.6 \\ 77.8 \end{array}$	393. 6	421.3	203.7 137.0
1920-21	386.0	302. 9	184.9	134.8	118.3	114. 5	105. 6	95.6	84.0	77.8	68.0	67.1	137.0
Av* ${ }^{\text {1914-1920 }}$	156. 2	149.6	127.9	112.9	110.8	110.4	112.7	123.0	134.7	135.	155.	158.	124.
1921-22	. 9	136.9	168.6	137.6	123.5	110.1	108.6	115.5	117.8	113.6	104. 3	104.	122.6
1922-23	103. 3	114.8	88.0	69.6	62.8	58.1	59.3	64.7	63.6	73.6	81.3	76. 6	72.6
1923-24	83.1	122.	119	100. 2	82. 7	82							

[^186]Table 253.-Potatoes: Farm price per bushel, by States, December 1, calendar years, 1909-1929, and value per acre 1923.

State.	1908	1909	1910	1911	1912	1913	$\begin{gathered} \text { A } \\ 1909 \\ 1913 \end{gathered}$	1914	1915	1916	1917	1918	1919	1920	$\begin{gathered} A \nabla . \\ 1914 \\ 1920 \end{gathered}$	1921	1922	1923	
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	C	Cts.	Cts.	
Me	61	47	42	77	55	53	55	33	70	142	130	120	140	125	109		45	70	180.60
N. H	73	64	52	87	61	83	69	60	95	166	167	145	175	155	138	135	105		212. 75
Vt	67	44	45	79	55	72	59	47	81	139	140	138	157	125	118	104	93	100	180.00
Mass	85	79	70	96	75	85	81	71	94	175	175	170	190	150	146	152	95	135	236. 25
R. I.	86	80	69	106	77	90	84	70	92	185	175	173	180	160	148	160	90	130	214.50
Conn	90	83	70	105	78	87	85	65	96	175	164	165	195	150	144	150	100	147	227.85
N.Y	75	50	48	90	58	80	65	44	82	158	130	122	145	118	114	108	60	95	116.85
N. J	89	82	65	105	66	82	80	61	75	155	141	170	169	125	128	142	72	125	118. 75
Pa	80	65	52	93	57	80	69	58	75	148	135	151	154	124	121	133	75	105	110.25
Del.	83	72	60	96	70	75	75	70	75	125	130	140	125	100	109	110	70	102	81.60
Md	74	66	54	91	58	67	67	60	62	133	119	120	130	95	103	110	60	100	80.00
	72	70	58	96	65	80	74	77	61	137	125	120	157	95	110	110	65	100	93,00
W. V	85	68	67	104	62	90	78	81	65	158	132	160	175	135	129	163	87	105	126. 00
N. C	77	81	73	108	76	82	84	92	73	140	143	135	163	142	127	143	101	120	103. 20
S. C.	110	115	105	122	112	130	117	125	115	175	210	193	200	180	171	150	128	160	156.80
Ga	110	100	105	110	87	105	101	105	99	175	195	185	217	208	169	165	140	160	112.00
Fla	135	120	100	145	110	117	118	113	115	200	205	200	210	200	178	190	175	190	174.80
Ohio	77	56	51	84	53	85	66	53	70	182	143	150	192	135	132	155	90	100	98.00
Ind	84	52	50	87	50	84	65	56	56	177	139	135	195	133	127	145	84	86	90.30
	83	61	59	90	60	89	72	61	59	179	152	148	196	145	134	140	90	88	80.96
Mich	58	35	31	71	41	53	46	30	56	160	105	89	135	92	95	95	34	50	57.00
W is	60	38	38	62	34	54	45	30	45	147	90	80	140	86	88	95	33	50	48. 00
Minn	56	35	64	58	28	52	47	32	39	130	91	75	153	80	86	90	35	55	52.80
Iowa	60	55	60	73	46	82	63	59	54	175	131	133	192	122	124	140	67	77	64. 68
Mo.	74	67	68	102	69	93	80	73	60	180	137	153	184	151	134	135	92	88	88.00
N. Dak	56	45	91	55	28	56	55	42	41	115	130	73	160	98	94	70	31	35	29. 05
S. Dak	51	63	85	70	36	63	63	47	35	137	111	93	190	97	101	107	44	50	44.00
Nebr	55	60	84	92	51	78	73	54	42	150	107	118	190	120	112	120	47	80	64. 00
Kans	83	79	90	106	73	91	88	77	74	165	152	144	190	150	136	135	92	99	85.14
Kу.	81	64	62	107	67	102	80	84	55	142	140	165	210	150	135	165	100	120	102. 00
Tenn	71	71	65	108	70	97	82	91	63	149	126	165	172	160	132	165	110		100.80
Ala	95	98	94	118	90	105	101	101	90	169	182	181	215	200	163	170	150	150	120.00
Miss	93	95	94	115	90	100	99	95	84	160	168	165	185	200	151	200	160	154	113.96
La	92	91	90	100	83	96	92	97	95	167	184	150	220	203	159	180	150	150	94. 50
Tex	98	106	110	126	105	112	112	104	105	190	210	200	210	220	177	190	160	160	88.00
Okla	98	95	100	124	93	105	103	90	84	195	180	195	205	180	161	185	123	128	84.48
Ark.	86	92	85	115	92	100	97	97	76	190	157	184	205	175	155	180	130	136	80.24
Mont	70	51	85	74	40	67	63	64	50	120	102	80	160	105	97	80	40	73	80.30
W yo.	66	63	82	140	60	65	82	70	60	128	104	85	190	120	108	118	50	93	88.35
Colo.	60	57	55	99	41	65	63	50	55	135	91	99	170	80	97	73	37	65	79.95
N. Me	90	101	104	100	65	140	102	95	95	175	165	160	190	210	156	180	145	- 160	80.00
Ariz		130	126	140	125	135	131	120	100	180	150	205	195	190	163	140	90	140	84.00
Utah	55	43	59	85	49	58	59	60	63	130	78	97	137	80	92	85	40	70	117. 60
Nev	75	85	80	93	60	68	77	70	70	130	120	123	150	156	117	120	60	105	182. 70
Idaho	60	48	65	65	29	50	51	48	56	127	79	81	151	68	87	77	31	50	87.50
Wash	67	47	73	68	36	60	57	55	53	98	92	101	145	95	91	99	45		108. 50
Oreg	68	60	70	67	31	58	57	60	60	90	80	100	150	80	89	109	52	70	66. 50
Calif------	77	77	85	90	65	70	77	70	75	140	150	120	171	150	125	130	72	130	195.00
U. S.-	69.7	54.2	55. 7			68.7	61.84	48.76	61.71	$146.1 \mid$		19.3	59.5	114. 51	10.4	10.1	58.1	82. 3	88.92

Division of Crop and Livestock Estimates.

${ }^{1}$ Based upon farm price Dec. 1

Table 254.-Potatoes: Monthly average jobbing prices, per 100 pounds, at ten markets, 1919-1923.

Market, and crop movement seasor.	Apr.	May.	June.	Juiy.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.
New York:														
1919	\$6.25	\$4. 29	\$4.37	\$3. 43	\$3. 39	\$2. 79	\$2. 57	\$2. 63	\$3.09	\$4.23	\$4.49	\$5.49	\$7. 58	\$7. 19
1920-21		9.03	6.93 .	5. 54	2.56	1.83	1.93	1.96	1.82	1.80	1.31	1.51	1.28	1. 22
1921-22	4.41	4.18	1.90.	2.23	2.90	2.11	2.09	1.92	2.07	2.33	2.18	2.03	1. 79	1.58
1922-23	4.07	3.27	3.03 .	1.81	1.04	. 95	. 96.	1.22	1. 36	1.39	1.44	1.87	2.09	1. 76
1923-24	7.24	4.13	3.08	3.08	2. 57	1.49	1.85	1.67	1. 59					
Chicago: 1919-20.							12.40		3.83	5.54	4.80	6.00	16.98	7.40
1920-21.		9.14	8.38	16.44	13.42	12.40	11.85	12.13	11.58	11.29	11.15	11.25	1.98	1.87
1921-22	4.83	4. 50	12.42	12.33	13.11	12.65	12.00	11.75	1 1.83.	${ }^{1} 1.98$	11.96	11.80	11.69	11.70
1922-23	4.16	3. 57	13.03	12.29	11.63	11.17	11.00	11.05	1.96	11.02	11.07	11.35	11.53	11.13
1923-24		4.80	-13.15	:12.76	12.18	11.70	1.1.14	11.24	11.27					
Philadelphia: 1919-20				61		51								
1920-21	${ }^{2} 11.00$	8. 39	6.87	5. 58	2. 59	1.89	1. 87	2.09	1: 48	1. 65	1.20	31.07	1. 05	1.03
1921-22	3. 96	4.14	1.93	2.11	3.07	2.41	2.19	2.01	2. 00	2.29	2.23	1.98	1. 69	1.39
1922-23	3.76	3.13	$2.89{ }^{-}$	1. 77	1.10	1.00	1.09	1. 25	1.32.	1.36	1. 36	1. 79	2.17	1.61
1923-24:	7.21	4.03	3.02	3.24	2.84	2.06	1.96	1.66	1.73					
Pittsburgh:														
1919-20	6.59	4. 99	4.56 7.48	4.07 5.98	4.10 3.01	3.18 2.31	2.74 2.38	2.80 2.48	3.33 1.84	4.51 1.60	4. 52	5. 57 1.48	7.00	7.66 1.08
1921-22	4.50	4.37	2. 28	2. 73	3.43	2.71	2.30	2.10	2.01	2.26	2.13	2.01	1.85	1.61
1922-23	4.36	3.47	3.19:	2. 20	1.43	1.39	1.33	1.30	1.11	1.16	1. 20	1. 67	1. 60	1.36
1923-24.	7.30	4.44=	3.35	3.44	3.13	2.38	1.67	1.46	1.33					
Dt. Louis: 1919-20								2.99		4.61	4.49		7.55	7.57
1920-21		10.75	8.35	6. 60	3.69	2.71	2.25	2.33	1.87	1. 58	1. 39	1.48	1.23	1.22
1921-22	5.76	3.48	2.77	2.84	3.16	2.83	2.28	1.89	1.93	2.27	2.14	1.98	1.89	1.91
1922-23	5. 87	3.81	2.90	2.49	1.73	1. 53	1. 26	1.20	1.10	1.16	1.18	1.44	1. 59	1.45
1923-24.---	7.32	5.56	3.05			1.94	1.38	1.40	1.44					
Cincinnati:														
1919-20.	5. 54											5. 51		
1920-21-22	4.12	8.65	7.59:	6.49 2.65	3.41 3.52	2. 2.97	2. 19	2.60 1.93	1.92 (1.68 2.30	1. 58	1.77 2.06	1. 22	1.13 1.93
1922-23.	3. 96	3. 28	3.01.	2.44	1. 74	1.48	1. 30	1. 17	1.15	1. 20	1.21	1. 46	1. 45	1.27
1923-24:	6: 62	4.43	3.33			1.85 .	1.36	1.24	1.26					
St. Paul:														
1920-21			8.80 :	8. 44										
1921-22			3.06	3.05	3:49									
$1922 \sim 23$			3.46											
1923-24			3.55	3. 18										
Minneapolis:														
1919-20.			44.73	4.13										
1920-21			9.02	8. 29										
1921-22			3.05	2.90	3.43									
1922-23			3.36	2.86										
1923-24.			3.37 .	3.04										
Kansas City:														
1919-20.	8.11	7.01	3.32											
1920-21.			8. 77		2.81	2.69	12.06	2. 27					${ }^{1} 1.37$	11.29
1921-22.	6. 36	3. 93 .	3.06		3.09	2.63	${ }^{1} 1.97$	${ }^{1} 1.51$	11.65	12. 24	11.99	11.88	${ }^{1} 1.77$	1.84
1922:23.	5.62	3.93.	2.87			${ }^{1} 1.23$	${ }^{1} 1.12$	${ }^{1} 1.07$	$11: 03$.	${ }^{1} 1.05$	11.07	11.24	11.21	11.05
1923 $+24 .-5$		6.14	2.99		11.79	11.52	${ }^{1} 1.16$	11.30	${ }^{1} 1.30$					
Washington: ${ }^{5}$ 1919-20.	6.45	5.33	4.58	3.88	3.98	3.03	2.86	2.96	3: 44	4.59	4.81	5. 54	7.48	7.95
1920-21.		9.05	6. 81	5.82	3.26	2.23	2.22	2.52	2.32	2.12	1.69	1.71	1. 53	1.26
1921-22.	4.73	4.32.	2.11	2.39	3.27	2.83	2.61	2. 43	2.28	2. 62	2.58	2.44	2. 27	2.18:
1922-23	4.48	3. 60	2.91.	2.21	1.49	1.37	1.39	1.49	1. 48 .	1.48	1.41	1.73	1.99	1:69
1923-24.	7. 73	4.67	3.25	3. 64	3.44	2.43	1.83	1.54	1.70					

Division of Statistical and Historical Research: Compiled from data of the Fruit and Vegetable Division. Crop movement season for each crop extends from April-of one year through May of the following year, with irregular quotations continuing through June and July. Average prices as shown are based on stock of good merchantable quality and condition only; they are simple averages of selling prices. In some cases conversions have been made from larger to smaller units or vice versa, in order to obtain comparability.

[^187]Table 255.-Potattes, "Maine" and "State and Western": Average whotesale prices per bushel at New York, 1900-1923.

Year beginning Sept, 1.	Sept.	Oct.	Now.	Dec.	Jan.	Feb.	Mar.	Apr.	May.
1900-1	\$0.50	\$0. 45	\$0.46	\$0. 56	\$0.56	\$0. 52	\$0. 48	\$0.48	\$0.61
1901-2	. 76	. 72	. 76	. 78	. 76	. 75	. 84	. 85	. 75
1902-3		. 62	. 58	. 60	. 68	. 66	. 68	. 64	. 67
1903-4	. 48	. 60	. 59	. 74	. 81	. 94	. 96	1.16	1.02
1904-5	. 48	. 51	. 51	. 50	. 49	. 46	. 42	. 36	. 30
1006-6	. 62	. 67	. 74	. 68	. 66	. 60	. 68	. 80	76
1906-7	. 55	. 58	. 51	. 48	. 48	. 57	. 60	. 56	. 74
1997-8	. 56	. 63	. 58	. 64	. 70.	. 81	. 83	. 84	. 80
100-9	74	69	78	79	79	81	88	. 92	91
$1909-10$	65	. 56	. 56	. 56	. 58	. 54	49	. 40	. 39
1990-11.	. 55	. 55	. 51	.49	. 52	. 49	.47	. 62	. 57
1911-12	. 81	. 79	. 90	. 95	1.12.	1. 14	1.28	1.38	1.25
1912-13	. 80	. 59	. 64	. 68	. 63	. 67	. 62	. 66	. 77
1913-14	74	. 69	. 71	. 70	. 80	83	. 81	. 85	. 85
A verage 1909-1913	67	64	66	. 88	73	73	. 73	. 78	. 77
1914-15	62	56	. 54	. 51	51	48		50	
1915-16		. 78	. 76	. 90	1.22	1.21	1.23	1.14	1. 12
1916-17	1. 18	1.25	1. 69	1.61	1.98	2.67	2.67	3.00	3.18
1977-18	1. 20	1.62	1.37	1.39	1.66.	1.47	1.14	1.11	. 82
1918-19.	1. 58	1.44	1.37	1.50	1.42	1.26	1.11	1.43	1.49
1910-20	1.51	1.37	1.57	1.79	2.31	2. 64	3.33	4.28	4.17
1920-21 ${ }^{1}$		1.26	1.38	1.27	1.16	. 88	. 88	. 78	66
Average 1014-1920		1.18	1.24	1.28	1.47	1.52	1.55	1.75	1.70
1981-22	1.37	1.16	1.25	1.23	1.43	1.35	1.25	1.12	
1922-23	86	. 78	. 82	. 86	. 93	. 96	1.21	1.25	1.10
1903-24.	1.46	1.13	1.06	1.05					

Divtsion of Statisticaliand Fistorical Research. Compiled from Friday or Saturday issues, New York Producer's Price Current.
${ }^{1}$. First two weeks of October, 1920, are quotations on Jerseys.
SWEET POTATOES.
Table 256.-Sweet potatoes: Acreage, production, and value, United States, 18491923.

Calendar year.	Acreage.	Average yield per aere.	Production.	$\begin{gathered} \text { Average } \\ \text { farm price } \\ \text { per bushel } \\ \text { Dec. 1. } \\ \hline \end{gathered}$	Farm value Dec. 1.	Value per acre. ${ }^{1}$
	$\begin{aligned} & 1,000 \\ & \text { acres. } \end{aligned}$	Bushels.	$\begin{gathered} 1,000 \\ \text { bushels. } \end{gathered}$ $38,268$	Cents.	$\begin{gathered} 1,000 \\ \text { dollars. } \end{gathered}$	Dollars.
1859			48,095			
1809			21,710			
1879			39, 379			
1889.			43, 850			
1890:	557	77.5	41,59\%	53.0	22, 065	41.09
1900	544	88.9	48,346	50.6	24, 478	45.00
10015	547	81.7	44,697	57.5	25, 720	47.02
1902	532	85.2	45, 344	58.1	26,358	49.55
1908.	548	89.2	48, 870	58.3	28,478	51.97
1904	548.	88.9	48, 705	60.4	29,424	53. 69
1905	551	92.6	51, 034		29,734	
1906	554	90.2	49, 948	62. 2.	31, 063	56.07
1907	585	88.2	49, 813	70.0	34, 858	61.70
1908	599	92.4	55, 352	66.1	36,564	61.04
1609.	6.41	901	57,764	685	39,585	61.76
1910.	641	93.5	59,938	67.1	40,216	62.74
1911	605	90.1	54, 538	75. 5	41, 202	68.10
1912	583	95.2	55, 478	726	40, 264	69.68
1913	625	94.5	59,057	72:6	42,884	68.61
Average, 1900-1913	619	92.7	57,355	71.2	40,839	65.98.
1914.	603	98.8	56,574	73:0	41,294	88.48
1915.	731	103.5	75, 639	62.1.	46, 9 S 0	64. 27
1916	774	91.7	70, 955	84. 8	60,141	77.70
1917	919	91.2	83, 822	110:8	92,916	101. 11
1918	94t0	93, 5	87, 924	135: 2	118, 863	128. 45
1919	941	103. 2	97, 128	134. 4	130, 514	138.70
1920	982	104.8	103, 925	113.4	117,834	118.78
A verage, 1914-1920.	848	97.6	82,281	105.7	86,935	103. 18
1921.	1,086:	92.5	98, 654	88.1	86,894	
1922	1,117	97.9.	109, 394	77.1	84, 295	75.47
$1923{ }^{2}$	993	97.9	97, 177	97.9	95, 091	95.76

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on farm price Dec. 1.
${ }^{2}$ Preliminary.

Table 257.-Sweet potatoes: Acreage, production, and total farm value, by States, calendar years, 1921-1923.

State.	Thousands of acres.			Production, thousands of bushels.			Total value, basis Dec. 1 price, thousands of dollars.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
New Jersey	17	20	18	1,870	3, 500	2, 196	3, 179	2, 520	3,184
Pennsylvania	2	2	2	248	280	260	446	311	364
Delaware.	9	11	9	900	1,716	1,008	990	858	1,159
Maryland	9	10	9	900	1,530	1, 170	1, 260	765	1,346
Virginia.	44	46	44	4,180	6, 210	5,280	5, 225	5,403	5,544
West Virginia.	3	3	3	345	402	390	621	563	577
North Carolina	102	110	100	10,302	12, 430	10, 500	9, 993	9, 944	10,290
South Carolina	83	104	94	7, 885	9, 568	9, 118	7,096	6,793	7,841
Georgia.	146	152	137	12, 410	12, 616	11, 508	7,818	7,696	8,746
Florida.	32	32	30	2, 720	2, 720	2, 940	2,611	2,557	3,410
Ohio.	3	3	3	321	360	336	571	486	504
Indiana	3	3	3	396	375	354	594	450	442
Illinois	9	9	8	990	855	880	891	898	968
Iowa.	3	4	4	312	312	280	546	437	420
Missouri	14	14	14	1,400	1,330	1,512	1, 400	1,396	1,633
Kansas.	4	4	3	500	416	321	575	437	401
Kentucky	18	20	20	1,872	2, 020	2, 060	2,153	2, 222	2,472
Tennessee	44	44	35	4, 400	4,180	3,850	4,180	3,260	3,850
Alabama.	135	142	113	12, 150	13, 490	11, 752	8,870	10,118	9,754
Mississippi	107	109	101	8, 560	11, 445	9,898	6, 334	7, 897	9,007
Louisiana.	88	85	78	8, 272	7, 820	7, 020	5,377	4,770	6, 669
Texas.	100	105	86	8, 200	8, 715	6, 880	6, 970	7, 408	7,843
Oklahoma	27	27	30	2, 646	2,052	2, 700	2, 805	2, 421	3, 051
Arkansas	54	47	40	5,670	3, 760	3, 800	4,649	3,346	3,496
New Mexico	1	1	1	120	112	134	312	224	268
Arizona.	1	2	2	125	300	340	228	525	714
California	8	8	6	960	880	690	1, 200	590	1,138
United State	1, 066	1,117	993	98, 654	109, 394	97, 177	86, 894	84, 295	95, 091

Division of Crop and Livestock Estimates.
1 Preliminary.
Table 258.-Sweet potatoes: Yield per acre, by States, calendar years, 1908-1923.

State	1908	1909	10	1911	1912	1913	$\left\{\begin{array}{l} \text { Av. } \\ 1909 \\ 1913 \end{array}\right.$	1914	1915	1916	1917	1	1919	1920	$\left\|\begin{array}{c} \text { Av. } \\ 1914- \\ 1920 \end{array}\right\|$	1921	922	1923
		$B u$	Bu.	$B u$	$B u$.	Bu.	Bu.	$B u$.	Bu.	Bu.	Bu.	$B u$.	u.	u.	u.	u.	Bu.	u.
New Jer	133	123	140	130	120	138	130	100	155	100	120	115	125	143	123	110	175	122
Pennsylv	102	88	105	121	120	110	109	105	105	100	110	120	148	128	125	100	140	130
Delaware	125	125	115	140	12	135	127	120	135	125	112	120	138	128	125	100	156	112
Maryland	110	115	110	115	125	141	121	12	110	126	118	120	140	27	118	95	135	120
Virginia	95	100	100	0	90	108		2	110	130		120		27				120
West Virginia	72	100	101	110	115	91	103	92	110	140	5	106	115	119	17	15	134	130
North Carolina	93	99	105	86	90	100	96	$\stackrel{90}{85}$	105	107	9	110	107	105		101	113	${ }_{97}^{105}$
South Carolin	86	${ }_{93}^{95}$	91 83	84	105	87	7	8	85	80	${ }_{93}^{95}$	92	92	105	94 89	95	83	84
Florida	115	105	108	108	112	110	109	120	112	100	95	110	100	95	105	85	85	98
Ohio	83	110	98	113	118	90	106	110	95	99	95	96	100	103	100	107	120	112
Indiana	71	101	104	114	116	78	103	100	104	100	106	108	105	120	106	132	125	118
Illinois	80	110	110	89	98	70	95	84	110	90	97	82	95	97	94	11	95	110
Iowa	93	110	98	105	90	80	97	100	95	91	90	93	67	104	91	10	78	70
Missour	91	90	102	. 91	88	56	85	84	100	70	112	91	104	110	96	10	95	108
Kansas	105	96	101	75	99	50	84	110	110	92	92	80	109	13	104	125	104	107
Kentucky	84	88	85	9	0	8		105	105	90	95	${ }_{98}^{95}$	105	105	100	104	101	110
Tenness	89	87	85	85	90	80	85	100	100	100	90	96	$\stackrel{1}{12}$	102	$\stackrel{1}{91}$	100	95	1104
Alabam	85	80	85	97	100	95	91		0					,	1			
Mississipp	92	82	94	85	97	98	${ }_{9}^{91}$	87	110	82	65	95	105	110		80	105	98
Louisiana	86	90	93	90	84	85	66	87	2	90	79		110	105	91	2	831	80
Tex	88	50	56 70	71	75 92	${ }_{64}^{80}$	66 74	102	115	74	$\begin{aligned} & 78 \\ & 90 \end{aligned}$	65	110	115	96	98	76	80 90
					88			95	130	91	110	0	100	10	103	105	80	
Arkansas	120	180	100	150	141	125	139	143	160	125	118	125	120	118	13	120	112	134
New M	140	163	120	200	140	135	152	200	150	160	150	135	150	12	153	125	150	170
Californi	105	160	160	140	156	170	157	161	135	160	16	170	130	127	150	120	110	115
Unite	92.4	90.1	93. 5	90. 1	95.2	94.5	92.7	3.8		1.			103.2	04	97.4	92.5	97.	9

[^188]Table 259.-Sweet potatoes: Condition of crop, 1st of month, and yield per acre, United States, 1869-1923.

Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.	Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.
	P. ct.	P.ct.	$P . c t$.	$\boldsymbol{P} . c t$.	Bush.		P. ct.	$P . c t$.	P. ct.	P.ct.	Bush.
1869	98.9	97.0	106.8	80.2	78.7	1899.	85.1	84.1	80.7	74.9	77.5
1870	99.3	100.8	101.9	104.3	107. 4	1900	93.7	92.2	83.6	80.0	88.9
1871	98.6	93.9	90.5	88.5	99.0	1901	93.1	80.7	78.7	79.0	81.7
1872	95.9	98.1	95.1	87.4	83.5	1902	83.6	78. 3	77.2	79.7	85.2
1873	98.8	97.9	100.3	100.8	97. 2	1903.	90.2	88.7	91.1	83.7	89.2
1874	95.2	95.2	86.5	88.5	82.4	1904	87.3	88.5	89.9	86.1	88.9
1875	97.8	94.2	96.1	94.8	89.0	1905	90.6	90.1	89.5	88.6	92.6
1876	102.6	101. θ	100.6	96.5		1906	90.9	91.2	88.7	86. 0	90.2
1877	96.2	95.7	91.4			1907	85.9	85.7	85.7	82.7	88.2
1878.	100.3	98.9	98.2		98.9	1908	89.8	88.8	88.7	85.5	92.4
1879	87.1	82.1	90.5		90.4	1909	89.7	86. 9	81.3	77.8	90.1
1880	99.2	98.3	99.6		101.8	1910	87.3	85.4	83.9	80.2	93.5
1881	91.5	78.5	70.4			1911	78.4	77.7	79.1	78.1	90.1
1882	100.6	102.0	104.4	104. 6	96.2	1912	86.9	85.0	84.1	82.0	95.2
1883	95.5	90.3	82.1	77.3	78.0	1913.	86.5	85.8	81.4	80.1	94.5
1884	96.1	96.9	91.6	83.4	78.8	A $\overline{\text { r }}$ 1909-1913	85.8	84.2	82.0	79.6	92.7
1885	97.5	97.8	95. 0	95.6	96.4						
1886	95.3	94.8	93.1	91.7	87.5	1914	77. 1	75.5 85.5	81.8 87.5	80.7 85.0	93.8 103.5
1887	97.2	95.7	89.8	83.4	80.8	1915	88.7	85.5	87.5	85.0	103.5 91.7
1888	95.6		93.0	94.6	97.2	1916	90.4 81.9	85.9 84.8	82.7 85.7	79.2 83.2	91.7 91.2
1889	92.9	93.2	93.9		87.2						
1890	96.0	89. 9	88.7	90.3	99.3	1918	86.4	78.3	74.5	77.4	93.5
1891	93.7	93.7	92.0	87.5	88.5	1919	90.1	87.1	86.0	83. 9	103.2
1892	95.0	92.2	90.8	89.8	88.0	1920	87.2	86.9	86.8	87.1	104.8
1893	93.7	89.4	88.8	84.2	87.2	Av.1914-1920.	86.0	83.4	83.6	82.4	97.4
1894	88.4	89.7	91.4	91.6	92.4						
1895	91.4	91.0	89.3	81.2	79.1	1921----------	85.1	84.5	80.7	77.0	92.5
1896	89. 3	87.1	71.7	71.1	70.8	1922	88. 2	86.3 80	82.4	79.0 80.2	97.9 97.9
1897	86.5	86.4	85.4		72.0 98.3	1923.	82.8	80.0	79.1	80.2	97.9
1898		92.0	90.6	89.9	98.3						

Division of Crop and Livestock Estimates.
${ }^{1}$ Condition at time of harvest.
Table 260.-Sweet potatoes: Carlot shipments, by States of origin, 1917-1922.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{State.} \& \multicolumn{5}{|c|}{Year beginning July 1-} \& \multicolumn{5}{|c|}{Quarters, 1922-23} \\
\hline \& 1917-18 \& 1918-19 \& 1919-20 \& 1920-21 \& 1921-22 \& \[
\begin{aligned}
\& \text { July- } \\
\& \text { Sept. }
\end{aligned}
\] \& \begin{tabular}{l}
Oct.- \\
Dec.
\end{tabular} \& \[
\begin{aligned}
\& \text { Jan.- } \\
\& \text { Mar. }
\end{aligned}
\] \& Apr.June. \& Total. \\
\hline New Jersey \& Cars. \& \[
\begin{aligned}
\& \text { Cars. } \\
\& 1,785
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Cars. } \\
\& 2,237
\end{aligned}
\] \& Cars. \& Cars. \& \[
\begin{gathered}
\text { Cars. } \\
557
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Cars. } \\
\& 1,215
\end{aligned}
\] \& Cars. 938 \& \[
\begin{gathered}
\text { Cars. } \\
1488
\end{gathered}
\] \& Cars.
\[
2,858
\] \\
\hline Delaware \& 1,670 \& 1, 377 \& 1,212 \& 1,799 \& 1,722 \& 2 \& 1,677 \& 1,592 \& 361 \& 2,632 \\
\hline Maryland. \& 607 \& 441 \& 1,179 \& 1,473 \& 1,325 \& 349 \& 697 \& 535 \& 168 \& 1,749 \\
\hline Virginia: \& \& \& \& \& \& \& \& \& \& \\
\hline Eastern Shore... \& 5,476 \& 2,948 \& 5,561 \& 4,899 \& 4,786

334 \& 3,083

222 \& 3,184
60 \& 12 \& 13 \& 6,328

\hline Other \& 139 \& 76 \& 179
750 \& 634
884 \& $\begin{array}{r}334 \\ 1,015 \\ \hline\end{array}$ \& 222
357 \& 60
57 \& 113 \& 138 \& 307
679

\hline North Carolina \& 463 \& 708 \& 750 \& $\begin{array}{r}884 \\ 58 \\ \hline\end{array}$ \& 1,015 \& 357
1 \& 57
35 \& 126 \& ${ }^{152}$ \& ${ }_{235}^{639}$

\hline South Carolin \& 152 \& 525 \& 481 \& 58
966 \& 1,375 \& 80 \& 209 \& ${ }_{335}^{126}$ \& 157 \& ${ }_{781}^{238}$

\hline Tennesse \& 114 \& 545 \& 1,212 \& 901 \& 1,568. \& 94 \& 326 \& 770 \& 301 \& 1,491

\hline Alabama \& 225 \& 342 \& 401 \& 482 \& 680 \& 364 \& 31 \& 81 \& 61 \& 537

\hline Louisiana \& 51 \& 150 \& 211 \& 647 \& 912 \& 266 \& 262 \& 365 \& 140 \& 1,033

\hline Texas... \& 186 \& 329 \& 506 \& 622 \& 752 \& 244 \& 369 \& 319 \& 42 \& 974

\hline Arkansas. \& 159 \& 149 \& 355 \& 498 \& 578 \& $\begin{array}{r}7 \\ \hline\end{array}$ \& $\begin{array}{r}68 \\ 605 \\ \hline\end{array}$ \& 151 \& 14 \& 240
982

\hline California
All other \& 314

146 \& | 800 |
| :--- |
| 365 | \& 640

561 \& 708
415 \& 998
918 \& 169
2165 \& 605
230 \& 194
280 \& 14
65 \& 982
740

\hline Total. \& 10,657 \& 10, 540 \& 15, 485 \& 17, 934 \& 19,310 \& ${ }^{2} 5,960$ \& 8,025 \& 5,852 \& ${ }^{1} 1,727$ \& 21,564

\hline
\end{tabular}

[^189] Shipments as shown in carlots include those by boat reduced to carlot basis.
$$
{ }^{1} \text { Includes } 4 \text { cars in July. } \quad 2 \text { Includes } 2 \text { cars in June. }
$$

Table 261.-Sueet potatoes: Farm price per bushel, 1 g of month, United States, -1910-1923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan:	Feb	Mar.	Apr.	May.	Juner	Weightedav.
	Cts	Cts	Cts	Cts.	Cts	Cts	Cts.	Cts.	Cts.	Cts.	Cts.	Ct	
1910	75.1	78.2	81.2	77.6	71.8	67.1	75.0	80.4	84.4	91.2	99.3	98.7	77.9
1911-12	99.0	105.8	102.6	91.8	80.8	75. 5	83.0	90. 2	98. 0	109.8	118.0	115.0	92.5
1912-13	112.2	107.8	96. 7	84.4	76:8	72.6	80.4	85.4	88.9	92.6	98.8	92.0	87.1
1913-14	90.1	94.1	943	83.9	75.7.	72:6	79.2	84.3	86.7	89.6	94.5	94.2	84. 6
Av. 1910-1913	91.4	96.5	93.4	84.4	76.3	72.0	79.4	85.1	89.5	95.8	101. 4	100.0	85.5
1914-15	82.6	97.5	92.8	87.3	76.3	73.0	79.0	82.0	84. 7	90.7	95.6	96.7	85.0
1915-16	88.9	85.8	84.6	72.7	63.7	62.1	-64.9	71. 2	77.3	78.0	80.5	83.4	73.5
1916-17	79.4	87.1	83.9	83.7	80.6	84.8	90.1	95.8	110.7	124.0	141.3	149.4	91.4
1917-18	140.5	129.3	132. 6	116. 1	111.2	110.8	117.2	123. 1	142.7	151.6	155.0	148. 8	124. I
1918-19	134.3	144.7	156. 2	160.6	146. 0	135.2	142.1	143.1	153.7	160.7	174.6	173.7	149.8
1919-20	159.8	167.9	175. 4	154. 7	143. 9	134.4	138. 2	156. 6	172. 2	185. 8	205. 2	216. 6	157.8
1920-21	213.6	223.5	200.7	160.8	122. 1	113.4	113.0	117.8	119.8	127.4	127.2	128.8	149.7
AF. 1914-1920	128.4	133.7	133. 2	119. 4	1063	102.0	106. 4	112.8	123:0	131. 2	139.9	142.5	118:8
1921-22	125. 0	144. 1	135. 6	108.3	89.5	88.1	95. 1	96.8	110.7	111.7	114. 1	121.2	109.8
1922-23	119.0	128. 4	107.6	94.8	80.7	77.1	82.9	87.3	92: 3	98.6	103.8.	105.8	95.0
1923-24	114. 0	123.3	133. 7	111.6	102. 2	97.9							

Division of Crop and Livestock Estimates.
Table 262.-Sweet potatoes: Farm price per bushel, by States, December 1, calendar years, 1908-1923, and value per acre 1929.

State.	1908	1909	1910	1911	1912	1913	$\begin{gathered} A \nabla . \\ 1909 \\ 1913 . \end{gathered}$	1914	1915	1916	1917	1918	1919	1920	$\left\|\begin{array}{c} A \nabla . \\ 1914- \\ 1920 . \end{array}\right\|$	1921	1922	1923	Value per acre 1923.1
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts	Dolls.
N. J.-----	82	79	61	100	84	78	80	95	70	120	160	190	220	155	144	170.	72	145	176.90
Pa	93	89.	75	105	75	90	87	86	75	135	140	185	180	155	137	180	111	140	182.00
Del	70	60	55	70	68	60	63	70	62	81	120	125	110	109	95	110	50	115	128.80
Md	70	68	58	75	63	60	65	70	70	88	100	150	133	115	104	140	50	115	149. 50
Va	68	70	63	74	75	70	70	76	65	90	110	145	155	95	105	125	87	105	123.00
	94	85	88	100	90	100	93	98	92	126	140	204	210	150	146	180	140	148	192.40
	53	57	55	63	62	81	60	65	50	75	105	132	138	114	98	97	80	98	102. 90
S.	61	63.	64	72	68	75	68	70	- 65	85	104	142	148	117	104	90	71	86	83.42
Ga	58	62	65	73	66	68	67	69	61	81	105	125	110	97	93	63	61	76	3. 84
	70	71.	75	83	73	75	75	80.	-68	86	115	125	140	120	105	96	94	116	113.68
	101	84	86	100	87	106	98	96	98	150	175	175	215	175	155	178	135	150	168.00
,	102	84	83	96	89	103	91	90	90	150	165	195	215	160	152	150	120	125	147.50
III.	102	84	89	110	95	106	97	95	82	125	150	175	175	135	134	90	105	110	121.00
Iow	100	92	105	110	108	150	113	127	108	192	210	210	250	247	192	175	140	150	105. 00
Mo	87	88		, 105	95	105	95	- 96	- 82	150	141	186	187	155	142	100	105	108	116.64
Kı3n	105	107	103	130	103	110	111	108	100	150	160	222	185	160	155	115	105	125	138.75
Ki	82	73	75	88	85	94	83	77	70	100	125	175	160	150	122	115	110	120	123.60
Ten	63	68	69	75	72	80	73	69	- 59	87	105	136	117	123	99	95	78	100	110.00
Ala,	63	68	65	68	71	67	68	65	57	74	92	115	113	100	88	73	75	83	86.32
M1s	63	69	60	62	62	62	. 63	,	55	A	97	104	112	105	86	74	69	97	89. 18
La	63	59	65	60	65	70	64	64.	50	66	104	128	115	93	89	65	61	95	85.50
Tex	77	99	108	104	104	95	102	87	70	90	140	175	150	130	120	85	85	114	91. 20
Orka.	82	114	110	125	109	104	112	80	73	135	160	220	180	132	141	106	118	113	101.70
Ark	71	90	73	82	90	80	83	77	61	90	96	138	115	105	97	82.	8	92	87.40
N. M	108	120	118	144	105	130	123	113.	120	180	205	250	225	220	188	260	200	200	268.00
Ariz:	140	140	140	160	150	170	152	150.	- 150	185	227	238	250	230	204	182	175	210	357.07
Catif.	80	90.	95	110	. 94	100	98	87	80	100	150	150	179	160	129	125	67	165	189.75
U. S.-	66.1	70.8	67. 1			72.0	71.7	73.0	, 62.1	84.8	110.8	135. 2	134.4				77.1	97. 9	95. 76

Division of Crop and Livestock Estimates.
${ }^{1}$ Based upon farm price Dec. 1.

Table 263.-Sweet potatoes: Average jobbing prices per bushel at 10 markets, 1920-1923.

Table 263.-Sweet potatoes: Average jobbing prices per bushel at 10 markets, 1920-1923-Continued.

Market, and year beginning Aug. 1.	August. ${ }^{1}$		September. ${ }^{2}$		October average.	November average.	December average.	January average.	February average.	March average.	April.		May.	
	Range.	Average.	Range.	A verage.							Range.	Average.	Range.	A verage.
Kansas City:														
1920-21-22	\$2.00-\$2. 25	\$2.15	\$1.50-\$2.00	\$1.75		\$1. 62	\$1. 48	\$1. 59	\$1. 64	\$1. 66	\$1. 75-\$2. 25	\$1. 92	\$1.85-\$2. 25	\$2. 01
1921-22-	1.50-1.65	1.56	$1.00-1.50$ $.75-1.00$	1.25 .89	$\$ 1.01$.78	1.10 .62	1.21 1.04	1.30 1.12	1.22 1.12	1.19 1.13	+85-1.25	1.09 1.19	.85-1.00	. 92
1923-24							1.54		1.12	1.13	. $90-1.75$	1.19		
Washington:														
1920-21 ${ }^{3}$.-	2.15-2.62	2.36	1.08-2.46	1. 63	1.17	1.06	1.09	1. 66	1.73	1. 72	1.38-2.00	1.59	1.62-2.50	1.89
1921-22-23 ${ }^{3}$.	1.27-1.62	1.40	.85-1.35	1. 10	. 97	. 96	1.26	1. 58	1.68	1.68	1.08-1.50	1.32	$1.00-1.40$	1.14
1922-23 ${ }^{\text {a }}$.			$.46-1.69$ $.77-1.38$.62 1.06	.58 .95	.73 1.19	.68 1.87	1.06	1.06	. 96	. $62-1.25$. 96		

[^190] made from larger to smaller units or vice versa, in order to obtain comparability
${ }^{1}$ Quotations began Aug. 23, 1920 and 1921.
${ }^{2}$ Quotations began Sept. 18, 1923.
${ }^{B}$ Sales direct to retailers.

TOMATOES.

Table 264.-Tomatoes: Commercial acreage, yield per acre, and production, for table and canning stock, 1921-1923.

State.	Acreage.			Yield per acre.			Production.		
	1921	1922	$1923{ }^{1}$	1921	1922	1923	1921	1922	19231
Arkansas	Acres. 1, 030	Acres. 5,780	Acres.	Tons.	Tons.	Tons.	Tons.	Tons.	$T \mathrm{ons}$.
California	15, 230	31,310	43, 860	3. 4	7.0	2.4			19, 000
Colorado	-910	2, 430	43,830 3,830	6. 2	8.3	5. 2.	$\begin{array}{r}\text { 52, } \\ 5 \\ \hline\end{array}$	219,200 20	293, 1900 1900
Delaware.	2, 530	12,640	24, 590	4.9	3.9	5.4	12,400	49, 300	132, 800
Florida	18,040	33, 710	36, 360	4.0	3.6	3.1	72, 200	121, 400	112, 700
Illinois.	6, 080	12,500	9, 270	3.5	4.5	3.4	21,300	56, 200	31, 500
Indiana	25, 150	56, 040	69, 490	5.0	5.8	3.0	125, 800	325, 000	208, 500
Iowa--	2,240	3, 180	3, 980	3.3	6.7	5. 5	7, 400	21, 300	21, 900
Kentucky	4, 300	8,820	9, 350	3.4	3.9	2.6	14, 600	34, 400	24, 300
Maryland	12,830	41,300	49, 140	4.2	3.6	5.4	53,900	148, 700	265, 400
Michigan	1,920	5, 100	3,900	5.6	4.8	3.7	10,800	24, 500	14,400
Mississipp	7,150	11, 180	11, 110	3.1	3.7	2. 4	22, 200	41, 400	26,700
Missouri	5,410	17, 510	22, 490	2.9	3.2	2.5	15,700	56, 000	56, 200
New Jersey	23, 360	27, 160	30,740	5.0	5.2	4.8	116, 800	141, 200	147, 600
New York	6,360	14, 680	16, 560	8.2	7. 9	4.2	52, 200	116, 000	69, 600
Ohio.	7,860	16, 850	17, 880	5.5	5. 4	4.7	43, 200	91, 000	84, 000
Pennsylvania	1, 480	4,280	5,200	4.9	5. 7	4.5	7,300	24, 400	23,400
South Carolina	350	1,100	1,600	2. 9	3. 0	2.9	1,000	3,300	4,600
Tennessee	2, 890	9, 220	9, 020	2.7	3.3	2.1	7,800	30,400	18,900
Texas.	8,730	12,490	8, 590	3.3	2.1	2.4	28,800	26, 200	15, 800
Utah	1,250	3,820	4, 890	12.3	10.0	8.8	15,400	38, 200	43,000
Virginia	3,460	10,710	15, 650	3.0	4.3	4.2	10,400	46, 100	65, 700
West Virginia	1,110	570	490	3.0	4.3	2.9	3,300	2,500	1,400
Wisconsin	200	220	360	3.2	4. 0	6.1	600	900	2, 200
Other States	430	820	1,720	4.0	4.5	3.2	1,700	3,700	5,500
Total	160, 300	343, 420	405, 990	4.6	4.8	4.2	736, 000	1,664,600	1,708,900

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 265.—Tomatoes: Carlot shipments by States of origin, calendar years, 1917-1923.

State.	1917	1918	1919	1920	1921	1922	1923
New York	Cars. 143	Cars. 381	Cars. 457	Cars. 845	Cars. $1,098$	Cars. 1,902	Cars. 1, 112
New Jersey	2, 239	2,006	1,012	2,356	2,130	1,930	1, 621
Delaware.	877	1,130	- 502	153	189	- 413	1, 321
Maryland	237	200	206	138	128	278	267
Florida.	4,695	3,700	4, 501	3, 749	5,774	10,288	9,957
Ohio	628	799	489	330	351	557	934
Indiana	524	1, 150	948	1, 148	528	1, 303	1,106
Illinois	487	393	234	340	155	229	1249
Tennessee	947	654	368	805	357	920	494
Mississippi	1,063	1,379	1,388	1,363	1,961	3,441	2, 144
Texas	1, 278	1, 123	1,205	1,286	1,954	1,844	1,085
California	519	1, 514	2,186	1,958	1,714	2,305	3,273
All other	478	1,042	1,007	1, 085	. 860	1,258	1,229
Total	14, 115	15, 471	14, 503	15, 556	17, 199	26, 668	23,792

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.
Table 266.-Tomatoes: Farm price, per bushel, 15th of month, United States, 1913-1923.

Month.	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
July	161. 4	167. 4	141. 4	161. 5	194. 3	219. 1	240.3	324. 4	319.6	270.0	310.7
August	95.8	92. 5	66. 4	88.4	124. 3	133. 1	177. 0	168. 4	142. 4	102.0	165. 2
Septembe	68. 0	63. 0	56. 9	75.6	109. 5	103. 0	137. 2	104. 4	103. 6		106. 6
October	73. 0	60.3	67.9	82.1	117.6	108.6	117.7	98.9	113.5	79.6	122.8

Division of Crop and Livestock Estimates.
85813° - чвк 1923--50

Table 267.-Tomatoes: Average jobbing prices, per 4-basket and 6-basket carriers at 10 markets, 1921-1923.

Market, and calendar year.	4-basket carrier.		6-basket carrier, June.	Market, and calendar year.	4-basket carrier.		6-basket carrier, June.
	June.	July.			June.	July.	
New York:				Cincinnati:			
1922	11.70	\$1. 20	\$2. 96	1921-.--	\$1. 52	\$1. 05	\$2. 63
1923	2.32		4. 23	1923			
Chicago:				St. Paul:			
1921.	1.59	1. 05		1921			
1922	1. 18		2.98	1922.	1. 23		2.80
1923--7--	2.13			1923-----	2.11		
Philadelphia:	1.41			Minneapolis:			
1922-------	1.06		1,77	1922--	1.30		
1923--	2.11		3. 46	1923	2. 20		
Pittsburgh:				Kansas City:			
1921---	1.58	1. 22	3. 19	1921..----	1.68	. 67	
	215		3. $8{ }^{-1}$	1923	2.34		
St. Lotis:				Washington: 1			
1921.-	1.61	. 71		1921-..--		1. 32	3.03
1922				1922	1.21		3. 21
1923.	215			1923	2.19		4.31

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Average prices as shown are based on stock of good merchantable quality and condition only; they are simple averages of selling prices.
${ }^{1}$ Sales direct to retailers.
Table 268.-Tomatoes, canned: Production in the United States, calendar years, 1891-1923.

State.	1891	1892	1893	1894	1895	1896
	Cases. 1	Cases ${ }^{1}$	Cases. 1	Cases. ${ }^{1}$	Cases. 1	Cases. ${ }^{1}$
Massachusetts	10, 000	6,557	3, 400	9,800	5,000	
Connecticut	14, 400	14, 750	9,500	19,325	18,000	10,200
New York	114, 774	146, 290	160,887	164,378	150, 617	96, 308
New Jersey	950, 833	862,692	977, 242	1,378,090	756, 041	686,490
Pennsylvania	15, 000	18,920	24, 304	21,099	10,825	7,450
Delaware	264, 950	175, 700	271,277	399, 125	280,934	362,319
Maryland	744, 010	977, 742	1,417,628	2, 158, 878	1,317,606	1, 031,500
Virginia ${ }^{2}$	88, 360	60, 386	45, 020	67, 125	87, 830	49,830
North Carolina	3, 900	1,500	7,350	8,879	22, 210	
South Carolina		7,500	2,950	4,800	20, 500	
Georgia	3,000	12,400	4,700	3,500	3,166	
Ohio.	90,950	87, 840	64,720	249, 391	178, 247	150, 140
Indiana.	341, 217	282, 717	347, 260	912, 856	435, 557	447,283
mlinois	68, 324	42, 200	64, 400	159, 360	101, 539	82, 965
Míchigan	73, 506	39, 602	30, 502	59,100	59, 238	20,650
Wisconsin.			3,250		2,900	9,736
Iowa	94, 800	57, 500	82, 719	86, 373	91, 641	61,437
Missouri	90, 350	64, 621	122,493	186, 210	155, 900	110, 729
Nebraska	26, 900	2,210	16,900	32,950	13,710	8,070
Kansas	50,700	30,833	76,815	85, 050	33,700	32, 650
Kentucky	10,000	2,200	6,500	30, 893	13,700	10,800
Alabama		1,170	2, 200	4,350	2,850	
Mississippi	4,500	100	2,300 7,521	5,500 7,816		
Oklahoma	4, 30		2,500	2,500	9,600	
Arkansas.	14,500	2,500	14,000	20,300	9, 100	4,000
Colorado.	12, 600	39, 262	49,500	79,110	21,000	55, 500
Utah		55, 000	29,009	46, 000		
California	218, 311	230, 943	451, 547	222, 913	233, 259	183, 317
All other-						2,523
Ưited States	3,315, 885	3, 223, 135	4, 298, 443	6, 426, 669	4, 034, 670	3, 423,900

[^191]${ }^{1}$ Stated in cases of 24 No. 3 cans. ${ }^{2}$ Includes West Virginis.

Table 268.-Tomatoes, canned: Production in the United States, calendar years, 1891-1923-Continued.

[^192]2 Includes West Virginia.

[^193]Table 268.-Tomatoes, canned: Production in the United States, calendar years, 1891-1923-Continued.

State.	1915	1916	1917	1918	1919	1920	1921	1922.	1923
	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$	Cases. ${ }^{1}$
New York	256, 000	174, 000	552, 830	395, 904	436, 509	515, 000	214,000	340, 000	266, 000
New Jersey .-	325, 000	712, 000	380, 116	667, 063	59, 678	517, 000	116, 000	337, 000	412,000
Delaware..--	711, 000	1, 199, 000	1, 380, 805	879, 070	188, 920	553, 000	176, 000	590, 000	1,216,000
Maryland.	3,084,000	6, 042, 000	5, 933, 239	6,649, 475	2, 528, 927	3, 347, 000	1,656,000	3, 205, 000	5,722,000
Virginia ${ }^{2}$	969, 000	928, 000	1, 170, 504	1, 547, 291	852, 991	1, 162, 000	217,000	891, 000	963, 000
Ohio...--	157, 000	186, 000	107, 491	- 357, 283	172, 367	142,000	71, 000	179, 000	174,000
Indiana	419, 000	760, 000	398, 327	968, 219	875, 598	778, 000	530, 000	1, 312, 000	717,000
Missouri.	252, 000	211, 000	704, 347	352, 821	438, 720	715, 000	136, 000	775, 000	839, 000
Utah	329, 000	373, 000	512, 546	952, 539	594, 066	444, 000	132, 000	664, 000	584,000
California	1,281,000	1, 635, 000	2, 603, 019	1, 789, 904	3, 051, 688	1, 773, 000	339, 000	1, 701, 000	2, 397, 000
All other	686, 000	922, 000	1, 332, 850	1,322, 803	1, 510, 106	1, 422, 000	430, 000	1,544, 000	1,382, 000
U. S.	8,469,000	13,142,000	15,076,074	15,882,372	10,709,660	11,368,000	4,017,000	11,538,000	14, 672,000

Division of Statistical and Historical Research. Compiled from National Canners' Association data ${ }^{1}$ Stated in cases of 24 No. 3 cans.
${ }^{2}$ Includes West Virginia.

TURNIPS.

Table 269.-Turnips: Farm price, per bushel, 15th of month, United States, 1914-1923.

Month.	1914-15	1915-16	1916-17	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
November	47.4	45.9	68.4	76.4	79.6	98.9	94.1	88.5	83.1	87.8
December	48.4	45.1	73.3	81.1	79.0	101.8	85.9	86.5	81.9	92.2
January	49.2	48.6	78. 6	88.4	82.1	112.4	88.7	87.5	91.9	
February	51.1	49.6	91.1	89.9	84.7	124.1	88.7	90.3	91.3	

Division of Crop and Livestock Estimates.

WATERMELONS.

Table 270.-Watermelons: Carlot shipments, by States of origin, calendar years, 1917-1923.

State.	1917	1918	1919	1920	1921	1922	1923
	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.
Delaware	511	303	327	177	499	289	246
Maryland	1, 019	388	515	458	763	379	580
Virginia--	728	244	283	312	364	156	159
North Carolina	1,201	727	891	799	1,530	987	1,506
South Carolina	4,107	2,787	2,673	4,735	4, 427	4,677	4,078
Georgia	9,530	6,782	8,984	11, 103	16, 140	12, 973	7,572
Florida_	3,622	2, 179	3,878	6,807	5,772	11, 337	4,217
Indiana	630	191	581	661	742	542	498
Illinois.	386	68	190	251	459	289	433
Iowa	238	132	321	348	867	665	506
Missouri	2, 533	1,196	3,516	3, 012	3,188	2, 752	1,707
Alabama	1,634	806	708	1,160.	1,486	1,941	1,249
Texas.	2,871	2,290	3,007	4,845	4,298	4,131	5,282
Oklahoma	505	189	870	465	566	308	64
Arkansas	449	93	268	314	577	325	165
California	1,137	1,689	3, 300	3,276	3;796	4,289	4,028
All other	402	328	568	532	989	1,026	751
Total	31, 503	20,392	30, 860	39,255	46,463	47,066	33, 041

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

TRUCK CROPS.
Table 271.-Truck crops: Commercial acreage and production, United States, 1919-1923.
acreage.

Crop.	Number of States producing.	1919	1920	1921	1922	$1923{ }^{1}$
		Acres.	Acres.	Acres.	Acres.	Acres.
Asparagus.-.	12	28, 290	31, 440	33, 230	33, 970	43, 520
Beans (snap)	30	38, 560	34, 550	34,370	50, 030	55, 390
Cabbage ----	28	92, 020	119, 210	100, 430	131, 780	98, 200
Cantaloupes	23	72, 950	74, 530	77, 840	103, 040	82, 040
Cauliflower.	3	8,640	8,200	8,940	9,220	10, 520
Celery -----	9	13, 760	15, 790	14, 880	18, 090	18, 910
Corn (sweet)	20	250, 030	261, 580	136,270	198, 960	250, 160
Cucumbers	29	64, 810	66, 450	80, 360	81, 780	100, 980
Lettuce	14	18, 360	31, 930	31, 240	44, 230	56, 630
Onions..-	22	52, 520	64, 940	57, 070	63, 290	61, 100
Peas (green)	23	135, 430	149, 340	138, 380	177, 710	207, 590
Potatoes (early Irish)	19	225, 450	262, 750	267, 540	306, 090	279, 770
Strawberries..	27	86, 910	93, 410	109, 590	132, 800	147, 710
Tomatoes.	33	376, 260	333, 560	160, 300	343, 420	405, 990
Watermelons	22	122, 310	149, 640	155, 980	211, 060	155, 730

PRODUCTION.

	1919	1920	1921	1922	19231
Asparagus.--.-----.-.-.-crates_-	3, 669,000	3, 842, 000	3,678, 000	4,541,000	6, 707, 000
Beans (snap) --------------tons--	76,500	64, 200	65, 400	81,900	97, 500
Cabbage----.-.---.-.-..-do.	613, 800	1,062, 300	654, 000	1, 062,800	740,000
Cantaloupes...-.-.-.-.-.-.crates.-	10, 188, 000	10, 508,000	10, 730, 000	12, 942, 000	11, 197, 000
Cauliflower-.--.-........-- ${ }^{\text {do. }}$	2, 245, 000	2, 190, 000	2, 409, 000	2, 578, 000	3, 024, 000
Celery-------------------do.	2, 732, 000	3, 435, 000	3, 446, 000	4, 017,000	4, 309, 000
	587, 400	594, 900	360, 600	478, 200	588,700
Cucumbers .---.-------bushels.-	6, 629, 000	5, 385, 000	8, 224, 000	8, 804, 000	7, 972, 000
Lettuce...-.-....-.......-crates.-	5,517,000	9, 425, 000	11, 056, 000	11, 176, 000	13, 270, 000
Onions-.---.------.-.-.-. - bushels.-	14, 548, 000	21, 343, 000	14, 165, 000	18, 763, 000	16, 318, 000
	124, 700	169, 300	131, 100	188, 000	179, 300
Potatoes (early Irish) .--bushels_-	24, 667, 000	30, 056, 000	30, 557, 000	35, 607, 000	26, 697,000
Strawberries .-.---------quarts.-	155, 800, 000	155, 588, 000	189, 677, 000	260, 394, 000	254, 691, 000
Tomatoes...-.-.-.-.-.-.-.--tons.-	1,436, 000	1,532, 800	736,000	1, 664, 600	1, 708,900
W atermelons----------number.-	41, 354, 000	57, 521, 000	61, 122, 000	71, 148, 000	42, 477, 000

VEGETABLE SEED.
Table 272.-Vegetable seed: Commercial acreage, average yield per acre, and production, United States, 1917-1923.
COMMERCIAL ACREAGE PLANTED FOR SEED.

Kind of seed.	1917	1918	1919	1920	1921	1922	1923 :
	Acres.	Acres ${ }^{\text {a }}$	Acres.	Acre	Acr	Acres.	
Beans, dwarf, snap	63, 524	70, 867	-48, 658	30, 059			
Beans, garden, po	4, 022	6,297 2,748	7, ${ }_{2}, 666$	11,573 400	3, 380	4,430 633	5, 699
Beet, mangel	20	424	619	123	$\left.{ }^{3}\right)$	112	
Beet, sugar	4,638	6,014	11,139	7,919	3,699	1,129	
Cabbage.	737	974	1,978	1,135	636	730	1,167
Carrot.	1,965	4,622	3, 465	538	196	493	750
Celery .-	84	176	135	60	100	70	115
Corn, sweet	12,975	14,759	14, 565	12, 024	4, 064	7, 405	8,690
Cucumber	4, 694	3, 053	3, 582	3, 598	3, 577	4,180	5,037
Kale.	18	71	106	61	39	132	108
Lettuce.	1, 979	2,291	2, 283	2,010	1,185	1,929	2,200
Muskmelon	1,827	1,671	1,467	1,898	2,223	1,985	2,720
Watermelon	8, 929	10,507	5, 508	5, 914	6,558	9, 480	8,450
Onion, seed	3, 782	7,260	6,730	2, 392	1,108	1,295	2, 138
Onion, sets	2, 637	3, 818	3, 708	3,998	3, 225	3, 183	2,753
Parsley.	109	155	146	186	90	84	80
Parsnips	137	267	303	111	48	121	147
Peas, garden	110, 129	102, 095	104, 172	113, 844	35, 680	54, 462	86, 659
Pepper-	686	720	160	431	1,308	671	503
Pumpkin	1,512	1,380	1,156	2, 164	905	992	319
Radish.	3, 521	8,760	10,870	3, 396	1,717	2, 485	3,400
Salsify	131	124	205	52	9	33	
Spinach	1,415	4,259	1,139	141	32	655	234
Squash, summe	836	1, 004	1,153	1,000	1,128	612	684
Squash, winter	1,328	2, 539	2, 912	2,109	1,310	836	1,525
Tomato	3, 204	3,832	3, 604	2, 711	1,296	3, 824	2, 592
Turnip, English.	24	936	1,207	239	336	200	
Turnip, Swede	21	279	205	136		90	75

Table 272.—Vegetable seed: Commercial acreage, average yield per acre, and production, United States, 1917-1923—Continued.

AVERAGE YIELD PER ACRE.

Kind of seed.	1917	1918	1919	1920	1921	1922	19231
	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.
Beans, dwarf, snap	233	412	516	501	712	585	673
Beans, gardien, pole ${ }^{2}$	315	820	552	474	660	920	816
Beet, garden	562	913	697	295	- 474	678	934
Beet, mangel.	1,500	877	1,003	561	${ }^{(3)}$	911	
Bect, sugar	1,094	981	601	855	966	935	
Cabbage --	396	166	699	138	352	504	384
Carrot	575	460	451	541	388	371	287
Celery	333	227	400	467	460	471	385
Corn, sweet.	640	807	902	1,070	1,029	1,181	1,016
Cucumber	219	179	214	161	136	169	260
Kale...-	278	239	406	189	769	341	398
Letuce	456	326	298	292	262	444	173
Muskmelon.	160	117	102	89	178	186	184
Watermelon	71	91	91	104	112	127	84
Omion, seed.	259	232	389	335	301	347	437
Onion, sets	11, 850	12, 066	5,906	11, 106	8, 304	9,802	8,427
Parstey	771	471	767	629	311	524	312
Parsnips	496	625	733	622	542	702	497
Peas, garden	444	569	460	767	762	855	765
Pepper---	31	78	75	63	76	70	54
Pumpkin	71	96	95	114	117	120	135
Radish	176	221	233	181	150	299	176
Salsify	427	250	454	308	333	455	
Spinach	212	387	317	716	781	479	842
Squash, suminer	145	99	103	131	166	185	175
Squash, winter	70	50	152	121	110	79	119
Tomato ------	71	80	67	80	62	62	58
Turnip, English	125 429	215 97	378 600	${ }_{287}^{142}$		75	
Turnip, Swede.	429	97	600	287	${ }^{(3)}$	511	307

${ }^{1}$ Preliminary.
${ }^{2}$ Not including Lima beans.
${ }^{3}$ Not reported for 1921.
PRODUCTION.

	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.
Beans, dwarf, snap-	14,809	29, 216	25, 093	15, 069	8,985	19, 600	28, 333
Beans, garden, pole ${ }^{2}$	1,268	5, 166	4, 395	5, 480	2, 582	4, 074	4,310
Beet, garden.	464	2, 509	1,858	118	180	429	653
Beet, mangel	30	287	621	69	(3)	102	
Beet, sugar	5,076	5,909	6,700	6, 770	3,575	1, 056	
Cabbage.	. 292	162	1,383	157	224	368	448
Carrot--	1,129	2,125	1,562	291	76	183	215
Celery	1,28	2, 40	1, 54	28	46	33	42
Corn, sweet	8, 303	11,917	13, 143	12, 870	4, 183	8,749	8,825
Cucumber	1,026	548	766	580	487	707	1,312
Kale	- 5	17	43	11	30	45	1, 43
Lettuce.	903	747	680	587	310	858	380
Muskmelon	293	196	150	169	395	359	501
W atermelon	633	960	500	614	732	1,200	711
Onion, seed	980	1, 685	2, 618	801	334	, 450	935
Onion, sets	31, 249	46, 069	21,900	44,402	26, 780	31,200	23, 200
Parsley	84	73	112	117	28	44	25
Parsn!ps.	68	167	222	69	26	85	73
Peas, garden	48, 868	58, 127	47, 968	87, 310	27, 197	46, 588	66, 300
Pepper-.	- 21	- 56	-12	- 27	-99	- 47	27
Pumpkin	108	133	110	247	106	119	47
Radish	621	1, 935	2, 537	614	258	743	600
Salsify	56	, 31	2, 93	16	3	15	
Splinach	300	1,650	361	101	25	314	197
Squash, summer	121	99	223	131	187	114	116
Squash, wintor.	83	128	443	255	144	66	182
Tomato -	227	308	243	218	81	238	150
Turnip, English	3	201	456	34	59	15	
Turnip, Swede.	9	27	123	39	$\left.{ }^{3}\right)$	46	23

Division of Statistical and Historical Research. Compiled from data of Hay, Feed, and Seed Division.

$$
{ }^{1} \text { Preliminary. } \quad{ }^{2} \text { Not including Lima beans. } \quad{ }^{3} \text { Not reported for } 1921 .
$$

Table 273.-Vegetable seed: Imports into United States, 1910 to 1922.

Kind of seed.	Fiscal year ending June 30-									Calendar year.			
	1910	1811	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922
Beet, su	1,000 13bs. 10,309	1,000 $i b s$ 11,109	1,000 libs. 11,390	1,000	1,000 lbs. 10, 490	1,000	1,000 libs 9,048	1,000	1,000 lbs. $1.5,637$	$\begin{aligned} & 1,0 c 0 \\ & \text { los. } \\ & 9,830 \end{aligned}$	1,000 lbs. 23,446	$\begin{aligned} & 1,000 \\ & \text { lbs. } \\ & 7720 \end{aligned}$	${ }_{1}^{1}$ 1000
Beet, all other	624	639	872	887	1, 077	${ }^{991}$	786	483	144	${ }_{161}$			72
Cabbage	162	261	311	273	255	425	278	108	83	169	391	253	181
Carrot	176	155	97	149	172	87	38	15	33	16	69	48	37
Castor bean	37, 240	39, 512	48, 913	41,229	52, 196	46,230	53, 598	38, 353	52, 201	60, 413	61, 961	36, 565	
Cauliflowe		10	7	9	11	13				12	17	12	13
Celery 1	189	341	39	23	406	640	608	756	168	768	594	426	604
Corn salad	1	10	${ }^{(2)} 8$	$\stackrel{2}{6}$	${ }^{(2)} 6$	5	(2) ${ }_{5}$	${ }^{(2)}$	$\left.{ }^{2}\right)$	1	${ }^{(2)}$	$\left.{ }^{2}\right)$	
Eggplant	3	1	2	2	1	1	2	1	$\stackrel{2}{2}$	1	1		
Kale ---	17	25	39	32	38	49	40	16	8	19	77	40	25
Kohl-rabi-	50	17	11	14	16	16	10	9	17	17	23	14.	10
Mushroom spawn	368	423	168	240	195	124	66	48	17	23	19	23	
Mustard	9, 124	8,512	12, 198	12, 720	11, 544	10, 158	16,402	9,962	13, 036	14, 227	9,063	7, 564	
Parsley.	75	75	56	129	255	139	70	38	66	53	180	151	144
Parsnips	89	57	55	117	130	100	100	65	7	44	17	57	40
Pepper	16 470	16	18	10	12	15	15 309	119	${ }_{103}^{22}$	${ }_{112}^{6}$	${ }_{32}^{2}$	${ }^{9}$	4
Spinach		972	1,218	1,698	1,386	1,136	838	634	805	367	1,139	1,222	1,927
Turnips and ruta baga	1,234	1,759	2,868	1,233	1,581	2,112	1,816	1,066	2,151	1,810	1,847	2, 242	1,360

Hay, Feed and Seed Division.
${ }^{1}$ Imported for planting and for other purposes.
${ }^{2}$ Less than 500 pounds.
Table 274.-Average wholesale prices per pound of standard varieties of vegetable seeds in United States, 1917-1923.

Kind of seed.	1917	1918	1919	1920	1921	1922	1923
Beans, dwarf snap.	\$0. 18	\$0. 26	\$0. 21	\$0.16	\$0.15	\$0.13	\$0.15
Beans, garden, pole ${ }^{1}$. 14	. 24	. 23	. 21	. 19	. 15	. 15
Boet, garden...-----	. 90	1.45	1. 07	. 64	. 48	. 38	. 52
Beet, mangel.	. 35	. 90	. 68	. 36	. 31	. 27	. 29
Cabbage.---	1.90	3.80	8.00	2. 75	2. 40	2.00	1. 90
Carrot.	1. 00	1. 75	. 90	. 50	. 50	. 40	. 56
Celery, domestic	1. 50	2.25	1. 85	1. 60	2. 00	1. 60	1. 60
Celery, imported	10.00	10.00	5.00	4.09	4. 00	3.00	3. 00
Cucumber--	. 54	. 83	. 85	. 86	. 80	. 81	. 60
Lettuce.	. 65	. 85	. 90	. 72	. 76	. 76	. 74
Muskmelon	. 54	. 78	. 81	. 73	. 79	. 76	. 7.7
Watermelon	. 42	. 70	. 54	. 46	. 45	. 46	. 44
Onion seed	1.90	4.50	2. 65	1. 80	1. 60	1. 20	1. 50
Parsley	. 35	. 60	1.00	. 60	. 60	. 50	. 50
Parsnip.	. 30		1.00	. 40	. 35	. 35	1. 00
Peas, garden.	. 12	. 19	. 19	. 24	. 19	. 14	. 13
Radish.	. 40	1. 60	1. 30	. 60	. 50	. 50	. 45
Spinach	. 60	2.00	. 75	. 35	. 20	. 20	. 21
Squash, summer	. 65	. 80	1. 05	1. 00	. 90	. 75	. 67
Squash, winter	. 55	1. 00	1. 10	1. 10	1.00	. 80	. 67
Sweet corn.	. 20	. 25	. 17	. 15	. 13	. 10	. 11
Tomato.	2. 75	3. 60	4.00	3. 25	3.10	2.80	2. 70
Turnip, English	. 35	1. 75	1.35	. 65	. 50	. 35	. 46
Turnip, Swede.	. 32	1. 50	1. 25	. 45	. 37	. 27	. 40

Division of Statistical and Historical Research. Compiled from reports of Hay, Feed, and Seed Division.
${ }^{1}$ Not including Lima beans.

Table 275.—Vegetable seed: Average yearly import price, per pound, 1910-1922. ${ }^{1}$

Kind of seed.	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922
	Cts.	Cts	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
Beet, garde	9. 4	10. 3		15.7	15. 0	11. 0	12.0	17.2	49.2	67.2	21.1	14. 2	18.
Beet, suga	6. 5	${ }^{6.6}$	9.7	7.2	7.6	8.8	11. 2	11. 6			22.2	19.6	
Cabbage	22.9	34.1	37. 6	47. 6	49.0	35. 0	42.2	44. 4	170.8	211.8	76.6	57.0	61.0
Carrot	15.2	17.0	36. 3	25.1	30.6	25.0	34. 0	45.4	86.1	120.4	22.6	27.0	31.3
Caulifiow	534.0	400.0	562.0	537.0	381.0	343.0	524.0	606.0	458.7	382.3	820.9	813.4	688.2
Celery ${ }^{2}$	9. 4	9.3	25. 1	87.2	21.4	18.3	26.6	18.8	38.0	40.0	19.6	14.3	21.0
Collard	19.6	12. 4	14. 3	13.1	17.0	13.4	24.0	77.0			26.0	23.1	
Corn sala	15.6	12. 7	20.7	14.6	12.6	13. 5	15.0	16.8	38. 1	49. 1	44.9	47. 3	
Eggplan	78.6	71.9	61. 1	80.8	80.6	80. 5	86.2	68. 7	157.1	219.7	187. 6	143.5	
Kale	22.9	15. 5	14.8	19.3	25.8	20. 9	17.3	27.1	75.3	63.9	26.7	26.7	29.2
Kohl-rab	11.0	18.9	28.0	28.0	35. 2	28.0	28. 4	40. 6	78. 1	98.5	52.8	46.7	54.0
Parsley	8. 5	9. 0	19.2	28.1	18. 6	11. 0	12.2	14.4	19.7	39.3	11.9	12.5	12.7
Parsnip	7.2	7.6	10. 4	8.6	8.2	7.0	8.1	8. 4	49.2	60.4	21.9	13.2	27.0
Pepper	42.3	41.4	40.9	44.0	38.2	41.0	41.0	57.0	88.4	151.9	109.5	68.3	105.3
Radish	11.6	12.3	13. 0	13.4	14. 5	12.4	13. 2	17.8	67. 6	57.5	24.0	21.8	20.0
Spinach --	46.0	5. 0	5.7	5. 2	4. 6	4.8	8.0	12.6	33.2	21.9	11.6	9.7	9.2
$\begin{aligned} & \text { Turnp } \text { and } \\ & \text { baga } \end{aligned}$	8.5	8.6	7.9	9.3	9.1	8.7	8.9	11.8	31.5	36.9	22.8	14.6	16.8

Hay, Feed, and Seed Division.
${ }^{1}$ Bureau of Foreign and Domestic Commerce, U. S. Department of Commerce.
2 Imported for planting and other purposes.
Table 276.-Vegetable seed: Retail catalogue prices, calendar years, 1917-1923.

Kind of seed.	1917		1918		1919		1920		1921		1922		1923	
	Per oz.	$\begin{aligned} & \text { Per } \\ & \text { lb. } \end{aligned}$	$\begin{array}{\|l} \text { Per } \\ \text { oz. } \end{array}$	$\begin{aligned} & \text { Per } \\ & \text { lb. } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { oz. } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { lb. } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { oz. } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { lb. } \end{aligned}$	Per oz.	$\begin{array}{\|l} \text { Per } \\ \text { lb. } \end{array}$	$\begin{aligned} & \text { Per } \\ & \text { oz. } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { lb. } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { oz. } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { lb. } \end{aligned}$
Beans, dwarf sna		\$0. 32		\$0. 43		\$0.41		\$0.39		\$0. 39		\$0. 37		\$0. 36
Beans, garden po		26				43		40		41		39		. 37
Beets, garden	\$0.15	1. 30	\$0. 20	2. 35	\$0. 20	1.75	\$0. 15	1.35	\$0. 15	1.15	\$0. 14	1. 00	\$0. 14	1.05
Beet, mangel	. 10	. 55		1. 30	. 15	1. 20	. 10	90	. 10		. 10		. 10	. 70
Cabbag	. 25	3.00	. 45	5. 05	. 90	11. 10	. 50	5. 25	. 35	3. 90	. 30	3.15	. 29	3.05
Carrot	. 15	1. 40	. 20	2. 25	. 20	1.70	. 15	1.30	. 15	1. 10	. 13	1. 00	. 13	1.05
Celery, domest	25	2. 60	. 30	2.85	. 35	2.90	. 30	3. 20	. 30	3. 00	. 27	2. 75	. 29	3.00
Celery, import	1. 45	17.00	1. 40	15. 35	1.30	13. 55	. 95	10. 45	. 85	9. 85	. 85	9.05	1.05	11. 20
Cucumber	. 10	. 95	. 15	1. 75	. 15	1. 30	. 15	1. 30	. 15	1. 40	. 15	1. 35	. 15	1.30
Lettuce -	. 15	1. 35	. 15	1. 40	. 15	1. 50	15	1. 55	. 20	1. 60	. 17	1. 55	. 17	1.60
Muskmelon	. 15	1. 10	. 15	1. 30	. 15	1. 35	. 15	1. 50	. 15	1. 50	. 17	1. 50	. 16	1. 45
Watermelo	. 10	. 80	. 10	. 95	. 15	1. 15	. 15	1. 10	. 15	1. 15	. 14	1. 05	. 14	1. 00
Onion seed	. 25	2. 50	. 55	5. 15	. 35	3. 80	. 30	3. 15	. 30	3. 00	. 26	2. 55	. 25	2. 55
Parsley	. 10	. 90	. 15	1. 05	. 15	1. 25	. 15	1. 10	. 15	1. 10	. 14	1. 10	. 14	1.10
Parsnip	. 10	. 70	. 20	1. 75	. 20	1. 80	15	1. 25	. 15	1.05	. 14	1. 00	. 17	1. 60
Peas, gar		. 23		. 37		. 38				$\begin{array}{r} .42 \\ 1.15 \end{array}=$. 37
Radish Spinach	10 .10	. 65	. 15	1. 2.10	. 15	1. 1.25	. 15	1.30 .80	. 15	1.15 .70	. 14	1.10 .60	. 11	1.10 .60
Squash, summ	. 10	. 95	. 15	1. 40	.15	1. 50	. 15	1. 65	. 20	1.65	.17	1. 50	. 16	1. 40
Squash, winter	. 10	. 95	. 15	1. 50	. 15	1. 60	. 20	1. 70	. 20	1.60	. 17	1. 40	. 16	1.35
Sweet corn		26		. 38		35		8		36		32		31
Tomato	. 30	2. 95	. 40	4. 10	. 40	4. 00	. 40	4. 45	. 40	4. 25	. 37	3. 90	. 36	3. 90
Turnip, Englis	. 10	. 70	. 20	1. 95	. 20	2. 05	. 15	1.40	15	1.15	. 13	. 95	. 13	95
Turnip, Swede		. 65	. 20	2. 35	. 20	2.05	. 15	1.35	. 15	1.00	. 13	. 90	. 12	. 85

Hay, Feed, and Seed Division. Average of prices quoted for standard varieties of vegetable seed by a number of representative mail-order dealers.
${ }^{1}$ Not including Lima beans.

Table 277.-Fruits and vegetables: Carlot shipments of 15 commedities, United States, 1917-1923.

Commodity, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
Apples:	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.
1917	2,380	2,153	2, 175	1,239	965	301		1,308	5,719	21, 895	14, 165	3, 993	57, 048
1918	2,362	3,232	2,882	1,647	347	229	1,149	2, 359	8, 070	26, 680	13, 563	6,320	68, 840
1919	4, 044	3,679	2,063	1,006	${ }^{430}$	189		2,712	12, 259	32, 666	15, 854	5,301	81,552
1920	4,393	4, 419	4,378	2,229	1,276	262	1, 855	3, 861	11, 043	37, 284	23, 087	8, 875	102, 962
1921	6,046	6,698	5,695	2, 819	1, 496	1422	1,220	3,384	13, 146	35, 117	14, 464	5,991	96, 498
1922	4,199	4,756	2, 903	1,763	1, 117	1,177	2, 592	4,924	14, 969	34, 007	20, 617	8, 816	101, 780
${ }^{1923}$	8,573	6,611	5,502	2, 807	1,617	507	3, 324	3,908	14, 818	44, 477	25, 187	7,746	125, 077
Beans, dry:				122	343	166	186	201	264		870	902	4, 144
1919	699	406	602	715	754	474	338	611	375	1,019	1,040	758	7,791
1920	661	421	442	441	812	466	331	305	271	845	1,136	864	6,995
1921	1,239	1,236	967	690	675	${ }_{6}^{612}$	492	749	1,187	2, 461	1, 532	874	12,714
1922	1,168	1, 124	921	479	492	393	232	163	797	1,986	2,167	1,544	11,466
1923	1,251	724	680	580	486	558	407	453	610	2, 353	2,478	1,605	12, 185
1917	1,	463	503	457	1,634	2, 121	753	1,015					
1918	1,49	1,735	1,790	3, 379	3, 734	1, 594	645	1, 305	3, 261	5, 051	3, 29	1, 371	28,661
1919	2,182	2, 017	1, 977	1, 831	2,469	1, 438	557	1,152	2,465	5,137	2, 411	1, 346	24, 982
1920	1,931	2, 518	3, 328	3, 935	2,941	1,508	612	1,095	1,791	5,399	4,607	1,355	31, 020
1921	2, 852	2,293	2, 929	4, 100	3,186	1,727	459	1,393	2,818	5,467	2, 560	1,934	31, 718
1922	3, 344	3, 422	4,185	3, 831	4, 006	2, 252	660	1,436	3, 523	7,060	3, 817	2, 529	40, 065
1923	2, 985	2,299	2, 630	3, 779	4, 130	2, 243	817	1, 599	3, 023	6, 373	3, 920	2,270	36, 068
Cantaloupes: 1917						$3,468$	5,882	5, 564	$2,184$				17, 430
1918					51	4,348	3, 949	3, 922	1, 339	10			13, 619
1919					66	6,902	7, 144	4,755	2, 834	338			22, 039
1920					475	6,781	5, 318	6, 867	2,784	152			22, 377
1921					638	7,974	8, 635	5,986	2,153	171	12		25, 569
1922				4	135	10, 371	10, 173	5,334	3, 294	603			29, 917
1923					917	10, 190	6,107	5,334	2, 671	538	34		25, 791
Celerv:													
1920	${ }_{816} 16$	1,0	1,206	708	320	21	69	$\begin{aligned} & 141 \\ & 150 \end{aligned}$	$\begin{aligned} & 258 \\ & 421 \end{aligned}$	1, 256	1,210	1, 488	6,449 9
1921	1,675	1,746	1, 754	866	255	105	137	262	516	1, 815	1,443	1,909	12, 483
1922	1,423	1,392	1,749	1,204	466	93	201	369	829	2,107	2,040	2, 278	14, 151
1923	1,999	1,894	2,510	1,681	393	87	218	359	603	1,970	2,352	2, 521	16,587
Grapes: 1919							60					10	30,349
1920						12	366	4, 647	12,001	19, 358	2, 808	13	39, 205
1921						12	425	3, 376	16, 743	14, 671	1,968		37, 202
1922						1	324	4,723	22, 420	25, 797	6,366	225	59, 858
1923						33	600	5, 683	22, 042	26, 523	7, 574	755	63, 217
Lettuce:	76		829	1,09	831	181	395			58		33	8, 018
1920	2,025	1,622	1,353	1,063	1,172	365	980	934	832	596	1,388	1, 491	13, 821
1921	2,356	1,984	2,219	1,974	1,067	670	1,399	1,140	1,302	1,253	1,481	1,771	18, 616
1922	2,245	1,919	2,584	3,181	1, 855	801	1, 536	1,787	1, 303	1, 503	1,444		22, 240
1923	3, 119	2,741	4,071	2, 515	2,015	1,308	2,236	2, 454	1,781	2, 013	2, 219	2, 814	29, 286
Onions:	986	355	232	2,679	2,960	1,156	678	1,434	2,740	4, 068	1,348	516	19,152
1918	901	1,062	1,023	1,799	2, 290	1,141	1,177	1, 921	3, 075	4, 211	2,410	1, 017	22, 027
1919	1,488	1,213	949	1,189	2, 462	646	1, 844	1, 909	3, 522	2, 963	1, 702	987	20, 874
1920	1,368	1,159	999	1, 938	4,242	607	1,030	1,918	3, 675	4,910	2, 918	1,186	25, 950
1921	2,038	1,769	1,724	2, 511	2, 559	822	1,482	2,048	3,362	2,608	1,248	1,148	23, 119
1922	1,724	1,011	1, 719	3, 085						5,129 4,759	$\xrightarrow{2,185}$		27, 563 26,396
Peaches:	2, 110	1,484	1,569	1,370				2, 233	3,800	4, 759	2, 622	1,683	26,396
1917.					41	1,294	5,149	5,743	11, 031	3,968	11		27, 237
1918					1,119	4,021	6,336	5, 185	3, 625	123			20,409
1919					328	3, 513	9,216	11, 277	6, 485	104			30, 923
1920					45	1,588	6,881	6, 284	10,528	1,638			26, 967
1921					1,429	4,012	9,387		5, 116				27, 300
1922					695	- ${ }_{2,184}$	$\begin{array}{r}7,5 \\ 10 \\ \hline\end{array}$	11,8	13, ${ }^{\mathbf{9}, 478}$	$1,208$			38, 291

[^194] Shipments as shown in carlots include those by boat reduced to carlot basis.

Table 277.-Fruits and vegetables: Carlot shipments of 15 commodities, United States, 1917-1923-Continued.

Commodity, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Tota!.
Pears:	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.
1919	11						1, 954	3, 820	2,753	1, 389	190	40	10, 158
1929			8	3		23	2, 417	3, 079	4, 850	3, 634	779	157	14, 950
1.921	49	29	20			1	1,511	5, 582	3, 872	1,290	285	82	12, 821
1922	9	2	2			1	1,659	6, 965	6, 613	4, 160	625	112	20, 138
1923	121	40	37	7	1	109	3, 527	5, 233	4,900	2.907	419	118	17, 419
Potatoes:					9, 7.46	14, 719	15,488	12, 910	14, 292	23, 542	3, 536	7, 120	144, 656
1917	10,331 9,489	8, 10,943	12,558	11, 528	12, 720	16, 989	14, 156	11, 805	19,841	24,902	15, 442	8, 891	169, 264
1919	12, 753	8, 998	13, 744	13, 429	9, 883	13, 303	13,855	13, 628	22, 257	32, 535	17, 362	9, 532	181, 277
1920	12, 883	8,725	12, 772	8, 445	6, 960	14, 777	15, 622	13, 592	18, 155	31, 522	25, 075	9,755	178, 283
1921	14, 106	11, 970	16, 154	14, 893	14, 987	17, 645	17, 041	16, 115	26, 040	43, 250	16, 729	10,496	$219,426$
1922	16, 705	13, 718	22, 330	20, 047	20, 214	22, 050	18, 829	18, 252	24,420	35,188 33	19, 400	12, 437	245, 221
1923	17, 255	14, 605	24, 450	23, 186	16,277	20, 402	16,343	16,695	23, 185	33,435	19,400	11, 421	236,654

Strawberries:

weet potatoes:
1919
1920
1921
1922
1923

Tom
1917----.-.-.--

1918
1919--------------
1920--------------
1922-----------------
Watermelons:
1919.-.

1920------------------

1923
Total (15 commod-
ities):
1917 \qquad 15, $09811,463|9,11215,04324,813| 32$
\qquad ,
1919 $23,71218,62522,55421,830 \mid 24,56337,00953,82954,57074,297.93,64545,47321,488491,601$

1923 \qquad

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

Table 278.-Fruits and vegetables: Unloads of nine commodities at 10 markets, in carlots, 1917-1923.

Commodity, and calendar year.	New York.	$\begin{aligned} & \text { Chi- } \\ & \text { cazo. } \end{aligned}$	Phila-delphia.	Pittsburgh.	St. Louis.	$\begin{aligned} & \text { Cin- } \\ & \text { cin- } \\ & \text { nati. } \end{aligned}$	St. Paul.	Min-neapolis.	$\begin{aligned} & \text { Kan- } \\ & \text { sas } \\ & \text { City. } \end{aligned}$	$\begin{aligned} & \text { Wash- } \\ & \text { ing- } \\ & \text { ton. } \end{aligned}$	Total.
		Car	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	
1917	17,996	4,335	2,343	2, 498	2, 117	636	- 284				1 1 22,116 26,514
1918	11,336	4,536	2,701	2, 951	1,540	1, 130	4	568 348	709 674	633 387	26,514 26,215
1919	10, 601	6, 069	2, 864	${ }_{2}^{2,216}$	1, 379	1, 1,617	401	348 464	1,006	590	30, 222
1920	11, 058	7, 102	3, ${ }^{3}, 217$	${ }_{2}^{2,792}$	1,975	1,617 1,810	451	422	1, 002	369	${ }_{2} 30,652$
1921	211,984 212	6, 675		$\xrightarrow{2,808} 3$	1, 1,111	1, 1,257	496	712	1,775	454	${ }^{2} 30,703$
1922	${ }_{2}^{2} 12,7638$	- $\begin{array}{r}6,575 \\ 10,364\end{array}$	3, 211	3,020	2, 736	1, 659	428	681	1, 507	674	${ }^{2} 39,803$
Cabbage:								81	375	186	17,503
1917	12,027	1, 142	1, 3236	1,670	1,858	577	54	57	580	371	10, 305
1918	2, 201	1,837	1, 662	1, 172	746	557	53	49	421	287	9,085
1920	2, 306	1,355	1,906	1,287	864	596	74	121	399	393	
1921	23 , 030	1,780	1,962	1, 105	1,049	669	${ }^{68}$	75	400 515	388 468	${ }_{2}^{2} 11,506$
1922	2 3, 333	1,697	2,166	1,219	1,121	781	102 78	104	503	390	${ }^{2} 11,972$

Footnotes on p. 789.

Table .278.-Fruits and vegetables: Unloads of nine commodities at 10 markets, in carlots, 1917-1923-Continued.

Commodity, and calendar year.	New	$\begin{aligned} & \text { Chi- } \\ & \text { cago. } \end{aligned}$	Phila-delphia.	Pittsburgh	St. Louis.	$\begin{aligned} & \text { Cin- } \\ & \text { cin- } \\ & \text { nati. } \end{aligned}$	St.	Min-neapolis.	$\begin{aligned} & \text { Kan- } \\ & \text { sas } \\ & \text { City. } \end{aligned}$	Wash-ing- ton.	Total.
Cantaloupes:	Cars.	Cars:	Cars.	Cars:	Cars.	Cars.	Cars.	Cars.	Cars.	Cars.	Car
1917--	3, 365	793	815	1,140	285	418	85	142	360	99	7, 502
1918	3, 029	1,059	493	1, 068	286	389	38	118	128	126	6, 734
1919	3,867	1,936	1,049	1,702	305	597	92	171	448	230	10,397
1920	4, 213	2,081	1,091	1, 275	452	554	60	94	396	266	10,462
1921	$2{ }^{2}$ 4,781	2, 308	1,258	1,322	530	640	115	168	452	242	${ }^{2} 11,823$
1922	${ }^{2} 5,535$	2, 800	1, 542	1,244	618	676	122	214	422	306	${ }^{2} 13,479$
1923	${ }^{2} 4,521$	2,237	1, 228	1,203	512	461	76	199	309	253	${ }^{2} 10,996$
Onions:	14,660	1,146	1,606	1,178	753	286	50	149	407	108	1 10,349
1918	4,465	, 695	1, 542	1, 208	549	276	25	75	389	220	9,444
1919.	4,801	1,403	1,398	976	438	226	61	83	284	174	9, 844
1920	4,072	1,237	1,554	1,115	687	283	40	107	426	226	9,747
1921	${ }^{2} 4,429$	1,545	1,482	${ }^{922}$	559	314	71	91	345	196	${ }^{2} 9.954$
1922	24,933	1,673	1,698	951	672	400	65	115	453	235	${ }^{2} 11,195$
1923	${ }^{2} 8,338$	1,951	1,790	941	664	394	64	95	454	247	${ }^{2} 14,938$
aches:											
1917	3,620	1,067	827	1,167	348	495	69	190	292	120	8,195
1918	3, 683	1,060	892	1, 010	188	415	97	83	205	138	7,771
1919	3,935	1,357	944	1,221	334	631	128	112	285	158	9,105
1920	3, 506	1,287	847	849	347	481	36	64	158	263	7,818
1921	${ }^{2} 4,143$	1,326	1, 056	759	481	600	77	101	268	148	2 8, 959
1022	24,617	2, 107	1,016	1,071	438	609	161	192	331	294	2 10, 836
1923	23,496	1,404	778	745	542	649	136	158	320	220	${ }^{2} 8,448$
Potatoes:	*20,601	9,609	6, 441	5,185	2,904	1,573	410	1,198	2,546	439	150,804
1918	19,330	12,477	6,823	6, 516	2,739	1, 538	125	1,397	2, 602	1,213	53, 760
1919	18, 378	12,158	7,668	7, 326	2, 756	2,047	150	498	2, 521	1,000	54, 502
1920	17, 424	11, 302	7, 190	5, 614	2,512	2, 189	487	756	2,145	885	50,454
1921	217, 888	13, 077	7, 460	5, 396	3, 592	2,857	594	845	2, 257	1,153	${ }^{2} 55,217$
1922	$22^{20,100}$	13, 912	8,023	5,009	4, 290	3,447	351	717	2, 433	1, 623	${ }_{2}^{2} 59,905$
1823	221,330	14, 436	8, 519	4, 806	3,012	2,942	263	735	2, 417	1,646	${ }^{2} 80,204$
Strawberries:	2,771	910	679	435	89	287	82	199	173	10	5,635
1918	1,206	876	304	271	77	255	52	119	100	18	3,278
1919	898	1,246	243	166	45	232	58	101	50	50	3,089
1920	1,202		291	185	85	80	49	84	68	75	3, 028
1921	${ }^{2} 1,101$	1,499	300	321	132	356	72	147	180	50	${ }^{2} 4,158$
1922	2 $\begin{aligned} & 2,193 \\ & 2 \\ & 2\end{aligned}$	1,719	568 750	497 516	265 277	474 559	160 130	351 246	262 129	48	26,537 26,872
Sweet potat	2 2, 507	1,696	750	516	277	559	130.	246	129	62	${ }^{2} 6,872$
1921.	${ }^{2} 1,592$	1,231	440	913	194	368	38	91	180	197	${ }^{2}$ 2, 244
1922	2 1, 625	1,315	378	962	127	461	65	141	147	183	${ }^{2} 5,504$
1023.	${ }^{2} 1,255$	1,497	409	944	136	413	58	133	102	180	${ }^{2} 5,127$
Tomatoes:	13,310	1,333	696	945	237	347	27	75	266	105	${ }^{1} 7,341$
1018	3,229	1,008	698	1,016	64	191	39	64	185	115	6, 609
1919	2,986	1,020	943	993	178	202	24	50	235	158	6,789
1920	3, 153	1,199	826	765	220	218	15	49	214	180	6,839
1921	${ }^{2} 2,872$	1,588	1,105	919	327	287	34	58	252	193	${ }^{2} 7,645$
1922	${ }^{2} 3,974$	1,918	1,382	1,219	444	438	75	121	330	254	${ }^{2} 10,155$
1923.	${ }^{2} 3,981$	1,652	I; 436	1,321	309	339	34	106	302	228	${ }^{2} 9,705$
Total (nine gommodities):											
1917	148, 356	20,234	14,732	13, 444	7,734	4,467	1,053	2, 618	5,407	1,400	1119,545
1918	49, 158	23, 033	15, 389	15, 710	6,301	4,771	840	1,481	4,898	2,834	124, 415
1819	47, 767	27,026	16,771	15, 772	${ }_{6} 181$	5, 942	${ }^{793}$	1, 412	4,918	2, 444	129, 026
1920	456934	26,432	16, 922	13,892 14.405	7,142 8829	6,018	1, 112	1,739	5,346	2, ${ }_{\text {2, }}^{234}$	
1921									5,346 5,668	2,934 3,885	$\begin{aligned} & 2144,173 \\ & 2159,720 \end{aligned}$
1922	250,074	33,716 36,922	10, 312	15, 185	10,088 9,208	8, 8 , 145	1,267	2, , , 2, 434	5, 668 $\mathbf{6 , 0 4 3}$	-	21 169,065 1808

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Unloads as ahown in carlots include those by boat reduced to carlot basis.

[^195]
CROPS OTHER THAN GRAINS, FRUITS, AND VEGETABLES.

BEANS.

Table 279.-Beans, dry: Acreage, production, and total farm value, United States, 1914-1923; by States, 1922 and 1923.

Calendar year, and state.	Thousands of acres.		Average yield in bushels per acre.		: Production, thousands of bushels.		A verage farm price per bushel Nov. 15.		Farm value, thousands of dollars.	
1914	$\begin{array}{r} 875 \\ 928 \\ 1,107 \\ 1,821 \\ 1,744 \\ 1,060 \\ 847 \\ 777 \end{array}$		$\begin{array}{r} 13.2 \\ 11.1 \\ 9.7 \\ 8.8 \\ 10.0 \\ 12.6 \\ 10.8 \\ 11.8 \end{array}$		$\begin{array}{r} 11,585 \\ 10,321 \\ 10,715 \\ 16,045 \\ 17,397 \\ 13,349 \\ 9,185 \\ 9,150 \end{array}$		$\begin{array}{r} \$ 2.26 \\ 2.59 \\ 5.10 \\ 6.50 \\ 6.58 \\ 5.28 \\ 4.26 \\ 2.95 \\ 2.67 \end{array}$		26, 213 26, 771 104, 350 91, 863 56,811 27,134 24, 399	
1915										
1916										
1917										
1918										
1919										
1920										
1921										
Leading States.	1922	19231	1922	1923	1922	19231	1922	1923	1922	1923 ${ }^{1}$
	1,074	1,297	11.9	12.1	12,734	15,740	3.74	3.65	47,640	57,480
New York	108	130	14.0	13.0	1,512	1,690	3.80	3.90	5,746	6,591
Michigan	458	568	10.5	11.5	4,809	6, 532	3. 65	3. 30	17, 553	21,556
Wisconsin.		10	9.5	9.0	76	90	3. 60	4. 00	274	360
Colorado.	81	170	5.0	8.0	405	1,360	4.40	3. 70	1,782	5,032
New Mexico	62	69	3.2	5.0	198	345	4.50	4.20	891	1,449
Arizona	7	6	3.5	6.5	24	39	4. 50	3.90	108	152
Idaho	26	45	14.0	22.0	364	990	3.40	3.60	1,238	3,564
California	324	299	16. 5	15.7	5,346	4,694	3. 75	4.00	20,048	18,776

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 280.-Beans, dry: Farm price per bushel, 15th of month, United States, 1910-1923.

Year beginning Sept. 1-	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug	Weighted av., crop year.
1910-11	\$2. 28	\$2. 25	\$2. 14	\$2. 20	\$2. 20	\$2. 23	\$2. 17	\$2. 20	\$2. 17	\$2. 19	\$2. 23	\$2. 20	\$2. 21
1911-12	2. 26	2.27	2. 34	2. 42	2.38	2.38	2. 42	2. 37	2. 52	2. 62	2. 47	2. 40	2. 37
1912-13	2. 38	2. 34	2. 25	2. 31	2. 26	2. 19	2. 10	2. 11	2. 18	2.23	2. 22	2. 11	2. 25
1913-14	2. 08	2.25	2. 20	2.12	2. 17	2. 09	2. 05	2.11	2. 31	2. 23	2. 22	2. 54	2.17
Av. 1910-1913	2.25	2.28	2. 23	2.26	2.25	2.22	2. 18	2.20	2. 30	2. 32	2. 28	2.31.	2.25
1914-15	2. 46	2. 17	2. 28	2. 40	2. 63	3.02	2. 89	2.81	2.93	2. 87	2. 75	2. 67	2.56
1915-16	2. 70	2. 93	3.03	3. 30	3. 47	3. 43	3.34	3. 42	3. 56	3. 72	5. 09	4. 59	3. 27
1916-17	4.60	4. 47	5. 53	5. 77	5.71	6.07	6. 49	7.37	8.94	8. 99	8.07	7. 29	5.92
1917-18.	6. 69	7. 48	7.33	7. 00	7.00	7.08	6. 95	6. 95	6. 67	6. 28	5. 88	6. 11	7.04
1918-19	5. 67	5. 52	5. 46	4. 86	4.98	4. 52	4.40	4. 44	4. 19	4.39	4. 25	4. 30	4.98
1919-20	4. 36	4. 27	4. 42	4.41	4. 70	4.47	4.32	4. 41	4. 36	4. 49	4. 47	4. 17	4.41
1920-21.	3.83	3. 46	3. 27	2. 99	2. 95	2. 85	2. 89	2.69	2. 73	2. 82	2. 75	2.83	3.12
Av. 1914-1920	4. 33	4. 33	4.47	4.39	4. 49	4.49	4.47	4. 58	4. 77	4. 79	4.75	4.57	4.47
1921-22	2. 99	2. 87	2.85	2.83	2. 86	3. 04	3. 64	3. 77	4.02	4. 48	4. 29	4. 09	3.18
1922-23	3. 22	3.36	3. 71	3. 91	4. 24	4. 42	4. 30	4.32	4. 26	4.05	3.94	3. 62	3.88
1923-24	3. 78	3. 87	3.83	3.44									

Division of Crop and Livestock Estimates.

Table 281.-Beans, dry: Carlot shipments by States of origin, calendar years, 1918-1923.

State.	1918	1919	1920	1921	1922	1923
New York	Cars.	Cars.	Cars. 351	Cars.	Cars.	Cars.
Michigan.	-833	1,765	2,123	1,305	1,599 4,955	1,771
Colorado-	763	+478	2, 186	-524	-483	${ }^{593}$
New Mexico	133	422	821	974	288	
Idaho----	177	232	147	145	236	48
California	2, 080	4,681	3,481	3,759	3, 821	3, 269
All other	89	69	86	152	84	151
Total	4, 144	7, 791	6,995	12, 714	11, 466	12, 185

Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

Table 282.-Beans: Wholesale price per 100 pounds, 1914-1923.

Calendar year-	Boston, pea.			Chicago, pea.			Detroit, pea.			San Francisco, small white.		
	Low.	High.	$\begin{array}{\|c} \text { Aver- } \\ \text { age. } \end{array}$	Low.	High.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Low.	High.	Aver- age	Low.	Migh.	Average.
1914	\$2. 10	\$3. 10	\$2. 10	\$1. 60	\$3. 10	\$2. 22	\$1.80	\$2. 90	\$2. 22	\$4. 00	\$6.00	\$4.98
1915	2.85	4.10	3.36	2. 40	4. 10	3.19	2. 00	3.60	3.06	4. 50	6. 40	5.30
1916	3. 80	7.25	4. 96	3. 00	8. 00	4.24	3. 50	7.00	4.82	6.25	11. 50	8.05
1917	6. 50	15. 00	9.24	6. 40	14.50	9.09	6. 25	13. 25	8. 60	10. 50	16. 00	13.20
1918.	9.00	14.00	12.08	8.25	15. 00	11.49	8. 63	13. 25	10.75	8. 90	12.75	11.64
1919	6. 00	10. 00	7. 74	6. 50	9. 50	7.92	6. 50	9.00	7. 54	5. 75	8.90	7.05
1920	4.75	8. 25	6. 98	4.25	9. 25	6.76	3.90	7. 90	6. 25	3. 75	6. 75	5. 72
Low, high, and average, 1914-1920	2.10	15. 00	6. 64	1.60	15.00	6. 42	1.80	13. 25	6.18	3.75	16.00	7. 99
1921	4. 25	5. 50	4. 88	3. 60	5. 50	4.61	3.30	4.78	3. 99	3. 20	4.90	4.03
1922	5.00	10. 50	7. 60	4. 60	11. 15	7.46	4.30	9. 65	6. 86	4.75	7. 75	6. 18
1923.	6. 75	8.00	7.44	5. 30	9.00	7.04				5. 75	7.75	6. 67
January 1923.			762		9.00	8.25						
February	7.50	7.85	7.71	8. 25	8. 50	8. 43				7.00	7.45	7.23
March	7.50	7.75	7.66	8.00	8.25	8.18				7.25	7.30	7.27
April	7.50	7.75	7.60	7.75	8.00	7.83				7.15	7. 25	7.22
May	7.15	7.50	7.27	7.75	7.90	7.79				6.50	7.15	6. 76
June.	7.20	7.50	7.35	7. 50	7.90	7.76				6.50	7.00	6.81
July	7.00	7.35	7.18	6. 25	7.50	6. 60				6.15	6. 50	6.42
August	6. 75	7.00	6.89	5. 50	5. 85	5. 68				5. 75	6.25	6.05
September	7.25	7.50	7.40	5. 85	6. 30	5. 99				6. 50	7.00	6. 75
October-	7.75	7.75	7.75	6. 30	6. 50	6. 35				5. 75	7.00	6. 05
November	7.50	8.00	7.79	5. 70	6. 50	6. 10				6. 00	6.25	6.09
Decembe	7.00	7.25	7.12	5. 30	5. 70	5. 54				5. 75	6.15	5. 92

Division of Statistical and Historical Research. Compiled from Boston Chamber of Commerce, Chicago Daily Trade Bulletin, Michigan Elevator Exchange, San Francisco Daily Commercial News.

SOY BEANS.

Table 283.-Soy beans: Farm price per bushel, 15th of month, United States, 1913-1923.

Year beginning Oct. 1-	October.	November.	December.	January.	February.	Weighted average.
1913-14	\$1.96	\$1. 57	\$1. 72	\$1.96	\$1. 80	\$1. 76
1914-15.	2.08	2.15	2. 24	2. 35	2. 26	2. 18
1915-16.	1. 88	2.08	2. 23	2.31	2. 39	2. 11
1916-17.	2. 13	2.13	2.18	2. 20	2.45	2. 16
1917-18.	2. 73	2.86	3.33	3.47	3.82	3. 05
1918-19.-	3. 36	3. 20	3. 29	3. 00	3. 00	3. 23
1919-20.	3. 34	3.35	3.44	3.76	4.05	3.45
1920-21	3. 41	3. 00	2. 28	2.18	2.17	2. 80
1921-22	2. 20	2.22	2.08	2.11	2.16	2. 17
1922-23.	1. 89	2.06	1. 97	2. 07	2.13	2. 00
1923-24.-	2. 09	2.11	2.11			

Table 284.-Soy beans: Acreage, yield per acre, and production, by States, calendar years, 1922 and 1923.

State.	Equivalent solid acreage utilized. ${ }^{1}$								Beans gathered. ${ }^{2}$								Hay.							
	Primarily for beans.		Primarily for hay.		Primarily for grazing, hogging, etc.		Total.		Yield per acte from acreage grown primarily for beans.		Production.						Yield per acre from acreage primarily for hay.		Production from acreage primarily for hay.					
			From acreage grown primarily for beans.	From acreage utilized primarily for other purposes.		Total.																		
	1922	$1923{ }^{3}$			1022	$1923{ }^{3}$			1922	$1923{ }^{3}$	1922	$1923{ }^{3}$	1922	1923	1922	$1923{ }^{3}$	1922	$1923{ }^{3}$	1922	$1923{ }^{\text {a }}$	1922	1923	1922	$1923{ }^{8}$
	1,000 acres.	1,000	1,000	1,000			1,000	1,000	1,000					1,000	1,000	1,000	1,000	1,000			1,000			
Delaware	acres.	acres.	acrès.	actes.	acres.	acres.	acres.	acres.	Bush.	Tons.	Tons.	toms.	tons.											
Maryland.	5	7	10	12	$\frac{1}{3}$	5	18	24	16.0	17.5	280	r 122			29 80	46 122	1.75 2.00	1. 40	5 20	4 18				
Virginia	13	14	40	48	10	10	63	72	16.0	19.0	208	266	69	89	277	355	1.80	1.80	72	86				
West Virginia	1	1	5	5	1	1	7	7	15.0	15. 0	15	15	1	1	16	${ }^{35}$	1.70	1.70	8	8				
North Carolina	100	10.5	65	70	60	65	225	240	16.0	17.0	1,600	1,785	400	446	2,000	2,231	1.30	1.40	84	98				
South Carolina.	3	5	4	θ	3	7	10	21	11.0	12.0	33	60	10	30	43	90	. 90	90	4	8				
Georgia.	3	7	7	20	2	5	12	32	12. 2	11.0	37	77	29	O1	66	138	. 93	. 80	7	16				
Ohio.	31	50	30	50	29	28	90	128	15.0	16.0	465	800	2	0	465	800	1. 70	1. 50	51	75				
Indiana	20	40	29	95	64	64	113	190	12. 0	14.0	240	560	220	550	460	1,110	1. 50	1. 1.40	44	134				
Inlinois.	65	92	70	137	58	213	193	442	12.5	14.0	812	1,288	388	484	1,200	1, 722	1.50	1.80	105	247				
Michigan.	4	6	4	4	4	4	12	14	10.2	11.0	41	66	10		51	66	1.32	1. 50	5	6				
Wisconsin	7	4	11	14	30	- 30	48	48	11.0	8.0	77	32		...--	77	32	1.20	1.30	13	18				
Iowa...	6	10	7	10	100	150	113	170	22.0	17.0	132	170			132	170	1.40	1.90	10	19				
Missouri	15	70	33	68	51	112	99	250	11.0	12.0	165	840	41	95	206	935	1. 25	1.40	41	9.				
Kentucky.	6	6	38	38	21	21	65	65	13.0	14.0	78	84	84	94	162	178	1.25	1.45	48	55				
Tennessee.	${ }_{6}^{6}$	${ }_{6}^{6}$	125	130	23	23	154	159	9.0	9.0	54	54	63	63	117	117	1.35	1. 35	169	176				
Alabama.	18	17	60	52	35	37	113	106	8. 6	8. 5	155	144	83	78	238	222	1.20	1.03	72	${ }^{6} 4$				
Mississippi	8	8	19	23	16	14	43	45	12.0	14. 5	96	116	96	116	192	232	1. 20	1.35	23	81				
Louisiana.	1	1	1	6	1	1	3	8	12.1	16.0	12	16	9	13	21	29	1.00	1. 40	1	8				
Total.	314	452	561	794	512	791	1,387	2,037	13.78	14.47	4,329	6,541	1,503	2,070	5, 832	8,611	1. 394	1. 455	782	1,155				

[^196]${ }^{1}$ Interplanted acreage is included as its equivalent solid acreage.

[^197]${ }^{3}$ Prelliminary.

COWPEAS.
Table 285.-Cowpeas: Acreage, yield per acre, and production, by States, calendar years, 1922 and 1929.

State.	Equivalent solid acreage utilized. 1								Peas (gathered). ${ }^{2}$								Нау.							
	Primarily for peas.		Primarily for hay.		Primarily for grazing, hogging, etc.		Total.		Yield per acre from acreage grown primarily for peas.		Production.						Yield per acre from acreage primarily for hay.		Production from acreage primarily for hay.					
			From grown rily fo	creage primapeas.			From utilize rily fo purp	creage primaother ses.				al.												
	1922	$1923{ }^{3}$			1922	$1923{ }^{3}$			1922	-1923 ${ }^{3}$	1922	$1923{ }^{3}$	1922	1923	1922	$1923{ }^{3}$	1922	$1923{ }^{3}$	1922	19238	1922	1923	1922	19238
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			1,000	1,000	1,000	1,000	1,000	1,000			1,000	1,000				
	acres.	acres.	acres.	acres.	aeres.	acres.	acres.	acres.	Bush.	Tons.	Tons.	tons.	tons.											
Delaware	2		10	17	1		13	20	13. 5	14.0	27	28			27	28	1.75	1.40	18	24				
Maryland.	3	4	14	20	4	4	21	28	14.4	13.0	43	58			43	52	2. 00	1. 50	28	30				
Virginia--	22	20	84	90	14	14	120	124	12. 0	14. 0	264	280	113	120	377	400	1.70	1. 70	143	153				
West Virginia..	1	1	8	8	1	1	10	10	13. 0	14.0	13	14	1	1	14	15	1.55	1.50	12	12				
North Carolina	110	100	170	160	120	98	400	358	12.0	10.0	1, 320	1,000	809	613	2, 129	1,613	1.10	1.00	187	160				
South Carolina	300	304	277	208	150	130	727	727	7.5	10.0	2, 250	3,040	750	960	3,000	4,000	. 85	. 80	235	234				
Georgia....	230	181	333	380	140	160	703	721	8.9	8.5	2, 047	1,538	1,482	1,180	3, 529	2,718	. 90	. 70	800	266				
Florida.	11	14	33	36	42	44	86	94	11.0	11.0	121	154	246	- 313	367	467	. 73	. 95	24	34				
Indiana	18	23	66	95	17	20	101	138	12. 0	10.0	216	230	130	180	346	410	1. 50	1. 50	99	142				
Inlinois.	53	45	90	97	19	19	162	161	7.0	0.5	371	427	161	114	532	541	1.50	1.57	135	152				
Missouri	21	23	74	97	30	30	125	150	9.0	9. 0	189	207	83	107	272	314	1.18	1.00	87	97				
Kentucky	10	10	58	. 58	28	28	96	96	12. 0	12.0	120	120	150	150	270	270	1.30	1.45	75	84				
Tennessee.	14	19	175	168	40	36	229	216	7.0	7.0	98	84	106	91	204	175	1.30	1. 10	228	185				
Alabama..	240	179	220	182	209	154	669	515	9.0	8.5	2,160	1,522	1,379	974	3,539	2,496	. 90	. 78	198	142				
Mississippi	160	154	160	163	127	104	447	421	8.0	7.5	1,280	1,155	1,135	1,025	2,415	2,189	1.00	1. 10	- 160	179				
Louisiana.	55	48	75	65	105	95	235	206	14.6	13.5	803	621	657	508	1,460	1,129	1. 10	1.20	82	78				
Texas .-.--	44	55	22	28	110	81	176	162	9.1	12.0	400	660	176	121	${ }^{576}$	${ }^{7} 781$	1.25	. 80	28	21				
Arkansas.	50	45	120	110	62	57	232	212	10.0	10.0	500	450	350	220	850	870	1.10	1. 10	132	121				
Total	1,344	1,218	1,989	2,065	1,219	1,076	4,552	4,359	9.21	9.50	12,222	11, 582	7,728	6,677	19,950	18, 259	1,092	1,024	2,171	2, 110				

[^198]Table 286.-Cowpeas: Farm price per bushel, 15th of month, United States, 19151923.

Year begin: ning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Weighted average.
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1915-16	174.4	155.4	156.0	151.4	151.8	156.3	157.2	153.7	150.2	148.8	140.0	135.1	151.9
1916-17	141.3	142.4	148. 1	161.6	177.0	192. 2	210.0	231.8	253.4	293.1	309.1	303. 2	189.7
1917-18	265.4	217.0	219. 5	227.1	237.5	262.2	292.5	301.5	292.8	283.3	257.4	248.4	236. 2
1918-19	241.3	226. 2	233.9	231.4	237.6	238.9	252.1	248.8	267.6	292. 3	343. 9	342.8	254.3
1919-20	310.3	269.4	260.9	270.7	280.6	312.9	372.4	394.0	421.4	484.4	483.7	470.8	319.4
1920-21	422.7	368.8	273.7	243.4	229.0	197.2	204.2	204.7	215. 5	242.7	265.1	287.2	273.8
1921-22	240.9	199.7	201. 2	184.8	176. 1	171.9	179.7	185. 8	184.8	189. 5	184.0	170. 0	190.7
1922-23	166. 5	157.4	153.6	160.7	167.4	187.0	197. 6	198.2	208.0	208.5	217.2	221.3	172.8
1923-24	208. 1	187. 2	195.4	194. 7	200.9								

Division of Crop and Livestock Estimates.

VELVET BEANS.

Table 287.-Velvet beans: Acreage, yield per acre, and production, calendar years, 1922 and 1923.

State.	Equivalent solid acreage utilized. ${ }^{1}$						Beans gathered. ${ }^{2}$											
	Primarily for beans.		Primarily for grazing, hogging, etc.		Total.		Yield per acre from acreage grown primarily for beans.		Production.									
			From acreage grown primarily for beans.	From acreage utilized primarily for other purposes.		. Total.												
	1922	$1923{ }^{3}$			1922	$1923{ }^{3}$			1922	$1923{ }^{3}$	1922	1923	1922	$1923{ }^{3}$	1922	$1923{ }^{3}$	1922	1923 ${ }^{2}$
	1,000	1,000	1,000	1,000			1,000	1,000	Bush-	Bush-	1,000	1,000	1,000	1,000	1,000	1,000		
	acres.	acres.	acres.	acres.	acres.	acres.	els.	els.	bush.	bush.	bush.	bush.	bush.	bush.				
North Carolina	5	6	36	39	41	45	11. 0	11.0	55	66	68	75	123	141				
South Carolina	50	50	175	195	225	245	13. 0	13.0	650	650	533	490	1,183	1,140				
Georgia-------	22	218	520	510	742	728	11. 8	11.9	2,620	2, 594	1,124	1,000	3,744	3, 594				
Florida...-..--	30	25	210	225	240	250	12.0	13.0	360	325	200	178	560	503				
Alabama---	250	225	450	366	700	591	11.3	11.0	2, 825	2,475	1,130	990	3,955	3,465				
Mississippi..--	40	38	216	205	256	243	10.0	12.0	400	456	200	185	600	641				
Louisiana....-	35	30	132	132	167	162	11. 2	8.6	392	258	482	204	874	462				
Texas.	8	9	. 40	42	48	51	13. 0	9.0	104	81	110	75	214	156				
Total	640	601	1,779	1,714	2,419	2,315	11.57	11.49	7,406	6,905	3, 847	3, 197	11,253	10,102				

[^199]
BROOM CORN.

Table 288.-Broom corn: Acreage, production, and total farm value, United States, 1915-1923; by States, 1922 and 1923.

Calendar year, and State.	Acreage.		Average yield in pounds per acre.		Production (tons).		Average farm price per ton Nov. 15.		Farm value, thousands of dollars.	
1915	$\begin{aligned} & 230,100 \\ & 235,200 \\ & 345,000 \\ & 366,000 \\ & 352,000 \\ & 275,500 \\ & 222,000 \end{aligned}$		454.1 329.3 332.8 340.4 303.4 344.2		$\begin{aligned} & 52,242 \\ & 38,726 \\ & 57,400 \\ & 62,300 \\ & 53,400 \\ & 36,500 \\ & 38,200 \end{aligned}$		$\begin{array}{r} 91.67 \\ 172.75 \\ 292.75 \\ 233.87 \\ 234.57 \\ 154.57 \\ 126.16 \\ 72.20 \end{array}$		$\begin{array}{r} 4,789 \\ 6,690 \\ 16,804 \\ 14,570 \\ 8,254 \\ 4,60 \\ 2,658 \end{array}$	
1916										
1917.										
1918										
1919										
1920										
1921										
Leading States.	1922	19231	1922	1923	1922	19231	1922	1923	1922	$1923{ }^{1}$
Total	275, 000	498,000	271.3	278.3	37,300	69,300	219.46	160.61	8,186	11, 130
Illinois	21,000	37,000	680	475	7, 100	8,800	260	235	1,846	2,088
Missourí	3,000	4,000	560	500	800	1,000	225	188	180	
Kansas.	16,000	58,000	390	370	3, 100	10,700	221	118	685	1,263
Texas	16,000	30,000	375	363	3,000	5,400	200	150	600	810
Oklahoma	195, 000	271, 000	200	220	19,500	29,800	213	170	4,154	5, 066
Colorado.	10,000	48, 000	350	300	1,800	7,200	195	145	351	1,044
New Mexico	14, 000	50, 000	290	255	2,000	6,400	185	108	370	691

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 289.-Broom corn: Farm price per ton, 15th of month, United States, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov:	Dec.
1910.	\$190	\$197	\$200	\$204	\$199	\$151	\$180	\$142	\$139	\$108	\$96	\$93
1911	81	80	78	74	81	69	68	72	92	121	124	108
1912	100	86	99	101	83	79	85	83	77	70	69	57
1913	49	56	57	58	53	61	57	91	106	102	100	92
Av.1910-1913	105	105	108	109	104	90	98	97	104	100	97	88
1914.	94	95	91	89	85	88	88	91	77	67	66	58
1915	66	78	68	71	75	77	79	83	75	80	92	101
1916	104	104	104	96	101	102	103	120	129	168	173	172
1917	184	201	212	227	252	223.	194	308	240	270	296	280
1918.	249	254	242	222	206	222	235	232	300	265	205	172
1919	169	141	174	149	152	106.	119	124	154	162	161	163
1920	163	123	130	145	146	145	113	142	125	126	123	88
Av. 1914-1920	147	142	146	143	145	138	133	157	157	163	159	148
1921.	70	71	72	69	66	76	75	67	68	72	68	86
1922	71	88	80	76	82	87	84	122	175	193	221	238
1923.	229	256	242	254	223	233	214	195	169	197	161	172

[^200]85813° - твк 1923——51

COTTON.

Table 290.-Cotton: Acreage, production, value, exports, etc., United States, 1869 1923.

Calendar year.	$\begin{gathered} \text { Acre- } \\ \text { age } \\ \text { picked. } \end{gathered}$	Average yield per acre.	Pro-duction.	Average farm price per pound, Dec. 1	Farm value, Dec. 1.	Value per acre, Dec. $1 .{ }^{1}$	New York closing prices per pound on middling upland.				Domestic exports, fiscal year beginning July 1.	Imfiscal year beginning July 1.
							Decem- ber. Follow- ing May.					
							웅	$\begin{aligned} & \frac{0}{60} \\ & \text { 0 } \end{aligned}$		安		
	$1,000$	Lbs.	$1,000$ bales.	Cents.	$\begin{gathered} \text { 1,000 } \\ \text { dollars. } \end{gathered}$	Dol- lars.	Cts.	Cts.	Cts.	Cts.	Bales. ${ }^{2}$	Bales. ${ }^{2}$
	$\begin{gathered} \text { acres. } \\ 7.743 \end{gathered}$	196.9	8,012	Cents.			25. 00	25.50	22. 50	23.50	1,917, 117	3,396
1870	885	198.9	3,800				15.00	15.88	14.88	17.62	2, 925, 856	2,394
			2,				19. 12	20. 25	23. 75	26.38	1, 867, 075	5,788
1872	8,483	188.7	3,920				19.12	20. 25	19. 25	19. 62	2, 400, 127	8,851
1873	9,510	179.7	3, 683				15. 62	16. 50	17. 75	18.88	2, 717, 205	7,252
1874	11, 764	147. 5	3,941				14. 12	14. 88	16. 12	16.38	2, 520, 838	4,299
1875	11.034	190.6	5, 123				13. 06	13.31	11.81	13.12	2,982, 811	4,903
1876			4,438	9.0		14.96	12. 06	12. 50	10.81	11.38	2, 890, 738	5,313
1877	12, 133	163.8	4,370				11. 25	11. 50	10.62	11. 25	3, 215, 067	6,064
1878	12, 344	191. 2	5,244	8.2	192, 515	15.60	8.81	9. 50	11.88	13. 75	3, 256, 746	5,987
1879	14, 480	181.0	5,755	10.3	269, 305	18. 60	12.38	13. 44	11.69	11.88	3, 644, 363	096
1880	15, 951	184.5	6,343	9.8	289, 083	18. 12	11.88	12. 00	10. 44	10.88	4, 382, 009	8,900
1881	16,711	149.8	5 ,				11. 88	12. 12	12.06	12.38	3, 480, 792	8,680
1882	16, 277	185.7	6,957	9.1	275, 513	16.93	10. 25	10. 44	10. 50	11.12	4, 576, 378	8,164
1883	16, 778	164.8	5,701	9.1	250, 977	14.96	10. 88	10. 56	11. 50	11.75	3, 725, 145	14, 039
1884	17, 440	153.8	5, 682	9.2	246, 575	14.14	10. 44	11. 44	10.69	11. 00	3, 783, 319	10, 231
1885	18, 301	164.4	6,575	8.4	251, 775	13. 76	9.19	9.44	9.19	9.31	4, 116, 149	10,145
1886	18, 455	169. 5	6,446	8.1	251, 856	13. 65	9. 19	9. 56	10.75	11.44	4, 338, 915	7,849
1887	18, 641	182. 7	7,020	8.5	290, 901	15.61	10. 50	10.62	9. 94	10.06	4, 528, 883	10,995
1888	19, 059	180.4	6,941	8.5	292, 139	15.33	9. 75	9.88	11.00	11. 19	4, 770, 065	15,946
1889	20, 175	159.7	7, 478	8. 5	275, 249	13. 64	10. 25	10. 25	11. 94	12. 75	4, 943, 925	17, 212
1890	19, 512	187.0	8, 674	8.6	313, 360	16.06	9.19	9.44	8.88		5, 814, 718	8
1891	19, 059	179.4	9,018	7.2	247,638	12.99	7. 75	8. 06	7.25	7.44	5, 870, 440	57, 328
1892	15, 911	209.2	6, 664	8. 3	277, 194	17.42	9.38	10.00	7.62	7.81	4, 424, 230	86, 736
1893	19, 525	149.9	7,493	7. 0	204, 983	10.50 8	7.81	8.06 5.81	6. 75	7.38	5, 366, 565	65, 412
1894	23, 688	195. 3	9,476	4. 6	212, 335	8.96 11.82	5. 69	5.81	6. 8.00	7.38 8.38	4, 770,453	110, 701
1895	20, 185	155. 6	7, 161	7.6	238, 503	11.82	8. 25	8. 7.69	8. 7.62	8.38 7.81	4, 07, 4075	
1896	23, 273	184.9	8, 533	6. 7	286, 169	12.30	7.06	7.69 5.94	7.62	7.81 6.56	6, 207, 510 $7,725,572$	103,798 105,321
1897	24, 320	1827	10, 898	6.7	296, 816	12.20	5.81 5.62	5. 94 5.88	6. 12	6. 56	7, 775,438	100, 316
1898	24, 967	220.6	11, 189	5.7	315, 449	12. 63	5. 62	5. 7.75	6. 6.12	9.88	6, 252, 451	134, 797
1899	24, 327	183.8	9,345	7.0	326,215 463,310	13. 41	7.50 9.75	7.75 10.31	8. 06	9.88 8.31	6, 718,125	93, 263
1900	24, 933	194.4	10,123	9.2	463, 310	18.58	9.75	10.31	8. 06	8.31	6, 718, 12	-83, 203
1901	26, 774	170.0	9,510	7.0	334, 088	12.48	8. 00	8.75	9.38	0. 75	7, 057, 949	197, 431
1902	27, 175	187.3	10,651	7.6	403, 718	14.86	8. 50	8. 88	10.75	12.15	7, 138, 284	149, 749
1903	27, 052	174.3	9,851	10. 5	516, 763	19. 10	11. 95	14.10	12.75	13.90 8.85	6, 179, 712 $8,678,644$	97,081 121,017
1904	31, 215	205. 9	13, 488	9.0	603; 438	19.33	6.85 11.65	12. 00	7.85	8. 85	7, $7,268,090$	141, 927
1905	27, 110	186.6	10,575	10.8	569, 791	21. 02	11.65	12.	11. 25	12. 00	7, 268, 0.0	141, 827
1906	31, 374	202.5	18, 274	9.6	635, 534	20.26	10.45	11. 25	11. 50	12. 90	9, 036, 434	209, 584
1907	29, 660	179.1	11,107	10.4	575, 226	19.39	11.70	12.20	10.20	11.50	$7,633,997$ 8,895	142, 143
1908	32, 444	194.9	13,242	8.7	575, 092	17.73	9.10	9.35	10.85	11.80	8, 895, 970	173,036
199	30, 938	154. 3	10,005	13.9	697, 681	22.55	14. 65	16. 15	14. 50	16. 05	6, 413, 416	172, 075
1910	32, 403	170.7	11, 609	14.1	820, 407	25.32	14.80	15. 25	15. 35	16. 15	8, 067, 882	227, 537
1911	36, 045	207.7	15, 698	8.8	687, 888	19.08	9. 20	9. 65	11. 30	11.9	1, 124, 591	
1912	34, 283	190.9	13, 708	11. 9	817, 055	23.83	12.75	13. 20	11.80	12. 12	$\mathbf{9}, 124,591$ $9,521,881$	243,704 246,694
1913	37, 089	182.0	14,156	12.2	862, 708	23.26	12. 50	13. 50	12.90	14. 50	9,521, 881	246,694
Av. 1909-1913	34, 152	182.5	13, 038	12.5	777, 148	22.76	12.78	13. 55	13. 17	14. 14	8, 839, 604	221, 914
1914	36, 832	209.2	16,135	6.8	549, 036	14.91	7.25	7.80	9. 50	10.40	8, 807, 157	370, 409
1915	31, 412	170.3	11,192	11.3	631, 460	20.10	11.95	12. 75	12. 30	13. 35	6, 168, 140	465, 602
1916	34, 985	156. 6	11,450	19.6	1, 122, 295	32. 08	16. 20	20. 30	19. 60	22. 10	6, 176, 162	294, 123
1917	33, 841	159.7	11, 302	27.7	1, 566, 198	46. 28	29.85	31. 85	25. 70	30.10	4, 641, 023	206, 651
1918	36, 008	159.6	12,041	27.6	1, 663, 633	46. 20	27. 50	33. 00	25. 90	34.00	5, 525, 894	207, 184
1919	33, 566	161.5	11, 421	35.6	2, 034, 658	60.62	38. 00	10. 25	40. 00	13.00	7, 587,487	
1920	35, 878	178.4	13, 440	13.9	933, 658	26.02	14. 50	16. 70	12.45	13.15	5, 622, 777	251, 878
Av. 1914-1920	34, 646	171.6	12,426	20.4	1, 214, 420	35. 05	20.75	23. 24	20.78	23.73	6, 289, 806	355, 211
1921	30, 509	124.5	7,954	16.2	643, 933	21. 05	17. 50	19.45	18. 95	21.80	.6, 717, 757	358, 330
1922	33, 036	141.5	9,760	23.8	1, 161, 846	35. 03	24. 55	26.80	25.30	28.9	5, 253, 464	472, 185
$1923{ }^{3}$	37, 420	128.8	10, 281	31.0	1, 563, 347	41.98	34. 35	37.65				

[^201]Table 291.-Cotton ginned to specified dates and throughout the season, United States, 1902-192s..

Growth year.	Cotton ginned to-									Total ginned.
	Sept. 1.	Sept. 25.	Oct. 18.	Nov. 1.	Nov. 14.	Deo. 1.	Dec. 13.	Jan. 1.	Jan. 16.	
902	Bales.	Bales.	Bales. 5, 683, 006	Bales.	Bales.	Bales.	Bales:	Bales.	Bales.	Bales.
1903.	17,302		3, 706, 248		6, 815,162		8, $8.526,544$		9, 485, 537	10, 588, 250
1904	374,821		6, 417, 894		9, 786, 646		11, 971, 477		$9,485,537$ $12,767,600$	9, $13,419,969$
1905	476, 655	2, 355, 716	4,990, 566	6, 457, 595	7, 501, 180	8,689, 683	9, 297, 819	9,725, 426	9, 989, 634	10, 495, 105
1906	407, 551	2, 057, 283	4, 981, 621	6,906, 395	8,562, 242	10, 027 , 868	11, 112, 789	11,741, 039	12,176, 199	12, 983, 201
1907	200, 278 402,229	1, 532, 2, 590, 639	$4,420,258$ $6,296,166$	6, 128, 562	$7,300,685$ $9,595,809$	$8,343,396$ $11,008,661$	$11,124,070$ $11,904,269$	$1,911,505$ $9,965,598$	$12,139,151$ $12,666,203$	11, 057, 822
1909.	388, 242	2, 568, 150	5,530,967	7,017, 849	8,112, 199	8,876, 886	9, 358, 085	9, 647, 327		
1910	353, 011	2, 312, 074	5, 423, 628	7, 345,953	8,780, 433	10,139, 712	10, 695, 443	11, 084, 515	-9,787, $11,253,147$	10, 072, 731
1911	771, 297	3, 676, 594	7,758, 621	9,970,905	11, 313, 236	12, 816, 807	13, 770, 727	14, 317, 002	14, 515, 799	15,553, 073
1912.	730, 884	3, 007, 271	6, 874, 206	8, 869, 222	10, 299, 646	11,854; 541	12, 439, 036	12, 907, 405	13, 088, 930	13, 488 , 539
1913	799,099	3,246, 655	6, 973, 518	8, 830, 396	10, 444, 529	12, 088, 412	12, 927, 428	13, 347, 721	13, 582, 036	13, 082,811
At. 1909-1913	608, 507	2, 062, 149	6,512, 188	8, 406, 865	9,790, 529	11,155, 272	11, 838, 144	12, 260, 794	12, 445, 501	12, 933, 098
1914	480, 317	3, 383, 752	7, 619, 747	9,826, 912	11, 688,240	13, 073, 386	13, 972, 229	14,443, 146	14, 915, 850	15, 905, 840
1915	463, 883	2,903, 829	5,708, 730	7, 378, 886	8, 771, 275	9, 703, 612	10, 306, 309	10, 636, 778	10,751,990	11, 068, 173
1918	850, 668	4, 081,980	7, 303, 183	8, 623, 893	9, 615, 003	10, 352, 031	10, 838, 799	11, 039, 49.1	11, 137, 712	11, 363, 915
1917	614,787	2, 511, 658	5, 573, 606	7, 185, 178	8, 571, 115	- 9, 713,529	10, 131, 594	10, 434, 852	10,570, 733	11, 248, 242
1918.	1,038, 078	3, 770, 611	6,811, 351	7,777, 159	8,706, 420	9,571,414	10,281, 139	10, 773, 863	11, 048, 652	11, 906, 480
1919	142, 625	1,835, 214	4, 929, 104	6, 305, 054	7,604, 320	8,844, 368	9,396, 646	10, 008, 920	10, 307, 120	11, 325, 532
1920	351, 589	2, 249, 606	5, 754, 582	7, 508, 033	8,914, 642	10, 141, 293	10,876, 263	11, 554, 648	12, 014, 742	13, 270, 970
Av 1914-1920	563, 135	2, 963, 808	6, 242, 000	7,800,816	9, 121, 574	10, 199, 948	10, 828, 997	11, 270, 243	11,535, 257	12,208, 450
1921	485, 787	2, 920, 392	5, 497, 364	6,646, 354	7,274, 201	7,639,961	7,790,656	7, 882, 356		
1929	808, 189	3, 866, 396	6, 978, 321	8,139, 215	8, 869, 978	$9,319,601$	9, 488, 852	9, 597, 330	$9,648,261$	$9,729,306$
1923.	1,135, 880	3,235, 974	6, 415, 145	7, 565, 868	8,374, 148	$9,251,264$	9, 554, 177	9,811, 038	- ${ }^{9} 9,946 ; 462$	10, 159, 498
Division of Crop and Livestock Estimates. Compiled from reports of Bureau of the Census; quantities are given in running bales, except that round bales are counted as half bales. Linters not included.										

âverage weight of bagging and ties, by States.
${ }_{2}$ Preliminary.

Table 292.-Cotton (linters): Production, United States, 1899-1922.

$\begin{aligned} & \text { Year beginning } \\ & \text { Aug. 1. } \end{aligned}$	Production, in $500-\mathrm{lb}$. gross-weight bales.	Year beginning Aug. 1.	Production, in $500-\mathrm{lb}$. gross-weight bales.	Year beginning Aug. 1.	Production, in $500-1 \mathrm{~b}$. gross-weigh bales.
1899-1900	114,544	1909-10.	310,433	1916-17	
1900-1	143, 500	1910-11.	397, 072	1917-18.	1, 125, 719
1901-2	166, 026	1911-12	557, 575	1918-19.	929,516
1902-3.	196, 223	1912-13.	609,594	1919-20	607, 969
1903-4-	194, 486	1913-14	638, 881	1920-21	440, 313
1905-6.	229, 539	Av. 1909-1913	502, 711	Av. 1914-1920	903, 182
	268, 282	1914-15		192	
1908-9.	345, 507	1915-16	931, 141	1922-23	607,779

Division of Crop and Livestock Estimates. Compiled from reports of the Bureau of the Census.
Table 293.-Cotton: Acreage harvested, by States, calendar years, 1914-1923.

State.	1914	1915	. 1916	1917	1918	1919	1920	1921	1922	$1923{ }^{1}$
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Virginia	acres.	acres.	acres.	acres. 50	acres.	acres.	acres.	acres. 34	acres.	acres.
North Carolina	1,527	1,282	1,451	1,515	1,600	1,490	1, 587	1,403	1,625	1,678
South Carolina	2, 861	2, 516	2,780	2,837	3,001	2,835	2,964	2, 571	1,912	2,030
Georgia	5,433	4,825	5,277	5,195	5, 341	5,220	4,900	4,172	3, 418	3, 433
Florida.	221	193	191	183	167	103	100	65	118	143
Alabama	4,007	3,340	3,225	1,977	2, 570	2, 791	2,858	2,235	2, 771	3,149
Mississipp	3, 054	2,735	3, 110	2, 788	3, 138	2,848	.2,950	2,628	3, 014	3, 298
Louisiana.	1,298	990	1,250	1,454	1,683	1,527	1,470	1,168	1,140	1,395
Texas.	11,931	10,510	11,400	11, 092	11, 233	10, 476	11,898	10, 745	11, 874	14, 081
Arkansas	2, 480	2,170	2,600	2,740	2,991	2,725	2,980	2, 382	2, 799	3, 054
Tennessee	915	772	887	882	902	758	840	634	985	1,167
Missouri	145	96	133	153	148	125	136	103	198	1, 339
Oklahoma	2,847	1,895	2,562	2, 783	2,998	2, 424.	2,749	2, 206	2,915	3, 295
California ${ }^{\text {a }}$	47	39	52	136	173	185	275	140	202	233
Arizona.				41	95	107	230	90	101	128
All other	20	15	25	15	- 12	10	24	18	44	72
Unit	36, 832	31, 412	34, 985	33, 841	36, 008	33, 566	35,878	30, 509	33, 036	37, 420

Division of Crop and Livestock Estimates.

${ }^{1}$ Preliminary.
${ }^{2}$ Lower Calfornia (148,000 acres in 1923, 135,000 in 1922, 85,000 in 1921, 125,000 in 1920, 100,000 in 1919, and 88,000 in 1914) included in California figures but excluded from United States totals.
Table 294.-Cotton: Production of lint (excluding linters) in 500-pound grossweight bales, by States, year beginning Aug. 1, 1914-1923.
[Thousands of bales, as finally reported by U.S. Bureau of the Census.]

State.	1914	1915	1916	1917	1918	1919	1920	1921	1922	${ }_{\text {1923 }}$
Virginia	25	16	27	19	25	23	22	17	27	50
North Carolina	931	699	655	618	898	830	925	776	852	1,020
South Carolina	1,534	1,134	932	1,237	1,570	1,426	1,623	755	493	795
Georgia_	2,718	1,909	1,821	1,884	2,122	1,660	1,415	787	715	590
Florida,	81	48	41	38	29	16	18	11	25	12
Alabama	1,751	1, 021	533	518	801	713	663	580	824	600
Mississippi	1,246	954	812	905	1, 226	961	895	813	989	615
Louisiana	449	341	443	639	588	298	388	279	343	365
Texas	4,592	3, 227	3, 726	3, 125	2,697	3, 099	4,345	2,198	3,222	4,290
Arkansas.	1,016	816	1, 134	974	987	884	1,215	797	1,011	620
Tennessee.	384	303	382	240	330	310	325	302	391	220
Missouri-	82	48	63	61	62	64	79	70	${ }^{2} 149$	15
Oklahoma	1,262	640	823	959	577	1,016	1,336	481	627	620
California.	50	29	44	58	67	56	75	34	28	49
Arizona.				22	56	60	103	45	47	83
Allother.	14	7	14	5	6	5	13	9	19	37
United States.	16, 135	11, 192	11,450	11,302	12, 041	11, 421	13, 440	7, 954	9, 762	10,081

[^202]Table 295.-Cotton: Yield per acre, by States, calendar years, 1908-1923.

Division of Crop and Livestock Estimates.

Table 296.-Cotton: Condition of crop, with yield per acre,United States, 1867192 S.

Calendar year.	$\begin{aligned} & \text { May } \\ & 25 . \end{aligned}$	June	$\begin{aligned} & \text { July } \\ & 25 . \end{aligned}$	Aug.	Sept. 25.	Yield per acre.	Calendar year.	$\begin{gathered} \text { May } \\ 25 . \end{gathered}$	June_{25}	$\begin{aligned} & \text { July } \\ & 25 . \end{aligned}$	Aug.	$\begin{aligned} & \text { Sept. } \\ & 25 . \end{aligned}$	Yield peracre.
	P.ct.	P.ct.	P.ct.	P.ct.	P. ct.	Pounds of lint.		P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	Pounds of lint.
1867		110.7	117.8	118.4	104.6	189.8	1901	81.5	81.1	77.2	71.4	61.4	170.9
1868		110.4	115. 0	89.1	88.2	192.2	1902	95.1	84.7	81.9	64.0	58.3	187.3
1869		90.2	101.6	99. 1	85.3	196.9	1903	74.1	77. 1	79.7	81. 2	65. 1	174.3
1870		98.0	99.3	105. 7	98.8	198.9	1904	83.0	88.0	91.6	84.1	75.8	205.9
1871	86.7	85.8	85.6	81.5	76.7	148.2	1905	77.2	77.0	74.9	72.1	71.2	186.6
1872	99.7	103.0	104.0	90.7	81.8	188.7	1906	84. 6	83.3	82.9	77.3	71.6	202.5
1873	91.3	87.5	90.0	87.9	79.3	179.7	1907	70.5	72.0	75.0	72.7	67.7	179.1
1874	82.2	91.0	92.0	71.0	71.7	147.5	1908	79.7	81.2	83.0	76.1	69.7	194.9
1875	96.1	100.0	96. 0	89. 2	88.0	190.6							
1876	94.4	97.6	99.4	90.5	82.7	167.8	1909	81.1	74.6	71: 9	63.7	58.5	154.3
							1910	82.0	80.7	75. 5	72.1	65.9	170.7
77	92.9	93.0	93.0	86.0	82.0	163.8	1911	87.8	88.2	89. 1	73. 2	71.1	207.7
1878	99.0	99.0	95.0	90.0	90.0	191.2	1912	78.9	80.4	76.5	74.8	69.6	190.9
1879	96.0	93.0	91.0	85.0	81.0	181.0	1913	79.1	81.8	79, 6	68.2	64.1	182.0
1880	99.0	100.0	102. 0	91.0	84.0	184.5							
1881	93.0	95.0	88.0	72.0	66.0	149.8	$\begin{array}{r} \text { Av. 1909- } \\ 19133_{-} \end{array}$	81.8	81.1	78.5	70.4	65.8	181.1
1882	89.0	92.0	94.0	92.0	88.0	185.7							
1883	86.0	90.0	84.0	74.0	68.0	164.8	1914	74.3	79.6	76.4	78. 0	73.5	209.2
1884	87.0	86.0	87.0	82.5	74.7	153.8	1915	80.0	80.2	75. 4	69.2	60.8	170.3
1885	92.0	96.0	96. 5	87.0	78.0	164.4	1916	77.5	81.1	72.3	61,2	56.3	156.6
1886	88.7	86.1	81.3	82.1	79.3	169.5	1917	69.5	70.3	70.3	67.8	60.4	159.7
1887	96.9	96.9	93.3	82.8	76.5	182.7	1918	82.3	85.8	73.6	55.7	54.4	159.6
1888	88.2	86.7	87.3	83.8	78.9	180.4	1919	75. 6	70.0	67.1	61.4	54.4	161.5
1889	86.4	87.6	89.3	86. 6	81.5	159.7	1920	62.4	70.7	74.1	67.5	59.1	178.4
1890	88.8	91.4	89.5	85.5	80.0	187.0							
1891	85.7	88.6	88.9	82.7	75.7	179.4	$\begin{gathered} A \nabla .1914- \\ 1920 \end{gathered}$	74.5	76.8	72.7	65.8	59.8	170.8
1892	85.9	86.9	82.3	76.8	73.3	209.2							
1893	85.6	82.7	80.4	73.4	70.7	149. 9	1921	66.0	69.2	64.7	49.3	42.2	124.5
1894	88.3	89.6	91.8	85. 9	82.7	195. 3	1922	69.6	71.2	70.8	57. 0	50.0	141.5
1895	81.0	82.3	77.9	70.8	65.1	155.6	1923	71.0	69.9	67.2	54.1	49.5	128.8
1896	97.2	92.5	80.1	64.2	60.7	184.9							
1897.	83.5	86.0	86.9	78.3	70.0	182.7							
1898	89.0	91.2	91. 2	79.8	75.4	220. 6							
1899	85. 7	87.8	84.0	68.5	62.4	183.8							
1900	82.5	75.8	76.0	68.2	67.0	194.4							

Division of Crop and Livestock Estimates.
Table 297.-Cotton: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1922.

Calendar year.	Deficient moisture.	Ex- ces- sive moist- ure.	Floods.	$\begin{aligned} & \text { Frost } \\ & \text { or } \\ & \text { freeze. } \end{aligned}$	Hail.	Hot	Storms.	Total cli-matic.	Plant disease.		$\begin{gathered} \text { Ani- } \\ \text { mal } \\ \text { pests. } \end{gathered}$	De-fective seed.	Total. ${ }^{1}$
	P. ct.	P. ct.	$\boldsymbol{P} . c t$.	$\boldsymbol{P} . c t$.	P. ct.	$P, ~ c t$.	P.ct.	$\boldsymbol{P} . c t$	P. ct.	P. $\overline{c t}$.	$\boldsymbol{P} . c t$.	P, ct.	$P . c t$.
1909	14.9	6.0	P. 1.1	1.0	$\therefore .6$	3.0	1.4	28.6	4.2	7.9	$\left.{ }^{2}{ }^{2}\right)$.1	42.0
1910	12. 2	5.1	. 9	2.1	. 3	1.6	. 1	22.6	. 4	7.5	(${ }^{2}$. 3	35.6
1911	9. 8	2. 6	$\left.{ }^{2}\right)$. 3	. 1	1.6	. 3	15. 4	.4	7.9	(2)	. 2	26.1
1912	8.1	7. 6	1.2	1. 0	. 6	1. 2	. 2	20.7	4.3	6.5	${ }^{-1}$	3	32.7
1913----------------	15.2	2.0	. 8	1.1	. 4	2.4	. 5	23.1	. 5	8.9	$\left.{ }^{2}\right)$	4	33.7
1914	7. 9	2. 9	. 5	. 9	. 4	. 6	$\cdot 1$	13.8	.2	9.8	${ }^{(2)}$. 2	25.4
1915	6. 8	5.7	1.9	. 6	. 7	1. 1	2.0	19.3	1.9	12.2	(2)	. 1	36.8
1916	9. 2	9.1	3.1	. 4	. 7	. 6	2.0	25. 2	. 9	15.7	${ }^{2}$. 1	42.4
1917	15.1	1.7	. 5	6.0	1.0	. 7	.2	25. 5	1.3	12.3	$\left.{ }^{2}\right)$. 1	39.9
1918	23.8	. 9	. 3	. 6	,	2.8	.3	29.2	2. 0	7.9	$\left.{ }^{2}\right)$	1	40.3
1919	2. 7	15.3	1. 6	. 3	. 2	. 4	. 5	21. 2	1. 4	18.8	(2)	. 2	41.9
1920	2. 2	8. 8	. 8	. 8	. 2	1	2.0	13.1	1.1	- 24.0	. 2	. 2	39.0
1921	8. 6	4. 3	. 7	. 4	. 2	. 6	1. 2	16.0	1. 0	-35.4		?. 1	52.9
1922	10.2	4.9	. 8	. 1	. 3	1.0	. 1	17. 5	: 8	-26.7	${ }^{(2)}$. 1	45.2

${ }^{1}$ Includes all other causes.
${ }^{2}$ Less than 0.05 per cent.

Table 298.-Cotton: Percentage reduction from full yield per acre due to boll weevil, as reported by crop reporters, calendar years, 1910-1922.

State.	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922
North Carolina	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P. ct.	P.ct.
South Carolina						0.02	0.02	0.01				31.58	12.27
Georgia				0.10		. 28	0.02 3.44	0.01 9.06	${ }^{10.07}$	19. 36	13. 26	${ }^{31} 48$	40.48
Florida			0.30	11.80		13.14	20.98	27. 07	23. 85	40. 46	32. 10	27.62	44.28 32.50
Tennessee				10	0.08	. 04	1.23	1.74	. 37	. 17	. 57	7.21	8.84
Alabama	0.05	0.20	1. 50	4.80	6.02	16. 16	27.91	28.88	12. 14	28.77	36.03	32. 39	25.51
Mississippi	14.66	5. 10	18.00	33. 90	24.14	24. 68	31. 73	22.22	10.41	19.56	32. 25	30.38	27.65
Louisiana	40. 80	11. 40	13. 70	25. 10	17.66	19.85	24. 31	11. 89	9.79	24.84	25:99	34. 80	24.61
Texas--.--	6. 52	. 90	2.80	6. 80	$\begin{array}{r}7.86 \\ \hline 89\end{array}$	16. 28	18. 53	7.28	4.43	13.96	19. 90	33. 66	16. 25
Arkansas	7.23	2.00	2. 40	2. 80	2. 93	2.60 4.60	3. 7	4.35 8.96	1.30 3.14	1.48 4.79	8.81 9.41	41. 36 21.	25.69 18.15
S. average	5. 30	1.28	3. 26	6.69	5.91	9. 93	13.36	9.34	5.83	13.20	19.95	30.98	24.17

Division of Crop and Livestock Estimates.
${ }^{1}$ Average is weighted and includes cotton States in which there was no damage by boll weevil.
Table 299.-Cotton: Area and yield per acre in undermentioned countries, 19091923.

Country.	Area.					A verage yield per acre.				
	$\begin{gathered} \text { A ver- } \\ \text { age } \\ 1909 \text {. } \\ 1913 . \end{gathered}$	1920-21	1921-22	1922-23	1923-24	$\begin{aligned} & \text { Aver- } \\ & \text { qge } \\ & 1909- \\ & 1913 . \end{aligned}$	1920-21	1921-22	1922-23	1923-24
	1,000	1,000	1,000	1,000	1,000				,	
	actes.	acres.	acres.	acres.	acres.	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.
United States	34, 152	35,878	30, 509	33, 036	37,420	182	179	125	141	129
India-	22, 503	21,340	18, 451	21, 154	21, 845	76	67	97	98	
Egypt	1,743	1, 897	1,341	1,888	1,649	398	315	321	299	352
China ${ }^{1}$		4, 300	4,284	3, 947						
Brazsila, Asiatic		805	1,420	1,512			219	170	175	
Russia, As	1,490	374 265	296 230	174	- $\begin{array}{r}541 \\ 2989\end{array}$	306	74	70	152	
Chosen (Korea)	${ }^{3} 146$	359	362	370	378	57	134	122		140
Uganda	58	238	170	334		169	137	88	107	
Perü------------		163	161							
Anglo-Egyptian Su-										
Argentina.	8	59	39	262		243^{-1}	200	200		
Total coun-										
tries report-										
ing, 1909-1922	60,098	60,145	51, 168	56, 998						
world total..	67, 298	66, 707	58,356	63,995						

[^203]Table 300.-Cotton (bales of 478 pounds net): Production in undermentioned countries, 1909-1923.

NORTHERN HEMISPHERE.

Country.	$\begin{gathered} \text { Average } \\ 1909-1913 . \end{gathered}$	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24, preliminary.
NORTH AMERICA.	Bales.							
United States ${ }^{1}$	13, 033, 235	11, 302, 375	12, 040, 532	11, 420, 763	13, 439, 603	7, 953, 641	9, 761, 817	10, 081, 0
Mexico .-.--	193,000	${ }^{2} 135,000$	23203,000	23199,000	23188,000	147, 302	178, 243	138, 000
Total North American countries reporting 1909-	13, 226, 235	11, 437, 375	12, 243, 532	11, 619, 763	13, 627, 603	8, 100, 943	9, 940, 060	
SOUTH AND CENTRAL AMERICA AND WEST indies.								
Colombia.		5,753	6, 276					
Venezuela	10,000							
Guatemala	${ }^{4} 144$					215	646	
Dutch West Indies----	\% 8161 08910	180 6,005	7, 393	7 ${ }^{15} 18294$	79, 2132	7 ${ }_{7} \mathbf{4 5}$	715,000	
Dominican Republic ${ }^{7}$	$\bigcirc 1,066$	304	239	411	150	405		
Porto Rico--------	41,319	343	368	2, 201	1,400	920	1,046	
St. Croix (U. S. Virgin Islands)	519	280	14	94	61			
British West Indies:		125		196		63		
Antigua-------------	${ }_{657} 64$	125	195	1,147	826	- 732	941	
St. Kitts-Nevis	1,347	1,088	1,186	1,158	1,615	$\therefore 732$	885	
Grenada ---	703	507	644	785				
St. Vincent	1,026	768	988	1,161	1, 363	523	705	
Barbadoes	1,061	403	238	211	185	419		
Trinidad and Tobago ${ }^{7}$	19			71	103			
Virgin Islands ${ }^{7}$...--	81	27	59	71				
Total Central								
and South								
American	:							
West Indies re-								
$\begin{aligned} & \text { porting } \\ & 1922-\ldots-190-1 \end{aligned}$	13, 259	9,061	10,852	20, 896	14,336	24, 460	18,577	
EUROPE.								
Italy	5,212						4,603	
Yugoslavia	412,614	6, 189		10, 224	1,037	798	858	
Bulgaria	${ }_{8} 842$	${ }^{7} 71$	1,163	- 993	1,212	1,840	3, 600	1,799
Malta--	433	269	263	287	238	485	167	
Spain:-								
Russia, European (Northern Caucasia)	${ }^{9} 680$							
Turkey, European ${ }^{8}$	${ }^{4} 10,000$							
Total European countries reporting 1909-	1,275	1,030	1,426	- 1,280	1,450	2, 325	3, 767	

[^204]Table 300.-Cotton (bales of 478 pounds net): Production in undermentioned countries, 1909-1923-Continued.

NORTHERN HEMISPHERE-Continued.

:From an unofficial source.
${ }^{4}$ For one year.
${ }^{6}$ Average for 4 years.
${ }^{7}$ Exports.
${ }^{10}$ Territory formerly German Togo, and exports for 4 years only.
${ }^{11}$ The official estimate is $1,015,000$ bales, but receipts into Alexandria and exports indicate a larger crop.
${ }^{12}$ The commercal crop of India according to figures compiled by the United States Department of Commerce, was $3,448,000$ bales in 1921-22, 4,048,000 bales in 1922-23 and 3,811,000 bales in 1923-24.
${ }^{13}$ Official estimates which include the most important cotton producing provinces where the commercial crop is grown. Cotton grown in other provinces is used for home rand loom consum ption. Various estimates made from time to time of the total production of China range from $2,000,000$ to $7,000,000$ bales but are considered unreliable. The commercial crop for China, according to figures compiled by the United States Department of Commerce, was 1,175,000 bales for 1921-22, 1,300,000 bales for 1922-23, and 1,450,000 bales for 1923-24.

Table 300.-Cotton (bales of 478 pounds net): Production in undermentioned
SOUTHERN HEMISPHERE.

Country.	$\begin{gathered} \text { Average } \\ 1909-1913 . \end{gathered}$	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	$\begin{aligned} & \text { 1923-24, } \\ & \text { prelim- } \\ & \text { inary: } \end{aligned}$
Peru	Bales. 110, 000	Bales. 125, 104	Bales. 141, 533	Bales. 154, 774	Bales. 163, 732	Bales. 156, 814	Bales. ${ }^{2} 137,000$	Bales.
Ecuador						${ }^{2} 12,000$		
Brazil.	2322,000	344, 597	338, 743	505, 820	369, 841	505, 000	552, 857	
Paraguay		115	460	460	1,200	1,500		
Argentina	${ }^{6} 3,045$	16, 142	16, 297	16,450	24, 650	16, 130		
Belgian Congo		1,245	2,075	3,459	4,151	4,520	4,603	
Tanganyika Terri-	${ }^{5} 7,971$				2,402	6,132	6, 004	
Nyasaland.---	4, 536	5,128	2, 107	1,651	2,900	3,285	4,601	5,439
Union of South Africa.		592		2, 290	2, 245	1,778	3,138	
Angola ${ }^{7}$	510	456	1,058	904	2, 349	2, 067		
Mozambique ${ }^{7}$	766	954	991	954	997			
Dutch East Indies	13,981	10,141	9, 642	10, 769	14,046			
French establishments in Oceania								
New Hebrides.------	${ }^{4} 7303$	${ }^{7} 2,121$	${ }^{7} 2,219$	72,282	1,796	3, 124		
Australia.--	91	53	71	19	656	2, 720	7, 531	
Total Southern Hemisphere countries reporting 19091922.	436, 703	475, 474	484, 053	664, 554	539, 374	669, 597	705, 127	
Total all countries reporting 1909-1922	23, 197, 440	19, 443, 875	20, 396, 082	21, 140, 498	20, 588, 467	15, 159, 480	8, 495, 763	
Estimated world				21, 384, 000	20, 875, 000	15, 330, 000	8, 705, 000	19, 125, 000
tota								

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated. Bales of 478 pounds net. Data for crop year as given at the head of the table are for crops harvested between August 1 and July 31 of the following year. This applies to both northern and southern hemisperes.
${ }^{2}$ From an unofficial source. ${ }^{4}$ For 1 year. ${ }^{5}$ Average for 4 years. ${ }^{6}$ Average for 3 years. ${ }^{7}$ Exports.
Table 301.-Cotton: World production, 1900-1923.

Year beginning Aug. 1.	Production in countries reporting all years, 1900-1923.	Production asfar as reported.	Estimated world totals (preliminary).	Three principal producing countries.		
				United States	India.	Egypt.
00-1901	Bales. 14, 692, 623	Bales. 14, 809, 578	$\begin{gathered} \text { Bales. } \\ 15,931,000 \end{gathered}$	Bales. $10,123,027$	Bales. 2, 47.1, 000	Bales. $1,126,000$
1901-02	14,046, 282	14, 226, 730	15, 292, 000	9, 509, 745	2, 297, 000	1, 320, 000
1902-03	15, 503,888	16, 823, 334	16, 948, 000	10, 630, 945	2, 818, 000	1,210, 000
1903-04	14,795, 269	16, 185, 114	16, 253, 000	9,851, 129	2, 645, 000	1,349,000
1904-05	19, 029, 776	20, 007, 125	20, 079, 000	13, 438, 012	3, 172, 000	1, 308, 000
1905-06	15, 834, 191	16,856, 569	16, 925, 000	10, 575, 017	2, 859, 000	1, 235, 000
1906-07	20, 187, 593	21, 259, 290	21, 357, 000	13, 273, 809	4, 129, 000	1, 440, 000
1907-08	16, 196, 535	17, 357, 753	17, 458, 000	11, 107, 179	2, 613, 000	1, 499, 000
1908-09	18,942, 894	21, 144, 006	21, 267, 000	13, 241, 799	3, 090, 000	1, 399, 000
1909-10	16, 422, 785	19, 289, 657	19, 329, 000	10, 004, 949	3, 998, 000	1,036, 000
1910-11.	18, 029,374	21, 873, 607	21, 915, 000	11, 608, 616	3, 254, 000	1,555, 000
1911-12	21, 493, 861	25, 322, 333	25, 356, 000	15, 692, 701	2, 730, 000	1,530, 000
1912-13	20, 620, 689	24, 994, 921	25, 043, 000	13, 703, 421	3, 702, 000	1, 554, 000
1913-14	21, 756, 976	26, 214, 631	26, 259, 000	14, 156, 486	4,239, cco	1, 588, 000
1914	23, 748, 650	28, 556, 341	28, 687, 000	16, 134, 930	4, 359, 000	1,337, 000
1915-16	17, 328, 125	17, 605, 635	20, 689, 000	11, 191, 820	3, 128, 000	89,000
1916-17	17, 988, 805	19, 768, 309	19, 845, 000	11, 449, 930	3, 759, 000	1, 048, 000
1917-18	17, 250, 025	19, 598, 564	19, 675, 000	11, 302, 375	3, 393, 000	1, 304, 000
1918-19	17, 224, 909	20, 556, 648	20, 613, 000	12, 040, 532	3, 328, 000	999,000
1919-20	18, 390, 278	21, 319, 924	21, 384, 000	11, 420, 763	4, 853, 000	1,155, 000
1920-21	18, 510, 812	20, 795, 387	20, 875, 000	13, 439, 603	3, 013, 000	1, 251, 000
1921-22	13, 481,953	15, 265, 137	15, 330, C¢0	7, 953, 641	3, 748, 000	902,000
1922-23	16, 236, 474	18, 560, 030	18, 705, 000	9, 761, 817	4, 348, 000	${ }^{1} 1,170,000$
1923-24		17, 925, 148	19, 125, 000	10,081, 000	4, 111,000	1,213,000

Division of Statistical and Historical Research. Bales of 478 pounds net.
${ }^{1}$ The official estimate is $1,015,000$ bales, but receipts into Alexandria and exports indicate a larger crop.

Table 302.-Cotton: Estimated monthly marketings by farmers, 1912-1922.

Year beginning Aug. 1.	Percentage of year's sales. ${ }^{1}$												
	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Sea- son.
1912-13.		17. 2	25.8	20.3	12.8	8. 0	5. 2	4. 5	2.6	1.5	1.1	21.0	100
1913-14		18. 2	24.4	19.7	13.3	8. 3	5. 3	4.4	2. 7	1.5	1.2	${ }^{2} 1.0$	100
1914-15	1.2	6.8	14.8	18. 0	16. 1	11.0	8. 3	7.7	6.1	2.5	37.5		100
1915-16	2.7	11.3	19.3	20.4	16. 4	8.4	5. 4	5. 2	3. 9	3. 6	33.4		100
1916-17	3.9	14.6	23.0	21.6	15. 0	6. 4	4.0	3. 9	3. 0	2.5	1. 6	. 5	100
1917-18.	2.5	11.3	23.0	22.7	16.2	8.2	5. 8	4. 5	2.6	1.3	1.0	. 9	100
1918-19	3.3	10.9	18.1	16.4	13.6	5.4	4.4	4.6	4.6	7.5	6.8	4.4	100
1919-20	1.4	9.5	21. 0	22. 2	17.4	8. 8	5. 6	4. 9	3.2	2.7	1.7	1. 6	100
1920-21	3. 1	10.0	16. 2	15. 7	11. 0	6. 4	5. 6	6. 0	6.7	6.9	6.8	5. 6	100
1921-22	3.6	14.0	22.3	17.1	12. 1	5. 9	4.3	4. 6	4.6	5.9	3. 0	2.6	100
1922-23	5.2	16.8	25.3	19.8	12.8	5. 9	4.4	3. 7	2.0	1.0	1. 5	1. 6	100
Average.-	2.5	12.8	21.2	19.4	14.2	7.5	5. 3	4.9	3.8	3.4	3.2	1.8	100

Division of Crop and Livestock Estimates.

${ }^{1}$ As reported by about 7,500 cotton growers, supplemented by records of State weighers, cooperative associations, and cotton dealers.
${ }_{2}$ Includes August.
${ }^{8}$ Includes July.
Table 303.-Cotton: International trade, calendar years, 1909-1922.

Country.	Average, 1909-1913.		1920		1921		$\begin{gathered} 1922, \\ \text { preliminary. } \end{gathered}$	
	$\underset{\text { ports. }}{\text { Im- }}$	Exports.	Imports.	Exports.	Im-	Exports.	Im-	Exports.
PRINCTPAL EXPORTING COUNTRIES.	1,000	1,000	1,000	1,000	1,000	1,000.	1,000	bales.
Brazil	bales.	bales. 83	bales.	bales.	bales.	bales.		bales. 157
British India	60	1,966	24	3, 052	130	2, 240	73	2,447
Egypt	(1)	1,442		829	${ }^{(1)}$	993	(1)	${ }^{2} 1,343$
Persia	(1)	109	2	5	${ }^{2} 1$	28		
Pera	(1)	87	2	160		168		184
United States	215	9,008	628	6,359	291	6,678	390	6,307
PRINCIPAL IMPORTING COUNTRIES.								
Austria			55	(1)	116	21	${ }^{2} 122$	23
Austria-Hungary	906	12						
Belgium...	496	159	689	221	428	227	283	(1) 64
Canada	137		241		182		232	(1) ${ }^{235}$
China	43	240	189	105	469	170	497	235
Czechoslovaki			${ }^{2} 293$	${ }^{2} 2$	423	8	355	23
France.-	1,435	316	1,083	151	976	100	1,213	112
Germany	2, 258	232	691	3	${ }^{2} 1,533$	876	1,314	160
Hungary.			${ }^{(1)} 8$		+14		15 820	
Italy	886	(1)	825	1	728	3	820	2
Japan	1,405		2,176		2,420		22,389	${ }^{(3)} 2$
Netherlands	277	145	124	8	120	2	117	2
Norway	18		12		2158		2202	
Poland.			106		${ }^{2} 158$	------	2 221 21	(1)
Russia	886	(1)			22 380		21 382 8	
Spain.-.	${ }_{93} 88$		375 107	3 4	380 59	4	382	1
Sweden	93	1	107	- 4	59	1	84	
Switzerland	113		97		114		99	
United Kingdom	4,164		3,457		2,137		2, 823	
Other countries.	220	155	198	237	166	250	167	228
Total	14, 005	13, 956	11, 374	10, 254	10,844	11,019	11, 599	11, 268

[^205]${ }^{1}$ Less than 500 bales.
${ }^{2}$ International Institute of Agriculture.
${ }^{3}$ Eight months, May-December.

Table 304.-Cotton: Farm price per pound, 1st of month, United States, 19081923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Weight ed average.
	Cts. 10. 3	Cts. 0.4	Cts.	Cts. 8.7	Cts. 8.7	Cts. 8.4	Cts. 9.0	Cts. 9.0	$\begin{gathered} C t s . \\ 9.1 \end{gathered}$	Cts. 9. 6	$\begin{gathered} C t s . \\ 10.1 \end{gathered}$	$\begin{gathered} C t s . \\ 10.3 \end{gathered}$	Cts. 8. 9
1909-10	11. 3	11. 7	12.6	13. 7	13.9	14. 6	14.0	14. 0	14. 1	14. 0	14. 2	13. 9	13.8
1910-11	14. 3	14. 4	13. 3	14. 0	14.1	14. 4	14.3	13. 9	13. 9	14. 2	14.6	14. 4	14.0
1911-12	13. 2	11.8	10. 2	8. 9	8. 8	8. 4	9.0	9.8	10.1	10.9	11.0	11. 2	9.4
1912-13	12.0	11.3	11. 2	10. 9	11. 9	12. 2	11.9	11.8	11.8	11. 6	11. 5	11.6	11.6
1913-14	11.5	11.8	13. 3	13. 0	12. 2	11.7	11.9	12.6	11.9	12. 2	12.4	12.4	12.4
Av. 1909-1913	12.5	12. 2	12.1	12. 1	12.2	12.3	12.2	12.4	12.4	12.6	12. 7	12. 7	12.2
1914-15	12. 4	8.7	7.8	6. 3	6.8	6.6	7.4	7.4	8.1.	9.1	8. 6	8. 6	7.2
1915-16	8. 1	8. 5	11. 2	11. 6	11.3	11. 4	11. 5	11. 1	11.5	11. 5	12. 2	12.5	11.4
1916-17	12. 6	14. 6	15. 5	18. 0	19.6	17.1	16. 8	15. 9	18. 0	18. 9	20. 2	24. 7	17. 7
1917-18	24.3	23.4	23.3	27. 3	27.7	28. 9	29.7	30.2	31. 8	28.5	27.4	28.6	27.7
1918-19	27.8	32. 2	31.8	29.3	27.6	28.7	24. 9	24. 0	24.5	26. 0	29. 5	31. 1	28.2
1919-20	32. 5	30.3	31. 3	36. 5	35.6	35.9	36. 2	36. 2	37. 3	37. 7	37. 2	37. 4	35.5
1920-21	36.8	31.1	25.5	19.4	13. 9	11.5	11.8	10.3	9.4	9.4	9.8	9.6	15.8
Av. 1914-1920	22.1	21.3	20.9	21. 2	20.4	20.0	19.8	19.3	20.1	20.2	20.7	21.8	20.5
1921-22	9.8	12. 6	19.8	17. 7	16. 2	16.3	15. 5	15.9	16. 0	15.9	18.7	20.4	17.0
1922-23	20.7	21. 1	20. 0	22.4	23. 8	24.5	25.9	27. 7	28. 4	26.9	25.6	26. 2	23.9
1923-24.	23.5	24.1	27.2	28.8	31.0								

Division of Crop and Livestock Estimates.
Table 305.-Cotton: Farm price per pound, December 1, by States, calendar years, 1908-1923, and value per acre, 1923.

State.	1908	1909	1910	1911	1912	1913	$\left\lvert\, \begin{gathered} \text { Av. } \\ 1909 \\ 1913 \end{gathered}\right.$	1914	1915	1916	1917	1918	1919	1920	$\begin{gathered} A v . \\ 1914- \\ 1920 \end{gathered}$	1921	1922	1923	
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Dolts.
Virg	9.0	13. 2	13.8	9.0	12.0	13.1	12. 2	7.3	11.4	19. 4	27.8	26.5	35. 0	15.0	20.3	16.4	23.	32.	104.00
North Carolina-	9.0	13. 9	14.1	8.8	12.2	12.6	12.3	6.9	11.2	19.4	27.7	26.4	35. 21	14.5	20.2	16.4	24. 5	30.8	32
South Carolina.	8.8	14.1	14.2	8. 8	12.4	12.7	12.4	6.9	11.3	19.6	28. 4	27.6	35.71	14.5	20.6	16.0	24.3	32.0	84
Georgia	8. 7	14.2	14.2	8.9	12.4	12.8	12.5	6. 9	11.4	19.9	28.8	27. 5	35.8	15. 3	20.8	16.6	23.9	32.0	26. 24
Florida.	12.2	19.3	21.0	12.0	15. 7	17.0	17.0	12.2	14.8	31.0	50.5	43.0	42.0	17.0	30.1	18.0	23.0	28.8	11. 52
Alabama	7		4. 2	8.8	12. 1	12.7	12.4	6.7			28.	27.0	34.8	15.0	20.3	16.0	24.0	31.8	28. 94
Mississipp	8. 8	14.3	14.4	9. 2	12. 3	12.6	12. 6	6. 8	11.	20.	28.5	27.8	37. 5	15.3	21.1	16. 6	24.1	32.5	23.92
Louisiana	8.7	13. 7	14.4	8. 9	11.5	11.7	12.0	6. 9	11.2	19.1	26. 7	27.5	35. 01	14.2	20.1	15.0	24. 0	30.3	37.88
Texas.	8. 5	13.6	14.0	8. 6	11.5	11.5	11.8	6. 8	11.1	19.4	25.7	28. 2	35. 0	13.2	20.1	16. 1	23.5	30.4	44.38
Arkansas	8.8	14.0	14.4	8.9	12.3	11.6	12.2	6.6	11.6	19.6	28. 2	27.8	36.4	13.3	20.5	16.1	23.6	31.9	30: 94
Tenness	9.0		14.1		12.4	12. 7	12.3	6.4	11.3	19.5	27.3	26.7	33.5	13.0	19.7	16.0	24.5	32. 0	28.80
Missouri	9.0	13. 5	13.0	8.8	11.3	11.5	11. 6	6. 5	11.0	19.	27.	27.0	34. 0	13.5	19.8	15.0	21.5	32.5	52.65
Oklahoma	8.2	13. 0	13.3	8.0	11. 3	11.4	11.4	6. 5	11.3	19.0	26. 5	25. 5	35. 2	10.5	19.2	15.4	23.0	29.6	26. 64
Californi			13.3	7.5	12.5	13.0		7.0	11.2	20.0	28.0	30.0	43.0	30.0	24.2	17.0	26.0	32.0	88.64
Arizona.												48.0	51.0	30.0		27.0	30.0	34.0	105. 74
	8.7	13.9	14	8		12. 2	12.2	6. 8	11.3	19.6	27.7	27.6	35.6	13.9	20.4	16. 2	23.8	31.0	41.98

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on farm price Dec. 1.

Table 306.-Cotton, middling: Average spot price per pound at nine markets, 1914-1923.

NORFOLK.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aver age.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.		ents.
1914-15							7.89	8.33	9.38	9.12	8.97	8.43	
1915-16	8. 77	10.30	11.87	11.39	11. 76	11. 92	11. 53	11.63	11. 76	12. 61	12. 83	13. 04	11.62
1916-17	14. 32	15.39	17.40	19.37	17.87	17. 50	16.54	18. 41	19.73	20. 09	24. 33	25.21	18. 85
1917-18	25.33	21. 92	26. 99	28. 35	29. 18	30. 47	30. 36	32. 42	32.99	29. 26	28.95	29.59	28. 82
1918-19	31.51	33. 28	30.23	27.59	27. 83	26.23	24.38	25.27	25.87	28.32	31.18	33.18	28.74
1919-20	30. 79	29.58	33.70	37.47	37. 99	38.84	38.60	39. 20	40.11	40. 50	40.50	40.50	37. 32
1920-21	37.00	29.06	21. 23	17.39	14. 46	14.85	12.89	11.37	11. 20	11. 60	10. 76	11. 31	16.93
1921-22	12. 57	19.10	18.66	17.12	17. 28	16.96	16.83	17.27	17.12	19.46	21. 44	22.17	18.00
1922-23	21.50	20.99	22.48	25. 40	25. 44	27.59	28.75	30.08	28.13	26.22	27.89	25. 96	25.87
1923-24	24.20	27. 79	28.65	33.16	34. 18								

aUGUSTA.

SAVANNAH.

1914-1							8.14	8. 36	9.29	9.36	9.03	8.66	
1915-16	8.62	10.24	11.95	11.60	12.11	12.20	11. 79	11.90	11.90	12. 61	12. 75	13.00	11.72
1916-17	14. 21	15.40	17.54	19.69	19.27	18.45		18.82	20.15	20.62	24. 83	25. 95	
1917-18	25.20	21.87	27:05	28, 26	29. 28	31.12	30.94	32.53	33.42	31. 50	30.24	30.10	29. 29
1918-19	31.22	32.91	30.53	29.43	29.62	31.00	27.23	27.04	26.96	29.11.	31.92	33.61	30. 04
1919	31. 64	29.66	34, 56	38.45	28.91	39.89	39:43	40:31	41. 60	41.53	41.74	40.87	38. 22
1920-21	34. 69	28.74	22.12	18.38	15.68	15. 62	13. 95	11. 75	11. 48	11.83	10.91	11.31	17.20
-1921-22.	12. 74	19.64	19.30	17.17	17. 38	17.06	16. 72	17.36	17.03	19.39	21. 52	22.09	18.12
1922-23	21.29	20.88	22. 37	25. 19	25. 61	27. 58	28.75	30.11	28.16	26.44	28.29	25.74	25.87
1923-24	24.45	27.85	28.77	33.09	34. 18								

MONTGOMERY.

1914-15							7.70	8.04	9.04	8.82	8. 70	8.38	
1915-16	8.42	10.02	11.74	11. 27	11. 65	11.75	11.32	11. 37	11. 52	12.28	12.46	12. 60	11. 37
1916-17	13. 92	15. 21	17.43	19.34	18, 33	17.78	16.81	18. 64	19.88	20.14	24. 06	24. 82	18.86
1917-18	24. 67	21.47	26. 98	28. 43	29. 49	31. 28	31.30	33. 36	33. 88	29.48	29.80	29.63	29.15
1918-19	29.60	3239	30.24.	28. 56	28.19	28. 48	27.00	25.98	26. 81	28.54	31.10	33.36	29. 19
1919-20	30.68	29. 20	34. 26	38. 16	38. 26	39. 29	38. 39	39. 41	40.90	40.67	40.88	40.15	37. 52
1920-21	36. 38	27.84	21. 24	17.97	14.40	13, 86	12. 32	10. 39	10.53	10. 89	10.09	10. 53	16. 37
1921-22	11.89	18.73	18. 46	16. 68	16.92	16. 46	16.18	16. 55	16.15	18. 66	21.08	22. 05	17. 48
1922-23	21. 28	20.17	21. 75	24.86	25. 02	27.05	28.61	29.81	27.85	25.97	27.86	25.70	25. 49
.1923-24	24.23	27.61	28.68	32.87	34.00								

MEMPHIS.

191							7.87	8. 26	9. 24	9.17	8.99	8.69	
1915-16	8.91	10.32	12.15	11.55	12. 12	12. 29	11. 79	11. 82	12.00	12.81	13.07	13.15	11.83
1916-17	14.35	15. 56	17.40	19.60	18.96	17.88	17.00	18. 17	19.97	20.34	24. 02	25. 75	19.08
1917-18	25.96	22. 97	27. 54	28.91	29.57	31.07	31.36	32.82	33. 57	30.08	30.00	30.00	29. 49
1918-19	30.98	33.89	31. 56	30.17	29.42	29. 29	27.18	26.86	26. 90	29.08	32. 16	33.80	20.11
1919-20	33.48	30. 96	35.94	41.17	39.88	40. 35	39.22	40.04	41.69	41.31	40.73	39.60	38. 70
1920-21	36. 35	31.00	21.68	18. 28	14.75	14.46	13. 48	11.65	11.25	11.63	11. 05	11.82	17.28
1921-22	12.17	19.46	19.71	18. 27	18.15	17.80	17. 01	17. 28	17.00	19.19	21.79	22. 72	18.38
1922-23	22.07	21.19	22. 09	25. 31	25. 80	27.68	28. 74	30.63	29.02	26.89	28.58	26.51	26. 21
1923-24	24.08	27. 73	29.28	33.54	34.67								

Table 306.-Cotton, middling: Average spot price per pound at nine markets, 1914-1923-Continued.

LITTLE ROCK.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb	Mar.	Apr.	May.	June.	July.	Average.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1914-15							7.67	8.15	9.04	9.07	8.89	8.58	
1915-16	8.61	10.08	12. 32	11. 68	12.15	12.28	11.94	11.88	12. 25	12.80	12.96	13. 07	11.84
1916-17	14. 27	15. 26	17.33	19.58	18.80	17.70	16.81	17.89	19.71	19.99	23.90	25. 42	18.89
1917-18	25. 49	22.14	26. 72	28.26	29. 55	31. 02	30.96	32. 53	33.32	30.00	29. 28	29.35	29.05
1918-19	30.73	33. 99	31.70	30.11	29.37	28. 20	26.45	26.83	26. 40	28.33	31.34	33.55	29.75
1919-20	31.73	30.31	35. 32	40. 08	39.94	39.98	39. 10	40.19	42. 57	41.45	40.31	39.60	38.38
1920-21	34.89	28. 28	21.38	18. 23	14.96	14. 45	13.35	11. 49	10.63	11. 35	10.68	10. 58	16. 69
1921-22	11.81	19.60	19.75	18. 12	17. 84	17. 57	16.90	16. 89	16.87	18.90	21.17	22.07	18. 12
1922-23	21.47	20. 76	21.80	25. 22	25.53	27.15	28.46	30. 02	28. 24	26. 41	27.88	26.39	25. 78
1923-24	24.20	27. 64	29.10	33.55	34.41								

DALLAS.

1914-15							7.87	8.25	9.15	8.71	8. 57	8.25	
1915-16	8.56	10.17	11. 72	11.13	11. 73	11. 84	11.37	11. 63	11. 78	12. 47	12. 72	13. 04	11.51
1916-17	14. 14	14.83	16.81	19.18	17.63	17. 17	15.75	17. 77	19.09	19. 58	24. 17	25. 04	18.43
1917-18	24.86	21.88	26.16	27.46	28. 53	30. 74	30.71	32. 56	31.32	28.85	29. 76	28.79	28.47
1918-19	31.09	33.34	30.89	28.78	29.33	27.72	25.84	25.71	27.02	29.75	32. 10	34. 16	29.64
1919-20	31. 05	30.60	36. 65	40.58	41.11	42. 08	41.29	42.75	42.78	40.60	39. 64	38.30	38. 95
1920-21	32.74	26.40	20.69	17.08	13.70	13. 63	12. 16	10.64	10. 53	11.20	10.23	10.50	15. 79
1921-22	12.11	19.25	19.17	17.10	17.12	16.75	16. 44	16. 93	16. 69	19.08	21.37	22.05	17,84
1922-23	21. 19	20.14	21.67	24. 75	24. 79	26.68	. 27.86	29.88	27.79	25.87	27. 72	25.34	25.31
1923-24	23. 49	27.05	28.51	32.92	33. 94								

HOUSTON.

							8.33	8.80	82	21			
1915-16	9.04	10. 56	12. 11	11.62	12. 27	12.36	11.82	12.09	12. 27	12.99	13. 26	13.60	12.00
1916-17.	14. 79	15.39	17. 42	19.80	18. 10	17.64	16.05	18. 18	19. 43	20.13	24. 60	25. 54	18.92
1917-18.	25.67	22. 62	26. 62	27.87	28.77	31. 25	30.91	32. 94	31.80	28. 06	30.91	28.75	28.85
1918-19.	31.26	33. 70	32.05	30.01	30. 26	28:56	27.00	26. 43	27.33	30.18	32.04	34. 24	30. 26
1919-20	31.65	31. 36	36.88	40.79	40.74	41.72	39.96	41.52	42.33	40.67	39.54	38, 10	38.77
1920-21.	32.94	27.33	20.98	17. 56	14, 16	13.95	12. 62	10.95	10.89	11.85	11. 02	11.69	16.33
1921-22.	13. 06	20, 02	19.64	17.65	17.73	17. 20	17.05	17.52	17.23	19.67	22. 18	22.51	18.46
1922-23.	21. 59	20.69	22.20	25. 33	25. 45	27.51	28.71	30. 54	28. 59	26. 65	28.42	25.62	25.94
1923-24.	24. 23	27.78	29.00	33.46	34. 63								

GALVESTON.

Division of Statistical and Historical Research. Compiled from daily reports of the Cotton Division.

Table 307.-Cotton, middling: Average spot price per pound at New Orleans and New York, 1900-1923.
new orleans.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Not.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	$\begin{aligned} & \text { Aver } \\ & \text { age. } \end{aligned}$
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cen
1900-1901		10. 39	9. 57	9.48	9. 50	9.52	9.20	8.49	8.15	7.69	8. 05	8.33	Cents.
1901-2	8.28	8.15	7.99	7.32	7.93	7.88	8.08	8. 54	9.13	9.39	9.15	8.94	8. 70
1902-3	8.43	8.43	8.22	7.82	8. 14	8. 66	9.36	9. 73	10.05	11. 14	12.71	13. 02	9.64
1903	12. 70	10.72	9.66	10. 72	12. 52	14.06	14. 38	15. 07	14.45	13. 41	11.38	10. 86	12. 49
1904	10. 59	10. 54	9.80	9.50	7.48	6.83	7.45	7.45	7.39	7. 90	8.87	10. 61	8. 70
190	10. 48	10.26	10. 16	11. 28	11.88	11. 56	10.67	10.84	11. 28	11. 33	10.99	10.96	10.97
1906	9.99	9. 24	10. 76	10. 39	10. 53	10.46	10. 49	10.83	10. 79	11.85	12.81	12.89	10.92
1907	13.13	12.41	11. 19	10. 84	11. 54	11.84	11. 63	10.93	10. 20	10.86	11. 59	10.81	11.41
1908	9.92	9.11	8.92	8. 97	8.78	9.34	9.42	9.39	10. 03	10.59	11.04	12.13	9.80
1909-10	12.28	12. 66	13.48	14.40	14.96	15. 23	14.88	14. 74	14.80	14.64	14. 85	14.93	14. 33
1910-11	14.92	13. 49	14. 21	14. 50	14.85	14.95	14.62	14. 54	14. 70	15. 48	15. 26	14.30	14. 65
1911-12	11. 96	11. 29	9.61	9.35	9.17	9. 53	10.31	10. 65	11. 61	11. 72	12. 07	12. 93	10.85
1912-13	12. 07	11. 37	10. 95	12. 15	12.81	12. 58	12.51	12.45	12. 44	12. 29	12. 44	12. 34	12. 21
1913-14	12. 02	13.11	13.73	13.26	12.98	12.93	12.90	12.95	13.11	13.36	13. 79	13. 34	13. 12
Av. 1909-1913	12. 65	12.38	12.40	12.73	12.95	13.04	13.04	13.07	13.30	13. 55	13.68	13.57	13. 03
1914-15	(1)	${ }^{2} 8.42$	7.02	7.43	7.18	7.87	8.01	8.34	9.43	9.04	9.12	8.71	
1915-16	8.94	10.40	11.95	11. 50	11.89	12.04	11. 45	11.73	11.88	12. 61	12. 80	13.03	11. 68
1918-17	14. 26	15.27	17. 24	19.45	18.34	17.33	17. 14	17.94	19. 50	20.06	24. 17	25. 41	18. 84
1917-18	25. 10	21.68	26.76	28.08	29.07	31. 07	30.92	32.76	33. 05	28. 92	30. 71	29.50	28. 97
1918-19	30.23	33.28	31. 19	29.75	29. 44	28.84	26.97	26. 84	26. 70	29.36	32.09	33. 93	29.88
1919-20	31.38	30.38	35. 30	39. 58	39. 89	40. 28	39.40	40. 69	41. 41	40.32	40.49	39.41	38. 21
1920-21	34.03	27.35	20.97	17.65	14.64	14.53	12.85	11.08	11. 17	11.80	11.03	11.49	16. 55
Av. 1914-1920.		20.97	21. 49	21.92	21. 49	21. 71	20.96	21.34	21.88	21.73	22.92	23.07	
1921-22	12.78	19.35	18.99	17.27	17.16	16. 53	16. 36	16. 74	16. 80	19.31	21.68	22.01	17.92
1922-23	21.55	20.74	22. 05	25. 34	25. 48	27.51	28.78	30. 43	28.42	26. 63	28.61	25. 73	25.94
1923-24	24. 22	27.71	29.18	33. 68	34.88								

Division of Statistical and Historical Research. Prior to February, 1915, compiled from quotations in Market Reports of the New York Cotton Exchange, except Sept. 23 to Nov. 16, 1914, when the exehange was closed, quotations for which time were taken from the New York Commercia land Financial Chronicle; from February, 1915, compiled from daily reports of the Cotton Division.
${ }^{1}$ Market closed. $\quad 2$ No quotations prior to Śept. 23. Average for 7 days' business.
NEW YORK.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Average.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1900-19	9.85	10.57	10.18	9.89	10.10	10. 32	9.52	8. 62	8.35	8.15	8.50	8. 47	9.38
1901-2.	8.18	8. 40	8.35	7.95	8.45	8. 28	8.64	9.06	9.37	9. 55	9.33	9.22	8.73
1902-3	8. 97	8. 96	8.77	8. 45	8. 64	8: 95	9.65	10.08	10.44	11. 46	12. 40	12. 74	9. 96
1903	12.75	11. 99	9.94	11. 22	12.83	14.42	14.87	15. 58	14. 36	13.50	11.65	10.92	12.84
1904	10.82	11. 02	10. 26	10.00	7.90	7.17	7.75	8. 08	7. 91	8.26	9.05	10.96	9.09
1905-6	10.89	10.85	10.35	11. 45	12. 13	11.87	11. 13	11.35	11.72	11.87	11.06	10.89	11.30
1906-7	10.31	9.77	10. 93	10. 77	10.71	10.86	11.04	11.20	11.12	12.04	13.02	13.11	11. 24
1907-8	13.33	12.57	11.50	11. 03	11.89	11.73	11.53	11.01	10. 17	10.93	11.63	11.01	11. 53
1908	10,29	9.39	9.28	9, 40	9.23	9.67	9.82	9.77	10.49	11.31	11.51	12. 65	10. 23
1909	12.75	13.00	13.99	14. 77	15.25	14.87	14.84	15.05	15.10	15.45	15.10	15.74	14.66
1910-11	16. 27	13.96	14. 48	14. 77	15. 07	14.90	14.30	14.51	14.87	15.80	15. 48	13. 99	14.87
1911-12	12. 53	11.31	9.63	9. 43	9.37	9.55	10.34	10. 63	11.57	11. 62	11.65	12. 57	10.85
1912-13	12. 04	11. 73	11.12	12. 36	13. 01	13. 07	12.80	12. 61	12. 29	11. 98	12. 25	12. 26	12. 29
1913-14	12. 14	13, 44	14.08	13.68	13.04	12.72	12.83	13. 27	13. 23	13. 44	13.47	13.17	13.21
Av. 1909-19	13. 15	12.69	12.66	13.00	13.15	13.02	13. 02	13.21	13. 41	13.66	13.59	13.55	13.18
1914-15	(1)	(1)	${ }^{1}$)	${ }^{2} 7.67$	7.53	8.28	8. 54	9.01	10. 25	9.81	9.68	9.22	
1915-16	9. 41	10.83	12.37	11.89	12.33	12.33	11. 73	11.90	12: 05	12.94	12.97	13. 05	11.8
1916-17	14. 64	15. 79	17.99	19.92	18.29	17. 59	15.90	18.46	20.38	20.74	25. 33	26. 30	19. 28
1917-18	25.49	23. 05	28.02	29.78	30.74	32.26	31. 76	33.74	31.85	27.57	30. 39	31. 54	29. 68
1918-19	33.88	35. 09	32. 42	29.69	30. 22	29.10	26. 27	27. 74	28.82	30.58	32. 96	35.33	31. 01
1919-20.	32:10	30.60	34. 98	39. 40	39. 19	39. 26	38. 77	41. 20	42. 30	41.25	-39. 27	41.20	38. 29
1920-21.	36. 23	30.07	22.68	18.81	15.68	16.63	13. 44	11. 74	12.14	12.84	12. 00	12.41	17.89
Av.1914-1920.		--	-	22.45	22.00	22.21	20.92	21. 97	22. 54	22.25	23.23	24.15	
1921-22	13.79	19.95	19.63	18.01	18.30	17.94	17.90	18.32	18. 06	20.75	22.10	22.27	18.92
1922-23	21.86	21.35	22: 73	25.64	25. 65	27.55	28.63	30.55	28.88	27. 20	28.52	26.26	26. 24
1923-24	25.20	29.06	30.06	34. 73	35.92								

[^206]Table 308.-Cotton: Average closing prices per pound, New York, for future delivery, August, 1922-December, 1923.

Month.	For delivery in-											
	Aug. ${ }^{1}$	Sept. ${ }^{1}$	Oct.	Nov. ${ }^{1}$	Dec.	Jan.	Feb. ${ }^{1}$	Mar.	Apr. ${ }^{1}$	May.	June. 1	July.
1922-23.	Cents.											
August-..		21. 47	21.60	21. 61	21.63	21.48	21. 50	21.51	21.45	21. 42	21.27	121.25
September		21.17	21.08	21. 21	21. 33	21. 18	21. 22	21. 26	21. 22	21. 19	21.09	${ }^{1} 21.00$
October			22.01	22. 58	22. 79	22.52	22.58	22. 63	22.60	22. 56	22.45	22.35
Novembe	24. 36	23. 90	23.37	25. 40	25. 49	25.37	25. 36	25. 34	25. 25	25. 17	25. 01	24.85
Decembé	24. 91	24.33	23. 76		25. 14	25. 43	25. 52	25. 63	25. 64	25. 64	25. 50	25. 37
January	26. 84	26. 00	25. 50	25. 39	25. 28	27.18	27.38	27. 48	27.56	27.66	27.51	27. 36
Februar	27.51	26. 11	25. 56	25. 40	25. 25	${ }^{2} 25.06$	27.97	28. 52	28. 63	28. 74	28.44	28. 13
March	28.56	26. 80	26. 24	25. 91	25. 70	25.42		30. 73	30. 42	30. 44	30.01	29,59
April	26.70	25. 55	24. 97	24. 74	24. 51	24. 22	24.13	124.05	28.66	28. 66	28.20	27. 78
May	24.85	24.15	23. 62	23. 41	23. 20	22.91	22.90	222.89		26. 57	26. 22	25. 72
June	26. 44	25. 16	24. 49	24. 23	23. 94	23.66	23. 63	23.61	23. 57	${ }^{2} 23.50$	28.03	27.22
July	24. 69	23. 90	23.21	23.02	22.83	22. 59	22.60	22.61	22.57	22. 54		26.46
Av. Aug. 1 July 31	25.60	24.41	23.78	23.90	23.92	23.92	24.07	24. 68	25. 23	25.34	25. 79	25.59
二2. 1923-24.												
September		27. 74	28.07	27.88	27.79	27.35	27.34	23.34	27.30	27. 28	27.01	26. 77
October	27.30	26. 44	29.03	29.18	29.12	28.61	28.63	28.64	28. 66	28.68	28.34	28.09
November	31.37	29.24	28.14	33. 53	34.19	33. 72	33.82	33. 92	33. 96	34.01	33. 71	33. 45
December	31.51	29.30	28.42	28.04	35.19	34. 62	34.80	34. 99	35.06	35.16	34. 74	34.32

Division of Statistical and Historical Research. Compiled from Market Reports of the New York Cotton Exchange.
${ }^{1}$ Based on nominal quotations.
${ }^{2}$ Largely nominal.
Table 309.-Cotton: Average spot prices per pound in specified foreign markets, 1912-1923.
LIVERPOOL, EGYPTLAN UPPERSGOOD. ${ }^{1}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
-	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1912	18. 0	16.9	17.6	19.3	19.5	21.3	21.3	20. 2	19.1	18.3	18. 9	19.3	19.1
1913	19:9	20.1	20.2	20.3	20.2	19.7	19.0	18.8	20.0	20.2	20.0	19.5	19.8
1914	18.9	17.9	17.3	17.9	18. 1	18. 2	17.6	16. 5	16. 1	13. 5	12.6	12. 2	16.4
1915	12.2	12.8	14.0	15.5	14. 5	14.4	13.8	14.1	15.4	18.1	17. 9	18. 6	15.1
1916	21. 9	22.5	22.4	21. 6	22.4	23.5	23. 7	23.7	27. 2	31.2	39. 5	39. 6	26.6
1917	39. 7	41.9	44. 5	50.5	52.0	55.4	60.3	60.9	52.0	46. 7	51.6	54.4	50.8
1918	53.8	51.5	54.9	56.3	54.0	52.6	54. 4	55. 8	55. 4	54.3	51.7	50.4	53.8
1919	50.3	50.0	49.3	48.3	48.3	48. 4	46. 4	48. 8	48.8	53. 4	67.0	76.3	52.9
1920	94. 0	105.0	108. 7	107.6	97.1	'81.3	71.6	68: 6	53.4	37.0	29.4	23.4	73.1
A verage 1914-1920	41.5	43.1	44.4	45.4	43.8	42.0	41.1	41.2	38.3	36.3	38.5	39.3	41.2
1921	24.6	20.8	19.6	21.5	18.8	18.8	18.0	18. 6	29.3	33.3	28.3	29. 4	23.4
1922	28.8	27.4	28.4	26.8	28.1	29.7	29.4	28.1	27.4	27.3	30.7	31.2	28.6
1923	31. 9	32.5	33.9	33.0	30.4	31.9	31.0	31.5	33.4	33.5	39.6	41.5	33.7

LIVERPOOL, NO. 1 OOMRAS, FULLY GOOD. ${ }^{1}$

1912	10.3	10.8	10.9	11.3	11.6	11.7	12.3	12. 2	11.9	11.6	12.1	12. 5	11. 6
1913	12.7	12.8	12.7	12. 5	12.2	11.9	11.8	11.6	12.9	12.9	12.8	12.5	12. 4
1914	12. 0	11.5	11.5	11.5	11.4	11.0	10.6	9.7	9.1	8.8	7.9	7.7	10.2
1915	8. 5	8.4	8. 5	9.2	8.9	9.1	8.9	9.1	9. 7	10.9	10.7	11.9	9.5
1916	12. 6	12.4	12.1	11.9	13.0	12.8	12.9	14.2	15.0	15.8	17.6	16.6	13.9
1917	16. 9	17.3	20.2	21.0	22.1	31.2	33.4	34.2	31.9	36.9	37.6	37.2	28.3
1918	38. 2	37.6	38.2	38.2	35. 2	36. 8	36.8	37.8	44.1	42.4	37.5	34.3	38.1
1919	35.3	32. 6	27.7	28.9	30.1	32.4	32.2	30.7	29.0	30.5	32.1	32.0	31, 1
1920	32.6	30.0	32.3	31.8	30.2	29,1	26.1	23.8	21.6	18.5	15.7	12.0	25.3
A verage 1914-1920.-	22.3	21.4	21.5	26.8	21.6	23.9	23.0	22.8	22.9	23.3	22.7	21.7	22.4
1921	11.9	10.6	9.2	9.4	9.8	9.2	9.3	10.5	16.0	16. 9	15.3	15. 4	12.0
1922	15.3	14.9	15.4	16.0	15. 7	18. 9	19. 7	19.8	18.9	18.8	20.6	20.5	17.9
1923	21.9	22.2	21.7	20.7	19.4	20.8	20.2	19.6	21.8	22.0	25. 9	27.7	22.0

$\mathrm{T}_{\text {able }}$ 309.-Cotton: Average spot prices per pound in specified foreign markets, 1912-1923-Continued.

ALEXANDRIA, EGYPT, EGYPTLAN UPPERS, GOOD. ${ }^{2}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age.
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1912	15. 8	16. 6	16. 8	17.6	18.1	18. 9	19. 4	18. 5	17.2	15.8	17.0	18. 1	17.5
1913	18. 6	18.7	19. 0	19. 4	19.0	18. 5	18. 2	17.8	18. 5	18. 6	18. 6	18. 0	18.6
1914	17.4	17.0	16. 4	17. 0	16. 8	16. 7	16. 3	(3)	${ }^{(3)}$	9.6	11. 2	10.5	14.9
1915	11. 1	11. 9	13.0	14.3	13. 2	13. 1	12. 5	12. 6	(3)	${ }^{(3)}$	162	${ }^{(3)}$	13.1
1916	19.2	21.1	21. 0	20.3	20.6	21. 4	20.7	20.6	23.3	27.5	34.5	35.4	23.8
1917	35.1	37.3	39.6	48.7	49.3	51. 7	60.1	45.1	29.6	32.4	35.6	38.5	41.9
1918.	37.9	36.6	38.0	38.3	36. 5	37.6	40.5	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$	${ }^{(8)}$	
1919	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$	${ }^{(8)}$	${ }^{(3)}$	47.1	42.6	45.6	60.5	71.9	
1920	85.2	94. 6	87. 2	94. 0	82.7	69.8	61.2	54. 9	41. 9	32.5	24.2	19.5	62.3
1921	19. 9	15.1	16.3	16. 3	15.3	14. 2	14.9	14.9	25. 7	30. 9	26.0	27.3	19.7
1922	25.3	23.3	22.9	22.7	24. 7	26. 7	26.1	25.0	23.3	24.1	26.7	27.0	24.8

LIVERPOOL, AMERICAN MIDDLING. 4

1912	11. 16	11. 90	12. 34	13. 09	13. 03	13. 37	14. 46	13. 83	13. 55	12. 59	13.82	14. 31	13. 12
1913	14.06	13.97	13.97	14.00	13.58	13.67	13. 61	13. 38	15. 10	15. 55	14.94	14. 54	14. 20
1914	14. 34	14. 25	14. 28	15. 02	15. 20	15. 71	14. 74	13. 23	12. 22	10. 53	9. 25	8.93	13. 14
1915	9. 77	10. 06	10. 46	11. 37	10. 42	10. 47	10. 32	10. 79	12. 24	13. 90	13. 74	15. 03	11. 55
1916	15. 99	15. 61	15. 48	15. 47	16. 77	16. 47	15. 94	17. 54	18. 99	20. 69	23. 05	22. 16	17.85
1917	21. 76	21. 34	24. 07	25. 23	26. 17	34. 07	37. 65	38. 21	35.96	34. 85	43. 38	44. 25	32. 24
1918	46. 16	45. 88	47. 19	46. 52	42. 28	43. 89	43. 09	45. 26	48. 44	46. 46	43.97	42.30	45. 12
1919	37. 66	34. 53	30. 39	33. 24	35. 70	38. 25	38. 33	34. 06	32. 20	38. 06	41.99	40. 92	36. 28
1920	43. 61	41. 61	45. 16	44. 17	42. 51	44. 48	41. 83	38.31	31. 33	24.41	19.18	14. 74	35. 94
Average 1914-1920.	27.04	26.18	26. 72	27.29	27.01	29.05	28.84	28.20	27. 34	26.99	27.79	26.90	27.45
1921	15. 32	12. 71	11. 78	12.07	12. 53	11. 66	11. 94	13. 34	20. 70	20.85	18. 46	18. 84	15. 02
1922	18. 12	17. 75	19. 21	18. 89	21. 42	23. 46	24.98	24. 90	23.98	24.55	27.96	28. 26	22. 79
1923	30. 64	30.93	31. 42	30. 29	28.43	31.53	29.28	28.18	31.99	31. 96	35. 74	30. 00	31.37

Division of Statistical and Historical Research. Conversions at monthly average rates of exchange as quoted by International Institute of Agriculture Annual, 1921, and Federal Reserve Board.

1 London Economist, average of weekly quotations.
${ }^{2}$ Monthly Agricultural Statistics, Ministry of Finance, Cairo, Egypt.
8 No quotations.
International Yearbook of Agricultural Statistics, 1921, p. 443. London Economist, 1922 and 1923. A verage of weekly quotations.

COTTONSEED.
Table 310.-Cottonseed: Production, 1874-1923.

$\begin{aligned} & \text { Year beginning } \\ & \text { Aug. } 1 . \end{aligned}$	Production.	Year beginning Aug. 1.	Production.	Year beginning Aug. 1.	Production.
	1,000		1,000		1,000
	tons.		tons.		tons.
1874-5.	1,687	1890-1.	4,093	1907-8...	4,952
1875-6.	2,057	1891-2.	4, 274	1908-9.	5,904
1876-7.	1,969	1892-3.	3, 183		
1877-8.	2,148	1893-4	3, 579	1909-10.	4,462
1878-9.	2, 268			$\begin{aligned} & 1910-11 \\ & 1911-12 \end{aligned}$	$\mathbf{5 , 1 7 5}$
		1894-5.	4,792	1911-12	$\mathbf{6}, 997$
1879-80	2, 616	1895-6	3,416	1912-13.	6,104
1880-1.	3, 039	1896-7	4,070	1913-14.	6,305
1881-2	2, 455	1897-8.	5,253		
1882-3-4.	3; 266	1898-9.	5,472	1914-15	$7,186$
1883-4.	2,639	1899-1900.	4,668	$\begin{aligned} & 1915-16 \\ & 1916-17 \end{aligned}$	4,992 5,113
1884-5.	2, 625	1900-1.	4,830	1917-18.	5,040
1885-6	3, 045	1901-2	4,630		
1886-7-	3, 018	1902-3.	5, 092	1918-19-	5,360
1887-8.	3, 291	1903-4	4,716	1919-20.	5, 074
1888-9.	3, 310			1920-21---------	5, 971
1889-1890	3,495	$\begin{aligned} & 1904-5 \\ & 1905-6 \end{aligned}$	6,427	1921-22-	3,531 4,336
		1906-7.	5,913	1923-24	4,476

[^207]${ }^{1}$ Preliminary estimate by Department of Agriculture.

Table 311.-Cottonseed: Production, and farm value, by States, 1919-1923.

State.	Production, thousands of tons. Year beginning Aug. 1.					Total value, thousands of dollars. Year beginning Aug. 1.				
	1919	1920	1921	1922	19231	1919	1920	1921	1922	$1923{ }^{1}$
Virginia	10	9	${ }^{7}$	12	22	\$740	\$230	\$220	\$480	\$1, 012
North Carolina	368	410	344	378	453	27,340	10, 550	11, 420	15,600	21, 744
South Carolina	633	720	334	218	353	47, 460	16, 620	11, 510	9, 230	17, 703
Georgia	736	628	349	317	262	55, 260	16, 640	11, 070	12, 520	13, 558
Florida	8	8	5	12	5	530	220	160	380	223
Alabama	316	294	257	366	266	23, 020	7,840	7,890	13, 310	13, 074
Mississippi	427	397	361	439	273	28, 100	9, 570	10, 330	14,940	13,746
Louisiana	132	172	124	152	162	8, 660	4,490	3, 400	4, 760	6,723
Texas..	1,379	1, 934	978	1,433	1,905	82,640	41, 350	27, 430	45, 370	79,724
Arkansas.	393	540	354	452	275	24,880	12,400	9,990	14, 910	13, 035
Tennessee	138	145	134	174	98	9,210	3,700	4,090	6,680	4,861
Missouri.	28	35	31	63	51	2,040	790	¢ 970	2,310	2,805
Oklahoma	452	594	214	279	275	27, 130	11, 210	5,300	8,780	11,399
All other.	54	85	39	41	76	3,460	1,380	780	1,130	2, 998
United State	5,074	5,971	3, 531	4,336	4,476	340, 470	136,990	104, 560	150, 400	202, 603

Division of Orop and Livestock Estimates. Compiled from reports of the Bureau of the Census.
${ }^{1}$ Preliminary estimate by Department of Agriculture.
Table 312.-Cottonseed, and cottonseed products: Production, 1900-1923.

Year ending July 31.	Cottonseed, crushed.	Crude cottonseed products.		
		Oil.	Cake and meal.	Hulls.
	Tons.	Gallons.	Tons.	Tons.
1899-1900.	2, 479,000	93, 330,000	884,000	1, 169, 000
1990-1.	2,415, 000	96, 610, 000	845, 000	1, 139, 000
1901-2.	3, 154, 000	118, 610, 000	1,125, 000	1, 487, 000
1902-3.	3, 269,000	122, 910,000	1, 165, 000	1,541,000
1903-4	3, 241, 000	121, 880, 000	1, 156,000	1,528, 000
1904-5.	3,345, 000	133, 820, 000	1,360,000	1, 213,000
1905-6.	3,131, 000	125, 700, 000	1,272,000	1, 135, 000
1906-7	3,844,000	153, 760, 000	1,563,000	1, 393, 000
1907-8.	2, 565, 000	103, 050, 000	1,043, 000	927,000
1908-9.	3, 670, 000	146, 790, 000	1,492,000	1,330, 000
1909-10.	3, 269, 000	131,000, 000	1, 326,000	1,189,000
1910-11	4, 106, 000	167, 970, 000	1, 792, 000	1, 375, 000
1911-12	4, 921, 073	201, 650, 000	2, 151,000	1, 642, 000
1912-13.	4, 579, 508	185, 750, 000	1,999,000	1,540, 000
Av. 1909-1913	4, 109, 116	166, 632, 000	1, 752, 000	1,415, 000
1913-14	4, 847, 628	193, 330, 000	2, 220, 000	1, 400, 000
1914-15.	5, 779, 665	229, 260, 000	2, 648, 000	1,677, 000
1915-16.	4, 202, 313	167, 110, 000	1,923,000	1, 220, 000
1916-17	4, 479, 176	187, 688, 000	2,225,000	969,000
1917-18	4, 251, 680	174, 996, 000	2,068, 000	996,000
1918-19.	4, 478,508	176, 711, 000	2, 170,000	1, 137, 000
1919-20	4,012, 704	161, 529, 000	1, 817, 000	1, 143, 000
Av. 1914-1920.	4, 578, 811	184, 375, 000	2, 153, 000	1,220, 000
1920-21.	4, 069, 166	174, 558, 000	1, 786, 000	1, 256, 000
1921-22	3, 007, 717	124, 063, 000	1, 355,000	937,000
1922-23.	3, 241, 557	133, 723, 000	1, 487, 000	944,000

Division of Orop and Livestock Estimates. Compiled from reports of Bureau of the Census.

Table 313.-Cottonseed: Farm price per ton, 15th of month, United States, 19101923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	$\begin{gathered} \text { Weight- } \\ \text { ed } \\ \text { average. } \end{gathered}$
1910-11		\$26. 23								25. 46			
1911-12	\$20.45	18.09	16.73	16. 69	16.70	16. 57	16.81	18.21	18.62	19.21	19.2	19.04	17. 13
1912-13	18. 02	17.61	18.04	18. 57	21.42	21.98	22.01	21. 55	21.89	21. 88	21.54	21.37	18.77
1913-14	20.24	21.07	22.01	22.46	23.48	22.70	23.37	23.60	24.17	23. 56	23.62	22. 78	22. 14
A \%. 1910-1913	19.57	20.75	20.91	20.77	21.81	21.90	21.95	22.21	22.70	22.53	21. 94	21.47	20.86
1914-15	20. 16	13.88	15. 28	14.01	17.73	19.14	23.33	22.32	22.69	22.07	20. 82		
1915-16	20. 14	20.98	33. 73	34. 01	35. 54	36. 85	36.75	36. 56	38.13	37.91	35. 79	36.06	30. 25
1916-17	35. 22	41.13	47.19	55. 82	56.35	52.53	51.43	53.18	55. 94	55.61	57.19	56. 90	48.11
1917-18	56. 61	${ }^{57} 58$	65. 02	69. 38	68. 29	67.51	66. 95	68. 27	68. 08	68.16	66.03	64.11	64.04
1918-19	61. 66 63 23	67.90 62.13	65. 85	64. 97	${ }_{69} 65$	64.93	64. 65	64.00	64. 28	63.83	63.80	64.24	65.62
1920-21	43.22	29.96	28.94	26. 00	19.83	69.88 18.96	19.76	67. 18 18.92	${ }_{17.23}^{68.71}$	69.88 17.28	66. 16 17.06	18.75 1	67.87 28.56
A	43.27	41.94	46. 14	48.12	47.41	47.11	47.46	47.20	47.87	47.82	46.69	45. 96	45. 72
1921-22	22.06	27. 19	31. 05	29. 15	28.78	29. 24	30. 17	32.72					
1022-23	32.44	25.37	31. 79	40.18	42.93	43.35	45. 16	46.32	47.60	46. 58	43.14	41. 42	32.13
1923-24	37.47	40.88	40.90	45. 92	45.54								

Division of Crop and Livestock Estimates.
COTTONSEED OIL.
Table 314.-Cottonseed oil: International trade, calendar years, 1909-1922.

Country:	Average 1909-1913.		1920		1921		1922, preliminary.	
	$\underset{\text { ports. }}{\text { Im- }}$	Exports.	$\underset{\text { ports. }}{\text { Im- }}$	$\underset{\text { ports }}{ }$	Imports.	$\underset{\text { ports. }}{\text { por }}$	Imports.	Exports.
PRENCIPAL EXPORTING COUNTRIES.	$\left\|\begin{array}{c} 1,000 \\ \text { gallons. } \end{array}\right\|$	$\begin{gathered} 1,000 \\ \text { gallons. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons. } \\ 1.013 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons. } \end{gathered}$
China		281		1,608		1,416 400		136
Egypt	257	476	30	${ }^{1}, 427$	4	508		136
Peru		2321		455		557		718
United Kingdom	5, 899	7,189	2, $80-2$	5,162	5, 432	3,098	1,418	3,198
United States.	${ }^{1} 629$	38,968	1,261	24, 034	-89	33, 673	1,4	1,004
principal importing countries.								
Algeria	364	157	62	1	133	9		
Australia	142		80		59			
Austria-			393		61			
Belgium	$\stackrel{39}{29}$	${ }^{3} 5$						
Canada	2,817	1,086	6, 091	159	563	225	156	29
Czechosiovaki			6, 242	25	5,781		, 68	
Denmark	${ }^{3} 944$		877	61	1,774	26	1,107	
Grance-.-	3,289 6,918	335	2,677	84	1,214	104	625	39
Greece--	6,918		719		- ${ }^{1} 2885$		783 104	
Italy-	4,600		4,029	1	3, 936	1	71	4
Mexico-..-.	3,607	${ }^{5} 341$						
Netherlands	5,352	52	2, 602	731	10,897	2,153	1,681	285
Numay	1,504		2,828	138	1, 509	208	1,167	
8weden..	696	43	277	130	315	67		
Uruguay	${ }^{2} 525$		2264		1339			
Other countries	3,933	33	1,802	565	782	102	45	
Total	45, 023	48, 950	27, 590	35, 172	35, 998	42,545	11,316	5,389

Division of Statistical and Historical Research. Official sources except where otherwise noted.
1One year only.
${ }^{2}$ International Institute of Agriculture.

- Four-year average.

Threo-year average.
${ }^{5}$ Two-year average.

- Less than 500 gallons.

Table 315.-Cottonseed oil: Monthly average price, per hundredweight, spot prime summer yellow, New York, 1909-1923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1909-10	\$5. 46	\$5. 94	\$6.60	\$6. 84	\$7. 32	\$7. 30	\$7. 14	\$7. 48	\$7.76	\$7. 99	\$7.96	\$8. 51	\$7. 19
1910-11	10.84	10. 12	8.11	7.29	7.24	7.32	7.03	6. 60	6. 19	6. 55	6.43	5.89	7.47
1911-12	5.85	6.96	5.97	5.73	5.37	5.39	5. 54	5.69	6. 46	7.18	6.86	6. 67	6. 14
1912-13	6.47	6.38	6.22	6.01	6.30	6. 25	6.35	6. 44	6. 96	7.01	7.70	9.11	6. 77
1913-14.	8.88	7.67	7.00	7.05	6.86	6.98	7.12	7.38	7.51	7.18	7.30	7.18	7.34
Av. 1909-1913	7.50	7.41	6.78	6. 58	6.62	6.65	6. 64	6. 72	6.98	7.18	7.25	7.47	6.98
1914-15	6.67	5.87	5.22	5. 55	5.83	6. 56	7.08	6. 70	6.61	6.40	6. 18	6.06	6.23
1915-16	5.78	6. 30	7.71	7.93	8.38	8.99	9.59	10. 53	10.73	10.91	10.91	10.04	8. 98
1916-17	9.27	10.17	11. 75	12. 53	12.38	12. 32	12. 51	13. 62	15. 30	16. 23	16. 26	14. 52	13.07
1917-18	14.84	16. 44	17. 99	18. 59	18.65	20. 09	20.33	19.84	19.75	20.00	20. 25	20. 25	18.91
1918-19	20.25	20. 25	20. 25	20. 25	20. 25	20. 25	20. 25	20. 25	21. 25	21.25	25. 03	27.37	21. 41
1919-20	25. 88	21. 33	23. 00	22. 75	21. 50	21. 86	19.67	19. 07	18. 54	19.21	16. 70	13. 21	20.23
1920-21	12.32	13. 48	11. 43	10.14	8.91	8.59	7.34	6. 26	6. 24	7.22	7.46	8. 57	9.00
Av. 1914-1920.	13.57	13.41	13.91	13.96	13. 70	14.09	13.82	13. 75	14.06	14.46	14. 68	14. 29	13.98
1921-22	8.69	9.88	8.69	8.30	8.28	8.62	9.86	11. 48	11.57	11. 71	11.33	10.97	9.95
1922-23	9. 96	8.54	8.88	9. 51	9.81	10. 77	10.90	11.78	11.76	11.60	11.48	10.35	10. 44
1923-24.	10.34	11.62	12.01	11.67	11.00								

Division of Statistical and Historical Research. Compiled from New York Produce Exchange reports prior to 1922; later years from quotations in the Oil, Paint and Drug Reporter.

HAY.

Table 316.-Hay, tame: Acreage, production, value, exports, etc., United States, 1869-1923.

Calendar year.	Acreage.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { yield } \\ \text { per } \\ \text { acre. } \end{gathered}$	$\begin{aligned} & \text { Pro- } \\ & \text { duc- } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} \text { A ver- } \\ \text { age } \\ \text { farm } \\ \text { price } \\ \text { per } \\ \text { ton } \\ \text { Dec. } 1 . \end{gathered}$	Farm value Dec. 1.	ValueperacreDec.1.	Chicago prices No. 1 timothy per ton by carload lots.				Domesports, fiscal year beging July 1.	$\begin{array}{\|c} \text { Im- } \\ \text { ports, } \\ \text { fiscal } \\ \text { year } \\ \text { begin- } \\ \text { ning } \\ \text { July } 1 . \end{array}$
							December.		FollowingMay.			
							$\underset{\sim}{8}$	品	Bo	$\begin{aligned} & \text { Bi } \\ & \text { 品 } \end{aligned}$		
			1,000 short	Dol-		Dol-					Short	
	acres.	ns.	tons.	lars.	dollars.	lars.	Dols.	Dols.	Dols.	Dols	tons.	tons.
1869	18, 591	1.42	26, 420	10, 18	268, 933	14.47					7, 530	
1870	19, 862	1. 23	24, 525	12. 47	301, 743	15. 39					5,131	
1871	19, 009	1.17	22, 239	14. 30	317, 940	16. 73					5, 898	
1872.	20,319	1.17	23, 813	12.94	308, 025	15. 16					5, 104	
1873	21, 894	1.15	25, 085	12.53	314, 241	14. 35					5,476	
1874	21, 770	1.15	25, 134	11.94	300, 222	13. 79					8,045	
1875	23, 508	1.19	27, 874	10.78	300, 378	12.78					8,431	
1876	25, 283	1.22	30, 867	8.97	276, 991	10.96			9. 00	10. 00	8,161	
1877	25, 368	1.25	31, 629	8.37	264, 880	10. 44	9. 50	10. 50	9. 75	10. 75	10,656	21, 124
1878	26, 931	1. 47	39, 608	7.20	285, 016	10. 58	8.00	8. 50	9.00	11. 50	9,102	11, 558
1879	30, 631	1.30	39, 862	9.31	371, 045	12. 11	14.00	14. 50	14.00	15.00	15,388	73, 929
1880	25, 864	1.23	31, 925	11.65	371, 811	14.38	15. 00	15. 50	17.00	19.00	14, 181	195, 195
1881	30, 889	1.14	35, 135	11. 82	415, 131	13. 44	16. 00	16. 50	15. 00	16. 50	11,838	96, 352
1882	32,340	1.18	38, 138	9.73	371, 170	11. 48	11.50	12. 25	12.00	13.00	14,906	109, 283
1883	35, 516	1.32	46, 864	8.19	383, 834	10.81	9.	10	12	17.	18, 937	133, 230
1884	38,572	1.26	48,470	8.17	396, 139	10.27	10.00	11. 50	15. 50	17. 50	12,479	180, 264
1885	39, 850	1.12	44,732	8.71	389, 753	9.78	11. 00	12. 00	10.00	12.00	14. 997	103, 172
1886	36, 502	1.15	41, 796	8.46	353, 438	9.68	9.50	10. 50	11.00	12.50	15, 538	87, 772
1887	37,665	1.10	41, 454	9.97	413, 440	10.98	13. 50	14. 50	17. 00	21. 00	20, 382	112,301
1888	38,592	1.21	46, 643	8. 76	408, 500	10.59	11. 00	11. 50	10.5	21.00	24, 559	118, 042
1889	39,004	1.26	49, 181	7.76	381, 481	9.78	9.00	10. 00	9.00	14.00	40,627	139,489
1890	40, 038	1.23	49, 057	8.18	401, 111	10. 02	9. 00	10. 50	12.50	15. 50	31, 433	65, 231
1891	41, 258	1.18	48, 759	8. 89	433, 276	10. 50	12.50	15. 00	13. 50	14. 00	39, 425	89, 281
1892	42, 191	1.17	49, 238	8.95	440, 710	10.45	11.00	11. 50	12.00	13. 50	37, 054	116,768
1893	42, 413	1.31	55,575	9. 48	527, 044	12.43	10.00	10. 50	10.00	10. 50	60, 980	97, 198

${ }^{1}$ Based on farm price Dec. 1 .

Table 316.-Hay, tame: Acreage, production, value, exports, etc., United States, 1869-1923-Continued.

Calendar year.	Acreage.	Average yield per acre.	Pro-duction.	$\begin{gathered} \text { Ayer- } \\ \text { age } \\ \text { farm } \\ \text { price } \\ \text { per } \\ \text { ton } \\ \text { Dec. } 1 . \end{gathered}$	Farm value Dec. 1.	ValueperacreDec.1.	Chicago prices No. 1 timothy per ton by carload lots.				Domes-ticexports, fiscal beginJuly 1.	Imports, year beginJuly 1.
							December.		FollowingMay.			
							¢	通	¢	品		
	1,000.	Short	1,000 short	Dol-								
	acres.	tons.	tons.	lars.	dollars.	lars.	Dols.	Dols.	Dot	Dols.	tons.	Short
1895	40, 832	1.18	50, 468	8. 96	452, 079	10.57	10. 00	11. 00	10.00	10.25	52, 771	226, 128
1896	40,978	1.33	54,380	7.48	3906, 954	9. 99	${ }^{12.00}$	8	${ }^{11.50}$	12.00	66, 138	338,970
1897	41,336	1.42	58, 878	7.28	428, 919	10.38	8. 00	8. 50	9. 50	10. 50	69, 057	134,335 4,353
1898	43, 120	1.55	66,772	6. 63	442, 905	10. 27	8.00	8.25	9.50	10. 50	72. 708	22, 257
1899	43, 127	1. 33	57, 450	8.20	470, 844	10. 92						
1900	42, 070	1.27	53, 231	9.72	517, 399	12. 30	11. 50	14.00	12. 50	13. 50	100, 08	159, 734
1901	42, 066	1.33	55, 819	9.91	553, 328	13.15	13. 00	13. 50	12.50	13. 50	171, 843	54, 225
1902	42, 962	1. 52	65, 296	9.19	599, 781	13. 96	12.00	12.50	13. 50	15. 00	57, 091	328, 285
1903	43, 400	1.57	68, 154	9.35	637, 485	14. 69	10.00	12.00	12.00	15.00	68, 018	128, 115
1904	44, 645	1. 55	69, 192	8.91	616, 369	13.81	10. 50	11.50	11.00	12.00	74, 544	51,760
1905	45, 991	1. 59	72, 973	8. 59	627, 023	13. 63	10.00	12.00	11. 50	12. 50	78,593	76, 765
1906	47,891 49 1	1.39	66, 341	10. 43	${ }^{652}, 116$	14. 45	15. 50	18.00	15.50	20.50	65, 634	68, 450
1908	51, 196	1.53	78, 440	11.78 9.14	816, 844	14.30	11. 50	12.00	12.00	14.00	86,555	11, 271
1909												
1910					786, 722	15.41	16.00	17.00	12.50	16.00	61, 608	108, 448
1911	48, 240	1.14	54,916	11. 29	8424,926	16.51	16.00	19.00	18.50	23.50	61,850	377, 168
1912	49, 530	1.47	72, 691	11.79	856, 695	17.30	13.00	18.00	14.00	16. 50	66, 898	782, 884
1918	48, 954	1. 31	64, 116	12.43	797, 077	16. 281	14.50	18. 00	15. 00	17.50	56, 169	191, 280
Av. 1909-1913_	49, 756	1.35	67,097	12.12	813, 534	16.35	15.90	18.80	16.80	20.30	62, 906	326, 972
1914	49, 145	1.43	70, 071	11.12	779, 088	15.85	15.00	16.00	16.50	17.50	118, 169	22,609
1915	51, 108	1. 68	85, 920	10.63	913, 644	17.88	14.50	16. 50	17.50	20. 00	199, 736	48, 366
1916	55, 721	1. 64	91, 192	11.22	1, 222,930	18. 361	15. 00	17. 50	19.0	22.00	95, 792	65, 125
1917	55, 203	1. 51	83, 308	17.09	1, 423, 766	25. 79	26.00	28.00	20. 00	26.00	33, 762	460, 027
1919	56, 888	1. 1.52	76, 759	20.13	1, 543, 494	27. 8		31.		37.00	32, 366	310, 742
1920	58, 101	1.51	87, 855	17.76	1,560, 235	26.85	26.00	32.00	21. 00		- 55,142	251, 946
Av.1914-1920	54, 560	1. 52	83, 052	15. 44	1,282, 460	23.51	21, 93	24.7	23.	27.93	86, 059	183, 571
1921	58, 769	1.40	82,379	12.11	997, 527	16.97	20.00	24.00	26.00	28.00	61,240	
1922	61, 159	1,57	95, 882	12.56	1, 204, 101	19.69	20.00	22.00	21.00	23.00	63, 096	$\begin{array}{r} 5,357 \\ 35,430 \end{array}$
19232	60, 162	1. 48	89, 098	14.07	1, 253, 364	20.83	25.00	27.00	1. 0		63, 00	

Division of Crop and Livestock Estimates; figures in italics are census returns.
${ }^{1}$ Based on farm price Dec. 1.
${ }^{2}$ Preliminary.
Table 317.-Wild, salt, and prairie hay: Acreage, production, and farm value, United States, 1909-1923.

$\underset{\text { year. }}{\text { Calendar }}$	Acreage.	Yield per acre.	Production.	Farm price per ton.	Farm value.	Calendar year.	$\begin{aligned} & \text { Acre- } \\ & \text { age. } \end{aligned}$	Yield per acre.	Production.	Farm price per. ton.	Farm value.
	1,000		1,000		1,000		1,000		1,000		1,000
1909	-	Tons.	tons.	Dolls.	dolls.		acres.	Tons.	tons.	Dolls.	dolls.
1910	17, 187	. 77	13, 151			1918	15, 365	. 94	14, 479	15. 23	220, 487
1911	17, 187	. 71	12, 155			1919	17, 150	1.07	18, 401	16. 50	303, 639
1912	17, 427	1.04	18, 043			1920	15, 787	1.11	17, 460	11.35	198, 115
1913	16, 341	92	15, 063			1921	15, 632	. 98	15, 391	6. 63	101,991
1914.	16, 752	1.11	18, 615	7.49	139, 500	1922	15, 871	1.02	16, 131	7.14	115, 176
1915	16, 783	1. 27	21, 343	6. 80	145, 125	$1923{ }^{2}$	15, 722	1.11	17,528	7.85	137, 603
1916.	16,635	1.19	19,800	7.90	156, 503						

Table 318.-Hay: Acreage, production, and total farm value, by States, calendar years, 1922 and 1923.

State.	Tame hay.						Wild, salt, or prairie hay.					
	Thousands of acres.		Production, thousands of tons.		Total value, basis Dec. 1 price, thou sands of dollars.		Thousands of acres.		Production, thousands of tons.		Total value, basis Dec. 1 price, thousands of dollars.	
	1922	$1923{ }^{1}$	1922	$1923{ }^{1}$	1922	$1923{ }^{1}$	1922	19231	1922	$1923{ }^{1}$	1922	1923 ${ }^{\text {l }}$
Maine	1,233	1,245	1,541	1,594	20,187	21, 519	15	16	16	18	176	198
New Hampshire.	450	441	590	529	11, 505	10, 051	12	12	12	11	144	126
Vermont	909	918	1,273	1,285	22, 278	21, 202	13	13	14	13	147	150
Massachusetts	430	434	568	595	13, 064	15, 470	12	12	12	12	174	192
Rhode Island.	45	45	58	56	1,537	1,501	1	1		1	18	18
Connecticut	320	320	432	422	11, 232	10,128	9	9	9	11	146	199
New York	4,870	4,919	6,818	6,690	96, 134	108, 378	67	67	79	79	790	924
New Jersey	303	312	488	328	8,833	8,823	22	22	31	26	372	390
Pennsylvania	2,920	2,920	4, 584	3,066	65, 551	65, 919	23	25	28	29	224	450
Delaware	77				2,204	1,953	2	2		3	20	32
Maryland.	406	400	658	420	12,173	9,912	4	4	4	5	60	80
Virginia	1,040	1,010	1,300	1,010	20,800	20,200	14	14	14	14	189	210
West Virginia	768	753	1,037	904	17,422	17,990	11	11	13	11	182	154
North Carolina	800	784	1,040	941	18,928	18,820	100	100	100	100	1, 550	1,550
South Carolina--	455	480	455	408	7,962	7,344	6	6	6	5	89	8)
Georgia.	728	772	612	510	10,404	9,639	16	16	15	14	202	207
Florida	, 128	- 132	5,89	1119	1,646	2,380	6	6	5	5	85	93
Ohio	3,374	3, 070	5,061	3,684	54, 659	61,523					30	
Indiana	2,700	2,210	3,699	2,740	41,429	42,744	25	24	28	28	238	280
Illinois	3, 645	3,280	5,285	4,264	66,062	63,107	62	61	78	70	780	833
Michigan.	3, 074	3,105	4,457	3, 912	45, 016	56, 724	56	52	73	62	518	533
Wisconsin	3, 155	3,187	5,364	4,239	65, 977	67, 824	335	368	436	478	3,357	4,780
Minnesota	1, 988	2, 016	3,141	2, 520	33, 609	28, 476	2, 053	2,041	2,505	2, 347	19, 288	21,123
Iowa	3, 351	3,351	4,926	5, 060	49, 260	63, 250	425	404	484	485	4,066	4,996
Missouri	3,520	3,310	3,872	4,038	44,528	48,456	134	125	127	138	952	1,228
North Dakota	1,028	1,079	1,655	1,618	12,412	11,002	2,469	2,395	2,592	2,395	12,960	12,933
South Dakota	1,000	1,050	1,800	1,732	13,500	14,029	3, 675	3,491	3,308	4, 189	18, 194	24, 296
Nebraska	1,553	1,584	3,028	3, 849	33, 914	39, 260	2, 208	2, 296	1,877	2,526	15, 954	20, 208
Kansas.	1, 630	1,630	3, 504	3,602	32,587	38,181	887	892	976	1,053	5,856	7,792
Kentucky	1,177	1,130	1,471	1,186	21,330	20, 162	23	23	26	23	325	276
Tennessee	1,382	1,354	1, 866	1,557	30,602	28, 804	52	55	57	60	627	816
Alabama	760	761	730	616	12,410	11, 396	25	25	20	20	270	276
Mississippi	458	471	550	589	7,975	9, 130	41	${ }^{43}$	$\stackrel{45}{ }$	52	518	614
Louisiana.	214	214	342	342	4,549	5,130	18	18	25	22	225	264
Texas.	671	711	1, 074	1,173	12, 351	18,768	201	207	221	228	2,210	2,850
Oklahoma	965	936	1,544	1,498	19,300	21,421	495	520	446	510	3,345	5,610
Arkansas.	585	556	731	712	9,942	11, 392	133	126	133	152	1,596	1, 900
Montana	1,045	1,087	1,975	2,044	17, 775	18, 192	660	653	594	594	4,752	4,752
W yoming.	715	750	1,366	1,425	11, 611	13, 680	310	315	294	331	2, 499	2,979
Colorado-.	1,191	1,203	2, 263	2,406	25, 346	27, 188	368	373	355	392	3, 195	4,116
New Mexico.	162	158	292	332	5,694	5,312	33	40	26	32	468	448
Arizona	165	175	578	612	10, 404	9, 180	10	12	5	15	60	243
Utah.	503	523	1,459	1,407	11,964	12,522	112	117	155	178	852	1,246
Nevada.	179	180	507	477	5,983	5,247	181	173	288	189	2, 736	1,890
Idaho	1, 029	1,060	2, 572	2, 650	25, 720	23,585	132	132	158	158	1,185	1,232
Washington	987	1, 005	1,974	2, 362	31,979	28, 344	27	27	31	43	372	400
Oregon	965	984	1,930	2, 214	26, 248	24, 354	228	226	228	249	1,596	2,116
California	2, 108	2,066	5,207	5,268	78, 105	73, 752	160	152	176	152	1,584	1,520
United States.	61, 159	0, 162	5, 882	39, 098	1,204, 101	253, 364	15, 871	15, 722	6, 131	17, 528	115, 176	137,603

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

Table 319.-Hay, tame: Yield in tons per acre, by States, calendar years, 1908-1923.

State.	1908	1909	1910	1911	1912	1913	$\left\|\begin{array}{c} A \nabla . \\ 1909- \\ 1913 \end{array}\right\|$	1914	1915	1916	1917	1918	1919	1920	$\left.\begin{gathered} 1914- \\ 1920 \end{gathered} \right\rvert\,$	1921	1922	1923
	T.	T	T	T.	T.	T.	T.	T.	I.	T.	T.	T	T.	T	T	T.	T.	T.
Maine	0.90	0.9	1. 251	1.10	1.16	1.00	1. 09	1.15	1. 15	1.45	1.35	1.15	1. 20	0.95	1. 20	0. 80	1. 25	1. 28
New Hamp	. 92	. 97	1. 201	1.05	1. 25	1. 00	1. 09	1.15	1. 00	1.45	1.35	1. 15	1. 20	1.10	1. 20	. 95	1.31	1. 20
Vermont	1. 11	1.25	1.351	1.30	1. 50	1.28	1. 34	1.20	1. 35	1.70	1. 62	1.30	1. 50	1.35	1. 43	1.05	1. 40	1. 40
Massachusetts	1. 20	1. 15	1. 281	1.08	1. 25	1. 21	1. 19	1.32	1. 50	1. 56	1. 50	1. 20	1. 40	1.35	1. 40	1. 25	1.32	1.37
Rhode Island	1. 50	1.10	1. 181	1.00	1. 13	1. 17	1. 12	1. 17	1. 24	1.35	1. 50	1.30	1. 25	1. 10	1. 27	1. 10	1.30	1. 25
Connecti	1. 20	1.15	1.35	1.10	1.15	1. 14	1. 18	1. 25	1.35	1.55	1. 50	1.30	1.35	1. 20	1. 36	1.30	1. 35	1. 32
New Yor	1. 20	1. 05	1. 32	1. 02	1. 25	1. 14	1. 16	1. 20	1. 30	1. 62		1. 25	1.	1.25	1.35		1. 40	1.36
New Jerse	1. 60	1. 25	1. 501	1. 05	1. 44	1. 30	1.31	1.35	1. 45	1. 60	1. 45	1. 50	1. 50	1. 65	1. 50	1. 32	61	1.05
Pennsylva	1. 50	1.20	1. 381	1. 00	1. 43	1. 32	1. 27	1.28	1. 40	1. 60	1.41	1. 41	1.35	1.40	1. 41	1. 20	1. 57	1. 05
Delaware	1. 60	1.40	1. 43	. 88	1. 33	1.30	1. 27	1.10	1. 20	1. 45	1.26	1. 25	1. 28	1. 40	1.28	1. 20	1.50	1. 15
Mar	1. 60	1.20	1. 35	. 72	1. 51	1. 26	1. 21	1.15	1. 20	1. 48	1. 25	1. 35	1.40	1. 55	1. 34	1. 35	1. 62	1.05
Virginia	1.30	1.30	1. 19	. 64	1. 20	1. 27	1. 12	. 72	1.35	1.35	1.16	1.35	1. 20	1.30	1. 20	98	25	1. 00
West Virginia	1.45	1. 25	1. 20	. 66	1. 38	1. 25	1. 15	92	1. 50	1. 54	1. 27	1.30	1. 20	1. 25	1. 28	1. 20	35	1. 20
North Caroling	1. 50	1.38	1. 501	1. 05	1. 30	1. 31	1.31	1.15	1. 85	1. 30	1. 13	1. 20	1. 02	1. 05	1. 24	1.30	30	1. 20
South Carolina	1. 25	1.23	1. 251	1. 08	1. 15	1. 16	1. 17	1.15	1. 30	1.30	1. 08	1. 10	. 90	. 93	1.11	. 81	1.00	85
Geor	1. 75	1.35	1.401	1.35	1.35	1.40	1.37	1.35	1. 15	1.15	1. 03	1.24	. 85	. 81	1. 08	. 88	84	66
Florid	1.35	1.38	1. 331	1. 30	1. 25	1. 35	1. 32	1.35	1. 20	1. 25	1. 10	1. 14	77	65	1. 07	1.10	71	90
Ohio	1. 53	1.43	1.39	. 98	1.36	1.30	1. 29	1.13	1. 44	1. 57	1.42	1. 40	1.35	1.35	1.38	1. 27	. 50	1. 20
Indiana	1. 50	1.40	1.30	. 94	1. 37	1. 00	1. 20	1.00	1. 50	1. 44	1. 45	1. 45	1. 22	1. 29	1.34	1.08	1.37	1. 24
Illinois	1.53	1.45	1.33	. 82	1. 30	. 98	1.18	. 85	1. 54	1. 45	1. 25	1.35	1.35	1. 25	1. 29	1.18	1.45	1. 30
Michiga	1. 45	1.30	1.301	1.16	1.33	1.05	1. 23	1. 28	1. 40	1.70	1. 50	1. 03	1. 20	1. 20	1. 33	1.00	1.45	1. 26
Wisconsin	1. 70	1. 53	1. 00	1: 20	1. 60	1. 62	1. 39	1.75	1.75	1.70	1. 70	1. 40	1. 77	1. 70	1. 68	35	1. 70	1. 33
Minnes	1. 68	1. 75	1. 001	1. 00	1. 53	1. 50	1.36	1.89	1.91	1.85	1. 55	1. 40	1.90	1. 70	1. 74	1. 50	1. 58	1. 25
Iowa	1.70	1.64	1.05	. 80	1. 40	1. 48	1.271	1. 38	1. 80	1. 60	1. 23	1. 30	1. 53	1. 52	1.48	1.48	1. 47	1. 51
Missouri	1.50	1.35	1. 30	. 60	1. 30	. 60	1.03	. 70	1. 52	1.30	1. 15	O	1. 35	1. 24	1.17	1. 13		1. 22
North Dakot	1.30	1.37	. 551	1. 10	1. 40	1.14	1.11	1.		1. 70	. 88	1. 10	1.00	1. 25	1. 27	1.35	1. 61	1.50
South Dak	1.50	1. 50	. 80	. 55	1. 46	1. 20	1. 10	1.	2.	1.90	1. 50	1.60	1.	1. 75	1.74	1. 40	8	1. 65
Nebrask	1. 55	1. 50	1. 00	. 85	1. 35	1.34	1. 21	1.69	2. 60	2.10	1.6	1.40	1.86	1.90	1.88	2.19	95	2.43
Kamsas.	1. 50	1. 45	1. 15	. 85	1. 50	. 90	1. 171	1. 51	2.30	1.55	2. 18	1.73	2.46	2.08	1.97	1.85	2.15	2.21
Kentucky	1.35	1.36	1. 29	. 95	1. 23	. 87	1. 14	. 95	1.40	1. 40	1. 30	1. 30	1. 15	1. 20	1.24	1.65	1.25	1.05
Tennessee	1. 50		1.401	1. 00	1.30	1. 21	1. 28	1. 20	1.47		1. 20	1. 35	1. 161	1. 28	1. 29	1. 15	1.35	1. 15
Alabama	1. 60	1. 50	1.431	1. 40	1. 25	1.36	1.39	1.31						. 86	1. 03		96	. 81
Mississip	1.50	1. 47	1.421	1. 50	1. 48	1.33	1. 441	1.45	1.40	1. 40	1.	1.20	1. 35	. 44	1.381	1.15	d	1. 25
Louisiana	1. 40	1. 50	1. 75	1.30	1. 65	1. 50	1. 54	1.90	1.75	1. 70	1.60	1.30	1.4	1. 40	1. 58	1. 28	1. 60	1. 60
Texas	1. 65	. 95	1. 151	1. 00	1. 40	1.16	1.13	1. 75	1. 70	1. 20		1.00		1.40	1.38	1.38	1. 60	1. 65
Oklaho	1. 45							1. 13			1. 60			1.60	1.62	1. 52	1. 60	1. 60
Arkansas	1. 50	1. 25	1. 351	1. 15	1. 23	1. 20	1. 241	1. 05	1. 60	1.25	1. 47	1. 30	1. 12	1.16	1. 28	1. 08	1. 25	1. 28
Montana	2. 00	1. 79	1. 40	2. 00	1. 90	1.80	1. 78	2. 50	2.00	1.70	1. 40	1. 60	1.00	1.80	1.71	1. 80	1. 89	1.88
W yoming	2.00	2. 40	2.40	2. 10	1. 90	1.90	2. 14	2.30	2.20	1.80	1.70	2. 10	1.40	2.00	1. 93	1. 80	1.91	1. 90
Colorado	2. 50	2. 50	2. 00	2. 00	2. 19	2.05	2.15	2.40	2. 20	2. 05	2. 45	2. 22	2.05	2.15	2. 22	2.10	1.90	2.00
New	2.00	2.60	2. 10	2. 60	2. 33.	2.08	2.34	2.50				2.20		2.40	2.23	2.40	1. 80	2. 10
Arizon	3. 20	3. 30	2. 10	3. 86	3. 40	4.00	3. 333	3. 20	3. 20	3.80	3.50	3. 20	3. 50	3.10	3.36	3. 0	3. 60	3. 50
Utah.	2. 50	2.90	3. 00	2. 50	2. 78	2.33	2.70	275	2. 50	2. 20	2.90	2.35	1. 92	2.62	2. 46	2. 62	2. 90	2. 69
Nevada	2.00												2. 28	2.33	2.68	2. 67	2.83	2.65
Idaho	3. 25	2.85					2. 93	2.65			3. 00			2.70	2. 69	2.90	250	2. 50
W ashing	2. 25	2.10	2. 102	2. 40	2. 20	2.30	2.22	2.20	2.30	2. 40	2.20	1. 80	2. 40	2.00	2.19	2. 60	2. 00	2. 35
Oregon-	2. 00	2.05	2. 102	2.10	2.20	2.10	2.112	2.00	2.20	2. 30	1. 95	1. 80	1. 72	2.25	2. 03	2. 30	2. 00	2.25
California	1.35	1. 70	1.831	1. 75	1. 531	1. 50	1.661	1. 95	1.80	1. 75	2.00	1. 25	2. 25	2.30	1.90	2.35	2.4	2.55
United States_-	1. 53	1.46	1.36	1. 14	1.47	1.31	1.351	1. 43		1. 64	1. 51	1.37	1. 52	1. 51	1. 52	1.40	1. 57	1. 48

[^208]Table 320.—Hay, wild: Yield per acre, by States, calendar years, 1910-1923.

State.	1910	1911	1912	1913	$\begin{gathered} A v . \\ 1910- \\ 1913 \end{gathered}$	1914	1915	1916	1917	1918	1919	1920	$\begin{gathered} A \nabla \\ 1914 \\ 1920 \end{gathered}$	1921	1922	1923
	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons	Tons
Maine	1.05	0.90	0.96	0.80	0.93	1.05	0.95	1.08	1.00	0.90	1.00	1.00	1.00	0.86	1.10	1. 10
New Hampshire.	1.05	. 85	1.05	. 80	. 94	1. 00	. 80	1. 05	1.00	. 90	1. 00	. 95	. 96	. 80	1. 00	94
Vermont.	1. 10	1. 05	1. 25	1. 03	1.11	1.07	1. 05	1. 35	1. 00	1. 00	1.10	1.00	1. 08	1. 00	1.10	1. 00
Massachusett	1. 05	. 88	1.05	1. 01	1.00	1.10	1. 05	1.05	1.00	1.00	1. 10	1.10	1. 06	1. 00	1.00	1.00
Rhode Island	1.00	. 80	. 93	. 97	. 92	1.00	1.00	1.00	. 90	. 90	. 90	1.00	. 96	. 88	90	95
Connecticu	1.00	. 90	. 95	. 89	. 94	1.15	. 95	1.17	1.00	1.00	1. 08	1. 00	1. 05	1.10	1.00	1. 20
New York	1. 05	. 87	1.10	1.00	1.00	1. 30	1. 00	1. 45	1. 25	1. 00	1.26	1.19	1. 21	1. 00	1. 18	1. 18
New Jersey	1.30	. 90	1.30	1.15	1. 16	1.50	1. 15	1. 45	1. 45	1. 30	1. 20	1.35	1. 34	1. 23	1.40	1. 29
Pennsylvan	1.20	. 85	1.25	1. 20	1.12	1. 16	1.00	1. 55	1. 30	. 95	1. 25	1. 24	1.21	1. 20	1.20	1.15
Delaware	1.25	. 80	1. 20	1.15	1.10	1.24	1. 20	1.28	1. 12	1. 14	1.33	1. 50	1.26	. 87	1. 24	1.36
Maryle	1. 25	. 65	1.35	1. 15	1.10	1.15	1. 10	1. 25	1. 14	1. 17	1. 38	1.45	1. 23	1. 20	1. 12	1.15
Virginia	1. 05	. 60	1.10	1. 15	. 98	. 87	1. 10	1.05	1. 10	1. 05	1. 12	1. 25	1. 08	. 75	1. 00	1. 00
West Virginia	1.10	. 60	1.20	1.15	1.01	$\stackrel{.}{95}$	1. 10	1. 20	1.20	1. 20	1. 14	1. 20	1. 14	1.10	1.20	1. 00
North Carolina	1. 20	1.00	1. 10	1. 15	1.11	1. 10	1.40	1.07	1. 01	1.00	1.00	1. 20	1. 11	1. 00	1.00	1.00
South Carolina	1. 20	1.05	1. 10	1. 15	1. 12	1. 15	1.40	1. 25	1. 25	1. 05	1. 10	1. 20	1.20	. 81	1.00	. 85
Geor	1. 30	1. 30	1.30	1.35	1.31	1.15	1. 20	1. 25	1.10	. 91	. 95	. 90	1.07	1.00	. 92	90
Florid	1. 20	1.15	1.10	1. 20	1. 16	1. 05	1. 15	1.00	1. 00	1. 10	1. 05	. 95	1. 04	. 90	. 90	85
Ohio	1. 25	. 90	1.30	1. 20	1. 16	1. 10	1. 42	1. 50	1.30	1. 50	1.30	1. 28	1. 34	1.40	1. 50	
Indiana	1. 25	. 90	1. 30	1.00	1.11	1.10	1. 20	1. 40	1. 20	1. 20	1. 20	1. 20	1. 21	1. 07	1.14	1.15
Illinois	1. 10	. 75	1. 10	. 85	. 95	1.05	1.30	1. 20	1. 40	1.30	1.15	1. 20	1. 23	1. 20	1.25	1.15
Michiga	1. 10	. 95	1. 10	. 85	1. 00	1. 25	1. 15	1.33	1. 25	1.05	1. 25	1. 28	1. 22	1.10	1.30	1. 20
Wiscons	. 90	1.00	1. 25	1.30	1. 11	1. 33	1.35	1. 47	1. 37	1.55	1. 36	1. 28	1. 39	1. 20	1.30	1. 30
Minneso	. 70	. 70	1. 10	1.10	. 90	1. 44	1. 35	1. 52	1. 24	1.15	1. 46	1. 40	1.37	1. 28	1. 22	1.15
Iowa	. 80	. 60	1.00	1. 10	. 88	1. 20	1.35	1.30	1. 15	1. 20	1.26	1. 27	1.25	1.16	1. 14	1. 20
Misso	1. 00	. 50	1.00	. 60	. 78	. 84	1.15	1. 10	1.00	. 75	1.16	1. 12	1.02	1.10	. 95	1.10
North	. 50	. 80	1.00	. 90	. 80	1.02	1. 15	1. 20	. 65	. 90	. 90	.95	. 97	1.00	1.05	1.00
South Dak	. 60	. 40	1.00	. 80	. 70	1.10	1. 40	1. 25	. 90	1.00	1.00	1.12	1.11	. 80	. 90	1. 20
Nebrask	. 75	. 65	1.00	. 90	. 82	1.07	1. 20	1.10	. 85	. 88	1. 02	1. 02	1. 02	. 84	. 85	1. 10
Kansas	. 90	. 60	1.05	. 70	. 81	. 96	1. 40	1.10	. 80	. 60	1. 15	. 97	1. 00	1.09	1. 10	1.18
Kentuck	1. 05	. 90	1.05	. 80	. 95	1. 20	1. 20	1.15	1. 50	1.00	1. 10	1.00	1. 16	. 90	1.15	1.00
Tennesse	1.15	. 95	1.10	1.05	1.06	1. 20	1. 10	1. 20	1.10	1. 00	1.10	1. 15	1. 12	1.15	1. 10	1.10
Alabama	1. 20	1. 20	1. 10	1.15	1. 16	1. 38	1. 20	1.20	1. 05	1. 00	1.00	1. 00	1. 12	$\begin{array}{r}.90 \\ \hline\end{array}$	$\begin{array}{r}.80 \\ \hline 18\end{array}$	$\begin{array}{r}.80 \\ \hline 1.20\end{array}$
Mississipp	1. 20	1.30	1. 25	1.15	1. 22	1.20	1. 10	1.25	1.22	1. 20	1.30	1.30 1.30	1. 22	1. 00	1. 10	1.20
Louisiana	1.35	1.00	1. 25	1. 20	1. 20	1.55	1. 40	1.40	1. 25	1. 00	1. 50	1.30	1.34	1.30	1.10	1.20
Texas	. 90	. 70	1.00	. 90	. 88	1. 25	1. 40	1.05	. 75	. 60	1. 25	1. 10	1. 06	1. 10	1.10	1.10
Oklahom	. 80	. 60	. 90	. 70	. 75	. 68	1. 25	1.00	. 70	. 56	1.20	1. 20	. 94	1.00	. 90	. 98
Arkansa	1.05	. 90	1.00	1.00	. 99	1. 00	1. 20	1.00	1. 12	. 90	1. 20	1.15	1. 08	1. 05	1.00	1. 21
Montan	. 80	1. 10	1.00	. 95	. 96	. 94	1. 10	. 90	. 75	. 75	. 35	. 95	. 82	. 80	. 90	. 91
W yoming	1. 00	.95 .9	. 90	. 90	. 94	1. 00	. 95	. 95	1.00	1. 10	. 92	1. 00	. 99	. 80	. 95	1.05
Colorado	1. 90	.90	1. 10	. 95	. 96	1. 20	1. 12	. 92	1. 02	. 94	. 89	1.05	1. 02	1. 00	. 97	1.05
New 1	. 70	. 95	. 90	. 70	. 81	. 80	. 90	. 65	. 87	. 70	. 90	. 82	. 81	. 85	. 80	. 80
Arizon	. 70	1. 05	. 75	1. 00	. 88	. 80	. 70	1. 00	1.25	1. 00	1.00	. 80	. 94	1. 00	. 50	1. 25
Utah.	1. 60	1.55	1. 60	1. 50	1. 56	1. 60	1. 60	1. 50	1.75	1. 10	1.17	1. 23	1. 42	1. 10	1.38	1. 52
Nevada	1. 60	1.60	1.30	1. 10	1. 40	1. 50	1.30	1. 00	1. 50	. 50	. 84	1.00	1. 09	1. 11	1. 59	1.09
Idaho	1. 50	1.60	1.40	1. 50	1. 50	1. 25	1. 40	1. 20	1.40	1. 10	1.00	1. 20	1. 22	1. 50	1. 20	1. 20
Washing	1. 20	1. 40	1. 25	1. 25	1. 28	1.30	1. 20	1. 40	1.40	1.33	1.20	1.15	1.28	1. 50	1. 14	1. 58
Oregon	1.15	1. 20	1.25	1. 20	1.20	1.22	1. 30	1.10	1.10	1.00	1.18	1.20	1.16	1. 10	1.00	1. 10
California	1. 10	1.10	1.00	1.00	1.05	1. 20	1.10	1.00	1. 15	. 95	1. 04	1. 04	1.07	1.10	1.10	1.00
United States	. 77	. 71	1.04	. 92	. 86	1. 11	1. 27	1. 19	. 93	. 94	1. 07	1. 11	1. 09	. 98	1. 02	1. 11

[^209]Table 321.-Hay, alfalfa: Acreage, yield per acre, and production, by States, calendar years, 1919-1923.

State.	Thousands of acres.					Yield per acre (tons).					Production, thousands of tons.				
	1919	1920	1921	1922	$1923{ }^{1}$	1919	1920	1921	1922	1923	1919	1920	1921	1922	$1923{ }^{1}$
Vermont	1	1	1	1	1	2.41	2.60	3. 00	3.00	2. 20	2	3	3	3	2
Massachusetts	1	1	1	1	1	3. 25	2.80	3. 00	3.10	3. 50	3	3	3	3	4
Connecticut	1	1	1	1	1	2. 23	2.60	3. 50	3. 50	2. 40	2	3	4	4	2
New York	120	132	145	155	163	2.72	2. 50	2. 50	2.75	2. 40	326	330	362	426	391
New Jersey	15	15	15	17	19	2.70	2. 70	2.62	2.85	2.19	40	40	39	48	42
Pennsylvan	31	30	32	35	36	2.60	2.45	2.55	2.70	2. 35	81	74	82	94	85
Delaware.	2	2	2	2	2	2.90	3. 00	2.70	2.90	2. 50	6	6	5	6	5
Maryland	12	12	11	16	16	2.60	2. 80	2.60	2.75	2. 25	31	34	9	44	36
Virginia	24	24	23	29	35	2. 20	2.37	1.80	2.30	2. 10	53	57	41	67	74
West Virginia.	5	5	5	6	6	2. 20	2.30	2. 40	2.45	2. 30	11	12	12	15	14
North Carolina	3	3	3	4	4	2. 40	2. 40	2.10	2.40	2.30	7	7	6	10	9
South Carolina	3	3	3	3	3	2. 04	2. 20	2.25	2. 20	2. 00	6	7	7	7	6
Georgia.	3	3		4		2.20	2. 00	2.25	2.40	2.10	7	6	9	10	8
Florida		3					2. 00					6			
Ohio.-	94	89	90	118	113	2.31	2.50	2.50	2.50	2.60	217	222	225	295	294
Indiana	62	70	80	95	105	2.26	2. 50	2.10	2. 34	2. 40	140	175	168	222	252
Illinois	89	100	107	124	136	2.65	2. 70	2.59	2.70	2. 90	236	270	277	335	394
Michigan	74	95	143	246	338	2.00	2. 30	2.25	2.35	2. 10	148	218	322	578	710
Wisconsin	70	106	131	92	155	2.50	2. 70	266	2. 67	2.30	175	286	348	246	356
Minnesota	45	59	77	88	123	3.60	2. 90	2.60	2.61	2.34	124	171	200	230	288
Iowa	172	180	187	192	211	2.70	2. 84	2.91	2.67	3. 00	464	511	544	513	633
Missouri	152	168	164	170	185	2.40	2. 52	2.05	2.40	2. 35	365	423	336	408	435
North Dakot	58	56	56	65	70	1.72	1. 90	2.20	2. 50	2.10	100	106	123	162	147
South Dak	462	459	508	543	590	2.15	2.33	1.90	2. 22	2. 10	993	1,069	965	1,205	1,239
Nebraska	1,180	1,233	1,196	1, 163	1,163	2.60	2. 70	2.36	2. 07	2.60	3, 068	3,239	2, 823	2,407	3, 024
Kansas	1, 243	1, 231	1,065	919	885	2.18	2.20	1.80	2.45	2. 51	2,710	2,708	1, 917	2, 252	2, 221
Kentucky	56	51	- 53	58	58	2. 00	2.00	1.80	2.30	2. 20	112	102	195	133	128
Tennessee	17	19	20	25	27	2.46	2. 20	2.25	2.30	2.25	42	42	45	58	61
Alabama	10	10	10	20	25	2.30	1.87	1.70	1.50	1.50	$\stackrel{23}{ }$	19	17	30	38
Mississippi	30	28	24	24	22	2.80	2.30	2.50	2.30	2. 41	84	64	60	55	53
Louisiana	8	8	12	18	21	2.40	2.90	2.80	2.75	2.33	19	23	34	50	48
Texas.	58	56	57	60	62	2. 70	2. 60	2. 50	240	2.50	157	146	142	144	155
Oklahom	370	355	348	362	366	2.20	2.10	2.10	1.95	1.90	814	745	731	706	695
Arkansas	61	77	83	78	75	2.70	2.45	2.20	2.10	2.25	165	189	183	164	169
Montana	374	424	466	486	505	1.70	2.15	2. 25	2.20	2.15	636	912	1,048	1,069	1,086
W yomin	330	437	459	475	520	1.80	2.30	2.00	2.15	2.10	561	1, 005	918	1, 021	1,092
Colorado	782	845	818	818	834	2. 45	2.80	2.50	2.15	2. 25	1,916	2,366	2,045	1,759	1,876
New Mex	125	127	132	107	104	2. 70	2.70	2.60	2.40	2.60	338	343	343	257	270
Arizona	125	94	121	134	148	4. 30	3. 80	3. 50	3. 70	3. 90	538	357	424	495	577
Utah	365	380	412	431	458	.2.10	2.80	2.70	2.92	2.81	766	1,064	1,113	1,259	1,288
Nevadr	117	110	120	121	124	2.80	2.80	3.20	3.39	3. 23	328	308	384	411	400
Idaho	651	665	652	648	657	2. 85	3.30	3.40	3.10	3. 00	1,855	2, 194	2, 217	2,008	1,971
Washingt	229	230	230	222	235	2. 98	280	3. 50	3. 56	3. 60	682	644	805	790	846
Oregon	211	217	220	240	246	3.11	3. 50	3.50	3. 40	3. 50	656	760	770	816	861
California	909	920	941	952	981	3.65	3.70	3.70	3.80	3.80	3, 318	3, 404	3,482	3, 618	3,728
United States.	8,750	9, 134	9,228	9,368	9, 833	2. 55	2. 59	2.58	2.61	2.63	22, 325	24, 763	23, 786	24, 433	26, 013

[^210]${ }^{1}$ Preliminary.

Table 322.-Hay, clover: Acreage, yield per acre, and production, by States, calendar years, 1919-1923.

State.	Thousands of acres.					Yield per acre (tons).					Production, thousands of tons.				
	1919	1920	1921	1922	$1923{ }^{1}$	1919	1920	1921	1922	1923	1919	1920	1921	1922	19231
Maine	36	31	31	38	38	1. 58	1. 40	1.10	1. 60	1. 70	54	43	34	61	65
New Hampshire.-	10	11	10	14	14	1. 70	1.60	1. 30	1. 60	1. 80	17	17	13	22	25
Vermont..	21	20	18	25	28	1.70	1. 60	1. 30	1. 60	1. 80	36	32	${ }^{23}$	40	47
Massachusetts	14	12	11	14	14	1.75	1. 70	1. 50	1. 70	1. 90	24	20	18	24	27
Rhode Island.	1			1	1	1.60	1.60	1. 60	1. 70	1. 70	2	2	2	2	2
Connecticut	11	10	12	14	14.	1.80	1.60	1. 65	1. 70	1. 90	20	16	20	24	7
New York	482	477	435	472	481	1. 60	1.30	1.02	1. 60	1. 60	771	620	444	755	770
New Jersey	29	28	29	32	33	1. 50	1.60	1. 22	1. 50	1.00	44	45	35	48	33
Pennsylvani	317	308	311	300	294	1.35	1. 48	1. 15	1. 54	1. 05	428	456	358	462	309
Delaware.	19	18	17	19	18	1.30	1.45	1.00	1.34	1.02	25	26	17	25	18
Maryland	106	108	97	106	100	1.35	1.50	1.10	1. 50	90	143	162	107	159	0
Virginia.	200	180	180	192	168	1.30	1. 24	1. 00	1. 20	80	260	223	180	230	34
West Virginia	66	63	66	79	74	1.30	1.40	1.26	1. 45	1.30	86	88	83	115	96
North Carolina	90	84	84	101	105	1.40	1.45	1.30	1. 40	1. 40	126	122	109	141	147
Georgia	3	3	4	3	3	1. 50	1.54	1.34	1. 50	1. 20	4	${ }^{5}$			
Ohio	711	693	691	844	743	1.30	1.25	1. 19	1. 50	1. 10	924	886	822	1, 266	817
Indiana	563	591	561	710	426	1. 23	1. 23	. 93	1. 43	1. 10	692 1.203	727	5272	1, 1215	${ }_{928}$
Illinois	802	801	799	1, 093	773	1. 50	1. 18	1.10	1.50	1. 20	1, 203	${ }_{611}^{945}$	879	1,640	${ }_{953} 928$
Michigan	563	541	584	738	808	1.20	1.13	. 90	1. 40	1.18	676	611	526	1, 033	953
Wisconsin	648	784	753	789	668	1.90	1.75	1.25	1. 70	1. 42	1,231	1,372	941	1,341	949
Minnes	398	455	391	430	368	1.89	1.85	1. 60	1. 60	1. 26	752	- 842	626	${ }^{688}$	\%
Iowa	741	720	749	890	838	1. 70	1.45	1. 40	1. 41	1. 44	1, 260	1,044	1,049		1, 207
Missouri	449	511	544	704	598	1. 25	1.35	1. 20	1.35	1. 30	561	690	55	950	777
North Dakot	16	23	38	124	136	1.30	1.37	1. 45	1.75	1.85	21	32	55	217	252
South Dak	33	35	40	60	57	1. 60	1. 50	1.30	1.40	1. 50	53	52	52	84	86
Nebraska	60	60	66	74	70	1. 65	1.70	1.50	1. 40	1. 70	99	102	99	104	119
Kansas	49	62	84	104	119	1.57	1.68	1.31	1. 43	1. 60	77	104	110	149	190
Kentucky	200	188	194	204	184	1. 32	1.35	1. 00	1. 45	1. 40	${ }_{362} 26$	254	194	298 43	358
Tennessee	290	319	271	310	298	1. 25	1.30	1. 05	1. 40	1. 20	362	415	285	434	
Alabama.	10	15	20	35	46	1. 40	1. 39	1. 35	. 90	. 83	14	21	27	32	38
Mississipp	100	105	110	99	92	1.30	1.35	1. 20	1. 25	1. 25	130	142	132	124	115
Louisiana	38	39	41	39	34	1. 20	1.50	1. 50	1. 50	1. 70	6	8	10	8	10
Oklahoma	5	,	6	6	6	1. 30	1. 60	1. 60			88	8 77	10 68	8 75	84
Arkansas.	55	53	57	60	60	1.60	1.45	1.20	1. 25	1.41	88	77	68	75	
Montana	38	42	44	45	52	1. 05	1.60	1.60	1.80	1. 80	40	67	㖪	81	94
W yoming	12	15	16	25	27	1. 10	2. 00	1. 60	1. 60	1. 50	${ }_{2}^{13}$	30	28	40	40
Colorado.	15	20	12	20	19	1.80	2.00	1.80	1. 60	1. 80	4	4	4		4
New Mexico	2	2	2	2	$\stackrel{2}{2}$	2. 180	2.00	2. 00	1. 50	2. 11	[4884	4 12	$\stackrel{4}{8}$	$\stackrel{3}{2}$	6
Utah.	10														
Nevada	3	3	3	1	1	1. 50	1.90	1. 95	1. 89	1. 73	4	${ }^{6}$	6	2	2
Idaho.	45	42	43	31	32	1. 60	2. 00	2.30	1. 60	2. 00	$\begin{array}{r}72 \\ 150 \\ \hline\end{array}$	84 159	-99	180	${ }^{64}$
Washingto	70	69	75	74	74	2. 14	2.30				176	196	${ }_{212}^{180}$	1808	397
Oregon. Californ	88 15	91 15	94 15	140 15	147	2. 1.62	2. 1.70	2.25 1.90	2. 20	2. 70	176 25	196	212	308	I
United States_	7, 434	7, 659	7, 613	9, 079	8, 078	1.48	1.42	1. 21	1.50	1.34	11, 028	10, 863	9,216	13, 610	10,785

[^211]${ }^{1}$ Preliminary.

Table 323.-Hay, clover and timothy (mixed): Acreage, yield per acre, and production, by States, calendar years, 1919-1923.

State.	Thousands of acres.					Yield per acre (tons).					Production, thousands of tons.				
	1919	1920	1921	1922	19231		19192	20192		1923	1919	1920	1921	1922	$1923{ }^{1}$
Maine	696	620	628	604	610		250.9	950.8	851.40	1. 40	0870	589	534	846	854
New Hampshire	171	178	172	180	174		201.1	151. 0	00 1. 30	1. 40	0205	205	172	234	244
Vermont.---.---	549	547	531	545	550	01.6	601.40	40 1. 00	001.45	1. 50	0878	766	531	790	825
Massachusetts	149	135	132	144	146	61.40	401.5	551.35	351.50	1. 60	209	209	17	21	234
Rhode Island.---	16	15	5	16			501.35	351.40	401.45	1. 40	-	20	1	23	22
Connecticut	83	84	84	84			501.45		601.65	1. 50	124	122	134	139	124
New York	2, 298	2, 286	2, 786	2, 248	2, 256	61.4	44 1. 25	25.90	011.42	1. 40	3, 308	2, 857	2,507	3, 192	3, 158
New Jersey	116	136	123	138	142	1. 45	451.65	651.30	301.60	1. 04	4. 168	224	160	${ }^{2} 21$	148
Pennsylvania.	1,458	1,534	1,596	1,568	1, 560	1. 35	351.40	401.18	181.60	1. 04	1,968	2, 148	1, 883	2, 509	1,622
Delaware	25	26			24		301.45	451.20	201.45	1. 00	- 32	38	29	36	24
Marylan	140	151	148	147	140		401.50	501.30	31.60	1.00	196	226	192	235	140
Virginia	251	239	250	324	324	1. 25	251.35	351.05	50. 1.25	85	314	323	262	405	272
West Virginia	265	275	275	288	292	1. 25	251.30	301.15	51.35	1. 20	33	358	316	389	350
North Carolina -	40	42	40	38	39	1.30	301.35	351.35	51.40	1. 30	52	57	54	53	51
South Carolina--	3	3				1. 60	601. 40	401.20							
Georgia	2	2	2	2		1.40	01. 30			1. 00	,	3	2	4	2
Ohio	731	893	941	964	874	1.40	401.35	1. 28	81.55	1.15	1,023	1,206	1, 204	1,494	1,005
Indiana	518	639	730	690	528	1.20	201.25			1.16	B 622	799	803	945	612
Illinois	543	720	739	803	722	1. 45	51.15	51.15	51.48	1. 21	787	828	850	1,188	874
Michigan	1,410	1,436	1,312	1,291	1,123	1. 19	91.15	5.92	21.38	1. 15	1,678	1,651	1,207	1, 782	1,291
W isconsin.	1, 555	1,549	1,362	1,470	1,625	1.77	71.70	21. 28	1.76	1. 30	2,752	2,633	1,744	2,587	
Minnesota	636	608	642	738	701	1.88	81.70	01.52	21.60	1. 23	1,196	1,034	976	1, 181	862
Iowa.-	1,238	1,306	1,286	1,353	1,400	1.55	551.45	51.42	21.45	1. 50	1,919	1, 894	1, 826	1,962	2, 100
Missouri	574	908	864	1,060	1, 002	1.30	01.24	41.15	51.00	1. 22	746	1,126	994	1, 050	1,222
North Dakot	16	19	20	18	20	1. 20	201.25	51.40	01.60	1. 40	19	24	28	29	28
South Dakota.--	48	72	74	96						1.30	72	108	96	125	120
Nebrask	185	125	96	76			1. 65	1. 40	0 1. 60	1. 70	288	206	134	122	143
Kansas.	44	54	49	82			01.40	O 1.30	0 1. 35	1. 57	62	76	64	111	237
Kentucky	163	190	149	220	200	1. 30	0130	0, 1.05	51.35	1:30	212	247	156	297	280
Tennessee	163	166	176	205	200	1. 25	51.20	21.15	5.140	1.30	204	199	202	287	260
Alabama				3		1.35	1.40		1. 40	i. 10		3	3		
Mississippi						1.30	1.40	1. 20		1. 47	-9	11	10		
Louisiana				3		1. 50	1. 50	01.50	01. 25	1. 25	- 3	4	4	5	1
Texas----	7	6	5	4		1. 30	01.80	01.30		2. 00	9	11	6	6	6
Oklahoma	5		5	6		1. 30	1.80	01.45	51.30	1.10	6	9	7	8	7
Arkansas	64	60	62	60						1. 10	90	84	74	66	61
Montana	116	140	154	150	156	1. 10	11.80	1. 70	1.90	2. 00	128	252	262	285	312
Wyoming	26	28	28	34	37	1. 10	1.70	1.50	1. 40	1. 50	29	48	42	48	56
Colorado.	115	112	112	95	95	1. 50	2. 00	1.60	1. 60	1. 70	172	224	179	152	162
New M	2	2	2	2					1.00	1.50	4	4		2	3
Arizon	1.		1	1		1. 50	2.00	1. 50	01. 50	1. 50	2	2	2	2	2
Utah.	26	25	29	32	25	1.80	0200	1.90	02. 10	208	46	50	55	67	52
Nevada	13	14	13	14	12	1.37	1.70	1.90	01. 95	1. 47	18	24	25	27	18
Idaho	77	75	75	103		1. 50	1.75	2. 00	1.80	1.90	116	131	150	185	180
Washingt	93	93	98	94	96	2. 25	2. 10	2. 20	02.00	2. 55	209	195	216	188	245
Oregon.	47	48	50	30	30	1.90	2. 00	2. 10	2. 30	2. 50	89	96	105	69	75
California	52	52	52	52	52	1. 44	1. 50	1.70	1.40	1.70	75	78	88	73	88
United States_-	14, 7391	5, 632	5,948	16, 100	15,687	1. 44	1. 37		1.47		21, 273	21, 408	18,495	23,649	20,371

Division of Crop and Livestock Estimates.
1Preliminary.

Table 324.-Hay, timothy: Acreage, yield per acre, and production, by States, calendar years, 1919-1923.

Division of Crop and Livestock Estimates.

${ }^{1}$ Preliminary.

Table 325.-Hay, grains cut green: Acreage, yield per acre, and production, by States, calendar years, 1919-1923.

State.	Thousands of acres.					Yield per acre (tons).					Production, thousands of tons.				
	1919	1920	1921	1922	19231	1919	1920	1921	1922	1923	1919	1920	1921	1922	$1923{ }^{1}$
Maine	15	13	20	16	16	1.70	1.70	1.45	2.10	2.20	26	22	29	34	35
New Hampshire.-	11	10	12	10	10	1. 90	1.70	1.60	1.30	2. 00	21	17	19	13	20
Vermont-.-.-...--	17	16	18	16	16	1.70	2. 00	1.90	1.80	2. 00	29	32	34	29	32
Massachusetts	17	15	18	14	14	1.70	1.95	1.85	1.90	2. 00	29	29	33	27	28
Rhode Island..	3	3	3	3	3	1.60	1. 55	1.60	1.60	1. 60	5	5	5	5	5
Connecticu	14	12	15	12	12	1. 40	1.60	1. 50	1.80	2. 00	20	19	22	22	24
New York	89	65	130	80	86	1.40	2.00	1.80	1.50	1.40	125	130	234	120	120
New Jersey	9	7	10	5	7	1.45	1.60	1.20	1.30	1.08	13	11	12	6	8
Pennsylvania	13	11.	20	16	18	1. 50	1.60	1.40	1.60	1.50	20	18	28	26	27
Delaware.....	3	3	4	3	2	1.35	1.40	1. 20	2. 00	1.75	4	4	5	6	3
Maryland	6	6	10	8	8	1.30	1.30	1.20	1.75	1. 50	8	8	12	14	12
Virginia	56	53	50	50	41	1. 20	1.40	1.40	1.25	1. 00	67	74	70	62	41
West Virginia	26	30	35	39	39	1.20	1.30	1.25	1.40	1.40	31	39	44	55	55
North Carolina.	59	56	50	78	80	1. 00	. 95	1. 40	1. 20	1.30	59	53	70	93	104
South Carolina.	65	68	60	34	35	. 95	. 71	. 85	1.30	1.20	62	100	51	44	42
Georgia	57	60	63	65	70	. 80	. 85	. 83	. 80	. 61	46	51	52	52	43
Florida	7	8	5	5	6	. 80	1. 00	1.20	1. 00	. 95	6	8	6	5	6
Ohio	20	21	38	50	40	1.20	1.70	1.40	1.50	1.40	24	36	53	75	56
Indiana	61	44	94	300	147	1.10	1.60	1.20	1. 00	1. 20	67	70	113	300	176
Illinois.	70	37	64	73	62	1.40	1.40	1.34	1.50	1.54	98	52	86	110	95
Michigan	59	28	86	15	27	94	1. 42	1.25	1.10	1.25	55	40	108	16	34
W isconsin	28	20	60	36	45	1.30	1.60	1.40	1. 30	1.30	36	32	84	47	58
Minnesota	89	28	29	40	80	1.40	1.60	1.45	1.40	1.30	125	45	42	56	104
Iowa.	47	31	32	27	34	1. 50	1.60	1.50	1.40	1.70	70	50	48	38	58
Missouri	190	128	192	87	45	1. 20	1.40	1.25	. 45	1.10	228	179	240	39	50
North Dakota	324	327	269	279	316	. 80	1.20	1.20	1.40	1. 25	259	392	323	391	395
South Dakota	109	107	78	80	80	1.00	1.20	1.20	1.10	1.20	109	128	94	88	96
Nebraska....-	40	27	27	39	34	1.15	1.40	1.30	1.10	1. 25	46	38	35	43	42
Kansas...	36	23	47	43	30	1. 40	1.80	1.50	1. 20	1. 20	50	41	71	52	36
Kentucky	98	90	135	123	130	1. 20	1.20	1.00	1.20	1.10	118	108	135	148	143
Tennessee	129	133	130	90	95	. 95	1.10	1.00	1. 20	. 80	123	146	130	80	76
Alabama	54	59	118	100	118	1. 00	. 90	. 90	1.00	. 75	54	53	106	100	88
M ississippi	15	15	17	10	10	1.10	. 95	1.00	. 95	1. 02	16	14	17	10	10
Louisiana	6	6	15	10	20	1.15	1.25	1.20	1.20	1. 50	7	8	18	12	30
Texas..	167	151	136	109	50	1. 30	1.05	1.00	1. 00	1.90	217	159	136	109	95
Oklahoma	94	100	112	48	53	1. 30	1.20	1.20	1.10	1. 10	122	120	134	53	58
Arkansas	193	170	112	82	75	. 95	1.00	1.10	1. 00	. 80	183	170	123	82	60
Montana	467	313	202	195	197	. 45	1.15	1.20	1. 40	1.37	210	360	242	273	270
W yoming	101	91	73	71	75	. 65	1.25	1. 20	1. 50	1.70	66	114	88	106	128
Colorado	132	98	105	110	107	1.15	1.10	1.20	1.10	1. 20	152	108	126	121	128
New Mexico.	27	25	24	11.	11	1. 50	1. 20	1.50	. 40	1. 20	40	30	36	4	18
Arizona.	23	18	24	22	20	1. 20	1.10	1.30	1. 50	1. 20	128	20	31	33	24
Utah	16	13	15	14	11	1.10	1.20	. 95	. 88	1. 17	18	16	14	12	13
Nevada.	7	9	7	8	6	1.00	1.20	1.22	1. 24	1. 28	7	11	9	10	8
Idaho	168	154	149	134	149	1.10	1. 50	1.70	1. 20	1. 50	185	231	253	161	224
Washington	477	477	491	490	490	1.50	1.60	1.70	1.25	1.75	715	763	835	613	858
Oregon.	467	452	489	410	413	1.30	1.70	1.60	1.20	1.50	607 1	$\begin{array}{r}764 \\ 1 \\ \hline\end{array}$	782 1	492 1.400	620 1.302
California	1, 085	1, 070	1, 032	1,000	930	1.20	1.20	1.20	1.40	1.40	1,302	1,284	1, 238	1,400	1,302
United States_	5, 266	4, 701	4, 925	4, 560	4,363	1.15	1.32	1.31	1.36	1.36	6,008	6, 202	6,476	5, 687	5,953

Division of Crop and Livestock Estimates.
'Preliminary.

Table 326.-Hay, legumes: Acreage, yield per acre, and production, by States, calendar years, 1919-1923.

State.	Thousands of acres.					Yield per acre (tons).					Production, thousands of tons.				
	1919	1920	1921	1922	19231	1919	1920	1921	1922	1923	1919	1920	1921	1922	$1923{ }^{1}$
Maine	2	3	4	2	2	1. 20	1.20	1. 10	1.30	1. 20	2	4	4		
New Hampshire--	1	1	2	2	2	1. 20	1.10	1.00	1. 20	1. 30	1	1	2		3
Vermont--	1	1	2	1	1	1.50	1.40	1.30	1.50	1.40	2	1	3		
Massachusetts	1	1	2	1	1	1. 50	1.50	1.60	1. 40	1. 50	2	2	3		2
Rhode Island.	1	1	1	1	1	1.50	1.40	1.30	1.40	1.40	2	1			
Connecticut	2	2	1	1	1	1. 20	1.30	1.30	1. 40	1. 50	2	3		1	2
New York	5	5	5	5	. 5	1. 20	1.28	$\begin{array}{r}.80 \\ \hline 180\end{array}$	1.20	1. 20	5	6			
New Jersey	3	3	3	3	3	1. 60	1.40	1.30	1. 60	1.30	5	4			
Pennsylvani	4	4		4	4	1. 80	1.80	1.80	1.90	1. 50	7	7	7		${ }^{6}$
Delaware.--	7	8	9	13	20	1.35	1. 40	1.45	1. 75	1.40	9	1	13	3	28
Maryland	15	16	18	24	32	1. 40	1.50	1.50	2.00	1.50	21	24	27	48	48
Virginia	210	227	240	225	237	1.10	1.20	. 70	1.30	1.25	231	272	168	291	298
West Virginia	9	12	13	15	15	1. 20	1.20	1.00	1.40	1.60	11	14	13	21	24
North Carolina	320	286	344	396	386	. 90	. 95	1.05	1.05	1.00	288	272	361	416	386
South Carolina.--	190	196	250	341	385	. 85	. 95	. 82	. 85	. 80	162	186	205	291	310
Georgia	407	434	469	504	562	. 88	. 90	. 88	. 78	. 64	358	391	413	395	359
Florida	53	55	53	50	59	. 80	. 80	1.00	. 68	. 90	42	44	53	34	53
Ohio	6	10	10	17	20	1.50	1.60	1.50	1.70	1.50	9	16	15	29	30
Indiana	19	35	50	95	190	1.05	1.40	1.20	1.50	1.40	20	49	60	142	266
Illinois	72	84	92	160	239	1.30	1. 20	1.30	1.50	1. 70	93	101	120	240	406
Michigan	7	6	12	25	36	1. 05	1.30	1. 20	1.32	1. 50	7	8	14	3	54
Wisconsin	5	8	24	30	35	1.50	1. 50	1. 70	1.20	1. 30	8	12	41	36	45
Minnesota	6	19	19	30	45	1. 60	1.40	1.40	1. 20	1.10	10	27	27	36	50
Iowa-	7	9	10	7	10	1.50	1.60	1.80	1. 40	1.90	10	14	18	10	19
Missouri	47	63	70	107	165	1.10	1.15	1.10	1.20	1.15	52	72	77	128	190
North Dakota	28	28	28	28	25	. 90	1.10	1. 20	1.40	1. 40	25	31	34	39	35
South Dakot	5	24	19	12	12	1.20	1.30	1.10	1.40	1.00	6	31	21	17	12
Nebraska	8	6	5	4	5	1. 20	1.30	1.40	1.40	1. 50	10	8	7	6	8
Kansas.	5	3	4	6	8	1.30	1.50	1.80	1.40	1.31	7	4	7	8	10
Kentucky	35	45	67	96	96	1.10	1.10	1.00	1.95	1.40	38	50	67	117	134
Tennessee	280	260	280	313	311	1.05	1.30	1. 20	1.30	1. 19	294	338	336	407	371
Alabama:	456	458	444	380	376	. 80	. 80	. 80	. 80	. 61	365	366	355	304	246
Mississippi	68	92	128	193	202	1. 10	1.10	90	. 98	1.10	75	101	115	191	222
Louisiana.	85	87	93	105	101	1.40	1.35	1.10	1.10	1.13	119	117	103	116	114
Texas-----	57	60	54	50	66	1.20	1.30	1.20	1.04	. 80	68	78	65	52	53
Oklahoma	25	24	30	33	33	1.30	1.30	1.10	1.30	1.30	32	31	33	43	43
Arkansas.	77	97	108	128	117	1.00	1.15	1.00	1.10	1.10	77	112	108	141	129
Montana	6	6	5	4	4	. 80	1.20	1.30	1.30	1.35	5	7		5	5
W yoming	2	2	2			1.00	1.50	1.50			2	3	3		
Colorado.-	13	10	10	15	14	1.20	1.40	1.50	30	1.40	16	14	15	19	20
New Mex	3	3	3	3	3	1.30	1.30	1.30	1.00	1.50	4	4	4	3	4
Arizona	1	1				1.50	1.50				2	2			
Utah.	2	1	1			1.50	1.40	1.60			3	1	2		
Nevada	1	1	1			1.60	1.80	1.75			2	2	2		
Idaho.	4	1				1.05	1.60	1.20			4	2	1		
Washingto	7	7	7	7	8	1.60	1. 50	1.60	2.17	2.25	11	10	11	15	16
Oregon.	25	25	25	48	49	1.75	1.60	1.50	2.00	2.00	44	40	38	96	98
California	26	26	26	26	20	1.16	1. 20	1.30	1.20	1.50	30	31	34	31.	30
United States-	2, 619	2, 756	, 048	3, 510	3, 905	. 99	1.06	. 99	1.09	1.06	2, 599	2,925	3, 021	3,812	4,143

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

Table 327.-Hay, millet, sudan grass, and other: Acreage, yield per acre, and production, by States, calendar years, 1919-1923.

State.	Thousands of acres.					Yield per acre (tons).					Production, thousands of tons.				
	1919	1920	1921	1922	$1923{ }^{1}$	1919	1920	1921	1922	1923	1919	1920	1921	1922	19231
Maine	311	416	421	430	435	1.04	0. 79	0. 64	0.95	1. 03	323	327	269	408	448
New Hampshire.-	188	191	194	182	179	1.03	98	82	1. 07	. 94	194	187	160	195	169
Vermont--------	223	224	239	218	220	1. 22	1. 04	96	1.16	1.06	272	233	230	252	234
Massachusetts	150	184	188	185	187	1.25	1.15	1.10	1. 01	1. 06	188	212	206	187	198
Rhode Island..	15	17	17	16	16	1. 07	1.18	1.06	1. 00	1.00	16	20	18	16	16
Connecticut	152	169	167	165	166	1. 22	. 98	1.01	1. 05	1. 10	185	165	168	174	183
New York	630	600	597	610	615	. 89	. 98	. 95	. 89	. 83	561	615	565	542	510
New Jersey	26	31	35	28	31	1.31	1. 29	1. 14	1. 46	. ${ }^{\mathbf{9}} 14$	34	40	40	- 41	8
Pennsylvan	86 4	80	90	72 4	72	1. 1.50	1. 22	1. 21	1. 22	1. 1.50	114	98	109	102	82
Maryland	18	20	26	20	20	1. 22	1. 25	1. 19	1. 90	. 90	22	25	31	38	18
Virginia	108	105	105	112	103	1.15	1. 30	. 97	1.15	1.11	124	137	102	129	114
West Virginia	90	99	101	105	100	1. 13	1.33	1. 35	1. 20	1. 10	102	132	136	126	120
North Carolina	150	145	142	157	147	. 90	1.01	1.31	1. 40	1. 50	135	147	186	220	221
South Carolina	90	87	80	75	55	. 84	. 82	. 75	1. 40	1.00	76	71	60	105	55
Georgia	148	156	148	148	128	85	80	90	96	. 69	127	12	133	43	89
Florida	60	52	52	71	67	77	. 79	1.06	. 70	. 20	46	41	55	50	60
Ohio	26	26	29	31	30	1.04	1. 50	1.34	1. 61	1. 60	36	39	39	50	48
Indiana	69	66	80	80	70	1.34	1.33	1.18	1. 25	1. 10	91	88	94	100	77
Illinois	355	314	342	335	344	1. 11	1.09	1.17	1.09	1.20	411	343	399	365	413
Michigan	48	40	81	83	87	1.25	1.18	1. 31	1. 23	1. 25	00	47	106	102	109
Wisconsin	60	70	196	75	79	1. 57	1. 21	1. 41	1. 20	1. 40	94	85	277	90	111
Minnes	205	186	159	116	128	1.92	1. 50	1. 57	1. 40	1.35	393	279	250	162	173
Iowa	72	62	67	84	70	1. 62	1. 65	1. 63	1. 50	1.74	118	102	109	126	122
Missour	141	137	150	160	173	1.56	1. 45	1.41	1. 14	1. 60	220	208	211	182	280
North Dakota	264	284	368	360	350	1. 50	1.18	1.38	1. 55	1. 56	397	334	507	658	648
South Dako	95	113	83	75	90	1. 62	1. 60	1.28	1. 63	1. 62	154	181	106	122	140
Nebraska	249	182	139	175	208	1. 69	1.70.	1.76	1.83	2.30	420	309	244	320	478
Kansas	220	220	183	375	426	2. 13	2.33	2.36	2.11	2. 10	469	514	431	818	89
Kentucky.	281	258	234	253	243	1. 27	1.31	1. 23	1.35	1. 20	331	335	288	331	292
Tennessee	372	378	376	334	323	1. 12	1.26	1. 22	1. 23	1.00	439	463	458	412	32%
Alabams	230	218	240	220	196	1.07	1.00	1.05	1. 14	1. 07	250	218	251	251	210
Mississippi	172	150	139	130	143	1.28	1.23	1.08	1. 37	1. 29	212	184	150	176	8
Louisiana	59	61	42	37	37	1. 44	1.15	1.07	1.10	1.20	85	70	45	41	4
Texas	261	283	387	448	532	1.60	1. 55	1.41	1. 65	1.60	418	426	544	738	861
Oklahom	363	373	404	506	468	1. 62	1. 55	1.37	1. 64	1. 67	589	577	555	786	754
Arkansas	148	165	159	152	154	1.08	1.62	1.13	1.20	1. 20	160	267	179	182	185
Montana.	76	90	93	82	90	. 88	1.45	1.38	1. 66	1. 56	66	131	128	136	140
W yoming	67	77	80	60	39	1. 07	1.32	1. 50	1.35	1. 59	72	122	120	81	62
Colorado.	125	127	90	88	90	1.34	1.41	1.30	1.33	1.30	168	179	117	117	117
New Mex	24	23	23	35	34	1. 25	1.70	1. 52	$\bigcirc 60$	1. 00	40.	39	35	20	34
Arizon	10	9	4	8	6	1. 50	1. 56	1. 75	1. 50	1. 50	15	14	7	12	9
Utah.	25	23	17	16	14	1.30	1.10	1. 40	1.70	1. 69	33	25	24	27	24
Nevada	30	30	28	30	31	1.35	1. 50	1.50	1.56	1.32	40	45	42	48	40
Idaho	21	32	30	20	21	1. 20	1.40	1. 60	1.40	1. 45	25	45	48	30	30
Washingt	52	53	54	50	51	1.90	1.50	1. 50	. 90	2.00	99	80	81	102	102
Oregon	82	85	85	77	79	1. 60	1. 40	1. 40	1. 50	1. 60	131	119	119	116	126
Californis	26	50	50	50	53	1.16	1.30	1. 30	1.10	1.30	30	65	65	55	9
United States	6,658	6, 766	7, 021	7, 143	7, 206	1. 29	1.26	1. 21	1.31	1.32	8, 494	8, 591	8,505	9,389	9, 547

Division of Crop and Livestock Estimates.
1Preliminary.

Table 328.-Hay, tame: Condition of crop, 1st of month, and yield per acre, United States, 1908-1923.

Calendar year.	May.	June.	July.	Aug.	Yield per acre.	Calendar year.	May.	June.	July.	Aug.	Yield per acre.
1908.---------	$\begin{gathered} P . c t . \\ 93.5 \end{gathered}$	$\begin{gathered} \text { P.ct. } \\ 96.8 \end{gathered}$	$\begin{gathered} P_{9 .}, c t .6 \end{gathered}$	$\underset{92.1}{P . c t .}$	Tons. 1. 53	1916...-.-.-.--	$\begin{gathered} P . c t . \\ 88.4 \\ 88.5 \end{gathered}$	P.ct.	P.ct.	P.ct.	Tons.
1909	84.5	87.6	87.8	86.8	1.46	1918		84.3 89.5	85.1	87.3 83.3	1. 51
1910	89.8	85.9	80.2	83.1	1.36	1919	94.0	93.5	90.7	91.2	1. 52
1911	84.7	77.4	64.9	68.6	1.14	1920	89.4	87.9	85.5	89.8	1.51
1912	85.7	89.8	85.2	91.0	1.47				86.1		
1913	88.5	86.9	80.5	82.3	1.31	Av. 1914-1920.	90.1	88.7	86.1	88.7	1.52
A v. 1909-1913.	86.6	85.5	79.7	82.4	1.35	1921	91.7	84.2	78.7	82.2	1.40
1914	90.9	87.6	80.8	85.0	1.43	1923	86.8	84.1	80.3	81.0	1.48
1915.	89.8	87.8	85.2	89.0	1.68						

Division of Orop and Livestock Estimates.
Table 329.-Hay: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1922.

Calendar year.	Deficient mois	Ex-cessive moisture.	Floods.	Frost or freeze.	Hail.	$\underset{\text { winds. }}{\text { Hot }}$	Storms.	$\begin{aligned} & \text { Total } \\ & \text { cli- } \\ & \text { mat- } \\ & \text { ic. } \end{aligned}$	Plant disease.	Insect pests.	Animal pests	De-fective seed.	Total ${ }^{1}$
	P.ct.	P.ct.	P.ct.	P.ct.	P.ct.	P .ct.	P.ct.						
1909	10.7	2.2	0.6	1.2	0.1	0.3	0.3	15.7	0.1	0.5	0.1	0.1	17.6
1910	17.4	1.2	. 3	1.2	. 1	. 5	. 1	21.2	. 1	. 5	. 2	. 1	23.6
1911	27.7	. 8	${ }^{(2)}$	9	. 1	1.9	${ }^{(2)}$	31.9	. 1	. 6	. 1	c^{1}	34.7
1915	3.7	4.9	. 6	1.8	. 1	. 1	. 3	11.9	2	. 5	1	(2)	13.9
1916	5.5	1.0	. 3	1.1	. 1	. 2	. 1	8.6	${ }^{(1)}$. 3	${ }^{(2)}$	${ }^{(2)}$	9.6
1917.	11.5	1.3	. 2	2.9	. 2	. 3	. 1	16.8	. 1	. 4	. 1	${ }^{(2)}$	18.3
1918.	17.5	7	2	2.7	. 1	. 8	. 1	22.7	. 1	. 9		${ }^{(2)}$	24.9
1919	9.9	1.9	. 3	1.0	. 1	. 4	. 1	13.9	. 1	1.0	${ }^{(2)}$.1	15.5
1920	7.2	1.4	. 2	4	. 2	. 2	. 1	10.8	. 2	1.0		. 1	12.7
1921.	15.1	. 9	. 2	1.4	. 2	. 7	. 2	19.5	. 2	. 9	1		21.0
1922.													

Division of Crop and Livestock Estimates.
${ }^{1}$ Includes all other causes.
${ }^{2}$ Less than 0.05 per cent.
Table 330.-Hay, all: Stocks on farms May 1, United States, 1910-1923.

Calendar year.	Production of all hay preceding year (tons)	Per cent on farms May 1.	Tons on farms May 1.	Price per ton May 1.	Calendar year	Production of all hay preceding year (tons).	Per cent on farms May 1.	Tons on farms May 1.	Price perton May 1.
1910	92, 767, 000	11.6	10, 745, 000	\$11. 08	1917	110, 992, 000	11.4	12, 659,000	\$13.94
1911.	82, 529, 000	12.4	10, 222, 000	11.69	1918	98, 439, 000	11.7	11, 476, 000	17.97
1912	67, 071, 000	8.5	5, 732, 000	16. 31	1919	91, 139, 000	9.4	8, 559, 000	22. 31
1913	90, 734, 000	14.9	13, 523,000	10.42	1920	104, 760, 000	10.1	10, 618,000	24. 22
1914	79, 179, 000	12.2	9, 631, 000	11.63	1921	105, 315, 000	17.8	18, 771, 000	13. 08
1915	88, 686, 000	12.2	10, 797, 000	11.03	1922	97, 770, 000	11. 2	10, 919,000	12.98
1916...	107, 263, 000	13.5	14, 452, 000	11. 27	1923	112, 013, 000	12.0	13, 392, 000	12.69

Division of Crop and Livestock Estimates.

Table 331.-Hay: Receipts at 12 markets, 1910-1923.

Year beginning July 1.	Baltimore.	Boston.	$\begin{aligned} & \text { Chi- } \\ & \text { cago. } \end{aligned}$	Kansas City.	Mil-waukee.	Min-neapolis.	New York.	Peo- ria.	Phil-adelphia.	Pittsburgh.	St. Louis.	San Francisco.	Total.
	Short	Short	Short	Short	Short	Short	t	rt	rt		$r t$	rt	rt
		$162,42$											
1911-12	69, 284	164, 196	351, 630	318, 948	44, 199	63, 570	286, 474	41, 822	86	115, 608	20,		
1912-13	58, 939	139, 92	274, 76	343, 392	47, 138	37, 290	296, 866	38, 131	82,063	106, 993	222, 998	141, 22	$1,789,723$
1913	63, 186	117, 740	369, 032	285, 288	36, 283	38, 280	317, 543	43, 660	75, 630	103, 466	261, 155	133, 598	1, 844, 861
14-15		115								83,	30		
1915-16	50, 415	126, 590	273, 181	398, 172	34, 637	45, 376	294, 39	1, 299	84, 006	106, 710	232, 628	146, 560	969
1916-17		123, 780	237, 932	359, 316	24, 360	35, 652	212, 256	48, 870	78, 284	92, 202	210, 591	104, 468	1,578, 585
1917-18	64, 053	97, 150	352, 730	419, 964	23, 131	39, 126	199, 7	40,	61, 618	74, 07	237, 506	82,	691, 790
1918-19	41, 870	67, 000	287, 031	386, 460	16, 656	28, 457	221, 580	35, 05	31, 571	72, 72	213, 043	72, 440	1, 473, 879
1919-2	32, 650	58, 740	225, 050	599, 340	19, 053	22, 601	167, 088	33, 30	52, 466	63, 68	254, 042	85, 80	1, 613, 823
1920	19, 559	50, 220	149, 801	337, 169	19, 466	23, 015	150, 338	21, 140	40, 057	79, 062	188, 550	75, 272	1, 153, 649
1920	44, 904	91, 234	264, 403	414, 146	26, 052	34, 249	225, 068	37, 696	60, 941	81,768	235, 012	104, 108	1, 619, 581
1921	13, 730	51, 250	135, 625	196, 534	19, 0	23, 467	98, 904	10, 970	51, 226	76, 162	121, 104	59, 185	857, 195
1922	15,536	47, 010	152, 632	244, 169	17,626	25, 972	92, 516	33, 060	42, 188	61, 769	138, 312	60, 017	930, 807
$\begin{array}{r} 1922 \\ \text { July } \end{array}$	1,169	2,070	, 906	14, 190	348	2, 244	10,	2,300	4	4, 122			
Augu	1,780	4,110	9,861	21, 978	1, 140	2, 263	6,000	6, 380	6, 100	5, 508	13,0	9, 270	
Septembe	1,314	3, 890	9,864	13, 937	1, 080	1, 921	10,677	3, 750	2,96	5,808	9, 712	5, 180	70,097
October		3, 390	14,443	18, 975	1, 344	2,183	10, 052	3, 410		5, 008		3, 159	76, 178
Novembe	781	6,080	11,879	31, 438	2, 270	2, 245	9, 532	2,700	3, 532	6, 944	13, 401	5, 017	95, 819
December	1,083	2, 790	17, 654	25, 071	1, 520	2, 254	6,795	2, 610	3, 000	5, 764	11, 664	4,058	84, 263
$1923 .$						2,799		2, 290	5,	3, 564			
February	814	4,080	9, 884	21, 681	1, 546	2, 141	3, 6	1,890	2, 676	4, 610	13, 854	2,829	695
March	1, 022	5,450	10, 333	27, 456	1,344	3, 154	8,088	1,450	2,520	5,466	13, 011	5,228	84, 523
April	2, 202	4,820	11, 536	21, 582	1,320	1, 502	5, 488	2, 710	2,580	6,98	12,858	5,	79,024
May	2,025	3, 680	17, 156	11, 642	1,438	1,667	6, 320	2,670	2,772	3, 625	11,267	4,790	69, 061
June	1, 584	3,540	14, 650	8,953	1,488	1,589	6, 892	900	3,048	4,367	11, 400	6,941	64, 352
Total	15,536	47, 010	152, 632	244, 169	17, 626	25, 972	92, 51	33, 06	42, 188	61,76	138, 312	60, 01	230, 807
July.	1, 452	4, 650	10, 616	15, 224	1, 008	2, 23	7,7	3220	2,57	3, 6	10	7,0	83, 913
August	1,837	1,930	6, 5	23, 958	996	1,79	5,385	3, 95	2, 53	2,097	10,228	14,00	75, 217
September.	2,708	4,080	11, 724	20,977	1,152	1,800	7,672 9,306	5, ${ }^{4} 890$	2, 70	${ }_{9} \mathbf{0}, 1218$	12, 11.504	6, ${ }_{9}$	83,310 101,717
October----	2, 263	4, 430	10, 775	21, 582	1, 6972	2,875	9, 806	2, 670	4, 295	9, 2107	13, 200	7, 496	101,713 89,513
December	1,446	3, 760	10,334	17, 446	1,571	3, 516	9, 183	1,120	4,620	5, 105	8,652	8,640	75, 393
T	12,544	22,000	68, 854	120, 588	8,891	14, 744	47, 679	18, 550	22, 974	35, 306	63, 764	53, 169	489, 063

Division of Statistical and Historical Research. Compiled from Hay Trade Journal; Annual Reports of San Francisco Merchants' Exchange; Minneapolis Chamber of Commerce Reports and Daily Market Record; Chicago Board of Trade and Daily Trade Bulletin; Kansas City Grain Market Review.

[^212]Table 332.-Hay: Shipments from eight markets, 1910-1923.

Year beginning July 1.	Baltimore.	Chicago.	$\begin{gathered} \text { Kansas } \\ \text { City. } \end{gathered}$	$\begin{aligned} & \text { Mil- } \\ & \text { waukee. } \end{aligned}$	Minneapolis.	Peoria.	Pittsburgh.	st. Louis.	Total.
	Short	Short	Short	Short	Short	Short	Short	Short	Short
	tons.	tons.	tons.	tons.	tons.	tons.	tons.	tons.	ton
1910-11	11,864	18, 011	93, 828	5,958	31, 350	10,373	76,631	112, 435	360,450
1911-12	13,257	49, 160	58,896	4,445	28, 910	17,222	75,420	146, 285	393, 595
1912-13	8, 313	22, 681	85, 176	3,159	4,820	7,819	65, 800	105, 533	303, 301
1913-14	8,995	39, 184	78,756	9, 718	5,500	16, 077	65, 148	139, 376	362,754
1914-15.	8,896	83, 414	67,608	.17,308	5,390	19,788	37, 512	172, 590	412, 504
1915-16	9,681	55, 791	73, 668	6, 841	4,156	9, 678	87, 216	90, 415	337, 444
1916-17	13,657	33, 439	138, 432	5, 765	4,351	15, 324	55, 032	103, 990	369,990
1917-18	26, 913	62, 665	222, 912	5,293	7,042	10, 621	20, 536	177, 240	533, 222
1918-19	20, 221	52,802	143,040	2,986	4,147	7,650	23, 511	119, 625	373, 982
1919-20	4,118	32, 637	276, 492	5,270	6,925	6,151	26, 267	111, 695	469, 555
1920-21		18, 631	153, 648	3,863	2,020	7, 100	40,480	63, 250	288, 992
Av. 1914-1920		48, 483	153, 686	6,761	4,862	10,901	41, 508	119, 829	397, 956
1921-22		9,700	50, 748	10, 435	3,531	4, 520	31, 509	43, 610	154, 053
1922-23		10,951	78, 660	14, 879	2,625	3,460	7,323	61, 720	179, 618
July		531	3,636	1,684	35	400	1,188	2, 610	10,094
August		323	3, 840	1, 438	82	480	4,820	3,970	14, 953
Septembe		725	3,000	1, 171	81	120	1,305	3,465	9,867
October		496	4,704	1,380	172	170		2,970	9,892
November		392	6,492	1, 464	228	220		5, 315	14, 111
December		528	7,644	1, 178	307	180		4,320	14, 153
1923.		601	14, 820	960	289	710		5, 910	23, 290
February		278	9,540	1,699	233	340		6,120	18,210
March		833	10, 716	1,678	341	220		8,415	22, 203
April		1,663	8,184	724	425	230		7,720	18,976
May.		2,948	4,092	670	154	270		5, 660	13,794
June.		1,635	1,992	835	278	90		5,245	10,075
Total.		10,951	78,660	14, 879	2,625	3,460	7, 323	61,720	179,618
July.		716	5,324	708	90	70		3, 657	10,565
August		582	4,488	432	148	50		3, 555	9, 255
Septembe		1,522	4, 896	516.	- 131	180		4, 245	11,490
October		358	4,476	382	328	160		3, 315	9, 017
November		723	6,720	584	286	280		4,555	13, 148
December		750	7,968	499	495	100		3,450	13,262
Total		4,651	33, 872	3, 121	1,476	840		22, 777	66,737

Division of Statistical and Historical Research. Compiled from Hay Trade Journal; Chicago Board of Trade, and Daily Trade Bulletin; Kansas City Board of Trade, and Grain Market Review; Minneapolis Daily Market Record; Peoria Board of Trade.

Table 333.-Hay, tame: Farm price per ton December 1, by States, calendar years, 1908-1923, and value per acre, 1923.

State.	1908	1909	1910	1911	1912	1913	$\begin{gathered} \text { Av. } \\ 1909- \\ 1913 \end{gathered}$	1914	1915	1916	1917	1918	1919	1920	$\begin{gathered} \text { AV. } \\ 1914- \\ 1920 \end{gathered}$	1921	1922	1923	Value per acre, $1923 .{ }^{1}$
	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.
Maine	14.00	14.70	12.80	14. 40	13.70	13.90	13.90	13. 10	14. 90	12. 40	11. 10	13. 90	18. 70	24. 60	15. 53	20.00	13. 10	13. 50	17.28
New Hampshi	16.00	17. 90	15.80	17.20	15.00	17. 20	16. 62	17.00	17.40	14. 50	12. 00	18. 80	24. 00	25.00	18. 39	28. 00	19. 50	19. 00	22. 80
Vermont.	13. 50	14.70	12. 40	14.00	14.00	14. 50	13.92	14.60	15. 50	12. 60	11.50	16. 30	20.10	23.00	16. 23	22. 00	17.50	16. 50	23. 10
Massachusetts	17.00	18.90	19.10	23.00	21. 50	21. 10	20.72	21.50	22.00	19.00	19.90	26. 00	27.00	28.00	23. 34	27.00	23.00	26.00	35. 62
Rhode Island	17. 25	18.60	19.60	24. 10	22. 20	21.20	21. 14	20. 20	22. 50	20.00	20.30	25.50	32.00	33.20	24.81	27.00	26.50	26.80	33.50
Connecticut	15.75	19.30	19.00	23. 50	22. 50	20.10	20.88	19.50	20.00	18. 50	19.50	24.00	30. 20	30.00	23. 10	26.00	26.00	24.00	31.68
New York	12.25	14. 20	13.70	17.90	14.90	15.30	15. 20	14. 60	15. 70	11.90	15.10	20.40	20.50	23. 60	17. 40	18.00	14. 10	16. 20	22. 03
New Jersey	14.00	16. 50	18. 20	22.00	20.00	19.00	19.14	19. 50	19.00	17.60	20.00	28.00	29. 10	27.50	22.96	18.00	18. 10	26.90	28. 24
Pennsylvani	12.00	14.60	15.00	20.00	15. 60	14.90	16.02	14.50	15.60	13.80	17.50	23.70	24, 00	23. 50	18.94	17.00	14. 30	21. 50	22. 58
Delaware	12. 50	15.00	14.80	22.50	15.00	15. 70	16.60	17.00	17.00	15.90	20.50	28.00	26.00	21. 50	20.84	17.50	19.00	21.00	24. 15
Maryland	12.00	14.40	15. 40	22. 40	14. 40	15. 20	16. 36	15. 30	16. 20	14.00	19.90	26.80	24. 00	25. 00	20.17	15. 10	18. 50	23.60	24. 78
Virginia	12. 25	13.30	14. 60	20.50	15. 20	15. 60	15.80	17. 20	15.70	15.00	21.30	23.00	23.70	23. 60	19.91	17.70	16.00	20.00	20.00
West Virginia	11. 00	13.30	15.00	20.00	15.00	14.90	15. 64	17.20	15.00	14.50	21.10	23.50	25.60	24. 20	20.16	17.50	16.80	19.90	23.88
North Carolina	13. 50	14. 40	14. 60	17.00	16. 70	16. 50	15.84	17.10	16. 50	17.50	19.70	21.00	24. 20	23.90	19.84	19.80	18.20	20.00	24.00
South Carolina	14.80	15. 50	16.00	17.00	18.00	18.70	17.04	17.00	15.60	16.70	20.60	26.10	31.00	25.00	21.71	20.00	17.50	18.00	15. 30
Georgis	14.35	15. 80	16. 40	17.00	17.00	17.90	16.82	16. 20	15. 10	16. 20	20. 00	23.50	25. 30	23. 50	19.97	15. 80	17.00	18.90	12. 47
Florida	14.80	15. 00	17.00	18.50	18. 10	18. 20	17.36	17.20	16. 00	16.00	18. 20	18. 50	23.00	19.00	18.27	19.50	18. 50	20.00	18. 00
Ohio.	8. 70	10.90	12.50	18.90	13.00	12. 80	13. 62	13. 40	12. 70	10.60	19.00	22. 20	21.80	19.50	17.03	11. 50	10.80	16. 70	20.04
Indians.	8.80	10.50	11. 90	16. 80	11.40	14.10	12. 94	14. 10	11.00	10.90	18.70	19.80	21.60	19. 30	16. 49	13.00	11. 20	15.60	19.34
Illinois.	8.20	9.90	12.00	17.00	12.60	14. 10	18. 12	14. 40	10.80	11.30	20.00	21.00	21.40	20.60	17.07	13.50	12. 50	14.80	19.24
Michigan	8.75	11.40	13. 60	17.00	12.70	13.10	13. 56	12.00	12. 20	10.00	17. 20	23.50	23.40	21.00	17.04	13.00	10. 10	14.50	18. 27
Wisconsin	8.00	9.60	15. 10	15. 60	12. 10	11. 10	12. 70	9. 30	9.90	11.60	17.30	21.60	20.30	20,40	15.77	15.40	12.30	16.00	21. 28
Minnesot	5. 40	6.00	9.10	11.90	6. 40	6. 60	8. 00	6.10	6.40	7.00	12.10	14. 10	14. 50	11, 20	10.20	8.60	10.70	11. 30	14. 12
Iowa.	5. 70	7.10	9. 60	12. 50	9.50	9.60	9.68	10. 10	8.70	9. 00	16. 80	18. 20	17.40	16, 24	13.78	9. 30	10.00	12.50	18.88
Missouri	7.00	8.30	9. 20	13.80	9.80	14. 50	11.02	13.60	8. 50	9. 30	17.50	20.50	19.50	15, 70	14.94	9.80	11. 50	12.00	14. 64
North Dakota.	4.80	5. 00	7.60	7.00	5. 50	5.80	6. 18	5. 20	5. 70	6.00	11. 50	14. 60	14. 10	9.90	9.57	7.70	7.50	6.80	10. 20
South Dakota.	4.10	5. 10	7.10	8. 50	6. 10	6. 50	6. 66	5. 70	5.30	5. 40	10.60	10.00	13.50	8. 50	8.43	6. 40	7.50	8.10	13. 36
Nebraska	4.90	6.00	8.90	9.70	8.40	8.70	8. 34	6.90	5.80	7.10	15. 20	17. 20	14.00	9. 00	10.74	7.00	11. 20	10.20	24. 79
Kansas.	5.70 11.00	6.00 11.90	7. 13 13.10	9.90 17.30	7. 60	12.50	8.76 14.50	7. 40 16.00	5. 60	7. 60	16.60 20.30	19.40	15.80 25.40	10.20	11.80 18.93	8. 00	9. 30 14.50	10.60 17.00	23.43 17.85

Table 333.-Hay, tame: Farm price per ton December 1, by States, calerdar years, 1908-1923, and value per acre, 1923-Continued.

State.	1908	1909	1910	1911	1912	1913	$\begin{gathered} \text { AV. } \\ 1909 \\ 1913 \end{gathered}$	1914	1915	1916	1917	1918	1919	1820	$\begin{gathered} A \nabla . \\ 1914- \\ 1920 \end{gathered}$	1921	1922	1923	Value per acre, 1923.
	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.	Dols.
Tennessee.	11.80	12.80	13. 40	16. 70	15. 80	16. 20	14. 98	17.00	13.90	15.00	19.30	24. 00	27. 00	20.50	19.53	15. 50	16. 40	18. 50	21. 28
Alabama	12.50	13. 50	13. 20	12.80	14. 60	14. 20	13. 66	13. 80	12. 40	13.00	16. 20	20.30	22. 30	19.50	16. 79	15.60	17.00	18. 50	14.98
Mississippi	11.00	11. 50	12. 20	11.00	12. 50	13. 50	12. 14	12.00	11. 00	11.00	15. 30	18.50	20. 50	17. 20	15. 07	14. 50	14. 50	15. 50	19.38
Louisiana.	11.00	10.70	11.50	12.00	12.70	12.50	11.88	12.00	10.30	11.00	14. 30	21. 20	23. 00	16. 00	15. 40	14.00	13. 30	15. 00	24. 00
Texas.	8.25	11.90	12.00	11.90	10.40	11.80	11.60	9.80	7.90	10. 50	20.00	24.90	18.00	13.40	14.93	9.90	11.50	16.00	26. 40
Oklahoma.	5.00	7.30	8.40	8.00	7.40	10. 40	8.30	7.90	5. 60	9.00	15. 40	19.50	15. 10	10. 50	11. 86	8. 20	12.50	14. 30	22. 88
Arkansas..	9. 75	10.80	11.00	13.00	12.00	13. 50	12.06	12. 90	10. 30	12. 50	15. 40	19.50	20.50	16. 00	15. 30	12. 50	13. 60	16. 00	20. 48
Montana.	8. 35	10.00	12.50	10.00	8.30	9.60	10.08	8.70	7.50	11.00	18.60	19. 60	23.00	12.00	14. 34	8.70	9.00	8.90	16. 73
W yoming	7.40	8.90	12.50	10.30	8. 60	6.70	9.40	7. 50	7.80	12.00	17.00	14.00	23. 00	12.00	13. 33	7. 50	8. 50	9.60	18. 24
Colorado.	8.75	10.00	10.80	9.30	8.70	10.00	9.76	7.40	7.60	11.00	16. 60	15. 50	18.50	12.00	12.66	6. 90	11.20	11.30	22.60
New Mexico	9.50	11.10	11. 50	13.00	8.50	12.10	11. 24	9. 30	8.80	14.00	21.00	20.00	18. 20	17.00	15. 47	12.70	19. 50	16. 00	33. 60
Arizona	12.20	12.80	13.00	12.00	12.00	11. 00	12.16	8.80	9.60	14. 50	24. 80	24. 00	20.00	29.00	18.67	13.00	18.00	15.00	52. 50
Utah	7.40	9.00	9.00	9.00	8.00	9.10	8:82	7.70	8.00	15.00	15.00	17.10	21. 90	13.00	13.96	6.20	8.20	8.90	23. 94
Nevada.	8.80	10.50	10.80	9. 50	8.70	11.00	10.10	8.30	7. 50	9.60	15.90	19.90	19.60	16.00	13.83	9.00	11.80	11.00	29.15
Idaho.	7.10	9.10	9.00	7.60	6.30	7.20	7.84	7.30	7.70	12. 10	16.00	17.60	22.00	12. 50	13.60	6.70	10.00	8.90	22. 25
Washington	11. 00	14. 00	15. 70	12.00	10.10	10.90	12. 54	11.00	10.80	13. 80	20.00	25. 40	23.00	18. 50	17.50	10. 50	16. 20	12.00	28. 20
Oregon.--	9.30	11.70	12.10	9. 60	8. 30	9. 00	10. 14	9. 20	9. 50	10. 90	17. 50	20.00	19. 10	14.50	14. 39	9.80	13. 60	11.00	24. 75
California	13. 25	11. 50	9. 60	10.90	13.70	13.50	11.84	8.20	11. 20	12.60	19.20	20.00	17.20	20.00	15. 49	11.00	15.00	14.00	35. 70
United States.	9.14	10.58	12.14	14.29	11.79	12.43	12.25	11.12	10.63	11. 22	17.09	20.13	20.08	17.76	15. 43	12.11	12. 56	14.07	20.83

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on farm price Dec. 1 .

Table 334.-Hay, tame: Farm price per ton, 1st of month, United States, 19081923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June	Weighted av., crop year.
1908-9	\$9.79	\$9.28	\$9. 18	\$9.23	\$9. 22	\$9.02	\$9.09	\$9.27	\$9.47	\$9.65	\$10. 12	\$10. 70	\$9.43
1909-10	10. 50	9. 74	9.67	10.03	10. 35	10. 50	11.37	12. 35	12.71	12. 73	12. 21	11. 80	11. 04
1910-11	11. 71	11. 29	11. 87	11. 82	11. 96	12. 14	12. 24	12. 29	12. 09	11. 89	12. 29	13. 16	12. 03
1911-12	13. 99	14.67	14.61	14. 50	14. 62	14. 29	14. 85	15. 44	15. 69	16. 79	17. 64	17. 54	15. 22
1912-13	15. 57	12.98	12.14	11. 76	11.80	11. 79	11. 86	11. 64	11. 34	11. 15	11.13	11.30	12. 06
1913-14	11. 19	11. 16	11.89	12. 22	12. 26	12. 43	12.42	12.41	12.37	12. 20	12.32	12.34	12. 10
Av. 1909-1913	12. 59	11. 97	12. 04	12. 07	12. 20	12. 23	12. 55	12.83	12.84	12.95	13. 12	13. 23	12. 49
1914-15	12.01)	11. 52	11.91	11. 77	11. 57	11. 12	11. 29	11. 69	11. 71	11. 74	11. 82	11. 96	11. 65
1915-16	11.70	11. 02	10.80	10. 69	10.83	10.63	10.94	11.40	11. 62	11. 78	12. 22	12. 46	11.25
1916-17	12. 09	10. 68	10. 42	10. 36	10.68	11. 22	11. 49	11. 96	12.14	13. 05	14.44	15. 25	11. 76
1917-18	14. 56	13.42	13. 68	14. 29	15. 66	17.09	18.56	19. 43	19.80	19.40	18. 63	17. 75	16. 69
1918-19	16. 60	16. 40	17.94	19. 15	20. 01	20.13	20.49	20.45	20.35	21. 05	22.95	23. 92	19. 79
1919-20	22. 65	20. 97	21. 27	20. 54	20.09	20.08	21. 23	22. 54	23. 26	24. 03	25.37	26. 11	22. 02
1920-21	24.86	22.07	20.96	20.05	18. 50	17. 76	17.10	16. 20	15. 22	14. 51	13.84	13.30	18. 13
Av. 1914-1920	16.35	15. 15	15. 28	15. 26	15.33	15. 43	15.87	16. 24	16.30	16.51	17.04	17. 25	15.90
1921-22	12.91	12.47	12. 44	12.11	11. 88	12. 11	11. 98	12. 06	12.40	12.86	13. 59	13. 32	12. 43
1922-23	12. 59	11. 58	11. 17	11. 38	11. 54	12. 56	12.39	12. 70	12. 50	12.95	13. 22	13.51	12. 25
1923-24.	13.06	12.46	12.71	13.07	13. 12	14.07							

Division of Crop and Livestock Estimates.
Table 335.-Hay, alfalfa: Farm price per ton, 15th of month, United States, 191女1923.

Year beginning July 1. .	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weight ed av., crop year.
1914-15	\$8.65	\$8.38	\$8.72	\$8.96	\$9. 20	\$9.05	\$9.48	\$9.32	\$9.79	\$9. 81	\$9.58	\$8.50	\$9. 12
1915-16	8.28	8. 28	8. 22	8.14	8.72	9.52	9.89	10.35	10. 74	10.73	10. 56	10. 49	9.39
1916-17	9.87	9.80	10.06	10. 25	11. 37	12.31	12.79	13.63	14.68	17.68	17.92	16. 77	12.76
1917-18	14. 13	15. 28	16. 33	17. 59	19. 19	20.39	21.27	21.38	20.82	18. 97	17.84	16. 74	18. 42
1918-19	16.58	18. 22	19.72	20. 23	20.42	20.74	20.42	20.91	21.40	22. 28	23.32	20.89	20.35
1919-20.	20.15	20.72	20.89	20.56	21. 63	22. 95	24. 13	24. 41	24. 68	24.57	25.68	24. 20	22. 70
1920-21	21. 70	20.43	19. 12	18. 03	17. 10	16. 59	14.98	13. 55	12.88	11.35	10.88	10. 64	15.96
1921-22	9.85	9. 66	9.86	9.82	9. 67	10. 46	10. 55	11. 04	11.80	12.39	12.28	10. 98	10. 58
1922-23	10.61	10. 54	11. 15	11.87	12. 70	13.31	14.06	14. 02	14.33	14.09	14.40	13.63	12.82
1923-24	12. 45	12. 01	12. 78	13.37	13. 59	14.39	-...--						

Division of Crop and Livestock Estimates.
Table 336.-Hay, clover: Farm price per ton, 15th of month, United States, 19141923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 . \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weight ed av., crop year
1914-15	\$11. 85	\$12. 09	\$12. 44	\$12. 47	\$12.70	\$12.76	\$13.07	\$13. 36	\$13. 41	\$13. 65	\$13.79	\$12.78	\$12.83
1915-16	11.65	10.87	10.82	10.60	10. 59	10.95	11.24	11.41	11.70	11.87	12. 52	12.46	11.29
1916-17	10. 84	9. 93	10. 01	10. 08	10. 46	10.86	11. 38	11. 65	11. 90	13. 06	13. 94	14. 22	11.33
1917-18	12.95	12.76	13. 79	15.01	17.14	18. 67	19.82	21. 11	21.37	19.68	18.30	16. 54	17.21
1918-19.	15. 73	17.18	19.27	20.60	21. 13	21. 26	21.69	21. 11	21.25	23.36	25.33.	25. 48	20.93
1919-20.	22.02	21. 58	21. 74	21. 17	21.61	22.60	23.78	24. 94	26.13	26. 93	28.31	27.80	23.69
1920-21	24.62	22.82	22.57	21. 29	20.60	19.96	19.17	17. 39	16. 44	15. 47	14.90	14. 52	19.48
1921-22	13. 89	14. 17	14. 37	13. 99	13.83	14. 17	13. 90	14. 10	14. 06	14. 51	14. 90	14.33	14. 15
1922-23	12. 82	12. 66	12. 54	12. 51	12. 67	13. 03	13.39	13. 35	13. 24	13. 47	13.58	13.70	13.03
1823-24.	13. 52	13. 51	14. 12	14. 73	14.94	15. 82							

Division of Crop and Livestock Estimates.

Table 337.-Hay, timothy: Farm price per ton, 15th of month, United States, 19141923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted av., crop year.
1914-15	\$13. 06	\$13. 09	\$13.54	\$13. 66	\$13. 69	\$13. 69	\$14. 07	\$14. 28	\$14. 28	\$14. 53	\$14. 74	\$14. 33	\$13. 87
1915-16	13.43	12.39	12. 32	12.14	12. 24	12. 73	13. 11	13. 39	13. 61	14.00	14. 50	14.71	13.09
1916-17	12. 97	11. 74	11. 57	11. 54	12. 03	12. 29	12. 61	12.91	13. 20	14. 26	15. 31	15. 76	12. 83
1917-18	14. 68	14. 11	14. 89	16. 23	18. 33	20.31	21.37	22. 25	22. 53	21. 47	20. 40	18. 55	18. 67
1918-19.	17.61	18. 98	20. 85	22. 60	22.93	22.94	23.48	22.69	22.68	24. 74	27. 27	27. 50	22.66
1919-20.	24. 22	23.89	23. 65	23.04	22.90	23.71	24. 59	25. 49	26. 75	27.99	29.92	30. 05	25. 13
1920-21	26. 59	24. 35	24.15	22. 74	22. 09	21. 22	19.88	18. 30	17. 04	16. 09	15. 44	15. 16	20.64
1921-22	14. 51	15. 01	14. 83	14. 39	14. 22	14. 31	14. 51	14. 77	15. 06	15. 52	16. 10	15. 75	14.82
1922-23	14. 33	13. 61	13. 44	13.70	13.93	13.91	14.41	14. 46	14. 59	14. 64	14. 96	14.95	14. 18
1923-24	14.86	14.68	15.13	16. 22	16.78	16.95							

Division of Crop and Livestock Estimates.
Table 338.-Hay, prairie: Farm price per ton, 15th of month, United States, 19141923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 . \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weight ed av., crop year.
1914-15	\$7. 49	\$7. 29	\$7. 33	\$7. 59	\$7.47	\$7.37		\$7.86	\$8.03	\$8.58	\$8. 29		
1915-16	7.37	6.83	6.64	6. 44	6.75	6. 95	7.38	7.34	7.39	7.56	7.71	7.97	7. 13
1916-17	7.25	6. 96	7.21	7.26	7.85	8. 14	8. 58	8. 60	9.32	10. 94	12. 02	11. 84	8.61
1917-18	10.11	10.82	11.40	12.29	13.32	14.91	15. 39	15.74	15.47	14.47	12.75	12. 78	13.31
1918-19	12.51	13. 26	14.35	15.06	15.47	16. 30	16. 33	16.35	17. 38	18.85	20. 22	18.71	16.03
1919-20.	16. 10	16.10	15.90	15.88	16.91	17. 19	17. 54	17.36	16. 52	16. 66	18.06	17. 59	16.78
1920-21	15. 38	13. 74	12.93	11.83	11.47	10.80	10. 20	9.46	8. 70	8. 43	8.05	8. 02	10.94
1921-22	7.67	7.50	7.52	6. 78	7.49	7.47	7.39	7.67	7.94	8.02	8. 24	8. 40	7.62
1922-23	7.68	7.76	7. 54	7. 74	8.13	8.98	9.44	9. 52	9.61	9.74	10.64	10.07	8. 79
1923-24	9.17	8.97	8. 58	9.19	9.07	9. 26							

Division of Crop and Livestock Estimates.
Table 339.-Hay, alfalfa No. 1, Kansas City: Monthly average price per ton, 1910-1923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Average.
1910-11	\$12.08	\$13. 50	\$13.89	\$14. 25	\$14. 25	\$14. 23	\$13. 51	\$12.93	\$13. 07	\$13. 67	\$13. 29	\$12. 38	\$13. 42
1911-12	15.13	14.44	14.87	15. 00	15. 27	15. 50	17. 72	18.37	20.49	22.73	19.34	11.62	16. 71
1912-13	12. 59	13. 00	13. 58	15. 11	15. 11	15. 00	14. 79	12. 86	14. 06	13. 75	13. 28	10. 70	13. 65
1913-14	12. 12	14.80	16. 14	16.54	16. 00	16. 01	15.96	15. 25	15.18	15.30	15. 54	14.23	15. 26
1914-15	12.38	13. 42	13. 33	12. 51	13. 21	13. 79	13. 75	13. 73	14. 75	15. 11	13. 73	13. 42	13.59
1915-16	11. 54	11.90	12. 25	13. 11	12. 83	14. 35	14.54	15. 34	13.92	14. 44	14. 45	11. 42	13. 34
1916-17	11. 29	13.40	13. 58	15. 68	18. 50	19.33	19.81	20.25	21. 10	24.33	24. 52	21.87	18. 64
1917-18	21.18	24. 09	24. 07	27.43	31.10	32. 76	30. 01	31.33	27. 56	24.11	22. 64	20.57	26. 40
1918-19	22. 60	29.08	31.45	30.14	31. 21	31.01	32.85	31.01	34.56	37.90	36. 20	36. 43	32.04
1919-20	26. 93	27.63	24.86	30. 24	33. 39	35. 10	35. 75	34.83	33. 79	34.10	35. 46	31. 75	31. 99
1920-21	27. 21	29.49	27.22	23.95	25. 05	23.01	23.30	20.30	20.30	21.00	22. 20	18.40	23.45
Av. 1914-1920.	19.02	21. 29	20.97	21.87	23.61	24. 19	24. 29	23.83	23. 71	24. 43	24.17	21.98	22. 78
1921-22	17. 50	19.00	17. 20	19.80	20.40	19.60	20.00	19.60	22.10	22. 50	22.10	15.40	19.60
1922-23	15. 50	15.80	18.30	22. 60	23.80	23. 00	23.40	23. 70	24.60	26.25	25.90	22.90	22.15
1923-24	18.90	20.90	22. 80	24.90	24.80	24.90							

Division of Statistical and Historical Research. Compiled from Kansas City Daily Price Current and Kansas City Grain Market Review.

Table 340.-Hay, prairie No. 1, Kansas City: Monthly average price per ton, 1910-1923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 . \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{aligned} & \text { A ver- } \\ & \text { age. } \end{aligned}$
1910-11	\$10.83	\$10. 82	\$11. 67	\$11. 34	\$11. 16	\$10.86	\$11.07	\$10.95	\$10. 84	\$11. 31	\$11. 55	\$13. 61	\$11. 33
1911-12	15. 93	12.93	11. 50	11. 60	12. 07	12.61	13.84	13. 66	16. 70	20.85	20. 48	15. 16	14.78
1912-13	8. 79	7.96	8.39	8.96	8.91	9.39	10. 45	9.37	9. 19	9.56	9.53	9.97	9. 21
1913-14	10.60	13. 62	15.76	16. 00	15. 66	15.57	14. 20	14.50	14. 40	16. 00	16. 42	15.43	14. 85
1914-15.	12.10	9.96	11. 58	11. 35	10. 94	10.98	11. 25	10. 89	11. 26	11. 41	11.02	11.03	11. 15
1915-16	11. 32	8.65	8. 63	9.71	9. 54	8. 97	8. 84	9.15	8. 96	9.50	9. 74	8. 65	9. 30
1916-17	8. 50	8. 06	9.36	9.47	10.74	11. 15	10. 57	10. 92	12.92	18. 68	19.74	20.57	12.56
1917-18	18. 14	18. 57	18. 06	19.60	25. 07	25. 47	24.00	23.79	23.42	21. 13	19. 17	17.66	21.17
1918-19	19. 26	25. 25	26. 57	27. 58	26.84	24.04	28.25	26.82	32.35	36. 63	38. 91	37. 34	29.15
1919-20	20.89	19.98	19.32	19.75	21. 12	25. 34	21. 40	20.68	20.64	21. 70	24. 02	18.95	21. 15
1920-21	17.21	19.52	18. 47	16. 45	16. 13	14. 49	14.00	13. 10	14. 10	13. 70	14.10	13.40	15. 39
Av. 1914-1920	15. 35	15. 71	16.00	16. 27	17. 20	17. 21	16.90	16. 48	17.66	18. 96	19.53	18.23	17. 12
1921-22	12. 30	11. 40	11. 30	12. 40	12.00	11. 30	11.10	10.30	11. 50	11.90	12. 40	11.90	11. 65
1922-23	12.90	10.70	11. 00	14.00	14. 20	12. 70	12.60	13.25	14.60	19.10	19.10	18.60	14. 40
1923-24	11.80	11. 50	13.80	14.60	14. 75	14.75							

Division of Statistical and Historical Research. Compiled from Kansas City Daily Price Current and Kansas City Grain Market Review.

Table 341.-Hay, timothy No. 1, Chicago: Monthly average price per ton, 19101928.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Average.
1910	\$18.75	\$19.50	\$17. 25	\$17. 25	\$17. 50	\$17. 50	\$18. 00	\$16. 25	\$16. 25	\$17. 75	\$21.00	\$21.75	\$18. 23
1911-12	23.50	21. 50	20.00	20.50	21. 25	21. 00	21. 75	20.75	21. 50	24. 00	26. 00	21. 25	21.92
1912-13	19. 75	18. 50	18. 50	18.00	17.00	15. 50	15. 75	14. 25	14. 75	15.50	15. 25	14. 25	16. 42
1913-14	15. 00	17. 75	17. 75	18.00	17.00	16. 25	15.50	14.75	15.25	16.00	16.25	15. 25	16. 23
1914	16. 25	16. 75	15. 50	15. 25	15. 50	15. 50	16.25	15. 50	15. 25	16. 25	17.00	17.50	16. 04
1915-16	19. 25	20. 25	19. 00	17. 00	15. 50	15. 50	16. 25	15. 50	16. 75	18. 75	18. 75	18. 00	17. 54
1916-17	16. 00	16. 00	15. 50	16. 25	16. 25	16. 25	15. 50	15. 75	15. 75	18. 00	20. 50	18.75	16. 71
1917-18	17.75	19.25	21. 00	25.00	27. 25	27.00	28. 25	29.00	28. 00	24. 00	23. 00	19. 00	24. 04
1918-19	21. 50	26. 50	32. 00	31. 00	30.00	30.00	29. 50	26. 00	30.50	33.50	35. 50	33. 00	29.92
1919-20	34. 50	35. 00	29.00	28.00	29.50	30.00	32. 50	34.00	35. 25	43.00	46. 50	42.75	35.00
1920-21	38. 50	40.25	33.75	32. 25	32.00	28.50	26.90	24.40	25. 30	23. 80	21.90	22. 50	29.17
Average, 1914-1920.	23.39	24.86	23.68	23. 54	23.71	23.25	23. 59	22.88	23.83	25.33	26.16	24. 50	24.06
1921-22	24.40	24. 00	24. 20	22.60	22.90	21. 90	22. 50	21.80	23.60	26.80	25. 70	23. 60	23.67
1922-23	24.50	22. 00	20.90	22.40	23.00	21. 10	21. 75	21.50	23.00	23.00	23.10	24.00	22. 52
1923-24	24, 00	25. 20	26.60	26. 50	26.80	27.10							

Division of Statistical and Historical Research. Compiled from Chicago Board of Trade and Daily Trade Bulletin.

Table 342.-Hay: Monthly average price per ton at three markets, 1923.
CHICAGO.

Grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
Alfalfa No. 1	\$23. 75	\$23.00	\$23.00	\$23. 00	\$23. 00	\$23. 20	\$23. 00	\$23. 40	\$25. 25	\$26. 25	\$27. 40	\$28. 75	\$24. 42
Alfalfa, standa	20.00	20.00	20.00	20.00	20.75	20.40	19.50	21.00	21. 50	22. 25	23.40	23. 25	21.00
Alfalfa No. 2	17. 25	16. 75	17.00	17.00	17.00	17.80	16. 75	18.80	18. 50	18. 75	20.40	20.50	18.04
Clover No. 1	15. 50	15.50	15.80	16.00	16.00	16.80	17.25	19.00	20. 50	22.00	22. 80	23. 00	18. 35
Clover No. 1, light--	18. 25	18.50	19.80	20.00	19.25	21. 20	21. 75	23. 30	24. 75	24.50	25. 20	25. 40	21.82
Clover No. 2, light.- Clover No. 1, medium		16.50	16. 80	17.00	17.00	18.30 18.40	19.25 19.70	20.60 20.60	22.00 20.50	22.00 21.50	22.40 22.40	22.75 22.00	
Prairie Midland No. 1.	13. 75	11. 25	12.40	12. 00	12.00	14. 20	13. 00	15. 00	15. 25	14. 75	14.80	14.00	13. 53
Prairie Upland No. 1.	16. 75	16. 00	17.00	17. 75	18. 00	19.60	18. 90	18.00	19. 75	19.50	19.60	19.75	18. 38
Prairie Upland No. 2.	14. 25	13. 00	14. 20	15.00	15. 00	17.40	17.00	16. 60	17. 75	16. 10	17.20	17.00	15. 88
Timothy No. 1	21. 75	21. 50	23. 00	23.00	23. 10	24. 00	24. 00	25. 20	26. 60	26. 50	26. 80	27.10	24. 38
Timothy No. 2	18.00	17.50	19.00	19.00	18. 25	20.50	20.50	22. 40	24. 25	24. 10	24. 40	24. 25	21.01

Table 342.-Hay: Monthly average price per ton at three markets, 1923-Con. KANSAS CITY.

Grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{array}{\|l} \text { Aver- } \\ \text { age. } \end{array}$
Alfalfa No. 1	\$23.40	\$23.70	\$24.60	\$26. 25	\$25. 90	\$22. 90	\$18.90	\$20.90	\$22. 80	\$24.90	\$24.80	\$24. 90	223.66
Alfalfa, stand	20.10	20.40	22.40	23.80	24.40	20.60	16.80	19.00	20.40	23. 00	22. 40	22. 30	21. 30
Alfalfa No. 2	16. 70	17.70	19.20	20.60	19.90	16. 70	14.10	15. 70	16. 90	19.25	18. 80	18.70	17.85
Clover No. 1	15. 50	15.75	16. 40	18. 40	18. 90	18.75	14.30	15. 70	19. 00	19. 00	19.00	18.50	17.43
Clover No. 1, mixed-	14. 10	14.60	15. 80	18.70	18.90	19.00	14. 20	13. 00	14.75	15. 50	16. 10	16. 75	15.95
Clover No. 1, light	16. 00	16. 00	16.80	19.50	19.80	19.80	15. 60	13. 90	16. 00	17.00	17.70	18. 00	17.18
Prairie Upland No. 1 -	12. 60	13. 25	14. 60	19.10	19. 10	18. 60	11.80	11. 50	13.80	14. 60	14. 75	14. 75	14. 87
Prairie Upland No. 2.	11.10	11. 60	13. 40	17.60	16. 75	16. 60	10. 60	10. 60	12. 60	13. 70	13. 40	13. 40	13.45
Timothy No. 1	15.90	15.90	17.30	19.60	19.90	20.20	15.80	14. 10	16. 40	17. 50	18. 40	18.50	17.46
Timothy No. 2.	13.25	13.00	15.40	18. 70	18.00	18.40	13.60	11.90	13.50	14.50	14.75	16. 25	15.10

ST. LOUIS.

Alfalis No. 1	\$28. 50	\$26.00	\$28. 75		\$25. 75			\$26.00	\$29. 50	\$28.00		$\|\$ 31.30\|$	
Alfalfa, standar		23.00	23.00	\$2A.00		\$29.00			25.00		28.00	27.00	
Alfalfa No. 2			18.00			19.00			20.00	19.00	21. 75	21.00	
Clover No. 1	18.10	17.00	18.70	20.10	21.40	22. 20	\$20.25	24. 50	24. 50	25. 70	27. 90	29.75	\$22.51
Clover No. 1, mixed.				20.00					22. 00	24.00	23.00		
Clover No. 1, light.--			20.00		22.00	23.00		16. 00		24. 00	24.00	24.50	
Prairie Midland No. 1-	17.00	16.75	18.20	19.75	22.00	23.00	16.50	16. 50	16. 80	19.30	19. 20	19.50	18.71
Prairie Upland No. 1.		16.00				23.00	19.00				18. 25		
Prairie Upland No.2-	16.00 20.50				21.00	20.00 24.20						17.00	
Timothy No. 1-...--	20.50 16.90	19.30 16.00	21.30 17.50	22.75	23.75 18.90	24. 20 20.25	18.00	22. 20	24. 40	26.40	24.70	22. 90	23.12 19.08

Division of Statistical and Historical Research. Compiled from reports of the Hay, Feed, and Seed Division.

Table 343.-Hay: Average price per ton, 1923.
No. 1 ALFALFA.
(14 markets.)

Market.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{array}{\|l\|} \text { A ver- } \\ \text { age. } \end{array}$
Atlanta	\$32. 50	\$35. 75	35.00	\$35. 90	\$35.00	\$31. 80	31. 25	\$31.40	\$34. 75	\$33.75	\$35. 80	\$36. 25	\$34. 10
Chicago	23.75	23. 00	23.00	23.00	23. 00	23. 20	23. 00	23.40	25.25	26. 25	27.40	28.75	24. 42
Cincinnati	23.25	22. 25	25. 30	24.25	23.25	20. 20	20.75	22. 60	26.40	28.00	29.60	29.00	24.57
Jacksonville		35. 50	34. 00	30.00	31. 00	30. 00	29.00	28.00					
Kansas City	23.40	23.70	24. 60	26. 25	25.90	22.90	18.90	20.90	22.80	24.90	24.80	24.90	23.66
Los Angeles	22. 25	21.75	21.60	22. 00	20.00	22. 00	21. 25	18.60	20.00	21. 00	23.20	24. 75	21. 53
Memphis	30. 60	30.50	31.40	31.50	32. 50	29. 25	23.10	26. 20	30.50	29. 25	32. 20	32.75	29. 98
Minneapolis	22. 40	21.40	21. 20	21.75	22. 00	20. 75	21. 00	24.00	23.25	23. 75	23. 60	22.90	22. 33
New Orleans	33. 00		30.80	30.70	31.90	26. 50	27. 25	29. 00	31.40	32.30	34.25	34. 50	
Omaha.	20. 70	20.50	20.60	21.40	21. 50	20.70	16.40	17.30	19.25	20.00	21.10	20.25	19.98
Richmond	22. 50	23.00	23.30	23.00	22. 90	23.20	24. 00	26.00	28.50	29. 25	31.75	34.00	25.95
St. Louis	28. 50	26. 00	28.75		25.75			26.00	29.50	28. 00	31.30	31.30	
San Francisc	18.75	17.75	18.00	17.50	17.00	16. 40	16. 00	16. 25	16. 00	16.00	16. 60	21.00	17.27
Savannah.						27.75	28.00	25. 00	36. 00		33.75	34. 00	

No. 1 CLOVER.
(8 markets.)

Chic	\$15.50	\$15. 50	15.80	16. 00	16. 00	16.80	17.25	19.00			\$22.80	23.00	18. $3 \overline{5}$
Cincinnat	15.90	15.75	17: 20	17.90	16. 75	17.20	17.00	19.50	23.50	25.50	26.90	26. 25	19.95
Kansas City	15. 50	15.75	16. 40	18. 40	18. 90	18. 75	14.30	15. 70	19. 00	19.00	19.00	18. 50	17. 43
Minneapolis	16. 00	15. 20	15. 00	15. 00	15. 10	14.10	15. 00	16. 10	17.50	17.50	17.80	17.50	15. 98
tsburg	16. 75	16. 90	17.90	17.40	17. 00	17.00	17.40	20. 00	22.00	25. 25	25.90	25. 50	
Richmond	20.50	20.00	21. 00	19.50	20.00	20.00	20.75	22.90	24. 80	25. 40	28.30	28. 60	22. 65
St. Louis	18.10	17.00	18.70	20.10	21.40	22. 20	20. 25	24.50	24.50	25. 70	27.90	29.75	22. 51

Table 343.-Hay: Average price per ton, 1923-Continued.
No. 1 TIMOTHY.
(17 markets.)

Market.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
Atlanta	\$24. 75	\$24. 50	\$25. 75	\$26. 90	\$26. 00	\$26. 20	\$26. 10	\$26. 40	\$28.75	\$29. 25	\$29. 30	\$30.90	\$27.07
Baltim			21. 20	21.25	21.90	2.40		26. 30	27. 50	27.00			
Boston	26. 00	${ }_{22}^{26.50}$	25. 80	25. 80	25. 90	27. 00	25. 60	27. 70	28.10	28.40	29.10	29.60	27.12
Chicago	21.75	22.50	23.00	23.00	23.10	24. 00	24.00	- 25.2	26.60	26.50	26.80	27.10	24.38
Cincinnati	17. 75	17.60	19.60	20.25	20. 60	20.20	21.10	22. 10	22.75	24. 75	24.30	24.40	21. 28
Jacksonville	24. 50	24. 00	25.60	26.30	26. 10	26.60	25.60	26.50	28.50				
Kansas City	15.90	15.90	17.30	19.60	19.90	20.20	15.80	14.10	16. 40	17.50	18. 40	18.50	17.46
Memphis	22.60	22. 25	23. 90	25. 10	24. 25	26.25	23.75	23. 00	25. 75	25. 00	25.70	27.00	24. 55
Minneapolis	16.40	16.10	16. 50	17. 10	17.75	17.40	17.75	18.75	20.25	19.75	19.60	18.75	18. 01
New Orlean	24. 50		25. 60	26.40	27.40	28. 25	26. 50	24.70	26.20	27.80	29.20	30.75	
New York	24.40	26. 00	28.00	26. 75	26.40	26. 50	27.25	30. 40	29.25	29.90	29. 90	30. 10	27. 90
Philadelphia	23.00	22.90	23.00	23.00	23.00	23.40	24.60	27.40	28.75	28.00	28.70	28.90	25. 39
Pittsburgh	19. 50	19.60	21. 20	20. 75	21.50	21.75	22.50	25. 30	24.75	26. 50	26. 30	26. 50	23. 01
Richmond	22. 50	22.00	23. 10	23. 50	23.00	23.80	24.40	26.75	26.80	27.75	29.40	28.50	25. 12
St. Louis	20. 50	19.30	21. 30	22.75	23.75	24. 20	21. 40	22. 20	24. 40	26. 40	24. 70	26. 60	23. 12
Savannah	24.25	24.00	26. 20	26.75	26. 50	27.30	27. 50	27.00	29.40	31. 00	32.40	33.25	27. 96

Division of Statistical and Historical Research. Compiled from reports of the Hay, Feed, and Seed Division.

PASTURE.
Table 344.—Pasture: Condition, 1st of month, United States, 1866-1923.

Calendar year.	May.	June.	July.	Aug.	Calendar year.	May.	June.	July.	Aug.	Sept.	Oct.
	P.ct.	P.ct.	P.ct.	$\boldsymbol{P} . c t$		\boldsymbol{P}. ct.	P. ct.	P.ct.	P. ct.	P.ct.	$P . c t$.
1866		87.0	99.1	104.0	1897	93.4	96.7	97.0	95.3		
1867		101. 0	116. 2	110.6	1898	91.2	99.5	100.0	88.5		
1868		109. 1	108.6	96.5	1899	83.5	91.6	87.8	89.7		
1869		105. 7	112.8	113.1	1900	91.3	90.8	83.9	85.7		
1870		100. 1	91.0	87.7	1901	91.5	95.5	90.4	72.1		
1871		96.4	94.5	92.2	1902	84.9	91.6	93.3	97.1		
1872		93.4	99.1	101.4	1903	92.0	84.3	92.6	94.9		
1873		99.0	93.2	96.1	1904	80.5	95.4	95.8	95.5		
1874		99.0	99.6	92.6	1905.	92.3	95.9	97.0	96.1		
1875		89.6	96.9	101.6	1906	91.4	88.0	89.6	87.7		
1876		104.9	105.7	104. 3	1907	79.6	80.6	88.9	91.7		
1877		99.4	101. 8	100.2	1908	92.6	97.7	94.6	86.4		
1878		108. 6	109. 0	102. 5							
1879		88.7	90.9	91.8	1909	80.1	89.3	93.1	84.8		
1880		94.0	93.9	94.8	1910	89.3	88. 5	81.6	73. 0		
					1911	81.3	81.8	69.6	59.6		
1881		102. 4	102.6	94.4	1912	81.7	93.7	84.9	86.6		
1882	91.1	92. 2	102.0	103. 1	1913	87.1	89.2	81.2	73.7		
1883	93.9	98. 7	69.9	104. 2							
1884	94. 7	99.8	97.1	96.3	Av. 1909-1913.	83.9	88.5	82.1	75. 5		
1885	90.0	93.8	95.2	93.3	1914	88.3	89.8	82.1	76.2		
1886	100.0	101. 7	95.5	80.7	1915	87.2	91.3	91.3	96.1	98.5	96.5
1887	91.8	92.6	86.7	73.8	1916	85.2	93.4	97.7	86. 9	80.4	76.9
1888	84.9	91.8	92.6	92.3	1917	81.9	83.8	89.9	85. 5	82.4	78.4
1889	96.6	97.6	96.6	99. 0	1918	83.1	92.5	84.5	75.4	69.9	77.3
1890	93.0	96.1	96.4	82.4	1919	90.3	97.4	95.2	83.9	80.2	78.2
					1920	79.8	88.8	89.5	86.3	86.2	86.2
$\begin{aligned} & 1891 \\ & 1892 \end{aligned}$	97.8 87.5	90.5 95.9	92.3 98.4	92.2 95.6	Av. 1914-1920.	85.1	91.0	90.0	84.3	82.9	82.2
1893	87.2	93.4	94. 0	82.3							
1894	92.7	92.0	83.2	66. 0	1921	91.8	90.1	80.8	74.3	81.6	84.8
1895	89.7	88.1	78.7	77.8	1922	84.5 77.0	93.8 84.8	89.0 85.5	87.9 77.6	81.3 78.8	$\begin{aligned} & 76.0 \\ & 83.1 \end{aligned}$
1896.-	93.2	94.5	91.0	93.9							

Division of Crop and Livestock Estimates.

HOPS.
Table 345.-Hops: Acreage, production, and farm value, United States, 19151923; by States, 1922 and 1923.

Calendar year, and State.	Acreage.		A verage yield in pounds per acre.		Production, thousands of pounds.		A verage farm price, cents per pound, Dec. 1.		Farm value, thousands of dollars.	
1915.	44,60343,90029,90025,90021,00028,00027,000		$\begin{array}{r} 1,186.6 \\ 1,152.5 \\ 982.9 \\ 829.4 \\ 1,189.0 \\ 1,224.3 \\ 1,086.7 \end{array}$		$\begin{aligned} & 52,986 \\ & 50,595 \\ & 29,38 \\ & 21,481 \\ & 24,970 \\ & 34,280 \\ & 29,34 \end{aligned}$		$\begin{aligned} & 11.7 \\ & 12.0 \\ & 33.3 \\ & 19.3 \\ & 77.6 \\ & 35.7 \\ & 24.1 \end{aligned}$		$\begin{array}{r} 6,203 \\ 6,273 \\ 9,795 \\ 4,150 \\ 19,376 \\ 12,236 \\ 7,080 \end{array}$	
1916										
1917										
1918										
1919.										
1920										
1921										
Leading States.	1922	19231	1922	1923	1922	19231	1922	1923	1922	1923 ${ }^{1}$
Total.........-	23, 400	15, 800	1,185. 6	1,124. 7	27, 744	17,770	8.6	18.7	2,383	3,329
W ashington Oregon California	$\begin{array}{r} 2,400 \\ 12,000 \\ 9,000 \end{array}$	1,800	1, 410	2, 151	3, 384	3,872	10.0	18.0	338	697
		9,000	800	${ }^{2} 722$	9,600	6,498	9.0	20.0	864	1,300
		5,000	1,640	1,480	14,760	7,400	8.0	18.0	1,181	1,332

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 346.-Hops: Area and yield per acre in undermentioned countries, 19091923.

Country.	Area.					Yield per acre.				
	Average 1909 1909 19.	1920	1921	1922	1923, pre- limi- nary.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ 1909- \\ 1913 . \end{gathered}$	1920	1921	1922	1923, prelimi. nary.
NORTH AMERICA.				Acres.	Acres.	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.
Canada ${ }^{1}$	${ }^{2} 718$	509	507	507		2 1, 429	1, 695	1,705	1,343	-----
United States ${ }^{3}$	45, 000	28, 000	27, 000	23, 400	15,800	11, 192	1,224	1,087	1,186	1,125
EUROPE.										
United Kingdom: England	33, 797	21, 002	25, 133	26, 452	24, 893	977	1,499	998	1,274	1,030
Belgium	5,312	3, 504	3, 731	4,258	3,408	1,319	1, 438	998	785	892
France.	5 7, 037	10, 403	10, 774	10,430		${ }^{5} 5987$	998	617	857	
Germany	${ }^{5} 67,756$	28, 651	27, 870	29,687	29,000	5444	468	255	462	247
Austria	${ }^{5} 51,599$	200	240	242		${ }^{5} 533$	435	396	355	
Czechoslovakia		20,660	18, 952	19,408	19, 180		562	338	641	334
Hungary	${ }^{5} 3,901$	630	- 502			${ }^{5} 778$	554	558		
Yugoslavia	62,589	2,849	2,980	$\begin{aligned} & 3,788 \\ & 4,823 \end{aligned}$	4,900	${ }^{-750}$	496	381	832	----------
OCEANIA.										-
Australia		1, $497{ }^{\circ}$	1, 562			1,285	1, 336	1,537		
New Zealand -------	14653	${ }^{1} 484$	1,540	675			1,340	1,258		
Total	219, 613		----			-------	-------			
Total com parable with 1923.				108, 028	97, 181					

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated.
Figures are for 1909-1923 in Northern Hemisphere and for seasons 1909-10 through 192i-24 in Southern Hemisphere.
${ }^{1}$ British Columbia only.
; Two-year average.
${ }^{3}$ Principal producing States.

- One year.
${ }^{5}$ Old boundaries.
- Congress Poland

Table 347.-Hops: Production in undermentioned countries, 1909-1923.

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated.
Figures are for 1909-1923 in Northern Hemisphere and for seasons 1909-10 through 1923-24 in Southern Hisphar.
${ }^{1}$ British Columbia only.
${ }^{2}$ Two-year average.
${ }^{1}$ Principal producing States.
IOld boundaries.
${ }^{5}$ Commercial estimates.
${ }^{6}$ Congress Poland.
'Russia exclusive of Congress Poland.
Table 348.-Hops: Consumption and movement, 1910-1923. $_{\text {and }}$

Year ending June 30-	$\begin{gathered} \text { Consumed } \\ \text { by } \\ \text { brewers. } \end{gathered}$	Exports.		Total of brewers consumption and exports.	Imports.	Net domestic movement.
		Domestic.	Foreign.			
	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.	
1910-11-	43, $498,088,764$	10, 589, 254	14, 590	53, 897, 608	3, 200, 560	50, 697,048
1911-12	42, 436, 665	12, 199, 663	17,974 $\mathbf{3 5 , 8 6 9}$ 	54, ${ }_{56}$	8, 557, 531	49, 634,028
1912-13	44, 237, 735	17, 591, 195	35, 859	61, 864,789	2, 8 891, 494,144	51, 772,072
1913-14	43, 987, 623	24, 262, 896	30,224	68, 280, 743	8, 8824,144	53, 370, 645
1914-15	38, 839, 294	16, 210, 443	16,947	55, 066, 684	11, 651,332	- $43,415,358$
1915-16-17	37, 451, 610	22, 409, 818	134, 571	59, 995, 999	675, 704	59, 320, 295
1917-18.	41, 481, 415	4, ${ }^{\text {3 }}$, 494,878	26, 215	46, 850, 316	236, 849	46, 613, 437
1918-19	13, 924, 650	7, 466, 952	37,823 4,719	37,013, 817	121, 288	36, 892, 529
1919-20	${ }^{1} 6$ 6, 440, 894	30, 779, 508		- $37,324,600$		21, 398, 315
1920-21	${ }^{1} 5,988,982$	22, 206, 028	1827, 803	-29, 222,813	$2,696,264$ $4,807,998$	$34,628,336$ $24,214,815$
1921-22	${ }^{1} 4,452,676$	19, 521, 647	487, 633	24, 461, 956	-893, 324	24, 214, 815
1922-23	14, 555, 759	13, 497, 183	198, 006	18, 250, 948	1, 294, 644	17, 956,304

Division of Crop and Livestock Estimates. Compiled from records of the Treasury Department.
Exports and imports are as reported by the Department of Commerce.
1Hops used to make "cereal beverages."

Table 349.-Hops: International trade, calendar years, 1909-1922.

Country.	Average, 1909-1913.		1920		1821		preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{array}{\|c\|} \text { 1,000 } \\ \text { pounds. } \end{array}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
Austria-Hungary Czechoslovakia.			1-7,539	14, 961	2, 403	6, 625		10,586
Germany	7,688	17, 564	87	21, 624	${ }^{2} 1,714$	${ }^{2} 5,712$	4,806	7,444
Hungary				${ }^{1} 532$	${ }^{1} 146$	139	${ }^{1} 225$	1179
New Zealand	61	352	19	181	19	235		221
Russia- ${ }^{\text {United }}$ - ${ }^{\text {atas }}$	1,258	2,348 15,416	5,949	25,624	1,629	18,460	1,201	14,882
PRINCIPAL IMPORTING countries.								
Argentina	618		723					
Australia	1,106	22	1,254	7	754	1		
Austria-			1,117	69	1,247	650	11,281	1141
Belgium	6,915	4,814	16,457	12, 222	8,507	4, 228	4,626	2,072
British Indi	246		122		272		282	
Canada.	1,396	176	1,657	63	2,140	321	1,905	826
Denmar	1,027	${ }^{3} 1$	526	28	388		653	11
France	5,436	335	5,877	4, 170	2, 862	5,806	3,032	3,329
Italy--	${ }_{253}$	10	1,284	5	846 658	11	$\begin{array}{r}778 \\ 1754 \\ \hline\end{array}$	87
Japan	253 2,938	1,405	1,506 1,562	3, 013	658 1,072	1,311	$\begin{array}{r}1 \\ 1 \\ 1,354 \\ \hline\end{array}$	549
Norway...	, 289		471		, 422		+533	
Sweden.	987	1	998	766	685	152	867	185
Switzerland.	1,257	42	153		492		749	
Union of South Africa.	187		51457		390		4404	
United Kingdom.-	21, 028	2,162	51,049 2,303	411 8	$\begin{array}{r} 24,256 \\ 2,846 \end{array}$	$\begin{array}{r} 246 \\ 55 \end{array}$	14, 288	$\begin{aligned} & 317 \\ & 399 \end{aligned}$
Tot	62, 969	62, 941	96, 110	83, 684	53, 748	43, 853	38, 502	41, 118

Division of Statistical and Historical Research. Official sources except where otherwise noted.
Lupulin and hopfenmehl (hop meal) are not included.
$\begin{array}{ll}{ }^{1} \text { International Institute of Agriculture. } & \text { Eight months, May-December. }\end{array}$
Table 350.-Hops: Wholesale price per pound, 1913-1923.

Calendar year.	New York, State, prime to choice.			San Francisco.		
	Low.	High.	Average. ${ }^{1}$	Low.	High.	Average. ${ }^{1}$
1913	Cents.	Cents.	Cents.	Cents. 19	$\begin{gathered} \text { Cents. } \\ 30 \end{gathered}$	Cents.
1914	23	50		10	30	
1915	13	30		10	15	
1916	15	55		7	14	
1917	34	90		6	40	
1918	23	54	37.9	19	22.5	19.5
1919...	37	85	59.9	34	84	59.2
1920	41	105	80.2	33	85	61.6
1921	26	50	37.0	12	35	24.4
1922	19	40	25.3	9	30	17.6
1923.	19	58	32.5	10	35	17.2
1923.						
January---	22	24		10		
February	22	24	${ }_{29}^{23} 0$	10	15	12.5
March	20 19	24 21	22.3 19.6	10 10	12	12.3 110
April	19	21	19.6	10	12	11.0
May --	19	20	19.5	10	12	11.0
June	19	27	19.7	10	12	11.0
July .-	22	29	26. 5	10	12	1.0
August.-	28	30	29.0	10	30	15.3
September	28	57	41.3	25	30	27.5
October-.-	55	58	56.3	25	35	29.1
November	53	57	55.3	20	35	26.4
December	53	55	54.0	20	30	26.4

[^213]
PEANUTS.

Table 351.-Peanuts: Acreage, production, and farm value, United States, 1916-1923; by States, 1922 and 1923.

Calendar year, and State.	Thousands of acres.		Average yield in pounds per acre.		Production, thousands of pounds.		Average farm price, cents per pound Nov. 15.		Farm value, thousands of dollars.	
1916	$\begin{aligned} & 1,043 \\ & 1,842 \\ & 1,865 \\ & 1,132 \\ & 1,181 \\ & 1,214 \end{aligned}$		$\begin{aligned} & 881.1 \\ & 77.7 \\ & 664.9 \\ & 691.9 \\ & \text { 712. } 5 \\ & 683.1 \end{aligned}$		$\begin{array}{r} 919,028 \\ 1,432,581 \\ 1,240,102 \\ 783,273 \\ 841,474 \\ 829,307 \end{array}$		$\begin{aligned} & 4.5 \\ & 6.9 \\ & 6.5 \\ & 9.3 \\ & 5.3 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 41,243 \\ & 98,512 \\ & 80,271 \\ & 73,094 \\ & 44,256 \\ & 33,097 \end{aligned}$	
1917.										
1918.										
1919										
1920										
1921.										
Leading States.	1922	19231	1922	1923	1922	19231	1922	1923	1922	$1923{ }^{1}$
Total	1,005	884	630.0	720.0	633, 114	636, 462	4.7	6.8	29, 613	43,078
Virginia	130	124	600	990	78, 000	122, 760	5. 5	6.5	4, 290	7,979
North Carolina.	145	148	840	1, 100	121,800	162, 800	4.0	7.4	4,872	12, 047
South Carolina	36	38	760	850	27, 360	32, 300	5.0	7.2	1,368	2,326
Georgia ---	160	152	602	512	96, 320	77,824	4.7	6.9	4, 527	5,370
Florida	72	80	625	600	45, 000	48,000	5.0	7.0	2, 250	3,360
Tennessee	14	14	750	935	10, 500	13,090	4.5	7.0	472	916
Alabama	205	142	550	469	112,750	66,598	4.8	5.8	5,412	3,863
Mississippi.	18	15	675	600	12,150	9,000	6.0	6.0	729	540
Louisiana.	18	17	600	450	10,800	7,650	6.9	7.5	745	574
Texas..	172	122	560	620	96, 320	75, 640	4.0	6.4	3,853	4,841
Oklahoma	17	15	620	650	10,540	9, 750	3.8	5.0	401	488
Arkansas.	18	17	643	650	11, 574	11,050	6.0	7.0	694	774

Division of Crop and Livestock Estimates.
1 Preliminary.
Table 352.-Peanuts: Farm price per pound, 15th of month, United States, 19101923.

Year beginning Nov. 1.	Nov.	Dec.	Jan.	Feb.	Mar	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Weight ed av., year.
1910-11	${ }_{\text {Cts }}^{4 .} \mathrm{F}$	Ctr. 4.5	${ }_{4.4}$	${ }_{\text {cts. }}^{\text {cti }}$	${ }_{\text {Cts. }}$	${ }_{4}^{\text {cts. }}$	${ }_{\text {Cts. }}^{4 .}$	${ }_{\text {cts }}{ }_{\text {5. }}$	Cts. 5.0	$\xrightarrow{\text { Cts. }}$	Cts.	Cts. 4.6 1	4.8.
1911-12	4.4	4.4	4.3	4.7	5. 0	4.9	4.9	5. 2	4.9	5.0	4.8	4.7	4.4
1912-13	4.7	4.6	4.6	4.5	4.7	4.8	4.7	5.0	5.1	4.9	4.9	4.8	4.6
1913-14	4.4	4.8	4.7	4.7	4.7	4.9	5.1	5. 1	5. 2	4.9	5.0	4.5	4.6
Av. 1910-1913.	4.6	4.6	4.5	4.7	4.8	4.9	4.9	5. 1	5.0	5.0	5. 0	4.6	4.6
1914-15	4.4	4.3	4.5	4.4	4.2	4.5	4.8	4.8	4.7	4.5	4.4	4.3	4.4
1915-16	4.2	4.2	4.3	4.4	4.4	4. 6	4.6	4.7	4.6	4.6	4.4	4.4	4.3
1916-17	4. 4	4.7	4.9	5. 3	5. 5	6. 2	7. 2	7.7	7.6	7.2	6.6	6.1	4.8
1917-18	7.1	7.1	7.0	7.2	7.4	8.3	8. 2	7.9	7.8	7.9	8. 3	6. 9	7.1
1918-19	6. 6	6.1	6.0	6. 9	7.0	6.9	7.2	7.7	8.2	8.1	8.3	8.1	6.5
1919-20	9.1	9.1	9.9	10.5	11.2	10.9	11.2	11.2	11.0	8.5	8.0	5.8	9.2
1920-21	5. 3	4.7	4.4	4.1	4.0	3.5	3.4	3.8	3.8	3.9	4.0	4.0	4.7
Av. 1914-1920.	5.9	5.7	5.9	6.1	6.2	6.4	6.7	6.8	6.8	6.4	6.3	5.7	5.9
1921-22	3. 7	3. 5	3.6	4.0	4.3	3.9	3.9	4.2	4.4	4.4	4.7	3.6	3.7
1922-23.	5. 2	5.0	5. 9	6.5	6.7	7.1	7.1	7.3	6.9	6.7	6.7	7.0	5.5
1923-24	6. 8	6.2											

[^214]Table 353.-Peanuts: International trade, calendar years, 1911-1922.

Division of Statistical and Historical Research. Official sources except where otherwise noted. Includes shelled and unshelled, assuming the peanuts to be unshelled unless otherwise stated. When shelled nuts were reported they have been reduced to terms of unshelled at the ratio of 3 pounds unshelled to 2 pounds shelled.

1 Java and Madura only.
8 International Institute of Agriculture, Oleaginous Products and Vegetable Oils.
${ }^{3}$ Two-year average.
4 One year only.
${ }^{5}$ Eight months, May-December.
${ }^{6}$ Reports include some sesamum.
Table 354.-Peanuts used in the production of oil, United States, 1919-1924.

Year ending June 30.	JulySept.	Oct.Dec.	Jan.Mar.	Apr.June.	Year.
	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	1,000 pounds.	1,000 pounds.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
1918-19.	12,694	4, 350	70, 5,861	116,240 9,261	32,166
1920-21-	15, 715	27,351	26, 202	42,990	112, 258
1921-22	37, 538	38, 281	43, 038	26, 159	145, 016
1922-23--	4,690	13, 126	7,054	8,409	33, 279
1923-24.-	938	6,137			

[^215]
PEANUT OIL.

Table 355.-Peanut oil: International trade, calendar years, 1909-1922.

Division of Statistical and Historical Research. Official sources except where otherwise noted.
Conversions made on the basis of 7.5 pounds to the gallon.
'International Institute of Agriculture, Oleaginous Products and Vegetable Oils.
: Not separately stated.
${ }^{8}$ Four-year average.

- Two-year average.
${ }^{\circ}$ Three-year average.

SUGAR.
Table 356.-Sugar beets and beet sugar: Production in the United States, 19141923.

State and year. ${ }^{1}$	Acreage. ${ }^{2}$			Production.		Yield per acre.		Averageprice per ton to ers.	Farm value.
	Planted.	Harvested.		Quantity harvested.	Quantity worked (sliced).	$\begin{gathered} \text { As } \\ \text { har- } \\ \text { vested. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { As } \\ \text { worked } \\ \text { (sliced) } \end{gathered}\right.$		
		Area.	Per cent of plant ed.						
			Prt.	Sho		hort	Short	Dol-	
1919	Acres.	Acres. 107,000	cent. 82.76	$816,000$	805, 000	tons. 7.61	$\begin{array}{r}\text { tons. } \\ 7.51 \\ \hline\end{array}$	lars. 14. 17	Dollars.
1920	136, 000	123, 000	90.50	1, 074, 000	1, 052, 000	8. 74	8.56	13. 13	14,09
1921.	136, 000	121, 000	88.89	1,046, 000	1,040, 000	8.67	8.62	7.51	7, 851, 000
1922	62, 000	57, 000	92.29	424, 000	424, 000	7.40	7.38	10.14	4,306, 000
$1923{ }^{3}$	70, 000	61, 000	86. 25	581, 000	579, 000	9. 59	9.5	13.57	7,883, 000
Colorado: 1919	236, 00	183, 000	77. 28	1,765, 000	1,656, 000	9. 66	9.07	10.85	19, 143, 000
1920	254, 000	220, 000	86. 69	2, 325, 000	2, 166,000	10.58	9.85	11. 88	27, 627,000
1921	214, 000	200, 000	93. 49	2, 279, 000	2,159,000	11. 39	10. 79	6.37	14, 521,000
1922	165, 000	148, 000	89. 33	1, 466, 000	1,422,000	9.93	9.63	7.79	11, 426,000
$1923{ }^{3}$	182, 000	164, 000	90.44	1,996, 000	1,890,000	12.15	11. 50	7.59	15, 156, 000
Idaho: 1919		30,				6. 70	6.49	11.00	000
1920	58, 000	45, 000	78.32	396, 000	405, 000	8. 77	8.97	12. 10	4, 787, 000
1921	53, 000	41, 000	78.49	380, 000	355, 000	9.18	8.57	6.00	2, 279, 000
1922	33, 000	24, 000	71.08	273, 000	258, 000	11.59	10.94	8.28	2, 262, 000
$1923{ }^{3}$	47, 000	43, 000	90.00	498, 000	447, 000	11.68	10.95	7.21	3, 590, 000
1920	164, 000	150, 000	91. 31	1, 313, 000	$1,244,000$	8.78	8.32	10.08	13, 236,000
1921	164, 000	148, 000	90.27	1,153, 000	1, 117, 000	7.80	7.55	6.10	7, 041, 000
1922	106, 000	84, 000	78.98	692, 000	648, 000	8.23	7.72	7.22	4,994, 000
$1923{ }^{3}$	131, 000	109, 000	83.31	883, 000	815, 000	8.11	7.49	9.33	8, 240, 000
Nebraska:	65, 000	59,	91.22	601, 000	554	10. 16	9.37	10.90	, 546, 000
1920	79, 000	72,000	91.63	718, 000	670, 000	9. 93	9.26	11. 96	8, 587, 090
1921	72, 000	72,000	100.65	773, 000	730, 000	10. 72	10. 12	6.59	5, 093, 000
1922	55, 000	55, 000	100.66	703, 000	671, 000	12.78	12. 21	7.79	5, 477, 000
$1923{ }^{3}$	60,000	58, 000	96. 38	640, 000	597, 000	11. 04	10. 30	7.45	4, 769, 000
Ohio:									
$\begin{aligned} & 1919- \\ & 1920 . \end{aligned}$	37,000 54,000	31,000 49,000	83.29 91.28	327,000 436,000	292,000 382,000	10.58 8.86	9.43 7.77	12.75 9.89	$4,168,000$ $4,313,000$
1921	36, 000	33, 000	91.20	264, 000	248, 000	8.10	7.61	6.05	1, 596, 000
1922	28, 000	26, 000	91.85	220, 000	206, 000	8.51	7.98	6. 88	1,512,000
$1923{ }^{3}$	46, 000	41, 000	90.94	391, 000	367, 000	9.43	8.85	9. 25	3, 616,000
Utah: 1919	110,000	103, 000		1,016,000	908, 000	9.84	8. 80	10.97	
1920	116,000	113, 000	${ }_{96.96}^{94.12}$	1,390, 000	1, 261, 000	12. 35	11. 20	12. 03	16, 713, 000
1923	111,000	112, 000	101. 24	1,152, 000	1, 084,000	10. 26	9. 66	5. 47	6, 300, 000
1922	80, 000	73, 000	90.77	819,000	775, 000	11. 29	10. 69	7.96	6, 519,000
$1923{ }^{3}$	84, 000	83, 000	98.56	1, 075, 000	1, 008, 000	12.91	12. 10	7.08	7,611,000
Wisconsin:		12,000	74.69	117,000	106, 000	9.71	8.73	12.02	1, 411, 000
1920	29, 000	21, 000	71. 33	190, 000	169, 000	9.19	8.16	10.20	1,940, 000
1921.	18, 000	17, 000	91. 48	148, 000	133, 000	8.82	7.96	7.00	1, 034, 000
1922	13, 000	8,000	63.42	67, 000	65, 000	8.27	7.96	7. 22	484, 000
$1923{ }^{3}$	20,000	15, 000	73.87	122, 000	113, 000	8.36	7.75	8.70	1,064,000
Other States:									
1919	76,000 88,000	44,000 79,000	56.61 88.54	365,000 696,000	$\begin{aligned} & 338,000 \\ & 642,000 \end{aligned}$	8.39 8.75 8.	7. 77 8.07 8.	11.08	$4,050,009$ $8,025,000$
1921	78, 000	71, 000	89. 66	587, 000	548, 000	8.23	7.69	6.26	3, 677,000
1922	64, 000	55, 000	88.35	519, 000	494, 000	9.23	8.79	7.77	4, 036, 000
$1923{ }^{3}$	92, 000	83, 000	90.99	820,000	749, 000	9.82	8.9	8.37	6,860,000
United ${ }_{1914}$									
1914	515, 000	483, 000	${ }^{93} 94$	5, 585, 000	5, 288, 000	11.60	10. 90	5. 45	30, 438, 030
1915	664,000	611, 000	92. 02	6, 511, 000	6,150, 000	10. 70	10. 10	5. 67	36, 950, 000
1916	768, 000	665, 000	86. 57	6, 228, 000	5, 920, 000	9. 36	8.90	6. 12	38, 139, 000
1917	807, 000	665, 000	82.43	5, 980, 000	5, 626, 000	9. 00	8.46 9	7.39	44, 192, 000
1918.	690, 000	594, 000	86.13	5, 949, 000	5,578, 000	10. 01	9.39 8.50	10.00 11.74	59, 49, ${ }^{590} 000$
${ }_{1920}^{1919}$	$\begin{aligned} & 890,000 \\ & 978.000 \end{aligned}$	$\begin{aligned} & 692,000 \\ & 872,000 \end{aligned}$	77. 89 89	$\begin{aligned} & 6,421,000 \\ & 8,538,000 \end{aligned}$	$\begin{aligned} & 5,888,000 \\ & 7,991,000 \end{aligned}$	9.27 9.79	8.50 9.17	11.74 11.63	$\begin{aligned} & 75,420,000 \\ & 99,324,000 \end{aligned}$
Av. 1914-1920.	759,000	655, 000	86. 27	6, 459, 000	6, 063, 000	9.87	9.26	8.49	54, 851, 000
1921.	882, 000	815, 000	92.36	7,782, 000	7,414, 000	9.55	9.10	6.35	49,392, 000
1922	606, 000	530,000	87.50	5, 183, 000	4, 963, 000	9.77	9. 36	7.22	40, 950, 000
$1923{ }^{3}$	732, 000	657, 000	89.82	7,006, 000	6,565, 000	10. 66	9.	8.39	58,789,000

Division of Crop and Livestock Estimates.

${ }^{1}$ Acreage and production of beets are credited to the State in which the beets are made into sugar. Year shown is that in which beets were grown. Sugar-making campaign extends into succeeding year. ${ }^{2}$ The planted acreage is that covered by factory contracts, agreements, understandings, all of which is not always actually planted by growers. Therefore abandonment may not represent actual loss of acreage.
${ }^{3}$ Preliminary.

Table 356.-Sugar beets and beet sugar: Production in the United States, 1914-1923-Continued.

State and year. ${ }^{1}$	Factories oper-ating.	Averlength of cam paign.	Sugar made (chiefly refined).	Beets worked (sliced).	Analysis of beets.		Recovery of sucrose. ${ }^{4}$		Loss. ${ }^{5}$					
					Per-centage of sucrose. ${ }^{2}$	Purity coefficient. ${ }^{3}$	Per-centage of weight of beets.	Percentage of total sucrose in beets.						
California:	N	Days.	Shor tons.	Shorttons.	Per ct.									
	10		131, 000	805,000	17.87	82.02	16. 30	91. 21	1. 57					
1920	10	90	168, 000	1, 052, 000	17.66	81.44	15.97	90.43	1.69					
1921	9	84	171, 000	1, 040, 000	17.80	81.46	16. 48	92.58	1.32					
1922	7	74	73, 000	424, 000	18. 48	82.71	17. 28	93. 51	1.20					
${ }^{1923}{ }^{6}$	6	88	100, 000	579, 000	18.35	82.94	17.33	94.44	1.02					
Colorado:														
1920	17	98	294, 000	2, 166, 000	15. 81	85.15	13.60	86.02	2.21					
1921	15	95	295, 000	2, 159, 000	15.66	83.28	13.66	87.23	2.00					
1922	15	63	183, 000	1, 422, 000	14.66	82.69	12.90	87.99	1.76					
${ }^{1923}{ }^{6}$	16	78	240, 000	1, 890, 000	14.59	82.34	12. 73	87.25	1. 86					
Idaho: ------------														
1920	8	72	57,000	405, 000	16. 26	86.42	13. 98	85. 98	2.28					
1921	7	60	57, 000	355, 000	17.45	86.54	15. 98	91.63	1.46					
1922	5	55	40, 000	258, 000	16. 58	86. 21	15. 44	93.12	1. 14					
$1923{ }^{6}$	9	61	68, 000	447, 000	16.39	86.74	14.64	89.32	1.75					
Michigan:														
1920	17	87	166, 000	1, 244, 000	15.79	84.04	13. 34	84. 48	2.45					
1921.	17	71	122, 000	1, 117, 000	13. 28	81. 68	10.95	82.45	2.33					
1922	15	48	81, 000	648, 000	14.38	84.16	12. 52	87.07	1.86					
1919	4	112	61, 000	554, 000	13. 14	82.80	10.99	83. 64	2.15					
1920	5 5	-110	90,000 105,000	670,000 730,000	15.74 16.60 18	83.94 84.55	13. 37	84.94 86.93	2.37 2.17					
1922	5	92	87, 000	671,000	14.79	84. 26	12. 94	87. 49	1.85					
$1923{ }^{6}$	5	83	74, 000	597, 000	14.48	82.38	12.32	85.08	2.16					
Ohio:														
1920	5	100	47, 000	382, 000	15. 44	82.45	12. 31	79. 73	3.13					
1921.	5	62	26, 000	248, 000	13.41	81.41	10. 46	78. 00	2.95					
1922	4	60	25, 000	206, 000	14. 65	82.81	11. 94	81.50	2.71					
$1923{ }^{6}$.	5	79	39, 000	367, 000	13. 39	82.02	10.54	78.72	2.85					
1919	18	84 102	101, 000	908,000 $1,261,000$	13.87 15.62	82.39 84.27	11. 12.89	80.17 82.52	2.75 2.73					
1921	18	78	156, 000	1, 084, 000	16. 52	84.72	14.37	86.99	2.15					
1922	16	55	110, 000	775, 000	16. 11	85.17	14. 16	87. 90	1. 95					
$1923{ }^{6}$	17	67	137, 000	1,008, 000	15. 66	85.02	13.59	86.78	2.07					
1920	5	80	21, 000	169, 000	15. 86	82.53	12. 40	78.18	3. 46					
1921	5	51	14,000	133, 000	13. 47	82.11	10. 59	78. 62	2.88					
1922		31	8,000	65, 000	16. 06	83.14	13. 08	81.44	2. 98					
$1923{ }^{6}$	4	51	14, 000	113, 000	15. 71	85.32	12.33	78.49	3.38					
1919--	11	52 70	40,000 83,000	338, 0000	14. 27	83.14 83.12	11.95 13.06	83. 74 84.48 8.	2.32 2.40					
1921	11	60	74, 000	548, 000	15. 41	81.89	13. 50	87.61	1.91					
1922	10	54	68,000	494, 000	15. 91	83.54	13. 79	86.68	2.12					
$1923{ }^{6}$	11	71	99, 000	749, 000	15.08	82.55	13.12	87.00	1.96					
1914	60	85	722, 000											
1915	${ }_{74}^{67}$	92 80	874,000 821,000	$\begin{aligned} & 6,150,000 \\ & 5,920,000 \end{aligned}$	16. 49	84.38 84.74	14. 21	86.17 85.03	2. 28					
1917	91	74	765, 000	5, 626, 000	16. 28	83.89	13.60	83.54	2.68					
1918	89	81	761, 000	5, 578, 000	16. 18	84, 70	13. 64	84. 30	2. 54					
1919	89	78	726, 000	5, 888, 000	14. 48	82.84	12.34	85. 22	2. 14					
1920.	97	91	1,089, 000	7,991, 000	15. 99	83.96	13. 63	85.24	2.36					
A verage 1914-1920	81	83	823, 000	6,063,000	16. 01	84.07	13. 57	84.75	2.44					
1921	92	76	1,020,000	7,414,000	15.77	83.09	13.76	87.25	2.01					
1922	81	58	675, 000	4, 963, 000	15. 44	83.76	13. 61	88.15	1. 83					
$1923{ }^{6}$	89	70	881, 000	6, 565, 000	15.34	83. 43	13.41	87.42	1.93					

Division of Crop and Livestock Estimates.

${ }^{1}$ Acreage and production of beets are credited to the State in which the beets are made into sugar. Year shown is that in which beets were grown. Sugar-making campaign extends into succeeding year.
${ }^{2}$ Based upon weight of beets.
${ }^{3}$ Percentage of sucrose (pure sugar) in the total soluble solids of the beets.
${ }^{4}$ Percentage of sucrose actually extracted by factories.
${ }^{6}$ Percentage of sucrose (based upon weight of beets) remaining in molasses and pulp.
${ }^{6}$ Preliminary.

Table 357.-Cane sugar: Production in Louisiana, 1911-1923.

Division of Crop and Livestock Estimates.

${ }^{1}$ Sugar "campaign," usually not ended before February following season of growth of cane.
${ }_{3}^{2}$ Chiefly raw. for later years as reported by Division of Crop and Livestock Estimates.

Table 358.-Cane sugar: Production in Hawaii, 1913-1923.

Division of Crop and Livestock Estimates.
1915-1920 average.

Table 359.-Sugar: Production in the United States and its possessions, 1866-1923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 \end{aligned}$	Beet sugar (chieflyrefined).	Cane sugar (chiefly raw).					Total.
		Louisiana.	Other States.	Porto Rico. ${ }^{1}$	Hawaii. ${ }^{2}$	Philippine Islands. ${ }^{3}$	
	Short tons.444814484448444844484		Short tons.	Short tons.	Shorttons.	Short tons.	Short tons.
${ }_{1867-68}^{186-}$		- $\begin{array}{r}\text { Short tons. } \\ 21,450\end{array}$	Shortions.	76,4	Shortons.	61,818 82,971	163,882 191986 180
1868 -69		${ }_{47,526}$	$\xrightarrow{5,875}$	91, 280 18		77,076	219, 205
1869-70				114,363115,700		87,60097,961	${ }^{24503,932}$
1870-71.		84, 439	4,713				
1871-72	448	73,453	4,723	100,30698,156	------	$\begin{array}{r} 108,989 \\ 9,929 \end{array}$	
1872-73		62, 673					
	$\begin{array}{r}784 \\ \hline 112 \\ \hline 12\end{array}$	51,621 67253 68			----------------	- 1111,742	${ }^{247}$ 24, 212
7-76-	${ }^{112}$	81,708	- ${ }_{4,532}$	80,418	13, 312	143, ${ }^{143}$	321,709
1876-77-	112	95, 337	4,34 5 5	69, 821	12,	135,578	317,980 32780
1877-78-	${ }^{112}$	$\begin{array}{r}73,551 \\ 119739 \\ \hline 18\end{array}$		$\stackrel{94}{85}$	+19,510	134,588 145,50 15	327,826 381,104 386 204
1878-79	224	- 119,739	5,701				
1880-81	1,344 1660	136, 91	${ }_{6,160}^{3,183}$	69, 121	46, 994	230, 169	489,395
1881-82	- 5600	79, 938	5,600	89, 674	57,089	165, 813	398,674521,764
18888		151, 533	7,8407,6167		57,910		
	- 5999	143, 856		110,505 78 7800	71, 622		4638821 503,241
$1884-85$ $1885-8$	${ }_{6} 67$	105, 1413	7,064 8,280	71, 680	108, 080	203, 2061	535, 670
1886-87	896	90, 562	5, 079 11,024 10	96	106,	189	488,582
	- ${ }_{\text {2, } 284}^{2,46}$	176,928 162,263 1		69,660061,600	$\begin{aligned} & 134,400 \\ & 134,400 \end{aligned}$	$\begin{aligned} & \mathbf{c} 51,840 \\ & \mathbf{1 5 9}, 860 \end{aligned}$	
-		146, 062					630,146 508,769
1890-91	3,874	241, 745	6,840	56,000	$\begin{aligned} & 134,400 \\ & 140,000 \end{aligned}$	$\begin{aligned} & 159,660 \\ & 152,359 \end{aligned}$	600, 818
1891-92	6,002	180, 250	5,040	78,400	129,470		677, 825
92-9	$\begin{array}{r}13,542 \\ 22,596 \\ \hline 1\end{array}$	243, 628	${ }^{7,676}$	${ }^{67}{ }^{68}, 200$		$\begin{aligned} & 2888,663 \\ & 238,297 \\ & 232,197 \\ & 376,405 \end{aligned}$	780, 498 969, 907
1893-94		297, 737					
待-95	22,503 32,726	355, 114	${ }_{5,570}$	56,000	225, 828		
1895-96		266, 248		c,	251, 124		
1896-97	$\begin{aligned} & \begin{array}{l} 4,040 \\ 45,246 \\ 36,368 \\ 81,729 \\ 86,082 \end{array} \end{aligned}$	315				226,240	906, 452
1897-98		347,701 278,497	6,425 5,897	60, 680	- 282,488	199,360 104,160	888, 625
1899-19		159, 583	1,691	39, 200	289, 544	81,976	653, 723
1900-1		308, 648	3, 238	81, 536	360, 036	61,873	901, 413
1901-2		$\begin{aligned} & 360,277 \\ & 368,7{ }^{2} 4 \end{aligned}$$\begin{aligned} & 306,594,894 \\ & 255,89 \end{aligned}$	$\begin{array}{r} 4,048 \\ 4,169 \\ 22,176 \end{array}$	103,152 100,576 138,096	$\begin{aligned} & \begin{array}{l} 355,61 \\ 437, \\ 437,91 \\ 367,475 \end{array} \end{aligned}$	75, 011 123, 108\qquad	1,082, 705
02-							${ }^{1} 1,252,1084$
		- ${ }^{2595} \times 195$				125, 271	1, 359,715
1905	$\begin{aligned} & 312,921 \\ & 483,612 \\ & 463,628 \\ & 425,884 \\ & 42 \end{aligned}$	377,162257,600380,800 380,800397,600	$\begin{aligned} & 13,440 \\ & 14,560 \\ & 13,440 \\ & 16,800 \\ & \hline \end{aligned}$	$\begin{aligned} & 24,4848 \\ & 206,864 \\ & 230 \\ & 270 \\ & 277,093 \end{aligned}$	$\begin{aligned} & 429,212 \\ & 440,017 \\ & 521, \\ & 535,123 \\ & 535 \end{aligned}$	$\begin{aligned} & 138,645 \\ & 132,62 \\ & 167,24 \\ & 123,876 \\ & \hline \end{aligned}$	
1906-7							
1907							
1908							
1909	512,469510,172599,500692,556733,401	$\begin{aligned} & \hline 320,526 \\ & 342,720 \\ & 352,874 \\ & 153,573 \\ & 292,698 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,2000 \\ 12,300 \\ 8,200 \\ 9,000 \\ 7,840 \\ \hline \end{gathered}$	346,786349,840371,076398,004351,666	$\begin{aligned} & 517,090 \\ & 566,821 \\ & 595,838 \\ & 546,524 \\ & 612,000 \end{aligned}$		$\xlongequal{1,776,409}$
1910-1							$\begin{aligned} & 1,946,531 \\ & 2,131,534 \\ & 2,144,734 \\ & 2,405,944 \\ & \hline \end{aligned}$
1911-12							
${ }_{1913}^{1912}$							
Av. 1909	609, 620	292, 478	9,672	363, 474	567, 495	252, 781	2,095,519
1914-15		242,700 137500 303,500 243,600 280,900 121,000 169,127	$\begin{aligned} & \hline 3,920 \\ & 1,120 \\ & 7,000 \\ & 2,240 \\ & 3,500 \\ & 1,125 \\ & 6,987 \\ & \hline \end{aligned}$		644,000592,76364,663576,70060,312555,727521,579	8421,192 8412,274 $\delta 425,266$ $\delta 474,745$ 8453,346 $\delta 466,912$ 8608,499	$\begin{aligned} & 2,382,356 \\ & 2,501,467 \\ & 2,704,567 \\ & 2,516,286 \\ & 2,50,56,010 \\ & 2,356,286 \\ & 2,885,031 \\ & \hline \end{aligned}$
1915-1	$\begin{array}{r} 722,054 \\ 874,220 \\ 820,657 \\ 765,207 \\ 700,950 \\ 726,451 \\ 1,089,021 \end{array}$						
1916-17							
1917-18							
${ }^{191919-20-}$							
1920-21.							
Av. 1914	822, 651	214, 104	3,699	452, 549	591, 106	${ }^{5} 466,033$	2,550,143
	$\begin{aligned} & 1,020,489 \\ & 675,00 \\ & .884,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 324,431 \\ & 295,095 \\ & 168.748 \end{aligned}$	$\begin{aligned} & 3,270 \\ & 3,640 \end{aligned}$	$\begin{aligned} & 408,325 \\ & 379,172 \end{aligned}$$\text { 379, } 172$	$\begin{aligned} & 592,000 \\ & 537,000 \end{aligned}$		2,881,704
${ }_{1923-24}^{1922-23}$							
223-24-							

Division of Statistical and Historical Research.
Beetsugar production preceding 1897-98 and for 1898-99 through 1900-1901 from Willett \& Gray "Weekly Statistical Sugar Trade Journal" annual reports; 1897-98, 1901-2 and subsequently from United States Department of Agriculture. Cane sugar production previous to 1903-4 from Bouchereau's annual "Louisiana Sugar Report"; 1903-4 through 1910-11 from Willett \& Gray; 1911-12 and subsequently from United States Department of Agriculture. Porto Rico production previous to 1885-86 from Rueb \& Co.; 1885-86 through 1899-1900 from Willett \& Gray; 1900-1901 through 1906-7 are shipments to the Continental United States. Hawaii from Rueb \& Co., previous to 1885-86; 1885-86 through 1900-1901 from Willett \& Gray; 1901-2 and subsequently from Hawaitian Sugar Planters Association.

[^216]Table 360.-Sugar: Production, trade, and consumption of continental United States, 1866-1923. ${ }^{1}$

Year beginning July 1.	Production.	Brought from insular possessions. ${ }^{2}$	Net imports from foreign countries.	Domestic exports. ${ }^{4}$	Consumption. ${ }^{5}$	
					Total.	Per capita.
1866-67	1,000 pounds. 51, 296	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 836,844 \end{gathered}$	$1,000$ pounds. $8,130$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 880,010 \end{gathered}$	Pounds. 24.4
1867-68.	52, 416		1,105, 078	2,218	1,155, 276	31.4
1868-69	101, 697		1,230, 005	3,168	1,328, 534	35.4
1869-70	87, 939		1, 196, 774	4, 428	1,280, 285	33.5
1870-71	179, 201		1,267, 111	3,841	1, 442, 471	36.8
1871-72	157, 248		1, 497, 065	4,478	1,649,835	40.8
1872-73	135, 953		1,544, 378	10,083	1, 670, 248	40.2
1873-74.	110, 208		1, 681,988	10, 133	1,782, 063	41.7
1874-75	142, 466		1,786, 310	24, 152	1,904, 624	43.4
1875-76.	172, 705		1, 478, 111	51, 864	1, 598, 952	35.5
1876-77	199, 586		1,651, 435	39,751	1,811, 270	39.2
1877-78	159, 265		1,531, 422	44, 093	1,646, 594	34.8
1878-79	251, 328		1, 823, 977	72, 353	2, 002, 952	41.3
1879-80.	181, 560		1,818, 803	30, 142	1,970, 221	39.7
1880-81	286, 423		1, 937, 137	22, 253	2, 201, 307	43.2
1881-82	172, 195		1, 984, 821	13, 814	2, 143, 202	41.1
1882-83.	319, 866		2, 135, 809	28,542	2, 427, 133	45.4
1883-8	304, 143		2, 747, 007	76, 123	2, 975, 027	48.0
1884-8	228, 098		2, 712, 461	252, 740	2, 687, 819	54.3
1885	304, 098		2, 678, 475	164, 429	2, 818, 144	49.2
1886-87.	193, 074		3, 123, 007	190, 805	3,125, 276	53.4
1887-88.	376, 475		2, 674, 531	34, 646	3, 016, 360	50.4
1888-89	348, 925		2, 756, 711	14, 259	3, 091, 377	50.6
1889	306, 219		2, 913, 741	27, 225	3, 192, 735	51.2
1890	504, 918		3, 478,960	108, 433	3,875, 445	60.8
1891-92.	382, 584		3,551,945	14, 850	3, 919, 679	60.3
1892-93	525, 539		3, 757, 959	20,746	4, 262, 752	64.3
1893-94	656, 018	--1-	4, 296, 338	15, 468	4, 936, 888	73.0
1894-95	774, 399		3, 556, 805	9,529	4, 321, 675	62.7
1895	609, 087		3, 894, 998	9, 403	4, 494, 682	64.0
1896-97.	728, 257		4, 878, 440	8, 305	5, 598, 392	78.3
1897-98-	798, 744		2, 676, 502	6,508	3, 468, 738	47.6
1898-99	641, 525		3, 973, 152	9, 865	4, 604, 812	${ }_{69}^{62.1}$
1899-1900	486, 007		4, 013, 683	22, 515	4, 477, 175	59.3
1800-1.	795, 836	832, 776	3, 965, 050	8, 532	5, 585, 230	72.6
1901-2.	1, 097, 862	915, 794	3, 014, 342	9, 126	5, 018, 872	63.9
1902	1, 182, 616	1, 019, 742	4, 193, 568	14, 214	6, 381, 712	79.6
1903	1, 037, 348	1, 057, 294	3, 619, 966	19,644	5, 694, 964	69.6
1904	1, 314, 216	1, 182, 038	3,600,842	21, 498	6, 075, 598	72.8
1905-6.	1, 407, 046	1, 226, 520	3, 904, 594	26, 532	6, 511, 628	76.6
1906-7.	1,511, 544	1, 254, 330	4, 358, 318	29,696	7, 094, 496	81.9 74
1907-8	$1,715,736$ $1,680,568$	$1,585,184$ 1 1	$3,327,498$ $4,103,126$	34,010 89,226	$\begin{aligned} & 6,594,408 \\ & 7,289,432 \end{aligned}$	74.7 81.1
190	1,680,568	1,594,964	4, 103, 126	89,226	7,289, 432	81.1
1909-10.	1,765, 260	1,855, 504	3, 869, 508	144, 764	7, 345, 508	80.3
1910-11	1, 806, 950	1, 887, 402	3, 690, 558	73, 195	7,311, 715	78.6
1911-12	2, 010, 673	2, 375, 326	3, 664, 848	100, 760	7, 950, 087	84.2
1912-13	1, 814, 141	2, ${ }^{\text {2 }}$, 872,752	$4,532,852$ $4,926,504$	61,926 74,381	$8,339,011$ $8,902,763$	87.0 91.6
1913-14.	2, 177, 888	1,872, 752	$4,926,504$	74,381	8, 902, 763	91.6
Av. 1909-1913.	1,914,982	2, 008, 986	4, 136, 854	91,005	7,969, 817	84.3
1914-15	2, 045, 656	2, 196, 628	5, 059, 926	605,283	8, 696, 927	88.2
1915-16	2, 156, 813	2, 204, 114	$5,378,134$	1,765, 728	7, 973, 333	79.7
1916-17.	2, 386, 213	2, 407, 876	5, 055, 968	1,353, 505	8, 496, 552	83.7
1917-18	2, 136, 875	1, 951, 368	4, 689, 632	610, 858	$8,167,017$	$\begin{array}{r}79.4 \\ 84 \\ \hline\end{array}$
1918-19.	2, 204, 842	2, 147, 888	5, 599, 924	1,137, 133	8,815, 521	84. 5
1919-20	$1,806,120$ $2,693,623$	$\begin{aligned} & 1,915,470 \\ & 2 \end{aligned}$	7, 625, 910 6, 456, 558	$\begin{array}{r} 1,553,005 \\ 638,178 \end{array}$	9, 830, $10,664,687$	93.0 99.6
1920-21	2, 693, 623	$2,152,684$	$6,456,558$	$638,178$	10,664, 687	99.6
A V. 1914-1920.	2, 204, 306	2, 144, 575	5, 695, 150	1,094, 813	8,949, 219	86.9
1921-22.	2, 849, 453	2, 681, 734	7,881, 554	2,170, 698	11, 242, 043	103.6
1922-23	2, 042, 720	2, 470, 098	7,825, 406	824, 394	11, 513, 830	104.7
1923-24	2, 245, 096					

Division of Statistical and Historical Research.
See Table 359 for source of production figures. Trade figures, Department of Commerce.
${ }^{1}$ Predominately raw except beet sugar production and domestic exports which are chiefly refined; 1903
to date production and domestic exports converted to raw.
${ }^{2}$ From Hawaii, Porto Rico, and Philippine Islands (Virgin Islands included, 1917-18 and subsequently).
${ }^{3}$ Cuba included. Philippine Islands excluded 1900-1901 and subsequently.
4 Shipments to Hawaii and Porto Rico included.
${ }^{6}$ Consumption for all purposes. No account taken of stocks at beginning or end of year.

Table 361.-Sugar: Quantity and per cent of total consumption supplied the United States by Cuba, 1866-1922.

Year beginning July 1.	Quantity.	Per cent of United States consumption.	Year beginning July 1.	Quantity.	Per cent of United States consump tion.
	1,000				
	pounds.	Per cent.			
1866-67-	642, 191	73.0	1896-97	pounds.	Per cent.
1867-68-	861, 149	74. 5	1897-98-	- 440,225	12.3
1868-69	904, 764	68.1	1898-99.	440, 225	12.7
1869-70	801, 637	62. 6	1899-1900.	663,544 705,456	14.4
1870-71.	759, 995	52.7	1900-1...	705,456 1, 099, 404	15.8 19.7
1871-72	877, 166	53.2	1901-2	984,217	
1872-73	940, 069	56. 3	1902-3.	2, 396,498	19.6
1873-74	1, 223, 665	68. 7	1903-4.	2, 396, 498	37.6 49.5
1874-75	1,090, 654	57.3	1904-5.	2, 819, 2,057	49.5 33.9
1875-76.	1, 008, 415	63.1			33.9
1876-77			1905-6.	2, 781, 901	42.7
1877-78-	926, 164	51.1	1906-7-8	3, 236, 466	45. 6
1878-79	1,275, 839	63. 7	1907-8	$2,309,189$ $2,862,260$	35.0
1879-80	1, 087, 332	55. 2	1908-9	2,862, 260	39.3
1880-81.	1,056, 905	48.0	1909-10	3, 509, 658	48.2
1881-82	1,107, 580		1910-11	3, 347, 606	46.2
1882-83	1, 139, 794	51.7 47.0	1911-12-13	3, 186, 634	40.5
1883-84-	1,191, 234	47.0 40.0	1912-13	4, 311, 782	52.3
1884-85.	1, 115, 046	41.5	1913-14	4, 926, 606	56.0
1885-86.	1,210, 504	43.0	A F., 1909-1913	3, 856, 457	48.7
1886-87	1, 394, 716	44.6	1914-15	4, 784, 888	
1887-88-	1,209,175	40.1	1915-16	$4,784,888$ $5,150,852$	55. 4
1888-89	1, 032, 086	33. 4	1916-17	5, 150, 852	64.7 55.1
1889-90	1,041, 076	32.6	1917-18	4, 560, 750	56.3
1890-91	1, 430, 566	36.9	1918-19	5, 488, 711	62.5
1891-92			1919-20	6, 905, 710	70.3
1891-92-93.	$1,983,540$ $1,843,652$	50.6 43.3	1920-21	4, 925, 631	46.7
1893-94	2, 127, 502	43.1	Av., 1914-1920.	5, 212, 234	58.7
1894-95-	1,845, 763	42.7			
1895-96-.-----------------	1,093, 171	24.3	1921-22.	7,720, 255	68.7
			1922-23	7,730, 592	67.5

[^217]Table 362.-Sugar beets: Area and yield per acre in undermentioned countries.

Country.	Area.					Yield per acre. ${ }^{1}$				
	$\begin{gathered} \text { Aver- } \\ \text { age } \\ 1909- \\ 1913 . \end{gathered}$	1920	1921	1922	1923, pre-liminary.	$\begin{gathered} \text { A ver- } \\ \text { age } \\ \text { 19099- } \\ \text { 1913. } \end{gathered}$	1920	1921	1922	1923, pre- limi- nary
NORTH AMERICA. Canada United States	$\begin{array}{r} 1,000 \\ \text { acres. } \\ 17 \\ 485 \\ \hline \end{array}$	$\begin{array}{r} 1,000 \\ \text { acres. } \\ 36 \\ \mathbf{8 7 2} \end{array}$	1,000 acres. 28 815	1,000 acres. 21 530	$\begin{array}{r} 1,000 \\ \text { acres. } \\ 22 \\ 651 \end{array}$	Short tons. $\begin{array}{r} 9.4 \\ 10.0 \\ \hline \end{array}$	Short tons. 11.4 9.8	$\begin{array}{r} \text { Short } \\ \text { tons. } \\ 9.4 \\ 9.6 \end{array}$	Short tons. $\begin{array}{r} 9.0 \\ 9.8 \\ \hline \end{array}$	Short tons. $\begin{array}{r} 8.6 \\ 10.6 \end{array}$
Total comparable with 1923	502	908	843	551	673					
England and Wales	4	3	8	8	17					
Sweden ----	78	108	120	41	106	13.3	10.6	13.6	12.3	10.3
Denmark.	${ }^{2} 63$	95	86	60	78	${ }^{2} 13.7$	9.8	11.2	10.5	
Netherlands	144	166	182	138	166	13.7	12.7	16.4	14. 5	11.4
Belgium----	, 144	131	143	149	179	12.3	12. 1	11.3	12.6	11.1
France.	${ }^{2} 609$	258	298	323	365	${ }^{2} 10.7$	10.5	7.6	11.2	9.7
Spain	${ }^{3} 114$	179	103	138	153	${ }^{3} 8.3$	11.3	7.9	11.8	8. 8
Italy.-	${ }^{2} 130$	114	159	203	210	${ }^{2} 15.2$	11.6	12.1	12.2	12.3
Switzerland.	42	2	3	3	3					
Germany -	${ }^{2} 1,246$	805	962	1, 031	970	${ }^{2} 12.6$	10. 9	9.1	11.5	9.7
Austria----	${ }^{2} 605$	18	19	28	32	${ }^{2} 11.5$	8.0	5. 4	6. 8	7.4
Czechoslovakia		517	$544 \cdot$	519	571		10. 2	8. 2	11.1	10.0
Hungary-----------	${ }^{2} 362$	77	103	103	135	${ }^{2} 11.1$	9. 2	5. 8	7. 6	7.2
Yugoslavia	${ }^{5} 12$	39	41			58.8	5. 8	5. 1	7.2	
Bulgaria-----------		23	30	24	31	8.1	3. 9	4. 3	9.8	5.5
Rumania---------------		174	$\begin{array}{r}57 \\ 197 \\ \hline\end{array}$	54 270	$\begin{array}{r}91 \\ 354 \\ \hline\end{array}$	9.3 69.1	7. 7	6. 8 6	6.8 10.9	9.5
Finland--		2	3	3	3					9.5
Russia, excluding Congress Poland.	${ }^{7} 1,532$					${ }^{7} 7.2$				
Total comparable with 1909-1913	5, 253									
Total comparable with 1923		2,687	3, 017	3,095	3,464					
$\begin{aligned} & \text { World total } \\ & \text { comparable } \\ & \text { with 1909- } \\ & 1913 \end{aligned}$	5,755									
World total comparable with $1923 \ldots$		3,595	3, 860	3,646	4,137					

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture.
${ }^{1}$ Yields per acre not calculated where total area was less than 10,000 acres.
${ }_{2}{ }^{2}$ Old boundaries.
${ }^{3}$ Three-year average.
${ }^{4}$ Two-year average.
Four-year average, Former Kingdom of Serbia.
${ }^{6}$ Congress Poland.
${ }^{7}$ Includes a small area in Siberia.

Table 363.-Sugar beets: Production in undermentioned countries.

Country	Average 19091913.	1917	1918	1919	1920	1921	1922	1923, pre-liminary.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
NORTH AMERICA.	short	short	shor t	short	short	short	short	short
	tons. 160	tons.	tons.	tons.	tons.	tons.	tons.	tons.
United States	$\begin{array}{r} 160 \\ 4,860 \end{array}$	$\begin{array}{r} 118 \\ 5080 \end{array}$	180	240	412	268	190	189
United States	4,860	5,980	5,949	5,888	8,538	7, 782	5,183	6,893
Totals comparable with 1923	5,020	6,098	6,129	6, 128	8, 950	8,050	5,373	7,082
England and Wales								
Sweden--	1, 036	920				1,636	62 503	
Denmark.	${ }_{1}^{1861}$	973	895 1,041	1,036	1, 146	1,636 957	503	1,097
Netherlands	1,977	1, 607	1,372	1, 1247	2, 100	1,957 2,985	2,004	
Belgium.-	1, 770	1,607	1,372	1,647	2, 100 1,585	2,985 1,613	2, 004 1,874	1,889
France-	1 6, 499	2,169	1,259	1, 375	1,585	1,613	1,874	1, 994
Spain.	- 949	1, 341	1, 239	1,375 778	2, 025	2, 809	3, 626	3, 552 1,345
Italy---.--	1 1,982	1, 164	1, 250	1,671	1,323	809 1,930	1,624 2,486	1, 3 245
Switzerlan	1,226 15.697	1,168 14	$\begin{array}{r}1,250 \\ 10 \\ \hline\end{array}$	1, 11	1,323 31	1,930 47	2, 47	2, 35
Germany	15,697	10,971	10, 895	6, 413	8,748	8,796	11,896	9,381
Austria------	${ }^{1} 6,953$	99	2. 186	83 4,008	5, 144	8, 103	-190	- 238
Hungary ${ }_{\text {----- }}$	14,021	3,086	2, 560	4,008	5,270 705	4, 488	5,776	5,687
Yugoslavia	23105				226	598	784	972
Bulgaria.	57	107	64	193	$\begin{array}{r}90 \\ \hline\end{array}$	129	236	169
Rumania	298		50	31	98.	388	365	169
Poland	${ }^{4} 1,541$			1,368	1,526	1,244	2,945	3,353
Finalnd.				1,368	1, 11	1, 14	13	3,353
Russia, excluding Congress Poland.	${ }^{5} 10,977$							
Total comparable with 19091913	54, 749							
Total comparable with 1923	42, 508				27, 408	26, 649	33. 981	32, 300
World total comparable with 1909-1913	59, 769							32,300
World total comparable with	47, 528				36, 358	34, 699	39, 354	39, 382

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture.
${ }^{1}$ Old boundaries.
${ }_{5}^{4}$ Congress Poland.
${ }^{2}$ Four-year average.
${ }^{3}$ Former Kingdom of Serbia.
${ }^{5}$ Includes a small amount grown in Siberia.

Table 364.-Sugar: Production in undermentioned countries.
beet sugar, in terms of raw sugar.

Country.	Average 1909-1913.	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24, preliminary. ${ }^{1}$
NORTH AMERICA.	Shorttons.							
Canada	11, 160	$12,303$	$\begin{array}{r} 26 \text { rtons. } \\ 264 \end{array}$	$\begin{array}{r} \text { Short tons. } \\ 19,916 \end{array}$	$\begin{array}{r} \text { Short tons. } \\ 46,989 \end{array}$	Short tons. $27,822$	Short tons. $15,743$	Short tons. 16,200
United States	641, 705	805, 481	801, 000	764, 685	1, 146, 338	1, 074, 000	711, 000	931, 000
America	652, 865	817, 784	827, 364	784, 601	1, 193, 327	1, 101, 822	726, 743	947, 200
Sweden	153, 739	151, 451	144, 442	140,537	181, 009	258, 788	79, 186	169,633
Denmark	${ }^{3} 127,091$	148, 700	155, 800	149, 053	168, 365	155, 755	94, 136	121, 000
Netherlands	${ }^{4} 246,341$	${ }^{4} 214,891$	${ }^{4} 181,986$	4251,891	342, 633	411, 534	308, 473	309, 000
Belgium	- 276, 075	130, 797	66, 031	257, 997	264, 492	315, 372	292, 538	309, 000
France	${ }^{\mathbf{3}} \mathbf{8 0 7 , 8 8 7}$	234, 843	129, 105	181, 882	357, 711	318, 964	514, 798	515, 560
Spain	115,727 3 208,675	154, 317	169, 223	91, 089	234, 025	79, 649	176, 407	187, 000
Switzerlan	5 5 , 784	104,987 9,900	122, 904	190, 158	140, 994	233, 943	299, 519	339, 000
Germany	${ }^{3}$ 2, 251, 186	1, 726, 483	1, 483, 807	783, 123	1, 211, ${ }^{4}, 743$	1, $\begin{array}{r}6,559 \\ \hline\end{array}$	6,757	6,160
Austria.	${ }^{3} 1,079,708$	1, 542, 802	1, 48, 9111	6, 290	1, 211,943	$1,415,606$ 18,036	$1,604,680$ 26,963	1, 179, 579
Czechoslovakia			687, 553	559, 325	784, 726	726, 025	1820,605	- 990, 000
Hungary	${ }^{3} 492,864$		44, 927	12, 592	36, 737	67, 096	190,086	132,000
Jugoslavia	5,69,676				24, 250	27, 230	136,927	139,831
Bulgaria	4,376	15, 207	7,103	13, 391	10, 452	14, 042	19, 333	

[^218]Table 364.-Sugar: Production in undermentioned countries-Continued.
BEET SUGAR, IN TERMS OF RAW SUGAR-Continued.

Country.	$\begin{gathered} \text { Average } \\ \text { 1909-1913. } \end{gathered}$	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23	1923-24, preliminary.
EUROPE-continued.	Short tons.	Shorttons.	Shorttons.	Shorttons.	Shorttons.	Short tons.	Shorttons.	Shorttons.
Ruman.	Sha, 229	9,193	2,759	5,439	18,921	33, 069	155,857	$88,000$
Poland.	7 233, 641	263, 200	249, 200	106, 200	194, 800	198, 326	294, 000	397, 000
Finland				528	891	2, 244	1,746	
Russia	${ }^{8} 1,594,371$			97, 307	110, 072	${ }^{\text {9 6 }}$ 61, 461	${ }^{1} 245,287$	330,000
$\begin{aligned} & \text { Total European } \\ & \text { countries com } \\ & \text { parable with } \\ & 1909-1913 \end{aligned}$	7,644, 370				4, 101, 080	4, 341, 455	4, 965, 552	
Total European countries comparable with 1923-24. \qquad					4,090,628	4, 327, 413	4, 946, 219	5, 153, 863
World total comparable with 1909-1913..........	8, 297, 235				5, 294, 407	$5,443,277$	$5,692,295$	
World total comparablewith 1923-24.	8,297, 235				5, 283, 955	5, 429, 235	$5,622,295$ $5,672,962$	6, 101, 063

Division of Statistical and Historical Research.
CANE SUGAR (RAW).

Table 364.-Sugar: Production in undermentioned countries-Continued.
CANE SUGAR (RAW)-Continued.

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated.

Figures are for the crop years 1909-10 to 1923-24 for the countries in which the sugar season begins in the autumn months and is completed during the following calendar year, except in the case of cane-sugar producing countries where the season begins in May or June and is completed in the same calendar year.

13 Three-year average.

Table 365.-Sugar, raw, cane and beet: World production, 1895-1923.

Year. ${ }^{1}$	Production in countries reporting all years 1895-1923.	Production as reported.	Estimated world totals (preliminary).	Three chief producing countries.		
				Cuba.	India.	Java.
	Short tons.	Short tons.	Short tons.	Short tons.	Shorttons.	Shorttons.
1895-	7, 211, 438	7, 619, 883	10, 105, 883			628, 021
1896-97	7,894, 621	8,255, 405	10,761, 405	237, 497		575, 263
1897-98	8,077, 178	8, 436, 725	10, 942, 925	342, 208		623, 223
1898-99	8 8, 190, 919	10, 793, 709	11, 002, 309	375, 948	2, 325, 382	785, 638
1899-1900	8,840, 680	11, 203, 891	11, 409, 131	336, 082	2, 083, 206	821, 387
1900-1	9, 918, 015	12, 921,042	12, 962, 882	712, 159	2, 549, 958	819,943
1901-2	11, 313, 799	14, 017, 184	14, 123, 384	952, 203	2, 265, 173	891, 236
1902-3	10, 346, 777	12, 991, 634	13, 066, 234	1,118, 738	2, 135, 598	982, 781
1903-4	10,590, 317	13, 228, 731	13, 307, 431	1,165, 055	2, 096, 624	1,022,836
1904-	10, 104, 951	13, 066, 932	13, 143, 732	1, 302, 849	2, 429, 000	1, 159, 866
1905-6.	12, 588, 145	15, 202, 891	15, 227, 691	1,320, 199	1,932,560	1,146,037
1906-7	12, 567, 736	15, 789, 808	15, 815,608	1,598,994	2, 469, 936	1,092, 053
1907-8	12, 121, 445	15, 189, 827	15, 218, 527	1,077, 393	2, 292, 528	1, 215, 530
1908-9	12, 953,119	15, 846, 662	15, 876, 462	1,694,965	2, 097, 648	1, 274, 306
1909-10	13, 261, 726	16, 730, 318	16, 730, 318	2,020, 871	2, 480, 700	1,360, 353
1910-11	14, 931,316	18, 680, 900	18,680, 900	1,661, 465	2,587, 100	1,392, 842
1911-12	13, 882, 217	17, 765, 546	17, 784, 046	2, 123, 502	2, 744, 900	1,626,751
1912-13	16, 201, 290	20, 117, 285	20, 128, 785	2,719, 961	2,861, 500	1,467,901
1913-14	16, 933, 352	20, 793, 711	20, 812, 861	2,909, 460	2,573, 200	1, 578, 332
1914-15	16, 618, 454	20, 613, 043	20, 627, 143	2,921, 984	2, 736, 000	1,502, 852
1915-16	14, 503, 234	18, 887, 512	18, 900, 512	3, 398, 385	2, 949, 000	1,480, 725
1916-17	13, 892, 686	18, 508, 744	18,544, 544	3, 421, 597	3,093, 000	1,785, 293
1917-18	14, 868, 380	20, 172, 700	20, 196, 700	3, 889, 966	3, 846, 000	2,055, 839
1918-19	14, 133, 339	18, 279, 267	18, 310, 067	4, 490,902	2, 762, 000	1,988, 002
1919-20	13, 162, 918	17,841, 625	17, 866, 925	4,183, 676	3, 404, 000	1,540,666
1920-21	14, 710, 032	19, 198, 455	19, 245, 755	4, 406,413	2, 825, 000	1,747, 594
1921-22	15, 401, 769	20, 008, 272	20, 013, 172	4, 517,470	2, 925, 000	1,906, 032
1922-23	15, 336, 264	20, 307, 992	20, 455, 917	4, 033, 798	$3,347,000$	1,992, 786
1923-24	15,832, 537	20, 206, 730	21, 175, 155	4,271, 000	3,388, 000	1,971,038

[^219]Table 366.-Sugar: International trade, calendar years, 1909-1922.

Division of Statistica land Historical Research. Official sources except where otherwise noted.
The following kinds and grades have been included under the head of sugar: Brown, white candied: caramel, chancaca (Peru), crystal cube, maple, muscovado, panela. The following have been excluded, "Candy" (meaning confectionery), confectionery, glucose, grape sugar, jaggery, molasses, and sirups.

[^220]Table 367.-Sugar, raw (96° centrifugal): Average wholesale price per pound, New York, 1890-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver
age.													

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.
Table 368.-Sugar: Average retail price per pound in the United States, 19181923.

Calendar year.	$\begin{gathered} \text { Jan. } \\ 15 . \end{gathered}$	$\begin{gathered} \text { Feb. } \\ 15 . \end{gathered}$	$\begin{gathered} \text { Mar. } \\ 15 . \end{gathered}$	Apr.	$\begin{gathered} \text { May } \\ 15 . \end{gathered}$	June	$\begin{array}{c\|c} \text { July } \\ 15 . \end{array}$	$\begin{array}{\|l\|l} \text { Aug. } \\ 15 . \end{array}$	$\begin{gathered} \text { Sept. } \\ 15 . \end{gathered}$	Oct. $15 .$	$\begin{aligned} & \text { Nov. } \\ & 15 . \end{aligned}$	$\begin{array}{\|l\|l} \text { Dec. } \\ 15 . \end{array}$	$\begin{aligned} & \text { A ver- } \\ & \text { age. } \end{aligned}$
1913	\$0. 058	\$0. 055	\$0. 054	\$0. 054	\$0. 054	\$0. 053	\$0. 055	\$0. 056	\$0. 057	\$0. 055	\$0. 054	\$0. 054	\$0.055
1914	. 052	. 052	. 051	. 050	. 050	. 051	. 052	. 079	. 080	. 072	. 062	. 061	059
1915	. 060	. 065	. 066	. 067	. 068	. 0689	. 070	. 067	. 065	. 061	. 066	. 088	. 066
1916	. 067	. 069	. 075	. 080	. 086	. 087	. 08	. 085	. 077	. 082	. 86	. 083	. 080
1917	. 080	. 081	. 088	. 096	. 109	. 094	. 092	. 100	. 099	. 098	. 096	. 095	. 093
1918	. 095	. 106	. 092	. 091	. 091	. 091	. 092	. 093	. 096	. 106	. 108	. 108	. 097
1919	. 108	. 107	. 106	. 106	. 106	. 106	. 109	. 111	. 110	. 114	. 125	. 145	. 113
1920	. 178	. 188	. 187	. 202	. 254	. 267	. 265	. 229	. 183	. 139	. 128	. 105	. 194
Av. 1914-1920	. 091	. 095	. 095	. 099	. 108	. 109	. 110	. 109	. 101	. 096	. 096	. 095	10
1921	. 097	. 089	. 097	. 097	. 084	. 078	. 071	. 075	. 073	. 069	. 067	. 065	080
1922	. 062	. 064	. 065	. 067	. 066	. 071	. 076	. 081	. 079	. 079	. 081	. 083	. 073
1923	. 083	. 087	. 102	. 106	. 112	. 111	. 105	. 096	. 096	. 106	. 103	04	. 101

[^221]Table 369.-Sugar, granulated: Average wholesale price per pound, New York, 1890-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1890	\$0.063	\$0. 062	\$0. 061	\$0. 060	\$0.060	\$0.063	\$0.061	\$0.061	\$0.065	\$0. 064	\$0.060	\$0.059	\$0.062
1891	. 059	. 063	. 063	. 045	. 043	. 041	. 043	. 042	. 043	. 043	. 041	. 041	. 047
1892	. 040	. 039	. 042	. 042	. 042	043	. 042	. 043	. 049	. 047	. 047	. 046	. 044
1893	. 046	. 046	045	. 049	051	052	. 053	. 051	. 051	. 051	. 045	042	048
1894	. 040	. 041	. 041	. 040	. 039	. 039	. 041	. 045	. 046	. 044	. 040	. 038	. 041
1895	. 037	. 037	. 038	. 039	. 043	. 044	. 044	. 043	. 043	. 044	. 043	. 044	. 042
1896	. 046	. 047	. 048	. 051	. 050	. 047	. 044	. 045	. 045	. 040	. 041	. 041	. 045
1897	040	. 041	. 041	. 043	. 043	. 044	. 046	. 047	. 048	. 048	. 047	. 048	. 045
1898	. 049	. 049	. 049	. 050	. 051	. 051	. 051	. 051	. 052	. 047	. 049	. 048	. 050
1899	. 047	. 047	. 048	. 049	. 051	. 052	. 052	. 051	. 049	. 048	. 048	. 048	. 049
1900	. 048	. 050	. 049	. 049	. 050	. 055	. 058	. 059	. 059	. 055	. 054	. 053	. 053
1901	. 053	. 052	. 051	. 051	. 053	. 052	. 052	. 051	. 050	. 048	. 047	. 046	. 050
1902	. 045	. 045	. 045	. 045	. 045	. 044	. 044	. 044	. 044	. 044	. 044	. 046	. 045
1903	. 046	. 046	. 046	. 047	. 047	. 047	. 048	. 048	. 048	. 046	. 045	. 044	. 046
1904	. 043	. 043	. 044	. 044	. 047	. 048	. 049	. 050	. 050	. 048	. 052	. 055	. 048
1905	. 058	. 059	. 059	. 059	. 057	. 055	. 051	. 051	. 048	. 045	. 044	. 045	. 053
1906	044	043	. 044	. 044	. 044	. 044	. 046	. 047	. 047	. 046	. 046	. 046	. 045
1907	. 046	. 045	. 046	. 046	. 048	. 049	. 048	. 047	. 046	. 046	. 046	046	047
1908	. 047	. 046	. 050	. 053	. 053	. 052	. 052	. 050	. 050	. 048	. 046	045	049
1909	. 045	. 044	. 046	. 048	. 048	. 047	. 047	. 048	. 049	. 049	. 050	. 049	048
1910	. 049	. 049	. 052	. 051	. 052	. 050	. 051	. 051	. 050	. 048	. 046	. 047	. 050
1911	. 047	. 046	. 047	. 047	. 048	. 049	. 051	. 057	. 066	. 066	061	. 056	. 053
1912	. 054	. 055	. 055	. 051	. 049	. 050	. 049	. 049	. 050	. 048	. 048	. 048	050
1913.	. 045	. 042	. 042	. 041	. 041	. 041	. 045	. 046	. 045	. 042	. 042	. 041	. 043
Av. 1909-1913	. 048	. 047	. 048	048	. 048	047	. 049	. 050	052	. 05	. 049	. 048	. 049
1914	. 039	. 039	. 038	. 037	. 040	. 042	. 042	. 065	. 068	059	049	048	047
1915	. 049	. 055	. 057	. 058	. 059	. 059	. 058	. 055	. 051	. 050	057	. 059	056
1916	. 057	. 060	. 066	. 071	. 075	. 074	. 075	. 070	. 064	. 071	. 074	. 069	069
1917	. 066	. 069	. 071	. 082	. 079	. 075	. 075	. 082	. 082	. 082	. 082	. 080	. 077
1918	. 074	. 073	. 073	. 073	. 073	. 073	. 074	. 074	. 085	. 088	. 088	. 088	. 078
1919	. 088	. 088	. 088	088	088	088	. 088	. 088	. 088	. 088	. 088	. 109	. 090
1920	. 154	. 150	. 137	${ }^{1} .192$	${ }^{1} .225$	1.212	${ }^{1} .191$. 167	. 143	. 108	. 096	. 081	
Av. 1914-1920.	. 075	. 076	. 076					. 086	. 083	. 078	. 076	. 076	
1921	. 076	. 071	. 078	. 073	. 063	. 057	. 055	. 058	. 056	. 052	. 052	050	. 062
192	. 048	. 049	. 052	. 052	. 053	. 059	. 066	. 067	. 063	. 066	. 068	. 069	. 059
	. 067	. 073	. 086	. 092	. 094	. 092	. 085	. 076	. 082	. 090	. 087	. 088	. 084

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.
${ }^{1}$ No quotations. Prices shown estimated by Bureau of Labor Statistics by applying manufacturing differential to prices or raw sugar.

Table 370.-Area of sugar cane and production of cane sirup, by States, calendar years, 1920-1923.

State.	Area of sugar cane. ${ }^{1}$								Production of sirup. ${ }^{2}$			
	Total.				Harvested for sirup.				1920	1921	1922	$1923{ }^{3}$
	1920	1921	1922	$1923{ }^{3}$	1920	1921	1922	$1923{ }^{3}$				
South Carolina Georgia Florida	Acres.	$\left.\begin{array}{\|} \text { Acres. } \\ 8,700 \end{array} \right\rvert\,$	$\left.\begin{array}{\|c} \text { Acres. } \\ 9,600 \end{array} \right\rvert\,$	$\begin{array}{r} \text { Acres. } \\ 9,600 \end{array}$	Acres.	$\left\|\begin{array}{c} \text { Acres. } \\ 8,200 \end{array}\right\|$	$\begin{array}{\|c\|} \text { Acres. } \\ 8,900 \end{array}$	$\begin{gathered} \text { Acres. } \\ 8,800 \end{gathered}$	1,000	$\begin{aligned} & 1,000 \\ & \text { gals. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { gals. } \\ & 1,288 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { gals. } \end{aligned}$
	53, 100	61,00034,000	$\begin{aligned} & 50,000 \\ & 29,000 \end{aligned}$	$\begin{aligned} & 45,000 \\ & 28,000 \end{aligned}$	44,10024,000	45, 000	40,000	37, 800	9,697	7, 335	7, 04 4,800	1,1034,255
	55, 000					$\begin{aligned} & 30,000 \\ & 60,000 \end{aligned}$	24,00069,000	$\begin{array}{\|} 23,000 \\ 61,900 \end{array}$	6,110	6, 300		
Alabama.....---		71,000	$\begin{aligned} & 29,000 \\ & 79,000 \end{aligned}$	$78,300$	$\begin{aligned} & 24,000 \\ & 42,000 \end{aligned}$				7,665	8,760	11, 937	9,904
Mississippi	33, 100	39, 200	37, 000	33,300331,700	28, 300	33,700	32, 000	29, 600	7,3584,640	7,582	7,0406,490	5,565
Louisiana.	268, 300	294,500	319,600			18,900						
Texas.	16, 400		$\begin{array}{r} 18,800 \\ 3,60 \end{array}$	$\begin{array}{r} 17,300 \\ 3,500 \end{array}$	$\begin{array}{r} 0,000 \\ 7,100 \\ 2,500 \end{array}$	$\begin{array}{r} 12,000 \\ 12,400 \end{array}$	$\begin{array}{r} 21,200 \\ 1,200 \\ 3,100 \end{array}$	$\begin{array}{r} 13,200 \\ 3,000 \end{array}$	$\begin{array}{r} 2,215 \\ 437 \end{array}$	$\begin{array}{r} 3,192 \\ 437 \end{array}$	2, 485	2, ${ }^{594}$
Arkansas	3, 200 3,000											
Total	465, 300	529, 400	546, 600	538, 700	174, 100	210, 200	214, 300	200, 000	38, 980	41, 167	41, 611	33, 620

Division of Crop and Livestock Estimates.

${ }^{1}$ Sorghum, sometimes confused with sugar cane, is not included.
: The production of molasses (a by-product from sugar) in Louisiana was 15,985,000 gallons in 1923, compared with 22,719,000 gallons in 1922, 25,423,000 gallons in 1921, and 16,857,000 gallons in 1920.
${ }^{8}$ Preliminary.

SORGHUM FOR SIRUP.

Table 371.-Sorghum for sirup: Acreage, production, and farm value, United States, 1917-1923; by States, 1922 and 1923.

Calendar year, and State.	Thousands of acres.		A verage yield, in gallons per acre.		Production, thousands of gallons.		Average farm price, cents per gallon Dec. 1.		Farm value, thousands of dollars.	
1917	$\begin{aligned} & 415 \\ & 422 \\ & 487 \\ & 536 \\ & 518 \end{aligned}$		$\begin{aligned} & 90.3 \\ & 79.2 \\ & 80.9 \\ & 92.4 \\ & 88.0 \end{aligned}$		$\begin{aligned} & 37,472 \\ & 33,387 \\ & 39,413 \\ & 49,505 \\ & 45,566 \end{aligned}$		$\begin{array}{r} 69.5 \\ 93.4 \\ 110.8 \\ 106.9 \\ 62.9 \end{array}$		$\begin{aligned} & 26,055 \\ & 31,191 \\ & 43,683 \\ & 52,943 \\ & 28,681 \end{aligned}$	
1918										
1919										
1920										
1921										
Leading States.	1922	$1923{ }^{1}$	1922	1923	1922	$1923{ }^{1}$	1922	1923	1922	$1923{ }^{1}$
Total --------	447	380	81.5	84.2	36,440	32, 001	71.0	86.2	25, 855	27, 595
Virginia	13	12	94	95	1,222	1,140	85	89	1,039	1,015
West Virginia	8	8	105	109	840	872	100	108	840	942
North Carolina	30	32	98	92	2,940	2,944	80	85	2,352	2, 502
South Carolina.	21	20	83	82	1, 743	1,640	61	68	1,063	1,115
Georgia	30	26	83	83	2,490	2,158	55	69	1,370	1,489
Florida	1	1	130	110	130	110	52	71	68	78
Ohio	4	4	62	65	248	260	105	118	260	307
Indiana	11	11	85	80	935	880	95	100	888	880
Illinois.	9	9	72	80	648	720	94	100	609	720
Wisconsin	2	2	60	56	120	112	110	127	132	142
Minnesota	2	2	75	95	150	190	105	103	158	196
Iowa.	6	5	90	88	540	440	99	102	535	449
Missouri	24	22	80	88	1,920	1,936	85	130	1,632	2,517
Nebraska	2	2	83	90	166	180	95	97	158	175
Kansas.	3	3	84	70	252	210	88	91	222	191
Kentucky	48	46	83	93	3, 984	4,278	80	90	3,187	3,850
Tennessee.	35	30	84	92	2,940	2, 760	78	92	2,293	2,539
Alabama	74	30	81	80	5,994	2, 400	56	73	3,357	1,752
Mississippi----------	42	38	88	82	3, 696	3,116	46	65	1, 700	2, 025
Louisiana..	1	1	100	85	100	85	45	61	45	52
Texas	35	32	69	84	2,415	2, 688	72	80	1, 739	2,150
Oklahoma	17	16	66	57	1,122	-912	72	83	. 808	757
Arkansas	28	26	64	70	1, 792	1,820	75	88	1,344	1,602
New Mexico	1	2	53	75	53	150	106	100	56	150

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

MAPLE SUGAR AND SIRUP.

Table 372.-Maple sugar and sirup production, 1917-1923.
[Figures for 1923 subject to revision.]

State and year.	Trees tapped.	Sugar made.	Sirup made.	Total product in terms of sugar. ${ }^{1}$	A verage per tree.					
					As sugar.	As sirup.				
Maine:	Number.	Pounds.	Gallons.	Pounds.	Pounds.	Gallons.				
1921	285, 000	12, 000	48, 000	398, 000	1.40	0.17				
1922	290, 000	31,000	62, 000	522, 000	1.80	. 22				
1923-.---------	264, 000	33, 000	45, 000	393, 000	1. 50	19				
New Hampshire:	800, 000	456, 000	133, 000	1,520,000	1.90	24				
1922	800, 000	247, 000	189, 000	1,760, 000	2.20	. 28				
1922	5, 559, 000	3, 152, 000	1, 065,000	11, 674, 000	2.10	26				
1921.	269, 000	113, 000	50,000	512, 000	1.90	. 24				
1922	272, 000	134,000 87,000	82,000 49,000	788,000 483,000	1.90 1.85	.36 .23				
1921--	8,000	6, 000	2, 000	24, 000	3. 00	. 38				
1922	10, 000	2,000	4,000	35,000 15,000	3.50 1.68	. 21				
1921----	4, 193, 000	881, 000	624, 000	5,870, 000	1. 40	. 17				
1922	4, 487, 000	1, 185, 000	1, 085, 000	9, 865, 000	2. 20	. 28				
1922	815, 000	242, 000	245, 000	2, 201, 000	2.70	. 34				
1923	831, 000	209, 000	265, 000	2, 329, 000	2.80	. 40				
Ohio:										
1921	1,832, 000	46, 000	280, 000	2, 283, 000	1.25	. 16				
1922	2, 088, 000	64, 000	420, 000	3, 424, 000	1. 64	. 20				
1923	1, 879, 000	112, 000	700, 000	5, 712, 000	3.04	. 38				
1922	558, 000	12, 000	143, 000	1, 156, 000	2. 07	. 26				
1923	536, 000	29, 000	180, 000	1, 469, 000	2.74	. 34				
1922	857,000	54,000	197, 000	1,628, 000	1.90	24				
1923	900, 000	151, 000	285, 000	2, 431, 000	2.70	. 34				
W isconsin:										
1921---	494, 000	17,000	100, 000	815, 000	1.65	. 21				
1922	538, 000	24,000	148, 000	1,210, 000	2. 25	. 28				
1923	570, 000	32, 000	119, 000	984, 000	1.73	. 22				
1918	19, 312, 000	12, 944, 000	4, 863, 000	51, 848, 000	2.71	. 34				
1919	18, 799, 000	9,787, 000	3, 804, 000	40, 224, 000	2.14	. 27				
1920	18, 895, 000	7, 324, 000	3,580, 000	35, 960, 000	1.90	. 24				
1921	15, 114, 000	4,730, 000	2, 386, 000	23, 820, 000	1. 58	. 20				
1922	$16,274,000$ $15,291,000$	$5,147,000$ $4,685,000$	$3,640,000$ $3,605,000$	34, 3633,000	2. 2.11	. 26				

Division of Crop and Livestock Estimates.
${ }^{1}$ One gallon of sirup taken as equivalent to 8 pounds of sugar.
${ }^{2}$ These 11 States produced in 1919, 97.1 per cent of the maple sugar crops of the United States and 97.2 per cent of the maple sirus.

Table 373.-Maple sugar and sirup: Farm price, 15th of month, United States, 1917-1923.

Month.	Sugar (cents per pound).							Sirup (dollars per gallon).						
	1917	1918	1919	1920	1921	1922	1923	1917	1918	1919	1920	1921	1922	1923
Feb.	14.7	18.8	22.0	29.3	24.9	17.5	22.0	1.22	1. 58	1.86	2.35	2.27	1.84	1. 89
Mar.	14.7	20. 5	25.3	31. 6	25. 7	21. 9	23.2	1.30	1.76	1. 99	2. 58	2.17	1.95	1.96
Apr.	16.3	22.5	26.9	37. 0	25. 7	23.1	26. 0	1.33	1.80	2.03	2.92	2.21	1.93	2. 09
May	16.2	22.6	26.3	36. 0	21. 5	21. 6	26.4	1.34	1.85	2.02	2.93	2.08	1. 86	1.75
June	15.9	22.0	26.2	35.1	20.7	21.3	25.6	1.33	1.85	2.19	2. 84	2.10	1.86	2.05

Division of Crop and Livestock Estimates.
CLOVER, TIMOTHY, AND ALFALFA SEED.
Table 374.-Clover seed: Acreage, production, and farm value, United States, 1916-1923; by States, 1922 and 1923.

- Calendar year, and State.	Thousands of acres.		A verage yield per acre (bushels).		Production, thousands of bushels.		A verage farm price per bushel Nov. 15.		Farm value, basis Dec. 1 price, thousands of dollars.	
1916	$\begin{array}{r} 939 \\ 821 \\ 820 \\ 942 \\ 1,082 \\ 889 \end{array}$		$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.5 \\ & 1.6 \\ & 1.8 \\ & 1.7 \end{aligned}$		$\begin{aligned} & 1,706 \\ & 1,488 \\ & 1,197 \\ & 1,484 \\ & 1,944 \\ & 1,538 \end{aligned}$		$\begin{aligned} & \$ 9.18 \\ & 12.84 \\ & 19.80 \\ & 26.75 \\ & 11.95 \\ & 10.75 \end{aligned}$		15,66119,10723.70539,70023,22716,529	
1917										
1918										
1919										
1920										
1921.										
Leading States:	1922	19231	1922	1923	1922	$1923{ }^{1}$	1922	1923	1922	19231
	1,156	800	1.6	1.5	1,887.	1,233	10. 05	12. 19	18,971	15, 027
New York	11	14	2.51.4	1.1	25	15	10.0010.00	13. 90	280250	320190
Pennsylvania	18									
Ohio--	100	144	1.1	1.2	227	32	10. 70	12.10	1,176	, 387
Indiana		35	1.2	.91.1	120		9.80			
Illinois.		116			315	128	9.60	13.00	3, 024	1,664
Michigan	150	105	1. 1.7	1. 4	240	147	10.5010.20	12. 11.10	2,520 2,723 1	1,6321,968
Wisconsin	150	126								
Minnesota	118	65	1. 2.5	2.01.3	${ }_{1}^{171}$	130114	9.10.10	11.2012.70	1,419	1,456
Iowa.		88							1,841	1,448
Missouri.	21	16	1.7	1.6	36	26	9.00	12.90	324	335
Nebraska.	1821	12	2.71.5	1.6	2227469	111436	10. 00	12. 00	220	132168486
Kansas.-.							8.10.0010.70	12. 0013.50	216492	
Kentucky.		18	1.8	1.7						
Tennessee.	5	4				7	11. 00	11.70	99	82
Mississippi	20	19	6. 0	7.0	120725	$\begin{array}{r} 133 \\ 60 \\ \quad 20 \end{array}$	$\begin{array}{r} 10.00 \\ 9.70 \\ 12.00 \end{array}$	$\begin{aligned} & \text { 13. } 00 \\ & 11.90 \\ & 12.00 \end{aligned}$	1.20069860	1,729714240
Idaho...	165	155	$\begin{aligned} & \text { 4. } 5 \\ & \text { 1. } 0 \end{aligned}$	$\begin{aligned} & .0 \\ & 4.0 \\ & 4.0 \end{aligned}$						
Oregon----										

[^222]Table 375.-Clover seed: Receipts and shipments, Chicago, 19:0-1923.
RECEIPTS.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	libs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	libs.	libs.	libs.	lbs.	lbs.	lbs.
1910-11	1,340	1,375	865	231	94	524	751	378	364	405	59	270	6, 656
1911-12	519	198	176	95	331	337	357	307	213	194	343	574	3, 644
1912-13	271	950	521	295	493	545	901	279	109	165	41	40	4,610
1913-14	188	225	939	1,446	1,035	418	837	412	210	836	429	1,180	8,155
1914-15	789	596	1,136	1,723	1,773	1,993	900	438	55		48	327	9, 778
1915-16	2,190	1,921	1,953	1,205	980	1,236	1,123	974	294		53	138	12, 067
1916-17	1,356	1,308	995	1,416	660	1, 192	833	798	393	307	2	602	9, 862
1917-18	1,346	945	1,149	587	1,079	1, 688	797	217	298	108	22	135	8,371
1918-19	192	1,597	1,337	1,146	1,974	1, 002	1,175	464	88		271	798	10, 044
1919-20	1,539	1, 816	1,941	1, 606	2, 840	2, 557	2, 239	884	7	200	195	213	16,037
1920-21	1,549	2, 448	1, 033	1,314	2, 762	3,150	3,996	1, 570	418	319	84	365	19, 008
Average 1914-1920.-	1,280	1,519	1,363	1,285	1,724	1,831	1,580	764	222	133	96	368	12, 167
1921-22	739	1, 235	2,040	2, 064	1,585	1,692	2, 448	1, 050	352	169	77	997	14, 448
1922-23	1, 368	1,299	1, 479	1,214	1,044	629	1,825	845	348	109	8	271	10, 439
1923-24.	641	1,681	1,109	1, 039									

SHIPMENTS.

1910-11	165	183	244	224	480	682	504	252	185	52	12	118	3,101
1911-12	51	111	204	131	426	621	420	363	106	48	144	59	2, 684
1912-13	141	309	862	372	502	835	1,525	707	90	78	33	65	5,519
1913-14	-138	152	264	668	882	1,576	1, 591	740	544	301	381	264	7, 501
1914-15	309	124	484	1, 665	1,197	1,583	1,290	792	188	13	69	104	7, 818
1915-16	714	596	1,506	879	1, 125	1, 438	2, 027	1,481	415	39	78	88	10, 386
1916-17	279	602	1, 021	962	1, 065	1,696	2,086	1, 606	583	157	309	429	10, 795
1917-18	423	483	430	1, 144	908	1,923	1,116	182	246	4	60	167	7,086
1918-19	191	527	1,447	787	984	1, 139	1,109	653	18	94	25	136	7,110
1919-20	271	386	952	888	2, 589	1,619	926	842	248	98	118	61	8,998
1920-21	107	589	691	769	1,554	2,997	3, 104	1,694	370	167	239	528	12, 809
Average 1914-1920.-	328	472	933	1, 014	1,346	1,771	1,665	1,036	295	82	128	216	0, 286
1921-22	371	781	691	1, 236	1,728	2,167	2, 416	1, 030	818	147	133	230	11, 748
1922-23	547	1, 172	1, 187	1, 169	1,430	906	1, 252	820	223	75	122	285	9,188
1923-24	530	514	705	670									

Division of Statistical and Historical Research Compiled from Chicago Board of Trade and the Seed World.

Table 376.-Timothy seed: Receipts and shipments, Chicago, 1910-1929.
RECEIPTS.

Year beginning Aug. 1-	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	libs.	lbs.	lbs.	lbs.	libs.	lbs.	lbs.	ibs.	libs.	libs.	lbs.	libs.
1910-11	1,878	7, 509	3,778	1,741	1,563	1,311	1,560	1, 205	368	106	55	87	21, 161
1911-12	4,451	5, 829	4, 011	2, 649	1, 120	792	879	868	557	388	242	158	21, 944
1912-13	2,916	6, 875	5, 505	3, 608	2, 182	2, 361	3, 019	2,831	3, 964	1,509	1,764	2, 647	39,181
1913-14	3,601	5,947	4, 232	3, 421	2,131	2, 191	1,763	4,393	1,977	828	1,446	2,410	34, 340
1914-15	4, 914	11, 208	3,469	2, 650	3, 487	3, 050	3, 087	4,129	1,165	1,101	403	752	39,415
1915-16	1,201	9,894	5, 578	4,039	2, 416	1, 431	2, 203	2,167	1, 019	1, 039	704	296	31,987
1916-17	2,487	10, 565	5, 631	3, 989	3, 051	2, 149	2, 478	6, 279	3, 367	2, 442	1,117	924	44, 479
1917-18	3,810	6, 525	5, 172	2,966	1,915	2, 006	2, 242	2, 554	1, 434	1,250	392	677	30,943
1918-19	764	3, 198	5,175	3, 242	1, 463	1,578	2, 234	2, 985	3, 772	2, 398	1,348	$\begin{array}{r}891 \\ \hline 1\end{array}$	29, 048
1919-20	7,450	13, 191	6, 124	2, 582	1, 643	3, 186	3,381	3, 118	1,338	1,093	, 641	1, 135	44, 832
1920-21	3,313	12, 777	9,013	5,269	3, 445	2, 343	3,386	4, 056	2, 601	2,368	1, 249	531	50,351
Av. 1914-1920..	3,420	9,622	5,737	3,534	2, 489	2,249	2,716	3, 613	2,099	1,670	836	744	38,729
1921-22	10, 849	6, 269	4, 586	3, 197	2, 668	2, 404	2, 899	2, 827	780	1, 215	472 355	119	38, 286
1922-23	8, 985	9, 600	4, 516	2, 048	1, 050	570	1,352	1,697	1,243	398	355	84	31, 898
1923-24	5, 061	13, 722	4,419	1,606	1, 299								

Table 376.-Timothy seed: Receipts and shipments, Chicago, 1910-1923-Con. SHIPMENTS.

Year beginning Aug. 1-	Aug.	Sept	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Total
	1,000	1,000	1,000	1,000	1,000	1,0	1,000	1,000	1,000	0	00		
	lbs.	lbs.	lbs.	lbs.	ilbs.	libs.	lbs.	libs.	libs.	lbs.	1,000	s.	lus,
1910-11	1,825	4, 198	1,701	676	899	2, 078	2, 109	2,751	1,004	159	4		17, 407
1911-12	2, 452	5, 038	2, 035	2, 051	688	482	958	1,356	761	360	54	158	16, 393
1912-13	1,951	7, 504	4,373	4,912	2,224	3, 313	3, 152	4,426	4,629	2,229	1,521	1,344	41, 578
1913-14	1, 774	3,735	3, 285	1,896	1,893	2, 065	2, 021	3, 977	1,955	888	786	2, 592	26, 867
1914-15	2,056	4, 845	2, 511	2, 124	3, 549	2, 565	1,877	2,430	2, 623	1,727	955	1, 205	28, 467
1915-16	1,372	5, 344	5, 283	3, 796	2, 485	1, 892	2, 326	4, 203	2,715	1,212	162	395	31, 185
1916-17	2, 826	7,956	5, 363	4, 071	3,128	2, 921	4, 082	7, 775	4,321	2,288	779	729	46, 239
1917-18	2,605	3,887	2,816	1,511	1.291	1,720	2, 049	5, 160	1,459	147	509	427	23, 581
1918-19	1,218	1, 774	2, 674	3,903	2, 688	1,659	3, 178	3, 621	4, 579	1,817	780	1,253	29, 144
1919-20	2, 340	6,301	3, 142	1,964	2, 588	4,007	3, 737	3, 404	1,852	2, 497	735	1, 057	33, 624
1920-21	2, 233	4, 072	4, 150	1,787	1,594	3, 810	4,531	5, 410	2,708	1,550	587	1, 001	33, 433
Av. 1914-1920.	2,093	4,883	3,706	2, 737	2,475	2,653	3,111	4,572	2, 894	1,605	644	867	32, 239
1921-22	5, 233	8, 567	3, 750	2,340	2,846	2, 551	4, 108	5,187	2, 129	2, 598	336	352	39, 997
1922-23	3, 896	6, 303	4,580	3,943	1,895	2, 106	2, 451	3, 291	2, 221	1, 394	353	217	32, 650
1923-24	2, 481	3,926	1,804	1,573	1,001								

Division of Statistical and Historical Research. Compiled from Chicago Board of Trade and the Seed World.

Table 377.-Forage plant seed: Imports into United States, 1911 to $1923 .{ }^{1}$

Kind of seed.	For fiscal year ending June 30.												
	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
Alfalfa	1,000 lbs. 1,272	1,000 libs. 3,394	1,000 libs. 6, 104	1,000 libs. 5,203	1,000 libs. 6,930	$\begin{aligned} & 1,000 \\ & l b s .5 \\ & 3,252 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { libs. } \\ & 3,170 \end{aligned}$	$\begin{gathered} 1,000 \\ \text { lbs. } \\ \hline \end{gathered}$	$\begin{gathered} 1,000 \\ \text { ibs. } \\ 770 \end{gathered}$	$\begin{gathered} 1,000 \\ 18,85 \\ 18,81 \end{gathered}$	1,000 lbs. 942	$\begin{aligned} & 1,000 \\ & \text { lbs. } \\ & 7,259 \end{aligned}$	1,000 libs. 8,784 8,
Canada bluegrass.-	${ }^{1} 786$	${ }^{3} \mathbf{3} 6$	791	567	1,043	698	495	1,229	739	552	1,148	1,034	836
Kentucky bluegrass -	${ }_{165}^{25}$										9		
Awnless bromegrass Alsike clover	165	1, \mathbf{r}^{6}	$\begin{array}{r} 75 \\ 760 \end{array}$	2, 688	778	$\begin{gathered} (4) \\ 1,113 \end{gathered}$	4,329	3, 528	7,032	5,648	4, 121	7,057	5, 566
Crimson clo	3, 529	3,407	5, 377	8, 534	11,690	4, 504	5,776	1,603	1,484	10, 053	5,566	3, 443	2, 262
Red clover	6, 143	19,674	5,333	5,921	8, 932	32, 509	5, 344	768	1,051	19, 268	16, 333	10,391	448
White clover	473	543	979	640	373	149	158	53		189	516	1,623	520
Biennial white sweet clover						${ }^{(3)}$	95	71	941	2,215	3,133		
$\begin{aligned} & \text { Biennial yellow } \\ & \text { sweet clover } \end{aligned}$											35		
Clover mixtures.							26	169	550	265	23	57.	20
Grass mixtures.-.							124		(4)	3		43	${ }^{(4)}$
Spring vetch and oats mixtures.													
Meadow fescue										2			
Broom-corn mille	2, 254	3, 776	1,194	1,520	1,305	1,102	786	1,584		225	152	1, 496	5,360
Foxtail millet	482	137	291	1523		118	1, 268	9	138	2,771	434	2,922	768
Orchard grass Rape.	+ ${ }_{\text {, } 516}$	1,266	1,194	2,989	3,966	4,019	2,286	11, 316	1779	5,766	4, 245	4,763	6, 384
Redtop.											${ }^{(4)}$		11
Perennialryegra	605	1,626	1,117	1,429	1,342	1,510	1,668	1,584	831	1,958	1,523	1,868	1,834
Italian rye grass	251	321	345	311	485	383	481		208	80	577	828	36
Timothy	320	378			18				155	$\left\lvert\, \begin{array}{r} 37 \\ 1,220 \end{array}\right.$	1,387		32 1,599
Hairy vetch	965 2,076	646 531	1,948 1,390	2,477	466 221	68 62	296 30	118	435	1, 1248	1,387 542	1,941	1,858
Spring vetch	2,076				22	62		- 118					

Hay, Feed, and Seed Division.

[^223]Table 378.-Alfalfa seed: Farm price per bushel, 15th of month, United States, 1912-1923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June	A verage
1912	\$8. 32		\$9.	\$7.87								08	21
1913	8. 20	7.96	7.42		6. 36	6. 60	6. 55	6. 88	6. 60	6. 77	6. 77	83	${ }^{96}$
1915-16	8.51	8.30	7.94	8.37	8.65	8.88	8.84	9. 20	${ }^{10.92}$	10. 39	10.70	10.10	16
1016-17	10.30	9. 33	9.27										
- 1917818	${ }_{968}^{8.71}$	8. 88	9.04	9. 94	${ }_{9}^{9.43}$	${ }_{9}^{9.58}$	10.14	9.900	10.60	10. ${ }^{33}$	10. 09	13	
1919-20....	10.88	11.34	12.34	14.90	15.23	16.68	16.60	19.57	21.43	21.80	22.40	20.42	${ }^{16.97}$
1920-21	19.41	16.03	14.89	13.35	12.25	10. 24	5	9.01					
1921	7.89	8. 51	8.53	8.33	8.09	7.63	7.39	8.45	7.50		8.89		8.22
1923-24	-9.00	7.74 10.38	8. 9.20	r ${ }^{70.75}$	-8. ${ }^{8} \mathbf{8 1}$	9.45		9.96	10.56	10.44	10.59		9.36

Division of Crop and Livestock Estimates.
Table 379.-Clover seed: Farm price per bushel, 15th of month, United States, 1910-1923.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 . \end{aligned}$	Sept:	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Weighted av.
-1910	\$8. 27	\$8. 13	\$7. 70	\$7.94	\$8. 27	\$8. 37	\$8.56	\$8.79	\$8. 74	\$8.80	\$8.83	\$9. 65	\$8. 30
1911-12	10.19	10.33	10.37	10.62	10.89	12. 22	12.89	12.91	12. 53	11. 69	10.64	9.80	11. 25
1912-13	9. 39	9.37	9.06	9. 00	9.41	10.28	10.42	11. 00	10.74	9.77	9.78	9.37	9.71
1913-14	7.31	7.00	7.33	7. 70	7.99	8.07	8.17	8. 06	7.87	7.96	8.12	8.76	7.75
Av. 1910-19	8. 79	8.71	8.62	8. 82	9.14	9.74	10.01	10.19	9.9	9. 56	9.34	9. 40	9.25
1914-15	9. 10	8.24	8.02	8.12	8.51	8.60	8. 5	8.36	8. 1	7.90	7. 9	7.9	8.41
1915-16	8.49	9.70	9.67	10. 01	10. 27	10.47	10.76	10. 58	9. 9	9.47	9. 15	9.12	9.98
1916-17	8.65	8.54	9. 20	9.40	9. 60	9.87	10.32	10.41	10. 40	10. 29	10. 50	10. 53	9.54
1917-18	10.89	11.92	12.91	13. 53	14. 48	16. 46	17.49	17. 86	16. 56	15. 88	14. 71	15. 20	14.48
1918-19	16.61	19.01	20. 03	20.67	21. 55	21.79	22.81	24.81	24. 48	23.37	23. 25	24. 33	21.01
1919-20	25.38	26.47	26. 53	27. 63	28, 06	31.21	31. 88	32. 23	29.84	26. 21	25. 52	19.97	28.34
1920-21	17.77	13. 18	11. 64	10. 28	10. 82	10.61	10.98	10.80	10.71	10. 20	10. 00	10.37	11. 81
Av. 1914-1920	13. 84	13.87	14.00	14. 23	14.76	15. 57	16.08	16. 44	15.73	14.76	14. 44	13.92	14.80
1921-22	10.25	10. 21	10. 09	10.38	10. 69	11.88	13.00	13. 13	12.84	11. 60	11.00	9. 88	11. 14
1922-23	8.85	9. 66	10. 18	10.88	11. 16	11.52	11.71	11. 48	11.20	10.84	10.94	10.46	10.71
1923-24	11.07	12. 20	12.18	12. 22									

Division of Crop and Livestock Estimates.
Table 380.-Timothy seed: Farm price per bushel, 15th of month, United States, 1910-1923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Weighted av.
1910-11		\$3. 77	\$4. 03	\$4. 08	\$4. 11	\$4.12	\$4. 51	\$4.93	\$5. 17	\$5. 24	\$5. 24	\$5. 48	\$4. 28
1911-12	\$6. 52	6.65	6.91	6.90	6. 72	6.99	7.26	7.33	7.27	7.16	6.68	5. 96	6.87
1912-13	3. 20	2.09	1.95	1.82	1.79	1. 79	1.78	1. 72	1.74	1.76	1.77	1.94	2. 01
1913-14	2.01	2.13	2.02	2.08	2.10	2. 07	2.12	2.30	2. 28	2.38	2. 23	2.32	2. 13
Av. 1910-1913	3.91	3. 66	3.72	3. 72	3.68	3. 74	3. 92	4.07	4. 12	4.14	3.98	3.92	3.82
1914-15	2.43	2.46	2. 34	2.34	2. 18	2.63	266	2.78	2.69	2. 7	2.65	2. 57	2.49
1915-16	2. 56	2.62	2.72	291	2.86	3. 05	3.19	3.28	3. 51	3.33	3.26	3. 08	2.89
1916-17	2. 36	2.22	2.27	2.25	2.31	2.44	2.46	2.70	2.76	3.09	3. 09	3.04	2.42
1917-18	3.23	3.31	3.61	3. 25	3.37	3. 57	3. 78	3.84	3. 74	3.84	3. 56	3.67	3. 50
1918-19	3. 87	3. 79	4.08	4.26	4.21	4. 34	4. 51	4. 54	4.69	5. 05	4. 63	4.49	4.19
1919-20	4. 58	4.55	4.78	4.67	4.98	5. 35	5. 62	5. 61	5. 63	5.61	5.46	5. 44	4.98
1920-21	4. 44	3. 52	3.25	3. 09	3.16	3. 04	2.75	2.97	2.84	2.90	2.99	2.98	3. 29
Av. 1914-1820	3.35	3.21	3. 29	3. 25	3. 30	3.49	3. 57	3.69	3.69	3. 80	3. 66	3.61	3.39
1921-22	2.71	2.31	2.70	2.41	2. 57	2.70	2.82	2.95	3. 11	3.21	2.81	2. 53	2.64
1922-23	2.20	2. 28	2. 48	2.49	2. 69	3. 06	2.98	3.00	2. 99	2.87	2.92	3.16	2.60
1923-24	2. 63	3.01	3.12	3.15	3. 19								

Table 381.-Field seeds: Average price per 100 pounds paid to growers for crops of 1919-1922.

ALFALFA SEED.

State or State subdivision.	1919	1920	1921	1922	State or State subdivision.	1919	1920	1921	1922
Southern A	\$35. 50	\$17.00	\$14.35	\$15.50	Montana	\$26.00	\$17.00	\$17.85	\$21. 05
California	30.00	15.90	14.00	14.75	Nebraska	26. 00	15.80	10.10	13.90
Colorado.	27.00	13.00	11.85	11.60	Eastern New Mexico.	27.50	14. 00	10.80	13.00
Southern Idaho	31.65	11.80	12.00	14.95	Western Oklahoma--	22.30.	12.85	11.20	13.30
Northeastern Kansas.-	25.05	13.60	11. 10		Western Oregon.	$28.70{ }^{\circ}$	18.00	13.00	
Northwestern Kansas.	26.75	14. 25	10.65	12.10	South Dakota.	31.45	18.75	13.20	17.00
Southeastern Kansas.-	28.30	16. 40	13.60		Western Texas	23.50	20.65	14.75	13.10
Southwestern Kansas.	26.60	14.70	11.35	12.90	Northern Utah	33.50	16. 00	11.75	15. 50

ALSIKE CLOVER SEED.

Southern Idaho	\$40.15	\$22.00	\$14. 50	\$13.60	Western New York	\$39. 20	\$21, 10	\$14.50	
Northern Illinoi	39.60	22.05	14.65	13. 80	Northwestern Ohio.-	40.80	22. 30	13.30	\$12.90
Northern Indiana	41.70	21. 75	14. 80	14.55	Western Oregon.	40.45	23.50	13.65	15.20
Iowa	40.35	19.95	15. 15		Northeastern W is-				
Southern Michiga	44.90	20.90	13.50	13.50	consin.	40.25	18.95	14.30	11.80
Minnesota..	39.25	19.25	13. 65	12.95	Southeastern Wisconsin.	41.20	20.20	14. 20	12.85

RED CLOVER SEED.

Idaho	\$45. 60	\$13.95	\$15. 10	\$16.75	Missouri	\$39.25	\$15.85	\$16.05	\$15. 55
Northern Illinois	43.30	18. 70	16. 30	17.25	Nebrask8	41.25	14.65	15.35	16. 15
Central Illinois.	43. 70	18.40	16. 55	16.55	Northwestern Oh	44. 40	19.05	17. 20	17.55
Northern Indiana	45. 50	19.10	17.00	17.20	Western Oregon.	47.50	22.35	15.30	20.10
Central Indiana.	45. 50	18. 50	16. 55	16. 15	Washington.	45.00	18.00	15.25	
Southern Indiana	42. 50	16. 05	16. 45	15. 85	Northeastern Wis-				
Northeastern Iowa	42.10	17.80	16. 45	16. 60	consin.	43.80	16.30	16.65	17.35
Southeastern Iow	40.50	18.30	15.40	16. 10	Southeastern Wis-				
Southwestern Iow	42.70	17.25	15. 90	17. 05	consin----------	45.60	18. 40	17.55	17.90
Kansas.-.----	40.50	15. 65	15. 30	16.30 17.35	Southwestern Wisconsin				
Southern Michig	45.00 43.10	17. 10	16.60 15.50	17.35 17.10	consi	43.55	16.75	16.85	17.45

SWEET CLOVER SEED.

Colorado.	\$21. 60	\$9.90	\$4. 25	\$4. 55	Nebraska	\$25.00	\$12.50	\$6. 50	
Idaho	24.75	10.00	6.50		North Dakota	23. 00	9.60	4.40	\$7.35
Illinois	24. 00	16. 30	10.15	7.10	Oklahoma.	22.00	9.00	5.00	
Kansas	23.50	8.15	5.10	7.75	South Dakota	21.00	9.50	5.00	7.00
Minnesota	21. 00	8.00	4. 50	6.85	Utah	26. 00	8. 50	3.00	
Montana	23.25	11. 50	5.00	7.00					

TIMOTHY SEED.

Southern Idaho.	\$11. 25	\$5. 25	\$4.10	\$4.45	Northeastern Mis-				
Northern Illinois	9.85	6. 50	4. 50	4.70	souri.-.-.-.-	\$10. 55	\$5. 75	\$4. 30	\$4.95
Central Illinois.	10. 50	6. 30	4.85	4.95	Northwestern Mis-				
Southern Illinois	10. 15	6.75	4.95	5.15	souri --------------	10.60	5.50	3.95	4.60
Indiana.	10. 75	6.25	4.70	5.15	Southwestern Mis-				
Northeastern Iowa	10.10	5. 40	4.20	4.70	souri	10.35	4. 55	3.70	
Northwestern Iowa	9. 76	5. 90	4.15	4.50	Nebraska	9.60	5. 50	5. 50	
Southeastern Iowa.	10. 60	6. 05	4.50	4.60	North Dakota	9.35	5.80	5. 20	4. 55
Southwestern Iowa	10. 65	5. 50	4. 10	4.55	Northeastern Ohio -.-	11. 05	6.65	4. 85	4.95
Kansas .-.-.-.-------	10.00	5.25	5.60		Northwestern Ohio.-	10. 70	5.85	4.70	5.00
Northwestern Minnesota	9.56	5.10	4.35	4. 55	Northeastern South Dakota	9.55	5.05	4.45	4.60
East central Minne-					Southeastern South				
	9.65	5.75 5.50	4.40 4.45	5.05 4.85	Wisconsin	9.95 10.00	5.65 5.90	4.05 4.80	4.60 5.05
West central Minnesota	9.90	5. 25	4.75	4.75					

Division of Statistical and Historical Research. Weighted average price based on reports received annually from seed shippers.

Table 382.-Alfalfa seed: Average spot price per 100 pounds, Kansas City, 19101923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Average.
1910-11	(1)	(1)	\$13.34	\$12.88	\$12.88	\$12.88	\$12. 88	\$12. 88	\$12. 88	(1)	(1)	(1)	
1911-12	(1)	(1)	11. 50	10.48	10.00	10. 17	11.03	10.90	10.91	\$10. 45	\$10. 25	\$10. 41	
1912-13	\$10. 50	\$10. 27	9.84	9.64	10. 00	10. 00	9.90	9.81	9.88	10. 09	10. 25	11.71	
1913-14	10.00	9.57	8. 25	8.12	7.70	7. 75	8.00	8.00	9.88 8.00	10.09 8.42	10.25 9.35	11.51 9.50	8. 56
1914-15	9.50	10. 20	11.88	10. 34	10. 00	10.37	11. 87	13. 15	13. 11	12. 53	12. 25	12. 25	11.45
1915-16	(1)	14. 17	14.98	15. 69	15. 57	16. 08	17. 40	16. 23	17. 25	17. 25	17.25	17. 25	
1916-17	17.81	17. 58	12. 63	11. 23	10. 50	10. 66	10. 62	11. 00	11. 00	11. 18	11.80	12. 00	$12.3 \overline{3}$
1917-18	12. 00	12. 52	13. 25	13. 51	14. 00	14.00	13. 50	13. 50	13. 50	14.38	15. 00	12. 42	13. 47
1918-19	12. 90	13. 91	13. 02	13.12	13. 45	13. 31	13. 58	13. 75	13. 75	13. 04	14. 27	14. 21	13. 53
1919-20	14. 50	17. 70	20.00	23.50	27. 72	30. 00	30. 00	33. 77	20.73	25. 00	25. 00	25. 00	24. 41
1920-21	25. 00	25. 00	14. 79	14.67	12. 50	14. 00	15.00	14. 62	13. 25	13. 75	13. 25	12. 75	15. 72
Av., 1914-1920.	15.28	15.87	14. 36	14.58	14.82	15.49	16. 00	16.57	14.66	15.30	15.55	15.13	15.31
1921-22	12. 75	12. 75	12.12	11. 50	11. 50	11.00	11.12	12. 25	13. 88	14. 25	13. 00	13. 00	12. 43
1922-23	(1)	13. 12	14. 50	14. 25	16. 00	17. 50	17.85	17.35	16. 00	16. 10	15. 90	15. 00	
1923-24	$\left.{ }^{1}\right)$	${ }^{(1)}$	14.75	14.65	17.10								

Division of Statistical and Historical Research. Compiled from Kansas City Price Current and the Seed World.
${ }^{1}$ No quotations.
Table 383.-Red clover seed, prime contract grade: Average spot price per 100 pounds, Chicago, 1910-1923.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Average.
1910-11	\$16. 13	\$15. 13	\$14.45	\$14.86	\$15. 04	\$14.80	\$15. 25	\$15. 13	\$15. 81	\$16. 10	\$15. 75	\$19. 25	\$15. 64
1911-12	20.10	20. 63	20.63	20.75	21. 81	23. 13	22.50	21. 63	20. 55	20.13	20.00	16. 00	20.66
1912-13	17. 56	18. 38	18. 05	18. 88	19. 90	19.88	19. 25	21. 38	18. 40	16. 00	15. 50	14. 70	18.16
1913-14	11.00	13. 35	13.96	14.88	14. 75	14. 46	14. 04	13.00	13.00	13.50	14. 15	17.81	13.99
1914-15	17. 19	15. 08	15. 00	15. 59	15. 84	15. 29	14. 30	13. 80	13.50	13. 50	13.50	15. 19	14.82
1915-16	18. 40	21. 05	20.06	20.72	19. 59	21. 19	18.00	16. 69	16. 00	14. 60	14. 00	15. 63	17. 99
1916-17	14. 85	16. 00	17. 50	17.91	18. 19	19.38	18. 81	17.90	18. 33	18. 39	19.08	20.33	18. 06
1917-18	22. 36	25. 16	26. 81	27. 45	31. 40	34. 35	33. 72	32. 15	30.51	30. 45			
1918-19	35. 00	35. 50	36. 00	37. 50	42. 60	42. 60	51.60	50.00	46. 60	45.80	49.10	50.00	43.52
1919-20	50.00	53. 10	51. 20	52. 00	54. 23	55. 73	54. 22	44.96	35. 00	35. 00	35. 00	29.85	45.86
1920-21	26. 58	22. 28	21.67	20.00	21. 52	18. 55	18. 19	17.85	19.00	19.00	19.00	19.00	20. 22
Av., 1914-1920	26. 34	26. 88	26. 89	27.31	29.05	29.58	29.83	27.62	25. 56	25. 25			
1921-22	18. 01	18. 32	18. 50	18.50	20. 84	22. 49	24.52	22.00	21. 77	19.38	18.00	16. 22	19.88
1922-23	16. 42	19. 40	20.22	20.12	20.45	20. 50	19.65	18.00	16.90	17.46	17.50	17.52	18.68
1923-24	20.08	22.15	21. 00	20.62									

Division of Statistical and Historical Research. Compiled from Chicago Board of Trade and the Seed World.
Table 383 A.-Alsike clover seed: Average spot price per bushel, Toledo, 1914-1928.

Year beginning Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1914-15						\$8.96	\$8. 59	\$8. 17	\$8. 05	\$7.90	\$8.52	\$9. 13	
1915-16	\$9.59	\$10. 27	\$10. 35	\$10. 33	\$10. 26	10.07	9. 40	9. 15	9. 10	9. 48	9. 53	9. 88	\$9.78
1916-17	9. 83	10. 24	10. 72	11. 10	11. 30	11. 62	11.51	11. 56	11. 50	11. 40	11.62	11. 74	11.18
1917-18	12.57	13. 34	14. 35	14. 46	15.31		15. 59	15. 31	15. 22	12.37			
1918		18.17		19.66	18.70	16.92	20. 09	25. 41			24. 23	25.00	
1919-20	25.30	28.72	29.97	31. 47	34. 57	35.17	35.71	130.89	24. 37	25. 52	23.95	19.24	28.74
1920-21	16. 84	17. 35	17. 70	16. 96	16. 00	15. 34	14.98	13. 93	13. 50	12.43	10.82	10.71	14.71
1921-22	10. 62	10. 72	10. 64	11. 05	11. 64	12. 37	11.92	11. 46	11. 27	11. 71	10. 82	9.81	11. 17
1922-23.	10. 11	10. 50	10. 74	10. 91	10.76	10. 54	10. 50	10. 50	10. 42	10. 25	10.16	10.48	10.49
1923-24	10. 52	10.18	9.67	9.43									

[^224]Table 384.-Timothy seed, prime contract grade. Average spot price per 100 pounds, Chicago, 1910-1923.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	A pr.	May.	June.	July.	$\begin{array}{\|l} \text { A ver- } \\ \text { age. } \end{array}$
1910-11	\$6.36	\$9.45	\$9. 32	\$9.64	\$9.97	\$10.41	\$11. 40	\$12.03	\$12. 00	\$12.00	\$11. 55	\$13.50	\$10. 64
1911-12	14.31	15. 20	15. 81	16. 00	16. 45	16. 25	16. 25	15. 60	14. 50	13. 70	11. 63	10. 25	14. 66
1912-13	6. 13	4. 81	4. 44	4.05	4. 13	4. 13	3. 88	3.76	3.88	4. 16	4. 69	5. 28	4.44
1913-14	5. 59	5. 58	5. 51	5. 41	5. 55	5. 53	5. 45	5.19	5. 30	5. 47	5. 63	5.87	5. 51
1914-15	6.31	6. 34	5. 64	5. 48	6.61	7. 89	7.45	7.35	8. 84	6.88	7.25	7. 40	6.95
1915-16	8. 19	9.19	8.35	8. 46	8. 73	8. 70	8. 75	8. 55	8. 50	8. 94	9. 20	8. 75	8.69
1916-17	7.00	4.99	5. 43	5. 50	5. 74	5. 55	5. 55	5. 78	6. 81	8. 20	8.14	8. 01	6. 39
1917-18	8. 25	8. 44	8. 56	7.82	7.63	8. 25	8.94	8. 55	8.25	8.41	7.81	8.88	8.32
1918-19	8. 90	10.00	10.00	10.30	11. 00	11. 00	10. 00	10. 50	11. 00	12. 00	12. 00	12.00	10.72
1919-20	11. 75	11. 50	11. 25	11. 50	12. 25	13. 62	14. 30	13. 07	11. 76	12. 00	12. 00	11. 85	12. 24
1020-21	8. 89	7. 50	6. 71	6.69	6. 13	5. 78	5. 05	4.65	5. 04	5. 30	5. 27	5.07	6.01
AV., 1914-1920	8.47	8. 28	7.99	7. 96	8.30	8. 68	8. 58	8. 35	8. 60	8. 82	8.81	8.85	8. 47
1921-22	4. 50	4.30	4.85	5.31	5. 53	5. 94	6.00	5. 69	5. 22	5. 19	4. 67	4. 50	5. 14
1922-23	4. 59	4. 96	5.89	6. 26	6. 25	6. 25	6. 19	5.81	5. 50	5. 70	6.13	6. 04	5. 80
1023-24	5. 91	7.19	7.45	7. 24	7. 25								

Division of Statistical and Historical Research. Compiled from Chicago Board of Trade and the Seed World.

Table 385.-Alfalfa seed: Price per bushel paid by farmers, 15th of month, United States, 1912-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1912						\$10. 25	\$10. 07	\$10.07	\$10. 52	\$9. 84	\$9. 73	\$9.49
1913	\$8.25	\$9.60	\$9.78	\$9.99	\$9. 75	9.73	9. 41	10. 06	8. 96	8. 73	7.65	7.25
1914	8. 30	7.98	8. 01	8.17	8.38	8.31	8. 29	7.79	8. 85	8.97	8. 45	8.81
1915.	8. 79	9.29	9.58	9.50	9.62	9.61	9.61	9.14	9.60	10.00	9.71	0.75
1916	10. 27	11.04	12.21	12. 54	12. 10	12. 10	11. 67	11. 51	11. 30	10. 67	10.00	10.31
1917.	9.72	9.98	10.34	10. 32	10.52	10.79	10.87	10. 52	10.72	11. 00	10.94	11. 16
1918	11. 84	12. 00	12.24	1234	12. 35	12.04	11. 70	13.06	12.43	11. 82	11.68	1200
1910	12. 48	12. 70	13. 12	13. 65	14.32	14. 24	14. 51	14. 11	15. 47	16. 57	17. 51	20.27
1920	21. 25	22.66	24.64	25. 22	25. 08	24. 22	23. 70	21. 05	21. 19	18. 32	16. 87	12.99
1921	10. 91	12. 74	12.47	11.62	11. 43	11. 84	10.70	11.00	11. 14	10.51	10. 14	11.38
1922	10. 33	10. 76	11. 37	11. 72	11. 45	11. 24	11.38	10.38	10. 67	10. 94	11. 19	11.69
1923.	11. 99	12. 42	12.50	12.85	13.19	12.64	12.17	12. 05	12.15	12.86	12. 31	1244

Division of Crop and Livestock Estimates.
$\mathrm{T}_{\mathrm{able}}$ 386.-Cloverseed: Price per bushel paid by farmers, 15th of month, United States, 1912-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1912						\$13.49	\$12. 82	\$11.78	\$11. 61	\$11.28	\$11. 23	\$11. 10
1913	\$11. 39	\$11. 62	\$12. 30	\$12.90	\$12.90	12.47	12.12	11. 94	10. 22	9.32	9.13	9. 43
1914	9.82	9.77	9. 45	9.84	9. 77	9.86	9.79	10. 39	10. 76	11. 32	10.06	10. 04
1915	10. 34	10. 32	10. 33	10. 08	9. 99	9.89	10.05	9.79	10. 18	11. 14	10. 25	11. 56
1916	11.98	12. 22	12. 58	12. 59	12. 14	11. 71	11. 20	11. 27	10. 90	10. 61	10.87	11. 10
1917	11. 29	11.67	12.07	12. 28	12. 30	12. 23	12.36	12.38	12. 64	13.26	14.26	14.99
1918.	16. 45	18.90	20.13	20.35	19.71	19. 15	18.71	17.84	19. 42	20.84	21.25	23.10
1919	24. 25	25. 04	25. 72	28. 24	28. 07	27.87	27. 22	27.82	28. 73	28.82	29.63.	31.04
1920	32. 09	35. 00	35. 64	35. 73	34. 28	32. 05	31. 38	27.64	23. 31	18. 94	16. 13	14. 66
1921	14. 02	13. 62	13. 52	13. 56	13. 48	13. 38	13. 17	13. 55	13. 00	12. 84	12.89	12.82
1922	13. 44	14. 10	15. 39	15. 40	15. 12	14. 48	14. 04	13. 20	12. 11	12.64	12.85	13.32
1923..........	13. 76	14. 06	14. 12	14.02	13.94	13. 66	13. 55	13.41	13. 84	14.38	13.40	14.30

[^225]Table 387.-Timothy seed: Price per bushel paid by farmers, 15th of month, United States, 1912-1923.

Calendar year.	Jan	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1912						\$7.37	\$6. 59	\$3. 89	\$3.06	\$2. 84	\$2. 67	\$2. 47
1913	\$2. 51	\$2. 47	\$2. 33	\$2. 43	\$2. 40	2.44	2.57	2.76	2.84	2.85	2.87	2.84
1914	2.90	2.94	2.97	2.95	2.97	2.98	2.99	3.17	3.25	3. 19	3.11	3.05
1915	3.42	3. 56	3. 60	3. 57	3. 46	3.48	3.49	3. 48	3. 59	3.74	3.69	3.73
1916	3.80	3.96	3. 98	4.03	4.04	4.01	3.99	3. 50	3.08	3. 01	3.05	3.11
1917	3.17	3. 22	3. 24	3. 27	3.60	3.81	3.93	3. 98	4.12	4.14	4.12	4. 20
1918	4.49	4. 55	4.67	4.58	4. 55	4.56	4. 55	4.71	4.98	5.10	5. 20	5.23
1919	5.43	5.45	5. 50	5. 56	5. 73	5.68	5.79	5.96	5.92	6.05	6. 06	6. 24
1920	6.43	6.87	6.94	7.03	6.91	6.88	6. 83	6.01	5.41	4.84	4.70	4.54
1921	4.40	4.27	4.05	4.08	4.02	4.10	3.91	3.65	3.41	3.48	3. 52	3.63
1922	3.83	4.04	4.00	4.03	4.04	3.88	3. 79	3. 56	3. 34	3. 48	3. 69	3. 74
1923	3.93	3.94	3.97	3.95	3.99	4.03	4.03	3.61	3.93	4.13	4. 24	4. 14

Division of Crop and Livestock Estimates.

TOBACCO.

Table 388.-Tobacco: Acreage, production, value, exports, etc., United States, 1849-1923.

Calendar year.	Acreage.	Average yield per acre.	Production.	Average farm price per pound Dec. 1.	Farm value Dec. 1.	$\begin{gathered} \text { Value } \\ \text { per } \\ \text { acre } \\ \text { Dec.1. } \end{gathered}$	Domesitc exports of unmanufactured, fiscal year beginning July 1.	Imports of unmanufactured, fiscal year beginning July 1.
1849	Acres.	Pounds.	Pounds. $199,758,000$	Cents.	Dollars.	Dollars.	Pounds.	Pounds.
1859			454,209, 000					
1869			868,785, 000					
1879	639,000	793.1	506, 663, 000	6.0	30, 200, 000	47. 26		
1889	695, 000	658.5	457, 881, 000	6. 9	31, 696, 000	45. 61		
1899	1,102,000	728.5	802, 397, 000	7.1	57, 273, 000	51. 97		
1900	1,046, 000	778.0	814, 345, 000	6.6	53, 661, 000	51.30	315, 787, 782	26, 851, 253
1901	1,039, 000	788.0	818,953, 000	7.1	58, 283, 000	56. 10	301, 007, 365	29, 428, 837
1902	1,031, 000	797.3	821, 824, 000	7.0	57, 564, 000	55.83	368, 184, 084	34, 016, 956
1903	1,038, 000	786.3	815, 972, 000	6.8	55, 515, 000	53.48	311, 971, 831	31, 162, 636
1904	806,000	819.0	660, 461, 000	8.1	53, 383, 000	66.23	334, 302, 091	33, 288, 378
1905	776, 000	815.6	633, 034, 000	8.5	53, 519, 000	68. 97	312, 227, 202	41, 125, 970
1906	796, 000	857.2	682, 429, 000	10.0	68, 233, 000	85, 72	340, 742, 864	40, 898, 807
1907	821, 000	850.5	698, 126, 000	10. 2	71, 411, 000	86. 98	330, 812, 658	35, 005, 131
1908	875, 000	820.2	718, 061, 000	10.3	74, 130, 000	84, 72	287, 900, 946	43, 123, 196
1909	1,295,000	814.8	1,055, 133, 000	10.1	106, 374, 000	82.14	357, 196, 074	46, 853, 389
1910	1,366, 000	807.7	1, 103, 415, 000	9.3	102, 142, 000	74.77	355, 327, 072	48, 203, 288
1911	1, 013, 000	893.7	905, 109, 000	9.4	85, 210, 000	84.12	379, 845, 320	54, 740, 380
1912	1,226, 000	785.5	962, 855, 000	10.8	104, 063,000	84.88	418, 796, 906	67, 977, 118
1913	1,216, 000	784.3	953, 734, 000	12.8	122, 481, 000	100. 72	449, 749, 982	61, 174, 751
Av. 1909-1913.	1, 223, 000	814.4	996, 049, 000	10.4	104, 054, 000	85.08	392, 183, 071	55, 789, 785
1914	1,224, 000	845.7	1, 034, 679, 000	9.8	101, 411, 000	82.85		
1915	1,370, 000	775.4	1, 062, 237, 000	9.1	96, 281, 000	70.28	443, 293, 156	$48,013,335$
1916	1, 413, 000	816.0	1, 153, 278, 000	14.7	169, 672, 000	120.08	411, 598, 860	46, 136, 347
1917	1, 518, 000	823.1	1, 249, 276, 000	24.0	300, 449, 000	197. 92	289, 170, 686	79, 367, 563
1918	1, 647, 000	873.7	1, 439, 071, 000	28.0	402, 264, 000	244. 24	629, 287, 761	$83,951,103$
1919	1,951, 000	751.1	1, 465, 481, 000	39.0	570, 868, 000	292. 60	648, 037, 655	94, 005, 182
1920	1,960, 000	807.3	1, 582, 225, 000	21.2	335, 675, 000	171.26	506, 526, 449	58,923, 217
Aจ. 1914-1920.	1,583, 000	811.0	1,283, 750, 000	22.0	282, 374, 000	178.38	468, 037, 237	65, 165, 925
1921	1, 427,000	749.6	1, 069, 693, 000	19.9	212, 728, 000	149.07	451, 888, 436	65, 225, 437
1922	1,695, 000	735. 6	1, 246, 837, 000	23.2	289, 248, 000	170.65	445, 186, 472	75, 783, 440
$1923{ }^{2}$	1,820, 000	810.3	1, 474, 786, 000	20.3	298, 936, 000	164. 25		

Division of Crop and Livestock Estimates.

${ }^{1}$ Based upon farm price Dec. 1.
2 Preliminary.

Table 389.-Tobacco: Acreage, production, and total farm value, by States, 1922 and 1923.

State.	Thousands of acres.		Production, thousands of pounds.		Total value, thousands of dollars, basis Dec. 1 price.	
	1922	19231	1922	19231	1922	19231
Massachusetts.	9	10	9,612	14, 100	3,633	6,176
Connecticut	28		29, 260	40, 252	11,792	18,717
New York	2	2	2,2200	2, 250	821	450
Pennsylvania	43	45	56,760	58,950	9, 082	10,700
Maryland.-.	26	24	20, 020	19, 008	3, 504	4,182
Virginia	209	182	156,750	134, 680	37,620	26, 936
West Virginia	9	9	7,425	7,740	1,634	1,703
North Carolina	505	552	252,500	386, 400	76, 508	81, 144
South Carolina	85	102	54, 400	74,460	12,512	17,870
Georgia-.-.---	11	17	5,940	11, 237	1,544	3,371
Florida	3	4	3,300	4,292	1,551	2, 146
Ohio....	48	47	41, 400	42, 770	7,866	7, 271
Indiana	18	22	16, 200	19, 800	2,754	3, 287
Wisconsin,	40	44	45, 600	48, 092	9,120	11, 157
Missouri	5	6	4,500	6,600	1,305	1,848
Kentucky	525	578	446, 250	494, 190	87, 019	82, 036
Tennessee.	130	146	94, 250	109,500	20, 735	19, 710
Louisiana	1	1	450	465	248	232
United States	1,695	1,820	1,246, 837	1, 474, 786	289, 248	298, 936

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 390.-Tobacco: Acreage, production, and farm value, by types and districts, 1922 and 1923.

Types and States.	Acreage.		Yield per acre.		Production.		Price per pound. ${ }^{1}$		Farm value.	
	1922	$1923{ }^{2}$	1922	1923	1922	$1923{ }^{2}$	1922	1923 ${ }^{2}$	1922	19232
Cigar types:	Acres.	Acres.	Lbs.	Lbs.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	Cents.	Cents.	1,000	1,000 dolls.
Massachusetts	9,000	10,000	1,068	1,410	10,612	14, 100	37.8	43.8	3,633	6,176
Connecticut	28, 000	29,000	1,045	1,388	29, 200	40, 252	40.2	46.5	11,792	18, 717
New York	2,000	2,000	1,110	1,125	2,220	2,250	37.0	20.0	821	450
Pennsylvan	43, 000	45, 000	1,320	1,310	56,780	58, 950	16.0	18.1	9,080	10,700
Ohio	28,900	27,600			26, 290	25,530	14.0	14.0	3, 682	3, 574
Indiana	500	600	800	870	400	522	10.0	13.5	40	70
Wisconsi	40,000	44,000	1,140	1,093	45,600	48,092	20.0	23.2	9, 120	11,157
Georgia Florida	1,500	1,800	1,033 1,100	1,000 1,073	1, 3500	1,800 4,292	54.0 47.0	52.4 50.0	837 1,551	944 2,146
Total cigar types	155, 000	164, 000	1,123	1,194	175, 001	195, 788	23.2	27.5	40,556	53,934
Chewing, smoking, suuf, and export types: Burley-										
Virginia	1,800	2,200	1,000	1,100	1,800	2,420	26.6	20.0	479	484
West Vir	8,400	8,500	827	860	6,945	7,310	22.5	22.5	1,562	1,643
Ohio-	115,000	17,6000	885	${ }_{862}$	13,33	15, 176	19.	15.0	2, 601	2,276
Missouri	5, 000	6, 000	900	1,100	4,500	12,4860	29.0	188.0	2, 1,305	1,948
Kentack	260, 000	206, 000	860	880	223, 600	260, 480	25.0	21.0	55, 900	54, 701
Tenness	18, 300	24, 600	830	880	16,018	21,648	31.0	23.0	4,966	4,979
Total Burley	321, 100	369,300	858	883	275, 601	326, 116	25.2	20.8	60, 445	67,929
Paducah-										
Kentacky	72,000	78,500	825	810	59,400	63, 585	13.3	11.1	7,900	7,058
Tennessee	21, 500	25, 000	760	760	16,340	19,000	13.0.	11.0	2,124	2,090
Total Paducah	93, 500	103, 500	810	798	75, 740	82, 585	13.2	11.	10, 224	9, 148
$\begin{gathered} \text { Henderson- } \\ \text { Kentucky } \end{gathered}$	80, 000	83, 500	893	880	71,440	73, 480	15.0	12.2	10,716	8,965

Table 390.-Tobacco: Acreage, production, and farm value, by types and districts, 1922 and 1923-Continued.

Division of Crop and Livestock Estimates.

${ }^{1}$ The prices used in this report more nearly reflect the average price for the season than do the December 1 prices, and the values obtained differ from those published in the December, 1923, crop summary for that reason.
${ }^{2}$ Preliminary.

Table 391,-Tobacco: Yield per acre, by States, calendar years, 1908-1923.

State.	1908	1909	1910	1911	1912	1913	Av. 19091913	1914	1915
- Massachusotis	1, 580	${ }^{7}, 60000$	1, 73̇0	1, 650	1, 760	1,550	1,646	1,750	1,100
Connecticut	1,680	1,650	1, 730	1,625	1,700	1,550	1,651	1,770	1,350
New York	1, 175	1, 175	1, 250	1, 330	1, 300	1,020	1,215	1,300	1,200)
Pennsylvania	1, 325	985	1,500	1, 420	1,450	1, 200	1,311	1,450	1, 350
Maryland	700	710	690	735	660	740	707	800	749
Virginia	815	775	780	800	600	770	745	650	750
West Virginia	750	875	640	750	760	680	741	820	870
North Carolina	670	600	600	710	620	670	640	650	620
South Carolina	865	800	630	810	700	760	740	730	580
Georgia.	975	700	680	900	830	1,000	822	1, 000	880
Florida	990	710	680	940	840	1,000	834	1,000	910
Ohio	670	925	810	925	920	, 750	866	1,900	900
Indiana	700	950	880	910	800	750	858	900	840
Wisconsin	1, 130	1, 180	1, 050	1,250	1,290	1,180	1, 190	1, 180	900
Missouri	875	885	1, 050	800	1, 000	650	877	1,200	900
Kentucky	815	835	810	880	780	760	813	- 910	810
Tennessee	800	730	760	810	660	720	736	820	750
Louisiana	850	550	550	450	300	450	460	400	420
United States	820.2	814.8	807.7	893.7	785. 5	784.3	815. 1	845.7	775.4
State.	1916	1917	1918	1919	1920	$\begin{aligned} & \text { Av. } \\ & 1914- \\ & 1920 \end{aligned}$	1921	1922	1923
Massachusetts	1,660	1,400	1,500	1,540	1,550	1,500	1,370	1,068	1,415
Connecticut	1,630	1,400	1,500	1,565	1, 480	1,528	1,454	1,045	1,388
New York	1,230	1,250	1,250	1,290	1,280	1,257	1,250	1,110	1, 125
Pennsylvania	1,360	1, 400	1, 420	1, 320	1,510	1,401	1,460	1,320	1,310
Maryland	770	790	830	-675	875	- 783	715	770	792
Virginia	680	700	770	530	730	687	550	750	740
West Virginia	900	800	720	700	800	801	750	825	860
North Carolina	550	630	705	616	694	638	561	500	700
South Carolina	520	710	720	722	650	662	630	640	730
Georgia.	1, 180	1,000	800	530	600	856	564	540	661
Florida	1, 210	1,100	960	950	1, 050	1,026	900	1,100	1,073
Ohio_	950	960	980	860	960	930	920	900	910
Indiana	930	950	930	800	900	893	875	900	900
Wisconsin	1,270	1,000	1,330	1,270	1,248	1,171	1,281	1, 140	1,093
Missouri	950	940	900	1,000	1,000	984	925	900	1,100
Kentucky	900	900	960	800	850	876	846	850	855
Tennessee.	800	810	800	810	730	789	750	725	750
Louisiana	450	350	420	434	500	425	450	450	465
United States	816.0	823.1	873.7	751.1	807. 3	813.2	749.6	735.6	810.3

Division of Crop and Livestock Estimates.

Table 392.-Tobacco: Condition of crop, 1 st of month, and yield per acre, United States, 1867-1923.

$\begin{aligned} & \text { Calendar } \\ & \text { year. } \end{aligned}$	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.	Calendar year.	July.	Aug.	Sept.	Oct. ${ }^{1}$	Yield per acre.
	P.ct.	P.ct.	P. ct.	P.ct.	$L b s$.		P. ct.	P.ct.	P. ct.	P.ct.	Lbs.
1867		92.5	87.3	93.5	634.6	1900	88.5	82.9	77.5	76.1	778.2
1888	94.6	93. 7	92.4	98.9	751.4	1901	86.5	72.1	78.2	81.5	788.1
1869	100.0	92.7	78.1	83.7	569.1	1902	85.6	81.2	81.5	84.1	797.3
1870	101. 9	102.0	104.3	108.1	757.9	1903	85.1	82.9	83.4	82.3	786.3
1871	95.5	93.4	86.8	93.2	750.3	1904	85.3	83.9	83.7	85.6	819.0
1872	97.5	96.7	97.7	100.9	821.8	1905	87.4	84.1	85.1	85.8	815.6
1873	92.5	89.1	90.0	91.4	775. 3	1906	86.7	87.2	86.2	84.6	857.2
1874	75. 2	67.3	57.2	61.0	633.2	1907	81.3	82.8	82.5	84.8	850.5
1875	120.0	96.8	90.0	102.0	678.6	$\begin{aligned} & 1908 \\ & 1909 \end{aligned}$	86.6	85.8	84.3	84.1	820.2
	97.0	81.0	81.1	88.4	705.0		89.8	83.4	80.2	81.3	814.8
1877	102.0	100.6	97.3			1910	85.3	78.5	77.7	80.2	814.8 807.7
1878	95. 3	84.0	81.0		723.1	1911	72.6	68.0	71.1	80.5	893.7
1879	88.0	77.0	87.0		793. 1	1912	87.7	82.8	81.1	81.8	785. 5
1880	91.3	86.0	84.0		740.7	1913	82.8	78.3	74.5	76.6	784.3
1881-.--------	95.0	85.0	65.0		696.2	Av. 1909-1913	83.6	78.2	76.9	80.1	817.2
1882		87.0	90.0	95.4							
1883	95.0	88.0	80.0	77.9	706. 9	1914	66.0	66.5	71.4	81.8	845.7
1884	95.2	95.3	94.0	90.2	747.2	1915	85.5	79.7	80.7	81.9	775.4
1885-.------------	92.4	81.8	81.2	86.6	7409.9	1916	87.6	84.4	85. 5	85.6	816.0
						1917	86.8	88.1	84.5	87.8	823.1
						1918	83.1	83.6	82.5	87.4	873.7
1887.	84.2	73.1	70.8	73.8	645.2	1919	83.6	75.1	71.8	73.6	751.1
1888	91.3	86.1	87.0	85. 7	757.1	1920	84.3	84.1	84.6	83.3	807.3
1889	89.9	84.4	76.2	80.7	658.5						
1890	88.2	69.2	82.4	85.4	722.8	Av. 1914-1920.	82.4	80.2	80.1	83.1	813.2
1891-..--------	91.1	88.5	87.4	93.0	747.4	Av.191-------------					
							71.9	66.6	70.5	75.6	749.6
	92.7	88.8	79.9	83.5	687.6		82.4	80.9	76.2	78.9	735. 6
1893.	93.0	82.2	72.3	74.1	687.1	1923.	82.5	83.1	86.6	84.6	810.3
1894	81.0	74.9	74.5	84.5	777.4						
1895	85.9	82.7	82.6	80.3	775.4						
1896	91.5	86.5	81.5	76.9	677.6						
1897	78.5	78.7	75.5	70.3	645.9						
1898	89.9	85.6	90.8	88.0	745.4						
1899	83.7	80.0	84.0	81.9	728.5						

Division of Crop and Live Stock Estimates.
${ }^{1}$ Condition at time of harvest.
Table 393.-Tobacco: Percentage reduction from full yield per acre, from stated causes, as reported by crop correspondents, 1909-1922.

Calendar year.	De-ficient moisture.	Ex-cessive moisture.	Floods.	Frost and freeze.	Hail.	Hot winds.	Storms.	Total cli-matic.	Plant disease.	Insect pests	$\begin{gathered} \text { Ani- } \\ \text { mal } \\ \text { pests. } \end{gathered}$	De-fective seed.	Total. ${ }^{1}$
	P.ct.	$\boldsymbol{P} . c t$.	P.ct.	P.ct.	P.ct.	$\boldsymbol{P} . c t$.	P.ct.	P. ct.	P. ct.	P. ct.	P.ct.	P.ct.	P.ct.
1909.	5. 5	6.8	1.1	0.7	0.8	0.1	0.2	15.3	0.7	2.6		(2)	19.6
1910	4. 8	6.8	1.2	.4	. 3	${ }^{2}$)	. 1	14.4	. 7	2. 8		0.1	20.6
1911	16. 7	. 9		. 8	. 1	. 6		19.5	.3	1. 0		. 2	22.6
1912	7.6	4.8	. 8	. 5	1.0	. 2	. 2	15. 3	. 7	2. 8		. 1	21.2
1913.	15.3	. 7	. 4	1.2	1.2	. 3	. 6	20.0	. 1	3. 0		${ }^{(2)}$	25.0
1914	18.1	. 2	. 1	. 4	. 6	. 3	. 1	20.1	$\left.{ }^{2}\right)$	2. 7		. 1	24.8
1915	3. 9	8. 2	. 9	1. 2	. 8	. 1	. 9	16. 3	. 6	4. 0		. 1	23.5
1916	3. 5	5. 5	1.3	1. 3	1.0	. 1	. 8	14.0	.3	2. 8		(2)	18.4
1917	3. 3	2.2	. 5	3. 3	1.2	. 1	. 2	11.1	. 2	2. 1		. 1	15.2
1918	8.6	. 4	. 2	. 7	1.1	. 2	. 2	11.4	. 3	2.1		. 1	14.2
1919.	8. 9	7.9	. 6	. 2	1.1	. 1	. 2	19. 2	. 6	2.8		(2)	23.0
1920	2. 3	7.0	. 6	. 7	1.0		. 1	11. 7	5. 5	2.6			21.0
1921	18. 9	2. 2	. 1	. 3	. 7	. 4	. 2	22.9	1.6	3. 2			28.2
1922	7.0	4. 5	. 3	. 4	1.4	. 1	. 2	14.3	1.6	2.5	--	(2)	18.7

Division of Crop and Livestock Estimates.
${ }^{1}$ Includes all other causes.
${ }^{2}$ Less than 0.05 per cent.

Table 394.-Tobacco: Area and yield per acre for nine of the largest producing countries, 1909-1923.

Country.	Area.					Yield per acre.				
	$\begin{gathered} \text { A ver- } \\ \text { age } \\ 1909- \\ 1913 . \end{gathered}$	1920	1921	1922	1923, pre- limi- nary.	$\begin{gathered} \text { A ver- } \\ \text { age } \\ 1909- \\ 1913 \end{gathered}$	1920	1921	1922	1923, pre- limi- nary.
	1,000 acres.	1,000 acres.	1,000	1,000 acres.	1,000 acres.	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.
United States.	1,223	1,960	1,427	1,695	1,820	814.4	807.3	749.6	735. 6	810.3
France.-----	137	${ }^{1} 29$	1, 32	1, 33	$\left.{ }^{2}\right)$	1,223. 6	1, 587. 3	1,643. 1	1,426. 1	
Italy.	22	33	48	55	54	1,009. 1	856.5	898.9	917.9	
Germany	39	32	25	28	(${ }^{2}$	1, 706.1	2,064.4	2,639. 2	(2)	(2)
Hungary	121	51	49	44	42	1,211. 8	1,076. 7	830.7	782.5	
Bulgaria.	20	95	58	54	77	692. 8	680.0	619.4	729.3	710.0
Rumania	24	58	43	53	$\left.{ }^{2}\right)$	684.4	650.0	537.7	523.6	
Algeria_	25	47	54	27	51	936.8	856.0	919.1	762.2	785. 3
Philippine Islands_-	${ }^{3} 154$	250	225	148	158	422.1	572.3	517.3	445.8	441.8

Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated.
${ }^{1}$ Beginning with 1920, figures include Alsace Lorraine. ${ }^{2}$ Figures not available. ${ }^{1}$ Four-year average.
Table 395.-Tobacco: Production in undermentioned countries. NORTHERN HEMISPHERE.

Country.	Average 1909-1913.	1917	1918	1919	1920	1921	1922	$\begin{gathered} \text { 1923, } \\ \text { prelim- } \\ \text { inary. } \end{gathered}$
NORTH America.	1,000	1,000						$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
Canada	pounds.	$\underset{8,495}{ }$	pounds. $14,232$	pounds. 33, 770	pounds. 48, 088	pounds. 13, 249	pounds. $25,950$	pounds.
United States	996, 049	1, 249, 276	1, 439, 071	1, 465, 481	1, 582, 225	1, 069,693	1,246, 837	1, 474,786
Mexico			27, 963			14, 436	23, 085	
Guatemala	256		1,049				143	
Cuba-	73,666	61, 118	81, 039		120, 624	40, 299	30, 399	
Dominican Republic-	${ }^{2} 25,417$			29, 983	50, 044	14, 991	14, 991	
Porto Rico-.-.-...---	${ }^{3} 10,828$	25, 410	25, 772	19,363	15, 474	24, 712	24, 710	26, 000
Jamaica-								
EUROPE.								
Sweden	${ }^{4} 1,744$	1,477	1,389	1,702	1,691	1,435	1,164	1,323
France.	845, 273	39, 361	25, 123	34, 666	46, 031	52, 578	47, 062	
Italy	22, 200	11, 684	${ }^{\circ} 19,841$	21, 170	28, 263	43, 145	50, 485	
Swditzerlan	41,374			661	860		790	790
Germany -	${ }^{5} 66,536$	59,815	45, 973	39,984	66, 061	65, 980		
Austria-	${ }^{3} 13,693$							
Yugoslavia	3,739				17,210	26, 046	20,700	45,000
Greece ...	28, 021	61, 233	66, 912	65, 463	69, 850	49, 863	38, 940	
Bulgaria	13, 857	32, 647	57, 567	48, 284	64, 604	35, 923	39,380	54, 670
Rumania.	16,426		13, 481	27, 010	37, 699	23, 121	27,750	
Russia, included Ukraine and northern Caucasia	${ }^{5}$ 232, 949							
AFRICA.								
Algeria. Tunis..	$\begin{array}{r} 23,421 \\ 265 \end{array}$	35, $\mathbf{3} \mathbf{3 7 4}$	49, 118	31,658 628	40, 234 671	$\begin{array}{r} 49,630 \\ 1,069 \end{array}$	20,580 882	40,050 990
ASIA.								
India, British	450,000							
British North Borneo			1, 520	1,857	1, 265	1,160		
Ceylon---1.-.--							10,000	
Japanese Empire: Japan	93, 717	90, 607	79, 780	113, 361	137, 193	134, 899	149, 610	
Chosen.	25, 510	31, 084	32, 124	31, 609	34, 190			
Formosa	1, 120	1,610	880	1,495	2,250	4,270	3, 760	
Russia (Asiatic)	-30,939							
Philippines---	65, 005	107, 868	135, 705	124, 555	143, 064	116, 401	65, 977	69,798

[^226]Table 395.-Tobacco: Production in undermentioned countries.-Continued.
SOUTHERN HEMISPHERE.

Division of Statistical and Historical Research.
Official sources and International Institute of Agriculture, Rome, unless otherwise stated
Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
${ }^{3}$ One year only.
${ }^{4}$ Four-year average.
${ }^{7}$ Exclusive of native reserves (production of 2,428,553 pounds in 1917-18 and 1,614,400 pounds in 1920-21).
Table 396.-Tobacco: Farm price per pound, December 1, by States, calendar years, 1908-1923, and value per acre, 1923.

State.	1908	1909	1910	1911	1912	1913	$\left\|\begin{array}{c} \mathrm{Av} . \\ 1909 \\ 1913 \end{array}\right\|$	1914		1916	1917	1918	1919	1920	$\left\lvert\, \begin{gathered} \text { A } \sigma . \\ 1914- \\ 1920 \end{gathered}\right.$	1921	1922	192	$\begin{aligned} & \text { Value } \\ & \text { per } \\ & \text { acre } \\ & 1923.1 \end{aligned}$
	Cts		Cts	cts	Cts.	ts.	Cts.	cts	Cts.	ts.	Cts.	Cts	Cts	ts	Cts.	cts.	Cts.	Cts.	ol.
Massachusetts	15.5	14.0	15.0	20.0	23.9	21.0	18.8	17.7		25.0	38.4	40.	46. 3	40.6	31.8	36.0	37.	43.8	17. 58
Connecticut	17.0	16.5	16.5	20.5	24.1	21.0	19.7	18.5	17.0	27.0	38.4	44.0	46. 3	35.0	32.	41.0	40		645.42
New York	9.5	8. 0	8. 5	10.4	12.6	12.2	10.3	2.0	9.5	13.0	22.0	18.0	22.5	27.0	17.7	19.3	37.	. 0	225. 00
Pennsylvanis	10.5	9.0	9.3	9.5	8.5	7.5	8.8	8. 5	9. 2	14.2	21.0	14.0	17.0	20.0	14.8	14.4	11.0	18.1	237. 11
Maryland...	7.5	8.3	7.7	7.5	8.0	9.3	8.2	8.0	8.5	16.0	20.0	30.0		29.0	20.	19.0	17	22	174. 24
Virginia	2		9.0											0					00
West Virginia.	14.0	13.2	10.3	8.0	11.0	12.0	10.9	11.0	10.0			36.6	50.0	25.0	25.4	24.0	22.0	22.0	189.20
North Carolina-	10.5	9.5	10.6	11.6	16.0	18.5	13.2	11.5	11.2	20.0	31.5	35.1	53.6	25.3	26.9	26.0	3.3	1.0	47. 00
South Carolina	10.0	7.3	8. 6	12.6	10.9	13.8	10.6	9.7	7.0	14.0	23.1	31.1	22.8	15.0	17.5	11.0	23.0		75. 20
Georgia.	35.0	34. 0	20.0	28.0	30.0	31.0			23.0			46.0		37.0	33.8	25.0	26.0	30	30
Florid														48.0	41.	40.0	47.0	0.0	536. 50
Ohio	10.5	10.5	8.5	7.6		11.4	9.4	8.8	9.0	13.0	25.0	19.5	33.7	13.0	17.4	15.0	17.		54. 70
Indiana	12.0	11.0	9.5	7.8	9. 0	11.0	9.7	9.0	7.3	13.	24.	20.7	35. 2	14.0	17.6	15.0	17.0	16. 6	149.40
Wiscons	10.0													25.9					
Missouri	12.5	13.0	12.0	12.0	12.0	12.7	12.3		12.0	15.0	21.2	25. 0	36.0	33.0	22.2	20.0	29.		308.00
Kentucky	9.1	10.6	8.7	7.7	8.7	10.0	9.1	8.4	7.8	12.7	22.7	26.3	38.2	5. 0	18.7	15.5	19.5	16. 6	141.93
Tenness	9. 0	7.8	8.4	8.5	7.1	8.4			6.3	10.1	17.0	21. 4	25.1	20.0		20.0	22.0	18.0	
Louisian	32.0	37.0	25.0	1. 0	30.0	25.	29.6	35. 0	30	28.0			65.0	0.0	42.6	55.0	55.	5.	232. 50
United States_	10.3	10.1	9.3	9.4	10.8	12.8	10.5	9.8	9.1	14.7	$24.0 \mid 2$	$28.0 \mid 3$	39.02		20.8				164.25

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on farm price Dec. 1.

Table 397.-Tobacco (unmanufactured): International trade, calendar years, 1909-1922.

Country.	A verage, 1009-1913.		1920		1921		1922, preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING countries.								
Algeria	$\begin{array}{r} 1,000 \mathrm{lbs} \\ 4,776 \end{array}$	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 11,681 \end{array}$	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 6,408 \end{array}$	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 23,724 \end{array}$	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 6,781 \end{array}$	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 21,896 \end{array}$	$\begin{array}{r} 1,000 \mathrm{lbs} . \\ 8,513 \end{array}$	$\begin{aligned} 1,000 ~ l b s . \\ 33,549 \end{aligned}$
Brazil	620	59, 991	2, 176	67,376	2, 024	71, 718		98,563
British Indi	6,538	28,874	10, 121	36,379	7,284	30,987	8,053	26,895
Bulgaria	${ }^{(1)}$	4,310 4,093		38,793 3 390				
Cublon.	141	4,093 38,035	(1) ${ }^{4}$	3,590 28,058	3	2,411	4	4,335
Dominican Republic.		22, 395		36, 225		20, 221		16,602
Dutch East Indies.--	8, 074	163, 823	322	274, 379	491	100,250	${ }^{2} 455$	' 79, 598
Greece.	12,024	18, 113	157	59, 276	443	57, 750	128	81, 030 a
Persia	797	11,384	- 18,930	2,550				
Philippine Islands	45	26, 018	763	45, 578	342	49, 270	181	35, 433
Russia	- 52,084	23,283 381,127	82, 221	479, 900	52, 994	522, 756	77, 693	441, 868
PRINCIPAL IMPORTING countries.								
Aden.	11,619	7,739	9,603	6,452				
Argentina	14,988		21, 935					
Australia	13,740		21,955	${ }^{(1)}$	17, 104			
Austria	49,984	23, 192	14,461	287	24, 108	422		
Belgium	22,094	33	36, 400	419	36, 142	220	44,734	702
Canada	17,891	433	21, 121	778	19,025	884	14, 454	1,735
China	15, 113	25, 487	30, 310	36, 882	29,504	26, 891	33, 871	26,260
Czechoslovakia		100	23,635	102	25,825		57,702	
Egypt.	19,005		19,287	244	17, 394	13	9,200	
Finland	9,597		4,947		2,984		4,297	
France.	63, 914	26	76, 615	971	85, 027	2,599	128, 453	1,717
Germany	168, 437	116	196, 160	876	${ }^{3} 196,277$	${ }^{8} 961$	175, 323	989
Italy.	47,732	3, 008	74, 246	79	63,417		49,333	2
Netherlan	57, 218	3,786	86, 797	10, 175	64, 322	5, 009.	49,643	4,667
Norway	3,994		6,874 14,376		4,750		4,982	
Poland	6,565	279		252				
Spain.	51, 026		73, 659		42,766		27,058	
Sweden	9,772	1	12,778	110	8,783	394		
Switzerland.	17,949		29, 003	112	5,792		10,641	11
United Kingdom	117, 956	4,603	209, 721	4,850	211, 500	5,273	173, 381	9,203
Other countries.	32,694	62,740	42,606	16,287	26, 285	10, 398	5,460	7,438
Total	846, 929	928, 609	1,163, 754	1, 175, 333	958, 244	930, 323	889, 160	878, 181

[^227]
TOBACCO.

Table 398.-Tobacco: Wholesale price per pound, 1907-1923.

Calendar year.	Hopkinsville.			Louisville.			Richmond.			Baltimore.		
	Leaf, common tofine.			Leaf (burley, dark red), common to good			Leaf, smokers', common to fine.			Leaf (Maryland), medium to fine red.		
	Low.	High.	$\begin{gathered} \text { Aver- } \\ \text { age. } \end{gathered}$	Low.	High.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Low.	High.	$\underset{\text { age. }}{\substack{\text { ver }}}$	Low.	High.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1907	$\begin{array}{r} \text { Cents. } \\ 6.50 \\ 7.50 \end{array}$	$\begin{aligned} & \text { Cents. } \\ & 16.00 \\ & 20.00 \end{aligned}$	$\begin{array}{\|l\|} C e n t s \\ 11.19 \\ 12.75 \\ 10 \end{array}$	$\begin{gathered} \text { Cents. } \\ 6.50 \\ 9.00 \end{gathered}$	$\begin{array}{\|l\|l} \text { Cents. } \\ 14.50 \\ 19.00 \end{array}$	$\begin{gathered} \text { Cents. } \\ 10.65 \\ 13.67 \end{gathered}$	$\begin{aligned} & \text { Cents. } \\ & 8.00 \\ & 8.00 \end{aligned}$	$\begin{aligned} & \text { Cents. } \\ & 13.00 \\ & 13.00 \end{aligned}$	$\begin{aligned} & \text { Cents. } \\ & 10.50 \\ & 10.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cents } \\ & 6.50 \end{aligned}$	$\begin{aligned} & \text { Cents: } \\ & 12.00 \\ & 13.00 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Cents. } \\ 9.48 \\ 9.85 \\ \hline \end{array}$
1809	$\begin{array}{\|l\|} \hline 6.00 \\ 5.50 \\ 7.00 \\ 8.00 \\ 7.00 \end{array}$	$\begin{aligned} & 14.00 \\ & 17.50 \\ & 18.00 \\ & 16.00 \\ & 14.00 \end{aligned}$	$\begin{aligned} & 9.85 \\ & 11.89 \\ & 12.10 \\ & 11.69 \\ & 11.02 \end{aligned}$	$\begin{array}{\|c} 12.00 \\ 8.00 \\ 6.00 \\ 7.00 \\ 7.00 \end{array}$	$\begin{aligned} & 18.50 \\ & 17.00 \\ & 12.75 \\ & 13.00 \\ & 16.00 \end{aligned}$	15.35 13.55 9.39 9.32 11.23 1	$\begin{aligned} & 7.00 \\ & 7.00 \\ & 7.00 \\ & 7.00 \\ & 7.00 \end{aligned}$	$\begin{aligned} & 13.00 \\ & 13.00 \\ & 13.00 \\ & 15.00 \\ & 20.00 \end{aligned}$	$\begin{aligned} & 10.28 \\ & 10.00 \\ & 10.00 \\ & 10.00 \\ & 10.83 \\ & 11.58 \end{aligned}$	8. 508.508.508. 508. 50	13.0013.0013.001515.0015	$\begin{aligned} & 10.75 \\ & 10.75 \\ & 10.75 \\ & 11.75 \\ & 11.75 \end{aligned}$
1910												
1911												
1912												
$\begin{gathered} \text { Low, high, } \\ \text { andavileog } \\ \text { and } 1913 \end{gathered}$	5.50	18.00	11. 15	6.00	18.50	11.83	7.00	20.	10.54	8.50	15.00	11.00
1914	$\begin{gathered} \hline 7.50 \\ 4.00 \\ 5.00 \\ 1.00 \end{gathered}$	14.00	11.05	9.00	16.00				13. 40		15.00	11.46
1915			- $\begin{array}{r}\text { 8. } 08 \\ 13.45 \\ 13.61\end{array}$	-		13. 38	7.006. 009. 00a	18.0020.0030.00	11.66	9.009.7.0017.a	21.00	10.8314.692.21
1917												
1918	114.00	- $\begin{aligned} & \text { 25. } 00 \\ & 36.50\end{aligned}$	- $\begin{aligned} & 18.63 \\ & 23 \\ & 23\end{aligned}$	$\begin{aligned} & 25.00 \\ & 10.00 \end{aligned}$	$\begin{aligned} & \text { 44. } 00 \\ & 48.00 \end{aligned}$	36. 34	$\begin{aligned} & \text { y. } 00 \\ & 16.00 \\ & 15.00 \end{aligned}$	$\begin{array}{\|l} 45.00 \\ 45.00 \end{array}$	23. 3127.		49.00 53	33.56
${ }_{1920}^{1919}$										$\begin{aligned} & 26.00 \\ & 0 \end{aligned}$ $25,0$	53.00 58.00	- ${ }_{41.19}$
$\begin{gathered} \text { Low, high, } \\ \text { andav.1914- } \\ \text { 1920_-.--- } \end{gathered}$	4.00	53.00	15. 93	8.00	48.00	20.99	6.00	45. 00	18.24	8.00	58.00	24.45
19	$\begin{array}{r} 8.00 \\ 10.00 \\ 10.00 \end{array}$	$\begin{aligned} & 55.00 \\ & 40.00 \\ & 40.00 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 24.47 \\ 23.81 \\ 222.87 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|r} \hline 7.00 \\ 12.00 \\ 14.00 \\ \hline \end{array}$	$\begin{aligned} & 30.00 \\ & 35.00 \\ & 35.00 \end{aligned}$	$\begin{aligned} & 17.83 \\ & 22.12 \\ & 23.83 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.00 \\ & 7.00 \\ & 7.00 \end{aligned}$	$\begin{aligned} & 30.00 \\ & 11.00 \\ & 18.00 \end{aligned}$	$\begin{aligned} & 12.66 \\ & 11.10 \\ & 12.46 \end{aligned}$	$\begin{aligned} & 18.00 \\ & 18.00 \\ & 18.00 \end{aligned}$	$\begin{aligned} & 58.00 \\ & 50.00 \\ & 56.00 \end{aligned}$	$\begin{aligned} & 30.52 \\ & 3283 \\ & 33.12 \\ & \hline \end{aligned}$
1923												
nuary	$\begin{gathered} 12.00 \\ 112.00 \\ 12.00 \\ 12.20 \\ 12.00 \\ 12.00 \end{gathered}$	40.00339.00334.50333.0033.00	$\left\{\begin{array}{l} 23.38 \\ 24.50 \\ 22.25 \\ 22.33 \end{array}\right.$	$\begin{aligned} & 18.00 \\ & 18.00 \\ & 18.00 \\ & 14.00 \end{aligned}$	$\begin{aligned} & 35.00 \\ & 35.00 \end{aligned}$	26. 50	7.00	16.00	${ }_{11}^{11.50}$	18.00	50.00	34.00
February												
March								16.00	11. 50	18.00	50.004200	29.2530.00
${ }_{\text {April }}$				$\begin{aligned} & 14.00 \\ & 14.00 \\ & 14.00 \end{aligned}$	35.0035.0035.00	${ }_{24.50}^{25.00}$	7.00		11.50			
June.		$\left\{\begin{array}{l} 33.00 \\ 333.00 \end{array}\right.$	--..-					18.00	11. 50	18.00 18.00	42.00	30.00 30.00
July--				$\begin{aligned} & 14.00 \\ & 15.00 \\ & 15.00 \end{aligned}$	35.00 30.00 30.	${ }_{22}^{22.50}$	7.00 9.00			18.00 18.00	42.00	- $\begin{aligned} & 30.00 \\ & 30.00\end{aligned}$
Septembe				15.00	30. 00	${ }^{22} 50$	9.00	18.00	${ }^{13.50}$	18.00	50. 00	
October				$\begin{aligned} & 15.00 \\ & 14.00 \end{aligned}$					13.50	23.50	${ }_{50}^{50}$	
cember	10.00	35.00	22. 50		$\left\lvert\, \begin{aligned} & 30.00 \\ & 30.00 \end{aligned}\right.$	21.00	9.00	18.00	13. 50	26.00	56.00	

[^228]
COFFEE.

Table 399.-Coffee: International trade, calendar years, 1909-1922.

Country.	Average 1909-1913.		1920		1921		1922, preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTing countries.	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$	1,000$p o u n d s$.$1,672,282$27,780104,39827,51554,14985,95161,9438,26319,03362,830111,326	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 1,524,478 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \\ 1,636,119 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 1,676,334 \\ 19,459 \end{gathered}$
Brazil-	1605		5,655		2, 366		5,595	
Colombia				$\begin{array}{r} 19,407 \\ 2190,962 \\ 230.860 \end{array}$		$\begin{array}{r} 30,070 \\ \begin{array}{r} 310,205 \\ 29,408 \end{array} \end{array}$		
Costa Rica				$\begin{aligned} & 137,223 \\ & { }_{207} \end{aligned}$			${ }^{3} 37$	$\begin{array}{r} 41,043 \\ 395,491 \\ 295,192 \end{array}$
Dutch East Indi	4, 227		2, 080		,961	$\begin{array}{r} 96,323 \\ 295,199 \end{array}$		
Guatemala.				$\begin{array}{r} 68,292 \\ 4,622 \end{array}$		$\begin{array}{r} 45,690 \\ 27,233 \end{array}$		
Haiti---								---77,081
Nicaragua	$\begin{gathered} 4138 \\ 51,593 \end{gathered}$			$\begin{array}{r} 215,344 \\ 82,865 \\ 73,727 \end{array}$		$\begin{array}{r} 229,938 \\ 62,418 \\ 121,965 \end{array}$		$\begin{array}{r} 294,972 \\ { }^{2} 143,248 \end{array}$
Salvador					${ }^{6}$)			
Venezuela								
PRINCTPAL IMPORTing countries.								
Argentina	28, 125		38,8116,274	-------72	11, 909	-----302-	- 29,794	${ }^{2} 185$
Austria-	$\begin{array}{r} 128,304 \\ 111,738 \\ 27,524 \\ 13,378 \\ 24,906 \end{array}$			3,411	1, 0	-..---.-	,	
Belgium.		$\begin{array}{r}33,627 \\ 27,137 \\ \hline\end{array}$	-84, 469		$\begin{array}{r} 105,366 \\ 19,981 \\ 19,876 \end{array}$	$\begin{array}{r} 21,538 \\ 15,121 \\ 10 \end{array}$	$\begin{array}{r} 84,781 \\ 225,970 \\ 21,303 \end{array}$	2,437 22,160 21
British Malaya			27,025 19,493	27,742 17				
Canada		55 4	19,493	17				
Cuba			2 ${ }^{411,425}$	${ }^{2} 124$	25, 592		23, 933	
Czechoslo	33, 102	152	${ }^{2} 14,2153$	402	43, 724	380	50, 815	214
Egypt	$\begin{gathered} \text { or, } \\ 1554 \\ 28,624 \end{gathered}$		22, 530	3, 408	20,722	226	${ }^{2} 21,744$	37
Finland		$\begin{array}{r} 41 \\ \mathbf{1}, 757 \end{array}$			-339, 590		386, 293	685
France	$\begin{aligned} & 245,752 \\ & 399,965 \end{aligned}$		$\begin{array}{r} 323,254 \\ 90,602 \\ 33,043 \end{array}$	1,983 62		$\begin{array}{r} 1,108 . \\ 7 \\ 211 \\ 213 \end{array}$	381,16281,11927,19	$\begin{array}{r}172 \\ \\ \\ \hline 197\end{array}$
Germany								
Italy	58,278 283,633 189,288 158		66, 509	$37,551$	$\begin{aligned} & 105,594 \\ & 136,567 \end{aligned}$	1366,568	$\begin{array}{r} 104,195 \\ 129,148 \\ 39,425 \end{array}$	55,944
Netherlan			133, 749					
Norway	29,309		$24,853$					
Russia.	29, 317		21,19848,519088	--------	48, 219	------56	-41, 235	17
Spain--		24 -62		2,355	88,70731,583	48	77,66029,259	1614317
Sweden ---	$\begin{array}{r}74,486 \\ 25,029 \\ \hline\end{array}$		98, 2277	2, 75				
Union of South Arica	$\begin{array}{r} 26,458 \\ 28,581 \\ 907,898 \end{array}$	36	28,753	51	29, 906	84	$\begin{array}{r}29,924 \\ 889 \\ \hline 897\end{array}$	
United Kingdom....-			$\begin{array}{r} 27,434 \\ 1,297,439 \\ 106908 \end{array}$	$\begin{array}{r} 108 \\ 36,757 \\ 101,854 \end{array}$	$\begin{array}{r} 165 \\ 1,340,980 \\ 135,318 \end{array}$	$\begin{array}{r} 87 \\ 34,573 \\ 60,897 \end{array}$	$\begin{array}{r} 89,797 \\ 1,246,061 \\ 80,336 \end{array}$	$\begin{aligned} & 26,750 \\ & 78,928 \end{aligned}$
United States..								
Other countries.	82, 156	95,727	126,998					
	$2,614,854$	2,608,347	2,615, 710	2, 571, 631	$2,800,427$	2, 666,757	2, 616, 110	2, 360, 793

Division of Statistical and Historical Research. Official sources except where otherwise noted
Dand gate" coffee and chicory are excluded.

[^229]Table 400.-Coffee, Rio, No. 7: Average wholesale price per pound, New York, 1890-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1890	16.8	17. 0	18.0	18.7	17. 6	18. 1	17.6	17.9	18. 8	18.9	18.0	17.9	17.9
1891	17.4	17.5	18. 4	18. 5	18. 6	18. 2	17. 5	17. 5	16. 2	14.1	12.9	13.6	16.7
1892	13.0	13.9	15.0	14. 2	12. 8	12.9	12.9	13.3	14.8	15.4	16.3	17.1	14.3
1893	17.1	18. 1	18.0	17.4	15.5	17.0	16. 5	16. 2	16.6	18. 2	18.3	17.8	17.2
1894	18.4	17.4	17. 2	17.6	16.5	15.8	16.6	16.3	16.0	15.7	15.1	15.8	16.5
1895	15. 6	16. 2	16. 8	16. 5	16.0	15.9	15.6	16.2	16. 1	15.9	15.7	14.4	15.9
1896	14.2	13.1	13.3	13.8	13.9	13.2	13.0	11.5	10.6	10.4	11.0	10.0	12.3
1897	10. 2	9.8	9. 6	8.0	8.0	7.6	7.4	7.4	6. 9	7.1	6. 8	6.4	7.9
1898	6. 5	6.4	6. 2	6.0	7. 0	6. 5	6.3	6.1	6.4	6. 2	5. 9	6. 4	6.3
1899	6.8	6.8	6. 2	6.1	6.3	6. 2	6.1	5.8	5.6	5.5	6. 1	6.9	6.2
1900	7.2	8.4	8.4	7.7	7.9	8.2	8.9	9.4	8.5	8.2	8.4	7. 5	8.2
1901	7.2	7. 0	7. 6	6.8	6.2	6. 2	6. 0	5. 6	5. 6	5. 8	6. 4	7.1	6.5
1902	7.3	6. 0	5. 9	6.1	5. 7	5. 7	5. 5	6. 1	5. 8	5. 4	5. 5	5. 4	5. 9
1903	5.4	5. 4	5. 8	5.4	5. 2	5.2	5. 4	5. 2	5. 2	5. 8	6. 4	6.5	5. 6
1904	7.8	9.3	6.9	6. 9	7.2	7.0	7.2	7. 5	8.6	8.4	8.4	8.6	7.8
1905	9. 0	8. 7	7.9	7.8	7.9	7.9	7.8	8.6	8.9	8. 7	8.3	8.3	8.3
1906	8. 1	8.4	8. 4	8.1	8. 0	7.5	7.8	8. 9	8.4	8. 4	7. 8	7. 5	8.1
1907	7. 1	6. 9	7. 2	7.0	6. 8	6. 5	6. 3	6. 5	6. 3	6. 4	6. 0	5. 9	6. 6
1908	6. 1	6. 3	6. 3	6.1	6. 1	6.4	6. 4	6. 2	6.1	6. 3	6. 5	6. 6	6.3
1909	7. 1	7. 7	8. 2	8.2	8.3	8.1	7.4	7. 5	7.3	7.3	8.3	8. 6	7.8
1910	8. 7	8. 7	8. 8	8.8	8.4	8. 2	8.4	8. 7	10.2	11. 1	11. 1	13. 2	9.5
1911	13. 4	13.1	12. 6	12.3	12.4	12. 3	13.3	13. 2	13.4	14. 2	15. 8	14. 9	13.4
1912	14. 5	14. 2	14. 4	14.8	14. 4	14. 2	14.8	14.3	14. 6	14.8	15.0	15. 4	14.6
1913	13.9	13.5	12. 5	11.9	11.4	11. 1	9.8	9.6	9.2	10. 2	10.8	9.6	11.1
Av. 1909-1913.	11.5	11.4	11.3	11. 2	11.0	10.8	10.7	10.7	10.9	11.5	12. 2	12.3	11.3
1914	9.1	9. 5	9. 2	8.9	8.8	9. 1	8.8	7.5	7.6	6. 6	6. 4	6.3	8.2
1915	7. 2	8. 2	7.8	8.1	7.8	7. 0	7.4	7.4	6. 8	6. 8	7. 5	7.6	7.5
1916	7. 6	8. 2	9.2	9.5	9.8	9. 9	9.0	9.5	9.9	9.5	9. 5	9.2	9.2
1917	9. 8	10. 0	9.8	9.5	10.1	10. 4	9.5	9.1	9.1	8. 5	7.9	7.6	9.3
1918	8. 5	8. 4	8.9	9.0	8.7	8. 4	8.6	8.5	9.6	10.4	10.7	17.3	9.8
1919	15.5	15. 4	16. 0	17.0	19.3	21. 1	23.0	21.5	16. 6	16. 5	17.0	15.2	17.8
1920	16. 3	14.8	15. 0	15.1	15. 6	15.0	13. 1	9.4	8. 2	7. 6	7.5	6. 6	12.0
Av. 1914-1920	10. 6	10. 6	10.8	11.0	11. 4	11. 6	11.3	10.4	9.7	9.4	9.5	10.0	10.5
1921	6. 7	6. 7	6. 4	6. 0	6. 2	6. 7	6. 5	7. 0	7.9	8. 1	8.8	9.3	7.2
1922	9. 6	9. 0	9. 6	10. 8	11. 0	11. 0	10. 4	10. 0	10.2	10. 2	10.8	11.1	10.3
1923	11.9	13. 0	13.0	11.5	11.6	11.7	10.9	10. 7	10. 7	11.1	11.0	10.9	11.5

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.

$$
85813^{\circ} \text { —увк } 1923-56
$$

TEA.
Table 401.-Tea: International trade, calendar years, 1909-1922.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Country.} \& \multicolumn{2}{|l|}{A verage, 1909-1913.} \& \multicolumn{2}{|c|}{1920.} \& \multicolumn{2}{|c|}{1921.} \& \multicolumn{2}{|l|}{$$
\begin{gathered}
1922, \\
\text { prelimınary. }
\end{gathered}
$$}

\hline \& Imports. \& Exports. \& Imports. \& Exports. \& Imports. \& Exports. \& Imports. \& Exports.

\hline PRINCIPAL EXPORT-
ING COUNTRIES. \& 1,000 \& 1,000 \& 1,000 \& 1,000 \& 1,000 \& 1,000 \& 1,000 \&

\hline \& pounds. \& pounds. \& pounds. \& pounds. \& pounds. \& pounds. \& pounds. \& $$
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
$$

\hline Ceylon....-.---------- \& 8,002 \& 267,887 \& 11,466 \& 270, 957 \& 11, 581 \& 349, 086 \& 14,603 \& 311, 633

\hline China \& 18,890 \& 197, 997 \& 6,069 \& 184, 40.537 \& 6,387 \& 160,732
57,358 \& 13, ${ }^{1}$ \& 171,808

\hline Dutch East Indies \& 6, 742 \& 46, 675 \& 6,730 \& 100, 703 \& 6,704 \& 77, 518 \& \& 76, 463

\hline Formosa \& 68 \& 23, 640 \& 155 \& 14,377 \& ${ }^{6} 89$ \& ${ }^{3} 17,931$ \& ${ }^{1}{ }^{6} 73$ \& a 76,678
311,271

\hline Japan. \& 590 \& 35, 823 \& 540 \& 26,438 \& 996 \& 15, 863 \& ${ }^{3} 1,469$ \& ${ }^{3} 181,271$

\hline PRINCTPAL IMPORTing countries. \& \& \& \& \& \& \& \&

\hline Argentina \& 3,880 \& \& 3,262 \& \& \& \& \&

\hline Australia \& 35, 442 \& (4) \& 34,060 \& \& 43, 402 \& \& 3 42,866 \&

\hline Austria--.......-- \& \& \& 864 \& 28 \& 858 \& 74 \& ${ }^{\text {a }} 1,001$ \& ${ }^{3} 11$

\hline Austria-Hungary.-- \& 3,424

11,983 \& 8 ${ }^{\text {5,318 }}$ \& 11,453 \& 4,067 \& 7,191 \& 1,338 \& \& ${ }^{\text {3 3, }} 886$

\hline Canada-.-...--- \& 37, 927 \& \& 36, 740 \& 4,06 \& 35, 653 \& 1,388 \& 40,050 \& , 3,686

\hline Chile- \& 3, 505 \& \& 4,690 \& \& 3,036 \& \& ${ }^{3} 11,540$ \&

\hline Czechoslo \& \& \& ${ }^{3} 1,066$ \& ${ }^{3} 3$ \& 1,132 \& 33 \& 1,009 \& ${ }^{3}$

\hline Egypt- \& 1,950 \& \& 4,327 \& 749 \& 3,938 \& 173 \& ${ }^{3} 4,670$ \& 157

\hline France--.-.-.-. \& 2, 806 \& \& 4,017 \& 160 \& 2,462 \& 195 \& , 2,740 \& 113

\hline French Indo-China \& 3, 295 \& 1,145 \& 2,726 \& 787 \& - ${ }^{3} 3,622$ \& ${ }^{3} 1,376$ \& ${ }^{8} 3,391$ \& ${ }^{\text {a }} 1,13 \mathrm{o}$

\hline Germany \& 8,964 \& 23 \& 3,850 \& 25 \& ${ }^{8} 11,854$ \& ${ }^{5} 16$ \& 6,178 \& 23

\hline Hungary \& \& \& ${ }^{8} 879$ \& \& 3528 \& \& ${ }^{3} 1,075$ \& ${ }^{8} 35$

\hline Moroce \& 6,696 \& \& 5, 697 \& \& 6, 011 \& \& ${ }^{3} 8,765$ \&

\hline Netherlands \& 11,383 \& 45 \& 23,407 \& 63 \& 26, 697 \& 43 \& 26, 226 \& 31

\hline New Zealand \& 7,542 \& \& 12, 838 \& \& 6,195 \& \& 8,708 \&

\hline Persia \& 9,446 \& 125 \& 6, 623 \& 490 \& ${ }^{3} 7,426$ \& ${ }^{3} 786$ \& \&

\hline Poland \& \& \& 3,771 \& \& ${ }^{8} 3,917$ \& ${ }^{3} 56$ \& ${ }^{\text {a } 2,260}$ \& 8108

\hline Russia \& 157, 704 \& 866 \& ${ }^{3} 64$ \& \& ${ }^{3} 1,387$ \& \& \&

\hline Union of South A frica. \& 5, 192 \& 61 \& 6, 673 \& 47 \& 8,136 \& 23 \& 9,326 \& 252

\hline United Kingdom.--- \& 293, 045 \& \& 389, 915 \& \& 412, 848 \& \& 376, 849 \&

\hline United States \& 98, 897 \& \& 90, 247 \& \& 76,487 \& \& 97, 097 \&

\hline Other countries. \& 31, 268 \& 7,237 \& 25, 569 \& 8, 670 \& 21, 419 \& 915 \& 19,241 \& 1,570

\hline Total \& 768, 652 \& 775, 922 \& 697, 499 \& 652, 871 \& 709, 957 \& 683, 486 \& 698, 135 \& 680, 475

\hline
\end{tabular}

Division of Statistical and Historical Research. Official sources except where otherwise noted.
"Tea" includes tea leaves only and excludes dust, sweepings, and yerba mate.

[^230]${ }^{4}$ Less than 500 pounds.
${ }^{1}$ Eight months, May-December

Table 402.-Tea, Formosa, fine: Average wholesale price per pound, New York, 1890-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1890	26. 5	26.5	26. 5	26.5	24. 0	24.0	24. 0	24. 0	34. 0	32. 0	32. 0	28.0	27.3
1891	28. 0	29. 0	29.0	28.0	28.0	28.0	28.0	28.0	28. 0	28.0	28.0	28. 0	28. 2
1892	28.0	28.0	28.0	28.0	29.0	30.5	27.0	32.5	32.5	32.5	32.5	32.5	-30.1
1893	32.5	29.0	29.0	29.0	29.0	29.0	29.0	28. 0	28.0	28.0	28.0	28. 0	28.9
1894	28.0	28.0	28.0	28.0	26.5	26.5	26.5	26.5	29.0	29.0	29.0	29.0	27.8
1895	29. 0	29.0	29.0	29.0	29.0	29.0	25.0	25.0	25.0	25.0	25.0	25.0	27.0
1896	25.0	25.0	25. 0	25.0	25.0	25.0	25.0	25.0	26.5	26.5	28.5	28.5	25.8
1897	28.5	28.5	28.0	28.0	28.0	28.5	25.0	28.5	28.5	28.5	28.5	27.5	28.0
1898	27.5	26.5	26.5	26. 5	27.0	27.0	31.0	31.0	33.0	33.0	33.0	33.0	29.6
1899	29.5	32.5	32.5	32.5	31.8	30.8	30.8	30.8	30.8	30.8	30.8	30.8	31.2
1900	30.8	30.8	30.8	30.8	30.8	29.5	29.5	29.5	29.5	28.5	28.5	28. 5	29.8
1901	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28. 5	28.5
1902	28.8	28.8	28.8	28.8	28.8	28.8	30.0	30.0	30.5	32.2	33.2	33.2	30.2
1903	23.0	23.0	23.0	23.0	23.0	22.5	22.0	22.0	21.5	20.5	26. 0	26.0	23.0
1904	26.0	26.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	27.5	27.5	27.6
1905	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	25.5	25.5	25.5	24.5	24.8
1906	24. 5	24.5	24.5	24.5	24.5	24. 5	21. 5	21.5	23.0	23. 0	23.0	23.0	23.5
1907	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
19	23.0	23.0	23.0	23.0	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	21.3
1909	24.0	18.5	18.5	23.5	25.0	25.0	25.0	24.0	24.0	24.0	24.0	24.0	23.3
1910	24.0	24. 0	24.0	24.0	24.0	24. 0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
1911	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.5	24.5	24. 5	24.5	24. 5	24.2
1912	24. 5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24. 5	24. 5	24.5	24. 5	24.5
1913	24.5	24.5	24.5	24.5	25.0	25.0	25.0	25.0	25.0	25.0	25. 0	25.0	24.8
Av. 1909-191	24.2	23.1	23.1	24.1	24.5	24.5	24.5	24.4	24.4	24.4	24.4	24.4	24. 2
1914	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	24.0	24.0	24.8
1915	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24. 0	24.0
1916	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24. 0	24.0	24.0	24.0
1917	24.0	24.0	24.0	24. 0	26.3	28.3	36.5	36.5	36.5	36. 5	35.5	35.5	30.6
1918	35. 5	35. 5	35.5	35.5	35.5	35.5	35.5	35.5	36.3	36.5	36.5	36. 5	35. 8
1919	36. 5	36.5	35.3	34.0	34.3	35.0	35.0	35.0	35.0	35.0	36.1	36. 5	35.4
1920	36.5	36. 5	36. 5	36.5	36.5	36.5	36.5	34.3	31.0	31.0	28.6	23.8	33.7
AV. 1914-20	29.4	29.4	29.2	29.0	29.4	29.8	30.9	30.6	30.3	30.3	29.8	29.2	29.8
1921	24.5	24.5	24.5	24.1	22.4	22. 0	22.0	22.0	22.3	23.0	28.0	29.0	24.0
1922	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.5	30.5	31.0	31.0	30.2
1923	31.0	31.0	31.0	31.0	31.0	31.0	31.0	31.0	31.0	31.0	31.0	31.0	31.0

[^231]
VEGETABLE OILS.

Table 403.-EXports of vegetable oils from the United States, 1910-1929.

Year ending June 30.	Corn.	Cottonseed.	Linseed.	Cocoa butter or butterine.	Coconut.	Peanut.	Soy
1909-10.	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 11,299 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 223,955 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { gallons. } \\ 228 . \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
1910-11	25, 317	225, 521	175				
1911-12	23, 866	399, 471	247				
1912-13	19, 839	315, 233	1,734	----			
1913-14	18, 282	192, 963	239				
1914-15.	17,790	318, 367	1,212				
1915-16	8, 968	266, 512	714				
1916-17	8,780	158, 912	1,202				
1917-18	1,831	100, 780	1,188				
1918-19	1,095	178, 709	1,096				
1919-20	12, 483	159, 400	1,136	11, 048	141, 088	4,922	67, 782
1920-21	6,919	283, 268	561	3,171	6, 639	1,595	5,118
1921-22	5, 280	${ }_{61}^{91,615}$	366	1,856	10, 185	1,802	${ }^{537}$
1922-23	5,224	64, 301	404	957	12, 993	188	2, 495

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, Bureau of Foreign and Domestic Commerce.

Table 404.-Imports of vegetable oils into the United States, 1910-1923.

$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 \text {. } \end{aligned}$	Castor.	Chinese nut.	Cocoa butter or but- terine.	Coconut.	Cot-tonseed.	$\begin{aligned} & \text { Lin- } \\ & \text { seed. } \end{aligned}$	Olive.	Palm.	Palm kernel.	Peanut.	Rapeseed.	Soy
	1,000	1,000	1,000	1,000	1,000	1,000	1;000	1,000	1,000	1,000	1,000	1,000
	galls.	galls.	los.	libs.	lbs.	galls.	galls.	lbs.				
1909		15,760	3, 370	48,346	(2)	${ }^{(2)}$	4,545	92, 772	(2)	${ }^{(3)}$	${ }^{4} 1,083$	(2)
1910-11	7	${ }^{1} 7,042$	4,279	51, 118	(2)	(2)	4,984	57, 100	(2)	(3)	41,363	(2)
1911-12	8	4,768	6,075	46, 371	1,513	737	5,473	47, 159	25, 393	896	1,183	28, 021
1912-13	5	5,997	3, 603	50, 504	3,384	174	5,840	50, 229	23, 569	1,196	1, 550	12,340
1913-14	189	4,932	2, 839	74, 386	17, 293	192	6,981	58, 040	34, 328	1,337	1,464	16,360
1914-15	63	4,940	150	63, 135	15, 162	535	7, 364	31,486	4,906	853	1,499	19,207
1915-16	253	4,968	400	66, 008	17, 181	50	8,109	40, 497	6,761	1,475	2,561	98, 120
1916-17	324	6, 864	166	79, 223	13, 703	111	8, 184	36, 074	1,857	3, 026	1,085	162, 690
1917-18	1,175	4,816	${ }^{5} 5$	259, 195	14, 291	51	2,652	27, 405	19	8,289	3, 056	336, 825
1918		6,217		344, 728	20, 410	990	4,398	19,281	1,945	11, 393	2, 091	236, 805
1919-20		10, 614		271, 540	24, 165	4, 550	7,029	50, 165	54	22, 064	1,230	195, 774
1920-21		4,440	915	173, 889	1,315	1,997	4,705	31, 076	2,769	2, 422	1,172	49, 331
1921-22		7,410	7,123	230, 236	(5)	168, 705	11, 112	39, 159		2, 878	1, 352	8,283
192		11, 916	3,010	212, 573	46	56, 764	15, 635	118, 816		7, 553	1,770	38, 635

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, Bureau of Foreign and Domestic Commerce.

[^232]FARM ANIMALS AND THEIR PRODUCTS-PART I. CATTLE AND HOGS. CATTLE.
Table 405.-Cattle: Number and value on farms in the United States January 1, 1867-1924.

Jan. 1-	Milk cows.			Other cattle.		
	Number.	Price per head Jan. 1.	$\begin{gathered} \text { Farm value } \\ \text { Jan. 1. } \end{gathered}$	Number.	Price per head Jan. 1.	$\begin{aligned} & \text { Farm value } \\ & \text { Jan. } 1 . \end{aligned}$
	$\begin{array}{r} 8,349,000 \\ 8,692,000 \\ 9,248,000 \\ 8,935,000 \\ 10,023000 \end{array}$	Dollars. 28. 74 29.15 32. 52	Dollars. 239, 947, 000 230, 817, 000 269, 610,000 290, 577,000 339, 701, 000	11, 731,000	Dollars.	Dollars.
1868				11,942,000	15.06	179, 888,000
1869				12, 185, 000	18.73	228, 183, 000
1870, June 1				14,885,000	18.67	277, 947,000
1871				16, 212, 000	20.78	336, 860, 000
1872	$\begin{aligned} & 10,304,000 \\ & 10,576,000 \end{aligned}$	29.45	303, 438, 000	16,390, 000	18.12	296, 932,000
1873		26.72	282, 559, 000	16, 414,000	18. 06	296, 448, 000
1874		25. 74	$284,326,000$2801,000	16, 313,000	17. 55	284, 706,000
1875	10,907, 000					
1876.	11,085, 000	25.61	283, 879, 000	16,785, 000	17.00	285, 387, 000
1877.	11, 261,000	25. 47	286, 778, 000	$17,956,000$$19,223,000$	15. 99	287, 156,000
1878		25.74	290, 898, 000			321, 346,000
1879	$\begin{aligned} & 11,800,0000 \\ & 12,449,000 \end{aligned}$	21.71	$256,721,000$$286,785,000$	$21,408,000$$29,482,000$	15.38	$329,254,000$$388,990,000$
1880,		23.05			16. 57	
1881			296, 277, 000	20, 939, 000	17.33	362, 862,000
1882	$\begin{aligned} & 12,612,000 \\ & 13,126,000 \\ & 13,501,000 \\ & 13,905,000 \\ & 14,235,000 \end{aligned}$	$\begin{aligned} & 25.89 \\ & 30.21 \\ & 31.37 \\ & 29.70 \\ & 27.40 \end{aligned}$	$\begin{aligned} & 326,489,000 \\ & 396,575,000 \\ & 423,487,000 \\ & 412,903,000 \\ & 389,986,000 \end{aligned}$	$\begin{aligned} & 23,280,000 \\ & 28,046,000 \\ & 29,046,000 \\ & 29,867,000 \\ & 31,275,000 \end{aligned}$	$\begin{aligned} & 19.89 \\ & 21.81 \\ & 23.52 \\ & 23.25 \\ & 21.17 \end{aligned}$	$\begin{aligned} & 463,070,000 \\ & 611,549,000 \\ & 683,229,000 \\ & 694,383,000 \\ & 661,956,000 \end{aligned}$
1883						
1884						
1885						
1886						
1887.	$\begin{aligned} & 14,522,000 \\ & 14,856,000 \\ & 15,299,000 \\ & 16,512,000 \\ & 16,020,000 \end{aligned}$	$\begin{aligned} & 26.08 \\ & 24.65 \\ & 23.94 \\ & 22.01 \\ & 21.62 \end{aligned}$	378, 790, 000 366, 252, 000 366, 228, 000 $363,352,000$ $346,398,000$	$\begin{aligned} & 33,512,000 \\ & 34,378,000 \\ & 35,032,000 \\ & \$ 4,85,0,000 \\ & 36,876,000 \end{aligned}$	$\begin{aligned} & 19.79 \\ & 17.79 \\ & 17.05 \\ & 15.63 \\ & 14.76 \end{aligned}$	$\begin{aligned} & 663,138,000 \\ & 611,751,000 \\ & 597,237,000 \\ & 544,601,000 \\ & 544,128,000 \end{aligned}$
1888.						
1889						
1890, J						
1892.	$\begin{aligned} & 16,416,000 \\ & 16,424,000 \\ & 16,487,000 \\ & 16,505,000 \\ & 16,138,000 \end{aligned}$	$\begin{aligned} & 21.40 \\ & 21.75 \\ & 21.77 \\ & 21.97 \\ & 22.55 \end{aligned}$	351, 378, 000 357, 300, 000 358, 999, 000 362, 602, 000 363, 956, 000	$\begin{aligned} & 37,051,000 \\ & 35,054,000 \\ & 36,688,000 \\ & 34,364,000 \\ & 32,085,000 \end{aligned}$	15. 16 15. 24 14. 66 14. 06 15. 86	$570,749,000$$547,882,000$$536,790,000$$482,999,000$$508,928,000$
1893						
1894						
1895						
1896						
1897.	$\begin{aligned} & 15,942,000 \\ & 15,841,000 \\ & 15,990,000 \\ & 17,156,000 \\ & 16,834,000 \end{aligned}$	$\begin{aligned} & 23.16 \\ & 27.45 \\ & 29.66 \\ & 31.23 \\ & 30.00 \end{aligned}$	$\begin{aligned} & 369,240,000 \\ & 434,81,000 \\ & 474,234,000 \\ & 535,091,000 \\ & .505,093,000 \end{aligned}$	$\begin{aligned} & 20,508,000 \\ & 29,264,000 \\ & 27,994,000 \\ & 50,584,000 \\ & 45,500,000 \end{aligned}$	$\begin{aligned} & 16.65 \\ & 20.92 \\ & 22.79 \\ & 24.73 \\ & 19.93 \end{aligned}$	$\begin{array}{r} 507,929,000 \\ 612,297,000 \\ 637,931,000 \\ 1,251,080,000 \\ 906,644,000 \end{array}$
1898						
1899.						
1900, June 1						
1901.						
1902.	$\begin{aligned} & 16,697,000 \\ & 17,105,000 \\ & 17,420,000 \\ & 17,572,000 \\ & 19,794,000 \end{aligned}$	$\begin{aligned} & 29.23 \\ & 30.21 \\ & 29.21 \\ & 27.44 \\ & 29.44 \end{aligned}$	$\begin{aligned} & 488,130,000 \\ & 516,712,000 \\ & 508,841,000 \\ & 482,272,000 \\ & 582,789,000 \end{aligned}$	$\begin{aligned} & 44,728,000 \\ & 44,659,000 \\ & 43,629,000 \\ & 43,669,000 \\ & 47,068,000 \end{aligned}$	18.7618.4516.3215.1515.85	$\begin{aligned} & 839,126,000 \\ & 824,055, \text {, 000 } \\ & 712,178,000 \\ & 661,571,000 \\ & 746,172,000 \end{aligned}$
1903						
1904						
1905						
1906						
1907.	$\begin{aligned} & 20,968,000 \\ & 21,194,000 \end{aligned}$	$\begin{aligned} & 31.00 \\ & 30.67 \end{aligned}$	$\begin{aligned} & 645,497,000 \\ & \mathbf{6 5 0}, 057,000 \end{aligned}$	$\begin{aligned} & 51,566,000 \\ & 50,073,000 \end{aligned}$	17.10 16.89	$\begin{aligned} & 881,557,000 \\ & 845,938,000 \end{aligned}$
100						
1909.	$\begin{aligned} & 21,720,000 \\ & 20,625,000 \\ & 20,823,000 \\ & 20,699,000 \\ & 20,497,000 \end{aligned}$	$\begin{aligned} & 32.36 \\ & 35.29 \\ & 39.97 \\ & 39.99 \\ & \mathbf{4 5 . 0 2} \end{aligned}$	$\begin{aligned} & 702,945,000 \\ & 727,802,000 \\ & 832,209,000 \\ & 815,414,000 \\ & 922,783,000 \end{aligned}$	$\begin{aligned} & 49,379,000 \\ & 41,178,000 \\ & 39,679,000 \\ & 37,260,000 \\ & 36,030,000 \end{aligned}$	$\begin{aligned} & 17.49 \\ & 19.07 \\ & 20.54 \\ & 21.20 \\ & 28.36 \end{aligned}$	$\begin{aligned} & 863,754,000 \\ & 785,261,000 \\ & 815,184,000 \\ & 790,064,000 \\ & 949,645,000 \end{aligned}$
1910, Apr. 15						
1911.						
1912						
1913						
Av. 1909-1913.	20, 873, 000	38.34	800, 231, 000	40, 705, 000	20.66	840, 782,000
1914	$20,737,000$$21,262,000$$22,108,000$$22,894,000$$23,310,000$$23,475,000$$23,722,000$	$\begin{aligned} & 53.94 \\ & 55.94 \\ & 53.92 \\ & 59.93 \\ & 70.54 \\ & 78.20 \\ & 85.86 \end{aligned}$	$\begin{aligned} & 1,118,487,000 \\ & 1,176,338,000 \\ & 1,191,955,000 \\ & 1,365,251,000 \\ & 11,644,221,000 \\ & 1,835,770,000 \\ & 2,036,750,000 \end{aligned}$	$\begin{aligned} & 35,855,000 \\ & .37,067,000 \\ & 39,812,000 \\ & 41,689,000 \\ & 44,112,000 \\ & 45,085,000 \\ & 43,398,000 \end{aligned}$	$\begin{aligned} & 31.13 \\ & 33.38 \\ & 33.53 \\ & 35.88 \\ & 40.88 \\ & 44.22 \\ & 43.21 \end{aligned}$	$\begin{aligned} & 1,116,333,000 \\ & 1,237,376,000 \\ & 1,334,928,000 \\ & 1,497,421,000 \\ & 1,803,482,100 \\ & 1,993,442,000 \\ & 1,875,043,000 \end{aligned}$
1915						
1916						
1917						
1918.						
1919						
1920.						
Av. 1914-1920..	22, 501, 000	65.83	1, 481, 255, 000	41,003, 000	37.83	1,551, 175, 000
1921.	$\begin{aligned} & 23,594,000 \\ & 24,082,000 \\ & 24,437,000 \\ & 24,675,000 \end{aligned}$	$\begin{aligned} & 64.22 \\ & 50.98 \\ & 50.83 \\ & 52.16 \end{aligned}$	$\begin{aligned} & 1,515,249,000 \\ & 1,227,703,000 \\ & 1,242,113,000 \\ & 1,287,044,000 \end{aligned}$	$\begin{aligned} & 41,993,000 \\ & 41,977,000 \\ & 42,803,000 \\ & 42,126,000 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 31.36 \\ 23.79 \\ 25.57 \\ 24.99 \end{array} \end{aligned}$	$\begin{aligned} & 1,316,727,000 \\ & 998,772,000 \\ & 1,094,469,000 \\ & 1,052,599,000 \end{aligned}$
1922						
1923						
19241						

[^233]${ }^{1}$ Preliminary.

Table 406.-Cattle: Number and value on farms January 1, 1923 and 1924, by States.

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

Table 407.-Cattle on farms: Cumulative percentage changes, 1920-1923. ${ }^{1}$

Item.	$\begin{gathered} \text { To } \\ \text { Feb. } \\ \text { 1. } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Mar. } \\ 1 . \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Apr. } \\ 1 \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { May } \\ & 1 . \end{aligned}$	$\begin{gathered} \text { To } \\ \text { June } \\ 1 . \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { July } \\ & \text { 1. } \end{aligned}$	To 1.	$\begin{array}{c\|c} \text { To } \\ \text { Sept. } \\ 1 . \end{array}$	$\begin{aligned} & \text { To } \\ & \text { Oct. } \\ & 1 . \end{aligned}$	$\begin{gathered} \text { To } \\ \text { Nov. } \end{gathered}$ 1	To Dec. 1.	To Jan. 1 of suc-ceeding year.
Incre	P	P	Per	Per	7	Per	Per	Per	Per	Per	Per	P
1920	2.9	6.4	12.0	18.7	25.5	30.1	32.8	35.0	37.4	39.9	42.2	44.6
1921	2.8	6.2	11.4	17.7	23.3	27.0	29.3	31.2	33.6	36. 1	38.8	41.8
1822	3.0	7.0	12.5	18.6	23.6	26.9	29.5	31.7	34.1	36.7	39.0	41.9
1923	3.1	6.7	12.3	18.7	23.8	27.4	30.2	32.4	35.0	37.7	40.3	
Brought on farms ${ }^{2}$	2.6	4.9	7.3	9.4	11.2	12.9	14.4	16.7	20.6	26.4	29.5	31.4
1921	1.7	3. 6	5. 9	8.0	10.0	11.3	12.4	14.4	17.4	22.4	27.8	30.8
1922	1.9	4.1	6.1	9.4	11.6	13.5	15.2	17.3	21.0	27.2	29.8	32.8
1923	2.0	4.4	6.4	8.4	10.9	12.7	14.1	16.1	17.9	21.9	26.2	
Total increase		11.3	19.3	28.1	36.7	43.0	47.2	51.7	58.0	66.3	71.7	76.0
1922	4. 5	1.3 9.8	17.3	25.7	33. 3	38.3	41.7	45.6	51.0	58.5	66.6	72.6
1922	4.9	11.1	18.6	28.0	35. 2	40.4	44.7	49.0	55.1	63.9	68.8	74.7
1923	5.1	11.1	18.7	27.1	34.7	40.1	44.3	48.5	52.9	59.6	66.5	
Decreases: Moved off-												
$1920 .$	4.6	9.3	14.9	20.4	25.5	30.9	35.0	40.4	47.8	55.1	61.0	65.8
1921	3.5	7.3	12.4	17.0	21.8	26.3	30.2	35.0	40.2,	47.5	55.0	59.4
1922	3.6	7.3	12.3	17.4	22.7	27.5	31.9	37.2	43.5	51.8	58.3	63.1
1923	4.0	8.0	12.6	17.8	22.7	27.2	31.5	36.3	40.0	47.2	54.4	
Slaughtered on farms-						2.6	2.9	3.3	3.9	4.5	${ }^{\text {- }} 5.3$	6.3
1920	0.6 0.6	1.0	1.4	1.8	2.2	2.5	2.9	3. 2	3. 6	4.1	4. 9	5.0
1922	0.7	1.2	1.7	1.9	22	2.5	2.8	3.2	3.6	4.2	4.7	5.6
1923	0.8	1.3	1.8	2.1	2.5	2.8	3.1	3.5	3.9	4.6	5.0	
Died-												
1920	0.7	1.5	2.6	3.8	4.6 2.6	5.0 3.0	5.2 3.3	5. 3.7	6. 0	6.4 4.3	6. 8	5.2
1921	0.5	1.1	1.6 1.9				5. 4.0	4. 4	4.8	5.1	5. 5	5.8
1922	0.5 0.5		1.9	2.7 3.2	3.2 3.6	3.6 4.0	4.4	4.8 .	5.2	5. 6	6.2	
Total decreases1920	0.5	1.3		3.2								
	5.9	11.8	18.9	26.0	32.2	38.5	43.1	49.4	57.7	66.0	73.1	79.3
1921	4.6	9.6	15. 6	21.1	26.6	31.8	36. 4	41.8	47. 7	55.9	64.6	70.5
1922	4.8	9.6	15.9	22.0	28.1	33. 6	38.7	44.8	51.9	61.1	68.5	74.6
1923	5.3	10.6	16.8	23.1	28.8	34.0	39.0	44.6	49.1	57.4	65.6	-----
Net change:	-0.4	-0.5	+0.4	+2.1	+4. 5	+4.5	+4.1	+2.3	+0.3	+0.3	-1.4	-3.3+2.1
1920	-0.1	+0.2	+1.7	+4.6	+6.7	+6.5	+5.3	+3.8	+3.3	+2. 6	+2.0	
	+0.1	+1.5	+2.7	+6.0	+7.1	+6.8	+6.0+5.3	+4.2	+3.2	$+2.8$	+0.3	+0.1
1923	-0.2	+0.5	+1.9		+5.9	+6.1		+3.8	+3.8	+2. 2	+0.9	
On hand compared with Jan. 1:												
	99.6	99.5	100.4	102.1	104.5	104.5	104.1	102.3	100.3	100.3	98.6	96.7
1921	99.9	100.2	101.7	104. 6	106. 7	106.5	105. 3	103.8	103. 3	102.6	102.0	102.1
1922	100.1	101. 5	102.7	106. 0	107.1	106.8	106. 0	104.2	103.2	102.8	100.3	100. 1
1923	99.8	100.5	101.9	104.0	105.9	106. 1	105.3	103.9	103.8	102.2	100.9	

Division of Crop and Livestock Estimates. Based on reports of about 7,500 farmers reporting monthly for their own farms.
${ }^{1}$ Number on hand, Jan. 1, each year $=100$ per cent
${ }^{2}$ Corrective factor 0.96 applied to births and brought on farms figures.
Table 408.-Cattle: Yearly losses per 1,000 from disease and exposure, 1890-1924:

$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { Apr. } 30 . \end{gathered}$	Loss per 1,000.		Year ending Apr. 30.	Loss per 1,000.		Year ending Apr. 30.	Loss per 1,000.		Year ending Apr. 30.	Loss per 1,000.	
	From disease.	From exposure.		From disease.	From exposure.		From disease.	From exposure.		From disease.	From exposure.
1889-90				20.3	22.1	1907-08	18.9	12.0	1916-17	19.4	14.6
1890-91	14.3	15.3	1899-1900	19.9	13.7	1908-09	19.2	14.8	1917-18	18.2	13.3
1891-92	12.8	13.0	1900-01	22.3	11.5	1909-10	21.0	17.6	1918-19	17.4	15.9
1892-93	16.6	17.3	1901-02	21.3	18. 2	1910-11	19.7	13.3	1919-20	19.5	18.5
1893-94	19.0	12.5	1902-03	23.9	23.7	1911-12	21.6	21.5	1920-21	19.0	9.2
1894-95	21.4	20.7	1803-04	23.6	20.2	1912-13	20.5	14.1	1921-22	17.8	13. 1
1895-96	19.3	11.3	1904-05	20.6	23.3	1913-14	19.8	10.9	1922-23	16.7	13.1
1896-97	19.4	16.0	1905-06	20.1	14.9	1914-15					
1897-98	19.7	13.0	1906-07	19.9	13.7	1915-16	19.5				

Division of Crop and Livestock Estimates. As reported by crop reporters on May 1 for year ending April 30.

Table 409.-Cattle and calves: Receipts and shipments at principal markets and at all markets, 1900-1923.

RECEIPTS.

Calendar year.	Chicago.	Denver.	$\left\|\begin{array}{r} \text { East } \\ \text { St. } \\ \text { Louis. } \end{array}\right\|$	Fort Worth	Kansas City.	$\begin{aligned} & \text { Oma- } \\ & \text { ha. } \end{aligned}$	$\begin{aligned} & \text { St. } \\ & \text { Jos- } \\ & \text { eph. } \end{aligned}$	${ }_{\text {St. }}^{\text {St }}$	Sioux City.	Total.	All other markets reporting.	Total all marporting.
	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thor-	Thou-	Thou-	Thou-	Thou-
	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.
1900	2,865	240	698	${ }^{(1)}$	2, 083	828	390	221	300	7, 625	${ }^{(2)}$	${ }^{(2)}$
1901	3, 213	227	892	(1)	2, 127	818	439	190	309	8, 215	${ }^{(2)}$	${ }^{(2)}$
1902	3, 193	324	1,113	132	2, 279	1,011	517	306	405	9, 280	$\left.{ }^{2}\right)$	${ }^{(2)}$
1903	3, 704	286.	1,140	447	2,137	1,071	625	303	379	10, 092	(2)	${ }^{(2)}$
1904	3,527	265	1,074	643	2, 163	944	587	389	331	9,923	${ }^{(2)}$	(${ }^{\text {(})}$
1905	3,791	294	1,124	812	2, 423	1,026	547	489	403	10,909	${ }^{(2)}$	${ }^{(2)}$
1906	3,742	329	1, 121	838	2, 556	1,079	606	487	385	11, 143	$\left.{ }^{2}\right)$	$\left.{ }^{2}\right)$
1907	3,727	307	1, 133	1,022	2, 670	1,159	616	520	410	11, 564	${ }^{(2)}$	${ }^{2}$
1908	3,461	420	1,145	1,069	2,458	1,037	584	463	385	11, 022	(2)	(2)
1909	3, 340	426	1,241	1,197	2,660	1,125	592	497	426	11, 504	(2)	${ }^{2}$
1910	3, 553	399	1,208	1,071	2,507	1,224	665	604	439	11, 670	${ }^{(2)}$	${ }^{(2)}$
1911	3,453	298	1, 072	884	2, 370	1,174	513	539	487	10, 790	(2)	(2)
1912	3, 158	416	1,200	1,039	2,147	1,017	494	524	431	10, 426	(2)	${ }^{2}$
1913	2, 888	499	1, 100	1,185	2,319	962	450	532	394	10, 329	(2)	${ }^{(2)}$
1914	2, 601	443	1,041	1,176	1,957	939	356	585	368	9,466	${ }^{(2)}$	(2)
1915-..-.-.--	2,685	424	992	944	1,963	1,218	441	856	534	10,057	4,496	14, 553
1916	3, 250	601	1,200	1,081	2,331	1,434	480	941	602	11,920	5,756	17, 676
1917	3, 820	653	1, 405	1,960	2,902	1,720	670	1,197	707	15, 034	8, 032	23, 066
1918	4,448	728	1, 509	1,665	3,320	1,993	870	1, 430	818	16, 781	8, 514	25, 295
1919	4,253	824	1,473	1,267	3,085	1,975	750	1,491	814	15, 932	8,691	24, 623
1920	3, 849	617	1,254	1,134	2, 500	1,603	643	1,373	752	13, 725	8,472	22, 197
1921	3, 540	482	1, 077	984	2,469	1,435	558	985	620	12,150	7,637	19,787
1922	3, 934	656	1,400	1,084	2,983	1,744	655	1,387	747	14, 590	8, 627	23, 217
1923	3,918	620	1,399	1,258	3, 208	1,793	709	1,349	759	15, 013	8,198	23, 211

SHIPMENTS.

1900	949	(2)	166	${ }^{(2)}$	${ }^{(2)}$	274	92	154	187	1,822	${ }^{(2)}$	${ }^{(2)}$
1901	1,051	(2)	224	(2)	(2)	239	82	126	189	1,911	(2)	(2)
1902	937	(2)	316	(2)	(2)	365	112	230	283	2, 243	(2)	(2)
1903	1,296	(2)	318	(2)	(2)	301	174	212	279	2,580	(2)	(2)
1904	1,350	(2)	308	(2)	(2)	261	140	275	230	2,564	(2)	(2)
1905	1,437	${ }^{(2)}$	359	${ }^{(2)}$	(2)	315	133	352	237	2, 833	${ }^{(2)}$	(2)
1906	1,376	(2)	365	(2)	(3)	303	143	353	210	2, 750	(2)	(2)
1907	1,477	(2)	371	(2)	(2)	362 330	150	379 302	227	2, 9666	(2)	(2)
1908	1,387	(2)	347 374	(2)	(2)	330 374	178 185	302 322	$\stackrel{213}{232}$	2,757 2,784	(2)	(2)
1909.	1,297	(2)	374	${ }^{(2)}$	${ }^{(2)}$	374	185	322	232	2, 784	${ }^{(2)}$	(2)
1910	1,347	(2)	370	(2)	(2)	425	161	369	213	2,885	${ }^{(2)}$	${ }^{(2)}$
1911	1,245	(2)	309	(2)	(2)	446	157	318	249	2, 724	(2)	(2)
1912	994	(2)	315	(2)	(2)	418	158	293	240	2,418	(2)	(2)
1913	1,001	(2)	344	(2)	(2)	432	157	322 328	228	2, 484	(2)	(2)
1914	824	${ }^{(2)}$. 306	(2)	${ }^{(2)}$	394	124	328	197	2, 173	(2)	${ }^{(2)}$
1915	392	359	269	506	1,032	536	175	523	289	4, 081	1,771	5,852
1916	726	512	313	511	1,028	591	149	556	369	4,755	2, 198	6,953
1917.	867	521	317	838	1,202	723	211	723	410	5, 812	3, 661	9,473
1918	1,025	544	370	562	1,422	855	299	896	432	6,405	3,906	10,311
1919	1,221	642	454	475	1,467	840	220	935	459	6, 713	4,044	10,757
1920	1,247	471	510	544	1,209	689	234	634	410	5,948	3,883	9, 831
1921.	1,163	360	611	412	1,244	635	188	391	346	5,350	3,250	8, 600
1922	1, 137	532	871	467	1,534	829	251	609	447	6, 677	3,988	10,665
1923	1,105	490	855	463	1,599	794	265	496	417	6,484	3, 576	10,060

Division of Statistical and Historical Research. Prior to 1915 receipts compiled from yearbooks of stockyard companies; subsequent figures compiled from data of the reporting service of the Livestock, Meats, and Wool Division. Prior to 1915 shipments compiled from yearbooks of stockyard companies, except East St. Louis (1900 to 1906 from the Fourteenth Annual Report of Bureau of Animal Industry; 1907 to 1914, from Merchants Exchange Annual Report); subsequent figures from data of the reporting service of the Livestock, Meats, and Wool Division.
${ }_{1}^{1}$ Not in operation.
${ }^{2}$ Figures not available prior to 1915.

Table 410.-Cattle and calves: Receipts at all public stockyards, 1915-1929.

Galendaryear.	Jan.	Feb.	Mar.	Apr.	May:	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-
1915	sand	sands	san	sands.	san	san	san		san	sands.	sands.	sands.	sands.
19161	1,202	1.055	1, 1	1.98	${ }_{1}^{1}, 385$	1, 319	1, 154	1, 584	1, 779	${ }_{2} 1,409$	1, 977	1, 460	17, 676
1917	1, 696	1, 302	1, 330	1,539	1,961	1,759	1, 729	1, 814	2, 357	3, 054	2, 626	1, 899	23,066
1918	1,727	1,498	1,713	2, 046	1, 863	1, 815	2, 128	2, 024	2,826	2, 865	2, 648	2, 142	25, 295
1919	2,119	1, 453	1,517	1, 767	1, 836	1, 588	2, 016	2, 039	2, 396	3,008	2, 702	2,182	24, 623
1920	1, 881	1,480	1,663	1,557	1,778	1,879	1,671	1,962	2, 294	2, 209	2,428	1,395	22, 197
1921	1, 644	1,190	1, 566	1, 494	1,542	1,580	1,343	1,867	1,906	2,310	1,928	1, 417	19,787
1922	1, 628	1,417	1,622	1,470	1,878	1,759	1,709	2,149	2, 397	2,936	2,427	1,825	23, 217
1923	1,877	1,427	1, 502	1,670	1,900	1, 629	1,903	2, 214	2, 295	2, 802	2, 182	1,810	23, 211

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
${ }^{1}$ Complete information for 1915 and 1916, particularly on disposition of stock, is not obtainable from many of the markets.

Table 411.-Cattle and calves: Receipts at Chicago, East St. Louis, Kansas City, and Omaha, combined, 1900-1923.

Calendar year.	Jan.	Feb .	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	Thousands.	Thousands.	$\begin{aligned} & \text { Thou- } \\ & \text { sands. } \end{aligned}$	Thousands.	Thousands.	Thousands.	Thousands.	Thou sands.	Thousands.	Thousands.	Thou sands.	Thousands.
1900	496	420	460	445	532	436	491	646	688	786	615	461
1901	531	451	433	510	511	489	722	695	764	836	581	525
1902	588	471	477	472	408	495	628	737	994	941	721	686
1903	607	520	554	592	522	540	656	755	962	963	761	618
1904	631	588	594	545	524	619	352	668	827	970	826	585
1905	619	496	565	548	619	597	613	815	904	1,068	824	695
1906	715	576	555	574	660	591	687	733	833	1, 057	827	691
1907	786	585	571	701	605	631	748	788	1, 015	1, 031	634	598
1908.	695	555	592	496	496	571	605	796	950	913	775	657
1909	628	491	593	489	558	558	610	810	879	982	914	753
1910	641	515	590	498	553	630	662	915	995	1,040	834.	617
1911	700	516	555	498	612	620	680	764	768	1,044	757	555
1912	660	486	502	515	484	462	516	667	868	1, 010	674	676
1913	606	486	481	523	452	525	568	688	923	824	606	588
Av. 1909-1913.	647	499	544	505	532	559	607	769	886	980	757	638
1914	526	446	482	446	405	473	457	566	785	813	558	581
1915	518	377	523	485	461	474	462	811	730	834	798	605
1916	606	534	558	452	558	530	535	807	861	1,146	915	716
1917	807	567	533	600	708	701	773	808	1,029	1,309	1,148	864
1918	763	709	779	881	688	705	967	911	1,347	1,320	1,167	1,032
1919	998	682	646	706	668	641	881	928	1,131	1,362	1,169	976
1920	847	642	698	532	642	696	669	868	1,032	932	1,029	618
Av. 1914-1920	724	565	603	583	590	603	678	785	988	1,102	969	770
1921	744	520	679	608	825	675	542	863	866	1,019	795	585
1922	717	617	682	577	748	750	719	981	1,096	1,338	1,045	789
1923	833	641	652	720	793	692	856	1,082	1,116	1,263	892	780

Division of Statistical and Historical Research. Figures prior to 1915 compiled from yearbooks of stockyard companies; subsequent figures compiled from data of the reporting service of the Livestock, Meats and Wool Division.

Table 412.-Cattle and calves: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923.

RECEIPTS.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Thousands.	Thou. sands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thou. sands.
Albany, N. Y		. 42	107	46	39	36	23		sands.
Amarillo, Tex	116	133	352 27	272 22	185 18.	147	113	140	115
Augusta, Ca			14	14	14.	${ }_{13}^{21}$	29 12	30	59
Baltimore, Md	147	178	228	227	249	287	279	241	223
Bilings, Mont	2	5	8	8	16	2	(1)		
Birmingham, A		19	18	22	24	24	20	8	2
Boston, Mass	43	90	91	104	98	75	61	77	67
Buffalo, N. Y	362	477	5.31	668	749	677	609	637	589
Chattanooga, Tenn		24	25	13	12	13	15	19	17
Cheyenne, w yo			40	47	47	23	9	9	22
Chicago, III	2, 685	3,250	3, 820	4, 448	4, 253	3,849	3,540	3,934	3,918
Cincinnati, Ohio	281	352	453	455	- 460	${ }^{441}$, 454	- 446	${ }_{426}$
Cleveland, Ohio	122	181	296	302	305	281	248	281	278
Columbia, S. C		6	4	5	6	6	5	7	10
Columbus, Ohio	1	2	1	3	3	2	3	4	3
Dallas, Tex.		9		12	9	8	8	8	7
Dayton, Ohio	18	21	26	30	31	33	31	33	34
Deuver, Colo.	424	601	653	728	824	617	482	656	620
Detroit, Mich	122	200	263	252	227	234	201	253	265
Dublin, Ga.			1	2	2	4	3	3	
East St. Louis,	992	1,200	1,408	1, 509	1,473	1,254	1,077	1,400	1,399
El Paso, Tex	225	130	190	212	203	${ }^{1} 152$	170	149	103
Emeryville, Cal			38	32	36	38	35	35	
Erie, Pa				57	38	28			
Evansville, Ind		23	35	45	38	45	35	44	39
Fort Wayne, Ind					38			44	8
Fort Worth, Te	944	1, A81	1, 460	1,665	1,267	1,134	984	1,084	1,25s
Fostoria, Ohio	9	12	12	+10	11	1, 14	11	${ }^{15}$	+12
Indianapolis, Ind	352	405	501	504	515	597	483	509	523
Jacksonville, Fla		3	9	40	16	7	6	5	
Jersey City, N. J	491	746	755	850	745	833	844	905	6.3
Kansas City, Mo	1,963	2, 33!	2,402	3,320	3, 085	2,500	2,469	2,983	3, 205
Knoxville, Tenn	14	17	20	19	21	21	18	2, 24	-22
Lafayette, Ind.	10	10	14	14	17	19	18	13	13
Lancaster, Pa	$1: 5$	144	258	304	239	287	205	234	229
Laredo, Tex									15
Logansport, Ind Los Angeles, Cali	(1)	(1)	1	1	1	1	1	i^{-}	
Louisville, Ky..	142	20	221	218	246	245	246	283	185
Marion, Ohio				2	13	32	7	16	9
Memphis, Tern		2	5	4	6	19	8	13	22
Milwaukee, W	224	244	295	370	398	444	439	504	512
Mobile, Ala-----	17	8	6						
Montgomery, Ala			7	34	52	68	50	59	75
Moultrie, Ga									5
Nashrille, Tenn.		39	118				96	109	96
Nebraska City, Nebr				2	2	2	1	1	
New Brighton, Minn	30	38	\% 0	81	121	73	36	98	41
New Orleans, La		154	166	174	191	213	188	193	207
New York, N. Y	352	322	276	385	402	316	301	258	216
No. Salt Iake, Utah		12	42	54	67	49	57	88	74
Ogden, ťtah.-.			64	117	104	64	76	91	122
Oklaboma, Okla.	227	325	620	690	593	400	315	382	414
Omaha, Nebr	1,218	1,434	1,720			1,603	1,435	1,744	1,793
Orangeburg, S. C					(1)				1,93
Pasco, Wash				3	6	8	3	6	2
Peoria, Ill.	13	20	25	32	27	36	43	40	38
Philadelphia, Pa	136	180	192	194	201	226	227	264	179
Pittsburgh, Pa .	338	169	560	523	616	723	745	867	821
Portland, Oreg	75	83	105	120	125	141	120	140	168
Pueblo, Colo	130	130	186	205	217	178	79	199	151
Richmond, Va	23	29	26	22	29	30	28	32	32

1 Less than 500.

Table 412.-Cattle and caloes: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1929-Continued.

RECEIPTS-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Thousands.	Thousands	Thousands	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.
St. Joseph, Mo	441	480	670	870	750	643	558	655	709
St. Louis, Mo.	32	43	35	26					
St. Paul, Minn	856	941	1,197	1,430	1, 491	1, 373	985	1, 387	1,349
San Antonio, Tex	139	208	193	176	250	233	151	198	163
Seattle, Wash		25	39	56	66	58	47	46	55
Sioux City, Iowa	534	602	707	818	814	752	620	747	759
Sioux Falls, S. Dak			7	7	8	14	17	33	30
Spokane, Wash.	1	17	26	51	74	67	41	49	45
Springfield, Ohio									7
Tacoma, Wash		16	20	27	29	22	25	28	
Toledo, Ohio	34	26	32	44	57	64	25	25	25
Washington, D.		15	16	18	23	27	28	29	32
Wichita, Kans.	153	220	371	394	311	242	285	407	417
Total	14, 553	17,676	23, 066	25, 290	24,623	22, 197	19,787	23, 218	23, 211

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.

LOCAL SLAUGHTER.

Albany, N. Y			8	6	4	3	2	(1) 1	
Atlanta, Ca			15	11	11	15	18	${ }^{(19}$	${ }^{(1)} 33$
Augusta, Ga			10	8	9	8	8	11	9
Baltimore, Md	92	112	122	126	145	170	150	157	158
Billings, Mont			2	1		${ }^{(1)}$	(1)		
Birmingham, Al		15	15	21	22	23	19	8	2
Buffalo, N. Y		197	212	205	202	190	167	192	189
Chattanooga, Ten				9	10	10	11	13	13
Chicago, Ill	2, 293	2, 524	2, 953	3,422	3, 032	2, 603	2, 377	2, 797	2,813
Cincinnati, Ohio	187	233	300	303	305	283	302	252	230
Cleveland, Ohio	111	164	223	223	244	228	228	253	256
Columbia, S. C.		5		4	6	6	5	8	10
Columbus, Ohio	1	1	1	${ }^{(1)}$	${ }^{(1)}$	1	1	2	
Dallas, Tex.		9	8	12	9	8	8	8	7
Dayton, Ohio	17	18	23	26	25	26	27	29	30
Denver, Colo	66	89	131	185	174	153	122	124	131
Detroit, Mich.		165	174	192	189	202	168	206	239
East St. Louis,	723	888	1,087	1,140	1, 019	744	466	530	544
El Paso, Tex.			10	19	24	21	24	20	26
Emeryville, Calif			38	32	36	38	35	35	
Erie, Pa----				13	13	9			
Evansville, Ind		13	15	15	16	24	21	23	22
Fort Wayne, Ind.									4 795
Fort Worth, Tex	362	474	991	954	715	558	576	620	795
Fostoria, Ohio			2	${ }^{3}$	5	7	1	8	1
Indianapolis, Ind	175	208	270	268	245	257	230	238	247
Jacksonville, Fla			6	39	16	6	3	3	4
Jersey City, N. J	491	746	755	650	745	833	843	903	673
Kansas City, Mo	935	1,301	1,677	1,915	1,617	1,264	1,200	1,407	1,559
Knoxville, Tenn	11	13	10	9	9	11	10	13	12
Lafayette, Ind.		6	6	5	7	8	9	8	8
Lancaster, Pa				28	45	55	37	48	47
Laredo, Tex-									
Logansport, Ind	$\left.{ }^{1}\right)$	${ }^{1}$)	$\left.{ }^{1}\right)$	${ }^{1}$	${ }^{1}$	$\left.{ }^{1}\right)$	$\left.{ }^{1}\right)$	${ }^{(1)}$	
Los Angeles, Calif									173
Louisville, Ky	54	70	76				81	89	
Marion, Ohio				(1)	1		1	2	2
Memphis, Tenn.					1	${ }^{(1)}$	5	8	11
Milwaukee, Wis	179	214	263	321	334	390	402	458	471
Mobile, Ala_	13	7	5						
Montgomery, Ala					3	4	4		
Moultrie, Ga-.							1	2	2
Nashville, Tenn		7	27	32		46	42	47	51
Nebraska City, Neb					${ }^{(1)}$				
Newark, N. J									37
New Orleans, La		141	155	160	162	174	160	159	168
New York, N. Y	352	322	276	385	400	315	300	257	216
North Salt Lake, Ut		1	11	23	19	14	25	14	16
Ogden, Utah....			12	12	11	16	13	12	16

[^234]Table 412.-Cattle and calves: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923-Continued.

LOCAL SLAUGHTER-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
Oklahoma, Okla	Thousands. 130	Thousands. 221	Thousands. 415	Thousands. 528	Thousands. 368	Thousands. 228	Thousands. 203	Thousands. 219	Thousands. 279
Omaha, Nebr	683	843	996	1,138	1,136	914	797	916	997
Pasco, Wash.				(1)	(1)	(1)		-16	
Peoria, Ill.	10	14	14	26	18	18	21	20	17
Philadelphia, Pa			183	186	196	221	225	261	172
Pittsburgh, Pa	51	92	168	163	151	171	175	161	176
Portland, Oreg	40	42	56	65	62	70	59	67	98
Pueblo, Colo				(1)			1	(1)	1
Richmond, Va	11	13	14	13	17	19	20	25	24
Roanoke, V a.		13	1		1	1	20		(1) ${ }^{24}$
St. Joseph, Mo	267	331	459	569	531	410	370	403	444
St. Louis, Mo.	20	25	25	22					
St. Paul, Minn	327	381	487	616	530	710	564	783	851
San Antonio, Tex			55	20	14	37	36	54	53
Seattle, W ash.		25	39	56	64	56	46	45	55
Sioux City, Iowa	244	233	296	385	363	342	273	301	341
Sioux Falls, S. Dak			$\left.{ }^{1}\right)$	1	1	6	7	13	11
Spokane, Wash	(1)	3	14	36	36	35	23	26	28
Springfield, Ohio.									2
Tacoma, Wash		15	20	26	24	22	25	27	
Toledo, Ohio		12	11	13	13	18	14	12	13
W ashington, D.		15	12	15	20	25	27	28	31
Wichita, Kans.	67	86	122	145	133	84	83	93	104
Total	7,912	10,294	13,275	14, 874	13, 633	12, 194	11, 078	12, 435	13,030

Division of Statistical and Historical Research. Compiled from reports of stock sold and driven out for local slaughter, made by stockyards to the Livestock, Meats and Wool Division.

STOCKER AND FEEDER SHIPMENTS.

Market.	1916.	1917	1918	1919	1920	1921	1922	1923
Albany, N. Y	Thousands.	Thousands. 1	Thousands. 1	Thousands. 1	Thousands. 1	Thousands. (1)	Thousands. (1)	Thousands. (1)
Amarillo, Texas	110	262	197	122	91	84	103	74
Atlanta, Ga			2	4	1	3	2	6
Augusta, Ga		1	3	3	2	3	2	2
Baltimore, Md	7	8	11	5	5	3	3	3
Billings, Mont		5	4	9				
Birmingham, ${ }^{\text {Al }}$	26	2 2	${ }^{(1)} 31$	1 39	${ }^{(1)} 1$	${ }^{(1)} 8$		${ }^{(1)} 4$
${ }_{\text {Bufialo, N. }}$ Chattanooga,	26	25		39 2	${ }_{2}^{14}$	8 4 4	7 4	4
Chicago, Il .	256	358	401	509	417	332	343	295
Cincinnati, Ohio	26	22	30	28	28	22	26	23
Cleveland, Ohio		3	4	6	3	6	5	4
Columbia, S. C		${ }^{(1)}$	(1)	(1)				
Columbus, Ohio	(1)		${ }^{(1)}$	(1)	(1)			
Dayton, Ohio.		${ }^{(1)}$	1	(1)				
Denver, Colo.	386	397	402	483	407	274	413	361
Detroit, Mich	9	8	${ }^{6}$	17	16	14	14	11
Dublin, Ga		1	${ }^{(1)}$	${ }^{(1)}$		185	1	
El Past St. Louis,	161	221 159	225 178	${ }_{151}^{234}$	168 115	185		281 40
El Paso, Tex--		159	${ }_{(1)} 178$	${ }_{(1)}^{151}$	115	102	84	40
Evansville, Ind.		1	3	1	1	1	3	(1) 3
Fort Wayne, Ind								
Fort Worth, Tex	312	437	393	327	278	172	225	169
Fostoria, Ohio-	${ }^{6}$	4	3	5	5	3	7	5
Indianapolis, Ind	45	46	56		${ }_{(1)} 48$	41	4	(1) 44
Jacksonville, Fla	1	948					1,151	
Kansas City, Mo	893 1	948 6	1,053 8	1,036 8	$\begin{array}{r}78 \\ 4 \\ \hline\end{array}$	78 3	1,151 6	1,162 4
Lafayette, Ind.	${ }^{(1)}$	1	1	2	1	1	1	1
Lancaster, Pa.			93	95	87	1		53
Laredo, Tex.	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Los Angeles, Calif								9
Louisville, Ky			24					
Marion, Ohio								
Milwaukee, Wis			11	16	15	12	13	16
Mobile, Ala		(1)	6	9	28	10	9	7

${ }^{1}$ Less than 500.

Table 412.-Cattle and calves: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923-Continued.

STOCKER AND FEEDER SHIPMENTS-Continued.

Market.	1916	1917	1918	1919	1920	1921	1922	1923

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats and Wool Division.
1 Less than 500.
Table 413.-Cattle and calves: Stocker and feeder shipments from public stockyards, 1916-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thonsands.	Thousands.	Thousands.	Thousands	Thousands.	Thousands	Thousands.
$1916{ }^{1}$	221.	197	250	262	${ }^{289}$	264	171	330	464	682	461	256	3, 847
1917.	260	213	249	306	401	353	262	330	588	768	729	344	4,803
1918.	222	214	319	385	491	393	274	418	604	704	623	366	5, 013
1919	364	264	277	391	442	272	236	397	611	839	723	470	5,286
1920	349	240	241	244	323	272	218	314	488	580	553	280	4,102
1921	205	166	236	238	214	209	122	355	395	622	497	245	3, 504
1922.	233	243	282	235	365	318	223	469	630	864	710	357	4,929
1923.	281	210	199	233	300	234	223	480	631	785	624	353	4,553

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
${ }^{1}$ Complete information for 1916 not obtainable from many markets.
Table 414.-Cattle and calves: Receipts, local slaughter, and stocker and feeder shipments at public stockyards, 1923.

Stockyards.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thour	Thou-
Buffalo, N. Y.:	sands.	sands.	sands.	sands.	sands.								
Receipts.	49 13	40	49 15	57 19	49 14	50 15	50 17	45 16	40	${ }_{21}^{55}$	54 17	51 16	589 189
$\begin{aligned} & \text { Local slaughter } \\ & \text { Stocker and } \\ & \text { feeder ship- } \end{aligned}$	13 (1)	11	15 (1)	19 (1)	(1) 14	15 (1)	17 (1)	16 (1)	(1)	21	17	16	189
Chicago, Ill.:													
Receipts.	340	278	293	335	356	286	315	318	319	411	331	335	3,918
Local slaughter--	242	198	217	256	278	217	228	224	219	281	227	226	2,813
Stocker and feeder shipments.	16	14	16	17	14	14	13	24	40	54	41	32	295

[^235]Tabie 414.-Cattle and calves: Receipts, local slaughter, stocker and feeder shipments at public stockyards, 1923-Continued.

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division. Local slaughter data from stockyards.
${ }^{1}$ Less than 500.

Table 415.-Cattle: Shipments of feeder cattle from public stockyards, 1923.
ORIGIN.

Market.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Number.	Number.	Number.	Number.	Number.	Number.	Number.	Number.	Number.	Number.	Number.	Number.	Number.
Chicago, 11.	15,569	13, 682	15, 829	15, 939	11,822	13, 375	11, 831	20,746	36, 203	50, 642	39,376	29, 988	275, 102
Denver, Colo	25, 145	11, 103	8, 318	10,696	42,588	18, 471	11,707	12, 652	35, 451	61, 220	71, 981	37, 943	347, 275
Fort Worth, Tex	8,800	6,019	8,521	19,313	23,532	10,059	7,651	8,610	13, 541	28, 262	18, 484	9, 532	162, 324
Indianapolis, Ind	3,208	2,465	2,866	1,869	1,815	4,223	7,185	5,309	8,923	11,689	5,210	4,399	59, 161
Kansas City, Kans	84, 291	48,462	43,575	40, 192	46,996	48,977	58,067	187, 261	193, 326	180, 410	130, 668	76,182	1,138, 407
Louisville, Ky.	2, 522	1,796	1,500	2, 288	1,922	1,263	2, 808	2, 289	6,767	6, 107	2, 534	1,180	32, 976
National Stock Yards, I	9, 322	9, 691	7,335	6, 379	6, 386	7, 427	10, 111	25, 500	27, 865	28, 240	18, 883	12,940	170, 079
Oklahoma, Okla	6,967	5, 864	8,057	6,545	4, 234	2, 625	4,497	5,527	7,345	6, 859	13, 514	5, 140	77, 174
Omaha, Nebr.-	37, 420	29,317	20, 214	22, 361	18,425	15, 118	13, 660	57, 273	100, 383	103, 383	76, 672	50,315	544, 541
Sioux City, Iowa	18, 247	13, 218	11,218	11,809	14,742	13, 377	10,500	23, 791	47, 978	58,918	33, 607	23,964	281, 369
South St. Joseph, Mo	5,439	3,707	3,283	3, 550	1,979	3,122	6, 547	16, 346	13, 877	19, 350	12, 326	7,005	96, 531
South St. Paul, Minn	12, 369	12, 199	11, 388	12,913	13,412	7,667	12, 211	22, 132	35, 126	39, 076	27,946	16, 088	222, 527
Wichita, Kans..	16, 698	14,030	13, 223	34, 352	20,798	4,441	8,573	15, 889	14, 040	20,447	22, 371	12, 944	197, 606
All other	10, 708	6, 162	6, 199	10, 201	11, 152	10,928	9,791	12, 480	18, 996	46, 460	32,156	18,611	193, 842
Total	256, 705	177, 715	161, 526	198, 407	219, 803	161, 071	175, 239	415,605	559, 821	661, 063	505, 728	306, 231	3, 798, 914
- DESTINATION.													
State.	7,964	6,478	3,027	4,294	$\begin{array}{r} 7,437 \\ 22,278 \end{array}$	$\begin{array}{r} 5,466 \\ 17423 \end{array}$	6,958	4,157	17, 831	28,531	44,072	22,764	158, 979
Colorado													
Illinois.	30,877	24,9704,937	19,619	17,435			23,462	65, 915	86,074	98,595 57, 508		35, 970	500, 136
Indiana	8,608		6, 074	4, 143	$\begin{array}{r} 22,278 \\ 3 \end{array}$	17,433 7,753	10,010	20,757	26, 291	98, 595 28,403	17,326	10, 364	148, 638
Iowe.	$\begin{aligned} & 50,805 \\ & 39,608 \end{aligned}$	37, 397	27,788	30,445	32, 215	24, 247	31, 261	100, 096	140, 837	132, 579	80,887	54, 179	742, 236
Kansas		26,55021,817	30,482,203	50,422	36,194	16, 223	22, 269	48,759	50, 886	75, 676	70, 192	44,748	
Kentucky	3,870			2,801		1,9453,622	3,7604,189	5,0863,965	8,2084,589	7,6638,542	7,608	1,2743,385	511, 454
Michigan.	$\begin{array}{r}1,753 \\ \hline 597\end{array}$	1,817	1,985	2, 264	2,657						7,259		46, 027
Minnesota		21,088	1,168	622	1,667	1,002	1,637	1,634	2,407	3,739	4,266	1,932	21, 504
Missouri	43, 531		15,365	14,343	$\begin{aligned} & 11,732 \\ & 51,588 \end{aligned}$	$\begin{array}{r} 20,076 \\ 28,197 \end{array}$	17,345	58,766	64,463	69, 832	52,944	28,919	418, 404
Nebraska	37,1825,084	27,079	22,844	28, 399			26,317	70,723	102, 836	107, 655	85, 082	60,346	648, 248
Ohio		4,994	6,621	5,672	$\begin{array}{r} 51,588 \\ 6,128 \end{array}$	$\begin{array}{r} 28,197 \\ 6,305 \end{array}$	7,282	13,123	16,556	$\begin{array}{r} 21,606 \\ 10,970 \end{array}$	$\begin{aligned} & 13,433 \\ & 14,306 \end{aligned}$	6,051	
Oklahoma	8,4471,778	6,913	10,347	19,295	14, 135	5,072	6,282	5,076	8,100				114, 994
Pennsylvania		596	1,072	3882,301	3666,878	1,2427,766	$\begin{aligned} & 2,001 \\ & 3,306 \end{aligned}$	2,1433,992	$\mathbf{2 , 9 5 9}$$\mathbf{9 , 8 2 9}$	5,30414,207	5,0257,639	4,5694,912	27,44369,583
South Dakota	2, 816	3,214											
Texas.	6,861734	4,2403383,866	$\begin{aligned} & 3,097 \\ & 1,809 \\ & 5,736 \end{aligned}$	$\begin{aligned} & 4,745 \\ & 3,276 \\ & 7,502 \end{aligned}$	$\begin{array}{r} 4,435 \\ 4,636 \\ 11,267 \end{array}$	$\begin{aligned} & 4,619 \\ & 1,159 \\ & 8,944 \end{aligned}$	$\begin{aligned} & 2,186 \\ & 1,213 \\ & 5,761 \end{aligned}$	$\begin{aligned} & 3,235 \\ & 1,242 \\ & 6,936 \end{aligned}$	$\begin{aligned} & 7,336 \\ & 1,404 \\ & 9,215 \end{aligned}$	$\begin{array}{r} 23,124 \\ 2,962 \\ 21,675 \end{array}$	$\begin{array}{r} 18,758 \\ 2,649 \\ 16,774 \end{array}$	$\begin{array}{r} 12,713 \\ 1,070 \\ 7,237 \end{array}$	$\begin{array}{r} 95,349 \\ 22,492 \\ 111,603 \end{array}$
Wisconsin													
All other	6,690												
Tot	256, 705	177, 715	161, 526	198,407	219, 803	161, 071	175, 239	415, 605	559, 821	661,063	505, 728	306, 231	3,798, 914

Division of Statistical and Historical Research. Compiled from Bureau of Animal Industry inspection records.

Table 416.-Live cattle: United States exports and imports, 1910-1924.
EXPORTS.

Year ending June 30.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num
1909-10	ber.	ber.	ber.	ber.	ber.	ber.	ber.	ber.	ber.	ber	ber.	ber.	
1910-11.		, 479											
1911-12	16, 821	12, 709	${ }_{9}, 867$	9,950	8, 540	11, 799	11, 825	6,177	6,673	5,376	3, 189	2,580	
1912-13	3,232	2, 493	, 572	1, 591	1,289	1, 466	1,009	1,006	956	2, 367	1,269	7, 464	24, 714
1913-14	3, 058	967	1, 654	4,074	1,372	1,040	411	433	1,014	1,816	689	1,848	18,376
1914-15	484	405	895	388	164	147	162	175	133	233	85	2,213	484
1915-16	6,615	2,837	1,908	431	520	944	877	428	1,171	1,243	978	3, 335	21, 287
1916-17	467	713	972	551	917	527	488	313	1,314	1,918	882	4,325	13,387
1917-18	374	1,077	837	890	704	6, 887	669	508	1,245	1, 457	1,108	2, 457	18, 213
1918-19	427	542	243	418	3,598	4, 608	516	529	732	20, 291	4,336	6, 105	42,345
1919-20	3,884	10, 419	6,500	9,486	2,894	4,167	3, 056	2,687	3,247	11, 494	11,873	13, 332	83, 039
1920-21	9, 740	2,804	4, 174	5, 252	10, 080	7, 563	6, 004	7,498	11, 886	23, 066	28, 076	29, 530	145, 673
1921-22	20, 345	20, 662	14,541	11, 108	12, 536	11,281	10, 275	10, 219	11, 107	9, 563	10, 871	12, 773	155, 281
1922-23	9, 588	8, 806	4,965	9,521	8, 919	4, 600	3, 919	2,138	2,880	2, 924	1,706	1,520	61,486
19	2, 394	5,709	3, 378	4,629	2,946	3, 051							

IMPORTS.

1909	2, 724	5,707	7,199	789	$\|32,464\|$	$\|19,475\|$	440	4,283	5, 815	$36,125$	56, 336		
1910-11	1,267	1,788	$7{ }^{7} 5$	20, 377	33, 663	25, 963	13, 376	3,237	3, 136	19, 525	38, 245	14,754	182
1911-12	8, 826	10, 294	18, 204	39, 222	44, 927	38, 722	21, 262	8, 038	14, 822	31, 793	59, 229	23, 078	318, 417
1912-13	21, 637	15, 355	18, 527	27, 696	43, 758	40, 522	24, 111	30, 630	36, 105	47, 708	68, 607	46, 993	421, 649
1913-14	38, 937	47, 014	64, 605	130,639	123,118	78, 470	90, 694	72, 558	54, 786	65, 772	58, 647	43, 128	868, 368
1914-15	30, 217		53, 574	77, 219	73, 427	53, 410		51, 01		14, 538	15, 159	43, 022	538, 167
1915-16	58, 379	49, 985	57, 050	82, 276	83, 037	25, 901	9, 762	8, 662	9, 409	17, 285	23, 992	13, 447	439, 185
1916-17	15, 219	26, 121	37, 476	48, 907	51, 526	33, 841	22, 266	22, 094	23, 444	32, 181	33, 049	28, 702	374, 826
1917-18	18, 780	20, 881	39, 244	49, 061	37, 359	20, 449	9, 286	11, 924	14, 603	22,563	22, 112	27, 457	293, 719
1918-19	21,512	32, 517	47, 983	49, 439	54, 403	38, 802	29, 937	38,813	27,067	31, 592	44, 856	23, 478	440, 399
1919-20	32, 86			103,624	108,159	93, 082	26, 971	24, 590	16, 766	19,874	16, 094	24, 381	575, 328
1920-21	18, 333	32, 071	43, 055	48, 680	62, 049	46, 250	17, 469	8, 066	11, 677	23, 674	14, 498	4,152	329, 974
1921-22	5, 057	10,948	18, 814	28, 662	37, 955	13,899	2, 876	2, 482	2, 431	6,139	12, 030	10, 240	151, 533
1922-23	18, 164	41, 565	58, 388	40, 774	28, 923		5,795	16,998	5,230	7,459	9, 199	6, 325	238, 820
1923-24	6, 064	9, 604	19, 947	18, 383	17, 586	15, 891							

Division of Statistical and Historical Research.
Table 417.-Farm price of cattle other than milk cows, by age groups, United States, January 1, 1894-1924.

Jan. 1.	Under 1 year old.	1 and under 2 years.	2 years and over.	Jan. 1.	Under 1 year old.	1 and under 2 years.	2 years and over.
1894	\$6. 16	\$10.56	\$19. 59	1910	\$10. 92	\$17.89	\$25. 96
1895	5.91	9. 94	18.69	1911	11.72	19. 37	27.90
1896	6.72	11.49	20.97	1912	12. 14	20.09	29.12
1897	7.47	12.51	21. 69	1913	14. 90	25. 11	36. 38
1898.	10. 02	16. 17	26.85	1914	17.84	29.77	42.77
1899.	11. 15	17. 78	29.10	1915	19. 06	31.21	45.92
1900	12. 35	19.35	31. 89	1916	19. 08	31.48	45. 81
1901	11. 18	17.92	27.57	1917	20.71	33. 93	48. 63
1902	10. 05	16. 56	26. 41	1918	23. 44	38. 63	55.62
1903	10.59	17.54	24.69	1919	24. 97	41. 74	60.41
1904	9.44	15. 66	21.74	1920	24.50	40. 69	59. 66
1905	8.91	14. 57	20.05	1921	17.42	29. 01	43. 72
1906	9.04	15. 13	21.40	1922	13. 41	22. 29	32. 77
1907.	10.00	16. 30	22.93	1923	14. 76	24. 35	34. 79
1908.				1924	14.45,	23.98	33.89
1909			-------				

Table 418.-Cattle, live: Imports, exports, and prices, 1896-1923.

Year ending June 30.	Imports.			Exports.		
	Number.	Value.	Average import price.	Number.	Value.	A verage export price.
1895-96-	217, 826	\$1, 509, 856	\$6. 93	372, 461	\$34, 560, 672	\$92. 79
1896-97	328, 977	2,589, 857	7.87	392, 190	36, 357, 451	92.70
1898-99	291, 758	2, $2,313,2238$	$\begin{array}{r}\text { 9. } \\ \text { 11. } 62 \\ \hline\end{array}$	439,255 389 190	$37,827,500$ 30 516,833	88.12
1899-1900	181, 006	2, 257, 694	12.47	397, 286	$30,516,833$ $30,635,153$	78.35 77.11
1900-1901.	146, 022	1, 931, 433	13.23	459, 218	37, 566,980	81.81
1901-2	96, 027	1, 608, 722	16.75	392, 884	29,902, 212	76.11
1902-3	${ }^{66,175}$	1, 181, 548	17.55	402, 178	29, 848, 936	74.22
1904-5	16,056 27,855	310,737 458,572	19.35	593,409 567,806	42, 256, 291	71.21
1905-6.	29, 019	548, 430	18.90			
1906-7.	32, 402	565, 122	17.44	584,239 423,051	42,081, 170	72.03
1907-8.	92, 356	1, 507, 310	16.32	349, 210	- $29,339,134$	81.73
1908-9.	139, 184	1,999, 422	14.37	207, 542	18, 046,976	84.02 86.96
1909-10	195, 938	2,999, 824	15.31	139, 430	12, 200, 154	${ }_{87.50}$
1910-11	182, 923	2,953, 077	16. 14	150, 100	13,163, 920	87.70
1911-12	318, 372	4, 805, 574	15. 09	105, 506	8,870,075	84. 07
1912-13	421, 649	-6,640, 668	${ }^{15.75}$	24, 714	1,177, 199	47.63
1913-14-	868, 368	18, 696, 718	21.53	18,376	1647, 288	35. 22
1914-15.	538, 167	17, 513, 175	32.54	5,484	702, 847	128.16
1915-16.	439, 185	15, 187, 593	34. 58	21, 666	2, 383, 765	110.02
1916-17-	374, 826	13,021, 259	34. 74	13,387	9,949,503	70.93
1917-18	293, 719	17,852, 176	60.78	18, 213	1,247, 800	68.51
1918-19	440, 399	36, 995, 921	84.01	42, 345	2, 092, 816	49.42
1919-20.	575, 328	45, 081, 179	78.36	83, 039	11, 921, 518	43. 57
1920-21.	329, 974	23, 634,361	71. 62	145, 673	11,050,507	75. 86
1922-23.	151,533 263,88	3, 055,201	20.16	155, 281	9, 877,596	63.61
1822-23.	263, 887	6,630, 119	25: 12	61, 486	2, 954, 729	48.06

Division of Statistieal and Historical Research.
Table 419.-Milk cows: Farm price per head, 15 th of month, United States 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{array}{\|c} \text { Aver- } \\ \text { age. } \end{array}$
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.
1910		40.35	41.75	42.22	42.38	43.46	42. 86	42.77	42.68	43.20	43.34	43.41	42.47
1911	44.70	44.48	45. 42	44.81	44.54	43.86	42.44	42. 26	42. 22	42.69	42.70	42.72	43. 57
1912	42.89	43.40	4, 09	45. 14	45.63	45.84	45. 41	46. 11	46.79	47.30	47.38	48. 62	45.72
1913	49.51	51.42	54. 02	55. 34	54.80	55.20	54.80	54. 78	55.78	56.47	57.71	57.19	54.75
Av. 1910-1913.	44. 57	44.91	46.32	46.88	46.84	47.09	46.38	46. 48	46.87	47.42	47.78	47.98	47.99
1914	57.99	59.09	59.23	59.60	59.85	59.82	59.67	60.72	59.58	59. 53	58.77	58.23	59.34
1915	58. 47	57. 99	58.00	57.78	58.29	58.59	60. 31	58.34	58.38	58. 76	57.35	56.79	58.25
1916	57.79	${ }_{65}^{57.99}$	59. 51	60.68	60.98	61. 63	62. 04	61.32	${ }^{61.41}$	62. 19	62.67	63.18	60.95
1918	63.92 764 8	65.93 78.36	88.71	72.09	72.78	72. 87	72. 81	72.53	73. 93	75. 79	75.00	76.16	71.86
1919	86. 10	86.15	88.15	90. 91	93. 43	93. 84	${ }_{94}{ }^{84} 1$	94. 72	83. 21	83. 41	${ }_{93}^{84.51}$	85.78	83.07
1920	94.42	95. 27	94. 94	95.36	94.56	94. 56	91. 23	90.50	89. 40	85. 90	77.56	70. 42	${ }_{89}^{91.96}$
Av. 1914-1920.	70.75	71. 54	72.71	74. 12	74.86	75. 15	75.08	74.60	74. 48	74.43	72.73	72.30	73.56
1921.	66.82	63. 44	65.37	64.35	62.63	59. 89	56. 55	55.85	54.33	53.39	53.28		
1922	52.83	53. 54	54.87	54.46	54. 76	54.87	54.20	52.67	52.79	52.86	51.62	53.21	53. 56
1923	54.01	54. 15	55. 29	56. 14	55. 91.	. 56.34	56. 22	55. 45	56.13	55.51	5539	54.66	55. 43

Division of Crop and Livestock Estimates.
85813° - Yвк 1923—— $57+58$
$\mathrm{T}_{\text {able }}$ 420.-Beef cattle: Farm price per 100 pounds, 15 th of month, United States, 1910-1923.

Division of Crop and Livestock Estimates.
Table 421.-Veal calves: Farm price per 100 pounds, 15 th of month, United States, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { Weight- } \\ & \text { ed } \\ & \text { average. } \end{aligned}$
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.
1910	6.41	6.28	6.59	6. 54	6.30	6. 57	6.37	6.29	6.43	6. 41	6.39	6.38	6.42
1911	6. 50	6. 38	6.48	5.96	5. 98	5. 72	5.74	5.93	6.11	6. 15	6. 10	5.98	6.04
1912	6. 06	6. 07	6. 11	6. 22	6. 23	6.33	6.33	6. 62	6. 83	6. 90	6. 77	6. 88	6.45
1913	7.06	7.23	7.49	7.38	7.17	7.53	7.46	7.53	7.73	7.72	7.70	7.74	7.48
Av. 1910-1913	6.51	6.49	6. 67	6. 52	6.42	6. 54	6.48	6.59	6.78	6. 80	6. 74	6. 74	6. 60
1914	7.89	7.90	7.92	7.68	7.59	7.69	7.80	8. 08	8. 06	7.97	7.78	7.61	7.83
1915	7.66	7.62	7. 50	7.31	7.35	7. 53	7.87	7. 75	7.80	7. 91	7.69	7. 61	7.63
1916	7.67	7.87	8. 11	8.00	8.08	8.39	8. 54	8. 59	8. 77	8. 59	8. 60	8. 79	8.35
1917	9.15	9.88	9.94	10.49	10.48	10. 60	10. 77	10.56	11. 08	11.10	10. 66	10.98	10.51
1918	11. 16	11. 17	11. 33	11. 71	11. 62	11. 88	12. 33	12. 22	12. 57	12.35	11. 94	12. 31	11. 91
1919	12. 39	12. 18	12.65	12. 78	12. 11	12. 40	13.38	13. 43	13. 39	12. 87	12. 65	12. 67	12. 76
1920	12. 89	13.12	12. 98	12. 72	11. 69	11. 68	11. 44	11. 64	11. 88	11. 64	10. 77	9.27	11. 80
A v . 1914-1920.	9.83	9.96	10.06	10.10	9.85	10.02	10.30	10.32	10. 51	10.35	10.01	9.89	10. 11
1921	9.34	9.08	9.05	7.73	7.55	7.43	7.37	7.31	7.67	7.61	7.20	7.14	7.81
1922	7. 23	7.84	7.85	7. 26	7.28	7.67	7.49	7.67	8. 10	8.17	7.92	7.78	7. 68
1923	8.05	8. 37	8. 20	7. 78	7.69	7.66	8. 00	8. 00	8. 34	8. 37	7.85	7.75	7.99

[^236]Table 422.-Cattle, beef: Farm price per 100 pounds, 15th of month, by States, 1923.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	A verage.
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.
Maine	7.00	7.00	6. 80	7.00	7.50	7.50	7.40	7. 20	7. 60	7. 10	6. 50	6. 60	7. 10
New Hamp		5. 90	5. 70	6. 00	6. 20	6. 10	6. 30	6. 10	5. 90	6. 10	6. 20	6. 00	6.05
Vermont	4. 80	4.70	4.30	5. 00	4.40	4.20	5. 20	4. 90	4. 70	4. 60	5. 10	4. 80	4. 72
Massachusetts	5. 50	6.00	6. 40	5. 70	5. 90	6. 30	6.00	5. 00	6. 00	5. 90	5.60	5. 80	5. 84
Rhode Island.	5.70	5. 70	5.50	6. 50	6.00	5. 50	6. 00	6. 10	6.00	6. 50	6. 50		6.00
Connecticu		5. 50	5. 60		5. 80	5. 50	6. 50			5. 50	5. 00		5. 63
New York.	5. 50	5. 50	5. 20	5.40	5.00	5. 20	5. 80	6. 10	5. 50	5. 20	5. 40	5. 20	5. 42
New Jersey		7.00			6.30			6. 50	6. 50		7.00	6. 80	6. 68
Pennsylvan	7.30	7. 10	7.00	7.20	7. 20	7.50	7. 50	7. 50	7. 40	7. 20	6. 90	7.00	7.23
Delaware.	8.00		7.20	8.20			8.60	7. 70	8. 50	7. 50	8.00	7.20	7.88
Marylan	7.00	6.70	6.80	6. 70	6.80	8.00	7.70	7.10	6.90	6.90	6. 40	7.00	7.00
Virginia	6.00	6. 00	6. 20	6.30	6.50	6.50	6. 40	6. 50	6. 30	6. 30	5. 70	5. 60	6. 19
West Virgini	6. 30	6. 70	6. 50	6. 40	6.40	6. 80	6. 90	7.00	6. 20	6. 30	6.00	5.90	6. 45
North Carolina	5. 30	5. 20	5. 10	5. 20	5. 10	5. 20	5. 10	5. 20	5.10	5.10	5.30	5.10	5. 17
South Carolina	4.00	3.80	4. 20	4.00	4. 30	4.00	4. 20	4. 00	3. 90	4.00	3. 80	4.00	4.02
Georgia	3.30	3.40	3.20	3. 90	3.60	3.80	3.40	$3.50{ }^{-}$	3. 50	3. 50	3.40	3. 30	3. 48
Florida	4.60	4.60	4. 80	4. 70	4. 60	4.60	4. 10	4.40	3.90	4. 90	4. 50	4.30	4.50
Ohio	6. 80	6. 90	6. 70	6. 70	6. 90	7. 10	6. 90	6. 90	7. 10	6. 60	-6. 30	6. 20	6. 76
Indiana	6. 30	6. 40	6. 30	6.40	6. 50	6. 70	6. 70	6. 40	7.00	6. 60	6. 00	6. 20	6.46
Illinois.	6. 40	6.40	6. 70	6. 50	6. 60	6. 70	6. 50	7.30	7.00	6.50	6.00	6. 60	6. 60
Michiga	5. 60	5.70	6.10	6. 00	6. 10	6. 30	6.00	6. 20	6. 40	6.00	5. 80	5. 50	5.98
Wisconsin	4.30	4. 30	4. 80	5.00	5. 00	4. 70	4.90	4. 60	4. 50	4.60	4. 20	4.00	4. 58
Minnesota	4. 70	5.10	5. 20	5. 30	5. 50	5. 50	5. 40	5. 20	5. 40	4.90	4.40	4.60	5.10
Iowa	7.00	7.00	6. 70	7.40	7. 10	7.90	7. 70	7. 50	8. 20	7.60	7.00	7.00	7.34
Missour	6.40	6.20	6.50	6.30	6.50	6.70	6. 70	6. 40	6. 80	6.30	6. 20	6.00	6. 42
North Dako	5. 10	5. 20	5. 30	5. 30	5. 10	5.30	5. 30	4. 90	4.90	4.90	4.00	4.30	4. 97
South Dak	5. 60	5. 70	5. 80	6. 10	6.00	6.10	6.00	6. 00	6. 50	6. 10	5. 50	5. 50	5. 91
Nebraska	6. 50	6.50	6. 70	6. 80	6. 90	7.00	7.10	7.00	7.00	7.00	6. 50	6. 50	6. 79
Kansas	6. 00	6. 20	5. 80	6. 40	6. 60	6.20	6. 10	5. 60	5. 70	5. 50	5. 30	5. 50	5.91
Kentucky	5. 70	5. 50	6.00	5. 80	5. 60	5. 60	5.50	5. 40	5. 60	5. 20	5. 00	5. 10	5. 50
Tennessee	4. 70	4. 50	4.70	4. 80	4. 90	4. 60	4. 70	4. 70	4. 50	4. 20	3. 90	3.90	4. 51
Alabama	3.00	3.30	3. 40	3.70	3.50	3. 70	3.40	3.40	3.30	3. 20	3. 10	3.00	3.33
Mississipp	3. 00	3. 00	3. 10	3.10	3.00	3.10	3. 10	3.10	2.90	2. 90	2. 40	2. 90	2.97
Louisiana	4. 20	4.40	4. 10	4.00	4. 10	4. 10	5. 00	4. 80	4. 70	4.60	4. 20	4.50	4.39
Texas.	4.10	4.20	4.50	4. 70	4. 50	4.30	4.30	4.00	4.00	4.00	4.30	4. 20	4.26
Oklahom	4. 30	4.40	4.50	5.00	4. 40	4. 50	4.30	4. 00	4.30	4.00	3. 80	4. 30	4.32
Arkansas	3. 40	3.30	3. 20	3. 40	3.50	3.40	3.60	3.20	3.40	3.30	3.20	3. 10	3.33
Montana	5. 40	6.00	5. 70	6. 30	6.30	6. 40	6.00	6. 50	5. 90	5. 70	5.00	5. 30	5.88
W yomin	6. 00	6.40	7.00	6. 50	5. 90	6. 50	6. 40	6. 30	6. 50	5. 50	5. 50	6. 00	6.21
Colorado	5.80	5. 70	6. 20	6.30	6. 50	6. 50	6. 40	5. 70	6.00	5.30	5.30	5. 20	5. 91
New Mex	6.00	5. 60	5. 60	5.00	5. 60	5. 50	5. 00	5.00	4.70	4. 60	4. 00	4. 20	5. 07
Arizona	4. 90	5.30	5. 30	5.30	5. 40	5. 40	5.00	5. 10	5. 30	5. 50	5. 40	5. 10	5. 25
Utah	5. 70	5.60	5. 30	5. 30	5. 70	5.60	5. 40	5.40	5.00	4. 90	4. 90	5. 00	5.32
Nevada	6. 60	6. 50	6. 10	6.40	6.50		5.60	5.00		6. 20	5.90	5.60	6.04
Idaho	5. 40	5. 30	5. 40	5. 40	6. 10	5. 50	5.30	5.20	5. 20	5. 10	4. 80	4.40	5. 26
W ashing	4. 90	5. 20	5. 50	5. 50	6. 30	5.10	5. 20	5. 10	5.00	5.10	5. 00	4. 60	5.21
Oregon	5.50	5. 40	5. 70	5. 70	6.30	6. 30	6. 00	5.20	5. 80	4. 80	5. 70	5. 00	5. 62
Californi	7.10	6. 60	6. 40	6.30	6. 10	6. 00	5.70	6.00	5.90	6. 10	6. 10	6. 10	6. 20
United States	5.51	5. 55	5. 62	5. 78	5. 77	5. 82	5.72	5. 60	5. 70	5. 48	5. 23	5. 26	5. 59

Division of Crop and Livestock Estimates.

Table 423.-Calves, veal: Farm price per 100 pounds, 15th of month, by States, 1923.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
	Dolls.	Dolls	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.
Maine	10.20	9.00	9.40	9.70	9.90	9.10	10.00	9.50	10.10	9.80	9. 50	9.00	9. 60
New Hamps		11. 00	11.00	10.00	10. 50	10.90	10. 60	9. 70	10. 40	10.00	11. 30	9.70	10. 46
Vermont	9.20	9. 20	9.30	8. 40	8.10	8. 30	8. 50	9.20	9.10	9.20	9.50	9.50	8. 96
Massachusetts	11.80	10.40	11.50	10.50	9.90	11.00	10.60	10:20	11.10	11. 00	11. 70	9.10	10.73
Rhode Island	11.00	11.60	11.00	9.80	11.00	10.60	11. 50	11.50	11.00	11.50	10.50	11.50	11.04
Connecticu	9.00	9.00	11.00	10.50	10.60	11.60	11.40		11.30	12.30	11. 70	11.00	10.85
New York	10. 70	11. 40	11.10	9. 80	9.30	9.70	10. 60	10.70	11.00	11.40	11.50	10.90	10.68
New Jersey	11. 50	11. 30		13. 60	12. 40	12.00	12.00	12.00	12.50		11.50	11.00	11.98
Pennsylvan	10.60	10.50	10. 30	10.00	10.00	10. 10	10. 30	10. 20	10. 80	10.90	10. 70	10. 70	10. 42
Delaware			13.00	13.30			12. 10	13.30	12.00	14.00	13.90	12. 30	12.99
Marylan	11.00	11. 30	11. 70	9.90	9.90	9.70	9. 90	9. 90	11.10	11.00	10. 50	11. 00	10. 58
Virginia	9.30	9.30	9.20	9. 10	8. 60	S. 00	8.00	8.10	8.60	8.50	9.00	8.00	8.64
West Virgini	9.00	9. 70	9.30	8. 60	8.60	8.20	8.80	9. 20	8.40	8. 90	8. 60	8. 20	8. 79
North Carolina	6.80	6. 40	6. 70	6. 40	6. 40	6.70	6.50	6. 20	5.90	6.50	6.30	6. 60	6. 45
South Carolina	5.00	5.60	5.30	6.00	5. 90	5. 60	6. 00	5. 80	5.90	5.50	4.50	5.70	5.57
Georgia	5.00	5. 30	5.30	5. 30	5. 50	5. 50	5.00	5.30	4.90	5.10	5.00	5.00	5.18
Florida	6. 50	6. 60	7.00	6. 20	6. 10	6. 00	5.90	6.10	7.00	8.30	7.00	7. 50	6.68
Ohio	10. 00	11.10	10.80	9. 10	9. 00	9.00	9. 40	9.90	10.30	10. 50	9.90	9. 40	9. 87
Indian	9.80	9.90	9.60	8. 60	8.30	8.20	8.90	9.10	9. 60	10.00	9.10	9.00	9.18
Illinois	9. 00	9.40	8. 90	8. 20	7.80	8.00	8. 50	8.80	9. 50	9. 60	8.50	8.40	8. 72
Michigan	10. 10	10. 70	10.40	9.00	8.70	9. 00	9.40	10. 10	10.80	10. 40	9.60	9.80	9.83
Wisconsi	8. 00	8.60	7.90	7.10	7. 20	7.40	8. 10	8.40	9.00	9.00	7.60	7.60	7.99
Minnes	7.30	7.30	7.10	7.00	7.10	7.10	7.60	7. 70	8. 30	8.20	7.00	6.90	7.38
Iowa.	8.20	8.40	8.30	8. 20	8.00	8.30	8.40	8.20	9.10	8.70	8. 20	7.80	8.32
Missour	7.90	8. 50	8.00	7.50	7.60	7. 20	7.50	7.30	7.80	7.70	7. 50	7.30	7. 65
North Dak	6.80	7.00	6. 70	6.50	7.40	6.60	7.00	6. 70	7.00	7.30	6.30	6.30	6. 80
South Da	7.80	7.30	7.90	7.80	7.10	7.60	7.60	8.10	8.20	7.90	7.30	7.00	7.63
Nebraska	7.50	8.20	7.70	7.70	7.70	7. 50	7.90	7. 90	7.60	7.90	7.30	7.40	7. 69
Kansas	7.40	7. 90	7. 20	7. 20	7. 50	7.00	7.10	6. 60	7.20	7. 40	6.70	6.80	7.17
Kentucky	8. 20	8.30	8.20	7. 30	7.00	7.00	7.40	7.30	7.90	7.70	7. 50	7.40	7.60
Tennesse	5. 80	5. 70	6. 10	5. 60	6. 00	5. 50	5. 70	5. 60	5.40	5.40	5. 00	5.40	5. 60
Alabama	4.70	4.60	4.70	5. 00	5.10	5.10	5. 50	5.00	4.50	4.40	4.30	4.40	4.78
Mississipp	4.30	4.90	4.90	5.00	4.70	4. 50	5.10	4.60	4. 20	4.70	4.20	3.80	4. 58
Louisia		5. 10	5. 20	5.10	5.60	5. 20	5. 50	5. 40	5.10	5.20	5.00	5.00	5.22
Texas.	5. 10	5. 50	6. 00	6. 20	5.60	5.30	5. 70	5. 00	5. 20	5.40	5.40	5.40	5. 48
Oklahoma	5.00	5. 70	5. 90	6. 00	6.00	5. 60	5. 20	5.30	5. 30	5.40	5. 20	5.80	5.53
Arkansas	4.90	4.90	5.00	5. 30	4. 90	5.00	5.40	5.40	5.10	5.40	4.50	4.70	5. 04
Montana	7. 20	7. 50	8. 50	8. 00	8. 80	9. 00	8.30	8.50	8.40	8.90	7.50	7.00	8.13
W yoming	8. 70	8. 20	8. 30	8. 70	9.10	9. 50	9.10	8. 50	7.80	7. 50	7.80	8.00	8. 43
Colorado	6. 90	8.00	8. 20	8. 50	8. 40	8. 50	8. 10	7. 40	8.00	7.30	6.80	7.10	7.77
New Me	7. 60	6. 00	7.10	7.70		7.30	6. 20		6. 80	6.10	6. 00	6. 50	6. 73
Arizon	6. 20	6. 00	6. 40	6. 40	5.80	6. 50	6. 20	7.00	6.30	6. 40	6.50	6. 30	6.33
Utah	9.00	9. 00	9. 10	9.10	9. 50	9.00	8. 70	9.00	9.10	8.00	8.40	8.20	8. 84
Nevada	8. 00	7. 70	8. 20	9. 00	9. 00		8.00	8.10			8.00	7.10	8.12
Idaho	7.30	7.00	7. 20	6. 80	7. 20	7.10	7.30	6. 70	6. 80	6.50	6.50	6.00	6. 87
Washing	7.40	7,80	7.80	8. 30	8. 20	7. 50	7.90	7. 60	8. 00	7.30	8.50	7.80	7.84
Oregon	8.10	10.00	9.10	9. 10	10. 50	9. 00	7.80	8.50	8.60	8. 50	9.70	9.20	9. 01
California	8.10	8. 50	8. 40	8. 50	8.30	8. 10	8. 60	8. 30	8.00	8.50	8.10	7.90	8. 28
United S	8.05	8.37	8. 20	7. 78	7.69	7.66	8. 00	8. 00	8. 34	8.37	7.85	7.75	8. 00

[^237]Table 424.-Cattle and calves: Monthly average price per 100 pounds, Chicago, 1900-1923.
GOOD BEEF STEERS. 1

Calendar year.	Jan.	Feb.	Mar.	人pr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	^verage. ${ }^{2}$
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.
1900	5.20	4.85	4.85	4.95	5. 10	5. 20	5. 25	5.40	5. 35	5. 25	5.15	5. 00	5. 13
1901	4.85	4. 80	4.95	5.15	5.30	5. 55	5.10	5. 10	5. 50	5.45	5. 50	5. 65	5. 24
1902	5. 70	5. 55	6. 05	6. 45	6. 60	6. 95	7.10	7. 05	6. 65	6. 20	5. 20	4.80	6.19
1903	4.80	4. 60	4. 75	4. 90	4.80	4. 90	4.95	5. 00	4.95	4.70	4.45	4.55	4.78
1904	4.65	4. 50	4.60	4.65	4.85	5. 60	5.40	5. 10	5. 10	5. 20	4. 95	4.40	4.92
1905	4.65	4. 75	5. 00	5. 75	5. 45	5. 25	4.95	5. 00	5.05	4.80	4.65	4. 75	5. 00
1906	5. 00	5. 05	5. 15	5.05	5.20	5. 20	5.40	5.45	5. 50	5. 60	5. 60	5. 50	5.31
1907	5. 60	5. 55	5. 55	5. 65	5. 65	6. 20	6. 40	6. 25	6. 10	6.10	5. 40	5.10	5. 80
1808	5.30	5. 40	6. 00	6. 50	6. 60	6. 90	6. 45	6. 00	5.95	5. 70	5. 90	6. 00	6.06
1909	6. 00	5.85	6. 10	6. 10	6.45	6. 45	6.45	6. 70	6. 75	6. 60	6.45	6. 20	6. 34
1910	6. 20	6. 35	7.35	7. 55	7.50	7. 50	7.10	6.85	6. 80	6. 60	6. 20	6. 00	6. 83
1911	6.15	6. 15	6. 20	6. 10	5.95	6. 05	6.30	6. 95	6. 80	6. 75	6. 70	6. 65	6. 40
1912	6. 85	6. 60	7. 20	7. 65	7.95	8. 00	7.90	8. 50	9.15	7. 90	8. 10	7.85	7. 80
1913	7. 80	8. 25	8.30	8.15	8.00	8.15	8. 25	8. 30	8. 50	8.40	8. 25	8. 20	8.21
Av. 1909-1913	6. 60	6. 64	7.03	7.11	7.17	7. 23	7.20	7. 46	7.60	7. 25	7.14	6. 98	7.12
1914	8.45	8. 30	8.35	8. 50	8.40	8.60	8. 80	9. 10	9. 35	9. 05	8.60	8. 35	8.65
1915	8.05	7. 50	7.65	7. 70	8.35	8. 80	9.20	9. 05	8.95	8.80	8. 70	8.35	8.43
1916	8.35	8.35	8. 75	9.10	9.50	9.85	9.25	9.45	9.40	9.75	10.15	10.00	9.33
1917	10.15	10. 50	11. 25	11. 75	11. 90	12.15	12. 35	12. 70	13.10	11. 70	11. 10	11.40	11. 67
1918	12.10	12. 00	12. 60	14. 70	15.40	15.85	16. 05	15. 75	16.00	14. 80	15. 05	14.90	14. 60
1919	15.80	15. 95	16. 05	15. 85	15.00	13. 55	15.60	16.45	15.50	16. 15	15.10	14.35	15. 45
1920	13.95	13.05	13.10	12.30	12. 25	14.95	14.68	14. 30	14.95	14.61	11.65	10.08	13.32
Av. 1914-1920	10.98	10.81	11.11	11.41	11.54	11.96	12.28	12.40	12.46	12.12	11.48	11.06	11.64
182	8.94	8. 57	9.41	8.22	8.33	7. 94	8.09	8. 32	7. 67	7. 59	7. 52	7. 31	8. 16
1922	7. 37	7. 60	8. 01	7. 94	8. 20	8. 83	9. 48	9. 62	9.98	10.53	9. 42	8.89	8.82
1923	9.17	8. 86	8.83	9. 01	9.41	9. 94	10.05	10.48	10.12	9. 90	9.36	8.92	9.50

CALVES.

1901	5. 85	5. 95	5. 75	5. 15	5. 25	6.00	5.75	5.25	5.85	5. 90	5.60	5.00	5.61
1902	6. 30	6. 75	6. 00	5. 50	5. 75	5. 75	6. 50	6.75	7.00	6. 80	6. 60	6. 60	6.36
1903	7.10	7. 15	6.50	5. 75	5. 60	6. 20	5.65	6.40	6.65	6. 40	5.75	4.95	6.18
1904	5.85	6.35	5.65	4.60	4.60	4.90	5.75	5.60	5. 90	6.10	6.00	6. 00	5.61
1905	6.15	6. 50	5. 70	5.10	5. 25	5. 85	5. 75	5.90	6. 00	6.00	6.00	6.60	5.90
1906	7. 00	6. 40	6. 25	5. 60	5. 65	5. 80	5. 60	6.00	6.75	6. 50	6.25	7. 00	6. 23
1907	7.00	6. 50	6. 60	6. 00	6. 35	6.15	6. 40	6. 35	6. 50	6.00	6. 25	6.00	6.34
1908	6. 75	6. 60	6. 20	5. 50	5. 60	5.80	6. 00	6. 75	7. 60	7.20	6.50	7. 40	6.49
1909	7.60	6.85	7.00	6.30	6.35	6.50	7.00	7.50	7. 60	8.10	7.40	8. 25	7.20
1910	8.60	8.65	9.00	7. 85	7.35	7.85	7.60	7.75	8. 50	8.65	8.75	8. 50	8.25
1911	8. 75	8.40	7.40	6.60	7. 25	7.60	7.40	8.00	8.75	8.60	8.35	7.85	7.91
1912	8.75	7.50	8. 00	7.40	7. 75	8.00	8.75	9.75	11. 25	10.00	9.85	10. 25	8.94
1913	9.75	9.85	10. 50	8.50	9.25	9.75	10.40	11.50	11. 25	10.50	10.35	10.75	10. 20
Av. 1909-19	8.69	8.25	8.38	7.33	7. 59	7.94	8.23	8.90	9. 47	9.17	8.94	9.12	8.50
91	11.00	10.75	9.00	8.85	9. 50	9.40	10.60	11.00	11. 40	10.65	10.35	8.65	10. 10
1915	9.85	10. 35	10.00	8. 40	9.15	9.60	10. 25	11. 50	11. 25	10.85	10.15	9. 65	10.08
1916	10.15	10.65	9.65	8.75	10.40	11. 25	11. 40	12.00	12. 40	11. 50	11. 85	11. 75	10.98
1917	13. 40	12.65	13.40	12.50	13. 25	13.40	13.00	15.15	15.00	14.85	13. 50	15. 25	13. 78
1918	15. 35	14.15	15. 25	14.50	13. 50	16. 02	16.67	17. 28	18.63	16.83	16.86	16. 01	15.92
1919	15.62	15. 75	15. 01	14.31	14. 66	16.37	17.88	19.62	20.52	18.05	17. 60	16. 56	16. 83
1920	17.74	16.73	16.73	14.22	12.12	13.68	13.98	15.08	16. 39	14.18	13.74	10.39	14. 53
Av. 1914-1920.	13.30	13.00	12.72	11.65	1i. $8 C$	12.82	13.40	14.52	15.08	13.84	13.44	12.61	13.18
1921	11.49	11.02	10.33	8.12	8. 66	8.72	9.73	9.39	10.71	8. 68	7. 70	7.81	9. 36
1922	8.36	9.16	8. 26	6. 97	8. 46	8.89	8. 90	10.88	11.92	9.65	8.91	9.42	9.15
1923	10.08	10.63	9.32	8.68	9.51	9.31	9. 60	10.01	9.98	9.39	7.82	8.69	9.42

[^238]Figures prior to July, 1920, for good beef steers, and prior to June, 1918, for calves, compiled from Chicago Drovers Journal Yearbook; subsequent figures compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
${ }^{1}$ Bulk of sales, $1,100 \mathrm{lbs}$. up.
${ }^{2}$ Simple average of monthly average prices.

Table 425.-Cattle and calves: Monthly average price per 100 pounds, 1923. chicago.

| | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Classification. | | | | |

[^239]Table 425.-Cattle and calves: Monthly average price per 100 pounds, 1923-Con. EAST ST. LOUIS.

| Classification. | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | |

[^240] Livestock, Meats, and Wool Division.
Classification of livestock changed July 1, $1923 . \quad 1$ Beef yearlings excluded.

Table 425.-Cattle and calves: Monthly average price per 100 pounds, 1983-Con. FORT WORTH.

Classification.	Jan.	Feb.	Mar.	Apr.	May.	June.	Aver- age Jan. 1- June 30.	
Beef steers:								
Medium and heavyweight (1,100 lbs. up)- Choice and prime.-----------	Dollars.	Dollars.	Dollars.	Dollars.	Dotlars.	Dollars.	Dollars.	
Good	8.28	8.00	8.02	7.88	8. 00	7.87	8.01	
Medium	7.00	6.87	6.98	7.00	7. 07	6.77	6. 95	
Common	5. 19	5.12	5. 25	5.38	5.50	5. 18	5.27	
Lightweight (1,100 lbs. down) -								
Good.	7.98	7.75	7.84	7.75	8.21	8.01	7.92	
Medium	6.62	6.50	6.61	6. 62	7.14	6.80	6. 72	
Common	4.80	4.75	4.88	5. 00	5.56	5.12	5. 02	
Butcher cattle: Heifers, common to choice								
Heifers, common to choice	5.32	5.34	5. 44	5.50	5.45	5.16	5.37	
Cows, common to choice	4. 11	4. 10	4. 29	4. 62	4. 79	4. 52	4. 40	
Bulls, bologna and beef	3.59	3.57	3.62	3.75	3.70	3.53	3.68	
Canners and cutters: Cows and heifers	2.27	2.65	2.68	2.74	2.82	2.46	2.60	
Canner steers.	2.36	2.70	2.68	2.75	2.82	2.56	2.64	
Veal calves: Light to medium weight, medium to choice.	7.27	6.95	7.64	7.88	7.80	7.14	7.45	
Heavyweight, common to choice.	5. 03	5.08	5. 52	5.46	6. 32	4.94	5. 22	
Feeder steers: ${ }_{\text {Heave }}(1,00 \mathrm{lbs}$. up), common to choice								
Heavy (1,000 lbs. up), common to choice-- Light and medium (750 to 1,000 lbs.)	5.69	5.72	5.75	5.75	5.70	5. 30	5. 65	
common to choice.--	5.45	5.47	5.50	5. 50	5. 50	5. 16	5. 43	
Stock cattle:								
Steers, common to choice.	5.13	5. 32	5. 38	5. 36	5. 33	4.85	5. 23	
Cows and heifers, common to choice	3.47	3. 55	3.59	3.75	3.70	3.54	3. 60	
Caves- ${ }_{\text {Good and choice }}$	6. 02	6. 04	6. 12	6. 12	6. 07	5. 72	6. 02	
Common and medium	4.18	4.24	4.25		3.88		4.08	
Classification.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { age } \\ & \text { July -- } \end{aligned}$	
							Dec. 31.	
Slaughter cattle:								
Beef steers ($1,100 \mathrm{lbs} . \mathrm{up}$)-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	
Choice and prime. Good	7.60	7.36	7.66	7.81	7.79	7.98		
Medium	6.25	6.08	6. 29	6.47	6. 43	6.88	6. 40	
Common	4.50	4.48	4.79	5.00	5. 14	5.28	4.88	
Beef steers ($1,100 \mathrm{lbs}$. down)								
Choice and prime.			8. 96	9.05	9.12			
Medium	7.25	7.22	7.54	7.60	7.68	8.16	7. 58	
Common	4.12	4.10	4.49	4.68	4.78	5. 07	4.54	
Canner and cutter	2.38	2.38	2.68	2.89	2.92	3.20	2.74	
Light yearling steers and heifers (800 lbs . down), good and prime.			8.08	8.26	8.28	8.66	.	
Heifers-								
850 lbs . up-good and choice	5. 50	5. 28	5.39	5. 56	5.47	6.20	5. 57	
All weights-common and medium --	3.88	3.57	3.62	3.67	3.63	4.02	3.73	
CowsGood and choice	4.59	4.40	4.61	4.60	4.32	4.74	4.54	
Common and medium	3.38	3. 17	3. 20	3.17	2. 96	3.47	3. 22	
Canner and cutter.	2.15	1.96	2.05	2.07	1.92	2.30	2.08	
-								
Good and choice ${ }^{1}$	3.88	3.88	4.07	4.16	4.08	4.12	4.03	
bologna)	2.38	2.41	2.70	2.63	2.49	2.71	2.55	
Slaughter calves: Medium to choice								
190 lbs. down.	6.35	6.02	6.11	5. 93	5. 70	6.17	6.05	
190-260lbs.	5. 56	5.56	5.87	5. 60	5. 36	5.78	5. 612	
260 lbs . up	4. 99	5. 10	5.47	5. 31	5.03	5.41	5. 22	
CuIl and common-1901 lbs . down.				3. 243. 03				
	3. 25 2.62	$\begin{aligned} & \text { 3. } 11 . \\ & 2.70 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 2 \end{aligned}$		$\begin{aligned} & \text { 3. } 29 \\ & 28 \end{aligned}$	3.62 3. 22	$\begin{aligned} & 3.30 \\ & 2.92 \end{aligned}$	
Feeder and stocker cattle and calves: Steers-								
Common to choice-750 lbs. up....---	4.25 4.25	4. 34 4.34	4. 88 4.79	5. 12 4.96	5.15 4.92	5. 38 5. 12	4. 85	
Inferior (all weights) -----------1.	2.25	2. 40	2.91	3. 00	3.00	3.06	2. 77	
Cows and heifers-common to choice	3. 25	3.25	3.25	3.16	2.65	2.94	3. 08	
Calves-common to choice -------------1	4.25	4.28	4.63	4.63	4.20	4.49	4.41	

[^241]Table 425.-Cattle and calves: Monthly average price per 100 pounds, 192.3-Con. KANSAS CITY.

Classification.	Jan.	Feb.	Mar.	Apr.	May.	June.								
Beef steers: Medium and heavyweight (1,100lbs														
	10.87	10. 44	7.87	9.69	10. 20	10.83.	9.98.							
Medium	9.56 8.20	9.21 8.14	${ }_{8}^{8.96}$	8.95	9.94	10.14	9. 39							
Common	6. 68	6. 94	7.11	8. 74 8		9.22 7.88	8. 49							
Medium	9.35	8. 99	8.79	8.88	9.36	9. 84	9. 20							
Common	6.32	7.87	7.90	8.06	8.50	8.72	8.16							
Cows, common to choice	5.12	5.21	5. 53	5. 81	5. 98	5. 73	5. 56							
Bulls, bologna and beef.	nners and cutters:													
Cows and heifers.														
Canner steers	3.48	3.14 3.60	3. 38	3.53 4.00	3.50	3. 18	3.31							
Veal calves: Light to medium weight, medium to choice 8.95 9.55 8.50 7.58 8.03														
Feeder steers:														
Heavy ($1,000 \mathrm{lbs} . \mathrm{up}$), common to choice Light and medium (750 to 1,000 lbs.),	6.91	7.25	7.38	7.36	7.66	7.90	7.41							
Stock cattle:														
Cows and heifers, commo	6.4	6.61	6. 78	6. 81	5.00	6.94	6. 43							
Calves-														
Good and choice	7.12	7.20	7.44	7.50	7.56	7.44	7.38							
Common to mediu	5.27	5.32	5. 48	5. 61	5. 82	5. 57	5. 51							
Classification.							A ver- July 1 Dec. 31.							
	July.	Aug.	Sept.	Oct.	Nov.	Dec								
Slaughter cattle:														
Beef steers ($1,100 \mathrm{lbs} . \mathrm{up}$)-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.							
Choice and prime	10.83.	11.87	11. 68	11.34	11.25	11.36.	11.39							
Good.-.-	9.92	10. 06	10. 16	9.78	9.64	9.88	9.91							
Medium	8.90	8.73	8. 59	8. 20	7.87	8.19	8.41							
Common--1---------	7.59	7.28	6.96	6.65	6.31	6.41	6. 87							
Choice and prime	10.58	11. 10	11.40	11.11	11.35	11.48	11.17							
Mood....	9.61	9.76	9. 84	9. 59	9.68	10.01	9.75							
Medium-	8.50	8.45	8. 38	8.08	7. 96	8.32	8. 28							
Common	6. 96	6. 64	6.41	6. 09	6.00	6.16	6.38							
	4.34	4.12	4.11	4.00	4.00	4.00	4.10							
Light yearling steers and heifers (800 lbs . down), good and prime	9.45	9.74	9.89	9.88	10.00	10. 14	4.10 9.85							
Heifers), 850 lbs. up, good and choice														
	7.82	7.85	7.80	7.82	7.62	8.04	7.82							
Cows- ${ }^{\text {a }}$ -	5. 50	5. 54	5. 39	5. 26	4.88	5. 04	5. 27							
Cows- ${ }_{\text {Good and }}$ choice	6. 55	6. 53	6.40	6. 25	5.88	5.90								
Common and mediu	4. 34	4. 27	4. 28	4. 23	5. ${ }^{\text {3. }} 88$	5.92	6. ${ }_{\text {c }} 14$							
Bulls- Good and choice ${ }^{1}$	2.68	2. 59	2.66	2. 74	2.43	2. 66	2. 63							
	5.65	5. 26	5. 26	5.00	4.92									
						4.93	5. 17							
bologna	4.08	3.54	3.52	3.27	3.06	3. 20	3.44							
Slaughter calves: Medium to choice-														
190-260 lbs_	7.53	7.42	7.41	7.27	6.75	6.88	7.21							
1901 lbs. up.....--	4.584.08	$\begin{aligned} & \text { 4. } 62 \\ & 3.65 \end{aligned}$	$\text { 4. } 68$$\text { 3. } 62$	$\text { 4. } 67$	$\begin{aligned} & \text { 4. } 38 \\ & \text { 3. } 25 \end{aligned}$	4. 50	$\begin{aligned} & \text { 4. } 51 \\ & 3.55 \end{aligned}$							
Feeder and stocker cattle and calves: Steers-														
Common to choice-750 lbs. upCommondo choice-750	6.776.40	7.076.47	7. 13	6. 61	6.60	6. 53	6. 78							
Inferior (all weights).	3.72	3.75	3.75	3. 75	3.75	3.70	3. 74							
Cows and heifers-common to choice.	4. 60	4.46	4. 38	4.09	3. 88	3.98	4. 23							
Calves-common to choice.......-.-.-.-...-	6.12	6.12	5. 84	5. 66	5. 58	5. 56	5. 81							

[^242]Table 425.-Cattle and calves: Monthly average price per 100 pounds, 192s-Con. OMAHA.

Classification.	Jan.	Feb.	Mar.	Apr.	May.	June.	
Beef steers:	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Medium and heavyweight ($1,1001 \mathrm{lbs}$. up)							
Choice and prime.-.-------	10.949.507.	10.289.248	9.748.888.	9.508.72	9.909.30	10.589.83	10. 16
Good.--							
Medium	7.996.39	8. 05	8. 05	8. 8 8.08	8 8. 65	8.84	9.24
Common		6. 67	6. 86	7.08	7.69	7.66	7. 06
Lightweight (1,100 lbs. down)-	6.39	10.14					
Choice and prime.-	10.71			9. 50	9.79	10.38	10.049.12
Good.-.	9.33						
Medium	6.11	6. 45	7.936.61	7.96 6.84	7.19	7.09	8. 06
Butcher cattle:							6. 72
Heifers, common to choic	$\begin{aligned} & 6.67 \\ & \text { 5. } 28 \end{aligned}$	6.75	6.79	6.80	6.966.31	7.09	6.845.81
Cows, common to choice		5.43	5. 60 5. 43	$\begin{aligned} & 5.95 \\ & 5.47 \end{aligned}$		6.29	
Bulls, bologna and beef	4.68	4.98			5. 84	5. 68	5. 35
Canners and cutters: Cows and heifers.			3.54	3.77	4.00	3.46	
Canner steers.	3.28 3.74	3.35 3.75	3.97				3. 57
Veal calves:		9. 55	9.246.24	7.966.13	8.866.56	7.876.05	8. 76
Light to medium weight, medium to choice.							
Heavyweight, common to choice	6. 04	6. 50					6. 25
Feeder steers:	6.87	7.12	7.06	7.24	7.47	7.64	7.23
Heavy (1,000 lbs. up), common to choice--							
Light and medium (750 to $1,000 \mathrm{lbs}$.), common to choice	6.85	7.00	6.92	7.04	7.15	7.04	
Stock cattle:							7.00
Steers, common to choice:	$\begin{aligned} & 6.15 \\ & 4.29 \end{aligned}$	6. 25	6. 24	6.37	6. 53	$\begin{aligned} & 6.38 \\ & \text { 4. } 60 \end{aligned}$	6. 324.46
Cows and heifers, common to choice		4.38	4.38	4.42	4.66		
CalvesGood and choice.	$\begin{aligned} & 6.95 \\ & 5.26 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.10 \\ & 5.40 \end{aligned}$	7.06 5. 41	$\begin{aligned} & 7.11 \\ & 5.38 \end{aligned}$	$\begin{array}{r} 7.28 \\ 5.59 \\ \hline \end{array}$	$\begin{aligned} & 7.38 \\ & 5.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.15 \\ & 5.46 \end{aligned}$
		Aug.	Sept.	Oct.	Nov.		
	July.					Dec.	
Classification.							
Slaughter cattle:	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Beef steers (1,100 lbs. up)-							
Choice and prime.	10.81	11. 50	11. 80	11.41	11. 28	11.52	11.399.99
Good.	$\begin{aligned} & 9.93 \\ & 8.87 \end{aligned}$	10.188.69	10.20	9. 91	9.74	10.00	
Medium-				6. 74	8. 6.56	8.286.29	8. 476. 85
Common.	7.46	7.13	6. 90				
Beef steers (1,100 lbs. down)-							6. 85
Choice and prim	10.62 9.69	11.23	11. 59	11.27 9.77	11.50 10.02	11.63 10.14	11.31 9.90
Medium	8.54	8.41	8.27	8.12	8.26	8. 34	8.326.36
Common	6.94	8. 6. 4 4.21	6. 28	6. 124.00	6.124.00	6. 134.024.0	
Canner and cutter			4.02				4.05
Light yearling steers and heifers (800 lbs . down), good and prime.	9.66	4.21 9.67	9.66	9.73	10.08.	10. 29	9.85
Heifers- ${ }^{\text {c }}$,							$\begin{array}{r} 8.32 \\ -5.59 \end{array}$
850 lbs . up-good and choice.	8.275.98	8.30	$\begin{aligned} & 8.14 \\ & 5.42 \end{aligned}$	8. 315.46	$\text { 8. } 28$	$\begin{aligned} & 8.61 \\ & 5.58 \end{aligned}$	
All weights-common and medium.--		5.82					
Cows- Good and choice		$\begin{aligned} & \text { 7. } 00 \\ & \text { 4. } 56 \end{aligned}$	$\begin{aligned} & \text { 6. } 56 \\ & 4.18 \end{aligned}$	$\begin{aligned} & 6.32 \\ & 4.06 \end{aligned}$	5.71	5.80	
Common and medium	6. 87 4.75 4				3.78	4.25	4. 26
Canner and cutter.	3. 04	2.87	2. 72	2. 79	2.64	3.01	2. 84
Bulls- Good and choice 1	6.02	6. 18	5.82	5. 53	5.08	5.05	5.61
Canner to medium (canner and							
bologna) -----------------------------	4. 28	4.08	3. 70	3. 53	3.03	3. 24	3. 64
Slaughter calves: Medium to choice-							
190 lbs. down.	8.68	8. 19	8.41	8.60	8.30	7.96	8.36
190-260 lbs.	7.54	7.31	7.25	7.07	6.80	6. 68	7.11
2601 bs up.	6. 78	6.31	6. 25	6. 16	6.14	5.84	6.25
Cull and common-							
190 I bs. down	5. 94	5.25	5.25	5. 25	5. 10	5. 34	5. 36
1901 bs. up--------.-.--	5. 26	4.69	4.62	4.35	3.99	3.83	4.46
Feeder and stocker cattle and calves:							
Common to choice-750 lbs. up	7.22	7.30	7.32	6. 75	6.50	6. 54	6.94
Common to choice-750 lbs. down.-	6. 60	6. 24	6.28	6.04	6.04	6. 18	6.23
Inferior (all weights) -----------	4.49	4.13	4.06	3. 88	3. 87	3. 80	4. 04
Cows and heifers-common to choice	4.55	4.56	4.62	4. 34	3. 81	3.96	4.31
Calves-common to choice...-. -	6.36	6. 25	6. 19	5.80	5.55	5.40	5.92

[^243]Table 425.-Cattle and calves: Monthly average price per 100 pounds, 1923-Con. SOUTH ST. PAUL.

[^244]Livestock, Meats and Wool Division.
Classification of livestock changed July 1, 1923.
${ }^{1}$ Beef yearlings excluded.

Table 426.-Cattle and calves: Trend of average farm prices and average market prices at Chicago, 1910-1923.

Calendar year.	Farm price.		Average market price at Chicago.		Price relatives, $1913=100$.			
	Beef cattle, weighted average.	Veal calves, simple average.	Beef cattle, simple average.	Veal calves, simple average.	Farm price.		Market price.	
					Beef cattle.	Veal calves.	Beef cattle.	Veal calves.
	Dollars.	Dollars.	Dollars.	Dollars.				¢1.0
1910	4.76	6.41	6.83	8.25	80.5	85.7	83.2	81.0
1911	4. 45	6.06	6.40	7.91	75.3	81.0	78. 0	77.6
1912	5. 15	6.45	7.80	8.94	87.1	86.2	95.0	87.7
1913	5.91	7.48	8.21	10. 19	100.0	100.0	100.0	100.0
1914	6. 24	7.83	8.65	10.10	105.6	104.7	105.4	99.1
1915	6. 00	7.63	8.43	10.08	101. 5	102. 0	102. 7	98.9
1916	6. 47	8.33	9.33	10.98	109.5	111.4	113.6	107.8
1917	8.16	10.47	11. 67	13. 78	138. 1	140.0	142.1	135.2
1918	9. 44	11. 88	14. 60	15.92	159.7	158. 8	177.8	156. 2
1919	9.56	12. 74	15. 45	16.85	161.8	170.3	188.2	165.4
1920	8. 32	11.81	13.32	14. 58	140.8	157.9	162.2	143.1
1921	5. 46	7.87	8.16	9.36	92.4	105. 2	99.4	91.9
1922	5. 48	7.69	8.82	9.15	92.7	102. 8	107.4	89.8
1923.	5. 57	7. 99	9. 50	9.42	94.2	106.8	115. 7	92.4

Division of Statistical and Historical Research. Farm prices from Division of Crop and Livestock Estimates; market prices compiled from data of the reporting service of the Livestock, Meats and Wool Division.

Table 427.-Cattle: Prices of live steers in Chicago, wholesale prices of beef in Chicago and New York, and retail prices of certain beef cuts, 1913-1923.

Calendar year.	Live steers good to choice, Chicago.	Beef, wholesale.				Beef, retail.													
		Good native steer, Chicago.		Native sides, New York.		Sirloin steak.						Round steak.							
				Chicago.	New York.		Average, leading cities.		- Chicago.		New York.		Average, leading cities.						
		$\begin{gathered} \text { Price } \\ \text { per } \\ \text { pound. } \end{gathered}$	Wholesale as per cent of live steer price.			Price per pound.	Wholesale as per cent of live steer price.	$\begin{gathered} \text { Price } \\ \text { per } \\ \text { pound. } \end{gathered}$	Retail as per cent of live steer price.	Priceperpound. pound.	Retail as per cent of live steer price.	Price per pound.	Retail as per cent of live steer price.	$\begin{gathered} \text { Price } \\ \text { per } \\ \text { pound. } \end{gathered}$	Retail as per cent of live steer price.	Price per pound.	Retail as per cent of live steer price.		Retail as per cent of live steer price.
			Per		Per		Per		Per		Per		Per		Per		Per		
1913.	Cents. 8.5	Cents.	cent.	Cents.	cent. 147	Cents.	cent.	Cents.	cent.	Cents.	cent.	Cents.	cent.	Cents.	cent.	Cents.	cent.		
1914.	9.0	13.6	151	13. 5	150	25.3	283	26.8	298	25.9	288	22.4	249	26.3	292	23. 6	262		
1915.	8.7	12.9	148	12.6	145	25.7	295	26.8	308	25.7	295	22. 1	254	26.0	299	23.0	264		
1916	9.6	13.8	144	13. 4	140	26.8	279	28.1	293	27.3	284	22.6	235	27.4	285	24.5	255		
1917	12.8	16.7	130	16.4	128	29.3	229	32.6	255	31.5	246	25.8	202	32.6	255	29.0	227		
1918	16.4	22.1	135	20.9	127	35.3	215	40.9	249	38.9	237	32.3	197	42.3	258	36.9	225		
1919	17.5	23.3	133	21.5	123	38.3	219	43. 9	251	41.7	238	34.3	196	45.7	261	38. 9	222		
1920.	14.5	23.0	159	20.8	143	43.0	297	46.9	323	43.7	301	36.3	250	47.3	326	39.5	272		
1921.	8.8	16.3	185	14.8	168	38.0	432	42.1	478	38.8	441	31.0	352	41.4	469	34.4	391		
1922.	9. 5	15.0	158	13.8	145	37.2	392	41.1	433	37.4	394	29.1	306	39.6	417	32.3	340		
1923.	10.0	15.8	158	14.5	145	39.8	398	42.5	425	39.1	391	30.7	307	40.8	408	33.5	335		
January-.	9.8	15.4	157	14.0	143	38.1	389	40.5	413	37.2	380	29.3	299	38.6	394	31.6	322		
February	9.4	14.8	157	13.5	144	37.6	400	39.9	424	37.1	395	28.9	307	38. 3	407	31.5	335		
March...	9.3	14.5	156	12.7	137	37.3	401	39.9	429	37.3	401	28.8	310	38.1	410	31.7	341		
April.	9.0	14. 5	161	13.9	154	38.2	424	40.4	449	37.9	421	29.4	327	38.7	430	32.3	359		
May.	9. 5	14. 5	153	14.5	158	38.5	405	41.4	436	38.7	407	29.6	312	39.6	417	33.0	347		
June.	10.3	15.1	147	14.3	139	39.3	382	43.4	421	40.1	389	30.2	293	40.9	397	34.5	335		
July.	10.6	15.8	149	16.0	151	40.5	382	45.3	427	41.0	387	31.6	298	43.7	412	35.5	335		
August	10.9	15.8	145	14.9	137	41.6	382	45.5	417	41.1	377	32.3	295	43.7	401	35.5	326		
September	10.7	17.5	164	14.8	138	43.0	402	45. 0	421	41.1	384	32.7	306	43.5	407	35.5	332		
October..	10.4	17.5	168	15.1	145	41.6	400	44.3	426	40.0	385	32.3	311	42.8	412	34.4	331		
November	9.8	17.5	179	14.2	145	40.7	415	42. 6	435	38.9	397	31.7	323	41.2	420	33.1	338		
December	9.8	17.1	174	16.6	169	40.9	417	42.3	432	38.6	394	31.6	322	40.6	414	32.9	336		

T4패 487.-Cattle: Prices of live steßrs in Chicago, wholesale prices of beef in Chicago and New York, and retail prices of certain heef cuts, 1913-1923-Continued.

'Table 428.-Cattle and calves: Monthly slaughter under Federal inspection, 1907-1928.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
1907	717, 935	569, 641	555, 476	634, 541	620,114	588, 465	640, 535	667, 827	696, 271	801, 110	595, 692	545, 758	7,633, 365
1908	642, 632	527, 369	519, 851	463, 445	490, 623	525, 134	563, 403	640, 332	767, 698	821, 193	680, 616	636, 964	7,279, 260
1909	586, 542	489, 905	550, 719	508, 267	536, 101	543, 597	608, 030	652, 172	782, 309	892, 348	798, 967	764, 850	7,713, 807
1910	632, 131	527, 361	599, 076	532, 904	551, 179	620, 862	614, 962	678, 668	795, 525	831, 406	779, 527	643, 999	7, 807, 600
1911	626, 060	535, 853	562, 077	499, 422	599, 084	614, 447	591, 317	719,510	691, 720	828, 316	745, 810	605, 480	7, 619, 096
1912	674, 995	515, 056	563, 882	522, 278	562, 506	511, 135	507,695	631, 623	643, 617	808, 361	690, 973	620, 457	7,252, 578
1913	621, 744	489, 842	483, 693	554, 709	546, 781	556, 321	592, 959	582, 081	656, 410	701, 402	601, 937	590, 482	6, 978, 361
1914	585, 164	498, 991	476, 406	474, 177	473, 806	490, 302	505, 244	518, 165	650, 427	743, 686	658, 189	682, 180	6, 756, 737
1915	572, 748	466, 122	551, 991	507, 442	534, 457	573, 851	596, 142	590, 302	641, 411	736, 149	702, 134	680, 646	7,153, 395
1916.	622, 507	549, 956	597, 059	475, 566	564, 207	648, 209	562, 448	742, 534	790,737	941, 049	971, 801	844, 385	8,310, 458
1917	822, 932	662, 776	647, 251	654,336	815, 071	844, 168	783, 559	865, 883	957, 253	1,195, 587	1, 098, 796	1, 002, 540	10,350, 152
1918	895, 275	784, 834	828, 216	914, 899	781, 755	829, 690	1,019,982	987, 237	1, 142, 754	1,251, 041	1, 233, 081	1,159, 785	11,828, 549
1919	1,119, 200	701, 353	640, 288	622, 123	720,648	644, 463	854, 797	859, 409	855, 292	1, 073, 220	1, 040, 074	960, 181	10,091, 084
1920.	832, 231	630,995	683, 139	637, 575	626, 304	656, 602	661, 172	685, 763	825, 484	843, 136	858, 946	667, 344	8, 608, 691
1921	689, 506	526, 177	620, 936	590, 943	569, 979	640, 186	579, 028	680, 419	689, 043	749, 756	686, 115	586, 192	7,608, 280
1922	641, 513	569, 153	673, 701	589, 916	702, 203	724, 418	697, 303	761, 125	796, 377	883, 949	859, 413	778, 736	8, 677, 807
1923	745, 109	633, 710	687, 634	696, 757	762, 461	726, 962	724, 896	820,514	809, 810	952, 795	845,618	756, 250	9,162, 516
CALVES.													
1907	128, 178	99, 283	122,451	205, 410	224, 405	203, 916	220, 697	205, 840	197, 811	186, 620	126, 141	103, 635	2, 024, 387
1908	116, 868	87,891	137, 120	196, 976	205, 225	210, 692	192, 034	184, 719	187, 400	180, 317	142, 560	116, 471	1,958, 273
1909	134, 800	95, 221	149, 150	200, 106	228, 192	235, 741	213, 217	195, 623	205, 468	205, 064	171, 288	155, 147	2, 189, 017
1910	132, 412	116,899	188,441	221, 557	251, 746	237, 937	198, 425	206, 000	197, 135	187, 567	168, 323	131, 845	2, 238, 287
1911	135, 440	120,845	180, 386	218, 434	243, 247	232, 261	198, 471	206, 971	184, 421	179, 838	155, 135	128, 094	2, 183, 543
1912.	152, 064	126, 432	179, 813	244, 700	258, 331	228, 659	201, 085	192,355	189, 785	193, 250	162,837	148, 643	2, 277, 954
1913	139, 281	117,987	141, 551	212, 374	204, 723	194, 613	182, 000	149, 292	158, 518	156, 562	124, 004	121, 509	1,902, 414
1914	122, 486	99,865	145, 226	185, 619	183, 052	186, 771	153, 448	129,359	129, 637	135, 009	107, 279	119, 211	1,696, 962
1915	108, 642	96, 096	156, 205	198, 515	205, 039	197, 462	161, 997	141, 289	138, 557	148, 061	141, 400	125, 439	1, 818, 702
1916.	129, 231	143, 262	189, 472	233, 412	267, 422	228, 480	177, 605	206, 783	185, 928	203, 905	217, 370	184, 533	2, 367, 403
1917	203, 250	181, 581	211,501	286, 191	344, 598	276, 501	276, 710	254, 711	271, 514	339, 324	280, 910	215, 930	3,142, 721
1918	210, 444	192,769	259, 854	351, 387	357, 353	312, 171	354, 721	273, 597	316, 816	306, 096	272, 076	249, 109	3, 456, 393
1919	294, 812	209, 834	295, 388	383, 414	391, 304	327, 060	399,966	318, 769	317,984	374, 619	344, 238	311, 639	3,969, 027
1920	305, 125	283, 052	390, 053	382, 420	368, 614	431, 079	342, 765	332, 349	347, 578	314, 791	315, 971	244, 573	4, 058, 370
1921	282, 043	253, 692	360,410	365, 541	366, 798	369, 696	324, 046	303,796	321, 193	309, 136	292, 172	259, 045	3, 807, 568
1922	288, 487	279, 359	391, 439	365, 323	401, 340	388, 919	329, 445	344, 968	353, 095	382, 837	347, 711	308, 646	4, 181, 569
1923	351, 382	296, 698	367, 979	400, 322	466, 792	387,905	378, 513	402, 643	338, 093	416, 388	370, 070	323, 538	4, 500, 323

[^245]Table 429.-Beef: Cold-storage holdings in United States, 1916-1923.

Year.	Jan. 1.	Feb. 1.	Mar.1.	Apr. 1.	May 1.	June 1.	Juiy 1.	Aug. 1.	Sept. 1.	Oct. 1.	Nov. 1.	Dec. 1.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
1916	147, 817	153, 118	151, 912	144, 089	112,045	${ }_{90,349}{ }^{\text {lbs }}$.		${ }_{77,456}$	${ }_{76,753}{ }_{\text {libs }}$	libs.	libs.	${ }_{\text {1bs, }}^{\text {lio6 }}$
1917	239, 743	226, 800	207, 453	184, 794	147, 800	133, 838	145, 033	141, 130	130,743	150, 468	111, 254	1973, 989
1918	354, 814	330, 907	313, 689	302, 121	241, 942	214, 888	176, 606	209, 027	215, 125	223, 181	253, 652	262, 049
1919	335,085	330, 324	296, 539	252, 415	212, 407	191, 002	191, 883	190, 222	197, 595	203, 571	221, 791	258, 858
1920	298, 864	288, 752	260, 147	231, 937	200, 788	157, 271	121, 652	101, 086	89, 721	78, 055	89, 015	112, 166
1921	142, 813	142, 891	146, 400	138, 345	122, 188	109, 553	96, 220	84, 091	67, 334	59, 822	63, 486	80, 333
1922	84, 808	78, 295	73, 782	69, 516	64,507	56, 852	50, 706	47, 031	48, 291	53, 572	67, 814	95, 628
1923	116, 255	114, 113	100, 591	90, 502	78, 535	65, 023	57, 220	45, 893	46, 041	48, 187	63, 421	93, 166

Division of Statistical and Historical Research.
Table 430.-Cattle: Monthly sitatement of the livestock and meat situation, 1923. CATTLE, CALVES, BEEF, AND VEAL.

Item.	Unit.	Jan.	Feb.	Mar.	Apr.	May.	June.
Calves	do	351	297	368	400	467	388
A verage live weight:							
Calves	-do	168	163	149	142	146	162
Calves		100	97	88	82	82	94
Veeal	.---.do	34, 970	28, 688	32, 437	32, 850	48, 394	36,277
Storage first of month:							
Fresh beef	do	91, 805	89, 272	75, 604	65, 292	54, 522	41,207
Cured beef		24, 450	24, 841	24, 987	25, 210	24, 013	23,816
Cured beef.....--	do	1,205	1,929	2,312	1,937	1,612	2, 107
Canned beef	d	168	253	104	117	238	171
Oleo oil and stear	d	10,208	8,043	11, 523	8,962	9, 736	9, 174
Tallow	do	1,468	1,320	1,714	1,616	2,446	4,427
Imports:							
Receipts, cattle and calves ${ }^{2}$	Thousands	1,877	1,427	1,502	1,670	1,900	1,629
Stocker and feeder shipments ${ }^{2}$	----do.----	281	210	199	233	300	234
Prices per 100 pounds:							
Average cost for slaughter	Dollars	6.58	6.89	7.19	7.51	7.82	7.90
At Chicago-	-----do-----						
Cattle, good steers	-do	10. 30	9. 80	9.58	9.39	9.71	10. 10
Beef carcasses, good grade	-do.	14. 47	14. 06	13. 74	14. 12	15. 42	16.41 16.09
Veal carcasses, good grade Cattle on farms Jan.	Thousands-	18.14 67,240	18.07	16. 45	15.97	16.68	16. 09
Cattle on farms Jan.	Thousands.	67, 240					

Table 430.-Cattle: Monthly statement of the livestock and meat situation, 1923Continued.
CATTLE, CALVES, BEEF AND VEAL-Continued.

Item.	Unit.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
Inspected slaughter: $\begin{array}{c}\text { Cattle }\end{array}$ Thousands 725 820 810 953 846 756 9,163								
Calves	----do-----	378	403	338	416	370	324	4, 500
Average live weight:	ound	942	933	939	40	934	952	953
Calves	do	177	196	204	200	189	181	${ }^{3} 173$
A verage dressed weight:								
Cattle.------------	-do	509	504	501	496	502	499	${ }^{3} 516$
Calves		102	110	112	111	109	104	${ }^{3} 99$
Total dressed weight (carcass) :	1,000 Ib	368, 733	413, 367	405, 966	472, 805	424, 898	377, 346	4, 725, 366
Veal	----do.	38, 449	44, 254	37, 870	46, 294	40, 182	33, 703	4 444, 368
Fresh beef ---..--	do	34, 385	24, 112	24,625	27, 590	43, 772	71, 024	453,601
Cured beef	d	22,835	21, 781	21, 416	20,597	19,649	22, 142	${ }^{4} 22,978$
Cured beef	do	2,061	1,551	2,854	2,210	1,804	1, 460	23,042
Canned beef	do	, 174	1, 92	132	122	, 60	103	1,734
Oleo oil and stear	do	7, 080	11, 734	8,752	9, 010	7,199	6,299	107, 720
Tallow.	do	6, 135	5,195	3,273	3,209	3,262	1,811	35, 876
Imports:								
Receipts, cattle and calves ${ }^{2}-{ }^{\text {- }}$	Thousands	1,903	2, 214	2, 295	,2, 802	2,182	1,810	23, 211
Stocker and feeder shipments ${ }^{2}$ -	do	223	480	631	785	624	353	4,553
Prices per 100 pounds: Cattle- A verage cost for slaugh-								
Calves-								
Average cost for slaughter	do	8.60	7.53	7.30	6.94	6.39	7.19	${ }^{8} 7.86$
At Chicago-								
Cattle, good steers. Veal calves	do	10.04 9.60	10.76 10.01	10.88 9.98	10.93 9.39	10.62 7.82	10.68 8.69	10.23 +9.42
At eastern markets-								
grade	do	17.32	17.84	17.90	16.76	15. 71	15.95	${ }^{4} 15.81$
Veal carcasses, good grade	--do_----	16.96	17. 74.	19.18	18. 27	15.52	15. 89	${ }^{17.08}$

Division of Statistical and Historical Research.
Inspected slaughter from reports of Bureau of Animal Industry. Weights and storage holdings from reports of Division of Statistical and Historical Research; receipts, shipments, and prices compiled from data of the reporting service of the Livestock, Meats, and Wool Division, and number on farm from Division of Crop and Livestock Estimates. Exports and imports from Bureau of Foreign and Domestic Commerce.

$$
\begin{array}{ll}
1 \text { Including reexports. } & \begin{array}{l}
\text { Weighted average. } \\
2
\end{array} \quad \text { Sublic stockyards. }
\end{array}
$$

Table 431.-Beef products: ${ }^{1}$ Exports, all products combined, United States, 19101924.

$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { June } 30 . \end{gathered}$	July.	$\begin{aligned} & \text { Au- } \\ & \text { gust. } \end{aligned}$	Sep-tember.	October.	$\begin{aligned} & \text { No- } \\ & \text { vem- } \end{aligned}$ ber.	$\begin{aligned} & \text { De- } \\ & \text { cem- } \\ & \text { ber. } \end{aligned}$	$\begin{aligned} & \text { Janu- } \\ & \text { ary. } \end{aligned}$	Feb-ruary.	March.	April.	May.	June.	Total.
					1,000								
			28,	26,677		22,987		19,016	23, 778	19,905	18,518	23, 319	282, 876
1910-11	18, 090	18, 826	16, 146	15, 398	18,227	15, 598	16, 540	16, 265	23, 412	30, 692	40, 030	32,904	62, 128
1911-12-	29, 171	25, 841	25, 130	21, 002	14, 962	15, 373	14, 206	15, 739	19, 203	19, 838	15, 967	13, 804	30, 296
1912-13-	16, 754	15, 574	10, 871	10, 518	8, 048	8, 908	12, 863	13,657	16, 424	14, 203	15, 686	19, 971	
1913-14.	15, 388	13, 280	11, 895	10,670	10,778	10, 361	10,490	9,283	11, 073	14, 181	15, 326	13, 221	145, 955
1914-15	12, 410	10,960	17, 131	16, 495	31, 587	18, 895	32, 879	35, 308	41, 125	49, 961	40, 190	71	81
1914-16-	50, 154	43, 166	39, 404	28, 930	36, 702	42, 155	21, 461	28, 422	26, 378	33, 361	35, 105	53, 83	068
1916-17-	28, 242	24, 679	25, 783	36, 024	31, 724	26, 908	32, 680	25, 932	35, 895	51, 974	51, 950	33, 296	05, 087
1917-18-	19, 911	42, 278	31, 773	17, 737	10, 743	36, 443	43, 475	31, 892	87, 199	72, 882	96, 982	92, 150	3, 465
1918-19.	53, 583	69, 217	49, 124	43, 523	83, 803	49, 504	42, 078	30, 685	27, 164	39, 559	28, 990	43, 964	561, 194
1919-20-	25, 496	28, 184	25, 400	45, 744	28, 66	19, 711	30,576	20,497	17, 635	29,852	24, 925	27, 861	324, 544
1920-21-	18, 716	9,387	10, 530	15, 180	14, 088	14, 999	24, 767	14, 523	12, 626	14, 625	15, 911	13, 065	178, 417
1921-22-	18, 019	18, 496	18, 568	12, 772	10, 044	9, 369	9, 109	12, 400	17, 810	13, 735	19, 1547	19, 873	179, 350
1922-23-	15, 271	13, 751	13, 832	13, 165	14, 554	10, 778	12, 537	11, 415	15, 144	12, 149	13, 647	14,941	161, 184
1923-24_	14, 229	18, 179	14, 997)	14, 205	12, 086								-----

Division of Statistical and Historical Research. Compiled from reports of Bureau of Foreign and Domestic Commerce.
${ }^{1}$ These figures include fresh, canned, pickled, and other cured beef, tallow, and oleo oil.

Table 432.-Beef, fresh: Exports from the United States, by countries, 1910-1923.

Year ending June 30.	France.	Italy.	United Kingdom.	Other Europe.	Total Europe.	Canada.	$\left\|\begin{array}{c}\text { New } \\ \text { found- } \\ \text { land } \\ \text { and } \\ \text { Labra- } \\ \text { dor. }\end{array}\right\|$	Bermuda.	Panama.	Cuba.	Other countries.	Grand total.
		1,000	1,000	1,000	1,000		1,000	1,000	1,000	1,000	1,000	1,000
	1,000 lb	lbs.	$l \mathrm{lbs}$.	lbs.	lbs.	1,000 lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
1909-10		86	70,795		70, 886	136	4	394	4, 042	95	173	75, 730
1910-11		1	37, 258	42	37, 301	248	5	561	4, 221	42	133	42,511
1911-12		14	8,872	18	8, 904	585	12	176	5,401	45	141	15, 264
1912-13			127	22	149	640	20	380	5, 935	125	113	7,362
1913-14				5	5	254		483	5, 534	38	80	6,394
1914-15	99, 620	10,472	54, 497		164, 620	545	82	656	3,707	533	298	170,441
1915-16.	49, 100	47, 888	117, 409	241	214, 638	3,192	111	885	1,505	53	10, 830	231, 214
1916-17	38, 042	13, 066	125, 688	576	177, 372	17,771	263	1,327	235	58	151	197, 177
1917-18	36, 927	8, 567	285, 789	-------	331, 283	37,350	329	510	144	203	214	370, 033
1918-19	26,629	19, 085	272, 129	930	318, 773	3, 019	20	932	257	201	9,003	332, 205
1919-20	329	3, 610	9,323	134, 931	148, 193	2,918	198	1, 020	84	314	834	153, 561
1920-21	401		3,140	4, 028	7,569	695		1,143	198	515	10,964	21, 084
1921-22			1, 044	346	1,390	128	82	1, 116	236	176	865	3,993
1922-23.	4		1,464	271	1,739	119	7	898	210	285	819	4, 077

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918, Monthly Summaries of Foreign Commerce, June, 1920, 1922, and 1923, and reports of Bureau of Foreign and Domestic Commerce.

Table 433.-Beef, pickled and other cured: Exports from the United States, by countries, 1910-1923.

Year ending June 30.	Belgium.	France.	Germany.	Italy.	Neth-erlands.	United Kingdom.	$\begin{gathered} \text { Other } \\ \text { Eu- } \\ \text { rope. } \end{gathered}$	Total Europe.	Canada.	New-foundland and Labrador.	Other countries.	Grand total.
			1,000	1	1,000	1,000	1	1	1,000	1,000	1,000	1,000
	lbs	lbs.	lbs	lbs.	lbs.	lbs	lbs	lbs	lbs.	lbs.	lbs.	lbs.
1909-10	2,140	174	4, 068	155	629	10, 457	2, 353	19, 976	1,336	5, 074	10, 485	36,871
1910-11	1, 843	171	4,581	54	793	10, 263	2, 749	20, 454	1, 818	5, 821	12, 191	40,284
1911-12	1,829	124	4,616	42	749	8,747	3, 383	19, 490	1,752	5, 077	11, 769	38, 088
1912-13	- 554	34	3,081	2	468	5,930	2, 253	12, 322	712	3,807	9,016	25, 857
1913-14	556	28	1,758		276	4,113	1, 036	7,767	1,331	4,936	9, 232	23, 266
1914-15	1,908	15	379	97	2, 368	10,994	3,180	18,941	1,659	4,331	6, 944	31, 875
1915-16	4,546	133	${ }^{(1)}$	499	96	12, 003	3, 570	20, 847	5, 101	5, 027	7, 140	38, 115
1916-17	19, 987	312		5	4,987	7,490	2,925	35, 706	9, 395	6, 803	6,150	58, 054
1917	31, 236	60		600		4, 205	5, 739	41, 840	2, 623	5, 505	4,500	54, 468
1918-19	20,596	1,937		3,496		3,995	5,940	35, 964	1,603	4,251	3,248	45, 086
1919-20	1,962	198	3,189	408	3, 079	5, 336	4,619	18,791	2,255	6, 214	5, 124	32, 384
1920-21	702	25	1,166	83	1, 024	4,115	457	7, 572	1,732	5, 516	8, 493	23,313
1921-22	693	89	954	5	178	3,513	4,084	9,516	1, 080	6,942	9, 236	26, 774
1922-23	364	49	463		191	3, 085	2,113	6,265	1,461	6,627	9, 832	24, 185

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918, Monthly Summaries of Foreign Commerce, June, 1920, 1922, and 1923, and reports of the Bureau of Foreign and Domestic Commerce. ${ }^{1}$ Less than 500 pounds.
Table 434.-Beef, canned: Exports from the United States, by countries, 1910-1923.

Year ending June 30..	Belgium.	France.	Italy.	$\begin{aligned} & \text { Neth- } \\ & \text { er- } \\ & \text { lands. } \end{aligned}$	United Kingdom.	Other Europe.	$\begin{aligned} & \text { Total } \\ & \text { Eu- } \\ & \text { rope. } \end{aligned}$	Canada.	New found- land- and Labra- dor.	Philippine Islands.	Other countries.	Grand total.
	1	1,	1,	1,000	1	1,	1,000	1,000	1,000	1,000	1,000	1,000
				los.	los.	lbs.						
1909-10	406	226	22	298	9,300	193	10,445	205	136	540	3,479	14, 805
1910-11	283	78	10	210	6, 292	27	6,900	41	118	200	3, 566	10, 825
1911-12	286	107	12	241	5, 743	167	6,556	123	236	1,180	2, 931	11, 026
1912-13	178	119	4	253	3, 117	188	3,859	111	26	206	2,638	6,840
1913-14	381	40	4	56	1, 194	65	1,740	63	40	52	1,570	3,485
1914.15	28	6,440	965	68	64,701	1,359	73, 561	72	13	143	1,454	75, 243
1915-16		6, 508	1,968		38, 205	2, 632	49,313	35	70	56	1,330	50, 804
1916-17.		17, 653	188		40, 218	57	58, 116	7, 571	160	190	1,499	67, 536
1917-18.		30, 417	17, 699		46, 375	259	94, 750	1, 118	261	169	1,045	97, 343
1918-19	6,461	19, 458	45, 636	1, 341	25, 289	8,573	106, 758	339	249	125	989	108, 460
1919-20.	959	187	397	1,038	9,718	16, 677	28, 976	461	262	278	1,157	31, 134
1920-21	(1)	(1)	1	$\left.{ }^{1}\right)$	1,996	6, 206	8, 203	331	18	113	2,098	10,763
1921-22	(1)	76		1	2, 463	53	2, 593	174	47	95	839	3,748
1922-23	2	${ }^{(1)}$			728	64	794	94	65	298	1,050	2,301

[^246]Table 435.-Beef, fresh, chilled and frozen: Net imports and net exports of principal countries, 1909-1922.

Calendar year.	Imports.			Exports.								
	France.	Germany	United Kingdom.	Denmark.	Nethlands.	United States.	Canada.	Argentina.	Brazil.	Uruguay.	Australia.	New Zealand.
			1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	libs.	lbs.	lbs.		lbs.	lbs.		libs.	lbs.	lbs.
1909	3,257	26, 144	687, 736	32, 118	36, 916	93, 742		464, 460		12, 524	71, 131	54,590
1910	3,783	34, 815	785, 336	35, 659	34, 504	55, 539		559, 325		20,720	109, 421	
1911	1,267	39, 460	824, 443	26, 302	32, 542	28,782 9,026		689,674 755,849		16, 4383	108, 774	27,307 30,803
1912	2,042	78, 838	896, 652	56,865 32,826	38,036 32,915	-9,026	815 7,584	755,849 807,388		109, 268	142, 186	30,803 30,636
1913	7,114	66, 524	1,030,771	32, 826	32, 915	28, 972	7,584	807, 388		109, 268	218, 911	30, 636
1914	28, 032		990, 592	36,702	29, 097	222, 897	15,558	813, 427		153, 016	292, 056	69, 927
1915	379, 988		963, 389	48, 884	44, 563	144, 224	27, 544	799, 694	18, 770	215, 115	114, 655	86, 477
1916	458, 586		789, 826	34, 220	33, 297	142, 204	41, 609	942, 907	74, 209	157, 568	242,040	112, 071
191	412, 310		681, 796	35, 370	3, 735	194, 347	69, 713	870, 458	146, 500	150, 522	180, 222	39, 740
1918	473, 894		844, 055	21, 337	42	491, 002	124, 101	1,092,631	133,397	106, 247	119, 938	81, 960
1919	501, 110		721, 287	17, 730	343	135, 965	105, 710	883, 452	113,831	176,019	120, 940	86, 991
1920	286, 018	143, 268	1,032,708	38, 670	8,486	39, 467	62, 044	917, 784	134, 255	215, 181	179, 618	84, 883
1921	107, 764	26, 228	1,241,744	16, 496	45,488	22, 037	32,167	859, 578	129, 689		124, 158	102, 691
1922	69, 551	56, 448	1,116,939	45, 038	27, 203	32, 767	26,115	907, 771	71, 226		152, 856	57,759

Division of Statistical and Historical Research.

DAIRY PRODUCTS.

Table 436.-Dairy products: Weighted average price and value on farms, calendar years, 1919-1923.

Product.	Unit.	Price per unit.					Value.				
		1919	1920	1921	1922	1923	1919	1920	1921	1922	1923
Milk sold ${ }^{1}$ Milk consumed on farm ${ }^{1}$ _....	Gallon -.-.do_ .	$\begin{gathered} \text { Cts. } \\ 29.24 \\ 29.24 \end{gathered}$	$\begin{gathered} C t s . \\ 30.10 \\ 30.10 \end{gathered}$	Cts. 22. 19 22. 19	$\left\lvert\, \begin{gathered} C t s \\ 19.09 \\ 19.09 \end{gathered}\right.$	Cts. 22.36 22. 36	$\begin{gathered} 1,000 \\ d o l s . \\ 1,041,236 \\ 817,938 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { dols. } \\ 1,033,008 \\ 878,062 \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { dols. } \\ & 836,868 \\ & 730,564 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { dols. } \\ & 721,677 \\ & 635,573 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { dols. } \\ & 310,723 \\ & 784,836 \end{aligned}$
Total whole milk ${ }^{1}$ \qquad	Gallon.	29.24	30. 10	22.19	19.09	22.36	1,859, 174	1,911, 070	$1,567,432$	1,357, 250	1, 695, 559
Butter made	Pound	50.35	54. 25	37. 16	35. 23	40.38	344, 877	366, 174	241, 560	220, 187	246, 318
Cheese made	--do-.	36. 00	37. 06	27. 32	23. 50	25.17	2, 376	2, 334	1, 639	1, 175	1, 183
Cream sold ${ }^{2}$	Gallon.	136.00	140.00	103. 20	88. 90	111.80	109, 359	116, 588	80, 579	70, 274	97, 721
Butterfat sold..	Pound.	57.00	58. 68	43. 26	37. 22	40. 00	398, 003	404, 384	364, 180	344, 285	379, 200
Buttermilk.	100 lbs.	77.65	69.10	28.35	27. 25	40.81	13, 402	11, 754	4, 644	4, 292	6,273
Whey	-. do-	38. 83	34. 55	14. 18	13.63	20. 405	231	196	77	61	86
Skim milk from butter made, creamsold,and butterfat sold.	.-.do_	77. 65	69.10	28. 35	27.25	40.81	233, 012	205, 480	91, 700	92, 931	139,537
To							2, 960, 434	3, 017, 980	2, 351, 809	2,090,455	2, 565, 877

Division of Crop and Livestock Estimates.
${ }^{1}$ Includes milk equivalent of cream sold for housebold use.
2 For cream powder and ice cream.

Table 437.--Milk: Production and uses in the United States, 1919-1922.

Purpose for which milk is used.	- Calendar year.							
	1919				1920			
	Whole milk used.	Per cent of total milk.	Milk used per pound of product.	Products manufactured	Whole milk used.	Per cent of total milk.	Milk used per pound of product.	Product manufactured
Butter:	Million pounds.	Per cent.	Pounds.	Million pounds.	Million pounds.	Per cent.	Pounds.	Million pounds.
Creamery	18, 375.0	20.404	21.0	875.0	18, 135.1	20. 226	21.0	863.6
Farm	14, 385.0	15.973	21.0	685.0	14, 175.0	15.810	21.0	675.0
Cheese, all kinds.	4,200. 0	4. 664	10.0	420.0	3,624. 3	4.042	10.0	362.4
Milk: Condensed and evaporated	4,813. 0	5. 344	2.5	1,925. 0	3,945. 0	4.400	2.5	1,578. 0
Powdered------	72.0	. 080	8.0	1, 9.0	82.7	. 092	8. 0	10.3
Malted	40.0	. 045	2.2	18.0	43.4	. 048	2.2	19.7
Sterilized, canned	4.5	. 005	1.0	4.5	5. 6	. 006	1.0	5.6
Chocolate.-					60.0	. 067		
Cream, powdered	12.0	. 013	19.0	. 7	5. 9	. 007	19.0	3
Ice cream. .---	3,450. 0	3. 831	${ }^{1} 13.75$	${ }^{2} 230.0$	3,575. 0	3.987	113.75	${ }^{2} 260.0$
Total milk for manufacture \qquad	45, 351. 5	50.359			43,652. 0	48.685		
Milk accounted for otherwise:								
Household purposes..--	38, 619.0	42. 882			39,090. 0	43.600		
Fed to calves...----	3,500.0	3.886			4,202.0	4.688		
Waste, loss, and unspecified	2,587.0	2.873			2,713. 3	3.027		
Total milk produced -	90, 057. 5	100.000			89, 657. 3	100.000		
	1921				1922			
Butter: Cramery_-_-_-_- $22,153.7$ 22.408 21.0 $1,054.9$ $24,223.8$ 23.619 $21 . \mathrm{C}$ $1,153.5$								
Farm	13, 650.0	13.807	21.0	650.0	$13,125.0$	12.797	21.0	625.0
Cheese, all kinds	3,558. 4	3. 599	10.0	355.8	3,749. 8	3.656	10.0	375.0
Milk: Condensed and evaporated Powdered								
	3,660. 4	3. 703	2.5	1,464. 2	3, 578. 4	3. 489	2.5	1,431. 3
	33.9	. 034	8.0	4.2	44.8	. 044	8.0	5. 6
Malted.	34.4	. 035	2. 2	15. 7	30.0	. 029	2. 2	13.7
Sterilized, canned.-------	5.1	. 005	1.0	5.1	1.3		1.0	. 3
Chocolate.----------------	40.0	. 041			100.0	. 098		
Cream, powdered	2.5	. 002	19.0	. 1	2.2	. 002	19.0	. 1
Ice cream	3,355. 0	3. 396	${ }^{1} 13.75$	${ }^{2} 244.0$	3,623.4	3. 533	113.75	2263.5
Total milk for manufacture \qquad	46, 493. 4	47.030			48, 477.7	47. 267		
Milk accounted for otherwise:				-				
Household purposes..--	45, 143.0	45. 660			46,672. 6	45. 507		
Fed to calves Waste, loss, and unspecified	4,260.0	4. 310			4,335. 0	4. 226		
	2,965.9	3.000			3,076. 9	3.000		
Total milk produced -	98, 862. 3	100.000			02, 562. 2	100.000		

Division of Statistionl and Historical Research. Compiled from data of Division of Dairy and Poultry Products.
${ }^{1}$ Milk per gallon of ice cream.
${ }^{2}$ Gallons.
 1922.

Table 438.-Dairy products and oleo margarine: Production, calendar years, 1918-1922-Continued.

Division of Dairy and Poultry Products. Compiled from reports made by manufacturers.
Table 439.-Condensed milk: International trade, 1909-1922.

Country.	Calendar years.							
	A verage, 1909-1913.		1920		1921		$\stackrel{1922,}{\text { preliminary. }}$	
	$\begin{gathered} \text { Im- } \\ \text { ports. } \end{gathered}$	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	$\begin{gathered} \text { Ex- } \\ \text { ports. } \end{gathered}$
Principal exporting countries.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	1,000	1,000	1,000 pounds.	1,000 pounds.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$
Australia ${ }^{1}$	4,463	727	524	35,420	93	33, 287		
Canada...	, 259	4,575	83	52, 036	147	35, 401	232	24. 813
Denmark	${ }^{2} 11$	${ }^{3} 4,724$		13, 793	6 1,129	37,523 289		50,293 1,043
Italy-----	806	5,913	531	+ 405	1, 128	289 66,89	564	190, ${ }^{1} \mathbf{5 8 1}$
Netherlands	439	55	75	115, 804	281	$\begin{array}{r}66,899 \\ 3 \\ \hline 029\end{array}$	$\begin{array}{r}534 \\ 48 \\ \hline\end{array}$	190,581
New Zealand	261	32,106	- 812	1,752	1,210	6, 556	831	15,450
Switzerland	201	80, 539	6,168	46, 513	1,432	46, 825	5	45, 474
United States_		316, 200	23, 756	411, 078	8, 668	289, 725	5,294	187, 497
principal mporting countries.								
Argentina	${ }^{(342}$	(5)	${ }_{(5)}^{833}$	(5)	2, 671	46	768	138
Brazil.	8,694		2,737		2, 579			
British India ${ }^{1}$	11, 236		8,673	191	7,895	116	7,222	147
China	4,484		5,883		6,185		8, 025	
Cuba	28, 457		51, 932					
Egypt-	${ }^{681,628}$		1,736	${ }^{(7)}$	898	${ }^{(7)}$	2,310	
France-.--	2, 458	4,140 12,080	83,562 9,180	18,576	37, 6881	${ }_{9}^{11,723}$	32,923 9,294	1,022
Germany ${ }^{8}$	10,061	12, 080	9, 180 6,269	525	8, 8,010	2, 132	9,294	
Java and Madura	${ }_{2} \mathbf{6}, 136$	${ }^{2} 74$	7,449		10, 443		11,052	
Philippine Islands	12, 311		16, 689		12, 239		12, 177	
Spain-----------	5, 605		1,675		5,639		83	
Sweden ------------	21, 28		$\begin{array}{r} 2,192 \\ 12,376 \end{array}$			$\begin{gathered} 467 \\ (7) \end{gathered}$	166 6,932	
Union of South Africa	21,227	$\begin{gathered} \left({ }^{(7)}\right) \\ 48,221 \end{gathered}$	$\begin{array}{r} 12,376 \\ 199,145 \end{array}$	68 6,670	235, 349	4, 065	207, 792	15, 591
United Kingdom								
Total 25 countries	240, 351	209, 578	445, 977	713, 539	354, 241	538, 973	306, 352	540, 882

[^247]Table 440.-Milk: Monthly retail price, standard or grade B milk, per quart, delivered to family trade in cities, 1920-1923.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
Boston:	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1920	17	17	17	17	16	16	17	$17 \frac{1}{2}$	18	18	18	18
1921	17	$16 \frac{1}{2}$	16	$15 \frac{1}{2}$	15	15	15	16	$15 \frac{1}{2}$	15	15	15
1922	$13 \frac{1}{2}$	$13 \frac{1}{2}$	131	$13 \frac{1}{2}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$13 \frac{1}{2}$	134	$13 \frac{1}{3}$	1412	$14 \frac{1}{2}$	$14 \frac{1}{2}$
1923	142	142	142	13 $\frac{1}{2}$	132	131 $\frac{1}{2}$	14	142	142	142	$15 \frac{1}{2}$	$13 \frac{1}{2}$
New York: 1920	18	161	163	15	15	15	16	17	18	18	18	17
1921.	17	16	15			14	14	15	15	15	15	15
1922	15	15	15		15	13	14	15	15	15	15	16
1923	16	15	15	15	14	14	14	14	15	15	16	16
Philadelphia: 1920	14	14	14	14	14	14	14	15	15	15	15	13
1921.	13	13	13	13	11	11	11	11	11	11	11	11
1922	11	11	11	11	11	11	11	11	11	12	12	12
1923	$11 \frac{1}{2}$	12	12	12	13	13	13	13	13	13	12	$12 \frac{1}{2}$
Pittsburgh: 1920	16	16	16	15	15	15	15	16	16	16	16	16
1921	15	15	14	14	14	14	14	14	14	14	14	13
1922	13	12	12	12	12	12	12	12			14	14
1923			14	14	14	14	14	14	14	15	15	15
Cincinnati:	15	15	15	15	15	15	15	15	15	16	15	15
1921.	15	14	14	14	13	13	13	13	13	13	13	13
1922	13	12	12	12	12	12	12	12	12	12	12	12
1923.	12	12	12	12	12	12	12	12	12	14	14	14
Cleveland:	16	16	16	15	15	15	15	16	16	16	15	15
1921	15	14	14	14	14	13	13	13	13	13	13	13
1922	11	11	11	10	$10 \frac{1}{2}$	$10 \frac{1}{2}$	$10 \frac{1}{2}$	11	11	13	13	14
1923	14	14	14	14	131	13	14	14	14	13, ${ }^{\frac{1}{2}}$	14	12
Indianapolis:	14	14	14	14	14	14	14	14	14	14	14	14
1921	14	14	13	13	13	12	12	12	12	12	$11 \frac{1}{2}$	11
1922	112	11	11	$10 \frac{1}{2}$	$10 \frac{1}{2}$	10	10	10	10		10	10
1923	10	12	12	12	12	12	12	- 12	12	12	12	12
Chicago:												
1920	15	15 14	14	14	14	14 14	15	14	12	12	12	12
1922	12	12	12	12	12	12	12	12	12	12	12	12
1923	1212	13	13	13	13	13	14	14	14	14	14	14
Detroit: 1920	16	16	16	16	$15 \frac{1}{2}$	$15 \frac{1}{2}$	16	16	16	16	16	14
, 1921-	13	13	13	13	13	13	13	13	13	13	13	13
- 1922	13	13	12	${ }_{11} 1{ }^{1}$	${ }_{11} 1 \frac{1}{2}$	$11 \frac{1}{2}$	12	13	13	13	13	14
1923	1312	1312	$13 \frac{1}{2}$	14	14	14		15	15	15	14	132
Milwaukee: 1920	13	13	12	12	12	12	13	13	13	13	11	11
1921		10	10	10	9	9	9	10	9	9	9	,
1922	9	9	9	9	9	9	9	9	9	9	10	10
1923	10	10	10	10	10	10	10	11	11	11	11	$10 \frac{1}{2}$
Minneapolis:		13	13	13	13	13	13	14	14	14	14	14
1921	13	$12 \frac{1}{2}$	12	12	11	10	10	11	11	11	11	$10 \frac{1}{2}$
1922	10	10	10	10	10	10	10	10	11	11	11	111
1923	11	11	107	11	11	11	11	12	12	12	12	112
St. Paul:	13	13	13	13	13	13	13	14	14	14	14	14
1921.	13	13	12	12	11	10		11		11	11	$10 \frac{1}{2}$
1922	10	10	10	10	10	10	10	10	11		11	
1923	11	11	11	11	11	11	-.--	12	12	12	12	12
Sloux City: 1920	16	16	16	16	16	15		15	16	16		16
1921	15	14	13		$12 \frac{1}{2}$	1212	121	$12 \frac{1}{2}$	1212	1212	1212	
1922	11	10	10	10	10	10		11				
1923				10	10	10		11	12		12	12
St. Louis:	16	16	16	15	15	15	15	16	16	16	$16 \frac{1}{2}$	16
1921	16	15	14	14	13	14	13	13	13	13	13	10
1922	10	10	10	10	10	10	12	12	12	12	12	13
1923	13	13	13	13	13	13	13	13	13	13	13	13
Kansas City:		$15 \frac{1}{2}$	16	16	151	$15 \frac{1}{2}$	15	$15 \frac{1}{2}$	15	$15 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$
1921	$14 \frac{1}{2}$	14	1312	$13 \frac{1}{2}$	$13 \frac{1}{2}$	13	14.	14	14	14	14	14
1922	14	13	12	11	11	${ }_{13} 11 \frac{1}{2}$	${ }_{13} 11 \frac{1}{2}$	12	10	12	12	${ }_{12}^{12}$
1923	13	13	13	13	13	13	13	13	13	13	13	122
Washington, D. C.:	18	$17 \frac{1}{2}$	1712	171	16	16	16	16	$16 \frac{1}{2}$	$171{ }^{17}$	$17 \frac{1}{2}$	$17 \frac{1}{2}$
1921.-	$16 \frac{1}{1}$	$15{ }^{2}$	16	16	13	$13 \frac{1}{2}$	$13 \frac{1}{2}$	${ }^{13}{ }^{\frac{1}{2}}$	14	15	15	15
1922	$1{ }_{14}^{131}$	14	13 14	${ }_{14}^{13 \frac{1}{2}}$	13 14	14	13 14	13 14	13	14 14	14	14

Table 440．－Milk：Monthly retail price，standard or grade B milk，per quart， delivered to family trade in cities，1920－1923－Continued．

Market，and calendar year．	Jan．	Feb．	Mar．	Apr．	May．	June．	July．	Aug．	Sept．	Oct．	Nov．	Dec．
Richmond：	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．
1920	16	16	16	16	16	17	16	16	16	16	16	16
1921.	16	16	$14 \frac{1}{2}$	13	14	14	14	14	14	14	14	14
1922	14	14	14	13	13	13	13	13	13	13	14	14
1923	15	14	14	14	14	14	14	14	14	14	15	
Jacksonville：												
1920	20	18	20	20	20	20	25	25 19	25 20	24 20	223	$22 \frac{1}{18}$
1922.	1712		17	14	14	14	161	$15 \frac{1}{2}$	17	${ }_{16 \frac{1}{2}}^{20}$	${ }_{17}^{181}$	$17{ }^{18}$
1923	$17 \frac{1}{2}$	$17 \frac{1}{2}$	$18 \frac{1}{2}$	16	． $15 \frac{1}{2}$	151	$16 \frac{1}{2}$	16	17	$18 \frac{1}{2}$	18	$17 \frac{1}{2}$
Louisville：	16	16	16	16	16	16	16	16	16	16	16	
1921.	15	20					11	12	11	11	11	11
1922	11	9	9	9	9	9	9	10	11	$11 \frac{1}{2}$	12	13
1923	13	12	12	12	12	12	12	121	121	13	13	13
Nashville：												
1920	17 16	17 16	17	17	17	17	17	17	17 15	19 14	17	17 14
1922	11	11	11	11	11	11	11	11	11	11	11	
1923	12	12	12	12	12	12	12	12			14	14
1921.	$22 \frac{1}{2}$	$22 \frac{1}{2}$		20		18	20	$17 \frac{1}{2}$	172	172	$17 \frac{1}{2}$	172 ${ }^{\frac{1}{2}}$
1922	20	18		171 ${ }^{2}$	15	16		172			16	
1923	14	16	17	16^{2}	16	16	16	16^{2}	16	16	15	15
New Orleans：												
1920	19	19	19	19	17	17	17	17	19 16	19	19	18
1921	17	17	16	14	14	14		14	16	14	14	－ 14
1922.	14	14 14	14 14	14	14	14	14	14			14 15	14
Dallas：	14	14	14	14	14	14	14	14	14	15	15	15
1920		23	23	21	21	21	21	21	21	21	21	21
1921		19	17		15		15		15			15
1922	15	15	12	12	12	12	15	15	15	15	15	15
1923.	15	15	15	15	15	15	15	15	15	15	15	14
Butte： 1920	15	15	15		15	15	15	15		15	15	15
1921	15	15	15		13		$12 \frac{1}{2}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	13	13	13
1922.	$12 \frac{1}{2}$	13	$12 \frac{1}{2}$	12	$12 \frac{1}{2}$	$11 \frac{1}{2}$	$11 \frac{1}{2}$	12	12	12	13	$12 \frac{1}{2}$
1923	122	1212	13	1212	12，	12	122	121	1312	13	13	13
Denver： 1920	122	1212	13	13	13	13	13	13	13	13	13	13
1921	13	13	13	12	11	11	11	11	10	10	10	101
1922	10	10	${ }^{9 \frac{1}{2}}$	10	10	$9 \frac{1}{2}$	10	10	${ }^{9 \frac{1}{2}}$	10	10	12
1923	12	12	12	12	12	12	12	12	12	12	12	10
Salt Lake City：	121	$12 \frac{1}{2}$	$12 \frac{1}{3}$	1212	$12 \frac{1}{3}$	121	13	$12 \frac{1}{2}$	1212	1212	$12 \frac{1}{2}$	121
1921.	$12 \frac{1}{2}$	$12 \frac{1}{2}$	122	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	122	$12 \frac{1}{2}$	$12 \frac{1}{2}$	122
1922	10	$8 \frac{1}{2}$	9	9	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$8 \frac{1}{2}$			9	$8{ }^{8}$	9
1923	$10 \frac{1}{2}$	10	10		10			1012	$9 \frac{1}{2}$	10	10	11
Seattle：	14	$14 \frac{1}{2}$	131	12		13	14	14	14	14		13
1921.	13	11^{2}	13^{2}	13	12			12		12	12	11
1922	13	13	13	12	12	12	12	13	13	121	13	13
1923	13	13	13	13	12	12	12	12	13	13	13	10
Portland，Oreg．：												
1920．－－	15	15	14	13	${ }_{13}^{131}$	12	13	${ }_{12 \frac{1}{2}}^{14}$	${ }_{12 \frac{1}{2}}^{14}$	${ }_{12}^{14}$	${ }_{12}^{14 \frac{1}{2}}$	${ }_{12}^{143}$
1922	12	11	11		11	11	11	12	12	12	12	12
1923	123	12	1212	12	12	12	13	12	12	1212	12	$11 \frac{1}{2}$
Los Angeles：	16	16	16	16	16	16	18	18	18	18	18	18
1921.	18	16	16	16		16	15	14	14	14.	14	14
1922	142	14	14	14	14	14	14	14	14	14	15	15
1923	15	15	15	15	15	15	15	15	15	15	15	15
San Francisco：	16	16	151	15	16	16	151	17	17	17	17	17
1921	$15 \frac{1}{2}$	154	15	15	15	$14 \frac{1}{2}$	$13 \frac{1}{2}$	14	14	$13 \frac{1}{2}$	131	$13 \frac{1}{2}$
1922	$13 \frac{1}{2}$	122	$12 \frac{1}{2}$	${ }^{12 \frac{1}{2}}$		$12 \frac{1}{1}$	$12 \frac{1}{2}$	121	121	12⿳亠丷厂犬	${ }_{14}^{12 \frac{1}{2}}$	13
1923.	122	121	$12 \frac{1}{2}$	122	121	1212	12 $\frac{1}{2}$	1212		－．．．	14	14

Division of Statistical and Historical Research．Compiled from reports of Division of Dairy and Poultry Products．

Table 441．－Milk：Monthly wholesale price，standard or grade B milk，per quart， in cases of 12 quarts，1920－1923．

Market，and calendar year．	Jan．	Feb．	Mar．	Apr．	May．	June．	July．	Aug．	Sept．	Oct．	Nov．	Dec．
Boston：	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．	Cts．
1920	15	15	15	15	14	14	15	15	161 ${ }^{\frac{1}{2}}$	161	163	161
1921	$15 \frac{1}{2}$	15	$13 \frac{1}{2}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$	14	14	14	14	14
1922	11	${ }^{10 \frac{1}{2}}$	$10 \frac{1}{2}$	$10 \frac{1}{2}$	$10 \frac{1}{2}$		11	11	11	12	12	12
1923	12	12	12	112	112	1112	12	121 $\frac{1}{2}$	121	$12 \frac{1}{2}$	1312	13
New York： 1920	171 ${ }^{2}$	16	16	15	15	15		17	18	18	18	17
1921	17^{2}	16	． 15				14	15	$14 \frac{1}{2}$	$14 \frac{1}{2}$	1412	141
1922	1412	$14 \frac{1}{2}$	$13 \frac{1}{2}$		13	$12 \frac{1}{2}$	14	$14 \frac{1}{2}$	142	$14 \frac{1}{2}$	$14 \frac{3}{3}$	$15 \frac{1}{2}$
1923	$15 \frac{1}{2}$	14^{2}	14	14	$13 \frac{1}{2}$	13	13	13	14	14	142	14
Philadelphia：	13	13	13	13	13	13	13	14	14	15	14	12
1921	12	12	$12 \frac{1}{2}$		10	10	10	10	10	10	10	10
1922	10	10	10	10	10	10	10	10	$10 \frac{1}{2}$	11	$11 \frac{1}{2}$	$11 \frac{1}{2}$
1923.	1012	11	113	12	12	12	12	121	121	12	112	$11 \frac{1}{2}$
Plttsburgh： 1920	$15 \frac{1}{2}$	15	15	14⿺⿻丅⿵冂⿰⿱丶丶⿱丶丶⿸厂⿱二⿺卜丿，	$14 \frac{1}{2}$	$14 \frac{1}{2}$	$14 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$
1921	$14 \frac{1}{2}$	$14 \frac{1}{2}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$	$13 \frac{1}{1}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$	131	132	$13 \frac{1}{2}$	13，$\frac{1}{2}$	$12 \frac{1}{2}$
1922	$12 \frac{1}{2}$	${ }^{112}$	$11 \frac{1}{2}$	12		$12 \frac{1}{2}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$				
1923	131	132	1312	13⿺𠃊⿳亠丷厂彡	131	131	13솔	131 ${ }^{1}$	1312	14⿳亠丷厂彡	$14 \frac{1}{2}$	14 $\frac{1}{2}$
Cincinnati：	$14 \frac{1}{2}$	14	14		14	14	14	14	14	14	14	14
1921	$14{ }^{2}$	13	13		12	12	12	12	12	12	12	12
1922	12	11	11	11	11	11	11	11	11	11	11	11
1923.	11	11	11	11	11	11		10	1012	12	12	12
Cleveland：												
1920	$14 \frac{1}{12}$	143	${ }_{122}^{142}$	${ }_{12 \frac{1}{2}}$	$12 \frac{1}{12}$	131	$13 \frac{1}{2}$		${ }_{11}^{14}$	14	${ }_{11}^{13 \frac{1}{2}}$	${ }_{11}^{131}$
1921.	${ }^{13} 9$	${ }^{12 \frac{1}{2}}$	${ }^{12 \frac{1}{2}}$	${ }_{9}^{12 \frac{1}{2}}$	${ }^{122}$	117 8 8	${ }^{11 \frac{1}{2}} 8$	113	${ }_{1}^{111} 8$	${ }_{1}^{11 \frac{1}{2}}$	$110 \frac{1}{2}$	${ }_{11}^{11}$
1923	1112	111 ${ }^{\frac{1}{2}}$	11／$\frac{1}{2}$	1112	112	11	11	1112	1112	$11 \frac{1}{2}$	112	$11 \frac{1}{2}$
Indianapolis：	12	12	12	12	12	12	12	12	12	12	12	12
1921	12	12	11	11	11	10	10	10	10	10	10	
1922	10	9	9	9.	9	8	8.	8	8	8	8	$8 \frac{1}{2}$
1923.	82	1012	102	112	107	107	$10 \frac{1}{2}$	10	1012	$10 \frac{1}{2}$	$10 \frac{1}{2}$	$10 \frac{1}{2}$
Chicago： 1920	14	14.	134	132	131	131	1412	151	151	151 $\frac{1}{2}$	14	131
1921.	$13 \frac{1}{2}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$	13	$13{ }^{2}$	$13 \frac{1}{2}$	$13 \frac{1}{2}$	$13{ }^{1}$	$11{ }^{1}$	$11 \frac{1}{2}$	$11 \frac{1}{2}$	1112
1922	11	11^{2}	11	$9 \frac{1}{2}$	11	11.	11.	11	11	10^{2}	11.	11
1923.	11	12	12	12.	11	12	13	13	13	13	132	$13 \frac{1}{3}$
Detroit：	15	15	15	15	$14 \frac{1}{2}$	1412	15	15	15	15	15	13
1921	12	12	12	12	12^{2}	12	12	12	12	12	12	12
1922	12	12	11	11	$10 \frac{1}{2}$	$10 \frac{1}{2}$	$10 \frac{1}{2}$	11	11	$11 \frac{1}{2}$	10	11
1923	12	113	12	121	－ $12 \frac{1}{2}$	12		13	13	13	12	$12 \frac{1}{1}$
Milwaukee： 1	12	12	11	11	11	11	12	12	12	12	10	10
1921.	12	81	81	81	73	73	73	8	$7 \frac{1}{2}$	$7 \frac{1}{2}$	73	$7 \frac{1}{2}$
1922	71	73	7	73	$7 \frac{3}{3}$	$7 \frac{1}{2}$	$7 \frac{1}{3}$	$7 \frac{1}{2}$	$7 \frac{1}{2}$	$7 \frac{1}{2}$	$8 \frac{1}{3}$	$8 \frac{1}{2}$
1923	83	$8 \frac{3}{3}$	$8 \frac{3}{2}$	$8{ }^{3}$	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{12}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$
Minneapoli	113	$11 \frac{1}{2}$	113	113	111	113	$11 \frac{1}{2}$	$12 \frac{1}{2}$	1212	121	$12 \frac{1}{2}$	$12 \frac{1}{2}$
1921	113	11	$10 \frac{1}{2}$	$10 \frac{1}{3}$	9	83	$8{ }^{8 \frac{1}{2}}$	9	$9 \frac{1}{2}$	$9{ }^{2}$	$9 \frac{1}{2}$	9
1922	83	$8 \frac{1}{2}$	83	83	8	83	8	$8 \frac{3}{3}$	9	9	9	
1923	93	$9 \frac{1}{2}$	$9 \frac{3}{2}$	93	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$	10늘	1012	1012	$10 \frac{1}{2}$	$10 \frac{1}{2}$
St．Paul：			12		113		12	123	1212	121		
1921	$11{ }_{12}^{12}$	11^{12}	$10 \frac{1}{2}$	$10 \frac{1}{2}$	${ }^{11} 1$	$8 \frac{1}{2}$	12	92	12.	923	$9{ }^{1}$	$9 \frac{1}{2}$
1922	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$8 \frac{1}{2}$	81	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$9 \frac{1}{2}$	913	$9 \frac{1}{2}$	
1923	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9{ }^{1}$	91	$9 \frac{1}{2}$	$10 \frac{1}{2}$	102			$10 \frac{1}{2}$
Sioux City：												
1920	$14 \frac{1}{2}$	$14 \frac{1}{2}$	$14 \frac{1}{2}$	${ }^{14 \frac{1}{2}}$	${ }^{14 \frac{1}{2}}$	${ }_{11}^{132}$	${ }_{11}^{13 \frac{1}{2}}$		${ }^{141}{ }^{2}$	$14 \frac{1}{2}$	$14 \frac{1}{2}$	143
1921	－1312	$12 \frac{1}{2}$	$11 \frac{1}{2}$				11	${ }_{9}^{11}$	11^{2}	11		
${ }_{1923}$	$9 \frac{1}{2}$	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$\frac{81}{8}$	$\begin{array}{r} 8 \frac{1}{2} \\ .8 \end{array}$	88		9 9			10	10
St．Louis：												
St．1920．	15	15	15		14		14	15	15	15	15	15
1921.	15	$13 \frac{1}{2}$	13	12	13	11	11	11	11	11	11	
1922	8	8	8	8	8	${ }_{11} 8$	11		11	11	11	11
1923.	11	11	11	11	11	11	11	11	11	11	11	11
$\begin{aligned} & \text { Kansas City: } \\ & 1920 \end{aligned}$	14	14	14	$14 \frac{1}{2}$	14	1312	14	$14 \frac{1}{2}$	$13 \frac{1}{2}$	$14 \frac{1}{2}$	$13 \frac{1}{1}$	$14 \frac{1}{2}$
1921.	$12 \frac{1}{2}$	13	$11 \frac{1}{2}$	$11 \frac{1}{2}$	$11 \frac{1}{2}$	12	12	$12 \frac{1}{2}$	12	12	$11 \frac{1}{2}$	11
1922	$11 \frac{1}{2}$	11	10	9	${ }^{8 \frac{1}{2}}$	${ }^{9}$	11	${ }_{10}^{9 \frac{1}{2}}$	${ }_{10} 8$	${ }_{11}{ }^{\frac{1}{2}}$	${ }^{9 \frac{1}{2}}$	10
1923．－－－－－	10는	10	10	101	10	$10 \frac{3}{2}$	11	10	10	11	10	$10 \frac{1}{2}$
Washington，D．C．：	151	15	$15 \frac{1}{2}$	15	1312	1312	133	14	14	15	1512	15
1921.	$14 \frac{1}{2}$	13	$14{ }^{2}$	14	11.	11	10		11	12	12	12
1922	11	12	10	10	10	10	10	10	10	11	11	$11 \frac{1}{2}$
1923.	11	11	11	11	11	11	11	11	11	11	12	12

Table 441.-Milk: Monthly wholesale price, standard or grade B milk, per quart, in cases of 12 quarts, 1920-1923-Continued.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
Richmond:	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1920.	16	16	16	16	16	15	16	16	16	16	16	16
1921	16	----	$14 \frac{1}{2}$	11	13	13	13	13	13	13	13	13
1922	13	13	13	12	12	12	13	12	12	12	13	13
1923.	13	13	13	13	13	13	13	13	13	13	14	14
Jacksonville:												
- 1920	17	17 15	15	18	18	16	22	16	22	18	18	18
1922	13		15	11	$12 \frac{1}{2}$		13	$12 \frac{1}{2}$	$14 \frac{1}{2}$	$14 \frac{1}{2}$	15	$14 \frac{1}{2}$
1923	1412	$14 \frac{1}{2}$	$14 \frac{1}{2}$	13	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	13	13	15	15	$14 \frac{1}{2}$
Louisville:	14		14	14	14	14	14	14	14	14	14	
1921	13	14					9	10	9	9	9	9
1922	9	7	7	7	7	7	7	8	9	$9 \frac{1}{2}$	10	11
1923	11	10	10	10	10	10	10	$10 \frac{1}{2}$	$10 \frac{1}{2}$	11	11	11
Nashville:												
1920	16	16	16	16	16	16	16	16	16	16	16	15
1921	15	14	14	13	13	12	12	12	12	12	12	12
1922	10	9	9	9	9	9	9	9	9	9	9	10
1923	10	10	10	10	10	10	10	10	10	10	12	12
Birmingham:	15	18										
1920.	15	18	15	15	$15 \frac{1}{2}$	18	15 14	15	${ }_{13}^{15}$			${ }_{13}^{18}$
1922	18	15		15	14	14	14	13	$13 \frac{1}{2}$	$13 \frac{1}{2}$	${ }_{13}{ }^{2}$	$13 \frac{1}{2}$
1923	14	131 ${ }^{1}$	$13 \frac{1}{2}$	12	12							
New Orleans:	17	17	17	17	15	15	15	15	17	17	17	16
1921	15	15	14	14	14	14	14	14	14	14	12	12
1922	12	12	12	12	12	12	12	12	12	12	12	12
1923	12	12	12	12	12	12	12	12	12	13	13	13
Butte: 1920										15		
1921	121	$12 \frac{1}{2}$	$12 \frac{1}{2}$		10	122	$12 \frac{1}{2}$	10	9	10	10	10
1922	10	10	10	10	10	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$	9	10	10	10
1923	10	10	10	10	10	10	10	10	11	11	11	11
Denver:	111		12	12		11	12	11	11	11	11	11
1921	$11 \frac{1}{2}$	$13{ }^{2}$	12	10	9	119	$8 \frac{1}{2}$	11 9	118	+ 8	81	81
1922	8	8	$7 \frac{1}{2}$	8	8	$7 \frac{1}{2}$	8	8	8	8	8	10
1923.		10	10	10	10	10	9	10	10	10	1.$)$	10
Salt Lake City:												
1920.	11	11	11	11	11	11	11	11	11	11	1 i	11
1921	12	11	11	11	11	11	11	11	11	11	11	11
1922	8	8	8	8	8	$9 \frac{1}{2}$	8	8		8	8	8
1923	9	9	9	9	9	9	9	9	9	9	9	9
Seattle:												
1920.	$11 \frac{1}{2}$	11	10	9		10	11	11	11	101 $\frac{1}{2}$		
1921	9	$8 \frac{1}{2}$	9	9	$8 \frac{1}{2}$			$8 \frac{1}{2}$		$8 \frac{1}{2}$	$8 \frac{1}{2}$	8
1922	$9 \frac{1}{2}$	$9{ }^{9}$	$9 \frac{1}{2}$	${ }_{8}^{8}$	83	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$9 \frac{1}{2}$	$9{ }^{91}$	9	$10 \frac{1}{2}$	$10 \frac{1}{2}$
1923--.-.-.-	101	1012	$10 \frac{1}{2}$	1012	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$9 \frac{1}{2}$	$10 \frac{1}{2}$	101	102	
Portland, Oreg.:	131	131	131	12	121	12	12	12	13	131	13	13
1921	$12 \frac{1}{2}$	12	12	12	${ }^{9}$	9	9	8	9	9	9	9
1922	9	$8 \frac{1}{2}$	81		8	8	8	9	9	9	9	9
1923	9	9	9	9	9	9	9	10	10	10	101	$9 \frac{1}{2}$
Los Angeles:												
1920	15	15	15	15	15	15	17	17		17	17	17
1921	17	15	15	15		15	14	13	13	13	13	13
1922	$13 \frac{1}{2}$	13	13	13	13	13	13	13	13	13	14	14
1923.	14	14	14	14	14	14	14	14	14	14	14	14
San Francisco:												
1920	14	14	131	131 ${ }^{\frac{1}{2}}$	14	14	$13 \frac{1}{2}$	14	14	$14 \frac{1}{2}$	1412	15
1921	13	13	13	12	12	12	11	11	11	11	11	11
1922	11	$10 \frac{1}{2}$	$10 \frac{1}{2}$	11		$10 \frac{1}{2}$	10	10	10	10	10	11
1923.	11	101	10	1012	10	102		11			12	112

Division of Statistical and Historical Research. Compiled from reports of Division of Dairy and Poultry Products.

Table 442.-Creamery butter: Production, United States, 1917-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
1917	43,997		47, 371	53, 809	75, 108	98, 898.	${ }_{94,151}$	83, 936	76, 744	56,176	42,705.	48, 157	759,511
1918	44, 357	42, 389	49, 086	57, 332	85, 564	104, 385	97, 440	85, 148	72, 397	63, 886	45, 741	45, 560	793, 285
1919	52, 189	44, 343	54, 822	67, 487	103, 941	119, 357	104, 156	84, 458	68, 815	58, 723	45, 041	46, 662	849, 994
1920	49, 044	46, 355	56, 303	60,622	86, 845	114, 695	110, 844	90, 669	77, 106	65, 129	53, 570	52, 395	863, 577
1921	58, 906	56, 556	67, 677	82, 763	119, 077	130, 633	111, 898	111, 638	89, 932	84, 374	70, 024	71, 460	1, 054, 938
1922	73, 505	67, 005	79, 532	86,623	132,351	150, 034	135, 231	114, 160	92, 359	83, 070	68, 628	70, 617	1, 153, 515
1923	75, 494	69, 815	81, 724	85, 857	118,345	140, 256	143, 671	116, 706	98, 577				

Division of Statistical and Historical Research. Compiled from reports of Division of Dairy and Poultry Products.

Table 443.-Butter: Receipts at five markets, 1918-1923.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
New York:	13	libs.	libs.	lbs.		${ }_{\text {libs. }}^{\text {lig }}$		20, 25					
1918	13, 439	16, 119	16, 232	17, 125	22,904	28, 419	23, 372	22,893	19, 650	16,219	15, 285	12,041	226, 698
1920	11, 794	11, 201	12,972	7,845	13, 383	20, 205	21, 534	18,203	14, 914	12,079	10, 436	10, 042	164, 608
1921	12, 101	11, 027	12, 969	14, 265	21, 339	27, 233	21, 635	23, 664	21, 187	17, 072	15, 564	14, 892	212, 948
1922	16, 191	16, 475	19, 256	16, 238	24, 723	34, 583	30, 715	23, 085	18, 209	16, 885	16, 016	14, 801	247, 177
1923	19, 815	15, 119	19, 671	18, 143	24, 071	31, 165	27, 780	21, 396	18, 631	17, 572	15, 012	15, 389	243, 764
Chicago:													
1918	18, 142	22, 169	24, 051	12, 891	23,168								
1919	12, 324	10, 177	11, 458	12, 891	23, 17,118	25, 344	27, 2233	18, 5200	15, 455	1, 1,417	7, 528	8, 797	76,746
1921	10, 054	9,908	12, 195	14, 513	21, 785	28, 571	21, 551	21, 290	14, 864	14, 664	11, 185	13, 011	193, 591
1922	13, 628	12, 047	14, 184	14, 378	23, 5681	31, 640	27, 166	21, 582	15, 664	13, 394	11, 652	14, 196	213,099
1923	16, 577	14,323	15, 817]	15, 949	23, 379	32, 893	26, 120	18, 673	16, 760	15, 386	14, 083	[15, 932	225, 892
Philadelphia:													
$\begin{aligned} & 1918 \\ & 1919 \end{aligned}$			3, 748	2, 481	5, ${ }^{3}, 064$	6, 660	5, 026	4, 356	4,141	3, 847	4,181	2,993	51, 191
1920	3,264	3, 520	3, 398	2,964	3,980	6, 237	5, 850	4, 773	4, 698	3,771	3, 010	3,165	48,630
1921	3,250	2,817	3, 860	4, 084	6, 139	7,803	6, 486	5,713	5, 107	4,780	4, 184	4,543	58,766
1922	5,487	4, 640	4,877	4, 449	6, 505	8,791	6,872	5, 944	4, 571	4, 328	4, 075	4, 202	64, 741
1923	5, 111	4,372	6, 077	5,307	6, 470	9, 499	6,418	6,045	5, 262	5, 355	4, 267	4, 415	68,598
Boston:		2759	4,323	4, 071		4	12,237	7,569	5,377	6, 218	5, 079	3, 429	71,440
1919	4, 014	3, 821	3,140	4, 378	9,554	14, 107	13, 699	7, 609	5, 241	3, 412	2, 210	2,038	73, 223
1920	3, 216	3,176	5, 368	3,709	6,323	12, 060	14, 406	8,748	6, 762	4,372	2, 378	2, 474	72,993
1921	3,722	3,752	4, 147	3, 881	8,045	12, 536	9,433	9, 357	6, 994	6, 296	3, 282	3, 093	74, 538
1922	4,787	4, 295	4,794	4,381	10,907	16, 959	11, 562	8, 659	6, 009	4, 578	4, 484		
1923	4, 285	4, 538	5,431	6, 142	7,946	13, 536	12, 403	7,905	6,776	5,174	4, 741	3,781	82659
San Francisco;	2,278	1,851	2, 564	3,129	2,771	2, 170	1,762	1,531	1,178	1,215	1,258	1,201	22,908
1919	1,286	1, 479	2, 014	2,792	2, 979	2, 434	2, 202	1, 832	1,094	1, 337	1,333	1,269	22, 031
1920	1,488	1, 665	2,178	3, 140	2,767	2, 197	1, 744	1,789	1, 722	1,739	1,565	1,572	23, 566
1921	1, 652	1,431	1,982	2,345	2, 255	2,306	2, 359	2, 710	2, 064	2, 538	2, 206	1,718	25,566
1922	1,742	1,582	2,152	2, 619	2,731	2,742	2,178	2, 257	2,034	2, 228	1, 862	1,789	25, 916
1923	2,055	1, 524	1,960	2, 405	2, 462	2,882	2, 616	2, 22t	1,878	1,906	1, 656	1,942	25,510
Total 5 ma 1918.				45, 048	50, 851							35, 797	539, 821
1919	37,867	34,846	36, 592	41,287	63, 669	84,993	68, 926	55, 246	43, 282	35, 573	30, 731	25, 910	558, 922
1920	29,827	29,009	35, 314	28, 002	43,571	66, 043	71, 167	53, 714	43, 551	33, 378	26, 917	26,050	486,543
1921	0, 81	28, 935	55, 26	39,088	59, 56	78, 448	61, 464	62, ${ }^{624}$					565, 409
1922	41,835	39, 039	45, 263	42,065	68, 434	94, 715	78, 393			45, 393			
19	47, 8	39,	48, 956	47, 9	64, 328	89, 975	75, 337	56, 243	49,307	45, 393	39, 759	1, 45	646, 423

[^248]Table 444.-Butter: Receipts at five markets, by States of origin, 1923.
BOSTON.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Canada			lbs.								${ }^{\text {libs. }} 103$		lbs. 137
Chicago	1, 277	1,502	1,035	1,073	1,520	1, 064	1,012	697	403	390	560	384	10,917
Illinois	1, 044	1, 003	1, 703	1, 693	2, 085	4, 056	3, 953	1,699	2, 199	1,334	1, 041	790	22, 600
Indiana	${ }^{60}$	164	18	57	172	758	$\stackrel{670}{ }$	263	180	155	183	42	2, 722
Iowa-	249	128	136	152	271	483	369	380	231	176	241	207	3,023
Kapsas	24	23	65	29	62	70	45	21	17	7	39		402
Maine-1.--	$\stackrel{2}{2}$	1	9	,	1	4	2	1	-10	24	42	4	87
Michigan.	42	28	48	55	117	60	432	${ }^{46}$	${ }_{91}^{10}$	77	88	73	- 702
Minnesota	307	582	758	1, 205	1,372	2,445	2,292	2,133	1,667	1,411	8.55	853	15, 880
Missouri	52	21	9	3	33	77	90	93	97	31	113	27	646
Nebraska	262	185	381	278	318	650	251	267	147	89	166	280	3, 274
New Hampsh	24	25	28	25	39	26	21	16	14	18	18		263
New York	22	33	109	178	114	597	618	278	392	308	341	365	3, 355
New York City	64	76	208	191	93	401	562	157	125	101	225	20	2, 223
North Dako	8	23	27	85	118	172	234	364	235	171	108		1, 545
Ohio	119	135	156	82	318	464	470	424	411	256	127	102	3, 064
Oklahoma	22	29	15	18	51	6					3	22	166
Pennsylvania	1	39	21							74	3		143
South Dakota	16	83	106	145	274	417	484	208	46	59	11	42	1, 891
Vermont	351	367	459	698	801	894	551	854	300	349	332	298	5, 854
Wisconsin	116	86	104	99	145	413	293	198	124	119	56	60	1, 813
Other States.	2	1	1	44	11	153	50	46			24	24	397

NEW YORK.

Alabama												10	
California	31		59	79	59								288
Canada.	513	24	32	118	218				259	431	1,280	672	3,631
Georgia	22		4		16	11						7	98
Illinois	3, 047	2,714	2, 659	2, 429	2, 806	3, 606	4, 334	2, 514	3, 347	2, 217	1, 860	2, 297	33, 830
Indiana	647	553	307	311	600	1, 104	597	180	322	360	159	82	5, 222
Iowa	3, 525	2,732	3,618	3, 572	5,190	6,541	5, 284	4, 325	3, 714	3,820	3, 100	3, 019	48, 440
Kansas	274	50	86		109	134	195	52	56	-90	244	4	1, 294
Kentucky	31	42	61	14	51	38	42	91	101	19	16	11	- 517
Maryland	32	12	13	25	6	1	16	4	40	2			151
Massachuset	9	5	44	17	25	15	6	44	3	22	39	30	259
Michigan	751	600	611	590	722	1,133	658	417	294	513	329	458	7,076
Minnesota	5,412	4,689	7, 798	6,786	8,527	11, 344	10, 831	8,215	6,586	5, 976	4,107	4,673	84, 944
Mississippi	9		6	8	14	28	29	30			2	2	142
Missouri	558	255	251	159	540	655	606	512	172	321	390	230	4, 649
Nebraska	2,002	1,550	1,655	1, 648	2,133	2,080	1,528	2, 016	1,069	1,502	1,488	1,688	20, 359
New Jersey	4								, 42	, 16		1, 57	130
New York	274	219	404	400	653	837	539	812	365	558	547	522	6, 130
North Carolina	28	19	26	23	50	55	33	41	21	27	22	13	358
North Dakota.	36	1	3	3	3	24	24	11	14	2	4	9	134
Ohio	897	450	534	412	527	1, 531	1,348	1,016	1, 059	849	721	490	9,834
Oklahoma	152	25	2	1.	80							1	261
Pennsylvania	125	97	156	157	77	150	57	42	151	62	114	91	1, 279
South Carolina	2	2	2	3	,	2	22	1			1	1	38
South Dakota	34	24	16	3	1	61.	46	47	5	3	3	17	260
Tennessee	107	49	41	36	153	130	163	132	122	69	56	74.	1,132
Utah	8		91	24	25						24	38	210
Vermont	12		9		8							17	46
Virginia	29	18	11	9	25	42	83	38	70	36	33	23	417
Washington-				58		15	94		27				194
West Virginia			I	1		9	4	7	1	1.	1	1	26
W isconsin	1,047	926	1,122	1,228	1, 375	1,536	1, 147	748	757	663	411	8111	11, 771
Other States.	157	25	25		31	51	2	3	19	2	54	43	412

Table 444.-Butter: Receipts at five markets, by States of origin, 1923-Contd.
PHILADELPHIA.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	$1,000$	$\begin{aligned} & 1,000 \\ & 2 b s . \end{aligned}$	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	$\begin{aligned} & 1,000 \\ & \text { lbs. } \end{aligned}$
Alaba							22						
California	22		11									26	59
Canada.	48				63			88	29	24			252
Delawar	14	6	12	11	9	4	1		3	6	5		71
Mlinois.	745	516	786	982	2, 049	1,219	2, 155	870	420	656	842	513	11, 753
Indiana	383	281	360	340	439	580	283	197	226	308	148	212	3,757
Iowa.	181	125	88	91	62	111	61	112	105	136	112	130	1,314
Kansas	5	35	38		92	30	22						223
Kentucky	1	3	1		4	75	25	3	1		2	3	118
Maryland	36	22	25	1	56	5	194	246	230	120	82	40	1, 057
Michigan	222	121	80	208	281	167	282	129	11	86	177	48	1,812
Minnesota	2, 401	2,354	2,470	2, 284	1,630	3, 585	1,656	2, 530	2,337	2,061	1,615	2, 271	27, 194
Mississipp	12				96	196	33			21		43	401
Missouri.	24	25	110	27	145	353	86	13	6	1	24	128	942
Nebraska	98	84	157	175	143	307	165	195	114	194	51	74	1,757
New Jersey	2	1	2	1					25	118	135	1	5 285
New York	36	114	1,182	449	452	683	416	413	591	744	389	204	5,673
Ohio	214	167	158	142	218	562	312	245	264	199	107	111	2, 699
Oklahoma	3		1	1		2		2					${ }^{12}$
Pennsylva	240	125	196	205	228	211	223	238	243	226	236	200	2,571
Tenhessee	35	47	10	49	61	473	51	62	80	3	29	15	915
Virginia.	73	72	78	71	101	127	101	143	149	140	106	86	1,247
West Virginia	2	2	2	2	14	43	5	31	8	44	4	3	160
Wisconsin	289	234	292	268	323	753	324	504	394	266	189	283	4, 119
Other States.	23	38	18		4	15		4				22	124

CHICAGO.

Arkansas					5							3	
California			152	167									319
Canada											158	57	215
Colorad	73	55	118	76	162	159	125	93	119	48	76	135	1, 239
Georgia	4				1						2		
Idaho.			68	58	29							78	
Illinois	3	660	413	364	708	1, 444	707	551	452	540	459	471	7, 392
Indiana	131	69	68	47	106	192	175	125	94	47	30	25	1, 109
Iow	3,306	2,788	2, 868	3, 065	3,800	5, 690	4,240	3,768	3, 549	3, 364	2,993	2, 677	42, 108
Kansas	1,207	${ }^{7} 711$	689	735	1,302	1,736	1, 151	562	412	516	580	699	10, 300
Kentucky	19	18	21	21	108	109	38	215	194	77	39	12	871
Michigan	189	144	118	114	230	437 5		- 98	[31	+ 50	${ }_{2}^{85}$. 154	1,966
Minnesota	2,634	2, 440	3, 185	2, 551	3,772	5, 299	4,655	3, 121	3, 049	2, 674	2,928	3, 303	39, 611
Mississipp			27										
Missouri	1,164	748	597	515	$1,312$	$1,604$	$\begin{gathered} 757 \\ 56 \end{gathered}$	1, 109	777 25	850	729	1, 026	1, 188
Montana	1, 85	11 +707	10			$\begin{array}{r} 62 \\ 1975 \end{array}$	$\begin{array}{r} 56 \\ 2,019 \end{array}$	109 1,029	25 1,133	$\begin{array}{r} 77 \\ 1.247 \end{array}$	1, 1210	$\begin{array}{r} 218 \\ 2,118 \end{array}$	$\begin{array}{r} 643 \\ 7,433 \end{array}$
Nebraska	1,251	1,707	1,259	1, 174	1,311	1,975	2, 019	1, 029	1,133	1, 247	1, 210	$\begin{array}{r} 2,118 \\ 3 \end{array}$	$\begin{array}{r} 7,433 \\ 32 \end{array}$
New Mexico						490	512		526	208	251	207	3,418
North Dako	120	96	-142	98	285	490		483	626	208	251	112	, 418
Ohio	115	20	20	1		29	2	42			81	112	825
Oklahoma	209	45	12	8	636	592	224	42	79	1	81	5	894
Pennsylvania:											3.		
Bouth Dako	941	784	1, 120	1, 017	$\text { 1, } 227$		$2,160$	$\begin{array}{r} 78 \\ 2 \end{array}$	22	27			+ 112
Tennessee			6		22				22				
Wexas.-..-	0			5,802	8, 405	10,763	8,953	5, 959	5,181	4, 695	3, 685	768	70, 588
Other States		5	51	25				1	1		3	. 29	118

SAN FRANCLSCO.

California	1,707	1, 442	1,922	2, 321	2, 305	¢ 127	1,818	1,839	1,546	1,664	1,484	1,630	21, 805
Canada...							1,87	, 38	101	- 29	27	34	316
Idaho.	28		1	30	6	100	152	30	52	56	21	26	502
Montana							142	114	53	24		28	361
Nebraska							25						25
Nevada.	16	12	12	11	32	49	35	54	24	28	9	11	293
Orego	167	55	17	34	71	333	228	60	51	36	77	48	1,177
Uta	8	13	7		7	30	40.	9	15	20	10	25	179
Washington	134	2		10	41	163	14	80	21	49	27	141	682
Other States.							81	75		15			171

Division of Statistical and Historical Research. Compiled from reports of Division of Dairy and Poultry Products.

Table 445.-Cold storage holdings of creamery butter in United States, 1916-1923.

Calendar year.	Jan. 1.	Feb. 1.	Mar.1.	Apr. 1.	May 1.	June 1.	July 1.	Aug. 1.	Sept. ${ }^{\text {a }}$	Oct. 1.	Nov.1.	Dec. 1.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	pounds	pounds	pounds	pounds	pounds	pounds	pounds	pounds	pounds	pounds	pounds	pounds
1916	48, 977	31, 139	15, 033	3, 346	1,082	7, 017	53, 863	102, 537	105, 836	100, 522	85, 260	67, 292
1917	46, 134	30, 474	16, 952	6,805	3, 607	9, 953	49, 982	88, 992	108, 179	109, 154	100, 115	79, 928
1918	50, 726	26, 618	18, 808	14, 629	9, 536	12, 698	49, 140	88, 305	99, 334	87, 883	80, 874	65, 111
1919	43, 910	36, 777	24, 191	11,909	9, 659	29, 435	90, 158	123, 546	131, 388	121, 816	100, 474	73,654
1920.	53, 737	38, 359	22, 568	12, 555	7, 554	12, 872	52, 526	101, 455	115, 558	113, 385	101, 778	79, 750
1921	58, 682	41, 486	27, 103	14, 732	7, 712	21, 682	61, 991	82, 838	92, 292	90, 116	77, 983	65, 129
1922	48, 412	35, 047	22, 582	9, 113	3, 830	13, 202	67, 410	103, 151	112, 039	96, 680	73, 857	47, 773
1923	25, 819	16, 122	8,910	4, 824	3,248	10, 112	62, 768	101, 774	102, 731	96, 117	76, 472	51,508

Division of Statistical and Historical Research.
Table 446.-Butter: International trade, calendar years, 1909-1922.

Countries.	A verage 1909-1913.		1920		1921		$\begin{gathered} 1922, \\ \text { preliminary. } \end{gathered}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING countries.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.
Argentina	113	6,934		47, 368		52, 187		52, 395
Australia	46	77, 859	34	92, 421	732	127, 347		78, 975
Canada	3,388	3, 973	1,105	13, 361	4,018	9, 133	6,397	21,505
Denmark	6, 241	195,530		164, 959	403	202, 953	2, 769	210, 542
Finland.	2, 370	26, 337	5	2,508	14	14, 253	29	18,373
Netherlands	4,987	75, 133	131	45,576	4, 401	44, 528	10,816	50,981
New Zealand	47	38,761	(1)	34, 945	(1)	100, 630		125, 462
Russia	2, 202	150, 294						
Union of South Africa	3, 913		622	488	382	2,698	$\cdot 196$	1,500
United States	1,647	4,125	37,454	17,488	18,558	8,015	6,957	10,938
PRINCIPAL IMPORTING COUNTRIES.								
Algeria	1,946	9	1, 162	20	1,356	34		
Austria			781		452			
Austria-Hungary	6,281	4, 267						
Belgium	14,024	3, 124	18,461	127	22,663	1,337	41, 750	290
China	$\begin{array}{r}\text { 4, } \\ \begin{array}{r}4 \\ 3 \\ 1,677\end{array} \\ \hline\end{array}$	24	167 1,410	10	$\begin{array}{r} 3 \\ 1,456 \end{array}$		1,421	
Cuba	1,459		3, 036					
Dutch East Indies	4,152		6,793	23	6,824		4 4,784	
Egypt.-	2, 350	${ }^{2} 166$	570	204	628	149	1,147	97
France.	13,713	40,769	18,584	4, 812	40, 140	2, 701	64, 985	6,795
Germany	111, 441	498	17, 227	429	${ }^{5} 2,365$	${ }^{5} 203$	2, 358	619
Greece	206	8	4,330		4, 393		2, 787	
Italy	972	7, 870	3, 104	96	1, 004	145	2,964	1,683
Norway	976	3, 137	8, 098	5	7, 560	29	7,653	14
Persia,	2, 201	3, 059	796	155				
Peru.	462	20	1,389		801	1	1,038	16
Philippine Island	1,665		1,309		730			
Spain--	939	+259		879	${ }^{620}$	354		${ }^{231}$
Sweden	330	45, 870	16, 917	53	14, 171	340	5,650 $\mathbf{1 5}, 088$	3, 043
Switzerland ---.-.	11, 106	44	18, 1417		15, 989		15, 088	8
Trinidad and Tobag	11,847 455,489	1, 179	187, 799	1 363	- 8 857 895	[5	427, 403	1,674
Other countries..	12, 273	1, 37	5,728	928	- ${ }^{2}, 562$	1,403	1,634	1,179
Total	674, 014	689, 293	356, 693	427, 222	525, 982	569, 611	608, 520	586, 320

Division of Statistical and Historical Research. Official sources.
Butter includes all butter made from milk, melted and renovated butter, but does not include margarine, cocoa butter, or ghee.

[^249]Table 447.-Butter: Farm price per pound, 15th of month, United States, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Weight ed average.
	C	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1910.	28.3	27.1	26.0	25.6	24.8	23.7	23.6	24.5	25.7	26.6	27.4	27.8	25.5
1911	26.0	23.4	22.6	22.0	20.8	20.4	21.0	22.4	23.4	24. 5	26.3	27.8	22.9
1912	28.6	28.1	26.6	26. 0	25.4	24. 1	23.6	24. 0	24.9	26. 2	27.8	28.6	25.7
1913	28.0	27.6	27.6	27.3	26.2	25. 1	24.8	25.4	26.7	27.8	28.7	29.2	26.7
Av. 191	27.7	26.6	25.7	25.2	24.3	23.3	23.2	24.1	25.2	26. 3	27.6	28.4	25.2
1914	28.3	26.7	25.4	24.4	23.3	22.8	23.3	24.5	25.6	26. 2	27.4	28.6	25.
1915	28.3	27.4	26.3	25.8	25. 2	24.5	24. 2	24.4	24.9	25. 8	27.0	28. 0	25.7
1916	28.0	27.4	27.4	27.8	27.2	26.1	25.9	26. 8	28.2	30.0	32.8	34.2	28.0
1917	33.8	33.8	33.8	34.8	35.6	34. 2	33.8	35. 0	37.5	39.9	41.4	42. 5	35.9
1918	43.4	43.6	42.0	40.3	39.2	38.4	39.0	40.6	44.3	48.4	51.2	53.8	42.
1919	52.2	46.7	45. 7	49.0	49.7	48. 2	47. 7	49. 0	50.6	53. 8	58.0	60.6	50.3
1920	59.6	56.8	56.0	56.8	55.6	52.6	51.8	52.2	53.2	54. 2	54.5	51.8	54
Av. 1914-1920	39.1	37.5	36. 7	37.0	36. 5	35.3	35.1	36.1	37.8	39.8	41.8	42.8	37
1921	47.0	43. 6	41. 2	39. 5	34. 0	29. 2	31. 6	35. 4	37.4	39.6	41. 0	40. 7	37.0
1922	37.4	34.6	34.6	34.6	34. 1	33. 1	33. 0	33. 4	34.8	37.4	40. 2	42.9	35.3
1923	43.0	42.0	41.6	40.8	39.4	37.9	37.0	38.0	40.2	42.2	44.3	45.8	40.4

Division of Crop and Livestock Estimates.
Table 448.-Butter, first quality British: Average prices per pound in Great Britain, 1904-192צ.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Av.
	Cents.	Cents	Cents.	Cents	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	
1904	26.9	27.9	27.0	24.3	21.1	20.9	21.3	24.5	25.2	26.7	27.5	29.1	25.2
1905	28.4	28.4	26.4	25.3	22.3	23.3	24.3	27.4	28.4	28.4	29.4	31.4	27.0
1906	30.9	30.4	29.4	27.9	25. 9	24.3	25.4	27.9	29.9	30.9	31.4	31.9	28.8
1907	31.4	30.4	29.4.	27.9	25. 9	23.8	24.8	27.4	26.9	28.9	30.4	31.4	28.1
1908	30.9	31.9	30.9	28.4	26.4	23.8	25.9	27.9	28.9	29.4	29.9	30. 4	28.5
1909	30.4	29.9	29.4	27.9	25. 9	24.8	25. 9	27.9	28.4	29.4	30.4	31.4	28.7
1910	30.9	31.4	30. 9	29.4	27. 4	25.3	25.9	26.9	27.9	28.9	29.4	30.4	28.7
1911	30.4	29.9	29.4	27.9	25. 9	24.8	25.9	29.4	30. 4	31. 9	32.4	32.9	29.3
1912	32.4	32.9	31. 4	29. 4	26.4	25.4	26.9	27.9	28.9	29.9	30.9	31.9	29.5
1913	31.9	31.9	31. 4	28.9	26.9	25.4	26.4	27.9	28. 9	29.4	30.4	31.4	29.2
Av. 1909-1913	31.2	31.2	30. 5	28.7	26.5	25.1	26.2	28.0	28.9	29.9	30.7	31.6	29.0
1914	31. 4	30.9	30.4	28.9	26.4	25.4	27.0	31.2	30.6	31.0	32.2	33.0	29.9
1915	33.8	34.6	33.5	32.0	29. 4	29.3	30.8	32.4	33. 2	35. 6	36. 0	37.9	
1916	38. 1	37.7	37. 7	36. 7	34.7	32.7	34.2	38. 2	40.6	42.1	44. 6	46.0	38.6
1917	48.0	49.0	49. 0	48. 6	44.6	42.1	44.1	48.5	51. 5	54.4	54. 9	55. 4	49.2
1918	55. 9	56.4	56.4	57.0	56.0	55.5	54.9	54.5	54.5	55. 0	57.0	58.0	55. 9
1919	58. 0	58. 0	56. 8	56.2	56.3	55. 7	53.5	51.6	50.5	50.4	49.3	45. 5	53.5
1920	44.7	64. 4	71.1	73.0	60.2	57.6	59.4	63.7	68.0	73.8	74.6	76. 4	65.6
Av. 1914-1920	44.3	47. 3	47.8	47.5	43.9	42.6	43.4	45.7	47.0	48.9	49.8	50.3	46.6
1921	75.1	72.5	64.0	56.1	44.7	38.1	42.4	47.9	44.2	45.6	47.6	49.3	52.3
1922	43.6	42.3	39.7	40.5	38.4	36. 6	43.5	46. 5	47. 1	48.1	50.4	52.8	44. 1
1923	53.6	52.8	51.7	47.5	36.6	33.8	33.9	40.3	43.1	44.8	46.4	49.1	44.5

[^250]Table 449.-Butter, 92 score creamery: Average wholesale price, 1910-1923.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
New York:	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1910	33	30	33	31	28	28	28	29	30	30	31	30	30
1911	26	26	24	21	22	23	25	26	27	30	34	37	27
1912	39	32	31	33	30	27	27	27	30	31	34	37	32
1913.	35	36	37	35	29	28	27	28	32	31	34	36	32
1914	33	29	28	25	26	$\stackrel{27}{ }$	28	30	31	32	35	34	30
1915	34	32	30	31	29	28	27	26	27	29	31	35	30
1916	33	34	37	36	31	30	29	31	34	35	39	40	34
1917	40	44	42	44	40	39	39	41	44	45	46	50	43
1918	52	50	44	42	42	44	45	46	56	58	63	69	51
1919	62	52	62	64	58	52	53	55	59	68	71	72	61
1920.	65	66	67	71	61	57	57	55	59	60	63	55	61
Av. 1914-1920.-	46	44	44	45	41	40	40	41	44	47	50	51	44
1921	52	47	48	46	32	33	40	43	43	47	45	44	43
1922	37	37	38	38	38	37	36	35	41	46	51	54	41
1923	52	50	49	46	42	39	39	44	46	48	53	55	47
Chicago:													
${ }_{1}^{1918}$			41	42	42	42	43	45	55	56	62	67	50
1919	60	49	60	62	57	51	51	53	57	64	69	68	58
1920	63	${ }_{6}^{63}$	66	64	57	55	55	54	57	57	60	51	58
1921	48	47	47	44	29	32	39	40	42	45	44	43	42
${ }_{1922}$	34	37	38	37	34	36	34	34	39	44	50	53	39
1923	50	50	49	45	40	'39	38	43	46	47	52	53	46
Philadelphia:					46		45	46		59			
1919.	62	52	62	65	59	53	54	56	59	68	70	73	61
1920	65	67	68	71	62	58	58	56	60	60	63	55	62
1921	53	48	49	47	33	33	40	43	43	47	46	45	44
1922	37	37	38	38	37	37	37	36	42	47	52	55	41
1923.	52	50	50	46	42	40	40	45	47	49	53	55	47
Boston:													
1919.					46	44	45	46	55	59	62	67	53
1919	63	51	62	65	59	53	53	56	58	64	69	71	60
1922	65	66	68	69	61	58	58	57	59	59	60	54	61
1921	52	48	48	46	32	34	41	43	43	46	45	44	44
1922.	37	37	39	38	37	37	37	36	40	46	50	54	41
1923	52	50	51	47	43	40	40	44	46	48	51	53	47
San Francisco: 1918										59	58	62	60
1919	56	49	56	56	56	54	54	55	60	63	64	65	57
1920	62	62	59	56	53	54	57	59	64	58	53	48	57
1921.	42	46	38	34	31	34	39	42	44	46	46	41	40
1922	36	40	33	32	35	38	39	39	46	49	45	47	40
1923--------------	48	46	42	41	42	44	42	45	48	47	48	48	45

Division of Statistical and Historical Research. From Urner-Barry reports, 1910-1917; subsequently compiled from daily reports of the Division of Dairy and Poultry Products.

Table 450.-Butter: Average export prices per pound in Copenhagen, Denmark, 1882-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver age.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1882											130.1	30.5	
1883	29.5	30.3	29.4	25.0	24.6	23.6	24.6	25.3	25.9	28.9	31.3	30. 1	27.4
1884	29.2	30.0	27.4	25.8	23.0	21.9	22.3	24.9	27.5	30.3	28.4	28.4	26.6
1885	27.7	25.3	25.8	23.3	20.7	20.0	21.5	23.3	25.9	27.6	26.5	25.3	24.4
1886	25.6	24.2	23.0	20.5	19.8	17.7	20.3	21.5	23.0	26.4	26.0	26.4	22.9
1887	24.8	22.6	23.6	20.4	18.0	19.1	22.1	24.1	24.7	26.2	25.5	24.4	23.0
1888	23.9	23.2	23.3	19.9	18.5	20.5	20.8	20.5	21.5	24.1	24.2	26.6	22.2
1889	25.5	26.1	25.0	21.2	20.5	20.5	22.1	22.2	22.5	23.7	24.9	25. 5	23.3
1890	23.5	23.7	23.4	22.0	20.2	18.2	17.9	20.2	22.9	24.4	26.0	25. 3	22.3
1891	24.9	23.8	25. 3	22.2	19.0	19.0	20. 5	21.3	23.2	26.0	26.4	27. 5	23.3
1892	27.2	26.1	25.1	21.9	21.9	20.2	20.8	20.8	23.5	26.6	26.1	25.0	23.8
1893	23.3	22.1	21.9	20.4	18.6	20.3	23.1	23.1	25.3	24.7	25.7	23.0	22.6
1894	23.2	22.2	21.7	19.9	17. 7	17.0	17. 3	18.4	20.3	20.9	26. 5	24.1	20.8
1895	24.3	22.6	20.9	20.0	19.2	18.0	20.3	21.2	23.1	26. 6	23.9	23.3	22.0
1896	23.6	23.8	22.6	19.7	18.6	19.3	20.3	23.8	23.4	25.2	23.8	24.3	22.4
1897	23.9	22.8	21.6	20.2	19.3	19.3	19.9	21.5	23.3	22.6	23.6	23.5	21.8
1898	22.5	22.8	22.4	20.6	18.8	18. 5	18.1	19.4	22.3	24.2	24.1	25.3	21.6
1899	23.3	23.1	23.2	21.3	19.8	19.8	21.3	24.4	26.9	26.8	24.6	25.3	23.3
1900	23.8	22.8	21.8	21.4	21.2	22.4	22.4	24.5	24.0	24.5	25.4	26. 0	23.4
1901	25.6	24.1	23.3	22.3	21.4	21.4	21.5	23.1	24.9	26.1	25.0	24.3	23.6
1902	22.8	24.1	23.3	23.1	21.9	21.9	21.9	21.5	23.4	24.6	24.3	24.1	23.1
1903	22.8	22.7	24.3	22. 2	20.5	20.5	20.6	21.0	22.1	24.5	23.9	23.3	22.4
1904	22.4	23.0	21.9	19.4	18. 7	19.3	19.8	21.8	23.7	23.4	22.6	22.7	21.6
1905	22.8	22.8	23.0	21.6	20.4	21.1	23.0	24.6	24.8	24. 7	25.4	25.2	23.3
1906	25. 5	24.0	24.4	23.0	22.1	23.2	23.7	24.8	26.2	25. 6	${ }^{3} 25.3$	25.0	24.4
1907	24.3	23.6	23.1	21.4	21.4	22. 1	22.9	23.1	23.6	25.8	25.6	25.6	23.5
1908	26.1	28.7	24.8	22.7	22.9	23.4	24.8	25.1	24.8	26.3	25.6	23.1	24.9
1909	23.4	23.9	23.6	22. 2	22.9	22.7	23.4	23.6	25.1	26.8	26.8	26.1	24.2
1910	25.1	26.1	27.0	25.1	23.4	23.4	23.4	23.4	23.9	24.1	23.9	23.9	24.4
1911	23.6	24.6	24.1	23.6	22.4	22.9	24.4	26.8	27.8	29.5	27.8	28.2	25.5
1912	27.8	27.8	28.2	26.1	23.9	24.4	24.4	25.8	26. 8	27.0	26.8	27.0	26.3
1913	26.3	27.0	27.0	24.8	23.4	24.1	24.8	24.8	26.8	27.5	26.8	27.0	25.8
Av. 1909-1913	25.2	25.9	26.0	24.4	23.2	23.5	24.1	24.9	26.1	27.0	26.4	26.4	25.3
1914	26.1	25.6	25.6	24.1	23.4	23.9	${ }^{4} 25.9$	24.4	25.0	27.8	27.3	29.9	25.8
1915	29.6	26.9	28.0	27.6	29.6	29.1	31.0	32.6	34.7	41.6	40.5	36.6	32.3
1916	33.8	35.4	37.8	36.8	36.3	35.7	36.7	40.1	42.1	42.6	44.3	44.9	38.9
1917	45.3	39.6	38.4	37.2	38.6	40.5	45. 0	49.7	54.6	65.4	68.4	65. 5	49.6
1918	64.2	63.7	64.0	65.0	65.3	64.7	65.1	65.0	62.0	58.3	75.6	76.0	65.7
1919	75.8	73.8	72.4	71.1	58.2	50.8	48.4	46.5	54.7	53.8	59.5	52.1	59.8
1920	48.9	42.1	49.2	49.8	44.2	44.8	42.4	42.9	43.6	45.7	44.7	44.0	45.2
Av. 1914-1920.	46.2	43.9	45.1	44.5	42.2	41.4	42.1	43.0	45.2	47.9	51.5	49.9	45.2
1921	42.4	39.3	40.4	43.9	33.5	32.4	38.3	41.1	36.4	38.3	39.9	31.8	38.1
1922	31.1	31.0	32.9	33.8	33.5	37.0	39.4	39.1	41.1	40.7	39.9	39.7	36.6
1923	40.5	41.3	41.0	34.5	29.5	29.3	30.7	34. 7	40.3	38.9	39.4	41.4	36.8

Division of Statistical and Historical Research.
${ }_{1}$ From November, 1882, to October, 1905, quotations fixed by Butter Traders' Association. Conversions from Danish quotations in ore per pund (1.1023 pound) at par of exchange (100 ore $=26.8$ cents) to July. 1914.
${ }_{2}$ During November, 1905, and subsequent 11 months, quotations represent prices paid creameries as reported to the statistical bureau of the Federal Creameries Associations.
${ }^{3}$ Beginning of official Coperthagen butter quotations.
4 Conversions July, 1914, to date at average monthly exchange rate as quoted by Federal Reserve Board.
Table 451.-American cheese: Production in the United States, 1917-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
1917			${ }_{11,918}^{108}$		28,932.			32, 248			$\begin{gathered} i b s . \\ 14,262 \end{gathered}$		
1918	8, 143	7,860	11,992	17, 931	31, 285	40, 184	34, 332	29, 996	25, 424	18, 862	12, 172	9, 097	247, 278
1919	10,956	11,855	19, 009	21, 642	34, 849	44, 599	35, 465	30, 940	26, 257	23, 114	13, 107	10, 044	281, 837
1920	10,457	11, 509	14, 954	18, 856	29, 832	41, 376	34, 313	26,787	22, 935	20, 054	13, 308	10,303	254,684
1921	11, 889	12, 857	17, 678	23, 521	34, 556	36, 444	26, 977	27, 652	23, 612	21, 496	13, 426	11, 618	261, 728
1922	12, 837	13,927	18, 774	21,740	31, 349	36, 254	33, 265	29, 496	25, 581	25, 785	18,382	15, 416	282, 806
19	13, 596	13, 813	18, 150	20,	28, 477	35, 645	35, 612	29,471	26, 556				

[^251]$\dagger 85813^{\circ}$ - yBE 1923-59

Table 452.-Cheese: Monthly receipts at four markets, 1918-1929.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	$1,000$	1,000			1,000		1,000	1,000	1,000	1,000	1,000
$\begin{aligned} & \text { W Yo } \\ & 1918 \end{aligned}$					3,899	${ }_{5}{ }^{2058}$	${ }_{6,687}$	4,956	${ }_{3,670}$	5,123	3, 833	${ }_{4}^{1085}$	
1919	3,479	3,173	4, 393	5,114	7,008	7,075	6,972	5,428	7, 121	3,367	4, 621	4, 294	62,045
1920	3, 337	2, 431	3, 80	1,398	4,693	6,152	5,703	5, 278	3, 483	3,208	3,755	3,762	47,003
1921	3, 274	3,337	2,883	4,068	8,003	5, 857	6,655	4, 772	4,30	4, 415	3,657	2,753	51,982
1922	2,738	2,775	4,083	4,467	5,047	6,376	5,379	4,642	3, 942	3, 86	3, 60	3, 207	50, 109
${ }^{1923}$	2, 998	3, 385	4, 340	4,196	4,610	5,208	6, 110	4,757	3,845	8,791	3,544	2, 731	49, 425
hicago:				549	4,958	7,614	8,536	6,675	6,016	5, 535	4,634	5, 019	36
1919	5,925	4,85	5,495	6, 287	7,833	9,778	8, 539	8, 322	7,362	6,64	5,073	4,902	81,018
1920	5, 328	5, 100	7,069	5, 067	7, 744	1, 194	9, 183	6, 5998	5,707	6,255	B, 795	5, 556	81, 597
1921	6,042	5,423	7,147	6, 840	9, 290	9,832	7, 111	6, 9	6,734	8,091	6, 147	6, 261	85, 843
${ }_{1923}$	5,940	6, 139	8,093	7,875	10,262	11, 384	10, 121	10,669	9, 419	10, 452	8,893	8, 477	107, 724
${ }^{\text {Philadel }}$	7,775	7,243	8, 125	9,053	10, 745	15, 039	13, 874	11,750	10, 652	12, 608	9, 216	7,566	123, 646
Philadelph $1918 .-$													
1919	539		1,529	1,654	1,965	2, 227	2,152	1,704	1, 740	2,887	2,930	1,185	21, 393
1920	873	1,040	1,489	626	1,743	2,104	1,657	2, 189	1, 362	1,130	1, 431	1,221	16, 865
1921	1,116	1,064	1,280	1,396	2,223	2,602	2,490	2,311	2,086	1, 920	1,369	1, 094	20, 951
1922	1, 144	1, 120	1, 506	1, 523	1,750	1,827	1,846	1,887	1,815	2, 101	1,738	1,067	19,324
$\begin{array}{r} 1923 \\ \text { Boston: } \end{array}$	664		1,236		1,361	1,915		2,000	1, 972	2,217	1,310	095	18, 363
1918				53	1,462	2, 559	2,305	1,721.	72	779		365	
191	351	517	1, 100	1,088	2,000	2,374	2,897	2,091	1,422	1,859	1,231	791	17, 721
1920	20	274	622	511	948		2,290	1,748		1,479	1,256	43	12,997
1921	435	574 590	691	${ }_{1}^{685}$	${ }^{978}$	$\begin{aligned} & \mathbf{8}, 503 \\ & 2,220 \end{aligned}$	1,701	$\begin{aligned} & 1,173 \\ & 1,461 \end{aligned}$	$\begin{aligned} & 1,262 \\ & 3,410 \end{aligned}$	1, 456	1, 249	501	13, 208
1922	407 828	590 436	663 947	1,005	1 1,201	$\left\|\begin{array}{l} 2,220 \\ 2,074 \end{array}\right\|$	$\left.\begin{array}{\|} 1,963 \\ 2,304 \end{array} \right\rvert\,$	$\begin{aligned} & 1,461 \\ & 1,936 \end{aligned}$	1,410 1,165	1, 104	910 1,302	921	13,521
Total 418													15,914
1919				14, 143							9, 747	10, 417	117, 336
1920	10,158	8 8, 845	12,983	7,602	15, 128	20,872	18, 833	15,815	11, 895	12,072	13,237	11, 1722	188, 1682
1921	10, 867	10,398	12,001	12, 889	18,494	20, 794	17, 0571	15, 186 1	14,390	15, 882	12, 422	10, 609	171, 989
4922	10, 229	10.624	14, 325	14, 870	18,260	21, 807	19,309	18,659	16, 586	17, 523	15, 148	13, 338	190,678
192	12, 475	12,046	14, 648\|	15, 575	17,911 ${ }^{2}$	24, 236	24, 402	20, 443	17, 634	20, 393	15, 372	12, 213	207, 348

Division of Statistical and Historical Research. Compiled from reports of Division of Dairy and Poultry Products.

Table 453.-Cheese: Receipts at five markets, by States of origin, 1923.
BOSTON.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	$2 \mathrm{lbs}$.	tos.	Ibs.	lbs.	lbs.	ths.	Lbs.	Tbs.	lbs.	lbs.	lbs.	libs.	lbs.
Chicago	158	113	171	125	69	143	137	179	99	142	236	319	1,891
Illinois	79	71	173	92	186	408	322	154	134	314	57		1,990
Maine	2	,	1	26	4						4		38
Massachusetts.				23		1		1				2	27
Michigan.			4			84	103						191
New Hampshi	15	9	9	10	2	2				1		2	50
New York.	302	160	355	363	566	789	1,075	905	579	719	677	453	6,943
New York City	38	11		31	55	46		120	66	44	34	6	459
Ohio---------					3	1				14	1	3	23
Pennsylvania	14	9	16	9	13	11	16	20	14	18	17	17	174
Philadelphia	4		3		1							2	10
Vermont.-	18	17	43	50	109	94	119	59	2	67	27	18	623
Wisconsin	192	35	164	290	155	461	522	498	271	458	248	98	3,392
Other States	6	11	6	9	32	33			2	1	1		102

NEW YORK.

Table 453.-Cheese: Receipts at five markets, by States of origin, 1923-Continued. PHLLADELPHIA.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	'rotal.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	tbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
Illinois	186	266	343	252	211	291	668	437	450	414	299	310	4,127
Indiana		50		39	47					6			142
Michigan						35	52		20	24			131
New Jersey	2		1				1			7	25		36
New York	329	234	419	347	336	277	404	489	423	513	396	371	4,558
Ohio--	24				2	20	49	16				25	136
Pennsylvani	4	19	44	4	44	4	43	49	2	8	13	11	245
W isconsin.-	416	408	425	654	720	1,246	898	994	1, 051	1,218	576	278	8,884
Other States.	4	5	3			42		15	26	28			125

chicago.

SAN FRANCISCO.

California	253	260	292	424	372	390	253	280	271	248	286	321	3,650
Colorado	11	21.	15	21	11	19	23	18	19	21	27	16	222
Idaho.					71	106	105	77		71	261	348	1,039
Illinois	114	117	171	89	64	148	180	184	194	55	94	31	1,441
Minnesota							28		31		4		63
Montana	27		29	30	31	30	72	74	45				338
New York					14	4	48	26	32	38	49	38	249
Oregon	56	76	98	244	426	315	280	181	135	306	296	144	2,557
Washington	1	8.	11	9	2	43	19	12	1	3	3		112
Wisconsin	126	87	88	40	62	117	348	383.	257	182	162	127	1,979
Other States.		g		1	,		4	2		8	3	30	51

Division of Statistical and Historieal Research. Compiled from reports of Division of Dairy and Poultry Products.

Table 454.-Cheese: Cold storage holdings in United States, 1916-1983. american cheese.

Calendar year.	Jan. 1.	Feb. 1.	Mar. 1.	Apr. 1.	May 1.	June 1.	July 1.	Aug. 1.	Sept.1.	Oct. 1.	Nov.1.	Dec. 1.
	1	1,000	1,000	1,0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	libs.	lbs.										
1916	28, 558	18, 908	13, 373	8, 443	6,540	7, 301	16, 357	31, 569	46, 726	49, 579	45, 713	37, 080
1917	31, 855	22, 113	15, 560	9, 842	7,828	11, 628	34, 159	67, 595	91,545	90, 671	78, 087	75, 166
1918	66, 784	56, 298	37, 743	27, 965	17,736	20, 395	30, 054	48, 804	55, 742	42, 065	33, 402	25, 625
1919	19, 823	15, 486	9,837	6,750	6,027	12, 478	37, 501	62, 645	76, 661	81, 359	72, 889	62,508
1920	53, 168	43, 631	34, 039	23, 431	16, 963	13, 502	29,654	51, 512	60, 372	55, 007	48,566	39, 921
1921	34, 115	25, 000	17, 477	14, 294	13, 466	17, 814	34, 948	41, 284	46, 635	45, 163	42, 969	34, 055
1922	27, 691	21, 430	15, 006	10, 745	10, 868	17, 481	33, 130	46, 5880	53,625 63,960	49,473 62,384	40, 852	37,291 55,105
1923	33, 617	26, 593	20,693	14, 465	14, 077	17, 507	36, 834	55, 839	63, 960	62, 384	57, 927	55, 105

Table 454.-Cheese: Cold storage holdings in United States, 1916-1923-Con.
all cheese other than american.

Calendar year.	Jan. 1.	Feb. 1.	Mar. 1.	Apr. 1.	May 1.	June 1.	July 1.	Aug. 1.	Sept.1.	Oct. 1.	Nov.1.	Dec. 1.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
1917.									3,916	3, 750	3, 336	3,347
1918	2, 836	2, 197	2, 093	2, 013	2, 202	2, 692	5, 171	7, 988	13, 229	12, 734	10, 963	11, 848
1919	10, 402	10, 263	8, 771	8,352	8, 810	10, 813	13, 905	15, 749	15, 928	15, 234	15, 091	13, 906
1920	11, 526	10, 785	9,617	8, 713	8,642	9,839	14, 849	18, 522	19, 886	19, 975	20, 526	18, 879
1921	17, 053	15, 207	12, 979	10, 613	10, 474	10, 639	12, 668	15, 034	16, 268	17, 203	16, 536	14, 948
1922	13, 904	11, 571	10, 471	8, 594	8,112	8, 588	10, 412	11, 183	13, 250	13, 450	12,963	11, 329
1923	11, 617	10, 635	8, 823	7,350	7, 115	8,727	11, 894	15, 021	16, 703	16, 407	16, 375	17, 518

Division of Statistical and Historical Research.
Table 455.-Cheese: International trade, calendar years, 1909-1922.

Country.	A verage, 1909-1913.		1920		1921		preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING countries.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Argentina	pounds.	pounds.	pounds.	pounds 13, 575		pounds. 12, 513		pounds. 14, 407
Australia-	360	799	72	9,530	86	12, 671		
Bulgaria	${ }^{2} 63$	5,584						
Canada	1, 054	167, 260	480	142, 768	908	137, 180	- 687	120, 177
Czechoslovak					183	37,226 27	1, 1,214	
Denmark	1,414	527 2,086	132	21,281 2,108	${ }^{5} 2$	-	1,214	19,673 589
Italy	13, 308	60, 560	5,893	2, 790	1, 780	16, 664	15, 571	32, 057
Netherlands	522	127, 379	489	99,738	802	115, 279	750	143, 769
New Zealand	3	55, 561	18	136, 870	${ }^{(3)}$	153, 304		130, 054
Russia	3, 911	70,011						
Switzerland	7,150	70, 075	4, 368	3, 202	1,894	10,596	1,792	46, 152
PRINCIPAL IMPORTING COUNTRIES.								
Algeria	6,592	138	5, 126	150	5,778	170	7,195	
Austria--	12,298	966						
Belgium...	31, 771	354	28,091	7,397	34, 329	1,750	48, 139	1,151
Brazil.	4, 178	${ }^{1} 1$	1,224	4	148	8		
British Indi	1,314		1,509		755		1, 072	
Cuba-----	4, 520	7	5, 534	(3)				
Dutch East In	$\begin{array}{r}757 \\ 8,182 \\ \hline\end{array}$		1, 1,657	48	3,452	165	6,793	102
France--	8,182 49,056	26, 880	25, 289	15, 130	35, 146	14, 381	60, 272	22,023
Germany	48, 687	1,967	50, 344	173	${ }^{6} 39,848$	${ }^{6} 1,022$	51, 984	2, 235
Norway	663	377	3, 147	165	1,157	256	1,541	658 453
Spain	5, 032	53	- 5,748	354 397	4, ${ }_{\text {2 }}$, 239	689 296	1, 4221	453
Sweden		19	5, 516	16	749	40	997	19
Tunis of South Africa	1,382 4,991	19	1,200	314	49	459	268	152
United Kingdom.--.	257, 407	950	305, 832	454	312, 783	479	294, 951	591
United States..--	46, 346	5,142	15, 994	16, 292	26,866	11,772	46, 573	5,007
Other countries.	12, 585	4,330	5,737	414	4, 078	821	1,556	863
Total	535, 417	538, 124	481, 479	473, 170	486, 775	526, 080	550, 172	547, 807

Division of Statistical and Historical Research. Official sources. All cheese made from milk, including "cottage cheese."

[^252]Table 456.-Cheese, No. 1 American: Average wholesale price per pound, New York, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1910	\$0. 17	\$0.17	\$0.17	\$0. 17	\$0. 14	\$0. 14	\$0. 15	\$0. 15	\$0. 15	\$0. 15	\$0. 15	\$0. 16	\$0. 16
1911	. 15	. 15	. 14	. 14	. 11	. 11	. 12	. 12	. 14	. 14	. 15	. 16	. 14
1912	. 16	. 17	. 18	. 19	. 15	. 14	. 15	. 16	. 16	. 18	. 17	. 17	. 16
1913	. 17	. 17	16.	. 15	. 13	. 14	. 14	. 15	. 16	. 16	. 16	. 16	. 15
1914.	. 17	. 16	. 18	. 16	. 14	. 15	. 15	. 16	. 16	. 15	. 15	15	16
1915	. 15	. 16	. 18	. 16	. 17	. 15	. 15	. 17	. 14	. 15	. 16		
1916	. 17	. 18	. 18	. 18	. 18	. 15	$\cdot 15$	$\cdot 17$. 19	${ }^{21}$. 23	. 24	. 24
1917	. 24	. 25	. 26	$\stackrel{.}{26}$	$\stackrel{.}{26}$. 23	$\stackrel{.}{ } .24$. 23	. 28	. 33	$\stackrel{.}{.32}$. 35	. 27
1918	. 24	. 26	. 24	. 231	. 24	. 32	. 33	. 31	. 31	.31	. 32	. 32	. 32
1919	-. 32	. 30	. 32	$\stackrel{+}{.31}$. 32	. 28	$\stackrel{.}{.27}$	$\stackrel{.}{.} 27$	$\stackrel{.}{.} 28$	$\stackrel{.}{.} 28$. 28	$\stackrel{.}{ } .28$	$\stackrel{.}{ } \times$
A v. 1914-1920.	. 23	. 23	. 23	. 23	. 23	. 22	. 22	. 22	. 23	. 24	. 24	. 25	23
1921	24	. 21	. 25	. 22	. 17	. 16	. 19	. 21	. 21	22	21	. 21	. 21
1922	. 21	. 20	. 20	. 18	. 17	. 19	. 21	. 21	. 21				${ }_{25}$
1923.	. 28	. 28	. 25	. 23	. 23	. 24	. 25	. 25	. 26	. 26	. 25		. 25

Division of Statistical and Historical Research.

OLEOMARGARINE.

Table 457.-Oleomargarine production and consumption in the United States, 1887-1923.

Year ending June 30.	Production.	Stocks, beginning of year.	Exports.	Stocks, end of year.	Consumption.	
					Total.	$\begin{gathered} \text { Per } \\ \text { capita. } \end{gathered}$
1886	Pounds. ${ }^{1} 21,513,537$	Pounds. ${ }_{2}^{2181,090}$	Pounds. $834,574$	Pounds. $423,855$	Pounds. 20, 436, 198	Pounds. 0.35
1887-88.	34, 325,527	423, 855	1,729,327	1,575, 293	31, 444, 762	53
1888	35, 664, 026	1,575, 293	2, 192, 047	1, 978, 094	33, 069, 178	54
1889	32, 324, 032	1, 978, 094	2, 535, 926	978, 650	30, 787, 5250	49
1890	44, 392, 409	978, 650	1,986, 743	779, 368	42, 604, 948	67
1891-92.	44, 365, 155	779, 368	1,610, 837	1, 021, 555	42, 512, 131	65
1892-93	67, 224, 298	1, 021,555	3, 479, 322	322, 911	64, 443, 620	77
1893-94-	69, 622, 246	322, 911	3, 898, 950	437, 288	65, 608,920	68
1894	56, 958, 105	437, 287	$10,100,897$ $6,063,699$	393,597 396,404	$46,900,898$ $44,786,728$. 64
1895-	50, 853, 234	393, 597	6, 063, 699	396, 404	44, 78, 728	64
1896-97.	45, 531, 207	396, 404	$4,864,351$	223, 3688	40, $839,968,892$	$\stackrel{57}{73}$
1897-98	57, 513, 136	223, 308	+	787, 503	77, 238, 394	1.04
1898-99	83, 130, 474	444, 745	5, $4,259,320$	817,806	102, 758,658	1. 36
$\begin{aligned} & 1899-190 \\ & 1900-1 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 107,045, \\ 104,943,858 \end{array} \end{aligned}$	817,806	$4,990,699$	722, 237	100, 048, 726	1. 30
1901-2.	126, 316, 427	722, 237	5, 721, 254		121, 317, 410	1. 54
1902-3-	73, 285, 946		7, 645, 652	653, 174	64, 987, 120	. 81
1903	50, 203, 495	653, 174	6, 137, 251	490, 822	- $44,228,596$. 54
1904-5.	52, 011,716	490,822 600,060	711, 794, 174	600,060 483,780	$-44,039,306$ $43,757,006$. 51
1905	55, 434, 900	600, 060	11, 794, 174	403,		
1906-7	71, 366, 775	483, 780	5, 397, 609	700, 823	71, 6558,743	. 81
1907-8	$74,188,320$ 92 282,815	700, 8223	2, $2,889,058$	748, 318	89, 337, 664	. 99
1908	$92,282,815$ $141,862,280$	748, 318	3,418, 632	1,165, 446	138, 026 , 520	1.51
1909-	121, 162, 795	1, 165, 446	3, 794, 939	1,942, 440	117, 590, 862	1.26
1911-12	128, 601, 053	942, 440	3, 627,425	1,249, 246	124, 666, 822	1.32
1912-13	145, 227, 862	1,249, 246	2, 967, 582	1, 650, 897	141, 858, 629	1.48
1913-14	144, 021,276	1, 650, 897	${ }_{5}^{2,532,821}$	$1,261,245$ $1,661,559$	140, 157, 551	1.42
1914-15	145, 810, 048	1, 261, 245	5, 252, 183	1,661, 559		
1915-16.	152, 509, 913	1,661, 559	5, 426, 221	1,992, ${ }_{2}$	226, 523,373	${ }_{2.23}$
1916-1	233, 170, 111	1, ${ }^{1} 982,1297$	6, 509,896	3, 377,733	319, 629,407	3. 11
1917-18	$326,528,839$ $359,216,571$	-2, 5877,733	18,570,400	2, 562, 597	341, 661,307	3.28
191	359, 216, 31		20, 952, 180	4, 110, 174	368, 783, 386	3. 49
1919-20.		$4,110,174$	6, 219, 165	1,979,543	276, 992, 880	2. 59
192C-21	190, 950,373	1,979, 543	1,989, 421	2, 265, 895	188, 774,600	1.74
1922-23	209, 182, 188	2, 265, 895	2, 027, 546	2, 647, 297	206, 773, 240	1.88

Division of Statistical and Historical Research. Production and stocks from Bureau of Internal Revenue. Exports from Bureau of Foreign and Domestic Commerce.

Table 458.-Oleomargarine: Production in the United States, 1918-1983.

Calendar year.	Uncolored; made of-			Colored; made of-			Total.
	$\begin{aligned} & \text { Animal } \\ & \text { and } \\ & \text { vegetable } \\ & \text { oin. } \end{aligned}$	```Exclusively vegetable oil.```	$\begin{aligned} & \text { Exclu- } \\ & \text { sively } \\ & \text { animal } \\ & \text { oil. } \end{aligned}$	$\begin{array}{\|c} \text { Animal } \\ \text { and } \\ \text { vegetable } \\ \text { oil. } \end{array}$	Exclu- sively vegetable oil.	Exclusively animal oil.	
1918	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 255.197 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 88,862 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 3.307 \end{gathered}$	1,000 pounds. 7, 056	$\begin{array}{r} 1,000 \\ \text { pounds. } \\ 112 \end{array}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 1.003 \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$ $355,537$
1919	214, 759	132, 906	3,391	9,303	9, 793	1,165	371, 317
1920	161, 636	190, 280	3,843	8,951	5,359	94	370,163
1921	103, 962	99, 265	624	5,960	2, 026	30	211, 867
1922	104, 284	74, 128	302	4,977	1, 383	1	185, 075
1923	121, 272	93, 972	450	7,078	2,808		225,580
January 1923.	10, 484	9, 393	23	653	225		20,778
February	9,715	8,248	17	557	217		18,754
March.	10,918	8, 931	29	631	256		20,765
April.	10,009	7,886	28	610	245	-------	18,778
May	9,860	6, 576	15	627	220		17, 298
June_	7,946	5,483	46	451	183		14, 109
Juiy.	7,902	4,881	25	441	160		13, 409
August	9, 696	5,716	74	502	178	---------	16, 166
September	10, 575	7,603	46	593	237	----	19,054
October-	11, 492	9,869	39	656	281		22, 337
November	11,586	9,640	60	622	297		22, 205
December	11,089	9,746	48	735	309		21, 927

Division of Statistical and Historical Research. Compiled from monthly reports of the Division of Dairy and Poultry Products.

Table 459.-Oleomargarine: Production in the United States, 1908-1922.
COLORED.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
1908-9.---.-.-.-.--	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lus.	libs.	libs.	lbs.	libs.	lbs.	libs.						
	393	333	360	468	463	587	526	497	586	543	507	447	5,710
1909-10	381	433	487	519	521	634	525	518	619	595	542	403	6, 177
1910-11	414	433	469	473	610	587	524	501	606	463	389	362	5831
1911-12	359	454	393	477	539	594	663	630	614	588	538	387	6,236
1912-13	449	394	439	530	501	616	602	618	638	701	586	446	6. 520
1913-14	477	493	532	635	606	615	610	503	608	477	433	395	6,384
Av. 1909-1913...-	416	441	464	527	555	600	585	554	617	565	498	399	6,230
1914-15	422	509	488	480	472	583	807	1,082	1, 131	598	526	497	7, 595
1915-16	472	436	443	548	557	597	560	569	684	677 738	652	554	6,749
1916-17	447	569	643	719	741	758	703	628	742	738	731 587	592	8, 012
1917-18	496	512	573	677.	542	521	508	471	. 615	- 582	$\begin{array}{r}587 \\ \hline 930\end{array}$	511	6,595 13,849
1918-19	408	433	538	608	552	747	1,111	1,642	2, 243	2,716	1,930	921	13, 849
1919-20	1,705	1,807	681	1,087	1,719	1, 626	1,540	960	1,250	1, 139	1, 114	996 328	15,624 11,693
1920-21	. 934	1, 019	1,484	1,378	1,368	1,046.	936	816	950	823	518	328	11,60
Av. 1914-1920	698	755	693	785	850	840	881	881	1,088	1,039	865	628	10,003
1921-22	424415	590	577	692	693	656	556	482	595	498	513	418	6,604
1922-23		420	488	565.	670	790	772	801	917	854	908	662	8,260

Table 459.-Oleomargarine: Production in the United States, 1908-1922-Con. uncolored.

$\begin{aligned} & \text { Year beginning } \\ & \text { July } 1 \text {. } \end{aligned}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
1908-	$\begin{aligned} & 1,000 \\ & l i b s . \\ & 4,394 \end{aligned}$	$\begin{aligned} & 1,000 \\ & l i b s . \\ & 4,669 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { libs. } \\ & 5,812 \end{aligned}$	$\begin{aligned} & 1,000 \\ & l i b s . \\ & 7,907 \end{aligned}$	$\begin{aligned} & 1,000 \\ & l i b s . \\ & 8,266 \end{aligned}$	$\begin{gathered} 1,000 \\ \text { itbs. } \\ 8,463 \end{gathered}$	$\begin{aligned} & 1,000 \\ & l i b s . \\ & 8,40 \end{aligned}$	$\begin{aligned} & 1,000 \\ & l i b s . \\ & 8,453 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { libs. } \\ & 9,697 \end{aligned}$	$\begin{aligned} & 1,000 \\ & i b s . \\ & 7,976 \end{aligned}$	$\begin{aligned} & 1,000 \\ & l i b s . \\ & 6,707 \end{aligned}$	$\begin{aligned} & 1.000 \\ & l i b s . \\ & 5,75 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { libs. } \\ & 86,573 \end{aligned}$
1900-10	5,48	6,386	809	12,4	13,313	15,		2,	13, 4	127	10,175	8, 334	
1910-11	6, 902	9,307	12,702	12, 627	13,823	13,		, 936	9,67	6,866	5, 424	5,18	115, 332
1911-12	4,788	6,701	7,816	9,245-	11, 228	12,652	15,639	13,738	11,654	10,988	10, 629	7,287	122, 365
1912-13	6,785	8,526	9,397	13, 807	12, 62	14, 802	13, 199	13,213	13, 139	13, 892	11, 036	8,28	138, 707
1918	7,947	8,754	12, 790	14, 786	13,777	14, 277	14, 485	12, 888	12, 317	9,724	8,305	7,587	137, 637
Av. 1909-19	6,384	7, 935	10,503	12, 5	12, 953	14, 009	13, 94	12, 283	12,048	10, 843	9, 114	7,336	129, 945
1914-15	7,847	9, 502	12,036	13, 122	13, 310	14, 063	12, 516	12, 371	12, 910	10,785	10, 319	9,436	138, 215
1915-16	8, 711	9, 183	10, 491	12, 394	11,782	13,380	11, 983	13,034	15, 243	13, 974	13, 746		145, 761
1916-17	8, 948	11, 272	15, 516	19, 246	21, 899	23, 287	18, 272	12, 593	22,128	22, 740	24, 314	17, 943	225, 158
1917-18	16, 490	19,519	26, 181	33, 374	29, 009	30, 227	32, 496	35, 855	31, 512	22, 912	23, 410	18, 949	319, 984
1918-19	19, 888	17,959	28, 428	43, 543	32, 434	36, 662	40, 166	19,741	27, 431	31, 448	29, 135	18, 533	345, 368
1912-	22, 700	25, 168	28, 424	34, 357	35, 502	39, 005	35, 312	31,701	38,387	30, 687	34, 760	3,	375, 659
192	23, 225	25, 516	28,899	20, 918	29,089	24, 705	22, 630	20, 773	22, 532	18, 885	13, 537	8, 572	269, 481
Av. 1914-1920	15, 458	16, 874	21, 282	28, 56	24, 718	25, 904	24, 769	21, 867	24,013	21,602	21, 317	15,570	259, 939
1921-22	10,581	16, 812	16,920	20,588	17, 985	17,754	15, 610	14,139	15,375	13, 432	13, 356	11,994	184, 346
1.92	11,866	12,623	13,684	17,380	18,615	20, 260	20, 105	17, 889	20, 137	18, 083	16,680	13, 582	$200,923$

Division of Statistical and Historical Research. Compiled from reports of the Bureau of Internal Revenue.

Table 460.-Oleomargarine: Materials used in manufacture, 1915-1922.

Material.	Year beginning July 1.							
	1915-16	1916-17	1917-18	1918-19	1919-20	1920-21	1921-22	1922-23
Oleo oil	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 68,989 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 96,652 \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { pounds. } \\ & 96,378 \end{aligned}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 97,464 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 89,842 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 49,676 \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { pounds. } \\ & 40,980 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { pounds. } \\ & 46,645 \end{aligned}$
Coconut oil	563	19, 763	61, 773	69, 640	80,784	103, 112	57, 394	65, 656
Cottonseed oil	49, 960	63, 652	36,454	37, 846	39, 450	18, 533	15, 420	18,757
Milk	21,331	24, 410	61, 128	68, 000	76, 000	79, 716	53, 939	50,835
Peanut oil	5,335	10,498	21, 593	38,764	48,346	16,332	11, 625	6,922
Salt	4,088	6,115	18, 279	21, 432	24,864	25,365	16, 282	17,998
Oleo stearine	2,036	2,494	3,427	2,456	2, 132	4,858	4,574	4, 815
Neutrallard	33, 446	42,401	46, 702	45, 764	88, 456	29, 268	27, 057	29,568
Oleo stock.	, 397	'3,458	7,526	6, 342	5, 804	2,065	2, 143	2, 322
Butter.	2, 152	3,303	4,548	5,680	6,845	1,499	1,107	1,576
Vegetable oil.						6,559	------	
Corn oil.--	147	859	60	40	35	926	---------	--------
Soya-bean oil.						461		
Edible tallow.						233		
Mustard-seed oil						110		
Mutton oil.		149	14	11	14			
Coloring						3, 217	3,417	2,918
Total	188, 444	273,754	356,882	398, 439	412, 572	341,956	233, 929	257,023

[^253]
OLEO OIL.

Table 461.-Oleo oil: Exports from the United States, by countries, 1910-1923.

Year ending June 30.	Belgium.	$\begin{gathered} \text { Ger- } \\ \text { Lisny. } \end{gathered}$	Italy.	Neth-erlands.	Sweden.	United Kingdom.	Other Europe.	Total Europe.	Canada.	New-foundland and Labrador.	Other countries.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	lbs.	libs.	lbs.							
1909-10 ${ }^{1}$	720	29,792	595	47, 115	2, 178	21, 147	20,518	122, 065		2,526	1, 301	125, 892
1910-11	1,741	28, 571	766	67, 691	2, 140	9,255	24, 613	134, 777		1,532	2, 388	138, 697
1911-12	2, 720	18, 042	903	66, 894	3, 128	9,960	20, 725	122, 372		1, 712	2, 383	126, 467
1912-13	1,590	17, 481	402	46, 337	2,145	8,009	14, 633	90, 597	54	1,372	827	92, 850
1913-14	2, 819	16, 180	434	47, 414	1,989	9, 244	16, 221	94, 301	339	1,244	1, 133	97, 017
1914-15	545	1,001	337	32,768	4, 190	14,362	25,599	78, 802	228	1, 030	424	80, 482
1915-16			3, 234	29,762	9, 234	30, 658	26, 099	98, 987	37	1,896	1, 726	102, 646
1916-17			760	8, 082	2, 248	31, 761	21, 498	64, 349	476	1,761	524	67, 110
1917-18-			68		13	48, 244	2, 028	50, 353	4,347	1,624	279	56, 603
1918-19	6, 759	768	74	30	3,860	27, 920	16,769	56, 180		1, 612	1,500	59, 292
1919-20.	2, 083	2,982	539	13, 819	3, 315	19, 227	25, 847	67, 812	2, 671	1,993	2, 053	74, 529
1920-21	1,370	15, 983	798	36, 107	3, 945	14, 273	29, 195	101, 671	852	1, 662	2, 230	106, 415
1921-22	1, 472	14, 878	514	46, 630	2, 677	11, 082	35, 928	113,181	234	1,168	2,591	117, 174
1922-23	1,666	13, 987	892	47, 053	2,383	14,967	20, 552	101, 500	275	1, 522	1,659	104, 956

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918, Monthly Summaries of Foreign Commerce, June, 1920, 1922, and 1923, and reports of the Bureau of Foreign and Domestic Commerce.

Includes "'Neutral lard."
Table 462.-Creameries: Farmers' associations reporting, membership, 1923, and volume of business for 1922.

Geographic division and State.	$\begin{aligned} & \text { Number } \\ & \text { Neporting, } \\ & 1923 . \end{aligned}$	Number reporting membership, 1923.	Number members 1923.	Average membership per associa tion, 1923.	Number reporting volume of business, 1922.	Amount of busiress reported, 1922.	Average amount of business per association, 1922.
Maine	5	4	262	65.5	4	\$342,000	85,500
Vermont	35	32	3, 334	104.1	30	4, 049,000	134,966
Massachusetts	5	5	309	61.8	5	255,000	51,000
Rhode Island	1	1 5	$\begin{array}{r}50 \\ 333 \\ \hline\end{array}$	50.0 66.6	1 4	100,000 220,000	100,000 55,000
Connecticut	6						
New England	52	47	4,288	91.2	44	4,966, 000	112,863
New York	22	20	1,606 2,237	$\begin{aligned} & 80.3 \\ & 69.9 \end{aligned}$	15	$\begin{aligned} & 1,375,000 \\ & 2,452,000 \end{aligned}$	$\begin{aligned} & 91,666 \\ & 79,096 \end{aligned}$
Middle Atlantic	56	52	3,843	73.9	46	3, 827, 000	83, 195
Ohio			408	45.3	10	898, 000	89, 800
Indiana	8	7	971	138.7	7	678, 000	96, 857
Illinois.	4	4	324	81.0	3	281,000	93, 666
Michigan	65	62	14,599	235. 3	59	6, 417,000	108, 762
Wisconsin	212	197	28,643	145.3	193	27, 636,000	143, 191
East North Central.	299	279	44,945	161.0	272	35, 910, 000	132, 022
Minnesota	510	472	62,367	132.1	460	41, 009, 000	89, 150
Iowa.	216	199	29, 026	145.8	195	19, 106, 000	97,979
Missouri-	7	6		150.3	${ }_{8}^{6}$	634,000	105, 666
North Dakota	8	7	936 7	133.7	8	1,565, 000	78,250
South Dakota	25	20				2, 566,000	23, 327
Nebraska-.	11	11	70,689 507	971.7 507.0	1	2, 83,000	83,000
West North Central.-	778	716	112, 420	157.0	701	65, 342, 000	93, 212
Delaware			17	17.0		15, 000	15,000
Virginia-	5	5	883	176.6	5	393,000	78, 600
North Carolina	1	1	31	31.0	1	56,000	79,000
Florida	1	1	76	76.0		56, 000	56,000
South Atlantic	8	8	1,007	125.8	8	543, 000	67, 875

Table 462.-Creameries: Farmers' associations reporting, membership, 1923, and volume of business for 1922-Continued.

Geographic division and State.	$\begin{array}{\|c} \text { Number } \\ \text { reporting, } \\ 1923 . \end{array}$	Number reporting member ship, 1923.	Number members reported, 1923.	Average membership per associa tion, 1923.	Number reporting volume of business, 1922.	Amount of business reported, 1922.	Average amountof business per association, 1922.
Kentucky	2	2	288	144.0	2	46,000	23, 000
Tennessee	13	12	3,157	263.0	12	1, 473, 000	122, 750
Alabama	2	1	114	114.0	1	1, 51, 000	51, 000
Mississippi	2	2	114	57.0	2	342, 000	171, 000
East South Central.--	19	17	3, 673	216.0	17	1, 912, 000	112, 470
Texas.	2	2	68	34.0	2	147, 000	73,500
West South Central.	2	2	68	34.0	2	147, 000	73, 500
Montana			286	71.5	3.	238, 000	79,333
Idaho.-	6	6	3,937	656.1	6	1, 516, 000	252, 666
W yoming	1	1		66. 0	1	23, 000	23, 000
Colorado.	8	6	1,156	192.6	6	808, 000	134, 666
Utah	2	2	78	39.0	1	9	9,000
Mountain	21	19	5,523	290.6	17	2, 594, 000	152, 588
Washington.	11		1,459	162.1		760, 000	95, 001
Oregon.	11	9	2,538	282.0	9	1, 426,000	158, 444
California	16	15	5,953	396.8	15	10, 277, 000	685, 133
Pacific.	38	33	9, 950	301.5	32	12, 463, 000	389, 468
United States.	1,273	1,173	185, 717	158.3	1,139	127, 704, 000	112, 119

Division of Agricultural Cooperation. States omitted made no reports.

CATTLE DISEASES.

Table 463.-Cattle: Tuberculin testing under accredited herd plan, 1917-1923.

Year ending June 30.	Cattle tested. ${ }^{1}$	Number of reactors.	Per cent of reactors.	Accredited.		Passed one test.	
				Herds.	Cattle.	Herds.	Cattle.
1916-17	20, 101	645	3.2				
1917-18	134, 143	6,544	4.9	204	6,945	5.883	22, 212
1918-19	329, 878	13,528	4. 1	278	12, 076	5, 652	95, 031
1919-20	700, 670	28,709	4.1	2,588	63,965	9, 064	80, 334
1920-21	1,366, 358	53, 768	3.9	4,831	110,634	34, 215	445,656
1921-22	2,384, 236	82, 569	3.5	8, 015	170, 282	111, 719	904,950
1922-23	3,460, 849	113, 844	3.3	12, 310	251, 254	150, 748	1, 176, 314
Total	8, 396, 235	299, 607	3.6	28, 526	615, 156	312, 281	2, 724, 497

Bureau of Animal Industry.

${ }^{1}$ Includes testing under area plan.

Table 464.-Cattle: Status of tuberculosis eradication work, by States, June 90, 1983.

Bureau of Animal Industry.

${ }^{1}$ Accredited work begun in 1917; area work in 1921.
${ }^{2}$ Includes area testing in units smaller than counties.
${ }^{3}$ Testing in 1017 before work was organized by States.

Table 465.-Cattle: Tick eradication, progress and status of the work June so, 1929.

State.	$\begin{aligned} & \text { Counties } \\ & \text { quaran-- } \\ & \text { tined } \\ & \text { July 1, } \\ & 1906 . \end{aligned}$	Counties quarantined June 30, 1923.	Released counties.			Cattle dipped, year ending June 30, $1923 .{ }^{1}$	
			Released counties tick free.	Released counties with one or more infested herds.	Total counties released.	Herds.	Cattle.
Alabama	67	5	18	44	62	729, 405	4, 464, 744
Arkansas.-	75	42	15	18	33	392, 633	2,566, 296
California	15	0	15	0	15		
Florida.	58	54	3	1	4	54, 052	314, 975
Georgia--	157	9	104	44	148	367, 435	5, 284, 361
Kentucky	2	0	2	0	$\stackrel{2}{2}$		
Louisiana	65 81	32 21	3 37	30 23	33 60	301,270 240,122	$4,905,933$ $2,485,507$
Mississippi	81 4	21 0	37 1	23 3	60 4	240, 122	2, 485, 507
North Carolina	75	19	46	10	56	44,298	198,735
Oklahoma	61	6	36	18	55	213, 969	1, 978, 336
South Carolina	44	0	30	14	44	141, 879	826, 169
Tennessee.	42	0	41	1	42	9,291	62, 320
Texas	199	90	42	67	109	2,055,976	51, 846, 260
Virginia.	30	4	26	0	26	- 442	-4,021
15 States	975	282	410	274	693	4, 550, 772	74, 937, 657

Bureau of Animal Industry. 1 More than 31,000 vats were in use for official dipping during the year.
CATTLE FEEDING.
Table 466.-Cattle: Variation in price paid by farmers for feeder cattle, 1921-22.

State, and range of prices.	Number of head.					
	Heavy.	Medium.	$\begin{aligned} & \text { Year- } \\ & \text { lings. } \end{aligned}$	Calves.	Other cattle.	All cattle.
Indiana:						
\$4.00-\$5.00		120	139	54	123	436
\$5.00-\$6.00	462	859	199	88	55	1,643
\$6.00-\$7.00	595	1,113	176	371		2, 255
\$7.00-\$8.00	84	86	72	239		481
\$8.00-\$9.00	30					30
\$9.00-\$10.00		32				32
Average price paid...	\$6. 08	\$6. 04	\$6.04	\$6. 53	\$4. 48	\$6. 02
Illinois:						
\$3.00-\$4.00		93	35		77	205
\$4.00-\$5.00	44	649	433		62	1,216
\$5.00-\$6.00	198	946	633	247		2, 024
\$6.00-\$7.00	67	262	101 25	80 28		510
\$7.00-\$8 800	95	99	25	28		247
Average price paid						
A verage price paid	\$6. 16	\$5. 30	\$5. 19	\$5. 80	\$3.92	\$5. 36
Iowa:						
- \$4.00-\$5.00	37	50				87
\$5.00-\$6.00	277	1,105	319	145	210	2,056
\$6.00-\$7.00	311	785	566	337	129	2,128
\$7.00-\$8.00	79	40	117	99		335
\$8.00-\$9.00						
Average price paid.	\$5. 91	\$5.85	\$6. 29	\$6.48	\$5. 13	\$5. 91
Nebraska: $\quad \square 88$						
\$4.00-\$5.00			22		88	${ }^{110}$
\$5.00-\$6.00	597	606	371	77	30	1,681
\$6.00-\$7.00-	341	622	505	293	161	1,922
Average price paid.	\$6. 15	\$6. 08	\$6. 12	\$6. 48	\$5. 01	\$6. 05
Missouri : $\quad 20$						
\$4.00-\$5.00--	21 49	459 1,144	240 539			829 1,954
\$5.00-\$6.00	49 50	1,144	539 270	222		1,954 1,313
\$7.00-\$8.00	132	176	155	139		602
- \$8.00-\$9.00	42	174				216
Average price paid	\$6.77	\$5. 93	\$5. 66	\$6. 04		\$5.95

[^254]Table 467.-Cattle: Average quantities of feed and other factors used in the production of 100 pounds gain in corn-fed cattle, 1919-1921.

EAST CENTRAL INDIANA.

Item.	Winter $1919-20$.	Winter 1920-21.	Items.	$\begin{array}{\|c} \text { Winter } \\ 1919-20 . \end{array}$	$\begin{aligned} & \text { Winter } \\ & 1920-21 \text {. } \end{aligned}$
Feeds consumed:			Days on pasture	14	14
Corn, shelled basis._pounds	553	679	Straw and bedding--.---pounds.-	347	326
Ryc ---------------------	1		Labor:		
Oats	7	12	Man hours-	4. 8	4. 97
Linseed meal ---.-.-- - do.---	$\stackrel{2}{4}$	1 40	Horse hours The per cent which all other ex--	1.5	2.05
Molasses feed -----------do-	6	1	penses were of feed and		
Miscellaneous concentrates ${ }^{1}$--	22	$\left.{ }^{(2}\right)$	labor costs ${ }^{3}$----------	16.5	28.6
Alfalfa hay------------- do-----	5	5	Pounds of pork.--	21.0	24.7
Clover hay ----------- - do.----	60	64	Loads of manure.	1.5	1.4
Mixed hay ----------- do----	35				
Timothy hay ------ do-.--	9 119				
Silage----------------do-------	1,474	1,281			

DEKALB COUNTY, ILL.

Feeds consumed:			Days on pasture	10	11
Corn, shelled basis . pounds .-	573	590	Straw and bedding --.-------------	859	653
Barley --------------- do----	2	1	Labor:		
Oats	2	5	Man hours	5. 7	4.8
Cottonseed meal -------do	36 23	34	Horse hours --.-.---......--	3.1	2.9
Linseed meal---.-...-. - do	23 15	17 4 17.	The per cent which all other expenses were of feed and labor		
-. Alfalfa hay----------- do----	18	17°	costs ${ }^{3}$-------------------------	11.5	24. 2
Clover hay ----------- do-.-.	168	65 117	Feedlot by-products: Pounds of pork	19.7	13.1
Prairie hay-------------do--		${ }^{(2)}$	Loads of manure	2.3	2.0
Timothy hay ----------------	15				
	48 2,426	139 1,771			

POTTAWATTAMIE AND SHELBY COUNTIES, IOWA.

Feeds consumed:			Days on pasture	17	19
Corn, shelled basis _ pounds._	808	890	Straw and bedding.-.-.--pounds.-	80	89
Oats.----------------d.-----	11	18	Labor:		
Barley -.-.----------- do----		1	Man hours ------------------	2.6	2.3
Cottonsced meal------ do-.--	${ }^{(2)}$	2	Horse hours ---------------	2.2	1.5
Linseed meal -------- do----	4	${ }_{9}^{3}$	The per cent which all other ex-		
Molasses meal - ---..-.do----- Miscellaneous	16	9	penses were of feed and labor costs ${ }^{3}$	12.4	29.8
-----------------pounds.-	${ }^{(2)}$	2	Feed lot by-products:		
Alfalfa hay----------- do----	146	138	Pounds of pork	45. 5	25.7
Clover hay------------do----	43	${ }_{25}^{75}$	Loads of manure.-------------	. 9	5
Mixed hay------------ do----	80 7	$\left.{ }^{2}\right)^{27}$			
Timothy hay----------do--------	3	5			
Corn stover and fodder-do-.--	34 373	16			
Silage -----------------do----	373	78			

[^255]Table 467.-Cattle: Average quantities of feed and other factors used in the production of 100 pounds gain in corn-fed cattle, 1919-1921-Continued.

SALINE AND LAFAYETTE COUNTIES, MISSOURI.

Item.	Winter 1919-20.	Winter 1920-21.	Item.	$\left\|\begin{array}{c} \text { Winter } \\ 1919-20 . \end{array}\right\|$	Winter 1920-21.
Feeds consumed:			Days on pasture.	44	39
Corn, shelled basis..pounds.-	518	707	Straw and bedding .-..--	120	53
Rye,------------......dido..-			Labor:		
Oats ---------...-.-.- do-.--	8	2	Man hours	3.5	3.1
Linseed meal -------.-.do...-	30	4	Horse hours	3.6	3.2
Cottonseed meal ----.--do..	15	31	The per cent which all other ex-		
Molasses feed --------- do----	14	3	penses were of feed and labor		
Miscellaneous concentrates				12.6	16.0
	${ }_{6}^{2}$	${ }_{21}^{10}$	Feed lot by-products: Pounds of pork	20.0	
Clover hay-. do...--	87	124	Loads of manure	.5	. 25
Mixed hay-..-.-.-.-.-.- do...--	21	25			
Timothy hay ---.-.-.do...-	${ }^{6}$	1			
	764	513			

BURT COUNTY, NEBR.

		Winter	919-20.	Winter	920-21.
Item.		Survey.	Route.	Survey.	Route.
Feeds consumed:					
Corn, shelled basis.	\therefore pounds	753	759	915	728
Oats	-----do----	20	17	8	11
Linseed meal	--do-	3	7	4	2
Molasses feed	-do.-				
Miscellaneous millfeeds	do	${ }^{(2)}$	(2)		
Alfalfa hay.	do	367	365	346	334
Clover hay	do	90	50	35	104
Mixed hay	do--	35	25	47	26
Prairie hay-	do-	15	4	48	20
Timothy hay-----.-.-..--	do	3 4		4	
Silage -......-.........	do.	125		50	
Days on pasture		18	16	8	17
Straw and bedding		199	205	252	160
Labor: Man hours		3.0	3.2	3.4	2.0
Horse hours		2.0	2. 9	2.6	. 7
The per cent which all other expe costs ${ }^{3}$	and labor	14.4	11.4	29.3	35.2
Fced lot by-products:					
Pounds of pork.		29.7	24.2	24.5	16.3
Loads of manure		1.2	1.45	. 8	. 3

Division of Cost of Production.
${ }^{2}$ Less than one-half pound.
${ }^{3}$ Including interest, equipment charge, death loss, veterinary, insurance, taxes, incidentals, and marketing.
Table 468.-Cattle: Average quantity of feed and other factors used in production of 100 pounds gain in corn-fed cattle, 1921-22.

INDIANA.

Item.	Class of feeder cattle.			Calves.	$\begin{gathered} \text { All } \\ \text { cattl. } \end{gathered}$
	Heavy.	Medium.	Yearlings.		
Feed:					
	1,161	870	723	521	843
	3 14	14	19	31 28	16
	$\stackrel{14}{22}$	19	36	46	26
	720	767	720	428	691
	1,031	1,304	911	889	1,114
	14	14	22	8	14
Labor:					
Man hours.	3.9	4.0	4.4	3. 6	4.0
Horse hours.	4.0	3.0	2.7	2.6	3.1
Per cent which all other expenses were of feed and labor	19.6	22.5	17.2	22.1	22.4
Feed lot by-products:					
Pounds of pork ${ }^{1}$--	59.4	39. 0	27.8	15.0	37.0
Loads of manure	1.7	1.7	1.5	1.0	1.6

${ }^{1}$ From hogs following steers.

Table 468.-Cattle: Average quantity of feed and other factors used in production of 100 pounds gain in corn-fed cattle, 1921-22-Continued.

ILLINOIS.

Item.	Class of feeder cattle.			Calves.	$\begin{gathered} \text { All } \\ \text { cattle. } \end{gathered}$
	Heavy.	Medium.	Year- lings.		
Feed:					
Grain------------------------------- pounds.-	869	663	580	525	
	32	19	10	14	
	$\begin{array}{r}75 \\ 184 \\ \hline\end{array}$	118	83 76	79	
	791	525	682	442	
	1,459	1,787	1,735	1,261	
	7	8	11	2	
Labor:					
Man hours.-	5	4	3	4	
Per cent which all other expenses were of feed and	2	3	3	1	
	24.3	25.4	21.0	24.4	
Feed lot by-products:					
$\xrightarrow{\text { Pounds of pork }}$ Loads of manure--	22 2	17 2	15 2	10 1	----

IOWA.

Feed:					
Grain ---------------------------.---. pounds--	1,062	906	873	695	876
		4	4		4
	227	257	176	170	215
	22	18	60	72	39
	102	165	124	94	132
	50	8	177	83	78
	5	11	17	10	12
Labor:					
Man hours.	2.6	2.1	2.2	2.0	2.2
	1.6	1.1	1.1	. 45	1.1
Per cent which all other expenses were of feed and labor	41.6	31.4	24. 1	25.8	30.0
Feed lot by-products:					
Pounds of pork ${ }^{1}$ -	26.6	27.2	24.4	16.8	24.4
Loads of manure.	. 4	. 6	5	4	. 5

NEBRASKA.

MISSOURI.

Feed:					
	823	753	746	586	734
	54	16	23	46	23
	41	78	111	115	89
	57	30	33	21	31
		175	75	50	128
		157	212	135	162
	44	42	43	32	41
Labor:					
Man hours.	3.4	2.9	2.7	2.5	2.8
Horse hours	3.4	4.1	2.9	2.5	3.6
Per cent which all other expenses were of feed and					
Feedlot by-products:					
Pounds of pork ${ }^{1}$	26	24	21	21	23
Loads of manure	. 1	.3	.3	.2	. 3

Division of Cost of Production.

${ }^{1}$ From hogs following steers.

Tablit 469.-Cattle: Financial results of feeding operations, per steer, when charging feed to cattle at farm prices, 1918-1921.

INDIANA.

Item.	Season cattle were fed.			
	1918-19	1919-20	1920-21	1921-22
Number of droves	47	97	89	117
	1,499	3, 016	2, 899	4,877
	${ }_{343}^{684}$	784 287	829 265	843 244
	1,027	1,071	1,094	1,087
Original cost of feeder animal	\$76.49	\$79.94	\$70.09	\$50. 71
Interest per head:		2.40	2.10	1.45
On money in cattle... On money in equipme	2.39 2.88	2. 73	2. 26	. 70
Operating costs per head:				
Feed, charged at cash farm prices	77.06	76.10	35. 32	26. 90
Building and equipment charge	2.62	2.24	1.73	. 74
Death loss ----------------	. 82	. 78	1.04	. 39
Veterinary	. 15	. 13	. 06	. 05
Insurance.	. 15	. 07	. 01	. 01
Taxes.----	1.80	.81	. 61	. 34
Incidentals	1. ${ }^{.} 58$	2.70	.45 2.99	2. 23
Total operating, interest, and original cost per head	172.65	174.47	121.91	86.77
Manure credit per head.	5. 70	10. 14	4.76	5. 81
Pork credit per head..-	11.86	11. 06	-5.32	8. 97
Net cost per head---	155.09	153.27	111.83	71.99
Sales price per head---.----------1.-.-	148.15	136.01	90.28	
Profit per head (feed charged at cash farm price) Loss per head	6.94	17.26	21.55	
Cost of feeder cattle per hundredweight	11.18	10. 20	8.45	6.02
Not cost of pound gain..-...-.----	. 23	. 26	. 16	. 09
Net cost per hundredweight of beef laid down at market	15. 10	14.31	10. 22	6. 72
Price received for corn fed to cattle, per bushel	1.20 1.46	$\begin{array}{r}.89 \\ \hline 1.43\end{array}$	-. 11	. 78
Average cash farm price of corn, per bushel	1.46	1.43	. 54	. 42

ILLINOIS.

Number of droves	69	108	96	106
Number of cattle.	2, 590	4,607	3,652	4,202
	787	821	843	779
	+ 296	- 247	1, 20.1	${ }^{241}$
Final weight per head	1,083	1,068	1,101	
Original cost of feeder animal	\$81. 59	\$77. 52	\$66.49	\$41. 80
Interest per head: On money in cattle	2. 43	2.19	2.11	1.23
On money in catte-	2. 58	2.14	2.35	1.51
Operating costs per head:				
Feed, charged at cash farm prices	84.02	84.12	${ }^{38} 17$	26. 61
Man and horse labor charge-	9.05	6.68	5.73	3. 38
Buildings and equipment charge	$\begin{array}{r}2.66 \\ \\ \hline 3\end{array}$	1.95	1.98 .30	1. 26
Veatr loss.	. 09	. 07	. 07	. 06
Insurance.	. 04	. 03	. 01	. 01
Taxes..---	1.00	. 78	. 54	. 36
Incidentals	-63	${ }_{2}{ }_{23}{ }^{64}$	${ }^{-44}$	2.12
Marketing	2.29	2.23	281	2.12
Total operating, interest, and original costs per head	186.71	178.76	121.00	79.16
Manure credit per head.	10.70	12. 25	5. 09	3.45
Pork credit per head.	11. 59	6. 151 159	2.80 113.11	72. ${ }^{39}$
Net cost per head	164.42 157.36	159.60 131.05	113.12	
Sales price per head.-	157.36	131.05	88.52	- 7.20
Profit per head (feed charged at cash farm prices) Loss per head	7.08	28.55	24.59	
Cost of feeder cattle per hundredweight	10. 37	9.45	7.89	2. 36
Net cost of pound gain-		14.94	10.29	7.05
Net cost per hundredweight of beer hid down at	16.18	14.30	1.32	. 63
Price received for corn fed to cattle, per ${ }^{\text {a }}$ (erage cash farm price of corn, per bushel.--	1.47	1.42	. 53	.45

Table 469.-Cattle: Financial results of feeding operations, per steer, when charging feed to cattle at farm prices, 1918-1921-Continued.

IOWA.

Item.	Season cattle were fed.			
	1918-19	1919-20	1920-21	1921-22
Number of droves	78	113	134	117
Number of cattle	3,771	4, 294	5,534	4,717
	740	786	841	785
	277	324	352	344
	1,017	1,110	1,193	1,129
Original cost of feeder animal	\$74.78	\$77.10	\$74. 68	\$46. 43
Interest per head:				
On money in cattle.	2. 29	2.77	3.02	1.68
On money in equipment	1.53	1.61	1.40	1.29
Operating costs per head: Feed, charged at cash farm prices	82. 70	82.30	36.89	27.78
Man and horse labor charged...-	4.56	4.12	3.82	2.18
Building and equipment charged	1.39	1.69	1.14	1.32
Death loss.	. 65	. 40	. 57	. 45
Veterinary	. 13	. 04	. 05	. 08
Insurance.	. 06	. 14	. 08	. 07
Taxes-.-.-	. 28	$\stackrel{38}{ }$	${ }^{.} 35$. 28
Marketing	2.54	2.98	4.79	3.42
Total operating, interest, and original cost per head	171. 28	173.99	127. 32	85.40
Manure credit per head	3.12	4.94	2.08	1.68
Pork credit per head..	14. 36	16. 27	7.06	7.66
Net cost per head.--	153. 80	152.78	118.18	76. 06
	144.15	143.85	101.93	${ }^{90.84}$
Profit per head (feed charged at cash farm prices)				14.78
Loss per head --				
Cost of feeder cattle per hundredweight Net cost of pound gain	10.11 .285	9.81 .234	8.88 $\quad .124$	5.91 .086
Net cost per hundredweight of beeflaid down at market	15.12	13. 76	9.91	6.71
Price received for corn fed to cattle, per bushel.	1.21	.85	. 16	. 67
A verage cash farm price of corn, per bushel.	1.48	1.31	. 46	. 39

MISSOURI.

Number of droves	50	100	105	101
Number of cattle	3,473	5,184	5,139	4,914
Initial weight per head.----------------------------- pounds	729	807	843	769 339
Gain per head -- ${ }^{\text {do }}$	${ }_{097}^{268}$	258 1,065	342 1.185	339 1,108
Final weight per head------------------------------------	997	1,065	1,185	1,108
Original cost of feeder animal	\$71.38	\$77. 25	\$67. 81	\$45. 72
Interest per head: On money in cattle				
On money in cattle.--On money in equipmen	2.55 .85	2.70 .86	$\begin{array}{r}3.25 \\ \hline 8\end{array}$	2.68
Operating costs per head:				
Feed, charged at cash farm prices	56.91 4.89	65.69 4.66	48.04 4.64	34.26 3.20
Man and horse labor charge	. 66	. 79	. 62	. 72
Death loss.	. 89	. 52	. 46	. 42
Veterinary	. 16	. 08	. 04	. 08
Insurance	. 25	. 03	. 32	. 33
Taxes	.16	.28	- 29	.27
Marketing	2. 67	2. 96	4.70	3. 12
Total operating, interest, and original cos	141. 59	156. 13	131.03	91.02
Manure credit per head	. 24	1.98	${ }^{81} 8$	1.31
Pork credit per head	6.78 134.57	8. 82 145.93	123.15	
Net cost per head--	134.57 133.71	145.93 126.61	123.06 91.06	82.46 93.09
Sales price per head (feed charged at cash farm prices)	133.7			10.63
	. 86	19. 32	32.00	
Cost of feeder cattle per hundredweight	9. 79	9.57	8.04	5.95
Net cost of pound gain	${ }^{13} 236$	+13.70	161 10.38	7. 7108
Net cost per hundredweight of beeflaid down a	13.50 1.60	13.70 .80	10.38 .10	7.42 .71
Price received for corn fed to cattie, per bushed Average cash farm price of corn, per bushel..-	1. 1.69	1.42	. 60	. 485
Average cash farm price of corn, per bushel.	1.49			

Table 469.-Cattle: Financial results of feeding operations, per steer, when charging feed to cattle at farm prices, 1918-1921-Continued.

NEBRASKA.

Item.	Season cattle were fed.			
	1918-19	1919-20	1920-21	1921-22
Number of droves.	67	125	95	122
Number of cattle	2, 207	3,857	2, 827	4, 222
	712	$\begin{array}{r}797 \\ \hline 269\end{array}$	$\begin{array}{r}873 \\ 308 \\ \hline\end{array}$	828 330
	298 1,010	269 1,066	308 1,181	330 1,158
	1,010	1, 066	1,181	1,158
Original cost of feeder animal.	\$70. 18	\$80. 49	\$78. 68	\$50.03
Interest per head: On money in cattle.	2.27	2. 40	2.79	1.82
On money in equipment	1.74	1.66	1.75	1.17
Operating costs per head: Feed, charged at cash farm prices	79.35	66.84	34. 17	21.80
Man and horse labor charge-..	7.13	3.83	4.34	2.11
Buildings and equipment charge	1.73	1. 48	1.39	1.05
Death loss-.-...-.-.--	. 44	. 33	. 41	. 68
Veterinary	$\cdot 14$. 05	. 06	. 08
Insurance	.14	. 16	. 16	. 21
Incidentals.-	- 50	${ }^{.45}$	${ }^{.61}$	${ }_{3} .38$
Marketing	2.28	2.44	4. 88	3.28
Total operating, interest, and original cost per head..----	165. 94	160.13	129. 25	82.62
Manure credit per head.	3. 39	4.61	1.80	1.39
Pork credit per head..-	14.45 148.10	10. 145. 29	5. 5. 124 12.81	6. 69
Net cost per head.	148.10 145.70	145. 132	105. 24	90. 49
	145.70	133.32	10.24	15.95
Proit per hea	2.-70	11.97	16. 57	
Cost of feeder cattle per hundredweight	9.86	10.10	9. 140	6.05
	14. 261	13. 24	$\stackrel{10.31}{ }$	6. 40
Net cost per hundredweight of beeflaid down at mar	14.66 1.45	13. 1.03	10.31 .14	. 65
	1.53	1.37	. 50	. 33

Division of Cost of Production.
Table 470.-Cattle: Daily rations and feed required to make 100 pounds gain, 1919-20 and 1920-21.
THREE PRINCIPAL IOWA RATIONS (POTTAWATTAMIE AND SHELBY COUNTIES, IOWA).

1 From hogs following steers.

Table 470.-Cattle: Daily rations and feed required to make 100 pounds gain, 1919-20 and 1920-21-Continued.

THREE PRINCIPAL INDIANA RATIONS (EAST CENTRAL INDIANA).

Item.	Corn, protein meal, clover timothy, stover and iodder, silage.	Corn, clover timothy, and fodder, silage.	Corn, clover and timothy, stover and fodder.	Item.	Corn, protein meal, clover timothy, stover and fodder, silage.	Corn, clover timothy, stover and silage.	Corn, clover and timothy, stover and fodder.
Number of droves. \qquad Initial weight per head lbs.	95 790	21 760	18 840	Feed per 100 pounds gain: Corn (shelled basis) \qquad	511	613	931
Final weight per head	1,083	1,023	1,188	Protein meal ${ }_{\text {Clover }}$ and timothy	85		
Total gain per head lbs-	293	263	1, 348	hay .-.....-.-- ibs.-	89	188	169
Average daily gain per head-...............do.	1.65	1. 42	1. 56	Stover and fodder	119	78	334
Daily feed per head: Corn (shelled basis)				Silage Days on pasture	1,779 9	1,694 20	28
	8. 2.3	8.3	14.0	ork produced per steer ${ }^{1}$			
Clover and timothy				--------------------	63.8	52.2	116.3
hay ----------lbs.-	1.4	2.5	2.5				
Stover and fodder	. 9	1	5.0				
Silage -...-.-.-.-.do.-	28.1	23.0					

THREE PRINCIPAL ILLINOIS RATIONS (DE KALB COUNTY, ILL.).

Item.	Corn, protein meal, clover and timothy, stover and fodder, silage.	Corn, clover and timothy, stover and fodder, silage.	Corn, protein meal, clover and timothy, stover and fodder.	Item.	Corn, protein meal, and tims. othy, stover and fodder, silage.	Corn, chover timothy, and fodder, silage.	Corn, protein meal, clover and timothy, stover and fodder.
Number of droves \qquad Initial weight per head	153	15	12	Feed per 100 pounds gain:			
Final weight per head	822	823	868	Corn (shelled basis)	530	572	
Final weight per head	1, 081	1,055	1,133	Protein meal ---do--	${ }^{3} 4$		66
Total gain per head.- do--	1, 259	232	265	Clover and timathy			
A verage daily gain per head...-...-.........lbs.	1.51	1.32	1.62		161	495	400
Daily feed per head: Corn (shelled basis)				Siliage --.-.------- do.	69 2,278 8	$\begin{array}{r}186 \\ 2,294 \\ \hline 19\end{array}$	302
-------------lbs--	8. 2	7.4	17.0 1.1	Days on pasture----1 Pork produced mer steer ${ }^{\text {a }}$ -		19	17
Protein meal Clover and timothy	1.1		1.1	Pork produced per steer ---------------1bs.-	37.3	31.6	62.4
hay .-.---.-.-lbs.-	4.0	4.1	6.4				
Stover and fodder		24	4.9				
Silage------.-.---- do.-	33.5	38.9					

[^256]Table 470.-Cattle: Daily rations and feed required to make 100 pounds gain, 1919-20 and 1920-21.
FOUR PRINCIPAL MISSOURI RATIONS (SALINE AND LAFAYETTE COUNTIES, MO.).

Division of Cost of Production.
${ }^{1}$ From hogs following steers.
Table 471.-Cattle: Number of days on feed and gain per head, Nebraska, 1918-1919.

Length of feeding period.	1018-19		1919-20		Daily gain per head.	1918-19		1910-20	
	Droves.	Cattle.	Droves.	Cattle.		Droves.	Animals.	Droves.	Animals.
days.					pounds.				
210 and over.a...	14	632	11	421	3 and over	3	117	11	329
180 to $210 \ldots$	9	258	14	449	24 to 3	8	221	13	345
150 to 180--	13	425	15	428	2 te 2 z	14	402	27	716
120 to 150..	14	411	16	481	1_{2}^{1} to 2.	28	920	29	867
90 to 120	10	306	26	693	1 to 1 a	13	513	20	623
60 to 90...-......--	7	192	17	422	Less than 1	4	120	3	161
Less than 60....--	3	69	4	149					
Average days on feed	162		144		gain, pounds.-	1.90		2.08	

Division of Cost of Production.

CATTLE SHIPMENTS.

Table 472.-Cattle and calves: Percentage of shrirkage ${ }^{1}$ in shipments by cooperative associations, 1921.

BY DISTANCE.

Distance.	Cattle				Calves, mixed shipments. ${ }^{3}$	
	Straight shipments. ${ }^{2}$		Mixed shipments. ${ }^{3}$			
	Number of animals upon which figures are based.	Shrinkage percentage of weight shipped.	Number of animals upon which figures are based.	Shrinkage percentage of weight shipped.	Number of animals upon which figures are based.	Shrinkage percentage of weight shipped.
Less than 100 miles	1,661	2.56	6, 261	2. 34	16, 869	3.49
100 to 150 miles....	3, 518	2. 26	4,117	2. 99	9, 781	4. 99
150 to 200 miles.	3, 158	3.46	7, 151	3.30	8,114	4.85
200 to 250 miles	1,623	3. 16	2, 295	4. 06	1, 767	6. 48
250 to 300 miles.	350	2.91	179	3.03	102	4. 83
300 to 350 miles.	1,888	4.09	917	4. 86	2, 194	5.96
350 to 400 miles	1,522	5. 03	2,627	5. 28	5, 641	5. 96
400 to 450 miles	1,070	3. 94	1,419	4.09	2, 063	7. 40
450 to 500 miles.	376	4. 20	345	4. 27	495	6. 20
500 to 550 miles.-	72	5. 04	-8	6. 26		
550 to 600 miles..	220	4.60	$\therefore 330$	4.80	42	7.75

BY MONTHS.

January	1,822	4. 20	2, 795	4. 00	3,858	5. 26
February	1,401	3. 34	2,591	4. 13	4, 172	5. 22
March.	1,416	3. 66	3,210	3. 39	6, 183	5. 55
April	2, 063	3. 54	2, 400	3. 14	5, 517	5. 64
May	1,728	2. 78	2,413	2. 69	5, 632	5. 20
June.	2,339	2.62	2, 281	2.97	4,386	5. 67
July	828	2. 66	1,056	2. 78	2, 541	5. 00
August	616	2. 72	1,429	2. 74	2, 691	5. 08
September	630	3. 47	1,283	3.18	2, 332	4. 98
October	829	3. 81	1,636	3.24	2,794	5. 30
November	1,000	4. 30	2,505	3. 68	3,919	4. 62
December	736	2. 84	2, 036	4. 07	3,053	4.87

Division of Cost of Marketing.
${ }^{1}$ Shrinkage represents the difference between the shipping-point weight and the terminal weight, including the weight of all crippled and dead. Hence the shrinkage figure is over and above the direct losses due to crippled and dead.
:Straight shipments contain but one species of livestock.
:Mixed shipments contain more than one species of livestock.
Table 473.-Calves: Percentage crippled and percentage dead in mixed shipments by cooperative associations, 1921.1

BY MARKETS.

Market.	Number of animals upon which figures are based.	Average weight of animals.	Crippled.			Dead.		
			Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animals.	Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animals.
Buffalo	7,906	Pounds. 167	0.29	0.28	Pounds.	0.32	0.32	Pounds. 167
Chicago	7,803	153	. 49	. 34	106	. 36		
East St. Louis.	868	259	. 11	. 05	120	23	11	120
Kansas City	2,627	201	. 19	. 18	190	19		
Milwaukee.-	20, 928	110	. 13			. 23	13	117
Pittsburgh.--	3, 976	160	. 13	. 11	130	. 18	. 13	117
Sioux City	130	219	. 77	. 35	100	. 70	. 35	100
St. Paul.--	10,555	136	. 03	. 02	93	. 13	. 12	120

1 Mixed shipments contain more than one species of livestock.

Table 473.-Calves: Percentage crippled and percentage dead in mixed shipments by cooperative associations, 1921 ${ }^{1}$-Continued.

BY DISTANCE.

Market.	Number of animals upon which figures are based.	A verage weight of animals.	Crippled.			Dead.		
			Percentage of total number shipped.	Percentage of total weight shipped.	A verage weight of animals.	Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animals.
		Pounds.	0.07		Pounds.	0.16		Pounds.
Less than 100 miles	20,629 15,646	137	0.07 .25			. 30		
150 to 200 miles.	-9,776	145	. 09			. 14		
200 to 250 miles.......-	2,980	203	. 20			. 13		
250 to 300 miles.	102	196						
300 to 350 miles.	2,194	162	. 23	0.18	132	. 23		
350 to 400 miles.-.----	6, 313	165	.35 .19	.31 .19	146	. 41	0.27	144
400 to 450 miles...---- 450 to 500 miles.....--	2,145 514	177 171	.19 .78	.19 .92	178 230	. 1.94	0.27	14
500 to 550 miles...-.---	42	166	2.38	1. 42	100	2. 38	1.42	100

BY MONTHS.

January	4,968	141	0.28	0.23	116	0.36		
February	5,093	140	. 14	. 12	126	. 16		
March	8,122	125	11			. 25		
April.	6,991	126	. 14			. 36		
May.-	6,794	132	. 15			. 27		
June.-.-.	5,514	150	. 15	. 11	118	. 27		
July ---	3, 095	152	- 19	. 15		. 22	0.13	160
August--	3,547 3,231	175 178	. 23	. 21	165	.14	0.13	60
September	3,231	178	. 34	. 28	145			
October	4, 115	163	. 15	. 19	208	. 12		
November	4,904 3,967	150 138	. 16			. 15		
December	3,967	138	. 18			. 15		

Division of Cost of Marketing.
${ }^{1}$ Mixed shipments contain more than one species of livestock.
Table 474.-Cattle: Percentage crippled in shipments by cooperative associations, 1921.

BY MARKETS.

See footnotes end of table.

Table 474．－Cattle：Percentage crippled in shipments by cooperative associations， 1921－Continued．
BY DISTANCE．

Market．	Straight shipments．${ }^{1}$					Mixed shipments．${ }^{2}$				
	Num－ ber of mals upon figures are based．	Aver－ age weight of ani－ mals．	Per－ centage crip－ pled of total number shipped	$\left\lvert\, \begin{gathered} \text { Per- } \\ \text { contage } \\ \text { crip- } \\ \text { pled of } \\ \text { total } \\ \text { weight } \\ \text { sipped } \end{gathered}\right.$	Aver－ age weight of crip－ pled ani－ mals．	Num－ ber of ani－ upon which figures based．	$\begin{array}{\|c\|} \text { Aver- } \\ \text { age } \\ \text { weight } \\ \text { of ani- } \\ \text { mals. } \end{array}$	Per－ centage crip－ pled of total number shipped	$\begin{gathered} \text { Per- } \\ \text { centage } \\ \text { crip- } \\ \text { pled of } \\ \text { total } \\ \text { weight } \\ \text { sipped } \end{gathered}$	Aver－ age weight of crip－ ani－ mals．
Less than 100 miles		Pounds．			Pounds．		Pounds． .874			Pounds． 667
100 to 150 miles ．－．－－－	5，130	934	． 10	． 08	796	8， 086	847	． 17	． 17	815
150 to 200 miles．－．．－．－－	3，437	829	． 09	． 07	694	8， 030	826	． 10	． 08	683
200 to 250 miles	2， 427	953	． 17	． 10	578	3， 720	873	． 27	.18	605
250 to 300 miles ．－	395	1，055				187	550			
300 to 350miles	2， 004	929				881	860 880			
350 to 400 miles	1， 805	854	． 22	． 13	502	4,052 1,460	880 873	$\begin{array}{r}.17 \\ .14 \\ \hline\end{array}$	． 13	648 345
400 to 4500 miles．．．	1， 119	897 879	． 15	． 08	450	1， 460	873 896	． 14	． 22	1，000
500 to 550 milles．	101	723				46	718			
550 to 600 miles．	220	923	． 91	． 70	705	330	888			

BY MONTHS．

January	2， 088	838	0.19	0.17	738	4，097	844	0.12	0.10	680
February	1，775	870	． 05	． 06	950	3， 541	825	． 20	． 18	733
March	1，981	873	． 20			4，359	838	． 16	． 13	663
April	．2，421	945	． 16	． 14	808	3， 280	84.2	． 21	． 18	713
May	2， 052	951	． 14	． 14	957	3， 284	． 862	． 12	． 08	59.5
June	3， 201	936	． 03	． 02	600	3， 103	879	． 26	． 27	985
July	914	938	． 11	.05	460	1，321	857			
August	818	835	． 12	． 06	450	2， 032	882	． 20	． 10	433
Septembe	941	796				1， 863	838	． 05	． 04	640
October	1，082	811				2， 288	868			
Novembe	1，302	855	． 15	． 10	530	3， 358	878	． 06	． 05	690
December．	1，071	908	． 09	． 08	840	2，625	960	． 11	． 07	550

Division of Cost of Marketing．
${ }^{1}$ Straight shipments contain but one species of livestock．
${ }^{2}$ Mixed shipments contain more than one species of livestock．
Table 475．－Cattle：Principal terminal marketing costs，nine markets， 1921.

Market．	Num－berofheaduponwhichfig－．uresarehas－ed．	Cents per 1，000 pounds，home weight，straight shipments．												$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { yard- } \\ \text { age } \\ \text { cost } \\ \text { her } \end{gathered}$	Aver－ age feed cost head．
		Commission．			Yardage．			Feed．			Commission， yardage，and feed combined．				
		$\begin{aligned} & \text { H. } \\ & \dot{\otimes} .0 \\ & \dot{W} \\ & \dot{D} \\ & 4 \end{aligned}$	$\begin{gathered} \text { Bin } \\ \end{gathered}$	雷		$\underset{\sim}{\underset{\sim}{E}}$	$\begin{aligned} & \text { ㄷ․ } \\ & \text { 品 } \end{aligned}$		$\underset{H}{\vec{E}}$	品	$\begin{aligned} & \text { W. } \\ & \text { Wi } \\ & \text { Wi } \\ & \text { B } \\ & 4 \end{aligned}$	－	品		
Pittsbugh	1，445		88.8	119.4	31.0	22.8	35.5	75.8	51.8	102.1	211.1	165.5	256.8	Cents．	Cents． 80
Buffalo．	1， 603	86.0	78.3	109． 2	34.0	26.2	89.0	44.2	24.1	63．7	170． 4	144.2	192.1	44	48
East St．Loui	1，098	99.7	93.7	138．9	46.3	42.6	53.4	19．2	11.7	21.5	165.2	157.9	199.6	29	12
Cleveland．	2，224	86.9	86.2	106． 4	81.2	80.8	52.0	43． 1	42.4	72.6	161.2	114.6		35	48
Sioux Falls．	797	92.5			41.0	37.4	56.8	26． 7	18．6	48.1	180.1	142.2		${ }_{35}^{38}$	21
Kansas City		90.6	80.2	98． 4	40.2	37.4	${ }_{45}^{43.8}$	20.7	14． 8.			181.7		34	18 17
Chicago－－	6，${ }^{\text {6，063 }}$	98.1 84			36．8		44.1	18．5	12． 9	36.1 19.7	171.6	136.7		\％ 38	13
Sioux City	1，097	84.3	77.2		${ }^{43.4}$	21．2	25．3	25．3	18．2	28.8	111.7	82.8	13.0	25	27
Milwauke		63．	53.9	64.4	23.5	21.2									

[^257]Table 476.-Swine: Number and value on farms, United States, January 1, 1867-1924.

Jan. 1-	Number.	Price per head Jan. 1.	Farm value Jan. 1.	Jan. 1-	Number.	Price per head Jan. 1.	Farm value Jan. 1.
	$\begin{array}{r} \text { Thousands. } \\ 24,694 \\ 24,317 \\ 23,316 \\ 25,135 \\ 29,458 \end{array}$	Dolls.4. 033. 29	Thousands of dollars.	1897	Thousands.$40,600$	Dolls. 4. 10	I housands ofdollars.
1867							
1868			79, 976	1898	39,760	4.39	174, 851
1860		4.65	108, 481	1899	38, 652	4. 40	170, 110
1870, June		5.61	140, 532	1900, June 1..	62, 868.	6. 20	346,014
1871.			165, 312	1901-..---------	56, 982		353,012
1872.	31,780	4.01	127, 453	1902.	48, 699	7.03	342, 121
1873	32,632	3. 67.	119, 632	1903	46,923	7.78	364,974
1874	30, 861	3.98	122, 695	1904	47, 009	6. 15	289, 225
1875	25, 727	4.80	134, 581	1006-..------------------	47, 321	5.99	283, 255
1876		6.00	154, 251		$\begin{aligned} & 52,103 \\ & 54,794 \\ & 56,084 \end{aligned}$	6.187.626.05	$\begin{array}{r} 321,803 \\ 417,791 \\ 339,030 \end{array}$
1877	28,077	5.66	158, 873	1907			
1878.	34, 786	4. 853. 18	156,577 110,508	1908---------------			
${ }_{1889} 1879$				1909----------	54, 147	6.55	354, 794
1881.	46, 348	4.434.78	$\begin{aligned} & 211,036 \\ & 170,535 \end{aligned}$	1910, Apr. 1.	$\begin{aligned} & 57,186 \\ & 65,1820 \\ & 65,620 \end{aligned}$	9.17	533, 309
				1911.		9.37	615,170
1882	$\begin{aligned} & 44,122 \\ & 43,270 \\ & 44,201 \\ & 45,113 \\ & 46 ;, 092 \end{aligned}$	5.97	263,543291,951	1912	65, 410	8.00	$\begin{aligned} & 523,328 \\ & 603109 \end{aligned}$
1883		6.75 5.57		1913	61, 178	9.86	
1884			$246,301$	Av. 1909-1913.	60, 908	8.64	525,942
1886		4.26	196, 570	1914----...-----	58, 933	10.40	612, 051
1887	$\begin{aligned} & 44,613 \\ & 4,347 \\ & 50,302 \\ & 57,410 \\ & 50,625 \end{aligned}$	4.48	200, 043	1915------------------------	$\begin{array}{r}64,618 \\ 67 \\ \hline\end{array}$	$\begin{array}{r} 9.87 \\ 8.40 \end{array}$	637,479569,573
1888		4.985					
1889			291, 307	1917---------------	67,50370,978	11.75 19.54 1	1.792, 8188
1890, June		$\begin{aligned} & 4.91 \\ & 4.15 \end{aligned}$	$\begin{aligned} & 281,686 \\ & .210,194 \end{aligned}$				
1891				1919	$\begin{aligned} & 74,58 \\ & 59,344 \end{aligned}$	$\begin{aligned} & 22.02 \\ & 19.07 \end{aligned}$	1, 642,598 1, 131, 674
	$\begin{aligned} & 52,388 \\ & 46,095 \\ & 45,209 \\ & 44,166 \\ & 42,843 \end{aligned}$	$\begin{aligned} & 4.60 \\ & 6.41 \\ & 5.98 \\ & 4: 97 \\ & 4.35 \end{aligned}$	$\begin{aligned} & .241,031 \\ & 295,426 \\ & 270,385 \\ & 219,501 \\ & 198,530 \end{aligned}$	1920			
				Av. 1914-1920.-	66, 247	14.61	967, 776
					$\begin{aligned} & 656,097 \\ & 68,327 \\ & : 68,427 \end{aligned}$	$\begin{array}{r} 12.97 \\ 10.10 \\ 11.58 \\ 9.75 \end{array}$	$\begin{aligned} & 727,380 \\ & 589,202 \\ & 792,565 \\ & 638,793 \end{aligned}$
				1921			
				1922			
				${ }_{1924}$			

Division of Crop:and Livestock Estimates; figures in italios are census returns.
${ }^{1}$ Preliminary.
Table 477.—Swine: Number and value on farms, by States, January 1, 1922-1924.

1 Preliminary.

Table 477.-Swine: Number ard value on farms, by States, January 1, 1922-1924-Continued.

State.	Number Jan. 1.			A verage price per head Jan. 1.			Farm value Jan. 1.		
	1922	1923	1924	1922	1923	1924	1922	1923	$1924{ }^{1}$
	Thousand.	Thousand.	Thousand.	Dolls.	Dolls.	Dolls.	$\begin{gathered} \text { Thou- } \\ \text { sand } \\ \text { dollars. } \end{gathered}$	Thousand dollars.	Thou sand dollars
Mary and	: 285	299	299	11.50	13.00	11.25	3,278	3,887	3, 364
Virginia	703	689	655	9. 60	10. 50	9.90	6,749	7, 234	6, 484
West Virginia	293	316	316	10. 80	12. 30	11. 00	3,164	3,887	3,476
North Carolina	1,258	1,195	1,159	12.00	13.30	12. 50	15, 096	15, 894	14, 488
South Carolina	680	612	569	9.20	11.00	11.30	6, 256	6, 732	6, 430
Georgia	2, 064	1,878	1,542	8. 60	7.80	8.00	17,750	14, 648	12,336
Florida	725	703	633	7.00	7. 50	7.00	5, 075	5, 272	4, 431
Ohio	2, 862	3, 205	3, 077	10. 90	12. 10	10.00	31, 196	38,780	30, 770
Indiana	3, 200	4,000	3,880	11. 00	11. 90	9.80	35, 200	47, 600	38, 024
Illinois.	4, 046	5, 422	5,368	10. 50	12. 50	10. 10	42, 483	67, 775	54, 217
Michigan	1, 051	1,177	1,165	11. 30	12. 50	10.00	11, 876	14, 712	11, 650
Wisconsin	1,500	1,725	1, 673	10. 50	13. 10	9. 90	15, 750	22, 598	16,563
Minnesota	3, 333	3,800	3, 800	11. 20	13. 20	10. 30	37, 330	50, 160	39, 140
Iowa.	8,218	11, 094	10, 539	11. 00	12.80	10.30	90, 398	142, 003	108, 552
Missouri	3, 915	4,698	4,463	8.50	9.80	8.50	33, 278	46, 040	37, 936
North Dakota	435	566	651	11. 00	13. 50	10. 00	4, 785	7, 641	6,510
South Dakota	2, 200	2, 970	3, 029	10. 00	13. 50	10. 10	22, 000	40,095	30, 593
Nebraska	4, 100	5,330	5, 223	10.00	12.00	10.00	41, 000	63, 960	52, 230
Kansas	2, 388	3, 104	2,980	9. 50	11. 00	9.00	22, 686	34, 144	28, 820
Kentucky	1, 048	1,205	1,109	7.50	8.80	7.00	7, 860	10, 604	7,763
Tennessee.	1,546	1,654	1,373	8.00	9.30	7.40	12, 368	15, 382	10, 160
Alabama.	1,307	1,281	1, 089	8.60	9.30	8.80	11, 240	11,913	9, 583
Mississippi	1, 183	1,207	1,063	8. 00	8. 00	7.40	9, 464	9,656	7,866
Louisiana	756	756	${ }^{665}$	8. 60	7.80	7.60	6, 502	5,897	5,054
Texas	2, 226	2, 092	1,904	8.50	8.80	9.00	18, 921	18, 410	17,136
Oklahoma	1,334	1,401	1,121	8. 50	8. 80	6. 70.	11, 339	12,329	7,511
Arkansas	1,125	1,058	952	7. 10	6. 90	6.10	7, 9888	7,300 2,970	5, 807 3,024
Montana	180	225	270	13. 10	13. 20	11.20	2, 358	2,970	3,024
W yoming	73	99 592	119	12. 00	12.50	10.00	876 4.368	${ }_{6}^{1,238}$	1,190
Colorado	455	592	622	9.60	10. 50	9.50	4, 368	6,216	5,909
New Mexico	94	89	71	9.00	10.00	9.00	846	890	639
Arizona_	50	57	57	12.00	13.00	9.50	600	741	542
Utah	90	108	121	10.00	10.90	10.10	900	1,177	1,222
Nevada	25	25	28	10.00	14.00	9.00	250	350	252
Idaho.	225	315	378	11. 00	11.50	9. 40	2, 475	3,622	3,553
Washington	197	217	239	12. 50	14.80	13. 00	2, 462	3, 212	3, 107
Oregon-	200	214	220	10. 70	11.20	10.50.	2,140	2,397	2,310
California	834	842	834	11.70	11.80	10.50	9,758	9,936	8,757
United	58, 327	68, 427	65, 501	10.10	11.58	9.75	589, 202	792, 565	638, 793

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 478.-Hogs on farms: Cumulative percentage changes, 1920-1923.

Item.	To Feb. 1.	Mor.	To Apr. 1.	To May 1.	$\begin{gathered} \text { To } \\ \text { June } \\ 1 . \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { July } \\ & \text { 1. } \end{aligned}$	$\begin{gathered} \text { To } \\ \text { Aug. } \\ \text { 1. } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Sept. } \\ \text { 1. } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Oct. } \\ 1 . \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Nov. } \\ \text { 1. } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Dec. } \\ 1 . \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Jan. } \\ \text { lof } \\ \text { suc- } \\ \text { ceed- } \\ \text { ing } \\ \text { year. } \end{gathered}$
Increases:												
Births 1920	P.ct 5.8	P. 14.5	P.ct.	P.ct.	P.ct.	93. ${ }^{\text {cti }}$	102.0	113.6	129.4	140.7	147.3	152.8
1921	5.8	14.5	38.0	67.4	86.1	95.9	105. 2	118.4	136. 6	148.8	156.9	163.4
1922	5.3	14.2	41.8	70.8	88.5	99.4	107.6	121.4	142.2	156.0	163. 5	168.9
1923	6.2	17.2	44.5	76.0	95.2	105. 1	113.6	127. 2	147.8	158.4	164.1	
Brought on fa	3.3	6.2	9.2	11.9	14.9	17.1	19.2	22.1	25.4	28.8	320	
1921.	3.0	6.6	9.9	12.7	15.0	16.7	18.7	21.1	24.1	28.1	31.5	35.1
1922.	3.2	6.6	9.7	12.9	16.5	19.0	21.6	24.0	27.1	31.2	34.9	39.5
1923 ---	3.4	5.9	8.7	11.7	14.0	16.0	17.3	19.2	21.0	24.3	27.7	
Total incre	9.1	20.7	45.2	76.3	98.0	110.4	121.2	135.7	154.8	169.5	179.3	187.8
1921	8.8	21.1	47.9	80.1	101. 1	112. 6	123. 9	139.5	180.7	176.9	188.4	198.5
1922	8.5	20.8	51.5	83.7	105. 0	118. 4	129. 2	145.4			198.4	208.4
1823....	9.6	23.1	53.2	87.7	109.2	121. 1	130.9	146.4	168.8	182.7	191.8	------

${ }^{1}$ Corrective factor 0.905 applied to births and brought on farms figures.

Table 478.-Hogs on farms: Cumulative percentage changes, 1920-1923-Contd.

Division of Orop and Livestock Estimates. Based on reports of about 7,500 farmers reporting monthly for their own farms.
${ }^{1}$ Number on hand, January 1, each year $=100 \%$.
Table 479.-Swine: Yearly losses per 1,000 from disease, 1888-1924.

Year ending Apr. 30.	Losses per 1,000.	Year ending Apr. 30.	$\begin{gathered} \text { Losses } \\ \text { per } \\ \mathbf{1 , 0 0 0 .} \end{gathered}$	Year ending Apr. 30.	Losses per 1,000.	Year ending Apr. 30.	Losses per 1,000.
1887-88.	77.5	1897-98.	92.8	1907-8.	52.4	1917-18	42.1
1888-89	61.7	1898-99	82.1	1908-9	51.0	1918-19.	41.4
1889-90	76.1	1899-1900.	64. 4	1909-10.	45.1	1919-20.	49.8
1890-91	83.7	1900-1...	74.7	1910-11	44.8	1920-21.	43.0
1891-92.	54.4	1901-2	51.5	1911-12	89.2	1921-22.	54.4
1892-93.	63.1	1902-3	58.2	1912-13	110.1	1922-23.	51.3
1893-94	48. 6	1903-4	57.9	1913-14	118. 9	1923-24.	52.9
1894-95	92.3	1904-5	50.8	1914-15			
1895-96	127. 0	1905-6	51.1	1915-16	66. 2		
1896-97.	144.0	1906-7	48.9	1916-17.	48.6		

Division of Crop and Livestock Estimates. As reported by crop reporters May 1 for year ending April 30.

Table 480.-Hogs: Summary of spring and fall pig surveys.

State.	Sows farrowed.				Average number of pigs saved per litter.						Intended farrowing. ${ }^{3}$			
	$\begin{gathered} \text { Spring, } \\ \text { 1922 com- } \\ \text { pared } \\ \text { with } \\ \text { spring } \\ 1921 . \end{gathered}$	$\begin{gathered} \text { Fall, } \\ \text { 1922 com- } \\ \text { pardid } \\ \text { with } \\ \text { fall; } \\ 1921 . \end{gathered}$	$\begin{gathered} \text { Spring, } \\ \text { 1923 com- } \\ \text { pared } \\ \text { with } \\ \text { spring } \\ 1922 . \end{gathered}$	$\begin{gathered} \text { Fall, } \\ 1923 \text { com- } \\ \text { pared } \\ \text { with } \\ \text { fall, } \\ 1922 . \end{gathered}$	1921		1922		1983		$\begin{aligned} & \text { Fall, } \\ & \text { 1922 com- } \\ & \text { pared } \\ & \text { with } \\ & \text { actual } \\ & \text { 1921. } \end{aligned}$	$\begin{gathered} \text { Spring, } \\ \text { 1923 com- } \\ \text { pared } \\ \text { with } \\ \text { actual } \\ 1922 . \end{gathered}$	$\begin{aligned} & \text { Fall, } \\ & \text { 1923 com- } \\ & \text { pared } \\ & \text { with } \\ & \text { actual } \\ & 1922 . \end{aligned}$	Spring, 1924 com pared with actual 1923.
					Spring. ${ }^{1}$	Fall. 1	Spring. ${ }^{1}$	Fall. 1	Spring. ${ }^{2}$	Fall. ${ }^{2}$				
	Per cent.	Per cent.	Per cent.	Per cent.			.				Per cent.	Per cent.	Per cent.	Per cent.
Maine	Per cent.	117.0	82.0	125.8				6.7	6.1	6.7		137.4	160. 2	130.3
New Hampshire		160.1	103. 6	158.4				6. 9	6. 2	5. 3		146. 6	192. 2	111. 0
Vermont------.-		120.9	127. 2	112.8				6. 9	5. 5	6. 9		1128. 3	165.8 134.4	124. 0
Massachusetts		85. 4	90. 2	132. 9				6. 3	5. 8.5	6.4		115.3 64.9	134.4 165.2	134.4 92.3
Rhode Island.		72.7	100.0	124.2				6.8	6.5	6.0		64.9	165.2	92.3
Connecticut		152.2	108.1	114.8				B. 6	5.0	5.4		96.2	111.6	90.8
New York	102.8	100.3	105. 9	113.9	8.2	7.8	7.4	6. 9	5.8	6. 4	124.0	110. 4	149.3	117.3
New Jersey		106. 9	98.6	106.8				6. 28	5.2 5.7	5. 7		119.1	128.9 137.4	104. 4
Pennsylvania	107.3	114.2 98.7	107.4 104.1	103.8	7.2	7.0	6. 9	6. 6	5. 7 5.4 .4	5. 9 5.1	125.2	119.2 96.1	137.4 112.4	112. 2
Maryland.	104.9	107.4	95.7	108.9	7.4	6. 9	7.1	6.6	5. 9	6.0	118.4	107.2	137.0	106.1
Virginia --		97.5	98.9	100.7				6.7	5.8	5. 8	-.-.-...-	106. 3	127.6	98.9
West Virginia		114.1	99.8	110.1				6.7	6. 2	6. 5		101. 2	125. 9	108. 5
North Carolina		90.4	92.6	97.3				6. 4	5. 6	5. 4		102.7	133.8	113. 3
South Carolina.		89.1	102, 6	86.3				6.0	5.1	4.8		106.7	140.7	124.2
Georgia.	112.5	88.3	85.5	75.2	6.6	6.3	6.1	5. 8	4.9	4.5	134.0	102.5	118.9	111.0
Florida		86. 0	89.5	84.0				5. 7	4. 7	4. 0		110.1	127.3	117.9
Ohio -	110.8	111. 4	107.0	97.7.	6. 9	6. 6	6. 5	6. 6	5. 4	5. 6	131.7	112.6	123. 2	93.8
Indiana	122. 0	109. 1	107.0	96. 3	6.7	6. 2	6. 1	6. 6	5. 4. 9	5. 5	137.1 149	119.4 120.7	119.6 122.3	92.4 91.6
Illinois.	122.3	125. 5	108.3	94.9	6.4	6.0	5.9	6.2	4.9	5.0	149.3	120.7	122.3	91.6
Michigan	122.3	122. 6	115.8	104.7	7.1	6. 5	6.3	6. 6	5.5	6.0	148. 2	107.4	131.8	98.0
W isconsin	110.5	128.8	106.3	101. 9	6.5	6. 2	6. 0	6.4	5. 3	5.4	141. 2	106. 7	123.9	94. 7
Minnesota	122. 3	132.5	$10 \% 1$	93, 7	5.8	5. 6	5. 2	5. 9	4. 9	4.7	149.3	109.6	119.5	96.7
Iowa.---	120.7	149. 2	116. 9	93.7	8. 7	5. 8	5. 5	5. 7	4. 5	4. 8	148. 1	111.9	112. 4	95. 3
Missouri.	125.0	117.1	108.1	90.6	6.6	6.3	5.9	6.4	5.0	5.1	144.4	117.7	124.3	92.7
North Dakota		84.1	116: 0	112.7				5. 8	5. 0	4. 9		138.9	203.0	121.8
South Dakota.	130.5	111.9	111. 4	90.4	5. 6	5. 4	5. 2	5. 6	4.6	4.4	173. 1	119.5	150.4	99.3
Nebraska.	126:5	133.9	109.0	86.5	5.4	5. 3	5. 2	5. 4	4. 5	4. 5	159. 7	118. 2	142. 0	97. 3
Kansas.	139.8	131.7	114.8	89.3	6.0	5. 6	5. 4	6. 0	5.1	5. 0	165. 0	123. 2	132. 4	87.0
Kentucky..	-	102.5	101.2	91.3				6.6	6.0	5. 5		110.9	115.2	80.1

Division of Crop and Livestock Estimates. Based on reports of about 140,000 farmers gathered in cooperation with Post Office Department through the rural mail carriers. Periods covered: December 1 to June 1 (spring), June 1 to Đecember 1 (fail).

1 Based on estimated number per sow as reported by farmers.
2 Total pigs saved divided by sows farrowed as reported by farmers, and probably not strietly comparable with 1921 and 1922 data
8 Intentions are as of the ctose of the preceding 6 months period; for example, those for spring farrowing 1924 were intentions expressed as of December 1 , 1923.

Table 481.-Hogs: Receipts and shipments at principal markets and all markets, 1900-1923.
RECEIPTS.

Calendar year.	$\begin{aligned} & \text { Chi- } \\ & \text { cago. } \end{aligned}$	Denver.	$\begin{gathered} \text { East } \\ \text { St. } \\ \text { Louis. } \end{gathered}$	Fort Worth.	$\begin{gathered} \text { Kan- } \\ \text { sas } \\ \text { City. } \end{gathered}$	Omaha.	$\left\lvert\, \begin{gathered} \text { St. } \\ \text { Joseph. } \end{gathered}\right.$	St. Paul.	$\begin{aligned} & \text { Sioux } \\ & \text { City. } \end{aligned}$	Total nine markets.	All other markets re-porting.	Total all markets re-porting.
	Th	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-
	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.
1900	8, 109	116	1,792	(1)	3, 094	2, 201	1, 679	500	833	18, 324	${ }^{(2)}$	${ }^{2}$)
1901	8, 290	109	1,924	(1)	3,716	2, 414	2, 105	617	960	20,135	${ }^{(2)}$	${ }^{(2)}$
1502	7,895	87	1, 330	79	2,279	2, 247	1,698	668	1,008	17, 291	$\left.{ }^{2}\right)$	${ }^{2}$)
1903	7,326	147	1,568	151	1,969	2, 231	1,701	760	1,008	16, 861	${ }^{(2)}$	$\left.{ }^{2}\right)$
1904	7,239	162	1,955	281	2, 227	2, 300	1,657	882	1,113	17, 816	$\left.{ }^{2}\right)$	$\left.{ }^{2}\right)$
1905	7, 726	191	2, 026	463	2,508	2, 294	1,900	855	1,299	19, 262	$\left.{ }^{2}\right)$	$\left.{ }^{2}\right)$
1506	7,275	193	1,923	551	2, 676	2, 394	1,908	861	1,158	18, 939	$\left.{ }^{2}\right)$	$\left.{ }^{2}\right)$
1907.	7, 201	241	2, 065	487	2,924	2, 254	1, 923	867	1,289	19, 251	$\left.{ }^{2}\right)$	$\left.{ }^{2}\right)$
1908	8, 131	280	2, 560	703	3,715	2, 425	2,349	1, 133	1, 381	22, 677	${ }^{2}$)	${ }^{2}$)
1909	6, 619	242	2,473	868	3,093	2,135	1, 694	725	1, 077	18,926	$\left.{ }^{2}\right)$	$\left.{ }^{2}\right)$
1910	5,587	187	2, 054	541	2,086	1,894	1,353	836	1,044	15, 582	${ }^{(2)}$	$\left.{ }^{2}\right)$
1911	7, 103	220	3, 124	556	3,168	2,367	1, 922	911	1,349	20, 720	$\left.{ }^{2}\right)$	${ }^{2}$)
1912	7, 181	222	2, 530	388	2, 523	2, 886	1,970	984	1,698	20, 382	${ }^{(2)}$	(2)
1913	7,571	247	2, 584	404	2, 568	2, 543	1,869	1,257	1, 533	20, 576	${ }^{(2)}$	${ }^{2}$
1914	6,618	256	2, 559	515	2, 265.	2, 259	1,725	1,590	1,257	19, 044	$\left.{ }^{2}\right)$	${ }^{(2)}$
1915	7, 652	344	2,592	464	2,531	2, 643	1,698	2,155	1,761	21, 840	14, 373	36, 213
1916	9, 188	467	3, 057	968	2,979	3, 117	2, 199	2, 675	2, 131	26, 781	16, 484	43, 265
1917	7,169	352	2,706	1, 062	2, 277	2, 797	1,920	1,928	2, 149	22, 360	15, 682	38, 042
1918	8, 614	384	3,256	762	3, 328	3, 430	2, 351	2, 061	2, 421	26, 607	18, 256	44, 863
1919	8, 672	368	3, 651	588	3,141	3,179	2, 126	2, 190	2; 322	26, 237	18, 232	44, 469
1920.	7, 526	341	3, 399	413	2,466	2,708	1,914	2,247	2,173	23, 187	18, 934	42, 121
1921	8, 148	334	3,330	382	2, 205	2,665	1,785	2, 210	1,739	22, 798	18, 303	41, 101
1922	8,156	395	3, 606	510	2,655	2, 839	2, 061	2, 523	1,856	24, 601	19, 466	44, 067
1923.	10,460	495	4,831	486	3, 615	3,649	2,457	3,338	2,989	32, 320	23, 010	55, 330

SHIPMENTS.

	1,452	(2)	418	(2)	$\left.{ }^{2}\right)$	37	83	45	110	2,145	${ }^{(2)}$	${ }^{(2)}$
1901.	1, 301	(2)	370	(2)	(2)	49	117	55	123	2,015	(2)	(2)
1902	1,252	(2)	143	(2)	(2)	170	91	29	143	1, 828	(2)	(2)
1903	1,238	(2)	249	(2)	${ }^{(2)}$	51	122	50	539	2, 249	(2)	(2)
1904	1,626	(2)	373	(2)	(${ }^{(2)}$	211	93	72	614	2,989	${ }^{(2)}$	(${ }^{\text {a }}$
1905	2,028	(2)	487	${ }^{(2)}$	(2)	172	68	33	279	3,067	(1)	(8)
1906	1,743	(2)	583	(2)	(2)	171	60	20	145	2, 722	(2)	(2)
1907	1,712	(2)	753	(2)	(2)	119	117	73	240	3, 014	(2)	(2)
1908.	1,870	${ }^{(2)}$	711	(2)	(2)	284	84	${ }_{137} 25$	180	3,439 3,197	(2)	(2)
1909.	1,664	${ }^{(2)}$	891	${ }^{(2)}$	(2)	278	47		180			
1910.	1,202	(2)	615	${ }^{(2)}$	(2)	238	34	194	186	2, 469	(2)	(2)
1911.	1, 527	(2)	880	(2)	(3)	217	41	244	520	2, 229	(2)	(2)
1912	1,573	(2)	${ }_{918}^{679}$	(2)		407 381	167 70		452		(2)	(2)
1913	1, 673	(2)	918 989	(2)	${ }_{(2)}^{(2)}$	381 331	70 153	320 531	$\stackrel{453}{230}$	3, 525	(2)	(2)
1914	1,291	(2)	989	(2)	($)$	331	153	631	230			
1915.	1,133	11	991	61	417	631	174 92	795 1,181	871	4,784	6, 8115	8, 81,620
1916	1,405	22	1,071	-98	445 295	726	92 87	1,181	889	5, ${ }^{\text {b }}$, 478	7, 098	12,571
1917	1,219	27	1,026	264	295 527	7969 889	$\begin{array}{r}87 \\ 285 \\ \hline\end{array}$	8888	${ }_{9}^{891}$	5, ${ }^{\text {5, }} 824$	8,749	14, 373
1918	1,971	18		166	527	889 648	209	868	913	5, 817	8,549	14,336
1919	1,101	33	1,420					342	879			
1920	1,657	32	1,721			710	267	511	690	6,983	$\begin{aligned} & 8,960 \\ & 7,726 \end{aligned}$	14,709
1921	2, 1780	22	2, 2748	98 98	488 588	695 613	355	482	666	7,056:	8, 278	15, 332
1923.	2,370	102	2,990	108	889	869	455	609	1,205	9,597	9, 545	19,142

Division of Statistical and Historical Research. Prior to 1915 receipts compiled from yearbooks of stockyard companies; subsequent figures compiled from data of the reporting service of the Livestock, Meats and Wool Division. Prior to 1915 shipments compiled from yearbooks of stockyard companies, except East St. Louis (1900 to 1906 from fourteenth annual report of Bureau of Animal Industry; 1907 to 1914 from Mer chants' Exchange Annual Report); subsequent figures from data of the reporting service of the Live stock, Meats and Wool Division.
${ }^{1}$ Not in operation.
${ }_{2}$ Figures not available prior to 1915.

Table 482.-Hogs: Receipts at all public stockyards, 1915-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
							Thor	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-
	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.
$1915{ }^{1}$	3,959	3,449	3,199	2,487	2,768	2, 874	2,368	2, 024	1,966	2, 457	3, 728		6, 213
$1916{ }^{1}$	5,309	4, 233	3,489	2,852	3, 332	3, 054	2, 524	2, 634	2, 386	3, 640	4, 873	4,939	43, 265
1917	5, 084	3, 933	3, 369	2, 961	3,264	2,791	2, 563	1,853	1,615	2, 676	3, 994	3,992	38,042
1918.	4, 444	4, 486	-4, 424	3, 696	3, 345	2, 979	3, 099	2. 467	$\stackrel{\text { 2, }}{2} \mathbf{3 7 6}$	3, 399	4, 594	5, 4,984	44,883 44,469
1919	5,855	4, 412	3, 643	3, 648	3,831	3,773 3	$\stackrel{2,974}{2}$	$\stackrel{\text { 2, }}{2} \times 191$	2,391	2,789	3,872	4, 200	42, 121
1920	5, 262	3,422	3,940 3,386			3, 709	2, 727	$\stackrel{2,491}{2,656}$	2, 655	3,214	3, 687	3, 931	41, 101
1921	4,700	4,009 3,613	3, 386 3,411	3, 229	3, 327	3,776	2, 980	3, 037	3, 062	3, 682	4,421	5, 004	44, 067
1922	4, ${ }_{\text {5, }}$	3, 613 4,492	4, 4127	3,066 4,318	4, 524	4, 204	4, 181	3, 714	3, 607	4,816	5,416	5,825	55, 330

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats and Wool Division.
${ }^{1}$ Complete information for 1915 and 1916, particularly on disposition of stock, is not obtainable from many of these markets.

Table 483.-Hogs: Receipts at Chicago, East St. Louis, Kansas City, and Omaha, combined, 1900-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	Thow-	Thou-	Thou-		Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou:
	sands.	sands.	sands.	sands.	sands.	san	sands.	sands.	sands.			
1900	1,502	1,265	1,240	1,190	1,424	1,333	1,043	1, 025	1,029	1, 303		
1901	1,528	1,457	1,174	1,222	1, 523	1, 275	1,461	1, 110	940	150	9	11
1902	1,609	1,489	1,197	95	1, 148	, 174	1, 107	${ }_{961}$	875	1, 838	1, 068	1,437
1903	1,316	1,175	938	1,016	1,195	1,171	1,107	961	875		1,008	1,438
1904	1,440	1,445	1,113	1,125	1,213	1,200	660	1,035	762	940	1,369	1,417
1905	1,610	1,269	1,249	1,043	1,297	1,357	999	935	884	1,128	1, 315	1,473
1906	1,608	1,356	1,206	1, 075	1, 306	1,372	1,144	1,149	837	947	1,046	21
1907	1,499	1,332	1,165	1,210	1,455	1,312	1,298	1,020	993	1,353	1,580	1, 403
1908	2, 225	1,672	1,445	1,086	1,454	1,315	1,072	992	937	1,353	1,580	703
1909.	1,703	1,359	1,602	1,161	1,299	1,187	929	823	846	966	1, 184	1,261
1910	1,179	1,128	934	788	1, 057	1,138	892	893	687	768	1,020	1,134
1911	1,270	1,302	1,516	1,304	1, 521	1,487	1,200	976	970	1, 231	1,207	1,481
1912	1,908	1,612	1,358	1,252	1,381	1, 218	1,092	846 1,095	1,081	1, 153	1,288	1,385
1913	1,640	1,315	1, 170	1,154	1,257	1,328	1,129	1,095	1,081	1,153		
Av. 1909-1913	1,540	1,343	1,316	1,132	1,303.	1,272	1,048	927	869	1,042	1,246	1,378
14.....-.	1,479	1,328		1,001	1, 065	1,167	927	832	827	1,093	1,158	1,640
1915	1, 669	1, 640	1, 511	1,080	1,234	1,222	1,037	921	803	1,848	1,387	2,066
1916	2,313	1,950	1,516	1,154	1, 366	1,283	1,090	${ }_{-}^{1,221}$	954	1,902	1, 1286	1,461
1917	2,199	1,697	1,367	1, 205	1, 320	1, 1246	1, 1,356	1,047	${ }_{932}$	1,376	1,794	2,207
1918	1, 657	1, 8888	1,963				1, 314	-829	913	1,129	1,485	2,049
1919	2, 2,136	1,978	1,631	1, 1,059	1,686	1, 438	1,131	988	795	894	1,381	1,611
Av. 1914-1920.				1, 252	1,397	1,308	1,134	942	824	1,093	1,498	1,875
	1,982	1,691	1,543	1,252	1,397							
1921	$\begin{aligned} & 1,916 \\ & 1,785 \end{aligned}$	1,708	1,346	1,276	1,340	1,493	1,122	1, 092	946	1,092	1, 459	1,558
1922		1,454	1, 303	1, 130	1,520	1, 646	1,263	1,216	1, 1,515	1, 299	1,631	1,200
1923.	2, 173	1,879	2, 017	1,778	1,840	1,730	1, 827	1,616	1,515	1,917	2,049	2,215

Division of Statistical and Historical Research. Prior to 1915 from yearbooks of stockyard companiess subsequent figures compiled from data of the reporting service of the Livestock, Meats and Wool Division.

Table 484.-Hogs: Receipts, lacal slaughter, and stocker and feeder shipments, | public stockyards, calendar years, 1915-1923.

RECEIPTS.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923

${ }^{1}$ Less than 500.

Table 484.-Hogs: Receipts, local slaughter, and stacker and feeder shipments, public stockyards, calendar years, 1915-1923-Continued.

RECEIPTS-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.
St. Joseph, Mo	1,698	2,199	1,920	2,351	2,126	1,914	1,785	2,061	2,457
St. Paul, Minn	2,155	2,674	1,928	2,081	2,190	2,247	2,209	2,523	3, $3 \overline{3}$
San Antonio, Tex	36	59	1, 40	30		39	70	63	61
Seattle, Wash		179	130	127	126	95	134	151	218
Gioux City, Iowa	1,761	2,131	2,149	2,421	2,322	2,173	1,739	1,856	2,989
Sioux Falls S. Dak			6	62	174	247	452	533	503
Spokane, Wash	6	37	38	44	60	47	33	48	82
Springfield, Ohio									64
Tacoma, Wash..		38	19	32	30	35	59	65	
Toledo, Ohio	250	304	278	255	232	264	148	140	158
Weshington, D.		82	58	56	72	102	113	132	166
Wichita, Kans..	476	573	495	618	494	382	369	570	706
Total	36, 213	43, 265	38, 042	44, 863	44, 469	42, 121	41, 101	44,067	55,330

LOCAL SLAUGGHTER.

Albany, N. Y			8	1	2.	2	(1)	(1)	
Atlanta, Ga			27	24	37	42	61	62	95
Augusta, Ga			5	3	5	5	7	9	7
Baltimore, Md	726		558	514	661	874	1,013	1,020	1,202
Billings, Mont		(1)	2		(1)				
Birmingham, Ala		${ }^{6}$	2	14	24	24	27	2	1
Buffalo, N. Y		784	488	617	730	631	670	663	834
Chattanoega, Tenn				7	13	11	17	13	16
Chicago, 111	6,519	7,784	5,950	7,643	7,572	5,870	5,977	6,323	8,092
Cincinnati, Ohio	656	601	688	768	823	789	898	669	784
Cleveland, Obio	826	776	578	850	729	610	688	750	927
Colvmbia, \%. C		7	${ }^{(1)}$	3	6	7	4	9	15
Columbus, Ohio	5	18	12	7	4	14	14	6	3
Dallas, Tex		101	87	62	45	56	52	71	111
Dayton, Ohio.	83	87	57	60	61	76	83	09	101
Denver, Colo.	331	444	327	366	336	310	311	367	394
Detroit, Mich		561	297	(287	336	360	269	279	358
Dublin, Ga---			(1)						
East St. Louis, E1 Pasa, Tex.	1,600	1,987	1,680 15	2, 276	2, 231	1, 678	1,289	1,229 17	1,842
Emeryville, Calif			18	5	10	16	21	32	
Erie, Pa--				15	16	15			
Evansvilie, Ind		24	36	40	31	80	73	65	78
Fort Wayne, Ind									
Fort Worth, Tex	392	860	797	568	464	322	277	4 4 6	377
Fostoria, Ohio			27	13	10	10	11	7	9
Indianapolis, Ind	1,496	1,511	1,326	1,394	1,434	1,359	1,377	1,528	1,792
Jacksonville, Fla			15			72		28	${ }_{518}$
Jersey City, N. J.	1, F 75	1,137	744	. 566	468	629	509	458.	b13
Kansas City, Ma	2,114	2, 327	1,978	2,655	2,600	1,838	1.713	$2,052$.	2721
Knoxville, Tenn	1	4	39	33	3				\% 61
Lafayette, Ind		57	39	$\begin{array}{r}33 \\ 8 \\ \hline\end{array}$	37	40 11	44	56 .20	
Lancaster, P Laredo, Tex				8	13			20	$\because 2$
Legansport, Ind	(1)		(1)	(1)	1	2	1	2	
Los Angeles, Calif									
Louisville, Ky	129	108	132		173	156	180	231	305
- Marion, Ohio				2	10	13	16	29	- 28
Memphis, Tenn					2	1	4	6	
Milwaukee, Wis	506	529	394	463	534	509	482	459	548
Mobile, Hia	- 4	4	2						
Montgonery, Ala					3	5	26	$\begin{array}{r}3 \\ 45 \\ \hline\end{array}$	$\begin{aligned} & I 5 \\ & 20 \end{aligned}$
Moultrie, Ga		29	46	57	67	82	113	125:	- 180
Nebraska City, Neb				264	271^{-}	258	267	287	

1 Less than 500.

Table 484.-Hogs: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923-Continued.

LOCAL SLAUGHTER-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.
New Yorleans, ${ }^{\text {N }}$ N	363	52	41	651	677	45	902	34	1,160
North Salt Lake, U		1	31	39	39	25	36	42	${ }^{1}$
Ogden, Utah...-			1	52	67	47	47	47	66
Oklahoma, Okla	476	732	530	504	360	288	331	449	419
Omaha, Nebr	2, 012	2, 391	2,001	2, 541	2, 531	1,998	1,971	2, 226	2,780
Orangeburg, S				9	2				
Pasco, Wash				(1)	(1)	(1)			
Peoria, Ill.	125	132	96	143	153	135	164	105	118
Philadelphia, Pa			202	264	329	457	457	439	331
Pittsburgh, Pa	157	155	290	279	279	413	505	507	597
Portland, Oreg	173	189	129	137	103	91	112	158	187
Pueblo, Colo-				${ }^{(1)}$			1	(1)	${ }^{(1)}$
Richmond, Va	70	5	74	58	154	210	169	216	260
Roanoke, Va									1
St. Joseph, Mo	1,524	2, 107	1,833	2, 064	1,919	1,584	1, 517	1,706	2, 001
St. Louis, Mo-	337 1,370	347 1,499							
San Antonio, Tex	1,370	1,499	$\begin{array}{r}1,068 \\ \hline 28\end{array}$	1,307 15	1,317 7	1,905 16	1,668 33	2, 41	2,728
Seattle, Wash		179	130	125	124	92	132	149	214
Sioux City, Iowa	1,189	1,307	1,257	1,511	1,411	1,296	1,047	1, 194	1,781
Sioux Fals, S. Dak			(1)	${ }^{(1)}$		5	57	74	69
Spokane, Wash	3	18	25	34	42	32	21	32	58
Springfield, Ohio									5
Tacoma, Wash		38	19	30	31	34	58	65	
Toledo, Ohio		102	53	46	53	86	- 24	14	21
Washington, D. O		82	55	54	71	101	112	129	165
Wichita, Kans	471	564	392	503	469	356	348	527	623
Total.	24, 893	30, 984	25, 440	30, 441	30,018	26, 761	26,335	28,737	36,172

Local slaughter, compiled from reports of stock sold or driven out for local slaughter, made by stockyards to the Livestock, Meats, and Wool Division.

STOCKER AND FEEDER SHIPMENTS.

Market.	1916	1917	1918	1919	1920	1921	1922	1923
Amarillo, Tex			(1)	(1)	1			
Atlanta, Ga-			4	4	8	5		
Augusta, Ga		${ }^{(1)} 1$	1	1 3	${ }^{(1)}$	(1)	1	(1)
Birmingham, Ala	(1)		(1)					
Buffalo, N. Y		2	1	${ }^{(1)}$	(1)	${ }^{(1)}$		
Chattanooga, Tenn			2	1				
Chicago, Hl -		45	25	14	1	2	3	2
Cincinnati, Ohio			2	1	3	4	2	4
Columbus, Ohio	(1)		1	1		1		
Dayton, Ohio			(1)					
Denver, Colo-	(1) 9	22	17		30 5	${ }^{22}$	(1) 26	(1) ${ }^{93}$
Detroit, Mich Dublin, Ga.		1						
East St. Louis, Il	13	12	77	98	- 47	${ }^{4} 4$	$\because 63$	41
El Paso, Tex		(1)	8	4	3	8	5	
Evansville, Ind		12	10	10	4	4	9	6
Fort Wayne, Ind								22
Fortoria, Ohio..		$\stackrel{2}{2}$	89 5	55 3	24	$\stackrel{5}{2}$	$\xrightarrow{3}$	2
Indianapolis, Ind.		35	45	41	17	21	17	18
Jacksonville, Fla	2	${ }^{(1)}$	3	1	2		${ }^{(1)}$	
Kansas City, Mo.	22		175	244	${ }_{(1)}^{200}$	94	102	283
Knoxville, Tenn		${ }^{(1)} 5$	1	1	${ }^{(1)} 5$	1	5	3

${ }^{1}$ Less than 500.

Table 484.-Hogs: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923-Continued.

STOCKER AND FEEDER SHIPMENTS-Continued.

Market.	1916	1917	1918	1919	1920	1921	1922	1923
Logansport, Ind	Thousands. (1)	Thousands. 1	Thousands. (1)	Thousands. (1)	Thousands. (1)	Thousands.	Thousands. (1)	Thousands. (1)
Los Angeles, Calif								17
Louisvine, Ohio			1	28 4	1	2	19 3	2
Memphis, Tenn.	(1)			(1)	4	1	2	6
Milwaukee, Wis		${ }^{(1)}$	$\left.{ }^{1}\right)$	(1)				
Montgomery, Ala		1	1	22	15	9 3	12	10
Moultrie, Ga--.--	23				18	${ }_{2}^{3}$	1	1
Nebraska City, Nebr.			(1)	(1)		(1)	3	
Newark, N. J .								(1)
New Brighton, Minn	(1)	4 4 4	${ }_{3}^{1}$	3	${ }_{3}^{4}$	1		
New Orleans, La Utah	1	$\stackrel{4}{5}$	1	4	3 3	2	1	1
Ogden, Utah...........		1	1	13	11	2	5	4
Oklahoma, Okla	18	70	69	43	21	13	9 6	17
Omaha, Nebr-	26	73	13		7			14
Pasco, Wash Peoria, 11		1	4	(1)	3	8	5	7
Philadelphia, Pa								
Portland, Oreg-	3	14	18	15	17	11	17	18
Pueblo, Colo			(1)		(1)	${ }_{(1)}$		
Richmond, Va-			${ }^{(1)} 34$	27				17
St. Joseph, Mo- St. Paul, Minn	${ }_{23}^{11}$	232	$\begin{array}{r}34 \\ 173 \\ \hline\end{array}$	27 103	24	104	109	151
St. Paul, Minn	23							
San Antonio, Tex	29	1	2	2	2 3	4	13 1	10
Seattle, Wash----	8	109	41	33	28	19	9	9
Sioux Falls, S. Dak		5	3	2	2	3	4	
Spokane, Wash		8	9	15	12	6	7	9
Tacoma, Wash								
Toledo, Ohio....	6	44	87	20	23	${ }^{(13}$	20	${ }^{32}$
Total.	194	788	989	902	728	499	593	820

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
${ }^{1}$ Less than 500.
Table 485.-Swine: Shipments of feeder swine from public stockyards, 1923.
ORIGIN.

Market.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec,	Total.
	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	-
	ber.	ber.	ber.	ber.	ber.		ber.	ber.	ber.	ber.			
Denver,	1,880	1,710	547	1, 042	1,273	758	978	${ }^{673}$	606	0	865	1,071	
Fort Worth, Tex	2,076	3, 270	3, 568	2,763	1,286	${ }_{3} 85$	1,557	3,360	1, 836	840 1,584	1, 1112		23,935
Indianapolis, Ind	1,020	${ }^{617}$		1,097	15, 5200	3,668 11,255	6, 892	27,621	1, 515	13,442	21, 1164	8,416	16, ${ }^{\text {165,458 }}$
Kansas City, Kans	21, 100	18, 243	17, 967	18, 352	15, 532	11, 255	6, 114	27,621	55, 788	1,658	1, 33	${ }^{207}$	11,828
Los Angeles, Cal	1, 425	1,782	1,937	1,676		236			758	1,658		207	11,82
Nat'l Stockyards,	1,504	1,107	4, 488	7,096	5,526	3,541	1,044	1,815	4,089	867	592	836	32, 505
Oklahoma, Okl	1,026	1,460	5,117	2, 400	1,586	838	360	4, 379	3, 184	2,563	2, 486	2,165	27, 564
Omaha, Nebr	772	1,131	1,443	2, 334	1, 502	1,236	1,070	817	766	1,242	1, 201	1, 635	15, 149
Portland, Oreg	1,050	1,993	1,494	1,265	2, 141	1,238	1,688	1,444	1,657	2,020		1,224	
Sioux City, Ia		925	1,426	2, 858	1,547	1,249	211	240	383	191	199		10, 145
South St. Joseph, Mo		144	172	138		123	5 28	165		15,9		11,199	1, 36,142
South St. Paul, Minn	13,436	13, 647	13, 898	12, 996	14, ${ }^{1}, 421$	9,635	5,463	3,011 1,470	6,373	15, 033		3, 808	31, 270
Wichita, Kans	1,642 4,896	2, 704	2, 424	3, 294	1, 330	1,941	2, 483	3,858	3,190	2, 823	2, 353	2,688	38,381
Tota	52,687	49, 585	60, 311	59, 893	52, 171	37, 233	23, 605	50,721	87, 722	79, 060	53, 097	35, 014	641,099

Table 485.-Swine: Shipments of feeder swine from public stockyards, 1923Continued.

DESTINATION.

Division of Statistical and Historical Research. Compiled from Bureau of Animal Industry inspection records.

Table 486.-Hogs: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, 1923. ${ }^{1}$

Stockyards.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Thou-	Thou-	Thou-	Thou-	Thoun	Thou	Thou-	Thou-	Thou-	Thou-	Thow	Thou	Thou-
Buffalo, N. Y.:	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.		sands.
Receipts .-.-...--	164	132	143	161	144	117	127	116	120	176	200	231	1,831
Local slaughter	68	54	62	67	66	59	57	52	56	80	96	117	834
Chicago, IIl.: Receipts	1,000	870	877	721	803	835	929	732	622	844	1, 058	1,169	10,460
Local slaughter	, 661	595	671	591	663	692	689	533	484	685	887	941	8, 092
Stocker and feeder shipments.--	${ }^{(1)}$		(1)	(1)	1	1		(1)	${ }^{(1)}$	${ }^{(1)}$	${ }^{(1)}$	${ }^{(1)}$	- 2
Cincinnati, Ohio:													1,401
Receipts-.-.---	108 70	106 58	114 69	107 64	121 67	102	${ }^{96}$	98	100 51	155 70	149 73	148	1, 784
Stocker and feeder shipments.-	${ }_{(1)}$	${ }^{(1)}$	1	${ }^{(1)}$	1	${ }^{(1)}$	${ }^{(1)}$	1	${ }^{(1)}$	1	${ }^{(1)}$	${ }^{(1)}$	4
Cleveland, Ohio:											147	157	1,185
Receipts------	91 63	77 54	109 83	100 77	96 72	93 75	72	69 55	60	76	123	135	${ }^{1} 927$
Receipts---7----	56 47	46 36	44	49 40	50 36	39 27	34 23	23	19	27	36	39	383
Stocker and feeder shipments.-	7	8	3	7	11	14	10	9	6	8	5	5	93
East St. Louis, Ill.:								336	375	480	451	432	4,831
Receipts	453 169	382 125	422 170	393 176	420 186	349 151	339 131	109	115	165	170	175	1, 842
Stocker and feeder shipments.	4	4	5	7	4	3	1	2	6	3	1	1	41
Fort Worth, Tex.: Receipts	43	44	68	50	38	20	21	27	42	44	45	44	488
Lecal slaughter	34	34	56	41	28	14	17	18	34	29	33	39	377
Stocker and feeder shipments.-	3	3	3	2	1	1	1	3	1	1	2	1	22
Indianapolis, Ind.:	234	166	191	184	238	242	244	210	195	259	337	376	2,876
Recal slaughter	169	114	139	116	146	152	136	122	- 113	155	204	226	1,792
Stocker and feeder shipments_	1	1	1	2	2	3	1	1	2	3	1	${ }^{(1)}$	18
Jersey City, N. J.:	54	42	41	45		30	29	44	35	57	51	51	513
Receipts--.-.-.---	54	42	41	45	34	30	29	44	35	57	51	51	513

${ }^{1}$ Less than 500.

Table 486.-Hogs: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, 1923-Continued.

Stockyards.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Thou-	Thou-	Thow-	Thox-	Thou-								
Kansas City, Mo.:	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sunds.	sands.	sands.	sands.	sands.	sands.
Receipts	352	289	297	331	330	231	200	221	323	397	328	316	3,615
Local slauginter--	276	239	261	277	278	173	140	123	197	280	258	219	2, 721
Stocker and feeder shipments. Oklahoma, Okla.:	22	19	18	20	16	11	6	30	60	46	24	11	283
Receipts.-	38	40	66	48	43	24	19	42	54	28	38	48	488
Localslaughter--	35	37	59	43	40	22	16	34	46	20	28	39	419
Stocker and feeder shipments.	1	1	3	2	1	1	(1)	2	2	2	2	(1)	17
Omaha, Nebr.: Receipts.	368	338	421	333	287	315	359	327	196	196	211	298	3,649
Localslaughter--	312	233	261	$24 \dot{5}$	227	238	261	223	157	166	185	272	2,780
Stocker and feeder shipments.-	1	1	1	2	2	1	1	1	1	1	1	1	14
Pittsburgh, Pa. :													
Receipts.....-.---	305	238	241	248	240	208	211	214	225	263	324	337	3, 054
Localslaughter.-	57	43	42	43	47	51	44	44	40	58	62	66	597
St. Joseph, Mo.:													2,457
Receipts..--.--	266	231	259	185	197	205 168	189	167	146 109	171	210 180	231 185	2, 457
Locals laughter--	218	190	212	152	173	168	154	116	109	144	180	185	2, 001
Stocker and feeder shipments.-	(1)	1	1	2	2	2	1	1	1	2	2	2	17
St. Paul, Minn.: Receipts	375	287	269	222	278	255	203	125	158	331	409	430	3, 338
Locatsianghter	292	228	225	191	237	219	173	108	130	268	321	336	2, 728
Stocker and feeder shipments.	14	14.	14	13	16	11	6	3	8	18	19	15	151
Sioux City, Iowa: Receipts	243	236	338	220	265	332	307	243	141	190	207	267	2, 989
Localslaughter--	152	153	203	133	153	166	148	141	96	129	140	167], 781
Stocker and feeder shipments. -	(1)	1	2	4	1	1	(1)	(1)	(1)	(1)	(1)		9

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division. Data on local slaughter as reported by stockyards.
${ }^{1}$ Less than 500.
Table 487.-Hogs: Farm price per 100 pounds, 15th of month, United States, 1910-1923.

Year beginning Nov. 1 .	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	ed average.
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls:"
1910-11	7.61	7. 16	7. 44	7. 04	6. 74	6. 17	5. 72	5. 66	5. 92	6. 54	6. 53	6. 99	6. 61
1911-12	5.86	5. 72	5. 74	5. 79	6. 94	6. 78	6.79	6. 65	6.64	7.11.	7.47	7.70	6. 43
1912-13	7.05	6. 89	6.77	7.17	7.62	7.94	7.45	7.61	7.81	7. 79	7.68	7.60	7. 39
1913-14	7.33	7.16	7.45	7.75	7.80	7.80	7.60	7.43	7.72	8.11	8.11	7. 43	7.60
Av. 1910-1913	6. 96	6.73	6.85	6.94	7.02	7.17	6. 89	6.84	7.02	7.39	7.45	7.20	7.01
1914-15	7. 00	6. 67	6. 57	6. 34	6.33	6. 48	6. 77	6. 80	6. 84	6. 61	6. 79	7. 18	6. 69
1915-16	6. 35	6. 02	6. 32	7.07	7.86	8. 21	8. 37	8. 21	8. 40	8. 61	9. 22	8. 67	7.61
1916-17	8.74	8. 76	9. 16	10.33	12. 32	13. 61	13. 72	13.50	13.35	14. 24		16. 15	12.10
1917-18	15.31	15.73	15. 26	15. 03	15. 58	15. 76	15.84	15.37.	15.58	16. 89	17.50	16. 59	16.78
1918-19	15.92	15. 82	15. 69	15. 53	16. 13	17. 39	18.00	17.80	19. 22	13. 30	15. 81	13. 88	16.60
1919-20	13.38	12. 66	13. 36	13. 62	13. 59	13. 73	13. 44	13.18	13. 65	13. 59	13. 98	13.57	13. 43
1920-21	11. 64	8.90	8.72	8.58	9: 13	7.96	7.62	7.22	8.09	8.73	7.51	7.31	8.52
Av. 1914-1920.	11.19	10.65	10.73	10.93	11.56	11.88	11.97	11.73	12.16	12. 57	12.36	11.89	11.53
1921-22	6. 68	6.52	6.89	8.24	9.08	8:83	9.05	9: 11	9. 12	8. 54	8.23	8. 33	8. 10
1922-23	7.78	7. 63	7. 77	7.65	7.52	7.45	7.13	6.37	6. 68	6.85	7.81	7.23	7.34
1923-24.	6. 66	6.30											

Division of Crop and Livestock Estimates.

Table 488.-Live hogs: Exports from the United States, 1910-1924.

Year ending June 30.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
	Num-	Num-	Num-	Num-	Num	Num	Num	Num	Num	Num-	Nur	Num-	Num-
	ber.	ber	ber.	ber.	ber.	ber.		ber	ber.	ber.	ber	ber.	ber.
	283	136	253	304	166	101	340	31	77	810	1,126	783	4,410
1910-11	484	103	25	41	29	170	67	18	758	1,989	1,807	3,060	8,551
1911-12	1, 823	1; 230	662	437	182	1,213	2, 100	2, 147	3, 508	2,335	2, 314	1,087	19, 038
1912-13	305	271	617	868	216	1, 710	2, 429	2, 597	2, 530	2, 256	1,223	310	15, 332
1913-14	174	130	101	123	173	72	1,401	1,304	1, 770	1,697	1,240	1, 937	10,122
1914-15	1, 488	426	286	211	526	113	73	229	570	1,476	1,536	865	7,799
1915-16	, 579	147	379	346	448	613	2, 116	4,299	9, 300	1,977	584	1, 260	22, 048
1916-17	2, 388	683	671	1,416	1, 170	2,437	3, 207	2, 520	2, 136	2,827	1,540	931	21, 926
1917-18	559	403	105	403	205	752	594	411	919	2, 028	1,267	1, 634	9, 280
1918-1	747	393	310	838	379	788	1,757	2,615	1,651	2,983	2,840	2, 089	17, 390
1919-20	755	413	1,117	1, 893	3,840	2,792	2, 093	2,279	3,520	4,934	6, 027	6, 444	36, 107
1920-21	5, 890	2, 959	4, 813	6, 718	4, 624	4,949	10,643	10,369	13, 129	13, 008	13, 987	12, 103	163, 192
1921-22	6, 006	8, 072	6,316	7, 581	10, 079	11, 774	10, 841	9, 711	8,805	8,389	6, 036	4, 145	97, 755
1922-23	4, 639	4, 840	4,305	6, 049	5, 221	4,780	6, 182	6, 228	9,061	8, 000	9, 304	7,490	76,099
1923-24	7,629	7,403	4,577	7,336	7,271	7,163							

Division of Statistical and Historical Research. Compiled from Monthly Summaries of Foreign Commerce of the United States, Bureau of Foreign and Domestic Commerce.

Table 489.-Hogs: Monthly average live weight at four markets, 1900-1923.
CHICAGO.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	$L b s$.	$L b s$.	Lbs.	Lbs.	Lbs.	$L b s$.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
1900	- 229	226	223	223	228	229	236	246	247	234	240	238
1901	227	222	222	226	227	231	229	238	248	236	218	202
1902	203	208	216	214	219	223	230	243	241	227	224	217
1903.	208	209	215	222	227	231	235	248	257	241	228	219
1904	206	205	206	208	214	221	226	239	244	230	232	228
1905	213	209	211	216	219	222	228	236	241	234	230	221
1906	217	215	218	221	226	226	231	241	248	237	229	225
1907	223	222	228	234	235	236	240	250	253	235	209	214
1908.	215	212	212	219	218	217	222	224	219	207	213	211
1909	203	204	206	212	216	219	225	232	232	227	225	214
1910	210	213	218	227	239	242	246	255	259	253	232	224
1911	226	230	239	241	242	236	233	239	224	212	208	213
1912	212	217	218	227	232	235	239	240	235	226	222	223
1913	226	230	240	242	242	244	243	233	222	209	207	213
Av. 1909-1913	215	219	224	230	234	235	237	240	234	225	219	217
1814	216	224	233	233	236	237	244	248	242	229	218	226
1915	223	224	231	233	233	231	238	246	235	204	187	190
1916	195	204	214	219	220	226	231	232	223	210	195	193
1917	199	204	209	213	217	225	232	233	231	212	209	211
1918	216	231	238	242	238	235	243	243	247	233	226	223
1919	- 228	232	230	230	232	233	242	251	254	237	226	224
1920	239	239	244	248	245	243	252	258	258	247	234	230
Av. 1914-1920	217	223	228	231	232	233	240	244	241	225	214	214
1921	234	234	241	242	239	241	250	259	262	243	225	226
1922	231	236	244	246	244	247	259	268	265	243	231	234
1923	239	241	247	249	242	242	250	256	254	247	234	231

EAST ST. LOUIS.

1910	178	165	171	176	198	206	184	193	215	205	205	191
1911	188	195	202	197	170	180	180	185	186	173	169	159
1912	158	162	167	165	191	196	174	181	196	182	178	176
1913	182	180	170	179	181	183	185	183	182	182	178	169
1914	169	177	174	180	174	177	174	174	173	169	175	166
1915	170	174	176	175	175	180	180	186	183	165	169	'174
1916	172	173	171.	171	178	180	181	176	168	162	184	172
1917	175	179	175	171	175	173	177	175	182	181	181	185
1918	190	190	189	186	181	180	182	174	174	178	182	188
1919	189	184	173	176	182	182	181	183	181	176	183	181
1920.	186	188	182	190	185	180	182	186	184	177	176	181
Av. 1914-1920	179	181	177	178	179	179	180	179	178	173	179	178
1921	211	. 210	200	198	198	201	204	206	196	196	205	207
1922	209	198	197	188	194	190	200	196	170	189	193	203
1923.	211	206	198	197	193	200	250	205	201	192	200	207

Table 489.-Hogs: Monthly average live weight at four markets, 1900-1923-Con.
KANSAS CITY.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	Lbs.	Lbs.	$L b s$.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	$L b s$.	Lbs.	Lbs.
1900	230	218	210	207	213	210	206	219	214	213	218	218
1901	213	210	207	207	210	205	187	187	185	199	179	173
1902	172	176	188	194	196	198	205	209	208	217	223	224
1903	224	220	218	223	215	211	213	216	232	223	211	220
1904	222	222	216	210	211	208	206	210	206	195	192	194
1905	203	203	215	215	212	205	203	210	207	208	213	214
1906	219	214	210	212	209	204	204	204	211	214	215	212
1907	220	221	221	219	212	207	209	212	216	208	199	206
1908	216	215	208	213	206	197	195	191	189	181	194	199
1909.	202	204	199	201	198	198	200	203	192	194	198	198
1910	205	202	208	209	210	209	206	206	217	213	217	223
1911	226	225	223	223	213	197	188	201	195	185	182	182
1912	189	199	195	205	203	203	205	204	199	198	206	205
1913	213	212	213	216	208	206	202	193	190	185	178	178
Av. 1909-1913.	207	208	208	211	206	203	200	201	199	195	196	197
1914	183	193	200	195	197	193	196	192	192	191	186	188
1915	201	204	201	204	204	197	199	202	198	192	194	203
1916	204	199	203	204	202	202	204	188	181	171	172	183
1917	189	189	192	191	193	196	190	180	183	195	198	206
1918	218	221	213	218	213	208	206	191	172	173	185	194
1919	200	201	191	194	193	194	194	193	181	175	187	189
1920	223	227	229	228	211	213	221	226	222	216	218	225
Av. 1914-1920.	203	205	204	205	202	200	201	196	190	188	191	198
1921	236	236	233	229	224	211	223	225	216	222	216	223
1922	226	215	213	220	215	211	216	217	211	206	208	212
1923	222	221	221	215	207	216	222	228	225	206	212	218

OMAHA.

1900	257	237	243	236	239	239	234	240	249	245	253	252
1901	234	231	232	232	234	242	231	236	246	250	235	212
1902	209	211	220	228	230	232	233	242	253	259	262	255
1903	242	235	236	247	248	253	254	265	273	278	268	265
1904	250	231	235	236	232	233	232	244	252	251	267	205
1905.	256	236	239	236	237	241	233	238	245	251	252	248
1906	234	226	228	230	232	232	233	246	253	254	248	246
1907	244	237	244	252	250	250	254	260	263	260	244	249
1908	233	228	230	233	228	226	227	229	226	222	238	237
1909.	231	223	227	233	232	229	236	239	240	242	248	234
1910	229	. 226	231	235	249	249	250	259	278	284	274	202
1911	245	243	254	255	254	245	242	253	265	265	243	225
1912	217	222	222	231	233	234	232	238	241	235	235	238
1913	234	229	238	241	244	245	247	244	249	233	219	218
Aจ. 1909-1913.	231	229	234	. 239	242	240	241	247	255	252	244	235
1914	224	232	238	242	247	250	255	261	268	265	253	242
1915	241	238	244	252	256	248	249	264	274	265	252	230
1916	216	216	224	228	232	236	243	247	249	249	224	211
1917	218	223	226	229	233	239	245	245	256	257	260	243
1918.	240	243	249	242	246	248	261	260	264	264	240	227
1919	229	235	236	245	238	244	245	255	275	281	271	249
1920.	242	242	250	251	247	247	256	263	272	271	260	248
Av. 1914-1920.	230	233	238	241	243	245	251	256	265	265	251	236
1921	248	246	252	260	259	255	260	274	288	274	244	232
1922.	235	238	247	255	257	258	267	280	286	276	249	238
1923	241	244	253	260	255	256	260	263	269	272	262	247

Division of Statistical and Historical Research. Figures for Chicago, Kansas City. and Omaha prior to 1920 , and for East St. Louis prior to 1921 , compiled from yearbooks of stockyard companies. Subsequent figures compiled from reports of packer and shipper purchases, reporting servico of the Livestock, Meats, and W ool Division.

Table 490.-Hogs: Monthly farm price per 100 pounds, 15th of month, by States, 1923.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	Iuly.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { A ver } \\ & \text { age. } \end{aligned}$
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Doll
Maine	8. 90	9. 20	8. 50	8.50	8. 50	8. 00	8. 40	8. 30	8. 10	8. 20	8. 30	8. 00	8
New Hamp		9. 20	8. 40	8. 60	8. 00	7.60	7. 70	7. 20	8.50	8. 50	8. 80	8. 20	8.
Vermont	8.10	8. 20	8. 10	8. 00	7.70	7.00	8. 00	7. 20	8. 10	7. 80	7. 20	7. 20	7.72
Massachusetis	9.30	9. 09	8. 70	9. 10	8. 00	9. 00	8.00	8. 10	8.50	8. 20	8. 70	8. 50	8.59
Rhode Island.	9. 60	10. 20	9.00	9.30	9.50	9.00	9. 10	8. 00	7.80	8.50	8. 60	8. 60	8.93
Connecticut	9.00	7. 50	8. 00	7. 50	8.50	8. 10	8. 00	$8: 00$		8. 80	8. 10	8.30	8. 16
New York	9. 00	9. 30	8. 70	8.30	8.00	7.60	7.70	7.80	8. 20	8. 60	8. 50	8. 20	8. 32
New Jersey	10. 00	9. 80	10.70		9. 00		9. 00	9. 10	8. 50		10.30	9. 60	9.56
Pennsylvan	9. 40	9. 70	9. 00	8. 70	8.80	8.00	7.80	8.00	8.90	8.80	8. 80	8.30	8. 68
Delaware	10.20	10.00	9.10	10.00			8.60	9. 00	9.90	10. 00	11. 00	10.60	9.84
Maryland	9. 20	8. 40	8. 80	8.40	8. 20	7.50	7.80	7.80	9.00	8. 20	7.90	7. 70	8. 24
Virginia.	8. 80	8. 70	8. 40	8. 90	8. 00	7.80	7. 60	7.80	8. 50	8.50	8. 20	7. 50	8.22
West Virg	8. 60	8. 70	8. 50	8.50	8. 30	8. 20	7.80	8. 10	8.10	8.30	7. 90	8. 00	8.25
North Carol	10. 20	10. 00	9. 70	9. 40	9.70	9. 20	9. 20	8.90	9. 80	10. 10	9.50	9. 30	9.58
South Carols	8.70	8.40	8. 40	7.80	8. 30	8. 00	8.20	8.10	8.30	8.70	8.80	8. 60	8. 36
Georiga	7. 30	7. 30	7.10	7.40	7.00	7.10	7. 20	6. 90	7.30	7. 50	7.40	7. 20	7.22
Florid	7. 00	6. 60	6. 90	6. 70	7. 00	6. 60	6. 70	6. 30	6. 90	7. 00	6. 80	6. 30	6.73
Ohio	8. 20	8. 20	8. 00	7.80	7. 60	6. 50	7. 10	7.40	8. 30	7. 60	6. 70	6. 40	7.43
Indiana	8. 00	7. 90	7. 80	7.80	7. 40	6. 40	6. 90	7. 40	8. 50	7. 50	6. 60	6. 30	7.38
Illinois	7.80	7. 70	7. 60	7.60	7. 10	6.10	6. 70	7. 20	8. 20	7.30	6. 50	6. 20	7.17
Michigan	7. 90	8. 30	7. 80	7.90	7. 40	6. 70	7.00	7. 20	8. 10	7.60	6. 90	6. 40	7.43
Wisconsin	7.70	7. 70	7. 60	7. 50	7. 10	6. 20	6. 30	6. 50	7.60	7. 10	6.30	6. 00	6. 97
Minnesota	7.60	7. 40	7.30	7. 30	6. 90	6. 00	6. 10	6. 50	7. 50	6. 60	6. 10	5. 70	6. 75
Iowa.	7.70	7. 50	7. 40	7.40	7.00	6. 00	6. 40	6. 60	7. 90	7.c0	6. 20	6. 10	6.83
Missouri	7.60	7.50	7.40	7. 20	6. 80	6. 00	6.30	6. 50	7.60	6. 70	6. 10	5. 80	6. 79
North Dak	6. 80	6. 80	7.00	6. 70	6. 50	5. 80	5. 40	5. 50	6. 30	5. 90	5. 50	5. 30	6.12
South D	7. 40	7. 20	7. 10	7. 10	6. 50	5. 50	5. 90	6. 20	7. 30	6. 60	6. 00	5. 60	6. 53
Nebrask	7. 40	7. 20	7.00	7. 00	6. 60	5. 50	6. 00	6. 30	7.60	6. 70	6. 00	5. 80	6. 59
Kansas.	7.30	7. 20	7. 20	7. 20	6. 70	6. 00	6. 30	6.40	7. 70	6. 80	6. 00	5. 70	6.71
Kentucky	8. 10	7. 70	7.60	7.40	6. 80	6.10	6. 70	6.90	7.90	7.20	6. 70	6:20	711
Tennessee	7.90	7.70	7.50	7.40	7.30	6.30	6.80	6.70	70	7. 10	6.60	6.30	7.11
Alabama	7. 10	7.30	7. 10	7. 40	7. 20	7. 10	7.00	7.00	7. 20	7: 60	7. 30	7. 20	7.21
Mississippi	7. 20	7.00	7. 20	6. 80	6. 70	6. 40	6. 30	8. 20	6. 90	6. 70	6. 50	6. 50	6.70
Louisiana	7. 20	7. 30	6. 80	6. 80	6. 50	7.00	7. 20	7. 30	8. 00	7.60	6. 30	6. 80	7.07
Texas	7. 10	7.00	6. 70	6. 60	6. 60	6. 20	6.40	6. 20	6.90	6. 8	7.00	80	6. 69
Oklahoma	7.00	6. 90	6. 80	6. 80	6. 30	5. 60	6. 10	6. 10	7.00	6.40	6. 00	5.60	6. 38
Arkansas	6. 80	6. 60	6. 60	6. 40	6. 50	6. 00	5. 90	5. 90	6. 30	6. 40	6. 50	6. 10	6.33
Montana	7. 60	7. 60	7.60	7.70	7.60	7. 50	7.50	7.10	7.40	7.60	6. 50	6. 60	7.36
W yoming	7.10	7.30	7.40	7.20	6. 80	6. 00	6. 70	7. 20	7. 50	6. 70	6. 50	6. 00	6. 87
Colora	7.30	7.20	7.10	7.10	6. 50	6. 00	6. 30	6. 50	7.70.	7.00	6.50	6.10	6. 78
New Mex	7.90	7.10	7. 10	7.10	7. 20	6. 10	6. 50	6: 90	7.00	7.30	6. 50	6.90	6.97
Arizon	9. 00	8. 50	8. 60	8. 90	8. 40	8. 50	7. 50	7.10	7.50	8. 60	8. 40	8. 00	8.25
Utah	7.30	7.60	7.40	7.30	7.30	8. 90	6. 90	6. 90	6.80	7. 40	7. 30	6. 50	7.12
Nevad	8.90	9. 00	9. 00	8.70	8. 40		8. 10	7.70		8.60	8. 00	7.90	8. 43
Tdaho	7. 60	7.80	7.90	7.80	7.80	6: 60	6. 40	6. 90	7.50	7. 40	6. 70	6. 00	7.20
shi	8.50	8. 60	8. 80	8. 40	8. 20	7. 50	7. 40	7.80	8.80	8.80	8. 00	7. 50	8. 19
Oregon	8.10	8. 30	8. 70	8.40	8. 40	7. 70	7.50	8. 20	7.80	7.70	8.10	7. 29	8.01
Californi	9.30	9. 00	8.70	8.60	8.40	8. 30	8. 30	8. 30	8. 70	8. 60	8.60	7. 50	8.52
United Stat	7.77	7.65	7.58	7.45	7.13	6. 37	6. 68	6.85	7.	7.23	6.66	6.39	7.13

Division of Crop and Livestock Estimates.
Table 491.-Hogs: Corn and hog ratios, ${ }^{1}$ United States, 1910-1993.

Calendar year.	Jan.	Febs.	Mar.	Apr.	May.	June.	July.	Aug.	Sept:	Oct.	Nov.	Dec.	Average.
	Bush.	Bush.	Bush.	Bush.	Bush.	Bush.	Bush.	Bush.	Bush.	Bust.	Bush.	Bush.	Bush.
1910	12. 2	12.0	13.6	14. 4	13.3	12.9	122	11. 7	13.0	14.2	15. 1	14. 9	13.3
1911	15.3	14.4	13.7	12.1	10.7	9.8	9.4	9.9	9.9	9.3	9.3	9.2	11.1
1912	9.1	8. 8	8. 6	9.0	8.4	8.1	8.3	9.1	10.1	12.0	13. 2	14.1	9.9
1913	13. 6	13.9	14.4	14.4	12. 7	12.3	12.1	11. 1	10.2	10.4	10.5	10.3	12. 2
1914	10.8	11.3	11.2	10.9	10.3	9.9	10.1	10.3	10.3	10.0	10.4	10.2	10. 5
1915	9.5	8.6	8.4	8.5	8.7	8.7	8. 7	8.5	9.2	10.8	10.6	10. 1.	9.2
1916	9.8	10.5	11.4	11. 5	11.4	11.0	10. 9	10.6	11. 1	10.4	10.1	9.8	10.7
1917	9.9	10.5	11.5	10.3	8.8	8.3	7.4	7.7	9.0	10.1	11. 2	12.0	8.7
1918.	11.2	10.3	10.1	10.2	10.3	10.0	9.9	10.1	10.8	11. 0	11.5	11.3	10.6
1919.	11.1	11.3	11.2	11.1	10.8	10.2	10.5	10.2	9.3	9.7	9.2	9.2	10.3
1920	9.3	9.2	8.9	8.4	7.6	7.1	7.8	8. 5	10.1	13.0	15.0	13.2	9.8
1921	13.5	13.5	14.3	13.0	12. 5	11.0	13.1	14. 8	14.0	15.9	16. 0	15.2	14.0
1922	15.4	16. 5	15.8	15. 7	15.0	14.7	14.7	13.7	13.4	13.4	12.8	11.7	14.4
1923.	11.1	10.9	10.2	9.8	8.8	7.9	7.5	7. 7	8.5	8. 8	8.2	9.0	9.0

[^258]1 Number of bushels of corn required to buy 100 pounds of live hogs, based on averages of farm prices of corn and of hogs for the month.

Table 492.-Hogs: Monthly average price per 100 pounds at Chicago, 1901-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Weighted average.
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls	Dolls.	Dolls.	Dolls.	Dolls.	Dotls	Dolls.	Dolls.	Dolls.
1961	5.25	5. 35	5.85	5. 90	5.80	5. 90	5. 90	5.95	6. 60	6.10	5.65	5. 95	5.85
1902	6. 20	6. 10	6.35	6.95	7.00	7.35	7.65	7.15	7. 55	7.00	6. 39	6. 20	6.85
1003	6. 40	6. 75	7.30	7.20	6.45	6. 00	5. 55	5.45	5. 85	5. 55	4. 65	4. 45	6.00
1904	4.90	5.15	5.35	5.10	4.65	5.05	5. 40	5. 30	5. 75	5.40	4.80	4.50	5. 15
1905	4.65	4.85	5. 15	5.45	5.40	5.35	5.65	5.95	5. 50	5. 25.	4. 85	4.90	5. 25
1906	5. 40	6. 00	6. 30	6. 55	6. 45	6.55	6. 65	6. 25	6. 25	6. 40	6. 20	6. 25	6. 25
1907	6. 60	7.05	6. 65	6. 65	6. 50	6. 10	6.05	6. 00	6. 00	6. 15	4. 90	4.70	6. 10
1908	4. 40	4. 45	6.00	5.85	5. 50	5. 80	6.50	6. 55	6.85	5. 95	5.80	5.65	5. 70
1909	6.10	6.35	6. 70	7.20	7.30	7.65	7.85	7.75	8.20	7.75	8.00	8.35	7.35
1910	8. 55	9.05	10.55	9. 90	9.55	9.45	8. 75	8. 35	8. 90	8. 50	7. 60	7. 65	8.90
1911	7.95	7. 40	6. 85	6. 25	6. 00	6.25	6.70	7. 30	6. 90	6. 45	6.30	6. 40	6.70
1912	6. 25	6. 20	7. 10	7.80	7.65	7. 50	7.65	8. 25	8.45	8. 75	7.75	7. 40	7.55
1913	7.45	8.15	8.90	9.05	8. 55	8. 65	9. 05	8. 35	8. 30	8. 20	7.75	7. 70	8. 35
AV.	7.26	7.43	8.02	8.04	7.81	7.90	8.00	8.00	8.15	7.93	7.48	7.50	7.77
1914	8.30	8.60	8.70	8.65	8.45	8.20	8.70	9.00	8.85	7.65	7.50	7. 10	8.30
1915	6. 90	6.80	6. 75	7. 30	7.60	7.60	7.75	6. 90	7. 25	7.90	6.65	6. 40	7.10
1916	7.20	8.20	9. 65	9.75	9.85	9.70	9.80	10. 30	10. 70	9.80	9. 60	9.95	9. 60
1917	10.90	12.45	14. 80	15. 75	15. 90	15. 50	15. 20	16. 90	18. 20	17. 15	17. 40	16. 85	15.10
1918	16. 30	16. 65	17.10	17.45	17.45	16. 60	17. 75	19. 00	19. 65	17.70	17.70	17. 55	17.45
1919	17.60	17.65	19. 10	20. 40	20.60	20.40	21. 85	20. 00	17. 45	14. 35	14. 20	13.60	17.85
1920	14.97	14.55	14.94	14. 79	14. 28	14. 68	14.84	14. 74	15. 88	14. 17	11.83	9. 55	13.91
AV. 1914-1920	11.74	12. 13	13.01	13. 44	13.45	13. 24	13.70	13.83	14.00	12.67	12. 13	11.57	12.76
1921	9.41	9,42	10.00	8. 50	8.35	8. 19	9.69	9.26	7.61	7.72	7.01	6.92	8.51
1922	8.02	9.90	10. 43	10.31	10. 48	10.33	9.70	8.01	8.75	8.80	8. 07	8.18	9.22
1923	8. 29	8. 02	8.18	8.08	7. 53	6. 92	7.04	7.65	8.35	7. 42	6.85	6.87	7.55

Division of Statistical and Historical Research. Figures prior to 1920 from Drovers Journal Yearboak; subsequent figures compiled from reports of packer and shipper purchases of the reporting service of the Livestock, Meats, and Wool Division.
Table 493.-Hogs: Monthly average and top price per 100 pounds, at six markets, 1923.

CHICAGO.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	
Butcher, bacon, and shipper hogs: Medium to choice-	Dellars.	Dotlars.	Dollars.	Dotlars.		Dollars.	
Medieavyweight (250 pounds up)	8.21	7.96	8.15	8.03	- 7.46	6.94	Dotars. 7.79
Mediumweight (200-250 pounds)	8. 36	8.14	8.32	8.26	7.67	7.06	7.97
Common to choice							
Lightweight (150-200 pounds)	8.55	8.31	8.44	8.26	7.68	7.02	8.04
Light lights (130 to 150 pounds)	8.51	8.22	8.22	7.72	7.25	6.82	7.79
Packing sows: Smooth (250 pounds up)	7.54	7.18	7.49	7.14	6.67	6.16	7.03
Rough (200 pounds up)	7.23	6.87	7.24	6. 85	6. 24	5. 85	6. 71
Pigs (130 pounds down), medium to choice	8.16	7.68	7.57	7.05	6.58	6. 04	7.18
Stoek pigs (130 pounds down), common to							
Bulk of sal	8.29	8.06	8.21	8.13	7.53	6.91	7.86
Top.	9.00	8.85	8.85	8.75	8.40	7.75	19.00
Kind and grade.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver- age. July $1-$ Dec. 31.
Butcher, baeon, and shipper hogs: Medium to choice-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Daltars.	Dollars.
Heavyweight (250-350 pounds)	7.18	7.91	8.50	7.64	7.04	7.03	7.55
Mediumweight ($200-250$ pounds)	7. 40	8.23	8.80	7.68	7.04	6.97	7.69
Common to choice-							
Lightweight (160-200 pounds) Light lights (130-160 pounds)	7.39 7.17	7.98 7.80	8. 52	7.41 6.95	$6.76:$ 6.25	6. 74 6.46	7.46 7.14
Light lights (130-160 pounds) - Packing hegs:	7.17	7.80	8. 23.	6.95	6.25	6.46	7.14
Smooth.--	6. 26	6. 61	7.62	6. 86	6. 59	6. 60.	6. 76
Rough	5. 92	6.22	7.21	6.59	6.32	6. 38	6.44
Slatighter pigs (130 pounds down), medium to choice.	6.74	7.34	7.22	6.26	5.56	5.87	6. 50
Feeder and stocker pigs (70-130 pounds), common to choice							
Bulk of sales.	7.11	7.70	8.30	7.39	6.86	6.876	7.37
Top-----------	8. 10	9. 70	9.75	8. 55	7.65	7.40	19.75

${ }^{1}$ Top price for six months.

Table 493.-Hogs: Monthly average and top price per 100 pounds, at six markets, 1923-Continued.
EAST ST. LOUIS.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	A verage Jan. 1June 30.
Butcher, bacon, and shipper hogs: Medium to choice-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.		
Heavyweight (250 pounds up)	8.39	8. 04	8.30	Dollars.	Dollars.	Dollars.	Dollars.
Mediumweight (200-250 pounds)	8.54	8.25	8.40	8.26	7.69	7.14	8. 91
Common to choice -							
Lightweight (150-200 pounds)	8.69	8.45	8.46	8.32	7. 64	6. 96	8. 69
Light lights (130-150 pounds)	8.56	8.39	8.26	7.88	7.07	6. 64	7.80
Packing sows: Smooth (250 pounds up)	7.31	6. 99	7. 29	6.80	6.11	5.81	6. 72
Rough (200 pounds up)	7.15	6. 85	7.17	6. 68	5.97	5. 51	6. 58
Pigs (130 pounds down), medium to choice	7.69	7.45	7.04.	6. 72	6. 34	6. 19	6. 90
Stock pigs (130 pounds down), common to choice	7.69	7.34	6. 44	6.11	5. 63	5. 50	
Bulk of sales	8. 57	8. 28	8.41	8. 26	7. 73	7.17	8.07
Top	9.15	8. 90	8.80	8. 70	8.40	7.85	19.15
Kind and grade.	July	Aug.	Sept.	Oct.	Nov.	Dec.	Averago July 1- Dec. 31.
Butcher, bacon, and shipper hogs: Medium to choice-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Heavyweight (250-350 pounds)	7. 34	8.06	8.47	7.65	7.05	7.04	D.60
Mediumweight (200-250 pounds)	7.54	8.41	8. 76	7.75	7.04	7.03	7.76
Common to choice-							
Lightweight (160-200 pounds)	7.54	8.38	8.47	7.35	6.68	6. 76	7. 53
Light lights (130-160 pounds)	7.21	7.94	7. 99	6. 94	6.35	6. 42	7.14
Packing hogs:							
Smooth	5.91	6. 49	7.30	6.48	6.16	6.24	6.43
Rough	5. 77	6.27	7.05	6. 27	5.95	6.05	6. 23
Slaughter pigs (130 pounds down), medium to choice.	6.85	7.35	7.50	6.55	5.95	6.12	6. 72
Feeder and stocker pigs (70-130 pounds), common to choice.	6.15	6.25	6.05	6.04	5. 51	5. 71	5.95
Bulk of sales.	7. 62	8.53	8. 74	7.53	6. 90	6. 92	7.71
	8.40	9.80	9.85	8. 55	7. 55	7.60	19.85

FORT WORTH.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	A verage Jan. 1June 30.
Butcher, bacon and shipper hogs:Medium to choice-							
Heavyweight (250 pounds up)	8.17	8.01	8. 03	-7.86	7.33	7.04	7. 74
Mediumweight (200-250 pounds)	8. 04	8.02	8. 06	7.89	7.37	7.07	7.74
Common to choice -							
Lightweight (150-200 pounds)	7.91	7.89	7.92	7.76	7. 11	6. 76	7. 56
Light lights (130-150 pounds)	7.71	7.65	7.54	7.32	6. 84	6. 58	7.27
Packing sows:							
Smooth (250 pounds up)	7. 09	6.98	6. 90	6.78	5.98	5.49	6. 54
Rough (200 pounds up)	5. 50	5.81	5. 78	5. 72	5. 24	4.87	5. 49
Pigs (130 pounds down), medium to choice .-.	6.40	6.24	5.67	5. 54	5.42	5.42	5. 78
Stock pigs (130 pounds down), common to choice \qquad							
Bulk of sales	8.14	8.01	8. 02	7.87	7.36	7.06	7.74
Top	8.65	8.50	8.40	8.25	7.90	7.75	18.65
Kind and grade	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average July 1Dec. 31.
Heavyweight ($250-350$ pounds)	7.66	8. 12	8. 55	7.44	6.98	7.16	7.65
Medium weight ($200-250$ pounds)	7.76	8.24	8.63	7.53	7.04	7.20	7. 73
Common to choice-							
Lightweight (160-200 pounds)	7.40	7.95	8.44	7. 27	6.61	6.70	7.40
Light lights (130-160 pounds).	7.07	7.02	7. 40	6.74	6.05	6.09	6.73
Smooth	5. 96 5.24	5.91 5.12	6. 22 5.36	6.27 5.30	6.07 6.07	6.02 5.12	6.08 5.20
Slaughter pigs (130 pounds down), medium to choice	5. 87	5. 26	5.36 5.94	6. 05	5.13	5.22	5. 58
Feeder and stocker pigs ($70-130$ pounds), common to choice							
Bulk of sales.	7. 74	8.12	8. 46	7.41	6.98	7.10	7.64
	8. 35	9.35	9.65	8.30	7.65	7.70	19.65

${ }^{1}$ Top price for six months.

Table 493.-Hogs: Monthly average and top price per 100 pounds, at six markets, 1923-Continued.

KANSAS CITY.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{aligned} & \text { Average } \\ & \text { Jan. 1- } \\ & \text { June 30. } \end{aligned}$
Butcher, bacon and shipper hogs: Medium to choice-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Heavyweight (250 pounds up)	-8.16	7.89	8.07	7.90	- 7.36	Dollars.	- 7.69
Mediumweight (200-250 pounds)	8.25	8.01	8.14	7.96	7.42	6. 81	7.78
Common to choice- Lightweight (150-200 pounds)							
Lightweight (150-200 pounds)	8.21	8.03	8.08	7.79	7.19	6. 58	7.65
Light lights (130-150 pounds) --	8. 19	7.99	7.90	7.45	6. 90	6. 24	7.44
Packing sows, smooth (250 pounds up) .-.-.-	7. 38	7. 02	7. 32	6.95	6. 18	5. 82	6. 78
	7.22	6.85	7. 20	6. 84	6.08	5. 72	6.65
Pigs (130 pounds down), medium to choice							
Stock pigs (130 pounds down), common to choice	7.81	7. 30	7.05	7.03	6. 43	6. 19	6.97
Bulk of sales	8. 20	7.98	8. 10	7. 90	7.33	6. 72	7.70
Top	8.60	8.35	8.55	8.30	7.95	7. 25	18.60
Kind and grade.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average July 1Dec. 31.
Butcher, bacon and shipper hogs: Medium to choice-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Heavyweight (250-350 pounds)	7.22	7.87	8.27	7.35	6.76	6.75	7.37
Mediumweight (200-250 pounds)	7.25	7.99	8.48	7.33	6. 72	6.70	7.41
Common to choice ${ }_{\text {Light }}$							
Lightweight (160-200 pounds)	7. 02	7.83	8.18	6.88	6.32	6. 30	7.09
Light lights (130-160 pounds)	6. 69	7.51	7.62	6.44	5. 86	5. 94	6. 68
Packing hogs: Smooth	6.05	6. 28	6. 94	6.37	6.27	6.30	6.37
Rough	5. 89	6. 00	6.43	6.05	5. 98	6.06	6.07
Slaughter pigs (130 pounds down), medium to choice							
Feeder and stocker pigs (70-130 pounds), com-							
mon to choice...---	6. 12	6. 23	6. 30	5.39	4.79	4.99	5. 64
Bulk of sales.	7.14	7.81	8. 25	7.14	6.64	6.62	7. 27
Top	7.60	9.25	9.40	8.05	7.30	7. 20	19.40

OMAHA.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{aligned} & \text { Average } \\ & \text { Jan. 1- } \\ & \text { June } 30 \end{aligned}$
Butcher, bacon, and shipper hogs: Medium to choice-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	ollars.
Heavyweight (250 pounds up)	8.07	7.82	7.98	7.76	7.13	6.50	7.54
Mediumweight (200-250 pounds)	8.11	7.86	7.97	7.78	7.19	6. 58	7. 58
Common to choice- Lightweight (150-200 pounds) Light lights ($130-150$ pounds)	8.07	7.86	7.88	7.70	7.14	6.48	7.52
Packing sows:							
Smooth (250 pounds up)	7.39	7.12	7.40	6. 93	6. 19	5. 68	6. 78
Rough (200 pounds up)	7.19	6.92	7.22	6.75	6.03	5. 39	6.58
Pigs (130 pounds down), medium to choice .--							
Stock pigs (130 pounds down), common to choice.	7.49	7.03	6.62	6.35	5.51	4.97	6.33
Bulk of sales.	8. 06	7.83	7.96	7.75	7.14	6.41	7.52
Top	8.45	8.15	8.25	8.10	7.80	7.05	18.45
Kind and grade.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average July 1Dec. 31.
Butcher, bacon, and shipper hogs: Medium to choice-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Heavyweight (250-350 pounds)	6.83	7.60	-8.12	7.15	Dollars.	6.72	Dollars. 7.17
Mediumweight ($200-250$ pounds)	6.98	7.77	8.32	7.17	6.61	6.71	7.26
Common to choice- Lightweight (160-200 pounds) \qquad Light lights (130-160 pounds) \qquad	6.79	7.57	8.10	7.00	6. 50	6.45	7. 07
Packing hogs: Smooth	6.08	6.74	7.55	6. 79	6. 26	6. 42	6. 64
Rough	5. 76	6. 38	7.32	6. 61	5. 86	6. 24	6. 36
Slaughter pigs (130 pounds down),'medium to choice.							
Feeder and stocker pigs ($70-130$ pounds), common to choice.	4. 92	5.43	6.10	5.82	5.23	5. 06	5. 43
Bulk of sales.	6.62	7. 27	7.94	7.00	6.45	6.59	6.98
Top.	7.60	9.10	9.35	7.85	7.15	7.15	${ }^{1} 9.35$

Table 493.-Hogs: Monthly average and top price per 100 pounds, at six markets, 1923-Continued.

SOUTH ST. PAUL.

| Kind and grade. | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Division of Statisticad and Historical Research. Compiled from data o the reporting service of the Livestock, Meats, and Wool Division.

- Ctassification of livestock changed July 1, 1923.
${ }^{1}$ Top price for six months.
Table 494.-Hogs: Trend of average farm prices and average market prices per 100 pounds, at Chicago, 1910-1923.

Calendar year.	$\begin{array}{\|c} \text { Weight- } \\ \text { ed } \\ \text { aver- } \\ \text { age } \\ \text { farm } \\ \text { price. } \end{array}$	Average market price at Chicago.	Price relatives $1913=100$.		Calendar year.	$\begin{gathered} \text { Weight- } \\ \text { ed } \\ \text { aver- } \\ \text { age } \\ \text { farm } \\ \text { price. } \end{gathered}$	Average market price at Chicago.	$\begin{aligned} & \text { Price relatives } \\ & 1913=100: \end{aligned}$	
			Farm price.	Market price.				Farm price.	Market price.
	Dollars.	Dollars.				Dollars.	Dollars.		
1910	8.12	8. 90	109.1	106.6	1917	13. 41	15. 10	180.2	180.8
1911	6.29	6.70	84.5	80.2	1918	15. 82	17.45	212.6	209.0
1912	6.64	7.55	89.2	90. 4	1919	16. 04	17.85	215: 6	213.8
1913	7.44	8.35	100.0	100.0	1920	12.85	13. 91	172: 7.	166.6
1914	7.51	8.30	100. 9	99. 4	1921	7.85	8.51	105. 5	101.9
1915	6. 56	7.10	88.2	85.0	1922	8.32	9.22	111.8	110.4
1916	8.11	9.60	109.0	115.0	1923	7.11	7.55	95.6	90.4

Division of Statistical and Historical Research. Farm prices from Division of Crop and Livestock Estimates; market prices compiled from data of the reporting service of the Livestock, Meats, and W ool Divistion.

Table 495.-Hogs: Prices of live hogs in Chicago, and of wholesale and retail prices of certain pork products, 1913-1923.

Calendar year.	Priceof livehogs,Chicago.(Per100 lbs).	Hams.				Bacon.				
		Smoked, wholesale.		Retail. ${ }^{1}$		Short clear sides wholesale.			Retail.	
		$\left.\begin{array}{c\|c} \text { Chicago, } \\ \text { (Price } \\ \text { per } \\ \text { pound.) } \end{array} \right\rvert\,$	$\begin{array}{c\|c} \text { Per cent } & \text { In } 1 \\ \text { of } \\ \text { ine hog } & \text { in } \\ \text { price. } & \text { p } \\ \text { pou } \end{array}$	In leadagcities. (Price per. pound.)				$\begin{aligned} & \text { Per cen } \\ & \text { of } \\ & \text { live. he } \\ & \text { price. } \end{aligned}$	ingead-In litice per pound.in	$\begin{gathered} \text { Per oent } \\ \text { of } \\ \text { live hog } \\ \text { price. } \end{gathered}$
	Dollars.	Cents. P	Per cent.	Cents.				Per cer	Cents.	Per cent.
1914	8.30	16.7	201	27.3				15	27.5	331
1915	7.10	15.3	215	26.1				16	26. 9	379
1916	9.60	18.5	193	29.4				15	28.7	299
1917	15. 10	25.2	167	38.2				16	41.0	272
1918	17.45	31.8	182	47.9		4		16	52.9	303
1919	17.85	34.3	192	53.4				16	55.4	310
1920	13. 91	33.4	240	55.5				14	52.3	376
1921	8.51	26.8	315	48.8				15	42.7	502
1922	9.22	26.5	287	48.8.				15	39.8	432
1923	7.55	21.2	281	45. 5		3		15	39.1	518
1923.										
January	8.29	20.2	244	45.1		4		15	39.8.	480
February	8.02	20.3	253	45.0		1 12		15	39.4	491
March	8.18	20.6	252	45.0		0 13		16	39. 2	479
April	8.08	21.2	262	45. 1		8 \| 12		15	39.1	484
May	7.53	21.1	280	45.3		21		15	39.1	519
June	6. 92	21.1	305	45: 4		5		16	39. 0	564
July.	7.04	21.7	308	46.0		$3{ }^{1}$		15	39.1	555
August	7.65	22.3	292	48.3		51		14	39. 2	512
September	8.35	22.3	267	46. 6		58		14	39.4	472
October-	7.42	21.9	295	46.4		512		16	39.3	531
November	6.85	20.9	305	45.5		64		18	38.5	562
December	6.87	20.5	298	44.7		1 11		16	37.5	546
Calendar year	Fresh pork.					Lard.				
	Pork loins, wholesale.		Pork chops, retail.			Prime contract, wholesale.			Retail.	
	Chicago, (Price per pound.)	Per cent of live hog price.	In leading cities. (Price per' pound.)	$\begin{array}{c\|c} \text { A. } & \text { Per cent } \\ \text { of } & \text { of } \\ \text { live hog } \end{array}$		New York. (Price per pound.	Per cent live hog price.		In leading cities. (Price per pound.)	Per cent live hog price.
	Cents.	Per cent.	Cents.	Per cent.		Cents. 11.0	Per cent. 132		Cents.	Per cent.
1913	14.9	178				15.815.6				
1914	15. 4	186	22.0 1 20.3		265		10.4		125	188208
1915	14.3	201			286	$\begin{array}{r} 9.4 \\ 13.5 \end{array}$		132	14.8	
1916	16.2	- 169	9 $\begin{aligned} & 22.7 \\ & 31.9\end{aligned}$		236			141	17.527.6	188
1917	24.4	162			211	$\begin{array}{r} 13.5 \\ 21.7 \end{array}$		144		
1918	29.5	5169	939.0		223	25.5		146	33.3	183
1919	31.5	176	6 1 $\begin{aligned} & 42.3 \\ & 42.3\end{aligned}$		237	29.020.0		162	$\text { 36. } 9$	207212
1920	30.7	221			304			144		
1921	22.5	264	34.9 33.0		410	11.111.5		130	18.017.0	212184
1922	21.7	235			358		163			
1923---	18.0	238	- 30.4		403	12.3			17.7	234
1923.			$7 \quad 29.3$			11.8			17.4	
January---	15. 5	187			353			142		210
February	15. 6	195	28.7 28.3		358	$\begin{aligned} & 11.8 \\ & 126 \end{aligned}$		147	$\begin{aligned} & 17.4 \\ & 17.4 \end{aligned}$	217213217
March	14.8	181			346			154		
April.	15.3	$3 \quad 189$	28.4		351	12.0		149	17.5	217
May	19.3	186 231 277	30.0 29.9 2.9		398	$\begin{aligned} & 11.6 \\ & 11.7 \end{aligned}$		154	17.317.2	230249
June.	16.0				432			169		
July	19.5	5 277 0 301	31.2 32.1		443	11.311.6		161	17.1	224
August.	23.0				420			152		
September	27.3	327 0 283 228	36.7		440	12.8		153	17.9	$\begin{aligned} & 214 \\ & 251 \\ & 276 \\ & 275 \end{aligned}$
October.	21.0		34. 2		461	13. 3		179	18. 6	
November	15. 6		$-\quad 28.9$		422	14. 1		206	18. 9	
December------	13.3	194	25.5		386	13.2		192	18.9	

[^259]Table 496.-Hogs: Monthly slaughter under Federal inspection, 1907-1923.

Calendar year.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Total.
1907	3, 409, 531	2,920, 505	2, 665, 112	2, 667, 170	3,317, 281	3, 240, 786	2,928, 806	2, 300, 785	1,988, 210	2, 218, 979	2,134, 622	3, 093, 590	32, 885, 377
1908	4, 961, 421	3, 889, 864	3,111, 115	2, 304, 271	3, 087, 525	3, 093, 889	2, 415, 570	2, 231, 182	2, 230, 684	3, 368, 060	3, 802, 740	4, 146, 780	38, 643, 101
1909	3, 875, 858	2, 653, 412	3, 012, 659	2, 342,999	2, 629, 418	2, 718, 569	2,097, 241	1,821, 934	1,955, 445	2, 397, 039	2,800, 080	3,090, 242	31, 394, 896
1910	2, 692, 780	2, 323, 582	1, 891, 000	1,778, 410	2, 206, 472	2, 612, 116	1, 988, 403	1,824, 006	1, 563, 846	1, 850, 765	2,455, 654	2, 826, 749	26, 013, 783
1911	2, 742, 393	2, 632, 830	2,972, 692	2, 589, 454	3, 007, 507	3,462, 063	2, 560, 236	2, 031, 911	2, 171, 798	2, 719, 927	3, 639, 269	3, 602, 875	34, 132, 955
1912	4, 146, 732	3, 301, 955	2, 700, 401	2, 411, 926	2, 843, 878	2, 835, 470	2, 353, 889	1, 875, 336	1,701, 088	2, 454, 931	3, 020, 226	3, 406, 795	33, 052, 727
1913	3, 708, 086	2, 843, 947	2, 333, 602	2, 486, 664	3, 045, 926	3, 056, 948	2, 557, 054	2, 268, 333	2,132, 735	2, 681, 399	3, 165, 206	3, 918, 685	34, 198, 585
1914	3, 489, 384	2, 722, 763	2, 547, 752	2, 311, 724	2, 569, 035	2,925, 635	2, 259, 540	1,799, 032	1, 907, 397	2, 681,852	3,047, 127	4, 270, 600	32, 531, 841
1915	4, 273, 788	3,885, 177	3, 445, 787	2, 563, 081	2, 868, 655	3, 245, 822	2, 493, 385	2, 040,506	1, 890,484	2, 493, 831	3, 738, 879	5, 441, 833	38, 381, 228
1916	5, 387, 333	4, 275, 567	3,430, 145	2, 853, 320	3, 274, 941	3,162, 569	2, 530, 249	2, 517, 259	2, 287, 330	3, 327, 029	4,770, 913	5, 267, 042	43, 083, 703
1917	4,628,613	3, 484, 014	2,984, 959	2,645, 077	3, 083, 518	2, 684, 844	2, 411, 436	1,704, 852	1,321, 674	2,195, 291	3, 042, 827	3,722, 599	33, 909,704
1918	3, 960, 892	3, 998, 084	3, 925, 986	3, 290, 489	3, 092, 325	2, 782, 792	2, 940, 491	2, 283, 083	1,980, 008	3, 018, 084	4, 280, 126	5, 661, 890	41, 214, 250
1919	5, 845, 696	4, 266, 317	3, 443, 330	3, 207, 671	3, 743, 463	3, 728, 230	2, 884, 325	1,949, 413	1,997, 149	2, 685,711	3, 270, 172	4, 790, 353	41, 811, 830
1920	5, 078, 521	3, 103, 530	3,481, 680	2, 590, 208	3, 584, 781	3, 566, 071	2, 643, 772	2, 190, 821	1,978, 602	2, 486, 940	3, 328, 633	3, 985, 125	38, 018, 684
1921	4, 347, 306	3,798, 687	3, 047, 424	3, 003, 290	3, 274, 114	3, 618, 152	2, 820, 616	2, 530,459	2, 422, 350	2, 866, 133	3, 447, 027	3, 806, 797	38, 982, 355
1922	3, 284,704	3, 479, 907	3, 350, 214	2, 945, 757	3, 716, 170	4, 046, 304	3, 104, 322	2, 887, 755	2, 747, 467	3, 331, 587	4, 318, 005	5, 201, 437	43, 113, 629
1923	5, 134, 029	4, 230, 575	4, 837, 791	4, 179, 438	4, 325, 130	4, 302, 533	3, 983, 435	3, 556, 039	3, 212, 350	4, 327, 951	5, 340, 678	5, 903, 759	53, 333, 708

Bureau of Animal Industry.

Table 497.-Pork: Cold storage holdings in United States, 1916-1923.

Year.	Jan. 1.	Feb. 1.	Mar. 1.	Apr. 1.	May 1.	June 1.	July 1.	Aug. 1.	Sept. 1.	Oct. 1.	Nov. 1.	Dec. 1.
	1,000	1,000	1,000	1,000	${ }^{1,000}$	1,000	1,000	1,000	1,000	1,000	1,000	1,000
1916	420, 736	556, 369	${ }_{666,263}$	646, 097	617, 668	615, 386	643, 959	641,667	550,013.	${ }_{430,762}$	${ }_{352,006}$	
1917	559,041	642, 755	701, 258	662, 323	675, 782	694, 521	729, 185	732, 258	596, 907	435, 238	328, 883	379, 293
1918	563, 600	725, 085	876, 378	967,040	995, 786	1, 009, 882	892, 871	844, 365	720, 374	579, 991	517, 310	560, 728
1919	722, 556	968, 715	999, 756	1,004, 109	999, 288	987, 853	959, 387	882, 448	770, 504	691, 915	568, 921	513, 982
1920	597, 63	776, 763	903, 350	968, 639	960, 706	959,338	982, 454	933, 028	807,011	616,44]	472, 798	426,677
1921	533, 980	669, 832	:837, 158	842, 906	802, 190	801, 387	799, 261	727, 569	623,967	471,901	359, 656	355, 589
1922	415,096	484, 898	547, 450	591, 223	594, 241	635, 655	707, 385	683, 451	619, 671	483,096	395, 171	419,498
1923	570, 510	688, 924	783, 680	864, 674	940, 071	908, 771	908, 505	866,159	754, 262	613, 143	505, 946	577, 496

Division of Statistical and Historical Research.

PORK PRODUCTS.

Table 498.—Monthly statement of the livestock and meat situaiion, 1923.
HOGS, PORK, AND PORK PRODUCTS.

Item.			Unit.	Jan.	Feb.	Mar.	Apr.	May.	June.		
Inspected slaughter hogs.----Average live weight				5, 134	4, 231	4, 838	4, 179	4,325	4,303		
		227	228	228		224	228				
	Average dressed weight			Pounds -----		177	178	177	176	171	175
Lard per 100 pounds live weight.		1,000 pounds		907, 645	752, 492	856, 386	737, 545	739, 251	751, 610		
		16	17	18	17	17	18				
Storage, 1st of month:				1,000 pounds		72, 278	120, 196	154, 377	189, 115	213, 224	210, 645
Cured			do-------	498, 232	568, 728	629, 303	675, 559	726, 847	698, 125		
				48, 808	56, 266	59, 101	66, 743	85, 251	84, 530		
Exports: ${ }^{1}$											
Fresh pork		-----do-------		6,612	3,772	3,123	4,178	2,601	3,093		
Cured pork		---- do		78, 240	68,351	69,766	71,291	67, 051	62, 450		
Canned pork		----do		131	87	167	218	547	449		
Sausage				879	603	1,084	1,002	884	941		
Lard				111, 157	91, 536	112, 141	88,601	95, 343	65, 788		
${ }_{\text {Imports }}$ Recoipts of hosh ${ }^{2}$		--- do-------		106	43	171	141	108	71		
				5,306	4, 492	4,927	4,318	4,524	4, 204		
Stocker and feeder shipments ${ }^{2}$.-.--				66	64	69	76	67	63		
Prices per 100 pounds: Average cost for slaughter ...		Dollars		8.35	8.22	8.17	8.04	7.44	83		
At Chicago-Live hogs, medium weight				8.36	8.14	8.32	8.26	7.67	7.08		
At eastern markets- Fresh pork loins, 10-14 pounds											
		do		15.38	14. 88	14.49	14. 46	16.88	14.78		
Shouldera, skinned Picnics, 6-8 pounds		-..-.do-..-....-		13. 28	13.08	12. 26	11.78	11.44	10.43		
		------do-.------		11. 32	11. 72	10.18	10.00	10. 34	8.82		
Putts, Boston style----				15.15	15. 16	14.14	13.40	12. 50	11.80		
Bacon, breakiast-		-...-do.------		26.93	26.17	24.04	23.50	23.40	22.86		
Hams, smoked, 10-12 pounds Lard, tierces											
		20.85	20. 63	20. 52	21.07	21.62	21.88				
		68, 227	12. 62	12.85	12. 67	12.45	12.16				
Lard, tierces			Thousands.-								
Item.	Unit		July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.		
Inspected slaughter hogs A verage live weight	Thousands.-		3,983	3, 556	3, 212	4, 328	5,341	5,904			
	Pounds		232	236	229	219	216	218	${ }^{3} 225$		
A verage dressed weight.	-do.		177	181	173	165	164	166	${ }^{3} 173$		
Total dressed weight (earcass)	1,000 pounds		705, 586	644, 603	555, 094	714, 848	876, 726	979, 788	9, 221, 574		
Lard per 100 pounds live weight	Pounds			17	16	14	15	16	316		
Storage, ist of month:Fresh pork											
	1,000 pounds		217, 074	195, 002	148, 753	98, 795	71,640	82, 068	4147, 764		
Cured pork			691, 431	671, 157	605, 509	514, 348	434, 306	495, 428	${ }^{4} 600,748$		
${ }_{\text {Exports }}{ }^{\text {Lard }}$	------do.-.-.---		123, 896	143, 579	115, 860	72, 608	35, 225	35, 317	${ }^{4} 77,265$		
Cured pork			3,492	4,183	3, 215	3,728	7,946	8,748	$\begin{array}{r}54,691 \\ 870 \\ \hline 31\end{array}$		
	----do-......--		67,640	73, 504	82, 069	76, 669	74,712	78,988	870, 731		
Canned poSausage..-Lard.-.--			242	178	153	153	230	246	2, 801		
			1,268	874	766	777	715	942	10,735		
			70, 230	85, 082	85, 194	77,646	76, 020	100, 712	1,059, 510		

${ }^{1}$ Including reexports. $\quad{ }^{2}$ Public stockyards. ${ }^{3}$ W eighted average. $\quad{ }^{4}$ Simple average, not total.

PORK PRODUCTS-Continued.

Table 498.—Monthly statement of the livestock and meat situalion, 1923-Contd. HOGS, PORK, AND PORK PRODUCTS-Continued.

Item.	Unit.	July.	Aug.	Sept.	Oet.	Nov.	Dec.	Total.
Imiports: Fresh pork	1,000 pounds	47	37	89	182	60	40	1, 101
Receipts of hogs ${ }^{1}$---.--	Thousands.-	4,181	3,714	3,607	4,816	5,416	5,825	55, 330
Stocker and feeder shipments ${ }^{1}$ \qquad	do	34	62	102	101	70	46	820
Prices per 100 pounds:								
Average cost for slaughter. \qquad	Dollars....--	6.91	7. 78	8.49	7.38	6.83	6.82	${ }^{2} 7.59$
At Chicago-Live hogs, medium weizht.............	do.	7. 40	8. 23	8.80	7.68	7.04	6.97	${ }^{3} 7.83$
At eastern marketsFresh porkloins, 10-14 pounds.	do	17. 20	18.69	24. 77	20.10	13.96	13.76	${ }^{3} 16.61$
Shoulders,								
		10.64	11.32	12.99	13.10	11. 20	10. 30	11. 82
pounds--.--	do	${ }^{4} 10.10$	9. 68	11.17	10.69	10. 13	9. 42	${ }^{3} 10.30$
Butts, Boston style	do	12.38	12. 62	15.78	15.96	12. 64	11.44	${ }^{313.58}$
Breon, breakiast	do	22.91	23.13	23.38	22. 33	21.88	20.79	${ }^{2} 23.44$
Hams, smoked, 10-12 pounds	do	22.17	22. 30	22. 83	22. 33	21.50	20.67	${ }^{3} 21.53$
Lard, tierces .-.-	do.	12.08	12. 47	13.86	14.39	14.53	14. 56	${ }^{3} 13.10$
Hogs on farms, Jan. 1---	Thousands							

Division of Statistical and Historical Research. Inspected slaughter from reports of the Bureau of Anima! Industry. Weights and storage boldings from reports of the Division of Statistical and Historical Research. Experts and imports from the Bureau of Foreign and Domestic Commerce. Receipts, shipments, and prices compiled from data of the reporting service of the Livestock, Meats and Wool Division and number on farms from Division of Crop and Livestock Estimates, Bureau of Agricultural Economies.
${ }^{1}$ Public stockyards. ${ }^{2}$ Weighted average. ${ }^{3}$ Simple average, not total. ${ }^{4}$ Boston only reported.
Table 499.—Lard: Cold storage holdings in United States, 1916-1923.

Calendar year.	Jan. 1.	Feb. 1.	Mar.1.	Apr. 1.	May 1.	June 1.	July 1.	Aug.	Sept.1.	Oct. 1.	No	Dec.
	63, 304	92, 342	111, 897	97, 237	108, 731	85, 113	87, 127	95, 991	82, 023	71,570	56, 929	
191	80, 977	86, 208	88, 460	65, 179	61, 640	72, 365	95, 197	112, 249	102, 172	69, 929	37, 095	44, 367
	54, 539	59, 310	65, 355	89, 854	103, 373	106, 194	107, 871	102, 411	104, 668	90, 398	76, 124	81,676
1912	104, 274	138, 353	125, 410	112, 469	112, 409	83, 096	92, 132	100, 478	87, 947	76, 456	66, 036.	49, 147
1920	62, 614	97, 649	111, 975	132, 903	141, 819	152,307	193, 316	191, 531	170, 774	109, 258	47, 329	36,683
19	59, 319	83, 549	117, 690	123, 614	152, 428	181, 992	204, 301	194, 490	149, 886	85, 115	48, 850	42, 001
1922	47,541	61, 202	61, 297	86, 031	96, 055	123, 798	154, 254	143, 084	119, 755	75, 338	36, 750	32,506
1923.	48,808	56, 286	59, 101	66,743	85, 251	84, 530	123,8	142, 579	115, 850	72,608	35, 225	35, 317

Bivision of Statistical and Historical Research.
Tabel 500.-Pork: Exports from the United States, by months, 1910-192.4.

$\begin{gathered} \text { Year } \\ \text { end- } \\ \text { ing } \\ \text { Jun9 } \\ 30 . \end{gathered}$	July.	$\begin{aligned} & \text { Au- } \\ & \text { gust. } \end{aligned}$	Sep-tember.	October.	No-vember.	$\underset{\text { cem- }}{\text { De- }}$ ber.	January.	$\begin{gathered} \text { Febru- } \\ \text { ary. } \end{gathered}$	March.	April.	May.	June.	Total.
	${ }^{\text {65, }} 364$.			55, 362					60, 599	34, 227			
1910-11.	60, 18	67, 351		49,	50, 136	71, 512	75, 067	79, 351	85, 076	87, 486	100, 768	96,562	879,457
1911-12-	83, 514	82, 387	107, 082	79,551	77, 114	97, 067	93, 601	102, 591	104, 742	85, 895	92, 609	65,	1071,953
1912-13-	72, 295	77, 105	77, 964	64, 987	65, 696	79, 611	91, 808	106, 956	96, 771	82, 836	83, 993	76,476	
1913-14-	81, 962	82, 726	73, 628	77, 309	79, 717	86, 597	101, 683	73, 958	70, 046	60, 783	66, 067	67,436	921,912
19	53,	54,	59,	73	73,	73 ,	106, 325	118	16	01	89, 263	121,772	1,106,180
1915-16-	95, 029	90, 128	100, 207	113,464	07, 744	143, 262	133, 222	162,	119, 963	133,			
1916-17	76, 567	93,101	106, 329	95, 287	113, 579	158, 723	199, 397	122, 571	167,	137, 77	27, 193	103,093	
1917-18	45, 502	71, 295	79, 460	, 23	99, 189	9, 33.	92, 864	14, 347	,	85, 763'	281, 33		
1918-19	52, 767	70, 647	114, 555	132, 237	123, 266	205, 601	197, 965	236, 421	341, 29	348, 040	180,890	400,	
1919-20-	240, 261	179, 503	117, 762	117, 943	131, 663	144, 799	137, 438	147, 133	185, 348	87, 591	134, 208	137-330	1,761,679
1920-21-	94, 117	67, 701	102, 470	123, 102	132, 698	187, 091	161, 695	151, 361	143,085	118, 192	111, 040	128,9	1,521,493
1921	171, 555	174	13,	99, 185	90, 240	106, 449	27, 613	38, 047	24,411	90,125	9, 440	119	
1922	133, 426	127, 66	120, 124	125, 716	124, 574	155, 944	196, 139	163, 745	185, 197	164, 288	165, 543	131,780	1,794,143
1983-24-1	141, 665,	162, 94	170, 63	158, 19	158, 90	188, 6							

[^260]Table 501.-Bacon: Exports from the United States, by months, 1910-1924.

$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { June } 30 . \end{gathered}$	July.	Aug.	Sepi.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
	1,000	1,000	1,000	1,000	1,000	1.000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lb	lbs.	I 10 s	lbs.	lus.	libs.	bis.	ibs.	ibs.	lbs.	lbs.	lbs.	libs.
1900-10	18, 112	105,061	15, 335	13, 422	16, 685	14,978	16, 343	11, 474	10, 755	6,342	5, 528	8,028	152, 163
1910-11	10, 394	13, 746	12, 642	9, 437	8, 646	14, 435	12,876	10, 752	11,038	16,091	17,008	19, 110	156, 675
1911-1	17,006	18, 857	25, 038	16, 368	15, 864	18, 104	18, 152	16, 954	17,468	17,934	16,270	10, 559	208, 574
1912-1	16, 518	18, 688	15, 360	i3, 681	13, 870	16, 567	19,819	20,325	20, 88.0	17,051	14, 423	13, 812	200, 994
1913-14	16,555	19, 551	16, 358	17, 968	16, 688	19, 367	20, 814	17, 518	13, 818	12, 603	11, 618	11,306	193, 964
1914	10,905	14, 405	17, 596	13, 838	18, 825	21, 221	27, 156	37, 177	66, 828	41, 692	33, 598	43, 477	346, 718
1915-16	38, 503	37, 579	43, 371	53,410	45, 876	55, 472	50, 087	63, 810	41, 892	53, 443	58, 343	38, 028	579, 809
1916-17	30, 974	43, 954	49, 223	41, 284	48, 785	73, 932	91, 812	51, 993	67, 502	57, 310	60, 670	50, 606	667, 151
1917-18	19, 462	28, 311	35, 501	29,363	43, 571	42, 021	53, 851	50, 004	155, 604	127, 400	142, 012	87, 294	815,294
1918	119, 894	68, 858	41, 540	58, 132	72, 862	126, 437	102, 679	114, 840	151, 086	141, 814	67,664	172, 441	238,247
1919-20	117, 679	84, 151	57, 209	56, 462	65, 288	58, 983	77, 501	75,891	75, 003	24, 350	50, 413	60, 731	308,607
1920-21	31, 523	23, 333	41, 372	49, 839	57, 981	63, 784	43, 202	31, 637	35, 349	32, 852	38, 484	35, 012	483, 298
1921-22	48, 172	45, 340	44, 719	23, 601	15, 642	21,366	26, 108	30, 794	31, 180	20. 490	19, 070	24, 0571	350, 549
1922-23	32, 584	32, 591	30, 448:	28, 850	26, 170	39, 486	43, 352	36, 299	40, 549	34, 790	34, 525	28, 641	408, 282
1923-24	27,581	33, 004	45, 161	46,689	39, 027	47, 131							

Division of Statistical and Historical Research. Compiled from reports of the Bureau of Foreigu and Domestic Commerce.

Table 502.-Lard: Exports from the United Staies, by months, 1910-1924.

Year ending June 30.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
					1,000	,							
				lbs.	l $b s$ s.	lbs.	los	l3s.	$l b s$.	lbs		lbs.	lbs.
1909-10	28, 639	33, 906	26, 203	27, 287	27, 529	34, 619	39, 686	38, 878	32, 574	17, 213	26, 418	24, 976	362, 328
1910-11	31, 658	34, 171	26, 987	24, 625	27, 856	38,790	40, 688	47, 595	55, 043	48, 726	54, 685	45, 284	476, 108
1911-12	35, 446	34, 912	53, 670	43, 003	40, 829	52, 548	45, 465	54, 143	54, 797	40, 179	44, 900	32, 364	532,256
1912-13	32, 536	33, 142	43,273	36, 746	40, 157	45, 591	44, 281	61, 211	49, 226	42, 114	48, 787	41,961	519,025
1913-14	39, 567	41, 025	37, 383	39, 466	42, 661	48, 497	56, 432	35, 916	38,091	29,890	35, 101	37, 519	481, 4.58
1914-15	24, 987	25, 292	28, 538	48, 241	42, 053	36, 046	55, 520	56, 133	67, 259	38, 336	22, 293	30, 834	475, 532
1915-16	21,555	25, 146	28, 774	28, 256	30, 776	46, 404	34, 040	41, 262	37, 146	39, 017	48, 773	45, 862	427, 011
1916-17-	26, 088	22, 891	32, 707	21, 242	31, 470	46, 162	65, 091	39,558	59, 081	45, 602	30, 621	24, 257	444, 770
1917-18	9,364	23, 553	22, 145	9, 639	30, 742	13, 069	20,706	31,683	68, 721	53, 885	79,751	29, 243	392, 506
1918-19	68,600	51, 921	33, 268	46, 025	27, 285	37, 724	37, 850	68, 973	97, 239	86, 556	55, 001	114, 329	724, 771
1919-20	68, 192	49, 033	36, 960	41, 017	42, 106	63, 646	38,824	36,645	69, 430	40, 758	55, 544	45, 070	587, 225
1920-21	47, 061	31, 021	46, 326	54, 174	57, 316	90, 080	76, 185	91, 841	82, 617	53, 276	48, 604	67, 656	740,157
1921-22	83, 329	87, 411	104, 741	56, 886	51, 854	64, 542	73, 194	75, 520	64, 377	42,459	50, 817	57. 249	812,379
1922-23	66, 058	68, 907	61, 120	66, 333	62, 321	78, 596	107, 786	89, 055	109, 187	85, 475	93, 199	64,605	952, 642
1923-24	69, 478	83, 758	83, 630	76, 378	74, 251								

Division of Statistical and Eistorical Rosearch. Compiled from reports of the Bureau of Foreign and Domestic Commerce.

Table 503.—Pork, fresh: Exports from the United States, by countries, 1910-1923.

Year ending June 30.	France.	United Kingdom.	Other Europe	Total Europe.	Bermuda.	Canada.	Pana ma.	$\begin{aligned} & \text { Mex- } \\ & \text { ico. } \end{aligned}$	Philippine Lslands.	Cuba.	Other countries.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	tbs.	los.	los.	lbs.	lbs.	$l b s$.	$t b s$.	$l b s$.	lòs.	lbs.
1909-10.		395		395	26	78	231	1	51	235	23	1,040
1910-11		75	44	119	31	207	440	(1)	48	89	421	1,355
1911-12		968		968	15	891	565	(1)	76	82	1	2,598
1912-13		758		758	50	580	685	4	257	99	25	2, 458
1913-14		1,354	10	1,364	13	232	687	1	153	151	67	2,668
1914-15	324	2, 832	22	3, 178	72	46	370	4	77	137	24	3,908
1915-16	2, 270	26, 403	165	28, 838	103	32, 962	380	7	22	338	356	63, 006
1916-17	920	23, 787		24, 707	115	24, 833	398	8	60	178	137	50,436
1917-18.	642	8,235	522	9,399	9	11, 396	44	4	43	372	123	21, 390
1918-19.	38	2, 036	707	2,781	26	16, 328	41	10		379	79	19, 644
1919-20.	59	3,146	10, 551	13,756	37	7,158	171	14	22	373	5,694	27, 225
1920-21	268	15,099	18, 130	33, 497	36	17, 058	394	89	44	653	5, 304	57,075
1921-22		4, 697	6, 162	10,859	48	12, 281	353	93	60	2, 147	70	25, 911
1922-23.	1	22,995	3, 056	26, 052	83	14, 588	500	82	157	2, 204	106	43, 772

[^261]970 Yearbook of the Department of Agriculture, 1923.
Table 504.-Pork, pickled: Exports from the United States by countries, 1910-1923.

Year cading June 30.	Belgium.	Norway.	United Kingdom.	Other Europe.	Total Europe.	Canada.	Panama.	New-foundland and Labrador.	Haiti.	Cuba.	Other countries.	Total
	1,		1,060				1,000	1,000		1,000	1,000	
	lbs.	lbs.	lbs.	lbs.	lbs.	los.	lbs.	lbs.	lbs.	libs.	lobs.	los.
1905-10	139	703	8,679	1, 424	10,945	8, 085	1,424	4,445	1,257	5, 830	8, 046	40, 032
1910-11	159	787	8, 754	2,397	12, 097	9, 084	1, 233	5, 001	1, 360	7, 383	9,571	45, 729
1911-12	348	278	13, 501	1,466	15, 593	11, 157	1,420	6,571	2, 335	9, 989	9, 256	56, 321
1912-13	458	261	14, 620	1,881	17, 220	9, 437	1,438	5, 673	2, 626	9,141	8,214	53, 749
1913-14	166	355	5,572	1,408	7,501	12, 826	1, 620	7,912	1, 513	4, 091	10, 080	45,543
3914-15		174	€, 534	11, 466	18, 174	8,500	1, 304	5, 244	636	3,875	7, 923	45, 656
1915-16	1, 014	825	13, 124	5,445	20, 408	17,835	I, 116	7,070	949	7,847	8, 236	63, 461
1916-17	163	325	6, 059	878	7,425	16, 929	618	6,262	772	7,700	7,287	46, 993
1917-18		$\left.{ }^{1}\right)$	1,903	474	2,377	13, 689	277	3,221	481	8, 935	4,242	33, 222
1918	1,209	956	2,981	1,515	6,661	8,189	105	5,706	625	6,694	3, 524	31, 504
191-20	554	2, 753	3,142	4. 243	10,692	14,500	229	5,560	790	5, 775	4,097	41, 643
1920-21	698	336	2,908	3, 039	6,981	13, 644	212	4,147	929	2,458	4,915	33, 286
1921-22	628	1, 258	4,914	3, 071	9,871	10, 857	248	4,756	1,223	1, 319	5,236	33, 510
1922-23.	328	1,568	5,853	5, 378	13, 127	13, 349	329	5, 266	1,270	1,379	6,214	40,934

Division of Statistical and Fistorical Research. Compiled from Foreign Commerce and Navigation of the United States, 1916-1918; Monthiy Summaries of Foraign Commerce, June 1920, 1922, and 1923; and records of the Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Less than 500 pounds.
Table 505.-Pork, canned: Exports from the United States by countries, 1910-1923.

Year ending June 30.	France.	Italy.	United Kingdom.	Other Europe.	Total Europe.	$\begin{aligned} & \text { Can- } \\ & \text { ada. } \end{aligned}$	Panama.	Mexico.	Cuba.	$\begin{aligned} & \text { Argen- } \\ & \text { tina. } \end{aligned}$	Other countries.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
09-10.	${ }^{2} 128$.		${ }_{\substack{\text { llbs. } \\ 3,156}}$	$\stackrel{\text { libs. }}{258}$	${ }_{\text {l }}^{\text {l }}$ 3, 53.	s.	los. 9	${ }_{\text {l }}^{\text {l }}$ - ${ }_{23}$	${ }^{\text {lbs. }}$	${ }^{\text {l }} \mathrm{l}$ ¢ 122	lbs. 326 	
1910-11.	51	14	3,109	202	${ }_{3}^{3}, 376$	1	37	65	16	103	413	4,011
1911-12	104	5	4, 205	230	5, 244	5	32	57	91	163	248	5, 840
1912-13	33	2	3, 211	229	3,475	85	63	54	27	214	230	4, 148
1913-14..	28	1	2, 369	184	2, 582	10	19	25	92	233	113	3,074
1914-15	257	4	3,757	61	4,	45	27	11	77	80	325	4,644
1915-16	645	3	7, 843	324	8,815	28	3	18	123	128	496	9,611
1916-17	1,103	259	3, 355	109	4,826	393	4	74	51	52	496	5,896
1917-18	2,423	139	2, 044	${ }^{(1)}$	4, 606	132	10	31	73	53	289	5, 194
191	950	389	2, 244	1,040	4,623	245	4	67	13	33	288	5,273
1919-20	159	179	2,318	161	2, 817	51	1	31	79	30	253	3, 262
1920-21			829	54	883	61		45	33	24	73	1,119
1921-22	9		1,924	15	1,948	77	1	39	33	61	104	2, 263
1922-23.	6	-------	2,383	16	2,405	142	10	29	26	24	125	2, 761

Dirision of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918; Monthly Summaries of Foreign Commerce, June 1920, 1922, and 1923; and records of the Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Less than 500 pounds.
Table 506.-Bacon: Exports from the United States, by countries, 1910-1923.

Year ending June 30.	Belgium.	France.	Italy.	Netherlands.	Norway.	United Kingdom.	Other Europe.	Total Europe.	Canada.	Cuba.	Other countries.	Total.
	1,	1,000	1,	1,000	1,000		1,000		1,	1,000		
	lbs.	los.	lbs.	$l b s$.	153.	lb	lbs.		lbs			
1309-10	2, 206	23	1,605	1,065	330	133, 995	956	140, 180	1, 838	7,046	3, 099	152, 163
1910-11	3, 547	1,711	6, 529	4,351	3, 784	116, 405	9,750	146, 077	1,691	6,224	2, 683	156, 675
1911-12	4,503	9, 418	8, 156	7,271	4, 560	147, 449	15, 598	196, 955	3, 342	4, 823	3, 454	208, 574
1912-13	9, 141	2,097	11, 781	7,639	4, 054	138, 133	11, 426	184, 271	6, 868	6, 658	3,197	200, 994
1913-14	5, 110	197	9, 732	1,718	5, 459	132, 820	11,881	166, 917	11, 083	13, 734	2, 230	193,964
1914	5, 737	44, 712	1,629	8,285	11,518	201, 043	48, 896	321, 820	10, 025	13, 360	1,513	346, 718
1915-16	60, 161	52, 501	10,532	12, 846	22, 387	339, 341	26, 611	524, 379	39, 591	13, 543	2, 296	579, 809
1916-17	65, 220	77, 036	19,378	10, 625	8,296	346, 758	3, 95.2	531, 265	118, 710	14, 915	2, 262	667, 152
1917-18	68, 670	73, 532	74, 460		25	533, 135	1,057	750, 879	42, 837	20, 294	1, 284	815,294
1918-19	109, 591	220, 391	80, 552	22, 477	18, 182	657, 048	93, 0301	1, 201, 871	26, 186	9,154	1,036	1, 238, 247
1919-20	37,654	27, 997	13, 398	122, 084	12, 869	411, 285	134, 116	760, 303	21, 639	19,567	2,158	803, 667
1920-21	29, 448	5, 369	14, 991	43, 421	6, 681	244, 716	104, 312	449, 538	12, 718	25, 302	1,740	489, 298
1921-22.	16, 743	9, 363	2, 481	20, 847	9, 147	184, 703	69, 993	313, 277	11, 022	23, 462	2, 788	350, 549
1922-23.	23, 215	7, 758	9, 259	30, 972	12,269	188, 274	99, 009	370, 756	9.925	24, 830	2, 771	408, 282

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918; Monthly Summaries of Foreign Commerce, June, 1920, 1922, and 1923; and records of the Bureau of Foreign and Domestic Commerce.

Table 507.-Hams and shoulders: Exports from the United States, by countries, 1910-1923.

Year ending June 30.	Belgium.	France.	Nether- lands.	United Kingdom.	Other Europe.	Total Europe.	Canada.	Cuba.	$\begin{aligned} & \text { Mex- } \\ & \text { ico. } \end{aligned}$	Panama.	Other countries.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	lbs.	lbs.	lbs.	$l b s$.	$l b s$.	lbs.	lbs.	$l b s$.	$l b s$.	$l b s$.
1909-10.	5, 305	8	109	130, 303	364	136, 089	2,557	2, 879	903	940	3,517	146, 885
1910-11.	9, 092	26	226	135, 433	720	145, 497	2, 918	3, 876	640	1,103	3, 675	157, 709
1911-12.	15, 018	258	256	169, 675	1,295	186, 502	6, 282	5, 085	938	1, 088	4, 149	204, 044
1912-13.	5, 822	316	131	134, 017	560	140, 846	6, 785	6, 002	782	1, 029	4, 101	159, 545
1913-14.	4, 081	122	95	146, 007	412	150, 717	4,007	5,638	350	761	4,409	165, 882
1914-15	6,596	609	1,689	179, 377	2, 839	191, 110	1,515	6, 842	249	623	3, 362	203, 701
1915-16.	2, 793	7, 898	570	251, 026	591	262, 878	2, 674	11, 493	463	976	3,725	282, 209
1916-17		25, 864	1	217, 435	2, 028	245, 328	5, 617	9,868	821	630	4,393	266, 657
1917-18		18, 436		372, 723	842	392, 001	14, 287	9,990	465	221	2, 608	419, 572
1918-19	32, 583	112, 813	4,020	415, 620	83, 703	648, 739	6,974	7,641	951	181	2, 754	667, 240
1919-20	6, 489	29,870	6,112	182, 563	25, 146	250, 180	5, 669	14, 185	833	332	4, 257	275, 456
1920-21	6, 891	1,473	1, 832	134, 038	1, 662	145, 896	8, 441	12, 489	1, 055	434	3, 697	172, 012
1921-22	9, 690	894	196	233, 566	2, 438	246, 784	10, 664	9, 071	890	473	3, 760	271, 642
1922-23	13, 979	2,142	937	259, 430	4,182	280, 670	19, 536	12, 784	1,028	631	4,538	319, 187

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918; Monthly Summaries of Foreign Commerce, December 1920, 1922, and 1923; and records of the Bureau of Foreign and Domestic Commerce.

Table 508.-Lard: Exports from the Uni'ed States, by countries, 1910-19.23.

Year ending June 30.	Belgium.	Denmark.	Germany.	Italy.	Nether- lands.	United Kingdom.	Other Europe.	Total Europe.	Canada.	Cuba.	Other countries.	Total.
	1,00		1				1,000	,	1,000	1,000	1,000	0
	lbs	lbs	lbs	lbs.	$l b s$.	lbs.	$l b s$.	lbs.	$l b s$.	$l b s$.	,	los.
1909-10	9, 060	4, 503	93, 393	2, 263	23, 758	161, 331	3, 742	298, 050	9,310	33, 239	22, 329	362, 928
1910-11	19, 900	1,496	151, 620	5, 781	33, 221	165, 412	25, 083	402, 513	6,556	34, 969	32, 070	476, 108
1911-12	21, 744	3, 130	159, 474	3, 171	38, 675	186, 125	32, 764	445, 083	7,968	42, 549	36,656	532, 256
1912-13	18, 762	1, 812	160, 862	6, 106	43, 384	168, 380	21, 178	420, 484	11, 080	46, 526	40,935	519, 025
1913	15, 915	1, 464	146, 209	5, 959	43, 470	164, 633	8, 067	385, 717	15,996	49, 610	30, 135	481, 458
1914-15	5, 129	72, 057	3,878	4, 123	22, 245	189, 350	98, 640	395, 422	7, 722	45, 349	27, 039	475, 532
1915-16	70, 132	2, 874		3, 488	13, 282	192, 076	48, 903	330, 755	6, 330	53, 812	36, 114	427011
1916-17	96, 761	841		4,982	20, 446	178, 111	57, 559	358, 700	5,376	48, 733	31, 961	444, 770
1917-18	116, 154	75		2, 137		159, 959	46, 471	324, 796	894	52, 574	14, 242	392, 506
1918-19	190, 770	22, 256	9,579		17,683	286, 451	145, 016	671, 756	3,565	25, 572	23, 878	724, 771
1919-20	55,970	13, 528	49,733	16,502	78, 354	165, 374	100, 058	479, 519	11, 618	68, 734	27, 354	587, 225
1920-21	57, 963	9, 527	231, 528	14, 172	113, 868	169, 464	36, 415	632, 937	12, 226	59, 939	41, 055	746, 157
1921-22	43, 591	6, 923	260, 716	9, 051	42, 831	244, 465	59, 300	686, 877	8, 852	73, 926	62, 724	812, 379
1922-23	50, 472	5,700	328, 112	29,571	47, 802	241, 144	53, 396	756, 197	14, 218	87, 898	94, 329	952, 642

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918; Monthly Summaries of Foreign Commerce, June, 1920, 1922 and 1923; and records of the Bureau of Foreign and Domestic Commerce.
Table 509.-Pork, fresh, chilled and frozen: Net imports and net exports of principal countries, 1909-1922.

Calendar year.	Imports.					Exports.						
	Belgium.	France.	Germany.	Switzerland.	United Kingdom.	Denmark.	Netherlands.	Russia.	Sweden.	United States.	Canada.	Argentina.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	$i b s$.
1909	1, 815	105	22, 551	5, 168	47, 986	3, 352	66, 686	6,557		2,417	464	
1910	1, 023	6, 670	8, 117	3, 907	53, 750	1, 203	52, 070	7,067		907	229	
1911	3,477	14, 001	2, 687	14, 583	50, 728	2,198	64, 415	5, 988		2, 232	497	
1912	2, 294	9,497	28, 880	22, 082	35, 027	12, 486	53,103	9, 091	14, 124	2, 608	16,981	
1913	1,897	1,716	35, 695	12, 489	55, 358	2,547	79, 010	8, 276	4,776	2,924	6, 134	
1914		903		7,461	96, 455	1,972	109, 854	5, 869	7, 660	17,701	44, 629	736
1915		14		- 3	30, 162	32, 728	97, 827	4, 453	18, 263	20,732	89, 156	1,969
1916		2, 079		138	32, 847	29,919	34, 693	1,011	20, 418	54, 157	34, 218	2,965
1917		9, 128		102	18, 015	15, 983	6, 469		6, 542	46, 792	42, 558	1,684
1918		7,136		46	11, 150	79	1		11	9,911	10, 401	2, 269
1919	63	6, 449		60	15, 220	622	8, 583		15	23, 998	32, 610	9, 915
1920	261	6, 407	14,441	4, 759	52, 705	4,580	3,238		2, 345	36, 764	33, 973	27, 485
1921	825	4, 701	25, 618	6,159	65, 779	3, 694	39, 344		6, 416	55, 267		25, 761
1922	10,769	25,880	13, 779	1,050	74, 408		62, 348			26, 156		17,293

Division of Statistical and Historical Research. Compiled from official sources.

Table 510.-Bacon, hams, and shoulders: Net imports and net exports of principal countries, 1909-1922.

$\begin{gathered} \text { Calendar } \\ \text { year. } \end{gathered}$	Imports					Exports						
	France.	Germany.	Swit-zerland.	United Kingdom.	Cuba.	Den-	Nether lands.	$\begin{aligned} & \text { Rus- } \\ & \text { sia. } \end{aligned}$	Sweden.	United States.	$\begin{aligned} & \text { Can- } \\ & \text { ada. } \end{aligned}$	Australia.
	1,000	1,000	1,000	1,000	1,000	1,000	1,0	1,000	1,000	1,000	1,000	1,000
	${ }^{\text {lbs. }}$	libs.										
1910	2,687	${ }_{368}$	1,063	499, 926	3, ${ }^{4,678}$	207, 867	5,780	15, 415	3,759	259, 451	45, 423	1,400
1911	16, 158	950	1,345	637, 225	4,370	245, 864	7, 105	18, 764	5,807	387. 727	60, 173	2, 137
1912	19,399	4, 427	1,378	604, 235	4,909	263, 450	1,293	19, 663	7,792	368, 080	30, 555	1,879
1913	10,467	1, 959	1, 078	625, 675	5, 299	272, 144	21, 924	23,004	6,897	384, 213	18, 249	1,720
1914	10, 807		547	653, 300	4, 375	314, 666	43, 455	13, 413	20,733	318, 783	59, 647	1,112
1915	66, 037		202	885, 266	5,188	246, 804	31, 380	883	17, 247	788, 584	138,719	131
1916	77,708		723	997, 645	5,877	195, 154	59, 770		6,970	879, 796	187,637	915
1917	105, 039		175	863, 148	4,541	157, 017	27, 844		10, 638	821, 274	211, 684	5, 063
1918	112, 243		34	1,336,274	4,870	5,489	128		1,645	1, 640, 138	120, 500	5,594
1919	306,476			1,010,482	9, 033	554	52, 053		55, 840	1, 784, 447	244, 004	3, 026
1920	61, 248	188, 102	789	631, 007	23, 458	87,988	28, 417		15, 438	821, 168	99, 288	3,099
1921	16, 462	68, 250	680	699, 256		186, 654	10,406		15, 251	647, 680	93, 861	2, 687
1922	7, 769	57, 878	425	815, 349		1240, 583	8,133		${ }^{(2)}$	631, 452	94, 597	

Division of Statistical and Historical Research. Compiled from official sources.
${ }^{1}$ Includes all pork meat.
${ }^{2}$ Pork not separated.
Table 511.—Lard: Net imports and net exports of principal countries, 1909-1922.

Calendar year.	Imports.							Exports.				
	Belgium.	Ger- many.	France.	Sweden.	Swit- zerland.	United Kingdom.	Cuba.	Denmark.	Netherlands.	United States.	$\begin{aligned} & \text { Bra- } \\ & \text { zil. } \end{aligned}$	Australia.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	libs.	lbs.	lbs.	lbs.	libs.	lbs.	lbs.	libs.	${ }^{1} \mathrm{lb3}$.	lbs.	
1909.	6,944	206,606	9,183	3,583	3, 164	196, 576	57, 549	10,590	14, 421	458, 261	1,250	1,259
1910	4, 142	128, 638	16,821	1,616	2,418	162, 051	60, 708	4,704	2,579	368, 832	127	2,906
1911	10, 974	212, 723	17, 116	2,065	4,591	202, 992	59, 485	6, 217	25, 910	552, 430	12	3, 012
1912	7, 371	233, 810	15, 220	1,542	4, 416	199, 450	63, 745	8,489	31, 395	495, 093	674	1,296
1913	7,255	236,708	1,894	1,486	3,651	223, 908	67, 884	8,843	11, 641	536, 180	897	3, 395
1914.			5,848	825	2,925	196,587	64, 631	15, 441	3, 208	438, 016	453	1,219
1915			17,719	2,811	8,497	244, 890	69, 796	3,578	35, 912	451, 286	180	3, 531
1916			29,371	1,751	5,819	215, 026	68, 289	13, 816	29, 665	426, 660	172	1,273
1917.			43, 537	79	8,732	162,072	55, 615	4, 677	329	372, 721	22, 502	1,458
1918			42, 345	74	14, 325	307, 181	62, 419	44	7	548, 818	29, 254	5,987
1919	25, 501		90, 751	22, 119	27, 131	229, 139	55, 184	5, 032	3,995	760, 902	44, 140	7,909
1920	14, 283	2〒2, 016	74, 155	6, 125	14, 178	155, 234	76,645	597	8,105	612, 250	24, 597	3, 075
1921	28, 665	192, 078	56, 544	5, 923	18, 078	250, 454		3,446	16, 919	868, 942	11, 458	2,793
1922	27,378	143, 729	47, 894	7,580	12,608	256, 014		1,656	24, 520	766, 950	4,334	

Division of Statistical and Historical Research. Compiled from official sources.
Table 512.—Pork, carcass: Average prices per pound in Great Britain, 1909-1923.
FIRST QUALITY FRESH BRITISH PORK.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	Jaly.	Aug.	Sept.	Oct.	Nov.	Dec.	Av.
	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.
1809	12.8	12.8	12.9	13.0	12.7	12.9	13. 2	13. 2	13.5	14.2	14.8	15.2	13.5
1910	15.1	15.0	15.0	14.8	14.7	14.1	13.9	14.6	15.0	15.4	15.3	14.9	14.8
1911	14. 5	14.2	14.2	14.0	13.2	14.6	12.2	12.2	12.7	13.2	12. 8	12.5	13.2
1912	12.7	12.7	12.8	12.8	12.5	12.6	12.8	13.0	14.4	15.1	15. 1	15.7	13.5
1913	16.1	16.3	16.3	16.1	15.8	15.5	15.5	15.6	16.0	16. 4	16. 7	17.1	16.1
AF.	14.2	14.2	14. 2	14.1	13.8	13.9	13.5	13.7	14.3	14.9	14.9	15.1	14.2
1914	16.8	16.2	16.2	15.8	14.5	13.9	13.3	14.5	15.1	16.5	16.4	16.3	15.5
1915	15.8	15.9	16.4	17.2	17.0	16.8	16.7	16.9	18.8	20.0	21.4	21.4	17.9
1916	20.1	21. 6.	21. 6	23.6	21.9	21.7	21.7	21. 7	23.8	25.4	25.0	26.1	22.8
1917	26. 9	27.2	27.7	28. 2	26.4	27.2	28.6	25.5	29.1	28. 2	28.2	28.2	27.6
1918	28. 2	28.2	28. 2	31.8	31.8	31.7	31.7	31.8	31.8	34. 2	35.7	35. 7	31.7
1919	32.1	31.8	31.2	31.0	31.1	30.8	29.5	28.5	27.9	27.8	27.2	26.3	29.6
1920	26.8	131.0	136.0	41.0	37.2	36.1	37.6	35. 4	36.3	36. 4	34.9	34. 2	35.2
AF.	23.8	24.6	25.3	26.9	25.7	25.5	25.6	24.9	26.1	26.9	27.0	26.9	25.8
1921	32.5	29.7	29.7	30.5	29.0	24.9	22.9	23.5	24.5	22.8	22.5	23.2	26.3
1922	22.5	23.9	24.4	25.3	25.0	23.0	23.9	24.7	26.6	27.3	28.5	30.3	24.5
1923	29.6	28.0	27.0	26.8	30.7	24.5	20.7	20.4	22.4	23.0	22.3	21.5	24.7

[^262]Table 512.—Pork, carcass: Average prices per pound in Greai Britain, 1909-1923-Continued.

FIRST QUALITY FROZEN PORK. ${ }^{1}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Av.
	Cts.	Cls.	Cts.										
1909.	12.7	11.7	11.9	12. 0	11. 9	12.1	12.6	12. 7	13.5	14.5	14.7	13.4	12.8
1910	14.5	14.0	14.9	15. 2	14. 7	14.2	14.2	14.3	14.7	14.9	14. 5	14. 2	14.6
1911	13.7	13.2	14. 0	13. 6	12. 5	11. 4	11.2	11.3	12.4	11.9	11.9	12. 1	12.4
1912	11.7	12.2	12. 5	13. 2	12. 9	13. 2	13.4	13.0	15.4	14.7	14.9	15. 1	13.5
1913	15.0	15.4	15.8	15.3	15.0	15.0	14.6	14.8	14.9	14.5	14. 2	14. 5	14.9
Av. 1309-1913	13.5	13.3	13.8	13.9	13.4	13. 2	13.2	13.2	14. 2	14.1	14.0	13.9	13.6
1914	15.1	14.3	14. 5	14.1	13.6	13.3	11.8	13.5	12.8	14.8	14.6	14.9	13.9
1915	15.0	15.8	16. 7										
1916	15.8	16.3	16.6	18.6	17.6	18. 4	17.9	18. 1	19.8	21. 0	20. 2	20.6	18.4
1917	20.5	21.6	21.8	22. 2	21.4	20.8	22.1	23.7	25.2	25. 2	25. 2	25.2	22.9
1918	225.2	25.2	26.9	31.8	31.8	31.7	31.7	31.8	231.8	35.7	235.7	35.7	31.2
1919	32.1	31.8	${ }^{2} 31.2$	31, 0	231.1	230.8	26.3	25.3	24.8	24.8	24.2	22.4	28.0
1920	21.8	20.0	22.4	23.2	22.8	23.4	24.3	25.0	28.8	28.7	28.4	27.3	24.6
1921	24.2	21.3	20.2	20.0	19.6	18.2	217.2	2 16.2	16. 2	16. 2	14. 4	13.8	18. 1
1922	13.4	13.7	13.7	13.8	13. 9	13.9	16.7	16.8	18.4	${ }^{2} 18.8$	19. 2	19.5	16.0
1923	18.1	16.1	14.7	15.2	14.3	14.7	15.6	15.1	14.8	15.7	16.2	15.2	15.5

Division of Statistical and Historical Research. Compiled from Agricultural Statistics 1909-1922, and Agricultural Market Report, 1923, Ministry of Agriculture and Fisheries, Great Britain. Converted to eents per pound on the basis of the monthly average rate of exchange as given in Federal Reserve Bulletins.
${ }^{1}$ Designated "Foreign" prior to 1917.
${ }^{2}$ Interpolated.
Table 513.-Lard, pure: Monthly average price per 100 pounds, Chicago, 19051923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Av.
	Dolls.	Dolls.	Delts.	Dolls.	Dolls.	Dolls.	Dells.	Dolls.	Dells.	Dolls.	Dolls.	Dolls.	Dolls.
1905	6.73	6. 74	6.92	7.12	7.18	7.20	7.09	7.70	7.51	7.12	7.08	7.51	7.16
1906	7. 44	7. 55	8.03	8.59	8. 49	8. 74	8.93	8.66	7.79	9.33	9.36	8.75	8.47
1907	9. 29	9.70	9.03	8. 68	8.95	8.69	8.91	8.89	8.98	8.86	8. 16	7.98	8.84
1908	7. 70	7.21	7.67	8.19	8.42	8. 66	9.30	9.33	9.94	9.62	9,31	9.32	8.72
1909	9.57	9. 52	10.05	10.32	10.60	11.54	11. 52	11. 66	12. 23	12.17	12.93	13.12	11.27
19	12. 43	12. 50	14.08	12. 33	12. 95	12. 27	11.85	11.82	12. 44	12. 93	10.82	10.31	12.23
1911	10.32	9. 50	8.83	7.93	8.08	8. 17	8.30	8.97	9.32	8.85	9.07	9.00	8. 86
1912	9.24	8. 90	9.37	10.06	10.77	10.87	10. 57	10.73	11.08	11.47	11.15	10. 46	10.39
1913	9.88	10.50	10.66	11.00	11. 05	10.99	11. 53	11.28	11.15	10.60	10.63	10. 68	10. 83
A.v. 1909-1913	10. 29	10.18	10. 60	10.33	10.68	10.77	10.75	10.89	11.24	11.20	10.92	10.71	10.72
1914	10.89	10. 67	10. 52	10. 23	9. 95	10. 03	10.08	9.69	9.68	10. 22	10.89	10.05	10. 24
1915	10.69	10.53	9. 84	9.95	9. 71	9.39	8.05	7.92	8.13	9.07	8.94	9.47	9.31
1916	10.32	9. 99	10.79	11. 77	12. 80	12. 87	13. 12	13. 44	14.47	15. 34	16.91	16. 66	13.21
1917	15.66	17.00	19.30	21. 00	22. 30	21. 41	20.77	22. 40	24.03	24.29	27.13	25.46	21. 73
1918	24. 39	26. 05	26. 07	25. 44	24. 53	24.50	26. 09	26.78	26.88	26.66	26. 68	25.31	25. 79
1919	23. 46	24.83	27. 35	30. 09	33. 58	34. 15	34. 76	30.01	26. 19	27.41	25. 86	23.11	28. 40
1920.	23. 52	23.14	22.93	22. 71	22. 75	22.98	21. 71	21.16	22.58	23. 28	22.07	18. 15	22. 25
Av. 1914-1920	16.99	17.46	18. 11	18.74	19.37	19.33	19.23	18.77	18.87	19.47	19.78	18.32	18. 70
192	16. 03	14.91	14.48	13. 07	11. 88	12.03	13.94	13.65	13. 51	12. 16	11. 62	11. 25	13. 21
1922	11.19	12. 59	13.50	12. 62	13.15	13. 22	13. 06	13. 30	13. 00	14. 12	13. 78	13.31	13. 07
1923	13.20	13. 25	13.87	13. 42	13.12.	13. 18	12. 84	12.83	15.06	15.22	15. 72	15.04	13. 90

Division of Statistical and Historical Researc.. Prior to February, 1920, figures compiled from the National Provisioner; subsequent figures compiled from data of the reporting service of the Livestock, Meats, and Wool Division.

Table 514.-Bacon, Wiltshire sides, ${ }^{1}$ green, firsts: Average prices per pound at Bristol, England, calendar years, 1909-1923.

Month.	A verage for 5 years, 1909-1913.					1909				
	American.	Canadian.	$\begin{aligned} & \text { Dan- } \\ & \text { ish. } \end{aligned}$	Irish.	British.	American.	Canadian.	Danish.	Irish.	British.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
January	13.2	13.7	14.5	15.0	16.2	10.9	12.2	12.8	13.9	14.8
February	13.3	13. 9	14.5	15. 2	16. 4	11.3	12.2	12.2	14. 1	14.8
March.	13.9	14.5	15. 1	15.7	16.9	12.6	13.5	13. 5	15. 2	16.1
April	13.8	14.6	15.3	15.8	16.9	13.0	14.6	15.2	16.1	16. 1
May_	14.0	14.9	15.8	16. 6	17.4	13.5	15.2	16.1	16. 9	17. 4
June	14. 2	15. 1	15.9	16. 9	17.4	13.3	13. 9	14. 6	16.5	16.9
July	15.0	16.0	17.2	17.3	17. 9	13.9	14.8	16.3	16.5	16.9
August	15. 4	16. 0	17.2	17.6	18. 3	14. 6	15.2	16.5	17. 4	17.8
September	15.4	15.9	16. 5	17.2	17.9	15. 2	15.9	16. 1	16. 9	17.4
October. -	15.0	14.9	15. 4	15.9	16. 6	15.0	15.0	15.6	15.6	16.9
November	14. 1	14. 2	15.3	15. 2	16.0	15.0	15. 0	15.9 15.0	16.1 15	17.4 17.4
December	13.4	13.6	14.9	14.9	16.1	14.6	14.1	15.0	15.6	17.4
Average.-.-.	14.2	14. 8	15.6	16.1	17.0	13.6	14.3	15.0	15.9	16. 7
	1910					1911				
January	14.8	14.8	15.4	16.1	17.2	13.5	13.9	14.6	15.2	17.2
February	14.8	15. 2	15. 2	16.1	17.6	13.0	13. 7	14. 6	15.0	16. 7
March.	15.9	16.4	16. 5	17.4	18. 5	13. 0	13. 7	14.8	15.0	16.7
April.	14.8	15. 2	15. 4	16.3	18. 0	12.8	12.6	14. 3	14.8	15.9
May	15.4	15.9	16.1	16.3	18. 2	11.9	11.7	13.5	14.8	15.6
June	${ }^{2} 16.2$	16.7	16.9	17.4	18. 2	12.8	14.1	15. 2	15.9	16.9
July	${ }^{2} 17.1$	17.6	18.0	18.2	18. 7	13.5	14. 1	15.6	16. 1	16.9
August	216.1	16. 6	17.2	17.8	18.9	14. 6	15. 2	16.5	16. 3	16.9
September	${ }^{2} 16.2$	16. 7	16. 9	17.8	18.2	13.5	13. 7	15.0	16. 1	16.3
October.	15.6	15.4	14.8	15.9	16. 5	12.2	12.2	13.3	13.9	14.1
November	${ }^{2} 13.6$	14.1	14.8	15.6	16.9	11.3	11.5	12.2 11.9	11.9 12.6	13.0 13.5
Decomber.	212.5	13.0	14.1	14.8	16.1	11.3	11.1	11.9	12.6	13.5
A verage....-	15.2	15.6	15. 9	16.6	17.8	12.8	13.1	14.3	14.8	15.8
	1912					1913				
January	11.5	11.5	12.4	13.0	13.5	15. 2	15.9	17. 2	16.9	18.2
February	11.7	12.6	13.7	13. 7	14.1	15.6	15.9	16.7	16.9	18.7
March.	12.4	12.8	13.7	14. 1	14.8	15.6	16. 1	17.2	17. 2	18.2
April.	13.0	14.3	15.2	15.2	16.1	15.6	16. 1	16.5	16. 7	18. 2
May.	13.3	15. 0	15.6	16. 1	16.5	16.1	16.9	17.8	18.7	19. 1
June.	13.3	14.8	15.6	16.3	16. 5	15. 6	16.1	17.2	18. 2	18.7
July.	13.9	15.4	16. 9	16.9	17.4	16.7	18. 2	19.1	18. 9	19.6
August	15.2	15.9	17.8	17.6	17.8	16.5	16.9	18.0	18.7	20.0
Septembe	15.6	16.1	16.9	17.2	17.8	16.7	17. 2	17.8	18. 2	19.6
October.	15. 9	16.3	17.4	17. 4	18. 0	16.3	15.6	16.1	16. 7	17. 4
November	15.0	15.0	17.6	16.1	16.1	15. 4	15.2	16.1	16.1	16.7
December	14.3	14. 6	17.6	15.6	16.9	14.3	15.0	15.9	16.1	16. 5
Average...--	13.8	14.5	15.9	15.8	16.3	15.8	16.3	17.1	17.4	18.4
	1914					1915				
January	15.0	15. 2	16.1	17. 2	17.8	16.0	16. 9	18.2	18.6	19.5
February	14.4	14.4	14.8	16. 8	17.2	15.3	15.9	17.0	17.9	18.7
March	15. 0	15.0	15.8	18.0	18.2	15.4	15.9	17.6	18.4	18.9
April.	14.8	15. 0	16. 1	16.7	17.8	15. 4	17. 1	19.3	20.3	21.0
May-	14.4	14.6	15.7	16.4	17.4	16.7	18. 6	20.5	21.0	21.4
June.	14.4	14. 2	15.3	16.6	17.4	16.8	18. 8	20.3	20.9	21.3
July.	14.6	14.4	15.7	16.8	17. 7	15.7	18.7	20.6	20. 0	20.8
August	18.3	19.2	19.9	20.1	20.1	16. 4	18.9	22.3	22.3	22.9
September	17.8	18.7	19.1	19.8	20.5	18.4	20.1	22.4	22.6	23.5
October--	16. 4	15.7	15. 9	17.9	18.1	20.1	20.3	22.4	22.6	23.4
November	15. 8	15.8	16.2	17.3	17. 9	19.8	19.8	21.7	22. 5	22.9
December	15.2	16.1	16.7	17.8	18.7	18.5	19.2	21.9	21.9	22.8
Average.	15.5	15. 7	16. 4	17.6	18.2	17.0	18. 4	20.4	20.8	21.4

[^263]Table 514.-Bacon, Wiltshire sides, ${ }^{1}$ green, firsts: Average prices per pound at Bristol, England, calendar years, 1909-1923-Continued.

Month.	1916					1917				
	American.	Canadian.	Dan-	Irish.	British.	American.	Canadian.	Danish.	Irish.	British.
January	Cents.	$\begin{array}{r} \text { Cents. } \\ 19.3 \end{array}$	Cents. 22.1	Cents. 22.3	$\begin{aligned} & \text { Cents. } \\ & 22.5 \end{aligned}$	Cents. 22. 9	$\begin{array}{r} \text { Cents. } \\ 24.8 \end{array}$	$\begin{gathered} \text { Cents. } \\ 27.6 \end{gathered}$	$\begin{gathered} \text { Cents. } \\ 28.5 \end{gathered}$	Cents. 29.7
February	17.0	19.1	21.2	22.1	22.5	27.6	28. 9		32.7	33.5
March	18.7	20.8	23.0	23.4	25.1	28.2	28		30.1	31.8
April.-	19.8 18.9	21.7 20.4	21.9 23.1	22.5 24.2	26.0 25.1	${ }_{28.4}^{28.5}$	29.3 29.3		30.8 31.2	32.5 32.5
May	18.9 17.6	20.4 20.8	23.16	24.2 23.8	25.1 25.1	28.4 25.9	29.3 26.3		31.2 31.4	32.5 32.5
July.	18.5	22.5	24.6	25.1	25.9	28.9			32.7	32.5
August	22.1	25.1	27.2	28.0	28.5	31.2			34.4	34.6
Septembe	22: 5	24.2	25.5	26. 8	28.0	323			36. 7	34.6
October-	21.9	22.9	24.8	25.5	27.2	33. 3			30.7	34.6
November December	22.1 20.8	$\begin{aligned} & 24.0 \\ & 23.7 \end{aligned}$	25.5 25.9	26.3 25.9	28.0 28.0	36.5 37.7			38.6 38.6	37.3 37.3
A verage	19.8	22.0	24.0	24.7	26.0	30.1			33.0	33.6
	1918					1919				
January	37.6			38.6	37.3	39.3	39.3		40.2	40.2
February	37.6			38.6	37.3	39.3	39.3		40.2	40.2
March	37.6			38.6	37.3	38.8	38.8		39.8	39.8
April.-	377				38.6 39	38.0	39.5 39		40.6 40.6	40.6 40.6
May	$\begin{array}{r}37.7 \\ 37.7 \\ \hline\end{array}$	37.7 37			39.9 39.9	38.0 38.3	39.5 39.9		40.6 40.3	40.6 40.3
July	39.2	39.2			40.2	38.3	40.3		38.6	38.6
August	38.3	39.3			40.2	36.6	39.7		37.3	37.3
September	39. 3	39.3			40.2	35.8	35.8		36.5	36.5
October--1	$\begin{array}{r}39.3 \\ 39.3 \\ \hline\end{array}$	39.3 39.3		40.2	40.2 40	35. 0	35.6 35.0		36.4 35.6	35.6
December	39.3	39.3		40.2	40.2	32.3	32.3		34. 6	34.6
Average	38.5				39.3	37.1	37.9		38.4	38.4
	1920					1921				
January	31.5	31.5	32.3	33.7	33.7	27.2	34. 1	35.6	37.7	38.6
February	28. 9	28.9	29.7	31.0	31.0	28.0	30.3	37.8	39.8	41.5
March	$\begin{array}{r}32.3 \\ 33.5 \\ \hline\end{array}$	32.3 33	${ }_{2}{ }^{2} 33.14$	34.6 48.9	34.6 49.8	27.2 23.9	28.1	38.8 39.5	41.2	42.1
April.-	33.5 33.0	33.5 33.0	-34.9	40.4	43.8	20.4	24.0	32.9	34.3	37.3
June-	33.8	33.8	34.7	43.2	43.2	18. 5	26.1	32.0	35.0	38.4
July.	33.1	35.3	36. 0	49. 0	49.0	21.1	30.0	33.2	37.0	37.6
August	31.1	33.2	33. 9	48.5	48.5	21.2	28.9	31.0	34.9 31	35.9
September	30.8	325	33.7 3.3		47.0	18.6	21.9 21.6	30.3 27.7	31.3 28.0	31.6 28.5
October..	30.5 30.0		33.3 36.2	42.6 41.3	46.5 42.8	18.0	21.6 21.3	27.7 27.1	28.0 27.7	28.5 29.8
November	30.0 30.6	35.1 35.8	36.2 39.5	41.3 41	43.8 43	18.9	22.8	28.4	28.9	31.0
Average.	31.6	33.1	34.2	41.7	42.8	21.8	26.5	32.8	34.7	36.2
	1922					1923				
January -	17.9	21.7	27. 9	29.4	31.1	17.9			30.3	32.4
February	23.4	26. 3	30.2			15.7	19.9 21.0	23.5 23.9	29.3 27.5	29.3 27.5
March	20.7	227 24 24	28.4 28.4	29.3 33	31.3 34 3	16.4 16.6	21.0 22.0	23.9 25.4	27.5 28.1	27.2
	20.1 20.6	24.0 27.8	28.4 328	33.1 34.5	34.5 34.7 3.4	17.3	22.3	24.0	25.8	26.2
June.	21.5	27.4	328	35. 4	35. 4	17.3	20.2	${ }^{23.5}$	23.9	24.9
July	23.4	27.8	320	35.3	35.7 3	16.7	20.8	23.2 29	23.7 230.6 2	25.9
August	24.3	28.3	32.1		36.9 33.6			23.1		26.4
September	21.4 20	27.7 23.0		32.8 29.7	33.6 30.3	19.5 18.6	21.1 20.2	22.4	24.4 22.6	24.6
October. November	20.6 21.6	23.0 25.6	27.3 29.2	29.7 32.0	30.3 32.4	11.0	19.6	20.7	21.9	23.9
December.	18.5	19.8	25.1	30.0	30.9	14.4	17.9	20.0	21.8	23.0
A verage.	21.2	25.2	29.7	32.5	33.3	17.5	20.9	23.6	25.8	27.0

[^264]Table 515.-Hams: Prices per pound in Liverpool, 1909-1923.
AMERICAN, SHORT CUT, GREEN, FIRSTS. 1

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov,	Dec.	$\begin{aligned} & \text { Aver } \\ & \text { age. } \end{aligned}$
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1909	11.2	10. 8	11.3	12. 4	12.7	12.9	12.7	14.0	12.9	13.9	14.8	14.1	12.8
1910	14.9	14.9	16. 6	15. 7	17.0	17.5	17. 3	16. 0	16. 0	14.7	15. 5	14.9	15.9
1911	14. 2	12. 6	12. 6	12. 4	13.3	15. 9	16.1	16. 7	13. 3	12. 4	12.8	12. 0	13. 7
1912	12. 5	11.6	12.7	13.8	14. 0	12.9	14.3	14. 3	14.3	15. 2	15. 2	15.4	13.8
1913	15.5	15.3	15.7	16. 0	17.0	17.7	18.6	17.5	16.0	15. 3	15. 3	15.2	16.3
Av. 1909-1913	13.7	13.0	13.8	14.1	14.8	15.4	15.8	15.7	14.5	14.3	14.7	14.3	14.5
1914	15.2	14.4	15.1	14.9	14.5	16.2	16.5	18.3	17.2	15.6	16.3	16.1	15.9
1915	15.8	14. 2	13.7	13.5	15. 4	15. 6	14.9	15.1	16.1	17. 3	19.2	21.1	16.0
1916	20. 1	18. 1	19.4	19.8	19.4	19.5	20.4	22. 5	22.5	22.9	22.3	21. 2	20.7
1917	24. 0	27.4	27.6	28. 2	28. 9	27.4	28. 2	29.1	29.1	29. 1	34.4	35.4	29.1.
1918	35.4	35.4	35.4	35. 5	35. 5	35.4	37.9	37. 9	37.9	37. 9	37.9	37.9	36. 7
1919	37.9	37.9	37.5	37.6	37.8	39. 3	38. 1	36. 8	36. 4	36. 3	37.5	32. 8	37.2
1820	31.9	29.4	31.1	34.1	32.5	33. 3	38. 1	35.8	34.9	34.5	34.3	35.0	33.8
Av. 1914-1920	25.8	25.3	25.7	26.2	26.3	26.7	27.7	27.9	27.7	27.7	28.8	28.5	27.0
1921	30.2	31.2	31.5	27.0	23.1	28.6	34.9	30.0	21.1	20.4	25.7	24.1	27.3
1922	24.5	26. 5	25.4	26.0	28. 4	29.4	27.8	23.3	20.4	21.0	21.6	20.2	24.5
1923	19.9	18.9	19.1	18.7	19.4	20.7	24.1	22.2	20.3	20.5	22.1	19.5	20.4

AMERICAN, LONG CUT, GREEN, FIRSTS. 1

1909.	10. 5	10.3	11.4	12.4	13.1	13.8	13.6	14.9	14.2	15.1	14.4	14.4	13.2
1910	14. 5	14.9	17.7	17.0	17.7	18.6	18.3	17.0	17.3	17. 6	16.1	14.3	16. 8
1911	14.1	12. 6	12.6	12.7	13.9	15.9	15.9	16.7	13.3	13.5	13.3	12.0	13.9
1912	11.6	11. 6	12. 5	13.6	14.7	14.0	13. 9	13.9	14.1	15. 2	14.9	15. 1	13.8
1913	15. 5	15. 7	16. 6	16.8	18.1	18.6	18.8	18.1	16. 4	15.2	15.2	14. 8	16.6
Av. 1909-1913	13.2	13. 0	14. 2	14.5	15.5	16.2	16.1	16.1	15.1	15.3	14.8	14.1	14.9
1914	14.8	14.5	15.1	15.1	15.0	16.5	16.9	18.5	16.9	15.6	16.9	16.1	16.0
1915	15.6	14. 2	13.9	13.7	16. 0	16.6	15. 7	15.1	16.1	18.4	19.6	20.7	16.3
1916	19.1	18. 1	18.6	19.4	18. 8	19.1	19.8	22.3	22. 9	23.8	24.4	22.0	30.7
1917	22.7	25. 9	27.2	27.8	28.7	26. 7	28.2	29.1	29.1	29.1	35. 0	36.1	28.8
1918	36.1	36.1	36.1	36. 1	36.1	36.1	37. 9	37.9	37.9	37. 9	37.9	37.9	37.0
1919	37.9	37.9	37.5	38.0	38.2	39. 5	38.1	36. 8	36.4	36. 3	37.5	32. 8	37.2
1920	31.9	29.4	31.1	34.1	32.5	33.3	38.1	35.8	34.9	34.5	34. 3	35.0	33.7
Av. 1914-1920.	25.4	25.2	25.6	26.3	26.5	26.8	27.8	27.9	27.7	27.9	29.4	28.7	27.1
1921	31.1	32.1	32. 4	27.0	22.6	28.3	34.9	31.0	23.3	20.7	23.9	21.5	27.4
1922	21.1	25.3	25.4	27.2	${ }^{2} 30.2$	${ }^{2} 30.8$	28.0	23.7	20.2	20.0	20. 4	19.6	24.3
1923	19.1	18. 9	19.3	2.21 .9	21.1	21.4	22.6	22.6	21.9	20.8	22. 7	18.5	20.9

Division of Statistical and Historical Research. Compiled from Return of Market Prices, Great Britain Ministry of Agriculture and Fisheries. Average for the last week of the month. Converted to cents per pound on the basis of the monthly a verage rate of exghange as given in Federal Reserve Bulletins.
${ }^{1}$ Short cut, regular A merican commercial ham; long cut longer both in the butt and shank. Green, cured in pickle or salt but not smoked.
${ }^{2}$ A verage of London and Bristel prices, and closely approximates Liverpool price.
Table 516.-Lard, American prime western steam: Average price per pound in Liverpool, 1909-1928.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	A verage.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Gents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1909	10. 7	10.6	11. 2	11. 4	11.8	12.7	12. 8	12. 8	13.4	13. 6	14.7	14.9	12. 6
1910	14. 1	14. 0	15.5	14. 8	14. 5	13.7	13.3	13. 1	13. 6	13.8	12. 7	11.5	13. 7
1911	11.5	11. 4	10.0	9.1	9.2	9.1	9.1	9.9	10.4	9.9	10. 2	10. 1	10.0
1912	10. 2	10.0	10.2	10.9	11.4	11. 6	11. 4	11.8	12.4	13. 0	12. 6	11.9	11.4
1913	11.2	11.8	12.2	12.4	12.3	12.2	12.7	12.7	12.6	12.1	12.2	12.1	12.2
Av. 1909-1913	11.5	11.6	11.8	11.7	11.8	11.9	11.9	12.1	12.5	12.5	12.5	12.1	12.0
1914	12.3	11.8	11.5	11.3	10.8	10.9	11.0	12.6	11.4	11.3	12.2	11.7	11.6
1915	12. 0	11.6	11. 1	11. 2	11.1	10. 6	9.3	8.3	8. 9	10. 2	10.8	11.7	10.6
1916	12. 7	12.4	13. 8	15. 4	16.5	15.7	15. 4	15. 7	17.3	18. 3	20.3	20. 1	16. 1
1917	20.4	${ }^{1} 24.8$	29.3	27.7	26.3	23. 8	23.8	25.0	${ }^{2} 25.9$	${ }^{1} 27.1$	28.2	28.6	25.9
1918	28.6				31.7	31.7			33.2	33.0			
1919						38.1	37.1	36.3	36. 5	36.8	35.6	32.9	
1920	32.0	29.5	32.9	27.2		27.4	26.7		36.5		23. 8	24.2	
1921	23.4	${ }^{2} 23.3$	15. 7	13. 2	11.7	12.1	13.6	13.4	13. 2	12. 2	12. 6	11.7	14.7
1922	11. 3	12. 9	13. 1	12.8	13. 6	13.5	13. 2	13. 3	12. 7	13. 2	14. 1	13. 6	13. 1
1923	13.3	13. 0	13. 7	13.6	12.9	13.0	12.7	12.7	14.0	14.5	15.7	15.1	13.7

Division of Statistical and Historical Research. Compiled from Manchester Guardian. An average of Friday quotations. Converted to cents per pound on the basis of the monthly average rate of exichange as given in Federal Reserve Bulletins.
${ }^{1}$ Interpolated. $\quad{ }^{2}$ Government control of prices began Sept. 3, 1917, and ended on Feb. 28, 1921.

HOG-CHOLERA CONTROL.
Table 517.-Hogs: Cholera-control wark by Bureau of Animal Industry, 1918-1922.

Year beginning July 1, and State.	Bureau veterinarians engaged in work. ${ }^{1}$	Premises investigated.	Demonstrations.		Autopsies performed.	Farms quarantined or carded.	Farms cleaned and disinfected.	Out- breaks reported to bureau veterina- rians.
			Number.	Hogs treated.				
1918-19	180	93, 512		233, 987	53, 586	9, 564	4,382	12,333
1919-20	140	46, 125	3, 037	347, 702	10,963	6, 129	2,099	9,788
1920-21	54	29, 433	3,420	67, 295	3, 888	2,268	656	7,951
1921-22	80	47, 137	4,343	88, 846	5,390	1, 401	439	7,920
1922-23.								
Alabama	2.67	2, 211	588	9, 927	93			288
Arkansas	2. 20	1,236	206	4,834	56		2	169
California	1	- 275	50	1,896	245		2	111
Colorado.	1	129			86			45
Delaware	1	934	4	19	132	6	30	103
Florida.	4.50	2,956	834	19, 513	158	1	32	335
Georgía	4	4, 276	1,138	26, 757	185		4	334
Idaho.	2	1,348	, 8	215	78	42	5	52
Illinois.	3.17	1, 836			605	208	397	333
Indiana	3. 50	3,501			386	122	9	242
Iowa.	2.75	1,696			368			338
Kansas	1	855			258	17	17	435
Kentucky	3.42	2, 823	163	2, 158	128		3	139
Louisiana	1	106	29	859	16			27
Maryland	4	3,080	35	280	220	273	2	574
Michigan	3	1,723	18	1, 279	198	123	18	333
Mississippi	2. 70	1,338	151	2, 104	50			203
Missouri	1. 42	1,453	6	142	56	38	8	188
Montana	. 14	85	7	345	10	29	4	47
Nebraska	1. 50	586			420			213
North Carolina------	3.33	6,608	1,158	17, 266	150	59	70	332
North Dakota.-------	1	230	- 4	229	71	385	91	504
Ohio.	3	3, 670			211		11	541
Oklahoma	3.33	2,138	73	2,158	152	108	2	175
South Carolina	2. 58	1, 433	630	15, 618	155	2		131
South Dakota	1	- 388	1	- 2	129			201
Tennessee..	1. 42	675	32	683	136	59		208
Texas.	3. 58	2,151	48	-1,239	56	148		148
Utah	1	740			43			60
Virginia	1	319	45	834	78		18	194
Washington	. 7	130	1	20	36	15	1	41
West Virginia	1	383	4	147	14	14	2	36
Wisconsin.	2	1,036	1	38	268	122	12	123
Total	70.91	52,348	5,234	108, 562	5,247	1,772	741	7,204

Bureau of Animal Industry.
${ }^{1}$ Fractions denote veterinarians devoting a portion of their time to the work.
HOGS-FEEDING, SHIPMENT, AND MARKETING.
Table 518.-Hogs: Percentage of shrinkage in shipments by cooperative associations, 1921. ${ }^{1}$

Distance.	By distance.				Month.	By months.			
	Straight shipments.?		Mixed shipments. ${ }^{3}$			Straight shipments. ${ }^{2}$		Mixed shipments. ${ }^{3}$	
	Number of animals upon which figures are based.	Shrinkage percentage of weight shipped	Number of animals upon which figures are based.	Shrinkage percentage of weight shipped		Number of animals upon which figures are based.	Shrink agepercentage of weight shipped	Number of animals upon which figures are based.	Shrink- age per- centage of weight shipped
Less than 100 miles	86,060	1. 48	64, 327	1.91	January	67, 822	1. 14	25, 710	1. 50
100-150 miles	112, 419	1. 10	38, 039	2.23	February - -	57, 056	1. 03	19,680	0.72
150-200 miles	103, 605	1.25	14, 860	1. 91	March	40, 047	1. 31	18, 948	2. 29
200-250 miles	109, 438	1.24	36, 591	2.76	April	48, 419	1. 39	23, 069	2. 44
$250-300$ miles	4, 612	2.10	1, 692	2.89	May	40,918	1.49	25, 509	1. 78
300-350 miles	36, 639	2.11	18, 629	3.47	June	55, 399	1.77	22, 860	2. 57
					July	38, 485	1. 40	11, 849	2.93
$350-400$ miles	56, 156	1.80	54,299	4.00	August-----	37, 594	1.90	16, 031	3. 12
400-450 miles	41, 021	1.71	24, 004	3.62	September -	38, 132	1. 86	21, 862	2. 43
$450-500$ miles	11, 787	1.62	23, 557	1.94	October----	45, 077	1. 68	27, 313	3. 14
500-550 miles	2, 778	2.13	173	3.60	November	47, 164	1. 34	25, 638	1. 89
550-600 miles	2,751	3.07			December	51, 101	1. 02	18,970	2. 09

[^265]Table 519.-Hogs: Quantities of feed and other factors required to produce 10 weaned pigs, ten weeks of age, and 100 pounds marketable pork, year 1921 (Iowa and Illinois).

Items.	10 weaned pigs.		100 pounds marketable pork.	
	Quantities.	Farm value.	Quantities.	Farm value.
Kinds of feed:	Pounds.		Pounds.	
Feeds other than corn-	2,036. 6	\$16. 54		\$2. 62
Oats .-.-	277.0		23.29	
Barley ---	8.4		1.1	
Wheat.	. 8		. 04	------
Soybeans	3.4		. 4	
Tankage	49. 1		8.8	--...-
Oilmaeal--	8. 7		3. 2	
Millfeeds ${ }^{1}$	15.8		1.5	
Pumpkins			.4	
Skim milfa	263.5		28.3	
Alfalfa hay-	11.7		. 2	
	5.6		. 5	
Pasture unit days ${ }^{\text {V }}$ 2-------------		5.92		. 63
Masture unit days ${ }^{\text {2 }}$ -	8.9	2. 22	2.2	. 08
Bedding-----	122.9	. 33	7.0	. 02
Hours of man labor.	21.0	5. 80	1.7	. 48
Hours of horse use	1.1	. 16	. 3	. 04
Buildings and equipment, veterina head expenses, incidentals, and int		13.77		1.65
Total cost.		45.00		6.08

Division of Cost and Production. Based on records of 769 spring litters (3,574 pigs), and 51 droves of spring pigs (855,140 pounds, marketable pork).
${ }^{1}$ Shorts and Red Dog flour.
2 Pasture unit day is pasturage required to carry five 200 pound sows a day.
Table 520.-Hogs: Percentage crippled and percentage dead in shipments by cooperative associations, 1921.

BY MARKETS-STRAIGHT SHIPMENTS. ${ }^{1}$

Market.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { animals } \\ & \text { upon } \\ & \text { which } \\ & \text { figures } \\ & \text { are based. } \end{aligned}$	Average weight of animals	Crippled.			Dead.		
			Percentage of total number shipped.	Percentage of total whipped.	A verage weight of animals.	Percentage of total number	Percentage of total weight shipped.	A verage weigh of animals.
Buffalo	23, 305	Pounds. 195	0.91	0.93	Pounds. 199	0.31	0.25	Pounds. 157
Chicago	317, 621	250	. 64	. 63	247	. 26	. 25	246
Cleveland	8;895	203	. 57	. 55	197	. 21	. 22	208
East St. Louis.	50, 176	207	. 38	. 40	222	. 19	. 24	255
Kansas City	25, 087	239	. 35	. 33	228	. 15	. 16	266
Milwaukee	15, 072	229	. 65	69	240	. 14	. 14	235
Omaha-.	18, 309	278	. 51	. 45	245	. 12	. 12	272
Pittsburgh	38, 856	190	. 44	. 46	196	. 23	22	181
Sioux City	13, 582	241	. 46	. 47	243	. 19	. 17	209
Sioux Falls.	15, 117	242	. 41	. 41	243	. 17	. 13	${ }_{2} 216$
St. Joseph	21, 293	${ }_{238}^{238}$. 24	. 25	250	. 13	${ }_{\cdot}{ }_{33}$	${ }_{235}^{237}$
St. Paul --	12, 517	238	. 22	. 24	255	. 28	. 33	285

[^266]Table 520.-Hogs: Percentage crippled and percentage dead in shipments by cooperative associations, 1921-Continued.

BY MARKETS-MIXED SHIPMENTS. ${ }^{2}$

Market.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { animals } \\ \text { upen } \\ \text { which } \\ \text { figures } \\ \text { are based. } \end{gathered}$	A verage weight of animals	Crippled.			Dead.		
			Percentage of total number shipper.	Percentage of total weight shipped. shipped.	A verage weight animals.	Percentage of total number shipped.	Percentage of total weight shipped.	Average weight animals.
Buffalo	80,437	Pounds. ${ }^{198}$	1.10	1.14	Pounds. 203	0.53	0.44	Pounds. ${ }^{\text {c }}$
Chicago	19,577	249	. 90	. 86	243	. 41	. 42	252
Cleveland.	25,661	198	. 50	.46	180	. 20	. 18	185
East St. Louis	5,639	206	. 46	. 40	179	. 37	. 33	183
Kansas City.	14,340	245	. 26	. 27	255	. 33	. 34	254
Milwaukee...	14, 848	225	. 50	. 47	211	. 24	. 23	218
Omaha	4,884	275	. 47	. 44	258	. 20	. 23	320
Pittsburgh.	63, 998	189	. 63	. 60	180 280	.25	- 30	178
Sioux Falls...	1,159	235	.43	. 51	280	. 26	. 21	183
St. Joseph.		245	. 26	. 28	269	. 22	. 18	202
St. Paul.--....	50, 216	238	. 28	. 26	224	. 17	. 17	242

Division of Cost of Marketing.
${ }^{2}$ Mixed shipments contain more than one species of liviestock.
Table 521.-Hogs: Percentage crippled and percentage dead in shipments by cooperative associations, 1921.

BY DISTANCE-STRAIGHT SHIPMENTS. ${ }^{1}$

Market.	Number of animals upon which figures are based.	Average weight of animals.	Crippled.			Dead.		
			Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animals.	Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animals.
		Pounds.		0.31	Pounds.	0.12	0.11	Pounds.
Less than 100 miles.--	97, 439	242	0. 33	0.31 .43	223	0.12 .20	0. 22	254
100-159 miles--	124,791 120,523	$\begin{array}{r}231 \\ 235 \\ \hline\end{array}$. 40	. 43	232	. 24	. 18	210
200-250 miles.	118, 845	230	. 44	. 45	234	. 18	. 16	210
250-300 miles.	4,764	219	. 21	. 18	183	. 21	. 20	209
300-350 miles .-. --. -- --	37, 400	254	. 89	. 83	236	. 34	. 34	255
$350-400$ miles.	78, 293	250	. 74	. 72	244	. 38	. 41	270
400-450 miles.-.--------	43,517	247	. 82	. 79	234	. 33	. 31	236
450-500 miles.	12,790	241	. 86	. 86	240	. 18	. 17	230
500-550 miles..........	2,997	238	. 60	.79 .78	314	. 37	. 31	203
550-600 miles.	2,751	237	1. 27	1.38	258	. 29	. 33	274

BY DISTANCE-MIXED SHIPMENTS. ${ }^{1}$

Less than 100 miles. -	72,980	232	0.37	0.35	217	0.18	0.18	229
100-150 miles .-....-	52, 465	224	. 47	. 45	209	. 27	. 28	228
150-200 miles.	18, 567	237	. 34	. 36	250	. 36	40	263
200-250 miles.	42, 120	190	. 39	. 39	185	. 20	. 20	184
250-300 miles	1,752	213	. 45	. 41	194	. 11	. 18	345
300-350 miles	18, 684	200	1.16	1.07	184	. 35	. 31	178
$350-400$ miles	62, 016	204	1.11	1.15	210	. 44	. 40	186
400-45C miles.	25, 166	195	1. 02	1.02	196	. 49	. 33	168
450-500 miles.	3,688	203	1.06	1.03	198	. 32	. 31	195

[^267]Table 521.-Hogs: Percentage crippled and percentage dead in shipments by cooperative associations, 1921-Continued.

BY MONTHS-STRAIGHT SHIPMENTS. ${ }^{1}$

Market.	NumberofanimalsuponWhichfiguresare based.	Average weight of animals.	Crippled.			Dead.		
			Percentage of total number shipped.	Percent- age of total weight shipped.	A verage weight of animals.	Percentage of total number shipped.	Percentage of total shipped.	A verage weight of animals.
		Pounds.			Pounds.			Pounds.
January	76, 266	234	0. 69	0.73	248	0.19	0.18	222
February	64,486 45,055	$\stackrel{235}{24}$.65 .57	. 57	$\stackrel{246}{245}$. 17	.16 .20	222
April.	54, 188	238	. 46	. 47	244	. 24	. 25	244
May	46, 721	234	. 44	. 43	233	. 43	. 53	290
June.	63, 673	237	. 38	. 35	236	. 23	. 28	284
July.	43, 602	247	. 35	. 31	220	. 17	. 17	255
August	43, 819	260	. 41	. 41	254	. 14	. 12	215
September.	42, 318	254	. 36	. 34	244	. 27	. 23	216
October.	50, 105	230	. 38	. 36	220	. 23	. 22	226
November	54, 259	209	. 57	. 61	222	. 23	. 21	191
December.	59,715	205	. 73	. 77	227	. 17	. 16	211

BY MONTHS-MIXED SHIPMENTS. ${ }^{2}$

January	28, 629	226	0.98	0. 98	226	0.38	0. 27	159
February	22, 646	223	. 87	. 81	207	. 25	. 19	172
March	21, 868	219	. 68	. 67	217	. 47	. 41	190
April	25, 879	205	. 57	. 55	200	. 27	. 33	253
May.	28, 524	207	. 60	. 55	190	. 42	. 41	203
June.	26, 328	211	. 54	. 49	190	. 39	. 40	216
July .	13, 631	222	. 56	. 47	185	. 25	. 28	253
August	18, 865	214	. 61	. 58	203	. 28	. 28	213
September	25, 404	198	. 53	. 55	203	. 33	. 31	188
October-	32, 694	207	. 51	. 49	197	. 33	. 31	194
November.	29, 705	217	. 57	. 53	200	. 21	. 15	163
December.	23, 452	224	. 92	. 88	212	. 27	. 21	169

Division of Cost of Marketing.
${ }^{1}$ Straight shipments contain but one species of livestock.
${ }^{2}$ Mixed shipments contain more than one species of livestock.
Table 522.-Hogs: Principal terminal marketing costs, eight markets, 1921.

Market.	Num- ber of head upon figures are based.	Cents per 1,000 lbs., home weight, straight shipments.											
		Commission.			Yardage.			Feed.			Commission, yard, and feed combined.		
		A vg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$	A vg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$	Avg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$	Avg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$
Chicago	124, 338	98.7	85.1	112.5	44.8	36.2	56.2	34.1	21.3	44.4	177.6	153.8	205. 4
St. Paul	10,334 21,663	82.6 88	75.4.	102.4	42.1	36.3 41.8	53.0	50. 2	33.0	70.0	174.9	160.1	208.8
Kansas City	16, 589	83.6	75. 7	103.7	50.5	${ }^{47.8} 8$	58.5	37.8	$\stackrel{34.6}{20.3}$	77.1	171.9	156.5	240.3 218.7
Omaha	14, 638	86. 8	69.7	113.3	44. 0	37.4	45.7	28.9	19.5	35.0	159.7	132.8	181.0
Sioux Falls	14, 394	93.8	80.6	108.8	47.7	42.3	50.9	38. 7	28.8	45.7	180. 2	163.2	187.9
Buffalo..	18, 564	77. 7	68.3	85. 2		51.7				102.6	212.7	201. 4	259.0
Pittsburgh	37, 366	93.8	85.3	112.1.	58.5	42.3	64.8	71.1	23.7	106.5	223.4	178.1	262.5

[^268]${ }^{1}$ A verages are of associations shipping to the given market, weighted on the volume of business, not based on shipments. Low figures are for low cost associations and high figures are for high cost associations.

FARM ANIMALS AND THEIR PRODUCTS-PART II. GENERAL, HORSES, SHEEP, AND POULTRY.

SHEEP.

Table 523.-Sheep: Number and value on farms, United States, January 1, 1867-1924.

Jan. 1.	Number.	Price per head Jan. 1.	$\begin{gathered} \text { Farm value } \\ \text { Jan. 1. } \end{gathered}$	Jan. 1.	Number.	Price per head Jan. 1.	$\begin{aligned} & \text { Farm value } \\ & \text { Jan. } 1 . \end{aligned}$
	Thousands.39,38538,99237,72428,47831,851	Dollars.2.50	Thousand dollars. 98, 644	1897	Thousands.	Dollars.	Thousand dollars.
1867						1. 82	67, 021
1868		1. 82	71, 053	1898	37, 657	2. 46	92, 721
1869-...--		1,64	62, 037	1899--.--	39, 114	2. 75	107, 698
1870, June		1.90	54, 062	1900, June 1	61,504	3.03	186, 271
		2.14	68, 310	1901.----------	59,757	2. 98	178,072
1872	31,679	2.61	82, 768	1902	62, 039	2.65	164, 446
1873	33, 002	2.71	89,427	1903	63, 965	2. 63	168, 316
1874	33, 938	2. 43	82, 353	1904	51, 630	-2.59	133, 530
1876	35, 935	2.37	85, 121	1906	50,632	3. 54	127, 332
1877.	35, 804	2.13	76,362	1907	53,240	3.84	204, 210
1878.	35, 740	2. 21	78, 898	1903	54, 631	3. 88	211, 736
1879	38, 124	2. 07	78,965			3.43	192, 632
18801,	35,18243,570	2. 39	104,071	1909-	$\begin{aligned} & 56,084 \\ & 52,448 \\ & 53,633 \end{aligned}$		
				1911,		4. 3	$\begin{aligned} & 216,030 \\ & 209,535 \end{aligned}$
1882	45, 016	2. 37	106, 596	1912	$\begin{aligned} & 52,362 \\ & 51,482 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 3.94 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 180,100 \\ & 181,170 \\ & 202,779 \end{aligned}$
1883	49, 237	2. 37		1913			
1885	$\begin{aligned} & 50,627 \\ & 50,360 \end{aligned}$		119, 107 107 961	Av. 1909-1913...	53, 202	3.77	200, 429
1886	48,322	2. 1.91	92, 444				
1887		2.012.05		1914-----------	49,71949,956	4.02	200, 045
888	44,75943,545		89,87389,280	1915--.--------------		4. 505.17	224,687251,594
1888.					-48, 425		
1889	$\stackrel{42,599}{35,935}$	2.13	90,640	1917---	47,61648,603	7.13	339,529
1890, June 1		2. 2.50	$\begin{array}{r} 86,447 \\ 108,397 \end{array}$	1918		11.82	574, 575
1891.	35, 43,431 1			1919	$\begin{aligned} & 48,866 \\ & 39,025 \end{aligned}$	$\begin{aligned} & 11.63 \\ & 10.47 \end{aligned}$	$\begin{aligned} & 568,265 \\ & 408,586 \end{aligned}$
$\begin{aligned} & 1892 \\ & 1893 \\ & 1894 \\ & 1895 \\ & 1896 \end{aligned}$	$\begin{aligned} & 44,938 \\ & 47,274 \\ & 45,048 \\ & 42,294 \\ & 38,299 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 2.66 \\ & 1.98 \\ & 1.58 \\ & 1.70 \end{aligned}$	$\begin{array}{r} 116,121 \\ 125,909 \\ 89,186 \\ 66,686 \\ 65,168 \end{array}$	1920			
				Av. 1914-1920..-	47,487	7.72	366, 754
				1921		6. 30	
				1922	36, 327	4. 80	174,545
				1923	37,223	7.51	279,464
				$1924{ }^{1}$	38, 361	7.88	302, 092

Division of Crop and Livestock Estimates. Figures in italics are census returns.
${ }^{1}$ Preliminary.
Table 524.—Sheep: Yearly losses per 1,000 from disease and exposure, 1890-1924.

$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { Apr. } 30 . \end{gathered}$	Loss per 1,000.		$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { Apr. } 30 . \end{gathered}$	Loss per 1,000.		$\begin{aligned} & \text { Year } \\ & \text { ending } \\ & \text { Apr. } 30 . \end{aligned}$	Loss per 1,000.		$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { Apr. } 30 . \end{gathered}$	Loss per 1,000.	
	From disease.	From exposure.		From disease.	From exposure.		From disease.	From exposure		From disease	From expos. ure
1889-90.	24.0	51.0	1898-99-	21.0	35.0	1907-8.-	22.5	22.9	1916-17-	21.8	32.4
1880-91-	23.0	17.0	1899-1900	20.0	18.0	1908-9--	25.6	28.3	1917-18.	19.8	19.3
1891-92-	19.0	14.0	1900-1.-	24.0	22.0	1909-10-	27.5	43.9	1918-19-	19.7	24.4
1892-93-	24.0	20.0	1901-2--	25. 0	31.6	1910-11-	25. 5	23.0	1919-20-	23.7	34.6
1883-94-	20.0	15.0	1902-3--	27.8	53.6	1911-12-	26. 7	47.0	1920-21-	23.1	15.6
1894-95-	26. 0	29.0	1903-4--	26. 0	37.7	1912-13-	24.8	25.0	1921-22-	21.4	2 2. 4
1895-96-	27.0	21. 0	1904-5--	24. 6	30.8	1913-14-	21.9	22.0	1922-23-	22.4	24.1
1896-97-	23.0 26.0	32.0 27	1905-6--	22. 2	37. 0	1914-15-			1923-24-	20.0	17.5
1897-98.	26.0	27.0	1906-7.-	25.6	35.4	1915-16	21.6	21.7			

Division of Crop and Livestock Estimates. As reported by crop reporters May 1, for year ending April 30 .

Table 525.-Sheep, including lambs: Number and value on farms January 1, 1922-1924.

State.	Number Jan. 1.			Average price per head Jan. 1.			Farm value Jan. 1.		
	1922	1923	$1924{ }^{1}$	1922	1923	1924	1922	1923	19241
	Thousands.	Thousands.	Thousands.	Dollars.	Dollars.	Dollars.	Thousand dollats.	$\begin{gathered} \text { Thou- } \\ \text { sand } \\ \text { dollars. } \end{gathered}$	$\begin{aligned} & \text { Thou- } \\ & \text { sand } \\ & \text { dollars. } \end{aligned}$
Maine	95	90	90	4. 80	${ }^{6.70}$	7.10	456	603	639
New Hampshire	20	18	18	5. 50	7.80	7.30 740	112	140	131
Vermont.	48	43	44	5. 60	7.00 6.90	7.40	240	301	326
Massachusetts	17	16	14	6. 60	6. 90	7.90 8.00	112	110	111
Rhode Island	3	3	3	6.30	7.90	8.00	19	24	24
Connecticut	9	8	8	7.50	7.80	7.90	68	62	63
New York	512	532	543	5.80	8.50	9.30	2, 970	4, 522	5,050
New Jersey	10	10	10	7.40	7.50	8.90	74	75	89
Pennsylvania	468	477	482	5. 80	7.10	7.80	2, 714	3,387	3,760
Delaware..	3	3	3	6.00	7.40	7.00	18	22	21
Maryland	89	93	96	6. 20	7.50	8.50	552	698	816
Virginia	322	338	355	5. 60	7.60	8.10	1,803	2, 569	2,876
West Virgiñia	480	504	504	4.80	6. 90	7.30	2, 304	3,478	3, 679
North Carolina	84	81	82	4.90	5. 60	6. 40	412	454	525
South Carolina	23	23	23	3.00	4. 20	4.70	69	97	108
Georgia	70	66	63	2.70	3. 00	2. 60	189	198	164
Florida	64	63	64	3.10	3. 50	2.90	198	220	186
Ohio	1,957	2, 094	2, 115	4. 60	7.10	7.30	9, 002	14, 867	15,440
Indiana	606	648	700	5. 20	8.00	8. 40	3,151	5,184	5,880
Illinois.	516	516	593	5.30	7.90	8.20	2, 735	4,076	4,863
Michigan.	1,115	1,171	1,171	5.20	8.00	8.30	5,798	9, 368	9, 719
Wisconsin	367	341	341	4. 60	7.50	8.10	1,688	2, 558	2, 762
Minnesota	445	400	428	4.70	7.20	8. 00	2, 092	2, 880	3,424
Iówa	775	829	928	5.40	8.40	8.30	4,185	6,964	7,702
Missouri	1,042	1,105	1,205	4.50	7.10	7.60	4,689	7,846	9,158
North Dakota.	250	240	254	4.60	7. 30	7.80	1,150	1,752	1,981
South Dakota	$\stackrel{689}{ }$	689	696	4. 50	7.70	7.80	3,100	5, 305	5,429
Nebraska.	596	733	660	5.20	8.10	7.90	3,099	5, 937	5, 214
Kentucky	631	694	701	5.00	7.00	7.90	3, 155	4,858	5,538
Tennessee	340	340	326	4.00	5. 50	5. 90	1,360	1,870	1,923
Alabama	83	90	86	2.70	3.40	4.00	224	306	344
Mississippi	142	142	135	3.00	2.60	2.80	426	369	378
Louisiana.	124	122	116	2.80	2.90	3. 10	347	354	360
Texas.-	3, 077	2,862	3,091	3.40	5.20	5.90	10,462	14,882	18,237
Oklahoma	91	73	80	4.30	5. 80	5. 90	391	423	472
Arkansas.	90	81	81	2.90	3.10	3.20	261	251	259
Montana	2,270	2,270	2,370	4.70	8.70	8.70	10,669	19,749	20,619
W yoming	2,420	2, 686	2,767	5. 50	9. 00	9.00	13,310	24, 174	24, 903
Colorado	2,054	2, 444	2, 360	4.60	7.60	7.50	9,448	18, 574	17,700
New Mexico.	2, 343	2,062	2, 248	3. 90	6. 40	6. 50	9, 138	13, 197	14, 612
Arizona.	1,100	1,155	1,155	4.90	6. 30	7.10	5,390	7,276	8, 200
Utah	2,250	2, 340	2,457	4.90	8.90	8.60	11, 025	20, 826	21,130
Nevada	1,190	1,119	1,141	5.30	8.90	9.00	6,307	9,959	10,269
Idaho.	2, 492	2, 542	2,491	6. 00	8.30	8. 80	14, 952	21,099	21,921
W ashington			598	5. 40	8. 00	8. 70	2,700	4,160	5, ${ }_{\text {5, }}$
Oregon	1,860	1,860	1,916	4. 50 5.30	6.40 8.10		8,370 $\mathbf{1 2} 243$	11,904	15,711 22050
California	2,310	2, 402	2, 450	5.30	8.10	9.00	12,243	19, 450	22,050
Umited States	36,327	37, 223	38, 361	4.80	7.51	7.88	174, 545	279, 464	302, 092

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary

Table 526.-Sheep: Receipts and shipments at principal markets and at all markets, 1900-1923.

RECEIPTS.

Calendar year.	Chi-	Denver.	$\begin{gathered} \text { East } \\ \text { St. } \\ \text { Louis. } \end{gathered}$	Fort Worth	$\begin{aligned} & \text { Kansas } \\ & \text { City. } \end{aligned}$	Omaha.	$\begin{gathered} \text { St. } \\ \text { Joseph. } \end{gathered}$	St.	$\left\lvert\, \begin{gathered} \text { Sioux } \\ \text { City. } \end{gathered}\right.$	$\begin{aligned} & \text { Total } \\ & \text { nine } \\ & \text { mar- } \\ & \text { kets. } \end{aligned}$	$\begin{array}{c\|} \text { All } \\ \text { other } \\ \text { mar- } \\ \text { kets } \\ \text { report- } \\ \text { ing. } \end{array}$	Total all markets reporting.
	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-
	sands.	sands.	sands.	sands	sands.	sand	sands.	sands.	sands.	sands.	sands.	sands.
1900	3, 549	306	416	${ }^{(2)}$	860	1,277	390	490	61	7,349	${ }^{(1)}$	${ }^{(1)}$
1901.	4, 044	226	520	(2)	980	1,315	526	332	67	8,010	(1)	(1)
1902.	4,516	317	523	10	1,154	1,743	561	602	61	9,487	(1)	(1)
1903	4, 583	465	528	125	1,152	1,864	599	876	42	10, 234	(1)	(1)
1904.	4, 505	519	688	104	1,004	1,754	794	773	28	10, 169	(1)	(1)
1905.	4,737	738	645	125	1,319	1,971	981	818	57	11, 391	(1)	(1)
1906	4, 805	826	579	98	1,617	2,165	827	735	64	11, 716	(1)	(1)
1907	4, 218	828	565	113	1,582	2, 039	764	588	65	10,742	(1)	(1)
1908.	4, 352	675	679	120	1,641	2, 106	592	359	59	10,583	(1)	(1)
1909	4,441	634	776	188	1,645	2, 167	621	496	78	11, 046	(1)	(1)
1910	5,229	596	736	163	1,841	2,985	560	865	151	13, 126	${ }^{1}$	(1)
1911.	5,736	617	992	187	2,175	2,978	718	712	212	14, 327	(1)	
1912	6, 056	777	1,031	284	2,134	2, 951	729	628	207	14, 797	(1)	(1)
1913	5,903	620	950	328	2,095	3,222	812	785	271	14,986	(1)	(1)
1914	5,378	692	749	408	2,002	3,114	830	795	404	14, 372	(1)	(1)
1915.	3, 510	765.	648	363	1,815	3,268	878	704	337	12, 288	6,147	18,435
1916	4,291	1,409	671	431	1,758	3, 171	804	623	321	13, 479	7, 213	20,692
1917.	3, 595	2,060	531	406	1,499	3, 017	679	430	287	12, 484	7,732	20,216
1918	4,630	1,652	536	335	1,667	3,386	827	630	387	14,050	8,435	22,485
1919	5, 244	2,087	724	453	1,945	3, 789	1,007	912	686	16, 847	10,409	27, 256
1920	4, 005	2,079	605	394	1,687	2, 891	843	729	358	13, 591	9,947	23, 538
1921	4, 734	1,468	636	337	1,780	2, 753	931	633	288		10, 588	24, 168
1922	3, 874	1,887	628 561	325 386	1,574 1,671	2,533 2,970	730 979	499 454	223 216	13, 253	10, 111	22, ${ }^{22,154}$
1923.	4, 098	1,857	561	386	1,671		979	454				

SHIPMENTS.

1900	487	${ }^{(1)}$	62	(2)	(1)	552	103	404	28	1,636	(1)	(1)
1901	763	(1)	75	(2)	(1)	563	102	208	20	1,731	(1)	(1)
1902	832	(1)	72	(1)	(1)	863	129	485	25	2, 406	(1)	(1)
1903	1,000	(1)	77	(1)	(1)	892	144	682	${ }_{2}^{23}$	2,818	(1)	(1)
1904	1,362	(1)	101	(1)	(1)	819	275	622	21	3,200	(1)	(1)
1905	1,356	(1)	90	(1)	(1)	1,016	292	612	38	3, 404	${ }^{(1)}$	(1)
1906	1,341	(1)	108	(1)	(1)	1,176	195	580	27	3, 427	(1)	(1)
1907.	1,149	${ }^{(1)}$	91	(1)	${ }^{(1)}$	1,023	181	489	32	2,965		
1908.	1;214	(1)	-119	(1)	(1)	$\begin{array}{r}1,098 \\ \hline 959\end{array}$	138 127	241 348	28 34	2,838 2,522	(1)	(1)
1909.	940	(1)	114	(1)	(1)	959	127	348	34	2,522		
1910	1,494	(1)	77	(1)	${ }^{(1)}$	1,694	137	689	79	4, 170		
1911	1,283	(1)	108	(1)	(1)	1,565	152	542	63	3, 713	(1)	(1)
1912	1,175	(1)	97	(1)	(1)	1,343	154	431	35	3,235	(1)	(1)
1913	1,450	(1)	70	(1)	(1)	1,586 1,198	175 170	596 565	70 87	3,947 3,337		(1)
1914	1,273	(1)	44	(1)	${ }^{(1)}$	1,198	170	565	87	3,337	(1)	
1915	258	653	72	163	611	1,369	264	536	124	4, 050	2,700	6,750
1916	829	1,291	86	259	556	1,301	181	485	114	5,102	4,091	8,193
1017	836	1,958	69	248	583	1,638	207	319	97 178	${ }^{5}, 955$	5, ${ }^{5}$, 65	
1918.	1,205	1,484	68	175	744	1, 953	248	463 676	178 408	6,518 7,850	S, 688	12, 204
1919.	1,309	1,822	125	276	783	2,150	301	676	408	7,850	6,735	14,585
1920	1,202	1,864	140	204	623	1,474	228	416	160	6,311	6, 252	12,563
1921	1, 352	1,288	245	207	485	1,124	200	298	98	5,207	6, 036	11,333
1922	1,273	1, 693	223	244	558	1,094	154	176	69	5,484	${ }_{5}^{6,193}$	11, 677
1923.	1, 414	1,685	207	231	554	1,288	226	194	80	5,879	5,851	11,730

Division of Statistical and Historical Research. Prior to 1915 receipts compiled from yearbooks of stockyard companies; subsequent figures compiled from data of the reporting service of the Livestock, Meats, and Wool Division. Prior to 1915 shipments compiled from yearbooks of stockyard companies, except East St. Louis (1900 to 1906 from 14th Annual Report of Bureau of Animal Industry; 1907 to 1914 from Merchants' Exchange Annual Report); subsequent figures from data of the reporting service of the Livestock, Meats, and Wool Division.
${ }^{1}$ Figures prior to 1915 not obtainable.
2 Not in operation.

Table 527.-Sheep: Receipts at all public stockyards, 1915-1929.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Thoat-	Thou-	Thou	Thou-	Thou-	Thou-	Thou-	Thow-	Thou-	Thou-	Thou-	Thou-	Tho
	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands
19161	11,517	1,257	1,248	1,019	1,050	1,080	1, 264	1,725	2, 501	2,359	2, 042	1,373	18,435
1917	1, 578	1,384	1,256	1,152	1,059	1, 240	1, 353	1,763	2,654	3, 231	2,126	1, 479	${ }^{20,692}$
1918.	1,354	1,096	1,270	1,159	1,214	1,429	1, 1,639	2,270	3,496	3, 327	2, 2905	1,583	22, 216
1919	1,594	1,157	1,268	1,438	1,468	1, 775	2, 287	3,360	3, 854	3,754	2, 845	2, 456	27, 256
1920	1,614	1,416	1,315	1,466	1,488	1,640	2,034	2,606	2, 895	3, 027	2,471	1,566	23, 538
1921	1,792	1,516	1,750	1,677	1,916	1, 849	1,776	2,500	2,618	3, 042	2, 068	1, 664	24, 168
1922	1,835	1,399	1, 465	1,227	1,692	1,700	1,677	1,951	2, 303	3,311	2, 288	1,516	22,364
1923	1,636	1,366	1,430	1,447	1,794	1, 426	1,661	1,800	2, 659	3,464	1,816	1, 526	22, 025

Division of Statistical and Historical Researeh. Compiled from data of the reporting service of the Livestack, Meats, and Wool Division.

1. Complete information for 1915 and 1916, particularly on disposition of stock, is not obtainable from
any markets. many markets.

Table 528.-Sheep: Receipts at Chicago, East St. Louis, Kansas City, and Omaha combined, 1900-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	Thou-	Thau-	Thou-	Thou-	Thou-	Thou-	T'hou-	Thou-	Thou-	Thou-	Thou-	Thou-
1900	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sanis.	sands.	sands.	sands.
1901	495	449	492	490	515	431	445	613	577	743	479	380
1902	504	401	448	43	4	519	580		749	830	671	477
1903	559	523	562	551	482	434	546	721	1,022	1,143	936	646
1904	637	715	683	533	507	567	312	675	1,976	1,080	751	513
1905	623	609	643	633	668	515	604	693	1,105	1,225	784	570
1936	729	655	775	672	658	539	612	763	990	1,268	849	658
1907	755	644	658	687	514	499	575	685	1,042	1,191	638	519
1308	598	575	562	590	589	614	616	800	1,287	982	822	741
1909	576	565	700	593	465	607	636	862	1,206	1,281	841	700
1910	651	522	551	477	577	${ }^{631}$	794	1,199	1,609	1, 820	1,258	702
1911	822	686	740	686	763	796	807	1, 085	1,566	2,003	1,115	810
1912	1,020	849	856	770	665	671	837	1,052	1,528	1,906	1,113	905
1913	892	750	710	770	737	732	831	963	1,869	1,848	1,089	979
Av. 1909-1913	792	674	711	659	641	687	781	1,032	1,556	1,772	1,083	819
1914	934	863	909	858	707	716	723	979	1,558	1,512	705	779
1915	799	670	723	540	469	531	637	931	1,337	1,000	868	736
1916	742	697	632	586	632	659	634	991	1,301	1,403	854	761
1917	796	693	682	592	441	470	526	650	1,111	1,210	715	756
1318	716	525	620	518	538	554	726	989	1,770	1,569	952	741
1919	780	547	504	623	612	742	1,098	1,461	1,968	1,400	951	957
1920	666	619	580	462	532	632	827	1,189	1,288	946	817	631
Av. 1914-1920	776	659	673	597	562	615	739	1,027	1,476	1,291	837	766
1821.	813	700	819	754	729	725	645	1,100	1,173	1,095	686	664
1922	753	602	640	517	659	690	695	826	835	1,072	726	594
1923.	782	665	735	690	672	529	711	807	1,179	1,231	612	685

[^269]Table 529.-Sheep: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923.

RECEIPTS.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Market. \& 1915 \& 1916 \& 1917 \& 1918 \& 1919 \& 1920 \& 1921 \& 1922 \& 1923

\hline Albany, N. Y \& Thousands. \& Thousands. \& Thousands. 45 \& Thousands. \& Thousands. 1 \& Thousands. $\left.{ }^{1}\right)$ \& Thousands. (1) \& Thousands. $\left.{ }^{1}\right)$ \& $$
\begin{aligned}
& \text { Thour } \\
& \text { sands. }
\end{aligned}
$$

\hline Amarillo, Tex \& 75 \& 56 \& 158 \& 155 \& 236 \& 189 \& 38 \& 73 \& 101

\hline A tlanta, Ga \& \& \& (1) 2 \& (1) \& (1) 2 \& (1) \& (1) 2 \& (1) 2 \& (1) ${ }^{5}$

\hline Augusta, ${ }^{\text {Baltimore, }} \mathrm{M}$ \& 306 \& 279 \& $\stackrel{11}{349}^{349}$ \& ${ }_{359}$ \& ${ }_{371}$ \& ${ }_{367}$ \& ${ }_{466}$ \& ${ }_{306}$ \& ${ }^{(1)} 284$

\hline Billings, Mont \& 11 \& 53 \& 22 \& 25 \& 77 \& 26 \& 3 \& \&

\hline Birminghami, A \& \& ${ }_{3}^{2}$ \& 1 \& 1 \& 1
4 \& $\frac{1}{5}$ \& 2 \& ${ }^{(1)} 2$ \&

\hline Boston, Mass. \& $83{ }^{3}$ \& - ${ }^{3}$ \& 3
756 \& ${ }_{904}^{4}$ \& 1, 100 \& 5
1,052 \& 1,380 ${ }^{2}$ \& 1,191 \& 1,226

\hline Buifalo, N. Y Chattanooga, Ten \& 835 \& 1,024
4 \& 756
2 \& 904 \& 1,100
3 \& 1,052

2 \& 1,380
3 \& 1, 4 \& 1, 2

\hline Cheyenne, Wy \& \& \& 210 \& 371 \& 442 \& 223 \& 148 \& 139 \& 169

\hline Chicago, Ill \& 3, 510 \& 4,291 \& 3, 595 \& 4,630 \& 5, 244 \& 4,005 \& 4, 734 \& 3, 874 \& 4,098

\hline Cincinnati, Ohio \& 356 \& 332 \& 270 \& 275 \& 335 \& 366 \& 438 \& 394 \& 345

\hline Cleveland, Ohio \& 259 \& $\underset{\text { (1) }}{254}$ \& ${ }_{(1)} 320$ \& ${ }_{(1)}^{370}$ \& ${ }_{(1)}^{467}$ \& ${ }_{(1)}^{420}$ \& ${ }_{(1)}^{370}$ \& (1) ${ }^{360}$ \& 333
1

\hline Columbus, \& 1 \& 1 \& (1) \& \& 1 \& 1 \& 1 \& 2 \& 1

\hline Dallas, Tex \& \& 1 \& (1) \& (1) \& (1) \& 1 \& 1 \& 1 \&

\hline Dayton, Ohio \& 11 \& 4 \& 4 \& \& 11 \& 9 \& 7 \& 8 \&

\hline Denver, Colo \& 765 \& 1,409 \& 2, 060 \& 1,652 \& 2, 087 \& 2,079 \& 1,468 \& 1,867 \& 1,857

\hline Detroit, Mich \& 269 \& 284 \& 297 \& 279 \& 344 \& 328 \& 343 \& 356 \& 298

\hline Dublin, Ga_ \& \& \& \& \& ${ }^{(1)}$ \& ${ }^{1}$ \& \& (1) \&

\hline East St. Louis, \& 648 \& 671 \& 531 \& 536 \& 724 \& 605 \& 636 \& 628 \& 581

\hline El Paso, Tex \& 99 \& 117 \& $\stackrel{211}{136}$ \& 88
98 \& ${ }_{156}^{252}$ \& 136 \& 71
170 \& 165 \& 73

\hline Emeryville, Calif \& \& \& 136 \& ${ }_{9}^{98}$ \& 156
38 \& 157 \& 170 \& \&

\hline Erie, Pa..-- \& \& \& \& 109 \& 38 \& \& \& \&

\hline Evansville, Ind \& \& 7 \& 9 \& 11 \& 14 \& 14 \& 8 \& 11 \& 8

\hline Fort Wayne, Ind \& \& \& \& \& \& 394 \& 357 \& 325 \& 386

\hline $\underset{\text { Fort Worth, }}{\text { Fostoria, Ohio }}$ \& 363
13
13 \& 431
12 \& 12 \& 10
10 \& 11 \& 17 \& 21 \& 14 \& 12

\hline Indianapolis, Ind \& 113 \& 98 \& 102 \& 114 \& 131 \& 136 \& 145 \& 147 \& 124

\hline Jacksonville, Fla \& \& 1 \& (1) \& 2 \& 2 \& 1 \& (1) \& (${ }^{\text {a }}$ \&

\hline Jersey City, N.J \& 1, 029 \& 1,546 \& 1,329 \& 1,095 \& 1,532 \& 1,554 \& 1,994 \& 1, 8.54 \&

\hline Kansas City, Mo \& 1,815 \& 1,758 \& 1,493 \& 1,667 \& 1,945 \& 1, 687 \& 1,780 \& 1, 574 \& 1,671

\hline Knoxville, 'Tenn \& 3 \& 2
2 \& 3
4 \& 2
5 \& $\stackrel{2}{8}$ \& 8 \& 8 \& 4 \& 1

\hline Lafayette, Ind.- \& 3 \& \& \& 5 \& \& \& \& \&

\hline Lancaster, Pa \& 2 \& 1 \& 160 \& 257 \& 74 \& 122 \& 12 \& 27 \& 53

\hline Laredo, Tex \& (1) \& ${ }^{(1)}$ \& (1) \& 1 \& (1) \& 1 \& 1 \& 1 \& 1

\hline Los Angeles, Calif \& \& \& \& \& \& \& \& \& 75

\hline Louisville, Ky .- \& 308 \& 343 \& 272 \& 257 \& 273 \& 277 \& 286 \& 318 \& 265

\hline Marion, Ohio. \& \& \& \& 2 \& 32 \& 50 \& \& \&

\hline Memphis, Tenn \& \& 4 \& \& $\stackrel{2}{5}$ \& 65 \& ${ }_{61}^{2}$ \& \& 45 \& 40

\hline Milwaukee, W is Mobile, Ala \& (1) 86 \& \& 48 \& \& \& \& \& \&

\hline Montgomery, Ala \& \& \& 1 \& 7 \& 7 \& 4 \& 2 \& 2 \& 3

\hline Moultrie, Ga- \& \& \& \& \& \& \& \& 152 \& ${ }^{(1)} 129$

\hline Nashville, Tenn \& \& 47 \& 94 \& (1) \& 14 \& 129
1 \& ${ }_{(1)}^{138}$ \& 152 \& 12

\hline Newark, N. J...- \& \& \& \& \& \& \& \& \& 29

\hline New Brighton, Min \& 146 \& 169 \& 83 \& 203 \& 276 \& 166 \& 293 \& 290 \&

\hline New Orleans, La \& \& 4 \& 6 \& , \& 6 \& 6 \& 4 \& 4 \& 74

\hline New York, N. Y \& 179 \& 94 \& 80 \& 271 \& ${ }_{3}^{291}$ \& 158 \& 221
368 \& 143
459 \& 74
449

\hline North Salt Lake, Ut \& \& 404 \& 357 \& 424 \& 388 \& 481 \& 368
576 \& 709 \& 849

\hline Ogden, Utah. \& \& \& 380 \& 423 \& ${ }^{516}$ \& \& 576
18 \& 78
18 \& 849

\hline Oklahoma, Okla \& 69 \& 115 \& 50 \& 32 \& 19 \& 15 \& 18 \& 18 \& 9

\hline Omaha, Nebr \& 3,268 \& 3,171 \& 3, 017 \& 3, 386 \& 3, 789 \& 2,891 \& 2, 753 \& 2, 533 \& 2, 970

\hline Pasco, Wash \& \& \& \& 58 \& 131 \& 92 \& \& 66
3 \& 66
4

\hline Peoria, Ill \& \& \& 185 \& 231 \& 293 \& $\begin{array}{r}3 \\ 349 \\ \hline\end{array}$ \& 454 \& 352 \& 248

\hline Philadeiphia, Pa \& 312
419 \& 282
337 \& 185
563 \& 231
553 \& 293 \& 349
929 \& 1,
1,197 \& 1,204 \& 1, 045

\hline Pittsburgh, Pa \& 419 \& 303 \& 563 \& 553 \& 76. \& 922 \& \& \&

\hline Portland, Oreg. \& 197 \& 171 \& 141 \& 149 \& 215 \& 235 \& 329 \& 205 \& 179

\hline Pueblo, Colo \& 794 \& 806 \& 800 \& 762
7 \& 837
10 \& 734
10 \& 541
13 \& 645
12 \& 704

\hline Richmond, Va \& 7 \& \& \& \& \pm \& 10 \& \& \&

\hline St. Joseph, Mo. \& 878 \& 304 \& 679 \& 827 \& 1,097 \& 843 \& 931 \& 730 \& 979

\hline
\end{tabular}

[^270]Table 529.-Sheep: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923-Continued.

RECEIPTS-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
St. Louis, Mo.	Thousands. 153	Thousands. 109	Thousands. 62	Thousands. 25	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.
St. Paul, Minn	704	623	430	630	912	729	633	499	454
San Antonio, Tex	17	26	51	41	88	70	49	66	23
Seattle, W ash.		20	9	52	102	91	91	70	86
Sioux City, Iowa	337	321	267	387	686	358	288	223	216
Sioux Falls, S. Dak			${ }^{1}$)	2	37	5	2	2	5
Spokane, Wash.	2	32	39	102	117	127	73	63	28
Springfield, Ohio									9
Tacoma, Wash		12	28	28	33	44	55	39	
Toledo, Ohio	41	29	34	29	54	69	23	20	13
Washington, D.		15	7	8	20	27	35	21	17
Wichita, Kans.	30	21	27	40	59	39	32	82	120
Total	18,435	20,692	20,216	22, 485	27, 256	23, 538	24, 168	22, 364	22,025

LOCAL SLAUGHTER.

Albany, N. Y			2	(1)	(1)	(1)	(1)		
Atlanta, Ga			(1)	(1)					
Augusta, Ga			(1)	${ }^{(1)} 8$	${ }^{(1)}$	${ }^{(1)}$	${ }^{(1)} 18$	${ }^{(1)} 14$	${ }^{(1)} 131$
Baltimore, M	105	93	${ }_{(1)} 60$	85	${ }_{(1)}^{103}$	121	186 1	144	
				1	(1)	1	1		
Buffalo, N. Y		183	119	142	231	263	243	193	161
Chattanooga, Tenn				2	2	2	${ }_{3}$	4	
Chicago, Ill.	3, 252	3,462	2, 759	3,425	3, 035	2,803	3, 383	2, 601	2,684
Cincinnati, Ohio	124	79		52	84	81	121	91	
Cleveland, Ohio	168	144	118	132	176	168	234	189	189
Columbia, S. C		${ }^{(1)}$		(1)	${ }^{(1)}$	${ }^{1}$ (1)	(1)	${ }^{(1)}$	
Columbus, Ohio	1	1		(1)	(1)	(1)	1		
Dallas, Tex		1	${ }^{(1)}$	$\left.{ }^{1}\right)$	${ }^{(1)}$		1		
Dayton, Ohio	11	2	2	2	4	6	5	5	
Denver, Colo	113	116	95	174	241	239	180	172	169
Detroit, Mich		209	156	138	212	216	168	196	194
East St. Louis,	576	584	462	468	${ }_{5}{ }_{3}$	$\begin{array}{r}465 \\ 7 \\ \hline\end{array}$	$\stackrel{391}{7}$	405 7	${ }_{8} 8$
El Paso, Tex.-					${ }_{156}^{3}$	157			
Emeryville, Cali			135	101	156		170	165	
Erie, Pa				3	4	1			
Evansville, Ind		1	1	1	1	3	3	3	
Fort Wayne, Ind									
Fort Worth, Tex	201	189	144	${ }_{(1)}^{131}$	${ }_{(1)}^{164}$	${ }_{(1)}^{206}$	${ }_{(1)}^{157}$	8	(1) ${ }^{155}$
Indianapolis, Ind	40	31	${ }^{21}$	16	26				
Jacksonville, Fla			${ }_{1}^{(1)}{ }_{329}$			${ }_{1}^{(1)}$		${ }^{(1)} 8$	
Jersey City, N.J	1, 029	1,546	1329 886	1,095 951	1,532	1,554	1,994	1,854	1,276 1,101
Kansas City, Mo	1,194 +1	(1)	(1) ${ }^{888}$	${ }^{1} 1$	1,176 1	1,000	${ }^{1,} 1$	1, 1	
Lafayette, Ind.		1	1	1	2	1	2	1	2
Lancaster, Pa				1	1	2	2	1	2
Laredo, Tex									
Logansport, Ind Los Angeles, Cali	(1)	(1)	(1)			()	(()	
Louisville, Ky	20	25	20		24	29	26	27	24
Marion, Ohio				(1)	(${ }^{(1)}$	1	(1)	(1)	
Memphis, Tenn-									${ }^{(1)} 29$
Milwaukee, Wis	51	$\text { (1) }{ }^{38}$	$\text { (1) } 38$	34	42	45	47	34	29
					1	1.			
Montgomery, Ala		1	9	13	15	18	${ }^{23}$	${ }^{27}$	- 21
Newark, N. J.									29
New Orleans, La New York, N. Y	---179-	$\begin{gathered} 4 \\ 94 \end{gathered}$	$\begin{array}{r} 5 \\ 83 \end{array}$	$\begin{array}{r} 77 \end{array}$	291	$\begin{array}{r} 3 \\ 158 \end{array}$	$\begin{array}{r} 3 \\ 221 \end{array}$	143	$\begin{array}{r} \mathbf{2} \\ \mathbf{7 5} \end{array}$

[^271]Table 529.-Sheep: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, calendar years, 1915-1923-Continued.

LOCAL SLAUGHTER-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.
North Salk Lake, Utah		13	46	26	17		67	20	19
Ogden, Utah			8	43	24	17	- 14	8	7
Oklahoma, Okla	39	72	27	14	8	5	12	12	4
Omaha, Nebr	1,899	1, 870	1, 378	1,433	1,639	1, 417	1,626	1,440	1,682
Pasco, Wash.				(1)	(1)				
Peoria, Ill	1	1	1	1	1	2	3	1	1
Philadelphia, \mathbf{P}			170	220	286	343	446	345	244
Pittsburgh, Pa	56	111	85	95	103	125	148	117	117
Portland, Oreg	146	112	87	77	109	104	151	95	104
Richmond, Va	6	2	4	5	6	7	10	9	8
Roanoke, Va									(1)
St. Joseph, Mo	615	624	472	580	706	615	730	576	754
St. Louis, Mo.	16	18	11	8					
St. Paul, Minn	181	152	118	176	251	300	316	319	253
San Antonio, Tex			9	1	1	2	2	4	2
Seattle, Wash		20	9	52	101	90	91	69	83
Sioux City, Iowa	210	216	170	210	282	199	191	153	135
Sioux Falls, S. Dak			(1)	(1)	${ }^{(1)}$	2	1	(1)	(1)
Spokane, Wash.	1	1	4	9	13	16	26	11	(1)
Springfield, Ohio.									
Tacoma, Wash		12	28	24	37	37	55	40	
Toledo, Ohio		3	3	2	4	2	3	3	1
Washington, D.		15	6	8	20	27	34	20	17
Wichita, Kans.	19	4	2	4	6	5	6	13	17
Total	10,254	11,228	9, 142	10,266	12, 646	10,981	12, 858	10,669	10,271

STOCKER AND FEEDER SHIPMENTS.

${ }^{1}$ Less than 500.

$$
85813^{\circ} \text { —увк } 1923-63
$$

Table 529.-Sheep: Receipts, local slaughter, and stocker and feeder shipments, public stock yards, calendar years, 1915-1923-Continued.

STOCKER AND FEEDER SHIPMENTS-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1983
	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.	Thowsands.
Newark, N. J									
New Brighton, Minn		4	4		33	3	75	46	
New Orleans, La			(1)	2	1	1	1	1	1
North Salt Lake, Utah		47	159	215	277	211	142	276	24
Ogden, Utah.			I	41	171	133	197	281	350
Oklahoma, Okla		24	13	6	6	3	2	3	3
Omaha, Nebr		1,026	1,302	1,592	1, 787	1,124	670	757	880
Pasco, Wash.				59	131	68			
Peoria, Ill				(1)	1	1	4	1	3
Portland, Oreg		15	27	18	27	40	13	7	5
Pueblo, Colo				20	(1)	1	(1)	3	292
Richmond, Va		1	1	1	2	1	1	1	1
St. Joseph, Mo		97	124	126	200	142	107	113	150
St. Paul, Minn.		140	92	109	201	113	78	66	91
San Antonio, Tex		9	1	17	46	33	5	38	7
Sioux City, Iowa		87	62	129	272	90	64	45	42
Sioux Falts, S. Dak			(1)	(1)	28	1	(1)	(1)	1
Spokane, Wash			16	24	35	75	12	22	12
Tacoma, Wash				2	(1) 1	2	${ }^{(1)}$	${ }^{(1)}$	---... -
Toledo, Ohio					(1)	3	$\left.{ }^{1}\right)$	(1)	
Wichita, Kans		1	11	16	19	3	2	17	37
Total		3, 277	4,448	5,208	6,956	5, 180	3,095	4,167	4,478

Division of Statistical and Historical Research. Compiled from reports made by stockyards to the Livestock, Meats and Wool Division.
${ }^{1}$ Less than 500.
Table 530.-Sheep: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, 1983.

Stockyard.	Jan.	Feb.	Mar.	Apr.	May	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Thou-	Thou-	Thou-	Thou-	Thow	Thow-	Thou-	Then-	Thow-	Thou-	Thote	Thou	Thou-
Buffalo, N. Y.:	sands.	sands.	sands.	sands.	sunds.	sands.	sands	sands.	sands.	sands.			sands.
Receipts.----	133	102	107	125	88	39	45	62	85	123	152	165	1,226
Local slaughter	15	11	12	16	15	6	13	14	15	17	14	13	161
Stocker and feeder								1	(1)	1	(1)		2
Chicago, H .:													
Receipts.	358	283	315	338	261	200	290	365	478	539	325	346	4,098
Local slaughter...-	243	188	212	238	204	189	237	228	227	266	217	235	2, 684
Stocker and feeder shipments	24	25	21	11	5	7	23	81	186	203	62	34	682
Cinclnnati, Ohio:	3	2	3	3	33	83	70	83	30	20	9	6	345
Receipts------	3	2	$\stackrel{3}{2}$	3	10	5	0	10	3	7	4	4	62
Stocker and feeder shipments	(1)					1	1	6	6	1	${ }^{(1)}$		15
Cleveland, Ohio:												47	
Receipts-----	$\stackrel{24}{16}$	13	13	18	16	14	15	18	18	16	8	21	138
Stocker and feeder shipments						${ }^{(1)}$	(1)	(1)	2	1	1	(1)	4
Denver, Colo.:													
Receipts ------	128	101	121 20	114	14	20 8	10	18	10	19	13	11	1,808
Local slaughter													
East St. Louis, Mo.:	54	24	20	10	9	3	29	11	127	538	213	30	1,068
East St. Louis, Mo.. Receipts	32	19	24	20	54	92	79	60	60	53	34	34	561
Lecal slaughter	18	14	17	12	39	68	56	40	27	27	18	18	354
Stocker and feeder	(1)	1	(1)		(1)	2	8	5	20	10	3	2	51

[^272]Table 530.-Sheep: Receipts, local slaughter, and stocker and feeder shipments, public stockyards, 1923-Continued.

Stockyard.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
Fort Worth, Tex.:	Thousands.	Thou-	Thou-	Thou-	Thousands.	Thousands.	Thou- sands.	Thou-	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.
Receipts....-...	12	6	8	16	86	42	61.	26	53	38	27	11	386
Local slaughter	5	5	6	11	40	23	23	9	9	12	10	2	155
Stocker and feeder shipments	2	${ }^{(1)}$	$\left.{ }^{1}\right)$	1	4	3	5	5	8	6	2	3	39
Indianapolis, Ind.: Receipts.	7	3	2	2	5	16	15	16	20	21	9	8	124
Local slaughter	5	1	1	1	3	9	7	10	8	7	5	4	61
Stocker and feeder shipments	(${ }^{1}$	(1)	(${ }^{1}$	(1)	(1)	1	1	1	1	1	(1)	(1)	5
Jersey City, N. J.:													
Receipts	81	55 55	57 57	68 68	88	145	166	193	118	117	98 98	90	1,276
Stocker and feeder shipments	81	5	57	68									
Kansas City, Mo.:													
Receipts .--------	146	112	140	127	148	119	128	118	219	215	90	109	1, 671
Local slaughter----	108	84	106	113	108	86	91	73	95	104	54	79	1, 101
Stocker and feeder shipments \qquad	27	23	17	8	23	24	21	37	98	81	28	20	407
Oklahoma, Okla.: Receipts	1	1	(1)	(1)	(1)	1	1	1	1	$\left.{ }^{1}\right)$	$\left.{ }^{1}\right)$	3	9
Local slaughter	1	1	(1)	(1)	(1)	1	1	(1)	(1)	(1)	(1)	(1)	4
Stocker and feeder shipments												3	3
Omaha, Nebr:											163	196	2,970
Receipts.--	247 170	251 139	256 176	205	209	118	215 133	112	148	134	106	134	1,682
Local slaughter	170	139	176	168	168	94	133	112	148	134	106	134	1,682
Stocker and feeder shipments	25	38	19	15	23	21	46	125	257	252	49	19	889
Pittsburgh, Pa.:							139	131	88	75	57	78	1,045
Receipts	63 8	54	62	82	12	121	139 12	131 12	10	12	10	9	1,118
Stocker and feeder shipments \qquad													
St. Joseph, Mo.:													
Receipts......-..--	101	110	121	92	77	619	57	31	43	100	49	63	754
Local slaughter	82	82	94	80	66	49	47	37	43	62	49	63	754
Stocker and feeder shipments	7	6	7	8	9	- 10	8	14	26	36	12	7	150
St. Paul, Minn.:								27	73	134	83	30	454
Reccipts	37	18	16	9	5	5	17	27	38	130	42	23	253
Local slaughter	23	12	13	8	5	5	12	22	38	50	42	23	203
Stocker and feeder shipments	4	2	2	(1)	${ }^{(1)}$	(1)	1	3	10	43	22	4	91
Sioux City, Iowa:								9	17	53	34	24	216
Receipts .-.-.	25	16	14	11		3	6 5		10	15	24	20	136
Local slaughter	20	13	12	7	3	3	5	4	10	15			
Stocker and feeder shipments	2	3	(1)	(1)	(1)	(1)	1	1	1	26	6	2	42

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division. Local slaughter data from stockyards.
${ }^{1}$ Less than 500.
Table 531.—Sheep: Shipments of feeder sheep from public stockyards, 1923. oriain.

Market.	Jan.	Feb.	Mar.	Apr.	May.	June.
	Number.	Number.	Number.	Number.	Number.	Number.
Chicago, ml	29,361	24, 367	20,809	10,850	4,330	5,847 $\mathbf{2}$ 189
Denver, Colo	36, 831	20, 197	9, 020	4, 495	6,610	- 1,969
Fort Worth, Tex	2,291	13, 290	124 5,095	1,344 2,380	11,499	9,746
Kansas City, Kans	16,364	13,857	5,095		11, 390	5,529
Louisville, K National Stock Yards	484	280	122		203	1,637.
	20,468	30,600	18,655	14,585	21, 101	18,430
Sioux City, Iowa	1, 954	1, 304	150	16	23	${ }^{648}$
South St. Joseph, Mo	1,722	825	1,220	565	1,798	2,501
South St. Paul, Minn	2,770	2,253	1,926			2,125
All other-.-.-.---	2, 704	1,025	507	612	1,574	2,182
Total	114, 949	95, 003	57, 628	34, 847	52,582	51, 010

Table 531.-Sheep: Shipments of feeder sheep from public stockyards, 1923Continued.

ORIGIN-Continued.

Market.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Number.	Number.	Number.	Number.	Number.	Number.	Number.
Chicago, ml	25, 040	83, 368	186, 428	189, 772	63, 561	39, 547	683, 280
Denver, Colo	21, 906	12,903	119, 815	564, 409	173, 227	29, 906	1, 001, 718
Fort Worth, Te	5,114	4,461	8, 403	5,814	2,017	3,380	39, 258
Kansas City, Kans	14, 772	27, 210	70, 583	70, 170	20, 171	19,471	281, 318
Louisville, Ky	10,602	11,786	3, 843	934			34,090
National Stock Yards,	6,123	3,603	2, 517	1,823	562	424	17,778
Omaha, Nebr	43, 319	121, 077	247, 383	243, 404	57, 745	26, 201	862,968
Sioux City, Iowa	623	847	7, 141	28,690	4,777	2,038	48, 211
South St. Joseph, Mo	5,396	9, 426	13, 082	16, 135	4, 993	2,955	60, 618
South St. Paul, Minn	269	1,619	6,111	35, 047	19,349	3, 553	73, 027
All other.	4,135	6,987	27, 048	14, 517	9,242	3, 810	74, 343
Total	137, 299	283, 287	692, 354	1, 170, 715	355, 644	131, 291	3,176,609

DESTINATION.

State.		Jan.	Feb.	Mar.	Apr.	May.	June.
		Number.	Number.	Number.	Number.	Number.	Number.
Colorado		25, 556	8,961	3, 877	4, 016	5,087	2, 097
Ininois		6, 874	5,243	1,759	4,366	1, 128	2, 403
Indiana		977	1,505	607	1,008	10	2,234
Iowa_		6,934	7,731	2,698	797	4,648	6,927
Kansas		3, 639	3, 726	2,383	1,246	4,856	704
Kentucky						1,770	5, 156
Michigan		21, 769	17, 597	13, 914	2,995	3, 601	3, 556
Minnesota		${ }^{313}$	787	463			5, 1681
Missouri		6,559	4,952	914	422	3,253	5,281
Nebraska		34, 989	40,978	21, 737	15, 560	23,996	17,352
Ohio-		801	1, 556	1, 085	250	303	769
South Dakota		134	172	397			3 +816
Texas.		1,503	15	124	1, 344	2, 392	1,816
Wisconsin		2, 314	678	5,922	2, 320	200	+ 385
All other.		2,587	1,102	1,748	523	1,338	2,160
Total		114,949	95, 003	57, 628	34, 847	52,582	51, 010
State.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	$\begin{array}{r} \text { Number. } \\ 21,599 \\ 9,776 \\ 7297 \end{array}$	Number. 4, 668	Number. 77, 051	Number. 398, 695	Number.$148,522$	Number.$27,207$	Number. 727, 336
Colorado							
Illinois		40, 637	91, 323	66, 143	19, 282	7, 131	256, 065
Indiana		39, 322	53, 231	36, 517	5, 876	1,469	150, 083
Iowa-	20,632	66, 212	132, 544	129, 846	19,722	5,965	404, 656
Kansas	4,788	9,661	27, 195	36, 280	11,876	13, 726	120, 080
Kentucky	11, 496	13,329	5,480	1,571		$\begin{array}{r}6 \\ \hline 179\end{array}$	38, 808
Michigan	16, 172	21, 216	66, 686	96, 066	32, 041	17, 979	313, 592
Minnesota	1,615	1,259	5,705	10, 409	9,542	1,393	31, 653
Missouri	13, 108	25, 952	68,953	44, 466	7, 127	9, 113	190, 100
Nebraska	19, 743	46, 199	124, 699	291, 844	72, 863	26, 363	736, 323
Ohio	2,126	5,888	18,605	15, 516	3,749	1,036	51, 684
South Dakota		3,349	2,655	3,741	1,376	1,658	13, 485
Texas.	2,910	590	1,508	1,311	1, 283	1, 370	16, 166
Wisconsin	760	728	1, 151	12, 512	4,786	8, 619	40, 375
All other.	5,247	4,277	15,568	25, 798	17, 599	8,256	86, 203
Total.	137, 299	283, 287	692, 354	1, 170, 715	355, 644	131, 291	3, 176, 609

Division of Statistical and Historical Research. Compiled from Bureau of Animal Industry inspection records.

Table 532.-Sheep: Imports, exports, and prices, 1895-1923.

Year ending June 30.	Imports.			Exports.		
	Number.	Value.	Average import price.	Number.	Value.	Average export price.
1895-1899	351, 602	\$972, 444	\$2. 77	296, 882	\$1, 861, 231	\$6. 27
1900-1904	303, 990	1, 082, 047		252, 138	1,525, 800	6.05
1905-1909.	195, 983	886, 150	4. 52	143, 011	839, 219	5. 87
1909-10	126, 152	696, 879	5.52	44, 517	209, 090	4. 69
1910-11.	53,455	377, 625	7.06	121, 491	636, 272	5. 24
1911-12	23, 588	157, 257	6. 67	157, 263	626, 985	3. 99
1912-13	15, 428	90, 021	5.83	187, 132	605, 725	3.24
1913-14	223, 719	532, 404	2. 38	152, 600	534, 543	3. 50
1914-15.	153, 317	533, 967	3.48	47, 213	182, 278	3.86
1915-16.	235, 659	917, 502	3. 89	52, 278	231, 535	4.43
1916-17	160, 422	856, 645	5. 34	58, 811	367, 935	6. 23
1917-18	177, 681	1, 979, 746	11. 14	7,959	97,028	12.19
1918-19	163, 283	1, 914, 473	11. 72	16, 117	187, 347	11.62
1919-20	199, 549	2, 279, 949	11. 43	59, 155	711, 549	12.03
1920-21	161, 292	1,541, 793	9.56	80, 723	532, 510	6. 60
1921-22	96, 086	514, 424	5.35	62, 354	294, 442	4.72
1922-23.	82, 903	542, 406	6. 54	15, 791	164, 695	10.43

Division of Statistical and Historical Research.
Table 533.-Live sheep: Exports and imports, United States, by months, 19101924.

IMPORTS.

$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { June } 30 . \end{gathered}$	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total
	Num-	Num	Num	N	Num-	Num-	Num-	Num-	Num-	Num-	Num-	Num-	-
	ber.		ber.	ber		${ }^{\text {ber }}$							
1909-10-	765	8, 683	33, 002	32, 896	29, 604	15, 072	1, 014		2,014	1,415			53,455
1910-11-	1,885	$\xrightarrow{6,715}$	8, 287 $\mathbf{2}, 241$	21, 501	11, 554	881	39	90	7	131	2, 390	1,339	23, 588
1912-13-	37	${ }^{2,} 413$	1, 648	3, 466	5, 077	792	95	13	782	2	2,769	334	15, 428
1913-14 -	457	1,173	960	26, 035	46,995	36, 073	15, 485	871	13, 995	73,169	5, 834	2, 672	223, 719
1914-15	4,403	15,464	18,915	13, 680	15, 375	20, 132	7,223	53, 747	33	1,340	748	2, 257	153, 317
1915-16-	12, 377	23, 637	19, 683	86, 765	53, 253	15, 458	2, 530	193	3,884	5,785	5, 632	6, 462	5,659
1916-17.	4,731	8, 625	48, 650	23,755	13, 835	1, 640	8, 446	42,880	3, 193		2,258	1,524	160,422
1917-18-	1,439	6, 980	51, 421	38, 540	38, 436	6,859	1,423	7,085	13, 200	1,899	3, 512	6,887	177, 681
1918-19-	672	4, 691	20, 274	32, 105	36, 453	22, 002	10,684	8, 103	5,146	12, 203	10,631	319	163,283
1919-20	1,039	15, 092	27, 557	77, 705	37, 448	18, 847	8,611	3,263	5,247	1,763	1,114	1,863	199,549
1920-21.	1,633	15, 835	37, 534	39, 687	36, 689	19, 666	5, 232	261	1,241	1,234	416	1,864	161, 292
1921-22.	856	10, 075	31, 938	18, 607	11, 380	1,483	7,538	3, 499	5,537		2, 034	1,064	
1922-23-	1,415	12, 714	22, 160	31, 096	4, 512	1,164	5,347	447	12	2,599	1,478	15	82, 959
1923-24 -	2, 021	3,428	3, 774	11, 023	8,690	102							

EXPORTS.

1909-10	5,584	4,603	8,372	6,818	3,221	4, 184	1,550	1,289	452	957	790	6,697	44, 517
1910-11	6,532	4, 030	3,987	11, 863	10, 666	3,825	7,458	8, 504	15, 452	15, 738	20,537	12,899	121, 491
1911-12.	12, 984	10,542	21, 312	15, 281	14, 524	21, 838	12, 039	12, 359	7, 829	9, 643	6, 234	12, 678	157, 263
1912-13 -	10, 786	25, 601	24, 292	20, 090	18, 589	31, 823	7,645	9,437	5, 906	9, 774	10, 152	13, 037	187, 132
1913-14.	16,537	6,475	15, 795	27, 843	19, 050	28, 760	4,263	5, 803	4,940	5,462	8, 173	9, 499	152, 600
1914-15.	8,632	9,300	7, 216	8,531	6,172	236	206	125	1,130	531	2, 485	2,649	47, 213
1915-16.	4, 076	5, 449	2,987	10,518	6, 919	3, 426	541	4,981	1, 500	519	6, 969	4,393	52, 278
1916-17-	3, 152	4,833	3, 281	14, 400	6,913	3,577	1,253	703	309	8, 226	10,333	1,831	58,811
1917-18.	570	1, 103	334	423	266	5, 008	6	48	6	11	96	88	7,959
1918-19.	6, 196	108	39	889	75	400	30	12	153	4, 595	3,406	214	16, 117
1919-20-	6,557	1,695	5, 934	5, 075	6, 653	207	149	13,320	4, 034	1447	426	14, 958	59, 155
1920-21-	, 890	246	3, 407	2, 558	1,806	6,937	4, 059	8, 486	4, 005	14, 749	10, 098	23, 482	80, 723
1921-22.	15, 744	16, 605	8, 737	6, 244	3, 031	2, 156	174	1, 952	770	2, 414	1,320	3, 207	62, 354
1922-23 -	3, 387	1,582	1, 136	575	546	109	131	53	783	3, 942	1,727	1,820	15,791
1923-24 -	2, 305	1,980	484	818	141	2,695							

Division of Statistical and Historical Research. Compiled from reports of the Bureau of Foreign and Domestic Commerce.

Table 534.-Sheep: Farm price per 100 pounds, 15th of month, United States, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Weighted av.
1910	\$5. 63	\$5.09	\$5. 64	\$6. 10	\$5. 79	\$5.44	\$5.47	\$4. 68	\$4. 81	\$4. 68	\$4.63	\$4. 54	\$5. 24
1911	4.47	4. 34	4.45	4. 55	4.51	4. 24	4.19	3. 98	3.91	3. 68	3. 65	3. 71	4.15
1912	3.89	4.01	4. 12	4. 57	4.74	4. 52	4.21	4. 26	4. 11	4. 19	4. 05	4. 21	4.24
1913	4.35	4.63	4.97	5. 16	4.91	4.84	4. 20	4. 32	4. 23	4. 16	4. 27	4. 46	4.55
Aจ. 1910-1913	4. 58	4. 52	4.80	5.10	4.99	4.76	4. 52	4.31	4. 26	4. 18	4. 15	4.23	4.55
1914	4.67	4. 67	4. 77	4. 96	4.87	4. 70	4. 75	4.87	4. 80	4.81	4. 68	4. 95	4.79
1915	4. 95	5. 14	5. 36	5. 60	5. 54	5.43	5. 35	5. 16	5. 06	5. 18	5. 18	5. 38	5. 27
1916	5. 52	5. 90	6.35	6.61	6. 66	6. 54	6.33	6. 22	6. 25	6. 20	6. 41	6. 77	6.29
1917	7.33	8. 17	9.21	9. 69	10.15	9.84	9.32	9. 33	10.05	10. 24	10.20	10. 44	9.45
1918	10.55	10.75	11. 41	11. 98	12.32	11. 56	11. 04	10.99	10. 79	10.35	10. 11	9.46	10.95
1919	9.68	9.95	10.45	11.33	10. 93	10.34	9.25	9.06	8. 69	8. 46	8. 35	8. 53	9.63
1920	9. 34	9.97	10.25	10.66	10.34	9.13	8.21	7.54	7.24	6. 62	6. 20	5. 54	8.51
Av. 1914-1920	7.43	7.79	8.26	8.69	8.69	8.22	7.75	7.60	7.55	7.41	7. 30	7.30	7.84
1921	5.30	5. 01	5. 27	5.11	5.11	4.74	4.34	4.38	4.11	3.96	3. 84	4.10	4.65
1922	4. 57	5. 71	6. 51	6. 43	6.65	6.09	6.11	5. 98	5. 70	5. 93	6.02	6.27	5. 96
1923	6.88	6. 83	7.06	7. 20	6.92	6.43	6. 43	6. 22	6.57	6.33	6. 20	6.39	6.65

Division of Crop and Livestock Estimates.
Table 535.-Lambs: Farm price per 100 pounds, 15th of month, United States, 1910-1923.

Year beginning June 1.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	Weighted av.
1910-11	\$7.13	\$6. 71	\$5.70	\$5.85	\$5. 78	\$5. 54	\$5. 60	\$5. 71	\$5. 44	\$5. 49	\$5. 77	\$5. 74	\$5. 62
1911-12	5.51	5. 42	5.29	5.02	4.68	4.68	4.93	5. 22	5. 15	5.38	5. 98	6.16	5.33
1912-13	6. 02	5. 74	5.60	5. 49	5. 42	5. 37	5. 70	6.03	6. 34	6. 56	6. 59	6. 66	5.99
1913-14	6.36	6.05	5. 50	5.51	5.51	5. 64	5.85	6.16	6.18	6.31	6. 47	6.49	6.05
Av. 1910	6. 26	5.98	5. 52	5.47	5.35	5.31	5.52	5. 78	5. 78	5.94	6.20	6. 26	5. 75
1914-15	6.47	6. 55	6. 26	6.27	6.09	6. 14	6.33	6.47	6.67	6.06	7. 35	7.32	6.57
1915-16	7. 26	7.21	6. 70	6.71	6. 70	6.76	7.02	7.29	7.78	8.10	8. 58	8.49	7.49
1916-17	8. 36	8.16	8.15	8. 22	8. 02	8. 41	8.72	9. 59	10. 51	11. 46	12. 03	12. 51	9.93
1917-18	12. 64	11.19	12. 08	13.06	14. 09	13. 79	13.81	13.83	13. 77	14. 11	15. 34	15. 39	13.84
1918-19	14. 98	14. 20	14. 20	13.73	13. 20	12. 54	12. 44	12. 71	13.17	14. 03	14. 61	14. 34	13.54
1919-20	13. 89	13.09	12.91	12. 25	11.47	11.45	11.85	12. 91	14.08	14. 17	14. 63	14. 26	12.94
1920-21	12. 82	11. 79	10.84	10.31	9.65	9.37	8. 46	8. 44	7.76	7.90	7.55	7.78	8.88
Av. 1914-1920.	10.92	10.31	10.16	10.08	9.89	9.78	9.80	10.18	10. 53	10.83	11.44	11.44	10.46
1821-22	7.59	7.37	6.99	6.27	5.98	6.12	6. 60	7.33	8.87	10.21	10. 54	10.39	8.06
1922-23	9.87	9. 55	9.39	9. 43	10.06	10.30	10. 49	10.69	10.83	11.01	10. 69	11.00	10.38
1923-24	10.72	10.60	9.96	10.28	10.17	10.01	10.10						

Divison of Crop and Livestock Estimates.

Table 536.-Färm prices of sheep, per head, by ages, United States, Jan. 1, 1912-1924.

Jan. 1.	Under 1 year old.	Ewes 1 year and over.	Wethers 1 year and over.	Rams.	Jan. 1.	Under year 1 old.	Ewes 1 year and over.	Wethers 1 year and over.	Rams.
1912	\$2. 64	\$3.45	\$3. 43	\$8. 26	1919.	\$8. 82	\$12.44	\$11.02	\$21.90
1913	3.11	3. 98	3. 93	8.80	1920	8.06	11.03	9.60	21.63
1914	3. 22	4.09	4.06	8.49	1921	5.34	6.37	5.93	15.10
1915	3. 62	4.59	4. 48	9.01	1922	4. 24	4.84	4.07	11.37
1916.	4. 13	5.35	5.02	10.32	1923	6. 66	7.69	6.05	14. 23
1917.	5. 63	7.48	6. 78	13.62	1924	6.89	8.08	5.95	15. 49
1918.	9.06	12.70	11.26	20.84					

Table 537.-Sheep and lambs: Monthly farm price per 100 pounds, by States, 15th of month, 1923.

SHEEP.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
	Dolls.	Dolls.	Dolls.	Dolls.	Dotls.	Dolls.	S.						
Maine	6. 40	6. 30	6. 50	6. 50	7. 60	7.00	6. 60	7. 50	6. 00	6. 10	6. 00	5. 40	6.49
New Hamps		6. 70	6. 50	7.00	7.00	7. 50	8. 20	6.70	5. 00	6. 50		6. 80	6. 79
Vermont	5.80	5. 00	4.90	6. 40	6.00	5. 60	5.00	4. 70	5.10	5. 70	5. 00	5. 00	5. 35
Massachusetts		8. 80	8. 50	6. 00	5. 60		6. 20	5.70	7.00	7. 00	6. 50	6. 60	6.79
Rhode Istand	6. 00		5.50	5. 50	6. 50	6. 50	8.00		5. 50	5.50			6. 12
New York	5. 60	6.00	5. 20	6. 00	5. 50	5. 20	5. 80	5. 20	5.00	5.40	5. 60	6.00	5. 54
New Jersey								6. 00					
Pennsylvan	6. 50	6. 70	6.10	6. 20	6. 40	6.20	5.80	6. 00	6. 60	6.80	6. 50	-6. 10	6.32
Delaware.											5. 60	6. 50	
Marylan	5. 40	5. 90	5. 30	5. 10	5. 00		4. 50	4. 60	5. 30	5. 70	5. 80	5. 00	5. 24
Virginia	5. 40	5. 30	5. 80	6. 50	6.00	5. 20	5. 00	5. 20	5. 70	c. 00	5. 80	5. 00	5. 58
West Virginia	5. 50	5. 50	6. 40	6. 00	6. 00	5. 50	5. 70	5. 60	6. 20	5. 50	6. 20	5. 50	5.88
North Carolina	6. 70	6. $¢ 0$	5.60	5. 20	6.80	6. 20	5.60	6. 40	6. 20	7. 80	7. 00	6. 10	6. 32
South Carolina	7. 00	6. 50	7.20	7. 50	7.00	7.00	8. 30	8.40	6. 50	7. 20	6. 70	7. 90	7. 27
Georgia	6. 10	5. 60	6. 00	5. 20	6.00	7. 50	6. 70	5. 90	5. 60	6.50	5. 50	5. 50	6.01
Florida	6. 00	5. 10	5. 50	5. 60	5.80	5. 30	5. 50	6. 00		6. 00	6. 00	5. 50	5. 66
Ohio	6. 10	6. 00	6. 10	5. 90	5.80	5.30	5. 10	5.30	5.20	5.80	5. 50	5. 60	5. 64
Indian	4. 50	4. 80	4. 90	5. 10	5. 10	4. 50	4. 00	4. 20	4.80	4. 80	4. 50	4. 80	4. 67
Illinois	5. 70	5. 10	6.00	5. 70	5. 70	5.00	5. 20	4. 70	5. 90	5.40	5. 40	5. 70	5.48
Michigan	6. 50	7. 10	6. 60	6. 90	6. 00	6. 20	5. 60	5. 60	5.60	6. 10	5.30	5.40	6. 08
W isconsi	5. 50	5. 20	6. 00	6.00	5. 50	4.90	5. 00	4. 70	4. 90	5. 00	4. 50	4. 60	5. 16
Minne	6. 00	6. 50	6. 10	6. 40	6. 50	6. 10	5.30	5.80	5. 80	5. 40	5. 10	5. 70	5.87
Iowa	6. 40	6.40	6. 50	6. 50	5. 90	6. 40	6.10	5.60	5. 80	6. 70	6. 30	6.50	6. 26
Missou	6. 00	5. 90	6.40	6. 20	6,30	5. 40	5.00	5.10	5.20	5.10	5.00	5. 20	5. 57
North Dakota	5. 70	6. CO	6. 30	6. 80	6. 70	6. 00	6.00	5. 40	5. 70	5. 60	6. 00	5. 70	5. 99
South Dako	6. 10	7.10	6. 80	7.60	7.50	5.80	6. 00	6. 00	6. 10	6. 40	5. 90	6.70	6. 50
Nebraska	6. 60	8.00	8. 00	7.10	7.70	6. 00	6. 00	7.00	7. 60	7. 90	6. 70	6.90	7. 12
Kansas	6. 90	7.40	6. 60	6. 60	7. 00	6. 00	6. 80	7.00	7.00	6. 00	5.50	6. 10	6. 58
Kentuck	4.60	4.90	5. 30	4.70	5. 00	4. 50	4.40	4.30	5.00	4. 70	5. 00	4.50	4. 74
Tennessee	5. 10	4.80	5. 30	5. 60	5. 70	4.70	4. 70	4. 70	4. 90	4.40	5. 20	4. 40	4. 96
Alabama	6. 00	7.00	6. 60	6. 80	7.10	6. 30	6. 30	6. 00	6.30	6. 50	5. 50	6. 00	6. 37
Mississipp	4.60	4. 70	4.50	4.30	4.90	4.60	4. 10	4.20	4.10	5.00	4.00	3. 50	4. 38
Louisiana		6.30					7.30			4.30		5.30	5. 80
Tex	6.50	5. 30	6.10	6.80	6.40	6.10	6.60	6.00	6.20	5.60	6.60	6.00	6. 18
Oklahoma							5. 00			6. 90	5. 80	6. 00	5.92
Arkan	5. 80	4.80	4. 30	5.20	5. 10	4.20	4.00	3.30	4. 50	4.90	4.10	4.30	4. 54
Montana	7. 40	7.40	7.50	7. 50	7.90	6.00	6.70	7.30	7.40	7.90	6. 30	7.20	7. 21
W yomin	8.00	7.50		8.20	9.00	7. 50	8.00	7.50	7.00	6. 00	6. 00	7. 50	7.47
Colorado	7.20	8.10	.7.80	8.20	7. 70	8.00	7.00	6.40	7.30	7.30	6. 70	6. 90	7. 38
New Me	8.00	7.50	8.30	8. 70		7.00	7.70	7.00	7.80	6. 00		6. 50	7.45
Arizon					6.70		8.30		7.00	8. 10	7.00	7.50	7.43
Utah	7.00	7.60	8.40	7.50	7.30	7.30	6.70	6.60	7.20	6. 70	7.40	7. 50	7. 27
Nevada		6.60	5. 50		8.00		5.50			5.00		7. 70	6.38
Idaho	7.50	6. 90	7.70	8.00	6.60	6.50	6.90	6.00	6. 30	6.30	5. 70	5. 60	6.67
Washing	7.00	6. 70	7. 30	7.60	6.80	6. 90	6. 40	6.30	6.10	6. 90	6. 70	6. 30	6.75
Oregon.	8. 00	7.20	7. 60	7.60	7.00	7.10	6. 30	6.00	7.70	7.00	6. 70	6. 50	7.06
California	7.80	8.40	9.00	8.00	7.70	7.00	7.20	7.70	7. 50	6. 90	6.80	7. 30	7.61
United State	6.88	6.83	7.06	7.20	6.92	6. 43	6.43	6. 22	6.57	6.33	6. 20	6.39	6.62

LAMBS.

Maine	10.50	9.90	10.00	10.30	10.00	11.10	13. 00	11.60	11.30	11.00	10.50	11. 00	10. 85
New Hampsh		11. 50	12.00	11. 60	12.00	13.00	15.20	12.70	10.50	12.00		11. 20	12.17
Vermont	11.00	10.60	10.00	11. 40	10.10	10.30	10. 50	9. 70	10.00	10.00	10.10	9.90	10. 30
Massachusetts		11.00		9.30	8.30		10.90	11. 70	10. 30	11. 60	11.00	10. 00	10.46
Rhode Island	1200		12.00	12. 50	12.00	14.00	13. 50		12.00	12.00		12.00	12. 44
Connecticut										14.30		11. 00	
New York	11.90	1210	11.60	12.20	11.80	12.50	13.30	11.00	11.00	11. 30	11.10	11. 10	11.74
Pennsylvan	11.20	11.20	10.90	10.80	11.70	11.20	10.80	10.50	11.00	11. 50	10.30	10.10	10.93
Delaware									10.00		1110	13.50	
Maryland	11. 50	1200	1230	13. 70	12. 50		11. 60	10.80	11.50	11. 10	11. 70	12.00	11.88
Virginia	10.00	10.30	11. 50	12.10	12. 70	11.40	11. 20	10.30	10.90	10.20	10.70	9.80	10. 92
West Virginia	10.00	11.00	12.00	11.40	11. 30	11.00	10.60	10.00	9.90	9.90	9.80	9.90	10.57
North Carolina	8. 10	8.00	7.70	8.20	8. 70	8. 60	8.90	8. 60	9. 20	8.80	8.20	8.00	8.42
Sonth Carolina	8.00	8.50	9.001	10.00	9.10	10.00	9.10	9.10	8.00	9.30	8. 00	8. 50	8.88

Table 537.-Sheep and lambs: Monthly farm price per 100 pounds, by States, 15th of month, 1923-Continued.

LAMBS-Continued.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
	Dolls.	Dolls.	Dolls	Dolls	Dolls.	Dolls	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	olls.	
Georg	7.50	7.60	8.00	7.30	7.10	10.00	8. 80	7.80	7.30	9. 00	6. 50	7.00	7.82
Florida	7.00		6. 00	6. 50	6. 50	6.00	6. 00	6. 30		6. 60	7.10		6.44
Ohio	11.70	11. 70	11. 40	10.30	11. 00	10. 80	10.80	10. 10	10.50	10.70	10. 30	10.20	10.79
Indian	11. 00	10.80	10. 70	11. 40	11. 50	9.70	10.70	9.80	10. 20	10.30	9.70	10.00	10. 48
Illinois	10. 60	10. 10	10. 30	10. 40	10.30	11. 00	10.80	9.50	10.40	10. 30	9.90	10. 10	10. 31
Michigan	12.00	12. 20	12. 30	11.20	11. 20	12. 00	11.50	11. 20	11.50	11.30	10.50	10.80	11.48
Wiscon	10. 50	10. 70	11. 50	10. 60	11. 20	11.50	11. 00	9.70	10.00	10.30	9.60	10.00	10. 55
Minne	11. 00	10.70	11.00	13. 30	11. 10	11. 20	11. 30	10. 00	10. 20	9. 80	10. 00	9.80	10.78
Iowa	11.00	11. 70	10.80	10.90	11. 00	12.00	10.90	10. 00	10.70	10.50	10. 40	10.50	10.87
Misso	10.20	10.90	10.90	10.90	11. 50	11.40	10. 30	9.50	9.70	9.90	9.70	9. 50	10.37
North Dak	9. 50	10. 30	10. 00	10. 30	9.00	9. 60	9.60	9. 20	9.10	9. 50	9. 40	9.10	9.55
South Da	11. 00	10. 50	10.90	10. 00	11. 00	11. 20	11. 00	10. 50	10.90	10. 00	10.70	9.70	10.62
Nebrask	11. 00	11. 50	11. 60	9.80	10.80	10. 50	11. 10	10. 50	11. 00	10.70	10.30	10.30	10. 76
Kansas	11.50	11.00	11. 00	10. 80	11.80	10.40	11. 50	10. 20	9.90	9. 60	9. 50	9.50	10. 56
Kentu	9.30	9.50	10. 20	10.70	11. 70	11.90	10.70	9.40	9.40	8.90	9.70	9.00	10.03
Tennesse	8. 40	8. 30	9.00	10.60	10. 20	9.70	9.00	8.80	8.60	7.40	8.50	8.00	8.88
Alabama	8.30	8.80	8. 50	8. 30	9.00	9.90	9.10	9.30	9.00	7.80	7. 50	8.00	8.62
Mississipp	6. 80	8. 10	7.40	6. 00	7.10	7.50	7. 50	7.00	6. 30	7.70	6. 50	5. 60	6.96
Louisiana Texas	8.50	7.00	00		8.60	8. 10	8.10 9.50	9.00	8.40	7.60	9. 00	6. 8.50 8.	8. 43
Oklahoma										9.2	7.60	8. 00	
Arkansa	6. 30	6. 50	7.40	7.00	7. 70	6. 60	7.20	6. 80	6. 00	6. 80	6. 00	6. 50	6. 73
Montan	9.60	10.80	10.60	10. 20	11. 00	10. 50	10.20	9. 40	9.90	10.50	9.50	10. 20	10. 20
W yomin	11.20	11. 20		11.30	11.70	11.70	11.60	10. 20	10. 50	10.50	10.80	10.60	11.03
Col	11	11.	12.30	12.	12.	12.	11.20	10.50	11.	11.	11.0	11	11.6
New Me	10.20	90	90	9.00		10.10	11. 20	10. 00	10. 30	10. 10	9. 80	9. 50	10. 09
Arizona					11.70		11. 30	10. 70	11. 20	10.70	9.50	10.50	10.80
Utah--	11.80	11. 30	11. 40	10.60	10. 80	10. 20	10.60		10.50		10. 40	10. 60	10.63
Nevada		11.70	12.00		11. 50		9.60	10.00		10.00	9.80	10.50	10.64
Idaho	10. 70	9.80	10. 40	10. 30	9.90	10.00	9.80	9. 00	9. 50	9. 00	8. 80	9.00	9.68
Washin	9. 40	10. 00	10.50	11.00	10.30	10. 00	9.50	9.40	9. 10	9. 50	9. 5	9. 60	9.82
Oregon	10.10	10.70	11. 00	10.80	10. 50	10.20	9.10	9.80	9. 00	9.10	9.20	9.00	9.88
Californi	11.80	12.60	12. 70	11.50	11.0	11. 10	10.8	10.8	11.00	10.8	10.8	11.	11.33
United Stat	10.69	10.83	11.01	10.69	11.00	10. 72	10.60	9. 96	10. 28	10.17	'10. 01	10.10	10.50

Division of Crop and Livestock Estimates.
Table 538.-Sheep and lambs, native and western: Monthly average price per 100 pounds, Chicago, 1901-1923.

SHEEP.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average. 1
	Dolls.	Dolls.	Dolls.	Dolle.	Dolls.								
1905	5. 15	5. 55	5.50	5.08	4.75	4.72	5.10	4.95	4.72	5. 10	5. 10	5.25	5.08
1900	5.40	5. 12	5. 28	5.35	5. 55	5.45	5. 25	4.98	5.15	4.90	5.05	5. 08	5. 21
1907	5.15	5. 20	5. 50	5.65	5. 78	5. 90	5. 32	5.32	5. 18	4.82	4.38	4.18	5. 20
1908	4.82	5.00	5.82	5.68	5.25	4.70	4.10	4.00	3. 72	4.08	4.15	4.32	4.64
1909	4.90	4.92	5.28	5.60	6.05	5.28	4.68	4. 50	4.65	4.35	4. 52	4.92	4. 97
1910	5. 55	6. 50	7.60	7.60	6.55	5.10	4.20	4.20	4.25	3. 95	3. 70	3.90	5. 26
1911	4.10	4.15	4.70	4.20	4.45	3.80	3.95	3. 50	3.80	3.65	3.45	3. 55	3.94
1912	4.30	4.15	5. 30	5. 90	6.15	4. 50	4. 25	4. 05	4.15	4. 00	4.05	4.45	4. 60
1913	5.35	5. 90	6.40	6.45	5.85	5.05	4.50	4.35	4.30	4. 55	4.60	4.95	5.19
Av. 1909-1913	4.84	5.12	5.86	5.95	5.81	4.75	4.32	4.12	4. 23	4.10	4.06	4.35	4.79
1914	5. 50	5. 70	5.95	6.25	5.65	5.10	5.40	5. 55	5. 30	5. 30	5.65	5. 40	5.56
1915	5.80	6.45	7.45	7.70	7.35	5. 50	6.05	6. 25	5. 75	6. 00	5.85	6. 20	6.36
1916	7.20	7.75	8. 25	8.15	8. 20	7.35	7. 25	7. 35	7.80	7.50	8.00	9.00	7.82
1917	10.00	11. 25	11. 70	12. 10	13.00	10.00	9. 10	9.75	11.15	11. 65	11.25	11. 50	11.04
1918	12. 20	12. 35	13. 60	15.65	14. 75	13.40	12.65	13.15	11. 80	10.45	9.85	9.40	12. 44
1919	10. 35	11.35	14. 05	14. 50	12. 25	9.30	9. 70	9.75	8. 30	8.15	8. 30	9. 60	10.47
1920	11.80	13.35	13.40	14. 25	12.25	8.50	8.90	7. 70	6. 85	6. 45	5.75	4. 70	9.49
Av. 1914-1920	8.98	9. 74	10.63	11. 23	10.49	8.45	8.44	8. 50	8. 14	7.93	7.81	7.97	9.03
1921	5.07	4.90	6. 14	6. 58	6.33	4.46	5.08	4. 53	4. 49	4.71	4.40	4.92	5.13
1922	7.26	8. 28	9. 17	9.33	7. 35	5. 59	6. 12	5. 63	6.05	6. 25	7.48	7.28	7.15
1923	7.72	8.08	8.64	8. 90	6.74	5. 00	5.16	7.09	7.25	6.35	6.89	7.37	7.10

${ }^{1}$ Simple average of monthly average prices.

Table 538.-Sheep and lambs, native and western: Monthly average price per 100 pounds, Chicago, 1901-1923-Continued.

LAMBS.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average. ${ }^{1}$
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls	Dolls.	Dolls	Dolls.	Dolls.
1901	5.30	5.10	5.25	5.10	4.85	4. 60	5.10	4. 80	4.35	4.30	4. 10	4. 75	4.80
1902	5. 55	6. 05	6.15	6.30	6. 20	5. 80	5. 55	5.35	4.85	4.70	4. 55	4.80	5.49
1903	5. 50	6.10	6. 60	6.20	6. 20	5.50	5. 30	4.90	4.85	4.80	4. 70	4.85	5.46
1904	5. 55	5.40	5.30	5.60	5. 70	5.60	6.15	5.45	5.15	5.15	5. 50	6.25	5. 57
1905	7.15	7.40	7.05	6. 80	6.25	5. 90	6.30	7.05	7.00	7. 05	6. 90	7.25	6. 84
1906	7.25	6.75	6.40	6.20	6.65	6.75	6.90	7.00	7.15	6.95	6. 90	7.10	6. 83
1907	7.30	7.30	7.55	8. 05	7.80	7.20	7.05	6.90	6. 90	6. 80	6. 05	5.70	7.05
1908	6. 80	6. 70	7.20	7.25	6.65	5. 75	6. 20	6.05	5. 35	5.50	5. 85	6.70	6. 33
1909	7.35	7.50	7.65	7.85	8.25	7.60	7.70	7.35	6. 80	6.50	7.10	7.50	7.43
1910	8. 30	8.65	9.40	9.10	8.40	7.60	7. 10	6. 70	6. 80	6. 65	6. 25	6.10	7. 59
1911	6. 20	6. 05	6. 10	5. 50	5.85	6.10	6. 30	6.35	5. 70	5. 75	5. 54	5.75	5. 93
1912	6. 50	6. 15	7. 30	7.95	8.30	6. 90	7. 25	7. 10	7.00	6.75	7.15	7.75	7.18
1913	8.55	8. 50	8.60	8.40	7.40	6.85	7.55	7. 40	7.15	7.05	7. 25	7.60	7.69
Av. 19	7.38	7.37	7.81	7.76	7.64	7.01	7.18	6.98	6.69	6.54	6.66	6.94	7.16
1914	7.90	7. 60	7.65	7.60	8.10	7.95	8. 45	8.15	7. 80	7.60	8. 75	8.30	7.99
1915	8. 40	8. 75	9.55	9.65	10.10	9. 20	8.75	8. 90	8.75	8.75	8.80	9.00	9.05
1916	10.30	10. 90	11. 10	10. 45	10.75	9.55	10.55	10.75	10.60	10.15	11. 40	12. 70	10.77
1917	13. 85 17.20	14. 30 16.60	14. 25	14.40 19.20	16.90 18.00	15.25	15. 65	15. 50	17. 50	17. 40	16. 75	16.45	15.68
1919	16. 25	17.40	19.05	18. 15	16. 25	14.05	17. 10	16. 75	14.85	15. 00	14. 50	16. 40	16. 31
1920.	19.50	19.95	18.80	18.80	17.40	14. 25	15.55	13. 20	13.30	12.35	11.53	10.96	15.47
Av. 1914-1920.	13.34	13.64	13.99	14.04	13.93	12.44	13.51	12.96	12.86	12.37	12.40	12.63	13.18
1921	10. 72	9. 07	9.91	9. 69	11.07	10.67	10.09	9. 46	8. 86	8.66	9. 25	10.86	9.86
1922	12. 67	14. 49	15. 39	14. 10	12. 95	12. 42	13. 04	12. 51	13.53	13.94	14. 17	14. 93	13. 68
1923	14.69	14.85	14.56	14. 42	14.12	14.81	14.22	12.89	13.52	12.93	12.75	12.96	13.89

Division of Statistical and Historical Research. Figures prior to 1921 for sheep, and prior to Nov., 1920, for lambs, compiled from Chicago Drovers Journal Yearbook; subsequent figures from data of the reporting service of the Livestock, Meats and Wool Division.
${ }^{1}$ Simple average of monthly average prices.
Table 539.-Sheep: Monthly average price per 100 pounds at six markets, 1923. chicago.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	
Lambs: Medium to prime-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
84 pounds down	14.06	14. 24	14. 24	13.76	13.67	14. 02	14.00
Culls and common.	11.25	11.38	11.62	11.17	10.89	10.77	11.18
Spring lambs, medium to choice					15. 85	14.96	
Yearling wethers, medium to prime	11. 19	11. 56	11. 69	11.64	10.77	11.48	11.39
Wethers, medium to prime.	8.47	8.74	9.28	9.38	7.74	6. 42	8.34
Ewes- Medium to choice	6. 79	7.05	7.74	8.10	6.27	4.96	6.82
Culls and common	4.75	4.94	5. 28	5.40	3.51	2. 64	4.42
Breeding ewes, full mouth to yearling							
Feeder lambs, medium to choice	13.89	14.34	14.20				
Kind and grade.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	
Slaughter sheep and lambs: Lambs-							
Light and handy weight (84 pounds down) medium-prime.	Dollars.						
All weights, cull and common.	9.98	9.51	10.33	9.90	9.84	10.00	9.93
Yearling wethers, medium-prime-	10.92	9. 73	9.92	9.70	9.62	9.75	9.94
Wethers (2 years old and over) mediumprime	6.56	7.32	7.30	7.23	7.16	7.48	7.18
Ewes, common-choice	5. 13	6. 04	5. 49	5. 21	5. 44	6. 01	5. 54
Ewes, canner and cull	2.05	2.56	2.39	2.38	2.56	2.97	2.48
Feeding sheep and lambs: Feeding lambs, medium-choice	12. 02	12.08	12.74	12.24	11.98	11.70	12.13

Table 539.-Sheep: Monthly average price per 100 pounds at six markets, 1923-Continued.
EAST ST. LOUIS.

| Kind and grade. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

FORT WORTH.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { Jan. 1- } \\ \text { June 30. } \end{gathered}$
Lambs:							
Medium to prime84 pounds down	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Culls and common.	10. 00	10.14	10. 09	10.00		9. 50	
Spring lambs, medium to choice					11.86	12. 12	
Medium to prime:							9.66
	9.73	9.64 7.14	10.24 7.50	10.75 7.50	8.54 6.50	8.96 5.89	9. 6.93
Wethers	7.03	7.14	7.50	7.50	6.50	5.89	6.93
Medium to choice	6.05	6.33	6.54	6.34	5.45	4. 38	5.85
Culls and common.	3.15	3.25	3.42	3.38	3.14	2. 38	3.12
Breeding ewes, full mouth to yearling Feeder lambs, medium to choice.	11.68	11.90	1217	12.12			
Kind and grade.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { July 1- } \\ \text { Dec. 31. } \end{gathered}$
Slaughter sheep and lambs: Lambs-							
Light and handy weight (84 pounds	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
down) medium-prime	12. 73	11.62	11.72	11.10			
All weights, cull and common-.-	9. 61	9.15	9. 20	8. 91			
Yearling wethers, medium-prime.-------	9.41	9.00	9. 44	8. 26	8. 50	8. 50	8.85
Wethers (2 years old and over) mediumprime	6.41	6. 55	6. 57	5.95	5.92	6. 27	6. 28
	4. 75	4. 95	5. 37	4. 57	4. 18	4.85	4. 78
Ewes, canner and cull	2. 56	2.64	2. 79	2.21	1.88	2.03	2.35
Feeding sheep and lambs: Feeding lambs, medium-choice			10.41	8.78			

Table 539.-Sheep: Monthly average price per 100 pounds at six markets, 1923-Continued.
KANSAS CITY.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { Jan. } 1- \\ \text { June } 30 . \end{gathered}$
Lambs-							
Medium to prime-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
84 pounds down	13.78	13.78	13.66	13.56	13.07	13.86	13. 62
Culls and common	11.01	11.14	11. 14	11. 12	10.48	10.38	10.88
Spring lambs, medium to choice						14.62	
Miedium to prime:	10.84	11.10	11. 20	11. 31	10. 59	10. 44	10.91
Wethers.---.--	7.62	7.92	8.63	9.36	7. 53	6.42	7.91
Ewes:							
Medium to choice	6. 40	6. 88	7.72	8. 24	6. 27	4. 56	6. 68
Culls and common -----	3.47	3.98	4.64	5. 12	3.48	2. 26	3.82
Feeder lambs, medium to choice.	13. 28	13.52	13. 30	12.98			
Kind and grade.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { July 1- } \\ \text { Dec. 31. } \end{gathered}$
Slaughter sheep and lambs: Lambs-							Dollars
Light and handy weight (84 pounds	Dollars.	Dollars.	Dollars.	Dollars.	Doliars.	Dollars.	Dollars.
down) medium-prime	$\text { 13. } 03$	11.82	12. 18	11. 91	11.86	11. 66	12. 08
All weights, cull and common...-...-	9.32	8.81	9.28	9. 08	9.40	9.39	9.21
Yearling wethers, medium-prime	10.04	9.22	9.32	9.12	9.24	9.44	9.40
Wethers (2 years old and over) mediumprime	6.76	6.94	6.70	6. 73	6. 78	6.90	6. 80
	5. 03	5. 52	5. 04	4.85	4. 95	5.31	5. 12
Ewes, canner and cull	2. 23	2.33	2. 29	2. 22	2. 28	2. 50	2. 31
Feeding sheep and lambs: Feeding lambs, medium-choice							

OMABA.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\left\lvert\, \begin{gathered} \text { Ave- } \\ \text { age } \\ \text { Jan. 1- } \\ \text { June 30. } \end{gathered}\right.$
Lambs: Medium to prime-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	ollars.
84 pounds down	13. 74	13.79	13. 69	13.55	13. 29	13.86	13.65
Culls a id common	11.02	11.15	11. 20	11. 25	10. 82	10.86	11.05
Spring lambs, medium to prime					15.50	15.00	
Medium to prime -							
- Yearling wethers	10. 83	11.00	11. 34	11.37	10. 35	10.98	10.98
Wethers.	8.06	8.16	8.50	8.70	7.33	6.32	7.84
Ewes: Medium to choice	6.32	6.65	7.58	7.88	6.33	4.38	6. 52
Culls and common	3.82	4.16	5.02	5.24	3. 26	2.16	3. 94
Breeding ewes, full mouth to yearling							
Feeder lambs, medium to choice.--	13.67	14.00	13.76	13.26			
Kind and grade.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { July 1- } \\ \text { Dec. 31. } \end{gathered}$
Slaughter sheep and lambs: Lambs-							
Light and handy weight (84 pounds	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
down) medium-prime.-.-.-	13.01	11.96	12.25	12.14	11.72	11.68	12.13
All weights, cull and common	9.70	9.23	9.81	9.94	9.64	9. 56	9.65
Yearling wethers, medium-prime	10.66	9.45	9.38	9.07	9.17	9.55	9.65
Wethers (2 years old and over) mediumprime	6.06	6.70	6.88	6.89	7.01	7. 18	6.79
	4. 62	5. 35	4.66	4. 69	5.05	5. 70	5. 01
Ewes, canner and cull.	2.00	2. 25	2.08	2. 18	2.48	2. 80	2. 30
Feeding sheep and lambs: Feeding lambs, medium-choice	10.99	11. 21	12.28	11.94	11. 60	11. 32	11. 56

[^273]Table 539.-Sheep: Monthly average price per 100 pounds at six markets, 1923Continued.

SOUTH ST. PAUL.

Kind and grade.	Jan.	Feb.	Mar.	Apr.	May.	June.	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { Jan. 1- } \\ & \text { June } 30 . \end{aligned}$
Lambs:							
Medium to prime-	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
84 pounds down	13.44	13.53	13.53	13.23	12.87	13.06	13. 28
Culls and common.-	10.91	10.72	10.84	10.85	9.72	9.84	10.48
Spring lambs, medium to choice							
Yearling wethers, medium to prime	10.74	10.82	10.94	10.77	9.91	10.57	10.62
Wethers, medium to prime	7.65	7.88	8.29	8.86	7.23	5.62	7.59
Ewes: ${ }_{\text {Medium }}$ to choice	6. 25	6.55	6.98	7.54	6.15	4. 22	6.28
Culls and common	3.93	4.26	4.50	4.66	3. 48	2.04	3.81
Breeding ewes, full mouth to yearli							
Feeder lambs, medium to choice.							
Kind and grade. -	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{array}{\|c} \text { Aver- } \\ \text { age } \\ \text { July 1- } \\ \text { Dec. 31. } \end{array}$
Slaughter sheep and lambs: Lambs-							
Light and handy weight (84 pounds	Dollars.	Dollars.	Dollars.	Dollars.	Dollars	Dollars.	Dollars.
down) medium-prime	12. 49	11.30	11.93	11.37	11.30	11.46	11. 64
All weights, cull and common ---------	9.38	8.86	9.40	9.16	9.12	9.21	9.19
Yearling wethers, medium-prime	10.27	9.10	9.08	8.73	8.85	9.00	9.17
Wethers (2 years old and over) mediumprime	5.52	6. 50	6.56	6.51	6. 68	6. 78	6.42
	4. 34	5. 29	4. 76	4.47	4. 67	5.27	4.80
Ewes, canner and cull	1.66	2.12	2.26	2. 07	2. 34	2. 51	2.16
Feeding sheep and lambs: Feeding lambs, medium-choice.				11.39	11. 44	11. 25	

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats and Wool Division.
Classification of livestock changed July 1, 1923.
Table 540.-Sheep and lambs: Trend of average farm prices and average market prices, per 100 pounds, at Chicago, 1910-1923.

Calendar year.	Farm price.		Average market price at Chicago.		Price relatives ($1913=100$)			
	Sheep, weighted a verage.	Lambs, simple average	Sheep.	Lambs.	Farm price.		Market price.	
					Sheep.	Lambs.	Sheep.	Lambs.
	Dollars.	Dollars.	Dollars.	Dollars.				
1910		6.40	5. 26	7. 59	113.9	105.8	101.3	98.7
1911	4.07	5. 30	3. 94	5. 93	91.3	${ }_{92}^{87.6}$	75.9 88.6	77.1
1912	4.20 4.46	5. 60	$\begin{array}{r}\text { 4. } \\ \text { 5. } \\ \hline\end{array}$	7.18 7.69	94.2 100.0	92.6 100.0	88.6 100.0	93.4 100.0
1914	4.79	6.31	5. 56	7.99	107.4	104.3	107.1	103.9
1915	5. 23	6.85	6.36	9.05	117.3	113.2	122.5	117.7
1916	6. 27	8.19	7.82	10.77	140.6	135.4	150.7	140.1
1917	9. 54	12. 23	11.04	15. 68	213.9	202.1	212.7	203.9
1918	10.82	13.98	12. 44	16.98	242.6	231.1	239.7	220.8
1919	9.35	12.98	10.47	16.31	209.6	214.5	201.7	212.1
1920	8.11	11.94	9.49	15. 47	181.8	197.4	182.9	201.2
1921	4. 55	7.20	5.13	9.86	102.0	119.0	98.8	128.2
1922	5. 96	9. 70	7.15	13.68 13.89	133.6 149.1	160.3 173.6	137.8 136.8	177.9 180.6
1923	6.65	10.50	7.10	13.89	149.1	173.6	136.8	180.6

Division of Statistical and Historical Research. Farm prices from Division of Crop and Livestock Estimates; market prices from data of the reporting service of the Livestock, Meats, and Wool Division.

Table 541.-Sheep and lambs: Monthly slaughter under Federal inspection, 1907-1923.

Bureau of Animal Industry.
Table 542.-Mutton and lamb: Cold-storage holdings in United States, 1916-1923.

Calendar year.	Jan. 1.	Feb. 1.	Mar. 1	Apr. 1.	May 1.	Jung 1.	July 1.	Aug. 1.	Sept.1.	Oct.1.	Nov.1.	Dec. 1.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	los.
1916.	4,976	5, 286	5,812	5, 084	3, 858	2, 525	1,939	2,098	2,135	2, 579	3,465	5, 000
1917	4,886	5, 895	4,949	4,872	4, 369	3, 508	4, 380	3, 912	2,716	2, 768	4,194	5,406
1918	7, 403	6,315	7, 855	5,599	3, 348	3, 860	2, 429	3, 150	4,046	5, 275	8,645	9, 035
1919	12, 760	11, 360	8, 013	6, 505	7, 623	7,718	7, 279	7,263	7,817	8, 318	7,894	9,409
1920	10, 290	7, 787	5, 781	3, 517	2, 579	5,735	4,311	2,299	11, 021	25, 325	48, 997	56, 702
1921	68, 032	78, 082	59, 304	38, 520	25, 129	15, 877	8, 714	6,751	5, 903	5,993	6,840	7,520
1922	6, 444	3, 914	2, 863	2, 878	2,071	2, 310	3, 720	3, 308	3, 376	3, 473	3,458	3,633
1923	4,523	5, 980	5, 758	6,635	5, 774	4,445	3, 556	2, 752	1,785	1, 719	1,997	2,014

[^274]Table 543.-Monthly staiement of the livestock and meat situation, 1923.
GUREP, LAME, AND MUTTON.

Item		Unit.		Jan.	Feb.	Mar.	Apr.	May.	June.		
Inspected slaughter		Thousands.		1. 021	836	978	960	972	914		
Average live weight--....---		Pounds----			88	85	82	78	76		
		42	42	40	39	39	37				
Average drossed weight.------)				1,000 lbs------		42, 574	34,831	39,410	37, 726	37, 482	33, 676
Fresh lamb and mutton:											
Storage 1st of month Exports ${ }^{1}$				4,523	5,980	5,758	6,635	5,774	4,445		
		--- do-.		227	248	99	64	170	322		
Exports ${ }^{1}$ Imports		-----do------		1,607	388	1,280	49	79	75		
Receipts of sheep ${ }^{\text {Stocker and feeder ship }}$		Thousands.		1,636	1,366	1,430	1,447	1,794	1,426		
				171	169	114	82	216	117		
Prices per 100 pounds:		Dollars		12.67	12. 50	12.85	12.41	12.31	11. 14		
Average cost											
Lambs, 84 pounds dowr, medi-um-prime		do		14. 06		14.24 8.51	$\text { 13. } 76$	$\text { 13. } 67$			
Sheep, medium-choi At eastern markets-				7.63	14.24 7.90				4.5. 62		
		----do....--	24.51	23.16	23.47	23.59	26.54	27.57			
Mutton, good Sheep on farms, Jan. 1						37, 223	14.73	13. 80	16. 04	17.03	14. 72
		Thousands.									
Item.	Unit.		July.	Aug.	Sept	Oct.	Nov.	Dec.	Total.		
Inspected slaughter Average live weight Average dressed weight Total dressed weight (carcass)	Thousands Pounds - -. do		$\begin{array}{r} 962 \\ 75 \\ 35,163 \\ \hline \end{array}$	957773735,192	$\begin{array}{r} 990 \\ 78 \\ 37,099 \end{array}$	$\begin{array}{r} 1,046 \\ 80 \\ 38 \end{array}$	$\begin{array}{r} 915 \\ 77 \\ 39 \end{array}$	$\begin{array}{r} 978 \\ 83 \\ 39 \end{array}$	11, 529		
			339								
	1,000 Ibs_.-.--					39,799	35, 547	38, 286	446, 785		
Fresh lamb and mutton: Storage 1st of month do				35, 163		1,785	1,719	1,997	2,014	43.912	
Storage Exports	- .-. do-...-.-.		3, 556	245	, 144	-99	${ }^{7} 7$	2,98	2. 124		
Imports.	Thousands------		431,661	$\begin{array}{r} 332 \\ 1,800 \end{array}$	$\begin{array}{r} 694 \\ 2,659 \end{array}$	$\begin{array}{r} 359 \\ 3,464 \end{array}$	$\begin{array}{r} 222 \\ 1,816 \end{array}$	87	5. 215		
Receipts of sheep ${ }^{3}$			1,523					22, 025			
Stocker and feeder shipments ${ }^{2}$ -	Thousands---------			188	341	897	1,489	540	154	4,478	
Prices per 100 pounds: Average cost for slaughter-At Chicago-	Dollars-...--		11.99	11.52	11.81	11.37	11.96	11.54	${ }^{3} 12.03$		
Lambs, 84-pound down, medium-prime	-do-------		13.545.84	12076.68	12.866.37	12.306.22	11.946.30	12.186.74	${ }^{4} 13.24$		
At eastern markets- Lamb carcasses, good grade Mutton, good grade											
			26.12 16.90	26.9518.80	$\begin{aligned} & 26.29 \\ & 15.63 \end{aligned}$	$\begin{array}{r} 22.73 \\ 14.77 \end{array}$	$\begin{aligned} & 23.90 \\ & 14.86 \end{aligned}$				
			23.1315.57					$\begin{array}{r} 424.83 \\ 4 \\ \hline 15.63 \end{array}$			

Division of Statistical and Historical Research. Inspected slaughter from reports of the Bureau of Animal Industry; exports and imports from the Bureau of Foreign and Domestic Commerce; weights and storage holdings from reports of tho Division of Statistical and Historical Research; receipts, shipments, and prices compiled from data of the reporting service of the Livestock, Meats and Wool Division, and number on farms from Division of Crop and Livestock Estimates, Bureau of Agricultural Economics.
${ }^{1}$ Including re-exports. ${ }^{2}$ Public stockyards. ${ }^{3}$ Weighted average. ${ }^{4}$ Simple average, not total.
Table 544.-Mutton and lamb: Exports from the United States, 1910-1924.

Year ending June 30-	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	libs.	dbs.	lbs.	lbs.	763.	lbs.	lbs.	lbs.	lbs.	libs.	lbs.	lbs.	lbs.
1909-10.	127	146	142	207	147	166	128	124	296	103	232	171	1,989
1910-11	137	139	155	154	162	196	182	234	319	225	131	126.	2, 17.0
1911-12	157	147	282	277	242	252	328	628	380	267	324	312	3, 596
1912-13	586	348	503	431	405	564	470	487	469	294	310	399	5,263
1913-14	286	379	458	325	378.	534	366	409	298	491	409	352	4,685
1914-15	324	375	421	166	144	92	330	697	328	260	457	283	3, 877
1915-16	378	234	385	305	299	275	319	497	948	905	638	370	5, 553
1916-17	237	248	310	236	288	262	394	298	195	277	234	217	3, 196
1917-18	69	329	141	233	84	391	114	123	168	165	116	165	2, 098
1918-19	192	117	100	115	58	198	236	283	160	198	195	322	2, 174
1919-20.	239	302	229	309	220	315	286	318	539	217	862	122	3,958
1920-21	242	175	145	135	109	425	563	372	431	1,960	996	1,702	7, 255
1921-22	395	411	264	100	176	146	195	112	81	89	303	230	2,502
1922-23	203	169	100	52	76	55	225	246	96	63	167	317	1,769
1923-24	321	245	140	97	72	98							

Division of Statistical and Historical Research. Compiled from Monthly Summaries of Foreign Com: meroe of the United States, Bureau of Foreign and Domestic Commerce.

Table 545.-Mutton, fresh, chilled and frozen: Net imports and net exports of principal countries, 1909-1922.

Calendar Year.	Imports.							Exports.				
	France.	$\begin{gathered} \text { Ger- } \\ \text { many. } \end{gathered}$	Sweden.	United Kingdom.	United States.	Canada.	Union of South Africa.	Denmark.	Netherlands.	Argentina.	Australia.	New Zealand.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	$l b s$.	lbs.										
1909.	1104	320	525	532, 443	1 1,641	1,894	2,918	290	25, 527	146, 595	116, 915	222, 726
1910	182	366	348	604, 406	1 1, 997	2, 617	2, 775	361	19, 780	165, 570	190, 228	227, 865
1911	339	200	187	596, 968	12,574	3, 359	3, 403	226	15, 478	189, 411	129, 568	211, 595
1912	875	365	124	562, 411	${ }^{1} 5,076$	5, 298	2,513	329	21, 012	154, 708	115, 366	248, 569
1913.	575	1,522	9	596, 992	14,236	5,352	2,088	201	15, 038	101, 253	204, 919	246, 363
1914	6,098		1139	582, 370	16,029	3,138	674	184	19, 844	129, 384	193, 264	280,324
1915	20, 177		146	527, 280	7,648	2, 822	1311	806	25, 094	77, 250	38, 333	302, 218
1916	29, 079		11	407, 360	11,977	2,597	${ }^{1} 538$	365	4, 562	113, 136	66, 811	251, 245
1917	35, 040		15	287, 211	2, 762	1,164	${ }^{1} 1,020$		4,125	87, 787	19, 174	169, 644
1918	29,830		$\left({ }^{2}\right)$	233,425	1 1,023	4,580	1774			111, 145	59, 672	139, 575
1919	62,000		122	455, 580	5,200	1193	1540	274	5,254	125, 131	246, 957	329,693
1920	36, 432	2,770	1, 222	694, 150	97, 593	${ }^{1} 1,253$	1,495	807	6,889	122, 446	54, 893	428, 000
1921	22, 628	2 2, 029	372	754, 749	17,880	${ }^{1} 2,162$	1375	40	9,001	115, 492	91, 712	375, 946
1922.	13, 616	2, 814		648, 497	10, 491	12,627	${ }^{1} 64$	157	16, 186	173, 659	167,613	331, 288

Division of Statistical and Historical Research. Compiled from official sources.
${ }^{1}$ Net exports. . $\quad 2$ Less than 500 pounds. $\quad 3$ Eight months, May-December.

WOOL.

Table 546.-Wool, raw: Production, imports, exports, and apparent consumption, United States. 1870-1923.

Calendar year.	- Production.			$\begin{aligned} & \text { Im- } \\ & \text { ports. } \end{aligned}$	Reexports.	$\begin{gathered} \text { Net } \\ \text { imports. } \end{gathered}$			
	Fleece.	Pulled.	Total.						
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.
18			162,000			52, 493		52,447	214, 447
1871	160, 000		160,000	87, 740	2,221	85, 519	147	85, 372	245, 372
1872	150,000		150,000	116, 386	4,189	112, 197	65	112, 132	262,132
1873	158,000		158,000	60, 231	8, 016	52,215	271	51,944	209, 944
1874	170,000		170,000	51, 565	3, 698	47, 867	66	47, 801	217, 801
1875	181,000		181, 000	52, 090	2,940	49, 150	279	48,871	229, 871
1876	192,000		192,000	39, 731	2,602	37, 129	80	37,049	229, 049
1877	200, 000		200, 000	51, 335	4,306	47, 029	66	46, 963	246,963
1878	208, 250		208, 250	35,799	5, 303	30,496	286	30, 210	238, 460
1879	211, 000		211, 000	70, 248	2,793	67,455	241	67, 214	278, 214
1880	232, 500		232, 500	112,761	4,925	107, 836	75	107, 761	340, 261
1881	240, 000		240, 000	57, 511	4,959	52, 552	101	52, 451	292, 451
1882	272, 000		272, 000	70, 661	3,904	66, 757	42	66, 715	338,715
1883	290, 060		290, 000	77, 183	3,135	74, 048	51	73, 997	363,997
1884	300, 000		300,000	70, 229	2, 793	67,436	33	67,403	367,403
1885	308,000		308, 000	100,000	2, 350	97, 650	2,179	95,471	403, 471
1886	302, 000		302, 000	131, 264	10,220	121, 044	171	120, 873	422,873
1887	285, 000		285, 000	105, 149	4,937	100, 212	120	100, 092	385, 092
1888	269, 000		269,000	108, 113	2,982	105, 131	28	105, 103	374, 103
1889	265, 000		265,000	128,683	3, 888	124,795	301	124, 494	388, 494
1890	276, 000		276,000	108, 681	2, 790	105, 891	223	105, 668	381, 668
1891	285, 000		285, 000	139, 318	2,720	136, 598	122	136, 476	428, 478
1892	294,090		294,000	167, 784	3, 315	164, 469	230	164, 239	458, 238
1893	348, 538		348, 538	111, 752	6, 778	104, 974	229	104, 745	453, 283
1894	325, 211		325, 211	115, 837	2, 801	113,036	1,694	111, 342	436, 553
1895	294, 297		294, 297	248,889	3, 015	245, 974	5,707	240, 267	534,564
1896	272, 475		272, 475	159, 776	6,512	153, 264	8,483	144, 781	417, 256
1897	259, 153		259, 153	356, 839	2, 184	354, 655	1,055	353, 600	612,753
1898	266, 721		266, 721	99,850	4, 592	95, 258	91	95, 167	361, 888
1899	272, 191		272, 191	105,868	13,492	92, 376	3,511	88, 865	361, 056
1960	250, 973	28, 664	288, 637	139,908	3, 046	136,862	422	136, 440	425, 077
1901	265, 502	37,000	302, 502	124,964	3, 326	121, 638	97	121, 541	424, 043
1902	274, 341	42,000	316, 341	176, 293	3, 212	173, 081	446	172, 635	488, 778
1903	245, 450	42, 000	287,450	173, 594	3,267	170, 327	384	169, 943	457, 393
04.	249, 783	42,000	291, 783	186, 573	2,165	184, 408	184	184, 224	476,007

Table 546.-Wool, raw: Production, imports, exports, and apparent consumption, United States, 1870-1923-Continued.

Calendar year.	Production.			$\underset{\text { ports. }}{\text { Im- }}$	Reex- ports. ${ }^{1}$	$\underset{\text { imports. }}{\text { Net }}$	$\begin{aligned} & \text { Exports } \\ & \text { of } \\ & \text { domestic } \end{aligned}$wool.	Excess o imports exports. -	$\begin{aligned} & \text { fippar- } \\ & \text { ent con- } \\ & \text { sump- } \\ & \text { tion. } \end{aligned}$
	Fleece.	Pulled.	Total.						
	1,000	1,000	1,000	1,000	1,000	1,000	00	1,	
1905	pounds.	$\begin{gathered} \text { pounds. } \\ 42,000 \end{gathered}$	pounds.	pounds.	$\begin{array}{r}\text { pounds. } \\ 4,278 \\ \hline\end{array}$	${ }_{242,543}^{\text {pounds. }}$	pounds.	pounds.	pounds.
	256, 215	42,000	298, 915	196, 844	4,412	192, 432	351	192, 081	490, 996
1908	270, 138	42,000	311, 138	142, 559	6, ${ }^{3,109}$	135, 774	169	135, 405	446, 543
1909	287, 111	41, 000	328, 111	312, 1	1,084	311,047	46	311,001	639, 112
19	277, 548	40,000	318, 548	180, 135	$\stackrel{9,055}{3,511}$	171,080	${ }_{(8)}^{88}$	+171,032	492, 395
1912	262, 543	41, 500	304, 043	238, 118	1,816	${ }_{236} 302$	(4)	236, 302	540, 345
1913	${ }_{247,192}^{252,675}$	43, ${ }^{43} \mathbf{0} 000$	290, 192	-		${ }_{\text {253, }}^{1479}$	277	1453, 404	444, 595
1915	245, 726	40,000	285, 726	412, 721		410, 623	8,158	402, 465	688, 191
19	244, 880	43, 600	288, 490	449, 190	${ }^{2} 12121$	${ }^{447}{ }^{49} 062$	3,919	443,143	731, 633
19	251, ${ }^{2429}$	42,000	288, 870	453, 7295	1,421	${ }_{453}^{419,574}$	1, 827	年 4172,747	${ }^{6999}{ }^{639}$
1919	249, 958	48, 300	298, 258	445, 893		440, 204	2,840	437, 364	735, 622
	${ }_{223,062}^{235,005}$	42,900	${ }^{2771}{ }^{277}$, 505	${ }^{259,} \mathbf{3 1 8}$		${ }^{246,982}{ }^{\text {39, }} 081$	$\xrightarrow{8,845}$	${ }^{238}{ }^{231} 1137$	516,042
1922	222, 660		264, 560	376, 673		372, 248	453		636, 35
1923	223,610	42, 500	266, 110	394, 250	24, 188	370, 062	535	369, 527	635, 637

Livestock, Meats and Wool Division. Production figures 1870-1892 and 1914-1923 from the Division of Crop and Livestock Estimates; 1893-1913, from the National Association of Wool Manufacturers; imports and exports from the Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Imports and reexports include hair of camel, goat, alpaca, etc. Imports of hair not separately stated prior to July 1, 1913; since that date it has constituted less than 2 per cent of the total every year except 1915, when it was 2.4 per cent.
${ }_{2}^{2}$ Exports for fiscal years ending June 30 of the years shown.
${ }^{4}$ No transactions.
${ }^{3}$ Included in all other articles.
Table 547.-Wool, fleece: Estimated production, by States, 1921-1923, and United States totals, 1914-1923.

State.	Production.			Weight per fleece.			Number of fleeces.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
	1,000 pounds.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	Pounds.	Pounds.	Pounds.	Thousands.	Thousands.	Thousands.
Maine	600	589	- 567	6. 0	6.2	6.3	100	95	90
New Hampshire	161	128	119	6. 7	6.4	6.6	24	20	18
Vermont-.-.-	365	312	275	6.3	6. 5	6.4	58	48	43
Massachusetts	102	102	100	6.0	6. 0	6.2	17	17	16
Rhode Island.	18	19	20	5.9	6.3	6.5	3	3	3
Connecticut	60	54	44	6.0	6.0	5.5	10	9	8
New York.	2, 941	2,882	2, 968	6.7	6.8	6.9	439	424	430
New Jersey	55	55	47	6.0	5. 8	5.0	9	9	9
Pennsylvania	3, 403	3, 087	3,148	6.4	6.7	6.5	532	461	484
Delaware.	13	12	13	3.5	5.8	b. 5	4	2	2
Maryland	440	486	512	6.0	6.4	6.4	73	76	80
Virginia.	1,541	1, 578	1, 622	4.6	4.9	4.8	335	322	338
West Virginia	2,300	2, 346	2, 600	4.9	4.9	5.2	469	479	500
North Carolina	395	395	397	4.2	4.5	4. 9	94	88	81
South Carolina	97	102	103	3.5	4.0	4.5	28	26	23
Georgia.	160	157	156	2.8	2. 9	3.0	57	54	52
Florida	150	157	163	3.1	3.2	3.4	48	49	48
Ohio_	13, 200	13, 596	14,313	7.2	7.4	7.3	1, 833	1,837	1,961
Indiana	3, 458	3, 527	3, 820	7.0	7.0	7. 1	494	504	538
Illinois	3, 496	3,426	3,290	7.6	7.5	7.6	460	457	433
Michigan	7,714	7,868	7, 282	7.2	7.3	7.4	1,071	1,078	984
Wisconsin	2,701	2, 279	2, 271	7.0	7.3	7.4	386	312	307
Minnesota	2, 340	2,457	2,225	7.2	7.2	7.5	325	341	297
Iowa.	5,369	5,208	4,973	7.5	7.9	7.5	716	659	663
Missouri	5,202	5, 098	5,411	6.5	6.6	7.0	800	772	773

[^275]Table 547.-Wool, fleece: Estimated production, by States, 1921-1929, and United States totals, 1914-1923-Continued.

State.	Production.			Weight per fleece.			Number of fleeces.		
	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$	1921	1922	$1923{ }^{1}$
	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	Pounds.	Pounds	Pounds.	Thousands	Thousands.	Thousands.
North Dakota.	1,633	1,715	1,648	7.7	7.9	8.0	212	217	${ }_{206}$
South Dakota.	4,324	4,021	4, 021	7.2	7.5	7.6	601	536	529
Nebraska.	1,641	1,395	1,738	7.4	8.0	7.9	222	174	220
Kansas	1,878	1,690	1, 933	7.0	7.5	7.7	268	225	251
Kentucky	2, 600	2,678	2,715	4.7	6.0	4.9	553	536	551
Tennessee.	1,320	1,294	1, 300	4. 5	4. 5	4.5	293	288	289
Alabama.	189	185	227	3. 0	3.5	3.6	63	53	63
Mississippi	470	446	454	3.5	3. 0	3.2	134	149	142
Irouisiana.	508	381	385	3. 7	3. 7	3.4	137	103	113
Texas.	18, 000	19,300	19,700	7.7	7.2	7.4	2, 338	2, 681	2, 662
Oklahoma	482	458	- 490	7. 3	7.3	7.0	66	63	70
Arkansas.	355	344	320	4. 3	4.5.	4. 7	83	76	68
Montana	16,400	16, 770	17,775	8. 3	8. 0	8.4	1,976	2,096	2, 116
Wyoming	21, 200	20,400	18, 800	8.2	8.0	7.7	2,585	2,550	2,442
Colorado.	6,839	6, 976	6,580	7.0	6.5	7.0	977	1, 073	940
New Mexico	10, 100	11. 246	10,890	6. 4	6. 0	6. 6	1,578	1,874	1,650
Arizona.	5, 616	6, 000	5,798	6. 0	6.5	6.5	, 936	, 923	892
Utah.	16, 500	16,800	17, 210	8. 0	7. 4	7.9	2, 062	2, 270	2,178
Nevada.	7,000	7,650	7,942	7. 3	6.5	7.6	959	1, 177	1,045
Idaho.	16, 800	16, 642	15, 455	8.0	7.8	8.1	2, 100	2, 134	1,908
Washington	4,421	3, 802	4,409	8.8	7.7	8.8	+ 502	, 494	501
Oregon	14, 435	12,992	13, 200	8. 6	7. 5	9. 0	1,678	1,732	1,467
California	14, 070	13, 455	14, 181	7.5	6.9	7.2	1,876	1,950	1,970
United States.	223, 062	222, 560	223, 610	7. 3	7.1	7.3	30, 584	31, 516	30, 457
1914.		247, 192			6. 8			36, 354	
1915		245, 726			6. 8			35,908	
1916		244, 890		*	7.0			35, 202	
1917.		241, 892			7.0			34, 414	
1918		256,870			7.1			36, 178	
1919		249,958			7.4			33,899	
1920		235, 005			7. 3			32, 301	
1921		223, 062			7.3		--	30,584	
1922		222, 560			7. 1			31, 516	
19231		223,610			7.3			30, 457	

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.
Table 548.-Wool: Estimated production, by countries and grand divisions.

Country.	Calendar years.										
	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922
	Mil-	Mil-	Mil-	Mil-	Mil-	Mil.	Mil-	Mil	Mil-	\dot{M} il-	Mil-
	lion	lion	lion	lion	lion	lion	lion	lion	lion	lion	lion
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	las.	$l b s$:	${ }^{\text {l }}$ ¢ 5.	lbs.
Australasia	833	750	827	767	645	742	742	825	852	718	818
South America.	555	531	455	477	480	470	4	484	487	592	398
North America.	322	315	309	308	307	304	470	336	328	298	281
United Kingdom	143	133	125	121	121	121	125	118	99	100	103
Russia in Europe	320	320	320	320	320	320	320	$\begin{array}{r}320 \\ 50 \\ \hline\end{array}$	$\begin{array}{r}150 \\ 50 \\ \hline\end{array}$	320 40	110
France-.--------	78	78 26	80 26	75 26	75 26	65 26	65 26	$\stackrel{5}{26}$	37	43	52
Italy	21	22	22	22	22	22	22	22	35	79	50
All other in Europ	225	225	227	239	240	240	240	236	380	317	308
Asia......	273	273	273	273	273	273	273	327	327	327	${ }_{2}^{265}$
Africa.	175	208	208	208	208	208	208	150	220	169	278
Total	2,971	2,881	2,872	2,836	2,717	2,791	2,809	2,894	2,965	3,003	2,704

Division of Statistical and Historical Research. Compiled from Annual Wool Review of the National A ssociation of Wool Manufacturers.

Table 549.-Wool: International trade, calendar years, 1909-1922.

Country.	A verage 1909-1913.		1920		1921		$\begin{aligned} & \text { 1922, } \\ & \text { pretiminary. } \end{aligned}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ \text { po } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
Algeria--	2,445	19, 871	2, 456	14, 598		19, 372		15,566 402688
Argenina	324	676, 679	324	229, 511,65	773	8168, 362	1141	- 711,116
Brazil.	1.511	${ }^{2} 2,959$	1694	3, 573	148	7,127		17,851
British In	23,721	56,496	22, 766	28,956	17, 937	22, 814	20, 586	51,738
Chile	1,247	28, 223	675	30, 382	188	26, 902		${ }^{1} 17,453$
China		42, 684		20, 147		68, 205		77,792
Greece	281	294	593	2,187	871	1,397	586	1,439
Hunguiy				${ }^{1} 7,896$	${ }^{1} 177$	${ }^{1} 14,830$	700	19,134
Moroce	168		37	$\begin{array}{r}\text { 3, } \\ \text { 362, } \\ \mathbf{1 6 2 7} \\ \hline\end{array}$	126	1,575 159,419		1306, 295
Persia	${ }^{3} 2,753$	10,023	303	3,647.	1144	11, 286		
Peru.	${ }^{3} 3$	9,333	35	7,450	2	4, 454	81	10,088
Spain.	2,446	28, 505	4,488	14, 846	2,113	5,257	5,044	13,449
Union of South	7	164, 633	183	191,218	176	247, 536	51	35, 576
Uruguay		139, 178		69, 393		${ }^{1} 122,045$		${ }^{1} 102,328$
PEINCIPAL IMPORTING countries.								
Austria			3,963	889	15,362	2,432	${ }^{1} 13,517$	12,143
Austria-Hu	63,942 300,367 7							
Belgium	300,367 7,794	$\begin{array}{r} 196,440 \\ 1,323 \end{array}$	272,206 12,268	$\begin{array}{r} 154,314 \\ 6,289 \end{array}$	$\begin{array}{r} 204,015 \\ 9,204 \end{array}$	$\begin{array}{r} 141,393 \\ 3,310 \end{array}$	194,918 15,907	76,095 7,159
Czechosiov			128,715	${ }^{1} 450$	137, 171	1462	${ }^{1} 36,080$	${ }^{1} 3,056$
Denmark	2,337	1,124	707	677	1,363	140	1,711	304
Finland.	1,794		2, 482		1,934	$\begin{array}{r}11 \\ 33 \\ \hline 103\end{array}$	4, 047	
France	601,628	84,973	363,545	$\begin{array}{r} 33,696 \\ 1.290 \end{array}$		$\begin{array}{r}33,403 \\ 44 \\ 4 \\ 4 \\ \hline\end{array}$	681, 2527	
Germany	481,988 30,145 10	42,817 3,933	122,779 64,893	1,230 2,518	1277,589 44,279	43,554 5 5,224	443,327 85,253	16,676 9,492
Jtapan-	30,145 10,223	3,933	64, 893 71,541	2, 318	44,279 30,531	5,224	${ }_{1}^{66,923}$	
Netherla	31, 991	26,302	14, 256	5,702	14,712	3,760	14,777	3, 829
Norway	3,644	123	2,768	382	1,636	210	4, 110	163
Poland.			14,778	38	${ }^{1} 21,351$	1129	${ }^{1} 34,378$	11,030
Russia	106, 184	32,406	${ }^{1} 288$	${ }^{1} 25$	${ }^{1} 437$	${ }^{1} 1,757$		${ }^{1} 10,870$
Sweden	7,267	149	8,756	96	7,164	40	16, 422	157
Switzerland	11,211	338	10, 317	234	12,193	54	15, 102	246
United Kingdo	550, 931	42,027	720, 457	22,536	466, 668	36,569	751, 628	62. 302
United States-	203, 298		259,618 1,882	82,845	820, 666	$\begin{array}{r} 1,927 \\ 18.960 \end{array}$	376,795 3,630	17.632
Other countri	10,467	38,702	1,882	22,594	$\begin{array}{r}\text { 6,907 } \\ \hline 1,832,601\end{array}$	r 18,960	$\begin{array}{r}\text { 3, } 630 \\ \hline 2,789,832\end{array}$	$\frac{17,032}{2,229,103}$

> Division of Statistical and Historical Research. Ofticial sources except where otherwise noted.
"Wool" in this table includes: Washed, unwashed, scoured, and pulted wool; stipe, sheep's wool on skins (total weight of wool and skins taken); and all other animal fibers ineluded in United States classifieation of wool. The following items have been considered as not within this classification: Corded, combed, and dyed wool; flocks, goatskins with hair on, mill waste, noils, and tops.

[^276]Table 550.-Wool (unwashed): Farm price per pound, 15th of month, United States, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sapt.	Oct.	Nov.	Dec.	Weighted average.
	C	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cen	
1910	24.5	24.6	24.9	22.3	22.8	19.5	19.0	19.5	17.7	18. 1	17.9	17.8	30.5
1911	17.3	17.3	16.8	15. 7	14.7	15. 5	15.4	16.0	${ }_{15}^{15} 6$	15. 5	15.6	15.5	15.6
1912	16. 2	16. 3	16. 9	17. 7	17. 8	18.7	18.9	18.8	18.7	18.5	18.6.	18.6	18.1
13	18.6	18. 7	18.a	17.7	16.3	15. 6	15. 9	15.8	15.8	15. 5	15.6	16.1	16.4
Av.	19.2	19.2	19.2	18.2	17.9	17.3	17.3	17.5	17.0	16.9	6.9	17.0	17.5
1914	15.7	15.7	16.4	16.8	17.2	18.4	18.5	18.7	18.6	18.0	18.1	18.6	17.7
1915	18.6	20.2	22.8	22.7	22.0	23. 7	24.2	23.8	23.3	22.7	22.7	23.3	22.8
1916	23.3	24.2	25.9	26.3	28. 0	28.7	28.6	29.0	28.4	28.7	29.4	30.8	27.9
1917	31.8	32.7	36.7	38.8	43. 7	49.8	54.3	54.8	54.2	55. 5	55.9	58.2	47.8
1918	58.1	57.1	60.0	60.0	58.2	57.4	57.5	57. 4	57.7	57.7	56.4	56.2	57.9
1919	55.2	51.1	51.3	47.9	48.0	50.5	51.8	52.2	513	50.6	51.0	51.6	50.3
1920	53.3	52.5	51.5	51.3	50.3	38.6	29.	28.3	28.0	27.5	24.9	21.9	39.1
Av. 19	36.6	36.2	37.8	87.2	38.2	38.2	37.8	37.7	37.4	37.2	6.9	37.2	37.6
1921	19.6	19.8	18.9	17.9	16.0	15.4	15.5	15.4	15.5	15.8	15.6	16.9	16.4
1228	18. 0	28.3	25.0	24.8	29.0	32.8	32.5	31.6	31.6	32.2	33.2	35.3	29.8
1923.	35.3	35.3	37.3	39.2	41.7	41.5	38.3	37.0	37.1	36.9	36.4	36.2	38.9

[^277]Table 551.-Stocks of wool, tops, and noils held by dealers and manufacturers in United States, 1918-1923.

Date.	Held by dealers.					Held by manufacturers.				
	Grease.	Scoured.	Pulled.	Tops.	Noils.	Grease.	Scoured.	Pulled.	Tops.	Noils.
	1,000 pounds.	$\xrightarrow{1,000}$ pounds.	1,000	1,000 pounds.	1,000	$\begin{gathered} 1,000 \\ \text { potids } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
n. 1918.	pounds.	pounds.	12,229	4,642	7,565	172,342	29,912	9,627	18, 677	13,567
Apr.	91, 209	22, 887	14, 444	3, 555	6, 054	135, 685	23, 672	9,322	16, 117	11, 387
July 1	202, 241	11, 721	10, 478	2, 074	3,848	136, 267	19,601	9,433 8,449	14, 251	13, ${ }^{12} \mathbf{4 6 7}$
Oct. 1	219659	12,926	10,701	347	3,655	101,900	16, 236	8,449	12,288	12, 467
Jam. 1919.	81, 923	12,347	10,215	1,422	5,104	58, 602	13, 816	5, 233	10,395	12,385
Apr.	28, 690	7, 952	5, 984	, 898	2, 823	72, 637	13, 654	6,663	10, 962	10,381
July 1	198, 298	22, 155	10, 108	1,801	2, 577	147, 678	16, 117	11,740	11,388	9,820
Oct. 1	207, 264	27, 921	14, 497	3,446	3, 184	181,301	17,705	7,829	15, 286	9,822
Jan. 1920.				4,735	3, 893	148, 239	20, 030	10, 152	13, 875	7,316
Jan. 1.	122, 247	24, 24.6	17,710	4,646	4, 305	135, 645	28, 100	9,339	14, 328	8,670
${ }^{\text {apren }} 1$	144, 837	27, 963	15, 207	4,487	6, 041	112, 434	23, 078	6,762	15, 439	9, 092
Oct. 1	179, 376	29, 988	11, 229	5,564	4, 754	75, 288	15, 612	12, 067	15, 839	9, 124
Jan. 1981.	188, 822	27, 814	14,352	6, 616	5,434	119, 766	17, 291	6,895	18, 851	9, 991
Apr.	194, 891	22, 807	15, 505	7, 623	3,690	159, 599	18,442	17,095	19, 325	9,316
July 1	176, 584	19, 703	12,127	4, 883	4,139	164, 713	18,042	10,787	20, 247	8,101
Oct. 1.	181, 574	19,480	11, 201	4,005	3,009	180, 727	19,736	10, 484	23, 184	7,463
1922.1								9,312	17, 536	7,136
Jan. 1	101, 384	13,468 10,995	10,222 6,969	2, 8 266	2,453 1,373	171, ${ }^{1} 926$	25, 406	10,419	18, 029	7,176
Apr.	70, 415	10,995 13,447	6,969 6,988	2, 2927	1, 619	165, 810	22, 201	9,642	20,720	6,799
Oct. 1	176, 377	16, 521	7,384	3,327	2,695	191, 351	20, 336	8,686	19, 227	5,904
- 1923. ${ }^{\text {² }}$								8,824	20, 211	7,644
Jan. 1	134,644 126,158	22, 24,734	11, 106	3,658 3,378	6,378	175,422	21, 787	11, 930	18, 402	8,247
Apr	126, 158	24, 2104 21,075	13, 126	3, 3125	5,977	161,435	18, 464	11, 148	16,579	8,364
Oct. 1	175, 843	21,679	10, 531	3,136	5,675	130, 933	15,992	8,961	16,998	7,511

Division of Statistical and Historical Research.
${ }^{1}$ Figures do not include astimates for firms not reporting.
Table 552.-Wool: Quarterly average price per pound on farms, by districts, 19101923.

Table 552.-Wool: Quarterly average price per pound an farms, by districts, 1910-1923-Continued.

Date.	Ohio, Penn-sylvania, and West Virginia.	Michigan, Wisconsin, and New York.	Kentucky and Indiana.	Missouri, Iowa, and Illinoic.	Texas.	California.		New Mexico.	Florida Alabama, Mississippi, Louisiana, and Georgia.
$\begin{array}{r} 1913 . \\ \text { January-March. } \end{array}$	Cts 24	Cts.	Cts.	Cts.	Cts. ${ }_{15}$	Cts. ${ }_{15}$	Cts. ${ }_{17}$	Cts.	Cts. ${ }_{19}$
April-June. --	20	18	19	18	14	14	15	13	17
July-September	20	19	19	17	13	15	14	12	17
October-December	20	19	19	17	13	12	14	12	17
January-March.	20	18	19	17	13	12	15	13	17
April-June.	21	20	21	18	15	15	16	15	16
July-September	23	21	22	20	16	15	17	16	17
October-December	23	21	20	19	14	15	17	15	17
$1915 .$ January-March	24	23	23	20	15	16	21		
April-June. --	26	26	26	24	18	20	22	18	17
July-September	28	29	28	26	19	20	22	19	21
October-December	28	28	27	26	18	17	21	19	20
$1916 .$ January-March	29	29	28	26	20	18	24	21	20
April-June .	32	32	33	30	23	24	27	22	25
July-September	34	34	34	31	24	24	27	24	25
October-December	35	34	34	31	25	21	28	24	26
$1917 .$	38	37	35	33	26	31	35	27	
April-June.	48	48	48	45	35	45	44	37	32
July-September	64	61	59	57	44	52	53	46	44
October-December	66	64	62	58	47	51	56	48	46
1918.									
January-March.	69	65	62	59	50	53	57	47	45
April-June.	69	65	66	61	51	49	55	54	49
July-September	67	65	65	61	52	50	55	49	53
October-December	67	65	64	60	51	50	54	44	54
1919.									
January-March	62	58	62	56	45	42	51	35	50
April-June	58	52	53	49	42	43	48	42	44
July-September	63	58	55	53	46	47	49	46	45
October-December	63	57	55	51	44	42	48	48	44
$1920 .$									
January-March_	63	58	54	52	46	45	50	45	48
April-June .	58	50	48	44	45	44	44	44	41
July-September	33	30	34	28	30	28	28	25	25
October-December	28	26	27	22	24	23	26	22	19
Av. 1914-1920.	44	42	42	38	32	33	36	32	32
1921.	27								
January-March.	27	23	22	18	20	13	19	15	17
April-June .	22	19	17	17	15	10	16	14	16
July-September	19	18	16	15	14	12	16	12	13
October-December	20	18	17	15	14	13	16	14	14
$1922 .$									
January-March.	25	23	19	19	17	23	24	18	14
April-Junc.-.--	33	29	27	25	26	31	31	26	18
July-September	38	33	31	30	33	35	31	30	24
October-December	38	35	32	32	34	31	34	32	23
1923.									,
January-March	39	36	33	32	37	38	37	36	23
April-June. .	43	42	40	39	40	42	42	40	27
July-September	43	41	38	38	37	35	38	34	$\therefore \quad 29$
October-December	42	41	38	36	34	33	36	34	- 33

Division of Statistical and Histarieal Research. Compiled from data of the Division of Crop and Livestock Estimates.

Table 553.-Wool: Monthly average price per pound, Boston market, 1910-1923.
OHIO, PENNSYLVANIA, AND WEST VIRGINIA-FINE CLOTHING, UNWASHED.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver age.
1910	\$0. 28	\$0.28	\$0. 27	\$0.25	\$0. 24	\$0. 22	\$0.22	\$0. 21	\$0. 21	\$0. 23	\$0. 23	\$0. 23	\$0.24
1911	. 23	. 22	. 21	. 20	. 19	. 19	. 20	. 20	21	21	. 21	. 22	. 21
1912	. 22	. 22	. 22	22	. 22	. 22	. 24	. 24	. 24	. 24	. 24	. 24	. 23
1913	. 24	. 24	. 23	22.	. 21	21	. 21	. 21	. 21	. 21	. 21	. 21	. 22
1914	. 21	. 21	. 22	22	. 23	. 24	. 25	. 25	. 25	24	. 24	. 24	
1915	. 25	. 29	. 29	. 26	. 26	. 26	. 27	. 27	. 27	. 27	. 27	. 27	. 27
1916	. 28	. 28	. 29	. 31	31	. 31	. 31	. 31	. 31	. 33	. 34	. 37	. 31
1917	. 39	. 42	. 45	. 44	. 47	. 55	. 58	. 63	. 66	. 63	. 65	. 65	. 54
1918	. 65	. 65.	. 65	. 67	. 64	. 62.	. 67	. 64	. 62	. 67	. 64	. 62	. 64
1919	. 57	. 56	. 54	. 53	. 53	. 58	. 68	. 70	. 70	. 67	. 68	. 70	. 62
19201	. 70	. 75	. 76	. 70	. 65	. 60	. 57	. 54	. 54	. 42	. 38	. 38	. 58
Av. 1914-1920	. 44	. 45	. 46	. 45	. 44	. 45	48	: 48	. 48.	46	. 46	. 46	. 46
1921.	. 31	. 31	. 32	. 32	. 31	. 30	. 28	. 28	. 28	. 28	. 29	. 31	. 30
1922	. 34	. 38	. 38	. 38	. 40	. 46	. 47	. 47	. 47	. 49	. 50	. 50	. 44
1923.	. 52	. 52	. 51	. 51	. 52	. 53	. 51	. 49	. 49	. 49	. 49	. 49	. 51

TERRITORY-FINE STAPLE, SCOURED.

Division of Statistical and Historical Research. 1910-1920 data from National Association of Wool Manufacturers. 1921-1923 data from Boston Commercial Bulletin.
${ }^{1}$ Prices June-December, 1920, largely nominal.
Table 554.-Wool: Average prices per pound in England, 1909-1923.
LINCOLN HOGGETS. ${ }^{1}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver age.
	Cents.	Cents.	Cents.	Cents	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1909	17. 5	18.0	18. 0	18.0	18. 0	19.5	19.5	19.0	19.5	19.5	20.0	20.5	18.9
1910	20.0	21. 0	21.0	21.0	20.5	19.5	19.0	20. 0	20. 0	20. 0	20.0	20.0	20.2
1911	20.0	20.5	20.5	20.5	20.2	20.0	20.0	20.0	20. 0	20.0	21. 0	20.2	20.2
1912	21.3	20.8	20.8	20.8	20.3	20.8	21.3	21.8	22. 3	22.8	23.2	23. 7	21.7
1913	25.4	25.9	26.4	26.4	26.4	26.9	26.9	27.9	25.8	25.8	25.8	25.3	23.2
Av. 1909-1913	20.8	21. 2	21. 3	21. 3	21.1	21.3	21.3	21.7	21.5	21.6	22.0	21.9	21.4
1914	25.8	27.3	27.4	27. 4	27.5	26.5	25.5	26. 0	25.9	26.8	28.6	28.4	26.9
1915	28.5	34.1	34. 5	35.0	33. 4	35. 8	35. 7	33.8	33.7	34.2	36.0	36. 9	34.3
$1916{ }^{2}$	37.6	37. 7	39.7	39.7	38.7	37.7	37.7	37.7	38.7	39.6	41.6	43.5	39.2
1920	42.8	39. 4	44.0	45.7	38. 5	34. 5	32.1	33.2	30.7	27. 5	25. 7	20.4	34.5
1921	21. 9	21. 0	17.9	17. 2	16. 6	13.4	12.5	13. 3	14. 0	14. 5	15. 7	15. 2	16.1
1922	17. 2	17. 7	17.8	18.8	19. 5	20.9	22. 2	22.3	22. 2	22.7	22. 3	23.0	20.6
1923	23. 8	24.4	24.5	24, 2	24.1	24.5	25.8	25. 7	25. 5	25.0	24.2	24. 5	24.7

[^278]Table 554.-Wool: Average prices per pound in England, 1909-1929—Contd.
LINOOLN WETHERS. ${ }^{3}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { A ver- } \\ & \text { age. } \end{aligned}$
	Cersts.	Cents.											
09	15. 5	16.0	16.0	16.0	16.0	16.5	15.5	16.0	17.0	17.0	18.0	18.5	16.5
1910	18.5	20.0	20.0	19.5	19.0	18.5	17.5	19.0	20.0	19.5	19.0	20.0	19.2
1911	19.7	20.0	20.2	20.0	19.5	19.5	19. 5	19.0	19.0	19. 0	19.5	19.5	19.5
1912	20.2	20.3	19.8	19.7	19.5	19.8	20.8	21.3	21.8	22.3	22.7	23. 2	20.1
1913	23.8	25.4	25.9	25. 9	25. 8	25. 9	25.4	24.8	24. 8	24. 8	24.8	24.7	25. 2
Av. 1909-1913	19.5	20.3	20.4	20.2	20.0	20.0	19.7	20.0	20.5	20.5	20.8	21.2	20.
1914	24.3	24.8	25. 3	24. 9	24.4	24.4	23.4	24.0	24.4	26.8	28.6	27.4	25.2
1915	27. 2	33. 1	33. 5	34.0	33. 4	35. 8	35. 7	33.8	33. 7	34.2	36. 0	36. 9	33.9
$1916{ }^{2}$	37.6	37.7	39.7	39. 7	38.7	37.7	37. 7	37.7	38. 7	39.6	41.6	43.5	39.2
1920	41.3	38. 0	42. 5	42.4	33.7	32.1	28. 1	26. 4	25. 6	21.7	20.0	17.5	3.2 30
1921	17.2	16. 1	13. 0	12.3	11. 6	9.8	9. 8	10.3	10.5	11.3	12.0	11.7	12.1
1922	13.2	13. 6	13. 7	13. 8	14.4	14.4	15. 2	15. 3	14.3	14.3	15.4	17.8	14.6
1923	18.4	19.1	19.1	18.9	19.3	19.7	20.1	20.4	20.3	20.7	21. 9	23.6	20.1

Division of Statistical and Historical Research. The Yorkshire Observer "Trade Review" for 1922. Converted at par prior to 1912; after 1911, converted to cents per pound on the basis of the monthly average rate of exchange as given in Federal Reserve Bulletins.
${ }^{2}$ Period of price control. Approximate issue prices: 1917, 50 cts.; 1918, 55 cts.; 1919, $46-48$ cts.
${ }^{8}$ Includes all fleeces shorn after the first.

SHEEP SHIPMENT AND MARKETING.

Table 555.-Sheep: Percentage of shrinkage ${ }^{1}$ in shipments by cooperative associations, 1921.

Distance.	By distance.				Month.	By months.			
	Straight shipments. ${ }^{2}$		Mixed shipments. ${ }^{3}$			Straight shipments. ${ }^{2}$		Mixed ship-	
	Number of animals upon which figures based.	Shrinkage per centage of shipped	Number of animals upon figures $\stackrel{\text { are }}{\text { based. }}$	Shrinkage per contweight shipped		Number of animals apon figures based.	Shrinkage per certage of shipped	$\begin{array}{\|c} \text { Number } \\ \text { of ani- } \\ \text { mals } \\ \text { upon } \\ \text { winich. } \\ \text { figures } \\ \text { are } \\ \text { based. } \end{array}$	Shrink- age per cent- age of weight shipped
Less than 100 miles.	2,479	8.90	10,881	7.56	January	1,922	5.20	4,865	6.18
100-150 miles--	6,472	7.10	8,373	6.88	Febraary-.-	, 567	5. 88	2, 250	6. 55
150-200 miles	5,139	7.02	1,676	5.92	March.-----	1,736	6,95	3,538	7.42
200-250 miles	1,978	7. 22	9,904	8.01	April.-------	1,013	8.55	5, 081	7.84
250-300 miles	860	8. 65	1,297	9.17	May--------	1,060	9. 20	3,401	7.74
300-350 miles	1,026	9.92	5, 204	7.92	June-...--.--	1,723	10. 13	2,941	8.88
$350-400$ miles	2,237	10. 40	18,538	8.56	July --.	1,873	8.32	2,510	9.30
400-450 miles	2,073	8.77	2,288	8. ${ }^{2} 8$	August.	3,285	8.90	5,863	10.08
$450-500$ miles	648	6. 87	359	10.02	September --	3,098	8.11	6, 468	10.01
$500-550$ miles					Oetober-...-	2,983	7.79	9, 168	8.62
$550-600$ miles	1,186	8.22			November --	3,349 $\mathbf{1} 489$	7.93 760	8,386 4,049	${ }^{7} .08$
					Decamber---	1,489	7.60	4,049	5. 56

[^279]Table 556.-Sheep: Percentage crippled and percentage dead in shipments by cooperative associations, 1921.
BY MARKETS—STRAIGHT SHIPMENTG. 1

Market.	Number of animals upon which figures are based.	Average weight of animals.	Crippled.			Dead.		
			Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animais.	Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animals.
Buffalo	1,676	Pounds.	0. 24	0. 20	Pounds. 65	0. 72	0.67	Pounds. 71
Chicago	16,770	87	. 20			. 51		
East St. Louis	1,926	73	. 11			. 52		
Kansas City	3,390	74	. 06	. 06	80	. 35		
Sioux City.-	1,856	95	. 27	.37	128	. 33	. 38	110

BY MARKETS-MIXED SHIPMENTS. ${ }^{2}$

Buffalo	22, 826	78	0.30			0.73		
Chicago	3,124	84	. 22			1.09		
East St. Louis	856	72	. 12	0.13	80	. 35		
Pittsburgh	19,305 2,782	72 99	. 09			. 16		
St. Paul	2, 782	99	. 07	. 10	125	. 21	0.21	91

Division of Oost of Marketing.
${ }^{1}$ Straight shipments contain but one species of livestock.
2 Mixed shipments contain more than one species of livestock.
$\mathrm{T}_{\text {able 55 }}$ 57.-Sheep: Percentage crippled and percentage dead in shipments by cooperative associations, 1921.

BY DISTANCE.

Distance.	Straight shipments. ${ }^{1}$						Mixed shipments. ${ }^{2}$			
	Number of animals upon which figures are based.	$\begin{gathered} \text { A ver- } \\ \text { age } \\ \text { weight } \\ \text { of } \\ \text { ani- } \\ \text { mals. } \end{gathered}$	Crippled.			Percent age of total number shipped dead.	Number of animals upon which figures are based.	Average weight of animals.	Percentage of total number shipped crippled.	Percentage of total number shipped dead.
			Percentage of total number shipped.	Percentage of total weight shipped.	Average weight of animals.					
Less than 100 miles	3,210	Pounds.	0.03	0.04	Pounds 100	0.18	11, 174	Pounds.	0.01	0.39
100-150 miles.--	7,702	83	. 04	. 04	77	. 35	10, 788	74	. 06	. 36
150-200 miles..-	6, 255	87.	. 16	. 18	97	. 30	1,890	86	. 16	. 16
200-250 miles.	$\stackrel{4}{4}, 551$	85	. 10	. 07	52	.31	10,973	88	. 07	. 19
250-300 miles. --	860	70				. 46	1,297	75	. 08	1.34
300-350 miles..-	1,266	84	. 08	. 05	60	. 23	5, 223	80	. 15	. 25
350-400 miles.--	2,898	88	. 41			. 72	21, 424	77	. 27	. 59
400-450 miles..-	2,190	81	. 64	. 61	79	. 39	2,457	89	. 45	1.47
450-500 miles.	648	82	. 15	. 24	130		375	81	1.07	1.87
500-550 miles.										
550-600 miles.	1,186	80				2.36				

BY MONTHS.

Division of Cost of Marketing.

${ }^{1}$ Straight shipments contain but one species of livestock.
${ }_{2}$ Mixed shipments contain more than one species of livestock.

Table 558.-Sheep: Principal terminal marketing costs, six markets, 1921.

Market.	Number of head upon figures are based.	Cents per 1,000 pounds, home weight, straight shipments.											
		Commission.			Yardage.			Feed.			Commission, yard age and feed combined. ${ }^{2}$		
		Avg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$	Avg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$	A vg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$	Avg. ${ }^{1}$	Low. ${ }^{1}$	High. ${ }^{1}$
Chicago	15,874	151.1	118.5	208.0	78.0	58.0	111.5		${ }^{(3)}$		241.3	140.1	340.0
East St. Louis	1,926	166.0	140.0	243.0	102.4	91.1	125. 4		(3)		277.8	254.1	301. 9
Kansas City--	3, 390	214.6	143.0	295.0	101. 2	72.0	107.5				321.9	223.0	388.1
Sioux City-..-	1, 856	134. 1	116. 6	167.0	81.1	${ }^{60.8}$	104. 0	10.7	7.0	21.0	267.6	184.4	327.0
Buffalo-...---	1, 271	125. 1	118.2	146. 6	95.8	75. 2	201. 0	44.1	35.7	83.8	261. 2	235.9	431. 4
St. Joseph ----	2, 443	214.0	105.0	229.0	104. 5	76.5			${ }^{(3)}$		323. 7	181.5	334.7

Division of Cost of Marketing. Data from Cooperative Shipping Associations in the Corn Belt.
${ }^{1}$ A verages are of associations shipping to the given market, weighted on the volume of business. Not based on shipments; low figures are for low cost associations, and high figures are for high cost associations. Exceptional items omitted.
${ }_{3}^{2}$ Feed cost if any, where not shown, is included in Commission or Yardage.
${ }^{3}$ Feed cost seldom incurred.
Table 559.-Livestock: Estimated number raised on farms, and value, 1919-1923.

Classes of animals.	1919		1920		1921		1922		1923, preliminary.	
	$\begin{gathered} \text { Num- } \\ \text { ber. } \end{gathered}$	Value.	Number.	Value.	Number.	Value.	Number.	Value.	Number.	Value.
Cattle	$\left.\begin{array}{\|c} \text { Thous. } \\ 24,517 \end{array} \right\rvert\,$	Thous. dolls. 1, 578, 189	Thous. $\text { 21, } 367$	Thous. dolls. $1,194,185$	Thous.	Thous. dolls. 785, 782	Thous. $26,971$	Thous. dolls. 974, 657	$\begin{gathered} \text { Thous } \\ 26.286 \end{gathered}$	Thous. dolls. 924, 28
Horses	1, 199	145, 706	1, 265	152, 065	1,682	156, 325	1, 803	152, 196	1,707	140,810
Sheep	15,769	r39,980	12,342	94,512	15, 495	31, 811	17,575	- 424,248	18,402	- 35,848
Swine	64, 336	2, 230, 498	56,500	1, 575, 251	61,500	1, 091, 128	78, 878	1, 272, 880	77, 526	1, 144, 681
Other	1,579	9,001	1,579	7,982	1,599	4, 576	1,900	7,169	1,907	7, 857

Division of Crop and Livestock Estimates.
Table 560.-Livestock: Receipts, local slaughter, and stocker and feeder shipments at all public stockyards in United States, 1915-1923.

Calendar year.	Cattle.			Hogs.			Sheep.		
	Receipts.	Local slaughter.	Stocker and feeder shipments.	Receipts.	Local slaughter.	Stocker and feeder shipments.	Receipts.	Local slaughter.	Stocker and feeder shipments.
1915	Thousands. 14, 553	Thousands. 7, 912	Thousands. (1)	Thousands. 36, 213	Thousands 24, 893	Thousands. (1)	Thousands. 18, 435	Thousands. 10, 254	Thousands. (1)
1916	17, 676	10, 294	3,847	43, 265	30, 984	194	20, 692	11, 228	3,277
1917	23, 066	13, 275	4,803	38, 042	25, 440	788	20, 216	9, 142	4,448
1918	25, 295	14, 874	5,013	44, 863	30, 441	989	22, 485	10, 266	5,208
1919.	24, 624	13, 633	5,286	44, 469	30, 018	902	27, 256	12,646	6,956
1920	22, 197	12, 194	4,102	42, 121	26, 761	728	23, 538	10,981	5,180
1921	19, 787	11, 078	3, 504	41, 101	26, 335	499	24, 168	12, 858	3, 095
1922	23, 217	12, 435	4,929	44,067	28, 737	593	22, 364	10, 669	4,167
1923	23, 211	13,030	4,553	55, 330	36, 172	820	22, 025	10, 271	4,478

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
${ }^{1}$ Complete information for 1915 and 1916, particularly ch disposition of stock, is not obtainable from many markets.

LIVESTOCK VALUES.

Table 561.-Livestock: Combined farm values, by States, Jan. 1, 1918-1924.

Division of Crop and Livestock Estimates.

1012 Pearbook of the Department of Agriculture, 1923.
Table 562.-Livestock: Animals slaughtered at Federal-inspected plants, 1907-1923.

$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 . \end{aligned}$	Cattle.	Calves.	Sheep.	Goats.	Swine.	Horses.	Total.
1906-7	7,621, 717	1,763, 574	9, 681, 876	52, 149	31, 815, 900		50, 935, 216
1907-8	7, 116, 275	1,995, 487	9, 702, 545	45, 953	35, 113, 077		53, 973, 337
1908-9	7,325, 337	2, 046, 711	10, 802, 903	69, 193	35, 427, 931		55, 672, 075
1909-10	7, 962,189	2, 295, 099	11, 149, 937	115, 811	27, 656,021		49, 179, 057
1910-11	7,781,030	2, 219, 908	13, 005, 502	54, 145	29, 916, 363		52, 976, 948
1911-12	7, 532, 005	2, 242, 929	14, 208, 724	63, 983	34, 966, 378		59, 014, 019
1912-13	7, 155, 839	2, 098, 484	14, 724, 465	56,556	32, 287, 538		56, 322, 882
1913-14.	6, 724, 117	1, 814,904	14, 958, 834	121, 827	33, 289, 705		56, 909,387
1914-15	6, 964, 502	1, 735, 902	12, 909,089	165, 533	36, 247, 858		58, 022, 884
1915-16	7, 404, 288	2, 048, 022	11,985, 926	180, 356	40, 482, 799		62, 101, 391
1916-17	9, 299, 489	2, 679, 745	11, 343, 418	174, 649	40, 210, 847		63, 708, 148
1917-18	10, 938, 287	3, 323, 077	8,769, 498	149, 503	35, 449, 247		58, 629, 612
1918-19	11, 241, 991	3, 674, 227	11, 268, 370	125, 660	44, 398, 389		70, 708, 637
1919-20	9, 709, 819	4, 227, 558	12, 334, 827	77, 270	38, 981, 914	1,089	65, 332, 477
1920-21	8, 179, 572	3,896, 207	12, 452, 435	20, 027	37, 702, 866	1,335	62, 252, 442
1921-22	7, 871, 457	3, 924, 255	11, 968, 434	13,758	39, 416, 439	1,898	63, 196, 241
1922-23	9, 029, 536	4, 337, 780	11, 403, 703	25, 129	48, 600, 069	1,459	73, 397, 676

Bureau of Animal Industry.

MEAT PRODUCTS.

Table 563.-Meat and meat products ${ }^{1}$ prepared under Federal inspection, 1907-1923.

$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 \text {. } \end{aligned}$	Placed in cure.	$\begin{aligned} & \text { Sau- } \\ & \text { sage } \\ & \text { chop- } \\ & \text { ped. } \end{aligned}$	Canned meats.	Lard.	$\begin{gathered} \text { Lard } \\ \text { com- } \\ \text { pounds } \\ \text { and } \\ \text { substi- } \\ \text { tutes. } \end{gathered}$	Oleo products.	$\begin{gathered} \text { Oleo- } \\ \text { mar- } \\ \text { garine. } \end{gathered}$	All products.	Total.
	lbs.				1,000				
	2, 393,	267, 760	105, 196	1, 003, 602	353, 549	283, 971	55, 694		
907	3, 059,814	416, 200	92, 582	1, 433, 778	436, 448	293, 425	79, 380	146, 671	5, 958, 298
	2, 912, 759	457, 095	123, 810	1, 308, 986	488, 249	295, 889	91, 068	1, 113, 581	6, 791, 437
1909-10	2, 424, 667	485, 864	127, 283	948, 468	671, 526	296, 429	139, 158	1,130, 589	6, 223, 964
1910-11	2, 788, 054	488, 814	144, 942	1, 185, 503	672,845	330, 688	117, 848	1, 205, 539	6, 934, 233
1911-12	2, 828, 061	523, 893	153, 871	1,309,140	648, 443	297, 038	128, 319	1,390, 794	7,279, 559
1912-13	2, 702, 477	531, 626	115, 237	1, 222,857	670, 802	264, 705	145, 356	1,441, 750	7,094, 810
1913-14	2, 728, 550	542, 017	120, 473	1,187,963	580, 409	274, 625	143, 999	1, 445, 260	7, 033, 296
1914-15	3, 150, 693	502, 675	235, 963	1, 277, 734	520, 899	273, 049	145, 931	1, 426, 126	7, 533, 070
1915-16	3, 096, 391	565, 047	164, 200	1,277,870	397, 089	287, 047	152, 388	1,534,962	7, 474, 394
1916-17	3, 208, 074	635, 860	283, 319	1, 119, 315	466, 198	279, 197	225, 074	1,448,596	7,663, 633
1917-18	3, 443, 993	624, 827	468, 633	943, 851	453, 164	263, 630	265, 335	1, 431, 752	7, 905, 185
1918-19.	4, 047, 787	667,602	632, 259	1, 256, 043	469, 732	266, 808	251, 170	1, 577,641	9, 169,042
1919-20	3, 100, 776	682, 521	211, 521	1, 316, 818	328, 567	364,992	217, 561	1, 552,302	7,755, 158
1920-21	2, 630,543	583, 777	86, 240	1, 487, 820	339, 366	253, 397	151, 638	1, 505, 039	7,127, 820
1921-22	2, 870,023	568, 626	109, 481	1, 650, 331	312, 014	238,034	118, 197	1, 521, 410	7,427, 116
1922-23	3, 585, 622	679, 315	160, 132	2, 017, 239	336,843	278, 137	129, 767	1, 700, 792	8,888, 547

Bureau of Animal Industry.
${ }_{1}$ The above figures do not represent production, as a product may be inspected more than once in course of further manufacture

Table 564.—Livestock: Condemnations of animals and primal parts under Federal meat inspection, 1907-1923.

$\begin{aligned} & \text { Year } \\ & \text { ending } \\ & \text { June } \end{aligned}$$30-$	Cattle.		Caives.		Sheep.		Goats.		Bwine.		Horses.		Total.	
	Car-	Parts.	Car-	Parts.	$\begin{gathered} \text { Car- } \\ \text { casses } \end{gathered}$	Parts.	Carcasses.	Parts.	Carcasses.	Parts.	Carcasses	Parts.	Carcasses.	Parts.
1906-7.	27, 933	93, 174	6,414	245	9, 524	296	42		105, 879	436, 161			149, 792	
1907-8.	33, 216	67,482	5, 854	396	8, 090	198	33		127, 933	636, 589			175, 126	704, 668
1908-9-	35, 103	99, 739	8,213	409	10, 747	179	828		86, 912	799, 300			141, 057	899, 628
1909-10-	42, 426	122, 167	7,524	500 781	11, 127	24,714 7,394	228 61		53,439 59,477	728, 829			113, 742	1, 874, 211
1910-11-	39, 402	123, 969	7,654 8,927	- 781	15, 789	7,394 3,871	61 84		59, 477	877, 528			117,383	$4,009,672$ 463,859
1911-12	50, 363	134, 783	8,927 9,216	1, 212	16, 657	3, 871	84 76		129,002	323, 992			253, 7781	463, 859 500 149
1913-14-	48, 356	138, 085	6, 696	1, 234	20, 563	1,564	746		204, 942	422, 275			281, 303	563, 166
1914-15.	52, 665	178, 409	6, 380	1,750	17, 650	298	658	14	222, 605	464, 217			298, 95	644, 688
1915-16	57, 673	188, 915	6, 840	1,988	15, 063	1,007	667	161	206, 711	546, 290			286, 954	738,361
1916-17-	78, 773	249, 637	10, 168	2,927	16, 758	413	1,351	42	164, 682	528, 288			271, 732	781, 307
1917-18.	68, 208	178, 940	8,127	2, 308	12, 568	227	419		116, 943	347, 003			206, 285	528, 481
1918-19.	59, 336	166, 791	9,220	2, 479	14, 385	330	318	17	131, 274	433, 433			214, 833	603, 050
1919-20-	58, 621	194, 058	13, 820	2,866	20, 031	627	135		135, 477	550, 580	64		228, 148	748, 136
1920-21-	46, 881	176, 762	7,720	2, 323	12, 682	270	23	10	124, 208	492, 132	19		191, 533	671,504
1921-22-	55, 188	166, 935	11, 409	2, 376	10, 488	496	30	21	162, 926	697, 393	30		240, 071	867, 221
1922-23.	73, 330	176, 332	11, 824	2,383	13, 325	292	81	4	199, 689	832, 317	14		298, 263	1,011, 329

[^280]Table 565.-Meat: Yearly produetion, 1907-1923.

Division of Ptatistical and Historical Research. Compiled from reports of Bureau of Animal Industry. Quantities based on earcass weight; cambe ofial not included because of the variable percentage used in edible products. Subject to revision.
${ }^{1}$ Not including goat meat.

1014 Yearbook of the Department of Agriculture, 1923.
Table 566.-Meat: Yearly consumption, 1907-1923.

Calendar year.	Consumption.						Percentage of total consumption.					
	Beef.	Veal.	Total beef and veal.	Lamb and mutton.	Pork.	Total meats. 1	Beef.	Veal.	Total beef and veal.	Lamb and mutton.	Pork.	Total meats.
	Mil-	Mil-	Mil-	Mil-	Mil-							
	lion	lion	lion	lion	lion	Million	Per	Per	Per	$\stackrel{\text { Per }}{ }$	Per	Per
1907	lbs.	$l b s$.	lbs.	lbs.	lbs.	lbs.	cent. 47.	cent. 4.3	${ }_{\text {cent. }} \mathbf{5 1 . 9}$	cent. 3.8	cent.	cent. 100
1907	6,967 6,448	626 605	7,053	554	-6, 7,607	15, 214	42.4	4.0	46.4	3.6	50.0	100
1909	6,908	684	7,592	602	6,218	14,412	47.9	4.8	52.7	4.2	43.1	100
1910	6, 623	687	7,310	598	5,568	13, 476	49.1	5.1	54.2	4.4	41.4	100
1911	6,405	657	7, 062	735	7, 055	14, 852	43.1	4. 4	47.5	5. 0	47.5	100
1912	5,864	668	6, 532	783	6, 749	14, 064	41.7	4. 7	46.4	5.6	48. 0	100
1913.	5, 902	488	6, 390	733	7,03?	14, 160	41.7	3.4	45.1	5.2	49.7	100
Av. 1909-1913	6,340	637	6,977	690	6, 525	14, 193	44.7	4.5	49.2	4.9	45.9	100
1914	5,804	438	6,242	733	6, 889	13, 864	41.9	3.2	45.0	5.3	49.7	100
1915	5, 559	429	5,988	631	6, 969	13, 588	40.9	3.2	44.1	4.6	51.3	100
1916	5,770	537	6, 307	619	7, 370	14,296	40.4	3. 8	44.1	4.3	51.6	100
1917	6,243	663	6,906	473	5,975	13,354	46.8	5. 0	51.8	3.5	44.7	100
1918	6,753	766	7, 519	483	6,997	14, 999	45.0	5.1	50.1	3.2	46.7	100
1919	6,090	809	6, 899	607	7, 200	14, 706	41.4	5.5	46.9	4.1	49.0	100
1920	6,514	846	7,360	537	7,350	15, 247	42.7	5.5	48.3	3. 5	48.2	100
Av. 1914-1920.	6, 105	641	6, 746	583	6,964	14, 293	42.7	4.5	47.2	4.1	48.7	100
1921	6,230	752	6,982	673	7, 869	15, 524	40.1	4.8	45.0	4.3	50.7	100
1922	6,711	798	7,509	545	8, 306	16, 360	41.0	4. 9	45. 9	3.3	50.8	100
1923.	6,918	873	7,791	574	10,113	18,478	37.4	4.7	42.2	3.1	54.7	100

Division of Statistical and Historical Research. Compiled from reports of Bureau of Animal Industry. Quantities based on carcass weight; edible offal not included because of the variable percentage used in edible products. Subject to revision.
${ }^{1}$ Not including goat meat.
Table 567.-Meat and lard: Annual per capita consumption, 1907-1923.

Division of Statistical and Historical Research. Compiled from reports of Bureau of Animal Industry; quantities based on carcass weight; edible offal not included because of the variable percentage used in edible products. Subject to revision.
${ }^{1}$ Not including goat meat.

Table 568.-Livestock and meat: Live and dressed weights, 1922 and̈ 1923.

Month	Cattle.				Calves.				Hogs.				Sheep and lamis.			
	Average live weight.		Dressed weight as a percentage oflive weight.		Average live w ight.		Dressed weight as a percentage oflive weight.		Average live weight.		Dressed weight as a percentage oflive weighi.		Average live weight.		Dressed weight as a percentage oflive weight.	
	1922	1923	1922	1923	1922	1923	1922	1923	1922	1923	1922	1923	1922	1223	1922	1923
	Lbs. 1,019	Lbs.	Pct.	Pct.	Lbs.	Lbss.	Pct.	Pct.	Lbs.	Lbs.	Pct. 78	Pct.	Lbs.	Lbs. 87.	Pct.	Pct. 48
Febru	1,004. 8	973. 5	54	55	156. 7	162. 7	57	59	222. 2	227. 6	77	78	85. 0	88.2	47	47
March	1,012. 8	973.1	55	55	142. 7	148.8	57	59	222. 9	227.8	77	78	85.4	85.1	47	47
April	1,009. 3	970.5	56	56	134. 2	141.8	58	58	224. 7	228. 8	77	77	830	82.0	48	48
May	1,002. 1	949.7	56	56	146.6	146.4	57	56	226. 5	223. 5	77	76	77.8	78.1	49	49
June	982.4	955. 3	56	55	156.4	161.8	56	58	231. 3	227.7	77	77	71.9	76.0	49	48
July	985. 5	942.2	55	54	171. 6	176.8	57	57	239.4	232.1	77	76	72.7	75.4	49	49
August	97.2. 8	933.4	54	54	192. 7	196.0	57	56	241.5	236. 2	75	78	76.0	76.9	48	48
September	965.4	939.1	53	53	199. 7	204.5	56	55	234. 2	229.3	76	75	77.7	78.0	48	48
October	957.8	940.0	52	53	197. 2	199.7	54	56	219. 5	219.5	76	75	80.2	79.6	48	48
November	946. 2	933.5	52	54	188.6	189. 4	56	57	214. 8	215.7	76	76	83. 4	76.8	48	51
December	957.5	952.4	53	52	176.1	181.3	58	57	220.1	217.8	77	76	85. 8	83.1	48	47
Weighted erage.-	981.1	952.9	54	54	169.7	172.8	56	57	226.0	225.3	76	77	80.0	80.8	48	48

Division of Statistical and Historical Rescarch.
Table 569.-Meats, fresh: Monthly supply at eastern markets, 1923. RECEIPTS.

Market, and month	Carcasses.							Cuts.			
	Steers.	Cows.	Bulls.	Veal.	Hogs.	Lambs.	Mutton.	Beef	Pork.	Veal.	Lamb
	Num-	Num-	Num-	Num-	Num-	Num- ber.	Num- ber.	Lbs.		Lbs.	$L b s$.
Boston: Jan		ber.	ber.	4,455	${ }^{\text {ber. }} 114$	60,116	4,452	7,200	$1,702,551$	Lbs.	Lbs.
Febru	8, 877	7, 663	277	3,060	42	46, 017	4,254		-989,824		
March	9, 664	6, 354	186	3,840		52,304	4,173	2,997	1, 031, 126		
A pril	10, 181	4,359	200	6, 665	10	52, 125	1,900		954, 933		
May	14, 482	3, 834	343	6, 416		57, 352	4, 394		865, 242		
June	11, 378	2,547	287	4,928		37, 703	3, 174	25	542, 986		
July	9,417	1, 980	84	2, 724		36, 924	1,866		392, 727		
August	15,386	3, 765	392	4,645		51, 016	1,803	41,383	994, 882		
Septemb	11, 394	4,341	136	2, 725		46,587	1, 832	8, 165	489, 124		
Uctober	14, 769	8, 231	181	5,503	131	67, 653	3, 406	2,448 17	778, 143		
November	8, 373	6, 713	116	5,248	210	46,145	1,942	17,788	820, 743		
December	9,301	5,630	228	3, 450		48,890	1,793	16,302	908, 944		
Total	133,115	65, 434	2,686	53,659	507	602,832	34,989	96, 308	10,471,225	------	-------
New York: January	35, 874	6, 089	2, 100	50,384	13, 981	112, 317	40, 810	943, 837	7, 119, 415	600	230
Februar	28,853	4,728	3, 533	32, 956	11, 789	91, 355	30, 018	690, 961	5, 369, 385	9,372	18,566
March	26, 323	4,011	1,806	45, 071	9, 922	94, 983	27, 635	829, 910	5, 835, 127	100	30, 680
Apıil	30, 191	3, 072	5, 301	49,910	9, 213	106, 236	13, 442	670, 574	5, 157, 782	4, 988	1, 1,005
May	41, 952	2, 354	5, 951	61, 005	11, 425	97, 213	37, 101	791, 626	$5,703,129$ $5,093,775$	6,239 78,244	132,700 48,945
June	30, 878	2, 324	1,874	47, 797	8,777	68, 679	24, 014	766,513	5, 093, 775	78, 844	48,945 33,199
July	29, 859	2, 229	2950	43, 279	- 4,809	80,089	20, 741	367,951 706,914	3, 146, 018	86,658 43,543	33,199 19,090
August	41, 902	3, 525	2,009	51, 292	-10, 404	82,671 82,133	17, 155	706,914 530,293	4, 361, 132	43,543 30,558	19, 090
Septemb	34,286 43,876	4,106	1, 201	39,362 57,378	7,112	82, 133	24,507 29,795	530,293 820,914	3, 899, 980	30,558 57,746	36,722 34,975
November	28, 832	3,798	- 765	43, 454	18, 708	71, 808	19, 688	637, 024	6, 264, 130		
December	27, 990	3,965	773	39, 023	14, 158	73,356	21,267	644, 601	5, 678, 328	10,010	
Total	400,816	44, 580	27, 703	560,911	143,354	1,079,634	306, 173	8, 401, 118	63, 877, 800	328,054	246,112
Philadelphia:			601			39,469	12, 460		2,934, 739		
February	14, 732	1, 788	97	6, 512		25, 533	9, 637		1,953, 692		
March	9, 188	1, 870	238	7,164		25, 971	6, 202		1, 709, 717		
April	11, 200	1,728	368	7, 371		32, 175	5, 412		1, 719, 197		
May	14, 564	1, 665	1, 269	11, 739		30, 070	9, 878		1,813, 219		
June	10, 241	1, 445	867	6,979		21, 444	6,659		1,297,043		
July:	9, 668	2, 207	683	5,545		22, 693	5, 220		1, 151, 139		
August	13, 047	3, 526	1,519	7,863		23, 857	3,754	---	1,689, 322		
Septembe	10, 877	2, 890	1, 092	7, 277		22, 446	7,080		1, 136, 213		
October	13, 685	2, 845	1,056	7, 409		34, 021	6,271		1, 724, 166		
November	9, 633	2, 246	712	6, 394		23, 348	6,661 6,454		2, 231,269		
December.	9,785	3, 292	838	6,751		29,324,	6, 454		2, 204, 831		
Total	138,214	28, 036	9,340	90,374		330,351	85, 688		21; 564, 547		

[^281]
1016 Yearbook of the Department of Agriculture, 1923.

Table 569.-Meats, fresh: Montnıy supply at eastern markets, 1923-Continued.
SLAUGHTER.

Market, and month.	Under Federal inspection.				Under eity inspection.			
	Cattle.	Calves.	Hogs.	Sheep.	Cattle.	Calves.	Hogs.	Sheep.
Boston:	Number.	Number.	Number.	Number.	Number.	Number.	Number.	Number.
January	7, 171	8,766	136,383	28, 602		1,155	7,706	
February	5,311	5, 213	84, 086	21, 144	15	2,813	5,206	16
April.	- 5 5, 506	7,339 8,680	74,124 71,323	15,738 22,310	14 12	4,4481	4,954 4,622	
May	6,914	11, 885	74, 012	29,600	9	2,387	5,422	
June	4,978	8,484	79, 871	25,634	4	472	3,509	
July	4,999	6,992	79, 261	23,558	5	966	4,662	11
August	8,405	8,302	93, 413	41, 692	27	1,415	3, 594	28
September	6,165	5,709	61,427	30,981	67	1,241	3,141	67
October-	12, 106	9,513	87, 968	35, 809	430	1,546	5,601	
November	10,598	7,621	116, 325	32,847	146	1,008	4,113	
December	8,870	5,751	134, 110	27, 486	249	1,061	5,199	14
Total	86,387	94, 255	1,092, 303	335, 401	989	23,993	57,729	159
New York:								
January	51, 620	57, 166	299, 758	193,787	1	14, 124	625	911
February	39,856	48,660	231, 145	137, 147		13, 583	227	1,578
March	40, 008	57, 859	217, 569	135, 442		16,097	229	2, 911
April	42,974	71,006	204, 120	157, 078	1	15,442	178	2,936
May	50,511	83,712	248, 253	185, 325	4	12, 885	60	2,214
Junc	36,030	59,254	169, 958	158, 809		4,977	14	331
July	37, 726	55, 573	170,487	173, 833		4,068	29	41
August	48, 059	65, 685	215, 340	235, 511	20	4,370		85
Scptemb	35, 594	51,488	183, 887	184, 119	10	6,353	88	29
October	50, 545	62,716	278, 296	217, 460		10, 043	797	272
November	38,611	47, 324	244, 302	181, 635	24	6, 474	2, 873	349
December	39, 676	47,763	284, 231	189, 121	20	8,873	1,357	607
Total	511,210	708, 206	2, 747, 346	2, 149, 317	80	117, 289	6,477	12, 265
Philadelphia:								
January	9,756 7	6,228	102, 202	19,653	1,095	4,557	2,653	8, 267
March.	7,986 7,837	4, ${ }^{4}, 295$	87,641 85,075	15,505	840 834	2, 737	1,475	5, 039 4,442
April	8,842	6,958	85, 462	17, 511	892	3,976	768	7,791
May	11, 272	9,798	108,497	20,837	945	4,851	769	8,951
June.	8,489	7,041	70, 761	16,840	449	3,636	538	7,693
July -	7,606	6,003	68, 861	16,710	610	3,908	465	7,969
August	10,027	7,489	89, 735	25,883	654	3,066	499	8,801
Septemb	7,878	5,101	83, 116	18,190	923	2,162	967	6,475
October	10,487	6,212	121, 666	18,198	1,552	4, 476	2,447	8, 290
Novemb	8,111	5,952	98, 537	17,364	1,248	3, 146	1,648	7,001
December	8,161	4, 118	101, 751	15,020	1,070	3, 023	1,421	6,840
Total	106, 452	74,649	1, 103, 304	216, 167	11, 112	42,331	14, 655	88, 559

SUMMARY.

Market, and month.	Beef.		Veal.		Pork.		Lamb and mutton.	
	$\begin{aligned} & \text { Car- } \\ & \text { casses. } \end{aligned}$	Cuts.	$\begin{gathered} \text { Car- } \\ \text { casses. } \end{gathered}$	Cuts.	$\begin{aligned} & \text { Oar- } \\ & \text { casses. } \end{aligned}$	Cuts.	Carcasces.	Cuts.
Boston:	Number.	Pourds.	Number.	Pounds.	Number.	Pounds.	Number.	Pounds.
January	27, 348	7,200	14, 376		144, 203	1, 702, 551	93, 172	
Februar	22, 143		11, 086		89, 334	1,989,824	71, 431	
March	21, 582	2,997	16,627		79, 078	1,031, 126	72, 215	
April	20, 258		19, 826		75,955	-954, 933	76, 335	
May	- 25, 582		20,688		79, 434	865, 242	91, 346	
June	19, 194	25	13, 884		83, 380	542, 986	66, 511	
July	16, 485		10,682		83, 923.	392, 727	62, 359	
August	27, 975	41, 383	14,362		87, 007	994, 882	94, 53.9	
September	22, 103	8, 165	9,675		64, 568	489, 124	79, 467	
October	35, 717	2,448	16,562		93,700	778, 143	106, 871	
November	25, 946	17,788	13, 877		120,648	820, 743	80, 952	
December	24, 278	16, 302	10, 262		139, 309	908,944	78, 183	
Total	288, 611	96, 308	171,907		1, 150, 539	10, 471, 225	973, 381	-

Table 569.-Meats, fresh: Monthly supply at eastern markets, 1923-Continued. SUMMARY-Continned.

Market, and month.	Beef.		Vesi.		Pork.		Lamb and mutton.	
	Careasges.	Cuts.	Carcasses.	Cuts.	Carcasses.	Cuts.	Carcasses.	Cuts.
New York:	Furnzer.	Pounds.	Nusaber.	Pounds.	Number.	Pounds.	Number.	Pounds.
January	95, 684 76.970	933,837 690 961	-121, ${ }^{\mathbf{9 5}, 189}$	600 9,372	314,364 $\mathbf{2 4 3}, 161$	5, 769,385	347,825 260,098	18, 258
March	72, 148	820,910	119, 027	100	227, 720	5, 835, 127	260, 971	30, 689
April	81,539	670, 574	136, 358	4, 984	213, 511	5, 157, 782	279, 692	1,005
May	100, 772	781, 626	157, 602	6, 239	259, 738	5, 7768, 129	321, 853	32,700
June	71, 106	768,513	112, 028	78,244	178,749 175,325	5, $3,093,775$	251, 833	48,945 33,199
July---	76,764 05 515	7067,951	102,920 123,347	86,658 43,543	175, 325	3, 146, 018	274,704 335,423	33,199 9,990
August	95, 515 75,978	706,914 530,293	124,347 97	43,543 30,568	225, 744	4, 361,132	335,423 290,788	36, 722
September	100, 249	880, 914	130, 137	67, 746	302, 149	6, 249, 599	366, 321	34, 975
November	72, 030	637, 024	97, 252		265, 883	6, 264, 130	273,530	
December	72, 484	644, 601	95,659	10,010	299, 746	5, 678, 328	284, 351	
Total	184, 389	8, 401, 118	1,386, 406	328,054	2,897, 177	63, 877,800	3, 547, 389	246, 112
Philadelphia:					104, 855	2,934, 739	79, 849	
February	22,443		13,703		89, 116	1, 953, 692	55, 714	
March	19, 967		15, 252		86,080	1, 709, 717	51, 071	
April	23, 030		18,305		86, 230	1, 719, 197	62, 889	
May	29, 715		26, 388		109, 266	1, 813, 219	${ }_{59}^{69,736}$	
June	21, 491		17, 656		71, 299			
July	20,774		15,456 18,418		69,326 90,234	1, 151, 139	52,592 62,295	
August	28,773		14, 548		84, 083	1, 136, 213	54, 191	
October	29,625		18, 097		124, 113	1, 724, 166	67, 780	
November	21, 950		15,492		100, 185	2, 231, 209	54,374	
Decemiber.	23, 1×6		13, 832		108, 172	2, 204, 831	57, 638	
Total	294, 154		207, 354		1,117,959	21,564, 547	720, 765	

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats and Wool Diyision.

Table 570.-Meat and meat products: International trade, calendar years, 19111989.

Country.	Average 1911-1913.		1920		1921		$\stackrel{1922,}{\text { preliminary. }}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING countries.	1,000 pounds. 3,487	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 1,173,461 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pourds } \\ 575 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 1,284,827 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 1,155,799 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { pounds. } \\ & 1,372,097 \end{aligned}$
Australia	1, 1,967	-507, 143	1,025	- 316, 228	722	1 338, 700		1331,445
Brazil.	54,012	1,529	10, 064	195, 479	10. 232	174, 160		90, 999
Canada	43, 327	60, 242	70, 111	208, 013	75, 436	158, 780	70,211	142, 648
Chile	11, 738	19,728	13,592	38,529				
China-	85	64, 684	1,757	89,599 157,661	1,363 38,117	71,190 237,755	2, 141 2083	$44,7.01$ 330,597
Dermarix--	$\begin{array}{r}32,184 \\ 359 \\ \hline 864\end{array}$	368,188 497,402	8,170 157,179	157, 887 288 185	-18, 117	237, 3165	20, 201,659	330, 3983
New Zealand	35, 964	326, 539	1, 1.584	593, 445	1, 922	552, 426	201,682	458, 171
Sweden	24, 215	39, 768	58,828	24,999	34, 918	66, 513	45, 717	46,326
United Stat	18,7191702	$\begin{array}{\|c} 1,277,524 \\ 196,911 \end{array}$	196, 425	$\begin{array}{r} 1,851,692 \\ 280,410 \end{array}$	79,845	1,897, 992	77, 507	1, 786, 696
Uruguay .								
FRINCFRAL IMPORTING cGunteres.								
Austria			155, 210	7,516	131, 345	9, 287		
Austria-Hungary	$\begin{aligned} & 49,200 \\ & 179 \\ & 128,362 \end{aligned}$	$\frac{12,420}{\left.(12), x_{1}^{2}\right)}$	$\begin{aligned} & \mathbf{2 2 0 ,} 284 \\ & \mathbf{1 8 4 , 6 7 8} \end{aligned}$	58, 024	191, 536	48, 723	192, 809	23, 568
Cuba--								
Czechoslorakia	$\begin{aligned} & 111,496 \\ & 559,752 \end{aligned}$				66,028 $.800,528$	1,314 66,893	114,570 240,906	94, 547
Frence--		$\begin{aligned} & 98,281 \\ & 19,525 \end{aligned}$	$\begin{aligned} & 601, \boldsymbol{\theta} \mathbf{6 7 B} \\ & 884,375 \end{aligned}$	81,475 4,466	- $\begin{array}{r}\text { 309, } \\ \hline\end{array}$	$\begin{array}{r}66,893 \\ 3 \\ \hline\end{array}$	240,906 494,910	94, 19,961
${ }^{1}$ One year onl		${ }^{2}$ Less than	500 poun	ds. -	Eight m	onths, Ma	-Decemb	

1018 Yearbook of the Department of Agriculture, 1923.

Table 570.-Meats and meat products: International trade, calendar years, 1911-1922-Continued.

Country	Average 1911-1913.		1820		1921		$\begin{aligned} & \text { preliminary. } \end{aligned}$	
	Imports.	Exports.	Imports.	Exprrts.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL Importing	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
COUNTRIES.--Con.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	poumds.	pounds.
Italy-	104, 619	15, 708	174, 708	8,507	132,992	7,418	132, 419	25, 208
Norway.	42,416	3, 365	67,401	3, 362	73, 733	3, 026	77,906	2,918
Philippine Islands	21, 902		12, 695		23, 503		17,071	
Russia_	130, 897	53, 175						
Spain	37, 974	3, 200	28, 328	2,776	21, 070	6,578	21, 045	6,155
Switzerland	60, 174	3,169	49, 913	5,415	62, 811	2, 088	32, 026	3,726
Union of South Africa	31, 103	404	17, 525	16, 401	6, 276	4, 658	9,906	2, 767
United Kingdom	2, 843, 605	117, 226	2, 854, 559	98, 296	3, 329, 020	90, 134	3, 197, 317	74,699
Other countries_	126, 695	38,016	106, 303	84, 236	78, 876	22, 661	65, 946	23, 973
All countries:								
Beef	2, 044, 172	2, 162, 336	2, 290, 522	2, 585, 503	2, 301, 526	2, 097, 371	2, 046, 335	1,960, 077
Mutton	611, 744	560,284	876, 661	636,426	835, 310	608, 891	701, 881	697,313
Pork	1, 632, 382	1, 638, 145	2,055, 395	1, 939, 721	1,889, 300	2, 190, 727	1, 831, 212	2,071,412
Othe	702, 072	663, 891	702, 267	540, 891	422, 557	400, 307	436, 152	474, 878
Total	4, 990, 370	5, 024, 656	5, 924, 845	5, 702, 541	5, 448, 693	5, 297, 296	5, 015, 580	5, 203, 680

Division of Statistical and Historical Research. Official sources.
Table 571.-Meats, frozen and cured: Cold-storage holdings in United States, 1917-1923.

Calendar year.	Jan. 1.	Feb. 1.	Mar.1.	Apr. 1.	May 1.	June 1.	July 1.	Aug. 1.	Sept. 1.	Oct. 1.	Nov.1.	Dec. 1.
	Mil-	Mil-	Mil-	Mil-	Mil-	Mil-	Mil-	Mil-	Mil-	Mil-	Mil-	Mil-
	lion	lion	lion	lion	lion	lion	lion	lion	lion	lion	lion	lion
	$l b s$.	$l b s$.	$l b s$.	lbs.	lbs.	lbs.	$l b s$.	lbs.	lbs.	lbs.	lbs.	lbs.
1917.	804	875	914	852	828	832	879	893	778	633	587	709
1918	981	1,118	1,266	1,355	1,319	1,300	1,149	1,137	1,036	905	882	938
1919	1,199	1,452	1,436	1,389	1,332	1,284	1,254	1, 171	1,061	984	881	865
1920	1, 016	1,187	1,279	1,304	1,252	1,209	1,194	1, 115	- 977	784	670	656
1921	820	976	1, 138	1, 108	1, 043	1, 017	989	899	777	607	491	505
1922	567	624	681	717	713	, 745	817	789	727	589	512	569
1923.	754	876	958	1,032	1,094	1,045	1,041	983	868	723	629	739

Division of Statistical and Historical Research.
Table 572.-Meats, fresh and smoked: Monthly average wholesale price per 100 pounds at Chicago and New York, calendar year 1.923.

CHICAGO.

Class of meat	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Av.
Beef: Steer-	$\left.\begin{array}{\|c\|} \hline \text { Dolls. } \\ 17,80 \end{array} \right\rvert\,$	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.
Choice					16.77	17.45	17.66	18.05		18.23	18.16	19.01	
Good	16. 27	15. 70	15.21	14.79	15. 34	16. 22	16. 59	16.80	17.62	16.76	16. 62	17.62	16. 30
Medium	13. 79	13.92	13.40	13.36	14. 33	14. 95	15. 58	15. 05	15. 54	14.05	13.95	15.	14.45
Common	11. 12	11.42	11.08	11.55	12.88	13.75	14.08	12.87	11. 95	10. 18	10.40	12.	96
Cow-		11. 40	11.09	11.50	12. 11	12.42	12.84	12.96	13. 00	12.5	11.85	12.50	12. 14
Mediu	9.78	10.10	9.50	9.82	10.70	11. 54	11.60	11.47	11.30	10.72	10. 55	11.50	10. 72
Comm	8.17	8. 50	8.61	8.91	9.86	10.18	9.75	8.50	8.10	8. 29	7.76	. 00	
Bull-		76		08						7.07	6.88	7.43	7.82
Veal:	18.22	20.28									15. 09	16. 25	
Good.	16. 98	18. 20	16. 55	15. 25	15.67	16.35	17.82	17.50	19.05	17.16	13.36	14.75	16.55
Mediun	14. 92	15.62	15. 18	13. 50	13.6	14.50	1568	14.60	15. 00	14. 14	11.46	12. 98	14. 27
Com	12.	13.							10.	9. 64	8.40		10.87

Table 572.-Meats, fresh and smoked: Monthly average wholesale price per 100 pounds at Chicago and New York, calendar year 1923-Continued.

CHICAGO-Continued.

NEW YORK.

Beef: Steer-													
Choic	18. 50	16. 15	15.01	15. 48	16. 75	17.60	18.82	19.65	20. 20	19.54	18. 75	19.48	17.99
Good	15. 14	14. 32	13.96	14.46	15.69	16. 60	17. 61	17.98	18. 64	17.09	15. 85	16.50	16. 15
Medium	12. 50	13.02	12.61	13. 44	14. 58	14. 66	15. 88	14. 66	14.92	13.44	12.78	13.88	13. 86
Common	10.96	11.32	11.00	12.13	12. 56	10. 59	13. 49	10.63	11. 60	10.18	10.41	11.88	11. 40
Cow-													
Good	11. 09	11. 35	10.94	12.21	13. 36	12. 90	14.08	13.48	12.78	11. 36	11.41	11. 89	11. 24
Medium	10. 27	10.39 9.35	10.06 9.24	11.21	12.34	11. 49	12.86	11.38	11.52 9.98	9.99 8.58	10.35 9.08	11.89 9.60	11.05 9.82
Bull-	8.64		- 21	10.31	11. 47	10.38	5)	8. 28		81	8.	8. 21
al:													
Choice	20.24	22.39	18.65	17. 25	18.62	17.80	20.65	21. 40	23.90	22. 36	17.06	19.00	19.94
Good.	17.68	20.44	17.00	15. 35	16. 26	15. 78	18. 72	18. 62	20. 55	19. 16	14.80	15.95	17.53
Medium	14. 68	17. 18	15.38	13.38	13. 76	13. 52	16. 09	13.69	15. 35	13. 25	11. 58	13.20	14. 26
Common	11.90	13.40	12.12	10.79	10.90	11. 58	13.82	9.81	12.35	10.64	9.54	10.90	11.43
Lamb and mutton: Lamb-													
Choice	25. 77	24.31	24.95	24.94	28.40	30. 22	27.81	28. 27	28.20	24.30	24. 76	24. 12	20.34
Good	24. 19	22. 94	23.90	23.85	26. 79	28. 30	26.01	26. 38	26.75	22. 70	23. 76	23.12	24. 89
Medium	21.90	20.97	22.85	22.60	24.80	26. 18	23. 64	23. 60	23.39	20.84	22. 26	21. 22	22.85
Common	19.82	19.92	21.02	20.80	23.58	22.72	19.72	20.01	19.36	18.06	19.26	19.00	20.27
Mutton-													
Good.	15. 06	14. 01	14. 00	16. 54	16. 54	14. 52	17.00	18.93	15. 92	14. 28	15. 20	15.49	15. 62
Medium	13.11	12.42	12. 88	15. 00	14.73	12. 51	14. 65	15, 93	13. 45	12. 24	12.70	13.71	13. 61
Common	10.81	11.03	10.85	12. 56	12.35	10. 26	12. 18	13.84	10. 55	9.76	10. 20	11.72	11.34
Fiesh pork cuts: Hams-													
12-16 pounds average.-.-	20.00	20.00	18.75	19.25	18. 50	18.38	19.00	19.50	19.88	18. 50	17. 75	16. 50	18.83
Loins-													
8-10 pounds						16.86	19. 59	22. 34	28. 50	22. 69	15. 16	15. 15	18.80
10-12 pounds	15.92	15. 44	15. 30	15. 44	17.62	15. 72	17.95	20.87	26. 80	21.35	14. 30	14.24	17. 58
85813°-Y	192	-											

Table 572.-Meats, fresh and smoked: Monthly average wholesale price per 100 pozands at Chicage and New York, calendar year 1923-Continued.

NEW YORK-Continued.

Class of meat.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Av.
Fresh pork cuts-													
Continued. Loins-Contd.	Dolls.												
12-14 pounds	14.80	14.42	14.35	14.16	16.35	14.54	16.38	17.81	23.74	19.11	13.64	13.51	16. 07
14-16 pounds	14.02	13. 65	13. 28	13.06	15. 30	13.24	14.96	15.71	21.71	17.83	13.02	13.05	14.90
16 pounds and over	13. 47	12	12. 28	12. 34	14.02	12.08	13.72	14.03	19. 22	16. 69	12. 22	11.97	13.74
Shoulders-													
Skinned	13. 32	13.03	12.85	11.92	11.72	10.48	10. 54	11.37	12.41	13.09	11. 52	10.63	11.91
Picnics, 6-8 pounds	10. 96		10.05	9.50	9.90	8. 95		9.50	10.65	10.64	9.84	9. 52	9.95
Butts-													
Boston style-	15. 38	15. 44	14. 39	13. 42	12. 76	11. 61	12.64	12.71	16. 14	16.45	13.23	11.83	13. 83
Spare Ilbs_-----	13.75	13.31	11.50	11. 12	10.00	9. 12	8.50	9.10	9.62	10.40	9.50	8.88	10. 40
Cured pork cuts:													
Hams, smoked, 10-12 pounds													
average.----.--	20.60	20.88	20. 75	21.88	21.30	21.38	23.38	24.00	23.88	23. 20	22.25	21.12	22.05
Shoulders, picnies, smoked	13. 60	13.12	12. 00	11. 69	11.55	11.69	12. 44	12. 75	12. 62	12. 55	12.38	12. 62	12.42
Bacon, breakfast-	26. 00	24. 75	23. 00	23.38	24.10	22. 25	23. 12	23. 50	24, 25	21. 50	20.75	20. 00	23. 05
Lard, tierces	12.80	12.81	12.78	12.69	12.42	11.91	12.00	12.10	13.20	13.86	14.78	14.94	13.02
Lard substitutes, tierces	12. 12	12. 66	12. 44	13.03	12. 73	12.41	12. 56	12. 20	13. 22	13.90	13.35	14.38	12.92

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats and Wool Division.

Table 573.-Livestock: Freight and other marketing costs, 1921.

Item.	Number of head upon figures are based.	Freight.		All other costs.		Total cost.
		Per 1,000 pounds.	Percentage of total.	Per 1,000 pounds.	Percentage of total.	
South Dakota sheep to Chicago.	1,186	\$6. 12	66	\$3. 10	34	\$9. 22
Iowa cattle to Chicago.	3, 659	3. 80	64	2. 12	- 36	5. 92
Iowa hogs to Chicage	128, 336	4. 02	62	2.50	38	6. 52
South Dakota hogs to Sioux City	13, 038	3.76 404	60	2. 2.52	40	6. 78
Indiana cattle to Buffalo	${ }_{1} 288$	4.04	${ }_{60}^{60}$	- ${ }_{3} .48$	40	9. 01
Indiana sheep to Buffalo	17, 271	5.45 4.43	60 59	3. 3.5	41	7. 50
Indiana hogs to Buffalo --1.-.	17,879 1,097	4.43 3.33	59	2.29	41	5. 62
South Dakota sheep to Sioux City	1,723	3.83	56	3.05	44	6. 88
Ohio hogs to Pittsburgh	31, 907	3. 22	54	2.69	46	5.91
Itlinois hogs to Chicago	148, 108	268	54	${ }_{2} 2.3$	47	4.94
Kansas hogs to Kansas City	14,971	2. 66	53 58	2.01	48	4.15
Illinois cattle to Chicago-	2,200 1,046	2.14 2.96	62 52	2.68	- 48	5. 64
Ohio cattle to Pitts burgh.--	1, 946	- 2.40	52	2. 25	48	4. 65
Wisconsin hogs to Milwaukee-	14,711	2.25	52	2. 10	48	4. 35
Indiana hogs to Pittsburgh	5, 397	3. 73	52	3. 39	48	7. 71
Ohio cattle to Cleveland.	2, 424	2.39	51	2.32	49	4.45
Iowa hogs to Omaha.	${ }_{7}^{4,595}$	${ }_{2}{ }_{23}{ }^{23}$	50	2.62	50	5. 25
Kansas hogs to st. Joseph		2.63 2.69	49	2.75 2.75	51	5. 44
Ohio hogs to Oleveland---.	8,372 $\mathbf{3 9 9}$	3. 09	49	3. 20	51	6. 29
Wisconsin cattle to Milwaukee-	596	1. 73	48	1. 88	52	3. 61
Minnesota hogs to St. Paul	7,216	2.52	48	271	54	5. ${ }^{47}$
Minnesota sheep to St. Paul.	818	${ }_{1}{ }^{2} 9$	41	3. 49	${ }_{59}^{54}$	4. 53
South Dakota hogs to Sioux Falks South Dakota cattle to Sioux Falls	$\begin{array}{r}14,808 \\ \hline 97\end{array}$	1. 1.67	41	2.36 2.36	${ }_{59}^{59}$	4. 4.03

Division of Cost of Marketing. Data from 237 cooperative shipping associations in the Corn Belt.

HIDES AND SKINS.

Tāble 574.-Hides and skins: Quarterly stocks of hides in United States, 1921-1923.
RAW PACKER.

Description and calendar year.	$\begin{aligned} & \text { Mar. } \\ & 31 . \\ & \hline \end{aligned}$	June	Sept. $30 .$	Dec. 31.	Description and calendar year.	$\begin{array}{\|c} \text { Mar. } \\ \text { 31. } \end{array}$	$\begin{gathered} \text { June } \\ 30 . \end{gathered}$	Sept. 30.	Dec. 31.
	Thou-	Thou-	Thou-	Thou-		Thou-	Thou-	Thou-	Thou
Steers:	sands.	sands.	sands.	sands.	Mixed cattle:	sands.	sands.	sands.	sands.
1921	1, 564	1,522	1,451	1,090	1921	265	378	273	305
1922	1,255	1,492	1,342	1,370	1922	292	202	208	241
1923	1,448	1,532	1,590	1,166	1923	239	188	164	210
Cows:					Calfskins:				
1921	2,251	1,537	1,169	1,173	1921.	913	1, 073	775	531
1922	1, 145	1,054	1, 186	1,584	1922	703	713	670	596
1923	1,368	1, 182	1,279	1,492	1923.	731	683	584	509
Bulls:					Kipskins:				
1921	188	165	162	125	1921.-	377	290	240	183
1922	100	99	132	144	1922	124	87 142	196	274
1923	138	111	148	161	1923------------------	234	142	220	188

DOMESTIC AND FOREIGN CATTLE HIDES (OTHER THAN PACKER).

Calf, dry or dry salted: 1921	384	456	590	564	Steers, green salted: 1921	685	545	354	259
1922-----------------------	486	378	572	760	1922	291	202	340	405
1923	316	420	544	318	1923	444	522	282	133
Calf, green salted:					Mixed cattle, green				
1921	1,763	2,362	2,110	1,870	aited:				
1922	1, 775	2,507	2, 432	1,842	1921	1,109	847	1,191	1,021
1923	1,643	2,362	1,516	1,357	1922	, 801	706	790	787
Cattle, dry or dry salted:					1923.--------------	1,081	813	698	705
1921	984	885	937	1,012	Kip, dry or dry salted:				
1922	1,064	968	1,020	1,143	1921----------------	20	46	61	45
1923	1,217	1,144	872	595	1922	461	455	447	319
Bulls, green salted:					1923.--------	258	356	206	111
1921----------	58	76	54	58	Kip, green salted:				
1922	54	44	37	37	1921.	396	254	269	392
1923	45	43	43	41	1922	330	334	346	570
Cows, green salted:					1923	518	397	359	453
1921.	703	1, 105	496	775					
1922	660	579	462	636					
1923	768	551	412	582					

MISCELLANEOUS HIDES AND SKINS.

Buffalo hides:	211	188	170	141	Horse, colt, ass, and mule frents:				
1922	138	139	156	109	1921-.-.--------------	43	57	57	62
1923	117	180	117	88	1922	44	62	94	115
Cabretta skins:						145	139	97	101
	1,579	1,219	791	547	Horse, colt, ass, and mule				
1922	361	878	810	930					
1923	968	1, 128	914	736	1921.	72	109	65	60
Calf and kip skins (do-					1922	${ }_{36}^{56}$	42	60	154
mestic):					Kangaroo and WaHaby	36	92		
1921.	4,302	4, 4226	4,464	3,990	Kangaroo and Walaby				
1923	3, 700	4,360	3, 429	2,935	1921-.---------------	410	363	359	389
Cattle and rip hides and					1922	268	240	177	243
skins (foreign tanned):					1923	335	456	358	486
1921.	293	240	202	151	Pig and hog skins:				
1922	124	62	46	75	1921	251	120	89	97
1923	76	72	23	19	1922.	111	111	108	96
Cattle hides:			6, 086	5,819	Pig and hogstrips	88	55		71
1922	1,662	5, 347	5,515	6,346	(pounds):				
1023	6, 749	6,086	5, 487	5,086	1921.	1,163	859	349	517
Deer and elk					1922	226	483	390	319
1921	119	212	216	275	1923	412	604	645	575
1922	136	166	187	188	Sheep and lamb skins:				
${ }_{\text {Goat and }} 1923$	192	327	274	309	1922	12,971			
Goat and $1921 \text {. }$	8,652	9,680	10,746	0,380	1923	8,510	9,916	0, 203	7,400
1922	044	10,720	8,641	8,730	Skivers and fleshers				
1923.	7,779	10,167	10,990	8,926	(pipces):				
Horse, colt, ass, and					1921.	1,611	1,778.	1,784	1,770
$\begin{aligned} & \text { mule hides: } \\ & 1921 \end{aligned}$	385	386	306	260		1,540	1, 1,838	1,584	1,408
1822	254	140	109	128					
1923	166	128	100	111					
Horse, colt, ass, and mule butts:									
1921.	222	193	191	207					
1922	220	224	310 186	456					

Division of Statistical and Historical Research. Compiled from reports of the Bureau of Census.

Table 575.-Hides and skins: International trade, calendar years, 1909-1922.

Country.	Average 1909-1913.		1920		1921		1922, preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES.	$\begin{array}{\|} 1,000 \\ \text { pounds. } \\ 3,103 \\ 207 \end{array}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 9,335 \\ 293,950 \\ 83,252 \end{gathered}$	1,000pounds.1,290	1,000 1,000 pounds. 8,781 pounds.		1,000 1,000 pounds. 10,484 210,158 2,184 pounds. $-\cdots$		1,000pound8.10,425 368, 259
Algeria								
Argentin				90, 74491,971				
British In	20,37646,820	169,857	--10,585		8,040	92, 318	6,171	101, 738
Canada		45,46913,235	$\begin{array}{r} 33,772 \\ 279 \end{array}$	$\begin{aligned} & 33,501 \\ & 13,985 \end{aligned}$	$\begin{array}{r} 25,356 \\ 84 \\ 4,618 \end{array}$	$\begin{array}{r} 36,716 \\ 9,886 \\ 55,598 \end{array}$	41, 131	50, 455
Chile-	412,317							62, 552
Cuina			$\begin{array}{r} 40 \\ 4,176 \end{array}$	$\begin{array}{r} 68,523 \\ 5.546 \end{array}$	4,618		6,943	
Denmark	$\begin{array}{r}\text { 9, } \\ \hline 942 \\ \hline 135\end{array}$	$\begin{aligned} & 14,293 \\ & 21,998 \end{aligned}$		9,606	6,236	22,137	243	26, 927
Dutch East Indies.		16,708		17, 102	371	9,899	17	1 10,797
Egypt-		10,754 41,012	1,910	5, 065	406	4,988		
Mexico	$\begin{array}{r} 2107 \\ 73,691 \\ 752 \\ 13,979 \end{array}$	41,012	40, 709					
New Zeal		25, 577	611	33, 661	, 210	31,042		
Norway		13, 852	6,061	6, 608	6, 186	9,009	7,903	10, 295
Peru	$\begin{array}{r} 619 \\ 219 \end{array}$	$\begin{array}{r} 6,195 \\ 22,86 \\ \hline, 86 \end{array}$	---7-944	$\begin{array}{r}3,955 \\ 4,102 \\ \hline\end{array}$		$\begin{array}{r} 3,505 \\ 10,872 \end{array}$		4, 614
Switzerland					4,379		$\begin{array}{r} 7,547 \\ 152 \end{array}$	63, 312
Union of South Africa.		$\begin{array}{r} 50,737 \\ \begin{aligned} \hline, 105 \\ 9,764 \end{aligned} \end{array}$	1,199	$\begin{array}{r} 49,057 \\ 34,172 \\ 6,810 \end{array}$	417	45, 735		
Uruguay					----------	4,624		
Venezuel			----------					
PRINCIPAL IMPORTING COUNTRIES.		$9,764$						
Austria	$\begin{array}{r} 87,566 \\ 180,930 \\ 39,332 \end{array}$	$\begin{array}{r} 79,265 \\ 117,213 \\ 36,436 \end{array}$	6, 517	860	15,260	1,004		
Austria-Hungary			$\begin{array}{r} 54,192 \\ 10,937 \end{array}$	$\begin{array}{r} 17,494 \\ 5,819 \end{array}$	$\begin{array}{r} 73,207 \\ 7,803 \\ 24,281 \end{array}$		58, 864	19,963
Belgium						41, 558		
British Malaya						1, 4173	7,865	5,573
France.	155,508440,200	131, 041	111,17998,082	54,6701,080	[$\begin{array}{r}78,856 \\ \triangle 195,753\end{array}$	$\begin{array}{r} 92,129 \\ 41,151 \end{array}$	$\begin{aligned} & 120,136 \\ & 240,566 \end{aligned}$	88,1304,382
German								
Greece	$\begin{array}{r}5,770 \\ 53,524 \\ \hline\end{array}$	2,28348,428	$\begin{array}{r}7,831 \\ 55,721 \\ \hline\end{array}$	$\begin{array}{r} 3,629 \\ 17,573 \end{array}$	8,16447,567	$\begin{array}{r} 1,181 \\ 5,181 \\ 47,779 \end{array}$	$\begin{array}{r} 9,122 \\ 70,547 \end{array}$	r $\begin{array}{r}4,85 \\ 51,650\end{array}$
Italy.								
Japan.	110, 143	96, 351	25, 323		23, 919			
Russia						11, 738	22,560	
Spain	$\begin{array}{r}119,19 \\ 25,662 \\ \hline\end{array}$	17,45724,13038	30,049		17, $74{ }^{-1}$			$\begin{gathered} 18,111 \\ 23,726 \\ 25,576 \\ 28,700 \\ 26,139 \end{gathered}$
Sweden			-26, 226	9, ${ }^{9} 120$	21,873 76,775			
United Kingdom	$\begin{array}{r} 106,350 \\ 514,249 \\ 54,716 \end{array}$	38, 100	$\begin{array}{r} 123,491 \\ 510,240 \\ 14,586 \end{array}$	17,06917,40283,122	76,775348,0777,	18,500303,57726,771	104,620 551,258	
United States--		25,432 184,654					$\begin{array}{r}\text { 551, } \\ 4,465 \\ \hline\end{array}$	
Total	1, 959, 521	1,991, 355	1, 184, 986	941, 275	1,061, 553	1,007,561	1,345, 725	1, 096, 938

Division of Statistical and Historical Research. Official sources except where otherwise noted.

1 Java and Madura only.
${ }^{2}$ Four-year average.
${ }^{3}$ Singapore only.
${ }_{4}$ Eight months, May-December.

1 Table 576.-Hides and skins: Imports into the United States, 1910-1923.

Year ending June 30.	Buffalo hides, dry.	Calfskins.		Cattle hides.		Goatskins.	
		Dry.	Green or pickled.	Dry.	Green or pickled.	Dry.	Green or pickled.
1909-10	$1,000 \mathrm{lbs} .$	$\underset{(2)}{1,000} \text { lbs. }$	$\begin{aligned} & 1,000 \mathrm{lbs} . \\ & 875,593 \end{aligned}$	$1,000 \mathrm{lbs} .$	1,000 lbs. ${ }^{3} 318,004$	1,000 lbs. (2)	$1,000 \mathrm{lbs} .$
1910-11.	3,425	23,522	36,261	54,630	95, 498	64,338	22, 576
1911-12	4,906	41,992	63, 260	78, 131	172, 881	69, 143	28, 198
1912-13.	16, 235	39, 974	54, 585	82,595	185, 447	70,563	25,687
1913-14.	14, 493	27,768	54, 636	71, 486	208, 478	63, 374	21,385
1914-15.	12, 423	15,678	30, 289	93, 001	241, 340	50, 713	15,834
1915-16	13, 004	26, 913	37, 222	153, 339	280, 839	85, 506	15, 152
1916-17-	27, 095	33,936	12,400	161, 237	225, 363	92,425	13, 215
1917-18.	10, 498	8,894	4,268	76,655	190, 844	56,736	10,195
1918-19.	9,515	11, 602	9,046	33, 182	220, 695	78,159	10,845
1919-20.	14,682	43, 209.	25, 151	111, 252	328, 209	103, 828	23,167
1920-21.	4, 617	11, 810	23,780	24, 814	173, 759	36, 816	4,912
1921-22	3, 084	16, 175	25,383	18,439	186, 498	68,228	15, 307
1922-23.	2,537	14, 988	30, 736	58,770	346, 613	70,763	18,607

Table 576.-Hides and skins: Imports into the United States, 1910-1923-Contd.

Year ending June 30.	Horse and ass skins.		$\begin{gathered} \text { Kangaroo } \\ \text { and } \\ \text { wallaby } \\ \text { skins. } \end{gathered}$	Sheepskins.		$\underset{\text { other. }}{\text { All }}$	Total.
	Dry.	Green or pickled.		Dry.	Green or pickled.		
	1,000 ibs.	1,000 lbs.					
1909-10		${ }^{3} 19,512$	(4)		${ }^{3} 67,406$	12, 259	608,619
1910-11	4, 551	5, 704	(4)	18,787	36, 930	8,669	374,891 537
1911-12	7,194 10	5, 675	${ }^{(4)} 09$	25,645	34,755 40 4053	7,988 4,802	537, 572197
1912-13	10,979 7,620	8,448 4,645	1,097 1,329	31,132 2938	40,653 40,739	4, $\mathbf{1 5}, 780$	$\stackrel{561,071}{56197}$
1913-14.	7,620	4,645	1,329	29,338	40, 739	15, 780	561,071
1914-15.	5,425	3,800	769	20, 886	37, 834	10, 226	538,218
1915-16.	6,780	11, 347	1,219	54, 600	46,859	10, 890	743, 670
1916-17	12,185	15,485	959	55, 284	40,447	10, 176	790, 207
1917-18.	2, 699	6, 360	${ }^{671}$	32, 239	23, 230	9,226 5,837	448, 4142
1918-19.	2, 762	3, 551	1, 053	26,464	35, 431	5,837	448, 142
1919-20.	13,910	22,407	1,193	42,501	58, 365	10,695.	798,569
1920-21.	1,142	5,461	878	22, 401	35, 899	5,904	${ }^{352,193}$
1921-22	1,295	3,430	724	12,593 53,828	$\begin{array}{r}36,245 \\ \hline 57,864\end{array}$	5,503 29,920	392,904 658,179
1922-23.	11,940	10,461	1,152	- 3,828	${ }^{5} 57,864$	29, 920	65817

Division of Statistical and Historical Research.
$\begin{array}{ll}{ }^{2} \text { Included in green or pickled. } & { }^{4} \text { Included in all other. } \\ 5 \text { Except sheepskins with wool on. }\end{array}$
Table 577.-Hides, heavy native steer: Average price per pound at Chicago, 19101923.

PACKER HIDES.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { A ver- } \\ & \text { age. } \end{aligned}$
1910	\$0. 17	\$0. 15	\$0. 14	\$0.15	\$0. 16	\$0. 18	\$0.16	\$0. 16	\$0. 16	\$0.16	\$0. 15	\$0. 14	\$0.16
1911	. 13	. 13	. 13	. 13	+	. 16	. 16	. 16	. 16	. 16	. 16	-16	. 15
1912	. 16	. 16	. 16	. 16	. 17	. 17	. 18	. 19	- 20	. 20	. 20	.19	. 18
1913	.19	. 18	. 17	. 17	. 17	. 18	. 18	. 19	. 19	. 20	. 20	. 18	. 18
1914	18	. 18	. 18	. 18	. 18	. 19	. 20	. 21	. 21	. 21	22	23	20
1915	. 23	. 23	. 21	. 19	. 22	. 24	. 27	. 27	. 26	. 28	. 26	${ }^{25}$	24
1916	. 23	. 23	. 22	. 23	. 22	. 27	. 27	. 32	$\stackrel{36}{.}$. 34	$\stackrel{.}{32}$.35	32
1917	. 32	- 31	$\stackrel{.}{.30}$	$\stackrel{.}{.37}$	$\stackrel{.}{.32}$. 32	. 32	$\stackrel{.}{.32}$	${ }^{.} 30$	$\stackrel{.}{.30}$	$\stackrel{.}{.29}$	$\stackrel{.}{ } .29$	30
1918	. 32	- 29	. 28	. 31	$\stackrel{.}{.37}$.$^{.} 41$	$\stackrel{.}{.} 50$	$\stackrel{.}{.53}$	${ }^{.} 46$. 48	. 47	. 40	. 40
1919	. 40	. 28	.	$\stackrel{.}{.36}$. 36	.	. 31	$\stackrel{88}{ }$. 28	. 26	. 22	. 20	. 32
Av. 1914-1920.	. 28	. 27	. 26	. 26	. 29	. 30	. 31	. 31	. 30	. 30	. 30	. 29	29
1921	. 17	. 15	. 13	. 11	. 12	. 14	. 14	. 14	. 14	. 15	. 16	. 16	. 14
1922	. 16	. 16	. 14	. 14	. 15	. 17	. 18	. 20	. 21	. 23	. 23	. 21	. 17
1923.	. 20	. 20	. 19	. 19	. 19	. 16	. 15	. 15	. 14	. 15	. 15	. 14	. 17

COUNTRY HIDES.

Division of Statistical and Historical Research. Compiled from data in "'Hide and Leather."
1024. Yearbook of the Department of Agriculture, 1923.

HORSES AND MULES.

Table 578.-Horses and mules: Number and value on farms, United States, Jan. 1, 1867-1924.

Jen. 1.	Horses			Mules.		
	Number.	Price per head Jan. 1.	Farm value Jan. 1.	Number.	Price per head Jan 1.	Farm value Jan. 1.
	$\begin{array}{r} \text { Thousands. } \\ 5,401 \\ \mathbf{5}, 757 \\ \mathbf{6}, 33 \\ \mathbf{7}, 145 \\ \mathbf{8 , 7 0 2} \end{array}$		Thousand		Dollars.	Thousand dollars.
1867		59.05	318,924	Thousands.	ars.	dollars. 55, 048
1868		54.27	312, 416	856	56.04	47,954
1869		62.57	396, 222	922	79. 23	73, 027
1870, June 1		67.42	481, 719	1,125	90.16	101, 431
		71.14	619, 039	1,242	91.98	114, 272
1872	8,9919	67.41	606, 111	1,276	87.14	111, 222
1873		66.39	612, 273	1,310	85.15	111, 546
1874	9, 334	65.15	608, 073	1,339	81.35	108, 953
1875	$\begin{aligned} & \mathbf{9}, 504 \\ & \mathbf{9}, 935 \end{aligned}$	$\begin{aligned} & 61.10 \\ & 57 \end{aligned}$	580, 708	1,394	71.89	100, 197
1876.			557, 747	1,414	66. 46	94, 001
1877	10,155		567, 017	1,444	64.07	92,482
1878		56.6352.36	584, 999	1,638	62.03	101,579
1879	10, 939		572, 712	1,713	56. 00	95, 942
1880, June	10,357	54.60	560, 916	1,815	62.19	112, 749
1881	11, 430	58.44	667, 954	1,721	69.79	120, 096
1882	10, 522	58.53	615, 825	1,835	71.35	130, 945
1883	10, 838	70. 59	765, 041	1,871	79. 49	148,732
1884	11, 170	74.64	833, 734	1,914	84.22	161,215
1885	11, 565	73.70	852, 283	1,973	82.38	162,497
1886	12, 078	71. 27	860, 823	2, 053	79.60	163, 381
1887	12,497	72.15	901, 686	2,117	78.91	167,058
1888	13, 173	71.82	946, 096	2,192	79.78	174, 854
1889	13, 663	71. 89	982, 195	2, 258	79. 49	179,444
1890, June	14, 969	70.22	1,051, 182	2,296	78.04	179, 176
1881.	14, 057	67.00	941, 823	2,297	77.88	178,847
1892	15, 498	$\begin{aligned} & 65.01 \\ & 61.22 \end{aligned}$	1,007,594	2,315	75. 55	174, 882
1893	16, 207		992, 225	2,331	70. 68	164, 764
1894	16, 081	47.83	769, 225	2, 352	62.17	146, 233
1895	15, 893	36. 29	576, 731	2,333	47. 55	110, 828
1896	15, 124	33.07	500, 140	2, 279	45. 29	103, 204
1897	14,365	31.51	452, 649	2,216	41. 66	92,302
1898	13,961	34.26	478, 362	2,190	43. 88	96, 110
1899	13, 665	37.4043.68	611, 075	2, 134	44.96	95, 963
1900, June	18,267		797, 907	5,265	51.41	167, 855
1901.	16, 745	43.68 52.86	885, 200	2, 864	63.97	183, 232
1902	16,531	$\begin{aligned} & 58.61 \\ & 62.25 \end{aligned}$	968, 935	2,757	67.61	186, 412
1903	16,557		1,030, 706	2,728	72.49	197,753
1904	$\begin{array}{r}16,736 \\ 17,058 \\ \hline\end{array}$	67.93	$1,136,940$ $1,200,310$		78.88 87.18	
1905	17, 058	$\begin{aligned} & 70.37 \\ & \hline \end{aligned}$ 80.72	$\begin{aligned} & 1,200,310 \\ & 1,510,890 \end{aligned}$	2,889 $\mathbf{3 , 4 0 4}$	87.18 98.31	331, 881
1907	19,747	$\begin{aligned} & 93.51 \\ & 93.41 \end{aligned}$	1,846, 578	3,817	112.16	428, 064
	19, 992		1,867, 530	3,869	107.76	416, 939
1909--	20,640	95. 64	1, 074,052	4,053	107.84	437,082
1910, Apr. 15	19,838	108.03	2,142, 524	4,210	120.20	506,049
1911.	20, 277	$\begin{aligned} & 111.46 \\ & 105.94 \end{aligned}$	2, 259, 981	4,323	125.92	544, 359
1912	20, 509		2, 172, 694	4,362 4,386	120.51	545, 657
1913	20,567	110.77	2, 278, 222	4,386	124.31	545, 245
Av. 1909-1913	20, 365	106. 34	2, 165, 495	4,267	119.92	511, 678
1914	$\begin{aligned} & \begin{array}{l} 20,962 \\ 21,965 \\ 21,195 \\ 21,510 \\ 21,555 \\ 21,582 \\ 21,786 \end{array} \end{aligned}$	$\begin{gathered} 109.32 \\ 103.33 \\ 10.39 \\ 102.89 \\ 104.24 \\ 98.45 \\ 9.41 \end{gathered}$	$\begin{aligned} & 2,291,638 \\ & 2,190,102 \\ & 2,149,786 \\ & 2,182,307 \\ & 2,246,970 \\ & 2,114,897 \\ & 1,907,646 \end{aligned}$	$\begin{aligned} & 4,449 \\ & 4,479 \\ & 4,593 \\ & 4,723 \\ & 4,873 \\ & 4,954 \\ & 5,427 \end{aligned}$	123.85 112.36 113.83 118.15 128.81 135.83 148.42	$\begin{aligned} & 551,017 \\ & 503,271 \\ & 522,834 \\ & 558,006 \\ & 627,679 \\ & 672,922 \\ & 805,495 \end{aligned}$
1915						
1916						
1917						
1918						
1919						
1920						
Av. 1914-1920	21, 047	102. 38	2, 154, 764	4,785	126.62	605, 889
1921	$\begin{aligned} & 19,208 \\ & 19,056 \\ & 18,627 \\ & 18,263 \end{aligned}$	$\begin{aligned} & 84.31 \\ & 7.54 \\ & 69.83 \\ & 64.41 \end{aligned}$	$1,619,423$$1,344,136$$1,300,729$$1,176,282$	$\begin{gathered} \mathbf{5}, 455 \\ \mathbf{5}, \mathbf{4 6 7} \\ 5,485 \\ \mathbf{5}, 436 \end{gathered}$	$\begin{array}{r} 116.69 \\ 88.09 \\ 85.94 \\ 84.20 \end{array}$	$\begin{aligned} & 636,508 \\ & 481,578 \\ & 471,385 \\ & 457,697 \end{aligned}$
1922						
1923						
19241						

Division of Crop and Livestock Estimates; figures in italies are census returns.
${ }^{1}$ Preliminary.

Table 579.-Horses and mules: Number and value on farms, by States, Jan. 1, 1923 and 1924.

Division of Crop and Livestock Estimates.
${ }^{1}$ Preliminary.

Table 580.-Horses and mules: ${ }^{1}$ Estimated yearly losses per 1,000 from disease, 1888-1924.

$\begin{aligned} & \text { Year ending } \\ & \text { Apr. } 30 . \end{aligned}$	$\begin{gathered} \text { Losses } \\ \text { per } \\ 1,000 . \end{gathered}$	$\begin{aligned} & \text { Year ending } \\ & \text { Apr. } 30 . \end{aligned}$	$\begin{gathered} \text { Losses } \\ \text { per } \\ 1,000 . \end{gathered}$	$\begin{aligned} & \text { Year ending } \\ & \text { Apr. } 30 \text {. } \end{aligned}$	$\begin{gathered} \text { Losses } \\ \text { per } \\ 1,000 . \end{gathered}$	$\begin{aligned} & \text { Year ending } \\ & \text { Apr. } 30 \text {. } \end{aligned}$	$\begin{gathered} \text { Losses } \\ \text { per } \\ 1,000 . \end{gathered}$
1887-88.	18.3	1897-98	20.0	1907-8	17.1	1917-18.	16.5
1888-89	14.6	1898-99	23.4	1908-9	18.2	1918-19	15.7
1889-90	16.4	1899-1900	18.3	1909-10	19.9	1919-20	17.8
1890-91	16.6	1900-1.	18.2	1910-11	19.0	1920-21	14.7
1891-92-.--	15.3	1901-2	20.2	1911-12	21.9	1921-22	15.7
1892-93-	17.0	1902-3.	19.7	1912-13.	22.6	1922-23	15.0
1893-94	21.0	1903-4	19.6	1913-14	20.6	1923-24	15.2
1894-95	22.3	1904-5	17.9	1914-15			
1895-96	20.2	1905-6	17.7	1915-16	17.5		
1896-87	21.3	1906	18.9	1916-17	16.9		

Division of Crop and Livestock Estimates. As reported by crop reporters on May 1 for year ending Apr. 30.
${ }^{1}$ Including mules since 1912.
Table 581.-Horses and mules: Receipts at principal markets and at all markets reported, 1900-1923.

Calendar year.	Chicago.	Denver.	East St. Louis.	Fort Worth	$\begin{aligned} & \text { Kan- } \\ & \text { sas } \\ & \text { City. } \end{aligned}$	$\begin{aligned} & \text { Oma- } \\ & \text { ha. } \end{aligned}$	$\begin{aligned} & \text { St. } \\ & \text { Jo- } \\ & \text { soph. } \end{aligned}$	st.	Sioux City.	Total.	$\begin{array}{\|c} \text { All } \\ \text { other } \\ \text { mar- } \\ \text { kets } \\ \text { report- } \\ \text { ing. } \end{array}$	$\begin{array}{\|c} \text { Total } \\ \text { all } \\ \text { mar- } \\ \text { kets } \\ \text { report- } \\ \text { ing. } \end{array}$
	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-
	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.	sands.
1900			145	${ }^{(2)}$	103	${ }_{60}^{60}$			${ }^{31}$	501		
1901	109	17	129	${ }^{(2)}$	97	36	23	15	18	444		
1902	102	24	109	5	77	42	20	8	19	406		
1903	101	19	129	10	67	53	20	8	12	419		
1904-	106	13	181	18	68	47	29	6	4	472		
1905	127	16	178	18	66	45	32	6	15	503		
1906	127	17	166	21	70	42	28	9	19	499		
1907	102	11	117	19	62	44	27	15	16	413		
1908	92	11	109	12	56	40	23	7	13	363		
1909-.	91	15	122	21	68	32	23	6	15	393		
1910	83	16	130	34	70	30	28	5	16	412		
1911	105	18	171	37	85	32	42	8	17	515		
1912	93	15	164	49	73	33	39	5	10	481		
1913	91	16	157	57	82	32	32	5	10	482		
1914	106	17	148	48	87	31	25	6	10	478		
1915	165	72	271	55	102	42	41	10	22	780	327	1,107
1916	205	53	267	79	123	27	27	12	17	810	668	1,478
1917	107	20	280	115	128	33	34	10	29	756	720	1,476
1918	88	15	242	79	85	22	39	7	23	600	616	1,216
1919	46	23	250	60	83	25	43	11	16	557	511	1,058
1920.	43	18	141	45	72	19	30	10	23	401	324	725
1921	34	10	68	13	30	7	12	5	7	186	131	317
1922	32	13	95	29	38	9	16	2	8	242	201	443
1923	26	23	102	58	43	17	15	3	15	302	249	551
January.	3	1	23						1	46	40	86
February.	3	1	11	2					1	26	28	
March.	5	1	11	2	5	1	1	1	2	29	32	61
April.----.----	3	2	6	1	4	1	1	(8)	1	19	17	36
May	2	1	4	(3) 1					1	12	8	20
June.-	1	1	2	(8)		${ }^{(8)}$	(\%)	(8)	${ }^{(8)}$	5	9	14
July	1	$\stackrel{2}{2}$	$\begin{aligned} & \overline{3} \\ & 6 \end{aligned}$	$\frac{1}{4}$	$\frac{1}{3}$	$\stackrel{2}{2}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\text { (8) } 1$	$\stackrel{1}{2}$	14 21	${ }_{11}^{3}$	17 32
				10					2	31	19	50
Oeptober-...----	2	3 4 4	13	15	5	3	2	(8)	2	46	29	75
November-	1	3	8	10	4	1	1	(8)	1	29	30	59
December-----	2	2	8	6	3	1	1	${ }^{(3)}$	1	24	23	47

[^282]Table 582.-Horses and mules: Receipts at public stockyards in the United States, calendar years, 1915-1923.

Table 582.-Horses and mules: Receipts at public stockyards in the United.States, calendar years, 1915-1923-Continued.

Market.	1915	1916	1917	1918	1919	1920	1921	1922	1923
	Number.	Number.	Number.	Number.	Number.	Number	Number	Number	Number
Sioux City, Iows	21, 742	16,717	29,391	23, 306	16, 272	23, 238	7,262	7,954	14, 921
Sioux Falls, S. D			49	243	253	176	69	375	320
Spokane, Wash	3,657	6, 493	7, 125	4,733	2, 926	2,535	761	1,103	828
Tacoma, Wash.		20		12	63				
Toledo, Ohio		1,336	1,969	1,789	2, 788	4,558	960	922	442
Washington, D.		178	1,556	396	30	60	43	220	64
Watertown, Mass		44, 514	22, 084	6,578	1,440				
Wichita, Kans.	14,472	17, 146	19,312	11, 150	16, 750	24, 714	10,885	17,936	22, 863
Total	1, 106, 501	1, 477, 983	1, 475, 854	1,215, 776	1,067, 597	724,811	317,445	442, 646	550, 703

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
Table 583.-Horses and mules: Receipts at all public stockyards, 1915-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	Thousands.	Thousands. 95	Thousands. 95	Thousands. 88	Thousands. 98	Thousands. 103	Thousands. 94	Thou sands. 74	Thousands. 85	Thousands. 111	Thousands. 97	Thousands. 70	Thousands. 1,107
1916	118	105	111	84	120	104	162	138	139	153	129	115	1, 478
1917	148	95	117	93	68	63	83	58	129	236	223	163	1,476
1918	161	149	133	44	36	45	53	84	128	162	145	76	1,216
1919	115	87	71	53	37	43	53	92	148	130	146	93	1,068
1920	146	112	87	48	43	34	38	75	62	40	23	17	725
1921	35	41	44	25	18	14	11	17	22	36	29	25	317
1922	48	37	47	29	21	16	17	24	41	61	55	47	443
1923	86	54	61	36	20	14	17	32	50	75	59	47	551

Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.

Table 584.-Horses and mules: Imports, exports, and prices, 1896-1923.

$\begin{gathered} \text { Year } \\ \text { ending } \\ \text { June } 30- \end{gathered}$	Imports of horses.			Exports of horses.			Exports of mules.		
	Number.	Value.	A verage import price.	Number.	Value.	Average export price.	Number.	Value.	Average export price.
	9,	\$662,	\$66. 32	25, 126	\$3, 530, 703	\$140. 52	5,918	\$406, 161	
1896-97	6,998	464, 8	66.42	39, 532	4, 769, 265	12C.64	7,473	545, 331	72.97
1897-98	3, 085	414, 899	134. 49	51, 150	6, 176, 569	120. 75	8,098	664, 789	82.09
1898-99	3,042	551, 050	181.15	45, 778	5, 444, 342	118.93	6,755	516,908	76. 52
1899-1900	3, 102	596, 592	192. 32	64, 722	7,612, 616	117.62	43,369	3,919,478	90.38
1900	3, 785	985, 738	260.43	82, 250	8,873, 845	107.89	34,405	3, 210, 267	93.31
1901	4, 832	1, 577, 234	326. 41	103, 020	10,048, 046	97. 53	27, 586	2, 692, 298	97. 60
1902	4,999	1, 536, 296	307.32	34, 007	3, 152, 159	92.69	4, 294	521, 725	121. 50
1903	4,726	1, 460, 287	308. 99	42, 001	3, 189, 100	75. 93	3,658	412,971	112.90
19	5, 180	1, 591, 083	307. 16	34, 822	3,175, 259	91.19	5,826	645, 464	110.79
1905	6,	1, 716, 675	285. 11	40,087	4, 365, 981	108.91	7, 167	989, 639	138.08
1906	6,080	1, 978, 105	325. 35	33, 882	4, 359, 9587	128.68	6,781	${ }_{999}^{850,901}$	125.48
1907	5,487	1, 604, 392	292.40	19,000	2, 612, 587	137. 50	6,609 3,432	-990,667	149.90 137.53
$1908-9$ 1909	7,084 11,620	$\begin{aligned} & \text { 2, 007, 276 } \end{aligned}$	283. 35 283.65 28.63	21, 616 28,910	3, 386, 617 4, 081, 157	156.67 141.17	3,432 4,512 6,585	472,017 614,094	137.53 136.10 12.
1910	9,	2, 692, 074	280.63	25, 145	3, 845, 253	152.92	6, 585	1,070,051	162
1911-12	6,607	1,923, 025	291.06	34, 828	4, 764, 815	136.81	4,901	732, 095	149.38
1912-13	10,008	2, 125, 875	212.42	28,707	3,960, 102	137. 95	4,744	733, 795	154.68
1913-14	33, 019	2, 605, 029	78.89	22,776	3, 388, 819	148.79	4, 883	690, 974	141.51
1914-15	12,652	977, 380	77.25	289, 340	64, 046, 534	221.35	65, 788	12, 726, 143	193.4
1915-16	15, 556	1, 618,245	104.03	357, 553	73, 531, 146	205.65	111, 915	22,960, 312	205. 16
1916-17	12,584	1, 888, 303	150. 06	278, 674	59, 525, 329	213.60	136, 689	27, 800, 854	203. 39
1917-18	5, 111	1, 187, 443	232. 33	84, 765	14, 923, 663	176. 06	28, 879	4, 885, 406	169.17
1918-19.	4, 003	750, 264	187.43	27, 975	5, 206, 251	186. 10	12,452	2, 333, 929	187.43
1919-20.	4,906	799, 012	162. 86	18, 952	3,285, 066	173.34	8,991	1,815,888	201.9
1920	4, 044	1, 205, 457	298.09	12,638	1,923, 041	152.16	6,770	1,063, 254	157.05
1921-22	3, 136	531, 783	169.57	17, 827	1, 868, 099	104.79	11, 241	1,009, 567	89.81
1922-23	2, 816	845, 658	300.30	8, 668	1, 048, 879	121.01	12, 719	1, 324, 566	104. 14

Division of Statistical and Historical Research.

Fiarm Animals and their Products-Horses and Mules. 1029
Table 585.-Farm price of horses and mules, by age groups, United States, Jan. 1, 1894-1924.

Jan. 1.	Horses.			Mules.		
	Under 1 year old.	$\begin{aligned} & 1 \text { and } \\ & \text { under } 2 \\ & \text { years. } \end{aligned}$	2 years and over.	Under 1 year old.	1 and under 2 years.	2 years and over.
1894	\$20. 19	\$30.20	\$57. 32	\$26.79	\$39. 11	\$72.99
1895	14. 79	22.39	43.60	19.79	29.26	56.01
1896	13. 49	20. 29	39.73	17.87	26. 46	53.61
1897	13. 07	19.47	37.77	16.96	24.94	48.96
1888	14.94	21.76	40.78	18.03	26.17	51.46
1899	16. 51	24.05	44.40	18.81	27.20	52.51
1900	19. 44	28.67	53.01	${ }^{22 .} 71$	32.87	62.21
1901	${ }_{2}^{20.44}$	30. 59	57.63	26.14	37. 74	69.66
1902	22.02	33.39	63.99	27.01	39.55	73.61
1903	25.08	39.21	67.46	31.96	47.73	78.07
1904.-	26.86	42.19	73.68	34.39	51.73	84.94
1905	28. 05	43.67	76. 30	37.85	56.93	94.13
1906.	32.91	${ }_{61.36}$	87.35	43.46	64. 36	106. 04
1907	39.12	61.77	101.02	51. 35	74.73	120.82
1908.		(1)				
1909.	(1)	(1)	(1)			(1)
1910	46. 05	72.63	116. 57	56.76	84.53	128.96
1911.	48.09	75. 68	120.04	59.89	88.13	135. 11
1912	45.75	71.96	114. 24	56.12	83.00	129.46
1913	48. 75	76. 54	121.06	59.31	86.56	134.05
1914.	47.95	74.87	119.77	57.45	83.87	133.76
1915	45. 36	70.62	113.10	51.80	76.46	121.46
1916	44.30	69.08	111. 34	51.59	76.82	123. 55
1917.	45.17	70.21	112.64	53.98	80.28	128.17
1918.	45.20	70.21	114.30	57.61	86.32	139.88
1919.-	42.62	65.94	108. 17	59.14	89.14	147. 65
1920	37.22	58.88	103. 53	60.12	90.48	160. 54
1921	31.57	49.72	90.70	47.49	71.76	126. 39
1922	26.32	41. 24	76. 02	35.18	53.04	95.44
1923	28.14	41.01	75. 07	34. 20	51.54	93.19
1924.	23.99	37.81	69.30	31.72	48.43	91.60

Division of Crop and Livestock Estimates.
${ }_{1}$ No data.
Table 586.-Horses: Farm price per head, 15th of month, United States, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { Weight- } \\ & \text { ed av- } \\ & \text { erage. } \end{aligned}$
1910	\$140	\$147	\$150	\$154	\$148	\$151	\$148	\$148	\$145	\$144	\$143	\$141	\$146
1911	143	144	145	147	146	145	139	141	139	137	136	134	141
1912	134	137	140	142	144	145	142	142	141	140	139	139	140
1913	140	146	146	148	145	146	143	141	141	138	136	135	142
Av. 1910-1913	139	144	145	148	146	147	143	143	142	140	138	137	142
1914	137	139	138	138	139	136	137	135	132	131	130	130	135
1915	130	132	132	132	133	132	134	131	131	129	127	126	130
1916	128	129	131	133	133	132	133	131	131	130	129	129	130
1917	129	131	133	136	138	137	135	132	132	130	129	129	132
1918	130	133	137	137	136	135	132	131	128	126	122	121	130
1919	120	121	124	127	129	127	127	125	119	114	113	113	121
1920	118	123	127	131	132	130	127	124	119	112	103	97	119
Av. 1914-1920.	127	130	132	133	134	133	132	130	127	125	122	121	128
1921.		98	101	100	98	98	94	93	89	85	82	81	92
1922	82	84	86	87	89	88	88	86	84	81	79	79	84
1923.	81	85	85	86	88	87	85	78	82	80	78	75	82

Division of Crop and Livestock Estimates.

1030 Yearbook of the Department of Agriculture, 1923.

Table 587.-Horses: Monthly farm price per head, 15th of month, by States, 1923.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{gathered} \text { A ver- } \\ \text { age. } \end{gathered}$
	Dolls.	Dolls.	Dolls.	Lolls.	Dolls.								
Maine	124	154	156	160	165	170	165	155	160	152	156	160	157
New Hampsh		111	128	130	125		150	150	140	135	136	130	134
Vermont.	129	145	145	130	140	138	130	145	140	137	140	135	138
Massachusetts		150	150						100	125	130	140	132
Rhode Island	150												
Connecticut		175		165	168	162	170	170	165	170		150	166
New York	128	132	132	140	135	130	125	130	133	130	127	120	130
New Jersey	147	142	137	133	135	138	140	138	140		150	130	139
Pennsylvania	124	124	124	127	124	120	126	120	115	110	105	100	118
Delaware.-	75		92	100			103		90	85	87	85	90
Maryland	95	100	104	106	100		89	80	75	72	80	78	89
Virginia.	89	89	91	93	92	88	90	85	82	83	80	79	87
West Virginia	107	106	95	100	100	104	100	98	95	92	87	82	97
North Carolina	112	112	114	114	118	112	110	105	100	105	105	107	110
South Carolina	86	82	82	90	100	94	96	92	95	100	100	105	94
Georgia	90	90	98	94	93	91	88	85	85	87	87	90	90
Florida	125	123	125	132	133	130	120	124	116	110	100	105	120
Ohio	95	106	109	107	105	106	102	101	97	97	95	90	101
Indiana	84	86	87	87	85	84	84	82	78	84	72	73	82
Illincis.	85	93	87	89	94	90	92	90	87	85	71	75	86
Michigan	110	120	120	112	111	115	120	110	109	109	105	100	112
Wisconsin	110	112	114	118	119	113	110	108	112	112	108	104	112
Minnesota	88	93	95	98	102	98	94	95	92	90	87	80	93
Iowa.-	97	100	102	99	105	103	105	100	102	100	95	90	100
Missour	52	56	60	62	65	63	59	56	57	51	50	50	57
North Dakota	70	74	73	80	84	80	78	75	70	66	63	58	73
South Dako	71	74	70	75	78	74	75	70	72	70	65	62	71
Nebraska_	68	75	72	70	75	77	74	72	72	75	74	72	73
Kansas.-	57	58	58	61	63	63	61	60	55	53	52	51	58
Kentucky	76	77	80	75	76	72	72	70	71	68	65	64	72
Tennessee.	83	80	83	85	85	82	80	78	75	72	74	70	79
Alabana.	77	80	76	80	84	83	83	84	82	80	80	75	80
Mississippi	67	66	70	71	73	77	75	72	70	71	65	64	70
Louisiana.	66	74	70	74	78	75	72	66	70	74	70	69	72
Texas.	67	61	65	68	70	68	64	63	63	64	66	64	65
Oklahoma	50	52	52	54	56	54	52	45	48	46			
Arkansas.	59	59	65	62	63	60	60	56	57	58	55	53	59
Montana.	50	55	52	58	65	70	65	${ }^{60}$	58	55	57	50	58
W yoming	55	56	60	60	58	62	58	50	48	${ }^{45}$	47	46	54
Colorado.	60	64	66	70	70	70	65	67	70	66	60	55	65
New Mex	53	58	56	60	65	67	65	67				60	61
Arizona				76		70	65		75	80	85 90		75 96
Utah	100	106	104	100	95	100	97	98	90	85	90	87	96
Nevada		72											
Idaho -	78	74	74	80	84	87	80	75	70	75	76	70	77
W ashington	97	100	95	90	95	97	95	97	94	90	90	92	94
Oregon	85	90	84	81	90	85	90	95	90	87	84	80	87
California	85	95	100	105	95	94	93	96	97	90	95	96	95
United States..	81	85	85	86	88	87	85	78	82	80	78	75	82

[^283]
LIVESTOCK, ALI CLASSES.

Table 588.-Livestock in undermentioned countries.

[^284] note (1); otherwise the figures are for cattle only.
${ }^{2}$ Census 1910.
${ }^{3}$ Census 1920.
${ }^{4}$ Less than 500 .
${ }^{5}$ Includes 22,000 reindeer and 20,000 work dogs in 1910 and 93,000 reindeer and 18,000 work dogs in 1920.
${ }^{6}$ Unofficial.
${ }_{8}^{7}$ Year 1918 .
${ }^{8}$ Census figures for goats, horses, etc., not yet avainde, 10,738 camels and 1,908 ostriches in 1913 and 11,73 and 780 ostriches in 1921
10 Former boundaries.
${ }_{12}$ Not including cattle of interior prairies estimated at 30,000 head in 1913 and at 38,980 in 1921.

Table 588.-Livestock in undermentioned countries-Continued.

[^285] note (1), otherw ise the figures are for cattle only.
${ }^{4}$ Less than 500.
${ }^{13}$ Camels.
14 The number of work animals only in 1921 compared with 1913 was as follows, the 1913 figures being given in parentheses: Cattle, $875,000(754,000)$; buffaloes, $148,000(146,000)$; horses, 174.000 (141,000).
${ }_{15}^{15}$ Llamas and alpacas.
${ }^{16}$ Hogs over 1 year old not included.
${ }_{17}$ Includes South Jutland, where the number of livestock on July 15, 1923, was as follows: Cattle, 213,000;
swine, 288,000; sheep, 19,000; goats, 2,000; horses, 38,000
${ }_{18}^{18}$ Animals belonging to British Army excluded.
${ }_{19}$ Preliminary estimate for numbers within present boundaries in 1913.

Table 588.-Livestock in undermentioned countries-Continued.

${ }^{1}$ Buffaloes are included with cattle for countries giving estimates for buffaloes. These are indicated by note (1); otherwise the figures are for cattle only.
${ }^{4}$ Less than 500 .
${ }^{10}$ Former boundaries.
${ }^{13}$ Camels.
${ }^{20}$ Animals owned by Europeans.
${ }^{21}$ Number of reindeer in 1921.
${ }_{22}$ Data for preceding year.
${ }^{23}$ Aray horses excluded. A ccording to the Ministry for National Defense they numbered 40,289 in 1922.
${ }_{4} 4$ Year 1917.

Table 588.-Livestock in undermentioned countries-Continued.

[^286] note (1); otherwise the figures are for cattle only.
${ }^{4}$ Less than 500.
${ }^{13}$ Camels.
${ }_{19}$ Preliminary estimate for numbers within present boundaries in 1913.
${ }_{22}^{20}$ Animals owned by Europeans.
${ }_{22}$ Data for preceding year.
${ }_{25}$ Zebus.
${ }^{20}$ Animals on sugar estates only.
${ }^{27}$ In addition there were 216,400 designated as "sheep and goats."
${ }_{28}$ Apr. 30, 1923.
${ }^{20}$ In rural districts only. The numbers in cities on Jan. 1, 1918, compared with Dec. 31, 1907, in parentheses, were as follows: Cattle, $3,754(5,133)$; swine, $4,478{ }^{(5,772)}$; sheep, 1,479 (1,650); goats, $843(500)$; horses, 7,945 (8,580).

Table 588.-Livestock in undermentioned countries-Continued.

${ }^{1}$ Buffaloes are included with cattle for countries giving estimates for buffaloes. These are indicated by note (1); otherwise the figures are for cattle only.
4 Eess than 500.
${ }^{18}$ Camels.
${ }^{15}$ Llamas and alpacas.
19 Preliminary estimate for numbers within present boundaries in 1913.
${ }^{20}$ Animals owned by Europeans.
${ }^{22}$ Data for preceding year.
${ }^{30}$ Carabao
${ }_{31}$ Former Kingdom and Bessarabia. The number in 1911, excluding Bessarabia, was as follows: Cattle and buffaloes, $2,667,000$; swine, $1,021,000$; sheep, $5,269,000$; goats, 187,000 ; horses, 825,000 ; mules and asses, 4,000.
${ }_{32}$ The 1920 census figures for Turkestan and Azerbaijan have been included in the 1922 figures for Asiatic Russia, as estimates for these republics were not included in the 1922 estimate.
${ }^{33}$ Elephants.

Table 588.-Livestock in undermentioned countries-Continued.

Country.	Date.	Cattle. ${ }^{1}$	Swine.	Sheep.	Goats.	Horses.	Mules.	Asses.	Miscellaneous.
Tanganyika Territory (former German E as t		Thousands.$\begin{aligned} & 1,489 \\ & 3,147 \end{aligned}$	Thousands.	$\begin{aligned} & \text { Thou- } \\ & \text { sands. } \end{aligned}$	Thousands.	Thousands.	Thousands.	Thousands.	Thousands.
Africa) .---------				$\begin{aligned} & \hline 2,793 \\ & 3,405 \end{aligned}$		${ }^{(4)}$		11	
Trinidad and Tobago \qquad	Mar. 31, 1913------	3,148				(
Tu		7	17	729	505	37	3	95	
	1922	$\begin{array}{r} 18,190 \\ 4,118 \end{array} .$	18	2,820	1,002	75	$\begin{array}{r} 249 \\ 85 \end{array}$	137	
Turkey, European and Asiatic.	$\left\|\begin{array}{l} 1907 \text { and } 190934 \\ 19196 \end{array}\right\|$		225	$\begin{aligned} & 27,106 \\ & 11, \end{aligned}$	$\begin{array}{r} 18,924 \\ 2,065 \end{array}$	1,263 630		$1,745$	$\begin{array}{r} 13327 \\ \\ 1395 \end{array}$
Turks and Caicos Islands	1913----------------		(4)	(4)		$\left.{ }^{4}\right)$			
Uganda Protectorate.	May 31, 1914 _	775		$\begin{aligned} & 537 \\ & 267 \end{aligned}$	838	${ }^{(4)}$		$\left.{ }^{4}\right)$	---
Union of South Africa		5,797 8,919	1,082	30,657 31,501	11,768 8,257	719 923	115	$\begin{aligned} & 387 \\ & 743 \end{aligned}$	
United Kingdom: England and Wales -..---	June 4, 1913		2,102	17, 130		9231,4021,281			
	June 4, 1923-	5, 823	2, 612	13, 836					
Scotl	June 4, 1913	1,247	132	6, 801		204			
	June 4, 1923---	1,190 4,933	185 1,060	6,763 3,621		203	30		
Ireland	June 4, 1913..- June 4, 1922	4, 933 5,157	1,060 1,037	3, 3 367	250	614 544	26	232	
gu	1908-.-.-.	88,193	180	26, 288	20	556	22	232	
	A pr. 20, 1916	7, 802	304	11, 473	12	555	14	3	
Venezuela	1912.	2, 36 2,778	1,618	${ }_{113}^{177}$	1,667 2,155	191 168	89 55	313 200	
Yugoslavia \qquad Grand total: ${ }^{37}$ Pre-war \qquad Recent \qquad	1922.-.-------	$\begin{array}{r}36 \\ 4,090 \\ \hline\end{array}$	4,887	8,462	1,155 1,801	1,044	15	86	
		$\begin{aligned} & 536,823 \\ & 579,923 \end{aligned}$	$\begin{gathered} 259,492 \\ 221,967 \end{gathered}$	$\begin{array}{\|l\|l\|} 38588,939 \\ 39499,579 \\ \hline \end{array}$	$\begin{array}{r} 38 \\ 38925,163 \\ 38997 \end{array}$	$\left\|\begin{array}{\|c\|} 40115,968 \\ 41197,572 \end{array}\right\|$	$\begin{array}{r} 40115,968 \\ 41,43 \\ \hline 1 \end{array}$	$\begin{array}{r} 42 \\ 41,43,634 \\ 41,902 \end{array}-$	----.--

Division of Statistical and Historical Research. In order to secure comparable totals, that pre-war estimate nearest to 1913 giving statistics for each class of animal, is compared with the latest estimate available. Census returns are in italics, other returns are in roman.
${ }^{1}$ Buffaloes are included with cattle for countries giving estimates for buffaloes. These are indicated by note (1); otherwise the figures are for cattle only.
${ }^{4}$ Less than 500 . ${ }^{6}$ Unofficial. ${ }^{33}$ Camels.
${ }_{34}$ Comprised of the 1907 estimate for European Turkey and the 1909 estimate for Asiatic Turkey.
${ }^{35}$ As no estimate for the numbers of livestock in native locations and reserves was included in the 1922 estimate, the 1921 census figures for the numbers in these regions have been added to the 1922 estimate.
They are as follows: Cattle, 2,355,678; swine, 353,988; sheep, 3,005,572; goats, 2,728,071; horses, 155,853; mules, 1,619 ; asses, 123,200 .
${ }^{36}$ Year 1922.
${ }^{87}$ Pre-war and postwar totals are for approximately the same territory. Rough pre-war estimates have been included for former Russian territory according to 1923 boundaries, i. e., European and Asiatic Russia, Poland, Esthonia, Latvia, and Lithuania, Bessarabia being added to the pre-war Rumania estimate. Figures for Czechoslovakia and Yugoslavia are included in the total of recent estimates, since they were included in the pre-war estimates of the countries to which they formerly belonged.
${ }^{38} 13,124,000$ designated as "sheep and goats" included with sheep.
${ }^{89} 5,674,000$ designated as "sheep and goats" included with sheep.
40219,000 designated as "horses, mules, and asses" and "horses and mules" included with horses.
41278,000 designated as "horses, mules, and asses" and "horses and mules" included with horses
${ }^{42} 3,428,000$ designated as "mules and asses", included with mules.
43 2,229,000 designated as " mules and asses" included with mules.

POULTRY.

Table 589.-Poultry and chickens on farms, and chicken eggs produced, United States, 1919-1924.

Calendar year.	On hand, Jan. 1.				Production.			
	All poultry.		Chickens.		Chickens.		Chicken eggs.	
	Number	Value.	Number.	Value.	Number.	Value.	Dozens.	Value.
	Thousands.	Thousand dollars.	Thousands.	Thousand dollars.	Thousands. 473, 302	$\begin{gathered} \text { Thousand } \\ \text { dollars. } \\ 386,240 \end{gathered}$	$\begin{gathered} \text { Thou- } \\ \text { sands } \\ 1,654,045 \end{gathered}$	Thousand dollars. 676, 137
$\begin{aligned} & 1919 \text { (census) } \\ & \text { 1920_------ } \end{aligned}$	1372,825	${ }^{1} 373,394$	-359, 537	1349, 509	474, 700	412, 734	1,647, 043	725, 188
1921	370, 600		357, 700	319, 415	549, 700	392, 334	1, 888, 318	552, 616
1922	423, 400		408, 600	330, 015	579, 000	378, 450	1, 970, 755	509, 592
1923	439, 900		424, 800	316, 940	654, 200	420, 481	2, 196, 194	598, 961
1924	491, 600	376, 781	474, 500	351, 202				

[^287]${ }^{1}$ Census.

Table 590.-Poultry: In undermentioned conntries. ${ }^{1}$

[^288]Table 590.-Poultry: In undermentioned countries ${ }^{1}$-Continued.

Country.	Date.	Chickens.	$\begin{aligned} & \text { Tur- } \\ & \text { keys. } \end{aligned}$	Ducks.	Geese.	Guinea fowls, pigeons, and un-designated poultry.	Total.
Japanese Empire-Continued. Chosen (Korea)	1910	Thousands.	Thousands.	Thousands.	Thousands.	Thou- sands. 2, 796	Thousands. 2, 79
	1911					3, 421	3,421
	1912					3, 932	3,932
	1913					4, 194	4, 191
	1914					4,110 4,278	4,117 4,273
	1916					4, 400	4,40)
	1917.					4,567	4, 567
	1918					4, 913	4,913
	1919					4,998	4,993
	1920.	8				5,972	5,972
	1911---------------	12		(2)	(2)		12
	1912----------------	12		${ }^{(2)}$	${ }^{(2)}$		12
	1913	17		${ }^{(2)}$	(2)	-----	17
	1914-----------	13		(2) (2)	${ }_{(2)}$		13
	1915-------------------	14		${ }^{(2)}$	(2)		14
	1917	24		${ }^{(2)}$	${ }^{(2)}$		24
	1918.	23		(2)			23
	1919	25		(2) (2)	(2)		${ }_{3}^{25}$
Kenya Colony (British East Africa Protectorate)	1920						
	1920					29	23
	1921					34 34	31
Luxemburg	Dec. 31, 1922--	428					428
Netherlands.	May-June 1904	4,985					4,936
	May-June 1910	9,778					${ }_{9}^{9,778}$
New Zealand	$\text { May-June } 1921$	9, 8 , 781	77	282			9,661 8,191
	1911----------------	3,215	98	329	45		3,693
	Jan. 31, 1916-.-	8, 141	${ }_{78}^{57}$	221	47	2	3,468
	Jan. 31, 1921-	3,492	73	380	46		3,991
Norway --.	Sept. 30, $1907^{\circ}-1$ Sept. $30,1916^{-}$	1,391 1,860	3 5	8 $-\quad 6$	10		1,412 1,883
	Jan. 1, 1918---	1,668	3	4	5		1,630
	June 20, $1918{ }^{6}$					1,676	${ }_{1}^{1,736}$
	Dec. 31, 1921--					-159	+159
	Dec. 31, 1922--					133	133
Russia, European including Ukraine and Northern Caucasia	1920	63,779	909	1,801	4,829		70,712
	1920.	12,979	86	927	2,419		16,411
Sweden	June 1, 1917----					25, 103	25,103 6,030
	June 1, 1917---	6,035 4,775	4	$\stackrel{23}{15}$	18		6, 4,812
	June 1, 1919----	4, 829	4	17	21		4,871
Switzerland----------------------------1-1	1918--.-------	${ }_{8}^{2,386}$		1949			2,405
	Apr. 21, 1921.-	3,247					3,296
Turkey (Asiatic) Union of South Africa.	1909	9,381	269	612	272	35,063	35,063 10,534
	May 5, 1918---	8, 436	495	271	218		9,420
	Apr 30, $1919{ }^{8}-$	7, 811	262	303	386		8,762
	Apr. 30, $1920{ }^{8}$ -	7,138	181	318	210		7,847
	Apr. 30, 1921 --	9,419	236	357	216		10,288 8,299
	Apr. 30, $1922{ }^{\text {a }}$	7,513	244	349	193		8,299
United Kingdom: England and Wales ${ }^{10}$	June 4, 1908...	28, 249	628	2, 669	686		32, 232
	June 4, 1913.--	29, 026	652	2, 188	577		32,443
	June 4, 1921---	24, 816	445 57 5	$\begin{array}{r}2,391 \\ \hline 209 \\ \hline\end{array}$	$\begin{array}{r}517 \\ 21 \\ \hline\end{array}$		28,169 4,341
Scotland.------------------------	June 4, 1913-.-	4,054 4,216	70	240	23		4,517
	June 4, 1922...-	4,276	67	243	22		4,603

${ }^{1}$ Census returns in italics; other returns in roman. No data available for Argentina, Australia, Belgium, Brazil, Chili, China, France, Hungary, India, Italy, Poland, Roumania, Serbia, Tunis, Uruguay and Venezuela.
${ }^{2}$ Less than 500.
${ }^{6}$ Rural communities only.
${ }^{7}$ Owned by Europeans only.
${ }^{8}$ The numbers in natives locations, reserves, etc., on April 30, 1918 have been added to the 1919 and 1920 estimates. The numbers thus added were as follows, in thousands: Chickens, 2,943; turkeys, 18; ducks. 82; geese, 18.
${ }^{82}$; The members in native locations reserves, etc., on April 30, 1921, have been added to the 1922 estimate, The members thus added were as follows, in thousands: Chickens 3,090; turkeys 12; ducks 46 ; geese 18
10 The agricultural schedule for 1921 included an inquiry as to the number of poultry on farms on June 4.
Similar inquiries were made in 1908 and 1913.

Table 590.-Poultry: In undermentioned countries ${ }^{1}$ - Continued.

Country.	Date.	Chickens.	Turkeys.	Ducks.	Geese.	Guinea fowls, pigeons, and un desigpoultry.	Total.
United Kingdom-Continued. Ireland ${ }^{11}$ \qquad	June 4, 1909--	Thousands.	Thou- sands. - - - - - - -	Thousands. \qquad	Thousands.	$\begin{aligned} & \text { Thou- } \\ & \text { sands. } \\ & 24,105 \end{aligned}$	Thousands. 24, 105
						24, 339	
	June 4, 1911--					25, 448	25, 448
-						25, 526	25, 526
	$\begin{aligned} & \text { June 4, } 1912- \\ & \text { June 4, } 1913- \end{aligned}$					25, 701	25, 701
	$\begin{aligned} & \text { June 4, } 1913- \\ & \text { June 4, } 1914 \end{aligned}$					26, 919	26,919
	June 4, 1915					26, 089	26, 089
						26, 473	26, 473
	June 4, 1915 June 4, 1916 June 4, 1917					22, 245	22, 245
	June 4, 1918 Jan 31,1921					24,424 15,175	24, 424
Yugoslavia.	Jan. 31, 1921					15,175	15, 175

Division of Statistical and Historical Research.
${ }^{1}$ Census returns in italics; other returns in roman. No data available for Argentina, Australia, Belgium, Brazil, Chili, China, France, Hungary, India, Italy, Polapd, Roumania, Serbia, Tunis, Uruguay and Venezuela.
${ }^{11}$ It was found impracticable to make an estimate of the number of poultry in 1919 and 1920 but the returns indicated an increase.

Table 591.—Poultry, dressed: Monthly receipts at four markets, 1920-1923.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1	1	1,0	1	1,000	1,000	1,000	1,000	1,000
ston	lbs	libs.	lbs.	libs.	lbs.	lbs.	libs.	lbs	Ibs	lbs.	lbs.	lbs.	lbs.
1920	3, 934	1,749	1,597	1,037	1, 464	2, 221	1,858	1,696	2,096	2, 628	5, 911	7,895	34, 086
1921	3, 377	2, 220	1, 465	1,707	1,795	2, 086	1, 499	2, 437	2, 482	3, 581	7, 472	9, 791	39, 921
1922	4,175	2,765	2, 478	1,705	2, 551	2, 883	2, 091	2,198	2, 479	3, 306	7, 488	10, 444	44, 563
1923	7,690	3,785	2, ¢17	1,946	2, 439	2,778	2, 427	2,661	2,674	4,418	10,752	11, 526	56,013
New York							29			8, 053			
19	11, 441	7,006	5, 190	5, 021	4,883	6, 150	5, 314	8,992	10,277	11, 887	21, 182	27, 208	124, 551
1922	10, 783	6,909	6, 371	6,399	7,896	8,822	6, 785	7,768	9, 115	12, 594	22, 232	32, 538	138, 212
1923	21, 730	12, 335	8,590	6,916	6,804	8,589	9,414	9, 497	9, 653	16, 509	26, 822	27, 289	163, 948
Philadelp				918							8		21, 606
1921	1,498	1,071	1,411	1,005	1,303	1, 565	1,226	1,419	1,587	2,020	2,882	5,905	22, 892
19	1,947	1,790	1, 077	664	1,182	1, 304	1,237	1,217	1,237	1,356	2,653	5, 655	21,319
1923	2,206	1,530	1,388	1, 042	1, 055	1,509	1,343	1,618	1, 348	1,749	3,281	6,542	24, 611
Chicago:										4,001	752	53	
192		3, 328	2,794	2,104	2, 421	2, 524	2, 097	2, 615	3,804	4,157	15, 723	17,082	64,992
1922	5,345	3, 042	3,394	2, 744	2,744	3,597	3, 590	4,250	4, 290	4,178	13, 167	23, 320	73, 661
1923	11, 497	5,208	4,057	-2, 532	2,912	3,329	3, 679	4,018	4,724	5,411	15, 163	27, 743	90,273
Total four markets:													
1920	23, 350	13, 874	8,411	4, 138	9,			9,998	12, 783	16,270	36, 662	56, 148	214, 109
1921	22, 659	13, 634	10,860	9, 837	10, 402	12, 325	10,136	15, 463	18, 150	21, 645	47, 259	59, 986	252,356
1922	22, 250	14, 506	13, 320	11, 512	14, 373	16, 606	13, 703	15, 433	17, 121	21, 434	45, 540	71, 957	277,755
1923	43, 123	22, 858	16, 752	12, 436	13, 210	$16,205$	$16,863$	17, 794	18, 399	28, 087	56, 018	73, 100	334, 845

Division of Statistical and Historical Research. Compiled from reports of the Division of Dairy and Poultry Products.

Gross weight.
Table 592.-Poultry, frozen: Cold-storage holdings in United States, 1917-1923.

Calendar year.	Jan. 1.	Feb.1.	Mar.1.	Apr. 1	May 1.	ane 1.	July 1.	Aug. 1.	Sept.1.	Oct. 1.	Nov.1.	Dec.1.
											-1,000	
		35, 601	27, 796	25, 988	67,242			${ }_{\text {ches. }}^{\text {cis2 }}$	56,093	46,737	51,743.	
1818	64, 557	68, 238	56,950	44, 115	26, 523	18, 929	17,652	18,756	23, 034	29, 798		71, 238
1919	108, 722	119, 675	109, 627	92, 897	71, 162	55, 616	49, 212	40,573	32, 918	30,492	33, 139	54, 749
1920	87, 512	92, 253	78, 421	61, 436	40, 525	30, 535	24, 790	22, 364	21,331	22, 953	31, 070	49, 046
1921	79, 025	81.096	79,001	62, 315	47, 651	35, 408	27, 268	21, 188	20,064	25, 602	34, 876	65, 167
1922	103, 697	103, 350	88, 709	68, 471	50, 840	38, 602	34, 837	30, 659	27, 671	25, 984	30,	51, 781
1923---------------1	100, 17	121, 632	113, 503	94, 872	74, 562	57, 274	49, 100	41,250	34, 131	33, 142	40, 36	63, 274

Table 593.-Poultry, dressed: Receipts at five markets, by States of origin, 1923.
BOSTON.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	lbs.	lbs.	$l b s$.	lbs.	lbs.	lbs.	$l b s$.	$l b s$.	lbs.	lbs.	lbs.	lbs.	lbs.
Canada											407	107	1, 1281
Chicago	153 3,073	76 1,650	196 1,159	70 1,015	1, 376	65 1,483	1, 269	1,498	97 1,266	2, 117	2, 207	3,417	1, 281
Illinois	3,073 1,031	1,650 379	1, 159	1, 015	1,376 330	1,483 386	1,269 432	1,498 427	1,266 567	2, 229	2, 592	3, 417	22, 027
Iowa	1,417	741	393	136	115	116	303	337	428	563	1,360	1, 222	7, 131
Kansas	355	95	286	141	29	87	104	38	77	97	465	340	2, 114
Kentucky	47	44	23	62	95	21				20	753	265	1, 330
Maine.	47	49	14	5	-	20	20	28	48	143	299	118	791
Maryland	8	2	1						1	7	37	3	59
Massachusett	16	6	6	11	42	19	15	23	24	31	48	116	357
Michigan.	103	46	37	1		3			3	52	122	160	527
Minnesota	327	88	50	3	2					121	654	977	2, 222
Miscouri	100	54	48	43	79	125	53	42	36	40	216	250	1,086
Montana											49	45	94
Nebraska_	89	81	93	26	29	52	41	3	5	22	174	67	682
New Hampshi	5	2	2		1		1	2	1	8	18	7	47
New York	87	201	88	11	22	96	44	12	28	29	470	290	1, 378
New York Cit	39	3	27	58	47	71	24	78	49	,	2	72	472
North Dakota	- 1	2	1								171	119	294
Ohio	189	97	14	3	58	65	44	37	36	49	319	230	1,141
Oklahoma	68	116	80	131	88	57					229	274	1, 043
Pennsylvania.	2		2	1		36	1		1	1	3	2	49
Philadelphia_				2	21								23
South Dakota	4	1									25	91	121
Tennessee.											35	4	39
Vermont	8	4	1		6				5	9	94	22	149
W isconsin	27	3				32		19		1	29	180	291
Other States	462	44	36	1	44	14	48	3	3	40	1,453	2, 440	4,588

NEW YORK.

Arkansas	87								22	50	124	43	326
California	8	6	210	209	96	122	104	128	2	2	169	5	1, 061
Canada.	6	164	141			1	50			2	19	149	532
Delaware	13	5	2	1		1	3	3	3	5	12	16	64
Georgia	6	2	1				1	2			1	1	15
Illinois.	5, 779	3,775	2, 334	2,761	2, 769	3, 280	3, 097	3, 151	3, 072	4, 443	6,470	7, 336	48, 267
Indiana	2, 488	1, 376	822	651	623	893	1, 116	1,242	1,071	1,758	1, 840	1,934	15, 814
Iowa	4, 105	2,001	510	430	230	611	696	412	1566	2, 148	3, 268	4,543	19, 520
Kansas	2,011	1,607	1,522	588	523	1,034	1, 034	974	1,076	1, 812	1,961	1,009	15, 151
Kentucky	296	196	346	576	765	553	309	389	326	587	580	601	5,524
Maryland	130	32	12	6	36	11	31	54	30	46	191	281	860
Massachusetts	10	10	16	59	26	58	145	69	38	87	92	22	632
Michigan	150	20	96	58	83	142	137	29	80	254	309	325	1, 683
Minnesota	817	546	224	100	144	145	298	228	398	548	1,402	1, 532	6,382
Missouri	2, 135	659	507	400	335	614	896	932	1,349	1, 817	2, 309	2, 677	14, 630
Nebraska	216	262	195	267	58	84	142	112	134	449	476	641	3, 036
New Jersey	470	234	73	17	34	28	22	37	32	105	226	274	1, 552
New York	202	198	434	254	394	414	254	224	75	280	161	172	3, 062
North Carolina	6	3		2		1	27	11			1	2	54
North Dakota	22	7	2								364	374	769
Ohio.	694	243	40	52	124	99	271	213	222	611	675	887	4, 131
Oklahoma	186	72	268	141	224	45	46	191	153	203	693	482	2, 704
Oregon			31				37	25			31	28	153
Pennsylvania	107	62	44	46	102	83	78	93	102	66	141	161	1, 085
South Dakota	276	133			1		78	58	89	114	57	334	1,140
Tennessee	211	151	209	249	181	187	185	392	363	490	545	282	3,445
Texas	1,006	402	140	45		48	40	39	22		3, 115	2, 349	7, 206
Utah			10								157	24	200
Virginia	124	39	9	2	42	61	208	284	205	263	471	248	1,956
Washington		32	61		6	20	58	13			2	46	238
West Virginia	2	2				2		4		3	10	10	33
Wisconsin.	149	90	102	1	4	50	49	154	222	365	824	354	2,364
Other States.	10	3	28	4		3	3	34			126	148	359

Table 593.-Poultry, dressed: Receipts at five markets, by States of origin, 1929Continued.

PHILADELPHIA.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Del	${ }^{\text {lbs }}{ }_{11}$	${ }^{\text {lbs }} 12$	${ }^{\text {lbs. }} 7$	lbs.	lbs. 5	${ }^{\text {lbs. }} 7$	lbs. 3	lbs. 1	lbs. 2	$l \mathrm{lbs}$.	7bs. ${ }^{13}$	lbs.	lbs. 138
Illinois.	734	769	653	506	426	450	724	616.	628	459	1,228	2, 300	9, 497
Indiana	184	53	115	93	155	171	138	141	117	175	268	152	1,762
Iowa.	143	118	40	4		17	47	110	87	66	230	262	1,124
Kansas	43	50		10	45	118	12	66	23	81	111	96	665
Kentucky	4	2	2		27	1		21			5	6	68
Maryland	2	4	6	5	1	13	2	-	40	28	46	109	256
Michigan		1			28					5	2		36
Minnesota	378	125	32		13	83	45	110	106	426	355	716	2,389
Missouri	166	54	56	29	27	82	5	10	14	1	34	44	522
Nebraska	1		42	72	65	44		14	20		7	33	298
New Jersey	5	3	5	1		55					1	1	71
New York.	4	3	57	21	13	37	28	81		2	25	97	368
North Carelina	3		3	3	2	2			46		3	4	66
North Dakota	1	4	1								56	588	650
Ohio	55	67	18	20	8	73	52	29	23	48	171	256	820
Oklahoma	43		76	18			40	108		39	118	4	446
Pennsylvania	86	59	69	87	58	80	82	69	81	182	152	255	1,260
South Dakota	,	2	1								10.	2	, 16
Tennessee.	1	2	3		2						6	4	- 18
Texas.	27				19						21	63	130
Virginia	152	130	134.	109	111	139	101	97	107	157	283	1,068	2, 588
West Virginia	67	70	63	54	49	52	42	34	33	47	92.	354	957
Wisconsin...	93	2	3			33	24	111	22	32	46	40	406
Other States						43					3	21	67

CHICAGO.

Alabama			2	1	1								
Arkansas	21	52	52	64	43	25	13	5	25.	.	13	54	372
Canada	25				5								30
Colorado		3	1								3	73	80
Georgia.	25								1				26
Idaho.-												40	40
Illinois	2, 142	1, 190	1,097	815	1,204	976	1,164	1,492	1,454.	1,250	2,027	2,676	17,497
Indiana	115	196	47	50	60	56	34	43	1,52	, 43	79	143	818
Iowa_-	3,372	1, 124	860	462	639	801	744	675	1,021	1,137	2,599	5,220	18, 654
Kansas	617	171	123	69	25	217	169	170	361	511	561	608	3, 602
Kentucky	104	78	174	94	72	41	824	64	42.	57	81	48	. 937
Michigan	40	44	26.	3	18	9	9	11	29	18	41	28	1276
Minnesota	1,462	944	392	365	207	107.	277	248	240	531	1,832	4,159	10, 764
Mississippi	111	6	9	9	8	9	2	45	15	5	${ }^{8}$		6, 94
Missourin.	787	180	202	184	228	338	337	354	565.	623	1,115	1, 308	6, 231
Montana	11	31	3.								406	1, 049	1, 500
Nebraska	469	115	113	31	2	32	70	5	60	92	292	532	1,813
New Jersey											28		29
New York	57	39	1	2.	26	41.	20.	66	56.	22			335
North Dakota	304	231	194	231	7	23	10.	7	14.	15	2,901	3, 865	7,594
Pennsylvania		14		1	2			19	2	3			41
Ohio	3	1.		29			2				1		46
Oklahoma	336	116	54	34	109	70	112	139	201	312	280	454	2,217
South Dakot	434	242	230	64	38	128	85.	121	117	164	751	2, 135	4,509
Tennessee	13	52.	104	86	59	17	76.	132	92	39	110	30	810
Texas	348	33	4	23	21.	56	72			1.	362	3,587	4, 507
Wisconsin	801	433.	367	123	138	380	398	449	378	574	1, 639	1,692	7, 372
W yoming											-8	31	39
Other States			1					8			19.	1.	30

SAN FRANCISCO.

[^289]
1042
 Yearbook of the Department of Agriculture, 1923.

Table 594.-Poultry (live): International trade, calendar years, 1909-1922. ${ }^{1}$

Country.	A verage, 1909-1913		1920		1921		$\stackrel{1922,}{\text { preliminary. }}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports	Exports.
PRINCIPAL EXPORTING COUNTRIES.	Thou-	Thou-	Thou-	Thou-	Thou-	Thou-	Thow-	Thou-
Austria-Hungary								
Austria-Hungary*	-2, 8,435	16,617						
Canada-......-.	15	(2)	141	705	249	857	418	609
China	15	2, 462	14	3, 291	36	3,871	31	3,743
Finland	17		${ }^{(3)}$		${ }^{(3)}$			
Italy*--	$\underset{(4)}{2,010}$	$\underset{(1)}{9,606}$	${ }_{3}^{6}$	724 22	786 24	2, 182	3,967 63	2,575
Netherlands			3					
PRINCTPAL IMPORTING COUNTRIES.								
Belgium*	1,797	685		10		${ }^{383}$	1,296	1,442
Denmark	8,967	795	2,771	110	11, 345	118	17, 504	294
Geese.	8,111	32	237	3	293	1	54	
Other poultry*	29, 829	278	18	9	159	55	339	76
Switzerland*	1,382	28	398	2	1,144	4	879	4
United Kingdom	877	50	2	5	61	8	224	14
Total reported in number	11, 514	6,690	398	4, 028	665	4, 866	790	4,706
Total reported in	52, 420	28,009	3,275	855	14, 197	2, 745	23, 685	4,391

Division of Statistical and Historical Research. Official sources.
${ }^{1}$ Items carrying an asterisk (*) in the stub were reported in pounds and are shown in thousands of pounds.
${ }^{2}$ Expressed only in value.
${ }^{3}$ Less than 500.
4 Not separately stated.
Table 595.-Poultry (dead): International trade, calendar years, 1909-1922.

Country.	Average, 1909-1913.		1920		1921		$\stackrel{1922,}{\text { preliminary. }}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTing countries.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	1,000 pounds.	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$
Austria-Hungary...--	371 ${ }_{232}$	9,854 1,649		8	149	89	153	290
China	(1)	1,211	(1)	6, 155	(1)	1,644	(1)	1,989
Finland	373	1,162	86	756		876		797
France.	2,920	12, 296	1,442	3,610	1,997	5, 334	3,659	6,627
Italy--1---	(1) 288	${ }_{(1)}^{6,019}$	28 4	1,484	957 37	2,335 502	1,029 44	$\begin{array}{r}\text { 3,786 } \\ \hline 93\end{array}$
PRINCIPAL IMPORTing countries.								
Austria.			1,541	109	3,012	288		
Cuba	76		350					
Denmark	1,765	10	7	41	418			
Germany	18, 875	535	451	36	${ }^{2} 46$	251	65	. 69
Norway-.-----------	63 349		21 102		$\begin{array}{r}24 \\ 22 \\ \hline\end{array}$			
Sweden---.-.-...-------	349 8,319	12	102 3,546	1	$\begin{array}{r}227 \\ 4,196 \\ \hline 8\end{array}$. ${ }^{2}$	4,245	4
United Kingdom--------	10,994	127	8,125	91	8,818	185	18,676	272
Total 15 coun-	44, 625	32, 888	15,872	12,476	19,882	11,337	27,871	14,767

[^290]Table 596.-Chickens: Farm price per pound, 15th of month, United States, 1910-1923.

Year beginning July 1.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	Weighted a verage.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cent
1910-11	12. 2	12.0	11.8	11.4	11.0	10.6	10.6	10.6	10.7	10.9	11.0	11.1	11.0
1911-12	11.2	11.2	11.0	10.6	10.0	9.7	10.0	10.4	10.6	11.0	11.1	11.0	10.4
1912-13	11.2	11.3	11. 4	11. 4	11.0	10.8	10.8	11.0	11. 4	11. 7	11. 9	12.0	11.2
1913-14	13.0	12.8	12. 7	13.0	11.4	11.3	11.5	12.0	12. 4	13.0	12.7	13.1	12.0
Av. 1910-1913.	11.9	11.8	11.7	11.6	10.8	10.6	10.7	11.0	11.3	11.6	11.7	11.8	11.2
1914-15	13. 4	13.1	12.8	12.0	11.1	10.7	10.9	11.3	11. 7	11.9	12. 0	12.2	11.5
1915-16	12.2	12. 2	12.0	11.8	11. 5	11.2	11.5	12. 1	12. 5	13. 1	13. 6	14.0	12. 0
1916-17	14. 1	14. 1	14. 2	14. 4	13. 9	13.6	14. 1	15.1	15. 7	17.3	17.5	17.7	14.6
1917-18	17.4	16. 7	18.4	18.5	17.0	17.5	18.4	20.3	20.2	20.7	20. 6	21.3	18.4
1918-19	23.2	23. 4	23.6	22. 2	21.7	22. 4	22.1	21.8	23.4	25. 7	26. 7	26.4	23.0
1919-20	26.8	26. 1	25. 0	23.3	22. 0	22.0	23.3	25.7	26. 9	28.4	28. 0	27.4	24.2
1920-21	28.4	26.6	26.9	24. 6	22.9	20.7	21.7	22.3	22.8	22.2	21.8	21.5	22.8
Av. 1914-1920.	19.4	18.9	19.0	18. 1	17.2	16. 9	17.4	18.4	19.0	19.9	20.0	20.1	18. 1
1921-22	21.7	21.4	20.2	19. 1	18. 6	18. 2	18.9	19.0	19.4	20.0	20.2	20.6	19.3
1922-23	20.7	18. 9	18. 6	18. 1	17.2	17.2	17.3	18.6	18.8	19.4	20.1	20.3	18.2
1923-24	20.6	19.8	19: 7	19.0	17.7	16.6							

Division of Crop and Livestock Estimates.
Table 597.-Turkeys: Farm price per pound, 15th of month, United States, 1912-1923.

Year beginning Oct. 1.	Oct. 15.	Nov. 15.	Dec. 15.	Jan. 15.	Year beginning Oct. 1.	Oct. 15.	Nov. 15.	Dec. 15.	Jan: 15.
	Cents.	Cents.	Cents.	Cents.		Cents.	Cents.	Cents.	Cents.
1912-13.	13.6	14.4	14.8	14.9	1918-19.-	23.9	25.7	27.0	27.3
1913-14.	14.6	15.2	15. 5	15. 5	1919-20	26.6	28.3	31.1	32.0
1914-15.	14.1	14.1	14. 5	14.5	1920-21	30.0	31.8 ,	33.1	33.0
1915-16	13.7	14.8	15. 5	15.6	1921-22.	25.7	28.2	32.5	30.7
1916-17	17.0	18. 6	19.6	19.5	1922-23.	25.1	29.5	32.3	29.7
1917-18	20.0	21.0	23.0	22.9	1923-24	26.6	27.9	24.5	

Division of Crop and Livestock Estimates.

EGGS.

Table 598.-Eggs: Monthly receipts, at five markets, 1917-1923.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Atug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Boston:	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cabes.	cases.	cases	cases	cases.
1917	56	75	171	252	318	193	113	87	84	80	43	30	1,502
1918	31	59	192	309	305	171	133	119	91	96	46	52	1,604
1919	67	116	184	327	235	189	148	128	80	97	48	40	1,659
1920	72	113	149	253	384	204	119	110	95	66	49	34	1,648
1921	84	138	206	359	294	183	137	130	100	88	52	52	1,823
1922	101	133	214	403	312	224	143	105	85	106	74	70	1,970
1923	99	106	244	285	381	219	128	131	101	108	73	69	1;914
New York: 1917	143	139	405	747	738	565	395	337	333	284	169	102	
1918	106	155	712	908	681	551	483	450	333	288	183	177	5,027
1919	214	486	667	1, 026	911	669	532	438	377	318	192	178	6,008
1920	207	315	618	563	697	725	470	370	334	272	209	211	4,991
1921	314	476	999	1, 012	742	681	525	517	440	362	251	260	8, 579
1922	335	424	919	1, 178	994	784	574	427	381	337	226	242	6,821
1923.	386	447	981	924	1,163	796	596	528	416	377	270	272	7, 156
Philadelphia:			112	164	190	164	147	107	102	112	3	56	
1919	64	100	174	301	271	185	129	115	107	119	76	63	1,704
1920	76	81	120	164	242	180	107	116	118	81	57	54	1,396
1921	64	120	202	237	235	158	121	145	124	100	66	70	1,642
1922	109 104	113	192 179	316 187	273 278	142	126	124	108	176	60 74	8	1,703 1,727

Table 598.-Eggs: Monthly receipts, ai five markets, 1917-1928-Continued.

Market, and calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Chicago:	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.
1917	118	86	376	927	1, 200	897	626	450	361	295	193	150	5,679
1918	108	29	415	1,027	928	733	564	460	338	240	124	86	5, 050
1919	101	253	458	1,024	915	767	401	275	220	125	51	27	4,617
1920	109	251	458	840	800	620	380	260	217	132	47	40	4,154
1921	133	356	679	750	684	460	297	258	201	137	86	114	4, 155
1922	210	296	525	887	898	695	389	300	191	140	82	71	4, 684
1923 .	198	308	619	775	943	763	424	332	276	191	84	96	5, 009
San Francisco:													
1917	50 53	76 81	94 80	$\stackrel{91}{93}$	92 83	79 71	52 51	45 39	35 34	$\begin{array}{r}37 \\ 27 \\ \hline\end{array}$	28	37 29	716 667
1919	48	59	73	83	93	80	66	62	42	32	27	33	698
1920	44	55	102	114	80	76	67	55	42	43	36	43	757
1921	58	71	123	109	109	79	62	57	44	40	33	35	811
1922	54	59	102	118	106	81	72	63	51	45	42	45	838
1923	65	60	95	97	87	92	70	61	54	58	54	62	855

Division of Statistical and Historical Research. Compiled from reports of the Division of Dairy and Poultry Products.

Table 599.-Eggs: Receipts at five markets, by States of origin, 1928.
BOSTON.

State.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	cases.	cases.	cases.	cases.	casts.	cases.							
Chicago	13	14	13	1	3		2			2	2	11	51
Illinois	28	39	103	187	168	101	55	61	38	43	12	10	795
Indiana	6	9	21	47	66	27	13	9	13	10	7	5	233
Iowa.	3	7	19	19	32	15	11	13	9	8	6	4	146
Kansas	9	9	24.	4			1	2	1	2	4	5	61
Maine.	9	8	9	9	13	14	11	10	10	11	9	9	122
Massachusetts	2	1	1	1	1		2	1	1	1	4	6	21
Michigan		1	1	7	7	6	6	5	5	3	1	1.	43
Minnesota	2		3	15	34	18	6	9	6	9	4	3	109
Missouri.	8	4	21	7	7	4	3	2	4	5	6	7	78
Nebraska	3	2	3	1	2	1	1	1			2	3	19
New Hampshi	6	4	6	5	4	4	3	2	2	3	3	2	44
New York	2	1	1	2	4	4	2	2	2	3	5	4	32
Ohio	3	3	6	17	20	13	5	6	5	4	3	2	87
Vermont	3	3	3	3	4	5	3	3	2	3	2	2	36
Wisconsin	1				2	3	3	1	1	1			12
Other States.	2	2	9	12	11	3	2	3	--	3	3	3	53

NEW YORK.

Table 599.-Eggb: Recsipts at five markets, by States of origin, 1928-Contd. PHILADELPHIA.

State.	Jan.	Feb.	Mar.	Apr.	May.	Јипе.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
	1,000	$\begin{aligned} & 1,000 \\ & \text { cases } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { eases. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { cases. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { catez. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { caser. } \end{aligned}$	1,000	$\begin{aligned} & 1,000 \\ & \text { caets. } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { cases. } \end{aligned}$	$\begin{aligned} & 1,009 \\ & \text { cases } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { cases. } \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 1,000 \\ \text { cases. } \end{array} \right\rvert\,$	1,000 cases.
Delawar Illino is	-38	$4{ }^{4}$	9 19	${ }_{20}^{9}$	$\begin{array}{r}9 \\ 5 \\ \hline\end{array}$	${ }_{25}^{5}$	${ }_{33}^{4}$		2	2			53
Indiana	4	6	10	16	27	20	11	12	9	8	2	2	${ }_{125} 12$
Iowa.	1	2	4	10	11	11	6	8	14	7	5	1	80
Kansas	7	17	18	1	2	6	2	4	8	2		3	70
Kentucky	1	1.	2	1	2	1							
Maryland	4	5	11	11	13	5	5	3	2	2	2	3	66
Mbchigan			4	16	50	32	16	18	16	10	1		163
Minnesota	1		6	8	6	8	5	10	11	12	4	2	75
Missouri	20	9	11	9	6	16	12	13	18	12	5	17	148
Nebraska	2	10	11	3	4				2	1	1	1	36
Neen Yor	3		1	1	2	3	7	2	2	4	8	8	35
Ohio--	4	4	5	14	24	15	7	7	9	7	2	2	100
Pennsylvania	12	16	24	25	25	19	12	10	8	8	7	10	174
South Dakot			1		1	2	2	3	1	3	1		16
Tennessee	1	3	7	6	6	1						1	25
Texas	1	1	7	2									11
Virginia	7	9	18	23			12				6	11	149
West Virginia	2	2	4	3	3	2	2	1	2	2	1	2	26
Wisconsin.-	1	1.	1	2	7	1	2	4	4	2	5	2	34
Other States	2	2	8	4	2	1						1	20

CHICAGO.

Arkansas	1	4	6	5	3				1				20
Illinois	12	12	29	42	59	45	19	15	8	8	3	4	256
Indiana	1	1	1	2	1	2	1	1.				1	11
Iowa.	30	57	101	159	204	178	83	63	49	31	16	25	996
Kansas	33	60	110	64	85	38	25	32	26	16	5	7	501
Michigan	1	1	1	1	3	3	4	1	1	1		1	18
Minnesota	12	13	36	76	116	129	72	53	48	27	15	13	610
Missouri.	36	53	97	196	173	117	53	40	43	41	16	15	880
Nebraska	22	46	55	43	49	36	28	23	21	14	10	12	359
North Dakota			1	6	8	8	2	3	3	2			33
Oklahoma	17	22	46	8	5		1		1			1	101
South Dakota	8	19	55	74	92	93	72	50	41	30	8	9	551
Tennesseo	1	1	2	4	1					1	1		11
Texas.-	4	2	27	10	4						2		49
Wisconsin	16	14	45	79	132	112	65	51	34	21	7	8	584
Other States	3	3	7	5	8	1			1				28

SAN FRANCISCo.

California	63	60	94	96	85	89	66	57	49	54	53	59	825
Idaho.					1	2	1	1	1				6
Oreson	2			1.	1	1	1	2	2	2		1	13
Weshington.						1	1	1	2	2	1	2	10

Division of Statistical and Historical Research. Compiled from reports of the Division of Dairy and Poultry Products.

Table 600.-Eggs, case: Cold-storage holdings in United States, 1916-1923.

Calendar year.	Jan. 1.	Feb. 1.	Mar. 1.	Apr. 1.	May 1.	June 1.	July 1.	Aug. 1.	Sept. 1.	Oct.1.	Nov. 1.	Dec. 1.
	1,000	1,009	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.	cases.
1916	1,508	458	35	264	2,397	4,593	5,574	6,060	5,600	4,868	3, 985	2,146
1917	920	149	7	190	2, 105	4,922	6, 617	6,895	6, 436	5,837	4,638	2,948
1918	1,300	200	20	344	2,957	5,499	8, 554	6, 568	6, 265	5,369	3, 812	2,071
1919	740	130	26	320	3, 278	6,098	7,659	7,850	7,685	6.858	5, 087	3,341
1920	1,542	342	29	122	2, 135	5,143	6,747	6,872	6,372	5,295	3, 838	1,824
1921	408	43	43	1,026	4,909	6, 844	7,534	7,605	7,210	6,289	4,380	2,403
1922	889	179	13	950	4,648	8,056	9,811	10, 161	9,608	7,924	5,726	3,257
1923	1,311	213	13	453	3, 737	7,890	10,222	10,509	9,883	8,737	6,645	4,028

Division of Statistical and Historical Research.

1046 Yearbook of the Department of Agriculture, 1923.

Table 601.-Eggs in the shell: International trade, 1909-1922.

Country.	Calendar years.							
	$\begin{aligned} & \text { A verage, 1909- } \\ & 1913 . \end{aligned}$		1920		1921		$\stackrel{\text { 1922, }}{\text { preliminary. }}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports	Exports.
PRINCIPAL EXPORTING countries.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	dozens.	dozens.	dozens.	dozens.	dozens.	dozens.	dozens.	dozens.
Argentina Austria			$\begin{aligned} & (1) \\ & 3,866 \end{aligned}$		5,417	6,358		3,557
Austria-Hungary	91, 561	177, 163						
China.	270	25, 542	183	53, 892	139	98, 393	234	98,498
Denmark	2, 243	34, 340	95	45, 517	86	54, 007	682	60, 840
Finland	2, 899		${ }^{(1)}$		${ }^{(1)}$	871		
Italy-:	4, 104	33,482	39	${ }^{346}$	316	- 392	2,534	13, 363
Netherlands	19,542	29,360	61 1,709		1,047 3,063	9,738 33,291	1,392 1,019	13,087 34,620
United States	${ }^{2} 1,701$	12, 108	1,709	, 26, 842	3, 063 .	33, 291	1,019	34, 620
principal importing COUNTRIES.								
Belgium	19,148	11, 521	521	60	4,394	137	9, 473	1,179
Canada	6, 341	148	6,516	6, 323	6, 583	5,444	8, 141	3,619
Cuba--	4,732		$\begin{array}{r}\text { 9,925 } \\ \hline 11 \\ \hline\end{array}$					
France.-.	37,215 228,279	8,920 675	11,370 2,452	1,216	11,847 3 1	${ }_{3}^{1,451} 913$	26,711 194	$\begin{aligned} & 6,588 \\ & 1,069 \end{aligned}$
Japan.--	6,867		23, 534		53, 277			
Norway	- 387		4, 519	3	4, 889	2	4, 521	
Sweden	4, 207	3,781	$\begin{array}{r}2,190 \\ 7 \\ \hline 150\end{array}$	${ }_{(1)}^{823}$	2,647 14,685	(1) 989	2,519 14,633	(1) 828
Switzerland	$\begin{array}{r} 19,747 \\ 190,015 \end{array}$	48	7,950 70,598	${ }^{(1)} 10$	14,685 105,305	${ }^{(1)} 23$	134, 633	
Total 19 countries.	641, 609	337, 095	145, 528	137, 666	214, 317	212, 014	208, 670	237, 572

Division of Statistical and Historical Research. Official sources.
${ }^{1}$ Less than 500 dozen. $\quad 2$ One year only. $\quad{ }^{3}$ Eight months, May-December.
Table 602.-Eggs not in the shell: International trade, calendar years, 1909-1922.

Country.	Average 1909-1913.		1920		1921		$\stackrel{1922,}{\text { preliminary. }}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES. China \qquad	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 17,217 \end{gathered}$	$\begin{array}{\|c} 1,000 \\ \text { pounds. } \end{array}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 99,442 \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { pounds. } \\ 64,545 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 94,455 \end{gathered}$
PRINCIPAL IMPORTING countries.								
Austria-Hungary	1,100	188 16	629		291	9		
France---	1,967	426	3, 740	19	2,037.	26	3, 860	15
Germany	11,214	3,225	5,707	412	${ }^{2} 6,105$	${ }^{2} 556$	9,717	1,362
Italy---	381	4	1,839 2,050		202 3,014	27 486	1,056 487	
Netherlan Sweden				258 89	3,014			796
United Kingdom	(5)	(5)	45,284	${ }^{445}$	42, 609	6^{453}	41,863 24,809	
United States-.-			38, 134	(6)	22, 537	${ }^{(9)}$	24, 809	718
Total ten countries	15,443	21, 066	97, 63̣4	100, 666	7¢,795	66, 102	81, 792	97, 352

Division of Statistical and Historical Research. Official sources.

[^291]Table 603.-Eggs: Farm price per dozen, 15th of month, United States, 1910-1923.

$\begin{gathered} \text { Year beginning } \\ \text { Apr. } 1 . \end{gathered}$	Apr.	May.	June.	July.	Aug.	Sept	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Weighted av.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1910-11	18.6	18.4	18. 2	17.9	18.5	20.9	23.8	27.2	29.7	26.2	19.3	15.7	19.3
1911-12	14.8	14.6	14. 4	14.8	16.4	18.7	21.8	26.1	29.1	29.3	26.8	21.2	18.2
1912-13	17.4	16.9	16.7	17.0	18.2	20.6	24.0	27.8	28.2	24.8	21.1	17.9	18.9
1913-14	15.9	16. 5	16.8	16. 4	17.7	21.3	26.0	31.3	32.9	29.8	25.3	22.2	19.8
v. 1910	16.7	16. 6	16.5	16.5	17.7	20.4	23.9	28.1	30.0	27.5	23.1	19.2	19.
1914	16.4	16.9	17.2	17.5	19.1	22.5	23.7	28.2	31.9	31.7	23.7	16. 5	19.3
1915-16	16.6	16.5	16.1	16.3	17.3	20.6	24.6	29.4	31.1	28.8	24.2	18.2	19.0
1916-17	17.7	18.5	18.9	19.9	21.6	25.3	30.4	34. 9	38. 3	38.1	35.7	25.3	23.3
1917-18	28.5	30.2	29.9	29.0	30.5	35.8	38.5	41.2	45.9	48.9	45.8	30.9	33.0
1918-19	30.4	30.6	29.5	33.0	35. 2	39.1	44.9	51.7	59.3	55. 3	34.8	33.9	34. 9
1919-20	36.0	38.9	36.1	37.9	40.6	43.1	51.0	59.1	69.6	60.9	48.5	40.5	41.8
1920-21	36.6	37.5	35. 9	37.8	42.5	48.6	54.6	62. 9	67.1	54.5	31.0	26.8	39.3
v. 1914-192	26.0	27.0	26.2	27.3	29.5	33.6	38.2	43.9	49.0	45.5	34.8	27.	30.
1921-22	20.5	19.4	20.1	24.3	28.9	30.9	39.4	50.0	51.1	31.7	31.4	19.5	25.3
1922-23	20.0	20.9	20.2	20.3	20.6	27.3	34. 6	43.6	47.2	37.8	29.9	25.4	24.7
1923-24.	21.6	21.8	20.9	21.3	23.6	29.8	34.6	45.6	45.5				

Division of Crop and Livestock Estimates.
Table 604.-Eggs: Average price per dozen at certain cities, 1910-1923.
Western firsts, at boston.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1910	\$0. 32	\$0. 27	\$0. 23	\$0.22	\$0. 21	\$0. 20	\$0. 19	\$0. 21	\$0. 24	\$0. 26	\$0.30	\$0. 32	\$0.25
1911	. 27	. 19	. 17	. 17	. 17	. 16	. 18	. 18	. 20	. 25	. 29	. 33	. 21
1912	. 33	. 36	. 22	. 21	. 20	19	. 20	. 21	. 25	. 28	. 31	. 30	. 26
1913	. 26	. 24	. 20	. 20	. 21	. 20	. 18	. 23	. 28	. 30	. 40	. 36	. 26
1914	. 33	30	. 25	. 20	. 21	. 20	. 21	. 23	. 25	26	. 34	. 38	26
1915	. 36	. 27	. 20	. 21	. 20	. 19	. 19	. 20	. 25	. 28	. 32	. 34	. 25
1916	. 31	. 27	. 23	. 22	. 23	. 23	. 24	. 27	. 31	-. 34	. 40	. 46	. 29
1917	. 45	. 43	. 31	. 34	. 36	. 33	. 34	. 37	. 41	. 41	. 49	. 56	. 40
1918	. 63	. 57	. 38	. 36	. 35	. 35	. 41	. 42	. 46	. 54	. 65	. 68	. 48
1919	. 63	. 45	. 42	. 44	. 47	. 43	. 45	. 46	. 47	. 61	. 67	. 80	. 52
1920	. 71	. 60	. 48	. 45	. 45	. 43	. 45	. 50	. 55	. 62	. 76	. 80	. 57
Av. 1914-1920	. 49	. 41	. 32	. 32	. 32	. 31	. 33	. 35	. 39	. 44	. 52	. 57	. 40
1921	. 68	. 43	. 31	. 27	. 25	. 26	. 32	. 34	. 38	. 49	. 60	. 54	. 41
1922	. 42	40	. 26	. 26	. 27	. 25	. 24	. 25	. 38	. 44	. 53	. 55	. 35
1923.	. 43	. 38	. 31	. 28	. 27	. 25	. 25	. 28	. 33	. 40	. 55	. 48	. 35

FRESH FIRSTS, AT NEW YORK.

1910	\$0. 38	\$0. 27	\$0. 23	\$0. 22	\$0. 21	\$0. 20	\$0. 18	\$0. 21	\$0. 24	\$0. 26	\$0. 31	\$0. 34	\$0. 25
1911	. 28	. 19	. 17	+ 17	. 17	. 15	. 17	. 18	. 21	. 24	. 32	. 35	. 22
1912	. 34	. 36	. 22	. 20	. 19	. 19	. 20	. 21	. 24	. 26	. 31	. 29	. 25
1913	. 24	. 22	. 19	. 19	. 20	. 19	. 19	. 23	. 27	. 29	. 39	. 38	. 25
1914	. 33	. 29	. 26	. 20	. 20	. 21	. 21	. 24	26	27	. 35	. 38	. 27
1915	. 38	. 26	. 20	. 21	. 20	. 20	. 20	. 22	. 26	. 30	. 35	. 34	. 26
1916	. 31	. 26	. 22	. 22	. 22	. 23	. 25	. 29	. 33	. 34	. 41	. 46	. 30
1917	. 46	. 45	. 31	. 34	. 35	. 33	. 34	. 38	. 41	. 41	. 49	. 57	. 40
1918	. 65	. 58	. 38	. 35	. 35	. 36	. 41	. 43	. 47	. 53	. 65	. 67	. 49
1919	. 62	. 44	. 44	. 43	. 46	. 44	. 46	. 48	. 51	. 62	. 69	. 79	. 53
1920	. 71	. 59	. 48	. 44	. 44	. 43	. 47	. 51	. 57	. 64	. 77	. 78	. 57
Av. 1914-1920	. 49	41	. 33	. 31	. 32	. 31	. 33	. 36	. 40	. 44	. 53	. 57	. 40
1921	67	. 42	. 31	. 27	. 25	. 27	. 33	. 35	. 39	. 49	. 58	. 54	. 41
1922	. 41	. 38	. 25	. 26	. 27	. 25	. 24	. 26	. 39	. 43	. 53	. 53	. 35
1923.	. 42	. 37	. 31	. 27	. 27	. 24	. 25	. 29	. 35	. 39	. 53	. 47	. 35

1048 Yearbook of the Department of Agriculture, 1923.
Table 604.-Eggs: Average price per dozen at certain cities, 1910-1923Continued.

WESTERN EXTRA FIRSTS AT PHILADELPHIA.

Calendar year	Jan.	Feb.	Mar.	Apr.	May.	June.	July,	Aug.	Sept.	Oct	Nov.	Dec.	$\begin{aligned} & \text { A ver- } \\ & \text { age. } \end{aligned}$
1910	\$0. 36	\$0. 29	\$0. 23	\$0. 22	\$0. 22	\$0. 21	\$0. 22	\$0. 24	\$0. 26	\$0. 29	\$0. 33	\$0. 37	\$0. 27
1911	. 28	. 21	. 18	. 18	. 18	. 17	. 18	. 20	. 23	. 27	. 34	. 33	. 23
1912	. 34	. 36	. 23	. 21	. 20	. 21	. 22	. 23	. 26	. 30	. 34	. 31	. 27
1913	. 26	. 23	. 19	. 19	. 21	. 21	. 22	27	. 30	. 33	. 39	. 37	26
1914	. 34	. 28	. 27	. 20	. 21	22	. 22	. 26	. 28	. 30	. 35	. 40	28
1915	. 39	. 27	. 20	. 21	. 20	. 20	. 20	. 23	. 27	. 32	. 39	. 36	. 27
1916	. 31	. 26	. 23	. 22	. 23	. 24	. 26	. 29	. 33	. 36	. 41	. 45	. 30
1917	. 47	. 45	. 31	. 35	. 36	. 35	. 36	. 39	. 42	. 42	. 48	. 56	. 41
1918	. 62	. 61	. 37	. 37	. 36	. 39	. 43	. 46	. 50	. 56	. 67	. 69	. 50
1919	. 63	. 44	. 41	. 44	. 47	. 46	. 51	. 52	. 54	. 65	. 73	. 80	. 55
1920	. 73	. 62	. 48	. 44	. 45	. 47	. 50	. 54	. 60	. 67	. 81	. 80	. 59
A v. 1914-1920	. 50	42	. 32	. 32	. 33	. 33	. 35	. 38	. 42	. 47	. 55	. 58	. 41
1921.	. 66	. 43	. 32	. 28	. 25	. 28	. 35	. 39	. 41	. 53	. 64	. 57	. 43
1922	. 42	. 40	. 26	. 27	. 27	. 27	. 26	. 27	. 39	. 48	. 59	. 55	. 37
1923	. 43	. 38	. 31	. 28	. 29	. 27	. 29	. 33	. 42	. 43	. 62	. 52	. 38

FRESH FIRSTS AT CHICAGO.

FRESH EXTRAS AT SAN FRANCISCO.

Division of Statistical and Historical Research.

SILK.

Table 605.—Silk, Japanese, filatures, Kansai No. 1: Average wholesale price per pound, New York, 1890-1923.

Calendar year.	Jan.	Feb	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1890	\$5. 117	\$5. 456	\$5. 335	\$5. 335	\$5. 335	\$5. 335	\$5. 141	\$5. 141	\$5. 141	\$5. 092	(1)	(1)	
1891	(1)	(1)	3. 941	4. 135	4. 135	4. 135	4. 026	4. 026	4. 026	3. 807	\$3. 856	\$4. 026	
1892	4. 026	4. 026	4. 026	4. 026	4. 122	4. 026	4. 026	4. 074	4. 680	5. 093	4. 996	4. 802	\$4.327
189	4. 802	4.971	5. 153	5. 274	5. 153	4. 971	4. 668	4. 244	4. 001	3. 880	3. 759	3. 613	4. 541
18	3. 589	3. 516	3. 419	3. 322	3. 298	3. 201	3. 250	3. 298	3. 468	3. 371	3. 322	3. 298	3. 363
1895	3. 346	3. 540	3. 371	(1)	(1)	3.516	4. 001	3. 759	4. 123	4. 123	4. 123	3. 953	
1896	3. 856	3. 686	3. 589	3. 444	3. 116	(1)	3. 177	3. 152	3. 250	3. 419	3. 516	3. 274	
1897	3. 250	3. 250	3. 274	3. 346	3.456	3.346	3. 444	3. 456	3. 613	3. 759	3. 759	3. 613	3. 464
1898	3. 686	3. 759	3. 710	3. 662	3. 565	3. 710	3. 565	3. 613	3. 710	3. 565	3. 565	3. 541	3. 638
1899	3.601	3. 928	4. 074	4. 365	4. 559	4. 462	4. 559	4. 341	4. 486	4. 389	4. 680	5. 456	4. 408
1900	5.311	5. 092	4. 898	4. 802	4. 365	3. 807	3.953	3. 832	3. 928	3. 177	3. 468	3. 395	4. 169
1901	3. 334	3. 298	3. 371	3. 346	3. 322	3. 395	3. 565	3. 613	3. 832	3. 759	3. 686	3. 638	3. 513
1902	3. 638	3. 734	3. 832	3. 759	3. 734	3. 759	3. 783	3. 783	3. 807	4. 038	4. 001	4. 001	3. 822
1903	4. 207	4. 256	4. 268	4. 171	4. 122	4. 207	4. 171	4. 147	4. 159	4. 171	4. 001	3. 735	4. 135
190	3. 783	3. 807	3. 613	3. 540	3. 565	3. 541	3. 492	3. 638	3. 650	3. 601	3. 734	3. 734	3. 642
1905	4. 074	3. 928	3. 832	3. 771	3. 771	3. 856	4. 026	4. 098	4. 268	4. 268	4.098	3. 904	3.991
1906	3. 977	3. 953	4. 052	4. 171	4. 147	4. 050	4. 026	4. 050	4. 195	4. 195	4. 341	4. 802	4. 163
1907	5.117	5. 020	5. 214	5. 480	5. 602	5. 286	5. 044	4. 753	5. 311	4. 874	4. 777	4. 244	5. 060
190	4. 050	4. 050	3. 759	3. 565	3. 468	3. 565	4. 001	4. 001	4. 050	4. 050	4. 026	4. 098	3.890
1909	4.098	4. 195	4.244	4.195	3. 807	3. 759	$\overline{3.856}$	3.662	3. 662	3. 662	3.516	3.419	3.840
1910	3. 516	3. 468	3. 322	3. 419	3. 516	3. 419	3.419	3.371	3.419	3. 613	3.856	3.953	3.524
1911	3. 795	3. 795	3. 659	3. 480	3. 407	3. 407	3. 359	3. 310	3. 419	3. 274	3. 274	(1)	
1912	3. 322	3. 346	3. 444	3. 444	3. 444	3. 395	3. 322	3. 444	3. 589	3. 686	3. 492	3. 414	3. 445
191	3. 468	3. 492	3. 395	3. 492	3. 444	3. 613	3.613	4. 050	4. 026	3. 759	3. 686	3. 638	3. 640
Av. 1909-1913	3. 640	3.659	3.613	3. 606	3.524	3.519	3.514	3.567	3. 623	3.599	3.565	3. 606	3. 612
1914	3.832	3. 977	4.026	3.977	4. 074	4.074	3.977	3.953	3. 468	3. 201	2.910	2.862	3.694
1915	2. 910	3. 177	3. 031	3. 201	3. 201	3. 201	3. 007	3. 080	3. 322	3.322	3. 783	4. 583	3. 318
1916	4. 462	4. 996	5. 432	4. 777	4. 462	4. 363	4. 527	4. 874	4. 704	4. 996	5. 432	5. 384	4. 867
191	5. 335	5. 141	4. 947	5. 384	5. 287	5. 675	5. 675	6. 645	6. 063	5. 432	5. 432	5. 093	5. 509
1918	5. 384	5. 481	5. 481	5. 772	6. 160	6. 160	6. 888	6. 790	6. 887	6. 742	6. 984	6. 548	6. 273
1919	5. 675	5. 772	6. 063	6. 645	7. 663	9. 603	9. 749	8. 827	9. 506	11. 058	12. 368	13. 629	8. 880
1920	16.975	14. 065	12.998	9. 506	6. 305	6. 451	4.608	4. 705	6. 321	5. 978	5. 782	5.635	8. 277
Av. 1914-1920.	6. 368	6.087	5.997	5.609	5.307	5.647	5.490	5.553	5.753	5.818	6. 099	6. 248	5.831
1921	5.782	5.733	5. 880	5. 782	5.635	5.733	5.733	5. 390	5.978	6.027	7.154	7.595	6.035
1922	6. 762	6. 566	6. 027	6. 517	7. 203	7. 301	7.056	7. 105	7. 644	8.330	7. 889	8. 232	7. 219
192	8. 183	8. 771	8. 624	9. 310	8. 428	7.693	7.154	7.350	9.800	7.840	7.840	7.742	8. 228

[^292]Table 606.-Raw silk: Production in undermentioned countries, 1909-1922.

Country.	Average 19091913.	1916	1917	1918	1919	1920	1921	1922
Italy WESTERN EUROPE.	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 8,524 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds } \\ 7,963 \end{gathered}$	$\begin{array}{\|c} 1,000 \\ \text { pounds. } \\ 6,217 \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds. } \\ 5,942 \end{array}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 4,079 \end{gathered}$	$\begin{array}{r} 1,000 \\ \text { pounds. } \\ 7,330 \end{array}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 7,154 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$ $8,234$
France	-992	${ }^{7} 485$	- 452	529	${ }^{4} 408$	+551	- 430	437
Spain	182	198	154	165	154	177	132	170
Total	9, 698	8,646	6, 823	6,636	4,641	8,058	7,716	8,841
Eastern Europe, Levant, and Central Asia ${ }^{1}$	6,611	2, 623	2, 624	2, 624	2, 039	1,653	1,213	1,543
China:								
Exports from Shanghai	12, 576	10, 340	10, 097	10, 251	8,598	7, 860	8, 840	10,648
Exports from Canton	5, 146	5, 346	5,170	4,134	5, 071	4,167	5, 688	7,000
Japan: Exports from Yokohama	21, 898	29, 431	34, 050	31, 416	32, 188	24, 008	40,984	41,546
British India: Exports from Bengal and Cashmere	428	254	232	242	220	176	187	165
Indo-China: Exports from Saigon, Haiphong, etc	${ }^{2} 32$	7	11	11	11	33	44	55
Total	40,080	45, 378	49, 560	46,054	46,088	36,244	55, 743	59, 414
Grand total	56,389	56,647	59,007	55, 314	52,768	45,955	64,672	69,788

[^293]
FORESTRY AND FOREST PRODUCTS.

Table 607.-Forest areas, United States.

Region.	Original forest areas.		Present forest areas.									
			Total. ${ }^{1}$		Saw timber.		Cordwood.	Not re-stocking.	Conifers.	Hardwoods.		
			Virgin.	Second growth								
	1,000	Per			1,000	Per	1,000	1,000	1,000	1,000	1,000	1,000
	acres.	cent.	acres.	cent.	acres.	acres.	acres.	acres.	acres.	acres.		
New England.-	38, 908	4.7	25, 708	5. 5	2,000	9, 261	8,872	5,575	16, 208	9,500		
Middle Atlantic	69, 610	8.5	28,678	6.1	1,896	9,559	10,793	6, 430	11, 550	17, 128		
Lake-1.	103, 680	12.6 20.7	57,100 60,182	12.8	10,100 7,600	$\xrightarrow{13,930}$	12,570	20,500 2,270	28,150 3,220	28,950 56,962		
South Atlantic and	170, 560	20.7	60, 182									
East Gulf .-.-.-.-..-	170, 240	20.7	99, 000	21.1	18,300	27,900	32,080	20, 720	71,700	27,300		
Lower Mississippi Val-	128, 400	15.6	78, 865	16.8	20,835	20, 200	24,075	13,755	42,664	36,201		
Rocky Mountain.	63, 720	7.8	60, 842	12.9	37, 746	3,313	14, 533	5, 250	60, 842			
Pacific ${ }^{2}$-...	77, 120	9.4	59, 100	12.6	39, 683	5,292	7,425	6,700	59,100			
United States	822, 238	100.0	469, 475	100.0	138, 160	113,756	136, 359	81, 200	293, 434	176, 041		

'Forest Service. Compiled from report on Senate Resolution 311 and "Forest Resources of the World."
${ }^{1}$ The areas given in this table refer only to land capable of producing saw timber or pulp timber in commercial quantities, and do not include the open woodland and chaparral of the Southwest.
${ }_{2}$ Alaskan areas are not tabulated because so little is known of the interior forests that the best estimates are only approximations. The figures now commonly used indicate $65,000,000$ acres of coniferous forest and $5,000,000$ acres of hardwoods. The bulk of the merchantable timber is confined to a belt along the coast of the southeastern part of the Territory, containing approximately $5,000,000$ acres of forest.

Table 608.-National forests, State forests and parks, and municipal forests, areas 1923. ${ }^{1}$

State.	Aggregate.	$\begin{gathered} \text { National } \\ \text { forests } \\ \text { (net area). } \end{gathered}$	State forest lands.				Municipal and county forest land.
			Total. ${ }^{2}$	State forests.	State parks.	Other State forest land.	
Alabama	Acres. $291,430$	Acres. $97,198$	Acres. 175, 000	Acres.	Acres.	Acres. 175, 000	$\begin{gathered} \text { Acres. } \\ 19,232 \end{gathered}$
Arizona-	11,235, 434	11, 204,304	31, 130				
Arkansas	19, 2111,472	19,147, 587	56, 245		11, 400	44,845	7,640
Colorado	13, 426,668	13, 277, 038	120,000			120, 000	29,630
Connecticut	28,472		14,150	6,529	5,121	2,500	14,322
District of Colum	1,632 339						1,632
Florida-.	339,858	337, 938	1,920		1,920		
Georgia	153,457 $19,984,185$	19,056,871	927, 154	685, 000	14, 814	227, 340	160
Illinois.	25, 040		40		40		25, 000
Indiana	4, 351		4,351 4 500	2,851			
Iowa-..	4, 450		4, ${ }^{4} 500$		4, 500		200
Kansas	418, 059	32,256	385, 000			385,000	803

[^294] unreserved public domain. The State and municipal forests are as of July 1, 1922.

Table 608.-National forests, State forests and parks, and municipal forests, areas 1923-Continued.

State.	Aggregate.	National forest (net area).	State forest lands.				Municipal and county forest land.
			Total.	State forests.	State parks.	Otber State forest land.	
Maryland	Acres. $13,235$	Acres.	Acres. $5,835$	Acres. $3,835$	Acres.	Acres. 2, 000	Acres. $7,400$
Massachusetts	129, 513		83, 353	50,353	13, 000	20,000	46,160
Michigan	773, 117	124, 082	648, 000	338,000	10,000	300, 000	1,035
Minnesota	1, 784, 069	1,047, 941	736,068	381, 000	5,068	350, 000	, .60
Missouri.	50,000	1,017,011	50, 000	381,		50,000	
Montana	16, 447, 715	15, 881, 715	566, 000	460, 000		106,000	
Nebraska	205, 986	205, 944					42
Nevada.	4, 976, 513	4, 976, 513					
New Hampshir	431, 951	404, 945	18,950	18,000		950	8,056
New Jersey	53, 164		17, 064	16,504	560		36, 100
New Mexico	8, 705, 984	8, 535, 984	170, 000			170,000	
New York	2, 215, 853		2,046, 853	1,992, 516	33,962	20,375	169,000
North Carolina	390, 279	359, 690	3, 725	. 300	1,225	2, 200	26, 864
North Dakota	250		250		250		
Ohio.	54,948		43,471	20, 371	200	22, 900	11,477
Oklahoma	61, 480	61, 480					
Oregon	13, 217, 047	13, 137, 447	74,800		809	74,000	4,800
Pennsylvania	1, 193, 134		1, 174, 401	1, 126, 237	1,410	46,754	18,733
Rhode Island	, 104						104
South Carolina	18,558	18,558					
South Dakota	1, 145, 587	1, 057, 747	87, 840	61, 440		26, 400	
Tennessee.	266, 210	241, 210	25, 000			25, 000	
Texas. Utah.	7, 455, 3110						310
Vermont	$7,455,110$ 43,945	7, 453, 400					1,710
Vermont	43, 945		42, 100	29,300	800	12, 000	1,845
Virginia	443, 301	431, 513	2, 088	588		1,500	9,700
Washington	10, 776, 433	9, 900, 869	863, 600	58, 000	5, 600	800, 000	11,964
West Virginia	132, 108	132, 108					
Wisconsin	300, 055		300, 055	300, 000	55		
W yoming.	8, 417, 773	8, 417, 773					
Alaska.	20, 571, 549	20, 571, 549					
Porto Rico	12,443	12, 443					
Total	166, 369, 984	157, 236, 807	8, 679, 198	5,550, 824	112, 480	, 015,894	453, 979

Forest Service.
Table 609.-Forest areas of the world, by principal divisions and countries.

Division and country.	Forest area.	Division and country.	Forest area.
Asiatic Russia	Acres. $1,136,153,150$	Belgian Congo	Acres. $180,000,000$
India	260, 139, 520	Rhodesia.	170, 304, 009
China	190, 000, 000	Nigeria	139, 776, 600
Dutch East Indies	154, 339, 000	French Congo	$80,000,000$
Japan.	90, 484, 640	Cameroon.	$35,000,000$
Other As	264, 898, 280	Ivory Coast	30,000, 000
Asia.	2, 096, 014, 590	Other Africa	162, 378, 030
Brazil	1,000,000,000	Africa	797, 458,000
Argentina	264, 000,000	Russia	440,000, 000
Peru	224, 000, 000	Sweden	55, 550, 000
Colombia	150, 000, 000	Finland	49, 410, 000
Bolivia	128, 000, 000	Germany	30, 905, 840
Venezuela	103, 840, 000	France	25,508, 420
Other South America	222, 850, 000	Other Europe.	172, 744, 200
South America	2,092, 690,000	Europe	774, 118, 460
Canada	596, 746, 000	New Guinea	160,020,000
United States ${ }^{1}$	550, 000, 000	Australian Commonwealth	90, 291, 500
Alaska	95, 000, 000	New Zealand.	17,073, 920
Mexico	74, 100,000	Other Oceania	16, 073, 300
Other North America	128, 111, 000	Australia and Oceania	283, 458, 720
North America	1, 443, 957, 000	Total world divisions	7, 487, 696, 770

[^295]Table 610.-Woodland and timberland on farms, area by States and lumber regions, 1919.

States and regions.	Total. ${ }^{1}$	Woodland.	Timberland. ${ }^{2}$
	Acres.	Acres.	Acres.
Alabama	8, 301, 177	5, 799, 880	2, 501, 297
Arizona	523, 648	469, 136	54,512
Arkansas	7, 396, 028	5, 036, 550	2, 359, 478
California	4, 252, 287	3, 680, 248	572, 03.
Colorado.	1, 415, 420	1, 272, 491	142, 929
Connecticut	683, 719	611, 089	72,630
Delaware --------	222, 658	176, 471	46, 187
District of Columbia	- 78.828	$\begin{array}{r}779 \\ \hline 23193\end{array}$	548, 858
Florida	2, 780, 790	2, 231, 932	548, 858
Georgia.	10, 491, 848	7, 798, 508	2, 693, 340
Idaho.	820, 876	647, 027	173, 849
Illinois.	3, 102, 579	2, 644, 115	458, 464
Indiana	3, 141, 042	2, 331, 218	809, 824
Iowa	2, 295, 274	2, 142, 832	152, 442
Kansas.	1,313, 093	1, 271, 729	41,364
Kentucky	6, 018, 280	4, 196,708	1,821,572
Lauisiana	3, 614, 040	2, 930, 557	683, 483
Maine.	3, 447, 597	1, 803, 696	643, 901
Maryland	1,327, 221	1, 021, 463	305,758
Massachusetts	1, 030, 386	782, 043	248, 343
Michigan	3, 217, 000	2, 774, 353	442, 647
Minnesota	4,482, 656	3, 953, 264	529,392
Mississippi	7,014, 898	5, 417, 649	1,597, 249
Missouri.	8, 553, 857	6, 414, 327	2, 139, 530
Montana	1,646, 462	1, 496, 980	149, 482
Nebraska	900, 933	870, 396	30, 537
Nevada.	28, 637	26, 622	2, 015
New Hampshire	1,299, 838	872, 723	427, 115
New Jersey	454,768	380, 015	74, 753
New Mexico	1,817,469	1,750, 297	67,163
New York	4, 100, 567	3, 132, 799	1,027,768
North Carolina	10, 299, 547	8, 192, 526	2, 107, 021
North Dakota	679, 836	671, 077	8,759
Ohio	3, 198, 929	2, 338, 085	800, 844
Oklahoma	4,206, 171	3, 976, 689	220, 472
Oregon	2, 309, 596	1,550, 132	759, 464
Pennsylvania	4, 043, 902	2, 847, 766	1, 196, 136
Rhode Island .	130, 462	100, 243	30, 219
South Carolina	5, 302, 575	4, 018, 413	1, 284, 162
South Dakota	530, 183	521, 839	14, 344
Tennessee	7,080, 169	4,866,948	2, 213, 221
Texas	14, 532, 913	13, 466, 924	1, 065,989
Utah	212, 762	204, 354	8,408
Vermont	1,428, 309	954, 592	473,717
Virginia	7, 907, 352	5, 757, 322	2, 150,030
Washington	1, 813, 061	1, 475, 510	337, 551
West Virginia	3, 469, 444	2, 334, 658	1, 134,786
Wisconsin.	5, 401, 910	4, 858, 406	543, 504
W yoming	421, 806	386, 876	34, 930
United States.	167, 730, 794	132, 460, 267	35, 27e, 527
Northeastern	17, 230, 255	12,683, 679	4, 546, 576
Lake.	13, 101, 566	11, 586, 023	1,515,543
Central	34, 564, 300	25, 126,059	9, 438,241
North Carolina p	23, 509, 474	17, 968, 261	5,541, 213
Southern	58, 337, 865	46, 658, 699	11, 679, 166
North Pacific.	4,122,657	3, 025, 642	1,097,015
South Pacific	4, 280, 924	3, 706, 870	574,054
North Rockies.	2, 467, 338	2, 144, 007	323, 331
South Rockies.	4, 391, 096	4, 083, 154	307,942
Prairie.-	5, 725, 319	5, 477, 873	247, 446

Forest Service. Compiled from reports of Bureau of the Census.
${ }^{1}$ The total embraces all land on farms covered with natural or planted forest trees, which produce or later may produce firewood or other forest products.
${ }_{2}$ Timberland is that part of the total forested area on farms which is covered with trees mostiy of sawlog sizes.

Table 611.-Total stand and saw timber of the United States and Alaska, 1920.

Region.	Total stand.				Saw timber.		
	Total.	Per cent.	On saw timber areas.	On cordwood areas.	Total.	Softwoods.	Hardwoods.
New England.	Million cubic feet. 2085	3	Million cubic feet. 15, 492	Million cubic feet.	Million board feet.	Million board feet.	Million board feet.
Middle Atlantie	24, 897	3	17, 126	7,771	44, 857	15, 353	29,501
Lake.	50, 584	7	41, 534	9,050	110, 110	40,760	69, 3亏0
Central	85, 118	11	61, 319	23, 799	144, 470	11,318	133, 152
South Atlantic and East Gulf	95, 158	13	73, 060	23, 098	220, 577	136, 827	83,750
Lower Mississippi Valley	118, 364	16	95, 252	23, 112	280, 908	148, 308	132,600
Rocky Mountain.	61, 893	8	53, 755	8,138	223, 141	223, 141	
Pacific coast	287, 724	39	274, 874	12,850	1, 141, 031	1, 141, 031	(1)
United States.		100		113, 176	2, 214, 893	1,755, 218	459, 675
Alaska ----------------1.-	${ }^{(2)}$		${ }_{6}{ }^{(3)}$	${ }_{112}{ }^{(2)}$	${ }^{3} 102,000$	${ }^{3} 100,000$	${ }^{3} 2,000$
United States and Alaska	745, 588	100	632, 412	113, 176	2, 316, 893	1, 855, 218	461,675

Forest Service. Compiled from "Forest Resources of the World" and other sources.
1 Relatively small quantities of hardwoods. No estimates available.
2 No estimate.
${ }_{3}$ Figures only approximations, due to the lack of knowledge, particularly of the forests of interior Alaska.
Table 612.-Saw timber stand in the United States by species and regions, 1920.

Species.	Total.	New England.	Middle Atlantic.	Lake.	'Central.	Soath Atlantic and East Gulf.	Lower Mississippi.
	Million	Millios	Natution	Miltion	Mrillion	Million	Million
	board	board	board	board	board	board	board
	feet.	feet.	feet.	feet.	feet.	feet.	feet.
Oak	157, 372	1,510	5,500	8, 301	64, 712	27, 889	49, 460
Birch, beech, and maple	90, 784	8,143	16, 897	36,076	20, 505	4,522	4,641
Bed gam ---------	44, 222		176		3, 728	13,400	26,918
Chestnut	19, 319	960	3,754		7,989	6, 616	
Hickory	15, 784	40	412	187	6, 791	3, 183	5,171
Cottonwood and aspen	10, 824	374	13	999	2,131	1,340	5,967
Ash	9,988	215	513	1,893	2, 929	1,256	3,182
Yellow poplar	9,611		126	1,8 7	5, 193	4, 020	265
Others	101, 771	77	2,113	21,887	19, 174	21, 524	36,996
Fastern hardwoods.	459, 675	11, 319	20,504	69,350	133, 152	83,750	132, 660
Southern yellow pine	257, 691				365	121, 442	135,884
Hemlock	30, 896	1,804	5, 066	18,301	3,910	1,845	
Spruee and fir	31, 572	23, 971	2,948	3,772		881	
Whpress ---------	22,921	9,816	4,037	8,090	515	11,208	11,733
Others---------------	24, 509	2,880	13,382	10,687	${ }^{1} 6,528$	$\bigcirc 362$	711
Eastern softwoods	391, 046	38, 480	15, 353	40,760	11,318	136, 827	148,308
		Rocky Mountain.	Pacific coast.				
Domgras fir	595, 505	36, 094	558, 571				
Western yellow pine and Jeffrey pine.-	249, 578	06, 125	183, 453				
Western fremlock	95, 092	1,092	94,000				
True firs	91, 349	8,870	82,479				
Pedwood.	72, 208		72, 808				
Western white pine and sugar pine. \qquad	57, 071	18,586	38, 485				
Western red oedar.	53, 348	4,348	40, 000				
Lrodgepole pine	43,919	39, 353	4,586				
Spruce.	39, 822	26,467	13,355				
Others	66, 280	21, 366	44, 914				
Western softwoods.	1, 364, 172	223, 141	1,141, 1 ¢1				

Forest service.

${ }^{1}$ Includes small amounts of various species of yellow pine.

Table 613.-National forests: Estimated quantities of standing timber June 30, 1922.

Lincoln
${ }^{1}$ Montana, northeastern W ashington, northern Idaho, and northwestern South Dakota
${ }_{2}^{1}$ Colorado, W yoming (except western Wyoming), South Dakota, Nebraska, northern Michigan, and northern Minnesota.
${ }^{3}$ Arizona (except north of Grand Canyon) and New Mexico.
1 Utah, southern Idaho, western W yoming, eastern and central Nevada, and northwestern Arizona.

- California and southwestern Nevada.

Table 613.-National forests: Estimated quantities of standing timber June 30, 1922-Continued.

District and forest.	Saw timber.	Cordwood.	District and forest	Saw timber.	Cordwood.
DISTRICT 6.6			DISTRICT 7.7		
Cascade	$\begin{gathered} M \text { feet b. m. } \\ 23,589,613 \end{gathered}$	Cords.	Alabama	M feet b. m. 94, 489	Cords. 30, 000
Chelan	4,548, 126		Arkansas	1,281,380	
Columbia	11, 011, 571		Cherokee	-346, 709	407, 423
Colville.	2, 681, 508		Florida	182, 250	1,287,785
Crater.	8, 860, 128		Luquillo		
Deschutes	7, 317, 000		Monongahela	22, 015	10,700
Fremont	6, 597, 280		Nantahala	282, 381	617,600
Malheur	6,560, 000		Natural Bridge	152, 314	251, 768
Ochoco	7, 675, 000		Ozark	416, 750	251,
Olympic	30,000, 000		Pisgah	289, 030	2,280, 000
Oregon	14, 105, 653		Shenandoah	140, 172	226,671
Rainier	7,232, 290		Unaka_----------------	152, 732	515, 024
Santiam	12, 023, 499		White Mountain .-.-.-.	923, 764	
Siskiyou	11, 980, 343		Wichita		
Siuslaw	5,913, 080		Total, district 7-.-	4, 283, 986	5, 626, 971
Snoqualmie	8, 936, 786				
Umatilla	4, 528, 795		DISTRICT 8.8		
Umpqua	23, 594, 201				
Wallowa	1, 800, 130		Chugach Tongass	$\begin{array}{r} 6,589,950 \\ 73,538,000 \end{array}$	
Washington	10, 437, 269				
Wenatchee	3, 608, 500		Tôtal, district 8.	80, 127, 950	
Whit	5, 864, 758		Total, all districts	557, 571, 143	93, 721, 134
Total, district 6..-	218, 865, 530		, all districts	557, 571,	9, 721,134

SUMMARY BY STATES.

State,	Saw timber.	Cordwood.	State.	Saw timber.	Cordwood.
Alabama	$\begin{array}{r} M \text { feet } b . ~ m . ~ \\ 94,489 \end{array}$	Cords. $30,000$	New Hampshire	$M \text { feet b. } m$	Cords.
Alaska	80, 127, 950		New Mexico-.	10, 262, 864	11, 484, 420
Arizona	14, 575, 357	11, 426, 533	North Carolina	454, 917	2,662,531
Arkansas	1, 689, 130		Oklahoma.		
California	99, 591, 705	25, 430, 728	Oregon.	136, 096, 751	
Colorado	21, 177, 413	10,659, 397	Porto Rico		
Florida	182, 250	1, 287, 785	South Carolina	24, 064	52, 636
Georgia	259, 695	1390, 730	South Dakota	2, 641, 931	896, 000
Idaho	54, 223, 550	6,017, 207	Tennessee	295, 008	588, 816
Maine	67, 725		Utah	5, 364, 881	6, 669, 716
Michigan	4,295	18, 580	Virginia	309, 746	570, 004
Minnesota	524, 500	1, 952, 000	W ashington	80, 461, 018	
Montana	35, 189, 369		West Virginia	41, 923	44,469
Nebraska			W yoming	12, 876, 222	6, 971,836
Nevada	169,351	6,567, 746	Tota	557, 571, 143	93, 721, 134

Forest Service.
6 Washington (except northeastern Washington) and Oregon.
${ }^{7}$ Arkansas, Alabama, Florida, Oklahoma, South Carolina, Georgia, North Carolina, Tennessee, Virginia, West Virginia, New Hampshire, Maine, Porto Rico.
8 Alaska.
Note.-In round numbers the total estimated stand, including cordwood converted to board feet, is $590,000,000 \mathrm{M}$ feet b . m .

Table 614.-National forests: Estimated quantities of saw timber, by species, June 30, 1922.

Species.	Thousands of board feet.							
	District 1.	District 2.	District 3.	District 4.	District 5.	District 6.	District 8.	- Total.
Douglas fir.	12, 554, 153	1,549, 301	2, 195, 112	8,830,525	16, 476, 048	100, 960, 806		142, 565, 945
Western yellow pine \qquad	$5,450,232$	5, 031, 374	19, 058, 288	11, 286, 392	31, 192, 012	33, 122, 435		105, 190, 733
Western hemlock.--	5, 51, 661					29, 693, 309	52, 633, 428	82, 378, 398
Lodgepole pine.----	17, 604, 352	10, 109, 010		8, 507, 930	2,634,906	4, 737, 354		43, 593, 552
Alpine species	1, 808, 340	1, 789, 136	129, 301	2, 320,992	75,211	25, 345, 312		31, 468, 292
Cedar---------------	2, 738, 161	5, 275			4, 404, 971	8, 573, 908	8, 104, 406	23, 826,721
Engelmann spruce-	5, 448, 782	12, 363, 529	754, 297	3, 796, 926		1, 396, 774		$\begin{aligned} & 23,760,308 \\ & 23,756,657 \end{aligned}$
White fir	${ }^{1} 3,246,189$	48,064	739, 027	132, 622	14, 461, 403	$5,129,352$ $1,555,005$		$\begin{aligned} & 23,750,657 \\ & 20,065,758 \end{aligned}$
Sitka spruce						1, 555, 005	18, 510, 753	$\begin{aligned} & 20,065,758 \\ & 13,384,526 \end{aligned}$
Sugar pine					11, $12,935,782$	1, 729, 437		$\begin{aligned} & 13,384,526 \\ & 12,934,782 \end{aligned}$
Larch.	6, 852, 121			499, 639		4, 312, 438		11, 664, 198
White pine.	6, 045, 523	40,200			151, 681	1,247, 365		7, 484, 769
Jeffirey pine					1,925, 605			1,925, 605
Hardwoods -------	2, 600	1, 225, 305		505, 949		33, 376	122, 703	1,889, 933
Black and white spruce		117, 020					756, 660	$\begin{aligned} & 873.680 \\ & 336,297 \end{aligned}$
Redwood					258, 147	78, 150		$\begin{aligned} & 336,297 \\ & 200,400 \end{aligned}$
Blue spruc		$\begin{array}{r} 96,000 \\ 182,300 \end{array}$		104, 400				$\begin{aligned} & 200,400 \\ & 182,300 \end{aligned}$
Norway pine		76,000						76, 0\%0
Juniper	3,500	8,000		43, 330				54, 830
Miscellaneous_-.-.- Total, all species, district 7 .-....-	${ }^{2} 1,924,783$	${ }^{3} 19,595$	${ }^{4} 243,277$	${ }^{5}$ 2, 189, 351	${ }^{6} 345,958$	950, 509	--. -	$\begin{aligned} & 5,673,473 \\ & 4,283,986 \end{aligned}$
Total	63, 730, 397	32, 710, 109	23, 119, 302	38, 218, 056	96, 515, 813	218, 865, 530	$80,127,950$	$557,571,143$

DISTRICT $7 .{ }^{7}$

Species.	M feet $\mathrm{b} . \mathrm{m}$.	Species.	M feet b. m.	Species.	M feet b.m.
Yellow pine ${ }^{8}$	1, 228,368	Gum.	82,031	Spanish Oak	2, 600
Spruce and fir	- 508, 717	White pine	67, 901	Wainut---	976
White oak	482, 336	Heech.	62, 929	Locust	909
Chestnut	317, 146	Hickory	51, 911	Cherry	875
Longleaf pine	179, 456	Mixed oak	33, 446	Cypress.	80
Red oak.	168, 035	Basswood	17, 934	Pond pine.	75
Hemlock	142, 927	Aspen.	14,340	Juniper---	10
Chestnut oak	137,489	Ash.	10, 403	Miscellaneous	76, 046
Maple......	127, 822	Scarlet oak	8, 882	Tie timber	123, 569
Yellow birch	101, 819	Buckeye.	6,017		
Black oak	108, 351	Birch_-	4,742	Total	4,283,986
Yellow poplar	105, 234		2,958 2,629		
Paper birch	95, 971	Slash pine.	2,629		

Forest Service.

1 Includes some hemlock.
2 Includes balsam, white fir, hemlock, and others.
${ }^{3}$ Includes piñon pine, tamarack, hemlock.
4 Includes Mexican white pine, cork bark fir, foxtail pine, Chihuahua pine, cypress, etc.
5 Includes balsam, dead, and other species not specified.
6 Includes Coultor pine, big cone spruce, and miscellaneous.
7 Presented separately due to difference in species.
${ }^{8}$ Includes shortleaf, Virginia scrub, table-mountain, and pitch pine.

Table 615.-Forest planting.
AREAS PLANTED PRIOR TO JANUARY, 1923.

AREAS PLANTED DURING CALENDAR YEAR 1922.

Forest Service. Includes relatively small areas sown with forest seeds.
${ }^{1}$ New England: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut.
${ }^{3}$ Middle Atlantic: New York, New Jersey, Pennsylvania.
${ }_{8}$ Central hardwoods: Ohio, Indiana, Illinois, Kentucky, Tennessee, Arkansas, Missouri.
${ }^{4}$ Lake: Michigan, Wisconsin, Minnesota.
${ }^{5}$ South Atlantic: Delaware, Maryland, Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida.
${ }^{6}$ Gulf Coast: Alabama, Mississippi, Louisiana, Texas.
${ }^{7}$ Plains and prairie: North Dakota, South Dakota, Iowa, Nebraska, Kansas, Oklahoma.
${ }^{8}$ Rocky Mountain: Idaho, Montana, W yoming, Nevada, Utah, Colorado, Arizona, New Mexico.
${ }^{\circ}$ Pacific Coast: Washington, Oregon, California.

Table 616.-National forest: Construction, improvement, and maintenance of roads and trails.

State.	Year ending June 30, 1923.		Total prior to June 30, 1923.				Expenditures prior to June 30, 1923.		
	Miles constructed.		$\begin{gathered} \text { Miles } \\ \text { constructed. } \end{gathered}$		$\begin{gathered} \text { Miles } \\ \text { maintained. } \end{gathered}$				
	Roads.	Trails.	Roads.	Trails.	Roads.	Trails.	Federal funds.	Cooperative funds.	Total funds.
Alabama	10. 0		10.0		10.0	19.0	\$5, 738.74		\$5, 738. 74
Alaska	19.1	40.6	80.2	96. 7	133.2	96.7	$895,613.19$	\$171, 243. 56	1, 066, 856.75
Arizona	136.7	313.8	465.6	993.8	578.1	506.8	1, 305, 519. 38	660, 725. 20	1,966, 244. 58
Arkansas	29.6	62.3	108.5	133.4	66.8	267.3	302, 644.32	24, 184.93	326, 829.25
Californ	140.5	463.5	462.7	1,211. 2	1,540.7	5, 029.4	3, 478, 506.08	978, 348.99	4, 456, 855. 07
Colorado	122.5	175.9	597.2	807.1	371.1	1,383.5	2, 180, 422.56	517, 220. 17	2, 697, 642. 73
Florida	4.0		42.4		23. 7.	36. 5	85, 281.88	63, 347.39	148, 629. 27
Georgia	5. 0	34. 0	13.5	69.4	10.0	114.6	127, 583. 32		127, 583. 32
Idaho	206. 7	647.4	958.1	1,946. 7	380.6	5,071.0	3, 431, 191.47	891, 895. 01	4, 323, 086. 48
Kansas			3.4				2, 111. 51		2, 111. 51
Maine	4.3		4.3	30.0	7.1	32.3	10,344. 08		10, 344. 08
Michigan			40.4		27.0		6, 318. 98	186. 95	6,505. 93
Minnesota	25.0		70. 5	39.0	30. 0	18.0	158, 371. 88	92, 189. 48	250, 561. 36
Montana	41. 2	380.5	388.8	683.7	512.8	5, 315.8	1, 893, 354. 78	354, 786. 57	$\begin{array}{r} 2,248,141.30 \\ 18.043 .86 \end{array}$
Nebraska	10.5		24.6		2.0		18,043.86		
Nevada	3.0	143.3	299.3	340.8	142.7	82.0	261, 411. 65	98, 163. 46	359, 575. 11
New Hampshire	6. 6	22.1	11. 1	258.1	31.7	237.3	39, 351.68	220. 25	39, 577.93
New Mexico -	59.2	403.8	293.9	870.7	220.3	860.8	1, 191, 822.38	191, 264. 71	1, 383, 087.09
North Carolina	11.0	70.8	61.9	110.9	41.5	347.1	202, 727.60	34, 056. 37	236, 783.97
North Dakota			1.0				65. 75		
Oklahoma	3.0		6.0		19.0		14, 488. 95	1,937. 36	16, 426. 31
Oregon-	395.4	354.3	1,147.4	944.6	1,341.3	3, 507. 0	3, 421, 762.02	2, 080, 008. 66	5,501,770. 68
P'orto Rico		14.0		30.3		30.3	$8,67264$		
Souih Carolina	2.0	4.0	5. 1	4.0	22.8		$50,432.32$	114, 2001.31	$\begin{array}{r} 62,332.32 \\ 407,532.02 \end{array}$
South Dakota	34.4		132.1	20.6	74.6	3.3	293, 330.71	114, 201.31	407, 532.02
Tenness		105. 2	12.2	151.7	11.0	281.2	103, 872.97	80, 050. 00	183, 922.97
Utah.	472.6	279. 0	801.1	740.0	485. 7	651.0	1, 216,473. 65	624, 262.31	1, 840, 7335.96
Virginia-	17274	102. ${ }^{2}$	24.5 367.6	158.9 674.8	130.8 380.4 3	3,762. ${ }^{364}$			$\begin{array}{r} 147,587.98 \\ 3,252,056.48 \end{array}$
W ashington - West Virginia	127.6	335. 3 20.5	367.6	674.8 20.5	380.4 36.5 1	$\begin{array}{r}3,762.0 \\ 143 \\ \hline 9\end{array}$	$\begin{gathered} 9,951.03 \\ 4,913.25 \end{gathered}$		3, 252, 513.25
Wyoming -	136.9	150.7	430.3	338.4	611.5	917.5	1,371, 868.42	242, 285. 04	1,614, 153.46
Tota	2,024.2	4,123. 5	6, 873.7	10, 675.3	7, 242.9	29, 078.6	24, 559, 019.07	8, 155, 843. 08	32, 714, 862 . 15

Forest Service.
Tıble 617.-Forest fires: Number, damage, and area, United States, 1916-1922.

[^296]Table 617.-Forest fires: Number, damage, and area, United States, 1916-1922-Continued.

Table 617.-Forest fires: Number, damage, and area, United States, 1916-1920-Continued.

Group and State.	Number of fires by size.					Damage caused by fires.			Area burned.	
	Calendar year.	Total.	Under $\frac{1}{2}$ acre.	$\begin{aligned} & \frac{1}{2-10} \\ & \text { acres. } \end{aligned}$	$\begin{gathered} \text { Over } \\ 10 \\ \text { acres. } \end{gathered}$	Total.	$\begin{aligned} & \text { Damage } \\ & \text { to } \\ & \text { timber. } \end{aligned}$	Other damage	Forest land.	Total.
$\begin{gathered} 1922 . \\ \text { S u m mary b y } \\ \text { groups-Contd. } \\ \text { West Missis- } \\ \text { sippi States.-. } \\ \text { Lake } \end{gathered}$										
									Acres.	
				3, 220	4,638	\$1, 956, 707	\$1, 648, 284	\$308, 423	1,377,502	2, 175, 120
		2,019	${ }_{4} 16$	${ }^{3} 652$	${ }^{\text {, } 951}$	1, 199, 459	862, 319	337, 140	1,333, 228	583, 394
		${ }^{2} 36$	17	15	4	121	121		155	1,695
Rocky Moun-tain-										
Northern subgroup		2,474	1,623	582	269	807, 719	756, 247	51, 472	73,387	97, 436
Southern										
Pacific.------		5,729	1,797	1,883	2,049	$\text { 3, 081, } 551$	1, 670, 669	1, 410, 882	613, 669	1, 313, 764

Forest Service. Compiled from Federal and State sources. Figures in parentheses indicate office estimates.

Table 618.-Forest fires: Causes, United States, 1916-1922.

[^297]Table 618.-F'orest fires: Causes, United States, 1916-1922-Continued.

Group and State.	Calyear.	Total number.	Number of fires by causes.										
			Lightning.	$\begin{aligned} & \text { Rail- } \\ & \text { roads. } \end{aligned}$	Camp fires. ${ }^{1}$	Smokers.	Brush burning.	Incendiary.	Lum-bering.	Miscel-laneous.	$\begin{aligned} & \text { Un- } \\ & \text { known. } \end{aligned}$		
East Mississippi													
group:													
		117		28	23	7	19	17	5	3	15		
Indiana		86		20	2	17	28	17		2			
Illinois.		(85)		(20)	(2)	(17)	(27)	(17)		(2)			
Kentucky		779	458	53	45	28	70	55	40	30			
Tennessce.		400		58	66	20	29	123	37	14	53		
West Mississippigroup:													
Missouri_-..-------- 2,429 246 98 251 235 610 481 71 437													
Arkansas		3,120	58	199	368	211	379	1, 424	131	350			
Oklahoma		277		37	48	17	122	, 32	9	12			
1.ouisiana.		1,544	4	192	204	92	112	156	128	220	436		
Texas		1,967	11	83	198	295	130	470	421	223	136		
Lake State group:													
Michigan......		538	8	125	139	110	99	22	23	12			
Wisconsin		188		10	16	2	22	2		2	134		
Minnesota		1,293	2	297	107	80	151	10	10	240	398		
Prairie group:													
Iowa-													
Idaho.		1,709	1,003	103	181	135	75	29	63	19	101		
W yoming		62	13	4	30	12.	2			1.			
Southern sub-group-													
Colorado.-.---		158	47	20.	48.	35	4	1.		3			
New Mexico.		371	205	1.	48	71	14	10	9	13.			
Arizona.		532	361	23	29	81	10	4	7	17.			
Utah.		23	6		8	4	4.			1			
Nevade		7			4.	1				1.	-.		
Pacifie group:													
Wishington		1,624	134	164	523	216	227	80	166	105			
Oregon...--		2,127	465	47	284	237	198	430	98	362			
California		1,978	270	92	308	483	203	206	55	147	-214		
group-													
Softwood subgroup \qquad			17	471	371	204	237	26	32	79	178		
subgroap.-.-		6, 439	1.	2,099	101	7609	813	142	8	437	2,072		
Appalachian group.		5, 749	12	1,297	470	1,115	569	642	156	254	1,234		
Southeastern group		15, 935	362	1,523	1,298	1,096	3,293	5,681	1,210	1,068	4, 404		
East Mississippi		15, 335				1,05							
group.---.-----		1,467	458	179	138	89	173	229	82	51	63		
West Mississippi					1,080								
group		9,337	319	609	1,089	850	1,353	2, 563	760	1,242	572		
Lake States group.		2, 019	10	432	262	192	272	34	33	254	530		
Prairie group		36	19	1	1	9	1			4			
Rocky Mountain group:													
Northern subgroup		2, 474	1,247	181	310	245	120	137	78	36	129		
Southern sub-						,	,						
group......--		1,091	619	44	137	192	33	15	16.	35			
Pacific group		5.729	869	303	1,115	936	628	731	319	614	214		

Forest service. Compiled from Federal and State sources. Figures in parentheses indicate office estimates.
${ }^{1}$ Includes smokers, 1916-1921.

Table 619.-Grazing in the national forests: Number of permits issued and stock grazed, 1905-1922.

Year ending June 30.	Cattle, horses, and hogs.				Sheep and goats.		
	Number of permits.	Number grazed.			Number of permits.	Number grazed.	
		Cattle.	Horses	Hogs.		Sheep.	Goats.
1904-5	7,981	632, 793	59,331		${ }^{(2)}$	1, 709, 987	
1905-6	14, 093	1, 015, 148			2,500	5, 762, 200	${ }^{(3)}$
1906-7	17, 979	1, 200, 158	(1) 0		3,809	6, 657, 083	
1907-8	19,845	1, 304, 142	76, 003	2,076	4, 282	6,960, 919	126, 192
1908	22, 163	1, 491, 385	90, 019	4, 501	5,074	7, 679, 698	139, 896
1909-10.	20,692	1, 409, 873	84, 552	3, 145	4, 995	7,558, 650	90, 300
1910-11	20,499	1, 351, 922	91, 516	4,500	5,105	7, 371, 747	77, 668
1911-12	21, 188	1, 403, 025	95, 343	4,330	5, 313	7, 467, 890	83, 849
1912-13.	22, 032	-1, 455, 922	97, 919	3, 277	5,434	7, 790, 953	76,898
1913-14	23,757	1,517, 045	99, 835	3, 381	5,188	7, 560, 186	58,616
1914-15.	25, 641	1,627, 321	96, 933	2,792	4, 969	7, 232, 276	51, 409
1915-16	28, 052	1,758, 764	98,903	2,968	5,276	7,843, 205	43, 268
1916-17	31, 136	1, 953, 198	98, 880	2, 306	5, 502	7, 586, 034	49, 939
1917-18	32, 600	2, 137, 854	102, 156	3,371	6,513	8, 454, 240	57,968
1918	32, 528	2, 135, 527	93, 251	5,154	6, 624	7, 935, 174	60,789
1919-20	31, 301	2, 033, 800	83, 015	4, 066	6,199	7, 271, 136	53, 685
1920 (last 6 months)	2, 146	88, 599	6,444	1,010	652	553, 263	3;346
1921 (calendar year)	31, 027	1,999,680	78, 115	2, 453	6,214	6, 936, 377	43,574
1922 (calendar year)	30, 148	1, 915, 113	69,640	1,888	5,811	6, 851, 690	39,889

Forest Service.
${ }^{1}$ Included with cattle. $\quad{ }^{2}$ Included in number of permits for cattle. ${ }^{3}$ Includded with sheep.
Table 620.—Timber sales from national forests, 1905-1922.

Year ending June 30.	Number of sales.			Amount cut in board feet (000 omitted).			Value of timber cut.			Othertim-berprod-ucts.
	Total.	Com-mercial.	" Cost" sales.	Total.	Com-mersales.	$\left\|\begin{array}{c} \text { "Cost } " \\ \text { sales. } \end{array}\right\|$	Total.	Commercial sales.	$\left\|\begin{array}{c} \text { "Cost } " \\ \text { salcs. }{ }^{1} \end{array}\right\|$	
	411	411		75	68, 475		${ }^{3} \$ 85,597$	3\$85, 597		
	1,023	1,023		138, 665	138, 665		${ }^{3} 203,333$	${ }^{3} 203,333$		
1906	1, 508	1,508		194, 872	194, 872		337, 952	337, 952		
1907	5, 062	5,062		392, 792	392, 792		794, 252	794, 252		
1908	4,980	4,980		352, 434	352, 434		677, 784	677, 784		
1909-10	5,398	5,398		379, 616	379, 616		906, 308	906, 308		
1910-11	5, 653	5, 653		374, 678	374, 678		842, 993	842, 993		
1911-12	5.772	5,772		431, 492	431, 492		942, 819	942, 819		
1912-13	6, 182	6,091	91	495, 668	494, 950	718	1, 075, 185	1, 074, 682	\$503	
1913-14	8,298	ᄃ, 957	2, 341	626, 306	616, 661	9, 645	1, 271, 060	1, 264, 490	6, 570	
1914-15	10,	6,343		565, 754	546,508	19,246	1, 179, 448	1,165, 268	14, 180	
1915-16	10, 840	6, 407	4,433	595, 022	575, 552	19,470	1, 255, 698	1, 241,105	14, 599	
1916-17	11, 607	6,921	4, 686	727, 416	706, 558	20, 858	1, 506, 909	1, 490, 8121	16, 095	837
1917-18	13, 037	7, 130	5,907	727, 983	706, 342	21, 641	1, 523, 421	1,507, 121	16, 300	4, 837
1918-19	12, 592	6,570	6, 022	704, 769	685, 172	19, 597	1, 512, 373	1, 497, 702	14, 671	7,779
1919-20	13, 272	7,690	5,582	806, 131	783, 947	22, 184	1, 770, 401	1, 754, 600	15,801	10, 381
1920 (last 6 months)	6, 653	$\begin{aligned} & 3,608 \\ & 7 \end{aligned}$	3, 045	$\begin{aligned} & 504,113 \\ & 687,922 \end{aligned}$	$\begin{aligned} & 489,841 \\ & 666 \end{aligned}$	$\begin{aligned} & 14,272 \\ & 21,731 \end{aligned}$	$\begin{aligned} & 1,178,759 \\ & 1,663,182 \end{aligned}$	$\begin{aligned} & 1,168,885 \\ & 1,646,818 \end{aligned}$	$\begin{array}{r} 9,874 \\ 16 . \end{array}$	7,562 4,511
1921 (calendar year)	$\begin{aligned} & 13,690 \\ & 12,926 \end{aligned}$	$\begin{aligned} & 7,069 \\ & 7,200 \end{aligned}$		687,922 876,973	$\begin{aligned} & 666,191 \\ & 856,147 \end{aligned}$	21,731 20,826			$\begin{aligned} & 16,364 \\ & 17,332 \end{aligned}$	
1922 (calendar year)	$12,926$	$7,200$	5, 726	876,973	856, 147	20, 826	2, 235, 497	2, 218, 165	$17,332$	8,

Forest service.

"Cost" sales are special sales made to farmors and settlers who are entitled by law to purchase for domestic use mature or dead national forest timber at the cost of making and administering the sale.
${ }^{2}$ Value of other timber products, not convertible into board feet, taken from the national forests.
¿ Estimated.
Table 621.-Timber granted without charge from national forests, to local residents, under "free use" regulations, 1907-1922.

Year ending June 30.	Number of users.	Amount cut, M board feet.	Estimated value.	Year ending June 30.	Number of users.		Esitmated value.
1906-7	17, 399	86, 818	\$100, 362	1915-16	42, 070	119,488	\$184, 720
1907-8	30, 377	131, 977	169, 320	1916-17	41, 427	113, 073	149, 802
1908-9	33, 431	105, 205	169, 081	1917-18	38, 073	96, 616	127, 688
1909-10.	35, 364	104, 796	176, 167	1918-19	34, 617	90, 798	113, 117
1910-11	40, 660	123, 488	196, 930	1919-20	37, 336	88, 080	113, 000
1911-12	38, 749	123, 233	196, 335	1920 (last 6 months)	21, 168	56, 813	60, 391
1912-13	38, 264	121, 750	191, 825	1921 (calendar year)	40, 535	123,245	117,054 98,843
1913-14	39,466 40,040	120,575 123,259	$\begin{aligned} & 183,223 \\ & 206,597 \end{aligned}$	1922 (calendar year)	37, 158	89, 510	98, 843

Forest Service.

Table 622.-Lumber: Production by States, calendar years, 1870-1922.

[^298][^299]1164 Yearbook of the Department of Agriculture, 1923.
Table 696.-Foreign exchange: Average rates at New York, 1912-1923-Contd.
INDIAN RUPEE. ${ }^{4}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1919	35. 650	35. 650	35. 875	35. 650	42. 500	42. 500	43.000	43.500	45.000	43. 000	43. 375	45. 000
1920	44. 125	45. 500	47. 250	46.500	43. 500	40.875	37. 875	35. 750	33. 788	30.625	29.375	27.250
1921	28.574	28. 938	26. 906	26. 100	26. 344	25. 422	23. 059	24. 224	26.390	27. 419	26. 874	27. 449
1922	27.810	28. 143	27.822	27.810	28. 751	28.911	28. 891	29. 014	28.741	28.842	29. 511	30. 649
1923	31.726	31.850	31. 566	31.346	31.081	30.992	30.859	30. 461	30.602	31. 063	30. 860	31. 005

POUND STERLING. ${ }^{5}$

1912	\$4. 8699	\$4.87	\$4. 8721	\$4	4. 8720	\$4. 875	\$4. 8752	\$4. 87	\$4. 86	\$4. 8574	\$4.8506	\$4. 8502
1913	4.8688	4. 8746	4. 8729	4. 8688	4. 8651	4. 8670	4. 8678	4. 8640	4. 8568	4. 8580	4. 8526	4.8535
191	4.8623	4.8570	4. 8628	4. 8698	4. 8831	4. 8849	4. 8878	5. 0000	4. 9812	4. 9530	4. 9031	4. 8715
191	4.8422	4.8206	4. 8018	4. 7945	4. 7925	4. 7755	4. 7648	4. 7062	4. 6912	4. 6858	4. 6706	4. 7208
191	4. 7506	4. 7591	4. 7641	4. 7648	4. 7581	4. 7579	4. 7577	4. 7575	4. 7574	4. 7567	4. 7567	4. 7179
191	4.7567	4. 7550	4. 7544	4.7567	4. 7555	4. 7544	4. 7553	4. 7545	4. 7548	4. 7522	4. 7520	4. 7517
1918	4.7525	4.7525	4. 7525	4.7550	4. 7550	4.7538	4. 7525	4. 7562	4. 7550	4. 7550	4.7575	4. 7575
1919	4. 7575	4. 7575	4. 7000	4. 6512	4.6562	4.6125	4. 4275	4. 2725	4. 1800	4. 1712	4. 0812	3. 7688
1920	3. 6700	3. 3762	3. 7712	3. 9130	3. 8500	3. 9475	3. 8525	3. 6200	3. 5125	3. 4730	3.4250	3. 4912
1921	3. 7562	3. 8712	3. 9150	3. 9300	3. 9775	3. 7725	3. 6321	3. 6536	3. 7240	3. 8729	3. 9702	4. 1561
1922	4. 2248	4. 3620	4.3757	4. 4134	4. 4461	4. 4519	4. 4464	4. 4647	4. 4307	4. 4385	4. 4799	4. 6098
1923	4.6546	4. 6908	4. 6957	4. 6555	4.6257	4. 6147	4. 5834	4.5603	4. 5422	4. 5237	4.3822	4. 3602

Division of Statistical and Historical Research.

${ }^{4}$ Federal Reserve Bulletins. January-September, 1919 highest rate for month. October 1919-December 1920, average of high and low quotations for month. January, 1921-June, 1921, average of weekly high and low quotations for month. July, 1921 to date, average rate of exchange.
${ }^{6}$ International Yearbook of Agricultural Statistics, 1921, pages 504 and 498. Federal Reserve Bulletins, July 1921 to date. Sight drafts 1912-1920; cables 1921 to date.

Table 697.-Farmers' organizations handling grain, 1923.

State.	TotalNum-berre-port-ing.	Membership.		Volume of business.							
		Num-berre-port-ing.	Members.	Num-berre-port-ing.	Amount. ${ }^{1}$	Grain handled, thousands of bushels.					
						$\left\lvert\, \begin{gathered} \text { Num- } \\ \text { ber } \\ \text { re-- } \\ \text { port- } \\ \text { ing. } \end{gathered}\right.$	Wheat	Rye.	Oats.	Other grains	Total.
Illinois	392	328	39, 318	269	\$52, 445, 000	276	11, 075	547	19,373	34, 003	64,998
Nebraska	335	247	30, 177	185	33, 341, 000	181	10, 802	253	2, 169	12, 625	25, 849
Iowa	325	232	31, 295	181	39, 459, 000	189	1,462	195	18, 404	24, 300	44, 361
South Dakota	323	251	25, 901	211	35, 246, 000	224	24, 252	5,958	1,237	4, 872	36, 319
Kansas.	289	217	29, 911	160	32, 160, 000	173	21, 233	58	659	2, 698	24, 648
Minnesota	249	204	31, 803	176	25, 405, 000	177	5,095	3,498	9, 916	8, 611	27, 120
North Dakota	205	148	19, 274	112	16, 743, 000	122	6, 674	1,167	4, 092	6,359	18, 292
Ohio	192	155	24, 136	127	20, 403, 000	127	3,979	66	2, 409	3, 115	9, 569
Missouri	150	119	18, 144	90	22, 648, 000	89	11, 149	103	526	2, 842	14,620
Indiana	118	91	12, 887	73	9, 717, 000	73	1,562	253	3, 018	3,123	7,956
Oklahoma	86	67	17, 227	54	10, 814, 000	58	7, 593	4	206	1, 235	9, 038
Michigan.	78	67	14, 716	48	8, 805, 000	48	1,314	295	605	403	2,617
Montana	62	49	5,185	41	6, 226, 000	39	10, 810	152	154	397	11, 513
W isconsin	49	43	7,335	26	2, 218, 000	21	36	211	343	259	849
Colorado	43	43	6,303	19	4, 720,000	17	1,726	73	57	623	2,479
Washington -	40	34	5,355	28	7,920,000	28	7,181	46	146	33	7,406
Texas.	18	12	4,069	8	2, 458, 000	7	1,001		16	191	1,208
Idaho	15	7	977	7	1, 056, 000	5	914		33	850	1,797
California	13	11	2,523	8	4, 725, 000	9	2, 130		66	2, 083	4,279
Oregon	9	8	3, 628	7	10, 473, 000	7	3,771		12	48	3, 831
W yoming	9	4	328	2	164,000	1	47	24	1	1	73
New Mexico.	5	3	148	1	6,000						
All others	24	18	2,920	15	2,047,000	11	258		78	226	567
United States	3,029	2, 358	333,560	1,848	349, 199, 000	1,882	134,064	12,908	63, 520	108,897	319, 389

Division of Agricultural Cooperation. Reports from associations to Feb. 5, 1924.
${ }^{1}$ Including sales of supplies to members.

Table 622．－Lumber：Production by States，calendar years，1870－192思—Contd．

State．	1910		1911		1912		1913		1914		
	$\begin{array}{\|c\|} \stackrel{\mu}{\mathrm{g}} \\ \underset{\sim}{9} \end{array}$	Quantity （M feet）．	$\begin{aligned} & \text { 总 } \\ & \text { 品 } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { 舀 } \\ & \text { M } \end{aligned}$	Quantity （M feet） （M feet）．	$\begin{aligned} & \text { H } \\ & \text { 总 } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { 总 } \\ & \text { Mू } \end{aligned}$	Quantity （M feet）．	
Alabama	11	$\begin{array}{r} 1,465,623 \\ 72,655 \\ 1,844,446 \\ 1,254,826 \\ 121,398 \end{array}$	13	$\begin{array}{r} 1,2266,212 \\ 7,139 \\ 1,777,303 \\ 1,207,561 \\ 95,908 \end{array}$	12	$\begin{array}{r} 1,378,151 \\ 76,287 \\ 1,821,811 \end{array}$	8	$\begin{array}{r} 1,523,936 \\ 77,363 \end{array}$	8	1，494，732	
Arizona											
Arkansas	714		6		7		7	1，911， 647	6	1，796， 780	
California			14		14	1， 203,069	13	1，183， 380	12	1，363， 183	
Colorado						88， 451		74， 602		102， 117	
Connectic		$\begin{array}{r} 126,463 \\ 46,642 \end{array}$		124， 661		$\begin{array}{r} 109,251 \\ 28,285 \end{array}$		$93,730$	$81,883$		
Delaware				23，853							
Florida	18	992， 091	16	883,824	15	1，067， 525	15	1， 055,047	15	1，073， 821	
Goorgia	12	$1,041,617$745,984	19	801，611	17	941， 291		652， 616	20	－763， 508	
Idaho．			20	765， 670	21	713， 575	21				
Illineis		113， 506		96，651		122， 528	102， 902			66,227298,571	
Indiana		422，963		360， 613		401， 4617	332,99321,676				
Iowa－									22	298， 11， 243	
Kansas		$\begin{array}{r} 3,440 \\ 753,556 \end{array}$				（1） 641， 296		$\begin{gathered} (1), \\ 541,531 \end{gathered}$		$\stackrel{11}{596,392}^{17}$	
Kentac	20		21		22						
Lourisian	19	$\begin{array}{r} 3,733,900 \\ 860,273 \\ 154,554 \\ 239,206 \\ 1,681,081 \end{array}$	18	3，566， 456	19	3，876， 211	${ }_{18}^{2}$	4，161，560	17	3，956， 434	
Maine				828， 417		$\begin{aligned} & 882,128 \\ & 174,320 \end{aligned}$		834， 673140,469		992，594	
Maryland				144， 078							
Massachuse			－10	$\begin{array}{r} 273,317 \\ 1,466,754 \end{array}$		$\begin{array}{r} 259,329 \\ 1,488,827 \end{array}$		$\begin{array}{r} 224,580 \\ 1,222,983 \end{array}$		$143,094$	
Michigan	9				－10		12		13	$1,214,435$	
Minnesota	$\begin{array}{r} 12 \\ 3 \\ 24 \end{array}$	$\begin{gathered} 1,457,734 \\ 2,122,205 \\ 501,691 \\ 319,089 \\ (1) \end{gathered}$	9325	$\begin{array}{r} 1,485,015 \\ 2,041,615 \\ 418,586 \\ 288,416 \end{array}$ （I）	11	$\begin{array}{r} 1,436,726 \\ 2,381,893 \\ 422,470 \\ 272,174 \end{array}$ ${ }^{(1)}$	14	1，149， 704	${ }_{1}^{11}$	1，312，230	
Mississip											
Missotari							24	416， 608	25	370， 571	
Montana								357， 974		317，842	
Nebraska											
Nevada		（1） 443,907		（1）${ }^{(1)}$		${ }^{(1)} 479,499$		（1） 309		${ }^{(1)}$	
New Hampsh				－25	－－－－		－7		482， 744		
New Jersey		36，542			28， 639	34， 810		27， 248		48，748	
New Mexic		$\begin{gathered} 83,544^{\circ} \\ 506,074 \end{gathered}$	23	$\begin{array}{r} 83,728 \\ 526,283 \end{array}$	23	$\begin{gathered} 82,850 \\ 502,351 \end{gathered}$	23	$\begin{array}{r} 0,75 \\ 457,720 \end{array}$		486，195	
New York	23								23		
North Caro	－88	$1,824,722$490,039	524	$\begin{array}{r} 1,798,724 \\ 427,161 \\ 143,869 \\ 1,803,698 \end{array}$	${ }_{24}^{4}$	$\begin{array}{r} 2,198,398 \\ 499,834 \\ 1,98,806 \\ 1,916,160 \end{array}$	${ }^{6} 5$	1，957， 258	4	2，227， 851	
Ohio．．．．								414， 943		286，063	
Oklahoma		164， 663						140， 284		200，594	
Oregon	15	$\begin{aligned} & 2,084,633 \\ & 1,241,199 \end{aligned}$	$\begin{array}{r} 4 \\ 15 \end{array}$		$\left\lvert\, \begin{array}{r} 5 \\ 16 \end{array}\right.$		$\begin{array}{r} 4 \\ 19 \end{array}$	$\begin{array}{r} 2,098,467 \\ 781,547 \end{array}$	5	1，817， 875	
Pennsylv				$\begin{aligned} & 1,803,698 \\ & 1,048,606 \end{aligned}$		992， 180			19	1，864，710	
Rhode Island．		$\begin{array}{r} 14,392 \\ 706,831 \\ 16,340 \end{array}$		$\begin{array}{r} 9,016 \\ 584,872 \\ 13,046 \end{array}$		$\begin{array}{r} 14,421 \\ 816,930 \\ 20,986 \\ 020, \end{array}$		$\begin{array}{r} 14,984 \\ 752,184 \\ 19,103 \end{array}$	21	15，902	
South Carolina	22		－22－		${ }^{20}$		20				
South Dakota										18,885,035	
Tennesse	17	$\begin{aligned} & 1,016,475 \\ & 1,884,134 \end{aligned}$	$\begin{array}{r} 17 \\ 8 \end{array}$	$\begin{array}{r} 914,579 \\ 1,681,080 \end{array}$	$\begin{array}{r} 18 \\ 6 \end{array}$		16		$\begin{array}{r} 18 \\ \hline \end{array}$		
Texas						$\begin{array}{r} 932,572 \\ 1,902,201 \end{array}$		$\begin{array}{r} 872,311 \\ 2,081,471 \end{array}$		1，554，005	
Utah		11，786		10，573		9，055		5，403		8，680	
Vermont		284， 815		239， 254		235， 983		194， 647		249，608	
Virginia	1011	1，652， 192	$\begin{array}{r} 12 \\ 1 \end{array}$	1，359，790 4，064， 754	$\begin{aligned} & 8 \\ & 1 \end{aligned}$	1，569，997 4， 099,775	$\begin{array}{r} 10 \\ 1 \end{array}$	$1,273,953$$4,592,053$	9 2	1，488， 070 3，946， 189	
Washingt		4，097， 492									
West Virgini	135	$\begin{array}{r} 1,376,737 \\ 1,891,291 \\ 30,931 \\ 211,955 \end{array}$	117	$\begin{array}{r} 1,387,786 \\ 1,761,986 \\ 33,309 \\ 311,786 \end{array}$	139	$\begin{array}{r} 1,318,732 \\ 1,498,876 \\ 13,560 \\ 822,525 \end{array}$	119	$\begin{array}{r} 1,249,559 \\ 1,493,353 \\ 12,940 \\ \mathbf{3} 19,461 \end{array}$	10	$\begin{array}{r} 1,118,480 \\ 1,391,001 \\ 11,852 \\ 315,672 \end{array}$	
Wisconsin											
Wyoming											
All other											
United States		40，018，282		437，003，207		${ }^{4} 39,158,414$		${ }^{4} 38,387,009$		${ }^{6} 5$ 37，346，023	
State groups： Northeastern		3，954， 087		3，634， 743	6	3，712，557	6	3，097，061	6	3，553， 092	
Contral．	4	4，674，967	4	4，237，791	5	4，338， 419	4	3，930， 847	5	3，621， 339	
Southern	1	13，248， 679	1	12，231，970	1	13，537， 894	1	14，328， 810	1	13，383， 523	
N．C．p	5	4，183， 74.5	5	3，743， 386	3	4，580， 235	3	3，988， 395	3	4，417， 464	
Lake	3	5，030， 106	3	4，713， 755	4	4，224， 429	5	3，866， 040	4	3，917， 666	
North Pacific	，	6，182， 125	2	5，888， 452	2	6，015， 935	2	6，696， 520	2	5，764， 064	
SouthPacific		1，254，826	7	1，297，561	7	1，203， 059	7	1，183， 380	7	1，303， 183	
N．Rocky Mt．	8	1， 065,073	8	994， 086	8	985， 749	8	1，010， 590	8	1，081， 350	
S．Rocky Mt	－	320， 314	9	2296， 657	9	270， 003	9	236， 126	9	258， 483	
Prairi	10	${ }^{6} 104,380$	10	6 84， 806	10	${ }^{690} 104$	10	${ }^{6} 60,240$	10	645,859	

[^300]Table 622.-Lumber: Production by States, calendar years, 1870-1922—Contd.

[^301]Table 622.-Lumber: Production by States, calendar years, 1870-1922-Contd.

State.	1919		1920		1921		1922, prelimmary.	
	Rank.	Quantity (M feet).	Rank.	Quantity (M feet).	Rank.	Quantity (M feet).	Rank.	Quantity (M feet).
Alabama	5	1,798,746	7	1, 439, 200	6	1, 386, 426	7	1,457, 608
Arizona		73, 655		121, 160		46, 418		88, 800
Arkansas	6	1,772, 157	6	1,452, 200	8	1,301, 095	8	1,382, 032
California	9	1,259, 363	5	${ }^{1} 1,513,000$	7	1, 350, 438	5	${ }^{1} 1,720,556$
Colorado		64, 864		70, 000		41, 076		38, 917
Connecticut		86, 708		71, 600		64,841		53, 198
Delawar		27,437		19,800		20, 839		14, 139
Florida	10	1, 137, 432	12	1,000,900	10	922, 332	9	980,014
Georgia	13	893, 965	15	761, 800	12	792, 579	13	809,391
Idaho.	16	765, 388	13	970, 000	16	542, 620	11	857, 581
Illinois		64, 628		56, 900		42,531		24,387
Indiana		282, 487		258, 3C0		138,397		148, 569
Iowa.		18, 493		14, 300		5,372		6, 131
Kansas		2,840		$2{ }^{2} 4,500$				${ }^{2} 3,657$
Kentucky	22	512, 078	22	421, 100	24	255, 922	24	210,360
Louisiana	2	3, 163, 871	3	3,120,000	2	3,215, 110	2	3,386, 000
Maine	21	596, 116	21	505, 600	19	421, 536	20	362, 224
Maryland		113, 362		85,600		71, 169		54, 358
Massachuset		166,841		139, 200		136,736		94,656
Michigan	14	875, 891	16	749, 800	15	571, 387	15	656, 952
Minnesota	18	699,639	19	576, 300	20	412, 145		511, 744
Mississippi	4	2, 390, 135	4	2, 224, 000	3	2, 081, 520	4	2, 267, 695
Missouri	25	321, 383	25	274, 200		158, 418	25	201, 849
Montana		287, 378	24	410, 000	25	213, 989	22	303, 458
Nebraska		505						
Nevada.		20,335		${ }^{5}$)		${ }^{(3)}$		${ }^{5}$)
New Hampsh	24	338,777		248, 600	23	261,999		180, 706
New Jersey		36, 888		23, 300		23, 860		9, 553
New Mexico		86, 808		112, 240		94, 520		126,449
New York	23	357, 764	23	410, 900	22	283, 863	23	222, 257
North Carolina	7	1,654, 435	9	1,246, 700	9	931, 015	10	936, 248
Ohio-.		280, 076		247, 400		133, 218		136, 877
Oklahom		168, 403		163, 400		120, 371		149, 323
Oregon	3	2, 577, 403	2	3,317,000	4	2, 222,219	3	3, 223,768
Pennsylva	19	630, 471	20	520, 000	21	368, 102	21	333, 289
Rhode Island		11, 030		8,900		4,946		3, 030
South Carolina	20	621, 679	18	610, 500	13	684, 333	12	854,799
South Dak		42, 970		45, 100		27,062		35, 395
Tennessee	15	792,132	14	779, 800	18	451,937	19	485, 979
Texas.	8	1,379, 774	8	1,328, 800	5	1, 502, 333	c	1,542, 708
Utah.		11, 917		7,750		7,689		6,827
Vermont		218, 479		164,500		139, 183		95,967
Virginia	12	1,098, 038	11	1,014, 400	14	592, 979	16	617,493
Washington	1	4, 961, 220	1	5, 525, 000	1	3, 831, 800	1	5, 836, 277
West Virgina	17	763, 103	17	697, 600	17	467, 002	17	554, 277
Wisconsin	11	1, 116, 338	10	1, 059, 900	11	800, 477	14	775, 540
Wyoming		8, 674		7, 550		5,750		7,850
All other		-------------	--	----.-...		${ }^{6} 13,310$		
United St		7,8 34,552,076		${ }^{9} 33,798,800$		${ }^{10} 26,960,864$		${ }^{9} 31,568,888$
State groups:								
Northeastern	6	2, 583, 873	6	2, 198, 000	4	1,797, 074	7	1,423, 377
Central.	4	3, 015, 887	4	2, 735, 300	5	1,784, 009	5	1,762, 298
Southern	1	12, 704, 483		11, 490, 300	1	11, 321, 766	1	11, 974, 771
N. Carolina pine.-	3	3, 374, 152	3	2, 871, 600	3	2, 208, 327		2, 408, 540
Lake.	5	2, 691,868	5	2, 386, 000	6	1, 647, 425	4	1,944, 236
North Pacific	7	7, 538, 623	2	8, 842, 000	2	5, 854, 019	2	8, 860, 045
South Pacific	7	1,279, 698	7	1, 513, 000	7	1, 350, 438	6	1,720,556.
N. Rocky Mt	8	1,052, 766	8	1, 380,000	8	756,609	8	1, 161,039
S. Rocky Mt.	9	245, 918	9	318, 700		195,453	9	268, 843
Prairie-------	10	64,808	10	63,900	10	${ }^{11} 45,744$	10	45, 183

Forest Service. Compiled from Forest Service and Bureau of the Census reports. Figures 1915-1918 and for 1920 include estimates for firms not reporting.

Northeastern: Connecticut, Delaware, Maine, Maryland, Massachusetts, NewHampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont
Central: Illinois, Indiana, Kentucky, Missouri, Ohio, Tennessee, West Virginia.
Southern: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Oklahoma, Texas
North Carolina Pine: North Carolina, South Carolina, Virginia.
Lake: Michigan, Minnesota, Wiseonsin.
North Pacific: Oregon, W ashington.
South Pacific: California, Nevada.
North Rocky Mountain: Idaho, Montana.
South Rocky Mountain: Arizona, Colorado, New Mexico, Utah, Wyoming.
Prairie: Iowa, Kansas, Nebraska, South Dakota, North Dakota.
${ }^{1}$ Includes cut of Nevada.
${ }_{2}$ Includes cut of Nebraska
${ }^{3}$ Included in "All other."
${ }^{4}$ Included with Kansas.
${ }^{6}$ Included with California.
${ }^{6}$ Includes cut of Kansas, Nebraska, and Nevada.

1068 Yearbook of the Department of Agriculture, 1923.
Table 623.-Lumber value: Production by Siates, calendar years, 1840, 1850, and 1860 compared with 1920.

Forest Service. Compiled from Forest Service and Bureau of the Census reports.

[^302]Table 624．－Lumber production：By species，calendar years，1899－1922．

Species or kind of wood．	1899		1904		1905 •		1906		1907	
	$\begin{aligned} & \text { 垖 } \\ & \text { 品 } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { 总 } \\ & \text { 品 } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { 追 } \\ & \text { 쎨 } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { 总 } \\ & \text { 品 } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { 䛔 } \\ & \text { ¢ } \end{aligned}$	Quantity （M feet）．
Yellow pine	1	9，658，548	1	11，533， 070	1	8，771， 966	1	11，661， 077	1	13，215， 185
Douglas fir．	5	1，736， 507	4	2，928， 409	3	4，319， 479	2	4，969， 843	2	4，748， 872
White pine	2	7，772， 391	2	5，332， 704	2	4，983， 698	3	4，583， 727	3	4，192， 708
Hemlock	4	3，420， 673	3	3，268， 787	4	2，804， 083	4	3，537， 329	5	3，373，016
Western yellow	8	944， 560	7	1，279， 237	7	988， 542	7	1，386， 777	7	1，527， 195
Spruce	6	1，448， 091	6	1，303， 886	6	1，165， 940	6	1，644， 987	6	1，726，797
Cypress	10	495， 836	9	－749， 592	8	753， 369	9	839， 276	10	757， 639
Redwood	13	360， 167	12	519，267	11	411， 689	11	659，678	13	569，450
Cedar		232， 978		223， 035	12	363，900		357， 845		251，002
Larch		50， 619		31， 784		140， 636		280， 473		324， 509
White fir						52， 725		104， 329		146， 508
Sugar pine		53， 558				123， 085	－	133， 640		115，005
Balsam fir						35， 506				153,339
Lodgepole pine										
All other soft woods		9， 135		183， 541				67， 264		
Softwoods		26，153， 063		27，353， 312	－－	24，914， 618		30，235， 245		31，001， 225
Oak	3	4，438， 027	5	2，902， 855	5	1，833， 769	5	2，820， 383	4	3，718， 760
Maple	9	633， 466	10	587， 558	9	608， 746		882， 878		939，073
Gum，red an	15	285， 417	11	523， 990	13	316， 588	12	453， 678	11	689， 200
Yellow popl	7	1，115， 242	8	853， 554	10	582，748	10	683， 132	9	862，849
Chestnut		206， 688	15	243， 537		224， 413	13	407， 379	12	653， 239
Birch		132， 601		224， 009	15	240， 704	15	370， 432	15	387， 614
Beech						219，000		275， 661	14	430， 005
Basswood	14	308， 069		228， 041	14	258，390	14	376， 838		381， 088
Elm．	11	456， 731	14	258， 330		227， 038		224，795		260， 579
Cottonwood	12	415， 124	13	321， 574		236， 000		263， 996		293， 161
Ash		269， 120		169， 178		159， 634		214，460		252， 040
Hickory		96，636		106， 824		95， 803		148， 212		203， 211
Tupelo						35， 794		47， 882		68， 842
Walnut		38，681		31，455		29，851		48， 174		41， 490
Sycamore		29，715		18，002						46，044
Cherry										9，087
All other hardwo		208， 504		312， 920		2519,865		97， 581		
Minor species										18，647
Hardwo		8，634， 021		6，781，827		5，588， 343		7，315，491		9，254， 929
Tot		34，787， 084		34，135， 139		30，502， 961		37，550， 736		40，256， 154
Species or kind of wood．	1908		1909		1910		1911		1912	
	$\begin{gathered} \text { 息 } \\ \text { H } \end{gathered}$	Quantity （M feet）．	$\begin{aligned} & \text { 箅 } \\ & \text { M } \end{aligned}$	Quantity （ M feet）．	$\begin{aligned} & \text { 盖 } \\ & \text { M } \end{aligned}$	Quantity （M feet）．	咅	Quantity （M feet）．	$\begin{aligned} & \text { 总 } \\ & \text { م } \end{aligned}$	Quantity （M feet）．
Yellow pine．	2357	11，236， 372	1	$\begin{array}{r} 16,277,135 \\ 4,856,378 \end{array}$	1	14，143， 471	1	12，896， 706	1	14，737，052
Douglas fir		3，675， 114	2		2	5，203， 644	2	5，054， 243	2	5，175， 123
White pine		3，344， 921	4	3，900， 034	4	3，352， 183	3	3，230， 584	4	3，138， 227
Hemlock		2，530， 843	5	3，051， 399	5	2，836， 129	5	2，555， 308	5	2，426， 554
Western yellow pine		1，275， 550	7	1，499，985	6	1，562， 106	6	1，330， 700	7	1，219， 444
Spruce	$\begin{array}{r}9 \\ 14 \\ \hline\end{array}$	1，411， 9732	6	1，748， 547	7	1，449， 912	7	1，261， 728	6	1，238， 600
Cypress			9	955， 635	9	935， 659	8	981， 527	－	997， 227
Redwood		$\begin{aligned} & 404,802 \\ & 272,764 \end{aligned}$	13	521， 630	12	543， 493	13	489， 768	13	496，796
Cedar	14			346， 008		415， 039		374， 925		329，000
Larch．		$382,466$	$\stackrel{-15}{15}$	421， 214		382， 514		368， 216	15	407， 064
White fir				89，318		132， 327		124， 307		122， 813
Sugar pine	69，956					103， 165		117，987		132，416
Balsam fir				$108,702$		74， 580		83， 375		84， 261
Lodgepole pine			©			26， 634		33， 014		22，039
All other softwoods										
Softwoods		25，546， 006	－－	33，896， 959	－－－	31，160， 856	－－－	28，902， 388	－－	30，528， 418

[^303]${ }^{2}$ Reported as＂Mixed＂and probably includes some softwoods

Table 624．－Lumber production：By species，calendar years，1899－1922－Contd．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species or kind of wood．} \& \multicolumn{2}{|r|}{${ }^{\bullet} 1908$} \& \multicolumn{2}{|r|}{1909} \& \multicolumn{2}{|r|}{1910} \& \multicolumn{2}{|r|}{1911} \& \multicolumn{2}{|r|}{1912}

\hline \& $$
\begin{aligned}
& \text { 沓 } \\
& \text { N }
\end{aligned}
$$ \& Quantity （M feet）． \& $$
\begin{aligned}
& \text { 畐 } \\
& \text { 品 }
\end{aligned}
$$ \& Quantity
（M feet）． \& \& Quantity （M feet）． \& $$
\begin{gathered}
\text { 总 } \\
\text { ¢ }
\end{gathered}
$$ \& Quantity （M feet）． \& $$
\begin{aligned}
& \text { 茞 } \\
& \text { M }
\end{aligned}
$$ \& Quantity
（M feet）．

\hline Oak \& 4 \& 2，771， 511 \& 3 \& 4，414， 457 \& 3 \& 3，522， 098 \& 4 \& 3，098， 444 \& 3 \& 3，318， 952

\hline Maple \& 8 \& 874， 983 \& 8 \& 1，106， 604 \& 8 \& 1，006， 637 \& \& 951， 667 \& 8 \& 1，020， 864

\hline Gum，red and sap \& 11 \& 589， 347 \& 11 \& 706， 945 \& 11. \& 610， 208 \& 11 \& 582， 967 \& 10 \& 694， 260

\hline Yellow poplar \& 10 \& 654， 122 \& 10 \& 858， 500 \& 10 \& 734， 926 \& 10 \& 659， 475 \& 11 \& 623， 289

\hline Chestnut \& 12 \& 539， 341 \& 12 \& 663， 891 \& 13 \& 535， 049 \& 12 \& 529， 022 \& 12 \& 554， 230

\hline Birch \& 15 \& 386， 367 \& \& 452，370 \& 15 \& 420， 769 \& 14 \& 432， 571 \& \& 388， 272

\hline Beech \& 13 \& 410， 072 \& 14 \& 511， 244 \& 14 \& 437， 325 \& 15 \& 403， 881 \& 14 \& 435， 250

\hline Basswoo \& \& 319， 505 \& \& 399， 151 \& \& 344， 704 \& \& 304， 621 \& \& 296， 717

\hline Elm． \& \& 273， 845 \& \& 347， 456 \& \& 265， 107 \& \& 236， 108 \& \& 262， 141

\hline Cottonwood \& \& 232，475 \& \& 265， 600 \& \& 220， 305 \& \& 198， 629 \& \& 227， 477

\hline Ash \& \& 225， 367 \& \& 291， 209 \& \& 246， 035 \& \& 214， 398 \& \& 234， 548

\hline Hickory \& \& 197， 372 \& \& 333， 929 \& \& 272， 252 \& \& 240， 217 \& \& 278， 757

\hline Tupelo \& \& 69， 170 \& \& 96， 676 \& \& 92,071 \& \& 98， 142 \& \& 122，545

\hline Walnut \& \& 43， 681 \& \& 46， 108 \& \& 36，449 \& \& 38， 293 \& \& 43，083

\hline Sycamor \& \& 43， 332 \& \& 56， 511 \& \& 45，063 \& \& 42， 836 \& \& 49，468

\hline Cherry \& \& 18， 054 \& \& 24， 594 \& \& 18， 237 \& \& 21， 422 \& \& 22， 245

\hline Minor species \& \& 29,819 \& \& 37， 557 \& \& 50， 191 \& \& 48， 126 \& \& 59，900

\hline Hardwoo \& \& 7，678，363 \& \& 10，612， 802 \& \& 8，857， 426 \& \& 8，100， 819 \& \& 8，631， 998

\hline Tota \& \& 33，224， 369 \& \& 44，509， 761 \& \& 40，018， 282 \& \& 37，003， 207 \& \& 39，158， 414

\hline \multirow[b]{2}{*}{Species or kind of wood．} \& \multicolumn{2}{|r|}{1913} \& \multicolumn{2}{|r|}{1914} \& \multicolumn{2}{|r|}{1915} \& \multicolumn{2}{|r|}{1916} \& \multicolumn{2}{|r|}{1917}

\hline \& $$
\begin{aligned}
& \text { 永 } \\
& \text { Mi }
\end{aligned}
$$ \& Quantity
（M feet）． \& $$
\begin{aligned}
& \text { 总 } \\
& \text { ⿷⿱口⿰口口山刂灬}
\end{aligned}
$$ \& Qusntity （M feet）． \& 登 \& $$
\begin{aligned}
& \text { Quantity } \\
& \text { (M feet). }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 沓 } \\
& \text { ल्\& }
\end{aligned}
$$ \& Quantity
（M feet）． \& $$
\begin{aligned}
& \text { 喿 } \\
& \text { an }
\end{aligned}
$$ \& Quantity
（M feet）．

\hline Yellow pine \& \multirow[t]{4}{*}{1
2
4
5
6} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 14,839,363 \\
& 5,556,096 \\
& 2,568,636 \\
& 2,319,982 \\
& 1,258,528
\end{aligned}
$$} \& \multirow[t]{4}{*}{1
2
4
4
5
6} \& 14，472， 804 \& 1 \& 14，700， 000 \& 1 \& 15，055， 000 \& 1 \& 13，539，464

\hline Douglas fir \& \& \& \& 4，763， 693 \& 2 \& 4，431， 249 \& 2 \& 5，416，000 \& 2 \& 5，585， 000

\hline White pine \& \& \& \& $2,632,587$
$2,165,728$ \& $\stackrel{4}{5}$ \& ${ }_{2,275,000}$ \& $\stackrel{4}{5}$ \& 2， 350,000 \& $\stackrel{3}{5}$ \& $2,200,000$

\hline Wemlock yello \& \& \& \& 1，327， 365 \& 7 \& 1，293， 985 \& 6 \& 1，690， 000 \& 5 \& 1，960，000

\hline Spruce \& \multirow{4}{*}{${ }_{12}^{7}$} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
1,046,816 \\
1,097,247 \\
510,271 \\
358,444 \\
395,273
\end{array}
$$} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
7 \\
8
\end{array}
$$} \& 1，245， 614 \& 6 \& \multirow[t]{2}{*}{$1,400,000$
$1,100,000$} \& \& 1，250，000 \& 7 \& \multirow[t]{2}{*}{1，125， 0000}

\hline Cypress \& \& \& \& $1,013,013$ \& \multirow[t]{2}{*}{－8} \& \& \multirow[t]{2}{*}{13} \& 1， 0000000 \& \multirow[t]{2}{*}{88} \&

\hline Redwood \& \& \& \multirow[t]{2}{*}{12} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 499,903 \\
& 358,561
\end{aligned}
$$} \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 420,294 \\
& 420,000
\end{aligned}
$$} \& \& 490， 850 \& \& 487， 458

\hline Cedar \& \& \& \& \& 14 \& \& \multirow[t]{2}{*}{－14－1} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 410,000 \\
& 455,000
\end{aligned}
$$} \& \multirow[b]{2}{*}{14} \& \multirow[t]{2}{*}{265,000
360,000}

\hline Larch \& \multirow[t]{2}{*}{14} \& \& 395， 273 \& \& \multirow[t]{2}{*}{----} \& 375，000 \& \& \& \&

\hline White fir \& \& 88， 109 \& \& 112，627 \& \& 125， 048 \& \& 190， 000 \& －－－－ \& \multirow[t]{4}{*}{$$
\begin{array}{r}
218,200 \\
132,600 \\
88,900 \\
12,500
\end{array}
$$}

\hline Sugar pine \& \& 149， 926 \& \& 136， 159 \& \& 117，701 \& \& 169， 250 \& －．－－ \&

\hline Balsam fir \& \& 93， 752 \& \& 125， 212 \& \& 100， 000 \& \& 125， 000 \& \&

\hline Lodgepole p \& \& 20， 106 \& \& 18，374 \& \& 26，486 \& \& 30， 800 \& \&

\hline Softwoods \& \& 30，302， 549 \& －－－ \& 29，406， 839 \& －－－－ \& 29，484， 763 \& －－－－ \& 31，331，900 \& －－－ \& 29，174， 122

\hline Oak \& \multirow[t]{5}{*}{3
9
10
11
13} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
\hline 3,211,718 \\
901,487 \\
772,514 \\
620,176 \\
505,802
\end{array}
$$} \& 3 \& \multirow[t]{5}{*}{$$
\begin{array}{r}
3,278,908 \\
909,743 \\
675,380 \\
519,221 \\
540,591
\end{array}
$$} \& \multirow[b]{5}{*}{10
12
11} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
2,970,000 \\
900,000 \\
655,000 \\
464,000 \\
490,000
\end{array}
$$} \& \multirow[b]{5}{*}{10
11
12} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
3,300,000 \\
975,000 \\
800,000 \\
50,000 \\
535,000
\end{array}
$$} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
4 \\
9 \\
10 \\
15 \\
13
\end{array}
$$} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
2,250,000 \\
860,000 \\
788,000 \\
350,000 \\
415,000
\end{array}
$$}

\hline Maple \& \& \& 9 \& \& \& \& \& \& \&

\hline Gum，red and s \& \& \& 10 \& \& \& \& \& \& \&

\hline Yellow popl \& \& \& 13 \& \& \& \& \& \& \&

\hline Chestnut．－ \& \& \& 11 \& \& \& \& \& \& \&

\hline Birch． \& \multirow[t]{2}{*}{15} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 378,739 \\
& 356,501 \\
& 257,102 \\
& 214,532 \\
& 208,938
\end{aligned}
$$} \& \multirow[t]{2}{*}{15} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 430,667 \\
& 376,464 . \\
& 264, \\
& 214,296 \\
& 195,298 \\
& 195,198
\end{aligned}
$$} \& \multirow[t]{2}{*}{15} \& \multirow[t]{2}{*}{415,000
3600000} \& \multirow[t]{2}{*}{15} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 450,000 \\
& 360,000 \\
& 275,000 \\
& 240,000
\end{aligned}
$$} \& 12 \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 415,000 \\
& 296,000 \\
& 203,000 \\
& 205,000 \\
& 190,000
\end{aligned}
$$}

\hline Beech \& \& \& \& \& \& \& \& \& \&

\hline Basswood \& \& \& \& \& \& 260， 000 \& \& \& \&

\hline Elm． \& \& \& \& \& \& 210， 000 \& \& \& \&

\hline Cottonwood \& \& \& \& \& \& 180， 000 \& \& 200， 000 \& \&

\hline Ash． \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 207,816 \\
& 162,980
\end{aligned}
$$} \& \& \multirow[t]{2}{*}{189,499
116,113} \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 190,000 \\
& 100,000
\end{aligned}
$$} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{$$
\begin{aligned}
& 210,000 \\
& 125,000
\end{aligned}
$$}} \& \& \multirow[t]{2}{*}{175,000
95,000}

\hline Hickory \& \& \& \& \& \& \& \& \& \&

\hline Tupelo \& \& \multirow[t]{2}{*}{120,420
40,565} \& \& \multirow[t]{2}{*}{124,480
25,573
22,773} \& \& \multirow[t]{2}{*}{170,000
90} \& \& \multirow[t]{2}{*}{90，

4000} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{$$
\begin{aligned}
& 62,000 \\
& 32,000
\end{aligned}
$$}}

\hline Sycamor \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \&

\hline Cherry．．． \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 14,126 \\
& 71,240
\end{aligned}
$$} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{55， 624} \& \multirow[t]{2}{*}{－－－} \& \multirow[t]{2}{*}{－47， 893} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{40， 351} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{56，117}}

\hline Minor species \& \& \& \& \& \& \& \& \& \&

\hline Hardwoods \& \& 8，084， 460 \& \& 7\％939， 184 \& \& 7，526， 893 \& \& 8，475， 351 \& \& 6，657， 117

\hline To \& \multicolumn{2}{|r|}{38，387， 009} \& \multicolumn{2}{|l|}{$$
\cdots 37,346,023
$$} \& \multicolumn{2}{|l|}{\[

37,011,656

\]} \& \multicolumn{2}{|l|}{\[

\cdots 39,807,251 .
\]} \& \multicolumn{2}{|l|}{$35,831,239$}

\hline
\end{tabular}

Table 624．－Lumber production：By species，calendar years，1899－1928－Contd．

Species or kind of wood．	1918		1919		1920		1921		$\stackrel{1922,}{\text { preliminary．}}$	
	$\begin{aligned} & \text { 哲 } \\ & \text { مٌ } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { M } \\ & \text { 总 } \end{aligned}$	Quantity （M feet）．	$\begin{aligned} & \text { 息 } \\ & \text { ⿷匚斤 } \end{aligned}$	Quantity （M feet）．	$\begin{array}{\|l\|} \hline \text { 总 } \\ \text { N } \end{array}$	Quantity （M feet）．	$\begin{aligned} & \text { 쎰 } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \text { Quantity } \\ & \text { (M feet). } \end{aligned}$
Yellow pine	1	10，845， 000	1	13，062， 938	1	11，091， 000	1	10，959， 863	1	11，500，771
Douglas fir	2	5，820， 000	2	5，902， 169	2	6，960， 000	2	4，642， 122	2	6，831， 580
White pine	3	2，200， 000	6	1，723， 642	6	1，500， 000	5	1，273， 710	6	1，382， 755
Hemlock．	5	1，875， 000	5	1，754，998	5	1，850， 000	6	1，201， 063	5	1，534， 641
Western yellow pine	6	1，710，000	4	1，755， 015	4	2，290， 000	4	1，432， 273	3	2，080， 994
Spruce	7	1，125，000	7	979， 968	9	825， 000	9	629， 256	9	731， 371
Cypress	10	630， 000	10	656， 212	10	625， 000	7	770， 920	7	868， 952
－Redwood	11	443， 231	12	410， 442	11	476， 500	11	467， 804	11	565， 965
Cedar		245， 000		332， 234		260， 000	15	234， 576	12	334， 083
Larch	14	355， 000	13	388， 121	14	390， 000		213， 397	15	274， 589
White fir		213， 000		223， 422		280， 000		186， 363	14	297， 727
Sugar pine		111， 800	－－－	133， 658		146， 000		133， 566		194，067
Balsam fir		82， 000		68， 030		85， 000		29，350		32，903
Lodgepole pi		12， 500		16， 281		31， 000		11， 241		13，936
Softwoods		25，667， 531		27，407， 130		26，809， 500		22，185， 504		26，644， 334
Oak	4	2，025， 000	389	2，708， 280	3	2，500， 000	3	1，592， 175	4	1，605，154
Maple	8	815， 000		857， 489	7	875， 000	10	609， 852	10	639，781
Gum，red	9	765， 000		851， 431	8	850， 000	8	683， 398	8	808， 461
Yellow poplar	15	290， 000		328， 538	15	350，000	14	235， 418		273， 971
Chestnut	12	400， 000	11	545， 696	12	475， 000	13	312， 486	13	310， 801
Birch	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & 370,000 \\ & 290,000 \end{aligned}$	14 15	$\begin{aligned} & 375,079 \\ & 358,985 \end{aligned}$	13	$\begin{aligned} & 405,000 \\ & 325,000 \end{aligned}$	12	$\begin{aligned} & 319,192 \\ & 190,387 \end{aligned}$	－－	263,094163,448
Beech										
Basswood				183， 562	－－	$\begin{array}{r} 195,000 \\ \cdot \quad 225,000 \end{array}$	－－－	125,633 132,276	－－－	$\begin{aligned} & 134,168 \\ & 142,702 \end{aligned}$
Elm		$\begin{aligned} & 200,000 \\ & 195,000 \end{aligned}$		194， 417				132， 276		
Cottonwo		175， 000	144， 155		----	$155,000$	－－－－	122， 305		113， 829
Ash		$\begin{aligned} & 170,000 \\ & 100,000 \end{aligned}$	$\begin{aligned} & 154,931 \\ & 170.013 \end{aligned}$			$\begin{aligned} & 170,000 \\ & 150,000 \end{aligned}$		$\begin{array}{r} 127,843 \\ 73,523 \end{array}$		130,73556,682
Hickory										
Tupelo		237， 000100,000	143,73039,218			180,00035,000		134，751		158,93838,735
Walnut								17，932		
Sycamore		30，000	28， 114			31，000			－－－－	17，901
Cherry				61， 308	－－－	68， 300		67，068		66， 154
Minor species		60，963					－－－		－－－	
Hardwoods． Total		6，222， 963	－－－	7，144， 946	．．．	6，989， 300		4，775， 360		4，924， 554
		$31,890,494$	－－－34，552， 076		－－－ $33,798,800$			26，960， 864	－－． $31,568,888$	

Forest Service．Compiled from Forest Service and Bureau of the Census reports．Figures for 1915－1918 and for 1920 include estimates for firms not reporting．

Table 625-Lath and shingles: Production by States, calendar years, 1870-1928.

State.	1870		1880		1890		1899	
	Lath.	Shingles.	Lath.	Shingles.	Lath.	Shingles.	Lath.	Shingles.
Alabama	Thousands. 1,115	Thousands. 1, 422	Thousands. 14, 147	Thousands. 5, 427	Thousands. 35, 105	Thousands. 292, 583	Thousands. 28, 721	Thousands. 267, 273
Arizona				1,760		1,500	2, 040	350
Arkansas	2, 200	4,747	6, 527	61,758	20,364	329, 823	21, 164	349, 522
California	2,877	103,547	2,420	138,718	7,350	305, 964	11, 507	650, 090
Colorado	2,710	3,675	4,925	27, 214	4,500	10,625	5,558	5,165
Connecticut	813	15,510	1,719	7,192	1,500	3, 523	418	3,214
Delaware ---...----	100		317	506	650	100	1,130	30
District of Columbia-			1,000					
Florida	1,400		20, 101	3,061	35,000	114,-107	21,761	177, 123
Georgia	1,883	1,560	17,438	25, 332	23, 250	102, 877	31, 496	243, 797
Idaho.		400	750	4,235	1,000	7,825	3,220	15, 806
Illinois	13,650	40, 928	25,977	15, 306	30,000	18, 339	30,674	42, 825
Indiana	11, 202	73,707	28,031	28, 634	23, 300	78, 789	10, 138	34, 198
Iowa	47, 884	97, 928	79, 924	128, 100	110, 500	209, 649	58,638	66, 140
Kansas	320	12, 108	25	835				
Kentucky	8, 050	13, 573	26, 856	25, 253	35, 808	36, 748	17,091	59,375
Louisiana			7,745	30, 195	7,500	411, 725	99, 852	504, 819
Maine.	266, 889	364, 201	184, 820	426, 530	190, 355	483, 153	217, 376	465, 862
Maryland.	5,849	3, 869	7,955	4,429	3,500	12, 277	5,369	22, 824
Massachusetts	873	36, 486	16,947	19,667	20, 365	24, 523	8,807	20,500
Michigan	304, 054	658. 741	461, 805	2, 584, 717	478, 935	2, 848, 820	259, 917	1,926, 110
Minnesota	49, 768	127, 813	88, 088	194, 566	176, 300	461, 472	387, 064	498, 800
Mississipp	651	5,500	7,908	5,355	10, 355	11, 270	6, 083	32, 027
Missouri.	12, 970	10,442	20, 839	8,832	26,785	24, 089	24, 835	28, 227
Montana	400	2, 356	2,620	9,627	3, 360	1,295	14, 231	6,880
Nebraska		900				2,805	1	
Nevada	75	700		485				
New Hamps	10,383	52, 225	49, 454	67, 086	55, 834	79,193	74, 221	40,499
New Jersey	3,167	3,624	8,948	10, 717	9, 150	17, 608	3, 559	33,835
New Mexico			107	722	2,310	3,140	2, 165	4,800
New York	87,999	372, 183	79,399	305, 711	85,250	491, 641	66, 468	160, 294
North Carolina	1,530	13, 817	13,340	8,707	$19,330$	100, 442	48,782	212, 467
North Dakota					1,600 38,265	2,000 49,302		
Oklahom	15, 238	59,632	50, 625	24, 876	38, 265	49,302	18, 175	$\begin{array}{r} 13,605 \\ 103 \end{array}$
Oregon.	7,346		18, 245	5,040	14, 110	51,530	41,779	31, 189
Pennsylvania	95, 592	275, 273	183, 740	288, 561	195, 273	422, 701	266, 949	369, 858
Rhode Island		5,119	10	1,986		3,790	16	2, 267
South Carolina	2, 500	1,200	23, 133	10, 036	19, 150	23,618	26,311	88, 878
South Dakota			${ }^{2} 564$	${ }^{2} 4,823$	1,080	7, 845	1,856	800
Tennessee	5,370	11, 337	21, 275	14, 205	35, 350	19,537	33, 199	59,735
Texas	${ }^{623}$	30, 209	14, 131	112, 523	39, 565	214, 082	4, 181	210, 633
Utah	1,138	8,061	1,583	9, 293		1,115	793	2,460
Vermont	6, 672	28, 502	19,745	55, 711	23, 475	69, 035	9, 314	52,899
Virginia	4,258	614	14, 402	8,223	19, 204	11,566	36, 502	27,784
Washington	17,000	10, 450	6,550	3, 610	49, 600	545, 297	145, 134	4, 337, 992
West Virginia	197, 871	5,600	12, 071	3, 695	23, 480	1, 009	58, 440	34, 350
Wisconsin-	102, 663	806, 807	215, 132	862, 922	385, 500	1, 366, 022	418, 011	994,427
Wyoming		750	300	865		1,385	629	2, 185
United States .-	1, 295, 091	3, 265, 516	1,761,788	5, 555, 046	2, 263,308	9,275,809	2, 523, 998	12,102, 017

[^304]${ }^{1}$ Includes Indian Territory.
${ }^{2}$ Includes both Dakotas.
${ }^{3}$ Reported as the cut of Alaska.

Table 625-Lath and shingles: Production by States, calendar years, 1870-1922Continued.

State.	1904		1905		1906		1907	
	Lath.	Shingles.	Lath.	Shingles.	Lath.	Shingles.	Lath.	Shingles.
Alabama	Thousamds. 24, 569	Thousands. 112, 093	Thourands.	Thousands. 285, 080	Thousands.	Thousands.	Thousands. 39, 948	Thousands. 147, 641
Arizona.	5, 635		(1)	(${ }^{\text {a }}$			13, 845	
Arkansas	52, 594	269, 706.		302, 135		228, 563	71,163	186,163 762,178
California	16,962	737, 589 -		547, 863		834, 329	18,035 8,056	$762, \frac{178}{725}$
Colorado.-	17, 171	950					8, 056	
Connecticut.	475	6,225					215	3, 528
Florida------------------------	20,975 28,569	188, 652		177, 988		161, 339	66, 674	194, 263
Idaho.	16, 137	41,972					45, 763	63, 678
Itinois	16,572	12,408					1,597	200
Indiana	2, 960	3, 960					3, 249	2, 327
Iowa.-	58, 807	35, 404					22, 439	11,754
Kansas			(1)	(1)				
Kentucky	15, 837	43, 775					36, 589	24, 053
Louisiana	151, 403	801, 866	259, 259	743, 398	348, 530	866, 597	281, 495	812, 587
Maine.	237, 173	482, 414	255, 482	312, 497	329, 549	340, 948	294, 558	401, 759
Maryland	13, 616	6, 677					16, 843	5,467
Massachusetts.	4,877	10, 086					8,573,	12, 168
Michigan	236, 343	1, 347, 163	221, 386	875, 051	317, 395	915, 153	268, 287	855, 749
Minnesota	368, 843	318, 783	422, 025	193, 738	501, 673		497, 628	51,540
Mississippi	60, 410	50, 654					74, 14.170	51, 48.651
Missouri ------------	22, 509	74,036 4,586					14, 17,	48,681 4,069
Nebraska			(1)	(1)				-----
Nevada.		(1)	${ }^{1}$)	${ }^{(1)}$				
New Hampshire	19, 082	17, 327					94, 482	19,346
New Jersey --	12, 977	31, 411					10,345	26,990
New Mexico-.-------	12, 654	950 .	(1)	(1)			19, 778.	7, 724
New York	${ }^{2} 55,233$	${ }^{2} 55,581$					${ }^{2} 81,187$	2 65, 554
North Carolina	31, 907	192, 233					51, 040	129, 101
Ohio.	8,671	3, 820 :					16, 395	+ 953
Oregon.	76,915	117, 511	116, 456		156, 973		134, 048	206, 766
Pennsylvania	219, 630	115, 211	219, 143		200, 494		245, 482	108, 910
Rhode Island		620					2	8829
South Carolina.	20,177	81, 108					21,697	43, 767
Tennessee	21, 215	35, 121					37, 967	8, 609
Texas	9,567	75,926					58, 259	95,753
Utah	929	550					338	1,370
Vermont	18,649	16,415					14, 784	19, 184
W ashington	229, 720	8, 357, 457	559, 813	10, 509, 914	479, 187	7, 286, 508	430, 791	6, 886, 542
West Virginia.	66, 325	24, 630			137, 506		142, 595	3,323 348,170
Wisconsin.	416, 282	474, 928	328, 905	417, 046	457, 880	302, 876	364, 180	348, 170
Wyoming--	560	1,071					684	1,159
All other States		${ }^{3} 1,226$	* 728, 688	4821, 677	${ }^{5} 883,620$	-746,227		
United States. -	2, 647, 847	14, 547, 477	3, 111, 157	15, 340,909	3,812, 807	11, 858, 260	3, 663, 602	11, 824, 475

[^305]Table 625-Lath and shingles: Production by States, calendar years, 1870-1922Continued.

[^306]Table 625-Lath and shingles: Production by States, calendar years, 1870-1922Continued.

State.	1912		1915		1916		1917	
	Lath.	Shingles.	Lath.	Shingles.	Lath.	Shingles.	Lath.	Shingles.
Alabama	Thousands. 56, 595	Thousands. 126, 205	Thousands. 59, 570	Thousands. 67, 629	Thousands. 64, 922	Thousands. 183, 662	Thousands. 39, 685	Thousands. 54,735
Arizona	7,985		23, 293	200	24, 918		19, 878	180
Arkansas	90, 216	114, 458	97, 185	20,501	78, 157	45, 411	147, 578	59, 927
California	18,954	471, 592	${ }^{1} 38,284$	200, 755	${ }^{1} 30,713$	348, 622	${ }^{1} 37,651$	261, 434
Colorado	4,975	265	8, 003		5, 964	172	491	35
Connecticut.	1,409	2, 240	343	833	12, 805	202	736	555
Delaware District of Columbia	765	290	400	25	30	89	568	20
Florida-..-......-...--	51,078	309, 081	89, 860	116, 054	85, 187	131, 795	97,954	143,792
Georgia.	37, 702	216, 688	34, 969	69,308	49,316	131, 763	46, 889	112,430
Idaho	50, 895	37, 641	85, 672	49,512	117,365	79,960	86, 264	52,631
Ilinois	366	50	384 391	270	1, 8245	162	415	
Iowa--.----------------------	4,734	1,260		100	500			
Kentucky	10, 481	8,623	12, 588	6, 835	9,340	4, 672	7,153	1,601
Louisiana	330, 474	718, 026	418, 554	385, 610	354, 551	404, 263	348, 806	453, 819
Maine	210, 023	393,772	172, 346	268, 004	396, 935	221, 039	142, 488	166, 101
Maryland	6,535	3,437	12, 877	430	5,774	1,601	208	751
Massachusetts	5, 032	7,310	558	1,832	2, 036	865	583	533
Michigan	173, 415	459, 359	124, 543	250, 640	335, 846	201, 171	84, 352	203, 907
Minnesota	269, 095	30, 834	230, 686	8, 041	267, 788	6, 577	213, 092	1,498
Mississippi	81, 315	72, 700	123, 011	11,950	162, 689	25, 196	133, 925	39, 261
Missouri	4, 128	33, 917	9,855	3,820	1,332	998	5, 485	2,362
Montana	15, 064	210	27, 334	10,280	25,522	16, 266	23, 332	3, 259
Nebraska								
Nevada-.....								
New Hampshi	11,487	8,847	24,663	5,936	$\begin{array}{r}18,398 \\ 5 \\ \hline\end{array}$	- ${ }^{3,543}$		
New Jersey New Mexico	19,016 9,097	29,129	9, 482 2,992	17, 289	5,808 10,851	17,876 320	9,504	7,797 1,500
New York	28,188	27,919	15, 111	5,247	12, 829	9,577	10,478	8,302
North Dakota	94, 086	196, 943	96, 474	74, 773	86, 551	123, 959	36, 287	73,703
	14,051	488	4,717	25	6,976	125	3, 004	15
Oklahoma	9,391	2, 547	11, 176	890	19,711	220	18,866	338
Pennsylvania	131, 734	271, 205	95, 801	336, 652	142, 352	471, 762	132,418	481, 353
	78, 758	26, 957	70,877	8, 064	63, 016	8, 652	43, 928	3,924
Rouode Island		432		400		125	30	70
South Carolina	13, 259	57, 812	13, 350	11,854	44, 967	24, 382	21, 834	13, 610
South Dakota.-.-.-.---	381	271	7, 292	436	7, 055	334	100	336
Tenness	16, 575	29,713	24, 510	7,912	13,795	9, 176	10,318	5,167
	28, 152	73, 870	40,698	22, 245	42,686	32,749	47, 654	61, 011
Texas	172	177	744	920	979	392	333	1,295
Vermont	4,538	9,363	6,290	6,388	9,990	7,993	6,170	2,894
	71, 356	27,752	97, 921	49,758	63, 263	43,387	30, 244	9,000
W ashington-..--....-	336, 538	7, 996, 251	389, 995	6, 313, 335	264, 690	6, 739, 388	230, 194	6, 313, 364
West Virginia.-....-	159, 119	1,441	882, 561		96, 665	2, 800	44, 233	
	257, 657	267, 045	179, 193	122, 882	218, 598	175, 455	185, 074	151, 726
Wyoming			581	785	289	376		65
United States.-	2, 719, 163	12,037, 685	2, 745, 134	8, 459, 378	3, 163, 029	9, 477, 077	2, 281, 738	8, 696, 513

${ }^{1}$ Includes cut of mills in Nevada.

1076 Yearbook of the Department of Agriculture, 1923.
Table 625-Lath and shingles: Production by States, calendar years, 1870-1.922Continued.

[^307]${ }^{1}$ Includes cut of Nevada.

Table 626.-Wood and saw timber: Annual world production and consumption.

Country.	Production.		Consumption.		
	Total wood.	Saw timber.	Wood.		Saw timber.
			Total	Per capita.	
United States	$\begin{aligned} & 1,000 \text { cubic } \\ & \text { feet. } \\ & 24,300,000 \end{aligned}$	$\begin{array}{r} 1,000 \text { cubic } \\ \text { feet. } \\ 13,750,000 \end{array}$	$\begin{aligned} & 1,000 \text { cubic } \\ & \text { feet. } \\ & 24,104,000 \end{aligned}$	Cubic feet. 228.0	$\begin{gathered} 1,000 \text { cubic } \\ \text { feet. } \\ 13,556,000 \end{gathered}$
Canada	2, 500,000	1, 106, 900	2, 058, 440	285.0	665, 340
Mexico	700, 000	42, 000.	710,000	45.8	52,000
Other North and Central Am	306, 420	86, 715	319, 350		98,425
North America	27, 806, 420	14,985, 615	27, 191, 790	188.0	14, 371, 765
Russia-	7,000,000	4,000, 000	6, 600, 000	66. 0	3, 600, 000
Sweden	1, 564, 826	1, 191, 415	749,710	129.3	383, 355
Finland	1, 316, 664	877, 776	1,001, 504	299.0	606,930
Germany	1,172, 395	604, 583	1,702, 395	27.0	1, 134, 583
France	963, 000	300, 000	1,098, 910	26.0	426, 410
Great Britain and Ireland	45, 000	20,000	693,719	15.3	668, 719
Other Europe	4, 941, 202	2, 166, 462	4, 795, 059		2, 024, 294
Europe	17, 003, 087	9, 160, 236	16, 641, 297	35.8	8,844, 291
Japan:	2, 255, 620	383, 455	2,220, 000	28.4	347,835
China	1,972, 263	284, 163	1,986, 000	6.0	297, 900
India.	1,572, 275	174, 000	1,575, 000	5.0	176, 725
Asiatic Russia	1,100, 000	571, 000	1,098,000	52.1	569,000
Other Asia.	1,028, 872	143, 650	1,037, 516		147, 113
Asia	7,929, 030	1,556, 268	7,916,516	9.1	1,538,573
Brazil	1,300, 000	100,000	1,296,900	42.5	96,900
Chile	684, 020	45,700	687, 620	177.7	49,300
Argentina	197, 800		225, 800	27.3	106,800
Colombia	110, 000	10,000	110, 000	20.1	10;000
Other South America	199,645	25, 105	206, 570		31,390
South America	2, 491, 465	258,605	2, 526, 890	39.2	294, 390
Rhodesia	126, 962	10, 141	127, 186	73.6	10,365
Nigeria-----	86, 250	2,005 19 19803	86, 250 85,399	5.0 14.2	2,005 39,260
Union of South A Other Africa	65,942 438,219	19,803 30,501	85,399 475,481	14.2	39,260 $\mathbf{6 2 , 4 9 6}$
Africa	717, 373	62, 450	774, 316	5.7	114, 126
Australian Commonwealth	197,379	49, 874	213,752	41.8	66, 247
New Zealand.	67,000	42,000	63, 269	59.7	38, 289
Oceania	10,309	867	19,741	10.0	9,888
Australis and Oeesnia.	274, 688	92,741	296, 762	36.4	114,404
Tokal world production	56, 222, 063	26, 115, 015	${ }^{1}$ 55,347, 571	32.2	${ }^{1} 25,277,549$

Forest Service. Compiled from "Forest Resources of the World."

${ }^{1}$ The figures for total world consumption do not exactly correspond with those for production, although they must be approximately equal. The differences are due to various discrepancies in tire data, such as differences in the years for which figures on individual countries are based, different converting factors used in different cerantries, and differences in the completeness of customs statistics. Data represent averages of recent years.

1078 Yearbook of the Department of Agriculture, 1923.
Table 627.-Wood pulp: Production of the United States, 1869-1922.

Caiendar year.	Total.	Mechanical.		Sulphite.		Soda.		Sulphate.	
	Short tons.	Short tons.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$	Short tons.	Per. cent.	Short tons.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$	Short tons.	$\begin{gathered} \text { Per } \\ \text { cenl. } \end{gathered}$
1869	1,077	(1)		(1)		(1)			
1879	22,570	${ }^{(1)}$		(1)		(1)			
1889	305, 544	(1)				(1)			
1899	1,179,525	586, 374	50	416, 037	35	177, 114	15		
1904	1, 921,768	968, 976	51	756, 022	39	196, 770	10		
1907.	2,547, 879	${ }^{(1)}$		${ }^{(1)}$		${ }^{(1)}$			
1908	2, 118, 947	${ }^{(1)}$		${ }^{(1)}$					
1909	2, 495, 523	1, 179, 266	47	1,017, 631	41	$\underset{(1)}{298,626}$	12		
1911	2, 2886,134	(1)		(1)		(1)			
1914.	${ }^{2} 2,893,150$	1,293, 661	45	1, 151, 327	39	347, 928	12	52, 641	2
1916	3, 435, 001	1, 508,139	44	1,466, 402	43	387, 021	11	73, 439	2
1917	3, 509, 939	1, 535, 953	44	1,451, 757	41	437, 430	13	84, 799	2
1918	3, 313, 861	1,364, 504	41	1, 456, 633	44	350, 362	11	142,362 120,378	4
1919	${ }^{3} 3,517,952$	1, 518, 829	843	1,419,829	40	411, 693	12	120, 378	4
1920.	3, 821, 704	1, 583, 914	41	1,585, 834	42	463, 305	12	188, 651	
1921	4 2, 875, 601	4 1, 267, 382	44	4 1, 166, 926	41	4 300, 533	10	${ }^{4} 140,760$	5
1922	3, 521, 644	1, 483, 787	42	1, 374, 319	39	419, 857	12	243, 681	7

Forest Service. Compiled from Forest Service and Bureau of the Census repots.
${ }^{1}$ Not reported separately.
${ }_{2}$ Includer screenings, mechanical 11,769 tons, and chemical not shown by process, 35,824 tons; combined equal to 1.6 per cent of total.
${ }_{3}$ Includes screenings, mechanical 12,220 tons, and chemical not shown by process, 35,003 tons; combined equal to 1.3 per cent of total.
${ }^{1}$ Incluydes screenings.
Table 628.-Paper: Production, United States, 1810-1922.

Calen-	Total.	Newsprint.		Book.		Boards.		Wrapping.		Fine.		All other.	
1810	Short tons. 13,000112,500 12, 500	Short tons. 500	$\left\|\begin{array}{c} P e r \\ \text { cent. } \\ . \end{array}\right\|$	Short tons. 630	$\left.\begin{array}{\|c\|} \hline \boldsymbol{P e r} \\ \text { cent. } \\ 21 \end{array} \right\rvert\,$	Short tons.	Per cent.	Short tons.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$	Short tons. 650	$\begin{gathered} \text { Per } \\ \text { cent. } \\ 22 \end{gathered}$	Short tons. 1, 220	$\begin{array}{r} \text { Per } \\ \text { cent. } \\ 40 \end{array}$
1819													
1839	138,000												
1849.	${ }^{1} 78,000$												
1859	$126,889$	${ }^{2} 65,754$	52			8,150	6	33,379	26	11,134	9	8,472	
1869	$\begin{array}{r} 1386,000 \\ 452,107 \end{array}$	${ }^{2} 149,177$	33				4	134, 294	0	32, 837	-	115,685	23
1889	11,098,029	196, 053	18	150, 888	14	149, 901	14	276, 973	25	69, 199	6	255, 017	23
1899	2, 167, 593	569, 212	26	323, 208	15	394, 111	18	535, 252	25	112, 707	5	233, 103	11
150	3, 106, 696	912, 822	29	515,547	17	520, 651	17	644, 291	21	146, 832		366, 553	1
1909	4, 216, 708	1, 175, 554	28	694, 905	16	883, 088	21	763, 067	18	198, 213	5	501, 881	12
1914	5, 270, 047	1, 321, 167	25	934, 979		1,291, 805	25	881,799	$\begin{array}{r}17 \\ 14 \\ \hline 1\end{array}$	247, 728	5	792, 569	12
1917.	5, 919, 647	1, 359, 012	23	892, 283	15	$1,804,589$	31		14		${ }_{6}$		12
1918	6, 051, 523	1, 260, 285		849, 157		$1,926,986$	32		15	368, 012	${ }^{6}$	755, 721	12
1919	6, 190, 361	1, 374, 517	22	$\begin{array}{r} 914,823 \\ 1,104,464 \end{array}$		$\begin{aligned} & 1,950,037 \\ & 2,313,449 \end{aligned}$	32	$\begin{array}{r} 869,631 \\ 1,043,812 \end{array}$	14	$\begin{aligned} & 343,762 \\ & 389, \\ & 322 \end{aligned}$	5	$\begin{aligned} & 737,591 \\ & 971,599 \end{aligned}$	12
1921	5, 356, 317	1, 226, 189	23	725, 992		1, 664, 931	31	782, 468	15	242, 485		714, 252	13
1922	7,017, 800	1, 447, 688	21	981, 919		2, 156, 113	31	1, 048, 393	15	361, 050		1, 022,637	14

Forest Service. Compiled from Bureau of the Census reports prior to 1917; Federal Trade Commission. 1917-1922.
${ }_{2} 1$ Estimated from values reported by the Bureau of the Census.
${ }^{2}$ Includes both newsprint and book paper.

Table 629.-Timber removed annually from forests of the United States.

Kind of material.	Timber removed		Approximate value or cost. ${ }^{1}$	Equivalent in lumber which could have been sawed from same trees.			Equivalent in standing timber.			
	Unit.	Quantity.		Hardwoods.	Softwoods.	Total.	Hardwoods.	Softwoods	Total.	Per cent.
Fuel wood	Cords	100, 000, 000	Dollars. $475,000,000$	$\begin{array}{r} M \text { board eet. } \\ 3,500,000 \end{array}$	$\begin{array}{r} M \text { board feet. } \\ 1,500,000 \end{array}$	$\begin{gathered} M \text { board feet. } \\ 5,000,000 \end{gathered}$	M cubic feet. $6,650,000$	M cubic feet. $2,850,000$	M cubic feet. $9,500,000$	38.33
Lumber, dimension material, and sawed ties \qquad	M board feet.	37, 700, 000	1, 138, 917, 000	9, 425, 000	28, 275, 000	37, 700, 000	2,064,075	6, 192, 225	8,256, 300	33.31
Fencing--	Number of posts.--	900,000, 000	225, 000, 000	165,000	660, 000	825, 000	360, 000	1, 440, 000	1, 800, 000	7.26
Ties, hewed	Number----------	70, 000, 000	73, 500, 000	1,680, 000	420, 000	2, 100, 000	672, 000	168,000	1,840, 000	3. 39
Pulpwood.-	Cords	$5,000,000$	79, 750, 000	195, 000	2, 145, 000	2, 340, 000	48, 700	536, 300	585, 000	2. 36
Mine timbers	Cubic feet	293, 000, 000	56, 913, 000	439,500	439, 500	879,000	197, 775	197, 775	395, 550	1. 60
Cooperage: Tight staves.	M staves.	350, 000	19, 250, 000	399, 000	133, 000	532, 000	87, 450	29, 100	116,550	
Tight heading	M sets...	24, 000	12, 000,000	141, 800	136,200	178, 000	31, 000	-2, ${ }^{\text {8, }} 000$	116,550 39,000	
Slack staves.-	M staves.	1,200, 000	18,000, 000	240, 400	121, 600	362, 000	52, 800	26, 400	79, 200	1. 27
Slack heading	M sets	90, 000	10, 800, 000	166, 500	166, 500	333, 000	36,490	36, 500	72, 990	
Hoops.-	Thousands	120, 000	1,800, 000	21, 500		21, 500	7,080		7,080	
Shingles	do	9,000,000	37, 710, 000		900, 000	900, 000		198, 000	198, 000	. 80
Distillation woo	Cords.	1, 400, 000	9, 268, 000	185, 000		185, 000	120,000	13, 000	133, 000	. 54
Veneer logs.	M feet, log scale..-	576, 000	25, 079, 000	587, 520	103, 680	691, 200	90, 000	15, 980	105, 980	. 43
Tanning extract wood	Cords	1,000,000	10, 250, 000	87, 000		87, 000	95, 000		95, 000	. 38
Poles.---	Number	4, 250, 000	10, 625, 000	55, 000	200, 000	255, 000	11,700	43, 550	55, 250	. 22
Vehicle stock, woodenware, handles, furniture, etc.	M board feet.-.---	200, 000	7, 288, 000	197, 700	2, 300	200, 000	45, 070	730	45, 800	. 18
Piling-.-.-------------------------	Number of pieces.	1,500,000	6, 000,000	40,000	140,000	180, 000	7,800	31, 200	39,000	. 16
Excelsior wood	Cords ------------	200, 000	1,800, 000	60, 000	15, 000	75, 000	18, 720	4, 680	23, 400	. 09
Export logs and hewn timbers..----.-	M board feet	100, 000	3, 445, 000	50, 000	50, 000	100, 000	9, 200	9, 200	18,400	. 07
Lath.-	Thousands.	2, 000, 000	9,620, 000							
Total.			2, 232, 015, 000	17, 635, 920	35, 307, 780	52, 943, 700	10,604, 860	11, 800, 640	22,405, 500	90.39
Destroyed by fire ${ }^{2}$	M cubic fe	1,080,000	10,000,000	500, 000	1,750, 000	2, 250, 000	10,330, 000	-750,000	1,080,000	4. 36
Destroyed by insects, disease, and windfall.	do	1,300,000	12, 000, 000	1, 000,000	4,000, 000	$5,000,000$	325, 000	975, 000	1,300, 000	5. 25
Grand total			2, 254, 015, 000	19, 135, 920	41, 057, 780	60, 193, 700	11, 259, 860	13, 525, 640	24, 785, 500	100.00

Forest Service. Averages of recept years.
${ }^{1}$ Based on values of approximately 1919, milled products at the mill, fuel at point of production, all others at point of consumption except exports (declared raluation).
${ }_{2}$ These figures express mainly that part of the damage done by fire which can be readily stated in dollars, namely, the loss of merchantable timber. Other damages suffered are the loss of young growth and forage, the injury of trees, resulting in admitting the inroads of insects and disease, the deterioration of orest types resulting from the decrease of
valuable species which are sensitive to fire, accelerated run-off followed by soil erosion and irregular stream flow, destruction of animals, fish, and birds, and the prevention of valuable species which are sensitive to fire, accelerated run-off followed by soil erosion and irregular stream flow, destruction of animals, fish, and birds, and the prevention of
recreational uses. One of the most menacing features of the present forest situation is the lowered productivity of forest soils sometimes amounting to absolute sterility, which recreational uses. One of the m
results from the action of fires.

Table 630.-Pulp wood: Consumption, United States.

Calendar year.	Grand total.	Total domestic.	$\begin{aligned} & \text { Total } \\ & \text { ime } \\ & \text { ported. } \end{aligned}$	Spruce.		Poplar.		Hemlock.	Pines.	Balsam fir.	$\begin{gathered} \text { All } \\ \text { other } \end{gathered}$	Slabs and mill waste.
				Domestic.	Im-	Do-mestic.	$\left\|\begin{array}{c} \text { Im- } \\ \text { ported. } \end{array}\right\|$					
	Cordir.	Cords.										
1869	2, 200											
1879	41,000											
1889	583, 200											
1899	1,986, 310	1, 617, 093	369, 217	1, 160, 118	349, 084	236, 820	20, 133	(1)	(1)	(1)	220, 155	(1)
1904	3, 050, 71'	2, 477, 099	573, 618	1, 732, 531	538, 305	213, 058	35, 313	(1)	(1)	(1)	531, 510	(1)
1905	3, 192, 123	2, 546, 695	645, 428	1, 650, 709	622, 545	299, 175	22, 883	375, 422	57,399	56, 744	107, 248	(1)
1906	3, 661, 176	2, 822,304	738, 872	1, 785, 680	721, 322	310, 920	17, 550	523, 381	69,277	33, 886	194, 160	(1)
1907	3, 962,660	3, 037, 287	925, 373	1, 795, 278	905, 575	352, 142	19,798	576, 154	78, 583	43, $88 i$	191, 246	(1)
1908	3, 346, 953	2, 651, 817	695, 136	1, 487, 356	672, 483	[279, 564	22, 653	569, 173	84, 189	45, 309	186, 226	(?)
1909	4,001, 607	3, 207, 653	793, 954	1, 653, 249	768, 332	302,876	25, 622	559, 657	90, 885	95, 366	256, 643	248, 977
1910	4, 094, 306	3, 146, 540	947, 766	1, 473, 542	902, 407	315, 717	45, 359	610, 478	105, 882	132, 362	245, 922	202, 637
1911	4, 328, 052	3, 390, 382	937, 670	1, 612, 355	903, 375	333, 929	34, 295	616, 663	124, 019	191, 779	231, 103	280, 534
1914	4, 470, 763	3, 641, 063	829, 700	1, 892, 739	768,056	328, 513	61, 644	602. 754	141, 359	125, 296	296, 515	253, 887
1916.	5, 228, 558	4, 444, 565	783, 993	2, 399, 993	701, 667	329, 370	82, 326	760, 226	172, 923	301, 032	280, 177	200, 844
1917.	5, 480, 075	4, 706,327	773, 748	2, 385, 966	681, 450	313, 955	92, 298	775, 003	221, 038	382, 036	394, 347	233,932
1918	5, 250, 794	4, 506, 276	744,518	2, 204, 143	666, 164	210, 849	78, 354	836, 406	296, 081	368, 117	436.077	154,603
1919	5, 477, 832	4, 445, 817	1, 032, 015	2, 313, 419	873, 795	180, 160	158, 220	795,154	293, 610	288, 814	389, 579	175, 081
1920.	6, 114, 072	5, 014, 513	1, 099, 559	2, 565, 787	921, 811	189, 946	177, 748	885, 485	365, 688	328, 882	508, 499	170,229
1921	4, 557, 179	3, 740, 406	816, 773	1, 813, 762	701, 131	131, 038	115, 642	863, 043	282, 375	226, 726	356, 445	67, 017
1922	$5,548,842$	4, 498, 808	1, 050, 034	2, 162, 848	870, 042	157, 939	179, 592	893, 195	422, 724	308, 261	466, 123	87, 718

Forest Service. Compiled from Forest Service and Bureau of the Census reports.
${ }^{1}$ No data available.
${ }^{2}$ Distributed according to species.
Table 631.-Paper: Consumption, Uniied States.

$\begin{aligned} & \text { Cal- } \\ & \text { endar } \end{aligned}$	Total.	Newsprint.		Book.		Boards.		Wrapping.		Fine		All other.	
1810	Short tons. 13,000	Short tons.	Per cent.	Short tons.	Per cent.	Short tons.	Per cent.	Short tons.	Per cent.	Short tons.	Per ceni.	Short tons.	Per cent.
1819	112,000												
1829.													
1839.-	${ }^{1} 38,000$												
1849--	2 78,000												
1859.-	1127,000												
1869--	391, 000												
1879--	457, 000												
1889--	$1,121,000$												
1899.-	$2,158,000$	569, 000	26	314, 000	15	394, 000	18	535, 000	25	113, 000	5	233, 000	11
1904--	3, 050, 000	883,000	29	$495,000$	16	$521,000$	17	644, 000	21	142,000	5	365,000	12
1909.	$\left\lvert\, \begin{aligned} & 0,22 A, 000 \\ & 5 \\ & 5 \end{aligned}\right.$	$1,159,000$	27	$689,000$	16	$883,000$	21	$763,000$	18	193, 000	5	537,000	13
1914--	$\frac{4}{4}, 496,000$	$1,576,000$	29	$926,000$	17	$1,292,000$	24	$892,000$	16	244, 000	4	565, 000	10
1917-	$6,256,000$	$1,824,000$	229	$846,000$ $800,000$	14	$1,805,000$	29 30	814,000 859,000	13	276,000 348,000	4	691,000 693,000	11
1918--	$\left\lvert\, \begin{aligned} & 0,28 Z, 000 \\ & 6, \end{aligned}\right.$	$\begin{aligned} & 1,24,000 \\ & 1,760,000 \end{aligned}$		800,000	13	1, 927, 000	30	859, 000	13	348, 000	5	693, 000	11
1919--	$6,483,000$	$1,892,000$	29	$838,000$	13	1,940,000	30 29	$825,000$	13	306,000 371,000	5	692,000 930,000	10
1921--	6, 054,000	2, 002,000	33	707,000		1, 641, 000	27	770,000	13	230, 000	位	704, 000	12
1922	$8,003,000$	2. 451,000	31	968, 000	12	2, 154, 000	27	, 059,000	13	356, 000	,	1,015, 000	13

Forest Service.
1 United States production.

Table 632.-Lumber: Imports and exports, and pulpwood imports, 1907-1923.

Forest Service. Compiled from reports of the Bureau of Foreign and Domestic Commerce. Pulpwood is stated in cords of 128 cubic feet. The earliest Government record of pulpwood commerce shows 322,758 cords imported in the last half of 1906. Reports of manufacturers, which are not comparable with the Government record, show foreign pulpwood, consumed in calendar years antedating this table, as follows: In $1899,369,217$ cords; in 1905, 645,428 cords; in 1906, 738,872 cords.

Table 633.-Wood pulp: Imports, United States, 1889-1922.

$\begin{aligned} & \text { Calen- } \\ & \text { dar year. } \end{aligned}$	Grand total.	$\begin{gathered} \mathrm{Me}- \\ \text { chani- } \end{gathered}$cal.	$\begin{gathered} \text { Total } \\ \text { chemical. } \end{gathered}$	Total phite phite	$\begin{gathered} \text { Total } \\ \text { sul. } \\ \text { phate. } \end{gathered}$	Chemical unbleached.			Chemical bleached.		
						$\begin{gathered} \text { Un- } \\ \text { classi- } \\ \text { ffed. } \end{gathered}$	$\begin{aligned} & \text { Sul- } \\ & \text { phite. } \end{aligned}$	$\begin{aligned} & \text { Sul- } \\ & \text { phate. } \end{aligned}$	$\begin{aligned} & \text { Un- } \\ & \text { classi- } \\ & \text { fied. } \end{aligned}$	$\begin{aligned} & \text { Sul- } \\ & \text { phite. } \end{aligned}$	$\begin{aligned} & \text { Sul- } \\ & \text { phate. } \end{aligned}$
	${ }_{\text {Short }}^{\text {Shent }}$ tons.	Short tons.	Short tons.	Short tons.	Short tons.	$\begin{aligned} & \text { Short } \\ & \text { fons } \end{aligned}$	$\begin{aligned} & \text { Short } \end{aligned}$	Short tons.	Short tons.	$\begin{aligned} & \text { Short } \\ & \text { tons. } \end{aligned}$	Short tons.
1889 1899	25, 738										
1904	179, 324										
1805	170, 867										
1900	199, 772										
1907	- ${ }_{1250,785}$	${ }^{2} 71,217$	${ }^{2} 78,733$			259,670			219063		
1909	367, 650	142, 989	224,661			161, 772			62, 889		
1910	506, 776	224, 184	282, 592			[203,745			76,847 8602		
1911	562, 424	262, 681	290, 743			277, 201			77, 146		
1913	541, 45	167, 889	373, 566			296, 255			77, 31		
1914	675,564	217, 256	458, 308			330, 270			123,038		
1915	568,379 683 765	174, 056	394, 323			退 3121,700			52, 84		
1916	683 677,841	279, ${ }^{2673}$	- 3981,768	289, 210	109, 558		248, 173	-107, 933		41,037	1, 625
1918	578,209	185, 478	392, 731	280, 211	${ }^{122,520}$		233,454	1185, 761		42,755	- ${ }^{3,759} \mathbf{1 4 5}$
1919	636,016 906,297	${ }_{233,148}^{202,253}$	433, 673,149	${ }_{473,175}^{282}$	199,974		344,989	182, 687		128, 206	
1921		190, 744	506, 356	328, 270				lint ${ }^{174,004}$		-95, 2364	${ }^{4,773}$
1922	${ }^{31}, 258,961$	215,811	${ }^{31,043,150}$	712,088	330, 337		473, 424	308, 564		238,664	21,7

Forest Service. Compiled from reports of Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Includes 725 tons of soda, September-December only.
2 July 1-December 31.
${ }^{3}$ Includes 100,535 tons of wood pulp, grade unclassified, imported January 1-June 30.

Forest Service. Compiled from reports of Forest Service, and Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Includes exports of domestic products only.
'Table 635.-Wood pulp: International trade, calendar years, 1909-1913, and 19201922.

Country	Average 1909-1913.		1920		1921		1922, preliminary.	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \\ \text { ce } 0 \text { nco } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$1,000$ pounds.
^ustria-Hungary	13, 366	205, 364						
Canada---.---	9, 481	606, 203	42,282	1, 639,970	34,710	1, 054,446	34, 601	1, 636,493
Finland..	526	236, 881		424, 441		422, 386		549, 231
Germany	112, 660	384, 709	143, 027	81, 125	${ }^{2} 48,171$	${ }^{2} 84,452$	158,765	162, 972
Norway..	${ }^{3} 64,911$	1,437, 078	44, 923	1,318, 287	55, 450	804, 351		1, 334, 519
${ }_{\text {Sumeden }}$	9,515	1, 822, 023	24, 494	2, 220, 331	8,153	1, 166, 330		2, 583, 954
Switzerland	21,059	13, 072	20,544	27, 180	7, 840	21, 300	12, 601	25, 003
PRINCIPAL IMPORTING COUNTRIEA.								
Argentina	52, 016		34, 123					
Belgium	291, 254	80, 647	258, 458	34, 572	144, 929	10,855	258, 140	7,369
Denmark	110, 866		149, 984		43, 012		99, 688	
France.	836, 899	1,720	794, 680	668	385, 666	1,101	861, 194	119
Italy	179, 267	485	157, 602	269	86, 022	2, 748	197, 253	1,128
Japan	79, 260		104, 849	654	87,527 43,051	2, 5658	99, 826	670
Portugal	18,662	4, 144						
Russia.	56, 072	52, 735						
Spain	92, 770		145, 363		52,091		144, 379	
United Kingdom	1,891, 006		2, 446, 535	112	1, 315, 227	688	2, 068, 020	
United States--	1, 007, 239	24, 309	1, 812, 595	63, 932	1,394, 201	56, 965	2, 517, 921	49,000
Other countries	10, 134	69, 137	35, 590	24	13, 805	158	3, 424	700
Total	4, 856, 963	4, 938, 507	6, 339, 509	5, 867, 415	3, 742, 733	3, 697, 267	6, 455, 812	6,351,158

Division of Statistical and Historical Research. All kinds of pulp from wood are included, but no pulp made from other fibrous substances.
${ }^{1}$ Less than 500 pounds.
© Eight months, May-December.
${ }^{3}$ Four-year average.
Table 636.-Newsprint-paper: Imports, United States.

Calendar year.	Total.	Country of origin.											
		Canada. ${ }^{1}$		Sweden.		Germany.		Finland.		Norway.		All other.	
		Short	Per	Short	Per	Short	Per	Short	Per	Short	Per	Short	Per
1911.	Short tons. 55, 830	tons. 54, 478	cent.	tons.	cent.	tons.	cent.			tons.		tons. 5	
1912	85, 593	84, 652	99	337		8				596			
1913	219, 844	218, 794	100	258		168				624			
1914	315, 475	310, 397	99	963		463				3, 565		87	
1915	368, 409	366, 921	100	403		30				908		147	
1916	468, 230	468, 070	100	11						34		115	
1917	559, 113	557, 863	100	56						1, 194			
1918	596, 270	595, 849	100	166								255	
1919	627, 734	627, 687	100									47	
1920	729, 869	679, 309	93	18,875	3	21, 066	3	3,244		5,918	1	1,457	
1921	792, 509	657, 149	83	48, 933	6	39, 013	5	22, 664	3	20, 194	2	4,556	1
1922	1,029, 268	896, 312	87	51, 812	5	32, 837	3	26, 205	2	17, 293	2	4,809	1

Forest Service. Compiled from reports of Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Includes Newfoundland and Labrador.

1084 Yearbook of the Department of Agriculture, 1923.
Table 637.-Turpentine and rosin: Siocks, United States, March 31, 1919-1923.
TURPENTINE.

Stocks.	1919	1920	1021	1922	1923
Stocks at stills	Casks, 50 gal . 24, 050	Cusks, 50 gal . 28,394	Casks, 50 gal . 30, 129	Casks, 50 gal . 20,73	Casks, 50 gal . 12. 194
Stocks at wood distillation plants	24,050	28,394 2,000	30,129 5,000	20,732 2,850	12, 5 ,994
Stocks at primary southern ports	122, 853	34, 519	60,916	24, 099	21,040
Stocks at eastern ports and distributing points	1, 513	2,363	2, 258	1,675	2,652
Stocks at central distributing points	5, 771	14, 558	10, 364	8,195	10, 881
Stocks at western ports and distributing points	2, 751	2, 634	848	900	2,225
Stocks at plants of consuming industries	28, 500	26, 340	30, 528	26, 717	16,670
Total.	187, 403	110, 808	140, 343	85, 168	71,656

ROSIN.

Stocks.	1919	1920	1921	1922	1923
	Barrels, 500 lbs.	Barrels, 500 lbs.	Barrels. 500 bbs.	Barrels, 500 lbs.	Barrcls, 500 lbs.
Stocks ait stills_	130, 035	138, 535	327, 055	499, 797	474, 829
Stocks at wood distillation plants	12,304	23, 000	40, 000	19,143	25, 063
Stocks at primary southern ports	326, 933	211, 238	432, 237	347, 730	278, 414
Stocks at eastern poris and distributing poinis	81, 440	23, 417	11, 063	11, 359	8, 078
Stocks at central distributing points.	22, 608	28,514	35, 567	49,043	46,938
Stocks at westeru'ports and distributing points.	1,743	777	275	6,447	1,340
Stocks at plants of consuming industries	203, 000	290,045	217, 302	263, 488	297, 843
Total	778, 063	715, 526	1, 063, 499	1,199, 007	1,132, 505

Burcau of Chemistry. Compiled from reporis of Bureau of Chemistry and Bureau of the Census.
Table 638.-Turpentine (spirits): International trade, calendar years, 1909-1913, and 1920-1922.

Country.	A verage, 1909-1913.		1920		1921		$\begin{gathered} 1922, \\ \text { preliminary. } \end{gathered}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES. France \qquad	1,000 gallons. 48	$1,000$ gallons. $2,594$	$1,000$ galbons. 85	$\begin{gathered} 1,000 \\ \text { gallons. } \\ 3,659 \end{gathered}$	1,000 gallons. 16	$\begin{gathered} 1,000 \\ \text { gallons. } \\ 3,006 \end{gathered}$	1,000 gallons. 21	$\begin{aligned} & 1,000 \\ & \text { gallons. } \\ & \mathbf{2 , 7 8 3} \end{aligned}$
Greece.	2	368		324		254		23.3
Russia	273	2,322						
Spain.		1,156		944		1,439	6	1,297
Sweden	134	1,62	112	271	132	9 275	118	-270
PRINCIPAL IMPORTING COUNTRIES.								
Argentina-----------	554		573					
Australia	564		538	3	527	(1)		
Austria--			19	14	205	27		
Austria-Hungary	2,581	53						
Belgium	1,932	1,144	1,580	1,558	2, 418	1,610	950	174
Brazil.	${ }^{2} 311$		51.0		138			
Canada	1,175		962		1,088		1,267	1
Chilo---------	198		267		67			
Czechoslovakia_					418		1,742	
Germany	9, 368	460	1,252	18	3 2, 433	${ }^{3} 82$	2, 036	127
Italy ----------------	940	3	749	3	868	11	852	16
Netherlands---------	3,998	2, 750	947	12	1,159	11	1,225	34
New Zealand.---------	178		93		69		226	
Switzerland ------------	466	9	550		522		571	
United Kingdom...--	7,782		6,752	236	4,281	158	6, 079	
Other countries	696	154	1,082	161	698	204	515	24
Total	31,200	28,943	16,071	16,661	15, 039	16,34b	15, 608	14,388

Division of Statistical and Historical Research. "Spirits of turpentine" includes only "spirits" or "oil" of turpentine and, for Russia, skipidar; it excludes crude turpentine, pitch, and, for Russia, turpentine.
${ }^{1}$ Less than 500 gallons. $\quad{ }^{2}$ Four-year average. $\quad{ }^{3}$ Eight months, May-December.

Table 639.-Turpentine and rosin: Production in the United States, 1910-1922.

Year beginning Apr. 1-	Turpentine.			Rosin.		
	Gum.	Wood.	Total.	Gum.	Wood.	Total.
	Gallons.	Gallons.	Gallons.	Barrels, 500 lbs.	Barrels, 500 lbs.	Barrels, 500 lbs .
1910-11 ${ }^{1}$	29, 750, 000	1,250, 000	31, 000, 000	2,970, 000	14,000	1,984,000
1911-12 ${ }^{1}$	31,900,000	1,000, 000	32, 900, 000	2, 125, 000	16,000	2, 141,000
1912-13 ${ }^{1}$	34, 000, 000	1,000,000	35, 000, 000	2, 267, 000	20,000	2, 287, 000
1913-141	32,000, 000	800,000	32, 800, 000	2, 132, 000	24,000	2, 156, 000
1914-152	27,000, 000	576,000	27, 576, 000	1,706,000	29, 000	1,735,000
1915-16 ${ }^{1}$	23,500,000	700, 000	24, 200, 000	1,565,000	40,000	1,605, 000
1916-17 ${ }^{1}$	26,750, 000	1,000,000	27, 750, 000	1,782, 000	80, 000	1,862,050
1917-18 ${ }^{1}$	23, 700, 000	1,200, 000	24,900, 000	1,531, 000	100,000	1,631,030
1918-19 ${ }^{3}$	17,050, 000	1,600, 000	18, 650, 000	1,115,000	123, 000	1, 238, 000
1919-20 ${ }^{3}$	18,300, 000	1,500, 000	19, 800, 000	1,237, 000	158, 000	1,395, 000
1920-21 ${ }^{3}$	24, 450, 000	1, 750, 000	26, 200, 000	1, 577, 000	180, 000	1, 757, 000
1921-22 ${ }^{4}$	24, 329, 000	442,000	24,771, 000	1,662, 000	53,000	1,715, 000
1922-23 ${ }^{4}$	22,395, 000	1,859, 000	23, 254, 000	1,500,000	152,000	1, 652, 000

Bureau of Chemistry.
${ }_{1}$ Trade estimates.
${ }^{3}$ Statistics compiled by Bureau of Chemistry.
${ }^{2}$ Bureau of Chemistry estimates. 4 Statistics compiled by Bureau of the Census.
Table 640.-Rosin: International trade, calendar years, 1909-1918, and 1920-1922.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Country.} \& \multicolumn{2}{|l|}{A verage, 1909-1913.} \& \multicolumn{2}{|c|}{1920} \& \multicolumn{2}{|r|}{1921} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { preliminary. } \\
\text { per }
\end{gathered}
\]} \\
\hline \& Imports. \& Exports. \& Imports. \& Exports. \& Imports. \& Exports. \& Imports. \& Exports. \\
\hline PRINCIPAL EXPORTING COUNTRIES. \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \& \[
\begin{gathered}
1,000 \\
\text { pounds. }
\end{gathered}
\] \\
\hline France \& 2, 432 \& \multirow[t]{4}{*}{\[
\begin{array}{r}
118,286 \\
10,423 \\
20,073 \\
655,520
\end{array}
\]} \& 1, \({ }^{-734}\) \& \multirow[t]{4}{*}{\[
\begin{array}{r}
129,007 \\
10,303 \\
26,855 \\
326,012
\end{array}
\]} \& 456 \& \multirow[t]{4}{*}{\[
\begin{array}{r}
164,913 \\
62,072 \\
220,416 \\
28,432
\end{array}
\]} \& 949 \& 128,166 \\
\hline Greece \& \& \& \& \& \& \& \& \multirow[t]{3}{*}{\[
\begin{array}{r}
9,359 \\
24,213 \\
399,587
\end{array}
\]} \\
\hline Spain \& 1,827 \& \& 617 \& \& 990 \& \& 290 \& \\
\hline United \& \& \& \& \& \& \& \& \\
\hline PRINCIPAL Importing countries. \& \& \& \& \& \& \& \& \\
\hline Argentina \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 32,719 \\
\& 13,724
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
145 \\
1,255
\end{array}
\]} \& 43,577 \& 45 \& \multicolumn{2}{|l|}{} \& \& \\
\hline Australia \& \& \& 2,183 \& \multirow[b]{2}{*}{689} \& \multirow[t]{2}{*}{5, 014} \& 723 \& \& \\
\hline Austria-Hungary \& \multirow[t]{2}{*}{\begin{tabular}{r|r|r}
77,163 \& 32,830 \\
\hline 46,905 \& \\
\hline\(-\cdots\)
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
2,205 \\
32,830
\end{array}
\]} \& 2,183 \& \& \& \& \& \\
\hline Belgium \& \& \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{106, 840} \& 31, 252 \& 13, 711 \\
\hline \({ }_{\text {Brazitish }}\) Indi \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{36,905
6,171
25,
706}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{3,936
28,763}} \& \[
\begin{gathered}
16,628 \\
1,073
\end{gathered}
\] \& \& \& \\
\hline Canada. \& \& \& \& \& \[
20,905
\] \& \& 27, 210 \& \\
\hline Chile \& \multicolumn{2}{|l|}{\[
\begin{array}{r}
25,506 \\
7,410
\end{array}
\]} \& \multicolumn{2}{|l|}{} \& \[
\cdot 1,550
\] \& \& \& \\
\hline Cuba.- \& \multicolumn{2}{|l|}{4,123} \& \multicolumn{2}{|l|}{\(\begin{array}{r}\text { 4, } \\ 4 \\ 3,571 \\ \hline\end{array}\)} \& \& \& \& \\
\hline Czechosloval \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{3,236}} \& \multirow[t]{2}{*}{2,575} \& \multirow[b]{2}{*}{24} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
14,344 \\
2,074 \\
16,658
\end{array}
\]} \& \& 14, 871 \& \\
\hline Denmark \& \& \& \& \& \& 2 \& -4,127 \& ------- \\
\hline Dutch East Indies \& \(\begin{array}{r}15,039 \\ 6,027 \\ \hline\end{array}\) \& \& \[
\begin{array}{r}
22,262 \\
3,682
\end{array}
\] \& \& \& 163 \& 2

16,093
5,756 \& 872

\hline Germany \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| 233,100 | |
| ---: | ---: |
| 34,171 | 50,110 |
| 33 | |}} \& \[

$$
\begin{array}{r}
3,682 \\
49,255
\end{array}
$$
\] \& 67

514 \& $$
\begin{array}{r}
429 \\
.76,503
\end{array}
$$ \& ${ }^{3} 1,216$ \& 92, 180 \& 1,105

\hline Italy \& \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 36,134 \\
& 36,686
\end{aligned}
$$} \& 315 \& 55, 280 \& 419 \& 41,637 \& 170

\hline Japan- \& \multicolumn{2}{|l|}{10, 073 --------} \& \& \& \multirow[t]{2}{*}{$$
\begin{array}{r}
10,019 \\
7,416 \\
\mathbf{1}, 188
\end{array}
$$} \& \& \&

\hline Netherland \& $$
\begin{array}{r}
73,991 \\
6,732 \\
6
\end{array}
$$ \& 59,366 \& \[

$$
\begin{aligned}
& 9,618 \\
& 5,411
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 64 \\
& \hline
\end{aligned}
$$

\] \& \& (9) ${ }^{182}$ \& \[

$$
\begin{aligned}
& \mathbf{9}, 952 \\
& \mathbf{4}, 499
\end{aligned}
$$
\] \& 75

\hline Rumania \& \multirow[t]{2}{*}{$\begin{array}{r}5,04 \\ 68,429 \\ \hline\end{array}$} \& 51 \& 3,068 \& \& \& \& \&

\hline Russia. \& \& \& \& \& \& \& \&

\hline Sweden-- \& \multirow[t]{4}{*}{$$
\begin{array}{r}
3,896 \\
4,983 \\
166,075 \\
15,965
\end{array}
$$} \& \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
12,698 \\
4,302 \\
124,368 \\
10,655
\end{array}
$$
\]} \& 192 \& 5,089 \& 22 \& 11,519 \&

\hline Switzerland. \& \& ${ }^{8} 8$ \& \& \& 3,077 \& 5 \& 4,993 \& 5

\hline United Kingdom.---- \& \& \& \& \& 85,260
7131 \& \& 136,915
5,352 \& 161

\hline Other countries. \& \& 70 \& \& 517 \& 7, 131 \& 6 \& 5, 352 \& 161

\hline Total \& 900,441 \& $$
950,381
$$ \& \[

528,620
\] \& 548, 094 \& 445, 924 \& 529, 333 \& 409,615 \& 579,603

\hline
\end{tabular}

Division of Statistical and Historical Research. For rosin only the resinous substance known as "rosin" in the exports of the United States is taken.
1 Four-year average. ${ }^{3}$ Eight months, May-Decomber.
${ }^{2}$ Java and Madura only. ${ }^{2}$ Less than 500 pounds.

1086

 Yearbook of the Department of Agriculture, 1923.Table 641.-Rubber: International trade, calendar years, 1909-1913, and 19201922.

Country.	Average, 1909-1913.		1920		1921		$\begin{gathered} \text { 1922, } \\ \text { preliminary. } \end{gathered}$	
	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL EXPORTING COUNTRIES.	1,000 pounds.	$1,000$ pounds.	1,000 pounds.	1,000 pounds.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	1,000 pounds.
Angola		5, 620		11,640		1491		1259
Belgian Con		7,755		2, 473		11,746		
Bolivia		8,395		8,288		14,802		
Brazil.		84,938	193	51, 896	154	38, 217		43,772
British India		21,504	2	14, 285	8	11, 883	1	10,875
British Malay	153,472	185,435	224, 085	778, 286	306, 202	415, 350	394, 192	479, 324
Ceylon	2 1, 299	10,953	4,465	88, 553	3, 867	88, 125	5,475	104, 595
Dutch East	${ }^{3} 1$	7,679	11	199, 908		164, 045		4 70,607
Ecuador		1, 040						
French Congo	${ }^{(5)}$	3, 797		14,680		${ }^{1} 3,160$		1 1, 536
French Guinea	1241	3, 937	11	11,521	11	1577		1666
French Indo-Cl	1	398		6, 927		${ }^{1} 8,043$		110,192
Gold Coast		2, 393		${ }_{1} 299$		1103		116
Kamerun		6,409		${ }^{1} 1,268$		1 1, 553		1 1, 236
Malacea	1164	13,279	10,543	13, 853	18,121	${ }^{1} 56,643$	1 12, 520	174,890
Mexico		14,262						
Nigeria		3, 054		${ }^{1} 1,129$		F237		
Peru.-		5, 030		3,258		335		3, 299
Senegal	4	1,087		187		142		121
Venezuela		772	132	388	48	50		
FRINCIPAL IMPORTING COUNTRIES.								
Austria			3,090	171	4,927	1227	14,757	${ }^{1} 293$
Austria-Hungary	6,696	1,619						
Belgium.-.-.-.	25,891	20, 749	14,120	5,519	7, 140	3,321	5,313	4,856
Canada.	3,945		26, 682	${ }^{5}$)	18,476		20,980 300	-.-----
Denmark	32 2504		1,074 60,042		563 41,664		300 67,893	
France.	32, 704	21, 615	60, 042	23, 588	41,664 149,378	7,762 7	67,893 63,483	$\begin{array}{r} 5,907 \\ 1,779 \end{array}$
Germany	42,004	9,844	26,918 1353	254	$\begin{array}{r} 149,378 \\ 1860 \end{array}$	${ }^{7} 277$	63,483 1 1444	1,779 13
Italy	5,381	225	15, 000	1,284	9, 745	997	14,435	32
Japan.	1,917		13, 581		51, 888		${ }^{1} 36,847$	
Netherlands	10, 822	7,172	27, 296	14, 954	32, 657	30, 369	19,628	28, 153
Russia	19, 131		11,128		${ }^{1} 397$		$\begin{array}{r}15,345 \\ 5,103 \\ \hline\end{array}$	
Spain.	1,067		9,202		7,968 1,800		5,103 2,795	
Sweden----	1,695	1 725	3,372 425	215 1,048	1,800 431	99 355	2,795 450	135 210
United Kingdom	43, 141		127, 332		94, 275		24, 870	
United States.	100, 180		566, 546		415, 283	--------	674, 410	
Oiher countries	5,799	58,091	4,457	117, 623	1,809	21, 693	3,319	1,440
Total	356,196	377, 778	1,139, 950	1,343,295	1,057,562	860,502	1, 362,860	844,096

Division of Statistical and Historical Research. Figures for rubber include "india rubber", so called, and caoutchouc, caucho, jebe (Peru), hule (Mexico), borracha, assaranduba, amabeira, manicoba, sorva, and seringa (Brazil), gomelastiek (Dutch East Indies), caura, ser nambi (Venezuela). Official sources except where otherwise noted.

1International Institute of Agriculture.	5 Less than 500 pounds.
? Three-year average.	6 Two-year average.
2 One year only.	
4Java and Madura only.	7 Eight months, May-December.

Three-year average.
'Java and Madura only.
Table 642.-Lumber: Average value at the mill per M feet, board measure, by kinds of wood, for specified calendar years.

Table 642.-Lumber: Average value at the mill per M feet, board measure, by kinds of wood, for specified calendar years-Continued.

Kind of Wood.	1899	1904	1907	1909	1910	1911	1915	1916	1917	1918	1919	1920	1921	1922
Hardwood														
Ash	15. 84	18.77	25.01	24. 44	22.	21.21	22.15	23.85	30.		52.			
Basswoo	12.84	16.86	20. 03	19. 50	20. 94	19. 20	18. 89	21. 05	25.	34. 00	40.	54. 28	33. 09	35. 6
Beech	(12) 50	${ }_{15}^{(1)}$	14.30 17	13.25	14. 34	14. 09	14.01	16. 20	19.58	25. 06	${ }_{3}^{29}$	36. 51	26. 99	26.84
Chest	12.37		17. 04	16.	17.		16. 52	19. 59	24.0 21.5	27. 27 1	35. 7	53.44 42.48		
Cottonw	10.37	14. 92	18.42	18.05	17.7	18. 12	17.3	17. 42	23. 19	26. 13	32.	33. 38	25.05	26.95
Elm	11.47	14. 45	18.45	17. 52	18.67	17. 13	16. 98	19.46	23. 89	28.19	36.3	47. 23	29.63	33.28
Gum, red			14.											
Hicko	18,	23. 94	29.50	30. 80	26.55	22. 47	23. 35	23. 8	29.48	37.95	44.3	52. 57	36. 6	36. 20
Mapl	11. 83	14. 94	16. 84	15. 77	18.16	15. 49	15. 21	18. 24	23. 16	29. 05	35.5	50.16	30.34	33. 52
ak	13. 78	17.51	21. 23	20. 50	18. 76	19. 14	18. 73	20. 06	24. 49	31. 11	37.87	46. 88	30.	34. 01
Sycamor	11.04	(1)	14. 58	14. 87	14. 10	13. 16	13. 86	14. 65	18. 68	23. 59	30. 32	32.12	22.	25. 29
Tupel		(1)	14. 48	11.87	12. 14	12. 46	12. 25	13.0	18. 06	22.73	28.4	33.	18. 59	22.86
Yellow poplar	14. 03	18. 99	24. 91	25. 39	24. 71	25. 46	22. 45	21. 8	27. 17	35. 06	41.6	58.87	37. 3	39. 18
Walnut	36.	45.64	43.31	43.79	34.91	31.70	48.37	42.3	72. 99	77. 60	72. 13	88. 92	88.	80. 08
1 kin	11. 13	12	16. 56	15. 38	30	16.05	14.	15. 32	20. 32	24.	30. 21	38.	23.	26.

Forest Service and Bureau of the Census.
${ }^{1}$ No data.
Table 643.-Lumber prices per M feet, in eastern markets of the United States, 1840-1922.

Calendar year.	First quality, 1 inch.		Average quality, 1 inch.		Calendar year	First quality, 1 inch.		Average quality, 1 ineh.	
	$\begin{array}{\|c} \text { Soft- } \\ \text { woods. } \end{array}$	Hardwoods.	Soft- woods	Hardwoods.		Softwoods.	Hardwoods.	Softwoods.	Hardwoods.
1840	\$20. 91		\$10. 50		1880	\$38.41	\$31.62	\$14.00	
1841	26. 21		10. 50		1881	38.51	- 31.62	16.50	
1842	26. 21		10. 00		1882	39. 93	31. 49	18.00	
1843	21.35		10. 50		1883	42.88	31.41	15.00	
1844	22.01		10.50		1884	41.80	31.41	16.50	
1845	21. 46		10.50		1885	41.51	31.46	17.00	
. 1846	23.37		11. 00		1886	39.47	32.13	17.00	
1847	23. 01		11. 00		1887	36. 96	32.75	18.00	
1848	25. 10		11.00		1888	34. 53	${ }^{33.85}$	16. 88	\$29. 29
1849	24. 22		11.00		1889	33.83	33.93	15.88	28.86
1850	24.35		10. 50		1890	34. 48	33.07	16.40	
1851	24.08		11. 00		1891	32. 43	33.11	16. 00	
1852	24. 28		11.00		1892			18.50	
1853	25.82		11.00		1893	29.32	32.86	17.45	24.80
1854	27.02		11.50		1894	30.56	36.10	17.43	24. 80
1855	26.15	\$11. 03	11.00		1895	29.39	34.52	16.55	24.76
1856	27.67	11. 77	10.00		1896	28.77	34.51	16. 54	24. 76
1857	29. 80	11.87	11. 00		1897	28.75	34. 51	17.09	24.76
1858	30.37	11.87	11.00		1898	28.68	24. 26	16. 23	24.76
1859	22.38	11.97	11.00		189	30.06	35. 72	16.01	24. 69
1860	24.45	12.24	11.50		1900	34.06	39.29	21.50	27.57
1861	24. 32	21.60	12.00		1901	33.98	37.06	21.32	29. 32
1862	23.76	26.25	13.18		1902				
1863	20. 55	20.01	12:41		1903	41.93	46.43	20.40	31.75
1864	27.73	23. 18	12.86		1904	39.09	46.07	21.20	33.72
1865	20.43	13.57	9.25		1905	42.59	41.97	22. 06	31.80
1866	41. 32	20. 94	14. 28		1906	44. 65	44. 47	24.99	34.06
1867	43. 25	21.52	12.63		1907	45. 32	47.79	27.87	36. 94
1868	34. 58	20.92	11.55		1908	44.11	50.92	27.14	38. 12
1869	34.35	21.36	12.54		1909	42.10	47.16	25.44	34.72
1870	37. 70	24. 89	14. 01		1910	43.50	49.17	24. 60	35. 61
1871	35. 90	27.81	18.09		1911	45.06	50.59	24.52	35. 45
1872	41. 56	28.93	18. 33		1912	44.53	51.44	25. 29	35. 73
1873	41.92	28. 00	19.52		1913	44.92	53.99	27. 88	38. 61
1874	40.16	27.91	17.95		1914	42.76	54. 94	25. 19	38. 23
1875	39.93	27.64	13. 33		1915	41.89	52.94	24.68	35. 49
1876	32.85	27.56	13.30		1916	41, 53	54.59	26.86	37, 64
1877	34.29	29.30	13. 18		1917	42. 60	56.00	29. 09	38. 92
1878	33. 28	30.87	13.81		1918	51.45	66.65	39. 90	46.42
187	34.11	31.40	14.00		1919.	61. 58	72.62	44. 42	55.54
					1920	131. 55	178.82	73. 26	123.80
					1921	85. 17	140. 26	58. 98	94.89
					1922	72.45	120. 21	53.13	70.12

Forest Service. Reports of actual sales.

Table 644.-Lumber: Average prices per M. feet, f. o. b. mill, Douglas fir and southern yellow pine, 1913-1923.

Year.	Douglas fir.		Yellow pine.		Year.	Douglas fir.		Yellow pine.	
	Price.	Index (1913= 100).	Price.	$\begin{gathered} \text { Index } \\ (1913= \\ 100) . \end{gathered}$		Price.	$\begin{gathered} \text { Index } \\ (1913= \\ 100) . \end{gathered}$	Price.	Index (1913) 100).
1913.	\$11. 44	100.0	\$14. 77	100.0	1921-Con.				
1914	10. 58	92.5	13. 68	92.6	August	\$14.98	130.8	\$20. 40	138.1
1915	9.80	85.5	13. 02	88.2	September	14. 86	129.8	20.61	139.5
1916	11. 63	101. 7	16. 12	109. 2	October -	15. 97	139.6	21. 59	146.2
1917	16. 93	147. 9	21. 13	143. 1	November	17.07	149. 2	23. 14	156.7
1918	21. 21	186. 3	26.45	179.1	December	17. 75	155.1	21.77	147.4
1919	25. 83	225. 9	33.94	229.8					
1820	36. 78	323.3	44. 74	302.9	1922.				
1921	19.98	174.7	21. 18	143. 4	January	18. 73	163.7	22. 68	153.6
1922	23.90	208. 9	28. 44	179. 0	February	22. 75	198. 9	22. 61	153.1
1923	28.93	252.9	30.81	208.6	March	22. 40	195. 8	22. 27	151.5
					April	20. 44	178.7	22. 78	154.2
1920.					May	21. 10	184.4	24.85	168.2
January	41.98	366.0	52.21	353.5	June.	23.24	203.1	29.07	196.8
February	46.31	404.8	57.94	392.3	July	24. 18	211.3	27. 19	184.9
March	46. 66	407.0	61. 60	417. 1	August	24. 83	217.0	28.47	192.8
April	43.15	377.1	57. 53	389.5	September	27.13	237.2	31. 24	211.5
May	40. 21	351.2	54.65	370.0	October	27.97	244.5	31. 71	214.7
June.	36. 05	315.1	40.05	271.2	November	25. 82	225.7	30.61	207.2
July	33. 69	294. 5	41. 34	279.9	December	26. 49	231.6	30.61	207.2
August	32. 86	287.2	43.42	294. 0					
September	31. 29	273.4	41. 09	- 278. 2	1923.				
October-	27.57	241.0	34. 44	233.2	January .	28.54	249.5	30.42	205.9
November	24. 05	210.0	26. 67	180. 6	February	29.42	257.2	32.81	222. 1
December	22.61	197.6	25. 88	175.2	March	30.22	264.2	33.71	223.2
					April	31.46	275.0	33.38	226.0
1921.					May	31.02	271.2	33. 85	229.2
January	20. 20	177.6	21.35	144. 6	June.	30.36	285.4	32. 40	219.4
February	18. 85	164.7	21.18	143. 4	July	27. 68	241.9	31.14	210.8
March	17. 59	153. 2	20.92	141. 7	August	26.97	235.7	30.82	208.6
April	16. 87	147. 3	20.36	137.9	September	27.18	237.5	27.53	186.4
May	16. 42	143. 2	20.82	140.9	October	27.24	238.1	28.77	194.7
June.	15. 90	143.5	22. 32	151. 1	November	28.97	253.2	27.83	188.4
July..	15. 28	133.4	20. 75	140.5	December	26.94	235.5	26.56	179.8

Forest Service. Reports of actual sales.
Table 645.-Wood pulp, sulphite, domestic, unbleached: Average wholesale price per 100 pounds, New York, 1914-1929.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1914	\$2. 125	\$2. 100	\$2. 050	\$2. 050	\$2. 050	\$2. 075	\$2.075	2. 000	\$2. 375	\$2. 325	\$2. 325	\$2. 325	\$2. 156
1915	2. 125	2. 050	2. 150	2. 100	2. 100	2. 100	2. 075	2. 075	2075	2. 075	2. 150	2. 350	2.119
1916	2. 575	2. 575	2. 850	3. 150	3. 625	3. 625	3. 625	3.875	4. 250	5. 125	5. 125	5. 375	3.815
1917	5. 375	5. 525	5. 400	5. 475	5. 475	5. 475	4.975	4.975	5. 375	3. 675	3. 225	2. 800	4. 812
1918	2. 800	2. 800	2.913	3. 285	3. 594	4. 250	4. 250	4.325	4.638	4.975	4. 500	3. 975	3. 859
1919	3. 688	3. 500	3. 500	3. 400	3. 375	3.375	3. 375	3. 563	3. 625	3.625	3. 625	3, 625	3. 523
1920	3. 625	3. 625	3. 825	5. 719	6.938	7. 400	8. 250	8. 250	8. 250	8. 125	7. 750	6. 969	6. 560
Av. 1914-1920.	3. 188	3. 168	3. 241	3. 597	3.880	4.043	4.089	4. 152	4.370	4. 275	4. 100	3.917	3.835
1921	6. 000	4. 656	4.075	3. 344	3. 875	3. 625	3.438	2. 625	2. 625	2. 625	2. 625	2. 625	3.512
1922	2. 545	2. 525	2. 525	2. 525	2.525	2. 525	2. 525	2. 525	2. 538	2. 635	2. 675	2. 675	2. 562
1923	2.675	2. 675	2. 731	2. 888	3. 155	3. 225	3. 225	3. 200	3. 113	3. 105	2.913	2. 706	2. 968

Division of Statistical and Historical Research. Compiled from Buresu of Labor Statistics reports.

Table 646.-Rubber, Para Island, fine: Average wholesale price per pound, New York, 1890-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{array}{\|l} \text { Aver- } \\ \text { age } \end{array}$
1890	\$0.725	\$0.680	\$0. 795	\$0.845	\$0.885	\$0.930	\$0. 910	\$0.915	\$0.965	\$0.850	\$0. 805	\$0.750	\$0. 838
1891	. 780	. 890	. 885	. 930	. 900	. 885	. 855	810	. 615	. 645	. 640	. 655	. 791
1892	. 635	. 645	. 680	. 735	. 685	. 680	. 700	. 675	. 635	. 680	. 670	685	676
1893	. 685	. 790	. 755	. 760	. 755	. 740	. 725	. 655	. 660	. 705	. 680	690	717
1894	. 688	. 660	. 670	. 670	. 655	. 655	. 670	. 650	. 680	. 685	. 705	. 705	. 674
1895	. 740	. 735	. 725	. 730	. 720	. 750	. 730	. 715	730	765	. 815	755	742
1896	. 750	. 710	. 740	. 750	. 820	. 880	. 835	. 830	. 800	. 825	. 828	. 832	. 800
1897	. 820	. 820	. 830	. 825	. 855	. 840	. 840	. 855	. 885	. 870	. 870	. 835	. 845
1898	. 815	. 862	. 930	. 930	. 922	. 930	. 980	1. 012	1. 000	. 932	. 920	910	927
1898	. 942	1. 005	1.015	1.018	1. 015	. 992	. 972	. 972	. 965	. 982	. 990	1.075	995
1900	1. 062	1. 068	1. 045	1. 075	1. 065	. 880	. 925	. 915	. 960	. 985	. 925	875	982
19	. 875	. 850	. 845	. 840	. 890	. 870	. 855	. 835	. 880	. 850	. 800	805	850
1902	. 805	. 760	. 725	. 715	. 715	. 708	. 705	. 678	. 730	. 728	. 732	728	727
1903	. 865	. 835	. 895	. 875	. 895	. 860	. 885	. 905	. 965	1. 015	. 995	. 915	905
1904	. 915	. 985	1. 025	1. 090	1. 085	1. 095	1. 085	1. 155	1. 135	1. 095	1. 125	1. 265	1. 088
1905	1. 125	1. 215	1. 255	1. 280	1. 285	1. 325	1. 275	1. 245	1. 265	1. 255	1. 180	1. 205	1. 242
1906	1. 255	1. 235	1. 235	1. 245	1. 235	1. 220	1. 190	1. 180	1. 190	1. 190	1. 195	1. 189	1. 213
1907	1. 180	1.185	1. 185	1. 150	1. 140	1.090	1. 045	1. 065	1. 030	. 995	. 915	. 780	1. 063
1908	. 765	. 712	. 695	. 752	. 805	. 875	. 885	. 855	. 905	. 965	1. 050	1. 185	. 871
1909	1. 155	1. 155	1. 215	1. 185	1. 232	1. 335	1.430	1.845	1.710	1. 985	1.810	1.715	1. 481
910	1. 695	1. 790	1. 995	2. 600	2. 600	2. 295	2. 250	2. 070	1. 800	1. 370	1. 190	1. 235	1.908
1911	1. 150	1.180	1. 580	1. 360	1. 130	. 940	. 925	1. 040	1. 080	1. 050	. 940	. 950	1. 110
1912	. 975	1. 060	1. 085	1. 145	1. 100	1. 045	1.010	1. 045	1. 135	1. 065	. 975	. 980	1. 052
1913	1. 005	. 975	. 915	. 835	. 780	. 835	. 815	. 730	. 760	. 715	. 675	. 645	. 807
Av. 1909-1913	1. 196	1. 232	1. 358	1.425	1.368	1. 290	1. 286	1. 346	1. 297	1. 237	1. 118	1. 105	1. 272
1	. 605	. 655	. 695	. 695	. 725	. 610	. 575	. 580	. 600	525	49	. 630	616
1915	. 710	. 550	. 535	. 535	. 545	. 545	. 535	. 522	. 500	. 508	. 548	. 655	. 557
1916	. 885	. 685	. 705	. 695	. 660	. 590	. 590	. 585	. 582	. 665	. 670	. 720	. 669
1917	. 700	. 680	. 750	. 740	. 725	. 725	. 705	. 613	. 595	. 568	. 505	. 468	. 648
1918.	. 501	. 479	. 483	. 516	. 566	. 590	. 590	. 590	. 590	. 572	. 570	. 548	550
1919	. 525	. 491	. 482	. 478	. 474	. 474	. 475	. 475	. 480	. 483	. 483	. 479	. 483
1920	. 463	. 432	. 412	. 411	. 404	. 385	. 353	. 303	. 253	. 217	. 192	. 180	. 334
Av. 1914-1920	. 627	. 567	. 580	. 581	. 588	. 560	546	524	514	505	495	526	551
1921	. 173	. 188	. 180	. 178	. 179	. 164	. 164	165	. 174	210	215	211	182
1922	. 193	. 163	. 161	. 171	. 176	. 169	. 172	. 176	. 171	. 196	. 219	. 223	. 182
1923	. 272	. 307	. 290	. 274	. 249	. 250	. 239	. 238	. 246	. 215	. 204	. 203	. 249

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.
Table 647.-Turpentine (spirits): Average wholesale price per gallon (in barrels), New York, 1890-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
1890	\$0. 449	\$0. 435	\$0. 425	\$0. 400	\$0.382	\$0.378	\$0. 405	\$0. 415	\$0. 405	\$0. 410	\$0.400	\$0.392	\$0. 408
1891	. 405	. 408	. 403	. 405	. 390	. 382	. 372	. 361	. 370	. 368	. 355	. 335	. 380
1892	. 340	. 345	. 420	. 370	. 340	. 290	. 295	. 285	. 278	. 285	. 310	. 315	323
1893	. 305	. 332	. 345	. 325	. 310	. 288	. 290	. 262	. 275	. 280	. 295	. 295	. 300
1894	. 292	. 309	. 312	. 288	. 296	. 305	. 295	. 289	. 285	. 285	. 285	. 278	. 293
1895	. 271	. 290	. 335	. 335	. 305	. 295	. 290	. 270	. 275	. 282	. 281	. 278	. 292
1896	. 305	. 300	. 292	. 285	. 289	. 260	. 252	. 240	. 240	. 280	. 280	. 268	. 274
1897	. 266	. 275	. 298	. 292	. 305	. 288	. 265	. 282	. 298	. 325	. 310	. 325	. 292
1898	. 332	. 340	. 356	. 325	. 339	. 282	. 262	. 265	. 295	. 308	. 370	. 390	. 322
1899	. 452	. 455	. 465	. 425	. 445	. 405	. 445	. 385	. 475	. 520	. 510	. 515	. 458
1900	. 525	. 545	. 550	. 560	. 505	. 495	. 465	. 445	. 365	. 405	. 440	. 425	. 477
1901	. 380	. 405	. 410	. 365	. 345	. 355	. 370	. 355	. 365	. 365	385	. 375	. 373
1902	. 390	. 442	. 440	. 485	. 455	. 480	. 475	. 460	. 475	. 505	. 545	. 535	. 474
1903	. 555	. 655	. 658	. 672	. 480	. 490	. 495	. 525	. 550	. 585	.600	. 593	. 572
1904	. 598	. 645	. 625	. 590	. 580	. 574	. 565	. 568	. 560	. 560	. 545	. 500	. 576
1905	. 530	. 560	. 539	. 610	. 605	. 778	. 600	. 608	. 645	. 692	. 715	. 650	. 628
1906	. 685	. 682	. 719	. 708	. 675	. 610	. 606	. 600	. 640	. 652	. 701	. 700	. 665
1907	. 710	. 740	. 755	. 730	. 675	. 640	. 610	. 590	. 582	. 550	. 540	. 490	. 634
1908	. 435	. 555	. 535	. 565	. 475	. 435	. 420	. 410	. 390	. 390	. 400	. 430	. 453

Table 647.-Tur pentine (spirits): Average wholesale price per gallon (in barrels), New York, 1890-1923—Continued.

! Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver age.
1909	\$0. 415	\$0.450	\$0. 425	\$0. 405	\$0. 402	\$0.425	\$0. 462	\$0. 518	\$0. 595	\$0.620	\$0.602	\$0. 570	\$0. 491
1910	. 592	. 632	. 630	. 630	. 625	. 592	. 672	. 715	. 745	. 765	. 810	. 785	. 683
1911	. 808	. 872	. 912	1. 070	. 772	. 568	. 560	. 525	. 548	. 535	. 492	. 484	. 679
1912	. 540	. 495	. 500	. 505	. 530	. 480	. 479	. 462	. 425	. 428	. 420	. 380	. 470
1913	. 425	. 452	. 455	. 458	. 408	. 405	. 398	. 382	. 422	. 415	. 452	. 462	. 428
Av. 1909-1913	. 556	. 580	. 584	. 614	. 547	. 494	. 514	. 520	. 547	. 553	. 555	. 536	550
1914	. 458	. 510	. 480	. 488	. 460	. 472	. 498	. 480	. 422	. 478	. 458	. 477	. 473
1915	. 452	. 445	. 450	. 472	. 488	. 435	. 430	. 420	. 398	. 415	. 538	. 570	. 459
1916	. 572	. 578	. 530	. 552	. 410	. 435	. 415	. 468	. 465	. 462	. 480	. 525	. 491
1917	. 550	. 540	. 513	. 488	. 520	. 448	. 420	. 428	. 423	. 485	. 535	. 505	. 488
1918	. 490	. 474	. 439	. 426	. 507	. 636	. 700	. 622	. 661	. 658	. 798	. 716	. 594
1919	. 755	. 709	. 720	. 773	. 831	1. 095	1. 176	1. 724	1. 683	1. 600	1. 689	1. 656	1. 201
1920.	1.885	1. 985	2. 238	2. 575	2. 475	1. 868	1. 599	1. 624	1. 473	1. 230	1.098	. 790	1. 737
Av. 1914-1920	. 737	. 749	. 767	. 825	. 813	. 770	. 748	. 824	. 789	. 761	. 799	. 748	. 778
1921	. 724	. 609	. 584	. 591	. 717	. 604	. 613	. 633	. 718	755	. 810	814	. 681
1922	. 909	. 903	. 869	. 866	. 944	1.110	1. 207	1. 194	1. 298	1. 530	1. 578	1.403	1,151
192	1. 522	1.493	1. 548	1. 524	1.167	1.046	. 943	. 951	. 971	1.007	. 954	. 938	1. 172

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.
Table 648.-Rosin, common to good, strained: Average wholesale price per barrel, New York, 1890-1923.

'Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Scpt.	Oct.	Nov.	Dec.	Average.
1890	\$1. 250	\$1. 200	\$1. 200	1. 225	\$1.450	. 4	1. 488	\$1. 450	\$1.450	\$1. 450	\$1. 488	\$1.512	\$1. 384
189	1.438	1. 450	1. 500	1.612	1. 700	1. 600	1.412	1. 400	1.400	1. 400	1.375	1. 400	1. 474
1892	1. 425	1. 400	1. 350	1. 388	1. 475	1. 325	1. 250	1. 275	1. 262	1. 250	1.350	1. 350	1. 342
1893	1. 325	1.425	1. 475	1. 375	1. 300	1. 275	1. 225	1.013	1. 000	1. 175	1. 213	1. 338	1. 262
1894	1. 275	1. 088	1.088	1. 175	1. 200	1. 350	1. 388	1. 238	1. 162	1. 238	1. 438	1. 375	1. 251
189	1. 413	1.400	1. 450	1. 600	1. 525	1.650	1. 600	1. 575	1. 550	1. 500	1. 700	1. 775	1. 562
189	1. 700	1.625	1.675	1. 762	2. 025	1. 800	1. 688	1. 600	1. 600	1. 700	1. 925	1.850	1. 746
1897	1. 750	1. 700	1. 700	1.650	1.650	1. 750	1.750	1. 550	1. 500	1.450	1. 450	1. 450	1.612
1898	1. 450	1. 450	1. 450	1. 450	1. 450	1.450	1. 450	1. 350	1. 300	1. 300	1.500	1. 450	1. 421
1899	1.400	1.350	1. 312	1. 312	1. 462	1. 400	1. 300	1. 300	1. 300	1. 262	1.325	1.425	1. 346
1900	1. 638	1.638	1. 750	1. 700	1. 600	1. 588	1,562	1. 550	1. 525	1. 475	1. 500	1. 700	1. 602
19	1. 750	1. 650	1. 625	1.500	1. 600	1.550	1. 438	1. 400	1. 400	1. 425	1. 450	1. 575	1. 530
1902	1. 550	1. 550	1. 550	1. 662	1. 638	1. 588	1.575	1. 575	1. 550	1. 550	1. 788	1. 775	1. 613
1903	1. 925	2. 100	2. 275	2. 300	2. 125	2.075	2. 062	1. 975	2. 100	2. 300	2. 775	2. 575	2. 216
1004	2. 575	2. 975	2. 700	2. 800	2. 850	3.050	3. 000	2.650	2. 700	2.800	2.950	2.950	2. 833
19	2. 825	2. 875	2. 900	3. 000	3. 250	4. 100	3. 600	3. 600	3. 700	3.850	4.125	3. 250	3.423
19	3. 650	3. 925	4.175	4. 000	4. 050	4. 000	3.950	3. 975	4. 125	4.000	4. 150	4.175	4. 015
19	4. 250	4.450	4. 425	4. 550	4.800	4.800	4. 425	4. 500	4. 350	4. 225	4. 200	3.550	4. 377
180	3. 200	4.000	3. 750	3. 900	3.600	2.950	3. 150	3.000	2. 800	2. 880	2. 900	3.250	3. 282
1909	3.275	3.325	3. 175	3. 275	3.300	3. 250	3. 000	3. 250	3. 500	4. 250	4. 225	4.175	3. 500
1910	4.200	4. 400	4. 550	4. 650	4. 500	4. 500	5. 300	6. 050	6. 100	6. 400	6. 100	6. 050	5. 233
1911	6. 200	6. 750	7. 450	8. 500	7. 750	6.750	6. 250	5. 400	6. 250	6. 400	6. 600	6. 300	6. 717
1912	7.150	6. 650	6. 700	6. 900	6. 500	6.550	6. 450	6.475	6.850	6. 600	6. 500	6. 375	6. 642
1913	5.950	5. 750	6.500	5. 500	4.750	4.800	4. 000	4. 250	4. 200	4. 000	4.000	4. 100	4.817
Av. 1909-1913	5.355	5. 375	5.675	5. 765	5. 360	5. 170	5. 000	5. 085	5.380	5.530	5. 485	5. 400	5. 382
19	4. 000	4. 400	4. 250	4. 150	4. 100	4.050	4. 200	3.950	3. 750	3. 850	3.750	3.750	4.017
1915	3. 600	3. 500	3.400	3. 400	3.650	3. 200	3. 450	3. 250	3. 250	3. 700	4.800	6. 000	3. 767
1916	5. 950	5. 750	5. 400	5. 200	4.300	5. 100	5. 500	6.650	6. 150	6. 250	6. 550	6. 800	5. 800
1917	6. 600	6.550	6. 275	6. 000	6.300	6. 300	6. 000	5.850	6. 000	6.800	6. 850	7. 175	6. 392
1918	7.120	6.969	6. 588	6. 070	7.725	9.981	11. 000	11. 525	13.644	15. 155	15. 956	14.940	10. 556
1919	14, 250	13, 463	12, 325	12. 185	12. 050	14. 275	16. 450	17. 850	17.330	17. 125	17.475	17.070	15. 154
1920	18.588	18. 125	18.080	18.500	19.750	16. 700	12.413	13.900	13.713	12.825	11.830	9.063	15. 291
Av. 1914-1920	8. 587	8. 394	8. 045	7.929	8. 268	8.515	8.430	8.996	9. 120	9.386	9. 602	9. 257	8.711
1021	8. 813	7. 500	5. 850	4. 950	5. 260	5. 050	5. 050	4.970	5.425	5. 600	5. 680	5. 325	5. 789
1922	5. 353	5. 325	5. 188	5. 213	5. 300	5. 350	5. 538	5. 900	6. 356	6.865	6. 581	6. 219	5. 773
1923	6. 115	5. 969	6. 150	6. 225	6.070	5.825	5.820	5. 750	5.850	5.840	5. 775	5.669	5.922

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.

Table 649.-Pulp wood: Prices per cord f. o. b. mill, in the United States, by species, 1899-1922.

Calendar Year.	Average.	Spruce.		$\begin{aligned} & \text { Hem- } \\ & \text { lock. } \end{aligned}$	Balsam fir.	Yellow pine.	Poplar.		Tam-	Gum.	Jack pine.	$\left\|\begin{array}{c} \text { Cot- } \\ \text { ton- } \\ \text { wood. } \end{array}\right\|$	Pine.	Slabs and other mill waste
		$\begin{aligned} & \text { Do- } \\ & \text { mes- } \end{aligned}$ $\begin{aligned} & \text { mes- } \\ & \text { tic. } \end{aligned}$	$\begin{aligned} & \text { Im- } \\ & \text { pert- } \\ & \text { ed. } \end{aligned}$				Do-mestic.	Im-ported.						
1890	\$3. 55	\$4. 82	\$6. 51				\$4.66	\$4. 52						
1904	6. 82	6.89	8.49				7.07	7.13						
1907	8. 17	8.55	9. 60	\$5. 68	\$7. 59	${ }^{(1)}$	7.85	8. 44			(1)		\$6. 45	
3903	8.38	8.76	10.60	6. 02	7. 23	(1)	8.01	8.04			$\left.{ }^{1}\right)$		6.08	
1909	8.62	9.32	11. 34	6.30	8. 28	(1)	7.96	7.94			${ }^{(1)}$		6. 25	\$4. 66
1914	8.81	9.45	11. 73	6. 93			8. 26	9.46						4. 83
1916	8.76	9.35	11. 47	6. 60	9.79	\$5. 17	8.76	9.70	\$5. 50	\$9. 70	\$7. 52	\$5.09		4. 63
1917	11. 10	11. 98	16. 52	7.96	12. 16	5. 26	9.69	11. 03	6.35	11. 44	10. 45	8. 94		6. 14
1918	13. 93	15.38	19. 25	9.50	15. 42	7. 50	13. 67	12.87	9.03	15.85	13.35	7.24		7.55
1919	15.95	17. 20	20.85	11. 02	15.65	11.71	17.84	18. 02	9.78	18. 20	9.88	8.42		9. 66
1920	19.03	19.97	26.78	14.80	19. 20	12.15	17. 74	18.96	12. 75	20. 39	11.03	11.33		12.13
1921	20.10	21.68	27.98	16.04	18.96	12.10	19.97	22.17	13. 27	21. 55	14. 47	11.08		9. 07
1922	16.20	18.11	21.87	11.64	14. 52	9.51	14.95	17.99	11.58	15.32	12.38			10. 43

Forest Service. From reports of mills to Forest Service and Bureau of the Census.
${ }^{1}$ Included in pine.
Table 650.—Wood subjected to preservative treatment, 1909-1922.

Calen- dar year.	Crossties.	Piles.	Poles.	Wood blocks.	Cross arms.	Construc- tion timbers.	Miscel- laneous lumber.	Total material treated.

CREOSOTE.

	Cu	Cubic feet.	Cubic feet.	Cubic feet.	C	Cubic feet.	ubic feet.	Cubicfeet.
1909.	29, 830, 080	4, 421, 726	659, 664	2,994, 290	41, 764	4,902, 311	417, 787	43, 267, 622
1910	44, 525, 229	5,219, 254	255, 597	4, 692, 453	88, 069	7, 801, 272	2, 687, 713	65, 269, 587
1911	49, 532, 163	4, 937, 363	106, 213	10, 145, 724	71, 961	7,417, 105	2, 499, 995	74, 710, 524
1912	57, 461, 515	7, 624, 939	1,169, 981	7,091, 658	1,643, 128	6, 892, 493	2,841, 195	84, 724, 909
1913.	75, 998, 307	7, 630, 328	2, 367, 769	6,810, 308	1,813, 010	10, 308,883	1,853, 993	106,782, 598
1914	67, 774, 329	7, 804, 657	1,188, 511	3,127, 506	395, 403	8, 389, 158	1, 348, 566	90, 028, 130
1915	51, 231, 207	6, 288, 238	2, 336, 318	6,064, 758	87, 373	9, 264, 164	881, 028	76, 153, 086
1916	62, 576, 403	8, 524, 680	6, 303, 954	7, 205, 953	178, 210	9, 521, 609	691, 870	95, 002, 679
1917	48, 685, 554	8, 493, 715	5, 930, 559	4, 610, 427	239, 764	7,830, 673	706, 084	76, 496, 776
1918.	34, 638, 147	7, 620, 974	4, 540, 620	4, 825, 766	210,903	7,606, 153	707, 294	60, 149, 857
1919.	44, 938, 215	9, 151, 972	6, 649, 491	3, 372, 828	75, 310	9, 220, 880	553, 750	73, 962, 446
1920	40, 114, 551	8, 013, 192	10, 309, 746	6,741, 410	318,707	9, 054, 413	1, 139, 307	75, 691, 326
1921	66, 139, 398	5, 528, 275	10,906, 157	6, 202, 904	108, 715	9, 052, 679	663, 183	98, 601, 311
1922	60, 625, 086	7, 494, 649	16, 482, 963	3,947, 551	374, 829	10,632,378	1, 029, 509	100, 586, 965

ZINC CHLORIDE.

1909	24, 153, 162	(1)	(1)	(1)	(1)	320, 891	2,333	24, 476, 386
1910	27, 587,583	(1)	(1)	(1)	(1)	541,514	71,060	28, 200, 157
1911	28, 337, 883	(1)	(1)	(1)	(1)	1,043, 851	119, 931	29, 501, 665
1912	28, 532, 874	(1)	18, 246	(1)	(1)	259, 972	20,092	28,831, 184
1913.	36, 051,816	(1)	47,996	(1)	(1)	585, 756	7,670	36, 693, 238
1914	50, 020, 755	(1)	${ }^{(2)}$	(1)	${ }^{(1)}$	1,317,925	4,355	51, 343, 036
1915	53,457, 852	4,726		(1)	(1)	2, 406, 150	275, 279	$56,144,007$
1916	43, 859, 028	859		(1)	(1)	1, 526, 881	346, 047	45, 732, 979
1917	44, 529, 954	7,093	45,788	10,421	(1)	2,127,872	5,070	46,726, 198
1918	51, 166, 146	57, 845		13, 939	(1)	2, 337, 169	30,790	53, 605, 889
1919	58,912, 323	2,919		${ }^{(1)}$	(1)	2,164,007	63, 987	61, 143, 236
1920	87, 398, 160	(1)	(1)	(1)	(1)	1,823, 437	94, 151	89, 315, 748
1921	90, 797, 841		(1)	(1)	(1)	2, 738, 292	${ }^{67,835}$	93, 604, ${ }_{5}$
1922	52, 254, 303	2, 029	(1)	${ }^{(1)}$	(1)	1,296,980	19,564	53, 572, 876

${ }^{1}$ None reported.

1092 Yearbook of the Department of Agriculture, 1923.
Table 650.-Wood subjected to preservative treatment, 1909-1922—Continued.
ZINC-CREOSOTE.

$\begin{aligned} & \text { Calen- } \\ & \text { dar } \\ & \text { year. } \end{aligned}$	Crossties.	Piles.	Poles.	Wood blocks.	Cross arms	Construction timber.	Miscellaneous lumber.	Total material treated.
1909	8,095, 794	(1)	(1)	(1)	(1)	62,918	43, 699	8, 202, 411
1910.	6,354, 219	38, 392	(1)	${ }^{(1)}$	(1)	181,143	30, 646	6,604, 400
1911	7,312, 374	${ }^{(2)}$	(1)	(1)	(1)	${ }^{2}$)	${ }^{2}$)	7, 312, 374
1912	8, 214, 303	97, 874	(1)	(1)	(1)	560, 613	99, 367	8,972, 157
1913.---	6,938, 838	327, 594	(1)	(1)	(1)	758,989	53, 628	8,079, 049
1914	5, 868, 834	${ }^{(1)}$	(1)	(1)	(1)	140,718	$\left.{ }^{2}\right)$	6, 009, 552
1915	6, 548, 136	2,320	110, 220	(1)	(1)	40,396	4,822	6, 705, 814
1916	5, 935, 242	837	53, 933	(1)	(1)	359, 428	(1)	6, 349, 440
1917	6,482, 046	${ }^{(1)}$	(1)	(1)	(1)	1, 102, 635	847	7,585, 528
1918	6,023, 334	187,438	12, 300	76,393	209,927	164, 813	125, 327	6, 779, 532
1919	8,850, 222	14,059	${ }^{(1)}$	${ }^{(1)}$	${ }^{1}$)	562, 403	58,399	9, 485, 083
1920	7,414, 866	79,354	(1)	${ }^{1}$)	${ }^{1}$	484, 123	5,231	7,983, 574
1921	9, 183, 702	61, 386	${ }^{1}$	$\left.{ }^{1}\right)$	(1)	48, 237	2,499	9, 295, 824
1922.---	11, 045, y13	111	(${ }^{1}$	$\left.{ }^{1}\right)$	(1)	684, 242	14,176	11, 744, 442

MISCELLANEOUS.

ALL PRESERVATIVES.

1909.	62,079,036	4, 421,726	659, 664	2,994, 290	41,764	5,286, 120	463, 819	75, 946, 419
1910	78, 467, 031	5, 257, 646	255, 597	4,692,453	88,069	8, 523, 929	2, 789, 419	100, 074, 144
1911.	85, 182, 420	4,937, 363	106, 213	10, 145, 724	71,961	8, 460, 956	2, 619,926	111, 524, 563
1912	97, 183, 009	7,737,035	1,188, 579	7,397, 095	1, 643, 128	7, 793, 524	2,988, 686	125, 931, 056
1913.	120, 781, 248	7,957,922	2,500, 420	6,856, 293	1,824, 719	11, 653, 628	2,039, 658	153, 613, 888
1914	131,540,961	8,061,902	1,482, 407	6,869, 370	417,914	9,847,801	1,362,284	159, 582, 639
1915.	111,256,755	6,295, 284	2, 512, 780	7,707, 971	90, 627	11,834,087	1, 161, 459	140, 858, 963
1916	112, 408, 104	8, 582, 834	6, 747,082	9,944, 684	180, 844	11, 574, 101	1, 085, 333	150, 522, 982
1917	100, 378, 410	8, 586, 012	6,725, 503	9,085, 230	256, 038	11, 405, 076	812,317	137, 338, 586
1918.	91, 827, 627	8, 309, 372	4,615, 770	6, 297, 294	423, 371	10, 215, 593	923, 863	122, 612, 890
1919.	112, 703, 781	9, 168, 950	6, 661, 266	4, 713, 678	75, 310	12, 061, 873	676, 136	146, 060, 994
1920.	134, 962, 596	8, 092, 546	10, 309, 746	6,741, 410	318, 707	11, 645, 811	1, 238, 689	173, 309, 505
1921	166, 150, 545	5,591, 999	10,959, 256	6, 202,904	108, 715	11, 876, 708	753, 101	201, 643, 228
1922	123, 940, 422	7, 496, 789	17, 008, 640	3, 947,551	374,829	12, 713, 080	1,130,036	166, 620,347

Forest Service.

Converting factors: To obtain the number of crossties, divide figures shown by 3. To obtain the number of linear feet of piling, divide the figures shown by 0.6763 . To obtain the number of poles, divide the figures shown by 17.6. To obtain the number of square yards of wood blocks, divide the figures shown by 2.825. To obtain the number of board feet of construction timbers, multiply the figures shown by 12. To obtain the number of crossarms, divide the figures shown by 0.6198 . To obtain the number of board feet of miscellaneous lumber, multiply the figures shown by 12.
${ }^{1}$ None reported.
2 Figures if used would reveal identity of reporting firms

Table 651.-Wood preservatives consumed by treating plants, 1909-1922.

$\begin{gathered} \text { Cal- } \\ \text { en- } \\ \text { dar } \\ \text { year. } \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { of } \\ \text { plants. } \end{gathered}$	Creosote.						$\begin{aligned} & \text { Paving } \\ & \text { oil. } \end{aligned}$	Zinc chloride.	Other preservatives.
		Distillate coal-tar creosote	Creosote coal-tar solution.	Refined watergas tar.	$\begin{aligned} & \text { Water- } \\ & \text { gas tar } \\ & \text { solution. } \end{aligned}$	$\underset{\text { ported. }}{\text { Im- }}$	Total.			
		Gallons.	Gallons.	Gallons.	Gallons.	Gallons.	Gallons.	Gallons.	Pounds.	Gallons.
1909--	64	${ }^{(1)}$	${ }^{(1)}$	${ }^{(1)}$	(1)	37, 569, 041	51, 426, 212	${ }^{(1)}$	16, 215, 107	${ }^{(1)}$
1910--	71.	(1)	(1)	${ }^{(1)}$	(1)	45, 081, 916	63, 266, 271		16, 802, 532	2, 333, 707
1911.	80	(1)	(1)	${ }^{(1)}$	${ }^{(1)}$	51, 516, 706	$73,027,335$	${ }^{(1)}$	16, 359, 797	1, 000, 000
1912--	84	(1)	(1)	${ }^{(1)}$	(1)	52, 531, 295	83, 666,490	${ }^{(1)}$	20, 751, 711	3, 072, 462
1913--	93	(1)	(1)	(1)	(1)	66, 673, 192	108, 373,359	(1)	26, 466, 803	3, 885, 738
1914--	94	(1)	(1)	(1)	(1)	51, 307, 736	79, 334, 606	9, 429,444	27, 212, 259	$2,486,637$
1915	102	(i)	(1)	(1)	(1)	37, 501, 007	80, 859,442	3, 205, 563	33, 269, 604	1, 693, 544
1916	117	(1)	(1)	(1)	(1)	43, 649, 931	90, 404, 749	5, 675, 095	26, 746, 577	582, 754
1917--	115	(1)	(1)	(1)	(1)	18, 259, 141	75, 541, 737	7, 579, 819	26, 444, 689	137, 361
1918.-	107	$\left.{ }^{1}\right)$	$\left.{ }^{1}\right)$	${ }^{(1)}$	${ }^{(1)}$	2, 165, 736	52, 776, 386	4, 057, 862	31, 101, 111	28, 013
1919.-	108	24, 286, 851	31, 292, 661	1, 148, 034	2, 334, 727	6, 493, 974	65, 556, 247	2, 412, 592	43, 483, 134	102,011
1920.-		25, 483, 230	27, 921, 614	1, 377, 702	4, 399, 282	9, 575, 680	68, 757,508	1, 848, 911	49, 717, 929	1, 772, 084
1921.	122	19, 460, 500	23, 283, 046	3, 135, 610	2, 391, 816	28, 242, 307	76, 513, 279	1, 060, 753	51, 375, 360	1, 810, 294
1922--1	128	25, 644, 272	21, 558, 130	1, 481, 573	2, 175, 176	35, 462, 238	86, 321, 389	1, 414, 682	29, 868, 639	$2,176,843$

Forest Service.
1 Statistics not available.

IMPORTS AND EXPORTS OF AGRICULTURAL PRODUCTS.

Table 652.-Agricultural imports of the United States, 1921-1923.

Article imported.	Year ending June 30.					
	Quantity.			Value.		
	1920-21	1921-22	1922-231	1920-21	1921-22	1922-23 ${ }^{1}$
halimls and animal products.						
Live animals: Cattle No	sands. 330	sands. 152	sands. 264	sands. \$23, 63	sands. $\$ 3,055$	sands. \$6, 630
	4	3	3	1,205	${ }_{5} 53$	${ }_{846}$
Sheep----------------------No--	161	96	83	1, 542	515	542
Swine--------------------No--	1			28		
Birds (live)---------------No--			2353			${ }^{2} 317$
Poultry (live)--------------1bs.-			2932			${ }^{2} 225$
All other (live)---.-.-------------				1,376	1,748	1,058
Total live animals.				27, 785	5,850	9,628
Beeswax and other animal wax- lbs--	2,215 14,180	3,101 10,529	4,095 26,094	694 570	581 707	818
Dairy products:						
Butter and substitutes ------1bs--	34, 344	9,551	15, 772	15,913	3,257	5,821
Cheese and substitutes.......lbs.Milk and cream-	16, 585	34, 271	54, 555	5,691	10,816	17,313
Fresh, natural state, sweet or sour \qquad -gals	4,391	4,536	5,148	2,843	3, 132	4, 148
Condensed, evaporated,	19,273	2,037	7,276	2,909	317	934
Total dairy products.----				27,356	17,522	28,216
Eggs:						
Eggs of poultry in shell	3,316	1,224	535	1,056	328	159
Eggs and egg yolks, preserved, (dried or frozen) \qquad lbs,			14, 821			
Egg albumen-.-------------------lbs--	7,889	7, 388	14,213	2,381	1,980	1,369
Total eggs			-----	9,614	4,723	4,356
Feathers and downs (crude): Ostrich	128	125	179		964	1,140
Other --------------------------------------	2, 859	3,614	4,821	1,088	1,155	2,075
Total				2,281	2,119	3,215
Fibers, animal: Silk-						
Cocoon----------------lbs--	26	161	380	39	120	383
Raw or reeled from the co- 	29,463	48,179	52, 684	181, 883	300, 446	05, 796
	5,290	9,097	${ }^{3} 1,272$	8,398	6,717	${ }^{\text {a }} 747$
Reelers and mill waste			${ }^{2} 231$			${ }^{2} 170$
All other waste.-.---libs.-			28,620			2 6,471
Total silk				190,320	307, 283	413, 567
Wool and hair-						
	50, 378	148, 787	171,879	7,638	19,979	34, 946
Clothing----------------1bs--	251,249	32, 821	43, 703	65,567	6,939	13, 555
Combing--......-------lbs--	12,997	69,233	298, 496	3, 569	17,585	108, 117
Hair of the angora, goat, alpaca and other like animals.						
Angora (mohair) ---lbs--	3,612	4,246	$\begin{aligned} & \begin{array}{l} 3,851 \\ 27,220 \end{array} \end{aligned}$	1,128	1,146	$\begin{aligned} & \left.\begin{array}{r} 2 \\ 2 \\ 2 \\ 2,065 \\ \hline \end{array}\right) \end{aligned}$
Cashmere (alpaca, etc.)			2 1,322			2551
Total hair of angora, etc \qquad				1,128	1,146	4,477
Wooled sheep and lamb skins, dry and greén .-.-.-.-.-lbs_-			${ }^{2} 24,708$			${ }^{2} 5,096$
Total wool ----------lbs--				77, 902	45,649	167, 191
${ }^{1}$ Preliminary. ${ }^{2}$ B	Beginning Sept. 22, 1922.		${ }^{3}$ July 1-Sept. 21, 1922.			

Table 652.-Agricultural imports of the United Siates, 1921-1923-Continued.

Article imported.	Year ending June 30.					
	Quantity.			Value.		
	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	1922-231
ANIMALS AND ANIMAL PRODUCTS-COn. Jelatin \qquad lbs	Thousands. 2, 397	Thousands. 2, 527	Thousands. 2, 839	Thousands. \$1, 231	Thousands. $\$ 998$	Thousands. $\$ 90$
Glue and glue size-----------------------1bs--	3,562	4,175	6,797	- ${ }^{11} 263$	${ }_{574}$	\$906
	5, 436	2,557	693	550	119	6
Ivory (unmanufactured) .-...-.-.-. lbs.-	368	198	569	1,036	543	1,520
Packing-house products: Blood, dried. \qquad lbs Bones, hoofs and horns......lbs Bristles- Not sorted \qquad lbs Sorted \qquad lbs Total bristles \qquad						
	7,413 161,834	$\stackrel{(2)}{4}_{43,360}$	${ }_{101,}^{(2)} 269$	290 2,939	${ }^{(2)}{ }_{592}$	$\stackrel{1}{2})_{1,485}$
	$\begin{array}{r} 86 \\ 4,158 \end{array}$	$\begin{array}{r} 6 \\ 3,158 \end{array}$	$\begin{array}{r} 61 \\ 5,623 \end{array}$	$\begin{array}{r} 276 \\ 8,978 \end{array}$	$\begin{array}{r} 11 \\ 4,305 \end{array}$	7, 772
				9, 254	4,316	7,793
	3,553	3, 945	7, 498	1,590	1,538	3,300
	4,659	4,298.	9,605	${ }^{1} 803$	419	1,195
				2, 393	1,957	4,495
Hide cuttings, raw, and other glue stock --................-lbs. Hides and skins (other than furs) - Buffalo-	36,108	25,322	29,758	2,270	1,150	1,167
	4,617	3,084	$\begin{array}{r}\text { 2, } \\ \mathbf{3} 1,265 \\ \hline\end{array}$	1,398	528	337 4230
	15			9		
Kip- Dry and dry salted (6 to 12 pounds) \qquad lbs						
			${ }^{3} 11,628$			${ }^{3} 2,120$
$\begin{aligned} & \text { Wet salted (} 12 \text { to } 25 \\ & \text { pounds) } \end{aligned}$			${ }^{3} 9,168$			${ }^{3} 1,908$
Calf-pous)----------1bs--						
Dry and dry salted (less than 6 pounds) ${ }^{5}$-..lbs.	11,810	16, 175	${ }^{5} 14,988$	4,548	3,213	${ }^{5} 4,002$
Wet salted (less than 12 pounds) ${ }^{5}$........lbs.	23,780	25, 383	${ }^{5} 30,736$	6,000	5,354	${ }^{5} 7,048$
Total kip and calf.				10,548	8,567	15,078
Cattle						
Dry and dry salted.-lbs-- Wet salted	$\begin{array}{r} 24,814 \\ 173,759 \end{array}$	$\begin{array}{r} 18,439 \\ 186,498 \end{array}$	$\begin{array}{r} 58,770 \\ 346,613 \end{array}$	$\begin{array}{r} 7,092 \\ 32,775 \end{array}$	2,912 23,687	$\begin{array}{r} 9,936 \\ 54,576 \end{array}$
Total cattle hides....--				39, 867	26, 599	64,512
Goat and kid-						
Dry and dry salted__lbs_Green or pickled....-lbs.	36,816	68, 228	70,763	28, 165	29,443	33, 223
	4,912	15, 307	18,607	1,866	3,337	4,365
Total goat and kid..---				30, 031	32, 780	37, 588
Dry and dry salted._lbs_Wet salted	1,142	1,295	11,940	256	139	1,452
	5,461	3,430	10, 461	752	217.	,944
Total horse, etc...-.----				1,008	356	2,396
Kangaroo and wallaby- -lbs_Sheep and lamb- Dry lbs	878	724	1,152	854	492	1,084
	22,401	12, 593	4 3,828	9,517	3,131	4853
	35, 899	36, 245	${ }^{4} 16,557$	10,805	5,222	${ }^{4} 2,417$
Slats, dry and pickled			${ }^{6} 38,276$			
Fleshers, pickied...-lbs.-			${ }^{6} \mathbf{6}$ 6, 927			6656 651
Total sheep and lamb.				20,322	8,353	12, 132
					8,353	
All other hides and skins_lbs--	5, 889	5,504	7,859	1,962	1,224	1,939
Total hides and skin				105,999	78,899	135, 296

1 Preliminary
2 Included in ic All Other Fertilizers."
a Beginning Sept. 22, 1922 .

[^308]Table 652.-Agricultural imports of the United States, 1921-1923-Continued.

Table 652.-Agricultural imports of the United States, 1921-1923-Continued.

[^309][^310]Table 652.-Agricultural imports of the United States, 1921-1923-Continued.

Article imported.	Year ending June 30.											
	Quantity.			Value.								
	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	1922-231						
table products-continued.												
F orest products-Continued. ctums, resins, and balsams-												
Varnish, gums, and resinsCopal, damar, and kauri \qquad	Thonsands. 44, 618	$\begin{aligned} & \text { Thou- } \\ & \text { sands. } \\ & 27,194 \end{aligned}$	Thousands. 211, 590	Thousands. \$6, 592	Thou\$2, 96	Thou2 \$1, 381						
			31,383 3 3			81,299 811295						
Sharlac--------------------1bs--	23,872	30, 768	32,806	16, 634	15,657	21,032						
Others------------------1bs--			31, 308			3, 264						
Tar, pitch, and turpentine						3130						
$\begin{aligned} & \text { Camphor- } \\ & \text { Natural (crude) } \end{aligned}$		1,592	3,498	1,930	921	2,226						
Refined and synthetic	2,093 813	1,592 1,652	3,498 3,541	1,930 995	1,144	2,534						
Total camphor---------				2,925	2,065	4,760						
Chicle------------------ ${ }^{\text {- }}$ -	8,710	8, 283	908	5, 077	4,095	454						
			8,217			(4) 4 , 109						
Total chicle				5, 077	4,095	4,563						
Balsams, crude ----.-.--lbs.-	4524,416	$\begin{array}{r}363 \\ 8,934 \\ \hline\end{array}$	52111,00181,075	295	151	2391,3418538						
Arabic or senegal ---.-.--lbs.-				415	734							
Tragacanth -----------libs--												
Gambier or terra japonica	6,203	9,818	7,727895	432	391	450389						
Asafetida---------------------1bs												
All other gums, resins, etc. 	10, 822	13,408	9, 617	2, 252	1,415	1,138						
Total gums, resins, and balsams				34, 622	27.475	41,736						
India rubber, gutta-percha, etc.-												
Jelutong or pontianack -ill	65,774	568, 381	797, 655	114,640 1,076	86,751	169, 108						
Balata_-----------------lbs---	1,980	1, 867	1,757	$\begin{aligned} & 1,043 \\ & 1,043 \\ & 1,023 \end{aligned}$	1,063	930						
Gutta-percha----------------1bs--	4,575	2,481	1,903			336						
Guayule gum---------------lbs--	995											
Total İndia rubber, etc-----				117, 979	88,630	171, 126						
Ivory, vegetable (tagua nuts)	31,090	28, 745	33, 572	1,377	770	923						
Wood- Logs and round timbers (except cabinet wood) ..- M ft Timber other than sawed Mft.												
	96	161	217	2,259	2, 709	3,897						
				${ }^{5} 351$	132	147						
Cabinet woods in the ogs-		8	10	568	526	620						
	55	40	43	6,634	3,297	3,313						
	11			998	351	743						
Total cabinet woods .--				8,200	4,174	4,676						
Lumber- Boards, planks, deals, and												
Softwoods.-.---M Mt ---	920	1,124	$\begin{array}{r} 2436 \\ 31,470 \end{array}$	39, 068	34, 530	$\begin{array}{r}212,699 \\ 8 \\ 83 \\ \hline\end{array}$						
			${ }^{3} 52$			3 3,824 9,529						
	$\begin{array}{r}\text { 1,831 } \\ \hline\end{array}$	1,182 2,190	1,653 2,695	3,459 7,456	6,595 7,906	9,529 10,952						
Shingles...-. -thousands_All other lumber			2,695	3,079								
Total lumber				53, 062	49, 031	79,543						

[^311]Table 652.-Agricultural imports of the United States, 1921-1923—Continued.

Article imported.	Year ending June 30.					
	Quantity.			Value.		
	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	1922-23 ${ }^{1}$
vegetable products-continued.						
Forest products-Continued. W ood-Continued. Brier root and ivy or laurel root.	Thousands.	Thousands.	Thousands.	Thousands. \$476	Thousands.	Thousands.
- Rattan (unmanufactured)				2,544	\$758	\$2, 076
Osier or willow for basket making .-.....-.-.....-.-.			${ }^{2} 1,813$	1,207	454	718 2129
Boards, planks, deals, and other forms of sawed cabinet woods........ M ft -	7	9	4	708	671	296
Other unmanufactured or partly manufactured wood.				${ }^{3} 1,479$	3, 563	2,663
Total wood.				70, 286	61, 492	94, 145
Pulpwood-						
Rough-.----------------cord.--	$\begin{array}{r} 338 \\ 1,093 \end{array}$	$\begin{aligned} & 178 \\ & 576 \end{aligned}$	304 773	4,298 16,155	2,015	2,784 7,555
Rossed-----------------------00rd--	168	72	131	16,196	1,032	1,714
Total pulpwood	--------	--		23,649	9,309	12,053
Woodpulp-						
Mechanically ground. .tons.Chemical woodpulp-	167	207	244	12, 147	5,485	7,954
Sulphite, unbleached 	223	312	500	30,393	17,373	26,297
Sulphite, bleached tons.-	96	147	254	16, 942	12, 733	22, 000
Total sulphite				47, 335	30, 106	48, 297
Soda pulp.-----.--tons.-			1			67
Sulphate, unbleached 	129	230	269	15,489	13, 665	16, 234
Sulphate, bleached_tons--	9	6	26	1,220	422	1,638
Total sulphate				16, 709	14, 087	17,872
Total woodpulp.				76, 191	49, 678	74, 190
Total forest products.-.	+			343, 141	249, 587	412, 162
Fruits:						
Apples--------------------- bunch--	40, 808	46,120	2153 44,501	19,336	19,951	2 299 18,909
Berries-----------------------------1bun--	40,808	46,120	1,248	19,	19, 3	111
Currants---------------------------1b---	50,178	49,467	18, 924	5, 352	3,710	1,632
Dates .--------------------------1bs--	35, 267	46, 742	52, 037	2,034	2,417	2,686
Figs----------------------------------1bs---	25,424	43, 139	36, 585	2,570	3,413	1,993
Grapes ---------------------cu. ${ }^{\text {flt-- }}$	997	780	1,355	1,532	1,246	1,920
Grape fruit.-.---------------libs				-685	, 589	643
Olives --------------------------------1alls--	4,054	10, 5	122, 21	3,023	3,125	4, 870
Oranges and limes---------------1bs--				36	274	223
Pineapples. Raisins and other dried grapes				1,470	2, 187	2, 539
	43,269	18,363	12, 335	$\stackrel{6,778}{ }$	1,036	1,177
Other------------------1bs--			${ }^{2} 8173$			${ }_{2}^{2} 11,026$
All other fruits.-.------------libs.-				3,225	4,848	${ }^{2} 3,325$
Total fruits				49, 933	47,362	44,650
Glue, vegetable.-.---.-.-.-.-.-.-.-lbs..			${ }^{2} 22$			${ }^{2} 1$
Moss, seaweed, etc. (crude)------1bs--	7,989	7,747	12, 537	506	458	571
Hops ----------------------------1bs.--	4, 808	893	1,295	2,283	341	257

${ }^{1}$ Preliminary. $\quad{ }^{2}$ Beginning Sept. $22 . \quad{ }^{3}$ Unmanufactured only. ${ }^{4}$ July 1-Sept. 21, 1922.
85813° - хвк 1923-70

Table 652.-Agricultural imports of the United States, 1921-1923—Continued.

[^312]${ }^{2}$ Beginning Scpt. 22, 1922.
${ }^{3}$ July 1-Sept. 21, 1922.

Table 652.-Agricultural imports of the United States, 1921-1923-Continued.

[^313]Table 652.-Agricultural imports of the United States, 1921-1923-Continued.

[^314] Commerce of the United States, June, 1922, and 1923, Bureau of Foreign and Domestic Commerce.

[^315]
EXPORTS.

Table 653.-Agricultural exports (domestic) of the United States, 1921-1923.

Article exported.	Year ending June 30.					
	Quantity.			Value.		
	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	1922-23 ${ }^{1}$
nimals and animal products.						
Animals, live: Cattle	Thousands.	Thousands. 2.90	Thousands.	Thousands.	Thousands.	Thousands.
Bulis for breeding--.----No--		${ }_{3}{ }^{1}$	2			\$274
Cows for breeding--.---No.		33	20		${ }^{3} 347$	881
Other cattle------------No.-		${ }^{3} 60$	40		${ }^{3} 4,977$	1,796
Swine------------.-.-.-.-- ${ }^{\text {No.- }}$	103	98	76	2,210	1,242	990
Horses	13	${ }^{2} 12$		1,923	${ }^{2} 1,265$	
For breeding-----------No--		${ }^{3} 1$	(4)		${ }^{3} 132$	137
Others---------------- No--		${ }^{3} 6$	8		${ }^{3} 471$	912
	81	62 11	16	1, 533	+294	165
Poultry, live.--.-.--------No.-		${ }^{8} 227$	r 1318	1,063	1,010 3 154	1,325
Other live animals .-----------1bs.-			429	931	525	168
Total live animals			.-	17,711	14,951	6,919
Beeswax------------------------1b-	190.	102	83	80	28	25
Dairy products:						
	7,829	7,512	9,410	3,594	2,870	3, 705
Cheese	10,826	7,471	8,446	2,890	1,711	2,170
Mresh and sterilized_-- galls			90	441	294	80
Condensed (sweetened) -lbs--	147, 732	79, 525	48, 067	27, 162	11, 675	6,770
Evaporated (unsweetened)						
Powdered (dried) --------libs--	114,838	11,318	2,918	13, 770	1, 462	10, 504
Other, including cream..lbs..						
Total dairy products				47, 970	36, 375	23,327
Eggs and yolks (frozen, dried,	26,960	33, 762	34, 284	11, 251	10,016	9,311
and canned) ---.........-libs.			555	202	132	89
Feathers (crude, not dressed)---1bs--			4,394	441	280	318
Fibers, animal, wool and mohair (un-						
	5,584	924	476	2, 259	200	123
Gelatin, animal		${ }^{3} 77$	301		${ }^{3} 62$	202
	5,977	2, 101	2,905	1,148	349	431
	1,112	2,407	2, 891	183	262	290
Packing-house products: MeatBeef and veal-						
Beef, fresh	21, 084	3, 866	3,716	3,705	519	559
Veal, fresh-c.-------libs		127 3,749	361 2,302		${ }_{971}^{23}$	${ }_{6}^{55}$
Beef, canned and veal, cured or--	10,763	3,749	2, 302	2, 511	971	631
pickled.---------- ${ }^{\text {l }}$ -	23, 313	26,774	24, 185	2,998	2,398	2, 309
Total beef and veal	55, 160	34, 516	30, 564	9,214	3,911	3, 554
Meat extracts and bullion cubes .----------------libs.-		${ }^{3} 153$				
Other meat, canned-------1bs--			7, 534	5,811-1	3,914	2, 898
Other meat (including edible offal)lbs						
Mutton and lamb--.-----lbs.-	7,255	2,502	1, 869	1,291	425	331
Pork-						
Carcasses, fresh ${ }^{5}$---lbs-	57,075	22, 826	9,461	11,135	3,315	1,338
Loins and other fresh parts		${ }^{3} 3,085$	34,040		${ }^{8} 547$	
	1,119	2, 263	2,761	450	669	952
Cured- Hams and shoulders						
Hams and shoulders				40, 088		
Bacon---------------lbs.-	489, 298	350, 549	408, 282	103, 115	50,978	59,048
Pickled.-.---------lbs--	33, 286	33, 510	40,934	5,381	3,941	4,953
Total pork .--_lbs.-	752, 790	683, 875	814, 665	160, 169	114, 667	126, 933

[^316]1104 Yearbook of the Department of Agriculture, 1923.
Table 653.-Agricultural exports (domestic) of the United States, 1921-1923Continued.

Tablé 653.-Agricultural exports (domestic) of the United States, 1921-1923Continued.

[^317]${ }^{3}$ July 1-Dec. 31, 1921
4 Less than 500.

6 Jan. 1-June 30.
${ }_{6}$ July 1-Dec. 31, 1922.

1106

 Yearbook of the Department of Agriculture, 1923.Table 653.-Agricultural exports (domestic) of the United States, 1921-1923Continued.

Article exported.	Year ending June 30.					
	Quantity.			Value.		
	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	1922-23 ${ }^{1}$
vegetable products-continued.						
Forest products-Continued. Wood-Continued.						
Boards, deals and planks-						
Hardwoods-	sands.	sands.	sands.	sands.	sands.	sands.
${ }_{\text {Ash_--.-.-.-.M. }}^{\text {Chest }}$ -		24				$\begin{array}{r}2 \$ 680 \\ \hline 805\end{array}$
Gum ----------M Ct	25	37	54	\$1,963	1,905	2,963
Ifickory -...-.- M Mt -		${ }^{2} 1$	3		${ }^{2} 82$	237
Oak---------M Mt--	78	88	138	8, 454	5, 333	9,645
Poplar	10	14	19	1,221	1,388	1,849
Walnut._-...-M ft--			6		${ }^{2} 279$	878
	38	53	56	5,224	4, 280	5,062
Total hardwoods..-				16, 862	14, 140	22,119
Total boards, deals and planks.				70,498	52,674	68, 652
Laths .-.-.---thousands.-		${ }^{2} 6$	42		${ }^{2} 48$	297
Shingles ----thousands --	26	26	26	158	131	154
Shooks- Box _....Ft. b. m.			${ }^{3} 30,497$	3,855	1,954	${ }^{3} 1,017$
Southern yellow pine ft. b. m						
Other pine.-Ft. b. m- m. m-			${ }_{2}^{2} 161,177$			2 21,031
Cooperage.-.---sets--	1,051	3231 8343 83		4, 575	3 2 2174 21057	
Tight......-sets--		2343 2168	$\begin{aligned} & 1,309 \\ & 290 \end{aligned}$		$\begin{array}{r}21,057 \\ \begin{array}{r}295\end{array} \\ \hline\end{array}$	4,038 93
Total shooks .--				8,430	3,880	6, 839
Cooperage - Staves. \qquad no.-	65, 710	${ }^{3} 12,165$		10,001	${ }^{3} 955$	
Tight.---------no--		27,105	21, 400		${ }^{2} 789$	3,038
Slack ---------no.-		${ }^{2} 15,892$	36, 075		${ }^{2} 289$	776
Total staves.				10, 001	2,033	3,814
Heading----.-..----sets..-			--------	745	204	330
Total staves and headings				10, 746	2, 237	4, 194
Pulp wood----------.cu, ft-		${ }^{2} 1,791$	1,303		${ }^{2} 138$	92
Railroad ties----------.-no.-	5,040			7,099	31,394 ${ }_{2} 366$	
Hardwoods...-.-----		${ }_{2}^{2} 250$	643 817		2366 2507 2	1,679
Softwoods..---.-.-.-nno--		${ }^{2} 665$	1,817	---		1,605
Total ties	------	--.--	---------	7,099	2,267	2,484
Piling .-.-...----- linear feet.-					${ }^{2} 128$	324
Telegraph, trolley and electric light poles		211			290	
		${ }^{11}$	$\begin{array}{r} 30 \\ 9,512 \\ \hline \end{array}$	4, 659	1,247	406
Total lumber--------------	-----	----	-------	101,590	62,840	83, 626
Timber, hewn and sawed-						
Hardwoods-						
Oak -------------M ft.-		${ }^{2} \frac{1}{5}$	3		245	166
Other hardwoods_-. $\mathrm{M} \mathrm{ft}_{\text {-- }}$	6	5	2	445	289	110
Softwoods- Southern yellow pine						
Southern yellow pine	96	118	172	4,003	3,406	6.794
Douglas fir------M M ft--		297	179		${ }^{2} 2,090$	${ }^{4,514}$
Cedar---------M Mf --		${ }^{2} 4$	19		$\begin{array}{r}2184 \\ 1,023 \\ \hline\end{array}$	1,013
Other softwoods.-.M $\mathrm{mt}_{\text {-- }}$	21	43	9	663	1,023	289
Total timber, hewn and sawed				5,111	7,037	12,886
All other, including firewood			2,568	342	279	211
Total wood		-------	-----...	109, 233	73,815	100, 595
${ }^{1}$ Preliminary.	${ }^{2} \mathrm{Jan} .1$	une 30.		${ }^{3}$ July 1-	c. 31.	

Table 653.-Agricultural exports (domestic) of the United States, 1921-1923Continued.

${ }^{3}$ July 1-Dec. 31.

Table 653.-Agricultural exports (domestic) of the United States, 1921-1923Continued.

[^318][^319]Table 653.-Agricultural exports (domestic) of the United States, 1921-1923Continued.

[^320]2 Jan. 1-June 30, 1922.
${ }^{8}$ July 1-Dec. 31, 1921.

1110 Yearbook of the Department of Agriculture, 1923.
Table 653.-Agricultural exports (domestic) of the United States, 1921-1923Continued.

Division of Statistical and Historical Research. Compiled from the Monthly Summaries of Foreign Commerce of the United States, June, 1922 and 1923, Bureau of Foreign and Domestic Commerce.

[^321]${ }^{2}$ July 1-Dec. 31.
${ }^{3}$ Jan. 1-June 30.

Table 654.-Value of principal groups of farm and forest products exported from and imported into the United States, year ending June 30, 1921-1923.

Division of Statistical and Historical Research. Compiled from Monthly Summaries of Foreign Commerce of the United States, June, 1922 and 1923, Bureau of Foreign and Domestic Commerce.

[^322]1112 Yearbook of the Department of Agriculture, 1923.
Table 655.-Exports of selected domestic agricultural products, 1852-1923.

Year ending June 30.	Cattle.	Cheese.	Packing-house products.							
			Beef, curedsalted or pickled.	Beef, fresh.	$\begin{gathered} \text { Beaf } \\ \text { oils- } \\ \text { oleo oil. } \end{gathered}$	Beef tallow.	Beef and its prod-uctstotal, as far as ascer-tainable. ${ }^{1}$	Pork, cured bacon.	Pork, curedhams and shoulders.	Pork, curedsalted or pickled.
	Thou-	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
A verage:	sands.	pounds.								
1852-1856.	1	6, 200	25, 981			7,469	33, 449	30, 005		40,543
1857-1861-	20	13, 906	26, 986			13, 215	40, 200	30, 583		34, 854
1882-1806.	7	42, 683	27, 663			43, 203	70, 865	10,797		52,551
1867-1871.		52, 881	26,955			27, 578	54, 532	45, 790		28,879
1872-1876	46	87, 174	35, 827			78, 994	114, 821	313, 402		60, 429
1877-1881.	127	129, 670	40, 175	69, 601		96,823	218, 710	643, 634		85,968
1882-1886	132	108, 790	47, 401	97, 328	30, 276	48,745	225, 626	355,905	47, 635	72, 355
1887-1891.	244	86, 355	65, 614	136,448	50, 482	91, 608	411, 798	419,935	60, 697	73,985
1892-1896	349	66, 906	64, 899	207, 373	102, 039	56, 977	507, 177	438, 848	96, 107	64, 827
1897-1901-	415	46, 109	52, 242	305, 626	139, 373	86, 082	637, 268	536, 287	200, 853	112,788
1902-1906	508	19, 244	59, 208	272, 148	156, 925	59, 893	622, 843	292, 722	206, 891	116, 823
1907-1911.	254	9, 152	46, 187	144, 800	170,530	66,356	448, 024	209, 005	189, 603	90,810
1912-1916	35	22, 224	31, 440	86, 135	99, 892	24, 476	281, 576	306, 012	203, 076	52,946
1900-1	459	39, 814	55, 313	351, 748	161, 651	77, 167	705, 105	456, 123	216, 572	138,644
1901-2	393	27, 203	48.633	301, 824	138, 546	34, 066	596, 255	383, 151	227, 653	115,896
1902-3	402	18, 987	52,801	254, 796	126, 010	27, 369	546, 055	207, 336	214, 183	95, 287
1903-4	593	23, 335	57, 585	299, 580	165, 184	76, 924	663, 147	249, 666	194, 949	112, 225
1904-5.	568	10, 134	55,935	236, 487	145, 228	68, 537	575, 875	262, 247	203, 459	118,887
1905-6	584	16,562	81, 088	268, 054	209, 658	97, 567	732,885	361, 211	194, 211	141,821
1906-7-..-----	423	17, 285	62, 645	281, 652	195, 337	127, 858	689, 752	250, 419	209, 481	166, 427
1807-8	349	8,439	46,958	201, 154	212, 541	91, 398	579,303	241, 190	221, 770	149, 606
1908-9	208	6; 823	44, 494	122, 953	179,985	53, 333	418, 844	244, 579	212, 170	52, 355
1909-10	139	2,847	36, 554	75,730	126, 092	29,380	286, 296	152, 163	146,885	40,032
1910-11.	150	10,367	40, 284	42,511	138, 697	29, 813	265, 924	156, 675	157, 709	45, 729
1911-12	106	6,338	38, 088	15, 264	126, 467	39, 451	233, 925	208, 574	204, 044	56,321
1912-13.	25	2,599	25, 857	7, 362	92, 850	30, 586	170, 208	290, 994	159, 545	53,749
1913-14	18	2,428	23, 266	6, 394	97, 017	15,813	151,212	193, 964	165, 882	45,543
1914-15.	5	55, 363	31,875	170, 441	80,482	20,240	394, 981	346, 718	203, 701	45, 656
1915-16	21	44, 394	38, 115	231, 214	102, 646	16, 289	457, 556	579, 809	282, 209	63,461
1916-17	13	68, 050	58, 054	197, 177	67, 110	15, 209	423, 674	667, 152	266, 657	46,993
1917-18	18	44, 303	54,468	370, 033	56, 603	5, 015	600, 132	815, 294	419, 572	33, 222
1918-19	42	18, 792	45, 066	332, 205	59, 292	16, 172	591, 302	1,238,247	667, 240	31, 504
1919-20	83	19,378	32, 384	153, 561	74, 529	32,937	368, 002	803, 667	275, 456	41, 643
1920-21	146	10, 826	23, 313	21,084	106, 415	16, 844	203, 815	489, 298	172, 012	33, 286
1921-22	155	7,471	26, 774	3,993	117, 174	27, 658	222, 462	350, 549	271, 642	33, 510
1922-23 ${ }^{2}$	61	8,446	24, 185	4, 077	104, 956	25, 665	194, 962	408, 282	318, 187	40,934

[^323]Table 655.-Exports of selected domestic agricultural products, 1852-1923-Con.

$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 . \end{aligned}$	Packing-house products.			Apples, fresh.	Cornand corn meal (in terms of grain).	Cotton.	Glucose and grape sugar.	$\begin{aligned} & \text { Corn- } \\ & \text { oil } \\ & \text { cake } \\ & \text { and } \\ & \text { oil- } \\ & \text { cake } \\ & \text { meal. } \end{aligned}$	Cottonseed oilcake and oilcake
	$\begin{array}{c\|c} & \text { P } \\ \text { it } \\ \text { Pork- } & 1 \\ \text { lard. } & \text { t } \\ & \text { as } \end{array}$	Pork and its prod-uetstotal, as far as ascertainable. ${ }^{1}$	$\begin{gathered} \text { Lard } \\ \text { com- } \\ \text { poands. } \end{gathered}$						
Average: 1852-1856	1,000pounds.33,35537,96889,13853,579194,198331,458	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 103,903 \\ 103,494 \\ 252,486 \\ 128,249 \\ 568,029 \\ 1,075,793 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\left\|\begin{array}{r} 1,000 \\ \text { barrels. } \\ 37 \\ 57 \\ 119 \end{array}\right\|$	1,000		$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
					bushels. 7, 123	pounds.	pounds.		
					6,558	1, 125, 715			
					12,060	137, 582			
					9, 924	902, 410			
				133	38,561	1, 248,805			
					88, 190	1, 738, 892			
1882-1886	$\begin{aligned} & 263,425 \\ & 381,389 \end{aligned}$	$\begin{array}{r} 739,456 \\ 936,248 \\ 1,02,184 \end{array}$		402	49, 992	1,968, 178			
1887-1891				523 521	54,806 63,980				
1892-1896	451,547 652,418		21,792		192, 531	3, 447,910	209,		
1902-1906	$652,418$	1, 242, 137	52, 954	1,369	74, 615	3, 632,268	154, 867	21,	
1907-1911	519, 4846 48765	$1,028,997$ $1,109,488$	75, 765	1,226	56, 568	4, 004,770	145, 065	61, 733	
			2,2	1,786		4, 469, 202	183, 141	54,361.	1,151
1900	$\begin{aligned} & 611,358 \\ & 556,840 \\ & 490,756 \\ & 561,303 \\ & 610,239 \end{aligned}$	1, 462,370	23, 360	884	181, 405	3,35	204,	12,	1,258,687
910			36, 202	460	28,029	3, 52		14,7	
02		$\begin{aligned} & 1,337,316 \\ & 1,042,120 \end{aligned}$	46, 130	1,656	76, 639	3,569, 142	${ }_{159}^{126} 240$	8,093	$1,100,393$ 820,349
1803		$\begin{aligned} & 1,042,120 \\ & 1,146,255 \\ & 1,230,032 \end{aligned}$	53, 604	2,018	58, 222	$3,089,856$ $4,339,322$	175, 251	14, 15	
			1,215			4,			
	741,517627,560603,414528,723362,928	$\begin{aligned} & 1,464,960 \\ & 1,268,065 \\ & 1,237,211 \\ & 1,053,142 \\ & 707,110 \end{aligned}$		1,209	119,894	3,634	${ }^{189} 151$	48, 421	1,110
			80	1,539 1,050		4, 51816			,
$\begin{aligned} & 1907- \\ & 1908- \end{aligned}$			75, 183 75,183	1,050 896	55, 365	4, 447, 985	112, 225	53, 234	233, 750
1909-10			74, 557	922	38, 128	3, 206, 708	149, 820	49, 109	640, 089
1910	476,108 532,256 519,025 481,458 475,532 1 1	$\begin{array}{r} 879,455 \\ 1,71,952 \\ 984,697 \\ 991,913 \\ 1,106,180 \end{array}$	73,	1,721	65, 615	4, 033,	181	83	804, 597
1911-12			62, 523	1,456	41, 797	5, 533, 125	171,156	72,495	1, 293, 690
12-1			67,457	2, 150	51,780 10726	4, 562,296	200, 149		1, 7289,974
13				2, $\mathbf{2} 507$	10,726 50,688	4, 760, 971	158, 463		479, 035
1914									
1915-16	427, 011 444, 770 724, 771	$1,462,697$$1,501,948$$1,692,124$$2,704,694$	62, 843	1,466	39,897 66,753	3, 084, 3, 088 ,	$\begin{aligned} & 186,408 \\ & 214,973 \end{aligned}$	15,758	
1916			56,359 31,278	1,740	66,753 49 49	3, $2,320,512$	$\begin{array}{r}1814,973 \\ 978 \\ \hline 188\end{array}$	$\begin{array}{r}15,758 \\ 458 \\ \hline\end{array}$	44, 68
18			128, 157	1,576	23,019	2, 762, 9	136, 230	562	311, 62
19-20	$\begin{aligned} & 587,225 \\ & 746,157 \\ & 812,379 \\ & 952,642 \end{aligned}$	$\begin{aligned} & 1,762,611 \\ & 1,522,162 \\ & 1,516,320 \\ & 1,794,538 \\ & \hline \end{aligned}$	4	1,05	16, 729	3, 543	245, 264	511	101
			42, 156		70,		141,		
1921-22			30, 328	1,094	179, 490	3, 358, 8	273,		
1922			11, 140	1,756	96,599				
$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 . \end{aligned}$		Tobacco.	Hops.		Rice and rice bran, meal, and polish.	Sugar, raw and refined.	Wheat	Wheat flowr.	Wheat and wheat flour (in terms of grain).
$\begin{aligned} & \text { Average: } \\ & 1852 .-1856 \\ & \hline 1050 \end{aligned}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$		1,000	$\begin{gathered} \text { 1,000 } \\ \text { gallons. } \end{gathered}$	$1,000$	$1,000$	$1,000$ bushels.	$1,000$	$\begin{aligned} & 1,000 \\ & \text { bushels. } \end{aligned}$
		s. pounds. 140, 184	pounds.		pounds. 65, 732	pounds. 7,730	4,715	- ${ }_{\text {barrels. }}$	19,173
			$\begin{aligned} & \mathbf{2}, 216 \\ & 4,716 \\ & 4,76 \end{aligned}$			6,015$\mathbf{3}, 008$	$\begin{aligned} & 4,710 \\ & 12,378 \\ & 22,530 \end{aligned}$	$3,318$: 28,97040,184
$\begin{aligned} & 1857-1861 \\ & 1862-1866 \end{aligned}$		$\begin{aligned} & 140,184 \\ & 167,711 \end{aligned}$			$\begin{array}{r} 0,0,010,72 \\ 65,258 \\ 2,258 \end{array}$				
1867-1871		194, 754	$\begin{aligned} & 4,719 \\ & 6,487 \end{aligned}$		2, 258	3, 4,008	$\begin{aligned} & 22,530 \\ & 22,107 \end{aligned}$	$\begin{aligned} & 3,531 \\ & 2,585 \end{aligned}$	40,184 35,032
1872-187		241, 848	$\begin{array}{r} \tilde{3}, 446 \\ 10,446 \end{array}$	547 4 4	391 602	$\begin{aligned} & 20,142 \\ & 41,718 \end{aligned}$	48, 958	3, 416	66,037133,263
1877-188		266, 315		4,498			107, 781	5, 376	
1882-1886		237, 942	9, 584	3,468	${ }_{5}^{561}$	107, 130	82,884 649	$\begin{array}{r}8,620 \\ 11 \\ \hline 18\end{array}$	115,529
1887-189		258, 248	7,184	$\begin{array}{r}7,121 \\ 15 \\ \hline\end{array}$	$\begin{array}{r}3,210 \\ 10 \\ \hline\end{array}$	75, 1384	64,739 $\mathbf{9 9 , 0 1 4}$	11, 287	170,624
1892-1896		281, 746	${ }^{15,147}$	15,783 42,863	10, 278	11, 214	120, 247	17, 151	197, 427
1897-1001		1-325,539 334,396	$\begin{aligned} & 11,476 \\ & 14,774 \end{aligned}$	42, 860 38,606	45,978	14,807	70,527	15, 444	140, 02
1907-1911	48,551 472039			$38,784$	$\begin{gathered} 30, y \\ 27,195 \\ 60,043 \\ \hline \end{gathered}$	$\begin{array}{r} 61,430 \\ 470,729 \\ \hline \end{array}$	62,855129,415	$\begin{aligned} & 11,841 \\ & 13,185 \\ & \hline \end{aligned}$	1188, 74
1912	72, 599	408, 006	18,533						188, 74
1600	$\begin{aligned} & 10,022 \\ & 23,359 \end{aligned}$	315, 788	14,964	49,357	25, 528	8,875	132,061	18,651	215,990
1901-2		301, 607	10,715	-35, 343	18,750	$\begin{array}{r} 7,572 \\ 10,520 \end{array}$	154, 818.181	17, 17.716	202,90
902-3	26,38573,146	$\begin{array}{l\|l} 5 & 368,184 \\ 6 & 311,972 \end{array}$	7,795						
1903-4			$\begin{aligned} & 10,986 \\ & 14,859 \end{aligned}$	29, 533	29, 122	15,419 18,348	44,230 4,394	16,899 8,826	120, 113
	54,994	$\begin{array}{l\|l\|} \hline 64 & 311,972 \\ \hline 4 & 334,302 \end{array}$			38, 142	$\begin{aligned} & 22,176 \\ & 21,2 \\ & 2188 \end{aligned}$	34,973	13, 919	97,600
1905-6	24,87044,49028,148	-312, 227	13,027 16,810	$\begin{aligned} & 43,794 \\ & 41,880 \end{aligned}$					
906						25, 511	100, 371	13, 927	163, 04
907	22,22,6289,015	$\begin{aligned} & 380,813 \\ & 287,901 \\ & 357,196 \end{aligned}$	22,82010,44710,589		20,17420,51126,779	79,946125,507	$\begin{aligned} & 66,923 \\ & 46,680 \end{aligned}$	$\begin{array}{r} 10,521 \\ 9,011 \end{array}$	$\begin{array}{r} 114,268 \\ 87,364 \end{array}$
$1909-10$									

[^324]2 Prediminary.

1114 Yearbook of the Department of Agriculture, 1923.

Table 655.-Exports of selected domestic agricultural products, 1852-1923-Con.

$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 \text {. } \end{aligned}$	Prunes.	Tobacco.	Hops.	Oil, vegeta-ble-cottonseed oil.	Rice and rice meal, and polish.	Sugar, raw and refined.	Wheat.	Wheat flour.	Wheat and wheat flour (in terms of grain).
	1,000	1,000	1,000	1,000	1,000	1,000	1,010	1,000	1,
	pounds.	pounds.	pounds.	gallons.	pounds.	pounds.	bushels.	barrels.	bushels.
1910-11	51, 031	355, 327	13, 105	30, 069					69, 689
1911-12	74, 328	379, 845	12, 191		39,447 38,908	79, 4394 985	30,160 91,603	11, 11.395	79,689 142,880
1912-13	117, 951	4189, 797	$\xrightarrow{17,591}$	42, ${ }^{45} \mathbf{7 3 8}$	38,908 22,414	50, 896	92, 394	11, 821	145, 590
1913-14	69, 4314 43	449, 450	24, 263 16,210	25, 42,448	22,414 77,480	549, 007	259,643	16, 183	332, 465
1914	43, 479	346	16, 210						
1915	57,423	443, 293	22, 410	35, 535	121,967	1, 630, 151	173, 274	15, 521	243, 117
1916-17	59, 645	411, 599	4,825	21, 188	181, 372	1, 248, 908	149, 831	${ }_{21,943}$	203, 574
1917-18	32,927	289, 171	3,495	13, 437	196, 363	576, 483	34, 119	21, 880	132,579
1918-	59,072	629, 288	7,467	23, 828	193, 128	1, 115, 865	178, 583	24, 182	287, 402
1919-20	114, 066	648, 038	30, 780	21, 253	483, 385	1, 444, 031	122, 431	21,652	219, 865
1920-21	57,461	506, 526	22, 206	37, 769	440, 855	582, 698	293, 268	16, 180	366, 077
1921-22	109, 398	463, 389	19,522	12, 215	741, 509	2, 002,039	208, 321	15,797	279, 407
1922-231	79, 229	454, 410	13, 497	8, 573	370,670	749,885	154,951	14,883	221,923

Division of Statistical and Historical Research.
Compiled from Foreign Commerce and Navigation of the United States, 1852-1918, and Monthly Summaries of Foreign Commerce of the United States, June, 1920, 1922 and 1923, Bureau of Foreign and Domestic Commerce.
Where figures are lacking, either there were no exports or they were not separately classified for pubiication. "Beef salted or pickled," and "Pork, salted or pickled," barrels, 1851-1865, were reduced to pounds at the rate of 200 pounds per barrel, and tierces, $1855-1865$, at the rate of 300 pounds per tierce; cottonseed oil, 1910, pounds reduced to gallons at the rate of 7.5 pounds per gallon. It is assumed that 1 barrel of corn meal is the product of 4 bushels of corn, and 1 barrel of wheat flour the product of 5 bushels of wheat prior to 1880 and $4 \frac{1}{2}$ bushels of wheat in 1880 and subsequently.
${ }^{1}$ Preliminary.
Table 656.-Imports of selected agricultural products, 1852-1923.

$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 \text {. } \end{aligned}$	Cheese.	Silk.	Wool.	Al-	$\begin{gathered} \text { Argols } \\ \text { or } \\ \text { wine } \\ \text { lees. } \end{gathered}$	Cocoa and chocolate, total.	Coffee.	Corn	$\left\lvert\, \begin{gathered} \text { Oats, } \\ \text { includ- } \\ \text { ing } \\ \text { oat- } \\ \text { meal. } \end{gathered}\right.$	Wheat.
		1,003			1,000	1,0	pounds.	$1,000$	$\begin{gathered} 1.000 \\ \text { hutshole } \end{gathered}$	
rage:	pounds.	pounds.	pounds.	pounds.	pounds.	pounds.	pounds. 196, 583	bushels.	bushels.	bushels. $2,12 ?$
1855-1856	1, 054			$\begin{aligned} & 3,461 \\ & 3,251 \end{aligned}$		$\begin{aligned} & 2,487 \\ & 3,064 \end{aligned}$	1916, 235			2, 617
$\begin{aligned} & 1857-1861- \\ & 1862-18660 \end{aligned}$				2, 482	1,355	2,453	124, 552			
1867-1871		682			2, 361	3, 503	248, 726	75		96
1872-1876		,095			4,951	4,857	307, 007	57		
1877-188		1, 922	62,744		12, 403	6, 315	384, 282	42	${ }^{1} 126$	871
1882-1886		4,673	83, 2		17, 552	11,568	529, 579	24		507
1887-1891	8 ,	6,564	117, 764	5,861	21, 434	18, 322	509, 368	15	18	9
1892-1896	9, 650	8,383	162, 640	7,488	26, 470	25, 475	597,	8	$\begin{array}{r}105 \\ 54 \\ \hline\end{array}$	1,629
1897-1901.	12, 589	10, 962	163, 979	7,361	24, 380	38,209 70	816, 570	20	${ }_{94}^{54}$	1, 274
1902-1906.	22,166	17, 188	193, 656	10, 921	27,647	70,901		92	11,662	${ }_{286}$
1907-1911.	37,663 47,988	22, 143	199, 563	15, 297	29, ${ }^{29}$, 256	$\begin{aligned} & 113,673 \\ & 182,395 \end{aligned}$	$\begin{array}{r}\text { 934, } \\ 1,013,931 \\ \hline\end{array}$	5,686	11,602 15,383	2,321
1912-1916	47,988	33, 242	295, 851	$\frac{17,130}{5,140}$	$\frac{29,256}{28,599}$			5	32	00
1900-1.	15,329 17,068	$\begin{aligned} & 10,406 \\ & 14.235 \end{aligned}$	103, 584	5,140 9,869	28, 599	47,620 52,879	1, 8 091, 004	18	39	119
	17,068	15, 271	177, 138	8, 142	29, 967	65, 047	915, 086	41	150	1, 077
1903	22, 707	16, 723	173, 743	9, 839	24, 572	75, 071	995, 043	17	84	
190	23, 096	22, 357	249, 136	11,745	26, 282	77, 383	1,047, 793	15	56	3,103
1905	27, 287	17,352	201,	15, 009	28, 141	84	851, 669	10	40	58
190	33, 849	18, 744	203, 848	14, 234	30, 541	97, 060	98	11		75
1907	32, 531	16, 682	125, 981	17, 145	26, 739			258	6,692	41
1908	35, 548	25, 188	266, 409	11, 029	32, 116	${ }_{111} 132,671$	$1,049,869$ 871,470	118	1 1	164
1909	40, 818	23, 457	263, 928	18, 556	28, 183	111, 071				
1010-11	45, 569	26, 666	137, 648	15, 523	29, 175	140, 971	875, 367	$\begin{aligned} & 52 \\ & 53 \end{aligned}$	$\text { 2. } 622$	
1911-12	46, 542	26, 585	193, 401	17, 231	23,661 29,479	148, 7810	883, 8131	903	1724	798
1912-13	49,388	32, 102		19, 038	29, 793	179, 364	1, 001,528	12, 367	122, 274	1,979
1913-14	$\begin{aligned} & 63,784, \\ & 50,139 \end{aligned}$	31, 053	247,649	17, 111	28,625	194, 734	1, 118, 691	9, 898	${ }^{1} 631$	426
1914					34, 721			5, 208	1665	5,703
$1915-$	30, 088	$\begin{aligned} & 41,925 \\ & 40,351 \end{aligned}$	534, 828 372, 372	16, 23,424	23, 926	340, 483	1, 319, 871	2, 267	1762	24, 139
1916-17	$\begin{array}{r}14,482 \\ 98 \\ \hline 8\end{array}$	$\begin{aligned} & 40,351 \\ & 43.681 \end{aligned}$	$\begin{aligned} & 372,372 \\ & 379,130 \end{aligned}$	23, 2840	30, 267	399, 312	$1,143,891$	3, 196	12,591	28, 177
1917-18	9, 839 2,442	43,681 50,069	422, 415	30, 328	32, 228	313, 195	1, 046, 029	3, 311	551	11, 121
					23, 638	421, 880	1, 414, 228	10,229	6, 044	4,780
1919-20	17, 185	34,778	318, 236	20, 497	26, 486	328, 447	1, 348, 926	, 743	3,796	51, 004
20-21	34, 271	57, 437	255, 087	31, 343	18, 749	318, 969	1, 238, 012	125	1,733	14, 468
21	54, 555	63, 188	550, 180	27,692	21, 950	383, 929	1,305, 188	138	293	18,013

[^325]Table 656.—Imports of selected agricultural products, 1852-1923—Continued.

${ }^{1}$ Less than 500 barrels. ${ }^{2}$ Preliminary.

1116 Yearbook of the Department of Agriculture, 1923.

Table 656.—Imports of selected agricultural products, 1852-1923-Continued.

[^326]Table 656.-Imports of selected agricultural products, 1852-1923-Continued.

Year ending June 30.	Hides and skins, other than furs.			Macaroni,vermi-celli,and allsimilarprepara-tions.	Lemons.	Oranges.	Walnuts.
	Cattle.	Goat.	Other than cattle and goat.				
Average: 1897-1901	1,000 pounds.	1,000 pounds. 68,053	$\begin{gathered} 1,000 \\ \text { pounds. } \\ 91,173 \end{gathered}$	1,000 pounds.	1,000 pounds.	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds. } \end{gathered}$
1902-1906	126, 995	93, 675	115, 952		153, 161	41, 105	
1907-1911	178, 682	94, 330	143, 351	99, 724	153, 343	12, 090	30,981
1912-1916	313, 508	88,711	188, 388	83, 838	1148,528	${ }^{1} 9,941$	34, 275
1900-1	129, 175	73, 746	77, 990		148, 515	50, 333	
1901-2	148, 628	88, 039	89,458		164, 075	52, 742	
1902-3	131, 644	85, 114	102, 340	28,788	152, 004	56, 872	12, 363
1903-4	85, 370	86, 339	103, 025	40,224	171, 923	35, 893	23, 671
1904-5	113, 177	97, 804	123, 894	53, 441	139, 084	28, 881	21, 684
1905-6	156, 155	111, 097	158, 045	77,926	138, 717.	31, 134	24, 917
1906-7	134, 671	101, 202	135, 111	87, 721	157, 860	21, 267	32,598
1907-8	98, 353	63, 641	120,771	97,234	178, 490	18, 397	28, 887
1908-9	192, 252	104, 048	148, 254	85, 114	135, 184	8,436	26, 158
1909-10	318, 004	115, 845	174, 771	113, 773	160, 215	4,676	33,641
1910-11	150, 128	86,914	137, 850	114,779	134, 969	7,672	33, 619
1911-12	251, 013	95, 341	191, 415	108, 231	145, 639	7,629	37,214
1912-13	268, 042	96, 250	207, 904	106, 501	151, 416	12, 253	26, 662
1913-14	279, 963	84, 759	196, 348	126, 129			37, 196
1914-15	344, 341	66,547	137, 439	56, 542	--		33,446
1915-16	434, 178	100, 657	208, 835	21,790			36, 859
1916-17	386, 600	105, 640	207,967	3,473			38, 725
1917-18	267, 500	66, 933	98, 084	670			23, 289
1918-19	253, 877	89, 005	105, 260	592	${ }^{(2)}$	$\left.{ }^{2}\right)$	10,937
1919-20.	439, 461	126, 996	232, 113	800	${ }^{(2)}$	${ }^{(2)}$	44,783
1920-21	198, 573	41, 728	111, 891	1,297	(2)	(2)	23, 166
1921-22	204, 936	83, 535	104, 433	1,992	101, 592	${ }^{2}$)	60, 233
1922-23 ${ }^{3}$	405, 383	89, 370	163, 425	3,254	122, 821	(2)	37, 520

[^327]Table 657.—Exports and imports of selected forest products, 1852-1923.

Year ending June 30.	Domestic exports.					Imports.					
	Lumber.		Rosin.	Spirits of turpentine.	Timber, hewn and sawed.	Camphor, crude.	Rubber gums, total.	Lumber.		Shellac.	Wood pulp.
	Boards, deals, and planks. ${ }^{1}$	Staves.						Boards, deals, planks, and other sawed.	Shingles.		
	1,060	Thou-	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
A verage:	M fect.	sands.	barrels.	gallons.	M feet.	pounds.	pounds.	M feet	'M.	pounds.	tons.
1852-1856.	129		552	1,369		214					
1857-1861.	205		664	2, 735		361					
-1862-1866.	138		. 69	102		387				634	
1867-1871	139		492	2,693			2 7, 390				
1872-1876	222		846		210		12, 631	565	88		
1877-1881.	303			7, 139	220	1,516	15, 611	418	55		
1882-1886	434		1,290	9, 302	164	1,959	24, 481	578	88		
1887-1891	532		1, 534	10,794	296	2, 274	33, 227	647	184	5, 086	37
1892-1896	616		2, 006	14, 259	336	1,492	39, 672	661		5, 848	43
1897-1901	957		2, 478	18, 349	491	1,858	52, 975	566		8, 839	$\begin{array}{r}47 \\ \hline 131\end{array}$
1902-1906.	1,213	51, 234	2, 453	16, 927	556	2,139	75, 909	727	772	11, 614	131
1907-1911.	1,649	56, 182	2, 356	16, 659	521	2,939	121, 504	900 1.016	867 1,045	19,046 21,470	319 517
1912-1916.	1,914	65, 431	2, 128	15, 674	353	3,529	201, 759	1,016	1,045	21, 470	517
1900-1.	1, 102	47, 363	2, 821	20, 241	590	2,176	64, 927	491	556	9, 609	47
1901-2	1,943	46, 999	2, 536	19, 178	477	1, 831	67, 790	666	708	9, 065	67
1902-3	1,066	55, 879	2, 396	16,379	570	2,472	69,312	721	724	11, 591	117
1003-4	1,427	47, 420	2, 585	17, 203	604	2, 820	74, 328	589	770	10,933	145
1904-5	1,283	48, 286	2, 310	15, 895	533	1,904	87, 004	711	759	10, 701	168
1805-6.	1,344	57, 586	2, 439	15, 981	595	1,669	81, 109	950	901	15,780	157
1906-7	1, 624	51, 120	2, 561	15, 855	640	3,138	106, 748	934	881	17, 786	213
1907-8	1,548	61, 697	2, 713	19, 533	522	2, 814	85, 810	791	$\begin{array}{r}988 \\ 1 \\ \hline\end{array}$	13, 362	238
1908-9	1,358	52, 583	2, 170	17, 502	419	1,990	114, 599	846	1, 058	19, 185	274
1909-10	1,684	49, 784.	2, 144	15, 588	491	3,007.	154, 621	1, 054	763	29,402	378
1910-11	2, 032	65, 726	2,190	14, 818	532	3, 726	145, 744	872	643	15, 495	492
1911-12	2, 307	64, 163	2, 474	19,599	438	2,155	175, 966	905	515	18, 746	478
1912-13	2,550	89, 006	2, 806	21, 094	512	3,709	170, 747	1,091	560	21, 912	503
1913-14	2, 405	77, 151	2, 418	18, 901	441	3,477	161, 777	929	895 1,487	16,720	508 588
1914-15	1,129	39, 297	1, 372	9,464	174	3,729	196, 122	939	1, 487	24, 153	588
1915-16	1,177	57, 538	1, 571	9,310	201	4,574	304, 183	1, 218	1,769	25, 818	507
1916-17	1, 042	61, 469	1,639	8, 842	184	6, 885	364, 914	1, 175	1, 924	32, 540	699
1917-18	1,068	63, 207	1, 071	5, 095	106	3, 638	414, 984	1, 283	1,878	22, 913	504 475
1918-19	1,073	62, 753	882	8,065	92	2,623	422, 215	977	1,757	14, 269	475
1919-20	1,518	80,791	1, 322	7,461	234	4, 026.	660,610	1,492	2, 152	34, 151	727
1920-21	1,269	65, 710	1,877	9, 742	123	2, 093	371, 300	920	1, 831	23, 872	624
1921-22	1,543	35, 162	786	10, 786	268	1, 592	578, 512	1, 124	2, 190	30,768	902 1.294
1922-23 ${ }^{3}$	1,554	57, 475	1,040	9, 012	383	3,498	810, 028	1,958	2,695	32, 806	1,294

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1852-1918, and Monthly Summaries of Foreign Commerce of the United States, June, 1920, 1922, and 1923, Bureau of Foreign and Domestic Commerce. Where figures are lacking, either there were no exports or imports, or they were not separately classified for publication.
${ }^{1}$ Including "Joists and scantling" prior to 1884.
${ }_{3}^{2}$ Includes "Gutta-percha" only for 1867.
${ }^{3}$ Preliminary.
Table 658.-Trade of the continental United States with Hawaii and Porto Rico in selected domestic farm products, years ending June 30, 1921-1923.

SHIPMENTS FROM THE UNITED STATES.

Article.	Hawaii.			Porto Rico.		
	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	1922-23 ${ }^{1}$
Coffec..-----------.---lbs.-	73, 628	62, 508	92, 047			10,490
Molasses and sirups.--galls.-	40, 230	37, 789	42, 551			15, 638
Oranges.-----------boxes.-	66,331 $5,571,587$	51, 865	68,818 10, 543,961			
Sugar	5, 571, 587	10, 109, 508	10,543, 961	6, 281, 322	7, 385, 819	6, 947, 804
Tobacco, unmanufactured		-	22,753	5, 234, 968	703, 759	3, 054, 489

Table 658.-Trade of the continental United States with Hawaii and Porto Rico in selected doméstic farm products, years ending June 30, 1921-1923-Con.

SHIPMENTS TO THE UNITED STATES.

Article.	Hawaii.			Porto Rico.		
	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	1922-23 ${ }^{1}$
Coffee_-------------lbs --	3, 181, 831	3, 713, 321	2, 281, 499	211, 966	65, 622	70, 91.5
Grapefruit.-.-.-...-boxes.-				667, 637	360, 530	460, 961
Molasses and sirups_galls --	10, 963, 327	3,686, 131	5,861, 878	23, 499, 459	11, 363, 143	13, 208, 55\%
Oranges				162, 395	388, 182	732, 972
Pineapples	${ }^{(2)}$	${ }_{(2)}$	8,770	${ }_{(2)}^{2}$	${ }^{(2)}$	${ }^{(2)}$
Pineapples, canned..-lbs.-	(${ }^{2}$)	(2)	257, 864, 572	(2)	${ }^{(2)}$	(2)
Sugar, raw -.-.-.-.-.-do--	977, 738, 902	1, 191, 624, 620	1, 195, 078, 906	818, 043, 880	939, 013, 990	710, 381, 154
Tobacco, unmanufactured \qquad	2, 672	3, 719	27, 930	14, 564, 394	22, 369, 984	19, 573, 535

Division of Statistical and Historical Research. Compiled from Monthly Summaries of Foreign Commerce of the United States, June, 1922 and 1923, Bureau of Foreign and Domestic Commerce.

${ }^{1}$ Preliminary.

${ }^{2}$ Given in value only.
Table 659.-Destination of principal farm products exported from the United States, year ending June 30, 1921-1923.

Article and country to which consigned.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	$\begin{gathered} 1922- \\ \hline 1 \end{gathered}$
ANIMALS AND ANIMAL PRODUCTS.						
Cattle:	Number.	Number.	Number.	P.ct.	P.ct.	P.ct.
Belgium	5, 685	4,930	1,443	3.9	3.2	2.3
Cánada	7,749	3, 831	1, 601	5. 3	2.5	2. 6
Cuba	20,653	5, 799	2,529	14.2	3.7	4.1
Germany	1, 485			1. 0		
Mexico-	83, 524	106, 131	49, 223	57.3	68.3	80.1
United Kingdom	24,935	34, 158	6,417	17. 1	22.0	10.4
Other countries.	1,642	432	273	1.2	. 3	. 5
Total	145, 673	155, 281	61, 486	100.0	100.0	100.0
Herses:						
Belgium	67	107	4	0.5	0.6	0.1
Canada	4,223	2,915	2, 496	33. 4	16.4	28.9
Cuba	1,512	782	491	12. 0	4.4	5.7
Germany	547	221	10	4. 3	1. 2	. 1
Mexico.	5, 073	11, 747	3, 802	40.1	65.9	44.0
Spain		1,206	1, 214		6.8	14.0
United Kingdom	216	320	158	1. 7	1.8	1. 8
Other countries.	1,000	529	466	8.0	2.9	5.4
Total	12, 638	17, 827	8,641	100.0	100.0	100.0
Butter:	Pounds.	Pounds.	Pounds.	P.ct.	$P . c t$.	$P . c t$.
Canada	1,992, 126	874, 712	76,314	25.4	11.6	0.8
Cuba	738, 522	780, 011	767, 108	9.4	10.4	8.2
Haiti.	408, 133	456, 037	615, 399	5. 2	6. 1	6.5
Mexico	1, 107, 362	866, 259	904, 158	14. 1	11.5	9.6
Other South America	458, 282	429, 292	359, 809	5.9	5.7	3.8
Other West Indies.	1, 343, 738	1,637, 662	1,433, 345	17. 2	21.8	15.2
Panama.	591, 286	698, 162	657, 793	7.6	9.3	7.0
Peru.	280, 925	266, 233	234, 975	3.6	3. 5	2.5
Philippine Islands	216, 686	276, 549	354, 889	2. 8	3. 7	3.8
United Kingdom.	63, 943	572, 227	3, 408, 128	. 8	7.6	36.2
Other countries.-	628, 252	654, 853	597, 919	8.0	8.8	6. 4
Total	7, 829, 255	7,511, 997	9, 409, 837	100.0	100.0	100.0
Beef, canned: $\quad 331,355$						
Canada -	331, 355	173, 600	93,900	3.1	4.6	4.1
Cuba	276, 745	28, 882	89, 266	2.6	. 8	3. 9
Dutch East Indies	295, 262	51, 185	116, 252	2. 7	1.4	5. 1
French Guiana.	37, 578	6,249	10, 944	. 3	. 2	. 5
Japan.	14, 891	102, 059	58, 885	. 1	2. 7	2.6
Mexico.	335, 987	84, 085	81, 189	3.1	2.2	3.5
Newfoundland and Labrador	18, 248	46, 975	64, 663	.2	1. 3	2.8
Philippine Islands.	112, 747	94, 610	298, 116	1.0	2.5	13.0
Poland and Danzig	$5,249,862$			48. 3		
United Kingdom.	1, 996, 391	2, 463, 365	727, 841	18.5	65.7	31.6
Other countries.	2, 093, 920	697, 476	760, 443	19.6	18.6	32.9
Total	10,762,986	3,748, 486	2,301,499	100.0	100.0	100.0

${ }^{1}$ Preliminary.

Table 659.-Destination of principal farm products exported from the United States, year ending June SO, 1921-1923-Continued.

Article and country to which consigned.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{231}^{1922-}$
con.						
Beef, pickled and other cured:	Pounds. 702,370	Pounds.	Pounds. 363, 751	P.ct.	P.ct.	P.ct.
Canada	1,731, 856	1, 079, 987	1, 460, 891	7.4	4.0	6.0
Denmark	105, 540	308, 725	196, 700	. 5	1.2	. 8
Dutch Guia	1,143, 080	1,390, 643	1, 137, 500	4.9	5.2	4.7
Germany	1,165, 517	954, 126	462, 936	5.0	3. 6	1.9
Jamaica	502, 253	786, 574	974, 320	2.2	2.9	4.0
Netherlands	1,024, 116	178, 266	190, 989	4.4	. 7	8
Newfoundland a	5, 515, 689	6, 942, 314	6, 627, 439	23.7	25. 9	27.4
Norway-	1, 244, 532	3, 481, 835	1,785, 320	5.3	13. 0	7.4
Panama	178, 117	272, 320	259, 924	. 8	1.0	1.1
Trinidad and T	1,588, 872	1,397, 875	1, 166, 670	6.8	5. 2	4.8
United Kingdom	4, 114, 802	3, 513, 473	3, 084,799	17.7	13.1	12.8
West Indies	4, 173, 809	4, 936, 414	5, 454, 592	17.9	18. 4	22.6
Other countr	122, 303	838, 188	1, 019,432	. 4	3.2	4.2
Total	23, 312, 856	26, 774, 124	24, 185, 263	100.0	100. 0	100.0
Oleo oil:						
Belgium	1,369, 502	1, 472, 357	1, 665, 677	1.3	1. 3	1.6
Denmark	2, 900, 462	2, 493, 656	2, 581, 795	2.7	2.1	2. 5
France	1, 898, 154	3, 892, 117	245, 712	1.9	3. 3	. 2
Germany	15, 983, 006	14, 878, 393	13, 987, 054	15. 0	127	13.3
Greece	2, 601, 039	1, 877, 494	1,190, 630	2.4	1.6 39	1.1
Netherlan	$36,106,662$ $1,662,215$	46, $1,1689,9296$	$47,052,838$ $1,522,240$	33.9 1.6	1.8 1.8 1.0	14.8
Norway	13, 868, 406	15, 956, 477	12, 133, 362	13.0	13. 6	11.6
Sweden	3, 945, 113	2, 676, 865	2, 383, 367	3. 7	2.3	2.3
Turkey in Europ	7, 640, 323	11, 148, 201	4, 123, 958	7.2	9.5	3.9
United Kingdom	14, 273, 236	11, 081,989	14, 967, 025	13.4	9.5	14.3
Other countries	4, 166, 682	3, 898, 686	3, 102, 720	3.9	3.3	2.9
Tota	106, 414, 800	117, 174, 260	104, 956, 378	100. 0	100.0	100.0
Lard compounds, containing animal fats:						
Cuba	7,040, 959	3, 965, 013	1, 413, 857	16.7	13.1	12.7
Canada	1, 138, 542	416, 069	64, 281	2.7	1.4	- 6
Dutch We	216,971	- 253, 407	271, 488	9.5	$1{ }^{10} 8$	2.4
German	4, 064,951	3, 046,988				
Haiti	2, 173, 187,815	1, 238,990	1, ${ }^{1554,905}$	${ }^{5} \mathrm{~S} .4$	6.2 .8	1.4
Mexico	8, 617, 672 .	7,277, 069	2, 692, 365	20.4	24.0	24.2
Norway	1, 944, 955	1, 397, 358	735, 077	4.6	4.6	6.6
Panama	568, 896	582, 151	357, 509	1.3	1.9	3.2
Trinidad and Tob	2, 552, 258	1,571, 869	400, 339	6.1	5. 2	3.6
United Kingdom	6, 437, 413	4, 029, 319	1, 555, 543	15.3	13.3	14.0
Other countries	7, 212, 076	5, 672, 846	2, 045, 044	17.2	18.7	18.3
Total	42, 155, 971	30, 328, 176	11, 139, 730	100.0	100.0	100.0
Canada -	12, 718, 278	11, 021,627	9, 925, 008	2.6	3. 1	2.4
Cuba.	25, 302, 394	23, 461, 552	24, 829, 609	5.2	6.7	6. 1
Denmar	4, 901, 247	3, 623, 419	2, 456, 058	1. 0	1.0	6
France	5, 369, 021	9, 363, 454	7, 758, 436	1. 1	2.7	1.9
German	81, 394, 461	53, 252, 825	74, 389, 003	16. 6	15. 2	18.2
Italy	14, 991, 337	2, 481, 361	9,259, 356	3. 1	. 7	2.3
Mexico	501, 994	416, 135	395, 045	1	. 1	1
Netherl	43, 420, 507	20, 847, 482	30, 971, 830	8. 9	5. 9	7.6
Norway	6, 681, 108	9, 146, 692	12, 268, 761	1. 4	2.6	3. 0
Sweden	7, 026, 778	6, 749, 329	9, 768, 261	1.4	1.9	2.4
United Kingdo	244, 716, 102	184, 703, 155	188, 274, 240	50.0	52.7	46. 3
Other countries	12, 826, 665	8, 738,774	14, 771, 022	2.6	2.6	3.6
Total	489, 298, 109	350, 548, 952	408, 282, 065	100. 0	100.0	100.0
Hams and shoulders, cured: Belginm						
Belgium	6, 891, 317	9, 690, 036	13, 978,797	4.0	3. 6	4.4
Canada	8,440,532	10, 663, 674	19, 535, 776	4.9	3. 9	6.1
Cuba-- ${ }^{\text {D }}$ -	12, 488, 850	9, 070, 883	12, 784, 118	7.3	3.3	4.0
Dominican Repub	414,948	321, 305	325, 649	.2	$\cdot 1$	$\cdot 1$
France-	1,472, 925	894, 348	2,142, 135	$\cdot 9$	$\cdot 3$. 7
	1, 054, 760	889, 958	1, 027, 949	${ }^{6}$	$\cdot 3$. 3
	651, 647	482, 578	648, 577	4	2	2
Panama	431, $134,038,489$	$\begin{array}{r}\text { 233, } \\ \text { 466, } \\ \hline 1293\end{array}$	259, 430,417	77.9	88.0	81.7
Other countries	6, 123, 968	5, 589, 592	8,682, 282	3.5	2.1	2.3
Total	172,011, 676	271, 641, 786	319, 186, 689	100.0	100.0	100.0

${ }^{1}$ Preliminary.

Table 659.-Destination of principal farm products exported from the United States, year ending June S0, 1921-1923-Continued.

Article and country to which consigned.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	$\underset{231}{1922-}$
ANIMALS AND ANIMAL PRODUCTS-con.						
Lard:	Pounds.	Pounds.	Pounds.	P.ct.	P.ct.	P.ct.
Belgium	57, 962, 854	43, 591, 420	50, 472, 076	7.8	5. 4	5. 3
Canada	12, 225, 546	8, 852, 480	14, 218, 375	1. 6	1.0	1. 5
Cuba	59, 938, 840	73, 926, 475	87, 897, 540	8.0	9.0	9.2
Denmark	9, 527, 408	6, 922, 941	5, 699,646	1.3	. 9	6
Dominican Republic	2, 682,955	3, 050, 146	4, 200, 001	4	4	4
Ecuador	3, 127, 715	3, 501, 343	4,515, 308	4	4	5
France	16, 467, 713	37, 069, 312	37, 801, 672	2.2	4. 6	4. 0
Germany	231, 527, 922	260, 716, 401	328, 111, 752	31. 0	32. 1	34.4
Haiti.	1, 473, 590	1,431, 574	1, 763, 529	. 1	. 2	2
Italy	14, 171, 983	9, 051, 392	29, 570, 822	1. 9	1. 1	3. 1
Mexico	27, 303, 989	44, 435, 678	44, 951, 072	3.7	5. 5	4.7
Netherla	113, 867, 554	42, 830, 544	47, 802, 425	15. 3	5. 3	5.0
Peru	1, 912, 499	5, 118, 918	7, 799, 400	. 3	.6	8
Poland and Danzig	6, 025, 749	2, 716, 022	6, 708, 091	. 8	3	7
Sweden	4, 309, 678	5, 389, 566	5, 941, 585	${ }^{6}$	7	6
Switzerland	3, 603, 960	3, 830, 264	2, 789, 067	5	5	3
United Kingdom	169, 463, 848	244, 465, 234	241, 144, 099	22.7	30.1	25. 3
Venezuela	1, 565, 053	659, 156	2, 192, 440	$\stackrel{2}{2}$. 1	. 2
Other count	8, 998, 390	14, 820, 530	29, 062, 805	1.2	1.8	3. 2
Total	746, 157, 246	812, 379, 396	952, 641, 705	100.0	100.0	100.0
 Lard, neutral: 359,361						
Belgium-	355, 361	641,869 1	971, 168	1. 6	3. 3	3. 7
Germany	1,152, 972	2, $1,18,949$	2, $1,59,671$	5.1	13.4.	7.8
Netherlands	6, 730, 821	5, 910, 743	8,778, 345	29.9	30.2	33. 1
Newfoundland and Labrador	466, 021	664, 227	784, 755	2.1	3.4	3.0
Norway	2, 522, 315	4, 444, 394	4,314, 719	11.2	22.7	16. 3
Sweden	837, 549	1,219, 533	1, 439, 750	3. 7	6. 2	5. 4
United Kingd	8, 639, 136	2, 019, 690	5, 476, 907	38. 3	10. 3	20.7
Other countries.	981, 488	815, 032	1,455, 788	4.3	4.2	5.4
Total	22, 544, 303	19, 572, 940	26, 494, 079	100.0	100.0	100.0
Pork, pickled:						
British Guiana	748, 625	696, 250	972, 334	2.1	2.1	2. 4
British West Indies	2, 142, 641	2,711, 473	3, 377, 783	6.4	8. 1	8.3
Canada	13, 643, 887	10, 856, 771	13, 348, 745	41.0	32.4	32.6
Cuba	2, 458, 216	1, 319, 231	1, 379, 111	7.4	3. 9	3.4
Germany	888, 988	1,746, 028	3, 523, 805	2.7	5. 2	8. 6
Haiti	928, 952	1, 222, 747	1, 269, 842	2.8	3. 6	3. 1
Newfoundland and Labrador	4, 147, 071	4, 756, 298	5, 265, 840	12.5	14. 2	12.9
Norway	335, 540	1, 257, 909		1. 0		3. 8
United Kingdom	2, 907, 794	4, 913, 655	5, 852, 630	8. 7	14.7	14.3
Other countries	4, 386, 628	3, 401, 655	4, 047, 281	13.2	10.1	9.8
Total	33, 286, 062	33, 510, 146	40, 933, 756	100.0	100.0	100.0
Cotton: Vegetable products.						
Austria	2, 930, 913	2,003, 919	1, 478, 876	0.1	0.1	0.1
Belgium	83, 008, 919	93, 136, 041	92, 884, 508	3.0	2.8	3.5
Canada	84, 583, 073	100, 583, 080	108, 525, 863	3.0	3.0	4. 1
China	23, 606, 195	67, 196, 247	11, 556, 176	. 8	2.0	4
Czechosloval	486, 404	397, 059	495, 567			
France.	295, 314, 944	410, 024, 663	352, 099, 567	10.5	12.2	13.4
Germany	576, 212, 124	808, 336,738	472, 823, 551	20.5	24.1	18.0
Italy	279, 007, 548	244, 295, 065	286, 034, 186	9.9 9	7. 0	10.9
Japan	277, 445, 883	447, 683, 525	339, 579, 297	9.9	13. 3	12. 9
Mexico	35, 301, 222	3, 097, 263	7, 745, 906	1. 3	.1	. 3
Netherlan	49, 377, 121	48, 101, 703	37, 809, 219	1.8	1.4	1.4
Norway	2,339, 944	3, 261, 395	2, 099, 248	${ }^{1}$	1	1
Poland and Danzig	7,383, 142	9, 081, 134	11, 111, 022	3	${ }_{3}$	4
Portugal	9, 632, 512	10, 277, 523	14, 106, 863	. 3	. 3	5
Spain	130, 494, 795	170, 775, 695	125, 121, 820	4.6	5.1	4.8
Sweden	28, 072, 334	26, 827, 106	30, 295, 627	1.0	. 8	1. 2
Switzerland	18, 562, 009	2, 476, 800	1,569, 927			. ${ }^{1} 7$
United Kingdom	891, 492, 053	903, 371, 622	$\begin{array}{r}701,503,949 \\ \mathbf{2 9} \\ 890 \\ \hline 8075\end{array}$	31.7	26.9 4	26.7 1.2
Other countries.	16, 137, 575	17, 952, 170	29, 890, 975	. 5	4	1.2
Total	2, 811, 388, 710	3, 358, 878,748	2, 626, 732, 147	100.0	100.0	100.0

[^328]Table 659.-Destination of principal farm products exported from the United States, year ending June 30, 1921-1923-Continued.

Article and country to which consigned.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{231}^{1922-}$
vegetable products-continued						
Fruits: Apples, fresh-	Boxes. ${ }^{2}$			P.ct.	P.ct.	P.ct.
Apranentina		$4,200$	60,777		0.3	1.7
Canada		59, 543	347, 919		4.3	10.0
Cuba		10,365	49, 973		9	0
Mexico		20,014	128, 537		4.1	3.4
Norway-.-		57, ${ }^{587}$	121, 553		4.4	2.4
United Kingdom.		939, 675	2, 503, 633		67. 4	71.7
Other countries..		291, 619	205, 028		20.9	6.2
Total		1, 394, 934	3, 491, 244		100.0	100.0
	Barrels.	arrels.	arrels.	P.ct.	P.ct.	P.ct.
Argentina	14,907	7,857	13, 083	0.6	1.2	2.2
Canada..	327, 561	44, 824	47, 005	12.3	7.1 3.3	7.9 3.4
Cuba-	40,233 46,500	20,523 20,983	20,156 4,414	1.7	3. 3	$\begin{array}{r} \\ \hline .4 \\ \hline\end{array}$
Norway	74, 960	27, 839	13,261	2.8	4.4	2.2
Philippine Islands	11, 005	8,334	- 480.437	74 7	$\begin{array}{r}1.3 \\ 72.8 \\ \hline\end{array}$	
United Kingdom	2, 061, 622	458,227 40,594	480,437 14,217	77.4 3.3	72.8 6.6	81.5
Other countries.	88, 313	40, 594				
Total	2, 665, 101	629, 181	592, 581	100.0	100.0	100.0
Apricots, dried	Pounds.	Pounds.	Pounds.	P.ct.	P.ct.	P. ct.
Belgium	369, 757	718, 651	394, 945	4.4	4. 3	3.2
Canada	792, 308	$\begin{array}{r}\text { 659,949 } \\ 1,237 \\ \hline 817\end{array}$	$\begin{array}{r}\text { 1, } \\ 1,243,494 \\ \hline\end{array}$	5.3	7.4	11.1
Denmar	406,964	- $1,858,817$	3, 306, 111	4.9	23.1	29.5
France.	1,093, 764	2, 477, 502	323, 556	13.1	14.8	2. 9
Japan	166, 430	220, 170	405, 846	2.0	1.3	3. 6
Netherland	833, 112	1,642,587	897, 500	10.0	9.8	8.0
New Zealand	98, 390	284, 150	226, 795	1.2	1.7	2.0
Norway	408, 661	808, 752	1,085, ${ }^{\text {d }}$	5. 9	5.3	7.2
Sweden	493,427 $2.877,419$	3, 885,399	1,246, 608	34.5	21.4	11.1
Oniter countries	2, 352,609	- 362,670	1,459, 556	4.3	2.2	4.2
Total	8, 332, 404	16, 735, 609	11, 193, 183	100.0	100.0	100.0
		Boxes.	Boxes.	P.ct.	P P. ct.	P.ct.
Canada	1,820, 800	1, 531, 364	1,674, 105	91.0	${ }^{93.4}$	
United Kingdom	26,594 153,347	17,515 91,959	-27,572	1.3	1.0	5.4
Other countries.	153, 347	91,959	97,535			6.4
Total	2, 000, 741	1,640, 838	1,799, 212	100.0	100.0	100.0
unes-	Pounds.	Pounds.	Pounds.		P.ct.	P. ct.
Belgium	1,602,992	3, 945, 320	2,515, 887	2.8	3.6	
Canada	11,296,548	$14,253,357$ $4,133,187$	$\begin{array}{r}13,951,017 \\ 2,003 \\ \hline\end{array}$	19.7 2.5	13.8 3.8	2.5
Denmar	1,740, 212	- ${ }^{4,13,063,197}$	26,586, 389	3.0	22.9	33.6
Germany	16,734, 550	16, 669, 695	263, 056	29.1	15.2	3
Mexico.	914, 628	700, 885	1, 279,352	1.6	${ }^{6}$	1.3
Netherlands	2, 489, 749	4, 441, 902	$1,771,449$	4.3	1.1	1.9
New Zealand	445, 700	1, ${ }_{563}$	1,520, ${ }^{742} \mathbf{4 3 1}$. 2	1.15	$\begin{array}{r}1.9 \\ \hline 8\end{array}$
Norway-	3, $\begin{array}{r}123,927 \\ \hline\end{array}$	5, ${ }^{5699}, 787$	4, 764, 125	5. 3.	5.0	6.1
Sweden United Kingdom	-3, ${ }^{3}, 504,011$	29,561, 264	18,905, 239	27.0	27.0	23.9
Other countries.	2, 127, 515	3, 371, 248	5, 076, 736	3.7	3.2	6.5
Tota	57, 460, 784	109, 398, 133	79, 228, 753	100.0	100.0	100.0
uits, canned-		Dollars.	Dollars.	P.ct.	P.ct.	P.ct.
Belgium.	131, 517	D 149, 831	162, 098	1.0	0.9	
Canada	1,983, 524	679, 743	1, 136, 4781	${ }_{19}^{15.1}$	${ }^{4} \mathbf{4}$	${ }_{21} 1$
Cuba-	2, 497, 175	38,601 229,578	- 3700,049	2.0	1.4	1.3
Dutch East Indies	256, 775	435,083	711, 183	. 6	2.7	3.2
France ${ }^{\text {Netherlands }}$	195, 893	107, 889	220, 449	1.5	. 7	1.0
Netherlay	89, 206	64, 991	1i4, 438	. 7	${ }^{4}$	6
Philippine Islands.	5223, 997	- $\begin{array}{r}46,471 \\ 13,6881 \\ \hline 171\end{array}$		1.7 45.2	83.6	77.7
United Kingdom.	5, 938,918 $1,734,151$	$13,688,171$ 933,081	$17,469,329$ $1,761,487$	1.7 15.2 13.2	8.7 5.7	7.8
Total	13, 128, 053	16, 373, 219	22, 479, 307	100.0	100.0	100.0

[^329]2 Included in apples, fresh in barrels previous to January, 1922.

Table 659.-Destination of principal farm products exported from the United States, year ending June 30, 1921-1923—Continued.

[^330]Table 659.-Destination of principal farm products exported from the United States, year ending June 30, 1921-1923-Continued.

Article and country to which consigned.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	$\stackrel{1922}{23^{1}}$
VEGETABLE PRODUCTS-continued.						
Grain and grain products-Continued. Wheat flour-Continued.	Barrels.	Barrels.	Barrels.	P.ct.	P. ct.	P.ct.
Panama.	116, 281	95, 120	88, 240	0.7	0.6	0.6
Philippine Islands	197, 704	333, 046	469, 838	1.2	2.1	3. 2
Poland and Danzig	1, 034, 632	146, 744	158, 785	6. 4	. 9	1.1
Russia in Europe.	91, 510	154, 472	313, 800	. 6	1. 0	2. 1
Sweden.	223, 482	137, 734	105, 507	1. 4	. 9	. 7
Turkey in Europe	579, 761	1,381, 963	472, 378	3.6	8. 7	3. 2
United Kingdom.	3, 090, 158	3, 190, 762	1,913, 833	19.1	20.2	12.9
Venezuela---	148, 855	77, 308	83, 061	. 9	. 5	. 6
Other countries	1,566, 511	1, 095, 503	1, 483, 357	9.9	6.9	9.9
Total	16, 179, 956	15, 796, 824	14, 882, 714	100.0	100.0	100.0
Hops:	Pounds.	Pounds.	Pounds.	$P . c t .$	P.ct.	$P . c t$
	982, 200	488, 666	382, 633		2.5	2.8
Canada	2,680, 251	2, 762, 124	3, 031,538	12.1	14.1	22.5
United Kingdom	17, 465, 538	13, 845, 499	2, 351, 919	78.7	70.9	17.4
Other countries	1, 076, 128	1, 132, 559	878, 517	4.8	5.9	6.5
Total	22, 206, 028	19, 521, 647	13, 497, 183	100.0	100.0	100.0
Oil cake and oil-cake meal:						
Denmark	274, 809, 012	264, 890, 758	195, 357, 016	76.3	63.8	57.0
Germany	35, 805, 649	117, 369, 484	132, 347, 954	9.9	28.3	38.6
Sweden	28, 880, 847	20, 929, 920	4, 264,960	8. 0	5.0	1. 2
United Kingdom	12, 695, 593	10,955, 664	7, 775, 307	3.5	2.6	2. 3
Other countries.	7, 795, 755	1, 110, 853	2,798, 957	2. 3	. 3	9
Total	359, 986, 856	415, 256, 679	342, 544, 194	100.0	100.0	100.0
Cottonseed meal-						
Belgium	1,568, 000	4, 812, 760	3, 603, 903	1. 7	4. 1	3. 2
Canada	12, 182, 904	4, 146, 348	2, 627, 740	12.9	3.5	2. 4
Germany	3, 894, 472	6, 953, 787	3, 566, 500	4.1	5. 9	3. 2
Netherlands		1,927, 000	3,284, 869		1. 6	2. 9
Norway	22, 942, 354	13, 710, 014	11, 201, 439	24.2	11. 7	10.0
United Kingdom	44, 164, 851	75, 395, 136	83, 015, 447	46. 6	64.2	74.2
Other countries.	9, 961, 384	10,518, 912	4, 505, 912	10.5	9.0	4.1
Total	94, 713, 965	117, 463, 957	111, 805, 810	100.0	100.0	100.0
Linseed or flaxseed cake-						
Belgium	43, 385, 083	152, 114, 660	91, 655, 770	11.6	32.4	17.1
Germany	43, 346, 153	6,435, 135	16, 215, 405	11. 6	1. 4	3. 0
Netherlands	221, 094, 838	276, 237, 018	351, 445, 009	59.3	58.8	65.5
United Kingdom	57, 656, 302	27, 731, 137	69, 518, 709	15. 5	5.9	13.0
Other countries	7,596, 675	6, 879, 426	7, 720, 345	2.0	1.5	1. 4
Total	373, 079, 051	469, 397, 376	536, 555, 238	100.0	100.0	100.0
Oils, vegetable:						
Cottonseed-						
Argentina	1, 966,787	3, 384, 751	3, 840, 798	0. 7	3. 7	6.0
Canada.	38, 577, 655	38, 492, 691	26, 558, 615	13.6	42. 0	41.3
Chile	819, 798	1, 372, 553	4,174, 818	. 3	1. 5	6.5
Cuba	4,457, 145	2, 914, 611	3, 442, 620	1. 6	3. 2	5. 4
Denmark	9, 413, 933	7, 867, 074	1,705, 794	3. 3	8.6	2. 7
Dominican Republic	1, 111, 594	, 723, 408	1, 045, 782	. 4	. 8	1. 6
Germany --------	8, 562, 774	1, 099, 753	361, 201	3. 0	1. 2	- 5
Greece.	1, 426, 227	867, 962	302, 320	. 5	. 9	. 5
French Guiana	493, 990	525, 554	493, 331	. 2	. 6	. 8
French West Indies	1,684, 282	2, 623, 449	231, 380	. 6	2. 9	. 4
Italy	28, 179, 075	882, 514	206,099	9. 9	1.0	. 3
Mexico	6, 678, 387	3, 298, 694	6,711, 448	2. 4	3. 6	10.4
Netherlands	119, 737, 778	$4,265,064$	1, 312, 695	42. 3	4. 7	2. 0
Norway.	10, 358, 888	9, 436, 843	$5,155,490$	3. 7	10.3	8.0
Panama	1, 203, 888	831, 898	515, 414	. 4	. 9	. 8
United Kingdom	24, 482, 324	2, 526, 698	342, 188	8.6	2. 8	. 5
Uruguay	1, 495, 100	2, 933, 942	1,997, 893	. 5	3. 2	3. 1
	22, 618, 400	$7,567,176$	5, 903, 295	8. 0	8.1	9.1
	283, 268, 025	91, 614, 635	64, 301, 231	100.0	100.0	160.0

[^331]Table 659.-Destination of principal farm products exported from the United States, year ending June 30, 1921-1923-Continued.

Article and country to which consigned.	1920-21	1921-22	1922-23 ${ }^{\text { }}$	1920-21	1921-22	$\underset{23^{1}}{1922-}$
vegetable products-continued.						
Tobacco, leaf:	Pounds.	Pounds.	Pounds.	P.ct.	P.ct.	P. ct.
Argentina	3, 628, 318	1, 065, 975	2, 486, 390	0.7	0. 2	0.6
Australia	24, 545, 292	15, 241, 757	18, 030, 795	4.9	3.4	4.0
Belgium	25, 172, 310	21, 610, 307	22, 966, 563	5. 1	4.8	5.2
British West	6, 872, 086	7, 143, 013	10, 330, 701	1.4	1.6	2.3
Canada	16, 327, 521	13, 117, 029	14, 131, 230	3.3	2.9	3.2
China	20, 916, 701	22, 945, 067	39, 792, 536	4.2	5.1	8. 9
Denmar	5, 388, 533	3, 829, 171	5, 037, 335	1.1	. 8	1. 1
France.	60, 724, 974	43, 166, 050	37, 638, 320	12. 2	9.6	8.5
French Africa	3, 314, 366	2, 853, 526	5, 292, 900	. 7	6	1.2
Germany	18, 823, 658	29, 988, 577	30, 680, 022	3.8	6. 6	6.9
Haiti	1,165, 710	1,409, 940	1,430, 497	. 2	. 3	. 3
Hongkong	2, 921, 921	648, 145	1, 394, 714	6	.1	3
Italy.-	46, 858, 059	46, 971, 663	42, 400, 610	9.4	10.4	9.5
Japan	2, 226, 923	2, 339, 513	2, 471, 857	4	. 5	${ }^{6}$
Mexico	1, 771, 042	2, 542, 100	435, 837	4	6	1
Netherla	24, 155, 164	19, 870, 686	16, 901, 535	4.9	4.4	3.8
Norway	3, 267, 365	3, 622, 038	3,425, 895	. 7	. 8	8
Portugal	3, 790, 615	5, 814, 821	5, 714, 648	8	1. 3	1. 3
Spain-	1, 394, 709	12, 534, 194	12, 794, 761	. 3	2.8	2. 9
Sweden-	$\stackrel{6,230,431}{266,975}$	4, 231, 477	5, 919, 714	1.3	9 6	1. 3
Other countries.	9, 843,550	9,440, 332	11, 152, 623	1.8	2. 1	2.4
Total	496, 878, 830	451, 888, 436	445, 186, 472	100.0	100.0	100.0
Naval stores: Rosin-	arrels.	rrels.	Barrels.			
Argentina	114, 088	89,643	86, 328	13.0	11.4	8.3
Australia.	30, 631	14, 857	10, 830	3.5	1.9	1.0
Belgium	27, 766	21,969	22, 660	3.2	2.8	2.2
Brazil.	106, 300	88, 842	103, 318	12.1	11.3	9. 9
Canada	79, 784	49, 802	58, 698	9.1	6. 3	5.6
Cuba	21,755	13, 719	16, 022	2.5	1. 7	1. 5
Dutch East Indies	19,927	31,961	46, 215	2.3	4. 1	4. 4
Germany	70, 744	115, 247	162, 485	8.1	14.7	15.6
Italy.	17, 156	17,711	34, 827	2.0	2. 3	3. 3
Japan	19, 050	44, 146	86,739	2. 2	5. 6	8.3
Netherlan	11, 334	12, 833	16,917	1.3	1.6	1. 6
Sweden	18,772	16,943	27, 148	2.1	2.2	2. 6
United Kingdom	276, 927	205, 681	277, 269	31.6	26.2	26.7
Uruguay	14, 043	9,962	14, 765	1. 6	1. 3	1. 4
Other countries	48, 632	52,797	75, 585	5.4	6.6	7.6
Total	877, 109	786, 113	1,039,806	100.0	100.0	100. 0
Turpentine, spirits of-	Gallons.	Gallons.	Gallons.	P. ct.	P. ct.	P. ct.
Argentina.	500, 467	455, 009	397, 356	5.1	4. 2	4. 4
Australia.	519,437	596, 074	481, 344	5. 3	5.5	5. 3
Belgium	505, 233	772, 324	291, 953	5. 2	7.2	3.2
Brazil	282, 603	217, 634	130, 229	2.9	2. 0	1.4
British South A	94, 743	71,987	75,452	1.0	7	. 8
Canada.	940, 531	973, 587	884, 849	9. 6	9.0	9.8
Germany	522, 142	835, 407	491, 331	5. 4	7.7	5. 5
Netherlands	621, 265	899, 236	706,906	6. 4	8.3	7.8
United Kingdom	5, 207, 872	5,491, 387	5, 012, 968	53.5	50.9	55. 6
Other countries.	547, 418	473, 635	539, 916	5.6	4.5	6.2
Total	9, 741, 711	10, 786, 280	9, 012, 304	100.0	100.0	100.0
$\underset{\text { Fir }}{\text { Lumber }}$	M feet.	M feet.	M feet.	P.ct.	P.ct.	P.ct.
Australia	49. 202	60,905	77, 819	13.0	9.0	16.6
British South Africa	4, 239	3,798	15,725	1.1	6	3.4
Canada	10, 297	2, 564	11,185	2.7	4	2.4
Chile	13, 113	5,477	14, 420	3. 5	. 8	3.1
China	88,706	118, 061	68, 121	23.4	17.4	14.5
Cuba	4,615	3,443	8, 509	1.2	. 5	1.8
Japan	68,988	397, 484	185, 259	18.2	58.6	39.6
Mexico	6,527	8, 141	12,494	1.7	1.2	2.7
Peru	57, 638	44, 024	34, 479	15.2	6.5	7.4
United Kingdom	28, 856	9, 813	15, 144	7. 6	1.4	3.2
Other countries	46, 888	24, 683	25, 133	12.4	3.6	5.3
Total..	379, 069	678, 393	468, 288	100.0	100.0	100.0

${ }^{1}$ Preliminary.

Table 659.-Destination of principal farm products exported from the United States, year ending June S0, 1921-1923-Continued.

Article and country to which consigned.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{231}^{1922}$
FOREST PRODUCTS-continued.						
$\begin{aligned} & \text { Lumber-Continued. } \\ & \text { Oak-- } \end{aligned}$	M feet.	M feet.	M feet.	P.ct.	P.ct.	P.ct.
Argentina.	5, 347	6, 932	9, 155	6. 9	7.9	6.6
Belgium ${ }^{\text {British }}$ South - Africe	3,195	8,174	10, 101	4. 1	9.3	7.3
British South Africa	832	567	1,309	1.1	6	
Canada---	33, 600	23,991	37,879	43.2	27.4	27.4
Netherlands	2, 327	784	1,393	3.0	. 9	1.0
Spain United Kingdom	1,881	553	1,787	2.4	. 6	1.3
United Kingdom	25, 484	42, 184	67,544	32.8	48.2	48.9
Uruguay---.---	721	1,268	2, 042	. 9	1.4	1.5
Other countries	4,391	3, 074	6,908	5.6	3.7	5.1
Total	77, 778	87, 527	138, 118	100.0	100.0	100.0
Pine, y yellow, long leaf-						
Argentina	69, 857	120, 174	178,200	13.6	26.2	30.3
Canada	14, ${ }_{28,82}$	27,405 15,420	14, 217	2.7	6. 0	2.4
Cuba	158, 563	61, 001	125, 354	5.7 30.9	13.4	21.3
Dominican Republic	12, 377	5,384	5, 519	2.4	1.2	. 9
France	1,390	7,003	6, 265	3	1.5	1.1
Italy -	1,625	8,400	10,638	3	1.8	1.8
Mexico	113, 757	60, 262	54, 495	22.2	13.2	9.3
Netherlands	1,186	7,542	5,817	. 2	1.6	1.0
Other West Indics	31, 264	26,695	37, 574	6. 1	5. 8	6.4
Panama	6, 852	4, 626	4,202	1.3	1.0	. 7
Spain---	11, 176	20,317	21, 846	2.2	4.4	3. 7
United Kingdom	35, 870	39, 827	41, 261	7.0	8.7	7.0
Uruguay --.-.-	9,271	12, 206	15, 203	1.8	2.7	2.6
Other countries	16, 555	41,761	34, 021	3.4	9.2	5.9
Total	512, 649	458, 023	587, 522	100.0	100.0	100.0
Railroad ties:	Number.	Number.	Number.	P.ct.		P.ct.
Canada-.	1, 519,996	843,770 6,115	614,412	30.2	43.8	25.0
Chosen		6,115	23, 935	2.6	. 3	1.5
Cuba	66, 193	2,012	39, 841	1.3	1	1.6
Guatemala	78, 141	65, 325	153, 811	1.6	3.4	6.3
Honduras.	259, 972	218, 506	481, 947	5.2	11.3	19.6
Japan--	, 165	68, 423	233, 382		3.5	9.5
Mexico	362, 340	397, 552	282, 933	7.2	20.6	11.5
Palestine and Syria	5,775	12, 109	117, 963	. 1	. 6	4.8
Peru	184, 408	45, 509	103, 400	3.7	2.4	4.2
United Kingdom.	1, ${ }_{832} 98,114$	73,606 195,599	33,181 338,722	31.7	3.8 10.2	1.3
	832, 963	195, 599	338, 722	16.4	10.2	13.7
Total.	5, 039, 838	1,928, 526	2, 459, 543	100.0	100.0	100.0

Division of Statistical and Historical Research. Compiled from the Monthly Summaries of Foreign Commerce of the United States, June, 1922 and 1923, and official records of the Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Preliminary.
Table 660.-Origin of principal farm products imported into the United States, year ending June 30, 1921-1923.

Article and country of origin.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{23}^{1922-}$
animals and animal products. Cattle:	Number.		Number.			
Canada	307, 202	128,803	230, 227	93.1	85.0	87.2
Mexico	20, 184	22, 076	20, 301	6.1	14.6	7.7
United Kingdom	1,650	246	737	. 5	. 2	
Other countries.	938	408	12,622	. 3	. 2	4.
Total	329, 974	151, 533	263, 887	100.0	100.0	100.0
Horses:						
Canada	3,633	2, 566	2, 165	89. 8	81.8	76.9
Mexico	210	188	310	2.4 5.2 2.	6. 0	11.0
Other countries.	103	89	138	2.6	2.9	4.9
Total	-4,044	3, 136	2, 816	100.0	100.0	100.0

[^332]Table 660.-Origin of principal farm products imported into the United States, year ending June 30, 1921-1923-Continued.

Article and country of origin.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{231}^{1922-}$
animals and animal products-con.						
Butter, including substitutes: Argentina	Pounds. 3, 420, 925	Pounds. $403,538$	ounds. 793, 479	$\begin{aligned} & P . c t . \\ & 10.0 \end{aligned}$	P.ct.	P.ct. ${ }_{\text {5 }}$
Australia	5, 605	2, 055, 537	130, 036		21.5	. 8
Canada	4,969,770	3, 101, 084	2,999, 355	14.5	32.5	19.0
Denmark	22, 822, 785	2, 888, 338	7, 371, 147	66. 5	30.2	46.7
Netherlands	1, 451, 046	91, 117	109, 861	4. 2	1.0	.$^{.7}$
New Zealand	1, 327, 239	845, 065	3, 8887,174	3.9	8.8	24.6
United Kingd	3,441 342,842	$\begin{aligned} & 70,991 \\ & 95,622 \end{aligned}$	$\begin{aligned} & 369,106 \\ & 112,127 \end{aligned}$. 9	$\begin{array}{r}1.1 \\ \hline\end{array}$	2.3 .9
Total	34, 343, 653	9, 551, 292	15, 772, 285	100.0	100.0	100.0
Cheese, including substitutes:						
Argentina	9, 827, 075	5, 626, 213	4, 000, 545	59.3	16.4	7.3
Canada	311,226	4, 823, 777	5, 858,305	1.9	14.1	10.7
France.	2, 417, 036	2, 260, 502	4, 537, 008	14.6	6. 6	8.3
Greece	84,716	808, 433	922, 287	. 5	2.4	1.7
Italy	1,185, 912	12, 085, 693	20, 571, 704	7.2	35.3	37.7
Netherland	981, 074	1, 614, 852	2, 147, 774	5.9	4.7	3.9
Norway	89, 895	236, 290	468, 419	8	${ }^{-7}$. 9
Spain	125, 366	531, 020	14, 12,391	.8 6.4	1. 15	
Switzerland	1, 068, 100	5, 450, 139	14, 7635,121	6.4	15.9	
United Kingd	37,870 456,408	$\begin{array}{r}261,051 \\ 572,634 \\ \hline\end{array}$	531,157 740,559	.2 2.7	$\begin{array}{r}.8 \\ 1.6 \\ \hline\end{array}$	1.0 1.4
Total	16, 584, 678	34, 270, 604	54, 555, 270	100.0	100.0	100.0
Fibers, animal: Silk, raw-						
	6, 205, 278	7,328, 677	10, 584, 948	21.1	15.2	20.1
France	446, 733	259, 414	408, 684	1. 5	5	. 8
Italy	1,772, 532	1, 613, 784	1,818, 206	6. 0	3. 3	3. 1
Japan	$\begin{array}{r}20,815,912 \\ 222 \\ \hline 290\end{array}$	38, 5980,110	$\begin{array}{r} 37,989,046 \\ 1,882,720 \end{array}$	70.7 .7	80.1 .9	72.1 3.5
Total	29, 462, 745	48, 178, 964	52,683, 604	100.0	100.0	100.0
Wool, unmanufactured-Carpet, wool-						
Argentina---....	5, 883, 343	12,354, 133	$8,695,254$ 3	11.9	8. 3	5.1
${ }_{\text {British }}$ Brinth A--	1,537, 866	3, 020, 1093	3, 2220,748	3. 1	$\underline{ }$. 1
Chile.	384, 907	25, 275	86, 119	8		
China	15, 270, 730	66, 679,144	65, 139, 698	30. 9	44.8	38.2
Denmar	394, 625	1, 022, 300	1, 212, 014	$\cdot 8$.7	${ }^{.6}$
France	357, 009	3, 641, 970	6, 156, 173	$\cdot 7$	2.4	3. 6
Germany	329, 637	2, 060, 172	4, 205, 049	.7	1.4	2.5
Greece	22, 703	4.60,501	6, 175, 1734	. 1		3. 5
Italy	56, 170	4, 141, ${ }_{2} \mathbf{6 2 1}$	6, 2 2 8 8020,141	. 1	2.8 .1	1.7
Persia.	511, 350	211, 998	996, 353	1.0	.1	- 6
Spain.	311, 483	381,049	681, 433	. 6	. 3	$\stackrel{4}{4}$
Turkey in Asia	- $\begin{array}{r}364,737 \\ \hline 199\end{array}$	278,960 $50,241,626$	$2,456,828$ 60	$\begin{array}{r}38.7 \\ \hline\end{array}$	33.8	35.7
United Kingdom	$19,179,545$ $\mathbf{2 , 5 3 6}, 672$	50, 2481,626	$\begin{array}{r}60,859, \\ 2669 \\ \hline 1\end{array}$	$\begin{array}{r}38.8 \\ 5.1 \\ \hline\end{array}$	33.8 .4	1.2 .2
Other countrie	2, 152, 590	3,757, 671	6, 800, 545	4.5	2. 6	4.1
Total	49, 447, 990	148,786, 906	170,368. 386	100.0	100.0	100.0
Clothing, woolArgentina	92, 700, 500	6,002,098	9, 762, 858	36.9	18.3	22.3
Australia	39, 032, 638	8, 610,375	5, 195, 722	15.5	26.2	11.9
British Sou	18, 187, 739	1,842, 901	1, 225, 269	7.2	5. 6	2.8
Canada	8, 656, 806	726, 928	3, 465, 426	3.4	2.2	7.9
Chile	13,727, 089	1, 116, 755	1, ${ }_{334}$, 4200	5.5 3.4		2.4
China	8, 614, 884	2,780, 246	3665, 235	3.4 2.7	8.5	1.8
New	6, 253,070	31,599	268, 938	1	,	6
United Kingdo	28, 478, 904	2, 801, 571	15, 407, 663	11.3	8.5	35.3
Uruguay	31, 581, 289	8, 376, 306	4, 365, 494	12.6 1.4	25.5 1.5	10.0 4.5
Other countrie	3, 172, 183	458, 115	1,976,011	1.4	1.5	4.5
Total	251, 249, 273	32, 820, 886	43, 703, 289	100.0	100.0	100.0
Combing woolArgentina	6, 146, 724	14, 023, 407	77, 256, 141	47.3	20.3	${ }^{25.9}$
Australia		20, 477, 363	69, 406, 989		29.6	23.3
British South Af	674,477	4, 499, 919	16, 187, 811	5.2	6.5	5.4
Canada	313, 165	540, 807	5, 952, 834	2.4	$1{ }^{18} 8$	4.0
New Zealand	962, 268	8, 208, 468	- ${ }_{58,667,619}$	+7.4	71.9	4.6 19.7
United Kingdom.	3, 162, 810	$4,880,008$ $14,596,556$	- $48,6040,631$	24.3 4.9	21.1	14.1
Other countries	630, $1,106,512$	14, $2,006,432$	15, 327, 931	8.5	2.8	5.0
Total.	12,996,910	69, 232,960	298, 496, 152	100.0	100.0	100.0

${ }^{1}$ Preliminary.

Table 660.-Origin of principal farm products innported into the United States, year ending June 30, 1921-1929-Continued.

Article and country of origin.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{23^{1}}^{1022-}$
animals and animal products-						
Fibers, animal-Continued.						
Hair of the Angora goat, alpaca, etc.	Pounds.	Pounds.	Pounds.	P.ct.	P.ct.	P.ct.
British South Africa-.---.--.	486, 601	1, 003, 713	3, 469, 041	13. 5	23.6	30.4
Chile	40,616	rer 25,743	274, 764	1.1 3.6	7.7	2.4
Germany	5, 379	7, 436	12, 354	1.1 1	. 2	. 1
Peru-...	381, 870	389, 601	309, 003	10. 6	9.2	2. 7
Turkey in Asia	91,855		28, 613	2.5		. 3
Turkey in Europe	473, 981	530, 368	2, 601, 398	13. 1	12. 5	22.8
United Kingdom.	1, 888, 597	$\begin{array}{r} 1,949,548 \\ 11,351 \end{array}$	$\begin{array}{r} 4,674,695 \\ 24,156 \end{array}$	52.3 3.2	$\begin{array}{r} 45.9 \\ .3 \end{array}$	41.0 .3
Total	3, 611, 585	4, 246, 484	11, 394, 024	100.0	100.0	100.0
Hides and skins other than fars:						
Calfskins, dry-	1,165, 273	8,768,928	4,474, 240	9. 9	54. 2	29.9
Argentina	1, 233,952	8, 324, 786	- 419	2. 0	2.0	1.5
British Ind	1,673,090	136, 923	38, 365	14.2	. 8	. 3
Canada	1, 259, 029	985, 266	1, 224,488	10.7	6.1	8.2
China	342, 707	70, 259	159, 923	2. 9	.4	1.1
Denmark	779,100	186, 148	302, 684	6. 6	1.2	2. 0
Dutch East Indies	674, 351	200, 394	42, 8888	5. 7	1.2	${ }_{3.8}$
France.	11,000 $1,394,547$	229, 5987	546, $1,519,034$	1.8	1.4 4.0	3.6 10.1
Germany	54, 151	94, 936	587, 669	. 5	. 6	3.9
Italy ---	16, 524	112, 618	90, 331	. 1	. 7	. 6
Latvia		166, 120	534, 818		1.0	3. 6
Netherlan	898, 165	${ }_{5236} 7381$	1, 070,450	7.6	4. 0	7. 1
Norway	932, 308	${ }^{523,791}$	797, 118	7.9 .2	3.2 1.6	5. 3
Poland.-	27,799 83,095	256, 631	162,886 269,914	. 7	1.6	1.1
Sweden.-	1, 052,894	665, 899	961, 618	8. 9	4.1	6. 4
Switzerland	79, 169	203, 789	87, 171	. 7	1. 3	. 6
United Kingdom	742, 600	652, 285	1, 225, 966	6.3	4. 0	8. 2
Uruguay		949, 615	106, 712		5. 9	3.7
Other countries	389, 798	345, 877	566, 321	3.2		3.7
Total	11, 809, 552	16, 174, 682	${ }^{2} 14,988,085$	100.0	100.0	100.0
Caliskins, wet-						
Argentina Australia	$\begin{aligned} & 190,886 \\ & 202,388 \end{aligned}$	$\begin{aligned} & 978,216 \\ & 352,817 \end{aligned}$	1, 144, 697	0.8 .9	3. 1.4	3.7 .5
Belgium	625, 239	1,094, 940	1, 084, 686	2. 6	4. 3	3. 5
Canada	3, 575, 472	$4,311,897$	5, 068, 156	15.0	17.0	16.5
Denmark	2, 743, 662	1, 545, 066	2, 103, 810	11.5	6. 1	6. 8
Finland	9,281	269,759	623,330 8833,727	35.0	1. 28.5	2.0
France	8, 324, 360	1, 1855,736	1,243, 504		4.7	4.0
Netherlands	2, 412,052	1,933, 826	1, 560,670	10.1	7.6	5.1
New Zealand	619, 111	1, 212, 217	126, 460	2.6	4. 8	4
Norway	510,310	343, 102	461, 508	2. 1	1. 4	1.5
Poland	227, 329	486, 273	448, 907	1. 0	1. 9	1.5
Sweden	1,949, 134	1,567, 035	3, 065,676	8.2	6. 2	10.0
Switzerland	420, 219	1,257, 438	1, 085, 592	1.8	5. 0	3. 5
United Kingdom	1,618, 803	596, 897	2, 805, 954	6.8	2.4	9.1
Uruguay.	51, 447	90,518 914,329	9,308 921,469	.2 14	${ }_{3}{ }^{4}$	
Other countries.	300, 372	914, 329	921, 469	1.4	3. 3	3.2
Total	23, 780, 065	25,383, 380	${ }^{2} 30,735,598$	100.0	100.0	100.0
Cattle hides, dry-						
Argentina.-	3, 646, 902	4, 321, 139	$17,719,184$ 126,878	14.7 1.3		30.1
Australia Brazil	331,780 $1,011,449$	77,156 94,878	1, 126, 878	1. 3.1	. 4	.2 2.9
British Indi	1, 318, 051	182, 043	1, 221, 562	5. 3	1. 0	2.1
Caneda.	321, 590	1,724,734	4, 186, 832	1.3	9. 4	7.1
China	2, 880, 150	1,649, 188	6, 905, 068	11.6	8. 9	11. 7
Colombia	5, 475, 283	5, 283, 096	7, 865, 138	22.1	28.7	13.4
Cuba---	47, 712	42,700	692,290 $2,582,016$	4.2	8. 9	1.2 4.4
Dutch East Indies	1, 924,802	1, 644, 993	2, 382,016	2.5	8.9 .8	$\begin{array}{r}4.4 \\ \hline 6\end{array}$
Ecuador	619,306 576,172	149, 652	349, 2, 441, 2009	2.5 2.3	8	- 4.6
Guatemala	526, 740	51, 466	18,962	21	. 3	
Honduras	161, 248	209, 593	112, 121	- 6	1. 1	${ }_{6}$
Itaty --.	306, 319	10, 402	366, 540	1. 2.3	2. 1	7
Mexico.....	559, 77	389, 328	425, 597	2.3		

${ }^{2}$ Includes kip skins until Sept. 21, 1922.

Table 660.-Origin of principal farm products imported into the United States, year ending June 30, 1921-1923-Continued.

Article and country of origin.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{23^{1}}^{1922-}$
animals and animal products-con.						
Hides and skins other than furs-Con. Cattle hides, dry-Continued.	Pounds.	Pounds.	Pounds.	P.ct.	P.ct.	P.ct.
New Zealand.-.-...--------	342, 142	3, 133	198, 229	1.4		0.3
Nicaragua	556, 612	736, 175	634, 478	2.2	4.0	1.1
Peru.	793, 742	91, 245	442, 858	3.2	. 5	
Switzerland-...	56,944 286,235	660, 643	$\begin{array}{r}151,535 \\ 3,279,153 \\ \hline\end{array}$.2 1.2	3.6	
Uruguay -----	132, 796	660, 1,576	3, 1 , 097,292	1.2 .5	3.6	5. 1.9
Venezuela	1,697, 326	823, 105	2, 383, 540	6.8	4.5	4.
Other countries	2, 141, 050	145, 141	3, 860,936	8.8	. 8	6. 5
Total	24, 814, 129	18, 438, 517	58, 770, 243	100.0	100.0	100.0
Cattle hides, wet-						
Argentina	79, 323, 914	86, 679, 343	186, 696, 992	45. 7	46.5	3. 9
Australia	2, 751, 338	2, 415, 991	5, 082, 759	1.6	1. 3	1.5
Brazil	20, 525, 396	15, 687, 498	24, 403, 024	11.8	8.4	7.0
Canada	20, 106, 771	34, 190, 737	30, 489, 525	11.6	18.3	8.8
Cuba	6, 192, 800	15, 206, 397	12, 418, 583	3. 6	8.2	3.6
France	4, 623, 854	1, 222, 972	12, 840, 361	2.7	. 7	3.7
Italy	1, 358, 034	1, 641, 136	5, 667, 392	. 8	. 9	1.6
Uruguay	27, 426, 164	17, 941, 386	34, 551, 249	15.8	9.6	10.0
Venezuela	186,419 $11,264,519$	816,269 $10,692,188$	375,171 $34,087,902$	6. ${ }^{1}$	5.4	9. ${ }^{8}$
Total	173, 759, 209	186, 497, 917	346, 612, 958	100.0	100.0	100.0
Goat and kid skins, dry-						
Aden----------------	1,763, 535	3,112,822	4, 549,505	4.8	4.6	6.4
Algeria, Tunis,	449, 600	851, 855	1, 137, 958	1. 2	1. 2	1.6
Argentina	1, 416, 807	6, 372, 141	4, 843, 644	3.8	9.3	6.8
Brazil.	3, 606, 437	4, 684, 504	4, 569, 259	9.8	6. 9	6.5
British India	10, 411, 506	19, 904, 553	19, 799, 086	28.3	29.2	28.0
British East Africa	655, 430	1, 047, 094	349, 862	1.8	1. 5	5
British. South Africa	503, 062	933, 335	1,359, 964	1.4	1.4	1.9
British West Africa	699, 732	764, 944	1, 147, 479	1. 9	1.1	1.6
China France	8, 095, 152	15, 035,533	12, 148, 704	22.0	22.0	17.2
Greece	273, 189	477, 339	- $1,305,982$	$\cdot 9$	$\cdot 6$	1.9
Java and Mad	27,	405, 311	1,077, 399	. 7	6	1.5
Mexico	704, 509	2, 086, 054	2,783, 963	1. 9	3. 1	1. 9
Morocco	221, 799	351, 542	401, 520	. 6	. 5	. 6
Netherlands	263, 769	363, 132	593, 985	. 7	. 5	. 8
Other Dutch East Indies	709, 526	421, 396	170, 799	1. 9	6	2
Peru.	626, 630	979, 674	853, 525	1. 7	1.4	1. 2
Spain	1,004, 374	2,605, 221	3, 451, 732	2.7	3.8	4.9
United Kingdo	1,237, 600	1, 396, 013	1,925, 208	3. 4	2.0	2.7
Venezuela	1, 349, 632	1, 772, 041	1, 801, 211	3. 7	2.6	2.5
Other coun	2, 488, 144	4, 247, 537	6, 110, 546	6. 8	6.4	8.8
Total	36, 816, 402	68, 227, 549	70, 763, 139	100.0	100.0	100.0
Goat skins, wet-						
Argent	352	77,377	158, 018		0.5	0.8
British India	4, 684, 672	14, 692,364	16, 824,162	95.4	96.0	90.4
British South A		38,677	147, 200		3	. 8
China	59,654		15,733	1.2		. 1
Spain			97, 928			
Other count	167, 086	498, 674	1, 354, 177	3.4	3.2	7.3
Total	4, 911, 764	15, 307, 092	18, 607, 046	100.0	100.0	100.0
Sheep and lamb skins, dry and wet-						
Argentina	8, 316, 958	12, 964, 069	16, 229, 412	14.3	26.5	18.8
Australia	3, 757, 256	712, 350	4, 838, 716	6.4	1.5	5.6
Brazil.	1,755, 837	1,846, 780	1, 855, 404	3. 0	3.8	2.1
British India	1,983, 802	1, 367, 388	187, 800	3. 4	2.8	. 2
British Sou	3, 292, 713	1, 490, 700	2, 499, 658	5.6	3.1	2.9
Canada	3, 525, 789	2, 189, 962	3, 660, 849	6. 0	4.5	4.2
Chile--	2, 439, 595	138, 343	1, 509, 370	4.2	. 3	1.7
China	469, 577	31, 063	683, 003	. 8	. 1	. 8
France	729, 458	346, 835	1,066, 581	1.3	.7	1.2
Greece	311, 740	120, 079	560,652	5	2	6
New Zealan	16, 055,011	13, 351, 877	13, 666, 790	27.5	27.3	15.8
Spain-----	951,768	1,507, 417	3, 978, 638	1.6	3.1	4.6
United Kingdom	8, 783, 816	9, 953, 330	27, 358, 807	15.1	20.4	31.7
Uruguay ---.--	$\begin{array}{r}326,695 \\ 4,820 \\ \hline\end{array}$	-712, 923	3, 321, 104	. 6	1.5	3. 8
Other countries	4, 820, 990	1,699, 176	3, 846, 793	8.4	3.4	4.7
Total	58, 299, 376	48, 838, 392	86, 399, 136	100.0	100.0	100.0

${ }^{1}$ Preliminary.

Table 660.—Origin of principal farm products imported,into the United States, year ending June 30, 1921-1923-Continued.

Article and country of origin.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{231}^{1922-}$
vegetable products.						
Cocoa or cacao beans:	Pounds.	Pounds.	Pounds.	P.ct.	P.ct.	P.ct.
Brazil.-...------	74, 708, 628	18, 975, 068	59, 978, 071	22.8	6.0	15.7
British West Africa	51, 034, 029	97, 125, 629	122, 276, 584	15.6	30. 6	32.1
British West Indies	51, 042, 195	36, 052, 288	39, 938, 150	15. 6	11.4	10.5
Dominican Republic	41, 757, 753	50, 562, 225	42, 457, 894	12.8	15.9	11.1
Ecuador	54, 674,651	37, 438, 630	40, 886, 824	16.7	11.8	10.7
Haiti	1, 104, 499	3, 638, 744	5, 026, 713	. 3	1.1	1.3
Portugal	4, 393, 911	4, 392, 107	2, 398, 716	1.3	1.4	6
United Kingdom	13, 637,481	21,177, 841	16, 030, 541	4. 2	6.7	4. 2
Venezeula	18, 602, 117	20, 002, 934	21, 990, 119	5.7	6.3	5.8
Other countries	16, 168, 086	20, 931, 283	30, 019, 663	5.0	6. 6	7.9
Total	327, 123, 350	317, 124, 373	381, 508, 058	100.0	100.0	100.0
Coffee:						
Aden	2, 623, 528	1, 604, 622	2, 436, 100	2	0.1	0.2
Brazil	857, 454, 209	756, 581, 844	840, 338,490	63. 6	61.1	64.4
Central Americ	150, 337, 222	99, 134, 597	125, 398, 369	11.1		9.6
Dutch East Indis	18, 507, 273	234, ${ }^{2331,697}$	-20,987, 513	1.4	1.8	14.9 1.6
Mexico	23, 413,471	38,444, 169	39, 490, 998	1.7	3.1	3.0
Venezuela	51, 974, 340	65, 267, 153	58, 500, 417	3.9	5.3	4.5
West Indies	18, 875, 161	6, 626, 607	10,500, 978	1.4	. 5	8
Other countrie	13, 349, 622	12, 599, 772	13, 936, 254	1.0	1.1	1.0
Total	1,348, 926, 338	1, 238, 012, 078	1,305, 187, 684	100.0	100.0	100.0
Fibers, vegetable:						
Cotton, rawBritish India	5, 196, 254	5, 166, 749	8, 894, 607		2.9	3.8
China-......	11, 532, 162	7,656, 667	24, 792, 329	9.2	4.3	10.5
Egypt	43, 578, 199	110, 921, 695	157, 990, 018	34.6	${ }^{61.9}$	66.9
Mexico	44, 077, 364	26, 818, 225	15, 868, 478	35.0	15.0	6.7
Peru.	11, 338, 923	17, 433, 458	10, 335, 486	9.0	9. 7	4.4
United Kingdo	6,547, 884	5, 599, 225	5, 274, 508	5.2	3.1	2.2
Other countries	3, 667, 968	5, 569, 036	12, 936, 993	2.9	3.1	5.5
Total	125, 938, 754	179, 165, 055	236, 092, 419	100. 0	100.0	100.0
Flax-	Long tons.	Long tons.	Long tons.	$P . c t$.	$P . c t$.	P.ct.
Belgium.				4. 39	11.8	9.3 2.3
Canada	2,163	710 8	2, 076	39.9	14.1 .2	25.3
Denmark	2		150			1.8
France	24	4	3	. 4	. 1	
Germany	10	85	471	. 2	1.7	5.7
Italy.	327	60	451	6. 0	1.2	5.5
Japan.	399	670	126	7.4	13.3	1.5
Latvia --..-		${ }_{706}^{1}$	${ }_{282}$		14.1	5.9 3.4
Phulippine Islands	533			9.8		3.4
Poland.-........		9	344		. 2	4.2
Russia in Asia	191			3.5		
United Kingdom-	490	2, 171	2, 661	9.0	43.2	32. 4
Russia, European.	412			7.6		
Other countries.	30	4	321	. 6	. 1	4.1
Total.	5,427	5, 021	8,207	100.0	100.0	100.0
Manila fiber-						
Philippine Islands.	51,008	43, 463	95,747	98.7	99.4	99.1
Other countries.	676	260	851	1.3	. 6	9
Total	51, 684	43, 723	96, 598	100.0	100. 0	100.0
Sisal grass-						
Belgium.		748	864		1.0	0.9
British East Africa	3, 193	1,316	3, 104	2.0	1.8	3. 2
Java and Madura		1,383	-5,935		81.9	${ }^{6} \mathbf{6 . 1}$
Mexico	142, 592	64,000	77,383	89.9	88.4	79.3
Other Dutch East Indies.	8,093	1,702	2,997 1,185	1. 1	2.4	1. 21
United Kingdom.-.-.-------	2, 2828	770 2,440	1,185	1.4 1.6	1.1 3.4	1.2
Total	158, 590	72, 359	97, 682	100.0	100.0	100.0

[^333]Table 660.-Origin of principal farm products imported into the United States, year ending June 30, 1921-1923-Continued.

Article and country of origin.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	${ }_{231}^{1922-}$
vegetable products-continued.						
Bananas:	Bunches.	Bunches.	Bunches.	P.ct.	P.ct.	P.ct.
Central America	27, 072, 105	29, 952, 565	29, 073, 239	66. 3	64.9	65.3
Colombia	3, 435, 340	2, 587,000	2, 266, 653	8.4	5.6	5.1
Jamaica	1, $7,102,835$	10,440, 110	1,916, 981,633	4.6 17.4	22. 6	4.3 22 2
Mexico		1, 104, 374	1, 189, 090		2.4	22.7
Other countries	1,326, 103	154, 631	173, 978	3.3	.4	4
Total.	40, 807, 674	46, 119, 632	44, 501, 196	100.0	100.0	100.0
Grains:						
Rice, uncleaned (including pad-dy)-	Pounds.	Pounds.	Pounds.	P. ct.	P.ct.	P. ct.
French Indo-China			1, 282, 000			1.0
Hongkong. Japan	$\begin{array}{r} 298,971 \\ 32,835,831 \end{array}$	$\begin{array}{r} 168,969 \\ 5,408,071 \end{array}$	317, 2, 552,505	$\begin{array}{r} 0.9 \\ 98.7 \end{array}$	2.8 88.3	2.7 21.8
Mexico.		530, 183	7, 137,461		8.7	61.1
Other countries	133, 120	15, 056	388, 691	. 4	. 2	3.3
Total	33, 267, 922	6, 122, 279	11, 678, 218	100.0	100.0	100.0
Rice, cleaned-						
Germany.	2, 376,440	5,315, 385	1, 5899,180	3.8	8.0	2.8
French Indo-Ci	3, 469,571	89,000	27,773, 526	5. ${ }^{-6}$. 1	48.8
Hongkong	52, 510,686	53, 150, 615	21, 054, 035	84.5	79.7	37.0
Mexico.	809, 311	2, 079, 614		1.3	3. 1	
United States	1, 122, 128	3, 228,478	518, 672	1.8	4.8	. 9
Other countries	1, 820, 896	1, 529, 336	3, 414, 267	3.0	2.3	5.9
Total	62, 109, 032	66, 707, 458	56, 946, 692	100.0	100.0	100.0
Rice flour or meal-						
China	100, 990	67	2,100	7.0	0.1	0.2
Dutch East Indies		114, 258	6,394		14. 5	7
French Indo-China		26,590	200, 000		3.4	22.0
Germany -	4,993	46, 203	156, 750	3	5. 8	17.2
Hongkong	955, 185	239, 970	172, 992	66. 9	30.4	19.0
Japan-...	364,006 2	362, 047	342,963 28	25.5	45.8	37. 6
Total	1,427,658	790, 354	910, 981	100. 0	100. 0	100.0
WheatCanada	Bushels. 50, 694, 096	Bushels. 14, 465, 502	Bushels. 18, 012, 467	$\begin{gathered} \overline{P_{\dot{C}} \boldsymbol{c t .}} . \\ 99.4 \end{gathered}$	$\begin{aligned} & \hline \text { P. ct. } \\ & 100.0 \end{aligned}$	$\begin{aligned} & P \cdot c t . \\ & 100.0 \end{aligned}$
Other countries	-5, 309,928			. 6		
Total	51, 004, 024	14, 465, 509	18,012, 540	100.0	100. 0	100.0
Wheat flourCanada.	$\underset{\substack{\text { Barrels. } \\ 1,419,662}}{ }$	$\begin{array}{\|c} \hline \hline \text { Barrels. } \\ 618,953 \\ 105 \end{array}$	Barrels.	$\begin{aligned} & \hline \hline P_{9 . c t . c t .}^{\prime} \end{aligned}$	$\begin{aligned} & \overline{P \cdot c t . c t .} \\ & 100.0 \end{aligned}$	$\begin{array}{r} P . c t . \\ 09.8 \end{array}$
Other countries	1, 1,222	152	762	.1		. 2
Total	1,420, 884	6i9,105	429, 421	100.0	100, 0	100.0
Nuts:						
France....-.	150, 236	P622, 092	539, 693	6. 6.9	11. 4	P. 8.7
Italy	214, 344	372, 328	277, 172	9.9	6.9	4.5
Spain.	1, 429, 164	1,692, 595	4, 672, 896	65.9	31.1	75.3
Turkey in Europ	305, 000	2, 686, 684	654, 527	14. 1	48.5	10.5
Other countries.	71, 181	110, 719	64, 285	3.2	2.1	1.0
Total	2, 169,825	5, 434, 418	6, 208, 573	100.0	100.0	100.0
Filberts, not shelled-						
France.-.-.-.-.---.	164,817 $10,556,550$	114,595 $13,255,626$	87,455 $13,911,108$	1.4 89 8	0.8 93.8	0.6 96.8
Italy-	10, 824, 504	13, 228, 261	-244, 377	7.0	1.6	1.7
Turkey in Europ	26, 140	479, 841	58,264	.2	3.4	4
Other countries	219, 478	54, 711	65, 071	1.9	.4	5
Total	11, 791, 489	14, 133,034	14, 366, 275	100.0	100.0	100.0
Peanuts, shelled-				12.2		66.8
Chosen.-	5,190, 220	99,000	28,350, 72	12.2	6.8 1.3	60.8
Japan.	35, 895,990	6, 658, 036	12, 102, 549	84:2	89.6	28.5
Other countries	1,541, 824	164,406	1,985, 449	3.6	2.3	4.7
Total.	42, 628, 034	7,427, 127	42, 438, 725	100.0	100.0	100.0

${ }^{1}$ Preliminary.

Table 660.-Origin of principal farm products imported into the United States, year ending June 30, 1921-1923-Continued.

Article and country of origin.	1920-21	1921-22	1922-231	1920-21	1921-22	${ }^{1922-}$
vegetable products-continued.						
Nuts-Continued. Peanuts, not shelled-	Prounds.	Pounds.	ounds.	P.ct.	P.ct.	P.ct.
Canada (via)	246, 601		20,000	4.6		0.5
China	1,642,077	1, 435, 320	2,462,095	30.6	42.5	63.7
Hongriong	609, 678	55, 234	47, 607	11.4	1.6	1.2
Japan.	2, 434, 963	1,833, 183	999, 204	45. 4	54.3	25.9
Spain.	109,375	22, 000	303, 598	2.0	. 7	7.9
Other countries	318, 502	30, 357	29, 640	6.0	. 9	8
Total	5, 361, 196	3,376,094	3,862,139	100.0	100.0	100.0
W alnuts, sholled-						4
China.	747, 079	2,443, 837	1, 776,430	7.0	14.4	9.5
France	9,081, 602	12, 612, 527	13, 846, 640	85.3	74. 1.	78.6
Italy	7,050	212, 863	286, 385	. 1	1.3	1.6
Spain.	256, 092	411, 871	585, 329	2.4	2.4	3.3
Turkey in Europe Other countries.	24,865 412,734	492, 941	213,696 742,732	.2 4.0	2.9.9	1.2 4.4
Total	10,641, 154	17,028, 927	17,606, 092	100.0	100.0	100.0
Walnuts, not shelled-		272,908	199, 738			. 0
Chile...	391, 603	4,397, 718	574, 467	3. 1	10.2	2.9
Chima.	1, 226, 258	$9,364,788$	1,591, 683	9.8	21.7	8.0
France	3, 142, 661	7, 780, 067	$8,487,674$	25.1	18:0	42.6
Italy	6, 164, 762	12,996, 126	8, 497, 492	49.2.	30.1	42.7
Japan	597, 050	2,337, 671	100,700	4.8	5. 4	. 5
Rumania		4, 025, 4888	73, 218		9.3	. 4
Turkey in Europe	642, 441	893,847 $1,137,765$	18,673 369,774	5.1	2.1 2.6	1.8
Total	12, 525, 128	43, 206, 378	19, 813,419	100.0	100.0	100.0
Oils, vegetable:						
British India	213,329	1,442,671	1,492,431	0. 1	0.6	0.7
Dutch East Indies	50, 977, 660			29. 3		
French Oceania	1,364, 732	1,119,833		6.8		
Philippine Islands	$115,563,356$ $5,769,881$	$226,651,680$ $1,021,943$	210, 968, 211.	66.5 3.3		
		230, 236, 127		100.0	100.0	109.0
Olive, edible -	allons	Galons	Gallons.		P.ct.	
France.	532, 135	858, 209	1,079, 165	12.0	10.8	10.8
Greece in Asia.		188, 465	4,469		2.4	
Greece in Europ	678, 510	803, 557	471,709	15.3	10.1	4.7
Italy	1,756, 761	1, 913, 226	$5,858,119$ 2 2	39.5 29.4 1	24.1 27.3	58.8 24.4
Spain ---	1, ${ }_{901,777}$	2,173, ${ }_{8}^{1,746}$		2.0		
Turkey in Europ	23,279	368	76,370	. 1		8
Other countries.	75, 963	2,008,415	40, 852	1.7	25.3	5
Total.	4, 444,417	7,949, 722	9, 959, 123	100.0	100.0	100.0
Soy bean oil-	Pounds.		Pounds.	P. ${ }_{\text {fit }}$	$P_{4}^{\text {c }}$ ct. ${ }^{\text {ct. }}$	P.ct. ${ }_{\text {c }}$
China	$\begin{array}{r}3,418,933 \\ 13,495,908 \\ \hline\end{array}$	3,904, 328 1, 133	2, 105, 590	27.9		5.4 10.8
Japan-...- K (eased territory	31, 1885,306	2,888,600	31, 621, 507	64.6	34.3	81.8
Philippine Islands		1,027,058 511,440			12.4 6.2	
Other countries	530, 408	511, 440	717,674	1.1	6.2	2.0
Total	49, 330, 645	8; 282, 559	38, 635, 381	100.0	100. 0	100.0
Opium (morphia 9 per cent and more): France		1,654				
Greece in Asia		21, 831			15.1	
Greece in Europe	11, 173	62, 579	39,386	14.4	43.4	34.4
Turkey, Asiatic	28,300	1, 6893		34.0 47.9	1.2	
Turkey, European	37,060	56, 837.	18,551	47.9	37.3	16.2
Other countrios.-	2,905	2; 684	3,280	3.7	1.9	2.8
Total	77,444	144, 278	${ }^{3} 114,599$	100.0	100.0	100.0

${ }^{1}$ Preliminary.
${ }^{2}$ Jan. 1-June 30, 1921,
${ }^{3}$ Beginning Sept. 22.

Table 660.-Origin of principal farm products imported into the United States, year ending June 30, 1921-1923-Continued.

Article and country of origin.	1920-21	1921-22	1922-23 ${ }^{1}$	1920-21	1921-22	$\begin{gathered} 1922- \\ 23{ }^{1} \end{gathered}$
Vegetable products-continued.						
Spices:						P.ct.
Pepper, ungroundBritish India	Pounds. $3,759,280$	Pounds. $4,625,092$	Pounds. 6,900, 406	P. 17.1	P.ct.	20.6
Ceylon		14, 975	284, 132			8
Java and Madura	8,299, 073	25, 136, 204	18, 170, 245	37.8	68.0	54.2
Netherlands	2, 718, 786	529, 274	285, 144	12. 4	1.4	. 8
Other Dutch East Indies		175, 284	424, 315		. 5	1. 3
Straits Settlements.	2, 402, 783	3, 794, 021	5, 130, 284	11.0	10.3	15.3
United Kingdom	3, 684, 531	628, 230	473, 376	16. 8	1. 7	1.4
Other countries.	1,065, 267	2, 045, 014	1,879,856	4.9	5.6	5.6
Total	21, 929, 720	36, 948, 094	33, 547, 758	100.0	100.0	100.0
ds:						
Flaxseed	Bushels.	Bushels.	Bushels.	P. ct.	P. ct.	P. ct.
Argentina	13, 145, 310	10, 408, 928	22, 330, 931		76.4	89.3
Canada.	2, 635,025	3,012, 515	2, 191, 103	16. 3	22.1	8.8
Other countries	390, 080	198, 589	483, 902	2.4	1. 4	1.9
Total	16, 170, 415	13, 632, 073	25, 005, 936	100.0	100.0	100.0
Grass seed, clover, red-	253,738		131, 284	1.7	5. 0.	21.5
Chi					5. 5	
Czechoslovakia		393, 680	10,910		4. 2	1.8
France	13, 282, 305	2, 461, 023	245, 766	91.5	26.5	40.4
German	406, 020	3, 345, 976	52, 848	2.8	36. 0	8.7
Italy	261, 081	1, 531, 695		1. 8	16. 5	
Poland		425, 947	132, 000		4.6	21.7
United Kingdom	157, 908	36, 300	35, 858	1.1	${ }^{-4}$	5.9
Other countries.	153, 816	120, 760		1. 1	1.3	
Total	14, 514, 868	9, 289, 653	608, 666	100.0	100.0	100.0
All other, including alsike, crimson						
and all otherCanada	9, 656, 014	10, 279, 434	10, 482, 073	54.4	61.7	78.9
Chile.	53, 200	363,.590		. 3	2.2	
Czechoslov	156, 365	179, 441	56,401	. 9	1. 1	.$^{.4}$
France.	5, 495, 924	1, 661, 501	1, 569, 395	31.0	10. 0	11.8
Germany	1, 841, 222	3, 335, 442	303, 289	10.4	20.0	2.3
		457, 672			2.7	
Poland - - -		6,633 96,450	64,953 475,639	1.0	6	3. 6
Onited Kingd	$\begin{aligned} & 179,832 \\ & 357,281 \end{aligned}$	282, 940	341, 708	2.0	1.7	2.5
Total	17, 739, 838	16, 663, 103	13, 293, 458	100.0	100.0	100.0
Cuba	4, 925, 630, 505	7, 720, 255, 237	7, 730, 592, 152	70.5	91.2	91.8
Dominican Republic	210, 659, 825	93, 067, 270	3, 479, 673	3. 0	1.1	
Dutch East Indies	577, 847, 164	6,914		8.3	-	
Hongkong -....-------------------------	41, 877, 044	571, 774	2,742, 723	- 6		4
Mexico.--	23, 581, 238	42,711,737	29,953, 811	${ }^{\cdot} 3$. 5	1
Other South America	206, 053, 035	7, 537, 218	$4,354,242$ 8,791 16	3. 0	. 1	-1
Peru-.-.-- Islands	$159,125,034$ $337,143,949$	538, 177, 460	$8,791,816$ $553,232,644$	2. 3		6. 6
Philippine Islands	$337,143,949$ $422,938,419$	538, 17, 792,	$553,232,644$ $20,559,354$	4. 8.	6.4 .2	6.6 .2
Tot	6, 984, 195, 961	8, 464, 328, 540	8, 422, 488, 139	100.0	100.0	100.0
Tea: British East Indi	19, 955, 562	21, 394, 828	19, 842, 170	27.6	24.8	20.5
Canada	1, 493, 041	677, 483	-791, 745	2.1	. 8	. 8
China.	9, 091, 375	16, 211, 659	13, 507, 750	12.6	18.8	14.0
Dutch East Indies	5, 378, 432	6, 674, 097	8, 666, 908	7.4	7.7	9.0
Japan ---	25, 021, 992	26, 639, 127	35, 974, 918	34. 7	30. 9	37.2
United Kingdom	9, 053, 415	11, 293, 042	15, 545, 681	12. 5	13. 1	16.1
Other countries------------------------------	2, 202, 236	3, 251, 713	2, 339, 436	3.1	3.9	2.4
Total	72, 196, 053	86, 141, 949	96, 668, 608	100.0	100.0	100.0

[^334]Table 660.-Origin of principal farm products imported into the United States, year ending June 30, 1921-1923-Continued.

Division of Statistical and Historical Research. Compiled from Monthly Summaries of Foreign Commerce of the United States, June, 1922 and 1923, and official records of the Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Preliminary.

Table 661.-Foreign trade of the United States in agricultural products, 1852-1923.

Year ending June 30.	Agricultural exports. ${ }^{1}$			Agricultural imports. 1		Excess of agricultural exports $(+)$ or of imports (-).	Forest products.			
	Domestic.		Foreign.	Total.	Per-centage of all imports.		Exports.		$\begin{gathered} \text { Im- } \\ \text { ports. } \end{gathered}$	Excess of exports (+) or of imports (-).
	Total.	Per-centage of all exports.					Domestic.	Foreign.		
Average:	Thousands.	Per cent.	Thousands.	Thousands.	Per cent.	Thou-	Thou-	Thou-	Thou-	Thousands.
1852-1856.	\$164, 895	80.9	\$8, 060	\$77, 847	29.1	+\$95, 108	\$6, 819	\$694	\$3, 256	+\$4,257
1857-1861.	215, 709	81.1	10, 174	121, 018	38. 2	+104, 865	9,995	962	6,942	+4,015
1862-1866	148, 866	75.7	9, 288	122, 222	43.0	+35,932	7,366	798	8, 511	-347
1867-1871.	250, 713	76. 9	8, 538	179, 774	42.3	+79,477	11, 775	691	14, 813	-2,347
1872-1876.	396, 666	78.5	8,853	263, 156	46.5	+142, 364	17,907	960	19, 728	-862
1877-1881	591, 351	80.4	8,632	266, 384	50. 4	+333, 599	17, 579	553	22, 006	$-3,784$
1882-1886	557, 473	76. 3	9,340	311, 708	46.8	+255, 106	24, 705	1,417	34, 253	$-8,131$
1887-1891.	573, 287	74. 7	6, 982	366, 950	43.3	+213, 319	26, 061	1,443	39, 647	-12, 144
1892-1896.	638, 748	73.0	8,446	398, 332	51.6	+248, 863	29, 276	1,707	45, 091	$-14,107$
1897-1901.	827, 566	65.9	10,962	376, 550	50.2	+461, 978	45, 961	3,283	52,327	$-3,083$
1902-1906	879, 541	59.5	11, 922	487, 881	46.3	+403, 583	63, 585	3, 850	79, 885	$-12,451$
1907-1911	975, 399	53.9	12, 126	634, 571	45. 2	+352, 954	88, 764	6, 488	137, 051	-41,799
1912-1916	1, 256, 452	45.1	24, 275	924, 699	50.1	+356,028	92, 129	5,563	185, 398	-87, 706
1900-1	951, 628	65.2	11, 293	391, 931	47.6	$+570,990$	55, 369	3, 599	57, 144	+1,825
1901-2	857, 114	63.2	10, 308	413, 745	45.8	+453, 677	48, 929	3, 609	59,187	$-6,649$
1902-3	878, 481	63.1	13, 505	456, 199	44.5	+435, 787	58, 734	2, 865	71, 478	-9, 879
1903-4	859, 160	59.5	12, 625	461, 435	46.6	+410, 350	70, 086	4, 177	79, 619	$-5,356$
1904-5.	826, 905	55.4	12, 317	553, 851	49.6	+285, 370	63, 199	3,790	92, 681	-25, 691
1905-6.	976, 047	56.7	10, 856	554, 175	45. 2	+432,728	76, 975	4,809	96, 462	-14, 678
1906-7	1, 054, 405	56. 9	11, 614	626, 837	43.7	+439,182	92, 949	5,500	122, 421	-23, 972
1907-8	1, 017, 396	55.5	10, 299	539, 690	45. 2	+488, 005	90, 362	4,570	97, 733	-2, 801
1908-9	903, 238	55.1	9,585	638, 613	48.7	+274, 210	72, 442	4,983	123, 920	-46, 495
1909-10.	871, 158	50.9	14, 470	687, 509	44.2	+198, 119	85, 030	9, 802	178, 872	-84,040
1910-11	1, 030, 794	51.2	14, 665	680, 205	44.5	+365, 254	103, 039	7, 587	162, 312	-51, 686
1911-12	1, 050, 627	48.4	12, 108	783, 457	47.4	+279, 277	108, 122	6, 413	172, 523	-57, 988
1912-13	1, 123, 652	46.3	15, 029	815, 301	45.0	+323, 381	124, 836	7, 432	180, 502	$-48,235$
1913-14	1, 113, 974	47.8	17,729	924, 247	48.8	+207, 456	106, 979	4,518	155, 261	$-43,765$
1914-15	1, 475, 938	54.3	34, 420	910, 786	54.4	+599, 571	52, 554	5, 089	165, 849	-108, 207
1915-16	1,518, 071	35.5	42, 088	1, 189, 705	54.1	+370, 454	68, 155	4,364	252, 851	-180, 331
1916-17	1, 968, 253	31.6	37, 640	1, 404, 972	52.8	+600, 921	68, 919	11, 172	322, 699	$-242,609$
1917-18	2, 280, 466	39.1	39, 553	1, 618, 874	55.0	+701, 144	87, 181	6, 066	335, 033	-241, 787
1918-19	3, 579, 918	50.6	103, 530	$1,768,191$	57.1	+1, 915, 257	113, 275	6, 004	293, 781	$-174,501$
1919-20	3, 861, 511	48.6	122, 598	3, 129, 659	59.7	+854, 450	190, 049	11, 026	508, 410	-307, 334
1920-21	2, 607, 641	40.8	87, 019	1,941, 837	53.1	+752, 823	141, 876	7, 805	343, 141	$-193,460$
1921-22	1, 915, 371	51.8	40,590	1, 279, 072	49.0	+676,889	93, 586	5,275	249, 587	$-150,726$
1922-23 ${ }^{2}$	1, 798, 771	46.3	43, 249	1, 893, 968	50.1	-51,948	128, 242	7,149	412, 162	-276, 771

Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1852-1918, and Monthly Summaries of Foreign Commerce of the United States, June, 1920, 1922, and 1923, Bureau of Foreign and Domestic Commerce. All values are gold.
${ }_{2}^{1}$ Not including forest products.
${ }^{2}$ Preliminary.

Table 662.-Imports of fruit stocks, rose stocks, bulbs, and tree seeds permitted unlimited entry, by countries of origin, years ending June 30, 1921-1923. ${ }^{1}$

Countries.	1920-21				1921-22				1922-23			
	Fruit stocks.	Rose stocks.	Bulbs.	Tree seeds.	Fruit stocks.	Rose stocks.	Bulbs.	Tree seeds.	Fruit stocks.	Rose stocks.	Bulbs.	Tree seeds.
Argentina	Number.	Number.	Number.	Pounds.	Number.	Number.	Number.	Pounds.	Number.	Number.	Number.	Pounds. 220
Australia				$189,925$				$57,925$				29,117
Austria Azores.	1,018		30,000	$2,499$			19,000	$4,923$			27, 950	4,481
Belgium--						2,050					27,950	-
Brazuda			102, 986				179,286				311, 995	460
Brazil- ${ }^{\text {British }}$ Guiana				2,438 100				1,276				1,477
Canada-....				35				120				928
Canary Islands			6,172									
Chile				-				75				
China-			4, 343, 136	150			1,003,035	744	2,000		1, 279, 224	$\begin{array}{r} 85 \\ 3,350 \end{array}$
Costa Rica	200								100			
Czechosiovakia	203			1,000	174, 600			105				984
Denmark												80
England.	18,995, 100	1, 181, 100	1,082, 601	15, 000	18, 079.162	1,871, 600	--339, 024	--380	------180	2,035, 800	---749, 464	25
France	18, 995, 767	2, 176, 282	$45,039,413$ $16,660,025$	32,532 3,814	18, 079, 001	2, 432, 040	$42,311,108$ $12,628,750$	44,491 3,284	$\begin{aligned} & 17,538,115 \\ & 150.100 \end{aligned}$	2, 451, 700	$40,624,911$	30,627 1,992
Holland.--	2, 276, 951	2, 264, 010	115, 077, 763	3,387	1, 149, 675	2, 325,933	132, 386, 594	- 80	?, 913,749	2, 886, 909	149, 475,921	2
India.				1,178								-
Ireland		269, 800	1,000			100,000				161,000		
Japan-	138,309 3,000		6, 284,786	10,607	906, 350		7, 233,865	11,759	468, 700		$1,753,389$ $8,203,162$	17, 142
Luxemburg	1,500					500						
Norway					50							---
Poland								983				693
Scotland		43, 000				40, 000				40, 000		---
Spain--									2,640			-
Sweden-----								25 1			9,275	69
West Indies.								1,100				260

Federal Horticultural Board.
${ }^{1}$ This does not include the comparatively small quantities of bulbs and other plants imported under special permits.

MISCELLANEOUS AGRICULTURAL STATISTICS.

CROP SUMMARY.

Table 663.-Acreage, production, and farm value, 1921-1923.

Crop.		Acreage.	Production.			Farm value, Dec. 1.	
			Per acre.	Total	Unit.	$\xrightarrow{\text { Per }}$	Total.
Corn.		103,740,000				Dolls.	Doilars.
	-1921	103, 740, 000	29.6	3, 068, 569, 000	Bushel	0.423	1, 297, 213,000
	1922	102, 846, 000	28.3	2, 906, 020,000		. 758	1, 910, 775, 000
	1923	104, 158, 000	29.3	3, 054, 395, 000	---do	. 727	2, 222, 013,000
Winter wheat.	-1921	43, 414,000	13. 8	600, 316, 000	--do	. 951	571, 044, 000
	1922	42, 358, 000	13.8	586, 878, 000	--do	1. 047	614, 399, 000
	1923	39, 522,000	14.5	572, 340, 000	--.do	. 950	543, 825, 000
Spring wheat	-1921	20, 282,000	10.6	214, 589, 000	---do	. 856	183, 790, 000
	1922	19, 959, 000	14.1	280, 720, 000	---do	. 923	259, 013, 000
	1923	18, 786, 000	11. 4	213, 401, 000	--do	. 851	181, 676, 000
All wheat	-1921	63, 696, 000	12.8	814, 905, 000	---do--	. 926	754, 834, 000
	1922	62, 317, 000	13.9	867, 598, 000	--do-	1. 007	873, 412,000
	1923	58, 308, 000	13. 5	785, 741, 000	--do	. 923	725, 501, 000
Oats	-1921	45, 495, 000	23.7	1,078, 341, 000	-do	. 302	325, 954, 000
	1922	40, 790, 000	29.8	1, 215, 803, 000	\therefore do	. 394	478, 948, 000
	1923	40, 833, 000	31.8	1, 299, 823,000	--do	. 415	539, 253, 000
Barley	-1921	7, 414, 000	20.9	154,946,000	---do	. 419	$64,934,000$ 95,550 0
	1922	7, 317,000	24.9	$182,068,000$ $198,185,000$	---do	. 525	$95,560,000$ $106,955,000$
	1923 -1921	$7,905,000$ $4,528,000$	25.1 13.6	$\begin{array}{r}198,185, \\ 61,675,000 \\ \hline\end{array}$	---do-	. 540	$106,955,000$ $43,014,000$
	1922	6, 672, 000	15.5	103, 362, 000	---do	. 685	70, 841,000
	1923	5, 157, 000	12.2	63, 023,000	--do	. 647	40, 804, 000
Buckwheat	-1921	680, 000	20.9	14, 207, 000	---do	. 812	11,540, 000
	1922	764,000	19.1	14, 564, 000	.-do	. 885	12, 889, 000
	1923	737,000	18.9	13, 920,000	---do	. 933	12,984, 000
Flaxseed	-1921	1,108,000	7.2	8, 229,000	---do	1.451	11,648,000
	1922	1,113, 000	9.3	10,375, 000	---do	2. 115	21, 941,000
	1923	2, 061,000	8.5	$17,429,000$ $37,612,000$	--do	2. 108	$36,733,000$ $35,802,000$
Rice	-1921	$\begin{array}{r} 921,000 \\ 1,055,000 \end{array}$	40.8 39.2 31	$37,612,000$ $41,405,000$	---do-	. 952	$35,802,000$ $38,562,000$
	1923	1,892, 000	37.3	33, 256, 000	--.do	1. 103	36, 686,000
Potatoes,	- 1921	3, 941, 000	91.8	361, 559,000	---do	1. 101	398, 362, 000
	1922	4, 307, 000	105. 3	$453,396,000$	--do	. 581	263, 355, 000
	1923	$3,816,000$ $1,066,000$	108.1 92.5	$412,392,000$ $98,654,000$	---do		$339,322,000$ $86,894,000$
Sweet potatoes	$\begin{array}{r} 1921 \\ -1922 \end{array}$	$1,066,000$ $1,117,000$	92.5 97.9	$98,654,000$ $109,394,000$	---do-	. 881	$86,894,000$ $84,295,000$
	1923	. 993,000	97.9	97, 177, 000	---do	. 979	95, 091,000
Hay, tame.	-1921	58,769,000	1.40	82, 379, 000	Tons.	12. 11	997, 527, 000
	1922	61, 159, 000	1. 57	95, 882, 000	---do-	12. 56	1,204, 101, 000
	1923	$60,162,000$	1.48	89, 098, 000	--do	14.07	1, 253, 364, 000
H	-1921	15, 632, 000	. 98	15, 391, 000	---do	${ }^{6.63}$	101, 991, 000
	1922	15, 871,000	1.02	16, 131, 000	---do	7. 14	115, 176, 000
	1923	15, 722,000	1.11	17, 528, 000	---do	7.85	137, 603, 000
All Hay	-1921	74, 401,000	1.31	97, 770,000	---do	11.25	1,099,518,000
	1922	77,030,000	1.45				
Tobacco	1923 .1921	$75,884,000$ $1,427,000$	$750^{1.41}$	$106,626,000$ $1,069,693,000$	Pounds.	13.05 .199	$1,390,967,000$ $.212,728,000$
	1922	1, 995,000	736	1,246, 837,000	---do-	.232	289, 248, 000
	1923	1, 820, 000	810	1, 474, 786, 000	--do	203	298, 936, 000
Cotton	. 1921	30,509, 000	1124.5	$27,953,641$	Bales	${ }^{3} .162$	643, 933, 000
	1922	33, 036, 000	${ }^{1} 141.5$	${ }^{2} 9,761,817$	---do	${ }^{3} \cdot 238$	1, 161, 846,000
	1923	37, 420, 000	${ }^{1} 128.8$	10, 081,000	Todo	${ }^{8} \cdot 315$	1, 563,347,000
Cottonseed.	. 1921			${ }^{2} 3,531,000$	Tons	29.15	102, 929,000
	1922			${ }^{2} 4,336,000$	---do	40.18	174, 220,000
	1923			4, 476, 000	--do-	45. 92	205, 538, 000
Cloverseed.	. 1921	889,000	1.7	1,538, 000	Bushel	10. 75	16, 529,000
	1922	1, 156, 000	1.6	1,887,000	--do	10.05	18,971,000
	1923	800,000	1.5	1, 233, 000	---do	12. 19	15, 027, 000
${ }^{1}$ Pounds per acre.			${ }^{2}$ Census.		${ }^{3}$ Per pound.		

Table 663.-Acreage, production, and farm value, 1921-1923-Continued.

Division of Crop and Livestock Estimates.
${ }^{4}$ Including bects grown in Canada for United States factories.
5 Trees tapped.
${ }^{6}$ Per tree.
7 Price March 15.
${ }^{8}$ Principal producing States.

- Commercial crop.
${ }^{10}$ Price for season.
${ }^{11}$ Largely minimum contract price.

Table 664.-Crop acreages, aggregates, by States, 1921-1923.

State.	Acreage of 19 crops.			Per cent of total acreage in specified crops. ${ }^{1}$	Total acreage of all crops (theoretical).		
	1921	1922	1923		1921	1922	1923
	1,000	1,000	1,000		1,000	1,000	1,000
	acres.	acres.	acres.	Per cent.	acres.	acres.	acres.
Maine	1,571	1,537	1,546		1,636	1,601	1,610
New Hampshire	520	523	512	94	553	556	, 545
Vermont	1,122	1,139	1, 144	93	1,206	1,225	1,230
Massachusetts	564	567	566	86	656	659	658
Rhode Island.	64	63	61	84	76	75	73
Connecticut	475	476	474	88	540	541	539
New York	8, 073	8,128	8,081	91	8,871	8,932	8,880
New Jersey	904	902	896	86	1,051	1,049	1,042
Pennsylvani	7,973	7,781	7,689	97	8, 220	8,022	7, 927
Delaware.	408	419	412	89	458	471	463
Maryland	1,803	1,805	1,760	91	1,981	1,984	1,934
Virginia	4,467	4,578	4,517	93	4,803	4,923	4,857
West Virginia	1,888	1,927	1,884	95	1,987	2,028	1, 983
North Carolina	6, 240	6,799	6,852	94	6,638	7,233	7, 289
South Carolina	5,692	5,278	5,399	92	6,187	5,737	5,868
Georgia	10,499	9,580	9,316	94	11, 169	10, 191	9,911
Florida	1,147	1,198	1,269	89	1,289	1,346	1,425
Ohio --	11,350	11,557	11,192	97	11, 701	11,914	11,538
Indiana	11, 491	11,473	11, 487	96	11, 970	11,951	11,966
Illinois.	20, 256	20, 171	20, 288	97	20,882	20,795	20,915
Michigan	8,604	9, 030	8,899	93	9,252	9,710	9,569
Wisconsin	9, 644	9,679	9,637	90	10, 716	10,754	10,708
Minnesot	16, 665	16, 963	17,073	96	17,359	17,670	17,784
Iowa.	21, 058	21, 069	21,072	97	21, 709	21, 721	21, 724
Missouri	15, 034	14, 568	14,798	96	15, 661	15, 175	15,415
North Dakota	18,537	19, 184	18,867	96	19, 309	19, 983	19,653
South Dakota	15, 516	15, 596	15, 440	98	15, 833	15, 914	15,755
Nebraska.	18, 263	18, 234	18,367	97	18, 828	18,798	18,935
Kansas	21, 076	21, 154	20,539	93	22, 662	22,746	22,085
Kentucky	5,706	5,868	5,773	95	6,006	6,177	6, 077
Tennessee	6,458	6,657	6, 508	91	7,097	7,315	7,152
Alabama.	7,964	7,885	7,842	93	8,563	8,478	8, 432
Mississippi	6, 564	6, 642	6, 395	96	6,838	6,919	6,661
Louisiana.	3,856	3,820	3,889	91	4,237	4, 198	4,274
Texas	24, 324	23, 778	25,689	92	26, 439	25, 846	27, 923
Oklahoma	13, 849	14, 268	14,562	93	14, 891	15,342	15,658
Arkansas.	6, 392	6, 364	6, 301	93	6,873	6, 843	6,775
Montana	5,567	6, 672	6, 744	87	6, 399	7,669	7,752
Wyoming	1,442	1,552	1,636	90	1,602	1,724	1,818
Colorado.	5,332	5,270	5,612	85	6,273	6,200	6,602
New Mexico	1, 089	839	926	78	1,396	1,076	1,187
Arizona	430	454	492	85	506	534	579
Utah	1,018	1,078	1,073	88	1,157	1,225	1,219
Nevada	391	395	388	98	399	403	396
Idaho.	2, 691	2,703	2, 706	91	2, 957	2,970	2,974
W ashington	4, 026	3, 929	3, 948	86	4,681	4, 569	4, 591
Oregon	2,812	2,800	2,840	80	3,515	3, 500	3, 550
California ${ }^{2}$	5,078	5,264	5,195	75	6,771	7,019	6,927
United States	345, 893	347, 616	348, 556	93.8	369, 803	371, 711	372,829

Division of Crop and Livestock Estimates. Estimated total acreage of 19 crops-corn, wheat, oats, barley, rye, buckwheat, potatoes, sweet potatoes, tobacco, flax, rice, all hay, cotton, peanuts, kafirs, beans, broom corn, hops, and cranberries.
${ }^{1}$ Based on census proportions in 1919.
${ }^{2}$ Includes cotton acreage in Lower California (85,000 acres in 1921, 135,000 acres in 1922, and 148,000 acres in 1923).

1140 Yearbook of the Department of Agriculture, 1923.

Table 665.-Seed used per acre, approximate averages for the United States.

Crop.	Average of reports.	Estimated range of bulk of plantings.	Crop.	A verage of reports.	Estimated range of bulk of plantings.
Alfalfa:			Field peas:		
Broadcast_pounds.-	18.3	15 to 20.	Small-----bushels --	0.93	0.75 to 1.25 .
Drilled..----do----	14.8	12 to 18.	Large-------do----	1. 17	1 to 1.5 .
Barley------bushels--	1.84	1.5 to 2.	Flaxseed------pounds.-	29. 2	25 to 30.
Beans, field: Small do-..........			Oats - ------bushels	2.37	2 to 2.5 .
Large---------do--	1. 29	1 to 1.5.	Orchard gras	12.6	10 to 15.
Beets, common (not			Peanuts...-.-.-bushels--	1. 02	1 to 1.1.
sugar)..-.--- - pounds--	6.3	5.5 to 7.5.	Potatoes-.---...- do..	8.6	7 to 12.
Blue grass...... bushels..	1.07	0.75 to 1.25.	Rice.-- ---------- do	1.98	1.5 to 2.5 .
Broom corn.--pounds--	6.0	3 to 7.	Rye:		
Buckwheat--- bushels--	. 98	0.75 to 1.25.	For grain...- do.	1.44	1.25 to 1.75 .
Cabbage plants number.	5,658. 0	5,000 to 7,000.	For forage.--- do..	1.82	1.5 to 2.
Clover:			Drilled_--.-- do.-	. 79	0.50 to 1.
Alsike-.---pounds.-	8.7	8 to 12.	Broadcast.---do.	1. 37	1 to 1.50.
Japan------do-.--	9.9	9 to 15.	Sugar beets_-_pounds--	13.1*	12 to 18.
Mammoth-.- do-.--	10.4	8 to 12.	Sweet potato plants		
Red, alone	$\begin{array}{r}10.7 \\ \hline 9.8\end{array}$	88 to 12.		$\begin{array}{r} 6,605.0 \\ 9.4 \end{array}$	$\begin{aligned} & 6,000 \text { to } 7,000 . \\ & 8 \text { to } 12 . \end{aligned}$
Crimson.-.--do-----	12. 1	10 to 15.	Tobaccoplants		
Corn:					
$\begin{aligned} & \text { For grain }- \text { - do- } \\ & \text { Fodder, for silage } \end{aligned}$	9.5	6 to 12.	Wheat..........bushels..	1.38	1.25 to 1.75.
- --.-.-.-pounds..-	26.0	15 to 35.			
Cotton--------bushels--	. 96	0.9 to 1.1.			
Cowpeas: For forage _ do					
For forage---do-.--	1.31	1 to 1.5.			
--------bushels.-	. 63	0.40 to 0.65.			
For seed.----do--	. 70	0.50 to 0.75.			

Division of Crop and Livestock Estimates. As reported by crop reporters in 1913.
Table 666.-Crops: Index numbers, condition of growing crops, 1910-1923.

Year.	June 1.	July 1.	Aug. 1.	Sept.1.	Oct. 1.	Nov.1.	Year.	June 1.	July 1.	Aug. 1.	Sept.1.	Oct. 1.	Nov.1.
1910			93.5	97.2	99.6	- 99.3	1917.-	94.2	97.8	99.8	102. 5	102.4	102.0
1911	97.2	89.3	85.4	84.8	86.7	90.6	1918.-	102. 9	101. 6	98.9	94.1	96.6	97.6
1912	99.1	98.8	100.3	104. 1	110.0	107.7	1919--	104. 7	102.3	97.8	98.8	98.7	99.8
1913.	98.9	98.2	95.5	89.9	90.3	93.3	1920.-	94.8	99.7	105. 4	107.0	106. 9	106.9
1914	102. 2	101.5	98.0	97.9	99.4	102. 3	1921--	93.2	96.4	93.0	92.9	91.1	91.7
1915	102. 3	102. 3	103.9	105. 5	106. 9	108. 0	1922.-	99.2	97.9	101. 2	98.8	98.7	96.7
1916	97.7	101.6	97.4	94.6	94.5	95.1	1923.-	95.3	96.4	97.4	98.3	98.4	96.1

Division of Crop and Livestock Estimates. Index numbers of individual crops relative to a 10-year moving average of condition, weighted by States according to crop values in 1919.

Table 667.-Crops: Index numbers of all crop yields, 1911-1923.

State and division.	1911	1912	1913	1914	1915	1916	1917	1918	-1919	1920	1921	1922	1923
Maine	98.2	102.0	101. 6	118.4	86.8	116. 2	99.7	99.6	105. 9	89.6	95.4	84, 0	120.8
New Hampshire	93.2	119.0	89.2	113.8	84.5	121.8	110.3	105. 7	104. 7	104.2	93.8	104.5	107.8
Vermont	100.0	118.0	97.7	102.7	97.6	118.8	110.3	97.0	104. 1	104.0	87.0	98.4	107. 4
Massachusetts	90.1	107. 0	95. 9	116. 3	96. 5	109. 9	105. 0	97. 7	102.6	107.1	92.6	92.9	108.5
Rhode Island	93.7	98.0	101. 4	113.4	92.3	92.4	114.3	103.4	100. 6	97.9	95.	88.5	114.6
Connecticut	94.0	103. 0	95.9	111.7	101. 7	110.5	107.3	97.8	100.0	103.6	102.	91.8	107. 1
New York	90.2	105. 0	90.8	110.7	100. 4	107.7	107. 8	102.4	106. 9	110.5	83.9	108. 7	103. 7
New Jersey	89.2	106.0	101. 2	104.9	107.1	107.2	102.5	100.0	96. 7	120:8	91.7	117.5	88.2
Pennsylvan	90.6	110.0	98.0	105. 5	100.8	106.0	100.8	101. 6	104.9	109.3	94.0	104.8	92.3
N. Λ tlantic	91.6	106. 8	95.5	109.3	98.9	108.9	104. 6	101.2	104.8	107.9	90.3	104.1	100.3
Delawar	95.5	112.0	97.1	109.3	99. 1	100.6	104. 1	91.1	90.	111.2	87.8	107.4	104. 5
Maryland	89.5	108. 0	93.3	112.9	99.6	106. 4	106. 0	99.9	98.2	112.0	90.2	104. 6	102.3
Virginia.	90.6	101.0	106. 6	89.9	114.5	112.7	108. 2	105. 1	101.8	109. 2	85.6	105. 4	104. 1
West Virginia	77.8	123.0	93. 3	94.7	113.0	110.4	103. 1	99.1	102.4	109.1	91.0	101. 4	103.9
North Carolina	100. 4	102.0	103. 5	108.1	103.3	95.0	97.3	105. 9	92.3	106. 6	85.0	93.4	107.9
South Carolina	103. 4	102. 0	105.9	103. 7	92.3	83.3	102.0	98.3	94.3	99.1	74.0	68.	89. 9
Georgia	107.9	98.0	103.9	111. 2	92.0	91.5	97.2	96.8	85.1	87.9	73.3	66.8	59.7
Florida	101.8	106	111.1	112.0	100.5	95.4	94.5	98.8	92.3	96.5	90.5	110. 2	100.6
S. Atlanti	99.6	103.6	103.5	105.1	99.6	102.9	100. 7	100.3	93.1	100.4	80.8	84.4	90.6

Table 667.-Crops: Index numbers of all crop yields, 1911-1923-Continued.

| State and division. | 1911 | 1912 | 1013 | 1914 | 1915 | 1916 | 1917 | 1918 | 1019 | 1920 | 1921 | 1922 | 1923 |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | |

Division of Crop and Livestock Estimates. Index numbers of individual crops relative to a 10 -year moving average yield, weighted by States, aecording to crop values in 1919.

Table 668.-Crops: Average weight in pounds per measured bushel of wheat, oats, and barley, United States, 1902-1923.

Calendar year.	Weight per measured bushol. ${ }^{1}$			Calendar year.	Weight per measured bushelv		
	Wheat.	Oats.	Barley.		Wheat.	Oats.	Barley.
	Pounds.	Pounds.	Pounds.		Pounds.	Pounds.	Pounds.
1902	57.3	31. 0		1913	58.7	32.1	46. 5
1903	57.4	29:7.		1914	58.0	31.5	48.2
1904	55.5	31. 5		1915	57.9	33.0	47.4
1905	57. 5;	32.7		1818.	57.1	31.2	45.2
1596	58.3	320					
1907	58:2:	29,4.		${ }_{1918} 19$.	58.5 58.8	33.4	46.6 46.9
1908.	58.3:	29:8.		1919	56.3	31.1	45.2
1909	57.9	32.7.		1920	57.4	33.1	46.0
1910	58: 5	32:7	46:9	1921	56.6	28.3	44.4
1911	57.8.	31. 1 :	46.0				
1812	58.3	33.0	46.8	1922.	57.7 57.4	32.0 -	46.2 45.3

Division of Crop and Livestock Estimates. As reported by crop reporters on Nov. 1.
${ }^{1}$ Standard weights: Wheat, $60 \mathrm{lbs} . ;$ oats, $32:$ lbs;; barley, 48 lbs.

Table 669.-Crops: Value per acre of 10 crops combined, 1866-1923.

Calendar year.	Value per acre.	Calendar year.	Value per acre.	Calendar year.	Value per acre.	Calendar year.	Value per acre.
1866	\$14.17	1881	\$13. 10	1896	\$7.94	1911	\$15.36
1867	15. 09	1882	12.93	1897	9.07	1912	16.09
1868	14. 17	1883	10.93	1898	9.00	1913	16. 49
1869	14.67	1884	9.95	1899	9.13	1914	16. 44
1870.	15. 40	1885	9.72	1900	10.31	1915	17.18
1871	15.74	1886	9.41	1901	11.43	1916	22. 58
1872	14.86	1887	10. 14	1902	12. 07	1917	33. 27
1873	14. 19	1888	10.30	1903	12. 62	1918	33. 73
1874	13. 25	1889	8.99	1904	13. 26	1919	35. 74
1875	12.20	1890	11.03	1905	13. 28	1920	23.26
1876	10.80	1891	11.76	1906	13. 46	1921	14.45
1877	12.00	1892	10.10	1907	14. 74	1922	19.23
1878	10.37	1893	9.50	1908	15.32	1923	21.55
1879	13.26	1894	9.06	1909.	16.00		
1880	13.01	1895	8.12	1910	15.53		

Division of Crop and Livestock Estimates. Corn, wheat, oats, barley, rye, buckwheat, potatoes, all hay, tobacco, and cotton, which comprise nearly 90 per cent of the area in all field crops, the average value of which elosely approximates the value per acre of the aggregate of all crops.

Table 670.-Crops: Value of 22 crops and of all crops, with rank.

State.	Value all crops, 1919 census. ${ }^{1}$	Ratio value 22 crops to all crops in census 1919.	Value 22 crops.			Value all crops.			$\underset{1923}{\text { Rank }}$	
			$\begin{gathered} 1919 \\ \text { census. } \end{gathered}$	1922	1923	1917-1921 average.	1922	1923	$\begin{gathered} 22 \\ \text { crops. } \end{gathered}$	All
	1,000 dols.	Per ct.	1,000 dols.	1,000 dols.	1,000 dels.	1,000 dols.	1,000 dols.	1,000 dols.		
Me	- 100, 152	92	91,982	36, 475	50, 146	68, 218	39, 647	54, 507	35	38
N. H	23, 510	79	18, 479	15, 504	15, 751	23, 175	19, 625	19,938	45	45
V t	48, 000	77	36, 835	32, 177	32, 660	47, 503	41,788	42,416	40	40
Ma	53, 701	68	36, 601	29, 534	37, 989	56, 059	43, 432	55, 866	39	37
R.I.	5,340	69	3,680	2,661	3, 099	5, 839	3,857	4,491	48	48
	44, 473	81	306, 006	31, 816	40,496	49,949	39, 279	49,995	37	39
N. Y	417, 047	77	321, 598	213, 929	243, 332	393, 342	277, 830	316, 016	10	8
N. J	87, 484	70	61, 273	38, 939	39, 523	79, 800	55, 627	56, 461	38	36
Pa	409, 969	86	350, 991	210, 290	221, 965	362, 808	244, 523	258, 099	15	16
Del	23, 059	72	16, 516	11, 127	12, 297	22, 290	15, 454	17, 079	46	46
Md	110, 166	80	88, 066	50, 512	54, 048	96, 002	63, 140	67, 560	34	35
Va	292, 824	85	247, 463	146, 988	158, 170	246, 315	172, 927	186, 082	25	25
W. Va	96, 537	81	78, 143	53, 747	61, 984	100, 398	66, 354	76, 523	33	33
N. C	503, 229	87	438, 892	283, 297	361, 691	404, 926	325, 629	415, 737	4	5
S. C.	437, 122	82	360, 025	128, 149	214, 605	327, 851	156, 279	261, 713	16	14
	540, 614	80	430, 270	167, 577	189, 112	440, 296	209, 471	236, 390	19	18
Fla	80, 257	62	49, 521	48, 189	43, 267	80, 044	77, 724	69, 785	36	34
Ohio	607, 038	87	526, 943	245, 078	283, 631	453, 534	281, 699	326, 013	6	6
Ind	497, 230	90	449, 079	203, 357	235, 278	394, 281	225, 952	261, 420	12	15
	864, 738	92	797, 893	385, 337	422, 748	675, 957	418,845	459, 509	3	3
Mich	404, 015	82	329, 651	176, 217	198, 827	316, 498	214, 899	242, 472	18	17
Wis.	445, 348	81	360, 404	216, 096	222, 402	382, 716	266, 785	274, 570	14	12
Minn	506, 020	89	450, 327	252, 241	269, 217	424, 682	283, 417	302, 491	8	9
Iowa	890, 391	92	820, 126	423, 815	437, 846	640, 307	460, 668	475, 920	2	2
Mo	559, 048	89	496, 261	248, 377	285, 776	420, 456	279, 075	321, 097	5	7
N. Dak	301, 783	92	278, 315	214, 825	141, 316	270, 863	233, 505	153, 604	26	27
S. Dak.	311, 007	93	288, 376	188, 507	178, 993	296, 806	181, 190	192, 466	21	24
Nebr	519, 730	95	491, 338	243, 562	271, 532	390, 620	256, 381	285, 823	7	10
Kans.	538, 923	91	536, 408	262, 771	259, 330	443, 857	288, 759	284, 978	9	11
K \mathbf{y}.	347, 339	89	310, 224	195, 204	201, 220	312, 890	219, 330	226, 090	17	20
Tenn	318, 285	83	263, 797	179, 237	172, 527	258, 602	215, 948	207, 864	22	21
Ala.	304, 349	81	246, 271	184, 708	184, 232	258, 952	228, 035	227, 447	20	19
Miss	336, 207	83	278, 539	184, 213	160, 781	264, 230	221, 943	193, 712	24	23
La.	206, 182	71	147, 290	97, 161	114, 410	195, 256	136, 846	161, 141	28	26
Tex	1,071, 542	83	885, 955	579, 815	883, 763	798, 117	698, 572	1,064, 775	1	1
Okla	550, 085	87	479, 314	208, 348	230, 528	353, 692	239, 480	264, 975	13	13
Ark	340, 813	83	283, 175	189, 120	172, 420	274, 380	227, 855	207, 735	23	22
Mont	69, 975	86	60, 058	87, 227	88, 774	98, 378	101, 427	103, 226	30	30
W yo	30, 271	88	26, 528	21,631	26, 960	42, 095	24, 581	30, 636	42	43
Colo	181, 065	76	137, 660	79, 499	100, 429	154, 543	104, 604	132, 143	29	29

1 Does not include nursery or greenhouse products, or forest products of the farm.

Table 670.-Crops: Value of 22 crops and of all crops, with rank-Contd.

State.	Value all crops, 1919 census.	$\begin{gathered} \text { Ratio } \\ \text { value } \\ 22 \text { crops } \\ \text { to all } \\ \text { crops in } \\ \text { census } \\ 1919 . \end{gathered}$	Value 22 crops.			Value all crops.			$\underset{1923}{\text { Rank }}$	
			$\begin{gathered} 1919 \\ \text { census. } \end{gathered}$	1922	1923	$\begin{gathered} \text { 1917-1921 } \\ \text { average. } \end{gathered}$	1922	1923	$\begin{gathered} 22 \\ \text { crops. } \end{gathered}$	All
	1,000 dols.	Per ct.	1,000 dols.	1,000 dols.	1,000 dols.	1,000 dols.	1,000 dols.	1,000 dols.		
N. Mex	40, 620	77	31, 093	14, 614	20, 097	40, 560	18, 979	26, 100	44	44
Ariz	42, 481	84	35, 478	23, 380	30, 525	35, 304	27, 833	- 36,339	41	42
Utah.	58, 067	70	40, 901	23, 110	25, 744	48, 869	33, 014,	36,777	43	41
Nev --	13, 980	96	13, 439	10,211	8,953	14, 409	10, 636	9,326	47	47
Idaho	126, 495	88	111, 940	64, 543	71, 551	106, 209	73, 344	81, 308	31	32
W ash	227, 212	82	185, 667	105, 063	122, 886	188, 480	128, 126	149, 861	27	28
Oreg	131, 885	75	99, 095	65, 692	70, 880	118, 644	87, 589	94, 507	32	31
Calif	589, 757	54	315, 091	219, 821	241, 916	498, 917	404, 076	447, 993	11	4
U. S	14, 755, 365	84.3	12, 442, 977	7, 073, 691	7,915, 627	11, 972, 928	8,445, 979	9, 470, 976		

Division of Crop and Livestock Estimates. Estimated total value of 22 crops-corn, wheat, oats, barley, rye, buckwheat, flaxseed, rice, potatoes, sweet potatoes, all hay, tobacco, lint cotton, beans, broom corn, grain sorghums, hops, oranges, cloverseed, peanuts, cranberries, and apples-in the United States, by States, in 1919 (census), 1922, and 1923; the value of all crops in 1919 (census); and the value of all crops in 1922 and 1923, based upon ratio of the 22 crops to all crops in census year. The slight differences in the total value of crops in the United States between Tables 670 and 672 are due to different methods of estimating. In Table 670, where each State is shown separately, a more detailed method is used than is practicable in Table 672.

Table 671.-Farm production: Estimated value, principal products and groups of products, calendar years, 1919-1923.

JBased on farm price Dec. 1, except cotton, 1919 to 1922; cotton weighted, year beginning Aug. 1.

1144 Yearbook of the Department of Agriculture, 1923.

Table 671.-Farm production: Estimated value, principal products and groups of products, calendar years 1919-1923-Continued.

Division of Crop and Livestock Estimates.
${ }^{1}$ Based on farm price Dec. 1, except cotton, 1919 to 1922; cotton weighted, year beginning Aug. 1.
${ }_{2}^{2}$ Includes milk equivalent of cream for household use.
${ }^{3}$ For cream powder and ice cream.
${ }^{1}$ Less than $\$ 500,000$.
Table 672.-Farm production: Value of farm products, based on prices at the farm, 1897-1923.

Calendar year.	Crops.	Animal products.	Total (estimated) value, excluding crops fed to livestock. ${ }^{1}$
1897.	\$2,519, 000,000	\$1, 442, 000, 000	\$2,904, 000, 000
1898	2, 760, 000, 000	$1,579,000,000$	3, 161, 000, 000
1889 (census)	3, 020, 000, 000	1,718, 000, 000	3, 355, 000, 000
1900.	3, 192, 000,000	1, 818, 000,000	3, 549, 000, 000
1901	3, 385, 000, 000	1, 917, 000, 000	3, 643, 000, 000
1902	3, 578, 000, 000	2, 016, 000, 000	3, 807, 000, 000
1903	3, 772, 000, 000	2, 116, 000, 000	4, 136,000, 000
1904	3, 982, 000,000	2, 140, 000, 000	4, 262, 000, 000
1905	4, 013, 000, 000	2, 261, 000, 000	4,387, 000,000
1906	4, 263, 000, 000	2, 501, 000, 000	4, 784, 000,000

${ }^{1}$ Estimates of the values of crops fed to livestock have been made by multiplying the value of the following crops by the percentages given: Barley, 75; corn, 85 ; grain sorghums, 90 ; oats, 80 ; rye, 20; wheat, 6 ; hay, 85 ; forage, 100; potatoes, 10 ; and sweet potatoes. 15.

Table 672.-Farm production: Value of farm products, based on prices at the farm, 1897-1923-Continued.

Calendar year.			
	Crops.	Animal products.	Total (estimated) value, excluding crops fed to
livestock.			

Division of Crop and Livestock Estimates.
${ }^{1}$ Estimates of the values of crops fed to livestock have been made. by multiplying the value of the follow ing crops by the percentages given: Barley, 75; corn, 85: grain sorghums, 90 ; oats, 80 ; rye, 20 ; wheat, 6 ; hay, 85 ; forage, 100 ; pctatoes, 10 ; and sweet potatoes, 15 .

REFRIGERATION.
Table 673.-Total refrigerated space: Meat-packing establishments and cold siorages reporting to the Bureau of Agricultural Economics, October 1, 1923.

State.	Concerns.	Cubic feet of space held at temperatures of-				Total space.
		$10^{\circ} \mathrm{F}$. and below.	$\begin{gathered} 11^{\circ} \text { to } 29^{\circ} \mathrm{F} ., \\ \text { inclusive. } \end{gathered}$	30° to 44°.	$45^{\circ} \mathrm{F}$. and above.	
Alabama	4	11, 094	100, 953	1, 214, 548	9,600	1, 336, 195
Alaska	5	66, 666	616,339	12, 360	2, 000	697, 365
Arizona	5	15, 360	27, 840	442, 096		485, 295
Arkansas	8	15, 000	733	589, 692	15, 521	620, 946
California	68	1, 056,867	1,893, 665	16, 717, 331	196, 774	19, 864, 637
Colorado	17	345, 175	984, 282	4, 940,345	588, 109	6, 857, 911
Connecticut	6	248, 468	61, 350	1, 338,440	131, 545	1,779, 803
District of Co	3	20, 000	258, 000	207, 397	1,280,000	1,765,397
Florida	6	20, 250	66, 650	416, 350	35, 400	538, 650
Georgia	18	20,532	147, 048	1,975, 347	11, 040	2, 153,967
Idaho--	12	39, 051	267, 697	345, 924	25, 869	678, 541
Illinois	99	14, 042, 221	12, 695,390	97, 478, 037	8, 976,560	133, 192, 208
Indiana	47	361,457	1,286, 146	12, 343, 335	945, 664	14, 916, 602
Iowa-	42	1, 258, 563	2, 461, 519	16, 353, 517	2, 062, 291	22, 135, 890
Kansas	33	2, 155, 537	4, 794, 712	31, 129, 351	5, 368, 096	43, 447, 696
Kentucky	17	358, 021	286, 978	4, 019, 622	104, 050	4,768, 671
Louisiana	6	136, 000	77, 000	1, 752, 337	6,000	1, 971, 337
Maine -	8	255, 980	4,580	1,047, 887	1,800	1, 310, 247
Maryland	23	543, 271	288, 589	4, 758, 897	79, 235	5, 669, 992
Massachusetts	44	7, 119,030	1,705, 328	13, 860, 589	1,138,827	23, 823, 774
Michigan	30	1, 007, 985	786, 531	6, 237, 069	172, 032	8, 203, 617
Minnesota	26	1, 994, 746	2, 866, 540	12, 974, 996	1, 596, 836	19, 433, 118
Missouri	54	2, 594, 020	2, 248,567	31, 033, 122	890, 077	36, 765, 786
Montana	9	51, 758	50, 872	353, 904	3,080	459, 614
Nebrask	21	2, 677, 034	949, 344	17, 549, 442	1,407, 485	22, 583, 305
New Hampsh	4	31, 280	116, 646	153, 337		301, 263
New Jersey	34	2, 682, 063	1, 576, 176	7,410, 489	2, 330, 056	13, 998, 784
New Y ork	180	$9,460,139$	5, 831, 366	49, 860, 648	2, 737, 147	67, 889,300
North Carolina	7	512	15, 360	393, 074	20, 000	428, 946
North Dakota	3		42, 288	187, 922		230, 210
Ohio--	96	1, 883, 556	1,993,585	15, 785, 379	527, 323	20, 189, 843
Oklanoma	14	259, 990	867, 287	6, 966, 264	905, 170	8, 998, 711
Oregon-	30	270, 758	863, 945	2, 638, 826	99, 340	3, 872, 869
Pennsylva	113	2, 269, 220	2, 294, 396	18,710, 835	588, 970	23, 863,421
Rhode Islan	4	329, 788	500, 952	703, 564		1, 534, 304
South Dakot	${ }_{7}^{7}$	79, 512	246, 380	1, 507, 346	204, 000	2, 037, 238
Tennessee	17	433, 954	239, 440	3, 713, 436		4, 386, 830
Texas	49	580, 769	1,820,968	9, 710, 456	1,387, 604	13,499, 797
Utah	7	116, 200	125, 331	983, 455	118, 800	1, 343, 785
Virginia	30	165,880	726, 179	10, 125, 274	1,229, 815	12, 247, 148
Washington-	59	1,408, 016	4, 680, 299	10, 867, 649	618, 344	17, 574, 308
West Virginia	16		50, 752	3, 453, 008	94, 272	3, 598, 032
Wisconsin	62	712,980	768, 844	10, 625,681	1, 103, 580	13, 211,085
W yoming All other state	3 8	40, 924	384 91,049	$\begin{array}{r} 50,979 \\ 522.519 \end{array}$	$\begin{array}{r}24,750 \\ 7 \\ \hline 589\end{array}$	76, 113
All other state				522, 519	7,589	662, 081
Total	1,354	57, 139, 627	57, 758, 280	433,462, 076	37, 044, 651	585, 404, 634

Division of Statistical and Historical Research.

1146 Yearbook of the Department of Agriculture, 1923.
VALUE OF PLOW LANDS.
Table 674.-Plow lands: Value per acre, by States, 1916-1924.

State.	Average of poor plow lands.				Average of good plow lands.				Average of all plow lands.			
	1916	1917	1918	1919	1916	1917	1918	1919	1916	1917	1918	1919
Maine	\$21	\$22	\$24	\$24	\$45	\$47	\$48	\$50	\$32	\$34	\$35	\$37
New Hampshire	24	24	21	23	50	50	52	54	37	37	39	39
Vermont.-	26	28	28	30	57	60	64	64	42	42	44	44
Massachusetts	34	36	41	41	91	93	92	92	62	64	68	68
Rhode Island	41	42	46	47	80	85	90	92	60	62	70	73
Connecticut	34	36	37	37	70	72	75	80	49	53	52	55
New York	34	34	33	38	68	74	75	80	53	55	58	60
New Jersey	43	46	58	50	89	92	108	103	65	69	78	76
Pennsylvania	32	36	37	38	66	73	79	79	50	57	58	60
Delaware.-	33	33	35	36	68	75	08	70	50	55	59	55
Maryland.	28	30	33	39	57	62	61	66	46	48	47	53
Virginia.	22	24	29	31	46	50	61	62	34	36	43	47
West Virginia	22	23	28	29	49	54	64	64	36	38	43	44
North Carolina	21	24	29	31	42	49	58	67	31	35	42	50
South Carolina	20	21	23	27	42	43	45	56	31	33	36	45
Georgia	16	18	20	24	32	36	40	49	24	28	28	38
Florida	19	20	21	21	35	37	42	48	26	28	32	33
Ohio	52	55	61	63	95	100	107	113	75	80	86	91
Indiaua	57	60	67	68	106	110	129	126	84	87	96	100
Illinois.	80	85	94	100	139	148	160	170	115	120	132	144
Michigan	32	35	38	40	64	72	75	76	51	55	60	61
Wisconsin	51	54	56	60	92	100	100	110	74	80	82	89
Minnesota	45	50	54	59	73	81	85	88	61	68	75	78
Iowa.	101	104	119	129	156	163	180	196	135	140	154	169
Missouri	42	42	47	51	74	76	83	91	59	60	66	72
North Dakota	22	24	26	28	36	39	41	43	30	33	35	37
South Dakota.	40	41	41	50	61	62	63	77	53	54	56	67
Nebraska	49	51	60	67	85	90	109	115	72	74	80	95
Kansas	36	37	42	44	62	69	74	77	51	53	58	61
Kentucky	22	27	31	37	47	56	65	80	35	41	50	61
Tennessee	22	26	30	31	53	60	67	75	37	41	48	53
Alabama	12	13	15	17	21	24	30	33	16	17	21	24
Mississippi	12	13	15	16	26	28	31	34	18	20	23	28
Louisiana.	15	17	26	25	31	36	45	44	24	25	33	33
Texas.	22	24	30	27	45	49	57	58	34	38	45	46
Oklahoma	17	19	23	24	36	42	48	51	27	30	35	38
Arkansas.	14	17	20	22	31	39	45	50	22	27	31	38
Montana	17	19	22	21	40	41	45	45	29	32	35	34.
W yoming	18	20	25	26	34	41	49	53	27	30	41	43
Colorado.	27	32	35	36	68	75	74	80	50	55	55	60
New Mexico	20	24	25	30	42	48	60	60	31	36	42	45
Arizona.	50	55	52	60	100	108	116	125	80	85	98	100
Utah.	38	45	48	55	80	90	113	125	60	70	86	95
Nevada	32	38	42	50	80	80	110	110	60	60	80	85
Idaho	34	37	43	50	68	77	89	98	53	58	70	76
W ashington.	45	50	56	60	110	110	122	121	75	80	94	95
Oregon..	36	44	53	53	80	93	111	108	60	70	84	81
California	50	55	66	69	135	150	168	165	95	110	120	121
United Stat	40	43	48	51	73	78	85	92	58	62	68	74

Table 674.-Plow lands: Value per acre, by States, 1916-1924-Continued.

State.	Average of poor plow lands.					Average of good plow lands.					Average of all plow lands.				
	1920	1921	1922	1923	1924	1920	1921	1922	1923	1924	1920	1921	1922	1823	1924
Maine	\$30	\$25	\$22	\$22	\$22	\$56	\$50	\$47	\$48	\$50	\$42	\$36	\$35	\$36	\$37
New Hampshi	24	24	25	24	23	64	63	64	58	59	42	41	41	40	48
Vermont.	30	29	${ }_{29}^{27}$	24	24	${ }^{69}$	67	63	58	55	48	47	45	40	${ }_{4}^{49}$
Massachusetts	40	40	39	39	39	103	98	105	106	108	72	69	69	70	68
Rhode Island.	50	50	50	51	52	105	105	105	106	110	85	85	86	87	88
Connecticut	35	34	32	32	33	100	90	90	88	88	60	58	58	57	58
New York	39	40	38	35	33	84	84	83	80	75	64	65	62	59	54
New Jersey	50	55	48	49	47	104	125	109	109	105	80	92	84	83	82
Pennsylvania	40	39	33	35	32	86	81	73	73	68	66	62	54	54	53
Delaware.	44	38	31	28	30	86	72	67	70	68	66	55	50	51	50
Maryland	46	31	31	32	33	82	70	67	67	70	60	51	49	50	52
Virginia	34	32	27	31	32	73	70	60	64	65	53	50	43	47	48
West Virginia	32	31	27	28	27	75	70	62	67	66	51	48	42	45	44
North Carolina	42	36	33	35	35	87	76	67	70	75	63	55	49	52	54
South Carolina	41	32	23	21	22	82	68	46	45	48	61	50	35	35	38
Georgia	30	23	18	17	16	63	50	38	36	34	46	36	28	26	24
Florida	23	25	21	20	20	53	55	56	43	46	36	40	37	31	33
Ohio.-	69	60	52	52	51	132	110	100	100	96	105	88	78	78	$7{ }^{7}$
Indiana	80	71	56	54	51	150	137	108	105	101	119	109	85	82	78
Illinois	115	105	91	86	81	213	195	160	155	148	170	157	131	126	120
Michigan	41	41	39	36	35	80	83	77	74	73	64	65	60	57	58
Wisconsin	66	65	58	60	57	125	122	110	108	105	100	98	87	86	82
Minnesota	73	74	67	59	55	120	121	102	96	89	100	101	87	80	75
Iowa.--	157	145	119	115	107	257	238	193	181	169	219	200	163	153	143
Missouri	60	58	44	45	44	110	106	84	85	83	87	83	65	66	65
North Dakota	31	30	25	24	22	49	49	44	40	37	43	42	37	33	31
South Dak	67	66	52	43	41	108	102	80	73	64	90	85	72	58	54
Nebraska	85	80	72	65	64	150	140	123	116	113	125	115	101	96	94
Kansas	50	50	43	41	38	90	90	77	74	69	70	70	60	58	54
Kentucky	42	33	28	27	26	95	75	67	66	63	70	53	47	46	43
Tennessee	40	35	28	30	30	90	81	68	70	70	60	55	47	50	50
Alabama	20	17	14	16	16	43	38	32	34	35	30	26	23	28	26
Mississipp	23	16	16	17	17	49	36	34	36	36	35	26	25	26	26
Louisiana	34	24	21	24	25	65	50	42	45	46	50	38	31	34	35
Texas.	36	33	29	28	29	72	70	60	57	59	56	52	47	44	45
Oklahoma	30	29	28	24	23	63	63	58	52	52	47	46	41	37	37
Arkansas	26	24	20	21	20	65	54	46	47	45	45	38	33	34	33
Montana	21	19	15	14	13	48.	41	35	31	30	36	30	23	22	21
W yoming	34	25	23	21	20	70	60	54	48	40	53	44	37	35	32
Colorado.	40	35	35	30	29	88	86	84	75	72	66	67	61	56	52
New Mex	30	30	23	21	23	60	60	57	53	56	45	45	41	37	39
Arizona	90	75	70	70	75	180	140	130	132	140	130	120	115	116	120
Utah	60	50	42	42	40	135	140	125	122	119	103	100	90	83	86
Nevada	46	45	40	30	42	110	90	80	80	85	80	75	70	65	73
Idaho	60	58	50	46	42	135	128	110	93	88	105	99	85	76	68
W ashingto	68	63.	52	50	49	150	140	120	110	108	115	105	90	88	86
Oregon.	60	60	55.	52	50	130	135	110	108.	104	100	103	90	84	82
California	70	75	69	53	51	175	200	193	166	166	130	135	128	113	112
United Sta	61	57	47	45	43	113	106	89	85	82	90	84	70	67	64

Division of Crop and Livestock Estimates. From reports of crop reporters on Mar. 1 on average values in their localities.

1148 Yearbook of the Department of Agriculture, 1923.

FARM LABOR.

Table 675.-Wages: Male farm labor, by classes, United States, 1866-1923.

Year.	By the month.		$\begin{aligned} & \text { Day labor } \\ & \text { at } \\ & \text { harvest. } \end{aligned}$		$\begin{gathered} \text { Day labor } \\ \text { not } \\ \text { harvest. } \end{gathered}$		Year.	By the month		$\begin{aligned} & \text { Day labor } \\ & \text { at } \\ & \text { harvest. } \end{aligned}$		$\begin{aligned} & \text { Day labor } \\ & \text { not } \\ & \text { harvest. } \end{aligned}$	
			$\begin{aligned} & \text { B. } \\ & \text { \% } \\ & \text { B } \\ & \text { B } \end{aligned}$?
1866	10.08	15. 50		\$1.34	\$0.64	\$0. 00	1909	\$20. 01				1.03	1. 29
599	9. 97	15.50	1.06	1. 35	. 63	. 87	1910	19. 21	27. 50	1. 45	1.82	1. 06	1.38
1875	11. 16	17. 10	1. 18	1. 49	88	. 94	1911	20. 18	23. 77	1.49	1.85	1.09	1.42
1879	10.86	16. 79	1.04	1.35	. 61	. 84	1912	20.81	29.58	1. 54	1.87	1.14	1. 47
1880	11.70	17. 53	1. 12	1. 44	. 64	. 89	1913	21.38	30.31	1. 57	1.94	1.16	1. 50
1881	12.32	18. 52	1.16	1.49	. 67	. 92	A v. 1909-1913	20. 32	28.72	1. 50	1.88	1.10	1.41
1882	12.88	19.11	1. 20			. 97							
18888	13. 28	19. 67	1. 17	1. 19	. 72	. 98	1915	21.26	${ }_{30.15}^{298}$	1. 56	1.92	1. 13	1.47
1890	13.29	19.45	1.08	1. 38	. 72	. 97	1916	23.25	32.83	1. 69	2.07	1. 26	1. 62
							1917	28. 87	40.43	2. 08.	2.54	1.56	2.02
1892	13. 48	20.02	1.08	1.39	. 75	. 88	1918	34. 92	48.80	2. 05	3. 22	2.07	2. 63
1893	13. 85	19.97	1.07	1.30	. 72	. 82	1919	39.82	56,29	3. 15	3. 83	2.45	3. 12
1894.	12. 70	18. 57	. 97	1. 18	. 65	84	1920	46. 89	64.95	3. 60	4.36	2.86	3. 59
1895	12. 75	18.74		1. 19	. 71	$\stackrel{85}{84}$			43. 33		2.84	1.78	27
1898.	13.29						Av. 1914-1820	30.87	43. 33	2.33	2.84		
1899	13.90	19.97			75	99	1921	30. 14	43. 32	2. 24	2. 79	1. 68	2.48
1902	15.51	22.12	1. 230	1. 51	. 83	1. 09	1822	29.17	41. 79	2.20	2. 72	1. 685	${ }_{2}^{2.15}$
1906.	18.73	26. 19	1.45	1. 76	1.03	1. 32	1923	33.18	46.91	2.45	3.03	1.93	

Division of Crop and Livestock Estimates. From reperts of crop reporters on December 1, for average wages for the year in their loculities.

Table 676.-Wages: Male farm labor, by classes and States, 1922 and 1923.

State and division.	Per month.				Per day at harvest.				Per day other than harvest.			
	With board.		Without baard.		With boerd.		Without board.		With board.		Without board.	
	1922	1923	1922	1823	1922	1923	1922	1923	1922	1923	1922	1923
Maine	\$38.00	\$41.00	\$53. 50	\$61.00	\$2. 45	\$2. 90	\$3.07	\$3. 50	\$2.08	\$2. 50	\$2. 70	\$3. 10
New Hampsh	38.60	46. 50	60.00	69.00	2.46	3. 00	3.20	3.90	2. 11	2. 70	2.84	3. 60
Vermont...-	35.00	40.60	52.00	60.30	2. 35	2. 90	3.00	3. 60	1.96	2. 55	2. 53	3. 20
Massachusetts	41.00	50.00	68.00	80. 00	2. 56	3. 20	3. 45	4. 15	2. 31	2.95	3. 18	3. 90
Rhode Island	40.60	50.00	65. 09	80. DD	2.75	3. 00	3. 60	4.00	2. 37	2. 65	3. 20	3. 65
Connecticut	40.00	52.00	67. 00	75.60	2.50	3. 10	3. 40	4. 10	2. 05	2. 80	2. 95	3. 75
New York.	30.79	45. 50	56. 50	64.00	3. 00	3. 75	3. 65	4. 30	2. 46	3. 00	3. 15	3. 70
New Jersey	40.00	44. 50	62. 00	67. 00	3. 05	3. 40	3.80	4. 40	2. 25	2. 55	3. 00 2. 70	3.55 3.15
Pennsylvan	33.00	38. 00	50.90	55. 00	2. 50	2. 90	3.20	3. 60	2. 10	2. 48	2.70	3. 15
N. Atlantic	37.14	43.42	55.82	63.31	2.70	3. 21	3. 40	3.99	2. 24	2. 73	2.91	3. 48
Delaware	27. 10	32.80	49.60	71.60	2. 33	2.85	2.85	:3.50	1.60	2.25	2.07	2. 75
Marylan	28. 50	32. 00	42. 00	48.00	2. 17	2. 70	2. 77	3. 30	1. 54	1. 95	2.11	2. 50
Virginia	24.80	28. 00	35. 50	40.00	1. 90	2.10	2.32	2.60	1. 31	1. 61	1. 76	2. 08
West Virginia	33. 20	35. 50	47. 90	50.50	2. 20	2. 48	2. 80	3.08	1.55	1. 90	2. 10	2. 50
North Carolina	24. 00	28.00	33. 00	39.09	1. 85	1.95	2.25	2.45	1.35	1. 1.12	1. 1.08	1. 95 1.42 1.4
South Carolina	16. 20	20. 00	23. 20	27. 50	1. 24	1. 35	1.56	1.75	. 85	1. 12	1. 1.12	1. 1.32 1.30
Georgia.	15. 60	17. 30	23. 00	24. 50	1. 05	1.16 1.57	1.35 1.80	1.40 2.15	$\begin{array}{r}.88 \\ 1.15 \\ \hline\end{array}$	1. 00	1.12 1.60	1.30 2. 00
Florida.	23. 40	26. 00	35.50	40.00	1.30	1.57	1.80	2.15	1.15	1. 44	1. 60	2. 00
S. Atlantic.	22. 12	24.93	31.72	35. 55	1. 61	1. 76	2.01	2.21	1.18	1. 41	1. 55	1.82
Ohio	32. 60	36. 80	46. 50	50.40	2.70	3.05	3. 28	3. 70	2. 00	2. 18	2.60	2. 92
Indiana	30. 20	35. 40	42. 70	48.60	2. 58	3. 10	3.15	3.75	1. 80	2. 25	2. 32	2.83
Illinois	33.90	40.20	45. 00	52. 50	2. 75	3. 38	3. 30	4. 00	1. 95	2. 40	2. 48	2. 96
Michigan	33. 60	40.00	47. 30	55. 00	2. 60	3. 19	3. 29	3. 88	2.10	2. 58	2. 70	3.23 3.15
Wisconsin	37.00	45. 00	54.00	63.00	2. 65	2. 96	3.32	3. 70	2. 20	2. 45	2. 90	3.15
E. N. Centra	33.35	39.41	46. 71	53. 59	2.67	3. 14	3.27	3.82	2. 00	2. 36	2.58	3.01

Tarle 676.-Wages: Male farm labor, by classes and States, 1922 and 1923-

State and division.	Per month.				Per day at harvest.				Per day other than harvest.			
	With board.		Without board.		W ith board.		Without board.		With board.		Without board.	
	1922	1923	1922	1923	1922	1923	1922	1923	1922	1922	1922	1923
Minnesot	\$35. 00	\$37. 00	\$50.00	\$55. 50	\$2. 90	\$3. 27	\$3. 60	\$4. 03	\$2. 20	\$2. 55	\$2. 95	\$3.29
Iowa.	36. 80	43. 30	49.70	56. 60	2. 70	3.16	3. 35	3. 80	2. 11	2. 52	2. 67	3.12
Missouri	28. 70	31. 00	39. 50	42.50	2. 25	2. 50	2. 73	3.05	1. 46	1. 62	1. 90	2. 10
North Dakota	38. 70	40. 30	55. 50	58.80	3. 90	3. 72	4. 85	4. 77	2. 50	2. 50	3. 40	3. 50
South Dakota	36. 40	43. 20	53. 00	61. 70	3. 05	3. 50	3. 75	4. 20	2. 25	2. 65	3. 10	3.45
Nebraska	34. 50	40.00	48. 50	54.00	3. 00	3. 30	3.65	4. 10	2. 15	2. 42	2. 85	3. 00
Kansas	32. 50	35. 90	46. 70	50.60	3. 50	3. 65	4. 10	4.30	2. 19	2. 32	2. 75	2. 90
W. N. Central	33.63	37.54	47.14	52.33	2.88	3. 17	3.51	3.86	2. 01	2. 27	2. 63	2.91
Kentucky	25.90	28. 10	36. 30	38. 60	1.95	2.16	2. 46	2. 67	1.23	1.51	1.63	1.97
Tennessee	22. 30	24. 60	30.75	35.00	1. 58	1.75	1. 90	2. 20	1. 07	1. 28	1. 40	1.64 1.50
Alabama	17. 60	19. 90	25. 80	28. 20	1.18	1. 26	1. 48	1. 58	1.00	1. 20	1.30	1.50 1.68
Mississipp	18. 20	20. 00	25. 90	29.40	1. 14	1. 20	1. 50	1. 57	1. 10	1. 29	1.45	1. 68
Louisiana	22. 40	21. 00	32. 60	33. 00	1. 30	1.45	1. 60	1. 85	1. 26	1. 45	1. 60	1. 75
Texas	24. 20	28. 30	35.40	39. 70	1. 72	1. 90	2. 10	2. 40	1. 30	1.45	1. 66	1. 88
Oklahoma	26. 00	27.40	37.00	38. 30	2. 35	2. 50	2. 75	2. 90	1. 52	1. 60	1. 96	2. 00
Arkansas	21.35	23.00	31.60	33.90	1.56	1. 64	2. 00	2. 06	1.15	1. 30	1. 52	1. 66
S. Central.	22.33	24. 13	32.09	34.55	1. 61	1.71	1. 98	2. 14	1.20	1. 38	1. 56	1. 76
Montana	42. 20	48.00	63.00	65. 50	3.60	3.60	4. 40	4. 52	2. 40	2. 70	3. 20	3.55
W yorning	39. 50	44. 50	60.00	62. 50	2. 40	2. 90	3. 25	3. 78	1.95	2. 50	2. 75	3. 40
Colorado.	35. 00	40. 00	54. 00	58. 30	2. 52	2. 80	3. 27	3. 50	1.90	2. 20	2. 60	2. 90
New Mexico	31.00	32. 50	46. 00	48. 00	1. 60	2. 10	2. 10	2. 30	1. 30	I. 58	1. 80	2. 10
Arizona	40. 00	54. 00	58. 00	66. 00	2. 40	2. 35	3. 00	2. 65	1. 75	2. 10	2. 50	2. 70
Utah.	47. 00	54. 00	64. 00	73. 70	2. 40	2. 70	2. 95	3. 31	2. 16	2. 47	2. 81	3. 05
Nevada	48. 00	58. 00	65.00	86. 00	3. 00	2. 90	3. 85	3. 80	2. 40	2. 45	3. 40	3. 58
Idaho.	46. 00	53.00	66. 00	72. 70	2. 75	3. 57	3. 40	4. 25	2. 22	2. 85	3. 00	3. 45
W ashington	45.00	54. 30	65. 00	77. 00	3. 25	3. 90	3. 90	4. 50	2. 38	2. 95	3. 15	3. 75
Oregon---	43. 50	52. 50	63. 00	70. 00	2. 85	3. 30	3. 50	4.15	2. 25	2. 80	2. 95	3. 48
California	55. 00	56. 00	79.00	82. 00	3. 20	3. 25	3. 90	4. 10	2. 53	2. 80	3. 40	3. 70
Western	45.57	51.25	66. 03	72. 79	2. 89	3. 22	3.56	3. 95	2. 23	2. 64	3. 00	3.42
United States	29.17	33.18	41.79	46.91	2. 20	2.45	2. 72	3.03	1. 65	1. 93	2.15	2.47

Division of Crop and Livestock Estimates. From reports by crop reporters on December 1 for average wages for the year in their localities.

Table 677.-Farm wages: Prevailing rates, 1922-1924.

Basis of rate, year, and month.	United States.	North Atlantic States.	East North Central States.	West North Central States.	South Atlantic States.	South Central States.	Western States.
Per month, with board:							
Oct. 1, 1922........-	28.97	37.05	33.92	34. 41	21.37	21.46	45.38
Jan. 1, 1923	27.81	36. 54	32. 34	30. 69	21.06	21. 46	42.78
Apr 1, 1923	30.98	41.02	37.14	35. 22	23. 04	22. 49	45. 55
July 1, 1923	34. 38	47. 66	41. 23	39. 43	25.01	24.47	53.35
Oct. 1, 1923	34.86	47. 54	41. 00	39. 51	25.32	24.92	55.42
Jan. 1, 1924	31.71	42. 34	37.30	33. 71	24. 69	23.55	48. 54
Jan. 1, 1923.	41.58 40.30	54.65 54.39	45.84	44. 33	30.71	31. 03	62. 71
Apr. 1, 1923	44.47	60.41	51.81	50. 12	33. 69	32.92	66.82
July 1, 1923	48. 14	67.03	56. 30	55.31	35. 10	35.01	74.00
Oct. 1, 1923	48. 70	66.96	56.12	53.54	35. 61	35.95	77.19
tan. 1, 1924	45. 81	63.38	52.07	48. 01	35. 32	34. 44	70. 63
Oct. 1, 1922.	1.57 1.47	2.15 2.13	1.95 1.81	1.94 1.67	1.09 1.06	1.07 1.05	2. 23
Apr. 1, 1923	1.57	2.27	1.91	1.83	1.14	1. 10	2. 19
July 1, 1923	1.84	2. 72	2.30	2.14	1.32	1. 26	2. 60
Oct. 1, 1923	2.04	2. 97	2. 61	2.49	1.39	1.36	2. 91
Jan. 1, 1924	1. 81	2. 60	2. 33	2. 08	1. 28	1.24	2. 52
Jan. 1, 1923	1.98	2. 82	2. 43	2. 29	1.40	1.43	2. 81
Apr. 1, 1923	2.11	3.04	2.55	2. 47	1. 53	1.48	2. 93
July 1, 1923	2.45	3.58	3.01	2. 90	1.75	1.68	3. 47
Oct. 1, 1923	2. 61	3.81	3.33	3. 20	1.76	1. 77	3. 67
Jan. 1, 1924	2. 41	3.48	3.08	2. 73	1. 74.	1.65	3.36

Table 678.-Farm labor: Supply and demand, 1918-1923.

Division.	Farm labor supply, per cent of normal.					
	1918	1919	1920	1921	1922	1923
North Atlantic.	62.5	82.8	62.3	92.1	99.2	73.3
South Atlantic.	73.4	81.9	72.5	94.3	97.3	83.0
East North Central	74.7	86.6	68.4	95.1	101.4	76.5
West North Central	74.1	85.6	77.8	96.6	101. 1	89.1
South Central	74.0	83.2	72.8	94.3	97.1	86.7
Far Western.	76.8	90.0	8.21	102. 3	107.0	91.3
United States_	72.9	84.4	72.4	95.2	99.5	83.6

Division.	Farm labor demand, per cent of normal.					
	1918	1919	1920	1921	1922	1923
North Atlantic.	98.5	101.9	107.8	92.7	94.8	95.2
South Atlantic.	104. 2	103.9	107. 4	86.6	88.4	94.2
East North Central	99.4	101. 2	106. 6	91. 2	91.0	95.4
West North Central	99.8	100.9	103.4	89.1	89.3	95.5
South Central.	102. 9	101. 3	104.2	83.0	86.6	93.9
Far Western	99.3	102.4	101.5	89.0	89.9	94.0
United States	101.4	101.8	105.3	87.5	89.3	94.6

Division.	Supply as a percentage of demand.					
	1918	1919	1920	1921	1922	1923
North Atlantic.	63.4	81.9	57.8	99.4	104. 6	77.0
South Atlantic.	70.4	78.8	67.5	108. 9	110.1	88.1
East North Central	75.2	85.6	64.2	104. 3	111.4	80.2
West North Central	74.2	84.8	75.2	108.4	113.2	93.3
South Central.-	71.9	82.1	69.9	113.6	112.1	92.3
Far Western.	77. 3	87.9	80.9	114.9	119.0	97.1
United States	71.9	82.9	68.8	108.8	111.4	88.4

Division of Crop and Livestock Estimates. Based upon reports of crop reporters on April 1.

PRICES OF ARTICLES BOUGHT BY FARMERS.

Table 679.—Prices of articles bought by farmers, 1909-1922.

Article.	1909	1914	1915	1916	1917	1918	1919	1920	1921	1922
	\$0. 89	\$0.96	\$1. 04	\$1. 12	\$1. 40	\$1. 79	\$2. 06	\$2. 25	\$2. 00	\$1. 96
Barb wire-..-.----100 pounds--	2. 98	3. 08	3. 50	4. 25	5. 00	5. 69	5. 73	6. 10	5. 20	4.73
Barrels.---------------- each --		. 25	. 30	. 33	. 37	. 45	. 50	76 60	51 50	${ }_{61} 58$
Bone meal-.----------------		31.90	35.00	38.90	48.00	55. 10	60.00	65.00	54.00	53. 17
Brooms.-----------------each	34	38	43	53	76	98	1.00	98	. 78	78
Buggies.----------------- ${ }^{\text {do }}$	64. 90	70. 10	75. 00	80. 00	80.00	107. 00	123. 00	131.00	108. 00	102.85
Buggy whips....-------- ${ }^{\text {Calico }}$ do	. 404	. 4263	. 45	${ }_{.084}^{50}$. 127	$\stackrel{.67}{.207}$. 73	. 85	. 70	. 68
Churns-----------------------each	2. 19	2. 30	2. 42	2.70	3. 50	2. 62	290	3. 25	3.00	3. 35
Coal	5.50	5.80	6. 00	6. 80	7. 50	8.11	9. 50	13.30	11. 50	11. 28
	. 157	. 139	. 141	. 143	. 159	. 184	. 22	. 25	. 19	. 18
	. 211	. 245	. 248	. 258	. 265	. 31	. 46	.41	. 32	33
Corn knives.------------each --			32	36	43	52	. 58	65	. 50	88.88
Cream separators-------do.-	63. 10	59.30	63.00	68.80	77.00	87.00	95.00	102. 00	90.00	88.88
Dinner plates..-------12 dozen--	. 55	. 57	. 60	. 67	88	1. 18	1. 40	1. 58	1.31	1. 31
Dish pans-.------------each --	. 32	. 34	. 37	45	. 60	. 74	. 83	. 95	. 75	1.76
Dung forks...---------- do	70	76	82		1.03	1. 23				
Fertilizer, commercial.-.ton	22. 15	23.20	25. 780	27.00 9.75	31. 90 12.05	38. 80	42.00	12. 90	35. 8.80 8.8	30.08 8.07

Table 679.-Prices of articles bought by farmers, 1909-1922—Continued.

Article.	1909	1914	1915	1916	1917	1918	1919	1920	1921	1922
Fruit jars...----------- dozen--	\$0.73	\$0. 74	\$0. 77	\$0.80	\$0. 92	\$1.06	\$1. 15	\$1. 25	\$1. 16	\$1.15
Gasoline --------------gallon	202	. 179	204	23	261	278	29	33	265	24
Gloves, cotton-----------p						238	. 28	27	19	9
Gloves, leath			85	95		1.51	1.78	1.85	1. 30	1. 25
Halters----------------eac	85	95	1. 06	1.20	1.36	1.62	1.85	1.98	1. 55	1.48
Harness, single.----------- do	13. 50	15.25	16. 00	17. 00	19.00	24. 10	29.00	32.00	25. 00	28. 67
Harrows			12. 60	14. 60	19.30			30.00	25. 50	24.90
Hatchets	59	62	. 65	. 70	. 80	1. 09	1. 29	1. 50	1.29	1.16
Hats, felt	1.94	2. 03	2. 13	2. 25	2. 65	3.35	4. 30	5.00	3. 50	3. 46
Hoes-.-.-.-.-.-.-.-.-.-.-. ${ }^{\text {do }}$	41	. 45	49	53	. 61	. 75	. 83	. 93	80	85
Horse blankets.---.--.-.-d	2. 25	2. 40	2. 60	2.90	3. 50	4. 33	5. 00	5. 35	4.15	4.05
Jumpers	77	. 83	. 93	1.10	1.52	2. 20	2. 50	2. 50	1. 55	1. 67
Kitchen	. 72	. 80	. 86	. 92	1.12	1.42	1.70	2. 10	1. 65	1. 79
Lamps	. 50	. 52	. 60	. 64	72	. 86	. 98	1. 10	95	99
Lanterns.------.--------do	. 77	. 80	. 82	. 85	1. 00	1. 20	1. 32	1. 45	1. 30	1.35
Lard------------------poun	. 132	. 141	. 154	. 199	. 286	323	34	265	16	17
me------------------ barr	1. 29	1.36	1.41	1.50	1.78	2. 30	2. 65	3. 10	2. 65	2. 97
Linseed oil	. 79	82	94	1. 10	1.48	2.08	2. 50	2. 21	1. 22	1.37
Lumber, 1-inch. ...--. 100 fee	1.95	2.10	2. 20	2. 35	2.85	3. 50	4.75	5.15	3.55	3.89
Manure spreaders .--.-.--each	111.60	106. 70	112. 70	123.00	145. 00	169.40	80.00	194.00	167.00	152.71
Men's suits ------------ do	13. 15	14. 00	15. 15	16. 50	20. 00	27. 60	38.10	41.00	30.30	28. 07
Milk cans, 10-gallon.-..- do	2. 40	2.45	2. 70	3.10	4. 30	5. 50	6. 00	6. 20	5.30	4.98
Milk pails..-----.-- .-.-d	43	45	48	53	67	79	90	1.00	80	73
Mowers-.-----------.----do	44. 30	46. 50	49.50	53:00	63.00	79. 20	84.00	88.00	78.00	77. 24
Muslin.------------.--. yard.-	09	093	18	116	18	272	. 31	. 30	. 18	18
Nails--1.-.-------100 pounds.-	3.34	3.40	3. 82	4.25	5. 25	5. 97	6. 50	7.30	5. 75	5. 45
Overalls-----------...--- pair	. 82	. 89	. 98	1.14	1.54	2. 26	2.60	2. 60	1.58	1. 61
Padlocks-.--------------each	. 27	. 275	. 28	. 31	. 37	. 44	. 50	60	50	48
Paint brushes....---.---.-do	. 49	. 54	. 60	. 70	. 84	. 97	1.15	1.35	1.15	1. 25
Paint, mixed.-.-----.-. gallon.-	1.62	1. 74	1.98	2. 20	2. 80	3.40	4.05	4.30	3.35	3. 33
Paris green----------- pound	. 29	. 30	. 36	. 43	. 55	62	62	64	52	49
Picks	. 71	. 72	. 75	. 81	. 99	1. 22	1. 40	1. 50	1.22	1.21
Pincers----------------do	. 49	. 51	- 55	. 62	. 76	87	95	1. 10	90	98
Pitchforks .-.--------.--- ${ }^{\text {do }}$. 62	. 66	. 72	. 80	. 94	1.14	1.30	1. 45	1.22	1. 23
Plows, turning--------. do -	11. 50	12. 10	13. 00	14. 25	18.00	20. 00	21.00	23. 00	20.00	22.35
Portland cement. . 100 pounds	. 70	. 69	. 76	. 85	95	96	1.05	1.30	1. 02	1. 08
Raincoats..--------.-.--each	4. 25	4.40	4.80	5. 50	6. 40	7.73	9.20	10. 50	7.50	6. 86
Rope, hemp---------- pound.-	. 135	. 149	171	. 21	. 287	349	. 36	. 355	26	26
	3. 55	3.75	3. 90	4.25	4.50	5.00	5. 10	5.30	4.55	4.46
Sacks, grain----.-----..--each	15	163	181	20	30	43	. 45	. 42	. 26	. 27
Saddles-..-.-.-.-.-.-.-.-do	17.45	20.35	22. 50	25. 00	30. 50	35. 80	42. 40	45. 00	35. 00	34. 94
Salt, for stock . .-...-....-barrel.-	1.50	1.65		1.75	2.18	2.71	3.00	3. 50	3.20	3.24
: Saws, buck---------.---each.-	. 89	. 92	. 98	1.05	1.18	1.54	1. 75	1.90	1.50	1. 56
Screw hooks.----------.--box	. 36	. 37	. 41	. 50	. 66		. 75	. 91	. 71	. 60
Scythes----------.-..---each	1.02	1.06	1. 12	1. 20	1.30	1.60	1.82	2.10	1.85	2.04
Sheeting----------------yard	17	. 18	. 202	23	32	. 48	58	. 57	. 40	. 41
Shingles_.----------------M.-	3.50	3.70	3.95	4.20	4.70	5. 65	7.90	8.10	5.80	6.12
Shirts, flannel-------.-.--each	1. 34	1.41	1. 55	1.75	2. 25	3. 13	3. 85	3.90	2.85	2. 94
Shoes-.--------------.---- pair	2. 00	2.30	2. 45	2.80	3. 35	3.81	4.75	5.00	3.65	3. 40
Shotguns---------------each	12.45	12.85	14.15	16. 50	18. 50	23.70	28.00	33.00	29.00	25. 13
Shovels -------------.-. do	. 74	. 78	. 85	. 95	1. 15	1. 42	1.62	1.85	1. 55	1.45
Staples-----------100 pounds	3. 69	3.75	4.15	4.60	5. 70	6.41	6.80	7.60	6. 20	5.86
Starch	07	. 07	. 071	. 075	. 095	. 105	. 118	. 125	. 103	. 11
Steel wire--------100 pounds.-	3.43	3.55	4. 10	4.60	5.60	6. 45	6.90	7.30	6.00	5. 95
Stoves-.-.-.-............-each_	22. 50	24. 00	26. 00	29. 00	37.00	44. 00	50.00	61.00	52.00	55.47
Sugar--.-----------.-. pound.-	. 058	. 069	. 074	. 082	. 097	. 115	. 15	. 17	. 073	. 09
Sulphur---------------do-	. 075	${ }^{-08}$	085	. 095	${ }_{5} .10$. 116	. 119	. 12	. 105	13
Tedders--.------------e-each	39.00	39. 50	41. 00	44. 00	52.00	69. 40	74.00	78.50	69.00	70.33
Tin pails---------------do--	. 25	. 27	. 29	32	41	. 53	. 59	. 66	. 50	. 44
Tobacco, plug...-.-.-.-.pound.	. 45	.45	455	. 47	56	. 75	93	. 94	. 85	. 82
Twine, binder----------do-	. 103	112	121	15	22	. 265	. 258	. 20	16	13
Wagons, double...-.....-.each	66. 00	73. 25	78.00	84.00	97.00	120.00	138.00	155. 00	134. 00	126. 39
Wagons, single--------- do	45. 50	48.00	51.00	55. 50	69.00	75.00	83. 00	95. 00	79. 00	81.23
Walking cultivators-..---do.			17.00	19.00		32. 90	35. 20	40.00	34. 00	30.05
Wheelbarrows .-.-.---.--do	2. 80	297	3.20	3.60	4.00	4. 75	5. 50	6. 50	5. 50	5.77
Wire fence-----------.---rod.-	. 311	. 317	. 36	. 42	. 49	. 57	59	64	53	. 52
Wooden buckets.-.---.--each.-	. 31	. 35	. 38	. 45	62	85	98	1.05	90	1.04
Wooden wash tubs-.-...-do...-	. 77	. 83	. 87	. 95	1. 20	1.56	1. 75	1.90	1. 50	1.62

Division of Crop and Livestock Estimates. As reported by dealers for the year about Dec. 15.

Table 680.-Prices of articles bought by farmers, 1923 and Jan. 15, 1924.

Article.	Unit.	United States.				
		1923				1924
		Jan. 15.	Apr. 15.	July 15.	Oct. 15.	Jan. 15.
Food:						
Bacon, smoked.	Pound.	\$0. 279	\$0. 270	\$0. 272	\$0. 272	\$0. 259
Beans, dry, edible	- do-.	104	111	. 109	. 099	096
Coffee		317	. 326	. 332	. 328	337
Flour, wheat, 24 po	Sack.	1. 10	1. 10	1.05	. 99	1. 00
Lard.	Pound.-	. 173	. 173	. 172	. 179	. 179
Rice	- do---	. 09.	. 09	. 088	. 09	. 092
Sugar -........-	-do	. 088	. 11	. 112	. 11	. 107
Salmon, canned.-	${ }_{34}^{16-02}$	${ }_{189}^{223}$. 225	. 24	. 233	. 238
Clothing:						
Boets, knee, rubber	Pair	4. 28	4. 33	4. 28	4.35	4.32
Gingham, apron, dome	Yard	. 189	. 203	. 201	205	. 209
Overalls.	Pair	1. 62	1.73	1. 77	1. 81	1. 87
Sheeting, 80 inches wide	Yard.	. 573	. 609	. 619	. 619	. 63
Shoes, work	Pair-	3. 48	3. 50	3. 43	3. 63	3. 64
Socks, work, eot	-do	. 17	. 174	$\cdot 173$. 182	193
Suits, wool-serge, ready-med	Su	25. 83	25.95	26.12	26.95	27.35
Household aricles:						
Brooms, for sweeping	Each.	. 74	. 82	. 87	. 90	. 87
Dinner plates, plain.	$\frac{1}{2}$ doz	1. 19	1. 19	1.16	1. 17	1.21
Fruit jars, Mason, 1-qu	1 doz	1.11	1. 10	1.08	1.04	1.08
Frying pan, cast iron, 10-	Each	. 67	. 70	. 65	. 66	. 79
Kitchen ehair, plain.	-do	1. 59	1. 59	1. 67	1.60	1.71
Oif lamp, glass body	do	${ }_{2} .82$	${ }^{8} 84$	\%. 80	. 83	. 85
Ruys, 9 by 12, tapestry	do	23. 06	25. 85	25. 31	25. 68	25.50
Rugs, 9 by 12, brussels	do	36. 48	38. 56	38.66	36. 94	39. 54
Washtubs, heavy galvan		1.26	1.25	1. 24	1. 24	1.32
Bricks, common Boards, rough, 1 -ineh, feet b.	1,000-	20.18 35.53	20.36 37.69	20.43 37.44	20.79 37.39	21.76 36.49
Flooring, clear, 1 -inch tongue and groove feot b m	1,000	64.70	67.32	68. 33	64.19	64. 91
2 -inch framing lumber, feet b. m...-	1,000-	37.37	39.73	40.17	38. 71	37.51
House paint, ready-mixed	Gall	3. 16	3. 29	3. 34	3.32	3.37
Lime, common, lump..	109 lbs	1. 71	1. 79	1.75	1.76	1.86
Portland cemrent	96 lbs	1.05	1.00	1.06	1.02	1. 02
Roofing, composition, 3-ply --..-.	108 sq.ft	3.03	3.01	3.02	3.00	2.97
Roofing, steel, galvanized, $2 \frac{1}{2}$-inch corrugated, 29 gauge.	100 sq. f	5.88	5.90	6.01	5.99	5.93
	Ton	16. 16	15. 76	15. 71	16. 11	16.29
Coal, soft (bituminous)	do.	10.70	10.30	9.69	9.51	9.59
Gasoline.	Gall	. 283	. 259	. 247	. 20	. 199
Kerosene.	--do	. 177	. 181	. 181	. 169	174
Machinery and equipment:						
Barbod wire, galvanized -----------	100 lbs	4.87	5. 05	5. 26	5. 19	5. 19
Binder twine.	Poun	132	. 137	. 134	.135	136
Centrifugal hand cream separator, 250-quart capacity	Each.	79.10	80.61	81.91	84.06	
	--do.	4:85	4.82	4. 96	4.85	5. 00
Engines, gasoline, 3 horsepower	--do	97.44	100.48	103. 45	103.00	103. 99
Grain binders, 7-foot	do	201. 61	206.95	217.97	217. 19	22281
Harrows, disk, 7-foot, singl	- -do	53. 36	54.51	55.25	53.00	57.74
Hay rakes, 2-horse, sulky		40. 67	39.88	43.75	43. 34	44. 91
Horse collars, leather	do	5.06	5. 24	5. 37	5. 26	5.40
Mower, 5 -foot	do	74.39	76.92	81.39	81.00	81.22
Nails, 8 d wire	Pound	. 058	. 06	. 062	. 061	. 062
Oil, machine, lubricatin	Gall	69	. 67	. 69	70	. 71
Pitchforks, 3 tines	Each	1. 14	1. 18	1. 21	1. 21	1.83
Plow, 2-horse, walking...-----.---	- do-	18. 24	18. 83	18. 94	18.83	19.92
Plow, riding, horse-drawn, 2 bottoms		85.10	89. 54	91. 79	89. 47	95.00
Poudtry netting, 5 by 150 feet	Bale.-	6. 51	6. 29	6. 41	6.42	6.41
Rope, manila-...-.-.-.-.-.	Pourd	. 256	${ }_{189} .275$	${ }_{134.273}$	${ }_{134.098}$	135. 273
Fertilizer:						
Acid phosphate, 16 per cen	Ton	20. 10	21.12	21.31	20.95	21. 09
Kainit.	do	18. 70	18. 35	17.87	16. 26	17.08
Limestone, groun		4. 77	5. 38	5. 62	4. 50	5.88
Muriate of potash	do	48.03	48. 66	49.41	50.95	52. 71
Nitrate of soda.	100 lbs	2.62	3. 53	3. 76	4.09	3. 58
Feeds: 175						
Bran....-	do	1.75	1.95	1.85	1.84	1.83
Corn meal	do	2.27	2. 29	2. 58	2. 60	2. 44
Cottonseed me	do	2.81	2.79	2.79	2. 72	2: 81 2.93
Linseed meal	-do-	3. 10	2. 2. 17	2.92 2.12	2.988	2. 93
Mieck sailt, forstock		1. 34	1. 29	1.35	1. 27	1. 27

Division of Crop and Livestock Estimates. Averages of local prices reported quarterly.

FEED.
Table 681.-Oil cake and oil-cake meal: International trade, calendar years, 19091922.

Country.	Average, 1909-1913.		1929		1921		$\begin{gathered} 1922, \\ \text { pretiminary. } \end{gathered}$	
	Imports.	Exports.	Imports.	Exparts.	Imports.	Exports.	Imports.	Exports.
PRINCIPAL.EKPORTING COUNTRIES.	1,000	1,000	1,000	1,000	1,000	1,000		
	nounds.	pounds.						
Argentina.		42,587		81, 389		75, 719		62, 525
Australia.	148	1,347	563	12,905	33	15,343		
Austria			6, 528	4, 281	1,924	2,871		
Austria-Hungary	53, 673	124, 873						
Brazil		16,574		55, 996		52, 710		
British India	1,262	268, 648	4,331	258, 686	3,299	208, 181	2, 189	312.062
Canada	7,752	51, 370	14,060	19, 260	15,200	35, 785	3,873	45, 727
China------	${ }^{2} 174$	147, 468		195,959		217, 258		144, 285
Dutch East Indies.	2,509	13, 242	365	163, 542	241	35, 144		3 35, 545
Egypt		161, 624	60	181, 782		205, 894		
France	288, 968	476, 863	16,057	97, 001	47,189	202. 643	82, 372	213, 200
German	11, 686, 416	525, 108	111, 101.	7,390	${ }^{+47,216}$	${ }^{4} 274,299$	209, 655	371, 291
Italy	10,550	55, 115	69	78, 100	1,614	139,016	3, 919	158, 688
Mexico		33, 784						
Peru.		10,930		22, 800		27,355		37,097
Russia		1, 453, 413						
Spain		2, 164		2, 610		7,267	87	$20,445$
United States		1, 704, 124	228,853	589, 562	88,406	1,206, 484	108.712	$926,30 i$
PRINCIPAL IMPORTING COUNTRIES.								
Belgium	543, 648	155, 373	51,927	70,602	266, 368	51,143	264, 303	52,931
Ceylon	- 40,494	${ }^{5}$ 28,509			21, 314	13, 427	41, 292	12, 935
Demmark	1, 002, 329	15,777	569, 272	23	816, 000	12,401	918, 004	
Finland	25, 333	2,125	22, 031		18, 175		15,707	
Japan.	189, 868		307, 347	5,683	267, 444	1,334		
Netherland	707, 116	219,819	197, 312	203, 258	512, 464	69, 624	414, 635	116, 65
Norway.	55, 112	2,889	29, 987		68, 365	15	43, 469	
Sweden	346, 755	1,535	137, 265	7,989	169, 242	22, 870	141, 454	
Switzerland	69,352	1,413	53, 923	2,382	90, 234	2, 407	91, 677	1,586
United Kingdom.	790, 805	161, 798	460, 766	48,711	712, 333	76, 368	708, 660	85,001
Other countries	30, 172	41,595	36,756	32, 262	13, 607	10,554	647	1,713
Total	5, 852, 496	j, 710,047	2, 248,573	2,142.373	3, 160, 668	2, 966, 112	3, 050, 655	2, 597,991

Division of Statistical and Historical Research. Official sources.
The class called here "oil cake and oil-cake meal" includes the edible cake and meal remaining after making oil from such products as cottonseed, flaxseed, peanuts, corn, etc.
${ }^{1}$ Four-year average.
${ }^{2}$ Three-year average.

- Java and Madura only.

4 Eight months, May-December.
${ }^{5}$ One year only.
Table 682.-Bran: Average price per ton at Minneapolis, 1916-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May	June.	Juty.	Aug.	Sept.	Oet.	Nov.	Dec.	Average.
1916	\$18. 78	\$20. 10	\$18. 54	\$18. 63	\$19.05	\$18.32	\$17. 69	20.03	\$21. 71	\$24. 50	\$27. 08	\$25.93	20. 86
1917	28.75	32. 55	34.20	38. 54	33. 77	26. 97	32.15	31. 83	30. 28	30. 55	33. 46	38. 02	32. 59
1918	32. 50	32. 50	32. 85	33. 04	31. 27	30. 74	26. 00	29.31	29.06	28. 45	27. 80	33.49	30. 58
1919	47.26	42.83	38.09	39.78	37. 38	34. 20	37.41	40.38	37. 49	36. 82	3\%. 94	41. 50	39. 26
1920	41.98	42. 68	46.69	50. 26	53. 25	50.78	47.83	41. 88	38. 42	30.63	31. 85	28. 23	42. 04
1921	25.93	21. 44	21. 64	16. 41	15.97	14. 80	14. 06	13.93	12. 97	12. 15	14. 79	20.63	17.06
1922	20.98	24. 75	23. 85	22. 29	20.91	15. 35	15.31	14.06	16. 88	21. 81	22. 65	24. 14	20.25
1923	26. 20		28.44	27.38	27.10	20.94	19.75	22. 65	27.62	2S. 10	25.59		

Division of Statistical and Historical Research. Compiled from Minneapolis Daily Market Record.

Table 683.-Middlings:` Average price per ton at Minneapolis, 1916-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
1916	\$19. 41	\$21. 61	\$20. 22	\$19.50	\$20. 06	\$20. 10	\$19.88	\$21. 48	\$22. 50	\$27. 19	\$30.81	\$27.	\$22.53
1917	28.83	32. 55	34. 20	39. 56	36. 15	33. 27	41.90	41.78	35. 09	36. 25	37. 40	39.05	36.34
1918	34. 50	34. 50	34. 85	35. 04	33. 27	32. 69	27. 61	31. 00	30. 90	30. 77	30.09	36. 27	32. 62
1919	48.84	44.14	38. 56	40. 74	44. 81	42. 90	47. 22	53. 08	51. 46	44. 44	41. 22	43.13	45. 04
1920	43.97	47. 28	51. 57	54. 88	57. 77	56. 06	54. 22	52. 56	45. 65	30. 62	28.86	23. 94	45. 62
1921	23.47	20.91	20.86	15. 38	15. 29	14. 83	14. 07	14. 64	13. 97	13. 16	15. 35	20.73	16. 89
1922	20. 51	24. 76	25. 54	23. 21	21. 20	17.13	17. 30	16. 24	18. 07	23. 06	23. 23	23.71	21.16
1923	25.90		28.31	27.22	28. 70	25. 25	24.78	25. 48	28.16	28.10	25. 09		

Division of Statistical and Historical Research. Compiled from Minneapolis Daily Market Record.
Table 684.-Linseed Oil Meal: Average price per ton at New York, 1910-1923.

Year beginuing Sept. 1.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Aver age.
1910	\$37. 46	\$36. 90	\$35. 50	\$35. 50	\$35. 50	\$35. 50	35. 50	\$34. 12	\$33. 75	\$33. 50	\$34. 33	\$35. 71	\$35. 27
1911	40.00	40.75	40.12	39.00	39.65	40.17	39. 75	38. 80	38. 10	37.30	36.57	35. 50	38.81
1912-13	35.38	35. 30	34. 38	32. 75	32. 34	31.90	29. 20	27. 86	28.12	28. 25	29.40	30.12	31.25
1913-1	32. 50	32. 00	31.40	31. 25	31. 25	31.35	31. 25	31.50	31.50	32. 27	32.80	34. 60	31.97
1914	33.62	32.83	32. 75	35. 10	38. 75	41.00	37. 13	35. 50	32.50	32.50	35. 31	37.71	35. 39
1915-16	39.70	38. 75	38. 50	40.50	40.60	39. 50	36. 63	32. 86	31.50	32.12	33. 00	37.00	36. 72
1916-17	39.50	42. 28	45. 45	47.50	48. 50	48. 56	48. 33	47. 00	49. 44	49. 25	51.08	53.50	47. 53
1917-18	53.00	54. 00	54. 42	57. 00	58. 15	58.50	58. 50	57. 00	52. 50	50. 00	52.80	54. 00	54. 99
1918-19	55. 00	56.00	55. 75	56. 50	62.15	63.35	65.50	65. 50	70. 50	75. 50	82. 30	90.25	66.52
1919-20	81. 58	73.80	78. 75	80.75	81. 50	71.75	70. 40	62.50	60.00	60.00	60.00	60.00	70. 09
1920-21	60.00	60.00	56.80	52. 00	48. 38	43.12	43. 75	46.00	36. 25	37.00	41.60	46.88	47. 65
Av. 1914-1920	51.77	51.09	51.77	52.76	54. 00	52. 25	51.46	49.48	47.53	48. 05	50.87	54.19	51.27
1921-22	46. 30	40.00	40.75	48.0	51.00	51.62	55.00	49. 50	47.62	49. 20	46. 88	45. 50	47.61
1922-23	43.50	43. 50	${ }^{(1)}$	(1)	53. 50	54.12	46.30	43.25	42. 50	38.00	38.00	38.00	
1923-24	45.00	45.62	43.88	45.00									

Division of Statistical and Mistorical Research. From Annual Statistical Review of New York Produce Exchange and the Oil, Paint, and Drug Reporter.
${ }^{1}$ Nominal.
Table 685.-Coltonseed meal, 86 per cent protein: Price per ton, Memphis, 19101323.

Year beginning Aug. 1.	Aug.	Sept.	Oct.	Nov.	I)ec.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Average.
1910	\$26.00	\$25. 75	$\$ 25.38$	\$24. 38	\$24. 38	\$23.88	\$23. 25	\$23. 25	\$23.88	\$23. 88	\$24.50	\$25. 63	\$24.51
1911-12	26.50	25.75	24.63	24.63	24.63	24. 38	25.13	26.00	27. 25	28. 00	27.25	26.75	25.91
1912-13	26.75	25.63	24. 38	24.63	25. 50	25. 75	25.13	25.13	26.75	28. 00	28.75	30.63	26.42
1913-14	31.75	27.00	27.13	27.38	27. 25	26. 75	23.13	26. 75	27.63	27.75	27. 50	27. 75	27.56
1914-15	28. 00	23.75	22. 75	22. 38	23. 50	24. 75	27. 25	26.88	26.50	26.00	25. 25	25. 13	25. 18
1915-16	25. 63	27.13	30. 50	32.00	34.00	32. 25	29.00	28.38	28.88	27. 75	27.25	27.25	29.17
1916-17	28.25	30. 75	35. 25	39. 25	39.00	37. 50	36.25	36. 25	38. 50	39.50	42. 25	44. 50	37.27
1917-18	45.50	43. 00	45. 50	49.75	46. 50	46. 50	46. 50	46.50	46. 50	46.50	46. 50	46. 50	46. 31
1918-19	46. 50	46. 50	46. 50	54. 09	54.00	54. 10	54. 00	54.00	54. 00	54.00	59.13	69.75	53.87
1919-20	76. 25	63.00	66.50	70.25	69.25	71.00	65. 00	65. 75	64.81	65. 13	63.63	59.40	66.66
1920-21	55.00	51.25	39.50	34.13	28.00	28.33	26.50	25.17	23.50	28.92	29.75	34.00	33. 67
Av. 1914-1920	43. 59	40.77	40.93	43. 11	42.04	42. 05	40.64	40.42	40.38	41.11	41.97	43.79	41.73
1921-22	36. 44	36.00	34. 50	33. 44	34. 20	34.75	36.12	41.12	43.00	43.75	42. 50	39.80	37.97
1922-23	34.00	32. 60	37. 60	42. 80	42. 10	41.90	41.25	39.60	39.10	38. 25	36.00	35.40	
1923-24	39.00	40. 20	40.75	42. 70	40.60								

Division of Statistical and Historical Research. Figures prior to 1919 from Cotton Oil Press.

Table 686.-Cottonseed meal, 36 per cent protein, bagged: Average price per ton at 14 markets, 1923.

Market.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Aver-
Atlanta	\$42.75	\$42. 50	\$42.00	\$40.75	38. 75	36.60	\$36.40	\$36.80	\$39.75	40.50	\$42. 20	\$42. 50	40.1
Baltimo			47. 50	47. 25	45. 50	42. 90	42. 20	43. 25	46. 20	44. 60	49.70	48. 70	
Boston	51.60	50.60	49.40	46.60	45. 30	42.75	43. 25	44.75	48. 50	48.70	49.40	48.60	47.45
Buffalo		47.50	46. 00	45.50	44.80	42. 60	42.90	44. 50	46. 40	46. 75	49. 25	47. 70	
Chicago	47.25	46. 40	44.80	44.25	44. 10	40.75	41.00	43.60	45.90	45.50	47.60	46. 10	44. 77
Cincinnati	46.40	46. 30	44.20	43.40	43. 10	41. 10	41.00	42.10	44.40	45. 25	47.30	45. 25	44.15
Jacksonvill	45. 50	45.00	43.80	40.80	38. 00	37. 50	36. 60	39.00	41.50				
Memphis	41.90	41. 25	39. 60				35. 40	39.00	40. 20	40.75	42.70	40.60	3956
New Orleans	47.00		46. 20	44.75	44.50	42.70	40. 80	43. 40	44.00				
New York.-	50.70	50.40	48.70	46.60	47.10	43.60	43.70	46.10	47.80				
Philadelphia	50.20	49.70	48.20	47.00	46. 70	43. 50	43.90	45.75	47. 30	48. 25	50.90	49.25	47. 55
Pittsburgh	48. 25	46.90	46.70	44.90	45. 60	44. 25	41.75	43. 10	45.40	46. 50	49.60	46.90	45.82
Richmond	49. 50	46. 25	46. 90	46.30	45. 25	42. 90	42. 30	44.00	45.00				
Savannah.	45. 75	45.50	44.40	41.50	40.90	38.10	37.75	38.40	40.90		42.90	42.10	41.63

Division of Statistical and Historical Research. Compiled from weekly reports of the Hay, Feed, and Seed Division.

Table 687.-Linseed meal, bagged: Average price per ton at 12 markets, 1923.

Market.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
Boston	\$57. 40	\$56.30	\$48. 40	\$45. 60	\$45. 00	44. 60	44. 70	\$48. 00	\$40. 30	\$50.90	\$48. 40	\$49.20	\$48. 98
Buffalo		50.00	43.75	41. 20	39.60	39. 50	40.40	45. 50	45. 50	46.00	43. 80	44.50	
Chicago	54.10	52. 90	45.80	43. 30	40.90	38. 75	41. 90	46.75	50. 25	51.25	48. 50	47.00	46. 78
Cincinna	56.60	56.60	50.50	45.10	44.40	40.30	41. 75	47.40	50.40	51.00	49.60	47.90	48. 46
Jacksonville	61.00	60.00	59.20	50. 25	50. 00	48.00	52.00	50.00	52. 00				
Kansas City	57.50	55.90	48.90	46. 60	45. 60	43.00	44. 10	49.90	53.30	52.40	50. 60	49.30	49. 76
Minneapolis	53.10	51. 25	45.00	42. 10	40. 40	37. 70	39.75	45. 40	47. 50	48.40	46. 25	46.00	45. 24
New York	56. 60	55.00	50.00	46. 40	45.00	44.20	44.10	47.80	48.70-				
Omaha	57.00	56. 00	49. 30	46. 40	44.00	42. 00	44. 90	49. 80	53.30	52.40	50.90	50.25	49. 69
Philadelphi	57.00	54.90	48. 40	44.90	44. 00	43.50	43. 70	47.90	48.90	48. 80	47.60	48.00	48. 13
Pittsburgh	58.00	56.40	51.10	47. 25	43. 40	41. 25	44.30	45. 70	51. 25	52.00	51. 30	47. 50	49.12
San Francisc	51.75	51.25	51.70	53.00	52. 00	50.20	50.00	50.75	49.25	47.50	48.00	48.50	50.32

Division of Statistical and Historical Research. Compiled from weekly reports of the Hay, Feed, and Seed Division.

Table 688.—Bran: Price per ton paid by farmers, United States, 1910-1923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1910	\$26. 20	\$27.00	\$27.03	\$26. 58	\$26. 10	\$25. 37	\$25. 22	\$25. 19	\$24.95	\$24. 56	\$24. 45	\$24. 68
1911	24.92	25.27	24.94	25.48	25.93	25.87	25.80	25.92	26.09	26. 52	26. 72	26.99
1912	27. 39	28. 62	29.16	29.73	30.18	29.35	28.41	27. 41	26.82	26. 58	25.66	25. 16
1913	25. 24	25.32	24.96	24. 69	24. 59	24.67	24. 65	25.10	26.59	26. 53	26. 47	26. 43
1914	26.53	26.91	27.58	28.50	28.08	27.75	26.36	27.24	27.86	26.71	26.40	26.72
1915	27.91	28.96	28.23	28. 28	28.41	27.68	27. 47	27. 22	26.47	25.81	25.42	25. 53
1916	25. 93	26. 23	26. 05	25.97	25.97	26. 13	25.81	26. 53	27. 50	28. 48	31.54	32. 49
1917	32.76	34.87	38.33	42.07	44. 19	40.83	40.40	43.16	39.46	39. 23	39.42	42. 53
1918	41.32	42. 07	42.62	42. 82	42.41	42.30	40.69	39.63	39. 54	39. 38	39.22	38. 95
1919.	49.78	49.95	47.93	48.24	48.66	47.54	47. 14	49.28	49.58	47. 70	48.32	48. 79
1920	50.23	51.13	51.95	55. 26	58.69	59.53	59.91	56. 62	55. 05	48. 43	44. 69	41. 61
1921	39.74	36. 77	35.18	32.15	29.71	29.35	26.83	26. 25	25.31	24. 22	23.60	26. 10
1922	28. 08	29.90	32. 09	31.94	31. 81	30. 22	28.29	27. 24	26. 24	28. 25	30. 78	31. 58
1923	32.53	33.58	35. 48	35.86	36. 44	35.32	33.27	31.31	32. 60	34. 84	35.19	34. 67

Division of Crop and Livestock Estimates. As reported monthly by country dealers.

Thblin 689.-Cottonseed meal: Price per ton paid by farmers, United States, 19101923.

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1910	\$32. 33	\$33.77	\$33.17	\$32.70	\$32. 69	\$32. 18	\$32:38	\$32. 64	\$32. 36	\$31. 84	\$31.37	\$31. 58
1911	31. 83	31.42	31. 32	31. 69.	31. 68	30. 82	31. 17	30.92	31. 01	30. 73	30.12	30. 59
1912	30.42	30.87	31. 22.	31.80	32.28	31.84	31.82	31. 53	30.60	30. 28	29. 37	30. 16
1913	30.97	31.16	31. 08	30.89	31:23	31. 53.	31.56	31.78	32. 32	31. 94	31. 97	32.36
1914	32.49	32. 59	32.65	32. 75	32.98	32. 68 .	32. 62	32.34	30.73	29.44	28. 36	29. 01
1915	29.53	30.88	31. 32	31. 43	31.54	31. 39	31. 36	31. 07	30.79	33. 77	34. 96	36. 45
1916	37.03	37. 08	36.46	36.02	35. 72	35. 60	34.93	35:05	36. 17	37. 80	41. 52	42.96
1917	42. 95	43.33	43.67	44. 73	45. 62	45. 17	46. 45	49. 25	50. 00	50. 98	53.52	55. 52
1918	55.93	56. 25	56.59	56. 41	56. 21	56. 18	55. 69	55. 60	57. 40	59. 22	59.33	60. 5
1	62.81	62.61	62.88	83. 29	63.40	63.06	64.77	71.7	74.08	72. 88	76. 16	78.57
1920	79.39	79.79	79. 70	78.87	78. 74	78. 52	77. 63	73.84	68.22	61: 81	50: 96	47. 17
1921	42.92	41. 93	40. 17	37.41	36.75	37. 84	38. 24	40. 74	41.97	43. 54	43.67	23
1922	45. 08	45. 26	47. 90	49. 44	50.47	50. 42	51.06	48.87	45. 48	46.10	50.54	52.70
1	52. 79	53.91	53.37	52. 79	52.35	51.89	50.36	49.64	49.47	51.08	51. 49	51.75

Division of Crop and Livestoek Estimates. As reported monthly by country dealers.

FARM EQUIPMENT.

Table 690.-Farm equipment manufactured and sold in the United States, 1920-1922.-

1 The sales statistics for 1921 relate exclusively to complete machines and were compiled almost wholly from returns made by 427 establishments classified in the "agricultural implements" industry. No sales data were collected for that year from establishments manufacturing gas tractors, horse-drawn vehicles, barn equipment, and miscellaneous farm equipment.
${ }_{2}$ Figures for 1921 relate to barn equipment only. No daia fer 1920.

Table 690.-Farm equipment manufactured and sold in the United States, 1920-1922-Continued.

Calendar year.	Manufactured.		Sold in the United States.		Sold for export.	
	Number.	Value.	Number.	Value.	Number.	Value.
Miscellaneous:		\$93, 544, 000		\$82, 429, 000		\$7, 495, 000
1921		175, 738, 000		\$82, (1)		(1)
1922		79, 224, 000		83, 886, 000		5, 494, 000
Grand total:		536, 945, 000		471, 442, 000		66, 626, 000
1921		328, 041,000		(1)		${ }^{(1)}$
1922		209, 640, 000		222, 908, 000		21, 663,000

Division of Statistical and Historical Research. Figures for 1920, Bureau of Public Roads. Figures for 1921 and 1922, Bureau of the Census.
${ }^{1}$ The sales statistics for 1921 relate exclusively to complete machines and were compiled almost wholly from returns made by 427 establishments classified in the "agricultural implements" industry. No sales data were collected for that year from establishments manufacturing gas tractors, horse-drawn vehicles, barn equipment, and miscellaneous farm equipment.

MORTGAGE DEBT.
Table 691.-Mortgage debt on owner-operated farms, 1910 and 1920.

State.	$\begin{gathered} \text { Number farms } \\ \text { operated by } \\ \text { owners (per cent } \\ \text { of all farms). } \end{gathered}$		A verage size of owner-operated farm.		Per cent of owner-operated farms mortgaged.		Average debt per farm.		Average debt per acre.	
	1910	1920	1910	1920	1910	1920	1910	1920	1910	1920
	Per cent.	Per cent.	Acres.	Acres.	Per cent.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$				
Maine	94.1	94.2	104.8	111.7	26.5	28. 7	\$845	\$1, 506	\$8.06	\$13. 48
New Ham	90.5	90. 6	116.9	123.4	25.5	29.0	842	1, 378	7. 20	11.17
Vermont	85.8	86.4	136. 0	140.2	46. 8	48. 7	1,025	2, 049	7.54	14. 61
Massachusetts	86. 9	87.8	73.1	72.0	40.6	45. 0	1, 361	2,007	18. 62	27. 88
Rhode Island	77.2	79.5	77.9	76.7	28.9	29. 2	1,355	1,746	17.39	22.76
Connecticut	86.6	86.8	78.8	78.4	42.9	45.4	1,309	2,195	16. 61	28. 00
New York	77.3	78.5	94.9	99. 4	43. 4	43. 9	1,556	2, 436	16. 40	24. 51
New Jersey	72.1	73.7	64.8	65,1	48.9	46.1	1, 826	2,703	28. 18	41. 52
Pennsylvan	74.9	75.9	78.5	81.5	30.9	31.6	1, 368	1,976 2,344	17.43 19.66	24. 25 31.21
Delaware	57.0	59.3	77.2	75. 1	36.6	33.6	1,518	2, 344	19. 66	31. 21
Maryland	68.5	68.5	86.7	83. 9	36. 2	34.6	1,457	2,641	16.81	31. 48 19.54
Virginia	72.6	73. 2	110.1	100.9	15. 8	17.8	887	1,972	8. 06	19.54
West Virginia	78. 6	82. 6	107.7	108. 4	12.5	14. 2	710 517	1,241	6.59 4.80	11.45
North Carolina	57.3	56.1	107.7	88. 8	18.3	16.2	517 903	1,587	4. 80 7.22	17.87 20.68
South Carolina	36.5	35.1	125. 1	99.2	23.3	21.1	903	2, 051	7. 22	20.68
Georgia	33.9	32.9	150.6	125.3	18.5	22. 7	794	1,811	5. 27	14. 45
Florida	70.8	71.3	121.1	105. 5	14. 6	21.1	1	1, 767	5. 17. 86 1.	16.75
Ohio	70.6	69.3	83.5	84.3	28. 6	28.5	1,491	2, 812	17. 86	33. 36 27.76
Indiana	68.9	66.9	93.9	93. 8	38. 3	37. 5	1,433 3,135	2, 5 5 ,	15. 26 25. 57	27. 43. 1
Illinois	57.6	55.9	122.6	122.7	38.4	38.5	3,135	5, 379	25. 57	43. 84
Michigan	83.3	81.1	87.7	91.2	48. 0	49. 4	1,107	2, 147	12. 62	23. 54
Wisconsin	85.3	84.3	115.0	111.8	51.1	59.1	2, 116	4, 072	18. 40	36. 42
Minneso	78.2	74. 4	169.3	158. 3	46.0	52.4	1,864	4, 419 9,358	11.01	27. 62
Iowa.	61.3	57.1	152. 0	148. 1	51.2 46.0	54. 2 46.2	4,048 1,758	9,358 3,147	26. 63 13.42	23.59
Missouri	69.4	70. 4	131.0	133.4	46. 0	46.2	1, 758	3, 147		23. 10.15
North Dakota	85.0	73. 3	373. 1	471. 7	50. 2	71.1	2,493 2,897	4,786 6,402	6. 888	10.15
South Dakota	74.7	64. 1	333.1	505. 5	37. 4	57.0 50.5	2,897 3,154	6,402 7,025	8. 70 9.27	12.66 18.53
Nebraska	61. 1	56. 0	340.4 259.6	379.2 282.0	38.9 44.3	50.5 45.4	3,154 2,326	7,025 4,083	9. 27 8.96	18.03
Kansas.--	62.5 65.7	58. 7	259.6 102.5	282.0 93.6	44.3 19.4	45.4 22.6	2,326 906	1, 1,889	8. 84	20.18
Kentucky	65.7	68.3 58.6	102. 5	93.6 93.0	16.4	21. 8		1,812	7.14	19. 48
Tennessee	58.6	58.6 41.8	101.8 127.8	93.0 113.2	16. 7	21. 8	727 538		4.21	10.39
Alabama	39.5	41.8 8	127.8 127.3	113.2 124.1	26.4 32.3	26. 3	538	1,176	4. 60	11. 08
Mississippi	33.6	33.6	127. 3	124.1 109.3	32. 18.6	26.3 20.6	586 1,190	1,375 1,989	4. 60 9.32	18. 20
Louisiana	44.0	42.3 46.1	127.7 353.3	109.3 339.2	18. 6	20. 8	1, 1,584	2,984	4.48	8.80
Texas	46.9	46.1 48.6	353.3 187.3	339.2	42. 2	34. 50	1,114	2,157	5.95	10.88
Oklahoma	44.9 49.7	48. 6 48.4	187.3 116.2	198. 2	21.0	50. 3 0.2	1, 540	1,306	4. 65	12. 46
Montan	89.1	87.2	455. 4	575. 9	20.6	59.5	2, 692	3, 669	5.91	6. 37
W yoming	89.0	85.1	526. 9	698.3	19.7	41. 1	2, 749	3,887	5. 22	5. 57
Colorado	80.1	75.6	274.0	411.2	26.0	46.7	2,508	3, 980	9.15	9. 68
New Mexi	93.6	86.3	212.5	693.2	5. 3	24.3	1, 854	2, 581	8. 72	3. 72
Arizona	88.9	78.9	106. 7	485.4	12. 7	43.0	2,772	5,441	25. 98	11. 21
Utah	91.2	88.0	146. 1	179.9	22.7	43.9	1,294	3, 009	8.86	16. 73
Nevada	80.9	85.3	474. 7	525.9	16.6	32.8	4,738	8,499	9.98	16. 16
Idaho.	88.2	82.3	163.7	196. 2	33. 2	57.9	1,917	4, 076	11.71	20. 77
W ashing	84.5	79.5	191. 9	175. 7	33. 7	45. 5	2, 017	3, 134	10. 51	17. 84
Oregon.	83.1	79.4	239. 1	251. 3	33. 4	44.8	2, 060	3, 622	8. 62	14. 41
California	75.5	74.4	227.0	196. 3	40.1	50.4	2,802	6,001	12.34	30.57
United	62.1	60.9	151. 6	162. 2	33.2	37.2	1,715	3,356	9.99	17.50

[^335]1158 Yearbook of the Department of Agriculture， 1923.

BANKRUPTCY AMONG FARMERS．
Table 692．－Bankruptcy among farmers：Cases concluded in fiscal years ending June 30，1910－1923．

State．	1909－10			1910－11			1911－12			1912－13			1913－14		
	Total．	Farmers		Total．	Farmers．		Total．	Farmers．		Total．	Farmers．		Total．	Farmers．	
					安			灾			$\begin{aligned} & \dot{4} \\ & \text { 曾 } \\ & \text { 号 } \end{aligned}$			宮	
Maine	697		12.2	496		13． 3	584			568		10.4	597		
New Hampshire－	114		6． 1	59.		1．7	${ }^{83}$	11		107				4	
Yermont－－．．－－－	112	19	17． 0	125	10		113	11		108			1．112	8	
Massachusetts	977 76		4．${ }^{7}$	950 84			$\stackrel{914}{95}$	1		144			90		
Connecticut	74		2.7	192	2	1.0	221	4	1.8	210	3	1.4	138		
New York	1，838		2． 0	2，110	37	1.8	2， 272	33		2， 402	41		2，078	33	
New Jersey	87	1.1	1.2	112	1.	． 9	439	4		288	4		266	4	
Pennsylvania	966	14	1． 5	799	10	1．3	${ }_{6}^{617}$	21		990	21		762	$\stackrel{26}{26}$	
Ohio．	886	32	3． 6	742	27	3.6	835	24		849	28		808	27	
Indiana＿	316	18	5． 7	245		10.6	230	13		309	23		302	19	3
Illinois．	1，315	43	3． 3	1， 105	27		1，328	34		1，052	20		1，651	35	
Michigan	301		． 7	301		1.3	298	3	1.0	347	53	15.3	153		
Wisconsin	229		1.3	251	5	2.0	213			292			310		
Minnesota	572	60	10.5	333			422			411					
Iowa	272		31.3	285		19.7	276		29．7	358		16．8	345	69	
Missouri	494		3.2	506	10	2.0	346			518	15		523	105	
North Dakota	130		51.5	119		34． 5	125		${ }^{43.2}$	165	${ }_{25}$		115		
South Dakota	82		36． 6	36			${ }_{111}^{94}$		20． 5	${ }_{145}$			114		10.5
Nebraska－	104		14.4	95			111								
Kansas	148	14	9.5	145	7	4.8	173	11		196	19		259	21	
Delaware	－${ }^{7}$			9			16			109		$\begin{array}{r}14.3 \\ 3.7 \\ \hline\end{array}$	33 139	${ }_{7}^{7}$	
Maryland．	151		3.3	${ }_{60} 8$	6	7.4	117			109 56			43		
Dist．Columbia－－－	52 300		2.0	－60	14	3.9	431		1.6	514	－－－17	3	468	12	2.6
Virginia－－－－－－－－－	300												521		
West Virginia	187	10	5． 4	277	13	4． 7	306	10		292		3.1 1.9	108		
North Carolina－－－	71 98		1． 4	${ }_{67}^{99}$		1.5	85	2	2． 4	107	1		108	3	2.8
Georgia	410	39	9.5	487	40	8． 2	505	48	9.5	557	51	2	670	73	
Florida－－－	133	1	． 8	89	1	1.1	102			200			153		
	298		6.4	204		12.3	285		13.0	369	34	9． 2	466	29	6． 2
Tennessee	604	8	1.3	517	20	3.9	694	19	2.7	660	14	2.1	530	19	
Alabama．	257	10	3．9	395	18	4． 6	519	32	6． 2	792	1		1，227	52	4.2
Mississippi．	183		． 6	100		2． 0	101		3．0	201			163		3.7
Arkansas ．．－	159	12	7． 6	183	10	5.5	140		11.4	148			163		
Louisiana	187		8． 6	212	21	9.9	201	13		179	15		201	13	6.5
Oklahoma	159	14	8.8	177	16	9． 0	300	11	3．7	294	2	9.9	319	18	5． 6
Texas	287	24	8.4	304	25	8． 2	251	22	8．8	579	37	6.4	508	44	
Montana	98		9.2	87		10.3	129		15．5	144		26.4	170		32． 4
Idaho．	37						35								
W yoming				18			21			22			28		
Colorado	204	17	8.3	192	19	9.9	234	24	10.3	322	17	5.3	249	31	
New Mexico．－	31		3.2	25		4.0	11			18			7		14.3
Arizona－－	${ }_{88}^{17}$			116		4.3	126			142		1.4	177	3	1.7
Utah．－－－	88		3.4	16											
Nevada	11						19			$\stackrel{24}{ }$	2			36	8
W ashington	169			227			227			${ }_{216}$	18	8.3	468	32	6．9
Oregon－－ California	106	69	$\begin{array}{r} 8.5 \\ 10.0 \end{array}$	176	19	5.9 3.5	628	22	3．5	738	31	4.2	782	47	0
United States．	14， 795	849	5． 7	14， 150	679		15，589	837		17，588			18，741	1，045	5.6

Table 692．－Bankruptcy among farmers：Cases concluded in fiscal years ending J une 30，1910－1923－Continued．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{State．} \& \multicolumn{3}{|c|}{1914－15．} \& \multicolumn{3}{|c|}{1915－16} \& \multicolumn{3}{|c|}{1916－17} \& \multicolumn{3}{|c|}{1917－18} \& \multicolumn{3}{|c|}{1918－19} \\
\hline \& \multirow[b]{2}{*}{Total．} \& \multicolumn{2}{|l|}{Farmers．} \& \multirow[b]{2}{*}{Total．} \& \multicolumn{2}{|l|}{Farmers．} \& \multirow[b]{2}{*}{Total．} \& \multicolumn{2}{|l|}{Farmers．} \& \multirow[b]{2}{*}{Total．} \& \multicolumn{2}{|l|}{Farmers．} \& \multirow[b]{2}{*}{Total．} \& \multicolumn{2}{|l|}{Farmers．} \\
\hline \& \& 呙 \& \& \& \[
\begin{aligned}
\& \text { 过 } \\
\& \text { 若 } \\
\& \text { 亿 }
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& \dot{\oplus} \\
\& \text { 㽞 } \\
\& \frac{\square}{4}
\end{aligned}
\] \& \& \& 先 \& \& \& 吕 \& W \\
\hline Maine \& 779 \& 88 \& 11.3 \& 589 \& \& 19．5 \& 775 \& 100 \& 12．9 \& 735 \& 85 \& 11.6 \& 523 \& \& 14.7 \\
\hline New Hampshire． \& 109 \& 6 \& 5． 5 \& 62 \& \& 1． 6 \& 87 \& \& 2． 3 \& 67 \& \& 4.5 \& 51 \& \& 9． 8 \\
\hline Vermont－－－－－－－－ \& 96 \& 7 \& 7． 3 \& 118 \& \& \& 125 \& 19 \& 15． 2 \& 86 \& 6 \& 7.0 \& 67 \& \& ． 4 \\
\hline Massachusetts． \& 1，067 \& 8 \& \& 1，491 \& \& \& 1，682 \& 12 \& ． 7 \& 1， 645 \& 21 \& 1.3 \& 1，565 \& \& ． 6 \\
\hline \multicolumn{16}{|l|}{} \\
\hline onnecticu \& 224 \& 3 \& 1． 3 \& 271 \& 8 \& 3.0 \& 391 \& 19 \& 4.9 \& 278 \& \& 3.2 \& 247 \& 5 \& 2.0 \\
\hline Connecticu \& \& 57 \& 2． 4 \& 2， 776 \& 46 \& \& 3， 108 \& 75 \& 2.4 \& 2，992 \& 59 \& 2.0 \& 2， 644 \& 57 \& 2.2 \\
\hline New York \& 2， 3974 \& 1 \& 2． 4 \& 2， 558 \& 7 \& 1． 3 \& 3， 625 \& 8 \& 1． 3 \& 2， 302 \& 5 \& 1.7 \& － 388 \& 6 \& 1． 6 \\
\hline New Jersey \& 1，\({ }^{344}\) \& 32 \& 3． 2 \& 1，002 \& 35 \& 3． 5 \& 1，021 \& 47. \& 4． 6 \& 807 \& 33 \& 4． 1 \& 700 \& 26 \& 3． 7 \\
\hline \multirow[t]{2}{*}{Ohio－－－－－－．－－－－－－－－} \& \(\begin{array}{r}1,008 \\ \hline 866\end{array}\) \& 24 \& 2． 8 \& 1，945 \& 44 \& \& －924 \& 28 \& 3.0 \& 969 \& 43 \& 4.4 \& 687 \& 15 \& 2.2 \\
\hline \& \& \& \& \& \& \& \& \& \& 225 \& \& 6． 7 \& 157 \& \& \\
\hline Indiana \& 253 \& 16 \& 6．3 \& －355 \& 22 \& \& 322
1,709 \& 26 \& 8． 1 \& 1， 225 \& 15 \& 6． 2 \& 1，513 \& 145 \& \\
\hline Illinois \& 1， 398 \& 44 \& 3． 2 \& 1,603
419 \& 57
9 \& \& 1,709
-538 \& 12 \& 2． 2 \& \begin{tabular}{|r}
1,445 \\
49.7
\end{tabular} \& 12 \& 2． 4 \& 1，592 \& 10 \& 1.7 \\
\hline Michigan \& 520 \& \& \& 419
416 \& 14 \& \& 439 \& 7 \& 1． 6 \& 390 \& 10 \& 2． 6 \& 397 \& 11 \& 2.8 \\
\hline Wisconsin \& 314
435 \& 6
16 \& 1．9 \& 416 \& 19 \& \& 644 \& 59 \& 9.2 \& 668 \& 49 \& 7.3 \& 583 \& 16 \& 2.7 \\
\hline Minnesota．．．．．．．－－ \& 435 \& 16 \& 3.7
28 \& 516

378 \& 19 \& \& 644
360 \& 59

72 \& 20．0 \& | 668 |
| :--- |
| 68 | \& 78 \& 21.5 \& 261 \& \& 15.3

\hline Iowa＿ \& 295 \& \& 22．4 \& 378 \& \& \& 360
598 \& \& 20．7 \& 363
681 \& 24 \& 3． 5 \& 594 \& 31 \& 15． 2

\hline Missouri \& 551 \& 10 \& 1．88 \& 604
175 \& \& \& 148 \& \& 40． 5 \& 165 \& 61 \& 37．0 \& 102 \& 37 \& 36.3

\hline North Dakota \& 190 \& \& \& $\begin{array}{r}175 \\ 90 \\ \hline 1\end{array}$ \& \& \& 181 \& \& 27． 6 \& 37 \& 17 \& 46．0 \& 23 \& \& 26.1

\hline South Dakota．－－－ \& 142 \& 33
18 \& 23.2
9.8 \& 90 \& $\stackrel{16}{23}$ \& 13.5 \& 216 \& 20 \& 9.3 \& 204 \& 12 \& 5．9 \& 154 \& 8 \& 5.2

\hline Nebraska．－－－－－－－－－ \& 18 \& 18 \& 9.8 \& 171 \& 23 \& \& 216 \& \& \& \& 26 \& \& \& 18 \&

\hline Kansas \& 307 \& 36 \& 11．7 \& 249 \& \& \& 244 \& \& 14.8 \& 16 \& 26 \& \& \& \&

\hline Delaware \& 18 \& \& \& 12 \& 10 \& 6.9 \& 141 \& 13 \& 9.2 \& 177 \& 19 \& 10.7 \& 109 \& 6 \& 5.5

\hline Maryland．－ \& 141 \& 6 \& 4.3 \& 146 \& 10 \& 6.9 \& 141 \& 13 \& 9.2 \& 60 \& \& \& 13 \& \&

\hline \multirow[t]{2}{*}{Virginia－－－－－－－－－－} \& 39
555 \& 21 \& 3.8 \& 696 \& 25 \& 3． 6 \& 708 \& 41 \& 5.8 \& 561 \& 37 \& 6． 6 \& 419 \& 38 \& 9.1

\hline \& 555 \& 21 \& 3.8 \& 696 \& 25 \& 3． 6 \& 293 \& \& \& \& 14 \& \& 205 \& 16 \&

\hline West Virginia \& 485 \& 16 \& 3.3 \& 302 \& 14 \& 4． 6 \& 293 \& 20 \& 6． 8 \& 302 \& 8 \& 5． 6 \& 72 \& 3 \& 4.2

\hline North Carolina． \& 118 \& 3 \& 2.5 \& 168 \& 1 \& 2．${ }^{-6}$ \& 1179 \& 7 \& 5． 4 \& ＋81 \& 2 \& 2． 5 \& 60 \& 2 \& 3.3

\hline South Carolina \& ＋156 \& \& \& 1， 1864 \& 310 \& 6． 7 \& 1，667 \& \& 19.1 \& 1， 456 \& 322 \& 22.1 \& 852 \& 216 \& 25.4

\hline Georgia \& 1，481 \& 126 \& 8． 5 \& 1， 862 \& 310 \& 6． 1.6 \& 1,667
202 \& 5 \& 2.5 \& 173 \& 8 \& 4． 6 \& 110 \& 10 \& 9.1

\hline Florida．－．－－－－－－－－－－ \& 220 \& 5 \& 2.3 \& 253 \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{} \& 5 \& 19 \& 3.3 \& 509 \& 30 \& 5． 9 \& 470 \& 19 \& 4． 0 \& 476 \& 29 \& 6.1 \& 273 \& \& 11.7

\hline \& 1，165 \& 36 \& 3.1 \& 948 \& 45 \& 4． 8 \& 1，059 \& 65 \& 6.1 \& 890 \& 44 \& 4． 9 \& 507 \& 22 \& 4． 3

\hline Tennessee \& 1， 1,081 \& 72 \& 6． 7 \& 861 \& 85 \& 9.9 \& 806 \& \& 10.9 \& 1，544 \& 93 \& 6． 0 \& 1， 341 \& 68 \& 5.1

\hline Alabama - －－－－－－－ \& 1,081
92 \& \& \& 101 \& 4 \& 4.0 \& 368 \& 12 \& 3.3 \& 490 \& 13 \& 2． 7 \& 130 \& \& 3.1

\hline \multirow[t]{2}{*}{Mississippi Arkansas} \& － 92 \& \& \& 301 \& 20 \& 6． 6 \& 319 \& \& 11.3 \& 169 \& 32 \& 18.9 \& 185 \& 20 \& 10.8

\hline \& 186 \& \& \& 301 \& 20 \& \& \& \& \& \& \& \& \& \& 13.5

\hline Louisiana \& 213 \& \& 10.8 \& 277 \& 25 \& 9． 0 \& 242 \& \& 12．0 \& 173 \& 28 \& 11． 2 \& 156 \& \&

\hline \multirow[t]{2}{*}{Oklahoma－－－－－－－－} \& 228 \& \& 7.5 \& 448 \& 36 \& 8． 0 \& 452 \& 39 \& $\begin{array}{r}8.6 \\ 14 \\ \hline\end{array}$ \& 273 \& 31
95 \& 11． 4 \& 539 \& \& 20． 4

\hline \& 421 \& \& 11.9 \& 876
270 \& \& 11.1 \& 760 \& \& 14.0 \& 198 \& 38 \& 19.2 \& 204 \& \& 25.5

\hline \multirow[t]{2}{*}{Idaho－－－－－－－－－－－－－－－－} \& 200 \& \& 35． 5 \& 870
80 \& \& \& 121 \& 27 \& 22． 3 \& 70 \& 15 \& 21． 4 \& 98 \& \& 20.4

\hline \& 67 \& \& \& 80 \& \& \& 121 \& \& 2． 0 \& \& \& \& 25 \& \&

\hline W yoming ．．－．－－．－ \& 40 \& \& 20.0 \& 22 \& \& 13． 6 \& 43 \& \& 7．0 \& 257 \& $$
21
$$ \& 8． 2 \& 174 \& 19 \& 10.9

\hline W yoming－－－－－－－－－－－－
Colorado \& 297 \& 47 \& 15.8 \& 326 \& \& \& 363
25 \& $\stackrel{4}{2}$ \& 8． 8 \& 26 \& \& 15． 4 \& 22 \& \& 4.5

\hline \multirow[t]{2}{*}{New Mexico．．．－－－－－－
Arizona} \& 34 \& \& \& 37
25 \& 3 \& 8.1 \& 22 \& 2 \& 9．1 \& 38 \& \& 2． 6 \& 23 \& \&

\hline \& | 19 |
| :---: |
| 16 | \& \& 10．5 \& 288 \& 14 \& 4.9 \& 242 \& 20 \& 8． 3 \& 297 \& 22 \& 7.4 \& 302 \& \& 3.0

\hline Utah．－－－－－－－－－－－－ \& 167 \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Nevada－－－－－－－－－ \& \& \& \& \& \& \& 15 \& \& 8． 3 \& 9
498 \& 50 \& 11．1 \& 341 \& \& 9．7

\hline Washington．－－－－－ \& 350 \& 27 \& 7.7 \& 461 \& 38 \& 8． 4.3 \& 413 \& 40 \& 8． 7 \& 573 \& 32 \& 5． 6 \& 381 \& 28 \& 7.

\hline \multirow[t]{2}{*}{| Oregon |
| :--- |
| California |} \& 439

907 \& 31 \& \& 422
989 \& 18 \& 4．
6.0 \& 1，210 \& 74 \& 6．1 \& 975 \& 55 \& 5．6 \& 991 \& 49 \& 4.9

\hline \& 907 \& 42 \& 4.6 \& 989 \& 59 \& 6.0 \& \& \& \& \& \& \& \& \&

\hline United States． \& 21， 233 \& 1，246 \& 5．9 \& 23， 931 \& 1，658 \& \& 25， 265 \& 1，906 \& \& 23， 462 \& 1，632 \& 7.0 \& 19， 301 \& 1，207 \& 6．3

\hline
\end{tabular}

Table 692-Bankruptcy among farmers: Cases concluded in fiscal years ending June 30, 1910-1923-Continued.

State.	1919-20			1920-21			1921-22			1922-23		
	Total.	Farmers.		Total.	Farmers.		${ }^{\text {Trotal. }}$	Farmers.		Total.	Farmers.	
		Number.	Per cent of all cases.		Num-	Per cent of all cases.		Number.	Per cent of all cases.		$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$	Per cent of all cases.
Maine	454	50	11.0	420	62	14. 8	431	51	11.8	658	94	14.3
New Hampshire	51	4	7.8	53	3	5. 7	123	7	5. 7	76	12	15.8
Vermont.--	133	10	7.5	85	14	16.5	166	21	12. 7	100	20	20.0
Massachusetts	1,034	6	. 6	728	9	1. 2	901	10	1.1	1,592	5	. 3
Rhode Island...---	38			50	1	2. 0	72	1	1.4	166		
Connecticut	190	2	1.1	138	2	1. 5	201	2	1. 0	399	15	3. 8
New York	2, 241	49	2. 2	2, 039	61	3. 0	2, 076	38	1.8	3, 128	96	3.1
New Jersey	336	2	. 6	297	5	1. 7	277	4	1. 4	502	4	. 8
Pennsylvania	534	16	3. 0	421	25	5. 9	571	35	6. 1	1,165	48	4.1
Ohio--------	599	18	3.0	460	23	5. 0	680	64	9.4	1,279	156	12. 2
Indiana	138	12	8. 7	124	16	12. 9	245	59	24.1	333	84	25.2
Illinois	1,089	29	2. 7	697	11	1. 6	1,012	81	8. 0	1,714	192	11.2
Michigan	338	4	1. 2	220	1	. 5	434	11	2. 5	909	27	3.0
Wisconsin	314	20	6. 4	232	11	4. 7	364	32	8. 8	696	110	15. 8
Minnesota.--------	532	42	7.9	480	57	11.9	651	189	29.0	1,023	291	28.5
Iowa_	194	36	18.6	275	75	27.3	704	368	52.3	93.5	489	52.3
Missouri	514	25	4. 9	301	22	7. 3	403	61	15.1	560	105	18.8
North Dakota.-.---	130	50	38.5	146	93	63.7	302	237	78.5	749	515	82.1
South Dakota.-----	131	18	13.7	76	24	31.6	73	38	52.1	232	148	63.8
Nebraska --.--	118	11	9.3	86	8	9.3	184	60	32.6	259	132	51.0
Kansas.	158	31	19.6	211	45	21. 3	328	113	34.5	588	225	38.3
Delaware	6	1	16. 7	20			35	3	8.6	29	2	6.9
Maryland -----------	79	3	3.8	84	5	6. 0	159	17	10.7	170	37	21.8
Dist. Columbia.-.-	32			35			35			59		
Virginia.	291	17	5.8	516	24	4.7	726	40	5.5	1,320	87	6.6
West Virginia.-..--	183	5	2. 7	220	10	4. 6	268	12	4. 5	328	7	21
Norttr Carolina_---	42	3	7.1	63	2	3. 2	154	13	8.4	215	16	7.4
South Carolina	45	1	2. 2	58	4	6. 9	115	1	. 9	246	24	9.8
Georgia-----------	909	129	14. 2	1,063	241	22.7	2, 344	588	25.1	2,918	$7 \% 2$	26. 5
Florida------------	86	10	11.6	111	11	9.9	145	4	2.8	348	14	4.0
Kentucky ----------	241	24	10.0	188	21	11. 2	222	43	19.4	587	88	15.0
Tennessee.	560	32	5. 7	724	24	3. 3	1,133	46	4.1	1,600	118	7.4
Alabama	735	49	6. 7	1,419	43	3. 0	2, 461	100	4.1	1,977	181	9.2
Mississippi-.-------	57	3	5. 3	239	12	5. 0	265	12	4. 5	462	33	7. 1
Arkansas-----------	439	8	1. 8	163	17	10.4	266	72	27.1	454	76	16.7
Louisiana	139	17	12. 2	114	12	10. 5	219	32	14.6	423	129	30.5
Oklahoma	139	13	9. 4	128	13	10.2	240	38	15.8	551	81	14.7
Texas.-.	236	57	24. 2	383	82	21.4	628	122	19.4	1,208	253	20.9
Montana	178	63	35. 4	226	82	36. 3	363	215	59.2	611	366	59.9
Idaho.	86	12	14.0	80	19	23.8	169	79	46.8	292	160	54.8
W yoming	21	3	14.3	24	8	33.3	42	12	28.6	56	14	25.0
Colorado-	141	18	12.8	212	48	22.6	249	77	30.9	366	118	32. 2
New Mexico	18	3	16.7	20	2	10.0	37	3	8. 1	17	3	17.7
Arizona.	12			21	1	4. 8	40	9	22.5	105	37	35. 2
Utah.-	185	5	2. 7	151	17	11.3	177	22	12. 4	235	32	13.6
Nevada	1.			11			21	2	9. 5	2		
W ashington.	300	20	6. 7	261	29	11.1	377	49	13.0	727	131	18.0
Oregon.	207	7	3.4	407	11	2. 7	370	33	8.9	717	110	15.3
California.	949	59	6. 2	682	57	8.4	1,004	110	11.0	1,150	183	15.9
United States_	15, 583	997	6. 4	15,162	1, 363	9.0	22, 462	3,236	14.4	34, 236	5,940	17.4

Division of Agricultural Finance. Compiled from annual reports of the Attorney General.

FARMERS' INCOMES.

$\mathrm{T}_{\mathrm{Able}}$ 693.-Farmers' incomes: Returns from farming, 1922.

Item.	United States.	$\begin{gathered} \text { North } \\ \text { Atlantic. } \end{gathered}$	South Atlantic	East North Central.	West North Central.	South Central.	Western.
Number of reports	6, 094	648	803	1,274	1,395	1,282	692
Size of farm-.-------------------acres Value of farm real estate	(313,586	- ${ }^{148} 818$	206 $\$ 9,565$	145 $\$ 13,986$	$\begin{array}{r}339 \\ \$ 19,940 \\ \hline\end{array}$	\$ ${ }_{\text {\$9,027 }} \mathbf{2 1 2}$	498 $\$ 17,672$
Value of farm personalty (Jan. 1,1922)	2, 844	3,043	1,857	2,563	3,661	2,153	3,955
Receipts:					684	888	1,286
Crop sales ...	860	352	347	754	1,148	410	617
Sales of livestock -.....-.	- 454	1,193	245	621	1, 379	167	382
Misceilaneous sales------	42	${ }^{1} 92$	54	39	24	32	37
Total	1,972	2, 618	1,532	1,920	2, 235	1,497	2,322
Cash outlay:	331	524	309	245	280	284	522
Livestock bought	204	153	161	228	321	138	138
Feed bought..	175	467	86	176	178	90	159
Fertilizer...	57	151	178	41	${ }^{6}$	32	${ }_{5}^{9}$
Seed	43	59	38	40	39	38	54
Taxes	174	146	91	210	$\stackrel{211}{215}$	111	277
Tools and machinery	123	143 215	82 85	122	152 198	81 92	177
Miscellaneous purchases	150						181
Total	1,257	1,858	1,030	1,211	1,385	866	1,510
Receipts less expenses	715	760 98	502 121	709 219	850 385	631 104	812 174
Increase in inventory	202	98	121	219		104	
Net result	917	858	623	928	1,235	735	986
Noncash, estimated items, reported for approximately two-thirds the number of farms.							
Value of food and fuel produced and used on the farm.	294	273	362	276	287	301	${ }_{919}^{269}$
Value of family labor, including owner-	716	850	504	759	854	477	919
Change in value of real estate during 1922 (-shows decrease)	-52	-16	78	-105	-27	9	-303

Division of Farm Management. Computed from reports of 6,094 individual farms operated by their owners.

Table 694.-Farmers' incomes: Returns to labor and to capital, 1922.

Item.	United States.	North Atlantic.	South Atlantic.	East North Central.	West North Central.	South Central.	Western.
Net results, as given...--.	\$917	\$858	\$623	\$928	\$1, 235	\$735	\$986
Add food and fuel ${ }^{1}$--	294	273	362	276	287	301	269
Total farm returns_	1, 211	1,131	985	1,204	1,522	1,036	1,255
Less unpaid labor ${ }^{2}$	\$716	\$850	\$504	\$759	\$854	\$477	\$919
Return to capital.-	495	281	481	445	668	559	336
Return to capital, per cent ${ }^{3}$----------	3.0	2.4	4.2	2.7	2. 8	5.0	1.6
Interest assuming rate of 6 per cent ${ }^{4}$---	\$986	\$707	\$685	\$993	\$1,416	\$671	\$1, 298
Return to all unpaid labor-----------	225	424	300	211	106	365	--43
Return to operator (prorated) ${ }^{5}$	158	334	226	156	70	295	-37
Return to operator (family labor at hired labor rates) ${ }^{6}$	9	244	176	13	-182	273	-170

Division of Farm Management. Computed from reports of 6,094 owner-operators and other information. In computing this table certain arbitrary assumptions are explicitly or implicitly made.
${ }^{1}$ A verage of estimates of 4,748 farmers.
2 A verage as estimated by 5,248 farmers.
${ }^{8}$ Based on reported value of farm property January 1, 1922.
4 Many men recall paying much more than 6 per cent.
${ }^{5}$ Assumes that all unpaid family labor shared the reduced amount according to the amount of its claim established. (1) For the operator as 12 times the monthly wages without board and (2) for the rest of the family, the difference between operator's labor so figured and the reported value of unpaid labor.
${ }^{6}$ The assumption is that the operator bears all the burden of failure to earn common hired labor wages, and attributes such wages to his family before computing his remainder or wages.

Table 695.-Farmers' incomes: Summary of the business of 14 farms operated by the same men for 11 consecutive years, Palmer Township, Washington Co., Ohio, 1912-1922.

${ }^{1}$ A productive animal unit in this area equals 1 horse, 1 cow, 5 hogs, 10 sheep, or 100 chickens.

Table 695.-Farmers' incomes: Summary of the business of 14 farms operated by the same men for 11 consecutive years, Palmer Township, Washington Co., Ohio, 1912-1922-Continued.

Division of Farm Management.

FOREIGN EXCHANGE.

Table 696.-Foreign exchange: Average rates at New York, 1912-1923.
argentine pesos, Paper. ${ }^{1}$

Calendar year.	Jan.	Feb.	Mar.	Apr	May.	Jun	Jul	Aug.	Sep	Oct.	Nov.	Dec.
	C		Ce	C	Cen	Cen	Cen	Cent	Cen	en	Cents.	Cents.
1-	42.460	42. 500	42. 604	42.655	42.526	42.510	42. 510	42. 510	42. 510	42.510	42. 478	
	42.510	42.878	42. 720	42. 535	42.470	42. 395	42. 260	42.110	42. 110	42. 110	42. 110	42. 110
19	42.158	42.522	42. 540	42. 365	42. 230	42. 230	42. 246	243. 465	44. 683	43. 042	43. 428	43.720
19	43.348	43.332	42.925	42. 580	42. 005	42.018	42. 236	41. 385	41	42.080	42. 212	
1916	42. 652	42.858	43.158	43. 058	42. 525	42.182	41. 592	41. 402	42. 126	42. 900	43. 240	43. 824
19	44. 170	43. 960	43. 402	42. 642	43. 262	43. 918	43. 525	43. 104	42. 900	43.768	45. 600	46. 680
19	44. 820	43. 895	44. 062	44. 472	45. 192	44.820	44. 388	44. 413	44. 632	44. 712	44. 828	
191	44.804	44.748	44. 328	44.045	44. 100	43. 220	42. 5	42.138	42.315	42. 324	42. 945	43. 110
1920	43. 076	43. 108	43.320	42. 957	42. 485	42.058	40. 496	37. 657	36. 808	35. 807	33. 650	34. 368
1921	34. 792	35. 078	34. 122	32. 476	31. 585	30. 782	28. 952	29. 284	30. 637	32. 154	32. 329	32. 914
1922	33. 963	36. 334	36. 423	35, 529	36. 260	36. 016	36. 013	36. 117	35. 677	35.822	36. 180	37.650 31.826
1923	37. 284	37. 055	37. 024	36. 585	35. 939	35. 485	34. 205	32.762	32. 935	32.410	31.304	31.826

EGYPTIAN TALARI. ${ }^{3}$

	100.345	00. 388	100.310	99. 980	100. 00	99. 992	99.				9.	
	100. 144	99.928	99.845	99. 832	99. 862	99.690	99. 662	99.95	10. 120	100. 244		
1914	99.965	99.855	99. 685	99.828	99.912	99. 912	00. 158	03. 630	103. 29	02. 552		36
	99. 582	99.138	98. 708	98.372	98.320	97. 955	97. 738	96. 335	96. 23	96. 144	95. 805	96. 840
1916	97. 505	97.652	97.740	97. 770	97.648	97. 575	97. 592	97.590	97.6	97. 698	97.698	97. 644
1917	97. 605	97. 538	97. 576	97. 670	97. 578	97. 526	97. 608	97. 680	97.6	97. 572	97. 576	98. 080
1918	97. 585	97.580	97. 552	97. 598	97. 600	97. 570	97.560	97. 618	97.6	97. 675	97. 712	97.710
1919	97. 726	97. 702	96. 480	95. 525	95. 808	94. 588	91. 395	88.036		85. 560		42
1920	75. 864	68.660	74. 123	80. 088	78. 934	79. 642	78. 362	73. 498	72.510	70. 876	70.565	72. 482
1921	76. 915	79. 482	80.405	80.780	82. 390	78. 298	75.126	75.128	76. 810	79. 538	81. 428	84. 630
19	86.725	89. 163	87.592	89. 970	91. 120	91. 377	91.118	91.955	90.828	. 275	91. 558	93. 842
1923	95.070	96. 730	96.850	95. 528	95.382	94.880						

[^336]
1164 Yearbook of the Department of Agriculture, 1923.

Table 696.-Foreign exchange: Average rates at New York, 1912-1923-Contd.
INDIAN RUPEE. 4

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
1919	35. 650	35. 650	35. 875	35. 650	42.500	42. 500	43. 000	43. 500	45. 000	43. 000	43. 375	45. 000
1920	44. 125	45. 500	47. 250	46. 500	43. 500	40. 875	37. 875	35. 750	33. 788	30.625	29.375	27. 250
1921	28. 574	28. 938	26. 906	26. 100	26.344	25. 422	23. 059	24. 224	26. 390	27. 419	26. 874	27. 449
1922	27. 810	28.143	27. 822	27. 810	28.751	28.911	28. 891	29. 014	28. 741	28. 842	29.511	30. 649
1923	31. 726	31.850	31. 566	31.346	31. 081	30.992	30. 859	30. 461	30. 602	31. 063	30. 860	31. 005

POUND STERLING. ${ }^{5}$

1912	\$4. 8699	\$4. 8728	\$4. 8721	\$4. 8710	\$4. 8720	\$4. 8756	\$4. 8752	\$4. 8725	,	\$4. 8574	\$4. 8506	
1913	4.8688	4. 8746	4. 8729	4.8688	4. 8651	4.8670	4.8678	4. 8640	4.8568	4.8580	4. 8526	4. 8535
1914	4. 8623	4. 8570	4.8628	4. 8698	4. 8831	4. 8849	4. 8878	5. 0000	4. 9812	4. 9530	4. 9031	4.8715
1915	4. 8422	4. 8206	4. 8018	4. 7945	4. 7925	4. 7755	4. 7648	4. 7062	4.6912	4. 6858	4. 6706	4. 7208
1916	4. 7506	4.7591	4. 7641	4. 7648	4. 7581	4. 7579	4. 7577	4. 7575	4. 7574	4. 7567	4. 7567	4. 7479
19	4. 7567	4. 7550	4. 7544	4. 7567	4. 7555	4. 7544	4. 7553	4. 7545	4. 7548	4. 7522	4.7520	4. 7517
1918	4. 7525	4. 7525	4. 7525	4. 7550	4. 7550	4. 7538	4. 7525	4. 7562	4. 7550	4. 7550	4. 7575	4. 7575
19	4. 7575	4.7575	4. 7000	4. 6512	4.6562	4.6125	4. 4275	4. 2725	4. 1800	4. 1712	4. 0812	3. 7688
1920	3. 6700	3. 3762	3. 7712	3. 9130	3. 8500	3. 9475	3.8525	3. 6200	3. 5125	3. 4730	3. 4250	3. 4912
1921	3. 7562	3. 8712	3. 9150	3. 9300	3. 9775	3. 7725	3. 6321	3. 6536	3. 7240	3. 8729	3. 9702	4. 1561
1922	4. 2248	4. 3620	4.3757	4.4134	4. 4461	4. 4519	4. 4464	4. 4647	4. 4307	4. 4385	4. 4799	4. 6098
192	4.6546	4. 6908	4.6957	4. 6555	4. 6257	4. 6147	4.5834	4. 5603	4. 5422	4. 5237	4.3822	4. 3602

Division of Statistical and Historical Research.

${ }^{4}$ Federal Reserve Bulletins. January-September, 1919 highest rate for month. October 1919-December 1920, average of high and low quotations for month. January, 1921-June, 1921, average of weekly high and low quotations for month. July, 1921 to date, average rate of exchange.
${ }_{5}$ International Yearbook of Agricultural Statistics, 1921, pages 504 and 498. Federal Reserve Bulletins, July 1921 to date. Sight drafts 1912-1920; cables 1921 to date.

Table 697.-Farmers' organizations handling grain, 1923.

State.	Total Number re-porting.	Membership.		Volume of business.							
		$\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \\ \text { re- } \\ \text { port- } \\ \text { ing. } \end{array}\right\|$	Members.	$\begin{array}{\|c} \text { Num- } \\ \text { ber } \\ \text { re- } \\ \text { port- } \\ \text { ing. } \end{array}$	Amount. ${ }^{1}$	Grain handled, thousands of bushels.					
						$\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \\ \text { re- } \\ \text { port- } \\ \text { ing. } \end{array}\right\|$	Wheat	Rye.	Oats.	Other grains.	Total.
Illinois	392	328	39, 318	269	\$52, 445, 000	276	11, 075	547	19, 373	34, 003	64, 998
Nebraska	335	247	30, 177	185	33, 341, 000	181	10,802	253	2, 169	12, 625	25, 849
Iowa	325	232	31, 295	181	39, 459, 000	189	1,462	195	18, 404	24, 300	44,361
South Dakot	323	251	25,901	211	35, 246, 000	224	24, 252	5, 958	1,237	4,872	36,319
Kansas	289	217	29,911	160	32, 160, 000	173	21, 233	58	1, 659	2,698	24, 648
Minnesota	249	204	31, 803	176	25, 405, 000	177	5, 095	3, 498	9, 916	8, 611	27, 120
North Dakot	205	148	19, 274	112	16, 743, 000	122	6,674	1, 167	4,092	6,359	18, 292
Ohio_	192	155	24, 136	127	20, 403, 000	127	3, 979	66	2, 409	3,115	9, 569
Missouri	150	119	18, 144	90	22, 648, 000	89	11, 149	103	2, 526	2, 842	14,620
Indiana	118	91	12, 887	73	9, 717, 000	73	1,562	253	3, 018	3, 123	7,956
Oklahoma	86	67	17, 227	54	10, 814, 000	58	7,593	4	206	1, 235	9,038
Michigan	78	67	14,716	48	8, 805, 000	48	1,314	295	605	1, 403	2, 617
Montana	62	49	5,185	41	6, 226, 000	39	10,810	152	154	397	11,513
W isconsin	49	43	7,335	26	2, 218, 000	21	-36	211	343	259	-849
Colorado.	43	43	6,303	19	4, 720, 000	17	1,726	73	57	623	2, 479
Washington	40	34	5,355	28	7,920,000	28	7,181	46	146	33	7,406
Texas-------	18	12	4,069	8	2,458, 000	7	1,001	------	16	191	1,208
Idaho.	15	7	-977	7	1, 056, 000	5	, 914		33	850	1,797
California	13	11	2,523	8	4, 725, 000	9	2,130		66	2, 083	4,279
Oregon_	9	8	3,628	7	10, 473, 000	7	3, 771		12	48	3,831
W yoming	9	4	328	2	164, 000	1	47	24	1	1	73
New Mexico	5	3	148	1	6,000						
All others	24	18	2,920	15	2,047,000	-11	258	---5	78	226	567
United Stat	3, 029	2, 358	333,560	1,848	349, 199, 000	1,882	134,064	12,908	63,520	108,897	319,389

[^337]${ }^{1}$ Including sales of supplies to members.

Table 698.-Average weight per carload of freight originating on Class I railroads in the United States, 1920-1923.

Commodity.	Calendar years.			
	1920	1921	1922	1923
	Short tons.	Short tons.	Short tons.	Short tons.
Wheat	40.21	39. 89	40. 17	40.35
Corn	36.45	38.07	38.38	37.87
Oats	31. 20	30.55	30.07	31. 03
Flour and meal	30. 27	25. 63	24. 94	25. 01
Hay, straw and alfalfa.	12. 38	12.46	12. 35	12. 33
Tobacco	12. 14	10.92	11. 09	10.84
Cotton	12. 17	11.57	11. 50	11. 29
Citrus fruits	16. 68	16. 22	15.40	15. 04
Potatoes.	18. 77	18. 24	18. 20	17.87
Horses and mules	11.47	11.39	11.30	11.26
Cattle and calves.	11.59	11.62	11. 56	11. 53
Sheep and goats.-	9.93	9.75	9. 79	9.73
Hogs.----------	9.61	9.51	9. 61	9. 55
Poultry.	11.51	10.95	11.02	11. 18
Eggs .-.-	11.58	11.18	11.19	11.27
Butter and cheese.	12. 90	12. 18	12.37	12. 65
Wool-----------	12. 48	12. 20	11. 63	12. 36
Sugar, sirup, glucose and molasses	28.98	27.68	27.54 23.09	27.53 22.92
Canned goods.	24. 78	23. 13.	23.09	22.92
Anthracite coal	48. 28	47.53	47. 85	48. 46
Bituminous coal	49. 27	50.45	50. 80	51. 29
	13. 20	11.82	11. 72 26.31	11.55 26.77
Lumber, timber, box shooks, staves and headings	27.04	26.03	26.31	26.77

Division of Statistical and Historical Research. Compiled from reports of the Interstate Commerce Commission.
Table 699.-Freight tonnage originating on railways in the United States, 19171923.

Commodity.	Calendar years.						
	1917	1918	1919	1920	1921	1922	1923
FARM PRODUCTS.	$\left\{\left.\begin{array}{c} 1,000 \text { short } \\ \text { tons. } \\ 17,906 \\ \cdot \end{array} \right\rvert\,\right.$	$\begin{gathered} 1,000 \text { short } \\ \text { tons. } \\ 19,263 \end{gathered}$	1,000 short $\begin{gathered}\text { tons. } \\ \text { 19,395 }\end{gathered}$	$\left\|\begin{array}{c} 1,000 \text { short } \\ \text { tons. } \\ 936 \\ 9,809 \\ 1,344 \\ 5,421 \end{array}\right\|$	1,000 shorttons.4288,5221,1755,504	$\begin{gathered} 1,000 \text { short } \\ \text { tons. } \\ 491 \\ 9,571 \\ 1,159 \\ 5,795 \end{gathered}$	$\begin{array}{r} 1,000 \text { short } \\ \text { tons. } \\ 603 \\ 9,403 \\ 1,159 \\ 6,947 \end{array}$
Animals and animal products:							
Animals, live-							
Horses and mules ${ }^{1}$							
Cattle and calves ${ }^{1}$							
Sheep and goats ${ }^{1}$							
Packing-house productsFresh meats	2,966	3,714	3,398	2,770	2,577	2,614	3,022
Hides and leather	1,357	1,303	1,371	1,051	972	1,082	1,084
Other packing-house products	2, 567	3,510	3,736	2, 206	2, 094	2,049	2, 395
Total packing-house products. \qquad	6,890	8, 527	8,505	6,027	5,643	5,745	6, 502
Eggs ${ }^{1}$				536	551	565	595
Butter and cheese ${ }^{1}$				425	434		571
Poultry ${ }^{2}$	1,022	1,155	1,322	264	276 400	292 360	357
Wool.-	599	494 6.399	547 5 5	293 1,540	400 1,329	360 1,750	1,811
Other animals and products	5,541	6,339	5,724	1,540	1,329	1,750	1,811
Total arimal products.	31, 858	35,778	35,493	26, 595	24, 263	26, 235	28,237
Vegetable products:		3,552	3,803			3,068	
Fruits and vegetables ${ }^{3}$	17,679	18,737	19,726	10, 045	9, 255	9,684	10,378
Potatoes-.-----------				4,118	4, 639	4,829	4, 697

${ }^{1}$ Not separately stated prior to 1920.
${ }^{2}$ Including game and fish prior to 1920
${ }^{3}$ Including "citrus fruits," "other fresh fruits," "other fresh vegetables" and "dried fruits and vegetables."

Table. 699.-Freight tonnage originating on railways in the United States, 1917-1923-Continued.

Division of Statistical and Historical Research. Compiled from reports of the Interstate Commerce Commission. Class I Roads having annual operating revenues in excess of $\$ 1,000,000$.
${ }^{1}$ Not separately stated prior to 1920.
"Reported as "Hay" prior to 1920.
t Including "cottonseed," "vegetable oils" and "other products of agriculture."
${ }^{6}$ Excluding "sugar," "vegetable oils" and "canned goods."
Table 700.-Freight rates, ocean, wheat per bushel to the United Kingdom and the Continent from the United States, Canada, Argentina, India, and Australia for 1913, 1922, and 1923.

Month.	United States.										Canada.		Argentina.			India.			Australia.		
	North Atlantic ports.			New York. ${ }^{2}$			NewOrleans.		North Pacific ports.												
	1913	1922		1913	1922	1923	1922	1923 4	1922	1923	1922	1923	1913	1922	1923	1913	1922	1923	1913	1922	1923
		Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	Cts.	
Jan.	10	11	9	9	9	6	12	9	20	22	11	10	14	19	15	12	13	16	24	28	${ }^{27}$
Feb.	10	12	7	6	10	5	13	9	20	21	13	9	16	18	12	12	13	15	22	30	24
Mar	1	12	7	6	10	5	13	9	${ }_{26}^{26}$	22	11		14	15	13	12	14	17	22	29	23
Apr.	8	10	9	6	5	6	11	9	26	23	10	10	12	15	17	11	12	18	20	29	24
May	8	10	8	7	5	5	11	9	22	23	10	9	11	16	19	11	11	18	20	27	22
June	7	8	7	5	5	3	11	9	22	23	9	9	8	14	14	11	10	16	20	25	20
July	8	8	8	5	6	4	9	8	22	22	8	8	9	12	12	12	10	16	20	22	20
Aug.-	9	7	7	5	5	4	9	8	21	22	7	7	10	13	12	12	11	18	19	21	20
Sept.	8	7		4	4	5	8	8	20	21	8	8	8	12	12	11	12	14	19	21	21
Oct.	7	8	8	5	5	6	8	8	21	22	8	9	6	14	10	10	14	15	21	25	22
Nov.	7	7	9	5	8	8	11	8	22	22	11	10	6	15	11	11	16	15	21	28	23
Dec.	6	10	9		8	8	49	8	23	22	11	9	6	16	12	10	17	15	20	28	23
Average	8	9	8	6	7	5	10	9	22	22	10	9	10	15	13	11	13	16	21	26	22

Division of Statistical and Historical Research. Compiled from Reports of the International Institute of Agriculture, except as otherwise indicated. The above rates were originally quoted in shillings; conversions made on the basis of the average monthly rate of exchange, except in 1913, when exchange was at par.
${ }^{1}$ Average of principal North Atlantic ports, including New York.
${ }^{2}$ New York to Liverpool.
${ }^{1}$ A verage of principal North Pacific ports.
${ }^{4}$ From U. S. Shipping Board.

Table 701.-Freight rates on wheat, in effect September, 1923.

From-	To-	Rate per 100 pounds.	From-	To-	$\begin{array}{\|c} \text { Rate } \\ \text { per } 100 \\ \text { pounds. } \end{array}$
Withrow, Wash	Wenatchee, Wash..-	Cents. 16. 0	Beloit, Kans	Kansas City, Mo..	Cents.
Do...	Tacoma, Wash..-.-.	25.0	Brewster, Kans.	K...do...	18.0 20.5
	Spokane, Wash....--	28.0	Abilene, Kans.	do	17.5
Harrington, Was		7.0	Great Bend, Kans.		19.5
${ }^{\text {Do }}$	Seattle, Wash.-...--	24.0	McPherson, Kans	do	19.0
Colfax,	---do------------	24.0	Hutchinson, Kans.-	Minneapolis, Minn-	36.5
	Portland, Oreg....--	24.0		Kansas City, Mo.--	19.0
Pomeroy, Wash	do	23.0 18.5	$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	New Orleans, La	46.5
Pendieton, Oreg.	do	18.5 17.0	Bucklin,	Galveston, Tex ${ }^{\text {Minneapolis, }} \mathrm{M}$	49.0 37.5
Kingdon, Cal	San Francisco, Calif-	10.0	Do.	Kansas City, Mo_	20.0
Moscow, Idaho	Seattle, Wash	24.0	Harper, Kans	Ka	19.0
Caldwell, Idaho	do	34.0	Galena, Kans	do	13.5
Twin Falls, Idaho -	Portland, Oreg	44.0	Enid, Okla		23.5
Idaho Falls, Idalio.	do	44.0	Do	New Orleans, La	43.5
Bozeman, Mont	Seattle, Wash	38.5	D	Galveston, Tex	43.0
Do-	Portland, Oreg.-....	38.5	Do-----	Fort Worth, Tex	34.0
Scobey, Mo	Duluth, Minn.	37.5	Cordell, Okla	Oklahoma City,	19.0
Do.	Minneapolis, Minn-	37.5			
Wheelock, N. D	Duluth, Minn - .-.-	27.0	Amarillo, Tex	Fort Worth, Tex-	28.0
Do Wales, N Dak	Minneapolis, MinnDuluth, Minn		Do.	Galveston, Tex....--	28.0 14.0
Wales, N. Dak	Duluth, Minn -...... Minneapolis, Minn.	19.5 19.5	Osakis, Minn	Duluth, Minn $-{ }^{\text {Minneapolis, }}$ Min-	14.0 12.5
Leeds, N. Dak	Duluth, Minn	20.5	Winterset, Iowa-.--	Chicago, Ill --.......	20.5
Do	Minneapolis, Minn-	20.5		St. Louis, Mo	29.5
Adams, N. D	Duluth; Minn --..--	19.5	Marshall, Mo	do	17.5
Do	Minneapolis, Minn-	19.5	Golden City,		20.5
Leal, N.	Duluth, Minn--...-	20.0	Do	Springfield,	10.5
Do	Minneapolis, Minn-	20.0	La Prairie,	St. Louis, Mo	11.5
Makoti, N. Dak	Duluth, Minn---.--	25.5	Lincoln, Ill	Chicago, 1	12.5
Do-----	Minneapolis, Minn-	25.5 28.0	Jorseyville, Do		14.5
Dickinson, N. Dak	Duluth, Minn-....-	28.0	$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	Peoria, Ill	11.5
	Minneapolis, Minn.	28.0 21.0	Do Belleville	St. Louis, M	. 5
Groton, S. Dak. Wessington, S.Dak		$\stackrel{21.5}{21.0}$	Carmi, Ill	Chicago, I	5
	Sioux City, Iow	20.5	Do.	St. Louis	14.5
	Milwaukee, W is	33.5	Schooleraft, Mich..-	Chicago, Ill	15.5
Chappell, Nebr	Omaha, Nebr	24.5	Shelbyville, Ind.	Indianapolis, Ind	9.0
Do.	Kansas City, M	31.0	Do	Chicago, Ill	17.5
Exeter, Nebr	Omaha, Nebr	16.5	Fostoria, Ohi	New York, N. ${ }^{\text {Y }}$	28.5
Do	Kansas City, Mo---	19.0	Do	Baltimore, Md	25. 5
Beaver City, Nebr--	Omaha, Nebr	21.0	Orrville, Ohio	New York, N. Y...-	28.5
Do.	Kansas City, Mo.--	21.0	Lancaster, Pa	Philadelphia, Pa----	11.5
Beatrice, Nebr	St. Louis, Mo - ${ }^{\text {a }}$ -	28.0	Do		15.5
Do-...--	Kansas City, Mo.--	17.9 19.5	Do	New York, N. Y.---	19.0 24.0
Phillipsburg, Kans. Marysville, Kans		19.5	Hagerstown		24.0 20.5
			Staunton	.-.do..	22.5

Division of Statistical and Historical Research. Supplied by Bureau of Railway Economics.
Table 702.-Domestic freight rates on oats effective January 1, 1924.

From-	To-	Rate per 100 pounds	From-	To-	Rate per 100 pounds.
		Cents.			Cents
Towanda,	Chicago,	11.5	Jefferson, Iowa	Chicago,	19.0
Grand Ridge,	-do-	11.5 8.0	Chickasha, Okla...- Do	Kansas City, Mo.--	28.0 35.0
Rochelle, 11.	do	10.0	Greenville, Ohio...-	Chicago, Ill	15.
Paris, III	do	15. 0	Gibson City, Ill...-	-do	12.
Isabel, Ill	-do	13. 0	Otterbein, Ind		13.
Rochelle, 1	St. Louis, M	12.5		Cincinnati, Oh	15.5
Paris, Ill		11.5	Whobarton, Iowa----	Chicago,	20.5
Oswego, Kans	Fort Worth,	37.5	Algona, Iowa-	do	20.
Topeka, Kans	-..do.---	41.5	Lansing, Mich	do	17.
Oswego, Kans.	Houston, Te	43.0	Morris, Mich		23.
Topeka, Kans	-do	46.5	Cedar Bluffs, Nebr-	Duluth,	25.
Rolfe, Iowa--	Chicago,	20.5	Wales, N. Dak.....		
Garrison, Iowa -	----do	17.5	Flandreau, S.- Dak.--	Chicago, Ill.	17.5
Hawarden, Iowa	do	24.0	Colman, S. Dak-	-	${ }_{16} 6$.
Blanden, Iowa	do	20.5	La Crasse, W is.....	---.do.--	16.
Alton, Iowa.-	-..-do.	22.0			

Division of Statistical and Historical Research. Supplied by Interstate Commerce Commission.

1168 Tearbook of the Department of Agriculture, 1923.
Table 703.-Domestic freight rates on corn effective January 1, 1924.

From-	To-	Rate per 100 pounds	From-	To-	Rate per 109 pounds.
		11.5			Cents.
Barnes, Ill	.do	11.5	Oswego, Kans.	Housto	
Grand Ridge, Il	do	8.0	Craig, Mo.	St. Joseph, Mo	88
Eairbury, 1 ll	do	11.5	Rolfe, Iowa	Chicag	20.5
Odell, H	de	10.0	Garrison, Iowa	.-...do	17.5
Princeville,	do	11.5	Belle Plain, Iowa.--	do	17.5
Rochelle, Ill	do	10. 0	Hawarden, Iowa..--	do	24.0
Easton, in	do.	12.5	Blanden, lowa---	do	20.5
Paris, Ill	do.	15.0	Panama, Iowa	do.	20.5
Isabel, Il	do	13.0	Elk Horn, lowa	do	20.5
Rochelle,	St. Louis, M	12.5	Chatsworth, Iowa	do	24.0
Easton, 11		11. 3	Alton, Iowa	do	22.0
Paris, 11.	do	12. 5	Jefferson, Lowa	do	19.0
Isabel, 11.	do	11.5	Beaver City, Nebr -	Omaha, Nebr	19.0
Remington, Ind	Chicago, Ill	13.0	North Bend, Nebr	.-do	10.0
Fort Wayne, Ind.	do.	14.5	Chickasha, Okla...-	Kansas City, Mo	28.0
Lafayette, Ind	do......-	14.5		Galveston, Tex---	35.19
Remington, Ind	Indianapolis,	13.0	Lancaster, Pa-	Philadelphia, Pa.	11.5
Fort Wayne, In	--..-do	13. 0	Lancaster, Pa	Paltimore, Md	15.5
Lafayctie, Ind		11.5	Franklin, Tenn-...-	Chattanooga, Tenn	27.9
Remington, Ind	Cincinnati,	17.5	Union City, Tenn. Freaman S Dak		
Fort Wayne, Ind Lafayette, Ind.	-----do-	15.5 14.0	Freeman, S. Dak Tripp, S. Dak	Chicago,	27.5 28.5
Topeka, Kans.	Fort Worth, T	41.5	Greenville, Ohio.	do.	15. $\overline{5}$
Oswego, Kans..	do	37.5			

Division of Statistical and Historical Research. Supplied by Interstate Commerce Commission.
Table 704.-Freight rates: Wool in grease, per 100 pounds, 1913 and 1923.

Shipping point.	Destination.					
	Boston.		Chicago.		Philadelphia.	
	1913	1923	1913	1923	1913	1923
	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.
Phoenix, Ariz		261. 3	153	229.5		
Tucson, Ariz.	175	263	${ }^{1} 175$	${ }^{1} 236.5$	171	254
Prescott, Ariz	164	244. 5	142	${ }_{213} 21$	158	264.5
Flagstaf, Ariz-	158 169	235.5 252.5	136 147	229	152	${ }_{246}^{229}$
Albuquerque, N. Mex	134	199.5	112	170	128	19:3
Gallup, N. Mex	144	214.5	122	183	138	208.5
Salt Lake City, Utah	1.57	236	139	194.5	151	229
Las Cruces, N. Mex.	149	222.5	127	193	143	216
Denver, Colo-....	132	185	97	1129.5	126	178
Las Vegas, Nev.	125	190	103	156.5	119	183.5
Cheyenne, W yo	132	185	97	1129.5	126	178
Billings, Mont	132	203	107.5	161.5	125	195

[^338]Table 705.-Freight rates per 100 pounds on specified agricultural products, 1913 and 1923.
oranges

Phoenix and Mesa, Ariz.-	125	175	100	146	115	173	110	165	125	175	95	139	110	165	125	175	100	146
Heber, Calif .-...........-	125	175	100	146	115	173	110	165	125	175	95	139	110	165	125	175	100	146
Webb, Ala	48.1	68	45	63.5	43.5	66.5	30	42.5	42.1	63	48	69.5	44	62.5	58.1	87	36.5	54.5
Thomasville, Ga.-.........--	45.5	68.5	44	63.5	42.5	65	29	41	39.5	59.5	47	68	43	62.5	55.5	83.5	35.5	53.5
Ocala, Fla......................	47.8	72	49.8	63.5	48.3	74	34.8	49.5	41.8	63	52.8	76.5	48.8	62.5	57.8	87	41. 3	62. 5
	34.5	52	50.5	60	38.5	57.5	35. 5	50	28.5	43	53.5	77	49.5	59	44.5	66.5	42	63

Table 705.-Freight rates per 100 pounds on specified agricultural products, 1913 and 1923-Continued.
CANTALOUPES.

Tablit 705:-Freight rates per 100 pounds on specified agricultural products, 1913 and 1923-Continued.
COTTONSEED OLI.

[^339]Table 706.-Freight rates per 100 pounds on ordinary livestock in effect January 1, 1924.

CATTLE.

From-	To-	Rate.	From-	To-	Rate.
		Cents.			Cents.
Battle Creek, lowa-	Chicago, Ill	36.0	Rifle, Colo	Kansas City, Mo_	50.0
Hawarden, Iowa	----do	38.0	Falls City, Nebr	do	14. 5
Lanark, Ill.....	do	16.0	Las Vegas, N. Mex	-do	66.0
Sidell, 11	do	24.0	Alliance, Nebr-.---	do	41.5
Browntown, Wis.--	do	19.0	Valentine, Nebr...-	Omaha, Nebr	28.5
Monroe, Wis	do	19.0 35.0	Harlan, Iowa-...--		19.5 11.5
Walnut Grove,	do	41.0	Bellefourche, S. Dak	do	47.0
Minn.			Beresford, S. Dak -	do	27.0
Divide, Mont	do	86.5	Mexico, Mo.......-	East St. Louis, Mo.	18.5
Miles City, Mont	do	59.0	Braymer, Mo-.....-	do.	36.0
Carrollton, Mo		35.0	Tarkio, Mo		29.5
Mexico, Mo-		29.5 36.0	Carrollton, Glinut --..-	Sioux City, Iowa	
Braymer, Mo	Kansas City,	36.0 19.0	Walnut Grove, Minn.	Sioux City, Iowa	29.0
Lebanon, Kan	--.-do - .---	23.0	Battle Creek, Iowa	-do	14.0
Alma, Kans	do	17.0	Hawarden, Iowa- -	-do	12.0
Mexico, Mo	do	26.0	Bloomfield, Nebr		19.0
Carrollton, Mo.	do	20.5	Kasson, Minn	St. Paul, Minn	22.5
Braymer, Mo-	do	14.0 51.0	Walnut Grove,	d	23.0
San Angelo, Tex Hereford Tex		51.0 47.0	Forbes, N. Dak	-do	36.5
Fort Codins, Colo-	do	46.5	Pueblo, Colo	Denver, Colo	15. 5
Puedblo, Colo...		46.5	Fort Collins, Colo.-	do-	15.5
			Las Vegas, N. Mex.	do	46.0

SWINE.

From-	To-	Rate.		From-	To-	Rate.	
		Singledeck cars.	Doubledeck cars.			Single deck cars.	Doubledeck cars.
		Cents.	Cents.			Cents.	Cents.
Washington, Iowa.-	Chicago, Ill -	35.0	35.0	Red Cloud, Nebr	Kansas City,	28.0	28.0
Holstein, Iowa....-	---do..----	35.0	35.0	Amarillo, Tex --...-	Mo.		
Fairfield, Iowa	do	35.0	35.0	Madison, Nebr---	--do-	56.0	56.0
Remsen, Iowa	do...---	35.0	35.0	Clarkson, Nebr-.---	Omaha, Nebr	25.0	
Waukon, Iowa		35.0 20	${ }_{20} 35.0$	Holstein, Lowa-...-		17.0.	17.0
Lenarkeur Center,		20.5 36.5	30.5 36.5	Schleswig, Lowa...-	-----dd	17.0	17.0
Minn.				Yankton, S. Dak	do	17.0	17.0
Mabel, Minn	do	36.5	36. 5	Kimball, S. Dak	do	45. 0	45.0
Browntown, Wis.	do	29.5	29.5	Wessington, S. Dak	---do-----	45.0	45.0
Lancaster, Wis ---	do	29.5	29.5		Sioux City,	36.0	36.0
Crawfordsville, Ind-	do	27.5	24.0	Kimball, S. Dak...-			
Wessington, S. Dak	do	46.0	40.0	Remsen, Iowa	do	36. 0	36.0
Beresford, S. Dak -	do-	46.0	40.0	Hartley, Iowa-....-	-do	22.5	22.5
Wyaconda, Mo.-..-	E. St. Louis,	46.0	41.0	Laurens, Iowa.....-	-d	22.5 22.5	22.5 22.5
		46.0	41.0	Wakefield, Nebr	do	17.0	17.0
Jerseyvilhe, Ill	----do----7---	22.0	22.0	Porter, Mian	d	17.0	17.0
Rushville, Ill	-do	22.0	22.0	Rushville, Ind	--do.	33.5	
Washington, Iowa-		26.0	26: 0		Indianapolis,	18.5	16.0
Fairfield, Iowa...	do	26.0	26.0	Crawfordaville, Ind-	Ind.		
Hardin, Mo.......-	Kansas City,	14.5	12.0	Charleston, $\mathrm{ml}^{\text {M }}$	do	18.5 25.5	16.0 22.0
Richmond, Mo	Mo.	14.5	12.0	Mechaniesville, Iowa.	Boston, Mass	25.5 83.5	22.0 77.0
Belleville, Kans.	d	12.5	12.5.	Lesueur Center,			
Wellsville, Kans.	do	12.5	12.5	Minn.	St Paul,	17.5	17.5
Wisea, Iowa	d	28.0	28.0	Mabel, Minn ${ }_{\text {Mutehinson, }}$	Minn.		17.3
Oseeola, Iowa-	do	28.0	288.0:	Wessington, Minn -		17.5	17.5
Walnut, Iowa		28.0 28.0	28.9	Messlugton, Minn -	-do--------	38.5	33.5

[^340]
1174 Yearbook of the Department of Agriculture, 1923.

Table 706.-Freight rates per 100 pounds on ordinary livestock in effect January 1, 1924-Continued.

SHEEP.

From-	To-	Rate.		From-	To-	Rate.	
		Singledeck cars.	Doubledeck cars.			Single deck cars.	Doubledeck cars.
		Cents.	Cents.			Cents. 70.5	Cents. 99.5
Ellis, ml.	Chicago, Ill -	19.0	19.0	Lamar, Colo	Omaha,Nebr	70.5 75.0	75. 5
Montgomery, Ill	do	16.0 93.0 1	16.0 93.0	Caldwell, Idaho---	do	89.0	89.0 86.5
Caldwell, Idaho..--		110.0	110.0	Mountain Home,		86.5	86.5
Mountain Home,	do.....-	107. 0	107.0	Idaho.			
Idaho.				Greenfield, Iowa	-_do	29.5	18.5
Mitchell, Nebr -	do	69. 0	57.0	Corning, Iowa	do	24.5	16.0
Humboldt, Nebr-	do	46.5	42.0	Heber, Utah--	do	71.5 68.5	71.5
Fort Collins, Colo--	do	95.5 36.5	63.0 34.0	Colton, Utah	do	68. 5	68.5
Harsell, Iowa		37.0	37.0	Billings, Mont....-	do	54.5	54.5
Miles City, Mont	do.-.----	66.0	66. 0	Fort Collins, Colo--	Kansas City	66.5	50.0
Pillings, Mont-		79.0	79.0		Mo.		
Columbus, W is		${ }_{22}^{23.0}$	23.0			17.5	30.5
Evansville, Wis	do...----	22.0 123.0	22.0	Larned, Kans--.--		47.5 41.0	30.5 27.5
Heppner, Oreg		123.0	123.0	Heber, Utah...----		71.5	71.5
Oaker, Oreg-		93. 0	93.0	Colton, Utah		68. 5	68.5
Ellensburg, Wash-	do	123.0	123.0	San Angelo, Tex		66.5	65. 0
Humboldt, Nebr.-	Omaha, Nebr	22.5	14.5	Fort Collins, Colo-	Denver, Colo	18.5	15. 5
Mitchell, Nebr-	----do------	50.0	43.0	Las Animas, Colo.	---do------	40.0	25.0
Fort Collins, Colo-.	do	66.	50.0				

Division of Statistical and Historical Research. Supplied by Interstate Commerce Commission.
Table 707.-Freight and express rates, per 100 pounds, on purebred livestock, in e.ffect April 1, 1923.

BEEF CATTLE.

From-	To-	Freight. ${ }^{1}$		Express in crates. ${ }^{2}$
		Loose.	In crates.	
		Dol lars.	Dollars.	Dollars.
Denver, Colo	Reno, Nev---.--	2.95 3.015		8. 24
Do........	Miles City, Mont	3. 36		6. 9.49
$\begin{aligned} & \text { Do- } \\ & \text { Do_ } \end{aligned}$	Laramie, Wyo-..--	1.05		2. 49
Do-	Chehalis, Wash	4. 065		9. 90
Do-	Rogue River, Oreg	2. 165		10.32
Springfield,	Salt Lake City, Utah	2. 161	1. 065	5. 27
Do.....	Memphis, Tenn	1. 10	3. 30	1. ${ }^{\text {2. }} 54$
Do.	Sheridan, Mo-	1. 06	1. 59	2. 91
Indianapolis,	Cedar Rapids, Lowa	.79 1.06	1. 185	1. 94
Indianapolis,	Lexington, Ky	1. 29	3.87--	1. 36
Do.	Springfield, 111	. 725	2.175	1. 59
Do.	Kansas City, M	1. 214		3.11 3.67
Iowa City	Kansas City, M	$\stackrel{1}{215}$		3. 267
Do.-	Chicago, Ill-	- 790		1. 94
Do-	Denver, Colo-.-..-	1. 375		
Do-	Little Rock, Ark.---	2. 03		4. 02
Kansas City,	Jackson, Miss.-.---	2. 235		4. 50
	Oklahoma City, Okla	1.445		3. 25
Do-	Denver, N . Mex	2. 36		4. 57
Do.	Indianaplois, Ind	1. 69		3. 11
Do-.-.----	Cambridge, Nebr	1.40		3. 25
Cambridge, Nebr	Kansas City, Mo	1. 2.450		3. 25
Do.	Indianapolis,	1. 295		2. 63
Do-	Colorado Springs, Col	1. 61		2. 91
Do-	Helena, Mont	1.15		7. 13
Mansfield, Ohio	Reading, Pa--.	1. 20	3. 60	2. 70
Amarillo, Tex	Tucumcari, N. Mex	1. 385		2. 08
Do.--	Roswell, N. Mex	1. 615		2.36
Do	Phoenix, Ariz	3. 450		6.38

Table 707.-Freight and express rates, per 100 pounds, on purebred livestock, in effect A pril 1, 19æ3—Continued.

DAIRY CATTLE.

From-	To-	Freight. ${ }^{1}$		Express in crates. ${ }^{2}$
		Loose.	In crates.	
Westerville, Ohi	,	Dollars.	Dollars.	Dollars.
Do...-	Lee's Summit, Mo.	1.78	5.34	1. 3.94
Do-	Augusta, Ky-...-	. 615	1. 845	1. 94
Do	Osawatomie, Kans	2. 04	6. 12	3. 94
Columbus, Ohio	Morristown, N. J	1. 095	3. 285	2. 84
Do-.-.--	Toronto, Canada	. 975	2. 925	3. 60
Do-	Vancouver, B. C	5. 40	16. 20	14. 35
Fon du Lac, Wis	Mason City, Iowa	. 915	2. 745	2. 28
Do---	Fargo, N. Dak	1. 78	5. 34	4. 02
Do--	Valley City, N. Dak	2. 2135	6. 305	4. 02 4.78
Do-	Pocatello, Idaho..-	3. 98	11. 94	9. 90
Do.	Shoshone, Idaho	4. 03	12. 09	10. 46
Do.	Los Angeles, Calif	5.10	15. 30	12,61
Waterloo, Iowa	Nashville, Tenn	1. 915	3. 895	3. 39
Do.	Louisville, Ky --	1. 035	3. 105	3. 25
Mason City, Iowa	Nashville, Tenn	1. 915	3. 985	3. 88
Do	Louisville, Ky.-	1. 48	4. 44	3.47
Utica, N. Y	Lexington, Ky	1. 135	3. 405	3. 19
Do.	Roanoke, Va-	1. 29	3. 87	3. 25
Do--	Nashville, Tenn	1. 835	4. 105	3.94
Cooperstown,	Lexington, Ky -	1. 135	3. 405	3. 33
Do.-	Roanoke, Va--	1. 29	3. 87	3. 11
Do..	Nashville, Tenn	1. 835	4. 105	4. 08

SHEEP.

Cooperstown, N. Y .	Woodstock, Vt	1.045	3.135	1. 80
Do.-.......-	Harrsiburg, Pa	. 665	1.995	1. 94
Springfield, Ohio	Detroit, Mich	. 725	2.175	1. 94
Do.	Wheeling, V. Wa	. 76	2. 28	1.80
Do.	Lexington, Ky	1.00	3. 00	1. 66
Do.	Nashville, Tenn	1. 425	2.435	2.42
Do.	San Angelo, Tex	3. 145	9. 44	7.07
Do	Salt Lake City, Utah	4. 62	13. 865	9. 70
Pewaukee, Wis	Kirksville, Mo.	1.02	3.06	2. 49
Do.-.-----	Ottumwa, Iowa	. 93	2.79	2. 49
Salt Lake City, Ut	Walla Walla, Wash	2. 275	6. 825	5. 54
Do--	Pendleton, Oreg	2. 275	6. 825	5. 33
Do.	Woodland, Calif	2. 405	7.215	5. 88
Do-	Flagstaff, Ariz.-	4.33	12. 99	6. 85
Do.	Boise, Idaho--	1. 66	4. 98	4.44
Do.	Billings, Mont	2.885	8.655	5. 95
Do	Laramie, Wyo	2. 165	6. 495	4. 44
Do.	Denver, Colo	2. 165	6. 495	5. 27
Do	Albuquerque, N. Mex	4. 035	12.105	5. 96
Laramie, ${ }^{\text {D }}$ yo	San Angelo, Tex-..--	4. 955 3. 45 2.	14.865 10.35	9. ${ }^{\text {9. }} \mathbf{}$ 61
Do....--	Salt Lake City, Utah	2. 165	6. 495	4. 44

[^341]Thale 707.-Freight and express rates, per 100 pounds, on purebred livestock, in effect April 1,1923-Continued.

SWINE.

Division of Statistical and Historical Research. Supplied by lnterstate Commerce Commission.

${ }^{1}$ These freight rates are on less than cariot shipments and apply to livestock described as "Livestock, chiefly valuable for breeding, racing, show purposes, and other special uses," subject to basie valuation as follows:

$$
\begin{aligned}
& \text { Each cow. }
\end{aligned}
$$

If values stated in Livestock contract exceed above basic values, an addition of 2 per cent should be made to the freight rate for each 50 per cent or fraction thereof in excess of the basic value.

These freight rates are further subject to the following minima :
Pounds.
One cow, calf over 6 months old, ox, steer, bull, each 3, 000
Each additional animal of above kind (except bull over 1 year old) 1, 500
Each additional bull over 1 year old. 2, 000
One cow with calf not orer 6 months old 3, 500
Each additional cow with calf over 6 months old 2, 500
Calves 6 months old or under, sheep, or hogs, minimum for each shipment
3, 000
${ }^{\text {t }}$ Express rates on beef and dairy cattle and calves, crated, each weighing not over 750 pounds gross; each weighing over 750 pounds gross, or when two or more are shipped in one crate and gross exceeds 750 pounds, subject to an additional charge of 50 per cent of the rate. When declared or released value exceeds $\$ 75$ each on cows, calves 6 months old or over, oxen, steers; $\$ 25$ each on calves under 6 months; $\$ 25$ each on hogs; $\$ 25$ each on sheep; charges should be made as follows: Between points where rate is not over $\$ 2,1$ per cent of excess value; where rate is not over $\$ 3,1 \frac{3}{2}$ per cent of excess value; where rate is not over $\$ 5,2$ per cent of excess value; where rate exceeds $\$ 5,2 \frac{1}{2}$ per cent of ex cess value.

Table 708.—Index numbers showing changes in freight rates of 50 representative agricultural products, by months, 1900-1923.
[Average for year $1913=100$.]

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Average.
	P.			P	P	P.	P	P					
1900	105. 7	105.7	103.8	103.4	103. 7	103. 6	103. 7	103. 5	103. 4	103. 5	103. 9	103. 9	104
1901	103.8	104.4	104.4	104.4	104. 3	103. 5	103.1	103.1	103.1	103. 4	103. 9	103. 9	103.
1902	103.9	103.9	103.9	103.9	103.7	103. 6	103. 3	103.1	102.8	102. 7	102.7	103. 6	103.
1903	103. 9	103. 6	103.5	103.5	103.1	102.9	103. 0	102.9	102.8	102.6	102.9	103.7	103.
1904	103.5	102.7	102.1	102.0	90.8	101.9	102.3	102.3	102.3	102.3	102.3	105.2	101.
905	101.4	101.8	101.7	101.9	101.5	101.0	100.8	100.7	100.8	100.8	100.8	100.8	101.
1906	101.0	101.0	101.0	101.0	101.0	101.0	100.8	100.3	100.1	100.1	100.1	100.2	100.
1907	100.2	98.3	100.2	100.4	100.3	100.3	100.4	100.2	99.9	99.7	99.7	99.7	99.
1908	99.7	99.7	99.7	99.7	99.9	100.1	100.1	100.5	100. 5	100.6	100.4	100.4	100.
1909	100.0	100.0	99.9	99.9	99.9	99.9	99.9	100.0	100.1	100.1	99.9	99.9	100.
1910	99.9	100.3	100.3	100.3	100.3	100.5	100.5	100.5	100.5	100.5	100.5	100.4	100.
1911	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.5	100.
1912	100.5	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.5	100.5	100.5	100.
1913	100.5	100.5	100.5	100.5	100.5	100.5	100.2	99.5	99.3	99.3	99.3	99.3	100.0
1914	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.6	90,
1915	99.7	100.0	100.2	100.2	100.3	100.3	100.3	100.3	100.3	100.5	100.4	100.4	100.
1	100.6	100.6	100.6	100.6	100.6	100.6	100.6	100.6	100.7	100.7	100.7	100.7	100.6
1917	100.7	100. 7	-100. 8	100.8	100.8	100.8	100.8	101. 6	101.9	102.2	102.4	102.4	101.3
1918	102.4	102.4	102.4	103.2	103.3	108.8	130.7	130.7	130.7	130.5	130.3	130.3	117.1
1919	130.3	130.3	130.4	130.5	130.5	130.8	130.8	130.5	130.7	131.4	131.4	131.6	130.8
1920	131.8	131.8	132.1	132.1	132.1	131.9	131.7	140.2	176.1	176.1	176.1	176.3	147.4
1921	176. 8	176.8	177.3	177.8	177.8	177.8	177.7	177.4	177.2	176.1	175.8	175.8	177.0
1922	161. 5	161.4	161.4	161.7	161.5	158.2	158.0	158.0	158.3	158.2	158.2	158.2	159.2
23	158.2	158.2	158.2	158.2	158.2	158.2	158.2	158.2	158.2	158.2	158.2	158.2	158.6

Division of Statistical and Historical Research.
The commodities and rates on which this index is based will be found in the Yearbook, 1922, pp. 1013-18. Except for the following corrections of rates in effect Jan. 1, 1923, no changes in the rates used in the index took place during 1923:

Rate on potatoes from Greeley, Colo., to Chicago should be
Rate on potatoes from Idaho Falls, Idaho, to St. Louis should be
Rate on eggs from Petaluma, Calif., to Chicago should be ${ }^{260}$
Rate on corn from Sperry, Iowa, to Los Angeles City should be-

Rate on cattle from Amarillo, Tex., to Kansas City, Mo., should be-
Rate on cattle from Garretson, S. Dak., to Sioux City, Iowa, should be. 20

FERTILIZER MATERIALS AND FERTILIZER.

Table 709.-Pyrites: Production, price and value, 1904-1922.
PRODUCTION.

State.	Calendar years.						
	1904	1905	1906	1907	1908	1909	1910
	Long tons.	Long tons.	Long tons.	Long tons.	Long tons.	Long tons.	Long tons.
Alabama	\} 18, 369	19, 928	26, 173	28,281	23, 915	15,848	
California	26, 902	61,748	52,926	51, 950	30,545	51, 266	23,700
Ilinois--					4,905	8,332	10,502
Indiana--..--	-4,465	3,107 $.24,155$	2, 579	4, 929	4,005	8,332	
New York.	5,285	11, 935	46, 218	30,671-	\} 40,362	47,987	38, 978
Ohio---	$\begin{array}{r}4,837 \\ \hline\end{array}$	8, 944	4,732 14	6, 816	6,531	-9,461	- 3,766
Virginia-	120,671	123, 183	128, 794	124, 740	116, 340	114, 176	148,653
W isconsin							12,555
Total	207, 081	253, 000	261, 422	247, 387	222, 598	247, 070	238, 154

1178 Yearbook of the Department of Agriculture, , ${ }^{7} 923$.
Table 709.-Pyrites: Production, price and value, 1904-1922-Continued.
PRODUCTION-Continued.

State	Calondar years.					
	1911	1912	1913	1914	1915	1916
	Long tons.	Long tons.	Long tons.	Long tons.	Long tons.	Long tons.
Georgia			11, 110			
Chlifornia	48, 415	61,812	70,536	71, 272	132, 270	145, 762
Illinois	17,441	27,008	11,246	22, 538	14, 849	20, 482
Indiana		1,462	1,242	1,710	${ }^{10} 972$	772
Ohio-	6,471	14,487	13, 622	7,279	10, 857	13,551
Virginia	150, 800	162, 478	148, 259	141, 276	145, 050	148, 502
Wisconsin	12, 893	17, 898	25, 328	14, 188	13,985	
Other States	65,438	65, 783	59,995	78,399	76, 141	94,487
Total	301, 458	350, 928	341,338	336, 662	394, 124	423, 556
State.	1917	1918	1919	1920	1921	1922
Colorado	Long tons. $20,000$	Long tons. 18, 817	Long tons. $17,474$	Long tons. 25, 523	Long tons. $7,290$	Long tons.
Georgia	23, 242	31, 315	34,412			
California	115, 817	111, 861	128, 803	128, 114	98, 252	---------
Illinois	24,596	24, 369	13, 353			
New York		63, 982	60, 544	30,753		
Missouri		7,674				
Ohio.	13,218	9,845	4, 609			
Virginia.	170, 382	143, 427	119, 164	100, 545		
Wisconsin			26, 053			
Other States	115, 407	53, 204	16,235	25,842	51, 576	
Total	482, 662	464, 494	420, 647	310, 777	157, 118	169, 043

AVERAGE PRICE PER TON.

State.	Calendar years.												
	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916
	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.
Alabama	4.14	3.61	3.01	3.02	2.91	4.88				$\left\{\begin{array}{l}-9 \\ \hline-9\end{array}\right.$			-----
California	4.94	4.01	4.48	3.36	4.31	4.96	4.65	3. 78	3.26	4.96 3.10	3.30	3.75	3.88
Illinois.					2. 89	2.77	3. 21	\{2.70	2. 33	2.84	2. 62	1.51	2. 51
Indiana.	3. 64	- 3.70	2.78	2.98	\} 2.89	2.77	3.21		3.89	2.51	3. 09	3. 17	3.17
Massachusetts	4.34	4.50			Y4. 61								
New York	3.35	3.34	3.52	4.14	\}4. 61	4.61	4.80						
Ohio----	3. 29	3. 66	3. 05	3. 05	3. 05	3. 07	3.41	2.78	3. 03	2. 57	2.71	2. 52	2. 67
Virginia	3. 65	3.46	3.35	2.99	3. 74	3. 71	3.80	3. 70	3.82	3. 96	3. 94	5. 03	6.23
Wisconsin							3. 94	3. 88	3. 94	3. 74	5. 53	3. 10	
Other States								4.71	4.99	4.34	4. 20	4.63	4.07
Average	3.93	3.71	3.56	3.21	3.85	4. 16	4. 03	3.86	3.80	3. 77	3.81	4.25	4.64
State.				1917		1918		1919	1920		1921	1922	
Colorado				Dolls. 5.38 6.69 2.88 3.66		Dolls. 6.15		Dolls. 4.88	Dolls. 4.84		Dolls. $\text { 2. } 53$	Dolls.	
Georgia						8. 58		10.16					
California.						4.48		4.12		4. 05	4.76		
New York						3.52		3. 73		8. 51			
Missouri						9.02							
Ohio					2. 24	4.08		3.66					
Virginia					8.09	5.86		7.48		6. 07			
Other States.-. Average.								. 74					
					4.32	5.62		9.24		3. 19	4.36		
					5.37	5.69		6.08		5. 14	4.53		3.97

Table 709.—Pyrites: Production, price an:l value, 1904-1922—Continued.
value.

Division of Statistical and Historical Research. Compiled from reports of Geological Survey.
Table 710.-Phosphate rock: Production by States, based on the quantity marketed, 1891-1922.

State and item.			Calendar years.			
	1891			1892		
	Quantity.	Value.	Value per ton.	Quantity.	Value.	Value per ton.
Florida: Hard rock	Long tons.	Dollars.	Dollars.	Long tons. 155, 908	Dollars. 859, 276	Dollars. 5. 51
Soft rock	57, $98 \mathbf{8}$			15,710	82, 418	5. 4 83
Land pebble.				21,905	111, 271	5.08
River pebble.	54, 500			102, 820	415,453	4.04
Total	112, 482	703, 013	6.25	287, 343	1,418.418	4.94
South Carolina:						
Land rock	344, 978	2, 187, 160	6.34	243, 653	1,236, 447	5.07
River rock	130, 528	760, 978	5.83	150, 575	641, 262	4. 26
Total	475, 506	2, 948, 138	6. 20	394, 228	1, 877, 709	4.76
Grand total.	587, 988	3, 651, 151	6.21	681, 571	3, 296, 127	4.84

1180 Yearbook of the Department of Agriculture, 1923.
Table 710.-Phosphate rock: Production by States, based on the quantity marketed, 1891-1922-Continued.

State and item.	C alendar years.											
	1893			1894								
	Quantity.	Value.	Value per ton.	Quantity.	Value.	Value per ton.						
Florida: Hard rock Soft rock Land pebble \qquad River pebble. \qquad Total \qquad South Carolina: Land rock \qquad River rock. \qquad Total \qquad Tennessee \qquad Grand total	Long tons. 215, 685	Dollars. 1, 117, 732	Dollars. 5. 18	Long tons. 326, 461	Dollars. 979, 383	Dollars. 3.00						
	13, 675	- 64, 626	4. 73									
	86, 624	359, 127	4.15	98, 885	296, 655	3.00						
	122, 820	437, 571	3.56	102, 307	390, 775	3.82						
	438, 804	1,979, 056	4.51	527, 653	1, 666, 813	3.16						
	308, 435	1, 408, 785	4. 57	307, 305	1, 252, 768	4.08						
	194, 129	1, 748, 229	3.85	142, 803	492, 808	345						
	502, 564	2, 157, 014	4. 29	450, 108	1,745,576	3.83						
	-----------	---------	---------	19,188	67,158	350						
	941, 368	4, 136,070	4.39	996, 949	3, 479, 547	3.49						
	1895			1896								
Soft rock	6,916	32, 000	4. 63	400 97	2, 300	5.75						
Land pebble.	181, 011	593, 716	3. 28	97,936 100,052	176,972 300,556	1.81 3.00						
River pebble	73, 036	185, 090	2.53	100, 052	300, 556	3.00						
Total	568, 061	2, 112, 902	3. 72	495, 199	1,547, 353	3.12						
South Carolina:												
River rock	161,415	512, 245	3.32 3.17	135, 351	389, 192	2.88						
Total	431, 975	1, 411, 032	3. 27	402, 423	1, 181, 649	2.94						
T'ennessee North Carolina	38, 515	82, 160	2.13	26,157 7,000	57,370 17,000	2.19 2.43						
Grand total.	1, 038, 551	3,606, 094	3.47	930,779	2, 803, 372	3.01						
	1897			1898								
Florida:												
Hard rock	360, 147	1, 063, 713	2. 95	366, 810	1,396, 108	3.81						
Soft rock	2, 300	4, 600	2. 00									
Land pebble	92, 132	180, 794	1. 96	155, 084	293,688 158,000	1.89 2.00						
Total	552, 342	1, 493, 515	2. 70	600, 894	1,847, 796	3.08						
South Carolina:												
River rock.	267,380 90	238, 522	2. 2.82	101, 274	251, 047	2. 48						
Total Tennessee Grand total	358, 280	986, 572	2.75	399, 884	1, 107, 272	2. 77						
	128, 723	193, 115	1.50	308, 107	498, 392	1.62						
Grand total	1, 039, 345	2,673,202	2.57	1,308, 885	3, 453, 460	2. 64						
	1899			1900								
Florida:												
Hard rock		$\begin{array}{r} 2,119,130 \\ 515,458 \\ 169,473 \end{array}$	$\begin{aligned} & \text { 4. } 60 \\ & \text { 2. } 91 \\ & 1.91 \end{aligned}$	$\begin{array}{r} 424,977 \\ 221,403 \\ 59,863 \end{array}$	$\begin{array}{r} 2,229,373 \\ 612,703 \\ 141,236 \end{array}$	5. 252.772. 36						
Land pebble.	177, 170											
River pebble.	88, 953											
Total	726, 420	2, 804, 061	3.86	706, 243	2,983, 312	4. 22						
South Carolina:												
Land rock.	$\begin{aligned} & 223,949 \\ & 132,701 \end{aligned}$	$\begin{aligned} & 738,969 \\ & 339,130 \end{aligned}$	3.30 2.56	$\begin{array}{r} 266,186 \\ 62,987 \end{array}$	$\begin{aligned} & 877,405 \\ & 164,565 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 2.61 \end{aligned}$						
River rock			2. 56									
Tot	356, 650	1,078, 099	3.02	329, 173	1,041, 970	3.17						
Grand total.	1, 515, 702	5, 084, 076	3.35	1, 491, 216	5, 359, 248	3.59						

Table 710.-Phosphate rock: Production by States, based on the quartity marketed, 1891-1983-Continued.

1182 Yearbook of the Department of Agriculture, 1923.

Table 710.-Phosphate rock: Production by States, based on the quantity marketed, 1891-1922-Continued.

State and item.	Calendar years.					
	1907			1908		
	Quantity.	Value.	Value per ton.	Quantity.	Value.	Value per ton.
Total	1, 357, 365	6, 577, 757	4.85	1, 692, 102	8, 484, 539	5.01
South Carolina:						
Land rock	228, 354	883, 965	3.87	192, 263	854, 837	4.45
Blue rock.	38, 993	142, 382	3. 65	79, 717	-299, 941	3. 78
White rock	5,025	24, 550	4.89	1, 600	4,755	2.97
Other States Grand total	12, 145	47,098	3.88	13, 110	47, 483	3. 62
	2, 265, 343	10, 653, 558	4. 70	2, 386, 138	11, 399, 124	4. 78
	1909			1910.		
Florida:						
Hard rock.-	513, 585		7.84	438,347	3, 051, 827	6. 96
Land pebble	1,266, 117	4,514, 968	3.56	1,629, 160	5, 595, 947	3. 43
Total	1,779, 702	8,541, 301	4. 79	2,067,507	8, 647, 774	4.18
South Carolina: 201,254 888,611 4,41 179,659 733,057 4.08						
River rock	201, 6,700	888,611 21,975	4.41	$\underset{(1)}{179,659}$	(1) ${ }^{733,057}$	4.08
Total	207, 954	910,586	4.37	179, 659	733, 057	4.08
Tennessee:						
Brown rock	266, 298	1, 011, 028	3. 79	329, 382	1, 262, 279	3. 83
Blue rock	66, 705	275, 165	4.12	68,806	241, 071	3. 50
Total	333, 003	1,286, 193	3.86	398, 188	1, 503, 350	3.78
Other States.............	9,493	34, 040	3.58	9,634	32,819	3.41
	2,330, 152	10,772, 120	4.62	2, 654, 988	10, 917, 000	4.11
	1911			1912		
Florida:						
Mard rock	443, 511	2, 761, 449	6. 23	493, 481	3, 293, 168	6. 67
Land pebble.	${ }^{2} 1,992,737$	6,712, 189	3.37	${ }^{2} 1,913,418$	6, 168, 129	3. 22
Total	2, 436, 248	9, 473, 638	3.89	2, 406, 899	9, 461, 297	3.93
South Carolina: Land rock...................- 169,156 673,156 3.98 131,490 524,760 3.99						
Tennessee:						
Brown rock	365, 068	1,450, 063	3.97	359, 692	1, 420, 726	3. 95
Blue rock	72, 302	263, 954	3.65	63, 639	219, 750	3. 45
Total	437, 370	1, 714, 017	3.92	423, 331	1,640, 476	3.88
	10,505	39,882	3.80	11,612	49, 241	4. 24
Grand total	3, 053, 279	11,900,693	3.90	2, 973, 332	11, 675, 774	3.93

${ }^{2}$ Includes small amount of river pebble.

Table 710.-Phosphate rock: Production by States, based on the quantity marketed, 1891-1922-Continued.

State and item.	Calendar years.					
	1913			1914		
	Quantity.	Value.	Value per ton.	Quantity.	Value.	Value per ton.
Florida: Hard rock Land pebble Total-.-. South Carolina: Land rock	$\begin{gathered} \text { Long tons. } \\ 489,794 \\ { }^{2} 2,055,482 \end{gathered}$	Dollars. 2, 987, 274 $6,575,810$	$\begin{array}{r} \text { Dollars. } \\ 6.10 \\ 3.20 \end{array}$	$\begin{gathered} \text { Long tons. } \\ 309,689 \\ 21,829,202 \end{gathered}$	Dollars. 1,912, 197 5, 442, 547	Dollars. 6. 17 2. 98
	2, 545, 276	9, 563, 084	3.76	2, 138, 891	7, 354, 744	3.44
	109, 333	440, 588	4.03	106, 919	415, 039	3.83
Tennessee: Brown rock Blue rock-	451, 559	1, 774, 392	3.93	483, 203	1, 822, 770	3.77
Total	451, 559	1,774, 392	3. 93	483, 203	1,822, 770	3.77
Other States \qquad Grand total \qquad	5, 053	18, 167	3.60	5, 030	15, 488	3.08
	3,111, 221	11, 796, 231	- 3.79	2, 734, 043	9, 608, 041	3.51
	1915			1916		
Florida: Hard rock Land pebble Total	$\begin{array}{r} 50,130 \\ 21,308,481 \end{array}$	$\begin{array}{r} 265,738 \\ 3,496,501 \end{array}$	$\begin{aligned} & \text { 5. } 30 \\ & \text { 2. } 67 \end{aligned}$	$\begin{array}{r} 47,087 \\ 21,468,758 \end{array}$	$\begin{array}{r} 295,755 \\ 3,874,410 \end{array}$	$\begin{aligned} & \text { 6. } 23 \\ & \text { 2. } 64 \end{aligned}$
	1,358,611	3, 762, 239	2.77	1,515,845	4, 170, 165	2. 75
South Carolina: Land rock.		310, 850	3.72	53,047	211, 125	3.98
Tennessee: Brown rock Blue rock White rock	389, 759	1,327, 747	3.41	$\begin{array}{r} 364,108 \\ 47,1 \end{array}$	$\begin{array}{r} 1,357,888 \\ 152,465 \end{array}$	$\begin{aligned} & 3.73 \\ & 3.20 \end{aligned}$
Total \qquad Other States \qquad Grand total \qquad	389, 759	1,327, 747	3.41	411, 790	1, 510, 353	3. 67
	3,837	12, 613	3.29	1,703	5,350	3.14
	1,835, 667	5, 413, 449	2.95	1,982, 385	5, 896, 993	2.97
	1917			1918		
Florida: Hard rock Soft rock Land pebble Total	$\}_{1} \begin{array}{r} 18,608 \\ 12,003,991 \end{array}$	$\begin{array}{r} 159,366 \\ 5,305,127 \end{array}$	$\begin{aligned} & 8.56 \\ & 2.65 \end{aligned}$	$\left\{\begin{array}{r} 62,052 \\ 8,331 \\ 21,996,847 \end{array}\right.$	$\begin{array}{r} 377,075 \\ 14,103 \\ 5,565,928 \end{array}$	$\begin{array}{r} 6.08 \\ 17.66 \\ 2.79 \end{array}$
	2, 022, 599	5,464, 493	2. 70	2,067, 230	6,090, 106	2.95
South Carolina: Land rock.	33,485	138, 482	4. 14	37,040	164, 650	4.45
Tennessee: Brown rock. Blue rock.	$\begin{array}{r} 447,203 \\ 65,904 \end{array}$	$\begin{array}{r} 1,820,533 \\ 205,820 \end{array}$	$\begin{aligned} & \text { 4. } 29 \\ & 3.12 \end{aligned}$	374, 535	1,917, 546	5. 12
Total	513, 107	2, 126, 353	4.14	374, 535	1,917,546	5.12
Grand total.	15, 096	41, 756	2.77	11,955	42, 161	3.53
	2, 584, 287	7, 771, 084	3.01	2, 490, 760	8, 214, 463	3.30

${ }^{2}$ Includes small amount of river pebble.

1184 Yearbook of the Department of Agriculture, 1923.
Table 710.-Phos phate rack: Production by States, based on the quantity marketsd, 189:1-1928-COntinued.

Division of Statistical and Historical Research. Compiled from reports of Geological Survey.
Table 711.-Lime and peat, for fertilizer: Production and value, United States, 1908-1922.

Calendar year.	Quantity.			Value		
	Hydrated lime.	Limestone pulverized	Peat.	$\begin{aligned} & \text { Hydrated } \\ & \text { lime. } \end{aligned}$	Limestone pulverized.	Peat.
1908	Short.tons.	Short tons.	Short tons.	Dollars.	Dollars.	Dollars. 121, 210
1909			26, 768			118, 891
1910			37, 024			140, 209
1911.		174, 290	51,733		311, 702	257, 2022
1912		408, 627	-28,460		493, 718	169, 600
1914	126, 136	615, 197	37,729	548, 692	688, 961	249, 899
1915		810, 399	38,304		893, 530	258, 417
1916	184, 944	1,066, 376	48, 106	869,654	1,146, 582	336, 074
1917	177,815	1, 040, 248	92,263 79			
1918	181, 890	1,091, 918	79, 573	1, 452, 436	1,626, 292	775, 313
1919	198, 165	1,392, 914	54,690	1,784, 110	2, 409, 460	557, 240
1920	148, 981	1, 364, 260	63,272 29,460	1, 525, 950	$2,724,209$ $.2,355,389$	773,635
1921	142,582 150,423	$1,311,520$ $1,195,000$	-29, 5174	1, $1,254,894$	2, 150, 435	369,165
1922						

Division of Statistical and Historical Research. Compiled from reports of Geological Survey.

Table 712.-Lime, for agricultural purposes: Production and value, 1915-1922.
PRODUCTION.

State.	Calendar years.							
	1915	1916	1917	1918	1919	1929	1921	1922
	Short tons.	Short tons.	Short tons.	Shortions.	Short tons.	Short tons.	Short tons.	Shoritons.
Alabama_	379	592	1,791	1,947				
California	6,219	5, 386	6,196	850			559	2,756
Connecticut	1,066							
Indiana ----	6, 207	3, 401	2, 297	1,303	5,868	3,475	1,182	5,017
Kentucky .-.	188	241						
Maine		9,553	10, 243	8,017	8, 763	7,810	8,207	8,912
Maryland	113,176	109, 468	85, 633	68, 807	76, 770	64, 193	50, 543	44, 053
Massachusetts	4, 257	4,500	5,073	3, 089	4,673	4,552	2,902	4,628
Missouri	676		4,317	193	1,123	1,891		1,081
New Jersey	8,909	6,517	5, 002	2, 208	4, 154	2,997		2,078
New York	26, 824	12, 649	9,588	5,931	6, 206	3, 323	3, 917	2,751
Ohio	54, 118	49, 527	29,997	40, 001	27, 696	11, 195	16,969	25, 332
Pennsylvania	345, 960	318, 722	246, 608	200, 073	232, 831	202, 830	152, 667	137, 460
Tennessee.	3,520	2,080	1,904	3, 311	730 2,072	377 752	614 1,278	1,392
Vermont		1,276	502	2, 201	2,072	752	1,278	1,111
Virginia	45, 149	38,751	44,335	34, 444	35,712	26, 974	21,793	16, 420
West Virginia	32, 558	41,507	21,999	16, 053	25, 253	17,449	17, 746	15, 287
W isconsin	378		,954	, 241	433	${ }_{2} 356$	5, 145	+657
Other States	22,954	8,291	10,931	1,555	4,698	2, 280	5,768	3,192
Total	672, 538	612, 461	487, 370	390, 224	436, 982	350, 454	284, 290	272, 127
Hawaii						475 922	75 357	
Porto Rico	722	1,066	927	823	1,650	922	357	599
Total	673, 260	613,527	488, 297	391, 047	438, 632	351, 851	284, 722	272, 726

VALUE.

Alabama	Dollars. $1,308$	Dollars. $2,246$	$\begin{array}{r} \text { Dollars. } \\ 9,816 \end{array}$	Bollars. 17, 436	Dollars.	Dollars.	Dollars.	Dollars.
California	28,606	31, 974	32, 447	8,304			4,988	35, 774
Connecticut	4,667 20,065	14,598	12, 143	6,122	49, 461	33, 210	11,328	39, 741
Kentucky-	525	790						
Maine		39,729	35, 216	46, 168	59, 558	39,157	51,978	48, 283
Maryland	356, 768	407, 930	463, 081	534, 852	655, 704	614, 097	441, 085	351, 482
Massachuse	11, 325	12, 226	18, 185	35, 450	25, 532	26,096	15, 082	19,163
Missouri	2,467		26, 844	1,706	8,540	20,770		11, 736
New Jersey	27, 610	22, 202	18, 978	12, 268	21,997	23, 920		18,382
New York	81, 468	44, 891	40, 540	27,868	34,574	23, 912	30, 334	22, 613
Ohio	203, 221	224, 120	161, 205	275, 561	212, 156	99, 219	125, 844	177,571
Pennsylva	995, 703	1,036, 222	1, 218, 316	1,343, 636	1,706, 027	1,792, 948	1, 183, 361	1,021,092
Tennessee	9,150	4,410	9, 835	15, 333	6, 020	2, 465	${ }^{5}, 217$	11,752
Vermon		3, 864	1,380	8,288	15, 474	5,157	7,687	6, 262
Virginia	170, 557	147, 843	235, 568	232, 204	290, 032	208, 190	161,653	109, 968
West Virgin	111, 921	160, 959	106, 892	116, 554	191, 125	160, 091	130, 982	101,075 4,523
Wisconsin	606 135,031		5,024 74,938		4,754 49,495	1,824 25,944	666 54,154	4,523 21,814
Other State	135, 031	65, 8	74,938	10, 267				
Tot	2, 160, 998	2, 219, 888	2, 470,408	2, 692, 519	3, 330, 449	3, 077, 000	2, 230, 359	2, 001, 231
Porto Ric	2,876	4, 513	5, 323	6, 329	-14, 590	11, 392	5,651	3, 851.
Tota	2, 163, 874	2, 224, 401	2, 475, 731	2, 698, 848	3, 345, 039	3, 096, 705	2, 237, 510	2, 005, 082

Division of Statistical and Historical Research. Compiled from reports of Geological Survey.

1186 Yearbook of the Department of Agriculture, 1923.
Table 713.-Phosphate rock, pyrites, and marl: Production and value for fertilizer, United States, 1880-1922.

Calendar year.	Quantity.			- Value.		
	Phosphate rock.	Pyrites.	Marl.	Phosphate rock.	Pyrites.	Marl.
1880	Long tons. 211, 377	Long tons. 2, 000	Long tons. 1,000,000	Dollars. 1,123, 823	Dollars. $5,000$	Dollars. 500, 000
1881	266, 734	10,000	1,000,000	1,980, 259	60,000	500, 000
1882	332, 077	12,000	1, 080,000	1,992, 462	72, 000	540,000
1883	378, 380	25, 000	972, 000	2, 270, 280	137, 500	486,000
1884	431, 779	35, 000	875, 000	2, 374, 784	175, 000	437, 500
1885	437, 856	49,000	875, 000	2, 846, 064	220,500	437, 500
1886	430, 549	55, 000	800, 000	1, 872, 936	220, 000	400,000
1887	480, 558	52, 000	600, 000	1, 836, 818	210, 000	300,000
1888	448, 567	54, 331	300, 000	2, 018, 552	167, 658	150, 000
1889	550, 245	93,705	139, 522	2, 937, 776	202, 119	63, 956
1890	510, 499	99, 854	153, 620	3, 213,795	273, 745	69, 880
1891	587, 988	106, 536	135, 000	3, 651, 151	338, 880	${ }^{67,500}$
1892	681, 571	109,788	125, 000	3, 296, 227	305, 191	65, 000
1893	941, 368	75, 777	75, 000	4, 136, 070	256, 552	40,000
1894	996, 949	105, 940	75, 000	3,479,547	363, 134	40, 000
1895	1, 038, 551	99, 549	60, 000	3, 606, 094	322, 845	30, 000
1896	930, 779	115, 483	60, 000	2, 803, 372	320, 163	30,000
1897	1, 339,345	143, 201	60, 000	2, 673, 202	391, 541	30, 000
1898	r, 308,885	193, 364	60,000	3, 453,460	593, 801	30, 000
1899	1,515, 702	174, 734	60, 000	5, 084, 076	543, 249	30, 000
1900	1,491, 216	204, 615	60,000	5, 359, 248	749, 991	30,000
1901	1, 483, 723	1241,691	99, 880	5, 316, 403	1, 257, 879	124,880
1902	1,490, 314	${ }^{1} 207,874$	12, 439	4, 693, 444	947, 089	12,741
1903	1,581,576	${ }^{1} 233,127$	34, 211	5,319, 294	1, 109, 818	22,521
1904	1, 874,428	207, 081	18, 989	6, 580, 875	814, 808	13, 145
1905	1,947, 190	253, 000	38, 026	6, 763, 403	938, 492	16, 494
1906	2, 080, 957	261, 422	19, 104	8,579, 437	931, 305	7,341
1907	2,265, 343	247, 387	14, 091	10, 653,558	794, 949	8, 429
1908	2, 386, 138	222, 598	8,469	11, 399, 124	857, 113	4,330
1909	2, 330, 152	247, 070	21, 814	10, 772, 120	1,028, 157	45, 053
1910	2, 654,988	241, 612		10, 917, 000	977, 978	
1911	3, 053,279	301, 458		11,900, 693	1,164,871	
1912	2, 973,332	350, 928		11, 675, 774	1,334, 259	
1913	3,111, 221	341, 338		11, 796, 231	1, 286, 084	
1914	2, 734, 043	336, 662		9, 608, 041	1, 283, 346	
1915.	1,835, 667	394, 124		5, 413, 449	1, 674, 933	
1916	1,982, 385	439, 132	58, 088	5, 896, 993	2, 038, 002	144, 768
1917.	2, 584, 287	482, 662	73, 900	7,771, 084	2, 593, 035	165, 223
1918	2, 490, 760	464, 494	98, 694	8, 214, 463	2, 644, 515	261, 082
1919	2, 271, 983	420, 647	91, 437	11, 591, 268	2, 558, 172	327, 294
1920	4, 103, 982	310, 777	97, 487	25, 079, 572	1, 596, 961	322, 339
1921	2, 064, 025	157, 118	59,730	12, 270, 070	711, 432	195,743 203,192
1922	2, 417, 883	169, 043	67, 777	10, 482, 846	671, 241	203, 190

Division of Statistical and Historical Research. Compiled from report of Geological Survey.
${ }^{1}$ Includes production of natural sulphur.
Table 714.-Fish scrap (acidulated): Production in Atlantic and Gulf coast districts, 1912-1922.

Calendar year.	The North.	North Carolina.	Florida.	Texas.	Georgia.	Total, five districts.
	Short tons.	Short tons.	Short tons.	Short tons.	Short tons.	Short tons.
1912--		2,039				12, 338
1914	12,162	3,089	1,190	1,544		17,985
1915	5, 268	3,045	788	1,273		10, 374
1916.	5,215	5,110	2, 400	1,800		14, 525
1917.	5,637	7,478	2, 336	865	1,345	17,661
1918.	19, 412	6,524	2,700	2,646	1,905	33, 187
1919	30, 086	6,784	5, 030	4,420	750	47, 070
1920	33, 900	3,900	3,800	3, 000	5,000	49, 600
1921		16,800	1,200		1,890	157,890 4,240
1922		2, 120	2, 120			4,240

Division of Statistical and Historical Research. Compiled from The American Fertilizer Handbook.
${ }^{1}$ Includes 37,558 tons produced in Chesapeake district.

Table 715.-Fish scrap (dried): Productionin Atlantic coast districts, 1912-1922.

Calendar year.	Ohesapeake.	The North.	North Carolina.	Florida.	Total, four districts.
	Short tons.	Short tons.	Short tons.	Short tons.	Short tons.
1912	51,000	6, 655	7. 250		${ }^{165,660}$
1913	29,358	2,744	2,175	245	34, 522
1914	21, 936	1,604	, 665		24, 205
1915	19,301	824	1,289		21, 414
1916	21,258			1,200	22,458
1917.	14,584	292	5,187	762	20, 825
1918	12, 221		3,460	366	16,047
1919	12,340		2,763		15, 103
1920	18,750		1,240		19,990
1921	2, 200	22, 898	2,112		27,210
1922			1,757	1,320	3,077

Division of Statistical and Historical Research. Compiled from The American Fertilizer Handbook.
${ }^{1}$ Includes 595 tons produced in Texas district.
Table 716.-Fertilizer materials: Imports into the United States, 1912-1923.

Year ending June 30.	Bone dust and bone ash.		Kainit.		Manure salts.	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
1911-12	Tons. 33, 864	Dollars. 830, 616	Tons. 485, 132	Dollars. 2, 399, 761	Tons. 192, 738	Dollars. 1, 814, 071
1912-13-	33,337	801, 713	466, 795	2, 154, 977	171, 802	1, 794, 058
1913-14.	41,450	1, 034, 636	541, 846	2, 579, 619	261, 342	2, 767, 241
1914-15	23,428	584, 748	79, 004	444, 760	66, 062	760,699
1915-16	20,466	524, 153	64	1,795	2, 271	41, 825
1916-17-	14, 305	385, 541			324	7,794
1917-18.	8, 511	286, 764			190	8,872
1918-19.	4,138	117, 690				
1920-21.	27,413	1,317, 876	204, 834	$4,882,974$	123, 273	$4,164,817$
1921-22	18, 234	495,445	83,571	585, 338	81,442	957,443
1922-23.	52, 338	1, 357, 742	168, 514	1, 048, 054	${ }^{1} 244,760$	${ }^{1} 2,389,098$
Year ending June 30.	Ammonia sulphate.		Potash.			
			Muriate.		Sulphate.	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
1911-12.	Tons: 65, 908 ces	Dollars. 4, 143, 417	Tons. 215	Dollars.	Tons. 44, 476	Dollars.
1912-13-	54, 089	3,655, 413	201, 220	6, 782, 056	42,745	1,753,485
1913-14.	74, 444	4, 888, 563	237, 886	7, 915, 523	45, 139	1,897, 740
1914-15.	57, 048	3, 208, 152	102, 732	3, 666, 118	21, 852	1,071, 761
1915-16.	19,610	1, 371, 0.07	2, 130	461, 431	2, 423	197,808
1916-17.	8, 176	647, 271	606	174, 806	661	20,538
1917-18.	3, 983	467, 999	723	195, 154	135	19,837
1918-19.	1,964	278, 469	1,677	201, 307	737	23, 304
1919-20	2,587	343, 107	110,324	11, 038, 173	6,356	1, 073, 322
1920-21	2,537	226, 300	49,911	5, 290, 196	12,081	1,659,998
1921-22	6, 356	314, 286	131, 423	5,549,580	45,280	2, 085, 348
1922-23	1,785	116, 686	150, 461	4, 759, 134	51,776	2, 109,966

[^342]Tabee 717.-Guane: Importa inte the United States, 1900-1923.

Year ending June 30.	Quantity.	Value.	Fear ending June 30.	Quantity.	Value.
	Tons.	Dollars.		Tons.	Dollars.
1899-1909	4,756	58,966	1911-12	34, 706	684, 658
1900-1.	4,590	36, 617	1912-13	19,075	340, 915
1901-2	8,790	144, 599	1913-14-	21, 887	755, 833
1902-3	16,237	201, 416	1914-15.	20, 945	534, 381
1903-4.	23, 872	319, 793	1915-16.	15, 837	425, 377
1904-5.	33, 490	516, 851	1916-17.	3,563	73, 398
1905-6	18, 147	208, 560	1917-18	10,096	287, 446
1906-7.	22, 681	342, 295	1918-19.	8,218	293, 425
1907-8	27, 665	352, 350	1919-20	18,796	1, 550,098
1908-9.	36,999	580, 334	1920-21	37, 570	3, 158, 064
1900-10.	52,330	845, 765	1921-22	1,305	48,875
1910-11	29, 516	593, 306	1922-23	(1)	

Division of Statistical and Historical Research. Compiled from Monthly Summaries of Foreign Commerce of the United States, Bureau of Foreign and Domestic Commerce.
${ }^{1}$ Inoluded in all other fertilizers.
Table 718.-Ferilizer materials producbd and consumed, 1902-1922.

Calendar year.		Production. ${ }^{1}$		Consumption.	
		Sulphate of ammonia. ${ }^{2}$	Potash, crude. ${ }^{3}$	Sulphate of ammonia. ${ }^{2}$	Cottonseed meal used for fertilizer.
		Short tons.	Short tons.	Shart tons.	Short tons.
1903					385, 000
1904					453, 000
1905		65, 296			424,000
1906.		75, 000	------------		595, 000
1907.		99, 309			347, 000
1908		83, 400			497, 000
1909		106, 500		149, 414	442,000
1910.		118, 000		208, 342	597, 090
1911		127, 000		224, 633	717,000
1912		165, 000		224, 542	666, 000
1913		195, 000		260, 775	740,000
1914		183, 000		258, 010	881, 000
1915		250, 049	4,374	2488,374	
1916		288, 265	35,739	337, 962	
1917		325, 670	126, 961	375, 588	
1918.		379, 278	207, 686	484, 875	
1919		403, 223	116, 634	251, 994	
1920		499, 463	166, 834	251, 994	
1921		358, 500	25,485	${ }_{5}^{210,000}$	
1922		522, 000	25, 176	${ }^{5} 285,000$	

Division of Statistical and Historical Research.

[^343]Tibile 719.-Sulphuric acid: Production, consumption, imports, and exports for the United States, 1904-1922.

Calendar year.	Production. ${ }^{1}$	$\begin{gathered} \text { Consump- } \\ \text { tion. }{ }^{1} \end{gathered}$	Year beginning July 1.			
			Imports for consumption. ${ }^{2}$		Exports, domestic. ${ }^{2}$	
			Quantity.	Value.	Quantity.	Value.
1904.	Short tons. 717, 406	$\begin{array}{r} \text { Short tons. } \\ 692,904 \end{array}$	Short tons.145138631919	Dollars.$\begin{array}{r} 4,151 \\ 3,765 \\ 1,861 \\ 1,987 \\ 660 \end{array}$	Dollars.	Dollars.
1905						
1906						
1907						
1903					3,365	80, 327
1909.	995, 384	841, 935	1819	1,063	2,5412,889	61,89960,537
1910--				536639		
1911.			24		3,501	71,87789,783
1912			3,362	2,291 40,559	6,066	
1913				40,559		125, 892
1914	1, 405, 768	1,276, 715	$3,691$$3,143$	44,60861,352	23,38641,010	516,436$1,990,532$
1915.						
1916-				6,617	29, 302	1,961,888
1917			14,135,670	100, 489	33,827 23,707	
1918.-					23, 707	805, 430
1919	1, 877, 394	1,568,577	4,6115,183	79,20493,937	16,1679,300	$\begin{aligned} & 778,287 \\ & 446,380 \end{aligned}$
1920						
1921	$\begin{aligned} & 1,319,582 \\ & 1,423,917 \end{aligned}$	$\begin{array}{r} 1,143,850 \\ 1,589,809 \end{array}$	$\begin{aligned} & 2,458 \\ & 9,072 \end{aligned}$	$\begin{array}{r} 54,717 \\ 156,440 \end{array}$	$\begin{aligned} & 6,990 \\ & 3,626 \end{aligned}$	156, 204
1922						

Division of Statistical and Historical Research.
${ }^{1}$ Bureau of the Census.
${ }^{2}$ Bureau of Forcign and Domestic Commerce.
Table 720.-Fertilizer materials: Average wholesale prices, 1913-1923.
AMMONIATES.

Calendar year.	Ammonia sulphate, domestic, spot, per 100 pounds.	Blood, dried, 12 per cent ammonia, f.o.b., per short ton. ${ }^{1}$		Fish scrap, dried. 11 per cent ammonia, 14 per cent bone phosphate, f.o.b. fish factory, per short ton. ${ }^{1}$	Fish, wet, acidulated, 6 per cent ammonia, 3 per cent phosphoric acid, f.o.b. fish factory, per short ton.	Soda, nitrate, spot, 95 per cent per 100 pounds.	Cottonseed, 7 per cent ammonia meal, f. o. b. mill, per short ton.
		New York.	Chicago.				
	Dollars.	Dollars. 34. 56	Dollars. 32. 76	Dollars. 29. 12	Dollars. 16. 11	Dollars. 2.46 2	Dollars.
1914	2. 73	38. 52	37.08	38. 14		2. 10	
1915	3. 34	34. 08	31. 68	36.82		2. 43	
1916	3. 82	38. 76	36.84	42.21	25.26	3.21	
1917.	5. 99	67.20	63.96	60.14	33. 70	4. 13	
1918	5. 70	83. 40	Nominal.	81.23	43. 12	4. 74	
1919	4. 58	74.76	Nominal.	73. 12	36. 00	3. 53	
1920	5. 01	90.84	Nominal.	74. 77	36. 12	3. 52	41.00
1921.	2. 42	39.84	Nominal.	36.16	17.10	2. 59	32.67
1922	3. 01	49. 68	50.64	40. 12	19. 26	2. 54	39. 50
1923	3. 18	50.28	50.64	45.18	22.74	2. 51	39.67

[^344]1190 Yearbook of the Department of Agriculture, 1923.
Table 721.-Fertilizer materials: Average wholesale prices per long ton, 1919-1922. PHOSPHATES.

	Calendar year.	Tennessee phosphate rock, f. o. b. Mount Pleasant.		
		Domestic, 78 to 80 per cent.	75 per cent guaranteed.	68 to 72 per cent.
1913.		Dollars.	Dollars. 4.8	Dollars.
1914		5.25	4. 88	4.38
1915		5. 25	4. 88	4.38
1916.		5. 25	4.88	4. 38
1917.		5. 48	4.99	4.65
1918.		6. 56	6.71	6. 81
1919		10. 50	9. 52	${ }^{17 .} 49$
$1920 \pm$		13. 42	10.82	
1921.		15. 25	8.90	
1922.		Nominal.	Nominal.	

Division of Statistical and Historical Research. Compiled from Oil, Paint and Drug Reporter.
${ }^{1}$ Three months.
Table 722.-Fertilizer materials: Average wholesale prices per long ton, 1913-1923. PHOSPHATES.

Calendar year.	South Caro lina phosphate rock kiln dried. f. o. b. Ash ley River.	Florida land pebble phosphate rock, 68 per cent f.o.b. Port Tampa.	Florida high grade phosphate hard rock.	
			77 per cent f. o. b. Florida ports.	$\begin{aligned} & \text { 75 per cent } \\ & \text { Tampa. } \end{aligned}$
1913.	Dollars.	Dollars. ${ }^{\text {3. }} 49$	Dollars.	Dollars.
1914	3. 62	3.12	6.00	
1915	3.62	3. 01	5. 60	
1916	3.62	2.84	5.12	
1917	3.89	2.63	5.42	
1918..	Nominal.	4.22	7. 25	
1919	Nominal.	5.00	9. 39	7.75
1920		8.48	13.02	10.35
1921.		5.90	12.02	8.74
1922		3.11	8.58	6. 23
1923		3.05	7.60	5.17

Division of Statistical and Historical Research. Compiled from Oil, Paint and Drug Reporter.
Table 723.-Fertilizers: Tags sold by the Georgia Department of Agriculture, 19011921.

Season.	Fertilizers.	Cottonseed meal.	Season.	Fertilizers.	Cottonseed meal.
	Short tons.	Short tons.		Short tons.	Short tons.
1900-1901.	482, 571	58, 076	1911-12.	1, 103, 864	121, 236
1801-2	443, 997	74, 130	1912-13.	1, 120, 693	122, 975
1902-3	555, 414	84, 468	1913-14.	1, 292, 568	185, 846
1003-4	618, 730	96, 818	1915	738, 962	134, 017
1904-5	622, 414	90,328	1916	741, 097	110,512
1905-6	743, 424	87, 253	1917	874, 610	63, 655
1906-7	728, 361	87, 703	1918.	923, 020	55, 155
1907-8	766, 166	85, 298	1919	990, 919	72, 922
1908-9	807, 832	103, 532	1920	1, 003, 553	35, 495
1909-10	1, 030, 699	103, 302	1921	527, 507	29,066
1910-11	1, 202, 722	129, 748	Season 1921 to Oct.	516, 223	7,805

[^345]Table 724.-Fertilizers: Expenditures for, by States.

State.	Calendar year.				
	1879	1889	1899	1909	1919
	Dollars.	Dollars.	Dollars.	Dollars.	Dollars.
Maine	212, 135	456, 515	819,680	4, 069,479	7,759, 067
New Hampshire	165, 393	246, 293	367,980	512, 580	526, 180
Vermont...--	127, 870	217, 397	$\begin{array}{r}447,065 \\ 1 \\ \hline\end{array}$	$\begin{array}{r}570,752 \\ \hline 1065\end{array}$	857, 273
Massachusetts	653,422 140,318	896,560 172,900	$1,320,600$ 264,140	$1,965,682$ 335,103	$3,906,733$ 379,786
Connecticut	497, 448	609, 649	1,078,240	1,954,163	4, 893, 658
New York	2, 715, 477	3, 627,726	4, 493, 050	7,142, 265	15, 067, 371
New Jersey	1,601, 699	1, 837, 719	2, 165, 320	4, 277,604	10, 742, 682
Pennsylvania	3, 525, 336	3, 384, 310	4,685,920	6,801, 605	15, 628,341
Delaware	467, 228	460, 465	539, 040	864, 577	1,222,329
Maryland	2, 838,465	2, 419, 826	2, 618,890	3, 387, 634	7,610,478
District of Columbia	22, 352	16,651	22, 600	16,975	23, 267
Virginia.	2, 137, 283	2, 320, 260	3, 681, 790	6, 932, 455	17, 277, 705
West Virginia	176, 300	210, 767	405, 270	528, 937	1,709,546
North Carolina	2, 111, 767	2, 882, 238	4, 479, 030	12, 262, 533	48, 796, 694
South Carolina	2, 659, 969	3, 867,418	4, 494, 410	15, 162, 017	52, 546, 795
Georgia	4, 346, 920	5, 724, 187	5, 738, 520	16, 860, 149	46, 196, 434
Florida	72, 642	857, 327	753, 120	3, 609, 853	10, 316, 929
Ohio-.	550, 029	1, 602, 869	2, 695, 470	4, 180, 485	13, 206, 018
Indiana	340, 582	777, 727	1,553, 710	2,189, 695	8, 734, 698
Illinois.	174, 277	124, 977	830, 660	615,594	2,996,403
Michigan	300, 995	173, 017	492, 360	945, 354	4,872,543
Wisconsin	178, 892	105, 192	294, 320	127, 753	779, 750
Minnesota	93, 250	61, 578	251, 120	74, 653	432,680
Iowa.	98, 567	86, 843	337, 190	109, 570	596, 537
Missouri	109, 724	65, 705	370, 630	671, 073	3,941,488
North Dakota		8,923	13, 855	10,003	119,782
South Dakota		15, 675	12, 940	11, 294	34,466
Nebraska	20, 794	19,269	153, 080	31, 021	64,752
Kansas.	61,713	25,740	268, 360	75, 602	979, 037
Kentucky	145, 674	317, 231	908, 250	1,350, 720	3,597,449
Tennessee	157, 442	361,097	898, 070	1,216, 296	3, 525, 133
Alabama	1, 200, 956	2, 421, 648	2, 599, 290	7, 630,952	14, 066,108
Mississippi	123, 253	789, 268	932,098	2, 703, 271	4, 288, 165
Louisiana	278, 305	906, 348	1,076, 890	2, 004, 919	3,840,469
Oklahoma		3,817		29,092	452, 492
Texas..-	74,797	58,665	124, 716	595, 363	1,831, 207
Arkansas	56,314	93, 939	172, 510	596, 553	2, 572, 678
Montana.		4,757	3,940	12, 323	126, 232
Idaho.		2, 127	17, 150	20,737	106, 121
W yoming		1,548	12,700	5,302	8,489
Colorado.	5, 195	25, 074	23, 225	61,113	294, 448
New Mexico	10,733	9, 217	2, 880	25, 371	113,483
Arizona		10	2,921	6,080	40, 892
Utah.	11,394	23,211	14,300	20,037	108,956
Nevada	2, 526	2,019		8,379	9,897
W ashington		11,633	29,165	87,023	525, 637
Oregon-	10, 519	13,370	27,395	68, 597	489, 524
Californi	108, 732	148, 886	937, 050	2, 143, 993	8,182,998
United States	28, 586, 397	38, 469, 598	154,783, 757	14,882,541	326, 399, 800

Division of Statistical and Historical Research. Compiled from reports of Bureau of the Census.
${ }^{1}$ Includes Hawaii and Alaska. : Hawaii, 1899, \$1,352,847.

Table 725.-Fertilizer, commercial: Sold in cotton States, based on sale of fertilizer tags, 1914-1923.

State.	Calendar year.				
	1914	1915	1916	1917	1918
	Short tons	Short tons	Short tons	Short tons	Short tons
Virginia -	437, 808	406, 077	366, 970	495,961	429,999
North Carolina.	984, 865	768, 449	740, 394	918, 215	1,055, 924
South Carclina	1, 106, 640	610, 148	670, 610	864, 861	1,064, 886
Georgia.	1 1, 478, 414	1805,304	851, 609	938, 265	978,175
Florida.	240, 813	189, 594	203, 283	214, 088	204, 712
Alabama	${ }^{2} 597,200$	${ }^{2} 301,467$	${ }^{2} 212,250$	${ }^{2} 210,170$	${ }^{2} 306,880$
Mississippi	181, 875	141, 700	111, 200	92, 037	114, 312
Louisiana.	90, 588	73, 420	75, 151	98, 265	118,430
Texas	77, 400	17, 500	21, 500	42, 000	58, 000
Arkansas	114, 700	68, 700	65, 600	90, 292	88,500
Tennessee	92, 000	78, 072	67, 930	87, 528	113, 370
Missouri	60,000	57, 000	41,000	65,000	85, 000
Total	5, 462, 303	3, 517, 431	3, 427, 497	4,116,682	4, 618, 188
State.	1919	1920	1921	1922	1923
Virginia	421, 436	465, 227	369, 490	449, 942	302,911
North Carolina	1, 109, 070	1, 222, 103	831, 684	1,035, 430	1,190, 583
South Carolina	1,033, 887	1, 253, 890	615, 488	504, 000	678, 612
Georgia-	1, 063, 841	1, 039, 048	556, 573	535, 084	677, 624
Florida.	250, 613	272, 316	289, 857	329, 668	387, 838
Alabama	${ }^{2} 298,007$	391, 170	179,547	298, 147	434,377
Mississippi	126, 377	166, 903	94, 572	169,937	250,501
Louisiana.	97, 724	95, 863	38, 760	66, 470	107, 368
Texas.	46, 000	56, 700	19, 204	33, 420	75,599
Arkansas	53, 373	69, 036	14,550	40, 325	74,599
Tennessee	108,430	112, 102	84, 044	96,992	112,656
Missouri	70,000	77, 888	8, 022	7,900	16,090
Total	4,678, 758	5,222, 246	3, 101, 791	3, 567, 315	4, 308, 668

Division of Statistical and Historical Research. Compiled from Division of Crop and Livestock Estimates.
1 To Sept. 15.
${ }^{2}$ Cottonseed meal not included.

WHOLESALE PRICES OF FARM PRODUCTS.

Table 726.—Index numbers of wholesale prices of farm products, United States, 1913-1923.
[Year $1913=100$.]

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept,	Oct.	Nov.	Dec.	Average.
1913.	98	98	98	99	97	98	99	100	103	103	103	103	100
1914	103	103	102	102	101	101	103	106	106	101	102	101	103
1915	104	105	104	104	105	101	104	103	101	106	104	105	104
1916	110	110	111	113	115	114	117	125	131	136	147	146	123
1917	152	157	166	184	196	195	196	202	202	207	212	207	190
1918	211	211	211	213	209	210	217	227	234	225	225	227	218
1919	224	216	224	230	234	226	241	242	225	227	237	242	231
1920	247	237	237	243	241	237	233	218	210	187	173	152	218
1921	143	133	127	117	118	114	119	123	124	124	121	120	124
1922	122	131	130	129	132	131	135	131	133	138	143	145	133
1923	143	142	143	141	139	138	135	139	144	144	145	145	141

[^346]Table 727.-Index numbers of wholesale prices, by groups of commodities, United States, 1913-1923.
[Year 1913=100.]

Calendar year.	Farm products.	Foods.	Cloths and clothing.	Fuel and lighting.	Metals and metal prod- ucts.	$\begin{aligned} & \text { Build- } \\ & \text { ing } \\ & \text { mate- } \\ & \text { rials. } \end{aligned}$	Chem- icals and drugs.	House fur-nishing goods.	Mis-cellaneous.	$\begin{aligned} & \text { All } \\ & \text { com- } \\ & \text { modi- } \\ & \text { ties. } \end{aligned}$
1913	100	100	100	100	100	100	100	100	100	100
1914	103	102	98	93	85	92	101	100	95	98
1915	104	105	98	88	99	94	134	100	95	101
1916	123	121	127	126	162	120	181	106	121	127
1917	190	167	175	169	231	157	202	125	148	177
1918.	218	188	228	170	187	172	215	153	156	194
1919.	231	207	253	181	162	201	169	184	175	206
1920	218	220	295	241	192	264	200	254	196	226
1921	124	144	180	199	129	165	136	195	128	147
1922	133	138	181	218	122	168	124	176	117	149
1923	141	144	200	185	144	189	131	183	123	154

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.
Table 728.-Index numbers of wholesale prices of all commodities, United States, 1913-1923.
[Year 1913=100.]

Calendar Year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	A verage.
1913	100	100	100	100	99	99	100	100	102	101	100	99	100
1914	98	99	98	98	97	97	97	101	102	97	97	97	98
1915	98	99	99	99	100	99	100	100	100	102	104	108	101
1916	113	115	119	121	122	123	123	126	130	136	145	149	127
1917	153	157	162	173	183	185	188	189	187	183	183	182	177
1918	184	186	187	190	190	191	196	200	204	202	203	202	194
1919	199	193	196	199	202	203	212	216	210	211	217	223	206
1920	233	232	234	245	247	243	241	231	226	211	196	179	226
1921	170	160	155	148	145	142	141	142	141	142	141	140	147
1922	138	141	142	143	148	150	155	155	153	154	156	156	149
1923	156	157	159	159	156	153	151	150	154	153	152	151	154

Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports

CROP AND MEAT-ANIMAL PRICES.

$\mathrm{T}_{\mathrm{Able}}$ 729.-Index numbers of crop and meat-animal prices, monthly and average, 1908-1923.

CROPS. ${ }^{1}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1908.	120.1	122. 2	124. 3	125. 7	127.5	136.6	135.3	135. 5	130.8	127.2	119.6	117.4
1909	117.8	120.4	126.3	130.6	139.6	146.5	149.5	142. 3	132.9	130.5	129.3	127. 7
1910	134. 1	138.5	139.9	138. 8	133.5	133.5	133. 1	137.1	137.0	129.8	122. 2	118. 4
1911	118.6	119.8	117.9	118. 0	122. 2	127.7	136. 3	148. 2	141.6	138.0	135.6	133. 1
1912	133.9	140. 2	144. 7	153. 4	166. 3	168.3	160.1	148. 0	137.6	128.6	118. 3	110. 3
1913	110.9	112.6	113.3	113.6	116. 2	121.2	122.9	125.4	136. 3	139.1	133.9	132.7
Av. 1909-1913	123.1	126.3	128.4	130.9	135.6	139.4	140.4	140.2	137.1	133.2	127.9	124. 4
1914	132.5	132.1	133.8	134. 2	135.9	138.8	137.7	137.6	141.3	136.4	127.4	122.8
1915	126. 7	140.5	144.0	144. 5	150.0	147.3	139. 1	133.9	132.5	128.2	124. 4	120.4
1916	129.0	139.9	138.6	140. 2	143.3	145. 8	144, 8	147. 7	161.5	163. 6	178. 8	187.9
1917	183.6	195.6	206. 5	225. 2	280.6	291. 3	289.9	307.8	279.6	277.0	261. 3	252.3
1918	264. 1	271.6	288. 8	288.6	281.8	271.9	272.9	280.6	293. 3	289.3	269.5	265.2
1919	272.4	259.9	257.1	271.2	293.7	307.2	310.2	329.0	317.7	290.0	279.4	282.4
1920	296.7	311.0	314.3	334.1	362.1	380.4	374.0	329.8	294.7	248. 7	201.1	165.5
Av. 1914-1920.	200.7	207.2	211.9	218.7	235.3	240.4	238.4	238.8	231.5	219.0	206.0	199.5
1921	158.5	151.4	147.5	139.3	128.7	134.6	130.6	133.8	134. 5	137.3	121.4	120.6
1922	120. 5	123. 6	138.1	140.6	144.5	148.4	146. 1	145.6	133. 2	135.5	142. 3	150. 0
1923	154.7	158.2	163.9	169.1	175.0	173.6	170.5	168.1	168.8	172. 5	172.5	169.3

[^347]Table 729.-Index numbers of crop and meat-animal prices, monthly and average, 1908-1923-Continued.

MEAT ANIMALS. ${ }^{2}$

Calendar year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1910	6. $67{ }^{\circ}$	6.71	7. 39	7. 74	7. 37	7. 29	6. 98	6.67	6.92	6. 80	6. 47	6.21
1911	6. 40	6. 19	6. 09	5. 80	5. 54	5.45	5. 52	5. 87	5. 87	5. 58	5. 44	5.37
1912	5. 44	5. 54	5. 69	6. 30	6. 39	6.27	6. 23	6. 56	6. 74	6.86	6. 45	6.42
1913	6.40	6. 70	7.08	7.35	7.08	7.19	7. 25	7. 20	7.15	7.14	6.94	6.85
Av. 1910-1913.	6. 23	6.28	6.56	6.80	6.60	6. 55	6.50	6.58	6.67	6.60	6.32	6. 21
1914	7.05	7.27	7.37	7.40	7.29	7.22	7.41	7.63	7.58	7.14	6.80	6.61
1915	6.57	6. 46	6.46	6. 59	6. 80	6.85	6.83	6.74	6. 77	6.96	6.45	6. 25
1916	6. 46	6.94	7. 53	7.85	7. 98	8.00	8.04	8.05	8.38	8.04	8. 09	8.15
1917	8. 53	9. 42	10.70	11. 71	11.84	11. 72	11. 47	11.84	12. 79	13. 04	12. 47	12. 74
1918	12.59	12. 65	13.06	13. 55	13. 83	13.62	13. 68	14. 21	14. 50	13. 79	13.37	13. 40
1919	13.46	13. 51	14. 06	15. 01	15. 34	14.98	15.61	15. 56	13. 44	12. 22	11.88	11. 54
1920	12. 14	12.43	12. 52	12. 72	12.41	12.31	12. 40	12.12	12.22	11.67	10.34	8. 48
Av. 1914-1920.	9.54	9.81	10.24	10.69	10.78	10.67	10.78	10.88	10.81	10.41	9.91	9.60
1921	8.42	8.24	8.67	7.89	7.66	7.31	7. 65	7.94	7.11	6.88	6. 47	6.37
1922	6. 67	7.56	8.19	8. 10	8. 29	8.37	8. 34	7.87	7.69	7.75	7. 36	7.28
1923	7. 48	7.51	7. 48	7.52	7. 38	7.01	7.16	7.14	7.68	7. 27	6. 80	

Division of Crop and Livestock Estimates. The trend of prices to farmers for important crops is indicated in the following figures; the base 100 is the average price December 1 in the 43 years 1866-1908 of wheat, corn, oats, barley, rye, buckwheat, potatoes, hay, flax, and cotton.

Based on prices 15 th of month.

PRICES, COST OF LIVING, AND WAGES.

Table 730.-Index numbers of prices, cost of living, and wages, 1913-1924.
$(1913=100)$

Calendar year.	Farm prices. ${ }^{1}$	$\begin{aligned} & \text { Whole- } \\ & \text { sale } \\ & \text { prices } \\ & \text { all } \\ & \text { commod- } \\ & \text { ities. }^{2} \end{aligned}$	Retail prices, 22 articles of food. 2	Cost of living (32 cities). ${ }^{3}$	Farm labor. ${ }^{1}$	Union wages per hour May $15 .{ }^{2}$	Earnings New York State factory workers. June $1914=$ $100 .{ }^{4}$
1913	100	100	100	100	100	100	
1914	100	98	102	${ }^{5} 103$	99	102	${ }^{6} 100$
1915.	100	101	101	5105	99	103	101
1916.	120	127	114	${ }^{5} 118$	108	107	114
1917.	177	177	146	${ }^{5} 142$	133	114	129
1918.	199	194	168	${ }^{5} 174$	161	133	160
1919	210	206	186	${ }^{5} 199$	186	155	185
1920	196	226	203	${ }^{5} 200$	214	199	222
1921	120	147	153	${ }^{5} 174$	143	205	203
1922	123	149.	142	${ }^{5} 170$	138	193	197
1923.	134	154	146	${ }^{5} 173$	155	211	214
1922.							03
March.	124	142	139	167			193
June.	126	150	141	167			198
September.	116	153	140	176	-		208
December..	131	156	147	170	------	---------	208
1923.							
January.		156	144	169	133		212
March..-	137	159 159	142	169	140		
April		159 153	143	170	140		210
June...	130	153	147	170	159		
July		154	149	172	159		216
September	129	154	149	172	154		21
October.		153	150		154		
December.----..........	138	151	150	173			220

[^348]FEDERAL-AID HIGHWAYS.
Table 731.-Federal-aid highways completed and under construction.

State.	Highways completed and final payment made, year ending June 30, 1923.			Projects under construction June 30, 1923.1			
	Total cost.	Federal aid.	Miles.	Estimated cost.	Federal aid allotted.	Miles.	Federal aid paid.
Alabama	\$671, 989. 33	\$323, 665. 26	48.3	\$9, 637, 983.55	\$4, 818, 991. 66	621.2	\$1, 609, 407. 30 ¢
Arizon	3, 001, 356. 84	1, 461, 900. 62	196.7	2, 462, 987.30	1, 450, 169. 26	221.9	17
Arkans	3, 485, 213.85	1, 593, 669. 12	287.2	5, 957, 667. 24	$2,391,544.73$	400.4	$1,200,311.39$
Califor	$5,398,358.83$	2, 115, 030. 44	179.6	11, 553, 746. 98	6,211, 381. 11	506. 2	3, 304, 460.54
Colorado	3, $000,990.82$	1, 504, 905. 48	205.8	3, 611, 943.47	1, 938, 815. 44	165.0	864, 425.75
Connectic	2, 221, 161. 60	862, 238.07	47.6	1, 119, 033.84	482, 031.50	24.9	175, 251. 55
Delaware	580, 848.76	227, 500.00	17. 1	668, 715.88	$332,847.50$ 3	23.1 9	$161,234.23$
Florida				$6,852,022.09$ $7,478,068.80$	$3,389,983.22$ $3,697.204 .31$	210.9 690.1	$1,986,864.09$ $1,745,014.75$
Georgia	1, 497, 036. 74	727, 424. 90	194.7	$7,478,068.80$ $1.790,030.72$	3, 697. 204.31	690.1	$1,745,014.75$ $484,625.95$
Idaho.	481, 703.80	243, 711.13	21.2	1,790, 030. 72	987, 178.91	125.2	484, 625.95
Illinois	1, 786, 917. 22	745, 389.16	40. 5	$5,083,205.90$	2, 539, 138.88	178.1	443, 419.09
Indian	2, 023, 652. 38	991, 382, 65	65.4	$9,537,990.97$	4, 604, 459. 53	272.8	$989,145.39$
Iowa	6,840, 865.05	2, 544, 257. 86	570.5	10, 781, 078.08	$5,132,734.89$	1, 012. 1	2, 222, 250. 43
Kansa	6, 450, 356. 54	2, 356, 157. 47	209.5	21, 627, 525.07	6, 233, 042.55	573.8	2, 884, 722. 80
Kentac	3, 763, 182.92	1,564, 990. 44	154. 7	7, 297, 078. 77	$3,544,141.20$	297.8	1, 623, 453.00
Louisia	3, 953, 469. 21	1, 770, 940. 44	307.3	4, 087, 051.95	$1,856,034.20$	270.0	601, 261.84
Maine	2, 843, 728.92	1,385, 682.38	94.5	2, 600, 214. 58	1, 210, 306. 43	75.3	584, 702. 21
Marylan	$504,449.37$	252, 224.67	18.0	2, 066, 898. 17	937, 896. 50	75.4	413, 771.21
Massachu	2, 481, 481.14	1,043, 242.93	50. 3	$4,529,564.91$	1, 665, 967. 52	89.8	$\begin{array}{r}641,923.43 \\ \hline\end{array}$
Michigan	5, 999, 824. 20	2, 663, 624.18	201.4	10,009, 739. 26	4, $322,779.22$	371.0	1,594, 633.60
Minnesot	9, 346, 816.31	3, 942, 445. 27	752.5	$7,205,828.87$	3, 124, 098. 36	638.6	1, 552, 076. 25
Mississip	1, 670, 058.49	$839,830.40$	161.9	6, 8:99, 526. 97	3, 423, 192.39	405.8	1, 584, 834. 48
Missour	2, 216, 361. 53	988, 203. 42	175.5	17, 418, 531. 58	8, 326, 760.68	881.1	$2,471,759.21$
Montan	2, 636, 795. 53	1, 304, 347. 20	247.0	$1,285,659.82$	$673,165.60$ 4 $442,530.94$	126.6 $1,506.3$	$\begin{array}{r} 319,034.49 \\ 3,001,169.30 \end{array}$
Nebrask	1, $967,515.32$	950, 152.14	307.5	8,819, 992.42	4, 342, 530.94	1,506.3	3, 001, 169.30
Nevad	1, 105, 451.57	684, 451. 05	88.0	2, 771, 308.14	2, 300, 452. 11	250.9	803, 759. 89
New liamps	454, 298.59	222, 486.50	22.3	737, 820.18	$355,504.43$	28. 9	196, 594. 02
New jersey	2, 350, 340.65	814, 254. 74	41. 4	2, 306, 035. 27	727, 200. 00	36.3	457, 860. 45
New Mexic	2, 922, 301. 96	1,543, 214. 20	432.4	3, 358, 414.00	2, 006, 229.83	541.2	836, 540.73
New York.	6, 102, 604. 56	2, 672, 443.79	179.8	$23,778,809.63$	9, 495, 436.00	597.0	2, 912, 775. 58
North Carolina	6, 038, 489. 94	2, 719, 747.81	424.1	7, 313, 680.90	2, 582, 737.95	245.3	849, 983. 97
North Dako	3, 778, 519. 60	1, 852, 719.87	480.8	4, 200, 474.39	2, 092, 645.08	848.7	1, 095, 836. 29
Ohio	5, 994, 517. 58	2, 311, 245.21	181. 7	12, 961, 337. 16	$5,003,885.02$	347.5	$2,337,532.35$
Oklahom	7, 397, 461. 54	3, 299, 821. 31	285.3	5, 431, 676. 52	2, 462, 291.78	244. 4	1, 219, 039.80
Oregon.	1,355, 077.27	$749,779.32$	84.4	$3,224,330.66$	1, 785, 606. 03	187.1	453, 481. 38
Pennsylvani	11, 707, 303. 31	4, 242, 891.56	212.7	10, 761, 379. 52	3, 751, 305. 00	193.5	2, $295,816.80$
Rhode Island	199, 620.46	97, 554. 56	6. 6	712, 437. 22	308, 245.34	16. 0	
South Carolina	2, 224, 081.09	1, 032, 741.79	267.1	$5,515,316.53$	2, 307, 641. 72	512.9	1, 156, 772. 53
South Dakota	$3,336,500.40$	1, $620,388.49$	379.7	5, 947, 235.04	3, 034, 795. 29	704.6	1, 421, 947.52
Tennessee.	1,969, 338.65	948, 864. 74	71.5	$13,838,513.83$	$6,893,877.82$	467.0	3, 340, 728, 55
Texas	17, 587, 951. 21	6,359, 362. 61	1, 153.7	23, 409, 117. 28	8, 531, 877.45	1,581.9	4, 386, 567. 45
Utah	1, 626, 103. 26	$929,937.78$	95.2	3, 752, 495. 25	$2,241,180.92$	273.0	I, $228,765.01$
Vermon	$830,212.33$	$405,469.93$	31. 2	1, 068, 146. 61	$534,073.27$	39. 0	198, 925.94
Virginia	4, 130, 598. 17	1,940, 269.08	228.1	8, 272, 256.14	4, 044, 175.46	325.7	1, 294, 483.80
Weshingto	2, 331, 237.15	1, 035, 846. 59	66.1	1, 830, 166. 24	$873,450.00$	57.2	211, 564.65
West Virginia	1, 412, 851.18	608, 768. 63	71.8	5, 221, 761.81	$2,276,610.53$	179. 4	1, $262,478.39$
Wisconsin	4, 981, 951. 39	$2,128,524.04$	397.0	3, 332, 673.79	1, 435, 069. 13	278. 7	$489,613.67$ $829,455.14$
Wyoming	2, 141, 261.41	1,066, 683.44	218.2	3, 717, 105.10	2, 136, 471.51	290.5	829, 455. 14
United States.-	166, 802, 207.97	71,681,382.67	9,973.9	323, 994, 579.34	145, 517, 158. 20	18, 011.1	62, 533, 931.33

Bureau of Public Roads.

${ }^{1}$ Includes $3,239.4$ miles of practically completed projects.

$$
85813^{\circ}-Y B K 1923-76
$$

Table 732.—Highways: Federal aid projects completed, by types, 1918-1923.

$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 \text {. } \end{aligned}$	Graded and drained.			Sand-clay.		
	Total cost.	Federal aid.	Miles.	Total cost.	Federal aid.	Miles.
	$\$ 11,808.24$$681,851.41$$2,308,794.90$$17,134,140.97$$14,569,579.11$	$\$ 4,738.04$$298,906.04$$1,021,277.45$$7,055,698.94$$6,316,326.91$	10.0	\$126, 885.24	\$63, 321.17	46.8
			203.0	384, 811.91	181, 107.89	90.0
			349.9	2, 401, 029.18	1, 075, 989.00	384.2
			1,635.5	9, 208, 839.93	4, 233, 269.25	1,111.8
			1,966. 0	8, 120, 872.33	3, 896, 299.34	1,016.7
	34, 706, 174. 63	14, 696, 947. 38	4, 164.4	20, 242, 438. 59	9, 449, 986. 65	2,619.4
Year ending June 30.	Gravel.			Water-bound macadam.		
	Total cost.	Fcderal aid.	Miles.	Total cost.	Federal aid.	Miles.
					*	
	$\begin{array}{r} \$ 233,623.22 \\ 1,795,314.88 \\ 9,839,752.94 \\ 35,333,778.98 \\ 46,479,134.23 \end{array}$	$\$ 103,891.64$$778,582.85$$4,268,22554$$15,854,797.05$$20,867,363.64$	55.2			
			247.8	\$139, 131. 96	\$69, 241.84	11.7
			1,201. 4	560, 6331.81	254, 980.59	40.5
			3,445. 3	4, 279, 366.52	1,837, 921.56	286.8
			4, 404. 0	5, 987, 050.01	2, 578, 843.54	287.5
	93, 684, 604. 25	41, 872, 860.72	9, 442.7	10, 966, 180. 30	4, 740, 987. 53	626.5
Year ending June 30.	Bituminous macadam.			Bituminous conerete.		
	Total cost.	Federal aid.	Miles.	Total cost.	Federal aid.	Miles.
				\$136, 715. 94	\$59, 571. 76	6.8
	\$41, 237. 10	\$11, 620.00	1.2	347, 484. 00	162, 622.93	19.5
	205, 783. 73	100, 882.07	11.0	460, 080. 99	195, 509. 11	19.7
	$3,428,606.06$	1,576, 184. 47	148. 9	4, 580, 101. 11	2,005, 818.94	159.1
	8, 854, 811. 29	3, 822, 667.03	294.5	13, 533, 187.30	5, 221, 434.96	392.8
	14, 640, 388.38	6,355, 525.91	458.1	4, 829, 129.82	2, 071, 446. 10	131.0
Totals...-.	27, 170, 826. 56	11, 866, 879. 48	923.6	23, 886, 699. 16	9, 716, 403.80	728.9
Year ending June 30.	Portland cement concrete			Brick.		
	Total cost.	Federal aid.	Miles.	Total cost.	Federal aid.	Miles.
	$\begin{array}{r} \$ 121,015.43 \\ 599,328.74 \\ 2,729,185.04 \\ 16,490,885.57 \\ 84,78,, 065.57 \\ 63,858,248.33 \end{array}$	$\begin{array}{r} \$ 52,685.22 \\ 217,917.11 \\ 1,189,723.28 \\ 7,374,016.37 \\ 3,844,590.98 \\ 26,021,235.74 \end{array}$	5.725.2	\$702-9-9-9	\$194-7-9-1	
						18.8
			110.3	839, 373. 33	261, 104. 00	21.8
			494.6	1,520, 655.96	391, 123. 05	26.8
			2,126. 9	9, 680, 179.46	3, 100, 843.36	205.6
			1,621. 4	2, 998, 868.14	1,063, 446.49	69.0
Totals	168, 586, 728.38	70, 700, 168. 70	4,384. 0	15, 741, 578. 93	5, 010, 878. 18	342.0
$\begin{aligned} & \text { Year ending } \\ & \text { June } 30 . \end{aligned}$	Bridges.			All types.		
	Total cost.	Federal aid.	Miles.	Total cost.	Federal aid.	Miles.
1917-18-			0.2	$\$ 257,731.37$$2,124,873.48$	\$112, 256. 98	12.5
	\$59, 004. 90	84, 733. 45				176.8
1919-20	169, 467.28		0.9	7, 405, 000.53	$3,159,790.53$	716.1$2,898.5$
1920-21	1,018,723. 83	$\begin{array}{r}494,474.58 \\ 2,844,952.47 \\ \hline\end{array}$	4.220.0	$42,149,181.36$$188,965,646.43$		
1921-22					$\begin{aligned} & 18,462,089.99 \\ & 79,816,175.60 \end{aligned}$	9,519.3
1922-23.	5, 318, 937. 62	2, 510, 895. 00	10.3	166, 802, 207. 97	71, $681,382.67$	9,973.9
To	12, 719, 410. 34	5,945, 055. 50	35.6	407, 704, 641.14	174, 000, 167.94	23,297. 2

Bureau of Public Roads.

Table 733.-Wages per hour paid common labor for road work, 1915-1923. ${ }^{1}$

Calendar year.	United States average.	New England.	Middle Atlantic.	South Atlantic.	East South Central:	West South Central.	East North Central.	West North Central.	Mountain.	Pacific.
1915.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents.	Cents. ${ }^{\text {c }}$	Cents. 26	Cents.
1916	23	25	24	16	13	17	24	28	29	28
1917	28	31	30	21	17	21	29	34	36	35
1918	36	39	38	27	23	28	39	45	44	
1919	41	41	41	32	28	36	43	53	47	
1920	49	49	50	37	32	40	53	62	55	
1921	36	38	35	26	25		35	45	46 37	48
1922 2-	32 35	39 49	36 43	$\stackrel{21}{22}$	20 21	$\stackrel{24}{24}$	31 35	31 32	37 40	
-										

Bureau of Public Roads.
${ }^{1}$ Average of monthly reports.
${ }^{2}$ For the first six months of 1923.
Table 734.-Highway maintenance: Expenditures reported by States on Federalaid highways, calendar year 1922.

State.	General maintenance.			Betterment.			Reconstruction.		
	Number of projects.	Miles.	Total expenditure.		Miles.	Total expenditure.	Num ber of projects	Miles.	Total expenditure.
Alabama	49	332.2	\$41, 184. 89	5	36.9	\$29, 189. 86			
Arizona	33	368.3	98, 909.76						
Arkansas	56	595.8	76, 974. 45°						
California	44	394.9	222, 771. 60	16	143.9	154, 541. 09	9	70.8	\$25, 062.27
Colorado.	93	393.6	81, 219.31						
Connecticut	5	36. 4	12, 801. 65						
Delaware	7	42.3	10, 451. 78						
Florida	10	48.7	15, 746.64						
Georgia				13	219.4		2	58.0	
Illinois ${ }^{1}$	38	413.7	87,699.81	13	219.4	60,678. 68	2	58.0	12, 24.30
Indiana.	22	142.6	16, 236. 72						
Iowa.	84	1, 080. 6	343, 815.58	9	137.7	151, 227.41			
Kansas	44	283. 3	44, 796. 05	4	29.2	15, 691.85			
Kentucky	29	231.0	67, 198. 52	7	48.2	21, 997. 63			
Louisana.	44	544.8	246, 918. 00	3	38.1	14, 069.09			
Maine	25 44	106.9 167.4	$\begin{array}{r}41,083.44 \\ \mathbf{7 6}, 484 \\ \hline\end{array}$	1	3.9	7, 317. 43.			
Maryland	44	167.4 153.3	76, 484.97 $59,414.83$	2	4.6	9, 799. 39			
Michigan	47	375. 5	87, 376.44						
Minnesota	158	1,664.3	367, 688. 00	112	1,297. 5	742, 902.00	39	574.4	132, 582.00
Mississippi	53	529.3	54, 338. 19						
Missouri.	17	110.9 583.2	$12,397.75$ $66,229.37$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{array}{r} 1.7 \\ 42.6 \end{array}$	$\begin{array}{r} 1,200.00 \\ 28,447.22 \end{array}$			13, 018.09
Nevada.	20	168. 1	37, 034.54	2	7.6	17, 800, 41			
New Hampsh	116	123.9	82, 941.41						
New Jersey --	21	80.1	41, 999.17						
New Mexico	46	617.9	99, 960.85	11	112.8	49, 893.38			
New York.	41	154.0	18,776. 82	3	7.7	597.19 1			
North Carolina	98	820.8	222, 026. 48	18	188.7	1, 889, 192. 66	1	8.9	5,632.00
North Dakota	50	542.2	35, 884.57						
Ohio.	128	580.8	222, 74.47 .84						
Oklahoma	46 40	279.2 448	$74,473.55$ $137,743.98$	19	242.0	$\begin{array}{r} 752.84 \\ 666,702.91 \end{array}$			
Pennsylvania ${ }^{1}$									
Rhode Island.	5	15.8	2,044 73						
South Carolina ${ }^{1}$									
South Dakota	36	439.2 246.3	58, 791.01 41, 138. 25	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	42.6	$\begin{array}{r} 5,741.42 \\ 38,926.43 \end{array}$			
Tennessee.--	21	246.3		2		38, 926.4			
Utah	18	290.4	25, 542.48						
Vermont.	20	49.0	13, 310. 69						
Virginia.	79	382.5	136, 144. 59						
W ashington-	84	402.7	163, 761. 01	9	35. 2	${ }_{202}^{691,558 .} 91$			
West Virginia	77 239	$\begin{array}{r}233.0 \\ 1,014 \\ \hline\end{array}$	152, 489. 21	28	112.7 13	202, 935. 28.21		78.1	$5,800.00$ $31,262.64$
Wisconsin	239 60	$\begin{array}{r} 1,014.3 \\ 568.9 \end{array}$	$\begin{array}{r} 185,005.74 \\ 99,962.58 \end{array}$	32	133.6	334, 284.21	13	76.1	81, 262.64
Total	2,279	16,200.7	4, 017, 437.70	306	2, 918.4	5, 147, 629.15	67	829.0	226, 451. 13
Expenditures per mile.			248.00			1,764.00			273.00

Bureau of Public Roads.
${ }^{1}$ Not reported.

HUNTERS' LICENSES.

Table 735.-Hunters' licenses issued by States in 1922, for season 1922-23.

| | |
| :--- | ---: | ---: | ---: | ---: | ---: |

Bureau of Biological Survey.
${ }^{1}$ Money returns do not include amounts received from licenses to fish only.
${ }^{2}$ No resident licenses.
${ }^{3}$ Combination hunting and fishing licenses.
${ }_{5} 4$ Figures not available.
${ }^{5}$ Net.
${ }^{6}$ Licenses good as long as holder remains a resident; 136,414 issued previous to Jan. 1, 1923.

METEOROLOGICAL STATISTICS.

Table 736.-Temperature: Monthly normal ${ }^{1}$ and mean temperature, at selected points in the United States, 1912-1923.

Station.	Nor- mal for Jan.	January monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	-	-	-	-	-	-	-			-		\bigcirc	-
Amarillo	33.9	31.2	35.0	454	34.0	35.2	36.6	30.7	28.7	35.2	41.0	34.0	46.2
Atlanta, Ga	42.6	37.6	49.5	45.0	41.9	48.8	47.9	34.8	43.8	42.7	45.9	43.0	48.2
Birmingham, Ala	45.3	39.8	52.0	47.4	42.8	51. 2	49.4	36.6	43.9	46.2	49.3	45.9	51.8
Bismarck, N. Dak	7.8	$-.9$	5.6	17.9	9.2	-5.0	6.3	1.4	24.4	7.4	18.8	8.4	12.3
Boise, Idaho	29.8	28.8	28.0	37.8	27.6	27.4	23.2	34.4	32.8	30.1	34.8	20.6	- 35.5
Boston, M	27.9	21.4	39.2	28.7	33.0	33.0	30.2	21.0	33.2	21.0	32.1	27.2	27.0
Browns	59.4	57.4	58.6	62. 6	58.8	67.2	62.6	58.0	56.0	58.2	65.8	57.8	67.6
Buffalo,	24.6	15. 6	33.8	27.9	25.3	32.0	24.4	14.1	31.0	15.6	29.1	23.2	25.4
Canton,	16.3	4.8	26.8	13.0	19.4	25.0	14.4	7.5	22.0	4.1	20.9	12.8	10.8
Charleston,	49.9	45.8	58.3	50.0	49.7	55.9	54.6	42.4	51.1	51.0	51.8	47.4	53.7
Charlotte,	41.2	34.7	48.8	43.8	41.6	47.6	46.1	32.4	45.0	39.8	42.2	40.2	44.6
Cheyenne	25.5	27.7	24.4	31. 4	25.8	17. 6	21.8	19.8	31.8	33.5	28.2	21.0	32.2
Chicago, Ill	25. 1	11.9	29.3	32.4	24.1	28.8	24.2	13.3	31.0	18.8	32. 4	24.8	30.8
Cincinnati,	30.3	22.0	40.6	37.8	31.4	37.6	32.4	16.3	35.2	25.4	35.9	29.2	36.5
Cleveland, Ohio	26. 5	15.8	35.3	32.0	26.0	34.8	27.3	15.0	32.6	19. 0	32.0	25.6	30.2
Concordia, Kans	24.4	16. 0	27.0	36. 2	26. 5	21.5	28.8	15.3	33.6	30.2	36.2	27.0	37.2
Des Moines, Iow	20.1	6.2	23.5	29.6	20.8	20.8	20.0	11.8	29.8	18.4	30.4	22.6	29.3
Devils Lake, N. Dak.	. 3	-8.3	-1.4	9.6	2.6	-8. 2	-3.0	-4.6	14.4	-2.3	10.5	4.1	6.0
Dodge City, Kans.--	29.0	18.0	29.4	39.4	30.6	23.8	31.3	21.1	31.0	32.8	36.4	28.6	39.0
Dubuque, Iowa	19.1	3.8	22.7	28.2	17.2	21.6	16. 6	8.2	25.9	13.4	28.5	19.7	25.8
Duluth, Minn	7.9	-7.2	6.3	15.4	9.2	5.1	3.1	0.8	17.8	3.0	16.6	8. 6	13.0
El Paso, Tex	44.1	45.7	40.3	48.4	41.2	50.4	44.8	41.5	40.7	44.5	48.6	43.5	49.1
Eureka, Calif	46.9	49.6	42.7	49.6	48. 8	43.0	42.6	48.4	49.0	47.9	45.6	43.2	46.9
Evansville, Ind	32.3	23.8	39.4	39.6	31.5	38.6	36.3	19.4	38.5	30.4	39.4	32.3	40.8
Fort Worth, Te	44. 3	40.6	46. 1	53.0	45.4	46. 2	48.6	36. 8	45. 8	43.0	51.4	43.0	55.5
Fresno, Calif --	45.4	48.5	44.5	50.0	47.4	45.6	42.8	46. 4	48. 2	48.2	46.4	41.7	46. 2
Galveston, Tex	53.8	49.2	54.6	57.0	51. 2	58. 4	56.6	47.8	50.6	54.0	58.2	52.0	62.0
Grand Rapids, M	23.8	11.8	28.2	29.0	23. 3	28.7	22.8	12.5	30.0	16.0	30.5	23.6	26.2
Greenville, Me	12.8	4.1	20.4	9.7	16.4	15.1	12.4	6.4	15.6	4.6	15. 2	11. 0	8.7
Mavre, Mont	12. 9	10.1	6.9	18.8	11.4	-13.3	11.2	10.8	34.1	13.0	26. 0	13.8	19.4
Indianapolis,	28. 4	17. 2	35.1	34.6	26.8	33.8	30. 6	14.6	34.0	22. 2	34.3	26.7	34.6
Iola, Kans...	27.6	20. 6	30.6	37.2	30.4	28.5	33.7	17.6	33.6	30.5	38. 4	30.0	40.6
Jacksonville,	55.4	52.6	63.6	55.2		62.4	61.2	50.0	55.3	57.3	58.0	53.4	59.2
Kalispell, Mo	19.6	20.0	18.2	29.2	20.2	4.4	20.1	21.8	26.8	24.2	26.1	16.9	27.4
Little Rock, A	41.4	35.2	45.1	47.0	40.2	45. 2	45.0	28.6	43.2	40.8	47.2	39.8	49.7
Los Angeles, C	54.6	59.0	52.1	56.8	55. 9	50. 8	51.2	55. 7	60.2	56.6	54.1	53.4	58.1
Lynchburg, Va	37.5	29.0	45.2	42.0	38. 4	43.2	39. 4	27.0	41.0	34.4	39.0	35.1	39.8
Madison, Wis	16. 7	1.2	19.4	25.9	15.4	20.2	13. 8	5. 6	24.1	10.0	25.4	17.0	22.0
Marquette, M	15.9	1.3	17.7	21.8	16.3	17.4	12.6	8.8	24.6	9. 2	23.4	17.2	19.2
Memphis, Ten	40.9	34. 6	46.0	46.1	39.4	46. 2	44.7	27.6	43.0	39.3	47.2	40.0	49.2
Miami, Fla	67.3	68.0	72.4	64.4	67.0	72.0	69.8	62.8	65.1	68.6	67.8	67.6	68.8
Mobile, Ala	52.2	47.8	57.4	53. 6	49.6	57.2	57.2	45.7	49.6	53. 6	56.0	53.0	58. 4
Modena, Utah	27.5	28. 7	23.9	32. 2	24.2	24.4	13.6	28. 2	25.6	28.7.	28.7	16.6	33.5
Nashville, Tenn	38. 6	32.3	45.4	42. 6	36. 2	44.6	41.8	26. 4	40.1	38.6	43.2	38.9	45.0
New Orleans, 1	54.2	50.2	59.9	56.6	51.8	61.3	59.8	48. 1	51. 2	56.0	59.2	56. 0	61.0
Norfolk, Va-	40.6	33.5	51.2	44.1	42.2	47.0	42.8	31.6	43.8	37.4	43.6	39.2	43.9
North Platte, Nebr	22.9	13. 9	23.7	34.0	20.1	15.0	22.8	14.8	28.6	28.9	30.1	21.6	32.9 47.8
Oklahoma City, Okla	34. 7	30. 2	37. 0	45.4	37.1	33.4	39.0	25. 0	38. 4	35. 2	43. 0	35. 2	47.8
Omaha, Nebr $-\cdots--$	21.9	10. 4	23.8	30.6	21.6	17.2	22.6	12.7	31. 9	23. 2	32.0	23.6	32.5
Parkersburg, W. Va-	31.3	22. 4	42.2	37.6	31.9	38.8	33. 2	20.3	35. 6	28. 4	37.4	31.8	37.0 31.8
Peoria, Ill	23.1	11.0	27.8	32. 2	21.0	27.2	24.4	10.4	29.2	18.6	32. 2	23.8 48 18	31.8 55.4
Phoenix, Ariz	50.0	53.0	47.2	54. 8	50.0	50.8	49.0	49.6	50. 8	53.3	52.0	48.6	55. 4
Pierre, S. Da	16.0	7.0	18.6	25.5	15.6	2.4	14.8	8. 0	29.7	19.0	27.9	13.6	24.9 33.4
Pittsburgh, P	30.7	20.4	40.2	34.4	30.6	37.5	31.6	18.6	34.4	24.4	34.6	28.8	33.4
Portland, Oreg	39.4	41.4	38. 2	45.8	39.2	29.6	39.6	45. 4	42.2	39.4	41.6	35. 2	42.8
Pueblo, Colo	29.1	26. 1	29.0	38. 6	29.6	27.1	30.1	22.8	30.8	35.0	35.4	26. 1	39. 0
Roseburg, Ore	41. 2	45.4	38.4	45.4	40.3	35.8	38.0	45.8	41.3	41.2	42.0	37.2	42.6
Sacramento,	45.8	47.4	44.2	48.8	46.3	43. 6	42.4	47.5	46.2	46.8	46. 2	40.6	43.8
St. Louis, M	30. 8	20.4	34.8	39.7	29.6	34. 1	34.8	18.8	37.8	28.4	39.2	30.2	39.5
St. Paul, Minn	12.6	-2.0	13.8	21.2	12.4	10. 4	6.8	3.7	21.8	7.0	21.4	12.8	17.6
Salt Lake City, Utah.	29.2	34. 4	26. 9	315.2 56	28.2 50.6	29.4	21. 2	30.4 47		30.8 49	35.7 58	22.2 49.4	36.0 62.0
San Antonio, Tex	51.1	48.8 57.0	52.4 50.6	56.4	50.6 55.2	56.2	55.2 51.6	47. 54. d	49. 5 56	49.4 54.6	58.4 53.6	49.4 52.5	62.0 56.3
San Diego, Calif	54.3 49.9	57.0 51.8	50.6 47.4	56.3 51.5	55.2	52.5 47.0	51.6 47.6	54.4	56.6	54.6 52.2	53.6 49.5	52.5 46.8	56.3 48.1
Santa Fe, N. Mex.--	28.8	28.9	24.8	33. 5	24.4	30. 6	28. 0	26. 2	24.4	33. 9	32.4	28. 0	34.9
Scranton, Pa	27.2	19.4	37.2	28.2	30.2	33.6	28.4	17. 4	31.7	18.7	29.4	24.1	26.8
Seattle, Was	39.3	42. 6	36. 6	43.2	40.6	31.0	38. 0	43. 7	41.4	40.2	40.4	35.5	40.4
Sheridan, W y	18.9	17.0	14. 4	29.2	17.8	1.8	18. 2	15.6	27.9	22.8	27.6	11.6	28.4
Shreveport, L	46.2	42.2 23.7	50. 5	52. 6	45. 2 32 22	51.6 33.8	50.5 36.0	38.2 18.4	46.0	46.2 31.4	53.4 39.8	44.6 31.8	55.9 42.7
Springfield, Mo	31.3	23.7	34.2	39. 5	32.2	33. 8	36. 0	18.4	36.6	31.4 53.9	39.8 55	31.8 51.6	42.7 56.8
Thomasville,	51.0	48.4	59.4	52.2	51.0	60.1	58. 2	46. 0	51. 4	53.9	55.6	51.6	56.8
Trenton, N.J.-...-	30.5	24.6	40.8	32. 2	34.0 30.8	35. 5	32.4 34.0	20.4 39.8	34.8 36.8	23.2 31.6	33.4 37.8	28.4	31.0 40.8
Walla Walla, Wash.-	33.2 33.4	31.2 25.0	32.0 43.6	45.6 38.6	30.8 35.6	18.6 39.8	34.0 35.0	39.8 23.7	36.8	31.6 28.7	37.8 36.6	23.0	40.8 36.8
Washington, D. C----	33.4 28.6	25.0 32.0	43.6 25.2	38.6 34.6	35.6 29.3	39.8 22.1	35.0 11.8	23.7 31.8	38.1 29.2	28.7 31.5	36.6 32.6	32.0	36.8 30.4

Table 736.-Temperature: hforthly narmat ${ }^{1{ }^{1}}$ and mean temperature, at selecied points in the United States, 1912-1923-Continued.

Station.	Nor- mal for Feb.	February monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	1020	1921	1922	1923
	-		-										-
Λ marillo	37.2	35. 6	31.6	38.2	41.4	43. 5	40.6:	44.0	37.9	40.5	41.6	40.8	36.3
Atlanta, Ga	45.3.	40.0	45.4	43.1	45.8	44.1	44. 4	50.8	44.4	41.8	48.1	50.1	43.7
Birmingham, Ala	48.33	42:2	46.0	44. 4	47.8	45. 6	47.8	52. 6	4fi. 0	44.5	50.0	52. 8	45.8
Bismarck, N. Nak	10.3	14. 2	13.0	5:3	20: 6	11.8	1. 8	14. 2	10.0	17. 2	22.8	2. 2	7. 4
Itoise, Idaho.	34.8	36.7	31.3	36, 0	40. 8	38: 6	30.5	3f. 0	35.8	35.4	35. 3	31. 9	30.7
Boston, Ma	28.8	27.7	27.7	24.3	33.2	25.5	25: 8	25. 9	32.6	27.6	32.6	32.0	23.4
Brownsville	62.9	5933	59.6	62.8	64.3	64. 8	66.3	65.2	62: 6	65. 4	63.8	6 ¢8. 7	82.5
Buftalo,	24.3	19.6	22:2	16.9	29.6	18. 9	18. 0	23. 1	28.8	19.9	29.4	27.1	20.7
Canton, N	18.0	12.3	13. 1	8. 3	20.8	11. 6	9.5	15.6	21.8	15. 4	20.9	20.1	9.2
Charleston,	52. 4	46.2	54.0	48.6	51.5	52. 0	50.8	55.2	51: 6	48: 2	53.6	56.4	50.3
Charlotte,	43.9	38.8	44.4	39.6	45. 7	43. 6	42. 9	48:6	42.8	$3{ }^{3} \mathrm{P} .8$	45.5	48.4	42.2
Cheyenme,	27.3	25.2	18.6	25, 6	31.2	31.8	27.2	29:4	25.6	26. 8	30.2	23.9	23.9
Chigage, Ill	27.4	21.8	24. 8	20.2	34, 5	25.0	198.8	27.2	305	25.8	33.4	29.4	22.3
Cincinnati,	32.8	26. 7	32.0	27.4	40.1	29.6	29.0	34.5	34.4	30.6	37.0	36.0	28.3
Cleveland, Obio	27. 4	21.1	24,4	19.8	32. 8	23:0	21. 3	28. 2	31.3	24, 5	32.1	31.7	23.8
Coneordia, Kans	28.8	29. 2	25. 4	26. 6	35.1	28.2	28. 6	32, 6	30.9	33.9	39.6	31.0	3010
Des Moines, Iowa	25.7	19.6	22.4	19.7	31. 8	21.3	19.2	26. 4	26. 5	25.3	33.2	26.4	22.4
Towils Lake, N: Dak.	4.5	8. 2	4.1	-3: 6	15. 4	3.2	-3.8	8.6	3. 6	8. 0	15. 4	-. 4	2.0
Wodge City, Kans -	33. 2	32. 0	24.8	30.0	39.0	34: 9	32. 1	37. 5	31.9	35.1	38.7	34.0	32.0
Dubuque, low	22.2	17. 1	20.4	15. 8	30: 2	20.1	14.2	29.0	25.7	21. 1	29.8	23.8	18.3
Duluth, Minn	11.4	8.8	5.6	2. 7	20. 6	7.0	1. 8	10.8	13.8	12. 4	19.0	7.6	5.4
El Paso, Tex	48.9	46. 4	45.7	49.0	47.8	53.4	48.8	51: 8	46.0	53.4	49.4	50.5	46.4
Euteka Calif	46.8	48.9	44.0	47.9	48. 4	50.4	44: 2	47.0	47.0	46.0	47.8	45.0	45.7
Evansville.	35.8	29.2	33. 0	27.9	41. 2	34.3	325	37. 3	37.7	35. 0	40. 0	38.9	32.6
Fort Worth T	48.1	45.6	43.8	44.3	52.2	48. 8	498	520	47.3	50.4	52.0	52.5	46. 4
Fresno, Calif	49:2	53.0	59.6	52. 2	52. 2	54.g	51: 4	51	49,5	52.2	51.5	49.	50.2
Gaiveston, Tex	50.3	52. 0	55.0	-52:8	56.9	58.3	57.2	57.0	554	58.8	58.0	59.9	56:3
Grand Rapids,	25.5	18.2	21. 0	15.8	31.1	21. 1	17. 4	$22: 1$	28.5	21: 2	30.0	27.5	179,
Greenville,	12.4	14.0	10.4	5. 9	20.4	11.9	9.1	10.2	182	15. 0	14.3	14.8	7.3
Havre, Mon	13. 6	22. 8	13.7	7.6	16.6	14.2	6.8	17.8	14:9	21.3	28.8		13.6
Indianapolis,	31.1	22.8	27.4	21.8	37.0	28: 0	25.1	31.	33.2	29.2	36.2	33.4	26.0
lola, Kans.-	32.2	30.2	27.8	30.0	39.0	32.2	31.8	34.	35.1	36. 8	41.8	38: 4	32. 2
Jucksoaville, F	58.0	52. 5	58. 4	55.3		57. 2	56.8	028	57. 6	53. 9	59.6	62.0	58.0
Kalispell, Mon	23: 8	28. 0	17.0	22.3	28.4	24.4	220	21.7	23. 0	25. 9	30.2	15.4	17.0
Littre Rock, A	44.9	38.9	42.4	41.8	48. 4	44.0	44:8	48.0	45.0	46.2	49.0	48. 2	42.4
Los Angeles,	55.5	59.8	53.8	59.4	54.7	58. 7	55.3	560	53. 6	57. 6	57.4	54.0	50.6
Lynehbury, Va	40.3	34.4	40.2	35.2	42.2	38.8	36.9	41.2	35. 8	35.4	41.4	42.0	37.8
Madison, ${ }^{\text {W }}$ is	19.1	14.6	15.6	12.1	27.7	17.1	11. 1	19.5	23.7	18.4	26.4	20.3	15.0
Marquetie, M	15.9	11. 6	11. 1	11. 6	25.4	13. 9	6.4	12. 8	23.3	15. 6	23.5	17.0	12.4
Mapaphis,	44.3	37.1	42.0	40.2	46. 0	42. 5	43.2	46.8	44.6	43: 6	47.6	47.2	41.0
Miami, Fle	68.8	62.8	70.8	67.4	65. 6	65.7	64.8	70.4	66.6	64. 2	68.8	70.3	60.8
Mobile, Ala	55.2	49.2	54.0	52. 0	53.3	53. 0	54. 4	59.4	53. 6	53.2	56.0	59.4:	53.6
Modena; Uta	31.6	33: 4	27.6	32. 6	31.8	36.1	26. 2	31.8	20.4	$3 \pm .8$	34.6	29.0	22.0
Nashville, Ton	41.6	35.6	39.6	38.0	44. 0	39.1	39.8	44. 7	41.2	39.4	45.1	45. 0	38.5
New Orleans,	57.3	51.5	54. 6	53.2	56. 2	58. 6	58.8	63. 0	56.6	56.9	60.2	- 02.7	57.0
Norfolk, Via	42.7	38.0	43.0	38. 6	45.4	41. 1	38.8	43. 7	42. 6	38.0	45.0	44:8	39.2
North Platte, Ne	26. 6	28, 6	20.0	23.3	29.7	28. 8	28.8	20.1	23. 6	29.6	34: 3	24:3	26.2
Oklahorna City, Okla	38.5	37. 4	32.4	36.7	43.8	39.3	39.1	43.1	40. 2	42.2	44, 2	42.8.	38.0
Omaha, Nebr	25.5	23. 2	23.6	21.4	31.9	23. 0	21. 6	27.5	27.8	28.9	35.8	24. 8	25.6
Parkersburg, W. Va_	33.9	26.6	32. 2	27.6	39.7	30.0	30.8	3. 8	35.8	32.1	38.2	38: 4	31.2
Peoria, Hl	25.9	20.8	24. 4	19.3	35.4	24. 4	20.8	27.9	30.8	27. 6	34.4	29:9	23.2
Phoenix, Ariz	54.4	56.2	53.1	55.1	53.8	59. 6	53. 8	55.2	51.2	57.6	57.6	54. 4	$55.3{ }^{1}$
Pierte, S: Fak	18.6	21.5	18.6	10.4	23. 4	19.2	10.4	20.2	14. 0	20.1	32.3	9.6	18: 7
Pittiburghr, ${ }^{\text {P }}$	32.3	24.7	28.8	24.3	36. 8	26.8	27. 0	32.7	38.5	28.2	35.6	35. 2	27. 4
Portland, Ore	42.1	45.3	39.7	43.4	45.4	42.2	4 4 : 5	41. 0	42.6	42.2	45.2	39.9:	37. ${ }^{2}$
Pueblo, Colo.	31.8	32.3	24.6	32.0	30. 5	36.0	35.4	37.4	30.9	3出 8	38.2	33. 2	29.6
Roseburs, Or	43.4	46.9	40.4	44:5	45. 0	48.8	41:2	43.4	43: 2	41.2	46.4	41.2	45: 8
Sacramemto, C	50.1	53.1	50.0	51. 1	51.0	53.8	50.0	493	48.4	50.4	50.9	47.1	50.2
St. Louis, Mo.	34.5	28.0	31.9	27.4	40.5	32.8	30.4	35. 6	36.7	34.8	42. 1	36.4	30.4
St. Paul, Minn	15.8	14.6	12.9	8.0	25.5	11.5	6. 2	17:4	17.0	15.5	23.8	11. 0	9.8
3att Lake Gity, Utah.	33.8	37.0	31.8	34.5	38.2	36.0	28. 6	1. 7	34.2	37. 4	36.8	29.8	26. 6
San Antonio, Fex	54.4	51.4	52.0	53.2	58.4	58.6	57.6	56.6	53: 0	57.7	58.4	58.2	52.0
San Diego, Calif	55.1	50.2	53.4	57.4	55.4	56.4	547	5.1	53: 6	56.8	55.2	53.7	55.2
Sant Franeliscos Calif.	52.2	54.6	52.4	54.0	52.8	55.8	52. 0	51.8	51. 6	52.8	529	50.2	52.2
Santa Fe, N. Mex.	33.1	30.3	29.2	32.6	32.4	3¢9 9	328	35.8	27. 2	37.5	34. 8	32.2	32. 2
Scranton, Pa	25.5	24.6	26.4	19.8	33. 2	235.6	24.1	29, 8	32. 3	24.8	3.6	31.5	23. 0
Seatila, Was	40.5	43.9	40.0	42.3	44. 5	41.9	383	49.0	40.8	$4{ }^{46} 3$	428:	39.4	37.3:
Sheridan,	22. 4	22.5	12.0	20.6	22\% 5	22.0	20.5	23. 1	24.6	27.0	31.9	-11. ${ }^{\text {f }}$	18.8:
Ghreveport, E	59.0	45.3	47.4	48. 4	51. 4	56.6	51. 6	55. 1	49.6	51.8	53.6	54.0	48. 5
Springfield, Mo	33.6	29.4	31.0	31.2	39.8	34.0	$33^{3} 0$	77. 6	35.8	38.9	42.4	38.2	32: 0
thomasville, (\ddagger	55.0	48. 4	54.0	51. 4	52.8	54.4	$5{ }^{5}$	60.5	58: 8	宥 6	56.4	61.2	55.6
Trenton, \mathbf{N}	30.7		32.6	25.6	36.0	27.8	2205	30. 0	34.4	283	34. 2	34. 2	26.4
Walla Walla, Was	36. 4	41. 0	29.8	36.3	42. 0	32. 6	36.9	38. 7	38.0	37. 1.	40. 7	33. $4^{\prime \prime}$	29.8
Washington, D. C...	35.3	31.0	36. 6	30.1	38.8	34. 2	32.8	38.8	37.2	32.7	39.0	38.	32.6
Winnomucea, NeV ---	33. 5	36.0	31.6	36. 4	37.6	37. 4	28.9	32. 1	33. 4	34.5	$38^{4} 8$	2\%. 9°	27.7

[^349]Table 736.-Temperature: Monthly normal and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	Nor- mal for Mar.	March monthly mean temperature.											
		1912	1913	1914	14.5	1916	1917	1918	1919	1920	1921	1922	923
	-	-	-		-		-	-	-	-	-	-	-
Amarillo	45.0	39.3	43.3	47.3	37. 2	53.7	46.2	52.3	46.4	47.2	52.0	45.3	42.8
Atlanta,	52.0	49.9	53.0	48.6	43.6	50.7	52.6	59.2	54.0	49.6	61.1	53.6	52.1
Birmingham,	55.2	51.5	54.6	50.1	45.4	52.8	56.2	61.8	55.5	52.1	64.0	55.4	54.0
Bismarck, N. Dal	24.2	16.0	20.8	27.6	24.0	24.7	24.3	36.5	19.1	26.0	27.8	27.3	21.4
Boise, Idaho--	42.7	40.2	38. 9	46.0	47.2	46.0	33. 2	45.5	42.8	40.8	45.2	38.8	40.6
Boston, Mass	35.6	36.0	42. 4	36.7	35.8	30.6	37.2	36. 7	40.8	39.2	48.2	39.8	33.9
Brownsville, 7	68.3	65.3	65.2	63.4	59.0	71.4	69.5	71.2	69.2	66.4	74.3	68.7	65.0
Buifalo, N.	31. 1	27.4	34.8	30.1	27.8	27.1	33. 2	34.7	35.5	36.0	41.6	35.2	29.2
Canton,	27.7	20.3	31.8	26.0	25.2	19.0	28.4	28. 4	29.8	30.7	37.3	32.0	20.6
Charleston,	57.4	56.1	60.0	51.2	49.6	55.2	59.4	62.0	59.5	54.6	65.1	59. 0	59.6
Charlotte, N	50. 4	49.2	53.6	46.2	43.1	49.8	50.3	55.8	52.0	49.8	59.6	53. 2	52.6
Cheyenne,	33.1	23. 2	30.8	34. 0	27.6	38.6	25.6	40.8	33. 7	31.5	37.6	33.8	28.2
Chicago, II	36.3	28.8	35. 2	35. 7	34.8	34. 6	38.8	42.2	38.5	40. 2	45.8	39.4	33.0
Cincinnati,	40.9	37.8	44.8	40.6	37.5	38.9	43.0	47.6	43. 7	44.0	52.4	44.8	40.4
Cleveland, Ohio	34.6	29.0	38. 0	34.0	30.4	30. 1	37.3	40. 2	37.1	40.0	45.6	38.8	34.8
Concordia, Kan	40.7	30. 2	38. 6	41.3	30.6	44.5	41.6	48.4	42.0	44.8	47.6	41.8	37.9
Des Moines, Io	35.9	26.2	34.4	37.2	31.2	37.6	37.5	45.0	39.0	39.8	44.2	40.6	31.5
Devils Lake, N. Dak.	18. 5	14.2	13. 2	23. 0	23. 8	17.0	21.8	34.2	14.4	19.1	21.0	25.6	12.4
Dodge City, Kans.--	42.8	30.5	40.0	43.7	32.6	48. 1	41.8	49.4	43. 8	45.0	49.1	41.0	40.0
Dubuque, Iowa	34.0	25. 2	32.8	34. 6	32.0	33.6	34.8	41.6	36.6	37. 2	41.2	37. 4	27.6
Duluth, Minn	23.7	18.6	17.0	23.2	25.0	18.9	23.2	31.4	23.9	25.3	24.6	26.2	13.5
El Paso, Tex	55.9	54. 0	52.0	53.1	49.3	60.4	53.3	59.2	54.6	53.6	59.3	53.6	51.2
Eureka, Calif	48.0	46.3	45. 6	49.3	52.1	48.6	43.8	48. 5	47.6	47.0	49.8	47. 1	47.4
Eransville, In	44. 6	39.7	44.4	42. 0	39.0	43.6	47.2	52.2	47.7	46.6	55.6	48.6	43.0
Fort Worth,	56.6	43.8	53.2	55.5	46.8	62.4	58.3	52.2	56.1	56.4	63.	56.4	53.6
Fresno, Calif	54.9	53. 2	54.8	58.9	58. 4	57.4	51.3	56.4	52.7	52.7	56.8	52.6	56.8
Galveston, Te	62.4	57.6	59.4	57.2	53.8	65.8	63.3	66.6	60.7	60.0	68.0	61. 6	59.6
Grand Rapids, Mich.	33.0	25.0	32.8	32.0	31.4	28.8	35. 0	38. 4	35.4	35.1	41.0	36. 7	28. 7
Greenville, Me...-.-	23.5	20.9	28.0	25.2	23.2	18.8	25.0	23. 3	28.7	27.5	32. 2	28.5	17.6
Havre, Mont	27.1	17.1	21. 6	33. 8	24. 9	34.0	22. 0	35.6	17.4	27.6	28.6	26. 8	30.6
Indianapolis,	40.0	32.8	39.4	37.7	35.5	37.9	41.6	47.4	42.6	42.3	49.9	43.6	38.2
Iola, Kans	42.4	34.3	39.8	45.4	34. 6	47.1	45.8	51.0	47.8	46.4	52.1	45.6	41.7
Jacksonvil	62.6	62.6	64.8	57.7	55.8	59.5	65.6	67.6	63.8	59.5	70.0	64.8	61.6
Kalispel1, Mont	33. 0	28. 0	26. 6	35.4	37.1	35.4	26.2	36.1	32.8	31. 2	33.3	29.9	32.6
Little Rock, Arl	53.0	46. 6	51.4	51.0	43.2	54.8	54.0	58.8	53.8	53. 0	61.3	52.4	49.6
Los Angeles, Cal	57.5	54.2	57.8	63.0	61.4	62.0	56.7	59.1	55.6	56. 8	59.4	55.6	61.0
Lynchburg,	47.3	45. 0	50.2	42.6	41.2	44.6	46.6	52.3	49. 4	47.4	57.1	48.8	47.9
Madison, W	30.6	23.4	29.6	30.4	29.6	28.6	31.8	37.9	33.2	34.0	37.4	34.1	24.7
Marquette, M	23.7	19.7	21.9	25.0	26.5	19.6	25. 3	31.7	28.6	28.0	28.4	29.8	17.8
Memphis, Te	52. 3	46. 1	51.0	49.3	42. 7	52. 0	53.5	58.1	53.6	51.8	61. 4	52.9	49.8
Miarni, Fla	72.0	75.3	75.4	65.4	63. 0	65. 8	72.4	72.4	71.7	67.6	73. 8	72. 8	73.8 58
Mobile, Al	60.0	59.4	60.2	55.1	52.4	59.9	63.4	65.9	61.6	57.8	66.8	60.2	58.8
Modena, Utah	39.2	35.5	35. 2	41.8	39.8	42.6	31.0	40.5	36. 8	35.3	42.0	36. 4	34.8
Nashville, Tent	49.2	45.1	48.8	46. 0	41.3	47.2	49.9	56.3	50. 4	48.5	59.0	51.3	47.6
New Orleans,	62.8	60.9	61.3	57.6	55.0	63.8	66.1	68.9	64.0	60.3	70.6	62.5	61.6
Noriolk, Va-	48. 2	47.2	54.7	42. 4	42.4	44.1	47. 2	52.6	50.4	50.0	58.1	51. 2	49.6
North Platte, Nebr--	36.6	23. 2	32.8	38.3	26.8	43.0	33.0	45. 4	37.0	37.9	43. 4	38.8	34. 2
OklahomaCity, Okla-	49.2	40.9	44.2	50.0	38.4	54. 4	51.0	55.8	51.0	50.1	56. 3	49.0	46. 2
Omaha, Nebr	37.0	27.2	35.0	37.4	30.0	39.5	38. 5	47.1	40.5	41.6	45. 6	40. 6	32.7
Parkersburg, W	42.3	39.0	46. 0	38.9	35.4	39.4	42.2	47.8	44.6	45.2	53.3	46. 7	42.1
Peoria, Ill	37.0	28.4	35.4	36. 8	34.1	37. 4	40.0	45. 6	40. 8	41.5	47.3	41.2	34.2
Phoenix, A	60.5	58.6	56.7	63. 6	58.6	64.0	56.2	62. 4	57.5	58.4	64. 7	57.0	58. 9
Pierre, S. Dak	31.5	24.8	27.0	32.3	20.8	34.6	29. 6	42. 7	29. 4	32.0	38.0	33.8	29.4
Pittsburgh, Pa	39.6	35.2	43.4	36.8	33.2	34.1	40.6	44. 6	42.2	42. 6	50.7	43. 0	38. 6
Portland, Ore	46. 9	46. 4	44. 6	51.1	52. 6	47. 0	42. 6	46. 7	48.2 41.6	45. 8	48. 0	43.3 41.6	47.2 37.0
Pueblo, Colo	40.6	33.4	39.7	41.2	35.0	48. 5	37.6	46. 8	41.6	40.5	47. 0	41.6 45.2	37.0 47.2
Roseburg, Or	47.1	45.2	45. 6	51.8	51.5	48.4	42. 6	48.0	47.4	44.8	48. 4	45.2	47.2
Sacramento,	54.3	51.4	52. 6	58.1	57.4	50.6	50.8	53.6	51.2	51.0	55.0	50.8	56.4
St. Louis, Mo	43.8	35. 6	42. 1	43.5	38.5	45.0	46. 6	52. 6	47.1	46. 6	54. 0	46. 2	41.4
St. Panl, Minn	29.1	24.6	26. 0	30, 8	28. 0	26. 2	27.3	38. 3	30.6 42.6	30.6 39.2	33. 7	32. 3	21.0 37.0
Salt Lake City, Uta	41.7	40. 0	38. 2	45. 0	45. 1	46. 3	33. 0	45. 4	42. 6	39. 2	46.2 67.0	36.8 61.6	37.0 58.6
San Antonio, Tex	62.1	56.7	59.4	58.8	53.2	68. 6	63.6	66.6	61. 0	60. 4	67.0	61. 6	58.6
San Diego, Calif	56.7	55.2	55.1	61.4	59.4	59.2	54.6	58. 5	55.0	55. 6	57.5	54. 6	58.4
San Francisco, Cali	54.2	52.4	52. 6	58.4	57.9	56.6	51.7	54.9	52. 6	52. 6	54. 6	52.4	56.8
Santa $\mathrm{Fe}, \mathrm{N} . \mathrm{Mex}$	39.7	37. 6	36. 0	39.4	35. 8	43. 6	35. 6	42.8	37.6	37.4	42. 6	36. 4	34.6
Scranton, Pa	36. 2	32.8	42.0	34.1	31. 6	28. 9	36.4	39.6	39.1	38. 2	45. 8	38.7	34.2
Seattle, Wash	44.2	44.3	41.9	47.6	50.0	44. 4	41.0	44. 0	44.7	44.4	44. 6	41.5	44.0
Sheridan, Wy	32. 7	17.6	25.0	34. 6	30. 2	38. 0	24.0	37.4	33. 0	30.4	35. 6	32. 2	28.9
Shreveport, L	58. 2	51.6	54.2	55.0	47.2	60. 6	58. 4	62. 5	58. 2	56.9	65.7 52.8	57.1 45.2	55.0 41.6
Springfield, M	43. 5	37.8	41.3	44. 0	35.1	47. 8	47.0	52.6	48. 4	56.4 57.4	52. 8	45. 2	41.6 61.0
Thomasville,	60. 2	59.4	61.4	55.8	52.2	58. 2	62.8	65.0	63.0	57.4	68. 2	62.0	61.0
Trenton, N.J	39.1		46.1	35.6	36.0	32. 2	39.2	41.8	43.0	40.4	50. 0	41.2	38.3
Walla Walla, Wash--	44. 0	42. 4	42. 1	49.4	49.7	47. 7	39.8	49. 0	46. 8	45. 2	47. 2	43. 2	46. 6
Washington, D.C---	42.6 40.0	40.9 37.4	49. 0 37.4	39.4 44.6	38.8 43.2	37.9 44.2	43.4 32.8	48.4 42.2	46.4 39.2	45. 5	55.5 43.8	45.4 33.9	45. 4 37.5
Winnemucca, ${ }^{\text {Nev.- }}$	40.0	37.4	37.4	44.6	43.2	44. 2	32.8	42.2	39.2	38.5	43.8	33.9	37.5

Table 736.-Temperature: Monthly normal 1 and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	$\left\|\begin{array}{c} \text { Nor- } \\ \text { mal } \\ \text { for } \\ \text { April. } \end{array}\right\|$	April monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	191	1920	1921	1922	1923
	54.6	54.6	50.2	56.0	57.0	52.9	54.8	53.2	54.5	51.0	55.0	54.8	56.
Atlanta	61.0	61.9	59.4	61.8	64.4	68.0	63.7	57.9	61.7	58.6	61.0	62.8	0
Birmingham,	63.5	63.3	61.3	62.8	66. 0	61.2	64. 0	60.4	62.8	61.2	62.6	66.2	2.
Bismarck, N	42.1	46. 6	48.1	43.1	51.5	41.0	38. 5	43.0	43.4	34.6	43.4	44.8	41.
Boise, Idah	50.4	48.2	50.6	51. 2	55.3	51.4	46. 4	48.8	51.8	45.4	47.0	45.0	4,
Boston, Ma	46.4	47.4	48.0	45.3	50.8	45. 6	44.0	47.8	46.8	45.0	51.8	48.7	48
rownsv	73.7	74.8	69.3	71.6	71. 4	72.5	74.4	76.2	74. 3	75. 8	74.4	78.4	75.
aff	42.8	42.2	45. 0	40.2	46.8	42.8	40.4	42.4	42.5	39.8	51.3	44.8	40.
Canton, N .	42.5	40.6	45. 4	39.5	50.0	43.8	40.5	42.3	39.3	40.2	48.5	43.6	39.
Charleston,	64. 5	67.0	62.6	65.2	63.3	64.0	67.2	63.5	64.4	64.0	66.3	68.2	64.
Charlotte,	59.8	61.4	59.2	60.6	61.8	59.0	62. 3	57.4	60.0	57.8	${ }^{61.6}$	61.0	59.0
Cheyenne	40.9	40. 2	43. 1	40. 2	46.0	40.2	36. 4	34.8	41.7	31.6	38.8	38. 2	39.
hicago,	47.7	48.8	48.8	48.3	56.3	48.0	44.8	44.0	48.0	43.0	54.2	48.7	46
incinnati,	52.4	56.9	54.0	53.9	58.4	51.6	51.2	50.9	52.6	48.0	56.2	55.6	51.7
leveland, Ohio	46. 2	48.0	47.4	45. 4	51.8	45.9	45. 4	45.8	47.0	42.6	53.9	48.6	45.8
Concordia, Kans	53. 6	54.1	56.2	54.2	59.6	50.2	51.0	47.6	51.0	45.6	54.6	54.4	53.
Des Moines, Iowa	50.1	51.4	52.0	50.4	59.4	48.6	46.8	46.8	49.3	43.9	52.8	50.8	50.2
Devils Lake, N. D	38.2	42.8	45.6	37.4	48.3	37.8	36.1	41.2	40.5	31.2	39.2	41.8	37.4
Dodge City, Kans	53.6	52.8	55. 8	54. 2	58.8	50.2	51.4	47.8	52.6	48.8	53.8	53.0	54.1
ubuque, Io	48.6	49.8	51.0	48.5	57.7	48. 2	46. 4	44. 2	49.0	42.8	52.2	48.8	${ }^{47.0}$
Duluth, Min	37.0	38.7	40.4	33.6	45. 4	38. 0	33. 2	36. 3	39.2	31. 6	40.8	37.2	7. 5
Paso, Tex	63. 8	59.1	60.6	64.0	62.7	62.7	62.3	62.0	65. 0	60.1	61.0	61.6	6
Eurcka, Cali	49.5	48.4	49.3	51.9	52.3	50.2	49.0	50.7	50.5	48.0	48.4	46.1	50.5
Evansville, In	56.4	58.2	55.7	55. 4	61.9	54.2	55.9	53.0	57.6	52.8	58.8	59.2	5.9
Fort Worth,	65: 3	64.5	64.8	63.2	66. 2	62.3	63.8	63.4	65. 0	63. 6	62.8	65.3	66.0
Fresno, C	61.2	56.8	60.7	60.8	60.0	62.4	59.3	61.8	62.4	59.4	59.2	57.4	59.3
Galveston, Tex	63.7	68.4	67.2	66.7	66.1	67.0	67.8	68.3	68.4	67.3	67.4	71.6	69.4
Grand Rapids,	46.2	46.8	48. 3	45.6	53.8	46.7	43. 1	44.0	45.6	41.1	52.6	48.0	45.0
Greenville,	36.4	35.0	39. ${ }^{6}$	31.5	40.8	29.2	${ }^{35.1}$	39.7	36.4	36. 0	43. 0	39.4	34. 9
Havre, Mont	43. 7	46.0	46. 1	44.9	53.6	43.8	39.4	42.8	47.2	36.0	43.1	42.7	43.2
Indianapolis,	52.1	53.9	52.0	51.9	58.0	50.5	49.2	48.9	52.2	46.8	55.8	54.2	49.9
1ola, Kans	54.2	56.0	58.4	55.0	61. 0	52.6	53.8	51.7	55. 8	52.1	56.2	57.2	56.5
Jacksonville,	68.7	70.8	67.3	70.1	66.9	67.0	69.6	67.0	67.3	68.8	67.8	71.4	69.2
Kalispell, Mont	42.5	45.8	42.9	44.8	49.2	43.5	39.6	42.6	46.4	39.2	42.1	40.1	42.6
Little Rock, A	62.1	62.8	61.8	61.8	65.5	60.6	61.2	60.7	61.6	60.2	60.4	64.2	62.4
Los Angeles,	59.4	56.4	59.8	62.8	60.4	${ }^{62 .} 4$	57.9	61.7	60.9	58.8	59.0	57.6 ${ }^{6}$	58.4
Lynchburg, V	57. 3	59. 0	57.4	56.7	59.8	54.7	57.4	53.3	55. 6	54.3	59.1	57.8	55. 8
Madison, Wis	45.4	46.7	47.2	45. 1	54.0	45. 3	42.4	-41. 6	45.8	40.4	50.6	45.8	44. 0
Marquette, M	37.5	38.0	41.2	35. 1	47.4	38.4	33.4	37.5	39.2	32.9	44.6	37.9	36. 6
Memphis, Ten	61.8	${ }^{62.6}$	61.2	${ }^{61.1}$	65. 9	60. 2	${ }^{61.7}$	60.0	${ }^{61 .} 7$	59.4	${ }^{61.0}$	64.0	61. 5
Miami, Fla	74.2	77.8	71.6	74.6	69.5	70.2	72.0	73.	72.6	75.0	74.0	75.8	74.9
Mobile, Ala	66.2	67.9	65. 6	67.8	66.5	64.8	66. 6	64.8	65.6	66. 4	65.8	70.2	67.8
Modena, Utah	46. 9	41.0	45.3	46.8	48. 2	48.2	42.6	44.6	49.0	43.1	43.0	40.2	44.
Nashville, Tenn	59.0	60.1	58.6	58.6	63.5	57.2	59.7	57.0	59.2	56.2	59.2	61.6	58.3
New Orleans,	68.8	70.4	67.5	68.9	68.8	67.8	68.2	67.8	68.1	69.1	68.2	73. 3	69.7
Norfolk, Va	56.8	61.0	58.6	55.8	60.2	56.4	57.6	56.4	56.9	57.3	61.2	59.7	57.2
North Platte,	48.6	48. 2	51. 0	50.0	55. 0	47.8	44.8	42.7	47.5	40. 5	48. 6	48.1	48. 1
OklahomaCity,	59.6	58.8	60.6	58.0	63.0	55. 4	57.6	56.0	58.8	56. 2	58. 7	60.0	59.3
Omaha, Nebr	51.2	52.8	53. 4	51.8	60.0	49.5	47.9	47.4	49.1	44.2	54.2	52.6	51.2
Parkersburg,	53.0	56.6	53.0	53.9	57.3	52.5	52.6	51.6	52.9	50.6	57. 6	56.2	52.6
Peoria, Ill	50.9		51.7		58.8	49.8	47.4	45.8	51.3	44.2	54.3	52.5	49.4
Phoenix, Ariz	66.6	63.1	67. 2	68.5	66.4	68.2	64. 2	67.5	69.2	64.6	66. 1	63.2	66.
Pierre, S. Dak	46.8	50.8	50.8	47.4	54.8	44.6	42.5	45.2	46.2	38.1	48.1	49.2	47.0
Pittsburgh, Pa	51.2	52.6	51.6	49.4	55.5	49.2	49.6	49.3	51.0	47.0	56.9	52.6	49.8
Portland, Oreg	51.8	49.9	51.0	53.8	55. 6	53. 0	49.4	52.8	53.4	48.2	50.8	48.7	54.2
Pueblo, Colo	50.5	48.8	50.8	49.0	53.4	48.6	46.8	45.8	50.6	48.6	48.0	48.8	51.0
Roseburg, Oreg	51.0	49. 0	50.3	53.5	54.4	52.6	50.0	52.0	53.0	49. 2	50.8	48.	52.8
Sacramento, C	58.1	54.3	58. 0	58.8	58.3	61.0	57.8	59.2	58.8	57.1	57.6	56.4	57.1
St. Louis, Mo-	55.8	57. 2	56.1	56.4	63.2	54.4	53.7	51.1	57.5	51.2	58.1	58.2	55.0
St. Paul, Minn	45.6	49.0	49.2	44.4	55.8	43.8	42.2	43.6	45.5	38.8	50.4	45.2	43.7
Salt Lake City, Ut	49.6	46.8	51.0	51.8	56.4	51.6	45. 6	47.6	52.1	44.0	47.0	44.4	47.1
San Antonio, Tex	69.0	68.6	66. 9	66.8	67.5	67.6	69.0	68.9	68.4	69.4	67.5	70.2	69. 2
San Diego, Calif	58.5	56. 1	58.0	61.4	59.7	60.2	57.0	60.4	59.2	57. 6	57.4	56	59.0
San Francisco, Cal	55.0	52.8	55.4	58.2	57.1	57.6	55. 1	57.2	56.0	54.9	55.0	53.5	56.1
Santa Fe, N. Mex	46.7	42.3	47.2	48.0	47.7	46.6	46.1	45.0	48.0	40.8	43.4	44.3	45. 6
Scranton, P	47.9	47.8	51.2	46.2	53.9	47.2	47.6	48.1	47.9	45. 4	55.6	48.6	48. 3
Seattle, Was	49. 4	48.0	49.0	51.4	52.6	49.0	46.8	50.0	49.6	45. 6	47.5	46.6	51.0
Sheridan, W	43.4	43.8	45. 6	43. 2	52.0	43.2	40.1	37.2	45. 2	36.4	43.0	40.3	40.2
Shreveport, La	65.8	66. 0	64. 2	64.7	67.3	63.5	63.8	63.8	65. 2	64.4	63. 1	67.8	66.0
Springficld, Mo	55.7	55.4	56.7	54.8	61.8	52.8	54.0	51.8	56. 4	51.6	55.6	57.6	55.2
Thomasville,	66.7	68.6	65. 1	68.6	66.4	65.9	68.1	64.5	66. 4	66.4	66.4	69.8	67.7
Trenton, N.J	49.8	52.2	52.6	48.5	54.9	48.8	49.1	50.1	49.9	47.8	50	51	50.2
Walla Walla, Wash.-	52.8	52.2	53.2	53. 4	56.9	53. 1	49.0	53.2	54.0	49. 0	50. 2	49.2	54.1
Washington, D. C..-	53.3	55.6	55.5	53.5	59.4	53.4	54.2	53.2	53.8	52.6	59.2	55.6	53.
Winnemucca, Nev.-	46.7	44.0	46.6	48.6	50.4	49.0	44.4	45.5	48.8	43.6	45.1	41.4	45. 2

Table 736.-Temperature: Monthly normal ${ }^{1}$ and mean temperature, at selected points in the United States, 1912-1923-Continued.

.... Station.	Nor- mal for May.	May monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	-	-	-	-	-						。		
Am	64.3	66.6	68.2	63.2	61.5	67.0	58.2	67.5	61.8	64.1	65.4	65.0	63.8
Atlanta, Ga	69.9	70.2	70.8	71.2	71.5	72.6	64.0	72.2	67.7	67.1	68.4	69.0	65.8
Birmingham,	71.6	71.0	70.6	70.6	73.1	72.7	65.0	73.2	68.0	69.8	71.0	71.6	69.0
Bismarck, N.	54. 5	55.2	52.4	55.6	51.0	52.8	52.6	54.2	56.0	54.8	54.8	57.6	56.2 56.8
Boise, Idaho	57.1	56.4	59.0	61.2	55.0	52.5	55.0	54.8	59.3	55.0	57.2	56.4	56.8
Boston, Mas	57.1	58.6	55. 2	60.4	56.6	58.6	50.7	63. 3	59.1	54.6	53. 78		57.8 80.6
Brownsville,	78.6	80.1	74.7	78.7	78.8	80.3	77.6	79.4	80.2	80.8	78. 2		6
Buffalo, N.	54.6	55.8	53.7	54.2	51.1	52.8	47.4	58.0	54.0	53.2	56.8		
Canton, N	56.2	54.8	52.8	57.2	50.7	53.9	46.8	58.2	54.8	55	57.6	58.5	51.1
Charleston	72.7	74.6	72.6	72.5	75.5	74.4	70.2	73. 2	74.2	68.8	70. 5	73.6	70.7
Charlotte,	68.9	69.5	69.9	70.6	69.3	72.6	63.6	72.3	69.0	65.6	66.0	69.4	2
Cheyenne, W	50.3	50.4	52.0	51.1	46.4	48.6	43.0	50.7	51.2	49.4	50.4	49.8	5, 3
Chicago, Ill	58.5	59.9	57.6	62.3	54.1	59.3	52.6	63.7	55. 2	55.4	61.7	63.8	54.4
Cincinnati,	63.1	66.2	65.8	66.8	60.2	64.5	56.6	68.8	60.1	60.8	64.6	8	61.2
Cleveland, Ohio	57.9	60.0	57. 8	60.0	54.2	58. 0	51.2	64.4	56.4	55.6	59.8	64.2	
Concordia, Kans	63.7	66.6	65.8	64.4	60.0	63.2	57.6	67.8	61.1	61.4	65.8	64.2	60.2 60.7
Des Moines, Iowa	61.3	65.0	61.3	64. 0	57.3	61.7 50.3	51.0	48.	55.7	61.2 54.4	64. 2	56.8	54.5
Devils Lake, N.Dak.	52.7	53. 0	50.2 67.3	54.8	50.7 59.4	50. 63	51.0 57.0	48.9 67.0	55. 61.2	61.6	64.8	63.6	60.8
Dodge City, Kans.--	63.5 60.3	65.8 61.8	67.3 59.2	62.8 62.6	59.4	63.6 60.0	57.0 54.8	67.9 64.9	67.8	61.6 58.8	63. 6.	64.8.	60. 0
Dubuque, Iowa	60.3 47.3	61.8 46.8	59.2 46.2	62.8 53.2	44. 2	60.0 47.4	46. 0	46.9	50.5	51.0	50.5	51.4	48.9
El Paso, T	72.1	71.5	71.8	71.2	69.6	72.9	66.6	69.8	72.0	73.1	71.9	73.0	74.0
Eureka, Cali	52.1	52.1	52.4	53.0	53.6	50.4	50.0	50.6	52. 1	49.3	50.8	51.0	51.7
Evansville; Ind	67.1	68.0	67.6	67.9	65.2	68.6	60	71.9			1	70.4	64.8
Fort Worth, Tex	73.2	74.0	73.6	70.2	72.7	72.8	66.8	75.	69.8	73.4	73.4		
Fresno, Calif	68.4	67.5	68.4	68.8	63. 0	64.2	62.4	63. 8	69.8	76.		77.3	0
Galveston, Tex	74.8	75.4	74.0	74.6	75.5	75.0	71.6	75.	73.0	76.	74.8 62.2	77.3 64.0	56.8
Grand Rapids, Mich	59.0	58.8	57.4 47.6	60.0	53.3 47.6	49.	51. 7	54	51. 0	50.0	53.4	52.6	48.6
Greenville, Me	49.5	50.6	47.6	52.1	47.6	49.9 49.4	52.8	51.	56. 7	53.7	53. 8	53.8	55.4
Havre, Mont	53.4	53. 2	51.6	54. 7	52.7 59	49.4 63.4	52.8 56.0	51.6 68.8	59.4	61.0	65.3	67.5	60.6
Indianapolis,	62.9	65. 0	63.7	65.6 65.6	59.7 62.4	63.4 66.0	56.8 58.8	68.8 68.8	59.4 63.3	61. 2	67.6	67.6	63.6
Iola, Kans	64. 5	68.2 77.6	67.0 74.3	65.6 74.8	62.4 77.8	66. 75. 6	58.8 73.1	68.8 74.2	63. 74	71.9-	72.9	76.4	72.3
Jacksonville,	75.0 51.0	77.6 52.7	74.3 50.9	74.8 53.0	77.8 51.4	47.1	51.3	48.3	51.0	48.0	53.0	50.4	50.8
Kalispell, Mon	51.0 70.3	52.7 70.5	50.9 70.0	53. 0 70.6	51.4 70.4	72. 2	64. 0	74. 1	67.1	71. 0	70.9	71.5	67.4
Los Angeles, Calif.--	62.2	62.9	60.9	60.3	61.5	61.3	58.7	61.2	61.6	62.1	58.8	62.6	64.6
Lynchbur	67.3	66.2	66.0	68.4	65.4	69.0	60.7	70.0	65. 0	61.8	63.2	67.2	63.8
Madison, W	57.6	58.4	56.6	60.3	51.8	57.3	52.0	61.0	55.2	56.6	60.4	63.6	57.0
Marquette,	49.0	49.4	47.6	54.4	45.6	48.7	44.8	50.8	©0. 2	50.4	51.6	54.9	4
Memphis, Tenn	70.6	70.1	70.0	70.6	71.2	73.0	64.2	74.6	67.0	70. 5	70.7	72.4	0
Miami, Fla	78.6	79.2	76. 0	77.6	78. 0	76.7	75.6	76.2	72				72.6
Mobile, Ala	73.9	75.0	73.7	74.8	76.2	76.4	69.9	74.6	72.	75			72.6
Modena, Ut	54.5	51.4	54.4	56.6	50.8	51.7	48.0	51.0	58.	54			
Nashville, Ten	68.2	68.4	68.8	68. 2	70.1	77					74.3	75.7	65.6 74.3
New Orleans,	75.4	76. 0	74.8	75. 58	77.4	77.1	62.4	70.5	67.9	61.4	63.0	67.9	65.6
Norfolk, Va	66. 2	68.5	67.6	68.3 59.8	66.0	69.2 58.2	62.4 52.6	70.5 61.6	57. 58	57.8 57.	61.0	59.5	57. 2
North Platte, Nebr--	58.7	59.8	60. 0	59.8 65.8	55.2	58.2	52. 6	61.6 71.0	58. 65 6.7	68.6	69.6	59.5 68.8	66.3
OklahomaCity,Oklam	68.1	70.5	69.4	65.8 64.4	58.9	63.0	62.4 57.6	67.8	61.6	61.7	65.9	64.6	60.9
Omaha, Nebr	62.4	66.2	62.9	64.4	58.9 61.6	63.0 65.9	57.6	69.0	63.0	61.4	64.2	66. 0	62.2
Parkersburg, W. Va -	63.3	65. 2	63.4 62.4	64.8	61.6 58.6	65.9 61.4	57.6 55.6	69.4	58.2	60.8 6.	65.1	65. 6	61.0
Peoria, Ill	61.7 74.8	64.2	62.4	65.0 75.6	58.6 70.8	61.4 74	55. 69	72.2	76.9	75.9	73.6	76.4	77.6
Phoenix, A	74.8 58.0	73.8 59.4	73.8 56.1	75.6 59.0	70.8 53.6	44. 56	54.8 5.	59.2	58.4	56.9	58.2	60.3	58.5
Pierre, S	58.0 62.4	59.4 63.8	56. 60.6	62.8	58.0	63.2	54.6	67.6	60.8	59.6	62.4	65.0	60.1
Pittsbur	68.4 56.9	63.8 59.2	57.6	61.1	57.7	54.8	54.6	55.6	57.2	55.1	57.1	58.0	57.6
Pueblo, Colo	59.5	59.6	62.4	60.4	55.6	59.0	53.2	61.2	59.7	59.2	62.2	59	
Roseburg, Ore	56. 0	57.2	57.4	59. 7	56.4	54.2	54.	54.8 61.8		65. 0	60.7	65.7	57.0 63.3
Sacramento, Ca	63.3	63.6	64.8	62.8	59.8	61.4	59.8 60.6	61.8 70.8	65. 2	64.8	60.5	69.4	64.1
St. Louis, Mo-	66.9 57	68.2 59.2	67.3 55.9	69.4 59.9	52.2	68.6	60.6 54.8	59.8	58. 0	59.0	59.8	62.5	58.6
St. Paul, Minn	57.9 57.4	59.2 55.8	55.9 60.8	59. 62.4	56.2 56.7	54. 8	54.8 63.7	56.4	62. 5	57.8	59.1	57.6	59.4
Salt Lake City,	57. 74	55.8 76.8	60.8 75.6	62.4 74.4	75. 6	76. 7	71.6	75.9	73.4	76.8	75. 4	77.0	77.2
an Diego, Cal	60.8	60.6	59.7	60.2	60.6	60.8	58.4	60.8	61.0	59.8	58.4	60.3	63.2
San Francisco, Calif-	56.8	57.2	56.6	56.2	57.6	55.8	54.0	54.6	57.2				57. 55
Santa Fe, N. Mex...	55.7	55.4	58.6	56.2	52.3	55.6	48.9	55.7	56. 0	56	56.0 60.1	b5. 62.2	58.8 58.1
Scranton, Pa-	59.5	61.2	57.6	61.5 57.3	54.6 56.0	52. 0	52.4	64.6 52.4	60.0 53.6	51.6	53.6	54.5	54.1
Seattle, W ash	55.0	57.0	54.1 52.4	57.3 52.4	56.0 50.5	52. 0 49.0	b2. 48 4	50.6	54.8	51.2	53.4	52.4	53.4
Sheridan, Wyo......--	50.7	51.2 72.8	52.4	52.4	50.5 74.6	49. 0 73.8	67. 7	75. 2	70.1	75. 2	73.6	75.3	71.4
Shreveport,	73.2	72.8 67.0	72. 66.2	65. 6	63. 2	65.8	69.1	68. 6	62.0	65.0	65.4	66.4	62.4
Springfield,	64.6 74.0	67.0 76.2	66. 2 73.3	65. 75	77.8	76.4	70.3	74.3	72.7	72.8	72.2	75.3	72.2
Thomasville,	74.0 61.1	76. 64	60.8	64.1	58.4	62. 2	54.6	65.2	62.0	58.0	60.3	64.2	60.6
W alla Walla, Wash.	60.7	61.2	60.2	62.2	58.0	55.8	57.0	56.8	59.4	57.9	60.4	69. 0	60.0 63.4
W ashington, D. C.--	63.7	65.1	64.4	67.0	62. 5	66.7	59.6	69.6	64.6	60.0	62.3		63.4 54.8
Winnemucca, Nev.--	53.9	54. 2	67.0	69. 4	52.3	50.3	50.1	51.6	59.	54.2	54		54.

1204 Yearboek of the Department of Agrieulture, 1923.
Table 736.-Temperature: Monthly nofmal. 1 and mean temperatiore, at selected points in the United Stctes, 1912i-1923-Continued.

Station.	Normal for Jane:	fune monthly mean temperature,											
		1912	1913	1914	1915	1918	1917	1918	1919	1920	1921	1922	1923
	-	-	-	-	-	-	-	-	-	-	-	-	-
Amarille	72.0	70.4	70. 2	76.2	72. 4	74. 6	73. 6	77.3	68.9	72.4	70.2	73.4	72.4
A lianta;	78. 0	72. 8	75.8	80.8	75.3	75.2	75.0	76.8	76.8	76.4	78.8	76. 8	75.0
Birmingham,	78.2	73.8	77.4	81. 9	77.4	76.2	77.0	79.1	78.2	76.7	82.0	78.1	77.0
Bismarck, N. Dak	63.7	62.8	67.3	64. 0	58.2	59.2	61.9	65.8	69.0	64. 4	71.2	68.2	68.6
Boise, Idako.	65.3	B6. 6	B5. 0	63.0	61.8	61.8	62.6	73.2	66. 4	64.1	68. 2	70.3	62.6
Boston, Ma	68.5	68.0	67.5	67.3	63.9	62. 6	65.8	63.9	67. 2	65.8	68. 2	68. 6	69.3
Brownsville	82. 4	78.8	78.2	82.6	84. 4	84. 4	83.5	84.5	82. 6	81.5	82.6	82. 8	83.0
Buftalo,	64. 4	61.7	63.4	63.2	64. 0	61.4	60.2	61.8	72.4	64. 0	66. 6	65. 0	64.8
Canton, N.	65.8	59.1	62. 0	61.0	63.0	61.2	62.0	59.6	69.4	63.6	65.7	64. 6	63.8
Charleston,	78.9	77.6	76. 2	80.6	78. 0	78.0	77.6	78. 6	77.4	78.4	80.0	79.8	78. 6
Charlotio,	75.5	73.2	75.0	79.8	73.1	74. 1	75. 2	75.2	75.8:	75.6	78.0	77.6	77.0
Cheyenne, W	60.4	58.5	60.8	61.4	54.6	58.4	58. 2	65.1	62. 6	59.4	61.6	63.8	59.4
Chicago,	68.2	66. 0	70.5	70. 2	63.8	63.5	63.8	66.9	72.6	69.1	73.8	70.8:	70.8
Cincinnati,	71.2	70.7	74. 8	76. 2	69.3	87. 3	69.0	70.4	75.3	70.4	75.4	73.7	7.2. 9
Clevelard, Ohio	67.1	64.8	68.2	68.3	63.9	62.8	64.8	67.4	73. 4	67.4	69.8	68.6	70.8
Concordia, Kans	72.7	69.6	75.2	78. 6	68.3	69.2	72.6	78.9	72.8	73.3	75,8	76. 0	73. 0
Des Moines, Iowa	70.6	67.8	73.1	74.4	67.0	66.5	67.9	72.7	73.4	72.5	76.3	74.0	72:0
Devils Lake, N. Dak.	62.6	61.6	65.3	61.6	55.4	57.5	59.2	61.2	86. 1	62.4	66.9	63.8	67.0
Dodger City, Kan	72.5	68.1	72.5	77.3	68.8	70.6	73.4	77.9	70.7	72.6	72.8	74; 5	71.8
Dubuque, Iowa	69.4	66.8	71.4	69.8	64.7	84. 0	65.2	68.7	72.8	70.9	75.0	71.2	72. 7
Duiuth, Minn.	57.2	58.5	59.3	57.0	53.2	53.8	53.0	57.4	58.1	57.9	62.6	59.9	60. 8
El Paso, Tex	79.6	77.8	76.8	78.9	81.6	83.8	80.8	80.4	77.6	77.4	79.6	81.4	81.4
Eureka, Cal	54.6	54.8	55.3	52.8	54.0	52.8	52.6	54.3	53. 6	54.3	57.2	55.6	54.3
Evansville, in	75.3	71.1	78.1	80.0	73.2	71.9	73.4	75.9	78. 2	74. 2	80.0	77.8	75.4
Fort Worth, Te	80.1	77.0	79.4	83.0	80.3	80.2	80.6	84. 4	76. 7	78.3	78.8	80. 2	80.6
Fresno, Calif	75.8	75.2	72. 0	73.6	75.0	73.2	77.0	82. 5	75.6	74.9	76. 0	76. 5	69.4
Galveston, Tex	80.7	77.8	78.5	82.3	82.6	81.0	80.3	82.8	77.4	79.6	80.6	81. 2	81.4
Grand Rapids, Mich-	68.1	64.8	69.8	67.6	63.4	62.5	62.6	66.2	74.2	69.2	73: 4	69.6	71. 8
Greenville, Me	58.9	57.5	57.4	56.3	58.8	57.5	58.1	55.6	63. 8	59.8	60.0	61.1	60.4
Huvre, Mont	62.0	62.4	65.1	60.7	56.8	59.3	59.6	67.2	67. 6	61.8	67.8	65.6	63.8
Indianapolis,	71.6	68.9	74. 2	74.8	69.5	67.2	68.8	71.2	75.8	71.1	76.0	73: 8	72.8
Iola, Kans	73.4	69.6	75.0	79.6	71.1	71.4	73.2	79.2	74. 6	73.0	76.4	76.6	75.2
Jacksonville,	79.9	78. 2	78.3	82.8	79.8	79.4	79.2	79.8	77. 4	78.6	80.0	80.0	78.8
Kalispell, Mont	58.8	61.4	60.7	57.3	55.8	55.3	55.5	62.2	60.2	55.6	60.9	63.8	58.1
Eittle Rock, A	77.4	73.8	78.2	84.0	76. 2	76.6	76.2	80.5	77.2	75.4	79.0	79:4:	77.5
Tos A	66.4	65.4	64.4	64.8	68.7	63.6	68.6	69.8	68. 7	65.8	65. 6	67.7	63.6
E, ynchbarg, V	74.6	.71. 6	73.3	76. 6	71.6	71.0	72.8	71. 2	73.4	71.9	74.3	74.8	75.6
Madison, W is	67.2	64.8	69.0	66.6	62.0	61. 8	61.8	65.9	71.2	89.0	72.2	68.6	71.2
Marquatte, M	58.5	58.6	61.6	58.8	55.2	52.9	52.0	57.2	62.3	58.9	65. 2	60.0	60:2
Memphis,	77.6	73.7	78.0	84.2	76.6	75.9	76.1	80.4	78.8	76.5	80.6	79.8	77.0
Miami, \mathbf{F}	80.4	80. 4.	78.8	81.2	79.4	79.4	79.1	79.4	79.0	79.2	7.9 .7	79:5	79:8
Mobile, Als	79.6	77.0	78.6	83.7	81.6	79.6	78.9	82.0	80.0	79.8	81.2	80.8	78. 6
Modena, Uta	63.2	62.6	61.8	61. 6	60.8	83.0	62.8	70.4	64.3	62.0	64.8	65.7	59.1
Nashville, Tenn	75.6	72.2	77.3	81. 8	74.6	72.9	73.0	77. 0	78.2	73.8	80.0	77.0	74.9
New Orleans,	80.6	78.0	78.8	84.2	83.8	81.6	80.4	83.2	80.0	80.8	81.2	81.8	79.9
Norfolls, Va	74.4	73.0	73.2	75.0	71.3	72.1	74.2	72.6	73.4	74.3	74.8	75.9	77.2
North Platt	67.5	65.0	70.6	72.1	63. 8	64.6	67.0	73.8	69.3	68. 4	71.8	72.8	69.2
Oklahoma City, Okla	75.7	73.8	75.6	80.8	73.7	74. 6	76. 9	81.3	73.8:	74.6	76.0	77.9	76.9
Omaha, Nebr	71.6	69.0	74.4	75. 2	67.6	68. 0	69.6	76.1	73.4	73.1	77.4	75. 6	72, 4
Parkersburg,	71.5	69.5	72.4	73.4	69.6	67.6	68.6	70.0	76.0	70.2	75.0	72.2	73.0
Pooria, 111	70.9	68. 4	73.2	74.2	67.8	65.8	87. 7	71. 4	74.8	72.0	76.8	73: 2	73.0
Phoenix, M	84.4	86.0	81.9	84. 6	83.4	83.9	84.4	88.6	85.4	84.4	84.8	86.2	80.8
Pierre, S. Da	68.5	68. 4	73.4	68.8	63.1	68.5	65.3	71.7	71.0	B6. 6	76.0	70.5	68, 7
Pittsburgh,	70.7	67.5	70.5	71.0	67.1	65.3	67.6	68.0	75.0	68.5	73.0	71.2	71.6
Portland, Ore	62.4	63.6	62.9	61. 4	62.6	62. 0	61.8	67.1	60.6	62.1	64. 4	65. 5	62, 5
Pueblo, Codo	69.0	65.0	68.8	70.6	66. 0	69.6	67.2	74.0	68.4	68.4.	68.9	71.8	69.5
Rosebufg, Or	62.5	61.8	61.7	61.3	62.0	61. 4	62. 1 :	67. 5	60.6	62.4	64.8	67.0	63.0
Saeramento, C	69.4	69.2	66.5	67.1	69.8	68.0	72.6	76.0	59.4	70.2	71.9	71. 0	65.9
\$5. Trouis, Mo.	74.8	70.3	78.4	81.1	72.0	71. 5	73.3	77.1	77.3	75. 2	78. ${ }^{\text {a }}$	78.2	75.2
St. Paul, Minn	67.1	64. 6	70.0	66.2	62.4	62.7	62.8	66. 3	70.0	68.0	73.5	68.3	70.0
Salt Lake City, Utah-	67.4	69. 0	67.5	64.9	64. 2	65.9	65.8	75.4	74. 0	68.0	71. 2	73.0	64.2
San Antonio, Tex	80.4	78. 4	79.2	82. 0	83.8	84.0	83. 0	88.6	77.5	78.4	81.0	79.4	83.2
Sma Diego, Catif---	68.9	63.2	62. 8	68. 8	64.8	61.4	63.7	66.8	66.2	63.6	63.1	64.3	62.3
Stas Frandisco, Calif	58.5	00.4	58.2	56.6	58.9	57. 4	58.6	59.2	57.8	60. 2	61.4	Of. 0	57. 2
Santa Fe, N. Mex.	64. 8.	62.4	${ }^{62.8}$	67.9	64.0	66.2	66.0	68. 4	63.1	63.6	62.9	66. 4	65.2
Scrantion, Pa	66.7	65.2	67.5	66.8	65. 8	68.0	66.8	65.4	71.7	68.9	69.4	68. 7	70.2
Seattle, Wash	60.1	60.0	89. 5	58.9	50.8	58.8	57.2	61.6	57.5	58.6	59.8	64. 8	60.6 61.8
8heridsan,-W Y	61.1	61.6	64.0	61.1	55.6	59.0	58. 0	67.0	68.0	60.8	66. 6	64. 8	61.8
Shreveport, L	79.6	76.2	79.0	83.9	80.7	79.4	80.2	83.6	77.8	78.5	80.4	89.8	79.7
Springfield. Mo	7.2 .3	68. 6	74.2	78.8	70.3	70.0	70.9	77.0	73.6	71.8	74.2	75.7	72.8
Themesvine,	79.5	77. 5	76.9	83.2	81.1	78. 6	79.4	80:3	78. 6	79.0	80.6	80.0	77.6
Trentor, N. J	69.5	70.2	70.6	69.4	67.8	65.8	70.5	67. 2	70.8	69.0	71. 1	71.8	73.5
Walla Falla, W	68.2	68.8	66.9	64. 9	66.1	64.4	64.8	73.1	66: 4	65.0	70: 4	73.9	65. 0
Washington, D. C	72.2	70.4	72.8	73.8	70.6	69.7	72.6	70.8	73:9	71.6	74.2	74.5	75.6
Wianemueca, Nev .	62.8	64.4	61.6	61.2	61.0	61.6	63.3	70.6	64.2	62: 1	65.2	67.4	5\}: 8

[^350]Tabee 736.-Temperature: Monthly narmal ${ }^{1}$ and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	$\begin{gathered} \text { Nor- } \\ \text { mal } \\ \text { mor } \\ \text { foly. } \end{gathered}$	July monthly mean temperature.											
		1912	1913	1914	1945	1916	1917	1918	1919	1020	1921	1922	1923
Amarillo,	78	79.2	78.7	77.8	74.	79.0	79.4	78.3	78.2	78.1	74.8	78.8	1
Atlanta; Ga		77.2	80.6	79.1 80.8	78.	${ }^{76.4}$	78. 7	77.6	79.0	78.8	${ }_{81.8} 7$. 5
Bismarck, N.	69.8	69.	67.	73.3				68.0					
Boise, Idaho	72.9	68. 8	78.	${ }_{68} 75$	70		73.	${ }^{74.4}$	74.0		73. 2		
Bostan, Mass	71.7	73. ${ }^{73}$			8.0	82.4	84.		83.5	84.9	83.2		
Brownsville, ${ }^{\text {Buftalo, }}$	69.8	${ }_{70.1}^{82.3}$	${ }_{69} 81.4$	85.0 70.0	8\%. 8	${ }_{74.7}^{83.4}$	89.5 69.5		${ }_{70.4}$	84.9		,	
Canton, N.	70.5	67.8	68. 2	${ }^{\text {¢6. }} 6$	6\%.	${ }_{79}^{72.5}$	70.0	${ }_{7}^{69.1}$	${ }_{80}^{69.1}$	66.		82.3	1
Charleston	81.4	6	82	${ }_{78,4}^{81.0}$	892.	79.	${ }_{77.4}^{80.8}$	79.4	88.6		79.5	78.8	${ }_{6}^{1}$
Charyote,	66.7	65.0	65. 2	66. 6	${ }_{62} 2.3$	69.1	67.4	65.7	69.8	65.8	9. 5	65.5	67.5
icago,	73.9	72.9	74.9	75.0	70.2	78.4	72.	71.2	77	${ }_{71.5}$	${ }^{81.2}$	73.3	74.4
Cincinnati,		77	80.0	79.2	73.	78	74.0	72.4	77. 0	728		75.4	
Cleveland,	71.4		${ }^{71}$	81. ${ }^{71}$	${ }_{73.7}^{69.8}$	${ }^{75.6}$	81	78.2	73.2 81.6	${ }_{77.4}^{69.2}$	78.8	${ }_{75.4}^{71.6}$	${ }_{8}^{2}$
Concord	75.4			78.	71.0	81.4	76.6	75.6	79:8				
Devils Lake, N. Da	68.1	65.3	64.	7	62.4	72.9	70.0	63.2	70.0	67.2	70.0		2
Dodge City, Kan	78	78.6	80	79	74	80	80.4	${ }_{72}^{78.5}$	6. 6	77.9	79.0		3
Dubuque, Iov				76.4	${ }_{59.8}^{69}$			72.3		6.8			
Dul Paso, Tex	80.	${ }_{81.0}$	${ }_{81.5}$	78.0	81.1	81.3	83.9	81.0	79.4	82.6	79.8	81.9	82.1
areka, Calif	55.	55.	57.2	54. 1	${ }^{50.8}$				54.2				
answille, Ind	79	78	81.4	82. 2	77.0	82.0		76.6		828			80.2 85.2
Fort Worth,	83.7 82	${ }_{79} 8$	80.9	80.5	80.3	${ }_{79.5}$	86.0	79.9	82.9	79.4	83.9	83.8	${ }_{79} 8$
			83			8	83.3	83.6	82.0	82.2			
Grand Rapids,				73.8	69.4	78.8	71. ${ }^{\text {of }}$	71.6		68. 9	8	71.2	4
Greenville, M	65.	65	64	${ }^{63}$	${ }_{6}^{63}$	${ }_{68}^{67}$	${ }_{73}^{66.4}$	${ }_{68.0}^{66 .}$	66.6	${ }_{72.4}^{\text {ea. }}$	${ }^{70.6}$		
Havre, Mon	${ }_{75}^{68}$	74.4	77.9	78	73.0	80.6	74.0	73	78.6	73.	81.1	74. 6	2
Iola, Kans	78.1	80.2	81.6	80.4	75.0	82.4		78.9	80.6		80.8		
Jacksonvill	82.1	81.8	${ }_{61}^{82.3}$	${ }_{86}^{82.0}$	81.8	${ }^{80 .} 4$	0	${ }^{79.0}$					
Kalispell, Miont	64.3 80.9	60.5 82.0	${ }_{81.6}^{61.8}$	82.7	${ }_{80}^{60}$	${ }_{83.6}^{62.7}$	${ }_{80} 87$.	64.7 80.4	82.2	80.4			
Los Angeles,	70.2	${ }^{68.8}$	70.5	66.8	70.0	68. 8	72.3	7. 89					
nehburg,		77.2	78.6	76.0	${ }_{67}^{76.2}$	76.4	76.4	70.3	74.8	74.8 69.1		69.6	76. 7.2
Mardison,	64.9	65.4	63.1	66.4	60.2	70.4	64. 6	62.9	68.4	62.2	.		
Memphis, Te			81.0	83.2	79.8	2	79.0	79.0	82.	1	${ }^{1}$	30,	
Miami, Fla-	80.7	${ }_{81}^{82}$	81		82.9	80	81.4	81.0	81.6	${ }_{81.0}^{81.2}$	82.2		
Modena, Utah	80.	6		69	69.2	69.2		68.8			9		72.0
Nashville, Ten	79.1.	77.8	81.5	81.4	78		2						
ew Orieans,		${ }^{81}$	81.6 78.2	70	${ }_{7} 8$	${ }_{77.4}^{88.3}$	${ }_{77.2}$. 0	77.8		${ }_{79} 83.1$	78.0	
North Plate, Ne	72.9	74.0	84	76.0	69.4	咗		74.7	77.2	74.8	8.	-	75.9
klaboma City,		78.	${ }^{81}$	${ }_{79}^{85}$	78.2	a	${ }_{79}^{82 .}$	${ }_{77}^{82} 8$	81.4	${ }_{4}$			
Omaha, Nebr		78.7	77	76.0 ${ }^{7}$	73		74.4	${ }_{72.6}^{71.2}$	77.2		${ }^{6}$		
Peoria,		74.8			71.9	81.0	75.0	72.8		6		74.7	77.6
Phoenix, Ariz		${ }^{80}$	74	${ }_{78} 88$	${ }_{67.5}$	${ }_{30.1}^{89.0}$	78.2	73.2	2.8	${ }_{73.1}{ }^{9.6}$	77.3		
Pitisbu		73	73	74.0	72.0	76.6	${ }^{73.5}$	2.0	7.	70.4	6	9	73.3
${ }_{\text {Prartan }}$	74	72.8	${ }_{74}^{67}$		${ }_{71}^{67}$	76	76.0	8	68.0	${ }_{74.4}^{68.0}$	${ }_{74.2}^{65}$	2	
Roseburg,	67.4	8			7	T	71.2	1.	8		9		
Sacramento,	73.2	71.6	74.4	71.0	72	74.2	78.6	72.2	8	8			${ }^{73 .} 6$
St. Louis, Mo	78.6	78.8			76. ${ }_{6}$	84.2 78.2		78.4	${ }_{73.6}^{81.6}$				
${ }_{\text {Salt }}$ Sake City,	75.7	73.6	${ }^{69}$	75	75. 2	76:	79.	75. 6	80.3	6	7	76. 6	78.3
San Anton	87	85. 1	84	85. 6	84.8	82, 8	84.8	85.2	${ }_{60}^{80.7}$	8	. 6	84. 7	
San Diego, Calif				65.8	${ }_{60 .}^{67.5}$	60.0			${ }^{68.6}$	57.8	${ }_{59.8}^{68.4}$	60.2	
Santa Fe, N. Mer		68				68.8	${ }_{71}{ }^{5}$	69.3	${ }^{67.8}$	68.7	67. 1	70.2	
Seranton, Pa	72.1 63.5								(2.4				
Sheridan, Wy	67.3	65. 2	64.9	,	61.		71.2						
reveport,			${ }_{79}^{83.3}$	${ }_{78}^{85 .}$	74	80.6							
Thomasville,	81.8		82.3	81.8	82.	79.	80.4	79.			0		
enton, ${ }^{\text {d }}$. J	74.5	${ }_{72}{ }^{\text {7 }}$. 5	${ }_{73}^{75.6}$	72.0	73.	74	77.1	73.21					
Walta Walla, W								74					
innemucca, Nev --	70.	69		72	69.	69.	75.9	70	74.0	6	0	4	72.

Table 736.-Temperature: Monthly normal ${ }^{1}$ and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	$\begin{gathered} \text { Nor- } \\ \text { mal } \\ \text { for } \\ \text { Aug. } \end{gathered}$	August monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
					-								
Amarillo, T	74.6	76.4	80.0	75. 6	71.4	76.6	74.0	78.0	77.6	71.6	76.4	81.6	77.2
Atlanta, Ga	77.0	76.9	78.6	76.8	77.2	78.0	75.4	78.8	76.4	75.1	76.7	75.8	77.4
Birmingham, Ala	79.8	78.0	80.2	78. 0	77.6	79.2	77.8	81.5	78.6	77.2	80.3	79.4	78. 4
Bismarck, N. Dak	67.3	66.2	71.2	64.5	65.2	67.4	66.6	68.8	70.6	7.04	70.2	72.6	65.4
Boise, Idaho	71.8	68. 1	73.2	72.8	78. 2	70.4	74.0	67.3	74.4	72.2	74.0	74.4	73.1
Biston, Mas	69. 9	69.0	70.8	70.4	69.1	71.8	72.8	70.4	68.8	72.0	69.8	70.4	69.4
Brownsville,	83.9	84.0	83.4	85. 1	86. 0	82.6	85.4	85.7	86. 2	86. 2	84.2	84.8	84.4
Buffalo,	68.6	64.8	68.6	68. 8	66. 2	71.6	68.2	70.6	66. 9	70.2	68.3	68.2	67.2
Canton, N. Y	67.8	${ }^{61.8}$	65.8	${ }^{65.6}$	64. 5	69.2	67.8	67.0	65.2	69.0	66.8	66. 2	64.5
Oharleston, ${ }^{\text {d }}$	81.0	81. 2	80.1	81.3	32.0	81.8	80.2	82.2	81.0	80.2	80.8	78.1	81.8
Charlotte, N	77.1	76.4	77.2	77.7	76.0	77.6	76.8	78.8	77.0	74.9	76.1	74.9	78.4
Cheyenne, W y	65.6	65. 4	68.4	65.4	61.0	63.8	61.4	65.0	68. 0	62.8	65.6	69.0	63.7
Chicago, Ill	72.8	71.0	74. 3	74. 2	66.6	76.6	70.4	75.7	73. 4	71.0	72.8	73.2	70.8
Cincinnati, Ohio	73.6	73.8	78.1	76.7	68. 6	76. 3	73.2	78.6	73.2	71.2	72.8	73.7	74.0
Cleveland, Ohio	70.0	67.6	71.2	71.8	67.1	72.4	69.8	74. 5	69.8	69. 4	69.3	69.6	69.0
Concordia, Kans	76.5	77.2	85.0	79.3	70.1	78.7	72.8	82.5	77.0	72.4	78.9	80.6	76.2
Des Moines, Iowa	73. 1	72.7	78.7	75.9	67.3	75.8	70.9	78.7	73.4	71.4	73.2	74.8	71.4
Devils Lake, N. Da	65.1	61. 6	67. 6	63.2	64.6	65.6	64. 4	65. 2	67.0	68.4	65. 5	70.0	62.0
Dodge City, Kans	77.7	76. 5	82. 4	77.1	70.0	78.6	73: 6	80.6	79.4	72.4	77.8	80.0	77.9
Dubuque, Iowa	71.7	69.7	74. 2	72.8	65.6	75.0	68.6	74.6	70.8	69.6	71.6	72.5	69.6
Duluth, Mini	62. 6	57. 4	62.2	62.0	61.6	65. 1	59.8	64.6	65.0	63.6	63.6	64. 2	60.3
El Paso, Tex	78.6	77.8	78.6	78.5	77.7	77.8	79.2	77.4	81.0	77.0	80.4	82.6	78.8
Eureka, Calif	55.8	57.2	57.8	54.6	57.9	56. 0	54.0	56. 6	55.9	56.1	55.8	56.9	59.7
Evansville, In	77.0	75.3	80.8	78.0	71.4	79.0	76.6	82.4	77.2	75.6	77.0	77.8	78.4
Fort Worth, T	82.9	82.0	85.9	80.0	79.1	83.6	84.2	87.0	82.0	78.1	86.4	85. 2	85.2
Fresno, Calif	81.2	77.7	83.0	80.3	81.9	78.2	81.2	79.2	81.2	81.5	79.9	79.1	79.0
Galveston, Tex	83.0	83. 8	82. 9.	82.2	81.3	83.0	83.5	82.7	83.4	82.4	83.6	83.1	82.4
Grand Rapids, M	70.0	66.9	72.5	71.0	65.2	72.8	68.6	74. 1	69.8	69.9	70.6	71.2	68.2
Greenville, M	62.5	58.5	62.2	61.9	61.4	65.2	64.7	62.6	60.8	66.6	61.0	63.2	59.2
Havre, Mont	65. 4	62. 6	66.9	64. 4	70.0	84.9	65. 5	66. 6	70.4	69.6	69.0	70.0	65.0
Indianapolis,	73.7	72.0	76.3	74.6	67.5	76.6	72.5	78.4	73.4	72.0	73.2	74.4	73.2
Iola, Kans	76. 3	79. 1	84.4	78. 4	70.0	80.9	74. 1	83.8	78. 4	74. 0	78. 4	79.4	80.8
Jacksonville,	81.7	81.8	80.8	82.0	82.8	81.6	81. 2	81.2	81.5	80.6	80.5	78.8	81.9
Kalispell, Mont	62.9	59.8	63.3	63.1	69.1	61.6	63.5	60.1	65.0	63.6	64.0	65.8	64.0
Little Rock, 1 rk	79.8	79.0	82.1	78. 2	75. 3	81.3	77.7	82.8	81.0	77.4	81.4	81.5	81.5
Los Angcles, C	71.1	69.2	71.9	68.2	72.6	68. 6	70.0	71.7	70.2	72.4	70.6	73.3	69.6
Lynchburg, Va	75.6	75.2	75.1	76. 3	74. 2	75. 3	75.4	77.6	73.9	73.7	74.5	72.8	74.8
Madison, Wis	69.8	67.3	70.6	70. 3	63.8	72. 8	67.0	72.6	69.0	68.8	70.0	71.2	67.9
Marquette, Mic	63.5	57.7	64.2	63. 0	60.4	66.7	60.4	63.6	65.2	62.8	64.2	64.8	60.8
Memphis, Te	79.4	78.6	81.0	78.7	75.9	80.8	77.8	82.6	80. 4	77.4	80.8	79.7	80.5
Miami, Fla	82.0	83.2	81.6	81.6	82.6	80.6	81.3	81.5	82.6	80.0	81.1	81.2	81.6
Mobile, Ala	80.5	81.0	82.4	80.6	81.4	82.0	81.0	81.2	81.9	80.2	82.5	81.1	80.6
Modena, Utah	68.6	66.8	68.8	69.8	69.7	65.8	69.4	66.5	71.3	69.0	68.4	69.6	67.2
Nashville, Tenn	77.8	76.7	80.6	77.6	74.1	78.4	75.6	81.2	77.6	75.0	78. 0	76.8	76.4
New Orleans, 1	82.2	82.9	82.8	81.8	82.7	83.4	82.6	82.0	83.2	81.3	84.2	83.0	82.0
Norfolk, Va-	77.4	76.8	75.9	78.2	78.0	76.9	77.8	79.6	76.6	76.8	76.4	75.0	77.4
North Platte, Nebr	70.8	70.6	77.3	74.0	68.2	74.0	69.4	74.0	73.0	70.0	73.0	76.8	70.2
Oklahoma City,Okla	78.5	79.5	84.8	79.6	73.4	83.0	77.7	85.6	82.0	75.3	82.9	84.4	83.6
Omaha, Nebr	74.4	75.3	82.4	77.0	68.4	76.5		80.8	75.0	72.6	75.6	77.7	72.9
Parkersburg, W. Va-	73.3	72.2	75.6	74.9	69.8	75. 2	73.6	78.6	72.4	72.9	72.4	72.3	73.0
Peoria, Ill	72.5	72.4	77.8	75. 4	67.2	76.0	70.8	77.5	71.9	72.2	73.8	74.5	73.4
Phoenix, Ariz	89.0	86.2	86. 7	89.2	89.1	87.0	87.2	84.6	88. 6	86.4	87.1	89. 4	87.2
Pierre, S. Dak	72.8	71.0	76.8	71.9	68.0	71.6	71.0	74.2	75.1	70.8	74.0	76.6	69.8
Pittsburgh, P	72.9	68.8	73.2	73.2	69.1	74.2	72.2	76. 6	70.0	71.6	70.2	70.8	71.0
Portland, Ore	66.7	65.8	68.6	68.0	71.2	68.0	70.3	67.4	68.6	69.3	67.0	67.2	70.6
Pueblo, Col	72.1	72.0	75.2	72.6	67.9	71.9	70.4	73.9	74.6	69.8	72.8	76.5	70.8
Roseburg, Oreg	68.0	65.0	68.6	68.6	70.7	68.2	69.4	67.4	69.6	70.0	67.6	66.6	70.0
Sacramento,	72.9	71.6	76.9	71.2	75.0	71.8	72.6	74.0	72.8	76.0	72.1	72.8	73.5
St. Louis, Mo.	77.3	76. 2	83.0	78. 9	70.4	78.7	75.3	82.6	77.1	75.1	77.5	79.1	77.9
St. Paul, Min	69.4	66.5	72.2	68.8	65.4	71.6	66.5	70.4	68.5	69.2	70.0	72.0	66.9
Salt Lake City, Utah	74.5	72.5	75.8	75.6	78.0	72.9	73.9	72.4	77.4	73.7	74.6	76.2	73.0
San Antonio, Tex.	82.0	86: 0	84.0	82.6	82.5	82.0	85. 6	85.1	82.2	82.9	85.2	85.8	84.2
San Diego, Calif	68.7	${ }_{59}^{66.4}$	68.9	66. 2	69.5	${ }_{68}^{67.0}$	${ }^{68.6}$	69.8	68.4	70.4	${ }_{59}^{68.2}$	70.7	${ }_{61.8}$
San Francisco, Calif.	59.1	59.9	${ }_{68}^{62.1}$	58.2	61.3	58.5	57. 6	60.9	58.4	60.1	59.6	60.4	61.7
Santa Fe, N. Mex.-	67.4	${ }^{67.2}$	68. 6	66. 8	65.4	66.8	${ }^{67.8}$	67. 8	69.0	65. 0	66.0	70.7	65.8
Scranton, Pa	69.2	66.6	70.6	70.8	67. 4	71.8	71.5	73. 3	67.6	70.8	67.8	68.7	68.4
Seattle, Wash	63.1	62.2	64.8	63.2	66.8	63.6	65.2	62.6	63.0	64.4	62.0	62.7	${ }^{65.7}$
Sheridan, Wy	65.4	63.6	68.0	65.1	65.4	65.9	${ }^{64.0}$	${ }^{65.8}$	68.2	67. 0	68.0	71.1	64.4
Shreveport, La	81.4	80.2	82.4	80.5	78. 4	83. 2	80.6	83.4	82.6	79.8	84.0	82.1	83.0
Springfield, Mo	74.8	76.3	82.0	76.4	68.8	78.8	72.8	80.0	77.2	72.4	77.0	77.0	78.6
Thomasville,	81.0	80.4	80.0	81.0	82.2	81.0	80.4	80.4	80.8	80.0	81.0	79.4	79.9
Trenton, N. J	73.0	72.0	72.8	74.4	70.9	74.0	74.8	75. 4	70.6	72.4	70.2	71.0	71.6
Walla Walla, Wash	73.8	69.6	74.9	75.2	79.3	74.0	76.8	70.0	75.6	73.8	74.6	74.2	75.4
Washington, D. ${ }^{\text {C- }}$	75. 0	73.4	74.2	76.4	74. 0	75. 2	75.9	77. 6	73.6	74.8	72.8	73.1	74.4
Winnemucca, ${ }^{\text {Nev.-- }}$	69.3	66.7	71.0	70.6	72.0	66.4	71.0	65.7	71.2	68.6	69.8	67.8	67.8

Table 736.-Temperature: Monthly normal 1 and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	$\begin{gathered} \text { Nor- } \\ \text { mal } \\ \text { for } \\ \text { Sept. } \end{gathered}$	September monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	192
Amaril	67.7	64.6	64.8	72.8	68.8	67.8	69.4	65.4	71.2	70.8	73.5	73.1	69.
Atlanta,	72.4	75.3	70.4	71.4	74.9	71.4	70.0	68. 2	74.2	73.9	79.4	75. 3	74.
Bismar	58.1	56. 6	59.8	61.0	76. ${ }^{\text {7 }}$	73. 8	72.6 57.6	73. 9	75.9	76.5	81.6	78.8	75
Boise, I	61.9	57.7	62.2	61.4	60.4	62.5	66.0	65.2	62.2	63.2	57.6	66. 0	65.
Boston; M	63.2	63.7	62.0	64.6	66.8	65.0	60.2	61.2	63.9	65. 2	68.5	65.2	64.
Brownsvi	80.5	81.8	79.2	80.9	82.2	80.0	78.8	80.8	82.3	84.4	83.0	80.7	83.
uffalo,	62.4	64.6	60.8	61.6	64.6	62.0	59.4	56.0	63.1	64.3	67.6	64.4	62.9
Canton, N.	59.3	58. 0	56.4	57.4	61.4	60.1	56.6	54. 4	58.8	61.4	63.2	61.2	59.
Charleston,	76.6	79. 2	75. 0	74.4	79.2	75.1	73.4	73. 2	76. 3	77.8	81.9	76.8	77.8
Charlotte, N	71.5	75. 0	68.6	69. 2	73. 2	70.0	67. 6	67. 0	72.7	72.7	79.2	73.5.	73.7
Cheyenne, W	57.0	49.2	54.0	58.0	54.6	55.8	58. 6	53.1	59.0	57.1	58.4	60.8	55.8
Chicago, Ill	66.3	67. 7	65.4	66.6	67.2	64.4	63.7	59. 6	68.9	69.3	70.0	69.5	65.1
Cinncinnati,	67.1	70.9	68.4	68.4	68.4	65. 2	64.9	59. 9	69.6	67.8	72.3	70.6	68.3
Cleveland, Ohio	63.9	${ }^{66.6}$	62.6	62.6	67.0	63.8	60.5	58. 2	66.4	65.8	69.0	67.0	64.7
Concordia, Kan	68.1	65. 8	68.0	72.4	68.6	67.2	68.4	63. 2	71.4	69.7	73.8	73.0	69.6
Des Moines, Iow	65.6	63.2	65.9	65.8	65.6	64.3	64.0	60.2	68.9	68.0	69.4	68.0	65.2
Devils Lake, N. D	55.6	51.4	56.4	58.4	55.0	55.0	55.9	50.4	57.1	59.4	56. 6	59.4	58.2
Dodge City, Kans	69.4	64.0	64.8	72.6	68.4	67.0	69.4	63.4	73. 1	69.4	73.0	72.4	69. 6
Dubuque, Iow	64.0	63.8	63. 6	64. 4	64.4	62.2	61.8	57.4	66.1	66. 4	66.9	65. 9	62.8
Duluth, Minn	55. 1	54.8	53.9	56. 0	55. 6	53. 0	53. 6	50. 4	55.8	60. 3	58.2	58. 2	56. 4
El Paso, Tex	72.7	71.0	69. 2	74.3	73.6	73.0	73.8	73.6	72.6	75.1	76.5	75.6	73.5
Eureka, Cali	54.9	57.2	56. 2	55. 0	54. 5	55. 8	56. 4	56.6	56.5	57.2	55.	56.0	57.2
Evansville, In	69.7	71.8	70.4	69.6	72.6	69.4	70.4	63.5	74.4	72.8	75.6	74.6	70.8
Fort Worth	76.7	76. 9	72.9	77.4	77.1	77.4	75. 8	73.0	75.6	77.9	81.9	79.4	78.5
Fresno,	74.3	73.2	76.6	71.6	73.0	73.2	75. 4	72.5	73.2	72.2	72.8	79.1	76.
Galveston, Tex	80.1	81.6	76.8	80.2	81.2	79.4	79.4	77.0	80.0	81.4	82.6	80.2	79.8
Grand Rapids,	61.8	64.0	63.2	62.6	64.4	61.4	60.3	56. 2	65.3	65.9	67.8	65. 2	63.0
Greenville, Me	55.0	52.9	53.4	56.8	58.4	56.2	53.4	52.2	53.4	56.6	57.2	55. 4	56.2
Havre, Mont	56.4	48.6	57.0	56.8	51.8	55.4	56.6	55. 2	57.0	58. 7	52.6	60.8	57.8
Indianapolis,	66.9	68.1	66.0	66.4	68.1	65. 4	65. 2	59.8	70.3	69.4	70.8	71.2	67.0
Iola, Kans	68.6	67.6	68.9	71.8	70.6	68.4	69.8	63. 8	73.0	71.0	75.0	72.8	71.9
acksonville,	78.3	81.0	77.3	77.2	79.8	76.8	75.9	75.8	77.4	78.8	81.6	76.8	78.6
Kaliskell, Mo	53.9	48.4	53.4	52.6	51.4	53. 0	56. 8	56.8	54.0	54.2	48.8	57.8	57.0
Little Rock,	74.1	74.8	71.7	74.6	76.0	72.8	72.5	69.0	75.3	75. 2	79.6	77.7	73.2
Los Angeles,	69.0	68.7	73. 6	67.9	68.0	65. 2	70.8	72.2	68.3	68.4	${ }^{69.3}$	73.1	70.4
Lynchburg,	69.0	72. 0	67.5	66. 7	70.6	66. 8	64.9	${ }^{64.3}$	69.8	69.5	75.5	70.9	70.0
Madison, Wis	62.4	62.6	61.2	62.5	62.6	59.4	${ }^{60.0}$	55.9	${ }^{64.2}$	65.5	66. 0	65.1	61.7
Marquette	56. 8	58.4	56. 2	58. 2	57. 6	55. 1	55.8	49.3	59. 2	60.8	62.2	61.6	56.8
Memphis,	73.6	74. 2	72.8	73.8	76.0	72.0	72.2	${ }_{79}^{67.6}$	76.2	74.8	80.0	76.3	73.8
Miami, Fla	81.5	82.4	80.3	78.8	81.0	79.6	79.2	79.5	80.4	80. 4	80.9	80.1	80.0
Mobile, Ala	77.9	79.2	76. 6	76.8	79.8	77.0	76.8	74.3	78.6	79.9	82.2	79.4	79.6
Modena, Uta	60.2	54.4	59.7	60.6	58.8	60.4	60.3	60.8	61.2	59.0	60.2	65.1	58.2
Nashville, T	71.8	73. 9	72.2	71.0	73.8	69.2	70.3	65. 4	72.8	72.2	78.0	74.2	
New Orleans,	79.2	82.0	78.0	78.8 69	81.2	79.3	78. 2	${ }^{76.9}$	80.2	81. 5	83.4	80.8	81.2
Norfolk, Va	71.6	74. 2	70.8	69.4	74.2	70.3	68.2	69.1	72.6	73.9	77.8	73.6	
North Platte, Nebr-	72.1	58.1	62.8	65. 5	${ }^{62} 1$	62. 8	63. 6	58.9	67.8	64. 2	65. 0	${ }^{67.8}$	63.8
Oklahoma City, Okla	72.1	70.4	70.1	75. 5	73.8	72.2	73.3	68.0	74.3	73.8	78.0	77.0	74.0
Omaha, Nebr	66.8	63.0	${ }_{66}^{67.5}$	68.2	66.4 69.4	65.4	66. 2	62.4	70.8 68.6	68.8	71.4	71.0	${ }_{68}^{67}$
Parkersburg,	66.1	70.2	66. 4	65.5	69.4.	64.2	64.0	61.0	68.6	68.8	72.8	70.4	68
Peoria,	64.3	67.0	66.8	66.2	67.8	63.6	63.7	58. 2	68.2	68. 5	70.0	69. 6	6.4
Phoenix, Ariz	81.4	78.9	81.7	84.5	79.9	80.9	83.2	82. 4	81.5	80.4	82.6	85. 0	80.2
Pierre, S. Dak	63.8	57.4	65.0	66.0	61.2	62.2	62.6	58.9	66.4	64.5	63.4	67.6	6.
Pittsburgh, P	66.4	68.6	65.0	63.6	68.8	64.2	62.1	59.8	66.4	66.8	70.8	69. 6	${ }^{67.4}$
Portland, Ore	61.7	62.2	62.3	59.4	62.4	62.5	63.1	67.4	62.5		60.5	63.8	64.5
Pueblo, Colo	64.4	57.4	61.0	66.8	64.2	63.2	65.5	60.8	67.5	64.2	66.7	68.3	63.0
Roseburg, Oreg	62. 9	61.1	${ }^{62.0}$	60.1	61.7	${ }^{62.6}$	63.5	66. ${ }^{6}$	61.0	61.2	60.5	65.1	64.3
Sacramento, C	79.3	69.5	73.0	${ }_{69}^{67.5}$	68. 9	70.2	71.4	67.4	${ }^{69} 7$	67. 5	70.6	75.6	72.7
St. Louis, Mo-	70.1	70.8	69.9	69.6	72.4	68. 3	69.0	${ }^{63.6}$	73. 6	72.5	74.4	73.8	69.0
St. Paul, Minn	61.3	60.7	60.8	61.8	60.0	59.2	59.4	54.6	63	65.0	63.2	65	${ }^{62.4}$
Salt Lake City, Ut	64.4	58.0	63.5	64.4	${ }^{62.4}$	${ }^{65.3}$	${ }^{66.4}$	66. 6	66. 8	64.7	62.6	69.2	64.2
San Antonio, Tex	77.1	81. 6	75.6	79. 6	79.8	78.0	79.3	76.4	77. 8	82.1	81.7	79.6	79.2
San Diego, Calif	67.1	65. 8	70.3	${ }^{66.0}$	${ }^{66.4}$	64.4	68.2	70.6	66.5	66.2	66. 8	70.0	68.2
San Francisco,	60.9	63.4	64.6	${ }^{60.8}$	62.4	62.2	64.0	62.2	62.0	60.4	63.3	63.3	64.0
Santa Fe, N. Me	60.9	58.1	57.2	${ }^{63.0} 0$	59.6	60.8	62.6	60.4	61.4	60.4	63.5	63.8	58.6
Scranton, Pa	63.0	63.8	62.4	60.9	65.8	62.2	59.4	58.6	63.9	63.9	68.1	65.6	64.0
Seattle, Wash	57.9	59.2	58.8	56.7	59.1	58.8	58.9	62.2	59.	57.8	57.0	59.	60.
Sheridan, Wyo	56.3	48.7	55.8	57.2	52.8	55. 2	57.9	55.0	59.6	57.5	55.0	60.8	56.6
Shreveport,	75.7	77.4	73.4	77.2	77.6	76. 2	74.1	72.2	76.4	78	81.7	78.	75.6
Springfield,	67.9	68.7	68.4	70.6	70.7	68. 2	68.0	62.8	72.6	70.0	74.3	72.7	69. 2
Thomasville,	76.8	78.8	75.6	75.3	80.3	76.0	75. 2	74. 0	77.6	78.8	82.2	78.1	78.6
Trenton, N. J	66.9	68. 2	65.2	65.2	69.4	66.1	62.0	62.6	${ }^{66.0}$	67.2	70. ${ }^{\text {b }}$	67.2	${ }^{67.6}$
Walla Walla, Was	65.4	62.3	64.8	61.6	63.4	64.2	66.8	68. 8	63. 0	63.4	59.6	68.4	${ }_{69}^{67.1}$
W ashington, ${ }^{\text {D }}$.	68.1	70.4	67.4	${ }^{66.0}$	71.0	66. 6	63.8	64.2	69.4	${ }_{60}^{68.8}$	74.4	69.9	69.6
Winnemucca, Ne	59.2	55.0	61.8	57.8	57.1	59.1	61.4	61.6	59.4	60.0	57.	62.4	. 4

Table 736.-Temperature: Monthly normal ${ }^{1}$ and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	$\begin{aligned} & \text { Nor- } \\ & \text { mal } \\ & \text { mor } \\ & \text { for } \end{aligned}$	October monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	192	1921	192	1923
Amarillo	56.1	58.2	55. 2	58.0	59.0	57.2	55.7	60.0	57.8	60.7	${ }_{61}^{62} 8$	60. 4	52. 1
Atlanta,		${ }_{65 .}^{64.0}$	${ }_{60}^{60.0}$	62. 4	65.3		${ }_{56.6}^{56} 5$	65.	70.8	64.7	61.0	${ }^{63.2}$	2 1
Bismarck,	44.9	45.0	41.1	51.0	48.	41.	36.4	47.5	34.6	0. 6	48.9	${ }_{47.6}$	55.
Boise, Idaho	51.1	48.2	48.0	55.4	54		53.2	53. ${ }^{\text {5 }}$	44.9	48.4	55.	56.2	50.
Boston, Mass	53.6	${ }^{57.4}$	56. 4	57.0	55.7	55.	51.9	56.2	55.1	59.8	55. 2	55.1	55.
Brownsvil	74.	${ }_{53}^{73.8}$	73.8	75	75. ${ }^{2}$	74	73		80.	75.8	75.8	9	
Canton, N	51.9 47.2	${ }^{\text {59. }}$ 49.5	${ }_{50}^{53}$	50.4	50.4	48.2	42.8 42.8	53.4	${ }_{47.5}^{55.2}$	$\stackrel{57.2}{52.8}$	52.2 47.8	51.9 46.3	46.
Charles	67	68.0	66	68.	70	67	63.7			67.5	. 6		
Charlotte	61	${ }_{44}^{62}$	${ }_{6}^{61.0}$	${ }_{47}^{62}$	${ }_{48}^{64}$	${ }_{42.9}^{61.0}$	${ }_{43.3}^{57.0}$	64.0 48.2	9 9			${ }_{47.5}^{62.8}$	
Chicago,	55.1	55.	53	59	56.4	54.4	45.0	57.4	57. 2	61.9	54.8	57.6	${ }_{52.5}$
Cincinuati,	55.7	59.1	57	60.5	58.0	54.9	48.0	59.0.	61.8	60.2	55. 2	57.9	53
Cleveland, Ohio	53.6	55. 8	53.9	56.8	55. 4	52.7	46.5	56.0	58.8	59.5	53. 6	. 4	
Concordia, Kan	55.4	56.9				53.2			52. 5	60.8		. 8	
Devils Lake, N.	40.5	43.4	37.9	50.8	45. 4	38.4	32.4	44.4	31.8	48.9	46.	44.	${ }_{42.8}$
Dodge City, Ka	56.1	56.3	52.8	57.8	58.	56. 2	50.2	59.8	53.3	59.8		59.0	
Dubuque,	51.9	52.	49		54.0	51	41.9	54.0	52. 0		52.9		
Duluth, ${ }^{\text {E P }}$	44.1	${ }_{62}^{46}$	${ }_{63}$						39.4	${ }_{63.2}^{51.8}$	45.6	46.0	
Eureka, Ca				54	52.3			${ }_{54.2}$			54.		
Evansville, In	58.0	60.7	57	60.8	61.8	60	51.5	62. 4	4.2	64	58.6	${ }_{62.4}^{34.8}$	57.
Fort Worth,	${ }_{64}^{66.3}$		${ }_{66}^{62}$	${ }^{66.2}$	67.6		64		,	67.6		67. 6	5
Galveston, ${ }^{\text {Te }}$	72.7	${ }_{73} 6$	69.6	${ }_{71.7}{ }^{64.6}$	${ }_{74.2}$	72.5	68. 6	${ }_{72.7}^{66.7}$	${ }_{77.6}^{62.0}$	${ }_{72.3}^{60.0}$	${ }_{72.2}^{66.6}$	${ }_{71.0}^{64.2}$	${ }_{71 .}^{64 .}$
Grand Rapids,	50.1	52	51.8		52.8		42.9		54.6	52.	52.	53.0	49.
Greenville, M	45.6	45.	49.6	46.6	46.7	45.7	42.1	45.4	43.0	50.	4	43.0	
Havre, Mont	44.5	43.2	40.8	46.2	49.2	39.9	41.8	48.9	34.4	1		47.9	44.2
Indianapolis,	53.7	57.	55.0	58.	57.6	56.1	46.9	58.3	5.	61.6	54.9	59.1	
Iola, Kans	56.				59.4	58.9	50.6	61.6	57.4	61.9	60.0	60.	54.4
Jacksonville,	71.1	73.	69.2	71	73.4	40.	67.0	74.5	78. 6				
Kalispell, Mont	42.5	${ }_{64}^{41}$		${ }_{63}$						42.4		${ }_{65 .}^{47.6}$	
Los Ange	65.3	65	67.9		65.			71.0	63.8	63.2	66.7	65.4	
Lynchburg,	58. 5		59.7	${ }^{60}$	${ }^{60}$		53.0	${ }^{61.0}$	65. 4	60. 8	57.6	${ }^{60.6}$	
Madison, Wis	50.3	${ }_{49}^{51.2}$	48.3	55. 4	${ }^{51.8}$	49	40	52.	50.2	57.4		53.9	4.
Marquette, Mis	45.7 63.3	49.6 64.6	46.4 60.6	53.9	${ }_{65.6}^{47.5}$	${ }_{64.0}^{45}$	33. 5	47.8 66.6	45.0	56.0	47.6 62.9	46.	46. 60.
Miami, Fla	77.	79	75.2	76.0	78.9	77.2	77.4	78.9	80.1	75.	7	78.	75.
Mobile, Ala	69.4	70.4	65.5	68.8	70.9	68.8	63.7	73.8	77.5	68.8		68.	
Modena, Uta	50.1	44.2	46. 5	49.9	50.6	45.0	51.1	51.1	42.2	44.3	54.0	49.	
Nashvills, T	61.	${ }^{62}$	58.8	${ }^{61}$	${ }_{73}^{63}$			64.0	68. 2	71.		${ }_{6}^{62 .}$	
Now N Orfolk, Va	${ }_{62.5}^{71.0}$	${ }_{63} 72$	${ }_{62}^{68 .}$					65.	70	71.4		${ }_{64}^{71 .}$	
North Platte, N	49.7	51.5		53.	54						54.		
Oklahoma City, $\mathrm{Okla}^{\text {a }}$			5.					5.					
${ }_{\text {Omaha, }}$	54	${ }^{55}$		59.8	${ }^{58}$				${ }_{63}^{50.6}$	61.0 598			
Peoria, Ill			52.0	57.2	55.6		44. 2	56.2	55.8		55.	58.0	
Phoenix, Ariz	-2	68.0	69.6	71.2				T. 8	6.7	67.0	73.8		67.3
Pierre, S. Dak	49.8	51.3	46.0	54.0	53.	47	42.9	53.4	40.8	55. 2	. 0	52. 2	
${ }_{\text {Pittsburgh, }} \mathrm{Pa}$	55.7	55.8	55. 4	58.4	56. 2	54.8	48. 9	58.2	${ }^{60.6}$	59.6	0	56.4	52.3
Portland, Ore	54. 2	-51.6 51.4	53.2 49.3	${ }_{53.6}^{57.4}$			57. 3	56.4 55.8	50.9 49.9	${ }_{53}^{53 .}$			
Roseburg, Oreg	53.9	49.8	53.4	56. 3	54. 6	50.	54	56.4	49.	52.2	57		
Sacramento, C	62.9	50.	65.	62.	65.	58	68. 0	64. 2	60		64.0		
St. Louis, M		60 50								64.0 55.6			
Salt Lake City,	48						54.						
San Antonio, Tee	69. 2	71.9	67.0	70.	72.2	70	68.6	71.6	73.8	. 0	70.4	71.	68.0
San Diego, Calif	${ }_{60}^{63}{ }^{6}$	63.3	${ }_{61}^{65.5}$	66. 0	${ }^{62.8}$	59.3	64.6	68.1	62.0	61.4	64. 6	64.0	64.4
San Francisco, ${ }^{\text {C }}$	60.5 50.4	60.0 49.0	61.5 47.8	62.0 49.4	61.3	56. ${ }^{56}$	62.3 51.9		${ }_{4}^{60} 4$	${ }^{60}$	${ }_{53}^{61}$	51.	45.
Scranton, Pa	52.2	54.6	55.8	4. ${ }^{4}$	53.4	52.2	47	55.4	55.6	57.5	52	54	${ }_{51.6}$
Seattle, Wash		49.9	50.1	54.6	53.7	49.1	52	53.4	48. 5	50.1	53.	53.5	54.6
Sheridan,	43.7	${ }_{61}^{41.6}$	40. 6	46	48.		41	48.	35.	44.5	49. 2	47	
Shreveport	65. ${ }^{65}$												
Thomasv						68.				67.			
Trento							51.6 56.6						
W ashington, D		59.3				52.4				61.		56.5	
Winnemucea, Nev.	48.3	44.4	47.4	50.2	50.2	44. 9	51.7	51.6	42.0	44	51.9	49.0	46.6

[^351]Table 736.-Temperature: Monthly normal ${ }^{1}$ and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	$\begin{gathered} \text { Nor- } \\ \text { mal } \\ \text { for } \\ \text { Nov. } \end{gathered}$	November monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
								-					
Amarillo,	43.8	46.9	50.3	50.4	49.5	44.4	50.8	42.6	42.6	42.8	51.0	47.2	45.
Atlanta, Ca	52.1	50. 0	54.8	52. 4	54.2	52.4	51.3	51.6	54.7	50.2	54. 7	52. 9	49.8
Birmingham, A	54. 1	50. 5	57.8	53. 0	56.1	54.9	51.8	52. 4	56. 0	50.8	57.6	56.4	52.0
Bismarck, N. D Boise, Idaho..-	28.5 41.0	33.9 43.0	35. 2 43. 5	34.6 41.8	32.6 39.5	30.6 36.5	40.2 44.4	31.4 39.6	18.2 37.0	29.6 40 41	22. 6	56.9 33.2 37.0	38.8
Bostor, Ma	42.0	45.6	${ }_{4}^{46.5}$	42.7	45. 4	36. 42	44. 4	31.6 45.0	37. 42	41.7	44.7 41.6	37.0 43.8	${ }_{6}^{6}$
Brownsvill	67.5	64. 2	71. 7	67.2	70. 2	66.5	68. 7	65. 8	70.5	64. 5	41.6 71.8	43.8 67.6	44.6 63.8
Buffalo,	39.4	42.5	43.4	40.0	42.4	39.2	35. 0	43. 0	38. 4	38. 4	37.6	42.0	63.8 40.2
Canton, N.	33.9	35.9	40.0	34.6	37.7	33. 8	28. 0	37.4	34.2	32. 0	30.8	37.0	36. 8
Charleston,	58.1	56.5	57.0	57.0	61.4	59.2	54.4	56.6	62.2	57. 4	62.0	60.1	30.8 55.0
Charlotte, C	50. 6	49.8 38.4	51.8	50.5 41.4	53.3	53. 0	49.2	50. 7	52. 9	49.4	54.0 54.	51. 6	0
Chicago, Ill	34. 2	42.8	${ }_{47.2}$	4	37.0 4.2	43.2	40.8 43.0	30.9 43.5	30.6	31.8 40.2	38.6 40.8	31.4 44.6	4
Cincinnati,	42.5	45.8	49.6	46.7	46.6	45.4	41. 4	43. 4	42.2	42. 3	40.8 45.8	44.6 46.4	
Cleveland, Ohio	40.9	43. 6	44. 6	41.8	43.9	42. 3	38. 2	43. 2	41.1	41.2	42.0	44. 2	43.8 42.0
Concordia, Kan	39.9	46. 2	48.7	47.5	47.0	42. 8	47.3	42.9	38. 2	38.2	41.1	44.8	44.9
Des Moines, Low	38.4	43. 0	46. 6	43.2	42. 6	39.7	43. 0	41.6	35. 8	37.6	35. 8	44.0	42.2
Devils Lake, N , D	22.6 42	26.9	32.6	29.0	26. 3	26.8	35. 6	27.1	12.8	37.6 27.2 30.4	18. 6	31.8	42. 2
Dubuque, Iow	37.0	40.0 40.6	48.0 44.2	48.4 40.6	47.4	42.0 37.6	48.6 40.2	41. 7	38.7 34.6	39.4 35.6	43. 6 34.	45.5	45.2
Duluth, Minn	30.0	32.0	35.6	29.8	29.8	29.2	34. 4	33. 6	34.6 21.6	35.6 28.4	34.2 23.2	42.7 34.2	40.0 35.8
El Paso, Tex	50.9	49.3	54.8	54. 7	52.8	51. 2	55. 4	49.1	52. 4	51.6	54.4	50.1	31.3 51.2
Eureka, Calif Evansiville	51.0 45.3	52.4	50.8	50.8	49.8	47.5	52.8	50.0	48. 2	51.2	52. 0	48. 2	51. 6
Fort Worth,	55. 1	55. 26	62. 4	57.1	50.4 60.1	49.5	46.8 57.4	47.2 53.6	46.	44.7	49.7	${ }^{49} 3$	47. 6
Fresno, Calif	54.6	55.2	55. 2	57. 4	${ }_{53} 58$	51.2	56.7	52.8	53.0	51.9 54.0	61.6 57.0	57.5 51.0	56.0 58.2
Galveston, Tex	63.3	62.3	66.4	63.1	67.0	62.9	62. 6	60.9	65. 4	59.2	${ }_{67.7} 7$	51.0	58.2 60.0
Grand Rapids,	38.1	40.5	43.8	39.6	41. 6	39.8	38.2	42.2	37.2	38. 2	36. 7	42. 4	${ }_{40.4}$
Greenville, Me	30.7	32. 2	34. 0	28.4	32.6	29.2	27.2	32.6	30.6	28. 4	27.2	31. 2	34.8
Indianapolis,	31.2 42	38.0	34.7	36.7	32.4	31.5	41.0	29.9	21.2	33. 6	25. 8	30.8	37.8
Iola, Kans.	42.3 43.0	$\stackrel{43.1}{45.8}$	47.6	44.3 49.5	45.5	45. 0	43. 0	43.2	41.6	41.5	44.	45.4	44.2
Jacksonviile, -	62.2	59.6	52. 63 1	49.5 61.6	49.8	46.8 63.1	47.5 58.0	45.6 60.4	43. 0	${ }_{61}{ }^{41.6} 6$	5.6	47.8	47.2
Kalispell, Mon	32.0	35. 6	35. 4	36.4	32. 2	28.0	36. 2	60.4 32.8	66.6 26.7	61.6 32.6	65.8 30.3	64.8 30.0	
Little Rock, Ark	52.1	51.8	58.2	54.2	55.5	53.5	52.9	51.0	52.8	48.4	55.8	54.2	33.7
Los Angele	60.9	65.1	61.8	67.0	61.8	59.4	63.7	60.8	61.5	60.1	63.2	54.8	52.6 66.4
Lynchburg,	47.2	47.4	49.9	46.6	48.1	48. 4	45.2	46.8	48.2	46. 4	50. 6	498. 4	66.4 46.1
Madison, Wis	35.2	38.6	41.9	38.2	38.8	35. 8	38. 2	39.4	32.6	34. 2	31. 9	41.0	38.9
Marquette, M	31.9	35.8	38.7	33.7	35. 6	32.4	35.4	37.4	30.0	33. 8	29.9	${ }_{37.6}$	38.2
Memphis, T Miami, Fla	51.7 72.0	51.2 71.5	57.6 71.4	53.5 70.5	55.9 73.9	54.0 71.9	51.8 67.0	51.0 72.2	52.1 73.4	48.7	55.8	54.8	52. 6
Mobile, Ala	\%9.0	1.5 56.9	71.4 61	59.0	73. 2 61.8	71.9 60.0	67.0 56.6	72.2 59.0	73. 63 63	72.2 56.2	73.5 63.3	73.1 62.8	68.4 57.2
Modena, Utah	39.0	38.2	39.2	38.4	38.0	33.6	39.0	33.9	34.8	36.1	63.3 41.7	62.8 34.2	57.2 39.0
Nashville, Ten	49.0	47.2	53.8	49.6	52.8	50.2	47.9	48. 0	${ }_{4}^{34.7}$	46.7	52.4	34.2	38.9 48.9
New Orleans, I	61.6	59.4	64.8	51.2	66.2	62.6	59.0	61.7	66. 4	58.2	66. 6	${ }_{66.6}$	49.9 59.9
Norfolk, Va	51.4	51.6	52.5	51.0	52.4	52.4	47.8	52.0	53. 0	52.6	55. 8	51.8	50.6
North Platte, Nebr--	36.6 47	41.4	${ }_{52}^{426}$	43.7	41. 2	35. 8	45. 5	36. 8	28. 2	34. 6	${ }^{38.0}$	31.8	42.5
Omana, Nebr	47.9	${ }_{43.6}$	55. 4	53. 4	${ }_{43} 53.8$	49.7 40	52.4	48.2	45. 4	45.2	51.5	51.3	50.2
Parkersburg, w. ${ }^{\text {Va- }}$	43.2	44.9	46. 5	45.4	47.0	45.5	40.8 40.6	41.6 44.2	36.0 44.8	37.2 43.0	36.9 47.2	44.2 46.0	43.8 44.0
Peoria, Ill	37.5	41.8	47.2	43.4	43.8	42.4	41.8	41.9	37.9	38.6	37.9	43. 2	44.0 42.2
Phoenix, Ariz	58.7	59.8	61.6	63.9	59.2	55.8	50.9	57.2	57.0	58.6	60.9	55. 0	59.1
Pierre, S. Dak	33.6	40.6	40.6	41.3	38. 2	35.4	43.4	36. 2	25. 3	32.2	29.4	36. 7	42. 6
Pittsburgh,	43. 2	44.1	45. 1	42.9	45. 2	44. 5	39.8	43.8	42.6	42.2	44. 6	45. 3	43.2
Portland,	46.8 39.3	47.1	47.5 42.8	47.0 43.5	42. 4	${ }_{38}^{43.7}$	50.6 44	46. 6	45. 0	46.8	48.8	43.6	50.4
Roseburg, Oreg	45.9	46.8	47.4	46. 8	47.4	38.3 42.8	44.8 49.0	36.3 45.8	36.8 44.8	37.8	42.8	37.6	41.3
Sacramento, C	53.6	52.4	53. 6	55. 6	53.0	${ }^{42 .} 5$	49.0 55.2	45.8 50.6	44.8	45.6 51.0	49.8 54.8	44.3	49.2
St. Louis, Mo	45. 1	47.4	52.4	50.3	50.9	49.2	47.7	50. 46.2	34.8	43.7	54.8 47.3	48.8	58.5 47.9
St. Paul, Minn	32.5	37.0	40.0	36.0	35. 3	33.8	38.2	37.3	26. 6	32.6	27.0	48.8	47.9 38
Salt Lake City, Ut	41.1	42.7	44.0	43.4	43. 6	36. 2	44.0	38. 8	38.4	40.4	45.9	38.0	43.2
San Antonio, Tex	59. 2	59.7	66.2	61.2	63.8	59.0	63.4	57.4	60.8	57.4	65.6	61.9	58.7
San Diego, Calif	69.7	${ }^{61.2}$	60.8	64.4	59.6	56.5	60.8	59.8	58.6	58.2	60.4	58.0	64.0
San Francisco, Cal	56.3 38.9	56.6 39.2	55.2 42.4	59.0 43.0	56.1 39.8 3. 1	54.4 38.9	58. 7	55. 6	56.0	55. 4	57.8	54. 3	60.8 68
Scranton, Pa...	40.6	43.0	44.9	43.0 40.2	39.8 42.1	38.9 40.8	36. 8	35. 4	38.6 41.0	37.7 40.2	43.	35. 8	38.8 41 4
Seattle, Was	44.5	46. 2	46.2	47.2	43.7	43.0	49.6	45. 8	44.9	47.0	45.4	43.6	47.4
Sheridan, W y	32.8	35. 0	36.8	36. 6	32.6	28. 9	41. 8	29.4	24.4	28. 3	29.6	32.8	38.4
Shreveport, La	55.3	54. 9	${ }^{62.7}$	56. 8	59.3	56. 4	55.1	54.1	57.8	52.2	62.6	58.3	55.6
Springfield,	44.4	46. 4	53.0	50.6	50.7	48.3	47.4	45.3	44.4	41. 6	48.4	48.1	47.0
Thomasvil	58.5	54.8	59. 8	58. 1	61.7	59.8	55. 9	57.8	64.2	56.8	63. 8	62. 2	56.4
Trenton, N. ${ }_{\text {Walla Walla, }}$	44.4	46. 4	46.2 46.0	43.5 44.6	44.5	43.7	40. 6	44. 8	43. 8	43. 2	44.6	45. 0	44.0
Washington, D.	45. 2	46.9	47.8	45. 4	46. 2	36. 46 46	42. ${ }^{4}$	42.7	40.5	41.8 45.9	43.9	36.9 47	44.8
Winnemucca, Nev ..--	38.4	39.6	39.0	37.8	37.2	33.0	41. 9	34. 2	36. 0	37.6	41.0	43.9	45.1 39.7

Table 736.-Temperature: Monthly normal ${ }^{1}$ and mean temperature, at selected points in the United States, 1912-1923-Continued.

Station.	$\begin{gathered} \text { Nor- } \\ \text { mal } \\ \text { for } \\ \text { Dec. } \end{gathered}$	December monthly mean temperature.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	192
Amarill	36.4	33.6	33.2	30.4	40.2	36.6	36.1	32.4	37.0	39.0	43.5	41.8	4.
Atlanta, Ca	44.7	45.8	45.9	40.3	43.7	45.0	36. 2	48.2	44.8	43.1	48.3	50.5	51
Birmingham, Ala	47.3	46.0	47.2	41.9	46. 7	46.8	39.2	50.4	45.8	45.6	50.2	53.2	53.
Bismarck, N. Dak	14.7	22.0	24.6	7.4	19.8	3.6	8. 2	21.6	11.5	17.8	18.6	13.0	5.
Boise, Idah	32.1	31.6	28.9	24.0	33. 6	28.4	43.2	29.6	23.6	34.3	32.9	30.0	31
Böston, Ma	32.5	38.5	37.8	30.4	34.2	32.6	23.7	34.7	28.7	35.6	31.4	30.9	0.
Brownsville	${ }^{61.5}$	57.6	${ }^{61.4}$	54. 2	65. 2	65. 3	62.9	61.7	60.8	64. 1	67.7	67.4	61.
ufralo,	29.8	34.4	33.6	26.0	27.8	28. 4	20.8	35.0	23.3	32.7	29.9	28.9	
anton, N	22.7	26.9	27.0	20.6	23.1	18.6	8.6	24.0	17.2	23.3	21.8	21.4	
harlest	51.7	53.6	52.0	48.8	48. 2	53.0	42.0	53.5	51.4	51.4	55.0	56.3	56.
harlotte	43.0	45.4	44.6	38.4	41. 4	43.3	33.4	47.2	41.6	43.0	47.1	46.6	
heyenne	28.5	25.3	22.0	20.2	28.8	21.0	30.4	26.7	28.0	27.9	30.2	29.5	,
hicago, 111	30.0	33.4	37.4	24.1	29.1	26.0	22.4	37.7	21.4	32.4	32.5	29.9	
Cincinnati,	33.4	37.2	39.1	30.2	32.7	31.6	22.3	41.8	27.4	35. 4	36.4	35.2	4.
Cleveland, Ohio	31.2	33.8	35. 4	27.0	30.8	29.0	22.4	38.7	25.7	33.6	32.6	31.8	0.
Concordia, Kan	29.5	35. 6	35. 0	19.9	33.4	25.6	23.5	35.0	24.4	32.1	34.3	31.4	5.
Des Moines, Iow	26.1	31.7	34.0	18.7	27.8	22.0	16.7	34.2	16.6	28.8	30.0	25.6	5.
evils Lake, N. Da	8.0	16.2	21.1	3.6	12.4	8	-3.6	14.9	5.0	11. 6	15.2	6.0	
Dodge City, Kans	32.6	34.6	33.6	23.4	34. 6	29.0	28.2	34.0	29.6	35. 1	33.4	33.7	34.
Dubuque, Iowa	24.7	30.2	34. 2	18.4	25.5	19.3	15.8	33.0	14.4	27.3	27.2	23.8	
Duluth, Minn	15.9	17.9	26.7	9.4	18.6	8.8	4.4	23.6	5. 6	19.3	14.8	11.8	4.
El Paso, Te	44.8	40.0	41.8	42.8	44.8	45.0	49.6	41.2	47.2	43.4	49.4	49.2	42.6
Eureka, Cal	48.0	46.6	48.4	45.3	48.4	43.2	51.2	46.3	48. 1	48.4	48.4	47.6	45.
Evansville, In	36.4	37.9	40.4	31.0	36.8	35. 2	26.6	44. 7	32.2	38. 4	41.0	39.4	46.6
Fort Worth,	47.5	45.5	45.6	39.7	50.9	48.0	41.6	49.8	44.4	48.3	51.2	52.8	50.7
Frasno, Cal	46.8	45.5	46.9	44.7	48.2	45.4	49.7	45.0	47.1	47.5	50.4	49.8	6. 2
Galveston, Tex	56.4	55.4	55.6	50.2	57.9	57.7	52.8	56.8	57.2	56.0	60.2	62.4	8. 8
Grand Rapids,	28.8	32.8	35. 1	24.6	27.0	25.4	21.1	34.5	21.4	32.0	30. 2	27.7	3. 6
Greenville, M	18.0	22.2	22.2	15.8	22.0	17.8	7.8	20.6	11.4	20.2	16.4	15.1	6.
Havre, Mont	20.4	28.7	23.6	10.8	24.4	7.0	8.4	26. 4	16.9	22.6	20.0	11.4	5.
Indianapolis,	32.2	34.6	37.2	25.8	31.0	29.5	22.8	40. 3	26.1	33.2	35. 2	33.4	
Iola, Kans	32.5	35.6	37.6	26.2	36.8	30.2	25.4	38. 8	28.6	37.0	36. 6	36. 0	8.
Jaeksonville,	50.3	59.8	58.2	54.6	53.8	58.0	48.4	58.2	56.1	55. 4	59.7	61.6	1.8
Kalispell, Mont	23.9	27.2	24.8	19.0	23.3	14.9	26.2	28.1	17.6	27.9	21.0	18.3	24.
Little Rock, Ark	44.2	43.3	44.8	36. 9	46.0	43.4	35. 4	49.6	40.6	44.6	48.0	48.4	51.2
Los Angeles, Cal	56. 6	56.6	55. 4	53.4	57.4	52.6	62.8	57.2	58.9	55.8	60. 2	58. 3	58. 8
Lynchburg, V	39.5	41.4	43.5	35.0	38.0	38.6	29.0	42.9	36. 1	40.2	42.3	42.5	47.4
Madison, Wis	22.8	27.8	32.0	16. 4	23.9	18.0	13.9	31.4	12. 6	26.2	24.4	21.6	32. 5
Marquette, M	22.9	24.8	31. 6	18.4	24.6	18.6	14.6	28.8	13. 7	27.0	22.9	19.1	
Memphis, Ten	43. 6	43.1	45.0	36. 2	45.0	43.4	34. 0	50. 2	40.4	44.6	48.1	48.4	51. 5
Miami, Fla	68.0	72.6	67.9	69.5	65. 6	69. 0	63. 6	67.8	68.8	68.0	69.6	71.8	
obile, Ala	52.9	53.6	53.8	49.4	53.8	53.9	48.2	55.0	55.0	51.0	57.4	60.1	88
Modena, Utah	31.7	26.8	24.9	21.2	28.8	23.4	36. 1	26.6	26.1	27.6	34. 4	33.2	
Nashville, Ten	41.0	40.4	42.6	35.8	42.4	38.8	31.4	47.4	38.8	41.6	44.8	46. 0	
New Orleans,	55. 6	55.4	55. 0	50.8	56.7	57.4	51.4	57.5	57. 0	54.1	60.8	63.5	60. 9
Norfolk, Va--	43.1	47.7	45.5	40.0	40.5	42.7	33. 8	47. 4	40.5	45.6	44.2	46.6	
North Platte, Neb	26.7	29.6	28.6	18.0	28.2	19.4	23.7	28.5	19.4	27.0	30.7	27.8	0. 4
OklahomaCity O	38.6	39.0	39. 4	31. 4	43. 4	37.6	31. 6	40.8	33.8	40.8	42.7	${ }^{42} 86$	2.
Omaha, Nebr	26.4	32.8	34.2	18.2	${ }_{34} 29$	22.2	18.0	34.8	19.4	28.7	31.7	27.2 37	35.
Parkersburg,	35. 2	37.0	36. 1	30.6	34.2	34. 2	24.8	43. 3	30.4	37.8	37.4	37.	5.
Peoria, I	28.1	32.6	35.7	20.8	27.8	25. 2	19.8	36. 6	20.6	30.8	32. 2	28.8	
Phoenix, Ariz	51.9	48.9	50.7	50.3	51.6	41.7	54.6	49.6	54.2	49.7	56.0	55.0	
Pierre, S. Dak	21.8	29.5	28.6	15.1	25.8	12.5	13.1	25.5	18.6	24.9	25.9	16.4	
Pittsburgh, Pa	34.2	35.8	35. 8	29.9	31.8	32.9	24.5	41.0	28.2	35. 6	34.0	35.6	0
Portland, Ore	41.2	41.4	40.7	36.8	42.0	38.1	48. 4	42.3	33.6	44. 1	39.1	38.0	
Pueblo, Colo	31.7	31.2	22.1	24.6	32.6	29.8	35. 4	30. 2	30.9	33.8	34.2	36.5	32.2
Roseburg, Oreg	41.8	41.4	41. 5	37.0	43.2	39.0	48.4	40.4	39.6	42.7	39.0	42.2	4. 6
Sacramento, O	46. 2	46. 9	45.7	43.8	47.5	44.2	49.2	43.4	44.1	45.4	49.0	47.4	
St. Louis, Mo	34.8	38. 6	41.2	28.6	35. 4	33.6	26.8	43.0	29.6	37.5	38.6	36.7	
St. Paul, Minn	19.0	23.2	30.2	12.1	22.6	12.2	10.1	28.7	10.2	23.0	20. 2	17.8	
Sait Lake City, U̇t	31.9	30.7	30.6	29.0	33.7	27.8	41.8	31.2	24.6	31.7	26. 4	33. 1	9.3
San Antonio, Tex	53.1	49.8	52.4	46.3	56.8	54.6	50.4	54.7	51.7	54.7	59.0	59.6	
San Diego, Calif	56.0	54.1	55.4	54.6	55. 6	52.4	58.6	54.8	56.6	54.8	59.3	58.0	4
San Francisco, Cal	51.3	51.6	50.6	48.7	52. 2	48.9	54. 6	50.2	48.8	51.0	52.9	50.6	
Santa Fe, N. Mex	30.7	25.9	26.4	26.0	32.1	27.9	38.2	27.0	34.2	27.4	36. 6	34.0	
Scranton, Pa	30.0	35.5	34.7	28.0	29.4	30.4	21.3	36.2	24.9	33.6	29.6	30.8	8. 7
Seattle, Wash	41.2	41.6	42.4	39.7	42. 0	38.0	45.0	40.9	38.6	43. 4	39.1	38.4	2.2
Sheridan, W yo	22.1	28.6	24.4	14.2	24.8	14.6	21.2	28.0	13.7	24.6	22.6	17.0	3. 6
Shreveport, La	48.9	46.6	47.8	41.5	50.4	49.8	43.2	52.0	48.8	48.6	54.6	54.8	.
Springfield, Mo	35.5	36.6	38.4	27.4	37.6	33.2	26.5	41.3	32.6	38.1	38.4	39.2	2.8
Thomasville,	52.5	55. 0	54.0	50.4	50.8	54.6	46.0	54.8	53.0	51.4	57.8	59.5	
Trenton, N.J	34.4	37.4	38.3	30.6	32.4	32.2	24.7	38.4	28.9	37.4	33.0	32.9	2.0
Walla Walla, Wash.	36.0	39.0	31.6	26.0	38.2	30.5	46.1	37.8	22.6	39.8	31.3	30.8	
Washington, D. C.	36.6	.	40.4	32.8	35. 2	35. 5	27.9	41.6	32.6	39.3	37.9	37.6	
Winnemucca,	30.0	30.0	27.4	18.9	30.7	26.6	37.2	24.9	28.2	31.2	31.6	30.9	25.2

[^352]${ }^{1}$ Normals are based on records of 30 or more years of observations.

Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923.

Station.	$\begin{aligned} & \text { Nor- } \\ & \text { mal } \\ & \text { for } \\ & \text { Janu- } \\ & \text { ary. } \end{aligned}$	January total precipitation.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	In	${ }_{\text {In }}$	In.	In.	In	,	In.	In.	In.	In.	.	In.	In.
Amarillo,	0. 60	487	0. 11	0.06	0. 72	$\begin{aligned} & 0.36 \\ & 2.53 \end{aligned}$	0. 69	$\begin{aligned} & 1.01 \\ & 9.12 \end{aligned}$	5.40	1. 11	2. 10	0.78	
Atlanta, Ga-	5. 31 5.32	4.87	5. 76 8.25	1.35	6. 19	2. 53	5. 79	9.12	5. 40 6.21	7. 69 5.37	3. 53	5. 63	1. ${ }^{\text {3. }} 82$
Bismarck, N.	54	18	37	25	08	81	65	62	. 09	. 52	${ }^{\text {. }} 12$. 34	29
Boise, Idaho	1.89	2. 53	1.34	1.06	1.06	1. 93	1. 10	2. 27	85	66	1. 57	90	1. 62
Boston, Mass	3. 82	2. 87	2. 38	3. 26	6. 33	1. 23	2. 82	3.11	3. 62	2. 72	2. 24	1. 41	6. 07
Brownsville,	1. 35	3. 28	2. 05	10	3. 35	19	- 28	08	4.56	1.13	2. 26	1. 51	13
Buffalo, N	3. 30	3. 00	5. 56	3. 96	5.02	2. 96	2. 79	5. 64	1. 28	2. 58	. 89	1. 44	3. 27
Canton, N. Y	3. 16	2. 59	4. 93	1. 70	3. 05	2. 52	3. 33	2. 37	1. 37	1. 69	1. 22	1. 82	2. 86
Charleston, S.	3.45	3. 85	99	2. 10	7. 44	1. 34	2. 69	1. 13	f. 68	1. 60	1. 58	2. 48	2. 21
Charlotte, N.	4. 29	2. 81	3. 70	2. 78	5. 67	1. 66	3. 08	3. 82	5. 45	3. 81	5. 22	5. 24	3. 67
Cheyenne, W	40	44	. 55	10	08	. 63	. 30	47	T.	. 20	1.47	47	06
Chicago, Ill	2.00	84	1.33	3. 01	1. 99	4. 84	1. 55	4. 12	. 20	1. 11	97	1. 16	92
Cincinnati, O	3.36	2.21	9.02	2.37	3.85	5. 84	4. 74	4. 30	1. 44	3. 48	1. 72	2. 07	4.64
Cleveland, Ohio	2. 45	3.13	5. 66	1. 61	2. 52	2. 40	2. 55	2. 60	. 63	1.96	1. 53	1. 52	2. 61
Concordia, Kans	. 72	03	55	. 17	76	1. 34	. 60	85	. 02	. 12	. 50	. 38	. 01
Des Moines, Iowa	1. 21	. 53	1.10	. 85	1.96	2. 66	. 53	. 78	. 08	. 44	. 59	. 85	88
Devils Lake, N. Dak	. 60	. 31	. 38	. 61	. 11	. 71	. 55	. 24	. 22	. 74	. 13	. 58	42
Dodge City, Kans.	. 47	. 15	. 28	. 18	1.08	. 59	. 22	80	. 06	. 07	. 24	45	03
Dubuque, Iowa	1. 49	. 55	1. 11	. 78	2. 01	2. 46	85	1. 83	. 17	63	. 18	1.16	63
Duluth, Minn	98	. 47	75	1. 75	1.84	3. 48	80	91	46	1. 13	. 18	. 51	1. 60
El Faso, Tex	51		49	03	1.01	66	32	1. 20	08	1.06	06	30	64
Eureia, Calif	7. 63	10.17	8. 10	9.75	9.75	13.02	5. 53	2. 55	7.84	1. 87	8.37	2. 54	88
Evansville, Ind	3. 69	3.87	10. 27	1.92	6. 65	8. 73	4.93	5. 00	1.14	3. 64	1. 80	1. 47	5. 43
Fort Worth, T	93	17	2. 30	43	1. 32	4. 01	1. 43	1. 36	3.03	3.48	2. 87	1. 63	4. 60
Fresno, Calif	1. 60	72	1.22	4. 94	2. 78	5. 17	1. 40	. 47	40	69	2. 63	2. 46	1. 10
Galveston, Tex	3. 62	2. 44	2. 92	34	4. 52	. 86	2. 21	54	6. 22	7.09	2. 77	4. 84	6. 99
Grand Rapids,	2.78	1. 49	1. 86	3. 24	1. 57	3. 90	1. 40	3. 24	30	1. 19	59	71	1. 25
Greenville, Me	2.85	4. 53	2.15	3. 39	3.03	2. 35	3. 95	2.49	2. 85	2. 84	1.48	2.02	4. 58
Havre, Mont	69	88	1. 46	64	67	1. 75	97	1.19	40	1.14	12	42	1.12
Indianapolis,	2. 81	2.10	7.63	2. 76	3.31	6. 55	3. 40	2. 89	. 91	2.01	2.86	1. 26	2. 73
Iola, Kans	98	37	. 85	. 39	2. 14	5. 13	48	90	02	76	1. 77	96	1.16
Jacksonville,	3. 12	4. 76	1. 53	3. 31	4. 10	. 90	41	2. 78	1. 73	1. 21	2. 04	3. 21	1. 37
Kalispell, Mont	1. 59	1. 69	2. 69	1.21	1. 19	1. 95	1. 05	1. 82	72	85	1. 29	74	1. 07
Little Rock, Ark	4. 79	3. 54	11. 29	1.35	4. 62	8. 45	2. 53	5. 51	2. 72	9. 19	1. 52	1. 90	7. 42
Los Angeles, C	2. 84	07	2.01	10. 35	5. 42	13. 30	2. 68	. 50	-96	. 50	3. 22	4. 64	1. 76
Lynchburg, Va	3. 72	1. 85	1.91	3. 00	3.86	. 99	2. 69	4. 42	4. 11	1.64	2. 60	3.90	2. 25
Madison, Wis	1. 55	58	1. 64	70	2. 05	3.07	1. 04	2. 09	26	84	22	63	1. 25
Marquette, Mi	2. 04	2. 27	2. 03	2. 63	2. 41	3. 05	1. 20	4. 77	2. 21	1. 84	2. 28	1. 94	2. 84
Memphis, Ten	5. 21	3. 41	7.71	1. 60	5. 69	${ }^{7.16}$	5.37	5. 02	3. 77	6. 01	1.84 .73	$\begin{array}{r}\text { 2. } 26 \\ . \\ \hline 5\end{array}$	5. 05 .21 2
Mobile, Ala	4. 85	4.01	4. 29	1.98	7.54	3. 06	3. 04	3. 87	6.57	11. 70	1. 83	6. 79	2. 65
Modena, Utah	73	T.	32	1. 42	1. 12	3. 47	1.06	. 11	. 32	. 44	1. 27	1. 72	1. 40
Nashville, Ten	4.85	2. 92	12. 30	1.55	5. 89	7.62	7. 27	7. 43	4.71	7. 35	3.11	2. 90	5. 89
New Orleans,	4. 63	5. 10	5. 71	1. 02	8. 42	4. 46	4. 12	4. 43	8. 03	5. 66	1. 16	5. 22	5. 26
Norfoik, Va	3. 37	3.39	3. 39	2. 32	5. 66	2. 07	2. 28	2. 77	3. 10	2. 14	1. 55	3. 49	1. 74
North Platte, Nebr--	47	. 74	16	. 18	51	. 85	74	. 54	03	07	68	66	11
Oklahoma City, Okia	1. 34	10	56	05	78	4. 28	37	. 95	29	2. 09	2. 29	1.15	2. 74
Omaha, Nebr-	65	26	69	56	1. 87	2. 20	. 58	65	10	28	48	94	. 87
Parkersburg, W. Va-	3.19	2.05	8. 22	1.55	3. 68	5.34	5. 71	2. 24	2. 48	3. 83	3. 17	1. 91	4.14
Peoria, Ill	2.20	. 35	2.18	1. 93	1. 89	5. 95	1. 86	1. 58	. 07	. 93	1. 39	1. 69	1. 10
Pheenix, Ariz	1.17		. 38	30	1. 79	2. 34	2. 20	1. 14	22	1. 42	13	1. 29	28
Pierre, S. Dak	46	20	T.	43	. 73	1. 06	84	1. 08	04	16	21	. 68	. 14
Pittis burgh, P	2. 87	1.90	5. 28	2.41	4. 66	3. 51	4. 33	2. 82	1. 42	2. 80	3. 35	1. 56	3. 49
Portland, Ore	6. 50	8. 01	6. 25	11. 53	5. 90	5. 69	2. 54	4. 68	9.08	4. 84	7. 82	3. 08	9.52
Pueblo, Colo	35	18	31	. 18	. 18	22	22	61	03	29	. 30	39	
Roseburg, Oreg	5. 70	5. 96	5. 76	7. 19	2. 93	6.15	2. 25	3. 56	7. 33	1. 51	4. 12	3. 68	5. 69
Sacramento, Ca	3. 69	2. 74	2. 52	5. 97	3. 76	9. 35	1. 30	97	1. 77	29	4. 61	2. 16	2. 05
St. Louis, Mo	2. 27	1. 31	4. 34	2. 21	2. 83	8. 53	1. 72	1.31	13	1. 85	1. 10	74	2. 08
St. Paul, Minn	90	. 52	33	1.05	1. 19	2. 60	1. 79	51	. 44	1. 80	59	90	1. 12
Salt Lake City, Ut	1. 35	. 74	81	3. 08	. 72	1. 96	. 91	3. 89	T.	1. 24	1. 44	1. 42	1.90
San Antonio, Tex	1. 68	28		09	53	2. 25	9	10	3. 78	3. 36	1. 40	1. 23	46
San Diego, Calif	2,00	66	1. 19	3. 19	4. 91	7. 56	4. 32	1. 64	61	. 43	2. 02	3. 45	1. 34
San Francisco, Calif	4. 33	2. 47	3. 84	9. 76	6. 74	14. 59	1. 83	. 81	2. 57	26	6. 30	41	84
Santa Fe, N. Mex.	. 80	03	. 50	11	1. 95	3. 02	. 55	1. 63	${ }^{-12}$	31	1. 35	64	12
Scranton, Pa	2. 80	2. 55	2. 50	2.11	4. 09	2. 07	3. 15	4. 71	2. 44	2.79	2. 56	1. 1.89	4. 7.51
Seattle, W, ${ }^{\text {Sheridan, W y }}$	4. 84	4. 52 .35	4. 1.91 1.91	9.82 .35	2. 08	$\begin{array}{r}4.32 \\ .92 \\ \hline\end{array}$	2. .84 .	2. 21	- .33 .38	- 81	- 54	1. 27	. 57
Shreveport, La	4. 42	1. 76	4. 21	73	4. 22	6. 29	3. 29	2. 07	3. 28	7. 06	4. 18	5. 73	4.32
Springfield, Mo	2. 66	1. 00	3. 40	1. 80	2. 35	9. 31	1. 46	1. 96	. 34	2. 36	1. 36	1. 38	3. 43
Thomasville,	4. 13	6. 93	1. 65	4. 89	9. 70	2. 03	6. 61	3. 73	2. 32	3. 24	2. 39	2. 72	3. 94
Trenton, N. J	3. 17		3. 12	2. 72	5. 15	1. 26	3. 10	3. 00	3. 28	2. 40	2. 41	2. 41	4. 13
Walla Walla, Wash	2. 01	2. 90	2. 52	2.62	75	2. 79	1. 05	2. 29	2.12	1. 55	1. 87	1. 54	1. 85
Washington, D. C.-	3. 37	2. 84	2. 85	4. 60	6. 34	1. 57	2. 57	4. 29	3. 47	2. 30	2. 30	5. 56	4. 21
Winnemucca, Nev .	1. 04	36	59	1.99	49	2. 21	. 90	1.04	. 10	. 39	. 46	5	91

[^353]$\mathrm{T}=\mathrm{Trace}$, indicates an amount too sraall to measure.

1212 Yearbook of the Department of Agriculture, 1923.
Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

[^354]Table 737.-Precipitation: Normal ared total precipitatian at selecied poinis in the United States, 1812-1923-Continued.

Station.	NormaI for Mar.	March total precipitation.											
		1912	1913	1914	1915	1916	1917	1918	1919	1820	1921	1322	1923
	${ }_{\text {I }}$.	In.	In.	In.	In.	In	In.	In	n.	$\underline{I n}$.	In.	.	In.
Amarille	0.65	0.82	0. 59	0.15	1.00	0.57	0. 25	1.06	1. 73	0.51	0.68	4.06	2.97
Atlanta,	5. 78	10,44	9.14	3.17	2.01	1.84	9.15	. 89	3. 58	10.95	1. 64	10.30	5.14
Birmingham, Ala	5. 76	9.84	5. 96	5. 29	3.68	3.01	11. 85	. 32	5.91	10.34	4.88	7.14	5.15
Bismar ck, N. Dak	1. 04	. 70	-49	1.23	. 35	3.27	. 60	. 85	t. 17	1.21	1. 00	7 78	28
Boise, Idaho	1.44	1.28	1.75	- 39	. 78	. 71	1. 75	1. 78	1.82	1.89	. 84	2.36	24
Hoston, Mass	4.08	4. 18	4.81	4.16	T.	3.20	3. 73	3.19	4.11	3. 72	1.92	4.30	2.49
Brownsvill	1. 23	+20	1.86	1. 86	1.90	. 07	1. 51	. 94	-44	${ }^{-76}$. 88	1.29	1.32
Buifalo, N	262	251	3. 60	4.18	1.38	3. 52	2.69	2.45	2.47	1. 57	3.40	3.61	1. 7.0
Canton, N	284	208	5. 24	3.03	. 51	1.60	1.98	1.37	3.97	2.26	3.32	3.21	2.07
Charlesten	3.72	4. 14	380	2. 34	283	1. 96	3. 05	1. 65	4.05	4.65	2. 68	3. 15	2. 38
Charlotte,	4.57	7.86	5. 80	156	3.44	1.38	6. 42	2.33	2. 70	7.11	1.84	6. 32	5.84
Cheyenne, ${ }^{\text {C }}$	-95	1.33	${ }^{\text {a }}$ - 31	${ }^{.} 72$	1.61	+ 20	${ }^{-69}$	- 19	1.52	${ }^{-66}$. 39	${ }_{5}{ }^{33}$	1.49
Ohicago, Tl	${ }_{3} 25$	220	3.44	1.87	. 60	2.48	2.11	2.05	4. 32	4.57	4.00	5. 58	3. 05
Cincinnati, Ohio	3.64	4.73	9.09	2. 40	1.64	3. 34	4.06	2. 28	5.27	4.20	6. 60	6. 56	3. 50
Cleveland, Ohio	2.79	214	8.31	2.10	. 92	2.29	2.14	2.38	2.67	1. 49	4.39	4.02	1.89
Goncordia, Kans	1. 48	1.32	. 41	1.05	2.53	. 37	1.49	. 77	. 90	. 47	. 47	2. 59	1. 32
Dee Moines, Low	1.65	287	3,08	1.18	1.16	60	2.30	29	3. 67	3.92	1.07	2.25	4.34
Devils Lake, N. Dak	1. 01	. 09	. 54	. 76	. 09	1. 09	. 30	. 22	L. 49	. 35	. 71	. 62	. 71
Dodge City, Kans--	. 88	${ }^{.97}$. 09	$\stackrel{64}{ }$	68	. 36	2.59	. 94	. 43	. 01	3. 76	. 76
Dubuque, Iowa	221	2.07	281	1.74	1.14	3. 91	1.56	2.12	2.24	3.04	2.05	1. 65	2.93
Duluth, Minn	1. 55	. 43	3.25	1.56	. 36	2.48	4.97	. 50	1.16	2.28	1.76	260	1.28
E1 Paso, Tex	38	. 27	29	10	1.34	34	. 07	08	. 62	. 22	04	16	. 33
Eureka, Calif	6, 97	4.73	3. 61	3. 13	1.65	4.83	5.01	5.84	6. 25	5. 79	3.04	6.43	89
Evansvilie, Ind	4. 60	5.53	8.71	3.12	1. 08	2.56	3. 03	. 95	5. 05	6. 10	4. 52	8.20	2.48
Fort Worth, Te	1. 76	3. 34	1.04	2.89	1.40	3.68	2. 42	-93	3. 34	4.42	2.67	1. 57	1. 52
Fresno, Cali	1. 76	3. 02	. 63	. 25	- 52	1. 81	. 56	4.19	1.07	3. 98	1.05	1.53	. 06
Galveston, Tex	2. 90	200	1.43	4. 63	1. 43	25	. 91	1. 65	2.20	1. 77	3. 59	2. 69	4. 53
Grand Rapids, M	2. 52	${ }^{1} 52$	3. 57	1.59	1.13	3. 16	1.87	${ }^{2} 37$	4.93	3. 42	4.77	3.18	2.36
Greenvile, Me	3.76	3. 04	5.29	4.15	24	23.3	3.90	2.19	4.03	285	1.95	2.96	3.02
Havre, Mont	. 48	. 30	. 65	. 17	10	. 59	. 18	. 51	74	. 46	1.89	43	11
Indianapolis,	4. 01	5. 35	7.76	1.82	1.47	2. 44	4. 75	1. 58	6. 72	. 66	7.25	7.16	4.41
Iola, Kans	235	5. 18	2.13	2.12	2.25	2.10	3. 55	1.96	1.06	5.36	3.60	7.71	3.69
Jacksonville, \mathbf{F}	3. 52	3.27	5. 87	1.84	2.47	59	1.81	2.31	3.24	. 82	. 57	3. 69	1.15
Kalispell, Mon	1. 08		1. 73	1.17		2. 43	1. 09	. 76	45	. 92	1.55	77	42
Little Rock, Ar	4. 94	9.05	4.47	4.63	294	1.59	6. 43	1. 49	6. 44	4.89	7.03	8. 30	5.00
Los Angeles, Ca	3. 00	6. 99	. 33	58	. 60	90	. 18	6. 21	2.18	4.25	2.75	1. 64	. 32
Tynchburg, V/	3, 81	8.54	5. 50	${ }_{2} 24$	1. 14	1. 32	4. 97	2.41	3. 02	2.82	1. 75	7.50	5. 91
Marquett	2. 21	1.92 .56	2.41	1.15	. 8.80	2.93	2.00	2.17 1.13	2.17 .92	4.07 3.34	1.81	2. 01	4. 14
Memphis, Ten	5. 77	9. 53	4.78	3. 91	3.08	2.22	7.51	70	12.41	4.72	7. 41	8. 24	7.03
Miami, FIa	2.72	3. 76	4.39	99	1. 57	28	3.03	1. 48	9.74	06	5.15	13	58
Mobile, Ala	7.17	6. 62	10. 58	200	3.46	3. 69	2.28	. 79	5.09	2. 21	6.71	I1. 46	6. 09
Modena	1.30	2. 70	. 15	15	40	1. 50	68	1.60	85	1.84	1.09	45	
Nashville, Ten	5. 44	6. 00	4.54	4.33	2.14	3.60	8.06	1. 86	8.67	3. 25	5.95	9.32	7.69
New Orleans,	5. 30	10.81	4. 84	4. 17	2.31	${ }^{-64}$	3. 03	1. 69	3.22	3. 28	5. 59	8.45	4. 56
Norfoik, Va,	4.28	5. 18	1.99	3. 77	1. 14	1.68	4. 60	3. 68	3.36	2.39	1.50	4.85	5. 12
North Platte, Nebr	87	3. 08	1. 68	. 41	2. 23	20	1.48	. 32	. 44	. 38	. 42	. 47	${ }^{.} 38$
Oklahoma City, Okla	2.38	4. 11	3.11	1.68	2.08	1.66	1.20	1. 55	1.88	420	1.93	4.37	2. 58
Omaha, Nebr	1. 39	2.50	3. 03	1. 52	1. 67	. 35	1.35	. 11	1.59	. 47	1.08	1.47	3. 95
Parkersburg, W. Va-	3. 82	5. 69	4. 13	2.19	1.42	${ }_{4}^{4} 48$	4. 46	3. 54	2.37	2.92	4.49	${ }_{5}^{6.0}$	${ }^{3} 35$
Peoria, $\mathrm{Il}^{\text {. }}$	2.96	203	3.46	1. 60	. 67	2.33	2.25	. 91	4.52	5.84	4.89	5.99	4.08
Phoenix, Ariz	. 49	1.96	. 07	. 92	. 33	. 37	. 15	. 93	. 97	1. 35	. 03	. 99	1.08
Pierre, P . Dak	1. 33	- 45		- 79				1. 47	1.30	1. 78	. 49	. 0	
Pittsburgh,	3. 01	483	4.37	2. 12	1.26	3.63	3,36	1.25	1.89	1. 77	3. 36	5.84	2.15
Portland, Ore	5.18	1. 41	4. 04	228	215	10.57	5.33	3. 47	4.64	3.94	4.28.	6. 57	1.83
Pueblo, Colo	. 86	. 53	. 21	. 32	. 48	. 65	. 44		1.43	. 15	20	29	${ }^{67}$
Roseburg, Oreg	3. 98	4.05	2. 23	1. 76	1.76	4.95	3. 74	257	4.50	2.97	1. 71	4.09	1.32
Easramento, Ce	3. 01	1. 97	1. 34	. 59	1.20	1. 06	. 70	4.00	1.50	3. 27	1.45	1.29	43
St. Louis, Mo	3.43	5.85	7.97	1.25	. 44	1.83	1.80	. 67	1. 72	3. 97	6. 14	4.84	4.26
§t. Paul, Minn	1. 60	. 32	1.74	.93	. 99	1.26	209	. 88	. 81	291	2.51	1. 41	1.33
Ealt Lake City,	200	3.48	2. 50	1.24	1. 48	3.03	261	1.81	. 54	3. 81	1.03	244	1.67
EaII Antonio	1.68	1. 86	1. 36	. 83	1. 20	. 78	. 16	1.45	1.39	. 83	5.91	3. 29	3.07
San Diego, Cati	1. 70	5. 72	- 42	. 36	. 33	. 98	. 26	4.57	1.83	2. 46	1.13	1.34	. 34
San Franciseo, Cali	3. 14	4. 10	1. 47	1. 09	3. 02	1.33	1. 42	2.73	2. 74	3. 25	${ }^{2} 28$	2.38	. 08
Santa Fer, N. Mex	${ }^{\text {. }} 12$	1.85	$\stackrel{8}{8} 8$	5.82	${ }^{+} 70$	1. 3.74	${ }_{2}{ }^{27} 9$	1.468	${ }_{3}^{1.70}$	3. 50	- 3.75	$\stackrel{44}{402}$	1.28
Seattle, Wa	288	1.79	1. 55	1.40	1.72	5. 45	2.96	3.92	1.84	282	3. 06	4. 45	1.37
Sheridan, Wy	1. 22	. 72	. 78	1. 14	1.40	. 92	1.31	3,32	. 43	. 83	. 65	. 34	1.69
\&hreveport, Lis	4.52	9.93	4. 81	6. 55	1.92	1.88	2.12	1.14	3. 14	5:08	3. 87	2.31	363
Epringfleld, M	4.07	4.47	5. 69	3.37	223	2.42	231	1.33	223	4.90	7.35	6.45	2.40
Thomasvill	5.09	5. 64	5. 83	1. 22	3.17	1.62	J. 98	1.411	7.36	3. 21	3. 30	4.12	5. 28
Trentor, $\mathrm{N} . \mathrm{J}$	4.04		4.77	3. 28	1.37	2.61	2.45	2.02	4. 64	3. 81	2.42	3.89	3.78
Walla Walla, Wash.	1.89	1. 14	2.07	${ }^{5} 59$	1.96	3. 46	. 52	1.26	1. 91	214	2.24	.96	.47
Washington, D. C.	3. 85	6. 14	4. 67	2.27	1.07	2.80	5. 12	5. 04	4.02	239	27.6	4.74	4.47
Winnemuca, N	. 95	. 72	. 23	. 08	. 49	. 62	. 58	1. 95	. 57	1. 73	. 06	. 79	. 05

[^355]1214 Yearbook of the Department of Agriculture, 1923.
Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

Station.		April total precipitation.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	In.	In.	In.	In.	In.	In	In.	In.	In.	In.	In.	In.	In.
Amarillo, 'T	1. 72	. 72	1.76	0.95	5. 05	1.71	0. 71	0.48	2. 56	0.64	0.39	3.25	3. 22
Atlanta, Ca	3.63	6. 65	. 84	3.16	. 35	1.51	3. 17	6.98	4.18	5.32	3.31	4.34	3.82
Birmingham, Ala	3.67	8. 92	2.28	4. 46	1.05	2.14	4. 52	7. 17	1.55	10.71	4.81	6.64	7. 58
Bismarck, N. Dak	1.88	2. 30	. 55	. 92	1.04	. 65	1.87	2.13	1.71	. 45	2.40	68	2.01
Boise, Idaho	1. 18	3.34	. 95	1. 63	1.05	. 80	3.13	65	1. 18	1. 32	93	1.51	1. 09
Boston, Mas	3.55	3. 07	4.77	5.87	1.86	4. 51	2. 72	3. 08	2. 33	5. 68	4. 62	2. 48	5. 26
Brownsville,	1. 33	1. 76	. 38	1. 16	1. 01	1. 28	${ }^{+43}$	2. 59	2. 39		. 52	1. 52	. 35
Buffalo, N	2. 45	3. 39	3. 78	3. 24	- 59	2. 98	2. 45	2. 41	3. 40	2. 33	3. 62	1. 56	1. 17
Canton, N. Y	2. 26	2.46	3. 35	3. 56	1.30	1.83	1. 92	1. 84	3. 39	3. 45	1. 53	3.46	2.41
Charleston, S	2. 99	4. 92	1. 40	2. 77	1.13	2. 35	. 97	2. 49	. 73	7. 40	2.06	1. 50	1.06
Charlotte,	3.44	3.92	2. 72	2. 99	. 63	2. 15	2. 54	5. 47	3. 90	5. 40	1. 99	6. 59	4. 23
Cheyenne, W	1. 85	1. 62	1. 35	2. 58	3. 29	48	1.75	3. 92	1. 23	3. 97	2. 00	3. 23	3.28
hicago, Ill	2.88	2. 55	1.91	1. 07	1. 02	1. 60	2. 58	3.41	3. 16	4. 71	4. 47	3. 70	1.38
Cincinnati,	2. 95	5. 62	3. 84	3. 07	84	2. 51	4. 07	3. 38	3. 29	5. 78	3. 19	4. 32	2.96
Cleveland, Ohio	2.31	3. 68	2.47	4. 28	65	2.43	3.24	2.55	2. 96	5.01	2.58	2. 10	2.21
Concordia, Kan	2. 42	1. 35	2. 46	1.00	2.47	1. 32	2.60	3.51	4. 20	2.82	2.79	2. 33	3. 20
Des Moines, Iowa	2.98	2.75	3.41	1.52	1.36	2. 44	5. 52	1.81	5. 30	4.09	3. 72	2.84	1.76
Devils Lake, N. 1	2.03	2.41	83	1. 21	1.10	1. 09	1. 40	2.86	1.14	54	2.17	48	1. 44
Dodge City, Kans	1.87	1.73	2. 12	1.28	2.28	2.84	1.45	1. 38	1. 65	1.75	2. 73	4.24	2.13
Dubuque, Iow	2. 92	2. 49	1. 70	1. 53	. 38	2. 69	2. 05	2. 16	4. 47	3. 91	4. 70	2. 89	1.48
Duluth, Minn	2.14	2.58	1.75	2. 90	1. 23	3.27	1.39	2.02	1.82	1. 41	2. 10	2.83	1. 11
El Paso,	. 23	96	14	47	20	20	T		65	03	01	28	04
Eureka,	3. 93	5.92	3.41	3. 27	1.38	1.88	3.78	1.07	4. 03	3. 12	1. 67	2.39	2. 95
Evansille In	3.46	7. 02	3. 19	2. 83	40	1. 99	5. 12	5. 23	3. 71	2. 93	3. 42	4.07	4. 54
Fort Worth,	2. 65	3. 20	2.47	5. 99	4.98	6. 99	4.11	6.21	2.06	. 51	1. 99	17.64	5. 30
Fresno, Cali	. 71	1.86	1. 01	59	. 81	. 02	. 21	T.	. 06	. 49	15	10	3. 93
Galveston, Tex	3. 13	4. 29	2. 46	8. 54	3.37	1.37	1.45	6.63	2. 17	. 70	2. 47	1. 66	4.45
Grand Rapids,	2.45	2.46	2.45	1. 97	. 85	2. 52	4.03	2. 22	2. 60	2. 95	4. 39	4. 50	2. 19
Greenville, M	2. 78	2. 87	2.54	4.51	3. 49	2.45	3.25	1.66	2.96	5. 40	2.61	2. 99	5.97
Havre, Mont	1.01	1. 36	1.35	04	. 24	. 69	1.35	35	. 29	2.65	92	1:11	1.24
Indianapolis,	3.47	4. 62	3.01	3.21	. 99	1.81	4.25	5. 36	3.35	7.26	3.73	8.55	1.94
Iola, Kans	2. 79	5. 70	1. 30	1. 68	5. 56	3.83	4.61	4. 60	4. 37	2. 01	2.86	9. 26	2.66
Jacksonville, F	2. 72	4.96	1.32	. 30	49	. 46	. 82	5. 96	1.26	3.42	1. 43	1. 39	. 98
Kalispell, Mon	1. 06	61	86	1. 21	1.16	73	1. 26	63	24	1. 48	1.17	1.86	
Little Rock, Ar	4.51	10.76	11.46	5.19	2.92	2.61	3.91	8. 42	4.09	6. 59	7.40	3.55	7.69
Los Angeles,	1. 13	1.66	. 35	. 47	. 81	T.	46	15	. 17	1. 00	. 28	10	1. 97
Lynchburg, V	3. 17	1. 89	3. 60	1.70	. 87	1. 94	3. 10	4. 97	2.18	3. 53	${ }_{5}^{2.76}$	1. 53	2.71
Madison, Wi	2. 38	1. 48	1. 54	1.84	. 92	3. 51	3. 29	2. 63	2. 90	3. 43	5. 16	3. 39	2. 59
Marquette, Mic	1. 99	3. 01	3. 00	6.80	. 99	3. 51	1. 75	1. 37	3.24	2. 28	4.10	3.79	1.43
Memphis, Ten	4.83	8. 01	5.40	2.90	1. 67	2. 32	4. 13	4. 57	3.17	7. 75	11.64	3.21	6. 55
Miami, Fla	2. 59	5.61	3. 78	5.24	1.32	39	3. 74	4.49	3.07	3. 15	2.63	. 54	2.
Mobile, Ala	4.35	17. 32	4.16	1.77	14	6. 64	2. 50	11.11	6. 84	5.89	4. 43	. 92	4. 3
Modena, Utah	79	1.99	37	2. 17	2.38	23	1. 17	. 35	. 27	44	1. 33	1. 02	1. 22
Nashville, Ten	4. 36	11.73	1. 65	3.83	. 72	2. 49	4. 05	3. 39	2.66	8. 58	3. 50	4. 53	4.26
New Orleans,	4. 91	8. 62	4. 90	5. 34	. 04	2. 55	4. 11	10.73	7.88	7.84	4.87	3.81	4.48
Norfolk, Va--	3. 79	2. 78	79	1.88	91	1. 95	2. 61	4. 81	1.61	4. 25	3. 02	1.88	3.59
North Platte, Ne	2.15	2.93	2.07	1.48	7.10	. 72	1. 95	2.51	2. 21	3. 42	1.30	2.01	2.02
Oklahoma City,	2. 80	2. 81	1.88	2.41	7.50	3. 15	2. 11	2.45	5.04	2. 11	2. 39	7. 67	4. 27
Omaha, Nebr	3, 01	1.31	3.00	3.13	. 81	1. 72	3.96	1.57	4.66	3. 39	2.13	2.12	1.57
Parkersburg, W	2. 91	4. 02	1. 81	4. 38	2. 02	2.84	4. 29	4. 47	2.09	6. 38	2. 50	3. 81	1. ${ }^{1 .} 5$
Peoria, Ill	3. 28	6.88	3.54	2. 10	1. 60	1. 60	4. 54	3.70	2.35	6.12	6.36	3.62	1.95
Phoenix, Ariz	. 43	. 52	51	. 10	. 88	15	1. 22	02	. 17		. 02	. 24	,
Pierre, S. Dak	1.98	89	1.17	1.78	2. 63	1. 06	2. 39	2. 60	2. 98	3. 37	1.33	. 59	1. 54
Pittsburgh, P	2. 90	4.32	2.53	3. 98	1.27	2.54	2. 20	2. 73	3. 07	4.42	1.66	3.56	3.82
Portland, Or	3. 05	2. 04	2.94	3. 08	2. 03	2. 85	5. 36	1.13	3. 63	4.75	2. 26	3. 05	1.90
Pueblo, Colo	1. 43	1. 21	47	3. 64	3. 07	2. 02	1. 39	1. 31	2. 33	86	. 79	1.21	54
Roseburg, Ore	2. 48	3.86	2.05	2. 50	1.38	2.28	3.37	. 71	2. 53	2. 67	1.38	2.68	${ }_{2}^{2.23}$
Sacramento, C	2. 00	1. 69	. 53	. 70	. 50	. 06	. 62	1. 06	.$_{11} 1$	1.36	39	40	2.87
St. Louis, Mo	3.52	7.84	3.57	1.92	1. 20	1.78	4.64	7.09	1.76	3.43	7.01	7.40	3.20
St. Paul, Minn	2.33	2.60	1.62	3.73	2.75	3.03	1.65	. 94	3. 98	2.21	2.46	1.55	2.20
Salt Lake City,	2. 26	2. 34	1.95	2. 84	1.88	. 88	1.49	. 59	2. 50	3. 16	2.65	3.05	3. 56
San Antonio, Tex	2. 94	1. 78	1.32	5. 26	11. 64	1.85	. 28	5. 14	3. 60	1.09	2.78	5. 46	3.24
San Diego, Calif	. 74	2. 13	. 08	. 85	1.15	. 01	1. 06	T.	. 30	. 47	. 04	. 17	1.05
San Francisco, Ca	1.82	1. 38	1. 60	99	${ }_{4} .62$		33	. 60	. 10	1. 36	54	. 47	3. 92
Santa Fe, N. Me	86	. 43	1.32	44	4. 82	2. 50	15	. 72	1. 94	. 73	-55	1. 43	1.60
Scranton,	2.65	3.78	3.63	3.89	1.65	4. 19	1.06	3.98	2. 71	2. 53	2. 88	3. 44	2.92
Seattle, Wash	2. 38	1. 73	. 83	3. 31	2. 91	1.98	4. 48	96	3.20	3. 46	1.76	2. 53	1.67
Sheridan, Wyo	1.67	1. 23	. 62	2. 75	1.79	2.71	1. 12	3. 74	1.16	3.45	62	3.47	2.47
Shreveport, La	4. 58	7. 49	4.17	3. 35	6. 42	4.61	3. 34	5. 28	3. 93	4.01	6. 24	6.97	4.40
Springfield, Mo	3.86	5.87	2. 05	3. 63	2.78	5. 15	4. 63	4. 25	3. 55	1. 53	4. 79	4. 94	3.33
Thomasville,	3.	10.33	1.38	1.78	${ }_{3} .57$	2.47	1. 59	5. 02	2.78	7.22	3. 09	. 64	3.88
Trenton, N.J	3. 29	3.77 2.07	5. 27	1.57	3. 04	2. 67	2. 29	3.25 .32	2.91	4.34 2.80	1.86 .81	1.69	3.34 1.24
W ashington, D. ${ }^{\text {c }}$	3. 25	2. 33	5. 86	3. 20	- 20	2.96	2.16	6. 58	3.72	4.69	2.93	1.05	3.94
Winneruucca, Nev...	. 88	. 70	1. 09	1.32	2. 33	. 19	. 68	. 52	. 48	. 80	. 08	55	. 79

[^356]$T=$ Trace, indicates an amount too small to measure.

Table 737:-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Station.} \& \multirow[t]{2}{*}{$$
\left\lvert\, \begin{gathered}
\text { Nor- } \\
\text { mal } \\
\text { for } \\
\text { May. }
\end{gathered}\right.
$$} \& \multicolumn{12}{|c|}{May total precipitation.}

\hline \& \& 12 \& 1913 \& 1914 \& 15 \& 1916 \& 1917 \& 1918 \& 9 \& 1920 \& 1921 \& 2 \& 1923

\hline Amarillo \& ${ }_{3 .}$ \& $$
\begin{aligned}
& \text { In. } \\
& 1.67
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { In. } \\
& 1.41
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { In. } \\
& 4 .
\end{aligned}
$$ \& $$
\begin{gathered}
I n . \\
1.70
\end{gathered}
$$ \& $$
\begin{array}{|l|l|}
\hline I_{0 .} .
\end{array}
$$ \& $$
\begin{aligned}
& \text { 2. } 49
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 2n. } \\
& 2.23
\end{aligned}
$$ \& $$
\begin{aligned}
& { }_{2.0}^{I n .}
\end{aligned}
$$ \& \& 2. 09 \& \&

\hline Atlanta, ${ }^{\text {a }}$ \& \& 4. 37 \& \& \& 6.11 \& 3. 57 \& 4. 37 \& 1.73 \& 7. 20 \& \& 1.75 \& \&

\hline Birmingham, \& 3. \& 2. 68 \& 4. 48 \& 1. 52 \& 6.14 \& 5.85 \& 3.85 \& 4.07 \& 59 \& 7.94 \& 1.24 \& 42 \& 7. 27

\hline Bismar ci, N \& 2. 50 \& 3. 03 \& 1. 99 \& 3.61 \& 4. 43 \& 1. 95 \& \& 2.03 \& 4.06 \& 1.27 \& 2.72 \& 5 \& 1. 01

\hline Boise, Idah \& \& 4.04 \& 3. 22 \& 2.78 \& 4. ${ }^{\text {4. } 26}$ \& 1:80 \& 2. ${ }_{\text {2 }}$ \& 1. 05 \& 4.2 \& 5.26 \& 15 \& 56 \& 76

\hline Boston, M \& ${ }_{2.22}^{3.51}$ \& \& 1.12 \& 2. 03 \& 1. 64 \& $\begin{array}{r}2.83 \\ .37 \\ \hline\end{array}$ \& \& \& \& 5. ${ }^{\text {5. }} 90$ \& 3. 40 \& ($\begin{aligned} & \text { 5. } 34 \\ & 3.90\end{aligned}$ \&

\hline Buffalo \& 3.10 \& \& 12 \& 3. 67 \& 1.86 \& 4.13 \& \& 2.47 \& ${ }_{4.32}$ \& 1.10 \& 2. 11 \& 2. 01 \&

\hline Charton, \& 3. \& \& 2. 64 \& ${ }^{89}$ \& 1.57 \& ${ }^{4 .} 59$ \& ${ }_{2}^{2.8}$ \& 3. 91 \& 3.04 \& 1.41 \& 1. 08 \& 1.19 \& 3

\hline Charlotte, N \& 3. \& 3.14 \& 3.77 \& ${ }_{-82}$ \& 8.47 \& 1. 41 \& 2.45 \& ${ }_{92}^{65}$ \& \& ${ }_{1}^{1.96}$ \& -5.92 \& \&

\hline Cheyenne, \& 2. \& 1.37 \& ${ }_{2} 22$ \& 2. 10 \& ${ }_{2} 21$ \& 1.93 \& 4.65 \& 2.60 \& 70 \& 2.15 \& 2. 40 \& 2.00 \&

\hline Chicago, Ill \& 3.37 \& \& 4.38 \& 5. 22 \& 7.04 \& 2. 93 \& 3.41 \& 4.57 \& 3.84 \& 1.81 \& 80 \& 18 \& 3. 46

\hline Cincinnati, \& ${ }_{3}^{3.52}$ \& \& 2.30 \& ${ }^{1} 1.83$ \& ${ }_{3}^{5.56}$ \& 4. 49 \& 4. 62 \& 4.05 \& 3. 56 \& ${ }^{4.36}$ \& ${ }^{2} .79$ \& 2. 09 \&

\hline Cleveland, ${ }^{\text {Concordia, }}$ \& 322 \& \& 2.84
5.70 \& 4.09
1.70 \& 3.13 \& 2. 04 \& 2.89 311 \& 2 \& 4. 15 \& 1.12 \& 1. 51 \& 2. 42 \&

\hline Des Moines, \& 4.56 \& 5.62 \& 5.06 \& ${ }_{4.83}^{1.80}$ \& 8.21 \& 3. 87 \& ${ }_{3.94}$ \& 5.87 \& 2. ${ }_{26}$ \& 3.14 \& ${ }_{3}^{2.62}$ \& 6.87 \&

\hline DevilsLake, N. D \& 2.20 \& ${ }^{5}$ \& 88 \& 1. 42 \& 2. 13 \& 1. 47 \& T. \& 3. 69 \& 3. 47 \& 1. 24 \& 1.03 \& 2.71 \& 2.04

\hline Dodge City, Kan \& 3. 34 \& 兂 \& 81 \& 3. 47 \& 5.43 \& 11 \& 1. 60 \& 2. 90 \& 1.56 \& 3. 47 \& 1.36 \& 2.77 \& 7. 74

\hline Dubuque, \& \& 5. 98 \& 8. 20 \& 4.64 \& 7.6 \& 2. 49 \& 2. 56 \& \& 2.79 \& 2.86 \& 76 \& \& 81

\hline ${ }_{\text {E1 } 1 \text { Paso, }}$ Tex \& \& T.90. \& ${ }^{4.82}$ \& ${ }_{\text {1. }}^{1 .} 23$ \& ${ }^{3.22}$ \& 3. 57 \& 14 \& $\begin{array}{r}4.07 \\ .05 \\ \hline\end{array}$ \& 1.72
14
14 \& ${ }^{4.67}$ \& \& \& 81

\hline Eureka, Calis \& 2. \& 1.98 \& 1.67 \& . 70 \& 2.07 \& 1.48 \& 1. 03 \& $\stackrel{\text { - } 29}{ }$ \& 1.48 \& 04 \& 2.54 \& \& 1. 26

\hline ${ }_{\text {Exansvile, }}$ In \& 3.43 \& 2.74 \& 2.74 ${ }^{\text {F }}$ \& \& 7.49 \& \& \& - 5.75 \& 4.74 \& 5.18 \& 1.56 \& 2. 68 \& 4. 66

\hline Frortso, Calif \& 4.15 \& 2.71 \& 2.74 \& 10.7. \& 2.49 \& 3. 7. \& 3.92 \& \& \& 8.66 \& \& \&

\hline Galveston, \& 3. 23 \& 4.50 \& 3.87 \& 7. 54 \& 2.70 \& 8. 08 \& 3. 47 \& 22 \& 9.96 \& 3.876 \& 2.04 \& 4.93 \& 3. 56

\hline Grand Rapids, \& 3.34 \& 4.91 \& cole \& 3. ${ }^{\text {3 }} 70$ \& \& 4.13 \& 3 \& 4. 03 \& 4.78 \& \& ${ }_{1}^{1.23}$ \& \&

\hline Greenville, \& 3. 2.09 \& ${ }_{2}^{6.52}$ \& 3.81
1.81 \& 1.70 \& ${ }_{1.95}^{2.99}$ \& 4. ${ }^{\text {4. }} 0$ \& 3. \& 3. 37 \& 4.76 \& ${ }_{1.39}^{1.33}$ \& 17 \& \& 2. 50

\hline Indianapolis, \& \& 5. 67 \& 1.49 \& 1.90 \& 3. 94 \& 3. 54 \& 3. 36 \& 3. 85 \& 3. 34 \& 5.04 \& 55 \& 258 \& 5.86

\hline Iola, Kans \& 5. \& 4. 15 \& 3.35 \& 5.84 \& 7.77 \& 2.98 \& 5. 12 \& 4.91 \& 4. 15 \& 4.71 \& 4.85 \& 70 \&

\hline Jacksonvilie, F \& 4. 25 \& 3. 53 \& 1.06 \& 2. 00 \& ${ }^{3.67}$ \& ${ }^{3} 31$ \& 1.83 \& 2. 50 \& 7. 32 \& 7.41 \& 4. 02 \& 7. 18 \&

\hline Little Rock, Ark \& 5.10 \& 1. 81 \& 2. 34 \& 2.25 \& 4. 38 \& 1.49 \& 3. 28 \& ${ }_{64}$ \& 4. 67 \& 8.18 \& 75 \& 4.74 \& 10.50

\hline s Angeles, O \& \& \& \& \& \& \& \& 15 \& . 19 \& 10 \& 3.57 \& \&

\hline Lynchburg, ${ }^{\text {Madison, Wis }}$ \& \& ${ }^{4} \mathbf{4},{ }_{57}$ \& 4.76 \& 5.97 \& 1.99 \& cis ${ }_{\text {5. }}^{13}$ \& 2.21 \& 2. 15 \& 3. 64 \& . 79 \& 6. 15 \& 4. 37 \& 1.

1. 96
de

\hline Marquette, Mi \& 3. 32 \& ${ }_{3.73}$ \& 2. 04 \& ${ }^{1} .90$ \& 3.12 \& 1.78 \& 1.45 \& 6. 58 \& 2.77 \& 2.74 \& 1. 67 \& 3. 27 \& 7

\hline Memphis, T \& 4.34 \& 2.32 \& 2. \& 4.64 \& 5.70 \& 4. 09 \& 2.91 \& . 99 \& 5. 51 \& 8.12 \& 1.2 \& 3.48 \&

\hline Mobile, Ala \& 6. 47 \& 7.70 \& 1. 59 \& 1.82 \& 4. 67 \& 6.0 \& 2. \& 2. 2.90 \& - 13.31 \& 10.33 \& \& 8.31 \& ${ }_{91}$

\hline Modena, Utah \& \& \& \& . 8 \& . 97 \& \& 2. \& \& \& 1. \& \& 1.61 \&

\hline Nashvilile, Tenn \& 3. 50 \& 4.02 \& 2. 66 \& 3. 01 \& 4.94 \& 5. 37 \& 4.75 \& 3. 61 \& 8. 67 \& 3. 18 \& 1.15 \& \& 10

\hline Now N \& 3.88 \& 16.80 \& 7. ${ }^{\text {7 }} 31$ \& ${ }_{25}{ }^{19}$ \& 3. 64 \& 5. 48 \& 11.93 \& 2.79 \& ${ }^{63}$ \& 1. 99 \& 4.72 \& \&

\hline North Plate, ${ }^{\text {N }}$ \& 4 0 \& 1.93 \& 3. 50 \& 2.14 \& 5. 55 \& 1.95 \& . \& 2.30 \& 2. 33 \& \& \& \& 4.08

\hline Oklahoma City, Ok \& 4 \& 2.91 \& 3.88 \& ${ }_{5}^{5 .}$ \& 3. 69 \& \& ${ }_{3}^{2.1}$ \& \& 5. ${ }^{56}$ \& \& \& \& 1

\hline ${ }_{\text {Omaha, }}$ Omebr ${ }^{\text {Pmarkersurg, }}$ \& 4. 46 \& 1.30 \& 5. $\begin{aligned} & 57 \\ & 4.80\end{aligned}$ \& 2. 1.51 \& 3.47 \& ${ }_{4.65}^{4.57}$ \& 3. ${ }_{\text {3 }}$ \& 3.51 \& 5. \& \& \& 2. 37 \& 2. 31

\hline Peoria, 11 \& 4.26 \& 4. 39 \& 1.85 \& ${ }_{2}^{2}$ \& 1.4 \& 7. \& 2. \& 3. 02 \& 3. 79 \& \& 2. 13 \& 4. 00 \&

\hline Phoenix, Ariz \& 2.13 \& 1. 67 \& 3.75 \& 3. 54 \& ${ }_{2} .56$ \& 5. 81 \& 2.72 \& 3. 02 \& 2. 78 \& 5.11 \& 4.79 \& 3. 58 \& 1.43

\hline Pittsburgh, Pa \& 3. 30 \& 1. 56 \& 3. 11 \& ${ }_{2}{ }^{64}$ \& 3. 89 \& 2.33 \& ${ }_{2}{ }^{2} 8$ \& 3. 89 \& 4.89 \& 1.03 \& 49 \& 59 \& 3.34

\hline Portland, Ore \& 2.36
1.68 \& 1.89 \& 1.63 \& 1. 22. \& 2.59 \& 2.0 \& 2.3 \& ${ }^{1.38}$ \& $\begin{array}{r}1.95 \\ .38 \\ \hline\end{array}$ \& 1. 26 \& -99 \& 1.60 \&

\hline Roseburg, Oreg \& 2.05 \& ${ }_{3} 11.11$ \& 1. 50 \& 1. 06 \& 3. \& 2.05 \& ${ }_{2.75}$ \& 1. 34 \& 1.23 \& . 24 \& 75 \& 1. 03 \& 56

\hline Sa \& \& , \& 51 \& 50 \& 275 \& \& . 12 \& \& \& \& \& \&

\hline St. Louis, M \& 4. 424 \& 4.29 \& 2.93 ${ }_{\text {2 }}$ \& 1.48 \& \& 3. ${ }^{\text {3. }} 89$ \& 3. \& 3. 28. \& 2. \& \& 4. 298 \& 2. 48 \&

\hline Sait Lake City, \& 1.95 \& \& \& \& 1.97 \& \& \& 1.30 \& \& \& 1.95 \& \&

\hline San Antonio, Tee \& 2.96 \& $\stackrel{1}{1.4}$ \& \& \& 1.89 \& 3.85

01 \& 3.30 \& 2.80 \& \& \& 2. 21.5 \& + 46 \&

\hline San Fra \& . 81 \& 1. 47 \& .63 \& \& 3.17 \& -07 \& - 06 \& T. \& T. \& iT. \& \& 55 \& 66

\hline Scranta \& ${ }_{3.4}^{1.1}$ \& \& ${ }_{2}{ }^{17}$ \& ${ }_{3}^{2}$ \& 3. 30 \& 3.0 \& 3. \& \& ${ }_{3.33}^{3.37 .}$ \& 2.28 \& \& ${ }_{2} 20$ \&

\hline Scranto \& 3.44 1.97 \& 1.44 \& 2. 1.37 \& \& 3. 30 \& 3. 1.56 \& \& 3. 58 \& 2.08 \& \& \& \&

\hline Sheridan, W \& 268 \& 2. 2 \& 1. 52 \& 3. 10 \& 3. 98 \& 3.04 \& 3. \& 2.83 \& . 81 \& 12 \& 2. 98 \& 3. 04 \& 3. 27

\hline Shreveport, La \& 4. 55 \& 5. $\begin{aligned} & \text { 5. } 84 \\ & 2\end{aligned}$ \& 3. 31 \& 4. ${ }^{4 .} 59$ \& 1.81 \& ${ }_{2}^{5.78}$ \& 1. ${ }^{1.60}$ \& 1.49

4.19 \& 5.78 \& 5. 53 \& | 3. 68 |
| :--- |
| 4.06 | \& 94 \& 68

\hline Thomasville, G \& 4. 01 \& 2.12 \& 2.87 \& 1.45 \& 8.75 \& 1. 54 \& 8. 23 \& 1. 38 \& 8. 02 \& 3. 36 \& 4.03 \& 21 \& 6.00

\hline Trenton, ${ }^{\text {Walla }}$ Nalla, \& 3.52 \& 4.47 \& 3. 00 \& 1.98 \& 4. 33 \& 2. 29 \& 2. 90 \& 4.3 \& 4. 18 \& 2. 66 \& 4. 04 \& 3.03 \&

\hline Walla walla, \& \& 4.84 \& 4.56 \& 1.72 \& 2. 218 \& ${ }_{2.30}^{1.29}$ \& 2. 88 \& 2.35 \& 5. 27 \& 1.42 \& 5. 82 \& 4. 27 \& 1.59

\hline Winnemucca, Nev \& -1. \& . 52 \& . 45 \& . 48 \& 1. 08 \& . 49 \& 2.4 \& . 77 \& 1.25 \& . 15 \& 1.1 \& 47 \& . 70

\hline
\end{tabular}

[^357]Table 737.-Precipitation: Narmal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Station.} \& \multirow[b]{2}{*}{Normal for June.} \& \multicolumn{12}{|c|}{June total precipitation.}

\hline \& \& 1912 \& 1913 \& 1914 \& 1915 \& 1916 \& 1917 \& 1918 \& 1918 \& 1920 \& 1921 \& 1922 \& 1923

\hline \& In. \& In. \& In. \& $\boldsymbol{I n}$. \& In. \& In. \& In. \& In. \& In. \& In. \& In. \& In. \& In.

\hline \& 2.99 \& 1.90 \& 2.32 \& 0.84 \& 1. 04 \& 2.18 \& 0.83 \& 1. 44 \& 2. 94 \& 2. 56 \& 7.75 \& 3. 77 \& 9. 76

\hline Atlanta, Ga \& 3.88 \& 11. 21 \& 3.10 \& 2.14 \& 3.82 \& 3.28 \& 1. 75 \& 3. 31 \& 2. 08 \& 3. 47 \& 1.56 \& 41 \& 3. 23

\hline Birvingham, \& 3.88 \& 6.18 \& 2.75 \& 4.49 \& 4. 80 \& 2.02 \& 3. 44 \& 7. 64 \& 3. 30 \& 3. 63 \& 1.45 \& 3. 82 \& 2. 10

\hline Bismarcik, N \& 3.54 \& 3.55 \& 2.06 \& 9.90 \& 5.70 \& 1. 50 \& 2.15 \& - 59 \& 63 \& 2. 05 \& 92 \& 3. 24 \& 1. 89

\hline Boise, lda \& . 88 \& . 86 \& 1. 64 \& . 82 \& . 48 \& 1. 68 \& . 34 \& 58 \& T. \& 1.18 \& 09 \& . 57 \& 2. 05

\hline Peston, Ma \& 3. 03 \& . 27 \& -64 \& 1.40 \& 1.39 \& 5.04 \& 4.05 \& I. 94 \& 1. 08 \& 5. 78 \& 3. 58 \& 8.05 \& 2. 03

\hline Brownsville \& 2.37 \& 12.78 \& 4.96 \& . 63 \& T. \& . 17 \& . 71 \& 1. 38 \& 5.08 \& 6. 70 \& 4.59 \& 5. 55
3.38
7. \& 1. 98

\hline Buffalo, \& 3. 14 \& . 83 \& 1. 69 \& 1.72 \& 1.72 \& 4.04 \& 5. 28 \& 2.81 \& . 54 \& 3. 11 \& 1.52 \& 3. 38 \& 64

\hline Canton, \& 3. 43 \& 1.57 \& 1.15 \& 2. 29 \& 3.67 \& 2.84 \& 3. 58 \& 3. 57 \& 4. 83 \& 2. 69 \& 1. 66 \& 7. 56 \& 4.49

\hline Charles \& 5.39 \& 6.89 \& 2.88 \& 4.33 \& 4. 52 \& 9.75 \& 1.92 \& . 27 \& 6.33 \& 2. 45 \& . 61 \& 3. 54 \& 3. 58

\hline Charlotte, \& 4.46 \& 5.39 \& 4.21 \& 2. 12 \& 5.45 \& 5. 55 \& 4. 70 \& 2.43 \& 2.43 \& 3. 56 \& 1.33 \& 2. 74 \& 2.21

\hline Cheyenne, \& 1.57 \& 1. 17 \& 1.18 \& . 25 \& 1. 34 \& . 37 \& . 34 \& 1.24 \& . 72 \& . 70 \& 2. 92 \& . 90 \& 2.32

\hline Chieago, I \& 3.66 \& 1. 78 \& 1. 08 \& 3.53 \& 3.60 \& 7.25 \& 2.87 \& 1.60 \& 3. 16 \& 3. 94 \& 1.57 \& 12 \& 1.79

\hline Cineinnati \& 3.98 \& 2.16 \& 2. 29 \& 2. 20 \& 4. 47 \& 4.32 \& 2. 96 \& 5.97 \& 2. 44 \& 2. 63 \& 2. 35 \& 1.77 \& 3. 18

\hline Cleveland, \& 3.68 \& 1. 96 \& 1.33 \& 2.80 \& 2.03 \& I. 98 \& 3.59 \& 1.83 \& 1.24 \& 5. 28 \& 2. 38 \& 2. 66 \& 1. 49

\hline Cormeordia, Ka \& 4.97 \& 2. 96 \& 2. 76 \& 2. 73 \& 9.33 \& 4.60 \& 3.17 \& 1.85 \& 6. 14 \& . 84 \& 3. 35 \& 2.10 \& 7.32

\hline Des inomes, Io \& 4. 96 \& 2. 60 \& 3.52 \& 3. 89 \& 3. 60 \& 2. 24 \& 8.16 \& 5. 63 \& 7. 36 \& 1.25 \& 4. 66 \& 1.63 \& 4.95

\hline Devils Lake, N. Da \& 3. 53 \& 2.85 \& 1.28 \& 5. 84 \& 4. 53 \& 4. 14 \& 1. 69 \& 2. 00 \& 3. 58 \& 4. 69 \& \& 2. \& 46

\hline Dodge City, Kans \& 3.32 \& 8.55 \& 2.02 \& 3. 82 \& 2. 96 \& 5.16 \& 91 \& . 26 \& 1. 72 \& 2. 08 \& 4. 48 \& 1. 37 \& 2. 96

\hline Dubuque, Iowa \& 4. 55 \& 1. 93 \& I. 92 \& 5. 81 \& 3.06 \& 4. 61 \& 5. 12 \& 6.15 \& 6.24 \& 5. 24 \& 3. 54 \& 1. 20 \& 3. 66

\hline Duluth, Minn \& 4.53 \& 1.32 \& 2.03 \& 6. 28 \& 4.96 \& 5. 81 \& 1.93 \& . 84 \& 3.77 \& 5. 66 \& 4. 38 \& 3.97 \& 3.89

\hline E1 Paso, Tex \& 55 \& 1.27 \& 91 \& 1.47 \& T. \& \& . 36 \& 83 \& 27 \& . 99 \& 79 \& . 05 \& . 09

\hline Eureka, Calif \& 1. 06 \& 1.29 \& 1. 60 \& 1. 73 \& . 05 \& 1. 00 \& . 00 \& . 02 \& . 14 \& 1.92 \& 1. 30 \& 14 \& 7

\hline Evansvile, Ind \& 4. 17 \& 3.36 \& I. 55 \& 3.9\% \& 3. 69 \& 4.58 \& 4.20 \& 2. 05 \& 6.75 \& 3.77 \& 2. 44 \& 2. 65 \& 5. 09

\hline Fort Worth, Te \& 2.97 \& 4. 26 \& 3.03 \& 2. 97 \& 6.88 \& 3. 30 \& 1. 97 \& 5.16 \& 3.72 \& 2.33 \& 2.63 \& 1.76 \& 6. 74

\hline Fresno, Calif \& 10 \& T. \& . 10 \& . 23 \& \& \& \& ${ }^{-01}$ \& \& \& 4.07 \& \&

\hline Gralveston, Tex \& 4. 75 \& 4. 08 \& 2. 51 \& . 12 \& - 86 \& 3. \& 3.44 \& 2. 79 \& \& \& 4. 97 \& 8. 96 \&

\hline Grand Rapids, \& 2. 52 \& I. 02 \& 1.50 \& 6.13 \& 1.86 \& 6. 56 \& 3. 44 \& 1.17 \& 1.84 \& 4.09
3.12 \& 3.
2. 88
2. \& 8.16
10.09 \& 1. 77

\hline Qreenville, M \& 3.69 \& 1. 91 \& 1. 82 \& 3. 34 \& 2. 00 \& 3.99 \& 8. 69 \& 3. 38 \& 2.25 \& 3.12 \& 2. 88 \& 10.00 \& 3. 88

\hline Eavre, Mont \& 2.82 \& 1. 52 \& 1. 48 \& 4. 07 \& 3. 35 \& 4.03 \& 1.43 \& 1.45 \& 1.68 \& 3. 09 \& 2. 00 \& 82 \& 5. 89

\hline Indianapolis, \& 4. 31 \& 2.02 \& 2.35 \& 3. 65 \& 2. 91 \& 5. 92 \& 5. 24 \& 3.11 \& 3. 33 \& 3.78 \& 3. 22 \& . 99 \& 2. 30

\hline Tola, Kans \& 4. 73 \& 5. 98 \& 4.26 \& 3.94 \& 8.56 \& 8. 58 \& 94 \& 2. 54 \& 4. \& 3. 59 \& 8.41 \& 5.63 \& 5. 35

\hline Jacksonville \& 5. 53 \& 9. 62 \& 4. 55 \& 1.32 \& 1. 55 \& 6. 45 \& 3. 03 \& 3. 32 \& 13.79 \& 8.27 \& 2. 71 \& . 84 \& 49

\hline Kalispell, Mon \& 1. 74 \& 2.59 \& 3. 21 \& 2. 51 \& 2. 09 \& 3.91 \& 2. 76 \& - 58 \& +. 55 \& -95 \& 1. 22 \& + $\times 24$ \& 1.49

\hline Little Roels, Arl \& 4.09 \& 3.84 \& 2. 05 \& . 01 \& 3. 72 \& 3. 00 \& 3.82 \& 6. 77 \& 2.75 \& 4.27 \& 4.67 \& 2.21 \& 1.80

\hline Los Angelos, Cit \& 07 \& \& . 58 \& -09 \& 16 \& \& \& ${ }_{2} .08$ \& \& \& 1.85 \& 3.37 \& . 02

\hline Lyirchburg, V \& 3. 89 \& 2. 35 \& 2. 88 \& 2.21 \& 4.16 \& 6.28 \& 5.17 \& 2. 1.81 \& \& \& 1.85 \& 3.37
3.17 \& 2. 05

\hline Madisen, Wis \& 4. 10 \& 1. 13 \& 3. 73 \& 3. 46 \& 175 \& 4. 52 \& 6.47

2 \& 1. 8.51 \& 3. 36 \& 5.62
2.80 \& 3. 1.52 \& 3.17 \& 10

\hline Marquette, \& 3.51 \& 2.45 \& 2. 76 \& 4. 21 \& 5.13 \& 7.26
3.19 \& 2. 48 \& 2. 51 \& 2. 01 \& 2.80
1.83 \& 1.52 \& 3. 31 \& 3.10
5.04

\hline Memphis, \& 4.37 \& 4.34 \& .97
4.07 \& - 212 \& 1.72
12.53 \& 3. 19 \& 2. 61 \& 3.85
6.17 \& 7. 26 \& 1.83
3.90 \& 2. 1.14 \& 4. 50 \& 5.
5.94
5.94

\hline Miami, Fla \& 7. 89 \& 14.63 \& 4. 07 \& 2. 578 \& 12.53 \& 6. 36
5.42 \& 6. 71 \& 3.17
2.92 \& 7.26
2.12 \& 3.90
6.64 \& 1.14 \& 4.
2.03
2.03 \& 5.94
5.97

\hline Mobile, Ala \& 5. 95 \& 4.63 \& 3. 88 \& 5.78 \& 7.41 \& 5. 42 \& 2. 23 \& 2.92 \& 2. 12 \& $\begin{array}{r}6.64 \\ .59 \\ \hline\end{array}$ \& 3. 97
.01 \& 2.03
.23 \& 5. 97

\hline Modena, Uta \& . 40 \& 06 \& 44 \& 1. 50 \& . 85 \& ¢ \& \& - 70 \& - 36 \& 3. 81 \& 2. 29 \& 5. 37 \& 42

\hline Nashville, Te \& 4.37 \& 5. 66 \& . 30 \& 2. 95 \& 1. 42 \& 4. 62 \& 8. 03 \& 2. 70 \& 3.96 \& 3. 81 \& 2. 29 \& 6. 37 \& 38

\hline New Orleans, \& 6.16 \& 4.11 \& 5. 58 \& 3.51 \& 5. 61 \& 9. 70 \& 2. 77 \& 2. 45 \& 4. 50 \& 8. 45 \& ${ }^{9.44}$ \& 6. 45 \& 1.38

\hline Norfolk, Vet. \& 4.33 \& 4. 63 \& 5. 70 \& 3. 20 \& 6. 52 \& 1. 98 \& 4. 65 \& 3. 25 \& 3. 48 \& 5. 05 \& 1. 05 \& 9.78 \& 1. 13

\hline North Platte, Nebr \& 3. 25 \& . 57 \& 2.13 \& 4. 63 \& 3.39 \& 3. 09 \& 2. 38 \& 2. 18 \& 4.15 \& 2. 35 \& 1.30 \& . 87 \& 15

\hline Oktahoma City, Okla \& 3.07 \& 生. 75 \& 3. 82 \& . 02 \& 7. 23 \& 6. 16 \& 1. 83 \& 3. 09 \& 4.87 \& 2. 08 \& 3. 80 \& . 30 \& . 62

\hline Omaha, Aebr \& 5. 05 \& 3.09 \& 2. 28 \& 7.01 \& 2.83 \& 2.58 \& 6. 19 \& 1. 80 \& 4. 44 \& 2. 62 \& 3. 57 \& 2.68 \& 6.09

\hline Parkersburg, W.Va. \& 4.65 \& 8. 48 \& 2. 96 \& 2.16 \& 484 \& 3. 30 \& 3. 17 \& 3.39 \& 2.80 \& 5. 20 \& 3. 63 \& 5. 06 \& 5.42

\hline Peoria, Ill \& 4. 30 \& 1.86 \& 2. 50 \& 2. 45 \& 2.18 \& 2. 55 \& 7.43 \& 4. 69 \& 3. 96 \& 2. 18 \& 2. 17 \& 98 \& 2.00

\hline Phoenix, Äriz \& . 12 \& 1.81 \& 2. 5 \& . 05 \& - 48 \& \& \& . 08 \& 255 \& \& . 04 \& T. \&

\hline Picrre, S. Dak \& 3. 08 \& - \& . 32 \& 5. 72 \& 4. 12 \& 2. 33 \& - \& 1. 59 \& 2. 55 \& \& \& 4. 60 \& 28

\hline Pittsourgh, $\mathbf{P a}$ \& 3.89 \& 5. 67 \& 1. 04 \& 3. 31 \& 5. 36 \& 3.82 \& 3. 65 \& 2. 40 \& 3. 58 \& 6. 74 \& 5. 33 \& 3. 12 \& 19

\hline Portland, Ore \& 1. 78 \& 3. 03 \& 4.24 \& 1. 52 \& 1.47 \& 1.83 \& 1. 17 \& ${ }^{.} 12$ \& .91
+39 \& 2. 11 \& 1. 36 \& - 14 \& 19

\hline Pueblo, Colo \& 1. 47 \& 2. 24 \& . 66 \& 1. 90 \& 1. 26 \& 1. 22 \& . 58 \& 1. 02 \& 1. 39 \& . 47 \& 7.14 \& . 53 \& . 91

\hline Roseburg, Oreg \& 1. 07 \& 3.07 \& 3. 27 \& 1. 76 \& 71 \& . 91 \& . 26 \& 33 \& . 98 \& . 96 \& 76 \& 1.01 \& 1.22

\hline Sacramento \& .15 \& \square^{-18} \& . 11 \& . 60 \& \& - 07 \& \& \& \& \& ${ }^{-}$ \& \& 89

\hline St. Louis, Mo \& 4. 47 \& 6.93 \& 1. 55 \& . 10 \& 9.77 \& 3. 97 \& - 72 \& 1. 47 \& 5. 30 \& 1. 53 \& 2. 31 \& $\stackrel{80}{ }$ \& 4.38

\hline gt. Paul, Min \& 4.41 \& 1.10 \& 3. 05 \& 6. 49 \& 3. 58 \& 3. 79 \& 3. 79 \& 2.81 \& 4.40 \& 7. 76 \& 4. 70 \& 4. 61 \& 4.28

\hline Salt Lake City, Utah \& . 77 \& . 90 \& 3.37 \& 2.68 \& 1. 44 \& . 66 \& . 19 \& ${ }^{\cdot} 20$ \& 7. \& ${ }^{-15}$ \& - 08 \& +.83 \& 1.38

\hline San Antenio, Tex...- \& 3.11 \& 3.22 \& 2.90 \& . 01 \& . 03 \& 49 \& . 02 \& 3.35 \& 7.01 \& 2.83 \& 4. 59 \& 3. 92 \& . 79

\hline San Dieso, Calif \& . 03 \& 16 \& . 09 \& T. \& T. \& \& T. \& . 06 \& - ${ }_{\text {T }}$ \& . 02 \& \& 8 \& 0

\hline San Francisco \& +17 \& ${ }^{-81}$ \& - 02 \& 1.72 \& \& . 38 \& \& \& \& \& 2.85 \& . 74 \& 24

\hline Santa Fe, N. \& 1. 04 \& 2.21 \& 4. 26 \& 1. 72 \& . 16 \& 4.38 \& .06
4.48 \& .68
2.60 \& 1.50
4.46 \& 2. 04 \& 2.85 \& .74
7.08 \& 3. 05

\hline Scranton, P \& 3. 57 \& 1.67 \& 1.34 \& 3.05
1.75 \& 3.27
.40 \& \& 4. 48 \& 2. 00 \& 4.46
.35 \& 5.

1. 93 \& I. 29
I. 29 \& 7.08
.03 \& 1. 01

\hline Seattle, W as \& 1. 49 \& 2.76
1.12 \& 1.71
3.90 \& 1.75
1.65 \& 4.70
4 \& 1.82 \& 3. 70
2. 02 \& .50
1.27 \& . 54 \& 1. 1.88 \& 1. 94 \& 2. 21 \& 2. 11

\hline gheridan, W \& 1. 90
3.58 \& 1.12
3.79 \& 3. 90
3. 23 \& 1.65
2.29 \& 4. 71 \& 2. 23 \& 1.02
.49 \& 1. 273 \& 5. 53 \& 5. 23 \& 3.34 \& 3.77 \& 2. 48

\hline Greveport, \& 3. 58
5.19 \& 1.12

5.74 \& | 3. 23 |
| :--- |
| 2.71 | \& 1.29

1.48 \& 5. 81 \& 3.08
5.00 \& 2. 69 \& 3. 61 \& 4. 00 \& 1. 43 \& 9. 68 \& . 66 \& 6. 10

\hline Thomas.ville \& 4. 72 \& 6.61 \& 7.90 \& 2. 62 \& 4. 15 \& 3. 55 \& 2. 59 \& 6.74 \& 6. 38 \& 3. 22 \& 3.51 \& 5. 36 \& 10.71

\hline Trenton, N.J \& 3.49 \& 2.30 \& . 68 \& 1. 74 \& 2. 07 \& 2. 94 \& 3. 15 \& 3. 78 \& 1. 39 \& 6.63 \& 4.83 \& 4.98 \& 1. 47

\hline Walla Walla, Wash- \& 1. 19 \& 1. 73 \& 2. 11 \& 1. 12 \& . 40 \& 1. 77 \& . 57 \& . 10 \& . 04 \& 1. 83 \& . 67 \& . 51 \& 2.89

\hline Washington, D. C--- \& 4. 18 \& 4.36 \& 1. 81 \& b. 20 \& 6.58 \& 7.53 \& 6. 25 \& 206 \& 3. 44 \& 4.80 \& 3. 45 \& 4. 10 \& 2.89

\hline Winnemucca, Nev.. \& . 64 \& 1. 14 \& 2. 14 \& 2. 17 \& . 05 \& -.-. \& . 35 \& 1.33 \& \& . 51 \& 82 \& . 25 \& 2. 59

\hline
\end{tabular}

[^358]$T=$ Trace, indicates an amount too small to measure.

Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923—Contipued.

Station.	$\begin{gathered} \text { Nor- } \\ \text { mal } \\ \text { for } \\ \text { July. } \end{gathered}$	July total precipitation.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	In.	In	1 In.	In.	n.	$I n .$		$I n,$	In.	In.	In.	$1 n$.	
Amarilo,					4. 14	C. 94				1. 85	4. 17	1.94	85
Birmingham, Ala	4.70	5. 65	4.72	3.91	5. 72	20.12	3. 71	3. 34	5. 53	4. 63	5. 79	5. 23	6. 42
Sismarck, N. Dak	2. 14	3. 18	2.72	204	4.02	4.03	1. 50	2.09	$\dot{\mathrm{T}}^{76}$	2.72	2.18	2.37	4. 77
$\mathrm{PR}^{\text {Paise, Idaho }}$. 18	1. 27	2. 01	1.04	. 63	. 81	T.	. 11	T.	05	T.	. 19	68
Braston, Mass	3. 36	5. 16	269	264	8.85	5. 67	1. 10	2.64	${ }^{4} 63$	1. 56	11. 69	2.63	3. 36
Prownsstile,	1. 88	. 13	${ }^{28}$	T.	- 15	4. 52	4. 52	1.34	6. 79	218	2.81	1. 92	58
Canton,	3.23	1.82	$\underline{1.13}$	1.38	5. 37	2. 1.04	4. 42	1.37	1.33 3.10	4. 48	1. 20	${ }_{1}{ }_{86}$	1.71
Charleston,	7.26	3.05	5. 51	7. 14	2. 98	11.61	9.95	7.69	8.53	4.69	16. 61	8.02	7. 23
Charlotte, N	5.49	3. 56	4.42	4.83	3. 08	16. 55	5.85	1. 90	7. 40	4.11	5. 5.5	5. 19	5. 89
Cheyenne, W	1. 99	1.82	1.42	1.30	1.71	1.81	1.62	3.90	2.83	2.12	1.37	2.01	3. 23
Chicago, Ill	3. 64	3. 86	3. 30	2.11	5. 57	2.22	2.68	2. 66	1. 59	1.61	1.87	4.00	2. 67
Cincinnati, O	3. 54	5.11	2. 37	3.00	4. 93	1. 79	404	3. 05	2. 08	3. 19	4. 28	2,45	2. 51
Cleveland, Ohio	3. 55	8. 13	4.85	1.00	4.73	2.48	3. 60	1.08	2.46	3. 32	3. 52	3.98	2.09
Cancordia, Kans	3. 62	1.33	15	1.13	5. 10	. 82	. 60	1.77	03	4. 90	5. 24	5.82	4.48
mesMoines, Lowa	3. 86	3.07	1.05	1.22	9.39	1. 50	1. 58	1. 18	2.68	5. 66	2.49	7.13	78
Dexils Lake, N. Dak	3. 78	7.44	1.47	1.63	1.00	3. 70	1.60	281	1. 76	2. 51	4. 49	87	2.07
Dodge City, Kans.	3. 38	88	70	36	3.92	09	276	2. 25	1.83	3. 79	2.91	2.86	1.95
Dubuque, Iowa	4. 30	4. 81	2. 31	1.57	${ }^{5} 08$. 85	2. 10	3.77	7.82	1. 11	2.48	6.01	1. 67
Duluth, Minn	3. 65	224	6. 18	2.99	1. 60	1. 19	4.29	1.23	2.62	4.82	5. 41	2.30	5. 40
Ex Paso, Tex	2. 13	1.11	1. 13.	4. 91	2.45	- 59	. 41	1.52	1.87	84	2.13	1. 08	20
Eureka, Calif	3. 81	5. 30	1.38	$\underline{1.41}$	$\stackrel{.}{26}$	1. 46	2.26	1. 45	1. 32	2.86	-2.45	6.39	.08 1.00
Fort Worth, 7	3. 04	. 27	4. 36	73	30	1. 38	2.65	1.10	5. 25	3.49	1.14	1.35	99
Fresno, Calif		T.	33	T.		T.	T.	T.				T.	
Galvesion, Tex	3. 98	. 16	1.48	1.29	2.45	4.64	. 46	2.24	3.73	3. 21	5. 77	1. 60	5. 80
Grand Rapids,	2. 63	7.47	1.96	1. 18	4.00	1.07	6. 91	1.17	66	3. 60	2. 38	4.05	
Greenville, Me	4.24	3.45	5. 01	2.62	8.98	5.60	6. 97	8.25	5. 82	4. 46	5.06	3. 54	4. 34
Havre, Mont	1.92	. 97	1.28	41	3.17	5. 90	45	75	. 12	1. 51	2.51	2.76	4. 33
Indianopolis,	4. 13	6.75	3. 88	. 49	7.94	2. 44	3. 20	2. 44	. 97	4. 51	1.42	2. 67	243
Iola, Kans	3. 92	1.49	2. 30	3. 75	6. 07	F.	4. 22	2.48	221	4. 13	4.03	3.99	2. 64
Jacksonville, F	6. 20	6.74	6. 28	5.13	9. 36	3. 93	10.36	3.35	6. 32	5. 47	9. 76	3.91	5. 14
Kalispell, Mon	84	1. 56	. 38	69	2.74	1. 76	. 09	1.47	. 88	. 98	62	. 81	1.60
Little Rack, A	99	1. 93	3. 74	3. 71	. 96	44	4. 54	. 94	2.36	3.06	T 4	$2{ }^{2} 8$	7. 8 T
as Angeles,	4. 03	3.64	1.53	4.53	3. 05	9.76	297	3. 75	$5{ }^{5}{ }^{2} 1^{-1}$	4. 82	3. 56	2. 25	2. 5.8
Madison, Wi	3. 99	5. 63	8.47	1. 49	5. 04	2.66	3. 10	2.33	3.96	1.39	2.46	6.09	228
Marquette, Mi	3. 10	3. 42	3. 71	3.45	1.78	1.74	1. 99	2.50	2.47	4. 62	4. 38	3. 49	4.11
Mamphis, Te⿴囗	3.51	3. 27	5. 91	58	1.16	1. 74	5. 96	2.27	1. 94	3. 55	3. 19	3.71	3.65
Miami, Fla	7.24	5.99	298	4. 52	6. 54	2.49	2.48	4.01	5. 90	6. 61	3. 09	8,16	5. 20
Mobile, Ala.	7.04	6.79	4.41	5.17	5.82	20. 50	10. 54	2.85	6. 94	7.04	4. 89	9. 57	4.98
Modena, Utab	1. 26	1. 28	- 81	1. 50	1. 41	4. 72	1. 03	${ }^{93}$	1. 37	1.82	250	1. 22	. 81
Nashville, Tenn	4.35	5. 37	4. 09	2. 58	2.03	4. 17	3. 25	3. 63	1. 83	3. 00	4.56	6.15	213
New Orleans,	6. 47	7.38	5. 37	9.18	7. 55	6. 78	8. 35	2. 03	7.62	6. 20	7. 90	4.05	8. 72
Norfolk, Va	5. 80	1.86	10. 24	3.91	5. 72	3. 05	11.73	3. 66	7. 21	4.33	3. 27	11. 92	4. 14
North Platte, Nebr	268	4.01	3. 37	. 58	4. 66	. 59	1.13	1.88	4.98	1.62	. 80	4.91	3. 63
Okkahoma City, Okla	3. 65	232	5. 06	62	1.19	2. 87	2.96	13	53	4.02	4. 43	2.31	15
Onanha, Nebr-	4. 33	1. 78	1.92	1. 09	7.75	45	. 78	1.76	${ }^{6} 83$	3.91	4.99	5. 60	. 86
Parkersiburg, W	4. 66	8.07	4. 64	2.13	4.21	4.92	6.17	1.28	3. 30	4. 56	2.80	3.65	5. 52
Pearia, 71	2.97	5. 04	. 46	. 82	6.91.	1. 14				1.56 .85	35	3.06 .74	
Phoenix, Ariz	1.07	1. 29	${ }^{-94}$.21 +53	1.12	${ }^{2} .77$	3.97	1.02	1.05	2. 81	+ 4.92	2.84	- ${ }^{\text {2 }} 67$
	2.35 4.42	3. 61	2.12	1. 28	6. ${ }^{6} 112$	3. 38	2. 33	2.28	C. 20	3. 29	2. 81	2.80	6.74
Prittsburgh,	$\begin{array}{r}4.42 \\ .54 \\ \hline\end{array}$	6.61 .48	4.86 .24	$\stackrel{1}{2.89}$	1.52	2. 55	${ }^{2} .01$	1.08	- 23	1.18	${ }^{2}$ T.	T	217
Pueblo, Colo	1. 97	2. 50	3.12	3.92	1.91	. 83	1.32	. 93	2. 25	1.62	5. 26	29	4. 05
Roseburg, Orag	. 32	20	,	. 01	64	2.22	1	. 57	06	42			59
Sacramento, C		T.	T.		T.	07						.	
6t. Louis, Mo	3. 43	5. 29	3.61	1. 52	6. 02	1.20	3. 17	. 60	1. 50	. 73	2.05	2.42	1.88
Gt. Paul, Minn	3.40	4.02	G. 11	. 95	4. 53	. 75	4. 12	3. 05	7. 47	1. 35	2.39	2.32	2.52.
Salt Lake City, Utah	54	1. 51	. 55	1.20	. 07	${ }^{6} 6$. 68	. 76	- 8	. 51	. 38	. 65	2. 28
Say Antonia, Tex	222	1. 27	. 03	02	. 92	4. 53	219	1.68	${ }^{7.88}$. 39	- 48	. 10	2.64
San Diego, Calif		14	06		T.	. 02	T.	T.	T.	T.	T.	. 01	. 01
San Francisco, Calif.	01	T.	. 07	. 02	. 01	${ }^{-7}$	45	T.	${ }^{0} 01$				
Santa Fe, N. Mex.	2.71	1.49								1.42	3.87 4.90	1.75 4.48	4.72
Scranton, Pa	3.83	21.11	$\begin{array}{r}4.97 \\ .73 \\ \hline\end{array}$	6.71 .01	2. 80	2. 29	2.27 .09	2.59 1.88	4. ${ }^{21}$	5. 42 1.00	${ }^{4 .} 18$	4.48	- 48
Sheridan, Wy:	1. 64	4.42	1. 70	. 13	1.44	. 83	. 17	1.78	37	1.51	. 56	2.11	6.37
Shreveport,	3. 72	3.73	70	84	2.44	3. 09	9. 30	T	70	4.02	4. 29	4.49	3.40
springtield, Mo	4.79	1.40	3. 84	3. 35	1.82	. 74	4. 15	1.11	1.96	242	${ }^{6} 70$	6.15	267
Themasvilic, C	5. 32	5. 34	4. 78	C. 20	4.68	18.32	9. 11	2.46	9.81	${ }^{3} 38$	6.71	${ }_{2} \mathbf{3} 64$	10.59
Wranton, N. J-Wash	4.77 .39	3.21 .59	1. 50	4.75	7. 20 .65	5.94 .72	4. T .	$\begin{array}{r}4.97 \\ .98 \\ \hline\end{array}$	10.41	$\begin{array}{r}2.16 \\ .13 \\ \hline\end{array}$	2.38	${ }_{2}^{2.04}$	- 3.73
W ashington, D. C.-	4. 65	7. 21	3. 24	2.32	3. 21	4. 97	9. 41	3. 79	6. 80	5. 71	4. 79	8. 59	4.92
Winnemucca, Nev --	. 17	. 52	1.55	. 19	. 05	. 01	. 06	. 27	T	T.	T.	. 36	. 24

[^359]$T=$ Trace, indicates an amount too small tomeasme.

Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

Station.	Normal for Aug.	August total precipitation.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	In.	In	In.	In.	I_{n}.	In.	In.	In.	In.	In.	In.	In.	$1 n$
Amarillo, ${ }^{\text {T }}$	2.81	2. 28	0. 61	2. 97	5. 85	3.82	6. 17	2.36	3. 21	5. 52	5. 77	0.78	1. 54
Atlanta, Ga -	4. 48	3. 70	2. 53	5. 04	4. 92	3. 61	5. 61	4.20	3. 80	10.02	8. 03	2. 72	4. 17
Birmingham, Ala	4.48	5. 60	1.01	6. 38	4. 40	3. 51	8. 98	98	5. 33	9.09	3.97	2. 95	6. 90
Bismarck, N. Dak	1.98	2. 33	. 77	2. 02	3.44	1.97	1.37	2.62	1.46	59	18	. 22	. 63
Boise, Idaho	. 16	. 07	. 03	. 04	${ }_{5} \mathrm{~T}_{6}$.	${ }^{4} 45$	T.	-48	${ }_{5} \mathrm{~T}$.	${ }_{2}{ }_{32}^{33}$	- 34	1. 13	. 20
Boston, Mas	4.03 2.59	1.94 .12	2.86 1.04	3.20 .68	5. 63 2.58	2.19	7.06 .29	1.56 .40	5.07 .25	2.32 .00	1.63 .14	4.75	1.86
Buffalo, N	2.99	4.00	3. 26	4.95	6. 19	1. 46	1.86	3. 02	3.04	1.77	1.80	4. 62	1. 26
Canton, N. Y	2.69	4.44	2.91	4. 23	5. 66	1. 84	4.50	3.18	2. 60	1.94	3.91	4. 25	2. 36
Charleston,	6. 97	2.77	3. 50	4. 43	5. 40	3. 10	5. 06	2.87	5. 70	7.02	5. 70	5. 18	12. 29
Charlotte,	5. 55	1.87	4.48	2. 25	4. 59	2. 70	4.84	2.18	3.94	8.91	2. 78	2.74	2. 93
Cheyenae	1. 17	1. 44	1.43	1. 67	3. 98	1. 26	1.75	1. 68	43	1.32	61	2. 16	2. 06
Chicago, Ill	2.88	3. 59	4.06	3. 76	4. 33	1. 05	1.24	1. 27	1. 10	3. 16	4.92	1. 45	7.76
Cincinnati, Oh	3.33	5.00	1.27	4. 28	4.13	3. 57	1.70	4. 53	92	6. 10	6.02	5. 60	3.72
Cleveland, Ohio	3.15	4.54	2. 26	3.93	1. 47	1. 36	4.65	2. 47	7.19	2.33	3.32	1. 20	3. 97
Concordia, Kans	2.81	5. 18	. 30	2.11	1.99	1.21	2.63	3.10	1. 00	5.15	1.93	88	2.75
Des Moines, Iowa	3. 61	3.52	3.44	1.77	1.71	2.62	1.82	2. 54	2. 19	2.11	6. 63	6. 63	5. 34
Devils Lake, N. Dak	2.76	2. 99	3. 93	2. 06	. 90	3. 16	1.12	2. 25	2. 28	2. 21	5. 63	1.72	2. 25
Dodge City, Kans	2. 59	5. 80	72	1. 23	6. 16	2. 25	4. 46	. 84	1. 23	2.43	2.65	3.19	1.46
Dubuque, Iowa	3. 04	6. 79	3.60	4.01	2.84	1.49	2.11	6. 09	1. 58	3. 44	4. 29	1.99	4.77
Duluth, Minn.	3. 53	3. 25	1.26	4. 20	1. 56	3. 37	2. 04	2. 32	2. 99	1. 44	2.84	2.01	1.76
El Paso, Tex	1. 72	2. 83	54	1.85	1. 37	3. 07	4.39	1. 66	. 72	1.33	35	. 27	2.96
Eureka, Calit.	10	08	03			12	. 02	21	01	49	01	03	02
Evansville, Ind	3. 24	4.00	1.74	3.59	7.83	4.31	1.92	3.03	2. 49	6.31	5. 26	3.08	3.09
Fort Worth, ${ }^{\text {P }}$	1.87	6. 56	T	9.02	10.33	3. 84	1.92	29	5.00	4.22	95	${ }^{5} 5$	1.68
Galveston, Te	5.01	1.59	3.88	8.17	19.08	4.14	2.71	3.04	2.17	2. 65	1.42	2.53	4.61
Grand Rapids,	2. 59	3.16	. 97	3. 49	287	4.41	0.46	. 84	1. 67	. 76	6. 15	2.96	2.07
Greenville, Me	3.80	5.38	2.80	2. 90	6. 13	2. 95	4.98	1.42	3. 77	4.61	5. 56	3.41	2.85
Havre, Mont	1. 26	2. 24	74	2. 43	94	34	43	2.61	76	. 81	27	1.70	1. 47
Indianapolis, I	3.33	3.12	4.98	5. 58	5. 25	2. 47	1.48	2.24	3. 43	1.85.	7.26	2.45	4. 83
Iola, Kans	3. 47	3.78	15	2.74	5.05	2.43	3.91	1. 50	2.22	7.55	5. 79	3. 65	3.39
Jacksonville, $\mathbf{F l}$	6. 21	5.32	3.32	8. 47	4.08	6. 76	6. 65	3. 12	6. 96	7.46	7.70	7.71	4.67
Kalispell, Mont	. 89	1.03	. 61	1. 31	. 22	1. 96	32	. 96	1.06	2.61	56	. 76	96
Little Rock, Ar	3.65	4.98	2. 40	4.77	10.33	3.59	4.38	1. 42	3.45	3.33	7.08	83	2.55
Los Angeles, C	4.25	1.28	2. 40	2. 60	5. 45	${ }_{2.69}$	3.53	$\stackrel{.03}{2.91}$	3. 03	6.76		1.18	T. 44
Madison, Wis	3.21	3.16	1. 59	3. 60	4. 39	4.24	2.72	2.03	. 89	2. 61	3. 97	1.33	5. 59
Marquette, Mich	2.86	5. 83	. 73	2. 12	5. 43	99	3.28	3. 20	1. 60	3. 50	3. 48	2. 02	1.08
Memphis, Tenn	3. 20	3.41	3.09	7.31	10.60	2. 98	2. 55	2.56	. 82	2.32	5. 84	76	5. 06
Miami, Fla	7.60	2.93	5. 67	3.77	1.37	10. 10	4.32	1.43	3.73	4. 12	3. 14	7.97	6. 34
Mobile, Ala	6.81	8. 25	5.61	9.78	7. 69	5.46	6. 42	14. 16	6. 04	7.78	8.37	5.13	4. 46
Modena, Utah	1. 83	13	1.07	. 73	46	1. 97	26	1.26	50	81	2.44	2. 41	2. 13
Nashville, Tenn	3. 47	3.06	. 85	8. 64	6.03	4. 27	3. 02	3.05	6. 80	6. 85	2.85	3. 83	9. 60
New Orleans, L	5. 61	4.93	5. 29	8.47	7. 22	4. 89	6. 92	6. 19	7. 38	4. 18	3. 09	5. 71	7.60 4.47
Norfolk, Va,	5. 97	2.12	4.14	1. 10	2. 46	2. 99	4. 54	2. 48	3. 47	3.83 4 4 4	3.13	8. 04	4.47 4.70
North Platte, Nobr	2.46	1.27	. 98	3. 45	4. 23	2. 35	1. 96	1.73	. 76	4.73	2.57	2. 26	4. 70
OklahomaCity, Okla	3. 17	3.61	57	2. 76	5. 26	. 68	4. 50	1.91	2. 28	4. 88	. 85	${ }^{-19}$	3. 57
Omaha, Nebr	3. 62	4. 78	. 18	2. 24	3. 06	2.74	3. 65	1. 14	2.91	2. 78	2.07	1. 01	4. 24
Parkersburg, W. Va-	3. 53	3. 05	2. 53	5.05	4.78	2. 41	2. 18		4. 60 4 4		${ }_{3}^{3.71}$	7. 44	7.38
Peoria, Ill	2. 93	1.67 .72	2.87 .32	2.40 .30	4.78 .25	6.03 .30	3.36 .11	5.88 3.47	4. 2	1.87 .75	3.86 1.62	. 72	2.84 .65
Phoenix, Ariz	2.91	- 3.85	. 32 1.37	2. 19	. 25	$\stackrel{+30}{4.65}$	1.93	3.47 2.30	2. 24	2. 07	1. 1.62	2. 03	3. ${ }^{\text {. }} \mathbf{8 5}$
Pittsburgh, Pa	3.18	2.39	2. 81	4.52	2.73	4.73	4.75	4.84	7.15	2. 53	3. 03	2.35	4. 24
Portland, Oreg	. 65	3.39	. 76	01	. 01	. 27	T.	31	10	1.25	. 30	2.06	26
Pueblo, Colo	1.57	1.85	. 87	2.18	3.27	3.12	1. 74	. 57	3. 23	1. 89	2.24	. 69	4.65
Roseburg, Orcg	. 33	. 59	. 19	T.	. 03	i	$\underset{T}{\mathrm{~T}}$	1.05	$\mathbf{i v}^{02}$	\dot{T}	. 04	' ${ }^{\text {T }}$	T^{30}
Sacramento, Ca St. Louis, Mo.	2. 01	2. 65	.01 1.59	5.42	11.43	${ }_{10.69}{ }^{\text {T. }}$	1.99	5. 26	3. ${ }^{\text {T. }}$.	${ }_{\text {4. }}^{\text {T. }} 16$	2.75	${ }_{1} \mathrm{~T} .79$	T. 19
St. Yaul, Minn	3.46	4.40	1. 59	4.48	3.98	1.60	2.82	5. 19	2. 22	. 96	2. 79	1.31	1.92
Salt Lake City, Utah	. 78	. 70	. 47	24	T.	. 60	. 71	. 61	. 50	1.31	. 82	1.85	2. 41
San Antonio, Tex	2. 69	. 29	1.29	7.80	3.90	5.07	.10	2. 61	2.14	2. 26	. 45	. 27	2. 94
San Diego, Calif		. 26	02			. 29	T.	. 11	. 01	. 01	T.	T.	
San Francisco, Cali Santa Fe, N. Mex	2.36	1.15	.01 1.07	2.51	1.02	1. 2.29	${ }_{1.37}^{\text {T. }}$. 82	2.06	1.98	3.71	${ }_{1} \mathrm{~T} .85$	2. 33
Scranton, Pa	4.25	4.91	2.54	2.56	8. 17	. 67	3. 94	4.04	2.30	3. 33	2.96	2.56	3.32
Seattle, Wash	. 51	2. 49	. 45	. 01	. 05	. 11	. 03	1. 12	. 08	1.15	1.61	1. 17	1.98
Sheridan, W yo	73	1.18	20	65		. 13		93	18	68	. 24	1.65	1.44
Shreveport, I	2. 24	10.89	1.89	4.00	8.60	. 55	5.55	2. 23	3.85	2. 82	. 69	2.04	2.03
Springfield, Mo	4.31	3.00	${ }^{6} 88$	4. 70	10.81	4.45	4. 26	3. 12		6.31	7. 59		. 78
Thomasville, ${ }_{\text {Trenton, }}$	5.03 5.37	7.12	4.39 3.30	3.96 1.63	2. 76 6.22	1. 01	8. 95	6. 16 2.52	8.16 4.82	4.96 7.08	3. 56	2. 71 5.16	6.89 3.32
Walla Walla, Wash	5.37 .45	2. 67	. 30	${ }^{1}{ }^{\text {T }}$.	T.	. 17	T.	2.99	+. 06	1. 87	. 57	1. 25	. 57
W ashington, D. C.--	4.40	1.50	5.42	6.00	7.00	2. 83	. 77	1.88	3.41	4.70	1.10	3.08	2.19
Winnemucca, ${ }^{\text {Nev.-- }}$	17	. 13	. 80	T.	08	11	. 57	. 37	T.	. 76	. 16	. 91	25

[^360]Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Station.} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Nor- \\
mal \\
for \\
Sept.
\end{tabular}} \& \multicolumn{12}{|c|}{September total precipitation.} \\
\hline \& \& 1912 \& 1913 \& 1914 \& 1915 \& 1916 \& 1917 \& 1918 \& 1919 \& 1920 \& 1921 \& 1922 \& 1923 \\
\hline \& In. \& In. \& In. \& In. \& In. \& In. \& In. \& \(I n\). \& In. \& In. \& In. \& In. \& , \\
\hline Amarillo \& 2. 36 \& 2. 28 \& 4.19 \& 1.07 \& 4. 69 \& 1. 76 \& 2. 05 \& 0. 64 \& 4. 58 \& 3. 04 \& 0.76 \& 1. 41 \& 6. 42 \\
\hline Atlanta, Ga \& 3. 53 \& 3. 52 \& 2.40 \& 2. 48 \& 3. 53 \& 2. 84 \& 6. 44 \& 3. 57 \& 1.12 \& 3. 36 \& 1.31 \& 1.16 \& 5 \\
\hline Birmingham, \& 3. 50 \& 3. 62 \& 7.41 \& 3.95 \& 6.54 \& 2.63 \& 6. 01 \& 7.73 \& 1.09 \& 4. 12 \& 4.20 \& 1. 54 \& 1. 50 \\
\hline Bismarck, N. Dak \& 1.19 \& 2. 42 \& 2.29 \& 1.10 \& 1. 68 \& . 70 \& 1. 75 \& . 47 \& 34 \& 1. 20 \& 1.67 \& 1. 93 \& 2. 83 \\
\hline Boise, Idaho. \& . 41 \& . 77 \& . 65 \& . 35 \& . 26 \& . 05 \& 1.39 \& 2.32 \& .79
.8 \& . 64 \& . 61 \& . 01 \& 55 \\
\hline Boston, Mass \& 3.19 \& 1. 67 \& 2. 51 \& .21 \& . 69 \& 1. 90 \& 1.91 \& 9. 19 \& 5.83 \& 1. 90 \& 1. 22 \& 3. 65 \& . 38 \\
\hline Brownsville \& 5. 42 \& 2. 35 \& 14. 38 \& . 86 \& 2.54 \& 3.21 \& 1.03 \& \(\stackrel{97}{ } \times\) \& 7. 69 \& . 34 \& 3.82 \& 12. 61 \& 4. 55 \\
\hline Buffalo, N. \& 3. 18 \& 3. 31 \& 1.35 \& 2.31 \& 1.35 \& 1. 38 \& 2.29 \& 3.79 \& 1. 47 \& 2. 03 \& 1. 96 \& 1. 25 \& 1. 86 \\
\hline Canton, \(\mathbf{N}\) \& 2.81 \& 4. 40 \& 2. 26 \& 1.73 \& 1. 32 \& 3. 42 \& 2. 02 \& 6. 05 \& 4. 69 \& 5. 11 \& 3. 52 \& . 96 \& 2. 10 \\
\hline Charlest \& 5. 46 \& 10. 42 \& 7. 26 \& 4.69 \& 2. 07 \& 2. 76 \& 2. 34 \& 3. 10 \& 1. 76 \& 8. 30 \& 5. 19 \& 1.13 \& 2. 11 \\
\hline Charlotte, \& 3.22 \& 3. 50 \& 2.45 \& 2.02 \& 2. 37 \& . 88 \& 3.29 \& 5. 83 \& . 84 \& 3. 53 \& 2. 55 \& 1. 23 \& 2. 32 \\
\hline Cheyenne, W \& . 94 \& 3.91 \& 2. 82 \& . 41 \& 2. 10 \& 1.00 \& . 56 \& 2. 57 \& 1. 76 \& 2. 31 \& . 5.02 \& 36 \& 2. 78 \\
\hline Chicago, Ill \& 3. 02 \& 3. 26 \& 1. 49 \& 1.56 \& 3. 53 \& 2. 24 \& 2. 15 \& 1.84 \& 3. 85 \& 3. 35 \& 5. 72 \& 4.37 \& 2. 50 \\
\hline Cincinnati, Ohi \& 2.31 \& 1.95 \& 1.86 \& 1.96
.90 \& 5. 65 \& 3. 29 \& 2. 97 \& 2.70 \& 3. 79 \& 2.98 \& 3.00 \& 2.93 \& 1. 40 \\
\hline Cleveland, Ohio \& 3. 22 \& 2. 39 \& 2. 10 \& 1. 16 \& 4. 23 \& 2.84 \& 2. 74 \& 3.78 \& 1.79
3.03 \& 36 \& 1.36 \& 1.35 \& 3. 32
2. 94 \\
\hline Concordia, Kans \& 2. 58 \& 2. 68 \& 3. 03
2. 65 \& +1.61 \& 4. 47 \& 2.70
1.72 \& 2.
+1.96
1.99 \& 1.72
.91 \& 3.
7.47 \& \(\begin{array}{r}\text { 1. } \\ \text { 4. } 44 \\ \hline\end{array}\) \& 1.36
7.16 \& 1.60
3.00 \& 2. 94
5. 17 \\
\hline Devils Lake, N. Dak. \& 1. 39 \& 1. 11 \& 2. 17 \& 1.57 \& 3. 11 \& . 89 \& . 83 \& . 48 \& . 95 \& 5. 34 \& 3. 58 \& 3.30 \& 1. 63 \\
\hline Dodge City, Kans..- \& 1. 77 \& 2. 70 \& 5. 40 \& 53 \& 3. 79 \& 1.15 \& . 36 \& 2.20 \& 1. 01 \& 3.34 \& 1. 53 \& 1. 84 \& 2. 50 \\
\hline Dubuque, Iowa. \& 3.59 \& 4. 42 \& 3.59 \& 4. 75 \& 9. 62 \& 6. 19 \& 2. 40 \& 1. 63 \& 5. 35 \& 1. 46 \& 8. 35 \& 3. 40 \& 5. 04 \\
\hline Duluth, Minn \& 3. 55 \& 1.80 \& 3.32 \& 2. 55 \& 2.28 \& 4. 25 \& 2.15 \& 1. 41 \& 1. 42 \& 1.31 \& 3. 09 \& 2.23 \& 2. 61 \\
\hline El Paso, Tex \& 1.45 \& 1. 77 \& . 60 \& . 56 \& 2. 68 \& . 55 \& . 76 \& . 01 \& 3. 30 \& 31 \& 2.49 \& 1.07 \& 41 \\
\hline Eureka, Calif \& 1.11 \& 2. 40 \& . 48 \& 1. 82 \& . 11 \& . 38 \& . 66 \& 1. 42 \& 1. 52 \& 2. 47 \& 27 \& 37 \& 1.54 \\
\hline Evansville, In \& 2. 66 \& 2.64 \& 4. 31 \& 5. 06 \& 2. 98 \& 2. 57 \& 3.35 \& 3.33 \& 3. 59 \& 3.36 \& 3. 87 \& 2. 16 \& 1.84 \\
\hline Fort Worth, Te \& 2. 95 \& . 83 \& 7.29 \& 1.61 \& 1.62 \& . 73 \& 2.41 \& 2. 09. \& 4. 12 \& 2.76 \& . 11 \& 41 \& 2.06 \\
\hline Fresno, Calif.- \& . 27 \& . 10 \& T. \& . 22 \& T \& +38 \& \({ }^{T}\) \& - 53 \& 29 \& T. 8 \& 21 \& \& 25 \\
\hline Galveston, Tex \& 5. 41 \& 1. 04 \& 18. 68 \& 5. 20 \& 2. 12 \& 4. 24 \& 3. 60 \& 2. 03 \& 3. 86 \& \& 4.33 \& 5. 04 \& 5. 91 \\
\hline Grand Rapids, Michin \& 3.12 \& 3.42 \& 2. 25 \& 2. 34 \& 8. 11 \& 2. 43 \& 3. 59 \& 2. 01 \& 3. 86 \& 3. 68 \& 4. 33
3.53 \& 5.89
1.89 \& 5. 77 \\
\hline Greenville, Me \& 4. 17 \& 4. 89 \& 4.30 \& 2. 68 \& 3. 74 \& 4. 23 \& 1. 80 \& 6. 52 \& 3. 71 \& 5.60 \& 3. 53 \& 1.89 \& 2. 11 \\
\hline Havre, Mont \& 1. 03 \& 1. 20 \& . 82 \& 1. 37 \& 2. 05 \& 1. 42 \& 4. 58 \& 5. 98 \& \(\begin{array}{r}.79 \\ \hline 1.86\end{array}\) \& \begin{tabular}{|}
. \\
24 \\
2
\end{tabular} \& 1. 50 \& 1. 68
1.52 \& 3. 90 \\
\hline Indianapolis, \& 3. 05 \& 3. 44 \& 3. 03 \& 2.15 \& 4.17 \& 2. 26 \& 2.93
1.85 \& 5. 14 \& 1. 86 \& 2.37
4.18 \& 7. 64
7.10 \& 1.52
4.33 \& 3. 91
4.23 \\
\hline Jola, Kans \& 3. 35 \& 3.82 \& 3. 12 \& 5.19 \& 13. 22 \& 5. 56
5.25 \& 1.85 \& 3. 517 \& 1. 5.62 \& 4. 18
7.14 \& 1.73 \& 6. 70 \& 4. 83
4.89 \\
\hline Jacksonville, Fla \& 8.03
1.33 \& 7.69
.68 \& 3.74
.31 \& 6. 39
1.21 \& 8.41
2. 04 \& 5.25
1.63 \& 1.85
.83 \& 6. 1.59 \& 1.02
.50 \& 7.18
.70 \& 1.73
.79 \& \(\begin{array}{r}\text { 6. } \\ \hline .52\end{array}\) \& 1.83 \\
\hline Kalispell, Mont \& 1.33 \& 2. 68
2 \& \(\begin{array}{r}\text { 9. } \\ \hline .31\end{array}\) \& 1.21
1.93 \& 2. 04 \& 1.63
1.95 \& .83
.27 \& 1. 4.63 \& 2. 78 \& 2.88 \& 2. 18 \& . 93 \& 3. 93 \\
\hline Little Rock, Ar \& 3. 26 \& 2. 59 \& 9.25
.03 \& 1.93 \& T. 16 \& 1.95
.77 \& \(\stackrel{\mathrm{T}}{ } \mathbf{2 7}\) \& 4. 63
.55 \& 2.
1.29 \& 2.88
.04 \& . 62 \& \& . 55 \\
\hline Los Angeles; Ca \& 3. 06 \& 6.98 \& 2.44 \& . 67 \& 3. 26 \& 2. 55 \& 1.96 \& 2. 61 \& 1.47 \& 4.51 \& 1. 71 \& 1.42 \& 2. 84 \\
\hline Madison, W \& 3. 18 \& 5. 62 \& 4.32 \& 3. 49 \& 10. 69 \& 5. 73 \& 2.98 \& 1. 52 \& 6.83 \& 1.12 \& 7.90 \& 2.34 \& 4.36 \\
\hline Marquette, M \& 3. 51 \& 2. 19 \& 3. 76 \& 1. 28 \& 3. 68 \& 5.74 \& 2.10 \& 5. 49 \& 2.49 \& 1.94 \& 4.30 \& 3.26 \& 1. 63 \\
\hline Memphis, Ten \& 3. 05 \& 2. 05 \& 6. 01 \& 3.92 \& . 55 \& 1. 07 \& 1. 88 \& 4. 95 \& 1. 34 \& 10.82 \& 1. 58 \& 1.41 \& 5. 47 \\
\hline Miami, Fla \& 9. 61 \& 2. 08 \& 6. 46 \& 6. 68 \& 5. 47 \& 4.81 \& 18. 55 \& 10. 06 \& 3. 72 \& 6.94 \& 2. 81 \& 1. 04 \& 6. 21 \\
\hline Mobile, Ala \& 5.02 \& 5: 76 \& 15. 50 \& 7.96 \& 4. 08 \& 6. 68 \& 6. 90 \& 5. 17 \& 1. 10 \& 7.81 \& 3. 74 \& 3. 19 \& 47 \\
\hline Modena, Utah \& 1.12 \& . 06 \& . 98 \& . 49 \& 1. 44 \& . 71 \& . 79 \& 1. 22 \& 3. 29 \& . 22 \& . 23 \& . 04 \& 46 \\
\hline Nashville, Ten \& 3. 68 \& 2. 46 \& 1. 79 \& 1. 46 \& 4.63 \& 1. 92 \& 1. 51 \& 3.75 \& 1. 33 \& 4. 15 \& 3. 72 \& 3. 28 \& . 44 \\
\hline New Orleans, I \& 4. 81 \& 3. 84 \& 11. 84 \& 5. 05 \& 10.83 \& 3. 13 \& 2. 69 \& 4.82 \& 2.93 \& 6.47 \& 3. 94 \& . 93 \& 2. 63 \\
\hline Norfolk, Va. \& 4.06 \& 2. 61 \& 5. 23 \& 2. 97 \& 1.76 \& 3. 53 \& 5. 26 \& 3. 12 \& . 70 \& 3.11 \& 2.43 \& 1.00 \& 23 \\
\hline North Platte, Neb \& 1. 50 \& 2. 04 \& . 90 \& . 17 \& 1. 81 \& . 70 \& 2. 68 \& . 38 \& 1. 56 \& . 83 \& 1. 00 \& 1. 00 \& 88 \\
\hline Oklahoma City, Okla. \& 2. 75 \& 2. 64 \& 4.80 \& 1.70 \& 3.62 \& 2. 54 \& 1. 55 \& 4. 28 \& 1. 03 \& 3.60 \& 3.79 \& . 90 \& 10.28 \\
\hline Omaha, Nebr \& 3. 03 \& 7.12 \& 3. 62 \& 3. 56 \& 2.17 \& 1. 76 \& . 91 \& 1. 03 \& 5. 28 \& 1. 03 \& 5. 35 \& 1. 29 \& 9.32 \\
\hline Parkersburg, W. Va. \& 2. 72 \& 1. 60 \& 2.96 \& . 62 \& 4.19 \& 3. 18 \& 1. 41 \& 2. 53 \& 98 \& 3.69 \& 4. 47 \& 3.73 \& 2. 92 \\
\hline Peoria, Ill \& 3.12 \& 3.54 \& 2. 58 \& 5. 55 \& 4. 88 \& 3. 73 \& 3. 14 \& 1. 67 \& 3.48 \& 1. 84 \& 4. 86 \& 2. 71 \& 5. 28 \\
\hline Phoenix, A \& 1.01 \& . 14 \& 13 \& T. \& +10 \& 1. 66 \& . 55 \& .39 \& 1. 93 \& 10 \& \& \& . 97 \\
\hline Pierre, S. Dak \& 1.11 \& 1. 86 \& \(\begin{array}{r}.56 \\ . \\ \hline 86\end{array}\) \& . 79 \& 2.18 \& 1.06 \& 1. 83 \& 2 \& 1.59
1.64 \& .98
3.48 \& 3. 21 \& 1.54 \& 1.21
1.62 \\
\hline Pittsburgh, Pa \& 2. 48 \& 2.89 \& 2.86 \& \(\stackrel{.}{ } 10\) \& 1. 71 \& 1. 63 \& 1. 1.90 \& 2. 22 \& 1. 3.18 \& 3.48
4.16 \& 5. 08 \& 1.54
1.90 \& 1.62
.59 \\
\hline Portland, Oreg \& 1.84
.62 \& 1.18
.52 \& 2.58
.79 \& 3.10
.32 \& 1.53
1.42 \& '71 \& 1.96
3.25 \& .66
1.43 \& 3.
2.
3 \& 4.16
1.33 \& 5. 08
.25 \& 1.50
.09 \& 1. \({ }^{1} 36\) \\
\hline Roseburg, \& 1. 04 \& 1. 99 \& 1. 44 \& 2. 80 \& . 57 \& . 59 \& . 73 \& .59
.58 \& 3. 36 \& 2. 27 \& 1.45 \& 1. 56 \& 1. 63 \\
\hline Sacramento, Calif \& +.39 \& 1. 25 \& T. \& T. \& 1.41 \& + 26 \& \(\begin{array}{r}\text { 3. } 51 \\ \hline\end{array}\) \& 3.58
5.09 \& 6.53 \& 4. 79 \& 5. 60 \& 2. 49 \& . 50
3.51 \\
\hline St. Louis, Mo \& 2. 91 \& 2. 84 \& 4.50
3.34 \& 6. 68 \& 1. 41 \& 2.69
1.81 \& 2. 500 \& \begin{tabular}{l}
5. \\
1. 49 \\
\hline
\end{tabular} \& 6.13
1.25 \& 4.
1.36 \& b. 61 \& 2. 1.82 \& 1.10 \\
\hline St. Paul, Minn \& 3.42
.85 \& 1.27
.97 \& 3.34
.93 \& 2.16
.17 \& 2. 1.60 \& \begin{tabular}{l}
1.81 \\
.50 \\
\hline .88
\end{tabular} \& 2.00
1.16 \& 1.49
2.10 \& 1.25
1.76 \& 1.36
1.56

d \& 3. 21
.44 \& 1.82
.01 \& 1. 41

\hline San Antonio, Tex \& 2.94 \& 1. 47 \& 7.21 \& 2. 24 \& 2.39 \& 3. 78 \& 1.39 \& 1. 49 \& 7. 61 \& . 15 \& 8. 27 \& 97 \& 2. 98

\hline San Diego, Calif. \& . 06 \& \& 02 \& T. \& T. \& . 25 \& T. \& . 08 \& . 26 \& 88 \& 1. 24 \& \& 03

\hline San Francisco Calif. \& . 29 \& 1. 25 \& \& T. \& \& 1.20
1 \& . 02 \& 2. 53 \& 2. 53 \& 13 \& 18 \& 1.07 \& .44
1.10

\hline Santa Fe, N. Mex. \& 1. 64 \& . 08 \& 1. 54 \& $\begin{array}{r}\text { P } \\ \hline 1.05\end{array}$ \& 1. 2.91 \& 1.45
4.35 \& 64
91 \& 4. 59 \& 2. 21 \& 4. 94 \& 4. 38 \& 1.18 \& 4.38

\hline Scranton, Pa \& 2. 86 \& 6.94
.73 \& 3. 87
2. 37 \& 1. 1.42 \& 2.91
.65 \& 1.35
.70 \& +.81
1.29 \& 4.59
.08 \& 2.03 \& 2. 34 \& 1. 84 \& 1.19 \& 1. 37

\hline Seattle, Wash \& 1.77 \& $\begin{array}{r}6.84 \\ \hline 8.79\end{array}$ \& 2. 37 \& 1.42
.80 \& - 3.75 \& . 56 \& 1.29
.30 \& 2. 68 \& 1. 10 \& 2.34
.16 \& . 51 \& . 08 \& 8.18

\hline Shrevesport \& 3. 22 \& 1. 15 \& 16. 46 \& . 15 \& 1.75 \& 1. 46 \& 2. 56 \& $\begin{array}{r}.36 \\ \hline 8\end{array}$ \& 2. 16 \& 1.10 \& . 56 \& 1.36 \& 9.03

\hline Springfleld, M \& 3. 76 \& 4. 13 \& 3. 85 \& 3. 59 \& 3. 06 \& 1.19 \& 3. 74 \& 4.82 \& 1. 62 \& 4. 42 \& 3. 90 \& . 95 \& 3.82

\hline Thomasville, \& 4. 25 \& 10. 42 \& 2. 30 \& 7. 58 \& 4. 41 \& 3. 29 \& 2. 15 \& 3. 44 \& 1.34
2.74 \& 6. 07 \& 1.60 \& 3.42
1.75 \& 2. 32
4.19

\hline Trenton, N.J \& 3. 59 \& 2. 90 \& 4. 66 \& + 41
1.52 \& .62
.70 \& 2. 51 \& 3.89
1.31 \& 3.20
.32 \& 2.74
1.26 \& 2. 23
1.99 \& 1.69
.79 \& 1.75
.41 \& 4.19
.21

\hline Walla Walla, \& 3. 93 \& .61
5.86 \& 1. 2.41 \& 1.52
.66 \& .70
1.39 \& 2. 57 \& 1.31
1.34 \& 2. 79 \& 1. 26

1. 77 \& | 1. 2.87 |
| :--- |
| |
| 2. |
| | \& 1.79

3.29 \& 6. 27 \& 3. 15

\hline Winnemucca; Nev. \& $\begin{array}{r}\text { 3. } \\ \hline .34 \\ \hline\end{array}$ \& 5.
.36
.34 \& 2.
.
.51 \& . 48 \& 1.39
.94 \& 2.
.26 \& T. \& 1.53 \& . 40 \& \& , \& \& 1.16

\hline
\end{tabular}

[^361]Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

[^362]Table 737.-Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United Staies, 1912-1923-Continued.

Station.	Normal for Nov.	November total precipitation.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
Amarillo	1.16	. 02	1.98	T.	0.18	0.40	0.59	1.16	1. 26	1.33	T	1.39	2. 13
Atlanta, Ga	3.40	1.05	. 54	4.89	1. 53	2. 63	1.51	3. 68	2.92	3. 33	6. 47	1. 42	3. 55
Birmingham, Ala	3.39	1.18	3.24	2.28	3. 54	2.61	1. 55	5.25	4.01	2.45	2. 14	2. 59	5. 50
Bismarck, N. Dak.--	. 68	T.	18	. 42	. 57	13	. 04	. 51	. 92	. 39	84	1. 51	. 29
Boise, Idaho.-....-.--	. 86	. 88	2.82	11	1. 07	1.07	1. 17	. 24	2. 34	1. 82	3. 27	. 52	- 55
Boston, Mass	4. 10	2.61	2.15	2. 72	2.14	1.67	. 59	1. 20	5. 36	5. 46	6. 19	. 84	2. 78
Brownsville, '	2. 06	1. 40	. 67	5.13	. 14	1.39	. 29	2. 16	2. 34	- 42	1. 22	3. 67	3. 34
Buffalo, N.	3.35	2. 68	2. 43	1. 81	1.86	1.53	1.17	1. 43	1.38	4. 30	3. 77	1. 08	2. 74
Canton, N	3.41	6. 50	2.72	2. 31	1.25	1.63	1. 74	2.34	1.13	4. 45	2.67	1.66	3. 84
Charleston,	2. 87	1. 30	1.19	2. 34	1.65	1.11	. 31	2. 34	23	3.07	1.82	. 10	1. 79
Charlotte,	2.86	1.90	3.22	2.45	1.96	. 36	. 75	3. 23	1. 02	4.95	4. 02	. 92	3. 09
Cheyenne,	. 41	. 58	. 37	. 26	- 19	$\stackrel{.88}{ }$. 40	+ 54	1. 63	22 92	3. 315	2. 40	.28 1.46
Chicago, Ill	2. 50	1. 45	1. 47	. 33	2. 03	2. 11	. 56	2.65	2.38	292	3. 51	2.66 1.88 1.38	1. 46
Cincinnati, Oh	3. 21	. 71	4. 26	1. 20	2.34	1.85	. 31	1.65	3. 65	2. 92	5. 67	1.88	2. 28
Cleveland, Ohio	2. 75	. 89	3.98	1. 34	1.84	2.35	1.37	1.77	1.31	2. 25	3. 93	1.37	2. 64
Concordia, Kan	. 94	. 10	1.90	T.	. 99	. 77	. 07	1. 24	1. 71	1.47	. 08	2. 05	. 61
Des Moines, Iow	1. 48	1.11	1.03	. 35	1. 24	1. 46	\bigcirc	2.10	3.84	1. 63	. 35	2. 54	. 55
Devils Lake, N. Dak.	. 71	. 09	. 17	. 57	. 60	. 12	. 32	1. 80	1. 01	. 76	. 43	2. 38	. 47
Dodge City, Kans...	. 55	26	2.14	T.	. 08	. 03	. 58	. 37	1.11	1.13	T.	. 95	53
Dubuque, Iowa...	1.31	1. 51	1. 23	. 21	1. 65	1.17	. 07	1.10	3. 59	2.01	. 91	4. 41	1.19
Duluth, Minn	1.58	. 21	. 74	1.15	3. 27	. 09	. 09	1. 94	3. 86	1.40	. 70	3. 57	. 63
El Paso, Tex	. 59	. 80	97	1.13	. 01	52	. 04	1. 04	. 93	T.	. 22	. 29	. 53
Eureka, Calif	5. 67	6. 86	5. 29	2.42	6.15	3.13	6. 43	4. 74	2.99	6.35	6.21	3.32	2. 86
Evansville, In	4.11	25	4.87	. 65	3.40	1.11	2. 19	. 98	3. 73	1.38	9.24	1. 64	3. 54
Fort Worth, T	1.57	. 33	5.90	6.44	. 29	1.82	1.35	7.94	3. 32	1. 70	1.24	2. 57	1. 63
Fresno, Calif	1. 03	. 85	1.86	. 11	. 30	. 28	. 35	1.81	04	. 99	. 26	. 62	. 10
Galveston, Tex	4. 02	. 41	2. 49	9.19	1. 47	2. 16	. 97	8. 15	1. 97	3. 64	1.61	2. 54	4.11
Grand Rapids, Mich.	2. 53	2. 69	2. 86	1. 47	1. 52	2.12	1.21	2. 63	2. 30	1. 54	3. 64	2. 39	1. 09
Greenville, Me	3.03	4.17	2. 98	2. 10	2. 55	4.17	1.26	3. 77	3. 58	3.75	5. 69	1.97	3.39
Mavre, Mon	. 77	15	. 83	. 24	. 12	. 46	. 02	. 53	. 90	. 07	1.09	. 54	. 17
Indianapol	3. 52	1.21	6. 20	1. 45	3. 05	1. 73	. 12	1.73	3. 27	2.12	8.91	2. 32	2. 04
Iola, Kans	1. 38	. 26	1.67	. 43	. 31	3. 03	. 05	2. 89	2. 12	1.35	- 13	3. 01	1.59
Jacksonville, Fla	2.19	. 82	. 32	3.87	1. 07	2. 76	. 23	3. 26	1. 06	5.38	2. 27	$\stackrel{.}{1 .} 88$. 06
Kalispell, Mont.	1. 90	. 83	1. 16	1.58	1. 69	. 80	. 51	. 23	1.35	. 43	2. 39	1.06	-89
Little Rock, Ark	4. 59	. 63	3. 05	2.36	5. 63	2. 12	2. 07	3.11	8. 21.	. 88	3.89	2.07	2. 59
Los Angeles, Cal	1. 48	$\stackrel{.}{ } \times$	3.00	. 20	1.35	+.09	.36	1.85	\bigcirc	1.15	.05 1.65	1.44 .19	.04 1.98
Lynchburg, Va	2. 79	2. 72	3.32	2.31	1. 66	1. 52	25 30	1.26 1.17	2. 48	7.14 1.83	1.65	.19 3.14	1.98 .68
Madison, Wis	1.80	. 89	1. 73	+ 70	3. 12	1. 69	+ 30	1. 17	2.25 4.18	1.83	1.55	3.14 2.84 2.	1. 68 1. 22
Marquette, Mi	2. 79	1. 25	1. 33	2. 43	3.79 7.05	2. 48	1. 1.14	5. 2.75	4.18 7.75	2. 93 1.32	1.97 4.59	2. 84 3.50	1. 22
Memphis, Tenn	4.59 2.55	1.02	1. 64	2.05	7. 05 2. 54	.86 1.85	1.14 .24	2.75 .60	7.75 3.48	1. 32 3. 73	4. 59 .50	3.50 5.44	$\begin{array}{r}\text { 3. } \\ \text {. } 27 \\ \\ \hline\end{array}$
Mobile, Ala	3. 74	3.91	3. 75	10.23	3. 32	2. 61	1. 43	7.14	4.58	1. 68	3. 79	3.98	4.33
Modena, Ut	. 60	. 29	1. 54		. 54	. 07	. 16	. 30	1.12	. 10	. 18	1. 00	1. 02
Nashville, T	3. 85	. 65	1.84	2.13	6. 75	1. 00	. 85	1. 36	7.89	2. 60	5. 68	1.80	2.87
New Orleans,	3.79	2.50	2. 67	4. 65	2. 29	. 88	. 34	4. 46	7.29	3. 03	3.83	3. 38	4. 94
Norfolk, Va,	2.72	1.96	1.30	2, 62	. 87	1. 34	. 59	. 77	. 20	3. 64	1. 70	. 44	1.95
North Platte, Neb	. 40	. 01	. 14	T.	. 22	. 47	. 71	. 29	2. 83	. 04	. 04	2. 35	. 45
OklahomaCity,Okla_	2.25	. 39	3.71	. 70	1.01	2. 35	. 80	3. 53	2. 84	2. 04	. 33	2.37	2. 13
Omaha, Nebr	1. 06	. 81	1.15	. 03	1. 51	. 73	. 12	2.89	2. 84	1.47	. 09	2. 55	. 27
Parkersburg, W. Va-	2. 83	1. 03	4. 62	. 80	3.32	1.84	. 60	1.85	4. 76	1.82	5. 56	. 97	2.97
Peoria, Ill	2. 64	1.56	2. 77	. 20	2. 29	1.88	. 07	3. 18	2. 91	1.22	3.43	3.67	1. 37
Phoenix, Ariz	96		. 83	1.00	. 54			1.92	2.38	T	. 04	1. 04	2.84
Pierre, S. Dak	. 43	80	. 11	T.	-. 84	- 86	18	$\begin{array}{r}1.45 \\ \hline\end{array}$	1. 27	.71 $\times 8$.49 506	3.16	.20 2
Pittsburgh, P	2. 55	. 80	2. 66	1. 35	2.37	1.86	. 28	1.79	3.82	2. 57	5. 06	1.31	2.33
Portland, Ore	6.47	5. 80	5. 39	3.70	11.32	6.31	4.24	4.30	7. 44	5. 84	10. 04	2. 94	4.15
Pueblo, Colo	. 37	T.	- 11	T.	.15 8.54	. 20	. 92	$\stackrel{66}{4}$. 64	¢. 28	- 72	1. 26	. 66
Roseburg, Ore	4.37	5.16	4.79	2. 69	8. 54	4. 62	6. 27	4.73	3. 90	6.27 3.39	6. 46	2. 3.59 3.03	1.95
Sacramento,	2.15	. 80	4. 58	$\begin{array}{r}.47 \\ \hline\end{array}$. 83	- 49	. 25	1. 84	${ }_{2} .36$	3. 39	1.09 4.43	3. 2 2.38	.62 1.90
St. Louis, Mo.	2.88	1.76	3. 12	1. 53	1. 97	2. 53	. 78	2. 73	2. 08	.56 1.08	4. 43	2.36 3.70 3.	1.90
St. Paul, Minn	1.30	08	. 56	. 48	2.64	. 92	. 06	3. 45	2.59	1. 1.08	1. 58	3. 70	. 35
Salt Lake City, Utah_	1. 42	1.70	1.21	. 37	1. 61	. 92	1. 31	1.77	. 81	1. 90	1. 04	3. 33	1.05
San Antonio, Tex...-	1. 78	1.45	4.55	3. 24	. 29	2.14	. 75	2. 53	1. 56	2. 95	1.16	. 98	4. 21
San Diego, Calif	. 83	. 40	2. 23	. 86	. 73	. 05	. 08	1.91	. 43	. 19	$\begin{array}{r}.30 \\ \hline\end{array}$	$\bigcirc \cdot 75$. 16
San Francisco, Calif-	2. 47	1. 94	6. 22	.70	. 92	1. 50	. 81	5. 60	. 44	2. 70	1.43	3. 77	. 49
Santa Fe, N. Mex	. 78	. 03	1.75	T.	. 61	. 06	. 26	-63	${ }^{-7} 76$	- 294	${ }_{5}$ T. 03	1. 13	${ }^{.82}$
Scranton, Pa	2. 29	3.75	2. 83	1.12	1.37	2. 01	. 89	1. 04	2.76	2.97	5. 03	. 76	2. 20
Seattle, Wash	5.33	6.82	4. 74	5.28	5. 66	4.58	2. 70	3.81	4.13	4. 42	6. 60	1.45	2. 06
Sheridan, Wy	. 59	49	. 22	. 08	1.03	.90 -94	. 12	. 58	1.05	$\stackrel{.}{49}$	1.38	1.16	$\begin{array}{r}.38 \\ \hline 3.19\end{array}$
Shreveport, L	4. 08	.50 .85	2. 22	3.61	4. 14	2. 54	1.14	4.13	4. 68 4.49	2.15 .64	1. 2.42	2.01 4.14	3.19 3.47
Springfield, ${ }_{\text {Thomasville, }}$	2. 64	1.85 3.79	1.59 .51	.71 1.89	2. 66 1.67	2.88 1.87	2.61	3. 90 5.38	4.49 3.40	.64 3.69	2.46 3.11	4.14 1.10	3.47 2. 87
Thomasville,	2. 64	3. 3. 	2. 518	1.89 1.62	1.67 .96	1.87 1.31	.61 1.02	5. 38 1.85	3.40 3.10	3.69 2.14	3. 11 2. 83	1.10 .62	2. 87 2. 09
Walla Walla, Wash	2. 13	1.77	1.91	1.00	3. 04	2.74	1.05	1.02	3.16	2. 10	3. 91	95	1. 18
Washington, D. C.	2. 71	1. 54	2. 20	2. 06	. 93	2.11	. 53	1. 48	2. 32	4. 51	4.15	55	2. 04
Winnemucca, Nev	. 74	. 92	1.37	. 02	. 38	4.4	. 25	. 77	. 72	1.33	. 64	. 52	53

[^363]Table 737.—Precipitation: Normal ${ }^{1}$ and total precipitation at selected points in the United States, 1912-1923-Continued.

Station.	Nor- mal for Dec.	December total precipitation.											
		1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923
	In.	In	In	I	In.	In.	In.	In.	In.	In	In.	In.	In.
Amarillo	0.83	1. 18	2.84	1.17	0.13	0.88	0.04	2. 78	0.50	0.64	0.06	0.10	1.11
Atlanta, ${ }^{\text {a }}$	4. 54	3.47	3.95	5. 31	9.07	3. 57	. 89	5.46	12.94	4.36	1.79	6. 20	5. 60
Birmingham, Ala	4.60	5. 80	2.99	4.65	6.11	3. 70	1.48	4.14	9.56	9.57	3.23	7.63	ס. 30
Bismarck, N. Dak	. 62	. 40	. 28	. 34	. 39	1. 52	. 59	1.02	23	29	29	. 94	. 22
Boise, Idaho.	1.72	. 83	2.40	. 47	1.56	1. 29	2.33	. 39	1. 20	2.43	88	1.73	79
Boston, Mas	3.41	5.36	3.05	3.46	3.94	3.00	2. 56	3.21	1.63	3. 89	2.35	3.01	4. 99
Brownsville,	1.52	1. 51	1.17	2. 19	4.30	. 69	. 32	3.55	1.08	05	17.	. 38	2. 86
Buffalo, \mathbf{N}.	3. 37	2.21	1.37	3. 49	4. 09	3.37	3.93	2.41	1.96	3. 36	. 86	3.23	3. 00
Canton, N.	3.59	2.55	2.38	2.15	2. 49	2. 53	1.76	2.79	1. 12	5. 41	1. 60	1.03	2. 51
Charleston,	3.15	3. 90	2. 59	2. 35	2.81	1.47	1.08	3.17	19	3.00	51	4.61	3.91
Charlotte,	3.86	1. 34	4.57	6.53	3. 53	2.32	1.69	4.35	2.20	4.47	2.66	4.47	3. 33
Cheyenne,	. 31	. 63	2. 00	. 16	. 41	. 34	. 81	. 58	1.10	. 57	1.31	. 44	28
Chicago, Ill	2. 07	1. 08	. 45	2.33	1.31	2. 58	. 88	3.24	. 70	3.33	4.63	1.21	1. 96
Cincinnati,	2.93	2. 25	1. 28	3.14	4. 59	3.60	1. 56	4.68	2.56	1.38	4. 86	4.00	6. 94
Cleveland, Ohio	2.58	1.33	1.38	1.57	1.75	2. 06	1.41	1.58	1.32	1. 64	1. 75	2.45	4. 50
Concordia, Kans	. 48	. 12	3.91	1. 57	. 40	. 88	. 06	1.87	. 24	. 58	. 01	T.	. 17
Des Moines, Iowa	1. 31	. 30	1.05	1. 28	. 65	. 65	. 88	1.35	. 93	1. 38	. 80	. 25	61
Devils Lake, N. Dak	. 39	74	. 06	. 36	. 64	. 90	. 66	. 67	. 42	. 30	. 75	. 87	23
Dodge City, Kans...	. 56	T.	1. 88	. 46	. 23	. 30	. 25	4.03	. 08	81	. 68	T.	48
Dubuque, Iow	1.72	1. 00	. 34	1.83	. 36	95	. 52	1.90	. 63	. 96	2. 43	. 41	. 92
Duluth, Min	1. 22	2. 19	. 17	. 30	. 87	. 38	1.07	2. 03	. 30	1.07	. 69	. 90	82
El Paso, Tex	. 52	. 48	. 76	3.94	. 43	. 32		. 78	. 12	T.	. 15	. 09	. 83
Eureka, Calif	7.25	5. 83	7.58	7.09	5.19	5.47	1.17	4. 29	4.33	10.89	4.48	7.62	4.93
Evansville, Ind	3.83	1.69	1.62	3.62	6.97	4.66	2.12	5.83	1.86	3.86	5.18	5. 94	6. 43
Fort Worth, Te	1. 22	1:95	5. 42	4.40	1.99	. 11	. 05	4.08	. 44	1.31	. 34	. 06	4.68
Fresno, Calif	1. 53	. 35	1.53	1.76	2.78	1.93	. 14	1.46	. 89	1. 07	3. 47	2.20	. 24
Galveston, Tex	3.73	8.61	2.11	4.43	5.69	. 79	1.00	3.46	2.02	6.49	2. 76	2.56	7.84
Grand Rapids, Mich.	2. 54	1.32	. 31	1.89	1. 22	3.81	. 82	4.02	1.19	4. 19	4. 14	1.40	2.18
Greenville, Me.	2. 79	2.14	4.10	1.50	4.84	4.87	3. 62	3.49	1.81	6.93	2.02	2.79	3.32
Havre, Mont..	. 63	.11	. 02	. 66	. 77	1.05	2.64	. 09	. 20	1.01	$\stackrel{25}{ }$. 53	. 69
Indianapolis,	3. 04	1. 43	. 49	3.37	5. 15	2.50	1. 10	6. 19	. 85	3. 27	3. 27	4.45	5.60
Tola, Kans	. 93	. 51	3.98	. 82	1.12	-68	- 29	3. 22	. 19	. 89	. 52	. 18	1.14
Jacksonville,	2.99	2. 91	4. 49	5. 20	3.46	7.47	2.11	2.60	4.61	3.35	1.60	2. 54	1.38
Kalispell, M	1. 85	. 69	. 48	. 40	2. 00	1. 70	4.78	${ }^{7} 87$. 91	1. 23	1.16	1. 50	1. 55
Little Rock, A	4.24	2.22	2.96	6. 88	5. 37	2.17	1.24	7.95	2.34	6.99	2. 58	3.38	4.70
Los Angoles, C	2.90	03	1.66	3.73	2. 52	3.67	. 07	1. 54	1. 99	1. 01	7.90	3.09	. 80
Lynchburg, Va	3.27	2.36	2.56	4.68	2.37	2.32	1.70	2. 59	1.96	2.34	1. 01	3.42	2.72
Madison, Wis	1.77	1.35	. 33	1.76	+ 64	1.24	. 45	2.19	. 93	1.33	2.73	1. 23	2.12
Marquette, M	2. 52	2.42	. 94	. 85	2.17	3. 09	3.86	2. 94	1.88	2.27	2. 04	1.14	1. 52
Memphis, T	4.38	3.00	1.69	6.35	5.73	3. 26	1.33	4.58	2.61	7.11	2.53	5.19	5.35
Miami, Fla	2.24	1. 90	32	4. 43	2. 00	25	1.46	4.11	1.83	1.72	$\stackrel{.}{23}$	1.19	. 46
Mobile, Ala	4. 57	8.16	2. 55	4.13	4.16	6.68	1.85	4.92	5.42	6.18	5. 54	9.10	6.13
Modena, Uta	. 58	T.	. 54	. 46	. 80	. 67	. 20	2.01	. 40	. 25	2.14	. 61	. 41
Nashville, Ten	3.82	5.14	2.45	5.06	6.44	4. 29	1. 46	4.56	3. 28	2. 99	1.76	6. 29	4. 32
New Orleans	4. 46	11.21	1.78	3. 99	5. 07	7. 17	2. 16	8. 46	. 83	8.70	3. 49	7. 01	4.37
Norfolk, Va.	3.49	4.65	1.68	4.69	2. 26	3. 11	2.62	2.94	1.71	4.91	3.69	2.93	. 93
North Platte, Nebr--	. 47	. 18	3. 09	. 87	. 82	. 42	. 27	1.31	.32	. 60	. 14	. 01	. 39
Oklahoma City, Okla_	1.74	. 62	3.38	2.74	. 33	1.05	. 04	3.04	. 12	1.37	. 18	. 53	2.06
Omaha, Nebr	. 91	. 32	2.19	1.38	. 34	. 65	. 48	. 72	. 69	. 81	. 14	. 07	. 58
Parkersburg, W. Va-	2.77	2.62	2.75	4.75	5. 24	3. 48	. 90	4. 23	4.07	1.68	4.30	4. 13	5. 36
Peoria, Illan-...----	2.37	1.13	. 74	1.81	1. 66	1.75	. 63	2.80	. 30	1.87	2.91	1.38	2.21
Phoenix, Ariz	. 59	. 83	. 27	3.09	2. 54	. 39	. 00	1.16	. 13	T.	. 87	. 28	2. 23
Pierre, S. Dak	. 50	. 01	$\stackrel{.43}{ }$	+ 22	. 25	+61	. 72	1. 45	+12	. 21	. .	. 31	. 24
Pittsburgh, $\mathbf{P a}$	2. 73	2.86	2. 60	4.37	3.85	2.01	1.19	3. 50	2.88	1.94	2. 36	1. 98	6.22
Portland, Oreg	7.34	8.03	3. 48	2.56	8. 73	3. 81	14. 23	3. 13	4.78	8.32	3. 09	9.43	6. 25
Pueblo, Colo	. 46	. 02	1.35	.59 +153	.35 5	. 283	. 03	. 8.92	.59 4	${ }_{7}{ }^{38}$	1.12	T.	+35 4.31
Roseburg, Or	5. 92	4. 16	2.36	1. 53	5. 50	3. 88	3.71	3.26	4.51	7.17	1.52	5.86	$\begin{array}{r}4.31 \\ \hline 94\end{array}$
Sacramento, Ca	3. 53	0.23	4.40	3. 44	4.42	3.73	. 45	1. 70	2. 22	4.32	3. 81	6.12	. 94
St. Louis, Mo-	2. 23	+ 42	1.62	2. 23	3. 34	2. 16	. 78	2. 69	1. 22	2.41	2. 89	4.98	3. 30
St. Paul, Minn	1. 06	1. 54	+ 02	. 50	${ }^{-} 71$	1. 21	. 57	2.05	$\begin{array}{r}.66 \\ \hline 138\end{array}$	${ }^{-88}$	$\stackrel{.27}{+29}$	$\begin{array}{r}.18 \\ \hline\end{array}$. 96
Salt Lake City, Uta	1.33	.80 .87	1.35	.39 +43	1. 71	2. 64	.T	- 5.51	1.38 2.05	1.38 .16	2.29 .23	2.92 .10	4.92 4.29
San Antonio, Tex	1. 56	2.76	4. 47	1.43	1.57 2.60	$\begin{array}{r}.33 \\ 1.14 \\ \hline\end{array}$	T.	3.61 1.68	2.05	. 16	9.23	1. 10	4. 29 1.65
San Diego, Calif	1.82	+ 03	5.72	2. 21	2. 60	1.14	T.	1. 68	. 48	\bigcirc	9.26 6.39	1.21	1.65
San Francisco, Calif.	4.24	1. 30	5. 41	5. 49	6. 42	4. 79	. 72	2. 62	3. 21	7. 48	6.39	7. 77	1. 91
Santa Fe, N. Mex.--	. 76	- 79	- 77	1.70	. 97	+17	$\stackrel{02}{ } \cdot 0$	1. 24	${ }_{-} \cdot 33$. 84	. 88	.20 .31	. 98
Scranton, Pa	2. 61	4.07	2. 16	4. 19	4.66	3. 26	2.15	2.88	2. 52	3. 03	1. 83	2.31	2. 44
Seattle, Wash	5. 29	4.43	2.61	1.39	7.77	4.13	9.21	5.04	4.10	5. 68	7.25	7.37	3. 31
Sheridan, Wy	. 60	+ 21	. 12	$\rightarrow 14$. 84	1. 07	1.02	. 21	$\stackrel{35}{ } \cdot$. 51	. 54	1.02	. 82
Shreveport,	4.37	4.77	4. 28	7. 16	3.05	1. 65	1.02	3. 09	2.08	6.37	1.92	2.59 2.07	7. 82
Springfield, Mo.	2. 67	- 26	2.71	2. 90	3.21	2.07	1.18	2.97	. 44	1.84	1.92	2.07	2. 92
Thomasville, Ga	3. 69	4.80	2.51	4.60	1.73	6.59	1.82	8. 13	2.56	8.60	2.14	6.33	2.79
Trenton, N.J	3. 16	4.23	2. 44	4. 64	4.44 1.97	4.87	1.55	3.86	2.94 1.92	4.25 2	1.85 1.57	3.46 1.83	3. 94
Walla Walla, Wash.	2. 10	+62	.99 .99	.53 4.49	1.97 280	2.68	4.11 1.47	1.48 4.65	1.92 3.32	2.50 3.15	1.57 1.95	1.83 3.48	2.18 2.80
Washington, D. C.---	3. 16	4. 12	2.29 1.84	4.49 .57	2. 80 1.22	4. 03 .26	1.47 .05	$\begin{array}{r}1.65 \\ . \\ \hline\end{array}$	3.32 .94	3.15 1.17	1.95 1.34	3. 48 1.91	2.80 1.02
Winnemucco, Nev.--	99	. 27	1.84	. 57	1.22	. 26	. 05	. 50	. 94	1.17	1.34	1.91	1. 02

[^364]
INDEX.

Africa- Page.
British, rainfall and sheep growing 233-234
Portuguese, sugar production 851
South-
meats, exports and imports 1018
sugar production 851
Union, sheep production 230
wool exports 292
Aftermath pastures, grazing 374
Agricultural-
associations, cooperative studics 35-38
Economics Bureau, preparation of report on wheat situation 95
expansion, misdirection and excess 502-504
mroducts-
exports 1103-1114, 1118, 1119-1126, 1135
foreign trade, 1852-1923 1135
imports 1094-1102, 1111, 1114-1118, 112 6-1135
surplus, purchase by Government, discussion 16-17 16-17
situation, monthly circular 29
statistics 601-1222
Agriculture-
changes, economic studies 111
conditions, prices and costs, discussion 6-7
credits act, effect, remarks 275
Department-
appropriations and expenditures, 1923 77-78, 79-83
building program 74-76
new organization 38. 39
organization, 1924 11
receipts from various activities 78-79
regulation of grazing on National Forests 254
study of sheep raising costs 269
wool, grades establishment 298
work against predatory animals 265
improvement-
in 1923 and causes 1, 6, 12-13
needs 13-14
information, demand for 29
intensive, comparisons 475-478
International Institute, reports 20
Secretary-
foreword to Yearbook III
report for fiscal year 1923 1-93
report on "The wheat situation" 95-150
wheat regions, readjustments 138-145
world, survey 20-21
Alabama-
cane and sirup production 156
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
Alaska-
forest products consumption, comparisons 483
timber stand 1053
Alcohol, manufacture from molasses 211
Aldous, A. E., aid on forage article 311
Alfalfa-
feed-
for sheep, notes 257, 258
use and value 345-347
value, etc., 1919 337
freight rates 1171
importance as feed crop 342
Alfalfa-Continued.
seed- Page.
farm prices, monthly, 1912-1923 861
market prices, by months, 1910-1923 863
prices to farmers, monthly, 1912-1923 864
requirement for acre 1140
Alkali-
bug, injury to beets, hibernation, etc 192
salts, accumulation from irrigation water, prevention 40
Almonds, imports 11000, 1114
Ammoniates, fertilizer matcrial, prices, wholesale 1190
Ammonium phosphate, preparation improvement 40
Animal-
unit, definition, note 321
units-
carried by pastures in United States 369
per acre, on pastures in various localities 383,Animals-
domestic, definition, note 311
farm-
and products, statistics 879-1049
prices changes 4
live-
exports 1103, 1111, 1119
imports 1094, 1111, 1126
meat-
prices, index number, by months 1193-1194
slaughter under inspection 1012
numbers grazed on pastures in United States 369
predatory
44
44
control.-.------------
elimination on ranges 400
units required for increased population 473
work, number per 1,000 acres of crop land, comparisons 476
See also Livestock.
Ant, Argentine, protection of sugar-cane mealybug 181
Appalachian Mountains, sheep raising 250
Apples-
cold-storage holdings, by months, 1915-1923 735
commercial, crop summary, production and farm value, 1921-1923 1138
crop-
condition, by months, 1866-1923 732
summary, production and farm value, 1921-1923 1138
exports 1107, 1113, 1122
jobbing prices, 10 markets, 1920-1923 736-738
prices-
by months, 1910-1923 735
by States, December 1, 1919-1923 731
wholesale, at New York, 1881-1923 739
production-annual, 1889-1923731-732
by States, 1919-1923 731-732
decrease, 1912-1922, and causes 733
shipments, car lot, by States 733-735
statistics, production, ete 85, 731-739, 1107, 1113, 1122, 1138
Appropriations-
Agriculture Department, 1923 77, 79-83
Federal, against wolves, etc 265
Apricots, dried, exports 1107, 1122
Argentina-
beef, exports and imports, 1909-1922 909
corn prices, 1912-1923 678-679
eggs, exports and imports 1046
meats, exports and imports 1017
pesos, exchange rates in New York, 1912-1923 1164
pork products, net exports, 1909-1922 971
Argentina-Continued.
sheep- Page.
production 230, 231
raising, decrease 233
raising, note 239
sugar production 851
wheat, freight rates to Liverpool 661
wool exports, note 292
Argentine ant, protection to sugar-cane mealybug 181
Argols, imports 1096, 1111, 1114
Arid regions, wheat production cost 123-124
Arizona-
cane and sirup production 156
forest fires, number, damage area, and causes, 1916-1922 1059, 1061
sheep raising-
cost factors 270
remarks 255-256
Arkansas-
cane and sirup production 156
forest fires, number, damage, area, and causes, 1916-1922 1059,1061 1059,1061
Arlington Experiment Farm road investigations 41
Arner, G. B. L.-
artiele on "Sugar" (with others) 151-228
preparation of statistics 601
Army worm, beet, occurrence, injury and control 192
Asclepias spp. See Milkweeds.
Asia Minor, sheep growing, note 234
Asses, foreign countries, numbers 1031-1036
Australia-
animal units, ratio to population 322
beef exports and imports, 1909-1922 909
droughts, damage to sheep industry 232
meats, exports and imports 1017
pork products, net exports 1909-1922 972 972
Port Adelaide, wheat prices 631
sheep-
production 230, 231, 232
raising, note 239
sugar production 851
wool exports, note 292
Austria- 1046
eggs, exports and imports
1017
1017
meats, exports and imports
meats, exports and imports
1042
1042
poultry, exports 849
Austria-Hungary- 1046
eggs, exports and imports
1017
1017
meats, exports and imports, 1911-1913
meats, exports and imports, 1911-1913
1042
1042
poultry, exports and imports
poultry, exports and imports
47
47
Aviators, weather forecasts for
Aviators, weather forecasts for
1120
Bacon-
Bacon-
exports
969
exports by months, $1910-1923$
974-975
prices-
prices- in England, monthly, 1909-1923 965
wholesale and retail, 1913-1923
Bagasse
181-182
181-182
treatment and utilization
treatment and utilization
213
213
uses, note
uses, note
311
311
Barn, J. B., aid on forage article, note
Barn, J. B., aid on forage article, note
Barer, O. E.-article on-
"Our forage resources" (with others) 311-413
"Sugar" (with others) 151-228
"The sheep industry" (with others) 229-310
"The utilization of our lands for crops, pasture, and forests" (with others) 415-506
study of wheat situation 95
Page.
Balkan region, sheep growing, note 234
Ballow, E. B., study of wheat situation 95
Baltimore, prices of tobacco, 1907-1923 873
Bananas, imports 1099, 1131
Bankruptcy-
farmers, by States, 1910-1923 1158-1160
wheat farmers, percentage 121
Barberry eradication, progress 1924 42-43
Barks, herbs, and roots, imports 1097Barley-
condition and yield, 1866-1923 698
crop summary, production and farm value, 1921-1923 1137
exports 1108
feed-
use and value 355-356
value, etc, 1919 334, 335
importance as feed crop 342
imports and exports, 1907-1923 705
marketing by farmers, 1917-1923 704
markets, receipts, 1909-1922 704
prices-
on farm, 1908-1923 705, 707
weighted, at Minneapolis, 1909-1923 707
production-
and value, by States 697
value, exports, etc, 1869-1923 696-697
seed to sow acre 1140 1140
statistics-
acreage, production, exports, etc $84,85,86,1108,1137$
production value, prices, markets, etc 696-707
straw, feed value, etc., 1919 339
supplies on farm and quality, 1910-1923 703
trade, international, 1910-1923 706
use in fattening sheep 262
weight per bushel, 1902-1923 1141
world crop production and yield 699-703
yield-
per acre, by States, 1908-1923 698
reduction, 1909-1922 697
yields, European countries comparisons 467
Barn implements, number and value 1156
Barnes, W. C.-
article on-
"Our forage resources" (with others) 311-413
"The sheep industry" (with others) 229-310
Barns, sheep, use in fattening for market 262
Beans-
acreage, production and value, by States, 1922-1923 790-792
crop summary, production and farm value, 1921-1923 1138 1138
exports 1110
field-
feed use and value 337, 363
importance as feed crops 342
seed to sow acre 1140
straw, feed value, etc., 1919 339
imports 1102
prices-
790
farm, by months, 1910-1923 791
wholesale, 1914-1923
186
186
rotation with beets 791
shipments, car-lot, by States
soy. See Soy beans.
statistics, acreage, production, etc 84, 85, 790-794, 1102, 1110, 1138
velvet-acreage, yield, and production794
See also Soybeans; Velvet beans.
Page.
Becker, Joseph A., preparation of statistics 601
Beef-
cold-storage holdings, 1916-1923, by months 906
consumption-
standards, comparisons 479, 481, 489, 494
total and per capita, 1907-1923 1014
exports 1113, 1119, 1120
exports, 1909-1922 909
foreign countries, exports and imports, $1909-1922$ 909
imports, 1909-1922 909
production-
and percent of all meats, 1907-1923 1013
relation to grass, note 327
use as food, per capita 283
Beef-cattle-
farms, pasture on, economic importance 411-412
purebred, freight and express rates 1174-1175
ratio to population 325
Beeswax, imports 1094, 1116
Beet
farming, land tenure 200
pulp-
feed use 211
feed value, etc., 1919 340
use in fattening sheep 262
States, acreage in crops and beets, comparison 227
sugar-industry, development in United States156-159
See also Sugar, beet.
tops, feed utilization and value 212
Beetle, beet leaf, injury to beets, hibernation, etc 191-192
Beets-
acreage, comparison with acreage in other crops 227
diseases and insect pests 191-193
growing-
factors influencing 184-187
practices 189-191
harvesting method 190
improvement of sugar plants by breeding and selection 203-204
production-
consumption and imports 189
cost factors in various regions 193-200
seed-
selection and treatment 187
to sow acre 1140
sugar-
acreage and production by States 156
acreage, production and value by States, 1914-1923 842
consumption by factories, sugar yield, etc., by States 843
content, requirement 190
extraction and purity, 1902-1922 203
feed use and value 358
foreign countries, acreage and production by countries 848-849
prices to growers by States, 1914-1923 842
statistics, acreage, production, etc. 84, 85, 842-843, 848-849
sucrose content and recovery, etc., by States 843
yields, European countries comparisons 467
tests for harvesting 190
Beet-sugar-
crop, summary, production and farm value, 1921-1923 1138
factories, number, output, etc. by States 843
Belgium-
crop yield, comparison with United States 467
eggs, exports and imports 1046
forests growth, comparisons 474
meats, exports and imports. 1017
85813° - чвк 1923- 78
Belgium-Continued. Page.
pastures, acreage and capacity 470-472
pork products, net imports 1909-1922 971-972
poultry, exports and imports. 1042 1042
sugar- beets, acreage and production 848-849-
production 849 849
wool imports, note 292
Bell, W. B., article on- "Our forage resources" (with others) 311-413
"The sheep industry" (with others) 229-310
Bent grasses, pasture value 380, 381, 390
Bermuda grass, distribution and value 386, 388
Besley, H. J., study of wheat situation 95
Binder twine, fibers, cooperative work 49-50
Binders, grain, prices 1913-1923 652
Blackstrap molasses, nature, feed value, etc 211
Blue grass, seed to sow acre 1140
Boards, imports 1098, 1099, 1118
Boll weevil, dusting methods 42
Borer, sugar-cane moth-
destruction method 180
introduction and injury to cane 179-180
parasites, preservation 180 293
Boston, wool market, importance
Boston, wool market, importance
Bradshaw, N. P., article on "Our forage resources" (with others) 311-413
Bran-
price at Minneapolis, 1916-1923 1153
prices paid by farmers 1155 1155
Brandes, E. W., article on "Sugar" (with others) 151-228
Brannen, C. O., study of wheat situation 95
Brazil-
beef exports and imports, 1909-1922 909
cotton yields, comparison. 468
meats, exports and imports 1017
nuts, imports 1100
sugar production 851
Bread-
grains. See Grains.
price-
comparison with flour price 110
distribution 127-128
prices
634-635
634-635
1913-1923
1913-1923
109
109
at New York City, 1913-1914, 1922-1923
at New York City, 1913-1914, 1922-1923 126-128
Bread-cereals, consumption in Europe 99-100
Bread-grain, situation 98-102
Breadstuffs, imports 1096
Breeding livestock, improvement 44
Bristles, imports 1095
British-India, silk exports 1909-1922 1049
Brookens, P. F., part in article on sugar 151
Broomeorn-
crop summary, production and farm value, 1921-1923 1138 795

price on farm, by months

price on farm, by months
seed to sow acre 1140 1140
statistics, acreage, production, ete 84, 85, 795, 1138
Buckwheat -
condition and yield, 1867-1923 727
crop summary, production and farm value, 1921-1923 1137
prices-
on farm, 1908-1923 727
on farm and value, by States 728
on markets 728
production-
and farm value, by States 726
value, exports, etc., 1849-1923 725
Buckwheat-Continued. Page.
seed to sow acre1140
84, 85
statistics-
acreage and production
production, value, prices, markets, etc 725-728, 1137
yield per acre, 1908-1923 723
Buenos Aires-
corn prices, 1912-1923 678
wheat prices, 1912-1923 631
Buffalo-
1022
1022
hides, imports, 1909-1923
hides, imports, 1909-1923 728
Buildings, rented, cost to Department 75
Bulbs, imports 1100
Bulgaria, sugar-
beets, acreage and production 848-849
production 849
Bulletins, list, by subjects 88-93
Butter-
cold storage holdings, monthly, 1916-1923 920

- creamery, production by months, 1917-1923 917 917
exports 1103, 1119
imports 1094, 1127
international trade, by countries, 1909-1922 920 917-919
market receipts, monthly
market receipts, monthly
prices retail and wholesale, and exports, by months
prices retail and wholesale, and exports, by months 921-923 921-923
statistics, production, etc 917-923, 1094, 1103, 1119
Cabbage-
acreage and production, by States 751
crop summary, production and farm value, 1921-1923 1138
Danish, prices at 10 markets, 1920-1923 753 753
plants, number to acre 1140
prices, by months, 1910-1923 752
shipments, car lot, by States
shipments, car lot, by States 752 752
statistics, acreage, production, etc 84, 85, 751-753, 1138
Calcium arsenate, boll weevil control 42
Calfskins, imports, 1909-1923 1022
See also Hides.
Galifornia-
beet production, cost per acre 196, 198
beets and sugar pioduction 156 268
disease of sheep
disease of sheep
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
fruits and nuts, production and value 741-742, 743
labor, man and animal, per 1,000 acres crop land 475,476
sheep
238
238
industry, early days, notes
industry, early days, notes
270
270
raising, cost factors
raising, cost factors 256-257 256-257
Gallander, W. F., preparation of statistics 601 601
study of wheat situation
study of wheat situation 95 95
Calyes- 1012
carcasses, condemnation under inspection 1907-1923
895-904
at principal markets
892
892
on farm 1910-1923
on farm 1910-1923 893-894
slaughter under inspection 1907-1923 1012
weight, live and dressed, by months
weight, live and dressed, by months 1015 1015
See also Cattle.
Camas -
death, distribution on ranges 401
destructive to sheep 264 264
Camphor, imports 1098, 1118
Canada- animal units, ratio to population 322
beef exports and imports 1909-1922 909
Canada-Continued. Page.
blue grass, pasture value 380, 381
corn yields, note 468
eggs, exports and imports 1046
exports of wheat to United States 623-624
farm lands, value per acre 114
freight rates on wheat 112, 661
meats, exports and imports 1017
pork products, net exports 1909-1922 971-972
poultry, exports and imports 1042
sugar production 1909-1923 849
wheat-
acreage increase 451
exports 660
production, competition with United States 113-115
production, cost, advantages, etc 114-115
production, increase, factors influencing 113-115
Provinces, acreage and production 113
Cane-
acreage-
and production, by States 156, 855
production and sugar yield in Hawaii 1913-1923 844
"Chinese," comparison with Saccharum officinarum 163-164
cultivation, fertilization and harvesting 168-174
culture, factors influencing 158-163
diseases and insect pests 177-181
growing, operations, labor requirements and cost 164-175
improvement, difficulties 204-206
Louisiana acreage, production and sugar yield 1911-1923 844
planting material, requirements 164-165
production-
cost, comparison with other crops 174-175
crop summary 1138
propagation, practices and requirements 164-168
region, labor situation 177
sugar-
consumption and output of factories in Louisiana, 1911-1923 844
industry development, historical notes
industry development, historical notes 154-158 154-158
See also Sugar, cane.
tops, use as feed 212
value on farm 1138
varieties in United States 163-164
"whacking," purpose and labor 166-167
yield, 1895-1922, Louisiana and Java 204
See also Sugar.
Cantaloupes-
freight rates 1170
maturity determinations 50
shipments, car-lot, 1917-1923 753
Capital, returns from farms 1161
Carbon tetrachloride, use in hookworm control 40
Carcasses, meat animals, condemnation under inspection 1907-1923 1012
Carpet grass, distribution and value 387, 388
Carrier, Lyman, article on "Our forage resources", (with others) 311-413
Casein imports 1094
Castor beans, imports 1101
Cattle-
accredited herds, 1917-1923 931
beef-
and dairy purebred, freight rates 1174-1175Stee also Beef cattle.
carcasses, condemnation under inspection, 1907-1923 1012
dairy. See Dairy cattle.
exports-
and prices, 1896-1923 891
by months, 1910-1924 890
statistics. 1103, 1112, 1119
Cattle-Continued.
farm- Page.
changes in numbers, 1920-1923 881
prices by States 593
feed-
requirements for 100 pounds gain 934-941
value of beet pulp 211-212
feeder, prices by States 933
foreign countries, numbers 1031-1036
freight rates 1173
grazing-
season in humid Northern pastures 382
with sheep 260
hides, imports 1909-1923 1022
imports- 891
and prices 1896-1923
by month, 1910-1924 890
statistics 1094-1126
losses-
from disease and exposure, 1890-1924 881
from poisonous plants 400-402
market receipts and shipments 882-883
marketing costs, by markets 944
number-
and value by States 880
and value statistics for 1867-1924 879
grazing in National Forests 403, 1062
prices-
at principal markets 895-904
by ages 1894-1924 890
on farm by months, 1910-1923 892, 593
production on farms, number and value 1010
raising, relation to sheep raising 252
range, price changes 5
shipments, percentage crippled and dead, by markets 943-944
shrinkage in shipment 942
slaughter-
monthly, under inspection 905
under inspection 1907-1923 1012
statistics $879-907,1010,1031,1036,1094-1126$
stockyard receipts, slaughter and shipments 883-889, 1010
tick, eradication work by States 933
tuberculin tested, accredited herds, etc 931
tuberculosis, eradication work by States 932
weight, live and dressed, by months 1015
Central American sugar production 850
Cereals, bread, consumption in Europe 99-100
Chambers, C. R., study of wheat situation 95
Chapline, W. R.-
aid on forage article, note 31
article on "The utilization of our lands, for crops, pasture ${ }_{\text {c }}$ and for- ests" (with others) 415-506
Cheese-
cold storage holdings 1916-1923 925-926
exports 1103, 1112
imports
924-925
market receipts, monthly
923
production, 1917-1923, by months
127
127
statistics
statistics 923-927, 1094, 1103, 1112, 1114, 1127
Chemistry, crop, studies 41
Cherries, wild, danger to sheep 264
Cheviot sheep, pure-bred, note 245
Chicago-
704
barley receipts, 1909-1922
278, 280
for sheep262

1232 Yearbook of the Department of Agriculture, 1923.

Chicago-Continued.
prices of- Page.
bread, 1913-1923 634 634
corn 677 677
farm implements, 1913-1923 652
flour 632-633 679-680, 694
oats
oats
rye, weighted, 1909-1923 645
sheep, variation 285-286
wheat 626, 629
slaughter of sheep, remarks 281
wool market, note 294
Chickens--
foreign countries, numbers 1037-1039
number and value on farms, 1919-1924 1036
prices on farm, monthly 1043
Chicle, imports 1098
Chile
forest products consumption, comparisons 483
meats, exports and imports 1017
China-
eggs, exports and imports 1046
meats, exports and imports 1917 1917
poultry, exports and imports 1042
silk exports 1909-1922 1049
Chinch bug, pest of sugar beet, and control 192-193
"Chinese"
cane, comparison with Saccharum officinarum 163-164
nut oil, imports 1101
Chittenden, F. H., article on "Sugar" (with others) 151-228
Cholera, hog, control work by States 977
Cigar leaf tobacco, imports 1102
Cinchona bark, imports 1097
Cincinnati, prices of corn 676
Cities and villages, land occupied 418, 431
Climate, requirements for cane production 159-161
Clover-
alsike-
seed prices at Toledo, 1910-1923 863
seed prices on farm by States 862
feed value, etc., 1919 337
importance as feed crop 342
red-
seed prices at Chicago, monthly 1910-1923 863
seed prices on farm by States 862
seed-
acreage, production and value by States 858
crop summary, production and farm value, 1921-1923 1137 1137
farm prices, monthly 1910-1923 861, 862 1101
imports
imports
prices in Chicago, 1910-1923 863
prices on farm, 1910-1923 861
prices to farmers, monthly, 1912-1923 864
receipts and shipments, monthly at Chicago, 1910-1923 859
to sow acre 1140
stweet, seed prices on farm, by States 862
white, distribution and value 380
Clovers, feed use and value 347-348
Cloves, imports 1101
Clubs, boys' and girls', enrollment and value of products 51
Cocoa, imports 1097, 1111, 1114, 1130Coconut oil-
exports 1109
imports 1101, 1132
Coconuts, imports 1100
Coffee- Page:
exports 1104, 1111
imports 1097, 1111, 1114, 1130
price, wholesale, at New York, 1890-1923 875
trade, international, by countries, 1909-1922 874
Coffeebean, danger to sheep 264
Collier, G. A., study of wheat situation 95
Cold storage, space refrigerated, October 1, 1923 1145
See also Storage.
Cold-wave warnings, value 46
Connecticut-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
manufacture of woolens 293
Colorado-
beet production, cost per acre 196, 197-198
beets and sugar production 156
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
sheep-
feeding for market 262
raising, cost factors 270
raising, note 256
Concentrates. See Feeds, concentrated.
Condensed milk-
trade, international, 1909-1.922 912
See also Milk, condensed.
Contracts-
farm, between landlords and tenants 582-589
tenant, need and means of improvement 599, 600
Cooper, M. R., study of wheat situation 95
Cooperage, exports 1105
Cooperation-
agricultural, progress 35-38
marketing associations, results 12
wool marketing 294
Corkwood bark, inaports 1097
Corn-
acreage-
increase and decrease, maps 136
production and exports, trend, 1909-1922 445
reduction in war period 132-133
Bet-
agricultural readjustments 140-141
pasture conditions 379-384
position in farming in United States 328
rent cash per acre 546
sheep raising, remarks 248-249
tenant farming, percentage 515-516
wheat and corn acreages, shifts 133
borer, parasites introduction 41-42
canned, production, by States, 1905-1923 754
condition and yield, 1866-1923 666
crop summary, production and farm value, 1921-1923 1133
exports 1108, 1113, 1127
feed-
use and value 343-344
value, etc., 1919 334, 335, 337 334, 335, 337
feeding value, comparison with wheat 130
freight rates inland 1168
grading by licensed inspectors 673
growing on cane plantation, advantages 169
importance as feed crop 342
marketing by farmers 672
markets, receipts and shipments 671
planter prices, 1913-1923 652
price-
655
655
estimates
estimates 674-675
weighted average on principal markets 676-679

1234 Yearbook of the Department of Agriculture, 1923.

Corn-Continued.
prices- Page.
advance 3-4
farm and trade
farm and trade 674-679
production-
and farm value by States 664
and quality, 1923 2
value, etc 662-664
relation to pork production, note 327
seed, to sow acre 1140
silage, feed value, etc., 1919 340
situation 130
statistics-
acreage production, exports, etc. 84, 85, 86, 662-679, 1108, 1113, 1127
production, prices, markets, etc 662-679
stover, feed value, 1919 339 339
supplies in United States, 1917-1923 672
trade international, 1909-1922 674
wheat equivalent as feed 130
world crop, production and yield per acre 667-670
yellow, prices, 1899-1923 677-678
yield, by States, 1908-1923 665
yields, comparisons 468
Corn-and-hog ratios, monthly, 1910-1923 960
Cornfields, use in feeding sheep for market 261
Cornmeal, exports 1108, 1113
Corriedale sheep, cross-bred, remarks 245
Cost studies, value 24
Cotton-
acreage-
production and exports, trend, 1909-1922 446
production, and prices 2, 3
yield, and production 798-799
American, universal standards 32-33
area, yield, and production, various countries 801-804
Belt-
crop production and animals 329-330
forage production, etc 328-330
grazing conditions 386-389
sheep raising, remarks 250-251
tenant farming, percentage 515-516
crop-
condition and yield, 1867-1923 800
summary, production and farm value, 1921-1923 1137
exports 1105, 1111, 1113, 1121
feed, use of seed, and value 357-358
freight rates 1171
ginned, 1902-1923 797
importance as feed crop 342
imports 1097, 1111, 1130
J. S., article on-
"Our forage resources" (with others) 311-413
"The sheep industry" (with others) 229-310
marketing-
and prices at nine markets 807-808
by farmers, 1912-1923, by months 805
prices-
at New Orleans and New York, 1900-1923 809-810
farm and market 806-810
foreign markets, 1912-1923 810-811
production, value, reports, etc 801-804
seed-
hulls, feed value, etc., 1919 339
to sow acre 1140
statistics-
acreage, production, etc__ 84, 85, 796-811, 1105, 1111, 1113, 1121, 1137 acreage, exports, production, etc., 1869-1923 796-811
exports, 1915-1923 87
Cotton-Continued. Page. 805
trade, international, by countries
trade, international, by countries
warehouses, number and capacity 27
world production-
and acreage, 1909-1923, by countries 801-804
statistics for, 1900-1923 804
yield reduction and cause, 1909-1922 800-801
yields, comparisons 468
Cottonseed -
cake, exports 1108, 1113
crop summary, production and farm value, 1921-1923 1137
feed value, etc., 1919 334
theal-
exports 1108, 1124
freight rates 1172
prices paid by farmers 1156
prices, statistics for 1910-1922 1154, 1155
oil
and meal, production, 1900-1923
812, 813, 814
cake, freight rates 1172
freight rates 1172
trade international, by countries 813
prices, farm, by months, 1910-1923 813
production, by States 811-812
Cowpeas-
acreage, yield, and production, by States 793
feed-
use and value 361-362
values, etc., 1919 334, 337
prices, farm, by months, 1915-1923 794
seed to sow acre 1140
straw, feed value, etc., 1919 339
Cows-
feed units obtained per year from feed and pasture 412
grazinmilk-
number and value, by States 880
number and value, statistics for 1867-1924 879
prices by months, 1910-1923 891
Coyotes-
danger in sheep raising 265
eradication from ranges 45
Cranberries-
crop summary, production and farm value, 1921-1923 1138
production and value, by States, 1914-1923 744
statistics, acreage, production, etc 84, 85, 744, 1138
Creameries, associations, membership, business, etc 930
Credit-
facilities-
for farm tenants, suggestions 598
in sheep raising, discussion 274-175
wheat farmers, recommendation 145
Credits Act-
agricultural provisions and results 12, 25-26
remarks on effect 275
Creosote-
consumption by wood-treating plants, 1909-1922 1093
wood treated by, 1909-1922 1091
Crews, cane farming, size, and duties for various operations 167-170
Crop-
diversification, discussion 16
estimates, guide to marketing 22
land-
potential, West and Southwest 430
requirements, relation to increase of yield per acre 463-469
Crop-Continued.
production- Page.
methods, changes needed 489-492
ratio to population 463
regions, discussion. 313
Cróppers-
educational standards 576-579
wealth per capita 548
Crops-
acreage
aggregates by States, 1921-1923 1139
changes, 1909-1919 436
decrease per capita 433-437
per capita, France, Germany, and United States 498
present estimates 422-423
production and value, 1923, discussion 1-4
area in United States, percentage of forage 311-317
areas for forage, food, and other products 313-315
cost of production data 24
diversity, owner and tenant classes, table, etc 573-574
farm, prices, index numbers, by months 1193-1194
feeding, 1909-1922, acreage trend 448, 450
forecasts, "intentions-to-plant'" reports 21-22
harvested, acreages, 1850-1920 434
insurance, need 35
land utikzation, with pasture and forests 415-506
production and exports statistics, review 84-87
statistics, barley, corn, cotton, tobacco, wheat, etc 602-873
value of 10 combined 1142
values, with ratios and rank 1142-1143
yield-
increase methods 465-466
per acre, owner and tenant classes, table 573, 575
per acre, 5 -year periods 1883-1887, 1918-1922 464
yields in European countries, comparison 466-467
Cuba-
eggs, imports 1046
imports of pork products 972
meats, exports and imports 1017
poultry, exports and imports 1042
pork products, net imports, 1909-1922 972
sugar-
prices and supply of raw product, 1904-1923
prices and supply of raw product, 1904-1923 219 219
production 850
production and exports, notes 216 216
Cultivators, number and value 1156
Curly leaf, beet, injury and control 191
Curly-top, beet disease, occurrence and control 191
Currants, imports 1099, 1116
Cut-over lands-
available for pasture 386
pastures, carrying capacity 369
Cut-over lands, classes 454
Cutworms, injury to beets, and control 193Czechoslovakia-
meats, exports and imports 1017
sugar-
beets, acreage and production 848-849
production 849
Dairy
cattle-
purebred, freight and express rates 1175
ratio to population 323-325
cows, relation to sheep raising, note 411-412
Dairy-Continued.
products- Page.statistios909-927
Dairying relation to sheep raising 239
Dates, imports 1099, 1116
Delaware
dairy cows feeding, details and results 412
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
Denmark-
beef exports and imports, 1909-1922 909
eggs, exports and imports 1046
meats, exports and imports 1017
pastures acreage and value 470-472
pork products, net exports, 1909-1922 971-972
poultry, exports and imports 1042
sugar-
beets, acreage and production 848-849
production 849
Denver, market for sheep 278, 280
Diet-
percentages of various foods 152
sugar in, cost and value 151-152 151-152
Dipping, use in eradication of scab 267
Diversification, crop, discussion 16
Dockage-
factor in wheat price 128-129
wheat-
losses on transportation, etc 128
on Minnesota markets, 1899-1922 619
Dogs, danger to sheep 266
Dominican Republic, sugar production 850
Dorset sheep, purebred, note 244
Drainage-
lands needing, acreage estimates 425, 427
sugar-cane lands, necessity 162
Drills, grain, prices, 1913-1923 652
Droughts, no losses in sheep industry 232
Dry lands, wheat production cost 123-124
Drecks, foreign countries, numbers 1037-1039
Duluth, barley receipts, 1909-1922 704
Durum wheat. See Wheat.
Dusting boll weevil, methods 42
Dwellings, rented, percentage of farm homes 510
Dyewoods, imports 1097, 1111
Economy, application to land and to labor, comparisons 475-478
Education, farm families, relation of form of tenure 576-579 576-579
Eigge:
cold-storage holdings, monthly, 1916-1923 1045
exports 1046, 1103, 1111
farm prices, by months, 1910-1923 1047
imports 1046, 1094, 1111 1046, 1094, 1111
market receipts, and origin, monthly 1043-1045 1043-1045
prices at principal markets, monthly, 1910-1923 1047-1048
produetion and value, 1919-1923 1036
statistics 1043-1048, 1103, 1111
trade, international, by countries, 1909-1922 1046
Eigypt
cotton yields, comparisons 468
sugar production 851
Egyptian talari, exchange rates in New York, 1912-1923 1164 1164
Elevators, factor in price of wheat 126
Elsworth, R. H., study of wheat situation 95 95
Emmer-
feed- Page.
use and value 365
value, etc., 1919 334
importance as feed crop 342
England-
labor, man and animal, per 1,000 acres crop land 475, 476, 477
wool prices, 1908-1923 1007-1008
Estimates, crop guide to marketing 22
Europe-
demand for bread-cereals 99-100
farm animals, relation to population 322
market for American wheat, outlook 101-102
wheat imports, 1909-1913 and 1921-1923 100 100
European countries-
cereals production, imports, and consumption, 1919-1921 450-451
crop productivity, comparisons 475-478
pasture and feed crops 470-472
pastures, carrying capacities, comparison 366
Exhibits, Department, scope and value 52
Expenditures, Agricultural Department, 1923 77-78, 79-83
Export corporation, Federal, discussion 17-19
Exports-
agricultural products 1103-1114, 1118, 1119-1126, 1135
animal oils 1104
apples 1107, 1113, 1122
barley 1108 1108
beef-
annual, 1909-1922 909
by countries of destination, 1910-1923 908 908
statistics 908, 909, 1113, 1120
butter 1103, 1119
cattle, by months, 1919-1924 890
condensed milk 1103
corn 1108, 1123 1108, 1123
cotton 1105, 1111, 1113, 1121
dairy products 1103, 1111, 1112
eggs 1046, 1103, 1111
farm-
increase by reduction in domestic supply 448-449
products, abnormal 445-446
products, land requirements 455-459
trend, 1890-1922 444
feeds 1108
foodstuffs, cotton, and tobacco, statistics, 1915-1923 86-87
forest products 1105-1107, 1111, 1118, 1125-1126, 1135
fruits 1107, 1111, 1113, 1122
grain-
products 1108, 1111
statistics 1108, 1111, 1123
hides and skins 1022, 1104
hogs, 1910-1923, monthly 958
horses, number and prices, 1896-1923 1028
increase during World War, results 446
lard 1104, 1113, 1121
live animals 1103, 1111, 1119
livestock, land requirements for production 456-457, 460
lumber 1105-1106, 1118, 1125-1126
meat, 1920, discussion 456-457
meats 1017, 1103-1104, 1112
mutton, monthly, 1909-1923 1105, $11 \overline{1}, 1118,1125$
oats 1108 930-931
oleo oil, by countries of destinationpork-
968-971
and pork products 971-972
rice 1108
Exports-Continued. Page.
rye 1108
seeds 1109, 1111
sheep, 1895-1923 991
sugar-
situation, etc 216, 218 846, 1110, 1113
statistics
statistics
tobacco 1110, 1111, 1113, 1125
vegetable oils $878,1109,1111,1113,1114,1124$111
wool, 1870-1923 1001-1002
Express, rates, purebred livestock 1174-1176
Extension-
service, progress 1923 51-53
work-
appropriation 79
Director, duties 38
Falke, Professor, estimates on German pastures 471
Fallow pastures, grazing 374
Farm-
acreages-
for export production, causes and comparison 446, 447
percentage operated by tenants, by countries 208
conditions, cause of decline in morale 11-12
credit, laws helpful 13, 25-26
equipment, manufacture and sale 1156-1157
flocks, management in sheep raising 246-251
houses, abandonment, causes 122
implements, numbers and values 1156
income, relation to form of tenancy 577
labor. See Labor.
land-
expansion direction during next few decades 496-497
percentage operated by tenants 515
proportion in pasture 406-407
See also Land.
managers, types of farms and location 520 9-10

owners, loss of property, causes

owners, loss of property, causes
ownership and tenancy, article by L. C. Gay (with others) 507-600 507-600
pastures, economic importance 406-412
population, changes and drift to cities 8-9, 10-11
population statistics, study 34
production-
for export, overdevelopment 443-451
principal crops and groups of crops, 1919-1923 1143-1144
values on farm, 1897-1923 1144-1145
products-
demand in world markets 20
exports, overdevelopment 443-445
exports, production, land requirements 455-459
freight rates, etc 1165-1176
Hawaii, shipments to and from U. S 1118-1119
imports, relation to crop land requirements 459
Porto Rico, shipments to and from U.S 1118-1119
prices, 1914-1923 131
prices, changes 3-4 14
prices in Iowa and New York, 1913-1923
prices in Iowa and New York, 1913-1923
prices, index numbers, 1913-1923, by months 1192-1193 1192-1193
purchase and export, by Government, discussion 17-19
standardization 31-32
program, readjusting, studies 25
Farmers-
age, relation to size of farms 528
ages by tenure classes 548-550
aid by Government
aid by Government 19-20 19-20
bankruptey, by States 1158-1160
Farmers-Continued. Page.
Bulletins, list by subjects 89-93
dependence on wheat income 96-98
educational standards of tenants and owners 576-579
financial-
condition in 15 States 659
difficulties, causes 6-12
incomes, returns from farming 1161-1163
living
expenses of landlords, and tenants 580-581
standard, studies 34
marketing-
of corn 672
of wheat, 1917-1923 613
mortgages and debts 1157, 1158-60
mutual fire insurance 34-35
organizations handling grain 1164
owner, percentage of farm operators 509
owner, wealth per capita 548
periodicals received, number and classes 579-580
retircment from farms, age and percentage 527
sced-grain loans, appropriation 1923 81, 82
supplies, prices paid 1150-1152
tenure classes, relative importance 509-515
wheat-
aid from Government 120
credit extension, recemmendation 145
held for seed and feed 102
regions, financial situation 143-145
regions, situation 118-1.22
Farming-
area, expansion, undue and misdirected 502-504
efficiency, relation of type of tenure 569-576
methods for increase of production 489-492
tenant, development causes 522-569
Farms-
acquisition methods 535-538, 561-563
acreage decrease per capita 433-437
business reckonings 1162-1163
land-
and buildings, average, by States 549
used in 1919 417 417
negro tenant, location 517
occupancy, duration, oomparison of owners with tenants 594
operator classes and locations 517-520
organization, comparisons for various-countries 477-478
part-owner, number, acreage and location 519, 521
population, movement to cities, causes 121-122
purchase from farm income, amortization dates, table, ctc 563-568
shift of operators-
causes, length of tenure, ete 589-597
relation of tenure 589-600
size, relation of age of operator 528
South-
South-
number operated by white and by colored owners 518
number operated by white and by colored tenants 517 517
tenant, percentage by countries 208
tenure classes, percentage of each 509
unimproved acreage under lease 521-522
valuation-
changes, 1859-1920 542-547
in various localities 540
per acre, 1850-1919 compariseus 442, 443
relation to income 541-547 541-547
value, increase 1910-1920 119
wages of labor, by classes 1148-1149
Farms-Continued.
wheat-
wheat- Page. Page.
loss from foreclosure, ete 121
regions, mortgage debts 120
Farmsteads, land occupied by buildings, ete 418
Fattening lambs, costs 272-274
Feathers, imports 1094, 1111
Feed-
areas east and west, percentages of total area of crop lands 314
beet tops and crowns, utilization and value 212
cane tops, note 212
cattle, requirements for 100 pounds gain 934-941
corn, comparison with wheat 130
crops, acreage, trend 1909-1922 448
hogs, requirements for 100 pounds gain 978
sugar factory by-products 211-212
systems, remarks on use 332-333
trade international, prices, etc 1153-1156
units per dairy cow, in year from feed and pasture 412
wheat, utilization of low-priced 129
Feeder, sheep, shipments, discussion 280-281
Feeding-
livestock improvement 44
sheep, for market 261-262
Feeds-
concentrated, discussion 332, 333-336
exports 1108
imports 1096
lamb, for fattening 272-274
Fertilization, cane, practices 169-170
Fertilizer-
bagasse for, note 211
filter press cake, use and value 212
manufacture, studies 40
materials-
imports, exports, production, and consumption 1187-1189
prices, wholesale, 1913-1923 1189-1190 1189-1190
pyrites, production, price, and value, by States 1177-1179, 1186
sales, commercial, in cotton States, 1914-1923 1192
statistics, materials, production, prices, etc 1177-1192
Fertilizers-
application to cane, practices and cost 169-170
beet 186
expenditures for, by States, 1879-1919 1191-1192
tons sold in Georgia, 1901-1921 1190
tobacco requirements 49
Fiber crops, area of United States, note 312
Fibers-
animal, imports 1094, 1127-1128
binder-twine, cooperative work 49-50 49-50
vegetable, imports 1097, 1111, 1130
Field peas, seed to sow acre 1140
Figs, imports 1099, 1116
Fiji-
disease of cane, note 177
sugar production 851
Filberts, imports 1100, 1131
Filter press cake, sugar-mill, fertilizer use 212
Finances, farm, conditions for 1920-1923 659
Financial statement, 1923 77-83
Finland-
eggs, exports and imports 1046
forest products consumption, comparisons 483
poultry, exports and imports 1042
sugar-
beets, acreage and production 848-849
production. 850
Fir, Douglas, prices, 1913-1923 1088

1242 Yearbook of the Department of Agriculture, 1923.

Fires, forest- Page.
causes, by States and groups of States, 1916-1922 1060-1061
number, damage and area, by States and groups of States 1916-19221058-1060
Fish scrap, production, by States, 1912-1922 1186-1187
Flax-
feed use and value 359
growing, profitableness, comparison with wheat 142-143
importance as feed crop 342
imports 1130
straw, feed value, etc., 1919 339
world crop, production, 1909-1923 710-711
Flaxseed-
acreage and production 84, 85
condition and yield, 1908-1913 709
crop summary, production and farm value, 1921-1923 1137
feed value, etc., 1919 343
imports-
by countries of origin, 1910-1923 713
exports and supplies 712
statistics $713,1101,1115,1$ 1133
marketings by farmers, 1917-1923 712
prices-
and value per acre 142
at Minneapolis, 1899-1923 715
on farm, 1908-1923 714
production-
dernand, etc 142
value, etc., 1849-1923 708
receipts at Minneapolis, 1910-1923 712
requirement for sowing acre 1140
statistics, production, values, prices, etc 708-715, 1101, 1115, 1133, 137
trade international, 1911-1922 713
use in oil production 713
yield per acre, by States, 1908-1923 709
Fleece, wool-
values on farms 296
weight, increase and average 295-297 295-297
Fleeces, wool, weights and number by States 1002-1003
Flohr Lewis B., preparation of statistics 601
Flood warnings, value 46
Florida-
cane and sirup production 156
forest fires, number, damage, area, and causes, 1916-1922 1059,1060
fruits, production and value 743
Flour-
consumption per capita 102-103
exports-
quality, etc 108
statistics 1108, 1113, 1114, 1123
price, comparison with price of bread 110
prices-
at New York City, 1912-1914, 1922-1923 109
markets, etc 632-634
quality for domestic use 108
rye, imports and exports 643
Fluke, liver, danger in sheep-raising 268
Fodder, production and use 336-338
Fodders, fuel value, etc., 1919 337
Food
Commission, Inter-allied Scientific, estimates of food requirements 481
consumption, changes required for land economy
consumption, changes required for land economy 489, 492-494 489, 492-494
crops, area of United States, note 312
sugar, value, and consumption 151-152
Foods, percentage of various kinds in diet 152
Foodstuffs, consumption, comparisons 479-483
Forage- Page.
crops, value as compared with food, etc 314-316
definition and kinds, note 311
harvested-
classes and uses 333-340
production, kinds and use 332-342
relative importance of classes 335
principal crops, discussion 342-359
production-
acreage, discussion 311-316
agricultural regions of 324, 327-332
area, percentage of United States lands, note 312
development 316-320
in Corn Belt 328
relation of production to livestock 325-326
resources of United States, article by C. V. Piper and others 311-413
seeds, imports, 1911-1923 860
Forecasting, river stages and floods 46
Forecasts, crops and livestock 21-24
Foreign exchange, rates in New York, 1912-1923 1163-1164
Foreigners, land ownership 537-538
Forest-
area in United States, by regions 1050
experiment stations, value 56
fires. See Fires.
land-
classes 454
expansion direction during next few decades 496-497
ownership problem 501-502
nurseries, promotion of forest planting 66
pastures-
area in farms and not in farms 366
carrying capacity 369 369
products-
consumption, comparisons 483-487
cut from stored supply, results 451-455
exports 1081-1085, 1105-1107, 26, 1135
foreign trade, relation to and requirements 460-461 460-461
imports 1097-1099, 1111, 1118, 1134, 1135statistics ----------1050-1093, 1105-1107, 1111, 1118, 1125-1126, 1135
Forestry
constructive policy, need 60-62
statistics 1050-1093
Forests-
acreage-
estimates 421, 423
per capita, France, Germany and United Státes 498
area of United States, note 312
grazing, acreage, and animal units 523
growth rate, comparisons various countries 474
land-
area decrease by timber cutting 452-453
exclusively suited for, acreage 431, 432
utilization, with crops and pasture 415-506
National-
administration, receipts and uses 55-74
areas by States 1050-1051 403, 404
grazing, animal units, permits, and grazing season
grazing, animal units, permits, and grazing season
grazing of sheep, notes 254-259 254-259
grazing, statistics 1062
on Western range, control
on Western range, control 404 404
receipts from
receipts from 55, 56, 79 55, 56, 79
road construction, 1923 1058
timber, free uses, 1907-1922 1062 1062
timber sales, 1905-1922 1062
timber stand, by forests and by States 1054-1055 1054-1055
timber stand by species, 1922 1056 1056
$\dagger 85813^{\circ}$ — YbK $1923-79.480$
Forests-Continued.planting, areas, 1922, 1923.--------------------------------------1057
private ownership, timber growing 64-65, 66-67
productivity, conditions and requirements 473-475
protection against fires 65
public-
and private, grazing leases, nature and practices 524-521
ownership extension 62-64
State and municipal, areas by States 1050-1051
utilization problem growth, waste, and ownership 500-502
world area, by divisions and by countries 1051
Foreword, Yearbook contents and agricultural outlook III
Formosa, sugar production 851
Fort William and Port Arthur, barley rcceipts, 1909-1922 704
France-
beef exports and imports, 1909-1922 909
crop yields, comparison with United States 467
crops, pasture, and forest acreage per capita 498
eggs, exports and imports 1046
forest products consumption, comparisons 483, 484
forests growth, comparisons. 474
labor, man and animal, per 1,000 acres crop land 475, 476, 477
meats, exports and imports 1017
pasture acreage per 100 acres crop land 491
pastures, acreage and value 470-472
pork products, net imports, 1909-1922 872-971
poultry, exports and imports 1042
silk production, 1909-1922 1049
sugar-
beets, acreage and production 848-849
production 849 849
wheat consumption per capita 99
wool imports, note 292
Freight-
livestock marketing, costs 1020
rates-
burden on farmers 6, 7, 14
factor in wheat situation 110-113
index numbers, 1900-1923 1177
inland, on wheat, oats and corn 1167-1168
inland, on wool in grease 1168
ocean, on wheat 1166
pre-war and present comparison 110-113
wheat, in Canada 661
Freights
tonnage on railways, 1917-1923 1165-1166
weight per carload, 1917-1923 1165
French Colonies, sugar production 850
Fruit, dried, exports 1107, 1122
Fruits-
canned and preserved, exports 1107
citrus-
shipments, car lots, by States, 1918-1923 740
total production by States 740
exports -1107, $111 \overline{1}, 1113,1122$
imports 1099, 1111, 1116, 1131
inspection, shipping points and markets 29-31
receipts at principal markets, 1917-1923 788-789
shipments, car lot, by months. 787-788
statistics, production, prices, etc$1099,1107,1111,1113,1116,1122,1131$
Fuel, bagasse, notes 211, 213
Garden seed, imports 1101
Gardner, H. B., study of wheat situation 95
Garlic, factor in wheat cost 129
Gay, L. C., article on "Farm ownership and tenancy" (with others) 507-600
Geese, foreign countries, numbers 1037-1039
Page.
Gelatin, imports 1095Georgia-
cane and sirup production 156
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
Germany-
beef exports and imports, 1909-1922 909
crop-
area in 1923, notes 428, 433
yields comparison with United States 467
crops, pasture and forests, acreage per capita 498
eggs, exports and imports 1046
food-
and timber consumption, comparisons 494
consumption, standards comparisons 481-483
forest products, consumption, comparisons 483, 484
forests growth, comparisons 474
labor, man and animal, per 1,000 acres crop land 475, 476, 477
meats, exports and imports 1017
pasture acreage per 100 acres crop land 491
pastures acreage and capacity 470-472
pork products, net imports, 1909-1922 971-972
poultry, exports and imports. 1042
purchase of American wheat, situation 101
sugar-
beets, acreage and production 848-849
production 216, 849
wool imports, note 292
Gibbons, C. E., article on "The sheep industry" (with others) 229-310
Gid, danger in sheep raising 269
Ginseng, imports 1107, 1111
Glucose-
cornstarch, production, nature and value 210
exports 123
production from cornstarch, nature and value 210
Glue, imports 1095
Goats-
carcasses, condemnation under inspection 1907-1923 1012
foreign countries, numbers 1031-1036
number grazing in National Forests 403, 1062
slaughter under inspection 1907-1923 1012
Goatskins, imports 1909-1923 1022
See also Hides.
Gophers, pocket, distribution and control 399, 400
Grades, wool, and their uses 297-298
Grading- 673
corn in cars, by licensed inspectors 690
Grain-
bread-
consumption changes since 1913 5
situation 98-102
cleaning device, demonstration 33-34
exports $1108,1111,1123$
Futures- 54-55
Act, administration
Act, administration
law, results 12
handling by farmers, etc 1164-1168
implements, prices, 1913-1923 652
imports 1096, 1111, 1131
mixed, feed use and value 359
products, exports 1108, 1111
sorghum-
crop summary, production and farm value, 1921-1923 1138
See also Sorghums.
warehouses, number and capacity 27
Grains- Page.
bread, statistics of acreage, values, export, etc 602-661
growing after beets, advantage 186
mixed-
feed value, etc., 1919 334
importance as feed crop 342
straw, feed value, etc., 1919 339
production and feeding 335
Grape fruit-
Florida, production and value, 1919-1923 743
freight rates 1169
prices, wholesale, by months, 1908-1923 740
shipments, car lots, by States, 1918-1923 740
stem-end rot control 40
Grapes-
exports 1107
freight rates 1169
imports 1098
production estimate, by States, 1922-1923 744
shipments, car lots, by States, 1917-1923 744
Grass, relation to beef production, note 327
Grasses-
introduction on ranges, importance 398
pasture-
in humid regions 379-381, 38 390
in Western range region 391
tame, feed use and value 356-357
wild importance as feed crop 342
Grassland-
arid-
areas in farms and not in farms 366
semiarid, carrying capacity 369
humid-
areas in farms and not in farms 366
carrying capacity 369
semiarid, pasture composition and capacity 390-396
Gray, L. C., article on "The utilization of our lands for crops, pasture, and forests" (with others) 415-506
Grazing-
deferred and rotation, for range improvement 397
land-
classes, area and carrying capacity 367-371
management on Western ranges 396-399
privately owned, area and carrying capacity 368-369
National Forests-
receipts, regulations and fees $55,56,57-60,68$
statistics 1062
periods and degree, definition 371
relation to sheep production, note 327
season in pasture regions 381-384, 388-9, 392-395
source of stomach worm infection 268
systems in different pasture regions 372
Great Britain-
butter prices by months 921
crop yields, comparison with United States 467
pastures, acreage and value 470-472
pork prices, monthly, 1909-1923 972-973
Great Plains-
agficultural region and its products 331
farm property, losses 121
farmers, movement to cities 121-122
semiarid land, crop possibilities 430
sheep raising, notes 264
Grub, head, danger in sheep raising 268
Guiana, sugar production 851
Gum arabic, imports 1098
Gumming disease of cane, note 177
Gums, imports 1098, 1111, 1118
Page.
Hans, G. C., study of wheat situation 95
Hair, imports 1094, 1095, 1128
Haiti, sugar production 850
Hall, M. C, article on sheep industry (with others) 229-310
Hampshire -
ram, picture 243
sheep, pure-bred, note 244
Hams
exports 1120
prices-
in England, monthly, 1909-1923 976
wholesale and retail, 1913-1923 965
Hansen, Professor, estimates on German pastures 471, 472
Harrison, L. M., study of wheat situation 95
Harvesting -
beets, method 190
cane, operations, labor requirements and cost 170-174
machines, number and value 1156
seed cane, labor requirement 167
sorghum for fodder 354
Hauling, beets to sugar mills, note 191
Hawaii-cane-
and cane products, production 146, 160
sugar production by islands, 1913-1923 844
farm products, shipments to and from U. S 1118-1119
sugar production-
average and 1917-18 to 1923-1924 850
by islands, 1913-1923 844 844
by years 1874-1923 845
Hay-
acreage- 814-816
production, and value, by States
production, and value, by States
yield and production, by States 819-825
area occupied by 814, 816
crop-
condition and forecasts, 1908-1923 826
summary, production and farm value, 1921-1923 1137
exports, statistics 814-815
freight rates 1171
grades, use 32
imported, importance as feed crop 342
prairie- 353
grass varieties used 352
prices, farm and market, by States 829-835
production and use 336-338 336-338
receipts at 12 markets, 1910-1923 827
regional production by kinds, 1919 338
shipments, from 8 markets, 1910-1923 828 828
statistics-
statistics- 84, 85
acreage and production, 1915-1923 814-835
stocks on farms, 1910-1923 826
tame, grasses in use 357
wild, feed use and value 352-353
yield reductión, 1900-1922 826
yields, United Kingdom, comparisons 467
Haying machines, number and value 1156
Hays-
337
337
feed value, etc., 1919
feed value, etc., 1919 356-357
Hemp, imports 1097, 1115
Herding, sheep, disadvantages 260
Hides-
exports 1022, 1104
imports by kinds, 1909-1923 1022-1023
Hides-Continued. Page.
prices at Chicago, monthly 1910-1923 1023
statistics 1129
stocks, by kinds 1021
trade, international by countries 1022
Highways-
Federal-aid, projects completed and under way, by States 1195-1196
See also Roads.
Hog-and-corn ratios, monthly, 1910-1923 960
Hogs-
carcasses, condemnation under inspection 1907-1923 1012
cholera control work, by States 977
exports, 1910-1923, monthly 958
foreign countries, numbers 1031-1036
freight rates 1173
losses from disease, 1888-1924 947
market receipts and shipments, by markets 950-951
marketing costs, items 980
number-
and prices, 1867-1924 946
and value on farms by States 945-946
grazing in National Forests, 1905-1922 1062
on farms, changes, etc 946-947
pig surveys, spring and fall 948-949
price-
4
changes, relation to corn crop 656
prices-
at principal markets, monthly 961-964
on farm, monthly, by States 960
production on farms, number and value 1010
purebred, freight and express rates 1176
ratio to population 326
shipments, percentage crippled and dead 978-980
shrinkage in shipment 977
slaughter under inspection, 1907-1923 966, 1012
statistics 945-980, 1010, 1012, 1031-1036, 1062
stockyard receipts, slaughter and shipments 951-957, 1010
weight, live and dressed, by months 1015
weights at four markets, monthly 958-959
Holman, H. K. jr., study of wheat situation 95
Holmes, G. K., article on "The sheep industry" (with others) 229-310
Home
demonstration work results 51
Economics-
Bureau, establishment and scope 38, 39
specialists, conference, work 39
Homes
conveniences and conditions, landlords and tenants 581-582
rented, percentage of farm dwellings 510
Hookworms-
control work 40
danger in sheep raising 269
Hopkinsville, prices of tobacco, 1907-1923 873
Hops
consumption and movement, 1910-1923 837
crop summary, production and farm value, 1921-1923 1138
exports 1109, 1111, 1113, 1114, 1124
imports 1115
prices, wholesale, 1913-1923 838
statistics, acreage, production, etc 836-838,1109,1111,1113,1114,1124, 1138 838
trade, international, by countries
world crop, production, and yield by countries 836-837
Horses
carcasses, condemnation under inspection 1012
Cotton Belt, need and numbers. 329-330
Horses-Continued.
exports- Page.
number and prices, 1896-1923 1028
statistics 1028, 1103, 1119
foreign countries, numbers 1031-1036
imports-
number and prices, 1896-1923 1028
statistics 1028, 1094, 1126
losses from disease, 1888-1924 1026
market receipts, 1900-1923 1026
number and value on farms-
by States 1025
statistics, 1867-1924 1024
number-
grazing in National Forests 403
grazing in National Forests, 1905-1922 1062 1062
prices-
by ages, 1894-1924 1029
export and import 1028 1028
on farm monthly, 1910-1920 1029
on farm, monthly by States 1030
production on farms, number and value 1010
ratio-
478
478
to laborers
to laborers 325 1028
skins, imports, 1909-1923
skins, imports, 1909-1923
slaughter under inspection, 1919-1923 1012
stockyard receipts, 1915-1923 1027-1028
use in production of export crops, etc., pasture requirements 460
wild, elimination on ranges 400
Housing, farmers, conditions and conveniences of landlords and tenants 582-589
Houston, Texas, prices of rice 724
Humid region- Northern, pasture lands, composition, and capacity 379-385
Southern, pasture lands, composition and capacity 386-389
Hungary-
corn yields, comparison 468
sugar
beets, acreage and consumption 848-849
production 849
Hunting, licenses issued, 1922-23, by States 1198
Idaho-
beet production, cost per acre 196, 199 156 156
beets and sugar production
beets and sugar production
forest fires, number, damage, area, and causes, 1916-1922 1059-1061
sheep raising - 270
cost factors 251, 256
source of market lambs 279
Illinois-
Bates road, observations, results 41
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
Implements- 171
cane harvesting, description
cane harvesting, description
cost increase, factor in cost of wheat production 122, 123 122, 123
farm, number and value 1156 1156
Imports
agricultural products 1094-1102, 1111, 1114-1118, 1126-1136
animals 909
beef, 1909-1922-19-192-19
cattle, by months, 890
coffee 1097, 1111, 11.14, 1130
cotton
cotton
dairy products 1094, 1111, 1114, 1127
dyewoods 1097, 1111
farm products, relation to crop land requirements 450
Imports-Continued. Page.
flax 1097, 1115, 1130
forage seeds, 1911-1923 860
forest products 1097-1099, 1111, $1118,1134,1135$
fruits 1099, 1111, 1116, 1131
grain 1096, 1111, 1131
gums 1098, 1111, 1118
hides and skins-
statistics 1094, 1095, 1117, 1128, 1129
by kinds, 1909-1923 1022-1023
horses, number and prices, 1896-1923 1028
lumber 1098, 1118
manila fiber $1097,11 \overline{1}, 1116,1130$
meats 1017, 1096
molasses, 1875-1922 211
nursery stock 1100, 1111
nuts $1100,1111,1114,1117$, 1131
opium 1115, 1116, 1132
pulp wood 1099
rice 1096, 1115, 1131
sceds 1101, 1111, 1132
sheep, 1895-1923 991
spices 1101, 1111, 1133
sugar-
and molasses 1102, 1111, 1115, 1116, 1133
remarks 218, 864
timber 1098, 1118
tobacco 1102, 1111, 1115, 1134
vegetable-
fibers 1097, 1111, 1130
oils, statistics 878, 1101, 1111, 1115, 1132
vegetables 1102, 1111
wheat-
from Canada 660
statistics 104, 1096, 1131
wood pulp 1099, 1111, 1118
wool 1001-1002, 1094, 1111, 1114, 1127
Index numbers
condition of crops, 1910-1923 1140
freight rates, 1900-1923 1177
wheat 650-651
yields of crops, 1911-1923 1140-1141
India-
British, silk exports, 1909-1922 1049
Karichi, wheat prices, 1912-1923 631
sheep production 230
sugar production 851
Indian-
lands, acreage leased for farming and grazing 523
rupee, exchange rates in New York, 1912-1923 1164
Indiana-
dairy cows, feeding, details and results 412
experiments in lamb feeding 273
farm area in crops and pasture, per cent 407
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
sheep raising -
costs 272
note 248
Indo-China, silk exports, $1909-1922$ 1049
Insecticide and Fungicide Act, enforcement 55
Insects-
cane pests, descriptions and damage 179-181
control work progress 41-42
Inspection
Federal, of livestock slaughter 281
fruits and vegetables 29-31
Insulating material, manufacture from bagasse 212
Insurance, farmers' mutual 34-35
Page.
Interest charges, burden on farmers 7-8
Iowa-
farm area in crops and pasture, per cent 407
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
labor, man and animal, per 1,000 acres crop land 475, 476
sheep raising, note 248
rrigation
enterprises and resources 424
sugar-cane, benefits 162-163
Italy-
eggs, exports and imports 1046
labor, man and animal, per 1,000 acres crop land
labor, man and animal, per 1,000 acres crop land 475, 476 475, 476
meats, exports and imports 1018
poultry, exports and imports 1042
silk production, 1909-1922 1049
sugar-
beets, acreage and production 848-849
production
production 849 849
Ivory, imports 1095
Jackson, Donald, study of wheat situation 95
Japan-
eggs, imports 1046
meats, exports and imports 1018
silk exports, 1909-1922 1049
sugar production. 851
Java, sugar-
production and exports
production and exports 216 216
production, statistics 851
Jennings, R. D., article on "The sheep industry" (with others) 229-310
Jersey City
market for sheep 278
slaughter of sheep, remarks 281
Jones, L. A., aid in estimates, note 428
Jugoslavia. See Yugoslavia.
Jute, imports 1097, 1115
Juve, O. A. -
article on "Our forage resources" (with others) 311-413
part in article on "Sugar" 151
preparation ef statistics 601
Kafir, prices, farm and market 730
Kangaroo skins, imports, 1912-1923 1023
Kansas City-
market for sheep 278, 280
prices- 730
and receipts of kafir
676, 677
676, 677
of flour 634
of oats 694
slaughter of sheep, remarks 281
wheat prices 627, 629
Kansas-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
pastures, rental value and costs, notes 407-411
semiarid region, wheat production cost 123-124
taxes on farm land 658
wheat production, cost 123
Kapok, imports 1097 1097
Karakul sheep, introduction and use 246
Kentucky- bluegrass, distribution 379, 380, 390
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
pastures, rental value and costs, notes 407-411
sheep raising 249
Killovgh, H., study of wheat situation 95 95
Kleinwanzleben beets, type grown in United States 187
Page.
La Plata, Argentina, corn prices, 1912-1923 679
Labor-
Labor-
beet production, cost per acre in various regions 194-198
cane-
growing and transporting, requirements 164-177
planting, requirements and cost 165-168
crews for cane farming 167-170
farm-
productivity in various countries, comparison 475-478
supply and demand, 1918-1923 1150
wages by classes 1148-1149
foreign, effect on farm prices 15, 16
man and horse, hours per bushel of wheat 646
returns on farms 1161
sugar-cane region, situation 177
wage increase, factor in cost of wheat production 122, 123
Lactose, manufacture in United States 210
Lake Charles, Louisiana, prices of rice 723
Lamb-
cuts wholesale and retail 285
use as food, per capita 282-283
See also Mutton.
Lambing, midwinter, origin and progress 257
Lambs-
costs of fattening for market 272-274
demand increase, remark 277
fattening
cost items distribution 273
for market 262
grade factors and prices 283
market, source of supplies 279
marketing-
discussion 276-282
problems 289
price average yearly at Chicago, 1893-1922 286
prices, relation to price of wool 283
raising and marketing, note 247
receipts at stockyards 277-279
winter, remarks 248
See also Sheep.
Land-
acreage potentially available for use 423-433
area and utilization in United States in 1919 416, 417
available for pasture acreage, classes, and value 365-413
crop and pasture, need of increased productivity 505
farm-
acreage, comparison with forest land, 1850-1920 452
improved area, 1850-1920, changes 434, 435
tax increase 1913-1924 657
value 1914-1922 650
forest-
acreage, comparison with farm land, 1850-1920 452
and cut-over, available for crops, acreage, 1923 426, 427, 428
grazing, classes, area and carrying capacity 367-371
improved, acreage decrease per capita 433-437
in harvested crops, acreage estimates 422, 423
irrigated-
and irrigable, acreage, estimates 424
States leading in acreage 424
not used for crops, pasture, or forest, estimates 418
ownership-
concentration, advantages and trend 529-533
suggestions for aid 598
pasture and range, classified for ownership, 1919 367
policy, need of administrative unification 505-506
productivity increase, conditions 475-478
Land-Coninued.
requirements-Page.
economy through increase of yield per acre 463-478
estimating, methods, notes 417, 419, 428,
$438,469,473,480,482,494-495,497$ for population of $150,000,000$
487-496
probable changes
455-461
relation to foreign trade 461-463
resources-
crop, pasture and forest, limitations 497-500
present uses, acreage estimates 417, 419-423
scarcity, factors tending to obscure 443-455
scarcity, increase and nature 433-443
settlement, need of wise direction 505
tenure-
beet farming 200
by corporations 536-537
titles, standardization need 598
uses, trend, 1880-1920 438
utilization-
problems and policy 72-74
study, point of view 415-417
valuation methods, need of improvement 599
valuation, relation of farm tenancy 539-541
values increase, indication of scarcity of land 439-443
wet, unfit for crops without drainage, area 425, 427
"Landlordism," use of term 524
Landlords-
acquisition of farms, methods 535-538, 561-563
contracts with tenants 582-589
farmers, educational standards 576-579
leasing, residence, farming, etc 529-536
organizations, note 599-600
percentage owning one or more rented farms 530
returns from different forms of farm tenancy 588-589
use of term 524
Lands-
available for forests only
available for forests only 431, 432 431, 432
Canadian farm, value per acre 114
farm value per acre 114
Federal, unappropriated and unreserved, acreage and location 522
grazing, Western range, ownership and control 402-405
Indian, on Western range control 404
public-
addition to Forests 63-64, 68-72
on Western range, control 404-405
sheep, notes 237
State-
acreage leased for farming and grazing 524
on Western range, control 404
unimproved; in Eastern States, classification 429, 430
uses by percentages in United States 312
utilization for crops, pasture, and forests, article by L. C. Gray and others 415-506
Langworthy, C. F., article on "Sugar" (with others) 151-228
Iard-
cold storage holdings, monthly, 1916-1923 968
consumption per capita, 1907-1923 1014
exports-
monthly, 1910-1923 969
statistics 1104, 1113, 1121
price estimates 656
prices-
at Chicago monthly, 1905-1923 973
in England, 1909-1923 976
wholesale and retail, 1913-1923 965
statistics $1012,1014,1019,1020,1104,1113,1121$
Page.
Lärkspurs, poisonous to cattle, distribution 400-402
Lath, production, by states 1870-1922 1072-1076
Laths, imports 1098
Laurel, destructive to sheep 264
Leaf-hopper, distribution of curly top of beet and control 192
Leaf-spot, beet disease, occurrence and control 191
Leaf-spotting disease of cane, note 179
Leases, public lands, nature 524-525
Legislation-
forestry, recommendations 67-68, 71
helpful to farmers 12
sugar, 1789-1922 221-226
Legumes, annual, feed use and value 359-361
Lemons-
California, prices, wholesale, 1908-1923 741
imports 1098, 1117
shipments, car lots, by States, 1918-1923 740, 741
Lespedeza, distribution and value 387, 388
Lettuce-
freight rates 1170
shipments, car-lot, by states, 1917-1923 754
Levulose, manufacture in United States 210
Licenses, hunters, number issued, 1922-23, by States 1198
Licorice, imports 1097, 1114
Lime, use for fertilizer, production and value, 1908-1923, by States 1184-1185
Lincoln ram, picture 243
Linseed--
cake, exports 1108, 1124
oil-
imports 1101
meal, prices 1154, 1155
price in New York, 1910-1923 716
trade international, 1909-1922 715
Liquors-
exports 1109, 1111
imports 1100, 1111
Liver fluke. See Fluke.
Liverpool-
freight rates on wheat from America 661
prices of-
corn, 1912-1923 678-679
wheat 630, 652
Livestock-
and products, statistics 879, 1049
breeding and feeding improvement -44
carcasses and parts, condemnation under inspection, 1907-1923 1012
classification 32
commission rates, arbitration 53
comparison of numbers with population, by States, 1920 321
cost of production data 24
definition, note 311
exports, production, crop land required 460 460
feed crops, relative importance 341
foreign countries, numbers by kinds. 1031-1026
freight rates 1173-1176
grazing in National Forests 57-60
marketing-
Government supervision 12
freight and other costs_ 1020
numbers, changes 1850-1922 438-439, 440, 441
production on farms, number and value 1010
production, pasture acreage requirement 459-460
products-
consumption per capita, comparisons 479-483
consumption, probable changes 493
pure bred, express rates 1174-1176
regions of United States, map 324, 327-332
Livestock-Continued. Page.
relation to forage production 326-327
relations with human population 320-326
reporting, improvement 23-24
shipping, cooperative 54
slaughter under inspection, 1907-1923 1012
statistics 879-1049
stockyard receipts slaughter and shipments 1010
value- 1011
on farms with machinery, average by States 549
per acre of farm land, owner and tenant farms 570-573
work, feeding, crop land requirements 457-459
Living-
conditions of farm landlords and tenants
conditions of farm landlords and tenants 581-582 581-582
cost, prices, and wages, index number 1194
expenses of farm landlords and tenants 580-581
Loans-
by Federal land banks 26
seed-grain, distribution 120
sheep, quick liquidation 274
Loco-
plants, destructive to sheep 263
weeds, distribution on ranges 400, 402 400, 402
Logs, imports 1098
London, price of wool as control of world prices
London, price of wool as control of world prices 292 292
Long, L. E., part in article on "Sugar". 151
Louisiana-
cane-
acreage, production and sugar yield 844
and cane products, production 156
dairy cows feeding, details and results 412
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061 1059, 1061
sugar-
industry, development and magnitude 154-156
production 1866-1923 845
Louisville, prices of tobacco, 1907-1923 873
Luedtie, C. L., study of wheat situation 95
Lumber-
1105-1106, 1118, 1125-1126exports
imports-
and exports, 1907-1923 1081
statistics 1098, 1118 1098, 1118
prices, 1840-1922 and 1913-1923 1087, 1088
production-
by species, 1899-1922 1069-1071
by States, 1870-1922 1063-1067
value-
at mill, by kinds of wood, $1890-1922$ 1086-1087
by States, $1840,1850,1860,1920$ 1068
Lupines, destructive to sheep 264
Macaroni, imports 1117
Machinery, farm, value 1156
Maggots, wool, danger in sheep raising 267
Mahogany, imports 1098, 1134
Maine
Maine 1058, 1060
forest fires, number, damage, area, and causes, 1916-1922
293
293 1109 manufacture of woolens manufacture of woolens
Malt, exports
475-477
Man labor, persons employed per 1,000 acres, comparisons $10971115,1116,1130$
Manila fiber, imports 262
Maple
products-
production 208-210
production and yield per tree 857
sugar and sirup, crop summary, production and farm value, 1921- 1923 1138
Marbut, C. F., aid on maps and estimates 415, 428
Market-
lamb, spring supplies 257
News Service, expansion 28
sheep, seasonal variation 278
Marketing-
barley, by farmers, 1917-1923 704
corn, by farmers, 1917-1923 672
cost for wheat 651
flaxseed, by farmers, 1917-1923 712
hogs, costs 980
lambs, note 247
livestock, freight and other costs 1020
oats, by farmers, 1917-1923 687
rye, by farmers, 1917-1923 642
sheep-
and lambs, problem 289-290
and wool, discussion 275-310
cost items 1010
systems of finishing 261-262
wheat-
by farmers 613
costs, etc 126-128
wool-
discussion 290
methods in United States 293-298
problems 301-303
Markets-
barley, receipts, 1909-1922 704
corn, receipts and shipments 671
European, opening in 1845, effect on sheep industry 238
flour, with prices 632-634
kafir prices and receipts 730
lamb grades 284
oats, receipts and shipments, 1909-1922 689
prairie hay, note 352
sheep-
congestion avoidance 289
functions of four great centers 279-280 279-280
wheat-
in Minnesota, dockage 619
prices, etc 625-631
receipts and shipments, 1909-1923 615
world, survey 20-21
Marl, use for fertilizers, production and value, 1880-1923
Marl, use for fertilizers, production and value, 1880-1923 1186 1186
Marschner, F. J., article on "The utilization of our lands for crops, pasture, and forests" (with others) 415-506
Marsh, C. D., article on-
"Our forage resources" (with others) 311-413
"The sheep industry" (with others) $229-310$
Maryland, forest fires, number, damage, area, and causes, 1916-1922_ 1059, 1060
Massachusetts-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
manufacture of woolens 293.
sheep introduction 234
Mauritius, sugar production 851 851
McAtee, W. L., aid, note 415
McCrory, S. J., aid on maps 415
McKay, A. W., study of wheat situation 95
McLendon, W. E., part in article on "Sugar" 151
Meal, cottonseed- Page.
freight rates 1172
See also Cottonseed meal.
Meals, feed, prices, 1910-1923 1154, 1155, 1156
Mealybug, sugar-cane-destruction method
181
occurrence, damage and spread 180-181
Meat-
animals-
prices, index number, by months 1193-1194
slaughter under inspection, 1907-1923 1012
condemnation under inspection, 1907-1923 1012
exports, 1920, discussion 456-457
markets, extension 38
packing, refrigeration space 1145
products, statistics 1012
situation-
monthly 906-907
pork and pork products 967-976
trade, international, by countries 1017-1018
Meats-
classes and grades 32
cold-storage holdings by months, 1917-1923 1018
consumption, total and per capita, 1907-1923 1014
exports 86-87, 1017, 1103-1104, 1112, 1120
imports 1017, 1096
market supply, by months 1015-1017
prices at principal markets, monthly 1018-1020
statistics 86-87, 1012-1020
Memphis, prices of cottonseed meal 1154
Merino sheep-
characteristics 234
fitness for semiarid regions 232
note 241
purebred, note 244
Meteorology, statistics, by States and by months 1199-1222
Mexico, sugar production 850
Michigan-
beet production, cost per acre 196, 198
beets and sugar production 156
farm area in crops and pasture, per cent 407
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
lands adapted to sheep raising 238
Middlings, price at Minneapolis, 1916-1923 1154
Mildew, downy, cane disease, note 177
Milk-
condensed-exports1103
trade, international, by countries, 1909-1922 912
prices, retail and wholesale, principal cities 913-916
production and uses, statistics 910-912
Milkweeds-
danger to sheep 264
poisonous, distribution on ranges 400, 401
Mills, beet-sugar, number and output 158
Milwaukee, barley receipts, 1909-1922 704
Minneapolis-
flaxseed receipts, 1910-1923 712
prices of -
bran, etc., 1916-1923 1153-1154
bread, 1913-1923 633
buckwheat 728
corn 676
flaxiseed, 1899-1923 715
flour 632
oats 695
wheat 625-626, 629
Minnesota- Page.
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
pastures, rental value and costs, notes 407-411
wheat production, cost 123
Mississippi-
cane and sirup production 156
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
Missouri-
forest fires, number, damage, area, and causes, 1916 -1922 1059, 1061
wheat production, cost 123
Molasses-
beet-
laxative action on stock 211
treatment and uses 202
blackstrap, nature, use for stock feed, etc 211
cane, constipating action of stock 211
imports 211, 1102, 1111, 1115, 1116
production in Louisiana, 1911-1923 844
sources and utilization 210-211
Money, exchange rates at New York, 1912-1923 1164
Montana-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
pastures, rental value and costs, notes 407-410
sheep raising-
cost factors 270
note 252
Morse, W. J., aid on forage article, note 311
Mortgages-
debts on owner-operated farms 1157
farm, in wheat regions 120
Mosaic disease-
damage to cane 178, 179
introduction and spread in cane 179
Motion pictures, work of Department 52-53
Mountain regions, value for sheep raising 24, 249-250
Mowers, prices, 1913-1923 652
Mules-
exports 1103
foreign countries, numbers 1031-1036
number and value
on farms, 1867-1924 1024
on farms by States 1025
prices, by ages, 1894-1924 1029
production on farms, number and value 1010
See also Horses.
Mushrooms, Canned, imports 1102
Mustard, imports 1102
Mutton-
cold storage holdings, monthly, 1916-1923 999-1000
consumption, total and per capita, 1907-1923 1014
demand-
for, effect on sheep industry 238
increase and value 275-276
exports, monthly, 1909-1923 1000
food use, prejudice and its causes 276-277
foreign countries, net exports and imports, 1909-1922 1001
frozen, exportation, note 233
keeping fresh 276
New Zealand production 232
production-
and per cent of all meats, 1907-1923 1013
cost, discussion 269-274
sheep breeds, supply from England 234
use
277
increase after 1870
per capita 229, 282-283
National Forest Reservation Commission, expenditures Page.
Naval stores, exports 80, 83
Nebraska-
beets and sugar production 156
dairy cows, feeding details and results 412
experiment in sheep feeding 274
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
wheat production, cost 123
Negroes-
extension agents, number 52
farm operators, shifting tendency, comparison with white tenants 593
farmers, periodicals received, number and classes 579-580
land owners, location 518
migration from southern farms 11
tenant farmers, number in South 517
Nematode, sugar-beet, cause of wilt 191
Netherlands-
eggs, exports and imports 1046
forests, growth comparisons 474
meats, exports and imports 971-972, 1017
opening to pork shipments 38
pastures, acreage and value 470-472
sugar beets, acreage and production 848-849
Nevada
1059, 1061
1059, 1061 256
forest fires number, damage, area, and causes, 1916-1922
forest fires number, damage, area, and causes, 1916-1922
New-
Hampshire -
farm area in crops and pasture, per cent 407
forest fires, number, damage, area, and causes, 1916-1922-. 1058 060
manufacture of woolens 293
Jersey -
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
manufacture of woolens 293
Mexico-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
sheep-
industry, early days, note 238
raising, cost factors 270
remarks 255-256
wool, fleece, increase in weight 295
Orleans, prices of rice 724
York-
forest fires, number, damage area, and causes, 1916-1922 1058-1060
labor, man and animal, per 1,000 acres crop land 475, 476
manufacture of woolens 293
maple products 209
market for sheep and lambs 262
prices of -
bread, 1913-1923 634
flour 633
linseed oil meal 1154
rice 723
wheat 628
western, importance of sheep raising 248
Zealand-
animal units, ratio to population 322
beef, exports and imports, 1909-1922 909
meats, exports and imports 1017
production of sheep and mutton 232-233
sheep production 230, 231
wool exports, note 292
News, market, service expansion 28
Newton, R. W., study of wheat situation 95
Nodular worms, danger in sheep raising 268
$\mathbf{8 5 8 1 3}{ }^{\circ}$ - YBK 1923— $\mathbf{8 0}$
North Carolina Page.
dairy cows, feeding, details and results 412
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
North Dakota-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
labor, man and animal, per 1,000 acres crop land 475, 476
wheat, production cost 123
Norway-
forest products, consumption, comparisons 483
meats, exports and imports 1018
poultry, exports and imports 1042
Nursery stock, imports 1100, 1111
Nuts-
exports 1109, 1111
imports 1100, 1111, 1114, 1117, 1131
Oakley, R. A., article on "Our forage resources" (with others) 311-413
Oatmeal, exports 1108
Oats-
acreage, increase and decrease, maps 137
condition and yield, 1866-1923 683
crop summary, production and farm value, 1921-1923 1137
exports 1108
feed-
use and value 344-345
value, etc., 1919 334, 335, 337
freight rates inland 1167
grading in cases by licensed inspectors 690
importance as feed crop 342
imports and exports, 1907-1923 692
marketing by farmers, 1917-1923 687
markets, receipts and shipments, 1909-1922 689
prices-
on farm, 1908-1923 692-693
per pound in terms of yellow corn 695
weighted average, 1899-1923 694-695
production and farm value, by States 681
seed to sow acre 1140
statistics-
acreage, production, and exports, 1915-1923 84, 85, 86
production, value, prices, markets, etc 679-695, 1108, 1137, 1149
straw, feed value, etc., 1919 339
supplies-
on farm and quality, 1897-1923 688
visible, 1909-1923 688
trade international, 1910-1923 691
use in fattening sheep 262
weight per bushel, 1902-1923 1141
world crop, production and yield 684-687
yield, European countries comparisons 467
yield per acre by States, 1908-1923 682
Ocean freight rates on wheat 112
Ohio-
beets and sugar production 156
farm area in crops and pasture, per cent 407
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
lands adapted to sheep raising 238
pastures, rental value and costs, notes 407-411
rent, cash ratio to land value 547
sheep raising-
272
272 249
costs
costs
wool fleece, increase in weight 295
Oil-
and oil cake, cottonseed, freight rates 1172
cake- imports 1096
trade international 1153
Oil-Continued. cottonseed-
international trade, by countries Page. Page. 813
prices at New YorkSee also Cottonseed oil.
lard compounds, exports 1109
linseed-
price in New York, 1910-1913 716
trade international, 1909-1922 715
meal, linseed, prices 1154, 1155
oleo, exports by countries of destination 930
paving, consumption by wood-treating plants, 1909-1922 1093
peanut, trade international, 1909-1923, by countries 841
Oils-
animal, exports 1104
distilled, imports 1101
vegetable
exports 1109, 1111, 1113, 1114, 1124
exports and imports, 1910-1923 878
imports. 1101, 1111, 1132
Oklahom Oleo-
oil, exports by countries of destination 930
stock, exports 1104, 1120
Oleomargarine -
materials in manufacture, 1915-1923 929
production, 1918-1923 912
production by months, 1909-1923 928-929
statistics 912, 927-929
Olive oil-
imports
1101, 1115, 1132
1101, 1115, 1132
trade international, $1909-1922$ 742
Olives, imports 1098
Olsen, Nils A., study of wheat situation 95
Omaha-
704
barley receipts, 1909-1922
market for sheep, note 278, 280
prices from 676
slaughter of sheep, remarks 281
Onions-
755
755
acreage and production, by States
acreage and production, by States
1138
1138
imports 1102, 1116, 1134
prices-
at 10 markets, 1920-1923 757
farm, 1910-1923 756
shipments, car lot, by States, 1917-1923 756
statistics, acreage, production, etc 84, 85, 755-757,1102, 1116, 1134, 1138
Opium, imports 1115, 1116, 1132
Oranges
California navel, prices, wholesale, at New York, 1908-1923 741-742
crop summary, production and farm value, 1921-1923 1138
cull, utilization, methods 50
Florida, production and value, 1919-1923 743
freight rates 1169
production and value, 1915-1923 739
shipments, car lot, by States, 1918-1923 740
stem-end rot, control 40
Orchard grass-
pasture value 381
seed to sow acre 140
Oregon-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
prevalence of fluke among sheep 268
source of market lambs 279
wool fleece, increase in weight 295
Oxford sheep, purebred, note 244
Pacific Paga.
coast States, humid land crop possibilities 430-431
humid region, pasture conditions 389-390
Northwest, crop acreage, shift 144
Packers and Stockyards Act, administration 53-54
Packing-house products- exports 1104, 1111, 1113
imports 1095-1096
Paine, H. S., part in article on "Sugar" 151
Palm oil, imports 1101
Paper-
exports, 1870-1922 1082
manufacture from bagasse, note 212
newsprint, imports, 1911-1922 1083
production and consumption, 1810-1922 1078, 1080
Paraguay, sugar production 851
Parasites-
animal, control work 40
danger in sheep raising 266-269
sugar-cane moth borer, preservation 180
Pasturage
acreage, classes, and value 365-413
importance-
Northern humid region 384-385
Southern humid region 389 389
Pasture
acreage-decrease per capita437-439, 443
European countries 470-472
per capita, France, Germany, and United States 498
present estimates and capacity 419-420 419-420
area requirements for producing livestock 459-460
condition, by months, 1866-1923 835
grasses in-
humid regions 379-381, 388, 390
Western range region. 391
humid- 460
livestock production requirements
491
491
per 100 acres of crops, comparisons
per 100 acres of crops, comparisons 470
importance on dairy and cattle farms 411-412
kinds, classification and description 370, 372-377 370, 372-377
land- 383
carrying capacity
carrying capacity utilization, with crops and forests 415-506
regions, location and description 377-406
Pastures-
acres per animal unit, comparisons 471
area of United States, note 312
areas in United States 311
carrying capacity, comparisons 469-473
classes, areas in farms and not in farms 366
farm-
economic importance 406-412
improved, acreage and capacity 420 420
improved and unimproved, areas and capacity 366, 368-369 366, 368-369
grazing capacity improvement, need 472-473
humid Northern, carrying capacity 383, 384 383, 384
injury by herding of sheep 260 260
permanent, description and composition 370, 372-374
rental value and costs in several States 407-411 407-411
rotation or short-lay, description 370, 374
source of parasites in sheep 269 269
tame, grazing 370, 376-377 370, 376-377
unimproved, acreage and capacity 419 419 419
Pastures-Continued. Page.
value in United States 413
wild, grazing 370, 377
Pea, field, feed value, etc., 1919 337
Peaches-
crop-
condition, by months, 1868-1923 746
summary, production and farm value, 1921-1923 1138
prices-
748
748
at 10 markets, 1921-1923
at 10 markets, 1921-1923 747
production, 1890-1923 745
shipment, carlots, by States, 1917-1923 746-747
statistics-
production, etc 85, 745-748, 1138
Peanut oil, trade, international, 1909-1923, by countries 841
Peanuts-
crop summary, production and farm value, 1921-1923 1138
feed-
use and value 362
value, etc., 1919 334, 337
importance as feed crop 342
imports 1100,1131
prices, farm and market, by months 839
seed to sow acre 1140
statistics, acreage, production, value, etc-.- 84, 85, 839-841, 1100, 1131, 1138
straw, feed value, etc., 1919 339
trade, international, by countries 840
use in oil production, 1919-1923 840
Pears-
crop-
condition, by months, 1908-1923 749
summary, production, and farm value, 1921-1923 1138
exports 1107
prices, farm, by months, 1910-1923 750
production-
and prices, by States, 1919-1923 749
statistics for 1909-1923 748
shipments, carlot, by States, 1917-1922 750
statistics-
production, 1915-1923 85
production, prices, etc 748-750, 1107, 1138
Peas-
canned, production, by States 758
cannery refuse, feed value, etc., 1919 340
canning, importance as feed crop 342
field-
feed use and value 363
feed value, etc., 1919 339
importance as feed crop 342
See also Cowpeas.
Peat, use for fertilizer, production and value, by States 1184-1185
Pennsylvania
farm area in crops and pasture, per cent 407
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
manufacture of woolens 293
Pepper, imports 1102, 1133
Periodicals, number and types taken by landlords and tenants 579-580
Péru, sugar production 851
Pests, animal, control work 44-45
Philadelphia, wool market, note 294
Philippine- Page. 49-50Bureau of Agriculture, fiber investigationsIslands-
cane and sugar production 156, 160
meats, exports and imports 1018
sugar production 156, 160, 851
sugar production, 1866-1923 845
Phoma, cause of beet root-rot 191
Phosphate rock production and value, by States, 1891-1922 1179-1184, 1186
Phosphates, fertilizer material, prices, wholesale 1190
Pickles, imports 1102
Pieters, A. J., aid on forage article, note 311
Pig surveys, reports 22-23
Pigs-
litter numbers, by States 948-949
See also Hogs.
Pine- 43
yellow prices, 1913-1923 1088
Pineapples, imports 1098
Piper, C. V.-
article on "Our forage resources" (with others) 311-413
note 415
Plantation-
region, number of organization, crops, etc 530
tenancy, development 529-530
Planters, etc., numbers and value 1156
Planting, cane, date, operations, practices, etc 165-168
Plants, poisonous, on ranges, eradication 400-402
Plow lands, value per acre by States, 1916-1924 1146-1147
Plows, number and value 1156
Plums, freight rates 1170
Poison, use against animal pests 44-45
Poisoning rodents on ranges 400
Poisonous plants-
destructive to sheep, discussion 263
on ranges, eradication 400-402
Poland-
sugar beets, acreage and production 848-849
sugar production 850
Pools, wool, marketing method 294
Population-
agricultural limits of our resources 497-500
farm and city, per cent, by age groups 13
growth, estimation 461
increase, relation to land requirements 461-463
ratio to crop production 463
shift from country to city, causes 121-122
Pork-
cold storage holdings, monthly 1916-1923 967
consumption, total and per capita, 1907-1923 1014
exports-
968
968 1113
by months, 1910-1923
by months, 1910-1923
prices, wholesale and retail, 1913-1923 965
production-
and per cent of all meats, 1907-1923 1013
relation to corn 327
products-
exports by countries of destination, 1909-1923 969-971
foreign countries, net exports and imports 971-972
prices at Chicago, 1913-1923 965
967-976, 1013, 1103, 1112, 1113
trade, foreign, improvement 38
use as food, per capita
Portland, Oreg., wool market 294
Porto Rico- Page.
cane and cane products, production 156, 160
farm products, shipments to and from United States 1118-1119
sugar production 850
sugar production, 1866-1923 845
Potatoes-
crop-
condition and yield, by States, 1866-1923 762
summary, production and farm value, 1921-1923 1137
exports, statistics 759, 1110
feed-
use and value 364
value, etc., 1919 340
importance as feed crop 342
prices, farm and market 770-773
production and value, by States, 1921-1923 760
rotation with beets, caution 186
seed to sow acre 1140
shipments, car-lot, by States 766-769
statistics, acreage, production, etc 84, 85, 759-778, 1110
stocks on hand 765-766sweet. See Sweet potatoes.
trade, international, by countries 770
world, crop acreage and production, by countries 763-764
yield-
by States 761
reduction and causes, 1909-1922
reduction and causes, 1909-1922 762 762
yields, European countries, comparisons 467
Poultry
cold storage holdings, monthly, 1917-1923 1039
dressed, market receipts and origin, monthly 1039-1041
foreign countries, numbers by kinds 1037-1039
number and value on farms, 1919-1924 1036
statistics 1036-1043
trade, international, by countries 1042
See also Chickens; Ducks; Geese; Turkeys.
Prairie-
dogs, distribution and control 399, 400
hay. See Hay, prairie.
Precipitation-
annual, by States 132
statistics by months and by States 1211-1222
Predatory animals, danger in sheep raising 265-266
Preservatives, wood-
consumption, 1909-1922 1093
treated by, 1909-1922 1091-1092
Prices-
barley-
on farm, 1908-1923 705, 707
weighted for 1909-1923 at Minneapolis 709
beet, fixing method 200-201
brans-
at Minneapolis 1153
statistics for 1910-1923 790
bread, 1913-1923 634-635
buckwheat, on farm and markets 727-728
butter, retail, wholesale and export, by months 921-923, 927
calves on farm, 1910-1923 892, 893
cattle-
by ages, 1894-1924 890
on farm by months, 1910-1923 892, 893
chickens, on farm, by months, 1910-1923 1043
coffee, wholesale, at New York, 1890-1923 875
corn, farm and trade 674-679
cowpeas, 1915-1923 794
crops and meat animals, index number, by months 1193-1194
eggs, farm and market, 1910-1923 1047-1048
estimates for corn 655
Prices-Continued. Page.
export and import 1028
farm-
products, changes 3-4
products, wholesale, index numbers, by months, 1913-1923_ 1192-1193
farmers' supplies 1150-1152
feed, bran, and meals 1150-1156
fertilizer materials 1189-1190
flaxseed, farm and market 714-715
flour, 1909-1923 632-634
hay, farm and market, by States 829-835
hogs-
at principal markets, monthly 961-964
estimates 656
on farm, monthly, by States 960
hops, 1913-1923 838
horses and mules by ages 1029
on farms, monthly, by States 1020
on farms, monthly, 1910-1920 1029
kafir, farm and market 730
lard 656
linseed oil in New York, 1910-1923 716
living cost and wages, index number, 1913-1924 1194
market, of sheep and lambs 282-289
milk-
cows, by months, 1910-1923 891
retail and wholesale in principal cities 913-916
oats-
on farms, 1908-1923 692-693
weighted average, 1899-1923 694-695
peanuts, 1910-1923 839
pork products at Chicago, 1913-1923 965
rice on farm and market 722-724
rye-
farm and trade, 1909-1923 645
on farms, 1908-1923 644
seeds, clover, timothy, and alfalfa, monthly, 1912-1923 861-865
sheep-
abnormal variation 288
and wool decline, 1870-1896 239
monthly and by States 992-998
relation to prices of wool 283
seasonal variations 287-288
sugar
fluctuations, causes, etc 219-221
monthly, 1890-1923 854-855
relation to production 226-227
tea, wholesale, at New York, 1890-1923 876
tobacco, farm and market 871, 873
turkeys, on farm, monthly, 1912-1923 1943
variation notes 238
wheat
by months 654-655
comparison with cost of production 122, 123
effect of tariff 115-118
factors, etc 652-655
factors in making 653
flour, and bread, 1913-1914, 1922-1923 109
fluctuation and outlook 95-98
statistics for 1908-1923 624-631
wool-
discussions 298-301
establishment 292
farm and market monthly, 1910-1923 1004-1008
in United States, notes 237
relation to production and imports 299
relationships 302
Prunes, dried, exports 1107, 1122
Publications- Page.
Agriculture Department, 1923 88-93
Division, change in organization 39
Pulp wood-
consumption, 1869-1922 1080
imports 1099
imports, 1907-1923 1081
prices, by species, 1899-1922 1091
Purebred livestock. See Livestock.
Pyrethrum flowers, imports 1097
Pyrites, fertilizer, production, price, and value, by States 1177-1179, 1186
Rabbits, jack, distribution and control 399, 400
Radio-
broadcasting weather report 45-46
news service, value 28-29
Railroads, land-leasing practices 525-526
Rainfall, Africa, South, notes 233, 234
Raisins, imports 1098-1116
Rambouillet-
ram, picture 241
sheep, purebred, note 244
Rams, purebred, pictures 242-243
Range-
land, carrying capacity 383, 395-396, 404
open, stabilization methods 405
region, Western, pasture composition and capacity 390-396
sheep management, remarks 251-261
use, regulation need 68-71
Western-
grazing methods, improvement 396-402
grazing season area, map 392-395
wool, marketing method 294
yearlong, condition in Western pasture region 393
Ranges- 419-420
carrying capacity
71
71
forest, management
forest, management
399-402
399-402
protection against rodents and poisonous plants
protection against rodents and poisonous plants 269-271
Rapeseed oil, imports 1101
Rations, annual, table of Wisconsin station 332
"Ratoon" cane crops, nature and practices 164-165
Rats, control work 45
Rattan, imports 1099
Redtop, distribution and value 380, 381
Reforestation, necessity 63, 64, 66-67
Refrigeration, space reported, October 1, 1923 1145
Regulatory work director, duties 38
Reynoldson, L. A., study of wheat situation 95
Rent
cash-
per acre in Corn Belt 546
ratio to value of land 545-547
market, development, causes, etc 522-269
Research, scientific, results 39-41
Reunion, sugar production 851
Rhode Island-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
manufacture of woolens 293
Rice-
condition of crop and yield, 1894-1923 717
crop summary, production and farm value, 1921-1923 1137
exports 1108
feed-
use and value 364
value, etc., 1919 334
importance as feed crop 342
imports 1096, 1115, 1131
Rice-Continued.
prices- Page.
on farm, 1908-1923 722
wholesale, 1900-1923 723-724
production, value, exports, etc_ 716-717
seed to sow acre 1140
statistics-
\quad acreage and production, 1915-192384, 85
production, value, distribution, prices, etc 715-724, 1108, 1137
straw, feed value, etc., 1919 339
trade international, 1909-1922 722
world crop, production and yield 718-721
yield per acre 717, 718
Richmond, prices of tobacco, 1907-1923 873
Road work, wages paid per hour, 1915-1923 1197
Roads-
expenditures, 1923 80, 83
Federal-aid-
maintenance expenditures, 1922, by States 1197
mileage completed and under construction 47-48
projects completed and under way, by States 1195-1196
projects completed, by types 1196
forest, construction, 1923 1058
investigations at Arlington Experiment Farm 41
land occupied 418-431
mileage prior to passage of Federal highway act 48
State systems, analysis results 48
See also Highways.
Rock, phosphate, production and value, by States 1179-1184
Rocky Mountains, agricultural region and its products 331
Rodents, elimination on ranges 399-400
Root-
crops-
feed use and value 365
feed value, etc., 1919 340
production and use 339-340
disease, damage to cane 179
lice, beet, occurrence 192
Root-rot, beet disease, occurrence and control 191
Roots-
importance as feed crop 342
imports 1097
Rosin-
exports 1105, 1118, 1125
international trade, 1909-1913, 1920-1922 1085
prices, New York, 1890-1923 1090
production, 1910-1923 1085
stocks, United States, 1919-1923 1084
Rot, stem-end, of citrus fruits, prevention 40Rotation-
beet lands, practices 186-187
cane plantations, practices 169
Rubber-
imports 1098, 1118, 1134
international trade, 1909-1913, and 1920-1922 1086
Para Island, prices, 1890-1923 1089
plant, Colorado, danger to sheep 264
production possibilities, studies 49
Rum, manufacture from molasses, note 211
$\underset{\text { sugar- }}{\text { Rumania- }}$
beets, acreage and production 848-849
production 850
Rupee, exchange rates in New York, 1912-1923 1164
Russia-
1018
1018 971-972
meats, exports and imports
meats, exports and imports
Russia-Continued.
sheep- Page.
growing, remarks 234
production 230, 231
sugar-
848-849
beets, acreage and production 850
wheat exports 99
Rust-
cane, note
cane, note 177 177
white-pine blister, field surveys
43
43
Rye-
condition of crop, 1866-1923 639
crop summary, production and farm value, 1921-1923 1137
exports 1108
feed-
use and value 358
value, etc., 1919 334, 335
importance as feed crop 342
marketing by farmers, 1917-1923 642
markets, receipts and trade in 643-644
prices on farm-
by States, 1908-1923 645
statistics, 1908-1923 644
production-
and farm value, by States 637
value and exports, 1869-1923 636
value, prices, etc 636-642
seed to sow acre 1140
statistics-
acreage, production, and exports, 1915-1923 84, 85, 86, 1108, 1137
production and distribution 636-645
straw, feed value, etc., 1919 339
trade international 644
world-
production 99
production and yield 640-642
yield per acre, by States, 1908-1923 638
yields European countries, comparisons 467
Saccharum officinarum. See Cane.
Galary classification 76
Salt, distribution on ranges 398
Sanders, J. T., article on "Farm ownership and tenancy" (with others). 507-60 -600
Sausage-casings-
exports 1104
imports 1096
exports 1104
Scab-
control of infection in sheep 266-267
eradication by dipping 267
potato, danger to beets 186
sheep, losses by 266
Scabies. See Scab.
Schoenfeld, W. A., study of wheat situation 95
Scientific work, Director, duties 38
Sicotland, labor, man and animal, per 1,000 acres crop land 475,476
Screw worm, danger in sheep raising 267
Secretary, Agriculture-
report for 1923 1-93
report on the wheat situation 95-150
See also Agriculture, Secretary.Seed-
alfalfa. See Alfalfa seed; Seeds.cane, harvesting, planting, etc., labor requirements167-168

1270 Yearbook of the Department of Agriculture, 1923.

Seed-Continued.
clover- Page.
statistics, acreage and production 84, 85
See also Clover seed; Seeds.
sugar-beet-
domestic production, advantages. 187-188
production processes 187-188
timothy. See Timothy seed. wheat, need per bushel produced 646
See also Wheat, seed.
Seed-cane-
banked, injury from disease 179
requirements per acre 179
Seed-grain loans, distribution 120
Seeding ranges with tame-pasture plants 398-399
Seedling pastures, grazing 374
Seeds-
exports 1109, 1111
field, prices to growers, by States 862
forage crops, statistics 858-865
imports 1101, 1111, 1133
requirements per acre of several crops 1140
Semple, E. C., aid on forage article, note 311
Sereh, cane disease, note 177 177
Sheep-
for improvement 244-246
notes 254-255
breeds, improvement 241-246
carcasses, condemnation under inspection; 1907-1923 1012
cross-bred, remarks 245
decrease factors 241
dipping for eradication of scab 267
distribution in world 230-234
Experiment Station in Idaho; remarks 245
exports, 1895-1923 991
fattening in Corn Belt 240
feed, value of beet pulp 211, 212
feeder, shipments discussion 280-281
feeding for market, note 238
flocks, increase in size, note 236
foreign countries, numbers 1031-1036
freight rates 1174
grade factors and prices 283
grazing
improved methods 397
with cattle 260
growing-
development in United States 234-241
factors influencing 232
herd sizes, notes 260
herding injury to pasture 260
importance of industry, article by D. A. Spencer and others 229-310
imports, 1895-1923 991
industry-
financing, discussion 274-275
outlook, discussion 306-310
types 308
introduction into United States 234-235
investment in range management 253
losses-
annually, estimate 264
from diseases and exposure, 1889-1924 981
from poisonous plants 400
from scab 266
from wild animals 266
in raising, discussion 263-269
Sheep-Continued.
management- Page.
as farm flocks 246-251
on range 251-261
systems, discussion 246-262
market receipts 983-990
marketing
costs, items 1010
discussion 275-310
problems 289
systems of finishing 261-262
number-
and value on farms, 1867-1924 981
and value on farms, by States 982
decrease 5
grazed in National Forests 403
grazing in National Forests 1062
in United States, 1846 237
in United States in 1910 235
numbers in-
producing countries 230
relation to population and wool imports 304
pasturing on corn- 260, 261
price decline, 1870-1896 239
prices-
abnormal variation 288
at Chicago, 1893-1923 285-286
differential from prices of lamb 288-289
in relation to price of wool 283
monthly and by States. 992-998
seasonal variations 287-288
production on farms, number and value 1010
prospects for raising in Eastern United States 309-310
purebred-
freight and express rates 1175
increase, discussion 244-246
raising
as affected by Civil War 239
course of industry since World War 240-241
relation to Civil War 238
ranges for control features 253
ratio to population 326
receipts at stockyards 277-279
relation to grazing lands, note 327
shipments-
percentage crippled and dead 1009
principal markets, 1900-1923 983, 987-989
shrinkage in shipment 1008
slaughter-
at stockyards, 1915-1923 986-989
leading markets 281-282
under inspection, 1907-1923 1012
under inspection, monthly, 1907-1923 999-1000
statistics 981-1012, $1031-1036$
stockyard-
receipts, monthly, 1915-1923 984
receipts, slaughter, and shipments 1010
supplies available, variation 282
weight, live and dressed, by months 1015
Sheeping-down corn, remarks 260, 261
Sheepskins, imports, 1909-1923
Sheepskins, imports, 1909-1923 1023 1023
See also Hides.
Sheets, E. W., article on "Our forage resources" (with others) 311-413
Shellac, imports 1098, 1118
Shepard, Ward, article on "Utilization of lands for crops, pasture and forests" (with others) 415-506
Sherwood, S. F., article on "Sugar" (with others) 151-228
Shingles- Paga
imports 1098
production, by States, 1870-1922 1072-1076
Shipping-point, inspection service 29-31
Shooks, exports 1105Shrinkage-
catṭle in shipment 942
hogs in shipment 977
sheep in shipment 1008
Shropshire ram, picture 242
Silage
beet tops, value and use as feed 212
corn, feed value, etc., 1919 340
production and use 339-340
Silk-
foreign countries, production, 1909-1922 1049
prices, monthly, 1890-1923 1049
raw, imports 1127
statistics, 1890-1923 1049
Sirup-
cane-
crystallization, prevention method 183-184
manufacture, improvement 50
manufacture, processes 183-184
production, by States 158, 855
exports 1110
maple-
farm prices, by months 858
production 208-210
production and yield per tree, by States 857
production from sorgo and maple 206-210
sorghum
production and prices, by States 856
production, 1915-1923 85
sorgo-
production distribution 207
production, 1859-1919 207-208
Sisal, imports 1097, 1115, 1116, 1130
Skins-
exports 1104
imports-
by kinds, 1909-1923 1022-1023
statistics $1094,1095,1117,1128,1129$
statistics 1021-1023
See also Hides.
Slaughter
cattle, under inspection, monthly 905hogs-
at stockyards 953-954
under inspection, 1907-1923 966
livestock, inspection by Federal Government 281
meat animals under inspection, 1907-1923 1012
sheep, under monthly inspection, 1907-1923 999-1000
Smut-
cane, note 177
factor, in wheat cost 129
Sneezeweed, danger to sheep 264
Soda nitrate for farmers, expenditure by Government 81, 82
Soils-
beet growing, nature and location 185-186
colloidal material, studies 40
sugar-cane, nature and requirements 161-162
Sorghum -
fodder, feed value, etc., 1919 337
grain-
feed value, etc., 1919334, 335
statistics, acreage, and production, 1915-1923 84, 85
silage, feed value, etc., 1919 340
Sorghum-Continued.
sirup- Page.acreage and sirup yield, by States856
crop summary, production and farm value, 1921-1923 1138
stover, feed value, etc., 1919 339
sweet, acreage, 1915-1923 84
Sorghums-
353-355
353-355
feed use and value
feed use and value
729
condition and yield 729
harvesting, method 354
importance as feed crop 355
varieties in use 353
Sorgo sirup, production 1859-1919 207-208
South-
Africa-
meats, exports and imports 1018
sugar production 851
Carolina-
cane and sirup production 156
forest fires, number, damage, area, and causes, 1916-1922
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060 1059, 1060
labor, man and animal, per 1,000 acres crop land 475, 476
Dakota-
forest fires, number, damage, area, and causes, 1916-1922_ _ 1059-1061
pastures, rental value and costs, notes 407-410
wheat production cost 123
farms operated by white and by colored owners 218
plantation region, units, crops, etc 530
tenant farms, number operated by white and by colored tenants 517
Southdown sheep, purebred, note 245
Southern humid region, pasture lands, composition and capacity 386-389
Sows, number farrowing, by States 948-949
Soybean oil, imports 1101, 1132
Soybeans-
acreage, yield and production, by States 792
feed-
use and value 363
value, etc., 1919 334, 337
importance as feed crop 342
prices, by months 791
seed requirement for acre 1140
Spain-
meats, exports and imports, 1918 1018
sheep growing, remarks 234
silk production, 1909-1922 1049
sugar-
beets, acreage and production 848-849
production 849, 851 849, 851
Sparhawk, W. N., aid-
on estimates 415
on forage article 311
Spencer, D. A., article on "The sheep industry", (with others) 229-310
Spices, imports 1101, 1111, 1133
Spilliman, W. J.-
aid on forage article, note 311
article on "Farm ownership and tenancy" (with others) 507-600
Spelt-
feed-
use and value 365
value, etc., 1919 334
importance as feed crop 342
Spring wheat. See Wheat.
Squirrels, ground, distribution and control 399, 400
St. Louis-
prices- Page.
flour 632
corn 676, 678
wheat 627, 629
wool market 294
Standards-
cotton, international agreement 33
farm products, general use 31-32
Starch, exports 1110,1111
Statistics-
agricultural, introduction to tables 601
comparative, of livestock and population by States, 1920 321
crops, farm animals, exports and imports 601
forestry and forest products 1050-1093
grains and other staple crops, and domestic animals, with introduc- tion to tables 601-1094
tables, with explanation of make up 601-1222
"Stecklinge," use of term 187
Steere, L. V., study of wheat situation 95
Sterling pound, exchange rates in New York, 1912-1923 1164
Stevens, F. C., article on "Sugar" (with others) 151-228
Stewart, Charles L., article on "Farm ownership and tenancy" (with others) 507-600
Stine, O. C.-
article on "The sheep industry," (with others) 229-310
study of wheat situation
95
95
Stock grazing, exemption limits on owners 404
See also Livestock.
Stockyards-
receipts of sheep and lambs 277-279
supervision 54
Stomach worms, danger in sheep raising 268
Storage
beef, holdings by months, 1916-1923 906
butter, holdings monthly, 1916-1923 920
cheese, holdings 1916-1923 925-926
egg holdings, monthly, 1916-1923 1045
lard holdings, monthly, 1916-1923 968
meat holdings, monthly, 1917-1923 1018
mutton holdings, monthly, 1916-1923 999-1000
pork holdings, monthly, 1916-1923 967
poultry holdings, monthly, 1917-1923 1039
wheat, suggestions 129
Stover, production and use 338-339
Straw, production and use 338-339
Strawberries-
prices at 10 markets, 1921-1923 751
shipments, car lot, by States, 1917-1923 750
cane crops, nature and practices 164-165
pastures, grazing
pastures, grazing 374 374
Sucrose, production from sorgo and maple 206-210
Sugar
article by E. W. Brandes (with others) 151-228
beet-
foreign countries, production 849-850
production and length of campaigns, by States, 1919-1923 843
production, by States 156
production, 1866-1923 845-486
production, 1909-1923 849
beets-
crop summary, production and farm value, 1921-1923 1138
importance in feed crop 342
seed to sow acre 1140
See also Beets; Beets, sugar.
Sugar-Continued.
cane Page.
factories, and output in Louisiana 844
foreign countries, production 850-851
importance as feed crop 342
production, 1820-1923 157
production, 1866-1923 845-846
production, 1909-1923 850
production, by States 156
yield, Hawaii 844
See also Cane.trade and consumption, 1866-1923845-846
zone of production, shift from beet sugar, etc 213-216
consumption-
and per cent supplies by United States 847
per capita 151
total and per capita 151-154
total and per capita, 1866-1923 846
duties on imports by various countries 223-226
exporting countries, principal 215-216
exports 1110, 1111, 1113
food value, consumption, etc 151-152
foreign countries, exports and imports 853
imports-
and exports 218-219
statistics $1102,1111,1115,1116,1133$
industry-
development, historical notes 154-158
outlook 226-228
legislation 1789-1922 221-226
manufacture-
by-products 210-213
from beets, processes 201-203
from sugar cane, processes 181-183
maple-
farm prices by months 858
production and yield per tree, by States 857
prices-
and consumption 219-221
monthly, 1890-1923 854-855
production-
consumption, exports and imports, 1866-1923 846
distribution of 213-216
in Hawaii, by islands, 1913-1923 844
increase, fluctuation, etc 213-219
trade and consumption, 1866-1923 845-846
statistics-
exports, 1915-1923 86
production, etc $843,858,1102,1110,1111,1113,1115,1116,1133$
supply, sources 216-218
trade, international by countries 853
world prcduction-
and movement. 212-219
statistics, 1895-1923 852
yield per acre, 1895-1922, Louisiana and Java 204
Sugars, "rare," manufacture in United States 210
Swarthout, A. V., study of wheat situation 95
Sweden-
eggs, exports and imports 1046
meats, exports and imports 1017
pork products, net exports, 1909-1922 971-972
poultry, exports and imports 1042
sugar-
beets, acreage and production 848-849
production 849
Sweet potato plants, number to acre. 1140
$\dagger 85813^{\circ}$ - $\mathrm{YBK} 1923-81$
Sweet potatoes- 774
acreage, production, and value, by States
crop-
condition and yield, 1860-1923 775
summary, production and farm value, 1921-1923 1137
feed-
use and value 364
value, etc., 1919 340
importance as feed crop 342
plants, number to acre 1140
prices, farm and market 776-778
production and value, 1849-1923 773
shipments, car lot, by States, 1917-1922 775
statistics, acreage, production, etc 137
yield, by States 774
Swine-
freight rates 1173
purebred, freight and express rates 1176
See also-Hogs.
Switzerland-
eggy, exports and imports 1046
meats, exports and imperts 1018 1018
pork produets, net imports, 1909-1922 971 1 972
poultry, exports and imports 1042
sugar-
beets, acreage and production 848-849
production 849
Tallow, experts 1104
Tame pastures, grazing 370, $378-377$
Tanning extracts, imports 1097, 1111
Tapeworm, danger in sheep raising 269
Tariff-
Board, studies of sheep industry, remarks 269
effect on wheat prices 115-118
relation to prices of wool 299
sugar, legislation, 1789-1922 221-226
wool-
classifications, blood and other 305
histery and features 303-306
Taxation, timber lands 66
Taxes-
7-8
7-8
burden on farmers
burden on farmers 658
increase, factor in cost of wheat production 122, 123
land, increase, 1913-1921 657
wheat farms, delinquency 121
Taylor, H. C., study of wheat situation 95
Tea-
Formosa, price, wholesale, at New York, 1890-1923 877
imports 1102, 1111, 1115, 1116; 1133
trade international, by countries, 1909-1922 876
Tedlef, H. R., study of wheat situation 95
Teele, R. P., aid on estimates, note 428
Temperature, statistics by months and by States 1199-1210
Tenancy, farm-
relation to land valuation 539-541
shifting, causes and significance 593-597
Tenants-
contracts with landlords 582-589educational standards.576-579
farm-
classes 568
distribution of various elasses 515-522
increase, 1910-1920 514
loss of property, causes 9 9
organization, note 509-600
percentage of different classes 509
Tenants-Continued.
farm-Continued. Page.
progress to ownership, stages, factors, etc 547-569
wealth per capita 548
periodicals received, number and classes 579-580
Tennessee -
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
sheep raising 249
Tenure-
farm-
beet farming 200
relation to shift of operators 589-599
steps to ownership 547-548
ladder-
movement upward, rate 556-569
stages to ownership 547-556
types, relation to efficiency in farming 569-576
Texas-
cane and cane products 156
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061 1059, 1061
sheep raising- cost factors 270
early days, note 238
Tick, cattle, eradication work by States 933
Ticks, danger in sheep raising 267
Ties, railroad, exports 1105, 1126
Timber-
consumption-
per capita, comparisons 494
reduction 453
depletion, disastrous effects 61-62
exports 1105, 1106, 1118
growing, acreage required at present rate of consumption 455
imports 1098, 1118 1098, 1118
removal annually from forest, uses and waste 1079
requirements, present and future 461, 462
resources, Capper report, note 423
sales-
National Forests 1062
National Forests, receipts, 1923 55
stand-
by species and by regions, 1920 1053 1054-1056
in National Forests
in National Forests
in United States and Alaska 1058
standing-
annual removal, uses, waste, and destruction 485-487
consumption available at various rates of growth 484
supply, increasing scarcity 453
world production and consumption, by countries 1077
Timberland on farms, area by States and regions 1052
Timothy -
feed-
349
use and value
337
value, etc., 1919
342
342
importance as feed crop
1109
1109
farm prices monthly, 1910-1923
farm prices monthly, 1910-1923 861 861
market prices monthly, 1910-1923 864
prices on farm by States 862 865
prices to farmers monthly, 1912-1923
prices to farmers monthly, 1912-1923
receipts and shipments, monthly at Chicago, 1910-1923 859-860
to sow acre 1140 1140
Titles, land, standardization, need 598
Tobacco-
870
870
acreage and yield for nine countries, 1909-1923
acreage and yield for nine countries, 1909-1923
869
869
condition and yield
condition and yield 1137
1278 Yearbook of the Department of Agriculture, 1923.
Tobacco-Continued. Pega.
exports 1110, 1111, 1113, 1125
imports 1102, 1111, 1115, 1134
plants, number to acre 1140
prices-
on farm, 1908-1923 871
wholesale, 1907-1923
wholesale, 1907-1923 873 873
production-
and farm value by States 866-867
value, etc., 1849-1923 865
soils, fertilizer requirements 49
standards, tentative 32
statistics-
acreage and production 84, 85
exports, 1915-1923 87
production, value, prices, markets, etc 84, 85, 87, 865-872
trade international, 1909-1922 872
types and districts, production and farm value 866-867
warehouses, number and capacity 27
world crop, production 870-871
yield per acre, by States, 1908-1923 868
yields, European countries, comparisons 467
Tomatoes-
acreage and production, by States 779
canned, production, 1891-1923, by States 780-782
prices, farm and market, by months 779-780
shipments, car-lot, by States 779
Townsend, C. O., article on "Sugar" (with others) 151-228
Tractors, number and value 1156
Trade, international-
barley, 1910-1923 706
butter, by countries, 1909-1922 920
cheese, by countries, 1909-1922 926
condensed milk, by countries, 1909-1922 912
eggs, by countries, 1909-1922 1046
hides and skins, by countries 1022
meat, by countries 1017-1018
poultry, by countries 1042
rice 722
sugar, by countries 853
wool, by countries, 1909-1922 1004
Trails-
building on ranges 398
forest, construction, 1923 1058
Transportation-
cane, from field to mill, considerations 175-177
farm products 1177
freight rates-
factor in wheat situation 110-113
in farm products 1165-1176
Truck crops-
acreage and production, by kind 783
See also under specific crop name.
Tuberculosis, bovine-
eradication progress 43-44
eradication work, by States 932
Turkeys-
foreign countries, numbers 1037-1039
prices on farm, monthly 1043
Turner, Howard A., article on "Farm ownership and tenancy" (with others) 507-600
Turnips, prices, farm, by months 782
Turpentine-
exports 1105, 1118, 1125
prices, New York, 1890-1923 1089-1090
production, 1910-1923 1085
stocks, United States, 1919-1923 1084
trade, internationał, 1909-1913, 1920-1922 1084
Page.
Unit, animal, definition 419
United Kingdom-
beef exports and imports, 1909-1922 909
eggs, exports and imports 1046
food consumption standards, comparisons 479-480
hay yields, comparisons 467
meats, exports and imports 1018
pork products, net imports, 1909-1922 971-972
poultry, exports and imports 1042
sheep-
growing, favorable factors 234
production 230, 231
sugar beets, acreage and production 848-849
wheat, consumption per capita 99
wool-handling leadership 292
Uruguay-
beef exports and imports, 1909-1922 909
meats, exports and imports 1017
wool exports 292
Utah-
beet production, cost per acre 196, 197
beets and sugar production 156
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
sheep raising- cost factors 270
note 256
Valgren, V. N.-
article on "The sheep industry" (with others) 229-310
study of wheat situation 95
Vanilla beans, imports 1102, 1111
Varnish, gums, imports 1098
Veal-
consumption total and per capita, 1907-1923 1014
production and per cent of all meats, 1907-1923 1013
use as food, per capita 283
Vegetable-
oils, exports and imports, 1910-1923 878
seed-
785-786
imports 783-785
Vegetables-
canned, exports 1110
exports 1110, 1111
imports 1102, 1111
inspection, shipping points and markets 29-31
receipts at principal markets, 1917-1923 788-789
shipments, car-lot, by months 787-788
Vegetation, native, in forest, grass, and desert pastures 378
Velvet beans
acreage, yield, and production 794
feed-
use and value 362
value, etc., 1919 334, 337
importance as feed crop 342
Vermont-
dairy cows feeding, details and results 412
forest fires, number, damage, area, and causes, 1916-1922 1058, 1060
maple products 209
wool fleece, increase in weight 295
Vetch-
feed-
use and value 363
value, etc., 1919 337
importance as feed crop 342
Vilmorin beets, type grown in United States 187
Vinall, H. N., article on "Our forage resources" (with others) 311-413
Virgin Islands- Page.
cane and sugar production 156
sugar production 850
Virginia-
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
sheep-
introduction 234
raising, notes 249
Wages--
cane production, rates, 1916-1922 173-174
farm
and city, comparison 6
by sections 1149
increase, factor in cost of wheat production 122, 123
labor, by class 1148-1149
index number, 1913-1924 1194
road work, amount paid per hour, 1915-1923 1197
Wall board, manufacture from bagasse 212
Wallace, Henry C.-
foreword to Yearbook III
report as Secretary for 1923 1-100
See also Agriculture, Secretary.
Walnuts, imports 1100,1117
War-Civil-
relation to sheep raising 238-239
wool prices 300
World-
effect on wool production 240-241
wool prices 301
Warburton, C. W., aid on article on "Land utilization" 415
Warehouse
act, benefit to farmers 26-28
wool, factor in wool marketing 294
Warehouses, licensed, number 27
Wars-
British-American, relation to sheep industry, notes 235
relation to price of wool 300
Washburn, R. S.-
article on "Sugar" (with others) 151-228
study of wheat situation 95
Washington-
dairy cows, feeding, details and results 412
forest fires, number, damage, area, and causes, 1916-1922 1059, 106โ 1059, 106โ
sheep raising- 270
cost factors 251
source of market lambs 279
Waste, timber, causes and control 485-487, 501
Watering places, development on ranges 397
Watermelons-
freight rates 1169
shipments, car-lot, by States 782
Wax, vegetable, imports 1102, 1111
Weather-
effect on beet growing 184-185
work, importance 45-47
Webworm, sugar-beet, food plants, damage and control 191-192
Weeds-
cleaning up with sheep, note 247
factor in wheat cost 129
Weights-
bushel, of wheat, oats and barley, 1902-1923 1141
live and dressed, of farm animals 1015
Weitz, B. O., article on "The utilization of our lands for crops, pasture and forests"' (with others) 415-506
West Indies, sugar production 850
West Virginia- Page.
forest fires, number, damage, area, and causes, 1916-1922 1059, 1060
sheep raising, notes 249
Wheat-
abandoned acreage 123-124, 125, 646
acreage-
abandoned, by States, 1890-1923 607
increase and decrease, maps 133-135
per cent of all acreage, etc 97
production, and exports, trend, 1909-1922 444
reduction discussion 15-16
requirements 108
Barletta, prices in Buenos Aires 631
black stem rust, control 42-43
Canadian, quality, comparison with United States products 114
condition of crop, by months, 1890-1923 606
consumption-
changes since 1913 5
decrease, cause and results 110
corn equivalent as feed 130
cost of production-
factors, 1913-1923 122-126
in 1922 124-126
per acre, 1902-1921, 647, 648
per bushel, 1902-1921 647, 648
United States and Canada 114-115
crop-
distribution in United States 102-113
summary, production and farm value, 1921-1923 1137
demand in Europe, decrease, results 449-451
disposal of crop 660
dockage, Minnesota markets, 1899-1922 619See also Dockage.
durum-
acreage by States, 1919 106
production 105
production and yield 604
exports-
from United States, 1910-1924 621-622
statistics 103-104, 1108, 1114, 1123
feed-
use and value 349-351
value, etc., 1919 334, 335
feeding value, comparison with corn 130
flour. See Flour.
freight rates-
Canada 661
inland 1167
on ocean 1166
gluten content, relation to price 129
grades on markets, 1921-1923 618-619
grading cars by licensed inspectors 620
growers, cooperation, discussion 17
grazing with sheep, note 249
hard red-
acreage, by States, 1919 105-106
production and export 106
importance as feed crop 342
imports-
from Canada 105, 622, 660
statistics 104, 1096, 1131
marketing-
by farmers, 1917-1923 613
costs, etc 126-128
from farms 103
markets, receipts and shipments, 1909-1923 615
needs, surplus and deficiency, 1923-1924 616
Wheat-Continued. price- Page.
factors 653
on farm, comparison with cost of factors in production, 1913- 1923 123
prices-
and cost of production 122
at Minneapolis, 1913-1914, and 1922-1923 109
effect of tariff 115-118
estimates 654-655
farm, 1908-1923 624-625
fluctuation and outiook. 95-98, 99
in Buenos Aires, 1912-1923 631
in Liverpool 630
weighted averages 625-629
production--
and quality, 1923 1-2
foreign competition 100-102
increase, price fluctuation, etc., and factors influencing 130-145
purchasing power 95-96
quality-
importance 129
relation to price 128-129
region, farm mortgage debts 120
regions, agricultural readjustments 138-145
seed-
and feed supplies held on farms 102
to sow acre 1140
situation-
discussion by Secretary 4-5, 14-19
report by Secretary of Agriculture 95-150
soft red-
acreage by States, 1919 107
production and export 107
spring-
cost of production and farm prices, 1913-1923 648-649
council, work 25
prices, United States and Canada 651
production and value 603-604
yield per acre 606 606
statistics-acreage production exports, etc84, 85, 86, 103-105,
$602-631,1096,1108,1114,1123,1131$
646-651
cost of production, 1912-1923
602-604
602-604
production, prices, etc
production, prices, etc
602-631
602-631
production, prices, markets, etc
production, prices, markets, etc 602-604
stocks on farm, 1895-1923 614
straw, feed value, etc., 1919 339
supplies-
and distribution, United States 614
location and character 104-106
surplus-
and deficiency by States 104
marketing problem 108
purchase by Government, discussion 16-17
trade, international, 1910-1923 623-624
visible supplies, U. S., 1889-1923 617-618
weight per bushel, 1902-1923 1141
white-
acreage by States, 1919 107
production and export 107
world-
crop, acreage, production, and yield 608-613
production and Chicago prices, 1890-1914 98-99
Wheat-Continued.
yield- Page.
in semiarid regions 125
per acre 605-606, 607
yields, European countries, comparisons 467
Wilcox, R. H.
part in article on "Sugar" 157
study of wheat situation 95
Wild-
grass, feed value, etc., 1919 337
pastures, grazing
pastures, grazing 370, 377 370, 377
Wilt, sugar-beet, cause and control 191
Winnipeg, wheat prices 628
Wisconsin-
beets and sugar production 156
Experiment Station, table of animal rations 332
farm area in crops and pasture, per cent 407
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
pastures, rental value and costs, notes 407-409
Woll, F. W., table of anímal rations 332
Wolves, danger in sheep raising 265
Women, aid by Home Economics Bureau 39
Wood-
alcohol, exports 1107
consumption per capita, various countries, comparisons 483
exports 1105-1106, 1111
imports 1098-1099, 1111, 1134
preservation, statistics, 1909-1922 1091-1092
pulp-
exports 1107, 1111
exports, 1870-1922 1082
imports 1099, 1111, 1118
imports, 1889-1922 1081
prices, statistics for 1914-1923 1088
production, 1869-1922 1078
trade, international, 1909-1913, 1920-1922 1083See also Pulp wood.
world production and consumption, by countries 1077
Woodland-
cut-over and burned-over, acreage estimates 1419
on farms, area, by States and regions 1052
Woodlands, farm, improvement need 492, 501
Wool-
cost of production, discussion 269-274
duties on imports of, discussion 303-306
duty rates on imports, 1789-1922 303-306
early use and trade in United States, note 235
England, prices, 1909-1923 1007-1008
exports, 1870-1923 1001-1002
fleece-
farm values 296
weight increase and averages 295-297
fleeces, weight and number by States 1002-1003
foreign countries, production 1912-1922 1003
grades and their uses 297-298
grading, factors in 297-298
grease, freight rates inland 1168
growing-
progress in New England and New York, note 237
stimulus of World War 240
holdings by dealers and manufacturers, monthly 1005
imports 1094, 1111, 1114, 1127
maggots, injury in sheep raising 267
marketing -
discussion 275-310
methods in United States 293-298
problems 301-303
Wool-Continued. Page.
mill consumption 293
place in sheep industry 275-276
pools for selling, remarks 291
price-
decline, 1870-1896 239
fixing, note 276
prices-
as factor in mutton prices 283
discussion 2, 3, 298-301
fleeces for suit of clothes 303
on farm, by months, 1910-1923 1004-1006
relationships 302
production-
and distribution of world 290-293
of world, exports and imports 291
prices and imports, 1890-1922 299
statistics for 1870-1923 1001-1002
stimulus of loss of cotton by Civil War 238-239
purchasing power, discussion 299
sheep breed, supply from Spain 234
statistics 1001-1008
trade, international-
by countries, 1909-1922 1004
remarks 290
transportation -
and other problems 289
remarks 289, 290
use per capita 229
warehouses, number and capacity 27
Woolen-
mill, first in United States 235
mills, increase and improvement in United States 235-236
Woolens-
British, use in United States, notes 235
weaving in homes, remarks 235
Wools, classification in tariff laws 305
Wooton, E. O., study of wheat situation 95
Worms, danger in sheep raising 268
Wright, Sewell, aid on maps 415, 440, 441
Wyoming
forest fires, number, damage, area, and causes, 1916-1922 1059, 1061
sheep-raising-
cost factors 270
note 256
Yearbooks, 1921, 1922, contents summary III
Yellow pine, prices, 1913-1923 1088
Yoder, P. A., article on "Sugar" (with others) 151-228
Yugoslavia, sugar-
beets, acreage and production 848-849
production 849
Zinc chloride-
consumption oy wood-treating plants, 1909-1922 1093
wood treated by, 1909-1922 1091
Zino-creosote, wood treated by, 1909-1922 1092
Zon, Raphael, article on "The utilization of our lands for crops, pas- ture, and fcrests" (with others) 415-506
ADDITIONAL COPIES
of this publication mat be procured from

 THE SUPERINTENDENT OF DOCUMENTS

 GOVERNMENT PRINTING OFYICE

 WASHINGTON, D. C.

 AT

 \$1.25 PER COPY
[^0]: 85813° - увк 1923-6 6

[^1]: ${ }^{1}$ Paid direct to States by Treasury Department.

[^2]: ${ }^{1}$ Including expenditures of $\$ 152,511.28$ from fund of $\$ 175,000$ set aside for road materiai investigations.
 2 Paid direct to States by 'Treasury Department.

[^3]: ${ }^{1}$ These balances, no longer available for expenditure, totaling $\$ 502.03$, were returned to the departments from which the allotments originated.
 ${ }^{2}$ Includes $\$ 5,721,137.91$ in annual appropriations for regular work of department for fiscal years 1921 and 1922.
 8 Includes $\$ 2,981,134.71$ expended from annual appropriations for regular work of department in payment of obligations incurred during fiscal years 1921 and 1922.

 4 Includes $\$ 2,740,003.20$ unexpended balances of annual appropriations for regular work of department or fiscal years 1921 and 1922.

[^4]: ${ }^{1}$ This report, prepared by members of the Bureau of Agricultural Economics, was submitted to the President Nov. 30, 1923. The following committee had charge of the study, under the direction of H. C. Taylor: W. A. Schoenfeld, chairman; Nils A. Olsen, executive secretary; O. C. Stine. H. R. Tolley, V. N. Valgren, O. E. Baker. W. F. Callander, and R. H. Wilcox. The committee was assisted by G. C. Haas, Donald Jackson, R. S. Washburn, H. B. Gardner, L. V. Steere, C. L. Luedtke, L. M. Harrison, M. R. Cooper, L. A. Reynoldson, E. O. Wooton, C. R. Chambers, H. Killough, A. V. Swarthout, E. B. Ballow, H. J. Besley, C. O. Brannen, R. W. Newton, G. A. Collier, H. K. Holman, jr., A. W. McKay, and R. H. Elsworth.

[^5]: ${ }^{2}$ A one-year base for an individual commodity is not satisfactory. The index of the price of wheat is therefore based on the 1909-1913 average.

[^6]: ${ }^{3}$ All estimates of production for $1923-24$ are subject to change by report of revisions and by receipt of official estimates for countries not officially reported.

[^7]: ${ }^{4}$ The net imports of European importing countries, $1922-23$, preliminarr $\mathbf{-} \mathbf{6 7 , 0 0 0 , 0 0 0}$ bushels wheat and flour as wheat: $1921-22,535,000,000 ; 1909-1913,505,000,000$, of which European exporting countries supplied about $11,000,000,20,000,000$ and 27%, 000,000 , respectively.

[^8]: ${ }^{5}$ Computed on the basis of the average annual disappearance in the United States for food and feed distributed per capita by States as found in a survey made in 1911, and seed requirements with a reduction of 15 per cent in the winter wheat area. Spring wheat area same as last year.

[^9]: ${ }^{6}$ These combined rates may vary from day to day on account of variations in lake and ocean rates.

[^10]: ${ }^{1}$ The feeding value of a pound of wheat in pounds of corn is 1 for poultry and sheep, 1.05 for hogs, and 1.15 for becf cattle.

[^11]: Figure 33.-Corn Belt (Ohio, Indiana, Illinois, Iowa, Missouri), western winter wheat region (Kansas; Nebraska, Oklahoma, Texas, Colorado), spring wheat region (Minnesota, North Dakota, South Dakota, Montana), Pacific Northwest region (Idaho; Washington, Oregon).

[^12]: ${ }^{1}$ Doctor Townsend was originally chairman of the committee which began the preparation of this article. While the work was in progress he was transferred to the Tariff Commission. The article has been extensively revised and rewritten.
 ${ }_{2}$ H. S. Paine, Bureau of Chemistry, contributed a portion of the material on manufacture of sugar from beets; and W. E. McLendon, Bureau of Soils, a portion of the ma terial on soils of the Louisiana sugar-cane district, also of the sugar-beet districts.
 ${ }^{3}$ P. F. Brookens assisted Doctor Arner in the preparation of the material on price and consumption.
 ${ }_{4}$ The contribution of Mr. Stevens, Louisiana Agricultural College, on labor requirements and costs of producing cane in Louisiana was prepared in cooperation with the Bureau of Agricultural Economics and was summarized for publication by O. A. Juve, L. E. Long, and R. H. Wilcox of that bureau.

[^13]: ${ }^{1}$ These figures are from reports of sugar factories received by United States Department of Agriculture. ${ }^{2}$ Bad seasonal conditions in Louisiana and Texas in 1919 caused an abnormally low yield. Ordinarily the yields per acre are a half to two-thirds higher.
 ${ }^{3}$ Of this amount 179,900 acres were grown for sugar only, producing $1,883,000$ tons of cane, according to reports of United States Department of Agriculture.
 4 Sugar produced per acre of cane used for sugar. See footnote No. 2.
 ${ }^{5}$ Short tons.
 ${ }_{6}^{6}$ Virgin Islands census of 1917.
 ${ }^{7}$ 21st Annual Report, Philippine Bureau of Agriculture, 1922.

[^14]: 1 Average, man 0.95 day; mule 1.73 days per acre.

[^15]: 1 The terms "men" and "man" are used in showing labor requirements as a composite including men, women, and children.
 ${ }_{2}$ This labor is charged to the crop furnishing the seed. It is shown here as a part of the labor actually involved in the propagation of sugar cane.

[^16]: ${ }^{1}$ The labor requirements per acre do not change materially with increased yields, while, on a ton basis, the labor requirements per ton decrease as the yield increases.
 ${ }^{2}$ Mechanical loaders are now used on many of the larger plantations.
 :Weigher, driver, and forkman.

[^17]: ${ }^{1}$ A verage fall and spring plant.
 ${ }_{2}$ Composite of stripping and cutting for fall plant and cutting and laying in windrow for spring plant. Loading and hauling included in storage and transporting seed cane.

[^18]: 85813° - увк $1923-13+14$

[^19]: ${ }^{5}$ The cost data contained in this article are based on information taken from the following United States Department of Agriculture Bulletins: 693. Farm Practice in Growing Sugar Beets for Three Districts in Utah and Idaho, 1914-15; 726, Farm Practice in Growing Sugar Beets for Three Districts in Colorado, 1914-15; 735, Farm Practice in Growing Sugar Beets in the Billings Region of Montana: 748, Farm Practice in Growing Sugar Beets in Michigan and Ohio; 760, Farm Practice in Growing Sugar Beets in Three California Districts; 763, Cost of Producing Sugar Reets in Utah and Idaho, 1918-19; 917, Farm Practice in Growing Field Crops in Three Sugar-Beet Districts of Colorado.

[^20]: ${ }^{1}$ Manure applied on a negligible number of farms.
 2 The quantities of rianure and commercial fertilizer shown are the result of prorating the total amount used over the entire beet acreage.
 ${ }^{3}$ Operating expense includes all items of cost except use of land.
 ${ }^{1}$ Commercial fertilizers were not used in these States in growing sugar beets.

[^21]: Fig. 25.-The labor cost of delivering sugar beets to the sugar factory or loading station depends largely upon the distance hauled. In Utah and Idaho, in 1918, the cost increased about 13 cents per ton for each mile after the first mile.

[^22]: 85813° - Үвк $1923-14$

[^23]: Fig. 46.-The great increase in cane-sugar production in the last 25 years has been chiefly in Cuba and Java. The Philippines, Hawaii, Porto Rico, and Formosa have also increased their production. The average production of cane sugar in the United States increased until 1908 and has since declined slightly. The production of beet sugar has, either declined in recent years, or advanced but slightly in every country except the United States, which in 30 years has advanced from small beginnings to the third position among the beet-sugar producing countries of the world.

[^24]: $85813^{\circ}-$ rbe $1923-15+16$

[^25]: ${ }^{1}$ The distribution of some of the poisonous plants of the West is shown in Figures 75 and 76 of the article "Our Forage Resources," page 401.

[^26]: ${ }^{2}$ For further information see Farmers' Bulletin No. 1330.

[^27]: ${ }^{3}$ Indiana Experiment Station Rulletin 202.
 ${ }^{4}$ Indiana Experiment Station Bulletin 221.

[^28]: 5 Indiana Experiment Station Bulletin 263.
 ${ }^{6}$ Nebraska Experiment Station Bulletin 153.
 7 Nebraska Experiment Station Bulletin 157.

[^29]: ${ }^{8}$ The bulk of slaughter credited to Jersey City actually occurs in Greater New York.

[^30]: ${ }^{9}$ The estimated domestic production, net imports, and estimated consumption of. wool for 54 years- 1870 to 1923 -are shown in Table 546 -entitled "Wool, raw : Production, Imports, Exports, and Apparent Consumption, United States, 1870-1923," in Statistical Appendix, page 1001 .

[^31]: 85813 ${ }^{\circ}$ - ybi 1923- 20

[^32]: ${ }^{1}$ A J. Pieters and W. J. Morse, Bureau of Plant Industry ; H. W. Hawthorne and W. J. Spillman, Bureau of Agricultural Economics; J. B. Bain and E. C. Semple, Bureau of Animal Industry, furnished valuable data and criticisms.
 ${ }^{2}$ In the broad consideration here given the relations of forage to livestock production, and indeed to agriculture as a whole, the word "forage" is used in its wide significance; that is, all vegetable nutriment, fresh or cured, consumed by domestic animals, such as pasturage, browse, mast, green feed, hay, straw, silage, and grain. The term "feed" includes all plant and animal products consumed by livestock, and "food" refers to the nutriment of man.
 ${ }^{3}$ These acreages of the several classes of pasture are estimates based on the replies made to the questions on "Uses of land," contained in the 1920 census schedule; on various Federal and State reports; and on correspondence with officials and other well-informed persons in the several States. Special acknowledgment is due W. R. Chapline and W. N. Sparhawk, of the Forest Service and A. E. Aldous, of the Land Classification Board, United States Geological Survey, for assistance and valuable criticism. Additional data are contained in Table 22. These estimates and others that follow are not final. If they serve to call attention to the importance of forage, especially our pastures, and stimulate students in the various States to study the problems in more deail, the writers will be fully satisfied.

[^33]: ${ }^{4}$ Livestock and domestic animals as hereinafter referted to include horses, mules, cattle, sheep, goats, hogs, and poultry. All are purely herbivorous except hogs and poultry, which are omnivorous.
 ${ }_{5}$ Forage crops properly include only those plants grown primarily for feed, and of which animals consume all or most of the harvested herbage or roots or both. Strictly speaking, the term crop applies only to products that are harvested by man, and therefore does not include pasturage: but it is extended in common use to include planted crops like corn, oats, soybeans, etc., even if they are grazed down by animals.

[^34]: ${ }^{6}$ Forty-one per cent of the crop land in the Cotton Belt was in cotton, but after the value of the seed, most of which is used for feed and food, is allowed for, the acreage allotted to the production of cotton fiber becomes only 35 per cent.

[^35]: ${ }^{7}$ Exception to this general statement should be noted in the case of the study by E. W. Shanahan, entitled "Animal Foodstuffs," London, 1920.

[^36]: 8 The "animal unit" is employed to reduce the different kinds of livestock to one class, in so far as their relation to the consumption of feed is concerned. It is roughly estimated that the amount of forage required to maintain 1 adult cow one year would be sufficient to maintain for the same period 1 horse, mule, or steer, 5 hogs, 7 sheep or goats, or 100 poultry. Colts, calves. pigs, and lambs are estimated to require one-half as much feed as the adult animal. These ratios have been used in farm management surveys for many years, and have proved fairly satisfctory.

[^37]: ${ }^{2}$ In many European countries dual-purpose cattle are very common and the statistics often do not distinguish carefully between dairy and beef animals. The ratios given are, therefore, not strictly comparable with those for the United States, but it is believed they are satisfactory for a broad comparison of this kind.

[^38]: 85813° - YBK 1923-22

[^39]: ${ }^{10}$ Wisconsin Agricultural Experiment Station Circular No. 37, by F. W. Woll, Table No. 1, supplied the basis for the calculation, but the feed value of a few items was slightly altered. The following theoretical annual rations per animal unit were used :

 | Concentrated feeds : | Tons. | Hays and fodders-Continued. | Tons. |
 | :---: | :---: | :---: | :---: |
 | Cottonseed or flaxseed meal and peanuts \qquad | 2. 10 | Timothy, wild hay, miscellaneous tame hays, and sorghum fodder | 8. 00 |
 | Corn, barley, rye, emmer, and spelt | 2. 65 | Straws and stovers: Corn and sorghum stover | 10.00 |
 | Wheat, mixed grains, dry beet pulp | 2.7 | Oat and rice straw_- | 11.00 12.00 |
 | Oats, sorghums, | 2.85 | Warley straw - | 13.00 15.00 |
 | Hays and fodders: | | Silage and roots : | |
 | Alfalfa, annual legumes, clover- | 5. 00 | Silage and sweet pot | 16. 00 |
 | Corn fodder and small-grain | | Potatoes | 20.00 |
 | hays | 7. 00 | Wet beet pulp and roots | 32.00 |

 The feed value of mature crops pastured off was estimated by using for the annual legumes the same ration as for the hays, since both contain the seed; and for corn the same ration as for fodder.

[^40]: ${ }^{11}$ The word " fodder" in the United States is applied mostly to harvested and drycured corn or similar plants, like sorghum, when the whole plant, both herbage and grain, are fed together. It is hereafter used in that sense. In the South, corn fodder refers to the leaves and tops of the plants which are dried after removal from the living plant before the ears are mature.

[^41]: ${ }^{1}$ Includes half of the "timothy and clover mixed"' acreage and production.
 ${ }^{2}$ It is estimated that of the 14,502,932 acres of corn cut for forage, as given in the census, approximately $10,000,000$ acres were also reported to the census enumerator under "Corn harvested for grain." Consequently only the product from 4,500,000 acres is included as corn fodder in this table.
 ${ }^{3}$ Includes redtop, orchard grass, Bermuda grass, Johnson grass, millet, Kentucky blue grass, crab grass, and Sudan grass.
 ${ }^{4}$ Includes sugar cane cut for forage, but this is a negligible quantity.
 ${ }^{5}$ The census gives only the total for "small grains cut for hay." This has been divided among the four small grains according to the best information available.
 ${ }^{6}$ The census gives only the total for "Annual legumes cut for hay." This has been divided among the six annual legume crops (excluding velvet beans), according to the best information available. (See Table 20.)
 ${ }^{7}$ The census gives only a total acreage of velvet beans; this has been divided among the different methods of harvesting according to the best information available.
 ${ }_{8}$ In 1919 there was a net import of 165,000 tons of hay, mostly from Canada. The variety is not given, but the hay probably consists mostly of timothy and clover. It has been included only in the totals.

[^42]: ${ }^{12}$ The term " stover" is applied to the harvested and dry-cured stalks and leaves of corn and similar plants after the grain has been removed.

[^43]: ${ }^{1}$ A large part of the corn-stover item is from stalks left standing in the field after the grain has been harvested. This forage is really pastured off and is not stover according to the commonly accepted definition of the term, but for the purpose of estimating its feeding value it has been classed with the stovers.
 ${ }_{2}^{2}$ Cotton-seed hulls do not belong in any of the chief groups, but are similar to straw in unit feeding value and are therefore considered here.

[^44]: 1 The data on which this table is based are found in the summary tables of the various crops and those under the preceding discussion of classes of forage.

[^45]: ${ }^{1}$ The acreage of grain is included also in the stover acreage; hence it is omitted from the total, which represents the actual acreage of sorghums including broomcorn.
 ${ }_{2}{ }^{2}$ The production figures of grain and fodder are taken from the 1919 census. The stover production is estimated by applying to the grain sorghum acreage plus the broomcorn acreage a theoretical yield of $1 \frac{1}{2}$ tons per acre. The quantity of silage is based on the best information available regarding the percentage of the total silage that is made from sorghums in States where sorghum is an important crop.
 ${ }_{3}$ It is estimated that all the grain not used for seed, all the silage, 70 per cent of the fodder, and 50 per cent of the stover are eaten by animals.

[^46]: 1:The actual acreage of these legumes is very difficult to determine, owing to the extent to which they are interplanted with corn and other crops. The acreage reported by the Census is much less than that estimated by the Department of Agriculture, especially for velvet beans. (See Farmers' Bulletin 1276, p.9, and for soybeans and cowpeas the Monthly Crop Reporter for December, 1920.)

[^47]: ${ }^{14}$ Pasturage includes all herbaceous feed gathered directly by domestic animals. When the plants are shrubs or trees the pasturage is called "browse." Feed consisting of acorns and other nuts that have fallen from forest trees is termed " mast." This term is aiso extended to include the berries of palm trees and the seeds of pine trees.

[^48]: ${ }^{15}$ See next article, The Utilization of the Land for Crops, Pastures, and Forests, p. 469.
 ${ }^{18}$ See "The Utilization of Our Land for Crops, Pasture, and Forest," p. 427.

[^49]: ${ }^{1}$ These estimates, which are subject to change, are based on 1920 and 1910 census statistics; data supplied by the Forest Scrvice, Indian Office, Land Office, and other Federal bureaus; reports of various State commissions; and on correspondence with state officials and others.
 ${ }^{2}$ It is estimated that at present about $57,000,000$ acres of desert are too dry for grazing, but with the development of wells and tanks this area may ultimately be reduced to about $30,000,000$ acres. There are also about $20,000,000$ acres, mostly in the West, of rocky peaks and rock out-crops unusable for pasture.
 ${ }^{3}$ The remaining $51,000,000$ acres of pinon-juniper and chaparral used for grazing are located in Indian reservations, the public domain, and privately owned land in farms and not in farms. These items, as given in the table, have been correspondingly reduced.
 ${ }_{5}^{4}$ Of the forest, cut-over, and burned-over land, it is estimated $246,000,000$ acres are not pastured.
 5 Does not include corn ficlds pastured off, nor corn stalks grazed, which have been included under crops. See Table 13.
 ${ }_{6}{ }^{6}$ The forage supplied by pasture is, therefore, almost cqual to that supplied by all the crops (Table 12). In order that responsibility may be placed for these basic estimates, it may be noted that the rations of the various crops and crop products, as measured in tons, required (theoretically) to support an animal unit for one year, were supplied by Mr. Sheets and Mr. Semple, that the resulting tables of feeding value of the crops (Tables 6 to 21) were prepared by Miss Bradshaw under the joint direction of Mr. Vinall and Mr. Baker, and that the estimates of the acreage and carrying capacity of the pastures and range lands (Table 22 above) were prepared by Mr. Baker.

[^50]: ${ }^{1}$ Table furnished by H. W. Hawthorne, Division of Farm Management, Bureau of Agricultural Economics.
 ${ }_{3}^{2}$ Dairy products constituted 39 per cent, poultry 19 and apples 12 per cent of the total farm receipts.
 ${ }^{3}$ Dairy products constituted 39 per cent, hay 14, potatoes 9 , wheat 8 , and poultry 8 per cent of total farm receipts.
 ${ }^{5}$ Dairy products constituted 26 per cent, cattle 24 , poultry 10 , and hogs 8 per cent of the total farm receipts.
 ${ }_{6}^{5}$ Dairy products constituted 24 per cent, hogs 12 , wheat 7 , and poultry 6 per cent of the total farm receipts.
 ${ }^{6}$ Dairy products constituted 49 per cent, hogs 28 , cattle 14, and poultry 4 per cent of the total farm receipts.
 ${ }_{8}^{7}$ Cattile constituted 21 per cent, poultry 19 , hogs 12 , and sheep 11 per cent of the total farm receipts.
 ${ }_{9}^{8}$ Hogs constituted 41 per cent, corn 13 , oats 12 , and cattle 10 per cent of the total farm receipts.
 ${ }^{9}$ Hogs constituted 43 per cent, cattle 18, and corn 13 per cent of the total farm receipts.
 ${ }^{10}$ Hogs constituted 43 per cent, cattle 19, and wheat 14 per cent of the total farm receipts.

[^51]: 1 Fall pasture includes aftermath of hay meadows, stubble fields, corn stalks, etc.
 $\mathbf{2}^{\mathbf{2}}$ Regular pasture includes only the farm area that is fenced and used to carry stock throughout the entire sumimer.

[^52]: Table compiled by J. B. Bain, Market Milk Specialist. Data obtained from studies of requirements for producing milk conducted by Dairy Division, Bureau of Animal Industry.

 2 The feed units obtained from pasture were figured by using the feed-unit consumption of the same cows during the winter. According to this method, pasture furnished an average of 8.78 feed units per cow per day.

 3 The cost of pasture was based upon the interest on the value of the land, taxes, upkeep of fences and similar items.

[^53]: 18 These rental values are based on cost of production and other surveys and on reports of the Forest Service and the Commissioner of Indian Affairs. The rental value in normal years is considerably less than this amount.

[^54]: B. P. I. Bull. 201. Natural Vegetation as an Indicator of the Capabilities of the Land for Crop Production in the Great Plains Area.
 B. A. I. Bull. 91. Feeding Prickly Pear to Stock in Texas.

 Department of Agriculture Report 110. Livestock Production in the Eleven Western Range States.

 Forest Service Circular 178. The Pasturage System of Handling Range Sheep.
 Division of Forestry Bull. 15. Forest Growth and Sheep Grazing in the Cascade Mountains of Oregon.

[^55]: ${ }^{1}$ This article grew out of the work of the Land Utilization Committee appeinted by the Secretary of Agriculture in 1921. The contribution of C. V. Piper, Bureau of Plant Industry, a member of this committee, has been included in the preceding article, "Our Forage Resources." S. J. McCrory, Bureau of Public Roads, a member of the committee, provided much of the basic data for the map of wet lands (fig. 8), and C. F. Marbut, Bureau of Soils, much of the basic data for the map of forest and cut-over land available for crops without drainage (fig 9) and for the map of land physically suitable for forest only (fig. 13). Suggestions concerning the economic value of wild life as a consideration in land utilization were made by W. L. McAtee, Biological Survey. L. C. Gray, Chairman of the Committee, was in general charge of the preparation of this article. Many of the estimates of land area were made by O. E. Baker, who acted as secretary to the committee. Dr. Sewell Wright, Bureau of Animal Industry, who was not, however, a member of the committee, prepared the maps in this article showing the quantity of livestock by counties, $1850-1920$ (figs. 22 to 29) ; C. W. Warburton, Director of Extension Work, contributed to the discussion of the means of increasing crop yields ; and W. N. Sparhawk, Forest Service, furnished valuable assistance in checking the various estimates.

[^56]: ${ }^{2}$ In certain parts of the semiarid territory scrubby forests of mesquite and live oaks, or of piñon pine and juniper occur. This arid woodland may be of considerable value in supplying fence posts and fuel. Also along the borders of streams, species characteristic of humid regions are found.
 ${ }^{3}$ These estimates are derived as far as possible from calculations based on census statistics, on reports and maps prepared by the Soil Survey and the Forest Service and on the field notes and plats in the General Land Office. These materials were supplemented by information obtained from various sources, especially the Division of Agricultural Engineering (Drainage Investigations), of the Burcau of Public Roads, the Geological Survey, and various State surveys. More complete data have made necessary changes in certain rough estimates previously issued of the present and potential uses of land.
 ${ }^{4}$ The land area of the United States is $1,903,289.000$ acres. In the following discus sion the round number is used, and the various estimated subdivisions of the entire are are made to total $1,903,000,000$.

[^57]: 5 The various classes of land outside the boundaries of farms and not employed for crops, pasture, or forest were estimated as follows: City area was estimated by finding the density per square mile for a number of representative cities for which the area was the density per square missifying these by size, and then dividing the factor of density into the population living in incorporated places of each.class. The estimates were made by states. Area in public roads was estimated by multiplying the mileage of various classes of roads in each State by estimates of average width of these roads supplied by the Bureau of Public Roads. Since the estimates were obtained as of 1914 , about 2,$500 ; 000$ acres were added for increase in the area devcted to public roads. In reporting the area of farms to census enumerators, farmers living in the regions where the rectilinear system of survey prevails frequently give the total area originally in the tract without making deduction for the area, devoted to public roads. Thus, a 160 -acre farm from which a portion was subtracted for reads is very commonly still reported as 160 acres. On this account, the estimate of $20,000,000$ acres in public roads was arbitrarily divided equally between the area in farms and the area not in farms. The area in farms is less than the area not in farms, but it contains a much larger proportion of the roads. The area of unused desert land is a rough estimate, based on such information as could be obtained in the Department of Agriculture and from the Land Classification Board of the United States Geological Survey. The area of rocky peaks and rock outcrop is merely a rough estimate based on the ruggedness of the country. The area of coastal and interior marshes not pastured or cut for hay and not in farms is computed from soil survey maps, topographic sheets, coast survey charts, etc., and includes $7,500,000$ acres in tidal marshes ind $6,500,000$ acres in sweetwater marshes. The estimate of $1,000,000$ acres of coastal lieaches is derived from the same sources. The area of national parks is an official figure, and the area of railroad rights of way was obtained by multiplying the railroad mileage, courteously provided by the Interstate Commerce Commission, by an estimated a cerage width of the rights of way.

 The various items included in the $115,000,000$ acres of land in farms not used for crops, pasture, or forests were estimated as follows: Various local surveys have indicated that a little less than 4 acres per farm is occupied by what may be called "the farmstead "; that is, the land occupied by buildings. barn yards, feed lots, etc. On this basis and the number of farms, the area in farmsteads is estimated at about $24,000,000$ acres. The area in private lanes and roads not used for grazing or in timber was roughly estimated by assuming an eighth of a mile per farm, 2 rods wide. The acreages of crops not harvested because of crop failure and of crop land lying idle or fallow are based on partial results of a tabulation of this census inquiry now being made by the Bureau of the Census in cooperation with the Bureau of Agricultural Economics (Division of Land Economics). The estimate of marsh lands in farms is based in part on soil surveys and in part on the census. The item of idle and fallow crop land is a rough estimate based on incomplete tabulations of replies to a census question on this subject. The item om waste land is a residuum.
 ${ }_{6}^{6}$ Most of the items in this total of $134,000,000$ acres have been mentioned. They include the following in round millions of acres: Public roads, 20; cities and villages, 10 ; railroads, 4 ; naticnal parks. 6; farmsteads, 24 ; lanes in farms, 3 : sandy beaches, 1 ; rocky peaks and other rocky outcrop areas. 20 : land too arid for grazing and nonirrigable, 30 ; marsh and swamp land of no potential value for any of the three uses. 16.

[^58]: ${ }^{7}$ It is probable that the area of cities, roads, railways, and farmstcads will not increase so rapidly as the increase of population.
 ${ }^{8}$ Includes $15,000.000$ acres of crop failure.
 ${ }^{9}$ The animal unit is a means of measuring the feed requirements of livestock. It is the equivalenti of a mature horse, cow. or steer, 5 hogs, 7 sheep or 100 poultry. For very young animals double the equivalent of an animal unit for mature stock of the same kind is allowed. On semiarid grazing land the ratio is more properly 3 to 5 mature sheep to each cow.

[^59]: ${ }^{10}$ For method of estimating the area and carrying capacity of pasture in the United States see the preceding article, "Our Forage Resources," p. 369.
 ${ }^{11}$ See discussion of pasture land in preceding article entitled "Our Forage Resources."

[^60]: ${ }^{13}$ These estlmates are somewhat larger than those given in the so-called Capper lieport ("'rimber Depletion, Lumber Prices, Lumber Exports and Concentration of Timber Owncrship," lepport m Senate Resolution No. 311, United States Forest Service, 1920), or the article "Timber : Mine or Crop?" in the 1921 Yearbook. In the eastern originally forested region the figures are based on tabulations, by counties, of census statistics with duc allowance for roads, railroads, cities, etc., except that where forest surveys have been made these figures were used instead. In the West the figures are based on estimates by the Forest Service of timberland in the national forests and privately owned. These estimates have been increased to allow for forest land in Indian reservations and in the public domain. Further study is being given the matter, and the figures will doubtless be modified as a consequence.

 18 The area for the various harvested crops whose acreage was reported in the census totaled only $348,000.000$ acres. but estimated additions for corn fodder, fruits, and ot?rer items bring the total up to $365,000,000$.

[^61]: 14 These various items were estimated as follows: Improved land potentially capable of being added to crop area: From the total area of improved land reported in the census of 1920 (503,000,000 acres) was subtracted the estimated areas in harvested crops (365,000,000), farmsteads $(24,000.000)$, all of which was considered improved land, and a small allowance for roads and lanes and other minor items. There was included an area of $60,000,000$ acres of improved pasture, estimated on the basis of 1909 statistics which were tabulated by the Department of Agriculture from the census schedules and published in Department Bulletin 626. and similar statistics for 1919 , now available for certain States.

 Land capable of irrigation : Estimated by R. P. Teele, Bureau of Agricultural Economics (Division of Land Economics), on the basis of various surveys made by the Reclamation Service, Bureau of Public Roads (Irrigation Investigations), and the United States Geological Survey.

 Estimates of drainable land were compiled by I. A. Jones and F. J. Marschner from data in the Bureau of Public Roads (Drainage. Investigations), reports and maps of the Soil Survey, topographical maps of the Geological Survey, and various State reports, supplemented by the results of the 1920 census. The total drainable area of $91,000,000$ acres has been reduced to $75,000,000$ acres to allow for certain areas of very deep peat and some of the coastal marsh which would not be suitable for creps.

 Humid unimproved land: This estimate is based on a classification of the land by counties, made by F. J. Marschner, Bureau of Agricultural Economics (Division of Land Economics), with the cooperation of Dr. C. F. Marbut, Bureau of Soils. This classification was made largely on the basis of available data in the United States Soil Survey, United States Geological Survey, United States Land Office, and various State surveys and other State sources of information.
 The subhumid prairie region and the semiarid and arid portions of the Great Plains and of the Rocky Mountains interior plateaus. and I acific coast regions: The estimates were made by O. E. Baker, Bureau of Agricultural Economics (Division of Land Economics), on the basis of the census statistics on the use of land in farms, in process of tabulation, and for land outside of farms, on the basis of data assembled by the Land Classification Board of the United States Geological Survey, supplemented by climatic records and data from the Soil Survey and the Forest Service.
 ${ }^{15}$ Including areas classified as bare fallow; green manure crops and fields under natural grass; "trees, shrubs, and bushes" (i. e.. orchards and small fruits). For a given year, of course, fields under natural grass are more properly considered pasture, but they comprise land that comes into crops during the course of the rotation.

[^62]: Figs. 18 and 19.-While the area of land in farms generally decreased throughout the region east of the Great Plains (figs. 16 and 17), there was a widespread increase in the area of harvested crops in this section as well as in the Great Plains and various parts of the West. Patriotic motives, together with the inducements represented by high prices for farm products during the war and for some time thereafter, were mainly responsible for this increase, which consisted largely in the employment for crops of land formerly used for pasture. The large increase in the acreage of crops in the Great Plains corresponds with an increase in land in farms already noted. The principal regions where a decrease in crop acreage occurred were New England, the Black Prairie of Alabama, and northeastern Mississippi, a district along the Mississippi River in the southwestern Mississippi and northeasterm Louisiana, and a part of northern Oklahoma. In all of the southern districts mentioned, with the exception of Oklahoma, the ravages of the boll weevil are largely accountable for the reduction in the acreage of harvested crops.

[^63]: ${ }^{17}$ Since the various crops involve products of such widely different value in proportion to weight as hay and cotton or tobacco, it was necessary te reduce them to some common denominator which would reflect their relative value over a long period. For this purpose the 43 -year average price of each crop (1879 to 1922) was used as a weight in obtaining the index of average yield per acre of the principal crops.

 18 In 1880 a considerable part of the range land in the West, especially in the Dakotas and Montana, was not in use for pasture; but by 1890 nearly all of the land in the West, outside the absolute deserts, was employed for grazing, as is shown by the local distribution of livestock in the census of 1890 (fig. 26). Consequently, since 1890 it is fair to assume that all grassland brought into the classes of improved land or unimproved land other than woodland was still used for pasture, except in so far as it was devoted to increasing the crop area.
 ${ }_{19}$ Some of this forest land was used for pasture before clearing, but its value for pasture was very low in comparison with its value after clearing.

[^64]: ${ }^{20}$ This result was obtained by tabulating the acreage of improved and of unimproved land other than woodland separately for the counties originally forested and for those originally cervered mostly with grass or desert vegetation. The increase in crop land harvested in each decade, less the increase in improved and unimproved land in forested counties, is assumed to indicate roughly the net loss in pasture area for the decade. To whatever extent these forest areas were formerly pastured before clearing, to that extent the loss in pasture acreage was greater than the figures indicate. However, the carrying capacity of woodland is so small that to allow for it on an acreage basis would be misleading.

[^65]: ${ }^{21}$ Compare also article " Farm Ownership and Tenancy," p. 541.

[^66]: ${ }^{22}$ In this last decade the relationship was abnormal, because the prices of commodities had been moving upward with great rapidity while the valuation of land, being apparently slower to respond to the influence of inflation, had tended to lag behind. Consequently the decrease shown from 1910 to 1920 may be only a nominal decrease due to the taking of the statistical picture at a time when the valuation of land had not yet caught up with the upward movement of commodity prices.

[^67]: ${ }^{23}$ Calculated on the basis of direct exports.
 24 In the latter half of 1923 there was a marked decrease in exports of cereals and cereal products. If this lower level is maintained during the remainder of the fiscal year, the acreage required to produce these cereal exports will be only about half the annual average 1919-22.

[^68]: ${ }^{25}$ Besides the cereal crops, the acreage of tobacco was considerably larger in the postwar period than in the pre-war period, but this is more than offiset by a decrease in the acreage of cotton.

[^69]: ${ }^{28}$ As shown above, these changes are largely the outcome of the reduction in the number of sheep and beef cattle per 1,000 people, and also in the number of horses per 1,000 people due to the substitution of other forms of motive power.
 ${ }_{27}$ The acreage harvested in 1920 was $14,500,000$ acres less than in 1919 , nearly $5,000,000$ in 1920 not being harvested because of crop failure. In 1923 over $6,000,000$ acres were not harvested. The acreage harvested was about $17,000,000$ acres less than in 1919 and $3,000,000$ less than in 1920 , but $11,000,000$ acres more than the pre-war acreage, 1909-13.
 ${ }_{28}$ Yearbook of the International Institute of Agriculture, 1921, p. 65 . Since 1921 there has been an increase in world production due largely to the expansion of wheat production in Europe outside of Russia.

[^70]: ${ }^{29}$ Yearbook for 1922 , International Institute of Agriculture and preliminary estimate for 1923 , Dominion Bureau of Statistics.
 ${ }_{30}$ Tylor, W. Russell. The Natural. Increase of Eontemporary Peoples. An unpublished doctoral dissertation prepared at the University of Wisconsin.

[^71]: ${ }^{1}$ The 12 crops are corn, wheat, oats, rye, barley, rice, flax, hay, potatoes, cotton, tobacco, and buckwheat. ${ }^{2}$ The term "net exports" is employed not in the sense of total excess of all agricultural exports over agricultural imports, but merely to indicate that in the case of the principal export crops included in the table reductions were made for the comparatively minor imports of the same crops.
 ${ }^{3}$ This includes the area used in feeding livestock for export.

[^72]: ${ }^{31}$ See preceding article, " Our Forage Resources," p. 311.
 ${ }^{22}$ Based on estimates made from results of a survey by United States Department of Agriculture in 1918, showing farm consumption of feed crops by each class of livestock. See Yearbook for 1920, p. 811.

[^73]: ${ }^{33}$ The large importation of mutton in 1920 was due to an extraordinary combination of conditions. The English market at that time was glutted with an oversupply of mutton, and favorable ocean freight rates on ships outbound and high prices in the United States were the primary causes of the movement.

[^74]: ${ }^{34}$ This, of course, assumes that we could increase our imports of agricultural products in the same proportion.

[^75]: ${ }^{35}$ For more detailed discussion see article, "Timber: Mine or Crop," Yearbook, 1922.
 ${ }^{36}$ Some students of the subject have even believed the effect of immigration is merely to displace an equivalent number of native population, so that at the end of a given period the native population is smaller than it otherwise would have been by approximately the volume of immigration during the period.
 ${ }^{37}$ Rossiter, W. S., "Increase of Population in the United States, 1910-1920." Census monograph No. 1, 1922, p. 204.

[^76]: ${ }^{38}$ The productivity per acre of each country is weighted by the average annual acreage for the particular crop during the five years 1909-13. inclusive.
 ${ }^{39}$ It may be doubted if we could hope to attain so high an average product per acre as obtains in Great Britain, Germany, and Belgium, for a large part of our small-grain crops is produced under semiarid conditions. Some of the European countries, notably Great Britain, Belgium, and Germany, import large quantities of concentrates, which are fed to livestock, and the manure applied to field crops. Morecver, it is wise to allow for the inertia which may retard the general adoption of the most approved agricultural methods in so large a country as our own.
 ${ }^{40}$ The statistics comprise separate figures for production of clovers, sainfoin, etc., on the one hand, and for hay cut from permanent meadows on the other hand. However, the averages per acre for the two classes are not greatly different, and may be safely combined as a basis of comparison with our own statistics.

[^77]: ${ }^{41}$ This involves the assumption, of course, that the remaining 10 per cent or more of crop acreage may be made to show an average per cent of increase in yield equal to that estimated for the 10 crops considered.
 ${ }^{42}$ The method of estimate was as follows: The acreage now required for domestic consumption was divided into two parts: (1) The acreage used to maintain horses and (2) the acreage employed for other domestic uses. The ratio of the one quantity to the other was determined. The area required for uses other than the maintenance of horses was increased by the ratio of $150,000,000$ to the population in 1920 , and the resulting quantity was then divided by the ratio of crop acreage required at present for uses other than for the maintenance of horses to the area required for horses. This quotient was then divided by 1.468 , in order to allow for increase of yield, and the area required for other crop uses was also divided by 1.468 . The two quotients were added to give the estimated crop acreage.

[^78]: ${ }^{1}$ International Yearbook of Agricultural Statistics, Rome, 1921.
 ${ }_{2}$ The number of animal units is calculated by the usual method. The livestock statistics from which the animal units are calculated are averages for the three years 1911-13, inclusive, for all the European countries with the following exceptions: All German figures are an average for 1912 and 1913, except that for asses and mules statistics for 1912 only are available; all statistics for the Netherlands are averages for 1910 and 1913; for Denmark the statistics for horses, cattle, sheep, and goats are for 1909, and the statistics of hogs are an average of 1909 and 1914. For Belgium the statistics of sheep and goats are for 1910.
 ${ }^{3}$ No statistics available or number insignificant.
 ${ }^{4}$ Includes marsh, heath, and uncultivated productive land.
 ${ }^{5}$ Included under natural meadows and pastures.

[^79]: ${ }^{43}$ See Bulletin 588, United States Department of Agriculture, by J. T. Jardine and L. C. Hurtt-"Increased Cattle Production in Southwestern Ranges."
 ${ }^{44}$ Computed from unpublished reports in Forest Service. ${ }^{45}$ United States Department of Agriculture Bulletin 367, by E. O. Wooton-" Carrying Capacity of Grazing Ranges in Southern Arizona."

[^80]: ${ }^{46}$ The above estimate was made as follows: The number of animal units other than work stock required for a population of $150,000,000$ people was calculated. The number of horse animal units was estimated as follows: The fraction of a horse animal unit per acre of crop land at present was determined. This requirement was increased by 40 per cent (see $p .478$) and the resulting horse requirement per acre was multiplied by the crop acreage required for $150,000,000$ people under the assumption of an incrase of 46.8 per cent in productivity, as previously estimated. The required number of horse units was then added to the number of other animal units. The estimated number of animal units carried on semiarid pasture, increased by 50 per cent, was added to the estimated number maintained on woodland pasture. The sum was subtracted from the required number of animal units. The percentage of the remainder to the number now maintained on humid pasture other than woodland was then ascertained, and the present acreage of humid pasture other than woodland was multiplied by this percentage.

[^81]: ${ }^{47}$ This is on the basis of the United States census for 1920 , which was taken as of January 1, and which shewed fewer persons engaged in agriculture by about $1,500,000$ than were reported in the 1910 census, which was taken as of April 15 . It is believed that the difference in date of enumeration is partly responsible for the smaller number shown for 1920.
 ${ }^{48}$ It should be recognized that the statistical comparison is a very rough one and should be regarded only as suggestive rather than an exact measure of the differences involved. In the first place, occupational statistics are very inaccurate because the time of year in taking the census makes a considerable difference. Moreover, the proportions of casual labor and of woman and child labor vary considerably in the different countries. Again, the production figures are for only seven principal crops. America produces at least two important crops not grown in the four European countries; and some of these countries in turn lay a greater emphasis on small fruits and vineyard, truck, and other intensive products than is the case in the United States. In some of the European countries a good deal of the time of the agricultural population is employed in by-industries, such as domestic manufactures, or in making things for themselves or performing services for which American farmers have to pay. Finally, it must be recognized that no account has been taken of the relative amounts of labor employed in producing and caring for livestock.

[^82]: ${ }^{16}$ Even as compared with English requirements the assumption of an increase of 40 per cent in number of horses and mules appears a conservative one and makes considerable allowance for the substitution of tractors and other forms of mechanical power. It is difficult to allow for this factor. Some would make greater allowance for the future displacement of horses by these means. Apparently, thus far, there has been some progress in this regard. During the past decade the number of horses and mules per thousand acres of cultivated land decreased from 75 to 69 . On the other hand, such studies as have been made indicate that the tractor does not displace more than 15 to 20 per cent of the horses on the average farm outside of the wheat regions. Moreover, there are probably large areas of the country where topographic conditions do not favor the introduction of tractors.

[^83]: ${ }^{1}$ The figures for beef and veal, mutton and lamb, and pork do not correspond exactly to the statistics gathered by the Bureau of Crop Estimates in an attempt to obtain from crop correspondents the consumption of these products by sections. See Yearbook 1920, p. 828.
 ${ }_{2}$ Game is not included in the United States figure.

[^84]: 50 The data for United Kingdom are derived from the report of "A Committce of the Royal Society at the Request of the President of the Board of Trade," London, H. M. Stationery Office, 1917, and comprise the average annual consumption for the years 1909-13. The American figures comprise the average annual consumption for the years 1918-23.

[^85]: ${ }^{51}$ The estimate was made as follows: The acreage required for each class of livestock other than horses for a population of $150,000,000$ was calculated, and this was multiplied by the percentage the British per-capita consumption for this class of livestock is of the American per-capita consumption. The sum of the average requirements for the various classes of livestock was then added to the acreage required for other domestic uses under a population of $150,000,000$. This total was divided by a factor representing the ratio of acreage required for domestic consumption exclusive of the maintenance of horses to the acreage required for horses. The quotient added to the other acreage previously estimated gives the requirement under the British standard. The American consumption of poultry is relatively very much higher as compared with that of the United Kingdom than it is for eggs. This is partly due to the fact that the United Kingdom imports a large part of its supply of eggs, while the greater part of the American supply is produced at home, with the consequence that the surplus poultry incidental to egg production is consumed at home. It was therefore considered best to take the relative consumption of eggs rather than the relative consumption of poultry as a basis of obtaining the economy in acreage. To determine the proportionate consumption of all dairy products the percapita consumption of butter and of cheese was reduced to whole milk.
 ${ }_{52}$ The estimate was made as follows: The number of animal units for each class of livestock required for $150,000,000$ people under the American standard of consumption was calculated. This was multiplied by the percentage the British standard of consumption fer that particular class of livestock is of the American. The necessary number of horse units was determined by multiplying the horse units that would be required under the American standard of consumption by the ratio of crop acreage required for horses under the British standard to the crop acreage required for the maintenance of horses under the American standard previously estimated. From the total number of animal units that wculd be required under the British standard thus determined was subtracted the number of animal units now maintained by semiarid pasture and woodland. The ratios of the remainder to the number of animay units now maintained by humid grassland pasture was determined and this ratio multiplied by the acreage of humid grassland pasture now employed for domestic consumption, thus giving the area required under the British standard.

[^86]: ${ }_{53}$ " Report on Food Conditions in Germany," by Ernest H. Starling, with Memoranda on Agricultural Conditions in Germany, by A. P. McDougall, and on Agricultural Statistics, by G. W. Guillebaud (London, H. M. Stationery Office, 1919). The statistics on food consumption used herein are based on official statistics.
 ${ }^{54}$ By "average man" is meant a figure in which the women and children, for whom the food requirement is less than for men, are converted into equivalent man units. For the German Empire this was done by multiplying the total pepulation by 80 per cent. After the war, however, as a result of the loss of man power, it was found that the equivalent was 84 per cent (in 1919).
 ${ }^{56}$ The undoubted undernourishment which resulted from the war is attributed in the above-mentioned report largely to the disorganization in production and distribution.

[^87]: ${ }^{1}$ Derived with minor modifications and adjustments for purposes of comparison from "Report on Food Conditions in Germany" by Ernest H. Starling and others.
 ${ }^{2}$ Animal products consumed in the United States-Beef and veal, pork and pork products, including lard, mutton and lamb are based on average consumption, 1918 to 1922, inclusive; statistics furnished by John Roberts, United States Department of Agriculture. Statistics on average consumption of dairy products in the United States, 1918 to 1922, inclusive, furnished by T. R. Pirtle, United States Department of Agriculture.
 ${ }^{8}$ From" The Nation's Food," by Raymond Pearl. Average consumption, 1911-18, inclusive, calculated from tables in Chapter XI.

[^88]: ${ }^{56}$ In making this estimate allowances were made for seed requirements and for the proportion of the area of the several crops employed in feeding livestock. The economy in sugar consumption is applied only to the acreage of cane and sugar beets in this country, not to the acreage required for the proportion of those crops imported. In calculating the respective acreage requirements for rye the percentage in Table 7 was not employed, because of the tendency to exaggerate unduly possible errors in the small estimate of rye employed for human consumption in the United States. Consequently, it was found best to calculate the rye requirement direct from the statistics of German production and consumption.

[^89]: ${ }^{57}$ On the basis of the population in 1920.

[^90]: Fig. 54.-Of the total timber annually removed from the forests of the United States a little over 4 per cent is destroyed by fire and a little over 5 per cent by insects and disease. Lumber, dimension material, and sawed ties comprise about one-third of the total, ${ }^{\text {b }}$ but the timber of saw-timber size removed for various purposes amounts to more than half of the timber annually removed. About two-fifths of the total is employed for fuel. Pulp wood, though economically of great importance, represents only a little over 2 per cent of the timber annually removed. As indicated in Figure 55, nearly half of the total timber removed represents waste, but only a small part of this waste could be prevented without considerable increase in cost of utilization.

[^91]: 58 With either a corresponding economy in wool or increased importation.
 ${ }^{59}$ See p. 463.

[^92]: ${ }^{60}$ The requirement for crops was estimated as follows: The changes in crop acreage used in producing food for direct consumption were estimated by assuming that the per capita consumption of certain items for $150,000,000$ people will be the following percentages of present consumption: 103 per cent for cereals, 110 per cent for potatoes, 90 per cent for sugar, 95 per cent for hogs, 80 per cent for beef cattle, and 80 per cent for poultry, the other classes of food remaining unchanged. The requirement for work stock was estimated as follows: The areas at present used in producing food crops for domestic consumption, employed in producing crops used in feeding livestock, and for producing

[^93]: crops for export were added. The sum was subtracted from the total acreage in harvested crops (1919), leaving the area employed at present in producing nonfood crops for domestic consumption. This figure was increased by the ratio of $150,000,000$ to the population of 1920, and the resulting figure added to the estimated acreages required for food crops, and for livestock other than work stock, the sum of the three items being the estimated acreage of crops required for $150,000,000$ people under the assumed changes in consumption, not including the area used to produce feed for work stock. The ratio of this figure to the corresponding figure for the population of 1920 was determined, the result being the ratio of work stock required for $\mathbf{1 5 0 , 0 0 0}, 000$ people under the assumed changes, as compared with the number now required. The acreage required at present for work stock employed in producing for domestic consumption was multiplied by this ratio, and the result added to the acreage required for domestic purposes other than feeding work stock, as previously estimated. The sum was divided by 1.1 in order to allow for the assumed increase of 10 per cent in the average yield per acre of crop land.

 The requirement of humid pasture was estimated as follows: The numbers of animal units of the different classes of livestock other than work stock to supply $150,000,000$ people, under the assumed changes in consumption, were calculated by employing the same factors as in the case of crop acreage above. The percentage increase of work stock was calculated on the basis of the ratio of crop acreage required under the assumed changes in consumption and production, as previously estimated, to the acreage of crops in 1919. The number of animal units on semiarid pasture in 1920 was multiplied by 1.2 to allow for an increase of 20 per cent in carrying capacity. The sum added to the number of animal units on woodland pasture was subtracted from the total number of animal units required, the remainder being the number to be maintained by humid pasture. The ratio of this to the number of animal units now on humid pasture was determined and the acreage of humid pasture now employed for domestic consumption was multiplied by this ratio.
 ${ }^{{ }^{1}} \mathbf{F}$ For statistical reasons the estimates have been made on the basis of harvested crops. Allowance would also have to be made for the small additional acreage for crop failure, estimated at about $15,000,000$ acres in 1919. However, it is probable that the proportionate requirements for this purpose would not greatly change. In a given year there is also a certain acreage of crop land in rotation devoted to pasture.
 ${ }_{62}$ If we should fail to economize as much as the very moderate modifications in consumption and production assumed as the basis of these estimates imply, the requisite increases of crop and pasture land would fall somewhere between the above estimates and the increase of $96,000,000$ acres of crop land and $116,000,000$ acres of humid pasture that would be necessary if no economies in consumption and production are effected (p. 462), allowing in each case half the acreage at present employed for exports.

[^94]: ${ }^{63}$ On account of new materials made available, these estimates are somewhat different from those given in testimony by L. C. Gray before the Senate Committee on Reforestation (S. Res. 398) and also quoted-in the article "Timber: Mine or Crop," Yearbook. 1922. While the estimated areas are not identical, the essential conclusions are the same.

[^95]: ${ }^{64}$ The method of calculation was as follows: The per capita area of humid pasture other than woodland that would be required under the German standard of consumption, if no semiarid or woodland pasture was available, was calculated on the basis of relative carrying capacities of the several classes of pasture. This per capita figure was divided by 2.22 to allow for a potential increase of 122 per cent in carrying capacity. The per capita crop area under the German standard of consumption divided by 1.468 to allow for a potential increase of 46.8 per cent in average yield was added to the per capita requirement of humid pasture, and this sum was divided into $1,004,000,000$ acres, indicating a provisional population of $330,000,000$ people without allowing for use of semiarid and woodland pasture. This allowance was made as follows: The number of livestock that would be carried on the area of semiarid land capable of being used only for pasture was estimated on the basis of present carrying capacity. This was increased by 50 per cent to allow for potential increase in carrying capacity, and the resulting number added to the number of animal units carried on woodland pasture. The total was then divided by the number of animal units per capita required under the German standard of consumption. This gave the number of people that could be provided for by the available semiarid and woodland pasture. This number divided by the per capita requirement of humid pasture under the assumed economies in consumption and production. as previously calculated, indicated the area of humid pasture to which the semiarid and woodland pasture would be equivalent. This equivalent was added to the $1,004,000.000$ acres and the sum divided by the total per capita requirement of crop land and humid pasture.
 ${ }^{65}$ On the basis of calories for human consumption, including animal products used in the diet, it is estimated that Germany was about 85 per cent self-sufficient.

[^96]: ${ }^{66}$ Including an allowance for the larger area required for our maximum population.

[^97]: ${ }^{67}$ By a study of the relation of cultivated acreage to population in Germany, France, and Belgium, Prof. E. M. East has concluded: "The maximum population the United States can support under any conditions conceivable to those of us who live at the present day, therefore, is $331,000,000$." "The Agricultural Limits of Our Population" in The Scientific Monthly, XII, No. 6, p. 555. By an entirely different method of calcula-tion-that is, by the projection of a population curve-Profs. Raymond Pearl and L. J. Reed have reached the conclusion that our maximum population will be $197,000,000$. "On the Rate of Growth of the Population of the United States since 1790 and its Mathematical Representation", in Proceedings of the National Academy of Science, VI, pp. 275-286. If the population should become stationary at the figure suggested by Professor Pearl it would be due to economic and social motives working to limit population, rather than to the physical incapacity of our land resources to maintain a larger number.

[^98]: ${ }^{69}$ An estimate by R. P. Teele, associate economist, Bureau of Agricultural Economics (Division of Land Economics).

[^99]: ${ }^{1}$ Tenure in this country, though commonly referred to as allodial, is, in all cases, held subject to the paramount authority of the State. The classes referred to as tenure classes in this study are somewhat more inclusive than when defined legally. One class, managers, is included here, although as such they can scarcely be said to have tenure with reference to land.

[^100]: ${ }^{2}$ No attempt was made by the Census Bureau to separate croppers from tenants before 1920. In that census they were defined and enumerated as tenants to whom the work stock was furnished by the landlord. The tabulations were made only for the South and showed 561,091 croppers in that section. Some farmers corresponding to the above description are to be found in other parts of the country, although relatively few in number.

[^101]: ${ }^{8}$ In the census of 1920 , the land owned by part owners was not enumerated separately from that rented. This was done in 1900 . In 1910 the figures were not published, but they have been available for the present study. Estimates have been made for 1920 by assuming that the proportion of the two classes of land are the same as they were found to be in 1910.

[^102]: "The terms " landlords" and " landlordism" are not used in an invidious sense. Landlordism is employed merely as a convenient expression to designate the system of letting land to those who will use it. The term landlords is used to indicate individuals or corporations who let land to others, whether on a large or a small scale.
 corporations believed that this promiscuous and unregulated use should be replaced by a system of regulated grazing. (See pp. 404, 405, and 505.)

[^103]: - The grant does not involve the exclusive or assured use of a specific area but only the ight to graze a certain number of stock under carefully drawn regulations and for a certain charge per head. This right is revocable.

[^104]: 7 The census shows that 75.2 per cent of all tenant farms were owned by landlords definitely reported to reside in the county where the farms were located. However, 4.:) per cent were owned by landlords of unreported residence. By prorating this 4.5 per cent, the total percentage is changed to 76.8 .

[^105]: ${ }^{8}$ It should also be noted that in this region no small part of the number of tenant farmers is accounted for by the renting of State lands and Indian lands.

[^106]: ${ }^{10}$ For the purpose of measuring the relationship between income from farm real estate and its valuation cash rent proves more serviceable than share rent, because the former represents more nearly payment for the use of the farm real estate as distinguished from some of the other elements which enter into share rent, such as payment for a larger amount of risk assumed by the landlord, for supervision contributed by him, and frequently a participation in some of the expenses of production. It is true, cash rent is not exactly identical with the net income received from the real estate by the landlord, for taxes are yet to be deducted and certain minor expenses, including repairs and depreciation oi buildings. However, it is the best statistical measure available.

[^107]: ${ }^{11}$ Gray, L. C. "Accumulation of Wealth by Farmers," Proceedings of American Eco. nomic Association, March. 1923. The estimate, though made with care, is considered a rough one because of numerous gaps in available statistics.

[^108]: ${ }^{1}$ Based on census statistics.

[^109]: ${ }^{12}$ Local surveys have shown that the percentage of returns on operating capital of tenants is frequently several times as great as the percentage of rent to the valuations of real estate. However, this is due in part to the fact that the income includes wages of management and return for risk and enterprise, the whele being calculated as a percentage on a much smaller base than in the case of owner farmers.

[^110]: ${ }^{13}$ Census officials have expressed the opinion that a considerable number of farmers failed to report previous farm experience as laborers or as tenants, and this failure tends to exaggerate unduly the proportion who became ewners without previous farming experience. The results of a number of local surveys appear to confirm this conclusion.

[^111]: ${ }^{24}$ This difficulty also applies to the otherwise interesting calculations in the Census anomograph entitled "Farm Tenancy in the United States," 1924.

[^112]: ${ }^{15}$ These surveys are as follows: One each in Illinois and Indiana by the Interchurch World Movement; a survey in Iowa, in Missouri. and in Georgia, by the Bureau of Agricultural Economics, Division of Farm Population; surveys in Texas, Nebraska (nine localities), Kentucky, and in Tennessee (two localities) by the Bureau of Agricultural Economics, Division of Land Economics. State universities cooperated in the Nebraska, Kentucky, and Tennessee surveys.

[^113]: ${ }^{16}$ The importance of these aids to farm ownership would, of course, be different during a time when land valuations were not rapidly rising.
 ${ }^{17}$ See article by George Stewart, "Can Farms Pay for Themselves?" Journal of Farm Economics, Vol. III, No. 3.
 ${ }^{18}$ In so far as the difference in years makes a difference in the valuation of the farms, there is a tendency toward corresponding changes in income.

[^114]: ${ }^{2}$ These farms yield less than $\$ 600$ annual income,

[^115]: ${ }^{18}$ It should be noted that most of the surveys do not reffect the decrease in the value of the dollar which resulted from the World War. Probably, the $\$ 600$ represented a larger amount of purchasing power at the time the surveys were taken than it would represent, at present.

[^116]: ${ }^{i}$ Surveys in 3 areas (Georgia, Iowa, and Missnuri) by Bureau of Agricultural Economics, Division of Farm Population; and in 11 areas (California, Illinois, Indiana, Maryland, Missouri, Nebraska, New Jersey, New York, Oklahoma, Pennsylvania, and Wisconsin) by Inter-Church World Movement.

[^117]: ${ }^{1}$ Sources as follows: Southwestern Ohio, A Rural Survey in Southwerstern Ohio, Department of Church and Country Life, Board of Home Missions of the Presbyterian Church, 1913 ; North Carolina, Economic and Social Conditions of North Carolina Farmers, State Board of Agriculture in cooperation with United States Department of Agriculture, 1923; Nebraska, University of Nebraska Agricultural Experiment Station in cooperation with Bureau of Agricultural Economics, Divisions I and Economics and Farm Population, data unpublished in this form; Kentucky, Tennessee, and Texas, same sources as in Table 7, footnote 1, data unpublished; Virginia, Bureau of Agricultural Economics, Division Land Economics, data unpublished.
 ${ }^{2}$ Including religious magazines.
 ${ }^{3}$ Reported as "news" hence probably not all dailies, probably includes local weeklies.
 4 Women's magazines. 5 Standard magazines. ${ }^{6}$ Cheap advertising. 7 Children's papers
 ${ }^{8}$ For the Texas and Virginia survey, the total number of operators reporting on other periodicals than dailies varied with each, hence percentages here given are not on basis of those reporting for dailies.

[^118]: ${ }^{1}$ The New York figures are from United States Department of Agriculture Bulletin 1214, Family Living in Farm Homes, in cooperation with the Cornell Agricultural Experiment Station. The figures for Texas, Tennessee, and Kentucky are from the same sources as those in Table 7, footnote 1.

[^119]: ${ }^{20}$ For 971 owner farmers and 1,065 tenants. For sources of statistics for first three States, see rable 7, footnote 1. The Nebraska data are from sources cited in Table 9 , footnote 1 .

[^120]: ${ }^{21}$ Although 37.1 per cent were reported in the group of "cash and unspecified " in 1900, the unspecified were such a proportion of the whole (4.8 per cent in 1910) that it is unsafe to say that more than a third of the tenants were on a cash basis in 1900.

[^121]: ${ }^{22}$ In a number of Southern. States they are legally classified as laborers rather than as tenants and, therefore, are adjudged to have no rights of ownership in the implements and work stock advanced for their use, nor in the crop itself until after division by the plantation operator.

[^122]: ${ }^{23}$ In 1910 the census did not enumerate as farm occupants persons operating farms but not living on them. In 1920 this group, estimated at about 4 per cent of the total number of farm operators, was included. The census of 1910 was taken as of April 15, while the census of 1920 was taken as of January 1, a time when a large proportion of tenants are shifting or just have shifted. The effect was to decrease the proportion of operators in 1920 classed in the group on farms less than one year and to increase the group who had been on their farms for longer periods.
 ${ }_{24}$ In the following references to differences between classes of operators and sections of the country, only the statistics of past occupancy are used.
 ${ }^{25}$ In the case of owners free of mortgage debt it is probable that the relatively shorter period of occupancy for colored farmers is due in part to the large percentage of negro owner farmers who had recently succeeded in achieving farm ownership shortly before the census of 1910 .

[^123]: ${ }^{27}$ Local tenure surveys in Kentucky, Tennessee, and Texas, referred to previously.

[^124]: ${ }^{28}$ The following number of county landlord-tenant conferences were held in the period, 1921-1923: Illinois, 4; Iowa, 26 ; North Dakota, 1; Ohio, 1; and South Dakota, 4.

[^125]: Division of Crop and Livestock Estimates．Figures in italics are census returns．
 ${ }^{1}$ Based on farm price Dec． 1.
 ${ }^{2}$ No． 1 Northern spring to 1915．Chicago Daily Trade Bulletin．
 ${ }^{3}$ Bureau of Foreign and Domestic Commerce．
 ${ }^{4}$ Preliminary．

[^126]: Division of Crop and Livestock Estimates.

[^127]: ${ }^{1}$ Four-year average.
 ${ }^{2}$ Commercial estimate.
 ${ }^{3}$ Old boundaries.
 Includes production in Alsace-Lorraine.
 ${ }^{5}$ Orre year only.

[^128]: 1 Four-year average.
 ${ }^{3}$ Old boundaries.

 - One year only.
 ${ }^{10}$ Includes Bessarabia.
 ${ }_{11}$ Preliminary estimate of former Russian territory within 1923 boundaries.
 12 Estimate U. S. Dept. of Agriculture.
 ${ }^{18}$ Exclusive of native locations which produced 359,000 bushels in 1918 and 290,000 bushels in 1921 .

[^129]: ${ }^{1}$ New boundaries.
 ${ }^{2}$ Includes Hungary proper and Creatia Slavonia.
 ${ }^{3}$ Includes 50 governments in Europe, 10 governments of Poland, and 1 government and 2 provinces of Northern Caucasia.
 ${ }^{4}$ Excludes Poland.
 ${ }^{6}$ Excludes production in Alsace Lorraine.

[^130]: Division of Crop and Livestock Estimates.

[^131]: Compiled from Bradstreet's. Includes grain stored at approximately fifty interior and seaboard points of accumulation and grain in transit by canais and lakes; also Pacific Coast stocks at Portland, Tacoma and Seatile. Reported on the Saturday nearest the first of the month.

 Division of Statistical and Historical Research.

[^132]: ${ }^{1}$ Ten months ending May 31.
 ${ }^{2}$ Twelve months for wheat, ten months for flour.
 ${ }^{8}$ Calendar years, 1909-1922.

 - Years ending June 30.
 ${ }^{8}$ Less than 500 bushels.
 6 Eight months, Aug.-Dec., 1920 and May-July, 1921.
 7 Ten months for wheat, twelve months for flour.
 8 Eleven months.

[^133]: ${ }^{1}$ Compiled from Minneapolis Daily Market Record. Prior to the promulgation of the Federal grades, August 1, 1917, the subclass Dark Northern did not exist.
 ${ }_{2}$ Compiled from the Chicago Daily Trade Bulletin.

[^134]: ${ }^{3}$ Compiled from St. Louis Daily Market Reporter
 4 Compiled from Kansas City Daily Price Current.
 ' Six months' average. No record for 1901.

[^135]: Division of Statistical and Historical Research.

[^136]: Division of Statistica! and Historical Research.
 ${ }^{3}$ Compiled from Chicago Board of Trade and Daily Trade Bullecin.

 - Compiled from New York Journal of Commerce.

[^137]: Division of Statistical and Historical Research.
 ${ }^{1}$ Miller's Almanack, 1923, page 192. Does not include a few minor States.
 ${ }_{2}$ Census of Manafactures, 1921 .-Flour-Mill Products and Bread and Other Bakery Products. Includes merchant mills only. Calendar years.
 ${ }_{8}$ Division of Crop and Livestock Estimates. Department of Agriculture Yearbooks, 1921 and 1922.

[^138]: ${ }^{1}$ Based on farm price December 1.
 ${ }^{2}$ Chicago Daily Trade Bulletin.
 ${ }^{3}$ Compiled from reports of Bareau of Foreign and Domestic Commerce.
 ${ }^{4}$ Preliminary.

[^139]: Division of Crop and Livestock Estimates.

[^140]: ${ }^{1}$ Not a vailable. 8 Net imports.
 : Years ending June 30.
 ${ }^{4}$ Net exports.

[^141]: Division of Crop and Livestock Estimates.

[^142]: Division of Cost of Production.

[^143]: Division of Cost of Production.
 ${ }^{1}$ Costs computed from basic requirements as shown in Bulletin No. 943; 1913-1821 prices:are:averages of prices from July to June; 1922-23 prices are for Oct. 1.
 ${ }^{2} 1923$ figures subject to revision.

[^144]: Division of Cost of Production.

[^145]: Division of Cost of Production.
 ${ }^{1}$ 1913-1921 indices are averages of prices from July to June; 1922-1923 are fcr Oct. 1.
 ${ }_{2} 1923$ wage index, Kansas: Janiary, 132; A pril, 142; July, 146; October, 151. North Dakota: January, 101; April, 125 ; July, 144; October, 147 .

[^146]: Division of Statistical and Historical Research. Compiled from Minneapolis Daily Market Record.
 iPrices are common averages of the mean of the range of daily closing prices. Only days on which prices for the three markets appeared were used.
 ${ }_{2}$ Conversions at current rate of exchange as reported by the Federal Reserve Board. Winnipeg prices on basis in store at Fort William and Port Arthur.

[^147]: Division of Statistical and Historical Research.
 ${ }^{1}$ Burean of Labor Statistics index converted to 1909-1913 base.
 ${ }^{2}$ A verage price of pure lard, Chicago.
 ${ }^{3}$ The average price for the month in 1909-1913 multiplied by the index number of wholesale prices for the corresponding month.

[^148]: Division of Statistical and Historical Research. Compiled from records of the Bureail of Foreign and Domestic Commerce.
 ${ }^{1}$ Four months; Emergency tariff became effective May 28, 1921.

[^149]: Division of Statistical and Historical Research.
 Interstate Commerce Commission, United States Shipping Board, Consular Reports, Dominion Bureau of Statistics, International Institute of Agriculture.

 1 Rate in effect on November 19, 1923.
 ${ }^{2}$ A verage rate for nine months, January to September, 1923; all conversions on the basis of average rate of exchange prevailing during these months.

[^150]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Preliminary.

[^151]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Includes all other causes.
 ${ }^{2}$ Less than 0.05 per cent.

[^152]: ${ }^{1}$ Yield per acre not computed when acreage is less than 12,000 acres.
 ${ }_{2}^{2}$ One year only.
 ${ }^{3}$ Old boundaries.
 ${ }^{4}$ Includes Bessarabia.
 ${ }^{6}$ Preliminary estimate of former Russian territory within 1923 boundaries.
 ${ }^{6}$ Two-year average.
 7 Four-year average.
 85813° - YBK $1923-43$

[^153]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Based on reported percentage of entire crop on farms, merchantable, and shipped out of county where
 grown.
 ${ }_{2}$ Preliminary.

[^154]: Division of Statistical and Historical Research. Compiled from the Chicago Daily Trade Bulletin
 and the Chicago Board of Trade Annual Reports.
 ${ }^{1}$ No report.

[^155]: Division of Statistical and Historical Research.
 Compiled from the Chicago Daily Trade Balletin. Reported on Saturday nearest the first of eaeh month.

[^156]: Division of Statistical and Historical Research. Compiled from International Yearbook of Agricultura Statistics 1912-1921. Subsequently Review of the River Plata. Average of weekly quotations. For rate of exchange used in conversion from shillings see Table 696, p. 1164.
 ${ }^{1}$ No quotations.
 ${ }_{2}$ Interpolation, no quotation.

[^157]: Division of Crop and Livestock Estimates Figures in italics are census returns. Exports and imports from Bureau of Foreign and Domestic Commerce.
 ${ }^{1}$ Based on Dec. 1 price.
 2. Chicago Daily Trade Bulletin. Quotations are for No. 2 to i906; for contraet 1906-1915.

 8 Oatmeal not included until 1882.
 :Oatmeal not included 1869-1882, and 1909.

 - Preliminary.

[^158]: ${ }^{2}$ Less than 0.05 per cent

[^159]: ${ }^{1}$ One year only.
 ${ }^{2}$ Old boundaries.
 ${ }_{4}^{3}$ Former Kingdom of Serbia.
 ${ }^{4}$ Three-year average.

[^160]: - Inchudes Bessarabia.
 ${ }^{6}$ Preliminary estimate of Eascian territory within 1923 boundaries.

[^161]: ${ }^{1}$ Commercial estimate.
 ${ }^{2}$ Old boundaries.
 ${ }^{3}$ Includes production in Alsace Lorraine.
 4 Includes 627,000 bushels grown in Venezia
 Tridentina and Venezia Givlia.

[^162]: Division of Statistical and Historical Research. Official sources and International Institute of Agriulture unless otherwise stated. Parentheses denote interpolation.
 Five-year averages are of the crops harvested during the calendar years 1909-1913 in the Northern Hemisphere, and during the crop seasons 1909-10 through 1913-14 in the Southern Hemisphere. For each individual year is shown the harvest in the calendar year in the Northern Hemisphere and the succeeding harvest in the Southern Hemisphere.
 ${ }^{7}$ Three-year average.
 7 One year only.
 Includes Bessarabia.
 ${ }^{10}$ Preliminary estimate of former Russian territory within 1923 boundaries.
 ${ }_{12}^{11}$ Four-year average. bushels in 1920-21.

[^163]: Division of Crop and Livestock Estimates.

[^164]: Division of Statistical and Historical Research. Compiled from the Chicago Daily Trade Bulletin. Reported on the Saturday nearest the first of each month.

[^165]: ${ }^{1}$ Based on farm price Dec. 1.
 ${ }^{2}$ Chicago Daily Trade Bulletin. Prices, 1895-1908, for No. 3 grade.

[^166]: ${ }^{3}$ Compiled from reports of Bureau of Foreign and Domestic Commerce.
 ${ }_{4}$ Preliminary.

[^167]: ${ }^{1}$ Condition at time of harvest.

[^168]: Division of Statistical and Historical Research. Compiled from Minneapolis Daily Market Record, Chicago Daily Trade Bulletin, Grain Dealers Journal, and Canadian Statistics.
 ${ }^{1}$ Crop year begins in September.
 ${ }^{2}$ Five-year average.

[^169]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Includes all other causes.
 ${ }^{2}$ Less than 0.05 per cent.

[^170]: ${ }^{1}$ Four-year average.
 ${ }^{4}$ Pre-war Poland included in Russia, Austria, and Germany.
 ${ }_{2}$ Three-year average.
 ${ }^{3}$ Pre-war boundaries.

[^171]: Division of Statistical and Histqrical Research. Compiled from reports of the Burean of Foreign and Domestic Commerce and Division of Crop and Live Stock Estimates.
 ${ }^{1}$ Stated as seed equivalent, 27 gallons of oil equal 1 bushel of seed.
 ${ }^{2}$ Six monrhs beginning July 1, not separately reported in 1923.

[^172]: Division of Statistical and Historical Research. Official sources except where otherwise noted.
 ${ }^{1}$ Two-year average. $\quad{ }^{8}$ Less than 500 bushels. $\quad{ }^{6}$ One year only.
 ${ }^{2}$ International Institute of Agriculture. EEight months, May-December.

[^173]: Division of Statistical and Historical Research. Official sources and International Institute of Agri-

[^174]: Division of Crop and Livestock Estimates.

[^175]: Division of Statistical and Historical Research. Compiled from Kansas City Annual Statistical Report, Board of Trade, and Minneapolis Daily Market Record.
 ${ }^{1}$ Kafir, milo maize, and feterita included from January, 1915-December, 1921.

[^176]: Division of Crop and Livestock Estimates.

[^177]: ${ }^{1}$ International Institute of Agriculture, for Oleaginous Products and Vegetable Oils.
 ${ }_{2}$ Four-year average.
 ${ }^{2}$ Less than 500 pounds.

[^178]: Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis.

[^179]: .Division of Crop and Livestock Estimates.
 ${ }^{1}$ Preliminary.

[^180]: Division of Crop and Livestock Estimates.

[^181]: ${ }^{1}$ Yield per acre not calculated when acreage is less than 12,000 acres.
 ${ }^{2}$ Four-year average.
 ${ }^{2}$ One year only.
 4 Old boundaries.
 ${ }^{8}$ Three-year average.
 ${ }^{6}$ Former Kingdom of Serbia.

[^182]: 1 One year.
 ${ }_{2}^{2}$ Old boundaries.
 ${ }^{3}$ Two-year average.
 4 Four-year average.
 ${ }^{6}$ Three-year average.

[^183]: ${ }^{1}$ Maine; Vermont, New York, Pennsylvania, Michigan, Wisconsin, Minnesota, North Dakota, South Dakota, Nebraska, Montana, Wyoming, Colorado, Utah, Nevada, Idaho, Washington, Oregon, and California.
 ${ }_{2}$ New Hampshire, Massachusetts, Rhode Island, Connecticut; New Jersey, Delaware, Maryland, Virginia, West Virginia, Ohio, Indiana, Illinois, Iowa, Missoari, Kansas, and Kentacky.

[^184]: Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division. Shipments as shown in carlots include those by boat reduced to carlot basis. The crop movement season normally begins in April and extends through June of the following year, with irregular shipments continuing into July and August.
 ${ }^{1}$ Old crop only. Includes carlot shipments in July as follows: Maine 43, New York, other 3, Pennsylvania 3, Michigan 148 (also 9 in August), Wisconsin 55, Minnesota 21, North Dakota 2, W yoming 2, Colorado 2 and Idaho 10.
 ${ }^{2}$ Includes 1 car in February and 221 cars in March.
 ${ }^{3}$ Southern District included in Northern District.
 ${ }^{4}$ Includes 289 cars in July and 9 cars in August.

[^185]: 1 Includes 1 car in March.
 2 Includes 5 ears in March.
 3. Encludes 95 cars in March.

 4 Fipcludes 1 car in Februsry and 221 cars in March.

[^186]: Division of Crop and Livestock Estimates.

[^187]: 1 Carlot sales.
 4 Sales direct to retailers.
 ${ }^{2}$ Eight day average.
 ${ }^{6}$ Sales direct to retailers except September-December, 1923.
 ${ }^{3}$ Bulk only.

[^188]: Division of Crop and Livestock Estimates.

[^189]: Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division.

[^190]: Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division.

[^191]: Division of Statistical and Historical Research. Compiled from National Canners' Association data.

[^192]: ${ }^{1}$ Stated in cases of 24 NO. 3 cans.

[^193]: ${ }^{3}$ Included in "All other:"

[^194]: Division of Statistical and Historical Research. Compiled from data of the Fruit and Vegetable Division.

[^195]: ${ }^{1}$ Reports incomplete.
 ${ }^{2}$ New Yorl received, fn addition in L. C. E. reeeipts for 1921, 152 cats of apples, 53 of cabbage, 142 of cantaloupes, 306 of onions, 74 of peaches, 1,754 of potatoes, 822 of strawberries, 1,624 of sweet potatoes; 512 of tomatoes, and 6,467 of total fruits and vegetables; for 1922; 558 cars of apples, 65 of cabbage, 292 of: cantaloupes, 465 of onions, 1,385 of peaches, 751 of potatoes, 650 of strawberries, 1,368 of sweet potatoes, 814 of tomatoes, and 6,348 of total fruits and vegetables; and for 1923,318 cars of apples, 101 of cabbage, 280 of cantaloupes, 239 of onions, 1,182 of peaches, 689 of patatoes, 822 of strawberries, 1,301 of sweet potatoes, 1,156 of tomatoes, and 5,786 of total fruits and vegetables.

[^196]: Division of Crop and Livestock Estimates.

[^197]: ${ }^{2}$ Shelled, or equivalent bushels in the pod.

[^198]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Interplanted acreage is included as its equivalent solid acreage.

[^199]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Interplanted acreage is included as its equivalent solid acreage.
 ${ }^{2}$ Shelled, or equivalent bushels in the pod.
 ${ }^{3}$ Preliminary.

[^200]: Division of Crop and Livestock Estimates.

[^201]: Division of Crop and Livestock Estimates; figures in italics are census returns; acreage revised on census basis since 1899.
 ${ }^{1}$ Based an farm price Dec. 1.

[^202]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Preliminary estimate of the Department of Agriculture.
 ${ }^{2}$ Includes 6,000 net bales Missouri cotton estimated to have been ginned in Arkansas.

[^203]: Division of Statistical and Historical Research. Official sources and International Institute of Agriculture unless otherwise stated. Data for crop year as given at the head of the table are for crops harvested between August 1 and July 31 of the following year. This applies to both northern and southern hemispheres.
 ${ }^{-1}$ Estimates by the Chinese Mill Owners' Association, which represent the most important cotton growing areas where the commercial crop is grown.
 ${ }_{2}$ From an unofficial source.
 ${ }^{3}$ Average for 4 years.

[^204]: ${ }^{1}$ Linters not included.
 ${ }^{2}$ From an unofficial source.
 ${ }^{8}$ Laguna District and Lower California only.

 - For one year.
 - Average for 4 years.
 - Average for 3 years.

 T Exports.
 ${ }^{8}$ Pre-war territory.
 ${ }^{9}$ A verage for 2 years.

[^205]: Division of Statistical and Historical Research. Official sources except where otherwise noted. Bales of 500 pounds gross weight or 478 pounds net. The figures for cotton refer to ginned and unginned cotton and linters, but not to mill waste, cotton batting, scarto (Egyptian and Soudan). Wherever unginned cotton has been separately stated in the original reports it has been reduced to ginned cotton in this statement at the ratio of 3 pounds unginned to 1 pound ginned.

[^206]: Division of Statistical and Historical Research. Compiled from Market Reports of the New York Cotton Exchange.
 ${ }^{1}$ Cotton Exchange closed of account of the war.
 ${ }^{2}$ Cotton Exchange opened on Nov. 16. Quotations cover only half month.

[^207]: Division of Crop and Livestock Estimates. Compiled from reports of Bureau of the Oensus.

[^208]: Division of Crop and Livestock Estimates.

[^209]: Division of Crop and Livestock Estimates.

[^210]: Division of Crop and Livestock Estimates.

[^211]: Division of Crop and Livestock Estimates.

[^212]: 85813° - YBK 1923
 53

[^213]: Division of Statistical and Historical Research. Compiled from New York Journal of Commerce and San Francisco Daily Commercial News.
 ${ }^{1}$ Monthly averages are computed from daily ranges. Yearly averages are simple averages of monthly averages.

[^214]: Division of Crop and Livestock Estimates.

[^215]: Division of Crop and Livestock Estimates. Compiled from reports of Bureau of the Census. Quantities reported in terms of "hulled"' have been converted to "in the hull" basis by dividing by .67 .
 ${ }^{1}$ Includes peanuts "in the hull" which were not reported separately.

[^216]: 11900-1906 shipments from Porto Rico to the United States.
 2 Statistics for Hawaii 1874-1880 represent exports.
 4 Estimated average production.
 © Exports.

[^217]: Division of Statistical and Historical Research.

[^218]: Unofficial.
 Official.
 ${ }_{5}$ Includes a small amount of refined.
 ${ }^{5}$ Four-year a verage.

 - Former Kingdom of Serbia.

[^219]: Division of Statistical and Historical Research.
 ${ }^{1}$ Figures are for the crop years 1895-96 to 1923-24 for the countries in which the sugar season begins in the autumn months and is completed during the following calendar year, except in the case of cane sugar producing countries where the season begins in May or June and is completed in the same calendar year.

[^220]: Four-year average.
 Three-year average.
 : Lamborn \& Co. $\quad 6$ Eight months, May-December.

 - One year only.
 ${ }^{6}$ Eight months, May-

[^221]: Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.

[^222]: Division of Crop and Livestock Estimates.
 ${ }^{1}$ Preliminary.

[^223]: ${ }^{1}$ Imports of all seeds up to and including the fiscal year 1913, also of perennial and Italian rye grass and hairy vetch up to and including 1917, and sweet clover for all years, are based on information furnished by U.S. Customs Service. All other figures represent imports of seed permitted entry under the seed importation act.
 ${ }^{2}$ Preliminary.
 ${ }^{2}$ Figures missing.
 ${ }^{4}$ Less than 500 pounds

[^224]: Division of Statistical and Historical Research. Compiled from the Seed World.
 ${ }^{1}$ Price based on very few sales.

[^225]: Division of Crop and Livestock Estimates

[^226]: 1 Two-year average.
 ${ }^{3}$ One year only.
 ${ }^{3}$ Old boundaries.
 2 Three-year average.
 4 Four-year average.

 - Exclusive of invaded territory.

[^227]: Division of Statistical and Historical Research. Official sources.
 Tobacco comprises leaf, stems, and strippings, but not snuff.
 ${ }^{1}$ Less than 500 pounds.
 2 Java and Madars only.
 ${ }^{2}$ Eight months, May-Decomber.

[^228]: Division of Statistical and Historical Research. Compiled from Western Tobacco Journal, Richmond Grain Exchange Price Current, and Baltimore Daily Price Current.
 ${ }^{1}$ Monthly averages are computed from weekly ranges. Yearly averages 1907 to 1917, inclusive, for Hopkinsville, Louisville and Baltimore, are simple averages of monthly ranges. All other yearly averages are simple averages of the monthly averages.
 ${ }^{2}$ Largely common to good.
 ${ }^{8}$ Good.

 - Average common to good.

[^229]: ${ }^{1}$ Four-year average.
 2 International Institute of Agriculture.
 ${ }^{3}$ Java and Madura only.

 - Three-year average.
 ${ }^{5}$ One year only.
 ${ }^{6}$ Less than 500 pounds.
 ${ }^{7}$ Eight months, May-December.
 Chiefly from Porto Rico.

[^230]: 1 Two-year average.
 ? Java and Madura only.
 I International Institute of Agriculture.

[^231]: Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.

[^232]: 1 Includes peanut oil.
 ${ }^{2}$ Included in all other fixed or expressed.
 ${ }^{3}$ Included in Chinese nut oil.
 4 Includes hemp seed.
 ${ }^{5}$ Less than 500 pounds.

[^233]: Division of Crop and Livestock Estimates; figures in italics are census returns.

[^234]: ${ }^{1}$ Less than 500.

[^235]: ${ }^{1}$ Less than 500

[^236]: Division of Crop and Livestock Estimates

[^237]: Division of Crop and Livestock Estimates.

[^238]: Division of Statistical and Historical Research.

[^239]: Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
 Classification of livestock changed July 1, 1923.
 ${ }^{1}$ Beef yearlings excluded.

[^240]: Division of Statistical and Historical Research. Compiled from data of the reporting service of the

[^241]: Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
 Classification of livestock changed July 1, 1923.
 ${ }^{1}$ Beef yearlings excluded.

[^242]: Division of Statistical and Historical Research. Compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
 Classification of livestock changed July 1, 1923.
 ${ }^{1}$ Beef yearlings excluded.

[^243]: Division of Statistical and Historical Research. Compiled from data of the repor ting service of the
 Livestock, Meats, and Wool Division.
 Classification of livestock changed July 1, 1923.
 ${ }^{1}$ Beef yearlings excluded.

[^244]: Division of Statistical and Historical Research. Compiled from data of the reporting service of the

[^245]: Bureau of Animal Industry.

[^246]: Division of Statistical and Historical Research. Compiled from Foreign Commerce and Navigation of the United States, 1910-1918, Monthly Summaries of Foreign Commerce, June, 1920, 1922, and 1923; and reports of the Bureau of Foreign and Domestic Commerce. ${ }^{1}$ Less than 500 pounds.

[^247]: Division of Statistical and Historical Research. Official sources.
 1 Includes some preserved milk.
 2 Two-year average.
 ${ }_{5}^{4}$ Three-year average. $\quad{ }_{8}^{7}$ Less than 500 pounds.
 ${ }^{5}$ Not separately stated. ${ }^{8}$ Includes some powdered milk.
 ${ }^{6}$ One year only.
 ${ }_{9}$ Eight months, May-December.

[^248]: Division of Statistical and Historical Research. Compiled from reports of Division of Dairy and Poultry Products.

[^249]: ${ }^{2}$ Two-year average.
 ${ }^{3}$ Four-year average.
 ${ }^{5}$ Eight months, May-December.
 ${ }^{1}$ Less than 500 pounds. \quad Java and Madura only.

[^250]: Division of Statistical and Historical Research. Compiled from Ministry of Agriculture and Fisheries, Agricultural Statistics of Great Britain and Agricultural Returns of Great Britain. Average of wholesale prices at country markets. Conversions at par of exchange 1904-1913; subsequently at monthly average rates of exchange as quoted by Federal Reserve Board.

[^251]: Division of Statistical and Historical Research. Compiled from reports of Division of Dairy and Poultry Products.

[^252]: ${ }^{1}$ Four-year average.
 ${ }^{2}$ Two-year average.
 ${ }^{3}$ Less than 500 pounds.
 ${ }^{4}$ Java and Madura only.
 ${ }^{5}$ One year.
 ${ }_{6}$ Eight months, May-December.

[^253]: Division of Statistical and Historical Research. 1915-1919 Institate Margarine Manufacturers. 19202922, Bureati of Internal Revenue.

[^254]: Division of Cost of Production.

[^255]: 1Consisting principally of Schumacher feed and molasses.
 ELess than one-half pound.
 iIncluding interest, equipment charge, death loss, veterinary, insurance, taxes, incidentals, and marketing.

[^256]: ${ }^{1}$ From hogs following steers.

[^257]: Division of Cost of Marketing．
 Data from 237 Cooperative Shipping Associations in the Corn Belt（shipments through central market commission agents）．
 ${ }^{1}$ A verages are of associations shipping to the given market，weighted on the volume shipped not based on shipments．Low figures are for low cost associations and high figures for high cost associations．

[^258]: Division of Crop and Livestock Estimates.

[^259]: Division of Statistical and Historical Research Wholesale prices of ham, bacon, and pork loins in Chicago and of lard in New York. Retail prices in leading cities throughout the United States. Price of live hogs, Bureau of Agricultural Economics; other prices from Bureau of Labor Statistics.
 ${ }^{1}$ Mostly on sliced ham.

[^260]: Division of Statistical and Historical Research. Compiled from reports of Bureau of Foreign and Domestic Commerce.
 These figures include exports of fresh, canned, and pickled pork, cured hams and shoulders, bacon, lard, and neutral lard.

[^261]: Division of Statistical and Historical Research. Compiled from Foreign Commerce ard Navigation of the United States, 1910-1918; Monthly Summaries of Foreign Commerce, June, 1920, 1922, and 1923; and records of the Bureau of Foreign and Domestic Commeres.

[^262]: 1 Interpolated.

[^263]: ${ }^{1}$ Entire half of hog in one piece, head off, backbone out, ribs in.
 ${ }^{2}$ Interpolated.

[^264]: Division of Statistical and Historical Research. Compiled from Great Britain, Ministry of Agriculture and Fisheries, Return of Market Prices. Average for the last week of the month. Converted to cents per and Fisheries, Return the basis of monthly average rate of exchange as given in Federal Reserve Bulletins.

[^265]: Division of Cost of Marketing.
 ${ }^{1}$ Shrinkage represents the difference between the shipping-point weight and the terminal weight, including the weight of all crippled and dead. Hence the shrinkage figure is over and above the direct losses due to crippled and dead.
 ${ }^{2}$ Straight shipments contain but one species of livestock.
 ${ }^{3}$ Mixed shipments contain more than one species of livestock.

[^266]: ${ }^{1}$ Straight shipments contain but one species of livestock.

[^267]: 1 Straight shipments contain but one species of livestock.
 ${ }_{2}$ Mixed shipments contain more than one species of livestock.

[^268]: Division of Cost of Marketing. Data from 237 cooperative shipping associations in the Corn Belt.

[^269]: Division of Statistical and Historical Research. Prior to 1915 figures compiled from yearbooks of the stockyard companies; subsequent figures compiled from data of the reporting service of the Livestoek, Meats, and Wool Division.

[^270]: ${ }^{1}$ Less than 500 .

[^271]: ${ }^{1}$ Less than 500

[^272]: ${ }^{1}$ Less than 500.

[^273]: Classification of livestock changed July 1, 1923.

[^274]: Division of Statistical and Historical Research.

[^275]: ${ }^{1}$ Preliminary.

[^276]: ${ }^{1}$ International Institute of Agriculture. ${ }^{3}$ Three-year average.

 - Eight months, May-December.
 ${ }^{1}$ International Instit.

[^277]: Division of Crop and Livestock Estimates.

[^278]: ${ }^{1}$ First-shurn fleece, but not lambs' wool.
 ${ }_{2}$ Period of price control. Approximate issue prices: 1917, 50 cts.; 1918, 55 cts.; 1919, 46-48 cts

[^279]: Division of Cost of Marketing.
 ${ }^{1}$ Shrinkage represents the difference between the shipping point weight and the terminal weight including the weight af all crippled and dead. Hence the shrinkage figure is over and above the direct lossos due to crippled and dead.
 ${ }^{2}$ Straight shipments contain but one species of livestock.
 8 Mixed shipments contain more than one species of livestock.

[^280]: Bureau of Animal Industry.

[^281]: 1 Includes 491 pounds of mutton for February, 19,345 pounds for May, and 8,990 pounds for August.

[^282]: Division of Statistical and Historical Research. Prior to 1915 receipts compiled from yearbooks of stockyard companies; subsequent figures compiled from data of the reporting service of the Livestock, Meats, and Wool Division.
 ${ }^{1}$ Figures prior to 1915 not available.
 ${ }^{8}$ Less than 500.

[^283]: Division of Orop and Livestock Estimates.

[^284]: ${ }^{1}$ Buffaloes are included with cattle for countries giving estimates for buffaloes. These are indicated by

[^285]: ${ }^{1}$ Buffaloes are included with cattle for countries giving estimates for buffaloes. These are indicated by

[^286]: ${ }^{1}$ Buffaloes are included with cattle for countries giving estimates for buffaloes. These are indicated by

[^287]: Division of Crop and Livestock Estimates.

[^288]: 1 Census returns in italies; other returns in roman. No data ayailable for Argentina, Australia, Belgium, Brazil, Chili, China, France, Hungary, India, Italy, Podand, Roumania, Serbia, Tunis, Uruguay and Venezuels.
 ${ }^{2}$ Less than 500.
 ${ }^{3}$ Estimate of Doctor Thalmayer of the Austrian Department of Agriculture.
 4 Includes South Jutland where the number of chickens amounted to 408,000 in 1929; 618,000 in 1921; 795,000 in 1922 and 900,000 in 1923; turkeys 3,000 ; ducks 14,000 ; geese 13,000 .
 ${ }_{5}$ New boundaries for 1919 and subsequent years. The number of poultry for present boundaries in 1913 was 71,879,656.

[^289]: Division of Statistical and Historical Research. Compiled from reports of the Division of Dairy and Poultry Products.

[^290]: Division of Statistical and Historical Research. Official sources.
 ${ }^{1}$ Not separately stated.
 ${ }^{2}$ Eight months, May-December.

[^291]: ${ }^{1}$ Three-year average.
 ${ }^{3}$ Two-year average. ${ }^{5}$ Not separately stated.
 ${ }_{2}$ Eight months, May-December. 4 Less than 500 pounds. ${ }^{6}$ Expressed only in value.

[^292]: Division of Statistical and Historical Research Compiled from Bureau of Labor Statistics reports.
 ${ }^{1}$ No quotations.

[^293]: Division of Statistical and Historical Research. Compiled from Statistique de la Prodaction de la Soie, Silk Merchants Union, Lyon, France.
 ${ }^{1}$ Includes Hungary, Czechoslovakia, Yogoslavia, Rumania, Bulgaria, Greece, Salonika, Adrianople, Crete, the Caucasus, Anatolia, Turkestan, Central Asia, Syria, Cyprus, and Persia.
 ${ }_{2}$ For years 1911-1013.

[^294]: ${ }^{1}$ Few if any of the public forests are entirely covered with saw timber. They contain lakes, rocky mountain tops and other barrens, open grazing land and natural meadows, unproductive burns, brushlands, and scrub timber useful chiefly for fuel, posts, and similar small material. These are usually inseparable parts of the administrative units.
 ${ }_{2}$ National forest areas are corrected to June 30, 1923. These figures do not of course include the forested land within Indian reservations, national parks, national monuments, military reservations, and the

[^295]: Forest Service. Compiled from " Forest Resources of the World."
 ${ }^{1}$ Includes approximately $80,000,000$ acres incapable of producing saw timber on a commercial scale. The figures for many other countries also include areas of low grade forest land.

[^296]: ${ }^{1}$ Includes office estimates for a few States which did not report in certain years.

[^297]: 1 Includes smokers, 1916-1921.
 I Includes office estimates for a few States which did not report in certain years.
 8 Includes smokers, 1016-1922.

[^298]: ${ }^{1}$ Includes cut of District of Columbia.
 2 Included in "All other."
 ${ }^{3}$ Includes cut of North Dakota.
 ${ }^{4}$ Reported as the cut of Alaska.

[^299]: δ Includes cut of Alaska, Nevada, and Oklahoma.

 - Excludes custom mills (sawing 3,196,527 M ft. in 1890).
 ${ }^{7}$ Includes both merchant and custom sawing.
 ${ }^{8}$ Includes "All other."

[^300]: ${ }^{1}$ Included in＂All other．＂
 ${ }^{2}$ Includes cut of Nebraska．
 ${ }^{8}$ Includes cut of Kansas，Nebraska，and Nevada．
 －Mills cutting less than 50 M feet each year excluded．
 ${ }^{\delta}$ Excludes custom mills（sawing 3，196，527 M feet in 1890）．
 －Includes＂All other．＂

[^301]: ${ }^{1}$ Includes cut of Nevada.
 ${ }_{2}$ Mills cutting less than 50 M feet each per year.
 ${ }^{3}$ Includes cut of Nebraska.

 4 Included with Kansas.
 ${ }^{5}$ Included with California.

[^302]: ${ }^{1}$ Estimated.
 ${ }_{2}$ Inciuding District of Columbia (product valued at $\$ 29,000$ in 1850 , and $\$ 21,125$ in 1860).
 ${ }^{3}$ Included with California.
 4 Part of Virginia prior to 1870.
 ${ }^{6}$ Distribution of States same as shown in Table 622

[^303]: ${ }^{1}$ Inoludes a small quantity of softwoods in New York not separatoly reported．

[^304]: Forest Service. Compiled from Forest Service and Bureau of the Census reports.

[^305]: ${ }^{1}$ Included in "All other States."
 ${ }_{2}$ These statistics were collected by the New York State Forest, Fish, and Game Commission.
 ${ }^{3}$ Includes Indian Territory, Nevada, Oklahoma, and Alaska.
 4 Includes Arizona, Kansas, Nebraska, Nevada, New Mexico, Indian Territory, and others.
 \checkmark Includes production of many States; no further data available

[^306]: ${ }^{1}$ Included in "All other States."
 ${ }_{2}$ Inoludes Nebraska and Nevada.
 ${ }^{8}$ Includes Kansas, Nebraska, and Nevada.

[^307]: Forest Service. Compiled from Forest Service and Bureau of the Gensus reports.

[^308]: 4 July 1-Sept. 21.
 ${ }^{5}$ Including kip skins until Sept. 21, 1922.
 ${ }^{6}$ Beginning Sept. 22, 1922.

[^309]: ${ }^{1}$ Preliminary.
 ${ }_{2}^{1}$ Included in " Substitutes for coffee."
 ${ }^{3}$ See " Chicory root."
 ${ }^{4}$ Includes chicory root.

[^310]: 5 Known as " Dressed Line."
 ${ }^{6}$ July 1-Sept. 21, 1922.
 ${ }^{7}$ Beginning Sept. 22, 1922.

[^311]: ${ }^{1}$ Preliminary.
 ${ }^{2}$ July 1 -Sept. 21.
 ${ }^{3}$ Beginning Sept. 22.
 4 Less than 500 pounds.
 5 Timber, "Ship and .other."

[^312]: ${ }^{1}$ Preliminary.

[^313]: ${ }^{1}$ Preliminary. ${ }^{2}$ Less than 500 pounds. ${ }^{3}$ Beginning Sept. 22. ${ }^{4}$ Included in "Other oil seeds."

[^314]: Division of Statistical and Fistorical Research. Compiled from the Monthly Summaries of Foreign

[^315]: ${ }_{2}$ Preliminary. $\quad{ }^{3}$ Beginning Sept. 22.
 2 July 1-Sept. 21, 1922. ${ }^{4}$ Less than 500 pounds

[^316]: 1 Preliminary.
 2 July-Dec. 31
 ${ }^{3}$ Jan. 1-June 30.

 - Less than 500.
 s Includes all fresh pork prior to Jan. 1, 1922.

[^317]: ${ }^{1}$ Preliminary.
 Bales of 500 pounds.

[^318]: ${ }^{2}$ Preliminary.
 ${ }^{2}$ Includes rice flour and broken rice prior to Jan. 1, 1922.
 8 Jah. 1-June 30, 1922.

[^319]: 4 Less than 500
 ${ }^{6}$ Included in rice grain from July 1 to Dec. 31, 1921.

[^320]: ${ }^{1}$ Preliminary.

[^321]: ${ }^{1}$ Preliminary.

[^322]: ${ }^{1}$ Preliminary

[^323]: 1 Includes canned, cured, and fresh beef, oleo oil, oleo stock, oleomargarine, tallow, and stearin from animal fats.
 ${ }^{2}$ Preliminary.

[^324]: 1 Includes canned, fresh, salted or pickled pork, lard, neutral lard, lard oil, bacon, and hams.

[^325]: ${ }^{1}$ Does not include oatmeal. ${ }^{2}$ Preliminary. ${ }^{3}$ Includes wooled sheep and lamb skins, dry and green.

[^326]: ${ }^{1}$ Preliminary

[^327]: Division of Statistical and Historical Research.
 Compiled from Foreign Commerce and Navigation of the United States, 1852-1918, and Monthly Summaries of Foreign Commerce of the United States, June, 1920, 1922, and 1923, Bureau of Foreign and Domestic Commerce.

 Where figures are lacking, either there were no imports or they were not separately classified for publication. "Silk" includes, prior to 1881 , only "Silk, raw or as reeled from the cocoon"; in 1881 and 1882 are included this item and "Silk waste"; after 1882, both these items and "Silk cocoons." From "Cocoa and chocolate" are omitted in 1860,1861 , and 1872 to 1881 , small quantities of chocolate, the official returns for which were given only in value. "Jute and jute butts" includes in 1858 and 1859 an unknown quantity of "Sisal grass, coir, etc.," and in 1865-1868 an unknown quantity of "Hemp." Cattle hides are included in "Hides and skins other than cattle and goats" in 1895-1897. Olive oil for table use includes in 1862-1864 and 1885-1905 all olive oil. Sisal grass includes in 1884-1890 "Other vegetable substances." Hemp includes in 1885-1888 all substitutes for hemp.

[^328]: ${ }^{1}$ Preliminary.

[^329]: ${ }^{1}$ Preliminary.

[^330]: ${ }^{1}$ Preliminary.

[^331]: ${ }^{1}$ Preliminary

[^332]: 1 Preliminary.

[^333]: ${ }^{1}$ Preliminary.

[^334]: ${ }^{1}$ Preliminary.

[^335]: Division of Cróp and Livestock Estimates. Compiled from reports of the Bureau of the Census.

[^336]: ${ }^{1}$ Compiled from International Yearbook of Agricultural Statistics, 1921, page 505, through June, 1921; average of weekly quotations. Federal Reserve Bulletin, July, 1921, to date; average monthly rate of exchange.

 2 Interpolation, no quotation.
 ${ }^{8}$ International Yearbook of Agricultural Statistics, 1921, page 505, and 1922, page 342.

[^337]: Division of Agricultural Cooperation. Reports from associations to Feb. 5, 1924.

[^338]: Division of Statistical and Historical Research. Supplied by Interstate Commerce Cemmission.
 ${ }^{1}$ Class rate.

[^339]: Division of Statistical and Historical Research. Supplied by Interstate Commerce Commission. Figures printed in italics are for "class rate."

[^340]: 1 No rates in force.

[^341]: See footnotes end of tables.

[^342]: Division of Statistical and Historical Research. Compiled from the Monthly Summaries of Foreign Commerce of the United States, Bureau of Foreign and Domestic Commerce.
 ${ }^{1}$ Includes " Other potash.bearing substances" amounting to 20,734 tons and valued at $\$ 238,651$.

[^343]: ${ }^{1}$ Production for all purposes.
 ${ }_{2}$ The American Fertilizer Handbook.
 Geological Survey.
 ${ }^{4}$ Federal Trade Commission, 1902-1014. Data for later years not available.
 Estimated.

[^344]: Division of Statistical and Historical Research. Compiled from Oil, Paint, and Drug Reporter.
 ${ }^{1}$ Converted from price per unit. Unit equals 1 per cent in a ton, or 20 pounds of pure ammonia.

[^345]: Division of Statistical and Historical research. Compiled from Serial Bulletin No. 89 of the Georgia Department of Agriculture, 1922.

[^346]: Division of Statistical and Historical Research. Compiled from Bureau of Labor Statistics reports.

[^347]: ${ }^{1}$ Based on prices 1st of month.

[^348]: Division of Statistical and Historical Research.
 ${ }^{1}$ Bureau of Agricultural Economics.
 : Bureau of Labor Statistics.
 ${ }^{3}$ Bureau of Labor Statistics. Food (22 items prior to 1921; 43 from Jan. 1921); heat and light (5 items); clothing (about 75 items varying from time to time); rent (representative number of moderate-priced houses); furniture and household articles (28 items), and 42 miscellaneous articles.
 ${ }^{4}$ New York State Department of Labor.
 ${ }^{5}$ December.

 - June.

[^349]: ${ }^{1}$ Notmals are based on records of 30 or more years of observations.

[^350]: ${ }^{1}$ Normals are based on records of 30 or more years of obserfations.

[^351]: ${ }^{1}$ Normals are based on records of 30 or more years of observations.

[^352]: Weather Bureau.

[^353]: ${ }^{1}$ Normals are based on records of 20 or more years observations.

[^354]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.
 $T=$ Trace. indicates an amount too smail to measure.

[^355]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.
 T=Trace, indicates an amount too smal? to measure.

[^356]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.

[^357]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.
 $T=$ Trace, indicates an amount too small to measure.

[^358]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.

[^359]: ${ }^{1}$ Normals are based on records of 20 or mone years of observations.

[^360]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.
 $\mathbf{T}=$ Trace, indicates an amount too small to measure.

[^361]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.
 $\mathrm{T}=$ Trace, indicates an amount too small to measure.

[^362]: 1 Normals are based on records of 20 or more years of observations.
 $T-$ Trace, indicates an amount too small to measure.

[^363]: ${ }^{1}$ Normals are based on records of 20 or more years of observations.
 $\mathrm{T}=$ 'Trace, indicates an amount too small to measure.

[^364]: Weather Bureau.
 ${ }^{1}$ Normals are basod on records of 20 or more years of observations.
 $T=$ Trace, indicates an amount too small to measure.

