思

促


This book may be kept out TWO WEEKS
only, and is subject to a fine of TWO CENTS a day thereafter. It will be due on the day indicated below.

路 se $185011: 9046710^{1 / 6}$

Cyclopedia of American Horticulture


Plate XLI. Promment American Horticulturists

# CyClopedia of American Horticulture 

COMPRISING SUGGESTIONS FOR CULTIVATION OF HORTICULTURAL PLANTS, DESCRIPTIONS OF THE SPECIES OF FRUITS, VEGETABLES, FLOWERS AND ORNAMENTAL PLANTS SOLD in the united states and canada, together WITH GEOGRAPHICAL AND BIOGRAPHICAL SKETCHES

AND
A SYNOPSIS OF THE VEGETABLE KINGDOM

${ }_{\mathrm{By}}$<br>\section*{L. H. BAILEY}<br>Assisted By<br>WILHELM MILLER, Ph.D.<br>Associate Editor<br>AND MANY EXPERT CULTIVATORS AND BOTANISTS

Tustrated with uearly Three Tbousanio EZngrabungs and One tunirè and Fortp-five Fill-page talf-tones

> In Six Volumes-Volume VI Sou.-Zyg.

## FOURTH EDITION

New 見ork
DOUBLEDAY, PAGE \& COMPANY

$$
1906
$$

Copyright, 1900, 1901, 1902
By THE MACMILLAN COMPANY

Copyright, 1906
By THE MACMILLAN COMPANY

OW THAT THE CYCLOPEDIA OF AMERICAN HORTICULTURE is completed, it is due the reader that some information be given him of the methods by which it has been made and of the resomrees that have been at command. It is due to the Editor that he be allowed to state his own point of view in respect to the meaning of the work. These remarks are made in no feeling of personal pride, for the writer is keenly aware of the many shortcomings of the book; but they may aequaint the reader with some of the difficnlties with which such work is attended, an l they may be suggestive to those who may desire to prosecute similar studies.

## RETROSPECT

## I. THE PROJECT

The most difficult part of the making of a cyclopedia is to project it. Its scope and point of view must be determined before a stroke of actual work is done. This much done, the remainder is labor rather than diffieulty. The lay-ont of the enterprise cannot be made in a day. It is a matter of slow growth. One must have a mental pietnre of the eutire field and must calculate the resources. The plan once perfected, it remains only to work ont detail after detail, taking $u p$ the tasks as they come, not earing nor even daring to look forward to the work that piles monntain high farther down the alphabet.

So far as the Cyclopedia of American Horticnlture is concerned, the Editor had resolved and reviewed the enterprise for more than ten years. The first suggestion was a vagne idea that a comprehensive work was needed. There were several hundred special works on American horticulture. Some snbjects were well worked; others were untonched. There was no means of determining the extent of our wealth in cultivated plants. There were no suggestions, even, as to what that wealth might be. No survey had been made. Only a full inventory can tell us whether we are rich or poor; it gives us a scale by which to measure progress.

The first tangible result of this desire for some comprehensive view of American horticnlture was the publication of "Annals of Horticulture for 1889." Some years before this time an endeavor had been made to interest a publisher in the project, but without success. This annual volume was designed to be "a witness of passing events añd a record of progress." Five years these annual volumes were issned, the last one containing a summary sketch of horticulture at the World's Fair, at which was made the greatest single effort to display onr horticultural achievements and possibilities. In these annnal volnmes all the new plants and tools and movements of the year were intended to be recorded. Special investigations were made for some of the volnmes. The issue for 1889 contained a list of all the kitchen-garden vegetables sold in North America in that year ; that for 1801 contained a census of all the native plants which had been introdnced into cultivation, showing that 2,416 species had become known to the hortieultnrist in Europe or America, although
many of these probably were not then in cultivation; that for 1892 made an annotated inventory of the varieties of apples that had been and were in cultivation in North America, showing that 878 varieties were actnally offered for sale by American nurserymen in that year. But these volumes were isolated; thes picked up the work piece by piece. An inventory of the whole field, critically and laborionsly made, was needed before mere annals of yearly progress could signify much. We needed to know our status; thereafter chronicles would have a meaning.

From 1893, attention was given to the larger and comprehensive effort. A gardeu herbarimm had to be made, for there was none in the country. The first plant had been put into this herbarium in 1889 ; it was a mere sprig of the greenhouse shrnb Boroniu megastigma. There are difficulties in making a garden herbarimm : there are no professional collectors and one cannot buy specimens; many cultivated plants are too valuable to allow of specimens to be made. This herbarinm now has more than 12,000 mounted specimens. Although small, nevertheless it has been invaluable. If it does not show nearly all the species, it shows the range of variation in some, aud thereby suggests what may take place in all. It also shows what is actually cultivated under a given mame, whether that name be correct or not.

Trial excursions were made into the evolution of various perplexed garden plants. Some of these essays have been published. Ont of these efforts grew the volume, "Sketch of the Evolution of Our Native Fruits." The study of garden plants is a different subjeet from the study of wild plants. Mere descriptions are often of little value. The plant may have been bred away from the description within a decade. Specific descriptions of many of the common garden plants do not exist in books : the plants are not species in the book sense.

American horticnltural books must be collected, for the comprehensive work, if it came, must contain American advice. One must know the range of New World experience and the occidental point of view. It has been the misfortnne of many American writings that they have drawn too heavily from the experience of the old World. Once this was necessary, but now it is time to break away. Fifty authors have written on viticulture in America, set scarcely one has caught the spirit of the Ameriean grapegrowing. Nearly twenty years of collecting by the Editor has brought together the completest library of American horticultmal books.

The details entering into any comprehensive cyclopedia of horticulture are astonishing in number and variety. Consider some of the items: More than 10,000 species of plants in cultivation; almost every important species phenomenally variable, sometimes running into thousands of forms; every species requiring its own soil and treatment, and sometimes even minor varieties differing in these requirements; limitless differences in soils and elimates in our great domain, every difference modifying the plants or their requirements; a different ideal in plant-growing and plant-breeding in the mind of every good plant-grower; as many different kinds of experience as there are men; many of these men not faeile with the pen, although full of wholesome fact and experience; the speeies described in books which deal with the four corvers of the earth; very few botanists who have given much attention to the domestic flora.

It was desired that the Cyclopedia be new-brand-new from start to finish. The illnstrations were to be newly made; the eultural suggestions written directly for the oecasion from American experience, and often presented from more than one point or view; few of the precedents of former cyclopedias to be followed; all matters to be worked up by experts and from sonrees as nearly as possible original. Of course it
has been impossible to reach the ideals. There are limitations of expense and time as well as of capability : for it is yet a question whether our new country is ready for such a laborious work.

In America there has been but one cyclopedic work on horticulture, Incnderson's "Handbook of Plants," 1881; sceond cdition, 1890. This is in one volume. The most complete similar recent work in the English language is Nicholson's "Illustrated Dictionary of Gardeuing," four volumes, 188t-87. It is the work of the talented ex-Curator of the Royal Botanic Gardens at Kew, England. Mottet's Freuch cdition of Nicholson, five volumes, 1892-99, is the largest modern cyclopedia of horticulture, and the only one which excels in size the present American venture. Another popular English work in one volume is Wright \& Dewar's revision of "Johnson's Gardcuer's Dictionary," 1894. Another recent French work, also in one volume, is Bois' "Dictiounaire d' Horticulture," 1893-99, with colored pictures printed in the text. In Gcrman is Riumpler's "Illustriertes Gartenban-Lexikon," in one volnme, with a recent new edition; also Siebert \& Voss' "Vilmorin's Blumengärtuere," one volume of text and one of plates, 1896, the most critical of all similar works. In judging the American work, the reader must bear in mind that there is really no critical horticultural-botanical writing in this country back of the present decade. The present Cyclopedia reflects the imperfection of our literature as well as the shortcomings of the Editor.

## II. THE OFFICE DETALLS

Before the actnal writing was begun, other cyclopedias were searched for suggestions of subjects to be inserted. Also, a card index was made to portraits of plants in the leading horticultural and botanical serials, to descriptions of plants in current publications, to monographs, and to the names of leading horticultural varieties in some of the larger groups. This card index grew during the progress of the work, and it now comprises about 35,000 cards.

The "trade lists" were also made. These lists were intended to afford a record of the plants actually in cultivation in North America north of Mexico. Catalognes of more than one hundred leading seedsmen, florists, and nurserymen were cut up, and all the information respectiug the various genera pasted on yellow sheets of standard letterpaper size. Thus, on one sheet, or one set of sheets, would be all the entries on Abies, Bocconia, Saxifraga, and the like. On these "trade lists" were made notes respecting persons who are skilled in the culture of the particular plants, together with extracts from letters, items of experience, and other incidental information. The name of the catalogue from which the cuttings were made was preserved, in order that doubtful questions might be traced. In special groups, it has been impossible to determine just what species are in cultivation because they are not all recorded in printed catalognes and they are known chiefly to a few fanciers or collectors. This limitation is particularly apparent in orchids; also in such large special genera as Acacia and Eucalyptus. In such cases it is practically impossible to make complete lists, and it is probably scarcely worth while to make the effort; but all the species that are generally known are almost sure to have been recorded. Since the Cyclopedia is designed as a permanent work of reference, mere horticultural varieties have been omitted, as a rulc; but an effort has been made to indicate the dominant types or races, the evolution of garden favorites, the good and bad "points" of important variations, and to suggest possible lines of progress.

These trade lists were "standardized" in order to determine the proper nomenclature for the various entries; for Virgilia had to be brought forward to Cladrastis and Amianthinm placed with Zygadems. This preliminary work had to be done with care. It necessitated, also, the adoption of some one work as a standard; and the only work which covered the field and answered other requirements is Index Kewensis. This work has been followed in the main, althongh every contributor has been free to express his own ideas of genera and speeies, and the recent monographs have been followed for special groups.

The work for a whole letter-as the letter A-was laid ont in advance. The general theory was to assign every article to an authoritative writer. Articles that conld not be assigned, or for which no person would hold himself responsible, fell to the editors. It therefore happened that many of the most eritical puzzles fell to the office. On very important subjects, two to six persons were asked to contribute. If these persons wrote from experience, no effort was made to cause their statements to be uniform, although it was desired that they shonld harmonize whenever possible. It was desired that the work have personality, for this is vitality. In horticultural matters there is no final opinion.

The articles have been written by busy men. Serious delays have resulted in securing the manuscripts; and yet the Editor must express his gratification with the general promptness of the contributors. With scarcely an exception, the collaborators have seemed to feel a personal responsibility in the snccess of the undertaking. The manuseripts have been much edited, yet they have not been copied. Not a single parcel is known to have been lost in the express or mails. The Cyclopedia has had a patient printer. On all kinds and sizes of paper, and in every style of seript, with cabalistic editorial marks in pencil and in inks of varions colors, these manuscripts have gone to the compositor. Returning from the printer, they have been sorted and filed, and finally tied in bnndles, in which condition they now constitnte a part of the archives of the Cyclopedia.

Usually the printer received copy for one letter at a time. In large letters, as C, P, S, one section-as Ca, Po, St-comprised one sending, for it has been impossible to keep far ahead of the compositors. When all the manuscript was received from the various writers, eyclopedic works were consulted to see that no entries were omitted. The titles of all entries were copied when the manuscripts went to the printer, and the entries were checked off when they appeared in galleys and pages. Failure to check up entries in the letter A resulted in the loss of the article "Anbrietia," and the plate had to be reeast in order to insert it.

The type-matter was first seen in "galleys" on green paper, with the cuts separate, known in the office as "the long green." Six proofs were received by the Editor, who sent four or five of them to specialists on the varions subjects. Every line in the work has been read in the proof by experts. It requires from a week to ten days to get back the proofs from the various readers. The matter is then made up into pages, and read again. It is then cast, and the final proofs are placed on file. The galley proofs are gone over several times by the Editor, aside from the regular reading, each time for a specific purpose: once for alphabetic order of the entries; once for spelling of names; once for accent marks; once for signatures to the articles; once for references to the euts; once for legends to the ents; once for general style. A full page of the Cyelopedia contains 14,000 pieces of metal. The reader will be lenient when he finds a misplaced letter. A clerk was employed to verify all references by hunting $u p$ the references themselves


In the "make-up" it is an inviolable rule that wherever the book opens, an engraving will be seen. Adherence to this rule has made trouble in some cases. In one instance it was necessary to have a new cut made after the forms were made up, and to renumber the legends of more than one hundred pictures. The mechanical make-up was in the hands of I. B. Kraybill, foreman of the composing-room of the Mt. Pleasant Press, who gave the work loving and thoughtful care until, in the letter $T$, he was called to lay down his labors. The Editor hopes that the reader will regard his memory whenever the arrangement of the pictures is a sonree of satisfaction and pleasure.

The Cyclopedia has been edited in a room eighteen feet square, kindly allowed for this use by Cornell University. In this room were two long tables, which allowed of the disposition of mannseripts and pictures in delightful abandon; the garden herbarium of Cornell University; and a large collection of books, mostly loaned from the Library of Cornell University. Aside from monographs, botanical mannals, local floras, horticultural handbooks, dictionaries, the following works were on the shelves: Index Kewensis (intended to contain all species of flowering plants down to 1885 -about 125,000 names); Bentham and Hooker's Genera Plantarum ; Engler and Prantl's Natürlichen Pflanzeufamilien ; DeCandolle's Prodromus (17 volumes), and his Monographise Phanerogamarum (9 volumes thus far'); the Kew List of new species introdnced into cultivation between 1876 and 1896. Next in importance were the periodicals, containing perhaps 50,000 pictures of plants, many of them colored and mostly authentic. First rank must be accorded the peeriess Curtis' Botanical Magaziue, with its 125 volumes, containing over 7,600 colored plates. Edwards' Botanical Register, Loddiges' Botanical Cabinet, L'Illustration Horticole, Flore des Serres, Paxton's Magazine, Revue Horticole and The Garden are extensive works provided with colored plates, for details of which the reader may consult Vol. I, pp. xvii and xviii. Less extended periodicals containing colored plates have been used, as The Botanist by Maund, The Florist and Pomologist, Knowles \& Westcott's Floral Cabinet, Meehan's Monthly and an incomplete set of Gartenflora and Revue d'Horticulture Belge. Of horticultural periodicals not containing colored plates, the Gardeners' Chronicle is a great store of botanical knowledge, being published since 1841. It is full of botanical monographs of garden genera, and is a rich repository of description of new species. A complete set of the Jonrnal of Horticulture has been available and all the pictures in its third series have been indexed. Of American periodicals, Garden and Forest, American Gardening, American Florist, Florists' Exchange, Florists' Review and Gardening have been very helpful.

The three most usefnl bibliographical works on botany have been Pritzel's Thesaurus, Jackson's Guide to the Literature of Botany, and the Catalogue of the Kew Library. About two dozen cyclopedic works were thoroughly examined and kept at hand for various periods, as those of Nicholson, Mottet, Siebert and Voss; the Bois' Dictionnaire d'Horticulture, Johnson's Gardener's Dictionary, Paxton's Botanical Dictionary, Rümpler's Illustriertes Gartenbau-Lexikon, Loudon's Encyclopædia of Gardening, Lindley and Moore's Treasury of Botany and various editions of the prototype of all such mudertakings, - Philip Miller's Gardener's Dictionary. The floras of foreign countries have been as indispensable as those of America. Flora Capensis ( 4 vols. thus far), Flora Australiensis ( 7 vols.) and the Flora of British India ( 7 vols.), have been nsed the most. On European plants, Koch's Synopsis Floræ Germanicæ et Helveticæ, Grenier \& Gordon's Flore de France, Ledebour's Flora Rossica, and Bentham's Illustrated Handbook of the British Flora, and others, have been constantly at hand.

On Asiatic plants the following have been studied: Boissier's Flora Orientalis, Post's Flora of Syria, Palestine and Sinai, Siebold and Zuccarini's Flora Japonica, Franchet \& Savatier's Enımeratio Plantarum Japonicarum, Maximowicz's Diagnoses Plantarmu Asiaticarum and Diaguoses Plantarum Japonicr, Bentham's Flora Hongkongensis, Forbes \& Hemsley's Flora of China in vol. 23 of the Journal of the Linnean Soc., Blanco's sumptnous Flora de Filipinas, Baker's Flora of Mauritins and the Seychelles, and Hooker's Flora of British India.

The office force consisted of the Editor and Associate Editor, the latter giving all his time to the work for four years. For a time, Alfred Rehder was employed at the Arnold Arboretum, near Boston, to work on the hardy trees and shrubs. For two months F. W. Barclay, a former student at the Massachusetts Agricultural College and now gardener for C. A. Griscom, Haverford, Penusylvania, joined the office at Ithaca, giving most of his attention to herbaceous plants. Heinrich Hasselbring, graduate of Cornell University and trained as a florist, joined the office force for a time, devoting his attention mostly to orchids. No other writers have been employed otherwise than as contributors. The Associate Editor has had particular charge of indexes, trade lists, bibliographical matters, and editing of manuscripts. Aside from constructive and administrative matters, the Editor has had special charge of illustrations, proof-reading, arrangements with contributors and the make-up of the galleys into pages. He has read every line of the work, much of it several times over. The Editor desires to express his appreciation of the aid which the Associate Editor, Wilhelm Miller, has rendered to him and to the Cyclopedia. With unbounded zeal, persistent industry and painstaking thoroughness, he has given his best effort to the work from start to finish.

The pictures have been made by a score and more of artists. With the exception of the fifty half-tone full-page plates, they are all line drawings. The greater part of these drawings have been made from the living plants or other objects. Many have been drawn from photographs, of which a large collection was made. Some have been composed from combined suggestions of anthoritative prints, botanical specimens, and other information. Some of the pictures are from the American Garden, having been made for that journal in the years 1890 to 1893 , under the supervision of the present Editor. These engravings passed into the hands of the J. Horace McFarland Company, and by this company have been used for the present publishers. A number of the ents have been borrowed from the Cornell University Experiment Station. Some of the illustrations are those used in the books in which the Editor is interested and which are published by The Macmillan Company. The pictures are intended to represent the average excellence of the plants, and, therefore, they are not idealized. The artists who have made the largest number of illustrations directly for the Cyclopedia are: Charles W. Furlong and W. C. Baker, Instructors in Drawing in Cornell University; E. N. Fischer and C. H. L. Gebfert, Jamaica Plain, Mass., who had access to the Arnold Arboretum; Miss H. A. Wood, Kingston, Jamaica, West Indies, who has drawn tropical economic plants; G. R. Chamberlain, who has drawn many plants, particularly annuals, in the gardens of Cornell University; Miss R. M. Huntington, who had access to the gardens at "Smith College, Northampton, Mass.; Mrs. K. C. Davis and Miss Marie L. Robertson (now Mrs. B. M. Duggar), then at Ithaca, N. Y. The artistic work has been aided at almost every point by the personal interest of J. Horace McFarland, proprietor of the Mt. Pleasant Press, Harrisburg, Pa., where the type-setting and presswork have been done. Himself an expert photographer,

Mr MeFarland has given freely of photographs and advice; and he has also overseen the mechanical construction of the Cyclopedia with rare devotion and skill.

## III. HoW A GENES IS WRITTEN LP

The method of writing up a genus differs with the various writers. The Editor can speak ouly for himself, but the frequency with which persons ask for a specific method of procedure suggests that a brief narrative may be nsefnl to students.

The first question that arises when a new genns is to be written up is the number of species to be accounted for. The "trade list" and the card index are consulted, and a list is made of all the species that are to be included in the acconnt. The writer first standardizes the names with Index Kewensis as a working basis, and then consults some analytic account of the genus itself, as Bentham and Hooker's Genera Plantarum, and Engler and Prantl's Natürlichen Pflanzenfamilien. Herbarium specimens are examined. A characterization is made of the genus. All available works are consulted for snggestions as to its horticultural and economic importance.

Then follows the really important part of the undertaking-the accounting for all the species. All monographs of the genus are consulted; herbarium specimens are studied in detail; horticultural cyclopedias and handbooks are searched for descriptive notes of the species. Every effort is made to understand the species as a wbole before any one species is actually described, for in this eyclopedia the species are compared and contrasted, not arranged alphabetically. A key to all the species must be outlined before the work of description can be undertaken. This means that every species must be studied and properly classified. This making of the key or classification comprises more than half the average work of writing up the various genera. Cultivated plants come from many parts of the world. In many cases no single account of the genus contains all the species. One or two species from ontlying regions may not fit into any scheme of classification made in the books. The descriptions of them may be inadequate. Often a whole day will be spent in the endeavor to find characters that will allow these ontlying species to be included in a common key. Moreover, botanical keys are often too minute and technical to be used in a horticultural work. The key-scheme once made, the description of the species is drawn from every available source;-from specimens and personal experience when possible; from authoritative monographs; from horticultural journals and treatises; from notes sent by correspondents; from the information contained in trade catalogues. On donbtful points correspondence is opened with persons who know the plants, particularly with those who advertise the given kinds. The fulness of the descriptions will depend on how difficult the plants are to distinguish anc how important the group is to the cultivator. It has been the custom with the Editor to work mostly with bare outlines at first, afterwards filling in the matters of secondary and incidental importance from subsequent reading and investigation. It has been the custom of the Associate Editor to devour and digest all the incidentals, as well as the fundamentals, before beginning the writing.

In the editing of manuscripts, the first effort is to determine whether the anthor has accounted for all the names in the trade. Too often the troublesome names have been omitted, althongh he worked from lists sent from the Cyclopedia office. These omitted names must be inserted, often necessitating the entire reconstruction of the classificatory scheme. The second attention is given to the scheme itself, to see that it
is properly coördinated or balanced; for a scheme is of no valne unless the coördinate parts are contrasts of similar characters. Yet the failure to coördinate the keys was common, particularly in the earlier part of the work. For example, there is no service in the key that rums
A. Lrs. long-lanceolate, entire
aA. Fls. blne, in long racemes
and yet it has been constantly necessary to eliminate examples of this type. The third effort in the editing of mannscripts is the revision of nomenclature, for uniformity in this matter is of the ntmost editorial importance. The fourtl effort is to look up and insert all references to portraits of the plants. Beyond these efforts, the editing of the mannseripts had to do chiefly with matters of literary form.

To the looker-on, the actual writing of the articles may appear to be the larger part of the work. As a matter of fact, however, it has required more labor to secure articles from correspondents than it would have required to have written them ourselves. This is not becanse correspondents have been negligent, but because of the inherent difficulties of doing work at long range. The value of the material, however, is vastly improved and broadened because of the nnmber of persous who have been engaged in preparing it. It is probable that two-thirds of the labor in preparing the Cyclopedia has been of a character that is not directly productive of written articles,-as correspondence, keeping of accounts, filing of material, securing illustrations, proofreading.

## PROSPECT

The Editor hopes that this Cyclopedia will never be revised. If new issues are called for, mere crrors should be corrected; but beyoud this, the plates shonld be left as they are, for it is the purpose of the book to make a record of North American horticulture as it exists at the opening of the twentieth century. It is hoped that subsequent progress may be recorded in anuual supplemental volumes. It is planned to issue each year a supplement of say 75 to 100 pages, in the same size of page as the present book, with cumulative index, in paper covers; every five years these supplements may be completed into a volnme. They shonld record the introductions of new plants and methods, contain revisions of important genera, encourage historical studies, and make reviews of the tendencies of plant culture in North America. The mannscript for the first two proposed supplements is already prepared. The first is a complete key to all the families and genera in the Cyclopedia, designed to enable the student to run down any species that he may have in hand. It was hoped that this ley conld be printed as a supplement to Volume IV, but the size of the volume forbids it. The second mannseript is a bibliography of the North American book writings on horticulture. These supplements are not definitely promised, but they will be made if there is sufficient demand for them.

It may not be out of place for the Editor to indicate what he conceives to be the most important features of the general plau of the Cyclopedia.
(1) The book represents a living horticulture. It has attempted to account for the species that are actually in cultivation in the country, rather than those that chance to have been described or pictured in other cyclopedias or in periodical publications. The best way of determining what plants are actually in cultivation is to make a list of
those that are offered for sale within a space of ten or fifteen years, supplemented with lists snbmitted by actual eultivators. It is not the fact that these plants are bought and soid that is important, but the faet that they are in enltivation at the present time in this country. These lists give us a census of our horticultural resources. A speeiesname which oceurs in trade lists most be run down and inserted. Not knowingly has any been omitted.
(2) The speeies are compared and eontrasted, as well as deseribed. In all genera containing several speeies, keys or classifieatory sehemes have been devised. This makes it ineumbent rpon the writer that he understand each speeies, not merely eopy a deseription of it. It enables the reader to name the speeies he has in hand. It is an analytic rather than a compilatory method. The reader will be surprised to know how much labor the mere introduction of keys has added to the making of the book. It has certainly more than doubled the labor. The Editor believes that he could make the entire Cyclopedia in two years time if ah the species were to be arranged alphabetically under the genus and withont introductory keys.
(3) The leading artieles are signed with the name of the writer. Thereby is responsibility fixed and due eredit given. The chief value of the signed artiele, however, is the faet that it gives personality to the writings and preseuts a wide range of experience and achievement. It is singularly gratifying that hortieulturists and botanists have responded with the greatest good will to the repeated calls for help. Their inspiration has saved the book. The botany of large and diffieult groups has been placed bodily in the hands of speeialists. The number of contributors is large and has grown with eaeh volume. More than 450 persons have aided in the making of the Cyelopedia. The great number of signed artieles gives the work a somewhat heterogeneons character, and this may be considered by some persons to be a disadvantage; but the Editor has not accepted the eurrent idea that a eyelopedia must neeessarily be uniform and consistent in its treatment of various and unlike subjects.
(4) The book is primarily a eyelopedia of horticulture, rather than of gardening. It has endeavored to eatch the large-area and commercial spirit of North American plant eulture, while still holding to the many and varied amateur interests. Not all the entries are names of plants.
(5) It has attempted to represent plants as living and growing things that are still undergoing evolution. It has tried to indicate the range and extent of variation, rather than to treat plant-names as representing entities in nature. Whenever possible it has been the purpose to suggest the general lines of evolution in the important groups. This has introdueed the historieal method of treatment. Of course only the merest touch ean be had with these subjects, becanse knowledge of them is yet to come; but it is hoped that the sympathetic reader will feel the drift of an evolutionary motive.

Other points of view that seem to the Editor to be important are: The effort to present a new set of horticultural pictures; to give biographies of persons who have had an important iufluence on the trend of Ameriean hortieulture; to present geographical and historieal subjeets; to give speeial attention to tropieal and subtropical economic plants; to cite freely referenees to literature.

It must be admitted that the foregoing eategories are ideals. At all points, it is feared, the aeeomplishnent has fallen far short of the purpose. The Editor would like to do the work all over again, so many are the improvements that might be made. One must make a book in order to learn how to make it. The work has grown as it
has progressed. At first it was intended to make a three-volume cyelopedia, but before the first volume was half written it was found that a fourth volume must be added in order to present the subject adequately. The observant reader will discover that the letter A is treated on the three-volume basis. The article "Apple" is wholly inadequate, but partial penance is done under "Pomology." The article "Asparagus" is the first that began to feel the fuller and larger treatment. Whatever usefulness the Cyclopedia may have has been rendered possible by the liberal policy of the publishers with whom it has been a joy and an inspiration to work.

The actual writing on the Cyclopedia was begun in Jaunary, 1899. A year had then been spent in making indexes and collecting data. The proof of the letter Z was received December 31, 1901. On the Sth of Jannary, 1902, the Cyclopedia office was vacated. It was a sad parting. The pleasantest associations of a pleasant life had come to a finish. We knew that it was a turning-point. Hundreds of books had become familiar friends. We wonld never see them all together again. Like a child, the Cyclopedia had grown. Like the mature youth, it had left us. It was no longer ours.
L. H. BAILEY.

Ithaca, New York,
January 11, 180\%.

## STATISTICS

I. The Number of Articles.
Total number of entries or articles, includingcross-references :
Volume $I$. ..... 1270
Volume II ..... I26:3
Volume III
6.9
6.9
Volume IV. ..... 1165
4357
I. The Number of Plints.
The number of genera described:
Volume 1. ..... 820
Volume Il. ..... 623
Volume 111
351
351
Volume IV. ..... 461
Total number of species fully described (inblack-faced type):
Volume I ..... 2924
Volume II ..... 2675
Volume III ..... 1405
Volume IV ..... 1789Total number of varieties (of species) of allgrades:
Volume $I$ ..... 1187
Volume 11 ..... 982
Volume 1I1 ..... 628
Volume IV. ..... 838
Total number of synonyms (in ltalic type):
Volume J. ..... 2446
Volume II ..... 2104
Volume III ..... 1243
Volume IV. ..... 1689Total number of species in supplementary lists(in Italic type):
Volume 1 ..... 2351
Volume 11 ..... 864
Volume 111 ..... 576
Volume IV ..... 733Total number of Latin binomial and trinomial4524
plant names accounted for (approximate)......... 244 ..... 2443
III. 'fhe Number of Species (in black-Faced trpe) Native to North America north of Mexico:
Volume I. ..... 668
Volume 11. ..... 631
Volume III ..... 416
Volume IV. ..... 704
2419
1V. The Dates of Publication:
Volume 1
Volume II.
pril
pril
Volume IV. ..... February 26, 1902

SOUTHERNWOOD (Artemisia Abrotanum, whieh see for botanieal aceount) is a European herb, aromatic, much branched, woody-stemmed, rather tender, perennial, 3-5 ft. tall, with pale green or grayish often variegated leaves, small yellowish Howers and minute seeds. Fig. 2357. It is orcasionally found in family gardens, where it is grown from sued for more often from its easily rooted enttings, which are most readily obtained in early summer) for its pleasant taste and tonie pronerties, which resemble those of wormwood. It is seldom offered by seedsmen in this conntry because of its slight importance. M. G. Kains.

SOW BREAD. An old name for Cyclamen.
SOY BEAN (Alycine lisppidt, which see for botanieal

description) is a legume and white it has long lieen a staple crop in Japan it lias but somewhat recently been eultivated in the d'nited states. Figs. 191, 195. It grows to perfection only in a tropical or semi-tropical climate. In its native conintry, Japan, the seed is an important human food prodnet, liot in the United States its prin. cipal use at present is as a forage plant for farm live stoek and as a soil renovator. It is an upright, leafy, branehing plant, growing 3-4 it. high. Two distinet plants are often called soy Bean; the smaller one (Phasealus radiatus) is grown principally in Jipan; the larger speeies, the true Soy Bean, is Glycine hispiclu. This lattw species bas beeome popular in some sections of the United states because of its power of resisting drought and for the further reason that it may supply a large amount of forage rich in protein. In the northern states it is probable that the Soy Bean will be aeelimated and that it will serve as an adjunct to the maize crop as a foot for stock, although it is coarse in leaf and stalk.

It thrives best upon i warm, well-drained loamy soil, and seed should not be phanted until all dauger from frost is over. The land shouk be prepared by plowing and harrowing iu the early spring, and the barrow should be used two or three times before the seeds are planted. Best success is attained by planting in frills, rows to be from $21 / 2-3 \mathrm{ft}$. apart and the bills in the row $18-20 \mathrm{in}$. apart. During the early periods of growth eultication shoul, be frequent, preferably with a fine-toothed implement. After the plants hare grown so that the ground is well shaded the tillage may be diseontinued. It is doubtful whether the curing of the plants for hay will ever come into general practice, but the erop may bo Jargely grown for green soiling and for ensilage purposes. It may be eut into the silo with corn and serves to improve the quality of the food.

To the bortienlturist the Soy Bean is valuable ebiefly as a soil renovator. The soil of the orehard eas be given
elean enlture during the early summer and the Soy Beans may he sown broadcast about July 1 and harrowed in. One busbel of seed per arre will be required. One busbel of rye per acre should be sown at the same time, for wben the beans are killed down by the frost in the fall the rye will theu serve as a eover-crop, fluring the winter. When the soil is so hard and forbidding that clover will not thrive the Soy Bean may be made to serve as a nitrogen-gutherer, and when plowed und+r it serves to greatly improre the physical condition of the land. See also glycine.
L. A. Clinton.

## SPANISH BAYONET, see I'tccu.

SPANISH BROOM. Spurlium junceum.
SPANISH LIME. Melieoccu bijugu.

## SPANISH OYSTER PLANT. Scolymus.

SPARAXIS (Greek word referring to the torn or lacerated spathes, a character which distinguishes this genus from Tritonia). Iriddcer. Wand Flower. Sparaxis is a group of spring-bloonsing "Cape bulbs" of the lxia tribe, with spikes of 6 -petaled, more or less funnel-shaped Howers one inch or two aeross and exhibiting an extraordinary range of eolor and throat markings. These plants are less popular than lxias, whieh they much resemble. The plants are dwarfer and more eompact thau Ixias, usually ti-12 in. higb, the spikes are shorter and fewer-flowered, and the blossoms are sometimes larger. Sparaxis is essentially distinguisbed from Jxia and other allied genera by the subregular perianth, unilateral and areuate stamens, and searious, laceratell spathe-ralves. Other general fea tures are: the rootstock a comm; lvs. linear or lancenlate and arranged in a hasal rosette; inflorescence a simple or panicled spike; perianth-tube short: ovary 3-celled; orules many, superposed. Sparaxis is native to the southwestern provinees of Cape Colony, $s$. Africa.

Although a few plants of Sparaxis are oceasionally eultivated in America by bulb faneiers, one may seareh through many Anserican eatalogues without finding them listed. The Dutch bulb growers offer 25 distinet kinds, which is perhans a quarter of the number of varieties of Jxias in cuItivation. Aecording to J. G. Baker, there is "only one species in a broad sense, varying indefinitely in the size and coloring of the flowers." For practical purposes Baker recognizes the 3 species given below; of these the most important and rariable is S. tricolor.

Spardiris pulcherrimu of the Duteh trade is properly Dierama pulchérrima, Baker. This grows 6 ft . high or more and has pendnlons fls. bright blooi-purple but apparently with pale rose and perhaps other varieties (also a white var.). It is distinguished by its pendulous fls. with regular perianth, simple style-branches, equilateral stamens, and large bracts whieh are not laeiniate. B.M. 5555. F.S. 17:1810. Gn. 20:315; 41 , p. 281. This plant is said by F. W. Burbidge to be "perhaps the most graceful of all the Cape Irids."
A. Throat of flower same color as segments.
B. Fls. small: segments $1 / 8-3 / 4$ in.
long................................. 1. bulbifera
BB. Fls. litrger: seyments 1 in. or more
long . . . . . . . . . . . . . . . . . . . . . . . . . 2. grandiflora AA. Throat of flower bright yellow, often with a dark blotch on the lover part of each segment.
.3. tricolor
bulbifera, Ker. Corm globose, $1 / 2-3 / 4$ in, thiek: basal Ivs, about 4 , linear or lanceolate, $1 / 2-1 \mathrm{ft}$. long: stems $1 / 2-1 \mathrm{ft}$. long, simple or brancbed, bearing low down $2-3$ small lys, often with bulbils in the axils: fls. solitary or few in a spike, Jellow; perianth-tube $1 / 2 \mathrm{in}$. long. B.M. 545 (Ixia bulbifera). To this speeies Baker refers S. albiflora, Eekl., with tls. Whitish inside, and S. violacea, Eckl., with dark purple fls.
grandiflora, Ker. Habit, eorm, lvs. and spathe just as in S. bulbifera but the fls. larger, the limb I in. or
more long, usually yellow or purple, aud larger anthers. B.M. 779 (tls. primrose inside, flamed purple outside). B.R. 3:258 (fls, white inside, midvein on the back purple). B.M. 54 I (Ixia grandiflora. Fls. rich purple, margined lighter).-According to Baker, the principal named forms are: atropurpurrea, darls purple; anemonæfloेra, pale yellow; Liliàgo, white, flushed with claret-purple outside; and stellàris, dark purple, the segments narrower than the type, oblanceolate and acute rather than oblong.
trícolor, Ker. Fig. 2358. Differs from S. grandiflora only in the color of the flowers, which are very variable but always have a bright yellow throat and often a dark blotch at the base of each segment. B.M. 1482; 381 ( Ixia tricolor). F.S. 2:124. F. 1843:213 (S. picta, purpurea, pulchella).-According to Baker. this is the favorite species among cultivators. It certainly has the greatest variety of colors and markings. In the works cited the floral segments range from nearly white through rose, brick-red, carmine, crimson and light purple to dark purple, excluding blue and vellow, which latter color usually appears in the throat.
W. M.

SPARGANIUM (Greek, fillet; referring to the riblbon-like lvs.) Typhàcec. Bur-Reed. Burreeds are marsh herbs closely allied to cat-tails but with fls. in globular heads instead of oblong spikes. Three hardy perennial kinds are advertised by collectors of native plants and one or two are procurable from specialists in aquatics. Bur-reeds are desirable only in bog gardens or in wild gardening operations. The beauty of these plants often lies in each species being massed alone, as well as in the mixing with other plants.

Sparganjums have creeping rootstocks and fibrous roots. Some are floating plants. Stems branched or not: lvs. linear, alteruate, sheathing at the base: fis. moncpious, in glohose heads, the staminate uppermost: fr. sessile or peduncled, mostly 1 -loculed and nut-like.

## A. Inflorescence unbranched.

simplex, Huds. Stems weak and slender, $11 / 2-2 \mathrm{ft}$. bigh, unbranched: Ivs. more or less triquetrous: staminate heads 4-6: pistillate 2-6, 5-8 lines in diam.: fr. stalked. June-Aug. N. Amer. B.B. 1:64.

## AA. Inflorescence branched.

## B. Height $\$-8 \mathrm{ft}$.

eurycárpum, Engelm. Stems stout, 3-8 ft. high, branching: lvs. linear, flat, slightly keeled beneath: staminate beads numerons, pistillate 2-4 on a stem or branch, $10-16$ lines in diam.: fr. sessile. May-Aug. N. Amer. B.B. 1:63.

## BB. Height $2-3 \mathrm{ft}$.

ramosum, Curt. Lvs. flat: heads 5-9, disposed in axillary and terminal, interrupted spikes, the lowest one larger and pistillate, the others wholly staminate: pistiltate heads $8-10$ lines in diam. July. Southern U. S., particularly in mountain bogs.
W. M.

SPARMANNIA (after Andreas Sparmann, who visited the Cape witb Thunberg). Tiliacece. About 5 species of African shrubs or trees with cordate, dentate or lobed leaves and white flowers in terminal, umbelliform cymes: sepals 4; petals 4, naked at the base; stamens
several, free, the anther-bearing ones interior, the staminodia exterior: capsule globose or ovoid, spiny.
S. A fricand is of easy treatment under glass in a lem perature never lower than $35^{\circ}$, with plenty of air and light. The plants are benefited by being plunged in the garden during the summer and syringed during dry weather. Plants should be potted early in spring. The tips of young shoots root readily with $60^{\circ}$ of heat.

## A. Lvs. deeply 5-7-lobed.

palmàta, E. Mey. A slender shrub much smaller in all its parts tban $S$. Africana: branches half herbaceous: lvs, on long petioles, the lobes long-acuminate, incisely sinuate and unequally toothed, prominently 5-7nerved below: fls. white or purplish, densely arranged on the subterminal peduncles: capsule 4 -celled. Cult. in S. Calif.

## AA. Li's. not lobed.

Africàna, Linn. A large shrub or tree, $10-20 \mathrm{ft}$. high: lvs. cordate-acuminate, $5-7$-angled, unequally toothed, $5-6 \mathrm{in}$. long, 7 - 9 -ribbed below: ths white, on long, manyfld. peduncles: capsule 5 -celled. B.M. 516. G.M. $37: 233$. R.H. 1858, p. 105. Gn. 45:967.-A useful greenhouse plant. Var. flore pleno is also grown. G.C. II. 19:477.
F. W. Barclay.

Sparmannia Africana is not common in S. California, but is highly esteemed. One in Singleton Court, 25 years old, is 12 ft . high and 16 ft . through, and consists of about tifty trunks $1 / 2-4$ inches in diameter. 1t was in full bloom in January and February aud one of the finest sights imaginable. It was literally covered with snowballs of 4 inches diameter, and admired by numbers of people. The blooms were so heary that the ends of the branches touched the ground, necessitating severe pruning as soon as blooms were past beauty. No viburnum, hydrangea or other shrub can compare with it at its blooming season. During the remainder of the year it has the appearance of a clump of basswood suckers, the leaves being nearly identical in appearance with those of the basswood. It is therefore a dense mass of hroad leaves and looks well anywhere and any time. This is one of the finest white-flowered shrubs or trees in cultivation. The double variety is not as desirable as the single.

Ernest Braunton.

## SPARROW-GRASS, Provincialism for Asparagus.

SPARTINA (Greek, spartine, a cord; on account of the tough leaves). Graminece. Species 7. Perennial marsh plants of various parts of the world, most or all of which are found in the United States. Culms rigid and reed-like: lvs. coarse and rough, usually becoming rolled inwards: spikelets 1 -fld., in rows on two sides of the triangular rachis; spikes 2 -several in a raccme.
cynosuroldes, Willd. Fresh-water Cord-grass. In the West known as "Slough-grass." A common coarse fresh-water marsh grass, occurring across the continent in the northern states. Recommended for cultivation along the margins of ponds and artificial lakes. Procurable from collectors.
A. S. Нітснсоск.

SPARTIUM (Greek spartos, the ancient name of the plant). Syn., Spartianthus. Leguminòsce. Ornamental slirub, with long and slender green branches, small and sparse foliage, and showy papilionaceous yellow tls. in terminal racemes. It is a handsome shrub especially adapted for warmer and drier regions; in the East it is probably hardy as far north as Philadelphia. It becomes naturalized easily, as happened in several localities in S. America, whence it was afterwards described as $S$. Americanum, Meyen. It grows in almost any kind of well-drained soil and is well suited for planting on exposed sandy and rocky situations. Prop. by seeds and by greenwood cuttings under glass. One species in the Mediterranean region and the Camary lslands. Allied to Genista and Cytisus, but chiefly distinguished by tbe l-lipped calyx: lvs. simple: fls. in terminal, loose racemes; calyx split above, hence 1-lipped, tip with 5 mi nute teeth; keel incurved, acuminate: pod linear, compressed, many-seeded; seeds with callose appendage at the base like in Genista. The slender branches yield
fiber, which is used in S. France and Spain for making ropes, cords and cloths. Many species of Cytisus and Genista were formerly referred to this genus. For Spartium Etnense, Biv., S. ferox, Poir., S. monospermum, Lind., S. radiatum, Linn. and S. virgatum, Ait., see Genista; for S. purgans, Linn., and S. scoparium, Linn., see Cytisus; Spartium multiflorum, Ait.=Cytisus albus.
júnceum, Linn. (Genista júncea, Lam. Spartiainthus júnceus, Link.). Spanish Broom. Upright shrub, 10 ft. high, with slender, terete, green, rush-like branches sparingly leafy or almost leafless: Ivs. oblanceolate to linear, entire, hluish green aud sparingly appressed pubescent, $1 / 2-1 \frac{1}{2}$ in. long: fls. fragrant, yellow, about 1 in. long, with araple standard: pod linear, pubescent, 2-3 in. long. June-Sept., in Calif. blooming almost the whole year. B.M. 85. B.R. 23:1974 (as S. acutifolius). Gn. 22, p. 404; 34, p. 284; 44, p. 57.-There is a douhlefld. form.

## Alfred Rehder.

SPATHIPHYLLUM (Greek word, referring to the leaf-like spathes). Ardeco. Ahout 20 species of nearly stemless plants, mostly from tropical America, with large, oblong or lanceolate, acuminate or cuspidate, long-petioled leaves and flowers on a long-peduncled spadix subtended hy an oblong or lanceolate, leaf-like, white, persistent, flat spathe: stigma 3-4-lobed: ovules in each locule $2-8$, fixed at the interior angles of the cells. Gardeners recommend as soil for their culture a mixture of leaf-mold, peat and fibrous loam, together with some sand and charcoal.

$$
\begin{gathered}
\text { A. Spathe less than } 4 \text { in. long. } \\
\text { B. Le's. } 2-3 \text { in. wide. }
\end{gathered}
$$

floribúndum, N. E. Br. Petioles $1-6$ in. long; leafblade oblong-elliptical or oblong-lanceolate, very sharply acuminate, abruptly obtuse and contracted into a node at the base, dark green above, lighter beneath: spathe oblong-lanceolate, long-cuspidate-acuminate, ahout $21 / 2 \mathrm{in}$. long by 1 in . wide. white; spadix white, a little shorter than the spathe. Colombia. I.H. 21:159. F. 1880, p. 76.

BB. Lis. less than 2 in. wide.
c. Scape thickened and curved below the spathe.
cándidum, N. E. Br. Petioles $5-6$ in. long, minutely speckled with white: leaf-blade narrowly oblong-lanceolate, $41 / 2-6 \mathrm{in}$. long by $1-1^{1} / 4 \mathrm{in}$. wide, acuminate at apex, hase cuneately rounded, bright green ahove, paler beneath: spathe erect or spreading, according to amount of curve in scape, oblong-lanceolate, acuminate, $31 / 2 \mathrm{in}$. long, 1 in. broad, white on both sides; spadix shorter than the spathe. Colomhia. F. 1879, p. 19.

## cc. Scape straight.

Pátini, N. E. Br. Petioles slender, terete, often much longer than the blade: leaf-blade long lanceolate, 6-8 in. long, acuminate at both ends: spathe oblong-lanceolate, very long-acuminate, white except for the green costa, spreading or recurred; spadix long stipitate (5 lines), a little shorter than the spathe. Colombia. J.H. 27:397.

AA. Spathes over 4 in . long.
B. Petioles 20 in . or more long.
cochlearispàthum, Engl. (S. heliconiafolium, Schott). A large plant: lvs. broadly oblong, $20-30$ in. long, shortly acute, the base rounded or cordate: spathe ovate or ohlong-orate, narrowly cuspidate, somewhat decurrent on the peduncle, 8-12 in. Jong; spadix 3-4 in. long. Mexico. 1.H. 21:189.

> BB. Petioles $5-10 \mathrm{in}$. long. C. Spadix $8-5 \mathrm{in}$. long.
cándicans, Poepp. (S. cannafolizm, Schott). Leafblades broad-lanceolate to oblong-lanceolate, $10-16 \mathrm{in}$. long, acute or acuminate, base somewhat enneate, acute, deep green ahore, paler beneath: spathe $4 \frac{1}{2}-7 \mathrm{in}$. long, oblong-lanceolate, acuminate, white on the face, green, possibly rarely white, on the back: fls, odorous. West Indies, Colombia. B.M. 603 (as Pothos cannofolius). cc. Spadix 2 in . long.
hỳbridum, N. E. Br. A hybrid between S. candicans, Poepp., and S. Patini, N. E. Br. Petioles 6-8 in. long;
leaf-blades broadly lanceolate to oblong-lanceolate, acsminate, $8-9 \mathrm{in}$. long: spathe white on both sides, lanceolate, acuminate, $4-5 \mathrm{in}$, long; spadix 2 in . long. 1.H. 29:450. G.C. 11. 19:500.
F. W. Barclay.

SPATHOGLOTTIS (Greek, spathe and tongue; said to refer to the shape of the lip). Orchiddcea. Plants agreeing with Bletia in habit and form of inflorescence: pseudobulbs broadly conic, 1-3-Ivd.: Ivs. elongate, longpetioled, narrow, plicate, articulated: scape lateral, bearing large fls, in a terminal raceme: sepals free, subequal; petals similar or broader and longer; labellum not spurred, lateral lobes somewhat con volute, middle lohe clawed; column slender: pollinia 8. About 10 species in Asia, Australia and the Malay Islands.

Spathoglottises grow best at the warm end of the Cattleya or Brazilian house in a moist, shady location. Pot culture suits them best, and the compost should consist principally of equal parts peat fiber and sphagnum moss with a little chopped sod added; about one-half of the pot should be devoted to drainage. They all require a liberal amount of water when growing, but only enough to keep them in sound condition when at rest. They are rather hard to increase by division and the supply depends upon new importations.

plicàta, Blume. Lvs, 2-4 ft. long, finely acuminate, scape $2-3 \mathrm{ft}$. high, with a raceme $6-12 \mathrm{in}$. long: fls. 1 in . across, lilac; sepals and petals broad, acute; middre lohe of the labellum long and narrow, cuneately dilated at the tip; calli yellow, villous. Malay Peninsula.
aùrea, Lindl. (S. plicìta, Griff.). Lvs. 12-18 in. bigh, narrowly lanceolate: scape tall and stont, 2 ft . high: raceme $6-8 \mathrm{in}$. long: fls. $11 / 2 \mathrm{in}$. across, golden yellow; sepals broad, obtuse: middle lobe of the dabellum equaling the falcate lateral lohes, narrowly lanceolate. Malay Peninsula. G.C. 1II. 4:93. - The lip varies, being sometimes broad and retuse at the apex.

Vieillirdi, Reichb. f. (S. AHgustòrum, Reichb. f.,. Fig. 2:559. Lavs. long-lanceolate, acuminate, 1-2 ft. long: scape $12-18 \mathrm{in}$. high, robnst: raceme 6 in . long, broad, corymb-like at tirst: fls, 2 in. across, very pale lilac, nearly white; sepals and petals ovate-oblong, subacute; labellum as long as the sepals, lateral lobes orangebrown, with orange calli speckled with red, middle lobe narrow, with a broulened tip variable in form. New Caledonia. B.M. 7013. A.fi. 12:93. A.F. fi:fi31.-S. aureo-l'ieillirdi, Hort, is a hybrid between this and $S$. aurea. Fls. pate chrome-yellow, with the sepals slightly and the petals profnsely dotted with erimson, the tips of the lobes of the lip rich crimson. G.C. 111. 23:309. G.M. 41:308.
S. Kimballiàna, Hook., is often regarded as a variety of S. aurea, from which it differs in having the backs of the sepals mottled with red-brown, the crest glabrous, and narrower lvs. B.M. 7443.-S. plicàta, var. Mfecholitzia, is advertised by Sander. Fls. amethyst color, with the segments broader than in the type. Habit more dwarf.

> Heinrich Hasselbring and R. M. Grey.

SPATHYEMA (Greek; referring to the spathe). Ardcer. Skunk Cabbage. Skunk Cabbage is an exceptionally interesting plant. In the East, it is the first wild flower of the year, though it is oftener considered a weed than a Hower by those who have nothing but contempt for it. It is a hardy swamp-losing perennial herb which pusbes up its fascinating hooded spathes in midwinter or even before the first of January in favored situations. The spathes are 3-6 in high, uswally grow in clumps, and the variation in their coloring is a neverfailing delight. They are mottled with purplish brown and greenish yellow, the former color sometimes becoming bright red, the latter ranging from dark green to bright yellow. These spathes are produced several weeks before the leaves appear, and they inclose odd flowers which are described below in detail. Just when the Skunk Cabbage flowers is a matter of much debate; the stamens are generally out in February or March. The hoods retain their beauty for months. In April or May they decay and the strong-growing leaves soon attain a height of $1-3 \mathrm{ft}$, and a hreadth of 1 ft . or more. All parts of the plant give a strong, skunk-tike odor, but only when bruised. A young plant uprooted is a picturesque object. Its thick, horizontal rhizonie emits great numbers of strong, tleshy, rope-like roots. The presence of the rank foliage of Sknok Cabbage is generally considered a sign of wet, sour soil unfit for gatrlening.
skunk Cabbage is offered by a number of dealers in hardy plants, as also by collecturs. There is a considerahle demand for it outside of its native region, and particularly in England, where the "hog garden" idea has been developed and has the most supporters. Skunk Cabbage bas made a strong impress upon Amertean literature. Its hardiness and bravery have been


## 2360. Skunk Cabbage, as the hoods come up in spring.Spathyema fcetida ( $\times 1-5$ ).

celehrated by outdoor writers from Thoreau to the present day. The question of its pollination has been much discussed. It was tong supposed to he pollinated by the action of the sarrion tlies which are attracted hy its odor. However, Trelease has shown that the bees
are busy with the pollen while the plant is in flower and that the carrion flies mostly come later. Nkunk Caboage bas long been known as Symplocarpus, but this name must give way to the older one given by Rafnesque.

Generic characters: spadix globose or oblong, entirely covered by flis, the ovaries of which are embedded in the spadix; perianth of $\&$ hooded sepals; anthers 2celled; style lyramidal, 4 -sided: ovary 1 -loculed, with a solitary, suspended, anatropous orule; berries in large heads, 1 -seeded. Only one species.
fétida, Raf. (Symplocúrpus fótidus, Nutt.). SkUnk Cabbage. Fig. 2360. Lrs. numerons, 1-3 ft. long, 1 ft, wide, ovate, strongly nerved: spathe preceding the lvs., colored as described above: fr. ripe Aug., Sept. Nova Scotia to Minn., south to Fla. and lowa, B.M. 836 (Pothos fotide); 3234. V. 23:186. G.W.F. 27. D. 277. A.G. 14:367. B.B. 1:363.-The Siberian plant is probably the same species.

W 11 .

## SPATTER-D0CK, Vuphar advena.

SPEARMINT, See Mentha.

## SPEAR-WOOD. Euculyptus doratoxylon.

## SPEARWORT. Certain species of Ranunculus.

SPECULARIA (from speculum lemeris, meaning Venus'Looking-glass). ('ampanticeur. Venus' Look-ING-glass (Speculariu speculum) is a pretty little hardy annual berb with 5 -lobed blne flowers not quite an inch across. The plants grow about 9 in. high, bloom in spring and summer and are desirable for edging flower beds. They are of easy culture. See Annuuls.

Specularia is a genus of about 7 species closely allied to Campanula but differing by the very long calyx-tube, ovary and capsule. The long calyx-tabe is one of the most conspicuous features of the plant and has perhaps served to suggest the handle of the mirror. There is one North American species, s. perfoliata, which differs from all the rest in having perfoliate lvs. and the capsule dehiscing laterally near the middle instead of near the calyx-lobes. It is a weed. The others are OId World herbs, small and annual, with the lower Ivs. obovate and entire, the upper ones orate-oblong or lanceolate and nearly entire, Calyx-tube linear, 1 irı. or so long: limb 5 -parted, the segments linear and as long as the corolla-lobes; corolla nearly wheel-shaped or broadly bell-shaped; stamens free from corolla: ovary 3-loeuled: stigma shortly 3 -lobed.

## A. Peduncles about 8-ffd.

Spéculum, DC. (C'ampámula Spéculum, Linn.). Venus' Looking-glass. Fig. 2361. Erect, 9 in. high: ealys glabrons or pubescent, the tube constricted at the apex: lobes finally rellexed, according to DeCandolle. Europe. B.M. 102. - Var, procúmbens is offered abroad in addition to white, lilae and double forms. R.H. 1897, f. 254 .
AA. Peduncles 1-fld.
pentagònia, DC. Calyx pilose, lobes spreading. Asia Minor. B.R. 1:56. - This speeies is not now advertised in America. Some specimens have narrow lvs. and longer calyx-tube than $s$. Speculum. An interesting feature of this species (and perhaps others) is the 5angled flower-buds.
W. M.

SPEEDWELL. Veronica.

## SPELT. See Triticum.

SPERGULA (Latin spargere, to scatter; the seeds are said to he expelled). Caryophyllacear. A genus of 3-8 species of annual herbs ineluding Spurry, which see, a forage plant adapted to poor, dry, sandy soils. It is a common weed in cultivated lands. It grows about 6 in., has linear lvs, which appear to be whorled, and bears numerous, small, white, 5 -petaled As. in summer. The fls, are about $1 / 4 \mathrm{in}$, across and borne in terminal panicles. Important generic characters of Spergula are the small, scarions stipules, 5 styles, alternating with the sepals, and capsule-valves opposite the sepals.

Some of the species are dichotomonsly branched, but the following bas clusters of branches originating at or near the base.
arvensis, Linn, Spurry, which see. Anmual, 6-18 in. bigh, branched at or near the base: lvs. linear, clustered at the nodes in 2 opposite sets of 6-8 together, appearing as if verticillate: stipules small, connate. Eu. B.B. 2:36.
W. M.

2361. Venus' Looking-glass - Specularia Speculum ( $\times 1 / 2$ ).

SPH $\Phi$ RALCEA (Greek words, qlobe mallow; referring to the fruit). Malvicere. Globe Mallow. About 25 species of tender herbs, snbshrubs and shrubs, mostly natire to the warmer parts of America: lrs. usually angled or lobed: fls. solitary or elustered, axillary, in terminal racemes or spikes, violet, rose, flesh-color or various shades of red: bractlets 3 , free or united at the base; calyx 5-cut: locnles of the ovary nnmerons, "-3ovuled, arranged in a single whorl. Closely allied to Abutilon but with 3 bractlets instead of none.

$$
\begin{aligned}
& \text { A. Lis. } 5 \text {-र-lobed. } \\
& \text { B. Fls. in spikes. }
\end{aligned}
$$

acerifdlia, Torr. \& Gray. Perennial herh, 2-6 ft. high: lvs. 3-4 in. long, cordate, palmately 5 -lobed (sometimes with 2 or more basal lobes), coarsely serrate: fls. rosecolor, varying to white, 2 in, across, 15 or more in spicate clusters terminating the branches. Rocky Mts. B.N]. 5404 .

## Bв. Fls, in umbels.

umbellata, Don. Mexican shrub, 3 ft . or more high, with searlet, pendulons fis., about $1 \frac{1}{2}$ in. across, and nsually 3 in an nubel: 1rs. corlate, 7 -lobed, crenate. L.B.C. 3:222 and B.R. 19:1608 (as Malva umbellata).Var. trícolor, Hort., was said by John Saul to have reddish purple fls. striped with white and rose.

AA. Li's. s-lobed.
B. Fts. scarlet or rose.

Munroàna, Spach. Perennial herb, $1-2 \mathrm{ft}$. high: Irs. broad at base, obscurely 3 -lobed, crenate, sometimes incised: Hs. scarlet or rose, 1 in. across, rose-colored: panicles axillary and terminal, numerous. Dry plains, Brit. Col. to ldaho and south. B.M. 3537 and B.R. 16:1306 (both as Mfalva Munroana), A.G. 11 ;539.-Advertised in 1890 as the Snnset Plant. E. S. Carman said the same plant was offered in some catalogues as Malva miniata.

BB. Fis. brick-red.
cisplàtina, A. St. Hil. (S. minidta, Spach. Málva miniàta, Cav. If, minituta, Jacq. [?]). Tender branching subshrub, $2-4 \mathrm{ft}$. high, formerly considered desirable for conservatory decoration in October and November, when it produces its brick-red flowers: Ivs. I-2 in. long, 3-lobed, coarsely and unequally crenate, midlobe longest: fls. $1-1 \frac{1}{4}$ in. across, in axillary, few-fli. cymose racemes. La Plata. The above description from B.M. 5938.Miniata means cinuabar-red, the color of red lead. There seems to be no reason why Spharaleea cisplatina and Munroana should be confused. The lvs, of Munroana are obscurely 3 -lobed, the lobes broad, blunt and short; the lvs, of S. cisplatint are deeply and sharply cut, acuminate and narrowed towards the base, the lobes narrow and acute, the midlobe over twice as long as the side lobes. The color of the fls. is very distinct and the clusters are branched in S. Munroana but not in S. cisplatina.
W. M.

SPH $\boldsymbol{I}^{R} O G Y N E$ (Greek words referring to the globose stigma). Melustomàcere. This genus has been referred to Tococa, wbich see for S. letifolia. The handsome foliage plant known to the trade as Sphcerogyne imperialis is mentioned under this head because its fls. and fr . seem to be undeseribed, and the place of the plant in the vegetable kingdom is therefore undetermined. It is a broad-leaved hothouse plant with strong parallel ribs, metallic green above and purplish brown beneath. For enltural suggestions, see Miconia.
imperialis, Linden. Stem simple or little branched, erect, robust: lvs. opposite, decussate, oval, with 5 longitudinal ribs running from base to apex and many parallel transverse veins connecting them. Peru. 1.H. $24: 284$ - Native of Peru, and introduced to Europe by Linden in 1871. It is said to be easily grown in a warm house.

SPHAGNUM. Sphagnum moss, hog moss or peat moss is found in swamps or bogs and is one of the plants from which peat is formed; it is much used by gardeners. Its geographical distribntion extends to all countries in the north temperate zone. According to Braithwaite's "Sphagnacea of Enrope and North America," there are 19 distinct species to be found in North America, besides numerons varieties. Sphagnum mosses differ from the true mosses so much that they are nsually classified in a distinct family, Sphagnacem. Besides some slight differences in the reproductive organs, the chief differences lie in the larger growth of Sphagnum (which is often a foot or more in height), its sot appearance, pale green color, and the absence of root-hairs. The stems and leaves are inclosed or encircled by one, two and often fonr strata of transparent cells connected with each other by small holes, which have the eapacity of sucking $n p$ and retaining a large amount of water. These cells therefore perform the function of root-hairs, and it is this abundant water-storage tissue that makes Sphagumm moss of so much nse to gardeners in the cultivation of orchids, Anthurium, etc., and in fact most plants of an epiphytal or swamp-loving character, such as Sarracenia, Darlingtonia, etc. Sphagnum often forms at least one-third of the compost in which pitcher plants and epiphytes are grown. The fresh green tips of Sphagnum are also most useful for surfacing pots of orchids and other plants. Besides giving them a better appearance, the moss acts as an index to the moisture condition of the plant. Sphagnmm is also usefnl in the propagation of many stove plants, such as Cordyline, Nepenthes, etc.; for starting tropical tuberous-rooted plants, such as fancy caladiums; for sowing seeds of orchids, Anthuriums, Nepenthes and Sarracenias when fresh and chopped fine; as a mulch; as a non-conducting material for plants in pots in exposed positions in summer; and in packing plants for transportation, for which pnrpose it is an ideal material. Owing to its sponge-like character it may be used wet or dry, according to the character of the plants intended for packing.
Uuless one has an ideal position in which to keep Sphagnnm moss after gathering it from its native place,
or unless one has conditions very similar to its native habitat, it is difficalt to keep it living for any length of time. This does not greatly matter, except that Sphagnum used for surfacing pots shonld always be living for the sake of appearance. That which is used in potting and propagating need not necessarily be living as long as it is fresh and not decayed, while partially decayed moss may be used for mulching and packing.

Edward J. Canning.
SPHENÓGYNE. See LTrinia.
SPICE BUSH, Consult Benzoin.

## SPIDER FLOWER. Cleome.

SPIDER LILIES. Hymenocallis and Pancratium.
SPIDER PLANT. See Cleome.

## SPIDERWORT, Tradesrantia.

SPIGELIA (after Adrian von der Spigel, physician, 1558-1625). Logunidecir. About 35 species of American ammal or perennial herbs, rarely somewhat woody,with opposite, membranons, feather-veined, rarely $3-\overline{5}-$ nerved leaves, and long or small red, yellow or purplish Howers, usually borne in terminal, one-sided, somewhat curved spikes: ealyx 5 -lobed; segments narrow; corolla tubular: lobes 5 , valvate; stamens 5 , attached to the eorolla-tube: ovary 2 -loculed: style articulated, simple, obtuse or somewhat eapitate and stigmatose at the summit: capsule Hattened, circumscissile above the persistent base.
Marilándica, Linn. Pink Root. A handsome hardy perennial herb, with slender, tufted stems 1-2 ft . high, opposite, ovate, sessile, thin lvs. 2-4 in. long, and red, tubular Hs. with yellow throats in terminal, 1 -sided spikes. June, July. Woods, N. J. to Wis. and south. B.B. 2:605. B.M. 80. - An elegant plant for the hardy border. Shade is not necessary for its welfare if planted in good, hoose, deep loam.
F. W. Barclay.

2362. Spinach $\left(X^{1 / 3}\right)$.

SPIKENARD. Aralia racemosa. FALSE S. Smilucina.

SPILÁNTHES (Greek, spotted flower). Compósito. This genus includes the Pará Cress (Spilanthes oterdeca, Linn.), the leaves of which impart a pnngent flavor to salads and stimulate the salivary glands. The plant belongs rather to pharmacy than to the vegetable garden. It is procurable from France. It is an annual herb of almost creeping habit and yellow ths. in conical, rayless heads about three-eighths of an inch in diameter. The seed is sown in early spring. The Brazil Cress differs in the brownish tint of stem and leaves. The preceding points are condensed from Vilmorin's "Vegetable Garden."

Spilanthes is a genus of about 20 species found in the warmer regions of the globe. They are mostly annual, rarely perennial, and have opposite, usnally dentate 1 vs . Some have yellow or white rays and the disk is yellow. S. oleracea bas broady ovate, dentate lvs. and long. peduncled heads. Gn. 22, p. 295.
W. M.

SPINACH (Spinacia oleracea, which see) is an annual erop grown as a pot-berb, or for "greens." Fig. 2362. It is a cool-season plant, and therefore it is grown in fall and spring. It is a plant of easy culture, thriving in any good garden or field soil, although for quick results and for tender, succulent foliage, land which has an abundance of available plant-food, and partienlarly of nitrogen, is most desirable. The plant is hardy, and when the land is well drained, it will ordinarily stand the winter climate as farnorth as the city of New York, and still farther in somewhat protected places.
Spinach is grown both as a fall and spring crop. The fall crop is raised from seed that is sown in August; in eight weeks the leaves may be large enough for eativg. The spring crop is grown from seeds sown in the fall, or from those sown during winter in hotbeds or coldframes, or from those sown directly in the ground as soon as it is fit in the spring. If the plants for spring use are to be started in the fall, the seeds should be sown about six to eight weeks before hard freezing weather is expected. Then the plants will have attained sufficient size and roothold to enable them to pass the winter. It is advisable to eover the plants, jnst before winter sets in, with straw or loose litter or dry manure. Even thongh the plants will withstand the winter, they nevertheless thrive hetter if given this protection, particularly in soils that are likely to heave. It is customary to grow this fall-sown Spinach on wide ridges or beds that are made by plowing several furrows tugether, leaving a dead furrow between them. This allows of surface drainage. These beds may be from five to ten feet wide. On these beds, the seeds are sown in rows runuing lengthwise, the distance between the rows being from 10 to 20 inches, depending upon the methods that are employed for tillage. If hand tillage alone is to be given, the plants may be placed closer. In the spring the cover is removed from the plants at the earliest opportunity, for Spinach is most desired very early in the season. Unless the land is in extra gool "heart," it is well to make a surface application of a voluble fertilizer early in the spring in order to start the plants into growth. A fertilizer that is very rich in nitrogen gives best results; in fact, it is customary in some places to use a solution of nitrate of soda or sulfate of ammonia, applying the material with a sprinkling eart. From 50 to 75 pounds of the fertilizer nay be used to the acre with very gooll results, at each of two or more applications.

For home use, Spinaeb is sometimes carried over the winter in frames, the plants having been transplanted to the frames or raised in them during the late fall. These frames are protected from severe freezing weathe by mats or shutters. Whenever it is desired to bring the plants into growth, sash is placed over the frame, and extra protection is given in very cold weather. The plants will soon become green and begin to make new leaves. Different frames may be corered at different times as the season advances, thereby providing a supply for bome use. Sometimes the seed is sown in hotbeds that are mate late in winter or very early in spring, and the plants are seeured in advance of the ordinary season. The growing of Spinaeb in frames is less frequent than formerly, owing to the fact that the market is now supplied with the product grown in the Middle South.
Spring Spinach may be grown from seeds that are sown as soon as the land can be worked in spring. If the land has been plowed and mannred in the fall, quicker results may be secured. Two or three sowings may be made in the home garden for spring use, lint after the middle of June Spinach is likely to become tough and is in little demand. If Spinach is wanted during the summer, it is better to use the New Zealand Spinaeh, whieh is a warm weather plant. This plant has no relationship with the ordinary Spinach (see Tetragonia). It is usually hest to sow Spinach seed where the plants are to stand, although it is sometimes transplanted into frames for bome use. (are must be taken that the plants do not beeome checked or stunted, else they will tend to run to seed. If the seed is sown too late in spring, when hot weather is approaching, the root-leaves will be sery few and the plant will quickly throw up flower-stalks. Spinach is always grown as a

succession or companion crop, as it oceupies the land for a small part of the year. There are very tew insects and diseases that are generally troublesome.

Spinach is usually transported to market in barrels or crates. Plants are usually cut so that an inch or so of the root is left with them. All dirt is removed, as also all broken and dead leaves. The plants are packed tight. It is essential that the plants be dry before they are shipped.

There are several important varieties of Spinach. The large, broad-leaved varieties are most popular in the markets, such as the Viroflay and the Round-leaved. The prickly Spinach is considered to be the most hardy and is chiefly recommended for fall sowing. L. H. B.

SPINACH ORACH, or SEA PURSLANE (Atriplex hortensis) is also sometimes called Mlountain Spinach.

SPINACIA (from spina; alluding to the spiny fruit). Chenopodiacea. Spinach. Spinage. According to Volkens (in Engler \& Prantl's Pflanzenfamilien), there are only two species of Spinacia, S. oleracea, Linn., the common Spinach, and S. tetrandra, Stev. The latter is an annual herb of the Asia Minor-Persiau region, and is not in cultivation. S. oleracea, the Spinach, is probably native to southwestern Asia, but it is now widely cultivated. It is an annual herb, developing rather large, arrow-shaped root-leaves, and these leaves are eaten for "greens." Later in the season it sends up a branching flower-stem 2-3 ft. high, bearing axillary clusters of seed-like fruits. In one type these fruits are spiny: this is the form once described as S. spinosa, Noench, but which is not now considered to be specifically distinet. Whether the round-seeded or the pricklyseeded type is the original form of the Spinach is not known, but as a matter of nomenclature, Linnenc' $S$. weracet, which is the oldest name, is beld to include all

Spinacia belongs to the atriplex tribe. The gedus is distinguished from Atriplex in the fact that the pistil late flowers are bractless, whereas those of Atriplex are inclosed in a pair of enlarging calyx-like bracts. Spinacia is dicecious, bearing the flowers in small axillary clusters: stamens 4 or 5 . in a $4-5$-lobed calyx: ovary 1 , with $4-5$ styles or stigmas, in a 2-4-toothed calyx, this calyx hardening and enclosing the akene and often becoming horned on the sides and giving rise to "prickly-seeded" Spinach. The cultivated forms have developed much thicker and broader radical leaves, which are used for greens, often showing little of the halberd or sagittate shape.
L. H. B.

## SPINDLE TREE. Euonymus,

## GPIREA of florists. See Astille.

SPIREA (ancient Greek name of a plant used for garlands, derived from speira, band, wreath; probably first used for the prexent genus by Clusius). Rosacere. Ornamental deciduous shrubs, with alternate, estipnlate, simple and rather small lvs., and small white, pink or almost crimson fls. in showy umbels, coryulns, or panicles. Many are hardy north; some of the lest of them are Spirma arguta, Thunbergii, lian Houttei, pubescens, trilobuta, bracteata, media, nlmifolia, alba, Douglasi, Menziesi, tomentosa. Spiraa blanda, Japonica and albiflora require a sheltered position or protection during the winter, though S. Japonica and its allies, even if killed almost to the ground, will produce flowers on shoots of the same season. Spirara Cantoniensis, Blumei, Chinensis canescens and bella are more tender and not to be recommended for the North, but are hardy or nearly hardy in the Middle States. S. pronifolia is hardy north of Boston.

In regard to the flowering season, the Spireas can be divided into two groups. The first one contains the species of the section Chamædryon, with white flowers in umbelv and blooming in spring, from April to Jnne. The second group is composed of the sections Calospira and Spiraria, with white or pink flowers in corymbs or panicles appearing from June to fall. Some of the most important snecies, arranged according to their relative flowering time, are the following: Eally-flowering Spi-
reas-S. Thunbergi, argutt, hypericifolia, prunifolia, media, Pikowiensis, pubescens, chamedryfoliu, trilobuta, Van Houttei, Cantonensis, bracteata. Late-flowering Spireas-S. bella, corgmbosa, aensiflora, canescens, Japonica, albiflora, salieifolia, alba, Menziesi, Douglusi, tomentosa. The species of the second group do not produce their flowers all at once like those or the first group, but continue blooming for a longer time
The Spireas are all medium-sized or low shrubs and well adapted for borders of shrubberies, as single specimens on the lawn or for rockeries. Especially the species of the early-flowering group possess a graceful hahit and make effective single specimens, except perhaps S. chamedryfolia and media, which are somewhat stifier and less handsome and produce suckers. Spirat canescens has also the graceful habit of the first group. Spiraa Japonica and its numerous hybrids form mostly low, round bushes and are pretty as single specimens or in the border. Spirfa alba, Douglasi, Menziesi and tomentosa shonid be planted in shrubberies only and especially in situations where their spreading by suckers does no harm; they are sometimes used for low ornamental hedges. For rockeries Spirca decumbens, corymbosa, densiflora, bullata, and some dwarf hybrids of S. Japonica are to be recommended.
The species of the section Chamædryon, and also S. canescens and bella, should be pruned as little as possible,-only thinned out and the weak wood removed, -while those of the sections Spiraria and Calospira can he pruned more severely if necessary, since they produce their flowers at the ends of the young shoots. Some of the early-flowering Spireas, especially S. ar. guta, prunifolia, Van Houttei and S. Bumalda, are sometimes forced.
The Spireas grow in almost any moderately moist soil, the Spiraria species being generally more moistureloving; and $S$. tomentosa thrives well only in a peaty or sandy soil, while those recommended above for rockeries require a well-drained soil and sumny situation. Prop, by seeds sown in spring and covered only slightly with soil, or by hardwood or greenwood cuttings. The species of Chamædryon grow very well from greenwood cuttings under glass, while the Spirarias are usually raised from bardwood cuttings. The Calospiras seem to grow equally weil in both ways. The Spirarias are also often prop. by division and by suckers.
About 50 species in the temperate regions of the northern hemisphere, in America south to Mexico, Lvs. simple, short-petioled, entire or serrate, sometimes lobed, without stipules: fls. in umbel-like racemes, corymbs or panicles, perfect, rarely polygamous; calyx cup-shaped or campanulate, 5 -lobed; petals 5 , rounded; stamens $15-60$, inserted between calyx and disk; pistils usually 5 , distinct, developing into follicles dehiscent along the inner suture, with several or rarely two minute, oblong seeds. Many species formerly included ander Spirma are now referred to other genera; see Physocarpus. Schizonotus and Sorbaria for shrubby species and Aruncus, Ulmaria and also Astilbe for the herbaceons ones. There is a monograph of Spiræa and the allied genera by Maximowicz in Acta Horti Petropolitani, vol. 6, p. 105-261 (1879) and a monograph of the cultivated species, with their numerous bybrids fully described by H. Zabel, Die strauchigen Spiräen der dentschen Gärten (1893). There is much bortienltural literature on Spireas, for the plants are popular and the species are many.

Alfred Rehder.
The name Spircea is often spelled Spirea. Whenever the generic and specific name are both used the digraph shonld be employed, thus: Spirca Japonica. Whenever one speaks of "Spirtas" in an untechnical way, we spell the name withont the digraph, in harmony with the Editor's writings. The name Spirea should be considered as an English word in common speech just as geranium and chrysanthemnm are. In fact, many people speak of plants as "Spireas" which do not belong to the genus. For example, a delightful white-flowered bushy herb which is grown indoors in great quantities, especially at Easter, is properly an Astilbe. Comparable instances are peony, bougainvillea, ete.
W. M.

KEY TO THE SECTIONS.
A. Lvs, aluays entire: fls, in simple or panicled racemes: follicles usuully Z-seeded. (Botryospira, Zabel.)
B. Plants tufted, suffruticose: fls. perfect, in usually simple racemes.................... Section 1. Petrophytum (Species not in cult.)
88. Plant an upright shrub with stout branches. fls. polygamous in panicled racemes.... Section 2. Sibirea (Species No.
AA. Lus. uswally serrate, rurely entire: fls. in umbel-like racemes, corymbs or panicles: seeds several.
B. Inflorescence a simple umbel-like raceme: f1s. thithe
Section 3. Chamadiyon (Species Nos. 2-20)
BB. Inflorescence compound: fls white or pink.
C. Fls, in corymbs................................ Section 4. Calospira (Species Nos.21-36)
cc. Fls. in panicles

Section 5. Spiraria (Species Nos. 37-49) INDEX.
acuta, 2.
acutifolia, 2 .
adiantifolia, 13.
alba, 37, 44. albiflora, 31 .
alpina, 8 .
Altaica, 1.
aquilegifolia, 13 , arbuscula, 36. argentea, 21 arguta, 4. atrifolia, 20. atrosanguinea, 27. aubifolia, 20. hella, 24 .
Bethlehemensis, 45 47.
betulifolia, 35.
Billardii, 47
blanda, 16.
Blumei, 12, 13.
brachybotrys, 37.
bracteata, 11 . bracteata, 26 .
Bumalda, 30 .
Californica, 47. callosa, 27. cana. 7.
Conadensis, 45.
canescens, 21
Cantoniensis, 15. carnea, 43 . carpinifolia, 45. chamædryfolia, 20. C'hinensis, 17 coccinea, 24. confusa, 19. conspieua, 38. Constantise, 47. corymbosa, 15, 33. cratcegifolia, 13, 33. crenata, 2,9 . crenata, 2,9 . crenifola, 9.
crispifolia, 26.

## cuneata. 21.

 cuneifolis, 21. decumbens, 22. densitlora, 36. Douglasi, 48. eximia, 47.expansa, 25.
flabellata, 2. flagellata, 21 flagelliformis, 21 flexnosa, 20.
Fontenaysii, 37. Fontantysiensis, 37. Fortuneî, 27. Foxii, 29. Foxin, 29. glabrescens, I! grandittora, 43 and suppl
hypericifolia, 2. intermedia, 41 . Japonica, 27 and suppl. Joponica alba, 31 Japorica panicu. lata, 38. Kumaonensis, 25. lavigata, 1. lanceolato, 15, 44. latifolia, 45. Lemoinei, 30. Lennerma, 47 Lenneana, 47. leucantha, 1 . 23 longigemm lихигіоsa, 37. macrophylla, 27. Margarita, 28. media, 11, 19. Menziesi, 46. multitlors, 5. Nicoudierti, 10. Nipponica, 11.

Nobleana, 42.
notha, 39.
nova, 16.
oblongifolia, 19. obovata, 2. ovata, 24
pachystarhys, 42.
paniculata, 38, 44.
Pikowiensis, 10.
procumbens, 22.
pruinosa, 37.
prunifolia, 6.
pubesceus, 17, 18, 27.
pulchella, 25.
pumila, 30 .
pyramidata, 40.
heevesiapta, 15.
Regeliana, 41.
robusta, 16.
rosea, 36.
rotmidifolia, 11, 21.
ruberrimat 27, 30 .
rupestris, 12.
salicifolia, 43, 44, 45.

Sanssouciania, 41. sempertlorens, 38. sericea, 19.
Sibirica, 43.
superba, 32.
syringethora, 38. thatictroides, 2.
Thunhergii, 3.
tomeдtosa, 49.
triloba, 13.
trilobatia, 13.
triumphans, 47.
truucata, 2.
ulnifolia, 20
vaccinifolia, 21 and suppl.
Fan Honttei, 14
Virginiana, 34.

Section 1. Petrophytum (Species not in cult.).
This section contains a few rather rare American species of which nove is in cultivation. The best known is $S$. cæspitòsa, Nutt. (Petrophytum carspitosum, Rydh.), a dwarf cespitose subshrub, only a few inches high, with crowded, small, entirelvs, and small, whitish fls, in dense, usually simple racemes on sleuder stalks arising from the tufts of the grayish green foliage, It is very unlike any other Spirea and more resembles in luabit a Saxifraga. It is perhaps better reararded as a distinct genus like the allied Kélseya uniflora, Rydly. (Eriogýnia uniflora, Wats.), and Eriogynia pectinata, Hook.

Section 2, Sibirafa (Species No. 1).

1. lævigàta, Linn. (S. Altìica, Pall. Sibirika larigata, Maxim.). Shrub, 5 ft . high, with stout npright branches: lvs. cuneate-oblong, hluish green, glabrous, $11 / 2-31 / 2$ in. long: fls. polygamous, greenisb white in terminal panicles, $3-5 \mathrm{in}$. long, those of the staminate plant somewhat showier. Nay, Siberia.-Hardy.

Section 3. Chamadryon (Species Nos. 2-20).
A. Fls. in sessile umbels, with none or cery small li's. "t the base or only the lower umbets on leafy stalks.
B. Poliage entire or crenately dentate onty nfar the upes, often B-nereed, grayish green.....
BB. Foliage dentate or servate, wsually perninerced, bright green.
c. Shape of les. linear-lanceo-
late: glabrous............
lanceolate: finely pubescent when young.
D. Umbels on the lower part
of the brunches stulked.
E. Less. oblong............ 4. arguta

EE. Li's , obovite . . . . . . . . . . . 5. multiflora
DD. Umbels all sessile, $3-6-f l 7$. 6. prunifolis
AA. Fls, in umbel-like racemes on leafy stulks.
B. Margin of lis, entire or crenate or dentate only toward the aper.
c. Foliage grayish pubescent on both sides. ............. 7. cana
cc. Foliage almost glabrous,
D. Shape of lr's. elliptic to
oblong-lanceolate.
E. Lis. penninereed: shoots ungular.......
EE. Lis. all or partly s-nerved.
F. Shoots striped: le's. all ふ-nerved....... FF. Shoots terete: lvs,
purtly penninerved, partly 3 -nerved....
Do. Shape of trs. almost or-
bicular, 3/4-1 in. broad..,11. bractesta
BB. Margin of les. inrisely servate and often sliyktly lobed (only in Alo. 19 sometimes entire).
c. Stamens shorter than or as
long as petaly: sepals erect or spreading in
D. Foliage ylubrous.
E. Form of 7 s . orbicular to ovate.
F. A per of les. obtase.
G. Li's. pemmineried,

Di'utp ..............12. Blumei
GG, Le's. palmatelys-5-
nerved, orbicular.13. trilobata
FF. Aper of les. acule...14. Van Houttei
EE. Form of lus. rhombiclencentate.............15. Cantoniensis
DD. Foliage mabescent, at least benealh.
E. Cmbels and follicles
pubescent.
F. Tomentum grayish..16. blanda
fF. Tomentum yellorish.17. Chinensis
EE, ITmbels and follicles glabrous..............
18. pubescens
cc. Stamens longer than petals: sepals reflesed.

- Shoots terete, often pubescent in frwit..............19. media DD. Shoots angular, glabrous.20. chamædryfolia

2. hypericifdia, Linn. Vigorous shrub, 5 ft. high, with slender arching or upright branches: Ivs. almost sessile, cuneate-obovate to obovate-lanceolate, 3-nerved or with fuw lateral reins, almost glabrous, $3 / 4-11 / 2$ in. long: fls, small, white, in sessile umbels; pedicels usually pubescent; petals almost orbicular, usually longer than stamens. April, May. S.E. En. to Siberia. - Variable species. Var. acutifolia, Wenzig ( $S$, acutifolia, Willd. S. hypericifoliu, var. acùta, Ser.). Lvs, nar-
rower, oblanceolate: fis. smaller, yellowish white; pedicels glabrous; petals obovate, shorter than stamens: flowers somewhat earlier, but less showy. Var, flabellàta, Zabel (S. flabellata, Bertol. S. hypericifolia, var. crendto, Boiss. \& Buhse). Livs. obovate to obovate-lanceolate, acute, incisely serrate at the apex or entire on the flowering branches. Var, obovàta, Maxim. (S. obothita, Waldst. \& Kit.). Lvs. obovate, rounded at the apex, crenate above the middle. S. E. Eu. Var. truncata, Zabel (S. thalictroldes, Hort., not Pall.). Lvs. broadly obovate to oblong -obovate, truncate and crenately dentate at the apex. Siberia.

3. Thùnhergii, Sieb. Fig. 2363. Shrub, 5 ft , high, with spreading or arching branches: Ivs. sharply serrulate, $1-13 / 4$ in. long: fls. pure white, about $1 / 3$ in. across, in 3-5-fld. naked umbels; petals obovate, much louger thau stamens: follicles with the spreading styles below the apex. April, May. China, Japan. S.Z. 1:69. G.F. 8:84, 85. - A very graceful early-flowering shrub, the slender arching branches clothed with feathery bright green foliage, turning late in fall to orange or scarlet. Almost hardy, but tips of branches sometimes killed by severe frost; valuable for seaside planting.
4. argùta, Zabel ( $S$. Thùnbergii $\times$ multifldra ). Similar in habit to the former but higher and more vigorous: lvs. oblong-obovate to oblong-oblanceolate, sharply and sometimes doubly serrate, glabrous at length, $1-13 / 4 \mathrm{in}$. long: fis, pure white, $1 / 3$ in. across, in many-fld. umbels, mostly with small lvs, at the base; pedicels glabrous; petals broadly obovate, almost twice as long as stamens. May. Of garden origin. G.C. IlI. 22:3. Gny. 7:291. F.E. 11:160. G.F. 10:443. M.D.G. 1900:16. -The most free-flowering and showy of the earlier Spireas; quite hardy.
5. multiflora, Zabel ( $S$. crendta $\times$ hypericifolia). Shrub, 5 ft . high, with slender, arching branches: lvs. obovate, cuneate, serrate above the middle, usually 3 nerved, glabrous at length, about 1 in . long: fls, pure white, in many-fld. umbels, sessile on the upper, borne on leafy stalks on the lower part of the brancbes. May. Of garden origin. -Handsome shrub similar to the former, but blooming a little later.
6. prunifdia, Sieh. \& Znce. Graceful shrub, 6 ft . high, with upright slender pubescent branches: 1 Fs. orate to oblong, denticulate, pubescent beneath, 1-2 in. long: fls. pure white, about $1 / 3$ in. across, on slender pedicels, in : $1-6$ - Ad . umbels; petals obovate, longer than stamens. May. China, Japan. - Var. fldre plèno. Fig. 2364. Fls, double, rather large. S.Z. 1:70. F.S. 2:153. Gu. 53, p. 185. A.G. 18:425. F.E. 9:593. Mn. 3, p. 42. Very bandsome, early-flowering shrub, with dark green, shining foliage, tnrning orange in fall. The single-fld. form is less showy and rare in cult.; its foliage is lighter and not shining.
7. cana, Waldst. \& Kit. Dense, bushy shrub, 3 ft . high: Ivs. elliptic to oblong, acute at both ends, usually entire, grayish pubescent on both sides, more densely
heneath, $1 / 3-1 \mathrm{in}$. long: fls. $1 / 4 \mathrm{in}$. across, in dense headlike umbels; petals about as long as stamens; sepals retlexed in fruit. May. S. E. Eu., W. Asia.-Hardy, but not very showy.
8. alplna, Pall. Shrnb, 4 ft . high, with upright or arching, angular, reddish brown branches: lvs, oblongobovate to oblanceolate, acute, usually eutire, glabrous, penninerved, $1 / 4-1$ in. long: tls. white, rather small, in short-stalked, small glabrous umbels; petals roundish, little shorter than stamens; sepals upright in fr.: follicles curving outward. May, June. N. E. Asia. - Hardy shrub, with graceful foliage.
9. crenàta, Linn. (S. crenifolia, C. A. Mey.). Shrub, 3 ft . high, with slender striped branches: lvs. oblongobovate to oblanceolate, acute at both ends, crenately serrate toward the apex, grayish green, puberulous beneath when young, 3-nerved, $1 / 2-11 / 4 \mathrm{in}$. long: fls. white, rather small, in dense almost semi-globose umbels; petals roundish obovate, shorter than stamens: sepals upright in fr.: follicles with erect styles. May. S. E. Eu. to Crucasus and Altai. L.B.C. 13:1252.-Hardy.
10. Pikowiénsis, Bess. (S. crenàta $\times$ mèdia. S. Nicoudiérti, Hort.). Shrub, 4 ft . high, with terete upright branches: lvs. oblong, cuneate at base, with few sharp teeth at the apex or sometimes entire, penninerved to 3 -uerved, almost glabrous, $1-2$ in. long: fis. White or greenish white, in many-fld. almost glabrous umbels; petals orbicular, shorter than staraens; sepals upright in fr.; follicles with the upright style somewhat below the apex. May, - Snpposed natural hybrid, found wild in Podolia, in Poland.
11. hracteàta, Zabel (S. Nippónica, Maxim. S. mèdia, var, rotundifolia, Nichols.). Shrub, 8 ft , high, with upright or spreading branches, quite glabrous: lvs. roundish obovate, usually crenate at the apex, dark green above, bluish green beneath, of firm texture, $3 / 4-13 / 4 \mathrm{in}$. long: fls. over $1 / 3$ in. across, in umbel-like racemes, sometimes compound at the base; petals orbicular, longer than stamens; sepals spreading in fr. June. Japan. G.C. 11. 23:283.-Desirable hardy shrub of vigorous growth with showy umbels of pure white fls, and dark green handsome foliage remaining fresh until late in fall.
12. Blùmei, G. Don (S. rupéstris, Sieh,). Shrub, $4 \mathrm{ft} . \mathrm{high}$, with spreading and arching branches: lvs ovate to rhombic-ovate, incisely crenate-serrate, pale bluish green beneath and rather prominently veined, $3 / 4-13 / 4$ in. long: fls. polygamous, white, in many-fl. umbels; petals roundish obovate, about as long as stamens: follicles with spreading or retlexed styles. June, Japan. B.H. 8:36. - Not hardy north, rare in cultivation; often the following or other species are met with under its names.

13. trilobàta, Linn. (S. tríloba, Linn.). Fig. 2365. Shrub, 4 ft . high, with slender spreading branches: lvs. almost orbicular, incised-dentate aud often 3-lobed, obtuse, pule bluish green beneath, $1 / 2-1 \mathrm{in}$. long: fls. pure white, in many-fld. umbels; sepals upright in fr.: follicles with ascending styles. May, June. N. China to Siberia and Turkestan, L.B.C. 13:1271. G.F. 1:452.-

Handsome bnshy shrnb, quite hardy; cult. under many different names as $S$. aquilegifòlia, adiantifolia, cratagitolia, Blumei.
14. Van Hoùttei, Zabel (S. Cantoniénsis $\times$ trilobàta. S. aquilegifolia, var. I'an Hoùttei, Briot.). Fig. 2366. Shrub, 6 ft . high, with arching branches: Ivs. rhom-bic-ovate or rhombic-obovate, rounded or somewhat narrowed at the base, acute, incised serrate, dark green above to pale bluish green beneath, $3 / 4-13 / 4 \mathrm{in}$. long: fls. white, $1 / 3 \mathrm{in}$. across, in many-fld. umbels; petals twice as long as stamens; sepals upright or spreading in fruit. May, June. Of garden origin. Gu. 53, p. 251. G.F. $2: 31 \overline{7}$. Gng. 5:210. A.G. 15:297. P.G. 3:173. M.D.G. 1900:17. - This is one of the most beautiful, or perbaps the most beantiful, of the early-blooming Spireas and quite hardy. Sometimes confounded with the foregoing, which is similar but smaller in every part and less showy.
15. Cantoniénsis, Lour. (S. Reevesidna, Lindl. S. lanceolata, Poir. S. corymbosa, Roxb.). Shrub, 4 ft . high, with slender, arching branches: Ivs. rhombiclanceolate, iucisely doubly serrate, dark green above, pale bluish green beneath, $1-2 \frac{1}{2}$ in. long: fls. over $1 / 8 \mathrm{in}$. aeross, in rather dense umbels; sepals upright in fruit: follicles with spreading styles. May, June. China, Japan. B.R. 30:10. A.G. 18:356.-Very handsome Bhrub, with large pure white fls., but only half-hardy north. Var. flore pleno, with double fls, and narrower lvs., is still more tender. This species and the three foregoing are valuable also for their bandsome foliage, whicb remains fresh and green until late in fall.
16. blánda, Zabel (S. Chinénsis $\times$ Cuntoniénsis. $S$. Reevesidna robuista, or nòa, Hort.). Upright shrub, 6 ft . high, with arching branches: lvs, oblong to ovate, acute at botb ends, incised serrate, dark green and almost glabrous above, grayish tomentose beneath, $1-1 / \frac{1}{8} \mathrm{in}$. long: fls. rather large, pure white, in pubescent umbels; sepals ovate-lanceolate, upright in fruit: follicles pubescent, with spreading styles. May, Jnne. Of garden origin. - Only half-bardy north.
17. Chinénsis, Maxim. (S. pubéscens, Lindl.). Tpright shrub, 5 ft high, with arching branches, tomentose when young: Ivs. long-petioled, orate, incisely serrate and sometimes 3-lobed, finely pubescent ahove, yellowish tomentose beneath, $1-2 \mathrm{in}$. long: fls, pure white, about $2 / 3 \mathrm{in}$. across, in pubescent umbels; sepals upright in fruit, ovate-lanceolate, tomentose like the follicles; styles terminal, spreading. May. China. B.R. 33:38.Handsome, but not hardy north.
18. pubéscens, Turcz. Upright shrub, 6 ft. bigh, with slender, arching branches: lrs. similar to those of the foregoiug species, but more grayish tomentose beneath and somewhat smaller, petioles shorter: fls. $1 / 4-1 / 3 \mathrm{in}$. across, in glabrous umbels; sepals triangular-ovate, upright in fruit: follieles glabrous, with the spreading styles below the apex. May. N. China. G.F. 1:331.Hardy north, and the large-fld. form as handsome as the foregoing species.
19. média, Schmidt (S. confùsa, Regel \& Kœrn.). Upright shrub, 5 ft . high, with terete branches, glabrous or pubescent when young: lvs. ovate to oblong, cuneate at the base, incisely serrate above the middle, almost glabrous or pubescent, 1-21/4 in. long: fls. in many-fld. rather long-stalked, umbel-like racemes; follicles with the spreading or reflexed styles somewhat below the apex. May. S. E. Eu. to Japan. - Var. glabréscens, Zabel. Almost glabrous. Var. oblongifolia, Rehd. (S. oblongifolia, Waldst, \& Kit.). Lvs, ellipticoblong to oblong-lanceolate, narrowed at both euds, entire or with 1-3 teeth at the apex. Var. sericea, Regel (S. sericea, Turcz.). Lvs. pubescent on both sides.
20. chamædryfolia, Linn. Shrub, 6 ft . high, witb angular, glabrous branches: lvs. distinctly jetioled, ovate to lanceolate, sharply and often doubly serrate, almost glabrous, bluish green beneath, $2-3$ in. long: fls. In many-fld. umbels, the lower ones long-stalked, the upper ones often almost sessile: follicles with the styles upright and terminal. S. E. Eu. to Japan. - Var. flexuodsa, Maxim. (S. flexuдsa, Fisch.). Less high, with spreading more or less zigzag branches: lys. narrower, sharply serrate above the middle. Siheria to Dahuria.

Var. ulmifòlia, Maxim. (S. ulmifдlia, Scop.). Upright: los. orate, incisely or doubly serrate from below the middle: fls. larger, about $1 / 3$ in, across, appearing later. L.B.C. J1:1042. B.R. 15:1222. Both vars, are often cult.; they spread, like the preceding species, by suckers. Sometimes as $S$. atrifolia or anbifolia in gardens.

Section 4. Calospira (Species Nos. 21-36).
A. Stamens as long as petals: lus. small, $1 / 2-1 \mathrm{in} . \mathrm{long}$ : fls, white.
B. Height $3-6$, occasionally 12 ft...21. canescens BB. Height about $1 / 2$ ft................22. decumbens AA. Stamens longer than petals.

B, Corymbs on lateral branchlets along the branches of the previous year.
c. Winter-buds slender, longer
than petioles................23. longigemmis
cc. Winter-buds shovter than petioles.
D. Shoots angular: lvs. usu-
ally broally ovale.......24. bella
DD. Shoots terete: lu's. usually orate-lanceolate...........25. expanas
BB. Corymbs terminal on upright shools of the year.
c. Inflorescence pubescent, rarely glabrozs, very compound, besitles the terminal corymb lateral ones blooming somewhat luter appear beneath it, only weak branches with a single corymb.
D. Shrub 1 ft . or less high,
with bullate lis. less than
1 in. long...................26. bullata
DD. Shrubs 1-5 fl. high, with
larger lus.
s. Branches terete.
F. Ripe follicles direrging ...............27. Japonica
FF. Ripe follicles upright, straight.
G. Fls. pink ...........28. Margaritm

GG. Fls. whitish or blushed............29. Foxii
EE. Branches more or less
angular, rather stiff,
almost glabrous.
F. Color of fls. pink, rarely uhitish.......30. Bumalda
FF. Color of fls. white ....31. albiflora
cc. Inflorescence zsually glabrous, consisting of only one terminal corymb: follicles not diverging.
D. Sepals reflexed in fruit: petals orbicular..........32. superbs
DD. Sepals spreading or half upright: petals oval to oblong.
E. Fls. uhite
F. Corynib usually pu-
bescent..................33. corymbosa
FF. Corymb usually glabroas.
G. Lers. usually in-cised-serrate.......34. lucida
og. Les. usually crevately serrate.....35. betulifolia EE. Fls. pink. ...................36. densiflora
21. canéscens, D. Don. Shrub, 6 or sometimes 12 ft . high, with spreading and arehing branches: lvs. broadly oval to obovate, very short-petioled, crenately dentate above the middle, grayish green, pubesceut beneath or sometimes almost glabrous at length, $1 / 3-3 / 4$ in. long: fls. white, rather small, in dense, semi-globose corymbs to 2 in , across, appearing very profusely along the branches; sepals upright or spreading in fr.: follicles villous, with the ascending styles a little below the
apex. July. Himal. Gn. 45, p. $49 ; 49$, p. $421 ; 52$, p. $28 ;$ 54, p. 48. - Very graceful and handsome shrub, but not hardy north. It occurs under very many different names in the gardens, as $\mathcal{S}$. argéntea, cunedta, cuneifolia, flagellita, flagellifómis, rotundifolia, vaccinifolia, and others.
22. decúmbens, W. Koch (S. procúmbens, Hort.). Dwarf, procumbent shrub, about $1 / 2 \mathrm{ft}$. high, with ascending branches, glabrous: Ivs. elliptic to oblong, acute at both ends, crenately serrate above the middle, glabrous, $1 / 2-1 \mathrm{in}$, loug: fls. white, in small corymbs, ahout 2 in. across: follicles glabrous, with upright terminal styles. Juve. Tyrol. G.C. 11. 11:752.-Pretty shrub for rockeries.
23. longigémmis, Maxim. Shrub, 4 ft . high, with slender terete branches, glabrous: axillary buds acuminate, longer than the petioles: Ivs. ovate-lanceolate to oblong-lanceolate, incisely and doubly serrate, with glandular-tipped teeth, bright green, glabrous, $11 / 2-21 / 2 \mathrm{in}$. long: fls, white, in rather loose, $2-3-\mathrm{in}$. broad, pubescent corymbs; sepals spreading in fr.: follicles aimost gla= brous, with terminal spreading styles. June. N. W. China. G.F. 7:345.-Hardy.
24. bélla, Sims ( $S$, ovàta, and $S$, cóccinea, Hort.). Shruh, 3 ft . high, with slender, spreading branches, angular and sparingly pubescent : Ivs, broadly ovate to ovate, sharply and often doubly serrate, almost glabrous, whitish or bluish green beneath, $1-2$ in. long: fls, polygamous, pink, in small corymbs, $1 / 2-2$ in. aeross; stamens little longer than petals; sepals reflexed in fr.: follicles pubescent only at the inner suture, with spreading styles. June, July. Himal. B.M. 2426. L.B.C. 13 : 1268. - Only half-hardy north.
25. expénsa, Wall. (S. bélla, var. expánsa, Regel. S. Kumaonensis, Hort.). Closely allied to the foregoing, more vigorous and upright, 6 ft . high, with terete hranches tomentose when young: Ivs, ovate-elliptic to ovate-lanceolate, acute at both ends, sharply serrate from the middie, usually pubescent on the veins beneath, $11 / 2-3$ in. long : Hs. white or pale pink, in $1-4$ broad corymbs: follicies pubescent, diverging. July. Himal.-S. pulchélla, Kunze (S. Kumaonénsis, Hort.), is supposed to be a hybrid of this and the foregoing

species; it combines the broader corymbs of the latter with the brighter color of the first species, therefore handsomer than either parent; sometimes cult. as $s$. expánsa rubra, but there is also another hybrid of the same name. See $S$, rubra in suppl, list.
26. bullàta, Maxim. (S. crispifòlia, Hort.). Dwarf shrub, with strictly upright brown, villous branches: lvs. roundish ovate to ovate, very short-petioled, incisely serrate, thickish and bullate, almost glabrous,
grayish green beneath, $1 / 2-3 / 4 \mathrm{in}$. long: fls. deel pink, in small and dense corymbs, $1 \frac{1}{2}-3$ in. across. July, Aug. Japan. Gt. 35:1216.
27. Japónica, Linn. (S. callòsa, Thunh. S. Fórtunei, Plauch.). Shenh, 4 ft high, with upright branches glabrous or puberulous when young: ivs. ovate to oblong-lanceolate, acute at both ends or acuminate, doubly and incisely serrate, pale bluish green and usually glabrous beneath, $1-4 \mathrm{in}$. long: fls. small, pale to deep pink, in usually much compound and rather loose corymbs; sepals reflexed in fruit: follicles glabrous,

2366. Spiræa Van Houttei. No. 14.
diverging, with ascending styles. June, July, Japan to Himal. F.S. 9:871. B.H. 8:129. P.F.G. 2, p. 113.Handsome shrub, with the young unfolding ivs of a pretty purplish color; usually much cult, under the name S. callosa.

Var. Fortunei, Rehd. (S. Fortrnei, Planch. S.cal. lòsa, Lindl., not Thunh.). Higher, with quite terete branches: 1vs. 2-4 in. long, oblong-lanceolate, acuminate, sharply and doubly serrate, with incurved, calloustipped teeth, rugose above, bluish white beneath: corymbs very compound, rather loose; disk none or very minute. This seems to be the Chinese form; the Japanese form grows less high, has smaller and broader, coarsely doubly dentate-serrate Ivs., not rugose and less whitish beneath; the stems are slightly striped by the decurrent petioles and the inflorescence is less compound. Var, atrosanguinea, Hort. Fls. deep pink, in tomentose corymbs. Var. ruhérrima, Hort. Fls. deep pink, in puberulous corymbs. Var. macrophylla, Simon-Louis. Lvs. becoming 6 in . long, bullate: corymbs small. Var. gIabràta, Nichols. (S. glabrìta, Lange). Of more rigid habit' lvs. ovate, glabrous: fls. bright pink, in glabrous corymbs. Var. pubéscens, Regel. Lvs. pubescent on the veins beneath: corymb tomentose. Most of the other forms of ten enumerated as varieties are hybrids of this species.
28. Margaritæ, Zabel (S. Japónica $\times$ supérba). Shrub, 5 ft . high, puberulous: Ivs. ovate-elliptic to elliptic, coarsely and often doubly serrate, pubescent on the midrib beneath and pale green, 2-3 in. long: As, rather large, bright pink, in broad corymbs; sepals spreading in fruit: follicles upright, glabrous, with upright styles: July, Aug. Of garden origin.-Handsome, very freeflowering form.
29. Foxii, Zabel (S. corymbdsa $\times$ Japónica). Similar to the preceding: branches more or less striped, almost glabrous: lvs. elliptic, doubly serrate, glabrous: fls. whitish or pinkish, in large, puberulous corymbs; styles spreading in fruit. June, July. Of garden origin.Less desirable than the preceding hybrid.
30. Bumálda, Burvenich (S. Japónica $\times$ albiflora. S. pùmilu, Zabel). Shrub, 2 ft . high, rarely higher: Ivs. ovate-lanceolate, sharply and doubly serrate, glabrous, 2-3 in. long: fls. whitish to deep pink: follicles diverging. July, Aug. B.H. 17:12. Gn. 46, p. 416. Min. 2. p. 24.-Cult. in many different forms, probably all of garden origin. One of the best is var. Anthony Waterer, a very free-flowering, compact shrub with bright crimson fis, in rather dense corymbs. Gn. 45:945. G.C. 111. 14:365. A similar form is S. Lemoinei, Zabel (S. Bumailda, var. rubérrima, Hort.), hybrid of $S$. Bumalda and $S$. bulldte, a low, compact shrub, with somewhat bullate Irs. and pink fls.
31. alhiflora, Miq. (S. Japónica alba, Regel. S. leucántha, Lange). Fig. 2367. Low shrub, $1 \frac{1}{2} \mathrm{ft}$. high, with stiff, upright branches: lvs. lanceolate, coarsely or sometimes doubly serrate, glabrous, $1-2$ in. long: fls, white, in dense corymbs, one large terminal and many smaller ones below, forming a kind of raceme; disk prominent; sepals reflexed in fr.: follicles upright, not or little diverging. July, Aug. Japan.
32. supèrba, Zabel ( S . albiflora $\times$ corymbosa). Low shrub, with striped dark brown brancbes: Jvs. ellipticoblong to oblong, acute at botb ends, simply or doubly serrate, almost glabrous, 1-3 in. long: fls. rather large, pink or almost whitish; disk prominent; petals orbicu lar or broadly obovate. June, July, Of garden origin.

2367. Spiræa albiflora ( $\times 1 / 8$ ).
33. corymhòsa, Raf. (S, eratogifolia, Link.). Low shrub, with usually little-branched stems, rarely to 3 ft. high: branches purplish brown: lvs. broadly oval to ovate, acutish, coarsely and often doubly sercate, especially above the mildle, pale bluish green beneath and glabrous, $11 / 2-3 \mathrm{in}$. long: Hs. white, rather small, in somewhat convex usually pubescent corymbs, $1 \frac{1}{2}-3 \mathrm{in}$. across; petals oval: follicles and styles upright. Hay, June. N. J. to Ga. L.B.C. 7:671.
34. lùcida, Dougl. Closely allied to the former: branches yellowish brown or brown: Ivs. more incisely serrate, oval or obovate: corymb glabrous, usually looser and more flat, broader. June, July. Dakota to Brit. Col. and Oregon. The allied S. Virginiana, Britt., is more brancbed and higher: 1vs, oblong to oblanceolate, dentate above the middle or almost entire: inflorescence glabrous. Va. to N. C. B.B. 2:197.
35. betulifolia, Pall. Low, much-branched shrub: lvs, oval to obovate or obovate-oblong, usually cuneate at base and very short-petioled, serrate or crenately serrate, obtuse, glabrous or sligbtly pubescent on the veins beneath, $3 / 4-11 / 2 \mathrm{in}$. long: corymb usually glabrous, $1-2$
in. across. June, July. Siberia to Manchuria, Kamschatka and Japan. - The two preceding and the following species are all closely allied and considered by some botanists as varieties of S. betulifolit.
36. densiflora, Nutt. (S. betulifolia, var. ròsea, Gray. S. rosea, Koehne. $S$, arbúscula, freene). Low, mucbbranched shrub: Ivs. very short-petioled, oval to orate, obtuse, crenately serrate, $3 / 4-11 / 2 \mathrm{in}$. long: fls. bright pink, in dense corymbs 1-2 in. across. June-Aug. Ore. to Calif., southern Manchuria. (1.F. 10:413.

Section 5. Spiraria (Species Nos. 37-49),
A. Inflorescence a broad paricle. about us broad as high. (Hybrids of species of this and the preceding section.)
B. Panicles ruther small, on lateral branchlets at the end of last year's branches ................37. Fontenaysii
BB. Panicles large, terminal an long, upright branches.
c. Lis. glubrous or mearly so.
D. Apex of les. acute.........38. conspicua

DD. Apex of les. obtuse or acutish.
E. Shape of les. broadly orate or obovate.......39, notha
EE. Shape of lu's. oblong or ocell-oblong ............40. pyramidata cc. Lvs, pubescent or tomentose beneath.
D. Base of les, acute ..........41. Sanssouciana DD. Base of tris. rounded.......42. Nobleana
A. Panicles elongated, longer than
browd. (Spiraria proper.)
B. Foliage glabrous or nearly so.
C. Lus, sharply serrate, except at the very base.
D. Panicles tomentulose.
E. Fls. light pink. ..........4. 4. salicifolia
EE, Fls, uhite...............4. alba

EE, Fls, white.................. 44. alba
DD. Panicles gtabrous..........45. Iatifolia
cc, Lus, coarsely serrute above
the middle: fls. pink.......
46. Menziesií

BB. Foliage pubescent or tomentose beneath.
c. Follicles glabrous: lus. grayish or whitish tomentose beneath.
D. Liss, acute at both ends....47. Billardii

DD, Lis, rounded or nearly so at both ends.............48. Douglasi
cc. Follicles pubescent: lus. usually light tuwny beneath.49. tomentosa
37. Fontenàysii, Billard (S, Fontanaysiensis, Dipp. S.cunéscens $\times$ salicifolia). Shrub, 6 ft . bigh, with slender, upright branches: lvs. oval or oblong-oval, rounded at both ends, crenately serrate above the middle, pale bluish green beneath, almost glabrous, 1-2 in. long: fls. white or piuk, in $11 / 2-3$-in. long panicles; petals orbicular, about as long as stamens; sepals spreading in fruit. June, July. Uf garden origin.-Not quite hardy north. Var. alba, Zabel, is the white-fld., var. rosea, Zabel, the pink-tld. form. S. pruinòsa, Hort. (S. brachybótrys, Lauge. S. luxuridsa, Hort. S. canéscens $\times$ Doúglasi), is a similar form, but the lvs. are tomentose beneath and the fls. pink.
38. conspícua, Zabel (S. albifldra $\times a l b a$ ). Upright shrub, 3 ft . high, with dark brown puberulous branches: lvs, elliptic-oblong, acute at both ends, simply or doubly serrate, almost glabrous, $11 / 2-21 / 2 \mathrm{in}$. long: fls. pinkish white, in broad finely pubescent panicles; petals shorter than stamens, July-Sept, - Handsome form. A similar bybrid is S. syringæflora, Lem. (L. albiflòra $\times$ salicifólia), with oblong-lanceolate or lanceolate lvs. serrate above the middle and pink fls. Closely allied is also S. semperflorens, Zabel (S. Japónica $\times$ salicifòlia, $S$. Japónica or F'ortunei, var. paniculata, Hort.). Higher than the former: lrs, oblong-lanceolate, usually doubly serrate: fls. pink. R.H. 1860, p. 496, 497. Gn. 45, p. 48.
39. ndtha, Zabel ( $S$. corymbdst $\times$ latifolia). Shrub, 3 ft . high, with brown glabrous branches: Ivs. broadly ovate to obovate, short-petioled, coarsely and doubly serrate, almost glabrous, 1-2 in, long: fls. white to pinkish white, in broad, glabrous panicles; stamens almost twice as long as the orbicular petals. July, Aug. -Or garden origin.
40. pyramidàta, Greene ( $S$. Tùcida $\times$ Ménziesi). Upright sbrub, 3 ft . bigh: lvs, oval-oblong to oblong, acutish or ohtuse, usizally doubly serrate above the middle, glabrous or nearly so, $11 / 2-3 \mathrm{in}$. long: panicles $11 / 2-31 / 2$ in. long, rather dense, puhernlous: fls. pinkish or almost white. July. Found wild in Ore. and Washington. - Worthy of cultivation, but not yet introduced.
41. Sanssouciana, C. Koch (S. Doúglasi $\times$ Japonica. S. Regeliana, Hort.). Shrub, 4 ft . high, with striped, finely tomentose branches: Ivs. oblong-lanceolate, sharply and usually doubly serrate, grayish tomentose beueath, $2-3 \frac{1}{2}$ in. long: fis. pink, in broad corymb-like panicles: follicles glabrous, with spreading styles. July, Aug. Of garden origin. - An allied form is S. intermèdia, Lemoine ( $S$. albiflora $\times$ Doniglasi), similar in habit to S. syringeffora but with the lvs, tomentose beneath.
42. Nobleàna, Hook. (S. Doúglasi, var. Nobledna, Wats. S. Douglasi $\times$ densiflora). Shrub, 4 ft . high, similar to the former: lvs. oblong or narrowly oblong, usually rounded at the base, acute, sharply serrate above the middle, grayish tomentose beneath, $1-3 \mathrm{in}$. long: ths. light pink, it dense broadly pyramidal tomentulose panicles, $3-6 \mathrm{in}$, high; petals half as long as stamens; sepals retlexed in fr.; styles erect. June, July. Natural hybrid, found in Calif. B.M. 5169. 1.H. 8:286. - A similar form is S. pachystachys, Zabel (S. corymbosa $\times$ Doüglasi), with broader lvs. and fls. of paler pink.
43. salicifolia, Linn. (S. Sibiriea, Raf. S. salicifolia, var. carnea, Ait.). Upright shrub, 5 ft . high, with terete yellowish brown branches puberulous when young: lys. oblong-lanceolate to lanceolate, sharply and sometimes doubly serrate with often incurved teeth, $1 / 2 / 2-3$ in. long: fls. light pink or whitish, in oblong, dense, tomentulose panicles leafy below, the lvs. exceeding the ascending ramifications; stamens twice as long as petals; sepals upright in fr .: follicles ciliate at the inner suture. June, July. S. E. Eu, to Japan and probahly Alaska.Var. grandiflora, Dipp. (S. grandiflòra, Lodd.). Lower, with larger, lighter pink tls. L.B.C. 20:1988.
44. alba, Dur. (S. salicifolia, var, paniculata, Ait. S. lanceoldta, Borkh.). Queen of the Meadow. Meadow SWEET. Attractive upright shrub, attaining 6 ft ., with reddish brown branches puberulous when young: lvs. narrow, oblong to oblanceolate, acute, usually regularly simply serrate, $11 / 2-91 / 2 \mathrm{in}$. loug: fls. white, in leafy pyramidal tomentulose panicles, the lower spreading ramifications much longer than their supporting lvs.; stamens white, usually as long as petals: follicles quite glabrous. June-Ang. From N. Y. West to the Rocky Mts., south to Ga. and Miss. Also known as S. salicifolia.
45. latifolia, Borkh. (S. salicifolia, var. latifòlia, Ait. S. carpinifolia, Willd. S. Canadénsis, Hort. S. Bethleheménsis, Hort.). Queen of the Meadow. Meadow Sweet. Fig. 2368. Branching shrub, 2-5 ft. high, with bright or dark red-brown glabrous twigs: lvs. broadly oval to obovate or oblong, usually coarsely and often doubly serrate, $11 / 2-3 \mathrm{in}$. long: fls. white, larger than those of S. alba, sometimes lightly blushed and with the stamens and disk more or less pinkish; panicles quite glabrous, broadly pyramidal, with spreading and elongated ramifications; stamens longer than petals. Jutie-Aug. Newfoundland and Canada to N. C. Em. 2:485. B.B. 2:196. - This and the preceding species have been referred by most American botanists to $S$. selicifolia. S, alba is chiefly found west, S. latifolia east of and in the Alleghanies.
46. Ménziesi, Hook. (S. Doúqlasi, var. Ménziesi, Presl.). Upright shrub, 4 ft . high, with brown, at first puberulous branches: lis. oblong-obovate to oblong, coarsely and unequally serrate above the middle, pale green beneath, $1 \frac{1}{2}-3$ in. long: fls, small, pink, in rather narrow, $5-8$-in. long panicles; stamens more than twice
as long as the roundish petals; sepals reflexed in fruit. June-Aug. Alaska to Oregon.
47. Billárdii, Hort. (S. Doúglasi $\times$ salicifolia). Shrub, 6 ft . high, with brown pubescent branches: lvs. oblong to oblong-lanceolate, acute, sharply and often doubly serrate, except in the lower third, usually grayish tomentose beneath, at least when young, sometimes almost glabrous at length, $2-3$ in. long: fls. bright pink, in 5-8-in. long, tomentose or tomentulose panicles, usually rather מarrow and dense. July, Aug. Of garden origin. - S. Lennedna, Bethleheménsis rubra, triúmwhans, eximia, Constántio, Californicu, Hort., are very similar and probably of the same parentage.

2638. Spiraa latifolia ( $\times 1 / 2$ ).
48. Doùglasi, Hook. Fig. 2369. Shrub, 8 ft . high, with reddish brown tomentose branches: Irs. oblong to nar-row-oblong, rounded or acutish at both ends, unequally serrate above the middle, densely white-tomentose beneath, $11 / 2-4$ in. long: As. deep pink, in dense, rather narrow or sometimes broad panicles, $4-8 \mathrm{in}$. long; stamens twice as long as the obovate petals; sepals reflexed in fruit: follicles glabrous. July, Aug. British Columbia to Caiif. F.S. 2:6it. R.H. 1846:101. P.F.G.2, p. 85. P.M. 12:195. B.M. 5151. Gn. 23:380.
49. tomentòsa, Linn. Hardhack. Steeplebush. Shrub, 4 ft . high, with upright, brown, tomentose branches: Ivs. ovate to oblong-ovate, acute, unequally and often doubly serrate, densely yellowish or grayish
tomentose beneath, $1-21 / 2 \mathrm{in}$. long: fls. deep suink or purple, in narrow deuse pauicles, brownisb tomentose and 3-8 in. long; stameus somewhat longer than the obovate petals; sepals reflexed: follicles pubescent, usually diverging. July-Sept. Nova Scotia to (ia., west to Manitoba and Kansas. B.B. 2:196. Em. 2:485.-Var.

2369. Spiraea Douglasi ( $\times 1 / 3$ ).
alba, Hort. With white fls. F.E. 8:833. Gng. 5:149. This species does not spread by suckers like most others of the section Spiraria. All the last named species are valuable as late-blooming sbrubs and decorative with their showy panicles of bright or deep pink fls. They appear at their best when planted in masses in the wilder parts of the park in low ground.
S. A murénsis, Maxim. $=$ Pbysocarpus Amurensis, $-S$, aricefolia, $\mathrm{Sm} .=$ Sehizonotus discolor. -S. A rincus, Linn, $=$ Aruneus sylvester- -S. assimilis, Zabel (S. densitlora $\times$ Japoniea) Low shrub, with pink fls, in broad corymb-like panieles. Garden hybrid. $S$. astilboides, Hort. $=$ A runcus astilboides. $-S$ Boursieri, Carr. = Schizonotus diseolor, var. dumosus. $-S$. brumàlis, Lange (probably S. expansa $\times$ alba). Medium-sized shrub, with oblong, incisely serrate, almost glabrous lvs, and pinkish white fls. is broad and loose corymb-like panicles. Aug.Oct. Garden hybrid. - S. Camtschatica, Pall. = Ulmaria Camtschatica. - S. capitota, Pursh $=$ Physocarpus capitatus $-S$. cinèrea, Zabel (S. cana $\times$ hypericifolia). Medium-sized shrub, with small, oblong, usually entire, pubescent lvs, and white fls in short-stalked umbels. Garden bybrid.-S. coneinna, Zabel (S. albiflora $\times$ expansa). Medium-sized shrub, with lanceolate, sharply serrate, almost glabrous lvs. and pinkish white tls. in broad corymbs. Garden hybrid.-S. compacta multifldra, Hort. $=$ Astilbe Japonica var. - S. conférta, Zabel (S. cana $\times$ erenata) Medium-sized shrub, witb small, ovate to oblong-laneeolate, 3 -nerved, entire or crenate lvs. and white fls. in dense, small, pednneled umbels. Garden hybrid.-S. Dahurica, Maxim., is
closely allied to S. alpiba, but not yet introdnced; S. eanescens and Sorbaria sorbifolia are sometiues cult. under this name. $s$. difformis, Zabel (S. alba $\times$ corymbosa). Medinm-sized shrub, with oval to oblong-lapeeolate, serrate, almost glabrous lys. and white Hs. in large corymb-like panicles. Giarden hybrid. - S. discolor, Pursh = Schizonotus discolor.-S. dumòsa, Nutt, $=$ Schizonotos discolor, var. dumosus.-S. Filipendula, Linn. $=$ Ulmaria Filipendula. - S. fissa, Liudl. $=$ Schizonotus discolor, var. fissus.-S. floribinda. A trade name of indiseriminate meaniog. S. semperflorens and Sorbaria sorbifolia are sometimes met with under this name.-s. gemmata, Zabel (S. Mongoliea, Hort., not Maxim.). Allied to S. alpina: axillary buds much longer than petioles: lvs. small, penniaxilary buds much longer than petioles: lvs. Small, pennistalked, rather few-fld. umhels. Mongolia.-S. Gieseleriana, Zabel (S. cana $\times$ ehamoedryfolia). Medium-sized shrnb, with ovate, sharply serrate lvs. abd rather large wbite fls. in longstalked umbels. Ciarden hyhrid.-S. gigantea, Hort. = Ulmaria Camtschatica. - S. grácilis, Maxim. (S. vacciniifolia, Lodd., not Don). Low shrub, allied to $S$. canescens, with slender, arching branches: lvs. small, ovate, obtuse, entire or crenate above the middle, quite glabrous: ts. white, in hemispherical loose corymbs. Himal. L.B.C. 15:1403.-S. grandiflora, Sweet $=$ Sorbaria grandiflora- -s. grandiflora, Hook. = Exochorda grabdiflora.-S. Hacquetii, Fenzl. \& Koch. Closely allied to S decumbens, but grayish pubescent and with the sepals upright or spreading in fr. N. Italy, Tyrol. -S. Hookeri, garden name spplied to S nudiflora, bella, expansa, tristis and others, and also to Exochorda grandiHora.-s. Húmboldtii, Hort. = Aruncus sylvester.-N. Japónica, Hort., not Linn. f. = Astilbe Japoniea, -N. infléxa, C. Koch (S. erenata $\times$ mollis). Medinmsized shrub, with slender arching brawehes: lvs, elliptic-obloog, eutire, sparingly pubescent beneath: fis. white, rather large, in many-fld. stalked umbels. Garden hybrid.-S. Kamaonensis spicita. Hort., is a form of s : semperflorens,-s. Kamschatica, Auth. Ulmaria Camtsehatica.-S. lancifolia, Hoffimsgg, supposed to be $S$. Haequetii. $-S$. laxiflort, Lindl. $=S$. vaceinii-foliq.-S. Lindleyänt, Wall. = Sorbaria Lindleyana.-S. lobàta, Gronov. $=$ Ulmaria rubra -s . micropétala, Zabel ( $\$$. hypericifolia $\times$ media). Medium-sized shrub, with grayish green, ob-long-obovate lvs., entire or serrate at the apex, 3 - or penainerved: Hls. white or greenish white, in umbels on leafy or naked stalks. Garden hybrid.-S. Millefolium, Torr. = Sorbaria Millefolinm.-S. mólis, C. Koch (S. cana $\times$ media). Similar to S. media: lvs. smaller, usually entire, pubescent: fls. smaller, umbels pubescent. Garden origin.-S. Mongólica, Naxim., is closely allied to S. crenata, but not yet introduced; the S . Mongolica of gardeas is S. cemmata.-S. monogyna Torr. \& Gray $=$ Physocarpus mooogynus.-S. Nepalẻnsis, a garden name applied to several species, as s. micropetala eanescens, salicifolia, ete,-S. nivea, Zabel (S. canescens $\times$ expansa). Similar to S. capescens in habit, corymbs larger and looser: lvs. coarsely doubly serriste, pubescent, 1-2 in. long: Hs. white or pinkish white. Garden hybrid.-S. nudiflora, Zabel (S. bella $\times$ ulmifolia). Medinm-sized shrmb, with ovate, douhly serrate, almost glahrous lvs and pinkish white Hs. in hemispherical corymbs. Handsome, almost hardy sbrub. Garden hybrid.-S. opulifolie, Linn. $=$ Physocarpus opulifolia.-S oxyddon, Zabel (S. ehamædryfolia $\times$ media). Similar to S media, but branches angular: lvs. narrower, follieles with the styles terminal and spreading. Garden hybrid. - S. Pallasii, G. Don=Sorbaria grandithora. - S. palmèta, Pall. = Ulmaria palmat.i. -S. palmata, Thumb $=$ Ulmaria purpurea. $-s$. pal mota, Linn. $=$ Ulmaria rubra.-s. parmifolia, Bertol. $=\mathrm{s}$ gracilis.-s. revirescens, Zabel (S expansa $\times$ daponica). Me-dium-sized shrub, with oblong, coarsely serrate lvs., pizescent on the veins beneath: fls. light to deep pink, in large corymbs; blooming in summer and usually again in fall. Garden bybrid, $-S$, ribifòlia, Nutt. $=$ Physocarpus eapitatus. - S. rùbra Zabel (S. ruberrima, Dipp. S. Douglasi $\times$ expansa), Upright me-dium-sized shrub, with oblone lanceolate, coarsely serrate lvs. tomentose beneath, and deep pink fis. in ovate panicles. Garden hybrid.-S. schinabéckii, Zabel (S. chamadryfolia $\times$ trilobata). Medium-sized shrub, with arching branches: Ivs ovate to ob-loog-ovate, doubly serrate, glabrous: fls white, rather large, in peduncled umbels: petals longer than stamens. Handsome shrub, similartos. Van Honttei. Garden laybrid. - S. sorbifolia, Linn. = Sorbaria sorbifolia.-S. Tobólskie, Lodd. = Sorbaria sorbifolin. - S. trifoliöta, Linn, $=$ Gillevia trifoliata. - S. tristis, Zabel. Hybrid of unknown origin, similar to S. expansit, but eorymbs and the whitish pink fls. smaller: sepals upright in $\mathrm{fr}-\mathrm{S}$. Vlmaria, Linn. = Ulmaria pentapetala. - S. vaccinit. folia, D. Don (S. laxiflora, Lindl.). Shrub, to 2 ft ., with arch ing branches: lvs. long-petioled, ovate, crenately dentate, almost glabrous, $3 / 4-1 \frac{1}{2}$ in. long: fls. whitish, in tomentose corymbs, I-3 in. across June, Jnly. Himal. P.F.G. 2, p. 98 F.S. 7, p. $190-\mathrm{S}$. vaccinifolia, Lodd. $=$ S. gramilis. $-\mathbb{K}$, rgceiniifolia, Hort. $=8$. canescens, bramalis, ete,-s venusta, Hort $=$ Ulmaria rubra, var. venusta.-S. venústula, Kuntl $\&$ Bouebé $=\mathrm{S}$. vacciniifolia.

Alfred Rehder.

## SPIRAL FLAG. See Costus.

SPIRANTHES (name Greek; referring to the twisted spikes). Orchiddcer. Ladies' Tresses. A genus includiug about 40 species dispersed tbrougbout the tem-
perate zone and extending south to Chile, all terrestrial berbs, few of which have any horticultural value. Some of the hardy species are advertised by dealers in native plants aud by collectors. Erect berbs with Heshy or tuberous roots: Irs, mostly at the base or on the lower part of the stem: raeeme terminal, twisted: fls. spurless, small or mediun-sized; sepals free or more or less united at tbe top, or united witb tbe petals into a helmet; labellum sessile or clawed, concave, embracing the eolumn and spreading into a crisped, sometimes lobed or toothed blade: pollinia 2, powdery.
A. Color of fls. scarlet.
coloràta, N. E. Br. (S. cold̀rans, Hemsl.). Les. elliptie to elliptic-oblong, undulate, acute, 5-fin. long: stem 2 ft . high: spike 3 in . long: Hs, and longer bracts searlet. April. Mexico. B.M. 137t (as Neottia speciosa).

## AA. Color of fls. White or whitish.

## B. Fls. in 8 rows: tes. persistent at the flowering time.

cérnua, Rieh. Nodding Ladies' Tresses. Lis. mostly basal, linear or linear-oblanceolate: stem 6-25 in. bigh, usually pulbescent above, with 2-6 acuminate braets: fls. wbite or yellowish, fragrant, nowlding or spreading, in a spike $i-5 \mathrm{in}$. long; laterul sepals free, the upper arching and connivent with the petals; labellum oblong, rounded at the apex, crisp. Aug.-Oct. Nova Scotia to Minn, and south to Fla. B, M1. 1568 (as Neottia cernua); 5277. B.R. 10:823. B.B. 1:471. A.(t. 13:467. V. 11:13.
Romanzoffiàna, Cham, \& Schlecht. Les, linear to linear-oblanceolate, $3-8 \mathrm{in}$. long: stem 6-15 in. high, leafy below: spike $2-4 \mathrm{in}$. long: fls. white or greenish, ringent; sepals and petals broad at base, connivent into a hood; labellum oblong, broad at the base, contracted below and dilated at the apex, crisp. July, Aug. N. Amer. B.B. 1:470. G.C. 11. 16:465; 26:400.
latifolia, Torr. Stem 4-10 in. high, glabrous or pubescent, bearing 4-5 lanceolate or oblanceolate lvs. near the base: Hls. small; sepals and petals white, lateral sepals free, narrowly laneeolate, the upper one somewhat united witb the petals; labellum quadrate-obloug, yellowish above, not contracted in the middle, waryerisp, obthse or truneate. June-Aug. New Brunswick to Minn. and Va. B.B. 1:470.

## bb. Fls. atternate, appearing in a single spiral rou. c. Lers. present at the flowering time.

pràcox, Watson (S. graminea, var. Wílteri, Gray). Los. linear, $4-12 \mathrm{in}$. long, grass-like: stem $10-30 \mathrm{in}$. high, glandular-pubeseent above, leafy: spike 2-8 in. long: Hs. white or yellowish, spreading; lateral sepals free, the upper one connivent with the petal, lahellum ohlong, contracted above and dilated toward the apex. July, Aug. N. Y. to Fla. and La. B.B. 1:471.
cc. Les. mostly uithered at the flowering time.
simplex, Gray. Root a solitary oblong tuher: lrs. basal, ovate to oblong, short, absent at the flowering time: stem rery slender, $5-9 \mathrm{in}$. high: spike about 1 in . long: fls. white: labellum obovate-oblong, eroded and crisp. Aug., Sept. Mass. to Nd. B.B. 1:4ĩ. A.ț. 13:466.
grácilis, Beck. Roots clustered: lvs, basal, obovate to ovate-laneeolate, petioled, mostly dying before the flowering time: stem $8-18 \mathrm{in}$. high, bearing a slender, many-fld., 1 -sided or twisted spike: fis, white, fragrant; sepals longer than the labellum, the lateral ones free; labellum oblons, dilated in front, cremmate or warycrisp, thick and green in the middle. Aug.-Oct. Eastern N. Amer. B.B. 1:472, A.G. 13:466.

## Heinrich Hasselbring.

SPIRODELA. Consult Lemna.
SPLEENWORT. Asplenium.
SPÓNDIAS, See page 1864.
sponge tree. Aeacia Farnesiana. S., Vegetable. Luffa.

SPRAGUEA (after Isaac Sprague, of Cambridge, Mass., botanical artist, collaborator of Ass Gray). Portulacàcea. Yrobably only a single species, a bien-
nial herb 2-12 in. high, with mostly radical, spatulate, fleshy leaves and ephemeral flowers in dense, scorpioid spikes, umbellately clustered on seape-like peduncles: sepals 2; petals 4; stamens 3: capsule 2-valved; seeds 8-10, black, shiny.
umbellàta, Torr. May be treated as an annual. Fls. white, tinged with rose, in late summer. Sierra Nevada, at $3,000-10,000 \mathrm{ft}$, altitude, from the Yosemite valley to the Britisb boundary, usually in sandy dry soils. B.M. $5143 .-$ Var. caudicifera, Gray, is a suhalpine form in whieh the candex-like branehes extend for a year or more (tbe leaves below dying away) and are at length terminated by seapes an inch or so in length. Desirable for rockwork and edgings. F. W. Barclay.

SPRAYING (see Pomology), the art of proteeting enltivated plants from insect enemies and regetable parasites by corering them with a spray whieh shall hare a toxic or physically injurious effeet upon the animal or vegetable organism.

Historical Sketch. - The bistory of spraying is interesting. The story of its progress in America differs in details from the history of its development in Europe. The maiu features in each eountry are quite similar. In both places insect enemies made the first draft on tbe ingenuity of man in derising methods by which to bold them in check. Vegetahle parasites were studied afterwards. It is a curious fact that, in the case of both jnsects and fungi, in America, some of the most injurious forms came from Enrope and were the means of directing attention to wholesale methods of destroying tbem. Some of these enemies, comparatirely harmless in their native home. like the currant worm and corlinmoth, hare done more to forward spraying methods in the United States than anything else.

The first insecticides used in America, as well as in Europe, were not of a poisonous natnre. They were substances which had an injurious effeet on the body of the insect. These were of two kinds mainly: infusions which were astringent, and eaustie substances whieh burned the tissues. Tobaceo water and alkaline washes bave been used for many years. One of the first poisons to be used was white hellebore. The employment of arsenical poisons may be said to helong to America, and even at the present time has small place in the economy of fruit-growing in Europe. Tbe widespread use of arsenical poisons is largely due to the influence of the incursion of the potato bug. We

2370. Apple cluster ready for the spray, The blossoms bave not yet opened.
have no reliable records which give us the exact date of the first use of Paris green. It probably oceurred about 1865 or 1866 . Howerer, towards 1870 Paris green was used quite generally tbroughout the western region where the potato bug first appeared. At this time it was applied almost exelnsively in the dry form diluted with gypsum or Hour. From potato to cotton, tohaceo and finally to fruit trees, is the development of this poison for destroying leaf-eating insects. So far as records are available, it appears that fruit trees were first sprayed with Paris green between 1873 and 1875. Among pioneer sprayers, we should mention the names of Dr. C. V. Riley, United States entomologist;

LeBarron, state entomologist of Jllinois; William Saunders, London, Ontario, Cau. ; J. S. Woodward, Lockport, N. Y.; T. (1. Yeomans \& Sons, Walworth, N. Y.; Professor A. J. Cook. Agricultural College, Mich.

Following Paris green came London purple, and then White arsenic. Since that time many different forms of arsenical poisons have been compounded,

2371.

Splint broom for applying spray.
An early de. vice. offered to the public and frequently used. London purple has now been largely dropped by fruit-growers, owing to its variable quality. White arsenic, used in combination with soda and with lime, forms at the present time reliable and widely used insecticides.
While sucking insects were instrumental iu bringing about the invention of many formula, it has only been within the last twenty-five years that an effective method has been devised for their treatment. Al though kerosene has been recommended and used to some extent for thirty-five or more years, it was not until Cook recommended kerosene in the form of a soap and water emulsion that a desirable, eas ily prepared oily insecticide was found. About the same time, Dr. Riley, with Mr. Hubbard, of the Department of Agriculture at Washington, recommended the use of what is now known as the Riley-Hubbard formula.

The potato bug invasion and the discovery of the effacacy of Paris green in destroying leaf-eating insects did a great deal to stimulate spraying, but due credit should be given plant pathologists for tracing the life-histories of many fungi destructive to cultivated plants.
Fungicides. - Early in the eighties diseases of grape-vines threatened the extinction of French vineyards. The situation engaged the attention of French investigators. Notable among them were Professor A. Millardet and his co-workers of the Academy of Science, Bordeaux, France. He, with others, discovered partly by accident and partly by experiment that solutions of copper prevented the development of downy mildew. After much experimentation, "bouillie Bordellaise" was found to be effective in preventing the growth of downy mildew and other plant parasites infesting the grape in that region. The amouncement was definitely made in 1885. The following year the European formula for Bordeanx mixture was published in several places in the United States, and immediately there commenced an unparalleled period of activity in economic vegetable pathology. The establishment of the U.S. experiment stations gave added impetus to the movement. The rapidity of the spread of spraying knowledge among fruit-growers is remarkable. Ten years ago it was an unknown art by the rank and file. To-day agricultural clubs and granges purchase their spraying materials by the car-load direet from the manufacturer. The American farmer leads his fellow-workers in all parts of the world in the practice of spraying. Al. though Bordeaux mixture was discovered in Europe, its application has been made practicable by American inventions.

The Principles of Spraying. - A spray may be effective (a) by hitting the enemy, (b) by placing poison before the depredator, and (c) by protecting the plant with a covering unfavorable to the growth of the pest. The cantious farmer insures his crop against injury by insect or vegetable parasite by spraying. The fruit-grower asks, "Do I need to spray this year? My trees are not blossoming." Certainly, we answer, spray to protect the foliage from possible injury by insect or fungous disease. Healthy foliage is essential to the production of

2372. A bucket pump.
health and vigor and fruit-buds. Spray this year for next year's crop.

Insecticides kill by contact or by means of a poisonous principle; their effieiency depends largely on the time and thoroughness of the application. If applied too soon they may be dissipated before the insects appear; if applied late the injury is only partly prevented, because insects feed less voracionsly and are harder to kill as they approach maturity in the larval stage. With the vegetable parasite the case is not essentially different. The tree is covered with a thin coating which destroys

2373. Knapsack pump.
spores of fingi resting there and presents other spores from germinating. Fig. 2370 shows the stage of development of fruit-bud calling for Bordeaux mixture and Paris green. The keynote to success is thoroughness. Hasty sprinklings are worse than nseless; they discourage and disappoint the beginner. Full protection is not afforded unless each leaf, twig and branch has been covered. Time is the next most important factor bearing on success. The early spray is most effective. This applies particularly to the treatment of fungons diseases. Spray before the buds open. Get ahead of the enemy.

Spraying Machinery.-Bordeaux mixture was first applied with a broom (Fig. 2371); now there are not a few steam sprayers in use. Poison distributors were first made in Anserica for the protection of cotton, potato and tobacco. There are five general types of pumps: (1) The hand portable pump, often attached to a pail or other small reservoir, suitable for limited garden areas. (2) The knapsack pump is carried on a man's back and operated by the carrier. The tank is made of copper, holds five gallons and is fitted with a neat pump which may be operated with one hand while the nozzle is directed with the other. Excellent for spraying small vineyards and vegetable gardens. (3) A barrel pump: a strong force pump fitted to a kerosene barrel or larger tank, suitable for spraying orchard areas up to 15 acres in extent; may be mounted on a cart, wagon, or stoneboat, depending on the character of the ground and size of trees. (4) A Gear-sprayer; being a tank provided with a pump and mounted on wheels. The pump is operated by power borrowed from the wheels as they revolve, and transferred by means of chain aud sprockets. Suitable for vineyards and low-growing plants, which may be satisfactorily covered by the spray as the machine moves ajoug. For this reason it is not adapted to orehard work. (5) The power sprayer; power being furnished by steam, gasoline, or compressed air. When the trees are large and the orchard over fifteen acres in extent, a power sprayer will usually pay. Some of these varions types of machinery are shown in Figs. 9372-2379.
The essentials of a good pump are (1) durability: secured by having brass working parts (copper compounds corrode iron) ; (2) strength: obtained by a good-sized cylinder, substantial
valves, wall and piston; (3) easily operated: found in a pump with long handle, large air-chamber and smoothly finished working parts; (4) compactuess: secured by placing the cylinder so that it is inclosed by the tank, presenting top-heaviness and facilitating the movement of the pump in the orchard. A barrel or tank pump sbould he strong enough to feed two leads of hose and throw a good spray from four nozzles. Nearly all spray mixtures require occasional stirrings to prevent settling and insure uniformity. An agitator is a necessary part of the punp's equipment.

Special Derices. - One of these is for the making and applyiug mechanically emulsified definite proportions of water and kerosene. The liquids are placed in two separate vessels, each of which is supplied with a pump. The apparatus has a gange attached which enables the operator to set it for $5,10,15$ or 20 per cent of kerosene, as the case may be. As the kerosene and Water are forced through the pulup and nozzles they are thoroughly emulsified. This type of pump is not yet perfected, but marks a distinct step in advauce and fills an important place in the treatment of scale and other sucking insects. For special devices, consult experiment station bulletins.

Vozzles. - The nozzles of twelve or hifteen years ago were crude affairs when compared with those now in use. They usually discharged the liquid in a solid stream, or a coarse spray formed by passing through a sieve-like diaphragm. These are now obsolete. Several types of nozzles are on the market. They all aim at economy and efficiency. A nozzle producing a fine misty spray (much to be desired) uses a minimum amount of liquid, but the spray cannot be projected effectively more than six or seven feet from the nozzle. A coarse spray can be thrown much farther, but drenches rather than sprays the tree and naturally uses a large quantity of liquid. For small trees and bush fruits the Vermorel (Fig. 2380), or fine spray type, is best, while for old orchards and park work, nozzles of the NeGowan and Bordeaux style (Fig. 2381) are most satisfactory. It is now a common practice to attach two (or even more) nozzles to one discharge (Figs. 2380, 2381).
peach or plum trees unless censiderable lime is added. Fer insects that chew.
Aasenites of Lime and Soda. - These are cheap, the amonat of arsenic is under perfect contrel and it does not burn the foliage. For chewing iusects.

Arsentce of lime is made by beiling 1 pound white arsenic in 2 to 4 quarts water until it is dissolved, then use this arsenic solution to slake 2 pounds goed lime, adding water if neeessary to slake it: wheo slaked, add water enough to make 2 gallens of this stock mixture. Alse prepared by boiling together, for 30 or 40 minutes, 1 pound white arsenic and ${ }^{3}$ pounds lime 30 or 40 minutes, 1 pound white arseuic and 3 pounds lime be measured so that the arsenic may be applied with aceurary. Keep ia a tight vessel and use as desired. Thoroughly stir hefore using. For most insects one quart to 40 gallons will be sufficient. Arseuite of lime is insoluble in water and will not injure the foliage of any orchard fruit at this strength. This insecticide is grewing in popularity. Some green dye stuff may he mixed with it to prevent the ever-present danger of mistak ing it for some other material.
Arsenite of soda: The arseuic ( 1 lb .) may also be boiled with 4 ponuds of sal-soda crystals in 2 gallons water butil disselved, and this solution used in the same manner (with linge). The arsenite of lime is cheaper, and either can be used with Bordeaus mixture the same as Paris green. Wheu used with water, however, it will he safer to put in some freshly slaked lime, More expensive than arrevite of lime, but thought by some erchardists to be more effective.
Other Aasenites.-Green arsenoid and Paragrene are more bulky and fiuer than Paris green, and when of good quality they are just as effectual and require less agitation. A rsenate of lead ean be applied in large quantities witheut iojury to the foliage, heace it is very nseful against beetles and similar insects that are hard te peisen: it also adheres to the foliage a leng time.

## Normal or 1.6 Per Cent Bordeaux Mixture.

Copper sulfate (blue vitriel)
.6 peunds
Quicklime (good stone lime)
4 pounds
Water..................................................... . 50 gallens

For peaches and Japauese plums, an extra amennt of lime should be added, and mere water ( 60 or 70 gallous) sheuld be nsed.

Six peunds of sulfate of copper dissolved in 50 gallons of water, when applied at the proper time, will prevent the growth of fungi. However, if applied in this form, the solution will burn the foliage. Four pounds of quicklime in 6 pounds of copper will neutralize the caustic action. When sulfate of copper

2374. A garden barrel pump.


2376. Vineyard power aprayer.

## FORMULAS.

(The commoner mixtures, exeluding resin washes.)

|  | Paris Green. |
| :---: | :---: |
| Paris green | 1 pound |
| Water | ..100-300 gallens |

If this mixture is to be used upon fruit trees, 1 ponnd of quicklime should be added. Repeated applications will injure foliage of mest trees uuless the lime is used. Paris graen and Bordeaux mixture can be applied tegether with perfect safety. Use at the rate of 4 te 8 onnces of the arsenite te 50 gallons of the mixture. The artion of neither is weakened, and the Paris greeu loses its caustic properties. Fer insects that chew.
Lonnon Purple. - This is used in the same proportion as Paris green, but as it is mere caustic it should be applied with two or three times its weight of lime, or with the Bordeanx mixture. The cemposition of Lenden purple is variable, and unless goed reasons exist for supposing that it centains as much arsenic as Paris green, use the latter peisou. Uusafe ou
and lime are added in this prepertion, the cemponnd is Bordeaux mixture. Potatoes demand fnll strength. Dilnted Berdeanx mixture is effective against certain mildews and fruit diseases.

Weighing of copper and lime at time of mixing is very inconve. nient. Bordeaux mixture is hest when used within a few honrs after being mixed. Therefore a stock mixture of Bordeaux is impracticable. It is, hewever, practicable to have stock preparations of sulfate of copper and of lime ready for mixing when required.

The lime should be "slaked" in a barrel or box with snfficient water to prevent burning, but not enough to smother. Impertant. When slaked must always be eovered with water to exclude the air. In this manner lime can he kept all summer ueimpaired.

One gallen of water will hold in solntion, all sumuer, 3 ponnds of copper sulfate. To accomplish this the sulf:ate should be suspended at the surface of the water in a bag. The water mest leaded with copper will sink te the bottom. and the water least loaded will rise to the surface. If 50 pounds of sulfate are suspeuded in 25 gallous of water on an eveving, each
gallon of water will, when stirred the next morning, hold two pounds of sulfate.

Three gallons of this solution put in the spray barrel equal six pounds of copper. Now fill the spray barrel half full of water before adding any lime. This is important, for if the lime is added to so strong a solution of sulfate of copper, a curdling process will follow. Stir the water in the lime


237\%. Square tower, eiving more working space for the nozzle-men than the conical form.
barrel so as to make a dilnte milk of line, but never allow it to be dense enough to be of a creamy thickness. If in the latter condition, lumps of lime will clog the spray nozzle. Continue to add to the mixtmre this milk of lime so long as drops of ferroryanide of potassimm (yellow prussiate of potash) continue to change from yellow to a brown color. When no change of color is shown, add another pail of pilk of lime to make the necessary amount of lime a sure thing. A small excess of lime does no harm. The barrel can now be filled with water, and the Borderux mixture is ready for use.
The preparation of ferrocyanide of potassium for this test may be explained. As bought at the drug store, it is a yellow crystal and is easily soluble in water. Ten cents ${ }^{\top}$ worth will do for a season's spraying of an average orchard. It should he a full saturation; that is, use only enongh water to dissolve all the crystals. The cork should be notched or a quill inserted so that the contents will come out in drops. A drop will give as reliable a test as a spoonful. The bottle should be marked "Poison." Dip out a little of the Bordeaux mixture in a eupor saucer, and drop the ferrocyanide on it. So long as the drops turn yellow or brown on striking the mixture, the mixture has not received enough lime.

Ammoniacal Copper Carbonate,
Copper carhonate........................................... 5 onnces
Ammonia $\left(26^{\circ}\right.$ Beants
Water................................................ 45 pints
Make a paste of the copper carbonate with a little water. Dilute the ammonia with 7 or 8 volumes of water. Add the paste to the diluted ammonia and stir until dissolved. Add enough water to make 45 gallons. Allow it to settle and use only the clear blue liquid. This mixture loses strength on standing. For fangous diseases.

2379. Power sprayer, using steam.

Copper Sulfate Solution.
Copper sulfate.
. 1 pound 15-25 gallons
Dissolve the copper sulfate in the water, when it is ready for use. This shonld never be applied to foliage but must be used before the buds break. For peaches and nectarines, use 25 gal -

2378. Orchard pump with conical tower rig.
lons of water. For fungous diseases, but now largely supplanted by the Bordeaux mixture. A much weaker solution has been recommended for trees in leaf.

Iron Sulfate and Sulfuric Acid Solution.
Water (hot) ........................................... 100 parts
Iron sulfate, as much as the water will dissolve.
Sulfuric acid (commereial)........................... 1 part
The solution should be prepared before using. Add the aeid to the crystals, and then pour on the water. Sometimes recommended for grape anthracnose, the dormant vines being treated hy means of sponges or brushes, but it should be applied with caution.

Potassium Sulfide Solution.
Potassium sulfide (liver of sulfur)...........1/2-1 onnce

$$
\text { witer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1 \text { gallon. }
$$


This preparation loses its strength upon standing, and should therefore he wade immediately before using. Particularly valuable for surface mildews.

Hellebore
Fresh white hellebore.
.1 ounce
Wister.
3 gallons
Apply when thoroughly mixed. This poison is not so energetic as the arsenites, and may be used a short time before the sprayed parts mature. For insects that chew

## Kerosene Emulsion.

|  |  |
| :---: | :---: |
|  |  |
|  |  |

Dissolve the soap in the water, add the kerosene, and churn with a pump for 5 to 10 minutes. Dilute 4 to 25 times before applying. Use strong emulsion for all scale insects. For such insects as plant lice, mealy bugs, red spider, thrips, weaker preparations will prove effective. Cabbage worms, currant worms and all insects which have soft bodies, ean also be suecessfully treated. It is advisable to make the emulsion shortly before it is used.

Kerosene and water (suggested for San José scale) may be used in all eases where kerosene emulsion is mentioned. Di lute to the strength recommended in each partieular case. It must he applied with a pump having a kerosene attachment.
Tobacco Water.-This infusion may be prepared by placing tohaceo stems in a water-tight vessel, and then covering them with hot water. Allow to stand several hours, dilute the liguor from 3 to 5 times, and apply. For soft-bodied insects.

A special mixture is recommended by Corbett, in Bull. 70, Exp. Sta., W. Va, who reports a trial of Bordeatux mixture, arsenic and kerosene in combination as having proved "gratifying far beyond our nost sanguine expectations." "This combination was rendered possible by using the ketosene in the oil tank of a kerowater pump and placing the Bordeaux and arsenic in of a kerowater pump and placing the Bordeaux and arsenic in insects and fungous diseases.


Literature, - To say that the literature of spraying is voluminous would but faintly describe the situation. Hardly an experiment station in the United States has failed to publish two or three times on this subject. Many of them issue annual "spray calenders." The Divisions of Vegetable Pathology and Entomology, Department of Agriculture. Washington, D. C., have added a great number of bulletins to the general rollection. One of the first American books, "Fungous Diseases," 1886, was written by F. Lamson Scribner, then of the Division of Yeg. Pathology, Washington, Soon after appeared "Insects and Insecticides," and "Pungi and Fungicides," both by Clarence M. Weed. The most notable book which has appeared and the only complete monograph of spraying in existence was published in 1896, the anthor being E. ft. Lodeman, then instructor in horticulture at Comell University. Of the experiment stations aside trom Washington, prominent in reporting field work, New York (Geneva and Cornell), Michigan, Delaware, California, Massachusetts and Vermont should he named, although many others have done well. Spraying, though not an American invention, is now distinctly an American practice by adoption and adaptation.

John Cralg.
SPREKELIA (J. H, von Sprekelsen, of Hamburg, who sent the plants to Linnaus). Amuryllidiceo. Jacobafan Lily. A single species from Mexico, a half-hardy bulbous plant with linear, strap-shaped leaves and a bollow cylindrical scape bearing one large showy flower. Perianth strongly declined, tuhe none; segments nearly equal, the posterior ascending, the inferior concave and enclosing the stamens and ovary: bracts only one, spathe-like: stamens attached at the base of the peri-anth-segments, and somewhat shorter than the segment by which they are enclosed, having a few small scales at the base of the filaments: ovary 3-loculed: style long, slender: seeds compressed ovate or orbicular, black.
formosissima, Herb. (A marýllis formosissime, Linn.). Fls. red. B.M.47.-Var. glauca has somewhat paler and smaller ils, and glaucous Ivs. B.R. 27:16. For culture, see Amaryllis.
F. W. Barclay.

## SPRING BEAUTY. Claytonia.

SPROUTING LEAF. Catalogue name for Bryophyllum.

SPRUCE. See Picea. Norway S. is P. excelsa. Sitka 8. is P. Sitchensis. Tideland S. is P. Sitchensis.

2380. A Y-fixture with Vermorel nozzles.

A leather shield is shown, for protecting the hands from the drip.

SPURGE. Consult Eiuphorbia.
SPURGE, MOUNTAIN. Packysandra procumbens.
SPURGE NETTLE. Jutropki.
SPURRY (Spergula arensis, which see) has long been grown in Ciermany, France, Holland and Belgium, where its value as a soil renovator and as a forage crop

2381. A $Y$-fixture with Bordeaux brand of nozzle.
was early recognized. it is an annmal, and when sown in the spring matures seed in fromiten to twelve weeks from time of sowing. This plant possesses special value as a renovator for sandy soils. It has long been used by the farmers of Holland to hold in place the shifting sanis along the seashore. So well adapted is it to sand that it has been termed "the clover of sandy lands." It is not recommended for the American farmer except where the soil is so poor that other plants fail. In such circumstances it may be used as a cover-crop to plow under. The seed may be sown any time from April to August, but in orchards it had better he sown in July. Sow at the rate of six quarts per acre. The seed heing small, it should be lightly harrowed in upon a well. fitted soil. It is very persistent in the production of seed, and upon fertile soils it will maintain itself for several years unless thorough cultivation is given. Where soils are in fair condition aud other crops will grow, it is doubtful if Spurry has any place. Sometimes written Spurrey.
L. A. Clinton.

SQUASF (Plate XXXVIII) is a name adapted from an American Indian word, and is applied in an indefinite way to various plants of the genus Cucurbita. The application of the name does not conform to the specifle lines of the plants. What are called summer Squashes are mostly varieties of Cucurbitie Pepo. The winter Squashes are either C. marima or C. moschata, chiefly the former. If the name Squash belongs to one species more than to another, this species is probably $C$. maxima. See Cucurbifa, particularly the note on p. 410. The pictures show some of the forms of these species. Plate XXXVIII is the Hubhard Squash, Cucurbita maxima. Fig. 2382 is the Winter or Canada Crookneck, one of the forms of C. moschata. Figs. 2383-88 are forms of the multifarious Cucurbita Pepo. Fig. 2388 shows the Vegetable Marrow, much prized in England.

Squashes and pumpkins are very easy plants to grow, provided they are given a warm and quick soil. They are long-season plants, and therefore in the North they are very likely to be caught by frosts before the full crop has matured, unless the plants are started early and make a rapid and continuous growth early in the season. In hard, rough clay lands the plants do not get a foothold early enough to allow them to mature the crop. On such lands it is impossible, also, to plant the seeds early. As a consequence, nearly all Squashes are grown on soils of a loose and relatively light character. Sandy lands or sandy loams are preferred.

On very rich bottom lands the plants often thrive remarkably well, but there is danger that the plants may run too nuch to vine, particularly true when the soil has too much available uitrogel. In order that the

2382. Winter or Canada Crookneck Squash-Cucurbita moschata.
plants shall start quickly, it is necessary that the soil be in excellent tilth. It is customary, with many large growers, to apply a little commercial fertilizer to the hills in order to give the plants a start. A fertilizer somewhat strong in nitrogen may answer this purpose very well; but care must be taken not to use nitrogen too late in the season, else the plants will contivue to grow over-vigorously rather than to set fruit.

Cultural groups of Squashes are of two general kinds, the bush varieties and the long-running varieties. The bush varieties are usually early. The vines run very little, or not at all. The various summer Squashes belong to this eategory, aud most of them are varieties of Cucurbitu Pepo. The hills of bush varieties are usually planted as close together as $4 \times 4$ feet. On highpriced land they are often planted $3 x+$ feet. The longrunning varitties comprise the fall and winter types; and to this category may also be referred, for cultural purposes, the common field pumpkins. There is much difference between the varieties as to length of vine. On strong soils, some varieties will run 15-20 feet, and sometimes even more. These varieties are planted from $8-12$ feet apart each way. Sometimes they are planted in corn fields, and they are allowed to occupy the ground after tillage for the corn is completed.

For general field conditions, the seeds of Squashes

2383. Summer Crookneck Squash-Cucurbita Pepo form.
are usually planted in hills where the plants are to stand. If the land is mellow and rich, these hills are nothing more than a bit of ground $12-18$ inches across, which has been freshly hoed or spaded and leveled off. On this hill, from six to teu seeds are dropped, and they are covered an inch or less in depth. In order to provide the seeds with moisture, the earth is usually firmed with the boe. Whell the very best results are desired, particularly for the home garden, hills may be prepared by digging out a hushel of soil and filling the place with rich earth and fine nianure. It is expected that not more than three to five of the plants will fiually be left to each hill; but there are many contingencies to he considered. The young plants may be taken off by cutworms or by other insects, or they may be caught by frost.

If it is necessary to start the plants in advauce of the season, the seeds may be planted in pots or boxes in a forcing-house or hothed about three weeks before it is time to set them in the field. If the seeds are started much earlier than this, the plants are likely to get too large and to become stunted. When set in the field, the
roots should fill the pot or box so that the earth is held in a compact ball, and the plaut should be fresh, green and stocky. Plants that become stunted and derelop one or two flowers when they are in the box are unmally of little tuse. Sometimes seeds are planted directly in the field in forcing hills, and when the plants are established and the season is settled the protecting box is removed and the plants stand in their permanent positions.

A good Squash vine should produce two or three firstclass fruits; if, howerer, one flower sets very early in the seasou, the vine may devote most of its energies to the perfection of that single fruit and not set many others, or may set them too late in the season to allow them to mature. If it is desired, therefore, that the plants shall produce more than one fruit, it is advisable to pick off the first fruit, providing it sets long in advance of the appearance of other pistillate flowers. These remarks apply particu'irly to winter squashes in northern regions. With small varieties and under best conditions, as many as a half-dozen fruits may be got from a single vine, and in some cases this number may be exceeded. Squash vines tend to root at the joints; but under general condit: ans this should be prevented, be-

2384. Summer Bergen Squash, a fortn ol Cucurbita Pepo.
cause it tends to prolong the growing season of the vine. It is usually well, theretore, to lift the joints occasionally when the hoeiug is done, although the vine should not be moved or disturbed. This precaution applies particularly in the short-season climates of the North, where every effort must be made to enable the plant to set its fruit early in the season and to complete its growth before fall.
There are several enemies and diseases of the Squasb. Perhaps the most serious is the striped eucumber beetle, which destroys the tender young plants. This inseet is destroyed with the arsenites; but since it works on the under sides of the leaves as well as on the upper, it is difficult to make the application in such way as to afford a complete protection. The insects also are likely to appear in great numbers and to ruin the plants even whilst they are getting their fill of arsenic. If the beetles are abundant in the neighborhood, it is best to start a few plants very early and to plant them about

2385. The Pineapple Summer Squash, one of the Scallop or Pattypan type-Cucurbita Pepo.
the field in order to attract the early crop of bugs, thereby making it possible to destroy them. From these early plants the bugs may be hand-picked, or they may
be killed with very heavy applications of arsenites,applications so strong that they may even injure the plants. Sometimes the hills of Squashes are covered with wire gauze or mosquito netting that is held above the earth by means of hoops stuck into the ground. This affords a good protection from insects that arrive from the ontside, providing the edges are thoronghly covered with earth so that the insects cannot crawl under; but if the inseets should come from the ground beneath the covers they will destroy the plants, not being able to escape. The Squash bug or stink bug may be handled in the same way as the stripel eucumber beetle. This insect, however, remains throughout the seasou and, in many eases, it is necessury to resort to hand-picking. The insects delight to crawl under chips or pieces of board at night, and tbis fact may be utilized in eatching them. The mildews of Squashes may be kept in eheck with more or less certainty by the use of Bordeanx mixture or ammoniacal carbonate of eopler.
The varieties of pumpkins and Squashes are numerous, and it is diffienlt to keep them pure if various kinds are grown together. Howerer, the true Squashes (Cucurbita maxima) do not hybridize with the true pumpkin species (Cucurbita Pepo). There need be no fear, therefore, of mixing between the Crookneck or Scallop Squasbes and the varieties of Hubbard or Mar-

2386. Connecticut or Common Field PumpkinCucurbita Pepo.
row types. The summer or bush Squashes are of three general classes: the Crooknecks, the Scallop or Pattypan varieties, and the Pineapple or oblong-conical varieties. All these are forms of Cepo. The fall and winter varieties may be thrown into several groups: the true tield pumpkin, of which the Connectient Field is the leading representative, being the one that is commonly used for stock and for pies; the Canada Crookneek or Cushaw types, which are varieties of C.mos. chate; the Marrow and Marblehead types, which are the leading winter Squashes and are varieties of the $C$. maxima; the Turban squasbes, which have a "Squash within a Squasb" and are also varieties of $C$. maxima. The mammoth pumpkins or Squashes which are sometimes grown for exhibition and which may weigh two or three bundred pounds, are forms of C. maxima.
Thoroughly sound and mature Squashes ean be kept until the bolidays, and even longer, if stored in a room that is heated to $20^{\circ}$ above freezing. If the Squashes are not carefully handled the inside of the fruit is likely to crack. Squashes that have been shipped by rail seldom keep well. The philosophy of keeping a winter Squash is to prevent the access of germs (aroid all bruises and cracks and allow the end of the stem to dry up), and then to keep the air dry and fairly warm. The fruits are usually stored on shelves in a heated shed or outhonse. The following advice is given for this oceasion by W. W. Rawson: "Cut the Squashes just before they are thoronghly ripe. Be careful not to start the stern in the Squash. Lay them on the ground one deep and let
them dry in the sun two or three days before lringing to the building. Handle very carefully when patting in, and be sure that the wagon in which they are earried has springs. Put them two deep on shelves in a building. This should be done on a cool, dry day. If the weather continues cool and dry, keep them well aired by day; but if damp weather eomes build a small hire in the stove in order to dry out the green stems. Keep the temperature about $50^{\circ}$, and air well in dry weather. The Squashes may need picking over about Christinas if put in the building about Oetober 1; Landle very carefully when picking over. Fifty tons can be kept in a single building with a small fire. Do not let them freeze, but if temperature goes down

2387. The Negro Squash.

One of the warty forms of Cucurbita Pepo. to $40^{\circ}$ at times it will do no harm; nor sbould it he allowed to go as high as $70^{\circ}$. The Hubbard Squash keeps best and longest and does not shrink in weight as mueh as other kinds, but any of them will shrink 20 per cent if kept until January 1."
L. H. B.

SQUASH, GUINEA, or EGGPLANT. See Solanum Melongena and Eggplant.

## SQUAW BERRY. Mitchella repens.

SQUILL. For the garden Squill, see Scilla. For the medicinal Sqnill, see Urginea.

## SQUIRREL CORN. Dicentra Canadensis.

## SQUIRTING CUCUMBER. E'callium Elaterium.

STACHYS (from an old Greek name applied by Dioscorides to anotber group of plants, coming from the word for spike). Labiàtce. Woundwort. A genns of perhans 150 species distributed mainly in temperate countries: perennial or annual herbs, rarely shrubby, with opposite simple, entire or dentate leaves and mostly small flowers, ranging from purple, red, pale yellow to white, sessile or short-pediceled, in axillary whorls or terminal dense spikes: calyx 5 -dentate, teeth equal or the posterior larger; corolla-tube cylindrical, 2 -lipped, the posterior usually villous, concave or fornicate, rarely somewhat flat; stamens 4, didynamons, the anterior longer, ascending under the upper lip and very little exserted, often deflexed after anthesis. Very few of the species are cultivated, although there are several with showy spikes. They are usually found in moist or even wet places when growing wild. A tuber-bearing species (S. Sieboldi) has lately come into notice as a kitchen-garden plant.

2388. Vegetable Marrow-Cucurbita Pepo.

## A. Plants grown for the show'y spikes of fls. or for foliage.

## B. Corolla-tube twice or more exceeding the calyx.

Betonica, Benth. (Betónica officinalis, Linn.). Betony. A hardy perennial herb $1-3 \mathrm{ft}$. high: lower leaves long petioled, ovate-oblong, crenate, obtuse, cor-
date at the base, 3-6 in. long; upper leares distant, sessile, oblong-lanceolate, acute: fls purple, in a dense, terminal spike. July. Eu., A sia Minor, - Rarely found as an escape in this country, and once cult. for use in domestic medicine. Useful for ornament, and now advertised for that purpose.
longifòlia, Benth. (Betonica orientàlis, Liun.). A harily perennial herb about I ft. high, densely villous. lower lvs, petioled, oblong-lanceolate, obtuse, erenate, deeply cordate at the base, 4-6 in. long; the upper lvs. similar in shape but sessile, those of the inforescence bract-like: fls. redelish purple to pink, in a cylindrical, somewhat interrupted sjrike about $1 / 2 \mathrm{ft}$. long. July. Caucasus.
without protection, so that a well-established plant takes care of itself and spreads. For history, chemical analyses, etc., see Cornell Bull. 37.

Floridàna, Shuttlew. Sleuder, erect, 1-2 ft., branching, glabrous: lvs. cordate-oblong-lanceolate, blunt toothed, stalked: fls. small, light red, in an open inter. rupted spike: tubers cylindrical, uniformly nodose, 4-6 in. long. Fla. - Has beeu tested abrobal as a food plant, and also at the Cornell Exp, Sta. (see Bull. 61), but practically unknown horticulturally. The tubers are fully as good, for eatiug, as those of S. Sieboldi.
L. H. B.

STACHYTARPHETA (Greek, dense spike). Verbendcere. About 40 species of herbs or shrubs, mainly from tropical America, with opposite or alternate, dentate, often ronsh leaves and white, purple, blue or rell flowers solitary in the axils of bracts, sessile or balf suak in the rachis of the long and dense or short and lax spikes.
mutabilis, Yahl. A low shrub, scabrouspuleseent: lvis, ovate, dentate, scabrous above, whitish pubescent beneath: spike long, erect: brasts lanceolate, subulate: calyx 4 -dentate, hispid, 4-6 lines long; corolla crimson, fading to rose, $1 / 2-3 / 4$ in, across. West Indies, Mexico to Guiaua. Gffered in S. Calif.

## F. W. Barclaf.

STACHYURUS (Greek, spike and tail; in allusion to the Iorm of the inflorescencel. Ternstromideet. Two species of glabrons shrubs or small trees, one from the 1 inma layas and the other from Japan, with mem-
grandifldra, Bunth, (Betónica rosea, Hort.). A hardy perennial abont 1 ft . high: lower Iss. broadly ovate, obtuse crenate, long-petioled. base broadly heart-shaped; the upper gradually smaller, nearly similar and sessile, the uppermost hract-like: fis. violet, large and showy, the curring tube about 1 in . long and three or four times surpassing the calyx, in 2-3 distinet whorls of 10 20 tls . each. Asia Minor, ete. B.M. 700.
coccinea, Jacq. One to 2 ft ., sleurler, soft-pubescent: lvs. ovate-lameolate, cordate at hase or somewhat deltoid, obtuse, crenate': fls. searlet-red, the narrow tube much exceeding the caly $x$, pediceled, in an interrupted spike, blooming in succession. Western T'exas to Ariz. B.M. (i66. -Showy.

## AB. Corolla-tube little ercecding the calys. <br> c. Merbage green.

áspera, Michx. Erect, usually strict, 3-4 ft, high, the stem retrorsely hairy on the augles: lis. oblong-ovate to ohlong-laneeolate, mostly acuminate, serrate, petiolate: corollit small, glabrous, pale red or purple, iv an interrupted spike. Wet places, Ontario and Minnesota to the tinlf.-Has been offered by dealers in native plants.

## cc. Herbage white-u'oolly.

lanàta, Jacq. Woolly Woundwort. A hardy perennial $1-13 / 2 \mathrm{ft}$. high, white-woolly throughout: Ivs ob-long-elliptical, the upper smaller, the uppermost much shorter and whorled: tls, small, purple, in dense 30- or more fid. whorls in interrupted spikes. Cancasus to Persia. - Often grown as a bedding plant. Valnable for its very white herbage.

## AA. Plants grown for edible subterranean tubers.

Sièboldi, Miq. (S. affinis, Bunge, not Fresenius. $S$. tuberifert, Naut.). (horogi. ('hinese or Japanese Artichoke. Knotroot. Crosnes du Japan. Fig. 2389. Erect, hairy mint-like plant, growing 10-18 in. tall: Irs. ovate to deltoid-ovate to orate-lanceolate, cordate at base, obtuse-dentate, stalked: fls. small, whitish or light red, in a small spike: tubers (Fig. 2389) 2-3 in. long, slender, nodose, white, produced in great numbers just under the surface of the ground. China, Japan. G.C. 111, 3:13.-Sent to France io 1882 from Pekin hy Dr. Bretschneider, and about ten years ago introduced into this country. It is cultivated for the crisp tubers, which may be eaten either raw or cooked. These tubers soon shrivel and lose their value if exposed to the air. The tubers withstand the winter in central New York
branous, serrate leaves and small flowers in axillary racemes or spikes: ths, 4 -meroms ; sepals strongly int bricated; stamens 8 , free; style simple: herry 4 -loculed.
pràecox, Sieb. \& Zuce. Rambling shrub, 10 ft . high, with Hexible branches: lvs, deciduons, ovate to ovatelanceolate, $\ddagger-6 \mathrm{jn}$. loug, thin: petiol about l in. long: spikes $2-3 \mathrm{in}$. loug, many-hll., stout: tls. $1 / 3 \mathrm{in}$. across, globular-bell-shaped, sessile or nearly so: fr. globose or oroid, $1 / a^{-1 / 2}$ in. thick: seeds pale brown, Japan. B.M. 6631. (木.C. 1II. 21:285.- l'rocurable from importers of Japanese plants.

STACKHOÜSIA (after John Stackhouse, an English botanist). Stackhousiàcew. About 10 species from Australia and sparingly from other islands of the S. Pacitic ocean. Mostly peremnial herbs with slender, erect stems and narrow, entire, often Heshy leaves and terminal spikes of tlowers. The genus is the only one of the order: tis. regular, hermaphrodite; calyx small, 5 -lobed; petals 5 , perigynous, clawed, usually free at base but united above in a tube with spreading lobes; disk thin, lining the calyx-tube; stamens 5 , inserted on the margin of the disk: uvary free, $2-5$-lobed, $2-5$-loculed: fr. of 2-5 indeliscent cocei. Consult Flora Australiensis 1:405.
monogyna, Labill. (S. linarizfòlia, A. Cunn.). A halfhardy perenuial herb, usually simple, about $1 / 2 \mathrm{ft}$. high, with linear or lanceolate lvs. about 1 in . long: spikes at first dense, then lengthening to 4-6 in.: buds pinkish when young: His. white. B.R. 22:1917.-The plant in the Californian trade is apparently not the above species, for the eatalogue says it is a tall, robust shrub with fl.heads 1-2 in. across, surronnded by imbricated bracts and bright yellow Hs. with a purple-streaked keel.

## F. W. Barclay

STADMANNIA (named hy Lamarek in 1793 after a German botanist and traveler). Sapindacea. The only species of this gemus that is well known is a tropical tree from the Bourbon Islands, there known as Bois de fer or Ironwood. This is a large tree with hard, heary reddish wood, once frequent in the primeval forests of Mauritius but now scarce. It is not known to be in cultivation in America. The proper name of this tree is Stadmannia oppositifolia, Lam., a synonym of which is $\mathbb{S}$. Sideroxyion.DC. Nine other names appear in Index Kewensis, apparently all Brazilian species, but one of them is a bare name and the others were first described in the early sixties in Linden's catalogue. They are
therefore very uncertain names, and the following diagnosis of the genus (taken from Baker's "Flora of Mauritius and the Seychelles," 1870) is probably sufficiently inclusive. Fls. regular, polygamous; calyx a deep cup, with 5 obsconre, deltoid teeth; petals none; disk thick, elevated, lobed; stamens 8 , regular, exserted: style short; stigma capitate: ovary deeply 3-lobed, 3-loculed; ovules solitary in each cell; fr. usually 1-celled by abortion, large, dry, round, indehiscent.

The generic name is sometimes written Stadtmannia, a spelling which is said to be an error dating lack to Walpers' Anmales (1851-52). N'. "mubilis is an American trade name which seems to be practically unknown to science. H. A. Siebrecht says it is "an imposing decorative plant for stove culture." He adds that it requires the treatment given Fatsia Jupowica and Gardenias. Gire heavy loam. Propagated by cuttings under glass, or ont of doors in summer.
S. oppositifolia, Lam. ( $\mathcal{L}$. Sideróxylon, DC.). Bois de Fer. Lvs, alternate, petioled, abruptly pinnate: lfts, $8-12$, opposite, oblong, short-stalked, obtuse, coriaceous, eutire, oblique at base: panicles dense, cylindrical, $3-4$ in. long: fr. hard, globular, nearly I in. thick.
W. M.

## STAGHORN FERN. Platycerium.

STAGHORN SUMACH. See Rhus.

## STANDING CYPRESS. Gilia coronopifolia.

STANGERIA ( Fm . Stanger, surveyor-general of Natal; died 1854). (yculdeew. Stangèria paradoxa, T. Moore, is unique among the eycads by reason of the venation of its leatlets. In all the other members of the family the reins of the leaf-segments are parallel and horizontal; in this one plant they are all free and run directly from the widrib to the margis. This pinnate venation is so extraordinary that the plant looks more like a fern than a cycad, and in fact it was so described before the fruits were known. Stangeria is a South African plant with an odd turnip-shaped stem (properly caudex or rhizome), at the top of which are $3-4$ handsome leares each 2 ft . long and 1 ft . broad, with about 12 pairs of leaflets which are fern-like aud unusually broad for the family. This plant was introduced to the American trade by Reasoner Bros., of Oneco, Fla., in 1890, but it is little known in cultivation in this country.

All the cycads hare a higls reputation among connoisseurs as decorative foliage plants for warm conserratories. The most popular is Cyctes revoluta, which see for cultural suggestious. The flowers and fruits in this family are very singular and interesting. The male cones of Stangeria are 6 inclies long and an inch or so in width. The female cones are much smaller, $2-3 \mathrm{in}$. long. The structure of the cones and fruits shows that Stangeria is closely related to Encephalartos. The species above mentioned is probably the only one, but it seems to have several well-marked varieties. For a fuller account see B.M. 5121.
W. M.

STANHOPEA (named for the Earl of Stanhope, president of the Medico-Botanical Socjety, London). Orchidicece. A genus of abont 20 species inhabiting tropical America from Mexico to Brazil, These plants are easily grown and very interesting, but the fugacious character of their Howers has been unfarorable to their extensive cultivation. The flowers are produced on thick scapes, which bore their way through the material in which they are planted and emerge from the bottom of the basket. The flowers expand with a perceptible sound early in the morning. They are large, fragrant, and curiously formed. The sepals and petals are usually retlexed; they are subequal or the petals are narrower. The labellum is remarkably transformed. The basal part or hypochil is boat-shaped or saccate, often with two horms on the upper margin. This passes gradually into the mesochil, which consists of a fleshy central part and two lateral horns. The terminal lobe or epichil is firmly or morably joined to the mesochil. It is usually fleshy and keeled but not saccate. The base of the labellum is continuous with the long-winged column. Pseudobulbs clustered on the short rhizome,
sheathed with scales and each bearing a single large plaited leaf contracted to a petiole at the base.

Heinrich Hasselibring.
Stauhopeas enjoy a shady, moist location. A temperature of $60-65^{\circ} \mathrm{F}$. at night and $70-75^{\circ}$ during the day should be maintained in winter, with a gradual adrance of $10^{\circ}$ toward midsummer. Tbey should be grown suspended from the roof in orchid cabins or terra cotta baskets with large openings at the bottom, and if drainage is used it should be placed in such a manner that it will not interfere with the exit of the pendulous flower scapes. Equal parts chopped sphagnum and peat fiber forms a good compost. By severing the rhizome here and there between the old pseudobulbs, new growths will be sent up and thus the stock may be increased.
R. M. Grey.

## INDEX.

atrata, 9.
atrata, 9 . bicolor, 10 . Bucephalus, 4. Devoniensis, 7. eburnea, 1. ecornuta, 12.
grandiflora, I, 4. insignis, 6. lutescens, 9 intescens, 9.
maculosa, 7 maculosa, 7.
Martiana, 10. oenlata, 3 . platyceras, 5.
radiosa, 11
saocata, 11.
Shuttleworthii, 8.
superba, 9 .
tigrina, 9.
Wardii, 2.
A. Labellum with an excavated or succate base and a plane termintll lobe.
B. Mesochil and plewridia wanting..
BB. Mesochiland plewridia present.
c. Hypockil bout-shoped, short and sessile
2. Wardii
ce. Hypochil boat-slaped, lony und stalked
3. oculata

Bucephalus
. platyceras
ccc. Hypochil saccate or globose. D. Eipichil entire or obsoletely 3-toothed ut the apex........................
6. insignis
7. Devoniensis
8. Shuttleworthii

DD. Epichileridently 3-toothed
at the apex.............
. tigrina
Martiana
11. saccata

AA. Labellum reduced to a succute pouch
12. ecornuta

1. ehúrnea, Lindl. (S. grandiflòra, Lindl.). Psendobulbs conical, $11 / 2$ is. long: lys. leathery, $8-12$ in. long: scapes pendulons, with small bracts, 2-3-fld.: fls. 5 in. Reross, ivory white; sepals broad; petals narrow; labellum 3 in. long, solid, fleshy, excarated at the base and bearing 2 hooked horns over the mouth, spotted above with reddish purple; column pale green, with broad wings toward the apex. Guiana. B.M. 3359. B.R. 18:1529. 1.H. 14:531 (var. spectabilis). L.B.C. 15: 1414 (as Ceratochilus grandiflorus). B. 4:176.
2. Wárdii, Lodd. Pseudobulbs 2 in. long: lvs, large, broad and leathery : flower-stem 9 in . long, bearing $3-9$ fls., which are bright yellow to golden orange, spotted witb crimson; lateral sepal round-oblong, concave, acute; petals lanceolate, revolute, the eavity in the base of the labellum deep velvety purple. Aug. Mex. and s. B.11. 5289. - Var. aürea, Hort. (S. aùver, Lodd.). Fls, golden yellow, with 2 dark spots on the hypocbil. Fragrant.
3. oculàta, Lindl. Lrs. orate, with a hlade 1 ft . long: scape 1 ft . long, clothed with scarious pale brown sheaths, 3-6-fl.: fls. 5 in, across, Fery fragrant, pale yellow, thickly spotted with purple; sepals 3 in . long, reflexed ; petals one-half as large; hypochil narrow, white, spotted with crimson and having 2 large dark brown spots near the base. Mexico. B.M. 5300 . B.R. 21:1800. L.B.C. 18:1764 (as Ceratochilus oculatus). S.H. 2, p. 435 . G.U. 111. 19:264. Gn. 56:1450.-Distinguished from S. Bucppliahus and S. Wardii by the paler color and long, narrow hypochil. There are several varieties, differing in color and markings.
4. Bucéphalus, Lindl. (S. grandiflora, Reichb. f.). Psendobullss crowded, rugose: Jvs. petioled, 9 in . long, pointed: the pendulous raceme bearing $4-6$ large, tawny orange tls, marked with large crimson spots: sepals and petals reflexed, the former broad; lower part of the labellam earved, boat-shaped, bearing 2 curved horns and a broal tleshy middle lobe; column green and white, spotted with purple. Aug. Mexico, Peru. B.M. 5078. B.R. $31: 24 .-$ Fls, very tragrant. Distiuguished hy its very short ovaries.
5. platycèras, Reichb.f. Pseudobulbs and lvs. as in S. Bucephutus bnt stouter: scape 2-fld., with ovate acute bracts one-half as long as the ovary: fls, $\overline{8}$ in. across, pale yellow, with numerous ring-shaped spots and blotehes of purple; sepals triangnlar oblong; yetals broadly linear, acute; hypochil boat-shaped, $21 / 2 \mathrm{in}$. long; horns 1 in . long, hroad, pointing forward, parallel with the tongne-shaped middle lobe; the hypochil is deep purplish crimson inside, paler and spotted outside. the upper part of the labellum colored like the sepals. Colombia. Gn. 33:652.
6. insignis, Frost. Figs. 2390, 2391. Pseudobulbs clustered: lvs. broadly lanceolate: scape 6 in. long, covered with dark brown scales, 2-4-fld.: tis. 5 in. across, dull yellow, spotted with purple; sepals broad, concave; petals narrow, wavy; hypochil globose, almost wholly purple inside, heavily spotted ontside, horns I in. long, falcate, middle lohe cordate, keeled. JnlyOct. Brazil. B.M. 2948, 2949. B.R. 29:1837. L.B.C. 20:1985. Gng. 2:117 (from which Fig. 2090 is adapted). Distinguished by the broad wings of the column.
7. Devoniénsis, Lindl. (s. maculdsa, Knowles \& W.). Lvs, about 9 in . long: scape pentulous, 2-3.fld.: fis, 5 in, across, pale brownish, with hroad reddish brown blotehes; sepals oblong to ovate-oblong, ohtuse; petals narrow; hypochil rounded, saceate, purple, horns incurved, middle lobe ovate, channeled, obscurely 3 toothed. Peru. F.s. $10: 974$. F.C. 3:121.
8. Shúttleworthii, Reichb. f. Pseudobulbs large, conical, suleate: lvs broadly oblong, acute: raceme pendulous, loose: sepals. petals and base of the labellum apricot color with dark purplish blotehes, front part of the labellum yellowish white; hypochil semi-glohose; horns flattened, suberect, terminal lobe triangular: column whitish, green along the midale and spotted with purple on the inside. Colombia.
9. tigrina, Batem. Lrs, and pseudobulbs as in the genus: scape short, pendulous, clothed with large, thin brown scales: fls. 6 in. across, waxy and very fragrant; sepals broally ovate, concave; petals oblong lanceolate, both dingy yellow mottled towards the base with large blotches of dull purple; hypochil broad, cup-shaped; horns 1 in. long, fleshy, bent forward at right angles; middle lohe rhomboid, with 3 fleshy teeth at the apex; column large, spatulate. Mexico. B.M. 4197. B.R. 25:1. G.M. $32: 398 ; 38: 149$. F. 1845:59. G.C.11L.4:481. -One of

10. Stanhopea insignis.
the most striking forms among orchids. Var. lutéscens, Hort. Brilliant jellow to orange marked with chocolate. Guatemala. Var. supérba, Hort. Van Houtte. Fls. yellow, with the sepals and petals heavily blotched with reddish brown. F.S. 7:713. Var. atrata, Hort., is adv.
11. Martiana, Batem. Lvs. lanceolate: sepals broadly ovate, crealuy white with few purple spots on the lower half; petals narrower, blotehed with purplish crimson, hypochil saceate, white; lateral horns broad, pointed, middle lobe oblong, ohscurely 3 -toothed; column subclavate, winged. Mexico. F.S. 20:2112. Gn. 45, p. 470. - Yar. bicolor, Lindl. Ground color of the fls. white. B.R. 29:44.

12. Stanhopea insignis ( $\times 1 / 8$ ).
13. saccata, Batem. Fls. smaller than those of the other species, greenish yellow, changing to deeper yellow at the bases of the segments, regularly speckled with brown; lateral sepals orate-oblong, the upper one oblong-lanceolate; petals narrower, oblong, all retlexed; hypochil deeply saccate; horns flat, a little twisted, epichil quadrate. Guatemala. 1.H. 8:270 (as S. radiosa).
14. ecornûta, Lem. Pseudobulbs and lvs.large: scape short, elothed with green bracts, 2 - Hll.: sepals erect, 2 in. long, ovate, concave, white, petals smaller; labellum reduced to a fleshy sac-like hypochil, $1 \frac{1}{2} \mathrm{in}$. long, yellow tleepening to orange at the base; colnma as long as the labellum and of the same color. Cent. Amer. B.M. 4885. F.S. 2:181. G.C. $1850: 295$.

S, A mesianna, Hort, Hugh Low, helongs to the bornless class of which $S$. ecornuta is a type and is perhaps a variety of S . Lowii. It has large, waxy, clear white, fragrant tis, over 4 in. across, and a very thick, theshy, saceate labellum. G.M. 36:353. Habitat?

## Meinrich Hasselbring.

STANLEYA (Edward Stanley, Earl of Derby, 17791849, ornithologist, once president Linnean Society). Crncifere. Stanleya pimatifida is a hardy perennial herb about 3 ft . high with the general appearance of a Cleome and bright yellow flowers an inch aeross borne in terminal spikes a foot or more long. The genus contains 5 species of stout herbs native to the western U.S. It belongs to the Sisymbium tribe of the mustard family, which tribe is characterized by long, narrow pods, seeds in a single series and incumbent cotyledons. Stanleya is distingnished from neighboring genera hy the long, elub-shaped buds, eream-colored or yellow fls., and long-stalked ovaries and pods. Other generic characters: sepals linear; petals narrow, long-clawed; stamens 6, nearly equal: seeds numerous, pendulous.
pinnatífids, Nutt. (S. pinndta, Britton). Stems Hexuous: tvs, very variable, commonly pinuatifid; segments lance-ohlong or ohlanceolate-elliptic, rarely linear, almost entire; terminal segment larger: fls. deep golden yellow, according to D. M. Andrews. May-July. W. Kan. and Neh, to Tex, and S. Calif., in dry clay or alkaline soils. B.B. 2:109.-Procurable from collectors of Colorado wild flowers.
W. M.

STAPELIA (J. B. Van Stapel, Dutch physician, died in the early part of the seventeenth century, who wrote on the plants of Theophrastus). Asclepiaddcec. Carkion Flower. Oid fleshy eactus-like plants from South Africa. Schumann, in Engler and Prantl's "Naturpflanzenfamilien," considers that the genus contains $70-80$ species. Decaisne, in DeCandolle's Pro-
dromus, 8 (1844), describes 89 spectes, and makes references to several more. The stapelias are usually grown with greenhouse succulents, both for the great oddity of their forms and for the singular and often large, showy flowers. The plants are leafless. The strongly angled usually 4 -sided green branches or stems are generally more or less covered with tubercles and excrescences. The flowers commonly arise from the angles and notches of the stems, apparently in no regularity, and they are usually grotesquely barred and mottled with dark or dull colors. They generally emit a strong and carrion-like odor. The calyx and corolla are 5 -parted; corolla-segments spreading and usually narrow, usually tleshy, mostly purple or marbled, in some species pale; crown comprising 2 series of scales or bracts, of which the inner are narrower, each series in 5's but the seales sometimes lobed or bifid: fr. of 2 follicles, containing comose seeds. Some of the species have flowers several inches across, although the plants themselves are relatively small; in fact, the flowers of S. gigantea are a foot across.

The Stapelias are easy of cultivation. Nost of the species demand the treatment giveu to Cape Euphorbias and to cacti, - a light, airy, rather dry position during the growing and blooming seasons and a soil made porous with rubble. They are mostly summer and fall bloomers. They should remain dormant in winter. Propagated easily by cuttings. They do best, however, when not grown so dry as cacti are grown.
The Stapelias are known in cultivation mostly in botanic gardens and in the collections of amateurs. Only 5 names now occur in the American trade, and one of these belongs properly in the genus Echidnopsis. Several other species are likely to be found in fanciers' collections.
A. Coronu formed only of the cokering anthers. Echidnopsis.
cylindrica, Hort. This is properly Echidnópsis cereiformis, Hook. f., omitted from Vol. II, but known in the trade as a Stapelia: stems cylindrical, tufted, 1-2 ft. long, becoming recurved or pendulous at the ends, $3 / 4 \mathrm{in}$. or less thick, nearly or quite simple, 8 -grooved and marked by shallow transverse depressions: fls. arising from furrows in the stem, small (about $1 / 4 \mathrm{in}$. aeross), yellow, sessile. Probably South African, but babitat unknown. B.N. 5930 .

## AA. Corona with scales.

B. Fls. pale yellow, about 1 ft . across.
gigantèa, N.E. Br. The largest and finest species yet known, and one of the largest and oddest of flowers: branches many, usually less than 1 ft . long, ohtusely 4 angled: as described by W. Watson, "the flowers are a foot in diameter, leathery-like in texture, the surface wrinkled and the color pale yellow, with red-brown transverse lines and covered with very fine silky purplish hairs; each flower lasts two or three days, and on first opeaing emits a disagreeable odor." Zululand. B. M. 7068. G.C. II. 7:693; III, 4:729. G.F. 8:515. - "The requirements of S. gigantea," Watson writes, "are somewhat exceptional. It thrives only when grown in a hot, moist stove from April till September, when the growth matures and the flower-buds show. It should then be hung up or placed upon a shelf near the roof-glass in a sunny dry position in the stove."
bв. Fls. yellow, 3 in. or less across.
variegàta, Linn. (S. Currtisii, Schult.). About 1 ft . tall, with 4 -angled sharply toothed stems: fls. solitary, sulfur-yellow, the lobes ovate-acute and transversely spotted with blood-red. B.M. 26. R.H. 1857, p. 43.-An old garden plant, still seen in collections, often under the name $S$. Curtisii.

## Bb. Fls. purple, 6 in. or less aeross.

grandiflòra, Mass. Fig. 2392. About 1 ft . tall, graypubescent, the branches 4 -wing-angled and toothed: fls. 4 or 5 in . across, dark purple with a lighter shade on the segments, striped or marked with white, bairy. R.H. 1858, p. 154.-An old garden plant.
glabrifolia, N. E. Br. (S. grandifidra. var. minor, Hort.). Fls. somewhat small and not hairy, the seg.
ments becoming strongly reflexed, dull purple-red with yellowish white lines. G.C. II. 6:809.
S. Asterias, Mass. Starfish Flower. Dwarf: branches 4. angled, mostly curved, sharp-toothed: 11.4 or 5 in . across, with spreading star-like ciliate segments, violet-purple with transverse yellowish bars. B.M. 536. L.B.C.5: 453 . Offered by Blane, 1893. -S. Bufònes, $S$ Sims $=$ S. normalis. $-S$. normölis, Jacq. About 6-8 in.: hranches 4 -angled, with large, spreading teeth, glabrous: fl. 2-3 in, scross, with ovate-acute segments, yellow with trausverse marking of red-purple. B.M. 1676. Gn. 52, p. 186. One of the commonest of the old kinds, but the name does not appear in the American trade.-S. Plantii, Hort. Stems stout and erect, strongly 4 -angled, sinuate-toothed and with intlexed points: fl. about 5 in . across, hairy, brown barred with yellow, the margius of the segments brown-purple. B. H. 5692. F.S. 19:2012.

In 1893, Blane catalogued the following names, in addition to some of those above: S. anguinea, Jacq. (properly S. picta,
Donu): "Fls. glabrous; corolla yellow, marked with numerous rufous spots; the orb or circle is marked with largespots of two forms, dark brown. yellow."-S. deflecta (S. detlexa, Jacq.1): "Only about 2 in . across, the color greenish or pale red, deeply wrinkled."-s. planifiora, Jacq.: "Flower flat: eorolla spreading, sulfur-yellow, lined and spotted with dark purple."-S. revotuta, Mass:: "Distinet flowers, red, with whitish blotches, smooth, very fleshy, and with fringed margins." -N. rùfo, Mass.: "The flowers are of an obseure violet color, variegated with deep purple and pale red transverse stripes, the margins edged with dark violet hairs." $-S$. Tsomoensis, N. the margins edged with dark violet hairs, -S. Tsomoensis. 3 in, in diameter, the face entirely dull, smoky purple, darker at the tips of the lobes."
L. H. B.


STAPHYLEA (Greek, staphyle, cluster; referring to the inflorescence). Celastracea. Bladder Nut. Ormamental deciduous shrubs, with opposite, stipulate oddpinnate or 3 -foliolate leares and white flowers in terminal, usually nodding panicles followed by capsular bladder-like fruits. The species are all inhabitants of temperate regions, and S. trifolia, S. Bumalda and S. pinnata are hardy north, while S. Colehica is bardy at least as far north as Mass.; S. Bolanderi and S. Emodi are more tender and seem not to be in cultivation in this country. They are all desirable shrubs with handsome bright or light green foliage and pretty white flowers in spring. They are well adapted for shrubberies, but all except $S$. Bumalda are liable to become bare and unsightly at the base and are therefore not to be recommended for single specimens. S. Colchica and its hybrid $S$. elegans are perhaps the most beautiful species while in bloom. The former blooms at an early age and is sometimes forced. Staphyleas grow well in almost any kind of soil and position, but do best in a somewhat moist rich soil and partly shaded situation. Prop. by seeds, layers and suckers. Greenwood cuttings from forced plants root readily.

Eight species in the temperate regions of the northern hemisphere: shrubs, with smooth striped bark: lvs. and lfts. stipulate; fls, perfect, 5-merous in terminal panicles; sepals and petals 5 , of about the same length, upright; stamens 5; pistils 2-3, usually connate below: fr. a $2-3$-lobed, inflated, nembranous capsule,

## sTATICE

with 1 or few subglobose rather large, bony seeds in each cell.
A. Lis. S-foliolute.

## B. MFickle leaflet short-stalked: panicle sessile.

Bumálda, DC. Sbrub, 6 ft . high, with upright and spreading slender branches: lits. broadly oval to ovate, shortly acuminate, crenately serrate, with awned teeth, light green, almust glabrous, $11 / 2-21 / 2$ in. long: Hs. about $1 / 3$ in. long, in loose, erect panicles $2-3$ in. long; sepals yellowish white, little sborter than the white petals; capsule usnally 2-lobed, somewhat compressed, 3/4-1 in. long. June. Japan. S.Z. 1:95.

2393. Staphylea trifolia ( $\times 1 / 4$ ).

вв. Middle leaflet slender-stulked: panieles stalked.
trifolia, Linn. American Bladdeer Nut. Fig. 2393. Upright shrub, with rather stout branches, $6 \mathbf{- 1 5 f t}$, high: lfts, oval to orate, acuminate, finely and sharply serrate, slightly pubescent beneath or almost glabrous, $1 / 2-3 \mathrm{in}$. long: fls. about $1 / 3 \mathrm{in}$. loug, in nodding panicles or um-bel-like racemes; sepals greenish white, petals white: capsule much inflated, usually 3 -lobed, $12 / 3-2$ in. long. April, May. Quebee to Ontario and Minn., south to S. C. and Mo. Git. 37, p. 529. - Var. pauciflora, Zabel. Low and suckering: lfts. smaller, broader, glabrous at length: fls, in short, $3-8$-fld, racemes: fr. often 2-lobed, $1 \frac{1}{3}-11 / 2$ in. long.

AA. Lfts. $5-\gamma$-foliolate, only occasionally - foliolate: panicles stulked.
B. Panicle racemp-like, oblong, pendulous: fl.-buds subglobose.
pinnàta, Linn. Upright shrub, attaining 15 ft , , sometimes tree-like: lfts, 5-7, ovate-oblong, long-acurainate, aharply and finely serrate, glabrous and glatucescent heneath, 2-3 in. long: panicles $2-5$ in. long, on peduncles about 2 in. long: sepals oval, whitisb, greenish at the base, reddish at the apex, about as long as the oblong petals: capsule 2-3-lobed, muel inflated, subglobose, about 1 in. long. May, June. Europe to W. Asia. Gn. 34, p. 280.

BB, Panicle broad, oute, upright or nodding: fl.buds obovate-oblong.
Colchica, Steren. Upright sbrub, attaining 12 ft . lfts. usually 5 , sometimes 3 , oblong-ovate, acuminate, sharply serrate, glabrous and pale green beneath, $2-3 \mathrm{in}$. long: panicle $2-3 \mathrm{in}$. long and almost as bruad, on a peduacle $2-3 \mathrm{in}$. long: sepals narrow-oblong, spreading, yellowish white; petals linear-spatulate, white: capsule ohovate, much inflated, $11 / 2-2$ in. long. May, June. Caucasus. B.M. 7383. R.H. 1870, p. 257. J.H. I1I. 34:183. F. 1879, p. 123. G.C. 1L. 11:117; 111. 2:713; 10:161. A.G. 18:423. Gt. $24: 837 ; 37$, p. 501. Gn. 34, p. 281.-Var. Coulombièri, Zabel ( $S$. Coulombièri, André). Of more vigorous growth, with denser foliage: lvs. larger and longer-stalked; lfts. long-acuminate: stamens glabrous: capsule $2-4$ in. long, spreading at the apex.
S. Bolanderi, A. Gray. Allied to S. trifolia: lifts, hroadly oval or almost orbicular, glabrous: stamens and styles exserted: fr. $21 / 2$ iu. long. Calif. G.F. 2:545.-S. elegans, Zabel. Intermediate between and supposed to be a hybrid of S. pinnata and Colchica: lfts. usnally 5: panieles very largeand nodding. A very free-flowering variety with pinkish tinged fls. is
var. Hessei, Zabel,-S. Emorti, Wall. Shrub or small tree: Ifts. 3, oval to oblong, 2-6 in. long: ths, in peduncled, penduions, ra-ceme-like paricles: fr. 2-3 in. long. Himalayas.

Alered Rehder.
STAR APPLE. See Chrysophyllum.
STARFISH FLOWER. Stapelia Asterias
STAR FLOWER. Aster, Trieutalis, Triteleia and other plants.

## STAR GRASS is Chzoris truncate.

STAR OF BETHLEHEM. Oruithogalnm umbellu. tum.

STAR THISTLE. Centuurea.
8TAR TULIP. Calochortus.
STARWORT. Aster.
STATICE (from a Greek name meaning astringent, given by Pliny to some herb). Plumbaginacea. SEA Lavender. About 120 species well scattered about the world, but mainly seacoast plants of the northern hemisphere and expecially numerous in Asia. Mostly perennial herbs, carely annual or shrubby, fith usually tufted rather long leares (radical in the berbsceous species), and small hlue, white, red, or yellow flowers. Panicles little branched or much brauched, spreading and leafless: bracts subtending tbe fl.-clusters, scalelike, somewhat clasping, usually coriaceous on the back, and with membranous margins: fls. in dense, few- to several-fld. spikelets, or 1 or 2 in the axiis of a bract: spikelets usually erect and unilaterally arranged on the branchlets or more rarely nearly sessile in dense, cylindrical spikes: calyx funnel-shaped, often colured and scarions and persistent. Statice is most readily distinguished from Armeria by the inflorescence, Armeria bearing its flowers in a single globular head.

Statices are of easy caltivation but prefer a rather deep, loose soil. From the delicate nature of the th.-panicles the species are better suited to rockwork and ino. lated positions than for mixing in a crowsled border. Many of the species are useful for cut bloom, expecially for mixing with other flowers.
index.
australis, 8.
Besseriana, 6, 11.
Bonduelli, 7.
collina. 11.
elata, 13 .
eximia, 12.
flore-albo, 2.

Forthni, 8.
Gmelini, 10. Holfordi. 4. incana, 6.
latifolia, 14
Limonium, 9. macrophyllin, 4.
maritima, 9.
nats, 6 .
simuatia, 3.
sinnatia,
speciosi,
5.
speciosi, 5.
superbat, 2.
Suworowi, 1.
Tatarica, ti.
A. Fls. in long, cylindrical spikes.
B. Spikes in on open paniele

1. Suworowi

BB. Spikes in deuse purieles.
2. superba AA. Fls. in more or less wilateral spikes or clusters.
B. Brunches zringetl.
C. C'alyr blue: corolla white.
D. Plant herbaceous............ 3. sinuata DD. Plaut shrubloy ............. . 4. macrophylla cc. Calta whitish: corollu blue... 5. speciosa rec. Calyr green or whitish: cowollu redilish.
6. Tatarica cocc. Cnlyx and corolla yellow..... 7. Bonduelli BB. Branches terete or simply angled.
e. F/s. yellow.
8. australis
c. A'ls. not yellow

1. Calys blue.
E. Petioles rather long ..... 9. Limonium Ee. Petioles short or none....10. Gmelini
DD. Calyx whitish or green.....
E. Bructs green ...............11. collina EE. Bracts white-margined.
F. Spikelets 4 -fld .........12. eximia

FF. Spikelets 2-fld.........13. elata FFF. Spikelets 1 -fld.............14. latifolia

1. Suworowi, Regel. A tall annual: lys. radical, oblanceolate, obtuse, mucronate, $6-8$ in. long: margins entire or sinuate: scapes several, stout, obtusely angled,
bearing 1 long terminal spike and several distant, sessile lateral ones $4-6 \mathrm{in}$. long, nearly $1 / 2 \mathrm{in}$. through: fls. rose, small, nearly sessile, crowiled. June, Jnly. Western Turkestan. B.M. 6959.-A handsome annual, suitable for growing in masses and useful for cut blooms.
2. supérba, Regel. A bardy annual resembling $S$. Suworoui, but with the spikes densely erowded into a pyramidal panicle. Asia.-According to Win. Falconer in G.F. 1:283, this species is not as bandsome nor as vigorons as $S$. Suworowi. Var. flore-albo, Benary, is also offered.
3. sinuàta, Linn. A biennial plant which may be treated as an annnal, about 1 ft . bigh, of a spreading growth: 1ss. Jyrate-pinnatifid, the lobes ronnd, the terminal bearing a bristle: scapes several, $3-5$-winged, the wings produced into linear leaf-like appendages: branches several, 3 -winged: floral branchlets or peduncles broadly 3 -winged, the wings dilated below the spikelet and prolonged into 3 unequal triangular, acute appendages: spikelets $3-1$-fld.: corolla white; ealyx large, blue. Late summer. Mediterranean region of Europe. B.M. 71.
4. macrophylla, Brouss. (S. Holfordi, Hort., is a garden form of this species). A teuder, somewhat shrubby species $3-4 \mathrm{ft}$. bigh: stem branched and bearing elus. ters of large, sessile, ovate-spatulate lys.: seape leafless, much branched into a large, panirulate corymb: branches winged: spikelets 2-fld.: calyx bluc; corolla white. B.M. 4125. B.R. 31:7.-Cult. in S. Calif. Makes a good pot-plant for winter flowering in a cool greenhouse. T. D. Hatfield, in G.F. 9:496, says: "Old plauts are somewhat subject to stem-rot. Plants should be grown in rather undersized pots, in a light soil with which some charcoal has been ineorporated, and given perfect drainage, as excessive moisture at the roots is fatal. Propagation is effected by cuttings of the side shoots placed in a cool propagating bed, or better by layering, which is well accomplished in summer by making a notch in each of the side branches and then burying the plant in ordinary garden soil below the incisions." From the Canaries.
5. speciòsa, Linn. A hardy perennial, about 1 ft . high: lvs, obovate, attennate on the petiole, stifly and shortly mucronate tipped, often purplish underneath: scape somewhat angled: branches angled and winged, recurved, not crowded, bearing unilateral, scorpioidly capitate, densely imbricate short spikes: calyx persistent, crowned with a silvery white funnel-shaped border; corolla purple, very deciduons. Midsummer. Siberia. B.M. 656.
6. Tatárica, Linn. (S. incàna, var. hybrida, Hort. $S$. Beaseridut, Schult.). A hardy perennial, $1-2 \mathrm{ft}$. high: lvs. tufted, obovate to oblong-spatulate, 4-6 in. long, narrowed into the petiole: scape widely branched: branches triangular, slender, narrowly 3 -winged, somewhat recurved: spikelets $1-2$-fd., in nsually lax, simple or branched spikes: fls. 2 lines long, typically red, with several garden varieties. Caucasus. B.M. G537.-Var. nàna, Hurt. (S. incana, var. vana), is a dwarf form.
7. Bonduélli, Lestib. Fig. 2394. A tender annual or biennial plant, about 18 in , bigh: lvs. radical, spatulate, sinuately lyrate, hairy, subulate-pointed at the apex; lobes rounded, the terminal larger: scapes several from the same root, terete: branches angled, dichotomonsly cymose; ultimate branchlets obpyramidal, 3 -winged, forked at the apex: fls. yellow, individually large for the genus, clustered in the fork of the branchlets or peduncles: bracts scarious, the inner furnished with sharp spines. Summer. Algeria. R.H. 1885:276. B.M. 5158. F.S. 20:2129.
8. australis, Spreng. (S. Fórtuni, Lindl.). A hardy perennial, about 1 ft . high: lvs. oblong or somewhat spatulate, in a rosette: scape rigid, paniculate: branches angular, brachiate, glabrous: spikelets $4-5$-fld., in dense, short, one-sided spikes: fls. yellow, small. Late sum. mer. China. B.R. 31:63.
9. Limònium, Linn. (S. maritima, Lam., in part). A hardy perennial, abont I ft. high: lvs. ovate to oblong, entire, 2-6 in. long, attennate on the long petiole: scape
nearly terete, repeatedly forked, forming a corymbose panicle: spikelets 1-3-thl., in short, dense, 1 -sided spikes: fls. bluish purple. Seacoast of Europe. N. Africa, etc. - S. maritima, Mill., is Armeria muritima.
10. Gmélini, Willd. A hardy perennial 1-2 ft. high: lvs. glabrous, broadly ovate or obovate, very shortly petioled or sessile: scape terte below, angled above, densely corymbose-paniculate: spikelets usually 2-thl., in dense, imbricated scorpioid spikes: fls. blue. Late summer. E. En. and Asiatic Russia.
11. collina, Griseb. (S. Besseriana, Frivald). A glaucons perennial with oblong-lanceolate to lanceolate lvs. sharply awned, attenuate on the petiole: scape corymbosely paniculate from near the base, the branches triangular, wide-spreading: spikelets 1 -fld., in dense, short, numerous fascicle-like spikes: tls, rose. Southeastern Europe and Asia Minor.
12. eximia, Schrenk. A bardy perennial $1-2 \mathrm{ft}$. high: Jvs. obovate or oblong, attenuate on the petiole, mucronate tipped, margins whitish: scape erect: branches not further divided, terete, pubescent: spikes ovate, crowded, somewhat unilateral: spikelets 4 -fld.: ealyx green; corolla lilac-rose. August. Songoria. B.R. 33:2.
13. eláta, Fisch. A hardy perennial about 2 ft . high: lvs. large, obovate, very obtuse, usually recurved at apex and mucronate, long-attenuate on the potiole: scapes much branched above: branches spreading, recurved, hairy triangular: spikflets ? Hd., in ovate, loosely imbricated spikes: fls. blue. JuIy, Aug. Southeru Russia.

14. Statice Bonduelli.

The flowers are about onethird inch across.
14. latifolia. Sns. A hardy deep-rooting perennial about 2 ft . high: Ivs. large, oblong-elliptical, obtnse, attennate on the petiole: scape rery much branched: branches terete or angled: panicle large, spreading: spikelets 1 -fld., rarely 2 -fld., in lax, narrow spikes: fls. blue. Midsnnmer. Russia. - A handsome plant. Should be given a very deep soil in a sunny position and left undisturbed.
S. Armèria, Linn., is Armeria maritima.-S. arandiflòra, Hort. =Armeria latifolia.-S. purpürea, Koch =Armeria elon-gata.-S. Pseudo armeria, Pax. =Armeria latifolia.-S. undulata, Bory \& Chaub.=Armeria argyrocephala.
F. W. Barclay.

STATISTICS concerning horticulture are very imperfect, widely scattered and not always available. The United States Department of Agriculture has pablished statistics of horticultnre in varions publications. The Synoptical Index of the Reports of the Statistician, 1863 to 1894 , is a document of 258 pages published in 1897. The Section of Foreign Markets has issued many statistical pamphlets of great interest to importers ani? exporters of horticultural products. Market-gardening,
foriculture, seed raising, the nursery business, and viticulture were subjects of special reports in the Eleventh Census, 1890. In this Cyclopedia statistics appear under such large topies as Horticulture, Cut-flowers, Floriculture, and the farious articles on states.

2395. Stauntonia hexaphylla ( $\times 1 / 8$ ).

STAUNTONIA (G. L. Staunton, physician, 17401801). Berberiddcear. A genus of 2 specjes of tender evergreen woody rines, one trom China and one from Japan. The lvs, have 3-7 digitate leaflets. Fls. moncecious, in axillary, few-fld, racemes; sepals 6 , petaloid; petals wanting: sterile fl. with 6 monodelphous stamens, anthers birimose, orary rudimentary: fertile fl. with 6 sterile stamens and 3 carpels.
hexaphýlla, Decne. Fig. 239.5. A handsome vine becoming 40 ft . high: Ifts, oval, about 2 in . long, stalked: Hk . in axillary clusters, white, fragrant in spring: berry about 4 in . long, splashed with scarlet. Japan. A.G. 12:139.
F. W. Barclay.

The Stauntonias are beautifu] evergreen climbers and well adapted to the soil and climate of the South Atlantic and Gulf region. Both $S$. kexaphylla aud the re. lated Holbollia latifolia (known also as Stanntonia latifolia) grow well in the writer's Florida garden, although they are not such very luxuriant climbers as are the Allamandas, Thunhergias and Bignonias. It requires a few years betore they are fully established. They are excellent subjects to be planted on old stumps and on small trees, such as eatalpa and mulberry trees, which tbey perfectly cover in the course of time with their pretty evergreen leaves and their rather insig. nificant but powerfully fragrant flowers. They will not flourish in dry, hot, sandy soil, demanding for their welfare rather moist, shady spots containing a profusion of humas. A little commercial fertilizer containing a fair amount of nitrogen and potash will also prove very beneficial. The need of some kind of a stimulant is shown by the plant itself, which assumes a rather yellowish cast in the green color of the foliage. A few days after it has received some plant-food the foliage shows a very beautiful dark green color. These two species and the beautiful $K^{\prime}$ adsura Japonica are valuable additions to the garden flora of our southern states.
H. Nehrling

8T. BERNARD'S LILY. Authericum Liliago.
ST. BRUNO'S LILY. Paradisea Liliastrum.

STEIRONEMA (Greek, sterite threads; referring to staminodia). Primulàcece. Loosestrife. Herbs, all erect, with opposite entire leaves and rather large yel. low axillary and leafy-corymbed flowers: corolla rotate, 5 -parted; stamens 5 , opposite tbe lobes, with 5 alternating subulate staminodia: eapsule 1-loculed: seeds many on a central placenta. Differs from Lysimachia in the presence of the sterile stamens, and in the estiration of the corolla. Useful showy plants for borders in damp soil. All perennials.
ciliàtum, Raf. (Lysimachia cilidata, Linn.). Stem 1-4 ft. high, sparingly branched, nearly giabrous: lvs. 2-6 in. long, ovate-oblong to ovate-lanceolate, ciliate, acute or acuminate, base rounded; petioles $1 / 2 \mathrm{in}$. long, ciliate: fls. on sleuder peduncles, showy, 6-12 lines broad; co-rolla-lohes rounded erose, often mucronate: capsule longer than the calyx. Moist thickets. U. S.
longifolium, Gray (Lysimd̀hia quadriflòra, Sims. L. longifolia, Pursh). Erect, strict and glabrous: stem 4 -angled, $1-2 \mathrm{ft}$. high: lvs. linear, thick and firm, ]nerved, acute at both ends, 1-4 in. long, smaller ones clustered in the axils, margins sligbtly revolute, hasal broader and petioled: peduncles slender, $1 / 2-11 / 2$ in. long: fls. numerous, often appearing clustered; corolla 8-12 lines broad, the lohes oval, cuspidate, often erose. Eastern [T. S. June, July. B.M. 660 (as L. quadriflort ). - Very shows when in flower. Offered by collectors of native plants.
K. M. Wiegand.

STELLARIA (Latin, star; referring to the form of the flower\}. Caryophylldceæ. A genns of about 70 species of annual or perennial herbs, mostly diffuse, tufted or weakiy asceuding. They ate scattered about the whole world, but are mainly found in the temperate regions, Lvs, opposite, simple: fls, usually white and disposed in terminal or rarely axillary leafy or naked paniculate cymes: sepals usually 5 ; petals usmally 5 , rarely none, bifid, often deeply; stamens 3-10; styles $3-4$, rarely 5 : capsule oroid to oblong, relatively short, dehiscent by as many or twice as many teeth as there are earpels. Sue tiray, Syn. Flora of N. Amer.

$$
\text { A. Fls. , }-10 \text { lines across. }
$$

Holostèa, Linn. Easter Bell. A hardy perennial, erect, 6 -18 jn. high, simple or somewhat branched, from a creeping rootstock: lvs. sessile, lanceolate, 1-3 in. long: Als. white, abundant, in a terminal leafy panicle: sepals one-half or twothirds as long as the petals. May, June. En., Asia. B. B. 2:22, -This and the next are desirable for dry banks where grass will not grow well and for other carpeting purposes.
AA. Fls. 2-5 lines across. B. Les, nurrow.
graminea, Linn. A slen-der-stemmed, hardy perevnial plant not usually over 6 in. high, from a creeping rootstock: lvs. sessile, linear lavceolate, usually about 1 in . long: fls. white, in terminal or lateral scarious bracted open panicles; sepals and petals nearly equal in length. May, June. Europe; naturalized in America. B, B, 2:23, - Var. aùrea, Hort., GOLDEN Stitehwort, has pale yellow leaves and is lower and more matted in growtb. Well adapted for sandy banks where grass does not grow well.

BB. Le's. ovate.
mèdia, Linn. Chickweed. Fig. 2396. A low, decumbent amual weed common in all rich, moist, cultivated soils, especially troublesome during the cooler months
of the growing season and in frames, etc., during winter. Lvs. 2 lines to $1 \frac{1}{2} \mathrm{in}$. long, the lower petioled, the upper sessile: fls. axillary or in terminal leafy cymes; sepals longer than the petals. Eu., Asia. B.B. 2:21. - It is considered to be a good fall and winter coverplant in orchards and vineyards, but is never cultivated. It is an indication of good soil.
F. W. Barclay.

STENÁCTIS. See Líigeron.
STENANDRIUM (Greek, narrow anthers). Acanthdeece. About 25 species of tropical or subtropical American herbs, with or without short stems, and usually variegated leaves which are radical or crowded at the base of the plant. Fls. usually small, solitary in the axils of bracts on a scape-like peduncled spike, which is either dense asd has broad imbricated bracts or is interrupted and has smaller bracts; calyx 5 -parted; corolla-tube slender, enlarged at the top, 5-lobed; stamens 4; anthers 1-celled; style shortly 2-lobed: capsule 4 -seeded, or by abortion fewer-seeded.
Lindeni, N. E. Br. A low-growing, compact plant, with broadly elliptical lvs. rouuded at the apex and long-attenuate on the petiole, velvety in appearance, of a dark green with a feathering of white or yellow along the veins, somewhat purplish underneath: fis. not showy, about $3 / 4 \mathrm{in}$. long, yellow: bracts ovate, acute, serrate, green: spikes 2-3 in. long, narrowly cylindrical. I.H. 38:136; $40: 173$ (4). -Tender foliage plant offered I893-1895 by John Saul and Pitcher \& Manda.
F. W. Barclay.

STENANTHIUM (Greek, narrow flower; referring to perianth-segments). Lilidecer. Stenanthium occidentale is a rare, hardy, summer-blooming bulb from the Pacifie coast, with nodding, greenish purple, 6 -lobed, bell-shaped fis. about $1 / 2$ across, borne in a slender panicle. Generic characters: fls. polygamous; perianth narrowly or broadly bell-shaped, persistent; segments connate at the base into a very short tube, narrow or lanceolate, $3-7$-nerved: seeds 4 in each locule. About 5 species; one native to the island of Sachaline, another Mexican, the rest west Anericau.
occidentale, Gray. Stem siender, 1-2 ft. high: lvs. linear to ohlanceolate: raceme simple or branched at base: bracts shorter than pedicels. Oregon to British Columbia.
W. 11.

STENOCARPUS (Greek, narrove fruit; referring to the follicles, which are long aud narrow). Protedect. About 14 species, of which 11 are New Caledonian and 3 are endemic to Australia. Trees with alternate or scattered lvs. entire or with a few deep lobes and red or yellow flowers in pedunculate, terminal or axillary, sometimes clustered umbels: perianth somewhat irregular, the tube open along the lower side, the limb nearly globular; anthers broad, sessile: ovary stipitate, with a long, tapering style dilated at the top; seed winged at the base.
salignus, R. Br. A medium-sized tree, with willowlike, ovate-lanceolate lvs. $2-4 \mathrm{in}$. loug, with short petioles: fls. usually less than $1 / 2 \mathrm{in}$. long, greenish white, in umbels of $10-20$ fis.: peduncles shorter than the lvs. B.R. 6:441.-Cult. in Calif.
F. W. Barclay.

STENOLOMA (Greek, narrow-fringed). Polypodiàcer. A genus of ferns formerly included with Davallia; characterized by the decompound lvs. with cuneate ultimate segments, and the compressed suborbicular or cup-shaped indusium which is attached at its sides and open only at the top. For culture, see Fern.
tenuifolia, Fee. Lrs. $12-18 \mathrm{in}$. long, 6-9 in. wide, quadripinnatifid, on polished dark brown stalks which rise from stout creeping fibrillose roatstocks; ultimate divisions with toothed cuneate lobes; sori terminal, usually solitary. Tropical Asia and Aus-Polynesia.Var. stricta, Hort., has a more upright habit and narrower leaves.
L. M. Underwood.

STENOMESSON (Greek, small and middle; alluding to the corolla-tube, which is usually coutracted near the middle). Amarylliddacece. Ahout 19 species of tropical

American bulbous herbs, with linear to broadly strapshaped leaves and red, reddish yellow or yellow flowers, in a usually many-flowered nmbel: perianth-tube long, erect or recurved, the lobes short, erect or spreading; filaments straight, connected by a membrane: capsule somewhat glohose, 3 -furrowed, 3 -loculed: seeds black.

Stenomessons require a good soil and a sunny bouse with a temperature never below $45^{\circ}$. During the growing season they should have plenty of water, but when at rest comparative dryness is necessary. The offsets should be removed from the old bulbs before growth commences. The plants continue in bloom a number of weeks.
A. Style shorter than the perianth.
incarnàtum, Baker (Cobưrgia incarnàta, Sw.). A tender plant: bulb ovate, $2-3$ in. through: lvs. thick, glaucous, obtuse, about $11 / 2 \mathrm{ft}$. long, strap-shaped: scape 2 ft . bigh: fls. $4-5 \mathrm{in}$. long, few to many in an umbel, variable in color but typically crimson, with a green spot on each segment. August. Peru. I.H. 38:123 (perianth-limb light yellow). Gn. 50:1076.

AA. Style longer than the perianth.
flàrum, Herb. A tender plant: bulb somewhat globose, 1 in . through: lvs. about I ft. long, obscurely petioled, at first compressed on the margin: scape 1 ft . high: fis, yellow, about 2 in. long, usually few in an umbel. B.N.2641. B.R. 10:778 (as Chrysiphiala flava).

## F. W. Barclat.

STENOTAPHRUM (Greek, stenos, narrow, and taphros, a trench; the spikelets being partially embedded in the rachis). Graminea. About 3 species of tropical regions, one of which is found along the Gulf coast, especially in Florida, where it is utilized as a lawn grass. In this respect it is similar to Bermuda grass, leing naturally adapted to a sandy soil, which it binds hy its rhizomes and creeping habit as does that grass. Spikelets 2-fid., the lower staminate or neutral 2-4 in a short spike, which is embedded in the alternate notches of the broad rachis, thus forming a spike-like panicle. Creeping grasses with compressed culms and flat, divergent leaves.

Americànum, Schrank. (S. secundatum, Kuntze. S. glàbrum, Trin.). St. Augustine, Grass, Flowering branches erect, $6-12 \mathrm{in}$. high. Var. variegatum has leaves striped with white, and is used as a basket plant.
A. S. Hitchcock.

The introduced form of St. Augustine Grass is one of the most valuable lawn grasses for the extreme South. It will grow on almost any soil and thrives even in shade. The leaves are rather broad, never over 6 in. bigh and require little mowing. This grass does not become coarse, does not hold dew or rain, and is particularly good for house lots and lawns. It does not need as much water as Bermuda or St. Lucie grass. It is mostly propagated by cuttings.

## E. N. Reasoner.

STEPHANANDRA (Greek, stephanos, crown, and aner, andros, male stamen; alluding to the persistent crown of stamens). Rosdcece. Ornamental small deciduous shruhs with alternate, stipulate, lobed lvs. and with small white fls. in termiual pavicles. Graceful plants, with handsome foliage, hardy north or almost so. Well adapted for borders of shrubleries or rocky banks on account of their graceful habit and handsome foliage. Prop. easily by greenwood cuttings under glass and by seeds; probably also by bardwood cuttings.

Four species in China and Japan, all undershrubs with slender more or less zigzag branches: fls. sleuderpediceled, small, with cup-shaped calyx-tube; sepals and petals 5 ; stamens $10-20$ : carpel 1 ; pod with 1 or 2 shining seeds, dehiscent only at the base. Closely allied to Neillia and distinguished chiefly by the cup-shaped calyx-tube and the incompletely dehiscent $1-2$-seeded pod.
flexuòsa, Sieb. \& Zucc. (S. incisa, Zabel). Shrub, 5 ft. high, almost glahrous, with angular spreading distinctly zigzag branches: lvs. triangular-ovate, cordate or truncate at the base, long-acuminate, incisely lobed and serrate, the lower incisions often almost to the midrib, pubescent only on the veins beneath and grayish
grepn, ${ }^{3},-1^{1}{ }_{2}$ in. long: As. white, abont ${ }^{1}$, in. acrass, in



Tanakæ, Frameh. \& Sar. Fis. 2907. Shrub, 5 ft , high, almon elabroms: lva, tram\&ulare ovate, - lightly morlate
 lohtel and donbly surate or lohontat.






 liant ortage ahal ararlot of trllow.

Atofielr liehtien



 torwovel in : fam-like mathor. It hatht of

 Immato, are so mamemas that the phant hewomes rery










I. WV. IIDAMS.

## STEPHANOPHYSUM. 内i4. Fim+llu.

STEPHANOTIS (fremb liratk work fin romen and









 allatte tor tha aththers on the hame the atnthers with an intlexal tip or membratu: fre a mare or las flenhy follicle.

2397. Stephanandra Tanakæ ( $X{ }^{1}{ }_{3}$ ).
floribunda, Bromgn. Fis. 2ssm, Hlahrous, $8-15 \mathrm{ft}$. Ifs. सlliptw, with a chort puint, thick athl shining green, entire: fle, 1-3 is. lums, of waxy consintency, white or cream color, vary fragrant, m wany umbel, he calyx one-fomrth of less the length of the corolla-tube:


2318 Stephanotis floribunda $\left\langle x^{1}+\right.$
me-lom-like sumb which ate provideal with a thet of hair. Madasamear.


 1. II. 14:1tit hatwar varinty, thar klves. tom1: 2t: 17; 25: 1:i ${ }^{-}$; 11J. i $1: 50$. R.11.
 mont us. finl ohl ermethmme twimer, bloms. inse in spring and smmons. In winter it shombla he krpt partially dommant at at $1+\mathrm{m}$.
 Enrich the smil every year. Propatated


 thrives bent in partial shath. Very liable to me:ty bat.
s. Thomirsii, Bromplo, frum Matarsamar, apmars to

 sepals ahont one thirel the bernth of the corolla-tube.
L. H. B.

Notphometis floribuntre is one of the handsomest of

 lomaturf it wats one of the mose valuahle flowers that the thorist hat, its large waxy umbels haring a deliegous odor, it shmalal be kipht atont bus daring the winter.
 bratare of ond warmest homsis with phenty of syring-
 rampant athl is lase inelinel to flower. Therefore it tub or a brothr where its robls are restrietod is better, with an ammat top-airwsing of emol manure. Its qreatest emony is the mealy hos, which, of allowed to get a louldment on that plant, is a grest pest. Serd pods are
 by conttinas fom pinoes of the last year's growth and they striki frally in samd. This is also one of the most. valuable plants far private estahlishments. When arown iu a 12- or 1 a-inm pht or tub aud trained on a halloon trellis it makes splemdil specimens and is often swan at our hortionltural exhibitions; and when in blow there is nothing finer for the conservatory. Wm. scotr.

STERCULIA (Stereutios of Roman mythoingy, from strects, manure ; applied to these phats beralase of the olor of the leavas and fruits of somte specties). Sterculiteces. some 50 or sit species of tropical trees or shrubs, most abmodent in Asia, a few of which are planted in the suuthorm Nates and Chlifornia. Fls. mustly pulygamous, athalom, the ealyx tubular, $4-5-$ cleft, often colorell; stamens umitme in a column which bears a head of $10-15$ sessilo inthers: pistil of as many earpels ans calyx-lobes and opposite them, each carpel 2- to many-oruled, the stigmas free and radiating: fr.
follicular, each carpel distinct and either moody or membranaceous and sometimes opening and spreading into a leaf-like body long before maturity (Fig. 2399); seeds 1-many, sometimes arillate or winged, sometimes bairy. Sterculiax bave very various foliage, the leaves of different species being simple, palmately lobed or digitate. The flowers are mostly in panicles or large clusters, sometimes large and showy, varying from greenish to dull red and scarlet. The species are grown mostly for street and lawn trees. The only kinds tbat are generally known in this country are S. platamifolia, $S$ diversifolia and S. acerifolia, the last two known in California as Brachychitons. All are easily grown from seeds. Sterculiaceous plants are allied to the Malvacee.

2399. Mature folificles or fruits of Sterculia platanifolia, bear ing seeds on the margins. Natural size.

## A. Curpels expanding before maturity into leaf-like

 botlies, exposing the seeds.platanifolia, Linn. f. (Firmiina platanifolia, Schott \& Endi.). Japanese Varnish Tree. Chinese Parasol Tree. Fig. 2399. Strong-growing, smooth-barked, round-headed tree of medium size, with deciduous foliage: Ivs. fery large, glabrous, cordate-orbicular, palmately 3 -5-lobed like maple lvs., the lobes sharppointed: fls, small, greenish, with reflexed calyx-lobes, in terminal panicles: carpels 4 or 5 , bearing globnlar pea-like seeds. - Said to be native of China and Japan. Hemsley admits it to the "Flura of China," and Sargent says in "Forest Flora of Japan" that it is one of the several Chinese or Corean trees grown in Japan. Bentham, in "Flora Hongkongensis," says that it is native to China. Franchet and Savatier, in "Enumeratio Plantarum Japonicarum," admit it as an intligenous Japanese species. Now a frequent tree from Georgia south. Excellent for lawns and shade.

> AA. Carpels not becoming leaf-like.
> B. Les. all digitately compound.
foétida, Linn. Tall, handsome tree, with all parts glabrous except the young foliage: 1rs. erowded at the ends
of the branchlets, of 5-11 elliptic, oblong or lanceolate, entire, pointed, thick leatlets: Hs. large, dull red, in simple or branched racemes, appearing with the tys.: fr. large and woody follicles, glabrons outside, often 3 in . or more in diam. and containing black seeds the size of a hazelnut. Tropical Africa and Asia to Australia. - Grown in southern Florida. In its native countries, the seeds are said to be roasted and eaten.

BB. Lus, entire or only lobed (compornd forms some-
times borne on $S$. dieversifoliu).
c. Follicles pubescent outside anl corky inside.
alata, Roxbr. Large tree, the young parts yellowpubescent, the hark ash-colored: Irs. large, cordateovate, acute, 7 -nerved: tls. about 1 in , across, in fewfld. panicles shorter than the lvs., and which arise from the leaffess axils, the calyx tomentose and the segments linear-lanceolate: follicles 5 in . in diam., globose, with wide-winged seeds. India. - Introd. into S. Florida.
cc. Follicles glubrous on the outside, usually villous within.
acerifolia, A. Cunn. (Brachychiton acerifolium, F, Muell.). Brachychiton. Flame '1 ree, Evergreen tree, reaching a height of $60 \mathrm{ft.}$, glabrous: lvs. longpetioled, large, deeply $5-7$-lobed, the lobes oblonglanceolate to rhomboid, glabroms and shiming: fls, brilliant scarlet, the ealyx about $3_{4} \mathrm{in}$. long, in large, showy trusses: follicles large, glabrous, long-stalked. Anstralia. - A most sbowy tree when in bloom, and planted on streets and lawns in California. Thrives in either dry or fairly moist places.
diversifolia, G. Don (Brachyrhiton popziheum, R.Br.). Brachychiton. Tall tree, glabrous except the fls, liss. very rarious, mostly ovate to ovate-lanceolate in ontline, often entire. sometines rariously $3-5$-lobed on the same tree, all parts acuminate: fls. tomentose when young, bell-shaped, greenish red and white or yellowish white, in axillary panicles: follicles $1 \frac{1}{2}-3$ in. long, ovoid, glabrous, stalked. Australia. - Planted in California, and commoner than the last.

Var. occidentàlis, Benth. (Brachychiton Grégorii, F. Muell. S. Grégorii, Hort.). Loss, deeply 3-lobed, the lubes narrow, sometimes with short lateral ones: H s. salmon-color; calyx smaller amd more tomentose. Wext Anstralia.-Offered in S. California.
L. H. B.

STEREOSPERMUM (Greek: hard seed). Bignonidcea. About 10 species of tropical trees native to Asia and Africa, of which 2 are cult. n S. Fla. and S. Calif. They bave handsome foliage, which is once or twice pinnate, and large bignonia-like flowers of pale yellow or pale rose, borne in large, lax, terminal panicles; calyx ovoid, open or closed in the bud; corollalobes 5 , nearly equal, round, crisped, toothed or laciniate: capsule long, terete, loculicidally 2 -valced; seeds in 1 or 2 series.

Slereospermum Sinicum seems to revel in the light sandy soil of the Florida gardens. Its abundant, large, fern-like, crimped bipinnate foliage and its luxuriant symmetrical growth combine to make it an object of great beauty. Jt grows to a beight of 10 to 12 ft . in one season, and if not cut down by a serere freeze it attains a height of 20 ft . in two years, provided the soil is made rich by a good fertilizer. Planted ont in a conservatory in the North it soon reaches stately dimen. sions. It is easily raised from euttings placed in sand. S. suaveolens lacks the elegance of its congener, and it does not sprout as readily after it has been frozen down.
A. Foliage twice-pinnate: fls. pale yellow.

Sinicum, Hance. Tree, said to attain 60 ft . 1 vs opposite, bipinnate; pinnæ about 4 pairs, each pinna with abont $\bar{i}$ lfts.; lfts. ovate-lanceolate, $2 \times 3 / 4$ in.: corolla pale sulfur, 3 in. long; lobes 1 in. long, somewhat erisped. Hong Koug.

AA. Foliage once-pinnate: fls. pale or dark purple.
suavèolens, DC: Tree, 30-60 ft. high: lvs. 12-18 in. long: lits. $7-9$, broadly elliptic, acuminate or acute, $51 / 2$ x 3 in,: paniele many-fld., viscous, hairy: fls. I $1 / 4 \mathrm{in}$. long; lobes crisped-crenate. India.
H. Nehrling and W. M.

STERNBERGIA (after Count Caspar Sternberg, a botanist and writer, 176I-1838). Amurylliddcec. A genus of 4 species of low-growing hardy bulbous herbs from eastern Europe to Asia Minor, with strap-shaped or linear leaves and bright yellow crocus-like flowers. Perianth regular, erect, funnelform; stamens inserted on the perianth-tube; filaments long, filiform; anthers dorsifixed, versatile: fr, fleshy, scarcely dehiscent; seeds suhglobose. The bulbs should ho planted rather deeply, abont 6 inches. J. N. Gerard says of their culture in G.F. 10: 558 that they require a rather heavy soil, in a somewhat dry, sunny position where they will be well ripened in summer.

2400. Sternbergia lutea ( $\times 1 / 6$ ).

> A. Fls. ant lrs. appearing together. B. Blooming in fall.
lùtea, Ker-Gawl (Amarýllis lùtea, Linn.). Fig. 2400. Bulb about $11 / 2$ in. through: Ivs. $6-8$ to a bulb, strapshaped, becoming I ft. long: fls. yellow, 1-4 to a bulb; tube less than $1 / 2 \mathrm{in}$. long; perianth-segments about $11 / 2$ in. long. Mediterranean region of Eu. and Asia. B.M. 290. Gn. 44, p. 365; 47, p. 114. G.C. 11. 13:21.

## BB. Blooming in spring.

Fischeriana, Roem. Has the habit of $S$. lutect, but differs in season of bloom and stipitate ovary and capsule. Wm. Watson says (G.F. 8:144) that the fls. are a brighter yellow and as large as the largest forms of S. lutea. Caucasus. B.M. 744 .

AA. Fls. and lus, appearing at different seasons. B. Les. linear: fls, small.
colchiciflora, Waldst. and Kit. Bulh about $1 / 2 \mathrm{in}$. through: lvs. appearing in spring, $3-4 \mathrm{in}$. long: fls. yellow, in fall; segments abont 1 in. long by 2 lines hroad. East Europe, Asia Ninor. B.R. 23:2008.
BB. Lis, strap-shaped: fls. large.
macrántha, J. Gay. Bulb globose, $11 / 2 \mathrm{in}$. through, with a long neck: lvis. becoming I ft. long, nearly 1 in . wide, fully developed in June: Als, bright yellow, 3-5 in. across; segments about 1 in. broad. October. Asia Minor. G.C. 1LI. 23:97. Gn. 47:100I. B.M. 7459.-A handsome species.
F. W. Bakclay.

STEVENSONIA (named after one of the governors of Mauritius). Palmacea. A monotypic genus of tropical palms from the Seychelles. Tall trees, spiny throughout or at length nearly smooth, with ringed caudex: lvs. terminal, spreading-recurved, the cuneate-obovate blade convex, bifid, oblique at the base, plicate-nerved, the margins spit, segments leeply cut, the mid-nerves and nerves prominent, scaly beneath; petiole plano-convex; sheath deeply split, sealy, spined; spadix erect; peduncle long, compressed at the base: branches thickish: spathes 2, the lower one persistent, prickly, the upper one smooth, woody, club-shaped, deciduons: fr. ellipsoidal, small, orange-colored. For culture, see Palm.
grandifolia, Duncan (Phenicophòrum Sechellèrum, H. Wendl.). Caudex $40-50 \mathrm{ft}$. high, very spiny when young, less so when old; petiole $9-18$ in. long. pale green; blate cuneate-obovate. Sejchelles. 1.H. 12:433. B.M. 7277. Gn. 23, pp. I73, 320. JARED G. SMITH.

STEVIA. For the Stevia of florists, see Piqueria. True Stevias are descrihed in horticultural literature, but it is not known that any of them are now in the American trade.

STEWARTIA. See Stuartia.
STICK-TIGHT. Vernacnlar for burs of Cynoglossum.
STIGMAPHYLLON (Greek, stigma and leaf; referring to the leaf-like appendages of the stigmas). Sometimes writteu Stigmaphyllum. Malpighièrea. About 50 species of tropical American woody vines with usually opposite, entire to lobed, petioled leaves and yellow flowers in axillary, peduncled umbel-like cymes: calyx 5 -parted, 8 -glandular: stamens 10 , of which 6 are perfeet and 4 antherless or deformed; styles 3 ; stigmas produced into leaf-like or hooked aplrendages : ovary 3-loculed, 3-lohed.
ciliàtum, A. Juss. A tender woody twining rine: Ivs. evergreen, smooth, opposite, cordate, ciliate: fls. bright yellow, large, in peduncled axillary clusters of 3-6. P.M. I5:77. Gn. 33:637.-Apparently the only species in the trade and possibly the most handsome of the genus. G. W. Oliver says that $S$. ciliatum is one of the best medium-sized vines for outdoor trellis work. For pot culture it is of little service and thrives in the greenhouse only when planted ont. September is the best month for propagation. On outloor plants much of the wood is useless for this purpose, being thin and soft. Choose the wood made early in the season; a heel or joint is not necessary; root in bottom heat and carry through the winter in the greenhouse as small plants. Ernest Braunton says of its culture in S. Calif. that it must have shade, protection from dry or hot winds, and an open soil. Under the right conditions it flowers admirably.
F. IV. Barclay.

STILES, WILLIAM AUGUSTUS, journalist, editor and park commissioner, was born March 9, 1837, at Deckertown, Sussex county, in northern New Jersey, and died October 6, 1897, in Jersey City, N. J. His grandfather settled on a farm near Deckertown in [819, where his father, Edward A. Stiles, in 1833 founded Mount Retirement Seminary, a successful school of the highest rank during the followings thirty years. Here William A. Stiles received his early education; as a boy he showed great love for classical literature and unusual proficiency in music and mathematics. He was distinguished as a student at Yalo, graduating in 1859 in a class which included many men who have since attained high rank in public affairs. Prevented from taking up the profession of law by constitutional weakness and defective eyesight, his many-sided nature found expression in diversified activities. He was in turn a teacher, assistant superintendent of public schools, surveyor on the Pacific coast, writer of political articles, secretary of the Senate of New Jersey, actuary of a life insurance company, and ganger in the New York custom bouse. Drring a long period of illness and almost total blindness be acquired systematic knowledge of plant-life from readings by his sisters, and this gave impulse toward subsequent study on broader lines. He brought together many rare and choice species of plants, and made interesting experiments on the farm. Love of nature was henceforth a dominant force with him. His articles in the daily press of New York on the various interests of conntry life attracted wide attention, and led to his appointment as an editorial writer of the New York Tribune, a relation which continued throughout his lifetime. In I883 he became agricultural editor of the Philadelphia Press. Keenly interested in introducing scientific discoreries and improved methods into gencral practice, he established relations with the foremost agriculturists abroad and at home, and made his department a useful and raluable exponent of the best knowledge of the time. His masterly conduct of the page during the next five years set a high standarl for journalism in this field, and established his reputation as a specialist in agriculture and cornate subjects. On the founding of "Garden and Furest" in I888, William A. Stiles was invited to be the mauaging editor. For nearly ten
years, to the close of his life, he devoted himself to this journal through vigorous editorial writing and management, and steadily maintained the bigh character of the most able and influeutial periodical in American horticultural journalism. His ripe scholarship, sound judgment, masterly use of English, and persistent energy, all contributed to the success of this part of his lifework, and his profound, sympathetic understanding of contact with nature as a human and spiritual need, characterized all his activities. For mauy years he rendered conspicuous service in working for the establishment of small parks easily accessible to the poor, and for the wise conduct of the larger parks and their preservation from invasion and despoilment. His special ability and influence received public recognition in 1895, when he was appointed a park commissioner of New York city, a position iu which he rendered signal and valuakle service until the time of his death. William A. Stiles was unmarried. He had a fund of inimitable wit and humor, and was the warm and honored friend of the best men and women in the communities in which be lived. M. B. Coulston.

STILLINGIA (after Dr. Benj. Stillingfleet, an English botanist). Euphorbideere. Abont 15 species of herbs or shrubs from North and South America with alternate, stipulate leaves and small, monorcious, apetalous flowers in terminal spikes. The genus is closely allied to Sapium, but differs mainly in the fruit, which in Stillingia is of 2-3 dry 1 -seeded carpels with no central axis remaining after dehiscence lut with a large, persistent, 3 -horned receptacle, while in Sapium the fruit dehisces by splitting down the back of each carpel, leaving a 3 -winged central axis to which the seed is for a long tinse persistent: the large receptacle is also wanting in Sapium.
sylvática, Linn. Queen's Delight. A half-hardy perennial herb with a woody root: stems elustered, $2-3 \mathrm{ft}$. high: lvs. numerous, very short-petioled or sessile, linear-lanceolate to ohovate, ohtusely serrate: Hs. yellowish, in terminal spikes. Spring to fall. Southern states. According to Mueller's "Select Extra Tropical Plants," the root is extensively used for its emetic and purgative properties. C. D. Beadle reports that the plant has stood a temperature of $-9^{\circ}$ at Biltmore, N. C. The plant grows readily from seed, bit does not bear transplanting well.

For S. sebiferum, see Sapium sebiferum.

## F. W. BARCLAY.

STIPA (Greek, stipe, tow; in allusion to the plumose awns of one of the original species). Graminer. A large genus of about 100 species, throughout the world except the colder parts. They are particularly characteristic of the plains, savannas and steppes. The long, sharp-pointed awns of some species are troublesome or eren dangerous to stock, especially sheep, on account of their tendeney to work through the skin and into the vital organs. Perennial grasses with narrow involute leaves and loose panicles: spikelets l-fld.; empty glumes membranaceous, longer than the indurated fl.glume; fl.-glume with a sharp hairy callus below and a stout persistent twisted awn above. At maturity the fl.glume falls away from the empty glumes. The species here mentioned are cultivated for ornament, including the making of dry bouquets.
pennàta, Linn. Feather Grass. Culms 2-3 ft., in bunches: empty glumes narrowed into awns an inch or more long: fl.-glume $\frac{1 / 2}{2}$ in. or more long; awn a foot or more long, lower portion smooth and twisted, the upper very plmmose, giving the panicle a very feathery ornamental appearance. Steppes of Europe and Siberia. Gn. 9, p. 199. V. 3:247. R.H. 1890, p. 489.
elegantissima, Labill. Stems 2-3 feet, erect from a horizontal rhizome: lvs, narrow and erect: panicle very loose, 6-8 in. long, very plumose: spikelets 4-6 lines long; awn 11/4 in. long. Thrives in sandy soil. Anstralia.
tenacissima, Linn. Esparto Grass. Culms 2-3 ft., in hunches: IVs, narrow, smooth, cylindrical, elongated: panicles contracted, 2-cleft: fl,-glume awned between teeth; awn l-2 in. Spain and North Africa. The lvs.
furnish fiber from which are made ropes, mats, paper, etc. In Africa it is called Halfa or Alfa.
spártea, Trin. Porclpine Grass. Culms 2-3 ft., in bnnches: panicles coutracted; empty glumes broad, nerved, about $11 / 3$ in., tapering to a slender point: fl. glume nearly 1 in. ; awn usually about 6 in . long, the lower half erect, pubescent and strongly twisted, the upper half hent to one side, rough. Illinois to Califormia.
capillata, Linn. Similar to S. spartea: flowers more numerous but smaller in every way: fl.-glume about $1 / 2$ in. long; lower part of awn only minutely pubescent, and the upper or bent portion simuous. Plains, Europe.
A. S. Hitchcock.

## ST. JOHN'S WORT. Hypericum.

STOBAEA (after D. Stobæus, a Swedish patron of Linnaus). Composito. This gewus is included by Bentham and Hooker under Berkheya. Ahout 70 species of South African herbs or somewhat shrubby plants, commonly with aspect of thistles as to the foliage. Lrs. usually decurrent, dentate, pinnatifid or pinnatisect, the lobes dentate and spiny: heads small to large, solitary or somewhat corymbose; rays usually yellow.
purpùrea, DC. (Berkhèya purpùrea, Benth. \& Hook.). A half-hardy, probabiy biennial plant $2-3 \mathrm{ft}$. higb: lower lvs. about 1 ft . loug, irregularly loked, spiny on the margins, cottony beneath, dark green above: stemlvs, swaller, long-decurrent: fl.-heads 3 in. across, purple to white, resembling a single dahlia. G.C. $1872: 1261$. -To be recommended for growing with half-hardy alpincs. It can be wintered in a coldframe. Prop. by seed and division.
F. W. Barclay.

STOCKS (for botany, see Matthiola. Fig. 2401; also compare Figs. 424, 1377 and 2402) are divided iuto two groups, Summer and Winter Stocks. The former are annuals and therefore hloom in the first summer; the latter are biennials and hloom in the second year, or, if sown very early, late in the fall or the winter of the first year. Fall or intermediate Stocks are between these two groups; they bloom profusely in the autumn.

The seed of the Summer Stocks, or, as they are commouly called, "Ten Weeks' Stocks," is sown from the end of February until April, mostly in a lukewarm hotbed, which must be sunny and well aired. Good clean garden soil, well mixed with sand and free of manure, is the proper soil for sowing the seed in. The seed will germinate in 6-10 days, the light-seeded sorts germinating quicker than the dark-seeded kinds. Air must be admitted as soou as the seeds have sprouted, a great deal in warm weather and less when the weather is raw, until finally the sash can be entirely removed during the day. If the seedlings need water it should be given in the morning, so that they are dry at night. If the sun is hot the seedlings must he shaded. If the seed is to be raised from pot-grown plants a good, well-matured, sandy garden soil should he used which contains au admixture of well-rotted sod or the soil taken from river bottoms. The pots are about 6 inches high, with a diameter of 7 inches. When they show their fourth leaf the seedlings are planted firmly into these pots with a dibber, pots being well filled with the above soil; care should be taken that the roots are inserted vertically. From 6 to 8 plants are put into such a pot. These pots are then placed on sunny stages, usually protected by tilt-roofs. The development of the plants depends now principally on careful watering, which is done mostly with watering pots and at the beginuiug with a fine spray attached to the spont of the watering pot. After a crust has formed on the top of the soil, the spray is discontinued aud the pots are watered with the pipe of the can. This watering is done at night during warm weather and in the morning when the weather is cold. Very little watering is done in continuonsly cloudy or rainy weather. The watering of the Stocks is the most particular and important part in the cultivation in pots, for if due care is not exercised a white maggot will make its appearance while the plants are in bud and destroy the roots. The common flea-beetle

2401. Double Stock, Matthiola incana, var, annua ( $\times 1 / 3$ ).
is another of the enemies of Stocks; this often appears in large numbers and eats the leaves of the young plants. Frequent syringing with water is the only remedy found so far against these pests when they infest Stocks.

After the plants hare been in bloom for some time the double-tlowering specimens are cut out and the watering is continued carefully until the seed-pods which form on the single plants show indications of ripening, which is in October. The plants are then pulled and tied in bundles, which are husg up in dry sbeds until the middle or the latter part of November and December, in which time the seed fully matures in the pods. Now comes the most important part of seed-saving of Stocks. The bundles of plants are taken down, the roots and part of the stems cnt off, and the stalks are taken in hand hy expert gardeners, who sort them, for common seed and also for the seed stock. The pods indicate by their shape, size and form whether the seeds contained therein will produce a bigh percentage of double flowers the following year, and the selection is done with care. The seed that will go on the market can be vastly improved by the removal of "wild" pods, which contain seeds that produce nothing hut single flowers. The seells are removed by hund from the pods, mostly by women and children. Carl Cropp.

The donble-flowered varieties of Matthiola incana, var. annue, commouly known as "Teu Weeks'" or "Summer Flowering Stocks," are among the most fragrant and pleasing of common garden annnals. They are readily raised from seed sown in a gentle hotbed abont the first week in April, keeping them close for a few days until germinated, gradnally innring them to an abundance of air as they increase in size, and finally, towards the end of May, transferring them to the flower garden or border where they are intended to flower, choosing a dnll or showery day for the purpose.

The varieties of $M$. incana, though perennial in their native babitat, are best treatel here as annuals, and are well worth growing as pot-plants, either for cutting or the decoration of the conservatory during the winter

2402. Wallflower-Cheiranthus Cheiri, for contrast with Stock, with which it is often confounded ( $\times 1 / 3$ ).
The flowers are yellow or copper-colored, and the leaves thitaner, narrower and more acute than those of the Stock.
and early spring months. They are known in the trade in this country as "Boston Florists* Stock," "Princess Alice," "Cut-and-come-again," "East Lothian" and "Brompton Stocks." Though they are as readily propagated from seed as the "Ten Weeks' Stocks," they require a much longer period of time to grow; therefore, those intended for early winter flowering shonld be sown in June, while those intended for spring flowering should be sown ahout the middle of August. Fill a number of 3 -inch pots with sifted loam and plant about three seeds in each pot; place them in a close shaded frame till germinated; as soon as they commence to grow reduce the seedlings to one in each pot. They must not be allowed to suffer for water at any time or they will lose their leaves. As soon as the pots are fairly well filled with roots (though they mnst not become potbound), they should be shifted on into larger sizes until they reach a 6 - or 7 -inch pot. The soil hest suited to them is a rich, heary loam. As soon as the plants show signs of flowering they are greatly benefited by an occasional watering of weak liquid cow or sheep manure water. Those sown in June shonld he grown ontside until the approach of cold weather, when they shonld be transferred to the house where they are intended to flower, while those sown in August should be grown on in coldframes until very cold weather sets in, when they should be placed in a cool-house, keeping them at a temperature of about $45^{\circ}$. Stocks while growing in the greenhouse are very subject to the attacks of green-and black-fly; they should, therefore, be fumigated at least once in two weeks, or shonld have tobaeco stems placed among the pots.

Seed of both M. anmza and M. incana is imported from Germany, prineipally Erfurt and Quedlinhurg, where plants are specially grown for seed which will prodnce double tlowers (see Gardener's Chronicle, 1866, p. 74; also Dr. M. T. Masters' Vegetable Teratology Appendix).

Edward J. Canning.

STOCK, TEN WEEKS'. See Stocks and Matthiola і้леина, var. ажння.

## STOCK, VIRGINIAN. Malcomia maritima.

STOKES' ASTER. See Stokesia.
STOKE: A (Jonathan Stokes, M.D., 1755-1831, English botar st). Composite. STOKES Aster is one of the rarest, choicest and most distinct of American hardy perennial herbs. It is a blue-Hld. plant about a foot high which at first glance has points in common with China asters, centanreas and chicory. The beads are 3 or 4 in, across in cultivation. The marginal row of flowers is composed of about 15 ray-like corollas, which have a very short tube at the base and are much broadened at the apex and cut into 5 long, narrow strips.

Stokes' Aster is hardy as far north as Rochester, N. Y., and Boston, Mass. Probably many persons have been deterred from trying it because it is native ouly to South Carolina and Georgia, and because it is considered a greenhouse subject in some standard works on gardening. The fact that it is found wild in wet pine barrens is also deceptive, for the roots, as Woolson and Keller testify, will decay if water stands on the soil in winter. Moreover, the plant has been praised by Meehan for its drought-resisting qualities. Stokes' Aster should be planted in a well-drained, sandy loam, not in cold and heary clay. It blooms from August until hard frost. According to Chapman, the heads of wild specimens are only an inch across, but the size of heads in cultivated plants is stated by many horticultural experts to be 3-4 in. across. J. B. Keller writes that Stokes' Aster is frequently used for cut-Howers. In the wild the heads are few in a cluster or solitary; in cultivation a good branch sometimes bears as many as 9 heads. No double form seems to have appeared.

Generic characters: heads many-fld.: marginal fls. much larger, deeply 5 -cut: involucre subglobose; outer bracts prolonged into a large, leafy, bristly-fringed appendage: akene 3-4-angled, smooth: pappus of $4-5$ thread-like, deciduous scales.
cyànea, L'Hérit. Stokes' Aster. Fig. 2403. Muchbranched, hardy perennial herb, $1-2 \mathrm{ft}$. high: branches often purplish: Ivs lanceolate; radical ones entire, tapering at the base into long, flattened stalks; cauline lvs. gradually becoming sessile, the uppermost with a few teeth near the base and half-clasping: fls, blue or purplish blue, 3-4 in, across. Ang.-Oct. Ga., S. C. B.M. 4966. Mn. 5, p. 214. R.H. 1863:211. W. M.

## STONECROP. See Sedum.

STORAGE. Various ideals are confused under the denomination of storage. There are two kinds of storage: (1) Common or non-refrigerator storage, employed mostly for holding perishable commodities temporarily; (2) cold storage, in which low and even temperatnres are maintained by some refrigerating process. The common storage, without refrigeration, may be again divided into two species: $(a)$ the storage may be only a temporary balt, or a half-way station, on the way to the shipping point, and where products are kejt for a day or are sorted and packed; (b) it may be a storing of products that are waiting for improved market conditions, and in which an effort is made to maintain a relatively low and uniform temperature. In this latter kind of storage, the low temperature is usually secured (1) by means of a cellar or basement building; or (2) by means of controlling air-currents and ventilation. This second type of storage, under favorable conditions, reaches approximately the same efficiency as temporary cold storage.

A few sperific examples will illustrate some of the ideals and the means of attaining them. Fig. 2404 shows a cellar storehonse, such as is nsed by nurserynmen. Sometimes these buildings are employed for the storing of apples and other products. Usually the floor is two or three feet below the level of the ground.

The house shown in Fig. 2405 is built on a side hill, and the basement or cellar is used for the storage of grapes, the first floor is used for packiug, and the second floor or attic for the storage of baskets, crates, and the like. This building measures $25 \times 60$ feet over

2403. Stokesia cyanea $(\times 1 / 3)$.
all. The foundation walls are 24 inches thick, and the cellar is provided with ample rentilation by several outside windows, and also by means of a chimney that runs from near the middle of the cellar up through the roof. The floor is of earth. By means of careful attention to rentilation, this cellar can be kept at $50^{\circ}$ or below during September and October, and is frost-proof through the winter. The windows are provided with close-ftting screens to keep ont rats and squirrels. This cellar will easily hold fifty tons of grapes in the picking trays. The first floor is divided into two rooms, the front one being a packing-room 25 feet square, and the back room a storage and shipping department $25 \times 35$ feet. This front packing-room is provided with heat and is lighted by seven large windows. The floor chove the cellar is donble and made of $11 / 4$-inch matehed pine, with an abundant air space between the two layers. This, therefore, protects the cellar from sudden fluctuations of temperature. The building is also shaded, especially from the afternoon sun, by large trees. This building can be erected in New York for about $\$ 1,200$. It has 18 -foot

2404. A half-cellar storage.
posts, a tin roof, the two rooms in the first floor ceiled with pine. but the top floor not ceiled.

An apple storehouse in Grand Isle, Vt., is shown in Figs. 2406 and 2407, aud is described by Waugh (Bull. 55, Vt. Exp. Sta.) :
"The fruit house is huilt on high and dry ground. The cellar was three feet, aud dirt taken from this was used to bank up aromud the wall. The wall is solid stone and mortar, is 5 feet bigh, 21/2 feet wide at the bottom, and 2 feet at the top; 2 -inch plank for sills on this, bedded in mortar, doubled so as to break joints; 2 by 4 studding abore this; outside of stuading matched pine, then paper, and then clapboards, painted; in middle of studding, lath and plaster ; inside of studding, matehed pine, then paper, and then $1 / 2$-inch sheathing, painted. This gives two hollow walls, or dead-air spaces. For ventilating, there is one ventilator from cellar to the observatory on top of building, which has four large window frames, with blinds, but no tight windows. The ventilator cpens into both storage roons. We have three 18 -inch windows on east and west sides of buiding in the cellar, and three large windows in west side, next to storeroom. Both floors are double, with paper between, and the second room is ceiled overhead with matched spruce, and painted. The two windows on east side show in cut, with the outside doors."

The following sketch of a home storage plant is reprinted from Bull. 74, W. Va. Experiment Station, by
at either side of the building, with the storage room between and below the ice rooms. See plan of such an arraugement in Figs. 2408 and side elevation in Fig. 2409.
"The stone wall must have a lining in order to provide a dead-air space between it and the storage room. This can be secured by placing $2 \times 4$ studding against the stone wall, covering this with a durable waterproof paper, placing l-inch strips outside of this aud corering all with flooring. This will give two small air spaces betwren the stone or brick wall and the storage chamber. See Fig. 2409, cross section of such a wall. The jee chambers should extend the whole length of the building or storeroom. They may be as narrow as six feet, but eight feet will increase their capacity and cooling power. The floors in these rooms should be made of metal overlaid with $2 x 4$ 's set on edge, the metal floor so arranged as to allow a free passage of air from the ice chamber into the storage room. As cold air naturally falls the slat floor in the second-story wareroom will give direct circulation into the lower wareroom, and both be cooled in consequence. The floor structure must be strong and well braced so as to carry the heary load placed upon it. Heary staging carrying $2 \times 12$ joists 18 inches apart, and floored with 2x4's one inch apart, will gise ample support for the ice cbambers and second-story wareroom. The roof to the second-story room should be built so as to make it as near a non-conductor of heat as possible. Dead-air spaces are the cheapest and most easily constructed nou-conductors. This is essential in the ceiling, as it has the double duty to perform of holding the cold in and keeping the heat out. A large, well-rentilated attic space shoult be provided and, if possible, a shingle or slate roof used in place of metal. The ceiling in the second story must be provided with rentilator sliafts carrying good dampers so that perfect ventilation can be secured during cold weather. Provision should be made the winter before for sufficient ice to cool the warerooms each fall before the fruit is brought in from the orehard. This will necessitate the construction of a reservoir and ice house with capacity sufficient to fill the ice chambers. It is not advisable, iu the writer's judgment, to
L. C. Corbett: "In localities where field stone are plentiful, a satisfactory, durable and moderate-cost house can be built in the form of a bank cellar by using these stone in cement, making a grout wall. Such a wall can be constructed by unskilled workmen if properly laid out in the beginning. The plan to follow is to use broad 2 -inch planks, held in place by substantial staging to form a box having a width of the thickness of the desired wall-say 18 or 22 inches. Into this hox lay the dry stones, arranging them somewhat if large, but if small they may be thrown in with a shovel. Put in a layer 6 to 10 inches thick, then pour in thin mortar composed of good lime and cement until the box is filled sufficiently to imbed the stone. Repeat the operation, moving the planks uptrards as the mortar sets until a wall of desired height has been built. Silo walls have been built in this fashion which were 22 feet tall, and were as solid as one continuous stone when completed. The mortar must be thin and rich in lime or cement. Lime will answer, but it is slower to set than cement, and for that reason less desirable. Such a wall can be built for about one-half the cost of the ordinary rubble wall, and will answer in every way as well.
"Ample means of ventilation must be provided in order that nature may be turned to assistance in reducing the temperature of the house tis much as possible. Sewer pipes leading for some distance muder ground and provided with proper stops or dampers can be very effectively used to assist in reducing the temperature during frosty wights. In addition to this the second story of the honse shonld be proviled with one or two ice rooms, according to the width of the house. The writer is inclined to faror two narrow ice rooms, one

2405. Grape storehouse, with packing-rooms on first floor, New York. use the ice chambers as ice honses for storing ice; they are merely ice chests to be used to cool the warerooms and fruit as it comes from the orchard. Consequently they can be made much smaller than would be neces. sary were they to serve the double purpose of cold chamber and ice house."
Many small storage houses, located near railway stations, are now to be seen in the fruit sections of the country. One of these is shown in Fig. 2410. In storehouses, apples are usually stored in barrels that are piled on their sides. Fig.2411. It is a common practice to re-sort apples in storage. Fig. 2412.
L. H. B.

Refrigeration or cold storage is the name given to the preservation of perishable products, such as fruits and other organic foodstuffs, at a temperature so low as to arrest the action of ferments and monld, and yet not Iow enough to destroy the flavor or cellular structure of the material so stored.

This process of preserving organic substances has been known since the earliest civilization, and while it was used to a limited extent in those localities where an abundant supply of natural ice was available, the process did not come into general use until the machinery for producing artificial cold and artificial ice was perfected. Various principles have been employed in the development of this machinery, but all have involved the fundamental idea of the condensing of a tras and the heating of it on again expanding, when it ta is up the latent heat of compartments in which surh expansion takes place. For this purpose carbon anly drate and ammonia anhydrate hase chiefly been 1 "thployed. After the cooling has been effected by artifien.1
means or by ice, cold storage can ouly be accomplished by matintaining a desired temperature over a long period. In order to secure this, the compartmeuts in which the products for storage are to be held must be as perfectly insulated from outside heat as possible.

Successful experimental refrigeration by mechanical means was aceomplished as early as the middle of the eighteenth century, but no successful commercial application of colk storage was made until after the invention of Lowe's "carbonic acid" machine in 1867 , although the present growth of the industry is due to the invention of the anumonia compression machine by Professor Carl Linde in 1875.

The process was first extersively applied to the preservation of meats, fish, etc., but as early as 1881 the Mechanical Refrigerating Company of Boston opened a cold storage marehouse, which marks the beginning of mechanical refrigeration as applied to horticultural products. Other companies were then organized, until now there are about 1,200 refrigerating 1 -lants in the United States, of which about 600 are used mostly for horticultural products. Foreign countries are now following the example of the United States, and London, Liverpool, Glasgow, Paris aud other European cities offer facilities for storing such products. In the United States, Cbicago is the great center for fruit storage, single firms holding as many as 100,000 barrels a year. Apples are the principal storage fruit, good winter sorts holding their form, color and favor better than any other commercial fruit when beld for long periods in cold storage. Another reason why the apple is a favorite in cold storage is that people use it continnously over a long period. A good apple is always a relish. The apple, too, is the fruit which best pays the producer to hold in cold storage.

From the nature of the case, mechanical refrigeration will usually be confined to transoceanic trade, and to cities and towns where the principal business of the

2407. Structural details of the building shown in Fig. 2406.
refrigerating machinery will be the production of ice for commercial and domestic use, the cold storuge warehouse heing a side issue to ice-making. The fruit-grower who wishes to avail himself of the adrantages of cold storage must either ship his product to the city or depend upon natural ice to reduce the temperature of his warelouse. If he is in a climate where a supply of natural ice is available, his most economical plan is to make provision to use it. If in the far South he must own an ice plant or purchase artificial ice.

To successfully handle peaches and plums in carlots, one must nowadays have a supply of ice in order to avail oneself of the best service of the Fruit-Growers' Express or other lines The cars come iced, it is true, but before starting them on their journey it is safest for the grower to have a sufficient supply of ice to fill the

To hold apples from harvest time until the oversupply of the season shall hare been removed, requires storage rooms artificially cooled to a temperature sufficiently low to check the process of ripening, which is in reality the conversion of the starch of the immature fruit into sugar. As long as the starch remains as such, fermentation and decay cannot act, but as soon as sufficient water and heat are added to convert the starch into sugar, ripening proceeds until fermentation and decay complete the work. The object of cold storage, then, is to check the ripening process, or, if the fruit is ripe, to maintain a temperature sufficiently low to check fermentation. Theoretically, then, green or immature fruits will keep better than ripe ones. Green fruits should keep as well at $36^{\circ}$ as a ripe frnit at $32^{\circ}$, and this is in accord with experience.

To successfully hold fruit in cold storage, three conditions are essential: (I) a low temperature; (2) an even temperature, and (3) sufficient moisture to prevent shrinkage, thus keeping the fruits plump and crisp. Even in storage rooms in which the humidity of the air remains saturated, as indicated hy the ordinary wet- and dry-bulb thermometer, considerable loss of moisture will take place from fruits stored in crates or open bins, while much less is lost by those stored in tight receptacles. Indiridual Baldwin apples under observation in a room at $32^{\circ} \mathrm{F}$., from January 4 to

April 20, showed losses as follows: Open shelves, 5.364 grams; in sealed cuns, 602 grams; or a difference of 4.762 grams in faror of the sealed cans. This at least suggests the possibility of checking loss in mejght hy the ase of non-porous storage receptacles. Barrels do not have any marked effect in cheeking this loss, as frnits stored in headed and open barrels differed only one-half pound in amoment of loss during a period of 147 lays, the total loss being $41 / 2$ pounds on a barrel of $139 \frac{1}{2}$ pounds weight when placed in storage.

The efficiency of a cold storage house depends more upon the construction of the walls than any other single feature. Perfect insulation is the ideal niark at which to aim. The more perfect the honse in this respect, the less wear upon the machinery when refrigerating apparatus is used, and the greater the economy in ice when ice is used. 'To accomplish this, non-conductors of beat

2408. Plan of a home-built iced storehouse.

First floor in upper eut; basement in lower ent.
should be used as far as possible in the details of construction. For this purpose brick is superior to stone, and wood is a better non-conductor than either. For permanence, however, efficiency in this respect unst be sacrificed. But as confined air may be better than an artificial substance, by multiplying the layers or partitions in a wall "dead-air spaces" can be increased and nearly perfect insulation secured. For the practical orehardixt, however, cost must he considered, and if wood and paper can be mate to take the place of brick at a sumiciently less cost, permanence may be overlouked. This can be done, and with these cheap materials rery satisfactory results obtained. After proper insulation comes ventilation. With ice-cooled houses advantage should be taken of all assistance which nature can lend. With proper ventilating shafts for carrying off heat and moisture and ample subterranean pipes arranged to atmit chilled air from naturally cool places such as ravines, the temperature of the house can be greatly lowered during frosty nights, and the store of ice husbanded to that extent. Daring the winter months ontside cold can be admitted and housed up to maintain a low temperature far into the summer. The cold storage of apples has now grown to he sucli an important factor in the markets that reports are made from time to time to give an idea of the quantity of frait available and to be used as rational basis for fixing the selling prire of apples at any given season.

The following, figures, as reported by the National Apple Shippers' Association, will serve to show, not only the method, but the magnitude of the storage business as well:

| Year. | Common storage. Barrels. | Cold storage. Barrels. |
| :---: | :---: | :---: |
| December 1, 1898. | 400,000 | $800,000$ |
| Wecember 1, 1899. | 634,500 | 1,51 |
| December 1, 1900. | 792,000 | 1,225,000 |

The following table, which gives the range of prices paid for apples from the end of the picking season to the end of the storage season fur the years 1896 to 1900 , inclusive, is complied from the wrekly market reports on the Baldwin apple for New York city as published in the Americun Agriculturist:

| Month. <br> Nov. 1 | 1896-7. | $\begin{gathered} \text { Season of } \\ 189 i-8 . \end{gathered}$ | 1598-9. |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | \$1.00 | \$2.50 to \$2.00 | \$2.50 to w 75 |
| lee. 1. | . 85 to \$1.00 | 2.50 to 3.00 | 3.00 to 4.00 |
| dant. | 1.00 to 1.12 | 2.00 to 3.50 | 3.00 to 3.50 |
| Feb. 1 | 1.00 to 1.50 | 2.50 to 3.75 | 4.00 to 4.50 |
| March 1 | 125 to 1.50 | 2.50 to 3.50 | 2.50 to 4.50 |
| April 1. | 125 to 1.50 | 2.50 to 3.50 | 4.00 to 4.50 |
| May 1.. | 1.50 to 2.50 | 2.75 to 3.75 | 3.75 to 4.50 |
|  | Month. | $\begin{gathered} 1899-101 . \\ \$ 1.45 \text { to } \$ 2.00 \end{gathered}$ | 1300-01. |
| Nov. 1 |  |  | \$1.25 to \$1.50 |
| Dee. 1. |  | 1.25 to 2.35 | 200 to 2.50 |
| Jan. 1. |  | 2.00 to 2.75 | 2.75 to 3.00 |
| Feb. 1 |  | 3.00 to 3.50 | 1.75 to 3.25 |
| Mareb 1 |  | 2.50 to 3.50 | 2.25 to 3.50 |
| April 1. |  | 3.50 to 4.25 |  |
| May 1. |  | 4.00 to 4.75 |  |

Ben Davis ranged higher at the close of the storage season, but as it was lifficult to secnre consecutive reports of that apple the Baldwin was chosen instead.

This indicates the margin of profit there is for the producer in hodding his fruit in eold storage. The average is $32.371 / 2$ per barrel, which gives the aggregate of $\$ 2,899,375$ on the apples in cold storage luring the year 1900.

The apple, grape anil pear are important cold storage fruits in eastern United States. The great profit of cold storage to the grower has come through enabling him to withhold high-grate fruits, and eren varieties which keep poorly in common storage, from the market at harvest time. Desirable sorts which are normally ont of market ly Thanksgiving time can be held nuch longer in cold storage and the profit from them greatly increased. The ideathat summer sorts can be made to do duty as winter sorts through the agency of cold storage cannot be realized. For the best results only the choicest specimens of the winter sorts should be allowed to go into storage outside the farm warehouse.

Besides the great revolution and development in apple growing which has resulted from the addi. tion of cold storage to the trade, a corresponding growth and spread of the peach, strawberry, eherry and plom industry have resulted from the development of the refrigerator car service. As early as 1865 attempts were made to carry perishable products snch as peaches, raspberries and strawberries long distances in refrigerating boxes and artificially cooled cars. While these early experiments must be counted as failures, they led up to the present extensive fruit transportation business, which is condreted on the same idea as the Pullman sleeping car - that is, of providing refrigerating cars, which run orer certain roads, gathering the fruit from areas having a large ontput, re-icing the cars at given points, and earrying the product for many days in good ordex. The development of this industry was Hue to the skill of Mr. F. A. Thomas, of Chicago, in coöperation wirh

2409. Detail of wall of storehouse.
a. Flooring: $b$, furring strip: $c$, paper ; d, 2x4i e, 18-inch stone wall. Parker Earle, then of Coblen, III.

With the application of refrigeration to the storage room of ocean liners, Australia, Tasmania and New South Wales become our competitors in the apple and orange markets of the morld. This business has long
since passed the stage of an experiment, and the annual tomnage of sneh products is rapidly increasing. It is no longer ago than 1880 that the Oceana carried the first cargo of apples in cold storage from Nelhourne to England, and the first cargo of West India frnits was carriel in 1880 by the slip Nonpareil. Now California is able to ship peaches and plums in refrigerator cars to New York, and thence to Liverpool by cold storage on shipboard, and put the products in good order on the English markets. With refrigeration, time is of less importance than rehandling, shaking and a constant temperature.
storage machinery has been greatly modified during the past two years. Small condensers, propelled by gas engines, water-motors and even windmills, are now available for use in hotels, meat shops and places where constant cold is needed. While these small plants have not been used in private storage houses with limiterl capacity, there is no good reason why they should not be. In large cities central refrigerating plants distribute chilled brine through properly insulated pipes to dealers and commission men, much after the manner of water aud gas. The dealer is then independent of the market, and if a consignment of fruit is received too late for the week's trade it can be held in the cold roon with security for the Monday morning market. With this plan, a large number of dealers in the business quarter of any city can be supplied with cold at a moderate cost from a single central station.

In modern cold storage two systems are in common use: one is known as the "direct expansion system," and operates by allowing the compressed gas to expand in coils of pipes placed in the roon to be cooled; the other is known as the "brine circulation system," and operates by pamping chilled brine of one of the salts, sodium, calcium or potassium chloride, through coils of pipe in the room to be cooled. Buth these systems present objections, which are of greater moment to the horticulturist than to any other class nsing coll storage. The temperature in the immediate neighiorhood of the cooled coils is so low as to freeze the fruit stored there. In order to overcome this, a system in which no pipes are placed in the chilled or storage room has been derised. A coil of pipe is arranged for direct expansion and the air of the room to be cooled is drawn out by a fan, passed over the chilled pipes, the temperature lowered, and again carried back to the cold room into which it is distributed from the ceiling by large wooden conduits with numerous dampers and openings, so that the cold can be distributed evenly through the room by the constantly moving air. With this arrangement the temperature can be kept constant and uniform throughout all parts of the room, and there is no loss from freezing.

The following table of temperatures, compiled from experience of practical storage men, will serve as a guide for storing horticultural products:

| Articles. | Remarks. | Degrees F. |
| :---: | :---: | :---: |
| Apples.. |  | 32-34 |
| Bananas |  | 34-36 |
| Berries, fre | or four | 34-36 |
| Canteloupes. | ly about th | 32 |
| Cranberries. |  | -34 |
| Dates, figs, e |  |  |
| Fruits, dried |  | 35-40 |
| Grapes. |  | 33-36 |
| Lemons |  | 34-40 |
| Oranges |  |  |
| Peaches |  | 35-45 |
| Pears. |  | 36-40 |
| Watermelc | - | 32 |
| Asparagus |  |  |
| Cabbage |  | 32-34 |
| Carrots |  | 33-34 |
|  |  |  |
| Dried beans. |  | 32-40 |
| Dried peas.. |  |  |
| Onions |  | 32-34 |
| Parsinips |  | 33-34 |
| Potatoes |  | 34-36 |
|  |  |  |

"Asparagus, cabbage, carrots, and celery are carried with 'little humidity; parsnips and salsify same as onions and potatoes, except that they may be frozen without detriment.
"Apples when stored in barrels should not he stored on ends, but preferably on their sides. Fig. 2411. A temperature of $33^{\circ}$ is considered most favorable.
"In general, green fruits and vegetables should not be allowed to wither. Citrous fruits and regetables should be kept dry nntil the skin loses its moisture; then the drying process should be immediately checked. For bananas no rule can be made. The exigencies of the market must govern the ripening process, which can be manipulated almost at will.
"Fruits, especially tender fruits, should be placed in cold storage just when they are ripe. They will keep better than if put in when not fully ripe. Pears will stand as low a temperature as $33^{\circ}$. Sour fruit will not bear as much cold as sweet iruit. Catawba grapes will suffer no harm at $26^{\circ}$, while $32^{\circ}$ will be as cold as is safe for a lemon.
"The spoiling of fruit at a temperature below $40^{\circ} \mathrm{F}$.

2410. A storage house in western New York, built with particular reference to storing apples.
is due to moisture. In storing apples, eight to ter cubic feet storage room space is allowed per barrel, and twenty to twenty-five tons daily refrigerating capacity per 10 , 000 barrels."
L. C. Corbett.

Treatment of Fruits Intended for Cold Storage. - Cold storage has come to be a factor of prime importance in the marketing of many fruits, especially in apples, pears and grapes. With the more perishable fruits, like berries, peaches and plums, it is but little used, largely for the following reason: The action of cold in preserving fruits depends on two things; first, it retards those normal bio-chemical changes in the tissues of the fruit that are concerned in the process of ripening. It is a matter of common observation that apples, for instance, stored in a warm room ripen and become mellow much quicker than those in a cold cellar. Secoud, if the degree of cold is sufficient, it prevents partially or entirely the growth of those bacteria and fungi that cause decay. In peaches and other perishable fruits the changes concerned in the normal process of ripening take place much more rapidly than in wiuter apples or other fruits that are naturally good keepers. By the time the more perishable fruits reach market, in the ordinary course of eveuts, these changes have already progressed so far that it is necessary to dispose of the fruit at once in order to avoid loss. If, now, market conditions are unfavorable and it is decided to place the fruit in cold storage to hold it for a better market, the chances are against success, for the ripeuing changes have already progressed almost to the limit of safety and, while the cold checks, it does not entirely prevent them. The nsual result is that, even though they may look fairly well while still in the cold chamber, the goods go down quickly on reaching the warm outside air. When for any reason it is desirable to hold perishable fruits in cold storage, it is essential that great care be nsed in selecting only perfectly sound, full-grown but unripe specimens, and that these be placed as soon as possible after picking in a refrigerator car or an ice-box for
transportation to the storage rooms. No perishable fruit that bas been exposed to ordinary temperatures for twenty-four hours after picking is in fit condition for storage. Too many people bave made the mistake of supposing that by placing fruits on ice they could, as it were, rejuvenate them and that they would come out sound and firm even if at the point of decay when they went in. It should he horne in mind that the life or keeping quality of any fruit is self-limited, that the processes of ripening and subsequent deterioration are constantly going forward, and that the best that we can do by cold storage is to retard them; we cannot prevent them entirely.

These considerations apply with equal force to the storage of those fruits that are naturally good keepers. Grapes and pears, if the weather is warm, should always be shipped to the point of storage in refrigerator cars, and in many cases this would doubtless be profitable even with apples. A week of warm weather after apples are gathered and while they are in transit will inevi tably so stimulate the ripening processes as to greatly impair their subsequent keeping quality, especially their ability to stand up and make a good showing after coming out of storage. Then, too, the exposure for even a few days to warm conditions after picking is sure to stimulate the growth of fungi and bacteria, thus starting many spots of incipient decay that cannot be entirely checked by subsequent refrigeration. It is probably safe to say that the keeping quality of any giren lot of apples depends as much on its bistory during the period from the time of pickiug till it goes into storage as upon any other factor.
F. S. Earle.

Management, Temperatures and Prices, -The rapid advancement of the cold storage industry should be of great interest to the horticulturist. It is now possible to secure all the benefits, with a comparatively small investment. Mechanical refrigeration is best accomplisbed by employing what is kuown as the compression ammonia process. Anhydrous ammouia, i. e., ammonia free from water and held in liquid form ouly under great pressure, is allowed to expand and vaporize in pipes submerged in brine. The ammonia, in changing from a liquid to a gaseons condition, absorbs the heat from the liquid in which the pipes are submerged. In this manner it can be brought to a temperature of zero, or lower. This cold liquid (brine) is circulated through pipes placed in the room or rooms that are to be re frigerated. The ammonia, after absorbing its quota of heat, is again compressed to a liquid coudition by mechanical means and used over and orer without limit, Any liquid that boils at a rery low temperature can be substituted for anmonia, but at the present, viewed from an economical aud practical standpoint, ammonia is given the preference. The temperature of a storage room is controlled by the volume and temperature of the brine circulated.

2411. The piling of barsels of apples in a cold storage house.

Apples are best preserved at a temperature of $30^{\circ} \mathrm{F}$, two below the freezing point. It is generally conceded that they shonld be taken from the tree as soon as matured and colored, immediately put in a cold room and the ahove temperature maintained until they are taken
out to be placed on the market. They will come out with a minimum amount of decay, crisp, full-flavored, and in condition to "stand up" much longer than if car ried at a bigher temperature. Bartlett pears put in while green and as soon as the stem will cleare from the twig, at a temperature of $32^{\circ}-33^{\circ}$, carry for two months to ten weeks. Yentilated barrels are sometimes

2412. Re-sorting apples in a storehouse.
used, but slatted busbel crates are preferable. Winter or late varieties of pears will carry much longer. Peaches and other stone fruits will take a temperature of $36^{\circ}$ and are not, as a mule, carried successfu'ly to exceed two weeks. They are very deceptive; tha outside will appear satisfactory, but the fruit will be tasteless, and around the pit it will be black and in a semi-decayed condition. Berries, one week to ten days at a temperature of $38^{\circ}$, will, if they are not bruised or broken, carry nicely and many times tide orer an orerstocked market.
Tomatoes, if sound, not broken or bruised, picked before they are thoronghly ripe, will, at a temperature of $40^{\circ}$, carry three to tive weeks. Celery, if dry and sound, should, at a temperature of $34^{\circ}$, carry from three to four mouths. Vegetables, such as carrots, parsoips and turnips, at a temperature of $34^{\circ}$, carry successfully until June or July; if decay has set in hefore the products are placed in cold storage it will not be entirely stopped hut only arrested iu a moderate degree, and to obtain any measure of success nothing but sound, perfect goods should be placed in the refrigerating rooms.
The following are the charges usually applied by those conducting public cold storages: Apples, 15 cents per bbl. first month, 10 cents each additional month; celery, 10 cents per case first month, 6 cents each additional month; cherries, $1 / 2$ cent per lb.; grapes, $1 / 3$ cent per 1 lb . first month, $1-5$ cent each additional month; maple sugar, $1 /+$ cent per 16 , first month, $1 / 6$ cent each additional month; pears, per bbl., same as apples; per $1 / 2 \mathrm{bbl}$, 10 cents first month, 7 cents each additional month; pears in bushel crates, same as in $1 / 2$ bbls.; quinces, same as apples; vegetables, 25 cents per bbl. first month, 15 cents each additional month; vegetables, per case, 15 cents tirst month, 10 cents each additional month. If in very large quantities, season rates are sometimes made at comparatively lower rates.

Mechanical refrigeration is surely of paramount importance to the producers of vegetables, fruits, eggs, butter, etc. It provides a means by which they are not compelled to accept ruinous prices of an overstocked market, nor obliged to sell when products are barvested, regardless of price, nor to force their products on the market in such quantities as to cuuse a glut. Instead of having supplies that must be sold within a few days, the horticulturist cau, by taking advantage of mechanical refrigeration, extend the market season fully 50 per cent, or until such time as the demand equals the supply.

Sameel R. Mott, Jr.
Practical Experience with Cold Storage.-The experience of those who have hal occasion to use cold storage is remarkably varied, scarcely two of them having formed the same impression in regard to its effect. But the very fact that perishable articles hare been preserved for long periods shows that there is at least one right way, and the managers of cold storage plants are learning what that right way is.

One great trouble has been that hardly two articles require the same temperature to keep in proper condi-
tion; in fact, the different varieties of apples require different degrees of temperature, and it took a long time to learn this. Again, it is almost impossible to maintain the same temperature in all parts of a large building or even in one large room. As a rule, each variety of fruit or veretable should have a separate room, and the keeper should know what degree of temperature is hest for each. Some varieties of apples hare the reputation of keeping better in cold storage than others, but it is only because one had a temperature suited to it and the other did not. A car-load of apples may have come from the orchard where the fruit had been exposed to the hot sun and attained a temperature of perhaps $80^{\circ}$ and was then placed in a room with other car-lots which were at the proper temperatnre. In twelve hours the temperature in the room would rise to $50^{\circ}$, and with the best of management it would require forty-eight hours to redace the temperature to the proper mark; this could not be otherwise than injurions to the entire lot.

It has not yet been fully settled what is the proper degree of temperature to le used in keeping the various fruits and vegetables. Keepers of cold storage plants differ somewhat on this point, and it is probable they all try to maintain a degree too low for most of our products. The writer believes the temperature most suitable for all (if we must use one for all products) would be $34^{\circ}$.

It is not important what kind of a building is used, whether wood, stoue or brick, but it is very desirable that it should be divided into many rooms, so that each product may be stored in a separate room; and where large quantities of apples are stored, each variety should occupy a separate room and the keeper should have perfect control of each room and know the required degree of temperature for each article and maintain it. When this is done, cold storage will be a great success.
J. C. Evans.

Refrigerator Cars. - The invention and development of the refrigerator car have proved to be very important factors in fruit production and marketing, making it possible to market in good coudition themost tender fruits two to three thousand miles from where they are grown, Prior to the days of the refrigerator car, strawberries if shipped by freight more than one or two hundred

2413. Icing cars (at the top) at one of the stations of the Fruit Growers' Express, Georgia.
miles usually arrived in bad order and were very unsatisfactory to both dealer and consnmer, and, except for the first few early shipments, prices were very low. It was only at the ripening of "home-grown strawberries" that for two or three weeks any market was satisfactorily supplied, and the public readily paid two and three times the price they would for "shipped-in berries" a few weeks earlier.

Now, with refrigerator cars of strawberries coming in from Florida in February and along up the coast till well into July, when the last strawherries come in from Maine and northern New York, berries just about as fresh and bright as "home-grown" are to be seen in all our eastern markets for a season of five months. Chicago and other western markets are in like manner supplied from Texas to northern Wisconsin and Michigan.

Without therefrigerator car, the great peach orchards of Georgia and Texas would not he practicable, as the most of their fruit must be sold at the North. The "peach season" now extends from May till November. The "seasous" of other fruits are likewise extended in a less degree, and the failure of the local crop in any one section now has little effect on the local market. Michigan or Missouri may be sending peaches to New York, Boston and Philadelphia one season on account of a failure of the crop in Delaware, New dersey and Connecticut; while the next year a failure of the crop at the West enables Connecticut, New Jersey and Delaware to return the compliment and supply Chicago, St. Louis and Minneapolis. Yet without the refrigerator car such reciprocity would be almost impossible, except in the most favorable seasons. The refrigerator car is really a great ice-chest on wheels. Most of these cars are constructed with ice-bunkers at each end of the ear, with a capacity of 4 to 6 tons of ice for each car. Fig. 2413.

One style has some two feet of the whole top of car as an ice-bunker, and is one of the best of cars if kept fully iced all the while in transit. Railroad people object to it slightly on account of being top-heary, and when not full the ice slides from one side to another going around curves, ete. Most of the leading railroads of the country own a number of refrigerator cars, and these are furnished free to shippers who do their own icing. There are several refrigerator car companies which own and operate cars, and for a specified sum they attend to loaling the car and all the icing at initial points and look after re-icing en route, -in fact, guarantee refrigeration until car is unloaded. This is the most expensive service, but is safest and best for long distances. But for one and two days' shipments, where the cars do not require re-icing, the shipper can save money by using the railroad refrigerators and do his own icing, and there is no good reason why the leading railroads eannot establish icing stations and re-ice their own cars, charging the expense along on the freight bill.

In loading a refrigerator car, care is taken that an opportunity is provided for air circulation around each package; this is accomplished by properly spacing the first row of packages, then by "stripping" across the tops of these two strips about $11 / 4 \mathrm{in}$. square, tacking a smatl nail down through them, one into each package. The packages are held in place, and the strips serve for the next tier of packages to rest on and leave an air space of an inch between the two layers. In this way cars are loaded full up to eighteen inches or two feet of the top, care being taken usually to have the ripest or poorest carrying fruit in the bottom of the car, and the firmest, long-keeping at the top; for if the icebunkers are not kept "chock-a-block" full all the time, the top tiers do not get as gnod refrigeration. It is also the custom of many marketnien on unloading these cars to sell out the top tiers first, for the bottom-tier fruit keeps best; while often in case of truit picked a little too green, top tiers show up best and bottom tiers are stored out of the car a day before being offered for sale. The best results in refrigerator car service are attained when the ear has been iced at least twelve hours before loading, and the loading is quickly done by opening the car doors only a few times.

The writer's own plan, when fruit is ahundant, is not to start loading a car till he has fruit enough packed to fill it; then with a gang in each end of the car to properly space the packages and do the "stripping" and nailing, open the doors and rush in all the middle of
the car will hold, then close the doors, and, by lanternlight, work goes on inside till all these packages are placed, when more are handed in and the car quickly filled. In this way a car an hour is often loaded all day long in the Georgia peach orchard. Where simall lots are put in by many different growers and the car is one or two days loading and opened many times, the fruit is not so quickly cooled down and, even with the same attention en route, never arrives in market in as sound condition as when the car is quickly loaded. Another very important point is the tirst re-icing. When 400 to 700 warm packages of fruit are put into a refrigerator car, ice begins to melt very rapidly and in a few hours one-half or more of the ice has melted away, the upper part of the car inside is a steaming sweat-box, and it is of vital importance that ice-boxes be promptly refilled solid to the top, so that the whole inside of the car be bronght to a low temperature as quickly as possible. Once get all the heat ont of the fruit packages and the ice-boxes then full, and a car may go a long time without re-ieing and yet carry fruit in good order. But neglect the first re-icing twelve to fifteen hours, and there is always danger, while for best service from start to finish the ice-boxes should be kept full all the time. The most ice will be consumed in fruit-loading and in the first twelve hours thereafter.

When well re-iced en route refrigerator cars arrive at destination with bunkers nearly fnll of ice, and in many of the smaller markets, where a car-load of high-priced fruit caunot be sold in a day, dealers often use the cars for storage purposes, re-icing when necessary. Peaches from Georgia handled in this way have been sold in the smaller cities of New York and New England in perfectly sound condition teu days to two weeks after being picked ripe from the trees.
J. H. Hale.

## STORAX. See Styrax.

STORK'S B1LL. L'rodium and other members of the Geranium family.

STOVE PLANTS. The term "stove" applied to plants undoubtedly originated from the method of heating the structures in which plants were grown before the atveut of hot water and steam. Glasshonses such as then existed were heated by stoves and tues, usually made of bricks. Such structures caune to be called stovehouses or stoves, aud the plauts grown in them "stove plants." (A "greenhouse" was in those days an unheated glasshouse in which plants were merely kept alive ofer wiuter.) These terms still exist in Eugland, but are applied to strictly tropical plants or those requiring a warm temperature for their successful culture in glasshouses. In this country such plants are spoken of as warmhouse or tropical plants.

In England, at the present time, more distinction is made in the names applied to plant houses than in this country. For iustance, "greenhouse" in England now means the coolest glasshouse only, while in this conntry the name is usually indiscriminately applied to all glasshonses. The names applied to plant houses in England are therefore: Stove, for tropical plants; intermediate house, for plants hailing from warm-temperate elimates; greenhouse, for those plants requiring the least degree of heat. A conservatory or show house is one in which plants are placed while in flower aud usually kept at a cool temperature.

In practice such terms may le greatly modified to snit local conditions; for example, at the Botanic Gardens of Smith College, Northampton, Mass., the glasshouses are named cool-temperate house, warm-temperate honse, tropical honse, palm honse, acacia and sneculent honse, experiment house and propagating house, the temperatures and moisture conditions being regulated to suit the requirements of each class of plants.

The cultivation of stove plants is too beterogeneous a subject to he treated exhaustively in a single book, because the stove contains thousands of dissimilar plant treasures from the tropics, especially those found at low altitudes. In general, the stove is the house which requires the most expense and care, the greatest
heat and the highest atmospheric moisture. For the general principles of its mauagement, consult Greenhouse Maragement.

Edward J. Canning.

## ST. PETER'S-WORT. Ascyrum stans.

## ST, PETER'S WREATH. Spira a hypericifolia.

STRATIOTES (Greek, soldier; referring to the sword-shaped leaves). Hydrocharidacea. The Water Soldier, or Water Aloe, is a hardy aquatic plant of small ornameutal value but considerable botanical interest. It is native to lakes and watery ditches thronghont Europe, and has a rootstock creeping in the mud which produces at the bottom of the water tufts of long, narrow, sword-shaped lvs. bordered by small spiny teeth somewhat after the fashion of Pandanus. The fis. are small, white, 3-petaled, and borne on peduncles which rise to a few iuches above the water. The peduncle is much thickened at the top and bears a spathe of 2 bracts about an inch long. The male fis. are several in a spathe, stalked, and have usually 12 or more stamens. The female fls. are solitary and sessile in the spathe. The plant has a distiuct calyx, which is not the rule among monocotyledons. Stratiotes aloides, Linn., is the only species in the genus. It is sometimes called Urab's Claw or Freshwater Soldier. In England the planting of this species is disconraged from the fact that it spreads too rapidly. Technical characters: peduncles rising from among the lvs. to a few inches above the water, much thickened at the top, bearing a spathe of 2 bracts: ovary and stigmas nearly as in Hydrocharis, but the fruit is ovoid and somewhat suceuleut. It is offered hy one American specialist in aupuatics.
W. M.

One of the peculiarities of Stratiotes is that in summer the whole plant rises to a point near the surface when it is only partly submeryed, and later in the seasou it drops below the surface. Young plants do not act thus. It is propagated by side shoots from the base of the leaves. Toward fall and early winter these shoots are merely kulblets and are readily detached from the plant and are in a good condition for traveling

Wh. Tricker.
STRAWBERRY. Plate XXXVIII. The Strawberry is an herbaceous perennial. It naturally propagates itself by means of runners that form cbiefly after the hlooming season. These runner plants, either transplanted or allowed to remain where they form, will bear the following year. Usually the plants will contiune to hear for five or six years, but the first and second erops are generally the best. It is therefore the custom to plow up Strawberry beds after they have borne from one to three crops. The better the land and the more intensive the cultivation, the shorter the rotation. In market-gardeniug areas and in some of the very best Strawberry regions, the plants are allowed to fruit but once. The plants therefore occupy the land only one year and the crop works into schemes of short rotation eropping. The Strawberry delights in a rich, rather moist soil and a cool season. It can be grown in the cool part of the year in the South and thereby lecomes one of the most cosmopolitan of fruits. The young plants may be separated from the parent and pnt into new plantations in August; but under average conditions in the North it is usually better to wait until the following spring, siuce the weather is likely to be too hot and dry in the late summer or fall. Plants that have not borne are best for setting. They are plants of the season: that is, plants which start in the spring of 1901 are fit for planting in the late summer or fall of 1901 or in the spring of 1902. These plants have many long, fresh, light-colored roots. Fig. 2414 shows such a plant, with the roots trimmed for planting. Fig. 2415 shows a plant that has borne. This plant bore fruit in 1900 , and has thrown up a new crown in 1901. The old dead crown is seen on the right. The young growth is lateral to this old crown. The roots are relatively few and are hard and black. These plants sometimes make good plantations under extra good care, but generally


Plate XXXIX. Strawberry test ground, with a truss of the Greenville variety
they should be avoided. Pots are sometimes plunged noder the new ranners in Jume and July, and they become filled with roots by August or September. These pot-grown plants are excellent for fall setting in the home garden, but they are seldom employed in extensive commercial practice. Fig. 24If.

In Florida, according to Rolfs, heds need to be reset annually, in September or October; plauts set at this

2414. Strawberry plant ready for setting.
time produce a good crop in the following February, March and April. The plants may be produced at home, or they may be secnred from the North. Excellent plants for Florida conditions are procured from North Carolina.

For the very finest herries, each plant is allowed a space or hill by itself, and cultivation is given both ways. For general commercial results, bowever, plants are generally set in narrow rows. The old method was to plant in rows $3-3 \frac{1}{2}$ feet apart and the plants from 12-15 inches apart in rows, kteping off the runners until late in July and then allowing the runners to grow and root at will, making a matted row. In this system some plants are almost on top of others, the roots barely in the ground, and they suffer in a season of drought. The rows are so wide that to pick fruit in the center it is almost necessary to crush fruits on the outside of the row. This system gives few large first-class fruits, and is now passiug away. The up-to-date grower starts with the assumption that the largest and highest colored fruits are found on plants along the outside of the rows, and therefore he plans to have as many outside rows as possible. This he accomplishes by baving his rows closer together and much narrower. The rows are made from $30-36$ inches apart and the plants from 18-24 or even 30 inches apart in the rows, much depending on the prolificacy of the variety as a plant-maker. If the plants nsed for a now bed are strong and start into growth vigorously, the first runners are used, as it has been found that under most conditions the plants about twelve months old yield the greatest number of fine fruits. Thesefirst runners are usually "bedded in," i. e., planted by hand, training them along the wide way of the rows, using from four to eight of the first runners and entting off those growing later. This method of planting allows cultivation both ways until the runners start, retaining moisture and saving labor in hoeIng. This system is shown, in a full-hearing bed, in Fig. 1486, Vol. J11.

Strawberries are usually mulched in the fall in order to protect them in the winter and early spring and to prevent the soil from heaving. In some cases the mulch is allowed to remain on the plants rather late in the spring,
in order to retard the season of bloom. Sometimes the crop may be retarded a week or ten days by this means, and cases are reported in which it has been delayed with commercial results somewhat longer than this. The mulch is usually more necessary in regions of light and precarious snowfall than in those in which the snow blanket is deep and lies all winter. In regions of deep and continuous snowfall, a heary mulch is likely to prove injurious. Experience has shown that the best mulch is usually some strawy material. Along the, seacoast, salt bay from the tide marshes is much used. In interior places clean straw, in which there is no grain to sprout and to make weeds, is very largely employed. Fig. 2417. In the South, pine needles are used. Sometimes loose strawy manure is used, and the mulch adds fertilizer to the soil as well as affords protection. Under ordinary conditions the mulch is three or four inches deep over the plants after it is fairly well packed down. It is not always possible, however, to mulch as heavily as this, since the material is likely to be expensive when one has a large area. The mulch is usnally applied late in the fall after the ground has frozen, and if the material is abundant both the plants and the intervening spaces are covered. In the spring the mulch is raked from the plants as soon as they begin to start. Some persons allow it to lie between the rows as a cover to retain moisture and to keep the berries clean. The most expert growers, however, prefer to take the mulch from the field and to till the plantation once or twice before the plants are in bloom. The material is sometimes returned and spread on the loose soil between the rows. In the northern prairie states, heary mulching is essential. Professor S. B. Green advises for western Minnesota and Dakota a covering of at least six inches of straw. This mulch is easily provided, siuce straw is so abundant in that country that it is often burned as the readiest means of getting rid of it. When not mulched in that region, the plants are likely to be killed outright or to start with a very weak growth.

Strawberry flowers may be either perfect or imperfect, and the uature of the flower is characteristic of the variety. In some kinds, the flower is perfect or hermaphrodite (haviug both stamens and pistils) and is consequently self-fertile. In others it is pistillate, producing no pollen, and requiring a pollen-bearing variety to pol-

2415. Old Strawberry plant, usually not desirable for setting.
linate it. Fig. 2418. There are no varieties bearing only staminate or sterile flowers. The perfect-flowered varieties differ greatly in the amount of pollen they produce. Some, as the Crescent and Glen Mary, bear so few sta-
mens that they are practically pistillate or sterile. Any variety will fertilize any other variety if it bears sufticient pollen and if the two kinds bloom at the same time. When planting pistillate varieties, every third row

2416. Pot-grown Strawberry plant.
should be a pollen-bearing kind. The horticultural bearing of the sexual characters of the Strawberry flower seems to have been first clearly explained in this country by Nicholas Longworth, of Cincinnati (see Longuorth: also his essay on the subject in his "Cultivation of the Grape," 1846, and the "Strawberry Report " of the Cincinnati Horticultural society, 1848). When many of the akenes or "seeds" of the Strawherry are not fertilized or are killed by frost or other means, the berry fails to develop at that point and a "nubbin," or imperfect berry, is the result. Fig. 2419. Nubbins are usually most ahundant late in the fruiting season, when the pollen supply is small and when the plants are relatively exhansted.

The cost of growing an acre of strawberries under commercial conditions in Oswego county, New York (which is one of the leading Strawherry centers of the North) is approximately as follows:


2418. Sexes of Strawberry flowers.

At the left, a perfect flower; at the right, a pistillate flower (lacking stamens); in the middle, stamens few.
$\qquad$ .$\$ 7700$
Many growers raise berries at a much less cost, and a few exceed this sum especially when lucated near a large town where rents are high; but it would be safe for one about to engage in Strawberry-growing to figure close to this total, asille from the cost of fertilizer.
2417. Heavy mulching of Strawberry plants, as practiced in parts of the North.


New varieties of Strawberries are raised from seed with the greatest ease. The generations of Strawberries are short and new varieties soon find faror. The varieties change so trequently in popular estimation that it is impracticable to recommend a list of them in a work like this. The first great American berry was the Hovey (Fig. 1088, Vol. IL). Perhaps the most popular single variety bus been the Wilson ( Fig .2420 ), now practically extinct. The accompanying pietures (Figs. 2421-2425) show types of American Strawherries.

The common garden Strawberries are the progeny of Fragoria Chiloensis, native to the Pacific coast of America, and first introduced to enltiration from Chile vearly 200 years ago. See Fragaria. In Europe the Alpine and Hanthois types of strawherries ( $F$. vesea and $F^{\prime}$. moschata) are highly prized as dessert fruits. These are sometimes growa in this country by amateurs, but they are unknown to commercial Strawlerry eulture. The native Fragaria Virginiana, everywhere common in fields in eastern North America, gives little promise under cultivation. It usually runs strongly to viue, at the expense of fruit-bearing.

There are several serious fungous diseases and insect pests of the Strawberry. The fundamental treatment for all these is to fruit the hed but once, or at most but twice, and to grow succeeding crops on other land, cleaning up the old plantation thoronghly after the last fruiting. Short, quick and sharp rotations and clean culture do much to keep all enemies in check. Most of the fungous enemies are kept in check with relative ease by spraying with Bordeaux mixture. Fig. 2426.

The American hook writings on the Strawherry are: R. G. Pardee, "A Complete Manual of the Cultivation of
the Strawberry," New York, 1854, and subsequent editions; A. S. Fuller, "The lllustrated Strawberry Culturist," New York, 1862, and subsequent editions; J. M. Merrick, Jr., "The Strawberry and its Culture," Boston, 1870; Charles Barnard, "The Strawberry Garden," Bos* ton, 1871; T. B. Terry and A. 1. Root, "How to Grow Strawberries," Medina, Ohio, $1890 ;$ L. J. Farmer, "Farmer on the Strawberry," Pulaski, N. Y., 1891. Aside from these writings, the Strawberry is well treated in various books devoted to small fruits and to fruit in general.
L. H. B.

Culture of Strawberries, - [The following article was written for the Editor some ten years ago by the late J. M. Smith, Green Bay, Wis., long known as one of the most expert Strawberry-growers. It has never been published. Mr. Smith was horn at Morristown, N. J., Jan. 13, 1820, and died at Green Bay, Feb. 20, 1894.-L. H. B.]

The Strawberry will grow and thrive in all parts of the United States where any fruit will grow, and yet, strange as it may seem to young readers, fifty years ago it was scarcely known except as a wild fruit. The writer has no recollection of ever seeing more than one small bed of Strawberries cultivated before he was 25 years old. In boyhood he often accompanied his father
to the New York market, fet he never saw cultivated Strawberries in that market before 1840 , though there were probably a fer before that time. It is probable that there are now more Strawberries carried to New York every fair day during their season of ripening than had ever been seen in that city during its entire history previous to 1840 .

The introduction of Hovey Sealling about 1834 or 1895. and of the Jersey, or, as it was sometimes called. the Early Scarlet, a few years later, markel a new

2419. Strawberry nubbin. era in Strawberry culture. These were great improvements orer the common wild fruit previously seen in the market; but it was not until the introduction of the Wilson, about 1854, that it became possible for almost every one who owned a small plot of land to have a supply of herries for himself and friends during the berry season. This modest little plant completely revolutionized Strawberry• growing. lts fruit was much larger tban any other then in cultivation, being also very firm and able to bear transportation much hetter than any other, and it seemed to be perfectly at home in nearly every soil and climate from the Atlantic to the Pacific ocean, and from Lake Superior to the Gulf of Mexico. In addition to all these qualities, it was marvelously productive. Soon after this, new varieties began to appear in numbers greatly exceeding anything ever before known. This progress has been kept up until the present time, and each succeeding year many new varieties are brought to notice. The increase in the eultivation of this fruit was not rapid until 1855, when more attention began to be paid to it than ever before. Since the close of the Civil War the increase has been almost beyond belief, except to those who are familiar with its history.

Strawberry Soil. - If he could always choose, the writer wonld select a dark sandy loam, rather damp than dry, but this is by no means an absolute necessity, as Strawberries will grow in almost any soil, unless it be dry sand or an undrained bed of muck. Any soil that will grow a good crop of corn or potatoes will grow a fair crop of Strawberries. This remark will apply throughout the United States; and not only that, but Strawberries will grow in some places where the nights are too cool and the seasons are too short for corn to ripen. Hence but few need have any fears about their

2420. Wilson Strawberry $(\times 1 / 3)$.
success on account of climate, latitude or longitude. The richer the soil the larger the crop, hence the necessity of making it rich by extra manuring.

The first thing is to be sure that the land is thoroughly drained, as it is impossible to make Strawberries do even fairly well with the roots in land that is filled with
water. Underdraming is not always a necessity, but good surface-draining is, and no land should be set with plants until it is so prepared that it can be thoroughly surface-drained and kept so, If the land is at all inclined to be wet, it will pay well to have it thoroughly underdrained, in addition to the surface-draining.

Next comes the preparation of the soil. The writer prefers spring setting. He has sometines done well with setting in Angust or early in September, but has never failed in spring setting, As early as the land is fit to be worked, put on about twenty fair-sized twohorse loads of manure per acre and plow it in; then toplress with as much more fine, well-rotted manure, and harrow it in thoroughly. If fine manure cannot be ob-

2421. Gandy Strawberry $(\times 1 / 2)$.
tained, it would be better to plow all the manure under, as coarse manure on top of the beds would be an annoyance, and cause more or less trouble the entire season. Whether the manure is wholly or partially plowed under, the land minst be made fine and mellow before putting in the plants.

Setting the Plants. - The plants should be taken from beds that were set the previous season, if possible. Use a common six-tined manure fork and take up a lot of the young plants, being sure to get only the runners of the previous fall. Pick them out of the loose earth, taking off all the old dry leaves, and if thes have long, nice, light-colored roots (throw away all others), clip off about one-third of their length. Fig. 2414. Be careful not to let the snn shine on the roots for any length of time. During some of the hot sunny days of our spring weather, even ten minutes' exposure to the sun would damage them so much that one should hardly dare risk setting them out. Mark off the beds in rows two feet apart each way. For this we use a marker made just like the common hand hayrake with the headpiece of pine or some other light wood, and about 12 feet long, the teeth set two feet apart and sloping a little backwards instead of forwards as in the common hayrake. With this a man should mark an acre in a half day, and do it easily. If the ground is still a little heavy, as it is likely to be if it is a clay soil, let a man go ahead with a hoe and strike it into the earth where the plant is to be set and loosen it so that it will be perfectly mellow. A boy follows with the prepared plants, and drops one at each crossing of the marks. He is followed by the setters, of whom there should be two to work to best advantage. They go on their knees between two rows, pick up the plants with the left hand and at the same time, with the fingers of the same hand, spread the roots into a fan shape, while with the fingers of the right hand the ground is opened sufficiently to allow the fanshaped roots of the plant to go down in a perpendicular manner into the earth; then bring back the earth around the plant and, doubling up both hands, press down the earth firmly around the newly set plant. The crown of the plant when set should be a very little lower than the surrounding earth. Be careful not to have the crown covered with earth, as that would damage it. All this
can be done by men with a little experience in a small part of the time taked to write it out, bnt one must remember that the doing of this work well or ill will make the difference between snccess and partial failure. The writer has several men who will ret half an acre a day, and do it easily and well. If the weather is dry and warm, it will greatly aid the young plants if half a pint of water is put around each one.

When the beds are filled with plants, run throngh them with a hand-cultivator before they come into bloom. This may not be necessary, bnt in most cases it will be. If the plants start nicely, they will soon be in full bloom, but they must not be allowed to bear fruit this summer. Go through the beds and pinch off all the blossoms, and see that there are no stray plants among them of a diferent variety. The beds must be kept clean, free
of the ground is a little raised from its natural position, and the plants are lifted up and their roots broken off in the frozen eath beneath. To avoid this danger, leave the cover upon the plants until all freezing nights are over. Some growers recommend leaving the cover on and sllowing the plants to work their way throush it. The writer has tried this plan, but the crop was only half of that obtained when the cover bad been taken off and the gronnd kept cultivated. Better take the cover off, haul it away and stack it for another winter's use.

Some growers recommend that the molch be retained in order to keep the berries from being soiled. If the plants grew last season as they should have done, they have by this time nearly or quite covered the ground, and the leaves and frnit-stems will so support each other that there will be very few berries in the dirt unless it rains almost constantly. When there are open spaces of any size, and the fruit is likely to get into the dirt, it is well to put back a little of the mulch after the thorough caltivation of the spring is done. For the spring dressing, wood ashes are to be preferred. If unleacbed, they should be applied at the rate of not less than 50 bushels to the acre. Twice that amonnt should be nsed if the ashes have been leached. If ashes are not to be had, put on well-rotted stable mannre at the rate of about 20 wagon-loads per acre. The spring ealtivation consists of pulling out by hand all the weeds that can be found among the plants and then hoeing over all the open spaces large enough to accommodate a common broad boe. Do not work the ground more than half an ineh deep, for the roots bave much work to do within the next few weeks.
Now it is time to hegin to count the cost. W'e will comsider the land worth $\$ 200$ per acre:
Expense of an acre of Strawberries up to picking time.
Interest and taxes.......... $\$ 1500$
Plowing, hatrowing and
surface-draining........
Value of 11,000 plants at $\$ 5$ per 1,000
500
5300
Manure, 60 loads, at $\$ 1$ lier
lond ......................
Marking ground and set-
ting plants ................ $\frac{1}{4}$
Summer cultivation......... \& 00
Training moners around the plants.
Winter covering and cost of putting it on............ 600
Taking off winter cover.
and spring cultivation.. 500

## Total <br> $\qquad$ .$\$ 16100$

In a very dry and unpropitions year, the yietll on the writer's place was 7,136 quarts, or 223
from weeds, and well enltivated as often as they require it. In July the runners will start. Before the runners take root they shonld be trained aronnd the parent plant like the spokes of a wheel, having the parent plant for its center. Simply lay them out in equal distances around the parent plant and throw sufficient earth upon them to holla them. Otherwise the runners are likely to come out on one side and make almost a solid mass of roots on that side and few or none on the other, the result being that the crop the following season will not be as large or of as good quality as when they bave been properly tended. This is about all there is to be done until the ground freezes for winter, when the plants should be covered with marsh hay. Straw is as good, provided it is free from weeds and grass seed, but it is sometimes impossible to obtain such straw. In covering the plants, merely hide them from sigbt. There are two objects in view: first, to protect the plants from the many sudden changes in our winter weather, and, second, for spring protection. During the thawing days aod freezing nights in the early spring, the ground is likely to become "honeycombed." The top
buxhels per acre; the gross receipts in eash were a few cents over $\$ 500$ per acre. In the year 1886 the yield was over 8,000 quarts, or something over 250 busheis per acre; and the gross receipts $\$ 633$ per acre. These were both hard years for Strawberries. In 1875 exactly onequarter of an acre yielded 3,571 quarts, or $111 \frac{1}{2}$ bnshels, of marketable fruit. The average irice was 12 cents per quart. In 1876 one-fourth of an acre yielded a fraction less than 100 bushels. These were both favorable seasons for berries. But we will take the first ruentioned crop for our estimate, as it was the poorest of the four. The boxes and crates cost a fraction less than $\$ 7$ per 1,000 quarts; picking, packing and carrying to the depot not to exceed $\$ 15$ per 1,000:
The story of an acre of Strawberries in an unfavorable season.

## Gross receipt

$\$ 16100$
(lost of growing the erop.
$\qquad$
Pieking. crating and marketing ( 7,136
qts.) ........................................ 15700
31800
Net profits above expenses. .............. \$182 00 qts.)

These receipts are by no means the only ones from the land for the two years. For many years past the writer has been in the hahit of planting other early crops between the rows of Strawberries after they are set. For instance, in the spring a plot of five acres is set with Strtwberries. As soon as the Strawherries are set plant between the rows (which are two feet apart) a large lot of onion sets and lettuce. One may sow part of the land with radish seed and another part with cabbage seed for late cabbage, and thas fill the ground with quick-growing plants that will be off before the runners need the ground.

Mrarketing. - A bome market is the best if one can have it, although it is a well-known fart that but few Strawberries are eaten in the neighborhood where they are grown. Along the Gulf coast, Strawberries begin to ripen in February and are at once shipped north, and the consumption continues until $46^{\circ}$ north latitude is reached; hence the necessity of a variety that will hear shipping. If we all bad cooling-houses for berries, and refrigerator cars to ship the fruit in, almost any variety would bear more or less transportation; but as most growers have neither, the berries must be picked as soon as colored, and some varieties before they are fully colored. Before the writer had a cool-ing-house, he placed the cases in rows on the floor of a general packing house, and then placed ice along upon the floor between the cases. This did fairly well, but not as well as the present cooling-house, which is a very plain cheap building $12 \times 14 \mathrm{ft}$. and ahout 12 ft . high. The sides are covered with common sheathing paper and boards, with an air chamber of four inches. The Hoor overhead is covered with zinc to prevent its leaking, and is a little sloping to one corner, where a pipe catches the water as the ice melts, and carries it from the building. It has an open space of nearly 12 inches all around the building, which lets the cold air pass below, where the fruit is. There are six tiers of shelves, one abore the other all around the room below. Upon the floor above the ice is placed, and on the shelves below are the cases of fruit. About $50^{\circ}$ is the best temperature to keep the fruit; if much lower than this, it is found that the fruit will not keep so long after being removed from the cooler. It is best not to throw fruit on the market, but to try to have it so good that it recommends itself. Endeavor to have it engaged to the retail grocers in adrance. Then there is but one profit between the consumer and the grower.
f. M. Smith.

Strawberry Culture in the South. If any fruit is at home in the South it is surely the Strawberry. it heads the list of small fruits, and, admitting as competitors tree and vine fruits, it easily holds the place of first importance. A mong the many things that commend the Strawberry farorahly to southern land-owners who would grow fruit for home use or for market are the following: its comparative freedom from disease and insect enemies; the ease with which it adapts itself to different soils and varied conditions of climate; the small cost at-
tending planting and cultivation; the enormous vields possible from well-selected soils properly treated; and the fact that, aside from being the first fruit to ripen, it seldom, if ever, frils to reward the painstaking grower with an ample harvest to cover all cost for attention bestowed.

While good results are had from settings made at almost any time of the year, November and February are the months during which plantings may usually be made with the least risk. In some sections, especially near the Gulf, plantings are frequently made during rainy spells in late summer and

2424. Belmont Strawberry. Natural size.
early fall At such times it is neither a difficult nor a very expensive process to shift plants with earth adhering to the roots to nicely prepared soil near the old beds. From good stands on newly prepared beds secured as early in the season as Augnist or September, and with a long fall and mild spells during winter favoring vigorous plant growth and development of fruit-buds, the grower may reasonably expect the following spring one-half to two-thirts of a erop.

Being a water-loving plant and a liberal feeder, especially during fruiting season, the Strawberry accomplishes its best work in a soil capable of taking in the largest quantity of water and of holding during protracted drought the greatest amount of moisture within easy reach of the plant. This ideal Strawberry soil is found in the rather compact deep clay loams over the well-drained clay suhsoils so abundant in most of the South Atlantic and the Gulf states.

As to fertilizers, much depends on the kind of soil and treatment. Where the cereals are benefited by the
use of certain fertilizers, such plant-food may be safely and profitably used for Strawberries. It is better to fertilize heavily the crop that precedes Strawberries than to apply in large quantities to lam oceupied by this plant. In no case should heavy applications of strongly nitrogenous fertilizers be made just before the bloming period nor during the hot sumamer months. In the first instance, an over-vigorous vine grow he at the expense of fruit will be the result; in the second, the plant is renderel too tender and too sappy to resist the

2425. Shuster Gem Strawberry $(X / 2)$.
long and sometimes hot and dry summers. The southern cow pea is possibly the best crop to precede the Strawberry. This leaves the ground clean, mellow and in the very best condition for any crop that follows.

The soil is usually prepared in slightly elerated rows or beds $31 / 2-4$ feet broad. In making summer and early fall plantings with the view of securing a large gield the following spring, plants are set only 8 or 10 inches apart along the line of the row. The distance in the row for spring plantings ranges from $12-30$ inches, depending on the tendency of varieties set to multiply runners. For heavy yields the properly matted row is best. In the ideal matted row each plant should be $5-\bar{i}$ inches distant from its nearest neighbor, and a space of 18-24 inches along the top of the rows should be so occupied with plants. Season, soil and treatment at the band of the cultivator greatly modifies the degree of success in securing this ideal stand. Where irrigating facilities are to be had, the desired results may be obtained with certainty. In spite of the best efforts on the part of the grower, however, varieties like Michel, Downing and Cloud may set too many plants during wet seasons. In such cases any runners that encroach on the spaces between rows are treated as weeds, and such places along the line of the rows as become too thickly matted shonld be properly thinned on the advent of cool fall weather.

With spring setting, cultivation begins shortly after plantings are made. The plow, cultivator and hoe are the implements most used, and these are employed in cultivation often enongh to keep the ground in good tilth and free from weeds. Cultiration usually ceares early in the fall. Any weeds that interfere with the proper development of plants or frnits from this time until the end of fruit harvest are pulled out or elipped off with sharp hoes without breaking the snrface soil. Very little winter protection is uecessary. It is well to delay mulching until after midwinter, or until there has been snfficient cold to drive jnsects into winter quarters. On clay soils inclined to heave during frosty weather a thin covering of barnyard litter or of short straw (pine straw is excellent) placed around and between rather than over plants is of advantage. For keeping fruit clean and, at the same time, adding almost, if not quite, its purchase valne in plant-foorl,
nothing is better than cottonseed hulls. It is a fact worthy of note that as one goes sonth the picking season lengthens. Florida, sonthern Louisiaua and other sertions near the Gulf frequently begin shipping late in Tanuary or early in February and continue to market berries for four or five months. In latitude $32^{\circ}$ the writer has dnring several seasons in the past twentyfive years shipped Strawherries from about April I to July 1. In latitude $34^{\circ}$ the picking season rarely lasts more than five or six wreks.
In recent years the rapid strides made in methods of picking and packing, in the construetion, loading aud icing of fruit cars, in shortening the time between grower and consumer, and in vastly better means of distributing frnits among different markets and of reaching all classes of consumers in the several markets, -all these things have made southern-grown Strawherries common in almost every city, town and village in more morthern latitudes.
A. B. Mckaf.

To the foregoing advice may be added a sketcla of some of the rotation practices in Georgia. Four systems of rotation exist : the annual, biennial, triennial, and what may be termed the peremial or permanent system. These terms are frequently, though quite nnnecessarily, confinst, and some growers, while practicing, technically, a biennial rotation, call it anmal, because they estatblish a new plat annually, althongh each plat, when plowed under or destroyed, is two years old.
To illnstrate: A plat planterl in Jnly, Angust or September makes a good, strong growth by winter along the isotherm of the C'arolina and Georgia coust, where summer planting and the system of amnual rotation are almost exclusively practiced. In fact, the plant continues to grow, expecially under gronnd, through the entire winter, setting in the spring a heavy and profitable crop, which is marketed. The plat is seldom worked out, but used to reset another plat in the late summer, and then turned under, Such a rotation is strictly an annual one. Logically, it could be nothing less, nothing more. 'If, lowerer, this plat were cultivated through the season following its crop, suffered to bear a second crop the next spring, then used as before to reset a succession plat and tnrned nnder, such a process would he a biennial rotation, and, logically, could be nothing less, nothing more. Equally as logical wonld it be to call the rotation biennial had the plat been planted in November-instead of July, August or September - cultivated through the following summer and carried into the next year, bearing its main cropits "money" crop-the second spring. The fact that its first crop was light and scattering would not make the rotation an annual one; for the essence of the difference between an annual and a biennial rotation consists in the plat, in the first instance, flowering but once, while in the second instance it passes two flowering seasons. In the first case, no rultivation is given after fruiting; in the second the plat is cultivated after fruiting, or after the fruiting season, whether it fruits or not. These two distinctions eanse a rotation to fall

2426. Leal-blight of Strawberry $(\times 1 / 3)$.
under the head of biennial even when the plat is set ont as late as February or March, enltivated throngh the sunmer following and fruited the next spring.

The biennial rotation (thongh often under the erroneous title of annual) is much the most common, and is almost universally employed, except on the coast, where the light, sandy soil, the humid elimate and more
regular rainfall render summer planting on a large scale an economic possibility. This, the stiff elay soil of the interior, the drier atmosphere and uneertain rainfall of early autumn, render impracticable. It is hence more economieal to reset than to cultivate on the coast, especially as its comparatively subtropical climatic conditions tend to produce a rigorous development of the summer- or fall-planted plat by the following spring. But, while the biennial rotatiou is recommended for the interior of the state, it must not be understood that a new plat is to be established only every two years. The plat runs through two seasons, it is true, but a new one must be set out each year.

If strawberry growiug was commenced in 1899 under a biennial rotation, and the planting effected in November of each year, the following diagram would illustrate the necessary succession of plats:

1849
1
No. 1, planted November, 1899.


No, 1, fruited lightly spring, 1900; cultivated through season of 1900 .

No. 2, planted November, 1900 , from new purchased plants.


No. 1, fruited main erop, spring, 1901; plowed uader November. 1901, after resetting No. 3.
No. 2, fruited lightly spring, 1901; cultivated through season of 1901 .

No. 3, planted November, 1901, from runners of No. 1.


No. 2, fruited main erop, spring, 1902; plowed uader Novemher, 1902, after resetting No. 4.
No. 3, fruited lightly, spring, 1902, and cultivated through season.
No. 4, planted November, 1902, from runuers of No. 2.
And so on, indefinitely. In this way, while each plat runs two years, that is, biennially, a new plat is reset every year, that is, annually; yet the rotation must of necessity be termed biennial, though only one marketable erop results. And this would be equally true for a similar rotation where the planting was done in Fehruary or March instead of November, although no crop - not even a light one-could be obtained the same spring. Of course, if a plat is reserved for resetting. after it has borne its main crop, it must be cultivated, more or less-at least by band weeding-to prevent it from becoming too foul during the second summer; but the process of thinning out and the careful cultivation neeessary for a crop expected to make a paying return in fruit, are eliminated.

The triennial rotation is followed when two "main" or "money" erops are seeured from a plat before its abandonment, and the perennial system when the plat is suffered to bear as long as it proves profitable.

The "mattell row" system stauds suceessfully the test of practical experience in the South. "Stool culture, "however perfeet or ideal in theory, can be made profitable only under exceptional conditions. Under ordinary circumstances it cannot resist the crucial test of a prolonged drought.
H. N. Starnes.

Strawberry Culture on the Plains. - The faet that the Strawberry has been growing wild from time out of mind in the prairie regions of North America suggests that it may he eultivated there with success, aud the thousands of ear-luads of delicious berries annually proluced in those regions are positive proof of it. The strawberry did not grow naturally iu all sections or soils, but ehiefly in the moist creek and river bottoms and along the margins of the woodlands. The cooler climstic eonditions of the northern seetions are more coulucire to the growth of wild Strawberries than those in the South; for instance, the prairies of Minnesota grow more thrifty and larger berries than those of Texas. Ender eultivation the Strawberry is somewhat subject to the same conditions as when growing naturally, but the principle of conservation of moisture by tillage has enabled man to do mueh that nature could not, in growing strawberries. Water is most essential in the culture of this fruit. The soil should not be wet, but it must be moist or the plants will not thrive; nor will they lear fruit abundantly or of good size and quality with a meager supply of water. During the fruiting season there is a heavy draft upon the plants for water with which to fill the berries to their proper size. Over most of the Plains region there is a suticient amount of rainfall to produce good crops of Strawberries in ordinary seasons, provided proper care be giren to tillage. Nearly all the

2427. Fancy packing of Strawberries, each quart wrapped in paper; a picking stand on the left.
failures to grow reasonably good crops are due to neglect of this all-important matter. The drier the elimate or the season the more heed should he given to tillage.
The mere setting of plants and giving them ordinary care is not sufficient for the production of a really profitable Strawberry crop in the open prairie country. It may suffice where the rainfall is not only abundant but regular; but where the rains are fitful and often rery seant, especially in the latter part of the summer, this will not do. The tillage should not be deep, but very frequent. Once each week during the growing season will be sufficient. The finer the surface soil is pulverized, the less water will escape from the subsoil, and this is the principal point to be attained so far as the purposes of tillage are coneerned. Rieh soil is beyond doubt one of the prime requisites of Strawberry eulture. This is not difficult to find in most parts of the prairie regions. Some of it lies too flat for the best results and some is too steep, bint very little is either too stiff or too sands.
The strawberry is especially adapted to field eulture. As the Plains country slopes up to the Rocky Mountains the elimate becomes drier until there is so very little rain that nothing but a scant native regetation will grow without irrigation. The soil is for the most part rich enough for Strawberries, and where water is applied in proper quantity as fine berries ean be grown as in any part of the bumid regions. As a matter of fact, there-
seems to be more certainty in growing Strawberries under such eonditions than ill regions where the crop must depeud upon rainfall. Some variefies that are usually a failure because of their defieient root-system, such as Jucunda, are thas enabled to flourish to such a degree as to be among the most profitable. Whatever may be said of other parts of the continent of North Ameriea, it is an indispntable fact that the Plains region is very good for Strawberries. Good judgment in the selection of proper locations and the right varieties, thorough preparation of the soil and good cultare will be abundantly rewarded.
H. E. Yan Deman.

The Strawberry on the Pacific Coast. - California contlitions include both those most farorable and most trying for the growth of Strawberries. There are situations where, through local topography and proximity to the ocean, winter temperatures are very seldom too low for the growth and fruiting of the plants and where, by summer irrigation to maintain this continnous activity of the plants, it is possible to gather fruit every month in the year. This fact is not, however, made of much commercial account, nor is it widely true that one can have Stramberries all the year round in the open air. it is true, however, that even on the lowlands, where the eommercial crops are chietly grown, the winter is so mild that strawberries begin to ripen in shipping quantities as early as March and by proper enltivation and irrigation the frniting is continued until late in the atutumn, and the grower has therefore a very short closed season. The trying condition for the Strawberry is found in the long, dry summer, which enforces dormancy as early as Jone on light loams in the more arid loealities of the interior. Fuch soils become dry and hot to a clepth of several inches in spite of surface cultivation and eause the dwindling and death of a shallow-rooting plant like the Stranherry, unless frequent irrigation is begun in time. This tronhle is less acute on more retentive soils in regions of lower summer temperature and greater rainfall, and plants in such situations may survive the sumuer dormancy, but it is true that everywhere in California and even in the more humid states on the north that Strawberry-growing without irrigation results either in failure or only partial satisfaction and the venture is seldom to he commended. It is, however, so easy, usually, to secure the small amount of water neeessary for home production, and the plant wheu fairly treated is so bighly produetive, that a general exhortation to Strawberry-growing on an irrigation basis is fully warranted.
tinued popularity of Longworth Prolific, Sharpless, Monareh of the West, Wilson Altany, ete. Long. worth has survived more than thirty years' continued growing. Other popular tarieties are Melinda, Jessie, Triomphe de Gand, Brandywine, Marshall, Lady Thompson, etc. An English variety, Laxton Noble, has been largely planted in southern California but not always


## 2429. Strawberry fteld in Wisconsin.

suceessfully, thongh it does well near the coast. The Arizona Ererbearing is par excellence drought- and heat-resistant and is constantly increasing its area in interior situations. It has endured negleet which has actually eompassed the death of other rarieties. The Australiau Crimson is a popular market variety in sonthern California, of which the first phants came from the southern hemisphere, but it has some appearances of being a re-named Ameriean variety,

The growth of Strawberries is alnost wholly in matted rows, the rows usually oeeupying low ridges only sufficiently elevated to allow the slightiy depressed intervals to serve as irrigation ditches and as walks during picking. The slight elevation of the plants also assists in surface drainage, when heavy rains fall during the early part of the fruiting season, and this promotes early growth and fruiting of the plants. Where the soil is too eoarse to permit free rise of water from the depressed ditches the eonditions are reversed and low levees are made to inclose bloeks of plants which are irrigated by flooding the inclosures. In the chief commercial regions a fine loam is used and irrigation from the small ditehes on both sides of the ridges, which are about 2 feet wide, is the ruling method. Nearly level land is selected and grading is done before planting to reduce dry knolls and fill low places so that the water will flow slowly and witl evenly moisten the whole field. Subirrigation by tile has been often adrocated but nerer has been employed to any extent.
One of the ehief Strawberry-shipping districts in central California is characterized by a shallow loam nuderlaid by an impervious sudurated clay or hard pan, which prevents the percolation of the irrigation water and enables growers to maintain a larce acreage by means of the small water supply secured by windmills. In this ease water is applied very frequently, even oftener than onee a week in some cases, but the total amount for the season is small. Quite in contrast to this is the growth on light, deep loams where water sinks so rapidly that the plants suffer, although water is almost constantly running in the ditches. In such

There are several species of Strawberries indigenous to California, and they are of both littoral and alpine types. Some interest has been shown in development of cultural varitties from these sonrces, but no commercial significance has as yet attached to them. The varieties chiefly grown are different from those popular at the East. New varieties from the eastern states and from Europe are freely tried, hut few are suceessfnl and they retain loeal popnlarity after abandonment in their birthplaces. A striking instance of this faet is the cou-
eases mulching and sprinkling are the price of suecess, and these are too eostly except on a small seale for home supply. The largest producing districts have soils midway between the extremes above noted; viz., deep, retentive loams, situated rather low in the valleys and with irrigation available either by ditch system or by wells both flowing and pumped. The pump wells require usually only a short lift, and abundant water is secured eheaply by the use of modern pumps and motors.


In addition to supplying the bome markets, which are very good, California Strawberry-growers find a goorl outlet for the fruit all through the region west of the Missouri river. Southern California supplies the southern portion of this district, while the growers in central California, chiefly near Florin in Sacramento county, make large shipments eastward as far as Colorado and

2430. The forcing of Strawberries under glass.
potted. Numerous 2. or 3-iuch pots filled with good soil are plunged to the rim along the Strawberry row. The rumners are trained to these pots, and a small stone is placed on eaeh runner to keep it from growing beyoud the pot. When the pot is filled with roots the Foung plant is eut from the parent stoek, the pots lifted and taken to the potting shed or other consevient place, where they are at onee shifted into the fruiting pots (usually a 6-inch pot). The soil used at this time shorld be three parts fibrous loam and one of good slarp sand. This potting soil should have mixed with it bone-flour or dissolved rock at the rate of about one pint to two bushels of soil. Ample drainage should be given, as through the season of ripening the crowns and the following foreing period a large quantity of water must be given and none should be allowed to stand around the roots.

The pots should then be phonged to near the rim in some coarse material, preferably coal ashes, whieh, if deep enough to extend from four to six inches below the planged pots, will prevent the earthworms from entering the pots. The use of a frame in which to plunge the pots is recommended for protection against heayy rains or early frosts. Attention to watering is all that will be necessary through the growing season. Late in September or early in October the pots will be filled with roots and the plants will bave attained their full growth. At this time larger and firmer crowns will be had by careful attention to watering and subsequent drying off to almost the wilting stage than by watering the plants up to the time of freezing weather. The drying process seems to represent the late fall season and causes the plant to store up material in the crowns at an earlier period. At the eoming of cold weather the soil in the pots may be allowed to freeze. It is rery desirable that the soil be on the dry side before freezing, for if the ball of earth is wet there is danger of breaking the pots when the cold becomes intense. The period of forcing from the time the frozen plants are brought in until the ripening of the fruits will be about eight weeks. The time will vary slightly under different conditions of heat and sunlight. When first brought in, the plants shonld be cleaned of all dead or diseased leares. The pots should be plunged to near the rim in some material that will retain moisture, e. g., tan hark or coal ashes. The benches or shelves should be as near the glass as convenient. A thorough spraying with

2431. A good winter Strawberry plant in bloom.

Bordeaux misture or some other fungicide should be made at once. For the first few days the house should be held at about $35^{\circ}$, with little if any rise through the day. After a week a rise of $10^{\circ}$ may be given. At the end of the second week $50^{\circ}$ at night, with a rise of $10-$ $15^{\circ}$ through the day, will be about right.
northward to all the great interior states and to Oregon, Washington and British Columbia before the locally grown fruit in those regions is available.
The states of Oregon and Washington in their areas lying west of the Cascade mountains have eonditions excellently suited to the growth of the Strawberry. Their eonditions more nearly resemble those in the eastern states than any other part of the coast. The cooler weather and more abundant moisture give a better spring season than that of California, but the season is on the whole mueh shorter beeause of the longer winter. lrrigation is also necessary in most places for continued fruiting during the summer. The most famous district is Hood River, Oregon, where arid conditions east of the Cascade mountains are modified by western inflnences which reach through the gap in these mountains where the Columbia river flows through. Irrigation is regularly employed and a large commercial product grown. The varieties cbiefly grown in this region and in adjacent parts of Washington and Idaho are of local origin, the Hood River (Clark Seedling) and Magoon Seedling being widely approved. Jessie, Sharpless, Wilson, Haverlaud, Crescent, Cumberland, Jucunda and Parker Earle are also commended by growers in the nortbwestern states.

## E.J. Wiceson.

The Forcing of Strawberries for a Winter Crop has not as yet become of any great commercial impor. tance in North America. Some gardeners grow a few potted plants for either Christmas or Easter deeoration. Very few, if any, commercial growers are foretng Strawberries exclusively to any profitable extent. The few Strawberries that are forced are grown either in pots or planted out on benches. The former method is the one generally employed. There are several good reasons for this, some of which are: first, the confinement of the roots ; second, the ability to ripen the crowns in the fall; third, the control of fertilizers and liquid manure; fourth, the privilege of having the crop grown in several houses at one time or brought from a coolhouse into heat; and fifth, the opportnnity to supply partieular demand of the potted plants or their fruits. The first expense of the pot method is considerably more than when the plants are grown in the benches, but after the pots are onee purchased the cost of each method should be about the same.

The pot metbod as practiced at Cornell University is ahout as follows: As early in the spring as possible large plants are set in well-enriched soil. The first strong runners made by these plants are secured and

Strict attention must be given to syringing the foliage every pleasant day. Keep the walks wet until the time of blossoming. This moisture keeps down the red spider. At blossoming time the house should be allowed to dry ollt, and a free circulation of air should be maintained through the middle of the day, in order to ripen the pollen. It is necessary to pollinate each flower by haud. The pollination may be done in the middle of the day while the houses are dry. A small camel-hair brush is useful for distributing the pollen. A ladle or spoon sbould also be provided in order to carry the surplus pollen. The surplus pollen may be used on varieties that are pistillate or do not have pollen enough to set their own fruits. Six to eight fruits are enough for a 6 -inch pot. When these are set the remajning flowers should be cut off, in order that the entire strength of the plant may go to swelling the chosen fruits. After swelling begins, liquid manure should be given. Dur-

ing the first week give one dilute application. After this give two applications a week, increasing the strength of the manure liquid each time. Well-rotted cow manure or sheep droppings furnish good material for this purpose. When the fruits are coloring the liquid manure should be withheld and only clear water given. As they swell, the fruits will need support, and the best method of furnishing this is probably by using small-meshed window-screen wire cut into suitable squares. These squares may be laid on the pot, under the clusters of fruits. They hold the fruits away from the sides of the pots, protect them from any water or liquid manure that is given the plants, and enhance the beauty of the potted plant. After one fruiting, the plants are worthless.
C. E. Henn

STRAWBERRY BUSH. See Euonymus.
STRAWBERRY GERANIUM, Suxifraga sarmen. tosa.

STRAWBERRY-RASPBERRY, Rubus rosffolius.
STRAWBERRY TOMATO. Physalis Alkekengi and other species of Physalis.

## STRAWBERRY TREE. Arbutus Ľnedo.

STRELITZIA (after the wife of King George III, Charlotte Sophia, of the family Mecklinburgh-Strelitz, a patron of botany). Ncitamindceo. Bird of Paradise Flower. A South African genus of 4 or 5 species of perennial herbs, with generally large, long-petioled leaves and showy flowers of peculiar form: rhizome subterranean or produced into a large woody stem: pedicels short: spathe long or short, peduncled.

Strelitzia Regine requires a good strong soil, a copious supply of water and considerable sunlight. It is a serviceable plant for house decoration or for the porch or lawn in summer. It will endure much neglect, but unless well cared for it mas fail to bloom regularly and well. A night temperature of $50^{\circ}$ is sufficient. This plant may be induced to set seed if the flowers are hand-fertilized.

## A. Plant nearly stemless.

Reginæ, Banks. Bird of Paradise Flower. Fig, 2432. Abont 3 ft . high: roots large, strong-growing: lvs. oblong, about $1 \mathrm{ft} . \operatorname{long}$, stiff, concare; leaf-stalks all radical, twice to three times as long as the lvs.: scape higher than the lvs.: spathe about 6 in. long, nearly horizontal, purplish at the base, about 6 -fld., the fls. orange and blue-purple. Winter. B. I1. 119, 120.

> AA. Plant with woody stems.
> B. Fls, pure white.

Augústa, Thunb. (S. angústa, D. Dietr.). Becoming 18 ft . high: lvs. at the summit of the stem, $2-3 \mathrm{ft}$. long, oblong, acute: petiole $4-6 \mathrm{ft}$. long: peduncle short, from a leaf-axil: spathe deep purple: fls. on short purple pedicels, all parts of the flower pure white; petals round at the base. B.M1. 4167,4168 .

## BB. Fls. pale blue and white.

Nfcolai, Regel \& C. Koch. Resembling S. Augusta in habit and foliage, but the fls, and spathe are much larger and the petals are hastately combined and blue in color. B.M. 7038.
F. W, Barclay.

STREPTOCALYX (tuisted calyx). Bromelidcea. There are 7 species of Streptocalyx according to Mez (DC. Monogr. Phaner. Vol. 9) of Brazil. The genus differs from Bromelia in having strongly imbricated broad sepals and long corolla-tube. No species are in the American trade, but $S$. Furstenbergii, Morr., is described in horticultural literature (sometimes as Echmea F'irstenbergii, Morr. \& Wittm.). It is a stemless pineapple-like plant, with $30-40$ rigid lanceolate leares in a dense rosette: cluster a central dense panicle $1-11 / 2 \mathrm{ft}$. long, with many $2-s i d e d$ spikes of rather dull flowers.

STREPTOCARPUS (Greek compound, meaning twisted fruit). Gesnerdcec. Cape Primrose. In October, 1826, there bloomed at Kew a most interesting gloxinialike little plant, seeds and specimens of which had been collected in South Africa by Bowie, on the estate of George Rex, at Knysna. The plant was described as Didymocarpus Rexii. It is a stemless plant, with one, or rarely two, long-tubular nodding pale blue flowers on each of several sbort scapes, and with several clustered root-leares. It prored to be a profuse bloomer and easy to grow. "So abundantly does it produce seed," wrote W. J. Hooker, in 1830, "that new individuals come up as weeds in the neighboring pots, and a succession of flowers may be ohtained at almost every period of the year." In 1898, Jobn Lindley made the genus streptocarpus for this plant, calling it $S$. Rexii, the name it now bears. It appears to have been nearly thirty sears after the introduction of $S$. Rexii that another Streptocarpus bloomed in England. This second species was S. polyantha, which may be taken as the type of a group that has one leaf lying on the ground and from the mid.
rib of which arise successive several-flowered scapes. The introduction of this curious plant seems to haverevived the interest in Streptocarpuses, an interest that has been kept alive by the frequent introduction of other species. The chief stimulus to the systematic breeding

2433. Streptocarpus Wendlandii $\left(X:{ }_{N}\right)$.
of these plants seems to have been the introduction of S. Dunnii, said by J. D. Hooker to be "quite the monarch of its beautiful genus" (but now excelled by $S$. Hendlundii). Seeds of this species were sent to Kew in 1884 by E. G. Dunn, of Cape Town. It is one of the monephyllous section to which $S$. polyantha belongs. In the meantime, S. parviflora, a species allied to $S$. Rexii, had been introduced from the Cape region. With the three species, S. Rexii, S.parviflora and S. Dunnii, W. Watson, of the Royal Gardens, Kew, set to work systematically to breed a new race of Streptocarpus, aud bis efforts met with unqualified success. When the hybrids came to notice in 1887, the Gardener's Chronicle made the following comment on the value of the work: "The results are very striking, and we can bardly douht that Mr. Watson bas set the foundation of a new race of plants, parallel in inportance to the Achimenes and Tydæas." Several hybrid races have now been produced and several interesting species have been introduced from the wild, so that Streptocarpus seems to be destined to become a very important and popular garden genus.

Bentham and Hooker's treatment divides the Gesneraceæ into two great tribes: Gesnereæ, with ovary more or less inferior and fruit a capsule; Cyrtandrea, with ovary superior and fruit sometimes a berry. The latter tribe, the species of which have been monographed by C. B. Clarke in vol. 5 of DeCandolle's "Monographiæ Phanerogamarum," contains the genera Streptocarpus, Episcea, Cyrtandra, Æschynanthus, Ramonda, and others. The Streptocarpuses are stemless or nearly stemless herbs, bearing 1 or more tuhular nodding fls. on short scapes that arise eitber from the crown of the plant or from the midrib of a flat prostrate leaf: co-rolla-tube cylindric, the limb 5 -lobed and somewhat 2 lipped; perfect stamens 2, included; pistils with ovary linear, usually hairy, with style as long as or shorter than the orary, and stigma capitate or indistinctly 2 lobed: fr. a linear 2 -valved capsule, the valves twisting. The flowers are usually showy, blue or lilac, rarely yellow. The species are of three groups: the stemless monophyllous species, with one prostrate leaf from the midrih of which the scapes arise (this leaf is really an enlarged cotyledon, the other cotyledon not enlarging); the stemless species, with several or many radical more or less primula-like leaves (whence the English name "Cape Primrose") ; the stem-bearing species, with opposite cauline leares. The cultivated species cbiefly represent the first two sections. In the American trade, only four specific names occur, S. Rexii, S. Galpini, s'.

Dunnii, and $S$. Hendlandii; but since the bybrids represent sereral other species, these additional species are inserted in the following account. Streptocarpus is an African genus. The stem-bearing section is confined to central Africa and Madagascar, and the otbers to South Africa. Clarke's Monograph, 1883, deseribes 19 species, hut S. Dunnii, S. Wendlandii, S. Gulpini and others bave since been discovered. There are $25-30$ known species.
Streptocarpuses are not difficult plants to grow. They are usually raised from seeds, the seedlings blooming in 8 to 15 mouths from starting. The seeds are very small, and care must be taken not to cover them too deep. Give an open sunny place in an intermediate temperature. They are not stove or warmhouse plants. Of the new hyhrid forms, seeds sown in February or March should produce plants that will hloom the following fall and winter; after blooming, the plants may be discarded, for better results are usually secured from new plants than from those more than one season old. The season of most profuse bloom is summer, but the bloom continues until winter. The monophyllons species can be propagated also by cuttings of the leaf. Some fanciers of Cape Primroses advise propagating select types by leaf cuttings or by division.

## A. Streptocarpus species, or those forms introduced from the wild. <br> B. Leaf one, prostrate on the ground, usually very large. <br> c. Fls. red.

Dúnnii, Hook. f. Soft-hairy: leaf becoming 3 ft . or even more in length and 16 in . wide, thick-nerved, reddish tomentose beneath, rounded at base, obtuse at apex, coarsely toothed: scapes several to many, in a row beginning at the base of the leaf, erect, $1-3 \mathrm{ft}$. tall, many-fld.: corolla long-tubular, curred, $1^{1 / 2} \mathrm{in}$. long, the limh narrow, bright rose-red. Transvaal. B.M. 6903. G.F. 3:609.-A very floriferous species, one plant sometimes bearing more than 100 flowers.

## cc. Fls. blue, maure or lilac.

Saùndersii, Hook. Hairy: leaf 1 ft . by 9 in ., cordate, obtuse, coarsely serrate, yellowish green above and pur-ple-rose beneath: scapes $10-16 \mathrm{in}$. tall, bearing a com-

2434. Streptocarpus Rexii ( $\times^{3 / 3}$ ).
pound cyme of large drooping blossoms: corolla $1-1 \frac{1}{2}$ in. long, funnelform, the limb broad but not equaling the nearly straight tube, light blue, with 2 purple spots in the throat. Natal. B.M. 5251. F.S. 17:1802.-Named for W. Wilson Saunders, through whom it was introduced.
polyśntha, Hook. Hairy: as compared with S. Saundersii, the leaf is smaller and the fls. bluer and borne in a compound racemose panicle: corolla-tube curved, shorter than the large, wide-spreading toothed pale blue limb. Natal, Orange Colony. B.M. 4850.

Galpini, Hook. f. Hairy: leaf ovate-oblong, obtuse, entire: scapes several to many, glandular-pubescent: fls, short and broad, being nearly or quite bell-shaped, the limb broad and subequal, rich mauve, with a white eye. Transvaal. B.M. 7230. G.C. II1. 11:139.-Named for Ernest E. Galpin, who discovered the plant.

Wendlandii, Damman. Fig. 2433. Hairy, usually bearing a rosette of very small Irs. at the base of the radical one: leaf broad, often becoming 24 x 30 in., sometimes narrower, rounded at both ends, crenate-undulate, red-purple beweath: scapes several, forking, bearing paniculate racemes: corolla-tube about 1 in. long, curved, pubescent, the limb large and oblique, with broad entire lobes, the whole effect violet-blue and whitish. Transvaal, Natal. B.M. 7447 (part of which is copied in Fjg. 2433). (i.C. I1I. 22:275. Gn. 45, p. 511; 50, p. 394. J.H. 111. 28:223.-Probably the finest species yet introduced.

## Bb. Leaves several, rising from the crown.

Rexii, Lindl. Fig. 2434. Hairy: Ifs. ovate-oblong, 6-9 in. long, short-stalked, obtuse, crenate: scapes several, $3-8$ in. tall, 1 -fld. or rarely 2 -fld.: Als. 2 in. long, $2-3 \mathrm{in}$. wide, the tube downy and nearly white, the large spreading limb pale blue to purple. S. Afr. B.R. 14:1173. B.M. 3005. L.B.C. 14:1305.
parviflora, E. Mey. Soft-hairy all over except the corolla: lys. ovate, ohtuse, sessile or nearly so, crenate, sppressed to the grouml: scapes several, $6-10 \mathrm{in}$. tall, reddish, bearing corymbose racemes: As. small, the co-rolla-tube about $2 / 3 \mathrm{in}$. Jong and purplish and curved, the spreading broad limb nearly white and with orbicular lobes. Cape. B. I. 7036.

2435. Streptocarpus Kewensis ( $\times 1 / 3$ ).
lùtea, Ciarke. Lrs. erect and elongate-oblong: fis smaller and uswally fewer, yellowish, the corolla-lobes narrower and the tube relatively broader. Transvaal. B.M. 6636 (as S. parieiflora). - Perhaps only a form of S. parviflora. The two species were confused until separated by Clarke in 1883. It appears that this plant, rather than the true $S$. perviflora, was one of the parents of the hybrid S. Hatsoni (see W. Watson, G.F. 3, p. 609).

AA. Strepiocarpus hybrids, of gavden origin. (For colored pietures of modern hybrid types, see Gn. $29: 545 ; 41: 843 ; 50: 1092$.
Kowénsis ( $S$. Rexiixpollen of S. Dunnii). Fig. 2435. "It has two or three large oblong or elongate-ovate
bright green leaves, which, however, do not attain such large dimensions as in S. Dunnii; Hower-stems numerous, and 6-8-fld., forming a tolerably compact mass of fls.; corolla about 2 iu . long and $1^{1 / 4-1 \frac{1}{2}} \mathrm{in}$. in diam., of a bright manre-purple, striped with dark brownish pur ple in the throat." N, E. Brown. G. C. I1I. $2: 347$. I.H. 38:133.

Watsoni ( $S$. lutea $\times$ pollen of $S$. Dunnii). "The single leaf is similar to but rather smaller than that of $S$. hewensis. It is exceedingly floriferons, having numerous flower-stems, bearing $10-16$ fls, about $1^{1 / 4} \mathrm{in}$, long and 1 in. in diam., of a bright rose-purple, with a white throat striped with brownish purple." N. E. Brown. G.C. III. 2:215. I.H. 38:I34. - One of the finest of garden forms. Said to be sterile with its own pollen.

Dỳri (S. Wendlandii $\times S$. Ditnii). Leaf single, 2 ft . long and 15 in . wide, olife-green above and vimons purple beneath, soft-hairy: scapes $1-2 \mathrm{ft}$, or more tall, bearing many long tubular red-purple dowers. (i.F. $8: 5$. - One of W. Watson's hybrids.

Bruanti (S. RexiixS. polyontha). Fls, larger than those of $S$. Rerii, $4-6$ on each scape, manve-blue, with whitish yellow throat.
S. biflora, Duch., mentioned only in horticnitural literature, and perhaps a garden form. It is of the $S$. polyantha type, with several blue fls.-S. bifloro-polydnthus, Duch., is a hybrid of S. hiflora and S. polyantha. with several large light blue tls. F.s. 23:2429.-S. cauléscens, Vatke. One of the caulescent species, with opposite elliptic-oblong entire hairy lvs. the stem swollen, the fis. small ( $1 / 2 \mathrm{in}$. across) and pale lilac Trop. eastern Afr. B.M. 6814,-S. Gardeni, Hook. Allied to S Rexii: scapes several, bearing 2 nodding pale lilac fls., with corolla $2 \frac{1}{4}$ in long. S. Afr. B.J. 4862 . F.S. 12:1214.-N. Greenii, Hort., is a hybrid of S . Saundersii $\times$ pollen of S . Rexil: dwarfer and more compart than S. Saundersii, the scapes many-tld.: fls. pale lilac-blne. G.C.II. 17:303. Said to have heen the first hybrid Streptocarpns. Raised by Mr. Green, Pendall Conrt, Surrey, England, in the garden of Sir George Macleay.-S. Kirkii, Hook, f., is one of the canlescent section with opposite petiolate cordate-ovate subcrenate lvs., and many-Hld, elusters of pale lilae fls., the corolla being about $3 / 4$ in. long. Trop. eastern Afr. B.M. 6782.-S, Lichtensteinensis, Hort. Hyhrid of S. Wendlandix $\times \mathrm{S}$. Watsoni. Lvs. 2, one prostrate and the other smaller and erect: Hs. numerous, lilac-blue -S. multiflora, Hort. One of Laing's (England) types, a seedling of S . Rexii, with several large blnish purple fls. with darker lines in the throat. G.C. III, 18:211. I.H. 13, p. 67.
L. II. B.

STREPTOPUS (Greek, twisted stalk; referring to the peduncles). Lilideer. Twisted Stalk. A genus of 3 or 4 species of perennial herbs, from the temperate regions of Eu., Asia and N. Amer. with aspect of Polygonatum, from which it differs in having a 3 -cleft siyle and perianth in separate segments. Woodland plants with sleuder branching stems: lrs, alternate, thin, clasping or sessile, prominently nerred: fls. rather small, rose or white, nodding, slender-perliceled; solitary or in pairs in the axils of the leaves: fr. a manyseeded berry. The elosely related genus Dispormm has terminal flowers, while those of streptopus are axillary.

## A. Fls. purple or rose.

ròseus, Michs. Rootstock short, stout: stem 1-2 ft. high: lvs. sessile, $2-t \mathrm{in}$. long: peduncles less than 1 in . long, mostly $1-\mathrm{fl}$. : fls. about $1 / 2 \mathrm{in}$. long: berry red, $\frac{1}{2}$ in. thick. May-July. Moist, rich woods in the northern states. B.B. 1:133.

## AA. Fls. greenish white.

amplexifolius, DC. Rootstock short, stout: stem usually taller than $S$. voseus: lvs. clasping, $3-6$ in, long: peduncles $1-2 \mathrm{in}$. long, usually 2 -fl.: fls. about $1 / 2 \mathrm{in}$. long: berry red. May-July. Moist rich woods, northern U. S. and Canada south to N. C. and New Mex. B.B. 1:432.
F. W. Barclay.

STREPTOSOLEN (Greek, streptos, twisted, solen, tube, with reference to the form of the corolla-tube). Solanacea. Lvs, on long petioles, ovate, acute at both ends, entire, bullate-rugose: As. rich orange-colored, pedicellate, in terminal corymbose panicles; calyx tubular-campanulate, shortly 5-cleft; corolla-tube elongated, widening above, spirally twisted below; petals 5 , broal: perfect stamens 4. A monotypic genus from the United States of Colombia.

Jàmesonii, Miers (Browállia Jdmesonii, Hort., \& Benth.?). Fig. 2436. Handsome evergreen scahrouspubescent shrub, 4-6 ft. high, hardy and nuch cultivated in California as far north as San Francisco. June. G.C. 11. 21:797. Gn. 26:447. R.H. 1883:36. B.M. 4ti05. F.S. 5:436. P.M. I6:6. G.M. 39:200. V. $7: 298 ; 9: 147$. - An old favorite in northern greenhouses.
J. Burtt Dayy.

2436. Streptosolen Jamesonii ( $\times x_{2}^{1}$ ).

STROBILANTHES (Greek, cone and flower, referring to the inflorescence). Acanthdeew. A large genns containing about 130 species inhabiting the warm regions of Axia and the Malay Islands to Madagasear. They are mostly erect, half-shrubby plants cultivated for their Howers and foliage. Only young, well-grown plants are attractive, the older ones becoming weedy and unatitractive. Some species are grown as ornamental foliage bedding plants, but they are not as desirable for general use as the coleus, the slightest cool weather changing the color of their leaves to a very undesirable sbade. In the greenhouse they make fine decorative foliage plants but require at all times a bigh temperature and an abundance of moisture and much syringing. Under unfarorable conditions they lose their leaves and become unsightly.

Lrs, opposite or rarely scattered, entire or toothed: fls. blue, violet, white or yellow, in terminal or axillary spikes or heads, or in loose cymes, nostly large; calyx deeply 5 -parted, with linear lobes; corolla-tuhe narrow at base, straight or curved, enlarged above, limb of 5 spreading ovate or rotund equal lobes, or the dorsal pair united; stamens 4, perfect, or only the 2 lower perfect and the upper pair sterile and aborted, included; anthers with 2 parallel cells: capsule oblong or linear, sligbtly contracted at the hase, 2-loculed; ovules 2 (rarely 3 or 4) in each locule.

Dyeriànus, Masters. An erect, branching, soft-wooded stove shrub: stem hirsute: Ivs. opposite, 6-8 in. long,
elliptic-lanceolate, serrulate, cordate at base, sessile, variegated with iridescent tints of blne and lilac, rosepurple beneath: fs. in erect spikes, $11 / 2 \mathrm{in}$. long, pale violet; calyx nnequally 5 -lobed, lobes linear, obtuse; corolla-tube curved, ventricose, limb of 5 short, broad, revolute lobes. Burma. B.M. 7574. R.B. 20:133. J.H. III. 26:359. A.G. 17:297. V. 19:67.-Used for bedding.
calldsus, Nees. Shrub, $6-8 \mathrm{ft}$. high: lvs. elliptic-lanceolate, acuminate, puberulous, narrowed into a long, slender petiole wbich is winged to the middle: fls. in short, oblong spikes, large, pale violet-blue; corolla-tube very short, dilated into a subcampanulate throat and expanding into a limb 2 in, across; lobes orbicular, undulate. B.M. 7538.-A native of western India, where it forms a shrub 6-8 ft . high; saill to flower in its third year.
isophýlus, T. Anders. (Goldfússia isophy̆lla, Nees). A low, much-branched, busly shrub, 2-3 ft . high, swollen at the joints: Ivs. short-petioled, opposite, narrowly lanceolate, distantly serrulate or entire: peduncles axillary, shorter than the lys., bearing several fls,: corolla in. long, fumel-shaped, blue and white; limb 5-lobed; lobes emarginate. India. B.M 4363. B. 5:244. - Used either for bedding or for pots. Blooms profusely either in winter or summer, according to treatment.
anisophýllns, T. Anders. (Goldfússia anisophýllu, Nees). Branches somewhat zigzag: lvs. broadly lanceolate, acuminate, serrulate, opposite but one of each pair much smaller than the other: fls. purplish and white; corolla funnel-shaped, very broad at the mouth, with a somewhat irregular 5 -lobed limb. India. B.M. 3404. B.R. 11:955 (as Ruellia persicifolia). Similar to the preceding in habit and use. Heinrich Hasselbring.

STROMANTHE (couch and flower; said to allude to form of inflorescence). Seitaminacee. Five tropical American plants (according to Petersen in Engler \& Prantl's Naturpflanzenfamilien), closely allied to Calathea, Maranta, Phrynium and Thalia. It agrees with Maranta and Thalia in having a 1 -loculed capsule, and thereby differs from Calathea and Phrynium, which have 3 locules. From Maranta it differs in having a very short perianth-tube and the segments not standing opposite each other. Frou Thalia it differs, as does Maranta, in having 2 side staminodia rather than one. For culture, see remarks under Calathea.

Porteàna, Griseb. (Maránta Ported̀na, Horan.). Two to 4 ft . high, with maranta-like lys., the blades loug-elliptic or ovate-lanceolate, varying from acuminate to almost obtuse, purple beneath, bright green above with transverse stripes or bars of silvery white: Hs, solitary or twin on the rachis, blood-red, the inflorescence simple or compound. Brazil. Lowe 26.
sanguinea, Sonder (Maránta sanguinea, Hort.). Leaf-blades about 1 ft . long, oblong-acuminate, purple beneath and green above: scape $12-20 \mathrm{in}$. tall, red towards the top, bearing a panicle of bright red and redbracted fls. Prohably Brazilian. B.M. 4646. F.S. 8:785. - An old garden plant. Thrives in an intermediate house and frequently attains a height of 5 ft . when planted in a border.
L. H. B.

STROPHOLIRION (Greek for tuisted rope and lily, referring to the twining stem). Liliàcea. Very like Brodiaa, and sometimes referred to that genus, but differing in always having 3 stamens and a perianth which is contracted at the throat and saccate at the base. The only species is S. Californicum, Torr. (Brodier colubilis, Baker). In many ways it resembles Irodiad coccinea, except that the scape is climbing to a height of 3 or 4 feet, and bearing an umbel of delicate rosy pink flowers. The scape twines readily abont any stick or bush that stands near it. Livs. 1 ft . or more long, keeled, $1 / 2 \mathrm{in}$. or less broad: corm ahout 1 in , in diam. Central Calif. B.M. 6123 . G.C. 111. $20: 687$. - Culture as for Brodica coccinea.

Carl Purdy.
STRYPHNODENDRON is a genus of tropical Ameriean unarmed trees belonging to the legume family. Ten species are known, one of which is a native of Guiana, the others of Brazil. They are usually small
trees with bipinnate foliage, numerons leaflets, and small fls. borne in axillary, eylindrical spikes, Fls. sessile, 5 -merous; petals often connate to the middle, valvate; stamens none, free: pod linear, compressed, thick. Here belong $S$. Guiamense and $S$. flovibundum, both of which are known as Acacias, the latter as A. putcherrima. Neither species is known to be cult. in America.

STUARTIA (in honor of John Stuart, Earl of Bute, a patron of botany; 1713-179\%). Sometimes spelled Steuartia. Termstromideco. Ornamental decidnons shrubs or trees, with alternate, short-petioled serrate leaves and large showy white flowers solitary on short stalks in the axils of the leaves, followed by capsular fruits. S. pentagyma and S. Pseudo-Camellia are bardy as far north as Mass., while $S$. Malachodendron is tender north of Washington, D. C. They are very desirable ornamental plants, with handsome hright green foliage which turns deep vinous red or orange and scarlet in fall, and they are very attractive in midsummer with their white enp-shaped flowers, which are in size hardly surpassed by any others of our hardier shrubs. The Stuartias thrive in deep, rich, moderately moist and porous soil, preferring a mixture of peat and loam, and, at least in mare nortbern regions, a warm, sunny position. Prop. by seeds and layers; also by cuttings of halfripened or almost ripened wood under glass.

Five species occur in N. Amer. and E. Asia. Shrubs or trees, with smooth flaky bark: fls, axillary or subterminal, with 1 or 2 bracts below the calyx; sepals and petals 5 or sometimes 6 , the latter obovate to almost orbicular, usually concave, with crenulate margin, connate at the base with each other and with the numerous stamens; styles 5, distinct or connate: fr. a woody, usually birsute capsule, loculicidally debiscent into 5 valves; seeds l-4 in each locule, compressed, usually narrowly winged.
A. Styles united: petals always 5 .
B. Stamens purple, spreading: capsule subgtobose.

Malachodéndron, Linn. (S. Firginica, Cav.). Shrub, 6-12 ft. high: lvs, ovel to oval-oblong, acnte at both

2437. Stuartia pentagyna ( $\times 1 / 3$ ).
ends, serrulate, light green, pubescent beneath, $21 / 2-4$ in. long: fls, $21 / 2-3 \mathrm{in}$, across, with obovate spreading petals: seeds wingless, shining. May, June (July and

August in the North). Va. and Ark. to Fla, and La. Gn. $14: 136 ; 18$, p. $628 ; 34$, p. 280 . G.C. 11. 8:433.This species has the largest and showiest flowers.

2438. Stylophorum diphyllum ( $\times 1 / 4$ ).

BB. Stamens with whitish filaments, incurved: capsule ovate, pointed.
c. Bracts beneath the calyx large and leaf-like.
monadelpha, Sieb. \& Zuce. Shrub or small tree: lvs. oval to oval-oblong, acute at both ends, remotely serrulate, slightly pubescent beneath, ligbt green, $11 / 2-21 / 2$ in. long: fls. white, $11 / 3$ in. across, with tlat, spreading ohovate petals; anthers violet. Japan. S.Z. 1:96.-This is the least desirable species and probably as tender as the preceding; it is doubtful whether it is in enltivation. Specimens recently introduced seen by the writer proved to be the following species.

## cc. Bracts small, shorter than calyx.

Pseùdo-Caméllia, Maxim. (S. grendiflòra, Briot. S. Japónica, var. grandiftora, Hort.). Shrub, with upright branches, or tree attaining 50 ft , or more in Japan; truok with smooth red bark, peeling off in great thin flakes: lvs. elliptic to elliptic-lanceolate, acute at both ends, or often acuminate at the apex, thickish, bright green, glabrous or nearly so beneath, $11 / 3-3$ in. long: fls. hentispherical, 2-21/2 in. across; petals almost orbicular, concave, silky-pubescent outside; anthers orangecolored: seeds 2-4 in each cell, narrowly winged, dull. July, Aug. Japan. B.M. 7045. R.H. 1879:430. G.C. 111. 4:187. Gn. 43:899. G.F. 9:35. M.D.G. 1900:480.

AA. Styles 5 , distinet : petals often 6.
pentágyna, L'Herit. (Malachodéndron ovàtum, Cav.). Fig. 2437. Shrub, 6-15 ft. high: lvs, ovate to oblongovate, acuminate, usually rounded at base, remotely serrate, sparingly pubescent and grayish green beneath, $21 / 2-5$ in. long: fls, cup-shaped, 2-3 in. across; petals obovate, with wary crenulate margin; stamens white, with orange-yellow anthers: capsule ovate, pointed, sharply 5 -angled; seeds narrowly winged. July, Ang. N. C. and Ga. to Tenn. and Fla. B.M. 3918. B.R. 13:1104. M.D.G. 1900:479.

Alfred Rehder.
STURTEVANT, EDWARD LEWIS, agricultural experimenter and writer, was born in Boston, Mass., Jamuary 23, 1842, and died at South Framingham, Mass., July

30, 1898. Though holding the degree of M.D. from the Harvard Medical School, Dr. Sturtevant never practiced the profession of medicine, but devoted bis life to agricultural work, first specializing on Ayrshire cattle, then on pedigree corn (Wausbakum) and muskmelons (New Christiana), and afterward devoting particular attention to the modifications which cultivated plants have undergone as shown by such records as occur in the oller books. In connection with these studies, Dr. Sturtevant brought together a rare collection of books dealing with plants published before the time of Linnæus (say 1753), which, with his index cards and herbarium, is now preserved at the Missouri Botanical Garden in St. Louis, Mo.

As first director of the New York Experiment Station, at Geneva, Dr. Sturtevant drew the broad plans on which the successful work of that establishment has been conducted and which have served largely as models for subsequently organized agricultural stations over the country. He was a man of active mind, and his career is suggestive of worthy work to an unusual degree. A biographic sketch and a list of his principal writings are printed in the Tenth Report of the Missouri Botanical Garden.

WM. Trelease.

STYLOPHORUM (Greek, style and bearing, in reference to the persistent style). Papaverdcee. A genus of probably 3 species of perennial herbs, one American and the others from southeastern Asia and Japan. Herbs witb stout rootstocks and yellow sap: 1rs. lobed or cut: fls. yellow or red, rather longstemmed, solitary or clustered; sepals 2; petals 4; stamens numerous; placentæ 2-4; style distinct; stigma 2-4-lobed, radiate: capsule linear or ovoid, dehiscent to the base.
diphyllum, Nutt. (Papaver Stylóphorum, Hort.). Celandine Poppy. Fig. 2438. A hardy perennial about 1 ft . high, forming large clumps: stem with 2 lvs. at the summit: lvs. light green, pinnately parted: fls. sellow, 2 in . across, in clusters of $3-5$. Nay, June. Moist shade, W. Pa. to Wis. and Tenn. B.B. 2:102. J.H. 111. 34:475. - An attractive plant of easy culture in any rich, rather loose, moist soil in either shade or open, but preferably in partial shade.

F. W. Barclat.

STİRAX (ancient Greek name of Styrax officinalis). Styracalcer. Storax. Ornamental deciduous or evergreen trees or shrubs, with alternate, simple, serrate or entire leaves and white often pendulous flowers in axillary clusters or terminal racenes, followed by drupaceous dry or fleshy fruits. S. Obassia, Americana and Japonica are the hardiest and stand the winter in sheltered positions as far north as Massachusetts; $S$. grandifolia is hardy about Philadelphia and S. Californica only south. The Storaxes are bandsome shrubs of graceful habit, usually loose and spreading. Their flowers are numerous, white and mostly fragrant. They are well adapted for borders of shrubberies or as single specimens on tbe lawn, and thrive best in a light, porous soil. Prop. by seeds sown soon after ripening and by layers; sometimes grafted on Halesia tetraptera.

About 60 species in the tropical, subtropical and warmer temperate regions of America, Asia and Europe. Trees or shrubs: 1vs. short-stalked, exstipulate, more or less covered, like the inflorescence, with stellate hairs: fls. white; calyx campanulate, obscurely 5 -toothed or truncate; petals 5 , connate only at the base; stamens 10 , inserted at the base of the corolla aud usually somewhat connate below: ovary superior, often united at the base with the calyx, 3 -loculed at the base, 1 -loculed at the apex; style slender: fr. a drupe, mostly subglobose, fleshy or oftener dry with dehiscent pericarp, 1-2-seeded, witn large, subglobose seeds. Styrax Benzoin yields the benzoin, a balsamic exudation of the wounded tree; storax, a similar gum-resin, was formerly obtained from S. officinalis, but the storas of to-day is a product of Liquidambar.
A. Mls. in many-fld. racemes: lis. 2-10 in. long.
B. Foung branchlets, petioles and racemes grayish tomentose.
grandifolia, Ait. Shrub, $4-12 \mathrm{ft}$ high: 1 vs . oval to obovate, shortly acuminate, usually narrowed toward the base, denticulate or almost entire, glabrous abore, grayish tomentose or pubescent beneath, $21 / 2-6$ in. long: fls, fragrant, in loose racemes $3-6 \mathrm{in}$. long or sometimes in clusters; corolla fully $1 / 2 \mathrm{in}$. long, with spreading. oblong petals: fr. subglobose, about $1 / 3 \mathrm{in}$. across. May. S. Va. to Fla. L.B.C. 11:1016 (poor). B.B. 2:599.

BB. Foung branchlets, petioles and racemes soon glabrous.
Obássia, Sieb. \& Zucc. Shrub or small tree, 30 ft . high: young branchlets and petioles covered with a

quickly disappearing floccose rusty tomentum: Ivs, orbicular to broadly obovate or oval, abruptly acuminate, usually rounded at the base, remotely dentate above the middle and sometimes tricuspidate at the apex, glabrous above, pubescent beneath, 6-10 in, long: fls. fragrant, in racemes $5-7 \mathrm{in}$. long; rachis glabrous; pedicels and calyx finely tomentose; corolla $3 / 4 \mathrm{in}$. long, with slightly spreading obovate-oblong petals: $\mathrm{fr}, 3 / 4 \mathrm{in}$. long, ovoid, pointed. May. Japan. S.Z. 1:46. B.Ml. 7039. G.C. III. 4:131 (not correct in regard to habit). A.F. $12: 30$. M.D.G. 1898:16.

## AA. Fls. in few-fld. clusters or short racemes: lv's.

 1-3 in. long.
## B. Petals 5-8: branchlets and lv's. beneath pubescenf.

Califórnica, Torr. Shrub, 5-8 ft. high: lvs. broadly oral or ovate, obtuse, entire, stellate pubescent, at least when young, $1-2 \frac{1}{2}$ in. long: fls, in few-fld. tomentose clusters; pedicels about as long as calyx; corolla $3 / 4$ in. long, with $5-8$ oblanceolate petals; stamens $10-16$, with the filaments pubescent and connate about one-third. April. California.

BB. Pelals 5: le's, almost glabrous, acute.
c. Pedicels about as long as calyx, puberulous.

Americàna, Lam. (S. glabrem, Cav. S. lavigàtum, Ait.). Shrub, 4-8 ft. high: lvs. oval to oblong, acute at both ends or acuminute, entire or serrulate, bright green and almost glabrous, $1-3 \mathrm{in}$. long: fls. nodding, in few-fld. clusters; pedicels about as long as calyx or little longer, puberulous; corolla about $1 / 2 \mathrm{in}$. long, almost glabrous, with spreading or reflexed, lanceolateoblone petals; calyx-teeth minute, acute. April-June. Va. to Fla., west to Ark, and La, B.M. 921. L.B.C. 10:960. B.R. 11:952 (as Halesia parviflora).

## cc. Pedirels 34-1 in. long, glubrous.

Japónica, Sieb. \& Znec. Fig. 2439. Shrub or small ree, becoming 30 ft . high, with slender spreading branches: young branchlets and lvs. with stellate pnbescence, which seon disappears: lvs. broadly elliptic to elliptic-lanceolate, acute at both ends, often acuminate, crenately serrulate, glabroms, $1-3 \mathrm{in}$. long: fls, pendulous, in $3-6$-fld. glabrons racemes; corolla albout 16 in . long, with slightly spreading, elliptic, tomentulose petals; calyx usually with short and broad, obtuse teeth. June, July. Jap., China. S.Z. $1: 23$. Git. 17:583. B.M. 5950 (as S. servilatum). N.D.G. $1899: 249,230$.
S. Binzoin, Dryand. Small tree, allied to S. Japonica: lvs. stellate-tomentose beneath, also pedicels and calyx. Malay Arehip-S. officindlis, Linn. Closely allied to S. Californica: petals $5-7$; stamens connate only at the base. Mediterr. region. -S. platanifolia. Engelm. Allied to S. Californica: almost glabrous: Ivs. undulate or irregularly simately lobed. Texas. -S. pulverulenta, Michx. Low shrmb, allied to S. Americana, but lvs. stellate-pubescent when young: fls. fragrant, on short, tomentose pedicels. S. Va. to Fla. and Tex. B, B. 2:590-N. serrulata, Roxb. Shrab or tree, 40 ft , high, allied to S. Americana: lvs, usually elliptic-oblong, acmminate, distinctly serrulate: fls. short-pediceled, in 5 -10-fld. short racemes; calyx and pedicels tomentose. E. India.

Alfred Rehder.

## SUCCORY. Another name for Chicory.

SUCCULENTS are desert plants that live on a mininum of moisture. Kitchen vegetables are said to be "succulent" when they are tender, sappy, full of juice, - as lettuce or cucumbers. ln ornamental gardenjug "Succulents" are such tough and dry plants as cacti and century plants. The cacti are typical Sucenlents, as they represent a botanical family created by ages of desert life. Eren in flower and fruit the cacti are much removed from other botanical families, and in the structure of their vegetable parts they are highly specialized to accord with desert conditions. Near to cacti, botanically, are supposed to be the ficelder, of which the large genus Mesembryanthemum is most important. The family Crassulacea contains many fleshy or succulent plants, the most important genera of wbich are meutioned under Crassulu. Other families that have left survivers in the desert, thongh greatly altered in appearance and habits of life, are the lily family, e. g., Agave and Aloe; the spurge family, e. g., Euphorhia; the milkweed family, e. g., Stapelia; the purxlane family, e. g., Portnlaca, and among composites certain species of Senecio, Fleinia und Hertia. Riimpler's Die Sukkulenten. Berlin, 1892 , is an illustrated book of 263 pages corering the above ground, mostly from the botanical side. Nearly all the good cultural books on cacti notice the succulent plants of other families. In this work consult Cacti and the various genera indicated above. See also special books published in Europe. There is no special American book literature. W. M.

SUGAR APPLE. A noma squamosu.
SUGAR BERRY. Celtis occidentulis.
SUGAR BUSF, In some English books this name refers to Protea mellifera, a plant not rilt, in America. In the U. S., Sugar Bush, or Sugar Orchard, refers to a grove of sugar maples.

## SUGAR CANE. See S゙accharum.

SUKSDORFIA violàcea, Gray, and Sullivántia Oregana, S. Watson, are two small perennial herbs of the saxifrage family native to the Colnmbia river region. They were once offered by western collectors but are not known to be in caltivation. They are fully described in Proc. Am. Acad. Arts. Sci., the former in 15:41, the latter 14:292.

SUMACH. See Rhus.
SUNDEW, Drosera.
SUNDROP. Yellow-flowered diurnal primroses (see Primu(t); also (Enotheru fruticosu.

SUNFLOWER. Species of Helianthus. The common Sunflower of gardens is Helianfhus unnaus. This is
grown for ornament, and the seeds (fruits) are also used as poaltry foed. Sunflower bil, produced in Russia, is used in salads. See Bull. 60, Div, of Chemistry, U. S. Dept. of Agric., by Harvey W. Wiley, on "The Sunflower Plant, its C'ultivation, Composition and Uses," 1901.

## SUN ROSE. Heliunthemum.

## SURINAM CHERRY. Engenia Michelii.

SUTHERLANDIA (James Sutherland, one of the earliest superintendents of the Edinburgh Botanic Gardens, author of "Hortus Medicus Extinburgensis," 1683). Leynminosa. Sutherlandiu frutescens, the Bladier Senna of the Cape, might be roughly described as a realflowered Swainsona. It is a tender shrub said to grow 3 ft . high or more in South Africa. Each leaf is composed of about ?-11 pairs of leaflets and an odel one. The t s, are hrisht scarlet, drooping and in the best variety an inch or more long. The blossoms are not peashaped; the standard is ohlong, with reflexed sides; the keel is longer than the standard, and the wings are very short. The ts, are mumerous and borne in axillary racemes, $5-11$ in a raceme. An interesting feature of the plant is its large bladder-like pod, which sometimes measures $21+4 \times 1 \frac{1}{4}$ inches.

Botanically sutherlandia is rery imperfectly understood. Tbere are at most 5 species, or $\mathbf{S}$. frutescens may prove to be the only one. (ieneric characters: tls, as described above; calyx campanulate, 5 -toothed; stamens 9 and 1: ovary stalked, many-ovuled; style bearded: pod many-seeded, intehiscent: seeds reniform.

At the Cape $S$. frutescens runs into twe forms. The common or typical one has the leaflets glabrous above, while in the seaside form, var fomentasa, thay are silrery white on both sicles. In cultivation there seem to he three forms: (1) the typical species, which is generally treated as an annual in France. (If sutherlandias are kept for several years in a greenhouse the plants become woody and unsightly and lose some of their foliage. Young, compact and busby specimens are preferred.) (2) A form with larger red fls. (var, quandifloru), which in France at least does not flower until the second year. (3) A white-fld. form, which is probally one of two different things cultivated noter the name of $\mathbb{S}$. floribuuda, hut which is bere called s. frutescens, var. alba.

Sutherlandias are highly esteemed by Frencll connoisseurs. They are propagated by seuls and are said to lee reatily raised by cuttings. Seeds of the tylical form are sown in Mareh or April under glass and the plants bloom the same summer for several months. They seem to be usually kept in jots for the decoration of verandas, terraces, etc., hnt conld probably be grown in the open borter during summer. The seeds of var. graudiflori are generally sown in June or July, and the plants wintered in a greenhonse. They bloom toward the end of Hay, which is earlier than the typical forms. For winter treatment the French advise very moderate watering and as much air and light as possible. In America the Sutherlaudias seem to be known only in California, though an eastern dealer has recently offered one under the name of "Scarlet Busl." The var, grandiflora is worthy of trial by nortbern florists. Flera Capensis 2:212. The species is hardy at San Francisco.
frutéscens, R. Br. Bladder Senna of the Cape. Tender South African red-thd. shrub described above. Harvey calls the typical form var. communis; it has Ifts. glabrous above, elliptical or chbong: ovaries and pods glabrous. B.M. I81 (as Coluteu frutescens). R.H. 1896, p. 206. Var. tomentósa, Harv, Lfts, shorter and broader, obovate or obcordate, silvery white on both sides: ovaries and pods hispich. Yar. grandiflora, Hort. (S. floribúnda, Carr., not Vilm.), has large red fis. and dees not bloom until the second year. R.H. 187l:6io. Var. alba (S. floribinda, Vilm., not Carr.) has white Hs. Ernest Braunton, of Los Angeles, received in 1900 a plant called S. spectubilis, of which little is known. IT. M.

## SUW ARRO. Cereus giganteus.

SWAINSONA (Isaac Swainson, an English horticulturist of the latter part of the ejghteenth econtury). Often spellerl Sirctinsonia. Leguminosa. About 25

Australian undersbrubs and berbs, differing from Colutea chiefly in smaller stature and the large lateral stigma. Flowers pea-like, in axiliary racemes, purple, blue, red, yellow or white, often showy; standard or vexillum large and showy, oroicuiar; wings oblong, twisted or falcate; stamens 9 and 1: fr. a turgid or inflated pod, which is sometımes divided by a partition and sometimes with the apper suture depressed; seeds small and kidney-shaped: lvs, unequally pinnate, usually with several or many swall leaflets. Now and then various species are seen in the collections of amateurs or botanic gardens, and 8 species are offered by one German dealer, but by far tbe most popular kind is $S$. galegifolia, var. albifiora.
galegifolia, R. Br. (Vicia gategifolia, Andr. Colùtea galegifolia, Sims. S. Osbornii, Hoore). Small, glabrous, attractive shrub, with long, flexuose or half-climbing branches: lfts. 5-10 pairs and an odd terminal one, small, oblong and obtuse or somewhat emarginate: racemes axillary and mostly exceeding the foliage, bearing rather large deep red fls.: pod 1-2 in. long, much inflated, stipitate. Australia. B.M1. 793.-Su"tinsona galegifolia is an old-time garden plant, blooming freely in a cool or intermediate house along witb carnations and roses. It thrives well either as a pot-plant or in beds. It is hardy at San Francisco. It is a nearly continuous bloomer. Cuttings taken in late winter bloom in sunmer; these plants may then be transferred to the bouse for winter bloom, although maiden plants are to be preferred. By cutting back old plants, new bloom may be secured. Cuttings grow readily. The plant is easy to manage. The original form of Swainsona is little known in cultivation, but the advent of the white form has bronght the species to the fore.
Var. albiflora, Lindl. (sar. alba, Hort. S. albifldra, G. Don). Fig. 2440. Flowers pure white. B.R. 12:994. L.B.C. 17:1642. A.F. 8:1173; 10:611; 11:1180. Gag. 5:183. - In North America this is now one of the most popmlar of white florists' flowers for use in winter decorations. It has been called the "Winter Sweet Pea" becanse of the shape of the Howers, but it has no fragrance. The delicate bright green foliage affords an excellent contrast with the pure white flowers. This variety is often grown at the end of a rose or carnation house, or trained on a trellis. It likes abundant sunlight, rich soil and liquid manure. When allowed too much root room the plants become very large and are slow to bloom, wherefore a large pot or tnb is preferable to the border.
Var. violdcea. Hort., has rose-violet fls., and is somewhat dwarf. S. coronillefolia, Salisb., probably represents this form or something very like it. B.M1. 1725. $S$. coronillafolia is an older name than S. galegifolia, and if the two names are considered to represent the same species the former should be used.
Var, ròsea, Hort., has pink flowers.
S. Ferrandi, Hort., is called a "garden varlety" by Kew au thorities. Var. alba is desertbed in R.H. 1886, p. 562 , and var. carmines is in the American trade.
L. H. B.

## SWALLOW THORN. Hippophaë rhamnoides.

SWAN RIVER DAISY is Brachycome iberidifolia.
SWEET ALYSSUM. See Alyssum maritimum.
SWEET BASIL. See Basil.
SWEET BAY of general literature is Laurus nobitis. In America, Magnolia glanca.

## SWEET BRIER. Rosa rubiginosa.

SWEET CICELY, or SWEET-SCENTED CHERVIL (Myrrhis odordte, Scop., which see), indigenous to Europe upon the banks of streams, is a graceful, hardy perennial 3 ft . tall, with very large, downy, grayish green, much-divided leaves, hairy stems and leaf-stalks, small, fragrant white flowers, and large brown seeds of transient vitality. The leaves, which have an aromatic, anise-like. sweetish flavor and odor, characteristic of
the whole plant, are still occasionally employed in flavoring soups and salads, though their nse as a culinary adjunct, even in Europe, is steadily declining. In American cookery, the plant is almost confined to our unassimilated, listinctly foreign population. Though easily propagated by division, best results are obtaineld from seed sown in the autumn either spontaneously or artificially; the seedlings, which appear in the follow-

2440. Swainsona galegifolia var, albiliora ( $\times$ 1/4).
ing spring, are set 2 ft . apart each way in almost any ordinary karden soil. Spring-somn seed frequently fails to germinate. When once established common care will be sufficient. M. G. Kains.

SWEET CLOVER. Melitotus alba.
SWEET FERN, Myrica Gale.
SWEET FLAG. Acorus Calamus.
SWEET GALE. Myrica Gale.
SWEET GUM. Liquidambar.
SWEET HERBS. The term "Sweet Herbs" has long been applied to the fragrant and aromatic plants used in cookery to add zest to various culinary preparations, principal among which are dressings, soups, stews and salads. At the commencement of the nineteenth century many were to be found in gardens and kitcbens that now have been dropped entirely or have but very limited use. Perbaps no group of garden plants during this time has been marked by so little improvement. Except in parsley, very few distinetly new or valuable varieties bare been produced or disseminated. This is mainly due to the prevailing ignorance of their good qualities, to which ignorance may be charged the improper handling, not only by the grower, but by the seller and often by the final purchaser. With the public
duly awakened to the uses of herbs, improvements in growing, handling, and in the plants themselves will naturally follow, to the pleasure and protit of all.

In this country the herbs best known and appreciated are parsley, sage, thyme, savory, marjoram, spearmint, dill, fennel, tarragon, balm and basil, arranged approximately in their order of importance. Since parsley is more extensively used as a garnish than any other garden plant, it is grown upon a larger scale than all other herbs combined. Hence some seedsmen do not rank parsley with sweet Herbs. Sage is the universal flavoring for sausage and the seasoning par excellence for rich meats such as pork, goose and duck. It is more widely cultivated than thyme, sarory and marjoram, which have more delicate llavors and are more popular for seasoning mild meats, such as turkey, chicken and veal. With the exception of spearmint, without which spring lamb is deemed insipid, and the famous mint julep, a thing of little worth, the remaining herbs mentioned above are scarcely seen outside our large city markets, and even there they have only a very limited sale, being restricted mainly to the foreign population and to such restaurants and botels as have an epicurean patronage.

In many market-gardens both near to, and remote from, the large cities, sweet herbs form no small source of profit, since most of them, when properly packed, can be shipped in the green state even a considerable distance, and when the market is over-supplied they can be dried by the grower and sold during the winter. Probably more than one-half the quantities used throughout the country are disposed of in the latter manner.

As a rule, the herbs are grown as annuals and are propagated from seed sown in early spring, though cuttage, layerage and division of the perennials are in favor for home practice and to a certain extent also in the market-garden. Commercially they are most commonly grown as secondary crops to follow early cabbage, peas, veets, etc. In the home garden they are frequently confined to a corner easily accessible to the kitchen, where they remain from year to year. In general, herbs should be planted on good light garden soil of fine texture, kept clean by frequent cultivation, gathered on a dry day after the dew is off, dried in a current of warm, not hot air, rubbed fine and stored in air-tight vessels.

For specific information see articles on the following: Anise, Angelica, Balm, Basil, Carauay, Catnip, Coriander, Dill, Fennel, Horehound, Hyssop, Marigold, Marjoran, Mint, Parsley, Peppermint, Sage, Samphire, Savory, Tarragon, Thyme.
M. G. Kalns.

## SWEET LIME. See Lime.

## SWEET MARJORAM, See Origanum.

SWEET PEA (Lathyrus odoratus. See Lathyrus for botanical account. For structure of the flower, see Legume). Figs. 2441-44. For its beauty and fragrance, the Sweet Pea is the queen of the large genus to which it beloags. Long a common garden annual, within recent years it has been brought to a high degree of development, until it ranks with the most popular garden favorites. It is also grown for high-class exhibitions and foricultural competition.

Its early botanical history has been traced back to 1650. The whole history of the Sweet Pea is elaborately treated by S. P. Dicks, of London, in American Gardening, for July 24, 1897. The origin of the Sweet Pea is divided principally between Sicily and Ceylon, the original purple variety being indigenous to the former island and Sardinia. Sicily was also the native habitat of the white variety, but all obtainable testimony credits Ceylon with the original pink and white variety known as the Painted Lady. Thence also came the original red out of which the erimson-scarlet sorts have come. Father Franciscus Cupani, a devout ltalian monk and enthusiastic botanist, is credited with being the first cultivator of this flower, at Panormus, in Sicily, in 1699 , and the seed of the purple variety was sent by him to England and elsewhere. The seed of this flower became an article of commerce as early as 1730. In 1793 a London seed catalogue listed 5 varieties, the black, purple,
scarlet, white and Painted Lady. About 40 years later the striped and yellow are found named on the list. Not until 1860 do we find any further advance, when a blue-edged variety was offered, since known as Butterfly. In 1865 Invincible scarlet won a certificate. $\ln 1868$ Crown Princess of Prussia appeared in Germany, and gave us the first light flesh-pink. Adonis in 1882 gave a new color in rose-pink, which was soon followed by a better shade in what was afterwards named Princess Beatrice. Several others of less value helped to prepare

2441. Flowers of Sweet Pea, to show structure.
the way for the modern Sweet Pea as it lias come from the skilled hands of Heary Eckford, the priuce of specialists in this flower.

About 1876 Henry Eckford, of Shropshire, England, after long experience and signal success as a specialist in other florists' flowers, took up the Sweet Pea. He began with the 6 or 7 common sorts, working patiently by means of cross-fertilization and selection for seven years before he had anything of merit to offer. By that time he began to get new colors and a somewhat improved size and form. Orange Prince, the dark maroon Boreatton, and the deep bronze-blue of Indigo King, were among the cheering signs of his success in originating colors. But his novelties did not meet with popular appreciation till about 1890, when their merit of size and granditlora form and originality of color began to excite a new interest in this flower, especially in America. Up to 1898 Eckford put out about 75 varieties, the product of 22 years of patient labor. A large percentage of his introductions has received certificates and awards of merit from the Royal Horticultural Society and at other English shows, Laxton, of England, and J. C. Schmidt, of Germany, are among those who have done special work in originating varieties.

At the time when this new interest in Sweet Peas awoke in America the increased demand for the sced led to the successful experiment of growing it in California. The demand soon increased till 125 tons of this seed were produced by the California seed-growers, and now practically the world's supply comes from that source. This also led to the production of American novelties in this flower, the extensive seed-growers having unequaled opportunity for finding new sorts and also of making them by cross-fertilization. The American novelties have the advantage of being introduced with stronger seed than the Eckfords. The complete list of varieties in 1898 numberel about 150 named sorts. The colors now represented are white, light primrose,


Plate XL. Sweet Pea, Lathyrus odoratus
primrose-cream, buff-cream, buff-pink, various shades of light pink, flesh-pink, rose-pink, several shades of bright rose, scarlet, erimson-scarlet, rich blood-red, light blue, mauve-blue, dark blue, lavender, salmonpink and also light rose, with more or less rich infusion of orange, purple, magenta, maroon with bronzy cast or rich velvety effect, and sbades of violet. All of these are found in passably good selfs and also in contrasted and blended colors, and all these colors are now found in stripes and flakes. In 1893 the first dwarf Sweet Pea called Cupid was found in California, the white first appearing, and now practically all colors have been found in this diminutive form. In this form of sporting the plant totally abandons its vine babit, making a mat of dwarf foliage, the blossoms being of the usual size, but with very short stems.

The best canon of judgment gives no encouragement to the so-called "double" Sweet Pea, the granditlora single form being the approved type, as it certainly is the most graceful and best adapted to the flower. The highest form of development which the Sweet Pea takes is brst in bringing the single flower to the best grandiflora size and form, and then in adding to the number of flowers on the stem. The improved Sweet Pea now takes on 4 blossoms to a stem to some extent, and even 5 blossoms to a true single stem are not unknown. The length and diameter of the stem are also important in determining merit. Stems 14 in . long are occasionally exbibited, and the flower cannot be said to have high culture unless the stems are well on towards 10 inches in length. The finest granditiora type of blossom bas a standard which when pressed out will be nearly circular and will cover a silver dollar. The finest exhibition stock will now show some blossoms that measure $13 / 4 \mathrm{in}$. across.

Now that this flower is grown for the highest competitive test of skill, the rules for judging an exhibit are of importance. Although no scale of points has received general recognition, yet, allowing that each variety must be judged according to the correct individual type under which it was introduced, size of blossom, color, form, substance, number of blossoms on the stem and size of stem, are the essential points. The retrograde of stock is easily shown by the loss of full rounded outline, reflexed standard and deteriorated substance. Descriptive terms have been adopted by the growers to some extent, e. g., blossoms take the old conmon form, or are semi-expanded, boldly expanded, booded, notched, shell-shaped, or grandiflora. Position of blossoms on the stem is also a point aimed at by the specialist.

A good degree of success is now reported from ordinary gardens everywhere in the growing of this flower. Yet since it has been brought to its present bighly hybridized and developed stage some of its hardy habits that formerly made it easy to grow have been reduced. Closer attention must now be paid to such rules of culture as have been found necessary. Tolerably rich soil inclining to a clay loam is best. Over-enriching will be likely to cause an excess of vine growtb at the expense of hloom. In all light soil, firming the ground by treading or rolling it will he found a preventive of the early blight. The time for planting is as early as possible, the ground baving
been prepared in the fall, and the seed going in as soon as the frost is out. This first planting should be covered one inch, the place where the row comes being bollowed out about three inches to hold moisture. A later planting needs to be covered with three inches of soil. Slow

2443. Red Riding Hood Sweet Pea.
germination and almost a standstill condition through the month of May is better than any forcing process. Only the thinnest top-soil should be disturbed in hoeing and no soil filled in earlier than June, if at all. Cutworms must be shown no quarter. A light mulch is excellent for shading the ground. Whatever support is given the vines must be strong and six feet high. A wire trellis answers well, but good birches give the vines a chance to ramble and they are cooler and more airy. Rows should run north and sonth. All the strength of the vines should be conserved by keeping the pods removed.

IT. T. Hutchins.
California's Contributions to the Sweet Pea. The pink and white Sweet Pea, or, as it was popularly known, the "Painted Lady," is an old-time garden favorite wbich was greatly esteemed by flower lovers for its beantiful coloring and delightful fragrance. This type, with the old style white-flowered kind and a few small-flowered sorts of dull and unattractive coloring, constituted for many years the entire assortment of varieties known to gardeners. When any one spoke of the Sweet Pea the Painted Lady was understood, in the same way that in speaking of a tea rose the favorite Safrano was the variety always referred to. In the past twelve years all this has been changed by the wonderful improvements made by specialists in the development of this flower and its consequent popnlarity. Our list of varieties of the tall-growing or running type now numbers over 180 varieties.
This great improvement is due primarily to the work of Henry Eckford, of England, who has improved the Sweet Pea mainly by selection. The Laxtons also sent out a number of crosses, which were very distinct in coloring but of small size, and though the colors were rich they were not attractive. Owing to the climatic conditions under which he worked and his greater interest in the improvement of the flower, Mr. Eekford has not produced seed in sufficient quantities to greatly cheapen the price, and this element of popularity has been supplied by our own wonderland of flowers-California. In California, finely ripened sped can be produced in such large quantities that in two
years after Mr. Eckford's introduction of a new variety our seedsmen are ahle to offer the seed at a price within the reach of every gardener. For a small outlay these novelties can he planted in masses unthought of by European gardeners.

Califorvia bas done mnch more than this for the Sweet Pea, however. The sweet Pea likes a cool soil and climate, the vines shriveling up, during midsummer and suecnumbing to the red spider during the hot, dry weather which prevails over a very large portion of our conntry. To a certain extent, therefore, the popularity of this flower has been continel to the cooler northern states. In the effort of nature to alapt the plant to changed conditions, an entirely distiuct type of growth soon appeared in the California fields, baving a low, compact, spreading habit. The dense, leep green foliage lying elosely to the soil, serves to muleh, shade and protect the strong network of roots lying beneath the surface. This type is known as the Cupid Sweet Pea. That it is apparently due to climatic influence is readily shown by the large number of distinct varieties we now have with this type of growth, many of which originated directly from the tall varieties, and not from sports of the original Cupid. This Cupid Sweet P+ia succeeds excellently in hot, dry weather, and exposer] dry locations where success with the tall varieties is exceptional. Conversely, the Cupid type does not sue-

2444. Three varieties of Sweet Pea, about half nitural size, indicating the progress in size of flower.
The figure on the left shows a variety of the last generation; that on the right an average tlower of todity. The midele flower is the grandiftora type, reduced from a tlower $1^{1}$ i in. across. Larger tlowers can be secured, but it is a question whether they are desirable.
ceed in cool, moist locations where the tall sorts do best, as the dense foliage does not dry out readily and is inclined to mildew.

Two other distinet types have been originated in this country, the Bush Sweet Pea, whirh stands half-way between the Cupid and tall Sweet Peas in growth, needing no trellis or support but with the foliage held well above the soil and the flower-stems of greater length than in the compact Cupids. This type is also especially adapted to hot weather and dry soils, baving a spleudidly developed system of fine fibrous roots. The second type is the result of breeding and selection, as exemplified in Burpee Earliest of All, which has the true vine-like or ramning growth. but grows ouly I8 inches high and comes into full flower greatly in advance of the taller varieties of Sweet Peas without any sacrifice of size in the flower or of length in the stems. With this variety and early planting a great show of flowers maty be bad even in the southern states. Its early Howering habit makes it the most desirable of all varieties to grow under glass for winter flowering. Heretofore, the enthusiasm for Sweet Peas has been mainly in the cooler northern states, but with fall planting of the tall sorts and the adoption of the Cupid and Bush varieties for summer flowering in the hotter locations, there is no reason why they cannot be grown under more widely varying conditions than any other popnlar flower.
E. D. Darlington.

SWEET POTATO. Ipomora Butatas, which see for botanical account. An edible taberous root, mach prized in North America, a staple article of food in all the sonthern states, and also much consumed in the North. The Sweet Potato plant is a trailing vine of the morning-glory family. The branches root at the joints. The edible tubers, Fig, 2445, are borne close together under the crown and unlike the common potato they
do not bear detinite "eyes." The varieties differ greatly in length of vine and the "vineless" Sweet Potato has a bushy habit. Good commercial varieties that are well cared for rarely bloom, and even thea the flowers may not produce seed. The plant is tender to frost. The species is widely distrihuted in tropical regions but is supposed to be of American origio. It has heen cultivated from prehistoric times by the aborigines. The plant is exceedingly variable in its leaves (Fig. 2446), and the farieties are sometimes classified on the foliar characters. In the southeastern states the word "potato" usually means sweet potato, the potato of the North being known as " rish," "round" and "white" potato.
The Sweet Potato erop amomnts to fifty million bushels annually. Large quantities are grown in the Carolinas, Georgia, Texas, Alabama, Mississippi, Virginia and New Jersey, the last state being the farthest point nortl where the crop is raised on a large scale. In Califurnia the yield is also large, particularly in the interior valleys and in places removed from the inflaence of the coast climates. The Sweet Potato is propagated by means of its tuhers, usually from the slips or cuttings which arise when the tubers are planted in heds or frames. It is also propagated by means of euttiags or slips taken from the tips of fresh rumners. A bushel of ordinary Sweet Potatoes will give from 3,000 to 5,000 plants, if the sprouts are taken off twice. An arerage good yield of Sweet Potatoes is 200-400 bushels per acre. Yields twice as high as these are sometimes. secured.

In the northern states amateurs oceasionally grow Sweet Potatoes of the southern types in a small way on ridges in the garden, but it is usually for the pleasure of the experience rather than for profit. A warm, sunny climate, Iong season, loose warm soil, liberal supply of moisture in the growing season and a less supply when the tabers are maturing-these are some of the requirements of a gond Sweet Potato crop. The crop should be gathered immediately after the first frost. In the South a soft and sugary Sweet Potato is desired. In the North a frm, dry, mealy tuber is the prevalent type. Certain varieties of sweet Potatoes are called "yams "in the Soutb, lint this name belongs historically to a very different kind of plant, for an account of which see Dioseorea.

There are two special American books on Sweet Potatoes, by Fitz and Price. For history, see Sturtevant in Amer. Nat., Aug., 1891, pp. 698, 699. Some of the most. important hulletins are Farmers' Bull. 26. U. S. Dept. Agric. and Ga. 25 by Hugh N. Starnes. Nd. 59 and 60 deal with the iusects and diseases.
L. H. B.

Commercial Celtivation of the Sifeet Potato. The cultivation of the Sweet Potato as a staple (rop) is confined almost exclnsively to the southern states. While it is true that the Swert Potato occupies large areas in New Jersey and is also planted more or less extensively throughout portions of Illinois, Indiana and Ohio, by far the greater bulk of the crop is to be found below the 38 th parallel of latitude. Hence the cultural details here given, as well as the memoranda on diseases, are compiled from a strictly southern standpoint.
Methods vary but little. Local environment enters lexs as a factor into Sweet Potato culture than into any other horticultural industry of the comntry. For this very reason it is remarkable that there should oceur such extraordinary variations in type as are everywhere noted, and for which local environment, if anything, should be beld responsible. So marked are these rariations that withont apparent cause any given "variety" so-called-more correctly, perhaps, "selection"-will develop, when transferred a few handred miles from its place of origin, after a few years of cultiration in the hands of half a dozen different growers, just that many distinct types, each differing materially from the original in its more important characteristics-productireness, naturity, quality and habit of growth. This difference extends, sometimes, even to a change in the form of the leaf itself from possibly an ovate shape with margin entire and with no more trace of a lohe than an apple leaf has, to a sacittate or halberd form or even to one deeply cleft or indented. See Fig. 2446 .

Propagation is effected altogether by means of shoots, mostly thoxe from the root. While blooms are often found on the vines - particularly in the extreme Souththey are nearly always imperfect and invariably drop from the pedicel. No ovaries ever develop. Therefore the remarkable series of rapid transformations obserrable in the Sweet Potato must be credited entirely to an active and persistent tendency in the plant to hud varia-tion-in effecting which it must be admitted to he a reritable kaleidoscope.

Propegation. - "Draws," or developed sprouts from root-buds, supply the readiest and, indeed, the only practicable means of propagation. Tubers of the last season's crop are "bedded" for this purpose; that is, an outdoor hotbed is constructed in which the tubers are placed in a single layer, close together, and covered with several inthes of soil early in spring. In a few weeks the latent buds of the tubers, nuder the stimulus of the heat from the fermenting manure, will have sprouted, and by the time all danger from frost has passed a dense growth uf "draws," or "slips " will cover the bed. These are removed from the tubers, set by hand in the field in rows four feet apart-the plants eighteen inches, generally, in the row. The size of the bedded tubers does not affect the crop. As good results are obtained from small as from large potatoes. Even the smallest tubers or "strings" consistently planted from year to year, produce as heavily as the choicest selections. This is but logical if we remember that the Sweet Potato is merely an enlarged, inaxial, fleshy root, and heavy tubers, when sprouted, should have little direct tendency to produce a crop of corresponding size, particularly when the subsequent cultiration is indifferent.

For later plantings the "bed" may be supplemented by cutting "slips" 12 or 14 inches long from the young vines after growth commences in the row, and using them as "draws." While the "slips" do not live quite so readily as the rooted "draws," they are said to make smoother and more sightly tubers-due, doubtless, to the fact that by this method the mycelium of the black rot is not conveyed from the bed to the field.

Soil and FVertilizution. - Although a gross consumer of nitrogen, the Sweet Potato cannot advantageonsly occupy "bottomland." With this reservation it may be said that almost any land will produce potatoes. Yet a light, samly loam is best. Stiff, red soil is to be aroided, as in it the potato splits, cracks and "roughens," by reason of the suspension and sudden resumption of growth during variable weather.

The most approved fertilizer formula has been found to be, per acre, abont as follows:

| Nitrogen (ammonia equiv. 50 llss .) | Le |
| :---: | :---: |
| Phosphoric acid. | . 90 |
| Potash. |  |

This requirement would be met by a compound of:

| High-grade acid phosphate | Lbs. |
| :---: | :---: |
| Nitrate of soda. |  |
| Sulfate of potach |  |

Total..................................................000

Cottonseed meal has been found in many localities preferable to sodium nitrate, as it is not so readily soluble and therefore more gradual and continuous in action through the season. It may be substituted in the formula for sodium nitrate in the ratio of two pounds for one. Potassium muriate produces as heary a crop as potassium sulfate, but the latter considerably increases the starch content, which in southern-grown potatoes is unusually large. For potash, kainit may be substituted in the proportion of four ponnds of kainit to one of either potassium sulfate or muriate. Stahle manure of normal composition produces excellent Sweet Potatoes, but is. of course, too variable in character and too uncertain in quantity to be generally available.

A complete summary of methods employed in Sweet Potato culture would occupy too much space. They are, moreorer, too familiar to require repetition. Yet it is desirable to call especial attention to certain points which have been insufficiently discussed in previons publications. First among these is the practice of
premature planting. Against this temdency earnest protest should be entered. It is the cause of much loss. When an early market crop is not the object there is no need for haste in putting out the draws, since the season is abundantly long for leisurely planting, even in Jume, after oats and wheat are barrested. If planted in May, or earlier, with the long southern season, the crop is likely to mature before the approach

2445. Sweet Potatoes.
of cold weather permits the proper housing. The consequent and usual result is a "second growth," which predisposes the tubers to the incoads of the "soft rot," which causes great loss.

A deep, mellow soil-bed, with an extended season, unqnestionably will produce more and larger, hut later, tubers. Sballow preparation will yield an earlier crop. It follows that the deeper the soil the earlier the planting may be effected.

Preservation. - Were it possible to successfully and inexpensively preserve through the winter the Sweet Potato crop, southern agriculture would be practically revolutionized. Land capable of producing a bale of cotton, worth, say $\$ 40$, will readily yield 300 busbels of potatoes, at half the cost for cultivation, worth, at 20 cts. per bus., $\$ 60$. This the planter would gladly take, at harvest time, but there is then no market at any price. Y'et six months later he cannot supply the demand at 60 cts , or $\$ 180$ per acre. These figures are conservative. Eren on poor soil, producing 500 pounds seed cotton (one-third of a bale) per acre, the yield in Sweet Potatoes - 100 hushels, a very small output-could be sold in the spring for \$00 were it possible to successfully keep the tubers through the winter. Many succeed in so doing, and reap the reward, but it is still an unsolved general problem. Methorls, too, are variable in the extreme-and this is the one notable exception to the rule of uniformity prevailing in Sweet Potato culture. Climate and local environment seem here to play an important part, and means of preservation founil successtul in one place prove entirely unserviceable in another-personality, even, entering as a factor in the problem, one man failing where another, by the same methods, succeeds. Many ways have been derised and practiced, some simple, some elahorate; but each said by its enthusiastic originator or advocate to be absolutely infallible.

Nothing has yet been found that will effectually supersede the well-known popular method of "banking" or "hilling" in quantities of from 30 to 50 bushels, aceording to the different local enstoms which prevail in each community. The ordinary practice is to heap the tubers in a conical pile around a perforated wooden flue, covering them with a few inches of dry pinestraw, then a layer of corn stalks, and finishing with three inches of ilry sand and afterward two or three inches of clay or other stiff soil. The bill may be constructed either under shelter or out-of-doors. If the latter it is well to protect with a cosering of boards to keep off the rain, though not absolutely necessary.

Diseases and Matadies. - A few of the most important maladies of the Sweet Potato - the canse, indeed, of nine-tenths of the loss experienced in attempts to winter the crop-will be noted in the probable order of their importance:
(a) Soft Rot (Rhizopus nigricans): This is the most common form of rot, and the one that produces the most damage. It is due to a fungus or mold on abraded places, chiefly of the tuber, especially when the potatoes
are stored in large bulk, without suffieient opportunity to dry out. It is perhaps the main cause of loss with stored potatoes, developing rapidly and inmediately, under favoring conditious, and reducing, sometimes in a few weeks, the entire contents of a bin or hill to a pulpy mass of corruption, emitting a most disgusting odor. A few simple remedial measnres will greatly reduce loss from this cause: (1) Dig only when soil is dry. (2) Dig before tubers become sappy from a "second growth." (3) Remove all affected tubers before storing. (4) Use padded baskets in handling to avoid abrasion. (5) Store in small bulk and keep dry and well ventilated.
(b) Black Rot (Ceratocystis fimbriata): The fungus producing this affection does not depend so much on the conditions of moisture and abrasion, and is slower in making its appearance than is the soft rot, continning to develop, however, all through the winter and often completing the destruction tbe other has begun. It is all the more to be dreaded because it is not so immediately noticeable, and tubers containing its germs are more likely to be housed. The black rot does not produce a pulpy mass, though effectually destroying the eutire tuber. It frequently makes its appearance on the young draws at "setting-out time." Remedy: carefn! selection-1st, of sound tubers for bedding; 2d, of perfectly bealthy draws for setting; 3d, where these conditions eannot lee fally complied with, by planting the bulk of the crop with cuttings from the vines, thus minimizing the damage. The use of eopper sulfate, or any of the standard fungieides, either as a spray or for soaking the tubers, is not advisable; for, since the nycelinm of most of the fungi causing decay in the Sweet Potato is lodged in and protected by the interior cells of the tuber, surface treatment would prove more or less futile.
(c) Soil Rot (Acrocystis Batatas): Tbis fungus, as its name implies, is a resident of the soil rather than of the tuber, and hence canuet be readily gnarded against. It is responsible for most of the decay observed in the crevices or cracks of split tubers. Sudden expansion of vegetable tissue due to a resumption of rapid growth when wet weather follows a period of drought, particularly when the soil is a stiff clay, produces the primary "eracking" and the spores of the fungus, finding a ready lodgment, start the process of decay. As for remedies, heavy applieations of sulfur to the sail have been found to check its ravages in a neasure, but this method of operation is not practical. That is to say, while checking the fungus the result is not commensmrate with the cost. The surest preventive-and this is true for any and all rots-is rotation. The same areas should uever be planted in potatoses $t$ wo jears in surcession, nor should the same spot be used twice for a hotbel to furnish draws, even at the cost of great iuconvenience iu establishing the bed in another place.
(d) Other Fungi: Several other fungi are serious enemies of the Sweet Potato, as the stem rot, white rot, dry rot, potato scurf, leaf blight, etc.; but their ravages will not compare with the damage produced by the first three-soft rot, black rot and soil rot.

As for the first three, it matters little to the prastical grower whether or not he

2446. Leaves of Sweet Potato

Adapted from Bulletin of the Georgia Experiment Statiou,
is aore to distinguish one from another After the couditions favoring the spreat of one of them have been permitted to Gevelop and the resulting decay once appears, it is usually tro late to put remedial measures nuto effect. Remedy, in this case, must precede manifestation of disease. Every possible precaution should be observed at one and the same time against them all. Proper preventive effort during barvesting will be found a surer guarantee against loss from decay than the most elaborate structure or the most carefully detailed method of housing yet devised, and when thoroughly enforcen little apprehension need be felt as to results, no matter what plan of preservation is adopted.

To this end the following summary of procedure will be found serviceable:
a. Rotate tbe crop. Never plant twice in succession on the same land.
b. Rotate the bed. Never use old soil or old manure a second season.
c. Dig only wben the soil is dry.
d. Dig before tubers are rendered moist and sappy by a "second growth," and to this end never plant too early in spring.
$e$. Use padded baskets in handling to prevent bruising and abrasion.
$f$. Handle with scrupulous care.
$g$. Reject all affected tubers before storing.
$h$. Store dry, in small bulk; if in bins erect bulkheads and nse flues for rentilation.
$i$. Use only perfect tubers fur bedding, rejecting any showing symptoms of decay.
j. Use only healthy and unaffected draws for setting out.
$k$. When draws in bed are affected with diseased roots (black rot) and cannot be thrown away, plant in a separate plat and take cuttings from their vines later for the main crop.

Farieties. - Since new varieties of the Sweet Potato can originate only by bad variation, it is a marvel where and how all of the differeut types arise. The writer bas personally eultivated and tested some fifty orld kinds, and there doubtless exist, in all, 75 or $80-$ the number still increasing. But one uniform method of elassification exists - that by the "leaf" inte tribes, falling under the three beads, "Leaves entire," "Leaves shouldered or lobed "and "Leaves cleft" - commonly termed "round-leafed," "shouldered" and "split-leafed," respectively. Of these the second type is the most numerous, containing probably twothirds of the entire list.

As for the best variety, "the "all-round" potato has not yet been found, nor is it likely to be, since such a type shonld be a tremendous yielder, of first quality, a safe keeper and free from disease. No potato embodies, superlatively, all of these characteristics. All of the beaviest yielders belong, unfortunately, to the "milky" or "turpentine" group-as Norton, Hayman, Southern Queen, White St. Domingo, Early Golden, etc., -and their sappy consistency prevents them from keeping well, while their quality is uniformly poor. Regarding quality, bowever, tastes differ. The northern market prefers a dry, mealy potato, represented by the Jersey or Nansemond strain. The southern market, on the other hand, demands a rich, sugary potato, like the Georgia or Yellow Yam, wbich is generally cousidered
to be the standard of excellence, and is a good keeper though yielding very lightly.

The market it is intended to supply should, therefore, be specially planted for. If for northern shipment, the Jersey Sweet is preferable. For early local sale Orleans Red ("Nigger-killer"), Early (iolden or Bermuda Red, head the list. For winter storage and local market in spring it is best to rely on the good old popular standard -the Georgia Yam-despite its light yield, or reinforee it with Vineless, which elosely approaches it in quality and is a much hearier cropper.

Hugh N. Starnes.
SWEET SCABIOUS. See Scabiosa.
SWEET-SCENTED SHRUB. Seo Calycanthus.
SWEET-SOP. Anona squamosa.
SWEET SULTAN. See Centaurea moschate.

SWEET VERNAL GRASS. See Inthoxanthrm.

## SWEET WILLIAM is Dienthus barbatus.

SWERTIA (after Emanuel Swert, a bulb cultivator of Holland and author of Florilegium, 1612). Gentianàcece. About 40 species, widely seattered about the world but mainly from S. Asia, of annual or perennial herbs with simple leares, mainly radical in the perennial species and yellow, blue or white flowers in loose or rather dense corymbs.

Calyx 4-5-parted: corolla rotate, with a very short tube and glandular pits at the base of each lobe; lobes $4-5$, overlapping to the right: ovary 1 -loculed: capsule dehiscing by 2 valves at the sutures.
dilùta, Benth. \& Hook. (Ophèlia dilùta, Ledeb.). A tender perennial about I ft, high : stem winged and angled, branching from near the base: lvs. glabrons, ovate-lanceolate, 3 -nerved, rather obtuse, rounded at the base, short-petioled: fls. 4 -merous, blue, in a dense, fastigiate umbel; corolla-lobes ovate, rounded at the apex and bearing at the base a single ovate, nectariferous pit destitute of a fringe. E. Asia, Japan.
perénnis, Linn. A hardy perennial $1 / 2-1 \mathrm{ft}$. high: lower lvs. oblong-elliptical, long-petioled; stem-lus. ovate-oblong, obtuse: fls. mostly 5 -merous, blue to white, in a thyrse; corolla-lobes elliptieal-oblong, acute. bearing at the base 2 orbicular nectariferous pits crested with a fringe. Colo., Utab and northward; also in the alpine regions of Europe and in Asia.-S. peremis is an alpine bog plant and should be given a cool, deep, moist soil.
F. W. Barclay.

SWIETENIA (Gerard $\operatorname{van}$ Swieten, 1700-1772, physician to Empress Marie Theresa in Vienna). Melidcece. This genus contains the mahogany tree, a tree of high importance in the furniture trade. The young trees are offered by nurserymen in S. Fla. and S. Calif. A tropical genus of 2 or 3 species of tall trees, with abruptly pinnate leaves with opposite petioled obliquely orate long-acuminate leaflets and small flowers in axillary or somewhat terminal panicles: calyx swall, 5 -parted; petals 5 , spreading; staminal tube urn-shaped, 10 toothed; disk annular: ovary ovoid, sessile, 5 -loeuled: capsule about 3 in . tbrough.

Mahágoni, Jacq. Mabogany. A large tree with hard dark red wood of well-known value for furniture, ete. Lfts. 6-10: tis. greenish yellow. Tropical regions ' of North and Sonth America, West Indies and S. Florida. -According to Mueller's "Select Extra-tropical Plants," the degree of endurance of the tree is not sufficiently ascertained. In Jamaica it hardly reaches an elevation of $2,000 \mathrm{ft}$. It requires rich soil. According to Reasoner Bros., the tree will bloom at small size when grown in pots.
F. W. Barclay.

SWISS CHARD. See Beta, Greens, Salad Plants.
SWORD LILY. Gladiolus.

SYCAMORE in Europe is Acer Pseudo-platamus; in America Platanus oreidentalis. The Syeamore of the ancients was a kind of fig known as Pharaoh's Fig, Sy. comorus antiquorum, or better Ficus sycomorus.

SYMBIOSIS is the intimate association of two or more distinct organisms, with benefit to ove only, or to both; commensalism; consortism; copartnersaip. In this association each organism is called a symbiont.
According to the character of the union, several kinds of symbiosis have been recognized: (1) Mutual antagonistic synubiosis (mutual parasitism), when two organisms are foes of each other, as certain bacteria and animals, the latter showing a "natural resistance:" also the syntropism of certain lichens with licbens. (2) Antagonistic symbiosis (true parasitism), when the host is partly or completely killed hy the parasite, as the potato and the rot fungus (Phytophthora infestans): or galls (hypertrophies) produced on the host as in the black knot of plums; and in higher plants, which live at the expense of otbers, as the mistletoe (green) and the dodder (ehlorophylless). (3) Mutual symbiosis, when there is often reciprocal adrantage; (a) nutricism, when one symbiont nourishes the other without apparently receiving any return, as the mycorrhiza and the roots of forest trees; (b) mutualisul, when a mutual benefit results from the union of two organisms capable of living separately, as the bacteroid and the roots of the Leguminoss; (c) individualism, when the symhionts are so intimately conneeted in their growth as to suggest a single individual, as the union of alga aud fungus to form a lichen. (4) Prototrophy, the wet nurse relationship, as in the lichen Lecidea intumescen., which eventually gets its nourishment by means of a lodger, a different lichen. (5) Contingent symbiosis, when one symbiont lives in the interior of another for shelter, as Nostoc in the tissues of Hepaticæ, Lemna, Cyeas, Gunnera; and Anaboena in Azolla.

John W. Harshberger,

2447. Symphoricarpos racemosus ( $\times 1 / 2$ ).

SYMPHORICARPOS (Greek, fruit borne in clusters). Caprifolincea. Shrubs with simple, opposite, oval, entire and exstipulate lvs.: Hs. small; calyx $4-5$-toothed; eorolla campanulate or bell-shaped, 4 -5-lobed on short pedicels; stamens 5 , exserted; stigma capitate: fr. a 4 -loculed, but 2 -seeded berry. About 10 species.

These little American shrubs are all excellent plants for covering the ground under trees, for massing in the lower parts of beds or borders, or for detached groups where something low is desired. They will thrive in almost any soil from heavy clay to dry gravelly banks. Their habit of suckering enables them to cover the ground rapidly and effectively. All have a tendency to retain their fruit until it is forced off. and one speeies retains its foliage. For these reasons they are pleasing additions to the winter landseape. Of easy propagation by suckers, seed or euttings.

## A. Fruit white.

B. Stamens and style included.
racemodsus, Miehx. Snowberry. Waxberry. Fig. 2447. A shrub, ${ }^{2-6} \mathrm{ft}$. high: lvs. smooth, entire or sometimes repand or even lobed: fls. rose color, in a loose and often leafy raceme; stamens and style included: fr. globose, white, persistent. July, Aug.

Eastern N. A. B.B. 3:235. - A smooth shrub with slender branches usually bending muder its load of berries.

Var. pauciflorus, Robbins, is of smaller growth and has fewer fruits. Mn. 2, p. 10. B.B. 3:236.

BB. Stamens and style exserted.
occidentàlis, R. Br. Wolfrerry. This may be considered as the western form of onr eastern species, but it is less attractive than the preceding, as it is less fruitful and the individual berries are not as clear and waxy, Lrs. orate: tls. in spikes, hoth terminal and axillary; stamens and style exserted: fr. the same dimensions as white. Jnly. Mich., north and west. G.F. $3: 997 . \mathrm{B}$. B. 3:236. A shmb of about the last and closely resembling it, the exserted stamens and style being the most obvious distinction.

## AA. Fruit red.

vulgàris, Michx. INdan Currant. Coral Berry. Fig. 2448. Lys. ovate: Als. in dense axillary and terminal spikes; style and stamens included: fr. dark red. July, Along rivers and rocky places N.J. to Dakotas, south to Ga. and Tex. Mn. 1, p, 84. (in. 34, p. 280.-A rather more compact bush than the two previously described species. Valuable because of its abundant persistent fruit and foliage. Var. variegatus, Hort., has tho leaves marked white and yellow and is the same as var. foliis mariegatis. Var. glomeràtus, Hort., is a form with longer terminal spikes.

John F. Cowell.
SYMPHYANDRA (Greek; anthens aroun together). C'ampanulàeer. Symphyandra Hofmanni is a hardy perennial herb, 1-2 ft . high, with peadulous bell-shaped Howers $11 / 2 \mathrm{in}$. long and an incb or more across. The ths. are borne in a large leafy panicle. Under farorable conditions in England this plant has maintained a succession of bloom from July to December. T. D. Hatfield finds that in this country "the plant is liable to exhaust itself in blooming, thus behaving like a biennial. It has large, Heshy roots, needs a dry position and sows itself."

Symphyandra is a genus of about ispecies of perennial herbs found in the region of Asia Minor. Its special botanical interest lies in the fact that the anthers are grown together into a tube, which character tends to annal the distinction between the Campanula and Lobelia families. Otherwise the genus is much like Campanula.

Generic characters: caudex thick: lvs. broad, usually cordate, dentate; radical irs, long-stalked; stem-lvs. few or small: fls. white or yellowish, usually nodding, racemose or loosely panicled: inflorescence centrifugal: calyx-tulse adnate, hemispherical or top-shaped, with or without reflexed appendages between the lobes; corolla bell-shaped, 5 -lohed: orary 3 -loculed.

Hofmanni, Pant. Much branched, pilose: branches decumbent: Irs. oblanceolate, acnte, doubly dentate: calyx with large, leafy, cordate segments, hemispherical tube and no appendages; corolla hairy inside. Bosnia, B.गJ. 7298. Gr. 57, p. 303. fr.C. JIl. 4:761.This desirable bellflower has been cult, hy amateurs in the East. It sometimes spreads rapidly in half-shaded rockeries and sows itself.
W. M.

SYMPHYTUM (Greek, to grow together, in reference to the supposed healing virtues). Borragindeea. Comprey. About 16 species of perennial herbs from

Europe, Asia and N. Africa, with usually tuberous roots: lys. simple, often decurrent, and with rather small yellow, blue or purplish flowers pediceled in terminal, simple or branched eymes: calyx 5 -cut or parted, lobes linear; corolla tuhular, lobes very short and nearly erect: stamens 5 , attached to the middle of the corolla-tuhe, included: nutlets 4 ; seeds nearly globular.

Of easy culture in any good soil. The shade of overhanging trees is not ohjectionable. When grown for the beauty of the variegated foliage the flowering stems may be removed with advantage.

## A. Li's. decurrent on the stem.

officinale, Linn. A hardy branching perennial, about 3 ft . high: root thick: lower lvs. large, broadly lanceolate: upper lvs, narrower: fls, small, pale yellow or purplish, in drooping eymes. Jnne, July. Eu., Asia.

Var. variegàtum, Hort., bas leaves widely margined with ereany white. A beautifnl variegated plant especially attractive in spring, when the coloring of the leaves is brightest and the large rosettes have not yet sent up any flower-stems. F.S. 18:1901-1902,

AA. Lris. not decurrent on the stem.
asperrimum, Donn. Prickly Comfrey. Fig. 2449. A hardy perennial, wore vigorous than $\mathbb{S}$. officinale, often 5 ft , high: 1Fs. ovate-lanceolate, prickly on both sicles: fls, reddish in the bud, becoming blue, smaller than in N. officinale. June, July. Caucasus. B.M. 929.-Var. variegatum, Hort., has leaves distinetly margined with yellow.
J. B. Keller and F. W. Barelay.

## SYMPLOCARPUS. See Spathyema.

SYMPLOCOS (Greek, symp7ncos, entwined or connected, the stamens being connate at the base). Including Hopea and Lodhra. Styracdeeœ. Ornamental deciduous or evergreen trees or shrubs, with alternate, entire or serrate lvs. and usually white ths in racemes or panicles, rarely solitary, followed by berry-like, black, red or blue fruits. Cnly the deciduous $S$. crategoides is hardy north; it is a shrub with abundant white tls, in spring and bright blue fruits in autumn. It thrives in well-drained soil and sunny position. The half-evergreen $S$. tinetoria, which seems not hardy north of its natural habitat, prefers moist soil and shady situation. The evergreen species are all tender and little known in cultivation. Prop. by seeds, which usnally do not germinate until the secoud year, and by greenwood cuttings under glass; also by layers.
About 160 species widely distributed through the tropical regions except Africa; only a fow outside the tropics. Mostly trees: fls. in terminal or axillary racemes or panicles, rarely solitary; calyx 5lohed; corolla 5-parted, often almost to the hase; stamens numerons, usually comnate at the hase; style filiform: ovary 25 -loculed, inferior: fr. a Arupe, with $1-5$ I-seeded stones. Several species have medical properties; S. tinctoria yields a yellow dye.

2449.

## Symphytum asperrimum.

 ( $\times 1 / 8$.)cratægoldes, Buch.-Ham. (S. paniculdta, Wall. Lodhra cratagoides, Deene, ). Deciduous shrub or sometimes tree, attaining 40 ft ., with slender, spreading branches, forming an irregular open head; young

branches pubescent: 1rs, short-petioled, oval or obovate to oblong-obovate, acute or acuminate, sharply serrate, distinetly reined beueath and more or less pubescent at the veins, rarely glabrous, $11 / 2-3$ in. loug: fls. white, fragrant, $1 / 3-1 / 2$ in. across, with spreading oblong-oval petals in panicles $1^{1 / 2}-3 \mathrm{in}$. long: fr. usually 1 -seeded, oval, blue, about $1 / 3$ in. high. May, June. Himalayas to Chiua and Japan. (i.F. 5:89. M.D.G. 1901:100, 101.
S. coccinea, Humb. \& Bonpl. Evergreen tree: lvs, oblong, acuminate, crenulate, $3-5$ in. long: tls. solitary, axillary, pink. 1 in across, with 10 petals. Spring. Mexico. R.H. 1846:281, F.S. 2:133.-S. Japónica, DC. (S. lueida, Sieb, \& Zucc.). Ever* green shrub or small tree, 20 ft , high: Ivs, elliptic to oblong, acute, remotely serrate, glabrous, $2^{2-3}$ in. long: Hs. yellowish', in short, few-id, racemes: fr. oblong, red. Spring, Japan, S.Z. 1:24. A shrub which has been distributed from several botanic gardens under the name of S. Japonica has proved to be Pyracantha crenulata. $-\mathcal{S}$. Sinica, Ker. Deciduous shrub, closely allied to S . cratzgoides: Ivs, elliptic, acute, serrate, pubescent on both sides, $11 / 2-2$ in. long: tls. white, in short panicles; calyx-teeth ฉcute. Jlay, June. Cbina. B.R. 9:710.S. Sumúntia, Buch.-Ham. Small evergreen tree: lvs, oblongelliptic, acuminate, cuneate at the base, serrulate, glabrous, $3-5$ in. long: fls, white, in short racemes: fr, oblong. Himal. Gt, 31:1073,-S. tinctoria, L'Hérit. SWEET LEAE. HORSE GUGAR. Half-evergreen shrub or small tree, attaining 18 ft. . lvs. oblong, acute, obscurely serrate, pubescent beneath, $3-5$ in. long: fls. yellowish, fragrant, in axillary, dense clusters: fr. oblong. $1 / 2$ in. long, orange brown. Spring. Del, to Ela, and La. S.S, 6:255, 256.

Alfred Rehder.
SYNADENIUM (Greek name, indicating the united glands). Eiuphorbideev. A genus of 3 species of somewhat sneculent shrubs of Madagascar and tropical Africa, differing from Euphorbia in having the glands of the involuere united into a ring.

Grántii, Hook. Smooth, thick-branched, 6-10 ft.: 17 s . ovate-spatnlate, $3-1$ in, long: dichotomous cymes with red involucres. Tropical Africa. B.M. 5633.-Sometimes cultivated with succulents in botanie gardens.
S. arboréscens, Boiss., has yellow involucres. B.M. 7184.

## J. B. S. Norton.

SYNCARPIA (Greek, together and fruit, referring to the head-like clusters of capsules). Myrtacece. Two species of Australian trees with opposite, ovate, penninerved, evergreen leaves and rather small white flowers in dense, glohular heads either solitary in the axils or in terminal panicles: calyx-tube adnate to base of ovary, the free part erect or dilated with usually 4 persistent lobes; petals generally 4 , spreading; stamens many, free: ovary inferior, 2-3-loculed; ovules 1-several to each cell; seeds linear-cuneate.
laurifolia, Tenore, Turpentine Tree. Lvs, broadly ovate to elliptic-ohlong, obtuse or obtusely acuminate, 2-3 in, long, often appearing as if in whorls of 4: fis. $6-10$ in a head, with 2-1 bracts of variable size under the head; calices connate at the hase; petals broadly ovate or orbicular, less than 2 lines long: ovary 3 loculed; ovules several to each locule.-According to Von Mueller's "Select Extra-tropical Plants," this tree attains a height of 200 ft ., with a trunk often 30 ft . in circumference; it is of quick growth and well adapted for a shade tree. The wood is very durable and almost fireproof and is valuable for piles, railway sleepers and shipbuilding. It takes a high polish and is used for flooring and cabinet work. Offered in S. Calif.

## F. W. Barclay.

SYNDESMON (Greek, bound together, because the plant unites characters of Thalictrum and Anemone). Ranunculd̀cea. RUE ANEMONE. A monotypic genus of eastern North America. Glabrous perennial herb from a cluster of tuberous roots: basal lvs. 2-3-ternately compound: involucre similar but sessile, the Ifts, being stalked: fls. White or pink, in an umbel; pedicels slender: sepals thin; petals none; stigma sessile, truncate: akenes terete, deeply grooved. The more common grueric name is Anemonella, which dates from 1839, but Syndesmon was used in 1832. The plants should be grown in partial shade and in light moist soil, where they should be left undisturbed for years. They will then form a carpet of great beanty. Prop. by dirision of roots in spring or fall.
thalictroldes, Hoffmg. (Anemone thatietroldes, Thalictrum a nemonoldes, Michx. ). Plant 3-6 in. high: Irs.
much like those of Thalictrum: Als, resembling those of Inemone quinquefolia, appearing before the basal leares. March-June. Common in woorls and open fields. L.B.C. $10: 964$. Gin. $35: 699$. B.M. 866 . I.H. 6:211.-Var. flore-pleno, Hort. Flowers double. Very pretty. L.B.C. 8:770. F.S. 11:1155. R.B. 11:205.

## K. C. Datis.

SYNGONIUM (Greek name, said to refer to the cohesion of the ovaries). Ardcece. About 10 species of tropical American woody climbing or creeping plants, with milky juice and stems rooting and leaf-bearing at the nodes: lrs. sagittate, becoruing with age pedately $5-9$-parted, on long petioles, with a persistent acerescent sheath: peduncles short : spathe yellowish or whitish green; tuhe small, ovoid, persistent: spadix shorter than the spathe: staminate fls. with $3-1$ stamens, pistillate fl. with oblong-ovoid 2 or abortively l-loculed ovary; seeds solitary in the locnles, obovoid or globose, black. All the aroids are monographed in Latin in DC. Mou. Phan. vol. 2, I879.
podophyllum, Schott. A tender ereeping plaut: Ivs. becoruing 5 - 7 -pinnatisect, 4-6 in. long; petioles becoming $15-20 \mathrm{in}$. long: tube of the spathe $1-1 \frac{1}{2} \mathrm{iu}$. long: blade of the spathe $2 \frac{1}{2} \mathrm{in}$. long, greenish outside, white withiu. The typical form is probably not in cult.

Var. albolineàtum, Engl. (S. albolinedtum, Bull.), has whitish costox and lateral nerves. Offered by John Saul, 1893, presumably as a tender foliage plant.

## F. IV. Barclay.

SYNTHYRIS (Greek, logether and little door or value, the valves of the capsule long adhering below to the short placentiferous axis). Scrophularidcea. Six species of hardy herhaceous perenuials, native to western North America. S. reniformis is a tufted plaut bearing a few scapes about a foot high. The inflorescence is a raceme about 5 in . long with about 40 purple-blue fls. each $8 / 8$ of an iuch across. In England this plant is considered a winter bloomer; it flowers there in February or March, occasionally November.
Synthyris is nearly related to Wulfenia of sontheastern Europe and the Himalayas, but the anther-cells are not confluent aud the seeds are discoidal. In their native region they are summer-blooming plants with small purplish or flesh-colored spikes or racemes. Gentric characters: Plants glabrous or pilose: rhizome thick: radical lvs. petioled, ovate or oblong and creuate or incised-pinnatisect: calyx 4-parted; corolla-tube very short; lohes 4 or none; stamens 2; style entire at apex: capsule compressed.
reniformis, Benth. Larger and stouter plant than the next, with more acutely cut, leathery lvs., longer and stouter scape and raceme, shorter pedicels, narrow sepals and corolla-lobes, a globose corolla-tube and more seeds in the cells. Ore. to Wrash. Introduced by Woolson, Passaic, N. J.
rotundifolia, Gray. Smaller, with weak, slender scape 3-1 in. high, shorter than the membranous, broadly crenate lvs., a small few-ld. raceme, broader sepals and corolla-lobes, fewer seeds in the cells and capsule divaricately 2 -lobed instead of nerely emarginate. Shady coniferous woods of Oregon. Offered in I88I by Edward Gillett.
W. M.

SYRINGA (of doubtful meaning; probably from syrinx, pipe, because pipes are easily made from the straight stems of Philadelphus by removing the pith, and the name Syringa had been originally applied to Philadelphus, but was transferred afterwards to the Lilae). Oledceo. Lilac. Ornamental deciduous shrubs or rarely trees, with opposite, slender-petioled, entire lvs. and lilac, purple or white fls. in large and showy upright panicles. The Lilacs are among our most popular and ornamental flowering shrubs, and hardly any garden or park is found without them. The fragrance of the common Lilac is very sweet, as also of Syringa oblata and S. pubescens. The strong odor of S. Chimensis is not agreeable to every one. S. villosa and Josikafa are almost scentless. S. Amurensis and its allies have only a slight odor similar to that of the Privet. Almost all species are hardy north. S. villosa, rar. Emodi, is somewhat tender north.

The Lilacs are very showy in bloom, especially wben massed in groups, and these as a rule are the more effectire the fewer different rarieties they contain. The mixing of species and varieties differing in habit and blooming season only spoils the effect, and so does too great a variety of colors. Some species, as the tree-like S. Japonica, S. Pekinensis and $S$. villosa, are very handsome as single specimens on the lawn. S.Japonica is the ouly tree of the genus; it attains a height of 30 ft . S. vulgaris, Amurensis and Pekinensis sometimes grow into small trees or at least large shrubs $10-20 \mathrm{ft}$. high. S. Persict is the smallest species and seldom exceeds a few feet. The first in bloom is $S$. oblata, follored closely hy s. pulguris, Chinensis, pubescens, Persica, villosa and Josikuea: after the middle of June $s$. Ammrensis and Pekinensis come into bloom, followed at the last by $S^{*}$. Japoniea. which hlooms in tbe North in the beginning of July. $S$. Amurensis and Pekinensis sometimes bloom sparingly a second time in fall. The foliage is bright green and handsome, but drops comparatively early in fall, especially in the case of $S$. Japonica, without assuming any fall coloring as a rule. In S. obluta the foliage turns

2450. Syringa villosa. ( $\times 1.5$.) to a deep rinous red and remains until November. In S. Pekinensis it is retained until late in fall and finally assumes a purplish hue or turns pale yellow.

The foliage is not mneh attacked by insects, but a fongus, Microsphuru alni, late in summer often covers the whole foliage of $S$. mulgaris and also of $S$. Chinensis and Persica with a white mealy coat, while S. obluta is but rarely troubled with this fungus and the other species never. Much damage is sometimes done by a borer, Trockilium demudatum, which lives in the stems and branches of $S$. zulgaris, but is rarely found in any other species.

After blooming, the inflorescence should he remored if possible and the pruning be done as far as necessary. Pruning in winter or spring would destroy a large part of the flower-buds for the coming season. Lilacs grow in almost any kind of soil, but a rich and moderately moist one is the most suitahle. They are easily trapsplanted at any time from fall to spring. S. volgaris and its numerous varieties are the most popnlar of the Lilacs on account of their early and profuse blooming, their sweet fragrance and the variety of colors ranging from dark purple to lilae, pink and white. The doubleflowered varieties keep the blooms longer, but the panicles are less graceful and they usually do not bloom as profusely as the single ones; they also remain mostly dwarfer and hare a more eompact habit. The faded fls. do not fall off, but remain on the infloreseence; this gives the plant a very unsightly appearance if the faded panicles are not removed. WV. J. Stewart suggests a word of warning against Lilacs not on their own roots, hecause of the attacks of borers and the had habit of suckering in some cases.

Some of the best single-flowered rars, are the following:

## Single-flowered Lilacs.

White: Alba grandiflora; Alba pyraminalis; Fran Bertha Dammann, A.F. 12:1078; Madame Moser; Marie Legraye, one of the very best, B.H. 29:135; P'rincess Marie.

Blue, Vilac or pink: Ambroise Yerschaffelt, pale pink; Dr. Lindley, pinkish lilac, F.S. It:I48I; Géant des batailles, bluish lilac; Geheimrath Heyder, light lilac; Gigantea, bluish red; Gloire des Moulins, pale pink; Goliath, purplish lilac; Lovaniana, light pink; Macrostachya, light pink (Princess Alexandria is a favorite variety of this class in America); Sibirica, purplish lilac; Trianoniana, blnish lilac.

Red: Aline Mocqueris, dark red; Charles X (Caroli), dark lilac-red, A.F. I2:1076. F. 1873, p. 76; Marlyensis, sometimes called Rubra de Marley, lilac-red; Rrubra insignis, purplish red.
loark purple: Philemon; Litwig Späth (Andenken an Ludwig Späth, Lonis Späth), very large panicles, the best of the dark vars

## DOUBLE-FLOWERED LILACS.

157itl: Madame Abel Châtenay, compact panícles; Madame Casimir-Perier, large, graceful panicles, one of the best; Madame Lemoine, large fls, in dense panicles; Obélisque; Virginité, white and pink.

Blue, lilac or pink̂: Alphonse Lavallé, blnish lilac, A.F. 12:1077; Belle de Nancy, As. pink with white center; Charles Baltet, lilac-pink; Coudorcet, blue, A.F. 12:1074; I oyen Keteleer, lilac-blue; Jean Bart, pinkish violet; Lamarek, pale lilac, large, rather loose panicles; Lemoinei, lilac-pink, B.H. 28:174; Léon Simon, changing from Jinkisb to bluish lilac. Gt. $43: 1407$; Maxime Cornu, pinkish hilac; Nichel Buebner, pale lilac, large and very double fls.; President Carnot, pale blue,

Purpie: Charles Joly, dark purplish red, one of the darkest; Comte Horace de Choiseul, lilac-pmrple; La Tour d'Auvergne, violet-purple.

The Lilacs have been favorite forcing plants in France for more than a century and are nowadays among the most important cut-flowers during the winter season in France as well as in Germany and England. They are on the market from the end of September until they bloom outdoors. Charles $X$ is eonsidered one of the Tery best for forcing. Marlyensis, Marie Legraye, Alba dirginalis, Ludwig späth and other varieties are also good for forcing. Of the double-fll. varieties the following have proved adapted for forcing: Madame Casimir-Perier, Madame Lemoine, Charles Baltet, Jean Bart, Léon Simon, Chinensis duplex and others. Either grafted plants or plants on their own roots are used. Both force erqually well, but grafted Lilaes can be grown into plants well set with flower-buds and suited for forsing in two or three years, while plants grown from enttings require four to six years. Marlyensis is always ased on its own roots aul prop. eitber by seeds, enttings or division. Specind attention must be given to pruning in order to have well-hranched plants of good, compact habit (see Fig. 851, Vol. II, p. 600). The Lilac has nothing like the commereial importance for forcing in America that it has in Enrope, but the appreciation of it for winter bloom is on the increase in this country.

Lilacs are generally forced in pots, being potted nsually in July or in the forepart of August, that they may fill the pots with new roots before winter. Some grow-


2451, Syringa villosa.
ers pot the plants in spring or in the preeeding fall. This practice is of especial advantage if the plants are intended for very early forcing. These early potted plants are then plunged into the ground outdoors, mulched, well watered and regularly manured; after Jone, when the young growth is almost finished, only enough water is given to prevent wilting. When the flower-buds have been formed, more water is given until they have reached their full size. It is essential to keep the plants

rather dry in fall. so that the wood may ripen thoroughly and early. When the leaves have fallen off, the plants are stored away in convenient places, where they are sheltered from severe frost. Sometimes the Lilac, especially Marlyensis, is forced from balls of earth which are not potted, but this does not always give satisfactory results.

About three to four weeks is required to force the plants into bloom with the temperature recommended helow. The first days after bringing the plants into the forcing room, a temperature of $55-60^{\circ}$ may he given, gradually raising to $78-88^{\circ}$ and maintained as equally as possible until the panicles are fully dereloped and the first flowers begin to expand; then the temperature is lowered to $60-66^{\circ}$, and wheu the panicles are about half open the plants are transferred to a cool greenhouse. Hardening-off is essential to ensure good keeping qualities of the flowers. The red-flowered varieties are often forced in darkened rooms in order to have the flowers blanched or only slightly colored. The shade of color depends entirely on the time wheu full light is given and also on the temperature. Show plants in pots should he grown in full light to have the foliage well developed. While the temperature is higher than $76^{\circ}$, frequent syringing is necessary. It is, of course, possible to force Lilacs in a lower temperature, and this will be even adrisable if the longer time required does not count. Full advice for commercial Lilac forcing is giren by Fr. Harms in "Flieder und Asparagus," a book devoted almost exclusively to Lilac forcing.

Interesting experiments recently conducted have shown that the Lilac is more readily forced when the plants are subjected to the influence of ether daring forty-eight hours shortly before forcing. An account of ihese experiments by W. Johannsen is catitled "Das Atherrerfahren beim Frühtreiben mit hesonderer Beriickrichtigung des Flieders." That the ether has a particular effect on the metamorphosis and regeneration
of the albuminoids in the plant has been stated recently by other botanists also.

Lilacs may be prop. hy seed, which is sown in spring. This method is usually practiced only with the more common typical species. The many varieties and rarer kinds are usually prop. by greenwood cuttings under glass in June (or in early spring from forced plants), by hardwood enttings, by grafting and also by suckers and division, especially in the case of S. C'hinensis, Persica and rulgaris.
As a stock $S$. vulgaris is mostly used and sometimes Ligustrum. S. Japonica will probahly prove to he a good stock. S. villosa, though readily growing from seed and of vigorous habit, is not to be recommended. Budding in July and August is the most extensively practiced method. Grafting is done either in April or May in the open or in Fehruary or March in the greenhouse on potted stock. Almost any kind of grafting may be employed, as the Lilac unites readily. Crowngrafting is to be preferred in order to avoid the troublesome suckers. Plants intended for forcing but deficient in flower-buds are sometimes grafted in October or early in November with branches well set with flower-huds and forced in January or later.
About II species from southeastern Europe to Himalayas and Japan. Lvs.exstipulate, deciduous, evergreen only in S.sempervirens: fis. in panicles; calyx small, campanulate, 4 -toothed; corolla salverform, with cylindrical tuhe and 4-lobed limb; stamens 2: ovary 2-loculed: fr. a leathery, ohlong or oval capsule, loculicidally dehiscent, with 2 winged seeds in each locule. Fig. 2449. In S. sempervirens (not yet introduced),
the capsule is fleshy, one-seeded and drupe-like.

## Alfred Rehder.

Forcing Lilacs. - Most of the Lilacs used by American commercial florists for forcing are imported. Care should always be taken to procure pot-grown plants, that is, plants that have been grown in pots the previous summer. The florist who wishes to grow his own plants should lift them in the field in April or before the growth starts and pot them without losing much root. Plunge them out-ofdoors during summer and give them plenty of water. This treatment will insure a good growth and the

2453. Capsule of Syringa vulgaris ( $\times 3$ ).

2454. Winter twig of Syringa vulgaris ( $\mathrm{X} 1 / 2$ ).
cleck the plauts receive from lifting will induce them to form new flower-buls. These plants will force with the greatest certainty. It is well to allow five weeks for the earliest forcing. A strong lieat is necessary, beginning at $60^{\circ}$ for the first few days and increasing to $75^{\circ}$ or $80^{\circ}$, with a daily watering and syringing several times. After the flowers begin to open the syringing can be discontinued and when fully expedient the plants are better removed to a cool house, where they will harden off and be much more serviceable when cut. As the season advances, way March and April, less heat is needed. They will then force in any ordinary house where the night temperature is about $60^{\circ} \mathrm{F}$. The Persian Lilac on account of its abundance of bloom and delicate truss is very desirable, but this must be forced almost in the dark to produce white flowers. Marie Le Graye is for all purposes the most useful Lilac which the undersigned has used for forcing.

Wm. Scott.
INDEX.
alba, 4, 6, 7, 8 . Amnreasis, 10. argentea, 11. anrea, 2. aureo-variegata. 2. Bretschneideri, 2. Chinensis, 7. cяャrulea, 6. dubia, 7 . dubia, 7 duplex, 7. filicifolia, 8 . hyacinthiflora, 5. Japonica. 11.

Tosikra, 1 laciniata, 8 ligustrina, 10 Mandshurica, 10. Marlyensis, 6. Metensis, 7 oblata. 4. ovalifalia, 3. pallida, 1 . Pekinensis, 9 pendula, 9 . Persica, 8. pinnata, 8. plena, 5, 6.
pteridifolia. 8. pubescens, 3 . purpurea, 6. rosen, 2. Rothomagensis, 7. rubra. 1, $6,7$. Nibirica, 10. Songeana, 7 Steencruysii, 8. Yarina, 7. villosa, 2,3 . violacea, 6 . vulgaris, 6.
A. Tube of corolla much longer than calyx: anthers sessile, not exserted.
B. Panicles on teafy branches, usually terminal: lvs. whitish beneath.
c. Stamens inserted near the middle of the tube.

Hear the
CC. Stamens inserted near the mouth of the tube. $\qquad$ вв. Panicles from lateral buds, without les.: terminal bud of branches suppressed.
c. Under side of lis. grayish green, pubescent at the midrib when young

1. Josikrea
2. villosa
3. pubescens
cc. Underside of h's.green, quite glabrous.
D. Lis. truncate or cordate at base.
E. Shape of les. roundish or broadly owate..... .

EE. Shape of les. orate...
4. oblata 5. hyacinthiflora EE. Shape of DD. Les. narroued toward the base.
E. Shape of lers. ouratelanceolate. $\qquad$ 7. Chinensis ee. Shape of lrs. tanceotate, 8. Persica AA. Tube short, little tonger than calyr: stamens exserted: fls. uhite. Ligustrina.
B. Base of les. usually narrowed. 9. Pekinensis

BB. Base of les, usually rounded.
c. Plant a shrub ..................10. Amurensis

1. Josikìa, Jacq. Shrub, attaining 12 ft., with upright, stout, terete branches: lvs. broadly elliptic to ellipticohlong, acute at both ends, finely ciliate, dark green and shining above, glabrous or pubescent on the midrib beneath, $21 / 2-5$ in. long: fls.violet, short-pediceled or almost sessile, chastered, in rather narrow panicles $3-7 \mathrm{in}$. long; stamens inserted somewhat above the middle of the tube; sepals half-upright. June. Hungary. B.M. 3278 . B.R. 20:1730.-Less bandsome than wost other species, but valuable forits late blooming season. Var. pállida, Hort., thas pale violet fls.; var. rùbra, Hort., reddish violet.
2. villòsa, Vahl, not Deene., nor Hooker, nor Koehne. Figs. $2450,2451$. Bushy shrub, 8 ft . high, with rather stont, upright, terete and warty branches: lys. hroadly elliptic to oblong, acute at both ends, finely ciliate, bright green and dull above, pubescent on the midrib or glabrous beneath, 3-7 in. long: tls. pinkish lilac or whitish, short-pediceled, in broad or somewhat narrow panicles, $3-\overline{7} \mathrm{in}$. long; stamens inserted near the mouth; sepals half-upright. May, dune. China to Himalayas. The commou form, Far. ròsea, Cornu (S. Brétschneideri,

3. Syringa Persica, one of the common Lilacs $(\times 1 / 2)$.

Lemoine), has broadly elliptic or elliptic lvs. and pink fls. in rather large panicles with leafy bracts at the hase. R.H. 1888:492. G.F. 1:521. Gn. 39, p. 91. Gt. 44, p. 500. Var. Emodi, Rehd. (S. E'modi, Wall.), has narrow elliptic to oblong lvs., more whitish beneath; fls. whitish or pale lilac, in rather narrow panicles, usually with large lvs. at the base. Himalayas. B.R. 3l:6. R. H. 1876, p. 368. Gn. 39, p. 106. Not quite hardy north. There are also vars. with yellow lvs. (var. aurea, Sim.Louis) and with yellow variegated lvs. (var. aureovariegàta, Hort.). Hybrids with $S$. vulgaris and $S$. Josikara have been raised at the Botanic Garden at Paris.
:3. pubéscens, Turcz. (S. villdsa, Decne., not Valıl. S. villostr, var, ovalifolia, DC.). Shruh, 6 ft , high, with sledder, somewhat quadrangular branches: lvs, roundish ovate to rbomble-ovate or ovate, shortly acuminate, ciliate, dark green above, $1-3 \mathrm{in}$. long: fis. pale lilae, fragrant, short-pediceled, in ovate, not very large, but numerous panicles; tube very slender; apex of anthers not reaching the mouth. May. N. China. (i.F. 1:415; 6:266. B. M1. 7064 (as S. villosfa). - Free-flowering shrub of graceful habit, with handsome dark foliage.
4. oblàta, Lindl. Shrub or small tree, 12 ft . high: lis. roundish ovate or reniform, often broader than long, cordate, short-acmminate, bright green, $21 / 2-41 / 2 \mathrm{in}$. across: fls, purple-lilac or purple-violet, in rather loose, pyramidal panicles, $3-6 \mathrm{in}$. long; pedicels about as long
as calyx. Nay. N. China. G.F. 1:221. A.G. 22:183.The earliest of all to bloom and handsome, with its vinous red foliage in fall. Var. alba, Hort., has white flowers.
5. hyacinthiflòra, Hort. (S. oblate $\times$ 1'ulgaris). Intermediate between the parents, witb broadly ovate lvs., turning purplish in fall. Only known in the double form, var. plèna, Lemoine. Many or perbaps most of the newer double-flowered vars, have originated by recrossing this form with vars. of $S$. velguris.
6. vulgàris, Linn. Figs. 2453, 2454, Upright shrub or small tree, 20 ft . high: Ivs. ovate, truncate or slightly cordate, acuminate, bright green, $2-4 \mathrm{in}$. long: fls. lilac, Dlue, purplish or wbite, in large panicles. May. Southeastern Europe to Cancasus and Afghanistan; sometimes escaped from gardens in the eastern states. B.M. 183. Gn. 53, p. 156. M.D.G. 1899:205. - The most important of the older original vars, are the following: Var. álba, Dietr., brauches yellowish gray: fls. white: buds yellowish green; blooms a week earlier than the other vars. A.F. 12:1081. Var. cærùlea, Dietr. Fls. blue, in rather loose panicles. Var. purpurea, DC. (var. rùbra, Lond.). Fls. purplish red, in large and rather dense panicles. Here belong also var. Marlyénsis, Hort., and Charles X. Var. violàcea, Dietr. Fls. violetlilac, in rather loose panicles. Var. plèna, Hort. With double fls. There are several vars, with variegated lvs., but these are hardly worth cultivating.
7. Chinénsis, Willd. (S. Persica $\times$ vulgaris. S. dùbia, Pers. S. Rothomagénsis, Loud. S. I'arina, Dum.Cours.). Shrub, attaining 12 ft ., with slender, often arching hranches: ]vs. ovate-lanceolate, acuminate, 2-4 in. long: fls. purple-lilac, red or white, in large and broad panicles. May. Originated in 1777 in Rouen, France. R.H. 1883, p. 80. F. 1873, p. 76 (as S. Persica).-Very free-flowering. Var. alba, Loud., with white fls. Var. Metensis, Sim.-Louis, with pale purplish fls. Var. Sougeàna, Loud. (var. rìbra, Lodd.), with deep purplish red fls. Var.düplex, Lemoine, with double purplish lilac flowers.
8. Pérsica, Linn. Fig. 2455. Shrub, attaining 5-10 ft., with slender, arching branches: Ivs. lanceolate, acuminate, $11 / 2-3 \mathrm{in}$. long: fls. pale lilac or whitish, in rather loose, broad panicles, about $3-4 \mathrm{in}$. long; pedicels as long as or longer than calyz. May, June. Caucasus to

Afghanistan. B.M. 486.-Var. alba, Lond. (S. Steèncruysii, Hort.). Fls, white. Var. laciniàta, Vahl (S. pteridifolia, filicifolia and pinnatu, Hort.). With pinnately lobed or pinnatifid lvs., of dwarfer habit and with smaller panicles. R.H. 1878, p. 452, 453; 1883, p. 80 ; 1901, pp. 40, 41.
9. Pekinénsis, Rupr. (Ligustrina Amurénsis, var. Pekinénsıs, Maxim. Ligustrlua Pekinénsis, Regel). Large shrub, attaining 15 ft ., with slender, spreading branches, brownish red when young: lvs. ovate to ovate-lanceolate, usually narrowed at the base, acuminate, rather dark green above, pale or grayish green and glahrous beneath, $2-4 \mathrm{in}$. long, $1-1 \frac{1}{2} \mathrm{in}$. broad: fls. yellowish white in large panicles, usually in pairs at the ends of branches; stamens ahout as longas limb. June, N. China. G.F. 3:165; 7:385. M.D.G. 1899:425.-Large shrub, of excellent hahit, with handsome foliage retained until late in fall; flowers profusely only when older. Var. péndula, Hort. With very slender, pendulous branches.
10. Amurénsis, Rupr. (S. ligustrina, Hort. Ligustrinne Amurénsis, var. Mandshirrica, Maxim. Ligustrina Amurénsis, Regel). Sbrub, attaining 12 ft., with spreading or upright branches: lvs. broadly ovate to ovate, usually rounded at the base, bright greeu above, pale or grayish green and glabrous beneath, 2-6 in. long, $11 / 2-2 \frac{1}{2}$ in. broad: fls, yellowish white, in large, ratber loose panicles; stamens almost twice as long as limb. June. Manchuria. Gt. 12:396; 45, p. 64. G.F. 2:271. Gn. 12, p. 623, 624. R.H. 1877, p. 453-455.Sometimes cult. under the name $S$. Nibirica or $S$. $S i$ birica alba.
11. Japonica, Decne. (Ligustrina Amurénsis, var. Japónica, Maxim.). Fig. 2456. Pyramidal tree, attaining 30 ft ., with upright branches: lvs. broadly ovate to broadly elliptic, rounded or slightly cordate at the base, shortly acuminate, pale green beneath, and usually pubescent when young, 3-7 in. long: fls. yellowish white, in very large panicles often 1 ft . or more long; stamens little longer than limb. June, July. Japan. B.M. 7534 (as S. Amurensis). G.C. 11. $25: 561$. G.F. $2: 293,295$. D.G.M. 1899:424. Gt. $37: 217$. Mn. 4, p. 5; 7, p. 167. R.H. 1894, p. 325. - Very desirable free-flowering tree and quite hardy north. Var. argentea, Temple, has the lvs. variegated with silvery white. Alfred Rehder.

2456. Syringa Japonica ( $\times 1 / 4$ ).

TABEBUİA (Brazilian name). Bignoniùcecp. Ornamental evergreen trees with opposite, long-petioled, simple leaves and showy Howers in terminal, fer- fld. racemes. Only $T$. leucoryla seems to be introduced. It requires the same cultivation as the tropical species of Tecoma, which see. The genus contains 5 or 6 species, inhabitants of tropical America, closely allied to Tecoma, but, according to recent monographs, chiefly distinguished by the simple leaves and the irregularly splitting tubular calyx; formerly also species with digitate feliage were included, for which see Tecoma.

Ieucóyla, DC. (Bignònia leucóxyla, Vell. B. pallida, Lindl.). Evergreen tree or shrub: Ivs. ellipticoblong to obovate-oblong, obtuse or sometimes emarginate at the apex, glabrous, dark green with distinct pale midrib, $4-7 \mathrm{in}$. long: fls. in few-fld. terminal racemes; corolla funnel-shapel, about 2 in. long, with yellow tube and pate lilac limb. Brazil. B.R. 12:965.

Alfred Rehder.

TABERNEMONTANA (J. T. Tabernæmontanus of Heidelberg, physician and betanist, anthor of Krauterbuch mit Kunstlichen Figuren; died 1590). A pocynd̀cea. A genus of more than 100 species of trees or shrubs widely scattered iu tropical regions. Lvs. opposite, penni-nerved: fs. white or sellow, in terminal or sometimes apparently but not truly axillary cymes; calyx usually shert 5-lebed or parted; corolla salverferm; stamens inserted on the corolla-tube, included: berries large and globose or sruall, oblique and recurved. See Gonioma for distinctions from that genus.

## A. Fls. white.

coronària, Willd. Chape Jasmine. Nero's Crown. A tender shrub, $6-8 \mathrm{ft}$. high: Iss. glossy green, oblong to oblanceolate: fls, white, fragrant, $1-2 \mathrm{in}$. across, in $1-8$-fll. clusters in the ferks of the branches; petals crimped on the margin, whence the common name. Cult. in India but native country unknown. Var. flòrepleno, with double, somewhat larger, very sweetscented flowers, seems to be far more common in cultivation. P.M. 16:354. B. M. $186 \overline{5}$ (as Nerium coronarium). -Cult. in the more sonthern states and also in greenhouses. Also known as Atlam's Apple and East Indian Rosebay.

## AA. Fls. yellore.

grandiflora, Jacq. A small, tender shrub: lys. ab-long-evate, sharply acuminate, $2-3 \mathrm{in}$. long, thick: fls. single, yellow, 1-2 in. long, in few-fld. clusters; corollalobes oval, obtuse, entire. Early fall. Carthagena, Guiana. B.M. 5we6.-Rarely cult. in the more soutbern portions of the United States.
T. Camássi, Regel. See Gonioma Kamassi. F. W. Barclay.

The East Indian Rosebay, Taberniemontana coronarit, is one of the best ornamental shrubs for subtropical gardens. This species and T. Camassi, referred in this work to Gonioma, flourish everywhere in Florida from Jacksonville southward. If they receive proper attention, tiny cuttings soou develop inte dense, bushy plants $3-5 \mathrm{ft}$. high, covered with deliciously scented flowers thronghout the summer. Indeed the plants are so densely covered with buds and Howers that it is often difficult to find a sufficient supply of cuttings for propagation. T. coronaria has larger leaves than $T$. Camassi and the flewers are much like those of the double white oleander, while T. Camassi has solider and smaller blossoms. Both to well under the same treatment. In order to enjoy the beauty of the East Indian Rosebay to its fullest extent, it must be planted in rich, sandy soil, not too wet aud not toe dry, and in places fully exposed to the sun. Only very strong pot-grown plants shonld be set out in the garden. This should be done during the rainy season. Aveid breaking the ball in transplanting. It is use-
less te transplant in Norember, the time when most evergreens and other plants are most successfully set out. The plants at this season have ne time to become established before the first sharp trost comes, and a weakened Tabernemontana is usually killed outright by even a slight frost. Just befere Christmas all the plants of this nature (bauhinias, cestrums, Poiariana regia, Tristania conferta, grevilleas, eucalypti, etc,, are banked about 18 inches te 2 feet high with dry sand, and they always come through without much damage. In April or even earlier, the banking is taken away and the plants cut back to sound wood. The Tabernæmontanas look best in groups by themselves or in front of other glossy-leared evergreens.
H. Nehrling.

## TACAMAHAC. Populus balsamifera.

TÁCCA (Malayan name). Taccàcere. A genns of 9 species from tropical regions. Perennial herbs from a tuberons or creeping rhizome with large, radical, petioled leaves and umbels of Iurid brown or greenish flowers in a dense umbel borne on a leafless, rigid scape. The flower-cluster is subtended by a few, usually 4 , leaf-like or colored bracts, and intermixed with the flowers are more or less numerous, long and conspicuons, sterile, filiform pedicels, which usually droop below the Hower-cluster.

## A. Lus. much lobed.

pinnatifida, Jack. Tender perennial herb, about 2 ft . high: rootstock globose, becoming 1 ft . throngh: Ivs, larye, usually 3 -branched, the divisions pinnately cut or divided, the ultimate lobes sometimes irregular and nuequal but usually ovate to lanceolate: fls. greenish, 8 lines across, many with the sterile pedicels purplish: berry nearly globular, 1 in. through. Afr., lndia and Australia. L. B.C. 7:692. B.M. 7299; 7300.-Aecerding to Von Mueller's Select Extra-tropical Plants, the Fiji Arrowroot is prepared from the tubers of this species. The plant thrives even on the sand-shores of tropical countries, and it is not malikely that it will endure a temperate climate.

## Ad. Lis. not lolied.

cristàta, Jack. (Atáecia cristatu, Kunth). Rootstock a short conic caudex, marked with leaf-scars: $1 \mathrm{rs} .1-2 \mathrm{ft}$. leng, oblong, acuminate, dark purplish green: scape longer than the lvs.: fls. dark purple, $11 / 2 \mathrm{in}$. across, in a somewhat one-sided umbel, with numerons pale sterile pedicels $8-10 \mathrm{in}$. long: involucral bracts 4, conspicuous, the 2 inner elliptical, narrowed to a petiole, the 2 onter revolute. Malaya. B.M. 4589 . F.S. $9: 860$, 861 . Gn. 45 , P. 415; 49, p. 423.- It requires, according to Gn. 45, p. 415 , a good, rich, open soil, with ample drainage, plenty of water, and a stove temperature. During the winter season the plant should be kept in a state of partial rest.
F. W. Barclay.

TACSONIA (frem the Peruvian name of one of the species). Passifloraceo. From Passiflora, Tarsonia differs iu baving a long-tubular calyx, styles 3 , stamens and petals 3 or 5 , the latter never wanting, corona of tubercles or rery short threads, and in a short reflexed crown near the base of the flower-tube. However, the line of demarcation hetween the two genera is often not well marked and Harms (Engler \& Prantl's "Pflanzenfamilien") nnites Tacsonia with Passiflora. Masters accepts (Trans. Linn. Soc, 27) 25 species of true Tacsonia, relegating the intermediate forms largely to Passiflora. Other species bave been discovered subsequently, making the total number in the genus abore 30. The species are all South American, inhabiting the Andes. They are tendril-climbing shrubs or herbs, requiring the treatment given Passifloras. Tacsonias are cultivated freely in the open in middle and northern California.

A. Fls. orange or rosy orange.

Párritæ, Mast. Lvs, deeply 3 -lobed, glabrous above and pilose beneath, the lobes narrow and entire; stipules entire, subulate-acuminate: fl. with a long and slender tube, glabrous, swollen at the base; sepals winged and with points, rosy-orange; petals oblong and flat, shorter than the sepals, orange; corona donble, the outer row of tooth-like projections. Colombia, G.C. 11. 17:225. 1.H. $35: 41$. - Named for Senor Parra, througb whom it was introduced.

AA. F'ls. scarlet or rose-colored.
B. Bracts beneath the flower not wnited. C. Lus. simple or not lobed.
insignis, Mast. Pilose: lvs. ovate-lanceolate, subcordate, dentate, rugose or blistered above and reddowny beneath, the stipules dissected: th . about 6 in , across, violet, rose or crimson; tube cylindrical, swollen at the base, downy; sepals about twice longer than the tuhe, lance ohlong, spurred at the end; petals similar in shape, ohtuse; corona of one series of short threads, blue and white. Probably Peruviau. G. C. 1873:1113. F. S. $20: 2083-1$. B. M. 6069.
cc. Li's. S-lobed or divided.
D. Foliage glabrous at maturity.

Van Volxemii, Hook. Fig. 2457. Stems slender and slightly pubescent: Ivs. cordateovate in outline, deeply 3 -lobed, the lobes long-lanceolate-acuminate, serrate: Hs. 5-7 in. across, bright red with short green calyx-tube that has a swollen base, the acute calyx-lobes green externally; corona an inconspicuous toothed rim. Colombia. B.M. 5571. (7.C. 1866:171.- Probably the best known species and handsome, but less showy than some others.

Jàmesoni, Mast. Les. sub-orbicular, 3-lohed, glabrons: fl. large, bright rose or elerry red, with a cylindrical tube 4 in. long. l'eru.

DD. Foliage downy beneath at maturity.
Exoniensis, Hort. (bybrid of $T$, I'en Folxemii and $T$. mollissima). Fig. 2458. Lvs. downy, cordate, ovateoblong, divided nearly to base into 3 lanceolate, serrate segments: fls. $41 / 2-5$ in. across; sepals briek red outside, brilliant rose pink within; thront violet; tube white inside, $2 \frac{1}{2} \mathrm{in}$. long. Resembles $T$. Jan Folxemii in haring peduncles as long as Irs.: linear stipules: free downy bracts, filamentons corona near base of tube and violet color of throat. - Resembles T. mollissime in having downy lvs., long flower tube, color of fl. and aristate sepals.

вв. Bracts beneath the flower more or less united.

## c. Leaf-lobes short and obtuse.

manicàta, Juss. Pubescent. Ivs. broad-ovate to or-bicular-ovate in outline, about 4 in . long, the oblong obtuse serrate lohes reaching to the middle of the blade: fl. 4 in. across, bright scarlet; tube $1 / 2 \mathrm{in}$. long, inflated and ribbed at the base; corona double, the onter series composed of blue bairs. Colombia and Peru. B.M. 6129.-P. ignea, Hort., is a form of this species.

```
cc. Leaf-lobes long-acute.
```

míxta, Juss. Clabrous or somewhat pubesceut: lvs. orbicular-ovate, thick, 3 -loted to the middle, the lobes long-acute and serrate: fl. 3-4 in. across, rose-pink, the oblong sepals not equaling the greeu scarcely saccate tube; corona a short multiple rim or disk. Andes.
mollíssima, HBK. Pubescent: Irs, cordate-ovate it outline, very pubesceut beneath, the lobes extending nearly to the base of the blade and ovate-lanceolate in shape and scrrate, the stipules laciniate: fl. ahout 3 in . across, rose-color, the green tube exceeding the sepals and swollen at the base; corona a short rim. Andes. B.M. 4187. B.R. 32:11. F.S. 2:78.-S. tubiflora, offered in California, is said to be similar to this, but of deeper shade.
Smythiàna, Hort. Seedling of T. mollissima or hybrid with it, with very brilliant orange-scarlet or rosycrimson fls. G.C. 111. 12:704.
T. Buchánani, Lem. See Passiflora ritifolia, p. 1222. 1.H. 14:519.-T. floribinda was once advertised in the American trade, but it was probably not the T. floribunda, Masters, of Colombia.-T. pinnatistipula, Juss. Resembles T. mollissima, but the brarts are free; stipnles pimatisect: fls, rose-colored. Chile. B. M1. 4062. B.R. 18:1536.
L. H. B.

2458. Tacsonia Exoniensis $(X 1 / 8)$.

## TALAUMA

TAGETES (Tagus, au Etmscan god). Compósitce. Marigold. A geaus of some 20 species of tropical American herbs. Los. opposite, pinnately cut or rarely simply serrate: Als, of various sizes, yellow or orange, marked in some species with real. The popular annual species known as "African" and "French" Marigolds have been derived respectively from $T$. erecta and $T$. patula, both of which are native to Mexico. According to S weet s Hortus Britannicus, these two species were introduced into cultivation in 1596 aud 1573.

For garden purposes Tagetes may be divided into two groups, based upon habit of growth. T. erecta and luciela are of upright and somewhat open growth; while $T$. patula and signata are spreading and bushy, the lower branches lying close to the ground and often rooting.
The French Marigolds, T. patula, are valuable bedding plants. Good garden forms are of even height and bushy, compact growth, with a mass of good foliage and well-colored flowers appearing continuously from June until frost. In raising plants, it is preferable to grow them in pots, as this practice seems to check the plants sufficiently to cause them to bloom at a small size and more plentifully during the early summer months than if they were raised with unlimited root room. They should be planted about 1 ft . apart. This species also makes attractive specimens in small pots in a few weeks from seed. Mixed seed of the double sorts will give a large percentage of good double flowers, while the seed of special named double sorts is remarkably fine. Some of the single forms are very flnely colored.

The African Marigolds, T. erecta, are not well suited to bedding purposes, the growth being too open, but for the mixed border or shrubbery they are excellent lateblooming subjects. This species should be grown with plenty of root room, air and rich soil from start to finish if the largest and most double flowers are desired. The African Marigolds are very useful as cutflowers except under circumstances where their odor is objectionable.

For Pot Marigolds, see Calendula.

## A. Fls. generally marked with red.

paitula, Linn. French Marigold. Fig. 2459. A bardy annual, usually about 1 ft . high and much branched from near the base, forming a compact, bushy plant: lvs. darker green than in $T$. erecta, pinnately divided; lobes linear-lanceolate, serrate: fls. smaller than in $T$. evecta and borne on proportionately longer peduncles. B.M. 150; 3830 (as T. corymbosa). - Both the single and double forms are grown. The species is very variable as to the color markings of the flowers, which range from almost pure yellow to nearly pure red.

> AA. Fls. not marked with red.
> B. Lis. pinuately divided.
> C. Rutys numerous.
erėcta, Limn. African Marigolit. Fig. 2460. A hardy annual growing about 2 ft . high, erect, branched: lvs, pinnately divided, segments lanceolate-serrate: fls. $2-1$ times as large as in T. patula and of one solid color, the typical color, according to DeCandolle, being a lemon-yellow. - The rays are sometimes rather twolipped and in one of the garden forms they are quilled.

The color ranges from a light sulfur-yellow to a deep orange, many of the light yellow shades being rare amongst flower colors. This is the common marigold of old gardens in America. Foliage very strong-scented.
cc. Rays few, usually 5.
signàta, Bartl. An annual branching species: Ivs. pinnately divided into usually 12 oblong, linear, sharply serrate segments, the lower teeth awned: rays 5 , yellow, roundish-obovate. Var. pưmila, Hort., a dwarf, bushy form, usually less than 1 ft . high, seems to be the only form in the trade. The flowers are bright yellow and small but numerous. - The species is suited for massing or for borders, R.H. 1895, p. 505.

> BB. Lus, lanceolute, simply serrate.
lùcida, Cav. Sweet-scented Makigold. A tender perennial plant, entirely distinct from the foregoing anmuals in the sessile, lanceolate lvs, and small, nsually $2-3$-rayed fis, in dense, terminal corymbs. The flowers have a much more agreeable odor than the other species cultivated. Chile. B.M. 740. R.H. 1895, p. 505.-Sometimes used as a substitute for Tarragon, which see.
T. lacera is a species discovered about 1896 by T. S. Brandegee in Lower California. It makes a compact bush 4-5 ft. high, bearing a profusion of yellow flowers horne in winter. Small plants flower well in pots. See G.F. 9:67.
F. W. Barclav.


TALAUMA (South American name). Magnolideea. Talauma Hodgson $i$ is an excellent, magnolia-like, tender evergreen tree with cup-shaped flowers fully 6 inches across and 4 inches deep. It blooms in April. The flowers have a spicy odor, hard, thick, fleshy texture, and the glaucous purplish blue of the sepals contrasts
finely with the ivory white of the petals. This species is a native of the Himalayas, a regoo which is perhaps richer in handsome magnolia-like trees than any other area of equal size in the world. Hooker ranks this species second in beauty only to Magnolia Campbelli. T. Hodgsoni grows at an elevation of 5,000 to 6,000 feet.

This fine tree has been flowered at Kew and perhaps eisewhere in Europe, but never in America, so far as is known. Time and time again seeds were rectived at Kew from India, but they never germinated, the reason being the rapid decay of the albumen, involviug that of the embryo. The trees now cultivated in Europe bave been derived from young plants sent from India in Wardian cases at considerable expense and risk.

Talama is closely allied to Magnolia, but the carpels are indehiscent and deciduous, while those of Magnolia dehisce dorsally and are persistent. Talauma is a genus of about 15 species of trees and shrubs, mostly uatives of the tropics of eastern Asia and South America; also Japan. Leaves, inflorescence and seeds as in Magnolia: sepals 3; petals 6 or more in 2 or more whorls: stamens very numerons, in many series: ovaries indefinite, 2 ovuled, spiked or capitate; carpels woody, separating from the woody axis at the rentral suture and learing the seeds suspended from the latter by an elastic cord.

Hodgsoni, Hook. \& Thom. Tenter, evergreen tree, $50-60 \mathrm{ft}$. high, producing lvs. and fls, at the same time: 1rs. 8-20 x 4-9 in., obovate-oblong, cuspidate or ohtuse, leathery, glabrous: fls. solitary, terminal: sepals $3-5$, purple outside; petals about 6: fr. 4-6 in. long. Himalayas. B.M. 7392.
W. M.

TALINUM (possibly a patire name in Senegal \}. Portutucdcer. A dozen or more species of tlesby herhs widely scattered in the warmer regious. With age they sometimes become woody at the base. Lvs. alterbate or subopposite, flat: Hs. small, in terminal cymes, racemes or panicles, rarely solitary, axillary or lateral; sepals 2; petals 5, hypogynous, ephemeral ; stamens 5many: ovary many-oruled; style 3 -cut or 3-grooved at apes; capsule globose or ovoid, chartaceous, 3 -valved; seeds subglobose or laterally compressed, somewhat kidney-shaped, shining.
patens, Wild. Erect subshrub: stem almost simple, 1-2 ft. high, leafy to the middle, where the panicle begins: Irs. mostly opposite, oval, abruptly tapering at the base: panicle terminal, long, leafless, bearing dichotomous cymes: fls. carmine; petals 3 lines long; stamens about 15-20. West Indies and east coast of S. Amer. to Buenos Ayres. Var. variegàtum, Hort ("Tolinium variegutum," Hort. Basélla rariegàta, Hort.), is the plant described as Sweet Malabar Vine in Vol. 1, page 133, of this work.
T. M.
triangulàre, Willd. Lvs. alternate, obovate-lanceolate: cymes corymbiferous: pedicels 3 -cornered (in $T$. patens they are filiform): fls, red or white. West Indies. Brazil. Peru. Var. crassifolium, Hort. (T. crassifdlium, Hort.), is said to be taller and more branched: lvs. larger, often emarginate and mucronate.

Talinum patens, var. variegatum, is a handsome greenhouse shrub, with foliage marked white and sometimes also pink. The young stems are pink and succulent, but they become woody with age. The plant is allied to Portulaca and will endure mueb heat and drought, hat is very impatient of overwatering and lack of drainage. The plants bloom freely, the fis. being small, light pink and followed he small, vellow capsules filled with an indefinite mmber of little brown seeds. Some prefer to retain the sprays of blossom, but to make the best show of foliage the flower-shoots should he cut off as soon as they appear. Talinum is a satisfactory house plant. It sbould be placed in a window witb a nortbern exposure or in some other shady position. Talinum may also be planted out during the summer.
T. C. Steele.

TALIPOT PALM. See Corypha umbraculiferu.
TALLOW SHRUB. Myrica cerifera. TALLOW TREE, Chinese. Sapium sebiferum.

TALLOW WOOD Eucalyptus microcorys.

TAMARACK. See Larix.
TAMARIND. See Tamarindus.
TAMARINDUS (From Arabic, meaning "I ndian date"). Leguminòser. The Tamarind, Fig. 2461, is an exceptionally beautitnl and useful tropical tree. It attains a great height, has acacia-like foliage and jellow flowers about an inch across in clusters of 8 or 10 . The Tamarind is cultivated everywhere in the tropics but its native country is uncertain, probably eitber Africa or India. As an ornamental shasle tree it is considered by traselers as one of the noblest in the tropics. Hooker

has well described its "rast, dense and bushy bead of branches, thickly clotbed witb light and feathery foliage." The Tamarind is grown out of doors in southern Fla. and Calif. and young plants are said to be desirable for the decoration of windows and conservatories in northern countries.

The pods of the Tamarind, which are thick, linear and 3-6 in. long, contain a pleasant acid pulp much used throughout the tropics as the basis of a cooling drink. The pulp is also used in medicine, being rich in formic and butyric acids. It is laxative and refrigerant, aud is also used to prepare a gargle for sore tbroat. The pulp of the Tamarind is generally called the "fruit" or "Tamarind" and the porl is spoken of as the "shell." In the East Indies the shell is removed and the pulp simply pressed togetber into a mass. The Tamarinds of the Malayan Archipelago are considered better than those of India. They are preserved without sugar, being merely dried in the sun. They are exported from one island to another and when sent to Europe are cured in salt. In the West Indies the fruit is prepared by removing the shell and placing alternate layers of fruit and sugar in a jar and then pouring boiling syrup orer the mass. McFadyen says that in
order to prevent fermeutation, the first syrup, which is very aeid, is ponred off and a second is added. Also that an excellent preserve is imported from Curacoa, whieh is mate from the unripe pods preserved in sugar with the addition of spice. The East Indian Tamarind has long pods; the West Indian short ones.
The Tamarind tree yiells a bandsome furniture wood. It is yellowish white, sometines with red streaks, hard and close-grained; heart-wood dark purplish brown.
Botanieally, the flower of the Tamarind is rather difficult to understand. It is far removed from the sweet peatype, which is the one a northerner commonly thinks of as typical of the legume family. At first glanee it is a pale yellow flower about an inch across with 6 or 7 petals, of which 3 are veined with red. On closer study it seems that 4 of the showy parts are sepals, which are all pale yellow. The three red-veined parts are petals, while the other two petals that the student expects to find, are reduced to mere bristles hidden in the flower at the hase of the staminal tube. Only 3 lof the stamens are fertile, the other 6 being small and rudimentary. These floral characters distinguish Tamarindus from allied genera, of which only Sehotia seems to be cult. in America.

Tamariads can be raised from cuttings but more easily by seeds, althongh they are of slow growth.
Indica, Linn. (T. officinàlis, Hook.). Tamarind. Fig. 2461. Tender evergreen tree, attaining a height of 80 ft ., with a circumference of $25 \mathrm{ft} .: ~ l \mathrm{~s}$. abruptly pinuate; lfts. $20-40$, opposite, oblong. obtuse: fls. pale yellow, the petals reined with red. B.M. 4563. - The fls. are said to vary to white or pinkish.
W. Harris, E. N. Reasoner

$$
\text { and } \mathrm{F} .11 \text {. }
$$

TAMARISK. See Tanarix.
TÁMARIX (aneient Latin name). Tumariscàcece. Tamarisk. Ornamental shrubs or trees, with minute, altermate, scale-like leaves and small, usually light pink flowers in racemes or terminal panicles, followed by small capsular fruits. None of the species are quite hardy north, but $T$. Olessunu, Gullica and parriflora are fairly hardy as far north as Mass. The Tamarisks are all of graeeful and distinct appearance, with light and feathery foliage and large, loose panicles of pinkish flowers. Several of the species bloom late in summer and are a welcome addition to our autumn-flowering shrubs. As they are inhabitants of warmer arid regions, they are well adapted for conutries of similar elimatie conditions. They are also exeellent for seaside planting. They grow well in saline and alkaline soil and thrive in the very spray of the salt water. Prop. by seeds. Which are very fine and should be ouly slightly covered, or usually by cuttings of ripened wool or greenwood euttings under glass.
About tio species from the
2462. Tamarix parviflora. ( $\times 1 / 2$. .) Mediterranean region to India and Japan. Shrubs or trees: lvs. alternate, seale-like, often amplexicaul or sheathing: fls, small, short-pediceled or sessile, in rather dense racemes; sepals and petals $4-5$; stamens nsually $t-5$, rarely $8-12$, sometimes slightly connate at the base: ovary one-celled,
surrounded at the base by a disk; styles 2-5: fr. a capsule, dehiscent into $3-5$ valves; seeds many, minute, with a tuft of hars at the apex. Several speeies have medieinal properties and yield dye-stuffs. The punetures of an insect, c'occus manniparus, canse T. mannifera to produce "manna."
T. Germanica, Linn., is now referred to the genus Myricaria, which is chiefly distinguished by the 10 stamens eonnate one-third to one-half, and by the 3 sessile stigmas. Ten speeies are known, all slimbby or suffmticose, with the Als. in terminal, often panicled racemes. M. Germánica, Desv., is a glabrous undershrub, 4-6 ft . high, with upright, wand-like branches: lvs. minute, bluish green, lanceolate, glandular-dotted: fls. light pink or whitish, in 4-6 in. long terminal racemes, nsually with lateral ones at the base; stamens connate about one-balf. M. and S. Eu., W. Asia. M. Dithirice, Ehrenb. (Tamarix Dahurica, Willd.), is very similar, but racemes usually solitary and stamens connate only one-third. Dahuria, Transbaikalia. The culture is the same as of Tamarix; they prefer sandy, moist soil.

## index.

(s. L. refers to supplementary list.)

Africana, 1
Amurensis, s. L Anglica, 3 . arborea, 3. articulata, $\mathrm{s} . \mathrm{L}$. articulatas, $\mathrm{s}, \mathrm{L}$
Canariensis,
. Caspica, s. L. Chinensis, 5.
 graph above. Gallica, 3. Germaniea, see paragraph above. bispida, 7 .
Indica, 3.
Japonica, 4.
jnniperina, 4.

Narbonnensis, 3.
Odessana, 6.
Pallasic, S. L. Falasia, S. 1.
parvitlora, 1. parvillora, 1. plumasa, 4. purpurea, 1 tetrandra, 2.
A. Fls. 4-merous: racemes lateral on last year's branches.
B. Petals spreading, persistent....... 1. parvifiora

BB. Petals evect, deciduous.............. . . . tetrandra AA. Fls. 5-merous, usually in terminal panicles.
B. Lis. glabrous.
C. Petals deciduous.
.3. Galliea
ce. Petals persistent.
 DD. Rucemes panicled, tevminal.
E. A tree........................ . . . Chinensis

EE, A shrib.
BB. Lus. pubescent. 6. Odessana

1. parviflòra, DC. ('T. tełránda,var. parififlòra, Boiss. and Kotschy). Fig. 2462. Shrub or small tree, 15 ft . high, with reddish brown bark and slender sureading brauehes: lys. ovate, acuminate, semi-amplexicaul, searious at the apex when older: fls. pink, very shortpedieeled, slender in racemes about 1 in . long, along last year's branches; petals spreading, persistent; calyx very small, sometimes only 3 -parted; styles usually 3, mueh shorter than ovary. April, May. S. Eu. F.S. 9:898. R.H. 1855:401.-Often confounded with the following speeies, also with Tr. Africana and Gallica and eult. under these names. T. tetrundra, var. purprerea, probably belongs here.
2. tetrándra, Pall. Shrub or small tree, attaining 12 ft., with almost black bark: lvs. ovate-lanceolate, somewhat narrowed at the base, with diaphanous margin: fls. light pink or almost white, in racemes $1-2 \mathrm{in}$. long along last year's branches; disk purple, deeply 4 -lohed; styles usually t, about as long as ovary. April, May. S.E. Eir., W. Asia.-Doubtful whether in cultivation in this conntry; all plants seen under this name by the writer belong to the preceding species.
3. Gállica, Limn. ( $T$. pentándra, Pall. T. arbòrea, Sieb. T. C'autriénsis, Wilh. 'r. Auglica, Webb). Shrub or small tree, with slender spreading branches: lvs. dull to bluish green, elosely imbricated, rhombicovate, acnte or aeuminate, keeled, semi-amplexicanl, with searious margin: fls, white or pinkish, almost sessile, in slender, panicled racemes; petals deciduous; filaments dilated at the base; disk usually deeply 5 lobed; styles 3. May-July. W. Eu. Mediterranean region to limalayas; naturalized in S. Texas. Gn. 34, p. 329.-Var. Indica, Elirenb. (T. Iudica, Willd.). With slender, upright branehes: lvs. dull green: racemes longer and slenderer: fls. pink; disk obseurely and


The old-fashioned Tausy persists wherever a househotd was established, even though the hearthstone is long since deserted

$$
\text { - mand } 8+y^{2}+5
$$

minntely 10 -lobed. Himalayas. Var. Narbonnénsis, Ehrenb. Racemes short, almost sessile, lateral on the cnrrent year's branches. S.IV. Europe.
4. juniperina, Bunge ( $T$. Japónica and T. plumòsa, Hort.). Shrub or small tree, attaining 15 ft ., with slender spreading branches: lvs. green, oblong-lanceolate, acuminate, scarions at the apex: fls, pinkish, in lateral racemes $11 / 2-21 / 2 \mathrm{in}$. long on last year's branches;

2463. Tansy - Tanacetum vnlgare $(\times 1.5)$.
pedicels shorter than calyx; sepals ovate-lanceolate, little shorter than the persistent petals; disk 5 -lobed, with emarginate lobes. Japan, N. China. S.Z. 1:71 (as T. Chinensis.)
5. Chinénsis, Lour. Shrub or small tree, attaining 15 ft ., witb slender spreading, otten drooping branches: lvs. blnish green, lanceolate, acuminate, keeled: Hs. pink, in large and loose usually nodding panicles, pedicels as long as calyx; sepals ovate, mucb shorter than the persistent petals; disk deeply 10 -lobed. China.
6. Odessàna, Stev. Shrub, 4-6 ft. high, with upright, slender branches: lvs. lanceolate, subulate, decurrent: fls. pink; racemes slender, abont 1 in . long on sbort, naked peduncles, spreading and disposed in ample loose panicles; pedicels about as long as calyx; petals slightly spreading; disk 5 -lobed, with rounded lobes, July-Sept. Caspian region.
7. híspida, Willd. (T. Kashgárica, Hort.). Shrub, with slender upright branches: lvs. bluish green, cordate and subanriculate at the base, acuminate, somewhat spreading, finely pubescent: fls. pink, almost sessile, in dense racemes $2-3 \mathrm{in}$. long, disposed in terminal panicles; petals decidnous, much longer than sepals; disk 5-lobed. Ang., Sept. R.H. 1894:352.
T. articulata, Vahl. Tree, attaining 30 ft ., with slender, jointed branches: lvs. glaucous, minute, sheathing: fls. 5merous, pink, sessile. in terminal panicles. W. Asia. Not hardy nortb. - T. Pallasii, Desv. Shrubby and very similar to T. Odessana, bnt panicles less spreading, with more upright racemes; petals upright; disk 5 -lobed, with emarginate lobes. Aug., Sept. S. Rnssia and W. to C. Asia. T. Amurensis, Hort., is a form of this very variahle species. T. Caspica, not seen in bloom by writer, may also belong here. Alfred Rehder.
TANACETUM (name of doubtful derivation). Compositce. A genus of 30 species of annnal or perennial herbs scattered about the northern hemisphere, of which

7 are native to North America. They are odorous plants with alternate, variously cut leaves and small to me-dium-sized heads of yellow flowers disposed in corymbs, or rarely solitary. Fl.-heads heterogamous, disk-shaped: female ths. with 3 -5-toothed, tubular corollas; akenes 5 -ribbed or $3-5$-angular, with a broad truncate summit, bearing a coroniform pappus or none. For culture, see Tansy.
vulgàre, Linn. Tansf. Fig. 2463. Stem robnst, erect, $2-3 \mathrm{ft}$., leafy to the summit: lvs. pinnately divided into linear-lanceolate segments which are serrate or pinnately cut: fl.-heads $1 / 4-1 / 2$ in. across, numerons, in a dense, Hat-topped cyme. July-Sept. Europe. Adventive in the eastern U. S.-Var. crispum, DC., has the leaves more cut and crisped. According to B.B. $3: 460$, this variety is in some places more common than the type.
F. W. Barclay.

## TANGIERINE. See Orange and Citrus

TANGIER PEA, Scarlet. Luthyrus Tingitanus.
TANSY (Tanacetum z'ulgare, Linn.). Fig. 2464. A coarse-growing, herbaccous perennial naturalized from middle Europe, and a familiar occupant of our old gardens, waste places and roadsides. Its common name is said to be derived from athanasiu, immortality, an idea suggested to the ancient Greeks by the characteristic permanent possession it takes of the soil. Its annual, upright, usually unbranchet stems, which rise ahout 3 feet from the perennial root, bear greatly divided, deeply cut, compound, bitter, aromatic leaves and rather dense corymbs of numerons small yellow flower-heads which appear in midsummer. The seed, which is small, is marked by 5 rather prominent grayish ribs and retains its vitality for abont two years. Formerly its leaves were in great favor as a seasoning for various culinary preparations, especially puddings and omelettes, uses now almost ohsolete. By the medical profession, its tonic and stimmlant properties and its efficacy in hysterical and dropsical disorders are still recognized, though otber medicines are more popular. In domestic practice it played an early role as an anthelmintic and stomachic and is still somewhat popnlar as a local agent to relieve the pain of muscular rheumat ism, bruises and chronic ulcers. The wild plants usnally satisfy all demands, but when no wild supply is at hand seed may be used to start the half-dozen specimens that a family should need. Easily started, readily transplanted or divided, Tansy requires no special care in cultivation except to keep it clear of weeds and to prevent its spreading and thus becoming troublesome as a weed. It will thrive in almost all

2464.

The fern-like spray of Tansy. soils and situations that are not too wet. For botanical account, see Tanacetum. M. G. Kains.

## TAPE GRASS. Jallisneria.

TAPIOCA. See Manikot.
TARAXACUM (ancient name of doubtful origin, probably associated with supposed medicinal properties). Compósitce. Dandelion. Low nearly or quite stemless berbs of cold and temperate regions, mostly of the northern hemispliere. The plants are exceedingly variable and there are consequently great differences of opinion as to the numoer of species. Bentham \&

Hooker would reduce them to about 6 , and others would retain 25 or more. Taraxacums are distinguished by hatiog large manyflowered ligulate yellow heads solitary on naked and hollow scapes; involucre with one inner series of erect narrow bracts and onter ealyx-like spreading sometimes reflexed hracts; parpus simple and capillary, borne on a slender beak terminating a fusiform elongated angled akene; flowers opening in sunshine.

The common Dandelion is Taráacum officinale, known also as T. Dens-leonis. See Dundelion. It varies immensely in stature and form of leaves, as shown in Figs. 2465-68. For history, see Sturtevant, Proc. 6ith Meeting Soc. Prom. Agr. Sci., and Amer. Nat., Jan., 1886. For an account of the red seeded Dandelion, T. erythrospérmum, see Fernald, Bot. Gaz. July, 1895:323. From the common Dandelion it differs in having smaller sulfur-yellow heads. smaller and very deeply cut leaves, outer involueral scales not reflexed and somewhat glancous; akenes red or red-hrown and sborter heaked; pappus dirty white. It is known to occur in New England, New York and Pa.; perhaps naturalized from Europe.
L. H. B.

TARE, TARES. To the modern English farmer the word "Tare" neans the common vetch. I'icia satira, although Tare is also applied loosely to other species of Vicia and Lathyrus, particularly ricia hirsuta. The celebrated passage in Mathew xiii, 25, "His enemy came and sowed tares among the wheat,' refers probably to the darnel, Lolium te mulentum, The original Greek word in Matthew is Zizania, a name which in botany refers to the widd rice. Darnel belongs to the grass family and its seeds were long thonght to stupefy those who ate them nnwittingly. Recent investiga tions have proved that darnel seeds have no narcotic properties.

TARRAGON (Artemisia Dracunculus, which see) is a close relative of wormwood (A. Absinthium). It is a perennial composite herb native of the Caspian Sea region and Si beria, and is enltivated as a chlinary herb in westerı Europe. Its lanceolate, entire leares and small, inconspicuous and generally sterile blossoms are borne upon numerous branching stems, 2-3 feet tall. Its green parts, which possess a delicate, aromatic flavor resembling anise, are widely

2465. Small-leaved form of Dandelion.

2466. Large-leaved form of Dandelion.
used for seasoning salads and for flavoring vinegar, pickles and mustard. The essential oil of Tarragon and Tarragon vinegar are articles of commerce, the crop being grown extensively in southern France for this purpose. The former is obtained by distillation of the green prarts, the latter by simple infusion in vinegar. The best time to gather the crop for distillation or infusion is when the first flowers begin to open, since the plants have then a larger percentage of oil than before or after. From 300 to 500 pounds of green parts, aceording to seasonal and other conditions, are needed to produce one pound of oil.

As cultivated Tarragon rarely produces riable seed, the plant is propagated by cuttings of both old and green wood and by dirision of the roots. Cuttings may be taken at any convenient time, but the heat time for division is when the plants have just commenced to grow in the spring. Tenacious and wet soils should be avoided and only loams of medimm texture and of poor quality in sunny situations chosen. Tbe plants may be set either in the spring or in the autumn, one foot apart and cul tivated like sage or mint. The flower-stems should be removed as soon as seen, as this will force greater growth of leaves, ete. The green parts may be gathered at any time, after the plants have become established, and used fresh. Dried Tarragon is nearly as usetul as green, but there is little market for it, lesseren than for the leaves. At the approach of winter, esfecially in cold and snowless climates, the stems should be cut down and the plants coverert with litter or leaves. The position of the heds should be changed every three or four years. Tarragon is less culti vated in America than it deserves. Most of our Tarragon vinegar comes from France.

Tagetes lucida is much like Tarragon in flator and bas been used as a sulbstitute for it.
M. G Kains.

TASMANNIA (after Abel Jansen Tasman, Duteb eaptain who discovered Van Dieman's land or Tasmanja). Magnolideer. This genus is included under Drimys by Bentham and Hooker. A small genus of tender evergreen aromatic, glabrous trees or shrubs with simple, shortpetioled leaves with transparent dots and terminal elusters of greenisb yellow, rose or white flowers. Drimys aromática, F. Muell. (T. aromática, R.Br.), is a sbrub or small tree cult. in a few north-
ern greenhonses: Irs. rather small, oblong to oblonglanceolate, usually ohtuse, narrowed to a short petiole: ths. $1 / 2-1$ in. aeross, in small, terminal clusters. Spring. Tasmania. B.R. 31:43 (white, tinged pink).
F. W. Barclay.

TASSEL FLOWER. See Emilitt flommea and Brickellia.

TAU-KOK BEAN, See Dolichos.
TAXODIUM (alluding to the similarity of the foliage to that of Taxus). Glyptostrobus, schubértia. Conifere. Talt ornamental decidnous or evergreen trees, with distinctly 2 -ranked, small, linear leaves and globose or ovoid cones not exceeding 1 in . across. The Bald Cypress, T. distich hm , is well known in eultiration and is hardy as far north as New England. It is a very desirable tree for park planting. Its light green

2468. Variation in loliage of the common Dandelion. All leaves drawn to the same scale.
feathery foliage and the narrow pyramidal habit which it usually retains in cultivation gire it a very distinct appearance. In its native habitat it forms in old age a broad, round-topped head sometimes 100 ft . across and has the trunk much enlarged at the base by buge, often hollow buttresses projecting in all directions and termi-
nating in long, horizontal roots. From these roots spring the peculiar cypress knees, pyramidal protuber ances composed of a very light, sott, spongy wood and spongy bark. These sometimes attain a height of 10 ft . and with age usually become hollow. From the under side of the horizontal routs large anchor-roots are sent perpendicularly into the earth and help to anchor the tree firmly in the swampy yielding soil. The knees are beliered by some to he formed for the purpose of strengthening this root-system, since they are ehiefly found opposite to the anchor-roots, hat their main purpose is probably to bring air to the roots during the several weeks or months when the swamps are covered with water. The knees always grow high enough to rise above the surface of the water (see, also, G.F. 3, p. 2, 21, 20, 57).

The Bald Cypress thrives best in moist, sandy soil, but nsually also does well in drier situations. The babit seems to depend somewhat on the degree of moisture; in drier soil the head is more narrow-pyramidal, in moist soil broader and more spreading. Propagated by seeds sown in spring and the varjeties by grafting on seedling stock early in spring in the greenhouse; also by cuttings in sand constantly saturated with water or grown in water alone, under glass.

Three species in North America and China. Lrs. alternate, linear, usually 2-ranked, falling off in autumn or the second year together with the short lateral branchlets : As. moncecious, small; staminate fis, catkin-like, consisting of spirally arranged anthers, with $4-9$ anther-eells and forming terminal panicles; pistillate fls. solitary or in pairs at the ends of branchlets of the previons year, composed of imbricated scales bearing two ovules insitle at the base: cone globose or nearly so, maturing the first year, consisting of spirally arranged woody scales enlarged at the apex into an irregularly 4 -sided disk with a mucro in the middle and toward the base narrowed into a slender stalk; 2 triangular, winged seeds under each scale; cotyledons 4-9.

The Bald Cypress is one of the most valuable timber trees of North America. The wood is brown, light and soft, elose and straight-grained, but not strong; it is easily worked, durable in the soil and much used for construction.
dístichum, Rich. (Cupréssus disticha, Linn. Schubértia disticha, Mirbel). Bald Cypress. Deciduous Cypress. Fig. 2469. Tall, deciduous tree, becoming 150 feet high, with a buttressed trunk usmally $4-5$, but sometimes attaining 12 ft . or more in diameter, usually hollow in old age; bark light cinnamon-brown, flaky; branches erect or spreading, distichously ramified, forming a narrow pyramidal head, becomiag at maturity broad and rounded, with slightly pendulous branches: lvs, narrowly linear, aente, thin, light green, $1 / 2-9 / 4$ in. long: panieles of the purplish staminate fls. $4-5$ in. long: cone almost globose, rugose, ahout 1 in , across and destitute of mucros at maturity: seed $1 / 4$ in. long. Mareh-May. Del. to Fla., west to Mo. and Tex. S.S. $10: 537$. G.F. 3:7; 10:125. G.C. 11. 11:372; 18: 361 ; 111. $7: 325,328 ; 14: 659 ; 24: 320$. ( ing . $2: 225$; $5: 1$. G.M. $39: 875$. M D.G. 1896:303. S.H. 2:541.-An interesting natural variety is:

Var. imbricàrium, Nutt. (T.distichum Sinénse péndula, Lodd. T. distichum. var. péndulum, Carr. Glyptostròbus péndulus, Endl. G. Sinénsis, Hort.). Smaller tree, with slender apright or often pendulous branches clothed with spirally arranged, needle-shaped, more or less upright and appressed lvs. Occasionally found wild with the trpe and often cultirated. B.M. 5603. F. 1871, p. 60.

A great number of garden forms bave been described,
of which the following are the most important: Var. fastigiatum, Knigbt. With slender, upright, virgate branches sparingly ramified. Var. microphyllum, Carr. Sbrub, with slort spreading branches; the lateral branchlets with typical foliage, these of the longer branches gradually passing

2469. Bald Cypress - Taxodinm distichum.
(Natural size of lrs. is $1 \cdot \frac{1}{2}-9 / 4$ inch long.) toward the end into small, scale-like, imbricate ivs. Var. nànum, Carr. Dwarf, shrubby form, with numerous sbort branches, Var. nütans, Ait. Branches spreading, long and slender, nodding at the tijss. Var. péndulum nȯvum, P . Suith. A gracetnl form with slender, pendulous branehlets. Var. pyramidàtum, Carr. Narrow pyramidal form with short asceuding brauches.
T. mucronàtum, A. Ten. (T. Mexicanum, Carr.). Tall tree, oceasionally 170 ft . high, with a trunk 20 ft . or more in diameter: lus, evergreen. Mex. $G$. F. 3:155. G.U. 11I, 12:647.-T. heterophyllum, Brongn. (Glyptostrobus heterophylhis, Endl.). Shrub, 10 ft , high: lower branches pendulors: les. linear and scale-like on the same plant; cones ovoid, ${ }^{3}$ in. long. China. Tender and rarely eult. often confounded with vars. of T. distichum.

Alfred Rehder.
TAXUS (ancient Latin name of the Yew). Conifere. YEw. Ornamental evergreen trees or shribs, with 2 . ranked linear leaves, insignificant flowers and showy berry-like red fruits. The best known species is $T$. baccuta, which is bardy as far north as lihode Island and northwestern New York, while T. cuspidata and $T$. Canadensis are considerably hardier and thrive as far nortb as Canada; the other species are little known in eultivation. The Yews are very desirable evergreens for park planting; they are densely clothed with dark green foliage and the pistillate plants are particularly beautiful in autumn when loaded with searlet fruits. They are well suited for bedges and easily trimmed into any desired shape. They were formerly much used for fantastic topiary work (see e. g., G.C. 11. 2:264, $265)$.

That the typical tree-like form of the Yew is nowadays not frnch planted is chiefly due to its slow growth, hint the numerons mostly shrubby garden forms are popular plants for small gardens. The Yews thrive best in a moderately moist sandy loam and endure shade well. Large plants may be successfully transplanted if it is possible to secure a sufficient ball of earth with the roots. Prop, by seeds, which do not germinate until the second year, and by cuttings taken early in autumn and kept drring the winter in a cool greenhouse or frame; the varjeties also often by grafting on the type in early spring in the greenhouse, or sometimes by layers. Plants raismi from euttings grow much slower than grafted ones and enttings of the type rarely grow into trees but ustually into low-spreading shrubs isee M.D.G. 1898:565).

Six species are known. They are distributed throngh the northern bemisphere and in Ameriea south to Hexico. They are all very elosely allied and could be considered geographical varieties of a single species. Trees or shrubs: lvs. linear, without resin-ducts, pale or yellowish greeu beneath, usually 2 -ranked: fls, nsually diocious, solitary and axillary, rarely terminal, small, appearing iu early spring; staminate globose, composed of 4-8 stamens each, with $3-8$ anther-cells attached to the peltate connective; pistillate consisting of a single terminal ovule with several bracts at the base: seed a bony nut surrounded or almost inclosed by a fleshy eupshaped searlet disk; cotyledons two. The wood is heavy, hard, close-grained, strong, elastic and of reddish color. It is bighly valned for cabinet-making and turning, and before the invention of gunpowder was in great request
in England for the manufacture of bows. The foliage is poisonous to horses and cattle but the berries are not.
baccata, Liun. Fig. 2470. Tree, attaining 60 ft ., with a usually short trink, oceasionally 8 ft . or more in diameter: bark redulish, flaky, leeply fissured in old trees: branches spreading, forming a broad, low head; hranchlets somewbat pendulons: 1rs. 2-ranked, linear and usually falcate, shortly acuminate, with prominent widrib, dark green above, pale heneath, $34^{-1} 1 \frac{1}{4}$ in. long or shorter in some vars.: fr. $1 / 3-1 / 2$ iu. across, with almost globose disk, about one-third longer than the ovoid brown seed. Eu. and N. Afr. to Himalayas. G C. 11. 23:309. Gn. 27, p. 578; 35, p, 36, 37. G.F. 9:265. Gug, I:309. - Many garden forms have originated in cultivation; the following are the most important: Var. adpréssa, Carr. (T. parifolia, Wender. T, brevifolia, Hort., not Nutt. T.tardlea, Laws. T. Sinénsis tardlia, Knight). Shrub or low tree of irregular babit, with long spreading brancbes: lvs, oblong, obtusish, mucronulate, $1 / 3-1 / 2$ in. long: disk of fr. shorter than the seed. R.H. 1886, p. Iot. Gn. 35, p. 37 . Very distinct form. Var. adpréssa erécta. Nichols. (var. adpréssa stricta, Beissn. ), has the foliage of the preceding, but erect branches forming a columnar lush. Var. aurea, Carr. (var, Elcustonénsis aurea, Beissn.). Lvs, golden yellow, more brightly colored at the tips and margin. This form has proved hardier than tbe type in New England. Var. argentea, Loud. (rar. elegantíssima, Hort.). Lors, striped straw-yellow or sometimes whitish. Var. erécta, Lond, (var, stricta, Hort.). Busby form, with slender, upright branches and branchlets: lvs, barrower and smaller than in the type. Var. ericoldes, Carr. (var. mifroph ylla, Hort.), Dwarf form, with slenter branches and small and very narrow, pointed lvs. Var. fastigiàta, Loud. (T, IIibérnica, Hort.). Strictla tastigiate form, with stont crowded upright hranches and branchlets: lvs spirally arranged around the branehes, dark glossy green. Gn. 35, p. 36; 40, p. 62. R.H. 1886:105. One of the most desirable evergreens of eolummar habit for formal gardens. Var. fastigiata variegàta, Carr, Less rigorous and more tender: lvs. marked yellowish white. Var. fastigiata aùrea, Standish. Young growth golden yellow. Var. Fisheri, Hort. Some of the lis. deep yellow, otbers green. Var. frúctu lùteo. With yellow fr. Gn. $35, \mathrm{p}, 37$. R.H. 1886, p. 104. Var. glaùca, Carr. Vigorons form, with longer and narrower Ivs, dark greeu above and With a glancens bluish tint beneath. Yar. Jácksoni, Ford, (rar. péndula, Hort.). Branches spreading, pendulous at the tips, with more or less incurved lvs. Var. procumbens, Loud. Prostrate shrnb, with elongated and

2470. Old English Yews that have reached maturity - Taxns baccata.
"Addison's Walk," at Gilasnevin, 1reland.
mueh ramified branches. Var. Washingtoni, Beissn. Vigorons form, with longer lvs., partly colored golden yellow.
cuspidàta, Sieb. \& Zuce. (T. baccìta, var. cuspiddta, ('arr.). Tree, attaining 50 ft ., with a trunk usually 2 ft .
in diameter: bark bright red: branches ascending: lvs. usually falcate, thickish, distinctly and abruptly mueronate, dark green above, pale fulvous green or pale green beneath, $1 / 2-1 \mathrm{in}$. long: fr. like that of $T$. baceata, Japan. Very similar to $T$. bdecuta, but branches more npright, stouter and Ivs. somewhat broader, more abruptly mucronate and thicker in texture. Var. nàna, Hort. (T. brecifolliu, Hort., not Nutt.), is a dwarf compact form with shorter leaves.
Canadensis, Marsh. (T. bacenta, var. minor, Michx. T. bacedte, var. Canadensis, (iray. T'. minor, Britt.). Fig. 2471. Prostrate shrub, with wide-spreading slender branches, rarely more than 3 ft . high: 1 vs , shorter and narrower, less crowded and of a lighter, more yellowish green than those of $I$. beccatu, assuming in winter usnally a reddish tint: fr. ripens about 2 months earlier than that of $T$. baccata: Hs, monæcions (at least usually). Newfoundland to Manitoba, south to Via. and lowa. B.B. 1:61. V, 14:252.-In cultiration it becomes usually a more upright and less straggling shrub.
T. brevifolia, Nutt. Tree, $40-50$ or oceasionally 80 ft . high, with slender horizontal or somewhat pendulous branches forming a broad, open, pyramidal head: lvs, sharply pointed, dark yellowish green, $1 / 0^{-3} \neq \mathrm{in}$. long. Brit. Col. to Calif. S.S. 10:514. Probably as hardy as T. baceata.-T. Floridina, Chapm. Bushy tree, 25 ft . high or sometimes shrubby: lvs. slender, $3 / 4-1$ in. long, dark green. Fla. S.S. 16:515

Alfred Rehder.

United States, are facts sufficiently well kuown as to require no elaboration in the present artiele. The present condition of Chiua and the fear that a devastating war may at auy moment invade the tea-produeing proviuces, seriously threaten the Tea supply from that country. Again, friction among the worldpowers may at some future time entangle the United States in war with a strong naval power, in which case it is easy to foresee that commeree with the antipodes might be arrested and our supply of oriental Tea cut off. Or the outbreak of some such vegetable disease as that Which not many years ago destroyed the coffee industry in Ceylon might readily sweep over the tea-gardens of Eastern Asia; and if wholly dependent upon them. the world might be Ifprived of its cup of Tea. It becomes, therefore, a guestion of national importaupe to provide against these contingencies.
To these advatages should be addel the diversification of our industries, supplying easy and bealthful oecupation to thousands of necdy people, especially women and children, who are well adapted for the gen"rally light labor iuvolred in the growth and manufacture of Tea; and converting countless acres of now idle land into blooming and remunerative tea-gardens. Where in Assans was once a dismal jungle, the home of the tiger and cobra, and full of deadlier fevers, almost uninhabited by man and practically worthless, is newthanks to the tea-industry-a fertile, comparatively


TEA. The Tea plant is deseribed in this work under Camellia Thea, together with its varieties Bohert and riridis, of which the former was supposed to yield black Tea and the latter green Tea. Both kinds can be produced from either variety, the difference lying in the process of manufacture. Tea is an agricultural rather than a horticultural crop. It is fully treated in general eyelopedias and elsewhere. For these reasons no general article on Tea is here included. The following article gives an idea of the present condition of the tea-growing industry in America. The Tea plant is shown in Fig. 2472.
L. H. B.

American Tea. - Previons to the inauguration of the Pinehurst experimentation in South Carolina, it hat been abundantly demonstrated that parts of the southern states were well adapted for the srowth of those varieties of the Tea plant which do not require at tropieal elimate; and before the Civil War many families supplied themselves with Tea grown and made at home, the result of the distribution of oriental Tea seed throughout the southern states by the national government. But it remained to be solved whether Tea might be produced on a large scale at a profit. The Pineburst experiments have shown that American teagardens are capable of yielding as much as the average Asiatic, and that the quality of the leaf is not less satisfactory.

The advantages in favor of raising Tea in this country are the avoidance of long transportation, which generally induces deterioration in quality; security from the interference of war with the importation of foreign Teas; and the proteetion of the industry by a duty whieh shall offset the difference in the price of labor. That some sorts of Tea do not keep well, that the high "firing" of Tea to prevent mildew, necessarily deprives it of much of its flaror, and that for these reasons the best of the oriental Teas are rarely exported, least of all to the
healthy, eivilized region, affording lucrative employment to thousands of Enropeans and natives. As much ean be brought about in many neglected parts of the southern states; but probably, as was the case in Assam, only through the long eategory of persistent labor, severe trials, frequent mistakes, temporary depressions and final success.
The disadvantages which operate against the establishment of an American Tea industry are, chiefly, an insufficient rainfall, the higher price of labor, and the conversion of tea-driukers to the taste of a new sort of Tea. Of secondary importanee is the disinclination of capital to embark in the uudertaking which, although apparently new, has, undeservedly as we think, the stigma of previous failures. Further experiments to relieve the burden of the above objections will, it is believed, pave the way for a hearty endorsemeut of the practicability of the industry, and then there will be no withbolding of the requisite means.
The Pinehurst experiments bave shown, other things being equal, the dependeuce of the productiveness of the tea-plant upon an abundaut supply of moisture, whether of preeipitation or pereolation, or by artificial irrigation. The yearly rainfall in the oriental Tea countries varies from 60 to 150 inches, and even more. Almost all of it occurs in the leaf-producing months; whereas bere the aqueous precipitation, duriug the same season amounts to about thirty inches. It becomes necessary, therefore, that the American teaplanter should conserve and snpplement this supply to the utmost. by a system of tillage which shall absorb and yield to the plant as much as possible: by the distribution of the trenches and the terracing of the land with a view to preventing the denudation of the surface and the loss of water during the heavier rains. These objects are largely attained by placing the tea-gardens on well-drained, flat lowlands or former pond-beds. Very recently special attention has been paid to the
artificial irrigation of tea fields, whereby it is designed to better approximate to the oriental supply of water during the cropping season, although, of eourse, it will he needless to attempt to imitate the tropical deluges whieb not only run off from, but with the soil.

The selection of the most suitable location for the establisbment of a tea estate, beeomes, then, of the greatest importance. The choiee of fertile, flat lands, underlaid by a porous subsoil, susceptible of irrigation by gravity, as a sufe-guard against droughts, will obviate the necessity of applying artiticial enrichment, of underdrainage, and of elevating by applied nower the water needed for irrigation. By a careful ohservance of these details and the selection of the right sort of seed, the American tea-gardell may be made to yiek as much or more than the parent bushes from which it sprung. And as the snceessful eommercial tea estate must be on a large seale, like similar undertakings in sugar, whether beet or cane, it will be necessary to eonsider the means of transportation and aceessibility to markets, abundant supply of labor and healthfulness of situation.

The part played by purely mannal labor in the eulti vation and manufacture of hlaek Tea upon the best equipped British tea estates in India, is being steadily eneroached upon by meehanical appliances until now it has been almost relegated to its last functions of plantpruning and leaf-plucking, where it is probably secure. lt is true that the cultivation of the soil on the abovementioned gardens largely depends on manual labor with the hoe, sparle and fork. This is the natural sequence of the heary rains which otherwise denude them of a uniformly well-pulverized surface soil. By aroiding hillsides and by planting sufficiently far apart it is possible to use plows and cultivators, and thus reduce the cost of cultivation. As yet no merhanical eontrivance has been found for dispensing with human labor in the pruning of the tea hushes and the gathering of the leaf. But a ten cent duty on foreign Tea should in many seetions of the southern states somewhat compensate for the difference in the cost of these operations here and in the Orient. The testimony before the LT. S. Labor Commission has shown that where the negro population is congested, their wages, beyond a scanty supply of food and elothing, are strietly nominal.

2472. Tea plant $(\times 1 / 3)$.

On well-arranged tea estates producing black Tea, the human hand hardly touches the plucked leaf from the moment when it is eaught up by a trolley line for transportation to the factory, until the dry Tea is subjected to the final elimination of whatever foreign matter (stems, chips, etc.) may lase got mixed with it. Until
very reeently the manufacture of green Tea has required a large amount of handwork for the roasting and rolling of the leaf. But most recently it has heen demonstrated at Pinehurst that grean tea of a high quality maty he mate solely by machinery, by means of the "Rotary Witherer," invented by the writer, in conjunction with the previously employed rolling and drying machines. And thus, liy the substitution of mechanical operations, not only should the prodnction of Tea on a scale commensurate with the cost of such an establishment, be made cheaper, but the product should be more uniform and free from the possible contamination of freguently unclean hands (and feet!).
It was to be expeeted that the different elimatic conditions should exert their effeet on the foreign tea plants and somewhat alter the taste of their produet. This experience has been the ruse with Tea, and it has cost a considerable, oftentinies disheartening, effort to successfully launch upon the market the output of each new locality. The rery limited production at Pinehurst lias probably prevented any obstacle to the sale of its crops: the novelty of its product may have largely assisted in readily disposing of it. But were the production of American Tea to suddenly rise into the millions of pounds, it would most certainly have to fight against the prejudice of taste and the established trade in Asiatie Teas. The natural remedy lies in the greatent possible adaptation to already formed babits of taste and a lowering of price. Time, study, perseverance and money are necessarily demanded, but success seems to be reasonably assured.

It should not surprise any one familiar with the Teas consumed in the United States uod Great Britain that the sorts most highly valued in the Orient, the produet of one thousand or more years of discrimination and so higbly prized as often to be commercially unattainable, rarely comment themselves to the tea-drinkers in the former countries.
For nearly ten years the experimentation at Piueburst was mainly earried on without outside assistance. The National Department of Agriculture, however, contributed very weleome assistanee by the gift of teaseed, publication of reports and other important ways; and for the past two seasons has renderetl most effeetual peeuniary aid, under the direction of the Seeretary of Agriculture, the Hon. James Wilson, who has enlisted the interest and support of Congress in the work. The proprietor of Pinehurst appreeiates most deeply this assistance, both in money and sympathy, which he recognizes as being indispensable for the ultimate inanguration of the boped-for industry. Under the instructions of the United States Department of Agriculture he will diligently continue the experiments which seem most calculated to prodnce at low enst the medium grades of both hlack and green Teas, not losing sight, howeser, of the possible growth and mantufacture of the finer varieties.
The first tea plant in this eonntry was set out by the French botanist, Michaux, about 1800 , at Middleton Barony, on the Ashley river, distant some 15 miles from Charleston and 10 from Pinehurst plantation. As seen a few years since, it had grown into a small tree about 15 feet high. The reports of the U. S. Patent Office and the Department of Agriculture record the results of many subsequent attempts to introdnce and cultipate the tea plant in the sonthern states. In 1848 . Mr. Junius Smith, of Greenville, S. C., being convinced from the letters of his danghter, then in British India, of the feasibility of raising Tea in this region, began his well-known experiments in this direction. In spite of many trying difficulties, they were diligently prosecuted to the time of his death, which oecnrred a few years later. It required only slight enconragement from the Goverument, by the distribution of plants and seeds, to call into active participation the ardor of many experimenters living in a climate particularly favorable for the outdoor enltivation of the Camellia Japonica, Azaleu Indica, and many other subtropical plants. The Scotch botanist, Mr. Kobert Fortune, was employed by the Government to gather Chinese tea seed, which was distributed in 1858 and 1859 throughout the southern states. The outbreak of the Civil War, shortly thereafter, seriously interfered with the prosecution of these
experiments. Nevertheless, the resultant patehes and larger gardens unquestionably produced Tea of fine flavor, although very generally devoid of that strength of liquor which latterly, and especially since the introduction of the Indo-Ceylon Teas, appears to constitute a most desirable quality for many consumers. It may be presumed, however, that this failure in pungeney was largely due to defective curing and particularly to inadequate rolling of the leaf, in consequence of which the cup qualities of the Tea were not fully developed.

So far as is known, it remained for the National Department of Agriculture to begin, twenty years ago, the first serions attempt to produce American commercial Tea. Unhappily, the retirement from office of Commissioner Wim. A. Le Ibue, to whose great interest in this subject the inception of the experiment was dine; the serious prostration by illness of Mr. John Jackson, who had cultivated Tea in ludia, and under whose management the seed was obtained and the gardens established; the great distance of the station from its source of control (Washington), as also tbe unfavorable opinion of a subsequent commissioner as to the ultimate success of the undertaking, combined to cause the total abandonment by the foverument of the tea-gardens which it had established on the same "Newington" plantation that embraced the adjoining site of the later formed Pineburst estate.

The Pinehurst investigation owed its origin to the belief that the previous attempts to demonstrate the feasibility of American Tea culture had been arrested before reaching definite conclusions. Hore careful cultivation and manipulation, the result of protracted observation, with the consequent production of a bigher elass of Teas, might reverse the generally entertained opinion that the cultivation of Tea, as an industry, in this country must always prove a failure. It was hoped that success in this field of agricultural enterprise would furnish employment for thousands who are now idle and give a value to vast aeres at present worthless.
The local experiments, begun about ten years ago, were wisely on a small scale; but they have been gradnully increased until they now embrace about sixty acres planted in Tea, a commodious factory equipped with the requisite mechanical appliances, facilities for the application of irrigation to some of the tea-gardens, and a well-tramed corps of youthful tea pickers. When the gardens shall hare arrived at full bearing, the annual crop should exceed 12,000 pounds of dry, high grade Tea, and this quantity should suffice for the object in view; viz, to determine whether commercial tea may be profitably grown under the local conditions of soil, climate and labor, it was obviously desirable to conduct experiments with as many varieties of seed and on as different sorts of soil and location as possible. To this end, partly by the kind assistance of the U. S. Department of Agriculture and partly by purchase from domestic and foreign prodncers, a considerable variety of seed, representing many of the choicest sorts of Tea, was obtained. Gardens were established on flat and on rolling land, in drained swamps and ponds, and on sandy, clayey, loany and rich bottom soil.

It was from the outset expected that many of those attempts would prove either partially or wholly unsuecessful, but with very few exceptions the gardens are fully answering the expectations. The annual erop has gradually, but steadily, grown from less than one humdred pounds to 5,000 pounds of dry Tea. Several years of experimentation have developed a system of pruning in keeping with the local climate. The hopefully crucial trial ocenrred on February 14, 1899, when the therroom. eter fell to zero, Fahrenheit-the lowest recorded temperature in 150 years of observation, but with comparatively few exceptions the tea-gardens escaped serious injury, although followed by a diminished yield for two

2473. Assam-Hybrid Tea garden at Pinehurst, South Carolina.
years in some instances. A Rose (Assam Hybrid) tea garden at Pinehurst is shown in Fig. 2473.

Charles IT. Shepard.
TEA, OSWEGO. Monarde didyma.
TEA, PARAGUAY. Ilex Puruguariensis.
TEASEL. The species of Dipsacus, See p. 491 and Fig. 719.
surrounded at the base by a disk: fr, an elongated capsule, loculicidally dehiscent, with 2 valves separating from the septum, to which the seeds are attaehed: seeds mumerons, compressed, witb 2 large, thin wings. The genus is dicided into several natnral subgenera, which are eonsidered by some botanists as distinet genera. Alfred Rehder.

2474. Tecoma Smithii $(\times 1 / 4)$.

Trumpet Vines in the South. - All the Tecomas, tbe elimbing species as well as those growing in bush form, are very suceessfully cultivated in Florida, being well adapted to the soil and climate, but most of them, to do their best, need to be planted from the start in rich soil, and in addition they should be well fertilized at least once a year. They prefer a fertilizer rich in nitrogen, and a heary muleh will also prove very beneficial. The bushy kinds can he grown in groups or as single specimens on the lawn, while the rampant climbing species, such as $T$. radicans and $T$. grandiflora, should be grown on posts and tall stumps, or they may be trained over small oaks, persimmon trees or catalpas. T. Capensis, a half-elimbing species, is cffectively used for decoration of the reranda, its glowing searlet flowers contrasting well with the exquisite blossoms and the tropical foliage of the allamandas, thunbergias and Clerodendron Thompsoum, which all flower at the same time. Tecoma stuns and T. grandiflora are the two showiest species of the senus, the latter being aclizber, flowering abunduntly in May and June, while the first one is a large-growing busby species opening its immense corymbs of rivid yellow flowers the latter part of November and early in December.
The Yellow Elder, T. stons, grows exceedingly well on high pine-land and is perfectly at home in Florila, attaining an immense size if well fertilized and mulched, dense masses $18-2.5 \mathrm{ft}$, high and as much through being not at all rare. This Tecoma is the glory of the south Florida gardens in autumn, as is the beantiful Bauhinia purpurea in April, never failing to call forth enthnsiastic arlmiration from all beholders. No sbrub is better adapted for the new settlers in the sandy pine-
land gardens. When corered with its large, fragrant flowers it is visited by numberless hummingbirds and insects. Owing to its rapid growth and dense foliage from the ground, the Yellow Elder is highly valued as screen for unsightly fences aml buildings. This Tecoma ripens its seed so abmulantly that bundreds of seedlings come up around the old plant. The value of this shrub, blooming so late in autumn, camnot be overestimated.
$T$. mallis, ineorrectly known to the trade as $T$. stans, var. velutina, also does well, but being a native of Guatemala it is much less hardy than the former. The growth is more upright and stiff, the lfts, are mueb larger, less serrate and much darker green and the Howers, whieb are borne in teminal panicles, are smaller and without fragranee and the color is a much lighter ycllow. It also flowers several weeks earlier than $T$. stans. The foliage looks crimped and often blaekisb, being attacked by a kind of aphis and by several fungi.
$T$. Smithii is said to be a bybrid between T. mollis and $T$. Cupensis, raised near Melbonrne, Australia, by Mr. Edwin Smith. The plant eomes true from seed, and seedlings flower when ahout a year old, beginning to open their large clusters of yellow and reddish trumpets in April and continuing with short intervals until eut down by frost in December.

The Cape Honeysuekle, T. Capensis, is anotber species which grows most luxuriantly in Florida gardens and in those all along the Gulf coast. It is usnally grown on trellises on verandas and piazzas with a southern exposure. Of all the species this is the best and most suitable for verandas, being a dense and compact grower, evergreen, almost constantly in flower, easily kept in health and readily trained into sbapely specimens. If the long shoots are eut back severely, the plant can be easily trained into shrub form. These long sboots, usually lying flat on the ground, readily strike root and form an excellent material for propagation. $T$. Capensis and $T$. Smithii are the only Tecomas which grow and flower fairly well as pot-plants in northern greenbouses. They need good soil and rather large pots to do well. If not well eared for they loso most of their foliage and look poor and unshapely.

The Chinese Trumpet Creeper, T. grandiflora, is the most tloriferous and gorgeons of all the climbing species. In the writer's garden a large pine stump, about sixteen fcet high, in May and June is completely covered with masses of brilliant fiery orange-scarlet flowers whieh ean be seen at a distance of half a mile. The tlowers are much larger, more brilliant and mueh more abundantly produced than those of our native $T$. radicans. While all the other Tecomas arc almost free from the attacks of insects, this one is infested by a voracious caterpillar, which devours the leaves greedily. The labber grasshoppers also attack the lower foliage. T. gramdiflore grows well in the poor sandy soil, perfecting luxuriant shoots $25-30 \mathrm{ft}$. long in one season if well fertilized. Like our natire species, this one is deciduous.

Our native Trumpet Creeper, T. radicans, is very common in the southern woodlands and fields. There is a great rariety in the brilliancy of the blossoms. This is an excellent plant for covering the bare trunks of palnuettos.
The Wonga-Wonga Vine, T. australis, is rather diffieult to grow on high pine-land, as it needs a soil rieb in lumms. In riel soil, however, and liberally fertilized it is at rampant grower with beautiful dark green glossy foliage. The flowers are interesting but comparatively small, and not showy. However, the species is worth eultivating for folinge alone. It must be well taken eare of and well watered during the dry spring months or it will dwindle away in a very short time.

The Bower Plant of Austritia, $T$. jusminoides, is a tall, rampant climber, reveling in the Florida sunsbine, but it needs a very rich soil and during dry weather an abundance of water. A heavy mulching also proves very benefieial. Plants only two feet bigh bave flowered profusely. In good soil it grows in one season $20-30 \mathrm{ft}$. bigh, elambering from tree to tree.
T. Mackenii, from Natal and Caffraria, denands a very rich soil and a heavy muleh of stable manure. Its leaves easily drop from the woody branehes after a
cold night, and 6 or 7 degrees of frost kill the plant down to the ground. For this reason the vine shonld be banked with dry sand every fall and if killed down to the buaking it must be cut ofi immediately or the entire plant will be lost. Plants raised from seed received under the name of $T$. Ricasoliand, from ltaly, are much hardier and more floriferous than those obtained from seed imported from south Atrica, but the tlowers of both are exactly alike. In order to flower profusely this species must be planted in the full sun. It usually requires a few years before it starts into a vigorous growth, and it rarely flowers before its fifth year or before it has attained considerable size. In Florida, $T$. Mackenii shonld be planted on tall stumps, or on arbors and sheds by itself, never mingled with other species. This species is properly $T$. Ficusolianc.
$T$. filicifolia, from the Fiji lslands, has never flowered in the writer's garden and is ent down by frost almost every winter, but it is a strong grower and worth planting for the follage alone.
$T$. Valdixiana has proved to be a very poor grower and is very difficult to keep in health for any length of time. Apparently not in the trade.
H. Nehrling.

INDEE.
(lncluding some names from other genera. s. L. = supplementary list.)
adrepens, 8. asculifolia, s. L. alba, 12.
Amboinensis, 9. atropurpurea, 7. australis, 11. Capensis, 6. Chinensis, 8. chrusantha, s. L filieifolia, 13.
futva, \&, L.
granditiora, 8.
jnsminoides, 12.
lencoxylon, 1.
Mackenii, 10 .
mollis, 4.
Pandore, 11.
precox, 7,8
radicans, 7.
Ricasoliana, 10.
rosea. 2. sambucifolia, 3. serratifolia, s. L. Smithii, 5. speciosa, 7. spectabilis, S. L. stans, 3.
Thunbergii, 8 . Thunbergii, 8 . velutina, 4.
A. Habit uprighl.
E. Foliage digitate: fls, pinh.
C. Punicles fcu-fld.

1. leucoxylon
c. Panicles many-fld..
2. rosea

вв. Foliage pinnate: fls, yellow. (Stenolobium.)
c. Lifts. acuminete.
DD. Lus, villous - pubescent be-
neuth..............
3. stang
4. mollis
ce. Lfts. oblong, obtusish .......... 5. Smithii

AA. Habit climbing or prostrate, rerely suberect.
B. Stamens exserted. (Tecomaria.) 6. Capensie BB. Stamens included.
c. Pairs of lfts. $\underset{\sim}{2}-5$.
D. Fls. in racemes, orange,
red or searlet. (C'ampsis.)
E. Lfts. serrate: racemesterminal.
F. Corolla - tube muс u
longer than calyx.... 7. radicans
FF. Corolla-tube little exceeding the calyx....
ex. Lfts. entire or simuate: vacemes arillary ......
DD. Fls. in terminct parieles, whitish or
(Pendorea.)
E. Margin of lfts, servate...10. Ricasolians.

Ee. Margin of Ifts. entire. F. Corolla $\frac{3}{4}$ in. long.... 11. australis FE. Corolla 11/2-2 in. long..12. jasminoides
ce. Pairs of lfts. 9-12. (Campsid-
ium.)
13. filicifolium

1. leucóxylon, Mart. (Bignònia leuçrylou, Linn.). Evergreen tree: lys, long-petioled, digitate; lfts. usmally 5, stalked, oblong-lanceolate, entire, glabrous, 1-21/s in. long: fls. terminal, in few-fld. racemes or solitary; corolla funnelform, with large, spreading limb, rosy pink, 2-2\%in. Jong; calyx 2-lipped: capsule linear, 6-8 in. long. W. Indies, Guiane
2. ròsea, Bertol (Tabebuia ròsect, DC.). Evergreen tree: lvs. digitate; 1fts. 5, rarely 3 , long-stalked, ovate to oblong, acuminate, entire: Hs, in many-Hd, terminal panieles; corolla funnelform-campanulate, with short tube and large, spreading lobes, rosy pink; calyx campanulate, olscurely 2 -lobed, almost truncate. Guatemala.
3. stáns, Juss. (T, sambucifolia, Humb. \& Bonpll. Stenold̀bium stures, Seem.). Yellow Elder, Upright shrub: lvs, odd-piunate; Ifts. 5-11, almost sessile, ovate-lanceolate to narrow-lanceolate, acuminate, inciscly serrate, glabrous, $1 \frac{1}{2}-4 \mathrm{in}$. long: Hs, in large, terminal racemes or panicles; corolla funnelform-campannlate, yellow, $1 / 2 \mathrm{in}$. long; calyx with 5 short teeth; capsule linear, $5-7 \mathrm{in}$. long. Spring to Sept. S. Fla, to Mex., W. Indies. B.M. 3191.-Sometimes called yellow begonia. Fls, fragrant.
4. móllis, Humb. \& Bompl. (T, velitina, Lindl. T. sfous, var. velutiut, Hort.). Similar to the preceding, but pubescent: lfts. 5-9, ob-long-ovate, acuminate, less deeply serrate or almost eutire, villous pubescent on both sides or only beneath, 2-4 in. long: fls, like those of the preceding, but little or not at all fragrant. Mexico to Chile and Peru.
5. Smíthii, W. Wats. Fig. 2474 (adapted from The Garden). Upright shrub: lvs. odd-pinnate; lfts, 11-17, oblong, obtuse or acutisb, serrate, 1-2 in. long: fls. in large, compound panicles, sometimes 8 in . long and as broad; corolla tubular - funnelform, with 5 reflexed rounded lobes, oright yellow tinged with orange, $11 / 2$ 2 in. long. Sept.-Jan. Introduced from Australia and supposed to be a hybrid of T. mollis and Capensis, ( $\mathbf{T}$. C. 111. 14:649. Gn. 48:3022. 1.H. $43: 55,107$. Gt. $44, \mathrm{~F}$. 52. G.M. 36:627. - Blooming in the greenhouse in winter and well suited for cultivation in pots.
6. Capénsis, Lindl. (Tecomiria Capénsis, seem.). Cape Honeysuchle. Climk. ing shrub: lvs. odd-pinnate; $1 \mathrm{fts} .7-9$, orate, acute, coarsely serrate, glabrous, about 2 in. long: fis. in peduncled terminal racemes; corolla tubular, eurved, with 4-parted spreading limb, the upper lip emarginate, orange-red, about 2 in. long ; ealyx 5 toothed: capsule linear, 3-5 in. long. Aug. - Nov. S. Africa. B. R. 13: 1117. L. B.C. 17:1672. R.H. 1895, p. 108.
7. radicans, Juss. (Bignònia rálicans, Linn. (impsis radleans, Bur.). Trumpet (reefer. Trem pet Vine. Truapet HonetsuCKLE. Figs. 2475, 2476. High-climbing shrub, clinging with rootlets: lvs. oddpinnate; lfts. 9-J1, oval to ovate-oblong, acuminate, serrate, dark green above, pale and pubescent beneath, at least along the midrib, $11 / 2-21 / 2$ in. long: fls. in terminal racemes; corolla tulular-funnelform, with 5 broad spreading lobes, usually orange with scarlet limb, $2-3 \mathrm{in}$. long, tube almost thrice as long as the 5 -toothed calyx. fr. cylindric-oblong, keeled along tbe sutures, stalked
and with a beak at the apex, $3-5$ in. long. July-Sept. Pa, and 111. to Fla, and Texas. B.M1. 485, Gin. 22, p. 339. F. 1873, p. 220. A.F. 12:34. Mn. 2:9.- Var. atropurpurea, Hort. (var. grendiflora atropurpurect, Hort.). With large, deep scarlet fls. Var. speciosa, Hort. Scarcely climbing, usually forming a bush with long and slender branches: lfts. small, oval, abruptly narrowed into a slender point often $8 / 4 \mathrm{in}$. long: fls. orange-red, with rather straight tube; limb about $1^{1 / 4} \mathrm{in}$. across. Var. præcox, Hort. With large scarlet tls.
8. grandiflòra, Del. ( $T$. C'hinénsis, C. Koch. Bignònia Chinénsis, Lam. Cámpsis udrèpens, Lour.). Chinese Trumpet Creeper. Fig. 2477 (adapted from Gardening). Climbing shrub, with few or no aerial rootlets: Ivs. odd-pinnate; lfts. usnally $7-9$, ofate to ovate-lanceolate, serrate, glabrous beneath, $11 / 2-21 / 2 \mathrm{in}$. long: As, in terminal racemes; corolla funnelform-campanulate, shorter and broader than that of the preced ing species, scarlet, about 2 in. across; calyx 5 -loled to the middle, about as long as the tube of the corollat: fr. obtuse at the apex. Aug., Sept. China, Japan. B.M. 1398; 3011. F.S. 11:1124, 1125. Gn. 27, p. 94; 33, p. 348 ; 47, p. 373. G.F. 3:393. F.R. 2:27. (ing. 4:195.-Less high-growing and sometimes shrubby; flowers when quite small and can be grown as a pot-plant, also suited for forcing. Var. atrosanguinea, Hort. With deeper scarlet fls. Var. Thúnbergi, Hort. ( $T$. Thúnbergi, Sieb,). Fls. bright scarlet, with very short tube and reflexed lobes. Often a var, of $T$. radicans is cult. under the name $T$. Thunbergi. There are probably also liybrids of this and the preceding species. Var. præcox is advertised,
9. Amboinénsis, Blune. Erergreen climbing shmb: Ivs, orld-pinnate; $1 \mathrm{fts} .3-7$, stalked, elliptic-ovate, acuminate, sinuate or almost entire, puberulous beneath, $3-31 / 2 \mathrm{in}$. long: fls. in lateral racemes, corolla tubularfunnelform, with erect or slightly spreading 5 -lobed limb, red, 3-4 in. long. Amboina.
10. Ricasoliàna, Tanfani (T, Mackénii, W. Watson. Pandorea Ricasoliàna, Baill.l. Evergreen climbing shrub: irs, odd-pinnate; lfts. 7-11, short-stalked, ellip-tic-ovate, acute or acuminate, serrate, dark green above, pale heneath, glabrous, about 1 in, long: fls. in loose, terminal panicles; corolla funnelform, campanulate, with spreading 5-lobed limb, light pink, striped red, 2 in. long; calyx 5 -toothed: fr. linear, terete, $10-12 \mathrm{in}$. long. S. Africa.
11. austràlis, R. Br. (Bignonia Pundora, Sims). Wonga-wonga Vine. Evergreen high-climbing shrub: lvs, odd-pinnate; Ifts. 3-9,

12. Tecoma grandiflora on a clothes post. eliptic-ovate to orate-lanceobate, acuminate but bluntly pointed, entire or sometimes coarsely crenate, shining above, glabrous, $t-2 \frac{1}{2}$ in. long: panicles many-fld.; corolla funnelform - campanulate, with 5 -lobed spreading limb, yellowish white, spotted violet in the throat, S/4in. long: fr. oblong, pointed, $2-3 \mathrm{in}$. long. Spring. Australia. B.M. 865. (in. 27, p. 94.
13. jasminoldes, Lindl, (Bignónia jusminodes. Hort.). Bower Plant of Australia. Evergreen climbing shrub: lrs. oddpinnate; lfts. 5-9, almost sessile, ovate to lanceolate, acuminate but bluntly pointed, entire, glabrons, 1-2 in. long: panicles rather few-fld.; corolla funnelform-campanulate, with large spreading 5lobed limb with crenate lobes, white, rosy pink in the throat, $1 \frac{1 / 2-2}{} \mathrm{in}$. long; ealyx small, 5 -lobed. Ang.-Oet. B.R. 23:2002. B.M. 4004. R.H. 1895, p. 109. Var, alba is a trade name.
14. filicifolia, Nichols. (Ctmpsídium filicifolium, Van Geert). Climbing evergreen shrub: lvs, odd-pinnate, 5 in. long; lfts. $19-25$, ovate, with 2 or 3 lobes on each sille, the larger lobes sometimes dentate. Fiji Islands. F. 1874:280.
T. xsculifolia, DC. (Tahebuia resculifolia, Hemsl. Bignonia zesculifolia, Humb. \& Bonpl.). Evergreen tree, about 20 ft . high: lvs. digitate, wath 7 oblong. obovate Ifts., puluescent above, tomentose beneath: fls, in terminal panicles, subcampanulate, oramgered, with yellow spots on the 3 lower lobes. Mex-ico.-T. chrysintha, DC'. (Tabebuia chrysantha, Nichols.). Evergreen tree: lvs. digi late, with 5 ovate entire, tomentose Ifts,: ils. in terminal racemes, yellow, funnelform, 2 in , long. Caracts. -T. fülva, Don (Tecomaria fulva, Baill.). Evergreen upright shrub to 15 ft . high: lvs, odd-ptmate, with 913 small, ovate, toothed lfts.: f1s. in termina\} panicles, tubular-funnelform, slender, yellow, tinged red, $11 / 2$ in. long; stamens
slightly exserted.

15. Trumpet Vine Tecoma radicans ( $\times 1 / 4$ ) ,
ratifolia. Don (Tabeluia serratifolia, Nichols.). Evergreeu tree: lvs. digitate, with $4-5$, oblong ovate acuminate lits, serrate at the apex. 3-5 in. loug: ts. in terapex. ${ }^{\text {minal panicles, tubnlar-fun- }}$ neltorm, yellow. W. Indies. $-T$. spectabilis, Planch. \& Lind. (Tabebuia spectabilis, Nichols.). Evergreen tree: lvs, digitate, witlı 5 -stalked, ovate to oblong ovate, crenately serrate lfts.: ths, in terminal panicles, orangeyellow, funnelform-eampa nulate. Columbia. F.S. 9: 948, - T. Faldiviảna, Phil (CampsidiumChilense, Reiss \& Seem.). Evergrees climb-
ing shrub: lvs, odd-pinuate, with $9-15$ elliptic to ovate-oblong, smal\} Ifts., serrate near the apex or almost entire: fls. in terminal racemes, tubular, with short 5 -lobed limb, orange, about lin. long. Chile. G.C. $1870: 1182$. B.M. 6111.

Alfred Rehder.
TECOPHILEA (named for Tecophila Billotti, daughter ot a botanist). Hemodorctceu. C'hilean Crocus. Two C'hilean bulbons early-flowering plants, useful for pots or for forcing, one of which is offered by Dutch bulb dealers. They look like blue crocnses. They are stemless plants, with $1-$ few-fid. scapes and linear or lanceolate leaves arising from tunieated corms. The flowers are blue, campanulate, with 6 segments, 3 perfect stamens and 3 staminodia, a single style and a $3-$ locnled ovary. The botanical position of Tecophilaa is open to discussion, but the inferior ovary seems to take it out of the Liliaccer, with which it has been placed by some writers. The plants are useful for blooming in pots indoors early in spring. $T$, violwflora, Bertero, does not appear to be introduced. The one in cultivation is -
cyanocròcus, Leyb. (sometimes written $T$, cyanocrocea). Scapes i-3, erect, $3-6$ in. high, 1 -fd.: lvs. 2-3, linear-canaliculate and undnlate: f. azure-blue with white throat, about $11 / 2 \mathrm{in}$. long, with a narrow tube and ohovate segments. Var. Leichtlini, Hort., has fls. deep blut with no trace of yellow; said by some to bave a white center. Yar. Reeselii, Baker (not known to be in the trade), has longer pednncles, longer and narrower scarcely undulate lvs., and narrow oblong segments. Species hardy at New York city in protected places, but usually the plants do not thrive more than a year or two; they ought to do better farther sonth. Blooms very early in spring. Fls, violet-scented.
L. H. B.

TEEDIA (J. G. Teede, German botanist, who lived some time in Portugal and died at Surinam). Serophuldriaceap. Two species of South African piants, with pink 5 -lobed fls. $1 / 2-3 / 4$ in. across. They are tender to frost. T. lucida was introduced to southern California in 1900, and Francesehi records that it hooms all the year. The larger-fld. species, T. pubescens, seems not to be known to the American trade. Both plants emit the rank herbaceons smell peeuliar to henbanes when their foliage is bruised, and T. pubescens has the same sort of greasy pubescence. The plants hardly seem worth cultivating in northern greenhouses. When they were new to cultivation they were supposed to be biennial herbs, hut Beutham and Hooker call them shrubs. Franceschi writes: "T. lucida acts like an annual in southern California. It is rather pretty but weedy. It seeds freely. Seems to prefer half shade. The smell of the foliage is very objectionable."

Generic eharacters: calys deeply 5 -eut; corolla-tube cylindrical; lobes 5 , rounded, subequal; stamens 4 , didynamous, included; anther-cells parallel, distinct: ovales numerous in each locule: berries subglobose, indehiscent.

Iucida, Rud. Glabrous: stem 4 -cornered; lvs. ob-long-ovate, acuminate, 2 in . long, decnssate; petioles winged: panicles leafy, decussate: fls, rosy pink: seeds many, small. S. Afr. B.R. 3:209.
W. H.

TELANTHERA (name refers to the fact that all ten parts of the staminal cup are equally developed). Amarantdcee. Alternanthera, Apparently all the Alternantheras used by gardeners as bedling plants belong to the genus Telanthera, which is distingtuished from the true genus Alternanthera by having 5 antherbearing stamens and 5 elongated antherless staminodia united into a cup or tube. In Alternanthera the tube is short or almost none, the antherbearing stamens sometimes less than 5, and the staminodia short or none. Of Telantheras there are 40 to 50 species, mostly herbs, in tropical America and one in western Africa. The leaves are entire, ovate to elongated, opposite: fls. small, usually in tense heads in the axils, whit ish or sometimes colored, perfect, each subtended by 2 braetlets.

The Alternantheras of gardeners are much used in carpet-bedding and for ribbon-borders, because of their low, compact growth, the bright colors of the foliage, which holets its character thronghout the season, and the ease with which they withstand shearing. They are usnally kept within six inches of the ground. They are tender to frost, and grow best in warm sunny places. The flowers are inconspicuous and of no account to the gardener. They comprise the stock plants for the foundation work in carpet-bedding.

The plants are propagated ly euttings or division. In either case, they must be carried over winter in the greenhouse or in hotbeds, preferably iu the houses at the North. The plants should be kept at $60^{\circ}$ or $65^{\circ}$ during winter, and rather dry to hold them more or less dormant. Place them where they will receire only enough light to keep them healthy. (1) Cuttings are usually made in August from strong plants growing in the open. The cuttings can be struck in shallow flats and then wintered in these flats without transplanting. The cuttings should be well established before winter sets in, else they will remain weak. In March or April they may be potted off, preparatory to using them in the open. (2) Division is usually preferred by gardeners who have much bedding to do. The plants are lifted after the first frost, cut back to three or four inehes long, and planted in flats. In March or April, the plants are divided and the parts (with the old roots shortened in) are potted or transplanted to other flats. However grown, the plants should bave four to six weeks in a hothed if possible, before they are placed in the open ground. Even in the warm greenhouse they usually make slow growth in March and April.

The botanical status of the garden Alternantheras is imperfectly understood, and the group neets careful study from living plants, Various garten names cannot be accountel for at present. The common garden Alternantheras appear to have issued from the three following Brazilian species.

## A. Le's. essentially lanceolate or elliptic.

amèna, Regel. Fig. 2478. Very dwarf: lvs. longlanceolate or oblong-lanceolate, sometimes elliptic, acuminate, very short-petioled, the under color mostly green but veined and blotehed with red and orange: th.-heads sessile, single, in pairs or 3 's, and terminal. I.H. 12:447; 15:558. -To this apparently belong tho garden names amabilis, spectubilis, sessilis, rosea, Reinhardi.

## AA, Les. essentially sputulate.

Bettzichiàna, Regel (Alterwanthèru paronychioldes, Hort.). Fig. 2478h, Lrs, narrow, spatulate, gradually narrowed into a long petiole, orange-red sladed with green: fl.-heads sessile, single, in pairs or 3 's, terminal and axillary. 1.H. 13:445.-To this species appear to belong the garden names picto, tricolor, curra, aurea nana compactu, paronychioides, versicolor aurea and p. major K̄̈utzii, magnifica.
versicolor, Regel. Fig. ${ }^{2478 c}$. U'sually becoming taller, much branched, and apparently less used for carpet-bedding than the others: lis. rount-spatnlate, narrowed into a short petiole, the colors mostly in shades of copper-red or blood-red, with patches of green between the veins: H.-heads sessile, single or in pairs. 1.H. 12:440. $-T$, firoideel is probably to be referred here.
L. H. B.

2478. Spray of Telanthera amœena; also leaf outlines of (a) T. amcena, (b) T. Bettzichiana, (c) T. versicolor.

TELEGRAPH PLANT. Desmodium gyrans.
TELEKIA is referred to Buphthalmum. T. specioss is 1 . speciosum.

TELFAIREA (Charles Telfair, 1778-1833, 1rish botanist; died in Mauritius.). Cucurbitdeere. Telfairea pedata is a tall-growing climber from tropical Africa with digitate leaves, large, purple-fringed flowers of eurions appearance, and huge gourds which sometimes Weigh ats much as 60 potuds aud contain 100 to 300 edible seeds. It has been cultivated in English stoves, a single shoot attaining a length of 56 ft . iu a year or so. The male and female 1 s , are borne on separate plants. The species is too rampant for the ordinary conservatory. It was introducesl into southern California in 1900 , presumably for its economic interest. The seeds are roundish, about an inch aeross, and the kernels are sweet to the taste, and are said to be as good as almonds. The negroes of tropical Africa hoil and eat them. These seedsalso yield an abundance of oil which bas heen said to be equal to olive oil.

The fruit becones $11 / 2-3 \mathrm{ft}$. long and 8 in . wide. It is oblong in shape, has $10-12$ deep furrows and is always green. Both male atd female fls, are 5 -lobed, copionsly fringed and purple in color, the females somewhat brownish, with a circular green throat, while the males have a 5 -pointed star of grewn in the middle. The male Hs, are abont 2 in . across, females 4 in . inross, with an ovary 2 in. long. The foliage has an unpleasant smell when bruised.

Telfairea is a genus of only 2 species, both tropical African, and very much alike. The two species are distinguished by the venation of the lvs.: 'T'. pedata has pinnate venation, while $T$. accilentulis has 3 nerves originating near the base of the leaf. Heneric characters: male fls, in racemes; corolla rotate; stamens 3 , oue of the anthers with 2 compartments, the others 4 celled: female flx. solitary: ovary : $3-\mathrm{F}$-loculed; ovules in one series on the imperfert septa: seeds tibrouscoated. See Cogniaux, DC. Mon. Phaner. Vol. 3, p. 349.
pedata, Hook. Root stout, Hesby: stem perennial, 50-100 ft. long: lvs. long-stalked: lits. 3-5 in. loug, re-pand-toothed: fls. and fr. deserihed above. Zanzibar. B.M. 2681 (Feuillora pedata): 2751, 2752. W. M.

TELLIMA (anagram of Mitella). Suxifragicen. Tellima is a genus of 8 species of perennial herbs wbich are the western representatires of the Bishop's Cap or Mitella familiar to lovers of wild flowers in the East. They have tuberous rootstocks. Most of their lvs. are from the roots. Strong plants send up numerous stem. one or two feet high, bearing racemes of sinall white, pink or red flowers. They are cholee subjects for wild garlening, being valued for their tufted habit, pretty lvs., and for the airy grace of their inflorescence. On close inspection the fls, are seen to be heautifully frinued or cut, suggesting a hishop's miter. Tellima grandiflora is probably the most desirable species. It is practically the only kiad known to European gardens. It has one-sided racemes about 6 in . long, containing as many as 30 fls , eacb a quarter of an inch across or more. It blooms in rarly spring and the fls. ebange from greenish to pink or red. It is not as showy a plant as Heuchera sanguinea. Tellimas are supposed to be hardy in the eastern states. They require dense shale. A few kinds have been offered by specialists in native plants and are obtainable from western collectors. The plants are called "Star Flowers" in California.
Tellima differs from Mitella mainly in the capsule, which is 2-beaked in Tellima, not beaked in Mitella. Calyx bell-shaped or top-shaped: petals inserted in the sinuses of the calyx, cleft or toothed, sometimes entire; stamens 10: ovary 1-locnled: seeds numerous.
A. Petals pinnately cut into long, thread-like segments. B. F'ls. not fratrant.
grandifldra, R. Br. False Alem Root. Height $11 / 2-21 / 4 \mathrm{ft}$.: lvs. rounded, cordate or angle-lobed and toothed: d. greenish, becoming pink or red; calyx in-flated-bell-shaped, nearly $1 / 2 \mathrm{in}$. long; petals laciniatepinnatifid, sessile; Calif. to Alaska. B.R. 14:1178.

## BB. Fls. fragrant.

odorata, Howell. Height l-2 ft.: Ifs. broadly cordate, obscurely lobed and erenately toothed: fls, red. Wet places near Columbia river.

## AA. Petals palmately 3-z-parted.

parviflora, Hook. Height 3 - 1 ft . : radical lvs, mostly $3-\overline{5}$-parted or dirited, the divisions narrowly cuneat and once or twice 3 -cleft into narmow lobes: tls. pink or sometimes white; potals witb a slender claw, the limb palmately 3-7-parted. Brit. Col. to Utah and Colo.
W. M.

TELOPEA (Greek; seen at a distance). Protedicere. Telopea speciosissima is one of the showiest shrubs of New South Wales. It grows 6-8 ft. high and has dense terminal globular heads of rich erimson. These beads are 3 in . across and 3 or 4 in . deep and bear a rough resemblance to a florist's chrysanthemum. The showiest parts, however, are involucral hracts. This plant is known as the Waratah. It is one of the most distinet members of its family, for a horticultural account of which ree Proter. In the early part of the nineteenth century, when proteals and other shrubs from Australia and the Cape were in great favor, the Waratah made a rivid impression. The "Waratah" chrysanthenum and other florists' flowers of the period took their name from the distinet and fashionable color of the Waratab. Ever since that era the Waratah has been considered a rare aud difticult subject and its oceasional flowering has been signalized at the exhibitions. The old "stores" in which proteads throve so wonderfully were crude affairs compared with the modern hothouse with its perfected devices for maintaining a hot and moist atmosphere. Such plants require too much room and are too long and nncertain in blooming ever to become popular subjects for northern conservatories, but they are splendid plants for exhibitions. Ernest Braunton writes tbat the Waratal is imported every year from Australia into California but is very hard to grow. All accounts agree that proteads should have good drainage and plenty of water while growing. When once established, Telopea cau probably be propagated lyy layering.
Telopea is a genus of 3 species, 2 Australian, 1 Tasmanian. Perianth irregular, the tnbe open eariy on the under side, the lamina broad and oblique; anthers sessile at the base of the lamine; hypogynons glands united into a short, oblique, nearly complete ring: fr. a recurved, leathery follicle: seeds flat, winged. Closely related to Embothrimm, heing distingnished chiefly by disk and style. Flora Australiensis 5:534 (1870).
speciosíssima, R. Br. (E'mbòthrium speciosissimum, Sm.). Waratah. Warratad. Stout, glabrous shrub $6-8 \mathrm{ft}$. high: lvs, cuneate oblong, 5-10 in. loug, mostly tootbed in the npper part, coriaceous: Hs, crimsou, in a dense ovoid or globular head 3 in . across: incolucral bracts colored, the inner ones $2-3$ in. long. N. S. Wales. B.M. 1128. G.C. JI. $17 \cdot 677$. Gn. 22:361. I.H. 34:29. -Hylogyme speciosa, Salisb., is an older name for this plant.
W. M.

TEMPERATURE, See Conservatory and Greenhouse.

TEMPLETONIA \{J. Templeton, botanist of Belfast. early part of nineteenth century). Leguminosu. The Coral Bush of Australia, Templetonia retusa, is a tall shrub with showy scarlet fls, 1-11/2 in, long. The flower presents a very different appearance from tho papilionaceons or sweet pea type, the floral parts being all rather narrow and about the same length, with tho standard strongly reflexed. This plant was formerly cult, in European greenhouses, where it generally Howered in April or May. It was usually planted in the greenhouse border rather than in pots and was thought to prefer a compost of peat and loam. It was slowly propagated by cuttings and went out of fashion along with Australian shrubs in general. It has lately been offered for outdoor cultiration in southern Califormia, where many choice plants of its class are being eultivated. T. retusa is probably the most desirable species of the genus.

Generic characters: shrubs or subslirubs: lvs, when present alternate, simple, entire: fls, axillary, solitary or 2 or 3 together, red or yellow; standard orbicular or oborate, usually reflexed; wings narrow; keel as long as the standard or shorter; stamens all united in a
sheath open on the under side; anthers alternately long and erect and short and versatile: pod sessile or stipitate, Hattened, ovate-oblong or tinear, completely dehiscent. Flura Australiensis 2:168 (1864).
retùsa, R. Br. (T. glaùca, Sims). Coral Bush. Tall, glabrons or glancous shrub: lys, broadly obovate to narrow-cuneate-oblong, sometimes all under $3 / \frac{14}{} \mathrm{i}$. ., sometimes all over 1 in . long, emarginate or mucronate, coriaceous: fls. red (or rarely white); calyx with 4 very short, broad teeth, the lowest longest: pod $1^{1 / 2}-2$ in. tong. B.M. 2334; 2088. B.R. $5: 383$; 10:859. L.B.C. 6:526; 7:64.
W. M.

TENNESSEE, HORTICULTURE IN. Fig. 2479. The horticultural products of Tennessee are greatly diversified on account of the varied soil and climatic conditions. A knowledge of the natural divisions of the state is essential to a thorough understanding of its adaptabil. ity to the various branches of horticulture.
The Unaka region, on the eastern border, contains about 2,000 square miles. Some of the peaks are over 6,000 feet above sea-level, and the average elevation is 5,000 feet. The soil is gravelly and thin, but contains areas that are fairly productive. Apples are grown to a limited extent.
The valley of East Tenuessee is the next dirision. Jt contains 9,200 square miles and an average elevation of 1,000 feet. The soils are generally well adapted to fruits. Records taken at Knoxville during a period of twenty-six years show an average annnal rainfall of 50.92 inches.

A thousand feet above the valley of East Tennessee lies the Cumberland Tableland, containing 5,100 square miles. Tbis section for the most part is sterile, the soils being sandy and thin. There are, however, areas of land whicb produce fruits and vegetables of the highest quality. The climate is particularly healthful.

West of the Cumberland Tableland are the Rimlands, or Highlands, which have an area of 9,300 square miles and an average elevation of nearly 1,000 feet. This territory possesses a great varicty of soils, some of which are highly fertile and well suited to orcharding. Numerons streams cut the land into valleys, which are generally deep and narrow.

The Central Basin, in which Nashville is situated, contains 5,450 square miles, with numerous elevations of $200-300$ feet abore the general lerel. The soil is fertile and well adapted to small fruits and vegetables. The average annual rainfall at Nash ville is 49.53 inches.
The next natural division is the ralley of the Tennessee river. It has an elevation of about 360 feet and an area of 1,200 square miles.
The Plateau, or Slope, of West Tennessee is the most important horticultural region commercially in the state. It contains 8,850 square mites and has an average elevation of 500 feet. The soils are generally light, fertile and easily cultivated, but demand careful treatment to prevent serious damage by washing.

The last natural division, the Mississippi bottoms, has an area of 950 square miles and an average elevation of 293 feet. It is little used for horticultural purposes.
The possibilities of Temessee for the cultiration of fruits and nuts are evidenced by the profusion of these products in a wild state. Wild strawberries are found thoroughly distributed. Blackherries thrive everywhere. In favorable localities they attain a very large size, surpassing in this respect some of the cultivated varieties. Wild blackberries are marketed in large quantities in many sections. Red and black raspberries grow in most parts of the state; and in some sections the best of the wild blackeaps when transplanted to the garden, give better results than any of
the cultivated varieties. Wid grapes ahound throughout the state. Plums are also found in profusion; and the Wild Goose variety is said to have originated in Tenuessee. Other wild fruits are dewberries, cherries, crab apples, Juneberrjes, paw paws, persimmons, and huckleberries. Of the nuts, chestnuts are most plentiful, especially in the hilly and mountainous sections. The chinkapin flourishes in East Tennessee. Black walnuts are exceedingly numerous. Pecans thrive in the low sections. Hazeinuts, and butternuts or white walnuts, are also plentiful.

Some of the native seedling fruits are highly çalued. This is especially true of apples, peaches and strawberries. Many well-known varieties introduced from other states are not satisfactory. As a rule, the introduced kinds are not so well adapted to the climate and soils as those of local origin. This fact is becoming


## 2479. Map of Tennessee, suggesting main horticultural features.

Fruit trees sncceed thronghout the state, but eastern Tennessee (hetween the mountain ranges) is best adapted to large fruits and grapes. The shaded areas ibdicate localities in which small fruits and vegetables are grown as field crops for market.
well established among practical horticulturists. It is only a few years since orchardists were planting varieties of winter apples originated in the North. After repeated failures to get first-class fruit of good keeping qualities, they have begun to use native seedling varieties. Some of them will doubtless be largely cultivated in the future. A few native varieties of winter apples have gained considerable popularity among commercial orchardists. The fruits of these sorts have commanded remunerative prices in competition with apples shipped from the North. Owing to the great diversity of soils and exposures in this state, it is very important to select varieties that are adapted to the conditions where the trees are to be planted. The fact that a desirable apple has been originated in East Tennessee is no proof that it will succeed well in all parts of this political division. On the contrary, it is likely to give good results only in certain soils and on certain exposures that are requisite for its proper growth and fruitfulness.
All of the classes of fruits commonly grown in the northern half of the United States are produced in Tennessee for home and commercial purposes. Strawberries are shipped more largely to distant markets than any other fruit. The area in peaches is increasing rapidly. Summer apples are shipped from several sections. Of the regetables, tomatoes and Irish potatoes are the most important commercially. The following counties have been active in producing and shipping fruits and vegetables: Gibson. Carroll, Crockett, Madison. Haywood, Hardeman, Shelby, Hamilton and Rhea. Peanuts are grown largely in Perry, Humphreys, Benton, Decatur, Hickman and Warne.
Many locations in East Tennessee are peculiarly well adapted to the culture of grapes. This is shown by the large exhibits of fine grapes made at the fall horticultural meetings. The local markets are well supplied with home-grown grapes during their season.
The following special crops are produced to nome extent, and are promising for more extensive cultiva-

## TERATOLOGY

tion: English walnuts, paper-shell pecans, Paragon chestuuts, and Japanese persimmons grafted on the common persimmon.
R. L. Watts.

## TEN-0'CLOCK. Ornithogalum umbellatum.

TEN-WEEKS STOCK, Matthiola incana, var, amma.
TEOSINTE is an amnal grass of immense value for forage in the South. It is very much like maize in general appearance and in the structure of the fls., but differs in not forming an ear, the slender jointed spikes heing free from one another. By many botanists it is considered the original form of maize. It is known to eatalognes as lieànu luxierians, Dur., but is properly Euchliena Mexicànu, Schrad., for the botany of which see B.M. 6414, where the plant is called Euchiluma luxurians. The plant is pictured in Bull. 14, Dis, of Agrost., UT. S. Dept. of Agric., and in Farmers' Bulfetin No. 102, from which a few points are here abstracted.

Teosinte probably produces a greater bulk of fodder per acre than any other grass. At the Louisiana Experiment Station it has yielded the enormous amount of 50 tons of green forage per acre; this crop was sold in the field to dairymen for $\$ 2.50$ a ton. The plant grows 8-12 ft . high and tillers freely, sending up $20-50$ stalks from the same root. One hundred stalks from one seed have been recorded. It may be cut several times during the season, but nearly as good results will be obtained from a single cutting made hefore there is any frost. The stalks are tender and there is no waste in the folder when dry or green. One pound of seed to the acre, planted in drills 3 ft , apart and thinned to a foot apart in the drill, is recommended. Teosinte is a native of the warmer portions of Mexico and Central America. The seed rarely matures north of southern Florida.
 formation. Even with this criterion it is quite impossible to distin-
function may be lookel npon as disease. The malformation may he occasioned by merely local tlisease, or jt may be a symptom of general disease. Malformations may be brought about (a) by the direet intluence of external physical conditions; ( $b$ ) by the action or presence of some other organism-plant or animal; (c) by the operation of unknown internal causes. The experimental study of the causes of malformations is yet in its infancy, and in only a few cases can specific explanations of their origin be given. Having once occurred. malformations may be inherited and the form, at first unusual, may be fixed by sclection and become characteristic of a race. Thus the rockscomb (Celosia cristata) shows a hereditary and fixed fasciation; and double flowers are so common as hardly to be esteemed malformations.

The distinction between malformation and variation is very indefinite. On the one hand, the various forms of root, stem, leaf and flower in eultivated plants are extraordinary as compared with the wild types from which they were derived, but having diverged from the type by relatively small inerements, they are not looked upon as monstrosities. Suddenness of appecarance, therefore, is one of the eriteria of mal-

2480. Extra free pistils of the orange persisting even in fruit.

TEPHROSIA (Greek, tephros, ash-colored, hoary; referring to the fotiage). Leguminòsar. Tephrosia lirginiana is a hardy perennial herb which grows 1-2 ft. high, has nany narrow, ashy gray leaflets and fls, about as large as sweet peas, yellowish white, marked with purple. The plant grows in dry sandy soil over a wide range in the U . S . and hossoms in June. The racemes are terminal and may contain a dozen fls, each $1 / 2-3 / 4 \mathrm{in}$. across. This species is offered by collectors of native plants. In spite of the large size of the fls., the species is not likely to become a garden favorite, as the colors are not pronounced and the flowers are more or less hidden amid the foliage. In some English works this plant is sometimes rated as half-hardy.

A much showier species is $T$. macrantha, a Mexican shrub $6-10 \mathrm{ft}$. high, which bears its large purple and white fls. to the number of 75 in a diffuse panicle about a foot long. It was collected by C. G. Pringle, but it is doubtful whether the plant is in cultivation. It would be a handsome addition to southern shrubberies.

Tephrosia is a genus of uncertain limits and of small horticultural value. For fuller accounts, see Gray's Manual. B.B. 2:292. B. L. Rohinson's revision of the North American species in Bot. Gaz, Sept., 1899, pp. 193-202, and Niss Vail's revision of the North American species of Cracca in Bull. Torr. Bot. Club 22:25, 26.

Virginiana, Pers. Goat's Ree. Catgut. Wild Sweet Pea. Hoary Pea. Silky-villous, erect, $1-2 \mathrm{ft}$. high: lfts. 17-29, linear-oblong. June, July. Dry sandy soil, New Eng. to Minn., south to Fla. and Mex. B.B. 2:292. - Roots long, sleader and very tough. W. M.

TERATOLOGY: that part of the biological sciences which is concerned with unusual forms of the whole body or any of its organs. These, by comparison with the normal forms, are called malformations or monstrosities. Malformations among plants are due to a disturbanee of the ordinary cous of the growth and development of the organs. Such a derangement of
guish between malformation and raviation, except arbitrarily. When the difference between the ordinary and nnosual forms is very marked, and particularly when the alteration gives rise to grotesque forms, having altered functions, one speaks of malformation rather than variation. Malformations have been found in all groups of plants, though they are most noticeable in the ferns and flowering plants. A very large number have heen recorded; Penzig (see below) has collected data of monstrosities in more than 4,000 species, and the list has lreen augmented since the publication of his work. Classification of such numerous and diverse phenomena is a most difficult task and involves an extensive technical terminology. Here only a few of the more important categories can be mentioned.

1. Alteration in the Number and Size of Organs. 1. Pleiomery is the term applied to the increase in the number of leaf-like organs. The number of members of a whorl may be increased; or the number of whorls; or the number of distributed organs may become greater than usual. Double flowers often show pleiomery. Fig. 2003. Extra free pistils of the orange, persisting even in the fruit, are shown in Fig. 2480. More regular polycarpy appears occasionally in the tomato, and constantly in the "two-story" apples (St. Valery). It is a fixed race character in the Washington or Navel orange, in which it is associated with seedlessness. A similar example of polycarpy is shown at Fig. 2481, in which the ahnormal growth is an extension of the axis of growth with additional earpels.
2. Abnormally profuse branching of the stem is often produced by a fungous parasite. The branches are usually irregnlar and more or less fasciate, producing what is called "witch brooms." These are not uneom-
mon on conifers (esperially Abies) and some deciduous trees. Similar deformations are sometimes due to insect agency, or to unknown causes. For example, a simple intorescence may develop flower-clusters instead of single Howers, e.g., in the common plantain.
3. Proliferution is continued growth of the axis or the development of : branch from growing points which usually either do not form or remain dormant. For example, the growing point of the axis of the flower is usually obliterated in the formation of the pistil, but in the pear, apple and strawberry it frequently continues its growth through the flower and may even become a leafy shoot lieyond the fruit. Proliferation may also occur by the continued growth of the axis througb a compact flowercluster, like the head of Compositæ; or by the development of branches in the axils of the petals and sepals, e. g., in cauliflower, or the rose shown in Fig. 2482. Some donble flowers are made "extra double" by this sort of proliferation. Proliferation is said to occur in almond embryos, one or more smaller embryos arising from the normal one; but the statement lacks confirmation and such an origin is highly improbable. When proliferous branches show a tendency to separate easily and to develop roots, or when they become bulb-like, so that they reproduce the plant reatjily when separated, the plant is said to he viviparous.
4. By various causes complete non-development of organs (suppression) may occur; or an organ may be arrested at any stage of its growth or be dwarfed. Correspondingly, extraordinary growth of any part (bypertrophy) is common. Arrest or suppression is often ascribed to the influence of other organs, but these alleged canses are in few cases supported by experimental evidence. Thus, it is commonly believed that the absence of seeds in the hanana and pineapple is due to the excessive development of the flesh in these fruits, but this is a mere conjecture as yet. Sometimes spurs and nectarines do not develop. Figs. 2486-7.

5. One rose growing out of another (on the left). Example of proliferation.
6. Alteration of Form, involving no considerable change in nature or function of the organs.
7. Fascintion in stems (Fig. 2483) produces a broatlened and fluted form, often curved in crozier-like fashion. The apex is furnished with several buds (rarely
only one), and the arrangement of the leaves is quite anomalous. Fasciation is especially common in rapidly growing stems when an abundant supply of both water and food is available. Asparagus, dandelion and sucker shoots arising from trees after topping or severe pruning, frequently furnish examples. Although the fasciated stem stems to have been formed by the early union of several stems, this is rarely the case; rather the growing apex develops extraordinarily in one (transverse) dimension or organizes several buds which grow in unison.
8. Longitudinal grouth in stem parts which normally remain short leads to the unusual separation of the leaves. This is expecially noticeable when the floral leaves become thereby more or less widely separated. This is likely to be accompanied by transformation of the floral into green leares, and sometimes ly proliferation.
9. I'nequal groueth lengthwise produces apparently $t$ wisted stems, with irregular displacement of the leaves. Such displacement is expecially noticeable when it affects whorlesl leaves, the whorls being stretched ont into irregular spirals. Unequal growth in two di mensions by the tissues of at leaf prodnces the "curly" or crispate leaves, characteristic of many cultivated plants. Fig. 1267, Vol. 2.
10. Locai deformities, such as swellings, tubercles and galls of various forms, are usually due directly to the presence of a plant or animal parasite. Fungi, either inhabiting the particular region deformed, or more widely spread through the plant but forning eproductive bodies at the seat of the swelling, occasion excessive growth of some or all of the tissues. The "black-knot" on cherry and plum trees, the "plum pockets," the tubercles on the roots of clovers, peas and their kin, are a few out of the hosts of deformities of this kind, due to plant parasites, and known by varions names.
Many insects, either in the course of feeding on plant juices, or by laying eggs on or in plants, or by reason of the temporary occupation of the part by the larval insect, bring

11. 

Example of fasciation. A brancb of Ailanthus glandulosus. about the formation of galls of various kinds on leaves, stem, or roots. The malformations produced are of the most varied shapes. Sometimes they are merely the production of an unusual number of hairs of special form; sometimes a leaf bulges ont at one spot to form a leep pocket or pouch; sometimes the blade of a leaf is rolled or folded, with or without thickening; all degrees of thickening or outgrowths are produced, from a slight tumor to a perfectly glohular apple-gall or even a cylindrical tube-gall; sometimes a bud has the number of its scales greatly increased to form a cone-like gall; or a flower is distorted until its nature is almost unrecognizable. The variety of form is almost as various as the insects and plants concerned. Indeed, the same insect at different stages of its development may produce galls of different sorts on the same plant. All orders of true insects except the Orthoptera and Neuroptera may produce galls, but by far the larger number are due to the gall-flies and sawflies of the order Hymenoptera. The gall-apples of the oaks, the prickly galls of the rose, the irregular brown swellings on canes of the blackberry, and the smooth gall-apples of the willow leaves and twigs are well-
seed store in New York, it was arranged that Inglis should grow seeds also. This was in 1805 ; and in that year Inglis, as an experiment, had grown a lot of seeds. Thorburn bought these seeds for $\$ 15$; and thus arose the first regular seed store in New York, and one of the first in the United States.

The seeds and plants continued to sell, and Thorburn was obliged to import seeds. In 1805 or 1806 be obtained a catalogne of William Malcolm \& Co., London, the first plant catalogue he had ever seen, and he then published one of his own. This led to more pretentious writing, and "The Gentleman and Gardener's Kalendar" was the first outcome. The third edition of this, in 1821 , by "Grant Thorburn, Seedsman and Florist," contains the advertisement of " $(\mathrm{i}$. Thorburn \& Son," deaters in seeds, implements and rural books.

Grant Thorburn was a prolific writer for the current press on a variety of topics, under the nom de plume of Lanrie Todd. He was a unique character, and his bistory, "mixed with much fiction," as he bimself says,was the basis of John Galt's tale in three volumes (London, 1830) of "Lawrie Todd, or Settlers in the Woods." Thorburn left a most interesting autobiography, which was published in New York in 1852. He died in New Haren, Conn., January 21, 1863, at the age of 90 . The portrait in Plate XLl is reproduced from his antobiograpby.
L. H. B.

THORN. See Cratogus. Christ's T. is Patiurus Spina-C'hristi. Jerusalem T. is Puliurets spinaChristi; also Parkinsoniu aculeatu. Swallow T. is Hippophaë rhamnoides.

THORN APPLE, Datura Stramonium; also Cratagus.
THORN BROOM. L'lex Europifus.
THOROUGHWORT. Eupatorium perfoliatum.
THRIFT. Armeria.
THRINAX (Greek, fau). Palmacece, About 10 species of fan palms native to the West Indies and Florida. Spineless palms: trunks low or medinm, solitary or cespitose, ringed helow, clothed above by the fringed leaf-sbeaths: lvs. terminal, orbicular or truncate at the

2499. A good specimen of Thrinax.
base, flabellately plicate, multifid; segments induplicate, bifid; rachis short or none; ligule free, erect, concave; petiole slender, biconvex, smooth on the margins; sheath usually beautifully fringed: spadices
long; axis clothed with tubular sheaths; papery-coriaceous, split: fls. on rather long, slender pedicels, the pedicel with a caducons hract at the base: fr. the size of a pea. For the new Porto Rican species, see Cook, Bull. Turr. Bot. Cluk, Oet., 1901.

One of the hest pronps of palms for pot-culture. The species are of slow growth, but succeed with indifferent care. They are mostly of elegant form and babit. A good specimen is shown in Fis. 24tr.

For T'. ('huco, see Acanthorizu C'huco.
A. Under surtace of lectes green.
B. Ligule with a blunt uppendage at the middle
BB. Ligule bluntly deltoid.............2. parviflora
ввв. Ligule obsolete, truncute ............... Barbadensis
AA. Thder surfuce of leaves silvery or
glaucous.
B. Leaf-segments conmirent ut luse...4. argentea

BB. Letf-segments connizent for onethirl their length ................5. excelsa
Bвв. Lenf-segments connievent for onehatf their length..................... 6. multiflora

1. radiàta, Lodd. (T. élegaus, Hort.). Caudex short: Jrs. green, glabrous or slightly puberulent beneath; segments united to or beyond one-third; ligule broadly rounded, with a short, blunt appendage at the mitdle. Cuba to Trinidad.
2. parviflora, Swz. Caudex $10-20 \mathrm{ft}$. tall: $1 \mathrm{fs} .10-25 \mathrm{in}$. long, minutely pubescent, becoming glabrous, green beneath: segments united one-fourth or one-sixth their length; lignle bluntly deltoid, $11 / 2$ lines long. Bahamas, Jamaica. Florida. S.S. 10:510.
3. Barbadénsis, Lodd. Trunk middle-sized: lFs. green, glabrous; segments united at the base: ligule obsolete. trnncate: spadix paniculate: berry polished, $1 / 3$ in. thick. Barbadoes.
4. argéntea, Lodd. Caudex $12-15 \mathrm{ft}$. Ligl, $2-3 \mathrm{in}$. thick: 1rs. shorter than the petiole, silvery gray beneath; segments united at the base; ligule concave. semiluaar, erose. West lndies.
5. excélsa, Lodd. Lrs, pale green above, boary-glaucous beneath; segments united one-third; lignle bluntly deltoid; sheath densely buff-lanate. Jamaica, British Guiana.
6. multiflòra, Mart. (T. greminifòtia, Hort.). Stem medium, ${ }^{j}-8 \mathrm{ft}$. high; sbeaths ragged, fibrous, irregularly reticulate, tomentose: young lvs. white woollytomentose; blade equaling the petiole, laciniate; segments uniter one-half their length, ensiform-acnminate, rather strict, glancons beneath; ligule transversely oblong, sinuate, 3-lobed. Haiti. I.H., 31:542.
T. crinita, Griseb. \& Wendd. Cuban, No description available. Only one plant known. Cult. hy W. C. Wilson, of Astoria, N. Y. T. elegantissima. Hort., seems to be unknown to botanists. $-T$. Morrissii, Wendl. A native of Anguilla, grows $1-2^{1 / 2} \mathrm{ft}$. high, and has lvs. which are glaucescent beneath. Segments free for about two thirds or three fourths their length. Lately offered in Fla. G.C. 111. 11:113.

Jared G. Smith.
THRYPTOMENE (Greek word said to refer to the low heath-like appearance of the plant). Myrticeer. About 18 species of beath-like shrubs from Australia, with small, opposite leaves and small or minute flowers, which are solitary in the axils or fascicled.

Mitchelliàna, F. Muell. A compact, bushy shrub with slender branches: lvs, obloug, flat, 1/4-1/2 in. long: fls. in the upper axils solitary or in clnsters of 2 or 3 , white. Offered in sonthern Calif. Introduced by Mrs. T. B. Shepherd, who says the plant rarely exceeds 4 ft . in beight, blooms in midwinter and is good for cut-flowers.
F. W. Barclaf.

THÙJA. See Thuya.
THUJOPSIS. See Thuyopsis.
THUNBERGIA (after Karl Peter Thunberg, professor of botany at Upsala and successor to Rudbeck and Linnæus; died 1828). Acanthdeec. Mostly tall perennial greenhouse climbers producing flowers in great profu-
sion: lys. opposite: fls, blue, yellow, purple or white, solitary and axillary or in racemes; calyx annular and scarcely lobed or toathed or 10-15-toothed, surronnded by 2 large bracts which often inclose also the corollatube; corolla trumpet-shaped, with a spreading limb, tube curved or oblique, often compressed, enlarged toward the mouth; stamens 4, didynamous, fixed near the base of the tube, filaments thickened at the base.


## 2500. Thunbergia alata ( $\times 1 / 3$ ).

separate; anther-cells parallel, equal, mostly mucronate at the base: ovary seater on a fleshy disk, 2 -loculed, each cell with 2 ovnles (rarely only one). The Thunbergiex are distinguished by the contorted corolla, the 4 -seeded capsule, and the globose seeds.
The Thunbergias are nearly all vigorons greenhouse climbers resembling allamandas in habit. In large conservatories where they are not cramped for room they flower freely and display their flowers to the best advantage. Severe pruning, which is necessary in small greenhouses, prevents the production of flowers. The larger species, T. laurifolua, T. affinis, T. grandiflora, 'T. Mysorensis, and T. coccinea are rapid growers, requiring plenty of feeding and root-room. All do better in open beds than in pots. They may he propagated either from seeds or by cuttings which are taken from the young wood which starts into growth after the plants have been cut back during winter. These produce few flowers the following autumn, but bloom freely the second season. As a rule, the plants flower in late summer or antumn, but this may be made to vary according to treatment in some species. T. alata and its varicties and $T$. fragrans are often treated as annual garden plants, fowering in late summer. $T$. erecta and $T$, uffinis when grown in pots form rather compact shrubby plants. See frn. 24, p. 314; 30, p. 292; 47, p. 150. T. elegrans of the trade cannot be accounted for by the writer.

## Meinrich Hasselbring.

Thunbergias and allamandas are great favorites in central and southern Florida, being used on verandas, arbors, small trees, old stumps, trellises and buildings. Of the blue-fld. kinds T. grendiflore is hardiest and commonest. It has large, heart - shaped leaves which overlap one another in a charming manner. It blooms from September till Christmas, the fls. being light blue and rather dull as compared with the next. The form of T. laurifolia, kuown to the trade as T. Marrisii, has nearly sky-blue fls , of a deeper but brighter hue than the preceding. It is a taller-growing and choicer plant, and has 10 or more fls. in a raceme, while those of $T$. grandiflora are solitary in the axils. T. fragrans is the common white-fld. kind. The form cult, in Florida is probably var. vestita, as the blossoms are not fragrant.
T. alata is a general favorite. The fls, range from buff and white to orange with a deep purplish brown throat, the last form being the most popular. This species is killed to the ground by slarp frost every winter but sprouts vigorously the following spring. It also comes up from self-sown sect. This species grows only 7 or 8 ft . high. All the Thunbergias mentioned
above are easily raised from cuttings or layers in summer. T, erecte is not a climber but has a sumewhat straggling habit. It has small, dark green lys, and large, deep purplish hlue gloxinia-like Als. which are white at the base. There is a pure white variety of it. lt blooms all summer and autumn. It is readily raised from cuttings during the rainy season.
11. Nehrlinis.

## index.

afinis, 1.
alata, 2.
alba, 2,
abbiftora, 2.
aurantiaca.
Backerii, 2.
Bakeri,2.
clrysops, 5.
coccinea, 9.

Doddsii, 2.
ereetit, 4.
fragrans, 3. Fryeri, 2. graudiflora, $6,7$.

Harrisii, 7.
intus-alba, 2
laurifolia, 7.
lutea, 2.
Mysorensis, 8. sulphurea, 2. unicolor, 2.

> A. Fls. axillary, solitary.
> B. Levs. entire.............................. 1. aifinis BB. Les. angularly toothed.
> C. Petioles winged.................... alata (c. Petioles not winged.
> D. Color of fls. white: corollulohes truncate and sinuately toothed at the aper..........3. fragrans DD. Color of ils. blate (white only in varieties).
> E. Plant suberect................4. erecta ex. Plant climbing. F. The rat of the corolla yellow.5, chrysops FF. Theoat of the corolla white.6. grandiflora AA. F'ls. in terminal or axillary racemes (see, also, T. grandiffora).
> B. Color of fls. blue.
> BB. Color of fls. yellow. .................. 8. Mysorensis BBB. Color of fls. scarlet.....................9. . coccinea

1. affinis, S. Moore. A rambling shrub, 10-12 ft. high, smooth: branches 4 -angled: lvs. short-petioled, elliptic, acute, entire: Hs. 2 in, across, deep purple-blue, with a yellow throat. Summer. Tropical Africa. B.M. 6975. G.C. 111. 2:461. G.M. 32:291. - This plant is closely allied to T. erecta, from which it differs by its entire lvs. and larger tls., which are about twice the size of those of T. erecta. When grown in a pot the plant forms a compact shrub, but when given more room it is a rambling elimber.
2. aláta, Boj. Fig. 2500. Stem square, climbinghairy: lrs. opposite, triangular-ovate, bastate, repandtoothed, rongh-pubescent, tomentose beneath; petioles winged, about as long as the lvs.: fls. solitary, on axillary peduncles; calyx very small, surrounded by 2 large inflated bracts; corolla-tube somewhat longer than the involuere, dark purple within; limb rotate, obligue, of 5 rounded segments, buff or cream-colored. S.E. Africa, B.M. 2591. P.M. 2:2. B. 5:238 (not good). L.B.C. 11:1045.-A perennial climber which may also be treated as an anuual greenhouse plant. Usually propagated by seeds. It is used either as greenhouse climber or to grow on trellises outdoors. Outside it flowers mostly in August, but by propagating at various times they may be had in blossom nearly the whole year in the greenhouse. There are many varicties, some of which have been described as species.
Var, alba, Paxt. (T. alata, var. albiflora, Hook.). Fls. white, with a blackish center. P.M. 3:28. B.M. 3512. Var, aurantlaca, Ktze. (T. aurantlaca, Paxt.). Fls. bright orange, with a dark center. The best of the group. P.11. 6:269. Subvar. Doddsii has rariegated Ivs. P.M. 15:221. F.S. 4:415. Var. Bakeri, Hort. (T. Bakeri or Backerii, Hort.). Fls. pure white. Var. Frỳeri, Hort. (T. Fryeri, Hort. T. alata, var. intusalba, Hort.). Pale orange, with a white center. Var. sulphưrea, Hort. Fls. sulfur-yellow. Var. Iưtea, Hort. (T. aldita, var. ùnicolor, Hort.). Fls. entirely yellow.
3. fràgrans, Roxb. Stem slender, climbing: 1rs. lanceolate to triangular-ovate, cordate or subcordate, mostly angularly toothed on each side of the base, rough on both sides, petiolate: fls. white, axillary; corolla-tube narrow; limb spreading, $1^{1 / 2}$ in. across, lobes truncate and repandly toothed at the end. Summer. India.
sive appearance of the same thing. From the top of the rootstock grows a twining vine which attains a lieight of $8-10 \mathrm{ft} .$, Howers from July to Nor., and dies down each season. The plant twines by means of the tips of the slender branchlets. It is a weak-looking

4. Nut ol Tropical Almond-Terminalia Catappa $(\times 2 / 3)$.
(See page 1785.) growth to issue from such a mighty tuber.

The inner part of this "bulb" has been compared to a turnip for texture and color. The Hottentots used to cut it in pieces, bake it in the embers and eat it. Old and grotesque bulbs hare from time to time beell brought from the Cape as curiosities. A large specimen recently sold for $\$ 100$. There are probably no large bulbs in the U. S., but seeds and seedlings are procurable in this country. The plant is of easy cultivation in a cool greenhouse. No methorl of propagating by the bulb is known.

Testudinaria is a genus of 3 species, all South African. It is closely related to the important genus Dioscorea, differing essentially in the seeds, which are samara-like, having a broad wing at the apex, while in Dioscorea the seed is winged all around or only at the base. Also the tubers of Dioscorea are all below ground and fleshy, while those of Testudinaria are half above ground and woody outside. Other generic characters of Testudinaria: fls. diœcious; male perianth bell-shaped, with a short tube and 6 subequal, oblanceolate segments; stamens 6; female perianth smaller: ovary 3 loculed; ovules 2 in a locule, superposed; stigmas 3, recurved, 2-lobed: capsule rigid, acutely triquetrous. Flora Capeusis 6:252 (1896-97).

Elephántipes, Salisb. Rootstock studded with angular woody protuberances: stems slender, glabrous, mueh brancbed: Iss, alternate, suborbicular, 1-2 in. broad, entire, bright green or glaucous, mucronate: fls. small, inconspicuous, in racemes, greenish yellow or whitish, S. Africa. B. M. 1347. B.R. 11:921.
W. M.

TETRADYMIA is a genus of low, rigid shrubs of the composite family native to the arid regions of westem North America. The original species, $T$. canescens, is the best known. Its heads have only 4 flowers. They are yellow and about $1 / 2-3 / 4$ in. long. This plant was ofered in the East in 1881 for western collectors but has no borticultural standing. For a full botanical account. see Gray's Synoptical Flora of N. A.

TETRAGONIA (Greek, four-angled: referring to the usually 4-angled fruit). Ficoldec or Mesembrydeet. Herbs or sub-shrubs from the southern hemisphere and Japan. Usually decumhent: lrs. alternate, short-petioled, somewhat fleshy: Hs. yellow, green or reddish, axillary, apetalous; calyx 3-5-lobed. Only one species known in cultivation.
expánsa, Thunb. New Zealand Spinach. Netv Zealand Ice Plant. Fig. 2491. A hardy or half-hardy annual 3-6 in. high, often spreading 4-6 ft.: Ivs. triangular, larger ones $4-5$ in. long by $2-3$ in. broad: fls. small, yellowish green. New Zealand. B.M. 2362.

New Zealand Spinach is chiety useful for fnraishing greens during the summer when the common spinach cannot be grown. It tastes a good deal like Spinach but is somewhat tougher as a rule. It is grown to some extent in California both for man and sheep. It readily self-sows.

For an early outdoor erop fresh seed should be sown in rich soil in a warm room early in January. The seed usually requires about 4 weeks to germinate. After growing about 2 weeks the seedlings should be transplanted to thumb-pots and about a month later to 4 -inch pots. Growing vigorously in this condition they will be large enough to move into the garden toward the end of April, where they should be set $3-4 \mathrm{ft}$. apart each way, and as the plants grow will entirely cover the ground. They should be handled with great care in transplanting, otherwise growth will be so checked that it will
require sereral weeks for recuperation. Again, plants should never be allowed to become potbound, as this will immediately bring them into flower and fruit and thus stunt their further growth, as well as greatly shorten their period of productiveness. Well-grown plants should be ready for use by June 1 and, if they continue rigorous, nearly a peck of greens can be gathered from each plant once a week until heavy autumu frosts. In gathering only 4 or 5 inches of the tip ends of the larger plants shonld be taken. In the South, it is usually dwarf, not generally exceeding $6-8$ inches.

There is another and somewhat easier method of growing the crop, though a given area will be less prodnctive. Inasmuch as the plant is a hardy annual, many seeds which ripen late in autmmn will fall to the ground and geruinate early in spring, though not early enough for the plants to i,e injured by spring frosts. These will be large enongh for use toward the end of June. Anmall crops are thas grown on the same ground sereral successive seasons with no care except remoring old plants and keeping the new ones free from weeds.

For the forcing-house crop, seed should be sown during July in seed-beds where the plants remain until the latter part of september, when they should be taken directly to the benches and will he ready for use early

2491. Tetragonia expansa ( $\times 1 / 2$ ),
in November. It is best to set the plants about 18 in . apart in benches at least 6 in . deep. No fnrther attention is necessary except to give plenty of water, and under goed conditions a peck of greens will be prodnced once a week on 4 square feet from November to May inclusive. A crop may also be grown beneath the benches near the walks, as well as in the grapery borders. Space that camot be used for other purposes may thus be utilized to very good advantage, though they will not produce as abundantly.

This crop may also be grown in houses with portable roofs by starting the plants dnring summer in houses with the roofs removed, the roofs being replaced on the approach of cold weather. The plants will continue producing the entire winter and following spring, when they should be uncovered and will reproduce themselves in the same manner as the summer crop.
11. C. Ikish.

TETRAMICRA (Greek words, referring to the four small divisions of the aother). Orchidacere. A genus of small terrestrial or epiphytic herbs of slender habit bearing racemes with few pretty Hs . produced in spring. The erect stems, which are not pseudobulbons, grow from a creeping rhizone and bear 1-3 fleshy linear Ivs. and a slender but rigid, terminal raceme: sepals and petals nearly equal, spreading; labellum joined to the base of the colnmn; lateral lobes large, spreading or small, auricle-like, middle lobe large, entire, contracted at base, column with 2 wite wings; pollinia 4 perfeet and 2 imperfect. Six species in Brazil and West Indies. Culture as for Lalia (p. 8i2).
bícolor, Rolfe (Leplotes bicolor, Lindl.). Lrs. solitary on the short stem, semi-cylindric, with a furrow in front, $3-1$ in. long: raceme few-fld., shorter than the lvs.: sepals and petals white, linear-incurved, over 1 in, lons; lateral lobes of the lip small, folding over the column: terminal lobe oblong-laneeolate, bright rose, with white tip and margins. A pretty plant. B.R. 19:1625. A. F. 6:633. Var. glaucophylla, Hook. Lvs. glaueous. B.M. 3734 . Hernrich Hasselbring.

TETRANEMA (name refers to the four stamens). Scrophulariacer. A single little Mexican perennial herb, with many nodding purplish flowers erowded on the tops of radical scapes, and grown nnter glass or indoors for its profuse bloom. True stem very short or almost none: lvs, crowded at the crown or opposite on the very short stem, obovate or oblong-obovate, shallowly erenate-dentate: tls, purplish or violet spotted with lighter color in the throat; ealyx 5 -parted, the segments narrow and acute; corolla long-tubular, 2 -lipped, the upper lip emarginate, the lower longer and 3 -lobed; stamens 4; stigma eapitate: fr. a 2 -valved capsule. T. Mexicannum, Benth., is the only species, known as the "Mexican Foxglove" aud formerly as Pentstemon Mexicanus. The pretty flowers are borne in profusion on the summits of slender purple seapes $6-8 \mathrm{in}$. high. Although essentially a summer bloomer, with good care it may be made to flower most of the year. It is usually regarded as a warmbouse subject, but it makes a good window plant and is easy to grow. Plants continue to bloom year after year. Prop. by seeds,
L. H. B.

TETRATHECA (Greek, 4-celled; referring to anthers). Tremandracee. T. ericifolia is a heath -like Australian shruh which grows about a foot high and bears in July numerous 4- or 5-petaled pink fls., which open only in sunlight. The fls, are borne on slender pedicels and are solitary in the axils. This plant is cult. in S. Calif., having been introduced alont 1900 by Mrs. T. B. Shepherd, who recommends it both for outdoor culture and for pot culture in the greenhouse, and aulds that the fls. are pink or white, $1 / 2-3 / 4$ in. across.

Tetratheca is the largest genus of the family Tremandraceæ, of whieh a short aecount is given under Platytheca. It is an Australian genus of subshrubs with red or purple tlowers. Eighteen species are diseriminated in Flora Australiensis 1:129 (1863). They vary greatly in foliage, the lvs. being alternate, whorled or scattered, heath-like and entire, or flat and toothed, or reduced to minnte scales. Generic characters: stamens apparently in a single series, the anthers continuous with the filament, 2 -celled, or 4 -celled with 2 of the cells in front of the 2 others, more or less contracted into a tube at the top: eapsule opening only at the edges: seeds appendaged.

In European greenhouses all the plants of this family are considered difficult of cultivation. They are treated like many other Australian heath-like plants, being potted in fbrous peat and silver sand and watered earefully at all times. It is said that only soft rain water should be used. They are usually propagated by greenwood cuttings, but in California the seeds are offered.
ericifolia, Sm. This species is distinguished from its congeners by its lvs., which are mostly verticillate and linear with revolute margins. Heath-like, tender subshrub, much branched and diffuse; sepals not reflexed: ovary with 2 superposed orules in each locule or rarely a single ovule attached below the top of the locules. Very abundant about Port Jackson, N. S. Wales.
W. M.

TEUCRIUM (Teucer was the first king of Troy). Labidta. Germander. One hundred or more pereminal herbs or undershrubs, mostly of the Old World, four of which are offered in the American trade. Lis. opposite, entire or dentate: fls. mostly purple or pinkish, in whorls forming a terminal interrupted spike; calyx eampanulate or tubular, more or less equally 5 -toothed, 10 -nerved; corolla with large lower lip, and the upper lip very small or split so as to 'appear to be wanting; stamens 4 , in 2 pairs, exserted throngh the split or notch it the short upper lip. The fiermanders are hardy herbs, with aromatic foliage, suitable for the wild gartlen or rockwork. They are little known hortieulturally.
A. Fls. in distinct 2-G-fld. whorls, forming a las terminal inflorescence.
Chamàdrys, Linn. One to 2 ft . tall, from a decumbent base, branching, with age becoming woody below, pubescent or villous: Ivs. ovate or oblong, petioled, incise-crenate, cuneate at the base, somewhat canescent beneath, the floral ones smaller and scarcely dentate: fls, bright rose, with red and white spots, $3 / 4 \mathrm{in}$. loug, rather showy, in many $2-6$ - tld. whorls. Europe.-A good border plant for late summer bloom.

AA. F'ls. solitary or not more than 3 at a whorl, forming a long terminal spike.
Canadénse, Linn. Erect, 1-3 ft. tall, soft-pubescent or canescent : lvs. oblong-ovate to lanceolate, sharpserrate: fls. purple to eream-color, the corolla about $1 / 2$ in. long, the ealyx eanescent and the 3 upper lobes obtuse. Low ground, eastern states, from north to south. Mn. 8:97. - Offerell by dealers in native plants. Useful for low grounds and moist borders. In general habit resembles a Staehys.

AAA. Fls. on opposite axillary 1 -fld. peduncles.
fruticans, Linn. Shrubby, 2-3 ft., wide-branching: 1rs, orate, obtuse, entire, white- or bromn-pubescent beneath: fls. on 1 -fld. peduncles which are shorter than the calyx, blue, forming terminal or lateral elusters. Europe. - Recommented for dry places Sonth. Has a long blooming season.
bicolor, Smith. Dwarf, herbaceous, glabrous: Ivs. ovate, oblong or lanceolate, obtuse, entire or incised, green: fls. blue and white, on axillary 1-fld. peduncles. Chile.-Offered in S. Calif.
L. H. B.

TEXAS, HORTICULTURE IN, Fig. 2492. The elimatic belts of the state are distinctly marked and extremely different in eharacter, one from another. They may be designated as follows:

1. The Gulf Coastal Plain.
2. The East Texas Forest Region.
3. The Red River Valley.
4. The Black Waxy Prairies.
5. The Brown or Chocolate Plains.
f. The Peros Valley.
6. The Rio Grande Valley.
7. The Fulf Coastal Plain, extending out $50-75$ miles from the Gulf of Mexico, varies in altitude from a few feet along the low sandy beach, to 50 and rarely 100 feet inland. Its surface in places is timbered with live-oak and pine, but mostly it is a level, black-sandy prairie. The streams are bordered in southeastern Texas with timber and undergrowth of many speeies, ineluding the grand magnolia, holly, palms and many other beautiful flowering trees, shrubs aud perennial herbs. The rainfall in the southwestern extension of this belt is much less than in the eastern, where it averages above 50 inches anmually, and the growth and cultural conditions vary accordingly. In trueking, celery, eabbage, strawberries, tomatoes and melons are the leading items. On the southern end of Padre Island, near Brownsville, bananas, oranges and pineapples are grown to some extent. Figs flourish everywhere in the coast country. The eanned-6g industry is developing and promises to become very profitable. Demberries grow to perfection, and wild varieties are marketed in cousiderable quantities. The Le Conte, Keiffer and Garber pears do better in this region than elsewhere. Some of the Chinese Cling group of peaches,
also the Honey and Peen-to types, succeed well. Japanese plums, persimmons, and varions American and foreign grapes also succeed, the latter requiring to be grafted on phylloxera-resistant roots, which are found in the numerous wild rines of the state.

Ornamental horticultnre, in all its branches, is here characterized by a profusion and luxury of growth in foliage and Hower of a semi-tropical nature. Everblooming roses continue to flower most of the winter. Broad-leaved erergreen trees and shrubs, known in the Nortl only in conservatories, are here seen in all well-appointed private gronnds and in parks and cemeteries. Cape jasmine hedges, with their dark glossy green foliage and pearly white, camellia-like, sweet perpetual fowers, are very popular. Conmercial plantand cut-Hower growers do a good business in the cities of Galveston and Houston. During the winter helidays they collect from the woods great quantities of long ("Spanish") moss, holly, magnolia, mistletoe, palmetto, smilax, ete., and ship to northern cities for decoration purposes. In May and June they send to northern florists great numbers of cape jasmine and magnolia flowers.
2. The Great East Texas Forest Region lies jnst north of the eastern end of the Coastal Plain, the city of Beaumont heing situated in its southern extremity. Extending westward from the Sabine river on the east to the Navasota river on the west, over 150 miles, and northward to Red river about 300 miles, narrowing somewhat in its northern parts, is one of the grandest and richest forests in America. Three species of fine lumber pines are most abundant. Numerous oaks, hickories, elms, maples, beeches, white and black walmuts, gums, poplars, pecans, liudens, magnolias, holly, persimmons, sassafras, and numerous handsome shribs and perennial flowers are found almost everywhere, but especially along the streams. The soil is generally very sandy, nuderlaid with red and yellow clay, and well adapted to fruits of alinost all kinds. The altitude varies from 100 to 600 feet. The rainfall is ample-from 40 to 60 inches annually-the climate is very mild, and altogether it is an almost ideal land in which to live easily and have a very paradise of a home, with a moderate activity of mind and body. Owing to the great lunber-mill interests, and lack of market facilities, nearly all horticultural pursuits have been overshadowed until recently. But at Palestine, Tyler, Troupe, Longriew, Nacogdoches and some other points, large commercial peach orchards, berry plantations and canneries have been in very successful operation for a number of years and these interests are rapidly increasing. Railway facilities are growing, and altogether East Texas has a rery bright horticultural future. Trucking of nearly all kinds, and fruit-growing, with berries, peaches, plums, apples (especially in northern parts), and pears, could hardly ask for better natural conditions. Until recently the settlers of this region were almost entirely from the older southern states and not very enterprising, yet very sociable, and their houses, yards and gardens are of the southern type. They earnestly desire enterprising, intelligent people from the North and East to take up their excellent, thongh cheap lands, and improve them.
3. The Red River Valley is a long extension to the westward-some 250 miles-of the soil, climatic and forest conditions of East Texas, excepting the pines, gums, and some other trees in its western parts.

But, as the Red river runs eastward in a broad, deep, heavily timbered valley, its sonthern bluffs, some 5 to 10 miles wide, enjoy peculiar immunity from late frosts. Here apples flourich about as well as in northern Arkansas, and peaches have not failed entirely in fruit during the twenty-five years of resilence of the writer at Denison, Texas.
With the exception of a few of the tenderer shrubs, everything is grown here as well as in East Texas, and apples, grapes and some other fruits grow better and acquire higher color and flavor, owing to a less humid atmosphere. In this belt belong the cosmopolitan little cities of Texarkana, Paris, Sherman, Denison and Gainesville, in which are found many beantiful residences and grounds, many orchards, vineyards, and berry plantations. Railway facilities are excellent, and
good markets lie in every direction. Trueking is also extensive. Cut-Hower and general nursery business flourish in the places named. The people, coming from everywiere, are not at all clammsh, but sociable and enterprising, with the northern types prevailing and northern ideas generally appear in the architectnre and gardening, yet tine samples of the sonthern style are not infrequent.
Similar conclitions prevail in some parts of the Trinity River ralley as aloug Red river, especially about Dallas and Ft. Worth; also on the Brazos at Waco, but more of the sonthern type. These three cities nestle in the heart of the next great division.
4. The Black Waxy Prairie Region of Texas lies next to East Texas on the rest and to the Red River Valley on the south, extending west to about $98^{\circ}$ and south to within 150 to 100 miles of the Gulf, a broken irregular arm of the East Texas region extending southwestwardly between it and the Coastal Plain. This regiou bas an altitude in its southern parts of 400 to 500 feet and rises in the northwest to 1,000 feet or more. The rainfall varies from 50 inches or more in its eastern parts to 30 inches in the western parts. The foundation is white, chalky lime-rock, the soil rery hlack, sticky and exceedingly rich, highly adapted to grains, grasses and cotton, but not suitable for most fruits. The stone fruits and blackberries do best. Onions are largely grown in Collin county, of which McKinney is county seat. Most shrubbery does well. The Bermuda grass flourishes in Texas wherever grass can grow and is the almest exclusive lawn-grass. Very handsome yards are made by some of the farmers and many who live in the towns and cities; but most farmers in Texas have done little or nothing to leautify their homes horticulturally, Nowhere is this more apparent than in the Black Waxy Lands, the home being generally surrounded by corn-cribs, stock-pens, cottonbins, and exposed farm machincry. There are splendid exceptions to these, demonstrating that very beautiful homes can be made even in the liack lands of the state, where the richest general farming region exists.
5. The Brown, or Chocolate Plains Region of Texas, devoted principally to grazing and small grains, lies to the westwarl of the Black Land Region, is about 200 miles wide by 600 long, extending from Oklahoma on the north to the Rio Grande on the south, running from 1,000 feet altitude on the south and east to 3,000 feet on the west, where it ends suddenly against the cliffs of the still higher Stakell Plains Region.
llorticulture is in its infancy in all this rast stmi-arid, high, rolling prairie country, and can do little withont irrigation. Yet many wealthy stockmen there have beautiful grounds surronding their homes, and grow their home supplies of very fine fruits. Of commercial horticulture there yet is none. The same may be said of the Staked Plains Region, but its soil is dark rich lom, the country almost a dead level, except where cañons have cut into it, its altitude from 3,500 to 4,500 feet, its climate dry and very saluhrious. Irrigationhorticulture in a small way is sustained from driven wells, which strike plenty of water at 10 to 30 feet. Stock-grazing is the only commercial occupation. Five or sis counties northwest from Austin, in the central parts of the Chocolate Belt, are very broken, hilly and picturesque, well adapted to fruits. Nearly every home there is supplied with fruits, but stock-grazing is the chief occupation.
6. The Pecos Valley lies just west of the Staked Plains, and east of a spur of the Rocky Mountains. In places it is irrigated, as at Roswell and Carlshad, N. M., and Pecos City, Texas. Commercial fruit-growing is considerable in this valley, especially at Roswell and Pecos City. At the latter place is a vineyard of 40 acres of the vinifera varieties, planted 8 or 10 years, doing finely or their own roots and very profitable, as the fruit goes to market in northern cities before any grapes are ripe in California.
A vast mountainous and dry plains region extends from the Pecos to the Rio Grande, deroted to goats, sheep and cattle, yet at Ft. Daris, op a beantiful mesa, some 5,000 feet altitule, anong mountains 2,000 to 4,000 feet higher, are a good many very beantiful homes, and fruits do finely, as there is sufficient rain-
fall and the air is very pure, so that diseases are almost unknown.
7. The Rio Grande Valley is much warmer in the same latitude than the Pecos valley, otherwise the horticultural conditions are pretty much the same.
At E1 Paso and Ysleta, a little way south on the Texas side, considerahle quantities of vinifera grapes of table varieties are grown nnter irrigation and shipped to other Texas and to northern cities in August and September. Pears and plams are also grown to some extemt. Farther down on the Rio Grande, at Del Rio, Eagle Pass and Laredo, grapes, figs and onions are considerably grown and shipped to the larger Texas cities and the North. The grapes are of the Old World varieties, and ripen in June; consequently have no competition and bring fine prices. The conditions are such that immense quantities of as fline grapes of this class can be grown in this part of Texas as in the best regions of California, and the cost of getting to market is not more than half as much. Undonbt edly the triangular region between San Antonio, Laredo and Del Rio will in the near future have extensive commercial vineyards of vinifera grapes.
The Spanish taste in home grounds among the wealthy of southwestern Texas, who are chiefly stock-growers and merchants, prevails largely. It consists of a plaza, or open square in the center of the residence, having fountains (where water is to be had abuudautly), and horders, beds and vases of rare tropical and subtropical flowers, shrubs and fruits. Around this highly artistic garden the house is built, often of adobe, sometimes of stone, cut and carved, in large rooms adjoining and opening into each other, all on the ground-floor and one large door opening out to the street or small front yard from a big hall, sometimes having grand arches and marble columins. No windows are in the outside walls, except perhaps in the front, the rooms all heing lighted from within the plaza. Thns great seclusion is secured and a perpetual conservatory scene is had from every room. Paved walks, usually covered, run around the plaza next the rooms and similar walks cross through the plaza.
The plaza-park prevails also in the finer hotels, as seen in some at San Antonio; and these, on an enlarged scale at various places in the denser parts of the city, give a very refreshing appearance. In the central and
western parts of the state the northern and eastern style of park, cemetery and private grounds decoration is mostly copied, as is also the architecture. Some very creditable examples are seen in Dallas, Waco, Austin, Paris, Sherman, Gainesville, Fort Worth and other places.
There are numerous small, and a few fair-sized nurseries scattered over the state, chietly in the Red

2492. Texas Horticulture

Circles indicate localities devoted to grape culture; black dots to strawberries; broken horizontal lines indicate areas suitable for apples; vertical lines for peaches.

River Valley and eastern Texas, as at Houston, or near there, Brenham, Austin, Dallas, McKinney, Ft. Worth, Denison, Bonham. Paris, Tyler, Gainesville.
Plant and cut-flower business is developing rapidly in the larger cities.

Seed business is almost entirely commercial or jobbing, few being engaged in growing seeds of any kind as a business and the supply comes from northern and eastern growers.
The Texas State Horticultural Society, organized in 1883 or 1884, is in a flourishing condition and meets annually with the Texas State Farmers' Congress, at College Station. There are several local horticultural societies in the state, and some 40 or 50 Frnit- ant Truck-Growers' Associations for commercial purposes, with one general head to look after freight rates, distribution of products and placing in market. No state aid is given to any of the horticultural societies, yet during the last twenty-five gears great developments in the various lines of horticulture have been made. Along with these developments have come varieties specially suited to the climates and soils, as few of the eastern
and northern varieties were found adapted, or profitable. Some of these varieties that have originated in the state are given in the following lists.
T. V. Munson.

## SOME FRUITS THAT ORIGINATED IN TEXAS.

Apples.
Aaron Holt,
Bledsoe,
Bruce (Bruce's
Summer),
Doyle,
Gray,

Alice Hanpt,
Barnes,
Bell (Bell's October),
Bessie Kerr.
Boannza,
Burnet,
Cahler (Cabler's
Caruth (Caruth's Carman.
Chilow
Chilow,
Colemaz.
Crimson Beauty,
Dulce,
Early China,
Early Beauty.
Eldred (Eldrea
(ling),
America,
Atoka,
Bailey,
Beacoll.
Bell,
Rig Hope,
Brilliant,
Carman,
Champazel,
Delaco,
Delicious,
Dr. Collier,
Hamiltor,
Heine,
Jones' (Jones' Favorite),
Lineoln,
Kutledge.

## Peaches.

Evening Star, Family Favorite, Galvestom. Goveruor Hogg, Great Llano, Guadalupe, Holler.
Joe Johnson, Lone Star, Latu.
Maggie Burt, Mamie Ross, Miss Lolo. Morning Star. November, Old Alcalde, Onderdoak, Orman, Orleant, Padsy,

## Grapes.

Elvicand,
Fern,
Gold Coin,
Headlight,
H. Jaeger,

Hopkins,
Husinimn,
Kiowa,
Kiowa,
Lukfata,
Marguerite, Manito,

Pears.
Alawo.
Plums.
Golden Beauty,
Gonzales,
Heep,
Holland,
Kanawha.
Lotie Star,
Marianda,
Mason.
MeCartuey,
Minca,
Minland
Munson,
Nimon,
Nona,
Oetober Red,
Ohio Prolific,
Malberries.
Travis,
Strawberries.
Parker Earle,

Dallas
Giant

Anstin-Mayes.
MeDonald.
Hobsoz.

## Blackberries.

Robison,
Jumbo,
Dewberries.
Pink,

Shirley,
Steward,
Stevens,
Talbot,
Texas Red,
Yellow Sweet.

Pearson,
People (People's (ling),
Philip Horton,
Ramsey (Ramsey's Early)
Raisin (Raisin
Cling),
Red River,
Ragers,
Rupley,
Scruggs,
Shipler,
Success,
Superb,
Texas King.
Texas,
Victor,
Ward.

Mrs. Munson,
Muench,
Perry,
Presly,
Rommel.
R. W. Mumson,

San Jacinto,
Wapannka.
W. B. Munson.

Wetumba,
Xyluta,
Yamago.

Piram,
Pontotoc,
Preserver
Ragland,
Roulette,
Sanders,
Saffold,
Trausparent,
Texas Belle,
Waddell,
Watson,
Wayland.
Whitaker,
Wooten,
Yates.

Victoria.

THALIA (J. Thalius, a German naturalist, and author of Sylva Hereynia, a catalogue of the plants of the Harz monntains; died 1588). Scitamindeere. About 7 species of tender Anterican perennial, stemless, marsh
herbs with large, long-petioled, often canna-like leaves and long scapes bearing large panicles of spikes of usually purple tlowers. Fls. commonly 2 together in a 2. valved spathe; calyx minute; corolla tubular, with 6 dirisions, of which the 3 interior are unequal; style thick, spiral; stigma 2-lipped, the lower lip long and pendulous: capsule intlated, I-loculed, l-seeded.

> A. Plant covered wath a white powder.
dealbàta, Fras. Stemless: petioles $1-2 \mathrm{ft}$. long: Ivs. canna-like, cordate, ovate, 6-9 in. long: scape terete, $3-5 \mathrm{ft}$ high: panicles erect: spikes erect. June-Sept. Ponds and marshes, S. C. and west. B.M. 1690. B.B. 1:455.-A fine and stately aquatic when well grown. It should be placed in shallow water or in wet soil.
AA. Plant not poredery.
divaricàta, Chapm. Stemess: petioles longer than in ' 1 '. deallutte: Ivs, banana-like, I-3 ft, long, oblong. ovate: seape $5-10 \mathrm{ft}$ high: panicles $2-4 \mathrm{ft}$. wide: spikes zigzag, pendulous. Sept., Oct. Ponds, Apalachicola, Fla.-According to Reasoner Bros., this magnificent native ornamental-leared marsh plant thrives in garden soil with cannas and like plants. Does well under cultivation in southern California.
F. W. Barclay.

THALICTRUM (nltimately probably derived from Greek thollo, to grow, but application doubtful). Ranunculicew. Meadow RUE. Erect perennial herbs: lvs. ternately compound and decompound; stem-lvs. alternate: fis, diocions, polygamous, or perfect in some species, rather small, generally greenish white or sometimes purple or jellow, borne in a panicle or loose raceme; sepals 4 or 5 , cleciduous; petals wanting; stamens many, showy: carpels usually few, Iseeded. This group includes several forms which are well suited for the mixed border and rock garden. The robust forms are desirable for the wild garden. Many are very hardy, and only the more sonthern forms of those given below are at all tender. Thalictrums are valued for their feathery heads of flowers, contrasting with their handsome stems and leaves, which are often of a purple cast. They may he propagated by seed or by division of roots in early spring, just as growth begins. Any good loany soil will suit them if well trained.
The latest monograph of the entire genus was published in 188̄, by Lecoyer, in Bull. Soc. Roy, de Bot. de Belge, where he describes 69 species, In 1886 Wm . Trelease puhlished a fine treatment of "North American Species of Thalictrm " in Proc. Soc. Bost. Nat. Hist. $23: 293-304$, in which he recognized 11 species and 4 varieties north of Mexico. His treatment is rather closely followed by Robinson in Gray's Syn. Flora, I895. Since that time at least 10 new species bare been de seribed-chiefly from Mexico-several of which are by J. N. Rose, in Cont. U. S. Natl. Herb. 5:185, Oct. 3í, 1899. All North American forms were treated by the present writer in Minn. Bot. Studies, Aug., 1900. Besides several native species, about 5 have been introduced to our gardens from other countries.

## INDEX.

| adiantifolinm, 3. | Fendleri, 12. | purpurascens, 5. |
| :---: | :---: | :---: |
| adiantoides, 3 . | glancum, 4. | purpureum, 3,5. |
| a@uilegifolium, 7. | minus, 3. | saxatile, 3. |
| Chelidonii, 10. | occidentale, 11. | sparsiflorum, 2. |
| Cornuti, 7. | petaloideum, 1. | speciosum, 4. |
| Delavayí, 10. | polycarpum, 13. | venulosum, 9. |

purpurascens, 5 . purpureum, 3,5.
sparsiflorum, 2.
speciosum, 4 .
A. Fls, perfect.
B. Filaments ridened near the anthers: anthers oate, obtuse.
c. Akenes sessile, in a head, ovate-oblong................
c. Akenes stalked, widely
spreading, straight along spreading, straight along
dorsal margin.......... aments filiform : anthers linear, teute or mucronate. c. Froits suleate: stigma dilated on one side of the short style.
3. minus
ce. Fruits longitudinally veined: stigma terminal,minute, not dilated, styleshort
4. glaucum
AA. Fls. nolygamo-diocious.
n. Authers linear, mucrouate: filaments thread-like ...... 5. purpurascens
BB. Anthers obate: obtuse, filaments broadened above..... 6. polygamum AAA. Fls. diacious, with rure exceptions.
A. Filuments midened abo 飞e: anthers ovate, rather obtase. 7. aquilegifolium
BB. Filnments thread-like: anthers linear, acute or mucronate.
C. Meture fruits rather firm or thick $=u^{*}$ a lled, not greatly flattened, filled by the seed.

1. Sepals green or greenish. E. Blades of leaflets very thin..
2. dioicum
EE. Blades of leaflets firm, veiny below
3. venulosum DD. Sepals purple............10. Delavayi cc. Mature fraits less firm, thin-walled, 2-edged, either flattened or turgid. D. Leaflets very thin........11. occidentale DD. Leaflets firm. E. Pistils $5-11$ (rarely 18): akenes flattened.....12. Fendleri EE. Pistils 7-20: alenes turgid. 13. polycarpum
4. petaloideum, Linn. Stem round, nearly 1 ft . high, almost naked: Ivs. 3-5-parted; Ifts. sinooth, ovate, entire or 3-lobed: fls. corymbose, perfect; sepals white, rotund; filaments pink; anthers yellow: fr. ovate-oblong, striated, sessile. June, July. N. Asia. L.B.C. 9:891. - Not yet in American trade lists but well worth cultivating.
5. sparsiflorum, Turez. Stem erect, sulcate, 2-4 ft. high, branching, usually, glabrous: Ivs. triternate, upper ones sessile; lfts. short-stalked, round or ovate, variable in size and shape of base, round-lobed or toothed: fis. in leafy panicles on slender pedicels, perfect; sepals obovate, whitish, soon reflexed; filaments somewhat widened; anthers very short: akenes shortstalked, obliquely ohovate, flattened, dorsal margin straight, 8-10-nerved; styles persistent. N. Asia, through Alaska to Hudson Bay, in mountains to Colorado and southern California.
6. minus, Linn. (T, purpìreum, Schang. T. saxátile, Vill.). Stems round, sulcate, $1-2 \mathrm{ft}$. high: 1 fts . variable, acute or obtusely lohed, often glaucous: fls, drooping, in loose panicles, perfect; sepals yellow or greenish: fr. ovate-oblong, sessile, striated. Summer. Eu., Asia, N . Afr.-A polymorphous species in the variation of the leaflets.

Var. adiantifolium, Hort. ( $T$, adiantoides, Hort. $T$. adianthifolium, Bess.). Lfts. resembling those of Adiantum fern. - A form much used and admired.
4. glaùcum, Desf. (T. speciosum, Hort.). Stems erect, round, glaucous, $2-5 \mathrm{ft}$. high: Ifts, ovate-orhicular, 3 -lobed; lobes deeply toothed: fls. in an erect panicle, perfect; sepals and stamens Fellow: fruits $4-6$, ovate, striated, sessile. June, July. S. Eu.
5. purpuráscens, Linn. (T, purpireum, Hort.). A polymorphons species, allied to $T$. polygtmum: stem 3-6 ft. high, branching above, leafy, pubescent or glabrous, sometimes glandular: lfts. larger than in that type: fls, in a long, loose, leafy panicle, polygamo-diocious; filaments narrow; anthers rather long, taperpointed: akenes slightly stalked, ovoid, glabrous or pubescent, with 6-8 longitudinal wings; style slender, persistent; stigma long and narrow. Canada to Fla., west to the Rockies. June-Aug.
6. polýgamum, Muhl. Tall Meadow Rue. Erect, $3-8$ or more ft . high, branching and leafy, smooth or
pubescent, not glandular: lis. three to four times ternate or terminally pinnate; 1 fts . oblong to orbicular, bases variable, $3-5$ apical lobes: Als. in a long, leafy panicle, polygamo-diocious; sepals wbite; flaments broatened when young; anthers short: akenes ovoid, stipitate, $6-8$-winged or ribbed, with stigmas as long, wbich hecome curled. July, Aug. Low or wet grounds, Canada to Fla., westward to Ohio.
7. aquilegifolium, Linn. Feathered Columbine. Fig. 2493. Stems large, hollow, 1-3 ft. bigh, glaucous: lvs. ouee or twice 3-5-parted; Ifts, stalked or the lateral ones nearly sessile, slightly lobed or obtusely toothed, smooth, suborbicular: fls, in a corymbose panicle, dicecious; sepals white; stamens purple or white: fr. 3-angled, winged at the angles. May-July. Eu., N. Asia. B.M. 1818 ; 2025 (as var. formosum). Gn. 47, p. 357 ; 50, p. 117. - The okl nume T. Comutti, Linn., may be a synonym of this, and if so it is the older name, being published on a preceding page, but $T$. Cormut $i$ was deseribed as an American plant, while' $T$ ' aquilegifolium is not. As the description and old figure of $T$. ('ornuti do not agree with any American plant, the name may well be dropped. Those plants advertised as $T$. Cornuti are probably $T$. aquilegifolium or ' $T$. polygamzm.
8. dioicum, Linn. Rather slender, 1-2 ft. high, glabrons: IFs. three to four times 3 -parted; lfts. thin, orbicular, several-lobed or revolute, bases variable: As. in a loose, leafy paniele with slender pedicels, dicecious; stamens much louger than the greenish sepals; anthers linear, obtuse, exceeding their filaments in length: akenes oroid, uearly or quite sessile, longer than their styles, with about 10 longitudinal grooves. Early spring. Woods, Labrador to Ala., west to the foot of the Rockies.
9. venuldsum, Trelense. Allied to $T$. dioicum: stem simple, erect, $10-20 \mathrm{in}$. hlgh, glabrous, glaucous, bearing 2-3 long-petioled Irs, above the base: lvs, three to four times 3 parted; lfts. short-stalked, rather firm, rounded and lobed at the apex, veiny beneath: fls, in a simple panicle, diccious, small; sepals orate; stamens $10-20$, on slender filaments; anthers ohlong, slenderpointed: akenes nearly sessile, 2 lines long, ovoid tapering to a straight beak, thick-walled and 2-edged. S. Dak. westward and southward in the mountains.

2493. Thalictrum aquilegifolium $(\times 1 / 4)$.
10. Delavàyi, Franchet. Slender, $2-3 \mathrm{ft}$ high, gla. brous: lower los. on long, sleader petioles, two to three times $3-5$-parted; lfts. long-stalked, 3 - 5 -lobed, base cuneate, rounded or cordate: fls. pendnlons, dioecious; sepals purple or lilac, $1 / 2 \mathrm{in}$. long, equaling the slender stamens, anthers linear: carpels $10-12$ : fr. winged at
the three angles, stipitate. Kummer. Nis. of E. China. B.N. 7152. G.C. 111. 8:125.-A close ally of $T$. Chelidonit of the Himalayas so much admired in Europe. Well worth introduc tion.
11. occidentàle, Gray. Allied to $T$. dioienm, which it closely resemules, but it is more robust and taller: lvs. glandular - puberulent: akenes long, sleuder, thin-walled, 2-edged, ribbed, not furrowed.
12. Féndleri, Engelm. Fig. 2494. A variable species. Plants 1-3 ft. high, rather stout and leafy: ivs. four to fire times pinnatifid, upper stem-Ivs. sessile; lifts. rather firm, ovate to orbicular, nsually with many shallow rounded or acuminate lobes; bases variable: fls. dicecious, in rather compact panicles; stamens many, anthers long : akenes nearly sessile, obliquely ovate, flattenerl, 3-4 ribs on each face. July, Aug. V. Texas to Montana.
13. polycarpum, Watson. Allied to T. Fendleri: glabrousthroughout: Ifts. long-petioled. fls. dioecious, in rather close panicles: akenes 2494. Thalictrum Fendleri $(\times 1 / 3)$. close panicles: akenes
larger, in a dense glo-
bose head, short-stalked, obovoid, turgid, tapering into retlexed styles. Summer. Sandy streams, Calif. to Columbia river.
K. C. Davis.

THAMNOCALAMUS. See Bamboo, p. 127.
THAMNOPTERIS (Greek, bushy fern). Polypodideew. A genus of simple-leaved ferus growing in crowns, sometimes united with Asplenium. The elongate indusia are in parallel rows on the veins of the banana-like Ivs., often extending nearly to the margins. The veins are free lielow but are united at the apes by a transverse intramarginal vein.

Nldus, Presl. (A splènium and Thamnopteris NidusAvis, Hort.). Bird's Nest Fern. Las. bright green, growing in a crown, 2-4 ft, long, 3-9 in. wide, the midrib rounded and usually green. Japan, East Indies. T, strictum, Hort. (Asplenéndrium strictum, Hort.), is a more slender, upright form said to be a garden hybrisl between T. Nidus and Sclopendrium crispum.
T. Australasicum, Hook. Differs from the above in its midrib, which is keeled on the back and often black. Sometimes regarded as a variety. Australia.
L. M. Underwood.

THASPIUM (name a play upon Thapsia, another genus of the same family). (lmbelliferf. Neadow Parsnip. A geuus of 3 species of hardy lerennial herbs of eastern North America with ternately divided leaves (or the lower undivided), and terminal umbels of yellow or purplish flowers.
aùreum, Nutt. Stem branched, I1/2 ft. high: root-lvs. mostly cordate; stem-lvs. ternate; lfts, ovate to lanceolate, serrate: fls. yellow. June, July. Var, trifoliàtum, Coult. \& Rose, with crenate lys. or ifts., is a commoar western form. Var. atropurpùreum, Coult. \& Rose, fis, dark purple. The species is of easy culture in any ordinary soil. In the wild state the plant grows in at least partial shade. Well-grown plants, especially of ver, atropurpureum, make attractive specimens.
F. W. Bafclat.

## THEA. See Tea and Camellia.

THELESPERMA (Greek, wart, seed; the seeds are often papillose). Compósita. A genus of about 8 species of annual or perennial herls, rarely shrubby at the base, native to the extra-tropical regions of North and south America. They are smooth herbs with aspect of Coreopsis, with much eut leaves and long pedunculate flower-heads, typically yellow rays and yellow, sometimes purplish or hrownish, disk-flowers. The genus may be separated from Coreopsis by the form of the invuluere, which is in 2 series of bracts with the inner series united to about the middle into a cup, while in Coreopsis the 2 series are distinct and united only at the rery base. The seeds, especially the outer ones of the head, in Thelesperma are often tuberculate.
hỳbridum, Voss (Cosmídium Burridgednum, Hort.). Fig. 2495. A laardy annual, $1 \frac{1}{2} \mathrm{ft}$. high, a hybrid of $T$. filifolium and Coreopsis tinctoria, from the latter of which it sequires the brown-purple color of its rays. Lrs. hipinnately divided into filiform lobes not wider than the stem.
F. W. Barclat.

2495. Thelesperma hybridum (flower $\times 3 / 4$ ).

THEOBROMA. Commercial Cacao or "Cocoa" is produced by trees belonging to the Linnaan genus Theobroma. The estates devoted to its culture are usually known as "Caeao plantations" and are largely on the increase in all suitable climates, owing to the increased demand for the mannfactured article in the different forms in which it is now prepared for consumption. The larger proportion of commercial Cacao is prodneed by Theobroma Cacao. Other species native to central Ameriea and the West Indies are T. pentagona, T. spe-
oiosa, T. angustifolia and T. bicolor. Theobroma sylvestris, Aubl. ( $T$ '. Martiamu, Dietr.) is sometimes referred to as a native, but does not appear to have been recorded by modern writers for Central America and the West Indies.

Theobroma pentugona is a species which in vigor of growth and produetive capacity resembles to a very large degree the generally eultivated varieties of $T$. Cacao, but it differs in the flowers, in the size of the beans, and especially in the shape of the pols. The beans are larger in size than those of T. Cocao, fully equal if not superior in flavor, and are capable of being worked up in the same way as the commoner species. This kind is known on the mainland as "Alligator" Cacao, from the fancied resemblayce of its skin to the hide of an alligator. The ontside of the pod is soft and easity broken, and loes not afford such good protection to the interior as the harder shell possessed by $T$. Cacao. In Nicaragua $T$. Cacao and $T$. pentagona are grown together, aml the produce is mostly a mixture of the two species. From the presence of $T$. pentagona, it is possible that liybridization has taken place between two species. It has been noted that the pods of $T$. Cacao produce much larger seeds or beans in Nicaragua than in countries where this species is not grown in company with $T$. pentagona: and the beans of the two species are almost impossible to distinguish when eured together. The product of Nicaraguan plantations also requires much less time for fermentation than the produce of Grenada, Trinidad or Venezuela, some forty-eight hours being the usual period, while more than four times that number of hours will be required for the proper femmentation of the produce of the last mentioned countries,

Theobroma speciosa is a plant that produces the "Monkey Cacao" of the mainland. This is never made into market Cacao, as it is very inferior in quality and has a disagreeable flavor. The pods are hard, much corrugated, warted, and of a dirty brown color when ripe.

Theobroma bicolor is a very distinct species in every way. The leaves are large, and in the juvenile stages of growth are broadly cordate in form, and only assume the mature or oblong form on reaching the third or fourth year's growth. The pods are oval, ribhed and netted, harl and wootly, with an outer shell half an inch in thickness which can only be cut with a saw. The seeds are oval, much flattened, with a dark, hard and smooth exterior. The interior is white, and has a somewhat nutty flavor. They are used in sweetmeats in the same way as almonds, but cannot be made into commercial Cacao, suitable for the manufacture of chocolates. This species, though without doubt a true Theobroma, is very widely distinet from any of the varieties of $T$. Cacao which produce commercial Cacao. The produce of $T$. bicolor is known in some parts of Central America hy the names of "Wariba," "Tiger," and "Pastaste" Cacio.

Many names have arisen for the varieties of Theobroma Cacto which are in eultivation, as many as forty having been listed by a Trinidad cultivator of large experience. Looking at the matter from a practical point of view, all these are merely strains of the one species, prodaced by natural cross-fertilization of the older types. According to Hart's "Cacao," Trinidad, 1900, there are but three major strains or classes of $T$. "rcao, respectively, "Criollo," "Forastero," and "Calabacillo." The type of the first is found indigenous in Trinidad and various places on the mainland, its dis. tinctive character being its bottle-necked pod, with a thin skin and fuely ribbed exterior, together with its white or whitish seeds or leans, which are mild in flavor and somewhat rounded in form.

The eharacters of "Forastero" are its ronghly corrugatel or verrucase pod, containing large flattish seeds, of a purplish color. It is a tree having greater vitality than "Criollo," and gives a much larger crop. "Forastero" means foreign, and this type is said to have been found on the mainland of Sonth America, whence it was imported to Trinidad by Arragonese Capuchin Fathers about 1757. (De Vertenil, History of Trinidad, 1884.)
"Calabacillo" is the third form, its chief claracteristics being the vigor of its growth and its small tlat aud strongly Havored hean. By some it is considered as a degraded form of Forastero.

While the above gives a brief sketch of the chief characters of the principal types, it must be understood that there are varieties intermediate between the forms;

## Theobroma Cacao, chief source of Chocolate.

The fruit is $8-12 \mathrm{in}$. long. The tree grows from 10-30 ft. tall.
in fact, on the majority of estates it is impossible to find any two trees exactly alike in all their botanical characters, occurring, without doubt, from the uninterrupted cross-fertilization wbich has taken place. Still, each country appears to maintain certain characters more permanent than others, and thus secures for itself a name upon the markets of tbe world. It is probahle that this is clue, in a measure, to the unconcious preference taken by some to distinctive features of the produce by the continuous cultivation of a fairly fixed strain which has arisen. It may also be due in some measure to the influence of climate and environ. ment. Certain it is, however, that there are to-day strains of Cacao which are possessed of distinctive characters, not readily produced by any process of preparation in places other than that in which they are grown. A fine set of illustrations of varieties common to different countries has lately been published in a work by Dr. Paul Preuss, who recently traveled in Cacao-producing countries on behalf of the German government.

These different brands are bonght by manufacturers and blended to suit their particular market, but there are certain kinds possessing special flavor which are readily sold at high value. The valne of the commercial product fluctuates and the price rules considerably lower than some years ago. Whether this results from increased production or from a deterioration in the quality cannot be ascertained. It is clear that if cultivators grow Cacao for seed without regard to the best rules of selection, the quality must deteriorate. What mitigates this fact is that all the Cacao world has, up to a recent date, followed the same practice. The process of grafting, to which the Cacao tree readily submits, as was recently proved in Trinidad, will enable operators to make large fields of the choicer varieties, and it may be confidently expected that in a few years a great improvement will be shown in the varions grades placed upon the market. But little Cacao is manufactured in the countries wbere it is grown, except for home use, and then generally in a crude manner.

Chocolate is the term used forsweetened and hardened preparations of the roasted and ground Cacao bean, with
the larger proportion of the orisinal fat retained, while tire so-called "Cocoa" preparations are the same matirial in fine powder, sweetened or unsweetentd, but with the greater proportion of whe Cacao fat extracted. This fat, when clarified, is a pure white substance, almost as hard as beeswax, and is used iu many pharmaceutical preparations. Chocolate and Cocoa are both made from the beans or seeds of Theobroma Cacao and $T$. pentagona, and only differ in the method of preparatiom.

The word "Coroa" is a market corruption of the original Spanish "Cacao," which was adopted by Tournefort as a generic name but has since been displaced by the Linnzan Theobroma.
J. H. Hart.

THEOPHRÁSTA (Theophrastus was a Greek naturalist and philosopher, 370-285 B.C.). Myrsindeew. According to Bentham \& Hooker, this genus has but a single species, $T$. Jussieui, of San Domingo. J. Decaisue, in Annales des Sciences Naturelles for 1876 (ser. 6, Bot. 3) contrasts three species. Pax, in Engler \& Prantl's "Pflanzenfamilien," written later than either of the above, recognizes four species. Five names occur in the American trade, only oue of which is a true Theophrasta aceording to either of the above authorities. This is $T$. Jussieui. Three of them are to be referred to the related genus Clavija, and one ( $T$. imperialis) is now regarded as a species of Chrysophyllum (of the family Sapotaceæ). The chief teehnical differences between Theophrasta and Clavija are in the flowers and fruits. In Theoplirasta the corolla is cylindrical and shallowly 5-lobed; staminodia attached on the base of the corolla: fr. large and many-seeded. In Clavija the corolla is subrotate and deeply 5 -cleft; staminodia attached on the tube of the corolla; fr. I-many-seeded. Theopbrasta itself ineludes a glabrous shrub with erect, nearly simple stem, the simple lvs. crowded at the ends of the branches, the fls. large, white, in racemes. The fls, are perfect and gamopetalous; calyx and corolla with 5 divisions that are imbricated in estivation, the corolla bearing a corona in the throat; stamens 5 , fixed at the bottom of the corollatube: pistil one, with short style and capitate stigma. Fr. fleshy and apple-like, many-seeded. The species referred to Theophrasta in the American trade are handsome large foliage plants for warmbouse culture. An allied genus is Jacquinia, which see.

The following cultural note is probably applicable to the various species cultivated under the name of Theophrasta: According to T. Baines in Gn. 1:395, T. imperialis is of easy culture, enduring a winter temperature of $45^{\circ}$ without injury but making the best growth with $70^{\circ}$ night temperature and $10^{\circ}$ rise during the day. It has the objection of being almost impossible to root from cuttings. A plant that has become too large may have part of the top cut off and all the buds removed from the stem down to within a few inches of the ground, which operation canses the plant to sprout from the base. One only of the sprouts should be left; when it is well started the old stem may be cut down and after waiting until a little more growth has beeu made the plant should be taken from the pot, aud be eleaned of soil and dead roots and repottel.

## A. Juice milky.

imperialis, Linden (properly Chrysophyllum imperiale, Benth.). Lrs obovate-oblong to oblong-oblanceolate, 3 ft . long on large plants: fls. yellowish green, small, in pediculate clusters on the lower branches: fr. 5 -angled, nearly globular, 1-2 in. thick. Brazil. B.M. f823. 1.H. $21: 184$. - This species has been cultivated since the middle of the nineteenth century as Theophrasta, but upon flowering in European gardens was found to belong to Chrysophyllum, a genus of the family Sapotacez.

AA. Juice not milky.
n. Corolla mostly deep but the limb shallow-lobed: fr. many reeded (Theophrasta).

## c. Trunk or stem not spiny.

Jussieùi, Lindl. Lrs. linear-spatulate, about $11 / 2 \mathrm{ft}$. long and about one-sixth as wide, obtuse, strougly spinose-dentate, with black-tipped teeth, the midnerve

Fery strong and the secondary ones confluent at the margins: inflorescence racemose, the racemes axillary and loose-tld.: fls. rather long-pediceled, bracteate, the calyx-lobes ovate and erose-dentate, the corolla tubulareampanulate, white, the corona annular and entire. San Domingo. G.C. III. 2: $\ddagger 29$. It is not known to the writer whether the plant in cult in this country under this name belongs to this species or one of the two following.
fúsca, Decne. (T. Jussievi, Hort.). Stem simple, with ash-gray bark: lvs. linear or linear-spatulate, 18 to 20 in. long and about 2 in. wide, obtuse, varying from nearly entire to repand-denticulate to strongly spinose, midnerve strong and tawny red at the base, the secondary nerves confluent at the leaf-margin: inflorescence paniculate or racemose, the racemes short and densely fld.: fls. on slender pedicels, bracteolate, the calyxlobes orbicular and ciliolate, the corolla ureeolate-campanulate, dull brown, the corona 5 -lobed. Probably West indian, but the species founded on cult. specimens. - The name $T$. fuscu is not knowu to oceur in the American trade.

## CC. Trunk spiny.

densiflora, Decne. Stem with black spines, the bark brownisk: lvs. linear-oblong, $14-16$ in. long and $2-21 / 2$ in. wide, coarsely spinose-dentate, the secondary veins nomerous and crowled and somewhat pellucid: inflorescence terminal and corymb-like, compact, the branches $5-6$-fld.: Als. short-pediceled, campauulate and white, the calyx-lobes ovate and somewhat ciliate and equaling the corolla-tube, the corona 5 -lohed. San Domingo. B.M. 4239 (as T, Jussici).-The name Tr. densiflora is not known to oceur in the trade.
BB. Corolla mostly shallow and deep-lobed: fr. often 1-fe'u-seeded (Clarija).

## c. Leaves obtuse.

macrophŷlla, Hort. (properly C'arija gróndis, Deene.). Lvs. large, arcuate, obovate-spatulate and obtuse, entire or sinuate-repand; petiole thick and dark violet, the secondary nerres slender and simple or forked: ths. orange-yellow, in short, erect racemes; calyx-lobes orbicular and nearly glabrous, the corona 5-lobed. Brazil. B.M. (as Clazija materophylla) 5829.

## cc. Les. acute.

lougifolia, Jacq. (properly Claulja ornd̀ta, D. Don). A tender tree, often 20 ft . high: Iv's. crowded, subverticillate, oblong-spatulate to lanceolate, narrowed at the base, mucronate, spinosely dentate, $1-1 \frac{1}{2} \mathrm{ft}$. long, about 9 in . wide: racemes $4-10 \mathrm{in}$. long, usually pendulous: fls. fragrant, saffron-colored. Peru. B.M. 4922. B.R. 21:1764.
latifolia, Willd. (properly Claviza latifolia, C. Koch). A tender tree: lvs, oblong, petioled, narrowed at both ends, mucronate-serrate: racemes erect. W. indies,The species seems to be imperfectly known to botanists.
L. H. B.

THERMÓPSIS (Greek, lupine-like). Lequminòsa. A genus of about 15 species of peremnial herbs native to North America and northern and eastern Asia. They are erect plants with large, 3-foliolate, stipulate leaves and showy yellow or purple flowers in terminal or axillary racemes. The following species are all handsome hardy perennials bearing yellow flowers in early to late summer. They are not particular as to soil or position, but do best in a deep, light, well-drained soil. They are generally deep-rooted plants and endure drought rery well.

Propagation may be effected by division, especially in T. montana, T, fubacea and T. rhombifolia, which spread extensively by the root, but in general the better way is by seed, although the seed is rather slow to germinate and should be sown as soon as ripe or in the spring with some heat.

## A. Pod strongly recurved.

rhombifolia, Richards. Plant about ] ft. Ligh, branched: lfts. usually oval or obovate, $1 / 2-1 \mathrm{in}$. long: fls. in a compact spike: pod glabrous. June, July. Western states. B.B. 2:265.

## THERMOPSIS

THINNING FRUIT

AA. Pod straight or only slightly curved at the apex. в. Plant s-5 ft. high.

Caroliniàna, M. A. Curtis. Stem stout, smooth, simple: lvs. long-petioled; 1fts. obovate-oblong, silky beneath; stipules large, clasping; raceme $6-12 \mathrm{in}$. long, erect, rigid, many-fld. : pod 2 in . long, erect, villous and hoary. June, July. Mts. of N. C.

## Bb. Plant 1-3 ft. high.

## - Stipules longer than the petiole.

montàna, Nutt. Plaut $11 / 2 \mathrm{ft}$. high, somewhat silkypubescent: lfts. oblong-obovate to oblong, $1-3 \mathrm{in}$. long: tls. in long spikes : pod straight, erect, puluescent. May, June. Western states. B.11. 3611. B.R. 15:1272 (both erroneonsly as $T$. fabocelt). Sometimes called "Buffalo pen" in the west.

## pr. Stipules shorter than the petiole. D. Racemes axillary.

fabàcea, DC. Resembles T. montana and has possibly been confounded with it in the trade. It differs in having more spreading pods and larger and more eompressed seeds. May, June. Siberia.

## DD. Racemes terminal.

mollis, M. A. Curtis. Stem erect, branched, 2-3 ft. high, pubescent: Ifts. obovate-oblong, ]-2 in. long: racemes $6-10 \mathrm{in}$. long: porl slightly curved at the end, 2-4 in. long. May-July. Va, and North Carolina.
T. Cashmeriàna, Hort, Saut, does not appear to he known to botanists.

J. B. Keller and F. W. Barclay.

THESPESIA (Greek, divine; application doubtful). Mrildicer. A genus of a few species of tall trees or shrubs native of tropical Afriea, Asia and the islands of the Pacific. They have the aspect of Hibiscus and may be distinguished by the confluent stigmas, more woody capsule and the obovoid compressed seeds.
popuilnea, Soland. A small tree with the younger portions covered with peltate scales: lvs. long-petioled, ovate, cordate, acuminate, 3 in. across: ths. axillary, 2-3 in. across, yellow. Trop. Asia, Africa and the islands of the Pacific.-Cult. in S. Calif., where, according to Franceschi, it succeeds only in warm and moist locations. He also notes the fls. as varying from yellow to purple.
F. W. Barclay.

THEVETIA \{André Thevet, 1502-1590, a French monk who traveled in Brazil and Guiana and wrote a hook on French Guiana in which the plant is mentioned). A poeynàcere. A tropical American genus of ahont 7 species of trees or shrubs with alternate, 1 -nerved or lightly penniveined leaves and rather large yellow flowers in terminal few-flowered cymes.

Theretic nereifolia, the Yellow Oleander of Florida gardens, is a very ormamental small evergreen shruh, growing lusuriantly in rich, sandy soil, not too moist and not too dry, ultimately attaining a height of 6 to 8 feet and almost as much in diameter. The foliage is abundant, light glossy green and reminds one of the oleander, but the lvs, are narrower. The prate yellow flowers are abundantly produced. The fruit, which is of the size and somewhat of the form of a hickory nut, is regarded as poisonons by the negrocs. The Thevetia can stand a few degrees of frost, but it was killed outright on February 7, 1895, when the thermometer went down to $18^{\circ} \mathrm{F}$. If bauked with dry sand in fall it does not suffer much, thougb the top may be killed.

$$
\text { A. Liss. } S \text {-10 in. long, about i in, wide }
$$

nitida, DC. A tender shrub: lvs, oblong-lanceolate, acuminate, margins revolute: fls, rather large; corolla white, with a yellow throat. West Indies; cult. in sonthern Calif.

$$
\text { AA. Li's. s-C in. long, less than } 1 / 2 \text { in. wide. }
$$

nereifolia, Juss. Known locally in Florida as "Trumpet Flower" and ineorrectly as "Yellow Oleander." A tender shrub: lvs. linear, shining, margins revolute: fis, ahout 3 in, long, gellow, fragrant. West lndies, Mexico. B.N. 2309 (as Cerbera Thevetia).-Cult. in S. Fla. and o. California.
F. W. Barclay and II. Nehrling.

THIMBLEBERRY. Rubus occidentalis and odoratus.
THINNING FRUIT, All fruit grows larger and better, and often becomes more highly colored, other things being equal, when it has an abundance of readily available food. The supply of crude food materials is increased by allowing room enough to each plant and by enriching the soil and keeping it sufficiently moist. The plant may set so many fruits, however, that it cannot possibly grow all of them to large size even though an abundant supply of crude food material is readily available. The leaves build up the crude materials taken from the soil and air into organie compounds which the plant must have to sustain its life and support its growth. Fruit-growers often fail to recognize that the fruit depends upon the leaves most directly connected with it for elaborated food, which alone can nourish it. It is nevertheless true; and for this reason, even when there is no crop on the rest of the tree an overloaded branch needs to have its fruit thinned to secure the highest possible number of fine large fruits.

By reducing the number of fruits the proportion of elaborated food for those which remain is increased. Sometimes checking the too vigorous growth of the vegetative parts is also resorted to for the same purpose. The latter practice is properly con-

2497. Thinning fruit.
(Drawn from photographs and reduced to $1 / 3$ natural size.) The large separate fruits indicate the relative gain in size in thinning plums. The right-hand twig shows relative stage of development at which peaches shoull he thinned; the twig at the left indicates relative distance between thinned peaches. sidered under the subject of Pruning; the former may be treated under the

In its hroad significance Thinning Fruit includes not only picking off some of the immature fruit, but also any pruning of bearing wood to reduce the number of fruits which a plant is allowed to produce. Sucb prming is usu-
ally done when the plant is in a dormant condition. It may be performed on grapes in autumn as soon as the leares fall. it is then easy to cover the vines if winter protection is needed. The more bardy orchard fruits may be attended to at any time when the leaves are off ; the more tender kinds should be left till the severities of winter have passed, so that the amount of hearing wood which is taken off may be varied in proportion to the loss of fruitbuds by winter injury. The work on peaches and apricots is thus sometimes deferred till the trees bloom, or even later.

The sooner a fruit can be relieved from struggling with other fruits for its food the better its chances are for reaching extra large size. It is, therefore, best to reduce the amount of hearing wood before the blossoms open, as much as can safely be done.

Perhaps a method of thinning orchard fruits by treating the open blossoms with some spray mixture may eventually be perfected. This would give the fruit the advantage of an increased food supply from the time the blossoms opened. It is known that such treatment may prevent the setting of fruit. It remains to demonstrate whether by a judicious use of this method the setting of fruit too abundantly may be prevented. If this can be done successfully, much labor in thinning by picking off immature fruit might be thus avoided.

To avoid the extra labor which would be required by thinning immediately after the fruit sets, it is customary to defcr the work till the weaker fruits drop.

Very often the wistake is made of Neferring it too long. The labor spent in late thinning is usually wasted so far as improving the grade of fruit is concerned. Although the yield is thus lessened, the ripe fruit generally averages but little if any larger than unthinned fruit.

No definite rule can be giren as to the amount of frnit to be left in thinning. This should be determined according to the enviromment, rigor and productive habits of the plant. Generally speaking, fruits should

2498. The results of thinning Japanese plams. Lower branch not thaned. adapted for fancy trade.

Fig. 2497 shows the improvement in size attained by thinning the Burbank. Those plums which at their lest produce very large fruit, such as Wiekson, Diamond and Guii, usually give better returns for thinning. With all kinds of fruit, thinning may be expected to retnrn most profit when practiced on varieties well

An exceedingly lieary crop of fruit may so exlaust a tree that it either fails to fruit the next yar or produces less than an average crop. Such a result is more often seen with some kinds of fruit than with otbers, and different rarieties of the same kind of fruit may vary much in their natural tendencies in this direction. By judicious selection of varieties and by skilful management much may be done towards securing more regular bearing and more abundant erops. Thinning fruit has a place in the management of the commercial fruit plantation, along with the maintenance of soil fertility, tillage, pruning and spraying. It is a mistake to depend on thinning alone for results which may with difficulty be obtained hy all these methorls combined. In some careful experiments vigorous, mature, well-nourished trees on which the fruit had been systematically thimned annually, bore no more regularly than corresponding trees on which the fruit was not thinned. In other cases the beneficial effects of thinning were unmistakably apparent in somewhat increased fruitfuluess the following season. The protit from thinning fruit iu any one season comes largely from the increased amount of
be thinned so that those which are left are separated from each other by a distance of at least three times the diameter of the largest fruits at maturity. Uuder irrigation, or where a constant plentiful supply of soil moisture can be dependel on, the number of fruits which the plant may be allowed to bear is much greater than, in some cases even twice as great as, the same plant could bring to large size if it were located on drier soil. Fig. 2497 shows the stage of development of peaches for early thinning and indicates the percentage remored and distance apart of those which are left.
lmmature plants should not be allowed to bear a full crop. It is generally best that the plant carry but few fruits for the first crop. Afterwards it may be burdened more heavily, till finally, when a vigorous nature plant is developed it may safely bear a full erop. In consequence of overbearing, immature plants are often so weakened that they are easily winter-killed; or they may be left in an unthrifty condition from which they do not recover in several years if at all. In thinning fruit on immature plants, the natural ability of the plant and the influence of enrironment should be even more carefully considered than with mature plants. This work requires skill and good judgment, which ean only be acquired by experience, study and careful observation.

The question of what kinds of fruit it is best to thin should be considered briefly from the standpoint of the commercial grower. If the markets which are accessible do not pay more for the better grades of fruit there can be no profit in thinning except in preventing the breaking down of the tree by heavy crops and, possibly, from increasing the tendency to annual bearing. The crop of thinned fruit may sometimes exceed the measure that the unthinned fruit would sield, but not enough to pay for the cost of thinning if the crop is sold at no advance in price over unthinned fruit.

Where fancy prices are obtained they are brought by evenly graded packages of the larger specimens. Varieties which at their best run small or medium size do not usually pay for thinning. It does not pay, for instance, to try to increase the size of Damsou plums by thinning them. Plums like Lombard or Burbank, which have medium to large fruit, may pay for thinning.
the better grades of fruit which are obtained by the process. The yield the succeeding year may or may not be greater beeause the fruit was thinned.
S. A. Beachi.

Thinning Fruit has now come to be an established horticultural practice with those who eater to the best markets and aim at the highest ideals in fruit culture. Thinning assists the grower in seenring several results, chief among which are the following: (1) in maintaining the vigor of the tree; (2) in producing fruit of maximum size, appearance and quality; (3) in securing anvual crops instead of alternate, and (4) in preventing the spread of parasitic diseases.
lt does not pay to thin all classes of fruit. Only early or fancy varieties of apples will reward the cultivator for the expense and labor of thinning, though it usually pays to pick the earliest varieties successively, removing the largest and best colored specimens first, which in effect is a process of thinning. Standard pears are to be classed with apples; dwarf pears are partly thinned by winter pruning, and partly by the removal of surplus fruit in summer. Stone fruits pay for thinning more amply than other kinds. Peaches and plums may be thinned by winter pruning, but this is often inadequate. Our best peach-growers now thin to 6 and 8 inches apart and find that when this is coupled with high culture the results are usually satisfactory. Whether it will pay to thin plums or not will depend upon the variety and the market. The Japanese varieties are much improved in appearance and quality by judicious thinning. The larger varieties of the domesticas may under favorable circumstances be profitably thiuned, but the wisdom of thinning the smaller varieties of natives and domesticas must be determined by the individual grower. Many varieties have a tendency to overbear; these should be thinned in the interest of the health and vigor of the tree. Grapes respond to thinning by increased size of bunch and berry, but there is little or no money in the operation, except where the fruit is grown for a very special market or for exhibition purposes. Thinning the grapes should be accomplished by close winter pruning. Strawherries are thinned by special methods of culture, such as growing in hills and narrow matted rows. Tlie way in which the operation is performed varies somewhat with
the fruit. Sometimes small shears are employed, but as a rule the fingers and thumbs of an active man are the most effective instruments available. Practice gives deftness. Eight to ten mature peach trees constitute a day's work. As to time, while it is important to thin early in the season, experience has shown that much labor is saved if the work is deferved until the "June drop" or first drop after the settiug of the frnit ocenrs. After this, thinning should be done promptly.

John Craig.

## THISTLE. Blessed T. See Carbenia. Cotton T. See Onopordon. Globe T. See Echinops, Golden T. See S'colymus. Scotch T. See Onopordou.

THLADIANTHA (Greek, to crush and flower; the author of the genus is said to have named it from pressed specimens). Cucurbitucer. A genus of 4 species of teuder, diceious, herbaceous vines with tuberons roots, usually ovate-cordate leaves and axillary, yellow flowers. The genus is native of southern and eastern Asia and the island of Java. Male fls. solitary or rat cemed; calyx-tube short, bell-shaped, the bottom shut by a horizontal scale; segments 5 , lanctolate; corolla bell-shaped, 5 -lobed, the lobes revolute half way down; stamens 5: feruale 4 . with calyx and corolla of male; ovary oblong; style 3 -cut: seeds many. Thladiautha has recently been offered in this country under the name of (rolden Creeper.
dùbia, Bunge. A tall elimber with light green foliage and numerons yellow bell-shaped flowers: male fls. solitary in the axils without bracts: fr. ovoid-oblong, about 2 in. long, red: seeds black, smooth. Summer. N. China. G.C. 1II. 28:279. B.M. 5469 (male f. only).-Aceording to R. 1. Lynch, in Gn. 56, p. 518 , the plants are of easy cultivation and by planting both sexes and artificial pollination the fruit may be grown. He further states that the root-tubers are without buds but form buds just before growth commences, as does a root-cutting. According to Dauske Dandridge, the plant is hardy in W. Va., increasing rapidly by tubers and becoming a pest when planted with choicer plants.
F. W. Barclat.

THLÁSPI (Greek, crushed; referring to the strongly flattened poils and seeds). Cruciferue. A genus of 25-30 species of annual or perennial herbs, mostly from the temperate and alpine regious of the northern hemisphere. Mostly inconspicuous plants with radical rosettes of leaves and leafy scapes of small white, rose or pale purple flowers. T. arvense, Linn., known as Penny Cress, is a naturalized annual weed from Eu., 4-12 in. high, simple, with terminal clusters of small flowers; sepals greenish; petals white. T. alpéstre, Linn., is a perennial species native of the Rocky Mits. Au earlyflowering alpine plant of a tufted liabit, variable but usnally $2-4 \mathrm{in}$. high: sepals purplish; petals white. Has been offered by collectors and is a neat little roek plant. It should be given shade and a cool, moist soil. V. 23:299. It differs from the European T. alpestre, but apparently not by any good specific character.

> F. W. Barclay.

THOMAS, JOHN JACOBS (Plate KLl), one of the three pomologists who may be said to have created the science in this country (the others being Patrick Barry and the elder Downing), was born January 8, 1810, near the lake in central New York-Cayuga-on the shores of which he passed his life; and died at Union Springs, February 22, 1895. He was much more than a pomolo gist, his studies covering nearly every branch of rural industry except the breeding of live stock, and his labors in the direction of adorning the surroundings of country life entitling him to rank in that department with the younger Downing. Two of his works, "Farm Implements and Machinery," and the series of nine volumes called "Rural Affairs," deal with the practical every-day matters of life on the farm in a manner at once pleasing and original, there being nothing that could quite fill their place in the whole range of our agricultural literature; and his incessant stream of inspiring editorials in "The Cultirator" and "The Country Gentleman" for nearly sixty years covered a wide anit
diversified range of rural topies. But pomology was his ehief delight, and his fame rests mainly on his treatise on that subject. "The American Fruit C'ulturist." This inmensely useful book first appeared, in 1846, as a paper-covered 16 mo of 220 pages, with 36 wood-ents, which must have been well received, inasmuch as a fourth editiou (disnified with muslin binding) was published in the following year, and in 1849 another, enlarged to 424 duodecimo pages, and "illustrated with 300 accurate figures." This edition appears to have been reissued a few years later, with slight modifieations and on larger paper, and was then ealled the seventh.

Up to this time, the changes in the work had beeu chietly iu the direction of natural growth. But horticultural knowledge was uudergoing great modification; and in 1867, the public still calling for the book, it reappeared in different style, newly arranged and mostly rewritten, filling now considerabily more than 500 pages, and accompanied by almost that number of illustrations. Rather unfortunately, this was called the "seeond edition," all its predecessurs leeing probably regarded as different forms of the same book, while this was substantially new.
The nest edition, called the "eighth revised," appeared in 1875, and had nearly 600 octavo pages and over 500 engrarings, - not to mention a colored frontispiece and bighly pietorial bindiug; and this was followed, ten years later, by a reviscd reprint in plainer and more tastefnl style, illustrated with the largest number of engravings yet reached, 519. This edition, the last issued during the life of the author, sold well, like all the others, and was long out of print and muel songht for. A so-falled "twentieth" edition, revised and enlarged by Mr. William H. S. Woorl, a lifelong friend of the author, with the assistance of a number of high anthorities, appeared in 1897, and contains over 700 pages aud nearly 800 illustrations. Personally, Thomas was one of the most lovable of men. A consistent but very liberal-minded member of the "orthodox" branch of the Society of Friends, he exemplified in a marked degree the peculiar virtues, both robust and gentle, which so commonly command, for the adherents of that simple and unobtrusive faith, the respeet and admiration of those who know them. Ghlbert M. Tucker.

THORBURN, GRANT (Plate XLI), founder of the seedhouse of J. M. Thorburn \& Co., New York, and horticultural author, was horn in 1773 in Dalkeith, Scotland, and early came to New York to seek his fortme. His father was a wrought-nail maker, and the son en gaged in the same trade in this country. He soon married, and his wife attended a store which he established in Nassau street, uear Liberty, for the selling of "tape, ribbons, thimbles, thread, seissors, and Oxbery's needles." The living rooms were in connection. "A glass door opened opposite the fireplace, where she rolled the dumpling or broiled the steak with one eye, and kept a squint on the store with the other." The introduction of eut-nail machines deprived young Thorburu of his trade, and the establishment of a pretentious grocery business on the corner of Nassau and Liherty streets took away his customers. He therefore gare attention to other means of livelihood. The women of the city had begun to show a taste for flowers. These were grown in pots, and the pots were sold by groeers. In the fall of 1802, there being various pots in his stock, Thorburn thought to attract the attention of purchasers by painting the pots green. Fonr pots were first painted. They sold quiekly. Then be painted twelve. They sold; and thus the pot business grew. Thorbnrn had been in the habit of buying his meat at the Fly Market, at the foot of Maiden Lane. In April, 1803, he bought a rose geranium there, thinking to he able by its means to still further advertise his pots. But the next day a customer bought both pot and plant; and Thorburn quickly returned to the market and bought two more plants. These sold; and thus the plant business grew.
The man, George lnglis, of whom Thorburn bought the plants, was also a Scotchman, and it was soon agreed that one should grow the plants and the other sell them. But the eustomers also wanted to grow plants, and they asked for seed; and as there was no
seed store in New York, it was arranged that Inglis should grow seeds also. This was in 1805; and in that year Inglis, as an experiment, had grown a lot of seeds. Thorburn bought these seeds for $\$ 15$; and thus arose the first regular seed store in New York, and oue of the first in the United States.
The seeds and plants continued to sell, and Thorburn was obliged to import steds. In 1805 or 1806 he obtained a catalogue of William Malcolm d Co., London, the first plant catalogue he had ever seen, and be then published one of his own. This led to more pretentious writing, and "The Gentleman and Gardener's Kalendar" was the first outcome. The third edition of this, in 1821, by "Grant Thorburn, Seedsman and Florist," contains the advertisement of " $\frac{1}{}$. Thorburn \& Son," dealer's in seeds, implements and rural books.

Grant Thorburu was a prolific writer for the current press on a variety of topies, under the mom de plame of Laurie Todd. He was a mique character, and his history, - "mixed with much fiction," as he bimself says,was the basis of Jolnn Galt's tale in three rolumes (London, 1830) of "Lawrie Todd, or Settlers in the Woods." Thorburn left a most interesting autobiography, which was published in New York in 1852. He died in New Haven, Conn., Jammary 21, 1863, at the age of 90 . The portrait in Plate SLI is reproduced from his autobiography.
L. H. B.

TH0RN. See Cratogus. Christ's T. is Paliurus Spina-Christi. Jerusalem T. is Puliurus SpinaChristi; also Parkinsonia aculeata. Swallow T. is Hippophaë rhamnoides.

THORN APPLE. Datura Stramonium; also Cratagus.
THORN BROOM. CTex Europezts.
THOROUGHWORT. Eupatorium perfoliatum.
THRIFT. Armeria.
THRİNAX (Greek, $f(a n$ ). Palmdceж. About 10 species of fan palms native to the West Indies aud Florida, Spineless palms: trumks low or medium, solitary or cespitose, ringed below, clothed above by the fringed leaf-sheaths: Ivs. terminal, orbicular or trincate at the

base, flabellately plicate, multifid; segments induplicate, bifid; rachis short or none; ligule free, erect, concave; petiole slender, biconvex, smooth on the margins; sheath usually beautifully fringed: spadices
long; axis clothed with tubular sheaths; papery-coriaceons, split: As. on rather loug, sleuder pedicels, the pedicel with a cadncous bract at the base: fr. the size of a lea. For the new Porto Rican species, see Cook, Bull. Torr. Bot. Club, Oct., 1901.

One of the best groups of palms for pot-culture. The species are of slow growth, but succeed with indifferent care. They are mostly of elegant form and habit. A good specimen is shown in Fig. 2499.

For T. ('huco. see Icunthorizu chuco.
A. Under surface of leates green.
B. Ligule with a blunt appendage at the mitldle ........................... radiata
BB. Ligule bluntly deltoid..............2, parviflora
BBB. Ligule obsolete, truncate ..........3. Barbadensis
AA. Ender surface of letves silvery or glaucors.
B. Leaf-segments conmivent at batse..4. argentea

BB. Leaf-segments commivent for onethime their length. ...............5. excelsa
BBB, Leaf-spgments comilyent for onehatf their length. $\qquad$

1. radiàta, Lodd. ( $T$. elegans, Hort.). Candex short: lvs. grean, glabrous or slightly puberulent leneath; segments united to or beyond one-third; ligule broadly rounded, with a short, blunt appendage at the middle. Cuba to Trinidad.
2. parviflòra, Swz. Caudex $10-20 \mathrm{ft}$. tall: Jvs, $10-25 \mathrm{in}$. long, minutely pubescent, becoming glabrous, green beneath; segments united one-fourth or one-sixth their length; ligule bluntly deltoid, $1 / 2 / 2$ lines long. Bahamas, Jamaiea. Florida, S.S. 10:510.
3. Barbadénsis, Lodd. Trunk mildle-sized: lvs. green, glabrons; segments united at the base: ligule obsolete, truncate: spadix paniculate: berry polished, $1 / 3$ in. thick. Barbadoes.
4. argéntea, Lodd. Candex $12-15 \mathrm{ft}$. high, 2-3 in. thick: lvs. shorter than the petiole, silvery gray beneath; segments united at the base; ligule concave, semilunar, erose. West Indies.
5. excélsa, Lodd. Lvs. pale green above, hoary glancous beneath; segments united one-third; ligule bluntly deltoid; sheath densely buff-Ianate. Jamaica, British Guiana.
6. multiflora, Mart. (T. graminifòlia, Hort.). Stem medium, $6-8 \mathrm{ft}$. higlı: sheaths ragged, fibrous, irreguJarly reticulate, tomentose: young lvs, white woollytomentose; blade equaling the petiole, laciniate; segments united one-half their length, ensiform-acuminate, rather strict, glaucous beneath; ligule transversely oblong, sinuate, 3-lobed. Haiti. 1.H. $31: 542$.
T. crinita, Griseb. \& Wendl. Cuban. No deseriptionavailable. Only one plant known. Cult. by W. ©. Wilson, of Astoria, N. Y. T. elegantissima, Hort., seems to be unknown to botanists. $-T$. Morrissii, Wendl. A native of Anguilla, grows 1-21/2 ft. high, and has lvs, which are glancescent beneath. Segments free for abont two-thirds or three-fourths their length. Lately offered in Fla, G.C. III, 11:113.

Jared G. Smith.
THRYPTOMENE (Greek word said to refer to the low heath-like appearance of the plant). Myrtdcere. About 18 species of heath-like shrubs trom Australia, with small, opposite leaves and small or minute flowers, which are solitary in the axils or fascicled.
Mitchelliàna, F. Muell. A compact, bushy shrub with slender branches: lvs. oblong, flat, $1 / 4-1 / 2 \mathrm{in}$. long: fls. in the upper axils solitary or in clusters of 2 or 3 , white. Offered in southern Calif. Introduced by Mrs. T. B. Shepherd, who says the plant rarely exceeds 4 ft . in height, blooms in midwinter and is good for cut-flowers.
F. TV. Barclat.

THÛJA. See Thuya.
THUJOPSIS. See Thuyopsis.
THUNBERGIA (after Karl Peter Thunberg, professor of botany at Upsala and successor to Rudbeck and Linnaus; died 1828). Acanthacea. Mostly tall perennial greenhonse climbers producing flowers in great profu-
sion: lvs, opposite: fls, blue, yellow, purple or white, solitary and axillary or in racemes; calys annular and scarcely lobed or toothed or $10-15$-toothed, surromaded by 2 large bracts which often inclose also the corollatube; corolla trumpet-shaped, with a spreading limb, tube curved or oblique, often compressed, enlarged toward the mouth; stamens 4, didynamons, fixed near the base of the tube, filaments thickened at the base,

2500. Thunbergia alata ( $\times 1 / 3$ ).
separate; anther-cells parallel, equal, mostly mucronate at the base: ovary seated on a Heshy disk, 2 -loculed, each cell with 2 ovules (rarely ouly one). The Thunbergiere are distinguished by the contorted corolla, the 4 -seeded capsule, and the globose seeds.

The Thunbergias are nearly all vigorons greenhouse climbers resembling allamandas in habit. In large conservatories where they are not cramped for room they flower freely and display their flowers to the best advantage. Severe pruning, which is necessary in small greenhouses, prevents the production of Howers. The larger species, T. laurifolıa, T. affinis, T. grandiflora. T. Mysorensis, and T. coccinea are rapid growers, requiring plenty of feeding and root-room. All do better in open beds than in pots. They may be propagated either from seeds or by cuttings which are taken from the young wood which starts into growth after the plants have been cut back luring winter. These produce few flowers the following antumn, bnt bloom freely the second season. As a rule, the plants flower in late snmmer or autumn, but this may be made to vary according to treatment in some species. T, alata and its varietics and $T$. fragrons are often treated as annual garden plants, flowering in late summer. $T$. erecta and T.affinis when grown in pots form rather compact shrubby plants. See fin. 24, p. 314; 30, p. 292; 47, p. 150. T. elegans of the trade cannot be accounted for by the writer. Meinrich Hasselbring.
Thunbergias and allamandas are great farorites in central and southern Florida, being used on verandas, arbors, small trees, old stumps, trellises and buildings. Of the blue-fld. kinds T. grandiflora is hardiest and commonest. It has large, heart-shaped leaves which overlap one another in a charming manner. It blooms from September till Christmas, the fls. being light blue and rather dull as compared with the next. The form of T. laurifolia, known to the trade as T. Marrisii, has nearly sky-blue fls., of a deeper but brighter hue than the preceding. It is a taller-growing and choicer plant, and has 10 or more fls, in a raceme, while those of $T$. grandiflora are solitary in the axils. T. fragrans is the common white-fld. kind. The form cult. in Florida is probably var. vestita, as the blossoms are not fragrant.
T. alata is a general favorite. The fls, range from buff and white to orange with a decp purplish brown throat, the last form being the most popular. This species is killed to the ground by sharp frost every winter but sprouts vigorously the following spring. It also comes up from self-sown seed. This species grows only 7 or 8 ft . high. All the Thunbergias mentioned
above are easily raised from cuttings or layers in summer. T. erecta is not a climber but has a somewhat straggling habit. It has swall, dark green lvs, and large, deep purplish blue gloxinia-like fls. which are white at the base. There is a pure white variety of it. lt blooms all summer and autumn. It is readily raised from cuttings during the rainy season.

## 1I. Nehrling.

affinis, 1.
alata, 2 ,
alba, 2, 4.
albiflora, 2.
aurantiaca, 7
Bacherii, 2.
Bakeri, 2.
chrysops, 5 .

INDEX.
coceinea, 9.
carulea, 4.
Doddsü, 2.
ereeta, 4.
tragrans, 3.
Fryeri, 2.
grandiflora, 6,7 .

Marrisii, 7.
intu8-alba. 3. laurifolia, 7. lutea, 2.
Mysorensis, 8 . sulphurea, 2. unicolor, 2.
A. Fls. axillary, solitary.
B. Les. entire.............................. 1. affinis

BB. Lus. angularly toothed.
C. Petioles winged.....................2. alata
cc. Petioles not kringed.
D. Color of fls. white: corolle.
lobes trunctile and sinnatety toothed at the apex........... DD. Color of fls. blue (white only in varieties).
E. Plant suberect................4. erecta EE. Plant climbing.

> F. Throat of the co rolla yellow.5. chrysops

FF. Thront of the corolla white.6. grandiflora
AA. F'ls. in terminal or axillury racemes (see, also, T. grandiflora).
B. Color of fls. blue. 7. laurifolia

BB, Color of fls. yellow.....................8. Mysorensis bвb. Color of fls. scurlet...................9. coccinea

1. affinis, S. Moore. A rambling shrub, I0-12 ft. high, smooth: branches $t$-angled: ivs. short-petioled, elliptic, acute, entire: dts. 2 in . across, deep purple-blue, with a yellow throat. Summer. Tropical Africa. B.M. 6975. G.C. 1II. 2:461. G.M. 32:291.-This plant is closely allied to $T$. erecte, from which it differs by its entire Ifs. and larger fis., which are about twice the size of those of T$T$. erecta. When grown in a pot the plant forms a compact shrub, but when given more room it is a rambling climber.
2. aláta, Boj. Fig. 2500. Stem square, climbinghairy: Irs. opposite, triangular-ovate, hastate, repandtoothed, rough-pubescent, tomentose beneath; petioles winged, about as long as the Ivs.: f1s. solitary, on axillary peduncles; calyx very small, surrounded by 2 large inflated bracts; corolla-tube somewhat longer than the involucre, dark purple within; limb rotate, oblique, of 5 roundell segments, buff or cream-colored. S.E. Africa. B.M. 2591. P.M. 2:2. B. 5:238 (not good). L.B.C. 11:1045.-A perennial climber which may also be treated as an annual greenhouse plant. Usually propagated by seeds. It is used either as greenhouse climber or to grow on trellises outdoors. Ontside it flowers mostly in Angust, but by propagating at various times they may be hall in blossom nearly the whole year in the greenhouse. There are many varieties, some of which have been described as species.

Var. alba, Paxt. (T. alतोta, var. albiflora, Hook.). Fls. White, with a blackish center. P.M. 3:28. B.M. 3512. Var. aurantlaca, Ktze. (T. aurantiaca, Paxt.). Fls, bright orange, with a dark center. The best of the group. P.M. 6:269. Subvar. Doddsii has variegated lvs. P.M. 15:221. F.S. 4:415. Var. Bàkeri, Hort. (T. Bakrri or Backerii, Hort.). Fls. pure white. Var. Frỳeri, Hort. (T. Fryeri, Hort. T. alata, var, intusalba, Hort.). Pale orange, with a white center. Var. sulphùrea, Hort. Fls. sulfur-yellow. Var. luttea, Hort. (T. alata, var. unicolor, Hort.). Fls. entirely yellow.
3. fràgrans, Roxb. Stem slender, climhing: lys. lanceolate to triangular-ovate, cordate or subcordate, mostly angularly toothed on each side of the base, rough on both sides, petiolate: fls. white, axillary; corolla-tube narrow; limb spreading, $1^{1 / 3} \mathrm{in}$. across, lobes truncate and repandly toothed at the end. Summer. India.

Var. lævis, Clarke, is glabrous. B.M1. 1881. L.B.C. 20:1913. Yar, vestita, Clarke, is more hairy and the flowers are not fragrant.
4. erécta, T. Anders. (Meyinia erecta, Benth.). Shrub, 2-4 ft. high, with loese spreading branches, halferect: Ivs opposite, petiolate, ovate or subrhomboid, smooth, entire or sinuate-toothed: Als. solitary on axillary peduncles; calyx cut into $12-14$ short teeth, concealed by the large bracts; corolla funnelform; tuhe eurved, deep yellow within; limb purple, $11 / 2-2$ in. across, of 5 subrotund obcordate lobes. Trop. W. Africa. B. II. 5013. F.S. 11:l093. R.H. 1863: 251. 1.H. 3:99. F. 1855: 225. J.H. III. 28:35.A greenhouse shrub, producing flowers freely at almost any seasou. Grows iu the open in Florida. Not a climber. Var. alha, Hort. Fls.

2501. Thunbergia grandiflora ( $\times 2 / 5$ ).
white. Var. cærùlea, Hort. Fls. large, intense vielet, with orange throat.
5. chrysops, Hook. Stem elimbing, slightly hairy: Ivs. opposite, petielate, ovate-cordate, angularly toothed: peduncles axillary, selitary, l-fld.: corolla funnelform or campanulate; tube yellow, limb purple, bluish areund the throat. Sierra Leene. B.M1. 4119. F.S. 1:5. P.M. 11:221. F. 1844:193. - Naturally a elimber, hut said to become somewhat erect if grown in a coolhouse.
6. grandiflora, Roxb. Fig. 2501. Stem tall, climbing: lvs. broadly evate, angularly cordate and toethed or lobed, somewhat roughened on both sides, petiolate: fls. solitary or in short, stout racemes in the leaf-axils, bright blue, becoming whitish in the throat; corellatube bell-shaped; limb 3 in . across, of 5 large, spreading reunded lobes. Bengal. B.M. 2366. P.M. 7:291. L.B.C. 4:324. B. 2:76. B.R. 6:495. Gn. 47:1003. 1.H. 42:32. G.C. 111. 9:789.-A very large perennial greenheuse climber; flowers during the summer or autumn. There is also a white-flowered variety.
7. laurifolia, Lindl. ( $T$. Uirrisit, Hook. T. grandiflòra, Wall.). Stem terete, smooth except the youngest,
twining: Ivs. long-petiolate, ovate-obleng to obleng. lanceolate, acuininate, rounded at the base, smooth, entire or slightly teothed: fls. 3 in. acress, pale blue, white or yellow in the throat, borne in axillary whorls or in a raceme in which they are also clustered or whorled; corolla with a wide, oblique trumpet-shaped tube and a lacare 5-lobed limb. India. B.M. $4985 ; 4998$. F.S. 12:1275. Gn. 12, p. 420; 30:563 and p. 293. R.H. 1860, p. 342 . J.H. I11. $28: 345$. Gng. 3:295.-Perennial greenhense climber, flewering profusely in winter. Propagated by cuttings.
8. Mysorénsis, T. Anders. (Hexacéntris Mysorénsis, Wight). Climbing sbrub, with long, slender branches: lrs. opposite, petiolate, oblong-lanceolate, acuminate, entire or somewhat distantly toothed: racemes long, jendulous: fis. yellow, 2 in. across, the tube enclosed by the spathe-like bracts; limb 4-lobed, the upper lip concave, with reflexed side lobes, lower lip of 3 subequal, spreading lobes. India. B.M. 4786. F.S. 8:752. S.M. 2, p. 130.-A tall greenhense climber which flowers, according to treatment, at all seasens.
9. coccinea, Wall. (Hexacéntris coccineu. Nees). A Very tall elimber: stem much branched, 4 -angled: lvs. short-petiolate, variously shaped, the lower broarlly ovate, with a hastate or cordate angled base, the upper ovate, cordate, all angularly toothed or the upper entire: ils in terminal or axillary racemes, $1-3 \mathrm{ft}$. long; bracts large, inflated, as long as the tube; limb scarlet, of 5 refiexed emarginate lobes; throat orange. Autumn and winter. India. B. $11.5124 . \mathrm{L}$ B.C. 12:1195. F.S. $23: 2447$. R.H. 1890, p. 197.

## Meinkich Hasselbring.

THUNIA (Count Thun-Tetsehen, who had an jmpertaut cullection of erehids about the middle of the 19 th century). Orchiddeer. A small genus of which at present ouly 5 species are known. These are tall plants with annual leafy stems terminating in a raceme of showy flewers. The genus was formerly united with Phains, from which it differs by the terminal inflerescence. Sepals and petals similar, spreading; labellum couvolute over the column, spurred, ornamented with several crests consisting of lines of fleslyy hairs: pollinia 8: Als. subtended by large membranous braets.
The species of Thunja occur in northern India, Burma, and in the S. Himalaya regien ascending to a heigbt of $6,000 \mathrm{ft}$. The culture of the Thunias is very simple. They begin growth naturally at the end of February or early ju March. As soon as new gresth is visible the plants should be given new material, consisting of fibrous peat or fern-root and sphagnum mixed with loan and some sand and potsberds for drainage. In their native home the plants are said to be epiphytic, and when treated as terrestrial orchids their native habit may be imitated by setting them well above the pot, which should not be teo large. For the first 4-6 weeks until the young roots have made good grewth, it is necessary to apply water sparingly. Thunias are very rapid-growing orchids and may be liberally supplied with liquid ruanure until the end of the flowering season, which oceurs about the middle of August. Soon after this the leaves fall. The old stems winter in this condition and serve as feod reservoirs for the young growth of the next season, but although they remain on the plant twe years they form ue leaves the secend seasem. During the resting perjod they should be kept in a rather dry atmospbere and be given only enough water to prevent the stems (pseudobulbs) from shriveling. This is one of the few orchids which can be profitably propagated by eutting the old stems into lengtbs of about 6 in . and rooting them in sand or spliagnum. When rooted the young plants may be potted in the usual way. A temperature of $60^{\circ}-65^{\circ}$ is favorable during the growing seasen.
álba, Reichb. f. (Phàius álbus, Lindl.). Fig. 2502. suberect, $2-3 \mathrm{ft}$. , elothed with sheathing, oblong-lan-
ceolate, striate lrs .6 in . long: raceme drooping at the end of the stem, $6-12$-fld.: fls. white, $3-4 \mathrm{in}$. across when fully open; sepals and petals oblong-lanceolate, acuminate; labellum shorter than the segments, not manifestly 3 -lobed, lateral lobes convolute over the columu, apex spreading, wary and finely crisp. The color of the labellum is white veined with purple in the throat, with $5-9$ purple or yellow fringed keels. Wings of the column entire. April-Aug. Burma and S. Himalaya regiou. B.M. 3991. B.R. 24:33. P.M. 5:125. F.C. 3:125. R.H. 1874:450. (it. 47, p. 233.-There are several varieties of this species. The throat of the labellum is often yellow.
Bénsoniæ, Hook. (Phàius Bénsonier, Benth.). Stems fascicled, 1-2 ft. high, leafy: lvs, linear-lanceolate, 8 -10 in. long: fls. like those of T. alba but of a pale purple color; labellum large, 3 -lobed, deep purple in front, with a yellow crested disk, with 6-7 rows of fringe-like goldeu yellow hairs; spur short, slender. India. JulySept. B.M. 5694. G.M. $31: 55$ f.-The most showy species of the gemus.
Marshalliàna, Reichb.f. (Phàus Márshalliw, Nichols.). Closely related to T. alba. Stems somewhat stronger: segments pure white, acumiaate: labellum evidently 3lobed, with the lateral iobes surrounding the colnmn, middle lobe wary and crisp. The color of the labellum is yellowish white, with five orange-fringed keels in the throat: wings of the column toothed. May-Aug. India. R.B. 21:229. Gt. 47, p. 233. S.H. 2, p. 335.-A var. ionophlèbia, Reichb. f., has the center of the labellum bright yellow, paler toward the margin.

## Heinrich Hasselbring.

THORBER, GEORGE (Plate KLI), botanist, naturalist and editor, was boru in Providence, R. I., September 2, 1821, and died at his bome near Passaic, N. J., April 2, 1890. He obtained his early education at the Union Classical aud Eugineering School of his native city. Afterwards he served an apprenticeship as pharmacist, at the termination of which he began business for himself in partuership with Joshua Chapin. During these years he devoted himself eagerly to the study of chemistry and natural sciences in general, but especially to botany, so that at an early age he was already well known as oue of the most prominent botanists of the country. This brought him in close intimacy with Drs, John Torrey, Asa Gray, George Engelmann, Louis Agassiz and other eminent scientists, whose warm frieudship he enjoyed until his death. In 1850 he obtained the appointment as botanist, quartermaster and commissary of the United States Boundary Commission for the survey of the boundary between the United States and Mexico. During the following four years his botanical work consisted mainly in the exploration of the native fora of these hitherto unknown border regions. His herbarium collected there comprised a large number of species new to scientists, some of which have been named after their discoverer, Cereus Thurberi being one of the most important; it is now cultivated for its fruit in the desert regions of North Africa. This historical herbarium formed the subject of Dr. Asa Gray's important work "Plantre Nove Thurherinanæ," puhlished by the Smithsonian Institute. After his return to New York in 1853, Dr. Thurber received an appointment to the United States Assay Office, of which Dr. John Torrey was the assayer. In this position he remained until 1856, when owing to his stroug sympathies with Gen. John C. Fremont, who was the first presidential candidate of the Republican party, he preferred to resign rather than sacrifice his principles. This incident well illustrates bis perfect candor and characteristic, uncompromising spirit. Upon being asked for a contribution to the Buchanan campaign fund, he inquired: "Is this an invitation or a demand?" He was informed that it was a demand, and at once tendered his resignation. During the following three gears he was connected with the Cooper Union and the College of Pharmacy of New York city as lecturer on botany and materia medica. In 1859 he was appointed professor of botany and horticulture at the Michigan Agricultural College, which position he held for four years. Here his wide and varied knowledge, of which he had ready command, his alertness of .brain,
clearness and vigor of speech, humor and enthusiasm made him a successful and ideal teacher. Many of bis students and those who studied under his students are now flling important professional and editorial chairs throughont the country. This position he resigned in 1863 to accept-on the urgent invitation of Orange Judd, the publisher-the editorship of the "American Agriculturist," which he held to within a few years of his death, when failing health prevented him from continuing his ardent labors. In this position he found his most congenial work and the real mission of his life, for which his previous training, his vast


## 2502. Thunia alba. $(X 1 / 4)$

and varied knowledge of natural sciences, arts and industries, his quick perception and rare judgment as to cause and effect had fitted him so admirably. Few men have exerted so powerful and effective an influence on progressive horticulture and agriculture as has Dr. Thurber. During his connection with the "American Agriculturist" he was a most painstaking and serupulous editor and would not accept any article or statement about the correctuess and accuracy of which he was not fully convinced. In order to convince bimself to his own satisfaction of the value of new plants, fruits and vegetables, be established an extensive experimental and botanical garden in connection with his home on the Passaic river, which he named "The Pines," after a clump of tall white pines growing in front of it. The results of these observations and experiments formed the basis of a regular and raluable series of "Notes from the Pines." But in no part of his editorial work has he taken so much delight as in the "Doctor's Talks," and thousands of now gray-haired men and women will long hold in grateful and affectionate remembrance "The Doctor," who through his letters to the "boys and girls" has added so much to the delights of their childhood days. Although Dr. Thurber was never married and had no children, he was always fond of young people and was never happier than when he could teach and assist them in whatever lay in his power. The amount of his writings in the "American Agriculturist" during the twenty-two years of his connection with it was enormous, but as his name but rarely appeared with bis articles it would be impossible to estimate the aggregate, yet whatever he wrote bore the stamp of accuracy of detail and naturalness of style. While in Michigau he revised and partly rewrote Darlington's "Agricultural Botany," which was published under the title of "American Weeds and Useful Plants." He wrote also the entire botany of Appleton's "New American Encyclopedia." An important part of
his contributions to horticultural literature consisted in editing, revising and bringiug out the horticultural and agricultural books of the Orange Judd Company. After the death of Dr. Torrey, he was elected president of the Torrey Botanical Club. He was also president of the New Jersey Horticultural Society; vice-president of the American Pomological Society for New Jersey; ant honorary member of many scientific societies throughout the world. The honorary title of doctor of medicine was conferred upon him by the University

2503. Typical form of Thuya occidentalis ( $\times 1 / 8$ ).

Medical College of New York. During the latter years of his life be suffered severely from chronic rheumatism, which finally resulted in heart degeneration and his death. Personally, Dr. Thurber was one of the most genial of men, gentle, sweet-tempered, with a considerable share of good-natured humor, always ready to help those whom be felt needed assistance, liberal-minded and generous to a fault; but a relentless foe to frands, shams and impostors of every kind.

## F. M. Hexamer.

THUYA (Thya or Thyia, an ancient Greek name for a resinous tree or shrub). Also spelled Thuja or Thaia. Inclulling Biota. Coniferv. Arbonvita. Ornamental evergreen trees of narrow pyramidal habit, with much ramified branches, the branchlets arranged frond-like, tlattenerl and clothed with small scale-like leaves; the fruit is a small strobile or cone not exceeding 1 in. in length. The well-known $T$, occidentrlis is hardy north and aIso T. Japonica. T. giganten and several forms of $T$. orientalis are hardy as far north as Mass. Thuyas are favorites for formal gardens. They are all of regular, symmetrical habit. Their numerous garden forms vary greatly in habit and in color of foliage. For planting as single specimens in parks they are mostly too stiff and formal, but they are well suited for massing on borders of streams or lakes. The most beautiful and the most rapidly growing species is $T$.giganted. Thuyas are well adapted for hedges and wind-breals. They bear pruning well and soon form a dense hedge. They thrive best in somewhat moist, loamy soil and are easily transplanted. Prop. by seeds sown in spring. The varieties, especially those of $T$. occidentulis, are usually prop. by cuttings taken late in summer and kept during the winter in a cool greenhouse or frame; also by grafting on seedling stock in summer or early in spring in the greenhouse. The vars. of T. gigantea and T. orientalis are usmally grafted, since they do not grow readily from cuttings, except the juvenile forms of the Iatter, as var. decussota and Melilensis. Consult Retinispora.

Five species oecur in N. America, E, and Cent. Axia. Resiniferous trees with short horizontal, much ramified branches; the branchlets flattened and fromd-like ar-
ranged: lys. decussate, scale-like, appressed, usually glandular on the back: Hs. monocious, globose, small, terminal on short branchlets, staminate yellow, consisting of usnally 6 opposite stamens, each with $2-4$ anthercells; pistillate consisting of $8-12$ scales in opposite pairs, of which only the middle ones. or in the section Biota the lower ones, are fertile, earh scale with 2 ofules inside at the base: strobiles globoseovate to oval-oblong, with 2 seeds under the fertile scales. The wood is light and soft, brittle and rather coarse-grained, durable in the soil; it is much used for construction, eabinetmaking and in cooperage. $T$. occidentalis contains a volatile oil and thujin and is sometimes used medicinally.
A. Cones pendulous, with thin scales, apiculate below the upex: seeds winged, compressed: brunchlets ramified more or less horizontally, with a distinct upper and under. side.
B. Li's. yellowish or blaish 2504. Seedling ol Thuya green beneath : usually 2 occidentalis ( $\times 1 / 2$ ). puirs of fertile scales.
occidentalis, Linn. Common Arborvite. Erroneously but commonly called White Cedar (which is properly Chamæeyparis). Figs. 2503-5. Tree, attaining 60 ft . and more, with short horizontal brancbes ascending at the end and forming a narrow pyramidal, rather compact head: lss ovate, acute, usually glandular, bright green abore, yellowish green beneath, chauging in winter usually to dull brownish green: cones oval to ovaloblong, about $1 / 2 \mathrm{in}$. long, brownish yellow: seeds 1/6 in. loug. New Brunswick to Manitoba, south to N. C. and I11. S.S. 10:532. - Much used for telegraph poles. A great number of garden forms, about 50, are in eultivation. The best known are the following: Var. alba, Nichols. (var, albo-splea, Beissn. Var. Oueen Victoria, Hort.). Tips of young branchlets white, Var, argentea, Carr. (var. albo-lariequito, Beissn.). Branchlets Fariegated silvery white. Var. aurea, Nicbols. Broad bushy form, with deep yellow foliage; also var. Burrowit, Douglas Gokden and Meehan's Golden are forms with yellow foliage. Siee also var. lutea. Var. aureovariegata, Beissn. (var, alura maculata, Hort.). Foliage variegated with golden yellow. Var, conica dénsa,

2505. The Arborvitæ-Thuya occidentalis. Nearly full size.

Hort. "Dense conical form." Var. Columbia, Hort. "Strong habit; foliage broad, with a beautiful silvery variegation." Var. cristata, Carr. Irregular dwarf, pyramidal form with stont crowded, often recurved branchlets. Var. Douglasii, Rebder. Bushy form, with
long and slender sparingly ramified branches nodding at the tips, partly 4 -angled and clothed with sharply pointed leares. A very distinct form, somewhat similar to Chamecyparis pisifera, var. filiferu. Var. dumósa, Hort. (var. plicatet dumosa, Gord.). Dwart and dense form of somewhat irregular habit; in foliage similar to var. plicata. Var. Ellwangeriana, Beissn. (var. Tom Thumb). Fig. 2506 . A low, broad pyramid, with slender branches clothed with two kinds of foliage, adult lvs, and primordial, acicular spreading lvs.; it is an intermediate form between the var. ericoides and the type. R.H. 1869, p. $350 ; 1880$, p. 93 . Var. Ellwangeriana aùrea, Späth. Like the preceding but with yellow foliage. Yar. ericoldes, Beissn. \& Hochst. (Retinispora dùbia, Carr, R. ericoldes, Hort., not Zuce.). Fig. 2507. Dwarf, globose or broadly pyramidal forn, with slender branchlets clothed with needle-shaped, soft, spreading lvs., dull green above, grayish greeu beneath and assuming a brownish tint in winter. R.H. 1880, p. 93, 94. A juvenile form. See, also, Retinispora. Var. globòsa, Beissn. (var. globuldris, Mort. Var. compácta globòsa, Hort. Var. Fróebeli, Hort.). Dwarf globose form, with slender branches and briglit green foliage. Var. Hárrisoni, Hort. "A neat little tree with the entire foliage tipped almost pure white." Var. Hóveyi, Veitch. Dwarf, dense, ovate-globose form with bright green foliage. Var. intermedia, Hort. "Of dwarf, compact habit." Var. Little Gem, Hort. Very dwarf, dark green form, growing broader than high. Var. lùtea, Veiteh. (var. elegantíssimat. Hort. Var. George leabody's Golden). Pyramidal form, with bright yellow foliage. Var. nàa, Carr. (T, plicata, var. compácta, Beissn.). Dwarf', compact globose form; foliage similar to var. plicata. Var, pendula, Gord. With the branches bending downward and the branchlets more tufted. Var, plicàta, Mast. (T. plicita, Parl., not Don. T. Waredna, Booth). Pyramidal tree, flarker and deuser than the type: branchlets short, rigid, much flattened: foliage distinetly glandular, brownish dark green above, hluish green beneath. G.C. 111. $21: 258$. Said to have been introdnced from N. W. America, but not found wild there. Var. pumila, Beissn. Dwarf, dense form with dark green foliage. Var. pygmàa, Hort. (T. plicdta, var. pygmoेa, Beissn.). Similar to var. dumosa, but still dwarfer, with bluisb green foliage. Var. Rèidii, Hort. "Broad, dwarf form with small lvs.. Well retaining its color during the winter." Yar. Spæthii, P. Smith. Peculiar form with two kinds

2506. Thuya occidentalis, var. Ellwangeriana $(\times 1 / 3)$.
of foliage; the younger and lower branchlets with spreading acicular lvs. like those of var. ericoides, but thicker in texture; the upper branchlets slender and sparingly ramified mnch like those of var. Douglasi.

Gt. 42, p. 539. Var, Vervæneàna, Henk. \& Hochst. Of smaller aud denser habit than the type: branchlets slenderer, with yellowish foliage, bronzy in winter. Var. Wagneriana, Beissn. (var, lérsmunni, Hort.). Globose form, retaining its bright green color during the


## 2507. Thuya occidentalis, var. ericoides ( $\times 1 / 3$ ).

winter. M.D.C. 1895:193. Var. Wareàna, Beissn, (var. robústa, Carr. T. Caucásica, Tatárica and Sibirica, Hort.). Pyramidal tree, lower and denser than the type, with stouter branchlets; foliage bright green. Very desirable form. Var. Woodwardii, Hort. "Dense, glohose form, with deep green foliage."

BB. Li's. with whitish markings beneath.
gigantèa, Nntt. (T. plicàta, Don. T. Ménziesii, Dougl. T. Lobbi, Hort.). Tall tree, attaining $200 \mathrm{ft} .$, with short horizontal branches often pendulous at the ends, forming a narrow pyramid: trunk with a much bnttressed base and clothed with cinnamon-red lark: branchlets slender, regularly and closely set: lvs. bright green and glossy above, dark green beneath and with whitish triangular spots: Ivs, of vigorous shoots ovate, acuminate, glandular, of the lateral branchlets acute and scarcely glandular: cones eylindric-ovoid, little over $1 / 2 \mathrm{in}$. long; scales 8-10, elliptic-oblong, nsually the 3 middle pairs fertile; seeds winged, notched at the apex. Alaska to northern Calif. and Mont. S.S. 10:533. G.C. 111. 21:215. G.F. 4:116. Var. aùrea, Beissn. With yelJowish foliage. Var. grácilis, Beissn. Smaller tree, with more slender branches and smaller foliage of paler green.

Japonica, Maxim. (T. Stóndishii, Carr. T. gigantèa, var. Japónica, Franch. \& Sav. Thuyopsis Ständishi, Gord.). Similar to the preceding but lower, usnally only $20-30 \mathrm{ft}$. high: branchlets more irregularly set, thicker and less compressed: lus, ovate, obtusish, thickish, lighter green above, darker beneath and with Whitish, triangular spots: cones oral, little over $1 / 3 \mathrm{in}$. long: scales 8, oval. usually the two middle pairs fertile. Japan. G.C. I1I. 21:258. R.H. 1896:160.
AA. Cones upright, the thickened scales with a prominent horn-like process below the apex: seeds wingless: branchlets ramified in a vertical plane with both sides alike. (Biota.)
orientalis, Linn. (Biota orientalis, Endl.). Pyramislal or bushy tree, attaining 25 ft ., with spreading and ascending branches: branchlets thin: Irs. rhombicovate, acnte, bright green, with a small gland on the back: cones globose-orate, $1 / 2-1$ in. long; usually 6 orate seales, each with a horn-like process, the uppermost pair sterile. Fronı Persia to E. Asia, in Japan probably only cult. There are many garden forms, of which the following are the best known: Var. athrotaxoldes, Carr. Dwarf, irregularly and not Irond-like branching; branchlets nearly quadrangular, slender, dark green. R.H. 1861, p. 230. Var, aùrea, Hort. Low,
compact, globose shrub, golden yellow in spring, changing to bright green. Var. aurea conspícua, Hort. More erect, the intense golden foliage partially suffused with green. Var, aùrea nàna, Hort. Golden yellow foliage and very dwarf and compact habit. Var. aureo-variegata, Hort. Of pyramidal habit: branchlets variegated with yellow. Var. decussàta, Beissn. \& Hochst. (Retinispora juniperokdes, Carr. Chamecyparis decussata, Hort.). Fig. 2094. Dwarf, globose form: lvs. linearlanceolate, spreading, stiff, acute, bluish green. A jurenile form; see, also, Retinisport. V'ar. elegantissima, Gord. Uf low, columnar habit, briglit yellow in spring, yellowish green afterwards. Var. falcata, Lindl. Of dense, pyramidal growth, deep green, the horns of the strobiles curved backwards. Var. filiformis stricta, Hort. Ronnd-headed, dwarf bush, with upriglt, threadlike branches. Var. grácilis, Carr. Of pyramidal, somewhat loose and slender habit, with bright green foliage. Var. freneloldes and var. Nepalénsis are hardly different from this. Var. Moldensis, Veitch. Of columnar pyramidal, somewhat irregular growth: lvs. acicular, bluish green, sometimes passing into the normal form. Intermediate between the var. decussuta and the type. Var. péndula, larl. (var. filiformis, Henk. \&Hochst. T. péndula, Lamb. T. filiformis, Lindl.\}. Branches pendulous, thread-like, sparingly ramified, and with the lys. wide apart and acuminate. Var. funi-
spreading and often nodding at the ends: branchlets one-fifth to one-fourth in. broad: liss, glossy green above, marked with a broad white band veneath, those of the upper and under side obovate-oblong, obtuse, adnate except at the apex, the lateral ones spreading, ovate-lanceolate and curved (hatchet-shaped), obtusish: scales of staminate fls. 6-10, much thickened at the obtusely pointed aper, the mirldle ones fertile and with $3-5$-winged seeds under each scale. Jalan. S. Z. 2:119, 120. G.C. 11. 18:555. - Var. nàna, Sieb. \& Zuce. (T. latevirens, Lindl.). Dwarf form, with more slender and narrower branchlets of a lighter green. Var. variegàta, Fortmne. Tips of branchlets creamy white.
T. boredlis, Hort. = Chamæcyparis Nutkaensis.-T. Standishi. Gord. =Thuja Japoniea,

Alfred Refder.
THYME. See Thymus.

## THYME, WATER, See Elodea.

THYMUS (classical name of doubtful origin, perhaps from the Greek for incense). Labidto. Thyme. Probably about 50 species, although more hase been described, all natives of the Old World and chiefly of the Nediterranean region. They are low, half-shrubby perennials, although usualls herbaceous or nearly so in the North. Lis. sruall, opposite, simple and mostiy en-

2508. Creeping Thyme - Thymus Serpyllum $(\times 1 / 2)$.
culàta, Hort., and var. intermèdia, Carr., are intermediate forms between this rar, and the type. Var. pyramidalis, Endl. Of pyramidal habit, with bright green foliage; one of the tallest and hardiest rars. Var. semperauréscens, Veitch. Dwarf, globose; the golden hue of the foliage remains throughout the whole year. Var. Sièboldi, Endl. (var. Japónica, Sieb., var. ndna, Carr. var. Zuccarinidna, Veitch. Var. compcicta, Beissn.). Globose, compact, low form, bright green.

Alfred Rehder.
THUYOPSIS (Greek, Thuya-like). Coniferc. Evergreen ornamental pyramidal tree or shrub, with spreading branches, the branchlets arranged in a frond-like fashion, much flattened and clothed with scale-like glossy green foliage. Thuyopsis is one of the most beautiful Japaneso conifers, and is well adapted for planting as a single specimen on the lawn wherever it can be grown successfnlly. It is hardy as far north as Mass., but usnally suffers from summer drought. It thrives best in a sheltered and shaded position and in moist loany soil, and seems to grow to perfection only in cool and moist climates. Prop. by seeds, also by cuttings and by grafting like Thuya, Plants raised from cuttings usually grow into busby, round-headed plants, Plants grafted on Thuya are said to lee short-lired. Seedlings are therefore to be preferred. The genus contains only one Japaneso species, closely allied to Thuya and chiefly distinguished by the $4-5$ ovales under each scale. The yellowish white, close and straight-grained wood is very dorable and is used in Japan in boat- and bridge-bujlding.
dolobràta, Sieb. \& Zuce. (Thiuya dolobrita, Linn.). Pyramidal tree, attaining 50 ft , or sometimes shrubluy: branchlets irregularly.whorled or scattered, borizontally
tire. The calyx is ovate or ovoid, hairy in the throat, 5 -toothed and 2 -lipped, about 10 -13-nerved, usually declined in fruit: corolla small, 2-lipped, the upper lip 2 -toothed and erect, the lower one 3 -cleft and spreading: stamens 4 , mostly in 2 pairs and usually exserted. The flowers are mostly in shades of blue or purple, but are sometimes white; they are borne in whorls, forming a terminal spike or head-jike cluster. Thymes are erect or prostrate plants with strong mint-like odor. Most of the species are grown as a ground cover on banks, in borders or rockwork. The creeping or prostrate habit, ability to persist in dry places and poor soils, and the colored or woolly foliage of some species make them adaptable to a rariety of uses. The common $T$. Serpylum is evergreen. T. vulgaris is the Thyme of sweet herb gardens, being prized in cookery. All Thymes are easily propagated by means of division, althongh seedlings may sometimes be used to renew plantations of some of the species, particularly of $T$. iulgaris. Sereral names occur in American catalogues, all of which seem to be referable to three species, one of which is not a true Thymus. See Sage, where general culture of such berbs is given.
vulgàris, Linn. Common Thyme. Plant erect, the base sometimes decumbent, I-2 ft., the branches stiff and woody, usually white-pubescent: lvs. sessile, linear to ovate-lanceolate, acute, the margins more or less revolute: fls, small, lilac or purplish, in terminal interrupted spikes. S. Eir.-An old garden plant, being grown as a sweet herb. The leaves and sboots are used for seasoning. It is well to renew the plants from seeds every two or three years. There are varieties with broad and narrow leaves.
Serpýllum, Linn. Fig. 2508. Nother of Thime. Creeping Thyme. Creepiag, wiry-stemmed, slightly pu-
besceut: ivs, small, seldom $1 / 2 \mathrm{in}$. long, narrow-oblong to oval to nearly ovate, obtuse, narrowed into a distinct petiole, the margins sometimes slightly revolute: fls. minute, lilac, much shorter than the lvs., in axillary whorls. Temperate parts of Europe, Asia and N. Africa. - A cominon plant in old gardens, prized as an evergreeu edging and as cover for rockwork and waste places; also run wild. The leaves are sometimes used for seasoning, as those of T. vulgaris are. The nodes are short, making it a very leafy plant. Variable. Some of the cult. forms are: var. citriodorus, Hort. ( $T$. citriodorus, Schreh.), the Lemon Thyme, has small, strong-veined lvs. and a pronounced lemon odor. Var. montànus, Benth. ( $T$. montimus, Waldst. \& Kit. $T$. Chamedrys, Fries), has larger Ivs, and longer, somewhat aseending branches. Var. lanuginosus, Hort. ( $T$. lanugindsus, Schk.), is a form with small roundish lvs., and a pubescent-gray covering, making it a handsome plant for edgings. Yar. aùreus, Hort. Foliage golden, particularly in spring. Var. argenteus, Hort. Lvs. variegated with silvery white. Var. variegatus, Hort. White-variegated lvs. Var. coccineus, Hort. Fls. numerous, scarlet. There is a form with white fls. (see Gt. 45, p. 108). All forms are hardy.

Corsicus, Pers., is properly Calamintha Corrsica, Benth. Prostrate, small, glabrous or nearly so: Ivs. very small, 2 lines or less long, nearly orbicular, petioled: fls. small, light purple, in whorls, the floral leaves similar to the others. Corsica. - A good little plant for edgings, with very aromatic herbage.
L. H. B.

THYRSACANTHUS (Greek, thyrse and flower). Acanthàces. About 20 species of tropical American herbs or shrubs with opposite, often large leaves and red, tubular flowers in fascicles which are arranged in a terminal simple or panicled thyrse. Calyx short, 5parted; corolla long-tubular, the limb 4 -cut, slightly 2 lipped; stamens 2; staminodia 2, small, at the base of the filaments: capsule oblong; seeds 4 or fewer by abortion.
Schomburgkiànus, Nees (T, rùtilans, Planch.). Fig. 2509. A shrubby plant, becoming 6 ft . high: lvs, ob-long-lanceolate, nearly sessile : racemes $8-10 \mathrm{in}$. or even 3 ft . long from the upper axils, slender, drooping: fls. tubular, red, about $11 / 2 \mathrm{in}$. long, pendulous. Dec.March. Colombia. B.M. 4851 . R H. 185\%:160. Gn. 42, p. 482. F.S. 7:732.
F. W. Barclay.

Thyrsacanthus Schomburgkianus is a fine old greenhouse favorite which has of recent years fallen into undeserved neglect. It deserves a place in every good general collection. It is chiefly admired for its um-brella-like habit and pendulous grace of its long sprays of slender, red, tubular flowers. Like many other acanthads, it becomes leggy and weedy in old plants, even if cut back severely. Hence, plants are rarely kept after the second season. The culture of Thyrsacanthus is easy. It is an ideal plant for a general collection, as it requires no special treatment. Some English writers advise a stove temperature, but the undersigned has grown it for many years in a coolhouse. Ordinary potting soil such as suits geraniums will do for Thyrsacanthns. It flowers in winter and remains in bloom a long time. Cuttings may he made at any time in early spring and will produce flowering plants $2-21 / 2 \mathrm{ft}$. high the first season. After flowering, they shonld be cut back severely. It is not desirable to have more than one plant in a pot, nor shonid the young plants be pinched the first season, as the umbrella form is preferable to that of a compact, much-branched hush. The pendnlous habit of Thyrsacanthus bas suggested to some gardeners the use of this plant for hanging baskets and brackets.

Robert Shore.
THYRSOSTACHYS (Greek, thyrse and spike). Gramince. T. Siamensis is a tall Indian bamboo which has been offered in southern California since the article Bamboo was written for this work. As the plant is not included in Mitford's Bamboo Garden, its horticultural status is uncertain. Franceschi writes that the plant is rather tender at Santa Barbara. The genus belongs to a subtribe of bamboos of which Dendrocalamus is the type. This subtribe is distinguished by baving 6 sta-
mens, a 2-ketled palea and the pericarp free from the seed. For generic characters of Thyrsostachys, see the Flora of British India 7:397 (1897).
Tbyrsostachys is a genus of 2 species of arborescent bamboos native to Upper Burma and Siam. The stemsheaths are long, thin and persistent, with a long, narrow blade. The lvs, are small or moderate-sized. As nearly as may be judged from the only available description, this species could be inserted at the bottom of page 128 of this work, being distinguished from species 12 and 13 by the narrowness of the lvs.

Siaménsis, Gamble. A tender, deciduous, "giant bam. boo," with very graceful tufted stems $25-30 \mathrm{ft}$. high and $11 / 2-3 \mathrm{in}$. thick. Stem sheaths waved and truncate at the top, $9-11 \times 41 / 2-8$ in. ; auricles short-triangular: blade narrowly triangular: lvs. small, narrow, linear, 3-6 $x^{1 / 3-1 / 2}$ in. Siam.
W. M.

2509. Thyrsacanthus Schomburgkianus ( $\times 1 / 2$ ).

TIARELLA (Latin, a little tiara or turban; in reference to the form of the pistil). Saxifragdcea. False Mitrefort. A genus of 6 species of slender perennial berbs, of which $\&$ are from North America, 1 from Japan and 1 from the Himalayas. Low-growing plants, with most of the leaves radical and long-petioled, simple or serrate, lobed or even 3 -foliolate, with white flowers in terminal, simple or compound racemes: calyx-tube bat slightly adnate to the base of the ovary; petals 5 , entire; stamens 10, long: capsule superior, compressed, with 2 unequal lobes.

> A. Lers. simple.
> B. Petals oblong.
cordifòlia, Linn. Foas Flower. Fig. 2510. A bandsome native perennial, forming a tufted mass, 6-12 in. high, of broadly ovate, lobed and serrate leaves and simple, erect racemes of white flowers borne well above the foliage in May. Fls. about $1 / 4 \mathrm{in}$. across; petals oblong, clawed, somewhat exceeding the white calyx-lobes. In rich, moist woodland, Nova Scotia to Ontario, south to Ga. Gn. 22, p. 21; 32, p. 511 ; $53, \mathrm{p}$. 456; 55, p. 40; V. 11:35.-An elegant plant well worthy of general cultivation. It is a lover of cool, shaded places and of rich, moist soil. It will, however, do well in ordinary soil and flower freely in a balf-shaded place, but the varied leaf-markings of bronzy red and other signs of luxuriance are not brought out to their fullest

## TIGRIDIA

extent except with moisture, coolness and a fairly rich soil. The plant forces well aud easily in a coolhouse for early spring flowering. It is tenacious of life and generally eass to manage.

2510. Tiarella cordifolia ( $\times 1 / 4$ ).

Bb. Petals filiform, inconspicuous.
unifoliàta, Hook. Hardy perennial: Irs. thin, rounded or triangular, 3-5-lolied, the lobes crenate-toothed; stem1vs. usually only 1, rarely 2-3: panicle loose; petals small. W. Amer, - The lobing of the lvs., according to Bot. of Calif., varies so that it may pass into the nest species.

## AA. Levs. S-foliolate.

trifoliàta, Linn. Resembling T. unifoliafa except in having 3 -foliolate lvs. Ore. to Alaska. Also northwestern Asia. F. W. Barclay.

TIBOUCHİNA (native name in Guiana). Melasto. micer. A genus of about 125 species, native to the wammer parts of North and South America but mainly from Brazil. Shrubs, berbs or climbers, with usually large ovate or oblong, 3-7-nerved liss and purple, rose, violet or rarely white fls., either solitary or in terminal panicles. Fls. 5 -merous, rarely 4 - or 8 -merous; calyx ovoid or bell-shaped, the lohes as long as or longer than the tube; petals oborate, eutire or retuse; stamens twice the number of the petals, nearly equal or alternately unequal: ovary free: fr, a capsule, 5-1-valved. D.C. Mon. Phaner. vol. 7.
semidecàndra, Cogn. (Lasiándra macrinlha, Linden \& Seem. Pleròma macruthum, Hook.). Fig.2511. A tender shrub: lvs, avate or oblong-ovate, 2-6 in. long, round at the hase, short-petioled, densely setose abore, Fillous beueath, not foreolate, 5-nerved or 3 -nerred: braets broadly suborbicular, somewhat rounded at the apex and shortly apienlate, margin not translucent: fls, reddish parple to violet, often 5 in . across, solitary and terminal or 1 fl , terminal and 2 in the upper axils on the branchlet; stamens purple; style setulose. Brazil. B.M. 5721 ; $4+12$ (as P. K"unthiancm). F.S. $23: 2430$. Gn. 44:921. F. 1868:193. 1.H. 16:594.

Var. floribunda is more suited to pot eulture in pots and flowers more freely when small than the tjpe. Lasiándra, or Pleroma spléndens, Hort., should be compared with this. T. semidecandra is a plant of easy culture that has heen bighly praised by several connoisseurs. Cuttings struck in April will give bushy plants for fall and wiuter blooming. Handsome specimens may be liad by keeping the same plant two or three years, training it to wires or stakes in a coolhouse where it has plenty of root room. The flowers
last but a day or so, but new ones open up every day and the flowering season lasts for several weeks. Plants may also lie used for summer bedding. They are seldom out of bloom. The species is much esteemed in Florida, where it makes a show shrub 8 tt. high. It endures a few degrees of frost with impunity, and even if cut down it sprouts readily.
élegans, Cogn. (Plròma blegans, Gardn.) Tender shrub, $3-6 \mathrm{ft}$, high: IFs, rigis, fragile, oblong or ovateohlong, 3 -nerved: fls. purple, $11 / 2$ in. across; ealyx more or less armed with rigid spreading bristles which are thickened at the base. Brazil. B.M1. 4262. P.M. 15:27. F.S. 12:1212 (as Lasiandra elegans). - Once cult. by John Saul.
F. W. Barclat.

TICKSEED is Coreopsis.

## TICK TREFOIL. Refer to Desmodium.

TIEDEMÁNNIA rigida, Coult. \& Rose, is a hardy native, white-flowered swamp herb, growing $2-5 \mathrm{ft}$. high from clustered tubers. It has pinnate los. with 3-9 leaflets. This was offered in $1890-91$ by a collector of North Carolina plants, but is probably not in cultiration. For a fuller account, see Coulter and Rose's monograph of the North American Uinbelliferw (contrib. U. S. Nat. Herb. rol. 7, No. 1, p. 194), 1900; also Gray's Manual, and Britton and Brown's Illustrated Flora.

TI-ES. Lucuma Rivicoa.

## TIGER FLOWER. Tigridia.

TIGER LILY. Lilium tigrinum.
TIGER'S JAW. Catalogize name for Mesembryanthemum tigrinum.

TIGRIDIA (tiger-like; referring to the peculiarly marked flowers). Iridacew. Eight or ten species of cormous plants ranging from Mexieo to Peru and Chile,

2511. Tibouchina semidecandra $(\times 1 / 3)$.
and making rery showy summer-blooming plants. Bulhs tunicated. Stem erect, unbranched, a few inches to $21 / 2 \mathrm{ft}$, tall, with a few narrow plicate leaves at the
base and 2 or 3 smaller ones higher pp: spathes 1 or 2, leaf-like, each bearing one or few blussoms. Flowers in shades of yellow, orange or purplish, variously spotted, often very showy; perianth wide-spreading, with no tube, the segments 6 , in two dissimilar series, connivent into a broad cup at the hase; stamens 3 , the filaments united into a long cylindrical tube including the style; pistil with 3-loculed ovary, long style with three 2 -parted branches. Tigridia Pavonia, from southern Mexico, was in cultivation in Europe in the sixteenth century. L'Obel described it in 1576. The younger Linnæus referred it to the genus Ferraria, and some of the Tigridias are get cultivated under that name. Ferraria, however, is a South African genus, and all the parts of the perianth are nearly equal. T. Paronia is cultivated in many forms, and is the only common species in gardens. The flowers of all Tigridias are fugitive, lasting only for a day. See Baker, 1ridea, 67 (1892).

Tigridias are tender "bulbs" requiring the treatment given Gladiolus. Plant in well-prepared soil when settled weather comes, 2 or 3 inches deep and 4 to 8 inches apart. The principal hooming period is July and August. Allow the corms to remain in the gronnd until danger of frost approaches, then store in a dry place where dablias or gladioli will keep. Sce that the corms are dry before being placed in storage. Prop. by cormels and seeds. Best colors are got in warm weather.
A. Fis. large (often $\& \mathrm{in}$. or more across): the teco rows of perianth-segments very dissimitur: stigmas decurrent. (Tigridia proper.)
Pavònia, Ker-Gawl. Tiger flower. Shell-flower. Fig. 2512. Erect, usnally unbranched, $11 / 2$ to $21 / 2 \mathrm{ft}$. tall, glabrons, with several sword-shaped, strongly plicate long-pointed leaves, the spathe-leaves 3-5 in. long: fls. produced in succession through the warm season, very large and showy, in some forms 5 and 6 in .across, oldly marked, with a cop-shaped or sancer-shaped center and wide-sprealing limb formed by the obovate outer segments which are bright red on the limb, and purple, yellow or red-spottert on the claw; inner segments panduriform (fiddle-shaped), abont half the length of the outer ones, the blade ovate-acute, orangeyellow and copiously spotted. Mex. and Guatemala. B.M. 532 (as Fervaria Tigridia). 1.H. 38:142. Var. conchiflora, Hort. ('T. conchiflora, Sweet), has bright yellow flowers. Var. Wátkinsoni, Hort. (var. aùrea, Hort. T. conchiflare 1Fátkinsoni, Paxt.). Raised from seeds of var. conchiflora pollenized by $T$. Pavonia, before 1840, by J. Horsefield, Manchester, England. Horsefield is quoted as follows by Paxton: "In habit and strength this hybrid resembles T. Paroma, the male parent; but in color and the markings of the flower it resembles $T$. conchiflora, the female parent; the large outer sepals, however, are of a very deep yellow, inclining to orange, and sometimes elegantly streaked with red lines; whilst the spotted center equals, if not surpasses, the brilliancy of either of the species. One of its greatest merits is being so free a bloomer, and as easy to cultivate and increase as $T$. Pavonin, whereas T. conchiflora is rather delicate, increases slowly, and is easily lost." Dutch hulb dealers still offer it. P.M. 14:51. Var. álba. Hort., bas white fls., but has red spots in the throat. Var. alba immaculàta, Hort., is a spotless white variety, a sport from var. albet. Gn. 49, p. 361. Var. flàva, Hort., has pale Fellow fls, with red-spotted center. Gu. 50:1074. Var. Canariénsis, Hort., is also a pale yellow-fld. form, but named as if an inhabitant of the Canaries. Var, lutea immaculàta, Hort., has pure yellow spotless Howers. Var. rosea, Hort., has rose-colored fis., with yellow variegated center. Var. lilàcea, Hort., has lilac fls., with spotted center. Gn. 45:955. Var. speciosa, Hort., is a partially dwarf form with deeper red color, the interior of the cup being similar in color to the limb. Described in 1843. Var. grandiflora, Hort., has flowers much like those of $T$. Pavonia itself except that they are larger and brighter colored. Gn. '45, p. 263. Identical with this, or suhtypes of it, are the forms known as Wheeleri, coccinea, splendens. Most of the marked departures in colors of Tigridia Pavonia are rccent. In catalogues the abore names often appear as if they were species names.

Pringlei, Wats. Distinguished by Sereno Watson, the antbor of the species, as follows: "Very closely related to T. Pavonia, and if color alone were to decide, it might be considered a variety of it, though differing markedly even in that respect from the old species. The base of the sepals is blotched (rather than spotted) with crimson, with a border of orange, the reflexed blale being of a bright scarlet-red. The petals have the base blotched and coarsely spotted with crimson, with a well-defined, deeper-colored, brownish mar-
$\qquad$


AA. Fls. relutively smull: the tero rotes of segments differing less in sizu: stigm, cupitate, or at least not strongly lecurrent. S'ubgenus Beatomia.
buccifera, Wats. About 1 ft . high, slender, branching, glaucous: lvs, very narrow, strongly plicate: fl. 2 in. across, the cup pale greenish yellow, dotted with purple, the obovate obtuse blade of the outer segments light purple; inner segments "folded together in such a manner as to form a sunken longitudinal tube down the center, the dilated sides at the outer end of the tube approaching each other in the form of two cheeklike prominences, - these are colored white, purple and yellow, while the small rounded terminal blade is a deep purple." Mts. of Jolisco, Mex. G.F. 2:413.-Offered in 1889 by Horsford.
T. aìrea, Hort., is Cypella plumbea, but it is not in the Ameriean trade. See page 429.-T. Houttei, Roezl, is Hydrotania Van-Houttei, Nee page $787 .-T$, Meleàgris, Hort., is also a Hy. drotania (H. Melengris, Lindi.), but is not in the American trade. B.R. 38:39.-T. violacea, Schierle. One of the Beatonia section: slender, narrow-lvd.: fls. 2 in. across, violet, spotted at the base; inner segments swall, cusp-pointed. Mex. B.M. 7356.
L. H. B.

TILIA (the classical Latin name). Tiliècect. Lime. Linden. Basswood. Whitewoon. Trees distributed generally throughout the northern temperate zone, with soft. light, white or light-colored wood, tourh fibrous inner bark, serrate alteruate petiolate, mostly corlate lrs. and caducous stipules: inflorescence cymose, the peduncle attached to, or axinate with, for about half its length, a ligulate menbranaceous bract: fls, small, yellowish; sepals 5 ; petals 5 ; stameus many, with long tilaments nectarifcrous: fr. globose, nut-like. In some species, small petaloid scales are found among the stamens.

The soft white wood of several species is in great demand for making fruit, honey and other light packages, the facility with which the wood is cut into reneers rendering it admirable for such use. The fibrous inner bark is used as a tying ma-

2513. A young Linden tree, five or six years old, terial and in the manufacture of Russian bass or bast mats. Exteusively planted as an ornamental tree and for bee pasture. As a source of honey supply perhaps no other plant excels it, as under favorable conditions the nectar sometimes frips from the flowers in a shower.

Nearly all the species are of rapid growth and not very particular as to soil. Propagated by seeds, layers or grafting. In layering, it is usual to twist the branch layered before covering it. The method known as "stooling" is also employed. In order to effect this a tree is cut close to the ground and the "stools" or suckers are banked up with earth until they root, when they are severed from the old stump and planted in the narsery rows. Rare varjeties are usually increased by budding or grafting.

Much confusion exists in the trade names, especially in the European varieties. This is no doubt largely tue to the fact that at least three species have been sent to this country under the name of $T$. Europara.
alba, 1, 3, 4.
Americana, 6, 7.
argentea, 3.
aurea, 9 :
Oarolininana, 7.
cordata, 12.
dasystyla, 10.
Europipa, 9, 11, 12.
grandifolia, 9.
heterophylla, 4
laciniata, 9.

## index.

macrophylla, 4, 7 . Mandshurica. 2. microphylla, 12. Miqueliana, 5. Moltkei, 7. Mongolica, 8 . parvifolia. 12. pendula, $1,7$. petiolaris, 1. platyphyllos, 9. pubescens, 6 .
pyramidalis, $3,9$. rubra, 9. Sibirica, 12. spectabilis, 3. sulphurea, 9. tomentosa, 3 . nlmifolia, 12. vitifolia, 9 . vulgaris, 11.
A. Fle. with petaloid seales at the base of petuls: petuls upright, longer thenn stamens.
B. Li's. ulitish tomentose bereath. C. Fr. with 5 furrows.
D. C'ymes frw-fld.: fr. with no cavity at the base.......... 1. petiolaris
ND. Cymes marly-fld., dense: fr. ueith a carity at the insertion of the pedicel: l's. large.... 2. Mandshurica
ce. Fr. without furrotes.
D. Statare of lrs. ardicular, abruptly acuminute: fr. slightly ribued.............. 3. tomentosa
DD, Shape of les. orate, grardatly acuminate
E. W'inter-buds glabrous: les. broadly ouate: fr. not ribbrd
4. heterophylla
EE. Irinter-buds probescent: lis. oiate: fir slightly ribbed at base............ 5. Miqueliana
BB. Le's. green beneath or glawcous. and glabrous
C. L'uder side of tes. pubescent at lewst when young........
cc. Thider side of les. glabrous.
D. The les. large, serrate and abruptly acuminate........
DD. The lr's. small, usually 3- Americana lobed, long-cruspidate ......
AA. Fls. without petaloid scales: petals
spreading, shorter than stamens.
B. Lers. pubescent beneath: fr. 5-or. 4-ribbed.
9. platyphyllos
BB. Les, glabrous beneath, except
tufts in the axils of the reins:
fr. without ribs.
c, Under sinte of lus, green.
D. Brunches bright yellow or red in winter: les. very glossy ubover, rather leathery ..... broetn: lis. thin, slightly glossy...........................11. vulgaris
cC. Under side of les. gleucous.... 12. ulmifolia

1. petiolàris, DC. (T. Americina, var. pémelula, Hort. T. argéntea, var. péndule, Hort. 'T. cilba, var. péndula, Hort. $T$. péudula, Hort.). Silver Linden. Weeping Linden. A medium-sized species with slender somewhat pendulous branches: lis. pale green above, silsery and finely tomentose underneath, 3-5 in. long; petiole slender, as long as the blade. July. E. Europe. B.M. 6737. Gng. 5:210.-An elegant species and one of the hest of the Europeau kinds, holding its foliage throughout the season.
2. Mandshùrica, Rupr. \& Maxim. Tree, attaining 50 ft ., with spreading, often somewhat pendulous branches: Ivs. large, $5-8 \mathrm{in}$. long, orbicular to broadly ovate, cordate or truncate at the base, rather coarsely and remotely serrate with spreading teeth: floral bract adnate almost to the base of peduncle: fr. globose, thickshelled, with 5 furrows and a slight cavity at the insertion of the pedicel. E. Asia, - A varjety has the lis. edged with yellow or a lighter green.
3. tomentòsa, Moench \{T. argéntea, DC. T. álba, Waldst. \& Kit., and probably Ait. 'I. álba, T. álba, var. spectóbilis and $T$. diba, var. pyramidalis, Hort.). White or Silver Linden. This is the larger "White Lime " of Europe. Tree, 40 ft . high with upright or ascending branches forming a pyramidal rather dense and compact head: Ivs. suborbicutar, 3-5 in. across, anequally cordate, serrate, densely white-tomentose beneath; blade $2-4$ times longer than petiole: fr, tomentose and slightly ribbed. Very variable in time of flowering. Eastern Europe.-This is a very distinct and striking species.
4. heterophylla, Vent. (T. álba, Michx., not Ait.) Tree, attaining 70 ft . : lvs, very large, $5-8 \mathrm{in}$. lons. smooth and shining above, whitish and tomentulose beneath: floral bract short-stalked: fr. globular, not
ribbed. July, Alleghauies. S.S. 1:27.-This has been sent out as T. macrophylla, a name that properly belongs to a large-leaved var of T. Americana.
5. Miqueliàna, Maxim. Tree, attaining 100 ft ., with usually an oblong head: lvs. ovate, truncate or slightly cordate at hase, gradually acuminate, rather coarsely serrate with incurved teeth, 4-6 in. long: floral bract adnate almost to the base of the peduncle: fr. globose, thick-shelled, 5 -ribbed ouly at the base. Japau. (G.F. 6:113.
6. pubéscens, Ait. ( $\Gamma$. Americìna. var. pubéscens, Loud.). Similar to the better known T. Americena, but a smaller tree: winter-buds finely pubescent: lvs. smaller, obliquely trnncate at the base, glabrous above, pnbescent beneath: floral bract usually rounded at base: fr. globose. June. Long lsland to Fla., west to Tex. S.s. 1:26. - Less ormamental than $T$ '. Americance and but rarely cult.
7. Americàna, Linn. (T. Caroliniàna, Hort.). American Linden. Basswood. Fig. 2514. Stately tree with large cordate lvs. shining above, usually smootb except for the tufts of hairs in the axils of veins: floral bract very large, tapering to a more or less stalked base: fr. ovoid, tomeutose. July. E. N. Amer. S.S. 1:24. Mu. 6:153.-This is our most common American species and the one most frequently planted. Variable in its habit, size and shape of lvs, and in the color of its bark. As a forest tree it was formerly abnudant in the eastern and middle states, but with the general destruction of the forests and the greatly increased demand for its white wood for maufacturing purposes, good specimens are becoming scarce, and the source of supply is coustantly moving westward. Vars. in the trade are macrophylla, Hort., a large-lvd. form; Moltkei, Hort., a very strong-growing large-lvd, form which originated in cultivation in Europe. What is sold sometimes as $T$. Americana, var. pendula, is a form of T. petiolaris.
8. Mongòlica, Maxim. A slender tree with rery small orbicular or ovate lvs., truncate at the base, usually 3 lobed, cuspidate, coarsely serrate with acuminate teeth, glaucous beneath or green on rigorous shoots: cyme rather dense, with the stalk naked at the hase. E. Asia.
9. platyphyllos, Scop. ( $T$. grandifòlia, Ehrb.). This is the broad-leared Linden of European plantations and probably the largest. It attains 90 ft . Lvs. large, green, pubescent, often on the upper side to some extent, unequally cordate, petioles and veins hairy: fr. 5, rarely 4 -angled, tomentose, thick-shelled. This is the species most commonly sold here as $T$. Europer $a$, and the earliest to flower. June. Eu. G.F. 2:256, - The following varietal narmes in the Americau trade seem to belong here: pyramidalis, an upright grower with reddish shoots; rubra, bark of branches very red; aurea, with yellow bark on brauches; laciniàta and laciniàta rulbra, with deeply cut leaves and reddish young bark; sulphưrea, probably the same as aurea; vitifollia, the vine-leaved Linden with lobed leaves.
10. dasystyla, Stev. Crimean Linden. Lrs. tough and leathery, dark glossy green above and pale beneath. with tufts of brown hairs in the axils of the principal veins: bark of yonng branches bright green: lvs. often obliquely truncate at base. E. Eu., W. Asia.
11. vulgàris, Hayne (T. E'uropipa, Hort., in part). This species grows uearly as large as T. platyphyllos, has large unequal or oblique cordate lvs., smooth and green on both sides; tufts of hairs in axils of veins whitish: fr. glohose or oval, tomentose, shell thick, Jnne, July. Eu. G.F. 2:256.-This is said to be the celehrated speries of Berlin and is often sold in this country under the name of $T$. Europac. it is a week or ten days later in blooming thau T. plutyphyllos, and about the same number of days earlier than $T$. Americana.
12. ulmifolia, Scop. (T. cordata, Mill. T. pareifôlia, Ehrh. T. Sibirica, Boyer. T. Europea, in part. T. microphyilla, Vent.). Of slower growth and usually smaller tree than the T. platyphyllos: Ivs. small, thin, cordate, green above, silvery beneath, with tnfts of rusty hairs in the axils of the reins: fr. globose, sometimes slightly ribbed, very thin-shelled. July. Eu. G.F. 2:257.-Very late in flowering.

John F. Cowell.

TILLAGE. The workiug or stirriag of the land, in order to ituprove it for agricultnral purposes, is known by the general name of tillage. There is a tendency to nse the word cultivatiou for these operations. Tillage is a specific technical term, and is to be preferred. lu the eager discussions of scientific matters, as applied to agriculture in recent years, there is danger of forgetting that the fundamental practice in all kinds of farming is, after all, the tillage of the land. The knowleilge of the importance of tillage has developed late in the world's history. In fact, it is only within the latter part of the century just closed that the real reasons for


5514, Basswood or American Linden - Tilia Americana.
( $\times 1 / 2$.)
tilling have come to be popnlarly uuderstood in this country. Even now there are many persons who believe that the object of tillage is to kill weeds. The moderu conceptions of tillage probably date from Jethro 'Tull's book on "Horse-Hoeing Hushandry," which reached the second and full edition in 1733, in England. This book awakened so much discussion that the system of "horsehoe husbandry" recommeuded by it was called the "new husbandry." There had been tillage of land before Tnll's time, bnt his writing seems to bave been the first distinct effort to show that tillage is necessary to make the soil productive rather thau to kill weeds or to open the ground to receive the seeds. He contrived varions tools whereby grain crops could he sown in rows and afterwards tilled. The tillage of the land in early times was confined very largely to that which preceded the planting of the crop. ln the vineyards of sonthern Europe, however, Tull observed that tillage was employed between the sines during the season of growth. Such vineyards prospered. He made experiments and observations on his return to England and came to the conclusion that tillage is of itself a very important means of making plauts thrifty and productive wholly aside from its office of killiug weeds. He supposed that tillage benefits plants by making the soil so fine that the minute particles can be taken in by the roots of plants. Upon the same hypothesis he explained the good effects of burning or "devonshiring" land, and also the benefits that followed the application of ashes: the minnte particles of the ashes are so small as to be absorbed by roots. Although this explanation of the benefits of tillage was erroneous, nevertheless Tull showed that tillage is necessary to the best agriculture and that it is
not merely a means by which seeds can be put into the land, weeds killed, and the crop taken ont.

Tillage improves land in many ways. It divides and pulverizes the soil, gives the roots a wider "pasturage," as Tull puts it, increases the depth of the soil, and improves its plysical condition with respect to warmth and dryness.
Tillage also saves moisture hy deepening the arable soil so that moistare is held, and also by checking evaporation from the surface by means of a thin blanket or mulch of pulverized earth that is made by surfaceworking tools. Water is lost from the soil by underdrainage and by evaporation from the surface. The more finely the soil is pulverized, within certain limits, the more water it will hold. Its capillary power is increased. As the water evaporates from the surface, the moisture is drawn up from the under surface so that there is a more or less constant flow into the atmosphere. If any foreion body, as a board or a blanket, is spread on the land, the evaporation is checked. A similar result follows when the soil is covered with a layer of dry ashes or sand or sawdust. Very similar

2515. Cryptanthus zonatus, commonly known as Tillandsia zebrina ( $\times 1 / 4$ ).
results are also secured when the surface is made fine and loose by means of frequent shallow tillage. The capillary connection between the surface soil and the under soil is thereby broken. This surface soil itself may be very dry, but it serves as a blanket or mulch to the soil beneath and thereby keeps the under soil moist. In many instances this conservation of moisture by frequent shallow tillage is the chief advantage of the tillage of the land during the growing season.

Land that is well tilled has different chemical relations from that which is neglected. Nitrification, decomposition and other chemical activities are bastened. The stores of plant-food are rendered available. The soil is made more productive.
The first requisite for the growing of the plant is to have the soil in such condition that the plant can thrive in it. It is only when the land is well tilled and prepared, or when its physical condition is nearly or quite perfect, that the addition of concentrated fertilizers may be expected to produce the best results. The fertilizing of the land, therefore, is a secondary matter; tillage is primary.
The ideal tillage of the land is that which is practiced by the gardener when he grows plants in pots. The soil is ordinarily sifted or riddled so that unneces-
sary parts are removed, and morst of it is brought into such condition that the plants can utilize it. The gardener adds leaf-mold or sand or other material, until the soil is brought into the proper physical condition. He also provilies drainage in the bottom of his pots or boxes. Often the gatdener will produce as much from a handful of soil as a farmer will produce from a bushel. L. II. B.

TILLÁNDSIA (Elias Tillands was professor of medicine at the University of Abo, Sweden; in 1673 made a catalogue of plants of the vicinity of Abo). Bromeliacea. Tillandsias are mostly epiphytes and all natives of America. They are allied to billbergias, achmeas, Guzmanias, pineapples, and the like. Many species are described in horticultural literature as having been introdnced into cultivation, but most of these are known only to amateurs and in collections where species of botanical interest are chiefly grown. In the American trade about 30 names occur, many of which are to he referred to other genera. The generic limits of Tillandsia, as of most bromeliaceous genera, are ill defined. By different anthors a given species may he placed in any one of a balf dozen genera. Lately, Tillandsia and Vriesia have been merged, lont in this book Vriesia is kept distinet, following Mez's monograph. It is useless to attempt a deseription of all the Tillandsias that by chance may oceur in collections. Persons who want to know the species other than those regulariy in the trade should consult Baker's "Handbook of the Bromeliacew," 1889, or Mez's "Bromeliaces" in DeCandolle's "Monosraphiæ Phaneroganarum," 3896. The latter work, which regards Vriesia as a separate gemus, admits 248 species of Tillandsia. Some of these species extend northward into the United States, growing chiefly in Florida, although one or two reach sonthern (ieorgia, and the Spanish moss (which is Tillandsia usueoides) reaches Virginia and is common throughout the South. The native notight Tillandsias are not in the general trade, but they are offered by one dealer in sonthern Florida: of such are $T$, recuriatu, $T$. tenuifolia, $T$, fasciculata, T. utrienlata.
Tillandsias are usnally known as "air-plants" to gardeners. They are perennial herbs, mostly of upright growth (the common $T$, usneoides being a marked exception), the bases of the narrow entire leaves often dilated and forming eups that hold water and in which utricularias and other water plants sometimes grow. The flowers are usually borne in spikes or heads, singly heneath bracts; they are perfect, with 3 sepals and 3 petals which are twisted or rolled in the bud, 6 stamens, a superior ovary with filiform style: fr. a 3-valved capsule, containing hairy or plumose seeds. Vriesia is distinguished by having one or two scales or ligules at the base of the petals on the inside, whereas the petals of Tillandsia are eligulate; however, there are intermediate forms and it is sometimes a matter of individual opinion as to which genus shall receive a given species. Some of the cultivated Tillandsias belong to still other genera. This is the case with $T$. zebrina, which is properly Cryptanthus zonatus (Fig. 2515). This is an odd plant, producing crinkled deflexesl saw-edged leaves, which are whitish beneath and brown-barred above, and small clusters of white flowers. See p. 404, where other kinds of Cryptanthus in the American trade are described.
Tillandsias are grown both for foliage and for flowers. The foliage is usually scurfy and sometimes blotehed. Many of the specjes are very showy when in bloom, sending up strong central clusters of blue, violet, red, sellow or white flowers. In nature, the seeds are carried in the wind by means of the soft hairs, and find lodgment on trees, where the plants grow. A few species, bowever, grow on the gronnd. In cultivation, most of the species are treated as pet-plants. The growing season is summer. In winter the plants should be kept nearly dormant, although not completely dry. They need a warm temperature and plenty of light while growing. Give a soil rich in peat. In some cases sphagnum may be added to adrantage. Prop, by suckers; also by seeds. For further cultural notes, consult Billbergia. Other hromeliaceous genera described in this book are Bromelia, Ecbmea, Karatas, Cryp. tanthas, Ananas, Piteairnia, Puya, Guzmania.
A. Plant-body slender and hanging: fls. solitary in leaf axils.
usneoldes, Linn. Spanish, Florida or Long Moss. Figs. 2516, 2517. Whole plant hoary-gray, hanging from trees; the stems very slender and often several feet long: Ivs. scattered, nar-row-linear, $1-3 \mathrm{in}$. long: fls. solitary in the leaf-axils, small and not showy, the petals ycllow and reflexed at the end. Trop. Amer. and in the U. S. from Texas to Fla. and eastern Virginia; extends sonthward to southern Brazil. B.M. 6309. Gn. 37, p. 221. Gt. 45, P. 267.-This is one of the most characteristic plants of our southern regions. In moist regions it gives a most weird aspect to the forests. It is used as a packing material, and also, when specially prepared, for upholstery. It is rarely cultivated, although it is not uncommon in greenhouses, leing hang on branches and beams; but it must be renewed frequently. The plant is named for its resemblance to the lichen Usnea.
2517. The Spanish Moss-Tillandsia usneoides, hanging from the trees. Gulf coast.
spikes, long and narrow, the much exserted but not spreading petals purple. Yar. picta, Hook., has the upper lvs. and bracts scarlet. S. Fla. to Venezuela. B.M. 4288. F.S. 3:221.


AA. Plant-body stiff und nearly or quite erect. B. Stamens shorter than the petals.

## c. Fls. few in the cluster.

recurvàta, Linn. (T. Búrtrami, Ell., at least in part). A few inches high, tufted, with scurfy terete or filiform recurved 2 -ranked lys.: ffs. $1-5$ on a spike that is sheathed at the base but naked above, the corolla blne and exceeding the calyx. Florida to Argentina and Chile.

## cc. Fls. many, distichous.

anceps, Lodd. ('rièsia anceps, Lem.). Erect, the tlower-stem 6-12 in. tall and bearing a spike with large

2516. Spanish Moss-Tillandsia usneoides. (Much reduced.) distichons green bracts from which small blue fls. emerge: lvs, stiff, about 1 ft . long, dilated and striped at the base: fls. 2 in. or less long, blue or purplish, the perianth much exceeding the calyx. Coista Rica, Trinidad. L.B.C. 8-771.

Lindeniana, Regel ( $T$. Lindeni, Morr. lreèsia Línderi, Lem.). Lvs. rosulate, about 1 ft long, dilated at the base, long recurving: spike large, the showy distichous bracts carmine: fls. large, much exserted beyond the hracts, the large widesprearling segments bluish purple. Ecuador, Peru. I. H. 16:610; 27:370 (as var. Regeliàna). G.C. 1I. 12: 461. R. H. 1879:230; 1898: 206 (as var. trícolor). F.M1. 1872:44.-A handsome and popnlar species.

BB. Stamens longer than the petals.
C. Stem thickened and bulblike at the base.
bulbosa, Hook. Small scurfy plant a few inches high, the stem swollen at the base: lvs. $3-5$ in. lons, mueh dilated and elasping at the hase and terete above: fls. few, in racemose short
cc. Stem not prominently suollen.
D. Les. linear or filiform from the base or abruptly from a dilated buse.
polystàchya, Linn. (T, angustifolia, Swartz. T. parvispica, Baker). Lvs. rosulate, lepidote or scurfy, cursed, equaling or exceeding the stcm: inflorescence compound, somewhat paniculate, the lateral spikes shorter than the central ones, the bracts distichous and pointed and little exceeding the calyx: fls. blue. S. Fla. to Brazil.
tenuifolia, Linn. (T. cospitòsa, Leconte, not Cham. \& Schlecht. T', Bírtrami, Ell, in part). Plant less than 6 in , tall, reddish, clustered: Ivs, awl-sbaped and erect, nearly terete, concare at the base, scurfy: fls. few in a simple or somewhat componnd spike, the blue petals exceeding the bracts and recurving at the apex. Fla. to Brazil.

## DD. Li's. gradually narrowed from a broad base.

fasciculàta, Swartz (T. bractètta, Chapm. T. glaut cophýlla, Baker. J'rièsia glaucophýlla, Hook.). Tall, strong species with stem 2 ft , tall: lvs. $1-1 \frac{1}{2} \mathrm{ft}$. long. concave or channeled above, erect or ascending, scurfy and bluish; stem longer than the lvs. and branched, the branches or spikes bearing distichous keeled acute mostly greenisb and red-tinged bracts: fls, narrow, exserted, blue. S. Fla., West Indies and Central Amer. B.M1. 4415. F.S. 5:432.- Very variable.
utriculàta, Linn. Plant 2-3 ft. high: lvs. glaucous and scurfy, becoming subulate and recurved at the summit but mach dilated and imbricated at the base and forming pockets that hold water: inflorescence branched, the fls. far apart on the branches: fls. pale blue (pale colored forms), narrow, the petals 1 wice longer than the sepals. S. Fla, to S. Amer. B.K. 9:749 (as T. flexuosa, var. pallida).-For full deseription of this species, together with plate, see Trelease, 5th Rept. Mo. Bot. Gard. (1894).
T. bivittita. Linden, is Cryptanthus bivittatus. See p. 404T. farindsa, Hort., is Billbergia pyramidalis, See p. 163.-T. La Sallidna: "A ness species from South America, with most brilliant flowers. It is of free growth and easily cultivated. thriving best in a moderate temperature and in a light, fihrous soil mixed with sphagnum," (Siebrecht.) - T. musàica, Linden, is properly Guzmania musaica, Mez. It is acaulescent: $1 \mathrm{l} s .30$ or less in a rosette, lorate and ohtuse but with a cusp. with transverse lines on both surfaces: fls, in a rounded head on the end of a red-bracted scape, the corolla white. Colombia. B.M. 6675. I.H. 21:268 (as Caragiata musaica). It is an excel. lent plant, with broad lvs. 2 ft . long. In the American trade. This plant is sometimes known as a Massangea (see p. 992).-
T. muscosa, Hort is Pitcairnia muscosa. P. muscosa, Hook. B.M. 4770 , is Pitcairnia Beycalema. The name ' $T$. museosa lias occurred in the tride, but the plant is unknown to the writer. $-T$. Wilsoni, Wats., has been introdueed sparingly to enltivatioa, but does not appear to be in the trade. It was discevered in Hernando county, Fla., in 1887 by Dr. W. P. Wilson, of the University of Pennsylvania: "Stem simple, very short (abont $1 / 2$ inch): lvs. numerous, 1 to 3 or 4 inehes long, gradually narrowed from the clasping base to the longrattenuate apex, channeled above, more or less hoary, with minute appressed, peltate, brown-centered scales: peduncle very sleuder, reenrved, abont eqnaling the lvs.. with 2 distinet bracts, probably $1-3$-fld.: fls, and capsules not seen." This is Sereno Watson's original description, 1888. See Mn. 2, p. 180, and 6, p. 130, for pictures of what purport to be this species. $-T$. Zahnii, Hort, is properly Guzmania Zabuii, Mez. Tufted, hrauehing from the base, glabrous throughont: lvs. 1 ft , long, about 1 in. broad, crimson striped and yellow: inforescence payiculate, subtended lyy scariet bracts: As, yellow. Costa Riea. B.Al. 6059, as Caraguata Zahnii. In the trade.
The following names are accounted for unter Vriesia: carinata, fenestralis, guttata, hieroglyphica, psittacina, Saundersii, splendens, tessellata, zebrina (in part).
L. H. B.

## TIMOTHY. Phlerm pratense.

TINANTIA fùgax, Scheidw., is sometimes seen in old gardens but is not in the trade. It is a tradescan-tia-like berb from tropical America, with blue fls. in bracteolate curred terminal clnsters. 1-2 ft. Grown indoors and out. Known also as Tradescantia erecta, $T$. undata, T. latifolia. B,M. 1340. B.R. 17:1403. L.B.C. 13:1300.

TIPUANA (name apparently Latinized from a Brazilian name). Leguminòste, A genus of 3 spècies of bandsome South American trees with odd-pinnate lvs., numerous alternate lifts. and showy yellow or parplish fls. in loose, terminal panicles. Here belongs the plant recently introduced to southern Calif. as Macherium Tipu, which Franceschi says yields one of the rosewoods of southern Brazil.
speciósa, Benth. (Machïr rium Tipu, Bentb.). Tender yellow-fld. tree; lfts. 11-21, oblong, emarginate, entire, $1 \frac{1}{2} \mathrm{in}$. long: veins somewhat parallel: standard broadly orbicnlar: wings very broadly ovate, much larger than the keel: pod veiny. S. Amer.

TIPULARIA (Latin, Tipulu, a genus of inseets, alluding to the form of the flower). Orehidacel. Inchudes 2 species of small terrestrial orchids in N. America and the Himalaya region. Herbs with solid bulb, having several generations connected by offsets: leaf solitary, basal, appearing in autumn long after the flowering season: fls. in a long, loose, terninal raceme, green, nodding; sepals and petals similar, spreading; labellum 3-lobed, produced into a long spur behind; column erect, wingless or narrowly winged.
discolor, Nutt. Crane-fly Orehis, Scape 15-20 in. high: leaf ovate, $2-3 \mathrm{in}$. long, appearing in antumn and often surviving through the winter: raceme $5-10 \mathrm{in}$.long, loose: fls, green, tinged with purple. July, Aug. Vt. and Mich. to Fla, and La, B.B. 1:480.-Rare. Advertised by dealers in Dutch bulbs. Heinrich Hasselbring.

TOAD FLAX. Linaria ulgaris.
TOADSTOOL. Consult Mushroom and Fungi.
TOBACCO is considered to be an agricultural rather than a horticultural erop and bence is not treated at length in this work. See Nicotiana for an account of the cultivated species of the genus to which Tobacco belongs.
TOCOCA (Tococo is the native name of T. Guianensis). Melastomàcer. A genus of 38 species of tropical shrnbs native to the northern part of South Anierica, including several handsome foliage plants for hothouses. Their beauty is similar to that of the wellknown Cyanophyllum, for which see Miconia. The lvs. are usually ample, petiolate, membranous, rarely leatbery, entire or denticulate, usually 5 -nerved: fls, rather large, borne in terminal or sometimes axillary panicles, white, red or rosy, 5 -merous, rarely 6 -merons; stamens 10: ovary 3 -loculed, rarely 5 -loculed.
platyphýla, Benth. (Spharógyne latifòlia, Naud.). Short-stemmed plant with succulent, somewhat tortuons stem: Ivs, broadly orate, minutely denticulate-cili-
ate, 7 -nerved: fls. rosy or red: ovary 5 -loculed. Colombia, Venezuela, Costa Rica. - Cognianx puts this species in a section characterized by having the irs. destithte of resicles and the calyx not winged. In this section it is unique by reason of its herbaceons branches with long bristles, especially at the nodes; the other species of the section have shrubby and glabrons branches. A very beantiful plant, but considered to be difficult to grow.
W. M.

Tococa requires a warmhouse temperature, with shady and fairly moist place. Use leaf-mold mixed with fibrons loam, and provide ample drainage. It is best propagated from what are caller split joints, or eyes with the leaf rolled up, and inserted in thumb-pots in fine sand with chopped juoss; then insert pot in sand or cocoa fiber, with bottom heat of $75-80^{\circ}$. Cover with bellglass or other inclosure to exclude air and to keep a fairly moist (but not wet) condition. ln about two montas the cuttugs will bave rooted. The wood for propagating should be well ripened.
H. A. Siebrecht.

TODDÀLIA (Kuka Todduli, Malabar name of $T$. aculeata). Rutacect. About 8 species of trees, shrubs and ctimbers native to the Old World tropies and the Cape. Lvs. alternate ; lfts. in 3 's, sbining, leathery, full of fine veins, glandular-dotted, with a wavy rein inside the margin: fls. small, copious, in dense panieles; sepals 4-5, minnte; petals $4-5$, valvate or imbricate; stamens as many, or twice as many, as petals: ovary 4-5loculed; stigma peltate: fr. hard, coriaceous, globose, permanently syncarpous. In Toddalia proper the petals are valvate, and the stamens as many as the petals; in the subgenus Vepris (name altered from vepres, bram he) the petals are imbricate and the stamens twice as many as the petals.

Ianceolàta, Lam. ( Ièpris lanceolita, A. Juss.). Small tree or large shrub, erect, without prickles, entirely glabrous: petioles 1-2 in. long; lfts. oblong-lanceolate, 2-3 in. long, acute, entire, waved at the edge, $3 / 4-1 \mathrm{in}$ broad: panicles axillary and terminal, thyrsoid: petals a line long, imbricate; stamens 8 , in the male fls. exserted: fr. the size of a pea, 4 -lobed, fleshy, gland dotted. Manritins, Mozambique, Cape. Int. by Reasoner Bros., 1891.
W. M.

TODEA (Tode, a Gerinan botanist). Osmundàceæ. Grape Fern. A genus of ferns related to Osmunda but with the sporangia borne on the under surface of the leaf. The last three species, although frequently united with Tolea, more properly form a distinct genus Leptopteris, differing widely in habit from the original Todea; they form delicate foliage plants resembling the filmy ferns in habit.

For culture, see Ferns.

## A. Texture leathery: les bipinnate.

bárbara, Moore (T. Africàna, Willd.). Lvs. in a crown rising from a short candex, $3-4 \mathrm{ft}$. long, $9-12$ in, wide; pinna erect spreading, sometimes 2 in . wide: sori closely placed, often covering the whole under surface at maturity. South Africa to New Zealand.

## AA. Texhure thin: les, with linear divisions.

## B. Le's. tripinnatifid.

hymenopbylloldes, Rich. \& Less (T. pellùcida, Hook.). Lvs. 1-2 ft. long, 8-12 in. wide, lowest pinnat abont as long as the others; rachises mostly naked. New Zealand.
supérba, Col. Lrs. 2-4 ft. long from a woody caudex; pinnas often crisped, the lower gradually rednced; rachises densely tomentose. New Zealand.

## вв, Les. bipimate.

Fràseri, Hook. di Grev. Lvs. 1-2 ft. long, from an erect woody caudex $18-24 \mathrm{in}$. bigh, lowest pinnze nearly as large as the others: rachis narrowly winged, naked. Australia.
L. M. Underwood.

TOLMIEA (Dr. Tolmie, surgeon of Hudson Bay Co., at Puget Sound). Naxifragacere. A gemus of one species, a western relative of the Bishop's Cap or Mitella,


Plate XLII. The modern type of Tomato-large, round and "smooth"
and with the same style of beauty. It is a perennial herb $1-2 \mathrm{ft}$. high. with loose racemes of small greenish or purplish fowers. The species seems to have been cult. abroad, and twenty years ago it was offered in the eastern U. S. for western collectors. It is probably hardy and douhtless requires some shade.

Generic characters: ealyx funnelform, gibbous at base, 5 -lobed, the tube in age longitudinally splitting down one side; petals 5 , threadlike, inserted in the sinuses of the calyx, recurved, persistent ; stamens 3: ovary l-loculed, with 9 -parietal placents. This plant has been deseribed under Tiarella and Heuchera, which it resembles in foliage and inflorescence. It seems to he the only plant of the Saxitrage tribe that bas 3 stamens.

Ménziesii, Torr. \& Gray. Perennial herb, 1-2 ft. high, with slender ereeping rootstocks and some summer runners: Irs, round-cordate, more or less lobed and crenately toothed, slender-stalked, all alternate, those of the stem $9-4$ in number: raceme $3 / 4-1 / 2 \mathrm{ft}$. long: fls. and eapsule nearly $1 / 2 \mathrm{in}$. long, greenish or tinged purple. Forests of Mendocino Co., Calif., to Puget Sound. - tropagates naturally by adventitious buds, produced at the apex of the petioles of the radical lvs. and rooting when these fall to the ground.
W. M.

TOMATO (Plate XLII). The Tomato is Lycopersicum esculentum (which see), one of the solanum or nightshade family and closely allied to the potato. In fact, the potato and Tomato can be grafted on each other with ease, although they will not cross. The graft produces no practical results, however (see Bull. 61, Cornell Exp. Sta.). The Tomato is grown more extensively in North America than elsewhere in the world, and the varieties have bere reached a higher degree of perfection. The American standard or ideal is a Tomato that is nearly glohular, solid and "smooth" (that is, not wrinkled). Figs. 2518-20. The flat angled and wrinkled Tomatoes (Fig. 2526; 1334, Vol. I1) are now little grown in this country. These forms are little adapted to canning, to which use enormous quantities of Tomatoes are put, and they do not satisfy the popular ideal or desire. The old-time pear, cherry, and plum forms (Figs. 2521, 2522) of Tomatoes are still grown for curiosity and also for the making of pickles and preserves, but their field enlture is relatively not important. The currant Tomato, grown for ornament and curiosity, is Lycopersicum pimpinellifolium ( F ig . 2523). It sometimes hybridizes with the common species (Fig. 1338, Vol. 11).

The Tomato requires a warm soil and elimate, a sunny open position, and a long season. The plants are usnally started in hotbeds or glass houses, being transferred to the open as soon as settled weather comes. The plants are usually set from $4-5$ feet apart each way and are allowed to grow as they will, finally covering the ground. For home use, however, the plants are often trained, in order to forward their ripeniug and to secure larger and better colored fruits. The best method is to train to a single stem, as recommended for forcing below. The stem is supported by a stake or perpendicular wire or cord (Hig. 2524); or sometimes it is tied to the horizontal strands of a trellis. This sin-gle-stem training requires close attention, and if the time cannot be spared for it, the rines may he allowed to lie on an inclined trellis or rack. This rack training keeps the plants from the ground and thereby allows the individual fruits to develop perfeetly and also checks the spread of the fruit-rot; but it usually does not give such perfect frnits as the single-stem training, since the number of fruits is limited in the latter. The most serious general difficulty in Tomato growing is the rot of the fruit. This usually causes most damage, following close, wet weather when the fruit is ripening. It is apparently worst on plants that cover the ground thickly with foliage and do not allow it to become dry on the surface. Usually it does not seriously lessen the crop beyond a few pickings; and if the plants are brought into bearing early and are kept in thrifty condition for snbsequent bearing, the percentage of total injury is greatly rednced. The Tomato is tender to frost. The green fruit remaining when frost kills the plants may be ripened in tight drawers or cuphoards,
if it is nearly or quite full grown. The Tomato is probably a short-lived perennial; but in cold climates it is grown as an annual from seeds.
L. H. B.

General Advice on Tomato Culture, - The Tomato comes from tropical America and in its natural habitat the conditions of temperature and moistnre during the entice growing season are constantly favorable for its rapid development. The plant is adapted to such conditions, and if we are to have the best possihle results with it under cultivation we must provide them and see

that it has a steady and mnchecked growth from the germination of the seed to the ripening of the fruit. It is true that the plant will live through considerable degrees of cold, wet, drought and other untoward conditions, and often seemingly recover from their ill effects and make a vigorous growth. But we belicve it is true that any eheck in the growth of a Tomato plant, particularly if it occurs when the plant is young, will surely lessen the quantity and lower the quality of the fruit produced. This is a strong statement, but we are convinced of its truth by scores of experiences like the following: Two adjacent fields of similar character were set with plants from the same coldframes. Those in one field were carelessly set out just before a cold, dry wind-storm and received a check in transplanting, the effect of which was evident for at least ten days; but the plants nltimately became as large as those in the second field, which had heen kept in the coldframe dnring the storm and were set out rather more carefully than the first lot, but six days later. They suffered scarcely perceptibly from the transplanting, and actually commenced a new growth sonner than those set six days earlier. The subsequent treatment of the two fields was as nearly identical as possible; but the second field yielded over 100 bushels per acre more frait than the first and it was so superior in quality that, sold by the same man in the same market, it hrought an arerage of nine cents per package more money. We were familiar with the flelds and their treatment, and know of no reason for the difference in results except the check that one lot received at transplanting. All our experience with Tomatoes convinces us that the first and great essential to the best results is a steady constant growth from start to finish, but more especially when the plant is joung. This
leads to a method of culture which differs somewhat from that usually recommented. We plant the seed in flats placed in a greenhouse or hothed, some forty to fifty days before we tbink the plant can be set in the field without danger of frost, or what is quite as bad, a cold, dry wiul-storm. As soon as the plants can be handled (which ought to be ten or twelve days from the sowing of the seed), we transplant into otleer flats or into coldframes, setting them 2 to 4 inches apart according to the space available and the desired size of the plants when set in the field. We bave nerer failed to get better results from plants which had been transplanted hut once (and that when very small) and bad been kept in constant growth, than from those which were started earlier and kept of a practical size for setting in the field by repeated transplanting and pruniug.

We aim to give the young plants light, heat, water, and above all air, in such proportions as to secure a constant and steady growth, forming stocky, vigorons

2519. A prolific Tomato, the result of training to a single stem.
plants able to stand erect when set in the field, eren if they are a little wilted. A plant which has once bowed its hetd suffers from it forever.

For Tomatoes we prefer a field that has been made rich by fertilization iu previous years, but if manure is used we aim to have it thoroughly worked iuto the soil. There is no crop in which this is of greater importance than with Tomatoes. If we have to depend upon commercial fertilizers we select those comparatively rich in nitrogen and potash, and work in two-thirds of it just before setting the plants and the balance some four or five weeks later. We prepare the field by plowing as early as it can he worked, and repeated replowing or
deep working antil, at the time the plauts are set, it is a deep bed of mellow, friable soil. We begin cultivating the day after the plants are set, running the cultivator as deep as possible, and go throngh again every two or three days, as long as the platets will permit; but we aim to make each cultivation shallower than the precediug oue until it hecomes a mere stirring of the surface soil.

When quantity aud quality are of little importance compared with earliness, the best results are obtained by a method almost the opposite of that given above. The seed is sown very early so that, though growth is kept in check by crowding aud scarcity of water, the plants bave set the first clister of frait, which is sometimes nearly full grown by the time danger of severe freezing is past, and the plants are then set in the tield much earlier than recommeuded for geveral crop. In setting, furrows are opened running east and west and the plants set in slanting to the south, so that the fruit is just above the surface, with a bank of earth on the north side, and the roots are no more than normal denth. So treated, the plant will ripen the fruit already set very early, but the subsequent crop is of very little value.

When quality is of first importance, staking and pruniug is esseutial, as in this way mnch better fruit can be grown than can be produced on unpruned vines allowed to trail on the gromd, partienlarly if the soil be at all cold. When the plants are to be staked and pruned they may be set as close as $30-10$ inches apart, We have obstained the best results from the use of a single stake, some 2 inches square and 5 or 6 feet long, to each plant. As soon as the plant shows its first clus ter of flowers it divides, and the two branches are allowed to grow, being tied to the stake as necessary; all branches starting below the division are cut or pulled off, and any above are cut off just beyond the first leaf or eluster of blossoms. Most of the fruit produced in the Gulf states for shipment north is grown in this way.

For market or for canning and pickling, quantity and quality of crop and cheap productiou are of prime importance, and the best results are secured by following the general cultural directions as just given. As the gathering of the crop is one great element of its cost. we have found it profitable to set $I 5$ to 20 rows and then omit one to form a driveway, at the same time omitting every sixth or eighth plant in the row to form a cross-walk. This facilitates the distribution of the empty, and the collection of the full crates, and enables one to gather the fruit with less injury to the viues; consequently one secures nearly as much marketable fruit, particularly if it is gatbered green for pickling. as if the entire space was covered.

Although the Tomato has been in cultivation a much shorter time than most of onr garden vegetables, there have been developed a great many varieties, differing materially in habit of vine, size, form and color of fruit as well as other qualities; and these differences are so divergent, and individual taste and the temands of different markets so varied, that it is difficult to classify the varieties or arrange them in order of merit.

The extra-early sorts are of two types, one represented by Early Minnesota, with a Vigorous vine producing in abundance large clusters of small, ronnd, smooth fruits which ripen early but are too small for market; the other represented by the Atlantic Prize, in which the vine is short-lived, lacking in vigor, and produces very early-ripening fruit, too rough to be salable after the smoother sorts reach the market.

Of varieties for a general crop there are quite a numher, varying greatly in type and quality, from the Optimus of medium size, perfect form, fine flavor and brilliant vermilion-red color, through the larger Favorite and Matchless, to the perfect-shaped, large-sized, lateripening Stone; or if oue prefers the purple-red, from the Acme through the Beauty to the later Buckeye State.

If one prefers the dwarf-growing plants, we have the purple-fruiterl Dwarf Champion or the fine-flarored and heantiful red Quarter Century. For special purposes and to meet individual tastes we have the immense and solid Ponderosa and the Honor Bright, which can be
shipped long distances almost as readily and safely as the apple and more so than the peach, and which, picked and stored on shelves, will prolong the season of fresh Tomatoes from one's orn garden till Cbristmas time. And to please the eye we have the Golden Queeu, of clear yellow with

2520. The old-time and new-time forms of Tomatoes - the angular and the "smooth." a beautiful red cheek, or the White Apple-nearly whiteor the Peach, covered with hloom and as beautiful in color as a peach. For pickling we bave the Red Plum and Yellow Plum, the Red PearShaped and the Yellow Pear-Shaped, the Red Cherry and the Yellow Cherry, and the cherry-like exquisiteflavored Burbank's Hreserving. Every season there are new and more or less dis. tinct varieties added to the lists; and very truly of the making of new varieties of Tomato, like the making of books, there is no end.
W. M. Tracy.

Tomatoes Under General Field Conditions. - Tomatoes should be started in hotbeds. To make the beds, select a sheltered place on the south side of a bank or erect some shelter on the north side from where the hotbed is to be made. Dig a hole about a foot deep, 8 feet wille and as long as ueeded; 18 feet long will give room enough to grow plants for twelve acres of Tomatoes. Use fresh stable mannre; cart it out in a pile and let it lay three or four days, then work it orer until it gets good and hot, then put it into the hole prepared for it, $8 \times 18$ feet, about 18 inches thick. Then place the frame, $6 \times 16$ feet, on the manne; that will leave one foot mannre outside of the frame; by this means the heat will be just as great at the edge of the hed as it is in the middle. Then place 4 or 5 inches of dirt on the manure and let it lie for a couple of days to allow the dirt to get warm. The sash is put on as soou as the dirt is placed. When the dirt is warm, rake it orer to get it nice and fine, then sow the seed iu drills which are made about 2 inches apart by a marker. Sow the seed by band; the sash is then put on close to the dirt; at the lower eud of the bed the frame is made 3 inches higher at the end next to the bank so the water will run off; the bed is banked up all around so no cold can get in. In this way the bed will be kept warm and the seed will soon come up. After the plants are up nicely, they will need some air that they may become hardened and grow stocky. Ventilating can be done by raising the bottom of the sash and putting a block under them while the sun is hot; hut do not neglect to lower them at night. When the plants are four or five weeks old, and about 2 inches high, transplant the first into a bed that has a little warm manure in the bottom and $4-6$ inches of dirt on top. Use sash over this first bed, as the weatber is quite cold at night. Do this in order to get the early plants in the field. Transplant the remainder into coldframes and use cover-

2521. Two forms of the pear Tomato.
ings or shutters made of boards. Transplant all in rows 6 inches apart and 2 inches in the row. Keep them in these beds until planted in the open fields. When there is a frost in the morning and plants are large, take off the covering early in the morning that the frosty air may barden the plants while they are in the bed. Sometimes the plants are in blossom before they can be set in the
fields. Never pinch a plant back. A good-sized plant is from t-6 inches high and stocky; the stronger the plant the earlier will be the crop. The main point is to get the plant strong before it is set in the field, then it will not stop growing, while a slender, weak plant will not start to grow as soon. Trausplanting the plants from the sowing bed into the cold beds helps the plants, and they will produce earlier fruit than those set in the fields from the hotbeds. Take them up with a trowel that all of the dirt possible may go with them from the bed into the field. In case the ground is try, take a large box with clay in it and make a regnlar mush, dip the plant into it, then put the plant in the box. Oue can leave them there for a day or two hefore setting them in the field.

Prepare the ground about the same way that farmers prepare corn ground. Have it well harrowed, then mark it off $4 \times 6$ or $5 \times 6$, and when the ground is very rich $6 \times 6$ feet, and set the plant in the cross. Use the hands to fill the dirt around the plant. Set the plants that

2522. A pear-shaped type of Tomato.
are transplanted under sash first, as they are the oldest and strougest. These can be risked in the field first; then fill that bed with plants again, as plants may be needed for replanting in case cutworms or other causes destroy some of the tirst setting.

Never put manure uuder the plants set in the field. The best way to manure the ground is a year before, for some other crop, such as cabbage, potatoes or pickles; then you can grow Tomatoes several years after. Never put Tomatoes in ground prepared with fresb manure, for the mannre burns the roots and causes trouble, and the flavor of the Tomatoes is not so good. As soon as a field of Tomatoes is planted, go over the area with hoes and draw up some soil to the plant, and fill in around the plant with earth so it will not get dry jnto the roots. After the plants begitu to take root, go through the field both ways with the cultivator, and keep this up during the season. One cannot cultivate them too much. Some farmers think that hecause thero are no weeds growing aroumd the plants they need very little cultivating, hut this is a mistake. When the season is dry they need more cultivation in order to keep up the moisture.

Half-bushel baskets are very useful in picking Tomatoes. Our own practice is to take about six rows in a piece and throw the vines of a row around so that we can drive a team through the field. If the rows are 6 fcet apart a team cau go through without destroying many Tomatoes. In that way one can pick more Tomatoes in a short time because he does not have to carry them so far. Hare boxes alongside where the team will go and the Tomatoes are carried to these bushel boxes, and when the team comes are loaded and driven to the factory. Picking is done mostly by children. A man is with them who keeps account of what they pick and gives them instructions in picking. H. J. Hensz Co.

Tomato Culture in the South. - The Tomato is one of the most capricious of market-garden regetables. It is of greater relative importance in the South than in the North. Essentials of habit and cultivation do not materially differ in either section. While by no means a
gross feeder, the plant demands a fairly good soil, light, porous and well drained, and is generously responsive to judicious fertilizing, though acutely sensitive to the slightest variations of soil and climate. Underfertilized it is unprofitable; too liberally manured, especially with nitrogenous matter, it runs to vine at the expense of fruit and is sulpject to excessive inroads from bacterial and fungeus diseases. Similar results follow from wet seasons or too heavy soil, while drought or insufficieut nourishment eut short the harrest. To steer a middle course between these extremes is diffienlt. It is, on the whole, safer to umberfertilize than to overfeed-to select a moderately dry, sandy loam, well manured the last season, and with but a light application of fertilizer, or none at all for the present cropto risk underproduction rather that invite overgrowth of vine, fungons maladies, loss of foliage and decay of fruit.

The normal fertilizer formula approximates that for the potato, though a smalier percentage of nitrogen will suffice-say 3 per cent oitrogen, 9 per cent phosphorie acid and 7 per cent potash. This would be met by a compound of: Nitrate of soda, 400 lbs ; high grade ( 14 per eent) superphosphate, $1,320 \mathrm{lbs}$; muriate (or sulfate) of potash, 280 lbs ; total, 2,000 lbs. This may be used to the amount of $1,000 \mathrm{lbs}$. per acre with safety on a well-selected soil if applied sufficiently early in the season. Sueh an application should produce a yield of 300 bushels per aere in a normal season with any of the better standard varieties.

Farieties. - All things considered, the following short list presents for the South the best of half a century's effort in development: Crimson Cusbion, Stone, Ponderosa, Freedom. Acme, Trophy, Paragon and Perfection. The medium-sized, smooth, round, red, miform, solid fruit represented by Stone and Acme, and of which Crimson Cushion is perhaps the choicest and most conspicuous example, presents an almost perfeet type, of which one ean ask little more than that its present standard be permanently maintained. Yet local experience and preference must ever differ with this as with all other soil products.

For slicing, Golden Queen or Yellow Acme is incomparable, but it is valueless for cooking by reason of the muddy tint developed thereby. Fruit of the Ponderosa type is too large, gross and frequently too unsymmetrical for successfal shipping; it finds a readier sale in local markets. Extra earlimess in maturity seems to be more or less a chimera, little real difference appearing (on careful test) between most varicties. Early ripening is rather a matter of soil, manipulation and local enrironment than a fixed babit.

Color is apparently a secoudary consideration, tastes in this particular varying greatly. Some markets prefer the crimson shade of the Acme type, while others demand the purple tinge of the Mikado.

Viger of growth, productiveness and shipping quality seem the three most important requisites-size, even, yielding to them in importance. Oversized fruit, indeed, is almost as serious a defect as underazed. The following would probably represent the best scale for an ideal Tomato at the South, though differing somewhat from that generally recognized:


Cultivation. - Whether grown on a large or small seale, the young plants are started under glass from January to March, according to isotherm, and in abont 30 days from the seed are ready for "pricking ont" or transplanting-to open ground in the lower latitudes, farther north into boxes or "Neponset" pots. The latter, constructed of paper, admit of handling without rupturing the root system when permanently transplanted some 30 days later.

The land, when the business is conducted on a large scale, may be prepared as fur cotton by "laying off" after breaking and finiog, and then bedding on the fertilizer drilled in continuous rows-though compost is usually distributed "in the hill." For garden cultivation the latter plan is strongly recommended, though broadcasting is preferable tor limited areas. A shovelful or so of well-rotted stable manure to each hill, reinforced by a top-dressing of superphosphate in early spring, gires execllent results.

Distance naturally varies with :character of soilsometimes with variety of Tomato-and depends, also, on the mode of training. Where no supports are used $6 \leq 4 \mathrm{ft}$. is not too great. When trellised with 3 ft . posts, at intervals, and one strand of No. 12 wire, either $6 \times 4$ or $6 \times 3$ will do, and when trained to 5 ft . single stakes, $5 \times 3 \mathrm{ft}$.

The crop should be rapidly worked through the season with either cultivators or "23-inch heel scrapes "at first in both directions, and afterwards, as the vines spread, following the wide row only. Of eourse with tretlises cross-plowing is impossible.

Under either system pinching back weak or inconsequent laterals is necessary. All lower laterals when stake-training is employed must be proned until a main stem is established, which is trained spirally around the stake and secured with raffia, after which laterals are still shortened from time to time, as occasion requires. This is an ideal, and also a practical system, and though necessarily the most expensive, will generally justify its use by the results. With the trellis system two or three stems are allowed to grow, although the plant is sometimes restricted to one stem for "fancy" results. When no support is used only the more stocky and fungus-resisting varieties should be planted and severely pruned while young, to form, as far as possible, an upright, rigid growth. This is the most eommon method and probably the most profitable also, when land is eheap and the grower is not readily discouraged by damp and decay and is rigorous and determined in the $n$ se of the spray-pump. It is certainly the most economical form of cultivation everywhere, at least to ontward appearance.

Without his spray-cart and fungicide the tomatogrower is lost-and knows it! The sprayer has hence become an invariable and indispensable adjunct to the truck farm, by means of which most of the fungous and bacteroid affections of the plant may be, if not altogether prevented, at least held in hand and damage reduced to a minimum. But it must he kept going resolutely and continuously from the first-the earlier sprayings to eonsist of an admixture of 4 ounces Paris green to each barrel of Bordeaux mixture to hold in check insect depredators, later sprayings to be made with Bordeanx only.

Second Crop.-A peculiar advantage of the Tomato over other transplanted truck crops is its ready disposition to grow from cuttings, thus obviating the necessity for re-seeding for a second or fall erop, as with the cabbage. The cuttings afforded by the pruned laterals strike root vigorously, and thus afford a ready means for filling vacancies in the plat immediately upon their occurrence; and, since the plants from cuttings begin to fruit as soon as they start growth, a continuous succession may he obtained from early summer until the plants are cut short by frost in the fall-an economic consideration of vast importance.

Marketing. - While no particular state or section of the South altogether monopolizes the northern markets, and many trucking centers from lower Texas and Florida to Norfolk and Memphis successively forward their shipments in greater or less quantity, the Florida crop is probably the earliest, largest and best known. though heary shipments are made to western cities from Louisiana and Mississippi, while the middle and eastern states are supplied, after the Florida shipments have eeased, by the truckers of Sarannah, Charleston, Wilmington and Norfolk in turn.

The methods of packing and shipment are as many and as diverse as the local centers of production. The Florida crop, dominating the very early market, is usually shipped stark green, each fruit paper-wrapped in the regular "six-basket carrier" used for Georgia
peaches, and forwarded by "ventilated fast freight." This meets the early spring demand, but the fruit ripens unevenly and is frequently unsalable at the expected fancy figures on account of its appearauce.
A growing tendency has been lately manifested to ship as the fruit is coloriug, after careful and systematic grading, in "four-basket carriers" by refrigerator
surplus moisture. The feeding power of the roots should be reduced and evaporation stimulated from the soil. Possibly a light application of superphosphate at time of cultivation would also prove beneficial.

Black rot, or blossom end rot, a widespread affection causing great loss of fruit, and quite familiar to all, seems to have long been erroneously ascribed solely to one of the forms of Macrosporium - the familiar early blight of the potato - and Bordeaux mixture is consequently suggested as a remedy. Recent investigations by Earle seem to indicate that the real cause of the malady is no fungus but a bacillus, incapable, unaided, of penetrating the outside tissues of the fruit, but rapidly developing on abraded surfaces or in insect wounds of any kind.
cars. Despite the extra cost of icing and the later shipment, quality and prices are thereby more satisfactorily maintained and the northern public will soou insist altogether on this more rational method being put into practice universally. The sorting and grading cannot he carried too far, since the culls and second-class fruits are equally as good for the cannery as first grades and hence the standard of excellence may always be maintained without material loss.

Fungous Diseases.-Of the fungous affectious of the Tomato, damping-off in the seed-bed is the first to be noted, and is familiar to all. Provoked by excess of moisture, warmth and confined air, it may be controlled by withholding water from the young plants except at midday, stirring the soil to break up aud destroy the mycelium of the fungus, and otherwise thoroughly ventilating.

Mildew, Cladosporium fulvum, is a common malady in the South during wet seasons, and may be easily recognized by the continnous and successive death of the foliage from below upward along the main stem, and the great effort of the plant to set new leaves and branches above, thereby maintaining its life at the expense of production. Steady spraying with Bordeaux mixture is the remedy.

Florida blight, an undetermined species of Sclerotium, is less common, though sometimes quite serious. It produces a wilted appearance in the plant somewhat resembling that caused by the "bacterial blight," and like it generally causes death. The peculiarity of this fungus consists in the fact that the greater portion of its life is passed under ground and it is hence unaffected by fungicides applied to the foliage. Even when applied to the surface of the ground beneath the plant Bordeaux mixture is of little value, since the precipitate formed by the copper salt in suspension is more or less arrested or strained out by the soil as the liqnid filters through. The ammoniacal solution of copper carbonate, and eau celeste, are not liable to this objection, and may be used as remedies with fairly satisfactory results.

Leaf curl, œdema, is also well knomn and while it seldom, if ever, completely destroys the plant, yet it greatly reduces its productiveness and is all the more insidious from the fact that it frequently escapes notice until it reaches an advanced stage. It is a form of vegetable dropsy due to too much soil moisture, unbalanced food formulas or excessive pruning-one or all. Cessation of pruning followed by deep cultivation will arrest the malady, to a great extent, as the plants will thus be given an opportunity to set foliage, thereby affording breathing surface sufficient to transpire or pass off the

pests should, as a primary procedure, be eradicated, as far as possible, from the Tomato plot. This at once suggests the importance of crop rotation as a second step, and thereafter, in sequence, the destruction of affected vines and contiguous vegetable matter, the selection of areas not recently planted with solanaceons crops, and finally the importation of seed (for all solanaceons plants as well as Tomatoes) from districts known to be exempt from the blight.

Insect Pests. - While these are relatively mumerons, their ravages are much less of a menace to the grower than either the fungous or the bacterial maladies. Only the mure important are here mentioned.

First, the boll worm, Heliothis armigera. As the problem of the damage done by this iusect is of almost equal iuterest to the cotton planter and the Tomato trucker, the corngrower, too, being largely concerned, it might well be left in their hands for solution, but for the fact that the loss to the trucker is not confined to the direct depredation of the worm itself, but a pathway is thereby opened to the subsequent inroads of the blight bacillus, as stated. It is on this account that the trucker's interest in the "boll worm" is paramount. Unfortumately no adequate remedy beyond band-picking, the use of corn as a "trap-plant" and the destruction of wormy fruit has ever been suggested.
Of the various cut worms and wire worms almost the same might be said, omitting the interest of the cotton planter. Remedies are equally illusive. Except the
2524. Stake-trained Tomato. stereotyped "sunrise worm hunt" with a bit of shingle, and cabbage leaves or dough poisoned with Paris green and deposited at night about the plat, nothing of value has ever been suggested.

Hand-picking for the great, green, sluggish tobacco worms, Phlegethontius Carolinus, nsually proves effective, in combination with the process of poisoning followed by tobaceo growers by means of a solution of cobalt and sugar deposited each afternoon, at dusk, in the corolla of the Jimpsonweed, Datura stramonium, which the tohacco moth frequents.

The flea beetle, Phyflotreta vittata, pinholing the foliage in clammy, cloudy weather and thereby assisting the inroads of fungi and bacilli, is sometimes repelled though not destroyed by Bordeaux mixture.
Nematode galls, Fig. 2144, p. 1545, caused by the "vinegar eels," Heterodera radicicola, which affect cotton, peas and certain other garden plants, frequently do much damage to the Tomato. They can be aroided only by rotation of area and preventing the contiguity of any of their host plants-particularly cowpeas.

After all, the chief injury wrought by insects apon the Tomato consists not so much in direct depredation as in the incidental transfer of bacterial germs through their agency. Boll worms, thrips, Colorado and flea beetles, and other forms relatirely innocuous in themselves, become, for this reason, a serions menace. Were their complete extinguishment possible, the commercial prospects and possibilities of the Tomato plant would be infinitely improved.

Hugh N. Starnes.
Tomato Growing Under Glass. - The Tomato is now one of the most popular regetable crops for forcing. It is grown to a considerable extent near most of the large eastern cities. Very ofted it is grown in connection with carnations or other plants. The houses may be
used for carnations during the winter season and for Tomatoes in late winter and early spring when the outside temperature becomes warmer. In many cases, however, houses are used almost exclusirely for Tomato growing. The forced crop usually eomes into market during holidays and runs until May or even Jume. The winter erop is usually relatively light and the Tomatoes snall. The crop that matures when the days are long, from April on, is mucb heavier and the fruits are consiterably larger. Nearly all the heary yields and large specimens that are reported in the public press are secured in the later crops.

Many Tomato growers aim to hare crops from two sets of plants. One set of plants produces a crop in midwinter or somewhat later, and the other set comes into bearing in April or May. These crops may be raised in different bouses, suceeeding other plants. If they are grown in boxes, however, they may be handled in the same house, the pots for the second crop being set between those of the first crop before that crop is off. In many instances, however, suly one crop is grown; that is to say, the effort is made to secure a more or less continuous picking from one set of plants running over a period of two mouths or more.
The Tomato requires a uniform and high temperature and is very subject to diseases and difficulties when grown uuder glass. There are many risks in the business of Tomato growing in winter. It is probable that there is no money to he made from it when the price falls below thirty cents per pound, and perbaps the limit of profit, taking all things into consideration, is not much below forty cents.
Tomatoes are now usually grown on benches or in solid beds, preferably the former. Sometimes they are grown in boxes 10 or 12 inches square or in 10 - or 12 -inch pots, but greater eare is exercised to grow them in this way and the expense is also increased. Plants may be raised either from cuttings or from seeds. Seedlings are usually preferred in this country. It requires from four to fire months to secure ripe Tomatoes after the seeds are sown. The young plants are usually started in flats and are theu transplanted to other flats or, preferably, to pots. They should be stocky and well grown and about 6 or 8 inches high when they are placed in the beds.

Sometimes the old plants are bent down at the base and one or two feet of the stem covered with earth; the top then renews itself, particularly if cut back, and a vew crop of fruit is produced. Plants can be kept in bearing for two seasous. Healthier plants and better results are usually secured, however, when netw plants are used for each succeeding crop, although time may be sared by the laying-down process.

As grown in this country winter tomato plants are usually trained to a single stem, being supported by a cord that runs from near the base of the plant to a support overhead. In this system of training the plants may stand 2 feet apart each way or eren less. The side

2525. A strand of winter Tomato, showing the clusters supported by slings. shoots are pinched out as fast as they appear, the main central shoot being allowed to grow. It is loosely tied to a cord or wire as it ascends. Usually the main stem is stopped when it reaches about 5 feet in height. Some persons prefer to start 3 to 5 stems from near the crown of the plant and to train them fan-shape. When this is done the plants shouk stand from 2 to 3 feet apart
either way. This system is seldom nsed in American commercial Tomato growing, however.

The soil should be much like that which is adapted to the growing of Tomatoes out of doors. 1t sheuld be well enriched with old short manure and also with some commercial fertilizer which is relatively rich in the mineral clements. Care should be exercised that the soil is net secured from a Tomato field, for in that case diseases are likely to be brought into the bouse. Every effort should be employed to cause the plants to grow continuensly. Plants that become ront-bound or yellow and pinched cannot be expected to give good results.
Some bottom-heat should be applied. If the soil is as shallew a $\checkmark 4$ inches, careshould be taken that pipes are not too close to the bottom of the bench or that the heat is not too सreat. From 5 to 6 inches is a better deptb for soil on Tomato benches, and the pipes for carrying steam should he several inches beneath the bottom. The temperature of the house at night should not fall below $60^{\circ}$, although a lower temperature than this, providing the house is dry and the plants are not growing rery rapidly, may result in no appreciable harm. It is better, however, to maintain a temperature of $65^{\circ}$ at night. The day temperature should run from 75 to $80^{\circ}$. The honse should have an abundance of light and should be high enough ouly to allow the plants to have free head-room.

The Tomato plant is very likely to grow too rapidly when it is given too much water and the temperature is too high. This is particularly true in the dull cloudy days of midwinter. The plant then fills with meisture, becomes soft and flabby and is likely to develop the cedema, or dropsy. This disease manifests itself in brown elevations on the stems and in the curling of the leaves. When a plant is once seriously affected it is worthless. The preventive is to keep the bouses well ventilated and relatively dry in spells of dark weather. This caution applies particnlarly to the duller and damper parts of the house.

The Tomato flower needs hand-pollination to enable it to set fruit. The pellen will ordinarily discharge readily if the flower is jarred quickly at midday when the sun is shining and the house is dry. When the flowers are ready for pollination a bright day should be looked for and the house should not he watered that morning. The pollen is jarred into a spoon or a watch-glass. and into this pollen the protruding stigma of the flowers is ruhbed. It is necessary to apply an abundance of pol-


MOEING THE GROUNO.

2526. Sculptures from a Theban tomb " of the 18 th or the beginning of the 19th dynasty."
From Daubeny's "Lectnres on Roman Husbandry." "The plotigh itself is notbing more than a modification of the hoe, which was first dragged along tbe ground by manual labor, before the force of oxen was substituted." (See Tools, page 1820.)
len in order to secure large and well-formed fruits. The pollinating should he done freely and with great thoroughness, as upon this operation depends the chance of securing a full and goed crop. One can rarely expect to secure from a whole house an average of more than 3 to 4 pounds of fruit to a single plant for the winter crop when the plants are trained to a single stem. Similar plants fruited in April or May, however, may produce considerably more than this. As soon as the fruit clusters begin to get heavy, they should he supported by cords secured to the main stem (Fig. 2525).

Many varieties of Tomatees force with ease. There are few which seem to be special forcing varieties. Usually a Tomato of medium ratleer than of large size and one that is rounded and with few creases or angles is to he preferred. The varieties of Tomatoes that are in faver for forcing are constantly changing and it is net adrisable to gire a list here.
The Tomato is heset by several difficulties when grown under glass. One of the most serious is the root-gall, which is due to a nematode worm. In the nerthern states where the soil may lee frozen there should be little difficulty with this pest. After the crop is off in early summer all the soil should be removed from the benches and the boards should be thoroughly washed with lye. The new soil should be such as has been thoroughly frozen. The practice of mixing old forcingbouse soil with the new soil is very likely to perpetuate any rootgall difticulty that may have been introduced into the house. When once plants are affected with the root-gall they cannet he sared. The Tomato rust, which is characterized by fungous spore-patches on the under sides of the leaves, may be held in check by spraying with Bordeaus mixture or other fungicide. There are several forms of blight which are apparently bacterial troubles. These seem to follow unsanitary conditions of the bouse, as too close temperature, too little light, too much moisture at the root, and the like. They are characterized by various degrees of curling and blackening of the feliage and young growth. There is no remedy. Infected plants should be destroyed and, as a safeguard, the soil in which they grow should not be used again in the house. The rot of the fruit is often serious in Tomato honses. The cause of the trouble is not definitely known. After the rot has proceeded to a certain stage, filamentous fungi develop, and these were formerly considered to be the canse of the trouble. The only remedy so far known for ret in houses is to

2527. Ancient glows, reproduced from Bradley's "Survey of the Ancient Husbandry and Gardening," 1725, Herewith is Bradley's explanation:
give attention to the general sanitary conditions of the place and to lick off the injured fruits as fast as the disease derelops.
L. H. B.

TOMATO. Husk T, is Physalis pubescens. Strawberrỳ T. is Physalis Alkekengi and pubescens.

TOMATO, TREE, Cyphom. andra.

TOMMASINIA (Tommasini, a magistrate and naturalist of Trieste). Cmbellifere, Two species of herbs allied to Peucedanum and Angelica. Bentham and Hooker attach it to Peucedauum. In the breaking up of that genus (see Peucedanum), this gromp would seem to be best treated as a distinct genus, following Koch, Boissier and others. It has the habit of Angelica. From Peucedanum it differs chiefly in having the petals involnte on the margin. Involucre none; involncel many-leaved; margin of carpels dilated: fls. somewhat polygamous. One species, T. verticillàris, Bertol. (Peuctanum rerticillere, Koch. Angélica verticillare, Linn.), is advertised in this conntry as a lawn plant. It is a hardy pereunial, about 1 ft . tall: 1rs. with many small fellow-green flowers, 3-pinnate, the leaflets ovate, acute-serrate and the lateral ones ofteu 2 -lobed and the terminal one 3 -lobed, the petiole much dilated at base. Piedmont region, S. Enrope.

## L. H. B.

TOOART TREE. Eucalyptus gomphocephala.

TOOLS. The American farmer is known by his tools and machinery. Labor costs much and land costs little. The
"No. 1. Figrure of an ancient Plough, supposed to he used about the Time of the Komans.
"No. 2. Fignte of a Spanish Plough, which some suppose preserves somewhat of the Manner of the Roman Plongh, only alter'd to he drawn by one Horse, instead of a Yoke of Oxeu. 'Tis said that the Huslandmen in Spain, will plongh two or three Acres of light Land,in a Day with this Plongh.
"No, 3. The common Shoulder Plough or best Plough, nised in several Parts of England, for cutting or lreaking the Surface of Grass Grounds, or Heath Lands: 'tis push'd along by one Man; sometimes cutting the Turf baif an Inch thick, sometimes an Inch or two. At A is an Iron turn'd up with a sharp Edge, to cut the Turff from the rest of the green Turfif from the rest of the green sward.
"No. 4. Is a Figure of the common Dray Plongh, which is good to be used for miery Clays in Winter; but is not so proper to be nsed in Olays when they are hard.
"No. 5. The Figure of a singl'd Wheel'd Plough, nsed in Sussex.
"No. 6. The Figure of the Hertfordshire Wheel Plough, which is of the easiest Draught; proper for any Grounds, except miery Clays, which are apt to clogg the Wheels. The several Parts of this Plough, being understood, will explain to us the Use of the other Ploughs. A is the plough Beam, B the Handle, Tail, Stilts, or Staves, C the Neck, or Share Boam, D the Earth Board, Mould Board, Furrow Board, Shield Board, E the Sheath, F the Share Iron, G the Coulter, H the Plough Pin and Collar Links, I the Plough Pillow, $K$ the Wheels."

American is inventive. The result is that there is a tool to expedite and lighten almost every labor. The effort of each man is multiplied. Not only are the American tools numerous and adapted to almost every agricultural labor, lut they are trim, light and comely in design.

A tool is properly a hand implement, used to facilitate mere mannal labor. A machine is a contrivance, usually more elaborate, that multiplies and transmits power or motion. Yet tools and machines merge so completely that it is impossible to make a definite category of one or the other. The word implement is more generic, and applies to any intermediary device by means of which a man accomplishes a given work. The phrase "agricultural implements," as used by tradesmen, usually refers to both tools and machines. In general discussions the word tool is used somewhat indefinitely, as in this sketch; but even then it does not include complicated machinery.

The tools used by horticulturists can be thrown into four general categories:

1. Tools for tilling the land, a4 plows, harrows, rollers, cultivators, weeders, hoes, rakes. See Tillage.
2. Tools to facilitate various handwork, as seedsowers, transplanters, markers, pruniug implemeuts, and most greenhouse devices.
3. Tools or machines to facilitate the destruction of insects and fungi, as fumigators, syringes, spraying devices. See Spraying, Insecticides, Fungicides.
4. Tools or vehicles for transporting, as carts, barrows.
In the multiplicity of tools, one is often at a loss what to purchase. Tbe buyer should hare a definite idea of the kind of labor that he needs to have performed and he should then consider how well adapted the tool may be to perform that labor. Once purehased, the tools should be cared for. A tool shed or room is the greatest convenience and often the greatest economy. Labor is expedited and annoyance saved if each tool has its place. Every farm or garden should be provided with a room that can be warmed in cold weather, in which repairs can be made on tools and machinery. No general farm barn is complete without such a room. The care of tools not only contributes to the longerity and use. fulness of the implements themselves, but it sets distinct ideals before the farmer and thereby is ameaus of educating him. The greater the variety and the better the quality of the tools the more alert the user of them is likelv to be. One should look up the new ideas in

5. An early Yankee plow, made of wood and the moldboard protected by iron nailed on. After Roberts.
tools each year as he does in markets or crops. The advertising pages of rural papers are suggestive in this direction.

The original tool for opening or tilling the ground

2529. An European type of plow, still used in its improved forms.
appears to have been a forked or crotched stick, one prong of which was used as a handle aud the other as a cleaving instrument. From this the hoe and the plow appear to have developed. Fig. 2526. The hoe and the plow are still the fundamental or primary tillage tools,

2550. The perfected American plow.
one being for hand-work essentially what the other is for team-work. As the philosophy of tillage has come to be better understood, these tools have beeu greatly modified and varied. It is surprising to know that the plow was not perfected until within a century. It is doubtful if the invention of any of the most important machines of modern times bas really meant so much for the welfare of the race as the birth of this humble implement. To many persons is ascribed the credit of the invention of the modern plow, for the implement seems to have originated independently in different countries, and even in America there are various contestants for the honor. Thomas Jefferson, Charles Newbold, David Peacock, and others have received the bonor. There is reason for ascribing the modern tspe of plow to Jethro Wood, of Scipio, Cayuga county, New York. The years 1814 and 1819 are the dates of his most important patents, although the latter is usually regarded as the natal day of the implement. Wood was born in Massachusetts in 1774 and died in 1845 or 1846 . (See "Jethro Wood, inventor of the Modern Plow," ly Frank Gilbert, Chicago, 188\%.) The study of plow's is a curious and profitable undertaking, and one that still needs to be prosecuted. Some of the forms of plows, ancient and modern, are shown in Figs. 2527-30.
The large-area farming of North America and the apprehension of the principles that underlie tillage have resulted in the invention of a large number of surfaceworking tillage tools. These inventions are particularly important in orcharding, as they enable the grower to maintain the necessary surface mulch (see Tillage and Pomology) with a small amount of labor and without training the trees too high. There are now many cultivators and harrows which cover a wide swath and which are adapted to the light stirring of the surface soil without the turning of furrows and the ridging of the land. Fig. 2531. One who is contemplating a serious study of tillage tools should familiarize himself with the inventions of Jethro Tull, before the middle of the eighteenth century. Tull devised implements to facilitate the tillage of plants when they were growing in the field.
In hand-tillage tools the greatest recent advancement is in the development of the wheel boe. Fig. 2532. This light and simple tool, usnally with adjustable blades, performs the labor of many sets of fingers and does the work more effectively so far us tillage is concernct. It also enforces better initial preparation of the land in order that it may do its work more perfectly; and this remark will also apply to the modern seed-sowers. Fig. 2533.
Unfortunately, there is no recent Anierican book that discusses the principles underlying the application of farm tools and machinery. Practically, our only sus-
tainen effort in that direction is Thomas＇Farm Inn





L．II．B．


2531．Two types ol tools for preparing the surface soi The spike－tooth and spring tooth harrow

## TOOTHACHE TREE Su＂Junthwry？＂m

## 

TORCH LILY．K゙nintofin






 Asia ：and Africta．（＇aly tumular，phate or 3 is wimgod．




 －H1：1ll．

 The flowers ate not laris luit the platis are floriferms
 $T$ ．Fentaier has the bent habit fur a bentdine plant， but it may low hordored with $T$ ．fleme．The Hants are vasily raisul from sunt，but may also bot grows from cuttings，whieh roset quirkly．


2532．The hand－wheel hoe．
2533．A hand seed－sower．

## 

flàva，Tum－h．Ham．（T．Fithomui，（iotefr．）．E＇sually

 or less：tls，axillary ：mal solitary wr sutatoral at the fads of the brawhe＇s in pairs on an erect raphia；mo．

 E．Ania．B．al．bitou．F＇188：itin．

## A．F7s．melilly blew or white．

Asiatica，limu Ammal，＂roct ur flitimbt：stem quat



 phoblue，with at hark honth an ： 1 of the lobses，withont a



Fournieri，Limben｜$\%$ ，mintult．Ilurt．，wat Benth．）．




 fows ronmd bhtua，dark purplinh hlan，the anterior lohe matkerl with a yellow hot！h．1．11．a3：24！．R．H． 1siti，pr．46\％．13．\＄1．fïth．－Var．alba，1lrot．（var．White
 Viar．grandiflora has кmmewhat larger｜l－：mul is more

 also seed．of T ：flocere．

F．W．BaEillay．
Toratet Fonmenieri in Floriala is an rexellent sulasti－ tute for the pansy，which is mativated only with difti－
 drevic atrombl the ald pants from suldf－sown


 witlo great atat ly cut
 －hows its full leanty when flamtel in both ＂r burdiers or in mamat
 wrant shrulis．It thow．
 throushout the stmin． mer，and wom late in fall isalateal flowers maty low fumma．The heat reanlt are ole tained ly treating it as atr anmanil．Any Emul and 1w lis light suil srems tor meet its requirements．if sma
 whore but prefers shate and mointure． It •Fのन grows laxari－


2534．Torenia Fournieri． lwtached flower（ $\boldsymbol{x}^{{ }^{2}}{ }_{2}$ ）． antly in wet phares
 urow in the North．If such lon：alitios，lonwover，we very
 humed as olmmantly nor are ther enhored so lirightly as in sumy sithations．（th the other lamet，it is sometimess funmel in buth dry pusitions，where ombly eneti arm yone－

 attains a luight of frum $x$ to 10 inuhes，aml when planted almut o inches apart suon coser the gromme en－ tirely：There is alroaly a wreat rariety in colors，but the typical plant las heantiful light blaw and royal purpite flowsts，with a bricht yellow throat，in texture rivaling the most expuisite velvet．II．Nehebisg

## TORNILLO，Seve Prosopis mbeserns．

TORREYA（after Dr．Tohn Torrey，one of the most distinguished of tho etriber American hotamists：1746－

 lrambhes，elothed with yew－likt，two－ramkwi，datk green foliages tho fruits are drupe－like and alomit 1 in．long． The Torrayas are but little known in cultivation and rarely sew in a fourishing eondition．The southern

T, taxifolia survives the winters in very sheltered positions in the ricinity of Boston, but $T$. Californica is not bardy north. The Japanese T. nucifera is probably the hardiest and most desirable species, hut seems not yet to have been tested north. Torreyas will probably grow best in shaded and sheltered positions and in a somewhat moist loamy soil. Prop. by seeds; also by cuttings and by grafting on Cephalotaxus. Plants raised from cuttings grow very slowly and usually renaain hushy. For cions, terminal shoots should be sulected.

There are 4 species in N. America andE. Asia. Trees, rarely shrubs: lvs. 2 -ranked, linear or linear-lanceolate, with 2 narrow glancons lines beneath, becoming fulvous with age; when bruised the foliage emits a disagreeable odor: fls. diocious, rarely monœecious; staminate fls. ovoid or oblong, composed of 6-8 whorls of stamens, surrounded at the base by bud-scales; pistillate fls. consistiug of a solitary ovule surrounded at the base by a fleshy aril and several scales: fr. drupe-like, consisting of a rather large seed, with thick woody shell entirely covered by a thin fleshy aril. The hard, strong and close-grained wood is much valued in Japan for cabinet-making and building. It is very durable in soil. In this country it has been used for fence posts. Ratinesque's Tumion has recently been takeu up as the proper name for this genus, since the name Torreya was used for other genera before being applied to this; but there are good reasons why none of these older Torreyas can stand, and no useful purpose can be served by replacing the present name.

> A. Lus. linear, about $1 / 8$ in. broad or less. B. Length of lu's. $3 / 4-11 / 2$ in.
taxifdia, Arnott (Tümion taxifolium, Greene). Fig. 2535 . Tree, attaining 40 ft ., with spreading, slightly pendulous branches, forming a rather open pyramidal head: bark brown, tinged orange: Irs. linear, acuminate, dark or dark yellowish green above, with narrow white lines beneath, $3 / 4-\Gamma 1 / 2$ in. long: fr. obovate, dark purple, $1-I^{1 / 4}$ in. long. Fla. S.S. 10:512.

## BB. Length of lvs, $1-31 / 2 \mathrm{in}$.

Californica, Torr, (T. Myristica, Hook. f. Tùmion Califórnicum, Greene). California Nutheg. Tree, attaining 70 , or occasionally 100 ft ., with spreading, sligbtly pendulous branches, forming a pyramidal or in old age round-topped head: bark grayish brown, tinged with orange: lvs. linear, slightly falcate, acuminate, lustrous and dark green above, $1-31 / 2$ in. long: fr. ob-long-oval or oval, light green, streaked with purple, I-11/2 in. long. Calif. S.S. 10:513. B.M. 4780. F.S. 9:925. G.C. 1I. $24: 553$; 1II. $5: 800,801$. R.H. 1875, pp. 76,77 ; 1879, pp. 171, 172.

> AA. Lis. lanceolate, one-sixth in. broad or somewhat less.
nucifera, Sieb. \& Zuce. Tree, usually 30 ft , but occasionally 80 ft . high, with spreading branches, forming a compact head, sometimes shrubby: bark bright red: lvs. lanceolate, acuminate, rigid and spiny pointed, very dark green above, with 2 white lines beneath, $3 / 4-11 / 4 \mathrm{in}$. long: fr. ovoid, oblong, less than an inch long. Japan. S.Z. 2:129. R.H. 1873, p. 315.-The Chinese T. grand is, Fort., is very similar in foliage, but said to lack the disagreeable odor of the other species. R.H. 1879, p. 173. G.C. 11. 22:681.

Alfred Rehdek.

## TORTOISE PLANT. Testudinaria Elephantipes.

## TOUCH-ME-NOT. Impatiens aurea and biflora.

TOURNEFORTIA (Jos. Pitton de Tournefort, I6561708; one of the earliest systematic botanists). Borragindeec. A large genus comprising possibly 100 species widely scattered about the warmer portions of the world. Mostly trees and shruhs, rarely subshruhs, with alternate simple leaves and small fowers in terminal cymes.
heliotropioldes, Hook. Properly Heliotròpium anchusæfolium, Poir. A bairy, shrubby perennial, with aspect
of garden heliotrope but not sweet-scented: lvs. elliptical, obtuse, wavy margined: peduncles terminal, 2-3 times branched, bearing a 1-sided, 2-ranked raceme of many fls.: calyx 5 -lobed, hairy; corolla-tube yellow, the limb 5-jobed, lilac. Buenos Ayres. B.M. 3096.-Selfsows and comes up in the garden spontaneously. Not popular North, but a good shrubby plant in the South.
F. W. Barclay.

TOWNSENDIA (David Townsend, botanical associate of Wm . Darlington, of Pennsylvania). Compósito. About 17 species of low, many-stemmed herbs, nearly'

2535. Torreya taxifolia ( $\times 3 / 4$ ).
all of which are natives of the Rocky Mts., with linear or spatulate, entire lvs, and rather large heads resembling those of Aster; the numerous rays from violet to rose purple or white; Howering from early spring to summer. The annual or biennial species have larger heads than most of the perennials. Judging from the literature, the largest fld. of the perennials are $\boldsymbol{T}$. condensata, Nilcoxiana and Rothrockii, three species which seem not to be in cultivation as yet. The species mentioned below are presumably among the most desirable of the genus. They are offered by collectors of Colorado wild flowers.

As a genus Townsendia is distinguished mainly by its akene, which is commonly beset with bristly duplex hairs, having a forked or glochidiate-capitellate apex. Townsendia is practically unknown to floriculture. For fuller account see Gray's Synoptical Flora of North Amerlea.
grandiflòra, Nutt. Biennial or anuual, 9-18 in. high: stems spreading from the base: upper lvs, often linear: bracts of involucre conspicuously attenuate-acuminate: heads large; rays $1 / 2$ in. long, bright blue or violet. Summer. Foothills western Neh. to Colo. and New Mex.
serícea, Hook. Nearly stemless perennial with sessile heads surrounded and surpassed by the linear lvs.: heads $\mathrm{y}_{4} \mathrm{in}$. across; rays white or purplish tinged. April, May. Dry hills, plains or mountains, Saskatehewan to Rockies, south to New Mex. and Ariz. - Known as "Easter Daisy" in Colorado.
W. M.

## TOXICOPHL $\not \subset A$. See Acokanthera

TOXYLON (Bow-wood, from the Greek). Urticacece. Osage Orange. One species, a thorny North American small tree, much used for hedgese Formerly known by Nuttall's name Maclura (named for Wm. Maclure, American geologist), but Rafinesque's Toxylon has a year's priority. The orange-like, inedible fruit is familiar to children. See Fig. 2536. The tree thrives in moist and rich or in ordinary or dry soils. Its roots
are voraciens feeders and rapidly deplete the soil. Hardy as far north as Massachusetts. A tree with deciduous, simple, alternate, petiolate, entire leaves and milky sap: branches, particularly the lewer, beset with numerous straight, axillary spines $2-3$ in. long: fls. minute, dicecions, apetalous, axillary, appearing in May to June, the staminate borne on the short spnr-like branchlets of the previous year, racemose, pedicillate, pendulous; calys 4-parted, with its spgments valrate: stamens 4, the pistillate borne on branches of the current year, sessile, capitate; peduncle shert, the 4 -cleft calyx inclosing the sessile ovary: style simple, filiform, long and exserted: ovary superier, ene-loculed; orule selitary: fr. a dense aggregation of enlarged, tleshy calices into a globular syncarp with a mammillate surface, light green or yellewish in color: syncarp 4-5 in. in diameter, falling as seon as ripe in the autumn.

2536. Osage Orange-Toxylon pomilerum ( $\times 1.5$ ).
pomiferum, Raf. (Machira aurantlact, Nutt.). Osage Orange. Fig. 25.36. Tree, $30-50 \mathrm{ft}$. high: Irs. ovate to obleng-lanceolate. E. Kansas to N. Texas. Weod orange-colered. G.C. 11I. 16:693, G.M. $33: 808$, 809. R.H. 1896, p. 33 (var. inermis). V. 4:37.

Emil Mische.
Before the advent of wire fences the Osage Orange was an extremely popular hedge plant, meeting general requirements better than any other plant suitable to our climate. It is used considerably, and where properly attended to frem the start makes a hedge in a shert time of a fairly defensive nature. Most dealers in tree seeds keep seeds of the Osage Orange, and these who grow the plants procure the seed in spring, drilling it in rows. The Osage Orange grows readily from seed, even when the latter is a year old. The sowing in rows gives the seedlings a chance to become stocky by fall and plants two feet high the first year are not uncommon. These one-year-old plants are quite good enongh fer hedging. Nurserymen who grow them for sale usually dig the plants in the fall, stering them away in a cool cellar, the roets buried in sand. They are then sorted into two grades, which compose first- and sec-end-class plants. At the time of grading, the tops are chopped off somewhat, leaving about six inches of length enly. This fits them for planting without more cutting.

The place where a hedge is desired should be well cleared of all weeds. If cultivated for a year in advance, so much the better, as it will make the keeping down of weeds a much easier task.
There are twe ways of planting a hedge; viz., single row and double row. The double row is made by setting the plants nine inches apart each way, the plants in the second row coming between those in the first row, forming a zigzag line. The single rew, hewever, is good enongh, and is much easier to cultivate and keep clear of weeds. In single rows set the plants six inches apart.
The soil need not be everrich for the Osage Orange. The plant is a strong grower naturally, and soil in fair condition will give a growth more tractable to form a good bedge than a rank growth from rich soil.
When dug the Osage plants have very long roets, and the ends of these may be chopped off witheut disadvantage. If the plants are held in bunches and the roots chopped to an even length the setting will be an easy task. The tops will hare been already cut off if treated in the way above suggested.
Beyond cultivation of the plants, nething is required the first year. By fall a good growth shonld have been
made, and towards spring this should he cut back, leav. ing about six inches of the young growth. The season follewing more care must be given to forming a hedge. When in full growth, say in July, shear off the tops of the plants. This will cause the side shoots to develop; and it is these side shoots which will form the base of the hedge. Another light trimming should be given when growth is over for the season, to bring the plants inte a hedge shape. Much the same work will be requirell every year-a trimming when growth is in full swing to make the hedge bushy, and another later on to shape it.
The proper shape for a hedge is the conical form, though it may be flat-sided or in any shape desired, provided the upper branches never overlap the lower.

Of late years a system of planting the Osage Orange differing from the oue described has been fellowed by some. Strong two year-old plants are procured and are planted in a slanting position. As the new growth is made it rises in an upright way as usual, and this produces a lattice-like appearance of the branches, and a very strong hedge. It is certainly strenger than a common hedge, and yet a commen one properly looked after forms a defensive fence, meeting all requirements, and costs not nearly as much as the other. See IIedges.

## Joseph Meehan.

TRACHELIUM (Greek, truchelos, neck; from its supposed eflicacy in diseases of the throat). Campanulacea. Throatwort. A genus of 4 or 5 species of perennial herbs or low shrubs with usually somewhat simple stems and terminal panicles of small blue flowers. The species are native to the Mediterranean regien of Eurepe. Calyx adnate: lebes 5, narrow; corolla narrowly tubular; stamens free from the cerolla: capsule nearly globose: seeds small.
cærùleum, Linn. A half-hardy biennial or perennial, 1-3 ft. high: Jvs. evate, acuminate, unequally serrate: fls. blue or white, in dense, terminal cymes, in late summer. Shaded places in S. Europe. B.R. 1:72. Gn. 28, p. 181; 47, 1. 303; 51, p. 84--An attractive lateflowerlug perennial suited to culture as an annual. According to Gn. 28, p. 181, the species is fairly hardy in England, but yeung plants are more fleriferous than old ones. Seed may be sorn in March. The plant is easily propagated by cuttings. Aecording to Gn. 47, p. 303, plants frem cuttings are dwarfer than seedlings.
F. T. Barclay.

TRACHELOSPERMUM (Greek, referring to the fact that the seed has a neck). Apocyncere. Trachelospermum is a genus of 8 species of climbing shrubs native to eastern Asia and Malaya. They have opposite lvs. and white or purplish fls. in lax cymes. Generic characters: calyx 5 -parted, glandular or sealy within: corolla saiver-shaped; mouth constricted; lohes oblique, overlapping to the right, twisted to the left: stamens inserted above the middle of the tube; anthers cenniving over and adhering to the stigma; cells spurred at the base: disk annular or of obleng glands: carpels 2, distinct, many-evuled.
T. jasminoides, the Star Jasmine, is a tender, evergreen, shrubby climber frem China, with fragrant, white, 5 -lobed flowers. It is a favorite in the South, where it is grown out of doors and known as the "Confederate Jessamine." In northern conservateries it is generally knewn under its synonym, Rhynchospermum. Handsome specimens may be grown in large tubs, making dense bushes 3 or 4 ft . high and as mucl in diameter. In May such specimens are covered with flowers and fill a greenhouse with their delightful fragrance. The blossoms are about an inch across, 5 or 6 in a cluster, pendulous, and of a very spirited appearance, which is largely due to the manner in which the 5 wary-margiued petals (or rather cerolla-lobes) are relled back. See Fig. 25̄37.
"Rhynchospermum " is a mest satisfactory greenhouse shrub for a general collection. it requires no special treatment, escept that the plants shenld be kept on the dry side during the winter.

It requires several years to work up a good-sized specimen. Young plants shond be given warmhouse treatment and encouraged to grow. Large, well-established specimens thrive in a coolhouse. During sum-
mer the pots may be planged outcloors in a partially shaded position. The species is propagated by cuttings of half-ripened wood taken with a heel in spring. The Star Jasmine is one of the many good old standard greenhouse plants that are too little seen nowadays. The writer knows of two large specimens trained to a bush form that are the chief shrubby ormaments of a cool greenhouse from late April to tarly June. Erery year they are loaded with Howers throughout the month of May. The specimens require considerahle room, and the gardener is sometimes compelled to keep them in a cold pit until the chrysanthemum season is over, although this treatment is not to be advised.
jasminoldes, Lem. (Rhynchospermum jusminoldes Lindl.) Stak Jasmine. Also called "Confederate," " Nalayan" or "A frican Jessamine." Fig. 2537. Tender, evergretu, climbing shrub deseribed above: lvs. shortstalked, orate-lanceolate, acute, glabrous: peduncles much longer than lvs. : ealyx-lobes reflextd : corolla-t the contracted below the middle: several jagged scales at base of corolla: 5 large glands at base of ovary, 2 united, 3 free. Southern China. B.M. 4737. Gig. 5:132. Gin. 41. p. 507. - Var. variegatum, Hort., has lis. of green and white, tinged red. Robert Shore and W. M.

Star Jasmine (Trachelospermum jasminoides) is a very choice and beautiful woody climber for the South. Being a native of the southern part of China, it is well adapted to the climate of the extreme Sonth. It commences to bloom early in April and the last fowers can he enjoyed late in May. Even in Octoher and November one may find numerous scattered tlower-clasters. When in full bloom the plant seems to be covered with ${ }^{2}$ white sbeet, the flowers almost hiding the dark green foliage and filling the air for many yards away with a peculiar and most delicions fragrance. The Star Jasmine is heautiful even without Howers. It is not easily propagated and therefore it is not a common plant in gardens. Even plants with good roots require a great deal of intelligent care, and it is no easy matter to bring transplanted specimens into a flourishing condition. It should be transplanted into the garlen in November or December, pot-plants always being preferable for this purpose. The soil should he kept moist all the time, and especially during the dry spells in April and May. If the soil is not naturally rich a moderate amount of fertilizer should be applied. When once estahlished, the plant does not need any more care than the Carolina jasmine (see Gelsemium). In summer, during the rainy season, a mulch of grass and fresh cow manure is exceed ingly heneficial. It is best grown on a trellis of two, three or even four posts about ten feet high, with strong galvanized wire all around; or strong laths can be used in-

2537. Trachelospermum jasminoides $(X 3 / 4)$.
stead of wire. If the specimen is a strong and healthy one it will soon cover the trellis in a deuse tangled mass and the new shoots will gracefully protrude to all sides. The propagation is best affected in Florida by layering, and strong plants can be raised in this way in about two jears.
H. Nehrling.

TRACHYCARPUS (Greek, rough or harsh fruif). Pulmacecr. Fortune's Palm, known under many technical names, is of unique interest to the horticuiturist, as it is the hardiest of all palms. It is a spineless fanpalm which grows 30 ft . high. It is slightly hardier than Chamarops humilis, the only palm uative to Europe. Fortune's Palm is the only tronk-producing palm which grows outdoors the year ronnd in the southern

2538. Fortune's Palm-Trachycarpus excelsus (or T. Fortunei). The leaves finally become $4-5$ feet across.
and western parts of England. In some sheltered spots in these favored regions it has flowered regularly year after year. It is alsu called the Chusan Palm.
For practical purposes Trachycarpus is best considered a genns of four species, two of which are natives of the Himalayan region and two native respectively to China and Japan. The Himalayan species have their trunks clothed with the old leaf-sheaths, while the fareastern species have beautiful, smooth, polished trunks. In each group one species has the tips of the leaf-segments pendulous and the other has them straight. These are the most ohvious and important differences to the horticulturist, except that $T$. Formnei is the hardiest of the whole genus. The differences above cited mark extreme types only. Intermediates oceur. Much studly has been given to this genus of palms and many characters to separate four species have been proposed at various times and subsequently abandoned. The latest botanical conception of the group (Beccari and Hooker in the Flora of British India, 6:436 [1894]) wnites the Himalayan species into one and the far-eastern forms into another. In support of this view may be urged the important facts that smooth-trunked forms bave lately been discovered as far west as Upper Burma, and also that the straight-tipped Japanese form may be merely cultivated or rum wild in Japan. Its origin and nativity are not yet certain. Both points of view are given on the next page, each being correct for its own point of view. The horticultural account is based upon Hooker's notes in B.M. 7128, and the hotanical is taken from the Flora of British lndia. Some botanists prefer the mas. culize case endings, others the feminine.

Fortune's Palm is grown indoors and outdoors in America wherever palms are grown, but it is not one of the most popular species with northern florists. It seems to reach perfection in California, where it is one of the most popular of all palms. Ernest Braunton writes that it is hardy throughout the southern half of the state, where it is commonly known by the appropriate name of Chinese Windmill Palm. It attains a height of 30 ft . Braunton adds that it is hardier than the native Washingtonia and will stand more abuse. It grows well near San Francisco. A new palm has recently come into California under the name of Chamerops or Trachycarpus Phordomia, a name unknown to botany. All the specific names cited in the synonymy below lave also heen comhined with Chamærops.
Generic characters: spadices many, interfoliar, stout, branched: spathes embracing the peduncle and branches of spadix, eoriaceous, compressed, tomentose: bracts and bracteoles minute: fls. small, polygamo-moncecious; sepals 3 , ovate; petals 3 , broadly ovate, valvate; stamens 6 ; carpels 3 ; stigmas 3 , recurted: uvules basilar; drupes 1-3, globose or oblong: seed erect, ventrally grooved; albumen equable.

Horticultural View of Trachycarpus.
A. Trunk clothed with oltl leaf-sheaths. Mimalayan species.
B. Tips of lis. drooping: In's. very glaucous beneath

## Martianus

вв. Tips of les, struight: les. hurdly glaucous benerth

Khasyanus
AA. Trank not clothed with ole leuf-sheaths.
Chinese and Jupuriese species.
в. Tips of liss pendulous. . $\qquad$ Fortunei B8. Tips of le's. straight $\qquad$ excelsus

Following is the Latest Botanical Fiew of Trachycarpas.
Martiànus, H. Wendl. (T. Khasiàus, II. Wendl. T. Griffithii. Decne.). Trunk for the most part naked, annulate: female fls. soli-
 ends: seed grooved thronghout its eutire length; embryo opposite the middle of the groove. Himalayas. B.M. 7128. R. H. 1879, P. 212.
excelsus, II. Wendl. ( $T$. Fórtanei, H. Wendl.). Fig. 2538. Trunk clothed throughout with the old leaf-sheaths: fls. clustered,
triparted, with linear, acute, 3 -cut lobes: peduncles long, bearing an nmbel $2-3$ in. across of very mumerous blue fls. ; calyx-teeth obsolete; petals unequal, the external being longer. July-Oct. Australia. B.H. 2875. B. R. 15:1225.
F. W. Barclay.

TRADESCANTIA (John Tradeseant, gardener to Charles I.; died about 1638). Commelindeer. Spiderwont. Thirty-six species are admitted by C. B. Clarke, the latest monographer, 1881 (DC. Monogr. Phaner. 3). This enumeration does not include $T$. Regince and other recent species. They are all Americau perennial herbs, ranging from Manituba to Argentina. In habit they are various, rarying from erect bushy species to trailing plants rooting at the nodes. The plants are more or less soft and suceulent in texture, although usually not fleshy. The leaves are alternate, sheathing, varying from orate to long-linear-lanceolate. The flowers vary from red to blue and white, sometimes solitary but usually in simple cymes or umbels; sepals and petals each 3 , free, the sepals sometimes colored ; stumens 6, in some species the alternate ones shorter, the filaments usually more or less bearded at the base or above: ovary 3-loculed, with 2 orules in each locule, the style single; fr. a 3-loculed dehiscent capsule. The gemus Zebrina, usually eonfounded with this by gardeners, differs, among other things, in lasing a tubular perianth.
'To horticulturists, Tradescantias are known as hardy herbs, coothonse plants and warmhouse plants. $T$. Virginica is the best known of the hardy species, withstanding the climate of the northern states. The Wandering Jew of greenhouses and hanging baskets, usually known as $T$. tricolor, is partly $T$. fluminensis and partly Zebrinu pendule. T. Reginue is perhaps the best known warmhouse species at present, although various species may be expected in botanic gardens and the collections of amateurs. The glasshonse species are essentially foliage plants. Several species tave handsomely striped leaves. All Tradescantias are free growers, propagating with ease from cuttings of the growing shoots.
A. Plant prostrate, rooting at the joints.
a fluminénsis, Yell. (T. múudula and $T$. albifldra, Kunth. $T$. vèpens, rèpens vittctta, viridis, viridis vittata, prostritte, procimbens, stridta, Hort. T. tricolor, Hort., in part). Wandering Jew iu part. Figs. 2539-41. Glabrous, with shining stems and leaves, the nodes conspicuous, trailing, or the ends of the shoots ascendiug: lvs. ovate-acute, without distinct petiole, ciliate at the very base, the sheaths $1 / 4-3 / 8$ in. long: fls. white, hairy inside, the 6 stamens all alike, horne several together in a sessile cluster subtended by 2 unequal lvs. or bracts, the pedicels not all of same age. Central Brazil to Argentina. - One of the commonest of greenhouse and basket plants. In greenhonses, usually grown under the benches. When the plants grow very vigorously and have little light, they are usually green, and this is the form commonly known as liridis. There are forms with lvs. striped yellow and white, but these colors usually do not hold unless there is abundance of sunlight. In light places, the lys. become redpurple beneath. Very easily propagated by cuttings or pieces of shoots at any time of the sear. The plant needs plenty of moisture in order to grow vigorously. Three plants are known as Wandering Jew, and although they belong to three genera, it is not easy to tell

2540.

## Flower of Trades-

 cantia fluminensis. Natural size. them apart when not in flower (Fig. 2539), These plants are Tradescantia fluminensis, sheaths hairy or ciliate only at the top, fls. white; Zebrina pendula, sheaths bairy thronghout or at least at base and top, lvs. redder beneath and always colored abore, fls, rose-red; Commelina nudiflora, sheaths gla. brous, fls, blue. The two first are tender to frost; , thelast is hardy in the open ground in central New York. All of them are used for baskets and vases. The two first are best known and are the plants commonly known as Wandering Jew. All of them may have striped foliage. See Commelina and Zebrina.

AA. Plant erect, or ascending from a decumbent base.
B. Species grown primarily for the colored foliage: greenhouse kinds.

## c. Stem none, or scarcely rising above the ground.

fuscàta, Lodd. (properly Pyrrheima Lóddigesii, Hassk.). Stemless, brown-tomentose or hairy: ivs. oh-long-ovate, entire, about 7 -nerved, short-petioled: fls. blue or blue-purple, 1 in . or more across, borne in the midst of the lvs. on very short pedicels, stamens 6. S. Amer. L.B.C. $4: 374$. B.R. 6:482. B.M. 2330.-Lvs. 6-8 in. long. Now referred to Pyrrheima, being the only species.

## cc. Slem exident, usually branehing. D. Lvs, distichous (in 2 routs).

Reginæ, Lind. \& Rod. Stiff-growing upright plant: lvs. lanceolate-acuminate, sessile, set closely on opposite sides of the stem and spreading nearly horizoutally, about 6 in . long, the center purplish crimson, with feathered border, the space towards the margins silvery, the very edge of the leaf darker, the under side purple. Peru. 1.H. 39:147; 40:173 (3); 41, p. 14. G.C. 111. 11:699; 13:477. R. B. 19:113. - Introd. into Belgium from Peru in 1870. Named for the Queen of the Belgians. Perhaps a Dichorisandra.

DD. Les, not 2-ranked.

## E. Stamens all equal and similar.

Warscewicziàna, Kunth \& Bonché (Dichorisándra Warscewiczidna, Planch.). Fig. 2542. Dichorisandralike, having a stout caudex or trunk, marked by leafscars and finally branching: lvs, green, stifish, i ft. or less long, clustered at the top of the stem, recurving, lanceolate-acuminate: fis. lilac-purple, numerous in smali crowded clusters along the branches of a paniclelike cluster. Guatemala. B.NI. 5188. R.H. 1860, p. 136.

2541. Wandering Jew-Tradescantia fluminensis. Natural size.

## EE. Stamens unequal,- 3 long and i short.

elongata, Meyer. Nearly glabrous, procumbent and rooting at the base, then suberect to the height of 1-2 ft.: lvs. lanceolate or oblong-lanceolate, acuminate, sessile, light glaucous-green abore and striped with silver, reddish purple beneath: peduncles $1-5$, terminal: fls. rose-colored, the sepals green. Tropical Amer.

B8. Species groun as bodder plants for their flowers: native kinds.
c. Lmbels sessile.

Virginiàna, Linn. Common Spiderwort. Erect, branching, $1-3 \mathrm{ft}$., glabrous or nearly so: lvs, conduplicate, very long linear-lanceolate ( $6-15 \mathrm{in}$. long), clasping: umbels severai-fld., terminal, the pedicel recurving when not in bloom: fls. violet-biue, in various shades, I-2 in. across, produced freely nearly all summer. N. Y. to S. Dakota, Va. and Ark. B.M. 105; 3546 (as T. caricifolite). L.B.C. 16: 1513 (as $T$. elata).-An exceedingiy variable plant. Var. occidentalis, Britt., is in the trade. It has much narrower lys. aud smaller fls, and is usually dwart. There are several horticultural forms. Var. álba has white fls. B.M. 3501. Var. atrosanguinea has dark red tls. Var. coccinea has bright red fls. Var. cærùlea has bright blue fls. Some of the forms would better be regarded as species. See Rose, Contr. Nat. Herb. 5:204.
brevicaùlis, Raf. Villous, 1 ft . or less high, sometimes nearly acaulescent: lvs. mostly from near the ground, linear-lanceolate, more or less ciliate: fls. about 1 in. across, blne or rosepurple. Ky. to Mo.

2542. Tradescantia Warscewicziana.

## cc. E'mbels peduncled.

ròsea, Vent. Slender and nearly or quite simple, glabrous, 12 iu. or less tall: lvs. very narrow-limear: bracts short and scale-like: fls. $1 / 2-3 / 4$ in. weross, rosecolored. Md. to Mo. and south. Mn. 2, p. 36.
T. crassifolia, Cav. Something like T. Virginiana, but Ivs. short and broad (oblong-ovate, ciliate, as also the stem: fls, $1 \frac{1}{2}$ in. across, blue-purple, in terminal and axillary sessile umbels, the stameus all equal. Mex. B.M. 1598.-T. Crassula, Link \& Otto. Somewhat succulent, ascending: Ivs, thick, oblong and nearly or guite obtuse, glabrous except on the edges: fls. about $1 / 4-1 / 2$ in. across, white, in terminal and lateral often stalked umbels, the calys and pedicels hairy. Brazil. B.M. 2935. L.B.C. 16:1560.-T. decòra, Bull. Foliage plant: lvs. long-lanceolate, dark olive-green with a central gray band. Brazil.-T. discolor is Rheeo discolor, which see (p. 1526).-T. draconcefolia. "A noble and rapid-growing plant, with luxuriant and handsome foliage. The leaves in many respects resemble a dracæna and are a deep green, marked with chocolate or black. . . When fully grown the plant will send out long runners, bearing ont tufts of leaves at the eud." John Lewis Cbilds, Catalogue 1900. - T. multicolor, Hort. See Zebrina.-T. navicularis, Ort. Much like T. Virginiana: stoloniferous: stem much branched: lvs. ovate-acute, sessile, boat-shaped: umbel terminal, many-fld., with 2 foliaceous bracts: fls, rosecolored, the stamens all equal. Peru. Mentioned in Europesn literature as a warmhouse subject. - T. quadricolor, Hort. See Zebrina. - T. supérba, Lind. \& Rod. Lvs. oval-oblong acuminate, sessile, purple heneath, dark metallic green with a white hand on either side of midrib. Peru. I.H. 39:155; 40:173 (6). Gt. 46, p. 163. Perhaps not a Tradescantia.-T. zebrina, Hort., is Zebrina pendula.
L. H. B.

TRAGOPDGON (Greek for goat's beard). Compósitce. foat's Beard. Between 30 and 40 species of erect bienuial or perennial herbs with narrow grass-like leaves and heads of yeliow or purple flowers, belonging to the ligulate section of the composite family (tribe Cichoriacece). Florets perfect, with slender style-branches and sagittate anthers; pappus composed of hristles in a single series and mostly raised on a beak; involucre cylindric or nearly so, with approximately equal bracts in a single row. The Tragopogons are mostly weedy plants with a tap-root. They are native to outhern Europe, morthern Africa and central and southern Asia. One of them is cultivated for its edible tap-root (salsify) and another is now a frequent weed in this country. The flowers of these open only in the morning.

## A. Flouers purple

porrifòlius, Linn. Salsify. Vegetable Ofster. Oyster Plant, Figs, 23:38, 2543. Tall strict biennial, sometimes 4 ft . high when in bloom, glabrous: fls. showy, closing at noon or before, the outer rays exceeded by the involucre scales: peduncle thickened and

2543. Flowers of Salsify or Oyster Plant Tragopogon porrifolius ( $\times 1 / 3$ ).
hollow beneath the heads. S. Eu. Naturalized in many parts of the country, often becoming a persistent weed. See Salsify.
an. Flowers yellow.
praténsis, Linn. Goat's Beard. More or less branehed. 3 ft . or less tall: outer rays exceeding the insolucre scales: peduncle scarcely swollen. A weed from Europe.
L. H. B.

TRAILERS. See Fines.
TRAILING ARBUTUS. Eipigue repens.
TRAILING BEGONIA. Cissus discolor.
TRAINING, See Prming.
TRANSPIRATION is the process by which water is given off in the form of vapor from leaves and stems. Instead of a circulation of the sap in plants similar to the movements of the blood of animals, water containing mineral salts is taken in at the roots in liquid form and carried upward to the leares through the woody tissue, and then evaporated, leaving the mineral or ash behind in the leaf, where it serves in making foon. The chief jurpose of transpiration is, therefore, to earry a stream of mineral food from the soil to the green parts of the plant, although it also serres to aid in the exchange of gases with the air, and preserves more equable temperatures of the body of the plant.

Minerals may be absorbed by the plant only in very dilnte solutions. Hence it is necessary for the plant to lift several thousaml pounds of water to the leaves in order to obtain one pound of minerals. After the mineralladen water reaches the green organs it is of no further use and must be evaporated. It is estimated that 98 per cent of the energy receired from sunlight by the plant is used in this important work. That an enormous amount of work is performed by the plant in transpiration may be seen when it is known that a single sunflower plant will evaporate a pint of water from its leaves in a single day, and abont seventy times this much in the course of its development. A birch tree with 200,000 leaves will transpire from 700 to 1,000
pounds of water daily in the summer. A single oak tree will throw 120 or 130 tons of water into the air during the course of a season, and an acre of beech trees containing $400-600$ specimens will transpire about $2,000,000$ pounds in a single summer.

To determine the exact amount of water transpired by a plant, a specimen not more than a yard in height growing in a pot may be used. Set the pot on a square of oil-cloth, then bring the cloth up around the pot and tie closely to the stem of the plant. This will prevent evaporation except from the shoot. Now set the prepared plaut on one pan of a scale, together with a small measuring glass, and halance. Allow the plant to remain in the warm sunshine for eight hours, then pour water into the measuring glass until the scale shows original position or reading. The water in the glass will represent the amount of transpiration.

To demonstrate that water vapor does actually come from the leaf, cut off a small leafy shoot of any conrenient plant and thrust the hase of the stem through a piece of cardboard into a tumbler of water; now cover the exposed part of the shoot with another tumbler and set in a warm, light place. Noisture, which could have come only from the leaves, will soon gather on the glass.

Some transpiration occurs over the entire surface of the plant, although only about one-thirtieth as much is given off by a stem as from the same amount of leaf surface. The leaves are specially adapted to carry ou this function. The interior of the leaf is matie up of a great number of loosely arranged cells which evaporate water into the air between them. The air in the leaf communicates with the atmosphere through openings called stomata, which are generally placed on the lower side of the leaf. Consequently the watery vapor diffuses out through the stomatal opening. The stomata are controlled by guari-cells which may completely close them up, and the action of the gnard-cells is nuder the control of the plant. When the plant is losing too much water the stomata close; and they are varionsly affected by winds and sunshine.
species growing in very dry localities adapt themselves to the conditions hy building only limited snrfaces from which transpiration may take place and by reducing the nmmber of stomata. The cactus is an example of this type, and this plant transpires only abont one three-hundredth as much water as a leafy plant of the same volume. As might be expected, the character and amount of the mineral salts in the soil also affect the amount of transpiration.
D. T. MacDougal.

TRANSPLANTING is a general term used to designate the removal of living plants wherehy they may become established in new quarters. Transplanting may be performed when the plant is in a dormant condition, as in winter, or when it is still actively growing. Small herbaceous plants are usually the only ones that are transplanted when in a growing eondition, and this only when the plants are living under special garden conditions where they may have the best of attention as to watering aud shading. Considered from the standpoint of the plant, transplanting is always a violent operation, for it destroys a consinlerable part of the rootsystem, loosens the plant's attachment to the soil and arrests for the time being a large part of its progressive vital activities. In orker to overeome thesp dangers the earth into which the plant is set shonld be well prepared and moist, so that the plant may quickly reëstablish itself; part of tho top usually should be removed in order to lessen transpiration, and with suceulent and growing plants some shade should he prorided for a time. The decper and finer the soil, and the greater the quantity of moisture it bolds, the more successfnl the trausplanting operation will be, other things being equal. The operation is also more successfnl in humid regions, as in the Atlantic states, than it is in dry regions, as on the plains and westware. In the more arid parts of the country transplanting is performed as little as possible, whereas in the eastern part great quantities of annual and other garden plants are transferred from seed-beds to the open ground.

The successful transplanting of any plant depends in part on the condition of the plant itself. The younger the plant, as a rule, the better it withstands the opera-

tion. Herbaceous or growing plants that are relatively short and stocky and compact in growth transplant better than those that are long, "leggy," and weak. The stocky plants are better able to withstand the vicissitudes of inclement weather when.they are transferred from a protected place to the open air, and they probably also have more recuperative nower to make new roots and to attach themselves again to the earth. Many plants may be "hardened off "or gradually inured to sun and cold before they are transplanted. The more frequently a given plant is transplanted the more readily it endures transplanting. The root-system becomes close and compact and there is relatively less iujury to the roots at each subsequent removal, providing a long interval does not take place between the operations.
The success of transplanting also depends to some extent on the weather at the time the remoral is performed. If cool, cloudy and damp weather follows the transplanting, the plants are much more likely to live. Plants usually establish themselves more quickly in freshly turned soil, because it contains a relatively large amount of moisture. In order to bring the earth into contact with the roots, it should be firmed closely about the plants. This packing of the soil tends to bring the subterranean moisture upwards where it may supply the roots; it also tends to increase evaporation from the surface of the soil and thereby to waste the water, although much of the moisture is utilized by the plant as it passes upwards. In order to prevent the escape of moisture from the surface of the soil, it is customary to cover the ground with a mulch, from one to three inches in depth, of litter, sawdust, leaves or coarse manure. When practicable the water may be saved by keeping the surface well tilled, thereby providing a mulch of earth.
In dry weather it may be adrisable to water newly set plants, particularly if they are greeu and growing fast, as tomatoes, cabbages and other annuals. The watering may best be done at nightfall. The water should be applied in a hole or depression about the plant or at oue side of it, rather than on the surface; and the following morning the loose, fresh earth should be drawn over the roots in order to provide a surface mulch and to prevent the soil from packing.
All kinds of plants can be transplanted, but some of them remove with great difficulty. In these cases the special skill which is born of experience with these particular plants must be invoked for success. The difficulties are of various kinds. In some cases the difficulty may be a tap-root system, as in the case of the black walnut and the hickories. In these instances the plant may be prepared a year or two in advance by severing the tap-root some distance below the gronnd by means of a spade or other sharp instrument that is thrust underneath the crown. In other cases the difficulty is the inability of the plant to make new feeding roots quickly, as in some of the asiminas or papaws. Such plants often may be treated like the taprooted plants; that is, the long, cord-like roots may be severed at some distance from the crown a year or two before the plants are to be removed. In other cases the inability to be transplanted is probably due to the excessive rate of transpiration from the foliage. In these instances cutting back the top rather severely and providing shade may contribute to success. In some cases the difficulties are so great as practically to prohibit transplanting.

So-called transplanting machines bave oeen perfected within the last few years for setting small herbaceous stuff, as cabbages, tobacco and tomatoes. These are really vehicles, drawn by horses, that open a furrow and drop a small quantity of water when the plant is inserted iu the furrow by the hands of an operator who rides on the machine. The plants, already prepared for setting, are carried in a tray or hopper, and the operator places these between gnards which automatically measure the distance. These machines are particularly

2545. A transplanting box, specially designed for melons.

It is made of a "flat" or splint 14 in . long and $33 / 4 \mathrm{in}$. wide, bent at four corners and held in place by a tack. It hats no bottom.
valuable in large areas where great quantities of plants are to be set, and also in hard and dry land where it is difficult to make the proper ojeenings with the hand and also otherwise to susply the plant with sufficient water. For most small plants that are to be reset in small quantity, the dibber is a most useful implement to expedite the operation. Fig. 2544.
Plants grown in pots and small shallow boxes transplant more readily than those grown in the open soil. Particularly is this true of pot-grown plants, for the hevel or slope of the pot allows the ball of earth to be "knocked out" readily. See Polling. Special transplanting boxes are on the market, to be used instead of pots, for purposes of economy. These boxes are usually made of thiu basket stuff and are thrown away when the plants are takeu from them for transplanting. Fig. 2445. The seeds are sown directly in these boxes. Mclons, cucumbers and other plants that are difficult to transplant are often grown on pieces of inverted turf, taken from old pastures.
In the case of large trees and shrubs, success often may be attained by trausplanting in the winter, when a ball of frozen earth may be removed. Fig. 2546. It is usually better to give the transplanting of large trees into the hands of an expert, than to attempt to perform it with unskilled help and inefficient appliances. Only a swall proportion of the efforts in trausplanting very large trees are really successful. The trees may live for several years and yet never fully recover nor make satisfactory subjects. The surest and best results are usually secured only when the trees are nursery-grown and have been transplanted two or three times within a few years of their final removal. There are some species that remove from the wild with relative ease when they are of large size, among which are elms, maples, pin oak, basswood; but the large number of species do not readily recuperate from the operation.
It is sometimes said that a plant cannot recover from the transplanting operation, that the severing of the roats inflicts injuries that are not outgrown, and that a new type of root-system develops. These fears appear to be ungrounded. In many cases the plant does not regain itself, but these instances are probably due to lack of skill in the operation rather than to any inherent difficulty in the transplanting process itself. But even if the transplanting process were to be found to be theoretically injurious, nevertheless it must be employed in the practice of modern horticulture.
L. H. B.

Transplanting Large Trees (Plate XLIll).-The principles of transplanting large or small trees are the same, excepting as regards the mechanies of transportation. Types of machinery for moving deciduous trees may be classified as follows:

The most primitive device is a two-wheeled cart with a pole. The tree is dug, and the cart is secured to it with the trunk resting in a notch in the axle or bolster,

2546. Moving a tree in winter, with a large ball of frozen earth.
and the pole lashed up among the branches. The tree is pulled over and dragged root foremost.

In a modification of the above, a platform under the ball connects the rear axle, bearing the tree, with the front axle. Of this type are the Hall, Estes, Santimer, Rutherford and other patents. In one form the tree is foaded top foremost, and by means of a turn-table above the rear axle, swung around to position. These machines usually carry a ball of earth and roots, 7 to 9 ft . in limmeter, cut shorter on the sidenext to the platform.

For moving trees in an upright position, there are low platform trucks, and trucks with $t$ wo high perches. In the latter, one perch or a section of the axle is removed to admit the trunk between the percbes. This form is used in England; also a similar one in which the tree is swung vertically beside the axle of a twowhetled cart drawn by one horse. When carried vertically, the top interferes with electric wires and the tops of other trees, and the roots are injured by the platform or other support. It is not practicable to carry a spread of 30 or 40 ft . of roots between the wheels.

House-mover's rigging is adapted to moving trees for short distances, but is so slow that the fine feeding roots outside the central ball of earth are likely to dry out, and get broken by the work.

Trees are carried horizontally with the trunk resting on two benches on a low truck. The tree may be tipped over on the benches by tackle, or loaded and unloaded by derrick. The derrick legs usually interfere with the full circle of roots, and as the derrick has to be set up twice for each tree moved, the operation is slow, and, with the tree swinging in midair, somewhat dangerous. For moving trees a few feet, a derrick may be used, with or without small wheels in the base of the derrick legs. DLany kinds of machines may be used, but in order to make this discussion concrete, the following account has reference to the device shown in Plate XLili. Other successful moving operations are shown in Figs. 2547, 2548.

For operating the mover shown in Plate XLIll, the tree, of say $1+26 \mathrm{in}$. diameter of trunk, is dug by startiog a eircular trench with a dianeter of $30-40 \mathrm{ft}$. An under cut is made beneath the roots with a light prospecting pick, and the soil picked ont and caved down with a spading fork or picking rod, the points of
which are rounded to avoid cutting off the roots. The loose dirt is shoveled out of the bottom of the trench. The roots, as uncovered, are tied in bundles with lath yarn and bent up, out of the way of the diggers. See Fig. 2549. If the roots are to be out of the ground orer one day in dry weather the bumdles may be wrapped in clay mud, damp moss and straw, or burlap. When the digging has progressed to within 4 to 8 ft . of the center, the tree is slightly tipped over to loosen the central ;ball, which cleaves from the subsoil near the extremities of the downward roots. On sand or hard-pan subsoil this is at a depth of 2 to 5 feet. In deep soil it may be necessary to cut some downward roots. A ball of earth is left in the center from 5 to 12 ft . in diameter, or as heavy as can be drawn by four to eight horses. This ball is not essential with deciduons trees, but it is easier to leave it than to remove and replace the soil. With fue-rooted trees like the red maple, it is difficult to pick out the soil, while with coarse-rooted trees, like the beech, in gravelly soil, the ball drops to pieces.

For loading, the cradle which is pivoted above or back of the axle is swung over to the tree, the trunk having first been wrapped with cushions and slats. The truuk is clamped to the cradle by chains and serews without injuring the bark. By means of a screw 9 ft . long operated by a ratchet lever or hand-hrake wheel, the eradle lifts the tree from the hole and swings it over in a horizontal position. Pulling iu the same direction, by tackle fastened in the top of the tree, aids the work of the screw.

After the tree is loaded, the roots on the under side of the axle are tied up to the perches. The front wheels are on pivots, therefore the roots are not hroken by the swinging of the axle. The roots are drawn aside to put in tire pole and driver's seat. Planks are placed under the wheels, and the mover is pulled out of the hole by tackle.

The hole to receive the tree is prepared with a layer of soft mud in the bottom, which partly fills the crev. ices as the tree is lowered into it. The weight of the tree is not allowed to rest upou and erush the downward roots, but is supported hy the mover until five earth is packed in. Soil is worked down hetween the roots in the form of mud by means of a stream of water and packing sticks. One man shoveling, two or three with packing sticks, aud one with hose is the right operation until the center is made solid. The packing sticks are 2 in . in diameter, 6 ft . long. and pointed at one end and round at the other. The side roots are next unwrapped and covered at their natural depth.

2547. A large tree removed from its place. The roots are now to be wound in burlaps or other material.

While the tree is horizontal, it may be most conreniently pruned. Th outside should be cut back 1 to 3 ft., cutting to a croteh or hud, and the remaining twigy thinned out abont one-third. Hardwood trees and trees with few roots need the most sefere pruning.

The soil should be friable loam, not baking clay nor sterile sand, and it should be made fertile. The surface should be covered with a soil or straw mulch 3 inches deep and the earth kept moist by watering once a week or less frequently, as required. The roots may he dam-

2548. The roots wrapped, and the tree being moved on skids.
are difficult to transplant with good results, as well as the tender-rooted trees like magnolia and tulip. Trees grown in the open are much better for moving than those in the woods. The roots are more mumerous, and not mixed with the roots of other trees, the bark is thicker and does not dry out so quickly, the branches and twigs are closer and better developed to stand exposure, and may be thinned out without destroying the beauty of the tree, and more plant-food is stored for the new growth of leaves and roots. A young tree of large size is better to move than an old tree. In friable loan the roots are straighter and tougher and less liable to injury in digging, than in hard or rocky soil.

The popular prejudice that moving large trees is an ultimate failure, or that small trees quickly overtake them, arises from moving trees 1 to 2 feet in diameter with 6 to 8 feet diameter of routs. As this mass of roots is mainly the large roots, and from $70-90$ per cent of the feeding roots are lost, the tree, after sending out the leares with its stored plant-food, fails to support all the foliage and bark. In successive seasons its branches die, or the growth is short and yellow and the bark dies on the soutb side.

For moving large coniferous evergreens, it is usually considered neces. sary to keep a ball of tarth intact. The foliage is constantly transpiring, and if the roots become dry, the sap does not flow again. As it is not generally feasible to move balls of over 12 feet diameter and 3 feet in depth, the size of evergreens which it is practicable to transplant is smaller
aged by too thick mulch, deep planting, excess of water or lack of drainage, all of which exclude the air. Decaying manure and caustic fertilizers in direct contact with the roots are injurious.

The tree may he secured by guy wires. Anchor posts are set slanting, $41 / 2 \mathrm{ft}$. in the ground, with a crosspiece just below the surface. Two to six strands of No. 11 galvanized steel wire are used. The wire is run from the post, through a piece of hose around the tree, and back to the post. It is twisted tight, with two sticks turning in the same direction and moring toward each other. To preseut the sun from drying ont the bark on the south side of the tree, the trank should be mrapped with strat, especially thin-harked trees, like beech and silver maple.

The best trees for moving are those with abundant small roots. These hare fibers branching from them which take in the water and plant-food. The large roots in the center of the root-system are conduits for the sap, and braces for the tree. Trees which transplant successfully are the maple, horsechestnut, elm, eatalpa, ash, linden, willow, poplar and pin oak. Trees with few fine roots and hard wood, as the hickory and white oak,
than of deciduous trees.
The digying is started as in Fig. 2550. The flexible roots are wrapped against the ball by twisting them with a cord, and the large, stiff roots are cnt off. The ball may be held by frost, or by upright staves, iron bands, or irons in the form of a pot split in halves and held by bolts or clamps. The best method is the use of a canvas band, wider than the depth of the hall, cut to fit. It has draw ropes operated by levers which firmly compress the earth, without damaging the small roots wrapped against the hall. A hammock, consisting of several ropes to distribute the pressure, is attached to a windlass. A platform is placed with a chisel edge in the under cut. By means of the windlass, the ball is cut off from the subsoil and the platform, with the tree, loaded upon a truck.

In planting, the hammock is reversed and holds the ball, while the platform is pulled ont by the windlass, leaving the tree in the hole. By this method, trees $20-40$ feet high and 6-12 inches in diameter may be moved.

Trees grown in fertile clay loam are hest for transplanting, but with eare the canvas will hold balls of sand or grarel. Root-pruning, one or more years pre-

2549. Diagram to illustrate the operations in the removal of a large tree for transplanting.
vious to moring, all or part way around the tree at a diameter less than the size of the hall to be moved, is beneficial. With very large balls, freezing aids in keeping the soil solid, although it destroys the fine roots outside the ball.

Evergreens may be movel any month in the year. In June and July, the new growth is likely to wilt more than in Angust, after it hashardened. It is well to protect from deep freezing and drying winds in winter.

Henry Hicks.
Another View of Transplanting Large Trees, -The modern demand for immediate effect in landscape work has been met by the successful transplanting of large trees. The method employed about Chicago differs some what from that in vogme in the east. This is due to a considerable degree to the condition of the soil in which the trees are found.
near the apex. The fruit is ahout ${ }^{3 / 4}$ in. across and has 4 spinescent angles. It is roasted and eaten in some parts of Europe like the common chestnut. The Indian species, $T$. bispinosu, is said to yield very large and street nuts which are commonly sold in the East under the name of Singhara Nut. The name Trapa is abbreviated from calcitrapa, which is the same as caltrons, an instrument of war used to impede the progress of mounted warriors. It had 4 spine-like projections, like the fruit of the Water Caltrops.

Generic characters: fls. small, axillary, solitary, short-peduncled: calyx 4-parted, the segments persistent, sometimes spinescent; petals and stamens 4 ovary 2 -loculed; ovules solitary, long, pendulous, affixed to the septum: fr. top-shaped, leathery or somewhat bony, 1-loculed, 1 -seeded. About 5 species, native to the warmer parts of the eastern hemisplece.

2550. Diagram to show how and where the digging is begun.

Select a shapely tree with well-balanced crown and which has stood in the open so that all its branches are equally thrifty. A bushy top is preferred that the necessary amount of trimming can be done by thinning out whole branches and not disturbing the terminal sboots, thus preserving the original outline of the tree. Crowded forest trees are too tall and it is difficult to get the sap to carry to the top.

A light sandy soil olten produces fibrons roots spreading over a large area, but this generally slips off in transplanting and, if frozen, cracks badly when the ball is rolled. When resetting a tree, care must be taken to sift in new soil hetween the fine bair-roots and get it in direct contact with each rootlet, because if crowded together the roots are likely to rot. When practicable, it is undoubtedly best to more the roots in their native soil. A bard ball can be rolled at will and easily supports the weight of the trunk, which otherwise would crush the roots when rolled or handled. The prevailing soil ahont Chicago is two feet of rich black loam and a subsoil of clay. This is ideal for giving plenty of fibrous roots near the trunk, and a hody to the ball of earth encasing the roots, without waiting for the ground to freeze. This allows a longer planting season and makes it easy to have loose soil to tamp around the tree.

After the tree has been dug loose, rock back and forth, filling under it each time with soil, until the whole ball is standing flush with the surface. It depends upon the weight of the load what style of a wagon is to be used. A hardwood tree of thirty inches in diameter weighs, with proper ball, about fifteen tons. This is the limit of practical constrnetion for a low-hung stone truck. Simply pull the tree over and rest it on the high support over the rear axle and with block and tackle roll the ball on the wagon. When at the desired location roll off again, letting the ball rest on the ground before dropping into the hole. A counter check should be maintained to keep the tree always under control. Straighten up and thoroughly tamp so as to anchor it well and the work is complete.

Wm. A. Peterson.
TRAPA (name explained below). Onagricea. Trupa maturs, the Water *Chestwut or Water Caltrops, is an interesting plant for the aquarinm. It has two kinds of leaves. The submerged ones are root-like, long, slender and feathery. The flosting lys, form a loose rosette. The leaf-stalks are swollen and spongy
natans, Linn. Water Chestnut. Water Calteops. Jesurt's Nut. Petiole of floating lvs. 2-4 in. long, nearly glabrous: blade rhombic-orbicular, dentate in upper half, slightly villous along the nerves beneath: fr. 4-spined, but the 2 lateral ones shorter. Eu.. Grient. Gn. 24, p. 557. G.C. 11. 10:212. B.R. 3:259.
bispinòsa, Roxb. Singhara Nut. Petiole of floating lrs. 4-6 in. long, woolly: blade $2 \times 3$ in., slightly erenate in the npper half, very villous beneath: fr. $3 / 4$ in. thick, with 2 of the spines sometimes absent. India, Ceylon. W. M.

Trapa natans is one of the daintiest aquaties in cultivation. It is perfectly hardy and very desirable for aquaria, pools, ponds or tub culture. Its beautifully mottled or variegated foliage is very attractive. The flowers are white, small and inconspicnons. The fruits are very large in comparison with the flowers and leaves, but they are bidden beneath the foliage until they ripen, when they drop off. They are good to eat raw, like cliestnuts, and are sweeter and more palatable before the shell hecomes hard. The nut is not likely to become of commercial importance in America. The seeds drop from the plant and remain in the pond all winter.

Wh. Tricker.
TRAUTVETTERIA (Trantsetter, a Rnssian botanist). Ranunculdceo. A genus of but two species of North America and eastern Asia. Tall, erect, perennial herbs: lvs. hroad, palmately lobed: fls. white, small, corymbosepaniculate; sepals 3 to 5 , caducons; petals none; carpels many, forming 1 -seeded akenes. Very hardy, thriving in ordinary or rich soil. Propagated by division of roots. Offered by dealers in native plants.

Carolinénsis, Vail. (Hydrástis Carolinénsis, Walt. T. palmàta, Fisch. \& Mey.). Stems 2-3 feet high: Irs. alternate, reticulated, radical ones very large, with lobes mish toothed and cut. July. Pa., south and west. B.M. 1630 (as Cimicifuga palmata).
grándis, Nutt. (Actiea palmata, Hook. A. grándis, Dietr.). Much like the above species. Lvs. membranaceons, more deeply lobed, often to the base, thin, sparsely hairy beneath along the ribs; reticulations less distinct: styles longer and somewhat curled. Wash., llaho, Brit. Col.
K. C. Daris.

TRAVELER'S JOY. Clematis vitalba.

TRAVELER'S TREE. See havenala.
TREASURE VINE. Name proposed by J. L. Childs for Midalgoa Wercklei or Childsta Wercklei.

TREE. Candelahrum, or Chandelier T., Pindanus Candelubrum.

## TREE OF HEAVEN. See Allanthas.

TREES. Plate XLIV. Figs, 2551-2566. What is a tree is a question to which it is not easy to give a short and well-defined answer. The same species may assume a tree-like habit or remain shrubby, according to the climatic conditions, soil and other circumstances. Usually a tree is defined as a woody plant rising from
more. The Sequoias are of more majestic and gigantic appearance than the Eucalyptns on account of its massive trunk (see Sequoia, p, i660). Psendotsuga Douglasi and Pinus Lambertiana occasionally attain 300 feet. A number of other conifers, chiefly American, grow to a height of 150 to 300 feet. Some deciduous trees, as Platanus occidentalis, several species of oak and Liriodendron Tulipifera exceed 150 feet in height. The jequitibá of Southern Brazil (Couratari legalis, one of the Myrtacew) is also a gigantic tree (see Bot. Gaz. 31, p. 352 ).
The greatest diameter has been observed in Castanea resca, of which a tree with a partly decayed trunk at the foot of Mt. Etna in Sicily measures more than 60 feet in diameter. After this the greatest diameter ohserved is in Taxodium mucronatum, about 40 feet, and in Platanus orientalis abont the same, in Sequoia

2551. A pasture elm.
the ground under normal conditions with a single stem and attaining a certain beight, fixed by some at 20 , by others at 15 feet, or eren less. A more exact definitiou has been given by B. E. Fernow: "Trees are woody plants the seed of which has the inherent capacity of producing uaturally within their native limits one main erect axis continning to grow for a number of years more vigoronsly than the lateral axes and the lower branches dying off in tine."

Trees are the most prominent feature of the vegetable world and surpass all other organic heings in height, magnitude and longevity. The greatest height known las been reached by Eucalyptus cmygdalina of Australia, of which trees have been observed that were 470 feet high. In length, but not in body and longevity, even this tree is surpassed by some giant floating algre said to attain the length of 900 feet, and by some climbing palms of Java attaining, sometimes, 600 feet. Following Eiucalyptus amygdalina is probably Sequoia semperviwns, which attains 325 feet and occasionally
gigantea 35 feet, in Taxodium distichum 30 feet, and somewhat less in Adansonia digitata.

The age attributed to many of the tallest trees is based more or less on speculation, and opinions often differ widely. Dracana Draco is believed to reach 6,000 years of age, Adansonia digitata 5,000, Taxodium mucronatum and Platanus 4,000, Cupressus sempervirens and Taxus baceata 3,000, Castanea sativa, Quercus pedurculata, Sequoia giganteu and Cedrus Libani more than 2,000 years.

Although the trees are the most conspicuous features of the vegetable kingdom, they represent only a small percentage of it as regards the number of species. In the United States, where about 550 trees sccur, they represent only about $31 / 2$ per cent of the whole phanerogamic flora, in Europe eren less. As a rule, towards the tropics the number of tree-like species increases, towards the aretic regions it decreases. Remarkably rich in trees is the flora of Japan, where the proportion of trees to the whole phanerogamic flora is uore than 10

## TREES

per ceut, which percentage surpasses by far that of any other country in the temperate regious.

Trees belong to many different natmral orders, but of the orders of monocotyledonous plants only a few contain trees and nove of them is hardy north. None of the larger orders contains trees ouly, but there are some which consist exclusively of woody plants and include a large proportion of trees, as Coniferæ, Cupuliferæ, Salicacea, Juglandaceæ, Magnoliaceæ, Sapindaceæ, Elwagnacer, Ulmaceæ, Hamamelidacem, Lauraceæ, Anacardiacer, Ebenaceæ, Styracacez and others.

The uses of trees are manifold, and a country from which the forests liave been destroyed becomes almost uninhabitable and wortbless to mankind. The forests furnish wood and timber, exercise beneficial influeaces on the climate, act as regulators of the waterflow, pre-
self, the trees and shrubs do not need his perpetual care aud usually grow without his aid and interference.

To the landscape gardener a thorough knowledge of trees is absolutely essential. He ought to know the ornameutal properties of the trees, their rate and mode of growth, their peenliarities in regard to soil, sitmation aud climate. As the trees are, after the surface of the ground, the most permanent element of the landscape, they ought to be planted with careful deliberation as to the intended artistic effect and their fituess to the soil and climatic conditions, for mistakes in planting of trees are afterwards not pasily corrected and rarely without iujury to the original artistic design. The available number of trees from which selection may be made is large. There are in American and European nurseries and gardens more than 600 species in cultiva-

2552. A group of old sugar maples, with Irregular and broken heads.
rent erosion and also the removal of soil by the wind. Besides furnishing wood and timber, many trees yield other products of great economic importance, especially the numerous kinds bearing fruits. The esthetic value also of the tree must not be underrated, though it cannot be counted in money.

The science of trees and shrubs is dendrology. The art of growing trees is arboricultnre, of which sylviculture is a branch and deals with the rearing and maintaining of forests and the producing of wood erops. Orchard culture is a branch of arhoriculture or of horticulture and deals with the cultivation of fruit trees; it is usually included uuder pomology, which comprises both the science and practice of fruit-growing. As ornamental subjects, trees are more permanent, easier of cultivation and cheaper in the long run than herbs. it is curious to note how little attention the average gardener who has the care of a park or garden gives to the most prominent feature of his domain. He nsually knows fairly well the greenhouse plants and his herbaceous perennials, which cost most in time and money, but the trees and shrubs he often hardly deigns to look at. This is apparently due to the fact that after being once planted, and often not ly him-
tion which are hardy in the northern and middle states. About 240 of them are American, almost 200 from eastern Asia, about 100 from Europe and 70 from western and central Asia. About 40 natural orders are represented, of which the most important are the Coniferz, Cupuliferæ, Salicacex, Rosaceæ, Leguminosæ, Jnglandaceæ, Sapindacer, Urticaceæ, Magnoliaceæ and Oleaceæ. The number of all the cultivated varieties and garden forms is, of course, considerably larger than that of the botavical speeies and may be estimated at about 3,000 . Comparatively few horticultural varieties are fonnd in American nurseries as compared with European, but this need not be regretted, as horticultural varieties are mostly merely curions or monstrous forms. In planting, one mast rely chiefly on the types and use the horticultural varieties sparingly, for restfulness should be the prevailing character of the masses and groups of trees.

The fundamental parposes of trees in landscape gardening are to furnish the great masses of foliage which frame and divide and partly constitute the views and landscape pictures, to emphasize the elevations of the ground, to vary the sky-line, to screen or block out unsightly objects, to eubance the beauty of buildings,
and to furnish shade and shelter. The pnjoyment the trees give by beautiful flowers, various foliage, splendid autumnal tints, and ornamental fruit is mere incidental, though of great value and worthy of carefal consideration. The trees should be selected for planting in accordance with the natural and intended character of the scenery and not be taken indiscriminately because they happen to be handy and easy to procure.
It is essential that the trees should be well adapted to the climate and soil, and in this respect a careful observation of the natural tree growth of the locality will give many good hints. Other considerations are the height the trees attain, the character of growth, color and effect of foliage, flowers and fruits, autumnal tints and winter effects. Concerning the general rules which govern the selection of trees for planting and which are principally the same as in herbs and shrubs, moch other information may also be found in the articles on Landscape Gardening, Park, Shrubbery and Herbs.

Selections of Trees for Special Purposes. - The following lists include trees of proved hardiness and are not intended to lee complete hut merely suggestive, and chietly for the northeastern states.

## 1. Trees with Showy Flowers.

A. Blooming in early spring before or with the leaves.
Acer rubrum (fls. blood-red).
Amelanchier Canadensis (As. white).
Cercis Canadensis (tls. rosy pink).
Coruns florida (fls. white, also pink).
Cornus Mas (ths. yellow).
Magnolia Yulan (ths. white).
Magnolia Sonlangeana (tls, white to purple).
Prunus Avium and other cherries (fls. white).
Prunus Americana and other plums (fls. white).
Prunus Davidiana (tls, pink, also white, the earliest of all Prunus).
Prunus pendula (fls. pinkish, branches pendulous)
Prunus Psendocerasus (Als. white to pink).
Pyrus baccata and other species (fls. white to pink),
Salix (staminate plants with yellow eatkins).
AA. Blooming late in spring after the leaves.
Escnlus Hippocastauum and other species (fis. white or red).
Catalpa speciosa (fls. white).
Cladrastis tinctoria (fls, white)
Cornus Kousa (tls. white).
Cratagus (tss, white).
Fraxinus Ornus (fls, white).
Laburnum (tls, yellow).
Magnolia hypoleuca (1s, white).
Pterostyrax (fls. white).
Robinia (fls. white or light pink).
Syringa vulgaris (fls. white to purple).
Tamarix parvifora (pink).

## AAA. Blooming in summer and uutumn.

Aralia Chinensis and spinosa (Als. Aug. and Sept.). Castanea Americana (fls, white; July).
Gordonia pubescens (fls. white: Sept., Oct.).
Kolreuteria paniculata (fls. yellow; July, Ang.).
Oxydendrum arboreum (fls. white: July, Aug.)
Rhns semialata (fls. white; Aug., Sept.)
Robinia Neomexicana (1ls, light pink; Aug.)
Sophora Japonica (fls. white; Aug.).
Syringa Japonica (tls, white; July).
Camarix fallica (fls. pink; Aug., Sept., if severely cut back).

## 2. Trees twith Showf Fruits,

Acer rubrum (fr. bright red in May and June).
Ailanthus glandulosa var. erythrocarpa (fr. red).
Cornus Horida (fr. scarlet).
Cratægus coccinea and others (fr, scarlet or red),
Hippophaë rhamnoides (fr. yellow).
Hex opaca (fr. red).
Magnolia hypoleuca (fr. searlet).
Magnolia tripetala (fr. pink).
Pyrus hacrata and allied species (fr. yellow or scarlet).
Rhns Cotinus (ample feathery panicles).
Rhus typhina (fr, searlet).
Sassafras officinalis (fr, dark blue with red stems).
Sorbus Americana and Aucuparia (fr. red).
Taxus baceata (fr. scarlet).
3. Trees Valued for Foltage Effects. (Sce also Section 5, Etergreens, below.)

## A. With colored foliage.

Acer Negundo, var. argenteo- variegatum (the most effective of hardy variegated trees).
Acer Negundo, var, aureo marginatum (lvs. yellow),
Acer palmatum, var. atropurpureum (Ivs. purple).
Acer platanoides, var. Reitenbachi (1vs. becoming dark red ju summer).
Acer platanoides, var. Schwedleri (ivs. bright red in spring).
Acer Pseudoplatanus Worleei (livs. yellowish).
Betula alba, var. purpureat (1vs, purple).
Fagus sylvatica, var. purnurea (lvs. purple).
Populus alba, var. nivea (lvs, white beneath).
Populus deltoides, var. aurea (one of the hest yellowleaved trees).
Quercus pedumeulata, var. stropurpurea (3vs. purplish).
Quereus pedunculata, var. Concordia (lvs. yellowish).
Salix alba, var. argentea (lvs. silvery white).
Tilia tomentosa (lvs, white heneath).
Ulmus campestris, var. argenteo-variegata (Ivs whitish).
AA. With large, bold foliage.
Acer insigne.
Acer macrophyllum.
Aralia Chinensis and spinosa.
Asimina triloba.
Catalpa speciosa.
Magnolia masrophylla.
Magnolia tripetala.
Paulownia imperialis.
Quercus dentata.
AAA. With small narrow or finely cut foliage.
Acer palmatum, var. dissectum.
Acer platanoides, var. Lorbergi
Acer saccharinum, var. Wieri.
Alnus glutinosa, var. imperialis,
Betula alba (cut-leaved).
Elæagnus angnstifolia.
Fagus sylvatica, var. asplenifolia.
Gleditschia triacanthos.
Gymnocladus Canadensis.
Hippophaë rhamnoides.
Juglans regia, var. laciniata.
Quercus pedunculata, var. filicifolia.
Salix nigra.
Sambucus nigra, var. laciniata.
Tamarix Gallica. etc.
Taxodium distichum.
4. Trees with Brilliant Autumal Tints.

Acer rubrum (scarlet).
Acer saccharum (scarlet and orange).
Cornus fiorida (searlet).
Cercidiphyllum (yellow and purple).
Crategus (mostly scarlet and orange).
Fraxiuus Americana (yellow or violet-purple).
Liquidambar (scarlet).
Liriodendron (bright yellow).
Nyssa sylvatica (scarlet).
Oxydendrum arhorenm.
Quercus alha (vinous purple).
Quercus coccinea, palustris (searlet).
khus (mostly searlet).
Sassafras (orange and scarlet).
5. Evergreen Trees
A. Conifers (sce also Vol. 1, p. 358).

Abies.
Chammecyparis.
Juniperus Virginiana.
Picea.
Pinus.
Pseudotsuga.
Thusa.
Tsuga.
AA. Broad-leaved evergreens fonly Ilex opaca and Rhododendron hardy north).

## Ilex opaca.

Magnolia glauca (not fully evergreen as far north as it is hardy).
Maguolia grandiflora.
Persea Carolinensis.
Prumus Caroliniana.
Prunus Lasitanica.
Quercus Virginiana
Rhododendron maximum.
6. Deciduous 'Trees Valted for Their TVinter Effeots.
Acer Negundo (branches light green).
Acer Pennsylvanicum (striped bark).
Betula nigra (tlaky reddish brown bark).
Betula papyracea (smooth. silvery white bark).
Crataghs viridis (red fruit).
Fagus sylvatica (keeps its dead leaves).
Gleditschia (large, Hat pods).
Hippophaë rbamnoides (yellow berries).
Liqnidambar (corky branches).
Pyrus prunifolia (scarlet or yellow fruit).
Quercus alba, pedunculata aud tinctoria (keep their leaves).
Quereus macrocarpa (corky brauches).
Rhus typhina (scarlet fruit).
Salix vitellina (yellow lranches)
Sorbus Americana and Aucuparia (searlet frnit).
7. Vert Tall Trees.

Gleditschia triacanthos.
Juglans uigra.
Liriodendron Tulipifera.
Picea excelsa.
Pinus Strolus.
Platamus oceidentalis.
Populus balsamifera.
Populus deltoides.
Querens macrocarpa.
Quercus palnstris.
Quereus rulura.
Quercus velutina.
Taxodium distichum.
Ulmus Americana.
8. Columinar or Narrow Pyramidal Trees,

Abies (most species).
Acer nigrom, var. mounmentale
Betula alba, var. fastigiata.
Carpinus Betulus, var. fastigiata.
Chamseyparis Lawsoniana.
Cbamæcyparis Nutkaensis.
Juniperus communis, var. Suecica.
Juniperas Virginiana (especially var. pyramidalis).
Liriodendron Tulipifera, var. pyramidalis.
Picea (most species).
Populns alba, var. Bolleana
Populus nigra, var. Italica.
Quereus pedunculata, var. pyramidalis.
Taxodium distichum (especially var, imbricarium).
Taxus baceata, var. fastigiata.
Thuya.
Ulmus campestris, var. monumentalis,
Ulmus scabra, var. fastigiata,

## 9. Weeping Trees.

Acer saceharinum, var. Wieri
Betula allua, var. pendula.
Fagus sylvatiea, var. pendula.
Fraximus excelsior, var. pendula.
Fraxiuus parvifoha, var. pendula.
Prumis pendula.
Prunus serotina, var. pendula.
Quercus pedunculata, var. Dauvessei.
Salix vitellina, var. pendula,
Salix Babylonica.
Salix blanda
Sorbus Aucuparia, var, pendula.
Tilia petiolaris.
Ulmus scabra, var, pendula.
10. City Trees (See also No. 11).

Ailanthus glandulosa (pistillate tree).
Carpinus.
Cratixgus Oxyacantha.
Fraxiuns Americana.
Fraxinus excelsior.
Ginkgo liloba.
Gleditschia triacanthos.
Platanus orientalis.
$\left.\begin{array}{l}\text { Populus deltoides. } \\ \text { Populus nigra, var. Italica. }\end{array}\right\} \begin{gathered}\text { (often attacked by } \\ \text { borers). }\end{gathered}$
Prunus serotina.
Rohina Pseudacacia (often attacked by borers).
Sophora Japonica.
Ulmus Americana.
Ulmus campestris.
Tilia ulmifolia.

## 11. Shade and Avenue Trees.

Besides the trees enumerated under city trees, Nu. 10 (which are to be recommended as street trees in the cities), the following trees are good arenue subjects:

Acer platanoides.
Acer rubrum.
Acer saccharinum
Acer saccharum.
Esculus carnea,
Esculus Hippocastanum.
Catalpa speciosa.
Celtis occidentalis.
Fagus ferruginea and $F$. sylvatica.
Liquidambar styracitlua.
Liriodendron Tulipifera.
Quercus alba.
Quercus coecinea.
Quercus imbricaria.
Quercus palustris.
Quercus Phellos.
Querens ruhra.
Tilia Americana.
Tilia dasystyla.
Tilia ulmifoha.
12. Trees for Seaside Planting.

Ailauthus glandulosa.
C'rategus Oxyacantha.
Elaagnus angustifolia.
Hippophaë rhamnoides.
Juniperus Virginiana.
Picea alba.
Pinus Laricio.
Pinus rigida.
Pinus sylvestris.
Populns deltoides, var. Carolinensis.
Populus tremuloides.
Quercus rubra.
Salix alba.
Salix Caprea.
Sassafras officiuale.
Tamarix.
15. Trees for Dry Situations and Dry Climates.

Acer campestre,
Acer Ginnala.
Alnus rugosa.
Betula alba.
Cornus Mas.
Elæagnus angustifolia.
Fraxinus puluesceus.
Phellodendron Amurense.
Pinus divaricata.
Pinus rigida.
Pinus sylvestris.
Quercus coceinea.
Quercus rubra.
Quercus Prinus.
Quercas velutina.
UImus effusa.
14. Trees for Wet Soll.

Acer rubrum.
Acer saccharinum.
Almus glutinosa.
Almus maritima.
Betula alba.
Betula nigra.
Chameey paris spharoidea.
Hicoria laciniosa.
Nyssa sylvatica.
Picea alba.
Picea nigra.
Pinus rigida.
Populus (most species).
Quereus alba.
Quercus bicolor.
Quercus palustris
Quercus Phellos.
Salix (most species).
Taxodium distichum.

## Alfred Rehder.

Ornamental Trees for the Middle Southern States. 1. Deciduon's 'Trees. Acer saccharinum (. . dusycarpum) and A. Vegundo, the latter extensively used for street planting. - Broussonetia papyrifera, formerly planted along streets, but objectionable beeause of the many suckers which they produce, as is also B. Kazinoki. - Cercis Canadensis. Valuable as an early spring-flowering tree. - Celtis Bungeana. One of the most distinct trees: an excellent shade tree.-Catalpa. Seldom planted
south as an ornamental tree, because of the repeated attacks of caterpillars. The latter are freqnently used for fish bait. - Cladrastis tinctoria. Very desirable as a flowering lawn tree. - Cormus floridu. The white-flowering species is among the most attractive of our early springblooming trees and is largely used in landscape work. The pink- and red-flowering forms are exceedingly beantiful.-Cratorgus. Taking into account the various shapes, the foliage and the bright colored fruit in fall and winter, the best are: $C$. corrlethe or Washington Thorn, C. arborescens, C. spathalate and C. astiralis or Apple Haw. - Chilopsis saligna, known as C. Jinectris, is one of the best for dry soils. The typical species produces lilac-colored tlowers, but several forms have lately been produced with flowers ranging from light lilac to lilac-purple with yellow stripes inside. A pure whiteflowering form is rery striking but is of more dwarf hahit.-Diospyros Virginicun. Sometimes planted for shade or for its fruit. Adapts itself to nearly all soils. There are many forms varying both iu the foliage and size and shape of fruit. - Frogus ferraginea is frequently used for street planting in sandy soils. The red-leaved forms of the European species are of little value south, the purple tint of the foliage fading to a dull green at the approach of warm weather.-Fruxinus acuminutu and $F^{2}$. pabescens. Both thrive best in rich soils and are very desirable for street planting, being seldom attacked by insects.-Ginkgo or Salishnria is sometimes used for avenues and street planting where a rigid pyramidal tree is required. The foliage is one of its attractions, being shaped like the Madenhair fern.-Gleditschia triacanthos. The fertile tree is sometimes planted for its large falcate pods, which are relished by many for the saccharine acidulated pulp. The finely pinnate foliage is very ornamental.-Halesia tetraptera. In the middle sections of the South and in rich, dry soils it grows to a small tree, but in the mountain districts in rich soils along the water-courses, trees 40 to 50 feet high are frequently found. Valuable for landscape planting.-Hicoria or Carya. The pecan is the best southern unt tree and is very largely planted for its nuts. It is often planted in avenues for its beanty. Hicoria myristicceform is is scarce, but its foliage is more attractive than that of any other species.-Hovenia dulcis. The foliage and the fleshy red peduncles in autumn make it an excellent shade and ornamental tree.-Idesia polycarpa. A handsome tree when grown in partial shade; the bark blisters in full sun.-Juglans. J. nigra is one of the most valuable ornamental

2553. A pasture maple, in autumn, showing the strong framework.
and economic trees and is extensively planted for avenues. The Persian or English walnut and its many forms are being more largely planted than of old, but are often injured by late spring frosts following a warm
period during February. J. Sieboldiana is a very ornamental tree and very productive at an early age. $J$ cincrea is suited only to the mountain regions of the south.-Kalreuteria paniculata. Very desirable for its pinnate foliage and panicles of yellow flowers, which

2554. A tree growing in the open, with full rounded head.
are succeeded by bladder-like fruits.-Lagerstremin Indica. The Crape Myrtle is one of the most characteristic features of southern homes. it has become almost naturalized south. If traiued to a single stem it will form a tree 25 to 30 feet high; otherwise it affects the bush form. It is conspicuous for its shining brown bark and the profusion of its beautifully crimped and fringed flowers, which are produced from April until Angust. The colors rary from a pale to a dark pink, purplish red, pure white and glowing crimson. No other flowering tree cau surpass it in beauty, and by a jndicions selection of the various colored flowers a grand effect is produced in landscape work. - Liriodendron Tulipifera. One of the most raluable and rapid-growing shade and ornamental trees; thrives lest in rich soil. Trees taken from woods transplant badly. They should be grown in nursery and occasionally transplanted until sufficiently large for using in street planting.-Liquidambar. A most symmetrical shaped tree; adapts itself to all soil; raluable for street planting. Some trees as sume a deep purple or crimson tint in the foliage during autumn, others a golden yellow.-Jagnolia. Of the native deciduous species, ir. acuminata is the most clesirable for street and avenue planting. All the species are coracions feeders and thrive best in rich soils. I. nacrophylla, or Umbrella Magnolia, seldom grows beyond 25 feet, but is conspicuous for the length and size of its leaves. This tree is called Umbrella Tree south, whereas this name applies to $M$. tripetala at the North. M. Fraseri, Ear-leared Magnolia or Wahon of the western North Carolina mountaineers, is also a very ornamental tree. M. tripetaia is objectionable in gardens owing to the unpleasant odor of its flowers. Few Chinese species, with the exception of M. hypoleuca, attain the size of a tree. M. Fulan and M. Soulangeana can be trained to a single stern and made to aftain a beight of 15 feet. All the other varieties may be classed as shrubs. The flomers are often injured by late spring frosts.-Melia Azedarach (Pride of India, Chinaberry). Almost naturalized south. It is of rery rapid growth and begins to flower at an earls stage. The flowers are delightfully fragrant with the perfume
of the lilac. Extensively planted for shade trees. The umbrella form, known as Texas Umbrella, assumes a dense, spreading head with drooping foliage. It is of mique appearauce and can be used with great effect in landscape work.-Morus. M. rubra is frequently plauted for shade; it is valuable for its wood, which is of great durability for posts. M. alla is naturalized in many sections. A form of M. rubra discovered in middle Georgia some years ago and called Stubbs from the discoverer, produces enormons crops of large, rich vinous fruit. This and the llicks and Multicaulis (latter of Chinese type) are often planted for feeding poultry and hogs. They should not be planted near dwellings, owing to the dropping of the fruit. $-N y s s a$ sylnatica. Only desirable in landscape work for the brilliant red tint of its autumn foliage.-Orydendrum

2555. Apple, one of our most picturesque trees.
arboreum. Desirable for its flowers and highly colored autumn foliage.-Purkinsonia aculeata. Retoma or Horse bean of southern Texas. A small tree with green bark, feathery foliage and yellow flowers. Valuable for shrubberies.-Pautornia imperialis. Rapid-growing. Almost naturalized in some sections of the South. The foliage in young trees is very large. Flowers pale violet, very fragrant, in long panicles; they open before the leares appear.-Peach. There are many ornamental varieties which are exceedingly handsome while in bloom, especially the donble-flowering crimson, white and pink; others are desirable for their peculiar growth, as Pyramidalis, which is as erect as a Lombardy poplar. Weeping, willow-leared and golden-leaved varjeties are interesting. - Prunus. Hortulana or Chicasaw plums are sometimes planted for ornament, though commonly for fruit. $P$. Jirginiona is abundant everywhere bnt not valued owing to being usually infested with tent caterpillars. Prunus Pissardi is the hest purple-leaved tree for the Soutb, as it retains its color during summer. - Pinckneya pubens. This very ornamental small tree is seldom seen under caltivation, as it grows naturally in wet and boggy solls.-Pyrus coronaria. The crab apple, a small tree with very fragrant flowers in spring, is excellent for shrubberies.-Platanus occidentalis. One of the most desirable trees for street planting. - Populus. The variety which is of greatest value for street planting is $P$. deltoides or monolifera,
commonly known south as cottonwood. It is of rapid growth and grows in nearly all soils that are not too arid. All southem nurserymen catalogue the Carolina Poplar, but the stock is not always true to name.Pterocarya fraximifolia, or Caucasian Wing-fruited Walnut, is a very rapid-growing tree, with spreading brauches and pinnate foliage. Very ornamental when covered with pendulous racemes of small winged nuts, which, however, are of no economic value.-Quercus. Nearly all the species of the middle and eastern states are found more or less abundant in the middle Sonth, but the most valuable purely southern species are as follows: Q. Phellos, or Willow Oak, with lanceolate leares; Q. aquatica, or Water Oak, with leares almost peremnial, oblong and obtusely lobed. Both are largely planted for streets and shade, as they grow very rapidly and in almost any soil. Q. falcata, Q. laurifolia, Q. Phellos and Q.Muhlenbergi are desirable. Q. I'irginiana, or Live Oak, is a very large tree, seldom exceeding 50 feet in height but covering a large circmmference. It is native along the seacoast and adapts itself to inland sections, where it does not attain the great size of the coast region. There is no southern tree, except Magnolia grandiflora, that is more admired, expecially when planted in arenues. - Sopindus marginatus. The globose yellow berries are retained during winter. Berries when boiled produce a saponaceous fluid.-Stillingia sebifere. Naturalized on the coast of Georgia and South Carolina. The acuminate rhomboidal leaves give the tree a unique appearance. Requires rich soil and is valuable in landscape work. - Symplocos tinctoria. Not common. Could be available for shrubberies. - Tilia pubescens. A large tree occasionally tound in rich soils along the seacoast. Differs little in general from $T$. A mericana, but seems to be better suited to the middle South. Very desirable for street planting or shade.Toxylon, or Maclura, is naturalized in many sections of the middle South. Grows to a height of 30 feet and the fertile trees are very ornamental when laden with their large, globular fruit. The wood is very lasting when used for posts and takes a beantiful polish.-Ulmus Americana is perhaps more largely planted for streets and avenues than any other deciduous tree. - Viburnum prunifolium (Black Haw or Possum Haw). In very rich soils sometimes attains a height of 15 to 20 feet. The dark blue berries are retained during winter. Desirable for shrubleries.

1I. Broad-Leated Evergreen Trees. Camellia J'ponica. Although these maguificent plants are usually seen in bush form, they can be trained to single stems and attain a height of 20 or more feet in the coast region, where they have found a congenial soil and climate. The typical single red variety, a tree of which is growing at Charleston, S. C., and planted in 1808, being the first introduced, is now upwards of 20 feet high. The double-flowering sorts, while usually of visorous growth, do not attain the size of the single red.-Cinnamomum Camphora. In sonthern Louisiana and middle Florida trees grow to a height of 50 feet; in the middle South they affect the bush form or when trained to single stems seldom exceed 15 to 20 feet, For the extreme South it is recommended for street planting. Cyrilla rucemiflora. Specimens are occasionally found on shady banks of streams, where the soil is very rich, that will grow 20 feet high, but the tree form must be secured by pruning. The foliage assumes a bright red or bronze tint in winter.-Eriobotrya Japonica. Flowers produced in January, and if not frost-killed are followed by a golden yellow plum-like fruit of good flavor. Reaches a height of 20 or more feet in the coast belt.-Gordonia. Lasionthus. A stately tree found only in shallow swamps or turfy soils. The roots spread almost entirely near or upon the surface of the ground, which makes it difficult to transplant trees taken from the woods. Trees grown from seed in pots are best for planting, but a rich moist soil is necessary to their growth.-Ilex. I. opaca and I. Dahoon are among the most valuable evergreen trees, the former being the best where a large tree is desired. Specimens taken from the woods should not exceed one foot in hejght, as larger sizes almost always fail in transplanting.Ligustrum. L. Japonicum often forms a tree 25 feet high. Berries bluc-black, retained during winter. -


Magnolia. M. grandiflora is justly considered the glory of southern brotd-leared evergreen trees. There are many forms, based on the size and shape of the leaves and the flowers. The superb white flowers, which are seen from May until Augnst and occasionally upon some trees as late as Octoher, vary from 4 to 12 inches in diameter. Thrives as far north as Washington, D. C. M. glauca has white flowers 2 to 3 inches in diameter and delightfully fragrant.-Osmantlus fragrans, var. ruber and $O$. Aquifolium, var. ilicifolius, can be trained to single stem. The flowers of the first are delicately fragrant and produced twice a year. - Persea Cavolinensis. Planted for shade in rich soils in the coast belt. - Photinia sermilata, or Chinese Evergreen Thorn, has white flowers and dark red autumn foliage. Prunus Carolinensis. Known south as Carolina Cherry, Carolina Laurel, Muck Orange, ete. One of the most ortamental southern trees. - Quercus suber. Acorns were distributed by the U.S. Patent Office in 1860 and many large trees are now found in several sections of the South, where they have fruited. Some small plantations are made for the purpose of producing cork. It grows well in comparatively poor and stony soils. - Sabal Palmetto is now freely used for street and arenue planti.g on the coast. It is conspicuons for its tropical appearance. It is not successful further than 40 miles from the seashore.
111. Conifers or Nar-row- Leated Everfrebis. -Abies. Of this section few specimens are found below the Piedmont region. Occasionally the Norway spruce grows to a moderate size. - Cedrus Deodara. An admirable tree and of rapid growth, 40 to 50 feet. C. Atlantica. 25 to 30 feet. - Cunninghamia Sinensis. Foliage resembles an Arau-earia.-Cupressus. ('. sem. pervirens has many forms, from the compact, spiral or shaft-like shape to more spreading habit. C. Lusitanicu or Cypress of Goa, has numerous forms with foliage of an ashy green and pendulons branches, to others of a more dark tint and rigid form. Of Chamacyparis Letersoniona there are endless forms, from a compact, erect babit and vivid green foliage to those of open or pendulous shape and with glancous or golden foliage. $C$. funebris has varied less in its seedlings.-Juniperus. The lrish Juniper is of nine pyramidal form, and reaches a height of 15 feet. J. excelsa, Chinensis and thurifera differ in the tint of their foliage and are all of tall growth. -Libocedrus decurrens. The California arhor-vita, with its graceful feathery foliage and conical shape, is one of the most ornamental of conifers. - Pimus. Few of the exotic species are suitable to the South. Pinus excelsa, or Blotan Pine, is undoubtedly the best adapted to the middle Sonth of all kinds. - Retinispore is a valuable group of Japanese Cypress, but with the excuption of R. obtusa. Fullevii, plumosu and squarrosa Ieitchii, all are of dwarf habit. - Thuya. The Asiatic section is better allapted to the middle Soutb than the American species. Of the former the best forms are known to nurseries as Biota pyramidutis and var. anrea, reaching a height of 15 to 18 feet. B. Japoniea, var. filiformis (Thuya orientalis) is a remarkable va-
2556. Picturesque old apple trees.

riety, with thread-like foliage and compact habit to 10 to 19 feet.

In the foregoing list of Conifere no mention is made of species or varieties of low or shrub-like growth, such as Podvearpus, Cephalotaxus, Tbuyopsis, and Sciadopitys, of which there are many good specimens in various parts of the south. Arancarias are also omitted, owing to their liability of failure from ex. treme heat or other unfavorable climatic conditions. This applies also to Sequoia, and Frenelas (properly Callitris); these frequently make an extraordinarily
rapid growth intil late in autumn, and are often injured by a cold wave early in winter.
P. J. Berckmans.

Trees on the Great Plains.-The Plains are not absolutely treeless, as strangers often suppose, but the whole vast area is dotted here and tbere with small groves, or narrow belts which fringe the borders of the streams. The number of native species, however, is much smaller than in the rich tree flora of the northeastern United States. The number of species cultivated for shade and ornament, for a long time, at least, must be relatively small owing to climatic and other causes. In general the people of the Plains are necessarily more interested at present in planting trees for profit than for pleasure, but in the older parts are alrealy to be found many fine public parks and private grounds. To a large extent, howerer, their point of view is that of forestry rather than horticulture.

In studying the forest trees of the Great Plains of rentral North America we find that most of the species have migrated ont upon the l'lains from the great forest body of the Mississippi valley. These trees found their way upon the Plains by way of the forests which border the Missouri river and its tributaries. As we pass down the river, along the eastern edge of the Plains, the forest belt becomes larger and larger, until
it eventually merges into the great body of forest trees lying on the easterly side of the Mississippi valley. The principal trees which have come upon the Plains by this route are the common red cedar, papaw, half a dozen willows, one cottonwood, hasswood, two or three elms, hackberry, mulberry, three ashes, wild apple, four species of bawthorns, Juneberry, wild cherry, choke cherry, wild plum, coffee bean, honey locust, redbud, sycamore, two species of buckthorns, buckeye, one maple, box-elder, sumach, two species of walnuts, five or six hickories, niue or ten oaks, ironwood, blue beech, and one birch. But ten species of trees have come from the Rocky Mountain forests, and these have made much less impression upon the forests of the Plains than those which came from the eastern forests. In this list are the bull-pine, the western red cedar, four species of cottonwoods, the buffalo berry, amaple, and two birches.

Although the present forest area of the Plains is not relatively great. it is large enongh to he serionsly con sidered in regard to its preservation. There
is danger that with the habits acquired by our people in the thickly wooded portions of the United States of cutting down forest trees wherever found, much of this small forest area will be destroyed. It is much easier to preserve an area of forest land than to create it anew . First, all forest fires must be kept down. Where a mass of woodland adjoins the open prairie, fire - gnards should be made so that the fires will not sweep into the forest growth. The greatest de. stroyer of the forests of the Plains in the past has been fire, as it swept over the prairies into woodland. Second, it is absolutely necessary to keep out certain kinds of stock. Swine, if herded in large numbers, will inevitably destroy the trees. They prevent the growth of small trees, and eventually destroy those of larger growth. Cattle, in large numbers, are equally destructive. In fact, where the attempt is made to preserve uninjured the trees in a forest it is necessary to keep out stock of all kinds, excepting possibly during limited portions of the year. Third, it is necessary to cut out the trees for use with very great care. A forest should be a permanent crop, and the cuttings should be so made that the forest as a whole is not injured. Trees should he cut here and there in such a way that the young trees which are left have an opportunity for growing into usable timber.

Care shonld be taken to enconrage the tendency to spreading which is so strong in nearly all parts of the Plains. With a little care every present living forest area may be made to extend itself spontaneously, or nearly so. The forest should be effectually inclosed by a fence placed at some distance from its outer border, leaving a belt of unoccupied land between the trees and the fence. This will grow up with weeds, and mingled with these will be the seedling trees springing from the seads blown or carried from the forest area. In this way the border of the forest will be gradually extended. This can be helped by plowing up these inclosed belts
of land, giving better opportunity for the starting of seedling trees, With the weeds and little trees will spring up low shrubs of various kinds. These need give no trouble, for this is merely nature's way of taking possession of the soil. Little if any cultivation need be given to strch a nursery belt, as the weeds which spring up, while ansightly, will serve the useful purpose of sheltering the Jittle trees, and eventually the trees will rise above, and choke them ont. Grass, however, forming a tough sod, is harmfu] to the little trees, far more so than the ordinary weeds.

There are many places where actual planting must be resorted to. In looking about for a site for the new forest plantation, we must remember that the best conditions for tree growth are usnally to be found near the natural forests. Where there are natural forests the planting should be around their borders, so as to extend them in mnch the same way as indicated in the preceding paragraph in regard to natural spreading. Where
there are no natural forests at all it is nec-
essary to select the more favorahle places for planting. Since the natural forests on the I'lains occupy the depressions rather than the hill-tops or the slopes, this should gire us a hint as to what we must do. Wherever the land slopes into a depression one may find favorable conditions for growing trees. These depres sions, generally called "draws," maybe filled with trees, and when once a growth of a few acres is secured it will not be difficult to extend the forest far up the billside slopes. On the western portions of the Plains similar positions should be taken under the irrigation ditches. In the selection of trees for the formation of forest areas we should also take a hint from nature. The rule, which is a very excellent one for the plainsman to follow, is to plant on his farm the kinds which be finds in the nearest forest, and to give his planted trees as nearly as poxsihle the same conditions as those under which they grew in the native forcst. On the east ern third of the Plains, the walnut, white oak, shell bark hickory, white elm, red elm, hackberry, white ash. wild cherry, catalpa and honey locust are recommended for planting. On the extreme eastern portions border ing the Missouri river, many more kinds can be planted, but as we pass westward toward the borders of the Sand Hill region the list grows smaller, On the central Plains the list is reductd, and also somewhat changed in species. The two elms may be planted, as also the hackberry, the green ash in place of the white ash, wild cherry, honey locnst, and in many places the bull-pine. On the western Plains, especially that portion lying west of the main body of the Sand Hills, and having an elevation above the sea of from 3,000 to 4,000 feet, the list is still smaller. The white elm is still included, also the hackherry, the bull-pine, and in many places the red cedar.
The trees mentioned are of the more dinralble and profitable kinds. But on all parts of the Plams peoule
must often have quick-growing trees which soon produce fuel, but which have little, if any, value for otber purposes. In the eastern part of the Plains the black willow, almond willow, common cottonwood, silrer maple, and box elder are useful trees for this purpose. We should not condemn the use of these easily grown soft-wooled trees. A forest is a crop, and there is no reason why a farmer may not plant a more quickly growing erop if he wishes, but he should at the same time plant the more enduring kinds given in the preceding lists. On the central Plains the quickly-grown trees may include the same willows and cottonwood and also the box elder. The silver maple will not do well in the greater part of this central region. On the western Plains the list is essentially the same as for the central portion: namely, the willows, cottonwood, and the box elder, to which may be added, here and there, one or more of the western species of cottonwood.

Now for the horticultural point of view. About the country homes the first trees are usually cottonwood, silfer maple and box elder, followed later by green ash and white elm. Very commonly the red cedar is planted with the first mentioned species, and often Scoteh and Austrian pines are soon added. It must be remembered that the settler's house on the Plains stands in the open instead of being hemmed in by forest trees, as in the eastern portions of the American continent. The settler's problem is to surround his house with trees, not to clear the trees away. In towns and cities the cottonwood, silver maple and box elder are generally the pioneer trees, since they produce a shade sooner than any others, and later these are grainalty replaced by green ash and white elm. Hackberry, black walnut and buttonwood are occasionally planted with good success. The species which are most largely used for wind-breaks for orchards and other plantations are common cottonwood, willow (a variety of Salix alba), silver maple and hox elder. The first mentioned, because of its easy propagation, rapid growth and extreme hardiness, is the favorite tree for this purpose. Where landscape gardening is attempted, the Scoteh and

2558. A tree group dominated by a leaning oak, which is a remnart of the forest.

Austrian pines, Norway spruce and red cellar are generally used, and to these are often added one or more species of the Rocky Mountain spruces. The most generally used deciduous tree for this purpose is the

White elm (Which here attains to a singular beauty of form and foliage), to which are occasionally added bur oak, black walnut and Rnssian olive (Elreagmus), and in proper situations, the white willow. The coniferous trees of greatest value for ornamental purposes on the Plains are the Austrian pine, Scotch pine and red cedar. With proper care these may be grown on all parts of the Plains where water enough to maintain life may be obtained. On the extreme eastern borter the Norway spruce and even the balsam fir have prored raluable. Among deciduous trees the white elin holds first place, followed by the hackleery (which is not as nuch planted as it deserves) and the green ash.

## C. E. Bessey.

## Trees Grown for Shade

 and Ornament in California. - The mild and equable climate of California allows a wide range of available species from which to select trees for shade, ornament and shelter. On acconnt of the long rainy season, the low humidity of the atmosphere, and the relatively high mean, and freedom from low winter minima in temperatures, the trees which thrive best in mid-
2559. Two types of conifers pine and spruces. dle California are those indigenous to the arid and semi-arid warm-temperate regions of the globe, e. g., southern Australia, the Mediterranean region, South Africa, northern Mexico and Chile. Many trees of the temperate humid regions also thrive in this state, particularly in the relatively humid climate of the coast, and are offered by our nurserymen. Several of the species mentioned in this list are not described in this Cjelopedia, as they did not appear to be in the general trade when the pages were written.

1. The Species Most Extensively Planted. - The three following are the trees most frequently met with as shade and ornamental trees in middle California:
2. Encalyptus Glohulus.
3. 'upressus macrocarpa.
4. Pinus radiata.

The relative abundance of the succeeding species is only approximately indicated by their sequence.
4. Robinia Pseudacacia, probahly more widely distribnted and occurring in more remote and out-of-the-way places than any other species fexcept. perhaps, Eucaluptus Globulus). The seeds may have been brought across the Plains by the earliest settlers at the mines.
5. Melia Azedarach,var, umbraculiformis.
6. Phouix Canariensis.
7. Schinus Molle.
8. Acacia melanoxylon.
9. Acacia mollissima.
10. Magnolia grandiflora.
11. Populus deltoides, var. Carolinensis.
12. Wasbingtonia robusta.
13. Cordyliue australis and other species.
14. Aramearia Bidwillii.
15. Araucaria excelsa.
16. Grevillea robusta.
17. Juglans Californica and spp.
18. Clmas racemosa and spp.
19. Acer Negundo and var. Californicum.
20. Salix Babylonica.
21. Eucalyptus robusta.
29. Eucalyptus viminalis
23. Eucalyptus rostrata.
21. Acer saccharinum.
25. Pittosporum spp.
26. Washingtonia tilifera.
27. Betula alba.
28. Cedrus Deodara.
11. Trees Being Most Extenstvely Planted at the Present Time. - The following list, arranged in sequence according to the actual number of sales made during the planting seasou of $1900-1901$, is compiled from data furnished by John Rock, of the California Nursery Company, at Niles. The percentages refer only to the serenteen species here enumerated, and not to the total number of trees sold by the nursery, which has a large and raried assortment of species many of which are more suitable and more effective than those for which there is, at present, the greatest demand.

| 1. Eucalyptus Globulus | Per cent $\ldots 35.24$ |
| :---: | :---: |
| 2. Cupressus macrocarpa | 26.43 |
| 3. Encalyptus viminalis. | 15.00 |
| 4. Pinus radiata. | 4.07 |
| 5. Melia Azedarach, var. umbracnlit | 2.75 |
| 6. Phoenix Canariensis, Fig. 2565) | 2.71 |
| 7. Acacia melanoxylou | 2.20 |
| 8. Apacia mollissima. | 1.76 |
| 9. Robinta Pseudacuria | 1.65 |
| 10. Magnolia granditiora | 1.65 |
| 11. Acer saucharinum | 1.43 |
| 12. Juglans Californica | 1.14 |
| 13. Acer Negundo, var. Californicum | . 89 |
| 14. Populus deltoides Carolinensis | . 81 |
| 15. Ulmus Americana. | . 81 |
| 16. Betula alba. | . 81 |
| 17. Washingtonia filifera | .65 |

III. Selections for Special Purposes,-The diversity of choice, rendered possible by the extent of desirable material that is arailable, makes it somerhat difficult

2560. Picturesque field pine, remnant of a forest.
to readily select the most suitable species for rurious specific purposes. The following classified lists are intended as suggestions to aid in making a suitable selection; they are almost entirely restricted to species
offered in the C'alifornian trade, and are intended to be snggestive only, and not by any means complete. New species and rarjeties are constantly being added to the nursery stocks, some of wbich will he found particularly well adapted to certain conditions of climate and soil, and will doubtless replace others now in nse.

2561. Leaning tree in a clearing, showing its effort to regain itself by producing upright branches.

1. For Subtropical Effect. - That there is in California strong appreciation of subtropical effects in gardening is shown hy the great demand for dracenas and such large-leared plants as palms, magnolias, bananas and rubber-trees. That the effect produced by the planting of such trees so often fails to be satisfactory is largely due to one or both of two eanses, -either misuitable location of the specimens or choice and association of unsuitable species. To prevent a repetition of the firstnamed error, the prospective tree-planter is recommended to consult the article on Landscape Gardening in Volume II: and to aroil the second, a selection from the following list is suggested, with the addition of such large-leaved herbaceous plants as eamnas, colocasia, cynaras, funkias, Gunteru scabra, pampas grass, veratrums, agarex, ynceas, aloes, Wooduardia radicuns and Rodqersia podophylla, together with such shrublyy plants as bamboos, giant reed, the choicer varieties of fastor-hean, Senefio arandifolius, Polygonum Sachalinense and $P$. Sieboldi.

## A. Small Trees or Tall Shrubs.

Acanthopanax ricinifolium,
Aralia Chinensis,
Aralia Chinensis, var Mandshuriea,
Aralia spinesa.
Arundinaria falpata,
Chams+rops humilis,
Dicksonia antarctica,
Eriobotrya Japonica,

Erythea armata. Fatsia Japonica, Fatsia papyritera, Mlusa Ensete. Prunus Lanrocerasus, Ricinus Cambodgensis, Ricinus macrophyllus, Ricintss sanguineus, Ricinus Zanzibarensis,
AA. Larger Trees.
Catalpa hignonioides,
Catalpa ovato.
Catalya speciosa,
Cordyline australis,
Cordyline Banksii,
Corlyline iudivisa,
Cordyline strieta.
Corynocarpus leviga.
Erythea edulis,
Eucalyptus calophylla,
Eucalyptus ficifolia.
Ficus Carica,
Ficus macrophylla.
Gymnocladus Canadensis.
dulupa speetabilis. Livistona atrstralis, Magnolia grandithora, Paulownia imperialis, Phonix C'anariensis, Phonix dactylifera, Phoentx reclinata, Phonix sylvestris, Phytolacea dioica. Trachycarpus excelsus, Tristania conferta. Tristania conferta. Washingtonia robusta.

Eucalyptus GlobuTus can also be used effectively if cut down periorlically when the falcate leaves begin to appear; it will continue to shoot up rigorously from the same root for seseral years. Encalyptus rabustu is useful for sereen purposes if cut ont before it becomes straggling.
2. Trees with Ornamentul Flowers.-In making the following grouping, arranged according to relative hardiness, it has been impossible to give precise information as to the exact degree of frost-tolerance of the several species, as we can find but meager published data on the subject.

## A. Susceptible to light frost.

The following would probably succumb to a tempera. ture of $28^{\circ}$ Fabr.:

Eucalyptns calophylla,
Eucalyptus ficifolia,
Jacarada ovalifolia.
AA. Susceptible to heary frost.
The following are not likely to stand a temperature of $30^{\circ}$ Fahr. some of them may succumb at $25^{\circ}$ Fahr., particularly while young:

> Acacia Baileyana,
> Acacia cyanophylla,
> Acacia elata,
> Acacia falcata,
> Acacia longifolia,
> Acacia mollissima,
> Acaia nerifolia,
> Acacia pendula,
> Acacia salicina, etc.

Bursaria spinosa,
Eucalyptus cornuta,
Eucalyptus corymbosa,
Eucalyptus polyanthema,
Eucalyptus sideroxylon, var. pallens,
Hymenosporum flavum.
Pittosporum undulatum.

## aAA. Hurdy.

Acacia pyenantha,
Æsculus parnea,
※sculus Hippocastanum, Albizzia Julibrissin.
Catalpa bignonioides,
Catalpa ovata.
Catalpa speciosa,
Cercis Canadensis,
Cercis Siliquastrum,
Cratsegus mollis,
Cratzgus monogyna (vars.
Pauli, punicea, alba plena, etc.),
Koblrenteria paniculata,
Laburuum vulgare,
Liriodendron Tulipifera,
Maguolia acuminata,
Magnolia grandiflora,
Magnolia Kobus,

Magoolia Soulangeana,
Magnolia stellata,
Panlownia imperislis,
Prupus Armeniaca (doublefld.),
Prunus cerasifera, var. atropurpurea,
Pruaus Japonica,
Prunus Persica (white-fld., double red-fld., dark-fld., etc.),
Prunus spinosa (double-fld.),
Pyrus Halliana,
Pyrus Ioensis(Bechtel's double erab),
Robinia hispida,
Rohinia Pseudacacia,
Sophora Japoniea,
Sorbus Aucuparia.

## 3. Trees with Colored Foliage.

A. Glitucous.
B. Susceptible to frosi ( $20^{\circ}$ Fahr, and perhups less).

Acacia Bailesana,
Acacia dealbata,
Acacia glancescens,
Acacia salicina,
Erythea armata,
Encalyptus Glohulus(pollarded
to produce suckers),

Eucalyptus polyanthema,
Eucalyptus Risdoni.
Encalyptus sideroxylon, var. pallens,
Leucadendron argenteum,
Phenix dactylifera,
Washingtonia Sonore.

## Bв, Hardy.

Cedrus Atlantioa, var. glauca, Picea pungens, var glanea, Cedrus Deodara, var. glmea, Sequoia sempervirens, var. Picea pungens, var. corulea, glauca.

## AA. Purple or bronze.

B. Susceptible to $25^{\circ} \mathrm{Fahr}$.

Ricinus Cambodgensis, Ricinus communis, var. Gibsonii.

## BB. Mardy.

Acer platanoides, var. Reiten- Fagus sylvatica, var. purpnrea bachi,
Acer platanoides, var. Schwed- Prunus cerasifera, var. atroleri, Prunus cer
purpurea,
Betula alba,var, atropurpurea, Prunus Persica var.
Fagus sylvatica,var, purpurea,
4. Wide-spreading Trees for Shade, Mostly with Fiounded Outline. - It frequently happens that the owner of a garilen desires a wide-spreading tree in the back or one corner of his domain, under which to soving a hammock on a hot day; such trees are also uxeful in the school yard, affording welcome shade in which the children cau eat their lunch.

> A. Deciduous, all hardy.

## B. Grouth rapid or medium.

C. Suckers likely to be troublesome.

Populus alba,
Robinia Pseudacacia,

Ulmus Americana,
Ulmus racemosa.
CC. Sreckers not tronblesome.

1. Requiring a great deal of witer.

Salix Babylonica.
DD. Requiring not much water.
Acer macrophyllum,
Acer Negundo.
Acer Negundo, var. Californicum,
Acer platanoides,
Acer platanoides, var. Reitenbachi.
Acer platanoides, var. Schwedleri,
Acer Pseudo-platanus,
BB. Groweth somewhat slow.
Acer campestre,
Esculus carnea,
Asculus Hippocastanum,
Carpinus Betulus,
Castanea sativa,
Fagus sylvatica, var. purpurea.
Juglans Sieboldiana,
Liriodendron Tulipifera,
Melia Azedarach, var. umbraculiformis,

Aler sacchariaum,
Acer saceharinum, var. Wieri.
Carya olivaformis,
Fraxinus Americana,
Fraxians velutina,
Quereus lobita,
Quercus peduneulata,
Ulmus campestris.

Platanus orientalis,
Quercus coccinea,
Quereus Kelloggii.
Quercus lobata,
Quercus maerocarpa,
Quercus mbra.
Sophora Japonica,
Tilia Americana,

B A. Evergreen.
B. Grouth rapid: trees susceptible to $25^{\circ} \mathrm{Fahr}$ Acacia mollissima.

BB. Growth somewhat slow: trees hardy.
Arbutus Menziesif. Pinus Pinea,
Ficus Carica,
Quereus agrifolia,
Olea Europara, Schinus Molle.
5. Ornamental Trees affording but Little. Shade. A. Uutline oblong or neurly columnar.
в. Deciduous.

Populus nigra, var. Italica.
BB, Evergreen.
Cupressus sempervirens,
Cupressus sempervirens, var. fastigiata.
Junipems communis, var. Hibervica,
Taxus baceata, var. fastigiata.
AA. Outline conical or spiral, usually pointed.
B. C'onifera, with mostly narrow leaves.

> c. Deciduous: hurdy.

Larix decidua,
Larix leptolepis.
Taxodium disticbum,
CC. Evergreen.
D. Susceptible to severe frost (probably about $20^{\circ}$ Fallr.).

Agathis robusta,
Araucaria Bidwillii,
Araucaria Braziliana,
Araucaria Cookii,
Araucaria Cunninghamii,

Abies balsamea,

Abies nobilis.
Abjes Nordmanniana,
Ahies Pinsapo,
Cedrus Atlantica,
Cedrus Deodara,
Cedrus Libani,
Cephslotaxus drupacea,
Cephalotaxus Fortunei,
Chamæеуparis Lawsoniana,
Cryptomeria Japonica,
Cryptomeria Japoniea, var. elegans,
Cunvinghamia Sinensis,
Cupressus Goveuiana,
Cupressus macrocarpa,
Cupressus maeroearpa, var. Guadalupensis.
Libocedrus Chilensis.
Libocedrus decurrens.
Picea Ajanensis,
Picea alba,
Picea Engelmanni,

Betula alba,
Betula lenta,
Betula lutea,
Betula papyrifera,
Betula populifolia,
$\qquad$

## DD. Hurdy.

$\begin{array}{ll}\text { Abies balsamea, } & \text { Picea excelsa, } \\ \text { Ahies ('ephalonica. } & \text { Picea nigra,va }\end{array}$
$\begin{array}{ll}\text { Alies (ephalonica. } & \text { Picea nigra,va } \\ \text { Abjes concolor, } & \text { Picea polita, } \\ \text { Abjes nobilis, } & \text { Picea pungens }\end{array}$

BB. Foliage broad,
c. Deciduous; hardy.
Arancaria excelsa,
Araucaria imbricata,
Pinus Canariensis.

Picea pungens,
Pinus Laricio, var, Austri-
aca.
Pinus contorta,
Pinus Coutorta,
Pinns Coulteri,
Pinns densiffora,
Pinus monophylla.
Pinns Pinaster,
Pinus radiata,
Pinns Sabiniana,
Pinus sylvestris,
Podocarpus Totara,
Pseudotsuga Douglasii,
Sciadopitys verticillata.
Sequoia gigantea.
Sequoia sempervirens,
Taxus baceata.
Thuja gigantea,
Thuja orientalis,
Thujopsis dolabrata,
Torreya Californica,
Torreya nucifera.

Ginkgo biloba,
Querens Cerris
Querens nigris.
Sorbus Aucuparia.
cc. Evergreen.
D. Susceptible to severe frost (probrably $20^{\circ} \mathrm{Fahr}$. and even less).
Cinnamomom Camphora, Grevillea robnsta,
Corynocarpus laerigatas, Stereulia diversifolia. Cryptocarya Miersii. Tristania conferta.

## DD. Hardy.

Acacia melanoxylon,
Cerasms Lasitanica,
Ilex Aquifolimm,
Lagunaria Patersonii,
Laurus nobilis,
Pittosporum erassifolium, Quercus Suber. Umbeliularia Californica.

AAA. Outline more or less rounder, but trees not as witlo-spreading nor as shate-giving us in class 4. B. Decżduous.
c. Susceptible to frost $\left(25^{\circ} \mathrm{Fuhr}\right.$.).

Phytolacea dioica.

| Esculns glabra, ce. Hurdy. | Juglans Californica, |
| :--- | :--- |
| Fraxinus Americaua, | Juglas nigra, |
| Fraxims excelsior, | Fnelreuteria paniculata, |
| Fraxinus Ornus, | Panlownia imperialis, |
| Gymocladus Canadeusis, | Rolinia Pseudacacia. |

BB. Evergreen.
C. Probably susceptible to severe frost $\left(20^{\circ}\right.$ Falr. or less).
Acacia cyanophylla,
Alectryon excelsum
Bursaria spinosa.
Eucalyptus calophylla.
Eucalyptus cormizta,
Eucalyptus corymbosa,
Eucalyptus corynocalyx.

Eucalyptns firifolia, Eucalyptus (tlobulus, Eucalyptus maculata, var. eitriodoza,
Eucalyptus robusta, Hymenosporum thavam, Maytenus Boaria.

Acacia pyenantha
Eucalyptus amygdaliua,
Encalyptus 'inmoii,
Encalyptus lencoxylon.
Eucalyptus obliqua,
Euealyptus rostrata
Eucalyptns rudis.
Eucalyptus viminalis,

## AAAA. Drooping trees,

B. Ieciduous.

Acer sacharinum, var. Wieri laciniatum,
Betula alla, var. pendula eleghas.
Betula alba, var. pendula laciniata,
Betula alba, var. pendula Yonngi,
Cratregus monogyna, var. pendula.
Fagus sylvatica, var, pendulit,
Fraximas excelsior, var, surea pendula
Fraxinus excelsior, var. pendula,
Juglans regin, var, peudula,
Lahurnum valgare, var. pendulum,

Jubras spectahilis, Phoenis Canariensis, Phoenix reclinsta, Phoenix sylvestris, Pittosporum eugenioides, Pittosporum tenuitolinm, Pittosporum unduaturu.

Cupressus funebris,
BB, Evergreen.
Morus alba (Teas' Weeping), Populus grandidentatit, var. pendula,
Pronus frnticusa, var. pendula, Quercus lobata.
Salix Babylonica,
Salix Babylonica. var. Lickif,
Sophora daponica pendulat,
Sorbus Aucuparia, var, penInla.
Tilia Americana, var. pendula,
Tilia Europea, var, pendula,
Ulmas Americana, var. pendula.
Ulmus campestris, var. penInta,
Ulmas glabra, var pendula, Ulmus moutata, var. pendula.

Schinus Molle.

2562. Weeping elm, type of a grotesque horticultural variety. Ulmus scabra var, horizontalis.
6. Trees for Streets, Avenues and Roadsides. - The number of tree species suitable for street planting is limited by the necessarily heavy restrictions, as to height, spread, sewer-penetration and sidewalk-raising, imposed by municipal street departments. In European

2563. Cordyline australis. Often called Dracana Palm. California.
cities the first-named objections are overcome by means of frequent and systematic pruning to a nniform standard; where this necessity can br obviated by the selection of trees which naturally keep within the desired hounds, the labor of maintaining them in a sightly condition is minimized and the result much more pleasing.

For town streets not more than 60 fect in width, it is important to hare trees that will not give too much shade and prevent the rapid drying of the roadway after showers, nor be so tall nor wide-spreading as to obstruct the view and shut out sunshine, remlering the adjacent houses dark, cold and damp. On this account trees with narrow or pyramidal outline are in many cases preferable to those with wille-spreading hahit, and, generally speaking, fleciduous trees are more suitable than evergreen, although at the time of losing their leares they make more litter. Exception may be made in favor of such evergreen suecies as certain palms and cordylines, some acacias and a few other species mentioned below.

It is not wise to nse trees of very rapid growth on town streets; they soon become too large and require frequent trimming, which is nsuthly equivalent to mutilation, and are likely to interfere with sewers.

It cannot be said that street planting in California towns has, in most cases, been satisfactory. In spite of the much larger rariety of suitable material than is available in most of the states, there are few examples of good street-planting to be met with. In most of our towns the eye is greeted with a few straggling trees, of which perhaps not more than two are of one kind, recalling Professor Wangh's apt simile of "nine monstrously different buttons in a row down the front of a Prince Albert coat." There are many pleasing exceptions, however, although few are entirely satisfactory. The repeated attempts to improve the appearance of a town by planting trees along the strpets should be encouraged on every occasion, and the object of this article is to render

2564. Abies venusta, one of the California firs.
assistance by pointing out how some of the mistakes may be avoided. The unsatisfactory results of street-planting, so often met with, can generally be traced to one or all of three causes:

1. Selection of unsuitable species.
2. The mixing of several species on the same block and even in front of the same lot.
3. Crowding the trees.

This last-mentioned source of trouble is perhapssthe cause of more failure than the first. When trees are
once growing, few persons have the heart to thin out the specimens to the proper distance apart; finally a newcomer, without personal feeling in the matter and noting only that there is too much shade and too little light, cuts down the whole row and a gap is left in what may have been a fairly uniform block. Spreading avenue trees of large size should not stand closer than 50 ft , apart; smaller trees, on narrower streets should have 40 or at the very least 30 ft ., unless they are slender species such as cordylines or washingtonias, when

20 ft . may be sufficient. As a rule, three small trees to a 50 -foot lot will be found ample, and the center one of these three should be taken out when they begin to meet at the sides; if the whole street is planted uniformly with the same species, and at this same distance, the result will be much more pleasing than if four or five trees are planted in front of every house.

## A. For city and toun streets.

B. Small trees suitable for streets 60 ft . wide or less.

## c. Deciduous.

## D. Grouth rapid or moderate.

Betula alba,
Betula lutea,
Betula papyrifera,
Betula popnlifolia.
Catalpa hignonioides,
Catalpa ovata,
Catalpa speciosa,

## DD. Growth stow

Cratzegus mollis,
Ginkgo hiloba.
Cratagus monogyna,
cc. Evergreen.
D. Grouth rapid or moderate.

## E. Palms and arborescent Lilutucer.

Cordyliue australis(Fig.2563), Livistona australis, Cordyline Banksii, Cordyline indivisa,
Cordyline stricta,
Erythea edulis,
EE. Evergreen trees other than patms and arborescent Liliacew.

Acacia Baileyana,
Acacia eyanophylla,
Acacia faleata.
Acacia lineata.
Acacia longitolia,

Koelrenteria paniculata. Melia Azedarach, var. um braculiformis, Panlownia imperialis, Rhus typhina, Sorbus Aucuparia.

Alectryon excelsum,
Bursaria spinosa,
Cinnamomum Camphora,
Eucalyptus ficifolia,
Ilex Aquifolium,
Lagunaria Patersonii,

Acacia neriifolia,
Myoporum lætum,
Pittosporuns eugenioides, Pittospornm tenuifolium, Sterculia diversifolis.

DD. Grouth slou.
Ligustrum lucidum, Magnolia graudiflora, Maytenus Boaria, Olea Europæa,
Pittosporum crassifolium. Tristania conferta.

B8. Larger trees for streets, arenues and boulevards 80 to 100 ft , vide. c. Deciduous.

## D. Growth rapid or moderate.

Acer saceharimum,
Fraxinus Americana,
Fraxinus velutina,
Gymnocladus Canadensis
Hicoria Pecan,

## DD. Growith slow.

Gleditschia triacanthos, Tilia Americana, Liriodendron Tulipifera Sophora Japonica,

## cc. Erergreen.

D. Patms and banauas.

Erythea edulis,
Livistona australis, Musa Ensete,

Trachycarpus excelsns,
Washingtonia filifera, Washingtonia robusta.

DD. Evergreen trees other than palms and bananas.

Acacia elata,
Acacia melanoxylon, Acacia pyenantba,
Angophora interuiedia,
Angophora subvelutina,
Eucalyptas amygdalina,var. angustifolia,
Eucalyptus calophylla,
Eucalyptus corymhosa,

Eucalyptus ficifolia
Eucalyptus polyanthema,
Eucalyptus rudis,
Eucalyptus sideroxylon, var. pallens,
Fieus macrophylla.
Syacarpia laurifolia,
Tristania conferta.
Umhellularia Californica,

BBB. For arenues and boulevards without sidewatks or with wide spaces between sidewalk and driveway.
For this purpose almost any of the larger and more ornamental species enumerated in the other lists may he selected. Spreading coniferous trees, with broad bases
(such as Sequoia gigantea, etc.) can often be used to advantage, as well as the wide-spreading feather-pains (Phœnix and Jubæa).

> AA. For country roads.
B. Deciduous.

Acer campestre,
Acer macrophyllum,
Acer Negundo,
Acer Negundo, var. Cali. fornieum,
Acer platanoides,
Acer saecharinum,
Acsculus carnea,
Esculus Hippocastanum,
Ginkgo biloba.
Hicoria Peean,
Juglans Californica.
Juglans nigra
Juglans Sieboldiana,

Liriodendron Tulipifera,
Paulownía imperialis,
Pbytolacea dioica.
Populus nigra, var. Italica,
Quercus lobata,
Quercus pedanculata,
Quercus pedunculata,
Robinta Pseudaraci
Sophora Jiponica,
Sophora Japonica,
Taxodium distichum,
Tilia Americana,
Tilia Europesa,
Ulmus Americana,
Ulmus campestris,
Clmus racemosa

| Acacia melanoxylon, | Eucalyptus radis, |
| :--- | :--- |
| Acacia mollisima, | Eucalyptus vininalis, |
| Arbutus Menziesii, | Ficus macrophylla, |
| Cinnamomum Camphora, | Olea Europaa, |
| Cryptomeria Japonica, | Pinus radiata, |
| Eucalyptus hotryoides, | Quercus Suber, |
| Euealyptus calophylla, | Schinus Molle, |
| Eucalyptus eapitellata, | Sequoia gigantea, |
| Eucalyptus cornuta, | Sequoia sempervireus, |
| Euealyptus diversicolor, | Sterculia diversifolia, |
| Eucalyptus leucoxylon, | Tristania conferta. |

Encalyptus rostrata (Fig. 2566),
7. Trees which have been tried but have proved unsutisfuctory. - There are many species which have failed to give satisfaction in some locatities because of local peculiarities of climate or soit; there are some, also, which have proven unsatisfactory on account of habit, etc.; from among these may be mentioned:

Eucalyptus robusta, a species which is exceedingly handsome as a young tree and has been extensively planted along roadsides and streets in the warmer parts of the state; when mature it becomes strargling and exceedingly brittle. breaking up in an unsightly manner.

2565. Phœnix Canariensis, one of the best palms for outdoor planting. Berkeley, California.

Eucalyptus corynocalyx also becomes straggling and unsightly with age.

Schinus Molle should be avoided in the Citrous belt, as it is found to harbor and become a nursery for scale insects. As a street tree it is also unsatisfactory, becoming too large and straggling and requires too much pruning to keep it within bounds; its large surface roots often break cement and asphalt sidewalks.


Melie Azedurach, var. umbraculiformis, is found unsatisfactory in the immediate vicinity of the coast; as a sidewalk tree it is exceedingly untidy when losing its leaves, and is also much subject to scale insects.

Acacia melanoxylon is generally debarred from the Citrous belt, as a breeder of scale; when mature it is said to suffer quickly from the effects of drought. In the moister climate of the immediate vicinity of the coast, near San Francisco, however, it proves entirely satisfactory.

Populus alba, Robinia Pseudacacia and Ulmus racemosa are exceedingly troublesome when used as sidewalk trees on narrow streets; their surface roots often break the cement or asphalt sidewalks, and the suckers come up in the midst of lawns several yards away from the parent tree.

Fieus macrophyllu is another tree injurious to sidewalks.

E'ucalyptus Globulus, and in fact almost all species of the genus, are frequently debarred by town ordinance from growth within 60 or even 70 fect of a sewer, on account of the remarkable length and penetrating power of their roots.
Punlownia imperialis is sometimes objected to on account of the somewhat untidy appearance of the persistent seed-pods, which require no little labor if all are to be removed after flowering.

Grevillea robustu has brittle wood and is usually much broken in heavy winds, but can he used with satisfaction if kept well cut back.
The species of Phornix and Jubra should be aroided on account of their low, widespreading habit, except for avenues and boulevards where there is no sidewalk or where there is from 20 to 30 feet space between sidewalk and driveway.
Ailanthus glendulosa has a bad reputation on account of its disagreeable odor, but as this is only found in the staminate trees, it can be avoided by planting the pistillate (fruit-hearing) trees only.
8. Trees for Alkali Soils. - There are many places in those parts of the state that enjoy a high temperature and low rainfall, where the percentage of alkali salts in the soil is too great for the cultivation of most of our ornamental trees, and where it is very important that some shade-producing species be grown.
A. Tolerant of strong "black" alkali (Sodium carbonute).
The most alkali-tolerant tree of those yet tested is Kolreuteria paniculata, a small species 15 to 30 feet bigh, with feathery, pinnate leaves and ornamental yellow blossoms.

2566. One of the gum trees-Eucalyptus rostrata. Eleven years planted; 86 feet high. California.

AA. Tolerant of medium alkali (chiefly "white" sults).

Acacia melanoxylon. Ailantus glandulosa, Albizzia lopbantha, Casmarina equisetifolia, Eucalyptus amygdaliua, var. angustifolia (apparently the least sensitive of the Eucalypts).

AAA. Only fairly
Acer macrophyllum.
Acer Negundo, var. Californicum,

Eucalyptus rostrata ( $\mathrm{Fi}_{4}$. 2506 ).
Eucalyptus sideroxylon, var, rosea,
Phonix dactylifera,
Platanus orientalis,
Populus Fremonti,
Quercus lobata.
Robinia Pseudacacia.
toterant.
Cinnamomum Camphora, Gleditscbia triacanthos, Ulmus spp.
Washingtonia filifera. AAAA. Tested and found unsuitable.
Most of throse trees of the humid regions, e. g., the eastern states and N. Europe, which have been tried on alkali soils, have been found to suffer and to remain dwarf and stunted. This is particularly true of hiriodendron Tulipiferu, Quercus pedunculatu and species of Tilia.

Since writing the above, the following additional information on the alkali tolerance of ornamental trees has been brought to light through the investigations of Dr. R. H. Loughridge of the Agricultural Experiment Station at Berkeley, and has courteously heen placed at my disposal.

Total amount of salts actually found in the upper four feet of soil in which the following trees were growing, expressed in tons per acre: Tons per acre in depth of 4 feet.
Kolreuteria paniculata...
Platannsorientalis $211 / 2$
Eucalyptus amyg.
dalina
Eucalyptus angus*
Washingtonia(spe-
Washingtonia(spe-
cies not stated)
$71 / 2$ Phoenix dactylifera 5 Cinnamomum Camphora....... 31/2
Jos. Burtt Davy.
1V. Trees for SoUThern CaliFornia. - Street Trees:

Stereulia diversifolia, Australian Bottle Tree; Acacia Melanoxylon, Blackwood Acacia; Cinnamomum Camphora, Camphor Tree; Sterculia acerifolia, Australian Flame Tree; Eucalyptus robusta, Swamp Mahogany Gum; Grevillea robusta, Silk Oak; Acacia derilbuta, Black Wattle; Jacaranda oralifolia; Ligustrmm Ju. ponicum, Japan Privet; Pinus radiata, Monterey Pine.
The above are the hest ten trees for street purposes, but among these might be placed Cordyline australis and $C$. indivisa, and several kinds of palms. One deciduous tree is much used-Melia Azederach, var. umbraculiformis, the Umbrella Tree. Though less known or used, Eucalyptus calophylla is by far a hetter street or sidewalk tree than $E$. robusta. Very few conifers other than those noted do well in this climate. Any extension of the above list must be made almost entirely
through paims, eucalypti and acacias, among which there is plenty of room for personal preference.

Lawn and Shade Trees: Araucaria excelsa. Norfolk Island Pine; Arawearia Bidwillii, The BunyaBunya; Jacaranda ovelifoliu; Cinnumomum Cumphora, Camphor Tree; Ficus macrophylla, Rubber Tree; Ficus elastica (where hardy), Rubber Tree; Slevculia acerifolia, Anstralian Flame Tree; Magnolia fotida, Bull Bay; Sequoia gigantea, California Big Tree; Cedrus Deodara, Deodar.

The above list contains ten of the best ornamental trees. It might be extended indefinitely if all onr good trees were included. The ornamental eucalypti and acacias would at least treble this list, and the palms alone would easily double it. Ernest Braunton.

## TREE TOMATO. See Cyphomandra.

## TREFOIL. See Clover, Trifolium.

TREVESIA (after the family Treves di Bonfigli of Parlna, patrons of hotany). Arulideca. Abont 9 species of small trees or shrubs from tropical Asia and the islands in that region, with large lvs. either palmately cut and simple or digitately or pinnate compound, and flowers which are rather large for the family and borne in panicled umbels: petals $8-12$, valvate, somewhat thick; stamens 8-12: ovary 8-12-loculed: fruit large, ovoil. Greenhouse subject.
palmàta, Vis. (Gastomít pulmàta, Roxb.). A small tree, with the ends of the branches sparingly prickly and the young parts tomentose: lvs. crowded at the ends of the branches, $1-\mathrm{I} 1 / 2 \mathrm{ft}$. across, palmately $5-9$ lobed to below the middle; petioles $1-1 \frac{1}{2} \mathrm{ft}$. long: panicles long-peduncled: umbels 6 in . through, longpeduncled: Hls .1 in across, greenish white. Himalayas. B.M. 7008.
F. W. Barclay.

TRIANEA Bogoténsis, Karst., is Limuobium Bogotensis, Benth. \&Hook. See Vol. II, page 925. Also G.C. II. 15:467.

TRIARTEA. Error in a nursery catalogue. See Iriurtea.

TRICALYSIA (Greek, triple calyx; true of some species). Ifubidece. Here belong the two shrmbs from Natal which are cult. in S. Fla. under the name of Kraussia. When Kraussia was written for this Cyclopedia the undersigned treated it in the manner suggested by Bentham and Hooker, Index Kewensis and Flora Capensis. Since then the writer has had access to the Flora of Tropical Africa, which throws a new light on the relationship of these plants. In Vol. 3 of that work Kraussia is made a section of Tricalysia characterized by having the calyx-limb 4-6-lobed; the other species have a truncate calyx-limb which is entire or nearly so. Tricalysia is a genns of erect or climbing shrubs, with small axillary flowers. It contains a few species from Natal and Madagascar in addition to 21 from tropical Africa. The two species mentioned below hare funnel-shaped fls. wbich are ahout a quarter of an inch long. Their color is not stated; it is probably white. The fls. are borne in clusters, which are much shorter than the leaves. It is not clear why these plants should he cultivated at all. They bloom in S. Calif., but bave not bloomed in S. Fla.
Generic characters of Tricalysia: calyx-tube in many species girt at the hase with a single or double epicalyx of involucral bracts : corolla funnel-shaped or shortly salver-shaped; throat bearded or glahrous; lohes 4-8; stamens 4-8, inserted at the mouth of the corolla; ovary 2 -loculed, rarely 3 -loculed. Kraussia lanceolata is here removed to Tricalysia and Hiern is cited as the anthor of the combination Tricalysia lancenlata, though the combination has prohably never been formally made previeus to this oceasion.
A. Lis, lanceolate, acuminate.
lanceolata, Hiern (Kraissia lanceolata, Sond.). Shrub: Jvs. lanceolate, acuminate: cymes many-fld.: calyx 5 -toothed: throat of corolla densely bearded: stigma deeply 2 -lobed, lohes revolute: fr. globose, the size of a pea. Natal.

## AA. Lvs. elliptic, obtuse.

Sonderiàna, Hiern (Kraùssia corid̀cea, Sond.). Shrub: lvs, elliptical, obtuse or minutely apiculate, wedge-shaped at the base, coriaceous, $11 / 2-31 / 2 \mathrm{in}$. long: eymes about 4 -fld.; fls. pentamerous; pedicels $1 / 3-3 / 8$ in. long; throat densely bearded; stigmas deeply 2. jobed, lobes revolute. Natal.
W. M.

TRICHARIS. A section of Dipcadi.
TRICHINIUM (Greek, hairy; alluding either to the plant in general or to the H.-hearls). Amoruntarea. A genus of 47 species of Anstralian herbs or shribs, of en hairy, with alternate narrow or rarely ohovate leares and pink or straw-colored flowers in terminal simple spikes or beads, with shining scarious bracts. Perianthtube short; segments 5 , equal, linear, rigid, usually flumose; stamens 5 , but usually $1-3$ of them small and antherless: fr. an indehiscent utricle.
exaltàtum, Benth. (Pyilotus exaltìtus, Nees). A tender perennial, 2-3 ft. high, erect, usually branching above: lower lvs. $2-5 \mathrm{in}$, long, ohlong-lanceolate rather thick, contracted into a long petiole; upper Irs. smaller: spikes erect, long-peduncled, at first ovoid-eonical, becoming longer: perianth $3 / 4 \mathrm{in}$. or less long, yellowish, with dull red tips. B.R. 25:28 (as T. alopecuroides).Lately introduced in this country as a greenhouse subject.
T. Manglesie, Lindl., is perhaps the choicest species. It has violet-pnrple fis. ju large pyramidal heads 3 in, long and 2 in , wide at base. It conld probably be grown as a summer annnal. B.M. 5448. F.S. 23:2396. R.H. 1866:291. F. 1864:217. I.H. 13:464. G.C. 1864:555.
F. W, Barclay.

TRICHLORIS (Greek for three and green), Gramimer. Under the name of Chloropsis, or chloridopsis, Blanchardiana, seedsmen offer a tender perennial ornamental grass, growing $1-21 / 2 \mathrm{ft}$. high and useful for edgings. Its proper name is Trichloris Blanchardiàna, Hackel. It comes from Argeation. There are four other species of Trichloris, 2 trom Chile and :3 from the southwestern U. S. There are ne such recognized generic names as Chloropsis and Chloridopsis. Trichlosis has the flowers arranged in long rather slender mostly erect spikes which are umbellate or panicled: spikelets $1-3-\mathrm{fld}$., the sterile bracts produced into prominent awns. T. Blancherdiana is a nseful grass, its umbellike chasters of soft-awned silvery spikes being very pleasing. 1t is readily grown from seeds. L. H. B.

TRICHOCENTRUM (Greek, hair and slender; alluding to the long, slender spur). Orehidacea. A small genus allied to Rodriguezia (Burlingtonia). The plants grow in dense matted tufts. Psendolulhs very small, each bearing a broad, Heshy leaf. Inflorescence a fewtld. raceme on which usually only one flower opens at a time: sepats and petals free, spreading; labellum larger, spurred, with 2 lateral lobes and a 2 -parted middle lobe ; column sbort: pollinia 2, on a wedge-shaped stipe. Sixteen species. Epiphytes of dwarf stature, growing best on hlocks; free-flowering; they suffer from too much water at the root; give them a warmhouse temperature. Prop. by division.
álbo-purpùreum, Reichh. f. LFs. oblong-lanceolate, 3 in . long, tufted: fls, on short peduncles, 2 in. across; sepals and petals obovate-Janceolate, inside maroonbrown, with greenish tips, ontside greenish; lahellum subquadrate, white, with a large purple spot on each of the lateral lobes. Brazil. B.M. 5688. A.F. 6:609.
tigrinum, Lindl. and Reiehb. f. Similar in habit to the preceding: lrs, oblong, obtuse, speckled with red: fls, pendulons, nearly 3 in. arross; sepals and petals broadly linear, yellow, speckled with red; labellum cuneate-oborate, emarginate, white, rose toward the disk. May. Cent. Amer. B.M. 7380. I.H. 24:282.

## Heinrich Hasselbring.

TRICHOLENA (Greek, trichos, hair, chlaina, or in Latin, lerua, a mantle; reforring to the covering of silky hairs on the spikelets). Graminear. A genus of 10 African species, one of which is cultivated for the ornamental inflorescence, which is used in making dry bouquets. Spikelets in loose panicles, very silky hairy,
to which fact the cultivated species owes its ornamental appearance. Allied to Panicum, from which it differs in having the second empty glume (which, on account of the first glume heing small or wanting, is apparently the first) provided at the base with a conical callus, and this and the third glume more or less awned between the cleft apex.
ròsea, Nees ( $T$. riolàcea, Hort. Pinicum Teneriffce, R. Br.). First glume wanting; spikelets (secoud and third glumes) clothed witb violet silky hairs; awns short or wanting; culm 2-3 ft. South Africa.
A. S. Hitchcock.

TRICHOMANES (Greek, soft hair). Hymenophylliceoe. A genus of filmy ferns distinguished by its tubular, cup-like indusium and filiform elongate recep-

2567. Fructification of Trichomanes. tacle. Fig. 2507. Very delicate in texture and capable of being grown successfully only under shaded glass. Over 100 species are known. Various species may be found in the collections of fanciers, but the following appear to be the only ones regularly in the American trade. For culture, see Ferns.
radicans, Swz. Lvs. $2-8$ in. loug, $1-1 \frac{1}{2} \mathrm{iu}$. wille, bipinnatifid; рinne ovate, obtuse; indusia terminal, on
short lobes. Tropical regions, extending into our southern states as tar as Kentucky.
Prieùrii, Kunze ( $T$. ánceps. Hook.). Lvs. 12-18 in. long, 6-12 in. wide, tri-quadripinnatifid; pinno ovatelanceolate; sori $2-12$ to a pinnule, small, axillary; indusimu with a much dilated lip. Tropical America.
L. M. Underwood.

## TRICHONEMA. See Romulea.

TRICHOPILIA (Greek, hair and eap; the anther is concealed under a cap surmounted by three tutts of bairy. Orchiddece. About 20 species, rauging from Mexico to South America. Pseudobulbs crowded on the short rhizome, flattened, and often elongate, 1-Ivil., surrounded with dry scales at the base: Ivs. large, solitary, erect, fleshy, kerled: Hls. abundantly produced on short, nodding or decumbent scapes; sepals and petals narrow, spreading, often twisted; labellum large, forming the most conspichous part of the flower, united with the column below, lateral lobes convolute, middle lohe sprealing; anther bent over; pollinia on a triangular candicle; clinandrm fimbriately winged. The flowers keep fre:h a long time, both on the plant and when cut. Handsome orchids, usually grown in pots, although epiphytal. They need an intermediate or greenhouse temperature, If grown too warm, they suffer. Prop. by division.
Galeottiàna, A. Rich. \& Gal. Pseudohulbs narrow, flattened, 5 in . long: lvs. ohlong, acute, about 6 in . long: scapes short, mostly 1 -fld.: sepals and petals cuneatelanceolate, yellowish green, sometimes with a band of cinnamon down the middle; labellum trumpet-shaped, whitish with some purplestreaks and dots in the center, and yellow in the throat. Aug., Sept. Costa Rica, Mexico. 1.H. 6:225 (as T. picta). B.M. 5550 (as T. Tarialer ).
fragrans, Reichb. f. (Pilúmna frìgrans, Lindl.). Psendohulbs elustered, flattened, $3-5 \mathrm{in}$. long, I-1vd.: lvs, ohlong-lanceolate, acute, 6-8 in. long: scape pendent, 1 ft . long, about 6 -fld.: fls, on pedicels 3 in . long; sepals and petals spreading, linear-lanceolate, $21 / 2-3 \mathrm{in}$. long, wavy and twisted, greenish white; labellum folded over the column. spreading in front, and somewhat lobel, white with a yellow stain in the throat. Summer. Colombia. B.M. 5035 .-Fls. almond-scented.
nóbilis, Reichb, f. (Pilümna nóbilis, Reichb. f. T. cíndida, Linden). Pseudobulbs large: lvs, broadly
oblong-acute: fls. white; sepals and petals linear-oblong, acute, 2 iu. long, scarcely twisted; labellum large, white with a yellow spot in the throat. Venezuela. 1.H. 19:94 (as T. fragrans, var. nobilis). F.M. 1872:21 (as T. fragrans ). - This has larger, stouter pseudobulbs and shorter broader lvs. than T. fragrans. The labellum is larger and the petals shorter compared witb the size of the flower.
tortilis, Lindl. Pseudobulbs oblong, compressed, somewhat curved, 2-4 in. long: Ivs. solitary, oblong, acute, 6 in. long: fls. solitary, on decumbent stalks shorter than the lvs.; sepals and petals linear-lanceolate, 2 in. long, spirally twisted, brown with yellowish margins; labellum forming a tube around the column, upper portion expanded, 4 -lobed, white with crimson spots, becoming entirely crimson within. Fls. profusely in summer and sometimes again in winter. Mexico. B.M. 3739. B.R.22:1863. F.C. 3:101. B. 3:122. - Var. alba is advertised.
suàvis, Lindl. Fig. 2568. Pseudobulbs thin, compressed, 2 in. long: lvs, broadly oblong, 8 in. long: scape pendent, about 3 -fld.: fls, on long, curved stalks, large; sepals aud petals lanceolate-acuminate, wary, nearly straight, 2 in . long, white or cream-colored; labellum large, projecting forward, white or creamcolored, spotted with pale purple, yellow in the throat; limb large-lobed, wavy and crenate. May, June. Cent. America. B.M. 4654 . F.S. 8:761. R.H. 1859, pp. 220, 221; 1887, p. 454. Gn. 4. p. 511; 31, p. 452; 38, p. 185; 48, p. 79; 5I, p. 371. R.B. $23: 256$. G.M. $38: 281,-$ Var. alba, Warner. Fls. white with a yellow spot in the throat of the labellum.
marginata, Henfr. (T. coccinea, Warsc. T. crispa, var. margindta, Hort.). Pseudobulbs clustered, oblong, compressed: lvs. broadly lanceolate, suddenly acuminate, subauriculate at the base: seape about 3 -fld.: fls. large, whitish outside, reddish purple within: sepals and petals linear-lanceolate, niargined with white, the former slightly twisted; labellnm trumpet-shaped, with a large,

2568. Trichopilia suavis $(\times 1 / 4)$.
rounded, wary, 4 -lobed blade. May, June. Cent. America. B.M. 4857. F.S. 14:1490; 18:1925. G.C. 11I. 20:456. F.11. 1874:98 (as T. lepida).
críspa, Lindl. This plant was described by Lindley in Linden's catalogue. It is closely related to T. marginala,
which is sometimes classed as a variety of T. crispa. The following description is taken from Watson's Orchids. Pseudobnlbs ovate, Hattened, $2-3 \mathrm{in}$. long, dark green, l-Ivd.: Ivs. leathery, $6 \times 2$ in., keeled, acutepointed: Hower spikes basal, drooping, short, 3 -fld. : fls. with pedicels 2 in. long; sepals and petals spreading, $21 / 2 \mathrm{in}$. long, $1 / 2 \mathrm{in}$. wide, wavy-edged, twisted, brownish sellow; lip folded over the column, spreading in front, $11 / 2 \mathrm{in}$. across, colored deep crimson with a white margin. May, June. Costa Rica.

## Heinkich Hasselbring.

TRICHOSANTHES (Greek, hair and flower: alluding to the fringed edge of the petals). ('ucarbitacece. Smake Gourd, About 40 species of climbing herbs, annual or perennial by tuber-like roots, natives of southeastern Asia and Australia. They are tender plants with usually large, roundish, lobed leaves and white axillary flowers. The male tis. are usually in racemes, while the female are nearly always solitary. The fruit is often ornamental and highly colored. In T. Anquina it is exceedingly long, having been noted over 6 ft . in length. Calyx long, tubular, 5 -toothed; petals 5, united at the base, ovate to lanceolate, longly fimbriate: stamens 3 (in the male flower). D. C. Mon. Phaner. $3: 351$. The plants flower in July from seed sown in March. They may be treated as tender annuals.

```
A. Bracts small or none on the racemes of male fls. B. Fruit oroid.
```

cucumeroldes, Maxim. Root fleshy, tuberous: stem slender, $12-15 \mathrm{ft}$ : lvs. ovate in outline, $4-6 \mathrm{in}$. long, more or less palmately $3-5$-lobed, margin crenulate: peduncle bearing the male fls. 1-4 in. long and 3-15-fld: petals about $1 / 2 \mathrm{in}$. long, oblong, acute, longly fringed: fr. oblong, shortly rostrate, nearly 3 in . long, vermilioncolored. Japan. Offered by importers of Japanese plants.

## вв. Fruit oblong.

Anguina, Linn. (T. colubrina, Jacq.). Serpent or Snake Gourd. Stem slender, tall-growing: les. nearly circular in outline, 5-7 in. across, 3-7 lobed; lobes round; margin undulate or wavy: peduncle bearing the male fls. 4-10 in. long. $8-15$-fd. : body of petals oblong, less than $1 / 2 \mathrm{in}$. long, fringes $1 / 2 \mathrm{in}$. long: fr. slender, contorted, often exceeding 3 ft . in length. India. B.M. 722. B.R. 32:18 (as T. colubrina). R.H. 1859, p. 595.

$$
\begin{aligned}
& \text { AA. Bracts large on the male raceme. } \\
& \text { B. Calyx-segments entire. } \\
& \text { C. Les. lobed. }
\end{aligned}
$$

Kirilowii, Maxim. (Eopèpon vitifòlius, Naud.). Perennial root tuber-like: stem annnal, high climbing. $20-30 \mathrm{ft}$, : lvs, nearly circular in outline, $3-8 \mathrm{in}$. across, deeply $5-\bar{\pi}$-lobed, the lobes oblong, acute, coarsely serrate: racemes bearing the male fls. $4-8$ in. long, $3-8$-, rarely only 1 -fld.: petals triangular-wedge-shaped, deeply cnt and the segments much cut and longly fimbriate, ovoid, somewhat acute; base shortly attenate, yellowish orange, about 4 in. long, $2 \frac{1}{2}$ thick. Mongolia.

## cc. Les. not lobed.

cordàta, Roxb. (T. palmàta, Wall.). Root tuberous: stem robust, high climbing: lvs. wide, ovate-corlate, acute or shortly acuminate, $5-8 \mathrm{in}$. long, rarely somewhat angled or obscurely lobed; margin slightly dentate: peduncle bearing male fls. $5-8$ in. long, $4-8$-fld : calyxsegments finely acnte: fr. globose, red, orange-streaked, not acute at the apex. India.

## BB. Calyx-segments toothed.

bracteàta, Voigt ( $T$. palmatu. Roxb.). Stem stout, climbing to 30 ft .: lvs. broadly orate in ontline, scabrons above, usually deeply 3 -7-lohed; lobes acute; margin dentate: peduncle bearing the male fls. $4-8 \mathrm{in}$. long, $5-10$-fld.: fr. globose, red with orange stripes abont 2 in. long. India.
F. W. Barclat.

TRICHOSMA (Greek, hair and ornament). Orchiddcere. Sepals and petals similar, erect-spreading, the lateral pair forming a distinct mentum with the projecting foot of the column; labellnm 3 -lobed. the lateral lobes erect, convolute over the column, middle lobe with
longitudinal ridges: stems slender, 2-Ivd.: infores cence racemose. Resembles Cologyne.
suàvis, Lindl. Lvs. lanceolate, nadnlate, 3-nerved: fls. few in a terminal raceme, white, yellowish or purplish, fragrant; sepals ovate-lanceolate; petals oblong; labellum ovate-oblong, streaked with purple; disk yellow, middle lobe with several crenate ridges. Himalaya. B.R. 28:21.
T. albo-marginata of the trade is unidentified.

Heinrich Hasselbring,
TRICHOSTEMA (Greek, hair and stamen; referring to the filaments). Labiatue. Blue Curls. A genus of 8 species of American plants, mostly low, aromatic, annual herbs with entire leaves and blue flowers. Calys oblique and 2 -lipped; corolla-tube shorter than the limb. Offered by some dealers in native plants. For fuller account, see Gray's Syn. Flora of North America.
A. Calyx bell-shaped, regular, almost equally 5 -cleft.
lanàtum, Benth. A perennial shrubby plant with rosemary-like leaves and cymes of Hts , in a naked terminal thyrse: lvs, narrow linear, 1 -nerved, sessile, margins revolute : calyx and corolla covered with dense violet or purple wool; corolla $1 / 2 \mathrm{in}$, long. S. Calif. A very bandsome shrub. Known as "Ramero."

## AA. Calyx oblique, 2-lipped.

dichotomum, Linn. Bastard Pennyroyal. Low, viscid annual: 1 vs . oblong or lanceolate-oblong, obtuse, short-petioled: corolla blue or pink, sometimes white. Sandy fields, Mass. to Ky., Fla. and Texas.

## F. W. Barclaf.

TRICYRTIS (Greek, three convexities; referring to the nectar-bearing sacs at the base of the three outer perianth-segments). Liliàcef. "Toad-Lilies," as the Japanese call them, are autumn-blooming perennial herbs with 6-parted Hs. which are generally an inch or more across, and of whitish color, spotted with purple. They are very distinct members of the lily family by reason of their season of bloom, quaintly spotted Howers, and the prominent nectar sacs mentioned above. They are not bulbous plants, but have a short rootstock emitting tufts of branched fibers. All the species are desirable, but if only one can be afforded the amateur should select T. hirta, var. nigra. T. hirtu is perfectly bardy and bas more fls. and larger ones than the other species, and with good management it blooms in September. Sometimes, however, it blooms so late that its flowers are prematurely destroyed by frost. For this reason some gardeners prefer to grow the plant in pots, which may be brought indoors when the fls. are at their best. The variety nigra, which differs in baving darker colored spots, is said to bloom two or three weeks earlier than the type and can therefore be recommended to lovers of choice hardy plants. but with one reservation: it should not be placed in the ordinary mixed border where it will bave to struggle against strongergrowing plants. It should be established in a bed There the plants need not be disturbed for years. Half a dozen plants in a circular bed could be made by division to spread into a solid mass in the course of a few seasons. Snch a mass is much more desirable than one plant each of all the kinds. The bed sbould be made in a slightly shaded position, For soil, try a light tibrous loam mixed with leaf-mold and sand. An English expert, W. Goldring, has suggested as a compranion to the Toad Lilies, eitber Lady Slippers (Cypripedium spectabile) or Wood Lilies (Trillium grandiflomm). This happy idea is worth a trial, as the species named hoom at different seasons and would probably not compete with one auother. In this country, the leaves of Tricyrtis often do not remain in good condition throughont the season.
Tricyrtis is a genus of 6 species native to Japan, China and the Himalayas. The plants arerage 2 or 3 ft . in height and bave numerous lvs., green on both sides and with many parallel nerses. Fls. bell-shaped, then spreading; perianth-segments lanceolate, acute: ovary sessile, 3 -celled; ovales crowded, superposed: capsule leathery, 3 -valved: seeds minute. Tricyrtis is one of the aberrant types of the lily family. It is placed by Bentham and Hooker in the Uvularia tribe.


Clover
The small, narrow-leaved Rabbit's-foot Clover (Trifolium arvense) and the common Red or Field Clover (Trifolivm pratense)
in which it is the only genus with a septicidal eapsule. Monographed in Latin by J. G. Baker in Journ. Linn. Soc. 17:463 (1880). In this account the lvs. of T. mucropoda are said not to be stem-clasping, hut in B.M. 5355 they are described and figured as stem-clasping.

All the nanes given below are American trade names, except T, fluco, Formosauct and latifolia. The writer has been tempted to include these, partly because there has been no account in Englishof all the species, but chiefly because they are desirable plants likely to come into eultivation.

$$
\begin{aligned}
& \text { A. Base of lus, not stem-clasping.... 1. Formosana } \\
& \text { AA. Base of les. clasping the stem. } \\
& \text { B. Stem pilose, with sprealiny hairs. 2. hirta } \\
& \text { BB. S'tem not prominently hair!y, pu- } \\
& \text { berulous or very slightly pilose. } \\
& \text { C. F'ls. yellou', unspotted. } \\
& \text { ce. F'ls. spotted, not ypllore. } \\
& \text { D. Spots rather larye............ 4. pilosa } \\
& \text { DD. Spots minute. } \\
& \text { E. Style as long as the stigmas. 5. latifolia } \\
& \text { EE. Style half as long as stigmas. 6. macropoda }
\end{aligned}
$$

Formosàna, Baker. Stem flexuous, I ft. higb: lvs. sessile, oblanceolate, wedge-shaped at the base: fls. few in a lax corymb, whitish purple, scarcely spotted. Formosa. - Unique by reaxon of its irs not being stemclaspiug.
hírta, Hook. (T. Jıpómiç, Miq.). Fig. 2569. Stem $1-3 \mathrm{ft}$. high, everywhere clad with soft, whitish, spreading hairs: fls. $6-15$, raremose or subcorymbose, whitish, the outer segments covered with rather large purple spots. Wide-spread in the woorls of Japun. B.M. 5355. (7n. 30, p. 431; 49:1062. V. 12:204. - Vitr. nigra, Hort. (T. uigra, Hort.), has black instead of purple spots. Gn. $49: 1062$. A form with variegated lvs. was once offered by Pitcher \& Manda.

2569. Tricyrtis hirta $(\times 1 / 3)$.
flàva, Maxim. Stem dwarf: Irs. oblong-lanceolate: fis. racemose, jellow, not spotted. Seen by Maximowicz in the gardens of Fedo only.
pilosa, Wall. Stem $2-4 \mathrm{ft}$. high, very slightiy pilose: lvs, oblong: fis. numerous, loosely corymbose, whitish. with large purple spots; style half as long as the stigmas. IImalayas, $5,000-6,000 \mathrm{ft}$ B.M. 4955 (perianthsegments narrow, oblong). F.S. 12:1219.
latifolia, Maxim. Stem glabrous, flexuous, 2-3 ft . high: lvs. broadly ohlong or the uppermust ovate: fls. few in a terminal corymb, whitish, with minute purple spots; style as long as the stigmas. Japan.
macropoda, Miquel. Stem $2-3 \mathrm{ft}$. high, puberulous above: lvs. oblong: fls. in a loose corymb, whitish purple, with minute purple spots: style half as long as the stiginas. Bloolus in June and July, according to J. B. Keller. Japan, China. B.M. 6544 (segments broadly orate, decidedly yellow, spotted red and Feined red near tips).-In F.S. 18:1820 is figured a plant with sessile lvs. striated with white, and no tts., which he refers to T. macropoda. This was sent out by Van Houtte as T. hirsuta, but it is a glabrous plant and probably lost to cultivation.
T. grandiflòra, Hort., shonld be compared with T. hirta, var. nigra. It is a name scarcely known to botany. Ellwanger \& Barry say it has orchid-like, fragrant tls. in Oct. and Nos. (Baker says the gemns has no fragrant fls.) Krelage says that T. granditiora has white fis. mottled with black. W. M.

TRIENTALIS (Latin for the third of a foot; referring to the height of the plant). Primuldceo. Stap Flower. Chickweed-Wintergreen. A genus of two species of low, glabrons, hardy perennial herbs: stems simple, with small scales on leaves below and a whorllike cluster of iarger, nearly sessile leaves at the smmmit, from the axils of which in spring the star-like white or pink flowers are borne singly on slender petuncles. Sometimes grown in wild garden borders

## A. Li's. acuminate at both ends.

Americàna, Pursh. Stem naked below, 5-9-lvd. at the stummit: Irs. lanceolate: divisions of the white corolla thely acuminate. Danip wools, Labrudor to Va. V. 8:380.

## AA. Lis. obtuse (acute in var. Iatifolia).

Europæa, Linn. Stem either naked or with a few seattered lvs. below the cluster of obovate or lanceolate, whlong, obtuse or abruptly somewhat pointed lvs.: divisions of the white or pink eorolla abruptly acuminate or mueronate. Alaska, Eu. and Asia.-Var, arctica, Ledeb. Dwarf: 1Fs. 1 in. long, lecreasing below; corolla white. Var. latifolia, Torr. Stem naked below the eluster of $4-7$ oblong-ohovate, or oral, mostly acute lvs.: corolla white to rose-red. Woods, western C'alifornia to Vancouver's Island. F. W. Barclay.

TRIFOLIUM (name refers to the three leaflets). Le gumimoser. Clover. Trifotium is a large genus, comprising between 200 and 300 species, most ahundant in the north tempelate zone. They are low herbs, with digitately 3 -foliolate (rarely 5 -7-foliolate) lvs., stipules adnate to the base of the petiole, and small papilionaceons flowers mostly in dense terminal heads or spikes. The ealyx is 5 -toothed, the 2 upper teeth sometimes connate; petals 5 , mostly withering rather than falling, more or less adnate to the base of the stamen-tube; stamens 9 and 1: ovary small, ripening into a little few-seeded, mostly indehiscent porl. The flowers are usually in shades of red aud running into white, rarely yellow.

The Clovers are very important agricultural plants, but they have little distinctly horticultural value except as corer-crops and green manures. Ste Clover, p. 337. For the rôle of Clovers as nitrogen-fixers, see Legumes, p. 897 . The species described helow are offered mostly as forage plants. Many (lovers are perennial, although they are of relatively short life, so that frequent resowing is necessary if plants are to be kept in robust condition. Some of the species are annual, and these tend to become weeds. All are propagated readily by meaus of seeds; but as the seeds are small and oily, they may not germinate well in dry, hot soils. Three annual yel-Jow-flowered species are weeds in some parts, particularly in the East, where they have been introduced from Europe: T. agrarium, Linn., Yellow or Hop Clover, With oblong-ohorate sessile lfts.; T. procumbens, Linn., Low Hop Clover, more spreading, ltts. obovate and the terminal one stalked; $T$. dìbium, Sibth., with ifts. trancate or emarginate at apex and the terminal one stalked. A silky-pubeseent white-fll. annual species, from Europe, T. arvense, Linn., is the Rabhit-foot

Clover of fietds and waste places. The T. odoratum of some seedsmen is evidently Melilotus. Allied genera are Lespedeza, Medicago and Melilotus.

## A. Flowers in a long spike.

incarnàtum, Linn. Crimson or Scarlet Clover. Fig. 499, Vol. 1. Annual, erect, $1-3 \mathrm{ft}$. high, soft-hairy: lvs. long-stalked, the lfts. broadly obovate and denticulate and sessile or nearly so by a caneate base, the stipules large and thin and veiny and somewbat toothed: heads becoming $2-3 \mathrm{in}$. long, very dease: fls. sessile, bright crimson and showy, the calyx sharp-toothed and

2570. Trifolium repens-the White Clover $(\times 1 / 3)$.
hairy. S. Eu. B.M. 328.-An escape in some places. Notr mneh used as a cover-crop in orchards. See Corer Crops. It is rery showy when in bloom. If seeds are sown at milsummer or later, the plants may be expected to survive the winter and bloom early in spring.
rùbens, Linn. Pereunial, 20 in . or less tall, in clumps, the stems erect: lvs. short-stalked, the lfts. oblonglanceolate and strongly denticulate, the stipules longlanceolate: beads nsnally in pairs, becoming 3-4 in. long: fls. purplish red, showy.-Eu. Attractive ornamental species. The heads become silky after flowering. There is a white-fld. form.

## AA. Flowers in globular or orate heads. B. Corolla yellou.

filitorme, Linn. Yellow Suckling Clover. Annual, of diffuse growth: Ifts. ohovate or obcordate, somewhat denticulate, the terminal one stalked, the stipules broadly ovate: peduncles long and filiform, bearing sessile yellow tis. in umbel-like heads, the calyx-lobes unequal. Eu.-Sometimes used for forage or grazing.
вв. Corolla white or ochroleucous (yellowish white).
Alexandrinum, Linn. Egvptian Clover. Annual, with few appressed bairs, the stems tall, erect or ascending and branching: lvs, numerous, the lfts. oblong or lanceolate and somewhat denticulate, the stipules lanceolate-subnlate and partly free from the petiole: head stalked or sessile, ovate, hecoming oblong-conic in fr.: Als. ochroleucous. Egypt, Syria, etc.
Pannonicum, Jacq. Hengarian Clover. Perennial, very hairy, the stems usually simple, 2 ft.: Ifts. lanceoblong and subacute to retuse, ciliate and entire, the stipules narrow and longer than the short petioles: heads ovate-oblong stalked: fis. pale yellowish white or creamy yellow. Eu., Asia. - Handsome plant for the border; also recommended for forage.
repens, Linn. White Clover. Fig. 2570. Low creeping ylabrons perennial: lvs. long-stalked, the lfts, obcordate and obscurely toothed, the stipnles small and scale-like: heads long-pednucled from the ground, small and loose: fis, white, fragrant. En. and thought to be native in the northern part of the U. S. and in Canada, but naturalized everywhere.-Much used in lawns, and in some parts prized for pasture. There are forms with red and purplish foliage. This is thought
by most authorities to be the shamrock of Ireland. A form of it is offered by Blanc, as T. minus, "the genuine Irish shamrock." See Shamrock.

## bвb. Corolla rose-tinted or red. c. Individuel fls. pediceled.

hybridum, Linn. Alsike or Swedish Clover. Ascending or nearly erect, $1-3 \mathrm{ft}$. bigh, branching, glabrous: livs. long-stalked, the lfts. obovate and serrulate, stipules ovate-lanceolate and thin: heads small and loose, nearly globular, long-stalked: fls, rose-colored or sometimes white on the top of the head. Eu. B.M. 3702.-A good forage plant; also naturalized. Thrives best on moist lands. Very bardy. Perennial.

## cc. Individual fls. sessile.

## D. Plant peremiul.

praténse, Linn. (T. praténse perénna, Hort.). Cossmon Red Clover. Pea-Vine Cloyer. Cow-grass. Fig. 2571. Ascending and somewhat hairy, $1-1 \frac{1}{2} \mathrm{ft}$.: lvs. long-stalked, the lfts. oval or obovate and sometimes notehed at the end and the blade marked with a large spot, the stipules broad but with a bristle point: heads globmar orate, sexsile: fls. red-purple. Eu., bnt everywhere introduced, and much grown for pasturage hay, aud green manuring.
mèdium, Linn. Mammoth or Zigzag Clover. Stonter and less erect: Ifts. oblong and entire and withont spots: heads usually stalked, and fls. rathwr deeper colored. Eu., and introduced, and mush grown by farmers.

## DD. Plant annual.

resupinàtum, Linn. (T. suaveolens, Willd.). Ammal, diffuse or trailing glabrous plant: Ifts, obovate and serrulate and as long as the petiole, the stipules lanceolateacuminate: heads globose, with rudimentary inwolucre: fls. purple. Greece, Egypt to Persia. - Grown for ornament.
L. II. B.

TRIGONELLA (Latin, a little triangle; probably referring to the shape of the ths.). Legrminosce, lucludes Feungreek, which see. Trigonella is a polymorphons genus of about 50 species widely scattered in the eastern hemisphere. The genus belongs to the Trifolium trile of the legume family, heing distinguished from the clovers and allied plants mainly hy the fact that the Irs. are pinnately trifoliolate and by the obtuse keel of the flower. The indorescence and pol are too various to be described here. Bentham and Hooker divide the genus in-o 6 sections, of which Fenugreek and other species form a section characterized by baving whitish, subsessile fls. and a thick, oblong or linear pod which has a long beak and obliquely longitudinal veins.
Fönum-Gràcum, Linn. Fenugreek, which see. White-fld. annual, 1-2 ft. higb, blooming in dune and August. Distinguished from other species in its section by the erect, unbranched stem and obovate lfts., which are obscurely dentate. Stipules lanceolate-falcate, entire: calyx pilose: pods falcate, twice as long as the beak. Eu., Orient.
W. M.

2571. Day and night positions of red clover leaf: untolding young leaf at the right.

TRILISA (anagram of Liatris). Compósitic. Here belongs a native perennial berl, known as the Vanilla Plant, from the odor which the leaves emit when bruised. It is not, however, the ranilla plant of commerce (see Vanilla). Trilisa is a genus of two species
closely related to Liatris. The species are autumnblooming plants $2-3 \mathrm{ft}$. high, with numerous small flower-heads of purple or white. They differ from Liatris as follows: The roots are fibrous (those of Liatris being tuberous); the inflorescence is panicled instead of racemose or spicate, and the involucral bracts are in only 2 or 3 series, while those of Liatris are in many series. Trilisa is not so well known to gardens as the Blazing Star. Although a natice of the low pine barrens from Va. to Fla. and La., it is perhaps hardy. Twenty years ago it was advertised by a Massachusetts dealer in native plants. It is mentioned in some English books as a hardy plant, thriving in light soil and prop. by division or by seeds sown in autumn. It is more fully described in our native botanies.
odoratíssima, Cass. (Liàtris odoratissima, Michs.). Vanilla Plant. Also called Carolina Vanilla, Dog'stongue, etc. Rather stout, glabrous, perennial herb, 2-3 ft. bigh: 1rs. thick, entire or sometimes dentate, obtuse, $4-10 \times 1-11 / 2 \mathrm{in}$., oblong, ovate or oval: inflorescence corymbose paniculate: th.-heads abont $1 / 4 \mathrm{in}$. long. Aug., Sept. B B. 3:319.-The other species ('T, paniculata, Cass.) has a similar range and is distinguished by its viscid-pubescent stem and tbyrsoid-paniculate inflorescence.
W. 1.

TRILLIUM (Latin, triplum, triple: leaves and floral parts in threes). Lilidcee. Wake-Robin. Binthroot. White Wood Lily. Ground Lily. Twelve species of tnberous-rooted spring-flowering herbs iu North America, and about half as many more in Asia from Himalaya to Japan. All the American species and none of the others are in the trade in this country. The stem is simple and erect, 3 -leaved near the summit and bearing one flower with 3 green sepals, 3 white or colored distinct petals, 6 short stamens, and a 3 -loculed ovary which ripens into a red or purple berry-like fruit. For a hotanical account of the American species, see S. Watson, Proc. Amer. Acad. Arts \& Sci. 14 (1879).
Trilliums are amongst the characteristic flowers of American woods. The best known species is T.grandiflormm, which ranges from Canada to the mountains of North Carolina and extends westward beyond the Great Lakes. All Trillimms delight in moist, rich soil. They thrive in woods mold. The root is a deep-seated perpendicular tuher or rhizome (Fig. 2572). It is customary to transplant Trilliums from the woods when in bloom. This is because the plants can be found readily at that time and because the desire to grow them is strongest when the plants are in bloom. It is better to transplant in midsummer, or later, however, wheu the growth is completed, although the plants are difficult to find after the tops have died. The bloom is made largely from the energy stored in the tuber the previous season. After flowering, the plant stores energy for the succeeding year. By midsummer this work is accomplished and the tops die: then the plants are at rest and they are in proper condition to be moved. However, good results are sometimes obtained by moving them in spring. These remarks will apply to most early spring - blooming small herbs. Give Trilliums a rich, deep, rather moist soil in partial shade. Plant deep. A colony will last for years. Trilliums force well. See Forcing. Plants may be propagated by seeds sown as soon as ripe. Blooming plants may be expected in two or three years. Trilliums
2572. Vertical rhizome of Trillium ( $\times 1 / 2$ ). are among the choicest of all early spring plants, and they should be more common in gardens. They can be made to thrive well in borders about-city yards. They may also be colonized in grass where the lawn mower is not used. Best results are usually attained, however, when they are planted alone in masses. Trilliums are amongst the relatively few plants that are very showy and yet not coarse.
album, 9 .
angustipetalum, 3. Californicum, 3 . Oatesbrei, 11. cernuиm, 10. discolor, 3. erectum, 9 erythrocarpum, 2, 7. fotidum, 9. giganteum, 3.

## INDEX.

grandiflorum, 7. lanceolatum, 4 . zernostum, 11. nivale, 1. Nuttallii, 3. ovatum, 8 . pendulum, 9. petiolatum, 6. pictum, 2. ригригеит, 9.
pusillum, 12 , recurvatum, 4,5 rubrum, 3 . sessile, 3. stylosum, 11. undulatum, 2. viridescens, 3 viridiflorum, 9. Wrayi, 3.

## A. Ovary s-anglea, not winged.

1. nivale, Ridd. A dwarf species, 5 in. or less high, early: Ivs, narrow and obtuse, 1-2 in. long: ths, white. on a short erect or declined pedicel, the petals about 1 in. long, narrow and nearly or quite obtuse. Low woods, Pa . and Ky. to Minn. and lowa. B.M. 6449.
2. undulatum, Willd. ('T. erythrocarpum, Michx. T. pictum, Pursh). Of medium to large size, 1 ft . or nuore bigh: lvs. large, ovate and acute or acuminate, shortstalked: fls, rather large, white, on a sbort but slender erect or inclined pedicel, the petals oblanceolate and wavy, about 1 in , long and usually purplish

3. Flower of Trillium grandiflorum ( $\times 1 / 3$ ). at the base. Woods, Nova Scotia to Missouri and Georgia. B, M, 3002. L. B.C. 13:1232.

> AA. Orary 6 -ungled, often winged.
> B. Flowers sessile (and mostly colored).

## c. Leaves sessile.

3. séssile, Linn. Strong-growing, 1 ft . or less high: 1vs. hroadly ovate or rhomboidal, acute, more or less spotted: fl. sessile in the whorl of Ivs., small, purple or greenish, the petals narrow and acute. Woods, la. to Mlinn., Ark., and Fla. B.M. 40. L.B.C. 9:870̆. F.S. 22:2311. - Variable.
Var. gigantéum, Torr. (var. Califórnicum, Wata.). Much stouter, the lvs, often 6 in . long and spotted, and the petals sometimes 4 in . long: fls. purple, rose-color or white, the petals rhombic-ovate or narrower. Calif. and Ore. G.F. 3:321.
Var. angustipétalum, Torr. Similar to Var. giganterm, but the lrs. somewhat petiolate and the petals narrower. Calif., Ore. Apparently not in the trade. This and var. giganteum appear to be the only Trilliums native to California, except T. ovatum.
Var. rubrum, Hort. A form of Var. giganterm with fis. deep red-purple.
Var. Wràyi, Wats. (T.discolor, Wray). Petals spatu-late-obtuse, 1 in . long, greenish. Georgia. B.M. 3097.
Nüttaliii, Wats. ('T. viridéscens, Nutt.). Lvs. pubescent beneath, as also the upper part of the stem: petals linear-lanceolate, purplish green with brown base. Ark.
4. lanceolatum, Boykin (T. recurddum, var. lanceolàtum, Wats.). Plant ofteu more than 1 ft . tall: 1 vs. lanceolate, sessile: As. dull or brown-purple, an inch or more long, narrow - lanceolate or linear, the sepals ascending or somewhat reflexed, the filaments usually exceeding $1 / 4 \mathrm{in}$. in length. Ga., Ala.-Little known in cult.

## cc. Leares stalked.

5. recurvàtum, Beck. Strong-growing, usually 1 ft . or more high: Ivs. ovate or ovate-oblong, tapering to both ends, on short but slender petioles: fix. brownpurple or dull-purple, about 1 in . or more long, the

6. Trillium grandiflorum, the commonest Wake Robin. Nearly full size.
petals narrow and erect, the sepals narrow and reflexed. Woods, Ga. to Minn., Miss. and Ark.
7. petiolatum, Pursh. Stem scarcely arising ahove the ground: lvs. ovate-elliptic to reniform, with stalks
as long as the blade or even longer (blade 3-5 in long ) : fls. purple, the petals $1-2 \mathrm{in}$. long aud narrowohlanceolate, the sepals erect. Idalio, Ore., and Wash. Little known in cult.

## BB. Flowers stalked.

C. Pedicel longer than the flomer: lis. nearly or quite sessile.
7. grandiflorum, Salisb. Figs. 854 (Vol. If), 2573, 2574. Stont, 1 ft , or more bigh: lvs. broad-ovate or rhombic-orate, narrowed to both ends, often wary: ths. erect or nearly so, pure white, changing to rosy pink as they fade, $2-3 \mathrm{in}$. long, the petals broadly oblanceolate ant spreading and much longer than the sepals. Quebec to Minn., Fla, and Mo, B.M. 855 (as T, eryihrocarpum). L.B.C. J4:1349. Gn. 29, p. 257 ; 36, p. 394 ; $40: 821$. G.M. 33:131. Mn. 4:17. A.G. 17:243. Gng. $4: 305 ; 6: 161 .-$

2575. Trillium erectum ( $\times 1 / 2$ ).

Sporting forms are not uncommon. Sometimes forms occur with petiolate lvs. A.G. J892:206. T. grandiflorum is the best and handsomest species for cultivation.
8. ovatum, Pursh. Much like T. grandiflorum, bnt the petals narrow-lanceolate or narrow ovate, the sepals usually nearly as long as the petals: plants I ft. or less high: lvs. ovate to nearly orbicular, often somewhat rhombic. Calif. to B. C.-The Pacific coast representative of T. grandiflorum.
9. eréctum, Linn. (T. péndulum, Willd. T. purpìreum, Kinn. T. fג́tidum, Salisb.). Figs. 2575, 2576. Stout, 1 ft . or more high: 1 vs . broadly rhombic-ovate: pedicel usually bent over or inclined but sometimes erect: fls. brown-purple to greenish purple, the petals usually about I in. long, ovate to lanceolate, not much if any exceeding the sepals. Nora Scotia to Manitoba, N Car, and Mo. B.M.470. L.B.C. 19:1838. F.S. 10:990. Mn. 2:49. G.C. I1. 19:605. The fls. of T. erectum are ill-smelling.

Var. alhum, Lodd., has white fls. B.M. 1027. L.B.C. 19:1850.

Var. viridiflorum, Hook. Fls, greenish. B.M. 3250. Not known to be in the trade.
cc. Pedicel generally not exceeding and usually shorter than the flower.

## D. F'l. declinate under the lis.

10. cérnuum, Linn. Plant Ift. or more high: 1vs. very broadly rhombic-ovate, nearly or quite sessile: fls. white, the petals 1 in . or less long, ovate-lanceolate, wide-spreading or retlexed, undulate, equaling or exceeding the sepals. Newfoundland to Ga. and Mo. B.M. 954. Mn. 10:49.
11. styldsum, Nntt. (T. nervosum and T. Cátesbaci, EII.). Slender, I2-18 in. high: lvs. ovate-lanceolate, narrow at each end, short-stalked: fls, rose-color, the petals oblong, obtuse or acute, curved, undulate, sometimes 2 in. long. N. C. to Fla.

## DD. Flow'er erect.

12. pusillum, Michx. Small, usually not 1 ft . high: lvs. lanceolate or oblong, obtuse, sessile: ths. pale thesh color, less than 1 in . long, on a short erect pedicel, the petals lanceolate and exceeding the obtuse sepals.
T. Goveniànum, Wall. A species of temperate Himalaya, little known and described by Hooker as follows: "Lvs, shortly petioled, ovate or ovate-cordate, acute: sepals subequal, narrowly linear." - T. obovàtum, Pursh. Founded on a Canadian plant, which has been referred to T. erectum. Maximowicz keeps it distinct, bowever, extending its range to Kamtschatka and Japan. It is the T, ereetum, var. Japonicum, Gray. According to Watson, the Japanese plant "is distinguished by a somewhat produced connective [between the an-ther-cells $\int$ and very short stigmas." Maximowicz says that the plant differs from T. erectum in the petals being broader and more obtuse and longer than the calyx, the fls, nodding from the first, and the lrs. broader than long, sessile, not attenuste at the base.-T. Smallii, Maxim. One of the T. erectum series (T. ereetum, var. Japonicum flore pleno, Gray), of Japan. Fls. smaller than those of T. ohovatum (2 in. across), deep tawny red, the petals not exceeding the sepals, nearly orbicular or obovate,-T. Tschonóskii, Maxim. About $1 \mathrm{ft} . \mathrm{tall}$ : lvs. sessile, broad-ovate or orbicular, somewhat rhombic, acuminate: fls. dull purple, 1 in . or less across, the petals ohlonglanceolate. According to Hooker, this differs from T. erectum chiefly in the longer filaments." Himalaya to Japan.
L. H. B.

TRIOSTEUM (name shortened by Linnaus from Triosteospermum, which is from tireek for three bony seeds). Cuprifoliacue. Feverwort. Horse Gentian. A genus of 3 species of coarse perennial herbs, of which 2 are American and 1 Himalayan. Stems simple: lvs. rather large, pinnately veined, entire or sinuate: fls. dull-colored, sessile, solitary or in small clusters in the leaf-axils, followed by orange or reddish fruits.
perfoliàtum, Linn. Stem 2-4 ft. high, stout: 1 ss . ovate, shortly acmminate, narrowed below into conuateperfoliate or simply connate base: corolla dull brownpnrple. Rich soil, New England and Canada to III, and Ala. B.B. 3:234. -1 is oceasionally offered by collectors. It is a weedy plant of rery easy cultivation.

F. W. Barclay.

TRIPHASIA (triple; alluding to the make-up of the flowers). Rutàcec. A small spiny shrub grown for hedges and for ornament, and sometimes for its small berries, which are used for preserves: Ivs, alternate, sessile, dark, evergreen, trifoliolate, with small ovate lateral leaflets and much larger obovate central leaflet: thorns slender, abont $1 / 2 \mathrm{in}$. long, one or two in the axil of each leaf: fls. white, about $1 / 2$ in. long, solitary, or in 3 -fld. cymes, axillary; calyx cupulate, 3-4-lobed; petals 3-4, linearoblong, free, imhricate; stamens 6 , free, inserted around a fleshy disk: ovary ovoid, 3 -loculed: fr. a small 1-3-seeded berry: seeds oblong, exalbnminous, immersed in mucilage; testa coriaceous, embryo often with unequal plano-convex cotyledons. Only one species.

2576. Trillium erectum.
aurantiola, Lour. ( $T$. tritolidta, DC.). Bergamot Lime or Lisme Berry. Fig. 2577. A glabrons spiny shrab with straggling evergreen branches and leaves. Hindostan.-Cultivated in many tropical countries and
in greenhouses. Produces au abundance of elliptical or nearly globular, gland-dotted red berries about $3 / 8-1 / 2 \mathrm{in}$. across. They are sweet and agreeable and are said to be delicious when preserved. In trade catalogues the

2577. Triphasia aurantiola ( $\times 1 / 2$ ).
names Triphasia aurantiola and $T$. trifoliata are sometimes erroneously applied to the hardy trifoliolate orange (Citrus lrifoliata). In the U. S., little known except in S. Fla. It withstands some frost.
H. J. Webber.

TRIPSACUM (Greek, tribo, to rub or thresi; probably alluding to the ease with which the fertile spike can be broken up). Graminew. Species 2 or 3, of the warmer parts of North America, one extending north to central U. S. and in many places furnishing considerable native fodder. Fls, monocious, in the same spike, the staminate above; spikes terminal and axillary; staminate spikelets 2 -fld., in pairs at each joint; pistillate single, l-fld., imbedded in each joint of the rachis, so that the smooth cartilaginous axis and the outer glume form a nearly cylindrical mass. At maturity the pistillate spikes separate into the joints.
dactyloides, Linn. ( $T$. violdceum and T. Dáctylis of the trade). Gama Grass. Sesame Grass. Culms in bunches, 4-7 ft.: spikelets 2-3 at summit and often single from the upper axils. Nloist soil, Conn., 1ll., Kans. and southward. - A wild fodder grass, sometimes cultivated for the same purpose and also in gardens as a curiosity. Raised from seed, or more certainly from cuttings of the rootstocks.
A. S. Hitchcock.

TRISTAGMA (Greek, three drops; alluding to the three nectar glands of the ovary). Including Stephanolirion. Lilideer. A geuus of 3 species of bulbous plants from Chile. Radical lvs. few, narrowly linear; scape naked, bearing rather nimerous salver-shaped pedicellate fis. in an umbel: perianth-tube cylindrical, sometimes with a crown in the throat; lohes 6, spreading, nearly equal; stamens 6: ovary sessile, 3-loculed, ovoid. Fall-blooming bulbs.
nivàle, Poepp. (Milla nivalis, Baker). Lvs. 6-9 in. long, about 2 lines wide; scape slender, about 1 ft . long: fls. 1 in. long, 2-8 in an umbel, the segments linear and greenish; crown none.-Offered by Dutch bulh growers.
T. narcissoides, Benth. \& Hook., does not appear to be in the

Amer. trade. It is 1 ft , or more high, with short narrow-linear lvs., and white fls. bearing a bright orange nareissus. like crown of 3-6 broad unequal more or less connate scales.
F. W. Barclay.

TRISTANIA (in honor of Jules M. C. Tristan, 17761861, a French botanist). Myrtacee. A small genus of subtropical evergreen Australasian trees or small shrubs. Lvs. alternate or rarely opposite, somewhat whorled: tls. axillary, pedunculate, cymose, often fragrant; bracts obovate or caducous; calyx-tube turbin-ate-campanulate, lobes 5 ; petals 5 , spreading; stamens numerous, united in bundles opposite the petals: capsule 3-loculed, many-seeded, partly exserted or inclosed: seeds numerous, wingless, usually lnear-cuneate. Cultirated as greenhouse shrubs in N. Europe; bardy in Calif, north to San Francisco, also in Fla. Propagated by balf-ripened cuttings in sand under glass, or by seeds.
conférta, R. Br. (Lophostèmon arboréscens, Schott.). Brisbane Box. Fig. 2578. Au umbrageous tree attaining 150 ft .: young shoots and calyx hoary-pubescent: lvs. 3-6 in. long, ovate-lanceolate, glabrous, usually crowded at the ends of the branches and apparently verticillate: fls. mostly on the branches well below the lvs.; petals about $1 / 4 \mathrm{in}$. long, white and spotted, fringed. Queeuslaud. B.R. $22: 1839$ (as T. macrophylla). - A handsome evergreen shade tree, valuable for avenues in hot, dry regions, as it withstands great drought; it also produces timber valued for strength and durahility. Much growu in New South Wales as a boulevard tree. Hardy in middle California, withstanding an exceptional temperature of $26^{\circ}$ Fabr. at Berkeley.

Joseph Burtt Davy.
TRITELEIA (three and complete; referring to the 3 merous fls.). Lilidcea. Triteleia has been referred to Milla and Brodima; but when the group is restricted to the South American species, it seems to be advisable to keep it distinct. In Brodima proper the pedicels are articulated at the apex; in Milla and Triteleia they are not articulated. In Milla the stameus are inserted in one series in the throat of the perianth; in Triteleia they are distinctly in two series in the tube of the perianth. See Brodica and Milla.
About 16 Triteleias are known (see Baker, G.C. III. $20, \mathrm{p} .459$ ). These are of two series, -those with peri-anth-tube usually as long as the segments, and those with tube shorter than segments. To the former section belongs tbe common $T$. uniflora, the only species in general cultivation. The species are native to the Andes and Argentina as far east as Buenos Ayres. They are all low grass-leaved bulbous plants, hardy or

2578. Tristania conferta ( $\times 1 / 8$ ).
half-hardy, useful for planting in the border or for spring blooming in pots. Sometimes the odor is unpleasant.
uniflòra, Lindl. (Milla unifldra, Grah. Brodiča uni. flora, Baker). SpRing Stak-FLower. Fig. 2579. Lva.
narrow-linear, I ft. or less long: scapes 8 in. or less tall, bearing a bract-like spathe towards the top: fl. 1 (rarely 2), $1-11 / 2$ in. across, pale lilac or pale blue, with pointed segments violet-streaked through the center. Argentina. B.R. 23:1921. B.M. 3327. R.H. 1859 , pp. 350, 353. Gng. 2:59.-Hardy in most of the northern states, although it does not persist long. Frown chiefly as a pot-plant for spring bloom. Var. cærulea, Hort., has porcelain-blue flowers. There are other horticultural forms. Tr. violacea, with "delicate violet flowers," is prohably a form of this species rather than the $T$. viotacea, Kunth, a Chilean species.
L. H. B.

TRITHRINAX (apparently triple Thrinax; application not ohvious). Palmàcere. Four species of South American fan palms, one of which was offered for cult. in Fla, in 1889 and is now advertised in southern California. The genus belongs to the Corypha tribe and is distinguished from allied genera chiefly by the following characters: tls. hermaphrodite; petals imbricate; filaments connate into a tube: carpels distinct; styles long, distinct, terminal in fruit.
T. Brasiliensis is a little-known palm. It seems to have been confused in the trade with Thrinax Chuco, which is referred in this work to Acanthorhiza Chuco. The leaf-segments of the former are bifid; of the latter apparently not. André says the species described below is unique by reason of its sheaths at the base of the leaves. These, he says, "are composed of fibers which are at first parallel and longitudinal, then obliquely intercrossed and finally plaited at right angles like the mats of pandanus in which the coffee of the Antilles and Bourhon is exported. At the summit these narrow strips unite and form a series of very long, robust, recurved spines which are evidently designed to protect the fls, and fruits against climbing animals."
Brasiliénsis, Mart. Trunk slender, 6-10 ft. high, 2-3 in. thick: leaf-segments 22-27, linear, free for twothirds their whole length, bifid. Brazil. 1.H. 22:202.
W. M.

TRITICUM (old Latin name for wheat). Graminea. The genus as now limited comprises two sections, Agilops, with 12 species of southern Europe and Asia, one of which is thought by some to be the original of our cultivated wheats; and Triticum proper, which includes our cultivated wheats and spelts, that are referred by Hackel to 3 species. Annual grasses with flowers in a terminal spike. Spikelets $2-5$-fld. placed flat-wise, singly on opposite sides of a zigzag rachis; empty glumes ovate, 3-many-nersed, these and the fl . glumes more or less awned: grain free. The three species of our cultivated wheats are:
monocóccum, Limn. One-Grained Wheat. Spikes compact, the joints readily separating at maturity; spikelets with one awn and usnally maturing but one fruit.-The wild form occurs in southern Europe. Cultivated from prehistoric times but now only to a limited extent, and mostly for mush and "cracked wheat," and for fodder.
Polonicum, Linn. Polish Wheat. Spikes very large, compressed, mostly blue-green.-Original form nnknown. It is thought to be a true species because it rarely produces fertile crosses with $T$. sativum, as is also the case with $T$. monococcum, while the races of T. saticum among themselves produce fertile crosses. Cultivated in Spain, but not extensively elsewhere.
satlvum, Lain. Wheat and Spelt. Hackel divides the numerous varieties into 3 races: $(a)$ Spelts ( $T$, spéttu, Linn.). Spikes loose, 4 -sided: rachis articulate at maturity. (This race and the next are easily distinguished by the fact that the grain does not fall out when threshed.) One of the oldest of the cultivated grains, the culture of which has decreased till now it is grown only to a limited extent in a few countries in southern Europe. (b) Emirers (T. dicóccum, Schrank). Spike very dense, laterally compressed, rachis articulate at maturity. This species has a history similar to Spelt and its cultivation is now confined to certain countries of S. Europe, where it is used chiefly for mush and in making starch. Both of these races are being tested in this country by the Department of Ag.
riculture, and they may prove valuahle in the drier regions. (c) Wheats. Rachis not articulate at maturity. Grain easily falling out when threshed. There are 4 more or less well-marked sul-races. (1) English Wheat (T. túrgidum, Linu.). Empty glumes sharply

2579. Triteleia uniflora ( $\times 1 / 4$ ),
keeled at base; grain broadly truncate above; leaves usually velvety; Hour poor in gluten. To this belong the Miracle or Egiptian Wheats ( $T$. compositum, Linu.), having branched spikes, which originated as a sport. (2) Hard or Flint Wheats, Macaroni Wheats (T. dicrem, Desf.). Empty glumes sharply keeled at base; grain narrow and tapering, very hard; awns long and bristly like barley, in some varieties black. Cultivated in Mediterranean countries, especially for making macaroni and similar products, and in Russia, where it is used for making bread, when it is mised with 30-25 per cent of soft red wheat. (3) Dwarf and Hedgehog Wheats. Empty glumes kceled only in upper half. Spikes short and dense, only 3-1 times longer than broad: culms rigid. Grown in mountainous regions of Europe, Chile and Abyssinia. The awned kinds are called Hedgehog wheat. (4) Common Wheat ( $T$. vulgàre, Vill.). Glumes as in preceding, but spikes longer and looser. There are many varicties grown in this country, - some naked or awnless ("smooth"), others awned or bearded, some with glumes smooth, others with glumes pubescent ("velvet chaff"). Spring wheats are planted in the spring and winter wheats in the fall, the former group of varieties being grown in the more northerly regions.
A. S. Нitcheock.

## TRITOMA. See Kniphofia.

TRITONIA (name explained as follows by Ker-Gawler, its author: "Name derived from Triton, in the signihcation of a vaue or weathercock; in allusion to the variable direction in the stamens of the different species"). Including Montbrètia. Iriddicece. Blazing Star. A genus of South African bulhs (plants really cormous), allied to Crocosmia, Acidanthera, Sparaxis and Gladiolus. Baker admits 31 species (Handbook of the Irideæ, 1892). Few of them are in general cultivation, although many of the species have been introduced at one time or another. Those of the Montbretiaclass are showy, hardy summer-flowering 'bnlbs, to be handled like Gladioli; or they may be left in the ground perma.
nently if given protection of mulch in cold climates. As far north as New York and Mass., however, they are usually hest wintered in damp (not wet) earth indoors. The best known kinds are T. erocosmoflora and T. Pottsii. Most of the Latin names in catalogues belong to these, as sulphurea, Tigridia pyramidalis,

ing limb of ohovate or oblong, nearly equal segments. The stamens are 3, inserted in the perianth-tube, with mostly versatile anthers and filiform filaments. The pistil has a 3loculed ovary, filiform 3hranched style, ripening into a 3 -valved capsule.
A. Perianth-segments oborate.
crocàta, Ker-Gawl. Slender, simple or branched from near the base, bearing few tls. in loose 1 -sided racemes: f . about 2 in . across, tawny yellow or orange-red, the stamens one-third the length of the perianth-limb. Cape Colony. B.M. 184 (as Iria crocata). ( tn . 54:1181.-Var, miniata, Baker (T. miniata, Ker-Gawl.), has light red Als. B.M. 609. There are color varieties, as purpurea, coccinea, aurantiaca. These plants are usually treated as greenhouse bulbs in the North.

## AA. Perianth-segments oblong.

ròsea, Klatt. Tall and branched, with short linear lvs. and loose 6-15-fld. racemes: fl. bright red, with oblong segments (the three lower ones yellow blotched at the base) as long as the tube and anthers just protruding from the tuhe. Cape Colony. B.M. 7280 . - Can be left in the open as far north as Mass., if well protected, but are usually safer if taken up.

Póttsii, Benth. (Montbrètia Pótsii, Baker). Fig. 2580. Strong, branching plant 2-4 ft. tall, with several lax ra-
cemes, and few or several firm narrow lvs.: H. abont 1 in . long, bright yellow tinged red, the tube broadly funnelform and twice longer than the oblong unequal ascending segments, the stamens about half the height of the limb. Natal, Transraal, etc. B.M. 6722. G.C. 1II. 7:301, showing how the corms form one above the other.
crocosmæflora, Lemolite ( $T$. Pottsii $\times$ pollen of Crocosmia auren [Fig. 58:2, Vol. 1]). Fig. 2581. Slender, much hranching, erest plant $3-4 \mathrm{ft}$. high, with several or many sword-shaped lve., and loose, more or less distichons racemes: fls, 2 in, arross, orange-crimson, with a slender curved tube nearly or quite equaling the oblong spreading segments. R.H. 1882:124. Gn. 25, p. 363; 31:598. G.M. 36:484. - Crocosma curea was introduced (into England) in 1847, and Tritomia Pottsii (into Seotland) in 1877 by G. H. Potts. Victor Lemoine, Nancy, France, hybridized the two, and the product, T. crocosmar flora, bloomed in 1880. This hybrid is now the most popular of Tritonias (or Montbretias).
T. aùrea, Pappe. See Crocosmia aurea. $-T$. crispa, KerGawl. Fl. whitish or pale pink, with oblong obtuse segments, and with erisped lvs. B.M. 678.-T. deusta, KerGawl. Differs from T. crocata in having a purpleblack bloteh on the claw of the 3 outer segments. B.M. 622.-T. flava, Ker-Gawl. Fls. bright yellow, the segments oblong and the 3 lower ones with a eallus in the throat: lvs, very short. B.R. 9:747.T. hyalina, Baker. Differs from T', crocata in having the perianth-segments narrowed at the lower part into a claw with liyaline margin. B.M. 704, as T. fenestralis. $-T$, lineata, Ker-Gawl. Fls. white or pink, with short oblong segments and protruding anthers, of the shape of gladiolns Howers. B. M. 487 (as Gladiohns lineatus). $-T$. scillèris, Baker. small and slender: fls, pink, with wide-flaring narrow segments, ixia-like. B.M. 629 (as 1xia polyrow segments, ixia-like. B.M.
stechya),-T. securigera, Ker-Gawl. Lvs, short: tls. red or copper-colored, the 3 lower segments with a callus on the claw. B.M. 383 (as Gladiolns secnriger).-T. undutata. Baker. Lvs. short and narrow, much crisped: Als, pink, with ohlong equal segments. B.M1. 599 (as Ixia erispa).-T. viridis Ker Gawl. Livs plame or crisped, linear: fis, green, with nearly equal oblanceolate seqments. B.M. $1275-T$. Wilsoni, Baker. Lvs. very narrow linear; racemes simple or forked, lax, few-fld.: fls, white, tinged with purple, the segments obovate-cuspidate.

## L. H. B.

TROLLIUS (old German trof, something round; in allusion to the shape of the flowers.) Ranunculàcea. Globe Flower. A group of neat, hardy, berbaceous perennials of about 10 species, mostly found in marshy places, of the north temperate zone. Roots fibrous, thickened: 1vs. palmately divided or lobed: fls. large, solitary, yellowish or purplish; petals $\overline{5}$ to many, small, unguiculate, with a nectariferons pit at the base of the blade: stamens many: carpels 5 to many, sessile, many-ovuled: follicles in a head. Plants of this genus grow freely in a mixture of sazdy loam and peat, and in rather damp situations. They may be increased either by seeds, or by diriding the old plants; but the young plants grow slowly at first, and will not flower before the second season from seed.

> A. True petals shorter than the stamens.
> B. Plant with truestem, $1 / 2$ to 2 ft .high...1. laxus
> BB. Plant with scapes or scape-like stems seldom over 3 or $4 i n$. high........2. acaulis
A. True petals longer than the stamens.
B. Le's. only b-parted: lfts. somewhat lobed, cleft and toothed: sejuls
herdly spreading. ...................
BB. Lis, smaller, bronze-green; lfts. BB. more finely lobed, cleft and toothed: sepals spreading

Europæus

Asiaticus
láxus, Salisb. Slender, weak stems, $1 / 2-2 \mathrm{ft}$. long, somewhat ascending: radical and lower stem lvs. longor short-petioled: all the lvs. 5 -7-parted; lfts. cuneate and much eleft and toothed: Als, usually solitary, 1 to 2 in. across; sepals $5-7$, entire or toothed at the end, more spreading than the other species; petals many, much shorter than the stamens: follicles $1 / 4 \mathrm{in}$. long, straight
neak one-fourth as long: head of fruit $3 / 4 \mathrm{in}$. across. Bogs and damp places, Mich. to New Eng. and Del. May-July or Aug. B.M. 1988, B.C. 56 (both as $T$. Americanus).
Var. albiflorus, Gray. (T. Americimus, Hook.) Much like the type but usually lower, more slender: lfts. usually 5: fls. pale or white: petals nearly equaling the stamens. Mountain tops, Colo., northward and westward.
acaulis, Lindl. Plant only 3 or 4 in . high: Jvs, as in the above, or ouly 5 -parted: Hs. lemou-yellow, spreading, on stems hardly reaching from the ground; sepals 9 . nearly laneeolate, aeute, sometimes toothed; petals spatulate, shorter than the stamens. Northern India. B.R. 29:32.

Europìus, Linn. (T. globdsus, Lam.). Stems erect, 15 in . or more high, often branching; lower lvs. petioled, others sessile; lfts, only 5 -parted, lobed, cleft and toothed, those of the root-leaves on short petioles; fls. of a lemon-yellow color, solitary or in twos, I-2 in. across, globular in form; sepals 10-15, ovate; petals spatulate, often longer than tbe stamens: fr. much as in 'T'. laxus. Wet upland meadows of N. En. May-July. Gn. 40:816. - Var. Loddigesii, Hort., has deep yellow fls.

Asiáticus, Linn. Fig. 2582. Plant much like $T$. Europuz, often taller, the smaller bronze-green Ivs. more finely lobed and cleft. fls. a rich orange eolor with sepals spreading. May. Siberia. B.M. 235. - The blossoms of this are well suited for eut-flower purposes. The plants thrive best and produce richest colors if partially exposed to the sun. T. gigantèus, found in garden lists, is a very tall form of this species. T. Juponicus, Hort., with large orange fls, in early spring, is by some referred to this species. K. C. Davis.

2582. Trollius Asiaticus ( $\times 1 / 2$ ),

TROP座OLUM (from freek word for trophy: the leaves are shield-shaped and the flowers helmet-shaped). Geranidece. Nasturtius about 40 weeies of soft-
growing herbs, mostly elimbing, of South America, chiefly of the cooler parts of Peruand Chile. They are grown for their showy odd flowers. The common species, T. minus and T. majus, are also grown for their young pods and seeds, which are made into pickles. The peppery-tasting leaves are sometimes used like cress, in salads, whence the name "Indian cress" in England. In Ameriea this use of the plant is little known. Certain kinds, particularly T. tuberocum, pro-
duce edible subterranean tubers. The flowers of Tropæolum are very irregular: sepals 5, connate at the base, the posterior one produced into a long slender spur: petals 5 (sometimes fewer by abortion), usually narrowed into distinct claws, the two upper ones smaller or otherwise dissimilar and inserted in the mouth of the spur; stamens 8 , unequal, with deelined usually curving filaments; pistil with one style and a 3-lohel ovary, whicb ripens into 3 -seeded indehiscent earpels (the earpels constitute the "seed" of commerce). The flower. yellow or orange, rarely blue or purleaves are alteritate and usually though often deeply lobed or even usually peltate; stipules none or very species climb by means of the coil-

2583.<br>Tropxolum tricolorum. ( $\times 2 / 3$.)位erature on Tropæolum, see F. Bucheuau in Engler's Bot. Jahrb. 26, p. 580.

Tropxohums thrive in any warm, sunny, tairly moist place. The tops are tender to frost. For early effects, seeds may be started indoors in pots or boxes. The common elimbing species are T. majus and T. Lobbianum, both of which are very useful for window boxes, balconies, for covering banks and walls, and for growing amongst shrubbery. The common dwarf species, T. minus, is earlier and usually more Horiferous, and is very useful for the front row in the border. $T$. peregrinum, the Canary-bird Flower, is grown either indoors or in the open. Probably most species are pereunial. Many of them are tuberous and withstand some frost at the root; hut the half-hardy species are little known in this country.

## INDEX.

atropurptreum, 12. atrosanguineum, 12 azureum, 1.
brachyceras, 4.
Canariense. 9
fimbriatum, 11.

Jarrattii, 3.
Leichthini, 8. Lobbianum, 11. majus, 12. minus, 13. pentaphyllam, 6.
peregrinum, 9.
polyphyllam, 7. speciosum, 5.
tricolor, 2.
tricolorum, 2.
tuberosum, 10.

## A. Flowers biue.

1. azùreum, Miers. Very slender glasshouse climber: lvs. peltate, 5 -parted nearly or quite to the base, into narrow-obovate or oblaneeolate divisions: fls. small, the c:alyx and short spur green, the wide-spreading corolla azure-blue, the petals 2 -lobed or emarginate. Chile.
B.R. 28:65. R.H. 1843:300. F.S. 2:110. P.M. 9:247. R.B. 20:157. Var. grandiflorum, Hort., has larger tls. F.S. 11:1160. 1.H. 3:85,

## AA. Fls. red or yellou.

B. Petals small, protruding from the constricted mouth of the caly $x$.
2. tricolorum, Sweet (T. tricolor, Lindl.). Fig. 2583. Peremnial from a fleshy or tuberous root, half-hardy, climbing: Ivs. peltate, orbicular, divided into 6 oblong villous leaflets: Hs, about 1 in . long, somewhat cornu-copia-shaped, the calyx being the conspicnous part; main part of the calyx vermilion, the short lobes purplish, the small petals yellow. Chile. B.M. 3169. B.R. 23:1935. F.S. 4:369. P.M. 2:123. - Very choice half hardy plant and probably the best known in this conntry of the tuberons-rooted kinds. Usually grown indoors. Its growth is rery delicate.
3. Járrattii, Paxt. Mueh like T. tricolorum, bnt more robust, the fls. larger, more brilliant in color, the upper part of the calyx with bright spots of yellow, the two upper petals penciled with brown. Chile. P.M. 5:29.

BB. Petals conspiczots and mostly wide-spreading.
C. Spur not as long as the calyx-lobes.
4. brachyceras, Hook. \& Arm. A rery slender climber, resembling $T$. tricolorum in habit: lvs, peltate, nearly orbicular, deeply parted into 6 or 7 oblong or oborate obtuse lohes: fls. small, on sbort pedicels, the calyx green and very short-spurred, the corolla with spreading yellow petals, Chile. B.M. 3851. B.R. 23:1926. F.S. 4:368. P.M. 4:55.-Half-hardy perennial.

> cc. Spur much longer than calyx-lobes.
D. Lis. parted nearly or quite to the base, or distinctly compound.

## E. Blossoms essentially red.

5. epeciooum, Poepp. \& Endl. Half-hardy slender climbing vine: Ivs peltate at the base, short-petioled, parted to the base into 6 obovate-oblong obtuse dirisions or leaflets: pedicels rery slender, red, tls. sbaped much like tbose of $T$. majus, but smaller, vermilion-red,

6. Tropazolum peregrinum-the Canary-bird Flower $(\times 1 / 3)$.
showy. Chile. B.M. 4323. F.S. 3:281. P.M1. 14:173. Gn. 37, pp. 253, 545.-A perennial flexhy-rooted plant, hardy in England.

7. Tropxolum majus, the common Climbing Nasturtium. ( $\times 1 / 8$.)
8. pentaphýllum, Lam. Slender climber, the glabrous colored stems arising from a tuherons root: Ivs. divided to the base into 5 oblong or obovate segments or leatlets: fls. small (about $1 \frac{1}{2}$ in. long), the large red spur being the conspicuous part, the lobes green, and the 2 small petals red. Argentina. B.M. 3190. B.H. 22:73. - A half-bardy species, showy becanse of the great number of bright small flowers.

## EE. Blossoms yellow.

7. polyphyllum, Cav. Perennial, half-hardy: stem sucenlent, prostrate or climbing: lvs. peltate, orbicular, eut beyond the center into $7-9$ narrow divisions: tls. much like T. majus in shape, but smaller; spur slender but rather short, the calyx-lobes triangular; petals unguicnlate, fellow, wavy or emarginate, the 2 upper ones streaked with red. Chile. B.M. 4042. P.M. 10:175. F.S. $20: 2066$. G.C. II. $20: 241$. Gı. 45, p. 158.-It is a tuberous-rooted species, the stem naturally prostrate.
8. Lelchtlini, Hort. Hybrid of T. polyphyllum and T. edule (see suppl. list), raised by Max Leichtlin, Baden-Baden. Much like T'. polyphyllum, bnt the fls. of brighter color, and the 1Fs. larger.

DD. Lrs. lobed, the divisions usually not extending mueh, if any, beyond the middle, and the siuuses usually broad.

## E. Petals fringed.

9. peregrinum, Linn. (T. Canariênse, Hort.). CA-nary-bird Flower. Fig. 2584. Annual, tall-climbing; glabrons: lvs, peltate near the margin, cordate-orbicnlar, divided to about the middle into 5 lobes, which are mostly apiculate: fis, canary-yellow, old and very irregular; spur green, hooked; 2 upper petals erect and large, obovate-clawed, much fringed: 3 lower petals small and narrow and ciliate. Colombia, B.M. 1351. B.R. 9:718.-An excellent quick-growing vine, althongh the fls. can scarcely be called showy.

## EE. Petals entire.

10. tuberdsum, Ruiz. \& Pav. Root producing a pyrlform irregular tuber $2-3 \mathrm{in}$. long: stem climbing, glabrons; lvs, peltate near the base, cordate-orbicular, 5 lobed nearly or quite to the middle: fls, rather small, the calyx and long spur red, the petals yeliow, small and nearly erect and little exceeding the calyx. Peru. B.M. 3714. F.S. 5:452. P.M. 5:49. R.H. 1853:341 (tubers). J.H. 111. $30: 385$. - Plant stands some frost. In Peru, the tubers are eaten, and the plant is sometimes cult. in Europe for the tubers. It appears in the Amer. catalogues of European dealers. The tubers are usually boiled.

## DDD. Lus. entire or only undulate.

## E. Plant pilose.

11. Lobhiànum, Veitch. Aunual, climbing, hairy all over except the under parts of the 1 Fs . and the petals: lvs. very long-stalked, peltate, nearly orbicular, undulate and with points on the margin: fls, large, longspurred, orange-red, the two upper petals large, broat and entire, the three lower ones small and clawed and coarsely toothed and also fringed on the claws. Colombia. B.M. 4097. F.S. 2:67. P.M. $11: 271$. Var. fimbriatum, Hort., has all the petals toothed or fringed. R.H. 1856:101.-Seldom seen in its pure state.

## eE. Plant glabrous.

12. màjus, Linn. Figs. 2585, 2586. Strong-growing, somewhat succulent climbing annual: lvs. peltate, nearly orbicular and undulate-angled: fls. large, mostly in shades of yellow or orange, with straight spur, the 2 upper petals entire or undulate (not apiculate), the 3 lower ones narrower and friuges on the claws. Peru. B. M. 23:3375 (var. atrosanguinerm). F.S. 12:1286 (var. atropurpureum namem). P.M. 1:176 (var. utrosanguineиm), There are double-fld. forms. G.C. I1. 11:665. These appear to have been introduced into this country about 1885 or 6 . There are also dwarf forms. - This species has been in cult. in Europe since 1684. It is the foundation of the common climbing Nastartiums. Some of these garden forms are probably the offspring of hybridization witla $T$. Lobbianum

13. Tropzolum mafus.
14. minus, Linn. Fig. 2587. Dwarf annual, not elimbIng, smaller in all its parts: liss, apiculate at the ends of the veins: fls. with narrow apiculate petals. Peru.
B.M. 98. - Very likely blended with $\Gamma$. majus by hybridl. zation, in garden forms.
T. digitètum, Karst, Climber, with root fibrons: lvs, peltate, 5-7-lobed: fls. yellow, 1 in . in diam., the spur long and red, the petals fimbriate. Venczuela. $-T$. édule, Paxt. Climber; lvs, orbieular, with 5 or 6 narrow lfts. ; fls. in shape like those of $T$,

15. Flower of Tropaolum minus ( $\times 1 / 3$ ).
One of the lower petals shown at $a$. majus, but smaller, yellow. Produces tuberous edible roots. Chile. P.M. 9:127.-" $T$, hedereefolia" is offered by A. Blauc in 1901.-T. Lindeni, G. Wall. Besutiful climber with large, peltate, undulate-lobed jvs. that are purplish beneath and beantifully veined with wbite above: Hs, on long pedicels, the long tabe red and the calyx-lobes green. Colombia. 1.H. 41:267. L. H. B.

TROPICAL FRUITS. Travelers hailing from the temperate zone are generally surprised and delighted, at first, with the fruits they find in tropical markets. This is due to the fact that such things are for the most part new to them. They taste everything they see and not infrequently publish their experieuces in language where praise is not stinted. Some, on the other hand, view nearly every tropical fruit with prejudice and disdain and caunot be persuaded to taste, and if eventually persuaded, only to coudemn with aversion. Under such circumstances it is not to be wondered at that in some quarters tropieal fruits should be held in bigh esteem, and in otbers be considered of doubtful value. That good tropical fruits do really exist cannot he disputed, although on careful examination they are found to be few in number, and some kinds far from common even in the local markets. True tropical fruits may be described as those requiring a temperature from $16^{\circ}$ to $32^{\circ}$ centigrade or $60^{\circ}$ to $90^{\circ}$ Fahr.
Aruong the subtropical fruits there are some which appear to thrive in the tropics as well as in their native place, but whether this is really so may be questioned. Any differences in the conditions of the fruits on reaching the ripening stage will account for difficulties often met with in preparing them for export. Such is the orange, for instance; it thrives well under tropical conditions and gives (when the class of plant grown bas been well selected) fruit excellent in appearance, large in size, and possessing a fine flavor. If such fruit is grown for export, it must of necessity be packed at seasons of the year when our tropical atmosphere is charged with humidity to within 15 per cent of the saturation point, and this fact constitutes an importaut difficulty often overlooked by beginners in the export trade. Such difficulties can, however, be overcome by careful methods of packing and preparation, and by selecting fruit which ripens in the "dry season" when packing facilities are as good as those of a temperate climate. It is very doubtful, however, whether subtropical fruits grown in a humid climate can ever equal in their keeping qualities those produced in a lower temperature and drier climate. It has been proved that fruit can be safely transported to long distances if properly handled, but the treatment to be undergone differs considerably from that which the fruits of temperate climates require. Many tropical fruits are nothing more than what should be called wayside morsels, that is to say, although edible, they are seldom of a quality suitable for dessert, and are consumed mostly by children and wayfarers. By selection and cross-breeding these same fruits are being much improved, and strains will probably be produced which in the future will be largely sought for, as there are good indications of success in varieties which have already appeared. This is work which must be systematically adopted to sustain a regular export trade in tropical fruits, and a good start has been made from several points

## TROPICAL FRU1TS

The fact is that tropieal fruits with bnt few exceptions, have until very reeently been almost exclusively grown from seed, with the natural result that variety in the quality, form, size, anit color of the fruit is the nniversal rule; and although there are seedling strains of wellmarked types, buyers know that no reliance can in the main be placed mpon scenring fruits of uniform quality and flavor. In the case of the orange, the class of fruit raistd in some districts is good as a whole, but in others the produce is of a low grade and even in the bent districts iuferior fruit is allowed to develop whicb often spoils the better samples. This is being rapidly remedied by the planting of grafted kinds. The same variation ohtains with all kinds of fruit without exception. In no fruit is this feature more clearly apparent than in the mango, Mangifera Indica, Fig. 2589. Kinds exist which are

2588. Flower of the Rose Apple or Jambos, one of the minor Tropical Fruits. Natnral size. (See p. 557. )
fit for the table of a king, but at the same time there are fruits grown which the poorest beggar would refuse. The variety is almost endless, and little dependence ean be placed upon quality, except those produced by trees grafted from seleeted kinuls. These are now becoming more common, but as yet there are no large orchards planted with selected kinds, and consequently no regnlarity can as yet be expected in the quality and character of the fruit available for export. The mango, like the orange, easily yields to grafting; it grows rapidly and there is no reason why large quantities of this excellent fruit should not be placed upon the markets. The botanical departments of the British colonies, and elsewhere, have many selected binds under cultivation and great effort is being made to induee the people to plant seleeted kinds, instead of the worthless seedlings. Minngoes have been shipped with suceess from the West Indies, and there would appear to be nothing of importance to prevent their being regularly placed upon the markets of Europe and America. All that is needed is to select fine strains, known both for their keeping qualities and good flavor, and to grow them in quantities that would pay. The mango, as a rule, takes many years to establish if grown from seerl: but if grafted plants are cultivated, fruit is ohtained in four or five
years. The Julie, Divine, No. 11 Martin, Malda, Gordon, Peters, Père Louis, and Mango d'Or are varipties which are worthy of the table of the richest, and wonld we well suited for extensive cultivation for purposes of export. The people are slow to recognize the value of the art of budding and grafting, hut edneation in this direction is rapidly extending under the auspices of the Departments of Agriculture and Education in the Weest Indies.

Many fruits practically unknown in northern latitudes are readily available here in small quantities, but insuffieient to maintain a paying export trade. If they were grown in larger quantity and in uniform quality, there is no serious obstacle to their being regnlarly placed npon the northern market. The system of transportation now in use is not tboronghly efficient, but would soon adapt itself to the circumstances of a profitable trade.
The success of the banaua as an export fruit has long been a recogoized fact; and the trade is yearly increasing. In this case the propagation is carried on by suekers, and there is no variation in the quality of the produce; the market always gets the same quality, hence the suceess.
Among the best of all tropical frnits is the Mangosteen, Garcinia Mingostona, native of the Straits Settlements. This has been fruited in Jamaica and Trinidsd, and the fruit has been sent in good order to the English market. It is, however, slow-growing, and as yet only very few trees of it are in existenre in the West Indies. It has grown well in Trinidad, and has produeed excellent crops of fruit of the finest flavor and there ean lie no doubt that many of the islands in the West Indies are fuite expable of growing this fruit to perfection; and there is no donbt that it could be carried to market without serious loss in transit.
Writings upon tropical fruits are much seattered and there is as yet no book dealing solely with the subrject. The most important tropical fruits are detailed in the order of their local value in the following list \{see the various entries in this Cyclopedia):

Tropical Fruits of the West Jndies and Central America:

1. Banana, Musa species. Figs. 18i-8.
2. Cocoanut, Cocos mucifera. Figs. 506-7, 1497.
3. Pineapple, Auanas satirus. Figs, 83, 1810-11.
4. Mango, Mangifera Irdica. Figs. 2589, 1360-1.
5. Mangosteen, Garcinia Maugostuma. Fig. 893.
f. Sapodilla, Achras Sapota. Fig. 2249.
6. Pear (Alligator Pear), Perseu grutissima. Fig. 1724.
7. Sugar Apple, duona squamosa. Fig. 94.
8. Custard Apple, fmona reticulata.
9. Sour-sop, A moun muricata.

1I. Governor's Plum, F'lacourtia Ramontehi. P. 589.
12. Akee, Cupania sapidt.
13. Cashew, Auracardium oceidentale. P. 60.
14. Guava, Psilium Guajava. Fig. 2008.
15. Posme Cythere, Spondias dulcis.
16. Granadilla, Passiflara macrocarpa.
17. Water Lemon, Passiflora laurifolia.
18. Star Apple, Chrysophyllwm Caimito. Fig. 469.
19. Genip, Melicocea bijuga. Fig. 1388.

Of this list probably not more than half the number are eultivated in selected varieties, and some are mere wayside fruits, as the guava, genip and cashew. The banana, coeoanut and pineapple are largely exported. The mango is capable of being grown to any extent for export to temperate climates. The mangosteen is a fruit the eultivation of which should be largely extended. The sapodilla if grown from the finest selected varieties is one of the choieest of tropical fruits. It is tender when ripe but carries well when "full," a WestIndian term for maturity. The pear (Persea) is a fruit which also carries well when mature. It is what shonld be called a salad fruit and is eaten with pepper and salt. In the East it is often served with sherry and sugar as frait at dessert.

The anonas, Nos. 8, 9 and 10, are good additions to the dessert when well grown from selected kinds. The last, or sour-sop, is partieularly well suited for flavoring ices, it being considered by maay as the best of all the fruit flavors for this purpose. It cond he casily
exported in ice. The akee might be exported if preserved. The part used is the large arillus attached to the seed, and it is served as a relish with meat dishes. The governor's plum is a fruit the size of a green-gage and makes fine jellies. The cashew is useful when preserved, but is too tender for export. The large seeds, roasted and bottled for preservation, form one of the best table muts known. The guava can only he exported in the form of the well-known guava jelly. When a good variety is to hand the Pomme Cythere is an excellent and well-flavored table frist. The granadilla makes excellent ices, and the water lemon is mueh used as dessert, having the appearance and flavor of a huge ripe gooseberry, though generally somewhat sweeter. Melicocca bijuga, or the genip, is a children's fruit, and is seldom seen at table. Like all similar fruits there has practically been no selection, and a large amount of variation appears. This is very prominent in the genip. Some are very acid, while others are deliciously sweet. This variation, as shown in seedlings, is fully sufficient to account for the diverse opinious as to the qualities of tropical fruits.

The citrous tribes are, of course, sub-tropical fruits, but it is possible to grow them to great perfection in the tropics. When grown upon the sour orange stock, the trees are capable of reaching a large size, and will afford regular crops. An excellent start has been made in many West Indian islands in the cultivation of grafted plants of the best kinds.

Trees in the tropies usually have their regular season of fruiting, but many trees, such as the mango and the orange, prodnce frmit out of season, or in the coolest season of the year. Trees which fruit at such a season are generally the most inferior kinds.

Most risitors to the tropics choose this season for making their tour, and in eonsequence never hare the opportunity of seeing or tasting the best qualities of the fruit produced, and only get inferior kinds, which the regular resident would not trouble to eat. When a mango is deseribed as "all tow and turpentine," the writers were writing truly of the ordinary "out of season" mango, but all-the-year-round residents know that these kinds are as different from the selected varieties as is the quince from a jargonelle or a jear or a crab apple from a Ribston pippin.
J. H. Hart.

Another View of Tropical Fruits. - The fruits most growu for export from the West lndies are hanauas, oranges, grape fruit or ponelo, pineapples and coeoabuts. Others that are prized, hut not exported to any extent, are mangoes, grapes, star-apples, naseberry or sapoditla, avocado pear, granadilla, cherimoya, sweet sop and mangosteen.

Banana. - There are between 20 and 30 different rarieties of banana, and about half as mauy of the plantain, which is the form of banana used as a regetable. The enormous export of over $8,000,000$ ounches of bananas annually from Jamaiea is almost entirely of oue particular variety, which goes ander various names,"Jamaica," "Martinique," "Cros Michel," ete. A small quantity of a red-skinned rariety is oecasionally exported. It is prized rather for its color and effectiveness in a dish of fruit than for its quality. There are others, such as "Lady's Finger," which are superior in flavor to the Jamaica, and are destined to obtain in time special prices in the markets. These superior varieties have mostly beeu collected hy the Royal Gardens, Kew, from India, Jara, Straits Settlements, ete., and have been sent ont from time to time to the Botanic Gardens of the West Indies.

The soil most suitahle for banana culture is a deep loam with a large proportion of humus. Good drainage is essential. Bananas grow well under irrigation, hat the application of the water must be carefully watehed. The only disease that is known is a species of Marasmins, a fungns which attacks the petiole of the leaf, It has not done much harm, and in fact has not attracted any notice except in Trinidad. Insects do not interfere with plant or fruit. Nematode worms are known in other countries to hare caused great destruction. hint no cases are reported from any part of tropieal America.

Citrous Fruits (more properly sub-tropical).-ITntil a few years ago no attention was paid to the cultivation
of any of the citrous fruits: they simply grew wild, seeds were dropped by lirds, and wherever the soil was suitable trees sprung up. Naturally many bybrids and inferior kiuds exist, hut the great mass of the trees have come trne, and the fruit is of excellent quality. Since Florida bas suffered so much in its orauge-groves, cultivation in the West lndies has lieeome general, and all the best kiuds of Citrus have bren imported from Florida, California and England. In Jamatica the nave] orange was introduced direct from Bahia mans years ago, and there is gond evidence that it oceurs spuntan. ponsly in the island at the most favorable elevation for the orange, -about 2,300 feet. A natural hybrid between the sweet orange and the tangierine is also known in the same district. The general excellence of the orange in Jamaica is partly due to the large numbers of grafted St. Michaels that were distributed from the Botanic Gar

2589. Fruits of the Mango, Mangifera Indica ( $\times 1-5$ ).

See also Mangifera. Vol. II.
dens at Castleton. A limestone soil seems to suit theorange best. At low elerations both the orange and the grape fruit are rather sweet, but this fault gradually disappears and the flatror improres the higher the elevation, - the limit in Jamaica being somewhere about 4,000 feet for the orange, and 3,600 feet for the grape fruit. The diseases and insect pests that attack the citrous tribe in other countries are known in the West Indies, and the roots of trees are also attacked by the grub of a beetle, a species of Prepodes. Trees that have grown wild are not subject to disease or inseet pests.

Pineapples,-Pineapples are indigenous in tropieal America, and although it is scarcely possible to say whether they are truly native in any of the West lndian islands, they are spoken of as being grown not very long after the discovery by Colmmhus. Joseph Acosta, in his "Naturall and Morall Historie of the East and West Indies" (London, 1604), says: "The first Spaniards named many things at the lndies with such Spanish names as they did most resemble, as Pines . . . although they be very different fruits to those which are so-called in spaine . . . The best [pines] are those of the Islands of Barlovente [Greater Antilles]." The Botanic Gardens in Jamaica are making experiments in crossing different varieties. The Ripley is the general favorite in Jamaica for its exquisite flavor, but the Smooth Cayenne is heing cultivated largely for export, as its finer appearance ensures a higher price in the:

## TROXIMON

markets. Mealy log attacks the cultivated pine-apple, and blight and tangle-foot oceur as in Florida, but in suitable situations it grows wild without any cultivation quite free from disease.

Cocoanuts. - Tbere is a large export of cocoanuts in the shell from the W. Indies, and in Jamaica there is a factory for making cocoannt oil. The palms are subject in some districts to a disease which attacks the terminal bud. So far as can be judged, it is of a bacterial nature, and probably jufection is caused by heetles and other insects. In the West Indies cocoanuts flourish even in the interior of the islands and at a considerable elevatiou $-2,000$ feet. They require an abundance of water at their roots.

Mangoes were introduced into the West Indies to wards the end of the eighteenth century, and to-day they are the commonest trees-the reason being that the seeds germinate readily and at once take root in almost any soil. The trees will grow even at elevations of 5,000 feet, but they do not bear fruit above 3,500 feet, nor do they bear at all in wet districts. There are numerous varieties, most of them being somewhat fibrous, even the esteemed "No. 11" containing some thread-like fiber. In the year 1869 several of the hest grafted varieties of India were imported from Bombay for the Botanic Gardens of Jamaica; these are of superior excellence and without fiher. The seedlings of these Bombay mangoes do not come true, but the majority of them bear good fruit, Grafted plants are distributed frow the various hotanic gardens of the Wrest lndies. Experiments in budding are heing carried on with a view to bud the numerous inferior kinds. Even the coarse ruangoes which are worthless as fruit, if picked before ripe, make excellent tarts, preserves, pickles, etc., and there is a wide field for enterprise in utilizing such fruit iu various ways.

The pineapple, cashew, ginep, naseberry or sapodilla, sweet sop, sour sop, custard apple, avocado pear, cherimoya, Spanish plum (Spondias). Barbados cherry, papaw, Fig. 2590, cocoa-plum, star apple, granadilla,

2590. Papaw tree-Carica Papaya. A tropical fruit of secondary importance. (See also p. 246.) This picture shows a specimen grown in the open in southern Florida; Fig. 363 shows one grown in a northern greenhouse.
sweet cup, pomme d'or, guava, mammee and mammee sapota are all natives of tropical or subtropical America or the West Indies, or are indigenous on hoth the mainland and some of the islands.

The banana, citrous fruits, cocoanut, mangosteen, carambola, bilimbi, Nilgiri blackberry, tamarind, pomegranate, grape, akee, bread-fruit, and jack-fruit are introduced from other countries.

The akee, bread-fruit, jack-fruit, cho-cho (Sechium edule, Fig. 2281), ochra and avocado pear are fruits nsed as vegetahles.

Great improvements have lately heen made in the mode of packing fruits for export. The Governmeut of Jamaica is about to appoint inspectors of fruit for export, who will stamp all packages that pass as wellgraded, well-packed, etc., with the Government mark. It will be optional for exporters to take advantage of such inspection.

The Imperial Department of Agriculture in the Lesser Antilles, and the Botanic Gardens of Jamaica, Trinidad, and British Guiana are devoting a considerable amount of attention to fruit with gratifying results.

The inauguration in January, 1901, of a new line of steamers, with a subsidy of $\$ 200,000$ annually, specially built for the fruit trade, and sailing direct from Jamaica to England, has already had a great effect in increasing the area under cultivation. This is only the first step in a regular and systematic export of fruit from the West Indies to Europe, and the development of the trade to an tnormous extent is confidently anticipated.

Wm. Faivcett.
Botany of Tropical Fruits, All the tropical fruits mentioned above are described in this work at their proper places, with the exception of some of the follow. ing:

Barbadoes Cherry is Malpighia glabra, which see.
Nilgiri Blackberry is Rubus racemosus.
Ochra is another spelliug for Okra.
Pomme Cythère is Spondias dulcis, descrihed below. Pomme d'Or is Passiflora laurifolia.
Spanish Plum. Consult Spondias purpurea, below.
Sweet Cup is Passiflora edulis and $P$. maliformis.
The genus Spondias of the family Anacardideere takes its name from au old Greek word used hy Theophrastus for some kind of plum. It coutains abont 8 species of tropical trees with alternate odd-pinnate lvs., numerous opposite lfts., minute whitish fls, and yellow fruits as large as common plums. Botanically the fruit is a fleshy drupe with a $\mathbf{1 - 5}$-loculed bony endocarp. The genus is distingruished by the following characters: ovary 3-5-loculed; ovule pendulous: 1vs. pinnate: fls. polygamons; stamens 8-10: styles $4-5$, free at apex. The following are widely cuit, in the tropics.
A. Locules of the echinate nut distant, connected only by the common base.
dủlcis, Forst. Pomme Cythere. Sweet Otaheite Apple. Fruit de Cythere, Hevi. Wi Fruit, in Tahite. Height $50 \mathrm{ft} .:$ lfts. 11-13, oval-ohlong, acuminate, serrate: fr. golden yellow, tastes something like a pineapple. Society 1 slands.
AA. Locules of the smoothish nut contiguous and more or less adnate.
B. Racemes panicled, often exceeding the lvs.: fls. yellowish white.
lutea, Linn., (S. M6mbin, Jacq., not Linn.). Golden Apple. Jamaica Plum. Tall tree: lfts. 7-17, ovate-lanceolate or lanceolate, subentire or serrulate: panicle 1/2-1 ft. long: fr. ovoid, 2 in. long, yellow. Cosmopolitan in tropics.
BB. Racemes unbranched, fer-fld., much shorter than lvs.: fls, purplish.
purpùrea, Linn.(S. Mómbin, Linn., not Jacq.). Spanish Pbuv. Low tree: lys. deciduous: Ifts. 16-21, ellip-tic-oblong, bluntish, usually serrate: fr. obovoid, 1 in. long, yellow or tinged purple. American Tropics.

TROXIMON (Greek, edible; which does not apply). Compbsite. A genus of 15 species of mostly pereunial, nearly stemless berhs native of North America except possibly 2 species which are South American. The spe-

cies are generally low-growing hardy plants with clusters of sessile, radical leaves and simple scapes bearing a head of yellow or purple flowers in summer.
cuspidàtum, Pursh. Root thick: Ivs, entire, linearlancoolate, thickish, $4-10 \mathrm{in}$. long: scape about 1 it , high: fls. yellow: akene not beaked. Prairies of Ill, and Wis, to Dakota. B.B. 3:278.-Cultivation easy in any good border. Not unattractive. It bas rather larg dandelion-like heads of flowers in late summer. Offered by collectors.
F. W, Barclay.

TRUE LOVE. Paris quadrifolia.
TRUFFLES. See Vol. Il, p. 1045.
TRUMPET CREEPER, Tecoma, especially T. radi. cuns.

TRUMPET FLOWER. Consult Bignonia.
TRUMPET HONEYSUCKLE. Lonicera sempervirens.

TRUMPET VINE. Tecoma radicans.

TSŨGA (its Japanese name). Conifere. Hemlock. Hemlock Spruce. Ornamental evergreen trees of pyramidal habit, with spreading, irregularly whorled, much ramified brancbes clothed with small, linear, usually 2 -ranked leaves and small cones which are usnally freely produced. The cones are only abont 1 is. long except in one species, which has cones two or three times as large. $T$ Canetensis is quite hardy north and the Japanese species and T. Carolinuma have proved hardy as far north as Ontario. T, Hookeriana is almost as hardy. T. Mertensianu and T. Brunoniana are more tender. There are probably nomore beautiful hardy conifers thau the Hemlocks, and they must be ranked among the most ornamental and useful trees for park planting. They do not have the stiff, formal appearance of many of the conifers, but are graceful and stately at the same time. T. Mer tensiana is the most vigorous species and is more graceful than the Canadiau Hemlock, but tenderer. $T$. Hookeriana is noticeable for its light bluish green foliage and the more narrow pyramidal babit. The Japanese species have very bandsome dark green glossy foliage, but are of slow growth. T. Canadensis bears pruning well aud is well suited for tall hedges (see Ging. 2:289). The other species will probably bear pruning well. The Hemlocks are not very particular as to the soil, provided it contains a sufficient amount of constant moisture. Tsugas are not difficult to transplant. Prop. by seeds sown in spring and by grafting on T. C'anadensis. The varieties and the Japanese species are also raised from cuttings. See also Conifers, Abies and Picea for cultivatiou.

The genus contains 7 species, natives of N. America, E. Asia and the Himalayas. Tsuga is closely allied to Abies and Picea and differs little in tbe structure of the fls.; the cones are rery similar to those of the larch, but the lvs., though much like those of Abies in their outward appearance, are very different in their internal structure from all allied genera, since they have a solitary resin-duct situated in the middle of the leaf below the fibro-vascular bundle. The light, soft, brittle and coarse-grained wood is not durable and not much valued except that of T. Mertensiana, which is harder and more durable, and that of T. Sieboldi, which is esteemed in Japan for its durability. The bark is rich in tannin and that of $T$. Conadensis is extensively used for tanning leather.

Tsuga Canadensis should be called "Hemlock Spruce," but in common speech it is usually alluded to as "Hemlock." The "Hemlock" of the ancients is a poisonous umbelliferous herb described in this work as Conium maculatum.
albo-spica, 4. Araragi, 1. argentea, 6 . Cantensis, 4. Caroliniana, 3. compacta, 4. diversifolia, 2. globosa, 4.

## INDEX.

globularis, 4. gracilis, 4 . heterophyilla, 5. Hookeriana, 6 . Mertensiana, 5, 6. microphylla, 4. nana, 1, 4.
psrvifolia, 4. Pattoniana, 6. pendula, 4. Razlii, 6. Sargenti, 4. Sargentiana, 4. Sieboldi, 1.
A. Lr's. with e white lines beneath, grooved above, muck flattened, distinctly 2 -ranked: cones $1 / 2 \cdot 1 / \frac{1}{2}$ in. long.
B. Maryin of lvs. entire: apex of les, usually emarginate, sometimes obtuse.
c. Scales of cones suborbicular.
D. Branchlets yellowish brown, glabrous .......... DD. Branchitets realdish broun, pubescent

1. Sieboldi
2. diversifolia
co. Scales of cones oblong: le's. often obtuse. 3. Caroliniana

BB. Maryin of lus.finely denticulate, at least towards the aper: apex of lus obtuse or acutish.
c. Cones peduncled: scales almost orbicular, glabrous.
cc. Cones sessite: scales oral, sliyktly puberulous outside. 5. Mertensiana AA. Le's. stomutiferous on both sides, flet or conrex above, spivelly arrenged: cones 2-s in. long (Hesрегореисе). f. Hookeriana

2591. A apray of Hemlock Spruce $(\times 2 / 3)$.

1. Sièholdi, Carr. (T, A raràgi, Koehne). Tree, attaining 90 ft ., with spreading slender hranches: branchlets pale yellowish brown, somewhat glossy, with reddish leaf-cushions: lvs. linear, usually broadest at the apex, emarginate, grooved and glossy dark green above, with 2 whitish lines beneath, $1 / 4-3 / 4 \mathrm{in}$. long: cone orate, $1-11 / 4 \mathrm{in}$. long, the pednncle exceeding the bud-scales: bracts bifid. Japan. G.F. 10:492. - Var. nàna. Endl. Dwarf bushy form, with short branchlets and very short crowded leaves.
2. diversifolia, Mast. (Abies diversifolia, Maxim.). Tree, very similar to the preceding, chiefly distinguished by the reddish brown pubescent branches: lvs. linear, emarginate or obtuse, shorter and narrower, broadest at the middle or toward the hase: cone smaller, $1 / 2-3 / 4 \mathrm{in}$. long: peduncle not exceeding the bud-scales; bracts truncate, crenulate, not or slightly bifid. Japan. G.F. 6:495; 10:493.
3. Caroliniàna, Engelm. Carolina Hfmlock. Tree, attaining 70 ft ., of more compact habit and with darker green foliage than the following: young branchlets light reddish brown, finely pubescent or almost glabrous: lvs. linear, obtuse or emarginate, dark green

## TULIPA

and glossy above, with 2 whitish lines beneath, $1 / 3-3 / 4 \mathrm{in}$. long: cones oblong, 1-1 $1 / 2$ in. long, peduncled; seales oblong. Va. to S.C. S.S. $10: 604$. G.C. II. $26: 200$. G.F. 2:269.-More graceful than the next.
4. Canadénsis, Carr. (Abies Canadénsis, Michx.), Common Hemlock. Fig. 2591. Tree, attaiving 70 and occasionally 100 ft .: young branchlets yellowish browu, pubescent: lvs. linear, obtuse or acutish, dark green and obscurely grooved above, with 2 whitish lines beneath, $1 / 4-2 / 3$ in. long: cones ovoid, $1 / 2^{1 / 3 / 4}$ in. long, peduncled; scales almost orbicular. New Brunswick and Wis., south to Ala. S.S. 10:60:3. - The Hemloek Spruce yields the lumber most commonly used in the East for framing and elapboarding of buildings. It is not used for finishing lumber. A number of garden forms have been raised; the following are the most important: Var. álbo-splca, Nichols. Tips of the young branchlets creamy white. Var. compácta, Sénécl. (var. compácta nàna, Beissn.). Dwarf eonical pyramid with numerous short branchlets clothed with small leaves. Var. globosa, Beissn. (var, globuliris erécta, Kunkler). Dense, globose, much branched form with numerous upright branches nodding at the ends. Var. gracilis, Gord. (var. microphylla, Hort.). Slow-growing form with slender sparingly ramified branehes, spreading and more or less drooping at the ends: lvs. very small, abont ${ }^{1 / 4} \mathrm{in}$. long. Var. nana, Carr. Dwarf and de. pressed form with spreadiug branches and short branchlets. Var. parvifolia, Veiteb. Lvs, very small, 1/4 in. loug or shorter: branchlets closely set and numerous. Var. péndula, Parsous (var. Śargenti péudula, Hort., var. Sargentidna, Kent.). Flat-topped form with spreading branehes and drooping branchlets. Gn. 32, p. $363 ; 39$, p. 81 . N.1).G. $1900: 367,368,491$. Very distinet and desirable form.
5. Merteasiàna, Carr. (T, heterophylla, Sarg. T. Albertianc, Sénécl.). Tree, attaining 200 ft ., with short slender usually pendulous branches forming a rather narrow pyramidal head in older, but rather lroad in young trees: young branchlets pale yellowish brown, pubescent: lvs, linear, obtuse or acutish, distinctly grooved and dark green above, with 2 white lines below, $1 / 2-3 / 4 \mathrm{in}$. long: cones oblong-opoid, sessile, $3 / 4-1 \mathrm{in}$. long; seales oral, slightly puberulous outside. Alaska to Calif., west to Mont. S.S. 10:605. G.C. [II. 12:11.
6. Hookeriàna, Carr. ( $T$. Mertensidua, Sarg., not Carr. T. Puttoniànu, Sénécl. T. Hàzlii, Carr. Àbies Williamsoni, Newb. Hesperopeûce Pattoniana, Lemm.). Tree, attaining 100 and oceasionally $150 \mathrm{ft} .$, with slender pendent branches usually forming an open pyramid: young branchlets light reddish brown, pubesceut, usually short and upright: lvs. spirally arranged around the branches, linear, usnally eurved, acutish, mostly rounded or keeled, rarely slightly grooved above, light bluish green or pale bluish white, with whitish lines on both sides, $1 / 2-1 \mathrm{in}$. long: cones cylindric-oblong, usually violet-purple before maturity, brown when ripe, $2-3 \mathrm{in}$. long: seales obovate, puberulous outside. Brit. Col. to Calif., west to Mont. S.S. $10: 606$. G.C. III. $12: 10 ; 13: 659 ; 21: 150,151$. G.F. $4: 380 ; 10$ : 6. 7. R.H. 1870, p. 21. Var. argéntea, Beissn. Foliage bluish white.
T. Brunonidna, Carr. (T. dumosa, Sarg.). Tree, attaining 120 ft .: lvs. narrowly linear, acntish, $1 / 2-11 / 4 \mathrm{in}$. long, with silvery white lines bencath: cone 1 in. long. Himal. G.C. II. 26:73, 501.-T. Doúglasii, Carr.=Pseudotsuga Douglasii.

Alfred Rehder.

## TUBEROSE. Consult Polianthes.

TUCKER, LUTHER (Plate XLI), born at Braudon, Vt., May 7, 1802, was the founder of teThe Hortieultmrist "and the proprietor of that valuable and unique magazine during the period of its greatest glory - from July, 1846, until the autumn of 1852. The statement, ou page 501 of this Cyclopedia, that the younger Downing "founded 'The Horticulturist," is inexaet, he having been the salaried editur, while the enterprise was Tucker's alone. To Downing, nevertheless, belongs all the eredit for the great and distinguished interest and value of the magazine, as lie conducted it according to his own ideas, with which the proprietor never inter-
fered, the latter having indeed enough to do in putting it before the publie with enterprise and vigor. It was issued simultaneously in Albany, Boston, New York and Philadelphia, with 22 special ageneies at other points, including what was then the distant western town of Cleveland, Ohio, as well as Hamilton and Cobourg in "Canada West." Luther Tucker also founded, at Rochester, N. Y., October 27, 1826, the tirst daily paper published west of New York, "The Advertiser," whieh is still, under a slightly extended name, an influential journal; also at Rochester, January 1, 1831, "The Genesee Farmer," a weekly, the first agrienltural periodical in the world written direetly from the staudpoint of practical experience. It has undergone some changes in name, as its scope exteuded far beyond the Genesee valley, and has been published in Albany sinee Jauuary, 1840, being now called "The Country Gentleman." This is one of the ten Ameriean agricultural periodicals that were started before 1850 and ontlived the nineteenth century, the others being these: "Maine (Kenneluec) Farmer," 1839; "American (Boston) Cultivator," 1839 , "Southern Planter," 1840; "Massachusetts Plowman," 1841; "Prairie Farmer," 1841; "A merican Agrienlturist," 1842; "Southern Cultivator," 1843; "Indiana Farmer," 1845; "Rural World," 1848; "Ohio Farmer," 1848. It is now (1901) published by a son and a grandson of the founder. Mr. Tucker was the descendant of a long line of landowuers. The tirst of the name of whom anything is known was granted arms, and it is believed estates, by Willian the Conqueror, and his descendants in the direct line down to the subjeet of this note were uniformly, both in England and in the American colovies and states, country gentlemen and cultivators of the soil. Stroug rural tastes eame to Luther Tucker as an inheritance, and his eoneeption of a happy and wellspent life was a life as mueh as possible in the open air and devoted to the adrancement of agriculture and its allied arts and the amelioration and refinement of the condition of all classes of eountry resideuts, from the proprietor to the humblest laborer. It was, therefore, natural that be should be teeply interested in the New York State Agricultural Soeiety, which he found at a low eble on his eoming to Albany, and of which, only a year later, he was the chief reorganizer, getting on foot the long series of annual fairs beginning in 1841 and still contimed. He served the soejety without any compensation or even reimbursement for his own expeuses, for eleven years. The society then prenented him with a handsome table service of silver, and adopted resolntions (afterwards reënacted at the time of his (leath) to the effect that the great success of the early fairs, paving the way for those that followed, was chiefly due to his unremitting exertions. He died at Albany, after a short illness, January 26, 1873.

Gilbert M. Tucker.

## TULIP. See Tulipa.

TULIPA(originally from Persian toliban,turban; which the inverted flower resembles). Lilidceo. Tulip. Plate XLV. Bulb tunicated, the outer tunie often hairy or woolly on the inner faee: stem 3-30 in. high, usually l-fld., rarely 2- 3- or 4-fld.: lvs. linear or broad: fls. ereet, rarely nodding, showy; perianth deciduous, campanulate or slightly funnel-shaped; segments distinct, often spotted or blotched at base, without pitted nectaries; stamens 6 , hypogynous, shorter than perianthsegments; filaments longer or shorter than anthers, attenuate or filiform; anthers dehiscing laterally: ovary sometimes narrowed at collar, rarely into a distinet style; stigmas adnate: seeds numerons, flat. Differs from Fritillaria in the absence of nectariferous pits and usually ereet (never pendulous) fls., and from Erythronimm in its ereet, broader perianth-segments, erect fls. and usually 1 -fld. stems, Native of Oriental countries, Siberia, Asia Minor, China and Japan, and naturalized in the Mediterranean eountries of Europe. The geuns now ineludes 83 speeies, only about half of which are in cultivation at present. The latest monograph is Raker, in "Gardeners Chronicle," for 1883. Solms-Lau bach is the leading anthority on the history of the garden Tulips \{see his "Weizen und Tulpe, und deren Geschichte," Leipzig, 1899). See Burbridge, (in. Sept. 22, 1900.


Plate XLV. The Modern Garden Tulip

Cultivation. - The production of large, perfect flowers depends entirely upon a large supply of fibrous roots. Size of bulbs is not nearly so important: a large bulb cannot offset a deficiency of roots.
For outdoor cultivation the bulbs should be set in September to November in New York. They should be planted before hard freezing weather comes. The soil should be a satndy loam, well worked to a depth of at least 12 inches, and enriched with leaf-mold and wellrotted cow manure. Fresh manure of any kind should never be used near bulbs of any sort. On heavier soils Tulips can be successfully raised if extra care is given to insure perfect drainage. Drainage is important under all conditions. The bulbs will never prove satisfactory in low, wet sitnations, and if there is danger from standing water it is best to raise the heds several inches above the surrounding ground.

Plant the bulbs 4 inches deep (to the bottom of the bulbs) and from 4 to 5 inches apart, depending upon the size of the plants. A handful of sand nnder each bulb is recommended in soils that do not already possess a preponderance of this material. The cushion of sand allows the water to drain away rapidly and at the same time insures the presence of an easily penetrable medium for the young roots. Care should be exercised to place all the bulbs at the same depth, as otherwise they will not all bloom at the same time. When the ground begins to freeze, corer the beds to a depth of several inches with leaves, dry forest litter or other light material. After danger of heary frosts is past in spring the beds should be uncovered, and if the work of preparation and planting has been well done the Tulips will require little or no further care. In England many of the beds of choice and delicate varieties of Tulips are protected when in flower from heavy rains and hot sun by means of light cloth screens, and are thus kept in good condition for some time.

For pot culture, a misture of fine garden loam, two parts to one of well-rotted manure (cow manure composted for two years is best), mixed with enough clean sand to make the mass easily friable, is most suitable. If no loam is obtainable and a heavier garden soil must be used, one part of the latter will be sufficient, in which case the addition of an equal proportion of leafmold will be advautaceous. From 3 to 5 bulbs, according to size, to a 5 -inch pot are effective. Fill the pots lightly and press the bnlbs into the soil, thus bringing the base in close contact with the soil particles. Cover the bulbs to the tip and press the soil firmly all around. Water once freely and cover the pots entirely with soil, leaves or litter, so that they will be out of reach of frost, or place them in a lark cold (not freezing) cellar or room until the bulbs have become well rooted, which under ordinary conditions will require five or six weeks. When the pots have become well filled with roots-the more the better-they are ready to be brought into the house. For the first few days at least the temperature should be moderate and even, and the atmosphere not too dry. Water freely but not to excess. Some of the varieties-especially the white thin-petaled onesare said to resent orer-wateriug rery quickly. If raised in living rooms greater care is necessary, as the atmosphere of a living room is drier than that of a greenhouse. On cold nigists the plants should be remored from exposed places where they are liable to freeze, and when the flowers appear they should not be allowed to stand in the direct rays of the suo shining through a window. Many of the handsomest flowers are thus easily burned and wilted. Practically all of the early single rarieties are adapted to pot culture, especially the Duc san Thols when well rooted; otherwise they are extremely unsatisfactory. For a succession. pot every week or 10 days from September to December or pot early and bring into the house at fortnightly intervals. In potting aroid caking soil beneath the bulbs.

Many of the early single varicties are adapted to water culture. For this purpose use ordinary "hyacinth" glasses and select only well-formed, solid, perfect bulhs of fair size. Use ratin water, and put in a little charcoal to keep it pure. The bulbs must be placed so that the base is just in contact with the water-not immersed in it. Place them in a dark closet for 10 days or a fortnight until the bulbs have become well rooted,
then give them plenty of light and air. Avoid gaslight as much as possible, and in cold weather protect them from freezing.
Propagation. - Tulips may be increased by the side offsets, but these are not as constant as new bullss produced within the outer tmics by means of cutting the old bulbs. Fig. 2592 shows a section of a bulb with new inner bulb and outer offset in place. The new bulb is completely inclosed in a sac which afterwards becomes the outer dry, membranons tunic. The pubescence, if any, may be found on the inside

2592. Three leafy bulb-scales from young bulb, exhibiting the homology of teaves and bulb-scales ( $\times 1 / 8$ ). At the right an old Tulip bulb, showing formation of new bulb within the old, and flower stem attached directly to root-crown.
of this sac even in the earliest stages of growth. The new bulb is attached to the base of the flowerstem, immediately abore the root-crown from which the former proceeds directly upward. Each new bulb-tunic (inclucling the outer sac) is provided with a growing tip, which often extends above ground into a leaf, each one coming up within the other. Fig. 2592 shows the separated leafy bulb-scales, and indicates the bomology of tunics and leaves. Sports among the offsets are at present mainly depended upon for the production of new varieties. These have been found susceptible to the "breaking" process, though perhaps slower to respond than the seedlings. Seed production is now practiced only in exceptional cases. The prodnction of hybridized varieties by crossing the old forms with some of the newly introduced species is very likely a probability of the near future.

The Original Tulip.-The origin of the garden Tulip scems to be lost beyond recovery. It is often said that our garden Tulips are derived from Tulipa Gesneriana, but this is an explanation which does not explain. It merely means that in 1753, the year which is usually but arbitrarily taken as the beginning of systematic botany, Linnaus grouped all the garden Tulips he knew noder the name of Tulipa Gesmeriana. But the Tulips of that day had been cultivated for two centuries by Europeans, and previously for an indefinite period by the Turks, from whom, of course, we have no exact records. Fig. 2593. One might study wild Tulips in their native places and compare them with descriptions without being certain of the original form which the Turks brought from the wild, simply because of the lack of records at the beginning. It is necessary to hare some scientific name for the garden Tulips. The most one dare say is that the garden Tulips are chiefly referable to $T$. Gesneriana and $T$, suaveolens, with the distinct understanding that these names do not represent an original wild stock.

Tulipa suaveolens requires explanation. This name, which dates from 1797, stands for a kind of Tulip discovered growing wild in southern Europe long before that date. There is no proof that it was native; the probability is that it bad escaped from gardens and ron wild. In 1799 , it was distinguished from the other Tulips then known by the fragrance of the flowers, the earliness of bloom, slightly greater size and pubescent scape. From the early records it appears that there were fragrant, early-blooming flowers among the first Tulins received
from Turkey. This is one of the main reasous for believing that $T$. suaveolens is not mative to southern Europe. At all events it is clear that $T$. suaceolens has played an important part in the evolution of the garden Tulip, the Duc van Thol class being generally credited to this source. The distinctions between $T$. suaveolens and $T$. Gesneriana given below are those of Baker, but they do not hold at the present day. It is jmpossible to refer any given variety with satisfaction to either type. Some writers have said that the leaves of $T$. suaveolens are shorter aud broader than those of T. Gesneriana. This character also fails. All grades of pubescence are present. Some pubescent plants have long leaves and odorless flowers. Others have short, glabrous leaves and fragrant flowers.

For practical purposes it may be said that most of the commion garden Tulips, at least the late-flowering ones, are $T$. Gesneriana, while many of the early-flowering kinds,e.g., the Due van Thol class, are supposed to be derived from Tr. suaveolens. It is impossible to press much nearer the truth, as botany is not an exact science and the prototypes of the old garden favorites cannot be known completely and precisely.

Early History. - The first Tulip seeds planted by Europeans were sent or brought to Vienna in 1554 by Bushequius, the Austrian ambassador before the Sultan of Turkey. Busbequius reported that he first saw the flowers in a garden near Constantinople, and that he had to pay dearly for them. After the introduction of seed to Vienna the Tulip became rapidly disseminated over Enrope, both by homegrown seed and by new importations from Turkey. In J559 Gesner first saw the flower at Augsburg, and it is mainly upon his descriptions and pictures that the species $T$. Gesneriana was founded. One of the earliest enthusiasts was the herbalist Clusius, who propagated Tulips on a rather large scale. Fig. 2593. He did not introduce the Tulip into Holland, but the appearance of his specimens in J 591 did much to stimulate the interest in the flower in that country. The best of Clusius' plants were stolen from him, as the admirers of the Tulip were unwilling to pay the high prices he demanded. After this theft the propagation of the Tulip proceeded rapidly in Holland and the flower soon became a great favorite. The production of new varieties became a craze throughout the Netherlands, culminating in the celebrated "tulipomania" which began in 1634. The excitement continued for four years. Thirteen thousand florins were paid for a single bulb of Semper Augustus. Governmental interference was necessary in order to end the ruinous speculation. After the craze subsided, the production of varieties continued upon a normal basis, and has persisted

2593. A sixteenth-century Tulip.

From the work of Clusius published in 1576. One of the oldest pictures of Tulips. Same size as originat plate.
throughout the centuries in Holland, making that country the center of the bulb-growing industry of the world down to the present day.

The introduction of the Tulip into England is credited to Clusius, about the year 1577. Tulips reigned supreme in English gardens until the beginning of the eighteenth century, when they were neglected by the rich for the many new plants from America. For a while the Tulip was considered more or less of a poor man's Hower, though it has at no time been without many staunch almirers among the upper classes.

With the Turks the narrow acuminate flower-segments were in favor, while western taste preferred the rounded forms (Fis. 2595). The Turks seem to have been satisfied with a preponderance of the reds and yelluws, for in the first sowings of Turkish seeds the majority of the resulting blooms were of those colors. It thus came about that flowers so colored were considered common and undesirable in the European gardens and all effort was directed to the production of the rarer white gromnded varieties with finely and distinctly marked stripes, those with a sharp bright real being the favorites. Indisputable evidence of this is seen in the old Holland "still-life" paintings of that time, where one finds none but the rarer forms represeuted (Solms-Laubach). All the early Tulips of direct Turkish origin had acute more or less narrow and reflexed segments. Indeed, among all the old engravings, including those of Pena and Lobel, 15\%0, Clusius, 1576, Dodoens, 1578 , and Besler, 1613, no round-petaled forms are found. Besler's work, "Hortus Eystettensis," coutains magnificent copper plates, the first in any book on plants. In some copies the plates are beautifully colored hy band. The 53 figures of Tulips in this grand work show how widely diversified was this flower even at that early date. In this and in Parkinson's "Para. disus Terrestris," 1629, many are figured with inner segments rounded und outer acnte, but none vice versa (so far as could be seen), though that form is mentioned in the descriptions. The broad, rounded, erect-petaled forms were developed later, apparently first by the Dutch growers previous to and during the tulipomania, and produced wholly by selection. This ideal has prevailed down to the present time, for the narrow-petaled varieties are practically unknown anong our common garden forms; so mnch so that the extreme typical one has been referred to a separate species ( $T$. acuminata, Fig. 2602). In the Dutch fields they are now known as "thieves, and are destroyed as soon as they make their appearance.

Parrot Tulips became known towards the end of the seventeenth century. They were oftentimes considered
to be monstrosities, and were pictured as such. According to Solms-Laubach, no traces of them are to be found in the old Dutch hooks. They were evidently developed by the French, who did not disdain the yellow aud red forms, to which these beloug, to such an extent as did the Hollanders. At one tinue they were made a separate species, T. Tureica, and later said to be hybrids, by one author, between $T$. acuminata and syleestris (E.S. Rand, Jr., 1873), by another between T. Gesneriana and suaveolens (Mrs. Loudon, 1841). That the Parrot Tulips are hybrids is perhaps true, but to state with certainty the parents seems impossible, for as early as 1613, among the figures in Hortus Eystettensis, there is one which shows laciniation of the petals to a marked degree; sufficiently so, in fact, to be the original form from which this strain could be developed. Besides, many of our garden varieties of to-day exhibit more or less laciniation, so that it is probable that "Parrot" strains might be developed from them by simple selection.

Double Tulips seem to have made their appearance at an early date. In Hortus Eystettensis (1613), there are four forms Ggured, one of which, at least, seems to bave been almost wholly made up of bracts, as it is shown entirely green and is described as being "wholly herbaceous and green." The other three there figured are: one red, one yellow, and the other white with maroon borders. SolmsLaubach places the advent of double Tulips at a much later date, 1665 , and gives as the first autbentic record the account of "Tulipa lutea centifolia, le monstre jaune double." Flowers with as many as 200 petals are mentioned. A double form of " $T$. serotixa" was known in 1701, and at the beginning of the nineteenth century a double form of T. syluestris was described.

## Arnold V. Stubenrauch.

Tulip Bulb Culture in America,-From a commercial point of view the Tulip in this country has received but little consideration, which is due to the fact that its cultivation has not been considered of sufficient financial importance to warrant the undertaking, and also to the very general opinion that the industry could not be made protitable excepting in Holland and by the Dutch. There is a common notion that Dutch soil alone is adapted to the perfect development of the bulb, and that there is some secret process possessed by the Dutch alone which they will not under any circumstances reveal. Nevertheless some of our early borticulturists and florists showed conclusively that the Tulip bulbs could be grown in America even better than in Holland.

The late David Thomas, of Greatfield, near Aurora, Cayuga county, N. Y., grew from seed some of the finest Tulips, both as regards size, colors and markings, ever shown in this or any other country at that early date, which was nearly sixty years ago. The writer remembers well seeing them on exhibition at the Aurora

2594. The common contemporaneous garden Tulip.

Horticultural Society and the favor with which they were received by as critical and intelligent an audience as ever gathered around an exhibition table.
The late Isaac Buchanan propagated the Tulip very successfully from offsets at his nursery in Astoria, L. J., at about the same period, and exhibited the flowers at the first spring exhibition of the first New York Horti cultural Society, carrying off the bighest honors.
Recent attempts in cultivating the Tulip in various parts of the country, particularly in the West, as an industry, have been quite successful, and the work only needs to be taken upsystematically and energetically to insure success. (See $\boldsymbol{W}^{\gamma}$ thsington.)

The Tulip is not at all particular as regards soil. It will thrive in either sand or clay, but it can he profitably grown only on a light sandy soil, as in such the bulbs increase more rapidly and are larger and more attractive in appearance, the skin being of a lovely reddish brown, while those grown in a heavy soil are smaller and of a dirty brown color. Nearly all the soil on the Atlautic coast from Maine to Florida is admirably adapted to commercial Tulip cultivation, as is much of the upland soil from Virginia southward, the light sand being almost identical with that of Holland, where the Tulip is almost exclusively grown.

Wbile the Tulip loves moisture, perfect drainage is requisite to success. The best results are obtained when the soil has been made very rich for a previous crop; it matters but little what,-some root crop being preferable. The best manure is that from the cow-stall, which must be thoroughly rotted and evenly incorporated in the soil. Eveu though the soil be light and fine, it must be thoroughly worked before the bulbs are planted, which should be by the l5th of September. Plant the bulbs 4 inches below the surface in beds 4 feet in width, the rows 6 inches apart and the larger or stock-bulbs 6 inches apart iu the rows. For propagation the largest and finest bulbs are always used, and selected by the dealers before filling orders.

The sets can be planted 2 inches apart in the rows, the space to be increased according to the size of the bulb. Upon the approach of winter the beds should be given a light mulch to prevent the ground freezing below the bulb. Not that the Tulip will not endure as much frost as any hardy pereunial-for it will-but nearly all bulbs make certain preparations for spring flowers in winter, and when the soil around them is hard frozen this preparation cannot go on; consequently when growth starts in early spring it will be premature and feeble, and the result will be inferior flowers and a smaller inerease.

Upon the approach of spring remove the mulch; this is all the work that will be required, other than to keep the surface of the soil frequently stirred with a fine rake to keep down the weeds and prevent evaporation until the flowers appear. The beginning of bloom is the
all-important and critical period of the season's work, when the florist's arcana wust be practiced but not revealed. The great secret in Tulip propagation is now open to the world, though not popularly understood.
Propagation is effected by offisets, from the fact that varieties will not reproduce themselves from seerl. The seed produces only "selfs" or Mother Tulips, which only break into variegated forms at long and uncertain periods. Consequently the flowers must be cut away as

2595. Round-petaled Tulips in a five-inch pot $\left(\times^{1 / 4}\right)$.
soon as they appear; if not, nearly the whole of the plant's energies would go to the development of the seed, - nature's method of reproduction, -and the bulbs produced would be small and with but few or 110 offsets. From nature's standpoint the bulb is of consequence as a means of reproduction or berpetuation of the species only in case of failure of seed production.

By cutting the flower-stems as soon as the flowers are sufficiently developed to show, there is no mistake as to variety, and the plant's energies are wholly directed to reproduction hy offsets which, from large bulbs, are freely prodnced. There is a great difference in varieties in this respect. The increase is not far from tenfold annually; that is, the parent bulb will produce that number of offsets, which must be grown at least three years before they ean be sold as first class.

By the cutting of the flower-stems the plant's period of development is materially shortened. The bulbs will mature at least four weeks earlier than the seeds would if permitted to mature. On Long lsland the bulbs can be safely taken up and dried off within two weeks from the time the stems are cut. When the flowers are cut it will not do to leave them on the beds; they must be carried to some place where bulbs are not to be grown. If left upon the beds they will, as the Dutch say, "make the soil sick," and sound, healthy bullss cannot again lie produced on it until after a succession of grain and grasses. Tulips must not be returned to the same soil annually, a rotation of at least two other crops being necessary to the production of sound, vigorous bulbs.

A hnodred thousand salable bulbs can be grown on a single acre. They reqnire three years from the sets, The first year double that number can be grown. The average yield or ontput will be 66,000 bulbs to the acre.

In this country where land admirably adapted to the cultivation of Tulip bulbs can be had at not more than fifty dollars per acre, in comparison with land in Holland worth $\$ 5,000$ per acre, the industry conld be made a profitable one.
C. L. Allen.

It is a matter of great regret that the key used below is based upon a technical botanical character of no interest to the horticulturist, but it seems to be impossible to group the species according to the color and shape of the flowers.

## Summary of Groups.

1. Outer bulb-tunic glabrous inside...Species 11. Outer bulb-tunic with a few uppressed hairs inside towards the top.....Species 3-12
2. Outer bulb-tunic with scuttering uppressedt huirs all orer insidr............... Species 13-20
1V. Onter bulb-tunic pubescent inside, densely so ut aper .......................... Species 21-23
V. Outer bulb-tunic pilose inside...... Species 24-26

V1. Outer bulb-tunic woolly at buse inside.

V11. Outer bulb-tunic everywhere woolly inside.
V111. Outer bulb-tumic aluays hairy at side aromad root crown, and usually with a few scattering hairs aboue but sometimes without them.......... Species 37-42

## INDEX.

acutifolia, 20.
acuminatit, 21.
alba, 20.
albo-maculata, 42 .
Aleppica, 34 .
Armena, 24.
australis, 38 .
Batalini, 30.
Biebersteiniana, 33.
biflora, 31.
Billietiana, 19
carinata, 8.
Clnsiana, 32.
Dammanni, 23.
Didieri, 20.
Dracontia, 42.
Eichleri, 4.
elegans, 13.
flava, s. L.
fragrans, 1.
fulgens, 40. Gesneriana, 42. Greigi, 3. Hageri, 2. Kaufmayniana, 18. Kesselringi. 15 ,
Kolpakowskiana, 5. Korolkowi, 17. Julia, 29. lanata, s. t. linifolia, $2 y$ Lorteti. $3 t$ Lorteti, lutescens, 20 . iycica, 34. macrospenla, 41 maculata, 14. Mauriana, 20. Maximowiczii, 26.
montara, 29.
Oculus-solis, 34
Ostrowskiana, 11.
Persica, s. L.
planifolia. 20 .
platystigma, 25 priecox. 35 .
pulchella, 6
retroflexa, 22.
saxatilis, 16.
spathulata, 42 Sprengeri, 12.
strangewaysiana,
42.
suaveolens, 37.
sylvestris, 10 .
violacea, 7
viriditlora, 39. vitellina, 9 .

Group I. Outer bulb-tunic glabrons inside.
A. Periunth yellow, flushed with green? outside.
......................................
AA. Perianth crimson tinged with yellow outside ........................................... Hageri

1. fràgrans, Mnnby. Height 6 -12 in.: proper lvs. 3, crowded at middle of stem, linear or lorate: fls, yellow, greenish outside; perianth funnelform-campanulate, $1-1 / 1 / 2$ in. long, 3 in. across, slightly fragrant; segments all acute; tilaments bearded at base: ovary slightly narrowed at collar; stigmas small, Algeria. Gn. 45:965. - Allied to $T$. sylcestris, differing in position of the leaves and segments unitormly wide.
2. Hàgeri, Held. Height 6 in.: lvs, 4-5, lorate acute, not undulate: fls, chiefly red, about 2 in. across: perianth broad-campanulate, 13/4 in., inodorons; segments acute, red, with a large, green or purpleblack basal blotch margined with yellow; stamens purple-hlack; filaments linear, bearded at hase: ovary narrowed at collar; stigmas small. Hills of Parnes range in Attica. B, M, 6249. F. 1877:169.

3. The open spreading form of Tulip ( $\times 1 / 3$ ).

Group II. Outer bulb-tumic with a few appressed hairs inside towards the top.
A. Stem pubescrut.
B. Lus. blotched with linear chestmut-brow'n spots: filaments not bearded at base.
BB, Le's. not blotcked: filtments
BB, bearded at buse.
3. Greígi
4. Eichleri

AA. Stem glabrous (T, Kolpakouskitinu sometimes obscurely pubescent).
B. Lus. ovate or broadly lanceolate.
c. Filaments bearded at base. 5. Kolpakowskiana
f. pulchella
7. violacea
cc. Filaments not bearded.... 8. carinata 9. vitellına

BB. Li's. linear or linear-lanceolate.
c. Filaments bearded at base.10. sylvestris
cc. Filaments not bearded....11. Ostrowskiana 12. Sprengeri
above, passing downward into a slaty lilac without any dark-colored bloteh, but bright yellow at base; segments all acute, densely pilose at base; filaments linear: ovary clavate: stigmas less than ovary-diameter. Alpine region of Cilician Taurus, 1877. B.M. 6304. - A dwarf species near to $T$. Hageri.
7. violàcea, Boiss. \& Buhse. Less than 12 in. high: Ivs. 3-5, crowded: perianth campanulate with a contracted base, $11 / 2 \mathrm{in}$. long, 2 in. wide, fragrant, typically bright mauve-red or rosy erimson flushed with purple, varying to white with a slight flush of red outside, with a large brown or black basal bloteh, usually bordered with white; segments uniformly oblong, subacute; stamens black or purple; stigmas small. 1'er. sia. Int. to eult. 1890. B. M. 7440. G.M. $39: 390$. - Allied to $T$. Hageri and putchella.
8. carinàta, Hort. Krclage. Lus. 3, not crowded, as long as fl.stalk, slightly undulate, slightly ciliate on edge near base; perianth open-campanulate, 3 in . long, dark scarlet, tinged with greeu just above aud blending into a bright yellow ba. sal blotch; segments acute, cuspidate ; stamens yellow: ovary prismatic: stigmas white, not undulated. Habitat unknown. Vars, rùbra and violàcea, Hort., are offered.
9. vitellina, Hort. Lurs. 4, not crowded, as long as fl.-stalk, not undulated, thinly ciliate on edge: peduncle slightly tinged with red near f.: perianth campanulate, 2 in. long, sulfur-yellow, no basat bloteh; inner segments rounded, outer acute; filaments yellowish white; stigmas not nudulated. - Said to be "hybrids between $T$. suaveolens and $T$. Gesneriana." It is one of the "Cottage Garden" Tulips, a class of old-fashioned Tulips which

2599. A Parrot Tulıp Tulipa Gesneriana, var. Dracontia ( $\times 1 / 6$ ).
4. Elchleri, Regel. Height 6 in.: lvs. $12-15 \mathrm{in}$. long, lanceolate acuminate, margins plane and

2597. A Darwin Turnip ( $\times 1 / 4$ ). See No. 42. smooth: perianth broadly eampanulate, 2 -1/2-31/2 in.across, deep searlet with a broad, cuneate, dark violet-blue basal bloteh margined with yellow; segments rounded at top with a muero; anthers violetbrown; filaments black; stıgmas very thick, undulate, pale yellow. fieorgia in Asia. B.M. 6191. F. 1877: 169. - Allied to $T$. Greigi.
5. Kolpakowskiàna, Regel. Height 12 in.: lvs. $3-1$, obscurely ciliate on margin: bud nodding: perianth eampanulate, 2-21/2 in. loug, $41 / 2$ in. across, faintly scented, varying from bright searlet to bright yellow, typically red with a faint yellow-black blotch at base; segments oblong, acnte, the outer sprealing away from the inner as the flower expands; anthers dark purple: ovary large, stont: stigmas large, erisped. Turkestan and Central Asia, 1877. B.M. 6710. Gn. 60, p. 182,-A near ally of 'T, Gesmeriana, which it bids fair to rival in beanty and variability under cultivation.
6. pulchélla, Fenzl. Height 4 in.: lvs. $2-3$, crowded and spreading close to the surface of the ground, chauneled, obscurely ciliate on edges: perianth funnelform, erect. $1-11 / 2 \mathrm{in}$. long, $21 / 2 \mathrm{in}$. aeross, bright mauve-red
2598. Acute-petaled style of Tulip ( $X^{1 / 4}$ ). (1)
 have been preserved from oblivion in the gardens of the poor. Attempts have been made recently to restore them to popular favor. Well worth attention.
10. sylvéstris, Linn. Fig. 2601. Height $9-15$ in.: Ivs. usually 3 , at base of scape, channeled, linear-lorate: peduncle sometimes 2 -fld, in cultivation: lud nodding; perianth funnelform-campanulate, $11 / 2-2$ in. long, yellow; segments all aente, inner narrower: ovary bladderform (narrowed at collar): stigmas smaller than ovarydiameter, yellow. Said to be natice in England and widely so in Europe. - In cultivation as T. F'torentinu and T. Elorentina, var. odorata.
11. Ostrowskiàna, Regel. Height 12 in.: lvs. 3, flat, ciliate on edge : perianth open-campanulate, $2-3 \mathrm{in}$. across, non-odorous, searlet with small brown basal spot, margined with yellow at top; segments tapering at base and top; flaments dark wine-red: ovary prismatic, white striped with greeu, red near top: stigmas equal to ovary-diameter, scarlet. Introduced from Turkestan in 1881. B.M. 6895. Gn. 45:965. - Alljed to T. Ocules-solis.
12. Spréngeri, Baker. Height 10-18 in.: Ivs. 4, close together, long, linear-lanceolate, stiff: peduncle wiry, tinged with deep red under fl.: perianth open-campanulate (star-shaped), 2 in . long, bright scarlet with a somewhat dull brown basal bloteh margiued all around with dull orange-yellow, all blending into one another;
segments all oblong-orate and cuspidate; filaments reddish brown: ovary pyramidal, reddish: stigmas equal to narrow eollar. Hab. (?). Imported by Dammann \& Co., of Naples, in 1894. Gn. $56: 1251$. Gt. $44: 1411$.

```
Group III. Onter bulb-tunic rith scattering appressed hairs all over inside.
A. Stem pubescent ( \(T\). maculata finely so and sometimes glabrous).
B. Periauth usually bright red with a yellow basal blotch...13. elegans
na. Perianth orunge-scarlet or red, with a dark brown, purplish or bluish blach basal blotch.14. maculata
AA. Stem glabrons.
B, Lower lis. lorute or linearlanceolate....................... 15. Kesselringi
BB. Lower lvs. lanceolate or broadly so.
C. Filaments bearded at base..16. saxatilis
cc. Filaments not bearded.
D. The perianth segments all rounded at top ...........17. Korolkowi
DD. The perianth segments all acufe at top …............18. Kaufmannians DDD. The imater perianth segments rounded: outer acute at top
19. Billietiana
20. Didierj
```

13. elegans, Hort. Height 12-18 in.: lvs. 3-1, below middle of stem, lorate-lanceolate, finely ciliate upon upper face: perianth campanulate, $3-3 \frac{1}{2}$ in. long: segments uniform, narrowed gradually to a very acute

14. A pan of Murillo Tulips, one of the few double varieties that are really desirable ( $\times 1 / 4$ ).
point; anthers violet; filaments glabrous; stigmas larger than ovary-diameter, yellowish.-Known in gardens only. Krelage catalogues a variety as "Cottage elegans picotee," which has larger lvs, and white Howers edged with rose, and without basal blotch. "Erobably a hybrid between T. acuminota and suaveolens."
15. maculàta, Hort. Height 12-18 in.: Jvs. 3-4, loratelanceolate: perianth campanulate, $2-21 / 2 \mathrm{in}$; segments obovate, cuspidate, Fery wide beyond middle; anthers purple; filaments glabrous; stigmas small.-"A wellmarked garden race" (Baker).
16. Késselringi, Regel. Lvs. 4-5, crowded at base of stem, lorate-lanceolate, channeled: peduncle sometimes obscurely puberulent: perianth campanulate, $11 / 2-2$ in. long, bright yellow, flushed with red and green outside; inner segments subobtuse, outer acute; stanmens bright yellow; filaments glabrons; stigmas not equal to ovary-diameter. Turkestan. B.M. 6754.
17. saxátilis, Sieber. Height 12 in. or more: stem usually branched low down and bearing 2 fls.: lvs.
usually 5 , sometimes lowest 12 in. long: perianth ob-long-funnelform, $2-21 / 2 \mathrm{in}$. long, 3 in , across, light mause-purple, at base bright yellow; segments pubescent at base, inner ohorate, outer oblong; anthers blackish; filaments bright yellow: ovary prismatic: stigmas small. Crete, 1878. B.M. 6374. Gn. 56:1234.
18. Korolkowi, Regel. Height 6-9 in.: Ivs, 2-3, falcate, margin crisped: perianth campanulate, red, with a distinct black basal bloteh; inner segments oblong, outer obovate; filaments lanceolate; stigmas small. Turkestan, 1875.
19. Kaufmanniàna, Regel. Less than 12 in. high: Ivs, 2-3; perianth subcampanulate, $2-3$ in. long, $21 / 2-4$ in. across, bright yellow in original form, tinged with red outside, without basal bloteh; in cultivation very vari. ble in color and nearly always with a deep yellow basal blotch; anthers lemon-yellow, linear ; filaments bright orange, linear flattened: ovary pyramidal: stigmas small in cultivated form, but described as large. Turkestan, 1877. B.M. 6887.
20. Billietiàna, Jord. \& Four. Lrs. 3-4, undulate, not ciliate on edge: perianth oper-campanulate, 2 in. long, $33 / 2$ in. across, inodorous, bright yellow, flushed with scarlet-pink, especially outside, with obscure basal blotch striated with blue-black lines ; anthers dark gray or blackish; filaments yellow, with dark striations: ofary narrowed at collar : stigmas light yellow, very large and crisped. Savoy, Italy. B.M. 7253. G.M. 38:311. - One of the late Tulips.
21. Didieri, Jord. Height 12-18 in.: Jrs. 3-4, undulate, acuminate: perianth campanulate, $2-21 / 2 \mathrm{in}$. long, $41 / 2 \mathrm{in}$. across, bright crimson, with purple basal bloteb wargined with yellow or yellowish white; outer segments reflexed; stamens same color as basal blotch: ovary narrowed at collar: stigmas larger than collar-diameter, white. Satoy, Italy and Alps. B.M. 6639.-Var. Mauriana, Jord. Les, uarrower, slightly undulate: perianth brilliantred, with wide yellow blotch. Var, planifolia, Jord. Stem slender: lvs. narrow, not undulated: perianth deep red, faintly marked with yellowish red or blackish bloteh. Var. acutifolia, DC. A cultivated form: peduncle 5-8 in. long: lys, oblong-lanceolate. Var. álba, Krelage. Peduncle stiff, mottled with red: perianth light lemonyellow, or white tinged green outside, basal blotch limited to a few dark striations; filaments same color as flower. Var. lutéscens, Krelage. Lrs, 3, slightly falcate: perianth light yellowish white streaked with red, with a bluish violet, dark basal bloteh; filaments colored like spot.
Group IV. Outer bulb-tunic pubescent inside, densely so at "pex.
A. Perianth segments cery long, linear and acuminate...................21. acuminata
AA. Perianth segments oblong, all uni-
form and acwminate..............22. retroflexa
AAA. Perianth segments all narrouly oblong; inner acute, outer rounded at top

.23. Dammanni
22. acuminàta, Vahl. Figs. 9602,2603 . Height 12-18 in.: lvs. 4 , lowest lanceolate, all undulated at margins: peduncle shining: perianth very open, light yellow splotched with red lines; segments sometimes $41 / 2$ in. long, less than $1 / 2 \mathrm{in}$. wide, with edges rolled in; stamens yellow; filaments flattened, glabrous: ovary prismatic: stigmas very large, yellow, not undulated. Turkey (?).
23. retrofléxa, Hort. Loss, long-lanceolate, sometimes linear-lanceolate, slightly ciliate on edge, otherwise glabrons: peduncle somewhat sbining: bud nodding; perianth open funnelform-campanulate, yellow, a shade darker at base-a trace of a very obscure basal blotch; segments uniform in width, linear-lanceolate acuminate, twisted, with undulated edges; stamens yellow; filaments flattened, glabrous. - A supposed garden hybrid between T. Gesneriana and acuminata.
24. Dámmanni, Regel. Height 6 in.: lys. 4, placed whorl-like at middle of stem, linear-lanceolate, recurved, obscurely bristly, ciliate on margin, otherwise glabrous: peduncle glabrous: perianth spreading, star-sbaped, purplish or reddish with an oblong-lanceolate black
bloteh without yellow border; segments narrowly oblong; filaments filiform, glabrous; stigmas broader than ovary-diameter. Mlt. Lebanon. 1889. Gt. 38:1300. -Allied to T. linifolia and Maximowiezii.

Group V. Outer bulb-tunic pilose inside.
A. Lower lis. lanceolate.
B. Lus. slightly or not at all un-
dulatel.........................24. Armena
B8. Lus, very much undulated......25. platystigma AA. Lower lus, linear .................26. Maximowiczii
24 Armèna, Boiss. Liss. 5, crowded at base of stem, falcate, glancous and glabrous, slightly undulated, long, ciliate on edge all around, longer than fl.-stalk: peduncle glabrous, finely dotted, perianth open campanulate, slightly sweet-scented, 2 in. long, dark searlet with black basal blotch margined all around with yellow; inner segments rounded, outer acute; anthers purple; filaments flattened, black, not bearded. - This species is referred by Baker without hesitation to T. Gesneriana, but the plants in the trade as $T$. Armena differ as indicated above.
25. platystigma, Jord. Height 18 in.: stem slender, glabrous: lvs. 3-4, very much undulated: peduncle glabrous: perianth campanulate, 2 in. long, violetscented, magenta-red; segments obovate-oblong; claw blue tinted with a yellow spot in the middle; filaments not bearded: anthers violetcolored: ovary prismatic:
2601. Tulipa sylvestris,known also as T. Florentina, var. odorata ( $X^{1} / 4$ ). colated. France.
stigmas very large and undulated. France. brous: perianth crimson, with a black basal blotch; segments obtuse, ending in a short, sharp point; anthers light purple; filaments linear, not bearded. Eastern Bokhara, 1889. Closcly allied to T. linifolia, from which it differs in having outer bulb-tunic hairy at apex (not woolly), erect lrs. and sharp-pointed perianth-segments. Gt. 38:1307. G.C. 111. 19:757.
Grote VI. Outer bulb-tunic woolly at apex inside.
A. Filaments bearded at base............27. Lownei AA. Filaments not bearded.
B. Perianth crimson or scarlet, with a
disinct basal blotch.................28. linifolia 29. montana

вв. Perianlh yellow, without basal bloteh.30. Batalini
27. Lównei, Baker. Height 2-4 in.: stem glabrous, sometimes 2-headed: lvs. 2, lanceolate, acuminate, falcate, glabrous: peduncle slender, glabrous: bud slightly noddling; perianth funnelform, small, white with a bright yellow basal bloteh, tinged outside with light purple or purplish pink, inner segments wider; stamens yellow: ovary narrowed at collar: stigmas very small. Mts. of Syria and Palestine, 1874.
28. linifolia, Regel. Stem somewhat shining, sometimes 2-headed: lvs. 7, linear and grass-like, spirally arranged, spreading, glabrous: perianth open-campanulate, small, bright scarlet; basal blotch bluish black; inner segments oblanceolate, outer ovate and slightly wider; anthers pinkish; pollen gray; filaments bluish black: ovary pyramidal: stigmas very small, yellowish white. Bokhara.
29. montàna, Lindl. Height $4-8$ in.: lower lvs. ob-long-lanceolate, acuminate, undulated, very glaucous: peduncle glabrous: perianth campanulate, $11 / 2-2 \mathrm{in}$. long, 2 in . across, deep crimson, paler outside; segments ovate or oblong, flat, acute, the inner often obovate obtuse; filaments purplish: ovary prismatic: stigmas small. Mts. of Persia. B.R. 13:l10G.-Var. Jülia, K. Koch. Dwarf, from Caucasus. Not more than $3-4 \mathrm{in}$.
tall: fls. bright red, 1 in . or less long; all 6 segments obovate and obtuse.
30. Batalini, Regel. Height 5 in.: stem glabrous: IVS. 5 , crowded into a sort of whorl just below middle of stem, linear-lauceolate, glabrous, slightly undulated: perianth campanulate, slightly funuelform; segments oblong-orate, obtuse, sometimes deeply incised on the edge near the top; filaments linear, terete, yellow: ovary elliptic-oblong, compressed, trigonous: stigmas coroniform. Eastern Bokhara, 1889. Gt. 38:1307. G.C. 111. 19:759.-One of the early Tulips.

2602. One of the acuminate-petaled forms - the old Turkish-garden ideal $\left(\times_{1 / 3}^{1}\right)$. No. 21.
Group Vll. Outer bulb-tunic everyuhere woolly inside.
A. Filaments bearded at base.
B. The filaments flattened.....33. biflora
BB. The filaments cylindric.....33. Clusiana
A. Filaments not bearded.
B. Perianth bright yellow, with obscure basal blotch or none.33. Biebersteiniana
B. Perianth bright scarlet, wilh a distinet black or purplish basal bloteh margined with
yellow.
34. Oculus-solis
35. præcoz

ввв. Perianth with outer segments rich, bright purple or purplish red broadly margined with white: inner segments yellowish white.............36. Leichtlini
31. biflora, Linn. Neight 3-6 in.: stem glabrous or slightly pilose, usually 2 - or 3 -fld., rarely 4 - or 5 - fld.: Ivs. often 2, sometimes 3, linear, long: perianth fun-nelform-campauulate, 1 in . long, 2 in , across, pale yellow or white inside, tinged with green or red or even purplish outsinle: segments acute; filaments flattened, ciliated at base: ovary uarrowed at collar: stigmas small. Mts. of Central Siberia and the Caucasus. B.R. 7:53.5. B.M. 6518.
32. Clusiàna, Vent. Height 12-18 in.: stem slender, glabrous: lvs, $4-5$, very long and narrow aud folded donble, linear-acuminate, pendent: peduncle slender, tinged with brown directly under fl.: perianth small, when open 2 in . across, funnelform-campanulate, very fragrant, bright lemon-yellow tinged with green ontside, or white flushed with red; segments acute; claw hirsute on edge; stamens yellow; flaments cylindric, densely bearded at base: orary pyramidal: stigmas small, tinged with red. Portugal, through Mediterranean region to Greece and Persia. B.M. 1390.

2603. Tulipa acuminata ( $\times 1 / 3$ ).
33. Biehersteiniàna, Sehult. f. Height 6 in.: stem sleuder, glabrons: Irs. 2-1, crowded together, long, channeled, glabrous, slightly eiliated on edge; bud slightly nodding; periauth open-campannlate, $21 / 2 \mathrm{in}$. loug, bright yellow tinged with scarlet-pink on edges and sometimes green outside; at base a brownish yellow discoloration; inner segments obtuse, outer acnte; anthers gray; pollen yellow; filaments jellow: ovary prismatic: stigmas yellow, undulated. Asia Minor.
34. Oculus-bòlis, St. Aman. Hejght, 12-18 in.: stem slender, glabrons: Irs. 3-4, lorate-lanceolate, acute, glabrous: perianth fnnnelform-campanulate, 21/2-3 in. long, $41 / 2$ in. across, scentless, erect; segments very acute, the inner ones ofteu less so; anthers yellow; filaments purple: ovary prismatic. South of France, Italy and Switzerland. B.R. 5:380 (as T. Gesneriana). - Var. Lortéti, Baker. A slight variety, the hasal spot oblanceolate and blark. Marseilles. Var. Lýcica, Baker, Stem 6-8 in. long: Jvs. crowded: perianth-segments all acnte, inner oblanceolate-oblong; apex suhdeltoid; bloteh black; anthers and flaments dark parple. Lyeia, Asia Minor. Var. Aléppica, Baker. A form with fls, con. siderahly smaller than W. European type, with a smaller black basal bloteh. Asia Miuor, Syria and Palestine.
35. præcoz, Tenore. Height, 12-18 in.: stem slender, glabrous: lvs. 3-5, lorate-lanceolate, aente, ${ }^{\circ}$ uudulated at margin: perianth campanulate, $2-3$ in. long, 3 in . across, erect, seentless: basal blotch purplish black, margined with yellow; segmeuts widely imbrieated, outer slightly longer, acute, puberulent at apex; inner shorter, obtusely cuspidate; anthers yellow; filaments long, dark purple, glabrous: ovary prismatic: stigmas
puhescent, reddish. Italy aud Southern France; also Algeria, Greece, Syria, Palestine and Persia, Very closely allied to last, and figured as such in B.R. 3:204; 14:1143; 17:1419.-Oue of the oldest known species.
36. Lelchtlini, Regel. Height $9-18$ in. : stem glabrons: lower lys. linear-lanceolate: perianth between campanulate and funnelform, outer segments narrow and aente, inner much shorter and obtuse at apex. Kashmir. Gn. $40: 819$.

Grovp VIII. Outer bulb-tunic always hairy at base inside around root eroun, and usually furnished with a feu' scattering hairs above, but sometimes without them.
A. Stem and les. pubescent............37. snaveolens

AA. Stem und li's. glabrous.
B. Leafly oniy at base of stem.
c. Le's. lunceolate. ................... 38. australis
ce. Lrts. linetr or lorate.............39. viridiflora
B8. Leafy to midale of stem or abore.
C. Periunth uniformly durk scarlet with a bright yellow butsal blotch............................ 40 . fulgens
cc. Perianth uniformly with a bluckish basalblotch, bordered with bright yelloue............41, macrospsila cec. Perianth rariable, but rarely with a bordered durk basal blotch.

Gesneriana
37. suavèolens, Roth. Earli Garden Tulips. Height 3-6 in.: lvs. 3-4, mostly at base of stem, lowest loratelaneeolate and broad: perianth campamulate, $1-21 / 2 \mathrm{in}$. long, erect, fragrant, bright red or yellow or varjegated: segments all acute; filaments glabrons; anthers yellow: ovary prismalie: stigmas very large. Southern Russia and Southern Europe, but possibly only a naturalized form of old introduced Turkish garden varieties. F.S. 12:1923. B.M. 839.
38. australis, Link. Height 12-18 in.: stem slender: lvs, $2-3$, crowded together at lower portion of seapre, channeled: bnd nodding; perianth $1 \frac{1}{2} \mathrm{in}$. across, fuuvel form-campanulate, yellow, outside reddish; segments ohlanceolate-oblong acute, at apex slightly pubernlent; anthers yellow; filaments flattened, bearded at base: ovary narrowed at collar. Savoy, Framee, Spain, Portugal and Algeria. B.M. 7171. Gn. 45:965.
39. viridinlora, Hort. (?). Outer bulb tnnie glahrous except around root-crown, where there is a dense fringe: stem glabrous and glancous: lvs. lorate-lanceolate, undulated, glabrous, glaucous, edges slightly eiliated near base: H. large, soft green, edged with yellow or white. Gn. 32:625.- fiarden form. Bears some resemblance to a Parrot Tnlip,
40. iulgens, Hort. Garden form. Height 8-18 in. 1vs. 3, lanceolate or ovate, very wavy: perianth - segments all obloug ovate, acute; anthers yellow; pollen yellow; filaments white, Hattened, glabrons: ovary prismatic: stigmas small, not wayy.
41. macrospeila, Baker. A supposed hybrid of unknown origin: height $10-18 \mathrm{in}$.: lis. $3-4$, long and narrow, lowest long-lanceolate, flat, pendent: peduncle wiry: perianth campanulate, slightly funnelform, emitting a heary, sweetish, unpleasant odor, bright erimson to cerise or cherry red, with a distinct, nearly hlack cuneate basal blotch broadly margined with yellow or yellowish wbite at top; segments obtuse or outer some times acute, outer reflexed, inner erect; filaments di lated, white at base, black, violet or striated ahove, glabrous: ovary prismatic, ereamy white: stigmas same color, large, slightly undulated.
42. Gesneriàa, Linn. Common Garden or Late TuLips. Figs. 25942600 . Height 6-24 in.: stem ereet: lvs 3-4 or more, lower lorate-laneeolate or ovate-lanceolate, often undulated, glaucous, pubescence variable: peduncle erect: perianth campanulate, $1-21 / 2 \mathrm{in}$. long, inodorous, bright red or vari-colored. when bright red, with only an obscure basal bloteh, which is usually yel low, but may he dark or even blackish or mixed, sometimes white; scgments all obovate-oblong, obtuse, broadly rounded at apex, often with a small cusp in the


Plate XLVI. Flat Turnips and Rutabagas
The Turnips (Brassica Rapa) are the two tubers showing in front and on the left. The Rutabagas (Brassica campestris) are the three top-shaped tubers, with many roots
center; filaments glabrous, fattened: ovary prismatic: stigmas large and usually crisped. Origin uneertain. Introduced from the Turkish gardens in 1554. Long sinee hybridized and cultivated out of all semblance to any williforms. Supposed original form (Baker) in B.M. 6439 (as T. Schrenki). Darwin tulips (Fig. 2597) are a recent strain of long-stemmed. late, self-colored tulips.

2674. Tunica Saxilraga, Flower about natural size.

Var. Dracontia, Baker (F'ig. 2599). Parkot Tulip. Similar in habit: perianth usually yellow and red striped and splotched; segments deeply cleft and laciniately dentate. F.S. 21:2211 (as T. Turcica).

Var. spathulata (T. spathuldta, Bertol.). This differs from the type in its larger fls. of a brilliant red color. with a large purplish black blotch at the base of each of the segments. Italy. - Probably the largest of the wild Tulips. Catalogned by many bulb growers as " $T$. G. vera."

Var. Strangewàysiana, Reboul. Very large, brilliant, dark scarlet Howers, with a handsome dark basal bloteb. One of the naturalized Tulips found without disposition to vary in fields near Florence, Italy. F. 1880:65.

Var. álbo-oculàta, Krelage. Deep campanulate fl., with a slight sweetish mawkish odor, bright red, with a distinct white basal blotch; inner segments obtuse, outer acute; filameuts white.
T. fldva. Hort., Krelage, is " often confused with vitellina in gardens, though perfectly distinct, Flava is yellow, very robust, tall, and at least a fortnight later in blooming. Vitellina is almost white when old " Imperfectly known. - T. lanata, Regel. Dwarf: fls. large, goblet-sbaped, rich vermilion, with a large black spot at the base of each of the segments. Impertectly known. $-T$. Peirsica, Willd., is a synonym of T. patens, Agardh, a Siberian species not known to the trade. It has fls. about 3 in. across, greenish ontside, whitish inside, with a vellow eye. The outersegments are narrower. It is figured in B.M. 3887 as T. tricolor. T. Persica of the trade has been confused by the Dutch with T. Breyniana, Linn., the proper name of which is Reometra Columellaris, Salisb. Brometra is a monotypic geous native to South Africa. There are no true Tulips in South Africa. The important generic distinctior between Baometra and Tulipa lies in the dehiscence of the capsule; that of the former is septicidal, of the latter loculicidal. Brometra is figured in B.M. 767 as Melanthium uniflorum. It is a dwarf plant 4-6 in, high with funnel-shaped fls, abont 1 in. across, yellow within, tinged with deep brownish red ontside. The segments are oblong and subequal. Although a native of the Cape, tbe plant is supposed to be hardy.

## Arnold V. Stubenrauch.

TULIP, BUTTERFLY. Calochortus. Tulip Poppy. Hunnemannia. Tulip Tree, Liriodendron.
TUNA. Opuntia Tuna.

TUNICA (Latin, a tunic or coat, from the imbricated involucre). Caryophyllecea. Small slender herhs with linear opposite leaves, with habit of Gypsophila, but botanically more nearly allied to Dianthus. From Dianthus tbey differ in smallness, the central flower of the cluster not bracteate, the calyx top-shaped or cylindrical rather than short-tubular and 5 - or 15 -ribbed, the calyx-teeth obtuse; petals 5 and styles 2. There are about 10 species in Southern Enrope and in Asia. T. Saxifraga, Scop. (Fig. 2604), apparently the only species in cultivation in this country, is a tufted spreading hardy species suitable for rockwork and blooming in summer and fatl (see bottom p. 737). It is a wirystemmed perennial, growing $6-10 \mathrm{in}$. high: As. small, with rosy white, litac or pale purple notehed petals. A recent novelty is a double flowered variety. It is more compact and dwarf than the type, and the fls. last longer. Tunjeas are propagated by seeds or division. $T$. Saxifraga bas become adventive in some parts of the east.
L. H. B.

TUPA. See Lobelia.
TUPELO. See Nyssa.
TURE'S HEAD. Melocactus communis.
TURNIP (Plate XLVI) is a name somewhat loosely applied to two species of vegetables. In this country, and apparently properly, it is applied to vegetables characterized by thick light-fleshed roots that are usually more or less flattened or at least not greatly elongated, with leaves that are hairy and not glaucous. These regetables belong to the species Brassica Rapa (see page 178). In the term is sometimes included the Swedish Turnip or Rutabaga, a plant that is characterized by having a more uniformly elongated-oval yellowfleshed tuber with roots springing from its lower portion, a thick elongated leafy neek, and glaucous-blue leaves that are not hairy. This plant, however, is considered to be Brassica campestris. Whether these two species exist separately in wild nature is not positively known, but they appear to be well defined under cultivation. Both species tend to run wild in old fields and to lose their thickened roots. Tbey are then sometimes, though erroneously, known as charlock. The nativity of these species is unknown, but they are almost certainly


European or Asian in origin. Characteristic tubers of these two plants are contrasted in Figs. 2605 and 2606. The former is commonly known here as "flat turnip" and the latter as rutabaga or merely "baga." According to Vilmorin, the plant that we know as Rutabaga is known to the French as chou-navet and in England as Swedish Turnip and turnip-rooted cabbage.

The culture of Turnips and Rutabagas is very similar, except that the lutabaga requires a louger seasen in which to grow. The Rutabaga is nearly always grown as a main-stasen crop, whereas the T'urnip may lie sown very late for winter use or very early for late spring or summer use. Usually the flat Turnip is not grown during the hot weather of summer. In the northern states it is sown frem the midale of July to the middle of Augnst for late crop, or on the first appreach of spring in order that tubers may be had for the early vegetable market. The late or winter crop is ordinarily used for storing in cellars and also for feeding, whereas the early crop is often sold in bunches in the open market, and later by the basket or bushel.

The Turnips and Rutabagas are hardy; that is, the young plants can withstand some frest. They are cold weather plants and demand leese, moist seil. Tsually the seeds are sown in drills which stand from 10 to 20 inehes apart. In the drills the plants are thinned until they stand frem 6 to 10 inches apart, depeuting on the variety that is to be grown. For general field operations the rows are sometimes placed as far as 30 inches apart, in order to allow horse tillage, Sometimes the late or winter crop is raised from seed sown broadeast, but this method gires good results only when the soil is well supplied with meisture, very tboroughly tilled beferehand and is free from weeds, since subsequent tillage is impessible. The seeds of Turnips and Rutabagas are of similar size, twe or three peunds being required for breadeasting to the acre. When sown in drills one-half or one-third this amonnt may be sufficient. The yields will sometimes reach 1,000 busbels to the acre, altheugh the average is much less than this.

The Turnip needs no special care at to cultivation. The greatest difficulties are the reot magget, which is the larva of a small fly, and the flea beetle. The maggot may be killed by injecting bisulfide of carbeu inte the seil about the roots before the grubs have burrowed deeply into the tissues. In general field operations, hewever, this treatment is impracticable and one must rely on grewing the crop in fields which are not infested with the magget; that is, rotation is the chief receurse. The flea heetle may be kept in check by spraying the plants with Bordeaux mixture, or perhaps better by sprinkling them with Paris green diluted with landplaster (one part by bulk of Paris green to 50 of plaster).

Rutabagas have firmer and richer flesh than the Turnips. They are usually more prized for consumption in winter, and Turnips are usually more pepular in the spring and early fall markets. Rutabagas are also mere prized for stock-feeding. They yield hearily, are rich and succulent and keep well in any ordinary cellar. Rutabagas started in tbe middle or last of June in the nerthern states will reach their full growth by October. They are usually not harvested until heavy frosts have come. The roets of Rutabagas and Turnips sometimes persist throngh the winter, even thongh tbey have been solidly frozen, and send up flower-stalks in the spring; but unlike salsify and parsnips the roots sbould not be left in the ground to freeze if they are to be used.
L. H. B

## TURNIP, INDIAN. Arisama lriplylla.

TURNIP-ROOTED CELERY. See Celeriac.

## TURPENTINE TREE. Symearpia latifolia.

TURPINIA (Pierre J. F. Turpin, a French botanist and author). Celastrucea. About 8 species of trees or shruls frem the tropical regions of the workl, with oppesite abruptly pinnate or rarely simple leaves and small white flewers in spreading terminal or axillary panicles. Fls. hermaphrodite, regular; calyx $5 \cdot c u t$, persistent; petals 5, roundish, sessile; stamens 5: ovary sessile, 3 -lobed, 3-leculed: fr. subglebose indehiscent.
arguta, Seem. A tender shrub: lvs. simple, evatelanceelate, acuminate, serrate: fis. white, becoming yellowish. China, B,R. 21:1819,-Advertised in S. Calif.
F. W. Barclaf.

TURR床A (Turra, 1607-1688, hetanist of Padua, 1taly). Melideco. About 30 wiclely scattered species of tropical trees and shruls with alternate, stalked, entire or lobed lvs. and long white fls, in axillary clusters. Calyx 4-5toothed or parted; petals $4-5$, long and free; staminal tube 4-5-teethed; disk none: ovary 5 -, 10 - or 20 -loculed: orules 2 in each lecule, superposed. T. heterophylla, introduced to S. Florida by Reasoner Bros., is probably not in cultivation. It was said to be a native of Natal. The plant described as $T$. heteropltylla in Flora Capensis was probably imperfectly diagnosed and should be knowu as $T$. floribundu, as explained in the Flera of Tropical Africa.
A. Fls. solitary or in pairs, axillary.
heterophẏlla, Sm., not Sonder. Lvs. more or less obovate-cuneate, 3 -lobed above, varying to subentire: fls. $1 / 2-3 / 4$ in. long. Upper Guinea. B.R. 30:4 (as $T$. lobatu).-Net cult.

## AA. Fls, clustered at ends of branches.

floribúnda, Hechst. (heteroplyýlla, Sonil.). Shrub: foliage falls away before flowering season: Irs. ovate, acute or produced into a short obtuse point, undivided or 3-lebed: Hls. clustered at euds of brancbes: peduncles and ealices silky tomentose. Natal.
IV. M.

## TURTLE-HEAD. Species of Chelone.

TUSSILAGO (Latin, tussis, ceugh, and ago; referring to the medicinal use of the lvs.). Composito. Here belongs the Coltsfoot, the flowers of which look much like the dandelion. It resembles the dandelion in having scapes bearing solitary yellow flower-heads compesed of rays, but the scapes are scaly and the heads are smaller, lighter colered and borne in early spring befere the "main crep" of dandelions. Also the flowers clese up in the het sunshine towards noen, contrary to the custom of dandelions. When the fruit is mature, they hang their heads prettily. The Coltsfoot has a downy head of fruit, but it is not as large, round and attractive as a daudeliou's. After the flowers bave lost their beauty, the leares appear. They are heart-shaped and rounded at first, but as they grow they beceme more and more angled. They are covered with a soft cetteny matting wbich diminishes toward the end of the season. The Celtsfoet is generally considered rather coarse and plebeian, and it is rarely offered for sale, except by collecters of wild plants. It spreads toe fast to be a denizen of the flower garden, but it is desirable for wild gardening operations. It grows uaturally in moist places and thrives on steep raw banks in the stiffest clay. A mass of its soft, cottony feliage is a pleasant and restful sight in early summer. The varjegated form is mere commenly eultivated than the type. Tassilago fragrans, the "Winter Heliotrope," is a Petasites, wbich see. The leares of the Celtsfoet are said te be used in making cigars which are smoked in cases of astbma.

Tussilage is a genus of ene species. It is more closely related to Petasites than to Taraxacum. For generic description, see Gray's Manual and Britten and Brown's Illustrated Flora.

Fárfara, Linn. Coltsfoot. Described above. Spreads rapidly by underground stems. Fls. iu March. Native to Europe, India and nertbwestern Asia. Naturalized in America. Gn. 23, p. 113.

Var, variegàta, Hort., has lvs, margined and more or less blotehed with white or fellow. Gn. 37, p. 435. Lowe 56.
W. M

TUTSAN. Iypericum Androsamum.
TWAYBLADE, Liparis liliifolie,
TWIN FLOWER, Linnade borealis.
TWIN LEAF. Jeffersonia.
TWISTED STALK. Streptopus.

TYDEAA. Now included in Isoloma.
TX̀PHA (ancient name). Typhacect. Cat-tail. Reed Mace. A genus of about 10 species of marsh plauts with creeping rootstocks and erect, round stems, with long, linear sheathing leaves and monoecious flowers iu densely crowded, terminal spikes which are subtended by a fugacious bract.

The following are hardy aquatic or bog perenuial herbs of easy culture in wet soil or in water. They spread rapidly and are likely to become too plentiful unless care is taken to pull such of them up as are not wished before they become firmly established. Forms intermediate between the following two species sontetimes occur.
A. Staminate and pistillate spikes contiguous.
latifolia, Linn. Fig. 2607. Stem stout, $4-8 \mathrm{ft}$. high: 1 vs . wider than in the following species, usualty 1 in . wide: pistillate spikes becoming abont 1 in . in diam. June, July. N. Amer., Eu., Asia. B.B. 1:62. R.B. 20:196. V. 2:197.

AA. Staminate and pistillate spikes separated.
angustifolia, Linn. Stem more slender than T. latifolik, $5-10 \mathrm{ft}$. high: 1 vs . usually less than $1 / 2 \mathrm{in}$. wide: spikes usually longer than in T. latifolia and much narrower, being about $1 / 2 \mathrm{in}$. in diam. June, July. N. Amer., especially in the east and also Eu. and Asia. B.B. 1:63. G.M. 32:779.
F. W. Barclay.


ULEX fancient Latin name of this or a similar plant). Leguminds(e. Ferze. Gorse. Whis, Ormamental, much-branched shrubs with dark green spiny branches, usually almost leatless, and showy yellow. papilionaceons flowers which are axillary and often crowded at the ends of the branches. The Furzes are shrubs of various regions and not hardy north, but monder protection they survive the winters in New England. They are valuable for covering dry sandy banks ant also well snited for seaside planting. On account of thrir dark green branches they have the appearance of evergreen plants and they are very showy when covered with their yellow flowers. They are also sometimes used for low hedges. They prefer sandy or gravelly porous soil and a sumny position, and should be sown where they are to stand, as they do not bear transplanting well. Prop. by seeds sown in spring or by greenwood cuttings under glass; vars. and rarer kinds also by grafting in spring in the greenhouse on $V$. Europeus. A genus of about 20 species, native of $W$. and $S$. Europe and N. Africa, closely allied to Cytisus and chiefly distinguished by the deeply 2 -lipped calyx. Very spiny shrubs: lvs. mostly reduced to scales, only vigorous shoots near the ground bearing futly developed lvs.: fls. axillary at the end of the

Europaus, Linn. Ftrze. Gorse. Fig. 2608. Muchbranched, very spiny and rigid shrub, 2-4 ft. high; branchlets striped, villons when joung: lvs, scale-like or narrow lanceolate, pulesetnt: fls. axillary, 1-3, crowded at the end of the branches and forming racemes; corolla bright yellow, ahout $3 / 4 \mathrm{in}$. long, fragrant; calyx yellow, pubescent: pod oblong, $1 / 2$ in. long, villous, dark brown. April, June and often again in Sept., Oct.; in Calif. almost the whole year. W. and s. Eu. F.S. 5, p. 441 h.-There is a variety with double flowers. None of the other species, which are all more tender, seems to be in the trade in this country.

## Alfred Rehder.

ULMARIA (derived from Clmus; alluding to the resemblance of the foliage of the common European species to that of the elm). Syn., Filipéndula. Rosacear. Meadow sweet. Hardy herhaceons perennials with rather large pinnate or palmately lobed leaves and white, pink or purple flowers in showy terminal corymbs, borne on erect leafy stems rising $1-10 \mathrm{ft}$. from a rosette of radical leaves. They bloom in early snmmer or midsummer and are very handsome border plants. Most of them delight in a rather moist and rich soil and are especially decorative if planted on the borders of ponds and brooklets, hut U. Filipendula prefers drier situations and likes full sum, while most of the others also thrive well in partly shaded positions. U. purpurea should be mulched during the winter in the North. Prop. by seeds sown in fall in pans or boxes and kept in the cool greenhouse, or sown in spring; also by division of older plants. Nine species in N. Asia and Himalayas, N. America and Europe. Perennials with fibrous or tuberous rootstock: lvs. stipulate, interruptedly odd-pinnate, the terminal lft. often much larger and palmately lobed: Als. in cymose corymbs; calyx-lobes and petals nsually 5 ; stamens $20-40$, with the filaments narrowed towarl the hase; carpels distinct, $5-15,1$-seeded, indehiscent. Ulmaria has usually been united with Spirea, but is very distinct in its herhaceous habit, pinnate, stipulate lvs. and indehiscent 1 -seeded akenes.

## INDEX.

(Including names under Spiræa. s. L. $=$ Supplementary list).
alba, 5.
albicans, 2.
angustifolia, s. L. aurea, 6. Camtsehatica, 4. digitata, 3 . digitata, 3 .
elegans, 5.

Filipendula, 1.
flore-pleno, 1, 6 , gigantea, 4. hexapetala, 1. lobata. 2. palmata, 2, 3, 5 . palustris, 6.
pentapetala, 6 .
purpurea, 5.
rubra, 2.
Ulmaria, 6.
venusta, 2 .
vestita, $\mathrm{S}, \mathrm{L}$.

## A. Lfts. numerous, almost alike, small, pinnately

 lobed.1. Filipéndula, Hill. (Spirat Filipéndula, Linn. Filivéndula hexapétulu, Gilib.). Meadow Sweet. Dropwort. Fig. 2609. One to 3 ft . high, with tuberous rootstock, glabrous: radical lrs. 6 - 20 in . long; lfts. sessile, oblong, pinnately lobed and serrate, 1 in. long: Hls, in a loose corymb, white, about $3_{4}$ in. across, with usually 6 petals: akenes about 12, pubescent, semi-cordate. June, July. Europe, W. Asia and Siberia. - Var, flore pléno has double flowers, and is common.

AA. Lfts. few, the terminal one much larger and palmately 8-9-lobed.

## B. Lateral lfts, B-5-lobed.

2. rùbra, Hill (Spircea lobita, Gronov. Spiraa palmèta. Linn. F'ilipéndule lobìta, Maxim.). Queen of the Prairie. Height $2-8 \mathrm{ft}$., giabrous: terminal lft. large, 7 - 9 -parted, with oblong, acuminate incisely serrate lobes; lateral lfts, smaller, 3-5-hobed, on the upper lvs. missing, green on both sides, only pubescent on the veins beneath: fls, pink, in a rather large paniculate eyme: akenes 6-10, glabrous. June, Iuly. Pa. to Ga., west to Mich. and Ky. Mn. 2:145.-Beautifnl. Var, venùsta, Hort. Fls. deep pink or carmine. Var. albicans, Hort. Fls. light pink, or almest white. R.B. 3:169.

3. Ulmaria Filipendula (plant about 2 feet bigh). Commonly known as Spircea Filipendula. One of the plants called Meadow Sweet.
4. palmàta, Focke (Spirca palmàta, Pall. Filipéndulae palmàta, Max. Spiraza digitàta, Willd.). Height 2-3 ft.: lvs. whitish tomentose beneath or glabrous; terminal lfts. $7-9$-parted; stipules large, semi-cordate: fls. pale pink at first, changing to white: akenes 5-8. Jnly. Siberia, Kamsehatka and Nacchalin. - This species is bnt rarely cult.; the plant common under the name Spiraa palmala belongs to $F^{\prime}$. purpurea.

BB. Lateral lfts, none, or few and otate.
4. Camtschática, Rehd. (Spircea Camtschática, Pall. Spirea gigantèa, Hort. Filipéndula Camschálica, Maxim.). Height $5-10 \mathrm{ft}$.: lys. glabrous or villous beneath, often with rufous veins; terminal ift. very large cordate, 3-5-lobed, with broally ovate, doubly serrate lobes, lateral lfts. nsually none; stipules large, semicordate: fls, white: akenes usnally 5, ciliate. July. Manchnria, Kamschatka.
5. purpùrea, Rehd. (Spircea palmàta, Thunb. Filipéndula purpürea, Maxim.). Height 2-4 ft ., glabrons: terminal lft, very large, cordate, 5-7-lobed, with oblong, acnminate, doubly serrate lobes; lateral lfts, none or few, oblong-ovate; stipules narrow: fls, carmine or deep pink, in large paniculate cymes with erimson peduncles and stems: akenes usually 5 , ciliate. JuneAng. Japan. B.M. 5726. I.H. 15:577. F.S. 18:1851. Gn. 17:36. -This is uniloubtedly the finest species of this genus. It is also sometimes grown in pots and forced. Var. alba, Hort., has white fls. and var. élegans, Hort., white His., with red stamens and usually several lateral lfts.; the latter is said to be a bybrid. R.B. 4:7.
6. pentapétala, Gilib. ( $\Gamma$. pulûstris, Moench. Filipéndula Ulmiria, Maxim. Spiráa Ulmaria, Linn.). Queen of the Meadows. Height 2-6 ft.: Ivs. glabrous and green on both sides or whitish tomentose bentath; terminal lfts. $3-5$-lobed, $2-4 \mathrm{in}$. long, lateral lfts. smader, ovate, coarsely donbly serrate: Hs. white, in ratber dense paniculate cymes: akenes ahout 10 , semi-cordate, almost glabrous, twisted. June-Aug. Enrope, W. Asia to Mongolia; naturalized in some places in the eastern states. B.B. 2:224.-Var. aurea variegta, Hort., has the lvs. variegated with yellow. Var. flore pleno. Fls. donble.
U. angustifolia, Rehd. (Spirea angustifolia, Turcz. Filipendula angustifolia, Maxim.). Similar to F. lobata: fls, white: lvs. glabrons or whitish tomentose beneath. Dahuria, Manchuria, $-\boldsymbol{F}$. nestita, Rehd. (Filipendula vestita, Maxim. Spirea vestita, Wall.). Similar to F. Camtschatica, but only $\mathbf{1}$ ft. high and lvs. grayish tomentose beneath: fls. white. Himalayas. B.R. 27:4 (as S. Kamschatica, var. Himalensis).

## Alfred Rehder.

ULMUS (ancient Latin name of the Elm). Urticacece, tribe Clmere. Elm. Ornamental deciduons, rarely halfevergreen trees, sometimes shrnbby, with alternate, short-petioled, serrate lvs. and with inconspicuons, generally greenish brown flowers appearing mostly before the leaves. Most of the cultivated species are hardy north, but $U$. crassifolia and aluta are tender ; $V^{\prime}$. parvifolia and $U$. serotina are of donbtfnl hardiness, althongh they bave persisted near Boston. The Elms are mostly tall and long-lived trees and very valuable for park planting and for avenue trees, especially $U$. Americana, which is the favorite tree for street planting and as a shade tree for dwelling bouses in the northeastern states. It is the most characteristic tree of this region and one of the most beantifnl. Its habit is at once majestic and graceful, and the widespreading head, borne usually at a considerable beight on a straight and shapely trunk, affords ample shade and shelter. Besides the American Elm several other species are used as arenue trees, as Ulmus fulva, racemose and the Enropean U. campestris and scabra. Of $U$. campestris, the vars. Clemmeri, Cormubiens is and cegeta are among the best for street planting; of $U$. seabra, the vars. Belgica, Dorei and Pitterrsi. In the southern states $U$. serotina, crassifolia and alata are sometimes used as avenne trees. There are several vars. of striking and peculiar habit, as $\boldsymbol{U}$. scabra, var. fostigiata and (T. campestris, var. monumentalis, with narrow colnmnar head; U. scabra, var. horizontalis, with horizontal limbs forming widespreading tiers; $U$. scabra, var. pendula, with long, pendnlous branches. U. cumpestris, var. umbraculifera, with a dense, globose and rather small head, may be nsed as an avenue tree for formal gardens. Several species and vars. are interesting in winter on acconnt of their branches being

2610. Flowers of American Elm - U1mus Americana ( $\times 1 / 3$ ).


Fruit of Ulmus Americana. ( $\times 2$.)
furnished with broad corky wings. The foliage of most species turns pale yellow in fall, but that of the Erropean species remains green much longer.

Unfortunately many insects and fungi prey npon the Elm, especially on the American Elm. One of the most destrnctive is the elm leaf-beetle, which destroys the foliage. The Canker-worm is also serious; to keep it from doing damage, band the trunks a few feet abore
the ground with eloth covered with a sticky substance, which prevents the ascent of the wingless female. Spray. A borer, Saperdd tridentata, sometimes does considerable damage to the woot. The Elms grow best in rich and rather moist soil, aur the American Elru especially requires such a soil to attain its full beauty, hut some species, as $\bar{U}$. vaccmosa and $[$. alata, do well in drier situations. Elm trees are not difficult to transplaut, and rather large trees may be moved successfully if tbe work is done carefally. They hear pruning well, but generally do not need nuth attention of this kind.

Propagated by seeds ripeuing usually in Mas or Jnne and sown at once. Most of the seeds will germinate after a few days, but some remain dormaut until the following spring. Increased also by layers, which are usually put down in autumn and are fit to be removed in one year. A moist and rather light soil is best for this methon. Trees raised from layers are said to bear seed less early and less profusely and are therefore especially recommended for street trees, as the foliage of trees that fruit slightly or not at all is larger and more abundant. Dwarf forms of $U$. compestris and also $U$. purrifolia and pumila may be raised from greenwood cuttings under glass, the cuttinge growing most readily if taken from forced plants. $U$. compestris and some of its vars. are also propagated by suckers. In nurseries most of the vars, are propagated by grafting, eitber by budding in summer or by whip- or splice-grafting in spring outdoors or on potted stock in the greenbouse. U. Americana, campestris and scabre are used for stocks.

About 18 species of Ulmus are known, distributed through the colder and temperate regions of the northern hemisphere, in North America south to southern Mexico, but none west of the Rocky Mts., and in Asia soutb to the Himalayas. Trees with watery juice: lvs. shortpetioled, usually unequal at the base, with caducous stipules: fls, perfect or rarely polygamous, apetalous, in axillary clusters or racemes; calys campanulate, 4-9lobed, with an equal number of stamens (Fig, 2610): ovary superior, with a 2-lobed style, usually 1-locnled and with 1 ovule: fr, a slightly compressed dry nutlet, with a broad, rarely narrow membranous wing all around. Figs. 2611-16. The wood is heavy, hard and tough and ofteu difficult to split. It is especially useful in the manufacture of wagon-wheels, agricultural im. plements and for boat-building. The inner mucilaginons bark of the branches of $U$. fulva is used medicinally and that of some Chinese species is made into meal and used for food. The tongh inner bark of some species furnishes a kind of bass which is sometimes woren into a coarse eloth, especially that of U. campestris, var. paciniata, in Japan.
alata, 4.
alba, 1.
American, 1.
Americana, 1.
Antaretica, 7 .
argenteo-variegata,
asplenifolia, 6.
atropurpurea, 6.
aurea, 1.
Belgica, 6.
Berardi, 7.
Camperdowni, 6.
campestris, 7.
carpinifolia, 7.
Cedar, 10.
Chinensis, 9.
ciliata, 2.
Clemmeri, 7.
concavafolia, 7 .
Corky barked, 1, 7.
Cornish, 7.
Cormnbiensis, 7.
corylifolia, 7.
crassifolia, 10.
crispa. 6.
cucullata, 7.
Dampieri, 6.
Dovei, 6.
effusa, 2.
elliptica, 5.
Exoniensis, 6.

## INDEX.

fastigiata, 6, 7 Feathered, 1.
fulva, 5.
glabra, 6, 7.
Graernsey, 7.
Heyderi, 5.
horizontalis, 6 .
Japouica, 7
Коорманиі, 7 .
laciniata, 6.
lavis, 2, 7.
latifolia, 7 .
Louis Van Houtte, 7.
major, 7.
mierophylla, 7,8 . minor, 7.
montana, 6, 7.
Monumental, 7.
monamentalis, 7 myrtifolia, 7. nana, 16. nitens, 7. parrifolia, 8, 9. pedunculata, 2 pendula, 1, $6,7,8$. pinnata-ramosa, 8 .
Pitteursi, 6.
pumila, 8. purpurea, 6. pyramidalis, 6 . racemosa, 2, 3.

Red, 5.
Rock, 3
Rosseelsii. 7.
rubseetsi 5.
ricura,
Rueppellit, 7.
Sarniensis, 7.
sativa, 7.
scabra, 6.
Scotch, 6.
serotina, 11.
Slippery, 5.
Sibirica, 5, 8.
stricta, 7.
suberosa, 7.
suberosa, 7.
superba, 6.
superba, 6.
surculosa, 7.
tricuspis, 6. tridens, 6.
triserrata, 6,
Turkestanica, 7. nmbraculifera, 7. vegeta, 7. viminalis, 7 . vulgaris, 7. Waboo, 4. Water, 1. Webbiana, 7. Wheatleyi, 7. White, 1. Winged, 4. Wredei, 6 Wrech, 5 .

```
A. Blooming in spring, before the lvs.:
    culyx not divided below the middle.
    B. Fls. on slender pedicels, droop-
        ing: fr. ciliate.
    c. Fr. glabrous except the ciliate
            margin: branches withont
                corky wings..................................cana
                            2. pedunculata
        cc. Fr. pubeseent: branches often
        with corky w'iugs ............
        3. racemosa
                            4. alata
BB, Fls, short-pediceled in dense
        clusters, not pendulous.
        c. Buds covered with rusty lairs,
        obtuse: fr. pubescent in the
        middle
                            5. fulva
        cc. Euls glubrous or paile pubes-
        cent: fr. quite glabrous.
        D. Li's. doubly sermate, very wn-
            equal at base.
                                    6. scabra
                                    7. campestris
        DD. Lvs. simply serrate, small,
        almost equal at the base...
        8. pumila
AA. Blooming in the axils of this year's
            los. in summer or fall: culyx di-
            vided below the middle.
        B. Les. simply serrate, small: な*.
        glabrous
        9. parvifolia
                                    10. crassifolia
                                    11. serotina
```

1. Americàna, Linn. ( $U$. álba, Rafin.). White Elm. Water Elm. American Elm. Figs. 2610, 2611, 2617, 2618. Tall, wide-spreading tree, attaining 120 ft ., usually with bigb, light gray trunk, limbs gradually outwardcurring with pendulous branches: branchlets pubescent when young, glabrous in fall: buds acute, glabrous: lvs. obovate-oblong, very unequal at the base, acuminate, doubly serrate, pubescent when young, at lengtb glabrous and rough above, pubescent or almost glabrous beneath, 3-6 in. long: fls. iu many-fld. clusters; stamens 7-8, exserted: fr. oval or elliptic, veined, deeply notched, incision reaching to the nutlet. Newfoundland to Fla., west to the base of the Rocky Mts. S.S. 7:311. Em. 2:323. G.F. $3: 443,467$; 6:175. Mn. 7, p. 125; 8, p. 71. V. 14:79; 20:10. M.D.(7. 1900:392-394. - One of the favorite avenue trees in the northeastern states. Tbe Elm varies considerably in liabit, and the following forms have been distinguished. The "vase form": the main trunk separates at 15 to 30 ft . into several almost equal branches, which diverge at first slightly and gradually, but at the height of $50-70 \mathrm{ft}$. sweep boldy outwards and form a broad, flat bead, with the branches drooping at the extremities. This is the most beautiful and also the commonest form. Fig. 2617. The "plume form" is much like the foregoing, but the trunk is less divided and the limbs form few feathery plumes or rarely one, The "weeping-willow form" usually has a rather short trunk with limbs curving outward more rapidly and with long and rery slender pendulous branches, forming usually a broad aud round head. The "oak-tree form" is distinguished by its limbs spreading abruptly and in sharp turns and the branches being usually less pendu. lous. The name "Feathery" or "Fringed" Elm is ap. plied to trees which have the limbs and the main trunk clothed with short, somewhat pendent branchlets thrown out usually in clusters at short intervals. This may appear in any of the forms named, but is most conspicuous in trees of the plume form. Fig. 2618. 'There are a few named rarieties in nurseries: Var. aùrea, Temple, with yellow foliage, found in Vermont by F. L. Temple; var. nàna, Hort., a dwarf, compact form, which may perhaps not belong to this species, and var, pendula, Ait., with slender pendulous branches.
2. pedunculàta, Foug. (U. lavis, Pall. IT. effìsa, Willd. $U$. ciliata, Ehrh. $U$. racemosa, Borkb., not Thomas). Tree, attaining 100 ft ., with spreading branches, forming a broad open bead: branchlets pubescent, usually until the second year: buds glabrous, acute: lvs, oval or obovate, very nnequal at base, acuminate, sharply doubly serrate, usually glabrous above, pubescent beneath, $2-4$ in. long: fls, slender-pediceled; calys with 6-8 exserted stamens: fr, ovate, notebed, the
incision not reaching the nutlet. Middle Europe to western Asia. - Rarely cultivated and with less valuable wood. The trunk and the limbs are, as in the American Elm, often clothed with short branchlets.
3. racemòsa, Thomas, not Borkh. Cork Elm. Rock Elm. Fig. 2619. Tree, attaining 100 ft., with short spreading branches, forming an obloug round-topped head: brauchlets pubescent nsually until the second year and mostly irregularly corky winged when older: buds acute, pubescent: Ivs, oval to ob-long-obovate, unequal at the base, shortly acuminate, sharply and doubly serrate, glabrous or somewhat rough above, pubescent beneath, 2-4 in. long: fls. in slender pendulous racemes ; calyx with 5-8 exserted stamens: fr. oral or obovate, with a shallow notch at the apex, pale, pubescent, $1 / 2-3 / 4$ in. long.

Ulmus racemosa. ( $\times 2$. )

2612.

2613. U1mus alata. ( $\times 2$.) Quebec to Tennessee, west to Nebraska. S.S. 7:312.
4. alàta, Michx. Wahoo or Winged Elm. Fig. 2613. Tree, attaining 50 ft ., with spreading branches forming an oblong, round-topped or rather open head: branches usually with 2 opposite very broad wings; bramehlets almost glabrous: buds acute, glabrous: 1vs. ovate-oblong to oblong-lauceolate, often falcate, acute or acuminate, douhly serrate, subcoriaceous, glabrous above, pubescent beneath, $11 / 2-21 / 2 \mathrm{in}$. long: fls. in short, fewfld. racemes; stamens usually 5 : fr. elliptic-ovate, with narrow wing and with 2 incurved horns at the apex, villous, $1 / 3$ in. across. Va. to Fla., west to 1ll. and Tex. S.S. 7:313. - Handsome round-headed tree, sometimes used as an avenue tree in the southern states; not hardy north.
5. fülva, Michx. (U. rìbra, Michx.). Slippery Elm. Red Ela. Figs. 2614,2615 . Tree, attaining 70 ft ., with spreading branches, forming usually a broad, open, flat-topped head: branchlets pubescent: lvs. obovate to oblong, very unequal at base, long-acuminate, doubly serrate, of firm texture, very rough above, pubescent beneath, 4-7 in. long: fls. in dense clusters; stamens 5-9: fr. orbicular-oval, little notehed at the apex, $1 / 2$ in. aeross. Quebee to Fla., west to Dakotas and Tex. S.S. 7:314. Em, 2:334. - The reddish brown pubescence of the bud-scales is very conspicuous in spring, when the buds are unfolding. An allied species similar in foliage and fr. is U. elliptica, Koch ( $\mathcal{U}$. Hegderi, Späth. U. Sibirica, Hort.), a native of western Siberia, Turkestan and Persia, with longer and larger Ivs. and grayish pubescent buds.

2614. Fruit of Slippery Elm-Ulmus fulva ( $\times 1 / 2$ ).
6. scabra, Mill. (U. montana, With. U. glabra, Huds.). Wych Elam. Scotch Elm. Fig. 2616. Tree, attaining 100 ft ., with spreading branches forming an oblong or broad round-topped head; without suckers:
branchlets pubescent: buds pulsescent, rather obtuse: lvs. very short-petioled and unequal at base, broadly obovate to oblong-obovate, abruptly acuminate or sometimes 3 -lobed at the apex, sbarply and doubly serrate, rougl above, pubescent beneath, 3-6 in. long: fls, clustered; stamens 5-6, little exserted: fr. oval or roundish obovate, little notehed at the apex, with the seed in the middle, $3 / 4-1$ iu. long. Europe to Japan.-A variable species of which many forms are cultivated; the follow. ing are some of tbe most important: Var. atropurpùrea, Späth. With dark purple foliage. Var. Belgica, Hort. Of vigorous growth, forming a broad pyramidal head; lvs. dark green. Var, crispa, Loud. (U asplenifolia, Hort.). A rather slow-growing form with narrow oblong curved lvs. incisely serrate with twisted teeth, giving the margiu a fringed appearance. Var. Dampièri, Koch. Similar to var, fastigiata, but with sleuder branches, smaller and lighter foliage. Var. Dampieri Wredei, Hort. Differs from the foregoing by its yellow young leaves. M.D.G. 1898:160. Var. Dovæí Hort. Of vigorous growth and upright pyramidal habit. Var. fastigiàta, Loud. (U, pyramidalis, Hort. UT, Exoniensis, Hort.). Of columnar habit with strictly upright branches and somewhat twisted, broad dark green leaves. Var, horizontalis, Kirchn. With horizontally spreading limbs and more or less drooping branches. Gn. 17, p. 539. M.D.G. 1901:163. Var. laciniăta, Trautv. Lvs. broadly obovate, 3 - or sometimes 5 -lobed at the

2615. Ulmus fulva.
( $\times 2$. )

2616. Ulmus scabra.
( $\times 2$ 2) wille apex, large, light green: branches little pubescent, light-colored. E. Asia. Var. nàna, Hort. D warf form. Var. péndula, Loud. (U. Cimperdowni, Hort.). CAMperdown Ela, Fig. 2619. With long pendulous branches, the limbs often spreading horizontally. Gu. 40, p. 158. Var. Pitteúrsi, Hort. Pyramidal tree of vigorous growth with deeply seriate lvs, often purplish when unfolding. Var. purpùrea, Koch. Lvs, purple when young, changing to dark green. Var. superba, Hort. Of vigorous growth, with large and long, dark green leaves. Var. tricùspis, Koch. (U. triserrata or trídens, Hort.). Lvs. obovate, 3 -lobed at the apex.
7. campéstris, Smith (U. suberòsa, Willd., U. surculòsa, Stokes). English Elsh. Tree, attaining 100 ft ., with spreading branches forming an oblong roundtopped or sometimes open head, usually producing suckers: branches little pubescent when young or glabrous, sometimes becoming corky: buds acute, pubescent or glabrous: lvs. distinctly petioled, broadly ovate to ovate-oblong, unequal at the base, acuminate, doubly serrate, usually glabrous and smooth above at length, pubescent or glabrous beneath, $1 \frac{112}{2}-5$ in. long: Hs, short-pediceled; stamens 4-6: fr. oborate, with the nutlet much above the middle, reaching almost the incision at the apex. Middle Europe and northern Africa to Japan. Em. 2:336. M. D. G. 1900:577. - This tree is often planted as an areuue tree; it succeeds very well and fine old trees may be occasionally seen in the northeastern states. The foliage remains green several weeks longer than that of the American Elm. U. campestris is

2617. One of many natural forms of the American Elm - the vase-form type. still more variable than the foregoing species and four vars., very distinct in their extreme forms and sometimes considered distinct species, can be distinguished.

Var. vulgaris, Planch. (U. suberosa, Ehrh. U. minor, Mill.). Small tree or shrub, with often corky branches: lvs. broadly oval or rhombic obovate, rough
above, pubescent beneath, $1-3$ in. long: fls, with 5-6 stamens: fr. ohovate to oblong obovate.

Var. màjor, Planch. ( $U$. major, Smith, not Reichb. U. satlva, Mill. U. (atifolia, Hort.). Large tree: lys. rather long-petioled, ovate to ovate- or obovate-oblong, usually glabrous and smooth or sometimes slightly rough above, pubescent beneath, 2-5 in. long: fls. with usually 4 stamens; fr. broadly obovate.

2618. A Feathered Elm-Ulmus Americana.

Var. Lævis, Spach (U. nltens, Mönch. U. gld̀bra, Mill., not Huds. U. carpinifollia, Lindl.). Tree without suckers: branches spreading, sometimes pendulous, not corky: lvs. ovate or obovate to obovate-oblong, glabrous and smooth above, glabrons or pubescent only at the reins beneath, $2-1$ in, long: fls, distinctly petioled. with 5-6 exserted stamens: fr, obovate.

Var. Japonica, Sarg. in herb. Tree, attaining $80 \mathrm{ft} .:$ branches light yellowish gray, covered with short pubescence when young: petioles densely pubescent, $1 / 2 \mathrm{in}$. long: lvs, oblong-obovate, glabrous above, grayish pu bescent beneath, 4-6 in. long: fls. almost sessile. Japan. G.F. 6:327. - This form very much resembles the American Elm in habit, foliage and pubescence, but the $t \mathrm{~s}$. and Ir. are like those of $U$. campestris; it may prove to be a distinct species.

The following are the most important horticultural forms: Var. Antárctica, Arb. Kew. TShrub or small tree, with slender often pendulous branches: lvs. slen-der-petioled, obovate, incisely donbly serrate, somewhat curled, $1-21 / 2$ in. long. Var. Antárctica aùrea, Hort. (U. campéstris eùret, Morr. UT, Rósseelsii, Hort.). Similar to the preceding but with yellow lvs. Var. Berádi, Sim.-Louis. Bushy shrub, with slender, upright branches: lvs. oblong to narrow-oblong, with few coarse teeth, 1/2-1 in, long; it belongs, perhaps, to Zelkowa. Var. Clémmeri, Hort. Narrow pyramidal tree with spreading short branches and oval, somewhat rough lvs. Var. Cornubiéneis, Lond. (var. Sarniénsis, Loud. U. Whèatleyi, Hort. U. strícta, Lindl.). Guernsey Elm. Cornish Elm. Tree, with short ascending branches forming a dense, narrow pyramid: lvs, rather small, broad, dark green, obtusely serrate. Var. corylifolia purpùrea, Hort. Lrs. large, purplish when unfolding, becoming bright green with reddish petioles, slightly rough above, pubescent beneath. Var. cucullàta, Loud. (Var. concavirfolia,Loud.). Lvs. curled, somewhat like a hood. Var, microphýlla péndula, Hort. With small lvs. and peurlulons branches. Var. monumentàlis, Rinz ( $I$. fastigiàta, Hort.). Montmental Elm. Of columnar habit: Ivs. rather short-petioled, with broad often almost simple teeth somewhat rough above. Var. myrtifolia purpurea, Hort., with small broad les. purplish when young, dark green later, sharply serrate and somewhat rough above. Var. pendula, Hort. With pendulous branches. Var. Rueppellii, Hort. Of compact habit, with corky branches and small foliage. Var. suberdsa, Loud. English Corky-barked

Elm. Branches corky: 1ss. rather small and rough above. Var. suberosa alàta, Hort, has very broad corky wings and var. suberósa péndula, Hort., has corky pendulous branches. M.D.G. 1901:166. Var, umbraculifera, Späth. Shrub or tree, with slender branches forming a dense, round head: lvs, small, obtusely serrate, rather smooth. H.D.G. 1900:579. Similar forms are U. Turkestánica, Hort., and U. Kodpmanni, Hort. Var. vegèta, Dipp. (I. montàu, var. vegèta, Loud.). Of vigorous growth, with bright green, large, oblongobovate lvs., somewhat rough above, supposed to be a hybrid of LT. eampestris, var. levis and IV. scabra, and has more the habit of the latter. Var, viminalis, Loud.
 Small tree, with slender spreading branches: JFs. elliptic to ohlong, incisely serrate, $3-3 \mathrm{in}$. long. Var. Wehbiana, Hort. Liss. small and broad, somewhat curled, dark green. There are also several variegated vars., of which var. argenteo-variegata, with the lvs. striped and spotted white, and var. Louis van Houtte, with yellow foliage, sometimes spotted green, are the most cultivated.
8. pùmila, Linn. (U, microplylla, Pers, U. Sibirica, Hort.). Small tree or shrub, with slender pubescent, sometimes pendulous brancbes: lvs. oval-elliptic to el-liptic-lanceolate, short-petioled, acute, firm, dark green and smooth above, pubescent when young beneath, 3/4-2 in. long: Hs, short-pediceled; stamens $4-5$, with violet anthers: fr, ohovate, with the nutlet somewhat above the middle, incision at the apex reaching about half way to the nutlet. Turkestan to Siberia and N. China. - A graceful small hardy tree. Var. pendula, Hort. (U. parvifòlia péndula, Hort. Plảnera rèpens, Hort.), has slender, more pendulous branches. [.pinnato-ramòsa, Dieck, with the slender branches very regularly pinnately branched, is probably only a form of this species.
9. parvifolia, Jacq. ( $I^{\top}$. Chinénsis, Pers.). ('hinese Elm. Half-evergreen small tree or shrub, with spreating pubescent branches: lvs, orate to oborate or oblong, very short-petioled and little unequal at base, acnte or obtusish, subcoriaceous, glabrous and glossy above, pubescent beneath when young, usually glabrous at length, 3/4-2 in. long: fls. short-pediceled in clusters: stamens $4-\overline{5}$, much exserted: fr. oval to elliptic, notehed at the apex, with the seed in the middle, $1 / 3-1 / 2 \mathrm{in}$. long. July-Sept. N. China, Japan.-Has proved hardy near Boston.
10. crassifòlia, Nutt. Cedar Ela. Tree, attaining 80 ft., with spreading limbs and slender, often pendulous branches, often furnished when older with 2 opposite corky wings: lvs. short-petioled, ovate to ovate-oblong,

2619. Camperdown Elm-Ulmus scabra, var, pendula.
usually very unequal at the base, obtuse or acute, doubly and obtusely, sometimes almost simply serrate, subcoriaceons, somewhat rough and lustrons above, puhescent beneath, $1-2$ in. long: fls. in few-fld. very short racemes; stamens $5-8$, little exserted: fr. oval-elliptic, pubescent, notched, $1 / 3 \mathrm{in}$. long. Aug. Miss. to Ark. and Tex. S.S. 7:315.-Tender north.
11. serotina, Sarg. Tree, with short spreading and pendulous branches, often furnished with irregular corky wings: lvs, oblong to obovate, unequal at the base, acuminate, doubly serrate, glabrous and lustrous above, pubescent on the reins heneath, $2-3 \mathrm{in}$. long: fls.
in $1 / 2-1$ in. long pendulous racemes; calyx 5 -6-parted to the base: fr. elliptic, deeply notcbed, deusely ciliate, $1 / 2 \mathrm{in}$. long. Sept. Tenn. to Ga.; sometimes planted in atvenues in Ga.; has proved hardy at the Arnold Arboretum, Boston.
「. Kèahi, Sieb, =Zelkova Keaki.-C. Terschaffètiii. Hort.= Zelkova Japonica, var. Verschaffeltui. Alfred Rehder.

UMBELLULARIA (from Latin umbella, a sunshade; having reference to the form of the iuflorescence). Lauracer. California Laurel. A mouotypic genus, comprising a siugle Pacific coast tree with alternate, simple, exstipulate lvs.: Als. small, greeuish, in simple pedunculate umbels, which in the bud are surrounded with an involucre of 6 caducous bracts; petals none; stamens 9 ; filaments with an orange-colored gland at base; anthers opening liy uplifted valves: fr. a subglobose or ovoid drupe with hard endocarp. Propagated by seeds.

gent describes it as "one of the stateliest and most beautiful inhabitants of the North American forests, and no evergreen tree of temperate regions surpasses it in the beauty of its dark dense crown of lustrous foliage and in the massiveness of babit which make it oue of the most striking features of the California landscape and fit it to stand in any park or garden,"

Joseph Burtt Dayy.
UMBRELLA LEAF. See Diphylleia.
UMBRELLA PINE. Sciadopitys.
UMBRELLA PLANT or UMBRELLA PALM. Cyperus alternifolius.
UNGNÀDIA (Baron Ungnad, ambassador of Emperor Rudolph II to the Ottomau Porte, who in the year 1576 introduced the common horse chestnut to western Europe by sending seeds to Clusins at Vienna). Sapindacece. A genus of one species, the Mexican Buckete, a small tree closely related to the horse chestnut but with foliage like a hickory, the lvs. being alternate and pinnate, and rose-colored fls. which are borne in small lateral clusters or simple corymbs, appearing with the lvs. in early spring. The seed, or "bean," has a sweet taste, but is considered emetic and poisonons. The fruit does not have a prickly husk like the horse chestuut: it is a smooth, leathery capsule and strongly 3 lobed. The fls. are about $3 / 8$ of an inch across, polygamous, 4 -petaled, and the staminate ones have 8 stameus. For fuller account, see Sargent's Silva.
speciosa, Endl. Spanish or Mexican Buckeye. Commonly a slender deciduous shrab, $5-10 \mathrm{ft}$. high or sometimes a small tree: wood brittle: lvs. alternate, odd-pinnate ; lfts. 5-7, orate-lanceolate, acuminate. Common in southwest Texas; winter-kills in northern Texas at a temperature of zero. S.S. 2:73. F.S. 10:1039. Gn. 19, p. 309.-Int. by P. J. Berckmans.
W. M.

## UNICORN PLANT, Martynia proboscidea.

UNIOLA (an ancient Latin name of some unknown plant, lerived from unus, one, and said to have been applied by Linnæus to this genus on account of the union of the glumes). Graminea. Perennials with creeping rootstocks. Species 5, all American. Spikelets broad and very flat, in loose panicles, several fld., with some of the lower glumes empty; glumes keeled. nerved, pointed, but awnless. Cultivated for the ornamental panicles, which are suitable for dry bouquets.
latifollia, Michx. Spike-grass. Fig. 2621. Culms 2-4 ft.: lvs. broad and flat, often 1 in . wide: spikelets large and thin, at maturity drooping on slender pedicels, forming a very graceful and ornamental panicle. Pa. to Kan. and southward. -Often grown in hardy borders. Oue of the best of our hardy native, perennial grasses.
paniculàta, Linn. SEA OATs. CuIm taller, $4-8 \mathrm{ft} .: 1 \mathrm{lvs}$. narrow and convolute: spikelets narrower, upright on short pedicels, forming an elongated panicle. Sandhills along the seashore of the southern states.

## A. S. Hitchcock.

URARIA (Greek oura, tail, referring to bracts). Legumindsce. Eight species of perennial herbs with woody bases, all of which are accounted for in the Flora of British India. They have 1-9 lfts. and very numerons, small or minute fls. in racemes. Standard broad: wings adhering to the obtuse keel; stamens diadelphous: ovary sessile or short-stalked, few-o vuled: style inflexed: pod of 2-6 small, turgid, 1-seeded, indehiscent joints, often placed face to face.

The following species is the most desirable of the genus. It grows about 5 ft . high and is crowned by a single terminal raceme sometimes 2 ft . long, densely
crowded with 200 or more pea-sbaped fls. each $1 / 2 \mathrm{in}$. long. In the Flora of British India this plant is erroneonsly said to ascend the Himalayas to an altitude of $9,000 \mathrm{ft}$. A corrected account of this plant is found in B.M. 7377, from which source one infers that the plant is not hardy. The first plants flowered in Europe bloomed in September and the annual stems then died down to the base. Seeds of this plant have been im . ported by a northern amateur who has a winter home in Florida,
crinita, Desv. Erect, little-branched, subshrubby perennial, $3-6 \mathrm{ft}$. high, distinguished from other species by having its upper lvs. composed of $3-7$ oblong lfts. and pedicels clothed with long bristles. Lfts. $4-6 \times 11 / 2-2$ in.: racemes dense, 1 ft . long, $1-1 \frac{1}{2} \mathrm{in}$. thick; standard orate, violet-parple within, pale blue ontside: wings pinkish. Bengal to Assam, eastward through Burma to China, south to Malacca and the Malay 1slands to Timor Laut, but not Anstralia and not indigenous in Ceylon. B.M. 7377.
W. M.

2621. Uniola latifolia $(\times 1 / 4)$. (See page 1883.)

URCEOGCHARIS (bybrid name, suggesting that the plant is a hybrid between Ureeolina and Eucharis). Amaryilidacee. The only species, Urceocharis Clibrani (see Fig. 2623) is a tender winter-blooming bulbous plant with broad lys. a foot long and balf as wide and large, white, bell-shaped, 6-lobed Howers, a dozen or so in an umbel, and each 2 in . across. The plant is a
hybrid, introduced about 1892, between Lrceolina penduld and Eucharis grandiflora, or in gardener's language L'rceolinu aurea and Euchuris Amazonica. A Hower of the hyhrid and of each of its parents is shown in Fig. 2622, The hybrid gets its white color from Eucbaris, the flowers of Urccolina being yellow. The shape of its flower is so singular a mixture of the two as to be very different in appearance from either. The hyhrid lacks the beautiful staminal cup of Eucharis, and has a distinctly hell-shaped perianth. The showy part of Urceolina is the urn-shaped portion of the flower, the spreading tips being very short. The perianth of Eucharis is fnnnelform, the spreading portion being large and showy. The perianth-tube and ovary of the hybrid are like those of UTrceolina, the ovary being deeply 3-lobed instead of globose as in Encharis. The pedicels are ascending, as in Eucharis, not pendulons as in Urceolina. The appendages at the base of the stamens are more distinctly marked than in either of the parents.

The parents of Urceocharis belong to the Pancratium tribe, characterized by having the stamens appendaged toward the base and often united into a distinct cup. Twelve of the 17 genera in this tribe are from the Andes and 8 of these, including Eucharis and Urceolina, have broad and petioled lvs, and the ovnles are superposed. Encharis and Urceolina bave a long, slender tube which is suddenly swollen above. The flowers of Encbaris are white and those of Urceolina colored, but the essential difference between the two generalies in the stamens, which are minutely appendaged in UrceoJina, while in Encharis they are quadrate and sometimes united to make a cup.

This bigeneric hybrid was introduced to the trade under the name of Eucharis Clibrani, but the changes wrought in the structure of the flower by the cross are so great that Dr. Masters was justified in giving the plant a new genus.

Clibrani, Mast. (Eùcharis Cllbrani, Hort.). Tender bulbons hybrid of Vrceolina pendula and Eucharis grandiflora, with petioled lvs. $1 \times 1 \frac{1}{2} \mathrm{ft}$. and umbels of white bell-shaped 6 -lobed fls. each 2 in, across and a dozen in an umbel. Anthers depauperate. Blooms in early winter. For reulture, see Erceolina. G.C. Ill. 12:215; 26:251. Gn. 44, P. 459. G.M. 35:790.-]nt. about 1892 by Messrs. Clibran, Oldfeld Nurseries, Altrincham, England.
W. M.

URCEOLINA (Latin, pitcher; alluding to the pitcheror urn-shaped flowers). Amarylliddcem. A genus of 3 species of South American bulbons herbs, with thin oblong to long-lanceolate, petioled leaves and a naked scape bearing an umbel of pendulous red or yellow flowers. Perianth-tuhe often narrow and often somewhat stem-like at the base, suddenly dilated; stamens inserted at or below the throat of the tube, indistinctly appendiculate at the base.

The species of Ureeolina are attractive plants and easily grown, flowering every year, but for some reason they are rather scarce. The bulbs are about 3 in . across and during the growing season have 1 or 2 lvs. The plants flower in December. After flowering the bnlbs may be removed from the stove to the intermediate house and placed in a spot where they will be kept dry. Jnst before growth begins in the spring the bulbs shonld be taken out of the pots and the exhausted soil removed. The bulbs may then be replaced, one bulb in a 5 -in. pot, using clean pots, plenty of drainage material and a rich, light, porous soil. Place the top of the bulb level with the soil. Remove the pots to the stove, and as soon as growth begins water freely. In tho fall when the lvs, turn yellow, water sparingly and finally withhold water altogether. The flower seapes appear a few weeks after the lrs. disappear.
A. Fls. red.
miniàta, Benth. \& Hook. (Pentlándia minì̀ta, Herb.). Bulb abont $1 \frac{1}{2}$ in. throngh: lvs. produced after the fls., short-petioled, about 1 ft . long, $1^{1 / 2}$ in. wide, narrowed at both ends: scape over 1 ft . long: fls, $2-6$, bright scarlet. Andes of Peru and Bolivia. B.R. 25:68. R.B. 23:49.-Offered by Dutch bulb-growers.

## AA. Fls. yellow.

péndula, Herb. ( U. à̀̀rea, Lindl.), Bulb about $1 \frac{1}{2} \mathrm{in}$. through: Ivs. 1-2 to a stem produced after the fls., oblong, acute, I ft. long by $4-5 \mathrm{in}$. broad: scape about Ift. long: fls, 4-6, bright yellow tipped with green. Andes of Peru. B.M. 5464. G.C. I11. 12:211.

> F. W. Barchay and Robert Cameron.

URERA (meaning not obvious). Urticàceop. About 18 species of shrubs and small trees, rarely subshrubs, native to tropical regions, with alternate lvs., entire or variously cut, palmately or pinnately nerved, and numerous small fls. borne in cymes which are often repeatedly forked. DC. Prod. vol. 16, part 1, pp. 88-98 (I869). The following has been offered in America as an ormamental greenhouse shrub.
of flowers. The seeds of Urginea are numerous in each locule (in the Sea Onion 10-12), strongly compressed and winged; in Ornithogalum and Scilla tbey are not compressed or winged and in Scilla they are solitary or few in each locule. Urginea is a genus of 40 species of bulbous plants native to the eastern hemisphere. Typically, the species have narrow or lorate lys. which follow the As., and racemes of umerous whitish, rarely pale yellow or rosy fis., exch segment of which is keeled with green or purplish. Monographed by J. G. Baker in Latin in Journ. Linn. Soc. 13:215 (1873). At that time Baker recognized a total of 24 species, but in Flora Capensis 6:462 (1896-97) he describes 27 species from South Africa alone.
The bulbs of Urginea are collected in large quantities in the Mediterranean region for the drug trade. They sometimes attain a maximum weight of 15 pounds. The bulbs contain about 22 per cent of

2622. At the left. Eucharis grandiflora; next, Ureeolina pendula; at the right, the hybrid Urceocharis Clibrani. All half size. sugar aud are used in Sicily in the manufacture of whiskey. Squills have emetic and eathartic properties. Syrup of squills is a populax croup medicine. The bulb, as it appears in the wholesale drug market, has been deprived of its outer scales and cut into thin slices, the central portions being rejected.

Scilla, Steinh. (U. maritima, Baker). SEA ONION. Squile. Height I-3 ft.: bulh 4-6 in. thick: Ivs. appearing after the fls., lanceolate, somewhat lleshy and glaucous, glabrous, $1-1 \frac{1}{2}$ ft . long, 2-4 in. wide abore middle: racemes $1-1 \frac{1}{2} \mathrm{ft}$. long, $1-1 \frac{1 / 2}{i n}$. wide, $50-$ I00-fld.: fls. $1 / 2$ in. across, whitish, with the oblong segments keeled greenish purple. Autumn. Cana- ries to Syria, S. Africa.
alceæfdia, Gaud. (Urtica Caracasdua, Jacq.). Tree or shrub: lvs. broadly ovate, acuminate, basal sinus wide and open, crenate-dentate: fls. dicecious, in regularly dichotomous cymes; male cymes 4-6 times dicbotomous, stinging or not, rose-colored: female fls, many times dichotomous, the fls. solitary or in 3's. Trop. America.
V. M.

URGINEA (from the name of an Arabian tribe in Algeria). Lilideer. The SEA Onion, known to drug stores by the name of Squill, and to gardens as Erginea maritima, is a bulbous plant native to the Mediterranean region, which grows 2 or 3 ft . high and has a long raceme of small, whitish, 6 -parted flowers. The raceme is often $11 / 2 \mathrm{ft}$. long and contains $50-100$ or more fls . each $1 / 2 \mathrm{in}$, across. It has the same style of beauty as Ornithogalum pyramidale but unfortunately it is only halfhardy. As an ornamental plant it is little known in America. The name seems not to appear in American catalogues, but the Dutch bulb-growers offer the bulbs in at least 5 sizes. A plant erroneously called Sea Ouion is Ornithogalum caudatum. There is considerable difference of opinion as to when the Sea Onion blooms, but the plant is generally considered an autumn bloomer, and it is clear that the leaves appear after the flowers. In England the plant is said to have flowered as early as July and August. Baker writes that the lvs. appear in winter. Some English cultivators say the lvs. appear as early as October and November; others say not until spring. The plant grows near the seashore and inland, in dry sandy places from the Canaries to Syria. It is also found in South Africa, which is unusual, as the North and South African species of any genus are not usually identical.

The proper name of the Sea Onion is Urginea Scillu. The plant is closely related to the genus Scilla, but in the opinion of the undersigued it is much closer to Ornithogalum, especially in babit, inflorescence and color
B.M. 918 (as Ornithogalum Squilla). W. M.

URSiNIA (John Ursinus, of Regensburg, 1608-1666; author of "Arboretum Biblicum"). Compósito. Here belongs the hardy annual known to the trade as Sphenogyne speciosa. It grows about a foot high, has finely cut foliage and yellow or orange flower-beads $11 / 2-2$ in. across. The heads have about 22 rays. Both yellow and orange-colored flowers are sometimes found on the same plant. When well managed it blooms all summer. It is supposed to be a native of the Cape. It has beeu in cultivation since 1836 but was not correctly described until 1887. It is minch praised hy connoisseurs, though it is not known to the general public. It seems to have enjoyed a longer continuous period of cultivation than many other showy composites, in which the Cape is wonderfully rich, particularly in subshrubby kinds. In Flora Capensis, vol. 3 (1864-65), Sphenogyne and Ursinia are treated as separate genera, the distinctions being as follows: the akene is cylindrical in Sphenogyne, but obovate or pear-shaped in Ursinia, distinctly tapering to the base: the pappus is uniseriate in the former, biseriate in the latter, the inner series consisting of 5 sleuder white bristles. In the course of time these distinctions have been dropped and Sphenogyne ineluded in Ursinia.

Ursinia is a genus of about 60 species, all native to S. Africa. One species, $U$. annaa, is also found in Abyssinia. Tbe species are annuals, perennials or subshrubs: lis, alternate, serrate, pinnatifid or usually pinnatisect: rays the same color on both sides or purplish brown beneath: involucre bemispherical or broadly campanulate: akenes often 10 -ribbed. For further particnlars, see Flora Capensis, vol. 3. There are said to be many otber desirable species besides the following:
púlchra, N. E. Br. (Sphenogyne speciosa, Knowles \& Westc.). Annual, 1-2 ft. high. with lvs. bipinnately
dissected into linear lobes and yellow or orange fl. heads 2 in. across: rays ahout 22, 3 -toothed, spotted purple-brown at base: stem glabrous, branched: Ivs. alternate: scapes nearly leafless, abont fire times as long as lvs.: involucre 4 -rowed; scales increasing in size from the base, onter rows with a brown scarious border, inner with a white scarious border. F.U. 2:77. P.M. 6:77. G.C. 1II. 4:356. Gn. 44, p. 217. R.H. 1843:445.
W. M.

URTICA (Urticacea) is the genus containing the nettles. For l. Caracasuma, se屯 Irera. IV. Nivea is Ramie or Silver China Girass, properly Bohmeria nivea, which see. As Ramie is a fiber plant, not a horticultural subject, it is not fully treated here, the student being referred to the publication of the office of Fiber Investigations, U. S. Dept. Agric., Washington, D. C.

UTAH, HORTICULTURE IN. Fig. 2623. While the area in Utah devoted to fruit-growing is very small compared to the area of the whole state, there are few states in the Union which surpass Utah in the number of kinds grown. Beginning in the northern part of the state, in the vicinity of the agricultural college at Logan, the fruits of the cooler temperate regions flourish, most varieties of apples and pears succeeding well many sorts of ploms and cherries thriving and even the hardier peaches giving a fair number of crops as compared to the years of failure. The chief difficulties here are, first, the short season, which does not admit of the ripening of fruits that require more tine for their development than the Concord grape, for example, and second, the great liability to late spring and early autumn frosts.

Throughout the entire state the annual rainfall is very light, and what little precipitation there is falls for the most part during the winter season in the form of snow, so that practically no fruit is grown within the borders of the state withont irrigation, and this is a factor which determines to a rery great extent the sections and even the particular localities devoted to fruit-growing. The conditions in the Cache ralley illustrate this point. This region is a mountain valley lying in the heart of the Wasatch range of the Rocky Mountains in the northern part of the state, and is some 60 miles long by 12-18 miles wide. The soil of this entire valley, with the exception of a few alkali areas and some boggy districts, is well suited to fruit-growing, but the rivers which furnish the water for irrigating all enter the valley from the eastern side, and as the land slopes from both sides to the center of the valley it is impossible to conduct the water on to much land that might otherwise be profitably ased for fruit. Artesian wells supply water to some lands to which the river waters cannot be brought, but here again the difficulty is that comparatively few sections of the state are blessed with the possibility of having artesian wells.

The earlier Mormon settlers of the state inaugurated a system of irrigating canals, which, considering the means at their command, were wonderfully effective. More recently, the Bear River Canal Company of the northern part of the state and several other large corporations have expended great sums of money in putting in dams and dirging canals, by means of which large areas of land which had previonsly grown nothing but a good quality of sage-hmish have been changed into good farms. In order to increase the sale of these lands many orchards hare been set. These operations have served as a wonderful stimulus to the fruit-growing industry.

In all the northern portions of the state where late frosts are likely to occur and injure the fruit erop, what are known as the "eañon winds," become very important factors in the success of fruit plantations. These winds begin blowing daily about eight o'clock in the evening and continue all night and nntil six to nine o'clock the next morning. They are almost as regular as clockwork. They come from the cañons and blow with such force as to necessitate thick wind-breaks to protect all orchards within a mile or two of the cañon's mouth. But gradually they spread out over the lower lands in a fan-shaped area, their force lessening as the
distance from the cañon increases, though still sufficiently strong to prevent the cold air from settling and producing frost. So marked is their influence apon the occurrence of frosts that it is no uncommon thing after a cold night in the spring or antumn to find that while the plantations in the districts influenced by the cañon winds have come throngh without injury, yet just around a spur of the monntain out of reach of the wind, the blossoms have nearly all been injured. Perhaps in

2623. Map of Utah.

Shaded parts show horticultural areas.
time satisfactory varieties may be dereloped which will bloom late enough to avoid this danger, but as yet the problem of frosts is even more difficult to solve than that of water.

Ancther factor which has contributed in the past toward restricting the areas devoted to fruit is the manner in which the early settlements in the state were located. The pionetrs settled in rillages, each man being allotted a small piece of land on which the home was built and the garden and small family orehard established. Then on the outskirts of this village, and extending sometimes as far as ten miles from it, were located the farms proper, which were allotted to the residents of the village, so that even in what may be called the strictly farming districts of the state the people lived in villages and drove out to cultivate their farms. Naturally the fruit plantations which needed the personal and constant oversight of the owner to insure a crop or at least a harrest, were confined to the plantation in the village and the farm was given over to grains and hay crops. It is only in the comparatively few distriets where the village system did not obtain, or within more recent years when it has been somewhat abandoned, that the larger available areas of the farms have encouraged the planting of larger orchards.

So far as most insect pests are concerned, the Utall fruit-grower is neither more nor less fortunate than his brothers of other states. It is true there was a time when the somewhat isolated poxition of the state seemed to warrant the helief that it would escape from the inroads of many of the pests which troubled growers elsewhere, but with the advent of better transportation
facilities and the increase of truit plantations, the standard insect enemies hare one after another entered the borders of the state. But, on the other hand, in the matter of fungous diseases the state is singularly fortunate, there being in most sections comparatively little trouble from them. Doubtless the dry atmosphere of Utah is responsible for this.

It seems probable that the state will nerer enjoy a large local market, though the mining industry will insure a fair one, but its mountain climate seems to give a superior quality to the fruit grown and with the zuore general adoption of better methods there is no reason why fruit-growing in Utah should not take its place as one of the chief branches of the agriculture of the state.
F. C. SEARS.

Another View of Utah. - In Cache valley, apples, pears, American plums and sour cherries do exceedingly well. Peaches are grown there in a small way. The temperature in winter is often lower than $20^{\circ}$ below zero, and that, together with late frosts, is the reason of the failure of the peach cxop. In 1899-1900 the lowest teruperature was $10^{\circ}$ below zero, and the following winter the lowest temperature was about $2^{\circ}$ below zero, and each of these winters was followed by a full crop of peaches.

In the valley next south of Cache valley, peaches and apricots are grown very successfully at Brigham City. At Ogden there are a few of the European grapes, but they are protected during the winter by being laid down and covered with earth. Even with this protection the vines are badly damaged by freezing, as is indicated by large, corky swellings often called black knot of the grape. Sweet cherries and native grapes do very well in certain localities in this section. There are a few hardy almond trees near Ogden. Farther south, at Provo, there is at least one vineyard of Vinifera grapes in which the vines are pruned similar to the Californian system, except that the trunks are only a few inches high. These vines are protected with a covering of earth during the winter. Apples and pears do Fery well from Cache valley in the north, through the portions mentioned above, to Provo, and for some distance farther south. It is very probable that all hardiest varieties of apples and pears would do well in Beaver, Iron and Sevier counties, but as yet very little has been done with them because of the long and extremely cold winters. In many portions of these counties the elevation is 6,000 feet.

The climate of Washington county, in the southwestern corner of the state, is very mild, but is not so mild as that of most of southern California. The temperature in wiuter occasionally reaches zero. Vinifera grapes, figs, pomegranate and almonds grow there successfully without artificial protection. No attempt is made to grow oranges and lemons. Peaches and apricots grow to perfection in this region when any attention is given to the trees. This seetion was U'tah's most noted fruit district from ten to twenty years ago, but so little care has been giveu to fruit trees that the orchards have gone to ruin. At present the principal oceupation there is the growing of alfalfa and stock, but the improved methods of fruit-growing will probably be practiced soon. For further notes ou fruitgrowing in Utah, see Hedrick, Proc. Amer. Pomological Society, session of 1899 , p. 295.
C. P. Close.

UTRICULARIA (Latin, a little bag or skin; referring to the bladders). Lentibulariacee. Bladmerwort. Utricularia is a genus of herbaceous plants possessing little bladders which trap small aquatic animals. The bladders hare a valve-like door through which the animals enter when looking for food or when trying to escape from other creatures. The bladders are most numerous and effective in the species which float in stagnant water. They are fewer in the marsh-inhabiting species. The terrestrial kinds often have minute, deformed and useless bladders. The aquatic species are characterized by much dissected lis. with thread-like segments, a type of foliage seen in the water crowfoot and other floating plants of widely different families. They are quite devoid of roots. The terrestrial kinds are common in the tropics and are characterized by erect foliage of the ordinary type. These often form
little tubers by which they may be propagated. Our native aquatie species propagate themselves by seeds and also by winter-buds. (A winter-bud of another aquatic plant is figured under E'lodea, p.528).

The aquatic species are sometimes cultivated in aquaria, but their flowers are not showy, nor are those of any of the hardy kinds. The showy species are the terrestrial and epiphytic kinds of the tropics. These, for complexity of floral structure, beanty of color and lasting qualities, vie with certain orchids. In fact, they are generally grown by orchid lovers in orchid houses. Perhaps the most desirable of the genus are $U$. montana, Endresii and lougifolia, each of which represents a different color. Welk-grown baskets of these plants have numerous scapes a foot or so bigh bearing $5-20$ fis., each $1 \frac{1}{2}-2$ in, across. Iu general, such plants are grown in warm houses, $L_{\text {. Endresii requiring a stove }}$ temperature, while some of the others may thrive in an intermediate house. As a class they are grown in baskets, near the light, using a compost of fibrous peat and sand. The plants are kept constantly wet during the growing season and uutil the fls, are gone. During the winter they are rested, being kept in a cooler place and given just enough water to keep the ubbers from shriveling.

The epiphytie species deserve a word. Those who are familiar with bromeliaceous plants know how the water gathers in the axils of the leaves. These bromeliads are themselves often epiphytic, perching on high trees in moisture-laden tropical jungles. In the miniature ponds supplied by the leaf-axils of Vriesia and other bromeliads live certain Utricularias with fully developed and effective bladders. Occasionally they send out a long "feeler" or runner-like shoot which

2624. Utricularia longifolia ( $\times$ 1/4).
finds another bromeliad and propagates another Bladderwort.

Utricularias hare numerous slender, wiry scapes bearing one or many flowers. Calyx large, 2 -parted or 2 lobed: corolla with a spur which is usually long and curved under the fl. ; posterior lip erect, entire, emarginate or 2-fid: anterior lip often large, broad and showy, spreading or reflexed, entire, crenate or 3-lobed, or the middle lobe rarious. About 150 species.
A. Habit aquatic: foliage dissected into numerous thread-like segments: lis. floating.
vulgaris
AA. Habit terrestrial or epiphytic: foliage entire, erect.
B. Cotor of fls. white, with a yellow palate
BB. Color of fls. yellow, with "n orange palate...................................
вв. Color of fls, purple, violet or lilac, with a yellore palate.
в, Los. broader then long.
c. Shape of lus. reniform.
D. Fls. pale blue or tilac

DD. F'ls, rose-colored
janthina
cc. Shape of les. obcordate.
reniformis
cc. shape of trs. obcordute............. Humboldtii
bв. Los. long and narrow, linear, ob long or lanceolate.
c. F'ls. pale lilac...
cc. Fls, violet-purple.

Endresii

longifolia
vulgàris, Linn, IIardy native aquatic plant, with crowded, $2-3$-pinnately divided floating lvs. $1 / \frac{\mathrm{in}}{} \mathrm{in}$. long, provided with numerous bladders and yellow fls. $1 / 2$ in long or more, borne in 3-20-fld. racemes. June-Aug. Brooks and ponds, Eu., Asia, N. Amer. B.B. 3:191. Gn. 28, p. 403 .-Advertised by American aquatic specialists and collectors of native plants.
montàna, Poir. Tropical American epiphyte, with clusters of tubers $1 / a-1 / 2 \mathrm{in}$. long, minute, deformed, useless bladders and large white fls. with a yellow palate, the fls. $1-4$ on a scape, each $11 / 2 \mathrm{in}$. across. Lvs. 4-6 in. long, elliptic-lanceolate. Trunks of trees, West Indies and S. Amer. B.M. 5923. F.S. 19:1942. I.H 18:64.-A lovely species.
bifida, Linn. Terrestrial species from tropical Asia, with minute bladders and small yellow fis. resembling a diminutive Linaria or Butter and Eggs. Lvs, densely matted, erect, thread-like, 1-2 in. long: Als. yellow, with an orange pale, $3 / 8 \mathrm{in}$. long, $5-8$ in a raceme: pedicels drooping in fruit. India, Malaya, China, Japan, Phil ippices. B.M. 6689. - Once cultivated at Kew.
janthina, Hook. Epiphytic Brazilian species growing in the leaf-axils of a bromeliad (Vriesia), with kidneyshaped lvs. and beautiful pale blue or lilac fls. $1 \frac{1}{2} \mathrm{in}$. across, ornamented by 2 vertical yellow lines on the palate edged with dark riolet. Lrs. with stalks 4-6 in. Jong and blades 2-4 in. across: scape about 6 -fld.: up. per lip hemispheric, arching: lower lip transversely oblong, entire. B.M. 7466.-Int. by Sander, 1892. "Janthina" is the same as "ianthina," meaning violetcolored.
renifórmis, A. St. Hil. Brazilian species found in sphagnum bogs, having kidney-shaped lvs, and rosecolored Als. with 2 darker lines on the palate: upper lip truncate, emarginate; lower lip 3-lobed, the latcral lobes broad, the midlobe much shorter and scarcely produced. Brazil.-Once advertised by John Saul, but probably tost to cultivation. Very large for the genus, the lvs. $1 / 2-1 \mathrm{ft}$. long and scapes $11 / 2-2 \mathrm{ft}$. high.
Húmboldtii, Schomb. Guiana species, with long. stalked, cordate or ohcordate, mostly solitary lvs, and dark purple-blue fls. $2 \frac{1}{2}$ in, across, with a triangular lower lip. Seapes about 5 -ld. F.S. 13:1390.-One of the showiest species. Commonly cult. in Eng., apparently not in America.
Endresii, Reichb. Epiphytic Costa Rican species, with tubers about $1 / 4 \mathrm{in}$. long, solitary lvs. and pale lilac fis. $13 / 4-2$ in. across, with a yellow palate: lvs. 1-3 in. long, narrowly elliptic-lanceolate: scape about 5 -fld. B.M. 6656. Var. majjus, Hort., was offered by Pitcher \& Manda, 1895.-A deciduous species found at altitude of 2,000 feet
longifolia, Gardn. Fig. 2624. A Brazilian species, the typical form of which is perhaps net in cultivation. UT. Forgetiina, Hort., introduced by Sander, is said by the Kew authorities to be a form of this species and the same as the plant figured in Gn. $52: 1132$ (adapted in Fig. 2624) under the erroneous title of $U$. latifolia. It has beautiful riolet-purple ths. nearly 2 in , across, with a yellew
palate. Lrs. lanceolate, erect: scapes $12-20$-fd. and fls. last well. G.C. 1II. 13:713. W. M.

UVULARIA (Latin, uvule, palate, referring to the banging Howers). Liliàcere. Bellwort. "Wild Oats" in some parts. A genus of two species of rery graceful woodland, perennial berbs native to North America. The plants grow about 15 in . high, with a number of clustered slender stems which are forked and leaf beariug mainly above. Thefoliage is of a delicate green, which with the terminal, narrow, bell-shaped, drooping flowers make the plants clegant though not showy. The species are perfectly hardy and easy of cultivation in any light, rich soil and a shady situation. They do well north of a wall in a well-prepared border and in such a position they far exceed the plants of the woods in luxuriance. Strong roots may be slowly forced for spring flowering. For distinction from Oakesia, see that genus, to which some of the plants commonly known as Uvularias are referred.

2625. Bellwort - Uvularia perfoliata $(\times 2 / 3)$.

## A. Lis. pubescent beneath.

grandiflòra, Sm. Stems 1-1 $1 / 2 \mathrm{ft}$. high, with 1 or 2 lvs. below the fork: lvs. oblong, oval or ovate, somewhat acuminate: fls. pale yellow, $1-11 / 2 \mathrm{in}$. long; segments usually smooth on both sides: stamens exceeding the styles: capsule obtusely 3 -angled, truncate. May, June. Rich woods, Quebee to Minu. south to Ga., Tenn. and 1a. B.B. 1:409.

## AA. Lvs. not pubescent beneath.

perfoliàta, Linn. Fig. 2625. Stems more slender than in $U$. grandiflora, with 1-3 lvs. below the fork: ivs. oval, obleng or ovate: fis. pale yellow, about 1 in . long; segments glandular papillose within; stamens sherter than the styles: capsule obtusely 3 -angled, truncate. May, June. Rich woods, U. S.
J. B. Keller and F. W. Barclay.

VACCINIUM (classical Latin name of the European Whortleherry; etymology uncertain). Ericacece. Including Brberry, Blueberry, Huckleberry, Whortheberfiy, Cranberry. Branching shrubs, creeping vines or small trees, sometimes epiphytes: lys. alternate, evergreen or deciduous, coriaceous or membranaceous: Hs. small, white, pinkisb or reddish, in lateral racemes or terminal clnsters, sometimes solitary in the axils, mostly noilding on slender-bracted pedicels and bearing blne, hlack or red berry-like fruits, mostly edible; calyx $4-5$-toothed, adherent to the ovary, persistent, forming a crown-like appendage to the fruit; corolla various in shape, usually campanulate, cylindraceous or urn-shaped, rarely subglohose, 4-5-toothed or cleft; stamens twice as many as the lobes of the corolla, distinct, included within the corolla-tube or exserted; authers often 2-awned at the back, the cells separate and prolonged upward into tubes at the apex, opening by terminal pores or chinks; pistil single, with a 4-5. or 8-10-loculed orary, which is glabrous or hirsute. Flowers borne in spring with or before the leaves; herries ripe in summer and antnmn, sweetish or sometimes acid, mostly edible. The genus includes about 125 species of wide geographic distribution, extending from the arctic circle to the high mountains of the tropies; most common in North America and the Himalayas. With very few exceptions (e. g., V. erythrinum in Java and Emirnense in Madagascar) the genus is unrepresented in the southern hemisphere and in the lower regions of the tropies.

There is much confusion in the popnlar names applied to these fruits. The terms "Bilberry" and "Whortleberry" usually mentioned as "common names" by American writers are seldom or never heard among the common people in this conntry; while "Hackleberry" is often nsed indiscriminately for plants of this genus and for the Gaylussacias. In the central states the term "Huckleberry" is usually applied to $V$. corymbosum, while "Blueberry" is giveu to the lowgrowing species, like F. Canadensis and Pennsylvanicum. In New England, "Huckleberry" is reserved for species of Gaylussacia, while "Blueberry" is applied to the lower growing species as ahove, and "High-bush Blueberry" to $\boldsymbol{V}$. corymbosum. The red-berried species are, in generul, referred to as "Cranberries."

Among the plants which lend tone to the landscape in Octoher and November by reason of their bright foliage, many of the species of Vaccinium may he included, -the brilliant red, crimson and orange colors often persisting much longer than the bright-hued leaves of a majority of other plants. Of the ornamental species none are more strikingly beantifnl late in the antumn than the common High-bush Blueberrs, $V$. corymbosum. When well grown it is a stont, thick, spreading bush $8-10 \mathrm{ft}$. high. The plant is beautiful when in flower; the fruit is attractive and of the hest quality, and the bright scarlet and crimson effects in late autumn, rivaling the sumach in brilliancy, are unsurpassed. As an ornamental plant the species deserves a place in every garden. 1 . Pennsylvanicum also brightens waste places for a short time, but drops its f.lliage too early to be worthy of planting as an undershrub. The same is true of I. Canadense, which is in many respects similar. 1. stamineum, though early deciduous, is attractive when in bloom and throughout the summer, by reason of its graceful babit. Though usually found on gravelly soil, it will thrive in any good garden soil, and it is one of the very few ornamental shrubs specially suited for densely shaded situations. It has the pecnliarity of never forming a true flower-bud, the blossom heing open from the first. I. arboreum forms an irregular shrub too diffuse and straggling to be of value except in masses at the South. $V$. hirsutem is as beautifnl in its auturun coloring as is $V$. corymbosum and, like that species, retains its foliage late in the season. J'. I'itis-Idea and uliginosum, with
their shining box-like foliage, are effective as edging for the shrubbery border.

In the wild state the Blueberry was originally worthier of notice than was the blackberry, raspberry or currant, bnt the natural smpply is so ahundant that little attention has been given to garden cultivation. At the Maine Agricultural Experiment Station systematic work is in progress, and several instances of successful amateur cultivation are recorded from Massachusetts. The plants of some species are very susceptible of improvement under good cultivation; the best in order of merit being $V$. corymbosum, vacillans and Canadense. The bushes should be transplanted in the fall and treated minch the same as currants. Any good garden soil is suitable.
Of all the American species used for food, the most important are, V. corymbosum, Pennsylvanicum, Canadense and vacillans. The first of these, the High-bush Blueberry, or Swamp Blneberry, or "Huckleherry" of the middle west, is of firm texture, good size and excellent flavor. The shrub is easily transplanted, grows rapidly on any good soil, and more than any other species shows a marked teudency to vary in the size, shape and quality of its fruit. It is the natnral starting point in attempts to add the Blaeberry to the list of cultivated fruits. Daring the past few years it has received considerable attention as a garden frnit, especially in New England. The other species named grow mostly on uplands, - I. Pennsylvanicum, especially, on dry sandy "barrens"-and form the bulk of the Blueherry crop as seen in the cities or at the canning factories.
In many of the northern and eastern states-particularly in New England, New York, New Jersey, Michigan and the mountain districts of Peunsylvania and West Virginia-there are many thousand acres of land, worthless for agricnltural purposes, which after the pine is removed send up an ahondant growth of Blueherry bushes, alders, poplars, gray birches and spireas. These lands are, for the most part, considered as public property and are recklessly burned over by irresponsible parties to promote the growth of the Blueherries. In New England, particularly in Maine, the management of such lands has been systematized and Blueberry canning has become an important industrial operation. In some instances the whole business is under the management of the landowners, but in most cases the land is divided into several tracts, each of which is leased to some responsible party who assnmes the whole care of burning, keeping off trespassers, harvesting and marketing the fruit; the owner, in snch cases, receiving as rental one-half cent per quart for all frnit gathered. Pickers receive $11 / 2-3$ cents per quart. Those who lease the land and haul the fruit to canning factory or station for shipment receive $1 / 2-1$ cent per quart. These rates are determined in accordance with the market value of the crop.

Every year a certain section of each lease is burned over. This burning must he done very early in the spring, before the soil becomes dry; otherwise the fire goes too deep, the humus is hurned from the ground and nost of the bushes are killed. Many hundred acres on what should be the best part of the Blueberry plains have thus been ruinerl. The method most commonly used in burning a given area is for the operator to pass around the section to he barned, dragging after him an ordinary torch or mill-lamp. He then retraces his steps and follows over the burned area, setting new fires in the portions which have escaped and back-firing if there is danger of spreading unduly over areas which it is desired to leave unburned. A device occasionally used consists of a piece of $1 / 2$-inch gas-pipe, bent near the end at an angle of about $60^{\circ}$. The end opposite the bent part is closed with a cap or plug and in the other end, after filling the pipe with kerosene, is placed a plug of cotton waste or tow. This device is by many
considered snperior to the lamp or torch, as it is more easily handled. Each section of the lease is usnally burned over every third year. In this way the birches aud alders are sublued and the Blueherries spring up quickly and bear a maximum crop the year following the burning.

The Blneberries have an advantage over other small fruits in that they will staml shipment lpetter and will keep longer than the otbers, with the exception of currants and gooseberries. By far the largest proportion of the fruit is taken to the factories for canning. Early

2626. "Buckboard" used in Maine to carry Blueberries
from the fields to the cannery.
in the season, however, before the factories are opened, a considerable amount is shipped to tho larger cities for use while fresh. This fruit is usually shipped iu quart boxes, as shown in Fig. 2627.

All of the early fruit is picked by hand and only ripe berries are gathered. Later in the season, particularly on "old burns," i. e., on areas which will have to be burned over the next year, the fruit is gatlered with a "blueberry rake." This is an implement somewhat similar to the cranberry rake in use on Cape Cod, and may be likened to a dust-pan, the bottom of which is composed of stiff parallel wire rods. See Fig. 2628. The fruit may be gathered much more quickly and more cheaply by means of the rake. The bushes are, however, seriously injured by the treatment. In no ease should the rake be used in gathering the High-hush Blueberries. As the lerries are gathered they are passed through a fanning mill to eliminate leaves and twigs before being sent to the eanning factory. At the factory they are again submitted to a much stronger winnowing. This is the only preparation required for market.

The financial importance of the Blatiberry industry is very difficult to estimate at the present time. In Maine the canning of Blueberries is largely in the hands of a few packers. The largest of the factories has a daily capacity of 700 hushels and the average annual output is 8,300 eases of 2 -dozen eans each, representing 6,250 bushels of frush fruit. The average price per case for the canned fruit is $\$ 1.90$. The value of the annual produet of this one factory is not far from $\$ 15,000$. The total canned product of Maine's "Blueberry barrens" in 1899 was about 50,000 cases and the price per ease was $\$ 2.20$, making the value of the Blueberry erop in this one small section consiterably more than $\$ 100,000$. In northern Michigan the annual ship-


## 2627. A quart box of fancy Blueberries, prepared for market.

ments are from $3,000-5,000$ bushels. In New Jersey, Pennsylvania and West Virginia large quantities of the fruit are gatlered from the plains and mountains, but the work is not systematized.

White or pinkish fruits, insteal of the usual deep blue-colored herries, are not uneommon in certain lo-
calities. In some cases these are albino forms; in others the color is due to a fungas. Albino forms of $V, M y r$. tillus were recorded as early as 1578 by Dodoens. The other species thus far recorded are: If. Jitis-Idea, Pennsylianicum, corymbosum and vacillans. It is probable, however, that many other species exhibit this rariation. No special reasou can be assigned for this difference in color. The white forms are found growing (usually in colonies) by the side of the normal type. If exposed to full sunlight, the fruit is very likely to have a blush cheek, or eren to be of a scarlet color. The albino forms must, however, be carefully distinguished from the "white herries" caused by the presence of a fungous growth (Sclerotinia buccariom).

Propagation. - In the past one chief drawback in the dissemination of the Blueberries has been the difficulty, or supposed diffieulty, of propagation. The few nurserymen who have offered them for sale have usually depended npon the native heaths and pastures for their supply of plants, rather than upon the anrsery rows. The results have been most discouraging, and the Blneberries, though among the finest of fruits, are almost unknown in cultivation.

In the case of the cranberries, propagation is effected almost exclusively by cuttings (see ('ranberry). With the Blueberries, grafting is easily performed, and in this way specially ehoice individuals may be jerpetuated. For general purposes, however, seedlings or division may be used. Propagation by seed natnrally requires care and skill, but is entirely feasible. The niethod followed at the Arnold Arboretum, and at the Maine Agricultnral Experiment Station, where for several years seedling Blueberries have been grown, is essentially as follows: Seed-pans or hoxes about 4 in. deep are half filled with potsherds and covered with a layer of sphagnum, atter which a eompost eonsisting of onethird each of fibrous peat, well-rotted sod and fine sand, is used; the whole being firmed with the band or with a mallet. The seed, washed free from the pulp of freshly gathered fruit, is then sown thickly, pressed

2628. Blueberfy rake. dowu lightly and covered with a slight sprinkling of sphagnum. The boxes are placed in a coldframe nntil Jawuary, when they are brought to a house with a temperature of $55^{\circ}-60^{\circ}$ aud a range of $10^{\circ}$ higher by day. As the young seedlings appear, the sphagnum is gradnally removed and a quantity of eompost sifted in among the plants. The foung plants are treated like other delicate seedlings, and handled about twice during the first season. After Sept. I they are hardened off and later removed to a coldframe for winter, the frames being protected to retain the foliuge as late as possible and covered with hay or litter during the winter. The next spring the plants are set about 6 inches apart in a well-prepared bed and shaded until thoroughly established. Cleau tillage is given during the season. At the approach of winter, a few inches of loau between the plants to prevent bearing is the only protection required. The following spring, or two years from seed, they may be planted out permanently. Seed which is kent until dry and then sown, even if given the best of eare, will seldoul germinate until the second year. The low Blueberry ( $F$. Pennsyle(enicum) will usually fruit in three to four years from seed; but 1 . corymbosim requires fonr to six years. See Bull. 76, Maine Exp. Sta.

## INDEX.

albiflorwm, 18.
amornum, 18 . angustifolium, 10,11 . arboreum, 24 . arbuscula, 10. atrococeum, 19. caspitosum, 10. Canadense, 13. Constablai, 18. corymbosurn, 18. erassifolium, 20. erythrinum, 22.
erythrocarpon, 5 . fuscatum, 17, 18 hirsutum, 14. macrocarpon, 3. melanoearpum, 25. Myrsinites, 7. myrtilloides, 15. Myrtillus. 9. nigrum, 12. nitidım, 6. ovalifolium, 16. ovatum, 23.

Oxycoceus, 1. pallidum, 18. parvifolinm, 4. Parvifolinm, Pennsylvamicu
11.
Sprengelii, 7. Sprengelii, 7.
stamineum, 25. stamineum,
tenellum, 17. uliginosum, 21. vacillans, 8.
Virgatum, 17. Vitis-ldwa, 3.

Botanical Classification. - In the following scheme the species are separated on the basis of natural characters. Wheu two closely related forms occur over wide range in latitude, howerer, the assigned differences are liable to fail at some point. The key will be found useful in determining herbarium specimens.
A. Otery 4-5-loculed (rarely 8-10-
loculed in V. Vitis-Idea).
B. Stamens long-exserted.
C. Filuments villous........ 5. erythrocarpon
ce. Filuments puberulent.
D. Stems rery slender, creeping....... ....... 1. 0xycoccus
DD. Stems stouter, with ascending branches..... 2. macrocarpon
BB. Stamens included.
c. Filaments glabrous or pubescent.
D. Corolla commonly 4lobed: stamens $8 \ldots . .21$. uliginosum
DD. Corolla commonly 5 lobed: stamens 10.
E. Plants durerf, a foot or less high.
F. Branchesnotangled.10. cæspitosum
ff. Branches sharply angled ............ 9. Myrtillus
ee. Plants tuller, 1-12 ft. high.
F. Margins of leares
shurply serrutute.15. myrtilloides
fr. Margins of leaves entire (pxcept in
$V$. ovalifolium).
G. Length of les. 1-
a inches........16. ovalifolium
GG. Length of les. $1 \neq-$
3/4 inches........ 4 parvifolium
cc. Filaments pilose.
D. Twigs red. Here prob-
abty belongs ...........22. erythrinum
nD. Treigs not red.
E. Stamens 10: ovary 5-
loculed.
F. Branchlets pubes-
cent................23. ovatum
fF. Brancklets glabrous.............20. crassifolium
Ee. Stamers 8: orary 4-
locuted .............. 3. Vitis-Idæa
AA. Ovary 10-laculed (sometimes
imperfectly so).
B. Anthers with 2 awns on the back.
c. Stamens included ........24. arboreum
cc. Stamens exserted..........25. stamineum

вв. Anthers awnless.
c. Foliage evergreen, coriaceous.
D. Calyx-teeth roundish and ury dense.......
DD. Calyx-teeth acute.......
cc. Foliage deciduous (sometimes turdily so in southern forms).
D. Corolla cylindraceous..17. virgatum
dD. Corolla short and usuall!, broad.
E. Brunchlets hirsute...14. hirsutum

Ee. Branchlets glabrous
or glaucous (except
in I. Cenaderse).
F. Les. glurcous and pale beneath.
G. Fruit blue.......

Gg. Fruit black....... 1
FF. Le's.strongly pubescent both sides.... 1
fef. Livs.glabrous, aften hairy on midrib beneath.
G. Margin of lis.
bristly-serru-
lute .............
ga. Margins of lis.en-
tire or at most
ciliute.
н. Berry blue,
glarcors.....18. corymbosum
нн. Berry black,
not glaucous.19. atrococcum
Horticultural Classification. - The following key to the more commonly known species is based upon horticultural or gardeu characters:
A. Species cultivated chiefly for fruit.
B. Color of fruit red.
c. Stems stender, trailing: les. evergreen.
D. Apex of lectes acute.... 1. Oxycoccus

DD. Apex of leares obtuse or retuse.
2. macrocarpon
cc. Stems stouter though creep-
ing: branches ercet, tufted.
3. Vitis-Idæa
ccc. Stems evect, muck taller, 2-10 ft.
D. Le's. small, $1 / 4-3 / 4$ in.long. 4. parvifolium

DD. Lvs. larger, $11 / 2-8$ in.
long.................. 5. erythrocarpon
B8. Color of fruit blue or black.
C. Plant lour, $1 / 2-3$ ft. high.
D. Foliage evergreen.
E. Le's. small, 1/4-1/2 in.
long.................. 6. nitidum
EE. Lvs. larger, $1 / 3-1$ in.. 7. Myrsinites
DD. Foliage deciduous.
E. Surface of lvs.glabrous.
F. Lus. pale beweath, not shining above. (See also No. 12. Here might be sought V. corymbosum, var. pallidum, No. 18.)
fF. Les. not paler beneath, shining, at least above. (Exceptions: No. 12 always paler beneath; No. 11 rarely paler beneath.)
G. F'ls. solitery in
the axils.
H. Branches
sharply an-
gled........... 9. Myrtillus
Hh. Brauches not angled........10. сæspitosum
Gg. F'ls. in fascicles
or short racemes.

> H. The lus. not
palerbenerth.11. Pennsylvanicum
нн. The lers. paler beneath...... 12. nigrum
Ee. Surface of the lis. hairy.
f. Ovary and fr. gitan-
cous ............13. Canadense
fr. Orary and fr. hirsute .............14. hirsutum
cc. Plant taller, s-12 ft spreading.
D. Fls. solitury in axils.
E. Less. sharply serrate.15. myrtilloides

Ee. La's. entire or slightly serrulate...........16. ovalifolium.
vD. Fls. in racemes or corymls.
E. Kacrmes elongated on naked branches....17. virgatum

EE. Rucemes shorter. F. Corolla cylindric: fr. blue............18. corymbosum
FF. Corolla urn-shaped. fr. black ..........19. atrococcum A.A. Species cultivated chiefly for ornament.
B. Plants low', 1-2 fl. high.
C. Stems creeping, with
branches erect, or as-
cending.
D. Les. small, shining.....20. crassifolium DD. Lu's. larger, pale or glau
cescent................21. uliginosum
cc. Stems erect: twigs rell....29. erythrinum bв. Plants taller, 2-20 ft. high.
c. Foliage evergreen, rigill..23. ovatum c. Foliage deciduous.
D. Surface shining abore,
more or less pubescent
beneath..................94. arboreum
DD. Surface paler above,
glaucous beneath.....25. stamineum
DDD. Surface bright green
both siales. (Here
might be sought No.5.) 5. erythrocarpon

1. Oxycóceus, Linn. Small Cranberry. Cranberry of the Old World. Slender creeping plants with short, filiform stems 4-10 in. long: lvs. ovate acnte or acuminate, $1 / 4 \mathrm{in}$. long, with revolute margins: pedicels $1-4$, terminal: corolla deeply 4 -parted, the lobes reflexed; anthers exserted, with rery long terminal tuhes: berry red, globose, $1 / 4-1 / 3$ in. in tliam., 4 -loculed. Sphagnum swamps in subaretic and aipine regions.-Though smaller, its fruit is by many considered superior to that of the next.
2. macrocárpon, Ait. Larger Amerioan Cranherry. Stems slender, creeping, elongated ( $1-4 \mathrm{ft}$.), the flowering branches ascending: lvs, oblong or oval, obtuse or retuse, $1 / 3-1 / 2 \mathrm{in}$. long, whitened beneath: pedicels several, axillary and lateral: herry red or reddish, globose or pyriform, $1 / 3-1$ in. long. N. America. B.M. 2586. Em. 2:456. See Cranberry.

3. Cowberry or Mountain Cranberry - Vaccinium Vitis-Idæa ( $\times$ about ${ }^{1}$ á).
4. Vitis-Idiea, Linu. Coweerry. Mountain Cranberry. Foxberry. Fig. 2629. Plants low ( $6-10$ in.) : lvs. coriaceous, persistent, ohovate or oval, $1 / 4-3 / 4$ in. long, dark green and shining above, with blackish bristly points beneath: fls. in short, terminal racemes; corolla white or rose-colored, 4 -cleft: berries durk red, acid, rather bitter. Arctic regions, south to coast of

New England, Minn. and Brit. Col. B.B. 2:580, L.B.C. 7:616 (as var, major); 11:1023(var. minor). -The fruits, which are rather larger than currants, acid and somewhat bitter when uncooked, are largely used in the more northern regions for tarts, jellies and preserves, or as a substitute for the common cranberry. According to Macoun, the fishermen's families along the Gaspé coast and the north shore of the Gulf of St. Lawrence gather the fruit of this species in large quantities for their own use and for sale, calling it "Low bush Cranherry." Throughont the whole of northern Canada hunters and trappers, as well as the native Indians, have frequeutly to depend upon it for food. It is valuable for the shrubbery border, where the strong contrast of the dark green foliage and the bright-colored persistent fruit is very striking.
4. parvifòlium, Smith, Slirub, 6-12 ft. high, straggling, with slender, green, sharply angled branches: lis. oblong or oval, obtuse, entire, dull or pale, $1 / 4-3 / 4$ in. long: fls. solitary in the axils; corolla globular, nearly white; calyx 5 -lobed: berries light red, rather dry. Northern Calif. to Alaska.- Offered by only one nurseryman. T.J. Howell, of Oregon. characterizes the fruit as "of good flavor, excellent fortarts," while fray says "rather dry, hardly edible."
5. erythrocárpon, Michx. Shrub, erect, divergently branching, $1-1 \mathrm{ft}$. high: Ivs, oblong-lanceolate, acumimate, serrate, thin, $11 / 2-3 \mathrm{in}$. long: pedicels solitary, axillary, bractless: corolla flesh-colored, $1 / 2 \mathrm{in}$. long, 4-cleft, revolute: berries globose, $1 / 2 \mathrm{in}$. in diam., light red, turning to deep hlue-black at full maturity, watery, slightly acid, scarcely edible. July. Higher Alleghanies, Va. to Ga. B.M. 7413.
6. nitidum, Andr. A diffusely mueh branched shrub, with smooth branchlets: lis. thick, coriaceons, shining above, ohovate or ohlong: Als, in fascicles on short racemes, the almost persistent bracts as well as the roundish or obtuse caljx-teeth reddish; corolla short. campanulate, 5-toothed: berry "somewhat pear-sliaped, black." Fla. and Ga, - Near to or passing into J'. Myrsinites.
7. Myrsinites, Lam. Low, evergreen shrub erect or decumbent: lvs. exceediugly variable, $1 / 4-1 \mathrm{in}$. long, entire or serrulate, sometimes denticulate, mostly shining above; bracts and calyx-teeth acute or acutish: berries "globose, blue." Sandy pine barrens N.Car, to Fla. and La. B.M. 1550 (as J. nitidum, var. decumbens), -The difference between this species and the preceding is ohscure. The chief points of distinction seem to be that T, Myrsimites has puberulent branchlets, prominently veined lys. and acute calys-teeth and bracts, while 1 . vitidum has smooth branchlets, smaller and faintly veined lvs., with obtuse or roundish calyx-teeth and bracts. Grown as a pot-plant in coolhouses in England under the name of I. Sprengelii.
8. vacillans, Kalm. Low Blueberry. Blue HuckleBERRY. Erect, glabrous: Jvs, obovate or oval, entire or sparingly serrulate: fls, in rather loose clusters, generally on leafless summits of twigs; corolla campanulate or cylindraceous, contracted at the mouth: berries large, blue, with much bloom, of excellent havor, ripening with 1. Canadense. Dry, sandy, or rocky places, N. Amer. B.B. 2:579. Em. 1:454.-One of the most common species of the northern and central states, particularly west of the Alleghanies. The fls, are quite showy, while the fruit is particularly valuable.
9. Myrtillus, Linn. Whortleberry. Bilberry. Low shrubs, glahrous: lrs, ovate or oval, serrate, conspicuously reined, $1 / 2-2 / 3$ in. long: calyx almost entire: berries hlack, nodding. Mountainous regions, N. Amer., Eu., Asia. - The most widely distributed species and very generally used as an article of diet and in the making of drinks, particularly in the Old World. It is from this species that the common name Whortleherry is derived. Not of special importance in America.
10. cæspitòsum, Michx. Dwarf Bilberry. A dwarf tufted shrub, $3-12 \mathrm{in}$, high, nearly glabrons throughout: IFs. oborate, obtuse or acutish, serrulate, shining on both sides: As. solitary ; corolla obovoid, pink or white, slightly 5 -toothed (rarely 4 -toothed): berries large, globose, hlue with bloom, sweet. N. Amer. B.B. 2:576
B.M. 3429 - It is doubtful if varieties can be distinguisbed. Var. arbúscula, Gray, passes into the ordinary form; while vars. angustifolium, Gray, and cuneifolium, Nutt., are found to be simply forms produced by sbade. The last form, particularly, is common in New England, and early in the season the los. are of the ordinary obovate type, while later they become elongated. Recommended by Warren H. Manning for the rock garden.
11. Pennsylvánicum, Lam, Low Bloeberry. Fig. 2630. A dwarf shrub, 6-15 in, high: lvs. membranaceous, oblong-lanceolate or oblong, distinctly serrulate with bristle-pointed teeth, mostly shining on both sides but often hairy on midrib beneath: fls, on short pedicels; corolla campanulate-cylindrical, short: berries large, globose, bluish black with bloom, sweet, the earliest to ripen north. N. Amer. B.M. 3434. B.B. 2:578. Em. 2:456. Rep. Me. Exp. Sta. 1898:171.-Var.

2630. Vaccinium Pennsylvanicum - Low Blueberry ( $\times 1 / 3$ ).
angustifolium, Gray. A dwarf form, with more decidedly lanceolate lvs. Lake Superior and northward.This species is extremely rariable in size and shape of fruit and flowers, but with the exception of the variety noted and the black-fruited form often associated with it, which is set off as V. nigrum, the variations do not appear sufficiently constant to warrant making separations. In general, the plant is of low, semiprostrate hahit, is extremely prolific and thrives on dry, sandy hills. It furnishes the bulk of the Blueberries found in the eastern markets. When mown down or burned, the new erect shoots produce, the following year, a long, spike-like mass of bloom and fruit which may be stripped off by haudfuls. Because of its character and early-ripening habit, it is known on the Blueberry plains as "Early Sweet" or "Low Sweet."
12. nigrum, Britton. Low Black Blueberry. Low shrub, similar to V. Pennsylvanicum, and often associated with it: lvs. oblong-lanceolate to obovate, finely serrulate, green above, pale and glancous beneath: fls. few in the clusters, white or cream-colored, appearing earlier than those of V. Pennsulvanicum: berries rather small, black without bloom. Dry rocky soil, N. Amer. B.B. 2:579. Rep. Me. Exp. Sta., 1898:171. - This species is distinguished from the preceding by the glaucous under surfaces of the leaves and by the characteristic shining black fruit. It is usually found in colonies in the same situations as 1. Pennsylvanicum; but oceasionally the two species will be found intermingled.
13. Canadénse, Richards. Canada Blueberry. Erect shrubs, $1-2 \mathrm{ft}$. bigb, the crowded branchlets downypubescent: lvs. oblong-lanceolate or elliptical, entire, downy on both sides: corolla short, open-campanulate, greenish white, often tinged with red: berries globose or oblate, blue with much bloom, of excellent flavor. Low woods, Hudson Bay to Bear Lake and the northern Rocky Mts.; south to New Eng., mts. of Pa, and 111. B.M. 3446. B.B. $2: 578$. - This species, commonly known as "Velvet Leaf" or "Sour Top" bccause of the character of its foliage and the somewhat acid fruit, usually grows in rather moist, rocky, not swampy, localities. The fruit is larger and more acid than the other low forms and matures from one to three weeks later. It is not so popular in the general market as the streeter kinds, hut it is rery prolific and its lateness in ripening is a point in its favor.
14. hirsùtum, Buckley. Hairy Huceleberry. Bear Huceleberry. Low sbrub, 1-2 ft. high: stems green, grooved, obscurely 4 -augled, those of the current year covered with stout, sprealiug white hairs: lvs. ovate, entire and, together with the pure white campanulate corolia, the calyx and the dark blue globose fruit, hirsute. Very local in N. C., Ga. and Teun. G.F. 2:365.-This species, discovered about 1840 , was lost sight of for half a century until rediscovered by Sargent and transferred to the Arnold Arboretum. It is readily distinguished by the hairy flower and fruit. The fruit is described as fully as large as that of Gaylussacia resinosa, shining black, and of an agreeable flavor. Under cultivation not so densely hairy as in the wild state. Gives promise of being valuable under cultivation as one of the latest of jts kind to ripen, -at the Arnold Arboretum the best period of fruitage being the middle of August, berries remaining into September.
15. myrtilloides, Hook. An erect, branching sbrub, mostly glabrous throughout, the twigs slightly angled: lvs. oval, oblong or ovate, acute, serrate, membranous, green on both sides but not shiuing, 1-2 in. long: calyx entire; corolla depressed-globular, yellowish or greenish white: berries large, oblate, black, rather acid. Lake Superior westward. B.M. 3447. - The berries are large, $1 / 2-3 / 4$ in., oblate, with broad calyx, of excellent flavor; much relished by the natives of the northwest.
16. ovalifolium, Smith. A slender, straggling, branched shrub 3-12 ft, high, with slender more or less augled branchlets: lvs. oval, obtuse, glabrous, green above, glaucous beneath : fls. solitary, on short, recurved pedicels; corolla globose-ovoid: berry large, 2/3-1/2 in., bluish purple, with hloom, Woods, Quebee to Mich., Ore. and Alaska. B.B. 2:577.-This species is very abundant in the northwest, forming a large part of tbe undergrowth along the southern coast of Alaska (Funston). The berries, rather larger than peas, are collected in great quantities by the Indians, who use them fresh and dry them for winter. The exceptionally large berries and vigorous hahit of this species suggest its value for cultivation and particularly for crossing with the low-growing species, such as $F^{\circ}$. Pennsylvanicum and Canadense.
17. virgàtum, Ait. A shrub 3-12 ft. high, with slender green branches, the young twigs puberulent: lvs. uarrowly oval-oblong, acute, often mucronate, entire or minutely serrulate, green and glabrous above, pale or glaucous beneath, $3 /-2$ in. long: fls. in short racemes on naked twigs, appearing before the liss; corolla nearly cylindrical, white or pink: bracts small, deciduous: berry black, with or without bloom. Swamps, southern Va. to Fla, and La. B.B. 2:577. B.M. 3522. B.R. $4: 302$ (as V . fuscatum). -The distinction betreen this species and the next is very slight. It is prohable that, possibly excepting var. lenellum, this is ouly a southern form of $\bar{T}$. corymbosum and should be reduced to rarietal rank.

Var. tenellum, Gray (V. tenéllum, Ait., not Pursh). A low form, mostly less than 2 ft ., with smaller lvs. and nearly white fls. in short, close clusters. Southern Va. to Ark., Fla, and Ala. - Probably a distinct species.
18. corymbisum, Linn. Hıgh-bush Bleeberry. Swhsip Hưckleberrf. Fig. 2631. A tall, straggling shrub, 4-12 ft. high, with yellowish green warty branch-
lets which later tarn brownish: lvs, ovate or oblong to elliptical-lanceolate, usually entire: fls, in short racemes on naked twigs; corolla ovate to urn-shaped, or oblong-cylindrical, white or pinkish: herriesblue-black, with much bloom, of excellent flaror. Moist woods or swamps, N. Amer. Em. $2: 454$. American Agriculturist 1886:364. B.B. 2:577. - Exceedingly variable, and numerous gradations unite the sereral varieties. 1 . corymbosum is one of the most valuable species both for fruit and as an ornamental shrmb. It thrives in the garden and is readily susceptible of improsement by eultivation.

Var. amcenum, Gray (Г. amwnum, Ait.). A form with bristly ciliate, serrulate leaves, bright green on both sides, shining abore, often pubescent on reins beneath. Mainly in the Middle Atlantic states. B.R. 5:400. B.M. 3433 (as Г. corymbosum).

Var. pállidum, Gray ( Г. pâllidum, Ait. J. albiflòrum. Hook. I. Cónstablei, Gray). A pale and glaucous or glancescent form, with or without some pubescence: ovary more completely inferior, generally low, otherwise resembling var. amonum. Common in mountainous regions southward. B.M. 3428. B.B. 2:579.

Var. fuscàtum, Gray ( Y. fuscitem, Ait.). A tall form with the mature and entire lvs. fuscous-pubescent begeath: fls. virgate, somewhat spicate on the naked flowering twigs. Ala. and Fla. to La. and Ark.
19. atrococcum, Heller ( $\mathbf{V}$. corymbòsum, var. atrocóccum, Gray). Black Blueberry. A branching shrub with shreddy bark, similar to l . corymbosum: lvs. oval or oblong, dark green above, deusely pubescent beneath, entire, acute, often mucronate: fls. in short racemes, appearing with the lvs.: berry black, without hloom, sweet. Moist woods and swamps, nortbeastern N. Amer. B.B. 2:578.
20. crassifòlium, Andr. Slender, trailing sbrub: stems $2-3 \mathrm{ft}$. long, glabrous: 15s. small, $1 / 4-1 / 2 \mathrm{in}$. long, oval or narrowly oblong, sparsely serrulate or entire, shining: fls. few, almost sessile, in small, axillary clusters, nearly white or tinged with red: berries black. Sandy bogs, N. C. to Gia. B.M. 1152. - Useful for the shrubbery horder south.

2631. High-bush Blueberry - Vaccınium corymbosum, (spray $\times 1 / 2$ ).

2]. uliginòsum, Linn. Bog Bilberry. A stiff, much. branched shrub $1 / 2-2 \mathrm{ft}$. high: ]vs. thick, obovate or oval, obtuse or retuse, $1 / 2-1$ in. long, nearly sessile: fls, 2-4 together, or sometimes solitary; calyx 4-parted, sometimes 5-parted; corolla urn-shaped, 4- or 5-lobed, pink; stamens 8-10: berries bluish black, with bloow. N. Amer., Eu., Asia. B.B. 2:576.- The plant is useful for the shrnbbery border in cold, wet locations, and its fruit, though of poor quality, is used for food by the natives of the northwest.
22. erythrinum, Hook. An erect, glabrous, evergreen sbrub with bright red twigs: lis. ovate, obtuse, coriaceous, entire: Als. in long, I-sided, terminal racemes;
corolla eylindraceons, 5-toothed, 1/2 in. long, purple, reddish. Mountainons regions, Java. B.M. 4688 . J.H. 111. $34: 39$. -Sent to England iu 1852 and since grown by rarious nurserynien as a greenhouse pot-plant. It is a strong plant, furnishing an abundance of bloom in Dee. and Jan. Not remarkable, but worthy a place in collections. A very distinet type.
23. ovàtum, Pursh. An erect, rigid, evergreen shrub, $3-8 \mathrm{ft}$. high, with pubescent branchlets: 1vs. very numer. ous, thick, shiming, ovate or oblong, acute, serrate: fls. numerous, in short, axillary clusters, followed by dark purple fruit of agreeable flavor. Vancouver's Island to Monterey, Calif. B.R. 16:1354.-A distinctly western species, and one of California's most beautiful hedge plants, but not well known. I. oratum is rery tenacious of life and bears bruning well; propagated from suckers, cuttings and seeds, which last it bears freely.
24. arbỏreum, Marshall. Farkleberry. SparkleBEKRY, Spreating shrub or small tree, 6-25 ft. high, with glabrous or somewhat pubescent branchlets: lvs. tbinnish, coriaceous, smooth and shining abore, obovate to oblong, cntire or obscurely denticulate: Als, profuse, axillary and leafy racemose; corolla white, 5 -lobed: berry swall, glohose, rather astringent. Sandy soil along river banks, Fla. and Tex. to N. C. and Ill. L.B.C. 19:1885. B.M. $\mathbf{3 6 0 7}$ (as J. diffusum). B.B. 2:580. - It forms an irregular shrub ton liffuse and straggling to he of value except in masses, for which purpose it is useful at the South.
25. stamfneum, Linn. Deerberry. Squaw HuckleBERRY. A divergently brauched shrub, $2-5 \mathrm{ft}$ high, with pubescent or glabrous twigs: ivs. oval to oblonglanceolate, acute, entire, pale, glancous or sometimes slightly pubescent beneath, $1-4 \mathrm{in}$. $\operatorname{long}, \frac{1}{2}-1 \frac{1}{2}$ wide: fls. very numerous, in large leafy-hracted racemes; corolla green, 5-cleft; anthers and style exserted: fr. large, globose or pyriform, greenish or vellowish, few-seeded, almost inedible. Dry woods and thickets, N. Amer. B.B. 2:580.

Var, melanoćarpum, Mohr, Southern Gooseberri. Shruh, 2-3 ft. bigh, branched from near the base: lvs. as in the type: fls. in loosely $4-8$ fld. elongated racemes: berries twice the size of the typical form, shining black, with a juicy purple pulp, sweetish, with slightly tart, flavor. S. States.-Probably a distinct species. Will thrive on any good, well-drained soil and is a valuable shade-enduring ornamental shrub.

IT. M. Munson.
VAGARIA (meaving obscure). Amaryllidàcea. A single species, a bulbous autumn-flowering plant from Syria with strap-shaped leaves produced after the flowers, which are quite freely produced in 6-8-fld, umbels on naked scapes ahout 1 ft . high: perianth-tube short, funnel-sbaped at the apex; segnients equal, lanceolate, stamens inserted on throat of tube; filaments quadrate: ovary glohose, 3-loculed, with $2-3$ ovules in each locule.
parviflòra, Herb. Bulb globose, about $1^{\frac{1}{2}}$ in, through: fls. white. Offered by European bulb-growers.
F. W. Barclay.

VALERIAN. See Taleriana. Greek V. is Polemonium. Red V. is Centranthus.

VALERIANA (Latin valeo, to be strong, in allusion to medicinal uses). Valerian. Valeriandcea. A large genus (probably more than 150 species) of widespread herbs, mostly of the northern hemisphere. Less than a dozen species are North American. The Valerians are erect-growing, mostly tall perennials, with strongsmelling roots, and bearing many small white, pink or rose-colored flowers in terminal cymose or cymose-panieulate elusters. Corolla tuhular or trumpet-shaped, the liml, wearly equally 5 -toothed or lobed, the tube usually swollen at the base; stamens 3: orary I-loculed (by abortion), hearing an entire or somewhat 2-3-lobed style, ripening into an akene: calyx of bristle-form lobes: Ivs. opposite, various.
The Valerians in the American trade are hardy perennials of easiest culture. Only $\mathbf{V}$, officinalis is well known. Tbis is one of the characteristic plants of old gardens, being prized for the spicy fragrance of its numerous flowers in spring. It spreads rapidly from
suckers arising from the roots, soon forming large colonies. The common species are often growu from seeds. F. alla and F. rubra of the trade are no doubt Centranthus ruber.
A. Rootstocks horizontal or ascending, with small fibrous roots.
R. Stem-leares (at teast the lower ones) pimate or pinnately lobed.
officinàlis, Lino. Common Valerian. Garden Heliotrope. Cat's Valerian. St. (ieorge's Herb. Fig. 2632. Somewhat pubescent: stem erect, simple below but somewhat branching above, $2-5 \mathrm{ft}$.: lvs. all pinnate, with several to many

2632. Garden Heliotrope - Valeriana officinalis ( $X^{1 / 3}$ ). lanceolate to linear acuminate toothed or notched leaflets: fls. numerous, whitish, pinkish or lavender, very fragrant. Europe, N. Asia. - The medicioal valerian is obtained mostly from the roots of this species.
Phù, Linn. Glabrous, usually less tall than the above: root-lvs. simple; stem-Ivs. lobed or bearing $5-7$ entire leaflets: fls. whittsh. Caucasus. Var. aùrea, Hort., has young shoots golden yellow.
didica, Linn. Marsh Valerian. About 1-2 ft.: rootlvs. oval, elliptic or spatulate and eotire, long-stalked; stemlvs. mostly pinoate with entire leaflets or divisions, the terminal leaflet oval or oblong and the lateral ones smaller and narrower: fls. mostly noisexual, the sterile ones the larger, all pale rose color. Europe, in moist soil.
Sitchénsis, Bong. A foot or less, the rootstocks thick and ascending : root-lvs. ovate or oblong, simple or somewhat lobed; stem-lys. mostly $3-5$-foliolate, the divisions or leaflets orbicular to ob-long-ovate: fls.white, very fragrant, in contracted cymes, the corolla about 1/3 in. long. Rocky Mts. to Alaska. G.F. 9:515.-A very early bloomer.
BB. Stem-leaves not compound nor tobed, but sometimes dentate.
montàna, Linn. Usually one ft. or less high, glabrous or nearly so: root-lvs oblong, oval or orbicular-oblong, usually obtuse, somewhat dentate; stem-lvs. lanceolateacuminate, dentate or nearly entire: fls. bright rose, diœecious. Eu. L.B.C. $4: 317$.

## AA. Rootstocks perpendicular, branching belouc.

[^0]The roots are eaten by lodiaos. The leaves are thickish and strongly veined.

The African or Algerian Yalerian is Frdia Cormucdpia, Gaertn. (Valeriana Cornncopise, Linn. Valerianella Cornucopie, Loisel.). It is an Algerian tanual used for salad, after the manner of corn salad. It does not appear to be in the Amer, trade. (tlabrous, branching, 11/2 ft. or less high: lvs, oval-oblong, thickish, simple, somewhat toothed, those of the stem clasping: tls. long-tubular, pink, in ternsinal clnsters. Cult, as for corn'salad, although it endmres less cold. It thrives well in warm weather when not allowed to suffer for water. B.R. 2:155.-V. tripteris, Linn., of Europe, appears to have been offered in this country, although little known here: about 1 ft , tall, glabrous: radical lvs, oval or cordate, dentate; stemlvs. with 3 leaflets or lobes, the terminal one large: is. rosecolored, polygamous.
L. H. B.

VALERIANELLA (diminntive of Valeriana). Valeriandeer. Including Corn Salad or Fetticus. A geous of nearly 50 species of annual, dichotomonsly brancbed berbs, with a basal rosette of entire IVs, and small white, bluish or pinkish Hs. borne in terminal cymes, which form compact globular or flattish clusters. Corolla nearly regular, 5 -lobed; stamens 3: fr. 3 -loculed, 2 of the locules leiog empty. These plants are mostly native to the Mediterranean region. $1^{1}$. otitoria is the common Corn Salad and $1^{\prime}$. eriocarpa the Italian Corn Salad. To the account given in this work at page 376, the following may be added:

Corn Salad is both a salad plant and a pot-herb, chiefly the former. The name "Corn Salad" is probably derived from the fact that the plant grows spontaneously in the grain fields of Euroje, large quantities of it being gathered in early spring. It is rather tasteless compared with lettuce, and is little known in America. Abroad it is prized as a fall and winter salad. It is a cool-season crop, grown like lettuce and matures in 6-8 weeks. Plants should stand about 6 in. apart in the row, An ounce of seed should give $2,000-3,000$ plants. The following description of the varieties is derived from Vilmorin's Vegetable Garden.
olitodria, Mœnch. Corn Salad. Lamb's Lettuce. Fetticus. Fig. 2633. An "autumnal annual" herb, the seed of which ripens io April or May, soon falls to the gronnd, and germinates in August. The plant makes its growth in the fall and flowers the following spring. In cultivation the seed is generally sown in early spring or late summer. The plant forms a dense rosette of spoonshaped lys. which grow in a decussate fashion, and bas an angular, forking stem bearing small bluish white fls. in terminal clusters. Eu., Orient. - The RoundLeaved variety has much shorter lvs. than the

common type and they are balf-erect instead of spreading, and less prominently veined. This kind is the one grown almost exclusively for the Paris market. The Large-Seeded variety is more robust than the common type and the seed is nearly twice as large. LFs. marked with numerous secondary veins. Mach grown in Holland and Germany. The Etampes variety has very dark-colored lvs., which are often undulate or folded back at the margins. Luvs. narrow, promjnently veinetl, thicker and more fleshy than the other
kinds and specially suited to cold weather and long distance shipment. The cabbaging variety differs from the others in forming a heart or head of fine flavor. Unfortunately it is the least prodnctive type, but it bears shipment well.
eriocarpa, Desv. Italian Corn Salad. Distin. guished from the common species by the lighter color of the lvs., which are slightly hairy and somewhat toothed on the edges towards the base. The plant is native to the south of Europe, where it is highly esteemed because it does not run to seed as quickly in a warm climate. It is undesirable for northern climates. W. M.

VALLISNERIA (Antonio Vallisneri, 1661-1730, ltalian naturalist). Hydrocharidicer. About 4 species of aquatic plants, including the well-known Eel-grass or Tape-grass. This is found in fresh water all over the world. It is a submerged plaut with linear lvs. $1 / 2-6 \mathrm{ft}$. long, depending on the depth of the water. The lis. originate in a tuft at the bottom of the water, and the plant spreads by runners sent out from these tufts. Eel-grass is usually found in quiet waters. It has no horticultural rank, except as an aquarium plant. Like many other aquarium plants, it has special interest for students of botany. The pistillate fls. are borne on very long spiral threads and come to the surface as shown in Fig. 2634. The staminate fls, are borne on very short stalks near the bottom of the water. At the proper time the staminate fis. break away from their stalks and rise to the surface of the

2634. Eel-grass -Vallisneria spiralis. (Reduced.
rate near the apex: fls, white. R.B. 20, p. 194. V. 4:157.

## Wh. Triceser ald W. M.

VALLOTA (Pierre Vallot, French botanist; wrote an account of the garden of Louis Nilll in 1623). Amarylliddcea. The SCARBOROUGH Lily, Jallota purpurca, is a South African representative of the American genus Hippeastrum, popularly known as "Amaryllis." It is a bulbous plant with large, red, funnel-shaped, 6-lobed flowers, blooming in September and later. A pair of wellgrown specimens in large pots or tubs make a showy ornament for the porch. Plants have been grown with over 50 flower trusses, each truss bearing an umhel of 4-9 fls., the individual tls. being 3-4 in, or more across. Vallota is a genus of only one species and is distinguished from Hippeastrum by the seeds being winged at the base. The tube of the flower is longer than in the typical Hippeastrums and at the base of each perianth-segment is a cushion-shaped callus somewhat different from the minute scales or distinct neek that is often found at the throat of a Hippeastrum.

Other generic characters: Perianth erect; tube broadly funnel-shaped; segmeuts equal, ascending, broad, connirent; stamens inserted below the throat: ovules many, superposed: stigma capitate: seeds black, compressed. It has recently been proposed that Vallota be considered a suligenus of Cyrtanthus. The latter is a gromp of about 20 species of plants with fls. of various colors and naked at the throat. Cyrtanthus proper and

2635. Scarborough Lily-Vallota purpurea, (From a specimen 2 feet high)
the subgenus Monella hare beautitul peadulous fis. in umbels, but the plants are not as easy to grow as Vallota. It has been suggested that they be crossed with the more robust Vallota in the hope of combining their varied colors and pendulous grace with the strong coustitution of the Vallota. Such a process would be similar to the one by which the uoble race of Hippeastrum bybrids has heen given to the world. Vallota is undoubtedly related to Cyrtanthus through the subgenus Gastronema, which has erect fls. and differs chiefly in the stamens. Of this subgenus $C$. sanguineus is in the trade now. The best form of Vallota seems to be the variety magnifica.
purpùrea, Herb. Searborovgh Lily. Fig. 2635. Bulb large: lvs. appearing with the fis., strap-shaped, $11 / 2-2 \mathrm{ft}$. long, dying down in autumn: peduncle hollow, slightly 2 -edged, 2-3 ft. long: fis. scarlet. Gn. 30, p. 245; 42, p. 273. R.H. 1870:50 ( F . grandiflora). A.F. 9:211. Gng. 2:361. A.G. 1893:81.-The typical form has scapes about $11 / 2 \mathrm{ft}$. high and blood-red fis. $21 / 2 \mathrm{in}$. across. Var. màjor, Hort., is 3 ft . high and has fis. over 3 in . across. B.M. 1430 (Amaryllis purpurea). Var. minor, Hort., is smaller than the type in all parts. B,R. 7:552 (Amaryllis purpurea, var. minor). Var. eximia, Bull., has fls. 4 in. across, with whitish, feather-like blotches on the hase of the perianth-segments. Var. magnifica, Hort., is probably the liest and most robust form: fis. 5 in. across, with a white eye. Colors said to be brighter and more uniform thau in any other kind. Gn. 30:244. G.C. III. 3:240.
W. M.

The Searborough Lily is generally rated as a greenhouse bulb, but it can be grown by the amateur who has no glass, provided the plant can be kept over winter in a well-lighted cellar. Many people have had no success with Vallota. Such failures are generally due to the plants being kept too dry during winter. Although Baker says the leares die down at the Cape in autumn, the plant acts like an evergreen in cultivation. Unlike the majority of bulbous plauts, the Vallota should never be dried off but kept moderately moist about the roots throughout the year. The Vallota is also strongly opposed to interference with its roots. It is possible to preserve a flowering specimen in most luxuriant health
for three or four years without repotting, simply by applying liquid manure to the roots occasionally during the summer. The culture of Vallota is not difficult when its peculiarities are understood. Several years are needed to work up a good plant to the specimen size. A Vallota bulb is abont twice as large as a hyacinth. For the first potting use a light soil, with a little sand at the base of the bulh, aud place the bulb a distance below the surface equal to its own diameter. Use as small a pot as possible at every stage; shift only when the soil is well filled with roots and be careful to break no roots wbeu shifting to a larger pot.

The final potting is an important operation, as the plaut is not to be disturbed again for three or four years. Drainage should be ample and perfect. It is essential that the potting soil be of a strong, permanent nature and rich in plant-food. A good compost consists of turfy loam, fibrous peat and old cow manure in equal parts. Add a little sand and charcoal. Avoid repotting until it is strictly necessary, and do so only when it is necessary to increase the number of plants or when there is danger of the roots breaking the pot. For amateurs the best time to repot the plants is directly after the flowering period. Use the greatest care in handling the roots. Allow the bulbs to project a little beyond the surface.

Some gardeners prefer to repot Vallota in June or July when root action has started, but before the flower stems have pushed up. Vallota likes full sunshine at all times of the year. The plant will stand a few degrees of frost in winter. Beware of over-potting; it is better to have the bulbs crowd one another out of the pot. Amateurs sometimes raise Vallotas in the window-garden, one bulb in a 6 -inch pot with 1 or 2 flower-stalks, but a large specimen is well worth years of care. The Scarborough Lily has been cultivated by rich and poor for over a century. Its popular name is supposed to have been derived in the same way as the Guernsey Lily, - a Dutch bark having been wrecked off the coast of England, some bulbs washed ashore and become established as garden plants. Vallota is considerably grown for the Loudon market, and it is said that some growers sueceed in blooming their plants twice the same year, in winter and summer. At the Cape, the species is said to be native to peat bogs, which fact would account for the special winter treatment which it needs. In California the plant blooms at rarious times of the year.

Michael Barker.
VANCOUVERIA (after Capt. George Vancouver, commander of the Discovery in the voyage to our northwest coast in 1791-95). Berberiddcea. A genus of 3 species of low, hardy perennial herbs native to our l'acific slope. Shade-loving plants, with slender creeping rootstocks and radical 2-3-ternately compound lvs. somewhat like maidenhair or rue and rather small white or yellow flowers in an open panicle on a naked scape. Sepals 6, in 2 series, obovate, petal-like, reflexed, soon falling; petals 6, linear - spathulate; stamens 6: follicle oblong, membranous, unequally 2 ralved: seeds arillate. Vaneouverias demand a rich soil in rather shady positions. They are not showy plants, but have foliage of an elegant and refined type.

> A. Lis. thin, membranous: fls. whitish.
hexándra, Morr. \& Decne. About 1 foot high: rootstock woody, slender: lfts, roundish, mostly angulately 3-lobed and cordate: scape naked or 1-1vd.: panicle simple or loose-branched: fls. white or cream-colored. May, June. Coniferous woods, Brit. Col. to N. Calif, near the coast. Gn. 30, p. 263.

## AA. Le's, rather thick: fls. yellow.

chrysántha, freene (J. herándra, var. aùrea, Rattan). About 1 ft . high: lfts, evergreen, sub-3-lobed, usually whitened and pubescent beneath: inflorescence subracemose: As, somewhat larger than in 1. hexandra. Offered by Pilkington d Co., of Oregon, in 1892.

## F. IV. Barclay.

VÁNDA (native name in Judia). Orchidacerr. One of the most attractive genera of East Indian orchids, nearly all species having large, handsome flowers. In habit they are dwarf and short-stemmed or tall and branched, sometimes climbing to a considerable beight. The erect species form eompact plants, with stems and hrauches well elothed with 2 opposite rows of leaves. Species like I. teres have a loose, straggling habit. Les. flat or channeled and keeled or terete, sometimes fleshy and deeply cbanneled; apex pointed, lobed or toothed: fls. in racemes from the axils of the lrs.; sepals and petals similar, spreading, narrowed at the base almost to a claw; labellum firmly united to the column, spurred, lateral lobes small, erect, middle lobe spreadiug; pollinia on a common stipe. About 20 species, natives of India and the Malay lslands.

## Heinrich Hasselbring.

Notwithstanding the various conditions surrounding the different species of Vanda in their natural habitats, the plants may nearly all be cultivated successfully under the same general treatment. When a general collection is grown a house of east and west exposure will be found best suited to the wants of Vandas. The plants require plenty of light and do not need any shade from November until the middle of February. A house of east and west aspect will require less shading during late fall and early spring than one of southern exposure, and there will be fewer ill effects from direct solar heat at all times. From February until November shading will be necessary, but it should never be too heary or black spot is likely to appear. The winter temperature should range from $60^{\circ}$ to $65^{\circ} \mathrm{F}$. by night and $70^{\circ}$ to $75^{\circ}$ by day, with a gradual increase of ten degrees during the summer months. A few degrees more with solar heat and rentilation will do no harm.

The atmosphere must be kept moist by damping the benches and patbs freely once or twice a day, and rentilation should be given whenever possible in greater or less degree according to outside conditions. Especially during wet, cheerless weather is ventilation important, even if fire heat has to be applied to retain the desired temperature. Vandas may be grown well in

2636. Vanda cærulea ( $\times 1 / 3$ ).
either pots or baskets, hut the latter are preferable, as they admit air more freely to the roots, whereby they are not so liable to decay from orerwatering during severe weather.

The best potting or basketing material consists of chopped live sphagnum moss freely interspersed with large pieces of charcoal. This material should be pressed in rather firmly about the roots, leaving a con-
vex surface when finished. A plentiful supply of water is essential at all seasons with copious syringing over the foliage in bright weather. The compost should never be allowed to remain dry for a long time.
F. tricolor and species like it grow very well among foliage plants in the warmhouse, where their large aërial roots, which are freely emitted from the sides of the stems, may ramble among the foliage and thereby retain moisture a long time after syringing. A few species, such as J'. Amesiana, $F$. ceralea and 1'. Kimhallianu, with one or two other alpine species, require about ten degrees conler temperature, but otherwise similar treatment to other species of the genus.

Stock is increased liy removing a foot or more of the leading growth with a sharp knife, allowing several roots to remain attached to each growth and basketing them in the nsual manner. These new pieces should be frequently syringed overhead until they become establisked or they are likely to shrivel. The old stems will nearly always send out several new growths.

The prineipal insect enemies to Vandas are several species of seale, which breed fast in a dry atmosphere. They can be kept in check by syringing with strong tohaceo water and by sponging the plants with a 20 per cent solution of alcohol.
R. 3. Grey.

## INDEX.

Amesiana. 15.
Andersoni, 17
Bensoni, 8.
Boxalli, 1, 5.
Cathearti, 19
eamrulea, 6, 11 citrulescens. 1 Corningii, 10 . Cornthgil, 10. densiflora ${ }^{\text {D }}$ densitlora, $1 t$ grindis, 10.

Hookeriana, 18. illustre, 14. insignis, 9. Kimballiana, 16. lamellata, 4. limbata, 12. Mariottitna, 13. Pirishii, 13. Pibrishil, 13.
parviflora, 2. parviflora,
Patersoni, 10. Robinsoníana, 10.

Roxburghii, 11. Sanderlisna, 20. Schroederiann, 9. spathulata, 3. splendens, 10. suavis, 10 . superba, 10. teres, 17. tessellata, 11 ricolor. 10. Veitchii, 10.

```
A. Labellum spurred.
    B. Le's.flut,or channeled and heeled,
        toothed or lobed at the apex.
        c. Racemes loose: labellum with
            lnteral lobes.
        D. Fls. 1-11/2 in. across.
            E. Color blue................ J. cærulescens
            ex. Color yellore.
        EEE. Color white or pale yellor,
                but streaked aud shaded
                writh brow"n
                            ...............
                            4. lamellata
                            5. Boxalli
        DD. Fls. 2 in. or more across
            (sometimes less in Nos. &
            (lul 11).
        E. Color blae
                            6. cærul&a
        E. Color blate.
        EE. Color w.hite.................
                but spoited with purple
                or brow'n.
            F. Middle lobe of the label-
                    lum dilated, reniform. 8. Bensoni
                            9. insignis
            FF. Middle lobe slightly di-
                lated, truncate or emar-
                ginate.
                G. Aper emarginate or
                    8-loberl...............10. tricolor
                    11. Roxburghii
                    gG. A per trmucute mad ob-
                    scurel!! mucronate...12. limbata
            fFF. Middle lobe shorter than
                the sepals, fluhelliform.13. Parishii
    cc. Racpme dense, cylindrical: la-
        bellum uithout lateral lobes..14. densiflora
    BB. Lets, semi-terete and deeply
        chonneled, pointed..............15. Amesiana
                            16. Kimballiana
bbB, Lis, terete
                            17. teres
                            18. Hookeriana
                    19. Cathearti
                            20. Sanderiana
```

1. cærulèscens, Griff. Stem 1-2 ft. high: lvs. 5-7 in. long, deeply clanneled, truncate and 2-lobed at the apex:
racemes many, slender and pendulous, eneh bearing about 12 tls.: Als. $]$ in. across; sepals and petals obovate, subacute, undulate or twisted, pale lilac-blue; labellum shorter than the sepals, middle lobe cuneate-obovate, with a delicate 2-lobed tip, violet with fleshy dark blue ridges, side lobes small, dark blue. Spring. Burma. B.M. 5834. F.M. 1877:256. G.C. 1870:529.-Color varies from blue to nearly white. Var. Boxalli, Feichb. f. Fls. pale violet or vearly white: dise of the labellnm deep violet with white lines on the sides. B.M. 6328.
2. parviflora, Lindl. Stem 4-fi in. high: lvs, strapshaped, $4-8$ in. long, unequally obtusely 2 lobed: racemes erect, many-flk.: fls, small, yellow; sepals and petals oborate-spatulate; labellum shorter than the sepals, middle lobe obovate, dilated, truncate and 2 -lobed at the apex, yellow below, white above, spotted and dashed with purple and having thick fleshy ridges. Himalayas. B.M. 5138 (as Aërides Wightianam).
3. spathulàta, Spreng, Stem 2 ft , liggh: Irs. 2-4 in. long, oltusely 2-lobed: pedunele robust, 12-18 in. tall, few-flh.: fls. 13/4 in. aeross, golden yellow; sepals and petals oblong-spatulate, flat; labellum as long as the sepals, clawed, side lobes rery small, broally obovate, middle lobe sub-orhicular. obscurely 3 fid. Ceylon, India.
4. lamellàta, Lindl. Lvs. channeled, leathery, obliquely and acutely hifid at the apex: fls, pale yellow, stained with red; sepals and petals oborate, obtuse, undulate, the lower sepal larger and somewhat ineurved; middle lobe of the labellum obouneate, retuse, anrienlate, having a pair of red elevated plates and 2 red tubercles just below the apex. Aug.-Nor. Philippines.
5. Bóxalli, Reichb. f. (Г. lamellàtィ, var. Bóralli, Reichb. f.). Stem tall, with long recurved lvs.: raeeme longer than the $1 \mathrm{rs} .$, bearing $14-20 \mathrm{fls}$.: sepals wbite. with the lower margins of the lateral pair sepja-brown; petals white, with vjolet streaks which are also found on the sepals, pandurate with large lamella and square auricles, mostly lilae. Nor., Dee. Philippines. G.C. II. 15:87. Gn. 19:574.
6. cærulsa, Griff. Fig. 2636. Stem 1-2 ft. high: lvs. rigid, linear, ( -10 in. long, obliquely truneate and toothed at the tip: raceme $1-2 \mathrm{ft}$. long: fls. $3-4 \mathrm{in}$. across, pale blue; lateral sepal obovate; petals broadly obovate, clawed: labellum less than one-third the length of the sepals, dark blue, linear-oblong, side lobes small, rounded, middle lole with 2 thickened ridges. Late autumn. India. F.S. 6:609. I.H. 7:246. Gn. 21:254; 31, p. $566 ; 47$, P. $145 ; 50$, pP. 59 and $418 ; 52$, p. 410. R.B. $17: 265$. G.C. J11. $3: 41 ; 7: 17$; 11:272. Ging. $3: 135$. G.F. 3:77. A.F. 6:685. F.R. 1:371. R.H. $1881: 290$ (var. grandiflora). -This is considered to be one of the best speeies in cultivation. The fls, are often tessellated.
7. Denisoniàna, Benson \& Reichb. f. Stem short: Irs. linear, $6-10 \mathrm{in} . \mathrm{long}$, recurved, deeply notehed at the apex: peduncles short, stout, bearing $4-6$-fld. racemes: fls, white, 2 in , across; sepals and petals waved and twisted, the lateral sepals hroadly obovate, faleate; petals clawerl, spatulate: labellum longer than the sepals; side lobes large, subquadrate; mirdle lobe panduriform, with 2 orbicular, diverging, terminal lobes. Sinmmer. Burma. B.M. 5811. 1.H. 19:105. F. 1869, p. 250. G.C. II. $24: 105$. A.F. 6:607.
8. Bénsoni, Batem. Stem abont 1 ft . high, very leafy: lvs. linear, leathery, 6-8 in. long, obliquely toothed at the apex: fls. 2 in, across, $10-15$ in a raceme, $1-11 / 2 \mathrm{ft}$. long; sepals and petals obovate, obtuse, clawed, white outside, yellowisb green with numerous brown dots inside: labellum violet, with white spur and side lobes, middle lobe terminating in a reniform, bifil apex. Summer. Burma. B.M. 4612. F.S. 22:2329. G.C. 1867:180.
9. insignis, Blume. Stem ereet: lys, linear, 10 in . long, apex with 2 or 3 teeth: raceme rather short, 6-10lld.: fls. $2-21 / 2 \mathrm{in}$. aeross; sepals and petals obovate, fleshy, the petals narrower, ochraceous brown, with darker hrown blotches inside, almost white on the outside; labellum pandurate, the apieal lobe being broady reniform, coneave, white tinted with rose. Snmmer. Malaya. B.M. 5759. Gn. 25:168.-Var. Schrcederiàna has yellow fls. with a white lahellum. Gn. 25:168.
10. tricolor, Lindl. Stem branched, tall, erect and leafy: lvs. strap-shaped, $10-12 \mathrm{in}$. long, channeled: raceme drooping, longer than the [vs.; fls, $2-3 \mathrm{in}$. across; sepals obovate, attenuated at the base, yellow with numerous brownish crimson spots; petals similar to the sepals in form aud color but narrower; labellum about as long as the sepals, lateral lobes small, rounded; middle lobe lyrate, notcherl, purple, with elevated lines. F.S. 6:641. I.H. 42, p. 161. B.M. 4432.-Var. suàvis, Hort. (V. sudvis, Lindl.). Ground color of the fls. white; sepals and petals spotted with purple; labellum deep purple. Fls, irregular from March to May. Java. B.M. 5174. F.S. 5, p. 510; 6:641. Gn. 3, p. 103; 23, p. 134 (as V. tricolor); 31, p. 242; 47:1010. 1.H. 42, p. 162. G.C. 11. 22:237 (var.) ; 111. 7:133 and 135. Var. Vèitchii, Hort. Fls. with rather large spots of deep rose; Iabellum deep rose. R.B. 20:145. Var. Pátersoni, Hort. Sepals and petals creamy white, heavily spotted with brown; labellum magenta-crimson. Gn. 23:375. Var. Corningii, Hort. Sepals and petals bright yellow, spotted with deep crimson and bordered with rose-purple on both sides: labellum deep riolet. Vars. Robinsoniana, grándis, spléndens and supérba are also advertised.
11. Róxburghii, R. Br. (I. tessellàta, Hook.). Stem 1-2 ft., climbing: lvs. narrow, complicate, $6-8 \mathrm{in}$. long, 2-3-toothed at the apex: racemes erect, $6-8$-fld.: fls. greenish yellow, tessellated with olive-brown inside, white outside; sepals and petals subequal, clawed, obovate, waved; labellum nearly as long as the sepals, lateral lobes small, acute, middle lohe panduriform, violet, truncate. May-Aug. Bengal. B.R. 6:506. B.M. 2245. F.S. 2:2; 6, p. 330. 1.H. 32:579 (var. rubra). P.M. 7:265.-Var, cærulea is advertised.
12. limbàta, Blume. Stem about 3 ft . high: Ifs. linear, keeled, 6-8 in. long, unequally bifid at the apex: racemes $10-12-\mathrm{fld} ., 6-8 \mathrm{in}$. long on peduncles of equal length: fls. 2 in . across; sepals and petals spatulate, bright cinnamon, tessellated, bordered with golden yellow, white suffused with lilac outside: middle lobe of the labellum oblong-pandurate, truncate, mucronate, pale lilac. June, July, Java, B.M. 6173.

13. Vanda Kimballiana ( $X 1 / 4$ ).
14. Párishii, Reíchb. f. Stem very short: lvs, few, $8-10 \mathrm{in}$. long, $2-3 \mathrm{in}$. wide, obtusely 2 -lobed: raceme drooping, $6-8$-fld., on a short peduncle: fls. 2 in . across, fleshy, greenish yellow, freely spotted with reddish
brown; sepals broadly ovate-oblong; petals orbicular; labellum one-half as long as the sepals, white striped with orange at the base; lateral lobes rounded, middle lobes flabelliform. Summer, Moulmein, India.-Var.

15. Vanda teres (detached flower $\times 1-5$ ).

Mariottiàna, Reichb, f. Sepals pale mauve with numerous darker blotches outside, petals mauve; both sepals and petals are mauve inside; labellum, white at base, with yellow spots and mauve lines.
14. densiflòra, Lindl.(Saccolabium gigantèum, Lindl.). Stem short, thick: lvs.very thick, 6-12 in. long, notched: raceme dense, cylindrical, about as long as the lis., nodding: sepals white, cuneate-ovate, subacute; petals narrower, with few purple spots at the base; labellum cuneate, obtusely 3 -lobed, with two pubescent ridges at the base, terminal lobes bright shining purple. Winter. Burma. B.M. 5635. F.S. 17:1765, - Var, illûstre, Reichb. f. Raceme and fls, larger: sepals and petals spotted with purple; labellum bright purple. I.H. 31:517.
15. Amesiàna, Reichb, f. Stem very short and stout: Ivs. fleshy, rigid, almost terete, with a groove down the center, $6-12 \mathrm{in}$. long: raceme simple or branched, erect, $1-2 \mathrm{ft}$. long and hearing $20-80 \mathrm{fls}$ : : $\mathrm{fl} .11 / 2 \mathrm{in}$. across, white, with rose-colored ridges on the labellum, sepals and petals ovate-oblong, obtuse; lahellum with a broadly cuneate, undulate middle lobe, having 5 ridges converging into a reflexed callus, side lobes small, rounded. Flowers at varions seasons. India. B.M. 7139 . J.H. 111. 29:491; 33:271. A.F. 6:441.
16. Kimballiàna, Reichb. f. Fig. 2637. Stem 6 in. high, probably climbing to a great heiglt: lvs. 6-10 in. long, terete, with a deen, narrow furrow: peduncle slender, 6 -10 in. long, bearing a drooping raceme $8-10$ in. long: fls. $2-3 \mathrm{in}$. across; petals and dorsal sepal ob-ovate-spatulate, lateral sepals very much larger, oblong, falcate, all pure white; labellum smaller than the lateral sepals, middle lobe orbicular, notched, rose-purple with darker veins, margin erosely toothed, lateral lohes small, yellow; spur 1 in. long, curved. Autumn. Burma. B.M. 7112. Gn. 37:747. R.H. 1897:352, Git. 45:1428 and p. 338. J.H. III. 20, p. 41 ; 29, p. 53. G.C. 111. 6:335; 17:69. A.G. 1891:89.
17. tères, Lindl. Fig. 2638. Stem long, climbing: 1vs, terete, 6-8 in. long: peduncle 6-12 in. long, bearing a 3 -6-fld. raceme: fls. 4 in . across; sepals nearly orbicular, white tinged with rose; petals a little larger, deep rose; side lobes of the labellum broad, incursed, yellow spotted with crimson, middle lobe exceeding the sepals, fan-shaped, reniform, purple or rose-colored. May-

Sept. Burma. B.M. 4114. B.R. 21:1809. P.M. 5:193. R.H. 1856:421. Gt. 43:1404. G.C. 11. 20:273; 111. $27: 307$. S.H. $2: 385$. Gn. 42:876.-A plant of straggling babit, but with very beautiful fls. Var. Andersoni, Hort., has fis. larger and more highly colored.
18. Hookeriàna, Reichb. f. Stem and Ivs. terete, as in V . teres, but the latter only $2-3 \mathrm{in}$. long, and slender: fis. 3-5 in. across; dorsal sepal and petals white, dotted with purple; lateral sepals narrower, oblong or somewhat obovate, white; labellum as large as the rest of the flower, side lobes incurved, white and purple, middle lobe fanshaped, with 3 large lobes, white spotted with purple. Sept. Borneo. 1.H. 30:484. Gn. 23:370. G.M. $40: 645 .-\ln$ cultivation the racemes are usually 2 -fld.
19. Cáthcarti, Lindl. Stem 1-2 ft.: Ivs. linear-oblong, 6-8in. Jong, unequally bifid at the tips: racemes longer than the lvs., 3-6fid.: fls. $21 / 2 \mathrm{in}$. across, orbicular in outline; sepals and petals nearly equal, orbicular-oblong, concave, pale straw-colored, transversely streaked with nmmerous narrow red-brown lines; labellum shorter than the sepals; lateral lobes quadrate. incurved, white with redstreaks; middle lobereniform, margin white, slightly crenate, center thick, yellow with a crenate border. Spring. Himalaya. B . M. 5845 . F. S. 12: 1251. G. C. 1870:1409. Gn. 19, p. 351 ; 33, p. 224; 42, p. 276. - Found near Waterfalls, where it is always kept damp.
20. Sanderiàna, Reichb. f. Stemvery leafy: lvs.rigid,fleshy, recurved, 1 ft . long, strapshaped, truncate, with 2-3 teeth at the apex: raceme bearing about 12 fls, each 5 in . across, with the broad sepals and petals overlapping: sepals orbicular, the dorsal one smaller, pale lilac, dotted at the base, the lower pair tawny sellow reined and tessellated with brownish crimson; petals smaller, rhomboid obovate, colored like the dorsal sepals; lateral lobes of the labellmon forming a cup-like base, middle lobe subquadrate, reniform, nuch smaller than the sepals, dull crimson. Sept. Philippines. B. M. 6983. J.H. 31:532. R.H. 1885:372. Gn. 25:426; 32, p. $399 ; 49$, р. 88; 50:480. Ј.H. 111. 35:55. G.С. 11. 203:440. Gng. 6: 115.-A very remarkable free-flowering species.
Synonyms and imperfectly known species: V. Bätemanni, Lindi. = Vandopsis lissochiloides. - V. Oathartica, Hort., is presumably an error for V. Cathcartii (No. 19 above).-V gigantèa, Lindl. $=$ Vandopsis gigantea.-V. Lowei, Lindl. $=$ Renanthera Lovel.-V. Niemanii,-V. promérsa.

Heinrich: Hasselbring

VANDÓPSIS (like l'andu). Orchidicea. Includes 2 or 3 species which until recently have been united with Vanda or with Stauropsis. They are distingnisled from allied genera by the labellmm, which is firmly united with the columm, not spurred, concare at the base, with the terminal lobe compressed laterally. In appearance these plants resemble rohust Vandas, with which they are nsuatly classed for horticultural purposes. Treatment the same as for Vanda.
lissochiloldes, Pfitz. (I'ánda Bittemanni, Lindl.). Stem 4-5 ft. high: lvs. strap-shaped, obliquely emarginate. 2 ft . long: raceme tall, erect, bearing 20-30 fls,: sepals and petals obovate, yellow, spotted with brownish crimson, purple outside; labellum crimson-purple. July-Sept. Philippines. B.R. $32: 59$. F.S. 18:1921.
gigantèa, Pfitz. (J'ända gigantèa, Lindl.). Stem pendulous: lvs. 1-2 ft. long, thick, flat, obtusely notched: raceme $10-15 \mathrm{in}$. long, decurred, many-fld.: fls. 3 in across, golden yellow, blotched with cinnamon; sepals and petals spatulate-obovate; labellum white. Burma. B, M. 5189. 1.H. 8:277. R.H, $1874: 290$.

## Henfrich Hasselbring.

VANGUERIA (Toc-Vanguer, Madagascar name of $V$. Madagascariensis). Rubidece. The Voa Vanga of Madagascar is a tropical fruit that has been recommended by the American Pomological Society as worthy of cultivation in southern Florida. The fruit is imperfectly described in horticultural writings. It is said to be a delicious berry $\mathrm{s} / 4 \mathrm{in}$. thick, but in Mauritius it becomes $11 / 2$ in.thick. It is a globose drupe, shaped something like an apple and contains 5 large "stones" or bony pyrenes. The plant is a shrub $10-15 \mathrm{ft}$. high. The species is widely spread in the tropics of the old World. It was introduced to American horticulture by A. I. Bidwell, of Orlando, Fla, in 1887 Van Deman reported that the shrub grew exceedingly well, sprouting readily from the roots when frozen down. It has probably never fruited in America. It grows readily from imported seeds.

Vangueria is a genus of 20 species native to the warmer parts of Asia and Africa. Sbrubs or trees, sometimes spiny or somewhat climbing in habit: lvs. opposite or rarely pseudo-verticillate in
enish in axillary clus4's, oval: fls. small, white or greenish in axillary clus-
ters; ealyx 5 - or 4 -lobed, lobes deciduous or rarely persistent; corolla hairy or not ontside, usually furnished inside witb a ring of deflexed pilose hairs; lobes spreading or reflexed; stamens 5, rarely 4; dise fleshy or depressed : ovary $5-3$-loculed; stigma capitate. orules solitary: fr. drupaceous; psrenes 5-3 in numbicr or putamen 5-3-loculed.

Madagascariénsis, J. F. Gmel. (I. édulis, Vahl.) Glabrous shrub, $10-15 \mathrm{ft}$. high: lvs. very large, oblong, obtuse or acute, membranous, short-petioled: fls. in copions, peduncled, axillary dichotomous cymes; corolla funnel-shaped, $1 / 4 \mathrm{in}$. long, with 5 spreading deltoid teeth. Nadagascar.
W. M.

VANILLA (Spanish, little sheath or pod). Orchiddecere. Vanilla. Climbing orchidswhose branehed stems ascend to a height of mauy feet. The nodes bear leaves or scales and aërial roots iu alternate arrangement. Fls, in axillary racemes or spikes, without an involucre at the top of the ovary; sepals and petals similar, spreading; labellum united with the column, the limb enveloping the upper portion of the latter; column not winged. About 20 species in the tropies.

The most important species is $\mathrm{F}_{\text {. planifolia, the Va- }}$ nilla of commerce. It is a native of Mexico, but is now widely cultivated in the West Indies, Jara, Bourbon, Mauritius and other islands of the tropics, its chief requirement being a hot, damp climate. The plants are propagated by cuttings varying in length from 2 to about 12 ft ., the longer ones being the more satisfactory. These are either planted in the ground or merely tied to a tree so that they are not in direct connection with the earth. They soon send out aerrial roots, by which connection with the soil is established. They are usually trained on trees so that the stems are supported by the forked branches, but posts and trellises are also used as supports. In most places where Vanilla culture is carried on pollinating insects are lacking and the flowers must be pollinated by hand. Plants bear their first fruit about three years after setting. They then continue to fruit for 30 or 40 jears, bearing up to 50 pods annually. The Vanilla pods are pieked before they are ripe, and dried. The vanillin crystallizes on the outside. For a full description of Vanilla culture and methods of curing the pods, see Bull. No. 21, U. S. Dept. of Agrieulture, Dir, of Botany, by S. J. Galbraith. Vanillin is also made from other sources by chemical means. The genus was monographed in 1896 by R. A. Rolfe in Journ. Limn. Soc., vol. 32.
planifolia, Audrews (I. aromática, Willd. in part). Fig. 2639. Comimon Vanilla. Vanilla Bean (from the pods). Tall climbing herbs with stout stems: ivs. thick, oblong-lanceolate, acuminate, with short, stout petioles: fls. yellow, large, in axillary racemes of 20 or more blossoms; sepals and petals oblanceolate; labellum trumpet-shaped, with small, reflexed, crenulate lobes. Winter. A native of Mexico but widely cultivated throughout the tropies and in greenhouses. B.M. 7167. L.B.C. 8:733. G.C. III. $25: 213$. Gn. 57, J. 35.
aromática, Sw . Stem angular: lvs. broadly ovate, with a bluntish point, contracted at the base: fis, greenish and white. Jamaica, Colombia, Trinidat.

## Heinrich Hasselbring.

VANILLA PLANT. Trilisx odoratissima; see, also, ranilla, above.

VARIEGATION. This term is usually applied to a class of variations, especially in leaf coloration, in which the leaves become striped, banded, spotted, blotched, etc., wlth yellow, white, red and various other colors iu connection with the normal green of other portions of the leaves. In the case of yellow and white variegation, the term albinism is sometimes used, especially when the plants are largely marked with white or yellow, as in Abutilon Sellowianum, Pelargonium zonale, and variegated forms of Enonymus Japonicus, Hydrangea hortensis, Hedera Helix, Panax 1 'ictorice and others.

Among the dracænas, caladiums and codiæums, besides the white variegation, there are developed beantiful reds, pinks, yellow, etc. As a rule, the term variegation is not used in cases of color variation iu which only the surface of the leaf is involved, as in many of the begonias, sansevierias (S. Guineensis and S. Zeylanica), Alocasia cuprea, Cissus discotor, and others. Fig. 2641. In many such plants the markings are due in part to hairs, scales, or air in the cuticle or epidermal cells, as in Sansevieria and Begonia. In some begonias, many varieties of Calathea (as © ormata, var. albo-7ineata), etc., the epidermal cells develop decided and definite color variation, though the changes do not usually involve the mesophyll or inner cells of the leaf. In some genera, however, especially Calathea, we find all gradations between purely epidermal variegation and changes involving the deeper layers of the leaf, as in C. Veitchii and C. Makoyana. The same is true of
many other genera. Different kiuds of variegation are shown in Figs. 2640-1.
True variegations may be distinguished from ordinary colorations, bleaching, chlorosis, etc., by the fuct that the colored areas are usually quite sharply defined. They do not gradually blend into each other, but have definite boundaries. Cells in the variegated areas are found, as a rule, to contain the same chlorophyll bodies (chromatophores) as the ordinary green cells of the plant. However, in the variegated parts, the green color is not developed, and the chromatophores are often smaller or are somewhat swelled and vacuolate. In the

2640. Variegation in Abutilon.
case of chlorosis, due to the lack of iron, or yellowing due to the lack of light, a leaf will quickly develop its normal color if given the proper conditions. This is not the case, however, in variegated leaves. While the intensity of whatever color the chromatophores may have can be varied by light and food, a variegated cell can never be changed by these means to a normal cell.
The chlorophyll granules (chromatophores) appear to have lost entirely, in many cases, the power to make starch and sugar from the carbonic acid gas in the air, and in other cases this power is very greatly reduced. In practically all cases, however, when the chromatophores are not destroyed, they retain the power to convert sugar into stareh and they thus store up starch in their tissues from the sugar manufactured by the healthy cells of the leaf.
White or albino varjegation is of course due to a lack of any coloring in the chromatophores, and sometimes to the entire absence of these bodies. The cells seem to have lost completely the power of making ehlorophyll. These albicant variegations are to be looked upon as the more extreme forms of variegation, and usually arise through a feeble or atrophied condition of the plant. Seedlings raised from parents both of which are variegated in this way are usually very weak. High feeding and favorable conditions of growth, while they will not cause a variegated plant to return to its normal condition, will often stimulate the development of a normal green shoot that takes most of the nourishment and thus causes the starvation and disappearance of the albicant parts. In other cases, as in codiæums, motified chlorophyll is made. Large yellowish oil-like drops occur in the substance of the
chromatophores, and the various changes that these undergo, as the leaf becomes older, produce the remarkable and betutiful colorations of this group of plants. The coloration here, as in dracanas and caladiums, is intensified by strong light and nourishing food. The more of the modified chlorophyll there is produced and the more rapid the changes in the modified ehlorophyll brought about through the action of light and the acids and oxidizing ferments of the leares, the more lighly dereloped will be the colors, thongh here again high feeding is likely to cause the plant to revert to its normal condition.

Variegated plaats or parts of plants are usually of slower growth and smaller than green plants of the saune variety or the green parts of the same plant.

Causes of l'ariegation. - Variegation occurs either by bud-variation or by variations in seedlings. In the former, a rariegated branch is likely to appear on an otherwise perfectly normal plant. Such variegations are eavily reproduced by budding, grafting or cuttings, but generally do not develop again from seeds produeed on such branches. On the other hand, when variegation develops in seedlings, the seeds of such plants usnally sive a number of variegated individuals, even the cotyledons being sometimes affected. In some cases the proportion of variegated plants from seeds is very large and can be increased by selectiou. As a rule, the form of spottiug or marking is not constant in seedlings, often being very different from the parent. In certain groups of plants, which hare for many years lieen selected on account of the horticultural value of these markings, the variegated condition has become almost a fixed feature of the plant, as in dracanas, caladimms, codieums, etc. While the plants of these genera are not asually propagated from seeds, still when they are so propagated, a large number of seedlings show more or less variegation.

Darwin and many of the earlier investigators believed that these variations were started in the plant by unfavorable nutritive conditions, and much has been written on the suhject as to whether or not variegations should be considered as diseased conditions.

The question as to whether a Fariegated condition could be transmitted to normal plants by budding and grafting has also beev much disputed, but the weight of erideace indicates that in many cases such transmission certainly takes place. This has been thought to indicate the presence of some micre-organism. living either parasitically or symbiotically in the


plant, and causing the changes known as rariegation.

Investigations roulucted by the writer ou the so-called mosaic dispase of tobacco, which is a form of variegation, and also on many other forms of ordinary variegation, show quite conclusively that the disease is not cansed by mieroorgauisms, but is due to a deranged condition of the nutrition of the cells. Without going into the detaits of the matter, it may he said that the condition is characterized physiologically by a marked increase in the oxidation processes in the cells, cansed by the presence of an abnotmal amonnt, or an abnormal activity, of oxidizing fermeut in the protoplasm. This ferment prevents the moremeat of food substances, especially starches and nitrogenous materials. The decrease of the latter is expecially marked, and it is probably on account of the lack of sufficient nitrogenous food that the cells do not develop normally. The young growing huds and dividing cells require bighly organized alhuminoid foods. They do not make use, to any extent, during the process of growth and eell division. of the ordinary nitrates which are built up into nitrogenous foods by the mature cells. The oxidizing ferments, though normal constituents of all cells, prevent, when they become excessively active, the proper nutrition of the dividing cells, and it is a curions fact that when these ferments are extracted from plant tissues and injected into the young buds of healthy tissues, they will, in the case of tobacen at least, cause the buds so treated to develop into variegated shoots. The ferment in question passes readily through the cell-walls of the plants and it thus becomes evident how such changes conld be transmitted by grafting and budding, though no parasitic organisms of any kind are connected with the matter.
Another method of producing variegation of tobacco is by cutting the plant back severely during rapid growth. The new shoots have to develop with a small supply of elaborated nitrogenous food, the larger part being removed in the serere eutting back. Shoots thus developed nearly always show variegation. The same thing is true of many other plants, especially the potato, tomato, mulberry, etc. In fact, it appears that a plant is likely to show varicgation whenever it is so treated that the growing buds or the forming buds, or the seeds, have to develop undersuch conditions that the ferment content of the cells is increased beyond the normal amount, and the reserve foods stored are in small amount.

These changes must, therefore, he considered as pathological in their nature, as the vitality and
vigor of the plants are reduced as a result. It is further evident that the initial causes of variegation may be quite diverse, some of the most usual being seed of low vitality; unsuitable nourishmeut, especially a lack of elaborated nitrogen ; rapid growth in very moist soil; severe injury to the roots during a perjod of rapid growth of the upper parts of the plant; severe cutting back, ete.
Though started at first through the influence of enrironment, variegation, when of value horticulturally, has in many cases been increased and fixed by selection till it has become almost a specific character iu some groups of plants.

Autumnal Coloration.-A word might be said in this conuection regarding autumnal coloration. The productiou of color in autumn foliage is, as is well known, due in part to the gradual destruction of the chlorophyll when the leaves have reached maturity and approach the period of death, and in part to the action of acids on authocyanin as described below. Many of the destructive changes which take place in the chlorophyll are oxidation processes, the same as occur in the cells of highly colored rariegated plants, and physiologically they are not very different from the changes occurring in Calathea, Caladium, Codiaum, etc. The approach of maturity in the leaf, and the coming on of cool weather in autumn, stimulates the production of oxidizing ferments, and the action of these and the acids of the cell-sap upon the chromogen, or color contents of the leaves, especially the chlorophyll and antbocyanin, causes many of the brilliant colors of autumn foliage. There is a popular belief that these colors are due to cold weather or frosts; but while frosts, if they are light, hasten the solution and destruction of the chlorophyll, they cannot he looked upon as more than hastening changes which would occur in time without them. Even in the tropics, some foliage before it matures becomes highly colored, and on the Japanese maples the writer has observed beautiful autumnal colorations in July in the regiou of Washington.
In practically all deciduous trees, bushes, etc., before the maturing and falling of the leaves, all of the valuable food materials, such as sugars, albuminoids, etc., pass from the leaves through the vascular bundles into the twigs and branches so that they are not lost to the plant. When the leaves fiually fall they are therefore nothing but mere skeletons, containing waste materials. In the passage, especially of albuminoid matters, from the leares to the stems, it is necessary that the materials be protected from the strong action of light, and it is believed that part of the coloration of maturing leaves serves this purpose.

A coloring material, or chromogen, known as anthocyanin, is always present in such cases, and develops heautiful reds when the cell-sap is acid, blue when no acids are present, and violet when there is only slight acidity. This, in connection with the disorganizing chlorophyll, causes the varions mixtures of yellow, brown, violet, red, orange, etc., of autumnal coloration as described above. In very young leaves of many plants, such as Ailanthus glandulosa, Juglans regia, Vitis, Cissus, and many other plants, this same anthocyanin is developed as a protection to the albuminoid materials traveling to the foung cells. Such protective colorations have to be distinctly separated from variegations. In evergreen leaves, during the winter, the chlorophyll granules are protected by the development of anthocyanin, forming a brownish or reddish tinge in the cell-sap. This is especially prominent in many conifers.

While, as stated above, these protective and in some cases transitory colorations should be cleariy distinguished from variegation, it is an interesting fact that they develop when the conditions for active nutrition are unfarorable, and may in many cases be produced in maturing leaves by starring the plants or permitting them to become sufficiently dry to check growth.

Chlorosis. -This term is usually applied to those cases of the production of yellow or white foliage cansed by a lack of some mutrient salt, such as iron, potash. lime, phosphoric acid, etc. The most common cause of chlomsis, or yellowing, is due to the lack of iron. In
such cases, the disease is readily cured by either spraying the foliage with a dilute solution of iron sulfate or other iron salt, or watering the roots with the same. Even within a few hours the cbromoplasts will begin to turn green, and the plant goes on making starch and sugar from the carbon diozid of the air in the normal manner. A lack of phosphoric acid sometimes causes a similar trouble, which is cured by the addition of this nutrient substance to the soil. Numerous cases are on record of yellowing of foliage due to excess of soluble lime in the soil. Grapes are especially sensitive to an excessive amount of lime, and turn yellow readily as a result of its actiou. Soils which contain too much magnesia in proportion to lime also often cause a yellowing of foliage of plauts growing in them. All causes of this kind can be readily distiaguished from variegation by the fact that all the young leaves produced under such conditions become yellowish or white and are not mottled or marked as in variegated plants. Moreover, the condition is readily corrected by furnishing the proper nutrition, and usually all plants growing iv sucb soils show the same trouble.

Albert F. Woods.
VARNISH TREE. Kalreuteriu paniculata, Ailanthus glandulosa, Rhus vernicifere, and other plants.

VASES. Such rases as are shown in Fig. 2642 are common features of formal gardening. All matters concerning their manufacture or beauty are clearly outside the prorince of this work, but every gardener who purchases such a rase is interested in certain practical borticultural features of its construction. It is imperative that the vase have a bole at the bottom for drainage, otherwise the soil will become sonr. It is desirable that the rim of a vase be rounded, as a sharp edge cuts the vines that trail over it and are swayed by the passing wind. Many of the old-fashioned stone vases 4 or 5 ft . high were made with a bowl too shallow for the good of the plants.
Vases are generally stationed in conspicvous positions near buildings, where they receive daily attention from all, including the gardener. It is necessary to water them every morning during hot weather, and it is therefore desirable to have the water supply near at band. A watering eart is often used in taking care of vases. Vases are often placed in the sunniest situations, but they can also be used in partially shaded spots. On the north side of a building in a shady place sheltered from the bigh winds small palms may be used in rases, together with Rex begonias and Pandames

2642. Stone flower vase 4 or 5 feet high, used in formal gardening.

## leitchii.

The plants used in vases should be of a firm texture, and resistant to drought, dust and occasional high winds. Cannas, ferns and foliage plants that are likely to be cut or whipped by the winds are necessarily ex cluded. The first thought should be given to a centerpiece. This should usually be some plant of a rather stiff, formal or architectural nature. Cordyline indivisa and $C$. australis are excellent for the purpose. They should stand well above the other plants. Around the edges vines are used, especially periwinkles, green and variegated, nasturtiums and Senecio mikanioides. Another choice plant for this purpose is Helichrysum
petiolatzom, known to gardeners as Gnaphalium lana. tum. This is an "everlasting " plant which is not truly a vine; it does not Hower in rases but is valued for its silvery foliage and pendulous habit. Between the center piece and the rim of drooping vines are used such standard plants of medium height as geraniums, dusty millers, petunias and the common bedding material, as Lobelia Erinus, coleus, achyranthes and acalypha. Centaurea Cineraria and C.gymnocarpa are also useful plants for vases.
The soil in a vase may vary from 6 to 18 inches in depth. It should be a strong, solid comprost, about 3 parts of loam to one of manure. It the bowl seems too shallow and becomes billed with roots add a top-dressing of wett-rotted manure, or of moss with a little bone meal added. Such a mulch will add plant-food and conserve moisture.

Considerable forethought and taste may be required to keep the vases attractive during early spring, in the interval after the last frost and time when the tender bedding material is set out. Pansies have been suggested for this period, and make a good effect when seen from above. A better effect can be produced by using conifers in pots which have been wintered in a frame. These may be bordered with pansies if the gardener thinks best and can find the time at this season.

Rustic vases are much less expensive than stone, iron or earthenware ones and in some situations are very suitable. It is an excellent idea to elevate a rustic vase on a cheaply constructed pedestal of tree trunk or boards, which will soon be hidden by Ampelopsis Veitchii.

Robert Shore.
VAUX, CALVERT (1824-1895), an Aruerican landscape gardener. Togethcr with Frederick Law Oimsted he planned Central Park, New York, the prototype of large, accessible, nature-like city narks. The following account of his life-work is taken with slight changes from an obituary notice by Wm. A. Stiles in Garden and Forest 8:480: Calvert Vanx was born in London in 1824. He had achieved success in architecture hefore the age of twenty-four, when he came to America as business associate of Andrew Jackson Downing. At the time of Downing's untimely death in 1854 the two men were designing and constructing the grounds about the capitol and Smithsonian Institution, the most important work of the kiud that had yet been attempted in America. Meanwhile, the gathering sentiment in favor of spacious and accessible city parks which bad found expression in the eloquent letters of Downing at last secured, through legislative action, the purchase for a public pleasure-ground of the rectangular piece of ground now known as Central Park, New York. In 1858 the city anthorities selected, out of thirtythree designs offered in competition for the new park, the one signed "Greensward," which was the joint work of Frederick Law Olmsted and Calvert Vaux, and Central Park as we know it to-day is the realization of this design in its essential features. This was the earliest example in this country of a public park conceived and treated as a consistent work of landscape art, and the first attempt in auy country to plan a spacions pleasureground which should bave the charm of simple natural scenery while it met the requirements of complete inclosure by a compactly built city. No one can read the original plan as presented for competition without feeling how thoroughly an experience of nearly half a century bas justified the forethought of the young artists, or without a sense of gratitude to them that our first great park, which has to such an extent furnished a stimulus and a standard to other American cities for similar undertakings, was a work of such simplicity, dignity, refinement and strength. It may be added that this "Greensward" plan, together with other reports on Central Park, on Morningside and Riverside Parks, in New York, on parks in Brooklyn, Albany, Chicago, San Francisco and other eities, both in this country and the Dominion of Canada, by the same authors, contain a consistent body of doctrine relating to public pleasure-grounds which is unique and invaluable. Calvert Vaux was a member of many important commissions, and he acted as landscape gardener for the Niagara Falls Reservation, but for more
than thirty years his best work and thought were stead ily given to the parks of New York city. He had the genuine creative faculty which gave the stamp of originality to all his work, and a severity of taste which preserved it from anything like eccentricity or extravagance. As a city official he was a model of intelligent zeal and sturdy integrity. Several times he resigned his lucrative position rather than see lis art degraded, but he mas always quickly reinstated by a demand of the people. To Calvert Vaux, more than to any other one man, New York owes a debt of cratitude for the fact that Central Park, in spite of attacks on every side. has been held so secure against harmful invasion and has been developed so strictly on the lines of its original conception.
In private life Calvert Vaux was a man of singular modesty, gentleness and sincerity. He lacked the graces of manner and magnetism of social intercourse which carry many men in various walks of life to a brilliant position that mach exceeds their real merits. Nevertheless, he bad many accomplishments and culture of the best type. It is a sad and singular coincidence that both Downing and Vaux met their death hy accidental drowning. The career of Calvert Vaux is an inspiring one for all struggling young artists and for all publicspirited citizens in America who are laboring in the work of civic and village improvement. Amid the changing policies of municipal governments, the lifework of Calvert Vaux is a shining example. W. M.

VEGETABLE FIRE-CRACKER. See Brevoortia IdaMaia. V. Hair. See Tillandsia usneoides. V. Horsehair. Fiber of Chamorops humilis. V. Ivory, Nuts of Phytelephas.

VEGETABLE GARDENING. In horticultural usage a vegetable is an edible herbaceous plant or part thereof that is commonly used for culinary purposes. The product may or may not be directly associated, in its derelopment, with the flower. This definition does not clearly include all the products which ordinarily are considered to be vegetables. Some vegetables, as melons, are properly dessert articles. Only usage can delimit the term. What are considered to be vegetables in one country may be regarded as fruits in another country. However, the use of the term is so well understood that there is no difficulty in making proper application of it in common speech.
All the art and science that has to do with the growing of these plants is popularly known as vegetablegardening. Recently a Latin-made term, olericulture, bas been invented to designate the industry, the word being coördinate with pomology and floriculture. It is not likely, bowever, that this term will ever come into general use, although it may be useful in formal writings. Vegetable-gardening is ordinarily considered to be a branch of horticulture rather than of agriculture. However, a number of crops may be either horticultural or agricultural subjects, depending on the extent to which they are grown. When grown in establishments that are devoted primarily to a horticultural business, squashes, pumpkins, potatoes and tomatoes are usually regarded as horticultural commodities; but when they are grown on farms where mixed husbandry is practiced and are made a part of the general farm system in rotation, with equal propriety they may be called agricultural crops. There are certain vegetablegardening erops that are practically always associated with a horticultural rather than an agricultural business. They are such as demand intensive culture and are used for special markets. Of such are lettuce, parsley, cauliflower and radish. Some of the crops may be classified as borticultural or agricultural, depending upon the uses for which they are to be employed. For instance, beans that are grown for the green pods are horticultural subjects, but if the same varieties were to be grown for the mature seed for selling in the general market, they would be known as agricultural products. In like manner turnips may be horticultural subjects when grown in small areas for home use, but agricnltural subjects when grown on large areas for stockfeeding,



There seems to be a growing tendency in this country for vegetable-gardening to become a part of general farming schemes. A generation ago a large part of the vegetable-gardening for profit was conducted in relatively small areas by men who devoted their entire time to the business. At present much of the vegetablegardening enterprise is merely an adjunct to farming proper. This is in part due to the development of the canning industry, because of which enormous quantities of certain products, as of tomatoes, are desired. It is partly due also to the extension of agriculture into the newer regions wherehy lands are discovered that are particularly well adapted to the growing of special commodities; as, for example, the raising of squashes in some of the prairie states and the receut exteasion of

Census, 1890. According to a bulletin issued by that census the investment in commercial or purely truckgardening interests of the country lying beyond the immediate vicinity of large cities amounted to more than $\$ 100,000,000$. Hore than half a million acres of land were devoted to the industry and nearly a quarter of a million of people were employed. After paying freights and commission, the products of these establishments brought to their owners more than $\$ 76$,000,000 .

Vegetable-gardening may he divided into two great categories, depending on the disposition that is to be made of the products ; namely, market-gardening or truck-gardening, of which the purpose is to make money from the industry; and home-or amateur-gardening, iu

4643. Onion-growing on flat lands in southern New York, the houses being the homes of the workmen.
melon-growing into Colorado. Long-distance transportation has revolutionized regetable-gardening in this country. See Packing. Whilst there has been great progress in the industry, our vegetable-gardening has not developed so widely from the European ideals as our pomology has. Yet tomatoes, sweet corn, watermelons and sweet potatoes are probably grown more extensively here tban elsewhere in the world.

Vegetable-gardening is an important business wherever there are large cities, because the markets are close at hand. The secoud most important factor in determining the location is climate, since earliness of 'product usually increases the profits. A third influence in the geography of vegetable-gardening is the soil. Usually soils of a light and loose character, or those that are said to be "quick," are preferred, because the plants may be started early in the spring and they also grow and mature rapidly. Because such soils are so frequently employed for vegetable-gardening purposes, gardeners have come to be very free users of stable manure and concentrated fertilizers. In recent years the vegetable-gardening areas of the eastern country have rapidly extended along the Atlantic seaboard as far as the keys of Florida. In these southern localities vegetables can he secured in advance of the northern season and when the best prices are reigning. The development of transportation facilities has made this enterprise possible. The southern Mississippi valley region is also developing a large vegetable-gardening interest since it is tapped by trunk lines of railroad running to the north and east. Well-narked vegetablegardening areas are those on Long Island, N. Y., and about Norfolk, Va., where special industries and practices have developed. Fig. 2643 shows an onion-grow. ing community in southeastern New York.

The most recent published statistics of vegetable-gardening in the United States are those of the Eleventh

Which the purpose is to raise a supply for the family use. Whilst the same principles of selection of soil, tillage and fertilizing apply to both these categories, these kinds of gardening are unlike in the general methods of procedure. The market-garden is ordinarily located where the climate and soil influences are favorable. Every effort is made to sccure mniformity and great prodnctiveness of erop, and it is usually desirable that the crop come into the market somewhat quickly and then give place to other crops. In the home-garden the climate and the soil are largely beyond the choice of the gardener, since these matters are determined by the location of the homestead. The general effort is to secure products of high quality and to have a more or less continuous supply throughout the season. In mar-ket-gardening emphasis is usually placed on a few crops, whereas in home-gardening it is placed on a great variety of crops.

The old-time home regetable-garden was generally unsuited to the easy handling of the soil and to the efficient growing of the plants. Ordinarily it was a small confined area in which borse tools could not be used. The rows were short and close together, so that finger work was necessary. The custom of growing crops in small raised beds arose, probably becanse such beds are earlier in the spring than those that are level with the ground (Fig. 1528). With the evolution of modern tillage tools, however, it is now advised that even in the home-garden finger-work be dispensed with as much as possible. Some of the very earliest crops may be grown in raised beds to advantage, but in general it is better to secure earliness by means of glass covers or by ameliorating the entire soil by underdrainage and the incorporation of humus and by judicious tillage. See Tillage and Tools. For farm purposes particularly it is desirable that the rows be long and far enough apart to allow of tillage with horse tools. If the vegetable-gar-
den were placed betwreen the farm buildings and the outlying parts of the farm, the eultivator could be run between the rows when goiug and coming. In this way nearly all finger-work could be aroided and a greater quantity and better quality of vegetables could be secured. Compare Figs. 1528, 2645.

Vegetahle-gardeners are manally large users of stable manure. Near the large cities the manure is bonght in

or foreing-liouses. In these structures conditions can be controlled better than in hotbeds, and they are permanent investments. However, hotbeds and coldframes are still exceedingly important adjuncts to the vege-thble-garden, chiefly because they are not permanent arm. 1 thereloy can be moved when the person shifts to wher land, and because the space that they ocenpy can be utilized for outdoor erops later in the season. Much vegetable-gardening in large eities is prosecuted on rented lands; therefore it may not be profitable to invest in such permanent structures as forcing-houses. The first cost of hotbeds is also less than that of foreing. lonses, and this is often a very important item. Fig. 26i6. For management of glass structures, see Hotbeds, Greenhouse, Forcing.

There are great numbers of insect and fungous pests that attack the vegetable-garden crops. General remarks under Insects, F'ungus, Insecticides, Fungicille and Spraying will apply to these diffieulties. The spray pump has now come to be a necessary adjunct to any efficient vegetable-garden. However, there are many difticulties that are beyoud the reach of the spray, particularly those that persist year by year in the soil or which attack the roots rather than the tops. For such difficulties, the best treatment is to gise rotation so far as possible and to avoid carrying diseased rines back on the laud the
car-load lota, and it is used every year. The reason for this is the necessity of improving the physical texture of the land so that it will be loose, open and mellow, be early or "quick," and hold an ahundant supply of moisture. In intensive vegetablegardening there is no "resting" of the land and no green crops to be plowed under. The regetable matter, therefore, has to be supplied almost entirely loy harn manures. In the larger and less intensive vegetable-growing farther removed from large cities, general agricultural practices can be employed to better advantage, such as rotation and green-manuring. Vegetable-garleners generally use largely, also, of concentrated fertilizers. These materials may be employed for either or both of two purposes: to start off the plants quickly in the spring, or to add plant-food for the sustenance of the plants during the entire growing senson. Ordinarily the former nse is the more important in vegetable-gardening, since it is necessary that the plants start quickly in order that early crops may he secured. Many times fertilizer is used in amounts far in excess of the needs of the plant in mere plantfood, in order to give the plants a strong and vigorons start and thereby enable them to make the most of themselves. If the plants are not well established when hot and dry weather comes there is likely to be litthe profit in them.
ln intensive vegetable - gardeniug it is important to start many of the crops under glass and to transplant the young plants to the open as soon as settled weather comes. This is particularly true of tomatoes, very early letfnce, swect potatocs, egs plants, peppers and the early crops of celery, cab. bage and cauliflower. In the northern states muskmelons and sometimes watermelons and cucumbers are started under glass, heing grown in pots, hoxes or upon inverted sods, whereby they are more readily transferred to the open. Formerly the plants were started under hotbed or coldframe structures, but of late years there has been a great increase in the extent of glass houses


2645, A better way of growing vegetables, - in long straight rows.

If, with his knowledge of vegetable-growing, the gardener combines good busiuess and executive ability, and an intimate knowledge of market conditions, he should he able, however, to make it a profitable and attractive business. Although the outlay is likely to be large, the returns are direct and quick. Fig. 2644.
There is a large literature devoted to vegetable-gardening, althongh the greater part of it applies chiefly to amateur or home-growing. Leading current books on the general subject of vegeta-ble-gardening are those by Greiner. Green, Henderson, Rawson and Landreth. For California one should consult Wickson's "California Vegetables in Garten and Field," and for the Atlantic south, Rolf's "Vegetable - Growing in the South for Nortliern Markets." There are many books devoted to special topics, and there are many others which in their time were of great practical value, but which are now chiefly known as recording the history of the epoch in which they were written. Only one American work has been deroted to descriptions of varieties of regetables, as the works of Downing, Thomas, and others have to varieties of fruits. This work is Fearing Burr's "Field and (tiarden Vegetables of America," Boston, 1863, and the abridgment of it in 1866, called "Garden Vegetables and How to Cultivate Them." A full list of the American regetahle-gardening literature may be found in Bailey's "Principles of Vegetable-Gardening" (1901). Persons who desire a cyclopedic account of vegetables should consult Vilmorin's "Les Plantes Potagères," the first edition of which is published in Londou as "The Vegetable Garden."
L. II. B.

Vegetable Growing in California. It is an interesting fact that though California's horticultural prominence now rests upon fruit prodncts, the first attraction to the new state, after the gold discovery, was the wonderful growth of garden vegetables. The reports of immense size, of acreage product and of prices secured, were almost incredible because so much in advance of ordinary standards, but the statements were so fully authenticated that many were drawn to California by them. These horticultural pioneers, however, soon found that immigrants from Asia and the Mediterranean region could, by their cheap living and by doing their own work, cut under American growers who had to employ high-priced labor, and so the latter retired from the field, leaving the opportunity to the frugal and thrifty foreigner. Thus vegetable-growing, from an American point of view, came jnto disrepute and largely retains such disadyantage at present. The result is that the American largely avoids market-gardening, while Asiatics and South Europeans are thriving on it. There has been a reflection of the same disfavor upon farm growing of vegetables for home use, and our farming population, including the fruit-growers who should know and do better, is largely dependent upon alien vegetable peddlers or prodncts of canneries instead of fresh home-grown esculents, which would be cheaper and inexpressibly better thau canned or transported supplies.

Fortunately there are indications that this state of affairs is changing. The uprising during the last decade of a large industry in growing vegetables for overland shipment and for canning seems to have clotherl the plant-cultures involved in this trade with new dignity and importance which is attractive to American growers. Cabbage, cauliflower and celery for eastern shipment, peas and asparagus for canning and for shipment, tomatoes for canning, ete., have all become large special crops, while some other plants, like Lima beans, which

2646. A "run" of hotbeds.

1899 was: tomatoes, 583,061 cases; peas, 25,966 cases; asparagus, 105,881 cases; beans and other vegetables, 38,523 cases. Nearly all the vegetables included in the above trade are of the higher classes, potatoes and onions only moving in considerable quantities when exceptionally high prices prevail in the East. In addition to the foregoing there is the bean shipment to eastern markets, which reached a total of $73,150,000$ pounds in 1895, but has been less each year since then because of partial drought in the chief bean districts.

Califormia conditions affecting vegecable-growing are wide and various. Nowhere else perhaps is it more essential that certain things should be done just at the right time and in the right way. If these requirements are fairly met the produet is large and fine; if they are neglected the failure is sharp and complete. This fact has giren rise to the impression that California is a hard place to grow vegetables, which is not true unless one lacks local knowledge or the nerve to apply it. One of the chief canses of failure is in tollowing seasons and methods which have yielded success under conditions prevailing in the states east of the Sierra Nevarla mountains. If one begins garden-making in the springtime the plants do not secure deep rooting, which is necessary to carry them to success in the dry season, and the garden is likely to be a disappointment. If, on the other hand, all the hardier vegetables are sown in snecession from September until February or March there will be continuous produce through the winter and into the early summer. The chief shipments of vegetables from California are made during the late fall and winter and are taken right from the ground to the cars withont protection or storage. Tender vegetables, like eorn, beans, tomatoes, ete., can, however, be grown in the winter only in a few frostless places. They must either be pushed to a finish in the fall or sown early in the spring and carried into the dry summer as far as necessary either by natural moist land or by irrigation. There are, however, a few localities where tomatoes will fruit early in the spring from fall plantings, and peppers will live through the winter and bear a second season's crop on the old plants.
The possession of an irrigation supply is the secret of

 Wombers．Irrigation will whable whe to hatre stomethimer erixp ami deliesous in the exaten every day in the swat

 ing of the rainy s－anon in Kiptamber．irrawines the har dier vortatales while mamstare is ample erom mothe drier lamls darines the late fall and whiter，；um ketping the lowne latuls well plownd aml raltivaterl to provelit



 j＝sern in the fart that the large lamat ban monduet is grown almont entarely withont irriqution from jlanting

 in the sail．The sambe is trum of the corn reat：perfact curn can be erown withont a drop，of rain or irmsation
 winter rains atre retaimed in the suil by mattirattom．If Wintere growth is mate hey ramitall，sammare growth can he loul wh thr same lam by irriation．In this way irri
 year growfl｜，whinh ramont lu laml ly rainfall．With Foon suil and aboumant irrigation it je jumente to surner fonar erogs in ratation buring the yar－the hatrly pants in the fall ：and winter momble：the forder flantio in the

 and prompt actions shd explains why those who hate
 littlo hat ent weets afterwarde may timb it hath to met the foset results in California．And yet the（＇alifarnian grower has ereat ablyantases in his dowp．rich suil，in frew dom from dintawe which thrive in ：hamal atmons．

Loeal ：whatations for tlifiomot raputallas are some
 large specialty erops mast le manle with reforener to them．The result is that the earliont yrestathles ewme
 almust all the Lima batas are groms on at mant platin in Ventura and sinta liarbara mountios：the emery fur easturn shipment is nuarly all wrown ant the porat lands
 Mateo county：ainparagns amb tomators from Alammad connty amm river ixlands of Siarammento athel Sim Joat
 others mot mentiontal are mure willoly sattorent，hat everywhere the lewal wil，rxposime and elimate are chid monsideratious．
＇There is prospret af wrat ineramare in all the verge
 enter largely into ouran traflow with distant laujic ports． Interstate trade is romstantly inereasine aus rammed vegetahios are contrated in elvance to Emronean dis． tributors ats wrill as th dealers in all the Amurisas．

F．．J．Wになsパ．

## VEGETABLE MARROW．Nev pagu 1il3．

VEGETABLE ORANGE is Cucromis Mele，var．Chitn． V．0yster．Sce S゙ulsify．Vegetable Pomegranate is Cru． cumas Miln．var．flermsus．Vegetable Spunge．Nep Luffir．

VEITCHIA（Tames Vefitch，of Chelsea，famous Eng－ lish murserymant．Palmotele．Ahont 4 species of pinn－ nate palms mative to the Fiji Islands and Now Mebrides． Thar gemus belongs to that partion of thar Arewat tribu characterizal bey at parietal woule whirh is mory or less permbulons am the，spirally disposial in the banches of the spatix，thal is clistinguished from 13．dywope and



 cult．in the varly eishtites．That leat sechulthti have a will amol rather shallow motels at the apex or atw ols． liguely trumeate．The sheath petiole and rathis are a dark homd folor and envered when yount with a gray tomentum interspersall with lanceolate，thin，lark red







VELTHEIMIA（：Iftor tlu＊C＇ount of Vitlarime，1741－


 ＂r：1＇．＂ins．Jobse resemblinse thase of the Poker flant （kiniphotia），though rowt in eolor．Tha plants grow

 are not showy ban are of casy multure．＇They art prace tomally manown in Amerina．（ismeris chatatern：Peri－ antle withering anm persistont；tulne longe，＂ylimdrual：

 $\because$ ，whateral，Hacen mear the minhle of the loe ules：
 mered，lomblindally ：：－valud．Thase plants have a large tunirated bmlliz－；in．thick．The at mas is monomraphed in Flara C＇apmonsis，vol．18．For multure＇，sear Finllas．

## 

viridifolia，Iteq．Lǐ，whouef－Iorate，wavy－marдined，


 13．M． 501 （．17rtris（topunsis）．

## AA．Les．ytutucous， $7^{1}=$ in．broud．

glaùca，lact．Lys．oblamponlate－lorate，arato，glan－ cous：scape liss stout：Hs，＂sellow or bright ral．＂ar＂ cording to Baker．B．M．1091（tls．whitw，dotted red to－
 aluye）．

W．M．
VELVET BEAN，Muswn，Muri＊us，var．utilis． Ste also linull．H0t，Ala．Exp．Sta．，by J．F．Duggar．

## 

VENETIAN or VENICE SUMACH．Ihus Cotimus．
VENIDIUM（name not vxplainet by its anthor）， C＇umpúseter．＇The plant linted in oune if the largent
 ＂rum is so little known in Ancrivat that the following acemont of it as a Earden plant is adapted trom（in．21， F． $41 \%$ ．It is a gracefol single－flowered romposith which flominhes amber the molinary tratament accorileal half－hardy ammals，matimes it comptot，reand de mass $\mathscr{y}$ ft．hirh amd is ft．wide，and＂poyered for several mondle conseavtively with hatekeyed rolden blossoms， ristmbling thome of the put maricold，though much brishtrr ：thel more wefloml．＂＂There is considerable dirersity in its semdinge both as regames hathit atmi the
 selection in sreal－saring is newalful in order to sequre the best farms．It is atmirahly alaptal for colting， as the thowers open and shat is rfaglarly as when un tha plant．＂This spuceitos has also lwen theated is a
 midwator．The flower－homls are fully ：ins．acrons．

Vanitinm is al Letmas of 18 spereits uif sunth African


 moter narmone ：and lof hacemas，imser s－arions：akomes
 rideses intle．x．d．the medial straight，narrower：no hairs from the have of the akeme：patpuc ither nome or of 4 very minutt．minlateral sales．Monographeal in Flora Capensis，vol． 3 （18it－fi5）．
decurrens，Less．Diffuse，canestent purembial，1－2 ft． long：lrs．mostly ivrate，the terminal lobe ovate or rommish，simato－bled or repamd，at tirst colswebbed， aftermards mule and pmotate ahove，white－tomentose beneath：petiole $2-21.2 \mathrm{in}$ ．loug，amply rarea at base， the 1 an ilseurrent along the stem．

Var. calendulàceum, Harvey ( 1 . calendulàceum, Less.), differs in baving the petioles not eared at the base or with only a small ear. R.H. 1857, p. 123. Gn. 21, p. 405.-Opinions differ as to its merits. Some consider it coarse and weedy
W. M.

VENTILATION. See Greenhouse Management, p. 694.
VENUS' FLY-TRAP. Dionea musciprela.
VENUS' HAIR. Adiantum Capillus-I'eneris.
VENUS' LOOKING-GLASS. Specularia Specutum.
VENUS' or VENICE SUMACH. Rhus Cotinus.
VEPRIS. See Toddalia.
VERATRUM (ancient name of Hellebore). Lilidece. False Hellebore. A genus of about 10 species of tall. perennial herbs from the temperate regions of the northern hemisphere with short, thick, poisonous root-stocks and rather stout simple stems bearing many broad, plicate leaves and terminated by a long, branched or simple pauicle of numerous black-purple, white or greenisb flowers. Perianth-segments 6, persistent, spreading ; stamens 6, attached at the base of the segments: capsule ovoid, 3lobed, 3-loculed: seeds flat, broadly winged.
Veratrums are striking foliage plants, of easy culture in moist shady positions. In the open sunlight or in dry ground the foliage is liable to burn and decay prematurely. They may be propagated by division or seeds.
A. Fls, whitish or greenish.
B. Perianth-segments crisped dentate.
álbum, Linn. Eurofean White Hellebore. A hardy perennial $3-4 \mathrm{ft}$. high: root short, fleshy: Irs. green, plicate; radical lvs. 1 ft . long, oblong, $5-6$ in. wide, firm in texture: panicle $1-2 \mathrm{ft}$. long, dense: ths. Whitish inside, greenish outside; segments oblong - spatulate, crispeddentate; pedicels almost none. Juse, July. Eu., N. Asia.

## bs, Perianth-segments serviate or entire.

víride, Linn. American White Hellebore. Indian Poke. Fig. 2647. A hardy perennial, $2-7 \mathrm{ft}$. high: rontstock $2-3 \mathrm{in}$. long: lrs. plicate, acute, the lower oval, about 1 ft . long, the upper gradually smaller: fls. yellowish green; segments oblong or oblanceolate, ciliate, serrulate: pedicels 1-3 lines long. July. North America. B.B. 1:408. B.M. 1096 (Helonias viride).

Califórnicum, Durand. Stem very stout, 3-7 ft. high: lrs. ovate-acute, the upper ones lanceolate but rarely acuminate: perianth-segments broader than in t. rivide, obtuse, whitish with a greener base. Colo, and Wyo, to N. Calif. and Ore, -Int. 1883 by Pringle and Horsford. The long panicle of whitish, hell-shaped, drooping fls. is followed by ornamental fruits or capsules.

## AA. Fls. blackish prrple.

nigrum, Linn. A hardy perennial often 2-4 ft. high, somewhat bulbous at the base: lower lvs, oblong plicate, 1 ft , long, 6-8 in. wide, narrowed at the base; upper leares lanceolate: panicle narrow: tls. blackish purple; segments oblong, obtuse. June. Eu., Asia. B.11. 963 .
J. B. Keller and F. W. Barclay.

VERBASCUM (old Latin name of the Mullein used by Pliny). Scrophularidece. Muleme. A genus of over a hundred species, mostly coarse, woolly, weedy yeliowfld. biennials native to the Mediterranean region. Considering the fact that the familiar Mullein ( $\mathbf{5}$. Thapsus) is everywhere known and despised in America, the popularity of the genus in English wild gardens is highly surprising. Over 30 kinds are cultivated, and some of them bave been pictured many times. A little study of the group shows how much pleasure can be missed by any oue who persists in one point of view. The English farmer has no dread of the Mullein. The Mullein is actually a favorite border plant in England, especially for the hack row and for shrubberies. One connoisseur after growing many kinds of Verbascums discarded them all except the common species. The plant probably came to America from England, certainly from Europe, but not long ago it was sold in England under the name of "American Velvet Plant." The "Soldierly Mnllein" has often been praised by Ameri-
2647. False Hellebore - Veratrum viride

Showing the handsome foliage of early spring when the leaves are about $a$ foot high.
can writers for its sturdy habit and resistance to the wintry winds; and even a Mullein has its poetie moment, for the young rosette of leaves in the early morning is undeniably beautiful.

There are a few true perennials and some subshrubs among the Verbascums, but the species mentioned below (except No. 17) are believed to be biennials. Yellow is the dominant color, with pale yellow and white variations, The origin of the other colors is explained under No. 12 below. Mulleins usually self-sow freely. Their large symmetrical rosettes are very satisfactory the first year, especially in the case of the silvery-leared species. The second year they send up stalks $2-10 \mathrm{ft}$. high and give scattering bloom over a long season, in some cases June to Nov., being at their best in August. The best species are $\mathbf{I}$, phoniceum (see No. 12), I. Olympicum (No.17) and 1 . phlomoides (No.3), the last two deserving special notice.

The Olympian Mullein is the slowiest of all Verbascums because of its short season of bloom. It is peculiar in the fact that three and sometimes four years are necessary to bring it into bloom. Meanwhile it makes noble tufts of silrery foliage, the lvs. often attaining 3 ft . in length. The species is the best of the candelabrum type, by reason of its great height ( $6-10 \mathrm{ft}$.) and the symmetrical hranching of the spike. The fls. are produced in multitudes for three weeks and they are
smaller than in $J^{\prime}$ ．phlomoides．The plant has the dis－ advantage of being sensitive to wetness，its soft， woolly lvs．damping off in wet situations over winter．

Ir．phlomoides，though less popular than the preced－ ing，is probably the best of all the yellow－fid．species． It has the advantage over I．olympicum of being a true bienuial of easier cul－ ture with larger fls，and a longer season of bloom，8－ 10 weeks，and even then if cut half way down it will throw out lateral bloom in late autumn．

Generic description：bien－ nial herlos，rarely perennial or suffruticose，more or less woolly：racemes or spikes terminal，simple or branched：pedicels clustered or solitary：calyx 5 －eut or 5 －parted；corolla with al－ most no tube，rotate，rarely concave，with 5 broad lobes； stamens 5，affixed at liase of corolla；style entire： ovales numerous：eapsule globose aroid or oblong．DC． Prod．，rol．10．Boissier Flora Orientalis，vol．4．Gar－ den 27，p．172；41，P． 551. Ameriean trade names are ： $r_{\text {．Chaixii，nigrum，Ollym－}}$ picum，parnosum，phlomo－ ides，phœ⿱亠䒑cerm．

## INDEX．

albrem， 13.
Blattaria， 9.
blattarioides， 8 ．
Boerhaviii， 11.
canescens， 1.
Chaixiil， 19.
collinum． 1 ．
crassifolinm， 5 ．
сиргеит， 12 ．
densiflorum， 6. ferrugineum， 12 Freymianum， 19. glabrum， 8 ．
pyramidatum， 15. ruhiginosum， 16. Schraderi， 1. semi－lanatum， 19 sinuatum， 14. thapsiforme， 2. Thapso－floccosum， $\mathbf{l}$ ． Thapso－nigrum， 1 ． thapsoides， 1. Thapsus， 1. vernale，13， 19. virgatum， 8 ． viscidulum， 8.

A．Anthers of the longer stamens ad－ nate－decurrent．SECTION 1. Thapsus．
B．Fls．clustered．（Group 1．Eu－ thapsus．）
c．Anthers short－decurrent：co－ rolla concave at the throat．1．Thapsus cc．Anthers longer adnate－decur－ rent：corolla flattened ont． D．The fls．scarcely pediceled． E．Stem－lus，long－decurrent．2．thapsiforme EE．Stem－lvs．short－decurrent．3．phlomoides DD．The fls．spicate，pedicels sometimes as long as or longer than the calyx． E．Les．very long．．．．．．．． E．Les．moderately long．
F．Filaments glabrous． 4．longifolium F．Filaments glabrous．．．
FF．Filaments white－ woolly．．．．．．．．．．． BB．Fls．solitary or nearly so． c．Plents woolly．（Group 2． Spectabiles．）．．．．．．．．．．．．．．．．．
Plants glabrons．（Group） c．Plants glabrous．（Group 3. Blattaria．）
D．Pedicels in Z＇s or \＆＇s．．．．．．8．virgatum DD．Pediecls sotitary．．．．．．．．．．．．9．Blattaria
AA．Anthers all kidney－skaperl and of about equal size．Section 11. Lychnitis．
B．Racemes simple，or slightly branched．
c．Calyx rather large．
D．Teeth of calyx evate
10．niveum

DD．Teeth of calyx linear－lan－
ceolate．．．．．．．．．．．．．．．．．．．．．．Boerhaavii
co．Calyx small．
D．Fils，purple ．．．．．．．．．．．．．．．．．．12，nhœuiceum
DD．Fls．yellou＇．．．．．．．．．．．．．．．．．．．13，nigrum
Bв．Rucemes branchet or pani－ cled．
c．Clusters of fls．finally remote．14．sinuatum
cc．Clusters of fls．near together．
D．Pedicels rurely us long as calyx．．．．．．．．．．．．．．．．．．．．．．．．15．pyramidatum
DD．Pedicels as long as calyx or longer．
E．Plant green and nearly glabrous．．．．．．．．．．．．．．．．．．16．rubiginosum
ee．Plants more or less woolly．
F．Filaments white－ uoolly．
G．Tomentum fleecy：
lrs．fomentose on both sides ．．．．．．．．．17．0lympicum
GG．Tomentum mealy： les．greenish above．18．Lychnitis
ff．Filaments purple． uoolly．

19．Chaixii
1．Thápsus，Linn．Common Mullein．Fig． 2648. Familiar weed in woods and in nneultivated fields，2－6 ft．high，densely woolly，with large oblong root－lvs．and long racemes of yellow flowers．Eu．，Orient，Hima－ layas．B．B．3：143．Gn．28，p．148．－Natural varieties have been observed with pale yellow and white ths and hybrids with V．simuatum，Lychnitis，nigrum，ete． Other variations are：infloresceuce dense or lax，simple or branched：fls，large or small：wool dense or loose： filaments glabrons or pilose．The following European trate names are said to be referable to this species： I．conescens，Linuei，pallidum，Schraderi，and thap－ soides，all nearly synonymons；1＊．collinum，Lamottei， Thapso－floccosum and var．Gorloni，Thapso－nigrum．

2．thapsiforme，Schrad．European species with yel． lowish tomentum ani narrowly decnrrent stem－lvs． Var．macrùrum，Benth．（1．macrùrum，Ten．），has white tomentum and more widely decurrent leaves．

3．phlomoldes，Linn．A clasping－lyd．species valued for its long season of bloom．It bas elnstered fls．with pedicels shorter than calyx．Naturalized in Mass．Gn． 40 ，p． 561 ；41，p． 555.

4．longifòlium，Ten．（V．pannosum，Vis．\＆Panc．）． ltalian speeies known by its rery long root－lvs．，long interrupted racemes which are somewhat branched，the lower clusters of fls．spicate．

5．erassifolium，Hoffm．\＆Link．Spanish plant，with long－decurrent lis．，spicate raceme，clustered lvs．，flat－ tened corolla and glabrous filaments．－One of the few species that thrives in a light，sandy soil．

6．densiflorum，Bertol．Italian monntain species known by its decidedly yellow wool and long dense racemes．

7．ovalifollium，Sims．Showy Caucasian species with fls， $11 / 2 \mathrm{in}$ ．aeross．Distinguished by its oval，white－ woolly lrs．and solitary，sessile flowers．B．M． 1037. B．R．7：0̄58（as 1．formosum）．

8．virgàtum，With．（ $\Gamma$ ．blattarioldes，Lam．）．This and the next are two of the very few Verbasenms that are green throughont．I．glabrum，Willd．，and V．viscidu－ lum，Pers．，represents its glabrous and sticky－pilose variations．Cosmopolitan．

9．Blattària，Linn．Moth Mullein．Blattaria is from blatta，cockroach，which the plant is said to repel． Plant is frequented by moths，whenee popular name． Native of Enrope and $\mathcal{N}$ ．Asia；naturalized in America． One of the few green－leared Verbaseums，distinguished from ${ }^{F}$ ，rirgatum by solitary pedicels．Fls．rarely white．

10．niveum，Ten．Imperfectly known Italian species with white wool，very dense raceme of solitary，sub－ sessile fls，and a 5 －parted woolly calyx having ovate lobes．
11. Boerhaávii, Linn. Beautiful large-fld. Mediterranean species with copieus, snew-white lecidueus wool and clusters of sessile flowers.
12. phœníceum, Linn. ( ${ }^{1}$. ferrugineum, And.). Purple Mullein. Very distinct and desirable species, being practically the only purple-fld, species in cultivation and parent of nearly all varieties and hybrids having shades of purple, violet, rese, pink and lilac. The white-fld. ferm is alse common. It is a species of seutheastern Eu, and Asia. The name phoniceum was doubtless suggested by the Phonicean purple and not by the nativity of the plant. The species grows about 5 ft , high, and is one of the few green species, the lrs, being nearly glabrous or only pubescent. Liss, orate: fls. longstalked, solitary, about I in. across, which open poorly in sunshine, preferring damp weather. The species should, therefore, be placed where only the morning and evening sun strike the Hewers, L.B.C. 7:637. Gn. 22, p. 377; 27:481: 46, p. 5J9. A.G. 1892:630.-Var. cupreum, Benth. ( $V$. cùpreum, Sims), is a garden bybrid raisel from seeds of 10. oralifolizm, showing influence of $\mathrm{I}^{\text {r }}$. thenicum in its copper-colored fls, It has long been a farorite. B.M. 1226.
13. algrum, Linn. A common Eurepean species, with stem angled above, lvs. nearly glabrous above, long raceme rarely branched and purple weolly filaments. Gn. 27, p. 173; 41, p. $5 \overline{1} 1$ (var. album, showing the wenderfn] improvement made by cultivation). V. vernile, Wierz. \& Rechel, is referred to this species by index Kewensis.
14. sinuàtum, Linn. Mediterranean species $2-3 \mathrm{ft}$. high, with sinuate-pinnatifid root-lvs., divaricate, pyramidate panicles and lax, remote, many-fld. clusters.
15. pyramidàtum, Bieb. Tall and beautiful species, with doubly crenate lvs. nearly glabrous above, pyramidate, canescent panicle, violet-woolly filaments and a very distinet calyx. Cancasus.
16. rubigindsum, Waldst. \& Kit. Stem glabrous or pubescent abore: lrs. green, crenate: racemes lax, branched: pedicels 2-3, rarely solitary, twice or many times as long as calys.-Var. ferrugineum, Beuth. ( ${ }^{\text {P }}$. ferrugineum, Mill.), has a long, simple raceme: fls, a little larger and longer than in V. phaniceum, and usually in pairs. Either a natural or garden hybrid.
17. Olýmpicum, Beiss. Tall Grecian species, $3-5 \mathrm{ft}$, white-woolly: lvs. tementose on beth sides: panicles with a few very long, erect hranches: clusters manyfld.: fls. 1 in. acress, filaments white-woolly. The garden merits of this species are discussed above. Ging. 1:273. Gn. 30, p. 213; 31, p. 125; 38, pp. 55, 66; 41, p. 555; 47, p. 147.
18. Lychnitis, Linn. Tementum slight and mealy: Ivs. greenish above, crenate: panicles pyramidate, erectspreading: clusters lax, many-fld.: fis, yellow, rarely white.
19. Chảisii, Vill. (F. orientale, Bieb.). Lvs, green or tomentose beneath, crenate, lower ones cuneate at base, truncate or incised: racemes panicled. filaments purpleweolly. $V$. vernale of the trade belongs under 1 . nigrum instead of here, as commonly stated. fin. 27, p. 172. - Vars. semi-lanàtum and Freyniànum, Hort., are hybrids. Ottell attains 10 feet, and acts like a true perennial on warm soils.
IV. M.

VERBENA \{ancient Latin name of the common Enropean rervain, I. officinalis). Ferbendcear. Verbenas rank very high among garden "annuals." Their clusters of showy and often fragrant flowers are borne in constant succession from June till frost. They vary from white through lilac and rese to purple and dark purplish bluc, with shades of pink and pale yellow. The clusters are about 2 in . across and contain a dozen or more fls. each $5 / 8-7 / 8$ in. across. The fls. have a tube and 5 spreading lobes, each lobe being notehed at the apex.

When special colors or named varieties are desired it is necessary to propagate Verbenas by cuttings. To propagate a particularly choice variety by cuttings, shorten back the plants about September 1, keep them well watered, and by the end of the month there will be plenty of quick, tender growth suitable for cutting. Put the cuttings in the propagating honse or even in flats with some soil in bottom and sand on surface.

Place the flats in a coldframe, and keep them roist and shaded until the cuttings are rooted. When rooted, transfer to flats in a cool, light house until after New Year's. Then pot them, using $21 / 2$-inch pots, and allow a temperature of $50^{\circ} \mathrm{F}$., which will soon give plenty of material for additional cuttings. Verbenas increased from cuttings tend to flower early, and these propagated in February or March will require at least one pinching. When planting-out in beds for summer bloem, bend the plant over nearly to the herizontal, so that the new growth will spread along the surface of the soil. These shoets will quickly take reot, thereby covering the ground. The old method was to jeg the plants dewn.
In prepagating general stock, sow the seed in February and pot into 2 -inch pets as soen as the seedlings are up an inch. A temperature of $45-50^{\circ}$ will answer, but they should have full light. There is no place equal to a mild hotbed for young Verlenas. About April 15 plunge the pots in a few inches of soil in a mild hotben. Lift them now and then and rub off the roots which go througb the bottom of the pot, in order to check grewth and hasten flowering. Customers want to see them in flower before buyiug, and most of them wait till the end of May. Howerer, Verbenas can be planted out early in May, as a slight frest will not injure them.

Verbena is a genus of about 110 species, one Mediterranean, the others American and often weedy. Herbs or subshrubs, decumbent or erect: lvs, opposite, rarely in 3's or alternate: spikes terminal, densely imbricate or long and distant-fld., sometimes corymbose or panicled: corolla-tube straight or incurved; limb somewhat 2-lipped, lobes 5. oblong or broader, obtuse or retuse; stamens 4 , didynamous: ovary 4 -loculed, 1 -ovuled. DC. Prod. 11:535-556 (1847). Wm. Scott and W. M.
The following account of Verbenas is extracted from a thesis byJ. H. Cowew, whose untimely death deprived American horticulture of a most promising worker. Mr. Cowen was a graduate of the Colorado Agrienltural College and had been an as: sistant in the horticultural department there. After two years' work at Cornell University he received the degree of Master of Arts in June, 1900, and was elected to the fellowship in the College of Agriculture. A few days later he was notitied of his election to the chair of horticulture in the state of Washington and also at Colorado. He accepted the position at his alma mater. The day before his inteuded departure he was stricken by appendicitis. He died July 12. 1900. The work in Colorado was very much to his heart. It was his native state. He knew the people and the conditions. No man was ever better fitted for the work he expected to undertake.
It was Mr. Cowen's intention to recast his thesis in cyclopedic form. The following acconnt has been changed as little as possible. The botanical part at the end lis entirely recast, but the readahle portion contains Mr. Cowen's own words. with a few slight verhal changes and some omissions.
In 1836 London styled the Verbenas "a genus of weedy plants." The lapse of a few years was sufficient to prove this remark to be inapplicable in many cases, for on the plains and prairies of South America grew a number of species of such surpassing beauty as to set at naught all preconceived notions of the inherent ugliness and "weediness" of the genus.
Introduction of Parent Species, 1826-1838. - The first of this noble race to be introduced was lerbena chamadryfolia, a dazzling scarlet. This species has had a profeund influence upon the "selfs " of 1 . hybrida, particularly the scarlets, and is one of the predominant parent species of the "compactas."

The second important South American species to be intreduced was Verbenu phlogiflora, in 1834. The flowers are inclined to rose or purple rather than to searlet, and, according to early plates, are mere regular; they are elevated on longer peduncles amd the cluster is oral or oblong instead of that or merely conrex. This species and $\overline{\mathrm{F}}$. chamadryfolia seem to he the principal parents of the various red, scarlet and rose-colored forms in cultivation.

Ferbena incisa flowered in England for the first time in J.336. This species is charanterized by rosy or purplish, rather regular flowers, borne in a flat or slightly convex chaster. The corolla is strikingly lighter colored helow thun abeve. The leaves are much more deeply cut than in the twe preceding species. The habit of growth resembles that of 1 , jhiogiflora, lut is rather tall and weak, three feet high in cultivation. This spe-
cies was doubtless used in hybridizing, but its distinctive cbaracters are now practically obliterated in the forms of I . hybrida.
lerbeua teucrioides is a species of strikingly different characters from the three preceding and one which has exerted a most profound influence upon many races of 1. hybrida. Five plants flowered in Irelaud in July or August, 1838. This species is easily distinguishable by its spikes of white flowers, which emit a rich jessamine fragrance, its recurced, coarsely crenate, sessile leaves, and its stiff upright babit of growth. The eharacters of $\mathrm{J}^{r}$. teucrioides are apparent in many forms of one 1 . Fybridt, notably so in many of the blue "oculatas." Of the four species thus far mentioned, $I$, teucrioides alone is still cultivated in a distinct specific form.

These four species seem to be the ouly ones which lave had a marked and permanent influence upon our
improve it that a great numher of horticultural varieties soon appeared and English rarietal names gradually superseded the unwieldy quasi-botanical ones. All the species, except $V$. teucrioides, seem to have soon lost their specific identity and to have completely merged in 1.hybrida. The additions made through the four or fire years following 1836 were astonishing, as we find in 1840 upwards of 40 kinds enumerated, while in 1844 a single list contained the names of over 200 varieties.

In 1839 Robert Bnist, Sr., of Philadelphia, introduced the leading forms to America. Robert Buist, Jr., states positively that these were obtained from England. It is 'sometimes erroneously stated that Buist obtained seeds directly from South America. He seems to have been for years the leadiug Verbena grower and hybridizer in America. It is impossible from the meager American literature, to discern any striking difference between the trend of derelopment in America and in

2649. The four prototypes of the garden Verbenas, faithfully redrawn from early colored plates.

From left to right: $V$. chamordryfolia, chief parent of the reds; 5 . phlogifora and incisa, the originals of the rosy and purple colors; and $Y$, teucrioides, a white flower which is chietly, if not wholly, responsible for the fragrance of the bybrid Verbenas.
present races of Verbena. 1 . tenera and 1 . Aubletia have probably been used occasionally by florists in hybridizing, but they belong to a different section of the genus, some of their hybrids seldom produce seeds and their influence, if any, has been slight and transieut.
With the successful introduction of $\Gamma$. teucrioides in 1838, Verbena lovers had a most promising start for the development of a splendid gronp of garden plants. They possessed four species, the great variability of which gave opportunity for limitless selection, and the close affinities of which afforded the most farorable opportunities for profitable hybridizing. I'. chamodryfolia provided one of the richest scarlets in nature, J . phlogiflora and 1 . incisa provided rarions tints of rose and purple, l.teucrioides gave white with a rather elusive fsuggestion of yellow. $\mathbf{V}$. chamodryfolia was of prostrate habit; $I$. teuerioirles was stiff and upright; the other two species were intermediate. I', teucrioides was possessed of a rich perfume.

Early Period of Hybridizing and Selection, $1838-$ 1848. - Selection and hybridizing had already begun in 1838 and bad been rewarded with the production of "several excellent varieties." The first of these were given trinomial Latin names. The Verbena gained popularity so rapidly and so many efforts were made to

Britain. In his "Directory " of 1845, Buist mentions the fact that some of the better sarieties have flowers as "large as a dime, far outrying those cultivated a few vears ago." In 1854 he speaks of new varieties of "perfect formation" and "flowers as large as a quarter dollar," and as "good as the titled English varieties." Doubtless the Verbena was eleveloped to a bigher degree of perfection as an exhibition flower in Britain than in America.

Period of Greatest Popularity, 1S45-1868. - The Verbena was fast winning favor as one of the most popu lar of bedding plants. Its history as an exhibition plant began about 1850 and reacbed its zenith in 1868 , when the Verbena was at the greatest height of popularity. It was in this year that the Royal Horticultural Society of England awarded premiums to 17 parieties. Its height of popularity as a bedding plant was reached some years before this, possibly as early as I860, for there seems to hare been a growing opinion unfavorable to it as a bedding plant as early as 1861.

Period of Decline und Partial Recovery, 1868-1900.About 1870 the Verbena took a precipitous decline in public favor. There were many causes that conspired to its downfall, but chief among these were:
(I) A number of other plants captured the capricious
admiration of flower-lovers. A host of showy-flowered and zonal pelargoniums were offered to the public. Henderson says that in 1870 he sold 20,000 pelargoniums and that in 1875 he sold 100,000 . In many beedding arrangements the Verbena was wholly superseded by the pelargonium. The tuberous-rooted begonias and Phlox Drummondii likewise contributed to the neglect of the Verhena, the latter of the two largely superseding it as an exhibition plant. In the west of England, howerer, the Verbena continued to be used to a slight extent as an exhibition plant up to 1889 .
(2) About this time (1870) the Verbena was beset with unusually destructire insects and diseases. These troubles were not new, for as early as 1844 it was recognized that there was difficulty in preserving plants over winter on account of the attacks of mildew and of greently, but the reward was sufficient compensation for the required rigilance. It is probable that the highly artificial conditions and "coddling" to which the Verbena was subjected during the period it was used so extensively as an exhibition plant, contributed to weaken its constitution and thereby to heighten the destructire influence of the mildew and aphid.
The prospects for the Verbena hare somewhat improved within recent years. The German varieties maintained their constitutions hetter than the English ones, and the American climate seems better suited to the Verbena than the European. Owing to the long recognized difficulty of "wintering over," the treatment of the Verbeua as an annual has come into practice and its success is most gratifying. With the improvement of the habit of growth by the erolution of a race of "compactas" and by the fixing of the various colors so that they will come true from seed, the Verbena has gained a new lease on present and future popularity.

The form and size of the individual flower and of the flower-cluster have been closely associated and have had a concomitant evolution. By observing Fig. 2649 it is apparent that in the prototypes of our present garden forms of Terbena hybrida the individual flowers are irregular, the upper lobes of the corolla being narrower, large vacant spaces occur between the lobes, and the flowers are relatively small. I chamedryfolia is the most irregular, $\mathrm{F}^{\circ}$. incisu and I . teucrioides are somewhat less irregular, while 1 . phtogiflore (if the artist was true to his subject) had nearly symmetrical lobes. In none of these species were the corolla-lobes expanded strictly in a plane at right angles to the tuhe. The tlower-cluster of ${ }^{5}$. chamedryfolia was likewise very defective, from the florist's standpoint, in that considerable portions of the space were unoccupied, giring to his eye a ragged, unfinishell appearance. I. incisa and phlogiflora were appreciably better in this respect, while in $r^{\prime}$. teucrioides the flowers were unsatisfactorily scattered along a sparse spike. The Verbena fancier soon established in his mind an ideal of "pip" and "truss," toward which he constantly selected. This conception doubtless changed from decade to decade, but the essential features remained fairly constant. This ideal type is admirably exemplified in Fig, 2650, which is a reproduction of an apparently idealized lithograph of 1872. The individual flowers are over an inch in diameter, the lobes are geometrically symmetrical and fill the space perfectly, but do not crowd. The flower-cluster is of graceful, oblate-oval form, with no unoceupied spaces and yet not overcrowded.

Though the Verbena breeder prohably never completely realized the ideal flower and cluster, this ideal has had a most significant infuence. The greatest progress in improving the size and form of the individnal flower and of the flower-cluster was made during the fifties and sixties, especially during the period in Which the Verbena was used as an exbibition plant. 'This is quite natural, because exlibition plants are seen at close range, and the English gardeners of this period were very formal in their tastes. On the other hand, such a high degree of symmetry is not sought in flowers used for bedding and for borders. They are seen at greater distances. Ahundance of bloom and depth of color are of greater importance. It is probable that the best Verbenas of to-day would hardly come up to the standard of those grown by the English gardeners of 1868 if judged by formal symmetry.

The Verbena has little tendency to "sport" toward the production of double flowers. However, such forms occasionally occur among seedlings.

Derelopment of the E'ye. - The only "eyed" effect observable in the prototypes of I. hybrida was that produced by the palisade of white hairs in the throat and the yellowish color of the inside of the tube. At present we have numerous races of "oculatas" with distinct white or yellowish eyes of various sizes. Two different kinds of color markings are spoken of as "eyes;" riz., dark centers and lemon or white centers. In this discussion the term is applied only to the latter. In a list of 48 select rarieties published in 1848 several are de-


## 2650. An ideal type of Verbena.

Adapted from an English colored plate of 1872.
scribed as having dark centers, two have lemon eyes. and two have white or "light" eyes. It seems evident from the plates of this period, however, that these "light" or "white" eyes were very small and would now be unworthy of the name. The "clear yellow eye" of "Lord Leigh" is probably the largest distinct eye produced prior to 1863. Previons to this time many varieties had been admired for their dark centers which were doubtless very pleasing; since 1863 less attention seems to have been given to the dark centers and more to the development of distinct white or lemon-colored eyes. The recognition of a distinct class of oculatas does not seem to antedate 1870, and it is the impression of the undersigned that the French and German Verbena fanciers deserve most of the credit for the recent development of the important oculata class. The ideal oculata of to-day has a clear, distinct, white eye of only medium size. Very large eyes are not so pleasing. They have a tendency to give a "chopped" appearance.

Reds. - The first stem parent, $V$. chamedryfolia, had red flowers, and red in its rarious modifications of crimson, scarlet, rose, etc., has been predominant throughout the entire history of the Verbena. Every accessible list of varieties fromt 1845 to the present shows a preponderance of reds. Robinson's Defiance, a brilliant crimson, very popular in the fifties, has left so strong an influence as to give the class name "Defiance" to numerous rarieties and strains, some of which are doubtless direct derivatives of this historic rariety.

Whites, and the Matter of Fragrance.-Of the four prototypes, 1 . teucrioides alone एas white, or white with a shade of pink or an imitation of yellow. Auong the bybrid Verbenas there have been, from the first, it few prominent white varieties; but there is no period cluring which the proportion of whites exceeded about one in eight, or one in ten. Whites are more frequently fragrant than other colors. Good reds are seldom or never fragrant, pinks occasionally so, maures, purples and blues frequently so. A rich jessamine fragrance was one of the noteworthy characters of 1 . teucrioides. Whites in many, perbaps a majority of eases, show foliage and pubescence characters of 1 . tevcrioides. This is especially true in plants propagated from seet.


26S1. Old style (on the left) and new style of color markings in Verbena.
That at the left was popular at least from 1849 to 1865 . The Italian or modern striped race at the right was introduced about 1863 , and is the only one known to day.

The Striped 1"trieties. - Two elasses of so-ealled striped Verbenas have arisen: one sort having the median portion of each lobe of the corolla of a dark color, usually red or rose, and the margin white; the other sort baving irregular stripes, dots and dashes of red, rose or purple upon a white ground eolor. See Fig. 2651. The former class seems to have originated with the British florists somewhat presions to 1849 , and was the most popular "striped " elass with them for many jears after the introduction of the second class of striped ones. The true striped or Italian Verbenas were introduced into France and England from Italy about 1862. Cavagnini Brothers, of Brescia, are given the credit of having originated this unique race. It is the general opinion of writ ers that the ltalians are derivatives in part of V. tenera. Surely the foliage of the Italian varieties portrayed in Flora des Serres and of striped varieties now grown shows no "pinnatifid laciniate" foliage of 1 . tenera. Neither has the undersigned been able to find any evidence of the anther apprendages of 1 . tenera. However, it is impossible to determine with certainty the parentage of hybrids on structural characters alone. The trine explanation may be that the $\bar{r}$, pulchella which is said to have been used, was not 1. tenera, Spreng., hut some form of V.hybrida, Hort. The striped varieties are uustable and have a strong tendency to revert to "selfs," whether propagated by seed or by cuttings. In the writer's own experience, a seedling with blue and white striped corolla reverted in four generations of cuttings, so that some of the plants produced only flowers that were solid blue ; others, flowers that were white with

Blues and Purples.-It seems that different shades of purple were occasionally represented in the wild forms of $V$. incisa and plelogiflora; however, there were no distinctly blue ones, and in the early bistory of the Verbena there is a dearth of hue varieties. We find in the Florist of 1854 , that "Bluebeard" is "really blue" and that "a goorl blue las long been wanted, most of the so-called blues being of a blue-purple color." Subsequent to the fifties the number of blue varieties recorded in lists appreciably increase, but they by no means equal the reds, being little if at all in excess of the number of whites. Our best blues of to-day (for example Blue Boy) are of a deep, royal purple (per Ridgeway's color plates) rather than really hlue. A great variety of tints and shades of purple are represented. In the blue varieties which the writer has grown, especially the ones from European seed, there has been a striking resemblance to $\mathrm{I}^{\prime}$. teurrioides in foliage, pubescence, habit of growth, etc. They also resemble this species in haring many that are very fragrant.

Yellow. - A good yellow has been the dream of many a Verbena lover, but it is cloubtful whether the dream will ever he fully realized. Gartenfora of 1890 reports a 1 . hybrida latea, but it is not constant and the yellow is dim. Gartenflora of 1896 reports that $V$. tezecrioides lutea, Vilm., was produced from 1 . teucrioides, that it is "bright yellow," and that it will be "joyfully received by Verbena lovers."
only an occasional small mark of blue. Striped Verbenas afford excellent opportunity for the study of hudvariation.

Proluction of Leaf-Variegation (yellow foliage).Compuratively Iittle attention has heen given to leafvariegation among the Verbenas. However, a number of varieties having leaves variegated with yellow were introduced about 1865 , during the period when variegated plants were so popular. At present we have a strain of yellowish leaved Verbenas which come true to this character from seed.

Development of the Compactas. - Early in the bistory of the Verbenas their "straggling and uncontrollable" habit of growth was lamented. Considerable pegging was necessary in order to keep the plants in any desired position and repeated efforts were made to secure bedding varieties of closer, more upright babit. Considerable progress was made by British florists during the sixties. Most of the progress, howerer, lias been made subseqnent to 1870 and the German Verbena growers of Erfurt deserse much of the rredit for the production of this splendid little race that las done so much to help restore the Verbena again to popularity. Compactas have been fixed in varions colors so that tbey will come true from seed. In most botanical characters they resemhle $1^{r}$. chamodryfolia and phlnqiflora.

Development of Treatment as Annuals. Seed-Firing. - When the Verbenas were first introduced they were
propagated to a cousiderable extent by separating the prostrate, rooting branches and potting them. This method was soon abandoned iu favor of propagation by cuttings. Verbenas root very readily and they were grown from cuttings almost exclusively up to 1880 , except that seed propagation was employed for the production of new varieties. During all this period, as a consequence of much fortuitous and intentional hybridizing, and of no effort having been made to fix varieties, seedlings were very variable and untrue to parent varieties. Soon after the decline of the Verbena in 1868 70 seed propagation was more extensively employed. It obviated the very troublesome experience of wintering over stock plants, which were so susceptible to attacks of mildew and aphis. Soon efforts were made to fix strains that would come true to color and habit from seed. This has beeu most successfully accomplished, and the Verbena is gaining much of its popularity through treatment as an amual. Seeds are sown in Marcb. The plants are bardened off in a coldframe and set out in the latter part of May. They flower profusely from June to October. Striped varieties are not easily fixed.
Summary of Present Horticultural Types (1. kybrida). - It is impossible to satisfactorily classify the bybrid garden Verbenas according to their botanical derivation. They are conveniently classed according to color of flowers into: (1) Selfs, or one-colored varieties; (2) Oculatas. or eyed rarieties; and (3) Italians, or striped varieties. As to habit they may be divided into: (1) Standards, those of the ordinary loose, spreading growth; and (2) Compactas, wbich are much reduced in stature and of more condensed form. Verbenas now in cult. are shown in Figs. 2652-4.

## INDEX.

Aubletia. 9. bipinnatifida. 8 . Canadensis, 9. chamædryfolia, 1 Drummondii, 9. erinoides, 7
incisa, 3. Lamberti, 9 . Melindres, 1. melindroides, 1. montana, 8,9 . multifida, 7.
phlogiflora, 2. pulchella, 6,7,8. tenera, 6 tencrioides, 4. Tweedieana, 2 . venosa, 5.
subincisely serrate, serrations often unequal, strigose above, below hairy, especially on nerves: peduncles elougaterl, uscending: spikes solitary, capitate: bracts lanceolate-subulate, ciliate: calyx hirsute canescent, spariugly glandular, more than twice as long as the bracts: corolla crimson, limb irregular,-Occurs in two
A. Connective of the upper anthers not appendaged.
B. Clusters not panicled. Prototypes of the Garden Verbenas (I. Lybbida, Hort. F'ig. 2652). C. Fls, scarlet. 1. chamædryiolıa
ce. Fls. rose or purple.
D. Clusters oral to oblong: us. save-toothed.
2. phlogiflora
DD. Clusters flat or convex: le's. more deeply and sharply cut. .
3. incisa
oce. Fls. white ...................... вв. Clusters panicled................ AA. Connective of the upper anthers furnished with a glandular appendage.
B. F7s. violet or rosy purple.
c. Bracts half as long as calyx: plant a subshrub..........
cc. Bracts about as long as calyx . tenera or a little shorter: plant annual $\qquad$ 7. erinoides
Bb. Fl.s. lilac: plants annual. c. Ins, twice pinnatifid.
8. bipinnatifida
Cc. Lvs. once pinnatifid.......... 9. Aubletia

1. chamædryfolia, Juss. ( 5. Melindres, Gill. V. melindroides, Cham.). Fig. 2649. Characterized by red fls. iu flattish clusters, oblong, coarsely scalloped, nearly sessile lvs. and rather stiff pubescence. Stems sleader, forking, creeping at base, birsute: branches somethat ascending: lvs. oblong or ovate, base broadly cuneate, contracted into the short petiole, crenate or

2. The common garden Verbena $-V$. hybrida $(\times 1)$.
rather distinct forms: var. Melindres bas oblong to ob-long-lanceolate lvs., which are unequally incised-serrate. This form is less hirsute and is more graceful and vigorous. It was the form first introduced to cultivation. Var. melindroides bas shorter, broader lvs. and is more hairy. Different forms occur over soutbern Brazil, Uruguay, Paraguay, and the whole of the Pampas. B.R. 14:1184. L.B.C. 16:1514. B.M. 3333. P.M. 1:173. B. 3:129.
3. phlogiflòra, Cham. (1. Tweediedna, Niven). Fig. 2649. Characterized by rosy or purple fls, in oblong or oval clusters; resembles No. 1, but has more upright habit, softer pubescence and larger, longer-pointed, distinctly petioled lvs. Stems ascending: branches ratber erect, much subdivided, angled, retrorsely hirsute: lvs. oblong or lanceolate-triangular, acute, hase entire, cuneately long-attenuate into the evident petiole, unequally subincised serrate, somewhat venosely rugose, strigose above, below hairy or strigillose pubescent: spikes terminal, pedunculate, many-fld., oval to oblong:
bracts short-ovate to subulate-fanceolate: ealyx twice as long as bracts, covered with short pubescence interspersed with short capitate glandular hairs. Southern Brazil and Uruguay. B .

## M. 3541 P.M. $4: 5$. B.

 2:60.3. inclsa, Hook. Fig. 2649. Rosy or purple-fld. species with lvs. more deeply cut tban in the two preceding. WHhole plant hairy - pubescent; stems ascending; branches erect: lis. ob-long-triangular, base cuneately truncate or subcordately attenuate into the evident petiole, pinnatifid-lobed or deeply serrated and incised, upperlvs. sublanceolate, sessile, incisely pinnatifid: spikes terminal, pedunculate, subternate, tat or convex: bracts ovate: calyx 4 times as long as bracts, shorthairy, sprinkled with glandular hairs: corollatube glandular - pubescent, thrice as long as calyx; limb large, rose-

4. Verbena teucrioides, as cultivated to this day ( $\times 1 / 6$ ).
The spike elongates still further. purple, paler beneath, ohovate lobes deeply emarginate. Southern Brazil, Paraguay and northern Argentine Republic. B.M. 3628.
5. teucrioldes, Gill. \& Hook. Figs. 2649, 2653. Characterized by fragrant white fis. in very long clusters. Stems cespitose, rooting at base, ascending, terete, openly and copiously hirsute: lvs. ovate to oblong-triangular, base entire, sessile or nearly so, obtnsely serrate, margins revolute, veiny-rugose, glandular-pubescent above, subtomentosely hispidulous on veins below: spikes terminal, solitary, glandular, hairy, lax, 5-9 in. long: bracts subulate-lanceolate,

6. Young plant of Verbena venosa, too young to show the characteristic panicled arrangement of clusters ( $\times 1 / \mathrm{s}$ ). as bracts ; moll or pinkish, long exserted, twisting iu age, fragrant. Southeru Brazil, Uruguay, Argentine Republic, Chile and Peru. P.M. 5:243. B.M.
7. venòsa, Gill. \& Hook. Fig. 2654. Differs from all other cultivated kinds by panicled inflorescence and tuberous roots. Herbaceons perennial, 1 foot high: stems simple, rhizomatic, creeping at base, ascending, 4 -angled, hairy: lvs, rigid, oblong to oblong-lanceolate, the subcuneate base entire and balf-clasping, acute at apex, unequally subincisely dentate, the teeth openly acuminate, nerves prominent, hirsute below: spikes in a close terminal panicle, subternate, lateral ones pedunculate, fastigiate and finally cylindrical: bracts subulate, ciliate, often purplish, exceeding the hairy calyx: corolla lilac or bluish purple to nearly sky-blue, very thinly villous without; tube slender, thrice as long as calyx: fr. 1 line long, copiously fuscous outside, dorsal ridges 5 . Southern Brazil and Argentine Republic. B.M. 3127.-

Tubers may be kept indoors over winter, or species propagated by seeds sown in greenhouse in January.
6. ténera, Spreng. (V. pulchélla, Sw., not Hort.). Herbaceous perennial: stems cespitose, decumbent, rooting; brancbes slender, 4 -angled, ascending, sparsely hairy: Ivs. decurrent into the short petiole, 3 -parted and again pinnatifil into acute, linear, entire, subrevolute divisions, sprinkled with short hairs: spikes ter minal nedunculato: calyx elongated, strigose pubescent or hairy, sprinkled at angles with short stipitate patellaform glands, twice as long as bracts; corolla rose-violet; anther appendages harely exserted, claviculate, subreeurved. Southern Brazil and LaPlata region.
7. erinoldes, Lam. (Г. multifida, Ruiz and Pav. IV, pulchélla, Hort., in part). Moss Verbena. Annual or perennial: stem strigose hairy or somewhat hirsute, branching, decumbent, rooting: brauches ascending: Irs. ovate in outline, cuneate base decnrrent into the petiole, deeply 3 -parted and the divisions pinnatifid into narrow linear acute lobes, subrevolute on margins, strigose especially on nerres: spikes terminal, solitary, pedunculate, soon elongating and relaxing, canescent hairy: bracts lanceolate, acuminate, spreading, one-half as long to as long or longer than the calyx; corolla rather small, shortly exserted, lilac, bearded within; anther appendages exserted, rather short.Said by Dr. Gillies to be "one of the commonest plants on the Alps of Clile and Mendoza . . . varying extremely in color of flowers, in stature and in degree in which the leaves are cut." In some individnals the fls. are said to be scarlet, in others blue or purple. Forms assignable to this species occur also in the southern states of Brazil. The species is probably a composite one as now recognized. B.R. 21:1766 (as I. multifida, var. contracta). Variable bnt unique species characterized by distinct, finely eut foliage and rosy lilac to deep purple fls., but the clusters and individual fls. are too small to make it popular.

2655. Verbena Aubletia ( $\times 1 / 3$ ).
8. bipinnatifida, Nutt. ( V . pulchélla of some German seedsmen. F. montana, Hort., in part). Perennial, prostrate and rooting at base; stems stout, uprigbt, branched, 6-18 in. high: lvs, rather thick, petioled, $1-2 \frac{1}{2} \mathrm{in}$. long, scabrous above, ovate in ontline, bipinnately parted or 3 parted into numerous oblong, ratber acute lobes 1-3 lines broad: spikes solitary, dense to rather lax, at first capitate, becoming $2-4 \mathrm{in}$. long in fr.: corolla 5-8 lines long, purple or lilac, limb 4-5 lines broad, lobes emarginate to obcordate; throat of corolla provided with a palisade of short hairs; upper stamens bearing each a small oval to oblong purplish gland. Texas to Neb, and Col,-Flowers become bluish purple in drying.
9. Aublètia, Jacq. (IV. Aublètia, var. Drúmmonclii, Lindl. V. Canadénsis, Britton. V. Drummondii, Hort. V. Lamberti, Sims. V. montina, Hort., iu part). Fig. 2655. Peremial, pubescent, with rather stiff hairs or glabrate: branches sleuder aud ascending from is sometimes creeping rooting base, 6-18 in. high: lys. ovate or ovate-oblong in outline, $1-3$ in. long, truncate, broadly cuneate or subcordate at base and the petiole more or less margined, incisely lobed and toothed, often deeply 3 -cleft: spikes peduncled, dense, short and capitate in early flower, becoming $2-4$ in. long in fruit: bracts subulate, mostly shorter than the calyx-these and the calyx densely glandular pubescent: calyx-teeth unequal, filiform-subulate; corolla 6-10 lines loug, from bluish purple or lilac to rosy purple or white, frequently approaching blue in dried specimens; limb 1/2-3/4 iu. broad, lobes oblong or obovate, emarginate and more or less revolute near the sinuses, throat provided with palisade of short white hairs: upper anthers bearing each a light brown, oblong gland which is barely exserted. Colo, and Mex. eastward across the contiyent. B.B. 3:72. B.M. 308:2200. B.R. $4: 294$; 23:1925. - Reported as producing many garden and spontaneous hybrids. Garden forms are of stouter habit, less inclined to root at base; lvs. larger, dark shiny green above, more conspicuously veiny, clusters and individual fls. larger, and the color variation more striking. Many forms have a rich spicy fragrance quite different from that of the hybrid Verbenas. On account of the rohust, bealthy nature of $V$. Aubletia it has been frequently recommended in horticultural literature as desirable for hybridizing with the hybrid Verbenas to improve their constitution. The cross would probably be too radical for best results. It is to be regretted that this charming species which is thought well of iu Europe should be neglected in its native America.
V. bracteata and hastata, two weedy North American species, have also been offered for cultivation, but they have small garden value. Descriptions are easily obtained.
J. H. Cowen.

## VERBENA, LEMON. Lippia.

VERBENA, SAND. See Abronia.
VERBESINA (probably a meaningless alteration of Verhena). Compósitor. Crownbeard. About 50 species of Amerjcan herbs, annual or pereunial (some tropical species shrubby), with alternate or opposite, often decurrent lvs, and corymbose or solitary heads of yellow or white flowers; rays sometimes wanting, pistillate or neutral: akenes flattened or those of the rays 3 -sided, their margins winged or not; pappus of $2(1-3)$ awns, sometimes with 2 or 3 intermediate scales.

About half a dozen hardy perennial Verbesinas have slight rank as garden plants, but the competition among yellow-fld. autumn-blooming composites is so great that Verbesinas have little chance. The following species is a robust and rather coarse plant, growing $4-8 \mathrm{ft}$. high, and suitable only for the wild gardens and the back row of the hardy border. It is doubtless of the easiest culture. It blooms from Aug. to Oct., and has numerous yellow fls. $1 / 2-1$ in. across in flattish clusters.
occidentalis, Walt. (V. Siegesbéckia, Michx.). Hardy perenuial herb, 4-8 ft. high: lvs. ovate (uppermost ob-long-lanceolate), acuminate, serrate, the larger ones 8 in. long, contrasted into a marginal petiole: rays styliferous and usually fertile: awns of pappus not hooked. Dry hillsides, eastern U. S. B.B. 3:430.
W. M.

VERMONT, HORTICULTURE IN. Fig. 2656. Vermont has no reputation as a horticultural state, either amongst her own citizens or outside her boundaries, yet there is not one important fruit or vegetable crop of the temperate zone, not even excepting apricots and peaches, which cannot be grown to perfection here. With the exception of apricots, peaches and sweet cherries all the temperate fruits can he produced in great perfection. The only reason which can account for the non-development of Vermont's horticultural resources is the fact that the possibilities are not appreciated by her land-owners. Vermont farmers are extremely
couservative and slow to make a change in their methods of farming, so that the signal success of the few who have taken up fruit-growing makes but small impression on the many who are still busy making butter and growing hay, potatoes, and little patches of grain.

The home markets for fruit and vegetables are unusitally grood. Strawberries rarely sell for less than $121 / 2$ cents a quart, and the average price for good fruit is probably vearer 15 ceuts. Blackberries usually bring 10 cents and raspberries $10-12 \frac{1}{2}$ cents. Cherries are hardly to be bonght, though sour cherries thrive and cherry jie is popular. The price for cherries is always $\$ 3$ to $\$+$ a bushel. Good vegetables sell equally well. With such favorable markets, supported by numerous small unanufacturing villages and a horde of summer boarders, horticultural industries certainly ought to thrive.
The borticultural regions of Vermont are, roughly, three. The first and most inportant is the Champlain valley district, includiug several large islauds in Lake Champlain, This region reaches off toward Montreal on the north; and the general character of its horticulture is much like that in the St. Lawrence Falley between Montreal and Lake Ontario. Wiuter apples are the most important crop in this sectiou. The second region lies in the southmestern part of the state and belongs to the upper Hudsou valley. Apples will grow readily when attended, but they are seldom cared for. Greater success is secured with small fruits, the growing of which is greatly encouraged by the large annual immigration of summer residents. The third district comprises the valley of the Connecticut. It is the least developed of the three, horticulturally. The reason for this fact is not plain. Soil and climate are admirably adapted to all sorts of fruits. Even peaches are successfully grown in orchards. The few men who are growing plums, cherries, strawberries, etc., are proving every year that the Connecticut valley in Vermont is naturally as much a fruit region as any other.

The apple crop offers the single semi-exception to the statement that Vermont has no horticultural reputation at home. There are a few commercial apple orchards in the Champlain valley which grow as fine apples and yield as handsome cash profits as any orchards in America. Grand Isle county, made up of land lying in Lake Champlain, has the principal reputation for apples. The best orchards and the best orchardists are found there; but Addison county ships ahout double the quantity of apples.

The varieties of apples grown for market are principally Greening, Spy, Baldwin and Fameuse. Next to these come McIntosh, King, Ben Davis, Spitzenburgh, Seek-no-further and Arctic. A few old orchards contain many of the old-time favorites, such as Eall Harvey, Dutch Mignonne, Gilpin, Grimes Golden, and the like. But such collections are few and uncberished. The modern commercial varieties are the only ones in repute.

Vermont has had some experience with the Russian apples. In fact, Dr. T. H. Hoskins, of Newport, on the northern boundary of the state, has heen one of the most famous experimenters with the Russian importations. Nevertheless the Russian varieties have made small impression on the pomology of the state.

Plums are grown just enough to prore that they will succeed admirably. Lombard, Green Gage, Bradshaw, the Damsous and other old-fashioned sorts still retain the preference of conservative Vermonters, though other growers are planting cliefly of the Japanese varieties, especially Burbank and Abundance. In the northern and mountain towns only the Americana and Nigra types are hardy enough; but even these are seldom grown.

Among cherries Morello, Montmorency and Richmond are favorites. Raspherries are mostly red, the blackcaps being seldom grown. Cuthbert is the leading variety, though Schaffer and Columbian are gaining friends rapidly. Blackberries are not carefully grown usually. Fine blueberries are picked from the fields in considerable quantities. Early varieties of grapes can be ripened for home use, Concord, Worden, Moore Farly, Green Mountain and Delaware heing leading varieties.

## VERNONIA



## 2656. Outline of Vermont.

Truck pardening is practiced, of course, in the neighhorhood of all the principal cities; but it cannot he said to be a well-managed business. Those crops which grow in special perfection are heans, potatoes, peas, tomatoes, salsify and parsnips. Those which cannot be grown, or which are, as a rule, unsuccessful, are melons, okra, sweet potatoes, turnips and Lima beans. Special crops which are sometimes grown in quantities for export are sced peas, white beans and onions.

On account of the long, cold winters and the short, cloudy days of that season, greenhouses are operated at a great disadvantage. The production of hothouse regetables is, therefore, very small, and florists find it difficult to grow roses and lilies, or even violets and carmations, at a profit.

The Vermont Horticultural Society was organized December 3, 1896. It is, therefore, a young, though an active and useful society.
F. A. Walgh.

VERNONIA (after Wm. V'ernon, an English botanist who traveled in North Americal. Compósitce. IronWeed. A genus of nearly 500 species of perennial herbs or rarely shrubs, with alternate, pinnately veined leares and usually purple or rose flowers borne in the following species in terminal cymes. The genns is widely scattered about the world, but is possibly most plentiful in South America. The following species are natire of the United States, and are hardy peremial herbs of attractive appearance, with rather large heads of purple flowers in terminal clusters in late summer or early fall.

Heads not glomerate, several- to many-fld.: involucre of dry or partly herhaceous, much-imbricated bracts: corolla regnlarly 5 -cleft into narrow lohes: akenes
mostly 10 -costate, with a truucate apex aud a cartilaginous, callous base: pappus double (at least in American species). Vernonias are of easy culture in any good, rich border, being easily propagated by division.

## A. Heads 50 -\% 0 -flowered

Arkansàna, DC. Stem 8-I0 ft. high: lvs. linear-lanceolate, $4-12$ in. long, alternate-acuminate: peduncles not branched: invohcre green, the filiform tips often redich. Plains, Mo., Kan. to Texas. July-Sept. B. B. 3:302.

## A.s. Heads 15-10-fld.

B. Le's. narrowly linear.
C. Plant about 1 ft . high.

Lindheimeri, Gray \& Engelm. Stem excessively leaty up to the inflorescence: Iss. I $1 / 2-3$ in. long by 1-2 lines wide, with revolute margins: Hs, in a corymbiform eyme. July-Sept. Rocky hills, W. Texas.

## Cc. Plant 2-1 ft. high.

Létermani, Engelm. Stem fastigiately and cymosely much branched at the summit: 15s. 2-4 in. long, only 1 line wide, margins not revolute: fl.-heads numerous, $1 / 2$ in. Iong, 10-14-fld. July-Sept. Sandy soil, Arkansas.

> BB. Lis. not narrowly linear.
> ©. Bracts of incolucre tipped with slender auns.

Noveboracénsis, Willd. Fig. 2657. Stem 3-6 ft.: lrs, oblong to oblonglanceolate, $3-9 \mathrm{in}$. loug: heads in aus open cyme: involucre commonly brownish or dark purplish: tls. rarely white, nsually in moist soil. July-Sept. B.B. 3:302. - The more common species of the eastern United States.
cc. Fracts not au゙ned.

1. Plant tomentose.

Báldwini, Torr. Stem 2-5 ft. high: Ivs. lanceolate to ovate-lanceolate, $4-8 \mathrm{in}$. long: liracts greenish acute or acuminate, tips spreading or reflexed. Fls. earlier than most species, in July and August. Prairies, eastern Mo. to Tex. B.B. 3:302.

DD. Plant glabrous. E. Le's, thin.
altissima, Nutt. Stem $\overline{5}-10 \mathrm{ft}$. high: Ivs. veiny lanceolate or lanceolateoblong, $4-12$ in. long: bracts obtuse or merely mueronate-tipped, closely appressed. JulySept. Western Pa. to 111., La, and Fla. B.B. 3:303.
E. Lrs. thickish.
fasciculàta, Michx. Stem 2-5 ft. high: lvs. somewhat obscurely veined, linear to oblonglanceolate, 3-6 in. long: heads numerous and crowled on the branches

2657. Isolated specimen clump of Ironweed-Vernonia Noveboracensis. of the cywe: bracts obtuse or some of the upper mucronate-acute, closely appressed. July-Sept. Ohio and Ky. to the Dakotas and south to Texas. B.B. 3:303.
F. W. Barclat.

VERÓNICA (after ぶt. Veronica). Scrophulariacere. Speedweld. The Speedwells are mostly herbs, with a few exotic shrnbs, best known by their usnally long racemes of small blue flowers. About 200 species, mostly in the northern hemisphere, a few species in the tropies and sonthern henisphere. In New Zealand they are a dominant feature of the conntry. Plants in cultivation are mostly bardy at the North, usually low-growing and occasionally prostrate. Lvs. opposite, rarely verticillate or alternate: fls, in axillary or terminal racemes and bracted; calyx $4-5$-parted; corolla usually blue, rarely pink or white, wheel-shaped or salver-shaped, the lateral lobes or the lowermost one commonly narrower than the others; stamens 2 , exserted, one on each side of the upper lobe of the corolla; style entire, subcapitate: capsule flattened, obtuse or notched at apex, 2 fnrrowed: seeds few or many,

All are showy, free-flowering plants, used, except the shrnbs, as garden peremials or annuals, and are propagated by seeds, the perennials also by division, the shrubs by enttings in spring or summer. They suceeed in any good gardeu soil in a sunny sitnation. The lower-growing forms are good rock-plants; the taller are adapted to the herbaceous border. The shrubby forms are greenhouse plants or grown only in warmer parts of the country, particularly California, where they are everblooming, and where thay do well along the coast even in exposed places by the sea. The shrnbby species are mostly natives of New Zealand. They are well reriewerl in The Garden 45, p. 506, and 28, p. 292. Some of them have enjoyet a considerable popularity in England, where they are generally seen in cool conservatories, but they survive the winters outdoors in the most favored parts of the British Isles. The first hybrid was raised in 1848 by lsaac Anderson-Henry (then lsaac Anderson), a noted hybridizer. This gentleman continued his experiments for several years, using $F$. speciost, salicifolia and elliptica. His work was continued by others, and most of the hybrid Veronicas of to-day liave the parentage ahove indicated, with the blood of I . speciosa generally mnch in evidence. If a collective name for Veronica hybrids is desired. ['. speciosa var. hybrida is the best name for the whole group. Unfortmately all these hybrids are unfit for general cultivation out-of-doors in northern climes, but a hardier race will probably be secured by using $V$. Traversii and its allies, which have betu introduced more recently. Some of these are I. Colensoi, Rakaiensis, anomalu, monticola and pimeloides, - all unknown to the American trade. A third and still hardier group of the New Zealand Speedwells is the traly alpine group known as Whipeord Veronicas. These should be quite hardy in northern rockeries. They are unknown in America now. The best of the group is said to be $V$. cupressoides, var. variabilis, known to English trade as $V$. salicomoides. Others in cultivation are F. Hectori, Armstrongi and lycopodioides.

Veronica was monographed by Bentham in Latin in DC. Prod. 10:458-491 (1846), J58 species being then known. An excellent account of cultivated Veronicas is found in Vilmorin's Binmengartnerei.

## INDEX.

alba, $12,18$.
alpina, 11 . alpestris, 9. amethystina, 16 Andersonii, 4 . Anstriaca, 25. Buxbaumit, 7. candida, 14. Chamædrys, 23. circæoides, 19. crenulata, 17. crenulata, 17. decussata. 3. elliptica, 3.
gentianoides, 12.
Hendersoni, 4. Hulkeana, 1. imperialis, 4. incana, 14. Japonica, 10. longifolia, 17. maerocarpa, 6. montana, 20. officinalis, 21. paniculata, 16. pectinata, 22. pinnata, 15. prostrata, 24.

Purple Queen, 4. repens, 13. rosea, 17,18 salicifolia, 5 . serpyllifolia, 9 . speciosa, 4. spicata, 18. spuria. 16. subsessilis, 17. Syriaca, 8. Teucrinm, 24 Traversii, 2 . villosa, 17. Virginiea, 10.
foliis variegatis, 12.
A. Plants shrubby, all from New

Zealand and all with opposite leaves; tender in the North.
B. Margin of lus. coarsely strrate. . 1. Hulkeana Bв. Margin of lus. entire.
c. Pairs of les. crowded.
D. Racemes subterminal....... 2. Traversii

DD. Racemes uxillary............ 3. elliptica cc. Puirs of le's. ruther clistant.... 4. speciosa D. Height B-6 ft.: le's. 1-11/2 in. uide.
DD. Height 10-15 ft. or more: liss. 1-8 lines wide.
E. Capsule scareely twice as long as calyx ............ 5. salicifolia
Ee. Cupsule about three times as long as calyx........ 6. macrocarpa
A. Plunts hardy herbs.
B. Duration anmeet?
C. Height a foot or less: fls. blue.

1. Irteemes axillary........... 7. Buxhaumii

DD. h'teemes terminal........... 8. Syriaca
cc. Height 2-4 fl.: fls. whitish... 9, serpyllifolia BB, Dieralion perennial.
C. Less, in whorls of 4-\%: corolla salver-shaped, tube longer. than limb......................... Virginica
CC. Les. usually opposite, oceasionally aitermute.
D. Facemes terminal.
E. Habit ereeping: plants

S-12 in. high.
F. Capsule oblong........... I1. alpina

FF. Capsule roundish or
broader than lony.
G. Apex of eaps it le slightly notched.....12. gentianoides
GG. Apex of capsule deeply notched ...............13. repens
EE. Habit upright: plants stronger growing and taller.
F. Foliage and stem whitewoolly .....................4. incana
FF. Foliage nearly glabrous: les. large, dentate.
G. Lower le's.pinnatisect.15. pinnata GG. Lower lis. merely serrate or crenate. H. Racemes panicled..16. spuria нн. Racemes solitary or few. I. Lr's. Ianceolate ...17. longifolia 11. Lvs. ottute-oblong..]8. spicata DD. Racemes axillary.
E. Hubit low and creeping.
F. Lus. nurroz. . . . . . . . . . . 19. circæoides FF. Lvs. broader.
G. The rucemes few-fld...20. montana

GG. The racemes many-fld.
н. F'ls. pale blue,
rarely pink......21. officinalis
HH. F'ls. deep blue, white center.............22. pectinata
ex. Habit taller, more upright.
F. Calyx 4-parted...........23. Chamædrys FF. Calyx 5 -parted.
G. Lis. more or less den-
tate...................24. Toucrium GG. Lus. deeply pinnatifid.25. Austriaca

1. Hulkeana, F. Mneller. Showy lilac-fld. species, readily distinguished by its serrate lvs. and terminal racemes. Slender, erect, sparingly leafy, straggling shrub, $1-3 \mathrm{ft}$. high, with brauchiug stems: 1vs. ]-11/a in. long, in sparse pairs, ovate or oblong, obtuse or acute, coarsely serrate, smooth, leathery: raceme slender, terminal, branching, spreading, $4-10 \mathrm{in}$. long: fls. sessile, lilae: eapsule small, longer than broad, twice exceeding the sepals. Summer. Mts. and rocky places. New Zealand. B.M. 5484.
2. Tráversii, Hook. f. White-flowered shrub about 2-3 ft., of special interest as being hardy in Ireland and parts of England. A smooth, much-branched shrub: Ivs. linear or linear-oblong, entire, smooth, opposite, sessile, thick, $3 / 4-1$ in. long, numerous: racemes axillary, large: fls, many, small, white or manve: capsule acute, $3-4$ times exceeding the calyx. All summer, New Zealand. B.M. 6390. Gn. 32, p. 217.
3. elliptica, Forst. ( $\mathrm{I}^{\text {. . lecussàta, Soland.). Remark- }}$ able for its white th., which are large for the genus, 1/2-3/4 in, across. Small or tree-like: Ivs oval or oblongelliptic: racemes axillary, few-fld.: fis. white or fleshcolored. New Zealand and antarctic regions. B.M. 242. J.H. 1I1. $35: 225$. - Nut advertised in America now.
4. speciosa, R. Cunn. A half-herdy bushy branching shrub, $3-6 \mathrm{ft}$. high. Stout and very smooth, the branches angled: lvs. obovate-oblong, subsessile, thick and smooth, 2-3 in. lung: racemes axillary, densely fld.: Hs. blue to violet, with rose, red or white varieties: capsule exceeding calyx. Banks of streams, New Zealand. B.M. 4057. R.H. 1844:60. Andersonii, Lindl. \& Paxt. (1. Héndersonii, Hort.), a hylrid of 1. salicifolia and speciosa, is a summer bedding plant and also a greeuhonse subject. It grows 18 in. high: ]vs. oblong, sessile, entire, thickish: racemes axillary : fls. blnish violet. F.S. 5:658. Fig. 2658.

Var. imperiàlis, Boncharlat (V. imperidlis, Hort.), has large, dense spikes of "amaranth-red" or criusonpurple fowers. F.S. 29:2317. The excellent "Veronica Purple Queen " is alleged to be a hybrid of V. Tratersii and $v$. Hendersonii and to have violet-blue fis. with a white center. The handsome plate Gn. $45: 966$ shows no trace of $V$. Traversii nor of white center. The plant is close to $\mathrm{I}^{+}$speciosa. In some catalogues I. Hendersonii and $V$. subsessilis are said to be synonymous, but this is a gross error.
5. salicifolia, Forst. Strong, half-bardy, glabrous shrub with flattened branchlets, approaching a tree in size and babit: lvs. lanceolate, subsessile, entire, smooth, 2-3 in. long, pointed: racemes axillary, densely fld.: Hs. bluish to white, large, pedicelled: capsules large, longer than broad, pointed, exceeding the sepals. New Zealand, where it is a graceful tree $10-15 \mathrm{ft}$. bigh. Gn. 26, p. 107; 28, p. 293; 34, p. 349 .
6. macrocárpa, Vabl. Young branches glabrous: lFs. sessile, lanceolate, entire, acnte, smooth: racemes densely fld.: fls. bluish to white: capsule ovate-oblong, thrice exceeding the calys. With habit and lvs, of $V$. salicifolia. Mis., New Zealand.

2658. Veronica Andersonii ( $\times 1 / 2$ ). No. 4.
7. Buxbaumii, Tenore. Prostrate annual, with elongated slender pubescent stems, the lower branching and often rooting: lvs. ovate, subcordate, coarsely crenate-serrate, pubescent, shortly petioled, $3 / 4 \mathrm{in}$. long, the lower opposite, the upper alternate and similar: racemes axillary: fls. small, blue, scattering, on long pedicels, of long duration: capsule broader thau long, very widely notched, exceeded by the sepals. AprilSept. Fields, middle and S. Europe, Asia and naturalized in N. Amer. F. 1846, p. 112.
8. Syrtaca, Roem. \& Schult. Ascending, diffusely branched pubescent herb, $6-12$ in. higli: lvs. ovate or ovate-lanceolate, incised or dentate, smooth; lower petiolate, upper subsessile, $1 / 2$ in. long: raceme terminal, slender, 4-6 in. loug: ths. blue, with thread-like pedicels $1 / 2 \mathrm{in}$. long: capsule broader than long, notehed two-thirds of its length, exceeding the sepals. June. S. W. Asia. R.H. 1897, p. 311.
9. serpyllifolia, Linn. (I. alpéstris, Hort.). Thymeleaved Speedwell. St. Paul's Speedwell. Slender, ascending, nearly smootb plant, growing irregnlarly in clumps 2-4 ft. high, the base prostrate and rooting: lvs. ovate or oblong, crenate, $1 ;-1 / 2$ in. long, smooth, variable: racemes loose, with conspicuous bracts; fis. pediceled, whitish or pale blue with deeper stripes: capsule wider than long, obtusely notched, exceeding or equal to the sepals. May-July. Roadsides and fields, Asia, Eu., N. Afr., N. and S. Amer.
10. Virgínica, Linn. (Leptándra l'irginica, Nutt.). Great Virginian Speedwell. Culver's Root. Erect, simple, somewhat pnbescent berb 2-6 ft. tall: Ivs. in whorls of 4-6, lanceolate, 2-t in. long, smooth abore, pubescent helow, acutely serrate, short-petioled: racemes terminal, erect, long, deuse: fls, many, white or pale blue, short-pediceled: capsules longer than broad, pointed, twice exceeding the calyx. Aug.-Sept. Eastern states. - Free-growing berb. Likes rich soil and much sum. While stiff and coarse, it is bold and stately. Var. Japónica. Of similar character but a month earlier. Japan.
11. alpina, Linn. A slender, delicate plant growing from a creeping stock, branching at the base, becoming ascending or upright, the flower-stems often solitary, $2-6$ in, bigh: Jvs. opposite, occasionally alternate, subsessile, elliptic or oblong, entire or dentate, about $1 / 2-1$ in. long, of varying size, the lowest small, orbicular: raceme short, spiciform, dense: fls, small, blue or violet: capsule $1 / 4$ in. long, oblong, longer than broad, hairy, exceeding the calyx. Mts. of En., middle and N. Asia and alpine and aretic regions in America. B.M.2975.Adapted to the rock-garden. Blackens when dried.
12. gentianoides, Vahl. Gentlan-leaved Speedwell. Erect, slender, tufted species $6-24$ in. high, according to soil and position, from creeping roots and leafy stems below broadening above into a spicate raceme: lis, obovate or oblong, some lanceolate or linear, thickish entire or small erenate, smooth, $11 / 2-3$ in. long; root-lvs. more or less in rosettes; upper lvs. bract-like, smaller and narrower : raceme elongated, leafy, many-Hi., hairy: fls. pale blue, with darker streaks on long pedicels: capsule nearly round, slightly notched, exceeding the calyx. Wet alpine fields, S. E. Eu. B.M. 1002.-A hardy species in any soil or location, shade-enduring though not necessarily shade-loving, blooning early. Prop. by division. Forms a mat and makes a good ground cover for bare spots in midsnmmer. Also a valuable horder plant. One of the earliest. Var. foliis variegàtis is a dwarf form with variegated Ivs, used in formal bedding. Another variety has longer flowerstems and larger fis. which are light lavender. Var. álba bas white flowers.
13. rèpens, DC. Creeping Speedwell. Prostrate, slender, compact plant growing in dense masses: Ivs. $1 / 4-1 / 2$ in. long, ovate, slightly crenate, shining green and moss-like: racemes siender, few-fld.: fls, nearly white, with a trace of blue: eapsules broader than long, deeply notched, exceeding the sepals. May. Forests of Corsica. Hardy in Mass. - Grows in the sun. Will cover the ground where grass does not grow, forming a sod in a short time. Prefers moist corners but thrives on a moderately dry soil.
14. incàna, Linn. (1. eándida, Hort.). Hoart SpeedWell. Strong, upright or ascending, white-woolly plant 12-18 in. high, with many sterile matted branches and fewer fertile erect lranches: Ivs, opposite, acute, lower oblong, upper lanceolate, $1-3 \mathrm{in}$. long, white-tomentose: racemes erect, numerons, $3-6 \mathrm{in}$. long: fls, many, blue, short-pediceled: capsule longer than broad, thick, exceeding the woolly calyx, July-sept. Fiells and mountain regions, N. Asia, and southwestern Eu.-Resembles 1. spicata in habit. Has a good
appearance both in and out of bloom. Useful in the rockery, border or geometrical garden.
15. pinnàta, Linn. Strong, upright plant 2-3 ft. higlt, glabrous or pubescent: lvs. sparse or somewhat clustered, finely cut, the lower pinnate with spreading segments, the upper pimatitid, thickish, shining, smooth: racemes slender, many-fld., elongated: fls. blue. June, July. Open mountain lands, Russia.
16. spùria, Linn. (1', paniculàta, Linn. V. amethýstina, Willd.). Bastard Speedwell, Upright, slender, densely pubescent species 2 ft . higb; lvs. mostly opposite or ternate, 1 in . long, linear, acute, serrate-crenate toward the apex, entire below, smooth, narrowed at the base, tbickish: racemes numerous, panicled, long, densely many-fld.: tls. blue, pediceled: capsule nearly round, thick, exceeding the sepals. Nay, June. Woods, southeastern Eu. and southern Russian Asia.- Becomes weedy late in the season. Var. elsgans, Foss. Lrs. pubescent on both sides: habit much branched and more slender than the type. A form with variegated lvs. and flesh-colored fls. is known to the trade as $V$. elegans carnea variegata.
17. longifolia, Linn. Strong, leafy, upright, densely growing species $2 \frac{1}{2} \mathrm{ft}$. high, with usually a smootb stem: Irs. lanceolate or oblong-acuminate, sharply serrate, lower opposite, upper more or less verticillate, pubescent below, very acute, $21 / 2-4$ in. long: racemes long, erect, spiciform, dense: fls. lilac, nmmerens: capsules longer than broad, notched, a little exceeding the linear sepals or sometimes exceeded by them. Becomes black in drying. July-Sept. Wet fields, middle and eastern Eu. and northern Asia.-Much cultivated and bybridized. Has several varieties. A fine border plant and the most common species, growing and flowering freely in any good soil. Var, subséssilis, Miq. Fig. 2659. More erect, compact and robust than the type, $2-3 \mathrm{ft}$. high, growing in clumps with numerous side branches and of a good habit: lvs. 2-4 in. long, according to the richness of the soil: spikes longer and fls. larger than of the trpe and of an intense lustrons blue. Aug.-Oct. Japan. B.M. 6407. R.H. 1881:270. G.C. II. 16:788. A good border plant and considered the best Speedwell. Best in deep, rich soil in an open position.
Var. ròsea, Hort. ( $V^{\prime}$. ròsea, Hort.), a probable variety with pink fls., 2 ft . high and much branched. Harly in Mass. Prop. hy division and cuttings.
Var. villòsa ( 5 villòsa, Schrad. $\Gamma$. crenulèta, Hoffm.). A Siberian form with narrower lvs than the type and large blue fls. Lrs. serrate or doubly notched or incised.
18. spicata, Linn. Ascending or erect, slender stems $2-4 \mathrm{ft}$. high, growing from a shortly creeping, almost woody rootstock: lvs. lanceolate, lance-oblong or the lower ovate, opposite or verticillate, crenate, downy, I $1 / 2-2$ in. long, thick: racemes long, upright, densely many-fid.: fls. pediceled, clear blue or sometimes pale pink; stamens very long, purple: capsule longer than broad, notched, thick, exceeding the hroad hairy sepals. June-Aug. Billy pastures, Eu. and N, Asia.-Thrives in an open soil away from shade. Regarded as one of the better border Speedwells. Var. álha has white fls. Var. rosea, Hort., has showy pink ins, in early autumn.
19. circæoldes, G. Don. Low, trailing perennial, growing in a dense mass: 1vs. lanceolate, crenate toward the apex, small, dark green, numerous: racemes many, 6 in. high: fls. small, dark blue. May, June. Switzer-land.-Rare. Considered one of the hest. Valuable as a ground cover, as a rock plant or at the front of a herbaceous border.
20. montàna, Linn. Mountain Speedwell. Slender, trailing, hairy plant, $12-18 \mathrm{in}$. long, rooting from the stem: lvs. ovate, petioled, coarsely crenate, hairy, sparse: racemes slender, few-fld., on long pedicels: capsule large, broader than long, slightly notched, exceeding the hairy sepals. May, June. Moist woods, temperate Europe.
21. officinàlis, Linn. Common Speedwell. Flcellen, Ground-Hele. Prostrate, leafy native with a pubescent stem rooting at the nodes, slender, $6-18$ in. long: lvs. elliptic, oblong or broadly oblong, $1 / 2-1$ in. long, hairy, serrate at base, evergreen, retaining color where most
exposed: racemes slender, densely many-fld.: fls. pale blue, rarely pink, sessile: capsule broader than long, wedge-shaped, broadly notched, hairy, exceeding the hairy sepals. May-July. Forests and mountains of Eu. and N. Amer.-Grows under trees and in shade where no grass will grow, covering the ground with a permanent sod. Spreads rapidly and is easily grown. Prop. by cuttings.
22. pectinàta, Linn. Scalloped-leayed Speedwell. Prostrate, white-pubescent, hairy, spreading plant rooting at the nodes, the ascending lranches producing single elongated racemes: lvs. obovate or oblong-linear, sometimes pinyatifid, crenate, narrow at the base, ses-

2659. Veronica longifolia, var, subsessilis $(\times 1 / 4)$.
sile, pubescent, $1 / 2 \mathrm{in}$. long: racemes clongated, manyfld.: lower bracts like lvs.: fls. deep blue with a white center: capsule large, longer than broad, notched, pubescent, thick, exceeding the sepals. May, June. Dry, shady hills. Asia Minor.-Snitable to dry spots in a rock-garden. Grows in almost any soil and position.
23. Chamædrys, Linn. Angel's Eyes. Bird's Eyes. Germander Speedwell. Slender, compact, pubescent species $12-18 \mathrm{in}$. high, densely ascending from a creeping base: lvs. broadly ovate, sometimes narrower, subsessile, crenate or incised, rounded or cordate at base, hairy, thick, $1 \frac{1}{2} \mathrm{in}$. long racemes $3-6 \mathrm{in}$. long: fls. large, blue, long-pediceled: capsule longer than broad, widely notched, exceeded by the sepals. May, June. Weods and roadsides, N . and mid-Europe and Canaries. Adventive in this country.-A good border plant.
24. Teùcrium, Lina. Hungarian Speedwell. Sawleaved Speedwell. Stems produced from rhizomes, the sterile prostrate, the floral ascending or erect, whitepubescent, I ft. high: Ivs. lanceolate or oblong, crenate, sometimes somewhat pinnate, sessile: racemes several, elongated: fls. large, blue, numerous: capsule longer than broad, slightly notched, thick, exceeding the sepals. June. Middle and S. Eu, and Middle Asia. - IF. prostrata, Linn:, formerly considered a separate species by reason of its narrow lvs, and prostrate sterile stems, is connected with $1^{5}$. Teucrium by intermediate forms. ${ }^{Y}$. prostrata is still used in the trade for a plant with light blue fls. B.M. 3tis3 (V. prostrata. var. satureicfolia).
25. Austriaca, Linn. Strong, upright perennial 18-24 in. high, with woolly stems: lvs. mostly deeply pinnatifid, rarely entire or tentate, $2-3 \mathrm{in}$. long, linear to ovate, the lobes linear or suboblong, narrow at the base: racemes elongated, loosely many-fld., spreading: fls. large, blue: capsnle longer than broad, slightly acutely notched, exceeded by the calyx. S. E. Eu. and Asia Minor.-A border plant.

The following trade names cannot be accounted for by the writer: $V$. marmorata. $-V$. rupestris of the American trade is apparently not V. rupestris of the botanists. This name was first used by satisbury in 1796 and is a synonym of $V$. Iruticulosa, a plant with terminal racemes. V. rupestris of the trade has axillary, many-fld. racemes. It is a low plant with woody horizontal stem and erect flowering branches 4 or 5 in. high with strict racemes of purplish fls. borne in June and a 4 -parted calyx. The capsule is obcordate. This plant has been offered by Rochester nurserymen ever since 1894 and was cult. at Harvard Botanic Garden as far back as 1883. Lvs, narrowly oblong, en tire or serrate, $1 / 2-1 \mathrm{in}$. long: calyx segments strongly unequal: pedicels longer tban calyx: stem pubescent: lvs, sparsely ciliate, short-petioled.-V. scabriuscula, John Saul.-V. stevicefolia, John Saul. $-F$. verbengeea, a name unknown to Kew authorities in 1901, has been offered by Rochester nurserymen since 1894. LVs. short-stalked, narrowly elliptic. serrate in upper half: racemes lateral.
A. Phelps Wrman.

VERSCHAFFELTIA (Ambroise Verschaffelt, 18251886, distinguished Belgian horticulturist ; founded Lillustration Forticole at Ghent in 1854 and introdnced many choice plants, particularly palms and other foliage plants). Prlmacere. A genus of only 1 species, from the Seyebelles, allied to Dypsis but the former is armed and the latter not. The two genera are alike in having 6 stamens and a ruminate albumen, but in Verschaffeltia the ovary is 1-loculed, while in Dypsis it is 3 -loculed.

Verschaffeltia is a tall palm, spinose throughout or at length spineless, the slender ringed trunks arising from epigeous roots: Ivs. terminal, recurved; blade oblong or cuneate-oborate, bifid, plicate-nerved, usually laciniate nearly to the rachis; segments incised; midrib and nerves strong, sealy; petiole balf-cylindrical; sheath long, scaly, deeply split: spadix 3-6 feet long, paniculately branched, long-peduncled, recurved, scaly, its rachis long, and branches and branchlets spreading, slender: spathes 2 or 3 , long, sheathing, the lower persistent, the upper deciduous: fls very small: fr. globose, smooth, lin. long.
splendida, H. Wendl. Candex 80 ft . high, $6-12 \mathrm{in}$. in diam., very spiny when young, with many aërial roots: Jvs. 5-8 ft. long; petiole 6-12 in. long, pale green; sheath $21 / 2-3 \frac{1}{2} \mathrm{ft}$, long, white-granular; blade cuneate obovate, bright green, 4-7 ft. long, 3-5 ft. wide, bifid, deeply incised on the edges. 1.H. 12:430; 43:31. F.R. 2:483. R.H. 1869, p. 148.
F. melanochetes, H. Wendl. See Roscheria.
W. M.

VERVAIN. Verbena.

VESICARIA (Latin, bladder; referring to the shape of the pods). Cruciferce. About 20 species of widely scattered herbs with racemes of large, rarely small, yellow or purple flowers of rarious forms. Sepals equal at the base or laterally subsaccate: silique globose or inflated, many-seeded, and with a slender style: lvs. entire, wavy or pinnately cut. The genus has small horticultural standing, but some of the hardy perennials are said to be well adapted for rockwork and of easy culture. Some are like wall flowers; others resemble alyssum. Both seeds and plants of $V$. sinuata are offered by American dealers, but the plant is imperfectly known. DeCandolle says it is an annual or biennial, while Koch says it is perennial or subshrubby. In the American trade it is considered an early-flowering yellow annual, about 1 ft . high, blooming in May and June.
sinuàta, Poir. L阬. softly tomentose, oblong-lancenlate, narrowed toward the base, sinnate-dentate or subentire. Spain.-According to DeCandolle the petals finally become whitish.
W. M.

VETCH. See Iicia.

VETCH, CROWN. Coronilla. Vetch, Milk. Astrag. alus.

## VETRIS. See Salix.

VIBURNUM (the ancient Latin name). Caprifolidceor. Ornamental, deciduous or evergreen shrubs, rarely small trees with opposite, petioled and entire, dentate or lobed lvs. and with white fls. in showy cymes, followed by tecorative red or blackish berry-like fruits. The Viburnums rank among onr most valuable ornamental shrubs. Besides showy flowers and decorative fruits they possess handsome foliage which mostly assumes a bright fall coloring. The plants are of good compact habit. Most of the decidnons species are hardy north, but I. macrocenhalum, var. sterile and I. obotatum are tender; also V. tomentosum, Wrightii, phlebotrichum, cotinifolimm, nudum and ditatatrm are not quite hardy farther north than New Eugland. Of the evergreen species $V^{r}$. Japonicum is the hardiest and stands some degrees of frost. The Viburnums are well suited for borders of slurubberies or planting along roads, and the more showy ones are handsome as single specimens on the lawn. They are mostly medinm-sized shrubs, $5-10 \mathrm{ft}$. high, but l'iburmm Lentago, pramifolium and rufidulum sometimes grow into small trees, 30 ft , high, while $\mathrm{J}^{\mathrm{r}}$, ucerifolium hardly reaches 5 ft . The most decorative in fruit are 1. Opulus, dilatatum and Wrightii, with scarlet or red berries which remain a long time on the branches. Besides the Snowball forms, I . dilatutum, tomentosum, sieboldi, prunifolizm, rufidulum, wolle and dentatum are very handsome in bloom. Varieties with all the flowers of the cymes sterile and enlarged are known in the case of Opulus, tomentosum and macrocephahom, the Common, the Japanese aud the Chinese Snowballs. The foliage of most species turns pnrple or red in fall, that of V . Opulus and acerifolium being especially lirilliant. Ir. dilatatom aud phlebotrichum assume a dull yellow color. V. macrocephahem and Sicboldi keep the bright green of their foliage until late in autumn. The Viburnums are not very particular as to soil and position, but most of them prefer a rather moist and sunny situation. Some, as 1'. acerifolium, Lantana, Alilatatum, Tinus, pubesccns and prunifolium, grow well in drier places, while 1. alnifoliom and pauciflorum reguire shade and a porous soil of constant moisture. I . ucerifolium does well under the shade of trees in roeky and rather dry soil.

1. Tinus is often grown in pots and thrives in any good loamy and sandy soil. With a little heat it may be forced iuto blooru at any time in the winter; if not inteuded for forcing, it requires duriug the winter a temperature only a little above the freezing point and even an occasional slight frost will not hurt it. The Common and the Japanese Snowball are also sometimes forced and require the same treatment in forcing as other hardy shrnbs.
Prop. by seeds sown in fall or stratified; also by greenwood cuttings under glass, especially Ir tomentosum, macrocephalum, molle, cassinoides and the evergreen species; $r^{\prime}$. dentatum and Opulus grow readily from lardwood euttings and all species can be increased


## 2660. A layer of Viburnum Opulus, the Common Snowball.

by layers (Fig. 2660) ; grafting is also sometimes practiced and V . Opulus, dentatum and Lantana are used as stock.
About 100 species in N. and C. America and in the Old World from Enrope and N. Africa to E. Asia, distributed as far south as Java. Shrubs or sometimes small trees, with opposite stipulate or exstipulate lvs.; fls, small in terminal paniculate or mostly umbel-like
cymes; calyx with 5 minute teeth ; corolla rotate or campanulate, rarely tuhular; stamens 5: ovary usually 1-loculed: fr. a drupe with a one-seeded, usually compressed stone. Iu several species the marginal fls, of the cymes are sterile and radiant; sucb are I . mucrocephalum, tomentosum, Opulus, sargenti and alnifolium, and of the three first named garten forms are known with all Hs. sterile aud eularged.

Alfred Rehder.


266t. Viburnum Sieboldi ( $\times 1 / 2$ ).
The familiar Snowball of delightful memory seems to be doomed. It is ton much tromble to try to keep off the aphids. Fortunately its place can be takeu by a Japanese species that is eveu more satisfactory. Fig. 2663. The berries of the Japanese species, V , tomentosum, are a brilliant searlet, chauging to black. The foliage of this Snowball is also remarkably beantiful. The leaves are olive-green with hrowuish purple or bronzy margins, and their plicate character makes them very distinct and attractive. The bush is entirely free from insect pests. The siugle and double forms of the Japanese species differ in the same way that is shown in Figs. 2664 and 2666 . Unfortunately they have been coufused in many nurseries, and only the trained eye can tell them apart in the unssery row, The donble or Snowball type is, of course, the one destined to the greater popularity, though the single form is a shrub of great value, especially for large estates and parks. The double form is known to uurseries as Fihurnum plicatum, but its proper name is $V$. tomentosum, var. plicatum. While it is hardy in New England, it is not a shrub that can be transplanted as easily as many other species. Hence it should he transplanted every second year in the nursery until it is sold. The double form may he propagated by cuttings of half-ripeued wood in close frames, or hy layers, which in some soils would better remain two years. French nurserymen propagate it by layeriag. The layers seem to suffer from winter and, to be on the safe side, it is best to cover them well with moss or leaves when the ground is somewhat frozen, so that the frost may be kept in until spring. The chisters are about as big as oranges and pure white. They are in great demand for Decoratiou Day in New York.

The single form, nulike the donble, is easily transplanted. It is also readily propagated by layers or enttings. Both kinds are hardy in the North and make compact hushes 6-8 ft. high.
J. W. Adams and W. M.
acerifolium, 26. alnifolium, 13.
Americamun, 28. Anglicum, 7 angustifotium, 7. A wabuchi, 3 . A waftehi, 3. cassinotiles, 8 . Olaytoni, 7. cotinifolimm, 15 euspidatum, 16. Demetrionis, 23 . dentatum, 21. dilatatum, 18 . edule, 28.
erosum, 25.
ferrugineum, 10
Fortunei, I2.
Froebeli, 4 .
grandiflorum, 4.
Напсеаиит, 22 and
suppl. list.
hirtum, 4
Japomicum, 1, 16, 17.
Keteleeri, 12
levigatum. 6, 21.
Lantana, 14.

INDEX.
lantanoides, 13, 14. latifolimim. 1, 5. leurifolizm, 4. Laurustiruus, 4. Lentago, 9. lueidum, 4. macrocephalnm, 12. macrophyllum, 17. molle, 22. multratum, 15. nauum, 28. Nepalerse, 22. nitidum, 7 . nutum, 7. obovatum, 6 . odoratissimum, 3 . opulondes, 28. Opnlus, 28. Oxacocrus, 28 parvifolium, 16. panciflorum, 27 phlebotrichum, 20 pirifolium, 9, 11. plenum, 16. plicatma, 16. prunifolium, 9,10 , 11.
A. Les. penminerved, not lobed.
B. Cymes paniculute, broudly
pyrumidal or semi-globose.
c. Foliuge deciduous.
pubescens, 24 ритригеит, 4. pyritolizu, 9, 11 reticulatum, 1. rigidum, 5. говасеит, 28. roserm, 28. rotundifolinm, 16. rufidulum, 10. rufo-tomentosum,10. rugosum, 5, 14. Sandankwa, 2. Sargentii, 29. scabrellum, 22. Sieboldi, 1, 17. squamatum, 8 sterile, 28. strictum, 4, 5 suspensum, 2. Tizus. 4. tomentosum, 16. trilobum, 28. arjegatum, 4. Vetteri, 9. virgatum, 4 . Wrightii, 19.
C. Foliage evergreen.
D. Corolle with cylindrical tube.......................
DD. Corolla rotute-eampanu-
late .....................
cept in the SHowball forms.
See Nos. 12, 16, 28.1
c. Secondary veins curving and anastomosing before reaching the margin: margin entire or finely servate.
D. Foliage persistent, entire.
E. Branches and lis. glabrous or sliglitly pubescent.
EE. Branches and le's. kir-
$\qquad$
DD, Foliage deciduous.
E. Branches and lis. gla-
brous or ferrugineously scurfy.
F. Liss, entire or slightly undulate-dentate.
G. Cymes sessile: lus. small.............
6. obovatum

GG. Cymes peduncled...
, nudum
8. cassinoides

FF. Lis. finely and sharply semate: cymes sessile, subtended by the upper leaves.
G. Petioles mostly with wavy, ratherbroad margin............
ag. Petioles without or with narrou', not wavy margin.
H. Winter-buds and petioles rustypubescent......I 10. rufidulum

нн. Winter-buds and petioles not rusty-pubescent.11. prunifolium
Ee. Branches what lis. stel-
lete mubescut: winterluets nothed.............12. macrocephalum
CC. Secondury veins prominent, ending in the points of the teeth.
D. Winter-buds naked: lis. with usually numerous small teeth.
E. Cymes with the margi-
nal fls. sterile and enlarged ..............13. alnifolium
Ee. Cymes wilh all the fls. fertile.
F. Rays of cymes usually 7: eymes flat..14. Lantana
FF. Ituys of cymes wsuully 5: cymes somewhat convex ............... 15. cotinifolium
DD. Hinter-buds protected by
scteles: teeth ruther
coarse, usually less than
25 on each side.
E. Pelioles without stipules.
F. Cymes with the marginal fls, sterile and enlarged.............. 16. tomentosum

FF. Cymes with all fls. fertile and alike.
G. Fr.ved: lus. rounded or broudly cuneate at the base.
H. Foliage evergreen,
glabrous..........). Japonicum
нн. Foliagedeciduous. 1. Petiole $1 / 23 / 4$ in. long: fls. almost sessile.
к. Los. pubescent on both sides.18. dilatatum KK. Lus.almostglabrous ........19. Wrightii II. Petioles 1/6-1/4in. long: fls. pediceled, with purple calyx..20. phlebotrichum
GG. Fr. bluish bluek: liss. cordate or rounted at the base.
H. Branches and lis. glabrons ........2]. dentatum
нн. Branches and lus beneath pubescent..............22. molle
EE. Petioles with stipules,
sometimes ruther
small and caducous.
F. Les. long-petioled: blades to $31 / 2$ in. broud ................
FF. Las, short-petioled: blades to $13 / 4 \mathrm{in}$. broad.
G. Cymes short-pedun-
cled, dense.......24. pubescens
GG. Cymes long-pedun-
cled, loose........25. erosum
A. Liss. palmately 3-5-nerved, usi-
ally s-lobed, slender-petioled.
B. Flis all perfect.
c. Habil strictly upright: fr. purplish black .............26. acerifolium
cc. Habit straggling: fr. scarlet.27. pauciflorum

BB. Merginal fls.sterile, radiant.28. Opulus
29. Sargentii

1. Siéboldi, Miq. Fig. 2661. Deciduous shrub, attaining 10 ft ., with stout branches, pubescent when young: Ivs, oval to oblong-obovate, coarsely crenate-serrate except toward the base, acute, dark green and shining above, paler and stellate-pubescent beneath, 3-6 in. long: fls. white, rotate-campanulate, iu panicles $21 / 2-4$ in. broad: fr. oblong, changing from pink to bluish Black. May, June. Japan. G.F. 2:559.-Hardy shrub of vigorous growth with handsome dark green foliage, large for the genus, exhaling a disagreeable odor when bruised. The fruits drop soon after ripening. It is known in some nurseries as 1 . Japonicum, 1 . latifolium or 1 . Japonierm latifolium. Var. reticulàtum, Rehd. (V. reticulatum, Hort.). Smaller in every part:

Ivs, of lighter green, less pubescent: half-hardy. Var. variegàtum, Hort. Lvs. variegated with white.
2. Sandánkwa, Hassk. (I. suspénsum, Hort.). Evergreen shrub, attaining 6 ft ., with slender warty branches: lvs, oval to oval-oblong, acute or ohtusish, usually remotely crenate-serrate toward the apex, shining and dark green above, paler beneath, glabrous, 2-1 in. long: fls. white, tinged pink, in dense semi-globose panicles becoming $11 / 2 \mathrm{in}$. high; corolla $1 / 2 \mathrm{in}$, long, with cylindric tube twice as long as limb: fr. red, subglobose. June, July. Loochoo Jsl. B.N. 6172.-Tender.
3. odoratissimum, Nier. \{ $\mathbf{I}^{*}$. Autubicki and Auafùki, Hort.). Evergreen upright shrub, attaining 10 ft ., with stout warty brauches, glabrous: $15 s$. elliptic to ellipticoblong, acute, remotely serrate toward the apex or entire, shining and bright green above. paler beneath, glabrous, $3-6$ in, long: Hs, pure white, fragrant, in broadly pyramidal panicles 4 in. high; corolla rotatecampanulate: fr. red, changing to black. Nay, June. India to S. China and Japan. B.R. 6:456.-Tender.
4. Tinus, Linn. (I. Latrustinas, Hort. Thuzs laxrifolitus, Borckh.). Lavevstinus (or Lavrestinus). Bushy, 10 ft ., with glabrous or somewhat hairy branches: lvs, ovate-oblong or oblong, acute, dark green, shining and glabrous above, pubescent beneath usnally only on the reins, $2-3$ in. long: fis. white or pinkish white, slightly fragrant: cymes somewhat convex, 2-3 in. broad: fr. ovoid, black, rather dry. May-Aug.. or in the greenhouse in early spring and winter. Mediterranean region. B.M. 38.-Handsome free-flowering shrub, often cult as a pot-plant north. Var, Frobeli, Nichols. Compact form with light green Ivs. and pure white Hs. Var, hirtum, dit. Lvs. yubescent beueath and ciliate. Var. Iùcidum, Ait. (1. lícidum, Mill. I. grandiflorum, Hort.). Lvs. and cymes larger, more tender and not adapted for forcing. Gn. $15, \mathrm{p}$. 196. Var. purpureum, Hort. LFs. suffused with a dull purple tinge. Var. strictum, Loud., not Ait. Of erect and fastigiate habit. Var, virgàtum, Ait. Liss, oblonglanceolate, pubescent on the margin and on the veins beneath. Var. variegàtum, Hort. LFs, variegated.
5. rígidum, Vent. (I. rugosum, Pers. I. latifolium, Hort. I. Tinus, var. strictum, Ait.). Shrub, attaining 6 ft ., with spreading hirsute branches: Ivs. broadly ovate to ovate-oblong, acute or obtusish, pubescent on both sides when young, almost glabrous above at length and wrinkled, 3-6 in. long: fis. pure white: cymes large, 3-4 in. broad: fr. oval, bluish black. May-July. Canary Isl. B.R. 5:376. L.B.C. 9:859. B.M. 2082. A.G. $1893: 456$. - Less handsome and less free-flowering than the preceding species.
6. obovàtum, Walt. (J. levigitum, Ait,). Shrub, attaining 8 ft ., with spreading branches: lvs. almost sessile, obovate to oblanceolate, obtuse or retuse, coriaceous, glossy, entire or obscurely erenate toward the apex, $1 / 2-11 / 2 \mathrm{in}$. long: fls. white, in sessile cymes $1-2 \mathrm{in}$. broad: fr. oval, black. April-June. Va. to Fla. L.B.C. 15:1496.-Tender.
7. nùdum, Linn. \{丁. nùdum, var. Cldyytoni, Torr. \& Gray). Upright shrub, sometimes attaining 15 ft . : lvs. oval to obovate or oval-lanceolate, acute or obtuse, usually eatire and somembat revolute or obscurely crenulate, thickish, scurfy on both sides when young, glabrous above at length: fls. white or yellowish white: cymes rather lonm-peduncled, $3-5 \mathrm{in}$. broad: fr. globose, pink at \#rst, changing to dark blue. June, July. Long 1sland to Fla., west to Ky. and La. B.M. 2e81.-Not quite hardy north. Var, nítidum, Zabel (var, engustifòlium, Torr. \& Gray. I. nítidum, Ait. 1. Anglieum, Hort.). Liss, smaller and narrower, more shining above and firmer.
8. cassinoides, Linn. (1. nùdum, var. cassinoldes, Torr. de Gray. I. squamàtum, Willd.). White Rod. Appalachian Tea. Upright shrub, 2-6, oceasionally 12 ft . high: Ivs. oval or ovate to oblong, acute or bluntly acuminate, usually obseurely dentate, almost glabrous, rather thick, dull green above, $1-3$ in. long: fls, and fr. almost like those of the preceding species, but peduncle shorter, usually shorter than eyme; blooming a little earlier. June, July. Newfoundland to Manitoba and Minn., south to N. C. G.F. 9:305. Enı. 2:41] (as V.
nudum).-A good shrub for borders of shrubberies; hardy.
9. Lentàgo, Linn. Sheep-berry. Nanny - berry. Fig. 2662. Shrub or small tree, attaining 30 ft , with sleuder branches: winter-buds long-pointed: petioles mostly with wavy margin: Ivs, ovate, acuminate, glabrous or scurfy at the veins beneath, 2-4 in. long: fls. white: cymes sessile, $2-5 \mathrm{in}$. broad: fr. oval, bluish black, with bloom. May, June. Hudson Bay to Manitoba, south to Ga. and Miss. S.S. 5:223, 224. - Hardy, large, often arborescent shrub, keeping its fruits until spring. Sometimes as $\boldsymbol{V}$. prunifolium and pyrifolium in gardens A garden hybrid, originated in Germany, is K . Tétteri, Zabel (Г. Lentago $\times$ uudum), similar in habit to this species but the cymes on short peduncles over $1 / 2 \mathrm{in}$. long.
10. rufidulum, Raf. (I. prunifòlium, var, ferrugineum, Torr, \& Gray, T. ferrugineum and rifo-tomentosum, Small). Large shrub or small tree, attaining 25 ft. or more, with rather stout branches: winter-buds scarcely pointed, obtuse, rusty-pubescent: petioles often with narrow margin, rusty tomentose: lvs. elliptic to obovate, usually obtuse, glabrous and shining above, rusty-pubescent on the veins beneath, $2-4 \mathrm{in}$. loug: fls. pure white: cymes 3-5 in. broad: fr. oval, dark blue, glaucous, $1 / 2 \mathrm{in}$. long. April-Juae, later than the following species. Va. to Fla., west to IIl. and Texas. S.S. 5:225 (as V. prunifolium, partly).-Handsome arborescent sbrub with dark green shining foliage, showy ils. aud decorative fr.; has proved hardy at the Arnold Arboretum, Boston.
11. prunifolium, Linn. ( 1 . pyrifòlium, Poir.). Black Haw. Stag-bush. Shrub or small tree, attaining 15 ft., with spreading, rather stout branches: winter-buds short-pointed, glabrous or reddish, pubescent: lvs. broadly oval to ovate, acute or obtuse, glabrous or nearly so, $1-3 \mathrm{in}$. long; petioles often with narrow margin, glabrous: fls. pure white: cymes sessile, 2-4 in. broad fr. oval to subglobose, bluish black and glaucous, little over $1 / 3$ in. long. April-June. Conn. to Fla., west to Mich. and Tex. A.F. 12:1100. Gng. 5:310.
12. macrocéphalum, Hort. Shrub, attaining 12 ft . and occasionally more with spreading brauches: Ivs. shortpetioled, oval to ovate-oblong, rounded at base, acute, denticulate, almost glabrous and dark green above, stellate-pubescent beneath, 2-4 in. long: fls. yellowish white, in peduncled cymes, $3-5 \mathrm{in}$. across, with the marginal fls. sterile and radiant. May, June. China.-Var. Keteleèri, Nichols. (I. Keteleèri, Carr.). The typical form with only the marginal fls. sterile and enlarged; has proved hardy at the Arnold Arboretum. R.H. 1863, p. 270. Gn. 45, p. 423. Var. stérile, Dipp. ( F. Fórtunei, Hort.). Chinese Snowbale. All the fls. sterile, forming a subglobose ball, sometimes 7 or 8 in. across. B.R. 33: 43. F.S. 3:263, 264 . R.H. 1858, p. 350 . Gn. 34, p. 348; 45, p. 422; 56, p. 82. G.C. 1II. 25:suppl. June 3.A very showy variety, but not hardy north.
13. alnifdlium, Marsh. ( Г.lantanoldes, Michx.). Нов-ble-bush. Amerioan Wayfaring Tree. Low shrub, sometimes 10 ft . higin, with wide-spreading, often procumbent branches, scurfy-pubescent when young: lvs. orbicular or broadly ovate, cordate at the base, shortacuminate or acute, irregularly serrulate, minutely pubescent or almost glabrous above, scurfy pubesceut beneath, $3-8 \mathrm{in}$. broad: fls. white: cymes sessile, 3-5 in. broad; marginal fis. enlarged and sterile,long-pediceled: fr. ovoid-oblong, dark purple. May, June. New Brunswick and Mich. to N. C.-Handsome shrub, with very large foliage, assuming a deep claret-red in fall.
14. Lantàna, Linn. Wayfaring Tree. Üpright shrub or sometimes small tree, attaining 20 ft .: young branches scurfy-pubescent: 1vs. ovate or oblong-orate, usually cordate at base, acute or obtuse, sparingly stel-late-pubescent and wrinkled above, tomentose beneath, denticulate, $2-4 \mathrm{in}$. long: fls. white: cymes dense, $2-3 \mathrm{in}$. hroad, with usually 7 rays: fr. ovoid-oblong, hright red, changing to almost black. May, June. Eu., W. Asia. A.G. 18:453 and F.E. 9:593 (as V. lantanoides).-Hardy shrub, especially for drier situations and limestone soil. Var. rugosum, Hort. With larger and very wrinkled

1vs. and larger cymes. There are a number of other vars., including some with variegated leaves.
15. cotinifolium, D. Don (I. multràtum, C. Koch). Shrub, attaining 6 ft ., with spreading branches, tomentose wheu young: Ivs, orbicular-ovate to ovate, cordate or rounded at the base, usually obtuse, crenulate-dentate or almost eutire, wrinkled above and nearly glabrous at length, tomentose beneath, $2-5 \mathrm{in}$. long: As. white, tinged with pink, in cymes $2-3$ in. broad, with usually 5 rays; corolla rather larger, funnelform-campanulate, tube louger than limbs: fr. ovoid-oblong, red, changing to black. May, June. Northwest Himalayas. B.R. 19:1650. G.F. 5:245.-Not quite hardy north, requiring protection near Boston.

2662. Viburnum Lentago. Nearly full size.
16. tomentòsum, Thunb. (V. plicatum, Miq.). Stronggrowing shrub, attaining 8 ft., with spreading branches, tomentose when foung: lvs. broadly ovate to oblongovate, sometimes obovate, acute or abruptly acuminate, dentate-serrate, dark green and almost glabrous above, stellate-pubescent beneath, sometimes only on the veins, $11 / 2-4$ in. long: cymes $2-3$ in. broad, long-peduncled; sterile fls. long-pediceled: fr, ovoid, red, ehanging to bluish black. June. China, Japan. S.Z. 1:38. G.F. $4: 594$, 595. A.F. 12:1101. Gng. 5:311. M.D.G. 1898:400. S.H. 2:502.-A beautiful hardy shrub, with handsome foliage and showy fls.; the fruits, too, are decorative, especially before they change to black. In some nurseries erroneously named F. Japonicum. Var. cuspidàtum, Sieb. \& Zucc. (V. plicatum, var. parvifotium, Miq.). Lrs. elliptic to oblong, long-acuminate, 1-2 in. long. Of slow growth and blooms sparinglv. Var. plicatum, Maxim. (V. plicatum, var. plènum, Miq. F. plicatum, Thunb.). JAPANESE SNOwbALL. Fig. 2663. All fls. sterile, forming large, globose halls $21 / 2-3 \mathrm{in}$. across. F.S. $3: 278$. B.R. 33:51. A.G. 18:357. Gng. 1:263. V.M. 6:294. M.D.G. 1898:401. S.H. 2:503, 505. Var. rotundifolium, Hort. Much like the preceding var., but lvs. broader and blooming about 2 weeks earlier. There is also a variegated form.
17. Japonicum, Spreng. (1. mecrophällum, Blume). Upright shrub, to 6 ft ., with glabrous branches: Ivs. broadly or rhombic-ovate to oblong-ovate, acute or shortly acuminate, remotely dentate except at the hase. 3-6 in. long: Hs. in sbort-peduncled, glabrous cymes 2-4 in. broad: fr. globose, red. June. Japan.-Handsome large-leaved shrub, but not hardy north. Evergreen.

2663. Viburoum tomentosum, var. plicatum - Japanese Snowball, V. plicatum of gardens ( $\times 1 / 2$ ).
18. dilatàtum, Thunb. Upright bushy shrub, attaining 10 ft ., with the branches birsute when young: lvs, roundish or broadly ovate or obovate, usually abruptly short-pointed, coarsely toothed, mubescent on both sides, 2-5 in. long: fls, pure white, in sbort-stalked cymes, 3-6 in. hroad; corolla pubescent outside: fr. ovate, scarlet, $1 / 8 \mathrm{in}$. long. May, June. Cbina, Japan. B.M. 6215. G.F. 4:150. M.D.G. 1899:24I, 242. A.F. 15:123. - Handsome hardy free-flowering sbrub, especially decorative with its numerous scarlet fruits remaining a long time on the branches.
19. Wrightii, Miq, Upright shrub, to 10 ft . bigh, with the branches almost glabrous: lvs, almost orbicular or broadly obovate 10 ovate, abruptly acuminate, coarsely dentate, almost glabrous except on the reins beneath, $3-5 \mathrm{in}$. loug: tly. rather large, white, in usually shortstalked, 2-4 in. broad cymes; corolla glabrons outside: fr. globose, red. May, June. Cbina, Japan.-Mardy shrub, similar to the preceding, but of less dense habit, with larger fruits in nodding cymes.
20. phlebótrichum, Sieb. \& Zuce. Upright shrub, attaining 5 ft ., with glabrous brancbes: lvs. ovate to oblong, acuminate, dentate except at the base, glabrous above, with long appressed hairs on the veins beneath, 2-3 in. long: Als. white, with purple calyx, mostly slender-pediceled and nodding, in few-fld., long-peduncled cymes: fr. globose. May, June. Japan, China,Not quite hardy north.
21. dentàtum, Linn. Arrow-wood. TTpright bushy sbrub, attaining 15 ft ., with glabrous brauches: lvs. rather long-petioled, orbicular to ovate, acute or shortly acmminate, coarsely dentate, glabrous or pubexcent only in the axils of the veins beneath, $1 / 1 / 2-3$ in. long: fls, in long-peduncled, glabrous cymes, 2-3 in. broad: fr. sub-globose, bluish black, glancous. May, June. New Brunswick to Minn., south to Ga. G.F. 10:332. Em. 2:4l4.-Handsome native shrub, thriving best in moist soil. Ir. lectigatem of some nurseries, not Ait., has somewhat larger 15s. and seems to bloom later.
22. molle, Michx, (1, sectbréllum, Chapm. I. Vepalense, Hort.). Similar to the preceding, but branchlets, cyines and nnder side of lvs. stellate - pubescent: lvs. larger, with stouter petioles, dark green: peduncles stouter: teeth of calyx more prominent: fr.large and more pointed: blooms 2-3 weeks later. Mass. to Fla. and Tex. G.F. 4:30. - Handsomer than the preceding on account of its larger darker green foliage and more robust habit. In gardens sometimes confounded with $V^{5}$. pubescens and sometimes found under the erroneous name of 1 . Hunceanum. Sce supplewentary list.
23. Demetrionis, Deane \& Rob. Shrub, attaining 12 ft : Ivs, orbicular or hroadly ovate, cordate, sbortly acuminate, coarsely dentate, pubescent beneath or almost glabrous, $21 / 2-41 / 2 \mathrm{in}$. Iong: cymes long-peduncled, puberulous, about $21 / 2$ in. broad: fr. oblong, almost $1 / 2 \mathrm{in}$. long. Мо. B. B. 3:231.
24. pubéscens, Pursh. Bushy shrub, $3-6 \mathrm{ft}$, high, with slender, upright branches: Jvs, oval to ovate, rounded or cordate at base, acute or acuminate, coarsely dentate, almost glabrous above, pubescent beneath, $11 / 2-21 / 2 \mathrm{in}$. long: cymes short-peduncled, dense, $11 / 2-2 \frac{1}{2}$ in. broad: stamens exceerling the corolla about one-half: fr, oval, almost black, slightly flattened. June, July. Quebec to Ga., west to Manitoba and Ill. G.F. 3:125. A.F. 12:1101. Gng. 5:311.-Handsome shrub of compact habit.
25. eròsum, Thunb. Upright shrub, attaining 6 ft , with slender, much-forked branches: lvs, oblong-ovate or oblong-obovate, narrowed toward the base, acuminate, dentate-serrate, pubescent beneath at least on the veins, $2-31 / 2$ in, long: cymes $21 / 2-3$ in. broad, rather loose, long-pedinncled: stamens little or not exceeding the corolla: fr, subglobose, red. May, Japan, China. G.F. 9:85.
26. acerifolium, Linn. Dookmackie. Shrub, attaining 5 ft ., with slender, upright branches: Ivs. orbicular or ovate, 3 -lobed, with acute or acuminate lobes, coarsely dentate-serrate, pubescent or at length almost
glabrous, 2-5 in. long: fls. yellowish white: cymes longpeduncled, terminal, $1 \frac{1}{2}-3 \mathrm{in}$. broad: fr, almost black, ovoid. May, June. New Brunswick to Mina., south to N. C. Em, 2:414.-1t grows fairly well in drier situa-

2664. Viburnum Opulus ( $\times 1 / 4$ ).

Single form of the common Suowball as it grows in the wald.
tions under trees. The foliage assumes a havdsome dark purple fall color.
27. pauciflòrum, Raf. Straggling shrub, attaining 5 $\mathrm{ft} .:$ Ivs, orbicular to oval, coarsely dentate, with 3 short lobes above the middle or often without, glabrous or slightly pubescent beneath when young, $2-31 / 2 \mathrm{in}$. long: cymes few-fld., small, on lateral, short, usually 2-Ivd. branchlets: fr. scarlet, subglohose. June. Labrador to Alaska, south to Vt. and Colo. in the mountains. G.F. 3:5.-lt does not usually succeed well in cultivation; requires sbade and moist perous soil.
28. Ópulus, Linn. (15. Americàsum, Mill. V. tritobum, Marsh. V. opuloldes, Múhl. T. Élule. Pursh. V. Oxy. cóccus, Pursh.). Cranberri-bush. High Cranberry. Figs, 2664, 2665. Shrub, attaining 12 ft ., with rather smootb light gray branches and stems: lvs. broadly ovate, 3 -lobed, with coarsely dentate-serrate, acuminate lobes, pubescent or almost glabrous beneath, 2-4 in, long: fls. white, in peduncled eymes, 3-4 in. broad: fr. subglobose to oval, scarlet. May, June. New Brunswick to Brit. Col., south to N. J. and Ore.; alse in Eu. and Asia. - Handsome native shrub, very decorative in fruit, which begins to color by the end of July, remains on the branches and keeps its briglit scarlet color until the following spring. The berries are not eaten by birds. Var. nànum, Jacq. A very dwarf, compact, smalileared form; flowers but very rarely. Var. stérile, DC. ( I . rosemm, and rosえceum, Hort.). Guelder Rose, Snow-ball. Fig. 2666. All fls, sterile, forming large, globose heads. Ging. 1:9. Gn. 56, p. 83.This is a very showy var., but it lacks the decorative fruits. There are also variegated forms of the type and of tbe sterile rariety. The American Cran-berry-bush is considered by some botanists a distinct species under the name V. Americtom, Mill., but differs little from the European form, chiefly by the more vigorous growth, by the petioles haring a shallow rather broad channel and small glands. and by the shorter peduncles and shorter stamens.
29. Sárgentii, Koehne. Similar to the preceding, of more upright, denser habit: bark of stems darker, fissured and somewhat corky, young branchlets with prom-
ineut lenticels: Ivs, of thicker texture, pubescent or glabrous beneath, the upper lvs, with much elongated and usually entire middle lobe and small, short, spreading lateral lobes; petioles with large glands: sterile fls. larger, sometimes to $11 / 4 \mathrm{in}$. across; anthers purple: fr. globose, in usually upright cymes. N. China, Japan. - Introdnced under the name fiburmam Oputus fromz Pekin. It does not seem to fruit as profusely as $r^{2}$. Opulus.
F. Burcjaticum, Herd. \& Regel (V. Burejanum, Herd.). Similar to V. Lantana. Lvs. narrower toward the base, venation like that of V. macrocephalum: cyme with 5 rays: fr. pinkish or yellowish. May, June. Eastern Siberia, Amurland. Git. 11:384.-F cordifolium, Wall. Similar to V. alnifolium, but cymes without ralliant tls.: lvs, narrow: hlooming hefore the lvs. Himalnyas.-y. Dahüricum, Pall. Shrub, attaining 6 ft : : lvs. hroadiy ovate to oval, $1^{1 / 2} \mathbf{2}^{-21 / 4} \mathrm{in}$, : Als. funuelform, in short, small panicles: fr. finally black. Dahur. to W. Cbina. $-V$. densiflorum, Chapm. Closely allied to $V$. acerifolium. Lower: lvs, smaller, 1-2 in., with minstly shorter lobes or none: cymes denser. W. Fla - V. ellipticum. Hook. Shrub, attaining 5 ft ., allied to V. acerifolium, hut lvs. not lobed, oval to el-liptip-oblong: fr. oblong-oval, almost $1 / 2$ in. long. Wash, to Calif.-V. furcatum, Blume. Closely allied to V, alnifolium, but of upright habit and stamens shorter than corolla. Jap., Cbina-V. Hanceanum, Max. Allied to V. tomentosum: Ivs. broader, with few teeth above the middle. S. China. Tender. Seems not in cultivation. See No. 23. $V$. orientäle, Pall. Allied to V . acerifolium: slirub, attaining 4 ft .: lvs. wita simple, not fascicled bairs on the veins beneath and not glandular dotted beneath: fr. red. June, July. W. Asia. Gt. 17:567.

Alfred Rehder.

2666. Snowball-Viburnum Opulus, var, sterile ( $\times 1 / 4$ ).

All the fertile flowers are changed to sterile, sbowy ones.
ViCIA (classical Latin name). Vetch. Tare, More than 100 species of herbs, mostly climbing, with pinnate foliage, closely allied to Lathyrus, Pisum and Lens, but differing in minute floral characters: wings adhering to the keel; style very slender, with heards or hairs all around the upper part or only at the apex; pod flat, $2-$ many-seeded, 2-valved and debiscent, the seeds either globular or Hattish; stamens diadelphous (9 and 1). Flowers mostly blue or violet, sometimes yellowish or white. The Vicias are widely spread in the northern hemisphere and some of them in South America. About two dozen species occur in North America, some of the species introduced. Most of the Vicias are weedy or insignificant looking plants, but a few are grown for the bright flowers, others of late for green-manure crops (see Cover-Crops), and one ( $\mathrm{I}, \mathrm{Faba}$ ) is a garden bean. The species are mostly cool-season plants of easy culture. The interest in the Vetches in this conntry is mostly for their value as soil covers and for foliage. ${ }^{3}$. satiri and 1 . villosa are the important species here at present.
A. Plant stiff and erect, usually bearing no tendrils, cultivaled for the beans (Faba).
Fàba, Linn. (Fìba vulgaris, Moench. F, saflua, Bernh.). Bhoad Bean. Windsor Bean. English Dwarf Bean. Figs. 190, 191, Vol. 1. Strong, erect annual, 2-4 ft., glabrous or nearly so, very leafy: leaflets 2-6, the lower ones not opposite on the rachis, the terminal one wanting or represented by a rudimentary tendril, oval to elliptic and olotuse or mucronate-pointed: fls. in the axils, dull white and with a large blue-black spot; pods large and thick, from 2 or 3 inches eren to 18 in. long, the seeds large and often flat. Probably native to northern Africa and S.W. Asia. - Much grown in the Old World, but the hot dry summers prevent its cultivation in most parts of the U. S. It is grown successfully in parts of Canada, particularly in the maritime provinces. The plant is grown mostly for cattle feeding, althongh the heans may be used, both full grown and immature, for human food. This hean has been cult. from prehistoric times and its uativity is iu doubt. The plant is hardy and seeds should be sown early, when the season is cool.
AA. Plant weak, usually climbing by means of tendrils that represent leaflets.
B. Fls, about $\mathcal{Z}$ in the axils, sessile or nearly so.
sativa, Linn. Spring Vetch or Tare. Annual or biennial, not surviving the winter in the North, more or less pubescent, $2-3 \mathrm{ft}$. high: lfts. 7 pairs or less, elliptic, oblong or oblanceolate, mostly truncate and apiculate at the top, the tevdril part of the leaf extented: fs, usually 2 in each axil, about 1 in. long, purplish: pods $2-3$ in, long when mature. Eu., and naturalized in some parts of the U.S. - Much cult. abroad as a forage plant; in this country grown for similar purposes and also somewhat as a cover-crop for orchards. Seeds sometimes used for making flour. There is a whiteseeded and also a large-seeded variety.

2667. Vicia villosa, the Hairy Vetch ( $\times 1$, ${ }^{1}$ ).

BB. Fls. several to muny in peduncled clusters. c. Blossoms small and usually not very show'y, mostly
bluish, in loose often 1-sided clusters: plants grou'n mostly for forage or in witd gardens. D. Leaflets usually less than 9 pairs.
villòsa, Roth. Hairy or Winter Vetch, Fig. 2667. Annual or biennial (somuetimes perennial ?), enduring the winters in the North, villous-pubescent: lfts. $5-7$ or more pairs, elliptic-ohlong, rounded at the tip but usu-
ally ending in a very minute point: As. violet-blue, in long 1 -sided axillary racemes. Eu., Asia. - Now considerably used as a cover-crop.

Americàna, Muhl. Perennial, nearly or quite glabrous: lfts. elliptic to oblong, obtuse or sometimes emarginate at the apex: fls, purplish, about $3 / 4 \mathrm{in}$. Jong, in few-fld. loose racemes. Moist lands across the continent and as far south as Ky.-Has been offered by dealers in native plants.

Caroliniàna, Walt. Perenvial, nearly or quite glaburns: lfts. oblong to linear-oblong, usually obtuse or emarginate: Hs, nearly white, $1 / 2$ in. or less long, in several- to many-fld. loose racemes. Minn. and Kans. eastward.-Has been offered.
oroboldes, Wulf. (Orobus lathyroldes, Sibth. \& Sm.). l'erennial, 2-3 ft. tall: 1vs. 3-5 pairs, oval-lanceolate, very acute: fls. handsome, violet-blue, small, in 2 or 3 short clusters each axil.
DD. Leaflets usually 9 or more pairs on full-sized lrs.
gigantèa, Hook. Perennial, pubescent, high-climbjug: lfts. $10-15$ pairs, narrow-oblong, obtuse and mucronulate: fls. about $1 / 2 \mathrm{in}$. long, pale purple, in 7-18fld, racemes. Calif. and north.-Has been offered by dealers in natives.

Gráca, Linn. Perennial, usualiy pubescent: lfts. 0-12 pairs, thin, linear to oblong, mucronate: fls. purplish, about $1 / 2 \mathrm{in}$. long in a rather dense raceme. Across the continent and south to Ky.; also in Eu. and Asia. - Offered by some dealers.

Gerárdi, Vill. Described as a hardy annual: pubescent: "Ifts. Humerous, narrow-oblong, very obtuse but with a short nucro: \&ls. violet, small, in short racemes. s. Eu.-Offered by seedsmen as a flower-garden subject.
CC. Blossoms red and show $y$, in dense spikes or spike like racemes: flouer-gurden subject.
fulgens, Batt. Annual, 3-5 ft., pubescent: ]fts. 8-12 pairs, ohlong or lance-linear, mucronate: fls. small, red or nearly scarlet and purple-striped, in a compact raceme or spike. Algeria. - Recently introduced.

## L. H. B.

V1CK, JAMES (Plate XLI), seedsman and editor, was born at Portsmouth. Eng., Nov. 23, 1818, and died at Rochester, N. Y., May 16, 1882. He came to America at the age of 12 , learned the printer's trade, and in 1850 hecame editor of the "Genesee Farmer," then published at Rochester by Juther Tucker and snbsequently absorbed by "The Cultivator." In 1853 be purchased Downing's magazine, "The Horticulturist," and published it for a time, the editor being Patrick Barry. In 1860 Vick entered the seed business and his trade soon grew to large proportions. For about 20 years his name was a household word, being associated especially with flowers. In 1878 he founded "Vick's Magazine," which is still jublished. Vick's personality was thoroughly amiable, and his letters in "Yick's Magazine " to childreta and to garden lovers everywhere show the great hold be had on the hearts of the people.
W. M.

VICTORIA (in honor of Queen Victoria). Nymphad̀eer. Roval Water-Lily. This remarkable aquatic genus may be recognized by its huge, round, floating leaves often 6 feet or more in diameter, with the margin turned up at right angles to the water surface to a height of $3-8$ inches, making a basin-like object. The tls. (12-18 in. across) are nocturnal, opening on two successive days about $4.30 \mathrm{P} . \mathrm{M}$. and remaining open until the mildle of the following morning. The first evening the inner floral lis. remain loosely closed over the stigma, the flower is pure creamy white, and exhales a delicions fragrance somewhat resembling a rich pineapple; the second erening the fioral Ivs. spread widely open, and the color changes to pink or even a deep red. The ovary is inferjor, densely prickly, and surmounted by a short, broad tube, on the sides and summit of which the floral [rs. are situated. Sepals 4 ; petals $50-$ 70, obtuse, oblong-ovate to sublinear, rather thin and delicate in texture; staminodia about 20 ; stamens 150 200 , linear-lanceolate: paracarpels about 25 , forming a ring of thick, fleshy bodies between the stamens and

the styles: carpels $30-40$; stigtua forming a broad, ba-sin-like depression, $2-2 \frac{1}{3}$ in. wide, in the midst of the flower, with a central couical coutinuation of the Horal axis, the basin filled with fluid on the first evening of opening: carpellary styles broad and fleshy iu the lower part, produced upward to a Heshy, subulate, incurred process about $1 / 3 \mathrm{in}$. long. In fruit all of the floral lvs. have decayed away, leaving the basal tube of the torus at the top of a great prickly berry, balf the size of one's lead. The seeds are greenish or brownish black, about the size of a pea. The geuus is represented by 2 welldefined species, inbabiting still waters of South America trom British Guiana to Argeutiua.

In its native haunts Victoria grows in 4-6 ft. of water,
spite of the cup-like form of the leaves, water from rain or other sources does not remain on the surface; it doubtless runs down at once through the tiny perforations. This would be an indispensable protection to the leaf against fungous foes and in the function of assimilatior.

A single leaf, by its buoyaner, may sustain a weight of 150 or 200 pounds. Not the least remarkable feature of these leaves is their rate of growth. Caspary found the maximum growth in length to be about 1 inch per hour when the leaf is just expanding; the surface increases 4 or 5 sq . ft . in 24 hours, and a plant will pro duce in 21 to 25 weeks 600 or 700 sq. ft . ot leaf-surface. A great development of heat has been observed in the
 long. It decays below as it grows abose. The lrs. are arranged in $55-144$ order, and the flowers arise in a parallel but independent spiral of the same order (Planehon). Each leaf after the first seedling leaf has a broadly ovate, fused pair of stipules, these organs serving to protect the apex of the stem. The petioles and peduncles are terete, about 1 in , in diam., corered with stout, fleshy prickles, and traversed internally by 4 large, and a number of smaller, air canals. The petjoles attain to a length much greater than the depth of the water, so that the IVs. can adjust themselres to changes of the water-level, though Banks states that they may be completely submerged in times of flood. The gigantic lus. are cosered beneath with a close network of prickly reins, the larger of which project an iuch or more from the leaf-surface; the tissues are full of air-spaces and canals, thus buoying up the mass of cellular matter. Besides many stomata on the upper surface of the leaf, which open into the air-chambers of the mesophyll, there are innumerable tiny depressions, in each of which one can see with a hand-lens that the leaf is perforated with a fine hole; these holes were termed by Planchon "stomatodes" (F.S. 6:249). He considered them to be useful as air-holes to let out gases which, rising from the water or mud, might bo caught in the deep meshes of the netted reins on the nuder side of the leaf. It is also to he noted that, in
opening Howers of Victoria. About 8 P. M., when the anthers are shedding their pollen (in second-day flowers), the stamens may reach and maintain a temperature $10^{\circ} \mathrm{F}$, ahove that of the surrounding air.

Though doubtless known to Spanish traders and missionaries, and certainly of nse to savages as food in quite early times, Victoria was first noticed botanically by Haenke in Bolivia about 1801; but he died in the Philippines without recording his discovery. Bonpland, the companion of Humboldt, also saw it, near Corrientes, Argentina, in 1819, but still it was neglected. In 1832 Poeppig found it on the Amazon, and described it as Euryale Amazonica. D'Orbigny saw the plant in 1827 at Corrientes, and in 1833 in Bolivia, and several years later published accounts of his find. Robert H. Schomburgk, finding it again in 1836 on the Berbice river in British Guiana, sent home specimens and figures from which Lindley in 1837 (published in 1838) established the genns Victoria and described the species $V$. regia. This name has settled upon the northern species, while the one found at Corrientes was named in 1840 , by d'Orbigny, J. Cruziana in bonor of General Santa Cruz, of Bolivia.

The struggle to bring the "Queen of Water-lilies" into captivity began with Schomhurgk. He removed living plants from inland lakes and bayous to Demerara,

British Guiana, but they soon died. In 1840 Bridges obtained seed in the Bolivia locality, province of Moxos, and sent them in a jar of wet clay to England. Out of 22 seeds obtained at Kew, three germinated and grew vigoronsly as small seedlings until October, but died in December. 141848 dry seeds were sent to England from the Essequibo river, along with rhizomes, the latter in Wardian cases; the rhizomes rotted, and the seeds refused to germinate. In 1849 an expedition from Demerara succeeded in bringing back to that town thirty-five living plants, hut these all died. Finally some seeds were sent to Kew from British fluiana in bottles of fresh water by two Euglish physicians, Rodie and Luckie. The first sending arrived Feb. 28, 1849, and on Nos. 8 a plant Howered at Chatsworth; the blossom was appropriately presented to Queen Victoria. From this stock V'ictoria regia was distributed to gardens in Europe, Asia and America. Van Hontte, of Ghent, first flowered it ou the continent, and Caleb Cope, of Philadelphia, was the earliest successful cultivator in this country. His gardener was the late Thomas Mechan. The first flower opened Aug. 21, 1851.

The next notable importation of seed from South America was sent by Edward S. Rand, Jr., from Para, Brazil, to Mr. Sturtevant, then at Bordentown, N. J. The resulting plants proved to be slightly different from the former type, and were called 1 . regia, var. Rundii. It is doubtless the same form that was described by Planchon as $\Gamma$. Amazonica, and retained with grave doubts by Caspary; subsequent cultivation has shown it not even varietally distinet from 1 . regia of British Guiana. In 1894, however, Mr. Tricker received seed of quite another species, which was provisionally named $\mathbf{I}^{\text {. }}$ regia, var. Trickeri; it is much more amenalle to out-ofdoor culture than the older type, and has received a welldeserved popularity. Specimens grown from seeds sent by Mr. Tricker to Kew were regarded simply as garden forms of $V$, regia, but recent investigation by Mr. Tricker and the writer shows that it is truly the 1 . Cruziana of d'Orbigny, dried specimens of which (including seeds) had been sent to Paris over 60 years before. its far southern habitat $\left(27^{\circ} \mathrm{S}\right.$.) explains its hardiness. The large starchy seeds of this species are used as food in I'araguay under the name of Mais del Agua, "Water-corv." For much interesting information on Victoria, see Hooker, B.M. 4275-78; Planchon, in F.S. 6:193-224, ete.; Caspary in Flora Brasiliensis 4, part 2, 1. 143 et seq. In 1854 John Fisk Allen puhlished in Boston a quarto work (pages $21 \times 27 \mathrm{in}$.) with colored plates, entitled: "Victoria regia; or the great water lily of America. With a brief account of its discovery and introduction into eultivation: with illustrations by William Sharp, from specimens grown at Salem, Massachusetts, U. S. A."
règia, Lindl. (including 1 . règia, var, Rindii). Fig. 2bfi. Lvs. sparingly pubescent heneath, upturned margins reddish, 3-8 in. high: fls. becoming dnll erimson the second evening; sepals prickly almost or quite to the tips: prickles of the ovary about two-fifths in. (10-11 mm.) long: seed elliptic-globose, nearly $1 / 3 \mathrm{in}$. long, less in diam. ( $7-8 \mathrm{~mm}$. long, $51 / 2-6 \mathrm{~mm}$. diam.) ; raphe indistinct: operculum elliptic-orbicular, with the micropyle at its center and bilum at the margin. British Guiana, Amazon and tributaries. B.M. 4275 (poor) ; 4276-78 (ineorrect in some details). F.S. 6:595-602. Kerner, Natural History of Plants, pl. XI. Tricker, Water Garden pl. 1 and 2; p. 21,35. Caspary, Fl. Brasil. 4, part 2, pl. 38, fig. 15 (seed).
Cruziana, d Orbigny (known in eultivation as 1 . regia, var. Trickeri, and 1. Tríckeri). Lvs. densely villous beneath, upturned margins green, 6-8 in, high: fls. becoming deep red-pink the second evening; sepals prickly only at base, smooth above: prickles of ovary over $1 / 2$ in. ( $15-16 \mathrm{~mm}$.) long, crowded; seed subglobose, about $1 / 3$ in. ( $71 / 2-9 \mathrm{~mm}$.) in diam.; raphe stout; operculum elongate-orate, with himm and micropyle equidistant from the margin. Parana river and tributaries, Paraguay. Tricker, Water Garden, pl. 1; pp. 51, 55. (laspary, Fl. Brasil. 4, part 2, pl. 38, fig. 16 (seed). - Introd. by $\mathbf{W m}$. Tricker in 1894.

Heney S . Conard.
Tictoria regia at first was cultivated at a great expense in conservatories and tanks built especially for
the purpose. Then it was grown in artificially heated ponds in the open air. The Victoria is largely grown in private and public gardens throughout the United States at the present time, together with tropical bymphreas, and in some cases without artificial heat, but this method of culture is uncertain and often unsatisfactory.

For many years lut one type of Victoria was known, but in 1886 Mr. E. D. Sturtevant, of Bordentown, N. J., introduced another form that produced a deep crimson Hower; it also possessed darker folitge and the upturned rim was deteper. It was known as lictoria h'tudii. Jlaving grown this variety and the original for several seasons in the op+u air, the writer is unable to discern any difference, and two seasons ago he decided to drop 1", Randii. In 1894 the undersigned received seed of what is now known to the trade as $F$. Trickeri. This is by far the hest kiud for out-of-door culture. Moreover, it can be grown where J . regia fails to grow, as it revels in a temperature of only $75^{\circ}-80^{\circ}$

Fictorit regia is now considered of easy culture. Its refuirements are heat, light and a rich, mellow loan in abuudance. The seed shonld be sown during Felsuary and March. The temperature of the water should range between $85^{\circ}$ to $90^{\circ} \mathbf{F}$. The seed may be planted in pots or seed-pans and placed in shallow water. A tank 8-12 in. deep, lasing a metal lining, copper preferred, is very serviceable for seedlings and young plants. Where sufficient heat is not attained from the heating pipes, an addition can be made by the use of an oil-lamp. It is altogether unnecessary and unnatural to file or chip the seed to assist or hasten germination. The seedlings will appear in abont twenty days, though oceasionally a few may appear in ten days. These should be potted off singly into $21 / 2$-in. pots, using fine, loamy soil. The water temperature for the young plants should be the same as directed for the seed pots. As soon as the young plants acquire their first floating leaf they will doubtless be benefited by repotting. From the very beginning, as sprouted seeds, they should be kept steadily growiog, repotting at intervals, until they are planted out in their summer quarters. As the young plants advance they will require more space, so that the leaves are not crowded and overlap each other.

To raise plants of 1 . Trickeri is altogether a different matter. The seed will not germinate in a high temperature; $65^{\circ}$ to $70^{\circ}$ is sufficient. The seed may be sown in February, but there is a great mncertainty as to how long one must wait for the seedlings to appear, and also as to what percentage of seeds will germioate. As soon as the seedlings appear they should be treated like seedlings of 1 .regia, except as to temperature, which should be kept as above stated for seedlings and small plants, and as the season adrances may be raised to $75^{\circ}$ and $80^{\circ}$. The rationality of the cool treatment here adrocated is borne out by the fact that early in June quantities of seedlings appear in the pond in the open where a plant has grown the preceding season, the seed having remained in the pond during the winter. Planting in summer quarters may be done early in June or whenever it is safe to plant out tender nymphaas, that is, when the pond is not artificially heated. Where it is desired to plant ont in unheated ponds it is not safe to plant before the middle or latter end of June. The conditions of the weather, earliness or lateness of the season, locality, etc., must all be taken into account.

The best results are to be obtained from an artificially beated pond, or pits in the pond specially constructed to start the Victorias, these pits to be heated by hot water or steam and corered with frames and sashes. By this method plants may be set in their summer quarters early in Nay and heat applied until the middle of June, or rather a temperature of $85^{\circ}$ maintained until the adrent of summer weather.

Very gratifying results are obtained when the Victoria is grown under glass, as it is thas grown in several places in the United States, notably at Schenley Park, Pittsbirg, and Allegheny Park; also at "Greystone," the estate of Samuel Untermyer, Esq., Yonkers, N. Y.; also at many notable gardens in Europe. Plants grown under glass usually attain to larger dimensions, as they are protected against climatic changes and the elements, besiles enjoying more of a tropical atmosphere. There is, however, more than one disadvantage.

Setting aside the costly construction, labor, ete., it is by no means inviting even on a warm day to spend many minutes in snch a structure. Compare this with a natural pond and its surroundings and a cool shady seat where these gorgeous plants may be viewed at leisure.

Whether grown indoors or out, these plants are only annuals, and seedlings are of necessity raised every spring. They form wo tubers as do the tender nymphreas, or rootstock as do the hardy nympheas.

Few, if any, insects are troublesome on these plants. The worst is the black fly or aphis. The use of insecticides should not be resorted to, as they are most likely to damage the foliage. The safest remedy is to introduce a colony or two of the well-known "lady bug." They and their larver will soon clear off all the aphides without any injury to the plant.

Wm. Tricher.
VIGNA (Dominic Tigni, Paduan commentator on Theophrastus in the seveuteenth century) is a leguminons genus of 30 or more species, closely allied to Phaseolus. 1t is distinguished under Coupea in Vol. 1. The Cowpea is known both as V.Cátjang, Walpers, and I. Sinénsis, Endlicher. The former name, however, dates from 1839 and the latter from 1848, and the former should be used. The Cowpea is an annual bean-like rambling vine with three rhomboid-ovate stalked leaflets, the lateral ones no equal-sided, the petioles long. The flowers are beanlike white or pale, borne two or three together on the summit of a long axillary peduncle. The pods are slender, usually curved, a few inches to a foot or more long. Seeds small, kidney-shaped, bean-like, white or dark, usually with a different color about the eye. The Cowpea varies much in stature, and particularly in the color of the bean. It is possible that wore than one species is concerned in these horticultural forms.
The nomenclature of the cultivated varieties of Cowpeas is almost hopelessly confused. Formerly the name Cowpea was restricted to the buff-colored or clay pea, but now it is commonly used generically. The word Cowpea is an Americanism. Common generic terms now in use in the South are "black-eye pea" and "cornfield pea."
While the Corpea is now used mostly for animal food and green-manuring, the pea itself is also a good human food and has been so used for many years. For table use the peas are usually gathered when the pods begin to change color, although the dried peas are also extensively used. As long ago as 1855 an excellent essay on Cowpeas was written by Edmund Ruffin (Essays and Notes on Agriculture, Richmond, 1855). L. H. B.

VIGUIERA (Dr. A. Viguier, botanist of Montpellier, France). Compósita. About tio species of herbaceous or somewhat shrubby plants, found in the warmer parts of the world, especially America. The following is a native of Lower Calif. and is offered in S. Calif. It is a tall, bushy plant with silvery foliage and smal: yellow fls. like single sunflowers, but borne in ample corymbs. The plant blooms both winter and summer. For generic characters see Gray's Synoptical Flora or Bot. Calif.
tomentòsa, Gray. Shrub or branching subshrub: lvs. opposite, subcordate, serrate, tomentose on both sides, $3-5 \mathrm{in}$. long: heads corymbose: akenes villous, with 2 long awns and many small scales.
W. M.

## VILLAGE IMPROVEMENT AND CIVIC IMPROVE-

MENT. An improvement association is an organization of persons who band themselves together in order to promote the civic beanty and hygiene of the town wherein they live. Such associations have no legislative power outside their own bodies, yet they may rightfully use their influence to promote laws af fecting the general welfare. The secret of their success in the long run is in educating public opinion to demand good officials, and then in coöperating with the officials, not antagonizing them. A few notable associations are composed entirely of women. Those of Honesdale, Pa., and Petaluma, Cal., are good examples. Otber associations equally noted are composed of both sexes, Bar Harbor, Me., and Stockbridge, Mass., having examples of the best type of mixed associations. The Merchants Association of San Francisco, with a mem-
bership of more than a thousand, is an excellent example of an effective society composed wholly of men. Experience has taught the older orgamizations that a juvenile auxiliary is a valuable adjunct. These juvenile branches are worked through the public schools, and their promotion is the most practical way known of teaching civics.

These associations are organized by one or more interested persons calling a meeting and electing officers. The officers are president, vice-president, recording and corresponding secretaries, a treasurer, and an executive committee, all elected annnally. The duty of the last is to plan the mork, make the contracts and expend the funds. The funds are raised by annual dues of the membership, by contributions and by entertainments.

2669. Glimpse of a village street in a community where the idea of village improvement flourishes, showing that a central lawn with border planting is adapted even o small areas.

The usual and most successful mode of work done by these associations is to form as many committees as are desired, and place every member of the association on one of these committees. Each committee has a chairman, who calls its meetings independent of any meetings of the central body. This placing of each member upon a committee assures the working interest of the entire membership.

In large cities it has been found best to have section or ward organizations, which work for the especial needs of their ward or section, while delegates from these sections are elected to the central body, which works for the general good of the whole city. Denver, Col., Oakland and San Francisco, Cal., and the famous Woman's Civic Club of St. Paul, Minn., work upon these lines. The standing committees are never quite alike in any two associations. They necessarily vary with the needs of the community.

While the avowed object of these associations is the improvement and ornamentation of public streets and highways, the cleaning and beautifying of premises, school yards, library grounds, railway stations, and other public buildings, the formation of parks and the preservation of natural beauties, yet in an association of progressive, broad-minded people, much kindred work naturally creeps in. For example, the Montclair, N. J., association has ten standing committees and constitutional power to add special committees as need arises. The names of these committees are as follows: street, sanitary, finance, humane, railroad, children's auxiliary, park, preservation of natural beauties, prevention of crnelty to children, prevention of cruelty to animals.
The work of committees may be well set forth by specific examples from the Montclair society. Under the supervision of the street committee, galvanized iron barrels were placed at intervals along the main
thoroughfares for the reception of rubbisb, such as paper, and fruit rinds. Shopkeepers are asked to keep their premises in good order. It they do not comply with the request, the Town lmprovement Association sends a man with a wheelbarrow (the latter labeled T. 1. A.), and with broom and hoe a general housecleaning takes place. After two or three visits of the T. 1. A. man, the proprietor generally takes the hint and attends to his premises himself. The sanitary committee reports to the bealth board any muisance. The milk supply has been carefully looked atter, the dairies inspected, and a map showing the locations of all the dairies placed on fike is the office of the town clerk, where it may be seen by any householder who cares to examine it. The finance committee looks after the funds. Annual dues are fifty cents a member. The work of the humane committee is to inspect the police station, see that it is kept in sanitary condition, and the prisoners properly treated. The railroad committee keeps a watchful eye

2670. A vista of improved backyards in Dayton, Ohio.
the honor of forming the first improvement association. Newton Center's association claims to be older hy a year than the Laturel Hill Association of Stockbridge. The latter organizatiou was foumled in 1853 through the efforts of Miss Mary Gross Hopkins, afterwards Mrs. J. Z. Goodrich, and was cansed by overhearing the caustic comments of a summer visitor upon the untidy, unhygienic condition of the village and its undexirability from these causes as a summer residence. Miss Hopkins reported the visitor's remarks to her townspeople, and after a year's agitation the Laurel Hill Association of Stockbridge was formed. The first year $\$ 1,000$ Was raised, 400 shade trees planted, the village green put in order and prizes offered for the longest and best strip of sidewalk. The offer of these prizes, together with a reward for the detection and punishment of any one caught destroying any of these improrements, had such a marvelous effect in arousing civic pride in the appearance of the village that interest in the associa tion has never failed. The beanty of the village had much to do with the selection of the famous Lenox neighborhood, part of which pays taxes in Stockbridge. So pleased were the townspeople and summer visitors with the work of the association that it became necessary to obtain a state eharter before the association could legally inherit the funds, parks and other gifts to the value of more than one hundred thousand dollass left in its charge.

Bar Harbor, Maine, regards its improvement association in the light of a commercial investment. The summer visitors demand that the village be kent cleau and pretty, and they give liberally to the association. This association makes paths over the island and keeps them in repair. It also keeps patrols on these paths in summer to put out camp-fires, Well knowing that if the forests are destroyed the charm of the island would be greatly lessened.

The value of an improvement society's work as a commercial investment is clearly perceived by Europeans. The
upon the stations and sees that they are as neat as possible and the surroundings made attractive. The children's auxiliary is formed of eleven bundred school children, who have pledged themselves to "work together to make Montclair a happier place in which to live, by doing everything we can to make the town more healthful and beautiful." The different classes from the school take charge of the flower-beds aroma the buildings, attend to the planting and keep them in order. All this fosters early the love of attractive surroundings, engenders habits of neatness, and develops local pride and patriotism.

The committee for the preservation of natural beauties has much to keep it busy. Its members watch the fine trees of the town, and if any are splitting, the owners are notified to wend them. Dead trees are cut down, and the owners of unsightly fences are requested to remove them. The burning of hedge-rows is forbidden, as it destroys the wild flowers and leads to forest fires. The duties of the committees for prevention of cruelty to children and animals are self-explanatory. They are auxiliary to the state association, and have full prower to act. The park committee takes charge of any waste pieces of ground, generally at the intersection of roads, keeps them in order, and plants shrubbery or makes flower-beds, as the case may he.

Montclair boasts of the most humanely equipped jail in the state, with a separate apartment for women, and a sanitary and padded cell for the insane. The committee for the prevention of cruelty to animals has placed the sign posts, "Please uncheck your horses going up this hill," at the top and bottom of the mountain road. The paring of the plaza in front of the railway station is due to the efforts of the railway committee, which visited the officials at least once a month for three years before the work was undertaken.

Newton Center and Stockbridge, Mass., contend for

Schwarzwald Improsement Society of Germany numbers 3,500 members, who are assessed an annual due of $\$ 1.25$. This association was formed for the purpose of "making the Black Forest known and accessible to the public, of preserving and protecting ruins, of improving pleasure-grounds, erecting pavilions, towers, etc., and generally promoting intercourse." There are thirty-nine sections in this immense association, each section working for its own interest after the manner of the American ward associations. Both the German and English associations work to attract capital to their towns. River-sides are made into a continuous parkway through the town, paths are opened to points where beautiful views may be had, and cards in the hotels and public buildings draw visitors' attention to these matters, and to the fact that comfortable seats will be found in these places. German children are urged to be polite to strangers, and in London the public schools have organized a League of Courtesy. English laws do not permit the pollution of streams by sewage or factory waste, and in Europe good roads and clean streets hare for solong been a national and municipal concern that they are looked upon as a matter of course. In general, European associations are not obliged to consider these problems, but are free to turn their attention to the promotion of civic beauty in all its various forms.

It is the leading men and women of each country who are promoting these associations. The society called Scapa, the mission of which is the checking of the ahuse of public advertising, has more than one thousand members enrolled, some of them memhers of larliament. The work of this notable society has attracted the favorable attention of almost every government in Europe.

In America, the "National League of Improvement Associations" was organized at Springfield, Ohio, Oct. 10, 1900. It is now known as the "American League for

Civic Improrement." The object of the organization, as stated in the coustitution, "shall le to bring into communication for acquaintance and mutual helpfulness all organizations interested in the promotion of outdoor art, public beauty, town, village and neighborhood improremeut." The headquarters of the uational orgavization are at Springfield, Obio.

As in Europe, the coramercial possibilities of the work are beginning to appeal to the American busivess man. Large owners of real estate and tenant houses are adopting as business methods some of the special features of improvement associations. Comuercial elubs and boards of trade are awakening to the fact that a cleanly and beantiful city containing fine boulevards, riverside drives and parks, public baths and swimming pools, is as much of au iuducement to new firms desiring to locate as is a cash bouns or good shipping facilities. Firms and good citizens seeking new locations and finding these advantages are assmred without further search that the schools will be good, the residence district fine, and that a miuimum of undesirable residents will be found. Nurserymen, florists and dealers in paint are the first to reap material benefit from the formation of these associations. Usually the first step in improving property is the planting of trees and flowers, then the house receives a coat of paint. It is an excellent idea for an improvement association to encourage floral shows, with prizes to schools and school children, for through the latter medium the infection of beautifying is carried into bomes that can be reached no otber way.
These associatious in no way interfere with the work of the city officers. Rather they supplement it by doing the things for which the town laws make no provision. The officers of towns having one or more of these associations find the enforcement of laws made easier, and should a large sum be needed for necessary improrements, they are likely to find an intelligent pmblic knowledge upon the subject in place of the oftentimes exasperating stupidity.
The results obtained from an active and prosperous association are manifold. These societies make far better citizenship: they create an intelligent civic pride. They make possible practical civics in the public schools. The commercial benefits of such work appeal to the liberal and progressive element among all business men.

Jessie M. Good.
The limitations of space do not allow an historical sketch of the various movements culminating in the organization of the American League for Civic Improvement, nor a list of the various periodicals which are devoted partly or wholly to the work. A great work for village and civic improvement is done by general agencies as well as by the special societies devoted to the work. An analysis of these complex social forces is beyond the scope of this Cyclopedia, but the following outIine sent, by Charles Mulford Robinson, anthor of "The Improvement of Towns and Cities," will be found very suggestive. The work outside the special societies may be roughly summarized as that done. -1 . By committees (1) Of women's clubs (a) local, (b) federated; (2) Of boards of trade, ete.; (3) Of real estate exchanges. 11. By political organizations, in securing better officials. III. By the organizations of these officials, (1) The American Society of Municipal Improvements, (2) The League of American Municipalities, (3) The State Leagues of Municipalities. IV. By corporations, (1) Model communities, (2) Improvement of home grounds, neighborhoods. V. By individuals (1) For private profit, (2) Out of publie spirit.
L. H. B.

VILLARSIA nymphoides is the plant described at p. 925 of this work as Limnanthemum nymphoides. The plant is probably to be referred to Limnanthemum peltatum, however. To the list of pictures add Gn. 48:1036 and 48, p. 300.

VIMINARIA (Latin, vimen, a slender twig or withe, alluding to the branches). Leguminòsa. A single species, an Australian shrub with rush-like stems and long, wiry "leafless" branches, i.e., the leares for the most part reduced to long, fliform petioles, although at the
ends of the more rigorous or lower branches a few oval or lanceolate lvs, are ofteu found. The rather small flowers are pea-shaped, orange-yellow aud are produced in long, termiual racemes. Calyx-teeth short; petals on rather long claws; standard rouudish; wiugs oblong, shorter thau the standard; keel slightly curved, as long as the wings; stamens free: ovary nearly sessile; style filiform: pod ovoid-oblong, usually iudehiscent: seeds 1-2.
denudàta, Smith. The name Leafless Rush-broom has been proposed for this. Leafless yellow-fld. shrub, attaining $10-20 \mathrm{ft}$, formerly cult. in European greenhouses as a small tender shrub: 17s.3-8 in. long: pod 2-3 lines long. Australia. B.M. 1190. P.M. 14:123.Offered in S. Calif.
F. W. Barclay.

VINCA (pervinca, old Latin name of Periwinkle, used by Pliny). A pocyndeca. A genus of 10 species including the common Periwinkle or Trailing Myrtle, Finct minor. This is one of the commonest and best plants for covering the ground in deep shade, especially under trees and in cemeteries. It is a bardy trailing plant with shining evergreen foliage aud blue, salvershaped, 5 -lobed fls, about an inch across, appearing in spring or early summer. It forms a deuse carpet to the exclusion of other herbs. It thrives best in moist, halfshaded positions, but will grow in the deepest shade even in poor soil, especially if it be stowy. It is a capital plaut for clothing steep banks, covering rocks and carpeting groves. It can be planted successfnlly on a large scale any time from spriag to fall during mild or rainy weather. It is propagated by division or by cuttings, as seeds very rarely mature. The Periwinkle will live in city yards under trees where grass will not thrive. $\Gamma$. minor is the commonest and perhaps most variable species. Varieties with white, purple and double fls. are kept iu most nurseries, as also a form with variegated foliage.

Vinca major is larger in all its parts than the common Periwinkle and not so hardy. It is well known to florists. A variegated form of it is seen in nearly every veranda box in the conntry.
$F_{\text {. rosea }}$ is a teuder plant of erect habit whicl is used chiefly for summer bedding. It grows about a foot high and has rosy purple or white fls. with or without a reddish eye, and often 2 in . across. The plants bloom continuously from the time they are set out until frost. It can be grown in large masses for public parks with somewhat less expense than geraniums. Mr. Stromback, head gardener of Lincoln Park, Cbicago, has recorded his experience with J'inca rosea in Florists' Review $1: 141$ as follows: The seed is sown in Jan. or Feb. in flats of sandy soil in a temp. of $65^{\circ}-70^{\circ}$. When the seedlings show the second leaf, they are pricked out about an inch apart in trays of the same soil, and when the little plants hare 5 or 6 lvs, they are potted iuto 2 -in. rose pots, and later shifted to 3 -in. pots. The majority are bedded ont from the 3-in. pots. The soil of the bed should be a sandy loam if possible, and the plants will not do well in a very beavy soil. In bedding, set the plants about a foot apart. They require more water than a geranium, and when the bed is watered it shonld be giren a good soaking and then left alone for a few days. The plants require no trimming.

The amateur will find Jinca rosea a satisfactory window plant that can be grown with little trouble from seeds started as late as April, but of course such plants will not bloom as early as the bedding stock propagated in Jan. or Feb. V. rosea is the largest flowered Vinca, and it seeds freely.
W. H .

Fince major and rarieties are the most useful of the genus to the commercial florist. Some plants from 2-inch or 3 -inch pots should be planted out in May. They will make large plants by September. For decorating purposes, some of these plants can be lifted and put in 5 -inch pots and will winter in a very cool bouse. To obtain useful sized plants in 3 -inch pots the following spring for veranda, box and vases, cuttings should be put into sand end of September. The Iong trailing growths will give an abundance of material. Always make the cutting with two eyes, choosing neither the hard growth at base nor the very soft tips. They root
slowly but surely in abont a month, and until February will do very well in a $21 / 2$-inch pot. About the middle of February shake off the soil and give them a 3 -inch pot, and they will make a fine growth bv middle of May. Iu
dark purple fls.; aurea variegata, with golden variegation; cærullea, with single blue fls.; plena, with double blue fls.; ròsea, with single rosy fls.; purpurea plèna, with purple double fls. Gu1. 50:1078. Some of these are

2671. Vinca minor, the Common Periwinkle, or Running Myrtle. Natural size.
growing these trailing Vincas in pots the principal point to observe is never to let them want for water.

William Scott.
Vinca is a genus of herbs or subshrubs, erect or procumbent: lis. opposite: fs, rather large, axillary, solitary; corolla salver-shaped, with a narrow tbroat which is pilose inside or thickened-calloused; stamens in cluded abore the middle of the tube; carpels 2, distinct; stigma annular, thick, viscid; ovules 6-many in each carpel, in 2 series: follicles 2, erect or divergent. The genus may be divided into 2 sections: 1. Pervinca, in which the anther-cells are short and divided by a wide connective; 2. Lochuera, in which the anther-cells are normal. $\Gamma$. vosea belongs to Section 2 ; the others mentioned below are included in Section 1.

INDEX.
alba, 1, 4.
argentea, 1.
atropurpurea, 1.
aurea, 2 .
Bride, The, 1
сжrulea, 1.
elegantissima, 1,2 . herbacea, 3 . major, 2. minor, 1. plena, 1.
purpurea, 1. reticulata, 2. rosea, 4. variegata, 2 varius, 4.
A. Trailing herbs, hardy or nearly so, onty the short flowering stems ascending: fls. produced in spring or early summer, mostly blue or white. European species.
B. Foliage evergreen.
c. Lvs. ovate or oblong-ovate: corolla-lobes wedgeshaped: calyx glabrous.

1. minor, Linn. Common Periwinele. Blue, Ronning or Tratling Mprtle. Fig. 2671. Hardy evergreen trailing herb, in all country gardeus and running wild in cemeteries and shady places, the blne-fld. or typical form being commonest. Often called "Myrtle" but the classic myrtle is Myrtus communis. Very rarely produces seed, but spreads freely by creeping sterile stems which root at every joint. L5s, orate or oblong-ovate, glabrous and shining, barely $11 / 2 \mathrm{in}$. long: petiole very short, with 2 glands near the apex: calyx-lobes lanceolate, glabrous; corolla-lobes wedge-sbapod, obtusely truncate. Eu.

The following horticultural varieties are advertised in America: Var. alba, with single white fls.; alba plena, with double white fls.; alba variegata, with single white fls. and variegated foliage; argentea variegata, with silvery variegation; atropurpurea compácta, with single
advertised withont reference to 1. . minor, as if they were good species, thus $I$. cormlea and purpurea. I". elegantissima alba belongs bere, also "The Bride," a white variety with a pink center.
cc. Les. subcordate-onate: corolla-lobes obovate: calyx ciliate.
2. major, Limu. Larger Periwinkle, Larger in all its parts than $V$. minor, not quite hardy north, and rooting only at the tips of the sterile stems. Lus. broader below the middle than in $V$. minor, subcordate-orate, often 2-3 in. long, ciliate; petiole with 2 glands near the apex: fls. blue; calyx-lobes narrowly linear, ciliate ; corolla-lobes obovate. Eu. - This species is much subject to mealy bug. The rariegated forms are popular for veranda boxes and banging baskets. Some are blotched with yellow, others are margined. Here seem to helong $\frac{1}{r}$. atrea marginata and I. aurea macutata, Hort. I. major, vars, variegàta and reticulata, are also advertised. Var. elegantissima, Hort. is a handsome form with Ivs. bordered and blotched with yellowish white. It seems to be common with the florists, althongh it is rarely, if ever, advertised in American trade catalogues. It is one of the best forms for vases for baskets and for decoration indoors. The sprays should be allowed to grow long, in order to develop their characteristics. Cuttings should be struck early in the fall and if kept growing steadily will make satisfactory specimens in five-incb pots. It is a good idea to plant this variety in the front part of a sunny greenbouse bench where

2672. Vinca rosea.
( $\times$ nearly $1 / 2$ ). the long sprays may reach down to the walk. As a window box plant it has the merit of withstanding considerable neglect.

## Bв. Foliage decichous, or less evergreen.

3. herbàcea, Waldst. d Kit. Herbaceous Periwinkle. Gardy trailing herb, which generally loses its foliage in winter, sends up short tlowering stems in spring, followed by sterile creeping stems which root at the tips. The fls. are purpler than in the common Periwinkle, later, and the corolla-lohes are narrower: lrs. elliptical or lanceolate, margin revolute, ciliate; petiole with 2 glands near the middle: calyx-lobes narrowly lanceolate, ciliolate; corolla-lobes oblong-obovate, dimidiate. Eastern Eu., Asia Minor. B.M. 2002. B.R. 4:301.

AA. Tender, erect subshrub (herb V.), with rosy or white fls. produced all summer.
4. ròsea, Limn. Madagascar Periwinkle. Fig. 2672. Tender, erect, everblooming plant, souewhat shrubby at the base, cosmopolitan in the tropies: lrs, oblong, narrowed at base, veiny: petiole glandular at the base. fls. with a very small orifice, rosy purple or white, the latter with or witbout a reddish eye; calyx-lobes linear, corolla-lobes dimidiate-obovate, mucronulate. Gin. 36, p. $455 ; 43$, p. 389. V. 13:49; 16:49. B.M. 248. F.R. 1:141. - This is commonly called the "Madagascar Periwinkle," but $V^{F}$. rosea is probably not native to the Old World, while the only species of Vinea that is really native to Madagascar, viz., $V$. lancea, is not in cultivation. The plant is sometimes called "Cape Periwinkle" and "Old Maid." The three main types should be known as 1. rosea, $V$. rosea, var. alba, and $V$. rosea, Var, oculata, the latter being a white Hower with pink or red center. As a matter of fact, these appear in American catalogues as J. alba, V. alba mura, I. alba novi, I. oculata and $V^{5}$. varius, the latter being a trade name for seed of mixed varieties. W. M.

VINCETOXICUM. The Mosquito Plant or Cruel Plant, known in the trade as lincetoxicum acuminatum and $V$. Japonicum, is Cynanchum acuminatifolium, which see.

VINE-CACTUS. Fouquieria splendens.
VINE, GLORY. Clianthus.
VINE PEACH, See under Cucumis Melo.
VINE, PIPE. Aristolochia Sipho.
VINE, SILK, See Periploca Greca.

## VINE, WONGA WONGA. Tecoma australis.

VINES. In borticultural parlance, a vine is a weakstemmed, more or less tall-growing plant that needs to have the support of some rigid object to hold it above the earth. Many plants that are grown for their economic uses are vines, although they are ordinarily not so classified in horticultural works; for example, some of the beans, the hop and the sweet potato plant. When vines are mentioned in horticultural writings, plants that are used for ornament are commonly understood. In general literature the term "vine," when used specifically, designates the grape. Sometimes vegetablegardeners, when speaking of vines, mean cucurbitaceous plants, as melons, cucumbers and squashes.

Vines belong to many natural orders and represent very many types of plant beauty. The larger part of them are useful in horticultural operations as screens for covering unsightly objects or for shading verandas and summer houses. Many of them are shrubs, the plant body being woody and persisting year after year; others are perennial herbs, dying to the ground but the root persisting from year to year, as some dioscoreas; others are true annual herbs, as morning-glories. Some of them are valued chiefly for foliage, as the Virginia creeper, Japanese ivy, grapes and the true or English iry; others are prized largely for their flowers, as morn-ing-glories, moonflowers and scarlet runaers. Vines represent all degrees of hardiness or tenderness; they are also of various heights and differ in rapidity of growth; therefore it is impossible to make a list of vines that shall apply to the whole country.

Vines are really climbing plants. They get up in the world in three general ways: by scrambling or clambering over other plants without any special devices for aiding them in the ascent; by twining about the support; by ascending by means of special organs, as roots or tendrils. The larger number of cultivated climbing plants helong to the last two categories. However, there are many useful climbers amongst the scramblers, as, for example, some of the long. stemmed roses. These plants usually have to be tied to a support unless they are allowed to ramble at will over some expanded surface, as the top of a bush or a broad stone wall.

Each species of twining plant has its own direction of winding about the support, and the species follows this direction under all ordinary circumstances. Some of them, as the hops, wind about the support in the direc-

2673. Hop (Humulus Japonicus), twining from the observer's right to his left, or with the sun.

2674. Morning-glory, twining from the observer's left to his right, or against the sun.
tion of the movement of the sun, or from the observer's right to his left. Fig. 2673. Others, as the morning glory, twine in a direction opposed to the daily movement of the sun, or from the observer's left to his right. Fig. 2674. The constancy of these directions of climbing was observed long ago. It is interesting to know that Paul Dudley, Chief Justice of Massachusetts, made this observation as long ago as 1724 and reported it to the Royal Philosophical Society. A full discussion of this and related topics concerning climbing plants may be found in Darwin's book, "The Movements and Habits of Climbing Plants."

The special organs by means of which plants climb are of many kinds. In general they may be referred to three general categories: roots, as the trumpet creeper and ivies; coilling petioles or leaf-stalks, as the clematis (Fig. 487) and the nasturtiuns; tendrils. The tendrils are of various morphological origin. Some of them, as
of the grape, are modified branches or stems; others, as those of the pea and cobsa, are modified leaflets; still others, as in some species of lathyrus, are modified stipules. True tendrils are always definitely arranged with reference to the position of the leaves. The young extended tendril usually swings about in a circle or ellipse, its end being somewhat bent or coiled. When this end

2875. The coiling of tendrils; $a$ shows the tendril hooks ready to grasp a support; $b$, shows the coiling of the tendril-branches and the straight or not-coiled spaces where the direction of the coil is reversed. Cassabanana (Sicana).
strikes a support it fastens itself securely, and then the plant is drawn to the support or held to it by the coiling of the tendril. This coil also serves as a spring whereby the plant is held to its support during winds. The continuous coiling of the tendril in one direction would twist the tendril in two; therefore, tendrils usually coil in more than one direction, one part of the leagth being coiled from right to left and another part from left to right. Some of these phenomena may be seen in Fig. 2675 , which represents the tendrils of one of the Cucurbitacem. All members of this family, as cucumbers. melons, pumpkins and wild balsam apple, are excellent subjects on which to obserre these phenomena.

Of the very many vines that may be used with good results in the open air in the North the following are common and therefore to be commended. Many greenhouse vines can also be used in the open during the summer, but these are not included in the present list.

> AA. Top shrubby.

Ampelopsis quinquefolia, Virginia creeper. Figs. 80, 1866. The best single vine for covering buildings and arbors, since it is perfectly hardy and thrives under many conditions. Plants should be selected from vines of known habit, as some individuals eling much better than others.

Ampelopsis tricuspidata (A. Veitchi). Fig. 2676; also Fig. 81, Vol. 1. A neater and handsomer vine than the Virginia creeper, clinging closer, but it is often injured by winter in exposed places, especially when young. It is lest adapted to stone and brick buildings.

Clematis of various species. $C$. paniculata and $C$. Virginiana are best for general use.

Tecoma radicans, trumpet creeper.
l'itis or grapes of various speries. The wild species are preferable, Fig. 2677.

Hedera Helix, true iry. Fig. 1023. The English iry does not endure the bright sun of northern winters.

Hardy in middle states, and often does well on the north side of buildings farther north.

Actinidia arguta. Fig. 29. One of the best arbor vines.

Akebia quinata. Figs. 56, 57. Graceful and pretty.
Lonicera sempervirens, $L$. flava and other honey. suckles, L. Japonica (or L. Halliana) is half evergreen in the North and is popular.

Aristolochia macrophylla, Dutchman's pipe. Figs. 138-140. A robust grower, with enormous leaves. Use ful for covering verandas and arbors.

Celastrus scandens, waxwork or false bittersweet.
Wistaria Sinensis and $W$. speciosa. Figs. 2475, 2476.

AA. Top dying to the ground, or nearly so, in winter Some are annuals.
Menispermum Canadense, moonseed. A small but attractive native twiner useful for wild gardens.

Humulus Lupulus and $\boldsymbol{H}$. Japonicus. The former is the common perennial hop; the latter is a sturdy and useful anmual.

Dioscorea diraricata, yam, Chinese potato, cinnamon vine. The large, deep-seated tuberous roots withstand freezing. Climbs high, but does not produce foliage enough to cover unsightly objects. INioscorea villosa is a small but handsome native species

Pueraria Thunbergiant (known also as Dolichos Japonicus), while not yet common, deserves to be better known. It is an herbaceous perennial in the North, but makes a woody top in the South. Very vigorous grower.

Phaseolus multiflorus, scarlet runner bean, Dutch case-knife hean. Red-and white-fld. varieties. Perennial in the South. Tender.

Ipomera, various species. Moonflowers and morningglories belong here. Some are perennials far south; all useful and interesting. Tender.

Tropcolnm majus, nasturtium. Tender annual.
$T$. peregrinum, canary-bird flower. Tender annual.
Lathyrus odorutres, sweet pea. Hardy annual.
Thunbergia alatu. Tender annual.
Dolichos Lablab, hyacinth bean. Tender annual.
Cardiospermum Halicacabum, balloon vine. Tender annual.

Adlumia cirrhosa, Allegheny vine. Tender perennial. Coboe scandens. Tender.
L. H. B.

Vines for the South. I. Dectovous, Ampelopsis tricuspidata and quinquefolia are exceedingly popular for covering brick walls, stumps, or dead trees. Being deciduous, they are free from the objection of evergreen ivies, whose foliage often accumulates dust and is a barbor for sparrows' nests. A. arborea retains its black berries all winter; the form with variegated foliage is most desirable.-Berchemia scandens has small, greenish flowers; not showy, but of rapid growth in moist soil. -Celastrus scandens is desirable for its orange-colored

2676. Ampelopers tricuspidata on a stone building.
capsules and scarlet seeds, which are retained during a part of the winter. - Centrosema Virginianum, a twining herb, is a very desirable small vine. The large, pea-shaped lavender flowers are produced from May until autumn. - Clematis. The best native species are C. crispa, with dark bluish purple campanulate flowers, $C$. coccinea with scarlet campanulate flowers, and $C$. holosericer, conspienous for the silky plumose tails of the akenes. All these are herbareous and lose their stems during winter. Of the bybrid garden varieties
which retain their stems there are only a few that can stand the long, dry summers of the middle South. The most resistant are C. Jackmani, Fairy Queen, Henryi, lanuginosa, Otto Froebel, Duchess of Edinburgh, velutina, but all should be planted where free from the direct glare of the afternoon sun.-Decumaria barbart, a tall climber usually found in rich moist bottoms and bearing numerous fragrant white flowers, is a very showy plant. - Lycium Burbarum is frequently used for trellises; the red berries, which are retained during winter, are its main attraction. - Pussiflora incarnata is often a troublesome weed in newly cultivated lands, but its flowers are remarkably showy and the lemon-like fruits, called may-pops south, are edible, the seeds being coated with a mucilaginous acidulated pulp. $P$. lutea has very small greenish yellow flowers and also a very small, purple-colored fruit. - Periplocu Graca is of exceedingly rapid growth, and when cosered in spring with myriads of tlowers is au attractive plant for trellises or rustic summer-houses. - Pueraria Thumbergiana is a most vigorous climber, a single plant frequently coveriug an enormous space. The peashaped flowers appear in spring, are of a violet color and very fragrant. No better plant can be found for covering a large space in a sbort time. It is excellent for covering dead trees. - Tecoma grundiflora is one of the best exotic climbers, with very large and showy orange-red Howers, which are prodnced from spring until autumn. It can be trained with a single stem if supported for a few years. Several forms differ only in the size and color of the flowers, as coccinea, deeper red; speciosaflora, yellowish; hybrida, blood-red. The native species, T. vadicans, is frequently considered a nuisance sonth in cultivated fields, but when trained to a pillar or frame few of our native climber are as desirable.- Histurias. Although the Japanese species frequently produces clusters more than a yard in length, the Chinese species is the favorite, being cultivated in purple, white and double forms, The double Howers are very full and of a beautiful shape, but the variety is unfortunately a shy bloomer. Our native species, $\%$ speciosa, is superseded by an improved European form. Var. magnifica has flowers of a light lavender-blue, which are produced at intervals during the summer. Its growth is unusually vigorous.
II. Evergreen. Akebia lobata, with its large leatlets in $3^{\prime} s$, yields an abundance of bananashaped mucilaginous fruit, found in the markets of Japan, but here considered of indifferent value. A very robust elimber. The "five-leaved akebia," A. quinata, is one of the most ralizable rapid-growing climbers.Bignonia capreolata, or Cross Vine, is found in rich woodlands: flowers brown - red, with yellow throat: blooms in spring.-Clematis paniculata is almost an evergreen, as it retains its foliage nearly all winter. Flowers are produced in the greatest profusion duriag midsummer and are very fragrant. One of the most desirable climbers. - Coccnlus Carolinus twines to a height of $10-15$ feet. Wben covered during winter with a profusion of coral-red berries there is no climber that is more graceful. Once known, in higher latitudes it would prove to be one of the most attractive greenhouse plants.-Elifagnus pungens, var. reflexa, or Japar oleaster, in good soil frequently makes a growth of 8 to 10 feet. The brownish bark contrasty well with the bright green and silvery reflexed leaves, while the clove-shaped flowers are very fragrant. Ex-
cellent for covering arbors. - Ficus pumila, although considered a tender exotic plant, has withstood severe cold weather and is very desirable for covering brick work, especially near the soil.-Gelsemium sempernirens, the Carolina yellow jasmine, is the glory of southern woods in spring, when plants climbing upon lofty trees are covered with myriads of golden yellow funnel-shaped flowers that are exceedingly fragrant. The form with double flowers has the additional merit of blooming during a much longer period than the type, and when cultivated in a cool greeuhouse
flowers are produced during winter.-Hedera. Of the many varieties of this genus there are few of the variegated-leaved that stand the southern summers, but the 1rish and Algerian, the latter with unusually large leaves, are hardy and desirable. - Jasminum nudiflorum expauds its bright yellow flowers in late winter and is valued as the earliest harbinger of spring; it is frequently used as a bedge plant when supported by a wire. J. officinale has white flowers during April and May. J. Reeresi and $J$. humile, with yellow flowers borne in summer and autumn, are great favorites.-Kadsura Japonica is valued chiefly for the reddish tint of its autumn foliage. The small white flowers are rather inconspicuous. - Lonicera.

The following native species are all desirable; viz., $L$. sempervirens, with scarlet and orange flowers, and $L$. flave, with bilabiate buffe-yellow flowers. In many sections of the South are found large patches of the exotic species, L. Japonica, vars. flexuosa, ('hinensis aud Hulliume; these are frequently troublesome, as they choke ont surrounding plants. Its Var, aneo-reticulata, with its attractive foliage, and L. Periclymenum, var. Belgica, which yields a continuous crop of pink and buff flowers, are the most valuable of the exotic sorts. $-I_{p o-}$ mrea. I. Bonariensis (Sellowil) and Leari are the best of the tuberous section, the roots remaining sonnd during winter if slightly covered with litter. I. porndurata, known south as Indian breat, is frequently found in large quantities in newly cleared rich oakwood lands, the tubers often weighing 10 to 15 pounds. It is very showy with its large white flowers and purple inner tube. - Passiflora. Both Arc-en-ciel, with fowers combining white, citron and blue, and Constance Elliott, with pure white flowers, are perfectly hardy and profuse bloomers. - Roses. Of the climbing varieties there is a great profusion. Most varieties are either perfect evergreens or retain their foliage nearly all winter. The White and Yellow Banksias are wonderfully attractive in early spring when laden with immmerable small violet-scented flowers, while the climbing Tea, China, Noisette and Bourbon yield a profusion of varionsly colored flowers from early spring until winter. The Wicnuraiana section will hardly become popular, as plants bloom only in spring, while the Cherokee and Macartney are still used for making evergreen hedges. Smilax. Of the many species growing soutb, the $S$. lubrifolio is bighly valued for its large, shiny leaves; it is of great decorative value for ornamenting baltrooms. Other kinds are desirable both for leaves and berries.-Trachelospermum jasminoides is an excellent white-flowering climber. The variegated form does not grow as tall, but its foliage becomes beautifully tinted with gold and red in fall.
lli. Half-Hardy Climbers. During the summer, southern homes are frequently adorned with a class of climbers that farther north are suitable only for greenhouse culture. Some of the best are mentioned below: The Antigonon, Aristolochia and Tecoma here mentioned will stand the winter if the soil is covered with a coat of straw or leares. The stem dies down in fall, but the new growth appears rigorously in spring. The others need greenhouse protection north of Savannah, Ga. Antigonon leptopus. Flowers in long racemes of a beautiful pink color and prodnced from June until frost.-Aristolockia elegans. This blooms profusely from July until frost. The flowers are tubular, hut tbe limb is perfectly flat and curiously marked and laced with purplish maroon.-Bignomir. B. venusta is at home in the extreme South. It is a gorgeous climber. In early spring or even as early as February it is covered with large bunches of bright orange-colored flowers. $B$. specios" will stand the winters of southern Georgia and produces its purplish colored flowers in early spring. Bougainvillea glabra, var. Sanderiana. Those who have seen this plant in Florida when in full bloom must agree that it is not surpassed by any other climber. The brilliancy of the climber is beyond deseription. Hardy south of Jacksonville. - Tecoma Capensis. Flowers in clusters of a beautiful orange-red color. Hardy as far as Savanuah.
P. J. Berckmans.

Vines for Conservatories or Greenhouses. Flowering vines and climbers, when skilfully trained over the roofs, supports and sides of conservatories and other plant houses, add greatly to the attractiveness of such places. From the nmmber of vines in cultivation good choice may be had both for cool or warm houses, and to suit every aspect, as well as for flowering at all seasons. Annual, bulbous and tuberous-rooted vines may be grown in pots or small tubs, but permanent hardwooded flowering vines must have ample root room. However, in some cases, as with the strong-growing hignonias and thunhergias, the root space must be limiterl, or there will be an immense growth at the expense of flowers.

When possible, the strongest growing vines may be planted under the greenhouse stages and the stems and
branches trained up from the back to the sides and roof. In most modern greenhouses, however, the space noderneath the plant stages is taken up, by the heating pipes. To orereome this lifheulty boxes made of oneinch eypress 5 feet long, $1 \frac{1}{2}$ feet wide and 1 foot deep are very suitable. These should be well drained, paizted olive-green, and placed in convenient positions on the plant stages. In planting young vines the soil

2678. Vines - Ipomcea Leari ( $\times^{1 / 3}$ ).
should be broken and not sifted; neither should the boxes be filled with soil at the time of planting, but the vine should be planted in a central mound and the box gradually tilled as the plant grows. This practice is stimulating to the vines and tends to maintain the desirable qualities of the soil. Most vines may be trained on wires, which should be either galvanized or copper and of sufticient strength to support heary vines. The wires should be spaced not more than 1 foot apart, and fastened in a horizontal position. The space between the wires and glass should be not less than 18 inches or the vines may freeze in winter.
Some judicious thinning of the growth is generally necessary in order that the vines may receive sufficient light and air. The pines should not be tied in too elosely, but allowed their natural habit of growth as far as possible in order to obtain the best effects.

A few of the most desirable kinds for conservatory and cool greenhouse follow, detailed culture of which mav be found under their respective headings in this work. Lapagevir alba and roserf, producing bell-sbaped wax flowers of exquisite beauty, are well adapted for the back wall or north side. Their worst eneruies are snails, which eat the young stems as soon as they push through the soil. Tecoma jasminoides, a strong-growing rine, produces clusters of jasmine-like flowers, Luculia grutissimu makes one of the rarest and most beautiful coolhouse trellis plants. The cymes of rosecolored or pink flowers are produced in the greatest profusion during the early winter months. Its worst enemy is mealy bug. Dipladenias are excellent sum-mer-flowering, tuberous-rooted vines, and their gorgeous flowers well repay the attention given them. Ficus pumila is an excellent subject for covering walls, either in cool or warm houses. Solanum jasminoides is a strong-growing vine producing clusters of jasmine-like flowers of white or lilac colors. The well-known Mare-

chal Niel rose, the Cherokee rose ( $R$. Sinica) and the Banksian rose, $\boldsymbol{R}$. Bunksice, are all excelleut as conservatory and cool greenhouse climbers.

The following are among the choicest for warm house culture: Allamandu Schottii and A. Hendersoni are perhaps the best of the allamandas. They have no insect enemies and are of easy culture. Among aristolochias, A. elegetes is the choicest, though A. ornithocephetus and A. labiosa are curious. Bangetinvilher speciosa and glebra are handsome stove climbers, and should be included in every collection. They are of easy culture and will flower profusely if given a light, warm position. Clerodendron Thomsoner is perhaps too well known to require any comment. It should be in every collection. Thunbergia laurifolia is one of the handsomest of the thunbergias. It should be grown where it will be somewhat shaded during the warmer parts of the day, as the petals are so delicate that they fale quickly. Among passitloras the scarlet-Howered $P$. rucemosa is excellent; also $P$. aluto-ceruleu. Their worst enemy is mealy bug. Hoyas, Stephanotis and Plumbago Capensis are all good. Pothos celatocaulis, sometimes catalogned as Maregravia parudaxt, is a good plant for climbing trunks of palms or tree ferns or damp walls. Cissus discolor and Asparagus plumosus are hoth excellent for training up the supports of plant bouses. Solausm Wendlundii is one of the best and showiest vines.

Edward J. Canning.
Vines for Southern California. The following list of vines for this section places them very nearly in their proper order as far as popular demand is concerned. One much-used vine, the ivy geranium, is purposely omitted for lack of knowledge as to its proper place in the list, the demand for this vine being somewhat spasmodic. The ivy geranium, being hardy here, is used for a great varjety of purposes, as hanging baskets, hedges, antl for climbing up the sites and on the roof of a house. Passitloras are unpopular bere by reason of the numerous caterpillars that infest them at certain times of the year. Of this list Solunum Wendlundii is probably the most tender, with the hougainvilleas a close second. For the covering of unsightly ohjects in the least possible time, Ipomoa Lectri (Fig. 2678) easily takes first place and the loniceras will rank next. Several species of jasmines are worthy of mention, but space forbids, as the list could easily be extended to 103 or more. Vines occupy an important place in the horticulture of southern California, as in other warm and sunny countries.
Bougainvillea, all species; Bignonia venusta; Solanит Wendlandii; Lonicera, several species; Ipomát Leari, Fig. 2678; Tecoma Ricasoliana; Jasmimem grandiflormm; Bignonia Tweediana; Solanum Seaforthianum, var. azureum: Wisturia Sinensis; Wistaria Sinensis, var. alba; Solunwm jasminoides; Tecoma grandiflora; Tecoma jusminoides; Phaseolus Caracalla; Tecoma filicifolia; Merdenbergia monophylla; Hardentergia Comptoniana; Mandevilla suaveolens, Fig. 2679: Hoye carnosa; Clianthus punicers; Akebia quinatu; Kennedya nigricans; Mfrehlenbeckia complera; Physianthus albens; Various tacsonias; Figs. 2457, 2458, 2680.

## Ernest Braunton.

Vines for Middle California.-The number of species of climbing plants cultivated in California for ornamenting town and country homes is large, but on account of the newness of the country and the recentness of introduction of many of them, few species are commonly seen. In middle California ftaking the San Francisco neighborhood as a ceuter) the following are most extensively grown as a covering for porches, arbors ant houses: (1) Amprelopsis trienspiduta, (2) Rosu Benksiot and other species, (3) Clemutis Jackmani and other varieties. (4) wistarias, (5) tacsonias and passifloras, (6) Lonicera Juponica, var. Haliana.

For house adornment the tacsonias are not to be recommented, on acconnt of their rampant and dense growth, which tends to keep the building damp and cold in winter. The Lady Banks rose is a general favorite on account of its evergreen habit and the abundance of blossoms which it produces in spring. Wistaria Chinensis is an old and well-tried friend. In spite of a
somewhat untidy habit of growth and need of yearly training and trimming, it is probably as much loved in California as in its native land, Japan, on account of the exuherant, lavish freedom with which it showers its wealth upon us in the form of immense trusses of fragrant flowers. Hall's Honeysuckte has such fragrant blossoms, is so easily reproduced hy cuttings and blooms so freely and for such a long period, that it is more commonly grown in country places than perhaps any other vine.
The following lists are not intended to be complete, but rather suggestive; they are believed to include all the species generally grown in middle California. They are thrown into special-purpose groups.

Section 1.-For houses and places where dense growth would be objectionable. This list does not include all the species at present grown in such places, as several that are frequently so grown have proved unsatisfactory.

2679. Mandevilla suaveolens.
A. Tall, suitable for covering the side of a house. B. Hardy.

Akebia quinata. Figs. 56, 57. Jasminum grandiflorum, Ampelopsis heterophylla, A mpelopsis quinquefolia. Fig. 80.
Ampelopsis quiuquefolia, var. Engelmanní.
Ampelopsis tricnspidata.
Figs. 81, $\mathrm{c}^{2}$.
Araujia sericofera (eonsult Physianthus):
Bignonia Tweediana.
Boussingaultia baselloides. Fig. 250.
Clematis Henryí. Fig. 488.
Clematis Jackmani. Fig. 489.

Clematis kermesina,
Clematis montana,
Clematis paniculata. Figs. 485, 486.
Dolichos lignosus,
Gelsemium sempervirens,
Holboellia latifolia.
1ромоеа Bona-nox. Fig. 1170. Ipomea Mexicana,

Jasminum grandiflorum,
Jasminum humile,
Jasminum nudiflorum,
Jasminum officinale,
Kennedya rubicunda,
Lantana Camara. Fig. 1239.
Lonicera Oaprifolium. F'ig. 1316.

Lontcera Japoniea, var. Halliana. Fig. 1314.
Lonicera Japonica, var. aureo-reticulata.
Lonicera Perielymenum. Fig. 1315.

Mandevilla suaveolens. Fig. 2679.

Maurandia Barclainna.
Maurandia erubescens.
Marrandia scandens. Fig. 1378.

Melothria punctata.
Periploca Graca.
Plumbago Capensis. Fig. 1860.

Rosa Banksiæ,

Rosa lævigata. Figs, 2166 2167.

Rosa, various species.
Solanum jasminoides,
Stauntonia hexaphylla. Fig. 2595.

Tecoma grandiflora,

Tecoma jasminoides, Tecoma Thunbergii. Tecoms radicans. Wistaria Chinensis, Wistaria speciosa,
Wistaria multijuga.

BB. Tender.
Allamanda Hendersonii. Fig. 61.

Antigonon leptopus,
Bignonia venustia. Fig. 235.
Bignodia speciosa,
Bongainvilles glabra. Fig. 249.

Bougainvillea glabra, var Sanderiana,
Bougainvillsea spectabilis,
Bougainvillea spectabilis, var. lateritia.

Buddleia Madagascariensis, Eccremocarpus scaber,
Heliotropium Peruvianum. Fig. 1032
Hoya carnosa,
Lapageria rosea. Fig. 1240.
Lapageria rosea, var. alba,
Phaseolus Carracalla,
Solanum Wendlandii. Fig. 2342.

Tecoma australis.

AA. Low-growing climbers suitable for planting along a fence or wall or the base of a tree, or for massing against a house.
B. Hardy.

Asparagus medeoloides
Fig.
Latbyrus latifolins. Fig. 1243.
Lathyrus odoratus,
Lathyrus sylvestris.
Maurandia Barclaiana,
Muehlenbeckia complexa,
Pelargoninm peltatum, Fig. 1702.

Swainsona galegifolia,
Vinca major.

BB. Tender.
Asparagus lucidus,
Asparagus plumosus,
Asparagus plumosus,
tenuissimus. Fig. 156
Asparagus Sprengeri. Fig. 153, 154.
Ficus pumila,
Heliotropium Peruvianum. Fig. 1032.
Latbyrus spleudens,
Lycium Richii,
Manettia bicolor. Fig. 1359.
Pereskia aculeata,
Russellia juncea,
Tropæolum Canariense.


Pueraria Thunbergiana.

## AA. Tender.

Passiflora alato-cerulea, Tacsonia manicata. Fig. 2680.

Tacsonia Van Volremii.
3. For tree-trunks, unsightly poles, etc,-For such places the English ivy, Hedera Helix, is one of the very best plants; it can be used with advantage to cover the trunks of eucalypts and to prevent the unsightly shedding of the bark without injury to the tree. The English iry seems to be thorouglily at home in the coast climate of middle California. Clematis montana can be used with grod effect to climb up among the branches of Cupressus sempervirens or Chamacyparis Lawsoniana, against the dark foliage of which the white flowers of the Clematis contrast beautifully. Roses are often treated in the same manner. Ampelopsis quinquefolia is sometimes made to elimb a rugged old specinuen of Corlyline anstralis, and, of ten reaching the tufts of leaves which crown the short branches of the latter, the young lianas of the creeper bang down in beautiful festoons. In Golden Gate Park, Tac. somia Exoniensis has been allowed to wander at will over the rounded heads of live oaks (Queveus agrifolia). T. mollissima is sometimes nsed in the same way.
4. For slopes, retaining walls and banks of creeks, -For long, sloping banks nothing has yet heen found more effective than Euglish iry, which withstands the dryuess of a warm southern exposure without irrigation. Pelargonium peltatum, Tropoolum majus, Juniperus Chinensis, var. procumbens, and J. sabina, var. prostrata, are also used satisfactorily.

Along the banks of creeks, Senecio mikanioides (here called German iry), Vinca major and Zebrina pendula are frequently used, growing with the greatest luxuriance. The German ivy has escaped from these special situations and has established itself as a denizen in several places.

For low retaining walls and fences, English ivy is sometimes used, but is not nearly as effective as the following, all of which are met with:

Ficus pumila,
Fragaria Califoruica,
Fragaria C'hiloensis,
Fragaria Indica,
Fuchsia procumbens.
Linaria dymbalaria,
Lotus Bertholetii,
Mlahernia glabrata,
Pelargonium peltatum,
Sollya heterophyla
Tropeolum majus.
Of the above, Pelargonium pelfatum is by far the most satisfactory and most freely used; in fact, it may be considered one of the characteristic features of gardening in midde California.
5. Hor fences.-Vines are frequently used to form live hedges by planting them thickly alongside a fence. The favorites for such situations are Rosa lerigata, Muehlenbeekia complexa, Lycium Richii, Pelargonium peltatum, the hardy tacsonias and Solanum jasminoides. Contolzulus purpuratus and C. macrostegius can also be used to advantage in this way, and even Tropapolum majus is sometimes requisitioned for the purpose.

For 6. or 8 -foot woren wire fences, around tenniscourts, etc., nothing has heen found more satisfactory than the delicate tracery of Eccremocarpus seaber and the manrandias; Tropoolum C'mariense may also be used, but is less satisfactory hecause an annual and requiring a shady place. Ipoment purpurea and $I$. Quamoclit may also be used for this purpose.

Joseph Burtt Daty.
VINICULTURE. Wine-making and the subjects associated therewith. The subject is not primarily horticultural. It is essentially manufacture. The growing of the grapes is Viticulture. Sce Grape and Vitis.

Cohæa scandens. Fig. 502. Pelargon
lpomea Leari. Fig, 2678.
Passiftora cærulea. Fig. 1653.

Pelargonium peltatum. Fig. 1702.

Tacsonia mixta,
Tacsonia mollissima.

VIOLA (classical name). Fiolàcece. Violet. There are probably 150 species of Violets. They are widely distributed perennial or rarely annual herbs (or even subsbrubs) with interesting irregular flowers on 1- or 2 -flowered axillary peduncles. They are plants of the northern and southern temperate zones. About 40 species are native to North America north of Mexico. The flowers are 5 -merous as to envelopes and stamens: sepals all similar, persistent with the fruit: corolla irregular, the lower petal spurred, the others similar but usually not alike; stamens short and included, the anthers more or less coberent and two of them with an appendage projecting into the spur: fr. a capsule, 3 -valved, with several to many globular seeds. Some of the species (particularly the common eastern V. palmata) have cleistogamous flowers, which are borne at the hase of the plant (often under tbe mold) and are pollinated in the bud. The structure of the corolla of the Violet is shown in Fig. 2681. In Fig. 2682, representing the same species, the cleistogamous flowers are shown at $a$ a.

Three species of Viola are well known in gardens. The Common Sweet Violet is $V$. odorata. From this the florists' Violet, in many forms, has been evolved. The Pansy is V. tricolor. See Pansy. Tbe Horned or Buttertly Violet is V.cornuta. These are all European species, and are now considerably modified by cultivation.

Many of the native Violas are offered by dealers in bardy plants, but only V. pedata and V. palmata (with its var. cucullata) are really known to any extent as garden plants; and even these are not frequently seen. V. pedata, the Bird's-foot Violet, is a most worthy species, and it will some day, no douht, be the parent of an important garden race. It is very variable even in the

2681. The structure of the corolla of Viola palmata var. cucullata. Somewhat enlarged.
wild state. Since the native species are really not horticultural subjects, and the descriptions of them are so easily accessible in the writings of Gray, Britton,

Greene and others, and, moreover, the kinds are so many, they are not dexcribed in this account: but a list of those which are or have been offered in the trade is

2682. The two kinds of Violet flowers, - the common showy flowers at the right, natural size, and the cleistogamous flowers at $a \boldsymbol{a}(\times 1 / 3)$. Viola palmata var. cucullata.
given below as a matter of record. In the nomenclature of this list, the monograph of Gray bas been followed (Gray's Syn. Flora, vol. 1, pp. 195-204).
Violets are easy to grow, particularly if an effort is made to initate the conditions under which they naturally occur. Some of them are woods species, others swamp species, and otbers inhabit dry plains. They are propagated readily by means of division and in some species by runners. Sometimes seeds are used, but not commonly. Many species that grow mostly to single stems in the wild make large full clumps when given good opportunity in the garden. Fig. 2683.

## A. Plant perenial.

## B. Spur short and obtuse.

hederàcea, Labill. (Erpètion renifórme, Sweet. E. hederdeeum, petiolare and spathulatum, G. Don). Aus. tralian V́olet. Tufted, and creeping by stolons, glabrous or pubescent: lvs. reniform or orbicular or spatulate, small, entire or tootbed, usually not equaling the seapes: fls. small, usually blue, sometimes wbite, the spur almost none. Aus-tralia.-Offered in S. Calif.

2683. Clump ot common blue Violet of the eastern states.-Viola palmata, var cucullata.
odoràta, Linn. Sweet Violet. Figs. 2684, 2688-90. Tufted, somewhat pubescent, producing stolons: roatstock short: lvs. cordate-ovate to reniform, obtusely serrate, the stipules glandular: fls. blue, fragrant (running into white and reddish purple forms), the spur nearly or quite straight and obtuse. Eu., Afr. and Asia.-It runs into many forms, varying in stature, size of flowers and color. There are donble-flowered forms. The parent of florists' Violets.

вв. Spur long and acute.
cornùta, Linn. Horned Violet. Bedding Pansy. Plant tufted, glabrous or nearly so, producing evident stems with long peduncles in the leaf-axils: lvs. cor-
date-ovate and usually acuminate, obtusely serrate, the stipules large and laciniate: Hs. larye, pale blue, the obovate-obtuse petals standing well apart, the spur half or more as long as the petals and acute. S. En. B.M. 791. - Frequently seen in gardens and much prized for its large, bright flowers. Good for spring bloom. Hardy. There are several colors, represented in Alba, Purpurea, Mauve Queen and Papilio. The last has very large flowers, violet in color, with small dark eye. Fig. 2685.
AA. Plent annual, or imperfectly perennial in cultiration.
tricolor, Linn. Pansf. Heartsease. Figs. 1634, 1635. flabrons or nearly so, the stems becoming long and branched: lvs. cordate or round-cordate, those of the stem hecoming lanceolate, all stalked and crenatedentate, the stipules large and lacimate: fls. large, usually about three colors represented (except in highbred self varieties), the spur short and inconspicnous. Eu. - When strayed from cultivation, the flowers become small and lose the markings characteristic of the bighbred Pansies. A small-flowered fiell form, thought by some to be indigenous to this conntry as well as to Europe, is var. arvensis, DC. See Prasy.

Following are North Am-rican Violas that have been offered to the trade:
A. Blue Fiolets (sometimes running into white and striped forms).
Beckuithii, Torr. \& Gray. Nevada, Calif., Oregon.

Canadensis, Linn. Very pale violet or alunost white. Generally distributed.
canina, Linn., var. Muhtenbergii, Trautv. (V. canina, var. sylvestris, Regel). Minn., east. Var. adunca, Gray (V. adrneq, Smith). Mostly western.
coqnatu, Greene. Offered in Colorado.
Hallii, Gray. Calif. and Oregon.
palmata, Linu. (I. cheullata, var, palmata, Hort.). Eastern states.

Var. cueullata, Gray (1. cucullata, Ait. IV. obliqua, Hill). Figs. 2681, 2682. Ou the Atlantic slope. By Britton \& Brown regarded as a distinct species for which Hill's name $V$. obliqua (I769) is used rather than Aiton's I' cuctllate (1789). The commonest Violet in the northeastern states. 1 . obliquu, var. striata, is a striped form now in the tride, and not ancommon wild. There are torms known as vars. picta and coriegata. One of the most variable speries in stature, form of leaves, and color of flowers. It is easily colonized in the garden.
pedata, Linn., Bird's-foot Violet, and one of the handsomest species. Sandy soil, Atlantic states and we $t$ to Ind. Terr. and Minn. It runs into very distinet forms.

Var. bicolor, Pursh. Two upper petals much darker.
Var. alba, Hort. Flowers nearly white.
rostrata, Muhl. Miehigan, east.
sagittuta, Ait. Minn. and Texas, east. Var. picta, Hort., has striped flowers.

Selkirkii, Pursh. Northeastern states and Canada.
trinervata, Howell. Washington.

As. IVhite Violets.
blanda, Willd. Fig. 26isti. Low places, across the continent. Pretty little species, fragrant. Var. remifolia, Ciray. Northeastern states and Chanda.
lunceolita, Linn. Nova Scotia to Florisla and Texas. primutiefolia, Limn. Canada to Florida and Louisiana. striata, Ait. Yellowish white. Mo., east.

## aad. Yellou l'iolets.

glabella. Nutt Rocky Mits, to Calif. and Alaska. Tobatu, Benth. Calif., Oregou.
Nuftullii, Pursh. Kans to Calif, and north.
pedunculatu, Gray. California seeds are gathered for export.
pubescens, Ait. Fig. 2687. Dakota, east and south.
rotuntifolia, Michx. Nora Scotia to N. Car.
sarmentosa, Dongi. Idaho to British Columbia and Calif.
Sheltonis, Torr. Calif. to Washington.

2684. Viola odorata ( $\times 1$ ). L. H, B.

VIOLET. Commer cial C'rltivation.The Violet prohably ranks third in commercial importance among florists' Howers in America. It has risen greatly in hortienitural import. ance within recent years. The Violet season is only about seven months, while the season of roses and carnations is fully nine months. As with the other leading flower crops, - roses, carnations and chrysanthemums, - the Violet requires very close attention the rear round. Though Violets require no staking, tying or disbudding, other laborious 1ractices are necessary. The status of Violet culture has been below that of the other important florists" flowers as regards general care and efficiency of management, and consequently quality of product. For many years a crop worth millions of dollars anntully was raised with scarcely any discussion in the trade papers concerning methods. There are national societies devoted to the rose, carnation and chrysanthemum, but none to the Violet. So low had the interest sunk in Violet culture on its professional side that the "Violet disease" was spoken of by the florists as if it were only one thing, whereas there are at least eight distinct and important kinds of troubles that devastate Violet plants. At last the tide has turned. The various diseases have bren investigated by scientists, especially those of the Divisiou of Vegetable Physiology and Pathology, in the U.S. Department of Agriculture, and there is considerable free literature arailable concerning the nature of these diseases and the methods of controlling them. The wonderful success of certain Violet specialists has awakened geueral interest and emnlation. Violet culture now receives something like its proper share of attention in the trade papers. The practical experiments in Violet culture by Galloway and Dorsett, based upon a knowledge of plant diseases, the introduction of the cyanide method of fumigation, a rigorous system of plant-breeding and a close study of actual market conditions have had an important influence in raising the standard of commercial Violet culture.
There is a popular impression that Violets are an easy


2685. Viola cornuta var. Papilio $(X 1 / 2)$.
crop to grow. This is true only of blooms of ordinary quality and only as regards the total amount of work required per year as compared with a crop of roses, carnations or chrysanthemums. The best Violets are produced only under the best conditions, and it is a siugular fact that many persons who have thought they had mastered Violet culture after a few years' success have fatled subsequently. The Violet is still everywhere grown by local florists, hut good Violet culture has been the latest to attain a high degree of specialization. The present status of the subject is admirably presented in Galloway's Commercial Violet Culture, New York, 1899.

I'arieties.-From Viola odoratu, a species indigenous to Europe, parts of Asia and Japan, many cultivated sorts, both single and double, and of different colors, have been derived. The varieties most highly prized and of the greatest commercial vaiue to American florIsts are, in the order named: of the double varieties, Marie Louise (Fig. 2688), Farquhar, Imperial, New York (Fig. 2690), and King of Violets, dark blue flowers; Lady Hume Camnbell. Neapolitan (Fig. 2689) and De Parme, light blue; Swanley White (Fig. 2691), Queen of Violets and Belle de Chatenay, white, and Madame Millet, Odorata Rubra and Double Red, red or pink. Of the single sort the varieties most highly prized are, in the order named: California, Prineesse de Galles, Luxonne and La France, purple; White Czar and Rawson's White, white, and single red or pink.

2686. Viola blanda $(\times 1)$.

Propagation.-1n commercial Violet growing, plants are propagated chiefly in four ways: (1) By cuttings 3 or 4 iu. long, made from well-developed runners and rooted in clean, sharp sand; (2) by divisions, mate by taking up the old plants, usually after flowering has ceased, and separating them, all divisions with old roots and hard wondy stems being discarded, and the young, well-rooted oues transplanted 3 or 4 in . apart each way, and watered and shaded for a few days, until they are well established, when they can be lifted with a hall of earth and set where desired; (3) by cuttings made from young, uurooted crowns or divisions of the old plant removed during the winter or spring without disturbing the floweriug plant, and rooted in clean, sharp sand, as in the case of runners; (4) by removing well-rooted young divisions, crowns or offshoats, without disturhing the flowering plant and caring for them the same as divisions made in spring.

Soil.-As a rule, Violets do well in any good, wellenriched soil. The best results, however, are obtained from soil prepared from socl taken from a rather heavy, sandy loan that is well drained aud capable of retaining and giving up au abumlance of moisture at all times. The soil to be used in the Violet house, stationary frame, or in pots, should be prepared the previous fall. From a suitable loam, strip off the sod to a depth of 3 or 4 in ; compost this with well-rotted manure, preferably cow manure, and pile in alternate layers of from 6 to 8 in . of sod and 2 to 3 inches of manure. In this condition

2687. Viola pubescens $(\times 1 / 3)$.
let it stand exposed to the weather until spring, and then, just before it is to be used, chop down and add pure bonemeal at the rate of 27 ounces per cubic yard of soil, after which work over several times, or until the whole is thoroughly pulverized and mixed, when it is ready for use. For movable frame culture, seatter from 1 to 2 in . of well-rotted manure over the sod in the fall, then turn under by spading or deep plowing, and in that conditiou let it stand exposed to the action of the weather until spring. Just before planting time plow again, top-dress with pure bonemeal at the rate of 6 ounces per square yard of soil, and harrow or work over.

Methods of Culture.-Among American florists four methods of growing Violets are in common use; riz., field and house culture, house culture, frame culture with or without artificial heat, and pot culture, the extent to which they are used being in the order named.
Field and house culture: Early in the spring the young plants are set in the field and cultivated during the summer. Some time in September or October they are lifted with a ball of earth and tramsplanted into beds or benches in the house, where they bloom during the winter.

House culture: The plants are grown under glass, either on benches or in solid beds, during the entire season. This method should take the place of all others, for with it the very best conditions and closest attention can be given the plants at all times, and as
a rule the results obtained are much better than from any other method.

Frame chltare with or without artificial heat: The young plants are placed either directly in the frames,

2688. Violet. Marie Louise ( $\times 1$ ).
where they are to grow and flower, or else in beds, where they are cultivated during the summer and the frames placed over them in the fall, or as soon as they require protection; or they are grown in the field as in the case of field and house culture, and transplanted to the frames some time in September or October. This method is still used to considerable extent by commereial growers, especially in regions where the temperature seldom if ever falls helow zero for any length of time. Amateur growers usually adopt this method because of its simplicity and inexpensiveness.

Pot culture: The young rooted cuttings are planted in thumb-pots and gradually shifted to larger sizes as growth demands until they are in 7 -in. pots. Here they are kept and flowered, or the plants are taken up from the fleld in the fall and put into 7 - or $9-\mathrm{in}$. pots, according to the size and vigor of the plants. This method is seldom used in commercial growing, being expensive, inconvenient and usually unsatisfactory.

Time of planting: This varies somewhat with differ. ent growers and in different sections. Generally, bowever, the best resmlts are obtained where planting is done in early spring. Plants set ont at this time get well established, and as a rule are stronger, healthier and 'more vigorous than those set out later, when the weather is usually hot and dry.

Proper distance in planting: As a rule, the donble Violets are planted 8 or 9 in . apart in rows 10 in . apart, and the single ones 12 in , apart in rows 12 to 18 in . apart, the distance depending somewhat on conditions and varieties. Planting too close is liable to induce disease, and too far apart is unprofitable.

Care and management: The plants should be kept free from all weeds, runners and old decaying leaves, and the earth should be frequeutly stirred, care being
taken not to injure the roots of the plants. During the summer the temperature should be kept as low as possible and in the winter as nearly as possible at $45^{\circ}$ to $50^{\circ}$ F. at night and $50^{\circ}$ to $60^{\circ}$ in the daytime. The ventilation of the houses should receive careful attention at all times, so that an abundance of fresh air can be supplied to the plants when needed. Watering is a difficult problem, usually taxing to the utmost the best judgment of the grower. No fixed rules can be laid down as to the proper amount to apply or when to apply it, this depending upon a number of factors, such as the character of the soil, temperature and moisture of the atmosphere, amount of light, etc. As a rule, however, the soil should be kept moist at all times, and the watering should be thorough, but never to such an extent as to cause the soil to remain saturated for any considerable lengtb of time.
l'iolet Houses and Frames (Fig. 2692). - There is probably little choice between any of the standard styles of greenhouses, provided certaiu features are observed in their construction. Provision should be made for smpplying an alrundance of fresh air, either from the sides or top, whenever it is needed, the ventilators being so arranged as to be easily operated either from within the house or from the ontside, the iuside arrangement to be used in general ventilation of the houses, the ontside whenever fumigation with bydroeyanic acid gas is necessary. The arrangeruent and location of the house shonld be such as to secure the maximum amount of sunshine during December and January, and the minimum amount during the growing season, when it is necessary to maintain as low a temperature as possible so as to insure good, vigorous, healthy-grow ing plants. The location of the house and the direction in which it should run depend largely on the

2689. Neapolitan ( $\times 1$ ).

The Violet frames, which are cither stationary or movable, are made of rough boards, and are about 5 ft . 10 in . wide, of any desired length, from 12 to 15 in . high in front and 18 to 20 in . high at the back. The best location for the frames is a piece of ground sloping to the south, with a wind-break of some kind to the north and northwest to protect them during the winter from the cold winds.

Marketing is one of the most important factors connected with commereial Violet-growing and is seldom muderstood in all its details. The grower should be thoroughly familiar with the many needs and requirements of the market and be able to supply these demands, for upon his ability to do this depends largely his success or failure from a financial standpuint. Violets are prized chiefly for their delicate perfume, and as this diminishes in propor tion to the leugth of time they are picked, the best market, other things being equal, is the one which requires the least possible delay between picking the flowers and placing them in the hands of the customer.
The crop may be disposed of at retail or wholesale or through a commission merchant. Each method has its advantages and disadvantages, and in deciding which one to adopt the grower must be gnided by existing conditions. He must in any event have a thorough knowledge of the reguirements of the market as regards quality of the flowers, size, shape and arrangement of the bunch, and should at all times exercise tbe utmost care in picking, packing and shipping, so that the flowers may reach the customer in the best and most attractive condition. The kind of bunch varies from year to year, and each large city is likely to have its own style. The various styles are wonderfully exact in their requirements and great skill is required to bunch the flowers properly.

Diseases. The cultivated Violets are subject to a

2691. Swanicy $\{\times 1$ ).
number of diseases, each of which is characterized by one or more distinct symptoms. The principal diseases are as follows, their destructiveness being in the order in which they are disenswerl:

Sput disease (Altermaria viole).-This disease, also called the disease, leaf-spot, leaf-rust and smull-

pos, is the most widespread and destructive known in America. It attacks principally the foliage, normally produeing definite circular whitish spots, frequently with eoncentric rings, of a darker shade, very often witb a light central portion resembling the bite or sting of an insect. Cercospora viole. Phyllosticta viole, Septoria viola,
ete., produce spots very similar in outline and appearance to those cansed by Alternaria violoe, but only under conditions peculiarly favorable to these fungi do they cause any serious loss. For recent information on this disease, see "Spot Disease of the Violet," Bull. 23, Div. Veg. Physiology and Pathology, U. S. Dept. Agric.

Root rot (Thielania basicola.).-This disease is very troublesome and destructive in some localities especially to young plants that are transplanted during hot, dry weather. It canses the browning or blackening of the parts attacked and the final death of the plant.

Wet rot (Botrytis sp.).-This tnngus attacks leaves, detioles, flower-stalks and fowers, causing a wet or soft rot. It is sometimes very destructive, especially with large plants growing in a damp, stagnant atmosphere, where there is insufficient ventilation and light.

Leaf-fading or yellowing. - This is induced by a rariety of conditions, but as yet little that is definite has been ascertained regarding its canse.

Remedies. - It is difficult to exterminate any of the diseases named after they once gain a foothold. However, they can be beld in check and often entirely prevented by selecting and propagating exclusively from strong, vigorous, disease-resistant plants, and by keeping them in the best possible growing condition. Careful attention must be given to watering, cultivation and ventilation, and the dead and dying leaves and all runners should be destroyed as fast as they appear.

Animal Enemies.-Althongh Violets are attacked by a number of insects and other animal enemies, only a few do sufficient injury to warrant discussion here.

Aphides (Aphis ? sp. and Rhopalosiphum violip).These pests are generally known as the green and the black aphis or the green and the black fly. They canse the young, growing parts to curl and twist, resulting in a stunted, ill-formed plant. They work tbeir way into the young, unopened flower-buds, and, thrusting their bills through the overlapping petals, feed on the juice. Each puncture produces a greenish white blotch on the petal and the flower becomes dwarfed, distorted and worthless for market. Aphides can be easily controlled by fumizating with hydrocyanic acid gas, and this is the method of treatment which should come into general use. To each eubic foot of space in the house or frame use .15 gram of 98 per cent cyanide of potash for double varieties and . 10 gram for single varieties. Handle the cyanide and gas with utmost care, as both are very poisonons. Divide the total amount of eyanide into as many equal parts as there are jars used, which latter should be one for every 50 to 75 lineal feet of a house 12 to 18 feet wide. Put each part into a 2 -pound
manila paper bag and this into a second bag. Attach each package to a string or wire so arranged as to allow it to be lowered from the outside of the house into its respective jar. Pour into each jar an amount of water about equal to the lualk of cyanide in the bag, add commercial sulfuric acid until steam is evolved, then from the outside lower the bays into the jars beneath. Funigate double tarieties thirty minutes and single varieties twenty minutes, after which open ventilators from ontside, leaving them open at least sixty minutes before entering the house (for full information, see Circular 37, Dept. of Agric., Div. of Entomology). Aphides may also be combated by using tobaceo in some one of its. many forms, but tobacco is likely to weaken the leaves and make them more liable to the attack of fangi, and on this account is very objectionable.

Red spider (Tetrenychns telarins). -This pest lives on the under surface of the leaves, and when present in sufficient number causes considerable damage. It is widely distributed on a great variety of plants, and when established in the Violet house is most difficnlt to combat. It ean be held in eheek, and often the plants may be kept entirely free from it, by frequent syringing with clear water under a pressure of 20 to 30 pounds per square inch. Care must be taken to syringe early in the morning and on bright days,

2693. Map of Virginia. Showing the six regions of interest to farmer and fruit-grower

Eel worms, or nematodes (Auguillula sp.).-This causes swellings on the roots of the plants known as root gals. Another species attacks the buds, cansing them to "go blind." There is no known method of exterminating these pests, but their injurions effects may be reduced to a miniruam by adopting the methods recommended for controlling fungons diseases.
Gall fly (Diplosis violicola), violet sawfy (E'mphytus Canadensis), greenhouse leaf tier (Phlyctornia mbigalis) and several species of cutworms (Agrotis et al.). -In some parts of the country the larse of these insects injure the plants to some extent by feeding on the foliage. Fumigating with hydrocranic acid gas is the best means of combating them.
Slugs, snails, sow bugs, etc. - Under certain conditions these pests do considerable damage, especially to the flowers. They also can be controlled by the hydrocyanic acid gas treatment.
P. H. Dorsett.

VIOLET, AFRICAN. Saintpaulia. V., Damask or Dame's, is Hesperis matronalis. V., Dog. Viola caminu. V., Dog's Tooth. Erythronium Dens-Canis. V.,Water. See Ifottonin.

VIPER QOURD. Triehosanthes Angnina.
VIPER'S BUGLOSS, See Eehium.
VIRGILIA lùtea. See Cletlrastis tinctoria.
VIRGINIA COWSLIP or V. Lungwort $=$ Mertensia pulmonarioides.

VIRQINIA CREEPER is Ampelopsis quinquefolia.
VIRGINIA, HORTICULTURE IN. Fig. 2693. Historically Virginia borticulture began with the earliest settlers, plantings being made on Janestown 1sland in 1607. The London C'ompany sent vines in 1619 and seions and trees in 1629 which were rapidly disseminated, so that before I700, orchards of considerable size had been planted. As the settlers pushed west ward into the Piedmont section, farorable results with the tree fruits became more common. 1u this section Thomas Jefferson took an active interest in horticnl ture, and from the vicinity of "Monticello," apples first won their supremacy in the markets of the world.

Virginia is separated into six main physical divisions known as Tidewater, Middle Virginia, liedmont, The Valley, Blue Ridge and Appalachian. These are seetions of varying width, extending northeast and southwest throngh the state, with marked variations in soil, altitude and climate.

Astrachan, Maiden's Blush. Summer Queen and Pennock, followed by Bonum, Smoke House, Fall Pippin, Fallawater, sweet Winter Paradise, and Virginia Beauty as leading fall apples, and concluded hy York Imperial, Albemarle Pippin, Ben Davis and Winesap, which extend the season throngh winter.
The planting of pears for commercial purposes has largely increased with the introduction of Kieffer, Le Conte and others of this type, while Seckel, Bartlett, and Duchess remain the favorites for garden purposes. In preaches the varieties largely planted are sneed, Alexander, (treensboro, Momtain Rose, Early Rivers, Biskop Early, Chinese Cling, Crawford Early and Late Elberta, Stump the World, Heath Cling, Levy Late, Bilyell October and Albright Winter. It is the general experience that in early peaches white-fleshed varieties do best. Sweet cherries probably grow to greater perfection in Virginia than elsewhere east of the Rocky Mountains, \$60 worth of fruit from an indiridual tree in a season being no unusual occurrence. The most popular varieties are Early Purple, Black Tartarian, Napoleon Windsor and Goor. Wood. 1t is considered among observant growers that Mahaieb is a failure as a stock for sweet cherries for orchard purposes in Virginia, and the most successful stock is the Mazzard, which grows with such luxuriance as often to become a striking feature of a Virginia landscape.

With the advent of the Japanese types, the phom industry is taking on renewed life and plum orchards of conviderable size are being planted. Red June, Abundance, Yellow Japan, Burbank, and Wickson have proved profitable about in order named. Satsuma preserves well. The Danson and a blue plum of the "Horse" plum type are very commonly disseminated throughout the state. The latter reproduces itself in the same manner as the Damson, and seems to be exempt from black knot. Only a few trees of the last two kinds are grown at any one place, but the aggregate of fruit is considerable. Nearly all the pome and stone fruits adaptable to this climate are grown in the state, but few on a commercial scale except as noted.

Fineyards. - That section of Piedmont Virginia near Charlottesville has taken the lead in grape-growing, and extensive rineyards of wine grapes have been planted, and a wine cellar established, whose product has been favorably compared with the best French wines of same character.

Small fruits.-Raspberries are grown in sufficient quantities to supply local demands, with Cuthbert as the leading variety. The same may be said as to gooseberries and currants, with Houghton and Downing popular varieties of the former and Cherry and Fay of the latter. Strawberries are grown extensively in a number of localities both for local and distant markets, with the vicinity of Norfolk the center of production. From Norfolk they are shipped by boat- and train-loads, and "the patches" are often J 00 acres or more in size. Blackberries and dewberries are furnished so bountifully by nature that stimulus for cultivation is beld in check, as is the case so far as bome consumption goes with many other fruits, for from early spring straw berries, service berries, dewherries, blackberries, huckleberries, Mazzard cherries, haws, wild grapes, plums, seedling apples, pears and peaches follow each other in such reckless profusion in field and forest that all who wish have but to pluck to eat. Commercially, however, the horticulture of Virginia is making rapid strides in methods and inereased plantings.

Trucking. - Tidewater ranks first in its trucking and small fruit interest. With its mild climate, tractahle soil, abundance of labor, thorough transportation facilitips, low freight rates, and nearness to great eastern markets, it has in the last 36 years become the "Market Ciarden of the World," the section adjacent to Norfoik producing over six millions of dollars worth of truck per annum. See Vegetable Gardening.

Nurseries.-The 50 or more nurseries in the state are well distributed, with the largest establiwhments at the junction of the Tidewater and Middle Virginia sections. These nurseries comprise plants of from 350 acres down. The apple is their leading specialty.

Floriculture and landscape gardening have been principally confined to the larger cities of the state, where
there bas been a rapil increase of glass acreage in reeent years devoted mainly to the production of roses, carnations, violets, and chrysanthemums as cut-flowers. The soil and climate of Middle Virginia bave been found especially favorable to violet production and in Louisa county, 25 or more growers are devoting especial effort to violet culture. The interest in landscape gardening is gradually on the increase.
( ${ }^{\text {a }}$ eo. E. Murrell.

## VIRGINIA stock. Mutthiolu.

## VIRGIN'S BOWER. C'lematis.

VISCARIA, See Lychnis.
VISCUM is mentioned under Phoradendron.
VISNEA (after a Lisbon mercbant). Ternstremiàcea. A genus of one species confined to the C'anary 1slands. It is a large evergreen shrub or small tree resembling in a general way a tea plant or camellia. The specific name Mocanera was given by the younger Linnæus because the fruit was supposed to be the "mocan" of the aborigines, which was made into a kind of syrup and used to a considerable extent. The ths. are only three. eighths of an inch across, not very numerous and much shorter than the lvs., but they are very sweet-scented. It has recently been offered in S. California.

Sepals 5 , imbricated; petals 5 , imbricate, connate at base; stamens indefinite: ovary 3 -loculed, slightly immersed in the torus: ovnles 3 in each locule, pendulous from the apex: fr, an indehiscent berry included by the enlarged and flesby calyx, which is adberent to the base.

Mocanèra, Linn. f. Tender evergreen shrub, 6-9 ft. high, of compact babit and with dark green, shining leathery foliage: lvs, short-petioled, ovate-lanceolate, serrate: fls. solitary, white, pendulous. Canaries.

W. M.

VITEX (ancient Latin name for this or a similar slurub). Verbendece. Ornamental deciduous or evergreen trees or shrubs with opposite, digitate or rarely simple leaves and usually with small white, blue, violet or yellowish flowers in axillary eymes often disposed in large, terminal panicles. Most of the species are inhabitants of tropical and subtropical regions and only a few can be cultivated outdoors in temperate regions. The hardiest seems to be $I^{\prime}$. incisf, which stands most ordinary winters as far north as Massachusetts. I. Agnus-castus is hardy as far north as New York, in sheltered positions. These species are particularly valuable for their late-appearing flowers. They grow in almost any kind of soil and prefer rather dry, sunny situations. None of the tender kinds seem to be in cultivation in this country. They thrive in a sandy compost of peat and loam. Propagated by seeds sown in spring and by greenwood cuttings under glass; also by layers.
About 60 species are known, distributed through the subtropical and tropical regions of both hemispheres, few in the temperate regions. Lrs. opposite, digitate, with 3-7, rarely with one leaflet: fls. in often panicled, few- to many-fld. cymes: calyx campanulate, usually 5 -toothed; corolla tubular-funnelform, with 5 -lobed, oblique and slightly 2 -lipped timb; stamens 4, 2 longer and 2 shorter ones: fr. a small drupe, with a 4 -celled stone. Some species, particularly $\Gamma^{r}$. altissimet and $\mathrm{I}^{-}$ Leucoxylon in S . Asia are important timber trees.

Agnus-cástus, Línn. Chaste-tree. Hemp-tree. Monk's Pepper-tree. Shruh or small tree, with a strong aromatic odor, grayish tomentose: lvs. long-stalked; lfts. 5-7, lanceolate, acuminate, narrowed at the base into a short stalk, entire or with few coarse teeth, grayish tomentose beneath, the middle one $3-4 \mathrm{in}$. long, the fly in dense, sessile clusters, forming terminal, ofter panicled racemes $5-7 \mathrm{in}$. long: corolla usually pale or lilac, grayish outside, $1 / 3 \mathrm{in}$. long; stamens and style exserted. July-Sept. S. Eur., W. Asia. Mn. 2, p. 44. - Var. álba, Hort. (1. albiflòra, Hort.). Fls. white. Var. cærulea, Hort. Fls. blue.
inclsa, Lam. (V. laciniàta, Hort.). Fig. 2694. Sinilar to the preceding: Ifts, incisely serrate or almost
pinnatifid, grayish tomentulose beneath, the middle one 2-3 in. Jong, the smallest ones often entire: fls. smaller, scarcely $1 / 4$ in, long, in more slender and looser terminal panicles; stameus shorter than limb; throat rillous. July, Aug. N. China, Mongolia. B.MI, 364 (as I. Ne-

2674. Vitex incisa ( $\times 1 / 8$ ).
gundo). Less showy in hloom than the preceding species, but a graceful shrub of loose and open habit, with handsome foliage.
V. ilicifolia, A. Rich. Lvs. simple, short-stalked, oval, spinytoothed: fls. in long-stalked, axillary, many-11d. cymes. Cuba. $-V$. Lindeni, Hook, f. Lfts. 3-5, elliptic or elliptic-obovate, glabrous: tls. pale violet, in few-fld, axillary, long-stalked heads. Colombia. B.M1.6230.-V. Negúndo, Linn. Closely allied to V. incisa, but ifts. entire or crenately serrate, larger: fls, purple, somewhat larger. Tropieal and subtropical Asia.tls, purple, somewhat larger. Tropieal and subtropical Asia.-
$V$ V. trifolia, Linn. Lfts. usually 3 , obovate or obovate-oblong.
obtuse, entire: fis. blue, in terminal panicles. S. Asis, Polynesia. Var, unifoliolata, Schauer. Witb a solitary shortstalked leatlet.

Alfred Rehder,

## VITICULTURE. See Grape and litis.

VITIS (classical Latin name). Vine, Grape. I'itdcee or ampelídea. A widespread genus of mostly tendrilbearing climbing vines, most abundant in temperate countries. In its stricter limitations, the genus includes less than 50 known species, but some authors unite Cissus and Ampelopsis with it, when it includes some 250 species. The latest monographer (Planchon, DC. Monogr. Phaner. 5), refers thirty or more species to Vitis in the main account and in the addendum, and more than 200 to Cissus. North America is particularly rich in Vitis, not only in mmber of species but in the widespread distribution and the abundance of the plants. From our native species have been developed the outdoor Grapes of this country excejt those of California and the extreme sonthrest (which are litis vinifera). For an account of the evolution of these
native eultural varieties, see Grape; also Bailey's "Sketch of the Evolution of Our Native Fruits."

Many of the species of Vitis are excellent ornamental plants, when it is desired to cover arbors, porches or trees. All of them are readily grown from seeds, and most of them from hardwood cuttings. Only a few of the native species are regularly in the trade; but with the possible exception of $V$. Treleasei they have been offered for sale to experiment stations and amateurs by T. V. Munson, of Texas, who is a well-known authority on both the hotany and horticulture of the Grape. The popular interest in these species is primarily pomological; for, although the fruit may not be directly useful, the species give promise of development through bybridization and plent-breeding, and some of tbem afford useful stocks on which to graft kinds that do not resist the phylloxera or root-louse. The following discussion includes all the species native to North America. north of Mexico; it is adapted from the writer's account in Gray's Synoptical Flora, rol. 1, 420-430. These American Grapes are very difficult to distinguish in many cases; hence the subjoined descriptions are very full in order to bring out the contrasting characters. Some of the best recent systematic writing on American Vitis is from French sources, since the American species have come into prominence in France as phyl-loxera-resisting stocks for the Wine Grape. See, for example, the works of Millardet, and Viala and Raraz; also "Ampélograpbie Universelle," by Viala and Vermorel, now publishing.

As understood by Gray, Vitis is distinguisbed as follows: Plants climbing by the prehension and coiling of naked-tipped tendrils. Flowers polygamo-dicecious (i.e., some indiriduals perfect and fertile, others sterile with at most only a rudimentary ovary), 5 -merons; corolla calyptrately caducous, - the petals in anthesis cast off from the base while cohering by their tips (Fig. 2695) : hypogynous disk of 5 nectariferous glands alternate with stamens : style short and thick, or conical: berry pulpy; seeds pyriform, with contracted beak-like base.

INDEX.
astivalis, 22. Americana, 22. angulata, 5. antarctica, 1. araneosus, 22. argentifutia, 23. A rizonensis, 18 Arizonica, 18 Baileyana, 15. Bandiniana, 1. Berlandieri, 16. hicolor, 23.
Blancoi, 24.
Blandi, 27. Bourquiniana, 22. bracteata, 22. Californice. 19. candicans, 25. eanescens, 17. Caribæa, 44. Champini, 12. Champini, 12. cinerea, 17.
Coignetiæ, 2. Coignetiz, 2 . coriaces, 25.
dissecta, 7. diversifolia, 22. Doanianit, 21. foetida, 14. Foexeana, 8. Floridaza, 5, 17. Girdiank, 20 glabra, 18. glauca. 22. gongylodes, 4. Helleri, 14. hypoglauea, 3. Illinoensis, 9. Labrusea, 27. Linsecomii, 22. Longii, 11. microspermp, 12. Missouriensis, 9. monosperma, 13. monticola, 8 . Munsoniana, 6. muscadina, 5 . Mustangerisis, 25. Nortoni, 22.

Nuevo-Mericana. 11. occidentalis, 22. odoratissima, 9. palmata, 13 . peltata, 5 . pracox, 9 pterophora, 4. pullarza, 14. roturdifolia. 5 . riparia. 9. rubra, 13. rupestris, 7. sempervirens, 14. Simpsoni, 26 Solonis, 11. syliestris, 22. taurina, 5. tenuifolia, 9. Texana, 8. Treleasei, 10 verrucosa, 5 . vinifera, 28 . Virginiana, 15. vulpina, 5, 9 .

2695. Grape flowers, enlarged,

1, shows the bud: 2, shows the petals or "cap" falling; 3, shows the flower in full blowm, the petals having been cast off. In all the flowers the minute calyx is seen, and in 2 and 3 the disk is shown inside the base of the stamens.

The structure of the key to the following species, when standing alone, is as follows:

```
A Species grov'n wholly for ornament:
        Old Wurld.
    B. Lis. simple, cissus-like..............(No. 1)
    BB. Lis. simple, vitis-like..............
BBB. Lvs, with S-5 lfts....................
Nos. 1-4)
(No. 2)
AA. Species grown primarily for their
        pomological interest: all New
        Horld except No. 28
    B. Skin separating from the puip....
    C. Bark not shredding...............
    Cc burk shredding...
```

$\qquad$

```1. Green-leaved Grapes ...........
            E. I'ulpina-like.
            F. Ir's. broader than long.....
            FF, Lus, ovate...................
                    @. Diaphragms thin........
                Gg. Diaphragms very thick..
        eE. Cordifolia-like.
            F. Plant strong and climbing.
                G. Voung shoots terete .
                GG. Foung shoots angled....
            FF. Plunt scarcely climbing....
        exe. Orbicular-scullop-leaved spe=
                cies.
        DD. Colored-leaved Grapes.........
        .........
        E. Muture le's. only flocrulent or
                cobzebby or glaucous be-
                meath...
                F. Euds of growing shoots
                uhite-tipped .............
                            (Nos. 20-24)
            FF. Eulsitiphor-fipned. (Nos. 20, 21)
        EE. Mature lis. densely tomentose
                beneath
                            (Nos, 22-24)
                    (Nos. 25-27)
                F. Tendrils intermittent......
                            (Nos. 25, 26)
            FF. Tendrils continuous (at
                every joint) ..............
                    (No. 27)
BB, Skin and pulp firmiy cohering..
(No. 28)
```

A. Species grow'n wholly for ornament, recently introduced from various parts of the Old W'orld.
B. Lvs. simple, cissus-like.

1. antérctica, Benth. (C issus antárctica, Vent. Titis Baudinidna, F. Muell. Cissus Baudiniana, Brouss.). Vigorous tall woody climber, the young growths red-hairy or sometimes glabrons: lrs, ovate to oblong, on bairy petioles, toothed, glandalar in the axils of veins heneath: fls. greenish, tomentose, in short cymes, the petals 4 and falling separately: berry globular. Australia. B.M. 2488.-Offered in southern California and said to be suitable for covering rocks and walls.

## BB. Le's, simple, often lobed, vitis-like.

2. Coignétiæ, Pulliat. Very strong-growing vine, covering trees and arbors with a thatch of heavy showy foliage: branches floccose-tomentose when young: tendrils intermittent: lvs. cordate-orbicular, with 3-5 lobe-like points, the margins shallowly apiculatetoothed, dull above, thickly gray-pubescent beneath: thyrse stalked, short: fr. globular, about $1 / 3$ in. in diam., practically inedible, although said to be eaten after being frozen by the Japanese. N. Japan. Gn. 49, p. 48; 50 , p. 449. R.H. 1898, p. 426-28. -One of the best of all strong-growing vines, and hardy in the northern states. Its foliage becomes brilliant scarlet in the fall, whence it has been called the "Crimson (ilory Vine." In general appearance it much resembles l'itis Labrusca. It is not yet well known. It grows readily from imported seeds. It ean also be propagated by layering and hy grafting on other stocks. Named for Mme. Coignet. of Lyons, France.

## BEN. Les, with S-亏̄ leaflets.

3. hypoglaùca, F. Nuell. (Cissus hypogla ùcu, Gray). Foliage lanadsome and persistent, dark green above and glaumons heneath; leaflets usually 5 , obovate to elliptic, acuminate, stalked, entire or trothed towards the apex: fls. yellowish: fr. rather small and nearly globular. Australia.-Offered in S. Calif.
4. pteróphora, Baker (V. gongylodes, Lynch, not Baker). A most remarkable species, the branches bearing cylindrical or club-shaped tubers at their ends, which fall and produce new plants: tall, climbing by means of long forking disciferous tendrils, the stem winged and liairy: lvs. large, of 3 lfts., which may be again lobed, the stipules large and purple on one side, the petiole winged: cyme pedunculate: floral envelopes of a thickened calyx and 4 minute petals. Brazil. G.C. 11. 19:53. B.M. 6803. Gn. 55. 1. 1\%0.-Offered in S. Calif.

5. Vitis rotundifolia, the Muscadine erape of the South $(\times 1 / 3)$.

AA. Species grou'n primarily for their pomological (fruit) interest, all nutive except No. 28.
B. Skin of the mature berry usually separating freely from the pulp (Nos. 5-27).
c. Bark bearing prominent lenticels, never shredding: node's without diapleragms: tendrils simple: flower-clusters small and not much elongated: seeds or'al or oblong, without a distinct stipe-like beak. (Muscadinia.)
5. rotundifolia, Michx. (V. taurlna, Bartram. V. vulpina, Authors, not Linn. I' muscadina, angulàta, verrucòsa,peltàta, Floridàna,Raf.). Mescadine, Southern Fox Grape, Bullace or Bullit or Bull Grape. Fig. 2696. Vine with hard, warty wood, rumning rampantly even 60 to 100 ft . over bushes and trees, and in the shade often sending down dichotomous aërial roots: Irs. rather small to medium ( 2 to 6 in . long), dease in texture and glabrous both sides (sometimes pubescent along the veins beneath), cordate-ovate and not lobed, mostly with a prominent and sometimes an acuminate point (but somewhat contracted above the termination of the two main side veins), the under surface finely reticulated between the veins, the teeth and the apex angular, coarse and reute, the basal sinus shallow, broad and edentate; petiole slender and (like the young growth) fine-scurfy, about the length of the leaf-blade: tendrils (or flower-clusters) discontinuous, every third node being bare: fruit-hearing clusters smaller than the sterile ones, and ripening from 3 to 20 grapes in a nearly globular bunch: berries falling from the clusters when ripe, spherical or nearly so and large $(1 / 2-1 \mathrm{in}$. in diameter), with very thick and tough skin and a tough musky flesh, dull purple in color without bloom (in the Scuppernong variety silvery amber-green), ripe in summer and early antumn : seeds $1 / 4-3 / 8 \mathrm{in}$. long, shaped something like a coffee berry. River banks, swamps, and rich woodlands and thickets, S. Delaware to N. Fla. and "est to Kans. and Texas.
6. Munsoniàna, Simpson. Mustang Grape of Florida. Bird or Everbearing Grape. Very slender grower, preferring to run on the ground or over low bushes, more nearly evergreen thau the last, flowering more or less continuously: lys. smaller, thinner, and more shining, more uearly circular in outline and less prominently pointed, tbe teeth broader in proportion to the blade and more open or spreading: clusters larger and more tbyrse-like: berries a half smaller than iu the last and often uore numerous, shining black, with a more tender pulp, acid juice, no nuskiness, and thinner skin: seeds half smaller than in the last. Dry woods and sands, Florida, at Jacksonville, Lake City, and southwards, apparently the only Grape on the reef keys; also in the Bahamas.-Difficnit to distinguish from $\mathrm{I}^{\circ}$. votundifolia in herbarium specimens, but distiuct in the field.
in. in diam.), purple-black and somewhat glaucous, pleasant-tasted, ripe in late summer: seeds small and broad. Sandy banks, low hills and monntains, District of Columbia and S. Pa. to Tenn., Indiana, Mo., and S. W. Texas.

Var. dissecta, Eggert, is a form with more ovate lvs. and very long teeth, and a strong tendency towards irregular lobiug. Mo.

FF. Lis, ovate in outline, with a mostly well-marked sillus.
G. Diaphragms (in the nodes) thin: young shoots not red: li's. not deeply lobed.
8. montícola, Bnckley ( V . Tex $̀$ na, Munson. I Foexednu, Planch). Sweet Mountain Grape. Fig.

2697. Vitis monticola (on the left) and V. vulpina ( $\times 1 / \mathrm{a}$ ).
CC. Bark without distinct lenticels, on the old wood separating in long thin strips and fibers: nodes provided with diaphragms: tendrils forked: flower-clusters mostly large and elonguted: seeds pyriform. (Euvitis.)
D. Green-leared Grapes, mostly marked at maturity by absence of prominent white, rusty, or blue tomentum or scurf or conspicuous bloom on the les. beneath (under surface sometimes thinly pubescent, or minute patches of floccose wool in the axils of the veins, or perhaps even cobwebby): foliage mostly thin: tendrils intermittent, i. e., every third joint bearing no tendrils (or inflorescence): $I$. cinerea and 1 . Arizonica are partial exceptions and might be looked for in DD (Nos. 7-19).
E. I'ulpina-like Grapes, characterized by thin light or bright green mostly glossy lws. (which are generally glubrous below at maturity except perhaps in the axils of the reins aud in I. Champini), with a long or at least a prominent point and usually long and large sharp teeth or the edges even iugged (Nos. 7-18).
F. Lis. broader than long, with truncate-oblique base. ( J . Treleasei might be sought here.)
7. rupéstris, Scheele. Sand, SUGAR, Rock, Bush, or Mountain Grape. Shrub, 2 to 6 ft . high, or sometimes slightly climbing, the tendrils few or even none, diaphragms plane and rather thin: IFs. reuiform to reniformorate (about 3 to 4 in. wide and two-thirds as long), rather thick, smooth and glabrous on both surfaces at maturity, marked by a cbaracteristic light glancescent tint, the sides turned up so as to expose much of the under surface, the base only rarely cut into a wellmarked sinns, the margins very coarsely angle-toothed, the boldly rounded top bearing a short, abrupt point and sometimes 2 lateral teeth enlarged and suggesting lobes: stamens in fertile fls. recurved laterally or rarely ascending, those in the sterile fls, ascending: cluster small, slender, open and branched: berries small ( $1 / 4-1 / 2$
2697. A slender trailing or climbing plant (reaching 20 to 30 ft . in height, with very long and slender branches, the young growth angled and floccose (sometimes glabrous), the diaphragms plane and rather thin: Ivs. small and thin (rarely reaching 4 in. in width and generally from 2 to 3 in . high), cordate-ovate to triangular. ovate, with the basal sinus ranging from nearly trun-cate-oblique to normally inverted U-shaped, rather dark green but glossy above and grayish green below, when young more or less pubescent or even arachnoid below, the blade either prominently notched on either upper margin or almost lobed, the point acute and often prolonged, margins irregularly notched with smaller teeth than in $V$. rupestris : clusters short and broad, much branched: berries medium or small (averaging about $1 / 2 \mathrm{in}$. in diam.), black or light-colored, seedy, sweet: seeds large (about $1 / 4 \mathrm{in}$. long) and broad. Limestone hills in S. W. Texas.-This species has been the subject of much misunderstanding.
9. vulplna, Linn. (V. ripària, Michx. V. odoratissima, Donn. I. Illinoénsis and $\bar{V}$. Missouriénsis, Prince? $V_{\text {. tenuifolia, Le Conte? } V \text {. cordifòlia, var. }}^{\text {Le }}$ ripdria, Gray). Riverbank or Frost Grafe. Figs. 2697, 2698. A vigorous tall-climbing plant, with a bright green cast to the foliage, normally glabrous young sboots, large stipules, and plane very thin diaphragms: lvs. thin, medium to large, cordate-ovate, with a broad but asually an evident sinus, mostly showing a tendency (which is sometimes prononnced) to 3 lobes, generally glabrous and bright green below, but the veins and their angles often pubescent, the nargins variously deeply and irregularly toothed and sometimes cut, the teetb and the long point prominently acute: fertile fls. bearing reclining or curved stamens, and the sterile ones long and erect or ascending stamens: clusters mediun to large, on short peduncles, branched (often very compound), the fls. sweet-scented: berries small (less than $1 / 2 \mathrm{in}$. in diam.), purple-black with a heary hlue bloom, sour and usually austere, generally ripening late (even after frost): seeds rather small and distinctly pyriform. New Brunswick, according to

Macoum. to N. Dak., Kans. and Colo. and south to W. Va., Mo. and N.W.Texas. B.M 2429. - The commonest Grape in the northern states west of New Englant, abundtant along streams. Variable in the flavor and maturity of the fruit. Furms with petioles and under surfaces of Ivs. pubescent sometimes occur. Occasionally hybridizes with I, Labrusca eastward, the bybrid being known by the tomentose young shoots and unfolding leaves, and the darker foliage, which is marked with rusty tomeutum along the veins of the less jagged leaves. Nissouri, the little sweet fruits ripening in July. much branched, climbing little, the small and mostly short (generally shorter than the Ivs.) tendrils deciduons the first year unless finding support, internodes short, the diaphragms twice thicker (about one-sixteenth in.) than in F.velpina and shal-low-biconcave: stipules less than one-fourth as large as in 1., zulpiut: lvs. large and green, very broad-orate or eren reniform orate (often wider than long), thin glahrous and shining on both surfaces, the basal sinus rery broad and open and making no distinct angle with the petiole, the margin unequally notelstoothed (not jagged as in 1. vulpinct and indistinctiy 3 lobed, the apex much shorter than in V. vulpina: fertile fls. with very short, recurved stamens, sterile with ascending stamens: cluster stuall (2 to 3 in . long) : herries $1 / 8$ in. or less thick, black with a thin bloom, ripening three weeks later than I. vulpina when grown in the same place, thin skinned: pulp juicy and sweet: seeds smail. Brewster county, s. W. Texas and New Mexico to Brad. slaw Mountains, Arizona. - Littie known, and possibly a dry-country form of 1 . vilpina. In habit it sug. gests 1 . A rizonica, var. glabre, from which it is distinguished, among other things, by its earier flowering and larger leaves with coarser teeth and less pointed apex.
11. Longii, Prince (I. Solònis, Planch. I. NuèroМехісдии, Lemm.). Differs from vigorous forms of $\mathrm{V}^{5}$. vulpince in having fioccose or pubescent young growth: lvs. decidedly more circular in outline, with more angular teeth aud duller in color, often distinctly pubescent beneath: stamens in fertile fls. short and weak and
laterally reflexed, those in sterile fis. long and strong: seeds larger. N.W.Texas and New Mexico. - Regarded by French authors as a hybrid, the species $V$. rupestris,
vulpina, candicans and cordifolia having been suggested as its probable parents. it is variable in character. In most of its forms it would be taken for a compound of V . rupestris and V . culpina, but the latter species is not known to occur in most of its range. It

2698. Vitis vulpina (or V. riparia). Natural size.

Probably the most widespread of American native grapes.
species (possibly with F. Arizonica or IF. Doaniana), but it is now so widely distributed and grows so far removed from its supposed parents and occurs in such great quantity in certain areas, that for taxonomic purposes it must be kept distinct. It is not nnlikely that it has originated at different places as the product of unlike bybridizations. Late French writers designate the jagged leaved forms as 1. Solonis, and the dentate forms as I . VuevoMexicana. This interesting Grape was found some thirty years ago by Engelmann in the Botanic Garden of Berlin under the name of Vitis Solonis, without history. Engelmann guesses (Bushberg Cat. ed. 3,18 ) the name to be a corruption of "Long's." It is probable that the plant was sent to European gardens as J'itis Longii-very likely from Prince's nursery - and the name was misread on the label. The original name, which was duly published by Prince with description, may now be restored.
Var. microspérma, Bailey (1. Solonis, rar. microspérma, Munson), is a very vigorous and sinall-seeded form, which is very resistant to drought. Red River, N. Texas.
12. Chémpini, Planch. Prohably a hybrid of 1 . rupestris or $5^{*}$. Berlandieri and $5^{5}$. candicuns, bearing medium to large reniform or reniformcordate lis. which are varlonsly pubescent or cobwebly but become glabrous, the growing tips mostly white-tomentose: herries very large and excellent. S. W. Texas. A. $\mathrm{G} .1891: 579$. - In some places associated with $\mathbf{J}^{r}$. candicans, Berlaudieri and monticola only, and in others with the above and $V$. rupestris. Often composing dense thickets in the wild.
GG. Diaphragms very thick and strong: young shoots bright red: lus. often strongly lobed.
13. rùbra, Michx. (17. monospérma, Michx.). Red or Cat Grape. A slender but strong-growing vine, with small, long-jointed angled red glabrous herb-like shoots and red petioles: lvs. small to medium, ovate-acuminate, dark green and glossy, sometimes indistinctly pubescent on the nerves below, the sinus obtuse, the blade either nearly continuous in ontline or (commonly) prominently lobed or even parted, coarsely notched: stamens in the sterile fls, long and erect: clusters loose and long-peduncled, branched, the fls. opening very late: berries small and late


Fla. and Texas.
Var. lòtida, Engelm., has fetidly aromatic berries, and grows in the Mississippi valley.

Var. өempérvirens, Hunson. A glossy-leaved form holding its foliage very late in the season: lvs. sometimes suggesting forms of $1^{\text {. rubra. S. Fla. }}$

Var. Hèlleri, Bailey. Lrs. more circular (i. e., lacking the long point), and the teeth round-obtuse and ending in a short mucro. Kerr county, S. Texas, 1,600 to 2.000 feet.
Ga. Foung shoots angled, and covered the first year with tomentum or wool.
15. Baileyàna, Manson ( $V$. Firginianc, Munson, not Lam.). 'Possun tirape. Less vigorons climber than 1. cordifolia, rather slender, with short internodes and very many short side shoots: lvs. frequently smaller, the larger ones shortly but distinctly 3 -loled (lobes mostly pointed and much spreading), bright green but not shining above, gray below and pubescent at
the margin small-notehed (teeth mach smaller than in 1. Belandieri) or sometimes almost entire, mostly distinctly and divaricately 3 -angled or shortly 3 -lobed towards the apex, the triangular apex large and prominent, the upper surface cobwebby when joung but becoming dull dark green (not glossy), the under surface remaining ash-gray or dun-gray, webby-pubescent: stamens in sterile fls. long, slemter and ascending, in the fertile ones short aud laterally recurved: claster mostly loose and often straggling, containing many small black berrien, these only slightly, if at all glancous, ripening very late, and after frost becoming sweet and pleasant: seeds small to medium. Along streams, mostly in limy soils, central Ill. to Kans, and Texas; also N. Fla.; also in Mex.-Readily distingnished from $V$, rstivalis by the triangu-lar-topped sharply 3 -lobed ashgray lvs, and the gray tomentum of the young growth.
Var, Floridàna, Munson. Growing tips rusty-tomentose, as are sonetimes the veins on the under sides of the leaves: cluster longerpeduncled and more componnd. Manatee co., Fla.; and apparently also in Ark.; possibly a compound with $\boldsymbol{r}$. asticalis, but the lvs. have the characteristic shape of J . rinerea. Not to he confounded with any form of 1. Curibuct, becanse of the lobed triangular-topped Ivs. and much larger teeth.
Var, canéscens, Bailey. A form with ronded or heartlike Ivs., the upper half of the leaf lacking the triangular and 3-lobed shape of the type. St. Louis, Mo., and S. Ill. to Texas.

FF. Plant scarcely climbing, the tendrils perishing when failing to find support.
18. Arizònica, Engelm. (V. Arizonénsis, Parry). Canon Grape. Plant weak, much branched, with short internodes and thick diaphragms, branchlets angled: lvs. mostly small, cordate-ovate and with a prominent triangular-pointed apex, the sinus broad or the base of the blade even truncate, the teeth many and small and pointed or mucronate, the margin either continuous or very indistinctly 3 -lobed (or sometimes prominently lobed on young growths), the leaves and shoots whitewoolly when young, but becoming nearly glabrous with age: stamens ascending in sterile fls. and recurved in the fertile ones: bunches small and compound, not greatly, if at all, exceeding the lvs., bearing 20 to 40 small black berries of pleasant taste: seeds 2 to 3 , medium size. Along river banks, W. Texas to New Mex. and Ariz., mostly south of the 35th parallel, to S. E. Calif. and northern Mex.

Var. glabra, Munson. Plant glabrous, with glossy and mostly thinner and larger lvs. In mountain gulches, with the species and ranging northwards into $S$. Utah. Distinguished from $V$. monticola by its triangularpointed and small-toothed lvs. Probably a form of $V$. Treleasi.
eee. Orbicular-scallop-lvd. species of the Pacific coast.
19. Californica, Benth. Fig. 2700. A vigorous species, tall-climbing upon trees but making bushy clumps when not finding support, the nodes large and diaphragms rather thin: lvs. mostly round-reniform (the broader ones the shape of a horse's boof-print), rather thin, either glabrous and glossy or (more commonly) cottony-canescent until half grown and usually remaining plainly pubescent below, the sinus ranging from very narrow and deep to broad and open, the margins varying (on the same vine) from finely blunt-toothed to coarsely scallop-toothed (the latter a characteristic feature), the upper portion of the blade either perfectly continnous and rounded or sometimes indistinctly 3 -lobed and terminating in a very short apex: bunches medium, mostly long-peduncled and forked, the pumerous small berries glaucous-white, seedy and dry but of fair flaror: seed large ( $1 / 4$ to $5-16 \mathrm{in}$. long), prominently pyriform. Along streams in central and N. Calif. and S.Ore.-Lvs. becoming handsomely colored and mottled in fall.




 lie louked for on Lo (p. 19 ith).
 when fully trown (4. A. Nut rinetret with of theris.



 af the lex. nhutah we gratl.



 outliue (sonutimus markeally 3 lelsed om young shouts),

 funtiy pryturm. (hictly in N. W. Trsas, hat ranging



















 thimnish it tirst hat heomming rathor thiok,

 litpines) or lirum and "p, the the limh always

 ally malarisel athl romadeal at the rextromity,
 trianenlar, the nequ-t surtaw dall and hecom-





 Ereatly hrathelad or evall nearly simple (mostly










Vir. glanca, bailoy (1. Liumammii. var. !latum.

 larero. S. W, Mixcomri to N. Thexals. Marh lihat I. bi-




 ing bish apon trees hast tormine a lushy compl when

 glamons, mostly pralatable: ateds mostly murh larger

 and E. La. - Viry likely droved fron tha watioutis typ.


 whom the natue brisinatule. The same of the per-on
 Mumsen has therefore whaged fle spellime of the name of the dirate. Howevor, Burklay s spelling shembly pro -ist, ac a matter of momenclateriat priority.
Var. Bourquiniana, Baile'y ( t . Fionmilimitum, Nun-


 (like the yommer shoutc) are only slemtly reyl-home

 large amd juiry, bhack or amber-oblomel. -1 mixal itpu. sombe of it probalile a direet amblimation of J . astir-
 feref). Much cultivated smuth.
23. bicolor, Le Conte (V.argentifolia, Munson). Blce Qrape, or Summer Grape of the Nurth. Fig. 2701. A strong, high-climbing vine, with mostly long internodes and thick diaphragms, the young growth and canes generally perfectly glabrous and mostly (but not always) glancous-blue, tendrils and petioles very long: Ivs. large, roumd cordateorateinontline, glabrons and dull abore and rery heavily glaneous-blue below, but losing the bloom and becoming dull green very late in the season, those on the young growth deeply $3-$ 5 lobed and on the odder growths shallowly 3 lobed, the hasal sinus running from deep to shallow, the margins mostly shallow - toothed or sinuate toothed (at least not so prominently wotch-toothed as in $\mathbf{l}^{\mathbf{r}}$. (Pstivalis): eluster mostly long and nearly simple (sometimes forked), \&enerally with a lons or prominent peduncle: the purple and densely glancous berries of medium size ( $1 / 2 \mathrm{in}$. or less in diam.), sour bat pleasant-tasted when ripe (just before frost): seeds rather small. Abundant northwards along streams and on banks, there taking the place of V . ustiralis. Ranges from New Eng, and Jll. to the mountains of W. North Carolina and to W. Tenn. - Well distinguished from $V$. cestivalis (at least in its northern forms) by the absence of rufous tomentum, the blne-glancons smalltoothed leaves, and long petioles and tendrils. It has been misunderstood beeanse it loses its glaucous character in the fall.
24. Caribæ̀a, DC. Fig. 2702. Cimbing, with flocculentwoolly (or rarely almost glabrous) and striate shoots: tendrils rarely continuous: lvs. cordate-orate or even broader and mostly acuminate-pointed, sometimes obscurely angled above (but never lobed except now and then on young shoots), becoming glabrous above but generally remaining rufous-tomentose below, the margins set with very small, mucro-tipped sinuate reeth: cluster long and long-peduncled, generally large and very componnd: herry small and glohose, purple: seed obovate, grooved on the dorsal side. Awidely distributed and variable species in the American tropics, running into white-leaved forms (as in V. Blancoi, Munson). Little known in the United States: La., Lake City, N. Fla., swamp near Jacksonville, Fla.

2702. Vitis Caribæa ( $\times 1 / 4$ ).

EE. Liss. densely tomentose or felt. like beneath throughout the season, the corering white or rusty white.
F. Tendrils intermittent (ervery third joint with neither tendril nor inflorescence opposite the leaf).
25. cándicans, Engelm. (1. Mustenginsis, Buckl.). Mustang Grape Plant xtrong absl high climbing, with densely woolly youns growth (whieb is generally rusty-tipped), and very thick diapliragms: 1va. medinm in size and more or less poplar-like, ranging from reniformovate to cordate-ovate or triangular-ovate, dull above but very densely white-tomentose below and on the petioles, the basal sinus very hroad and open or usually none whatever (the base of the leaf then nearly tron-
cate), deeply 5-7-lobed (with enlarging rounded sinnses) on the strong shoots and more or less indistinctly lohed or only angled on the nornal growths, the margins wary or sinuate-toothed: stameus in the sterile fls. long aud strong, tbose in the fertile fls. very short and

2703. Vitis candicans, var. coriacea $(\times 1 / 8)$.
laterally reflexed: cluster small, mostly branched, bearing a dozen to twenty large ( $3 / 4$ in. or less in diam.) purple or light-colored or even whitish herries, which have a thick skin and a very disagreeable fiery flavor: seeds large, pyriform. E. Texas, mostly on limestone soils.

Var. coriàcea, Bailey (F. coridcea, Shuttl.). Leatherleaf or Calloosa Grafe Fig. 2703. Differs from the species chiefly in bearing much smaller (about $\frac{1}{3} \mathrm{hn}$. in diam.) thinner-skiuned and more edible Grapes with mostly smaller seeds, aud perhaps a less tendency to very deep lobing in the lvs, on young shoots and possibly rather more marked rustiness on the young growths. Florisla, chiefly southward, in which range various Texan plants reappear. - The more agreeable quality of the fr. is probably the result of a more equable and moister climate.
26. Simpsoni, Munson. Distinguished by mostly much-cut lvs, on the young shoots and comparatively thin, large aud large-toothed ones on the main shoots, rusty white tomentum below and very prominently brown-tomentose young growths, - the character of the lvs, and tomentum varying widely, the foliage sometimes becoming almost blue-green below. Fla, -This is likely a bybrid of $I^{\prime}$, ustimalis and $V_{\text {. condicans, var. }}$ coriarea. Some forms of it are very like 1. Labrusca, and might be mistaken for that species.

FF. Tendrils mostly continuous (a tendril or inflorescence at every node).
27. Labrúsca, Linn. (1. Blándi, Prince). Fox Grape. Skunk Grape. Figs, 949, 950, Vol. II. A strong vine, elimbing high on thickets and trees: young shoots tawny or fuscous, with much scurfy down: Ivs. large and thiek, strongly veined \{especially beneath), broadly cordate-ovate, mostly obseurely 3 -lobed towards the top (on strong growths the sinuses sometimes extending a third or pven half the depth of the blade, and ronnded and edentate at the bottom) or sometimes nearly contimuous in ontline and almost deltoid-ovate, the pritiolar sims mostly shallow and very open (ranging to narrow and half or more the length of the petiolel. the margins shallowly seallop-toathed with muero-pointed teeth for sometimes almost entirel, and the apex and lobes acute. the upper surface dull green and becoming glabroms but the lower surface densely covered with a tawnywhite, dun-colored or red-brown tomentum: stamens long and erect in the sterile fls, and (in wild forms) short and recurred in the fertile ones: raceme short (berries asually less than 20 in wild types), generally
simple or very nearly so, in anthesis about the length of the peduncle: berries large and nearly spherical, ranging from purple-black (the common color) to redbrown and amher-green, generally falling from the pedicel wben ripe, variable in taste but mostly sweetish musky and some-

bB. Skin and pulp firmly cohering in the ripe fruit.
28. vinifera, Linn. Wine Grape. Elbopean Grape. Fig. 2704. Young growth smooth or floccose, the plant not so high climbing as most American species: tendrils intermittent: lvs. mostly thinnish, rounded, with a deep sinus and the basal lohes usually overlapping, tomentose or glabrous beneath, the margins coarsely notched or jagged: clusters large and long, the berries usually oval or oblong, although many varieties are glob-ular-fruited. Probably native to the Caspian or Caucasus region and western India. Var. laciniosa, Hort., has much-cut foliage; handsome. Gn. 54, p. 425.-Cult. from the earliest times, and the Grape of history, Now greatly raried. The hothouse Grapes, as Black Hamburg, Barbarossa, are of this species; also the vineyard Grapes of California. Not hardy in the northern states and very subject to phylloxera (root-louse) and mildew. Regel, a Russian botanist, considered the Wine Grape to be a hybrid of two species that be characterized as 1 . Labrusca and $V$. vulpina, but this view is not accepted.

「. A murensis, Rupr., is much like $V$. vinifera, sometimes grown ahroad for the purple tint of its young growth, (in. 54, p. 425.- V. Bàinesii, Hook. (Cissus Bainesii, Planch., and by
him referred to C. Currori). A most remarkable species, the trunk being cordensed into a turuip-like body a fers inches in diam.: Ivs, mostly compound, the 3 lfts. dentate, lvs. all horne on short, succulent branches: teadrils none: ths. greenish, in clusters usnally raised above the leaves, \& Afr. B. M. 54ieF. heterophilla, Thunb, Ampelopsis heterophylla. - F. meonstans, Miq. Ampelopsis tricuspidata.- T. Japonica. Thunb. See Cissus Japonica, - T. lanata, Foxbg, Vigorons species with large, cordate-ovate lvs., with small apiculate teeth and very white-tomentose heneath. China. Assumes haudsome color in Yall.-Y. Lindeni, Hort. See Cissus Lindeni. - V. Pag. nuccii, Romanet (Ampelopsis Davidiana, Mott. Ampelovitis Davidiana, Carr. Vitis Davidiana, Hort in part ?). Climbimg: tendrils intermjttent: lvs. mostly small, very varions, sometimes $3-\overline{0}$-foliolate but usually only 3 -loted or even ovate cordate and the margin nearly or quite continuons, the edges mu cronate-dentate, whitish beneath. China. Has much the aspeet of an Ampelopsis.- V. Romaneti, Romapet (Spinovit is Davidii, Carr.? Ampelovitis intermedia, Carr. Vitis Daridiana, Hort. in part ?). Stems very hairy or almost spiny, the hairs glandular and purplish: tendrils intermittent: lvs. large, cor-date-orlicular, shallowly 3-lohed, strongly erenate-dentate, hecoming pearly or quite glab,rous above, hairy beneath: clusters $3-4$ ing long, the herries black, small, edible. Vigorous vine from Ching, little known in this country and its hardiness in the northern states not yet tested. R.H. 1885, p. 55. 189,:232 (variegated form said to helong to this species). Apparently closely allied to V Coignetia, from which the hairiness distinguishes it.-V. rutilans. ('arr., R H. 1890: 444 , belongs with V. Romaneti-5. serjanmfolia, Maxim., is Ampelopsis serjanafolia. (4n. 54, p 427.-V. striàta, Miq.. see Cissus strata.-V. Thimbergii, Regel, is V. Amurensis. - F. tricuspidata, Lynch $=$ Ampelopsis tricuspidata.
L. H, B.

VITTADINIA (Dr. C. Vittadini, an Austrian who Wrote on fungi 1826-1842). Compésiter. About 14 species of perennial plants, uatives of Australia, New Zealand, S. Amer. and Hawaiian Islands. Herks, with a thick causlex, or brancbing subshrubs: lvs. alternate, entire or variously cut: heads rather small, with a yellow disk and white or blue rays, terminal, solitary or in loose, leafy corymhs: involucre of several rows: rays pistillate, numerous, crowded, in more than one row: akenes narrow, compressed or flat, with or without ribs on the faces: pappus of numerous, often mequal capillary bristles. The genns is closely related to Erigeron, differing in habit and in the appendages of the stylehrancbes, those of Erigeron being short, while those of Vittadinia are awl-shaped.

Fittadinit triloba of the California trade is said by Dr. Franceschi, of Santa Barbara, to be "a charming dwarf plant, well suited for rockeries, borders and hanging baskets; covered with myriads of daisy-like white flowers." However, I. triloba of the trade is not $F$, triloba of the botanists; the latter is a synonym of V. australis, of which a description taken from Flora Australiensis is here given for comparison. The plant known to the California trade as $\bar{V}$, trilaba has been examined by J. Burtt Davy, who sends the following account: "V, triloba, Hort., not DC., the Mextcan Daisy, is really an Erigeron and should be known as Erigeron mucronàtus, DC. Fig. 2705. it is a muchbranched perennial, 6-12 in. bigh: Ivs. alternate, rariable, $1_{4}^{1-1} \mathrm{in}$. Jong, from linear-subulate or lanceolate to obovate or ohlanceolate-cuneate, entire, toothed, or 3-several lobed: peduncles 1-2 in. long, solitary: heads daisylike, about $1 / 2$ in. diam.; rays numerous, narrow, white abore, purple on the back, especially in age; style-tips obtuse. A usefnl border-plant, looking hest in a mass or as an edging; drought-resistant, hardy and hecoming naturalized near San Francisco; readily propagated by cuttings. The freshly broken stems smell strongly of Prussic acid. Fls. July-sept."
austràlis, A. Rich. (I. trilaba, DC., not Hort.). Herbaceous plant of uncertain duration, 1 ft . hiph or less, tomentose: Ivs, ohovate or spatnlate to linearcuneate, entire or coarsely 3 -toothed or lohed: heads solitary: rays narrow: said to be revolute (whicb may apply only to dried specimens). Australia, Tasmania. -Has 4 distinct botanical varieties.
W. M.

VITTARIA (Latin, a fillet or head-band). Polypodideef. A genus of ferms with narrow, grass-like foliage, growing pendent from trees. V. lineata, Swz., is a tropical Ameriean species which is found as far north as central Florida, where it grows on the cabbage pal. metto. Rare in cultivation.
L. M. ÚNDERwood.

VOLKAMERTA. Consult Clerodendron.
VRIESIA (named for Dr. W. de Vriese, of Amsterdam). Bromelidece. Often spelled Vriesea, but not so spelled by Lindley, who founded the genus. According to Mez (DC. Monogr. Phaner. 9), 84 species are to be referred to this genus. They are very like tillandsias, with which they are united by Bentbam \& Hooker and others. The chief technical difference is the presence in Vriesia of 2 ligules or a single cleft or emarginate ligule on the inside of the base of petals. Culturally Vriesias are like tillandsias. They run to forms with marbled and banded leaves. They are tropical Americau stiff-leaved plants, with mostly distichous spikes bearing large and showy bracts. Several species have been introduced in recent years, and many garden hybrids have been produced. Few kinds are offered in the American trade, and only these kinds are descrihed bere. For other kinds, see the monographs of Baker and Mez; also the Kew List of introductions for 1876-1896. For culture, see Tillandsia.

## A. Stamens longer than the petals. B. Inflorescence branched.

Saùndersii, Morr. (Tillándsia Saündersii, C. Kocb. Encholfrion Saùndersii, André). About $11 / 2 \mathrm{ft}$. high when in bloom: lrs. many in a rosette, rather short, strongly recurving, grayish and somewhat white-dotted above, spotted with red-brown beneath: fls. in a branched open inflorescence, sulfur-yellow, cylindrical in form. Brazil. 1.H. 20:132.

## BB. Inflorescence simple.

## c. Bracts of inflorescence strongly imbricate.

spléndens, Lem. (V. speciòsa, Hook. Tillándsia spléndens, Brongn. T. picta, Hort. 'T. zebrina, Hort., in part). Fig. 2706. Strong-growing plant, with broad, strong, arching-ascending lvs. 1 ft . or more long, which are bright green and marked with dark brown transverse bands: spike with densely imbricated bright redacuminate bracts, the scape spotted: fls. exserted, yellowish white. Guiana. B.M. 4382. F.S. 2:107; 6, p. 162. R.H. 1816:41. - One of the best and most showy species. A robust form is var. majior, Hort. - See Supplementary List below for additional note on Y . zehrina.
carinàta, Wawra (I. brachýstachys, Regel. Tillíndsia carindta, Baker). Fig. 2707. Lvs. rosulate, about 6 in . long, the base sheathing, mucronate at the tip,

2705. Erigeron mucronatus. known in the trade as Vittadinia triluba. $(\times 14$.
somewhat glaucous, not spotted: spike with widespreading nearly divaricate acuminate beacts which are scarlet at the hase and yellowish green at the end: fls. protruding, pale yellow. Brazil. B.M. 6014.
00. Bracts of inflorescence remote, not imbricate. guttàta, Lind. \& André (Tillándsia guttàta, Baker). Lrs. rosulate, erect-arching, short and rather broad, mucronate, olive-green with irregular spots of brownpurple: bracts farinose, rose-colored, the scape slender: H1s. yellow. Brazil. I.H. 22:200.

2706. Vriesia splendens.
psittacina, Lindl. (Tillándsia psittacina, Hook.). A bout 1 ft . high when in bloom: lrs. rosulate, $6-10 \mathrm{in}$. long, dilated at the base, yellowish green: fls. large, yellow with green tips, scattered on a distichons spike, the bracts red at the base and yellow at the top. Brazil. B.R. 29:10, where the genus is founded. B.M. 2841. R.H. 1855:221.-A sbowy species when in bloonu.

AA. Stamens shorter than the petals.
B. Lvs. nol barred, motlled or tessellated.
heliconioldes, Lindl. (F. béllula, Hort. Tillándsza heliconioldes, HBK.). Dwarf and tufted, with many rosulate recurving or arching lanceolate lvs. (about 12 in. long), which are bright green above and purple tinged beneath. Scape overtopping the foliage, simple and erect, with wide-spreading distichous boat-shaped bracts that are light red at the base and greenish at the tip, showy: tls. white. Colombia. 1.H. 30:490. G.C. 11. 21:140.

Bb. Lus. tessellated (marked in small checker-work) or minutely variegaled.
tessellàta, Morr. (Tillíndsia tessellàta, Lind.). Les, short aud ratber broad, rosulate, dilated at base, short-pointed, rather stiff, channeled, tessellated with green and yellow: inflorescence paniculate, the greenish bracts remote: Als. yellow. Brazil. I.H. 21:179. R.H. 1889, p. 573.
fenestràlis, Lind. \& André (Tillándsia fenestralis, Hook. f.). Robust, densely tufted, the lrs. stont ( $1-2 \mathrm{ft}$. long) and recurved, brown-tipped, with many dark green veins and cross reins: inflorescence a simple stout spike $13 / 2 \mathrm{ft}$. long and bearing green-spotted liracts: fls. pale yellow. Brazil. B.M. 6898. J.H. 22:215.

BBB. Lxs. marked with strong transuerse bands.
hieroglyphica, Horr. (Tillíndsia hieroglyphica, Bull.). Lus. many, rosulate, stout, recurved, short acute, very strongly and irregularly marked and banded with dark green above and brown-purple be. neath: inflorescence paniculate, the bracts broadly el-liptic-ovate, the fls. yellowish. Brazil. I.H. $31: 514 ; 42$, p. 318. R.H. 1891:400.-A very striking and showy plant. Sometimes known as a Massangea.
F. fitgida, Hort., has heen eatalnged in this country. It is a garden hybrid (V. incurvata $\times$ Dnvali). It has short green Ivs, and an exserted simple spike with distichous bright red
imbricated bracts. I.H. 35:67.-F. glaucophÿlla, Hook,, is re ferred to Tillandsia fascieulata.- I. musaico, Cogn., is Guzmania, for which see Tillandsia. It is alsn known as a Massangea (see D. 992) - T. zebrina, Hort., is sometimes V. splendens, and sometimes Cryptanthus zonatus. For the latter, see discussiou uuder Tillandsia and Fig. 2515. $\quad$ L. H. B.

VULNERARIA. V. Authyllis, Scop., is Anthyllis J'uluertritt, which see in Vol. 1. The other Volnerarias are referred to the same genus.

VYENOMUS is another spelling for E'uonymus

2707. Vriesia cerinata.

WAAH00. WAH00, or BURNING BUSH is Euonymus иtropurpureus. Itmus alutu, the Winged Elm, is also called Whahoo or Waboo.

## WAFER ASH. Ptelea trifotiata.

## WAHLENBERGIA grandiflòra. See Plutycoton.

WAITZIA (F. A. C. Waitz, born 1768, state physician to the Dutch at Samarang, Java; wrote on Javanese plants). Compósitie. Includes one of the rarer "everlasting Howers," a half-hardy annual which grows about $11 / 2 \mathrm{ft}$. high and bears Hat-topped clusters of yellow flower-heads, with a golden disk. The clusters are about 5 in . across, and the heads 2 in . across, the showy part being the involncral bracts, which are arranged in 4 or 5 series, and are petal-like in character but of stiffer texture than ordinary petals. Waitzia is a gemus of 7 species of Australian herbs, mostly annuals: lvs. alternate, linear or nearly so: H.-heads in terminal corymbs or rarely in oblong, leafy racemes: involucre various in outline, the bracts overlapping in many rows, all colored and petal-like: receptacle flat, without scales: anthers provided with tails of microscopic size: akenes somewhat compressed, glabrous or papillose, terminating in a slender beak; pappus of capillary bristles usually cobering at the base, simple, barbellate or plumose. The genus is distinguished from Helipterum and Helichrysum by the beaked akenes. Flora Australiensis, vol. 3.
grandiflora, W. Thompson. (The anthorship of this species is credited to Naudin by Index Kewensis.) Half-hardy everlasting or "immortelle," ammal, exceeding 18 in . in height: liss, lanceolate, long-acminate, sessile, green above, slightly villous beneath, prominent midrib beneath: fls. yellow, in terminal corymbs. F. 1865:41, where it was originally described. Probably the most desirable of the genus. It seems to have replaced W. auren, the favorite of the previous generation, being larger-fld., more robust, and rather easier of cultivation. W. M.

WALDSTEINIA (Franz Adam, Count of WalisteinWartenburg, born 1759 at Vieuna; wrote with Kitaibel an illustrated work on rare plants of Hnugary; died 1823). Rosdce(e. The Yellow or Barben Strawberry, W'atsteinia fragerioides, is a little plant that looks much like a strawberry plant, but it has yellow fluwers and bears no edible fruit. It is a hardy North American tufted perennial herb, about 4 in , high, with glossy lvs. composed of 3 wedge-shaped lfts. and 5petaled fls. less than $1 / 2 \mathrm{in}$. across. It comes with the first rush of spring, and continnes to bloom until snmmer. There is no satisfaction in growing only a few plants of this wild flower. The plant is appropriate to the rockery, where erery effort should be made to induce it to form a dense mat. Masses of the Yellow Strawberry hape been used with good effect for edging shrubbery borders, and the plant is listed by several nurserymen.
Only 4 species of Waldsteinia are well known. They are hardy, creeping, perennial, strawberry-like plants: Irs. alternate, mostly basal, long-stalked, entire, lobed, 3-5-cut or with $3-5 \mathrm{lfts}$., the lfts. crenate or incised: scapes bracted, bearing $2-5$ yellow fls,: petals 5 , obovate, about as long as the calyx-lobes; stamens indefinite: carpels 2-if: akenes obliquely obovoid, dry or slightly fleshy. Natives of north temperate zone.
fragarioldes, Tratt. Fig. 2708. Popular description above. Pubeseent or nearly glabrous: Ifts, dentate or crenate except at the base, $1-2 \mathrm{in}$. long: scapes corymbosely $3-8$-fll.: akenes $4-6$. May, June. Woods and shaded hill-sides, New England to Minn. and Ind., along the Alleghanies to Ga, B.B 2:218. R.H. 1890, p. 510. B.M. 1567 and L.B.C. $5: 408$ (both as Dalibarda fragarioides).
W. M.

WAKE ROBIN. In England Arum maculatum. In America, Trillium.

WALDMEISTER is Asperula odorata.
WALKING-LEAF FERN is C'amptosorus.
WALL CRESS or ROCK CRESS is A rabis.
WALL FERN. Polypodium culgare.
WALLFLOWER. Consult Cheiranthus Cheiri,
WALLICHIA (Nathaniel Wallich, 1786-1854, Danish botanist; wrote on plants of India). Palmacere. Three species of Himalayan palms, one of which, the first deseribed below, is cult. outdoors in S. Fla, and S. Calif. and in Eu. under gliss, and the second, while not advertised in America, is believed to be in a few northem greenbouses.
Low palms, cespitose, with short branching caudices, or in 1 species tall: |vs. densely facciculate, terminal, distichons, scaly, unequally pinnatisect: segments solitary or the lowest in groups, cuneate at the hase, ob-long-obovate or oblanceolate, erose-dentate, the terminal one cumeate; midnerve distinct; nerres flabellate; margins recurved at the base; petiole slender, laterally compressed; sheath short, split, with the margins deeply crenate: sparlices short-pelluncled, the staminate drooping or recurved, ovoill, nuch brancbed, densely fld., the pistillate looser, erect; spathes very mmerons, slendercoriaceous, the lower ones the narrower, tubular, the upper ones cymbiform, entire, imbricated: fls, medium, yellow: fr. ovoid-ohlong, red or purple. Stove palms. For culture, see Didymosperma.
Wallichia is allied to Didymosperma, Arenga and Caryota, differing in having 6 stamens instead of an indefinite number. Caryota is the only one of this group with rumisate albumen. Didymosperma has a cup-shaped, 3 -lobed calyx, and in Arenca the calyx has 3 distinct sepals.

2708. Yellow, or Barren Strawberry - Waldsteinia fragarioides ( $\times 1 / 2$ ).
disticha, T. Anders. Caudex $10-15 \mathrm{ft}$. high, 5-6 in. in diam.; naked: Ivs. distichous, 6-10 ft. long, alternate, erect; Ifts. 1-2 ft. long, 2-21/2 in, wide, fascicled, linear, narrowed to the base, truncate and denticulate at the
aper, with a large tooth on each side above the middle, glaucous beneath; petiole and sheath short, scurfy: lvs. disposed in a $1 / 3$ spiral: tls. in many spiral series. Himalaya.
caryotoldes, Roxb. (Harina caryotoldes, Bucb.-Ham. Didymospérma caryotokdes, Hort.). Lfts. oblong or linear-oblong, panduriformly excised and acutely toothed, white beneath. F. 1874, p. 16i. R.H. 1870, p. 368.
W. porphyrocarpa, Mart, See Didymosperma.

Jared G. Smith.

## WALL PEPPER. Sedum acre.

WALNUT is a name applied to any species of the genus Juglans. The Walnut of history is Juglens regia (Fig. 2709), a native of southeastern Europe and regious beyond. Etymologically, the word Wainut signities a nut that comes from a foreign source. It is interesting to note that in this country Juglans reyia is known as English Walnut, apparently because the inported nuts are likely to reach us by way of England. In eastern North America, the word Walnut usually applies to the native Juglans nigra (Figs. 2710, 1193), although it sometimes, but erroneously, designates the large-fruited bickories. A related species, the butternut ( $J$. cinerea, Figs. 2711, 1194) is sometimes called White Walnut. The Black Walnut (J. nigra) is often planted on roadsides and about yards, but it is scarcely a horticultural product yet. A very similar species in California is Juglans Ćaliformica (Fig. 2712), which makes a fine large tree and often bears excellent nuts. The eastern J. nigra was early introduced into Califor-

2709. Juglans regia, the Walnut of commerce $\left(X_{14}^{1}\right)$. Often known as the "English" Walnut.
nia and it seems now to be common. In fact, it is sometimes difficult to distinguish the two species. The Californian species attains a heicht of 50 ft ., making a hroadtopped handsome trew. ('mmmercial Walnut culture is concerned with $J$. regia, and this culture is practically confined to California. The species is hardy even as
far north as parts of New York, and in the Middle and Southern states it often bears well, but its culture is not attempted on a large scale in the East. The Japanese Walnut, J. Sieboldiana (Figs. 1I56-8) is now be. coming known in the East, and it is perfectly hardy in central New York. It is a handsome tree, but it probably will not become an important fruit tree. For the species of Walnuts, see Juglans.
L. H. B.

2710. Black Walnut - Juglans nigra ( $\times 1 / 2$ ).

On the right is the bare nut; on the left the husk not removed.
Walnuts in Southern California. Fig. 2713. The Walnut industry in certain limited areas of California occupies a place second only to the growing of citrous fruits. About 6,000 tons will be exported from California the present season (1901), which will he worth f. o, b. California more than one million dollars.

Commercial Walnut culture is confined to four southern coast counties of Califorvia-Santa Barhara, Ventura, Los Angeles and Orange. For this there are good and sufficieut reasons. Although called the "English" Walnut in this country, the climate of England is not very well suited to its production, and the greater part of the product in that country is used in the manufacture of pickled Walnuts. The Walnut is fairly hardy when dormant, hut very tender when growing. Therefore, no place subject to late spring frosts can grow Walnuts with success. The extension of W alnut culture into the more northern coast counties of Caltfornia must be done by planting varieties which lie dormant until the time of the spring frosts is past. The immature nut is also very tender, and cannot endure very hot weather. Even in the coast counties a small percentage of the crop is often destroyed by hot weather, and the hot interior valleys of southern California, or places cery distant from the ocean, do not produce Walnuts. The area of successful production is still further limited by the requirement of well-drained and deep alluvial soil for the tender rootlets. Any soil of a clayey nature or underlaid with a hard clay subsoil will produce only stunted trees, while on soil where the water comes nearer than twenty feet of the surface the trees will grow only a few years, hardly long enough to produce a full and profitable crop.

In nursery practice the nuts are scattered at a distance of about 1 ft . in drills 4 ft . apart, late in the fall, in soil that bas been deeply plowed. As soon as a sufficient number of the plants break through to distinguish the rows, the cultivator is run through to kill the weeds. The young seedlings are irrigated and cultivated frequently during midsummer, the object being to force them as wuch as possible and yet harden them before winter. During the first year the seedlings reach a height of $1 / 2-2 \mathrm{ft}$. The taproot, however, grows down from $5-8 \mathrm{ft}$. If grown in the nursery the second year, they are treated in the same manner, and usually reach a height of $8-12 \mathrm{ft}$. Of late years the practice of grafting bas been growing in favor. The $\mathbf{i}$-year old seedlings are root-grafted, just as they stand in the row. The grafts will grow about 8 feet in one year. Grafting is much more successful than budding. When trees are budded, ring-buds are used, and the tie is a strip of waxed cloth.

The trees are planted in orchard form at either 1 or 2 years of age, preferably the latter. They are usually set in squares 50 ft . apart. The trees make very little
growth the first year, many of them not more than 6 inches, After this the growth is rapid. The trees are tied to stakes with strips of cloth, since they are very tender when growing, and the swaying of the tree by the wind quickly causes any other tie to ent through the bark. Walnnt trees are proned very little, At first small limbs are allowed to start abont the trunk, but later these are pruned off to a height of 4 feet. Some of the longer growths are shortened back while the trees are young; and after they are older the low limbs which bend down in the way of cultivating are removed.

The Santa Barbara Softshell begins to bear the third year from planting, but dues not procluce profitable crops before the fifth or sixth year. Precocity in learing is not a desirable quality in Walnuts, since no Walnut tree will produce a prot itable crop until it attains sufficient size to support it. Hardshell trees do not bear as young, and they are not regular bearers.

Walnut orchards in California receive thorough tillage. They are hearily irri gated in winter, and plowed about 8 in. deep in the spring. After this they are irrigated and cultivated mistil the nuts begin to fall, -about the 1st of September. Late irrigation fills out the nuts and canses the hull to open readily. Heary fogs are also desirable during harvesting. The nuts are sbaken down and picked up. They are then spread in trays about 5 in deep until dry, when they are bleached and shipped to market. Walnuts were formerly bleached with fumes of sulfur, but this was found injurious to the nut. They are now usually dipped in a solution of chloride of lime (chlorinated lime) and

2712. The Calitornia Wild Walnut - Juglans Calilornica $(\lambda / 4)$ sal-soda, to which a sufficient amount of sulfuric acid has been :udded to set free the chlorine.

The majority of Walnat-growers are organized into local associations. Representatives of these associations form the executive committee of the Sonthern California Walnut-Growers Association. This executive committee provides the form of contract which the lneal associations may enter into with brokers, and fixes the price. The local associations are managed in several ways. In some the growers bleach

2711. Juglans cinerea of the eastern states. ( $\times 2 / 3$.)

Sometimes known as White Walnut.
their own crop, while in others the association performs this work at its own packing house.

The Walnut tree bas very few pests. The red spider sometiraes attacks the trees, but it is not considered a serious pest. Of late years a bacterial growth has developed to a considerable extent which is more serious. This attacks and destroys the immature nut and the small limbs of the tree.

## Arthur Staley.

The Walnet in Central California. Walnut-growing is quite rapidly extending in both the coast and interior valley regions of Central California and is also successfully accomplished in favorable situations in the foothills up to an elevation of $2,000 \mathrm{ft}$. There are also many instances of thrifty and prolific trees in worthern California and southern Oregon. This northward extension of successful Wralnut growing is conditioned uport the use of the best French varieties and the rejection of the varieties popular to the chief commercial dis-
tricts in southern Calitornia, viz., Praparturiens, Mayette, Chaberte, Parisienne, Franquette, etc. These varieties are hardier in resistance of frost and leaf-burn from summer heat. They are largely root-grafted upon the seedlings of the California Black Walnut in the norsery and are also being top-grafted upon old native trees.
E. J. Wickson.
by means of two ferments or enzyms secreted by the organism. One is a diastatic ferment which converts the starch of Walnuts into grape sugar; the other is a peptonizing ferment which digests the proteids of the cells. The action of these ferments becomes manifest in the development of a water-soaksed band immediately surrounding the margin of the blarkened infected spot it the disease is active, and this appearance readily distinguishes this malady from alt other injuries to the nut or branch. As the secretion of the two ferments depends largely upon a temperature of $45^{\circ}$ to $75^{\circ} \mathrm{F}$., a much lower temperature is unfavorable to the destructive action of the blight upon the tissues, and when such low temperature prevails the infected points are likely to be ent out throngh the action of the cells of the Waluut.

The losses from Walnut bacteriosis are often heavy, especially in indiridnal orehards or special localities. A loss of 50 per cent of the crop is not uncommon, and
son Medical College, Philadelphia, in 1836. He settled in Cincinnati in 1837 and hegan the active practice of medicine. He was early elected a member of the school board and did faithful service for many years, making it his business to travel through the eastern states and cities to study systems of teaching in order to introduce improved plans into the C'incimnati schools. He was actively interested in and a prominent member of the Cincinnati Astronomical Society, The Western Academy of Natural Sciences, the Cincinnati Society of Natural History. He was one of the founders of the Cincimatl Horticultural Society and the Wine-Grow ers ${ }^{\circ}$ Association. He was also prominent in the old Cincinnati College and afterwarl in both the Ohio and Miami Medical Colleges. He was for many years president of the Ohio Horticultaral society and vice-president of the American Pomological Society. He was among the first to draw public attention to the inprovement of public grounds, private parks and cemeteries. The present interest in landscape gardening in this country is largely due to bis effonts and writings. He was interested in establishing the famous Spring Grove Cemetery, one of the earliest and hest of landscape or lawn crmeteries, and was one of the first residents of Clifton, whence he moved to a farm near Nortb Bend, Obio, formerly owned by President Harrison. There be spent most of his time in testing varieties of fruit and methods of culture, and prepared numerous practical papers for horticultural socjeties and other readers, and in fact established a prirate experiment station.

In 1850 be began the publication of the Western Horticultural Reriew, which continued four years. In one number is contained the first description of the ('atalpa speciosa, now recoguized as one of the raluable forest trees. His report of the Flax and Hemp commission, published by the government in 1865 , was the result of much patient study and investigation. "Hedges and Evergreens" appeared in 1858. "American Pomology - Apples," published in 1867, was the result of more than 16 years of careful study, aided by hun-
occasionally as high as 80 per cent of the nuts are affected in badly diseased orchards

The treatment of this Walnut disease has been found to be difficult, but the spraying of the dormant tree has shown a considerable saving when Bordeaux mixture is used. It has also been learned that the hardshell Walnuts are comparatively free from this disease, and that certain softshell varieties are so nearly free that the grafting of nursery stock from these resistant trees is contemplated for new orchards. As no species of Walnut excent $J$. regin has thus far shown this disease under natural conditions, many hybridizations have been undertaken in hope of obtaining rexistant and satisfactory trees by this means

Newton B. Pierce.
WALNUT, INDIAN. Aleurites triloba.
WAND PLANT. Galax aphylla.
WANDERING JEW. Zebrina pendula and Tradescantia fluminensis. Also Saxifraqu sarmentosa.

## WARATAH, Telopea speciosissima.

WARDER, JOHN ASTON, pbysician, author, horticulturist and forester, was born at Philadelphia, January 19,1812 . His early life was spent in a suburban home, where be evinced a love of nature which he cherished through life. Bartram and Darlington were among his neighbors and he met in his father's house men like Auduhon, Michanx and Nuttall. In 1830 his parent. moved to Springfield, Ohio, where he helped clear up a farm and first became interested in agricultural scienmes and comparative anatomy. He was graduated at Jeffer-
dreds of correspondents in various parts of the central states. It is still considered a standard authority on description and varieties of apples, containing a table of varieties and synonyms of orer 1,500 names.

A report upon Forests and Forestry in as the rexult of his visit to the World's Fair at Vienna in 1873, as United States Commissioner. In 1875 he issmed a call for a convention at Chicago to form an American Forestry Society, which organzation was completed at Philadelphia in September, 1876. The public was not yet impressed with the importance of the subject, but this pioneer association gave impetus to the plans for united effort. In 1879-80, with the approval of various societies, Dr. Warder memorialized Congress, asking for a commission for the study of forestry in Europe, but general interest was not thorougbly aroused until, largely through his efforts, the American Forestry Congress beld its meeting in Cincimmati in April, 1882. He was honorary president of the Obio State Forestry So ciety, prepared strong memorials to Congress on bebalf of the forests and was shortly afterward appointed agent of the Department of Agriculture to report upon forestry of the northwestern states. He was devoted in his interest in all which concerns rural life and industry; bis efforts bad a great and marked effect on the horticulture and outdoor art of the great central states. Death ended an active and useful life July 14, 1883.
R. H. Warder.

WARDIAN CASES are nearly air-tight glass cases used for transporting growing plants on long sea voyages. For this purpose they furnish the best and safcist method: They furnish the necessary light, protect the plants from salt spray and foul gases, and require a minimam of care, as the plants need no watering. They maintain nearly uniform conditions of tempera-
ture, moisture and atmosphere. Simitar cases are also used in greenhouses for growing filmy ferns, dwarf foliage plants and other smali specimens that require a rery moist and close atmosphere. They were invented about 1836 by N. B. Ward, who $\pi$ rote a book of 95 pages "On the Growth of Plants in Closely Glazed Cases," published at London in 1842.

WARCZEWICZELLA. See $Z y$ gopetalum.

WARREA (named for Frederick Warre, who discovered the first species in Brazil). Orehiddect. Ls.s. few, long, plicate: scape tall, bracted, bearing a raceme of terminal showy Hs.: sepals and petals subequal, concave, the lateral sepals united with the base of the column: labellum not spurred, united with the base of the column, undirided, concave, with longitudinal ridges: column without appendages: pollinia 4, with a narrow stipe. Plants with the hahit of small forms of Phains. They require the same treatment as that genus.
bidentàta, Lindl. ( 11 . Lindenidinc, Henf.). Labellum regular, slit at the end: ridges convex, the central ones thinner and deeper: bracts one-fourth as long as the pedicels. Sept. Venezuela and Colombia, A. F. 6:6̄̄Ј.
W. cyànea, Lindl. =Aganisia cyanea. Heinrich Hasselbring.

WASHINGTON, HORTICULTURE IN, Fig. 2715. The state of Washington may be said to have two distinet climates, that to the west of the Cascades, and that to the east of this range of mountains. The climate of western Washington may, generally speaking, be said to be very temperate. There are no very great variations in temperature. The summers are cool, and in some parts somewhat dry. The winters are warm, or at least not cold. In some parts of western Washington the rainfall is abundant, amounting to 70 or 80 inches; in other parts the anmual rainfall does not exceed 25 inches. Those portions of western Washington not bounded on the west by the Olympic mountains are subject to a much greater rainfall than those parts lying immediately east of these mountains. Thus, parts of Jefferson county and of Island county are comparatively dry, even thongh on what is known as the wet side of the mountains. The whole of western Washington is a vast forest; yet there are numerons valleys in which trees do not grow. The natural forest growth is coniferous, except along the watercourses, where there is a considerable growth of decidnous trees, such as aider, poplar, willor, etc. In a few places scattering specinens of nak, ash and maple are found. Vast areas of laud have been reclaimed from the sea, or at least from Puget Sound, and these tide-lands are amongst the best in the state. The summers are comparatively bright and dry, the winters wet and almost snnless.

In eastern Washington a wholly different condition exists. The summers are hright, the temperature high, and during the months of June, July and August prac-
tically rainless. Eastern Washington has a varying rainfall. Those portions immediately east of the Cascade range have a very scanty rainfall, but as we near the eastern borders of the state the rainfall becomes greater. In and near the Yakima valley, the rainfall is from t- 6 in . per annum. As we go east the rainfall becomes greater, until at the eastern borders of the state it is about 22 inches, quite sufficient in this climate to produce good crops. Altitude has a marked influence on the climate of eastern Washington. in the ralleys of the Columbia and snake rivers, from 400 to 600 feet above set-level, the summers are long and hot, and in these portions severe frosts are not felt. In these low valleys the tenderer fruits grow to perfection, but of these there are only a few thousand acres. There are two large valleys; viz., the Walla Walla and the Yakima, each having an aititude of abont $I, 000$ fect, where the winters are more severe, and where fruit trees often suffer in bud and twig, aud where vegetation is at a standstill for a longer period in winter than in the lower altitudes. All lands in eastern Washington at a lower altitude than 1,500 feet must be irrigated to produce crops. The larger portion of eastern Washington, and especially that lordering on ldaho, is high, ranging from 1,800 to 2,600 feet above tine sea. It is in these high portions that there is rainfall sufficient to raise good crops without irrisation.
The whole state is rolling. The Cascade range ents the state into

2714. Bacteriosis of the Walnut, as shown on fruit ; and leaves. See page 1961. two very nnequal parts, the larger part lying to the east. The watercourses, for the most part, rum in deep cañons, and the table-lands are anything but level. The soil raries from the deep basalt clay loams to the voleanic ash, and to the sand and silica soils of the river bottoms. The higher lands grow the bardy fruits to perfection ; the river bottoms grow the peach, apricot and the grape, while midway between these is grown a great variety of fruits. garden products and alfalfa. The best wheat lands are the heary clay soils at an altitude of about 2,000 feet.

Fruits. - The state of Washington is fast coming to the front in fruit production. There are now planted within its borders about 80,000 acres of fruit. Whitman county, on the eastern lwrder, has an acreage of 8,000 planted to fruits, mostly apples and prunes. (lark connty, on the west of the range, is the greatest prune producer. The Puyallup valley, close to the Puget Sound, is the leading small-fruit section, but the whole state is adapted to many of the fruits. The counties producing the largest amount of fruit are Walla Walla, Yakima, Whitman, Clark, Spokane and Kittitass. The islands of Whidber and Orcas are famons for their fruits. Of the 80,000 acres in fruit now growing within the state, 25.000 acres are in prunes, mostly italian, 40,000 in apples, and the remainder in plums, cherries and grapes.
PruRes.-The italian prine (Fellenberg plum) is planted in great numbers on both sides of the state. Clark county has not less than 5,000 acres planted to
this fruit, and is etill jhantinge more. There is ne other fortant of the [moteal states, and prothats unt in thr







that Whinh ronmes fiom the luw warm valleys of the







 "f tlow - $1: 111$
 an this montinent is the plam more at herme !lan tim the F'actiferast. 「nturtmathly phlma are wot protitathe. At prenent there ard but watherices torakecare of the smplul fruit, and munt of the phomis :are poor longe-thistanem shifynera. Theren is a lueal demand for a rombilural he quatutity of phans- lont arrat quatitities ammally $\mathrm{g}_{\mathrm{on}}$ to watr wimler the trex. The Farieties montly phantad are 11 nshines.
 Lombatel amd the latmonts.
('harras. - Suert eherries
 protions of ther atate, but abpo rally so in the louet found recion arm in the warm valleys of tha "atat side. Fiome new varietios, batives of the comant. rontably Banfe Lambert and
 athe alreaty aro lowders in the matkets of the West. The sour varieties also grow and yield "humbantly. swect cherries attain their qreatu:st purfertion
(atifurnia in the produrtion of this fruit. Ne.vertheless it is fairly profitable in Wrachingen, yieldine alment the stane mmber of pasuds tos the true as the Italian, and selling in the eatstern markets at a even priee font the Italiam nonally sells for nure mouey, as the fruit is murb lareter.

The Silver prune, or Cob lilum (Cise Goliten Dropl, is a larae, lambume prome when well papired ami always brimgs the top market prier, solling for twe or three cents fur pound more than Italian or Frewh. Not a glopat mathy ur. planter, ans in sombe cabres the promesrowers work their silver pranes over to Italians. There art numerons vari-ties of prame platntes on the
 Manh of the truit of this prum is whiperd grem, i. e., in a half-ripe comditions. This tinds its way tor the most eastern markets, ahat sumt of it even to Englamh. The frait of the Italian stamds shipment well, better than any other variety. Dost large erowers hate evaporatora in their ureharets, aml the most of the fruit is proserved in this way.

Apples. - The late-knevine winter apulte undoubtially frads all other frnits in the total entrage now panted in the state. The connties shimping the greatest quantity are Whitman, Walla Walla, Yakimat aod Spokane. The varieties mumty platated are Ben Davis, Gianm, Northern Spl, W:ag+1wr, Esuphs, Arkamas, alonathan, Ypllow Newtwru and Baldwin. The lowne warm valleys grow the lomg semsom apylos, likt Yellow Newtown and Exumas, to pertestion, while the highor altitasles are beat atrligited to a shortor stitaon fruit, likw the Wealthy and the tiravenstoin. All anples ealor tionly, and are very fair in anpearanem. There are fow off years, but there seem tor la full years ank slim yevare, thomgh the emps are much more emonstant than in the midale or vistorn states. Apple serowing is amongst the mosit protitable of the frait inlustries. Many large orehards have leen panted that are not yeq in liatring. At prosent the state grows mach more fruit than it rat consmone.

Putars. - Puars are grown to great perfection in almost every part of the statu, but there is no finer fruit than
in the Warm valleys at an altitule met marh ahose 1,000 feet. Somr rariution dos lese on the hith lamuls, at an altitmle of abont 2,000 fert. Cherrises have betn foumd to be profitable, yot fow now plantations are befog sot. The reason for this is probshly to be fouml in the labur mation, it in-ing almont impossible to qut the



 Foresl prats. $l_{11}$ thy low warm valleys ot the Snake and Golmmbia all variotins swom to do well. Even the En-
 uabally reseives an su-wial winter protertion. These (0) Whotu prapu-s are farly protitable, the lneal market u-nally being kowl.

Smaill Fruits.-The rasplitrry, hlarklury, hewherry, strawherry and gonselerry all ilo well in the state. In somp aretions of wentorn Wrashingten these fruits are grown in great puantitise and are mostly shippert to the Montama markets. While the prives realized art not lares, the srops ate an almudant that small-fruit farming lays wrll.
'ronberit's grons in the coast combties amb on some
 the retmras from cranlwry eulture are satid tolw very satricfactory.
 these smeds is 1 wh carrimil on in an Hxtensive way on Sachmor Flat- (reclamm! tite-lamds) on loget Simmal. The demand is fenn?, amb the erop protitahle. C'abhage aud onion seed is probluced in grorit phatities.

Bulls. - At Whateom, Whateom eonanty, an attempt is now beine made to cultivate what are known as Holland
 ing hyabintlo, tulips, narrissus, ate., and the rosults are promining. Thlips make areat mmober= of oflotre, and hyacinths proparate freely by the same methots practiced in Hollawd.
Horticnlture, as an ocenpation, may la said to he profitable within the state. It is true. markets are at a great distance, but the mines in ldaho, Hontan and


Plate XLVIII. Washingtonia filifera, the most characteristic palm in California

British Columbia take great quantities of fruit and vegetables. Shipments of perishable fruits have not always been found to be profitable, but the state is fast settling up, and the outlook for the horticulturist is very bright.
J. A. Balmer.

WASHINGTON GRASS. See Cabomba.
WASHINGTONIA (named for George Washington). Pulmaceu. Tall palms, with the robust trunks clothed above with remains of the sheaths and petioles: lvs, terminal, ample, spreading, orbicular, flabellately plicate, lobed nearly to the middle: segments induplicate, ftlamentous on the margins: rachis short: ligule large, appressed: petiole long, stout, plano-convex, very spiny along the edges; spadices long, copionsly paniculately branched, glabrous: branches slender, flexuous; spathes long, merabranous, split, glabrous: fls, white: fr. small, ellipsoid, black. Species 3. Ariz., S. Calif. and Mexico. Plate XLVIII.
filifera, Wendl. (Brahea filamentosa, Hort. B. filifera, Hort. Pritchárdia filamentosa, Wendl. $P$. filifera, Hort.). Weeping Palm. Figs. 2716, 2717. Stem cylindrical, 20-40 ft., enlarged at the base ( $2-3 \mathrm{ft}$.$) ,$ covered with persistent petiole bases; petioles 2-5 ft . long, $1-21 / 2$ in. Wide at the summit, glabrous, plano-convex, the rather thin margins with stout, hooked spines; ligule large, glabrous, lacerate; blade circular, tomentose on the margins of the $40-60$ segments, $3-5 \mathrm{ft}$. in diam., cleft on the upper side nearly to the middle, gray-green; segments margined with numerous fibers $6-12$ in. long. S. Calif., W. Ariz. Gr. 25, p. 393. G.C. III. 12:59I. R.H. 1876, p. 372 ; 1895, pp. 153-155. G.F. 6:535. Gt. 1896:5.- W. filifera is perhaps the most characteristic palm of California. Its immense straight bole and shaggy collar of deflexed dead leaves make a striking and picturesque object. This collar of old leaves usually burus fiercely in the dry season.
robústa, H. Wendl. (Washingtonia Sondre, Hort. in part). Stem more robust: petiole shorter and more densely spiny, the young plants with yellow spines and black-violet sheaths and petioles, at length brown; blade light green, 3 ft . long by $3^{3 / 4} \mathrm{ft}$. wide; segments 60. Western Mex. G.F. 38:49. R.H. 1885, p. 403.

Sondræ, Wats. Stem 25 ft . high, 1 ft in diam.: lvs. $3-4 \mathrm{ft}$. in diam., somewhat glaucous, very filiferous; petioles 3 ft . long, very slender, 2 in . wide at base, $3 / 4 \mathrm{in}$. at apex, floccose-hairy along the margins and with stont curved spines: fr. $1 / 4 \mathrm{in}$. long, edible. Mex.

Jared G. Smith.
Further Notes on Washingtonia.-Our nursery catalogues show that the identity of the three species of Washingtonia is a matter of conjecture in the minds of growers. In middle California there are two distinct types in general cultivation: (1) the one having very flamentons deepiy cleft leaves, long ( $3-5 \mathrm{ft}$.) petioles with yellow margins and spines, which is the Colorado Desert species, W. filiferu, Weadl.; it is less hardy in San Francisco than $W$. rohusta, suffering from cold winds and fogs and often rotting at the center of the growing part. (2) The species with more robust habit, the growing part of the stem shorter and therefore more distinctly conical, dark leaf-sheaths, short, stout petioles with brown, often very dark margins and spines, and shorter, more rigid, less deeply cut and often less filamentous leaf-blades, which is the one from Mexico and Lower California, IF. robusta, Wendl. (H. Sonore, Hort. Calif. in part). This dark color of the petiole margins and spines is equally noticeable in the young as well as in older specimens. Comparative study of the inflorescence may perhaps establish this palm as a mere geographical variety of $W$. filifera, but we have not been able to study flowering specimens. It is certain that a part of the material offered by nurserymen under the name of Washingtonia Sonove is really W. robusta. Its greater hardiness in the climate of San Francisco shows that IVashingtonia robusta is by far the most desirable species for cultivation along the coast of middle California.

The following data give evidence that many of the specimens in cultivation in the San Francisco bay region have originated from Mexican seed and are not, as
is sometimes suggested, mere cultural varieties developed from seed of the typical form of the Colorado Desert. According to Charles Abraham, for many years proprietor of the Western Nursery, San Francisco, seed of IV ashingtonia robusta was introduced some twenty-five years ago by Mr. Sressoritch, a commission merchant of San Francisco, from the coast of Mexico near Guaymas. Of the trees raised from this seed there is a specimen at Abraham's nursery, and Mr. Abraham states that there is a fine one in the grounds of St. Ignatius College, San Francisco, and another at the Crocker residence in Sacramento. The latter has already matured seed, from which Mr. Abraham has raised a young plant. In the old Bolton garden at Greenwich and Jones streets, San Francisco, there were growing until this year several well-marked specimens. According to Miss Lizzie Bolton, these were raised from seeds presented to her mother, Mrs. James R. Bolton (formerly Mrs. Estrada) by friends who brought them from Mazatlan. These specimens are now in Mr. Abraham's possession. A third importation of seed was made by Mr. John Rock, manager of the California Nursery Co. at Niles, but we do not know whence it came.

Washingtonia Sonore is rarely seen in cultivation, though frequently mentioned in nurserymen's catalogues, and it is certain that much of the material offered under this name is really JY. robusta. In his "Flora of the Cape Region of Baja California," in Proc. Calif. Acad. Sci., series 2, vol. 3, pp. 109-182, Mr. T. S. Brandegee records that Washingtonia Sonore ocenrs at La Paz and San José, and notes that "a species of Washingtonia is abundant in the cañons of the mountains and may be this one." A few years ago Dr. Gustav Eisen is reported to have collected seeds of a Washingtonia at La Paz, which were handed to a gardener in San Francisco for propagation; some of the seedlings were obtained by Mr. Abraham, hut only one survived; this specimen shows the characteristic slender

2716. Young plant of Washingtonia filifera.
petiole and glancous leaf of the true W. Sonore. This species appears to be much less hardy under cultivation than W. robusta.

From the above notes it would appear that both $W$.

Sonore and W', robusta are found along the Pacific slope of Mexico, on the mainland or on the peninsula of Baja Califorvia. While the type locality of the former is given as Guaymas, on the mainland of Mexico, the few


## 2/17. Old tree of W ashingtonia filifera.

specimens in cultivation have come from the peninsula, and though the type locality is not certainly known, most of the specimens in the trade apparently came from Guaymas and Mazatlan on the mainland.

In cultivation in (lalifornia Washingtonias respond gratefully to an abundance of water during the dry season. It is a mistake to suppose that because they are desert plants they will thrive without moisture; on the borders of the Colorado desert, where they grow in abundance and luxuriance, they occur beside saline or brackish springs.
f Jos. Burt Davi.
WATER ALOE. Stratiotes aloides. W. Arum is a name sometimes applied to Callu palustris, W. Beech. Carpinus Caroliniuna. W. Caltrops, or Water Chestnut. Trapa natans. W. Chinkapin, or Chinquapin. Nelumbo lutea. W. Cress. See Cress and Nasturtium officinale. W. Hyacinth. See Eichhornia.

WATERING. An abnndant and convenient supply of pure, fresh water shonld always be a first consideration in locating a garden or greenhouse. Having this, the next matter is knowing how to nse it, for here, good gardeners say, lies nine-tenths of the elements of success. Certain it is, especially in the indoor cultiration of plants, that more depends upon knowing when to give or withhold water than upon any other single matter. The art of watering is unteachable; it requires experience, judgment, skill. Some knowledge of the commoner facts of regetable physiology, physics and soil physies will be helpful, but even then experience will be necessary. Two common types of watering-
cans are shown in Fig. 2718. In American gardens, however, watering is nsually performed with a hose from a stored water supply.

General Rules. - A fairly safe gnide is: never water plants until the soil has become dry, though not "powder-dry," and then give them a thorough soaking. Plants dislike a continnously wet soil. In the care of plants in earthenware vessels, a useful test is to thump the jar. If it rings the soil is dry; if the sound produced is dull the soil is sufficiently moist. Such rules, however, are only for the novice. They presuppose activity of growth, and take into account only one consideration aside from this, and that is the condition of the soil as regards moisture. The experienced gardener reads his practice in his plants and the conditions under which they are being kept. The following suggestions are based upon the most important considerations.

Actively growing plants may be watered very freely, as a rule, whereas in a dormant or semidormant state the same plants will require only occasional waterings.
Soft-stemmed or rapid-growing plants ("soft-wood" and "hard-wood" plants), and those with large leaves, need, as a rnle, an abundance of water when growing actively. Hard-wood or slower-growing plants, with smaller leaves, mmst be watered with greater care. Softwooded plants, with some exceptions, may at times eren flag somewhat for want of water, and recover without permanent injury when a fresh supply is given. Hardwooded plants, as camellias, azaleas and heaths, on the other hand, suffer permanent injury from hecoming too dry. It is safest to allow no plant in active growth to flag.
The amount of foliage affects the plant's capacity for using water. Plants which bare been ent lack, or which from disease, insects or other canses, hare lost most of their foliage, must be kept drier until they have regained their foliage.

Unheaithy plants are benefited, as a rule, by being kept rather dry until they begin to show sigus of renewed vigor.
Small euttings, or any plants fresbly potted or newly transplanted, are not in condition to use mach water until the root-hairs have attached thenselves to the soil-particles and growth has begun. A thorough watering at the time of potting or repotting the plants, especially if they are subsequeutly shaded for a few days, is usually sufficient until they have hecome established.

The character and bulk of soil should be kept in mind. Porous and warm soils dry out much sooner, while the heavier clay soils are in danger of becoming water-logged and sour, unless watered with care. When there is a large mass of soil in proportion to root development, as in the case of greenhouse beds newly set with young plants, care must be used in watering until the soil is occupied with roots.

Serions trouble often begins in the greenhonse from a heavy watering at the beginning of a period of dark, muggy weather. Not only does such watering do damage to the soil and roots, bit the excessive humidity of the air ahout the plants and its weakening effect upon their tissues, invites the attacks of various mildews, fungi and insect pests.

The time of day is important. In the greenhouse in winter free ventilation is usnally impossible. At night there is a tendency toward a damp atmosphere. Carefnl florists, therefore, water in the early part of the day at this season, so that the house will have become somewhat dried out by nightfall. It is seldom advisable to let plants go into the night with wet foll. age. It gives the fungi a chance. Especially hazardons is it to water entting benches or boxes of young seedlings late in the day in the winter season. The varions damping-off fungi find under such treatment the condition suitable for their development. Excessive humidity on the interior of a closed plant-honse is most likely to occur in moderate weather. During severe weather the condensation upon the glass is large and renders the air of the house drier. During summer, when there is free ventilation, the watering may adrantageously be done late in the day. Midday watering at seasons when

the sunshine is very bright is often followed by sealding of the foliage unless the plants are well shaded. Ferns, Rex begonias, Chinese primroses and richardias are among plants easily injured in this way.
Consider the temperature. The temperature at which the plants are kept, the position of the heating pipes, the amount of light, and the freedom of ventilation permissible, need to be kept in mind in watering plants in glasshonses. It is better, as a rule, to bave the watering conform to these conditions; bnt frequently the practice must be reversed.

Experiments by the writer show, beyond question, that the temperature of water used in watering plants exerts a marked effeet upon the growth, flowering and fruiting of plauts. It is now held that, in general, the water shonld be of a temperature close to that of the air in the house where the plants are growing, or about $10^{\circ} \mathrm{F}$. below.

Watering may be indirect. Shading the glass of greenhouses in summer with some suitable material is minch practiced by Horists for the purpose of sheltering plants from too great intensity of light, and for the purpose of reducing evaporation and transpiration. Certain kinds of plants, as palms, and some kinds of ferns, require this; also newly potted plants. Syringing of walks, by reducing the temperature and increasing the humidity of the air, also tends to reluee transpiration and save watering. Watchfulness aud attention to ventilation are necessary, however, to avoid excessive humidity, which teads toward a soft watery growth and extreme sensitiveness and susceptibility to disease.

Vessels to contain plants should always be provided with openings at the bottom for perfect drainage. This, in a measure, is a safeguard against overwatering. Investigation has shown that a soil which is kept continuously wet through bad drainage or otherwise is rapidly impoverished through loss of nitrogen. A fermentation is also set up iu the roots, which through the formation of alcohol and other products, results in their destruction.

While a constantly wet soil is always very objectionable, thoroughness in watering as often as the plants need water is of the greatest importance. When enough water has been supplied there will be more or less dripping from the bottom of the pot. It is a good plan to leave a space of $11 / 2-2$ in. or more at the top of the pot for the reception of water. This space should be so large that when filled, the supply of water in soaking downward will penetrate to the bottom of the vessel.

See, also, Greenhouse Manaqement, p, 696.

2718. Watering-cans.

The can on the left, flattened on the sides, is generally preferable. It can be carried in greenhonse walks and in harrow rows. The long spout enables the operator to anply the water directly to the roots; and the greater foree of the discharging water makes a better spray from the rose.

Subwatering. - A method of watering known as "subwatering" has been made use of in recent years for supplying moisture to plants growing in beds. W. J. Green, of the Ohio Experiment Station, was one of the first in this country to point out, as the result of experi
ments, some of the advantages of this method of applying water. The essential featnres of this system are a water-tight bench, with earthenware tile placed in rows npon the bottom either erosswise or lengtliwise to the bed. Soil is placed about and over these. Openings into the runs of tile are left at convenient points. Water poured into these openings runs along the leagth of the tile and is carried outward and noward into the soil by capillarity-thus moistening the soil from below upward. In beds over 50 ft . long a fall of 2 in. to every 50 ft . is recommended. See Figs. 1182-3, Vol. II.
J. C. Arthur has experimented with a plan which, in many respects, is an improvement upon the "tile system." Here porous brick, having the lower edges cracked off, are placed edgewise and close together over the bottom of the bench. The shattered edge of one brick meets that of its neighbor. A network of channels is thus formed over the bottom of the bed, whereby water is distributed over the entire bottom. Capillarity carries the water upward, through the layer of bricks to the soil resting upon them. The amount of water applied at a given time is indicated by a gange near the edge of the bench. This consists of a T-shaped tube, placed at some conrenient place, laving one end inserted through and on a level with the bottom of the bench; the other rises an inch or so higher outside the edge of the bed. Carnations and lettuce have given excellent results grown by this method of snbwatering.
Subwatering in connection with flower-beds and borders in the open ground has also proved very advantageous. It tends to prevent the formation of a crust on the surface of the soil, and keeps it loose and porous, carrying the soluble plant-foods upward instead of downward. For further notes, consult the article Irrigation.

Watering Law'ns and Flower-Beds.-1n watering beds in the open ground, and lawns, the chief thing is thoronghness. Superficial waterings induce the formation of roots near the surface. Neglect and suhsequent drought then prove more disastrous than ever. The evening is the best time for surface sprinkling. Watered in the heat of the day, grass and various other plants are likely to have the foliage injured. Ordinarily it is better to avoid watering beds of plants in the open ground if possible or delay it until really necessary, and then water thoroughly. ERNest Walker.

Plunging. - While it is true that most of the water given to the plant passes through the soil and escapes. from the hole in the bottom of the pot, yet much that is left in the soil, - which is considerable if the soil is saturated as it should be, - is evaporated from the porons sides of the earthenware pots. In warm sunny weather plants in small pots, standing on a bench, dry out very quickly. This can be avoided by plnnging the pots in some material, as coal ashes, tan bark, or, better than all, spent hops. When plnuged to the rims, only half of the surface watering is needed, and the advantage of less watering is shown by a marked improvement in the health and vigor of the plants. Such a benefit is this plunging that plants which would otherwise need a shift into a size larger pot, can be carried along another month in perfect health. This applies more particularly to quick-growing, soft-woorled plants, geraniums more especially, for these are quickly exhansted by too frequent waterings.

William Scott.
WATERLEAF, Hydrophyllum. W. Lemon, See Passiflora laurifolia. W. Lettuce, Pistia Stratioles. W. Lily, See Nymphopa. W, Milfoil. Myriophyllum. W. Oak. Quercus nigra, commonly known as Q. aquatica. W. Oat. Zizania aquatica. W. Plantain. Alisma Plantago. W. Plants. See Aquatics. W. Reed. Arundo. W, Pest, Elodea Canadensis. W. Shield. Brasenia peltata. W. Soldier. Stratiotes aloides. W. Thyme. Elodea Canadensis. W. Weed, Elodea Canadensis.

WATERMELON. Figs. 2719-20. Plate XLIX. The Watermelon (Citrullus vulgaris, which see) is a native of the warmer parts of Africa. It is a tender annual. It has been cultivated from prehistoric times. It reaches its highest development in warm and sunny climates.

There is probably no country in which the Watermelon is grown to such a large extent as in the United States. All the central and southern states can grow Watermelons to perfection, and there are some of the shortseasou varieties that thrive well as far north as Gntario. It is always important that light and "quick" soils be selected for the Watermelon, but this is particularly true in the northern part of the country, since the plants must secure a very early start and grow rapidly in order to mature in the short seasons. It is prohable that a well-matured Watermelon raised in the North has as good quality as one grown in the south. Some persons believe that seeds from melons grown for several generations in the North give earlier and better results in the North than southern-grown seeds; but the subject yet needs further experiment. However", the Watermelon is gemerally not so adaptable to the northern parts of the country as the muskmelon is, and is not so largely grown. The Watermelon can he so cheaply grown in the South and the West, and it transports so readily, that there is practically no Watermelon growing for profit in the northern states. Nearly every home garden can grow its own supply. The seeds may be sown directly in the open ground; or, in the northern sections, it is better to start them indoors in transplant. ing boxes or on sods, as explained under Muskmelon and Transplanting. It is well, also, in the northern states, to use rather freely of some quickly available fertilizer in the hill, in order to start the plants off early. If the lands are loose and leachy and likely to lry out, or, on the otber hand, if they are hard and tend to become lurapy, it is well to make "hills" by mixing one or two large shovelfuls of manure with the earth; but it is important that this manure he short and well rotted and then very thoronghly mixed with the soil. If the manure is coarse aud not well incorporated with the soil, the hill is likely to dry out and the fertilizing elements are usually so tardily arailable that the plant does not get a quick start. The smallergrowing varieties may be planted as close as $6 \leq 8$ feet, but it is customary not to plant them closer than 8 feet either way. In the South, where general field practice ls employed, the melons are usually planted about 10 feet apart. The flea beetle and the striped cucnmber beetle are likely to be serious on the young plants. Hand-picking and thorough spraying with Bordeaux mixture and Paris green are the most available remedies. In the northeastern states, the Georgia Watermelon is chiefly known, although nearly all parts of the south grow the melon with satisfaction. Lately very large melon industries have developed in Colorado. A very large part of the United States is really well adapted to the commercial growing of the Watermelon.

The common Watermelons are used as dessert fruits. However, there is a race of hard-fleshed very firm melons that are used for the making of preserves (Fig. 2720). Since these are used for the same purposes as the true citron of commerce, they are conmonly known as eitrons. They come true from seed.
L. H. B.

Watermelon Culture in Georgia. - The Watermelon is the only important fruit or vegetable that has no valuable by-products. Its saccharine matter cannot be profitably converted into sugar, lts enormous reservoir of juice or sap refuses to he turned into rinegar or wine, as putrefactive instead of acetic or alcoholic fermentation results. For this reason, also, it does not, like the cantaloupe, produce a good brandy when distilled. Its substance cannot be successfully used in animal nutrition-serving, at best, as a mere diuretic or digustive.

Mabitat and Distribution. - Throughout the entire tertiary region of the Atlantic and Gulf states, from the seacoast to a curved line marked by the Piedmont Escarpment which sweeps diagonally southwest from Richmond to Vicksburg on the Mississippi - throughout this vast area-"the land of the long-leaf pine" (and of the wiregrass) - the Watermelon flourishes unrivaled, attaining there its serenest, fullest perfection. And of this area (ieorgia in partieniar is noted as producing not only the bulk of the crop shipped to northern trade centers, but the choicest selection as well.

To a certain limit perfection in the melon is found to directly parallel latitude - regulated and modified, of course, by the corrections imposed by isotherms, geological formation and local conditions and environment. Every mile traveled southward from New Eng. land toward this limit, which corresponds, practically, to the boundary between (teorgia and Florida on the Atlantic slope and to the Brazos river in Texas, the possibilities of the melon enlarge-its size improves, its sugar content increases, its tlavor refines and intensifies. Beyond the limit southward, deterioration again begins, progressiug with even greater rapidity than in the opposite direction, or northward from the climactic or focal "line of perfection;" so it happens that the melon of extreme South Florisa or of the Rio Grande country is little if any superion to its colder and more impassive sister of New Jersey or Long 1sland. In this the melon but follows a fixed norphological rule, prominently emphasized by many familiar products of the garden and orchard.

The "line of perfection" referred to-which, indeed, is ultimately reducible to a focal "point" of verfection -is, like the center of population, liable to change as conditions and nethods vary or improve under local development. At present this point or center may ferbaps be located with more reason at Valdosta, in South Georgia, near the Florida line, than anywhere else. Augnsta, bowever, in easteru Georgia, was formerly considered the great center of southern melon produc-tion-its very "throne of empire"-und was, for many years, noted for shipping the largest, choicest and most succulent specimens found ia the markets of the North and West.

Varieties.-Twenty years ago, and for many years previous, the tempting if rather startling announcement, "Angusta Rattlemnakes" could be seeu invitingly placarded over every progressive ice-dealer's door in all of the big cities of the land. Then crept in the "Kolb Gem," au Alabama product, somewhat superseding, though not displacing the faned "Rattlesnake" as a market favorite, and the public began to prefer the round to the oblong form, though still partial to the "striped rind."

In ante-hellum days, besides the Rattlesnake only two varieties obtained general recognition at the sonth for excellence-the Lawton and Cuba melons, with their erolved offspring-the former dark green, the latter belonging to the white or gray type (pale green rind with delicate, darker green tracery) but both ot them of oblong shape. These were in great measure gradually displaced by the Georgia (or Augusta) Rattlesnake, and it, as stated, was in turn forced to partially yield precedence to the Kolb Gem. The round or ovoid form became fully established in public favor by the later advent of the "Jones" type, which soon dominated the market, its refreshing dark green color proring particularly attractive. Selections of this strain, culminating with Duke Jones, Lord Bacon and others, have finally brought the melon up to its highest perfection, though the Girardeau innovations from Florida, such as Florida Favorite, New Favorite and Triumph, still contest their supremacy, while the older standards, as Rattlesnake, Sugarloaf, Sheephead, Scalybark and the like are by no means "back numbers."

Nor have the North and West been altogether ide in the work of development, many of the best of the recent introductions and some of the older strains coming from these sections. Indiana, for instance, gires us Sweetheart and Hoosier King; Cuban Queen, Delaware and Boss come from the Middle States; while Virginia contributes Jordan Gray Monarch.

Many points combine to form the ideal melon. The scale of excellence for the southern type is probably about as follows:

|  | Per oent |
| :---: | :---: |
| Shipping eapacity |  |
| Size |  |
| Productiveness | 15 |
| Quality | 10 |
| Earliness | . 8 |
| Shape |  |
| Color of tlesh |  |
| Color of rind, or m |  |
| Total. | 100 |

As southern melons are intended, primarily, for sale, a hard, thick rind, with firmness and solidity of flesb, is a paramount requisite, as it makes a safe shipper and long keeper.

Unfortunately, quality, which is based mainly uron a bigh sugar content, is generally inseparable from a thin rind and tender flesh-contradictory features to those requisite for a good shipper. This acconnts for the relatively inferior quality of such melons as Rattlesnake, Kolb tien and Jones, which are grown, of course, for distant markets. The metropolitan seldom realizes the supreme luscionsness which it is possible for some of the best local varieties in the South to

2719. A Georgia Watermelon.
attain unless he has been lucky enough to test them in the field. Even a Lord Bacon, the best of the shipping melons, cannot stand table comparison with Ramsay, Dixie, Jordan Gray Monarch, Kleckley Sweets, Mclver Sugar, Phinney Early or Mountain Sweet.

Shape is of minor consideration, if only ordinary syimmetry or freedom from distinct deformity is preserved, as preference appears to be divided between the round or ovoid and elongated forms, while the marking or color of rind is of still less moment; although of late a solid green tint seems to find a readier market than either the striped or "gray" marking, while an irregular, blotched surface, as with Scalybark or Mountain Sprout, though attached to good quality and size, is distinctly objected to.

With regard to color of flesh, the public is united in demanding a deep red or crimson heart, with few seeds; for white or golden-fleshed varieties have never found favor. They are generally regarded as wanting in character or insipid, although some melons of this type unquestionably attain superior quality.

Little difiference is observable between varieties in their capacity to resist disease and insect depredation. Vigor of growth depends mainly upon indiridual cultural methods and little upon variety; nor is there much marked difference in time of maturity between the differeat strains.

Of all the physical features enumerated, size and shipping capacity are by far the most important-together aggregating 60 per cent of the requisites for an ideal type. Size is aimost as necessary as resistant rind, and it is fatal to attempt to ship small melons. Results would be far better if stricter culling should be universally followed.

To summarize: For shipping purposes the following varieties may be confidently listed as superior, in the order named: Lord Bacon, Kolb Gem, and Georgia (preferably Augusta) Rattlesnake.

For table or family: Jordan Gray Monarch, Sibley Triumph and Seminole.

For early melons: Memphis, Augusta Sugarloaf and Augusta Rattlesnake.

For late melons: Boss, Scalybark and Sweetheart.
Culture. - While the Watermelon is extremely cosmopolitan and will readily accommodate itself to a variety of soils, and, particularly in its own hest region-the "Wiregrass"-will submit to an inflinity of rough and unscientific treatment without rebelling, yet a warm, light, gray, sandy soil is its delight, e:specially when supplemented by a strong clay snbsoil that will daily
yield its modicum of moisture, little by little, when called on. Like the cat and the grape, the melon cannot bear "wet feet." Still, the soil should not he too dry. Sufficient capillarity must exist to keep the roots of the plants well supplited with their proper amount of mois-ture-though not enough to evaporate the entire reservoir of water in the subsoil into the atmosphere. A soil too rich in humus is not desirable. Sufficient nitrogen for its use can be supplied artificially where it does not exist naturally. A surplus nay, and generally does, produce larger melons, but at the expense of quality. They will prove soft, watery and insipid-poor shippers. and with a small percentage of sugar. Therefore. an jdeal location for a melon plat on a small seale will be fonnd on the site of an abandoned cowlot, or an old garden spot. "Second bottoms"-the accumulated detritus of hillsides-serve admirably, bat creek bottoms or heary muck of any sort would be no more admissible for the melon than for grapes or peaches.

Rotation of crop area is all-important. Never should two crops of melons occupy the same plat with an interval of less than three years between them. In that time, insect depredators, attracted by the first melon crop, will probably have become exterminated, and the drain from the soil of specific plant-food (especially potash) will also have been, to a great extent at least, made good.

Preparation of the land should be thorough, but not necessarily deep. The roots of the melon extend quite a distance under ground laterally, bat close to the surface. The deeper the land is broken, the deeper the roots will be induced to penetrate, disturbing their normal halit and producing surplus vine at the expense of fruit. But because shallow plowing is permissible, for that very reason the surface pulverization should be thorough and effective. What is saved on the sulsoller should be expended on the harrow. After breaking, two harrowings, one with a cutaway, the other with an Acme harrow, shonld follow. This leaves the plat in excellent condition, expecially if a crop of cow-peas has been grown on the land the previous year, as is always advisable.

The richer the soil or the bigher the fertilization, the more luxuriant will be the resulting growth of vines. Hence, the distance apart at which the "bills" "hould be lorated must correspond. On very rich land 12 feet apart each way is none too much: indeed, many growers prefer this distance even on poor land. It is entirely a matter for individual control. Probably $10 \times 10$ feet is the distance most frequently employed, and in no case should it be less than $8 \times 8$, and this very rarely. Whatever the distance, the land should be checked in squares, locating the hills equidistant in hoth directions.

Whatever the distance adopterl, the plat, after its final "freshening up" with the harrow, is "laid off" with cross furrows made by a light "scooter" plow. Then, in one direction, with a wide "shovel" plow, an opening furrow is run in which the fertilizer is drilled and thoroughly mixed with a scooter-two trips to the row-on which four furrows are next "listed" with a turn-plow, thus forming the bed for planting, which will warm up sooner than the surrounding soil. The "middles" are broken out later.

Many growers still eling to the obsolete practice of dragging up the dirt with a hoe into individual hills at the intersection of the furrows, and therein concentrating the manure, as in garden squash culture, instead of employing the more nodern and economical "continuous beds." Where compost is used on a small scale this may be excusable; but it is not only preferable, but on a large scale necessary, to drill commercial fertilizers.

A crop of cow-peas the previous year is the best preparation that can be given an area inteuded for melons. It leaves the soil well stored with nitrogen, light, porous and easily worked. In midwinter or early spring, according to latitude, the manure, if commercial fertilizer is employed, should be put in; compost or stable droppings sooner, to insure partial decomposition by planting time. Stable manure, however, is always variable in its content of plant-food, and therefore for more reliable results commercial fertilizers are preferable, particularly when operations are conducted
on a large scale. The following formula will he found to be well adapted to the average soil:

Nitrate of soda......................................... 100<br>High grade superphosphate.. 1.500 1.200<br>Sulfate of potash (or muriate of potash)........... उ(1)

2,400
This is rather a high grade formula and will analyze:


It may be used adyantageously at the rate of from 400 to 800 lhs. per acre; the maximum amount, however, will rarely he justified. An extra fiuish of nitrate of soda-say a thimbleful per bill-applied just after the plants are well up, will give them a good start.

Planting is performed by hand and the seed put in quite shallow. Seeds should not be spared. Field mice, pigeons, poultry, crows, cockroaches and other depredators frequently prevent a perfect stand where but few seed are used, and the time lost thereby, when replanting is neeessitated, can never be regained. Twenty seeds to the hill is not too many-preferably rather more than less-each sped pushed down separately into the mellow soil with the forefinger to the depth of an inch or less. They should on no account be placed deeper. This forces the marauling agency-whaterer it may be-to discorer and destroy each seed in succession, which gives some a chance to escape; wherras, if planted together in a mass, so soon as the pocket was found the seed would all be scattered or devoured at once. The process of planting as described seems slow and laborious, but it really takes much less time than

2720. The Preserving Watermelon. commonly known
as "Citron."
its details indicate. On dry soil, during a time of drought, it is sometimes necessary to put a "hoe-dab" of earth on each hill, after planting, to serve as a mulch and to induce germination. This is remored before the cotyledons of the young plants appear.

In addition to starting under glass and transferring to paper (Neponset) pots, in order to have the young plants ready for pernianent planting as soon as all danger of frost is over, the growth of the vine, after final transplanting, may be forced by artificial means. A section of small sewer-pipe or tiling is embedded perpendicularly in the hill and nightly draaghts of water (liquid manure, if desired, weak, with a solntion of phosphates) fed the plant. Tbis stimulates rapid growth in early spring and development of root sarfree. When acid phosphate is used in solution, the fruit is also said to increase rapidly in size, quantity and quality. Careful thinning to one or two melons per vine will also basten their growth and development.
"('bristmas" melons - should any one care for as cold chepr at that season-may be bad by selecting a thick. rinded variety, as Kolb Gem, planting late in June, handling carefully when pmlled, and storing in some dry, yielding substance, like cottonseed hulls, in a cool
cellar where the temperature is uniform and can aever droj below freezing.

After the plants are up they are at first thinned down to three or four to the hill, and subsequently to onte or at most two. One vigorons root system, well attended to, will usually succeed in extracting from the soil as much plant-food as will two, and will give a better account of it, also, on "settling day."

Cultivation is commenced early and should cease early. It is effected with either the five-toothed or eleven-toothed cultivator or with scooter and "heelserape," and should invariably be shallow, except for the first plowing after planting, when the middles are customarily "run out" with a turn-plow or "twister." "Laying by," or the cessation of cultication, shonld occur as soon as the vines cover the gronnd well. Tines are never turned at any stage, if it can he aroided, and under no circumstances after "laying by:" Nor is the land ever plowed in the early forenoon. To prevent the wind from rolling and fumbling the vines, a thin broadcasting of cow-peas is nswally made at the last plowing. They serve also, later, to partially shade the nelons and leave the soil in excellent condition for the next crop.

Marketing. - Large areas for shipment are always located directly on some line of railroad-if possilhe, with a spur or side-track into the plantation. The heaviest servitudp attached to melon culture is the initial haul, which should invariably be on springs. A mile's jolt in a springless vehicle discounts profits more severely than a thonsand-mile journey, subsequently, in a ventilatur car-the mode of shipment now almost exelnsively employed where a water route is not convenient. Profits also largely depend on two other considerations: judicions and severe culling, and the proper selection of a market. The first measure cannot be practiced too severely. Undersized fruit is unsalable, and the car-load average is invariably gatuged by the smallest melons it coutains, as the strength of a chain is neasured by its wenkest link. Nothing under sixteen pounds should ever leave the field, and it would be better to limit the minimmm weight to twenty pounds. Anything over thirty pound $\begin{gathered}\text { ranks as large, over forty }\end{gathered}$ quite large, and melons reaching fifty pounds are of the first rank, although it is not uncommon to meet with monsters of sixty, seventy or even eighty pounds, while occasiovally a phenomenally big one tops the hundred mark. It is believed that the largest melou on record (officially) attained the weight of 124 pounds. This was grown near Decatur, Ga., some twenty years ago-outside the established "Melon Belt."

In shipping, the smaller melons shond occupy the floor of the car, with the larger forming the urjer tiens - not for the purpose of deception or for the sake of appearance, but because the smaller sizes hetter withstand jolting and pressure and there is also less loss if they are injured.

As the importance of aroiding glutted markets is self-apparent, and the judicious selection of his point of shipment means to the grower success or failure, it follows that shipping associations are almost an absolute necessity - the ordinary planter who depends on his individual judgment generally "going to the wall." The "Shippers' Unions," however, are usually able to cope successfully with the problem and manage to distribute the season's cron over the country in such manner as to leave a living profit to the planter. Yet the industry is now by no means so remunerative as formerly. Supply seems to more than equal demand, and great complaint is made by the grower of excessive freight charges, while the transportation lines insist that their rates at present figures are not profitable. And yet the grower still continues to plant his melons, the railroads to haul, and the public to purehase them!

Iffections and Remedies. - Aftex a stand is once ob-tained-spontaneously and promptly-and this, when all is said, is perhaps the main problem underlyingsuccessful melon culture-its affections are comparatively few and simple. Indeed, the Watermelon may le said to be free from any vital disease, and its maladies are almost entirely confined to those resulting from the attacks of a few insect pests, as follows:

1. The melon worm (Margaronia hyalinata).-A


Plate XLIX. Watermelons.-The Orange variety
small moth, the larvie of which, light, yellowish green caterpillars about an inch long, destroy only the leaves of the Watermelon, but both the foliage and fruit of the cantaloupe or muskmelou. They are "chewers," not "suckers."
2. The melon louse (Aphis gossypii).-This attacks the foliage, only, in the form of the adult - a small winged green tly, viviparous, whose wingless progeny attain maturity in about a week from birth, and begin to reproduce.
3. The stripel cucumber beetle (Diabrotica vittata). -A siuall black and yellow-striped beethe, a quarter of an inch long, appearing in spring and attacking the young plants as they emerge from the ground, its larvo at the same time destroving the roots.
4. The flea beetle (Crepidodera cucumeris). Diminutive, like all of its kind, but very active, feeding on the young plants in spring, after maturing under rubbish and stones. The adult insect eats the upper surface of the leaves, in irregular patches, and the larvo are said to burrow their way through the interior of the leaf structure under the smrface.
Remedies: The commercial grower is generally prepared to accept the fact that none of these pests is going to neglect him, and therefore makes his preparations to combat all, separately and collectively, anl so plans his schedule as to cover the entire list. The following is a detail of the operatious advised:

1. Apply a pinch of nitrate of soda to each hill as soon as the young plats are up to insure full vigor and power of resistance to all enemies as they arrive upot the scene.
2. For the melon worm, striped cucumber beetle and flea beetle, spray with Paris green-4 ounces to 50 gatlons of water-for two or three sprayings, at intervals of a week spart.
3. Spray intermediately, at intervals of a week (midWay between the arsenite applications) if the melou louse is found to have located on the plants, with a 1 to 20 mixture of kerosene and water (using Weed kerosene attachment to sprayer) or with kerosene emulsion, same strength. Whale-oil soap, 1 lb. to the gallon, may be substituted for the kerosene treatment in ordinary cases, but when obdurate resort must be had to carbon bisulfide, a teaspoonful to the bill, in box-tops, clamshells or cheap ressels of any kind, under canvashooped covers. This remedy is unfailing, but somewhat troublesome, and is only justified when the commercial grower is fighting desperately for his crop and lirelihood. A detail of the methods of preparing the remedies here suggested may be olitained from the article on Insecticides, in Vol. Il of this work, which see.

Hugh N. Starnes.
WATSÒNIA (Sir Wm. Watson, M.D., 1715-1787, electrician and professor of botauy at Chelsea). Iriddecer. A genus of 16 species of tender bulbous plants, one from Madagascar, the others from the Cape of Good Hope. They bloom from July to September and have scarlet, rose or white 6 -lobed flowers, with usually a bong, slender tube which is bent near the base. Watsonias are rery much like Gladioli, having the same kind of a corm, the same sword-shaped, rigid lvs., the same kind of a spike and the same season of bloom. It is, therefore, a great mistake to suppose that they are suited only to greenhouse cultivation. The main differences between Watsonia and Gladiolus, from the horticultural as well as botanical points of view, are the longer tube and regular fluwer of Watsonia; three of the six perianth-segments in Gladiolus being usually different in size, shape and direction of spread. An important botanical difference is that the style-branches of Watsonia are simple, while those of Gladiolus are bifid.

Great interest has been aroused in Watsonias recently by the introfluction of the "White Watsonia," known to the trade as W. Ardernei. The plant might be roughly described as a white Gladiolus. It is likely to receive consideralle attention within the next few years. It grows 3 or 4 ft . high, strong specimens being branched, and bears about a dozen fls., each $21 / 2-3$ in. long and about 2 in. across. The purity of its color and its value for cutting ruake it of exceptional interest to florists. There are other white-fld. forms of Watsonia, but none of
them :eem to be in the American trade. Pure white is the exception in the iris family, while it is a common, if not dominant, "color" in the lily and anaryllis families.
The White Watsonia bas acquired so many names that a short bistorical sketch of the plant is desirable. All the stock in the trade at preseut is supposed to be descended from plants cultivated by 14. W. Arderne, of Cape Jown. The original hull, was found somiles away in a peat bog duongst thousands of the common pink-fld. kinl. In Get., 1892, Mr. Arderne hal 400 spikes in blom and in March, 1893, some of his plants were pictured in The Garden under the name of Watsonia alba. Howerer, a pure white-fld. form had been previously foumd near Port Elizabeth and a bulb sent to J. O'Brien, of Harrow, flowered in England in 1889 and was then fully described as $H$. iridifolia, var. O'Briemi, the name adopted in this work. In the recent discussions of the plant the fact has been overlooked that T. S. Ware, of Tottenham, cultirated a white variety in 1880 , it being figurel in The Garden for that year as I'atsonia alba. A nearly white form was cultivated in England as early as 1801 , but the tube was pinkish outside and there was a rosy spot at the base of each perianthsegment.
William Watson, of Kew, was the first to emphasize the close horticultural parallel between Watsonia and Gladiolns and to urge the whole group upon the attention of the plant-breeder. This suggestion, coming from the man who may be said to have created the molern Cape Primrose or Streptocarpus, should result in another fine race of hybrids hefore many years. However, the Watsonia "bulb" is not so easily and safely stored as that of Glarliolus.
Generic characters: periantl with long, curved tube, the lowest and narrowest part ascending a short distance above the calyx; the tube is then dilated into a eylindrical or funnel-shaped portion which bends down, usually at a sharp angle; segments equal, oblong, spreading; stamens unilateral, arcuate, inserted helow the throat of the tube. Baker, Handbook of the Irider. Flora Capensis, vol. 6.

INDEX.

| alba, 4. | coccinea, 6. | iridifolia, 4. |
| :--- | :--- | :--- |
| aletroides, 1. | densitlorth, 5. | Meriana, 3, |
| angusta, 2. | hulgens, 2. | O'Brieni, 4. |
| Ardernei, 4. | humilis, 7. | rosea, 8. |

A. Ipper part of tube cylindrical or narrovily funnel-shured.
B. Length of perilluth-seqments $1 / 3-1 / 2 \mathrm{in}$.1. aletroides BB. Lenath of perionth-segments $3_{4}-1 \mathrm{in}$.
C. Stems tall, 3-1 ft., often branched. D. Spikes lax, 12-20-flel.
E. Fls. sedrlet.............................................. EE. F'ls. rose-red or white.
F. Lis. $1 / 2^{-3}$ in wide: spikes about 1~-flı....................3. Meriana
FF. Le's. wider: spikes denser. about 20 -fld. ................4. iridifolia
DD. Spikes dense, 30-50-f7d...........5. densiflora cc. Stems shorter, mostly 1-2 ft., unbranched.
D. Tube $1 \frac{1}{2}-2$ in. long..............6. coccinea DD. Tabe $1_{1}^{1}-11 / 2$ in. long ..............7. humilis
AA. I'pper part of tube skort and broudly
funnel-shaped............................... rosea

1. aletroides, Ker. Bright scarlet or pale pink-fid. species, $1-2 \mathrm{ft}$. high, remarkable for the short perianthsegments: stem simple or branched: spikes $\mathfrak{f} 1-12$-fd. B.M. 533 (rosy scarlet, splashed with cardinal, the inner segments white at the tip).
2. angústa, Ker. (IV. ividifolia, var. fúlgens, Ker.). Scarlet-fll. species distinguished from W. Meriana by the color of the fls. and by the shape of the perianthsegments. In W. angusta the segments are decidedly acuminate, while those of W. Meriana are more nearly oblong and come to a point suddenly. Also the style of H. angusta reaches to the tip of the perianth-segments, while in Wr. Meriana it does not. B.M. 600. Gn. 17:230 (as IV. Meriana, var. coccinea), 44:923.
3. Meriana, Mill. This seems to be the dominant species of the genus and hence the most rariable and the one most interesting to the plant-breeder. In its widest sense it includes $W^{\text {. }}$ iridifolia, but for horticultural purposes it will be convenient to consider the latter a distinct species. W. Meriana is best restricted to the commonest type at the Cape, which is a rose-fld. species 3-4 ft. high, the stem usually branched, Ivs. $3 / 2-3 / 4$ in. wide and the spikes $12-20$-fld. This is the plant figured in B.M. 418 as Antholyza Meriona. Gn. 17:230 is more typical in color. The white-fld. form, which is rarer in nature, is treated under $\mathbb{F}$. iridifolia. Baker says that there are scarlet-fld. forms of this species, but he gives them no name, and it is probable that all sucb should be referred to W. angusta.
4. iridifolia, Ker. This is treated by Baker as a variety of $W^{+}$. Meriunu characterized by broader lvs, than the type: fls, closer and more numerous, white or pink. ish. For horticultural purposes it will be convenient to treat it as a distinct species and restrict the name to the pink or rose-colored type.

Var. O'Brleni, N. E. Br. (W.ilba, Hort. W. O'Bremi, Mast. W. iridifolia, var. alba, Wm. Robinson. W. Ardernei, Hort. W. Meriana, var. alba, Hort.). White Watsonia. A variety with pure white fls. discussed above. Gn. 17:230; 43, p. 229; 51, p. 284. J.H. 111. $29: 219$. G.C. 111. 11:305; 19:143. A.G. 20:573.
5. densiflòra, Baker. This very distinct and handsome rose-colored species more nearly resembles a gladiolus than any other by reason of the density and reg. ularity of its pyramidal inflorescence. Stems unbranched, $2-3 \mathrm{ft}$ high: spikes a foot long: fls, bright rosy red. B.M. 6400. - There is a choice rariety with pure white fls. Var. álba, Hurt., was introduced as early as 1891.
6. coccinea, Herb. This slowy scarlet-fld. species differs from W. Meriana in its stem being shorter and unbranched, the spikes fewer-fld. and the styles a trifle longer. Stem 1 ft . high: spikes $4-6$-fd. B. M. 1194 ( W . Meriana variety).
7. hùmilis, Mill. This specips bas rose-red fls, apparently the same size and color as $\boldsymbol{W}$. densiflort but only $4-6$ in a spike and the stem only a foot or so high. B.M. 631.-A variegated form figured in B.M. 1193 as W. roseo-alba has a spike of 8 flesh-colored fls. with broad bands and splashes of scarlet.
8. ròsea, Fer. Rohust rose-colored species, growing 4-6 ft. high and the fls., though fewer than those of W. densiflora, are perhaps capable of greater size. Spikes about 15 -fld. B.M. 1072.
W. argúta. Hort. John Saul, 1893, is presumably a catalogre error, as no such name appears in Baker's latest monngraph
W. M.

WATTLE. See Acaciu.
WAX BERRY. Symphoricarpus. W. Flower. See Hoya. W. Palm. Consult Diplothemirm. W. Plant. Hoya carnosa. Waxwork. Celastrus scandens.

## WAYFARING TREE. 「Tburnum Lantana.

WEATHER PLANT. Ste Abrus.
WEEDS. It would have heen a sorry thing for agriculture if there had been no weeds. They have made us stir the soil, and stirring the soil is the foundation of good farming. Eren after we have learned that crops are benefited by the stirring of the land, we are likely to forget the lesson or to be neglectful of it unless the weeds constantly remind us of it. Necessity is always the best schoolmaster; and of these necessities, weeds are amongst the chief.

A weed is a plant that is not wanted. There are, therefore, no species of weeds, for a plant that is a weed in one place may not be in another. There are, of course, species that are habitnal weeds; but in their wild state, where they do not intrude on cultivated areas, they can scarcely be called weeds. The common pigweed and the purslane are sometimes vegetables, in which case potato plants wonld he weeds if they grew among then.
The one way to destroy weeds is to practice good
farming. Judicious tillage should always keep weeds down in cultivated lands. In idle lands weeds are likely to be a serious nuisatsce. In sod lands they are also likely to take the place of grass when for any reason the grass begins to fail. The remedy for weeds in grass lands, therefore, is to secure nore grass. In order to to so, it may be necessary to plow the land and reseed. In some cases, however, it is only necessary to give the land a light surface tillage, to add clean and quickly arailable fertilizers and to sow more grass seed. This is the fundamental remedy for weeds on lawns. If such weeds are perennial, as dandelion and plantain, it is advisable to pull them out; but in order to keep them ont, a stiffer sod should be secured. The annual weeds that come in the lawn the first year are usually destroyed by frequent use of the lawn mower.
Foul lands may usually be cleared of weeds liy a sbort and sharp system of retation of crops, combiued with good tillage in some of the erops of the series. When the land for any reason is fallow, -as when it is waiting for a crop,-surface tillage with harrows or cultivators will serve to keep down the weeds and to make the land clean for the coming crop. Often lands that are perfectly clean in spring and early summer become foul in the fall after the crops are removed. Cleaning the land late in the season, therefore, may he one of the most efficient means of ridding the land of weeds. Coarse and rough stable manure, which is not well rotted, may also be a conveyer of weerl seed. The seeds of weeds are sometimes carried in the seed with which the land is sown, particularly in grass and grain seeds.
It does not follow that weeds are always an eril, even when they are abundant. In the fall a good covering of weeds may serve as an efficient cover-crop for the orchard. They are likely to entail some extra care the next rear in order to prevent them from gaining a niastery, but this extra care benefits the orchard at the same time. It is, of course, far better to sow the covererop oneself, for then the orchardist secures what he wants and of the proper fuantity and at the right season; but a winter cover of weeds is usually better than bare earth.

From the above remarks it will be seen that weeds are scarcely to be regarded as fundamental difficulties in farming, but rather as incidents. In the most intensice and careful farming the weeds bother the least. There sbould be a careful oversight of all waste areas, as roadsides and racant lots. Experience las shown that the greatest difficulty arises on commons and waste land, not on farms.

Weeds are often troublesome in walks, particularly in those make of gravel. If the walk were excarated two feet deep and filled with stones, rubble or coal ashes, weeds cannot secure a foothold. It is particularly $\mathrm{im}-$ portant that gutters be not laid directly on the soil, else they become weedy. There are various preparations that can be applied to walks to kill the weeds, although, of course, they also kill the grass edgings if carelessly applied. Strong lurine, applied hot, is one of the best ( 1 lb . of salt to 1 gal . of water). There are also preparations of arsenic, vitriol, lime and sulfur.
L. H. B.

WEEPING TREES. Consult Trees.

## WEIGELA. Referred to Diervilla.

WEST INDIA RATTLE BOX. Crotularia retusa.

## WESTERN CENTAURY. Mesperochiron.

WESTRINGIA (J. C. Westring, physician and author). Labidte. An Australian genus of 11 species of shrubs with entire whorled leaves and solitary, 2-lipped, white or purple-spotted flowers in the leaf-axils or rarely in terminal heads. Calyx bell-shaped, 5 -toothed; corolla with a short tube and dilated throat: the upper fip flat and broadly 2 -lobed, the lower 3 -lobed: fertile stamens 2: staminodia 2, short.
rosmariniformis, Sm. Victorian Rosemary. A bushy sbrub with the branches and under side of the leares silvery white with appressed hairs: 1vs. in whorls of 4 ,
oblong-lanceolate to linear, $1 / 2-1$ in. long: fls, white, axillary, almost sessile; calyx 3 lines loug; corolla not twice as long as the calyx. Sandy hills, near the seacoast. Australia, - Offered in S. Calif.
F. W. Barclay.

WEST VIRGINIA HORTICULTURE (Fig. 2721), like that of most other states, had its beginning as a side issue of the nsual operations of the farm. In fact, even to-day it is considered as a sort of complement to graingrowing or stock-raising in most sections of the state. In some localities where towns have sprnng up as the result of coal, oil or railroad operations, the demand for vegetables and small fruits has been largely met by local producers. The market-garden work, aside from the growing of watermelons, peas and tomatoes, is such as has been encouraged by the growth of the neighboring towns. Melon-growing, which has an extensive acreage along the Ohio river bottom, is the only branch of vegetable-gardening which seeks markets outside the state. What has been said of vegetahle-gardening applies equally well to small-fruit culture, but the tree fruits-notably apples and peaches-fall under quite a different category.

The apple industry in West Virginia is chiefly of two characters and has two regions, - the lower, and the northern Ohio valley counties of the state. The former region gives considerable attention to the production of early apples for the northern markets. Several early barvest varieties are grown, Yellow Transparent, Red Astrachan and Pomme Royal predominating; these are followed by Maiden Blush, Grimes Golden and Rome Beanty. Because of the favorable climate in this region, the production of this class of fruits has grown to be a profitable, although not a large industry. The northern Ohio river valley counties, including what is known as the Northern Panhandle, and the counties in the eastern part of the state, bordering on the Potomac, form the present areas for the commercial growing of winter apples.

The Hancock county orchards (nortbern end of Panbandle) are unique in storage facilities. Here nearly every grower with any considerable acreage (fifty or more acres) is provided with a storage-house, so that in seasons of greatest fruit production there is sufficient capacity for storing the crop. Previous to the fall of 1896 all the houses were constructed of stone and provided with ice chambers for maintaining artificial cold. In 1896 one house was built of wood on the principle of confined air between walls constructed of wood and paper. In this bouse, which has been used two years, no ice is carried, and good resnlts have followed. These bouses are of varions capacities, ranging from 2,500 up to 35,000 barrels.
The plan most in vogue is to have the fruit remored from the trees by expert pickers, placed in harrels in the orchard, headed and then transferred immediately to the storage-honse. In general, the barrels are stored in tiers on the side. They are left in this position until shipping season arrives, which usually begins in March or early April and extends well into May. Before shipment each barrel is opened, the contents placed in a sorter and the fruits earefully assorted and graded. The barrels are stenciled with the grower's trade-mark and with the grade of the fruit. Through a series of years these practices have been strictly adhered to and as a result the fruit, the bulk of which goes sonth and west, has a repntation in the markets to which it finds its way. This region along the upper Ohio is peculiar also in possession of a variety suited to its climate and to the practices of the growers. This is known as the Willow Twig, an apple of good size, good appearance and fair quality, a long keeper and a good cooker. Willow Twig and Ben Daris yield the greater part of the crop of this region, althongh among varieties of minor importance the Rome Beauty and Bentley Sweet are some of the best.
The varieties chiefly grown in the eastern counties differ quite as mnch from those of the Hancock region as do the varieties of New York. In the eastern counties York Imperial or Johnson Fine Winter is the variety upon which most dependence is placed. It is not only a snre cropper, but is a good market variety, possessing bigh color with good flavor and fair keeping
qualities. It is one of the ten varieties included by Taylor in his export list. This variety, placed in store in October, can he moved from the cold room in Fcbruary, with little or no shrinkage from loss of moisture and an equally small loss from decay. Ben Davis here, as well as in Hancock connty, forms a valnable second, although the crop is better in the northern than in the eastern counties. Among fall varieties for both sections of the state none exceeds the Grimes Golden. This apple, as well as the Willow Twig, is a native of the

2721. West Virginia, to illustrate the pomological regions.
state. Another apple belt in which young orchards give mnch promise lies at the extreme southern border of the state,
Peaches thrive in various sections of the state. In fact, hardly a locality is withont its supply; bnt strange to say, in many instances the trees are clance seedlings, and the quality of the fruit is correspondingly low. In the five connties bordering upon the Potomac, howerer the industry has grown to important commercial proportions. The orchards under the control of the Allegheny Orchard Company aggregate nearly 150,000 trees. Besides this there are numerons private enterprises with orehards ranging from 500 to 5,000 trees. The most successful orchards are sitnated npon the first terrace of the mountain, usually three to five miles from the Potomac, and at an elevation of from 900 to 1,500 feet above tide. The soil is gravelly in nature, resulting from the breaking down of shale and sandy rocks. The methods of the Orchard Company above mentioned mark a new era in the manner of handling the peach crop. Instead of sending their product to some commission honse to be again scattered over the country to the small towns, this company has a head office in the city of Cumberland, and from there, as a distributing point, peaches go direct to the dealers in the small towns and cities, the commission of the middleman is saved, the retailer gets a fresh product direct from the orchard, and the consumer is provided with a better article.
In West Virginia, where lack of transportation is often an obstacle, canneries are valuable as furnishing a market for horticultural products. In the city of Wheeling there are three extensive pickling and canning factories where large quantities of cucumbers, tomatoes and onions, as well as various fruits, are prepared for winter consumption. In Martinsburg, in connection with the cold storage bouse already mentioned, a modern cannery of large capacity is operated. Which furnishes an annual market for the products of both orchards and gardens. Besides these there are several smaller concerns which confine their packing to one or at most to two vegetables, tomatoes heing the favorite.

It becomes evident that a state with the limited territory of West Virginia must have some other compensating feature to render it capable of such varied products. A glance at its geographical location, at the raried altitudes and exposures, is sufficient to account for the variety of climate, Persimmons, papaws and watermelons thrive on the lowland, crunberries on the monntain glades, and in the higher altitudes the huckleherry tinds a congenial home. Huckleberries are annually gathered in great quantities both for domestic uses and for shipment. Certain local areas are expressly adapted to the cnltivation of sweet cherries, others to pears of the better sorts, and nearly every corner of the state furnishes ideal conditions for the blackberry and dewberry -the Lincretia dewherry being a native.

The monntainous character of the state has been a barrier to cheap railroad construction, and as a result facilities for moving perishable products are not good, and to-day lack of railroad facilities is the greatest check to commercial horticulture. L. C. Corbett.

## WHAH00 or WINGED ELM is Ulmus alata.

WHEAT. See Triticum.
WHEAT, INDIA. F゙agopyrum Tataricum.
WHIN. See Illex.
WHfPPLEA (Lieut. [afterward General] A. W. Whipple, commander of the Pacific Railroad Expedition from the Mississippi to Los Angeles in 1853-54). Surifragàcear. A genus of one species, a trailing subshrub with clusters of small white fls. which soon become greenish. The clusters have $4-9 \mathrm{fls}$ and the petals are a little more than a twelfth of an inch long. The plant blooms in March and April and is native to woods in the Coast Ranges of Calif. W. modésta, Torr., was offered in the East for western collectors in 1881, but the plant is horticulturally unknown. It is fully described in Bot. Calif. and in Jepson's Flora of Western Middle California.

## WHITANIA. Catalogue error for Withunia.

WHITE ALDER. Sometimes applied in America to Clethra ulnifolit. White-and-Blue Flower is Cuphea Llavea. White Cedar. ('hamecyparis spharoidea. See also Thuyt. W. Cup, Vierembergin rivuleris. W. Hellehore. Veratrum. W. Thorn, Cratapgus. Whiteweed. Chrysanthemum Lencunthemum. Whitewood. Tuliptree aud Liuden (Liriodendron, Tilia).

WHITFIELDIA (after Thomas Whitfeld, intrepid naturalist who made several explorations into tropical western Africa and brought back many choice plants). Acanthaceo. A genus of 2 species of tropical African herbs, one with white, the ather with brick-red flowers. The latter is a mshy evergreen plant with numerous hranches terminated by racemes of about 8 dull red fls. each an inch long. The calyx and corolla and often the large bracts are all colored alike. This species has been considered a desirable stove plant, and the first specimen known to cultivation blomed from October to Marel. It is, however, practically unknown in America. It has been catalogned in the American trade, but seems to be little known.

Generic characters: calys 5 -parted; segments colored, ohlong or lancenlate; corolla-tulie swelled almost from the base, or slender and cylindrical below and abruptly inflexed above, widening into a bell-shaped throat; lobes 5 , avate or oblong-lanceolate; stamens 4, didrnamous.
lateritia, Hook. Tender, evergreen, red-fld. subshrub about 3 ft . high: 15 s , opposite, entire, ovate or oblong ovate, wavy: corolla between bell- and funnel-shaped. Western Trop. Afr. B.M. 4155 . F.S. $1: 36$.
W. M.

WHITLÀVIA. See Phacelia.
WHITLOW GRASS. Draba.
WHITLOW-W0RT, See Paronychia.

WHORTLEBERRY. See J'accinium.
WIDDRINGTONIA (Capt. Widdrington, formerly Cook, who traveled in Spain). Conifere. W. Whytei, M. Wood, is a coniferous tree from southeastern Africa, probably not bardy $N$. It grows at an altitude of 5,000 to $7,000 \mathrm{ft}$. on Mt. Milanji in Nyassaland and is known as the Milanji Cyrress or Cedar. Seedlings of it were first cultivated in 1894 at Kew, and plants have recently been offered in C'alif. According to Davy, it is proving to be quite hardy near san Francisco. The wood is dull reddish white, strougly aromatic, and locally used for furniture and for doors and windows. The tree attains a maximum height of 140 ft ., with a girth of $51 / 2 \mathrm{ft}$. at a point 6 ft . ahove the ground, the trunk being clear for 40 ft . The species has glaucous, linear, juniperlike foliage and a cone smaller than a chestnut and longer than hroad. Widdringtonja is considered by Bentham and Hooker as a subgenus of Callitris. Franceschi, however, reports that it has proved quite delicate to raise in S. C'alif.

WIGANDIA (Johannes Wigand, Pomeranian hishop; wrote on plants in 1590). Hydrophyllacea. About 7 species of tall, coarse perennial berbs or subshrubs wative to mountainous regions from Mexico to the Argentine Republic. The fls, are 5-loled, mostiy violet, I-1/2 in. across and borne to the number of 30 or more in lax, terminal, cymose panicles. Wigandias are chiefly valned as foliage plants for subtropical bedding, hecause of their very showy character. Their leaves are covered with stinging hairs, similar to nettles. Many large specimens may be seen in California, but the plants are considered to be rather coarse and straggling.

2722. Wigandia Caracasana ( $\times 3 / 4$ ).

They are generally raised from seed every year, the seed being started indoors as early as January. The plants attain a beight of $6-10 \mathrm{ft}$. in a single season, They are unsatisfactory greenhouse plants, as they do not grow vigorously indoors. The roots may be kept over winter in a frostless place and stock may be secured in spring by euttings.

Wigandias have large, alternate, wrinkled 1vs, with
doubly crenate margins and lax, terminal, cymose panicles, the branches of which are 1 -sided spikes or racemes: calyx-segments linear; corolla broadly bellshaped, with a short tube and 5 spreading lobes; stamens 5, usually exserted: styles 2, distinct at base: capsule 2 -valved: seeds small and numerous, pitted-wrinkled.

The species of Wigaudia are endlessly confused in current reference books, as well as in the trade, and Index Kewensis reflects the general perplexity. The following actount is based upon Andre's revision of the genus in R.H. 1861:371, with an important change in the name of one species which requires a somewhat tedious explanation. In respect to W. wrens, André follows the previons revision by Choisy in DC. Prod. 10:184. The name Hrigandia urens was first used by Kunth, who applied it to a Mexican plant. Before this, however, another plant of the same family but a native of Peru had been called $\Pi$ yhtrolea urens. Now when Choisy came to monograph the whole family he transferred Hydroleu urens to the genus Wigandia and called it Wigandia urens, Choisy. He, therefore, had to invent a new name for the Mexican plant, and this be called Wigundia Kunthii. Choisy's action would be approved by the radical school of American botanists, but not by the international rules of nomenclature known as the Paris Code of 1867. Hence it is necessary to give the Peruvian plant a new name, and it is here called IF. Permeiant. The "common" or English names suggested below may he convenient in explaining the difficulties of the genus. (Kunth=HBK.)

```
A. Color of fls. lilac or violet.
    B. Spikes 1-sided but 2-runked, the
        fls. pointing in two directions.
        C. Plant with rusty hairs......... macrophylla
        cc. Plant without rusty hairs....... Peruviana
        BB. Spikes 1-sided but not z-ranked,
            the fls. all pointing in one direc-
            tion.
        0. Capsule densely hairy.......... urens
        oc. Cupsule slightly loary-pubes-
            cent .............................
        Caracasana
```


macrophẏlla, Cham, \& Schlecht. Large-leayed Wigandia. Tender Mexican perenuial plant, attaining a height of 6 ft , or more in a season when treated as a subtropical bedding plant: plant covered with two kinds of hairs, long white, stiff, spreading, prickly ones and short rusty hairs: only the lower surface of lys. covered with a thick, white felt: spikes 1-sided, 2ranked: fls. violet, with a white tube. R.H. 1861:371.The above is Andrés conception of the species, but some writers wonld make it a variety of $W$. ureus, Kunth. The Ivs. attain nearly 3 ft . in length under perfect conditions. Lvs. oval-elliptic, base more or less heart-shaped.

Peruviàna ( W. ùrens, Choisy, not Knuth.). Peruvian Wigandia. Tender Peruvian subshrub, distinguished by the absence of rusty hairs and by the 2 -ranked spikes of violet flowers. Very hispid with long, stiff, spreading hairs: lys. $5-6 \mathrm{in}$. long in their native place, ovatecurdate, covered with a white felt below. R.H. 1867, p. 470 (same as N. 4:208; doubtful).
ürens, Kunth, not Choisy (Wr. Kienthii, Choisy). Mexican Wigandia. Tender Mexican subshrub, distinguished by its 1 -sided but not 2 -ranked spikes of violet fls. and densely hairy capsule. Very hispid: Irs. ovatecordate, pilose on both sides, rusty hairy above.
Caracasèna, Kunth. Veneztelan Wigandia. Fig. 272.2. Tender Venezuelan suhshrub, distinguished by its 1-sided but not 2 -ranked spikes which are revolute at the apex and hy the capsule which is merely boary. pubescent. Hairy: Irs. elliptic-cordate, hairy on both sides, rusty-hairy above: fls, pale violet or lilac. B.M. 4575 (adapted in Fig. 2720). B.R. 23:1966. F.S. 8:755 (page 17). Gn. 4, p. 503; 8, p. 198 . R.H. 1859, p. 653. (The first three pictures are authentic. - The Irs. are longer and more acute than those of $W^{Y}$. urens. It is probable that the plants cult. under this name are really $W^{\text {. }}$. macrophylla. André found it so in 1861, and the trade is conservative about changing names.

Vigieri, Carr. Imperfectly described species of unknown nativity. Carriere merely said it was a silvery plant instead of somber and glutinous "like W. C'aracusana" (by which he perhaps meant Wr.macrophylla). Nicholson says the ths, are lilac-blue, passing through vinolas red to fawn-color before fading. In the American trade the red color of the tls. is considerid distinctive. N. $1: 209$.
W. M.

WIKSTREMIA (after a'Swedish botanist). Thymeledicer. W. pruciflowe is offered hy importers of Japanese plants. "From its bark the celebrated Japanese copying paper is made." Wikstramia is a genus of about 20 species of trees or shrubs native to tropical and eastern Asia, Anstralia and the Pacific islands, Lrs. opposite, rarely alternate: fls. hermaphrodite, in terminal racemes or spikes; perianth-tube long; lobes 4, spreading; stamens 8 , in 2 series; filaments short; dise of 1-4 scales: ovary villous, I-loculed; style short; stigna large, globose: fr. fleshy and naked or more or less included in the base of the perianth.
canéscens, Meissn. (W. pauciflora, Franch. \& Sar.). Sinall shrub, 1-3 ft. high: lvs. 1-3 in. long, thin, alternate and opposite, oblong-lanceolate: perianth 3-4 lines long: fr. silky. Hirnalayas, Ceylon, China.

WILDER, MARSHALL PINCKNEY (Plate XLI), distingnished amateur pomologist and patron of horticulture, died at his home near Boston, Dec. 16, J886, in his eighty-ninth year. He was born at Rindge, N. H., Sept. 22, 1798. His inherited love of conntry life soon showed itself, aud at the age of sixteen he chose farm work in preference to a college course. At twenty-seven he moved to Boston, where be was long known as a prosperous merchant and president of many societies and institutions. His active interest in horticulture may be dated from 1832, when he purchased a suburban home at Dorchester, where be lived for more than balf a century. His pear orchard at one time contained 2,500 trees, representing 800 varieties. During his life he tested 1,200 kinds of pears and in 1873 be exhibited 404 varieties. He produced several new pears. In 1844 be introdnced the Anjou. He imported many fruits and flowers new to America, and from 1833 to the end of his life he was constantly contributing to the society exhibitions the products of his garden. He carried a camel's hair brusb in his pocket and was always hybridizing plants.

He delighted in floriculture, and his camellia collection, comprising at one time 300 varieties, was the best in America. He raised many new kinds of camellias, though be lost 500 seedlings by fire. His Camellia Wilderi he sold to florists for $\$ 1,000$. He also had a notable collection of azaleas. As early as 1834 he produced a double California poppy. Amoug the many floral novelties which he was first to import, eultivate or exhibit in America were Diervilla rosea (1851), hardy kinds of Azelea mollis (1874), Cissus discolor (1854), "the harbinger of the infinite fariety of orna-mental-leared plants now so generally cultivated and admired," Clematis corulea, var. grendiflora (1811), Lilium lancifolium, var, album, the first of Japanese lilies, Gladiolus floribundus (1836), and Oncidium flexuoszm ( 1837 ), a plant of which bore ninety-seren fully expanded flowers and was the first orchid reported at any American exhibition. The Marshall P. Wikder rose makes his name familiar to a later generation.

Wilder's greatest services to horticulture were intimately connceted with the Massachusetts Horticultural Society and the American Pomological Society. Of the former he was a member for fifty-six years, and mresjdent from 1841 to 1848 . He was one of the founders of the American Pomological Society, and with the exception of a single term was its president from its organjzation in 1848 until his death in 1886.
Wilder was an organizer. He is counted one of the founders of the Massachusetts Board of Agriculture and of the Massachusetts Agricultural College, and of the ITnited States Agricultural Society (1852). Hu was president of the last from its foundation until 1857. and from 1868 until his death he was president of the New England Historic Genealogical Society. At twenty-six he was a colonel, and in 1857, after declining the nomi-
nation four times, he was elected commander of the Ancient aud Honorable Artillery Company. He was a trustee of the Massachusetts Jnstitute of Technology. At one time he was president of the state senate. In masonry he held all degrees, including the thirtythird. It is said that when Wilder was 27 there were no horticultural societies in America, and that he lised to see more than 1500 societies devoted to horticulture and kindred subjects.

In 1883 Marshall P . Wilder urged upon the American Pomological Society the necessity of a reform in the nomenclature of fruits. He tonk an active part in the great work that followed.

Wilder's personality was most engaging, being char
cultural Society $\$ 1,000$, to encourage the production of new American varieties of pears and grapes. Wilder wrote no book, but his oceasional contributions and presidential addresses make a notahle body of writings when gathered together into the bound volume presented by him to the library of the Massachusetts Horticultural Society. "The Proceedings at a Banquet given by his Friends to the Hon. Marshall Pinckney Wilder ** * to Commemorate the Completion of his Eighty-fifth Year," is a stately memorial of 116 pages published in 1883. The best account of him seems to he that by the secretary (Robert Manning) of the society, in Trans. Mass. Hort. Soc. 1887: $20-39$, from which the present article has been chiefly compiled.
W. M.

2723. A Wild Garden.
acterized by geniality, dignity, tact and conservatism. Horticulturists remember with what graciousness he met and recognized the younger men of merit at the meetings of the American Pomological Society. He was by nature a peacemaker, and in the early days when the conflicting interests of the Massachusetts Horticultural Society and the Monnt Auburn Cemetery required separation, he was an important factor in solving the complicated and delicate problem. The settlement of this difficulty laid the foundations of the unparalleled wealth of the Massachusetts Horticultural Society. Wilder was a man of habit. Until he retired from business it was his life-long practice to rise early, devote the morning to books, garden and orchard, the middle of the day to business and the evening to family and study. He was married three times and had fourteen children, only five of whom survived him. He was sitting in his chair at home and engaged in concersation when death came to him instantly.

The portrait of him in Plate XLI was considered by Mr. Wilder to be his best likeness. At his death he left the American Pomological Society $\$ 1,000$ for Wilder Medals for objects of special merit and $\$ 4,000$ for general purposes. He left the Massachusetts Horti-

WILD GARDEN, Figs. 2723-28. Wild gardening is that form of floriculture which is concerned with planting in a nature-like manner colonies of hardy plants that require a minimum of care. A wild garden is not to be thought of as a garden run wild, nor should it be confused with the promiscuous sowing of flower seeds, "No form of gardening," says Vm . A. Stiles, "gives greater and more lasting pleasure than that which aims to naturalize wild or garden plauts in positions where they will appear to be growing naturally and without the intervention of the gardener's art." A wild garden should be so planted and tended as to give "that appearance of untamed luxuriance, of careless and unstudied grace which suggests perfect freedom."
Both the idea and the name of wild gardening originated in the early seventies with William Robinson, of London, first editor of "The Garden" and author of many important books on floriculture. The idea came as a reaction against formal gardening in general and particularly the extravagant use of tender bedding plants to the exclusion of hardy herbs of less gaudy character and of simpler and less expensive cultlyation. The idea spread rapidly in England and is steadily gaining in America. It appeals to the wealthy amateur with
plenty of land and to all persons who deught in making nature-like pictures with the help of plants. It may also be in keeping in many small and humble areas. The plants in a wild garden require less care than those enltivated according to any other system. The main work is that of establishing the plants. If they are the right kind they will soon become colonies. All that remains to do is to remove brambles, thistles and other uncomfortahle weeds and occasionally check the exuhexance of the too vigorous species. On the other hand, wild gardening demands the highest intelligence and taste, close sympathy with nature, and that rare and precious quality - enjoyment of common and every-day things.

There is no finer feature of antumn landscape in America (so far as herbaceous growth is concerned) than the roadside asters and goldenrods. Yet when William Robinson conceived the idea of wild gardening, these lovely flowers were bauished from the English hardy borders. In sucb an environment they wased too strong and crowded out many slender-habited plants of delicate beauty. It seemed a pity to exclude these American plants from English estates. The important question was to find a proper environment for them. In the wild garden such plants require less care than in the hardy border, and they present nature-like effects, and are in place.

Asters and goldemrods are only two examples of the class of plants for which the wild garden was created. There are literally thousands of hardy plants from all over the world that will take care of themselves when once established in wild gardens. Many of these plants are unfit for intensive cultivation. They will never hecome general garden favorites. Some of them crowd out weaker-growing plants. Many of them have their "dramatic moment" and then lapse into the commonplace or unsightly. Others are too tall or rank or coarse or weedy for couspicuous and orderly positions. Again, many plants are insignificant as individuals but very effective in masses. There are bundreds of interesting plants that fail when measured hy the conrentional standards. Their foliage may be ill-smelling, sticky or prickiy, but usually their flowers are too small or their

2724. Silphium perfoliatum.

Allied to the Compass Plant. Both are tall herbs, excellent for wild gardens.

2725. Sacaline naturalized in a wild garden.

This hardy herb grows 8 to 10 feet high in a single season.
season of hloom not long enough. The garden gate is locked against them all.

Among our common native plants that revel in the witd garden are yarrow, Joe-Pye-weed, milkweed, rudbeckias, compass plants, sunflowers and a host of other perennial yellow-flowered composites, Bouncing Bet, hed-straw, evening primrose, St. John'swort, lupines, button snakeroot, certain lilies, Oswego tea, orange hawkweed, asters, bugbane, goldeurods, All such plauts tend to improve wonderfully when the struggle for existence is somewhat eased for them. Nor does this list exchude such treasures as the forget-menots, cardinal-flowers, blue flags, water lilies, pitcher plants and other marsh and aquatic subjects which properly belong to the moist or bog garden, though that is merely a department of the wild garden. Then there are the vines; and what wonders can be accomplished in a wild garden with wild grape, clematis, Virginia creeper, perennial pea, trumpet creeper and bitter-sweet! Think, too, of all the spring flowers and delicate woodsy things,-anemones, columbines, moss pink, Jack-in-thepulpit, bloodroot, hepatica, Solomon's seal, dutchman's breeches, ferns, trilliums and Fiolets! Evidently there is sufficient material for a wild garden composed exclusively of American plants, and naturally such material is least expensive. But the wild garden spirit is essentially cosmopolitan. Many of the exotics can lee raised from seed, for it is not necessary that all the subjects be perennial. Some of the exotic mulleins, for example, are bold and striking plants; nearly all of them are biennial, bat they resow themselves. Finally there is a vast number of rare plants that are dear to the heart of the collector, hut their names mean nothing to the uninitiated. The native shrubs and trees may also have their places in the wild garden.

While the wild garden was created to make a place for plants outside the garden proper, it cloes not excinde the garden favorites. For example, an individual larkspur, foxglore or harebell in rich garden soil often grows so tall and slender as to require staking, and stakes are alsway's objectionable. In the wild garden a lusty colony of any of these species may be self-supporting. All the leading border farorites can be used in the wild garden-ppony, poppy, phlox, larkspur, iris, columbine and the rest. The tall-growing plants that are used in the back row of horders are nearly all suit-

2726. Jerusalem Artichoke, one of the perennial sunflowers.

A nuisance in cultivated ground, but often useful in the wild garden.
able for wild gardens,-Polygonum Sachalinense (Fig. 2725), Bocconia cordata, Cimicifrgu racemosu, Heracleum, Arundo ( Fig . 2727), Rheum, bollybocks, silphiums (Fig. 2724) and jerennial sunflowers (Fig. 2726). There are only three tests which a candidate for the wild garden must pass,-hardiness, vigor and interest, for of course every cultivated plant should bave something to make it worth while.

To the many amatenrs who wish to cultivate a few colonies of flowers in a small space, the naturalizing of free-growing hardy things is especially attractive. Give the wild flowers a bed by themselves. Avoid mixing cultivated and wild plants in the same border, for the hand of the stranger may "weed out" the wild things in favor of the others.

The place of the wild garden is somewhere near the
borders, preferably well towards the rear of the place. However, there are degrees of wild gardening, and it is often in place agaiust the rear buildings or eren against the rear of the house. Figs. $2723,2728$.
Everyone who desires a wild garden should own a copy of that charming liook "The Wild Garden," by Wm. Robinson, The latest edition, illustrated by Alfred Parsons, is the most desirable. The wild garden should not be confined to "wikl" things, but may well include many exotics. In this way the wild garden be. comes something wore than an epitome of the local flora; and there is practically no limit to its interest and development.
W. M.

WILD ALLSPICE, See Benzoin. W, Balsam. Apple or Wild Cucumber. Echinocystis lotuta. W. Ginger. Asarum. W. Hyacinth, in England Scilla mutans; in America, Cumussia Fraseri. W, Indigo, Baptisia tinctoriu, Ipomoa pandu. ruta.

## WILLOW. See Salir.

WILLOW, DESERT or FLOWERING. See Chilopsis.
WILLOW HERB. Epilobium.

## WILLOW, VIRGINIAN. Itea İrginica.

WIND-BREAKS, in hortieultural usage, are plantations of trees or other plants designed to check the foree of the wind or to deflect it to other directions. Wind-breaks are often of the greatest use, and at other times they are detrimental. In regions of very strong prevailing winds, they may be necessary in order to prevent positive injury to the plants. This is true along seashores. In the dry interior regions, wind-breaks are often useful, also, to eheck the force of dry winds that would take the moisture from the land. In other cases, they are employed for the purpose of sheltering the homestead in order to make it more comfortable for human occupancy: such wiud-breaks are usually known under the name of shelter-belts.

Whether wind-lireaks sball he used for orehard plantations, depends wholly on circumstances. In regions of very strong prepailing winds, as near large bodies of water or on the plains, such breaks are usually necessary on the windward side of the orchard. However, if the prevailing winds are babitually warmer than the local temperature, the winds should not be stopped or wholly deflected, hut they should le allowed to pass through the windbreak with diminished poter in order that, while their force may be checked, they may still prevent too low temperature. In regions that are very liable to late spring and early fall frosts, a tight wind-break is usually a disadvantage, sinee it tends to confine the air-to make it still-and thereby to inercase the danger of light frosts. If windbreaks are employed in such instances, it is lest to have them somewhat open so that atmospheric drainage may not be checked. In most regions, the greatest value of the windbreak for orchard plantations is to protect from the mechanical injuries that result from high winds and to enable workmen to pursue their labors with greater ease. The lessening of windfall fruit is often sufficient reason for the estahlishment of a windbreak. Usually very cold and very dry winds should be turned from the orehard; very strong winds should be checked; temperate winds should nearly always be allowed to pass through the orchard, if their velocity is not too great; care must be taken to allow of adequate atmospheric drainage.

Wind-hreaks for orebards require much land, and crops near them are likely to suffer for lack of food and moisture, and also from shade. In small places, therefore, it may be impossible to establish large wind-hreaks. It is well to plant the wind-hreak at some distance from
the lant row of orchard trees. if possible. It is nsually best to use native trees for the wind-break, since they are hardy aud well adapted to the particular climate. Wind-breaks often barbor injurious insects and fungi, and care must be taken that species of trees liable to these difficulties be not used. In the northeastern states, for example, it would be bad practice to plant the wild cherry tree, since it is so much infested with the tent caterpillar. in some cases, very low windbreaks may be as tesirable as high ones. This is true in the open farming lands in the dry regions, since it may be necessary only to cherk the force of the wind near the surface of the ground. Wind-breaks only two or three feet high, placed at intervals, may hare this effect. Fence-rows sometimes act as efficient windbreaks. Along the sea-coast, gartleners often plant low bedges for the purpose of protecting the surface of the garden. Along the Atlantic coast, the California privet is considerably used. This is Ligustrum onalifoliom, a Japanese plant. In parts of California, one of the mallow tribe (Lamatera assurgentiflova, Fig. 2730) is used for this purpose. Farms in the open windy country may be efficiently protected by belts of woodland, or if the country is wholly cleared, rows of trees may be establisbed at intervals of a gnarter or half mile across the direction of the prevailing winds. Fig. 2729.
L. H. B.

Wind-breaks in Middle California,-The most common wind-break seen in middle California is composed of a tall thick hedge of Monterey Cypress (C'upressus macrocarpa), either clipped close or allowed to grow naturally; it withstands beavy winds better than almost any other heary foliaged tree and is rapid in its growth. The Osage orange was at one time somewhat extensively planted as a wind-break, but is now rarely met with.

The Italians and Chinese, who bave almost complete control of the truck-gardening indastry in and around San Francisco, make extensive nse of a Californian tree-mallow, Lavatera assurgentiflora, Fig. 2730-as a wind-break and protection from the drift-sand, which is such a prominent feature of the outskirts of the city. This plant is indigenous to some of the islands off the
coast of southern California and, probably, was introduced into the San Franciseo peninsula by the Mission Fathers, as the pioneers of 1851 and '52 report that it was

2727. The Giant Reed-Arundo Donax.

A tall plant of striking habit suitable for wild gardens and borders.
then growing spontaneonsly and in great abundance on the sand dunes where the city now stands. This Lavatera proves to be well adapted to the peculiar conditions nuder which it is enltivated; it stands long seasous of

2728. A small wild garden at the rear of a building.
drought and heary winds, bears close trimming, makes a rapid and dense growth, and continues in bloom almost throughout the year.

When larger wind-breaks are required, to resist the force of Leary and steady rinds sweeping over the

WINDMILL FINGER GRASS. See Chloris
WINDOW GARDENING. See House Plants.
WINEBERRY. Rubus phonicolasius.

2729. Wind-breaks running across the direction of the prevailing winds.
interior plains through mountain passes, the manna gum, Eucalyptus biminalis, is used with advantage; this species suffers much less from strong wind than the more tender blue gum, Eucalyptus Globulous, which is used for the same purpose in the more equable climate of the Coast Range hills. Both the red gum, Eucalyptus rostrate, and the Lombardy poplar, Populous nigru, var. Italia, are used in the vineyard region near Fresno, to check the force of the periodic north-winds. Arundo Donax is also frequently grown around vineyards, particularly in the immediate vicinity of water. The olive, European waluut, fig aud almond are frequently planted for the outside row of an orchard of deciduous fruit trees, to act as a partial wind-break.

Arundo Donux wakes a charming shelter-hedge for a suburban garden, being light and graceful in appearance and not too exclusive, while answering all necessary purposes by providing a certain amount of privacy.

Joseph Burt Davy.
WINDFLOWER, Anemone.

2730. Lavatera assurgentiflora, a native plant much used for low wind-breaks in California.

WINTER ACONITE. Erauthis kyemalis.
WINTER BERRY. Ilex verficillata.
WINTER CHERRY. Physulis Alkekengi.

## WINTER CRESS. Burbarea.

WINTER GARDEN. In England, a very large glass structure suited for trees and plants that are not quite hardy and require only a small amount of artificial beat in winter. Winter gardens are especially adapted to strong-growiag plants from Australia and the Cape, as acacias and araucarias. Himalayan rhododendrons, camellias and the hardier palms and tree ferns are also favorite subjects. The term "winter garden" is practially unknown in America. The word is sometimes used as synonymous with glass-house or conservatory.

WINTERGREEN. Gaultheria and Pyrolu.
WINTERGREEN, FLOWERING. Polygala paucifolia.

WINTER PROTECTION, or preparing plants to withstand the winter (Figs. 2731-2742). All plants are usually hardy in their own habitat, but many become tender when removed to a colder climate, requiring artificial protection. A permanent covering of show furnishes ideal protection, but unfortunately our American winters are very changeable. Continued, steady cold is seldom infurious, but the alternate freezing and thawing towards spring are often fatal, the damage varying according as the situation is wet or dry and the soil light or heavy. For example, shallow-rooted plants, as Lobeliu cardinalis, will often be thrown out of the ground in clayey soil. Such damage may be prevented ky placing sods over the plants. Gaillardias will winter safely in light, well-drained soils with ordinary protection, but perish if wet aud heavy. The remarks in this paper are meant to apply in the vicinity of Chicago.

Winter covering intercepts the sun's rays and retards premature activity. It is as essential "to keep in the cold "during temporary warm spells as it is to retard exessive depth of frost. More damage is generally done in February and March than earlier. Roses and other shrubs may be prepared for the winter any time from the last half of November until well into December, but anything of an herbaceous nature may be covered much earlier. Where field mice are troublesome it is well to defer covering until after a good freeze, so that these nibblers may seek other winter quarters. Rabbits are fond of the Japan quince, Spirea Iran Houttei, Euonymus alutus and some others, and often damage newly planted material the first winter. When the
branches are beyond their retch, protect the trunk with straw, tar paper or burlaps, which will also prevent sun-blistering. If the sbrubs are in groups or lowbranched, run wire netting around them. Fall-planted material should be better protected against frost than established plants of the same species. All the Japanese flowering forms of the plum, peach and cherry tribes should have their roots mulched four or more inches deep. The fatal damage in the winter of $1898-99$ was at the roots, not overhead. Figs, 2731, 2732 show protection by means of straw and boughs; 2733-35, protection inside of boxes, barrels and wire netting.

Plants with evergreen foliage, like Henchera sangui. nea, are safer with a covering that will not mat down and rot the foliage or injure the crown. The danger is in open, wet seasons. Forest leaves are excellent for winter covering, provided they do not mat down. Oak leares are good, but those of elm, maple and other trees that shed their foliage early are soft and mat too much. Leaves may be held in place by evergreen boughs, brush, or tops of bushy perennials like our native asters, or coarse strawy material. When leaves are used in barrels or boxes, the top of the package should he water-tight, and the leaves dry when put in. This precaution is not essential in all cases, but it is a safe rule to follow. Tar paper is comparatively cheap and comes bandy in many phases of winter covering. (Gather the leares when they are dry, and store under shelter until wanted. Save vines like those of Clematis paniculate and pole limas ; they are good for covering elimbing roses that are almost hardy. These keep off the bright sun when the plants are in a semi-frozen condition,

3731. Straw overcoats for rosea.
shield them from the drying winds, and retard premature starting of the flower-Duds. Forsythia suspensa trained as a climber on a south wall is benefited by such corering, or by burlaps, as its sheltered position induces activity too early and its flowering buds lecome a victim to late frosts. Any rhizomatous iris, such as the German iris, should be planted where surface drainage is ample, and in the case of young plants, or those recently divided, not covered with heavy manure, or they are likely to decay in wet weather. Cover such plants with light material. Old established plants seldom need protection. Pyrethram roseum requires similar conditions and treatment. All lilies except the bardiest, such as L. tigrinum, eleguns, C'analensis, superbum, Philudelphicum, speciosum, lemuifolium, etc., are best covered by a mound of ashes-wood or coal-which retains an even temperature. The other iilies may be mulched with mannre and $L$. candidum with leaves. Erenurus in all its species, and $A$ lsfrömerin aurantiaca, require a deep hox of leaves and the surrounding soil well mulehed. An inverted V-shaped trough placed over such low edging plants as f'eronica circapoides and Thymus Serpyllum, var. montenus, is beneficial. It is well to tuke up a few plants of Manarda didyma, the donble perennial sunflower, and Thymus Serpyllum, and winter them in a coldframe, over which
place an old wooden shutter or any thing to shed rain, placing leares or manure over those that remain.

Where permanent wind-breaks, such as plantations of

2732. A tender tree bound with branches of hemlock.

The protected tree is a specimen of Gordonia about 10 feet high. at Arnold Arboretum, Boston.
evergreens, buildings or solid fences, do not exist, temporary ones should be made ot boards, evergreen boughs, corn-stalks, etc., to protect arboreal plants that are not quite lardy, e. g., in this climate Halesia tetrapteru, and in the eastern states Magnolid grondiflom, hollies, etc. Place the wiud break at the sides towards the prevailing winds, qenerally nortll and west, and at the sunny side of any evergreen that browns. The boughs or stalks may be attached to wire netting or to cords fastened to stakes.

The so-called retinosporas may have placed orer them an empty box open at the top. Shruls that are still more tender should be boxed, the box having a tight top and ventilation at the sides. In all cases mulch well at the roots. Magmolea Sonlangeana. M. speciose and plants of similar degrees of hardiness may have their branches tied in and empty casks placed over them, one sitting partially inside the other, and held in place by stakes. Put a come-shaped corering over the top to shed the snow. Or poles may be set close to the tree, wigwam fasbion. Wrap these with burlaps, or wind string around them for the straw to lean against, and in both instances wrap with straw.

The so-called hardy elimhing roses, such as the Seven Sisters and Prairie Queen, which are hardy withont protection but are benefited by it, Wichuraiana and its hybrids, Paul Carmine Pillar, Russell Cottage. Crimson Rambler, Thalia, and Lord Penzance Sweetbrier hybrids, if against a wall, may bave clematis or

2733. One way of protecting young rhododendrons. The space inside the wire netting is filled with autumn leaves
other vines placed thickly over them; or if in an open exposed situation, they may be wrapped in straw. Fig. 2731. Better still, hill up the soil quite bigh at the roots, - to prevent breaking and to afford protection and drainage, - and extend the mound in the form of a gradually diminishing rilge. Beud the canes along the ridge, choosing a time when there is no frost in them, and cover with soil or sorl. If the presence of a lawn pre-

2734. Protecting plants by covering with a box, inside which are placed leaves or straw.
vents this method, lay on the grass and cover with a water-tight box filled with leaves. Canes will rot directly under an open knothole. In the spring allow them to remain prostrate some time after uncovering to inure them gradually to the change and to iuduce the lower buds to strengthen. Hybrid perpetuals, the tender forms of moss roses, Hemosit, Clethilde Soupert. and the dwarf polyanthas, may be wrapped, boxed or bent over and covered with soil. Those in beds may be bent over, the tops tied to the base of their neighbors, lead tags bearing numbers fastened to each plant, and a record taken of their names, and all sumner labels stored to prevent loss when removing the leaves in the spring. Make a solid frame around them, higher at one end, and fill with leaves so as to cover the plants. Lap the roof boards; they will shed water and allow ventilation. In the spring remove the leaves, replace the top for a few days, but let the sides remain for a week or so to shield from cold winds. Keep the plants prostrate until cut back. The tenderer Teas are placed in coldframes or similar places. No manure is used until spring, as there is no moisture to wash it in. Tree peonies and yuccas should bave an empty box placed over them, large enough to prevent the plant from touching the wood. Hibiscus Syriacus, dierrillas, deutzias-except $D$. Lemoine $i$ and $D$. parriflora which are hardy-Itea Firginica, Cornus Mus, ete., are wrapped in straw, and when the wrappings exceed four feet in height they should be staked to prevent high winds from toppling them over. Rhododendrons and Azulea mollis when planted out are taken up, the roots given a good soaking in a tub, and replanted in cold pits, or in boxes placel in a coldhonse or pits. In the spring, another bath is given them and the soil firmly ponnded around them before replanting. This is essenfial for continued vigor. Cut all vines of the clematis to within one or two feet of the ground and lay them down, first mounding the soil a few inches if surface drainage is not good and cover with ashes, boxed leares, or soil, or mulch well and wrap the canes with straw. If close to a porch or steps, do not let the swept snow stay over them, unless well protected, as this snow solidifies and exchudes air. If, as some now think, the broken outer skin of the hybrid forms,-Jackmani, etc.,-subjects them to disease, then these varieties should not be bent over, but staked and wrapped. It is best not to cut the foliage of the enlalias or the Japan iris, as it, of itself, is a good protection, but manure at the base is essential. Cut down Amudo Donax, corer beavily with any material, and cover all with tar paper or water-tight shutters. Place half-rotted leaf-mold over fern beds, narcissi, English and Spanish iris or any early-blooming bulbous plant, or a light-strawy corering that is easily removed. Fine old manure a few inclex thick is good and can remain. Place a good coating of stable manure around the trees on the lawn, and when they bave been established any length of time
bear in mind that the feeding roots extend ont as far as the brauches do. The soil under them has a donble duty to perform - to sustain botb the tree and the grass.

Place short stakes around groups of platycodons, $A s$. clepias tuberosa, or any other plants that are late to appear in the spring. Otherwise they may be overlooked in the spring aud injured by digging. Examine all labels aud see that none are cutting into the limbs of trees. Replace all rotten or defaced ones in the borders, using heavy labels, as thin ones often break off and are carried away when the surplus manure is removed. Cypress is a good material for labels. A good label for young trees and shrmbs is made of a thin sheet of copper. The name is written with a stylus. The label is fastened to a copper wire ring 3 or 4 inches in diameter, placed aromnd the trunk and allowed to lie on the ground. Such a label is durable, unobtrnsive and requires no atteution for fear of cutting the wood, nor can it be lost.
W. C. Egan.

Pits, Cold Pits, Storage Pits and Plant Cellars (Figs. 2736-2742) are structures, with the greater part sunk beneath the surface of the ground, built for the purpose of protecting plants in wiuter without continued fire heat. They are employed almost exclusively for storing dormant plants. They are not suitable for storing growing plants any length of time, neither are they bouses in which to grow plants. They should face the south and he sheltered against north winds by huildings or other wind-breaks. Owing to their position they should be put in well-drained ground only and well protected against surface water. A well-designed frameyard is the best possible place for small pits

The coldframe (see Frame) used by market-gardeners for wintering eabbage and lettuce for spring planting, or by the florists for pansies, primroses, forget-menots, etc., is really a simple pit. Such shallow pits, with proper protection, are usefnl for many other small plants which would be injured by severe weather. A deep pit, like a coldframe, is shown in Fig. 2736. A pit built on the plan of the old-fashioned "outside cellar" (Fig. 2737) is very useful for storing tubers and roots. See that it is well rentilated. A section of another pit is shown in Fig. 2738. More elaborate pits, for accommodating large plants, are illustrated in F'igs. 2739-42.

Forms of Pits.-Consult Fig. 2741, in which the entries are numbered for eonvenience Nos. 1, 2, 3 and 4. Nos. 1, 2 and 3 show inexpensive and convenjent pits for small and medium - sized plants. They may be built 4 ft , or less below the level of the ground, the beight and width as shown in the diagrams; the length should be some innltiple of 3 , any thing between 9 and 30 ft ., so that the glass roof may be made of hotbed


Plants protected in a barrel covered with burlaps. sash and also protected by the straw mats and wooden shutters in common use. See Hotbeds.

These pits are useful for storage in winter and also for carrying some of the hardier greenhouse plants in antumn until the houses are relieved of the chrysanthemum crop. Nos. 1 and 2 make light hotbeds in spring, if filled with the leares which formed their winter protection, and are also available for growing sueb plants as euphorbia during the summer. 'They are generally too deep for dung botbeds. Nos. 1 and 2 are planned to run east and west. If No. 3 is thus placed, the roof on the north side may be made of plank instead of glass, but if it runs north and south it should hare a glass roof on both sides. Easy access to all is obtained through the roof by removing a sash. Sometimes a door can be built at one end of No. 3. No. 2 does not eost much more than No. 1 and furnishes more room. By putting a few doors in the hoard roof, excellent vertilation is provided. No. 3 gives the best head-room, but is rather dark for evergreens with soft foliage, e.g.,

Cytisus Cunariensis, unless the whole roof is glass. A lit like this has always beeu used in the Arnold Arboretum for wintering seedlings, rooted cuttings and grafts, - young stock grown in flats but too delicate for the open ground. The arrangement of shelves shown in the diagram gives storage to large numbers of these sinall plants.
In No. 4 is shown a small plant cellar, more expensive but with better capacity for large plants. It should run north and south, aud, excepting the glass roof, is wholly below ground, and consequently extremely well protected against frost. The door is at either end or side. By taking advantage of sloping ground it is possible to enter on the ground-fionr level, which is important when large plants in tubs must be handled. In such cases a concrete floor may be built. The monitor roof provides plenty of light and rentilation; wooden shutters cover the glass in cold weather. This form of pit is not only well adapted to plants, but also is excellent for storing vegetables and fruits. The forms of buildings larger than those above described vary much with different circumstances. Sometimes the cellar of a stable, toolhouse or other outbuilding can be utilized. The chief consideration is protection against frost, but provision must be made for thorough ventilation, and against a too high temperature in the autumn and early spring. It is because it is hardly possible to provide for these matters that dwelling-louse cellars do not make good pits; they cannot be sufficiently rentilated to keep the temperature low enough except in the middle of winter. Growth is incited and cannot be maintained owing to lack of light.

Construction of the Pits.-Owing to their position, pits cannot well be made of wood, plank and cedar posts lasting from 4-6 years only. For large pits, stone and brick are most economical for walls and ceilings; for small oues concrete probably makes the cheapest and best wall. At the Bussey Institution the concrete walls of several small


273f. Deep pit built like a coldframe, for carrying half-hardy woody plants over winter.

2737. An outside cellar, in which to store roots and tubers, and pots of resting stuff.
pits have stood 10 or 12 years without showing any sigu of deterioration. It is not necessary to use highpriced Portiand cements, because the structures are se-

2738. Nurseryman's cold pit.

A cheap device for wintering plants that reguire comparatively little light.
cured against frost by the winter protection required for their coutents. An excavation of the required dimensions is made. with due allowance for the walls. Inside the excavation a plank molding frame is built at the proper distance; viz., the thickness of the walls, from the walls of earth which should bave been cut as true as possible. This frame, which should also be true and plumb, is carried to the required height for the iaside face of wall and another frame is made at the proper distance on the surface of the ground, the inner face of which will be the outside face of the completed wall. These frames must lie well braced; they carry a heavy load until the cement hardens. it is not necessary to make a complete frame for the whole pit at once; one end and a half of both sides can be built first, and the same frame reversed will serve for the remainder. The concrete is made by mixing dry one part of cement (a good brand cau be obtained at about $\$ 1.20$ per barrel) to two parts of clean sharp sand. After a thorough mixture, add euough water to make a thick paste. Add to this paste three parts (sometimes four are used) of clean gravel. Broker stone is better but more expensive. No stones larger than a goose egg should be used. The whole sh rull be completely and quite carefully blended with hoe or shovel until each stone is coated. Throw this mass into the space between the molding trame and earth wall and settle compactly with a rammer. It is not advisable to mix more than a barrel at once, nor so much as this unless at least six men are employed. Continnous batches are made until the work is finished. When the top layers are going in, insert $3 / 4-\mathrm{in}$. iron bolts $6-8 \mathrm{in}$. long at intervals of six ft . These secure the wooden sills. In warm dry weather the frames can be renoved within twentyfour hours or less, but first examine carefully the condition of the cement. After removal, smooth off any roughness and grout in with a whitewash brush a coat of Portland cement mixed with water, but without sand, thus obtaining a good color and a more homogeneous surface. For several days the work should be shaded
and occasionally sprinkled with the hose. Do not attach the woodwork until the concrete is fully hardened. One and one-half barrels of cement make about one cubic yard of concrete, that costs, in place, between five and six dollars, somewhat less if the cost of labor, sand and gravel is moderate. Build in June or July, so that the concrete will be thoroughly dry before frost.

The construction of a brick roof is sbown in Fig. 2741, No. 4. Concrete could also be used. A good grade hotbed sash makes the best glass roof. All sills, cross-bars, ete,, should be made of cypress and painted. The woodwork must be made strong to endure the continual exposures. It is false ecou omy to stint in quantity or quality. In cellars for uursery stock, Figs. 2737-41, a comparatively small amount of light is required, and the low roof is boarded in and shingled, building paper being used. Planks may be substituted for boards, or the roof may be double.

Sand or gravel, one foot deep, makes the best floor, or half sand aud half loam where plants are to be heeled-in. A concrete floor should be used only where the drainage is absolutely perfect.

The sides and ends should be banked with leaves or other material. See Fig, 2738. In the vicinity of Boston this should be done about November 15. The same covering cau also be given to low roofs. The glass is protected by mats and shutters. See Hotbeds. It is a good plan to have on hand an extra supply of dry meadow hay to give additional shelter in zero weather.

Care and Management.-Pits, e.g. Nos. 1, 2 and 3, in Fig. 2741, like greenhouses, should carry more than one "crop." In early autumn they hold chrysan themums, carnations, stevias, etc.; next the Azalea Indica, Cytisus Canariensis, beaths, etc., some of which remain for the winter, while others are replaced by hardy shrubs, bulbs and other plants for forcing. For spring and summer use, see above. In eastern Massachusetts gardeners begin to use them in September, but the final storage sometimes is not finished until Christmas. The longer the plants can be kept in the open air the better fitted they are for their winter quarters.

In the care of pits, watering and ventilation are of prime importance. When first housed the plants should be well watered, and, if this is carefully done, it will often be found that no further water is required for plants in tubs and large pots ( 10 in. or more). This also is true of heeled-in stock. Everything, however, should be so arranged that inspection is easy, and water should be given when necessary, Plants on the shelves, particularly in small pots (4-inch), will go dry oftener than those placed on the gravel floor. It is best to water on bright days, when the sashes can be removed. The

2740. A doorway in Fig. 2739,
great difficulty in keeping plants in good condition is owing to the condensation of moisture within the pits at times wben it is impossible to open them on account of severe weather; therefore no more water should be given than is absolutely needed. As long as the weather permits, keep the sashes off or the windorss open night and day, and afterwards open up whenever possible. On sunny days ventilate whenever the thermometer registers over $20^{\circ} \mathrm{F}$, but do not begin until the sun strikes the frames, and shut off early in the afternoon. On mild days, with the mercury above freezing, remove the sashes entirely. Tbis is the best way to get rid of the moisture-laden air, and is essential for keeping evergreen plants with soft foliage in good condition. To change the air in large cellars is more troublesome; here it is advisable to build an open fireplace, in which a brisk fire may be kindled on mild days when all windows can be unclosed, thus obtaining a better circulation than is otherwise possible. Sometimes these large cellars have a line of hot-water pipes or other means of heating, by which not only is better ventilation secured but also additional protection in severe weather. Occasionally in heavy snows the pits must remain closed for a week or more. This is undesirable but unavoidable. At such times there is special danger from field mice and other vermin. Concrete walls give them a poor harbor, but they must also be trayped or poisoned. If the plants are clean when housed, there is nothiug to be feared from ordinary greenhouse pests, either insect or fungous, except the moulds. For related discussions, see Nursery and Storage.

Following is a list of plants that may be wintered in pits and frames with satisfactory results. The list is made for the neighborhood of Boston.

LIST OF PLANTS THAT CAN BE WINTERED IN PITS.

## A. Hardy plants.

1. Nursery stock of every description that may be required for shipment in winter and early spring.
2. Stocks, cions and cuttings for working during the winter.
3. Young nursery stock, -- seedlings, cuttings or gratts too delicate for planting in au. tumn.
4. Hardy plants of all kinds for forcing or winter decoration.
The temperature of pit or cellar for the above plants should be $35^{\circ} \mathrm{F}$. or efen lower occasionally. The larger plants should be beeled-in on the floor in sandy loam or in bunk-like shelres along the sides. Instead of loam, sphagnum can be used and is particularly good for cuttings and grafting stock. The very young stock is stored in flats or pans in which it has been grown. Particular care must be given to ventilation when evergreen plants are handled. For forcing stock, see Forcing, pages 600-602.

## WINTER PROTECTION



No. 1.-One of the simplest and least expensive forms of cold pit for small and medinm-sized plants.
Those marked with a star (*) are

WISCONSIN

AA. Tender and half-lardy-plants. tender and should uot be exposed to frost. Theys should also be kept in the driest part of the pit.

1. Alstrcemeria, canna, dahlia, glayliolus, Milla biflorce, montbretia, oxalis for summer bedding, tuberose, tigridia, Zephyrauthes Atamaseo, Z. cundidu. Keep the ahove in dry house-cellars, where no frost pegetrates, temperature $3 \overline{5}-40^{\circ} \mathrm{F}$. Dahlias and canoas can be covered with dry sand if prone to wilt. Tigridias should be bung np in bags to avoid mice.
2. Agave, aloe, Lippia citriodora, Deturut sutcreolens, some of the hardier cacti, e.g., Cereus grendiflores and Opmentia Ficus-Indica, Cordyline indivisa, fuchsia, Fuccu gloriosa and probably other genera and species of succulent plants. Keep at temperature $35-40^{\circ} \mathrm{F}$. in a very dry house-cellar, with as much light as possible; too much moisture is destructive.
3. Abelia rupestris, *abutilon, *acacia, Acanthus mollis, *Agapanthus umbellatus, A raucaria imbricuta and A. excelsa, Aucubu Japonica, * Azalea Indica, bamboos, Burus sempervirens, *Cullistemon lunceolatus, Cullana vulgaris, *(amellia (different species, including the tea plant), Ceanothus azurers, Cedrus Libani, C. Dentare, Cephalotaxus drupacea, *Chimonenthes frugrans, *eitrus in variety, eistus (different species), cotoneaster (tender sorts), Cryptomeria Japoniea, cupressus (tender sorts), - Cytisus Canuriensis and *C. racemosus, *Daphne otore, diospyros in variety, "erica (hardier sorts), Erythrina Crista-galli, * Eugenia Jambos, Euonymus Japonica (tender varieties), Farfugium (Senecio) grande, Ficus Carica,*Gardenia florida, Gelsemium sempervirens, Gordonia pubescens, grapes (tender kinds), Hedera Helix, *Hibiscus Rosa-Sinensis, Hydrangea hortensis,llexAquifolium, kniphofia, laurestinus, Laurus nobilis, lagerstroemia, Mregnolia grandiflora, Myrtus communis, *Neriam Oleander, Olea Europaa, *Osmanthus fragrans, O. Aquifotium, Passiflora carrelea, pernettya (different species), Phormium tenax, photinia Japonica, *Pittosporm Tobira and others, Plumbago Capensis, Podocarpus Chinensis,


No. 2.-A well-ventilated cold pit, roomier than the preceding one and not mnch more expensive.


No. 3.-A shelved cold pit for wintering young stock grown in flats, seedlings. rooted cuttings and grafts.


No. 4.-A small plant cellar for wintering large plants. It is also excellent for storing vegetables and fruits. It combines perfect ventilation with extremely good protection against frost.
2741. Varions forms of storage pits,

Prunus Lauro cerasus and others, *Psidium Guajava, *Puncu Grunatum, retinospora in variety, rhododendrou (tender hybrids), Romarya Coutteri, roses (Bourhon, Noisette, China, Bengal and wther teuder varieties), Rosmerimus officintlis, S'quoia gigantea, Taxns, Truchelospermum jusminoides, Ulex Europerus.
The ahove plants are commouly handled in pits for various reasons. In eastern Massachusetts, with the possible exception of those marked thus (*), they will bear a few degrees of frost, if not too long continued, without harm. The average temperature of the pit should be just above freezing, say $35^{\circ} \mathrm{F}$. The value of these plants depends upon not only carrying them through the winter iu good condition, but also in giving them a good start in the spring. For this purpose a cool greenhouse must be provided; a cold grapery or a house constructed from the sashes nsed on the pits is equally good, in which the plants can be properly grown until it is warn enough to pnt them out-ofdoors.
4. Anemone Japonica and A. coronaria, Bellis peremis, Dianthus Caryo. vhyllus (clove pinks and European carnations from seeds), Galax aphylla, myosotis sorts, primula in variety, including aurictula, Persian ranunculus, riola odorala (tender sorts), pansies, wall-flowers, lettuce, cabbage, canliflower and parsley. These plants are advantageously wintered in coldframes, which should vary in depth with the size of the plant; sometimes the plants are grown and flowered in the frame, at others they are bedded out when the season permits.
5. Arismma, arum, calochortus(different species), freesia in variety, iris (tender species), ixia, sparaxis. The above plauts can be potted, Norember to December, and carried in a pit until wanted in the greenhouse.

> B. M. Watson.

WISCONSIN, HORTICULTURE IN. Fig. 2743. The surface of Wisconsin mostly varies between gently rolling plains and hills of moderate height. Small lakes are numerous, particularly in the north. The soil presents all variations, and with the exception of some rather large sandy and marshy tracts, is mostly very fer-
tile. Owing to the proximity of Lakes Superior and Michigan, the climacic extremes are less severe than might be expected in a region so remote from the ocean. The skies, while clearer than in the eastern states, are somewhat more eloudy than in Iowa and Minnesota.
Damagiug frosts are not common in Wisconsin except in certain distriets of comparatively small extent. As in all of the northwestern states, summer droughts are rather frequent, but are rarely so severe as to seriously injure crops that are properly cared for. The numerous lakes and streams offer excellent opportunities for irrigation, which has, however, received little

2742. The roof of No. 4, Fig. 2741.
(See Winter Protection, pages 1981-5.)
attention as yet. The prevailing winuts are westerly, Lence the intluence of the Great Lakes in tempering the climate is less marked than in the sonthern peninsula of Michigan, lut the climate of the eastern conuties, aud especially that of Door county, which lies hetweeu Green Bay and Lake Michigan, is comparatively milh.
The winters of Wiscousin are such as to preclude the extensive cultivation of the tree fruits, except of the hardier species and varieties, save in the eastern counties. But the summers are very favorable to annual crops, and to fruits that are readily protected in wiuter. The change from winter to summer is ofteu rather abrupt. This brings on an exuberant growth early in the season, which while satisfactory for most crops, promotes blight in the pome fruits. An equally precipitous advent of winter sometimes causes damage to nursery stock. These suddeu changes, with the rather frequent droughts in summer, combine to render the Wisconsin climate severe for most perennial plants. When an exceptionally dry summer is followed by a winter of unusual severity, a disastrous thinning out of fruit trees is likely to occur. The pioneer fruit planters, coming mainly from New York and New England, with pardonable ignorance of the severity of the Wisconsin climate, planted freely of eastern varieties, most of whlch proved too tender for the new conditions. As the natural result, the first orchards were mainly shortlived, and the idea gained wide credence that Wisconsin would never produce the tree fruits successfully. But the experience of a few persistent planters has disproved, in a measure, this hasty conclusion.

Wisconsin is one of the uewer states in horticultural development. A large part of its northern balf is still forest-clad. The cities are mostly small, hence the local demands for horticultural products are not large. But Minneapolis and St. Panl to the west, and the cities bordering Lake Superior, make an export demand for truits and vegetables, for which the markets are generally good.
The hardiest varieties of the apple succeed in southern and eastern Wisconsin, when planted on sites some-
what higher than the surrounding country, especially tbose fuclining to the north or northeast. The principal orchards are located in Fond du Lac, (ireen Lake, Richland, Sank, Door and Wanpaca counties. The first named county has one orchard of about 6,000 trees, mostly Oldenburgb, located near Ripon, aud a second of about 4,000 trees of various sorts at Eureka. These orchards are supposed to be the largest in the state.
The older orchards of Wisconsin are the outcome of a long process of climatic selection. But the farmers who were most anxious to grow apples continued to plant trees in the lope of finding some that would prove satisfactory, aud these bopes have been in part realized, Occasioual seedling trees that grew up in fence corner's and elsewbere, from chance seeds, or from seeds plantel by pioneer farmers who felt unahle to porchase trees, were fouvd to eudure the severer winters, while whole orchards of old varieties were destroyed. Several of these have been adopted into cultivation, and a few, as the Pewaukee, Wolf River, McMahon, Northwestern Greening and Newell, have become standard varieties of the northwest. The Wealthy apple, from Minnesota, is also a standard wiuter sort in Wisconsin, The orchards now heing planted are largely of these sorts, and the Oldenburgh. The Russian apples imported by the United States Department of Agriculture and the Jowa Agricultural College have heen quite largely planted experimentally in Wisconsin, but thus far rery few if any of them have proved superior in any respect to our best natives. Crab apples are considerably grown for market in Waupaca and Ean Claire counties. The chief hindrances to apple culture in Wisconsin, aside from win-ter-killing, are the fire-hlight, which destroys the tips of the growiug shoots in early summer, and sunsceld, which eanses damage to the trunk in early spring or dnring hot weather in summer. The latter is readily prevented by shading the trunk. The cordin-moth is destructive unless prevented by spraying or otherwise. The apple scab is often serions in too closely-planted orchards. It is controlled to a degree by spraying. The apples of Wisconsin are, as a rule, bighly colored and of large size, and the trees are very productive.

The pear is not grown to any great extent in Wisconsin, owing to the lialility of the trees to fire-blight and winter-killing. The varieties imported from Russia have not proved more resistant to these affections than the hardier sorts of Americau origin, or from western Europe. Pears are frequently grown for home use in the eastern counties, and the trees are sometimes quite productive and long-lived. The Flemish Beauty has perhaps been more successful than any other sort.
The quince is less hardy in Wisconsin than the pear. Trees are oceasionally found in gardens in the eastern counties that sometimes bear fruit after exceptionally mild winters.
The Americanas are the only plums that can be depended upon to bear fruit regularly in all parts of Wisconsin. The hardier sorts of the European plam, Prumus domestica, and of the Japanese plum, Prunus triflora, are fairly fruitful in the eastern part, notably in Door and Kewamee counties. The trees of the last two species, as of those of Prunus hortulana and Prunus anyustifolia, endure the winters without harm throughont the state, but the flower-huds are destroyed whenever the thermometer registers much lower than $20^{\circ}$ below zero. Few plum orchards have been planted in Wisconsin, and these are mainly of the European class. A plum orchard of 14 acres at Sturgeon Bay is supposed to be the largest in the state.
The early Richmond and Morello cherries are fairly successful in Wisconsin, in localities suitable to the apple. The flower-buds of these cherries appear to be somewhat more hardy than those of the European and Japanese plums. The trees are, however, subject to sunscald, and unless proterted are usually short-lived. Several varieties of Prunus Cerusus, introduced from Russia, have been tested at various points in the state. While the flower-huds of these do not appear to he hardier than those of the abore-named sorts, their fruit matures over a longer period, which will give them value. Sweet cherries (Prumus Avium) are not successful in Wiscon$\sin$.

The peach and aprirot are not fruitful in any part of Wisconsin except after wausually mild winters. The trees are frequently grown in gardeos, and sometimes attain considerable size, but they freeze back more or less in the average winter. Trees of the apricot imported from Russia have been frequently planted in Wisconsin, lyy way of experiment, but are nowbere frnitfnl. Even if the flower-buds escape destruction, the fruit almost invariably falls soon after setting.

The grape, with winter proteetion, is successfully grown throughont sonthern and eastern Wisconsin when planted on light soil, with sonthern exposure. The later rarieties are, however, liable to be caught by frost, mnless the site is chosen with special care.

The small fruits are grown with marked success, on favorable soils, throughout Wiseonsin. Winter protection is generally given to all but the currant and gooseherry, but in the southern and eastern counties this preeaution is not absolutely necessary. The strawberry and raspberry are grown in excess of home demands, and many thousand cases of these fruits are annually shipped to other states. Blackberries were largely destroyed by the severe freeze of 1899 . Huckleberries and hlueberries are extensively gathered from wild plants in certain parts of west - central Wisconsin, and are shipled in large quantities to eities of the uorthrest. Wisconsin is one of the chief eranberry prodncing stater. In parts of Wood, Adams and Juneau counties, and in less decree in Waupata and Green connties, the cranbery plant was native over fery large areas, and before the settlement of the country, the Indians gathered the fruit extensively in bearing years. Latterly, the wild marshes have been largely improved hy elearing and providing flooding facilities. In some seasons the total output of cranherries from Wisconsin bas aggregated nearly 100,000 harrels. The rarietien grown are mustly na tive, and the quality and keeping of the fruit are expellent. During the years 1894 and 1895 the cranherry industry of Wisconsin suffered a serious check by the destruction of many marshes by fire during an exceptionally dry period. But the husiness is rallying, and may, in a few years, recover its former magnitnde.

Market-gardening is earried on in the neighhorhood of cities and towns to a sufficient extent to supply local demands, exeept in the extreme nortbern part of the state. The ordinary gerden crops of the temperate zone are all successful. Melons are grown rather extensively for shipment in a few localitics. l'eas are extensively grown for seed, for market and for canning in Kewaunee and Door counties, this section twing free from the pea weevil. Lentils are considerably trawn in Kewaunee and Manitowoe eounties. siveral vegtable eanning factories are in operation in Wisconsin, peax, sweet corn and tomatoes being chieff consumed. Kitehen-gardening is less practiecd in Wisconsin than it should be. The farmers generally employ little hand labor, and the hont summers render city gardening more or less unsatisfactory. For the ame reason the private growing of flowers receives less attention than in the eastern states.


2743, Map of Wisconsin.
The shaded areas inclnde most of the region adapted to apple culture. Cherries do fairly well in the anple districts.

WISTARIA (Caspar Wistar, 1761-1818, professor of anatomy in Univ. of Pa.). Legrmindser. As a genus Wistaria is a small and imperfeetly understood group. A complete study of the pods and seeds of this and allied genera will eventually result in a great shaking up of names. The present treatment is as conservative as possible, out of deference to trade interests. The oldest generic name is Krouthia. For a more radical point of view see B.M. 7522 and B.B. $2: 294$. Beside those mentioned helow, there are three speries, hut they are all of doubtful botanieal status. Less. odd-pinnate; Ifts. entire: racemes terminal: calyx with the 2 upper teteth short and subeonnate: stantaril large: wings oblongfalcate, free from the keel, often coherent at the apex: keel incurved. obtuse.

Wistaria Chinensis is one of the hest and commonest of hardy climhers. It has pale green, pinnate foliage and
bears profusely dense, drooping clusters of purplish pea-shaped Howers. The clusters are about a foot long. This is the commonest and hest form. The others furnish the connoisseur with variety in habit, color and season of bloom, but they are not as prolific, and doubling adds nothing to the beanty of the flowers. Moreover, the double dowers decay quickls in wet weather. The Chinese Wistaria was introduced into England about 1816. Twenty-five years later there was a specimen in England with branches attaining 100 ft . on each side of the main stem, and another specimen that covered 905 square feet of wall space.

The Chinese Wistaria blooms in May and usually gives a smaller crop of Howers in Angust or September. The spring crop is borne on spurs, while the autumn crop is borne on terminal shoots of the season, There are several jdeas about training a Wistaria, A good way

Chinensis, May 10-30; H , multijuga, May 1j-31; W. speciosa, June [-8.

Wistarias will live in rather dry and sandy soil, but they prefer a deep and rich earth. Cuttings root with diniculty and the common nursery practice is to graft a small shoot on a piece of root. The roots are long and few and go down deep, making few fikers. They resemhe licorice root. Wistarias are hard to transplant, unless they have been pot-grown for the purpose or frequently transplanted in the nursery row. Unless manured heavily when transplanted, they are very slow in starting into vigorous growth. The most satisfactory method of propagation for the amateur is layering. Those who wish to give a young Wistaria an extra good start may sink a bottomless tub in the ground and fill it with good soil. If a Wistaria is to he trained to a tree, select an old tree, if possible, which is past the height of its rigor.

is to let it alone. This produces rugged, twisted and picturesque branches and gives a certain oriental effect, but it is not the best method for covering a wall space solidly or for making the best display of bloom. To eover a wall completely it is necessary to keep the leaders taut and to train outside branches wherever they are needed. If quantity of bloom is the first consideration the vines should be pruned back every year to spurs, a common method in Japan. The Japanese chiefly use another species, $W$. multijuga, which often passes in our nurseries under the name of $\boldsymbol{W}$. Sinensis, the clusters of the Japanese favorite sometimes attaining 3 or 4 feet, The low, one-storied Japanese building will have a Wistaria so trained that the vine follows the eaves all round the house. The foliage is all above, and the yard-long elusters of purple blossoms depend therefrom in solid, unhroken, linear masses, 2 or 3 ranks deep. W. multijnga is said to be less vigorous and productive in America and Enrope than Japan When trained as a standard the Wistaria requires much eare. Probably the finest standard Wistaria is that figured in G.F. 6:256 and Gng. 1:3:1, where full directions for enltivation may be found. The following dates of bloom will be useful to those who reckon from the latitude of New York: $F^{\prime \prime}$,
alba, 1, 2, 3, 4
albitiora, 1
brachybotrys, 4
Chinensis, 1. consequana, 1.

## INDEX.

finre-pleno, 1. frutescens. 3. maeroboti'ys, 1 magnifica. 3 . multijnga, 2.
rubra, 4.
Sinensis, 1.
speciosa, 3. variegata, 1.
A. Clusters moderately long and dense, $\tilde{r}-12$ in. long, 25-50-fld.; fls. odorless
AA. Clusters $2-3$ ft. long and looser: fls. ordorless..2. multijuga
asa. Chusters short, $2-8$ in., 12-25-fld.: fls. fragrant.
B, Lfts, glabrows above.3. speciosa BB, Lfts. silky ...........4. hrachybotrys

1. Chinénsis, DC. ( $\mathrm{F}^{\text {r. Sinénsis, Sweet. }}$ W. conseqùna, Loud. W. polystachya, C. Koch.). ('hinese Wistaria. Figs. 2744, 2745. Hardy, fast and tall growing climber with pale green compound foliage aud foot-long clusters of purplish pea-shaped fls. borne profusely in May. Lfts. about 11, ovate-lanceolate, $2-3 \mathrm{in}$. long, silky: racemes $\mathrm{i}-12 \mathrm{in}$. long, about $25-50$-fld.: tis. odorless, $3 / 4 \mathrm{in}$. long, $1 \frac{1}{4}$ in, across: fr. borne very sparingly, especially on the var. albiflora, May and Aug. China, Clusters in B.M. 2083 (adapted in Fig, 2745), L.B.C. 8:773, P.M, 7:127 and B.R. 8:650 (as Glycine Sinensis), and Gin. 39, p. 409. Habit in Gn. 4, p. 173; 11, p. 380; 12, p 469: 34, p. 376; 44, p. 7; 48, p. $157 ; 49$, p. $43 ; 50$, p. 183; 51, p. 396; 52, p. $310 ; 53$, p. $471 ;$ G.C. 111. 21:7 and Gn. 51, p. 286, the last showing the spur system of pruning. V. 14:162 (pot-plant). G. F. 6:256 and Ging. 1:321 show "standards." The typical form has single purple fls. and is sometimes called var, purpurea, Hort, Var. albiflora. Lemaire (var, álba, Hort.), has single white flowers. 1.H. 5:166. Gn. 53, pp. 325, 470. Var. alba plèna, Hort., has double white flowers. Yar, flore-plèno, Hort., has douhle purple flowers. F. 1882:33. Gn. 17, p. 105; 34, p. 373. Var. macrobotrys, Beau. (H. macrobotrys, Hort.), has fls, of a paler shade of blue-purple, the clusters longer and looser, not adv. in America. Var, variegata, Hort., has variegated foliage and is inferior to the common form in habit and productireness. Undesirable except for foliage effects.
2. multijuga, Van Houtte ( $11^{*}$. Chinénsis, var, multiiuga, Hook.). Loose-clustered Wistaria. Fig. 2746. Distinguished from 15. Chinensis by the longer and looser raceme and smaller fls. which appear a week later, Lfts. 17-21, silky when young, nearly glahrous when old, pale green, larger than $\mathbb{F}$. Chinensis: racemes 2-3 ft. long, twice as long as in W. Chinensis, looser and sometimes 100 -fld.: fls. about half as large is in W. Chinensis: pods oblanceolate, flattened, with rigid, flat, thinly woody valves; seeds orbicular. Long supposed to be native to Japan, but probably native to north China, F.S. 19:2002. R.H. 1891, pp. $176,177$. B.M, 7522, Gig. 2:161. G.C. 11I. $13: 233$ and S.H.

2:463 (both erroneously as IT. Chinensis). M.D.G. 1898:477. Botanically this is a variety of W. Chinensis, but for borticultural purposes its distinctness needs emphasis. It is often cult. under ihe name of $W$. Chinensis. Yar. alba, Hort.. is also cult.
across: pods tomentose. Late bloomer. Japan. S.Z. 1:45. F.S.9:880. - Vars. alba aud rùbra, are offered.
W. alba has been used in trade catalogues for W. speciosa, var. alba. IF. Japónica. Sieb. \& Zuce. See Millettia,- W. nivea, Hort. John Siul, was doubtless a white-fid, variety of some common species.
W. M.

WITCH ELM. Ulmus scabra.
WITCH HAZEL. Hamamelis.
WITHANIA. Consult Salpichroa.
3. spaciosa, Nutt. (W. frutéscens, Poir.). American Wistaria. Kidney Bean Tree. Not as vigorous as the Chinese Wistaria but climbing over trees and busbes to a length of $30-40 \mathrm{ft}$., with dark green foliage and short racemes of lilac - purple fls. borne about 3 weeks after $\mathrm{HF}^{5}$. Chinensis. Lfts. 9-15, glabrous and dark green above, pale aud sometimes slightly pubescent beneath: racemes $2-7 \mathrm{in}$. long, about 14 -fld.: fls. 1/0-3/4 in. long: pods long, torulose, hardly coriaceous, with convex valves; seeds reniform, freely produced. June. Low grounds, Va. to Kans., south Fla. to La. B.M. 2103 (as Glycine frutescens). B.B. 2:294.-Var. ába, Hort., has white flowers. Var. magnifica, Hort. (3V. maqnifica, Hort.), bas racemes 6-8 in. long and $50-60$-fld., with fis. 1 in . across. The fls. are lilac with a yellow spot, and borne earlier than the type. The clusters are larger and denser. A great improvement. F.S. 11:1151.
4. brachybdtrys, Sieb. \& Zucc. Short-clustered Wistaria. Japanese species, distinguished from all others by its low growth. It is said to attain only 3-5 tt , and should therefore be particularly desirable for standards and bushy specimens. Lfts. 9-13, silky: racemes about 6 in . long, about 25 -fld.: fis. purple, 1 in .

2746. Wistaria multijuga, often called Japanese Wistarie. ( $\times 3 / 4$.)

WITLOOF. A form of Chicory (which see).
WOAD. See Isatris.
WOLFBERRY. Sympharicarpos occidentalis.
WOLFSBANE. See Aconitum.
WONGA WONGA VINE. Tecoma australis.

2747. Woodsia Ilvensis $(\times 1 / 3)$.

WOOD BETONY. Stachys Betonicu.
WOODBINE. In England, Lonicera Perichymentm; in America, Ampelopsis quinquefolia.

WOODRUFF. See A sperula.
WOOD LILY. Trillizm.
WOODDSIA(Joseph Woods, an Euglish botanist). Potyporlicear. A genus of mainly rock-loving ferns characterized by their inferior indusium, which is attached beneath the sorus, inclosing it at first but soon splitting into star-like loles, and later hilden beneath the sorus. Some fifteen species are known, of which seven grow wild in this country. The following native species are sometimes cultivated in borders. Treatment given other hardy ferns will suit them well Both grow best amongst rocks.

Ilvensis, R.Br. Fig. 2747. Lvs. growing in rosettes or tufts, $3-8 \mathrm{in}$. long, 1 in. or more wide, bipinnatifid; segments crowded, obscurely crenate: sori confluent when old. Eu. and N. Amer, north of Va.
obtùsa, Torres. Lvs. clustered, G-İ in. lomg, $2-4$ in. wide, mimutely glandular-batiry, bipiunate ; pinnw rather remote, triangularovate. New England to Arizona.
L. M. Underwood.

WOOD SORREL. Oxalis Acetosella.

W00DWARDIA (Thomas J. Woodward, an English botanist). Polypodidecer. A genus of rather coarse-foliaged ferns of diverse habit and stimeture, but all hearing the sori in rows arranged parallel to the midrib like links of sansages. Commonly known as the Chaln Fern. See Ferm. W. Fruiting lobe of Woodwardia Vir ginica ( $\times 1 \frac{1 / 2}{2}$ ).

2749. Pods known as "Worms" and "Caterpiliars," some- diun. times grown for curiosity,
pinna; sporophylls with narrowly linear pinnse 3-4 ln. long. Mich. to Fla., mostly near the coast.

## AA. Le's. uniform.

B. I'eins forming one or more series of areole.
radicans, Sm. Les. rising from a candex $3-5 \mathrm{ft}$. long. gracefully curved; pinnte $\delta-15$ in. long. $2-\frac{1}{2}$ in. wide, pinnatifil nearly to the midrib. The true $\Pi^{\prime}$. radicans from Europe bears scaly bnds toward the apex of the leaf and roots to form new plants. The Californian and Mexican species, which has often been referred to this species, is really distinct and never roots.
orientalis. $S$ wz. Lrs. $4-8 \mathrm{ft}$. long, 12-18 in. wide, with lanceolate pinure and sinuate pinnules; veins uniting freely. Japan and Formosa.

BB. Feins free between the sori and the margin.
Virginica, Smith. Fig. 2748. Lvs. 12-18 in. long, 6-9 in. Wide on stout stipes; pinnæ linear-lanceolate, 4-6 in. long, ent nearly to the rachis into oblong lobes. Can. to Mich., Ark. and Fla.
L. M. Underwood.

WOOLLY BUTT, Eucalyptas longifolia.
WORMS. Fig. 2749. T'nder the name of "Worms," "Snails " and "Caterpillars," various odd fruits of leguminous plants are grown as curiosities. The pods are often put in soups as a practical joke, not for their edible qualities. The plants chiefly grown for this purpose are Srorpiurus velmiculatu, Linu., S. subuillosa,
 scutellata, Mill., and Astragulis himosus, Linn. The last is the one nsually known as "Worms." The picture, Fig. 2749 , shows species of Scorpiurns, chiefly S. vermiculuta (beneath)and s. subuillosa (above). All these various plants are anmutls of the easiest culture. They are practically unknown in this eonntry, although offered by seedsmen. Siee Caterpillars. L. H. B.

WORMSEED. See ('henopoWORMWOOD (Artemisia $\Delta b$ sinthiнm). Fig. 2750. An erect, hardy herbaceous perenvial, native of middle and Western Enrope and the countries that bound the Mediterranean, and sometimes found in waste places as an escape from Anifrican gardens, having angular, rather shrubby stems $2-4 \mathrm{ft}$. tall, which bear abundant, much divided, hoary leaves of intensely and persistently bitter flavor, and panicles of greenish or yellowish fl.heads. The sefel, grayish and very small, retains its vitality for about foor rears, but is usually sown soon after harvesting. The tops and leaves, gathered and dried in July ant Angest when the plant is in flower, are oflicially eredited in Ameriea with aromatie, tonic, and,
as its name implies, anthelmintic properties, although now, for no apparent reason other than caprice of practice, they are less popular with the profession than formerly. In domestic medicine they are employed as mentioned and as a diuretic; locally as a fonnentation or ats a decoction with vinegar to ulcers, sprains and bruises. In the dry state they are occasionally placed among clothing as a moth repellant. Formerly Wormwood was nsed by brewers to embitter and preserve liqnors, but at the present time it finds its most extensive use as the principal ingredient in absinthe, in the manufacture of which peppermint, angelica, anise, cloves and cinnamon are also ingredients. According to Blythe, the green color of this liquor is due not to Wormwood but to the chloroplyyll of spinach, parsley or nettles. The plant may be grown without tronble in light, dry, rather
titude. This includes the hish mountain ranges, which as a rule are covered with torests that catch and hold the winter snow, the melting of which snpplies the nomerous peremial streams flowing in every direction from the mountain summitx. In the north are "ultivated areas at less than 3,500 feet altitude, and farming is practiced on high plateans or in mountain ralleys np to 8,000 feet. Wyoming embraces an area 355 miles from east to west and 276 miles from north to south, in the very beart of tlie Rocky Monntain region. Aswould be expected, there is great diversity of soil, climate and exposnre. There are wind-swept plains, rolling uplands, protected monntain valleys and bottom-dands along streams, with corresponding lengths of the growing season, free from frost, of from eighty days or less to more than oue hundred and fifty days. The mean


The areas marked by semi-circles are deserts. The areas sladed by diagonal lines have an altitude of less than 6,000 feet.
poor garden soil from seed which, owing to its small size, should be started where it may not he washed out or packed down by rain. When large enongh to set out the few specimens necessary to furnish a family supply should be placed not closer than 15 in. earlh way the first year. If alternate plants be removed with a good ball of earth early in the following spring and planted 30 in. apart, they will he snfficiently close together and the transplanted ones should suffer from no check. Ripened cuttings taken in March or October may be used for propagation. Clean cultivation and sligbt annual dressings of manure are the only other requisites. In the middle western states there are several localities where Wormwood is grown for export. M. G. Kains.

WREATH, PURPLE. See Petrea volubilis. St. Peter's W. See S'pircea.

## WYCH ELM. VTmus scabra.

WYOMING, HORTICULTURE IN. Fig. 2751. The agrienltural land in Wroming is at a bigher averace altitule than that in any other state, being about 6,000 feet above the sea. As shown in the accompanying map more than ons-half the total area is ahove 6,000 feet al-
annual temperature varies from less than $40^{\circ} \mathrm{F}$. to about $50^{\circ} \mathrm{F}$.

The rainfall is as little as 4 or 6 inches per annum in the Red Desert and reaches a maximum of 30 inches or more on the high mountains. The average for the agricultural regions is about 12 inches. With the exception of a very small area in the northeastern part of the state, and small valleys at high altitudes in the monntains, where some quickly growing plants will mature withont being artificially watered, no crops can be raised without irrisation. It has been estimated that there is sufficient water supply to reclaim about 12,000 ,000 acres of agricultural land, and abont $2,000,000$ acres are already covered by irrigation canals.

The natural conditions make live-stock husibandry of paramount importance. The soil is enltivated principally to increase the amonnt of stock fool and little intensive farming has been inangurated. Some ranches exteud $10-15$ miles along the streams, and some of them have not set known the use of a plow except in the construction of the ditches to irrigate the native meadows. The state is yet in the transition period betwan the time of the nomadie stockmam, or the large stoek rabeh and range business, and the time of permanent home-building and a stable agricultare. in the
last decade the sentiment of the people in regard to cultirating the soil has changed in a marked degree. They are turning their attention to a better agriculture and the production of horticultural crops, both for profit and for greater home comfort.

The state will not reach great commercial importance through her horticultural products, but the people are beginning to appreciate the value of the home-garden and some are raising hardy apples, cberries, grapes, small fruits and vegetables to supply local markets. At the present rate of increase the production of fruits for home consumption will soon he of great importance.

The agricultural land lies along the watercourses, and naturally the first areas to be hrought under cultivation were the bottom-lands along the smaller streams where the canals necessary to bring water to the soil could be easily and cheaply constructed. The bench areas, or uplands, have better drainage both for water and air, and are more likely to be free from injurious late and early frosts, than the lowlands near the streams. With the extension of agriculture to the higher bench lands horticultural plants can be raised with more success. The modifying influence of windbreaks makes it possible to grow fruits in a way that was not dreamed of when the country was first settled. Many early plantings of fruit trees failed becanse of drying winds or late frosts, and in some instances because the plants were drowned by over-irrigating the lowlands where first attempts were made.

Because of the varying conditions, the kinds and varieties of fruits which can be successfully produced vary in different parts of the state. The higb plateaus are characterized by frost every montb in the year except July, and only such crops can be grown as will stand a degree of frost in the spring months. In the warmer valleys, even up to 5,000 feet altitude, such tender vegetables as tomatoes, melons, sweet potatoes and peanuts have been successfully raised. Where the season is short because of the altitude, plants grow very rapidly, reach maturity in a short time and do not seem to be so seriously affected
by light frost as they do where the season of growth is long.

In those portions of the state which are below 6,000 feet in altitude (see map) many varieties of apples, Morello and Rocky Mountain dwarf cherries and plums (varieties from Prunus Americana) are fruiting, and hardier kiuds are successful at much higher altitudes in protected locations. The Wealthy apple has been successfully fruited on the Laramie Plains at an altitude of 7,400 feet. Tree fruits have been most successfully raised in Fremont, Sheridan, Natrona and Laramie counties, which also produce all the varieties of small fruits usually grown in this altitude.
Above 7,000 feet the only small fruits that succeed well are currants, strawberries, lewberries and gooseberries, named in the order of their apparent hardiness. Because there is not sufficient snowfall to cover the ground and keep it covered during the winter, it is necessary to give winter protection to raspberries, blackberries and grapes by laying down and covering with earth to prevent their parts above ground drying out and dying in the dormant season. Ender unfavorable conditions such treatment becomes necessary with strawberries and gooseberries.

Under irrigation the kinds of fruit suitable to the climate produce large crops. Years of failure are rare, and when they do come are traceable to sudden unseasonable changes of temperature, such as late spring frosts or early fall storms before the plants are mature and ready for winter. The first trees were set out in Wyoming between 1882 and 1885. Planting began in earnest in 1892, and every gear there is good increase in the area devoted to fruits.

Following is a list of apples which have fruited in the state, arranged as nearly as possible in the order of their apparent hardiness and present abundance: Standard-Wealthy, Oldenburg, Antonovka, Gideon, Fameuse, Wolf, Tetofsky, Ben Davis, Transparent, Pewaukee, Pippin. Crabs-Siberian, Montreal, Whitney, Martha, Van Wyck, Soulard, Transcendent.
B. C. Buffum.

XANTHISMA (Greek, dyed yellow, referring to the color of the ths.). Compósiter. A genus of only one species, a summer-blooming, yellow-Howered composite with heads $1-1 \frac{1}{2}$ in. across, composed of a small disk and about 20 rather slender rays. This plant is known to Hower-seed catalogues as Centauridium Drammondii. In cultivation the plant is treated like a bardy annual, the seed being sown in the open border early in spring.

Generic characters: ths. all fertile: akenes top-shaped, $4-5$-ribbed or angled; pappus persistent, composed of 10 or 12 rigid bristles which are minutely scabrous above, gradually chaffiy-dilated towards the base, and longer than the disk-corolla, as many more one-balf shorter, and usually 5 still smaller and shorter external ones.
Texanum, DC. (Centauridium Drimmondii, Torr. \& Gray). Fig. 2752. Nearly glabrous biennial or annual, $1-1 \mathrm{ft}$. high: lvs, narrowly ohlong to lanceolate; stemlvs. entire or with a few teeth toward the apex: fls. attaining a diam, of 2 in . even in the wild.
W. M.

XANTHOCERAS (Greek, zanthos, yellow, and keras, horn, alluding to the yellow horu-like processes of the disc). Sapindaceor. Ornamental leciduous shrub or small tree with alternate, odd-pinnate lvs., showy white fls. in terminal and axillary racemes, appearing with the leaves in spring on last year's branches. The large greenish fruits are similar to those of the buckeye. $\overline{\bar{X}}$. sorbifolia, the only species, is hardy as far north as Mass., and is a very handsome sbrub well suited for solitary planting on the lawu. The dark green, glossy folinge is not attacked by insects and retains its brigbt color until frost sets in. The flowers are very showy and appear even on small plants. Xanthoceras is also sometimes used for forcing. It is not very particular as to soil. A porous, loamy soil and a sunny position seem to suit it best. Prop. by seeds, stratified and sown in spring, and by root-cuttings, which succeed best with moderate bottom-heat. A monotypic genus from N . Cbina, allied to Ungnadia and Kolreuteria: fls, polygamous, the upper ones of the terminal raceme pistillate, the lower ones staminate, those of the lateral racemes staminate, with rarely a few pistillate ones at the apex; sepals and petals 5 ; dise with 4 suberect cylindric borns about half as long as stamens; stamens 8 : ovary superior, 3 -loculed, with a rather short, thick style: fr. a capsule, with thick walls dehiscent into 3 valves, each locule with several globose, dark brown seeds.
sorbifolia, Bunge. Figs. 2753, 2754. Shrub or small tree, attaining 15 ft ., with rather stout upright branches, glabrous: lvs. $6-12$ in. long; lfts. $9-17$, usually opposite, sessile, narrow-elliptic to lanceolate, sharply serrate, dark green above, paler beneath, 1-2 in. long: racermes $6-10 \mathrm{in}$. long: fls. on slender pedicels, white, about $3 / 4 \mathrm{in}$. across, each petal with a blotch at the base changing from yellow to red: fr. grcen, $11 / 2-23 / 2 \mathrm{in}$. long; seeds $1 / 2 \mathrm{in}$ across. May. N. China. B.M. 6923. F.S. 18:1899. R.H. 1872:290; 1898, p. 356. Gn. 8, p. 524 (col. pl. not numbered); 34, p. 372; 50, p. 227. G.C. II. 26:205; III. 2:274, 275; 11:533; 17:197. G.F. 6:285. A.F. 3:109; 12:36. A.G. 18:357. Gng. 2:292-293; 3:289. Mn. 1, p. 27. M.D.G. 1900:592, 593. 1.H. 24:295.

## Alfred Rehder.

XANTHORRHEA (Greek, yellow flow, referring to the resin which exudes from the trunks). Juncàcea. The "Grass Trees," "Grass Gums" or "Black Boys," which form a conspicuous feature of the Australian landscape, are among those strange members of the rush family that have a decided trunk or caudex. The Grass Trees often have a trunk 2 or 3 feet higb, surnounted by a dense, symmetrical crown of foliage, composed of a multitude of brittle, linear leaves $2-4 \mathrm{ft}$. long which spread or curve gracefully in all directions. From the center of this tuft of leaves arises a solitary, sceptrelike flower-stalk, terminating in a dense cylindrical spike
of numerous, closely packed greenish flowers. These picturesque desert plants are well worth trial in the warmer and more arid regions of the U. S. The trunk varies from almost nothing in some species to 15 ft . in the case of aged specimens of $X$. Preissii. The tall and palm-like trunks are thickly covered with the bases of the old dead leaves, which are cemented together by the

2752. Xanthisma Texanum ( $\times 1 / 2$ ).
black or yellow resinous gum that flows freely from the stems. In Australia the trunks are often charred and discolored by bush fires. The following species have heen offered in soutbern Fla. and southern Calif., but are practically unknown to cultivation in this conntry. All the species are long-lived perennials native to dry and rocky places. They are said to thrive in a compost of peat and loam and to be propagated by offisets. X. Preissii seems to be the most desirable species.
Xanthorrhcea is a genus of 11 species of Australian
plants of the general appearauce deseribed ahove: perianth persistent, of 6 distinct segments, the 3 outer glume-like, erect, coneave or almost hooded, 3- or 5nerved, the 3 inner much thinner, usually 5 -nerved. ereet, but more or less protrnded beyond the outer segments into a short, hyaline or white, petal-like, spreading lanina. Flora Australiensis 7:112.

2753. Xanthoceras sorbifolia ( $\times 2 / 3$ ). (See p. 1993.)
A. Truuk very short.
B. Spike s-s in. long.
minor, R.Br. Lis. 1-2 ft. long, 1-2 lines wide: scape longer than the lvas: spike less that $\frac{3 / 4}{4}$ in. wide. B.M. 6297 . - Belongs to the group in which the inner perianthsegments have a white blade conspicuously spreading sbove the outer ones, while in the next two species the inner segments have a short whitish tip, little longer than the outer and scurcely spreading.

## BB. Spike $11 / 2-2 \mathrm{ft}$. long.

hástilis, R.Br. Lrs, $3-4 \mathrm{ft}$. long, $2-3$ lines broad: scape often 6 bit. long, not counting the spike. Readily distiuguished by the dense, rusty tomentum covering the ends of thie bracts and outer perianth-segments. B.M. 4722. G.C. I1I. 17:136. F.S. $9: 868$.

AA. Trunk becoming 5 or 6 , or even 15 ft .70 ng .
Prelssii, Eudl. Livs. 2-4 ft. long, 1-2 lines broad, rigid, very brittle when young: scapes $2-6 \mathrm{ft}$, long, including the spike, which oceupies one-half to nearly all its length. B.M. 6933.
W. M.

XANTHORRHİZA (Greek, yellow root). Often spelled Zanthorrhiza. Ranunculdeea. A genns of only one species, uative in the eastern United States from New York to Florida. Plant shruhhy: lis. pinnate or bipinnate: ths. in drooping racemes or panicles; sepals 5, petal-like, deciduous; petals 5 , smaller than the sepals, and 2-lobed; stamens 5-10; earpels 5-10, sessile, forming only one-seeded follicles, one ovnle of each usually not maturing.

The plants are cult. mostly for their handsome foliage, which is much like that of Actay, and which changes to a beautiful golden color in the autnmn. The plants will grow readily in any good soil but usually prefer damp and shady plaees, although it often thrives in loose, sandy soil. Propagated both hy seed and root division in fall or early spring. Often not hardy in Massachisetts.
apiifolia, L'Herit. Shrub Yellow Root. Fig. 2755. Stems of bright yellow wood, $1-20 \mathrm{ft}$. high: roots yel-

2754. Fruit of Xanthoceras sorbifolia ( $\times 1 / 2$ ).

[^1]XANTHOSOMA (Greek, yellozt body, referring to the stigma). Ardecu. This genus is interestiug to the horticulturist as containing the baudsome variegated stove foliage plant known to the trade as Pkyllotienium Lindeni, and part of the regetables known as "Malanga," a crop to which two per cent of the arable land in Porto Rico is devoterl. Many species of the arum family are noted for their huge tubers, some of which are edible "after the acrid and more or less poisonous properties are dispersed by the expression of the juice, or by its dissipation through heat" (B. M. 4989). Of this class the best known is the Elephant's Ear, or Colnctsiat es--culenta. The Malanga is said to be "little, if at all, inferior to Culuctium esenlentum; in wholesomeness and delicacy far superior to spinach; and iu this respect it may vie with any European vegetable whatever."-Bot, Mag. The "Youtia Malauga" of Porto Rico is, according to Cook, Coloctsia antiquorum, var. esculentri. Other Yantias are species of Xanthosoma. The botany of them is confused.

Xanthosoma is a genus of $2 \overline{3}$ species, according to Engler, who has given an account of them in Latin in DC. on Phaner. vol. 2 (1879). They are milky herbs of South and Central America with a tuberous or tall and thick rhizome: 15 s . arrow-shaped, 3 -eut or pedately cut ; fls, nuisexnal, naked: males with 4-6 stamens connate in an inversely pyramidal synandrium with 5 or 6 faces: orary $2-4$. loculed; orules anatropous.

## A. Caudex a short, thick, erect rhizome.

sagittifolium, sehott (il rum sagittifo-
limm, Linn.). Malanga. A tropical vegetable. "Young plats of this are stemless, but in age, from the decay of the old lrs.. an umnlated caudex is formed some inches in height, each throwing ont stunt fihers from the base, and from time to time producing offsets, by which the plant is easily propagated, or if suffered to remain the

2755. Xanthorrhiza apifolia $(\times 1 / 2)$.
plant becomes tufted, and numerous Iss, are prodnced from the summit of the short, yet stem-like trunks" (B.3. 4989). Les. $1-2$ or almost 3 ft , long, broadly
sagittate-ovate, suddenly and shortly acute at apex, basal lohes obtnse: spathe large, with a creamy white limb. Tropical Amer. B.31. 4989.-1n northern hothouses said to bloom in winter.

2756. Xanthosoma Lindeni Leaves a foot or so long.

## AA. Candre tiblerohis.

Lindeni, Engl. (Phyllotipnium Lindrni, André). Fig. 2756 . Tender rariegated foliage plant with large, ar-row-shaped 1Fs, marked with white along the midrib and parallel veins which run therefrom to the margin. 1.H. 19:88. A. (t. 19:573 (1898). -Tuberous plant from Colombia. G. W. Oliver, in his "Plant Culture,"remarks that this stove ornamental plant should be more used for decorative purposes than it is at present, for it will stand more rough usage than one would suppose. After a goodly number of leares have been developed in a warm, moist atmospbere, the plants will maintain a good appearance in a greenhouse temperature and may even be nsed as house plants. The lys. are firmer in texture than caladiums. Prop. by division. Before repotting, put the pieces in a warm sand-bed to encourage fresh roots. Lrs, oblong-hastate, with acute basal lobes.

工. belophýlum, Kunth, has a short, thick, ereet rhizome and a cordate-hastate leat. Veneznela. Var. Caracasamm, C. Kocn (X. Caracasanum, Schott. Colocasia Caracasana, Eng.), has lvs. pale green beneath, the posterior lohes more produced at the apex and the midrih and nerves often rosy. Caracas. I. Mafaffa, Schott (Colocasia Mafaffa, Hort.), elosely allied to the preceding, has a similar caudex and a cordate-ovate leaf hut the posterior costa are separated by a right or acute angle, the angle in the preceding species heing ohtuse. W. M.

XANTHOXYLUM (Greek, xanthos, yellow, and $x y$ lon, wood). Sometimes spelled Zanthoxylum. Including Fagara. Rutàcer. Prickly Ash. ToothAche Tree. Ornamental deciduous or evergreen trees and shmbs, mostly prickly, with alternate oddpinnate or sometimes simple leaves and small greenish or whitish flowers in axillary clusters or terminal panicles followed by small capsular, ofteu ornamental fruits. $X$. Americanum is the only species which is hardy north, but some of the species from E. Asia will probably prove fairly hardy in the middle Atlantic states. As ornamental shrubs they are ralned chiefly for their fruits, but some have handsome foliage also, and $\boldsymbol{r}$. ailanthoides is called by sargent one of the most beantiful trees of Japan. They seem to be not
very particular as to soil and position. Prop. by seeds and by suckers or root-cuttings.

The gemus contains about 140 species in the tropical and subtropical regions of both hemispheres, and a few in temperate regions. Trees

2757. Leal of Prick!y Ash, Xanthoxylum Americanum ( $\times 1 / 3$ ).
Showing paired prickles re sembling stipular spines. and shrubs, with mostly prickly branches: most parts, particularly the fruits, emit a strong aromatic odor when bruised: lvs. odd-pinnate, 3foliolate or rarely simple: fls. diocious or polygamous, small, in eymes or panicles; sepals, petals aud stamens 38 , sepals often wanting; pistils 3-5: fr. composed of 1-5 separate small dehiscent capsules each with 1-2 shining black seeds. Several species are used medicinally. The wood of some W. Indian species and that of the Australian $\boldsymbol{X}$. brachyacanthum is considered valuable. The fruits of $I$. piperitum are used like pepper in Japan.
Americànum, Mill. (F. fraxineum,Willd. X. ramiflorum, Michx.). Prickly Ash. Fig. 2757. Shrub or small tree, attaining $25 \mathrm{ft} .$, with prickly branches: lfts, 5-11, opposite, almost sessile, ovate, entire or crenulate, dark green above, lighter and pabescent beneath, $1 \frac{1}{2}-2$ in. long: fls. small, greenish, in axillary sessile cymes, appearing shortly before the Ivs.: seeds black Quehec to Neb. and Va. B.B. 2:353.
piperitum, DC. Chinese or Japanese Pepper. Bushy shruh, rarely small tree: branches with slender prickles: lfts. II-13, narrow-elliptic to elliptic-lanceolate, serrulate, glahrous, dark greeu and lustrous above, paler beneath, $3 / 4-11 / 2 \mathrm{in}$. long: fls. in terminal, rather dense, umbel-like corymbs. July, Aug. Japan, Corea,
$X$. ailanthoides, Sieb. \& Zucc. Tree, attaining 60 ft .: branches with numerous short prickles: $1 \mathrm{vs} .1-4 \mathrm{ft}$. long; lfts. oblong-ovate, glabrous, glaucous beneath, 3-6 in. long: Hls. and fr. in terminal corymbs. Japan. Handsome tree.-T. Bungednum, Maxim. Sbrub, with stout, compressed prickles: lvs. prickly: lfts. $7-11$, ovate to ovate-lanceolate, glabrous, 8/4-11/2 in. long: fls, and fr, in terminal corymbs. N. China.- X. OlavaHérculis, Linn. (X. Caroliniamum, Lam.). Toothache-treer. Pepper-woon. Small tree, attaining 30 or oecasionally 50 ft ,: lfts. $7-17$, ovate-lanceolate, pubescent beneath when young, $1-21 / 2 \mathrm{in}$. long: fls, and fr. in terminal panicles. April, May. S. Va. to Fla, and T'ex. S.S. 1:29.-X. planispinum, Sieb. \& Zuce. Shrub, witb stont, compressed spines: lits. 3-5, elliptic to elliptic-lancoolate, serrulate, glabrous, 1-2 in. long: fls, and fr. in stmall panieles on short lateral branchlets. Japan. $-X$. schinifolium. Nieb. \& Zuce. Shrub, with sparingly prickly branches: lfts. 13-19, elliptic-lanceolate, crenate, emarginate at the apex, $3 / 4-11 / 9 \mathrm{in}$. long: fis. and fr . in large, terminal corymbs. Japan.

Alfred Rehder.
XENIA. The immediate influence of pollen-the influence on the fruit that results directly from a given pollination.

XERANTHEMUM (Greek, dry flower: it is one of the "everlastings"). C'ompósitce. There are four or five species of Xeranthemum, of which $\boldsymbol{X}$. annuum is one of the oldest aud best known of the "everlastings" or immortelles. They are inhabitants of the Mediterranean region. They are annual erect herhs, densely pubescent or tomentose. The heads are rayless, but the large involucre scales are petal-like aud persistent, giving the plant its value as a subject for dry bouquets. Onterflowers few and sterile, inner ones fertile; receptacle chaffy; involucral scales iu many series, of various lengths, glabrous; heads solitary on long naked peducles.

The culture of Xeranthemum is very simple. Seeds are usually sown in the open, where the plants are to stand; but they may be started indoors and the seedlings transplanted. Hardy or half-hardy annuals.
ánuum, Linn. Fig. 2758. Andual, 2-3 ft. tall, erect. white-tomentose : lvs. alteruate, ollong-lanceolate, acute, entire: heads purple, $1-11 / 2$ in. across, the longer scales wide-spreading and ray-like. S. Europe.-Runs iuto many varieties, Yar. ligulosum, Voss (X. plenissimum and $\mathbf{X}$. imperidle. Hort.). A double or half-

2758. Xeranthemum annuum $(\times 2 / \mathrm{s})$.
double form. Var. perligulosum, Voss (X. superbíssimum, Hort.), has very full double heads. In these and the single types there are white-fld. (var. album), rosefld. (var, roseum) and purple-fld, (var. purpureum) varieties. There are also violet-fld. forms. Var. multiflorum, Hort. (var. compactum) has a more compact and
bushy habit, with somewhat smaller heads. N. varius, Hort., is a trade name for mixed varieties.
$X$. inapterum, Mill. (X. erectum, Presl.) has white heads of which the scales are little or not at all open or spreading. $\mathrm{S}_{\text {. }}$ Eu. to S. W. Asia.
L. H. B.

XEROPHYLLUM (Greek, dry leaf). Liliàcece. Turkey's Beard. The Turkey's Beard of our easteru states is a strong perennial herb, 3 or 4 ft . high, resembling the asphodel. It has a dense tuft of numerons long, wiry leaves from the center of which springs a stately shaft sometimes 5 ft. high, with au oval or oblong raceme 6 in . long, crowded with yellowish white 6 -parted fls., each $1 / 4 \mathrm{in}$. across. It blooms from May to July, fls. with delicate fragrance lasting a long time. It is a handsomer plant than the asphodel, bnt, like many other native plants, its beauty was first appreciated in England and it has only lately fonnd favor in American gardens. $X$. setifolium, or asphodeloides as it is known to the trade, is considered one of the choicest plants for English bog gardens. The possession of several large clumps is especially to be desired, as each plant flowers so freely that it requires a year or two to recover. Unfortunately the plant does not seed freely and propagation by division is a slow process which must be performed with great care in the spring. It needs a moist and somewhat shaded situation and a peaty soil. The probability is that the Turkey's Beard can be grown in any sandy soil that has been liberally enriched with well-rotted leaf-mold in a spot that is reasonably dry in winter. The species is a native of the dry pine barrens from southern N. J. to eastern Tenn. and Ga. The chief species of the Pacific coast, X. tenax, has white and violet flowers, the latter color supplied by the stamens. Each region should cultivate its own species. The forms are too much alike for the same garden. A third species, $S$. Douglasii, is a rare plant ranging from Montana to Oregon. It is distinguished by its 6-valved capsnle and is said to be inferior as a garden plant to the other species. Xerophyllnms are tall perennial berbs with short thick, woody rootstocks, unbranched leafy stems and linear, rough-edged leaves, the upper ones shorter chan the lower: fls. small, white, in a large, dense raceme, the lower fls. opening first; perianth-segments oblong or ovate, $5-7$-nerved, devoid of glands; stamens 6: ovary 3-grooved; styles 3, reflexed or recurved: capsule loculicidally and sometimes also septicidally dehiscent. Watson in Proc. Am. Acad. Arts, Sci. 14:284.
A. Raceme s-6 in. long or more: perianth-segments exceeding the stamens: lis. one line or less wide.
setifolium, Michx. (X. asphodeloldes, Nutt.). Fig. 2759. A tall hardy perenuial herb described above. Varies in height from l-f ft. Found in the pine barreus, easteru U. S. B.M. 748 and L.B.C. $4: 394$ (both as Helonias asphodeloides). Gng. 1:173. A.F. 7:17I.


2759, Xerophyllum setifolium growing near the margin of a pond.

Gn. 39:808 and p. 527; 27, p. 224; 58, p. 15. G.C. II 13:433.
AA. Raceme 1-2 ft. long; perianth-segments scarcely equaling the stamens: lris, about 2 lines wida. pedicels longer, mostly $1-2 \mathrm{in}$. long.
tènaz, Nutt. Distinguished from eastern species by characters indicated ahove. Ranges from Calif. to Brit. Col. and varies in height from $2-5 \mathrm{ft}$. June, July. B.R. 19:1613 (erroneously as $\boldsymbol{X}$. setifolium).
W. M.

XIMENIA (Francis Ximenes, Spanish monk, wrote on plants of Mexico in 1615). Olacacer. Here belongs the Hog Plum, a tropical fruit of minor importance which grows wild throughout the tropies, and in the U. S. is native to Florida sonth of Tampa Bay. The fruit is abont an inch long, sbaped like a plum, and the polp is sweet and aromatic. The "stone" which incloses the seed is proportionately very large. The fruit is borne on a snall tree, each brauch of which ends in a thorn about $\frac{1}{2} \mathrm{in}$. Joug. The fruits are generally eaten, but although it is fuirly eommon in Fla. it is not enltivated. The species has been suggested hy the Americau Pomological Society as worthy of cultivation with a view to improvement.

Ximenia is a greuns of 8 speeies of tropical shrubs or trees, often thorny: lrs, alternate, entire, often clustered: As. whitish, in short axillary cymes or rarely solitary; calyx small, 4-toothed; petals 4, united at the
base, villous within; stamens 8 : ovary 4 -loculed; loeules 3-4-ovuled: drupe baceate, not inclosed in the ealyx.

Americàna, Linn. Hon Plum. Also called Mountain or Saaside Plnm and False Sandalwood; "Wild Olive" in Jamaica. Tropical fruit-bearing tree described above. Lvs. 2-3 together, ohlong, obtuse, short-petioled: peduneles $2-1$-fld., shorter than the lvs.: fls. small, yellow; petals thiek, laneeolate, rnsty-hairy within: fr. yellow; nut white, globose. Tropics. - The "Hog Plum" of Jamaica is Spondies lutea.
W. M.

XYLÓSMA longifolium has been offered in southern Florida, but no plants hare been sold and the stock has lately been destroyed, as there seems to be no reason for cultivating the plant. It is a hush from the Himalayas and belongs to the family Bixaceæ. See Flora of British India.


2760, Yucca arborescens, the tree Yucca, or "Yucca palm," of the Mojave region.

YAM. See Dioscorea and Sureet Potato. Circular 21, Dir. of Bot., U, S. Dept. Agric., has valuable cultural notes on the introduction of West lndian Yams (Dioscoreas) to subtropical agriculture in the U. S.

YARROW. Consult Achillea.
YATE. See Eucalyptus occidentalis.
YELLOW ROOT SHRUB. Tanthorrhiza.
YELLOW-W00D. Cladrastis tinctoria.
YERBA BUENA, Micromeria Douglasii.
YEW. See Tarus.
YOUTH-AND-OLD-AGE. Zinnia.
its forms, and glauca are hardy in the northern states, and $Y$. Treculeana shows considerable resistance to frost. The tender species are kept in the cactus house. Well-drained sandy loam suits them best, bnt with good drainage they are tolerant of a large range of soil and exposure. Prop, by seeds, offsets, stem-cuttings, and the rhizomes that several species produce, which may be cut into short lengths and rooted in the cutting bench.
$\xi$. Treouleanu blooms usually in March in plant houses, as when wild, and the Mexican species when brought to flower are usually spring bloomers, but they often refuse to flower for long periods and theu suddenly and unexpectedly produce an abundance of simultaneous bloom, even on the smaller plants. Of the bardy species, Y. glauca Howers in June and it is quickly followed by $\boldsymbol{F}_{\text {. filamentosa and } \boldsymbol{J}^{*} \text {. flaccida, while the forms of }}$ $F^{F}$. gloriosa, which usually flower only at intervals of several years, hloom from late August to so late in the autumn as to be cut down by frost.

2761. Yucca Whipplei.

IUCCA (Indian name for the Manihot, erroneously applied by Gerarde). Lilidicerp. About a dozen species, chiefly of the arid North American table-land and confined to the United States, Mexico and adjacent islands. Erergreens with long, narrow, usually spiny-pointed leares and panicles of large white nocturnal flowers frequently shaded with green or purple.
Y. filamentosa, flaccida, baccata, gloriosa in some of

Most species may be fertilized if fresh pollen is transferred directly from the anther to the stigmatic eavity of a newly opened flower, preferably one seated directly on the main shaft, wherenutrition is more certain. Y, aloifolia commonly fruits freely, but the others rarely fruit spontaneously in cultivation except $\boldsymbol{F}$. filamentosa and $J_{\text {, flaccidu, which are pollinated by a small white moth }}$ (Promubu yuccasella) that accompanies them when cul-

## YUCCA

2. filamentòsa, Linn. Figs. $2762,2764-5 ; 1052$. Sometimes called Adam's Needle, Bear Grass, Silk Grass, or Thready Xucca. Acaulescent: Ivs. I in, wide, rather weak, somewhat concave, glaucous when young, short and stout, pointed from the acute apex, with curly marginal fibers: panicle loose, long-stalked: fls. creamy white; style white. Southeastern U. S. B.M. 900. A yellow- or white-margined form is var. variegata, Carr. B.B. 1:427. Var. concàva, Engelm. ( 5 . concava, Haw.), Lvs. broadly spatulate, plicate, concave. N. C.
3. fláccida, Haw. (F. pubérula, Haw. F. orchioides, Carr.). Lvs. more flexible, recurving, not pungent, gradually tapering, with thinner and less curly tibers. Eastern U. S. B.R. 22:1895. B.M, 6316.-Usually cultivated for the preceding, and comprising several forms. Vars. exigua and intègra have the leaf-margin hrown, without detaching fibers.
4. glaùca, Nutt. ( F. angustifolia. Pursh. Y. Hánburyi. Baker). Fig. 2766. Lvs. less than $1 / 2 \mathrm{in}$. wide, thin but stiff, flat, acutely and pungently pointed, with white margin from which slender fibers detach themselves, whitish green: panicle with 1 or 2 short hranches within the cluster of leaves, or usually reduced to a raceme: fls. greenish; style green. Rocky mountain region and plains. B.M 2236, G.F.2:247. Rept. Mo. Bot. Gard. 6, p.7. B.B. 1:427. - Var. stricta,Trel.( F. stricto, Sims). Inflorescence freely branched at top of the leaf-cluster. Southern plains. B.M. 2222.
5. gloriosa, Linn. Nearly stemless or with slender trunk, $10-15 \mathrm{ft}$. high: lvs. 1-2 in wide, thin but not $\mathrm{re}=$

6. Adam's Needle-Yucca filamentosa. From a plant 4 feet high.
curved, somewhat concave, glaucous when young, pungently pointed, brown-margined: panicle with ascending branches, short-peduncled: fls, often with a reddish or brownish shading. Carolina coast region.-A form
with median whitish stripe on the lre, is var. mediostriata, Planch. Among the mumerous varieties and forms into which this, the first-cultivated Yucea, has sported, the following are most wortby: Var. plicàta, Carr. Lus. very glancous, strongly plicate. (i.U. 111 . 55:304. Rep. No. Bot. Gard. 3, pl. 6. Var. recurvifolia, Engelm. (1. recurri.

7. Flowers of Yucca filamentosa ( $\times^{1 / 8}$ ). folia, Salisb. I. recuria, Haw. そ, péndula, Hort. Has the Ivs. less plicate, soon green, gracetully reeurved, occasionally with a few detaching marginal threads. Caroliua coast region. Gn. 47, p. 337. R.H. 1858, p. 433; 1859, p. 488. Variegated forms of this are the following: Var. marginata, Carr. Lvs. yellow-margined; var. variogata, Carr. Lvs. with yellow median hand; and var. élegans, Hort. Lers. with reddish median band. Var.nóbilis, Carr. ( Y, E'lltedombei, Bak.). Les. ghaucous, not plicate, less recurved. Var. fléxilis, Trel. ( 5 . fléxilis, Carr.). Lvs. long, narrow, less than an inch wide, scarcely plicate, glossy green, gracefully recurved, occasionally a little rongh on the margin. Hybrids of $\mathbf{Y}$.gloriosa with both capsular and fleshy - fruited species have been artificially produced in Europe, and are in some Enropean gardens under the names $\boldsymbol{Y}$. Delewili, $\boldsymbol{\Sigma}$. swleata, $\boldsymbol{\Gamma}$, Carrierei, $\boldsymbol{F}$, Andreana, $\boldsymbol{F}$. dracanoides, $F$. striatula, $\boldsymbol{V}$. Massiliensis, $Y$, eusiferu, Y. laviguta and $\boldsymbol{F}$. juncea. R.H. 1886, p. 63; 1895, p. 81. For descriptions see R.H. 1893, p. 109. Other hybrids not yet in the trade have more lately been prodnced by Sprenger, of Naples.
8. aloifolia, Linn. Slender simple trunk $10-15 \mathrm{ft}$, high: lvs. dagger-shaped, 1-2 in. wide, flat, very stiff and pungent, not plicate: panicle compact, close to the lvs.: fls. white, often tinged with green or purple: ovary distinetly stalked. Southeastern [T. S. and West lndies. B. 11. 1700. - Variegated forms are: Var. margindta, Bommer. Lvs. with yellow margin, and often
when young also tinged with rose. Var. quadricolor, Hort. Lvs. with median yellow band, and also when young with rosy coloration. Var. Draconis, Engelm. (I. I)rucònis, Linn.). Branching above. Lvs. broad and arching, less pungent. B.R. 22:1894. Var. conspicua, Engelm. (I. conspicua, Haw.). Tall, the stems clustered at base: Ivs. luroad, recurved, softly green-pointed.
9. Guatemalénsis, Baker. Tall, swollen at base, branching above in age: lvs. about 3 in. wide, flat, glossy green, sonetimes plicate, rather thin but scarchly recurved: panicle compact, close to the lvs. Guatemala. G.1. I1I. 18, 519, 523, 525. Rep. Mo. Bot. Gard. 4, pl. 1, 2, 19.
10. Treculeàna, Carr. (I. canaliculata, Hook. Y. (※্mए, Regel. I. longifòlia, Buckley, Y, Vanderwinvidna, Koch. Y. argospitha, Verlot). Fig. 2767. Usually loosely branched in cultivation: Jvs. thick and very rigid, deeply concave, rongh, blne-green, at length with a few fine fibers detacbing from the brown margin: panicle short-stalked, compact. S. W. Tex. to N. E. Mexico. B.M. 5201.

11. Yucca Treculeana-A much auckered specimen.
12. baccàta, Torrey. Spanish Bayonet. Low, from a stout rumning caudex: lvs, of a yellower green, with very thick marginal threads: panicle rather loose within the leaf-cluster: fls, and fruit very large. S. Colo. to Ariz. B. B. $1: 426$.

Wm. Trelease.


ZALUZIANSKYA (after a Pole, who wrote Methodus Herbarize, Prague, I592). Including Nycterinia, Scroph ulariacece. About 16 species of S. African herbs and subshrubs, including three plants known as Night Balsams or Star Balsams, from their night-blooming habit. The name Night-blooming Phlox would be better, as the flowers are salver-shaped and 5 -lobed, eacb lobe being deeply cut. These plants are generally treated as halfhardy annuals, the seed being sown indoors in early spring. The plants bloom in about ten weeks after being set out and continue in flower through July and August. Some cultivators declare that this method is very unsatisfactory and urge that the seed be sown in the autumn and the young plauts wintered in a coldtrame. They will then begin to flower by June. The blossoms are closed by day and are fragrant by night.

Zalnzianskyas are more or less viscous plants: lowest Ivs. opposite, upper ones alteruate, usually few-toothed: fls. sessile hut long-tubed, disposed in leafy spikes which are cylindrical or flattish; calys 5 -toothed, 2 lipped or 2 -parted; corolla persistent, the 5 lobes entire or 2 -fid, equal or the 2 posterior ones a little wider; stamens usually 4; style club-shaped: capsule ohlong, leathery or membrauous. The Zaluzianskyas are little known in American gardens. The botanical status of the group is in need of revision.

A promise was made to give some account under Zaluzianskya of the puzzling trade names Erinus duplex, gracilis, Pastoniana aud speciosa. It is probable that these are all varieties of Erinus alpinus, In the American trade they are considered as trailing plants suitable for hanging-baskets, vases aud window boxes, uses to which Erinus alpinus is emineutly adapted. E. speciosa is said to have ultramarine blue fls.; $E$. gracilis, light blue fis. and a spreading habit: E. Powtoniana, pure white tls., blue-edged; E. duplex, double blue fls. Erinus gracilis of the botanists is a true Zaluzianskya, being a synonym of $Z$. lychnidea, a plant of erect hahit with white fls. that are violet outside Although Erimus and Zaluziauskya are placed in different tribes of the figwort family, it is difficult to separate them by any one important botanical character unless it be the shape of the stamens, which is oblong in Zaluzianskya, reniform in Erinus. The horticulturist, however, may readily distinguish them by the lowest leaves, those of the former being opposite, those of the latter tufted. To the account of Erinus in Vol. II, p. 543 , should be added the fact that the genus bas only one species. The other names which appear to he good species of Erinus in Index Kewensis are presumably to be referred to other genera, as they are mostly South African plants,-Europe and the Cape haring few genera in common.
All the species mentioned helow bave their corollalohes bifid.
A. Corolla-tube slightly pubescent.
B. Duration perennial: bracts broadly lanceolate: lvs. oblong-linear.
lychnídea, Walp. (Nycterinia lychnidea, D. Don. Erinus grieilis, Lehm., not Hort.). Subshrub, 2 ft . high, with-fls. $1 \frac{1}{2}$ in. long, $3 / 4 \mathrm{in}$. across, white, violet outside. B.M. 2504. B.R. 9:748 (hoth as Erinus lychnidea).

## BB. Duration annual: bracts ohlmg-lanceolate: lis.

 linear or the lower ones lancoolate.Capénsis, Walp. ( $\mathrm{N}_{\mathrm{yc}} \mathrm{cterinia} \mathrm{Capénsis}, \mathrm{Benth).}. \mathrm{Dif-}$ fers from the above, according to Bentham, in stature, duration, strict stems and smaller lvs., but unfortunately Bentham does not give the height of the plant or color of the fis. According to R.H. 1851:291, the plant has white or lilac flower-clusters on the same plant, each flower having an orange eye. The spikes, accordlng to Bentham, are commouly short and $4-8$-fld., sometimes long and $15-20$-ild. There is some evidence that
this species and the next are confused in the trade. In R.H. 1851:221 the fls. are $3 / 4-1 \mathrm{in}$. long and less than $1 / 2 \mathrm{in}$. across.

## AA. Corolla-tube glabrous.

selaginoldes, Walp. (Nyeterinia selaginotdes, Benth.). Dwarf annual, branched at the base, $3-5 \mathrm{in}$. high, rarely 6 in., with spatulate ivs. and fls. $3 / 4-1 \mathrm{in}$. long, color of Hs. not stated by Bentlam. but in R.H. 1896, p. 308 (same picture as Gn. 24, p. 89) the fls. are said to range from white to lilac and darker depending upon their stage of development, with an orange-colored eye wbich becomes crimson later. This suggests the preceding species, and it is evident that the two must be distinguished by technical characters until the colors can be verified. The plant advertised in America as Nycterinia selaginoides is said to be a pink-fld, , half-hardy perennial, growing 9 in . high, which does not agree with authentic descriptions. A species passing under this name is bardy at San Francisco.
W. M.

ZAMIA (name used by Pliny, meaning loss or damage, and first applied to barrea pine cones, and transferred to these plants apparently because of the conelike fructification). Cycaddcece. One of the nine genera of the Cycas family, as constituted by Alphonse De Candolle (Prodr. 16. pt. 2, pp. 522-547). Other genera of horticultural interest and discussed in this Cyclopedia are Ceratozamia, Cycas, Dioon, Encephalartos and Macrozamia. The Zamias are stocky short- and usually simple-stemmed cycas-like plants, the trunk sometimes subterranean, with long-pinnate evergreen leaves or fronds, the leaflets being thickened and usually broadened at the base, and jointed. There are about 30 species in the American tropics, and two are native to Florida. The flowers of cycads are diccious, withont envelopes; the pistillate flowers are mere naked ovales inserted under scales in cones, and the staminate flowers

2768. Zamia Floridana.
are simple anthers under similar scales. The plants are therefore gymnosperms (seeds naked or not inclosed in a pericarp or ripened ovary) and are allied to the conifers. The fruit is a berry-like drupe. In Zamia the floral scales are peltate (and not horned) and form a cylindrical cone; the anthers are numerous, and the ovules pendulous in pairs. Leaves nearly straight in venation. The fecundation of Zamia has been studied hy H. J. Webber (Bull. 2, Bureau of Plant Ind. IT. S. Dept. Agr.). His couclusions respecting the Floridian species are accepted below.
Zamias are warmhouse plants, to be treated like species of Cycas or Encephalartos, which see. The plants are propagated by means of seeds and offsets; also by division when there is more than one crown.

## A. Petiole prickly.

furfuràcea, Ait. Trunk cylindrical, 1-2 ft. tall: petioles dilated and comeave at the base, with several small prickles: lfts. abont 10-12 pairs, opposite or alternate, ollaneeolate, entire on the lower half but serrate or jagged towards the top, acute or obtuse,

2769. Staminate cone of Zamia Floridana. scurfy beneath (as also the rachis): cone oval-conical, downy, pedranculate, pale yellowish brown, the pistillate ones 4 in . or less long. Mexico. B.M. 1969.
Lindeai, Regel. Trunk cylindrical, 24 ft . or more tall when well grown: petioles long, cylindrical, sparsely provided with tawny wool, the prickles short conical and spreading: Ifts. 20 or more pairs, glabrous or somewhat puberulous, nearly or quite opposite, sessile, long-lanceolate and acuminate, dentateserrate towards the top. Ecuador. I.H. 22:195.

2770. Pistillale cone of Zamia Floridana.

## AA. Petiole not prickly.

## в. Species growing beyond the limits of the U.S

integrifolia, Ait. Trunk 12-18 in. tall, erect, globular or oblong: lvs. glabrous: Ifts alternate, $7-16$ pairs, oblong to linear-lanceolate to lanceolate, mostly obtuse, entire or somewhat dentate towards the apex: cones oblong and obtuse, short-peduncled. West Indies. B.M. 1851. - The Florila plants, usually referred bere, are apparently all $Z$. Floridena and $Z$. pumila.
Mexicàna, Miq. Distinguished by DeCandolle as follows: scales of the leaf-huds tomentose and also the petioles at the base, the petioles 3 -cornered, unarmed, glabrous, somewhat warty : lfts. of 9 or more pairs, sub-opposite, narrow - lanceolate, straight or slichtly curved, acute or acutish, rigidly coriaceous, dark green, many-nerved, spinulose-serrulate from the middle to the apes. Nex.-By ludex Kewensis referred to $Z$. Loddigesii, a species with prickly petioles.

Pseùdo-parasitica, Yates (Z. Rœzlii, Regel). Distinguished as follows by DeCandolle: trunk cylindrical: Ifts. lanceolate, sinuose-falcate, entire, glahrons, acute at the base, cuspidate at the apex, with 18 strong nerves which are twice bifurcate. Panama.-Grows on tree trunks.
angustifolia, Tacq. Foliage glabrous when mature: Ifts. 5 in . long, 4-20 pairs, usually alternate, elongated and narrowly linear, the upex obtuse and very obscurely serrulate or entire, the hase not narrowed, 6 - 8 -nerved: pistillate cone obtuse but cuspidate. Bahamas, Cuba.

## bв. Species mative to Florida.

Floridàna, DC. Coontie. Comptie. Figs, 2768-71. Lus. orate or orate-lanceolate; petiole triangular in outline, sericeo-tomentose at base, with scattered hairs above; Ifts. mostly opposite, 14-20 pairs, glabrous above and with scatterel hairs beneath, linear, talcate and somewhat twisted, narrowed at the base and obtuse at the apex, the margin revolute and with a few obscure teeth: mature pistillate cones oblong, $5-6 \mathrm{in}$. (12-161/2 cm.) long, markedly umbonate (projection on the scales), densely tomentose. - Very abundant in southern Florida on the east coast below lat. $26^{\circ} 30^{\prime}$, in open comparatively dry pine woods.
pùmila, Linn. Differs, according to Webker, in having shorter and broader leaflets which are less twisted and not so erect and rigid, and in its shorter and nonumbonate cones with seed-hearing scales thinner and more flattened at outer end.-Abundant in central

Florida, ranging from $2 \mathrm{c}^{\circ} 30^{\prime}$ north for one degree of latitude, in dense moist woods.
Z. corillipes, Verselı, is Macrozamia spiralis.-Z. Dinnisoni, F. Muell. is Macrozamia Peroutskyana. - Z. glauell. Hort. $=$ Cycas Rumphii ?-Z. pingens, Ait. Encephalartos pungens, -Z. spindsa. Lodd. =Encephislartos Alteusteinij. L. H. B.

ZANNICHELLIA palùstris, Linn. (Nainddeea), or Horned Pondweed, is offered by collectors of native plants, but has little horticultural value. It is a hardy aquatic plant (probably annual) widely distributed iu the New and Old Worlds. It has thread-like submerged lvs. 1-3 in. long and flowers and fruits under water. It is found in fresh or brackish water. B.B. 1:80.
Zante currant. See Ruisin, page 1496.

## ZANTHORRHİZA. See Xanthorrhiza.

## ZANTHOXYLUM, See Nanthoxy?um.

ZAUSCHNERIA (named for a professor of natural history at Prague). Onagràcea. The California Fuchsia, or Hummingbird's 'Trumpet, is a half-bardy perennial plant $3 / 4-2 \mathrm{ft}$. high, with drooping, trumpetshaped vermilion ts. $11 / 2 \mathrm{in}$. across and under 1 in . Wide at the mouth. It is the calyx which forms the showy trumpet, and its 4 acute lobes are rather larger than the 4 petals, wbich are obcordate and inserted at the throat of the calyx-tube. The length of the calyx distinguishes this genus from Epilobium, to which Zauschneria is closely allied by reason of its 4 petals, 8 stamens, 4 -loculed ovary and comose seeds. The genus has only one species, hut this varies greatly in the width of lvs. and hairiness. Varieties have been made based upon linear, lanceolate or ovate lvs., hut they run into one another. The plauts also vary from glabrous and pubescent to tomentose. As a bedding plant it has been occasionally used for novelty effects by European gardeners. To overcome its thin and leggy habit, it is well to set the plants rather closely and pinch out the young shoots until compact bushes are secured. Tbe plant is sometimes grown in pots for greenhonse decoration in late autumn. There are said to be forms that vary considerably in hardiness. The plant is hardy in most parts of England with slight winter covering. In favored spots it is considered to he a choice plant of pendent babit for the steep sides of rockeries and for naturalizing on old walls. In light and dry soils it spreads underground like the epilohiums. It is prop, by division, by cuttings made in autumn and wintered in a coldframe, or

2771. Aggregate fruit of Zamia Floridana ( $\times 1 / 3$ ). Cone not mature
by seeds sown in early spring in mild heat. In California the plant is considered objectionable on account of the unkempt appearance prodnced by the woolly seeds. It is remarkably resistant to drougbt.

Californica, Presl. California Fuchsia. HummingBIRD'S TRUMPET. Half-hardy perennial with tbe flower of a Fuchsia and the fruit of an Epilobium: height
$3 / 4-2 \mathrm{ft}$ : 1 vs , linear to ovate, $1 / 2-1 \frac{1}{2} \mathrm{in}$. long, glahrous, pubescent or tomentose: Hls, scarlet or vermilion, the trumpet-shaped calyx $1 \frac{1}{2}$ in. long: calyx-lobes ovate; petals obcordate, spreading: fr. 4-valved, imperfectly 4- loculted. B. M. 4493. F. S. 4; 404. P. M. 15: 195. F. 1847-48:241. Gn. 31, 1. 29; 31:578. R.H. 1849:I41. W. M.

Z EA \{an old Greek name for some common rereal, probably spelt). Gramines. As now limited the genns is founded upon the single polymorphous cultivated species Zea Mays, Maize or Indian Corn (Figs. 277゙, 2773), whose origin is unknown but is suspected by some to be Teosinte ( $\boldsymbol{E} u$ chlend Mexicana). Most of the evidence points to Mexico :s the region in which it originated and from which it spread. Under the head of Corm are given the botanical characters of the genus, a classification of subspecies of Zeut Mays, and a disenssion of Sweet Corn and Pop C'orn. A picture of a staminate Hower is given in connection with the article Grass (Fig. 984, p. 683). Huckel ("The True (irasses") explains the frnctification of Maize as follows: "The pistillate spikes (originally bymonstrons or teratological rlevelopment?)are grown together into a spongy, continuons, club-shaped body (the cob) upon which the +11 donble rows feach ses. sile mpon a low longitulinal elevation that is limited

## 2772. Indian Corn - Zea Mays.

 by a long, shallow furrow on each side) correspond to a single spike of Euchirna. (train leveloped at the expense of the other parts, projecting beyond the thin bracts, which rarely become coriaceous and inclose it." Fig. 2773. The staminate flowers are in the "tassel."Dent or Field Corn ( $Z$. indentata, of Stmrtevant). The bulk of the Corn raised for home use and for export helongs to this subspecies. It is characterized by the presence of borny or corneons endosperm along the sides of the grain, while the starchy endosperm extends to the summit. In drying, the flourv portion shrinks more than the horny, and this gives rise to the dent at the summit. Both the horny and the floury portion of the endosperm consist of starch, but the former is more compact. The varieties vary greatly in size of plants and appearance of the ear, but in general the plant and
the ear are both larger than the Sweet or Elint Corns. The color of the kermels varies, the chief color varieties being white, yelluw, and calico, the latter mottled with red; red varieties are less common, but red ears oceasionally ocenr in all varieties.

Flint Corn ( $Z$, indurata, sturt.) Kernel with horny enclosperm enveloping a starchy or floury portion, this being hard and Hinty and with no dent at apex. Ears in most varieties smaller and rows fewer (ofteu 8) than in the Dent Corn. Color of kernel white, yellow, red, blue, and variegated. C'ommonly cultivated through the northern portions of onr country and in Canada, where the seasous are too short for Dent C'orn. Has been grown as far north as $50^{\circ}$.
Soft Corn ( 2 . amylucea, Sturt.). Kernels withont horny or corneons endosperm, hence shrinking uniformly. Seems to have been commonly grown by the Indians in many localities of both North and South America. At present it is cultivated to only a limited extent in the United States. Brazilian Flour Corn sold by seedsmen is a type of the Soft Corn.

Pod Corn ( $Z$. tunicata, Sturt.) is sometimes grown as a curiosity. Each kernel is inclosed in a small husk and the whole ear again inclosed in the usual husk.

A form of Flint Corn with variegated leaves goes under the name of Zea Japonica, or Japanese striped Corn. Z. quadricola and Z. gracillimu are seedsmen's names for other similar forms, the former being variegated and the latter dwarf.

For eultural account, see Com. A. S. Hitcheock.

2773. Ear or pistillate spike of Maize.

The husks are a kind of involucre. Each kernel represents a flower. The "silks" are styles.

The origin of Maize is still a mystery. All evilence points to an American natirity, but the original form of the species is not ideutified. Many persons believe that the wild original will yet be found somewhere from Mexico south. Others suppose that Maize originated
from the Teosinte (Euchliena Mexicana), a fodder grass that is much grown in Mexico. See Teosinte. This latter view has arisen from experiments in crossing Teosinte and Maize, whereby a maize-like plant has been produced, thus showing the very close affinity of the two species. Plants of this hybrid were thought by the late Sereno Watson and others to constitute a new species of Zea, and Watson named it Z. camina. This plant quickly reverts to ordinary Corn when grown in the North (see Harshberger, G. F. 9: 522; Contr. Bot. Lab. Univ. Penn. 2:231, Also Bailey, Bull. 49, Cornell Exp. Sta.). Figs, 2774, 2775. Zea Mays, therefore, may be (1) a true species, of which the wild prototype is unknown; (2) a direct offshoot by domestication of Euchlana Mexicana; (3) a product of crossing between Euchlana Mexicana and some unknown related species; (4) a product of crossing between Euchlana Mexicana and a domesticated race of the same species. Our knowledge is yet insufficient to enable us to offer much more than conjecture on these categories.
Maize is remarkably variable, although most of the variations intergrade in different regions and under different conditions. The most extended American study of variation and varieties in Maize has been made by the late Dr. E. Lewis Sturtevant. The summary of his study of varieties is published as Bull. 57, Office of Experiment Stations, U. S. Dept. of Agric. ("Varieties of Corn," 1899). Sturtevant throws the rarieties of Maize into seven "species groups" or "agricultural species." The distinguishing characters of these gromps are founded on the kernels. Aside from these
there is at least oue well-marked race of ornamental maize, Zea Japonica, which for horticultural purposes may well be separated from the others. In the following classification, the characters of the races, except of the ornamental sorts, are copied from Sturterant. It is probable that a strict in-
 branches, with ears at the joints.

2775. Ear of Zea canina, second year from the wild. Cob flat$\operatorname{tish}(\times 2 / 3)$.
quiry into the nomenclature of Zea Mays would find other names to replace some of those given by Sturtevant; but his names have the great merits of definiteness and of applicability to American forms of Maize.
Zèa Màys, Linn. Matze. Indian Corn. A composite species, of which no single form can be taken as the type. Linnæus meant the name to cover the whole range of forms then grown in European gardens. Tender annual. If an original specific form of Maize were to be discovered, this form would no doubt be
taken as the type, and all other forms ranged as varieties of it.

## A. Maize groun for ornament.

Var. Japónica, Koern. (Z. Japónica, Van Houtte. $Z$. vittata, Hort.). Foliage variously striped with white: plant small. Sail to have come from Japan. F.S. I6:1673-4. Ears small; kernels yellowish, flint.

Var. gracillima, Koern. (Z.gracillima and Z. mínima, Hort.). Very dwarf, slender form with green Ivs., sometimes cult. in Eu. A variety variegata is also mentioned.

Var. Curágua, Alef. (Z. Curdgua, Molina), is described as a very robust green-leaved form. Sturtevant places it in the Pop Corn tribe. Gn. 42, p. 207.

2776. Zea canina, third year from the wild. Kernels less pointed. Cob nearly cyliadrical ( $X 2 / 3$ ).

2777. Pod or Husk Cora. - Zea Mays, var. tunicata ( $\times 1 / 3$ ). Each kernel inclosed in a husk.

AA. Maize grown primarily for the grain or fruit.
Var. tunicata (Z. tunicdta, Sturt.). Pon Corn. Figs. 2777, 2778. Plate VIl. In this group each keruel is inclosed in a pod or husk, and the ear thins formed is inclosed in husks.

Var. evérta (Z. everta, Sturt.). Pop Corn. Fig, 55I, Vol, I. Plate VII. This group is characterized by the excessive proportion of the corneous endosperm and the small size of the kernels and ear. The best varieties have a corneous endosperm throughout. This gives the property of popping, which is the complete eversion or turning inside out of the kernel through the explosion of the contained moisture on application of beat. A small deposit of starchy endosperm does not greatly interfere with this property of popping, but when the starchy endosperm is in excess, as in a flint Corn, the kernel does not evert, but the corneous portion only explodes or splits, leaving the starchy portion unchanged. The true Pop Corn is hence tender in its eating; the false Pop Corn has a tender portion of limited extent only. This class of Corns is even more readily recognized by inspection than by description.

Var. induràta ( $Z$. indurdta, Sturt.). Flint Corn. Plate VII. Fig. 2779. A group readily recognized by the occurrence of a starchy endosperm, inclosed in a corneous endosperm, as shown in a


2778, Cross-section of ear of Husk Corn ( $\times 1 / 2$ ). split seed. This corneous endosperm varies in thickness with varieties. When very thin at the summit of the kernel the shrinkage of the starchy endosperm may cause a depression, thus simulating externally a dent from which its structure at once differentiates it.

Var．indentàta（ $Z$ ．indentitlo，Sturt．）．DENT CORN． Fig．2780．Plate V11．A group recognized by the pres－ ence of corneous endosperm at the sides of the kernel， the starchy endosperm extending to the summit．By the drying and shrinkage of


2779．Flint Corn．Var．indu－ rata（ $\times 1 / 2$ ）．

Var．amylàcea（Z．amylà－ cea，Sturt．）．Soft Corns． This group is at once recog nized by the ahsence of cor neous endosperm．Through the uuiformity of the shrink age in ripening there is usu－ ally no indentation，yet in some varieties au indentation may more or less frequently appear，but splitting the ker－ nel infallibly determines the class．

Var．saccharàta（Z．saccha－ rata，Sturt．）．SWEET CORN． Figs．2781，2782，551．Plate VII．A well－defined group characterized by the translu－ cent，horny appearance of the kernels and their more or less crinkled， wrinkled，or shriveled condition．

Var．amỳlea－saccharàta（ $Z . a m y$ lea－saccha－ ratte，Sturt．）．Starche－sweet Cokn．This group is founded upon three varieties found in the San Pedro Indian collection of Dr． Palmer and seut in 1886．The exterual ap－ pearance of the kernel is that of a sweet，but examination shows that the lower half of the kernel is starchy，the upper half horny and translucent．These rarieties all had a white cob，the kernels deeper than broad．

L．H．B．
ZEBRINA（name refers to the striped leaves）．Commelindcece．Differs from Tra－ descantia chiefly in the fact that the corolla is tubular（petals not free）；stamens 6 ， equal；fls．few，sessile，in 2 conduplicate bracts．Two species．
péndula，Schnizl（Tradescántia zebrina，Hort．T． trícolor，Hort．，iu part．Cyandtis vittitu，Lindl．Com－ melina zebrint，Hort．）．Wandering Jew，iu part． Figs，2783－84．Trailing，balf－suceulent perennial herb， rooting at the joints：lvs．lance－orate，sessile，the leaf． sheath about $1 / 2 \mathrm{in}$ ．long and hairy at top and bottom and sometimes throughout its length；under surface of leaf red－purple：upper surface silvery white，suffused with purplish，the central part and the margins purple－ face．


2781．Sugar or Sweet Corn－Zea Mays，var．saccharata（ $\times 1 / 3$ ）．
A green ear，with unshrunken kernels，

Trees，sometimes shrubly，with pen－ ninerved，stipulate lvs．：fls．polygam ous，the perfect ont solitary in the axils of the upper lvs．，the staminate ones clus－ tered in the axils of lower lvs．or bracts； calyx 4－5－lobed；sta－
striped：fls．about 2，rose－red，contained iu two boat－ shaped bracts，oue of which is much smaller than the other．Mexico．－A very common greeubouse ulant， minch used for baskets and for covering the ground un－ derneath benches．Commonly confused with Trades－ cuntia fluminensis，

Fig．2785，and some－ times with Comme－ lina mudiflora．See Tradescantia．The Ivs．of $Z$ ．pendula seem never to be green．They vary somewhat in color． All forms are easily grown，and they propagate readily from pieces of stem．Yar．quadri－ color，Voss（Tra－ descántia quadri－ color and $T$ ．multi


2784．Zebrina pendula．
（ $\times 1 / \mathrm{s}$ ．）
ZELKOVA（after the verna－ cular name Zelkona in Crete，or Selkwa in the Caucasus）．Syn．，Abelicea．Urticacece． Oruamental decidnous trees，with alternate．short－peti－ oled，toothed leaves und insignificant flowers in axillary clusters or solitary，followed by small drupe－like fruits． $Z$ ．acuminata is hardy north and $Z$ ．crenata hardy as far north as Mass．，at least in sheltered positions．The Kelkovas，particularly $Z$ ．acuminata，are handsome trees of graceful habit，much resembling a small－leaved elm tree．They seem not to be very particular as to soil and posi－ tion．Prop．by seeds sown soon after ripening；also by layers and by grafting on Ulmus．Four species are known，hutives of Crete，the Caucasus and E．Asia． They are allied to Celtis and Aphananthe and are chiefly distinguished by the con－ nate sepals．From the flms，which they much resemble in foliage，they are pasily distinguished by the drupe－like fruits． otor，Hort．）．LVs． with metallic green undertone and striped with green，red and


青量爵
 summit of the kernel is drawn in or together，and indented in various forms． lu differeut varieties the corneous eudosperm varies in height and thickness， thus determining the char

2780．Dent Corn－Zea
Mays，var．indentata
2780．Dent Corn－Zea
Mays，var．indentata （ $\times 1 / 3$ ）．

mens 4-5; styles 2: fr. a 1-seeled drupe, usually broader than high, obliqne, with the style eccentric. Z. acaminata is an important timber tree; the wood is very durable, and considered the best building material in dapau.

2785. Tradescantia fluminensis, often confounded with Ze . brina $(\times 1 / 8)$ See Figs. 2539-11. The young wood is yel. lowish white in color; the old wood is dark brown and has a beautiful grain.
acuminata, Planclb. ( $Z$. Kédたi, Muxim. Z. cuspidìta, Hort. Ilínera acumimata, Lindl. Plánert Japónīn, Miq.). Fig. 2786. Tree, attaining 100 ft., with broad, round-topped head: branches slender: lys. short - stalked, ovate to ohlong-ovate, acuminate, rounded or slightly cordate at the hase, sharply and coarsely serrate, with acnminate teeth, pairs of Feins abont 10 , somewhat rough above, almost glabrous, $1-21 / 2 \mathrm{jn}$, long, on fertile branches, $2-5$ on sterile branches. April, Hay. Japan. G.F. 6:325. Gt. 37. pp. 22, 23.
crenàta. Spach (Z. carpinifotia, C. Koch. Plánera Rifhurdi, Michx. Abelicen ulmoides, Kuntze). Tree, attaining 80 ft ., with slender branches forming an oral or oblong bead: lvs. oval or ovate to oblong. slightly cordate or rounded at the base, coarsely toothed with obtusish teeth, with 6-8 pairs of veins, usually almost

2786. Zelkova acuminata ( $\times 1 / 3$ ).
glabrous above at length, pubescent on the veins beneath, $3 / 4-3$ in. long. April, May. Caveasis. Gn. 24, p. 371 .
Z. Japonica, Dipp., not Miq., is an imperfectly known spe-
cies, supposed to be Japanese; it is distinguished from Z. cre. nata chietiy by the lvs. being somewhat smaller, more pubes cent and rough above. Var. Verschaffelii, Dipp. (Ulmus Verschaffeltii, Hort.), has the lvs. deeply incisely dentate and broadly cuneate at base.

Alfred Rehder.

2787. Forced plant of Zenobia speciosa.

ZENOBIA (after Zenohia, queen of Palmyra, who lived in the third century; a fanciful allusion to her having been chained as was Andromeda, whose name is commemorated by a closely allied genus). Evicaceo. Ornamental low deciduous or balf-evergreen shrab, with alternate, short-petioled, simple and wlilte, campanalate, nodding flowers arranged in clusters along the last year's branches. Hardy as far north as Mass., and a very handsome shrub for borders of slorubberies, particularly when in bloom: the glaucous form is one of the most conspicuons shrubs with light-colored foliage. Zenohia is also recommended for foreing. It thrives best in a sandy or peaty soil. Prop. by seeds sown in spring and by layers; also by greenwood cuttings from forced plants. See, also, Andromedu and Pieris for eulture. Monotypic genus native of N. America, elosely allied to A ndromeda and Tieris bnt chiefly distinguished by the open-campanulate fls, and 4 -awned anthers; calyx 5 -lobed, with short valrate lobes; corolla campannlate, as broad as high, obtusely 5 -lobed; stamens 10; anthers witb 4 slender awns: capsule depressed globose, obscmrely 5 -lobed, somewhat carinate at the dorsal sutures, debiscent into 5 ralves: seeds numerous, small, oval, angled.
speciosa, Don (Andrómedu speciòsu, Miclix. A. cassinefolia, Vent.). Figs, 2787, 2788, Shrub, 2-4 ft. high, with upright or arehing branches: quite glabrous: lvs. oval to whlong, obtuse or acutish, eremmate or finely serrulate, often covered more or less with glaucous bloom, l-2 in. long: tls. on slender nodiding pedicels, clustered and forming racentes $2-5 \mathrm{in}$. long ; corolla white, $1 / 3 \mathrm{in}$. across. May, June. N. C. to Fla. B.M. 970. L.B.C. 6:551. Gin. 22, p. 271: 57. P. 185. G.C. 111. 23, suppl. 28 Nay. - Var. pulverulénta, Michx. ( A ndrómeda puleerulénta, Bartr. A. glitica, Hort. A. cándida, Hort.). Foliage covered with chalky-white or glaucous bloom. Gn. 24:420. B. M. fifi. A. dealbite, Lindl., is a form with similar foliage and the corolla 5 -parted almost to the base. B.R. 12:1010. Var. nitida, Michx. (Var. nùdu, Vent. Var. viridis, Hort.), has green foliage without bloom.

Alfred Rehder.
ZEPHYRANTHES (Greek, thower of the west wind). Amuryllidiceap. Zephyr Flower. Fairy Lily. About three dozen species of bulbons plants natire to the warmer parts of America. Unfortunately they are not quite hardy, but some of them are very satisfactory plants for window-gardeus, resting somewhat in winter and blooming in summer under such treatment. They all bave linear lvs. contemporaneous with the fls., and slencler scapes about 6-9 in. high, crowned by solitary 6 -lobed $\mathrm{A} s$. of white, rose or yellow. The tls, are $1-3 \mathrm{in}$. across. Other generic characters: perianth regular, erect or suberect : corona none; antbers dorsifixed. versatile: ovules many, superposed: seeds black, flat.

The latest revision of Zephyranthes is found in Baker's Handbook of the Amaryllideæ, 1888, where the follow. ing subgenera are made:

Subgenus Zephyranthes Profer. Flower erect; tube short; stamens inserted near its throat. (Eighteen species, including all described below except No. 11.)

2788. Zenobia speciosa $(\times 1 / 2)$. (See page 2007.)

Subgentes Zephyrites. Flower slightly inclined; tube short; stamens inserted near its throat; style more declinate than in the other two subgenera. (Eleven species, including No. 11 below.)
Subgenus Prirolirion. Flowers erect; tube longer, dilated in the upper balf; stamens inserted at the middle of the periauth-tube. (Five species, none in cult.)

For the further separation of the species Baker uses the characters which appear in the key below, except the foliage characters and the color of the flowers. However, the genus may be readily separated into three sactions based upon the color of the fls., and this arrangement is here used as being more convenient to the horticulturist. The seasons of bloom indicaterl below are those for localities where the plants will thrive outdoors the year round.

The Zephyr Lilies must be wintered in a place free from frost, and as the best kinds are natives of swampy places it is fair to presume that they will need more moisture during the resting period than the generality of bulbous plants. The four best species are: $Z$. candida, white, autumn; $Z$. Atamasco, white, spring; $Z$. carinata, rosy, summer; Z. roser, autumn. All of these will probably survive the winter ont of doors in our middle states if given a fair degree ot protection.
Z. candidu deserves special notice. William Watson, of Kew, England, writes in Gn. 37, p. 174: "The most satisfactory of all is $Z$. caudida. This species differs from all others known to 12 s in several particulars, the chief being its hardiness and ease of management under ordinary cultivation in a sumny border out of doors. We have tried almost all the other species of Zephyranthes with this treatment, but they every one failed, whilst $Z$. candida flourished and multiplied rapidly, until we now bave a border filled with it. This border is against the south wall of a greenhouse and it is always moist. The soil is ordinary loam, in which the balbs were planted about 4 inches apart. They have each since become crowded tufts, their eaves completely hiding the soil. This border was as gry with the flowers of Zephyranthes last antumn as any border of crocuses in spring. On very sunny days the flowers opened quite flat, and glistened like snow in the sunshine. Another character which distinguishes this species from the
others is its evergreen foliage." It is said that the river La Plata was so called (the name meaning "silver") because of the profusion of these white flowers on its shore.

## INDEX.

Andersoni, 11.
Atamasco, 1.
candida, 5.
carinata, 6.
erubescens, 3 . grandiflora, 6. Lindleyana, 7. lougifolia, 9.
rosea, 8.
I'exana, 10.
Treatia. 2.
verccunds 4

> A. Fls. white, often tinged rose outside.
> B. Stigma 3-loled.
> C. Ovary stalked.
> D. Perianth S in. long.
> E. Lu's. channeled, bright green, shining, with acute margins.
> eE, Les. thick, semi-terete, deep green, not shining, with rounded margins...
> 2. Treatim
> DD. Perianth \& in. long.
> 3. eruheacens
> cc. Ouary sessile
> 4. verecunda
> BB. Stigma capitate, obscurely 3-
> lobed.
> 5. candida
> AA. Fls, bright rose-colored.
> B. Perianth $2212-3$ in. long.
> BBB. Perianth about 1 in . long......... 8. rosea
> AAA. Fls. yellow, often reddish outside.
> B. Style slightly declinate.

1. Atamásco, Herb, (Amarýllis Atamésco, Linn.). Atamasco Lily. Fig. 2789, 2790. Most popular and largest of the spring-blooming white-fld, species; the commonest Zephyr Lily native to the U. S. Bulb shortneeked, less than 1 in . thick: 1vs. 4-6, linear: scape 6-12

2. Atamasco Lily-Zephyranthes Atamasco ( $\times 1 / 4$ ).
in. high: fls, pure white, about 3 in . long. March-June. Ya. to Fla. and Ala. B.B. 1:444. B.M. 239. L.B.C. 19:1899. Gn. 24, p. 199; 37, p. 155.
3. Trèatiæ, Wats. C'losely allied to Z. Atamasco and best distinguished by the lvs. as indicated in the
key. The periantl-segments are sometimes keeled with rose, but in both species the Hs. turn pinkisb witb age. It is a Florida species, found in damper localities and blooming several weeks later than Z. Atamusco. V. 6:299. (in. 33, p. 11.
4. erubéscens, Wats. (Amarýlis embéscens, Horsford). Rare white-fld., August-blooming species supposed to be native to saudy plains of Texas, but perhaps from northern Mexico. Distinguished from the two preceding species by the larger, longer-necked bulb, shorter perianth and Hl . strongly tinged with rose outside. Bulb over 1 in. thick; neek as long: spathe bifid above; tube equaling and closely embracing the pedicel (about 1 in . long). - Int. by Horsford 1889 and probably lost to cultivation.
5. verecinda, Herb. Rare springand summer-blooming species, distinguished from other white-fld. species in cult. by the sessile ovary and long-necked bulb. Bulb 1 in. or less thick; neek 1-2 in. long: fls. 11/2-2 in. long, greenish white, more or less tinged outside or keeled with rose. Highlands of central Mex. B. M. 2583.-Offered by Dutch dealers.
6. cándida, Herb. Fig. 2790. Most popular of white-Hd. Zephyr Lilies, being distinguished from the others by its autumn-blooming habit and capitate stigma. Lrs. appearing in auturn with the fls. and lasting througb the winter in favored loealities, over 1 ft . long: fls. pure white or slightly tinged rose outside, $11 / 2-$ 2 in. long. Narshes of La Plata. Gn. 37:740. B. M. 2607. L. B. C. 15:1419.
7. carinàta, Herb. (Z. grandiflòrt, Lindl.). Largest and choicest of the rosy-fld, species and said by Baker (1888) to be the commonest Zephyranthes in cultiration: however, the name Z. rosea is far commoner in American catalogues. It is a summer-blooming species with fis. $21 / 2-41 / 2$ in. across. and about 3 in. long. Bulb lin, thiek, short-necked: ovary stalked: stigma trifid. Jamaica, Cuba, Mexico, Guatemala, B.R. 11:902. Gin. 33:630 (erroneously as Z. Atamaseo). I. H. 35:49. J.H. IIJ. $29: 339$.
8. Lindleyana, Herb. Rare sum-ner-blooming rose-colored species from the mountains of Mexico, inferior to $Z$. curinata for general culture. Bulb globose, $3 / 4 \mathrm{in}$. thick; neck short: fls, $11 / 2-2$ in. long: ovary stalked; stigma 3fil; spathe 3 -fid only at tip. Once offered by Lovett, of Little Silver, N. J.
9. ròsea, Lindl. Autumn-blooming rosy-fld. species, with much smaller tis. than $Z$. carinata but, according to American catalogues, the most popular rosy-fld. species. The Hs. are only about an inch long and $11 / 2$ in. broad: bulb globose, $3 / 4 \mathrm{in}$. thick; neck searcely any: spathe 2 -fid at tip only: orary stalked: stigma 3 -fid. Oct. Cuba. B.M. 2537. B.R. 10:821. Gin. 12, p. 84 (col. plate).-Trade plants of $Z$, rosea should be compared with Z. carinata.
10. Iongifollia, Hemsles. Summer-blooming, yellow-fld. species. Distinguished from the next by characters of pedicel and spathe. Bulb ovoid; neck $1 \frac{1}{2}-2$ in. long; spathe tubular in the lower balf: pedicel much shorter than spathe: fls, yellow, coppery outside, $3 / 4-1$ in. long. New Mex. Int. by Horsford, 1889, and probably lost to cult.
11. Texàna, Herb. Yellow-fld. Texan species. Bulb globose; neek $1-1 \frac{1}{2}$ in. long: spathe bifid only at the
tip: pedicel mueh longer than the spathe: fls, jellow, coppery outside, 1 in . long, $11 / 2 \mathrm{in}$. across. B.M. 3596 (Habranthus Andersoni, var. Texanus).
12. Andersoni, Baker. Yellow-fld. S. American species of uncertain blooming time. The fls, are usually Hushed and veined with red outside and there is a var. with copper-colored fls., inside and out. Bulb ovoid, short-necked: fis. 1-1 $1 / 2 \mathrm{in}$. long, 2 in . across. Montevideo, Buenos Ayres. L.B.C. 17:1677 and B.R. 16:1345


2790, Zephyranthes candida above and Z. Atamasco below $(\times 2 / 3)$.
(both as Habranthus Aurlersomi).-Apparently the only representative in cultivation of its subgemus, which is characterized by strongly declinate stamens.
2. alba, floribuinda and sulphurea of the American trade seem to be nnknown to botanists. They can probably be referred to some of the above species.
W. M.

## ZEPHYR FLOWER. Zephyranthes.

ZfNGIBER (name ultimately derived from a Sanskrit word meaning horn-shaped: probalsly referring to the Ginger root). S'citaminiceor. Ginger. The Ginger plant is a small reed-like plant about 2 ft . high, as eultivated in greenhouses, witb tuberous rhizonies, aromatic leares and dense cone-like elusters of bracts, The flowers, however, are very rarely produced in cultivation, and Roxhmrgh wrote that he never saw the seeds. The plant is supposed to be native to India and China, but, like many other tropical plants of the highest economic importance, its nativity is uncertsin. Some idea of the importance of Ginger to the world may be gained by the fact that in 1884 Great

Britain imported $5,600,000$ pounds of Ginger valued at $\$ 690,000$. Merlicinal Giuger is prepared from the dried "root;" condimental (inger from the green. Candied Ginger is made from carefully selected, succulent young rhizomes which are washed and peeled and then preserved in jars of syrup. Housewives often preserve their own Ginger; it is important to have the hands protected while seraping the roots or they will "burn "for days. Ginger probably could be cultivated commercially in southern Florida aud California. Iu Florida it thriese in rich soil and partial shade, and the roots can be dug aud used at any time. The plant is cultivated

2791. Zingiber officinale
commercially even in localities where it is necessary to lift the roots and store them over the cool season, as in the lower Himalayas. In the West Indies Ginger may be cultivated up to an altitude of 3,500 feet.

Zingibers are occasionally cultivated as stove decorative piants. The shoots having a reed-like appearance, they may often be used to good advantage in arranging plants for artistic effects. They are of the easiest culture. Propagation is effected by division of the rhizomes in spring. These should be potted in fibrous loam to which a third of well-decomposed cow or sheep manure
has been added. Water should be given sparingly until the shoots have well developed, when they should have an abundance. They are also henefited by an occasioual watering with weak liquid manure water. Towards the end of summer the shoots will begin to mature, when the water supply should be diminished, and as soou as the plauts are ripened off the pots may be stored either uuder the greenhonse stages or in some other convenient place, where they should be kept almost dry for the winter.
Zingiber may be taken as the typical genus of the singular family Scitaminaceæ, with its 36 genera and 450 species. Bentham and Hooker state that it is an extremely uatural group, well marked in leaf as well as flower, and not connected with any other family by a single intermediate genus. The distinguishing feature of the fam-

2792. Flower of the Ginger plant $(\times 1 / 2)$. ily largely resides in the stamens. Sometimes there are 5 stamens and a sixth im. perfect one; sometimes there is only one perfect stamen and all the staminodes are petal-like. The anthers are sometimes 2 -celled, sometimes composed of one cell borne on the margin of the connectire. In Zingiber aud others the connective is produced into a long spur. (ieneric characters: rhizome horizontal, tuberous: lvs, ob-long-lanceolate, clasping the stem by their long sheaths: spikes usually radical, rarely lateral or terminal on the leafy stem: calyx cylindric, shortly 3 -lobed; corollasegments lanceolate, upper concave; lateral staminodes none or adnate to the lip; anther-cells contiguous; crest narrow, as long as the cells. Thirty species, native to Old World tropics. Compare Cunna and Musa
officinàle, Rose. Ginger, Fige, 2791-93. Rootstock' biennial, bearing many sessile tubers: stem 3-4 ft. high in troples: IFs. 6-13, in. long, lanceolate, glahrons beneath: spike 2-3x 1 in, oblong, produced from the roet stock ou peduncles $1 / 2-1 \mathrm{ft}$. long, with sheathing, searious bracts about 1 in . long: corolla-segments under lin , long; stamen dark purple. Gn. 26, p. 284.
Z. corallinum, Hance, is a Chinese species offered by Reasoner Bros. in 1889 but probably not in caltivation now. It is not deseribed in anv work to which the undersigned have acwhich the undersigned have ac-
cess-Z. Zerumbet, Roscoe, is cess.-Z. Zerumbet, Roscoe, is
cult. and escaped in Porto Rico. It has broadly lanceolate ivs. and large pale yellow fls.; about 4 feet. B.MI, 2000.
E. J. Canning and W. M.

ZINNIA (Johann Gottfried Zinn, 1727-1759, professor of botany at Göttingen). Compósitie. Youth-AND-OLd-Age. Plate L. The familiar Zinnias, Figs. 2794-96, are hardy annua! plants, growing a foot or more high and covered from July until the first hard frost with double flowers 2 in. or more across. At least tifteen well-marked colors are commonly seen in Zinnias, - white, sulfur, yellow, golden yellow, orange, scar-let-orange, searlet, flexhcolor, lilac, rose, magenta. erimson, violet, purple aud dark purple. There are also

2793. Commercial roots of Ginger, as seen in the stores ( $\times 1 / 8$ ). variegated forms, but the solid colors are most popular. The Zinnia is rich in shades of purple and orange, but lacks the charming blne and pink of the China aster and is poor in reds

compared with the dablia. Among garden composites its only rivals in point of color range are the chrysanthemum, dablia, China aster and cineraria. Among garden anmuals in general the Zinvia ranks with the most useful kinds, and many persons would place it among the twelve most popular of annual flowers. Zinnias are formal flowers, rather stiff in habit, with exceptional depth of Hower, and in technical perfection a little short of the dahlia: the rays are rather rigid and overlap one another with smewhat monotonons precision, and the colors are metallic as compared with the soft hues of the China aster.
Historical Sketch.-The Zinnia (Z. elegans), with its great range of color and perfection of form, is now so much a matter of course that the present gederation is surprised to learn that it is one of the most recent of "florists" tlowers." A double Zinuia probahly was not seen in America before the Civil War. In the early sixties, the Zinnia was a sensation of the floral world; in the seventies it ceased to be fashionahle and as early as 1882 it was spoken of as an "old-fashioned" flower. Its course was ruu in twenty years.
The single form of the Zinnia is now cultivated only for its scientific or anateur interest. Single Zinnias are not offered by tradesmen and occur only as degenerates from the double form. The first donble forms appeared in 1858 at the nursery of M. Grazau, at Bagnères, France, amongst a number of plants raised from seed received from the West Indies. The double forms were introduced to the puhlic by Vilmorin in 1860 . Probably the earliest colored plate of double Zinnias is that in Flore des Serres published toward the end of 1860. This shows that the first double forms were much flatter and rougher (i.e., less regular) than to-day and often exhibited some remnant of the disk. The fixation of bright, distinct colors proceeded rapidly, but the purification of the white seems to have been a slow process. The depth of the Hower has inereased from an inch or so in the earliest double forms to an average of 2 inches for first-class specimens, with a maximum of 4 inches in the robnst type. The rays are now arranged in 15 or more series, as against 5 or 6 in the first double forms. The first double forms are shown as $2 \frac{1}{2}-3 \mathrm{in}$. across, which is a good average for to-day.
The accepted type of Zinnia Hower is essentially that of Fig. 2795, but the florist's ideal represents a much deeper flower of absolute fulness and regularity. Of recent years several minor variations have appeared. Tubular forms are known to the trade as "Z.tagetiflora flore pleno." The curled and erested forms, introduced in the nineties, represent the reaction against formal flowers in general. Much care has been bestowed in perfecting the habit of Zinnias, and there are five well-marked degrees of height, which for purposes of explanation and general convenience may be considered as three, -tall, nedium and dwarf.
I. Tall Zinnias are ordinarily 20 to 30 inches high. This size and the next smaller size are the favorites for general purposes. The tall kinds are available in 12-16 colors. A robnst race, which attains 28 to 40 inches under perfect conditions, is known to the trade as $\boldsymbol{Z}$. elegans robusta grandiflora plenissima. It is also known as the Giant or Mammoth Strain. This strain was developed after many years by Herr C. Lorenz and was introduced in 1886. A maximum diameter of 6 inches is recorded for flowers of this strain. In (4.C. 11. 26:461 is shown a flower measuring $4 \times 4$ in., with about 18 se ries of rays, the latter being so numerons and crowded that the flower is less regular than the common type. A specimen Zinnia plant 3 ft . high is attained in the North only liy starting the seed early and giving perfect culture.
11. Medivm-sized Zinnias range from 12-20 inches in height. They are available in about 8 colors. Here belong most of the forms known to trade catalogues as pumila, nena and compacta.
III. Dwarf Zinnias range from 3-12 inches in height and are of two sub-types, the pompons and the Tom Thumbs. The pompons, or "Liliputians," are taller growing and smaller flowered, generally about 9 inches high, with a profusion of flowers about 2 inches across. The Tom Thumb type represents the largest possible flower on the smallest possible plant. Both types are
available in several colors, not all of which are yet fixed in the seed.

Zinnia Hangeana is second in importance to Z. elegans. The single form was introduced to cultivation about 1861 and the double abont 1871. It is dwarfer than most Zinuias, and has smaller flowers, with a color range restricted to shades of orange. It is distinct and pretty but less showy than the common Zinnias. The first race of hybrids between Haageana and elegans appeared in 1876 under the name of Z. Darwini. Tbis

2794. Single Zinnia ( $\times 1 / 2$ ).
group is said to resemble $Z$. elegans in size and color of His., and to recede from Z. elegans in habit, being more branched and forming a broader and tbicker bush. However, this race has never been adequately described and it is little known in America to-day. Several varieties of the Darwin class are figured in The Florist and Pomologist 1876, pp. 28, 29. Some recent hybrids of Haageana and elegans not yet introduced are said to be full of promise.

Culture of Zinnias. - Zinuias are of the easiest culture, thriving in any deep, rich soil, whether loamy or sandy. The seeds may be sown about May 1 , or whenever the soil is in fit condition for hardy annuals. Such treatment will give flowers from the first of July until frost. The young plants should be thinned so as to stand a foot or two apart, depending on whether they are of medium or tall-growing habit. By midsummer the foliage should obscure the ground. For the very best results the seell may be started indoors about April 1, and the seedlings transplanted once or twice before being placed outdoors in permanent quarters. Such pains are, however, not worth while for nost people. In 1801 it was considered the regular thing to start the single Zinnias indoors, hut this bother is no longer
necessary. Dwarf varieties should be set $14-16$ in apart: taller kinds 2 ft , each way,

Zinnias have two kinds of seeds, triangular and heartshaped. The triangular seeds are long, narrow, thick

2795. Double Zinnias ( $\times 1 / 2$ ).
and ridged, The heart-shaped seeds are short, broad and flat. Some growers believe that the heart-shaped seeds tend to produce single flowers; others hold the opposite opinion.

Generic Description. -Zinnia is a genus of I6 species of annal, perennial and subshrubby plants, mostly Mexican but ranging from Texas and even Colorado to Chile. They have opposite, mostly entire Ivs, and terminal heads of fils. which are peduncled or sessile. Rays pistillate, fertile: disk yellow or purple, its fils, bermaphrodite, fertile: involucre ovate-cylindric or campanulate, the scales in 3 to many series, broad, obtuse or rounded, more or less colored: akenes laterally compressed. "2-toothed at the
summit and frequently l-awned from the inner angle, rarely 2 -awned. Latest botanical revision by Robinson and Greenman in Proc. Am. Aced. Arts Sci. $32: 14$ (1897). There is a good summary of cultivated Zinnias by Kos in Vilmorin's Blumengartneri. Illustrated historical sketch in Gin. 48, pp. 464, 465.

```
A. Plant anmual.
    B. Itienes of the disk fls, short and
        broud, obovate, 2-21/2 lines long.
            C. Colors various: le's. clasping, cor-
                date-orute or elliptic ............
                Color orange: lrs, sessile, wor-
                rouer, linceolute................. Haageana
BB, Akenes lomper, netrower, oblong,
                3-1 lines long.
            c. Color of rays yellow: disk yollow, pauciflora
    Cc. Colow of rays reil or purple.
        D. Rays suberect or setrcely spread-
            ing: disk yellow................
        multiflora
        DD, Rttys relolute; disk dawk-colored. tenuiflora
AA. Plant pereusict......................... grandiflora
```

elegans, Jack. Youth-and Old-Age. The common species from which most of the garden Zinnias are de rived. Figs. 2794-96. Erect annual, a foot or more high, but varying from 3 in , to 3 ft .: Ivs. ovate or fliptic, clasping, about 1 in . wide: rays retlexed, originally purple or lilac, but now of nearly every color except blue and green: disk originally yellow or orange, but nearly or quite absent in the common double forms: fils. 2-5 in, across, July to Oct. Mexico. -Single forms ill. in B.M. 527, P.M. 1:223 and B.R. 15:1294 (the last two as 7. violacea). Double forms, F.S. 13:1394, R.H. $1861: 251$; 1864:331. Pompons in (in. 48, p. 464 (Liliput); 30:562 (deceptive as to size). R.B. 20, p. 152.
Haageàna, Regel ( $Z$. Mexiciuct, Hort.). Fig. 2797. Distinguished from $Z$, elegans by the orange-colored fils, which are generally smaller; also the plant is dwarfer, as a rule, and the leaves are merely sessile, not clasping. Tropical America. Single forms, Gr. 30, p. $270 ; 48$, p. 464, Double, Gi. 30, p. 271; 48, p. 301. F. 1871. p. 229. A.G. $1892: 218$. -This is considered by Robinson and Greenman as a horticultural species not certainly distinguishable from $Z$. angustifolia in spite of its broader leaves.
pauciflora, Linn. An erect annual, with yellow heads about 1 in across, with rather broad, spreading rays. Plant hirsute, with spreading hairs;


somewhat corymbosely branched above: peduncles at maturity enlarged upwards and hollow. Mexico, Peruvian Andes.
multiflora, Linn: This and the next are included by most writers in $\boldsymbol{Z}$. panciflora, hut $Z$. multiflora may be distinguished from Z. pauciflora by the

2798. Zinnia tenuflora.

The rays are typically more rev. olute than they are shown in this figure. pubescence of the stem being much finer, appressed or rarely spreading,and the rays red or purple, mostly narrow and suberect or scarcely spreading. B. N1. 149 .
tenuiflora, J acq. Fig. 2798. Very distinct by reason of its revolute, linear rays which are cardinalred in color. It has a dainty flower about 1 in. across hardly comparable with the showy $Z$. elegans. This species has been cult. in America but seems to be no longer advertised here. It is referred to Z. pauciflora by most writers, and to Z. multiflora by Robinson and Greenman. B.M. 555. A. G. $1890: 243$.
grandiflora, Nutt. Hardy, low-growing, Colorado perennial, with woody root, shrubby base, linear lvs. and sulfur-yellow rays which are very broad, almost round in outline. Lus. less than $I$ in. long and 3 -nerved. Colo., New Mex., Ariz., Mex. Int. 1900 by D. M. Andrews.
W. M.

ZIT-KWA. Benincasa cerifera.
ZIZANIA (an old Greek name). Graminea. A single apecies of annual swamp grass found in northern N. A. and northern Asia. Spikelets l-fld., moncecious, in large, terminal panicles, the pistillate upper portion narrow and appressed, the staminate lower portion spreading: pistillate spikelets long awned. The plant is a stately and gracefnl grass, deserving to be better known.
aquática, Linn. Indian Rice. Water Oats. Wild Rice. Culms tall, as much as 9 ft.: lvs, broad and flat. Recommended for borders of lakes and ponds. The grain is excellent for fish and water fowl. Wild Rice lakes and ponds are favorite resorts of sportsmen in the fall. Before sowing, put the seeds in coarse cotton bags and sink them in water for twenty-four hours. Sow in water from 6 in . to 5 ft . deep, with soft mud bottom, or on low marshy places which are covered with water the year ronnd. In running water, sow as mnch out of the eurrent as possible. Sportsmen are not generally amare that seed can be obtained in large quantities and at a reasonable price from seedsmen. Wild Rice is very deairable for aquatic gardens, being one of the bandsomeat of tall hardy grasses for the margins of pouds.

## A. S. Hitchcock.

ZIZIA (1. B. Ziz, Rhenish botanist). Vmbelliferce. A genus of three species of hardy perennial North American herbs $I-21 / 2 \mathrm{ft}$. high, with ternate or ternately com-
pound leaves and compound umbels of yellow flowers. The genus has no horticultural status, the two following species being advertised only by collectors of native plants. For full account, see Britton and Brown's lllnstrated Flora, Conlter and Rose's Monograph of the North American T'mbellifera, Contrib. U. S. Nat. Herb. 7:90 (1900), and Manuals. Zizias are nostly referred to Thaspium by previous botanists, but the authors cited above retain it as a separate gemus mainly on account of the wingless fruit.
A. Riys of umbels 9-25, stout, ascending.
aurea, Koch. Early or Golden Meadoty Parsnip. Height $1-21 / 2 \mathrm{ft}$.: basal and lower lvs. $2-3$-ternately compound: npper lys. ternate: fr. oblong, $2 \times 1 \frac{1}{2}$ lines. April-June. Fields, meadows and swamps, New Bruns. and S. Dak. to Fla, and Tex. B.B. 2:534.

AA. Rays of umbels 2-12, slender, diverging.
Bébbii, Britton. Distinguished from Z. arrea by the rays and by the fr., which is oval or broader, $1-1 \frac{1}{4}$ lines. May. Mountain woods, Va. and W. Va, to N. C, and Ga. B.B. 2:534.
W. M.

ZIZYPHUS (from Zizouf, the Arabian name of Z. Lo(us). Khamnacear. Jujube. Deciduous or evergreen shrubs, or sometimes trees usually with prickly

2797. Zinnia Haageana ( $\times 2 / 3$ ).
branches, alternate, short-petioled, 3-5-nerved, entire or serrate lvs. and small greenish or whitish flowers in axillary cymes followed by drupe-like sometimes edible fruits. I'hey are not much cultivated in this country
and none of the species is hardy north; the bardiest seems to be $Z$. vulgaris, bat it is tender north of Washington, D. C. Most kinds have handsome foliage and are well adapted for planting in shrubberies in the southern states and C'aliforaia. They seem to thrive in any well-drained soil. Prop, by seeds, by greenwood cuttings nuder glass and by rout-cuttings. A genus of about 40 species distributed through the tropical and subtropical regions of both hemispheres, allied to $P a$ liurus, but chiefly distinguished by the drmpe-like fruit. Shrubs with slender often procumbent branches, or trees; stipules mostly transformed into spines, often only one stipule spiny or one a straight and the other a Looked spine: Hs, 5 -merous: ovary $2-1$, uswally 2 loculed; style usually 2 parted: fr. a suliglobose to oblong trupe. The frnit of $Z$. Jujuba, tulgaris and $Z$. Lotus are edible and the first named is much calt, in China.

Jujùba, Lam. Tree, 30-50 ft. high: branches usually prickly; young brauehlets, petioles and inflorescunce densely rnsty tomentose: Ivs. broadly oval or ovate to oblong, obtuse, sometimes emarginate serrate or entire, dark green and glabrous above, tawny or nearly white tomentose beneath, 1-3 in. long: Hs. in short-stalked many-fld. axillary cymes: fr, subglobose to oblong, oraoge-red, $1 / 2-3 / 4 \mathrm{in}$. long, on a stalk about balf its length. March-June. S. Asia, Africa, Australia. Gn. 13, p. 194.
sativa, Gärtn. (Z. vulgaris, Lam.). Common JuJuber, Shrub or small tree, attaining 30 ft : prickly or unarmed: glabrous branchlets often fascicled, slender and having frequently the appearance of pinnate lys.: Irs. ovate to ovate-lanceolate, acute or olituse, oblique at the base, sometimes emarginate, serrulate, glabrous, 3/42 in. long: fls. fascicled, in axillary cymes: fr. ovoid to oblong, dark red or alınost black, $1 / 2^{-3 / 4}$ in, long, shortstalked. March-June. S. Eu., S. and E. Asia; naturalized in Ala. A.G. 189]:79 (as var. inermis). The Jujube is somewhat planted in Florida and California, although it yet has no conmercial rating as a fruit plant. According to Wickson, it was introduced into California in 1876 by C. P. Rixford, and is "fruiting regnlarly and freely in several parts of the state." The fruits or herries are ripe in November and December, and the plant hegins to bear at three years from planting. The Jujube fruit is used in confectionery,
2. Lòtus, Lam. Prickly shrub, 3 , 4 ft . high: lvs, ovate-oblong, crenalate, glabrous: Hs, in few-Hd axillary eymes: fr. subglobose, yellow, S. Eu., N. Afr. - Z. Paluürus, Willd,=Paliurus Spina-Christi,-Z. Splna-Christi, Willd. Small prickly tree: lvs, oval to oblong, erenulate, glabrous or pribescent on the veins beneath: fls. in axillary clusters: pedicels tomentose: fr ovoid-glohose, red. N. Afr. W. Asia. This species is supposed by some to have furnished Christ's crown of thorns; see also Paliurus Spina-Christi.
2. Pirryi, Torr. Belongs to the genus Condalia, which is easily distinguished by not having spiny stipules but tbe bramehlets transformed thto slender thorns and by its entire, usually penninerved lvs. - Z. Parrmi. Weherh, is a much branched, glabrons thorny shrub, $4-15 \mathrm{ft}$. high: liss, elliptic to obovate, obtuse, cuneate at the base, $1 / \mathrm{s}^{-1 / 2} \mathrm{in}$. long: fls. slender pediceled, in sessile clusters: fr. ovoid, $1 / 2 \mathrm{in}$. long S. Calif. This plant was once offered hy a collector of native plants, but it is probably not in the trade now. Alfred Rehder.

ZYGADENUS (Greek, yoke and gland, some of the species having two glands in the base of the perianth). Liliacer. As outlined by Bentham \& Hooker, the genus has 12 species, one of which is Siberian and the remainder North American and Mexican. This disposition includes Amianthium in Zygademms, but most authors do not unite the two. They are smooth, rhizomatous or bolbous plants, with simple erect stems bearing a raceme or paniele of white, yellowish or greenish flowers; Irs. mostly crowded at the base of the flowerstem, long-linear. The fls, are perfect or polggamons, the segments many-nerred and often adnate to the base of the orary, the parts withering and persistent; stamens 6; capsule 3-loenled, the locules in frmit separate at the top or for their entire length.

The species of Zygademus are little known in cultivation. They are sometintes recommended for the wild garden, where they thrive in wet or boggy places. Ineroased by division; also rarely by seeds. Some of the species hase poisonous bulbs, rhizomes and foliage.

Monographed by Watson, Proc. Amer. Acad. Arts \& Sci. $14: 278$ (1879).
A. Lockles of the capsule dehiscing to the base: stamens free from perianth-segments: glands usually 1 or 2 in the base of the perianth. Zygudenus proper.
B. Glands large, covering nearly the whole base of the periunth segments: bulb tumicated.
c. Fls, wsually perfect, rather large.
élegans, Pursh (Z. glaucus, Nutt. Helonias glaber. rima, Ker.). Three ft. or less tall, the lvs. $1 / 2$ in. or less broad and very glaucons: hracts purplish: fls, greenish, in simple or sparingly branched racemes, the segments broad and less than $1 / 2 \mathrm{in}$. long, colierent to the ovary, the fl. opening about $\frac{1}{2} \mathrm{in}$, across. Across the continent from New Brunswick and south to New Mexico. B.M. 1680. B.R. 24:67.

Frèmontii, Torr. Lrs, an inch or less broad, less glaucons than the above: bracts green: fls, usually larger, rotate, the segments free from the ovary. California, from San Diego north, in the ('oast Range. One of the "Soap plants," said to be the best of the genus for cultivation.

Nuttallii, Gray. Loss. from $1 / 4-3 / 4$ in, wide, scarcely glancous, light green: bracts scarious: $\mathrm{fls}, 1 / 2 \mathrm{in}$, across, in a simple or branched raceme, the segments free from the ovary. Kans, to Colo. and Texas.

## Cc. Fls, polygamous, small.

venendsus, Wats, Slender, 2 ft . or less tall: lvs. very מarrow ( $1 / 4$ in. or less), scabrons, not glancous, the stemlvs, not sheathing: bracts narrow, scarious: fls, in a short simple raceme, the perianth free from the ovary, the segments $1 / 4$ in, or less long, triangnlar-ovate to elliptic, short-clawed. S. Dakota to California.-Bulb poisonous.
paniculatus, Wats. Usually stouter, the 1vs. broader and sheathing: raceme compound: perianth-segments ieltoid, acute, short-clawed. Saskatchewan to Calif. Bull poisonous.

BB. Glands very obscure: butb somewhat fibrous, narrow.
leimantholdes, Gray. Stem slender and leafy, 4 ft . or less tall: IFs. $1 / 8 \mathrm{in}$. or less wide, green on both sides: racemes panicled: fls. abont $1 / 8 \mathrm{in}$, across, the segments oblong, not clawed. N. J. to Ga.

AA. Locules dehiscing only abore the middle: stamens inserted on the perianth-segments: glands none: bulbous.
muscitoxicnm, Regel (Helonias lieta, Ker. Amiánthium muscatóxicum, Gray. Chrospérma muscetóxicum, Kuntze). Fly-poison. Slender, 4 ft. or less tall: lvs, rather short, the hasal ones varying from 1/6 in. to over 1 in . broad, not glaucous; racemes simple: fls, about $1 / 3 \mathrm{in}$. across, the segments ovate-oblong and ohtuse. New York to Fla. and Ark. B.M. 803, 1540 . L.B.C. 10:998. Gn. 57, p. 160.-Bulb and herbage poisonons. A fly poison has been made from the bulb. L.H.B.

## 2YGIA. See Albizzia.

ZYGOPETALUM (name referring to the united flower parts). Orchidicere. Plants with numerous distichons lvs, sheathing a short stem which usually becomes thickened into a pseudobulb: lvs, membranaceous, venose or plicate: fls, solitary or in racemes, showy; sepals and petals nearly alike in form and color, often united to each other at the base, the lateral sepals forming a mentum with the foot of the column; labellum with the lateral lobes scarcely prominent, middle lobe broad and plane, spreading, or recurved at the apex, with a prominent fleshy erest on the dise: colnmn incurved, wingless or with small wings; pollinia 4, not appendirulate. Includes Bollea, Huntleya, Warczeviczella and Batemannia, which are often separated as distinct genera.

Heinrich Hasselbring.
Zrgopetalum is a genus of mostly epiphytal orchids, of easy culture. The Z. Mackaii group grow well under pot cnlture. One or two species with creeping rhl-
zomes, like $Z$. marillure, thrive best on sections of tree rern, osmunda rhazome or in bankets. A good compost consists of equal parts of chopped sod, peat tiber and sphagnum moss, well mixed and interspersed with pieces of rough charcoal, about one half of the pot space being devoted to clean drainage material. After distributing the routs, the compost should he worked in carefully but not too firmly ahout then, leaving the base of the plant even with, or just above, the rim of the pot. Repotting should be done when the plants show new root action. The temperature should range about $60^{\circ} \mathrm{F}$. by night and (i5 to $70^{\circ}$ by day in winter, and in summer as low as possible, with free ventilation during inclement weather. A cool, light location in the cattleya department is favorable. The compost should be kept in a moist condition at all times. The plants are propagated by cutting throngh the rhizone between the old pseudobulbs at a good eye, potting up the parts and removing them to a rather higher temperature until they start into new growth.

The Batemannia, Pescatoria and Warczewiczella groups are very similar in habit of growth, and all thrive well in orchid haskets suspended from the roof of the odontoglossum or coolhouse, in a compost consisting almost entirely of chopped live sphagnum, freely interspersed with rough pieces of charcoal. Autumin is the best time to rebasket the plants, as they suffer during the warm weather if disturhed at the roots during spring. They deed a shaded location, a moist atmosphere and a liberal supply of water at the roots at all seasons. Terer allow them to remain dry, as they have no resting season,

The Bollea group is closely allied and requires the same general culture but needs $5^{\circ} \mathrm{F}$. higher temperature during the winter season.

The Promenaa group comprises a few small-growing species, all good subjects for the cool department. They grow best suspended from the roof in small baskets or perforated pans in a mixture of peat fiber and chopped sphagnum with a liberal supply of water and good ilrainage.
R. M. Grey.

## INDEX.

Burtil. 12.
copleste, 9.
ezernlenm, 5.
crinitum, 5.
discolor, 13.

Gautieri, 3. intermedium, 6. Lalindei, 11 . Mlackaii, 2 . maxillare, 4.

Patini, 10. rostratum, 1. Sedeni, 7. vinlaceum, 8 Tendlandi, 14.
A. Seape tall, severul-fld. B. Anther lony-rostrute BB. Anther not rostrate.
C. Petils spotted or blotched.
D. Labellum glabrous...........

1. rostratum

$$
0
$$

2. Mackail
3. Gautieri
4. maxillare

DD. Labellwm pubescent 5. crinitum 6. intermedium cc. Petals unitormly colored......

AA. Scape shorter than the les., 1-flit.

> B. Column hood-like, urching over the crest.
c. Fils. deep violet
8. violaceum
ce. Fls. violet-purple 9. cœleste
ccc. F'ls. ose-colored
10. Patini

BE. Coliemn not hood-like.
C. Fls. brow'n, spotted
11. Lalindei
12. Burtii
13. discolor
14. Wendlandi

1. rostràtum, Hook. Pseudobulbs oblong, compressed: ivs. lanceolate, 5 in . long: scapes 4 in . long, bearing 1-3 ths.: sepals and petals linear-lanceolate, greenish brown, wavy, $2-3 \mathrm{in}$. long; labelium about as long as the petals, subrotund, with reflexed margins, pure white with few radiating lines near the base: column wings rounded, sharply serrate on the upper margin: anther with a long beak surmounting the column. May, June, Oct. Guiana. B.M. 2819. J.H. III. 28:7. A.F. 6:633.
2. Máckaii, Hook. Fig. 2799. Pseudohulhs large, orate: lvs. many, linear-lanceolate, 1 ft . long: scape 18 in . long, bearing 5 or 6 large fls.: sepals and petals
dingy yellowish green, with blotches of purple on the inside, lanceolate, acute, erect, spreating, all united toward the base; labellum large, rounded, emarginate, white with radiating vein-like deep blue lines, glabrous. Brazil. B.M. 2748. B.R. 17:1433 (as Eulophia 1fuckuiena). P.M. 3:97. L B.C. 17:1664. J.H. 111. 33:295. -This is distinguished from $Z$. intermedium and $Z$. crinitum by its smooth labellum and narrower ivs. Vars. supérbum, grandiflorum, majus are also advertised.
3. Gautièri, Lem. Pseutobulbs oblong sulcate, 4 in. high: scape $2-3$-fll.: fls. 3 in, across; sepals and petals green blotched with hrowv; labellum broadly reniform, deep parple at the base, white in front, sometimes nearly all deep purple with a darker crest. Autumn. Brazil. I.H. 14:535. Gn, 49:1053. - The lvs. are fascienlate, narrowly oblong, keeled, $12-16$ in. long: inforescence shorter than the lvs.
4. maxillàre, Lodd. Pseudobuibs 2 in. long: Ivs. lauceulate, 1 ft . long: seape 9 in . long, $\mathfrak{i - 8} \mathrm{fld.:} \mathrm{fis} 11 /$. in across; sepals and pretals ovate-oblong, acute, green, with transverse brown blotches; labellum horizontal, purple, with a very large, glossy-purple, notched horse-shoe-shaped crest, middle lobe roundish, waved, and obscurely lobed. W'inter. Brazil. B.M. 3686. L.B.C. 18:1776. J. H. 111. 33:295. P.M. 4:271.-Distinguished hy its small fls. and very large crest

5. crinltum, Lodd. Habit of Z. intermedium: Ivs. broadly linear-lanceolate: fls. on long, stout scapes; sepals and petals 2 in . long, oblong-lanceolate, green with ratber few brown blotelies; labellum 2 in. across, spreading, wavy, scarcely emarginate, white with purple veins radiating from the thick crest, dise hairy. Fls. at various times. Brazil. L.B.C. 17:1637. B.M. 3402 (as Z. Mackaii, var, crinitum).-This has fewer brown blotches on the sepals and petals than $Z$. intermedium. There are varieties with pink, blue, or almost colorless reins on the labellum. Yar. cœrùleum, Hort., has the vines deep virid blue.
6. intermèdium, Lotd. Lvs, ensiform, $1^{1 / 2} \mathrm{ft}$. long, $1^{1} \frac{1}{2}$ in. wide: scape longer than the lvs., bearing $5-6$ fls. each nearly 3 in , across: sepals and petals oklong, acute, green with large, conflnent blotehes of brown; labellum rotund, narrowed at the base, deeply e-lobed in front, pubescent, bluish white with radiating broken lines of purplish blue; column green and white. Fls. in winter, remaining in perfection about two months. Brazil. R.H. 1873:190 (as Z. Rivieri).-Plants of Z. Mackaii are often cultivated under this name.
7. Sedeni, Reichb. f. Plants strong, with the scape about as long as the lvs, and hearing several fls.: sepals and petals deep purple-brown, bordered with green; labellum pale purple in front, becoming deep purple toward the base. F.M. 1880:417.-A garden hybrid raised by Veitch.
8. violàceum, Reichb, f. (Húntleya violdeca, Lindl.). Fig. 2800. Lvs. as in Z. Latindei: Hs. on nodding seapes 4-6 in. long, deep violet; sepals and petals ovate revolnte, tipped with yellowish green; labellum ovate, cordate, crest of thick ridges covered by the arching column. Guiana. F.s. 7:678. P.N. 8:1.
9. colèste, Reichb. f. (Bollea çléstis, Reichb. f.). Livs. 6-10 on a shoot, oblong-lanceolate, 6 in. long, 2 in. broad, with 6 paler sheaths $3-4$ in. long: fls. solitary, on stont peduncles 6 in . in lengtli; sepals broad, violetpurple, darker toward the top and margined with yellow at the tip, the lateral pair larger; petals like the dorsal sepal but paler; labellum short-clawed, ovate, deeply cordate, margins recursed and tip revolute, deep violer with yellowish margins and a thick yellow crest. Fls. freely iu summer. Columbia. B.M. 6458. Gin. 3I, p. 121; 49:1072.
10. Pátini, Reichb. f. (Billeat Pritini, Reichb. f.). Lvs, linear-oblong: fls, large, rose-colored. paler than those of $Z$. Latindei; sepals oblong attenuate, wary, the lower half of the lateral pair clarker; petals trian-
gular-oblong, undulate; labellum triangular hastate at the hase, yellow, tip revolute; column pink, covering the thick yellow crest. Colombia. F.M. 1875:147. G.C. II, 3:9.
11. Lalindei, Reichb. f. (BòlZea Lalindei, Reichb. f.). Lvs. elliptic-lanceolate, about 1 ft . lons: peduncles 3 in. loug, with solitary fls. $21 / 2-3 \mathrm{in}$. broad: sepals orateoblong, recursed at the tips, rose-colored, with strawcolored tips; petals undulate-oblong, colored like the sepals or with white margins; labellum orate-hastate, margins and tip recurved, golden yellow, dise with a semi-cireular erest of thick, radiating lamellae: column brouler than the disc, arched over it. Aug. (olombia. B.M. 6331.-Color of the fiower varies to bright violet.
12. Búrtii, Benth. \& Hook. (Butemainnía Búrtii, Endr. d Reichh, f.). Lrs, elliptic-oblong, 10-14 in, long: Hs. solitary, 3 in. across; sepals aud petals broadly elliptic ovate, acute, reddish brown, spotted with yellow; labellum trowel-shaped, cordate, white at the base, apex brownish purple; crest pectinate. Costa Rica, B.M. 6003. F.M. 1874:10I. Gn. 57, p. 309.
13. díscolor, Reichb. f. (Wárrea díscolor, Lindl. Wrarczewiczéllit discolor, Reichb. f.). Lvs. narrowly lanceolate, jointed, 9 in, long: scapes $\mathbf{1 - f l d ,}$ shorter than the lrs.: sepals spreading, lanceolate, white: petals shorter, ovate, white with a tinge of purple, halfspreading: labellum large, broadly oborate, somewhat convolute, white, changing to deep purple toward the disk, and having a whitish or jellowish crest. Central America. B.M, 4830.
14. Wéndlandi, Reichb. f. ( Tarczewiczélla W户ntFandi, Hort.). LFs, tufted, lanceolate: Hhs, 4-5in, across, solitary, on a scape 3-4 in. long; sepals and petals lanceolate, somewhat twisted, greenish white; labellum ovate, cordate, undulate, white, streaked and spotted with violet-purple: apex revolute, crest semi-circular, violet-purple.

Heineich Hasselbring.



[^0]:    edulis, Nutt. Two-4 ft., glabrous or nearly so: rootIvs. oblanceolate or spatulate with margined petiole, entire to pinnatifid; stem-Irs. few, sessile, parted into linear or lanceolate divisions: fls. yellowish white, in an elongated panicle, more or less dicecions. Obio to Arizona and British Columbia, in wet or moist lands. -

[^1]:    low, sending up suckers in spring: lys, in clusters from terminal buds; Ifts. abont 5, cut-toothed or lohed, with wedge-shaped bases and entire sinnses: fls. small. dark or purple. April. Damp and shady places, sonthwestert New York southward. A.G. 1891:2s:9. B. B, 2:55.-Var. ternata, Huth. Lis. only ternate; lfts, often more deeply lobed. the sinuses entire. Same distribution.
    K. C. Davis.

