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ABSTRACT 

 Networks are prevalent in man-made and natural systems throughout the world.  

Despite recent efforts to characterize and catalog networks of all kinds, considerably less 

is known about the forces that drive network formation.  For many complex systems, it is 

unclear whether networks are the result of an explicit effort to achieve some overarching 

global system objective, or if network structure is just a byproduct of local, selfish 

decisions.  In this thesis, we review network formation models and conduct numerical 

experiments to contrast their behavior and the structural features of the networks they 

generate.  We focus primarily on problems related to the formation of minimum spanning 

trees and consider the cost of selfish behavior, more commonly known as the price of 

anarchy, in network formation.  We also explore differences between local, decentralized 

methods for network formation and their global, centralized counterparts. 
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EXECUTIVE SUMMARY 

Networks are prevalent in man-made and natural systems throughout the world.  

Despite recent efforts to characterize and catalog networks of all kinds, considerably less 

is known about the forces that drive network formation.  For many complex systems it is 

unclear whether networks are the result of an explicit effort to achieve some overarching 

global system objective, or if network structure is just a byproduct of local, selfish 

decisions.  We conduct numerical experiments using network formation models to 

examine the behavior and structural properties of the networks they form. 

We discuss several models of network formation, including the Erdős and Rényi 

(1959) random graph model, the random geometric graph model, and a preferential 

attachment model, popularized by Barabási and Albert (1999), which produces a network 

with a node degree distribution that can be described by a power-law.  We then review an 

optimization-based model, from which we derive our model for our numerical 

experiment as well as game theoretic models. 

We provide a review of the minimum spanning tree (MST) problem.  We 

introduce it as a formal optimization problem, which is non-trivial to solve as an integer 

linear program for large problems.  We then review two centralized algorithms, Kruskal’s 

(1956) and Prim’s (1957), which take advantage of the special network structure in order 

to more easily solve the MST problem.  In contrast to the global algorithms, we review 

the decentralized algorithm of Gallagher, Humbolt and Spira (1983) that utilizes 

“message passing” between nodes to solve for the MST.  

Our numerical experiments use a simplified version of the optimization-based 

model, which grows networks by adding nodes to the unit square one at a time.  Each 

new node forms an arc in the network to the node that minimizes the arc’s Euclidian 

distance.  By restricting the objective function to only distance, we determine the price of 

anarchy by comparing the total network cost to the optimal cost of the MST.  The results, 

based on 10,000 trials, indicate the cost of a network formed with 100 nodes is  

 



 xvi

approximately 50% greater than the MST.  By altering the arrival order of the nodes to 

the network, we observe that precedence plays an important role in these network growth 

heuristics. 

We also consider network rewiring experiments, in which we allow the nodes to 

reevaluate their initial arcs to see if they can improve their objective function.  They 

continue this process until no node can improve, and the network is in equilibrium.  After 

10,000 trials, the cost of this 100 node network is approximately 15% greater than the 

MST.  We also alter the order in which the nodes reevaluate their arcs, and determine that 

precedence in the rewiring also affects the final network structure. 

We conclude with suggestions for continued research to determine if there might 

be an interpretation of the local, myopic decision process we utilized that lends itself to 

an equivalent global solution.  We appeal to the example of the Internet, in which duality 

theory has helped to understand the behavior of the complex network. 
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I. INTRODUCTION  

A graph is a collection of nodes (also called vertices) connected by a set of arcs 

(also called edges). A network is a specific type of graph, where associated with each arc 

or node is additional information, such as the cost or capacity of the arc or the demand at 

a node.  Networks are integral to a variety of systems that we rely upon each day.  Our 

transportation system is made up of a variety of networks including road, rail and airline 

networks.  Our electrical system is a network of wires that ensures power reaches homes 

and businesses.  Communications systems, including the Internet, are expanding beyond 

the typical hard wired lines to include wireless networks.  Even individuals’ relationships 

with one another can be viewed as a network of social ties.   

Each of these networks plays an important role in society.  A transportation 

network provides a means for goods and people to move from a starting location to a 

destination.  The electrical system continuously balances generation with fluctuating user 

demand.  Communication networks and the Internet provide a massive increase in the 

amount of easily obtainable information, and they also dramatically decrease the amount 

of time required to transfer information around the world.  The study of social networks 

is increasingly popular, with sites such as Facebook and Twitter capturing evolving 

relationships between millions of people.  The analysis of networks is even helping to 

fight terrorism by identifying terrorist networks so that we can determine where it is most 

effective to disrupt them.  

Because of the prevalence and importance of networks throughout our world, the 

last decade has seen increased scientific attention on the properties and functions of 

networks.  Much of the recent effort has been to catalog a diversity of networks and to 

characterize their structural features.  The majority of this work on network structure has 

emphasized the connectivity properties of the underlying graph, thus renewing interest in 

graph theory.    

The study of networks is actually centuries old.  Graph theory dates back to 

Leonard Euler in 1736 (Biggs, Lloyd and Wilson, 1998), when he proved there was no 
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feasible solution to the Konigsberg Bridge Problem.  The development of random graph 

theory in the 1940s and 1950s generated great interest in the characteristics of graphs and 

networks (see Newman, Barabási and Watts, 2006, for notable publications).  Most 

recently, the advent of “network science” during the last decade has witnessed renewed 

interest in the large-scale properties of graphs (National Research Council, 2005).    

Despite considerable effort devoted to the “what” of these networks, considerably 

less is known about the “how” and the “why.”  It is not always clear what drives the 

formation of networks.  A fundamental question is whether networks form to achieve 

some overarching global objective or if network structure is just a byproduct of local, 

selfish decisions.  Or it may be a combination of the two.  It is also not clear how global, 

centralized network formation versus local, decentralized formation affects the properties 

of the resulting network. 

Understanding the forces that drive network formation is becoming increasingly 

important.  Of particular interest is the Internet.  This is an extremely complex network 

that has managed to evolve and grow at an amazing pace.  To some researchers, the 

Internet exemplifies a system that has self-organized.  They argue that the network was 

not built by a “central” designer, but arose rather as a result of the localized actions of the 

users and service providers.  In spite of its ad-hoc construction, the Internet is still 

relatively robust (Willinger and Doyle, 2004).  The ability to model such a complex 

network and to understand its underlying properties is extremely relevant for the study of 

both man-made and natural systems.   

Another area of increasing importance is the use of Hastily Formed Networks 

(HFNs) in response to humanitarian aid and disaster relief operations, such as a Hurricane 

Katrina scenario (Denning, 2006). These types of networks require rapid coordination 

and information between a variety of agencies. 

Research in the “how” of network formation has ranged from random graph 

generation to system design.  Erdős and Rényi (1959) pioneered the exploration of  
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random graphs models, which generated interest in graph and network theory.  More 

recently, the study of network science has focused attention on “small-world networks” 

and “scale-free networks.” 

Small-world networks (Watts and Strogatz, 1998) are networks that have high 

local clustering and have path lengths between arbitrarily chosen nodes that are still 

relatively short.  Small-world networks have been used to explain the “six degrees of 

separation” phenomena.   

Scale-free networks (Barabási and Albert, 1999) have been used to describe any 

number of complex, large real world networks whose nodes degree distributions tend to 

follow a power law.   This observation of a power law can be seen in the World-Wide 

Web (WWW), biological sciences, and social networks.   

In this thesis, we review some of the recent models used for network formation 

and conduct numerical experiments to compare and contrast the structural features of the 

graphs they generate.  We construct all the algorithms we discuss as well as the numerical 

experiments in this thesis from scratch using the Java programming language. We focus 

primarily on problems related to the formation of minimum spanning trees and consider 

the cost of selfish behavior, more commonly known as the price of anarchy, in network 

formation.  We then contrast some of the local, decentralized methods for network 

formation to the global, centralized methods.  Our results help to clarify the tensions in 

network formation problems for both man-made and natural systems. 

The remainder of this thesis proceeds as follows.  Chapter II reviews previous 

research in network formation.  Chapter III introduces the minimum spanning tree 

problem along with both centralized and decentralized algorithms for solving it.  Chapter 

IV presents experiments that help to elucidate the underlying mechanism behind network 

formation in relation to the minimum spanning tree.  We conclude in Chapter V with a 

brief summary of our findings, as well as provide guidance for future research in this 

area. 
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II. NETWORK FORMATION MODELS 

In this chapter, we review several models of network formation.  Throughout this 

thesis, we adopt the following notation and definitions from Ahuja, Magnanti and Orlin 

(1993). 

A graph, or network, consists of a set N nodes and a set of A arcs.  The 

number of nodes is n = |N| and the number of arcs is m = |A|.  An arc from node i to node 

j  is denoted as  where .  If G is a directed graph then , but if G 

is an undirected graph then 

( , )G N A

,i j N

( , ) ( , )i j j i

( , )i j ( , ) ( , )i j j i

 .   

A subgraph of  is a graph ( , )G N A ( , )G N A    if N N   and .  It is a 

spanning subgraph of  if 

A  A

( , )G N A N N  .  A tree is a connected graph that contains 

no cycles.  A subtree is a connected subgraph of a tree.  A spanning tree of G is a tree 

that is a spanning subgraph of G and has exactly n-1 arcs.  A minimum spanning tree 

(MST) is a spanning tree of minimum cost. 

A cut is a partition of node set N into two parts, K and K N K  .  A cut defines 

the set of arcs that have one endpoint in K and the other in K . 

The degree of node i, degi, is the total number of incident arcs to node i.  The cost 

of arc  is denoted cij.  In some of the problems that we consider in this thesis, we 

associate each abstract node i with a location 

( , )i j

 1 2, ,i i i i
dx x x x 

( , )i j

 in the d-dimensional 

Euclidean space d.  In such cases, the cost of arc  is simply the Euclidean distance, 

 2

1

d

k i j
ij k kc x x  .  

 

A. CLASSICAL RANDOM GRAPH MODELS 

The modern treatment of networks was forged by Paul Erdős and Alfréd Rényi 

(1959), who examined a class of random graphs denoted . In this construction, 

there are n nodes and each node has a probability p of connecting to any other node in the 

( , )G n p
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graph.  By altering the parameter p, the measurable properties of the connectedness of 

random graphs change quite suddenly (see Bollobás, 1985, for an in depth review).  For 

small values of p, the graph demonstrates low connectivity with several isolated nodes.  

Interestingly though, as p approaches 1/n, a majority of nodes form a cluster and the 

graph becomes almost completely connected.  For values 1p  , the graph becomes 

highly connected with several cycles.  This phenomenon is known as the “emergence of 

the giant component.”  Figure 1 illustrates this phenomenon.  

 

a.

1

ln
p

n n


b.

1
p

n
 1

ln
p

n


c.  

Figure 1.   Erdős-Rényi random graphs. 

Erdős-Rényi random graphs with varying probabilities for a network with n = 50.  A 
small 1/ ( ln )p n n  , demonstrates a largely disconnected graph (a).  A 1/p n  results 
in an almost connected graph (b) and a large 1/ lnp n  results in a nearly complete 
graph (c). 
 

Another important property is the distribution of the node degrees. The degree of 

node i, degi, follows a binomial (n-1, p) distribution.  For large values of n, this 

distribution can be approximated with the Poisson distribution (Albert and Barabási, 

2002). 
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B. RANDOM GEOMETRIC GRAPH MODELS 

Another approach to generating random graphs builds on the notion of a 

geometric graph.  Given a set of nodes N indexed i = 1,2,…,n, having locations 

 1 2, , nx x x , and a positive parameter r, the geometric graph  ,G N r

r

 is the undirected 

graph induced by all arcs ( ,  having distance )i j ijc  .  When the locations 

 1 2, , nx x x  are the result of an independent and identically distributed (IID) random 

process, the resulting graph is called a random geometric graph.   

Most of the theoretic results for random geometric graphs are cumbersome, 

especially in higher dimensions (see Penrose, 2003, for an in-depth treatment).  Unlike 

classical Erdős-Rényi graphs in which the presence of arcs is independent, the role of 

proximity in random geometric random graphs makes the appearance of (nearby) arcs 

dependent.  However, these graphs share remarkably similar behavior in the emergence 

of the giant component (see Goel, Rai, and Krishnamachari, 2003, and references 

therein). 

Random geometric graphs are often used in classification problems in statistics.  

For example, suppose that individuals have d characteristics and each can be represented 

by a continuous variable (which may not be true in practice).  Using an appropriately 

defined measure of distance in this d-dimensional space, one can classify two individuals 

as being “similar” if their distance is less than some constant parameter r.  This approach 

makes it possible to identify clusters of similar individuals, which can be useful in many 

practical applications. 

Figure 2 illustrates the features of a random geometric graph. 
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a. b. c.  

Figure 2.   Random geometric graphs. 

Random geometric graphs of n = 50 nodes resulting from varying values of the  
parameter r.  A sparse graph (a) results when r = 0.1.  The emergence of the giant 
component when r = 0.2 (b). A highly connected graph (c) for r = 0.5.   
 

C. PREFERENTIAL ATTACHMENT MODELS 

Unlike the graphs produced in the Erdős-Rényi model, the degree distribution of 

many real world networks does not follow a Poisson distribution. Albert and Barabási 

(2002) observe that many networks have a skewed distribution, in which the majority of 

nodes have small node degrees while very few nodes have high degrees.  The 

connectivity of these networks can be characterized by a power-law distribution, in which 

the probability that a node has a degree distribution k is ( )P k k  , where typically 2 ≤ γ 

≤ 3. 

Research in a multitude of disciplines has demonstrated power law distributions 

within networks.  Price (1965) demonstrates that the network of bibliographic citations in 

scientific publications produces a heavy tailed distribution.  West (1999) argues that 

several characteristics of biological systems, such as metabolic rate, sizes and time scales 

can be modeled with a power-law for several species.  Faloutsos, Faloutsos and Faloutsos 

(1999) argue that power-laws could be used to predict characteristics of the Internet 

topology.  In finance and economics, Gabaix (2009) provides a good summary of power 

law distributions exhibited in a variety of areas such as firm size, city size, and the 

distribution of income and wealth.   

 8
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Since the random graph model does not produce the power-law distribution of 

node degrees as observed in real world networks, Barabási and Albert (1999) present a 

different model based on preferential attachment.  This model differs from the random 

graph model by accounting for network growth, and it assumes that newly added nodes 

are more likely to attach to nodes with high connectivity.  The probability p that the new 

node will attach to node i depends on the connectivity of node i, where connectivity is the 

proportion of node i's degree to the sum of the degrees of all other nodes, such that p = 

degi / Σjdegj.  This model of network formation produces a scale-free network, a graph 

whose resulting node degree distribution follows a power-law. For some systems, the 

scale-free network produced by the model is more similar in its connectivity than a graph 

generated from the random graph model.  Figure 3 shows the formation of a 1000 node 

model via preferential attachment, while Figure 4 displays the resulting power-law of the 

node degree distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

a. b.

c. d.  

Figure 3.   Graph formed from preferential attachment model. 

Growth of a graph with n = 1000 nodes using the preferential attachment model described 
by Barabási and Albert (1999). Nodes initially are added to the network (a).  Initial hubs 
begin to form (b).   Larger hubs are easily identifiable for networks with 100 nodes (c) 
and 1,000 nodes (d). 
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Figure 4.   Degree distribution of network with n = 1000 nodes from Figure 3d. 

Nodes are ranked based on their node degree from 1 to 1000, with the node with the 
highest degree ranked as 1, then plotted versus their degree.  Because of the large number 
of nodes with small node degrees, there is a lack of resolution in this region of the plot. 
 

D. OPTIMIZATION-BASED MODELS 

Doyle and Carlson (1999) propose a different mechanism, called highly optimized 

tolerance (HOT) that produces power-law distributions.  They suggest that complex 

networks are optimized for robust performance and that the observed power law 

distributions are a result of the tradeoffs that must be made due to system constraints.  

Key features of their HOT model include “(1) high efficiency, performance and 

robustness to designed-for uncertainties; (2) hypersensitivity to design flaws and 

unanticipated perturbations; (3) nongeneric, specialized, structured configurations; and 

(4) power laws” (Doyle and Carlson, 1999, p. 1413). 

Fabrikant, Koutsoupias and Papadimitriou (2002) suggest a simple model, which 

we will refer to as the FKP model, for network formation that is based on the “tradeoff” 

concept present in the HOT model.  Like the Barabási-Albert model, they grow a network 

one node at a time, but they also give each node a location in the unit square.  When 
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deciding to which node in the network the new node should attach, they propose two 

logical considerations.  First, they assume the node would want to minimize its 

connection “cost” (represented by the Euclidian distance between itself and the node it 

attaches to).  The second is that the node would desire to connect to one that is more 

centrally located.  These objectives can be weighted in order to alter the relative 

importance between the two.  Specifically in their model, node i will attach to node j in 

order to satisfy the objective: 

: 
min (1)ij j
j j i

c h


   

where cij is the Euclidean distance between nodes i and j and hj is a measure of centrality 

for node j.  The weighting factor, α ≥ 0, is usually defined as a function of the final 

number of nodes n.  The centrality h can be defined in several ways, such as the average 

number of hops to all other nodes, the average Euclidian distance to all other nodes or the 

distance to some predefined central node (Fabrikant et al., 2002). 

Fabrikant et al. (2002) show that by varying the value of α, graphs with very 

different properties result.  They prove that when centrality is measured as the number of 

hops to a defined node, n0, then for α < 1/ 2 , distance is relatively insignificant 

compared to centrality, and the resultant network is a star with the center at n0..   As α 

approaches , there is a closer trade-off between distance and centrality, and the node 

degree distribution can be represented by a power law.   Once α exceeds n , distance 

becomes the overriding factor, and a form of a Euclidean spanning tree results.  Figure 5 

displays 1000 node networks formed with α = .75, 5 and 32 ( 1000 ).  Figure 6 

demonstrates the power law that results when α is approximately n . 
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a. b. c.  

Figure 5.   Some realizations of FKP networks with n = 1000. 

The star results (a) with a small α = 0.75.  Large clusters are evident (b) when α = 5.  A 
network whose node degree distribution can be represented by a power-law (c) results 

when α = 32 ( n ). 
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Figure 6.   Degree distribution of an FKP network. 

Network has n = 1000 nodes and α = 32 ( n ).  Nodes are ranked based on their node 
degree from 1 to 1000, with the node with the highest degree ranked as 1, then plotted 
versus their degree.  Because of the large number of nodes with small node degrees, there 
is a lack of resolution in this region of the plot 
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The FKP model introduces a novel idea for network formation.  Unlike the Erdős-

Rényi graphs that are entirely based on a random selection of arcs, this model suggests a 

highly organized, locally optimized model.  The model also demonstrates a power-law in 

the node degree distribution as seen in the Barabási-Albert model, although Berger, 

Bollobás, Borgs, Chayes, and Riordan (2003) argue that the resulting distribution is not a 

strict power-law, but has an exponential cutoff. 

E. GAME THEORETIC MODELS 

Another approach to network formation uses game theory.  Fabrikant, Luthra, 

Maneva, and Papadimitriou (2003) propose a network formation game to explore how an 

undirected network created from selfish-acting nodes would affect the network 

performance as a whole.   

The game is as follows:  There are n players, each representing a node in the 

network.  The entire set of players is ,  with N N n .  Each player 1, 2,...,i n    chooses 

a strategy set  1 2, ,..., ,...,i i i ij ins s s s s

1,2,...,

, which defines the network edges to build from i to 

other nodes j n .  The set 1 2{ , ,..., }ns s s s  denotes the collective strategy of all 

players. 

Let A(s) be the set of arcs resulting from strategy s. Therefore, 

 ( ) ( , ) : ,  1 or s 1ij jiA s i j i j s     and ( ) ( , ( ))G s N A s  is the undirected graph that 

results from strategy s.  Once a strategy is chosen, each player 1, 2,...,i n  incurs a 

cost ( , )( ) ( ( ))i i i j
j N

c s s d G s


    where α is the fixed cost of forming a single connection 

between two players, and  is the distance, measured in hop count, between 

nodes i and j in the resulting graph .  If no path exists between i and j, then 

. This is called the Unilateral Connection Game (UCG) because each 

node is able to use an arc, regardless of who paid it. 

( , )i jd G

) ( ( ))i jd G s  

( ( ))s

( )G s

( ,

An extension of this game is the Bilateral Connection Game (BCG) described by 

Corbo and Parks (2005).  The major difference from the UCG is that in the BCG an arc 
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only forms if both nodes’ strategies contain that arc. So in this game  

 ( ) ( , ) : ,  1 and s 1ij jiA s i j i j s     and any connection cost is shared equally between 

the two nodes. 

In both cases, the social cost of the network is compared to that of a Nash 

equilibrium. The Nash equilibrium is a strategy s that satisfies 

\ \( ) ( , ) ( , )    ,  i i i N i i i N i ic s c s s c s s i N s Si     . 

In other words, at the Nash equilibrium, no node has incentive to change its strategy.  The 

social cost of the network is defined as: 

( , )
,

( , )
,

( ) ( ( )) for the UCG

( ( )) ( )
2 ( ) ( ( )) for the BC

i j
i j N

i
i N i j

i j N

A s d G s

C G s c s
A s d G s









  
  

 


G.


 

 

The term price of anarchy is the ratio of the social costs of the worst case Nash 

equilibrium and the social optimum (Koutsoupias and Papadimitriou, 1999; 

Roughgarden, 2005) and is used to measure the lack of coordination when the nodes act 

selfishly. 

Fabrikant et al. (2003) show that the results of the UCG vary based on the value 

of the parameter α.   When α < 1, the social optimum is a complete graph, and this is the 

only Nash equilibrium.  When 1 ≤ α < 2, the complete graph still results in a Nash 

equilibrium, but it is no longer unique.  The worst Nash equilibrium is the star, leading to 

a price of anarchy of 
( )

(  )

C star

C complete graph

4

3
 .  When α ≥ 2, the social optimum is a star, 

although there can be worse Nash equilibria. 

Corbo and Parkes (2005) build upon the equilibrium concept to define a pairwise 

Nash equibrium as a strategy s that supports  as a Nash equilibrium and for all 

, if then 

( )G s

( , )(j i( , ) ( )i j A s ( , )( ) ci i j ic s    (s) ( ))j jc s c s  

( ) ( )ic s c s

 where  represents a 

strategy consisting of only the arc (i,j).  They also define a network as being 

pairwise stable if for all , 

( , )i j

( )G s

( , ) (i j A s ) ( , )i i j 
 while for all , if ( , )i j  ( )A s
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( ) ( )( , )( )i i j ic s c s  
 then .  Similarly to the UCG, they prove that for 

α < 1, the complete graph is the only efficient and pairwise stable graph.  For α > 1, the 

star network is the only efficient graph, but although stable, it is not unique.  They also 

propose that the price of anarchy for the BCG is worse than that of the UCG (Corbo and 

Parkes, 2007). 

( , )( )j i j jc s c s  

Fabrikant et al. and Corbo and Parkes focus on different properties of the 

networks formed from the UCG and BCG than the previously reviewed models.  Similar 

to the HOT model, the connection cost is associated with Euclidian distance and the 

number of arcs in the network and by tuning the weighting factor α, networks ranging 

from the complete graph to a star can be produced.  However, unlike the previous 

models, they concentrate on quantifying the cost associated with selfish behavior to 

compare it to the social optimum.  Also, the BCG introduces a unique feature of 

restricting the arcs in network to those formed through the consent of the two nodes.  

Both models provide an interesting way of looking at network formation.  

F. DISCUSSION 

The key insight of Fabrikant et al. (2002) is that the power laws observed in the 

structure of many man-made and natural systems can result from design tradeoffs that 

can be captured in simple optimization models.  Their model was inspired by tensions 

perceived in the Internet—a desire to minimize the cost of connecting while also wanting 

to have low delay (i.e., be “central”) when communicating.  But their model reflects a 

local, myopic decision process.  It is unclear how, if at all, this local process relates to the 

global behavior of the network. 

The price of anarchy in the study of network formation games addresses explicitly 

the difference between the social optimum for some system (as achieved, for example, by 

a central decision maker) with the aggregate outcome of local agents.  Fabrikant et al. 

(2002) focus on the global connectivity properties (e.g., degree distributions) of the 

graph, but is there an interpretation for a system-wide objective? 
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In the case of large α the objective (1) emphasizes only the local connection cost, 

and it is possible to interpret the collective behavior as trying to minimize the distance of 

the resulting tree, albeit in a heuristic manner.   With this in mind, we now consider the 

classic minimum spanning tree problem. 
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III. THE MINIMUM SPANNING TREE PROBLEM 

A. INTRODUCTION TO MINIMUM SPANNING TREE 

A classic problem in the study of networks is the minimum spanning tree (MST) 

problem with the first algorithm for solving the MST published by Otakar Borůvka in 

1926 (see Graham and Hell, 1985, for history of MST).  Minimum spanning trees have 

several practical applications such as determining the minimum amount of wire to 

connect several electrical components or calculating the minimum amount of piping 

required to connect houses in a neighborhood to a water system.  

The MST problem for a network G(N,A) can be treated as an optimization 

problem and easily be formulated as an integer linear program.  The formulation follows, 

where  and the arc set for H, H N ( )A H A . 

1. Indices 

i N   node (i = 1,2,…,n) (alias j) 

( , )i j A  undirected arc between node i and node j 

2. Data 

cij  cost of arc (i, j)  

3. Decision Variable 

Zij  binary variable indicating if arc (i, j) is in tree 

4. Formulation 

 

( , )

( , )

( , ) ( )

min (3.1)

s.t.          1 (3.2)

1  sets (3.

0,1 (3.4)

ij ij
Z

i j A

ij
i j A

ij
i j A H

ij

c Z

Z n

Z H H N

Z







 

   







 3)
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The objective function (3.1) minimizes the costs of the arcs chosen.  Equation 3.2 

is a cardinality constraint that ensures that only n-1 arcs are selected, while Equation 3.3 

ensures that there are no resulting cycles.  Although this problem is simple to formulate, 

solving it with linear programming is nontrivial for large n.  The number of sets 

grows exponentially with n, so the total number of constraints arising from 

Equation 3.3 becomes exponential, making the problem increasingly difficult to solve as 

n grows. 

H N

However, the MST has a special tree structure that results in two necessary and 

sufficient conditions to prove that a tree is a MST (see Ahuja et al., 1993, pp. 518-519, 

for a detailed discussion).  The first is the cut optimality condition, which states: 

A spanning tree T is a MST if and only if for every tree arc ( , , for 

every arc ( , contained in the cut formed by deleting arc  from T. 

)i j T

( , )i j

ij klc c

)k l

The second is the path optimality condition, which states: 

A spanning tree T is a MST if and only if for every nontree arc  of G, 

 for every arc ( ,  contained in the path in T connecting nodes k and l. 

( , )k l A

ij klc c )i j

Using these two principles for optimality, one can obtain simpler algorithms that solve 

the MST.  Kruskal’s algorithm and Prim’s algorithm are two popular methods that use 

global information of the network to solve for the MST.  A novel, decentralized 

algorithm that utilizes information only known locally to individual nodes has been 

proposed by Gallager, Humblet and Spira (1983).  The following sections of this chapter 

discuss these algorithms. 
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B. KRUSKAL’S ALGORITHM 

Kruskal’s algorithm (1956) directly utilizes the path optimality condition to build 

the MST one arc at a time.  The algorithm does this by maintaining two lists of arcs.  The 

algorithm initializes by sorting all the arcs in increasing order of cost and placing them in 

a list, called SORTED.  A second list, called FINAL, is initially empty.  The algorithm 

proceeds by examining each arc in SORTED and either adding it to the FINAL list or 

discarding it.  The algorithm begins by adding the first arc in SORTED (having the 

smallest cost) to FINAL.  Then for each subsequent arc, the algorithm examines whether 

adding it to FINAL would create a cycle.  If adding the arc would create a cycle, it is 

discarded.  Otherwise, it is added to FINAL.  This process continues until there are n-1 

arcs in FINAL.  This algorithm, as presented, requires O(m log n) time to sort the arcs 

and O(nm) time to detect a cycle, although Ahuja et al. (1993) provide a more efficient 

algorithm that operates in O(m + n log n) time. 

Figure 7 illustrates Kruskal’s algorithm on an undirected graph having n = 10 

nodes, each positioned in the unit square.  The cost of the arc between nodes i and j is the 

Euclidian distance between the nodes.  Here, we assume no restrictions in this example, 

so each node can connect to any other node.  Figure 7a shows the nodes in the initial 

empty graph.  Figure 7b illustrates the first two smallest arcs between nodes n7 and n9 as 

well as n3 and n5.  The first arc in SORTED that would create a cycle is the (n1,n3) arc 

as shown in Figure 7c.  This arc violates the path optimality condition, therefore this arc 

is discarded.  The algorithm examines each arc in turn and adds it if doing so does not 

create a cycle.  Finally, when the number of arcs equals n-1 (9 in this example), the 

algorithm terminates and the MST results (Figure 7d). 
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Figure 7.   Kruskal’s algorithm 

The initial network has no arcs (a).  The smallest arcs are added first (b).  The (n1,n3) arc 
is would create a cycle (c) so it is discarded.  The MST results (d). 
 

C. PRIM’S ALGORITHM 

Prim’s algorithm (1957) is based on the cut optimality condition.  It initiates with 

a cut in, which an arbitrary start node of the network is in subset K, while the remainder 

of the nodes are in subset K .  The minimum-weight arc from the start node is then added 

to the list of MST arcs, and the head node of that arc is removed from K  and placed in K 

creating a new cut.  The minimum-weight edge of all nodes in K that connects to a node 

in K  is then added to the MST with its head node moving from K to K .  This method 

continues to create cuts between the two subsets until all nodes have been placed into K 

and the resulting MST list will contain n – 1 arcs.  Prim’s algorithm requires O(mn) time 
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because of the time required to search for the minimum arc in the cut.  Ahuja et al. (1993) 

also present a more efficient data structure that can reduce the time to O(m + n log n). 

Figure 8 illustrates Prim’s algorithm on an undirected graph having n = 10 nodes, 

each with the same coordinates in the unit square as in the previous example.  For this 

algorithm, any node can be chosen to initiate the algorithm, but for this example, node n1 

initiates the algorithm.  Figure 8a shows that n1 is in the set K whereas the remainder of 

the nodes are in K .  The hashed, curved line indicates the cut in the graph, and the three 

smallest cost arcs in the cut are illustrated, although all arcs from n1 are technically in the 

cut.  The (n1,n5) arc has the minimum cost in the cut, so it is added to the MST and the 

n5 node moves from K to K as demonstrated in Figure 8b.  Figure 8b also indicates the 

four least cost arcs in the new cut and arc (n5,n3) is the minimum, so it is added (Figure 

8c).  This process continues to use the cut optimality condition (Figures 8c–e) until all 

nodes are in the same set and the MST results (Figure 8f). 
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Figure 8.   Prim’s algorithm 

The algorithm begins with one node in subset K and the rest in K (a).  The minimum cost 
arc in the cut (denoted by the dashed line) is added to the MST (b) and arcs in the new cut 
are compared. It proceeds by continually adding the minimum arc in the new cuts (c-e) 
until the MST is produced (f).   
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D. DECENTRALIZED ALGORITHM 

More recently, focus has turned to decentralized methods for solving the MST 

problem.  Gallager, Humblet and Spira (1983) present a distributed algorithm that also 

uses the path optimality condition to solve this problem in an undirected network.  Their 

algorithm relies on a node’s localized information and its ability to receive, process and 

send “messages.”  The complexity of this algorithm is therefore measured by the number 

of messages that are passed which is at most is at most 5n log2 n + 2m. 

Each node maintains an individual queue to store its incoming messages, and it 

processes them in first-in first-out order.  The algorithm works by combining separate 

graph fragments together into a final MST.  Initially each node is its own fragment, and 

then through the message passing process, it combines with other nodes to create new 

fragments, finally combining into a final fragment containing the MST.  By passing 

messages, each node eventually discovers which of its arcs are in the MST. 

Throughout this algorithm, the actions that a node initiates upon receiving a 

message depends on its state and the arc upon which it sends its message depends on the 

state and weight of its arcs.  A node has one of three states.  The Sleep state is the initial 

state for all nodes, the Find state is when the node is trying to find its fragment’s 

minimum-weight edge and the Found state is for all other instances.   

Other information that a node maintains is its fragment identification, which is the 

value of the minimum cost arc joining two fragments, and its current level.  The level is 

used to control which fragments can connect.  Only a fragment with a lower level can be 

absorbed by a higher level fragment (not vice-versa) or two fragments of the same level 

can join.  This imposes an ordering on the way that fragments merge. 

The algorithm proceeds with nodes passing messages to one another to create 

fragments along their minimum-weight edges.  Each node maintains its own fragment 

identification, and can send this information in a message.  That way, when a node 

receives a message, it knows if it came from its own fragment or a new fragment.  Once 

fragments have been formed, the nodes continue to pass messages along their arcs to (1)  

 



determine the minimum-weight edge of the fragment and (2) see if the receiving node is 

part of a new fragment.  In this manner, the fragments continue to merge until they have 

obtained the MST.   

To keep track of which arcs are involved in the MST, nodes maintain the states of 

their arcs.  Each arc also has one of three states.  Initially, all arcs are in the Basic state, 

indicating they have potential to be a part of the MST.  If an arc is in the Branch state it 

has been identified part of the MST.  And lastly, if it is in the Rejected state, then the 

node has determined that it is not in the MST, but rather an arc connecting two nodes in 

the same fragment.  

Figure 9 provides an overview (see Gallager et al. 1983, for detailed pseudo-code) 

of how the decentralized algorithm results in the MST for the same undirected 10 node 

network used above.  Again, it is assumed that each node can attach to every other node 

in the network, with the weight of the arc between nodes i and j equal to the Euclidian 

distance between those nodes.  Although this is an undirected network, each node 

maintains the state of its arcs, so directional arcs will be used to illustrate the arc state 

maintained by the tail node.  It is possible for node i and node j to have different states for 

arc , but the discrepancy is resolved via the message passing and does not interfere 

with the algorithm. 

( , )i j

 Figure 9a shows the initialization of the algorithm, in which nodes n1 and n10 

undergo a “wakeup” procedure that initializes their level to 0 and changes their state from 

Sleep to Found.  Like Kruskal’s algorithm, these nodes each identify their minimum 

weight arc,  and  respectively, and label them as part of the MST by 

changing its state to Branch.  Because the heads of these minimum-weight arcs are in the 

Sleep state, they too must undergo the “wakeup” procedure and find their minimum-

weight edges.  In this example, nodes n5 and n2 initialize to level 0 and their minimum-

weight edges are ( 5  and , respectively. This process continues until, 

through the message passing process, two nodes find that their minimum-weight edges 

are one in the same.  Because the nodes are at the same level, they combine to form a 

( 1, 5)n n ( 10, 2)n n

3),n n ( 2, 10)n n
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fragment at a higher level, and the fragment identification is the cost of the minimum-

weight edge.  Figure 9b illustrates the node and arc states at this point.   

Through the message passing, nodes n2 and n10 recognize that they are in the 

same fragment as the MST and because they are the same level, they will each set their 

fragment identification as 0.265 (the weight of the connecting arc) and increase their 

level to 1 as well as changing their state to Find.  Nodes n3 and n5 undergo a similar 

process, increasing their level to 1 and labeling their fragment identification as 0.163.  

Node n5 will also act upon a message received by n1.  Because n1 is still at level 0, it will 

absorb into the n3-n5 (0.163) fragment assuming the fragments level and identification as 

well as changing its state to Find. 

When the nodes are in the Find state, they are actively searching for other nodes 

to add to their own fragment.  They do this by passing a “Test” message along its 

minimum-weight arc in the Basic state.  The receiving node compares its fragment 

identification to that of the sending node.  If they are the same, the arc between them is 

placed in a Rejected State for both nodes, and the sending node sends a “Test” message 

on the next best minimum-weight edge.  Figure 9c shows the partial graph formation.  

The bold arcs are those that both head and tail nodes recognize their state as Branch and 

the gray directional arcs represent the arcs a “Test” message is sent across.  Nodes n6 and 

n3 both tested nodes n2 and n1 respectively.  Since each of these nodes were in the others 

fragment, the arc was rejected (the dotted arc) and a new “Test” message is sent via the 

next best arcs in the Basic state, nodes n8 and n7. 

The process continues, resulting in three primary fragments for this example 

(Figure 9d).  The message passing continues between nodes within the same fragment, to 

identify the minimum-weight arc to connect to a node in a different fragment.  For 

simplicity, we will focus on the message from n3 to n7. The nodes have different 

fragment identifications and are at the same level, so they will combine the fragments 

along arc , increasing their level to 2 and assuming the new fragment identity of 

0.266, the weight of the adjoining arc.  They will then pass messages along their Branch 

arcs to the other nodes in their fragment so they will update their levels and fragment 

( 3, 7)n n
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identifications accordingly.  Figure 9e illustrates the graph once this has occurred.   The 

number of rejected arcs at this instance are numerous and are not illustrated.  Lastly, the 

remaining two fragments combine and the result is the MST (Figure 9f). 
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Figure 9.   Decentralized algorithm for finding the MST 

All nodes in the initial network (a) are in the Sleep state. Nodes n1 and n10 wake up and 
label their minimum arc Branch (b).  Fragments form and their nodes pass messages to 
identify the minimum arc to connect them to each other (c-e) until the MST results (f).   
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E. DISCUSSION 

The MST problem is simple to state and solve as a global optimization problem.  

However, as a local, decentralized, and asynchronous process, it is considerably more 

complicated.  The algorithm of Gallager et al. (1983) shows that individual nodes making 

local decisions can solve this problem correctly and efficiently.   But, is there a way to 

interpret this process as a local optimization problem?  In the next chapter, we consider 

some numerical experiments to explore this possibility. 
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IV. EXPERIMENTS 

In the previous chapters, we examined two different classes of network formation 

problems.  In Chapter II, we reviewed a progression of network models that were based 

on local “decisions” (either random or according to some local optimization problem).  

The research emphasis for these models has been to understand the global network 

properties that result from these local decisions.  In Chapter III, we considered a specific 

network design problem, the MST, and reviewed both global and local techniques for 

solving it.  In this chapter, we attempt to reconcile these two perspectives by considering 

two basic issues. 

A. THE ROLE OF PRECEDENCE IN LOCAL NETWORK FORMATION 

In many of the network models considered here, the network is not constructed all 

at once, but rather grows incrementally through the addition of nodes and arcs.  A basic 

question of interest is, What is the role of precedence in these network formation models?  

We consider each of these network models in turn. 

Random graph models.  The Erdős-Rényi random graph model has one 

parameter, p, the probability a node connects to any other node in the graph.  The random 

geometric graph model (with node locations generated from an IID random process) also 

has one parameter r, such that arcs form between nodes with distances cij  ≤ r.  These 

parameters are not affected by the order that nodes are introduced, and actually, nodes 

“arrive” at the same time in both of these models.  Therefore, in neither of these cases 

does the order of node arrival affect the overall network structure. 

Preferential attachment models.  In preferential attachment models, nodes do 

arrive one at a time.  The arriving nodes have a higher probability of forming arcs to 

nodes that already have several connections.  In this model, precedence is important in 

that nodes introduced early on in the network formation are much more likely to acquire 

connections than those introduced later on.  However, the nodes are essentially 

interchangeable, so if the order of the nodes were rearranged, the identification of the  

 



nodes would change, but the statistical properties of the global network would remain the 

same, including the power-law distribution of the node degrees.  So precedence does not 

affect the overall network characteristics. 

FKP construction.  The FKP model also has nodes in unique locations, but in this 

model precedence does play a role. Whereas the random graph and preferential 

attachment models use probabilities to determine arc placement, this model adds arcs 

based on which arc minimizes a node’s objective function.  Since a newly added node 

can only utilize the nodes previously added to meet its objective function, different 

networks will result based on the order the nodes are introduced to the network.  What is 

not known is the extent to which precedence plays a role in the overall network 

properties. 

Network formation games.  In the UCG and BCG network formation games, a 

network is formed by each node picking a strategy consisting of arcs.  These models do 

not utilize network growth, but rather begin with all nodes present in the network.  It is 

unclear how, or if precedence, would affect this type of local network formation. 

Minimum spanning tree problems.  There is no role of precedence in the MST 

problems either.  With the global algorithms, such as Prim’s and Kruskal’s, the algorithm 

can begin with any node and result in a MST.  In the decentralized algorithm, the 

message passing mechanism is not affected by the order in which nodes send messages.  

Although these methods could produce MSTs with different structures, their costs are all 

equal.  We focus on the total network cost, so the potential for different network 

structures is unimportant in our numerical experiments. 

In order to explore the FKP models in more detail, we conduct two experiments. 

1. Reordering of Nodes for Initial Construction of Network 

We generate an FKP-style network of n = 100 nodes, each with the local objective 

function : 
min ij
j j i

c



with 1  .  The total network cost is the sum of all arc costs.  We  
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compare this result to those obtained from a second network that is generated in the same 

fashion.  Each node in the second network has the identical locations as the nodes in the 

first network.   

We alter, in two ways, the order in which nodes arrive.  The first uses the same 

node sequence, but chooses a different start node.  The second method completely 

randomizes the order of the nodes.   

In both cases, the network that forms is different than the initial network and the 

total network cost is similar to the initial cost. Therefore we conclude that precedence 

does play a role in the initial network formation.  Figure 10 demonstrates the different 

networks that result from both types of reordering for a 20 node and a 100 node network. 
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Figure 10.   Different FKP-style networks form with reordering the nodes. 

Networks of n = 20 and n = 100 nodes are generated from the FKP-style construction 
(a,b). Different networks (c,d) result when a start node is randomly selected but the nodes 
are added in the same sequence.  Different networks (e,f) result from randomizing the 
sequence in which the nodes are added. 
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2.  Rewiring of Nodes to Equilibrium 

In the second numerical experiment, we examine the effects of allowing the nodes 

to change their initial connection.  Once all nodes had been introduced to the network,   

we give them an opportunity to improve its connection cost by selecting a different node 

to connect with.  We term this process rewiring.  Once none of the nodes in the network 

can benefit from connecting to a different node we say the network is in equilibrium.  We 

then compare the cost of the equilibrium network to those of the MST 

We generate networks of n = 100 nodes as described above.  Once all nodes are 

added, we permit the nodes to rewire, subject to two constraints.   

The first constraint is that a node is only able to rewire the arc it formed when it 

joined the network and not any of the arcs from other nodes that attached to it.  The 

second constraint is that the node can only rewire to a node that maintains the 

connectivity of the entire network.   

We alter, in two ways, the order that the nodes rewire.  We first give the nodes the 

opportunity to rewire in the same sequence they arrived in the network.  In the second 

way, we randomly select which node can rewire.  Figure 11 illustrates the initial network 

and the network once it has reached equilibrium. 
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Figure 11.   Networks with FKP-style construction in equilibrium 

The 20 and 200 node networks from Figure 10 reach equilibrium by sequentially rewiring 
their initial arcs (a,b).  Different equilibrium networks (c,d) result from a random 
rewiring process.  Neither equilibrium network results in the MST (e,f). 
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B. COMPARISON OF FKP-STYLE AND MST CONSTRUCTIONS 

To examine the price of anarchy, we compare the cost of the equilibrium network 

to the MST.  We repeat the rewiring experiments 10,000 times, generating the initial 

network, rewiring it to equilibrium, and then determining the MST.  Table 1 shows the 

network costs associated with each type of network and compares them to the cost of the 

MST.   For networks with n = 100, the initial network is 46.5% greater than the MST.  

However, once the network reaches equilibrium, the costs decrease substantially.  The 

network formed from the sequentially ordered method is 14.2% greater than the MST and 

the network from the randomized method is 15.0% greater than the MST.  The difference 

between the equilibrium network costs from the sequential rewiring method and the 

randomized rewiring method is not statistically significant. Both the sequential rewiring 

and the random rewiring methods produced equilibrium networks with the same costs in 

26% of the experiments. 

 

Network type Average 
Cost 

Standard 
error 

Ratio to cost 
of the MST 

Initial FKP-style 19.791 0.874 1.465 
Sequential rewiring 15.422 0.609 1.142 
Random rewiring 15.533 0.668 1.150 
MST 13.506 0.426 1.000 

Table 1.   Cost comparison of initial network, equilibrium network and MST for n =100. 

Results based on 10000 trials of networks with n = 100.  The difference between the costs 
of the sequentially rewired equilibrium network and the randomly rewired equilibrium 
network is not statistically significant. 
 

The results indicate that either method of local rewiring can improve the total cost 

significantly, but the equilibrium value is still considerably worse than the MST.  The 

total network cost is approximately 15% greater than that of the MST, but in none of the 

10000 trials is the equilibrium network equal to the MST.  This leads to the question:  To 

what extent, if any, is the method that forms the locally optimized network comparable to 

the methods that construct the MST?  Since this model does not achieve the MST, we 

explore what might be preventing it from doing so. 



The first issue is precedence in the formation process itself.  The experiments 

demonstrate that the order in which the nodes connect or rewire their connections 

produces different networks.  However, it is conceivable that nodes could be introduced 

into a network in an order that would result in the model producing the MST.  Figure 12a 

depicts a FKP-style network in equilibrium and Figure 12b is the MST.  It is relatively 

easy to envision an ordering of nodes that would result in this MST.  Since it is a tree, 

imagine starting with the root and moving down the branches.  For example, assume node 

n1 is the first node in the network.  Because the connection costs for the FKP-style model 

are based on Euclidean distance, the second node introduced could be n10, n18 or n4 

(any node with an arc to n1 in the MST).  If n10 were the second node, then the third 

node could be n4, n18 or n19, and so on.  However, if n9 were the second node, it would 

have to attach to n1, the only node in the network, and the final network would not be the 

MST (although it may appear if the network were allowed to attain equilibrium).  As long 

as the order the nodes are introduced in the network follows the order in the MST, the 

model would result in the MST. 

1

0 1

Cost: 6.570

 

Figure 12.   A MST for a network with n = 20. 

A second reason that the rewiring heuristic may not induce the MST is that it 

could be too restrictive.  Nodes evaluate only one arc at a time, and can only consider 

rewiring with an arc in the cut produced when it removes the arc it is reevaluating.  This 
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constraint is necessary to ensure a connected network.  However, there could potentially 

be a combination of two (or more) arcs that could be rewired simultaneously to achieve 

the MST. 

The other restriction is that a node can also only rewire the arc it formed when 

joining the network, and not any of the arcs from nodes may have connected to it later on.  

This might also be preventing the model from developing the MST.  This case can be 

seen in the networks in Figure 13.  Figure 13a is the network that is initially formed.  In 

this network, n2 has to attach to n1, so the  arc is the only one n2 is able to 

reevaluate. Node n16 attached to n15 so it is only able to evaluate the ( 1  arc.  

When the network is in equilibrium (Figure 13b), n2 rewired its arc to  and the 

 arc becomes the .  Both of these changes occurred because the new 

arcs are shorter.  In this method, the  arc, which is in the MST (Figure 12), will 

never result.  However, if n2 had the ability to evaluate all its arcs, the  would 

become the  arc, which is in the MST. 
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Figure 13.   FKP-style network with n =20 nodes. 

The initially constructed network (a) and its equilibrium network (b). 
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C. DISCUSSION 

This work primarily focuses on incremental network construction based on local, 

myopic decisions. The major difference between this model and the FKP model is that 

we removed the tradeoff aspect by not using the centrality term in the local objective 

function.  We simplified the objective function so we can compare the results of the 

formed networks to the optimal network, the MST, to explore the price of anarchy. 

We demonstrate that precedence plays a role in the network formation, producing 

initial networks with different costs.  We also demonstrate that the sequential rewiring 

process and the random rewiring process substantially improve the network cost, but that 

there is no statistical difference between the two methods. 

The work in this thesis lays the groundwork for more complex numerical 

experiments and deeper analyses.  The heuristic model with rewiring improves the total 

network cost substantially, but does not achieve the MST.  The extent to which the 

constraints of the model prevent it from obtaining the optimal result is unclear.  To 

explore this, the model could be altered so nodes have the option to rewire all of its 

incident arcs, not just the one it initially formed. 

The model also has room for expansion.  We did not use a measure of centrality 

in the objective equation, but this can be added to the model to explore the effects on the 

network structure due to trade-offs between centrality and distance.  We also primarily 

focus on forming networks with a tree structure, whereas many real-world networks 

contain cycles.  This model can be altered to allow nodes to form more than one arc when 

it joins a network.   
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V.  CONCLUSIONS AND FUTURE WORK 

Understanding the drivers of complex network formation is nontrivial.  In this 

thesis, we focused on models of network formation with emphasis on both centralized 

and localized algorithms for solving the minimum spanning tree problem.  We developed 

a local, heuristic model based on a FKP-style construction, which uses rewiring to 

produce networks in equilibrium.   We examined the price of anarchy of these networks 

due to myopic node behavior.  Although the rewired heuristic model does not always 

produce the MST, we demonstrate that there exist orderings of nodes that can obtain it.  

This leads to the question:  Is there an interpretation of the local, myopic decision 

process of the FKP-style construction that lends itself to an equivalent global 

optimization problem? If the answer is affirmative, then the local and global methods 

would both provide the optimal solution and the price of anarchy would be zero.  This 

could have significant implications for the formation of real network systems when 

global information and central decision processes are not possible. 

Is there evidence to suggest that such an interpretation is possible?  Here, we 

appeal to the notion of duality in network optimization problems and note that there is a 

considerable literature in the use of duality arguments for the development of 

decentralized algorithms (see Bertsekas and Tsitsiklis, 1997, for an in-depth treatment).   

The Internet is an example where duality arguments have recently enhanced our 

understanding of complex network behavior.  The Transmission Control Protocol (TCP) 

is fundamental to the operation of the Internet.  It guarantees end-to-end delivery of data 

packets by recognizing and retransmitting packets that are lost, and it also controls the 

rate at which individual computers inject packets into the network.  Like most of the 

protocols used in the Internet, TCP was developed in an ad hoc manner, based on 

engineering intuition and trial-and-error more than mathematical theory.  To researchers 

in the network science community, the behavior of TCP seemed like a case of self-

organization (Veres and Boda, 2000).  However, research over the last decade has shown 

that TCP and its complementary protocol Active Queue Management (or AQM, which 

runs in routers to manage the size of their limited buffers) work together as a primal-dual 
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algorithm to solve a global resource allocation problem in a decentralized and 

asynchronous manner (Kelly, Mauloo, and Tan, 1998; Low 2003).  This type of analysis 

is not only bringing greater understanding to the way that the existing Internet works 

(Srikant, 2004), but it is also helping to influence the design of future network protocols 

(Chiang, Low, Calderbank and Doyle, 2007). 

While there remains considerable work to understand the forces governing 

complex network behavior, it is clear that optimization is an important tool for exploring 

the tradeoffs at work in network formation.  Identifying the precise mechanisms at work 

in specific applications, as well as how to improve them, will be a topic of future 

research. 
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