ENGINEERING NEWS AMERICAN RAILWAY JOURNAL

VOL. XLI. No. 25.

TABLE OF CONTENTS

ngineering news of the week
 \qquad
 389

Brldges over tbe whitewater River at Rich
Ind. (illustrated). Mogul, Ten-wheel and Consolida-

 N. Y. (illustrated)....
 tooss for M. C. B. Couplers (illustrated)
then
Weather Report for Me My
The Altion of the Grand Contral

 nnual Convention of the Master Car
soclation at old Point Comfort. Va.
 of the Volunteer Engineers in Cuba and Porto
Rico-The Responsibility for
Insuring ${ }_{\text {Against }}^{\text {Ril }}$ Fire.
The Master Car Bullders' Coupler

THE HUDSON RIVER TUNNEL was sold under fore osure proceedings on June 16 and 17, and was hid in by Stetson, Jennings \& Russell, counsel for the tunne bondholders, for $\$ 400,000$, suhject to a llen of $\$ 62,000$ hy S pearson \& Son, of London, the contractors who did the last work on the tunnel. The work actually completed consists of the sinking of shafts near the river hank on each silde, and the hullding of $3,915 \mathrm{ft}$. of one tunnel from the New Jersey side and 145 ft . of tunnel from the New York side. Besides thls ahout 550 ft . of the second tun nel was bullt eastward from the New Jersey end in the early history of the enterprise. Nothing has heen done on the approaches, wblch, as originally planned, woul be about $4,000 \mathrm{ft}$. long on the New Jersey side and ahou $4,500 \mathrm{ft}$. long on the New York elde: and about $1,600 \mathrm{ft}$. more must be hullt to complete tbe river section of nne tunnel. The maln work on the tunnel was done from 1879 to 1882, and in 1890 some adaitional work was done witb Engilsb capital. Engilsh engineers and contractors belng in charge.

ANOTHER CAPE COD CANAL SCHEME is reported as well under way, It belng stated that tbe recently chartered well under way, it being stated torat Cape Cod New York Canal Co. has sold \$6,000,000 of honds "to New York syndleate." The canal will be 300 ft .ide, 25 ft . deep and elght miles long. It is sald tbat plans and specffications for the canal are nearly ready for bldders.

A CONCESSION FOR A PERUVIAN RAILWAY from Oroya to Cerro de Pasco, about 60 milles, is offered by tbe Peruvian Government, and hids for the concession are invited by the Peruvian Dlrector of Public Works. Oroya is the present terminus of the Central Rallroad of Peru about $14,000 \mathrm{ft}$ above sea level. Particnlars of the concession have been furniabed to the State Department at Wasbington by Hon. Irving B. Dudley, U. S. Minister to Peru.

LOCOMOTIVE RUNS in passenger service have been reently Increased in length on the Baltimore \& Ohio R. R., to such an extent that the number of locomotives required for regular tralns has been reduced by 24 . Under the new plan locomotives are douhle-crewed, and make 7,000 to 8,000 miles per month.

A LARGE TANK LOCOMOTIVE for the Dominion Coal Co.'s line in Cape Breton, is a declded departure from ordinary American practice. The engine bas elgbt driving wheels, a leading pony truck, and a four-wbeel trall-ing-truck under the cab and boller. The tanks are on eacb side, as In European practice, and extend from the cab to the smokebox. The engine somewhat resembles the Madison Hill pusher engine of the Pennsylvania Lines, illustrated in our issue of June 10, 1897. It'was built in 1896 by the Rbode Island Locomotive Works, of Providence, R. I., now operated by the International Air Power

Co. The track is of standard gage, and the leading dimen Driving wheels
Driving wheels
Wheeebase, driving
Wheelbase, total
Wheelbase, total
Welght on drivers
Weight total
Welight, to
Boller, stralgbt top; diameter
Bial
Bire
Firebox
Tubes, $\begin{gathered}\text { Tength } \\ \text { Tuits } \\ \text {. }\end{gathered}$
side diamèter
4 ft 2 lng

${ }_{21}^{215,000} \times 2 \mathrm{Ins}$

THE MOST SERIOUS RAILWAY ACCIDENT of the week occurred on June 18, when a Northern Paclic freight train collided with an excursion train between As torla and Linton, Ore. One man was killed and five per sons Injured. Botb enginea were badly damaged and two live stock cars wrecked, the stock being killed. The cause of the accident is sald to have heen a misunder standing of train orders.

PECULIAR ACCIDENT ON THE BROOKLYN Bridge occurred on June 19. As a traln was starting from the New York station the electrical contact shoe on one of the cars caught on the end of one of the third ralls, supported on insulators, and tipped it over. The tipping of this rall was followed by others across the whole lengtb of the bridge, tbrowing the electric service out of use. Some 6 to 7 hours were required to replace the rall, during a part of which time all traffic on the third-rall system was blocked.

A POWDER MILL EXPLOSION occurred on Point San Pedro, four miles from San Rafael, Cal., on June 17 Four employees were killed, three seriously injured and x bulldings wrecked and burned. The works wer wned by the United States Smokeless Powder Co

A COAL MINE EXPLOSION occurred at the Caledonia Mine, Glace Bay, Cape Breton, on June 16, kiling 13 more men and leaving the mine on fire. The mine is owned by the Dominion Coal Co.

THE STEAMER "MACEDONIA" WAS SUNK on June 3. near Long Brancb, N. J., in a collision with the "Hamiliton," of the Old Dominion Line. The collision occurred in a log. No lives were lost.

THE GROUNDING OF THE "BROOKLYN" on May 0, in New York Harbor, is ascribed by the Court of nquiry to the vessel striking upon an unknown and totally submerged wreck.

THE LOS ANGELES OUTFALL SEWER is causing much anxiety to the officials in charge. The present rouble is confined to the mortar used In laying and plastering the brick section and to the iron work of the
chamhers and manholes. Both the mortar and the fron chamhers and manholes. Both the mortar and the Iron are disintegrating so rapidly that the condult will last only six or eight years more, unless the trouble is stopped. The disintegration is quite unlform from the lower end of the three-mile inverted slphon downwards, except where the condult is covered with sewage, and in the upper part of manholes, where the gases are more dllute Experiments are now being made with asphaltic and paint coatings and a system of ventilation is proposed. The above information was kindly furnished, at our request, hy Mr. Frank H. Olmsted, Clty Engineer of Los Angeles. The outfall sewer was described at length in Engineering News of Feh. 28, 1895, from which lssue the ollowing partlculars are taken: It has a total length of 12.4 mlles, about seven miles of which is wooden stave pipe. The three brick sections are mostly of $40-\mathrm{in}$. Arcular, two-ring hrick work. All the cement used was English Portland (Gilingham brand), costing $\$ 2.90$ and 2.95 per hbl. laid down on or near the work. It was supplied to the contractor hy the clty. The mortar in whicb the hricks were lald was composed of 1 part cement and 2 parts of sand. The inside plastering, $1 / 2-\mathrm{in}$. thick, was of neat cement. The bonds for the outfall sewer were voted on Nov. 1, 1892, and the sewer was opened on March 9, 1894. Mr. Burr Bassell, Assistant City Engineer, author of the article from which these cltations are made, stated in 1895 that the "brlek and concrete work were hoth exceptionally good.

WATER FILTRATION EXPERIMENTS are in progress t Washington, D. C., under the direction of Colonel M11er, who is in cbarge of the Washington aqueduct. A government appropriation of $\$ 8,000$ is avallable for the

THE DAMS IN THE ILLINOIS RIVER may be removed as a result of the construction of the Chicago Dralnage Canal. They were bullt to provide slackwater navigation for boats of 5 to 7 ft . draft, but the landowners claim that they cause much damage to farm lands by flooding. There are four of tbese dams. Tbose at Henry
and Copperas Creck are owned by the state, and cost about $\$ 810,000$. They will be removed by the Drainage Board. Those at La Grange and Kampsville were built by the Federal government at a cost of about $\$ 1,200,000$, and there is now a movement to induce the government to remove them. The Kampsville dam is 30 miles above the Junction of the illinois and Mississippl rivers, and is about 7 ft . high and 1.000 ft . long. Tbe La Grange dam, $451 / 2$ miles further up, is 7.83 ft . high and $8181 / \mathrm{ft}$. long. The Copperas Creek dam is 59% mile distant, and is $61 / \mathrm{ft}$. high and 640 ft . long. The Henry dam is $591 / 2$ miles further up stream, and is $61 / 2 \mathrm{ft}$. high and 540 ft . long, forming a pool which extends to Uttca $331 / 3$ miles. The Hennepin Canal enters the Ilinnols River about midway between Utica and Henry, III. It is sata mum dhe form the Brainage canal will give a minl mum depth of 7 ft . of water all the way to the Misslssipp River, with a depth of 9 ft . from Peru to Henry. Whether the current flow with the increased volume of water would
not be so swift as to interfere with navigation is a matter not be so swift as to interfere with navigatio
which apparently has not been investigated.

THE IMPROVEMENT OF THE TENNESSEE RIVER Is under discussion by a suhcommittee of the Committee on Rivers and Harbors, and this committee bas just made an Inspection of the proposed work The people of Tennessee, says the "Groposed work. :" poople or asked for the remal of SL. Louls, bsve nooga and Plverton an estlmat cost os 500,000 One the is the "The Suck " covering boit milles of the rlver fust helow Chattancoga where the rive miles of the five contracts to a widh of son then ex phe twice to 10 miles per
 thereoats have be warped tbrough, in the broad par there is only 15 inches depth at low water. A dam is proposed for the end of these shoals; the dam to be 25 126 ft milles below Cbattanooga, The Cumberland shoals, 126 mlles below Cbattanooga, are 8 mlles long, and dur Ing low water they are absolutely unnavigable. In 1890 hoard of engineers recommended the hullding of a canal round thed 1892 , ant commenced in 1892, but owing to the unprecedented blgh water of 1897 lt was found necessary to lncrease the igbt of the ,00. Pla rep to delle The pon to deelde he two cross-dam proposed by Major Kingman, U. S. Englneers, woul be miles apart and vely. They would give 6 feet of water at extreme low ively.
water.

THE WORK ON DRY-DOCK No. 3 in the Brooklyn Navy Yard is to be investigated in the courts. Sult bas been brought by the government against T. \& A. Walsh, the contractors who finally completed the work.

IRON MINES ARE TO BE REOPENED as a result of the recent advance in the price of Iron. The famous Tilly Foster mine near Brewsters, N. Y., which was at one tme a large producer and has heen closed for the past two years, is to resume operations at once.

A 25% INCREASE IN THE WAGES of 45,000 men in the Iron and steel Industries of thls country was decided upon at a joint meeting of representatives of Iron and teel mannfacturers and the Amalgamated Asochan of ron Steel and TIn Workers, beld recently Micb. This brings the wage rate up to that of 1892 .

MOTOR VEHICLE SHOW was opened on June 17 by the Automobile Club, at Richmond, England. A procession of vehlcles first ran from Whitehall to Rlebmond. A motor vehicle service is belng operated beween Trafalgar Square and Richmond, making four trips dally.

A NEW DEPARTURE IN RAILWAY ACCOUNTING is the establishment of a "clearing bouse" by the Vanderbilt rallways to deal with the distrihution of Joint crife earnings between the diferent companien. Ao debill of all shipments passing over two or more roads in the system is sent directly to the clearing house, wblch calculates the proportion of the frelght due to each road, and furnishes montbly statements of balances to each company. Weekly estimates of earnings are also made up from which the debtor companies make remittances on account. The new system is more prompt than the on account. The new system is more prompt than the
old, and accomplisbes the same results with one-third the clerical labor. The clearing house bas its headquarters at Buffalo, and now handles the accounts of the New York Central Ines, the Michigan Central, Lake Shore, Vickel Plate, Canada. Southern, West Shore and Pittsburg \& Lake Erie rallways. It is stated that the Lackawanna, the "Blg Four," and the Reading may aoon become membera of the clearing honse.

A swing-motion engine truck is used with the three spes of engines having all tires flanged, the motion being 14 ing . each side of center. The same practice prevails ith ras. consolidation and many ten-wheel engines隹 heel engines with tires partly flanged have rigid truck whatter whether engines of the types referred to have fanged tires on all driving wheels or not, the prevalifing langed then such engines leave the shop is to have the (aterai motion in each driving box $1 / 8-1 n$., and the same with each engine truck box. With tires partly flanged he distance hetween backs of flanges for each type o one covered hy this report appears to he $4 \mathrm{ft}, 51 / \mathrm{ins}$. ongine covered hy this report appears tires on all driving heels, the same practice prevalls for mogul and ten-

Fig 1.-Sketch Plan of Railway Curve Employed in Testing Resistance Offered to Different Arrangements of Flanged and Flangeless Locomotive Driving-Wheel Tires
wheel engines. The prevalling practice with consollda tion engines having flanged tires on all driving wheels is to have the distance between flanges on first and fourth pair of wheels 4 ft . $51 / 8 \mathrm{ins}$., and on the second and thirc pair of driving wheels 4 ft . $52 / 4 \mathrm{ins}$
The sharpest curvature reported from roads using allflanged tires is $\mathbf{1 8}^{\circ}$; the sharpeest curvature reported from roads that use engines with driving wheels partly flanged is 16°. On a majority of roads that have replled to the circular, the track is laid wide of gage on curves, hut there does not appear to be any exact ratio between the degree of curvature and the amount that the gage is widened.
The roads using flanged tires on all driving wheels, also the roads using flanged tires on a part of the driving wheels, report that their practice has not caused any trouble, and the henefits resulting from each practice are cisimed to he as follows: (1) With flanged tires on all driving wheels: Less flange wear, as the pressure hetween the flange and the rall is distributed more: more cnlform wear of flanges and driving wheel hubs; as the tires wear down, the flange gives them greater strength, and there is less liability of thin tires slipping on center; It is necessary to carry hut one kind of tire and brake shoe in stock; engines ride hetter on curves and there are less derallments. (2) With flanged tires on a part of the driving wheels, it is claimed that there is less flange wear, engines curve easler, less liahility of climhing the rall, less wear of rall heads. Less trouble with sharp flanges.
It will be seen from the above that the advantages elalmed from each point of view are about the same, with the exception that the roads using flanged tires on all driving wheels have the advantage as to the variety of strength of the tire when reduced in thickness by wear. In order to obtain information as to the resistance offered by a locomotive when passing through a eharp curve, the committee declded upon making some tests with a consolidation locomotive, assuming that that type of engine would represent the worst conditions. The tests were made on the tracks of the Lehigh Valley R. R. near Coxton. Pa., on a curve, as shown in the accompanying sketch, Fig. 1.
The engine with which the tests were made was of the consolidation type. The spacing of the wheels, welght on each pair of wheels, etc., are shown hy Fig. 2. The engine wss just out of the shop; lateral motion in each driving hox $1 / 6-\mathrm{In}$. : lateral motion in each truck hox 5 -32-In.; swing-motion engine truck, motion either side of center, $11 / 2$ ins.: main rods and valve rods disconnected, and boller full of water. The tests were made by hauling the engine through the curve at Coxton, entering the curve at the lower end, so as to have the grade to contend with, viz., 56 ft . per mile. The coupling hetween the engine being tested and the engine that was used for moving it was made hy means of a dynamometer, a drawIng of which is shown by Fig. 3.
Three series of tests were made, the first test belng made with flanged tires on 1st and 4th pair of wheels, plain tires on 2 d and 3 d pair of wheels. The second test was made with flanged tires on 1st, 3d and 4th pair of wheels, plain tires on $2 d$ pair of wheels. The third test was made with flanged tires on all driving wheels. The Hres used were new, Master Mechanics' Standard Sec$64 /$ ins. In test 1 and $\mathrm{tires}, 5 \%$ ins.; width of plain tires, that the distance hetween backs of flanges was $531 / \mathrm{lns}$. whlle the distance between the inside of plain tires was
$\overline{5} 1 / 2$ ins. In the third test the distance between fianged tires on first and 4th pair of wheels was 4 ft . $51 / 8$ ins.; o the second and third pair of wheels 4 ft . $5 \% / \mathrm{ins}$. The plain tires were located on driving wheel centers, so that the center of the tread of the tire colncided with the center of the rall head on straight track. In connecting the dynamometer between the two engines no springs were used, as the draw castings on each engine were bolted solid.
Several trips were made with each arrangement of flanged tires and plain tires, and readings were taken on each trip, while the engine was helng pulled through the curve. A unlform speed of 28 miles per hour was maln tained during each trip, except the last trip of each test, when the speed was reduced to 5 mlles per hour. A sum-

Fig. 2.-Driving-Wheel Arrangement of Consolida tion Locomotive Tested to Determine Resistance to Passing Curve Shown by Fig. 1.
mary of the readings taken on the different trips showed that the power required to pull the engine through the curve with the different arrangement of tires was prac tically the same. The members of the committee are not prepared at this time to make any recommendation as to the desirahlity of using flanged tires on all driving wheels of mogul, ten-wheel and consolldation engines,

Fig. 3.-Dynamometer Employed in Tests of Consolidation Locomotive to Determine Resistance in Passing Curve Shown by Fig. 1.
hut have presented all the information on the subject that they have heen ahle to gather, and the committee now suggests the advisahility of the investigation being coninued, so that a final report can he made to the convention to be held in 1900. If this is thought advisable by the Association, the committee would recommend the use of a self-registering dynamometer, and that tests should he made on straight track, as well as on a curve, an atachment to he used so as to indicate the lateral motion of the engine on straight track, at maximum speed, with the different tire arrangements.

THE BELLEFIELD ARCH BRIDUE, IN SCHENLEY PARK PITTSBURO, PA.

(Wlth two-page plate.)

This handsome stone arch of $150-\mathrm{ft}$. span is located at the entrance to Schenley Park, in Pittsburg. Pa., and is close beslde the Carnegle LIbrary Bullding. It carries the road leading to this park over a ravine about 70 ft . deep. commonly
known as St. Plerre Hollow. The bridge ls 341 ft long and 85 ft .6 ins. wide from out to out, and I consists of a single segmental stone arch of about 150 ft . span and $36 \mathrm{ft} .79-16-\mathrm{In}$. rise, with abutments and wing walls. The arch measures 82 ft . in width across the soffit, and carrles a roadway 59 ft . wide, and two footways of 10 ft . each.
The foundation for the structure is of Portiand cement concrete, resting upon solid rock, as shown in Fig. 2. All concrete was made of 1 part Saylor's Portiand cement, 2 parts of river sand and $41 / 2$ parts of Ligonier stone broken to pass through a $2-\mathrm{in}$. ring. The excavation about th foundations was large enough to permit men to work readily outside the walls, and this space was afterwards filled with good clay and well tamped. The material used for the bridge was gray sandstone, the objection to which, however, is that it does not hold its color very well, and the discol oration already apparent conslderably mars the appearance of the structure. The ringstones are 4 ft . deep at the crown, gradually increasing to 6 ft . at the springing lines. Measuring in 7 ft from the face of the head walls, the sheeting stones are of the same dimensions as the ring stones; but all other sheeting stones are 4 ft . deep Both sheeting and ringstones were cut with $1 / 4$-in joints, and rough-pointed on the sofft. The minimum length of any stone was 4 ft ., and no break in foint of less than 18 Ins. was permitied. The crown of the arch, after the rings and sheeting were set, and for a distance of $301 / 2 \mathrm{ft}$. each way rom the centre of the span, was covered wlith a mass of Portiand cement concrete extending up to the subgrade of the roadway. The remalnder of ach half-arch was then covered with a layer of concrete, increasing in thlckness from 18 ins. above the crown to 4 ft . near the springing line of the arch. Care was taken that the extrados of the stone arch was left as rough as posstble so as to bond well with the concrete, as shown in Fig. 5.
On this concrete backing, and above the springing Ine on each side, was bullt a retalning wall in Ine with the face of the abutments, and carried up to subgrade. Between these retaining walls, and on the concrete backing were placed $27-\mathrm{In}$. spanirell walls of rubble masonry, arranged to form openings, or wells, $8 \mathrm{ft} .6 \mathrm{ins} . \times 9 \mathrm{ft} .6$ ins. The crosswalls were stopped before reaching the doube skewback placed on the longltudinal walls and the openings between the latter were spanned by $13-\mathrm{in}$. brick arches. These brick arches were then covered with natural cement concrete to subcrade of the roadway, and over this concrete wa.. placed a $/ 8-\mathrm{in}$. layer of rock asphalt, and above this 12 Ins , of broken stone.
The head and wingwalls were all lald in range work, backed with rubble, and the space between the wingwalls and the retaining walls was filled in solld with clay up to the subgrade of the macadam pavement. The concrete over the arch was lald so as to drain to the back of the retaining wall, and any seepage water was there collected and carrled by a plpe through the wingwall. This arch-concrete was smoothed by covering it with a $1-\mathrm{in}$. layer of Fortland cement mortar. All of the concrete used was mixed in small batches, laid in thin layers and thoroughly rammed. The mortar employed in all arch work was made of 1 part Saylor's Portland cement to 2 parts of river sand; the remainder of the work was laid in natural cement mortar.
Ground was first broken for the construction of this bridge on July 10, 1896; and in the course of the following fall a few courses of sheeting were laid, though only seven courses were in place at each end on June 1, 1897. No attempt was made to put any load upon the centers until a considerable amount of stone was in the yard, and the quarries were in such shape that the bullders were conflent of closing the arch without interruption. The arch was keyed on Sept. 18, 1897, and from Sept. 30 the centers were lowered very gradually by taking a little sand out of the cylinders every day, beginning at the center of the span and working each way. The centers were well away from the arch on Oct. 12. The crown of the centers was originally set 2 ins. above the intended height of the finlshed arch, and by the time the arch was keyed the crown of the center had gone down 0.0555 ft ., or a little more than $5 / 8-\mathrm{ln}$. After the

BRIDOES OVER THE WHITEWATER RIVER AT RICHMOND, IND.

There are a number of interesting bridge structures in the nelghborhood of Richmond, Ind., most or all of which have never been described in technical journals. An Inquiry recently addressed to this Journal concerning one of these bridges resulted finally in our securing the photographs herewith reproduced, together with interesting facts concerning the varlous structures, through the courtesy of Prof. R. L. Sackett, C. E., of the department of applled mathematics and astronomy, In Earlham College, Richmond, Ind.
The old National bridge, Fig. 1, was bullt about 1834, and was removed in 1897, after it had sagged about 5 Ins. It spanned the Whitewater River,
there is no wood except the fioor, and it rests on galvan-
ized steel cables, so anchored that it cannot be washed ized st

It stood eight years and was washed away in 1897, notwithstanding its builder's advertisement. A person standing at the quarter-point of the span, and teetering, could make the bridge vibrate through a vertical distance of 12 to 18 ins. Some of the erection features were novel enough. The cables were brought to a proper tension by thrusting a lever through the strands and then twisting it up to the supposedly proper stress; to hold it, the lever was then pushed through untll it bore upon the ground. The "stiffening girder" had a strap-iron top chord and all diagonals were round Iron. It is needless to say that this structure had no engineer connected with it; the county commissioners were their own engineers.
the old National bridge, shown in Fig. 1. It is a deck structure of several spans, the longest being 160 ft . The floor is on a grade of $\mathbf{2 . 5 \%}$, and is made of expanded metal plates and concrete, with as phalt on top. It is a very heavy floor; and 1 said that the bridge was originally designed for cedar-block floor, and the change was made Ing construction. The roadway is 30 ft . wide, two 5 -ft. footways. The total length is about fion ft ., and It cost over $\$ 60,000$.

FLANGED TIRES FOR MOGUL, TEN-WHEEL AND CONSOLIDATION LOCOMOTIVES.*

The question submitted to the committee was: Is desirable to have flanged tires on all the drivers of mogna cen-wheel snd consolidation engines? If so, with wha ten-wheel snd consolldation
clearances should they set?

FIG. 1.-bridge on the old national turnpike, at RICHMOND, IND. Built by Gen. John Milroy, in 1830. Taken Down in 1897.

FIG. 2.-MITCHELL STEEL CABLE BRIDGE OVER WHITEWATER RIVER, AT RICHMOND, IND. Built by Mitchell Bridge Co., 1889. Washed away, 1897.
and was a part of the great national highway extending from Cumberland, Md., through Pittsburg. Columbus, Richmond and Indlanapolls to Terre Haute. It was intended to reach St. Louls, but was overtaken and outclassed by the rallway. The river is a shallow stream, running between steep banks of limestone rock. The foundation was a timber grillage, laid in treacherous quicksand; and there is a tradition that "wool-sacks" were used under this grillage. The abutments were bullt of limestone, and these and the curved wingwalls stood untll $1 / 2-\ln$. cracks extended from the bottom to the top.

The Doran three-hinged wrought-Iron arch, Fig. 3, was bullt by the Morse Bridge Co., of Youngstown, 0 ., from the designs of the late Frank C. Doran. It is 400 ft . span between skewbacks, and 576 ft . long over the floor. There are two end suspended spans of 64 ft . each. The two arches are in vertical planes, 25 ft . apart, and the roadway is 41 ft . wide between rallings, including two 8 -ft. footways supported on the ends of the floor-$8-\mathrm{ft}$. footways supported on the ends of the foor-
beams. The floor, at the crown, is 65 ft . above the beams. The fioor, at the crown, is 65 ft . above the
water and 50.66 ft . above the spring line; the arch is 10.66 ft . deep at the crown. The upper chord has a radius of $27,676 \mathrm{ft}$., and the lower chord a

The desirablitty of using flanged tires on all the drivIng wheels of mogul, ten-wheel and consolldation engines depends on certain conditions whlch have to he taken into consideration, and these are as follows: (1) Length of rigid wheel base; (2) Length of total wheel base; (3) Are rigld or swing-motion engine trucks used? (4) Lateral motion between driving box and hub, when englnes leave shop; (5) Lateral motion between engine truck box and huh, when engines leave shop; (6) Degree of curvature on line where engines are to be operated; (7) Practice of Roadway Department as to the gage used on curves. In order to bring out these points, the committee issued a circular Nov. 18, 1898, and a summary of the information received in reply to the circular is as follows:

FIG. 3.-THREE-HINGED WROUGHT-IRON ARCH BRIDGE OF 408-FT. SPAN, AT RICHMOND, IND.
Built by Morse Bridge Co., Youngstown, O. Designed by Frank C. Doran.

FIG. 4.-NEW MAIN ST. BRIDGE, RICHMOND, IND.

The superstructure was made up of three whiteoak arches and a llght truss; there were two roadways and two footwalks carried on the floor beams extended. It was one of the many timber bridges bulit by Gen. John Milroy in the early $30^{\circ} \mathrm{s}$.
The Mitchell steel-cable bridge, Fig. 2, was bullt In 1889, and crossed the Whitewater River about $11 / 2$ miles below the old National bridge. It was 200 ft . long between the anchorages, and 150 ft . span. It was bullt in 30 days.
The builder's advertisement at the bottom of the photograph here reproduced reads:
It cost $\$ 2,150$ for sub and superstructure complete, or anout one-rurth or the them in strength and superior in durability, and
radius of 520 ft . The floor system was figured at 30 lbs . per sq. ft., with a moving load of 28 lbs . per sq. ft. The bridge cost $\$ 58,000$.
It was designed for street traffic only, but electric cars, with trallers, are now operated on one side of the $25-\mathrm{ft}$. roadway; and under the heavy loads the bridge shows a very appreclable lateral and vertical motion. The vertical arches, 25 ft . apart, are now hardly equal to the traffic demands of a clty of 22,000 .
In the distance, in Fig. 3, is the Pennsylvania R. R. bridge. This has one $150-\mathrm{ft}$. span of the Baltimore Bridge Co.'s truss, and two double Intersection spans; all deck trusses.
Fig. 4 is the new Main St. bridge, built to replace
 convention of the American Rallw/ \% Master Mechancs
Association, at oid Point Comfort, Va., June 19 to 23 , 1899.
has settled. An allowance of 10% for shrinkage is suggested. The specifications also call for clean, sharp sand, approved by the engineer. After passing through screens with four meshes to the inch the effective size of the sand must be between 0.25 and 0.35 mm . (0.01 to 0.014 ins .), and the uniformity coefficient between 2 and 3 .
The special features of the filter, as already stated, are the peculiar form of underdrains and the small depth of the filter bed, the former making the latter possible. The depth of sand is not so much below the average, but the entire absence of the usual supporting layers of gravel, with the underdrains at the bottom, is unique. It has been known for many years that the bulk of the work of filter beds is done by the upper layers of the filtering sand, but in order to make all the sand available, with the ordinary underdrains, it is necessary to place the top of the iatter beneath the bottom of the sand. To facliltate the collecthon of the filtrate, the underdrains are surrounded with large gravel, or smail stone. To keep the sand from settling into the large open spaces in the bed of stone, layers of gravel, of diminishing size, are placed above the stone, until the last layer of gravel, or coarse sand, approaches the fineness of the filtering sand. The peculiar design of the Babcock conduit is calculated to make all this grading of material, and the larger materlal itself, quite unnecessary, except for a small amount packed around each siphon. Of course, the underdrains cost more than in ordinary practlee, but thls is sald to be small in comparison with the saving in excavation and embankment. Where masonry side walls are employed the saving to be effected by the use of this system would be greater still.
The unflitered water is admitted to the filter bed through a single $15-\mathrm{in}$. infet at one side of the bed, the flow being controlled by a Ross balance vaive and float. A simliar device is placed in the outlet chamber. In addition, the outiet chamber contains indicators to show the head of water on the outlet weir, on the filter bed and the height of water in the underdrains. Two overflows from the filter bed are provided, one at 4 ft . above the sand surface, for summer use, and one at 6 ft ., for winter use. The water is rough-screened before going to the bed. From the outlet chamber an 18 - in. main will lead to a connection with the present supply main from Beaver Creek.
The contract price for the new stone dam and the filter was $\$ 17,748$, of which Mr. Babcock estimated at the outset the filter bed would cost $\$ 11,750$. When the contractor gave up the work, in December, 1898, the city concluded to complete the job by day labor, under the direction of the clty engineer. We are indebted to Mr. Bab cock for the information from which the above was prepared. He states, under date of May 10 , that the filter bed is now practically completed and will be used during the dry season of 1899 also that the cost has not exceeded the orlginal estimate.

LAYing down transition curves by offsets. Various systems of laying out transition curves are in use, different engineers having personal preferences for different systems, and many of these have been described in our columns. We have recently received from Mr. J. P. Newell, Assistant Engineer of the Oregon Raliroad \& Navigation Co., particulars of a method of laying out such curves by offsets, which has been prepare by hlm and used extensively on that road. There are several different methods of laying out transition curves by offsets, but most of them are based upoa the compound circular curve, while Mr. Newell's method is based upon the cublic parabola, which is usually recognized as being the correct basis of transition curves.
The objection is sometimes made that the method of laying out the curves by offsets is but a rough approximation to the true curve, but such objections (like objections to simple methods of setting out turnouts), are apt to be made on theoretical considerations and without due aliowance for the fact that dellcate and minute measurements are out of place and useless in track work Mr. Newell states that many miles of track centers have been run in on his system on the O. R. \&
N. Co.'s line, and that it would be impossible to distinguish the track thus lined from that on which the centers have been set directiy from the transit, while the cost of the work has been very much less.
The accompanying cut shows the transition curve and the method of laying it out. The main offsets and offset distances for curves of even degrees are given in Table I., while Table II. gives

intermedlate offsets and distances. The following are the instructions accompanying the dlagram and tables:
The curve is run in the regular manner, and the stakes of the same are then moved inside the necessary distances to correspond with the various offsets for the easement curves.
Length of easement ($=2 \mathrm{~T}$) should be taken so that the full elevation of the outer rall (at a rate of $1 / 2-\mathrm{in}$. $\ln 30 \mathrm{ft}$.) is reached at the P. S. C.
Use column in tables, headed by ascertained value of T. To obtain offset S for main curve, multiply S in table by degree of curve.
To obtain offset s for any value of t, multiply s in table by degree of curve.
$\mathrm{t}=$ distance from any station on spiral to nearest end of spiral. If station is on curve, offset $-S-s$.
Example.
.
Example. -5° curve, 500 ft . long. P. C. at station 10 50. Elevation, $31 / 2$ ins. Length of easement $=2 \times 31 / 2 \times$ $30=210 \mathrm{ft} .=2 \mathrm{~T}$. Therefore, $T=105 \mathrm{ft}$. Nearest value by table is 105.8 ft , and this is to be used.
P.S. $=(10+50)-\left(1+05^{8}\right)=$ station $9+44^{2}$.
P.S.C. $=(10+50)+\left(1+05^{8}\right)=$ station $11+5{ }^{3}$.
P.S.C. $=(10+50)+\left(1+05^{8}\right)=$ station $11+65^{3}$. Offset for main curve $=\mathrm{S}=0.325 \times 5=1.625 \mathrm{ft}$
For station 10, $\mathrm{t}=56 \mathrm{ft}$., nearly, and $\mathrm{s}=.024$. There fore, offset $=.024 \times 5=0.120 \mathrm{ft}$.
For station $10+50$ (P. C. of simple curve), offset $=1 / 2 \mathrm{~s}$ $=0.81 \mathrm{ft}$.
Since station 11 is on the curve, the offret $=S-s$,
$=1.625-(.024 \times 5)=1.50 \mathrm{ft}$. ($\mathrm{t}=56 \mathrm{ft}$.$) .$
At station $11+55^{s}(=P$ S. C.) the offset $=\mathrm{S}=1.625$ ft .

The same operations are pertormed at the other end of the curve.
table I.
Curve. TABLE I.

No extra instrument work is required, and no extra notes, except a note of the value of " S ."

The offsets can all be calculated in a few minutes It is customary for the head chainman to carry a supply of smail pegs, which he drives in the ground on exact line, and from which the stake. man measures the offsets, thus permitting the chainmen to pass rapidly over the work without waiting for stakes to be driven. Since the tables by interpolation admit of an infinite number of spirals it is not necessary to re-run a curve for a slight error in closing at the P. T., but a new spiral can be chosen which will exactly fit the desired tangent.
For the benefit of those of our readers who may wish to study up the matter and compare the above system with others which have been described, we give the following references to articies and letters which have appeared in our columns:
i., January-June, 1592, p. 39.

July-December, 1892, pp. 451, 542, 010.
1883, pp. 277, 316, 372, 456, 476.
1 1596, p. 245.
January-June, 1897, pp. 75, 234, 267.
PROPOSED NEW CONTOUR LINES AND NEW SPECIFICATIONS FOR M. C. B. COUPLERS.*
This topic may be divided Into three parts: (1) To define the contour lines more fully when new; (2) to define the contour lines more fully when worn; and (3) to propose speciflcations for couplers.
Contour Lines for New Couplers.-In regard to the length of guard arm, it is recommended that the contour lines be extended about 1 in . beyond the point where they at present terminate, and that the M. C. B. Ilmit gages for new couplers have the guard arm screw moved from its present position to a new one at the end of the pro-

Fig. 1.-Proposed New Contour Lines for M. C. B. Couplers.
posed new contour lines. This proposed contour line is shown by Fig. 1. The only change is in the length of the guard arm; the reverse curve of 8 ins. radius has been straightened out and continued as a tangent to the aro drawn with the $23-16-\mathrm{in}$. radius. It is also reduced in flare so as to hold the couplers together better. There is a limit to which the length of the guard arm may be in creased, as after a certain point has been reached, any added length is not only useless but renders the part more liable to damage. It will do very litcle good simply to prolong the guard arm with the present $8-\mathrm{ln}$. radius, as some makers have done. Couplers of the present contour which have worn to the point of danger would stil be safe with the proposed new contour. This new con
*Abstract of committee report presented at the annual convention of the Master Car Builders' Association a
O.d Point Comfort, Va., June 14 to 16,1893 .
centers were struck the crown of the arch settled 0.155 ft ., making a total settlement of 0.2105 ft . leaving the sofft of the arch 0.0372 ft ., or about 7-16-in. lower than was calculated. The total settlement, in all probabillty, would have been somewhat less had not the centers been allowed to remaln loaded for so long a time.
The centers were designed by Mr. A. D. Neeld of the contracting firm of Neeld \& Foley. They consisted of 14 ribs arranged as shown in Fig. 3 placed $6 \mathrm{ft} .2 \mathrm{ins} ., c$, to c., and resting on cast-iron cylinders filled with sand. This sand was dried and slfted before belng placed in the cylinders and when in place they were protected from molsture by cement. The cylinders were $124 / 4 \mathrm{ins}$. Inside diameter, except those under the central row of posts, which were $141 / 4$ Ins. dlameter. Each cyllnder had two sllaing gates covering $1-\ln$. holes, and their working was eminently satisfactory giving no trouble whatever. The centers were bullt of hemlock timber, of which about $450,000 \mathrm{ft}$. B. M was used. Before beginning to lay sheeting the foints in the falseworks were carefully gone ove and oak wedges were inserted wherever thought necessary. After the sheeting was lald up to the haunches, the crown of the centers was loaded with sheeting, which was built Into the work as It was reached. The pleces of center connecting the tops of the posts were not cut to a radlus as usual hut the curve was secured by wedging up each plece of the lagging to its proper elevation.

For setting the voussolis, one of the inspectors of the work, Mr. J. G. Parke, devised a very eff clent setting-square, called by the workmen "Parke's Flddle," and shown in Fig. 7.
Some cracks appeared in the joints of the sheetIng during construction, due to the settlement of the false-works. At both sldes and between the 12 th and 13 th ringstones from the spring, a crack extended clear across the arch. $5-32-\ln$. wide in one case, and $1 / 8-\mathrm{in}$. In other. Be tween the 13 th and 14 th ringstones on one end 1-16-In., and $1-32-\mathrm{In}$. cracks appeared for a distance of 16 ft ., and 26 ft . from the face, respective1y. A 1-16-in. crack went across the arch on one slde, between the 21 st and 22 d rings-fumping one course 20 ft . from one end to the 20 th and 21 st rings; on the opposite side was a similar 1-16-In. crack at the corresponding rings, but also Jump Ing one course on the opposite face of the arch These cracks were carefully grouted with cement hefore the centers were struck.
All the cement used was Saylor's Portland and Black Diamond brand of Loulsville cement, with a small amount of other brands. All of this cement was carefully inspected, and two tests were made from every fourth barrel.
The roadway has a grade of 0.8%, falling both ways from the center of the brldge, though the top of the ralling is level from out to out of end plers, and then falls 0.8% to the ends of the wingwalls. The roadway itself is macadam, with cement sldewalks. The photograph reproduced in Fig. 1 was taken from the end nearest the park looking towards the Hotel Schenley, which appears at the left. The appearance of the bridge on this side will be very much improved when the grounds are put into proper shape. At the present time the slde nearest Forbes St. is partlally buried; but it is the intention to grade off the banks on that slde and fill In the bottom of the ravine, and to form a lake under the bridge, which will glve this graceful structure a much more pleasing setting.
During the construction the inspector on the work was required to send in a dally report to the engineer's office setting forth the following: Kind of work: location of work; men employed by elther contractor or clty started and stopped work at hour given; and the cause and duration of any stoppage meanwhile. A detalled force account followed: with class and approximate amount of work done, and amount and character of all materlal recelved on the work. On the back of this report was a statement of everything that occurred on the work that might be of Interest or service at some future time. In this manner the engineer obtained a complete record of each day's work obtained a complete record of each day's
with all Important Incldents during progress.

The cost of the bridge and final estimate for quantitles is given as follows:

Final estimate of quantities:

Total masonry
Macadam pavement
Cement sidewalk Cement sidewa
Stone gutters Asphalt under roadway Curb
Excavation
Fill
The bridge was bullt under the direction of M Bigelow, M Am Soc, C. E, Director of the Department of Public Works.
Mr. William Falconer is Superintendent of the park in which it is located.
The brldge was deslgned by Mr. Henry B. Rust, Assoc. M. Am. Soc. C. E., Engineer of Schenley Park, who was also engineer-in-charge of construction, and to his courtesy we are indebted for the material employed in this article. The contractors were Neeld \& Foley, of Pittsburg, Pa.
The plant used by Messrs. Neeld \& Foley was so efficient in commanding the work and in supplying material that a diagram is here given of its location (Fig. 6) which explains itself.

THE SLOW SAND FILTRATION PLANT FOR LITTLE

 PALLS, N. Y.A slow sand filtration plant, containing some unique features, is being bullt for the city of Little Falls, N. Y. A single bed, about one acre in extent, forms the flltering area. By the adoption of a device invented by the engineer, and shown In the accompanying fllustration, the usual layers of coarse, medium and fine gravel beneath the filtering sand are entirely omitted. The filtering sand is only 2 ft . deep, so the excavation and embankment is much less than would be required with the ordinary depth of 4 to 5 ft . of draining and filtering material.
The plant was designed by Mr . S. E. Babcock, and had been carried on well towards completion under his direction, when the contractor abandoned the work, and cold weather postponed It untll this season.
Mr. Babcock was engineer for the original waterworks of Little Falls, and continued to serve in the same capacity through numerous improvements and extenslons untll a few weeks ago, when he resigned his position as Clty Engineer.
The population of Little Falls in 1890 was 8 ,783. Water-works were bullt by the municipallty in 1885-8. The source of supply was Beaver Creek the diverting dam being at an elevation of $1,185 \mathrm{ft}$. above the rallway tracks in the city. From this dam the water flows through a condult about nine miles long to a $25,000,000$-gallon distributing reservoir. The greater part of this conduit is of 20 to $12-\mathrm{in}$. vitrifled clay plpe, the dameter varying with the grade. On sections having much head cast Iron was used instead of vitrifled pipe. Near the distributing reservolr the water flows for $1,600 \mathrm{ft}$. through an aerating canal, provided with $162-\mathrm{ft}$. drops, or weirs, 10 ft . wide at the top and 3 ft . wide at the bottom. Provision is made for flushing out deposits from the pools in the canal. From the lower end of the canal the water passes through a $12-\mathrm{in}$. cast-Iron pipe to the center of the reservoir, where it is discharged over a masonry pler extending $11 / 2 \mathrm{ft}$. above the water surface. At the reservolr outlet the water passes down through a coke filter, 8×12 ft . In plan and 40 ft . deep, provided with the necessary plpes for washing the coke by reversing the flow.
From Mr. Babcock's report on construction, and the annual reports of the water department. It appears that the aerating canal and coke filter were designed to clarlfy the water and to remove organic matter of vegetable origin, at the same time preventing tastes and odors due to the development of low forms of organic life in the cist ibuting reservolr. It also appears from the reports
named that the quality of the supply has been very satisfactory, with one exception, but it Is probably very largely due to the natural ity of the water, Beaver Creek being describe a mountain trout stream. The exception was 1891, a very dry year, when the water had a taste. This was attributed to the logs, bran taste. This was attributed to the logs, branct
and leaves of trees in the creek, the accumula of years. After removing these, and renewing coke for the first time in flive or slx years water became satisfactory. Mr. Babcock that spongllia, or fresh water sponges, develoned during the troublesome period just mentioned As time has elapsed the yleld of the stream hed As time has elapsed the yleld of the stream has decreased materially, and the consumption has
of course, increased. To provide amply for the future, Mr. Babcock designed, and the city put under construction, within the past two or thre years, two large storage reservolrs, with capacl tles of $750,000,000$ and $100,000,000$ gallons, spectively. These are located on Spruce Creek, at spectively. These are located on Spruce Creek, at
such elevations as to permit their connection by a such elevations as to permit their connection by a
gravity condult with the original Beaver Creek condult, which has a safe carrying capacity of about $5,000,000$ gallons a day.
The sand filter bed is located at the lower reser volr or point of diversion of Spruce Creek Into the original condult to the city. It was deemed advisable to put this in on account of the charac ter of Spruce Creek, the new water supply. Thi stream drains a hemlock and spruce watershed The water is discolored, and carries conslderable sediment. An experimental filter, 1-40 of an acre in area, was constructed, flled with 2 ft . of san found near the filter bed. By experimental tests the right kind and size of sand was found that ef fectually cleared the supply at a rate of $3,000,000$ gallons an acre. The expense of enlarging and

Longitudinal Section
Underdrain Used in the Filter Bed at Little Falls, N. Y.

S. E. Babcock, Engineer.

clearing the coke filters in the distributing was found by estimate to be much more expensive than the sand filter plan adopted for the addltlonal supply.
The filter bed is approximately $130 \times 300 \mathrm{ft}$. It is located on the site of the overflow of an old timber dam, now being relnforced by a masonry structure. The site was mostly natural rock, which required some leveling-up. Embankments were necessary on the side nearest the creek and at each end. A head wall is built in the lower embankment, and a heart-wall carried from it about one-fourth of the way up the long slde embankment. Sheet-piling, built in a trench, is placed the whole length of the upper embankment. The site was brought to grade by leveling it off with stone and gravel, care belng taken to so place the stones that the filtering sand would not work down between them.
A gathering culvert is built longitudinally through the center of the bed. It is about 5 ft . wide and 4 ft . high; has $2-\mathrm{ft}$. dry rubble walls and a $3-\mathrm{in}$, plank top. Discharging into this culvert every 6 ft . on elther side are $6-\mathrm{in}$. vitrifled pipe underdrains, laid with tight joints, but provided every 6 or 8 ft . with a "Babcock condult," which is shown by the accompanying sections. It will be observed that these conduits are really siphons, curved around the drain plpes. Thelr outer mouths come down within 2 ins. of the bottom of the filtering material. Sand cannot pass through them without violating the laws of gravity, so they are in no danger of silting up with sand, provided the pipe joints are tight. These are made with one strand of rope and 1 to 1 cement mortar. the upper end of each line being stopped with a vitrified plug.
The specifications call for filtering material 2 $f t$. deep, after the water is tuined on and the sand
closed knuckles: Three blown of $1,040 \mathrm{lbs}$, welght talling
 this test when and broke hlows at 10 ft ., or when any blows at 5 ft and chree hlows long or open wore than cracks appear more the knackil has opened more than yhin. trom its original position or so that the equalizer ha
will not stay 1 in place when atrick. (3) Pulling test for complete couplers. Two coup-
ers to
he supported \ln the p puling machine yy yoke forgings. to be locked together as in the running position.
finth their axes in the game straight Hine. Couplers to With their axes in the same straight hine. Couplers to
tand a steady pull of 120,000 lha. 18 nited with steel
 snuckle.
A coupler will be considered as having falled to stand this test when it is hroksn before it has been pulled the

Fig. 6.-Diagram Showing Method of Detecting Dan ger from Combination of Wear in M. C. B. Couplers.
more than 1 in . long or open more than $1-16-\mathrm{in}$, or when from its original position when pulied out against the lock, or when the couplers slip apart in the puling machine. of the fallure of any part of the complete coupfer under tests 1,2 and 3 , those parts which may not have falied may he suhmitted or a for shation not be condemned by the individual tests hereinafter specified.
(4) Guard arm test of drawhar. Drawhar to he heid
vertically in machlne so that the edge of guard arm is in vertically innecting the centers of the legs of the machine. the ine connecting the centers of che legs of the machine,
and 80 the shank rests ailidy on the anvil. Blows
to strike directly on the edge of the guard arm. for mall to strike directly on the edge of the guard arm; for malle-
able iron couplers, three blows of 1,640 lbs. weight falling able iron couplers, three blows of $1,640 \mathrm{lbs}$, weight failing
3 ft ; two hiows of $1,640 \mathrm{lhs}$. weight faling 5 ft . For steel couplers, three hiows of 1,640 ibs. weight faillng 3
ft.: four blows of $1,640 \mathrm{lhs}$. weight falling 5 ft . ft: four blows of $1,640 \mathrm{lls}$. welght falling 5 fit.
A drawbar will he considered as having failed to stand this test when it
prescribed number of hroken heiore it has recelved the prescribed number of hlows, or when any cracks appear the center ine of shank is distorted more than 1 in. from its original position, or when the head is distorted the bar, or the lugs of the har to strike against the hammer. on one of its knuckle test. Knuckle to he lald horizontally on one of its lugs, upon a solld anvil, and given the fol2 ins. or less from center of pivot pin hole to facee of 3 ft . one blow of $1,640 \mathrm{lbs}$. weight faillng 4 ft . Knuckle pivoted 3 ins or less from center of pivot pin hole to face of knuckle to stand three hlows of $1,640 \mathrm{lbs}$. Weight falling
$3 \mathrm{ft} . ; \mathrm{two} \mathrm{hlows} \mathrm{of} 1,640 \mathrm{lhs}$. weight falling 4 ft . Knuckies 3 ft ; two hlows of $1,640 \mathrm{lhs}$. Weight faliing 4 ft . Knuckies
plvoted over 3 ins. from center of pivot pin hole to face of knuckie to stand three hlows of 1,640 ibs. weight falling 3 ft . ithree hlows of $1,640 \mathrm{lbs}$. weight falling 4 ft . this test when it is broken hefore recelving the stand number of hlows, or when any cracks appear more than in. long or open more than $1-16$-in. At the end of all the above tests, 5 , couplers Will he tried for disablement. Knucklea must open and locking devices he operative after the coupler has recelved the specifed test. Befors testing, couplers must have a row of center-punch marks put upon the center ilne of top of shankg, so distortion can he detected. piete coupler shall he taken at random hy the omfrom each lot of 100 couplers offered for test pla and locking parts may he returned to the manuand the drawhar will be subjected to the guard arm test as in No. 4 . If the test part falls to stand the prescribed from which the first test part was taken, and if it stands the test and if at ths same time the first part tested has ing the full requirements, then the lot will be acceptedbut if the second part falls, then the lot will be accepted tion order, five. For each 1,000 couplers offered, or fracdom by the inspector. Couplers shall he taken at ranthe pulling test, No. 3 . It if any coupler sho and two to
therk test, No. 2 , and stand the prescrined test, another coupler or fall to irsters will be taken from the same lot from which the and if at the same time the first tested hasds the test, versge of 75% on the basis of 100% as meeting the full second coupler fails to stand the test, then the lot will All drop tests shall be made on an M. C. B. standar in maching machine, Fig. 7. The har to be held firmiy ught. Couplers and knuckies will he tested and inspected preferably at the worka where they are made. Manu apparatus and assistance necessary to make satisfactory to
in addition to these matters pertalning strictly to its subject, the attention of the committee has been called to the fact that in some cases couplers with shanks of dlmenalone difering from the standards of the association

WEATHER TABLE FOR MAY, 1899. (Furnished to Engineering News by the Department of Agricuture.)

Stations.		Temperature. (Degrees Fahrenhelt.)				Wind.			Preopitation-Rain or melted snow. (inches.)			
		Veloelty in miles per hour.		Direcllon a) time velocity.								
		Average.	Max.		M10.	Ranke.		Heaviest	No			
		Average.					Max.	rotal.	24 hours.	diany		
	(Northfleld, vo		52.6	81 84 84	${ }_{36}^{26}$	55 48	${ }_{8.0}^{9.1}$	50 30	sw	${ }_{1}^{1.52}$	0.28 0.28	11
	New York City........				${ }_{38} 88$			NW				
	Pitisburg, Pa..........	65.0	86	42	44	${ }_{5} 3$	33	NW	3.26	1.52	11	
) Chlearo, 111.........	59.0 6.3	88	$4{ }_{44}^{42}$	41	17.2	56 32	sw	4.35	${ }^{0.92}$	15	
	$\{$ St. Paui, Mlin........:	58.2	88	37	45	9.0	33	NW	3.80^{*}	1.55	13	
	(Duluth, Minn........	$\begin{array}{r}46.6 \\ 52.3 \\ \hline\end{array}$	72 84 8	37 27	39 87	11.8 12.3	38 48	NE	4.66 4.27	1.15 1.65	13 16	
	\| Averago............	56.8	83	37	46	10.5	42	-	3.10	1.03	12	
		64.4						sw				
		${ }^{69.0}$	90		41	8.0	31	sw	317	0.81	14	
		${ }_{76.4}^{68.6}$		88	42 39	9.0 8.6	48	sw	${ }_{1}^{6.32}$	${ }_{0}^{1.58}$	15	
		67.6	86	49	37	9.6	32	Nw	5.10	${ }_{214}$	10	
		78.3	96	61	35	7.6	48	w	1.86	0.99		
		73.2	92	36	36	6.3	37	W	1.73	0.50		
		78.8	90	${ }_{5}^{65}$	25	7.6	26	sw	0.14	0.14	1	
		73.7 76.6	$\stackrel{90}{91}$	58 63	38 28 8	9.4 8.0	$\begin{array}{r}42 \\ 48 \\ \hline 8\end{array}$	W	3.18 4.84	1.31		
		72.7	91	55	36	8.0	37	-	3.20	1.28	10	
								sw				
		+ ${ }_{52.6}^{46.0}$	70 80	${ }_{43}^{31}$	${ }_{37}^{39}$	4.8 13.9	${ }_{37}^{20}$	W	${ }_{\substack{2.15}}^{2.15}$	${ }_{0}^{0.53}$	20	
		${ }_{52.6}$	83	25	58	13.8	56	w	${ }_{2}$	0.72 0.72	10	
			$\begin{array}{r}79 \\ 88 \\ \hline\end{array}$	24 29	55 54	88.5	42	8w		${ }_{0}^{0.01}$	1	
		51.8	78	29	49	8.6	39	-	1.29	0.42		

re being made and introduced in service. As this change ible hardship to other rallways in the wandion and work pos

Brick Foundation, $8^{\prime} x 8^{\prime}$ at Top, $12^{\prime} x / 1 I^{\prime}$ at Bottom, s^{\prime} Deep
Partial Section I Malf' Section through Springs. ithrough Center. $\begin{aligned} & \text { Malif Side } \\ & \text { Elevation. HalfCross }\end{aligned}$

Fig. 7.-Proposed Drop Test Machine for Testing M. C. B. Couplers.
of cars, it calis the attention or the association to this, with a view that the suhject of increased dimensions of the shank be referred to a committee for further invsstlgation, and report what changes, if any, mhould, in their

Judgment, be made in present standards of the associa tion. It is also suggested that the back corners of the yoke in the pocket attachment be changed from $1 / 4-\mathrm{in}$. radius to - in . radius. It is further suggested that the play of the shank of the coupler in the carry iron he not less than $\frac{1}{2}$-in. on each side.
Another matter which has claimed considerable attenion is a standing committee on couplers. It is recom mended that such a committee be appointed, whose duty shail be to test couplers submitted to them. A stand g committee on coupler tests has been suggested from ame to time, somewhat after the manner of the Standing Committee on Triple Vaive Tests, and Brake-Shoe Tests There ought to he some way of certifylng the proper de ign and quality of so important an appliance as a coup er, and this committee would prove a very valuable ad. dition to the others.
in conclusion, the situation in regard to the multiplicity of couplers and parts is brought to the sertous attention of the assoclation. There should he some way of reducing
 93 different knuckles have to he carrled at the hundreds of interchange and repair points throughout the country. For this reason it is recommended that plvot pins should be of one uniform length and of only two sizes. A pivot pin 11/2 ins. in diameter is small enough for use in a coupler, and hy making one length sufficient for the couper having the greatest distance over the lugg, it can easily be put into any coupler in which this diatance is ess. This multiplicity of repalr parts should be done away with, and by a process of evolution, a few standard couplers should be retained, and these gradually introduced throughout the country as breakages make replacements necessary.
The construction of a standard drop tosting machine has long been urged, and the accompanying drawings, Fig 7, are suhmitted as embodyligg a satafactory design. In the first flace, the machine must ise reproducible. A machine hulit on rock foundation should give just the same results as one built on soft soll. To this end it has seemed indispensahle that the anvil should be spring supported. As strong and rigid a foundation as can be built must be put down, and the capstone covered with cast-steel hed plate, having recesses cored in it to receive the steel housings for the legs of the machine. The 15 -ft. blows will be ahandoned, as all the testing necessary can he done with the 10 -ft. hlows, and the $15-\mathrm{ft}$. blows have been found to be too destructive to the auxlilary apparatus in Jerk tests, yoke forgings and equalizer hars hreaking when aubmilted to these severe shocks. Besldes that, it seems to be difficuit to get couplers to stand even $10-\mathrm{ft}$. blows, so that $15-\mathrm{ft}$. blows may be left out of the queation entirely. The anvil is made heavy enough to absorh in itseir all blows and ts supported on and from steel to fulfill deffite specifications mandreis, rights to support the hrackets carrying the yoke The up ment forkort he hraikets carrying the yoke attach plenty of room for the latter to rise and fall, and leave machine is accessithe in the rise and ranl easily. The can be la min testa la lors are beld army drop lest, and all are put on the ny hers. It is believed that this machine can be bull the sais, tra couplira tosted on it are sure of receiving the same treatment as others tested in a different place.
tour does not cause the couplers to interfere when their axes make an angle of 14°, and does not prevent the possibility of coupling at this angle. The proposed new gage for the new contour is shown by Fig. 2. The change msde consists in the extension of the freme and the relocation of the present guard arm limit screw.
It is recommended thet the vertical dimension of knuckles be fixed at 9 ine. as a minimum. The verticel dimensions of the knuckle have never previousiy been

Fig. 2.-Proposed Gage for New M. C. B. Couplers Built to Proposed Contour Lines.
fixed. It is assumed to be 9 ins., but measurements show a minimum of $81 / 2 \mathrm{ins}$. It is obvious that any decrease of this dimension renders separation more lisble through sariation in beight of couplers.
It to recommended that the vertical dimeneion of the end of the guard arm be fixed at $71 / 2$ ins. as a minimum. The vertical dimension of the end of the guard erm is now indefinite; some are brought down more eharply tban others, thus giving more chance for the couplers of a high and a low car to jump past each other.
plane, and the raised rib on the front of the gage prevents the coupler head from being displaced bodily up or down. The knuckle should stand m / in. above the top of this ib In a perfect coupier. Examinations mide of ali the prominent makes of couplers ehow instancee of twist. It is recommended thet the horizontal plane containing the axis of the shank of the coupler bisect the vertical dimensions of the knuckle and end of guard arm. By he action of Congrese the height of drawbar has been ixed at $341 / 2$ ins. maximum and $311 / 2$ ins. minimum. The ine from which to meaeure has been determined by the nterstate Commerce Commission ss the center line of the hank of couplers. It mey, tberefore, happen that a high car, with ite center line of drawbar $341 / 2$ ins. above the rall, may have a head which is ralsed so that the knuckle extends 6 ins. above the center line and 3 ins below, and to this msy be coupled a low car, with the head of the coupler dropped so that the knuckle extends a ins. below the center line and 3 ine. above. In such a case he contact facee of the coupiers in actual engegement are imited to one lug of each knuckle, and insteed of being ins, as intended by the law, they are reduced to 3 ins. and so are very llable to Jump past eech other on rough track.
It is recommended that the present gage for new knuckiee, Fig. 4, be used on all knuckles purchaeed sepaknuckiee, Fig. 4, be
It is recommended that the vertical height of the stop shoulder, or horn of coupler, be not less than $31 / 2$ ine., and that the horn be arranged to touch the etriking plate and the the en the fraft umbers no uniformity the that it is recomended in this dimension, and it is recommended eimply to have t defined.
Contour Lines for Worn Couplers.-This takes in the subject of gages for worn couplers, and it is recom-

FIG. 3.-PROPOSED GAGE FOR DETERMINING TWIST IN M. C. B. COUPLERS.

It is recommended that a twist gage for new couplers be used, so as to ineure that the heads are nelther twieted nor displeced sidewise in relation to the shank. The axes on which the M. C. B. contour linee are lald down are not referred to the axis of the shank of the coupler. As a result it may happen that the head of the coupier may be twisted with relation to the ehank, eo that the transverse axis or the vertical axis of the contour lines is not normal to the longitudinal axie of the coupler as a whole. It may also happen that the wbole head of the coupler is displaced bodily to the right or left of the center line. To provide for these contingencles the gage shown in Fig. To provide for these contingencles the gage shown in Fig the M. C. B. gage for new couplers provided with the long

Fig. 4.-Gage for Determining Accuracy of Contour of New Knuckles for M. C. B. Couplers.
guard arm, and the contour is the same as the M. C. B. gage with all movable points drawn back. It is there fore aure to enter every coupler that has been properly inspected by the other gage. The arm extending back on the shank is provided with hardened eteel pins, one pair of which must drop down over the square part of the shauk tmmediately behind the bead, and the other pair over the block upon which the yoke is riveted. There is suffeient play between these pairs of points to allow manufacturers proper variations, but badly distorted cast Ings are discovered when the pins interfere with the proper seating of the gage. The arm extending downward ineures that there shall be no twist in the riveted
mended that tbe gege shown in Fig. 5 be used. Thee gages are cheeply made of sheet metal etampings, and It is earnestly recommended that they be immediately put into use at all interchange points, and that the eeme care be given to the examination of couplers as ie given to any other portion of the car. It ie believed that this gage will put a stop to a large percentage of the instance of trains parting on the road without couplers unlocking Fig. 6 explains the distinctive featuree of the gage which are to provide not only against dangerous wea in any one part, but aiso to provide for a combination of wear taking place all around the coupler. There are a good many pointe where wear can take place as shown by the following liet: (1) Heel of knuckle, where the coupler comes in contact with the guard arm of the opposing coupler. (2) Inside of guard arm. (3) Ineide tace of knuckie where pulling stress is greateşt. (4) Rear side of pivot pin hole in knuckle. (5) Front side of pivot pin hole in lugs of drawbar. (6) Pivot pin. (7) Locking sur face of tall of knuckle. (8) Surface of lock in contact with knuckle. (9) Surface of lock in contact with draw bar. (10) Drawbar where lock comes in contact with it The common and final result of all this wear is so to diminieh the effective width of the knuckie and so to increaee the apace between the guard arm and the point of the knuckle of the oppoeing coupler that the couplers can elip past each other. Thle the gage is designed to prevent by the aetion of the cam-shaped lever A. When this is pushed over to the end of its curved elot it throws all pushed over to the end of its curved elot themb all that the distance from guard arm to point of knuckle bat the distance from suar arm to is is hould ne great It to eaily seen that the sage sion used in che gage. it he eaily seed thally out, Wul net pase mat yet in couplo mall a then points hen this wear occur simulare the original by the followig fgures. A dople ing contour of $7-16-\mathrm{in}$. on the liside in the kackie, on the point of the knuckie, $3-16-1 \mathrm{c}$. on the gaard arm, and with the beel of the knuckle worn off $8-16-\mathrm{in}$. allows
the couplers to take an unsafe poeltion. It is easy to
see from what precedes that members, for their own erests, should see that all couplers purchased si conform fully to the provisions in regard to gaging couplers. If the gage pasees with any movable point the coupler should be refected. A coupler which is 3 alack to gege ie just the same as one tbat has beer service long enough to be worn off $1 / 4-\mathrm{in}$., so tha: allowing slackness in the gage one is practicaily apply worn couplers. If a wear of $3 / 4-\mathrm{in}$. on the inside fac knuckie is permiseible, and ie calied 100%, then siackness of the gege at that point represents 16% of life of the coupler thrown away.
Specifications for Couplers.-It ie belleved that ris epecificatione, and teets will do much to weed out ih poorer makes of couplers at present being furnished, a it ie recommended that in the future all couplers be du chased subject to the provisions of the foilowing standaza specificatione and tests:
After Sept. 1, 1899, all M. C. B. automatic car coupler purchased by or used in the construction of cars for the the following specificatione: Couplere shail be subject to the inspection of tbe repre
sentative of the above-named company chanical worklnge, general conditions, and teets. The bars and knuckies must be fitted togethe workmanlike manner. Knuckles and locking pins blocks muet work freely and without any lost motion be
tween knuckle and bar, or lock, which wouid permit knuckle to drop forward heyond the proper contour line. But $3 / 1 /$ to $~ \$ / 8-1 \mathrm{ln}$. iost motion in the opposite direction is Tot undesirable.
The coupling or contact faces must be smooth snd clean
free from grt, eand, scale, etc. with axie of bar. All couplers must be free to be square defects. Coupiers must conform to M. C. B. B from surface with eans and gages. Tbey must couple and uncoupl With the master or sampie coupler they knuckies open) and easily, and should iock with freedom when shouid unlock pushed in by hand. They must have complete locking
dixtures They must ter, and of a uniform length of $131 / 2$ ins. from $15 / /$ ins. In diame-
side of head to the side of head to the center of pin hole for $3 /$ ine cotter
Pivot pine, after being heated, and having the head struck up, muet be carefuily heated, and having tbe head struck The hole for pivot pln properiy annealed. drilled (or, if cored, must be drifted out) so as not to be
more than $1-16-\mathrm{in}$. larger tban the pin. The hoie to be more than $1-16-i n$. larger tban the pin. The hoie to be
parallei with the face of the bar or knuckie and at right
angies to the axis of the bar or knuckie. angies to the axis of the bar or knuckie.
Knuckles must conform closeiy to dime Knuckles must conform closely to dimensions and fit neatiy in coupler head, so that the contour will couform
strictiy to M. C. B. gagee. They wlil not be accepted if distorted by improperiy matched fiasks or any other defects caused by molding, and must be free from shrinkage Thecks, flaws and checks, and sand, scale or blow holes. more then 15 in ine. in diameter, and must be parallel with the face of the knuckle and at right angies with the sxis of the knuckle.
The name of the coupier and class of bar must he
cast upon the top side of head of bar in ietters and fig-
uree $8 / 4-\mathrm{in}$. long and raised $1-16$-in uree $3_{4}^{\prime-1 \mathrm{n}}$. long and raised $1-16$-in. Each drawbar must plainly cast or stamped upon it et eome point where the Will not wear off. Each knuckle must have the eerial number of clase or etyle and maker's merk either casi or stamped upon it at some point where it will not be
worn of. The welght of the coupler complete to be not less tban
.......ibe., and of ber without any of the attachments not iesss than.........lbs. The minimum weight of eech
knuckie to be.......ls. As many drawbare and knuckles as possible must be cast from each heat of steel or meit of iron used. All parts to be well enneeled throughout.

five distinct tests:

 ler: Coupler to be held in cloed knuckles of compiete coupcoupler is in the center line of drop, and the axis of the coupling pin hole passes through the center lines of the legs of the machine and the shank of the coupler rests solldly on the anvil. Biows to etrike directiy on knuckle:Three blows of 1,640 lbs. weight falling 5 ft ; three blows of 1,640 lbs. weight falling 10 ft . A coupler wiil be considered as having failed to stand

Fig. 5.-Proposed Gage for Determining Limit of Safe Wear in M. C. B. Couplers.
this test when it is broken before it hae recelved three
blowe at 5 ft . and three blows at 10 ft ., or when any cracks appear more than 1 in . long or open more than $1-16-1 n$., or when the center line of the shank is distorted
more than 1 in. from its original poeitlon, or when the more than 1 in. from its original poeition, or When the
knuckle ie found to have closed more than $3 /-\ln$. from
its original position when pulled out againet the lock after its original position when pulled out agalnet the lock after having received the three blows at 5 ft
(2) Jerk test of complete couplers. Two couplers to be supported in the machine by the yote forgings and draft ilser bar connecting the two couplera and resting on their

ENGINEERING NEWS

afterican railway journal.

Entered at the New York Post-Office as Second-Class Matter.
Published every Thursday
at St. Paut suilding, zzo Broadway, New Iork. by the engineering news publishing coupany
aVO. H. FROST,
a. MCN. STAUFYER
Presidens
Charles whiting baker, Secretary and Managino Ebitos F. P. burt, bing baker, Secretary amd Masagino Editor. WM. KENT, E. E. R. TRATMAN, M. N. BAKER, $\}$ A Ssoclate
CHAS. S. HILL, J. J. SWANN,
A. B. GHLbert,

Chiev draftsman.
Chas. W. REINHARDT,
Alfred e. Kornfeld, New York,
M. C. ROBBINS, Chicago.
s. B. Read, Boston,
c. F. WALKER, Cleveland,

Publication ofyick, 200 broadway, New York.
Caicabo owfice, 1636 Monadwock Block.
Chicago Office, 1636 Monadsock Block.
Boston Office, z99 Devonshiek St.
Bostor orfice, z99 Devonshlek St.
Clevkland OFyice, Osborn Bulldiso
Lomdon ofleveglazd Efyingham House, I Aruidel. St., Sthand.
SUBSORIPTION RATES: United States, Canada and
Mexico, One Year, $\$ 5.00 ; 6$ months, $\$ 2.50 ; 2$ months, Mexico. One Year, $\$ 5.00 ; 6$ months, $\$ 2.50 ; 2$ months, Edi.00. To all other countries in the Postal Union: Regutar Edition, One Year, $\$ 7.80$ (31 shillings) ; Thin Paper Edition, One Ycar, $\$ 6.31$ (26 shillings). SINGLE COPIES of any number it current year, 15 cents.
In ordering changes of mailing addresses, state BOTH old and new addresses; nolice of change should reach us by Tuesday to be effective for the issue of the eurrent week. The number on the address label of each paper indieates when subseription expires, the last figure indicating the year and the one or treo preceding figures the week of that year; for instance, the number 329 means thal subscription is paid to the 32d week (that is the issuc of Aug. 10) of the year 1899; the change of these figures is the only receipt sent, unless by special request.
ADVERTISING RATES: 20 cents per line. Want nolices. spccial rates, see page XIX. Retes for standing advertisements sent on request. Changes in standing advertisements must be received by Monday morning; new advertiseWents, Tuesday morning; transient advertisements by Wednesday morning.

Public interest in that ancient bore, the North River tunnel, has been moderately aroused by its sale under foreclosure proceedings to the representatives of the bondholders who advanced the money which was spent in a spasmodic revival of the work in 1890 . Perhaps there may be found other credulous persons with surplus funds to dispose of who may furnish the wherewithal for another try at this enterprise; but it does not seem likely. Some of the engineering difficulties in connection with this work were reviewed in our issue of June 16, 1892, when we showed that the stabllity of the completed portion of the tunnel was at least open to question. There seems to be a general impression that the enterprise was carried somewhere near completion before its abandonment, eight years ago; but as a matter of fact, out of some $27,000 \mathrm{ft}$. of tunneling necessary for the construction of a doable track tunnel iine and approaches, only about $4,600 \mathrm{ft}$. has been completed. Doubtless the work would have been carried through long ago, notwithstanding the enried through long ago, notwithstanding the en-
gineering difficuities, were it not for the great doubt as to whether the tunnel can secure a paying traflic when completed; and this doubt is likely to prove a serious obstacle to the success of further attempts to raise funds for the work,
To the cursory observer, unfamiliar with local conditions, it may seem strange that such a tunnel as that proposed under the Hudson River could not, as a matter of course, command traffic enough to make it pay. Here is an enormous traffic that is now carried across the river by means of car floats. The Grand Trunk railway, a few years ago, displaced its car float system of transfer by a tunnel under the St. Ciair River, and it has proved a good investment. Then why should not a tunnel under the Hudson River be many times as profitable?
It is arguments like this, plausible enough on their face, that the tunnel promoters will rely
upon in their search for funds; but such arguments will not bear investigation. The St. Clair cunnei, for example, terminates in an open field, where there was ample room for an extended system of terminal yards. The Hudson River tunnel would land on the New York side in the tunnel would land on the New York side in the
heart of one of the most densely crowded cities heart of one of the most densely crowded cities
on the face of the earth, where every square foot of area has to be carpeted with money to effect its purchase. There is no room for switching yards on Manhattan Isiand, and without ample terminal yards it would be impossible to make use of the proposed tunnel for freight traffic. The actual fact is, as we have before pointed out, that the North River is a cheaper car distributing yard than any that could be built on land on either shore, and whlle the ciumsy car-float and its attendant tug may seem a crude way of transferring freight across the river, freight can be moved better and more cheaply in this way than it could be by elther a tunnel or a bridge.
As for the passenger traffic, the probabilities are very strong that passengers will prefer a ride across the river on a modern ferry-boat to a threemile ride through a tunnel beneath it. There is a fighting chance that such a tunnel might be so planned as to accommodate some suburban traffic; but it would have to handle a very great amount to make it proftable.

To any one who may think that there is Hitle for army engineers to do after active military operations are over, we commend the notes on the work actually performed in Cuba by two of the Regiments of U. S. Volunteer Engineers, published elsewhere in this issue. It is true that the buik of this work is really civil engineering rather than military engineering, using the former term in its oid sense, yet it was none the less work essential to be done for the better and safer military control of the territory occupled. Good roads and reliable maps of the country about them, a pure and abundant water supply, the sanitation of and abundant water supply, the sanitation of
buildings and towns occupied by troops are even more necessary to armies than to peacefui communities; for when men are massed, as they are in camps, fewer ordinary precautions are possible, the conditions are usualiy present for the rapld spread of disease, and in the case of Cuba these conditions were peculiarly unsanitary. As a matter of fact there is more for the engineer to do after the war is over-in such a countrythan during its active conduct. In the latter case he is called upon to hastily reconstruct destroyed bridges and to otherwise provide for the better transit of armies; he superintends the construction of offensive or defensive works; makes rapid surveys of the country traversed, and in a manner guldes the movement of troops. But while the guldes the movement of troops. But while the time or opportunity to do anything that tends to the greater comfort or safety of the living; he expends his force in the direction of destroying life and property and does little to save it. But with the enemy conquered, the engineer then commences his true work-that of building up and improving upon past conditions, as these result improving upon past conditions, as these result
from the destructive agencies of war, or are due to centuries of ignorance and official corruption or neglect. What can be done in this connection is well shown in the article referred to; and the case of Cienfuegos is only one exhibit of the direct and beneficial result of the labors of the engineer in the field of sanitation. Commencing with a weekly death rate of 138 , at the time of occupation by the American troops, this was reduced to 73 by the distribution of food to the famished in habitants, and to 29 by the thorough cleansing of the streets, courtyards and cesspools; and as the decrease was steady and the time elapsing short, we may look for a greater improvement still. Gen. Wood has done the same thing for Sanstill. Gen. Wood has done the same thing for San-
tiago and under Gen. Ludlow and Major Black, both officers of the Engineer Corps, Havana is in a much better sanitary condition at the present time than ever before. It is for these reasons that we repeat that the best work of the military engineer is in the direction of healing the scars left by war, and in preparing the conquered lerritory for the labors of the civil engineer-
properly so called-with his railways and highways and the permanent improvement of citles and towns and all that beiongs to them.

Mr. Edward Atkinson, of Boston, has many good things and some not so good; among the former is a paragraph in a circular (No. it) just issued by the Boston Manufacturers' Mutua Fire Insurance Co., and entitied, "Mill Constre tion: Sometimes called Slow-Burning
tion." We copy this paragraph as follows: It wili be observed that owners and occupants are th oniy persons who can in any manner insure preptry
against loss or damage by fire. All that underwriters cal
do is to give them the best advice in their power, aidd to do is to give them the best advice in thelr power, and to
give them contracts of indemnity for payment of uavoid-
able ioses. Loss by fire in any considerable measur
usually the tauit of the owner able losses. tuass by ire in any considerable measure is
usually the tait of the owner or occupant of the property
insured or destroyed.
We commend this idea to the thoughtful con sideration of manufacturers and owners of build ings, and to the engineers and architects whom they entrust with their work. If it were mor they entrust with their work. If it were more
generaliy realized that the insurance of property against fire can oniy be done through the intell gent planning and constructing of the building and its equipment, and in its care and supervision when it is put into use, a large part of the present annual fire loss would be avoided.

THE MASTER CAR BUILDERS' COUPLER.

The Master Car Builders' standard automatic coupler is now in use on over a miliion freight cars in the United States, and after Jan. 1 next will be the only coupler used on cars running in general freight car interchange. Had the reasonable expectations of its friends and advocates been realized, the old-time troubles with draft apparatus should be vastly reduced. It is unfortunateiy true that this is not the case, and that the new coupler, as it is now in service, is proving a mine of trouble to the rallway companies in a varlety of ways.
So serious and annoying are these troubles that a few rallway officials have for some years urged, and still continue to urge, that the whole M. C. B. type should be abandoned, and the rallways of the country should start out anew to find and adopt and equip their cars with an automatic coupler of some other type. We need hardly say, however, that there is no prospect whatever of this. The raliways are not at all likely to begin all over again the work of getting a satisfactory automatic car coupler, and send their investment of $\$ 15$,000,000 , more or less, in M. C. B. couplers to the scrap-heap. Besides this, it has never yet been shown that the "vertical plane" type of automatic coupler is not on the whole the best that could be devised for freight-car service, or that any other automatic coupier ever devised would not be the cause, on the whole, of more troubles than the present M. C. B. coupler.
Nevertheless there is nothing to be gained by covering up or overiooking the serious defects which the M. C. B, coupler has developed in operation. Let us see, if we car, how these defects have arisen, and what may be done to remedy them.
The present Master Car Buiders type of coupler as some of our readers may remember, was adopted as the standard of that association in 1887. It had been under consideration for at least five years previous, and a large amount of experimerimental work and study had been given to the problem before the final action. With this investl gation before it as a basis, the association fixed upon the "vertical plane" type of the Janney pattern as that promising the greatest measure of practical success, and adopted standard contour lines defining the form of the engaging hooks of the coupler, leaving manufacturers, however, to vary every other part of the coupler as much as they chose. Looking back now, it can be seen that a large part of the troubles which have been experienced have been due to the wide opportunity for variation which was then left open; nevertheless it is not certain that any more definite action would have been prudent at that time with the limited experience then available; and it certainiy was not possible to secure it under the conditions which then existed.
At the time this action wás taken there was only

Fig. 1.-GENERAL VIEW OF COMPLETED BRIDGE.

FIG. 2.-PART PLAN AND HALF LONGITUDINAL SECTION.

me manufacturer making couplers on these lines It was not long, however, before others came into the fleld, and each one sought to devise some variation from the couplers already on the market which he could make use of to advertise his goods. The result is that to-day there are nearly a hundred different forms of M. C. B. couplers on the market. With the increase in the number of different couplers there have grown up variations from the original contour lines, as well as from the detalls which were not standardized, and to day there are very few couplers in the marke which conform exactly to the standard. It is needless to say that with this rapid increase of rival designs and rival manufacturers, competition has become very sharp, and in many cases quality has been sacrified to price.
The train of evils resulting from these conditions has grown to be a very long one. It is easy enough to see now how this could happen. The multiplicity of designs, which we have noted, means in Itself a host of difficulties. Consider for xample the specific case of knuckle breakages. At present, knuckies break more frequently than any other part of the coupler. It is worth while o notice here that one important reason for this is that at present the knuckle must be weakened by an opening in the middle to permit it to be coupled with the old link and pin coupler. It should be understood that this weakness, which is fiten held up as a defect of the M. C. B. coupler, is directly due to imposing a duty upon it which it will not be called upon to perform when the link and pin draw bar is abollshed entirely. To return to our example, however, it appears that the craze for variations has been carried so far that out of the hundred or more knuckles in use only two or three will interchange with each other from draw bar to draw bar. This means obviously that every railway must carry in stock knuckles to fit every coupler which is likely to come onto its lines in interchange traffic, or else have a car delayed on its track until the knuckle can be procured from the maker, or untll the entire coupler can be removed and a new one put in place. It is plain, moreover, that what is true of knuckies is true of many other coupler parts. Thus it comes about that the rallways are to-day burdened at every repair point with stocks of couplers and parts of couplers of every concelvable type, which they are compelled to keep on hand so that they may be able to repair their nelghbors' cars properly and keep traffic moving.
The expense of carrying this burden of different repair parts is not, however, the only trouble for which the multiplication of coupler designs is responsible. It has been largely the cause of bringing about the variation from the original Master Car Builders' contour lines. To see how general this deviation from the original standard contour has become, we have only to refer to the report of the committee on M. C. B. couplers, which was presented last week at the convention of the association at Old Point Comfort. This committee stated that it had found greater or less deviation from the standard in every coupler examined by it, and its investigations had comprised all the leading makes of couplers.
The very serious objections to practices of this sort will be apparent to every engineer. Two couplers which engage with each other are really two parts of a single machine through which stresses of many tons are transmitted. Manifestly these two engaging parts should have a definite and fixed form in relation to each other. To expect good results when these forms are varied by every manufacturer to sult his own ideas is about as foolish as to expect satisfaction if makers of bolts and nuts for the general market should follow no standards for the pitch, shape of threads and size of stock. In the M. C. B. coupler, the area ot bearlng surface available for wear and the trueness of the pull upon the coupler knuckle and shank depend upon the contour lines of the two couplers, which are engaged, being duplicates. With the present varlation in the contours of different couplers, uniform bearing is impossible to secure, even when the different couplers are new and properly applied to the cars. It is hardly necessary to point out that uneven wear means
rapld wear and eccentric strains on the coupler head and draw bar. The life of the coupler is shortened and its strength and safety are materially decreased.

It is hardly necessary, we think, to enlarge further upon the evils which result from deviations from uniform contour lines. If anyone questlons their importance let him study for a few moments those extreme examples of misfitting couplers due to the distorted or twisted position of the head in relation to the shank. What is true of these is also true in a lesser degree of minor variations in the fitting of the bearing parts. While we are on the subject it may be well to point out that this distortion, either vertically or horizontally, of the coupler head in relation to the axis of the shank, is a very common fault. Thous ands of such couplers are running on American railways to-day. Experience has shown that often a very small amount of wear coupled with the distortion of the bearing parts due to the twisting will enable these couplers to slip by each other and cause a break-in-two of the train. The opposite condition of binding also frequently occurs, and in passing sharp curves the coupler head breaks off or the car is derailed.
The present defects in the manufacture of couplers, however, do not all lie in faulty foundry work. Defective design and the use of inferior material are faults which are quite as prominent The use of defective material in couplers employed in interchange traffic is something about which the committees of the various rallway clubs and other technical organizations have been very chary in expressing themselves, but such couplers are nevertheless, used, and are often used dishonestly. There are few rallway men who will deny that there is more than one rallway to-day which makes a practice of buying the cheapest couplers in the market and keeping them at repair points for use in replacements. It is by no means beyond belief elther that many of these replacements tak place without there being a defect in the original coupler to warrant it, especlally when the latter coupler happens to be one of the $\$ 8$ kind. This is not a gratifying commentary to make upon the rectitude of some of our high railway officials, but hose who are well informed agree that it is in some cases a true one. As matters stand now, moreover, cars with these couplers may travel over any rallway in the country and cause wrecks by their fallure, for which the rallway which suffers the loss can obtain no redress. It is familiar knowledge to every motlve power official that couplers are belng used every day whose inferlor quality make them a constant menace to safe train operation.
The foregoing summary of some of the chief troubles which have grown up about the M. C. B. coupler has necessarily been brief, but it indicates pretty clearly, we think, where the source of these troubles lie. We belleve that no fair-minded person can maintain that it lles in any fundamental deficiency \ln the design ard principle of the device. On the contrary, it seems to show clearly that it is an excellent device for its purpose, and is giving marvelously good results under condltlons which are extremely adverse to such results being obtained. What has been said appears to us to show further that the rallway companies themselves are largely responsible for the evils which have fallen upon them. The question before us, however, is not who should shoulder the blame, but how are we to remedy the trouble which has befallen us?
On the whole, we think that the course adopted by the Master Car Builders' Association at Its convention last week, and which is outlined in our report of the convention proceedings in this issue, is, perhaps, the wisest one. This was to adopt rigid specifications, requirements and tests, and to throw all the influence of the association to bear to see that these are lived up to. Ultimately the association may very reasonably see fit to go a step further, when its standing committee on couplertests has weeded out the defective couplers now on the market, and give railways the right, in it rules of interchange, to refuse to accept as proper repairs all replacements made with couplers which have not passed the tests, and been accepted as
satisfactory. If may ultimately go further still, and refuse to accept any cars whatever with couplers not approved as safe and proper by the Assoclation's Committee.

Had it taken some such action as this four or five years ago, it would have saved millons of dollars to the rallway companies of the country and much wear and tear of spirit to rallway oflcers. Doubtiess some such action would have been taken, or the still more radical action of adopting a standard specification for every part and detall of the M. C. B. coupler, and compeling its use on all cars used in general interchange; but it is clearly recognized that the power of the Assoclation, as a whole, to coerce the action of its members is quite llmited. The present interchange system is, in fact, but a makeshift, and eventually some form of joint ownership and control of all frelght cars used in general interchange will have to repiace it. Untll that reform is brought about, a good many defects in the con duct of frelght car construction, repalr and operation must be endured as well as may be, and parthal remedies must be accepted as the best avallable.

LETTERS TO THE EDITOR.

Union Rallway Station at Omaha.

Sir: 1 have read with much interest the artcicte on this station in your issue of June 1. Regarding the locat:on of the funch room, the criticism is well made. Some of the rallway managers who have had a large experience with iunch rooms and the traveling public in Nebraska and in the Southwest could not be induced to place a iunch room in direct communication with the waiting rooms. I think this is largely on account of the muititude of flies, which it seems almost impossible to guard against. The removal of the lunch room was entirely for the comfort of the public occupying the walting rooms. Another criticism is in regard to direct outiet from trains. This, however, has been provided for at this station. We have a wlde, direct staircase from the traintation. We the viaduct of which fact I think you the traininformed. We also have a direct outlet and entrance to the trains on the lower avel, toutien the bulldinge These are very important polnt in station dealsmi These are very important points in station design.

Yours very truly
Frost S. Frost,
Chlcago, June 16, 1899.
Architects.

Bide Wanted for Proiessional Services.

Sir: Some of your readers who are out of a job may be interested in the following letter which was recently received by me, and ask that you give it pubisity so for turnish of then winh to enter into the competition or furnishing professional services at the lowest price he may do so. Undoubtedly the city of Marietta will give the
job to the lowest bidder:

Marietta, Ohio, June 12, 1899.

Gentlemen: We are

to build a new bridge in our city. We are expecting to build a new bridge in our city.
By return mail make us proposition of the work as边
To take soundings (borings is necessary), prepare
plans and specifications for steel bridge across Muskingum plans and specifications for steel bridge across Muskingum
River in clty of Marietta, Ohlo, both sub and superstruct-
ure. Sald bridge to be as follows: Length about 765 it ure. Sald bridge to be as follows: Length about 7 fruct-
one swing draw span, two statlonary spans, one approach, one swing draw span, two statlonary spans, one approach,
width of driveway 32 ft., two $6-\mathrm{ft}$. sidewaiks. Driveway
to have a capacity of 100 ibs. per square foot, sidewalt to
80
tw
tween seventy and ninety thousand dollars.
Make proposition on above, then proposition on taking
charge of sald work as lnspectors, to do both mill and Make proposition on above, then proposition on taking
charge of said work as inspectors, to do both mil and
shop inspection, superintend the erection of both sub and
 connected with above structure. Make us proposition tor
both together, drawing plans and specifications and su perintend structure as above.
If you are not prepared to take up the entire work you
may bld on such portion as comes in your line may bld on such portion as comes in your line. woric you
please state what time will be required to furnish plans
and specifications if proposition ls accepted by us. please state what time will be required to furnish plans
and specifications if proposition Is accepted by us.
J. P. Marsech, Chalrman Bridge Com
I might perhaps put in a bld for the above work mysel except for certain physical lnfirmities, and while you are about it would you just as lie? insert the following card: To All Physiclans.
I have a bad case of plles, complicated with diseasec lungs and incipient paresis. By return mall will you please send me a proposition as follows:
To take soundings (borings if necessary) of my lungs, diagnose the rest of my alments and prepare plans, speclifations and prescriptions for treating me.
Then make a proposition for taking entire charge of the case and curing me.
If you are not prepared to treat all of the above disesses you may bid on such portion as comes in your line. Please state time required to furnish diagnosis, plans,
speeifications and preseriptions, also time required to ef
fect a cure if your proposition is accepted.
Yours truly, Stowell.
Albany, N. Y., June 15, 1890.
(Our correspondent betrays no symptoms of paresis in his letter.-Ed.)

Interocenaic Casal Routes.

SIr: 1 have read with interest your article on "The Appointment of a Commission to Investigate isthmian Canal Routes," in your iseue of Marcb 23, 1899, and as money has now been appropriated for another and very extensive investigation, the oubject becomes one of pubilc as well as engineering interest. I should like briefly to posed for the canal: (1) Panama; (2) Nicaragua; (3) posed for the canal: (1) Panama; (2) Nicaragua; (3) San Blas; (4) Karwelse; (5) Darien. The comparieon is to the following five points: (1) Harbors: (2) distance to the following ive points: (1) Harbors; (2) dista (3) oummit level; (4) climate; (5) rivers and lakes. We will first conslder these five points in regard to the Nicaragua Canal route. Commander Seltridge, U. S. N. in his report, states that it to entirely destitute of harbors, and I also find that the ses ports of Greytown and Brito wili require costly and extensive improvements in the way of excavation, plers, Jetties, breakwaters, etc. The total length is a littie more than 194 milles, or 169 miles by an alternative route. The summit level is given vari ousiy as 80 to 120 ft . The cilmate along the San Juan River is said to be ons of the most unbealthful in Centra. America. The San Juan River is from 2 to 20 ft . dee and navigation is rendered diffcult by raplds, though small steamers have ascended its whole course. The mouth of the river has shifted more than once. Lake Nicsregue is sald to be a dangerous sheet of water, sub ject to water spouts and violent storms.
Now let us take the Panama route. It hae been stated that the harbor of Aspinwsil is so indifferent that during the season of the "northers" ships are frequentiy obilge to put to sea. At Panama there is not water enough a low tlde to loat large vessels within $21 / 2$ miliee of th town. The length is about 45 miles and the summi level is about 68 ft ., according to the latest project, th altitude of the divide being over 300 ft . As to cilmate the isthmus and its towne are said to be hotbeds of dis ease. The proposed route crosses the Rio Grande River 13 times and the Chagres River 78 times. This latter river is sald to be capable of rising 30 ft . in a few hours and ever aince the Panama Canal was projected the cross ing of the Cbagres River and the great Culebra cut have been recognized as very serious problema. There are 10 lakes, or none worth mentioning.
The San Blas route is conceded to be the sbortest across the isthmus, but a tunnel five mifes in length would be required. This route is proposed for a aea-level canal, and possesses two good features: (1) magnificent harbor afforded by the gulfe of San Blas and San Miguel, and (2) the ehort distance of 30 mlles in a direct ing. Dr. Culfen, however, speaks of the diaadvantage of a bad coast for this route, and, in any case, the above good features would compensate but elightly for the enormous dieadvantages. The mountain range which it would cross is eald by Dr. Culien to have an elevation of from 2,000 to $6,000 \mathrm{fl}$. There is reason to suppose that the cilmate compares favorably with the other parts of the Isthmus. The rivers and lakes are of little importance to the project.
We now come to the route proposed by Mr. Gustavus A. Karweise, C. E., a description of which appeared in Engineering News, March 14, 1895. This is said to have 11 milles of free navigation up the Bay of San Miguel and Tuyra River, but he proposed a tunnel $11,880 \mathrm{ft}$. long. The total dintance from ocean to ocean would be about $031 / 2$ milles. The summit of the range at the site of the tunnel is $1,180 \mathrm{ft}$. above sea level. As to harbors, the Guif of San Miguel promises an excelient harbor on the Pacifc side, but it is not so clear as to the harbor on the Atlantlic side. The cllmate would probably compare tavorably with the other parts of the Isthmus.
We now come to the Darien route, extending from Caledonia Bay or Port Escosces on the Aclantlic to the Gulf f San Mizuel on the Pacific. As to barbors, Caledonla Bay contains four distinct harbors, all extensive and comparatively easy of access, according to the report of Commander Selfildge, U. S. N. The cilmate in this neighborhood is sald to be very healthful. The summit of the range is eald to be not more than 260 fl . above sea-level, but Dr. Culien thinks that it is lower, and that no locks or dams will be required, but simpiy a aea-level cut. Dr. Cullen states that Commander Prevost, of the steamer "Virago" of the Britieh Navy, made an exploration up the Savanna River and ascended the range, giving the altitude as 120 ft ., from which he could see the Atiantic. D. Caldwell, of the U. S. Frigate "Independence," made an exploration of this route and found an elevation of 160 ft ., as neariy as it was possible to judge without measurement. In the report of Admiral Davis, U. S. N., mention is made of a road recently discovered leading from the port of Savanne to that of Caledonia, but Com-
mander selfridge, U. S. N., reports that he found no low
summit level. As to the rivers, there do not appear to be any large ones to be crossed, while the Savanna River is any large ones to be crossed, while the Savanna River is
proposed as a part of the route. The total distance in a proposed as a part of the route. Th
direct llne wouid be about 39 milies.
direct line would be about 39 milies.
Several years ago surveys of the Darien route were Severa years ago surveys of the Darien route were
made by Mr. Gisborne, an Engish englneer, and a company wae organized to build a canal, Mr. Gisborne, Sir Francis Fox and Mr. Thomas Brassey belng interested in the project. I have for some time past advo cated an investigation of thls Darien route, and from the inquiries and researches whlch I have made it seems to me that it may be found entirely feasible. It abould at any rate, be Investigated by the
cently appolnted by the President. Yours truly,
Chicago, June 10, 1899.

Meetiags and Excursions of Engineering Societies in

 Londos.SIr: Tbe American exporter is the best advertised individual of this era of newspaper enterprise. The space which is so dearly purchased by the British manufecture is given, without stint and without price, to chronicle the triumphs of American competition in the markets of the world; to explain in detall the superiority of manufacture the excellient features of ehop practice, the wonderfu organizing ability and the inventive gentue, the labor eaving machinery and the time-saving devices of the exceedingly prectical and enterprising nation across the Atlantic which is now confeesedly puehing its commercial victories at a rate quite unparalieled in previoue history. The recent awards of considerable contracts for America bridges and American locomotives over the heads of Eng lish manufacturers were telegraphed to the remotest corners of the British Emplre, and it le no exaggeration to say that in every newspaper publishing ordinary news of the day reference of some kind has been made to this startling victory of American trade enterprise. Class journais have commented on the eubject from every point of view; magazines have had more lengthy and weighty articies; even eoclety proceedings ehow from the hard facts-dealling-view of their learned authors the causes of the superiority of American products.
These opinione and comments speedily make their way to American newspaper columns through the media of the telegraph office, prese cuttings, special correspondence and consular reports, and in the dollar-a-line space of the great city dailies the triumphs of live Yankee Intelligence, capital and enterpriee, are again widely advertleed to an appreclative nation, which ie in turn etimulated or further conqueet. Truly, then, the American exporter Is the pet of the newspaper fraternity; hle lines have fallen in proftable piaces; may be duly recognize his obilgations with substantlal fraternity.
The present is a notable week in British engineering circles; the British Association of Water-Works Engineers beld its fourth annual convention in the rooms of the Geological Society, Buriington House, on Monday and Tuesday. On Wednesday morning the members visited the East London Water-Works at Lea Bridge and Waithamstow, and in the evening the annual dinner was given at the Holborn Restaurant.
The second blennial conference of the Institution of Clvil Engineers was held on Wednesday, Thursday and Friday. Tbis conference, while it does not partake of the international character of that held in Chicago in 1893, is nevertheless made up of representatives of the profession from all parts of the emplre, and thus may be cailed imperialistle in character. It is divided into seven sectlons, as follows: I., Railways; II., harbors, docks and canais; III., macbinery; IV., mining and metailurgy; V., shipbuilding; VI., water-works, sewerage and gae works; and ViI., appllcations of electricity. The annual conversazione, held on the evening of Thursday, necessitated for its uses the occupancy of the entire Institution buildding on Great George St. Accommodations for the meeting on Great George si. Accommora were placed at the disposal of the Institution in the bullaing of the Instltution of Mechanical Engineers, the Surveyors' Institution and the Weetmingter Gulldhall. The Prealdent of the Insflution, Sir W H Prece K.C.B. F.R.S. in his ad Institution, Sir W. H. Preece, K.C.B., F.R.S., In his ad dress to all the eectione at the openio relerred then por the lostiturn, although the prese the pleted only four seare ago. The place lor the new gov arnum bul gi lind lying between Greation so the prevernment for demolition, and the opportunity to gover thua allorded for rebulluiso an acale core sullable io che war with its natlonal importance. The President aiso pald a high tribute to the press in acknowledging the inablity of the Inetitution to collect and publish the daliy proceedings of each section, and he stated that they depended upon the enterpritee of the press to provide them speedily with euch information. At the banquet o the Water-Works Engineers on Wednesday evening even more stress was laid upon the obligations of euch asso more stress was laid upon the
The numerous sections in which the conference of the

Institution of Civil Engineers met necessitated a large corps of reporters to secure even the meager abstracts given in the London dally papers of succeeding days. My_{y} personal attention was given exclusively to Water Sup-
ply and Sewage Disposal papers and discussions. ply and Sewage Disposal papers and discussion latter subject, opinion here is growing in by the septic cank aystems ats, as most fully iliustrated dificuit the problem of satisfactorily and amour the problem of saasfactorily getting sewage sludge to may be realized by the confessions of eminent men with a score or more years of stuay aud practical experiment as sanitary engineers ords, that very, very much has yet to be learn
that many theorles have been proved untenable. Dr. Kemne's paper on the '"Biology of Sand Fi
was exceedingly interesting, and was awarded unmeasured praise by many eminent experts, among whom 1 mention only Sir John Murray, wbo has won celebrity for study of deep-sea soundings with the "Challeng pedition, and wbo expressed his approbation of the tical results," of Dr. Kemna's biological studies; and Prof. Wanklyn, who referred to the mistake which was eometimes made of confounding chemical precipitants with animal life.
In company with about 50 members of section VI.,
visited on Wednesday the East London Water Company's visited on Wednesday the East London Water Company's
works at Lea Bridge and Walthamstow, which he jus, works at Lea Bridge and Walthamstow, which lie Just
over the boundary line of Middlesex and Essex counties, and are therefore outside the Jurisdiction of the London County Council. The total area covered hy the works is very large and tbere was a good mile to walk along the company's canal, between the pumping and filtering station at Lea Bridge and the storage reservoirs at Walthamstow. The filtering beds are 25 in number of about one acre each; the sand is all brought by rall from some distance away, and ie thoroughly washed hefore belng placed on the filter areas; the work of washing was in progress while we were there; several beds were beligg cleaned, and the variety and extent of work in progress over the large domain of the company was a very atriking illustration of the elements which enter into the cost of a gallion of pure and potable water. The storage reservoirs at Walthamstow are a series of small lakes, to which several well wooded islets, rising 15 to 20 ft . above the surface, give a most picturesque appearance. The point of greatest interest at Walthamstow is, however at the outlet house, where the water is passed through a large Venturi meter and thence over a welr into the canal running to the filter beds and pumps. This mete was furnished by Mr. George Kent, inventor and manu facturer of water meters at 200 High Holhorn, and an oid patron of Engineering News. Mr. Geo. Robertson, man ager of this establishment, is a frequent visitor to the United States in search of novelties fer the English mar ket. He has an improved device for accurately registering the water passing througb the Venturi meter, and a future time I will send you details thereof.
When one is introduced to an educated Englishman It is always a reasonabie assumption concerning him that he has traveled much abroad. At the banquet of the Water-Worke Engineers I eoon learned that the gentieman at my right was soon to sall for New York en route to Calcutta, where he had charge of several water supply systems for the government. While getting my hearings at Lea Bridge raliway station, a gentleman asked me If I had ever been there before, and learning that I had not, kindly volunteered to show me the way to the waterworks offices. On my mentioning Engineering News he referred to the connection with it of the late A.
M. Weilington, and I then iearned that he had been engaged in raliway projects in Mexico, and had been in Chili engaged on raliway construction at the same time as our mutual friend, Mr. J. Foster Flagg, M. Am. Soc. C. E. The gentleman's name was Mr. Henry S. Ridings, and I found him very famillar with American affairs, as he had a son resident in Utica, N. Y. At the office of the water company be introduced me to the Chlef Engineer, Mr. Wm. Booth Bryan, M. Inst. C. E., who immediateiy weicomed me as the representative of Engineering News, to which paper he ined, a sure indicator of eteamer arrivais by its never failing promptness of delivery upon hle desk. Mr. Brysn convoyed the party through the pumping housee and about the filter beds for an hour, when he had to burry off to London to give evidence before a parilamentary committee.
The problem of keeping up the supply of water for an ever increasing popuiation, from a drainage area whose product is being eteadily lessened by the ever increasing drafts upon its limited extent ie a troublesome one; the experienoes of an engineer like Mr. Bryan, extenag with many yeare, are very interesting, and his famser, datee, quantitiee, capacities, processee, geology, figures, datee, quantitiee, capacities, processes, essential bacteriology, poilitics, etc., etc., the absolutely essentai requirements
esting Indeed.
esting Indeed. On Friday afternoon an excursion party of about engineers went by steamer from Wentminster Bridge landing to Barking to look at the eewage disposal works. It required $11 / 2$ hours to make that trip along the crowded it required $1 \frac{2}{2}$ hours to make tha trip along the crowded
Thames; we were landed on a long, low-lying steel
teamer, whicb proved to be one of tbe fleet of 30 such ressels employed by the London County Council in transporting sludge to the deep sea, 50 miles out from sbore. The tank steamer was so clean and bright that no susplan of its use would be entertained. All the same, the moment we stepped aboard of her, tbere were 1,000 gross tons of London sewage sludge stored below deck; we looked at the vile mass tbrougb a well hole, nd very soon after the vessel steamed away hours of time; golng tide. The round trip consumes ten hours of time; the fleet conveys 30,000 tons of sludge to sea each week: it costs $41 / \mathrm{p}$ pence per ton to send it to sea, agalnst 42 pence when it was pressed into cakes and offered to the armers, who wouldn't take it; the $41 / 4$ pence covers cost i maintenance of plant, interest, insurance and all expenses.
The excursion party were sbown over the disposal area by Mr. John E. Worth, M. Inst. C. E., the engineer in charge; Mr. W. Santo Crimp, M. Inst. C. E., well known is the suthor of a standard treatise on Sewage Disposal nd by the resident manager of the works.
The raw sewage to the volume of $115,000,000$ galions daily reaches the works at Barking through a large tun-

Work and Experiences of the Ist Battalion, Ist Regt., U. S. Vol. Engineers, is Porto Rico.

Sir: Tbe 1st Regiment, U. S. Volunteer Engineers, was organized during tbe latter part of June, and the first balf of July, 1898, at the rendezvous, at Peekskill, New York. On Aug. 5th it proceeded to New York Harbor, York. It' Aug. wbere uncort sailed for Ponce, Puerto Rico, Aug 10, 1898, arriving tbere Aug 15,1898 the proto providing tor arring tion Aug. hostilites was signed while the regiment was at sea, so that active milltary oparations were over when it reacbed Ponce. The regiment was ordered ashore it reacbed Ponce. The regiment was ordered ashore, however, and hegan to estabiish a camp on the nearest avallable sice. The irst proved so wet that it was decided to move about a mile farther from the Playa, towards Ponce proper mile farther from the Playa, towards Ponce proper. where a much better site was obtained. The 1st Bat-
talion and part of the 2 d bad estahlisbed themselves at the new site, when there came a pouring rain, in the middie of the nigbt, wbich proved that the lower portions of the new site also were too wet for comfort; the water
pack up the baggage, ready to move, when it was suddenly remembered tbat the wagon train, wbich had been sent back to the old camp for some forage, was on the other side of the stream, and the oniy bridge was at least five or six feet under water. Fortunately, the water ceased to rise at thls point, and in three or four bours the Rio Portugues was once more the insignificant little stream it had been. The Major of the 1st Battalion was in cbarge of sanitary affairs, and hsd built a foot bridge across the stream, to enable the men to get to the sinks; during the flood he suffered the ignominy of seeing his bridge washed away, its last support belng knocked out by a dead mule.
After tbls a thorough searcb was made for a new camp site which should he high enough to avoid all floods. One was found, west of Ponce, where the Regimental Head quarters and six companies remained until the regimen was ordered home.
Shortly after the flood in the Portugues, the 1st Bat tallon was ordered to proceed to the neighhorhood of Coamo, a town on the mllitary road, about twenty mlles been oren, and there repair certain bridges whicin ha

ONE OF THE OLDER RESERVOIRS AT WALTHAMSTOW.

VIEW OF "RACE-COURSE AND NO. 5 RESERVOIR," FROM TOWER OF ENGINE-HOUSE, AT WALTHAMSTOW WELL.

VIEWS ABOUT THE RESERVOIRS OF THE EAST LONDON (ENGLAND) WATER COMPANY.
nel; it is treated, as it flows at the llming house, to 4 grains of lime and 1 grain of iron per gailon, making about 38 tons of lime per day; 4,000 tons of siudge are precipitated and turned onto screens, where six men at two screens work day and night in eigbt-bour shifts raking out the solid matter to the amount of 90 tons weekly. Tbls is carted away by a farmer, who is paid 6 pence per load, and would be burned if the farmer "should throw up the job:" 4,000 tons of liquid sludge passes on to the pumping engines, which raise it into three tanks, each tank bolding one ateamer load, and discharging direct into the steanier hold, $11 / 4$ bours being the time required to empty the tank. The sludge tbus disposed of, the remaining effiuent is diverted tbrough 13 channels to the Barking Creek, some 900 ft . distant An experimental fitration bed of one acre, composed of 6 ft deep of coke breeze, was in operation. One mililion gal. lons were sent onto the bed in eacb 24 hours; the bed is six years old and bas not been disturbed, except that at first it was 3 ft . deep, and 3 ft . more of coke was added; the engineer stated that the extra or coke was improve the effluent, but that 4 ft was the mazimum that should be allowed, and be considered 3 et asimum oughly satisfactory. This is considered 3 ft . as thorand my attention was calied to lt by Mr. Crimp, to whom it was made.
in addition to the present flow, there will eventualiy be added $12,000,000$ galions dally from the West Ham district. The Crossness Works, on the Surrey side, are on the same plan as the Barking works. Tbe literature on the subject is very voluminous. These few notes, made on the run of an bour's visit, can only accentuate a few points. To describe properly sucb works requires days of time.
The weather in London has been very falr for the past Cortnight; it bas not ralned once in tbat time; the mercury bas stood in the scventies, and there has been an unusual amount of sunsbine. It is the "heigbt of the season" and this "Queen's Weather" is most favorable or the numerous brilliant functions whicb are gazetted daily.
London, June 10, 1890.
ising as bigb as 6 ins. In eome of the tents. Tbe Regimental Commander and the Major of the 1st Battalion were both present, and both turned out about 1:00 a. m. n very undress unlform to survey the situation. It was decided, tbls time, to drain tbe site, wbicb was on tbe banks of the Rio Portugues. Tbe prisoners in the guardhouse were turned out witbout delay, and work on a system of dralnage trencbes waa begun at once.
Up to this time, tbe way of the transgressor in thls regiment bad been easy, owing to the necessity of confining him, which made it necessary to adopt a more or ess secure place for a guard-bouse, and the result was tbat the prisoners were sieeping gulte comfortable and dry, while their more sober comrades were roughing it in the mud. Tbe necessity for the drainage ditches cured this little defect, however, with a vengeance.
After about twenty-four bours' bard work, a system of ditcbes with a main outfall througb the edge of the river hank was completed. The Colonel of the Regiment, the Major of the 1st Battalion, and the other offlcers concerned viewed this sewerage system with great complacency, and congratulated themselves that they were secure against even a tropical downpour; but in a short tlme they were undeceived. Tbe Rlo Portugues, oppo site this camp site, is a rather insignifcant stream, about 25 ft . wide, with a channel depth rareiy exceeding 3 ft . it flows between banks about 12 ft . blgb, and the rlgbt bank, on wbich the camp was located, falis away from tbe edge, so tbat the camp was lower than the edge of the bank by three or four feet, in some places. This made the deptb of the outfall ditcb wbere it opened througb the bank about six or seven feet.
The moving of the regiment was aimost completed wben one afternoon there was a cloud-burst in the mise. In twenty monce, and the Rio Portagues began to rise. In twenty minutes from the time the crest of the of the passed toe camp, the river was within a foo of the top of the rigbt bak, was fully 300 Nl . wide, and was runnlag at the rate of about ten miles per hour. To outfall ditch had to ber parts of camp, the maln outran alch had to be dared, and min cuit tban digging it. It looked as tbough the stream would come right over the bank, and it was decided to
retreat. The battalion left Ponce Sept. 3, 1898, and arrived at its new camp, about $2 \% / 2$ mlles west of Coamo, Sept. 4.
The brldges whicb bad been destroyed or damaged were all on the military road from Ponce to San Juan. One, ahout $21 / 4$ miles west of Coamo, was a full-center, ifvering, brick arch, of ahout 21 ft . span; it carried the road over a ravine about 30 ft . deep, the bottom of wbicb was the bed of a small trlbutary of the Coamo River. Tbis bridge was plastered witb cement mortar, wbich was grooved to imitate stone masonry. it had been totaliy destroyed down to the springing lines of the arcb.
Anotber bridge, about three miles east of Coamo, was a segmental brick arch; an attempt had been made to blow it down, but the Spaniards were evideatly in a hurry, and succeeded only in blowing a boie tbrough the arcb, wbich was not large enough to interrupt traffic.
About a mile and a quarter east of this bridge was a singie span steel girder bridge whicb they bad prepared for destruction by driling the abutments; but time was evidently lacking here, aiso, for beyond tbe loss of a few coping stones, tbis bridge was uninjured, even in appearance, and in usefulness not at all
Still farther on, ahout five miles east of Coamo, a fullcenter, brick arch of about 14 ft . span bad been totaliy destroyed down to the springing lines, except a very destroyed down to the springing lines, except a very marrow ing of alace. This last mentioned bridge was within a range of 2,500 yards of the Spanisb position west of a range of 2,500 yards of tbe Spanisb position west of wben the 1st Battalion arrived on the scene. Later on, wben the Spanisb troops bad retired and the American wutposts were advanced it was discovered that prapara tions bad been made for destroying a retaining wall at loint about abreast of the spanisb trencbes. point about abreast of tbe Spanisb trencbes; tbis would any of the bridges Near this wall the road runs along very steep mountain side with a wbere the mountain side is cut ap by wbere tbe mountain side is cut up by gullies, the road is carried stralght across, being retained by masonry walls. The wall in question was one of thess, and wa the gully; it destruction would have allowed the road
to slide bodily down the mountaln wide to the bottom of the ravine, at least 400 ft . helow. The Spanish position hear Albonito was exceedingly strong; it commanded the road for miles; a kitten could hardly have found a spot on the road where it would be invisible from the Spanish trenches. These occupied the crest of the southern escarpment of the mountains, and an tdea of the ruggedness of the country may be ohtalned from the statement that some of our feld guns engaged the enemy from a point which was only 2,000 yards away, yet nearly 500 yards below, and a wide valiey intervened hetween the two positions. The elevation of the Spanish trenches was
of Gen. Ernst's brigade, it was charged with the main cenance of order in the Coamo district. A few shots fired at a fleeing bandit by a party sent to arrest hlm were the only hostile shots ared by the battalion during the

During the work on the hridges, it was discovered that when the men could work at night, they could do a much work as they had been accustomed to do in the United States, without serious resuits. But, during the day, the rate of work had to be lessened always and suspended altogether hetween about 11:00 a. m. and 3:00 p. m., to avold undue exhaustion.

MAP OF MILITARY ROAD ACROSS THE MOUN TAINS IN PORTO RICO, SHOWING SPANISH POSITIONS NEAR AIBONITO.
ahout $2,200 \mathrm{ft}$. above the sea. The position occupied hy our guns had an elevation of 800 ft . Had it hecome nec essary to drive the Spanish troops from this position there would have heen at least one hattle in Puerto Rlco that would have heen long rememberd.
The orders of the 1st Battalion were to rehuild the hridges; permanent works have not generally been consldered a part of mlittary field englneering, but the volunteer engineers were recruited only from mechanlcs and killed laborers, with a few young men with technical education, and the 1st Battallon contained a sufficient number of good brickiayers for the work in hand.
The principal difficulty was to obtain sultahie materials on short notice; some cement, captured from the Span lards, was obtalned from Ponce. It was of rather poor quality, but was all that could he ohtained, and it was made to do. Sand was obtained from the stream beds; bricks were purchased from the native hrick yards; they were of very irregular shape, and very soft, hut they also were the best that could he obtalned. The original masonry of the hridges was of hricks not much harder than these, hut of much hetter shape; those showing on the face of the unplastered work had evldently heen ruhhed down to accurate shape, especlally those acting as voussolrs. The mortar in the original masonry was apparently lime mortar, with hrick dust added, whether for coloring purpcses or to give it hydraulic propertles, could not he learned. So far as workmanship went, the original ma sonry was heautiful; with the material used, it could no have heen excelled. The problem of the 1st Battalion was to equal it, with inferior materials; be it said to the credit of the officers and men in immediate charge, and especially the men, they executed a joh so nearly equa to the original that only a trained eye would notice the difference.
In executing the repairs, it was deslrable not to inter rupt traflic. When the engineers arrived, the two hridges that were destroyed had heen temporarily repaired with logs, brush and earth; with conslderable difficulty, quantity of apruce planks, $11 / 2 \times 10$ ins., with some large nails and a few boits, were obtained; with these, king nails and a few hoits, were obtained; with these, king post trusses were huilt, spanning the hreaks in the masonry, one on each slde of the roadway. After they were in position, the floor beams and a plank floor were put in, at night, over the temporary \log hridge, and high enough to permit the masonry to be rehullt under the plank floor. Suitably graded approaches of earth were prepared at each end of the king post bridges. The log roadway wes then taken out, all cracked and injured masonry removed, and the arches were rehuilt on the original llnes as nearly as possible. After they were finished, the king post bridges and the temporary approaches were removed at nlght, and the permanent road way restored as rapidly as possible. The other damaged arch hridge, the damaged abutments of the steel hrldge, and the damaged retalnlng wall described above, were all repalred; many minor repairs were made to parapets on bridges and retalning walls along the road, the damages heing due to wear and tear, and not to the Spaniards. For the exceilent work done, credit is especially due to Captains Merritt H. Smith and A. R. Livingston, both of New York city, and, among the enllsted men, to Sergeant Pearson, of Co. A, who was a most effclent foreman.
In addition to the work on the hridges and road, the battalion bulit frames for nearly 100 hospital tents at the field hospital near Coamo; and, after the departure

The bricks were generaliy dellvered in bullock carts, 500 bricks constituting a load for four hullocks. On one occasion, when the bullocks were not avallahle, one the hattalion haggage wagons, with two mules, was sent for hricks. The brick yard was muddy, and after 500 hricke bricks. The brick yard was muday, and alter was doubtful whether the mules could puli the load. The teamster who had driven brick wagons in the United teamster, who had driven brick wagons in the United States, inslsted on having 1,000 hricks, and the proprietor yielded, after warning him that he would he stuck mules, and they started off with the load, to the intense mules, and they tar hed with the load, to the latense astonish tur out all the milybors to see wo tened to turn out all the neighhors to see two mules pull 1,000 bricks.
On Nov. 5, the hattalion was ordered back to Ponce. The order was recelved at 11:00 a. m ., and at $4: 15 \mathrm{p}$. m . the return march was hegun in a pouring rain, with thirty wagon loads of haggage; the men's packs were loaded on the wagons, but they carried their arms, ammunition and accoutrements; at 1:00 a. m., after a halt of neariy two hours for supper, from $0: 00$ to $11: 00$ p. m.. the hattalion arrived, in good order, at the old camp on the Portugues, having made the 21 miles in ahout 7 hours of actual marching time, wading seven fords on the way. The men had had no practice marching, yet only two fell out on the way to Ponce, and very few cases of sore ?eet or stiff legs developed next day. The performance of the hattalion on thls march is another indication of the fact that, withln the troples all violent or prolonged physical exertions should be confined to night time, as far as possible.
The hattalion returned with the regiment, arriving at New York, Nov. 24, 1898.
The milltary road from Ponce to San Juan is a beautiful plece of work; every gully and stream is spanned by a substantial bridge or cuivert, except between Ponce and Juana Diaz; here, several bridges are much needed, but the approaches would be very long, and the structuren quite expensive. A cursory examination of the arch hridges and culverts, in good weather, would lead one to think that rather elaborate preparations in the way of aprons and sills had heen made to resist scour; but after seeing one of the insignificant littie streamlets or a dry guily become a raging torrent within the space of ten minutes, with the water rising above the springing lines of the arches, the necessity for the aprons and sillis is apparent; even as it is, the earth is scoured away from hehind wing-walls and from under aprons and silis in many cases, where one would say it was imposslble, but for the fact that it has occurred.
The steel hridges west of Albonito are all lattice glrders, with steel trough floors; the road metal is carried across the bridges, and the webs of the girders are solld plates, up to a point above the surface of the road. From there to the top chord, the webs are of quite light lattice work.

While the 1st Battalion was engaged upon the work described above, the remalnder of the regiment was busy on works of various kinds, including a road and redoubt at Guanica, a reservolr and ice plant for the hospital at Ponce, surveys, road repairs, etc., etc., demonstrating that every kind of mechanical skill is now called for in the operations of war and those that result therefrom. The fleld oflicers of the regiment were Col. (afterwarde (Captain. Corps of Engineers, U. S. A.); the writer, com-
manding ist Battalion; Major Ira Shaler, commaodias 2d Battalion, and Major J. D. Ferguson, comisiab Battalion.
Out of a total of 375 officers and enlisted men, the lat Battalion lost, hy disease, three enlisted thein luerto Rico.

John Stephen
735 North Capitol St., Washington, D. C.,
(Lieut. Sewell accompanies his contribut
sketch map which we herewith reproduce by which is of especial interest in connection wind incident of the Spanish-American war which we have seen nowhere recorded.
The late Captain Alfred E. Hunt, of Pitisburg. Pa., whose obltuary notice appeared in our issue of May 11, is sald to have been the only commls. sioned officer who went to Cuba or Porto Rico in the late war and brought back to the United states every man of his command. Those ac quainted with Captaln Hunt's vlgorous personal. lty and untiring industry can well understand how zealous and intelligent was his care for the healt of the men in hls charge, and to lt many doubties owe thelr lives.
It was only by a narrow chance, however, that Battery B, which Captain Hunt commanded, did not suffer a serious casualty in battie. If we mistake not, Lleut Sewell's sketch map shows the site which was occupled by Capt. Hunt's battery which accompanled the advance guard in the movement along the milltary road toward San Juan on Aug. 12, 1898. The Spaniards had been discovered in force ahead; an advance along the winding road by the infantry, under fire from the Spanish positlons above, would have been utter destruction; the mountain side was too rough and steep for a flank movement, and it was deemed best to try and dislodge the enemy with artillery. Capt. Hunt's battery was placed in position, its guns were trained on such of the enemy's positions as could be discerned, and the gunners took the lanyards ready to fire at the word of command. At thls moment a mounted orderly came tearing along the road from the rear at a break-neck pace, and as soon as he came within halling distance he shouted the news of the final slgning of the peace protocol. A flag-of-truce was at once displayed, was answered by the Spanlsh force, and an officer from each slde galloped forward. The American was the first to reach a turn in the road from which the entire Spanish position was vislble; and he then saw that the position of the American battery was absolutely commanded by the long entrenchments on the helghts above which were filled with a large force of Spaniards. which were flled with a large force of Spaniards.
Had the first shot been fired from Battery B, it would have been answered by a volley of Mauser bullets over a known and practised range, so short that the battery and its supports must inevitably have been annlhllated. $-E d$.)

Work of the Third Regiment U. S. Voluateer Engineers
 In Cuba.

Sir: The tralning, both mlilitary and engineering, of the Third Regiment of U. S. Volunteer Engineers, occurred in thls country before its departure for Cuba.
The Third Battalion disembarked at Matanzas, Dec. 23, 1898, and had the honor of raisling the American flag in that elty on Jan. 1, the day marking the end of Spanish sovereignty in Cubs. Captain Sturtevant and men from his company immediately proceeded to construct a dock, $30 \times 95 \mathrm{ft}$., the plies beling driven to a penetration of o ft . hy means of a hand plle-driver. The caps used were 12 ins. square, the joists were 3×12 ins., and the decktng 2×12 ins. This dock was suhsequently used for disemharking and emharking all U. S. troops as well as for loading and unloading all U. S. transports. Captaln Hand and men from his company constructed two inclined approaches along the face of the bluff from the top of the hank to this dock, about 30 ft . below. A part of the excavation was in rock. The road was made of soft limestone, fllled in with gravel and sand, and shortly wore down to a surface resemhling carefuliy laid macadam. Among the duties of this hattalion were also the location, laying out and preparing of all camp sites in the vicinity of Matanzas, Including the 2 d U. S. Cavairy, 160th indiana, 3d Kentucky, 12th New York, and 8th Massachusetts Regiments of Infantry, and the Brigade Hesdquarters. This work comprised the cutting and hurning of the brush, hreaking oft with sledges and leveling the projecting coral rock that everywhere protruded and flag poles
surface of the ground, preparing tent floors and
ad sttending to all carpenter work. Men from the battallon were overseers of the Cuban laborers (numbering st times ss high as 300), under the direction of Captain Westerfeld and Lieutenant Zarbeli. A target range was bullt for the 2 d . S. Cavalry, and a second range for the genersl use of the Infantry Brigade, hy Captain Sturtarant. Repalrs were made to Fort San Severino, by Captsln Sturtevsnt, to prepare it for occupancy by the 10th C. S. Infantry; and certain casemates were fitted for use as a general prison. This necessitated considerabia brick and stone work. One-half mile of $4-\mathrm{ln}$. Water-pipe was ald by Leutenant Brown, with Cuban lahor; one-thir the distsnce required hlasting in rock. Two eupply tank: over 3,000 galions capacity each were also constructed The repsir of all oid road and the to extend to the sand osd (shout two milles in length) to extend to the sand batterles at the mouth of Matanzas Bay was in charg of Csptain Sturtevant, and hranch roads to tha different csmps, sggregsting about two miles in length, were con structed by different offcers. A road, ahout two miles ong. was bulit hy Captain Hand to the 2d Cavalry camp Considerable rock work was encountered in all of these All hesvy ordnance, including guns, carriages, shot snd shell. wss transported from the sand batteries on the porth shore of the hay to Fort San Severino hy Liautenan Gwynn. Captain Sturtevant, or Captain Westerfield, uperintended the moving of all freight (brought by government transports from Dec. 23, 1898, to April 14, 1899) from the lighters alongside the whart to the top of the pank. Measurements and plans of Fort San Severino were made by Leutenent Fairback; of San Cristina Barrack now heing remodeled) hy Lieutenants Grimi and Fair bsck; of Fort Pines Altas by Lieutenant Zarbell, and snts Ysshel hospital by Captaln Westerfield. Construction of sll sinks, plens and conetruction of garhage chutes into the ses, etc., for the Brigade camp were in cherge of Lleutenant Dibhle.
The clesning of the streets, care of sewers and drains, and sll matters relating to the sanitary condition of the ley of Matanzas, were under the eupervision of Captaln Msttalr. A map of the clty was made and ceespoola, isterns, sinks, sewers and water-closets were all plotted it ty enlisted men of the hattalion. An examination and survey of Cardenas, Coion and Recreo, and reports thereon, especially as to their sanitary condition, were made hy Captain Westerfleld; Captain Hand examlned and reported upon the rallweys of the entire province. extending to detalis of roadhed, stations, water supply equipment and bridges. Tha report and estimate included all the requirementa to put the rallways in a first-clas condition for commerclal and milltary purpoaes. Captain Sturtevant constructed a government dock in the clty Mstanzas, to he used hereafter hy honded warehouses. etc. Over 100 piles were driven to an average penetra ton of 27 ft . The caps used were 12×12 ins. outside an 10×12 Ins. inside; the joists were 6×12 ins., and the lecking 3×12 ins. Before heginning the work the plfe driver had to be practically rehulit. All the work, ex ept handiling the timber, was done by men of the hat tallon.
A military road reconnolssance of tha entire province of Matsnzas was made by Lleutenants Zarhell, Brown and Rhea. As a rule the maln party would follow the main road, reading distances from an odometer attached to a wheel constructed for the purpose, the compass giving the direction. A party would be eent along the next par liel road to the right and another to the left (generally from three to five miles away), following similar methods milles tha partiea would meet agaln. In thls way all the rosds and the Important tralis were traversad, and notee pi military Importanca taken. Tha Batson and Cavairy sketching cases were employed. The extreme aou*3ern part of the province is swampy and without roads; canals form the only means of communlcation. The accurate existing maps of the rallways of the province formed the framework upon which wee constructed the resulting rosd map of the province as drawn from these reconnolsssnce surveys.
Leutenant-Colonel Jadwin was in command of this battalion untll linese necessitated hls return to the Unlted States, Merch 1; then Captain Sturtevant was in command until the arrival of Major Walke, March 15, 1899. In January, Regimental Headquarters and the Second Bsttalion were orderad to Clenfuegos, arriving there just as the last of the Spanish troops were saling from the on Feh, 10 . In into camp on the eastern alde of the city moved into the Engineer Barracks in the city. Soon after srriving, Colonel Galllard was appointed Chief Engineer of Senta Clara Province; and a work of great and Immediste importance was at once taken up-a report upon all the forts, batteries and defenees of the province. Chief among these were the reports on the fortifications defending Clenfuegos accompanied hy six hlue-prints of plans profles and locations, with 15 photographs illustrating the ssme; and upon the fortiactione defenting Isehe the Sagus, Caiharien, Casild blue-prints of plans, profia and Tunas de Zaza with 5 cographs illustrating the same. As locatlons, and 7 phosituation investigated, it may. As a suggestion of the delenses of Clenfuegos thay he noted that among the
of more or less obsolete type, mounted and ready to be served, varying in callber from about 4 to 8 ins., all muzzle-loaders in well constructed modern hatterles. The report also contained a description of the torpedo and Bei defenses of the port of Cienfuegos during tha war Besides the many routina duties and reports, Colone so made a complete report upon the water sup piles and the sanitary condition of Isabela de Sugua, Sagua la Grande, Caiharien, Remedios and Camsjusni a report upon the necessary improvements to Clenfuego and other workg iighthouse, dredging, marking by bua vessels to load and unload without the use of lighters a report upon the sources of fresh wster supply around the hay of Clenfuegos for troops to he in camp at Punt Pasacaballos, etc. The maps involved in camp at Pus tions just mentioned, as well as those of the work of the hattalion mentioned heiow, were all traced in the office of the Chief Engineer by men from the battalion and from theea 38 tracings and 263 hlue-prints were made and distributed among the officials interested.
Other englneertng work was allizent
earnestly was it prosecuted by offcers of the Sed on. So tallon the fres prosecuted hy omcers of the Second Bat avalleble the lutary wites. The more oncer avaliable for the military duties. The more importan (omitting work on camp sites and other minor employ ment) include: The sanitation of Clenfuegos unde Leutenant Codd, heginning with the cleaning and im provement of the etreets, then of the yards and courts, and finaly of all of the latrines and cesspools. The in spectors were enlisted men of the battalion, and the work was done the Cuhans. The death-rale of the city Which was 138 for the week preceding the first distrinu thon of rations to the starving, was reduced to for the week hefore the eanitation was begun; and chis had stead y conthued decreasing, reacking 29 for the last week the hattalion wae in the city. A survey of the city of Clen fuegos was made hy Lientenant Shaffer, with bench marks on
tersection.

The condition and adminietration of the inadequate water supply of Clenfuegos was Investigated hy Lleuten ant Reagan. One aource was the Calahazas eprings, about two miles east of the clty, and the other the Jicotea River, ahout seven miles northeast, the water heing delivered through a $4-\mathrm{In}$. plpe that is 27 years old. Irregularities and ahuses were stopped, and the company was forced to comply with the terms of its concession. An artesian well was bored near the city's reservolrs, under the direction of Lleutenent Murray, and this well had reached a depth of over 200 ft . at the time of departure of the hattalion. Captain Smith Investigated the Matagua Falla (about 20 miles southeast of Cienfuegos) and the Hanahanilla Fails (ahout 27 milea east of Clenfuagos), hoth in the mountains, as a possithle source of future water supply and power for the city.
Military road reconnolssance, aggregating more than 800 miles, were made by different non-commissioned offcers of the hattalion. The province of Santa Clara was quite extensively covered in this way, excepting an area in the northeastern part and a small portion of the exreme northwestern part. Some of these roads were traersed under circumstances involving hasty marches to more important service or to reach supplies, resuiting n incomplete notes; so that the actual mileage mapped was 443. The Batson and Cavalry sketching cases were used, distances paced and notes of military importance aken. A reconnolssance map was made by Lieutenants Black and Pasco, in completa detall, of all the region round Clenfuegos included within the line of defense enclosing the "cultivated zone." This was plotted to a cale of 4 ins. to the mile, with contour intervals of 10 t., and covered an area of ahout 40 square miles. Capain Thomas reported upon the condition and administra lon of all the connecting rallways of Santa Clars Prov nce, amounting to a total of 277 miles. A very carefus examination was made of the rallway hetween Clenfuegos and Villa Clara, and the Sagus la Granda, and Unidos de Calharlen rallways and the Hierro-Cardenas-Jucaro highway. Captaln Thomas was later ordered hy Cenemal Batee to proceed to Havana for a conference with the managers of the rallways hetween Havana and Cienfuegos to obtain concert of action in securing hetter connections and more rellable eervice between theee polnts.
To diferent
rements and repalrs to harracks at Placetas, cienfuegorovent medios: and later the at Paise hullaings; repairs and renstruation hridge vey of Cistuegos Harhor a complete hydrographic sur ey of Clentes Harkor waa made under the immediate irection of Captain Bellnger. This work was done in he way sol lor auch surveye lo this country, soundings were located hy transit intarsection and were made from the launch of the "Bay State," then lying in the harbor, and 2,000 eoundings were taken. Lieutenant Thomae directed the horings, 21 in number, axtending to an average depth of 30 ft . helow m .1. w. These horings were made for small distances in deeper water hy churning" an lron rod into the sand and gravel. Where the horings were through a considerahle dapth of earth, or through clay, a $11 / 2-\mathrm{in}$. pipe, jointed in sections of
hogany hammer worked by hand, the prolongation of th plpa upward serving as a "gulde," as well as a point attachment for the small shesves; and by this ingenfous arrangement complexity of apparatus wss avoided and the blow of the hammer was advantageousiy delivered upon the collars of the successively coupled lengths of pipe Samples of the earth driven through were secured from the interior of the plpe, and the method worked admirahly wheraver solld rock wis not encountered. The shore line and trisingulation ss well as tidal ohservations wer pisced under Leutenant Shaffer's immediate charge The tides were observed for one lunation, the averag t. and the minimum an fic Van Ornum was tinually in command of the Second Battalion.
The First Battalion arrived in Pinar del Rio, Feb 22 1899, camping until Aprit 3, when it moved into the Cuartel in Pinar del Rio. About Msrch 4 work was commenced, under direction of Captain Averfil, repairing and cleaning the Cuartel-a two-story stone bullding, about 250 ft . square, with an interior court about 140 ft . squsre. uban fabor was employed for the coarser work; carpenter work, painting and brlcklaying was done by men of the hattalion. A contour map and location for barracks, stabies and other buildings for infantry regiment and avalry squadron in Pinar del Rio was made hy Lieutenant Fain; also a prefiminary line for water supply and ewersge for the barracks bulldings was fald out.
Military road reconnolssances in the usual wsy were made from Esperanza through Vinales and Pinar del to to Coloma north to south), a istance of ahout 47 miles; from Pinar del Rio to San Juan y Martinez and San Luis, about 25 miles; and from
 0 miles. The officers having direction of this work were captain Fauntieroy, Lieutenant Fain and Captain Crecelus, the latter making a survey rather than a reconoissance, as he used the transit and stadia instead of the ketching caeee and pacing. Signal statlons were estahished over a considerahle area ahout Pinar del Rio, for triangulation in order to check road reconnolssances; but nly a few angles had heen taken and a hase-fine meas ured when orders to prepare to leave were recalved. ts stay in Cuha
Early in April of this year the regiment received orders to prepare for the return to the United Statas. Headuarters and the Second Battaiion salled from Clenfuegos April 13, and the First and Third Battalions from Havana Apri 15. The regiment was mustered out of service at Fort McPheraon, Ga., May 17, 1899.
J. L. Van Ornum, Assoc. M. Am. Soc. C. E., Late Major Bd Regt., M Battalion, U. St.
Beera Hotel. St. Louis, Mo., May 26, 1899.
(Since the above was in type we have received from Capt. L. F. Bellinger, of the same regiment, an account of its operations in Cuba which dupllcates in some particulars Major Van Ornum's. We print it, omitting these parts, below.-Ed.)
Sir: Through the efforts of Col. Eugena Grifin and others, an Act of Congresa was passed and approved on May 11. 1898, which permitted the ralsing of three regiments of twelve companies of ninety-one men each, 1,159 off cers and men to each regiment. The offcers were to he selected for their skill as military, civil, mechanical, electrical or topographical engineers, and an effort was made to recruit the anlisted men from among "machin ists, steam engineers, blacksmiths, carpanters, plumbers, telegraphers, topographers, draftemen, photographers, raliroad men, riggers, boatmen and those skilled \ln the uae oxplosives," also woodchoppers and lahorers.
The 3d Engineers had for its Colonel Capt. D. D. Gail 16,1898 Most is, 16, 1se. Mit thir 13 as tha result of their examinations. They were at once set th ark recruling lor the regiment all through th Jefferson Barracks, Mo. Eight companies were musterad In hetween July 26 and Aug. 4, and the last compeny In hetween July 26 and Aug.
was mustered in on Aug. 20 .
The effect of having officers accustomed to handiing men, and of having a high grade of men to handie, if seen in the march of six companies, in heavy marching order, 27 mifee in one day, with only five men reporting with aore feat at sick call next morning; also in the re sponse to a midnight call to arms, in which the regi ment was $o r m e d$ and on the march, with 20,000 round of ammunition issued, all within 23 minutes from the time "first call" was sounded
In the United States, engineering drill and instruction were pushed forward until the 3d Battalion left for Cuha, disembarking at Matanzas, Dec. 23, 1898, snd raised the American flag on New Year's Day, denoting the end of Spanish rule in Cuha.
The battallon at Clenfuegos turned out on Feh. 13 to receive Gen. Gomez and hia "Triumphal Army" (?) of
150 men; also on March 30, to be reviewed by the Secretary of War.
The special diffeultios encountered were, the proximity
ace in locating sanitary camp sites, the malarious swan.ps encountered in mapping Matanzas Province, the impure water which, to fit it for drinking, was ali bolied (at Clenfuegos, the only good unholled water was brought in hy train 80 milies), and the enmity of the Inhabitants, necessitating all survey partles to he accompanied hy armed guards. Apparently, most Cuhans hate all things American except American food and A merlcan money.
During one fortnightly period, 128 men had heen checked as having heen at work on the streets some of that time, yet the hlandness and innocence with which about 400 workmen appeared for pay, vouched for on foremen's hooks as having worked all the time, would do credit to old times on the Alhany Capitol, or to the Cuhan veterans (?) now appeartng for pay, hut not appearing on their muster roll.
Of great importance is the survey of Clenfuegos Harhor. This harhor is ahout ten miles long hy three milles wide, with a deep entrance 400 yds . wide and one mile iong, with a sharp turn. At present, the largest vessels can approach within $2,000 \mathrm{ft}$. of the pler heads. The tonnge of the port last year (a dull year, necessarily) amounted to over 100,000 tons, with lighterage from 40 ets. to 80 cts. per ton. From the survey made, it was esmated that a $25-\mathrm{ft}$. channel, 500 ft . wide, with side lopes 4 on 1 , an allowance of 1 ft . for "hack fill," and with a "flare" to $1,200 \mathrm{ft}$. Wide near the pler heads, can dredged in mud, sand, clay and gravel, with an excavation of only $273,000 \mathrm{cu}$. yds. Ahout as much more hould he dredged out of the 81 pps , and all dredged ma erial could he used to fill in low land ahout $1 / 2$ mile from redge. It wiil be seen harbor is a clean one in which to rage. It will be seen that the cost of lighterage for one ear will ahout pay for deepening the ship channel to This
This work, enumerated above, was done by the regiment in fess than three months, in addition to guard duty and the regular military duty required of infantry. Onehird of the men get the same pay as Infantry; one-hal get ahcut 30% higher pay, and the offcers get the same pay as mounted officers. Ail are suhject to emergency calls, as prevlously mentioned. The value of engineer soldiers to the government is easily seen.

Very respectfuliy.

tyle F. Bellinger

Late Capt. 3d U. S. V. Engre
Fort McPherson, Ga., June 2, 1899.
THE ALTERATION OF THE INTERIOR OF THE GRAND CENTRAL STATION, NEW YORK CITY.
The rallway llnes which terminate at the Grand Central station in New York elty have long had before them the difficult problem of remodeling that antique structure to better sult the demands nf traffic. As many of our readers know, the thre
vays which center there have for years had ee separate passenger walting rooms, each of them crowd ${ }^{\circ}$, poorly lighted and inconveniently arranged. Two of these were located on the side of the main train shed, necessitating the use of portable bridges for crossing the tracks to reach the trains. A smaller train shed on the east side has accommodated most of thi arriving trains.
A year or more ago several storles were added to the part of the bullding which is used for the offices of the rallway companles; but the first floor with the passenger walting rooms was left untouched. Although plans were made for the reconstruction, and were described in our Issue of June 6, 1898, they were not carried out.
Now, however, it has been determined to proceed with this work, and plans for it have been prepared by Mr. Samuel Huckel, Jr., of the firm of Hazelworth \& Huckel, Phlladelphla, Pa., in consultation with Mr. W. J. Wilgus, Chief Engineer of the New York Central Ry.
The main passenger entrances will be removed to the 42 d S. slde, which will be made the main front of the bullaing. One exception to this will occur on Vanderbllt Ave., near 42d St., where a large general entrance will be made. As at present, trains will arrive on the east side of the train shed and depart on the west. Connecting all the track platforms, both incoming and outgoing, and extending the full width of the bullaing, parallel to 42 d St., will be a platform 30 ft . wide. On the east or arriving side this platform opens into a large covered section, which has a main exit 40 ft . wide opening onto 42 d St. In this section will be a covered cab stand, $37 \times 86 \mathrm{ft}$. In area. There will also be an incoming waiting room. On the second floor, directly over this plat form, will be a restaurant, $37 \times 60 \mathrm{ft}$., and the usual railway lunch room, with a marble counter 100 ft . long.
That portion of the station devoted to outgoing
raffic naturally occuples the most space, and will attract the most attention. The passenger will enter from 42 d St., through a spacious lobby, into the large waiting room, 180 ft . long, 90 ft . wide and 35 ft . high. The roof of this room will be formed by a series of arched glass panels sprung between girders, resting upon massive piers. Between these plers will be ornamental arches, and over the crown of each arch will appear the name of some important city reached by the railways which use the station. Heavy ornamental frlezes and cornices will further lend to the dignity and impressiveness of this rotunda. Glass panels and partitions will insure a full and even distribution of light during the day, while at night clusters of electrlc lights in the ceilings and around the cornices will afford the desired light and add to the attractiveness of the room
The lower portion of the rotunda and the lobbles will be finished in different kinds of marble, while the pllasters, cornices and other decorations will be in plaster.
At each side of the main entrance will be the ticket offices with a total of 15 windows, some oi which will be for women only. At the left cf the 42d St. entrance and adjoining the Vanderbilt Ave. lobby will be a women's walting room. Opening off from this will be a tollet room and a tea room the latter in charge of maids, and designed especlally as a place where women coming to the city on shopping excursions can rest and obtain light refreshments. On'this side will also be the tele graph office and telephone booths. On the right ranged around the wall, will be the news stand men's room, tollet, parcel and information offices The series of disconnected rooms along the west side of the long train shed, at present used as waiting rooms, will be thrown into one long room which will be used as the outgolng baggage room
All incoming baggage will be handled in a like manner on the east side, where the entire length of the train shed, about 650 ft ., will be utilized for this purpose. To further faciliate the handing of baggage a subway, $181 / 2 \mathrm{ft}$. wide and $91 / 2 \mathrm{ft}$. high. will extend across the north end of the train shed just under the tracks. This subway will connect the baggage rooms on the two sides with six bag gage elevators at the north ends of the departing platforms.

It is expected that the entire work will be com pleted before the close of this year.

ANNUAL CONVENTION OF THE AMERICAN RAILWAY

 MASTER MECHANICS' ASSOCIATION.The thirty-second annual convention of the American Rallway Master Mechanics' Association was held at Oid Point Comfort. Va., on June 19 to 21, 1899. After the opening prayer an address was dellvered by the Hon. Joseph Bryan, President of the Richmond Locomotive Works. Mr. Bryan spoke at some length upon the history and development of the locomotive, and referred more particularly to the vast progress made during the year just passed in introducing American huilt locomotives into foreign countries. After a hrief and appropriste address of thanks had heen made hy Mr. W. S. Morris for the courtesy of Mr. Bryan in addressing the convention, the regular programme of convention work was taken up. The first husiness was the address of the President, Mr. Rohert Quayle. The Secretary's report showed the financial standing of the Association to be good. The total recelpts for the year were $\$ 3,971$, and the total expenditures were $\$ 3,006$, leaving a halance on hand of $\$ 902$, which, added to the halance already in the treasury, makes the total cash halance of the Assoclation $\$ 3,116$. The dues for the ensuing year were made $\$ 5$, as in the past. The Association now has 653 memhers. Following these reports the question of taking some action to $l i m i t$, if possible, the time of meeting of the Master Car Builders' and Master Mechanics' conventions 0 one week, was taken up. Following the precedent established by the M. C. B. Association at its meeting last week, it was moved that the Executive Committee he Iven power to act with the Executive Committee of the M. C. B. Association to arrange for the meeting of the M. C. B. convention on the first three days of the week and of the Master Mechanics' convention on the last three days of the same week. After some further routine husiness the convention took up the discussion of topcal questions. Such of thls discussion as is of most general interest is given under the heading of Noon Hour Discussions, at the end of this report of the proceedings.

A Research Laboratory

The committee on this suhject considered that there was need of more concerted action on the part of rallways n the development of those practical and scientific fact which are useful in direct practice in the design and
maintenance of raliway equipment, and it Executive Committee of the Association ing a research fahoratory. The committer ing a research lahoratory. The committec ever, proposed the plan of using existing rather than the estahlishment, at least imrot new plant. By selecting one laboratory investigation and another for a second line tion of men and materials hest suited to th Assoclation could he secured. The cost to th of organizing a research lahoratory on this timated by the committee at ahout $\$ 40, \mathrm{~cm}$

years.

Discussion.-Mr. R. P. C. Sanderson (Nortolk \& West ern) ohjected to the estahlishment on th would he nearly imposaible to secure the cialists to make its work of most value, and
helieved that Individual interest and ambition helieved that Individual interest and ambitic hetter results in the end from the memb
got from such a lahoratory. Mr. F. A got from such a lahoratory. Mr. F. A. \& Q.) and Mr. Angus Sinclair also spoke in (C., These negative opinions were, however, attacked by M.
J. N. Barr (C., M. \& St. P.), who urged that whlle th time might not be ripe for a research lahoratory unte the control of the Association, yet such an institution
should he encoursged in the minds of rallway should he encoursged in the minds of rallway men. I was finally moved that the recommendations of the com mittee he referred to the Executive Committee for furthe
action. This closed the work of the first day's sesslor action. This closed the work of the first day's sesslog
The remainder of the report we postpone to our next iss ANNUAL CONVENTION OF THE MASTER CAR BUILD ERS' ASSOCIATION AT OI D POINT COMFORT, VA.
The 33 d annual convention of the American Rallway Master Car Builders' Association was held at the Hotel Chamberlain, Old Point Comfort. Va., June 14 to 16 . inclusive. Ahout the usual number of members and guesta were present; the display of railway appliances greater than in years past, and the usual eiaborate pai reater than in years past, and the usual elaborate proMen's Association.Judged by these externats the colv Men's Association. Judged hy these externais the conit is gratifying to be able, on the whole to say that and is gratifying to be able, on the whole, to say that the The programme was a long one comprising ten subles. The programme was a long one, comprising ten subjecrs or topical discussion and the special committee reports, besides the reports of the six standing committees of the association. As was natural to expect, some of these reports falfed to develop the full possibinities of thelr suhjects, hut, generally speaking. the really importaat suhfects were in good hands and were well bandled to the reports and fully discussed hy the members. To a certain extent the meetings were marred by the nolse
outside the convention-room, and both the business meetoutside the convention-room, and both the buslness meet-
ings and the pleasure excursiona were rendered uncomings and the pleasure excursion

Wednesday's Session.

The opening session on Wednesday morning was begun with prayer hy the Rev. J. J. Gavatt, of Richmond, Va rell, of Virginia, followed. With these preliminarles rell, of Virginia, fonowed. With these preilminaples inished, the regular business of the conventon was be gun. In his oflclal address the President of the Assoclation, Mr. C. A. Schroyer (Chic. \& No'wn), reviewed
briefly the work of the associstion in the psst and urged briefly the work of the associstion in the past and urged the full consideration of the various reports to be presented at the sessions which were to follow. He called speciai attention to the criticisms which have recently heen made of the M. C. B. coupler and thought that mos of the difficuities complained of could be attributed directly to the great variety of makes that were now o the market, to the inferior quality of material that wa heing used in their construction, and to the difficuity of handiling them in connection with the link and pin coup lers at present also in use. Another thing which be considered merited especial attention was the question representation in the association. In regard to this be sald The question of representation in this association has
heen cailed to my attention hy one of the members, and
I am led to helieve that many are of the opinion that I am led to helieve that many are of the opinion that representation should he changed from its present wheel-
age basis, where elght wheels represent a car, to a ton-
nage hasis, as the claim is now made that rallways repnage hasis, as the clalm is now made that raliways rep
resented heretofore having a large number of four-whefee
cars of 8,000 or 10,000 ibs. capacity, are hsving thes
lass,
largely
clation
prevail

tion presents a fileld of inquiry that merits your attentio
and la presented to
no and ia presented to you as food for thought,
The address by the President was followed by the report of the Secretary, which showed the present mem hership to he 458 members, representing $1,348,131$ cars Despite the reduced annual dues of $\$ 4$ the report showed a halance of receipts over expenses for the yesr of $\$ \$ 5$ which, added to the money in the treasury, made the total sum invested to the credit of the association 88,88 . It was voted that the annual dues should be continued at $\$ 4$ for the ensuing year. The hour of noon having arrived with the completion of these husiness reporth,
and it heing provided in the by-laws of the association that the noon hour of each aession shall be given up to topical discussions of special subjects, this part of the programme was st oncs taken up. Such of thess d/scussions as are of most general interest are ahstracted under a separate head
Following the topical discussions ths convention proceeded to the consideration of the reports of the various standing committees. The first report in order was that of the Committee on Supervision of Standards and Recommended Practice. This report suggested several minor alterations in certaln standards wbich were in part adopted by the convention and in part ordered to he submitted to letter hallot. The next report on Triple Valve Tests proved to be of a more interesting character. Mr . G. W. Rhodes (B. \& M. R.), the chalrman of tbe committee, stated for the committee that the hrake-testIng apparatus owned by the assoclation had during the year been transferred from Altoona, Pa., to the laboratories of Purdue University and had been ready cor opera-
thon in its new boms since Dec. 1, 1898. The committee, however, had not made any tests of triple valves.
Mr. J. N. Barr (C., M. \& St. P.) expressed bimself as dissatisfied with the report and asked for an explanation of the fallure of the
He said, in part:
1 have learned recently that there is a strong interest urging the adoption of the New York air hrake in various
quarters. 1 helieve it is true. Unless each company is quarters. 1 helieve it is true. Unless each company is
to test these hrakes for themselves, Itbink this associa-
隹 tion ought to stand in the breach and relleve individual
members of that labor and expense. I think we all recognize that we cannot afford to put any apparatus under
our cars that will not work with wbat we have, and ur cars that wild not work with wbat we have, and we
ught to know defnitely whether it will work and how
losely it will work. We have about 70% of our cars closely it will work. We have about 70% of our cars
equipped with the Westinghouse air brake. The New
York Air Brake Co. offers their hrake for less money. and if it is as good as the Westinghouse we want It ,
and there are many other roads in that position. Ws
do want Information on the suhject, and if the assoclado want Information on the suhject, and if the assocla-
tion wili give it to us we are willing to wait for awbils.
I would like to know, however. with the New York alr briks as prominent as it bas heen for the last two
why no attempt has heen made to get a test of it.
In reply to Mr. Barr's remarks Mr. Rbodes made the following explanation:
At the annual convention of 1898 the following motion was offered hy Mr. A. E. Mitchell: "I tberefore maks a
motion that the standing committee on triple valve tests this year obtain triple valves from the manufacturers
and maks tests of them and report the results of its tests to this convention next year, giving specific names and to this convention next year, giving specinc names and
referring to catalogue numhers." The motion was
adopted, and tbe committee put itaelf in communication adopted, and tbe committee put itself In communication
with the manufacturers of the New York air hrake and endeavored to ohtain triple valves from them for test. Ths
President of the New York Air Brake Co. wrote hack to the chalrman of the triple valve commiltee, saying that they would not furnish any triples for test. The reasons
given were two, ths principal reason being that owing to given were two, ths principal reason being that owing to
an opinion given hy the lats Mr. Maasey, in 1808, following a conversation with the chatrman of the committee,
they ohjected to one of the requirements in test No. 2 . they ohjected to one of the requirements in test No. 2 The requirement reads as not be less than 15% nor mor pressure in this test must not be less than 15% nor more
than 20% ahove the pressure given by the same hrake in full service application." Mr. Massey. In a communi-
cation to me, told me that the New York air hraks would cation to me, told me that the New York air hraks would
not meet that requirement, and he wisbed the committeee not meet that requirement, and he wisbed the commiltee
to consider a modfication of these rules. He acknow ledged that it was a good feature in a triple vaive, but
did not consider it was a vital or easential feature, and
wished the compltee to did not consider it was a vital or easential feature, and
wished the committtee to change it. On that score the
Wew York Alr Brake Co. ohjected to suhmitting the New York Alr Brake Co. ohjected to suhmitting thei
triples for test. They made the further argument tha
they had a large number of triples in use, hut that the they had a large numher of triples in use. hut that tbe
present composition of tbe committee on triple vaive tests was such that no member of the committee had had siny experience the the use of their triples, and that they
did not think their triples would get the attention or the are that they would if some of tbe memhers knew mor both these points were legitimate objectione and were points that this assoclation should give some attention to.
The recommendations for the tests were made in 1893. theal wead tests, bretty fresh from a large numher of prac the Now York. Central road, and It and subsequentiy on look to me to
be quite reasonshle that if there is any numher in be quite reasonshle that if there is any numher of inter
ests involved wbich would like to havs these ruies gon over and reinvestigated this association should consent to that and perhaps recommend it. It is true that at the
time that this matter was brought up that ths committee
then had no experiencs with the present New York triple and 1 see no ohperctiones atith all (he present New York triple, the committee who should he one or two members on
ths servics given by this New Yorlens with and know
tripls. There rvice now.
Foliowing Mr. Rhodes' remarks, Mr. Barr made motion that two membsrs familiar with the practical working of ths New York alr hrake should he added to the present committee, which was carried by a vots of the Barr, Barr, speciaily empowering the committee to test triple alves and to expend from the funds of the aasoclation any money necessary to conduct these tests up to a total of $\$ 3,000$. Thls motion was carrled after soms discussion. Thursday's Session.
The greater part of ths second day's session of the convention was devoted to ths revision of the rules of interchange. A number of minor changes were made, and, as 8 usual, a grester numher of suggested changes wsre genersi interest is attached to one or two of the changes
made, but for the most part they do not claim ettention ontside of those directly concerned in the operation of the rules in practice. The prices for M. C. B. couplers were altered to provids the charging of $41 / 2 \mathrm{cts}$. per lh . for conplsr parts of steel couplers outside of body or ahank, for which ths present price of $\$ 4.50$ was continued. This changs made the new price of steel couplers complete $\$ 7.50$, or $\$ 1$ more than the price last year. In the passenger car rules a new section was added, ae noted further on in the report upon Pintsch Gas in Intsrchangs.
The reading of the reports of special committees followed. The first report taken up was that of the committes on prices west of the 105 th merldian
Compensation for Car Repairs Done West of the 105th Meridian.
For come years the members of the associstion, who represent rallways whicb are located west of the 105th meridian, have been complaining tbat the prices for car repairs stipulated by tbe M. C. B. Rules of Interchange were very much lower than the actusl cost of such a and material in the far West than in the East and have and ark the have asked that they he allowed ilshed prices to various argun in in in the rules bave heen given are or less in detall in the reports of previous convention whave heen published hy Engineering News and they will not be gone over again here. It is enougb to say that the report of the committee recommended that no cbange be made. pected, the discussion upon this report was quite abort. pected, the discussion upon this report was quite abort.
Briefly stated, the repressatation of the Western roads Briefly stated, the repressntation of the Western road
whicb have been making the figbt for the proposed al whicb have been making the figbt for the proposed al-
terations contented themselves with making a protest terations contented themselves with makin
against the conclusion reached in the report.
The next report was that of tbe standing commltee upon The next report was that of tbe standing committee upon
Wheel and Track Gages. Tbe chairman of this committee Mr. J. N. Barr (C., M. \& St. P.), stated that his confer ences with the American Rallway Assoclation indicated that the present dimensions were satisfactory and tha there was no occssion for any change. The committe was discharged hy vots of the convention.
The next report was that of the committes upon BrakeShoe Tests. Tbls committee recommended tbat it be Instructed to test such new shoes as had heen put upon the market sincs tbe original tests were made. This recommendation was concurred in hy vote of the convsn-
tion. Ths next report was that of the special committee tion. Ths next re
on trains parting.

Trains Parting
The time-honored custom of depending upon a circular letter of Inquiry to secure the necessary information upon which to hase conclusions and deviss a remedy for the fauit being investigated, falled bere, aa is so often the case, to accomplish the result sought after. Upon the information recelved, however, the committee hased the following conclusions:
Spindles should bs maintained at not less than 2 ins in diameter and keys at not less than $1 / 2 \times 2$ ins. More care should he exercised in making the pockets, to avoid
sharp corners on the rear end. In car inspection a close inspection should he made of knuckles and locks, In order to reduce unnecessary play, it is necessary to make syatematic inspection of couplers in aervise, with the vie
of fimiting the variation from the \mathbf{M}. C. B. contour Ilnes using a apecial gage for the purpose. M. C. B. huffe hlocks are recommended on all cars, to rellevs the shock to draft rigging in elacking up.
Ths committee stated that only one form of gage was
suhmitted for its consideration a diagram of which is suhmitted for its conslderation, a diagram of which is
sbown in Fig. 1. In tbis connection it will be interesting

Fig. 1.-Gage for Determining Permissible Amount of Wear in M. C. B. Couplers.
to study the form of gage recommended hy the committee
report on M. C. B. couplers reprinted separatsly elsewhere in this issue.
This report was not discussed and with its presentation the convention adjourned its eession.

Triday's Session

At the opening of its third and last session, the convenion found before it a lengthy programms of unfinished usiness upon which it set energetically to work. The onslderation of the remaining special committee reports first recelved attention.

Square Bolt Heads and Nuts,

The interest of this report lay in the special tests con ducted st the laboratories of Purdue University for the committee, to determins whethsr the smaller size of bolt bead recommended hy the manuiscturers was as strong as the standard size head adopted by the Association some yesrs ago. The tests wers made under the direc tion of Professors W. F. M. Goss and W. Kendrlck Hatt The position had heen taken hy the msnufacturera tha the large hesd called for in the U. S. standard involved the upsetting of so large a msss of metal that two blows
were necessary to perform the work. Consequently, the were necessary to perform the work. Consequently, the proper degree of heat could not be malntained during the operstion and ths resuiting bolt head was thus weaker than would he the smalier head, known as the manufacturers' standard head. The tests, which wers very elahorats and were reported hy Professor Hatt in much de tali, showed that the smaller heads were the stronger.
Tbe committce presented Professor Hatt's report with the The committee presented Professor Hat
following as its own final conclusions: It will he seen from Professor Hatt's report that there
is evidenty ample strength in the smaller heads, ind
that as far as the question of strengtb is concerned, there that as far as the question of strengtb is concerned, there
is no reason why s smafler bead than ths M. C. B. or M.
M. standard cannot be used, and we recommend the folM. standard cannot be used, and we
lowing standsr for square holt heads:

The short diameter of head shall be one and one-hal thes the diameter of the holt, and che the head. As regards square nuts, we recommend tbat no change in the present standard he made, as it is helieved tha there is no demand for it, and the replles from the differ-
ent roads show that there is no dificulty in gatting them of M. C. B. standard.
While it is true the
While it is true that there msy be some disadvantages in
having holt hesds and nuts of different size on sccount having holt hesds and nuts of different size on sccoun
of difficulty in using wrenches, it is helleved that wrenche can easily he made in. S-form, fitted st one end for the
nut and at the opposite end for the bolt head. It is siso belleved that it is not safe to make the short diameter of
the nuts any less, as this would result in greater liability the nuts any less, as
of the nut spiltting.
The next, snd, on the whole, probahly the most import ant report presented to the convention, was that of the port is given elsewhere in this issue. The discussion of the report was hricf and husinessilke. The recommenda tions concerning length of gusrd arm, vertical dimension of knuckles, vertical dimension of end of guard arm vertical height of horn, trueness of axes, corners of yoke play of shank, dimensions of pivot pins, were ordered fo be submitted to letter hallot as standards. The recommend tlons respecting twist gages, worn coupler gage, and speci fications were ordersd to be suhmitted to letter ballot a recommended practice. The recommendation regarding the gage for new knuckles was indorsed by vote of the con vention, and that regarding new dimensions for coupler shanks was referred back to the committee upon M. C. B. couplers, witb a request to make the needed recommend tions. The report proper was dismissed with the actlon last taken, and the convention took up the question of pointing a standing committee on M. C. B couplers of A, M. Waitt (N. Y. C. \& H. R.) sald:
In line with the suggestion made hy this committee 1
move that the assoclation appoint a committee on coupler lests, to consist of not less than five members, to whom shall he submitted from time to time the testing of coupers, the committee to certify to the association those couplers that have satisfactorily passed the requirements tests. Furthermore, that this committee be authorissd o arrange for construction of standard machinery for tsat-
ng couplers, the sams to be pald for hy the assoclation. ing couplers, the sams to be pald for hy the association. in connection with the motion 1 would say that I think and triple valves, is of enough importance to warrant a
standing committee, and having such a standing committee standing committee, and having such a standing committee we shoud furniah them with the necessary authority and permanent beneat from it. Tbe raliwaya of the country want to know what couplers can be asfely used. Ths ten-
dency is to introduce devices which ars cheap, and we are ency is to introduce devices which ars cheap, and we are menta in connection with the standard couplier. and ws are
mikely to introduce tbls recommended practice for test ifkely to introduce tbls recommended practice for tests and specincations. represented in ths assoc many of ths
rall way companies carry
on and maks investigations and tests in tbe same way that ths larger companles can, and we want to distribute the appointing tbis committes and having them maks tsata couplers submitted to them, we can ask the manufactnrers of couplers if thsy have had tbelr coupler tested and
passed. We wili be informed of thoss which have passed

Mr. Waltt's motion was carried hy vote of the convenion.
Mr. John Hickey (R. G. W.) then mads a motion that the standing committee be requested "to look over the situation of all automatic couplers-any that may differ in constructive principles from the M. C. B. couplers-and report its findings to the assoclation one year hence." This motion was opposed by Mr. A. M. Waitt (N.Y.C. \& H.R.) and hy Mr. R. P. C. Sanderson (N. \& W.), and when put to ths vote of the convsntion was lost.
The next zeport was that of the committee on "Air-Brake Appliances." A number of recommendationa were mads hy ths committee, which wsre ordered to be submitted to letter hallot, as recommended practice. It was also voted to continue the present committee with instructions to confer with air-hrake manufacturers in relation to the adoptlon of their (the alr-hrake companies) recommended
practice, with such modifications as may be considered ad viakle.
Specifications for Wheels and Axles for $60,000-\mathrm{lb}$. $80,000-\mathrm{lb}$. and $100,000-\mathrm{lb}$. Cars,
In respect to wheels the committee recommended that the specifications submitted by the Committee Report of 1897 be adopted, with the following changes:
To Include only $33-\mathrm{in}$. wheels, because this diameter
has hecome universal for cars of the capacities named. has hecome universal for cars of the capacitles named. huh it is recommended that the wheel centrally on the
blows, instend of five, of a $140-1 \mathrm{~h}$. Weight falling 12 ft . ten For the drop test where the wheel ls struck on the plate
close to the rim your committee has added wheels of 625 close to the rim
ibs. and 650 lb
The thermal test is made compulsory with elther the
drop test on huh or drop test on plate.
At the convention of $1898, \mathrm{Mr}$. K. D. Nelson, under the head of toplcal discussions, presented full specifications for an axle designed hy him for a car of $100,000-\mathrm{lh}$. capactty and suggested the advisability of its adoption as recom mended practice. As the result of the discussion whic followed, a committee was appointed to investigate the whole subject, and to present a report. Mr. Nelson was made chalrman of this committee, and the report recom mended the axie whlch had been advocated in Mr. Nel son's paper of the previous year. This axle is shown hy

Fig. 2.-Proposed Axle for $100,000-1 \mathrm{lb}$. Cars. Normal weight of axle, 788 ibe.
Maximum welght of axle, 808 ing.

Fig. 2. Full specifications for thls axle were also sub mitted in the report.
Discussion.-lt was voted that the specifications for $33-\ln$. cast-Iron wheels, and those for both steel and Iron axles be submitted to letter ballot as recommended practice, and that the design for steel axles for $100,000-\mathrm{lh}$. cars (Fig. 2) be eubmitted to letter ballot ae a standard. Uniformity of Section for Car Sills.
The committee considered that its two principal ohjecta was to recommend such sizes of sills as would he suitable for general use in the design and construction of all new fiat-bottomed cars having timber silis, and, second, to choose such sizes as would be most generally suitahie for the repalis of the great majority of tho cars now in service. For such cars as box, stock, fiat, long gondolas, refrigerators, etc., the sizes of sills recommended were as fol-
lows: Tows:

For cars 40 ft . long and over, such aa furniture and special long gondolas, the following sizes were recommended:
$\begin{array}{llll}43 \times 8 \mathrm{lng} . & 5 \times 9 \operatorname{lng} & 6 \times 9 \text { ing. } & 6 \times 12 \mathrm{Ins} . \\ 5 \times 8 \% & 6 \times 10^{\circ} & 6 \times 14 \%\end{array}$
The committee believed that the above recommendations afforded a sufficient range of sizee to cover all requirements of design; they were good merchantable elzes, and If adopted and used as suggested, ledight as there would he less delay in getting special sizea of lumber, and one less delay in gelligg specal ons or regular sizes alled would be able to get requisicions for regular sizes filled more promptly, as the certalnty of selling their stock orderther expedite the seneral introduction of etanderd To further expedile the genitate car repalrs, and reduce sizes for car silis to racintate car repairs, and reduce stocks of that the following Car Builders' Rules of Interchange.
When renewing long sills in foreign cars ruquiring odd
sizes of lumber, the next larger suitahle M. C. B. atandard sizes of lumber, the next larger suitahle M. C. B. atandard
size of aill may be used and coneldered ae proper repalrs. It was voted to suhmit the slzes recommended to letter ballot as standard.

Helghts of Couplers

The committee decided not to confer with the American Rallway Assoclation and the Interstate Commerce Commission for the purpose of getting the limits of heights of couplers changed to 31 Ins. minlmum and 35 ins. maxmum, the lnvestigation made by the committee having satisfled its membere that any change in the present limta was not advisable at the present time. With knuckles divided in the center by the slot for a coupling link, any ncrease in the limite for heights of couplers would reeult in many casea in only one knuckle lug of each coupler being in contact, and thue would tend toward a greater number of breaks-In-two due to one coupler passing over the other.
The report was recelved and the committee dlscharged.
The following and final report was that of the Committee on Subjects for the 1900 convention.
Subjects.-The committee appolnted to submit suhjects to be reported upon at the convention In June, 1800, submitted the following
(1) Standard Center Plates-Committee to suhmit design of center plate of such dimensions and spaclng of bolt holes as will be satisfactory for all classes of cars, an
so formed that it can be made of cast iron, cast steel, mal
leable iron or pressed steel seabrmie iron or preased steel.
(2) Draft Gear. - Commlttee
(2) Draft Gear.-Commiltee to suhmit a design for rec-
ommended practice to meet the requirements of the increase in the capaeity of locomotives and cars. also to take up the question as to Whether the best prac-
tice requires that side bearings should be in contact or
whether cars should have ciearance tice requires that side bearings should be in contact or
whether cars should have clearanco, and if ao, how much
for both metal and wood holsters, and also the bent for both metal and wood holsters, and also the benefit, it tion side bearing.
(4) Air-Brake
and using hose made under speclfications and purchasing
 present specificatione
(5) Uniform Sractice. Section of Car Siding and Car Flooring.-
The committee to suhmit, The committee to suhmit, for adoption as recommended practuce, drawings of the sectione of the eiding and floor
Ing made from the merchantahle wldthe of lumber and ing made from the merchantahle widthe of lumber and to
ehow the thickness or thicknesses, locating the tongue and
groove or lap in relation to the inelde face groove or lap in relation to the inelde face.
(6) Design of Journal Box, Journal Box Lid, Bearing and (6) Design of Journal Box, Journal Box Lid, Bearing and
(7) Dor Cars of 100,000 lims. Capacity. Weage Dead Blocks.-The committee to conslder the advisa-
blifity of using metal dead blocks with automatic couplers bility of using metal dead blocks with automatic couplers,
and at the aame time to consider the proper spacing and general design of the same to eult the conditione since the
use of automatic couplers of varlous designe has hecome use of automatic couplers of varlous designe has hecom
general.
(8) Safety Chains.-To conelder the advisahility of ap general.
(8) Safety Chains. - To conelder the advisahility of ap-
flyd chaine to the end silis of flat care and dropplying fixed chaine to the end silis of flat care and drop-
end gondolae, which are subject to be used for doukle
loads and to present drawings showing standard designs of end gondolae, which are suhy
In addition the committee included the recommendations for eubjecta made by the Committee on Supervision of Standards, which were as followe

1. Design for wheel circumference measure 3. Design for the journal hearing and wedge for
80,000 and $100,000-\mathrm{th}$. capacity journals. 80,000 and $100,000-\mathrm{ih}$. capacity journals.
2. Revislon of rules for loading poles, logs and hark on cars. Revision of recommended practice on epringa for
freight cars lncluding the conelderation of designs for freight cars, Including the coneldera
springs for $100,000-1 \mathrm{~b}$. capacity cars.
The committee also recelved a communication from the Master Car and Locomotive Palnters' Aseoclation, requesting that the Master Car Bulldera' Assoclation and the Master Mechanles' Assoclatlon should designate certaln subjects for them to work on. The committee did not feel that it was practicable to do that, and if it was done at all, it should be left to the alscretion of the Executlve Committee, but it wished to include one subject which could he so used if seen fit-namely "to report on the hest metho of condueting test to determine the rela lve merits of the varloue materlale used in paintlo ral way equipment, with special reference to endurance and way equipment, with special reference to endurance and service."

Mlscellaneous Business.

Time of Meeting.-During the first and final sessions of the convention the question reepecting the possibility of ahortening the time of meeting of the Master Car Builders' and Master Mechanlcs' associations came up for consideration. Heretofore it has been the custom for the ormer assoclation to meet on Tuesday of one week and met an the following Monday and held a three-daye' seslon also. This has compelled the membere who wished to attend hoth meetings to be ldle two days, and has made their length of etay away from business longer than many of them felt that they could afford. A project was therefore set on foot a year ago to bring the time of the two meetings closer together. The Executive Committees of the two assoclatione each appointed a eub-committee of two to confer upon the question, and at the first day's session of the present convention this committee reported the following solution:
That a joinf opening session of both associations should be held at 10 oclock $\mathrm{a} . \mathrm{m}$. of Tuesday to hear the ad-
dresses, including the addressee of the presidents of hoth dresses, including the addressee of the presidents of hoth
assoclations, and the annual reporta of the treasurer and
secretary of the two aseoclations. After thie ls over the secretary of the two asooclations. After thit is over the
Master Mechanics Assoclation to have the time up to 1 p. m. Tuesday; the Maeter Car Bullders Association to atlon to have all of Wednesday; the Master Mechanics
Assoclatlon to have Thuraday, a. m.; the Master Car Assoclatlon to have Thuraday, a. m.; the Master Car
Bullders Aseoclation to have Thursday p. m. ; the Master
Car Bull
 further time 1 s required by elther assoclation it can be
availahle on Saturday, hut it is not thought that this will
be neceesary. The order of business of the joint meeting be necceasary. The order or business of the joint meeting
on Tuesday morning to be arranged jointly by the presi-
dents of the two associations, and to be published in the dents of the two associations, and
programme for both conventions.
This report was held over until the closing session for discussion. The ldea of splitting up the time as suggested was objected to hy Mr. J. N. Barr (C., M. \& Sc. P.) and he moved to substitute the plan proposed hy a aubcommittee of having the M. C. B. ©o Master Mechanics Monday and last three days and the Master Mechanics convention begin on Thursday, and conclude providing the latter assoclation would concur in such an arrangement. The motion was passed by the convention. Election of Officers.-The following ollcers were elected to serve the acsociation during the enils dent, C. A. Schroyer (Chic. \& Nw.), Chicago, Mass.; Second Vice-President, J. J. Hennessey (C., M. \&

St. P.), Mllwaukee, Wis.; Third Vice-President, Demarion (Cent. Ve.), St. Albans, VL.; Treasurer, G. Executive Committee-S. P. Bueh (P. Cew member Columbus, O.; A. E. Mitchell (Erie), New Ye St William Garstang (C., C., C. \& St. L.), Indianapolis, The Executive Committee fater in the day J. W. Taylor as Secretary of the association, Mr. Johr. W. Cloud having resigned the office.

Place of Meeting for 1900.-Invitations were recelved iro Detroit, Washington, Cleveland and Saratoga, to hold the convention of 1900 at those places. These invitations were referred to the Executive Committee for ation.
Exhlbits.-A full lief of the railway supply houses having exhibits of rallwey appllances at the convention is civen in our Construction News Supplement.

Noon-Hour Discussion.
The following are hrief abstracts of the topical discuslone of most general interest which took place during the noon-hour of the first session:
Lock Sets and Knuckle Openers for M. C. B. Couplers. The discussion was opened by Mr. W. S. Morris (Ches. \& Ohio), who considered that the safety appliance law passed by Congress did not require that a coupler should perform any further duty than is imposed upon it by the worde: "coupling automaticaily by impact and which can he uncoupled without the necessity of men going between the ends of cars." From an operative etandpolnt, however, he thought that experience had shown that a lock set could be considered almost if not quite an essential to the prevention of creeping of locks or pins, and thus overcome many "hreak-In-twos that were now common In all coup. lers where the locking depended upon gravity atone. The knuckle-opening device did not appeal to bim with as great force, but it undoubtedly had a certaln field of usefulness.
Mr. S. P. Bush (P., C., C. \& St. L.), considered that there were some thinge about a coupler that might he called absolutely necessary, and that there were other thing which might be called desirable featuree. The lock set and knuckle-opener belonged to the latter class. The early M. C. B. couplers were generally designed to hare knuckle-openers. Evidently the device wae consldered desirahle in those days, and it seemed to him that it wa quite as desirahle now. He also thought that from an operative standpoint there were important reasons in favor of a lock set.
Ladders, Hand-Holde, Brake Wheels and Brake-Shaft Brackets.-The discussion was opened by Mr. E. D. Bronner (Mich. Cent.), who brlefly reviewed present practice and ssid that the best type of ladder was one which con sisted of wooden elde pleces bolted to the frame of the cs with Iron ladder rounds holted to these slde plecee, all nute heing on the outslde and riveted over. The best fastening for brake wheels was to have a square taper to the end of the shaft with sufficient round beyond it for the thread for a nut. The wheel should be well fitted to the taper and the thread ahould he slightly upset to prevent the nut turning hack. The best upper hrake-shaf bearings was prohahly a malleable Iron casting carrying all the parts and holted with two horizontal bolts through the end plate, one vertical bolt through the roof framing and one good iug in the top of the end plate. He con eidered lag screws unsafe, and considered that no hand hold or ladder round should he applled with a lag screw where a through holt could possibly be used. Mr. H. Ball (L. S. \& M. S.) agreed with Mr. Bronner in con demning the lag-screw faatening, and advocating the use of bolts entirely.
Pintsch Gas In Interchange. - The discussion was opened by Mr. G. W Rhodes (B. \& M. R.), who stated that the general use of Pintsch gas made the question Importan at interchange points as to how rallways in interchanging eleeping cars were to get a return for the gas that was in the car when it left the dellvering road. A plan which he recommended was to have the receiving road give the dellivering road an M. C. B. defect card crediting them with the amount of gae in the tank at the time of recelpt It may he stated here that in the revision of the rules of Interchange for passenger cars a section was added which embodled Mr. Rhodea suggestion, and read as followe:
The recelving road shall furnish M. C. B. defect card as
authority for hill for gas in the reservoirs of cars in-
terchanged.
Splicing Air-Brake Hose.-Mr. J. N. Barr (C., M. \& St. P.), opened the discussion hy saying that he helleved the splicing of alr-hrake hose was a good and an economical practice. Mr. J. W. Tuttrell (III. Cent.) stated that it was the practice of his company to use splliced hose. All hose so spliced was subjected to a preseure of 200 lbs. The company was now splicing ahout 1,200 hose each year at a cost of 14 cta. per hose. Splicing was safe enough if judgment was used in eelecting the hose. Mr. W. S. Morris (Ches. \& Ohio) objected to the use of spliced hose hecause the splicing wae likely not to be done with judgment, and the eaving was not great enough to路 proval with the statement "if she splicing is properiy proval done."

