

Common failures to be avoided
when we analyze Wikipedia

public data

Felipe Ortega
GsyC/Libresoft

Wikimania 2010, Gdańsk, Poland.

#1 Beware of special types of pages

● Official page count includes articles with just one link.

● You must consider if you need to filter out
disambiguation pages.

● Pay attention to redirects.

● Sometimes people wonder how the number of
pages in main namespace in the dump is so high.

● Break down evolution trends by namespace.

● Articles are very different from other pages.
● Explore % of already existing talk pages.
● Connections from user pages.

#2 Plan your hardware carefully

● There are some general rules.

● Parallelize as much as possible.
● Buy more memory before buying more disk...
● But take a look at your disk requirements.

– It's very different when you can work on
decompressed data, on the fly.

● Hardware RAID is not always the best solution.

– RAID 10 in Linux can perform decently in many
average studies.

3# Know your engines (DBs)

● Correct configuration of DB engine is crucial.

● You'll always fall short with standard configs.
● Fine tune parameters according to your hardware.
● Exploit memory as much as possible.

– E.g. MEMORY engine in MySQL.
● Avoid unnecessary backup...
● But be sure that you have copies of relevant info

elseware!
● Think about your process:

– Read only vs. read-write.

4# Organize your code

● Using a SCM is a must.

● SVN, GIT.
● Upload your code to public repository.

● BerliOS, SourceForge, GitHub...
● Document your code...

● ...if you ever aspire to get interest from other
developers.

● Use consistent version numbers.

● Test, test, test...

● Include sanity checks and “toy tests”.

#5 Use the right “spell”

● Target data is well defined:

● XML
● Big portions of plain text
● Inter-wiki links and outlinks.

● Some alternatives

● CelementTree (high-speed parsing)
● Python (modules/short scripts) or Java (big

projects).
● Perl (regexps).
● Sed & awk

#6 Avoid reinventing the wheel

● Consider to develop only if:

● No available solution fits your needs.

– Or you can only find proprietary/evaluation
sofwtare.

● Performance of other solutions is really bad
● Example: pywikipediabot

● Simple library to query Wikipedia API.
● Solves many simple needs of

researchers/programmers.

#7 Automate everything

● Huge data repositories.
● Even small samples are excessively time

consuming if processed by hand.
● You will start to concat individual processes.
● You will save time for later executions.
● Your study will be reproducible.

● Updating results after several months
becomes no-brainer solution.

#8 Extreme case of Murphy's Law

● Always expect the worst possible case.
● Many caveats in each implementation.
● Countless particular cases.
● It's not OK with just the “average

solution”.
– Standard algorithms may take much

more than expected to finish the job.

#9 Not many graphical interfaces

● Some good reasons for that
● Difficult to automate
● Hard to display dynamic results in real-time.
● Almost impossible to compute all results in a

reasonable time frame for huge data
collections (e.g. English Wikipedia).

● To the best of my knowledge, there are very
few tools with graphical interfaces out there.

● Is there a real need for that??

#10 Communication channels

● Wikimedia-research-l
● Mailing list about research on Wikimedia

projects.
● http://meta.wikimedia.org/wiki/Research
● http://meta.wikimedia.org/wiki/Wikimedia_Research_Network

● http://acawiki.org/Home
● Final comments

● Need for consolidated info point, once for all

http://meta.wikimedia.org/wiki/Research
http://meta.wikimedia.org/wiki/Wikimedia_Research_Network
http://acawiki.org/Home

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11

