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Motivated by the extremely important role of the Earth’s
vegetation dynamics in climate changes, we study the
stochastic variability of a simple climate–vegetation system.
In the case of deterministic dynamics, the system has one
stable equilibrium and limit cycle or two stable equilibria
corresponding to two opposite (cold and warm) climate–
vegetation states. These states are divided by a separatrix
going across a point of unstable equilibrium. Some possible
stochastic scenarios caused by different externally induced
natural and anthropogenic processes inherit properties of
deterministic behaviour and drastically change the system
dynamics. We demonstrate that the system transitions across its
separatrix occur with increasing noise intensity. The climate–
vegetation system therewith fluctuates, transits and localizes
in the vicinity of its attractor. We show that this phenomenon
occurs within some critical range of noise intensities. A
noise-induced shift into the range of smaller global average
temperatures corresponding to substantial oscillations of the
Earth’s vegetation cover is revealed. Our analysis demonstrates
that the climate–vegetation interactions essentially contribute
to climate dynamics and should be taken into account in more
precise and complex models of climate variability.

1. Introduction
Whether or not all physical mechanisms and their correlations
were determined or described in detail, the fact that they relate
the climate and land surface changes was observed and reported
even many years ago. So, for instance, the notes written by
Thomas Jefferson that the Virginia winters were getting noticeably
warmer [1] shortly thereafter were described as a result of land
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clearing and cultivation [2]. Alexander von Humbolt apparently was one of the first scientists paying
attention to investigation of the interplay between the climate and vegetation changes [3].

It is now conventional wisdom that the Earth’s climate determines the world’s vegetation, which has
often been considered as a climate visualization [4]. However, the opposite influence of vegetation on
the planetary climate is of primary importance too [5–8]. Here, among others, deforestation experiments
for the Amazon [9–12], desertification experiments for the Sahel [13,14] and experiments for the boreal
forest [15,16] may be mentioned.

An important point is that the effect of deforestation leads to different aspects of climate change
such as biogeophysical effects of surface albedo and roughness changes, changes in the energy fluxes
and cloud cover altering the atmospheric temperature. Generally speaking, the ice–albedo feedback
represents the climate phenomenon of surface albedo changes caused by changes in the sea ice and
snow-covered areas. Such changes in albedo amplify the initial changes in the ice and snow areas. So,
for example, cooling increases the ice cover and hence the albedo. This process in turn decreases the
amount of solar energy absorbed and results in more cooling. In the case of boreal forest, the climate
warming is connected with the surface albedo decreasing as a result of snow masking in forests and sea
ice melting due to the heat flux from vegetated land to polar seas. In addition, tropical deforestation and
changes in the vegetation cover have a direct impact on global atmospheric circulations [17,18]. Note that
deforestation can be amplified by different anthropogenic changes in the land cover as well as forest fires
and pest activities.

An important role in climate change is connected with the biogeochemical effect reflecting the
interactions between the biosphere and the chemical composition in the Earth’s atmosphere. So,
for example, increasing the atmospheric CO2 concentration builds up the Earth’s biomass as plant
productivity becomes higher, until a saturation state is attained [19]. Human activity also brings a
great contribution to the biogeochemical cycle. It is responsible for the increased level of atmospheric
greenhouse gases which, in turn, absorb the long-wave radiation outgoing from the Earth’s surface
and, as a result, the lower atmosphere becomes warmer. The atmospheric carbon dioxide in this
respect apparently has the greatest influence on the Earth’s climate [20]. Its concentration has
increased from approximately 260–270 ppm in the pre-industrial era [21] to a level of 378 ppm in 2005
(https://climate.nasa.gov/vital-signs/carbon-dioxide/) and then to its current value of approximately
407 ppm in 2018 (https://climate.nasa.gov/vital-signs/carbon-dioxide/).

What is more, this present day CO2 concentration more than twice exceeds the local maxima of CO2
repetitive behaviour over the last 400 000 years (https://climate.nasa.gov/vital-signs/carbon-dioxide/).
An important point is that there is a strong correlation between the carbon dioxide concentration in the
atmosphere and the Earth’s climate [22].

Thus, the land–atmosphere interactions link the carbon dioxide cycle (CO2 assimilation and diffusion
into the leaves and water vapour through transpiration) and water use in plants. This mechanism is
very sensitive to light intensity, air temperature, precipitation, soil–water content, plant diversity and
atmospheric carbon dioxide concentration which would lead to an unstable climate dynamics [7,23–26].
For example, this occurs when the climate system undergoes an abrupt transition from a disappearing
green state to a desert state [23]. In other words, the climate–vegetation system may have different
equilibria (attractors) and migrate between them under the influence of different external factors such as
natural and anthropogenic forcing [27,28]. Therefore, a necessary step is to study the sensitivity of the
climate–vegetation system to past-time variability induced by external forcing.

Taking all the aforesaid into consideration let us underline the dominant role of climate changes on
terrestrial vegetation (e.g. evolution of grassland and forests), on the biogeochemical cycle including
the carbon dioxide interaction with biomass and soil as well as on the amount of some species and
potential disappearance of others [29–33]. The vegetation feedback involves in particular the alteration
of surface albedo, land roughness and atmospheric composition of greenhouse gases. These mechanisms
are responsible for the evolutionary behaviour of the very sensitive and complex climate–vegetation
system. This paper is devoted to the influence of external stochastic forcing in a simple climate–
vegetation model leading to drastically new dynamic phenomena and demonstrating possible abrupt
changes in its evolutionary behaviour.

2. Climate–vegetation feedback model
To determine the role of stochastic forcing on the climate–vegetation interaction, let us use the simple
conceptual mathematical model developed by Rombouts & Ghil [34]. This model contains the governing
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equations for the global average temperature T and the fraction of land A covered by vegetation. The
temperature T changes with time t as a result of balance between the incoming and outgoing energy
fluxes:

CT
dT
dt

= (1 − α(T, A))Q0 − R0(T), (2.1)

where CT is the heat capacity, Q0 is the incoming solar energy and functions α(T, A) and R0(T) determine
dependencies of the Earth’s albedo and the outgoing energy flux, respectively. Introducing the planet
fraction p that is land (1 − p is the fraction of ocean), one can express the first of these functions as

α(T, A) = (1 − p)αo(T) + p(αvA + αg(1 − A)), (2.2)

where αv and αg represent the albedo of vegetation and ground so that αv < αg as forests and savannas
absorb more energy than bare ground.

The ocean albedo αo should depend on temperature T and, in particular, on temperatures Tα,� and
Tα,u below and above which the ocean is ice-covered and ice-free, respectively. This dependence can be
represented as a ramp function of the form [35,36]

αo(T) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αmax, T ≤ Tα,�

αmax + f (T), Tα,� < T < Tα,u

αmin, T > Tα,u,

(2.3)

where
f (T) = αmin − αmax

Tα,u − Tα,�
(T − Tα,�)

and αmax and αmin are the albedos of ice-covered and ice-free ocean.
The energy flux outgoing from the Earth takes into account the fact that increasing carbon dioxide

decreases the outgoing radiation
R0(T) = B0 + B1(T − Topt), (2.4)

where B0 and B1 are the model constants and Topt is the optimal vegetation growth temperature.
The evolution of vegetation cover A can be described by the following logistic law:

dA
dt

= β(T)A(1 − A) − γ A, (2.5)

where γ designates the vegetation death rate and

β(T) = max{0, 1 − k(T − Topt)2}
determines the parabolic growth rate in a certain temperature interval with a maximum temperature
T = Topt (here k represents the growth curve thickness).

The model (2.1)–(2.5) determines the evolutionary behaviour of the global average temperature and
the land fraction covered by vegetation. Below we detail its deterministic dynamics and describe its new
evolutionary scenario under the influence of stochastic forcing.

3. Deterministic dynamics
A bifurcation analysis of the deterministic climate–vegetation model (2.1)–(2.5) was carried out in
Rombouts & Ghil [34]. The important details of the phase portraits for this nonlinear feedback model are
demonstrated in figure 1. Here, phase trajectories leading to ‘cold’ attractor (snowball) are plotted by blue
colour, and others leading to ‘warm’ attractor are shown by red colour. In the first instance, the model
has a stable limit cycle (depicted on the right-hand sides of figure 1a–d by the closed red lines) embracing
an unstable equilibrium (shown by the open blue circles inside the limit cycles). An interesting feature of
the deterministic system is its behaviour near the separatrix dividing basins of attraction of ‘warm’ and
‘cold’ attractors. As can be seen from figure 1, the trajectories starting near the separatrix move along it
for some time before approaching the attractors.

Note that with further increase of the vegetation death rate γ , the system undergoes a supercritical
Andronov-Hopf bifurcation: the limit cycle and unstable equilibrium merge, and a stable equilibrium
appears (see red filled circles in figure 1e,f ). In addition, there are the stable (shown on the left-hand
sides of figure 1a–f by the blue filled circles) and unstable (illustrated by the open circles in the upper
parts of all panels in figure 1) equilibria.
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Figure 1. Phase trajectories of the climate–vegetation model: (a) γ = 0.001, (b) γ = 0.01, (c) γ = 0.02, (d) γ = 0.025, (e)
γ = 0.1, (f ) γ = 0.35. The model parameters are [34]: CT = 500 W yr K−1 m−2, Q0 = 342.5 W m−2, p= 0.3, αv = 0.1, αg = 0.4,
αmax = 0.85,αmin = 0.25, Tα,� = 263 K, Tα,u = 300 K, B0 = 200 Wm−2, B1 = 2.5 W K−1 m−2, Topt = 283 K, k = 0.004 yr−1 K−2.

Generally speaking, there are only two opposite stable states of the climate–vegetation system under
consideration: the limit cycle or stable equilibrium on the right (red colour) and the stable equilibrium
on the left (blue colour). The first of them describes small climate–vegetation oscillations near the global
average temperature 300 K (warm climate) whereas the second one corresponds to the snowball Earth
scenario (242 K) when no fraction of land is covered by vegetation. These opposite stable regimes
of climate–vegetation system are divided by the unstable equilibrium so that the phase trajectories
(blue and red lines) go very close together in its vicinity (this occurs near 280 K in figure 1a–e and
286 K in figure 1f ). In this zone, even small temperature perturbations can throw the system across
its separatrix and crucially change the dynamics of the system. An important point is the essential
influence of vegetation death rate on the deterministic dynamics. The possible stable climate–vegetation
oscillations expressed by the stable limit cycle become narrower with increasing vegetation death rate γ

and degenerate into just a stable point in the phase diagram.
The time-dependent oscillations of average temperature and vegetation fraction are shown in figure 2.

As is easy to see, the period of climate–vegetation oscillations decreases with increasing vegetation
death rate. The interval of temperature fluctuations therewith decreases and the interval of land fraction
covered by vegetation takes a more complex behaviour in accordance with the phase portraits shown
in figure 1.
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Figure 2. Time series of deterministic system.

4. Stochastic dynamics
To study the effect of external stochastic forcing on the climate–vegetation dynamics, let us consider the
following nonlinear system:

CT
dT
dt

= (1 − α(T, A))Q0 − R0(T)

and
dA
dt

= (β(T) + εξ (t))A(1 − A) − γ A,

⎫⎪⎪⎬
⎪⎪⎭

(4.1)

where ξ (t) is a standard Gaussian white noise with parameters 〈ξ (t)〉 = 0, 〈ξ (t)ξ (τ )〉 = δ(t − τ ), and ε

designates the noise intensity (hereafter its dimension is omitted for the sake of simplicity). The stochastic
system (4.1) follows from equations (2.1) and (2.5) after the replacement of deterministic growth rate β(T)
by its corresponding stochastic function β(T) + εξ (t). This means that we study how diverse fluctuations
induced by different natural and anthropogenic processes are able to change the vegetation growth rate
and, thus, the evolutionary scenario of the climate–vegetation system overall.

Figure 3 shows that the additional stochastic disturbances lead to drastic changes in the system
dynamics. Note that for numerical simulations of random trajectories, we have used the Euler–
Maruyama scheme with time step 0.01 year. While the noise intensity ε is small enough (blue and green
colour), in the time interval 0 ≤ t ≤ 5000 yr, the global temperature T slightly fluctuates near its mean
value that is close to 300 K. In figure 3a, for γ = 0.02, one can see the noisy oscillations (green) near the
deterministic small-amplitude periodic trajectory (blue). In figure 3b,c, for γ = 0.1 and γ = 0.035, there
are small-amplitude stochastic oscillations around the deterministic stable equilibria. In the presence of
such small noises, the vegetation land cover A fluctuates near either the deterministic periodic trajectory
(figure 3a) or the stable equilibria (figure 3b,c). Note that the amplitude of these stochastic oscillations
grows with increasing noise intensity ε.

When the noise intensity becomes large enough, the global temperature demonstrates a sharp
stepwise decrease to the Earth’s snowball state (242 K). What is more, this stepwise transition becomes
steeper with increasing vegetation death rate (compare the red curves in figure 3). The level of vegetation
cover A in the course of this transition tends to zero, as is demonstrated in figure 3a(ii)–c(ii).

Strictly speaking, there is a range of noise intensity leading the climate–vegetation system to its
breakdown state of the snowball Earth. This range essentially depends on the vegetation death rate
γ . It is illustrated in figure 4, where we demonstrate different random states of the system under
consideration. So, for instance, the transitions occur in the interval 0.15 � ε � 0.2 for γ = 0.01 (figure 4a),
and 0.35 � ε � 0.55 for γ = 0.1 (figure 4b). If the noise intensity exceeds this interval, the climate–
vegetation system inevitably tends to the Earth’s snowball state. As this takes place, the smaller γ , the
smaller noise intensity ε that determines this breakdown transition (the deterministic attractor is a limit
cycle for figure 4a whereas it is a stable equilibrium for figure 4b).

Some details of this transformation of the stochastic dynamics of system (4.1) with increasing noise are
shown in figure 5 for γ = 0.35. Here, the stochastic phase trajectories and probability density functions
for different noise intensities ε are shown. In the case of small ε, the stochastic system is localized in the
temperature range of approximately 290 � T � 300 K. As this takes place, a noise-induced shift to lower
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Figure 3. Noise-induced dynamics of the climate–vegetation model for (a) γ = 0.02, (b) γ = 0.1 and (c) γ = 0.35.
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Figure 4. Noise-induced random states of the climate–vegetation system for (a) γ = 0.01 and (b) γ = 0.1.

global temperatures arises. The noise induces therewith substantial fluctuations in the vegetation land
cover A. The noise-induced shift occurring at large intensities (ε = 0.7 in figure 5) leads to random walks,
which ultimately end up in the catastrophic state of the snowball Earth. The probability density function
P becomes more broad and flat with decreasing mean value of global temperature T (figure 5b). This
confirms the effect of a noise-induced shift of the global temperature shown in figure 5a. What is more, in
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Figure 5. Noise-induced shift of the global temperature and probability density function for γ = 0.35.

the case of moderate noises, this statistically confirms the vegetation–climate system fluctuations within
a sufficiently narrow temperature interval and at the same time within a broad interval of vegetation
cover changes.

5. Conclusion
In summary, we consider a simple climate–vegetation model consisting of a land surface covered by
some vegetation and ocean. Temperature changes induce the growth of vegetation and alter the Earth’s
surface albedo, which in turn modifies the energy balance and, thus, induces temperature changes. At
first, the nonlinear feedback model coupling the Earth’s climate and vegetation is studied in the idealized
case of deterministic dynamics. This analysis details the main features of deterministic dynamics and, in
particular, it demonstrates the system attractors. Further we show that the evolutionary behaviour of the
climate–vegetation system drastically depends on externally induced stochastic forcing which, in turn,
can be caused by different anthropogenic and natural processes influencing the nonlinear dynamics.

Let us summarize below the main features of the initial deterministic climate–vegetation model [34].
This model possesses two stable states which are divided by a separatrix going across the unstable
equilibrium. These stable states are either the limit cycle and equilibrium or two equilibria depending
upon the value of the vegetation death rate. The system attractor of snowball Earth therewith is always
the stable equilibrium. Another stable state describing the warm climate is the limit cycle embracing
the unstable equilibrium or the stable equilibrium appearing as a result of their merging. An important
point is that the oscillation periods of the global average temperature and the land fraction covered by
vegetation decrease with increasing vegetation death rate.

Note that deterministic phase trajectories going to two opposite climate–vegetation states can be
located very close to each other. As a result, even small external stochastic forcing can throw the system
across the separatrix, and two opposite stable climate–vegetation states (having the warm and cold
climate) become stochastically interconnected.

What is more, this transition between system attractors becomes steeper when the vegetation death
rate increases. In addition, increasing this rate gives the greater noise intensities leading to the snowball
state.

An important outcome of our stochastic analysis lies in the fact that the climate–vegetation system
undergoes a noise-induced shift into the range of smaller global average temperatures where it fluctuates
with a broad range of possible land fractions covered by vegetation. This shift can be responsible for
substantial climate changes. Therefore, the coupled climate–vegetation model should be taken into
account in conjunction with more precise and complete models of climate variability incorporating
diverse interactions between the ocean, ice and atmosphere [24–26,37–40].
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