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In this presentwork, smoke-like carbonwas successfully fabricated
from a bio-waste fungal substrate crude polysaccharide for
the first time. The as-prepared products possess smoke-like
structures, ultra-high specific surface area (SBET: 2160 m2 g−1)
and a high content of micropores (microporous surface area of
60%, with a nanopore size of 0.70 nm), which can increase
the specific capacitance, representing a wonderful structure
for electrochemical energy storage devices. The as-prepared
sample displayed an excellent specific capacitance of 152 F g−1

at 5 A g−1 in the three-electrode configuration and exhibited
maximal densities of 6.8–10.2 Wh kg−1 under power outputs of
253.4–24.3 kW kg−1. We believe that this work demonstrates a
simple, green and low-cost route by using agricultural residue
to prepare applicable carbon materials for use in energy
storage devices.
1. Introduction
Depletion of fossil fuels and the environmental problems caused by
pollution make it imperative to change the current model of energy
production and consumption. Electric double-layer capacitors
(EDLCs)/supercapacitors [1] are a new type of energy storage
device with electrochemical performance between traditional
capacitors and batteries that have attracted considerable attention
[2]; they have been emerging as an ideal energy storage device
for portable electronics, electric vehicles and other high-power
applications due to their unique characteristics such as safety,
long lifespan, high power density and rapid charge–discharge
capability [3,4]. However, they still suffer from low energy
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densities as compared to commercial lithium-ion batteries [5], which has significantly limited their further

application as primary power sources. The previous studies have shown that the choice and optimization
of electrode materials have a great impact on the practical application of supercapacitors.

As is known, carbon materials [6] are the most commonly used electrode materials because of their
chemical stability, open porosity and environmental friendliness [7], including activated carbons (ACs),
graphene, carbon nanotubes, etc. Among them, the ACs derived from biomass, such as coconut shell [8],
corn [9], straw [10], husk [11] or tannins [12], have been extensively applied because of their low cost and
low toxicity. Many pre-existing studies have demonstrated that surface microstructures’ specific surface
area is essential for realizing high electrochemical performance supercapacitors [13]; however, most of the
biomass-derived activated carbon prepared by activation post-treatments (physical or chemical
activation) may present a limited surface area [14].

Crude polysaccharides [15] have been well studied in the biomedical field [16], which we first tried to
apply to the field of biochar materials [17]. Through actual observation, we found that there are still a lot
of fungal polysaccharide in the waste fungal substrate (7 wt%); therefore, from these wastes, a large
amount of crude fungal polysaccharide can still be extracted using traditional methods [18]. In this
work, we obtained a promising electrode material using a fungal substrate crude polysaccharide. The
as-prepared products show a large specific surface area (2160 m2 g−1) and excellent porosity, with a
representative pore size. The material shows outstanding specific capacitance. This approach has great
potential for realizing large-scale green and low-cost production of biomass carbon materials for
future energy storage applications [19].

In this work, we obtained a promising electrode material using crude polysaccharide extracted from
the waste fungal substrate. The as-prepared products showed a large specific surface area (2160 m2 g−1)
and excellent porosity, with a representative pore size of 0.7 nm. The material shows outstanding specific
capacitance in the three-electrode system. This approach is of great potential for realizing large-scale
green and low-cost production of biomass carbon materials for future energy storage applications.
2. Experiments
2.1. Materials
The waste fungal substrates were collected from the Institute of Edible Fungi of Jilin Agricultural
University. Nitrogen (greater than 99.999%) was from Changchun Juyang Gas Co., Ltd. Hydrochloric
acid (HCl, analytical grade), ethanol (analytical grade), acetone (analytical grade) and potassium
hydroxide (KOH, analytical grade) were from Tianjin Chemical Reagent Co., Ltd. N-Methylformamide
(NMF) and vinylidene fluoride (PVDF) were from Aladdin. Platinum electrode, mercury oxide
electrode and acetylene black (ECP600JD) were from Tianjin Aidahengsheng Technology Development
Co., Ltd. Deionized water was used in all experiments.
2.2. Extraction of polysaccharide
The extraction of polysaccharide from waste fungal substrates was performed using a method modified
from that of Samavati [20] with some improvements. The fungal substrates were ground into a powder
form, washed three times with water and air-dried at room temperature for 48 h. The powdered samples
were extracted by microwave with a reflux device of 400 W for 30 min.
2.3. Preparation of crude polysaccharide carbons
Carbon materials were prepared from crude polysaccharide by the three procedures detailed below.

The crude polysaccharide obtained in step 2.1 was pre-oxidized in a tube furnace (100°C) for 30 min
in an air atmosphere with a heat rate of 5°C.

After being pre-oxidized, the carbon precursor was directly calcined at 900°C for 1 h with a heat rate
of 5°C min−1 under N2 atmosphere. The resultant carbon was denoted as CPC900 (crude polysaccharide
carbon 900); for comparison, the carbon precursor was also calcined at different temperatures of 400 and
600°C, denoted as CPC400 and CPC600.

The resultant carbon materials were washed with HCl (5%) and acetone (5%) to remove various
inorganic impurities.
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Scheme 1. Illustration of the synthesis of the CPCs.
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The synthesis is shown in scheme 1.The method of fabrication of electrodes and solid-state symmetric
supercapacitors was shown in electrochemical impedance spectroscopy (EIS).

2.4. Characterization techniques
Thermogravimetric analysis was carried out in HCT-4 (Hengjiu, Beijing); the crude polysaccharide (8 mg)
was heated under N2 atmosphere to the target temperature (1050°C) with a heat rate of 5°C min−1.
Scanning electron microscopy images (SEM) were operated from SHIMAZU X-550 after metallization.
Transmission electron microscope images (TEM) were obtained with TECNAI G2. Raman spectra
were operated from a Horiba LabRAM Raman spectrometer. The Raman scattered light was dispersed
by a holographic grating, 1200 lines mm−1 and was detected by a CCD camera, the wavelength of the
laser was 532 nm and filtered at 1% of its nominal power. In order to avoid any damage or heating to
the sample, the incident power was controlled at 1 mV. X-ray diffraction spectra were obtained from
Bruker AXS D8 Advance, with a scan rate of 2° min−1.

Each spectrum was obtained from 0 to 80 target. The nitrogen adsorption isotherms were operated
from BeiShiDe 3H-2000PS1. The samples were degassed at 120°C for 24 h prior to any measurement.

2.5. Electrochemical measurements
Electrochemical characterizations were performed using a CHI760E workstation. Cyclic voltammetry (CV)
and galvanostatic charge–discharge tests (GCD) were carried out in a three-electrode system. Six molar
KOH was used as an aqueous electrolyte, with platinum used as the counter electrode, Hg/HgO was
used as the reference electrode and the as-prepared products on nickel foam with active materials
(3.0 mg) were used as the working electrode. EIS spectra were carried out in a symmetric two-electrode
system with the same electrolyte. CV tests were carried out in the potential window between −0.2 and
1.0 V with the scan rates ranging from 5 to 100 mV. GCD tests were carried out in the voltage range
between −1.0 and 0 V. The gravimetric capacitances (F g−1) were calculated through equation (2.1).

C ¼ IdV
mdt

, ð2:1Þ

where I (A) represents the current, (dV/dt) represents the slope of the discharge curves, and m is the
carbon mass of the electrodes.

Energy density (E, W h kg−1) and power density (P, W kg−1) were calculated by equations (2.1)–(2.3),
respectively.

E ¼ C
8
� ðDV–iRÞ2 ð2:2Þ

and

P ¼ E
Dt

, ð2:3Þ

where ΔV (V) is the potential difference within the time Δt (s), and iR (V) is the voltage drop due to the
inner resistance.

EIS tests were recorded at open-circuit voltage in the frequency range of 0.01–100 000 Hz with 10 mV
alternating current amplitude.

3. Results and discussion
As for thermogravimetric (TG) and differential thermal analysis (DTA) curves of crude polysaccharide
(figure 1), the sharp weight loss centred at 200°C was associated with the decomposition of the
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Figure 1. DTA and TG curves of the crude polysaccharide.
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Figure 2. SEM images (a–c) of CPCs, TEM and HRTEM images (d–f ) of CPCs. (a,d) CPC400, (b,e) CPC600, (c,f ) CPC900.
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organic matter in the polysaccharide [21]. After 400°C, the decomposition slowed down and stabilized
after 900°C. Therefore, we determined the carbonization temperature to be 400, 600 and 900°C to
analyse the effects of different temperatures on the microstructure and physical properties of CPCs.
According to the TG curve, the weight loss of the crude polysaccharide was 70.3% at 900°C, which
was much lower than the average level of biomass carbon studied by the predecessors, the lower
weight loss could greatly reduce the production cost in future practical application. Elemental analysis
and functional groups of the raw material and as-prepared material are shown in the electronic
supplementary material, figure S1.

The morphology of the CPCs was studied by SEM and TEM. As shown in figure 2a–c, the CPCs show
a natural sheet structure before 600°C.

After carbonization, a novel finding was that the CPC400–600 shows a three-dimensional smoke-like
structure (figure 2a,b), TEM images (figure 2d–f) revealed that all the CPCs possess abundant
micropores consisting of carbon materials and numerous disordered domains and low graphitization
degrees [22]. However, the morphology was significantly destroyed when the temperature was
increased to 900°C (figure 1c). The SEM images showed that as the temperature increases, the original
structure of the material was greatly affected [23]. Three-dimensional smoke-like structure transformed
into a fibrous structure from 600 to 900°C. The subsequent nitrogen adsorption isotherms further
confirmed the effect of temperature on the original structure of carbon materials. The CPC400 and
CPC600 samples exhibited large BET surface areas of 1920 and 2160 m2 g−1, with total pore volumes of
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Figure 3. Nitrogen adsorption/desorption iostherms (a) and pore size distribution of CPCs (b).
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Figure 4. XRD patterns (a) and Raman spectrum (b) of CPCs.

Table 1. Texture properties of CPCs.

sample SBET
a (m2 g−1) Smicro

b (m2 g−1) Smeso
c (m2 g−1) Vt

d (cm3 g−1)

CPC400 892 503 103 0.42

CPC600 2160 1203 230 1.35

CPC900 1920 1012 349 1.21
aBET specific surface area.
bmicropore specific surface area.
cmesopore specific surface area.
dtotal pore volume.
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1.125 and 1.375 cm3 g−1, while the micropore volumes are 0.927 and 1.162 cm3 g−1 (calculated from the
non-local density functional theory (NLDFT) method). As a comparison, the CPC900 sample shows a
lower specific surface and a smaller total pore volume and micropore volume, as shown in figure 3.
Additional adsorption parameters are summarized in table 1. The steep growth at low pressure
indicates the presence of micropores, while the narrow hysteresis loop in the P/P0 range of 0.5–1.0
indicates a certain amount of mesoporosity [24] (figure 3a). It should be noted that the curve for CPCs
shows a peak value of approximately 0.70 nm (calculated from the Barrett–Joyner–Halenda (BJH)
method) without any activator added [25], which was very consistent with the size of optimized ion-
accessible sub-nanopores reported in other studies [26] (figure 3b); this result may be due to the
activation of the K+ originally contained in the carbon precursor, which is one of our key research
directions in the future. The large accessible surface area of CPC600, having pores that are mostly
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micropores, was beneficial for electrolyte penetration and ion adsorption, which might enhance the energy
storage capability.

From the X-ray patterns, as shown in figure 4a, CPC400 and CPC600 demonstrate two diffraction
peaks at 2θ values of 27.2° and 44.3°, which are assigned to typical (002) and (100) reflections of
graphitic carbon, respectively (JCPDF: 41–1487), while for the CPC900 sample, only a weak peak due
to the (100) plane can be found, which demonstrates that the excessive temperature destroyed the
graphitized structure of the material.

For Raman spectroscopy, as shown in figure 4b, the studied carbons all possessed numerous disordered
domains and low graphitization degrees; typically, the D band at approximately 1350 cm−1 relates to the
disordered sp2-hybridized carbon atoms of graphite or defect sites and the G band at approximately
1580 cm−1 corresponds to the phonon mode for the in-plane vibration of sp2-bonded carbon atoms,
which is a typical symbol of graphitic carbon. The ID/IG band intensity ratio slightly decreased from
1.132 (CPC900) to 1.024 (CPC400), further illustrating the reduction in the degree of graphitization.

The electrochemical behaviour of the carbon materials was investigated by CV and GCD in a three-
electrode system using 6 M KOH as the electrolyte [27]. It was clear that the voltage window of the CV
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curve for the CPC400, CPC600 and CPC900 was still maintained even at 1.0 V, demonstrating that the
supercapacitor can be reversibly cycled within the voltage window of −0.2 to 1.0 V (figure 5a). The
CV curves of all the CPCs still retained a rectangular shape at the high scan rate (25 mV s−1)
indicating an excellent rate capability of the carbon materials. However, the slightly spindle-like shape
of the CV curves for all the carbon samples indicated the presence of kinetic limitations of electrolyte
ions entering smaller pores.

As for GCD tests in the two-electrode system, at 0.1 A g−1 current density, GCD curves of the CPCs
showed a perfect triangle with little obvious ohmic drops (figure 5b). This indicated rapid ion transport
throughout the pores of the materials. The specific capacitances calculated from the GCD curves were
between 292 and 174 F g−1 at the low current density of 0.1 A g−1 (figure 5e). The CPC900 sample
exhibited a smaller specific capacitance, which demonstrates the effect of structural damage on the
electrochemical performance of the carbon material. The self-discharge measurements of
supercapacitors are shown in the electronic supplementary material, figure S3.

EIS was used to investigate the electron/ion transport process for the CPCs electrodes, as shown in
figure 5c,d; the EIS plots show neat vertical straight lines in the low-frequency region, indicating the
Warburg element (W ) and low ion diffusion resistance. In the higher-frequency region, the small
semicircle is indicative of charge transfer resistance and the low combined series resistance involving
the intrinsic resistance of the electrode materials, ionic resistance of the electrolyte and contact
resistance between the current collector and the electrode. The energy and power densities of the
supercapacitors made from the CPCs were evaluated through the GCD curves in a two-electrolyte cell
using 6 M KOH as an electrolyte. As shown in figure 5f, the CPCs’ materials exhibited maximal
densities of 6.8–10.2 W h kg−1 under power outputs of 253.4 W kg−1 to 24.3 kW kg−1, which are clearly
close to the values obtained from other carbon materials derived from biomass, while the carbon
source of CPCs’ materials came from cheaper wastes [28].

For real devices, the cyclic stability of the cell was not affected when the sweep rates were increasing.
The results for CV, GCD for CPC600 are shown in figure 6. The CV profiles for the CPC600 electrode
(figure 6) were measured under varying scan rates from 5 to 100 mV s−1 between −0.2 and 1.0 V,
which showed a symmetric rectangular shape with no broadened humps, indicating dominant
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behaviour of the electrochemical double-layer capacitance (EDLC) with no pseudocapacitance from the

oxygen-containing functional groups [29]. For GCD, the curves for the CPC600 electrode (figure 6)
showed a triangular symmetry and small voltage drop due to the dominant EDLC behaviour; the
capacitance for CPC600 was mainly attributed to its large surface area and pore volume [30]. As
shown in figure 6, when the current density increased to 5 A g−1, the material retained the specific
capacitance at 152 F g−1 (44.3%). It should be noted that the high specific capacitance of 152 F g−1 is
remarkable for carbonaceous electrode materials without heteroatom (S, B or N) doping [3]. The cycle
stability is shown in the electronic supplementary material, figure S2.
 .org/journal/rsos

R.Soc.open
sci.6:190132
4. Conclusion
In summary, carbon electrode materials with a novel smoke-like structure were facilely synthesized from
a bio-waste fungal substrate crude polysaccharide for use in high-performance supercapacitors. The as-
prepared products show a large specific surface area (2160 m2 g−1) and excellent porosity, with a
representative pore size of 0.7 nm; the material also shows a certain degree of graphitization and a
flake-like structure. The specific capacitance for CPC600 reaches 361.0 F g−1 at 0.1 A g−1 and even
retains a value of 152 F g−1 at 5 A g−1. Compared with the previous work (figure 6), CPCs’ materials
showed excellent specific surface area as well as ideal specific capacitance value (figure 6d). We hope
that this method will lead to new ideas for the synthesis of future high-performance energy storage
applications.
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