

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1995-12

Convective heat transfer from a cylinder in a strong acoustic field

Harder, Donald R.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/31321

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

THESIS

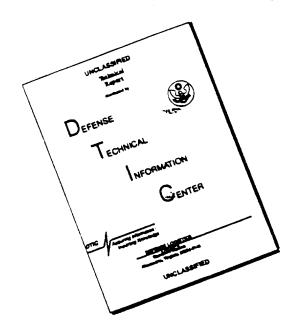
CONVECTIVE HEAT TRANSFER FROM A CYLINDER IN A STRONG ACOUSTIC FIELD

by

Donald R. Harder

December, 1995

Thesis Advisor:
Thesis Co-Advisor:


Ashok Gopinath Oscar Biblarz

Approved for public release; distribution is unlimited.

19960411 118

DTIC QUALLITY INSPECTED I

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

R	EPO)R	TD	OCI	IMEN	JTAT	ION	PAGE
				\mathbf{v}	CIVETAIL			

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503

Proje	ct (0704-0188) Washington DC 20503.						
1.	AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 1995	3.		RT TYPE AND DATES COVERED er's Thesis		
	TITLE AND SUBTITLE NVECTIVE HEAT TRANSFER F OUSTIC FIELD	5.	FUNDING NUMBERS				
6. Har	AUTHOR(S) der, Donald R.						
7.	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey CA 93943-5000					PERFORMING ORGANIZATION REPORT NUMBER	
9.	SPONSORING/MONITORING AGENC	10.	SPONSORING/MONITORING AGENCY REPORT NUMBER				
11.	1. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.						
12a.	a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.				12b	DISTRIBUTION CODE	

13. ABSTRACT (maximum 200 words)

Experimental work was performed to study the convective heat transfer characteristics from a cylinder in a strong zero-mean oscillatory flow represented by an acoustic field. Two different flow regimes are discussed; that in which laminar, attached flow around the cylinder is present, and that in which instabilities, such as vortex shedding occur. The experiment utilizes a steady state measurement method. A transition from the laminar to the unstable regime was observed to occur at a streaming Reynolds number of approximately 240. Within the laminar regime, the transition from "intermediate" to "large" values of the streaming Reynolds number occurs at approximately 130. Heat transfer results for large values of the streaming Reynolds number in the laminar regime closely match the present theory (less than 13% error). Correlations were developed to relate the heat transfer rate to the streaming Reynolds number in the unstable regime. This work would find application in the design of heat exchangers for a thermoacoustic engine.

14. SUBJECT TERMS Thermoacoustics, Convective Heat Transfer From a Cylinder, Oscillatory Flow.							NUMBER OF PAGES 120
						16.	PRICE CODE
17.	SECURITY CLASSIFI- CATION OF REPORT Unclassified	18.	SECURITY CLASSIFI- CATION OF THIS PAGE Unclassified		SECURITY CLASSIFICA- TION OF ABSTRACT Unclassified	20.	LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Approved for public release; distribution is unlimited.

CONVECTIVE HEAT TRANSFER FROM A CYLINDER IN A STRONG ACOUSTIC FIELD

Donald R. Harder
Lieutenant, United States Navy
B.S., University of Washington, 1985

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

Author: Donald R. Harder Approved by: Ashok Gopinath, Thesis Advisor Oscar Biblatz, Thesis Co-Advisor Matthew Kelleher, Chairman Department of Mechanical Engineering Daniel Collins, Chairman Department of Aeronautics and Astronautics

ABSTRACT

Experimental work was performed to study the convective heat transfer characteristics from a cylinder in a strong zero-mean oscillatory flow represented by an acoustic field. Two different flow regimes are discussed; that in which laminar, attached flow around the cylinder is present, and that in which instabilities, such as vortex shedding occur. The experiment utilizes a steady state measurement method. A transition from the laminar to the unstable regime was observed to occur at a streaming Reynolds number of approximately 240. Within the laminar regime, the transition from "intermediate" to "large" values of the streaming Reynolds number occurs at approximately 130. Heat transfer results for large values of the streaming Reynolds number in the laminar regime closely match the present theory (less than 13% error). Correlations were developed to relate the heat transfer rate to the streaming Reynolds number in the unstable regime. This work would find application in the design of heat exchangers for a thermoacoustic engine.

TABLE OF CONTENTS

I. I	NTROD	UCTION1
II.	BACKG	ROUND 3
	A.	HISTORICAL 3
	B.	RECENT WORK 4
	C.	THERMOACOUSTIC PROCESS
	D.	HEAT TRANSFER IN ACOUSTIC FIELDS
TT	EYBEDI	MENT11
ш.	A.	INTENT
	В.	FUNDAMENTAL IDEAS
	ъ.	1. Criterion A
		2. Criterion B
		3. Criterion C
		4. Criterion D
		5. Criterion E
		6. Criterion F
		7. Criterion G
		8. Basic Flow Description
	C.	APPARATUS
		1. Test Cylinder
		2. Sound Chamber
		3. Acoustic Electronics Package
	D.	EXPERIMENTAL METHOD
	E.	EXPERIMENTAL CALCULATIONS
IV 1	ресіп т	S AND DISCUSSION 25

	A.	LAMINAR, ATTACHED FLOW REGIME	. 38
	B.	SEPARATED FLOW REGIME	. 42
V. C	ONCLUS	SIONS	. 45
VI. R	RECOMN	MENDATIONS	. 47
APPI	ENDIX A	A. CALIBRATIONS AND CALCULATIONS	. 49
APPI	ENDIX E	B. UNCERTAINTY ERROR ANALYSIS	53
APPI	ENDIX C	C. EXPERIMENTAL DATA	59
LIST	OF REF	TERENCES	l 0 3
INIT	IAI DIST	TRIBUTION LIST 1	เกร

LIST OF FIGURES

1. Sondhauss Tube	3
2. Basic Thermoacoustic Process.	6
3. Thermoacoustic Stack	7
4. Heat Exchanger	8
5. Pressure and Velocity Profiles in the Presence of an Acoustic Signal	Э
6. Vortices Due to Oscillatory Flow Around a Cylinder	7
7. Outer Acoustic Streaming Flow)
8. Experimental Test Apparatus	1
9. Test Cylinder Assembly	2
10. Photo of Test Cylinder inserted into the Sound Chamber	3
11. Sound Chamber Assembly	1
12. Photo of Test Apparatus	5
13. Proper Geometry so that Maximum Velocity occurs at the Test Cylinder	3
14. Parameter Map of Expected Heat Transfer Regimes	5
15. Data Plotted as a Function of Nusselt Number vs. Streaming Reynolds Number 37	7
16. Laminar, Attached Flow Regime for $R_s < 240$)
17. Laminar, Attached Flow Regime for Large R _s with Uncertainty Bars	L
18. Unstable Regime	3
19. Data Plotted with Curve Fits for the Regimes of Interest	5
20 Thermocouple Arrangement for Calibration Tests)

X

LIST OF TABLES

1. Sample of SPL and PR for Comparison	29
2. Thermocouple Calibration Data	50
3. Thermal Resistance and Linear Temperature Distribution Trials	52

LIST OF SYMBOLS, ACRONYMS AND/OR ABBREVIATIONS

test cylinder radius [m] a Α amplitude of particle oscillation [m] B aspect ratio speed of sound [m/s] С diameter of test cylinder [m] d D diameter of sound chamber [m] f frequency [Hz] Grashoff number Gr convective heat transfer coefficient [W/m²-K] h Ι current [Amps] thermal conductivity [W/m-K] k KC Keulegan-Carpenter number length of test cylinder [m] L distance from test cylinder to termination end plate [m] M Mach number Nu Nusselt number P power [W] P_{m} mean ambient pressure [Pa] pressure level [Pa] P_0 P_{ref} reference pressure [Pa] PR pressure ratio R gas constant [J/kg-K] equivalent thermal resistance [K/W] R_{eq} R_s streaming Reynolds number S pressure transducer sensitivity [mV/Pa] SPL sound pressure level [dB] T, ambient temperature [K] T_c center temperature [K] T_s surface temperature [K] particle velocity [m/s] U_0 V_0 voltage [Volts] Z aspect ratio β amplitude ratio polytropic coefficient γ δ Stoke's boundary layer [m] amplitude parameter ε wavelength [m] λ frequency parameter Λ kinematic viscosity [m²/s] ν cylinder length scale χ

radian frequency [rad/s]

ω

I. INTRODUCTION

The science of convective heat transfer in an acoustic field, while still in its infancy, presents many new and exciting possibilities for application in the future. Different experiments and theory have proven that under the correct circumstances there are certain desirable heat transfer characteristics affecting an object which is immersed in a strong acoustic field. A complete analysis concerning the processes and effects of the related heat transfer phenomena, though, is lacking and desperately needed.

Although thermoacoustics have already been applied to some advanced heat transfer designs, for instance, the thermoacoustic space refrigerator and other thermoacoustic cryocoolers developed at the Naval Postgraduate School, there has yet to be developed anything that can compete on an economic level with what is currently marketed today. The efficiencies obtained so far have been quite low, requiring nearly twice the power of a conventional vapor compression refrigerator. When the fundamentals behind the thermoacoustic phenomenon and the related heat transfer characteristics are completely understood, breakthroughs can occur which could allow industry to move ahead and apply these techniques on an every day basis toward a variety of common uses.

To properly model and control the parameters which impact upon the heat transfer behavior in a thermoacoustic engine, it would be advantageous if the various flow regimes (e.g., turbulent vs. laminar) in the engine could be isolated and analyzed in detail. Further information in this regard may be obtained through a parametric analysis of a suitable model problem by which a measure of the importance (or rather a magnitude of the effect each parameter has on the process as a whole) can be determined. This is an important element of the modeling process and requires study since by understanding the impact that each individual parameter makes upon the thermoacoustic process as a whole, it may be possible to predict the changes in the heat transfer characteristics as individual components are varied.

The work contained within provides an experimental study of some of the dominant heat transfer properties of a particular model problem that may be encountered in thermoacoustic engines. The model problem chosen is one of convective heat transfer from a cylinder in a zero-mean oscillatory flow. The flow is representative of the acoustic standing wave in a thermoacoustic engine whereas the cylinder represents a tube or other component that may be present in such an engine.

The work involves a correlation of experimental heat transfer data in terms of a suitable Nusselt number (Nu) with other appropriate dimensionless parameters in the problem, such as the streaming Reynolds number (R_s), which itself is a function of length scales, pressure ratios and frequency parameters and, of course, of the Prandtl number (Pr). Through use of high power standing resonant acoustic waves in a cylindrical chamber, a high-intensity internal oscillatory flow is established. Under these conditions, the heat removal rate from a thin cylindrical heating element immersed in the acoustic signal will supply data necessary to arrive at some basic conclusions as to heat transfer phenomena occurring around a cylinder. This work focuses upon two different flow regimes; one in which laminar, attached flow around the cylinder at large values of the streaming Reynolds number is present, and the second in which vortex shedding and other instabilities in the flow are expected to occur at the cylinder surface. The resultant experimental data additionally provides guidelines for determining when the flow transitions from one regime to the other.

II. BACKGROUND

A. HISTORICAL

It has long been understood that a large temperature gradient along the length of a cylindrical tube can, under certain suitable circumstances, spontaneously excite the fluid into oscillations strong enough to create audible sound. Glass blowers provided the earliest accounts of this acoustic effect. They found that when one end of a glass tube was placed in a furnace, the temperature difference between the end of the tube in the furnace and the end still under ambient conditions created an audible tone which was emitted from the open end of the tube. Even though early scientists knew of this effect, it was merely considered to be more of an oddity than a scientific discovery which might have useful implications. In fact, the earliest accounting of what may have been the first ever thermoacoustic engine, the Sondhauss tube (Figure 1), was described by Sondhauss (1850) himself as the "glowing glass harmonica". Lord Rayleigh (1945) gave the first good qualitative analysis of the Sondhauss tube in 1896 in which he described the mechanism behind the effect and posed the theory that mechanical work could be obtained from the vibrations, or oscillations, which were being created by the temperature gradient along the tube.

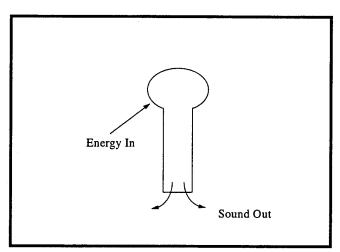


Figure 1. Sondhauss Tube

An extension of research into Sondhauss tubes was conducted by Carter (1988) and included placing a stack of plates at an appropriate point in the tube. The plates included hot heat exchanger strips at one end and cold heat exchanger strips at the other. These improved the effect of the Sondhauss tube, and inspired another scientist, Feldman (1966) to conduct similar research which consequently resulted in an oscillator which produced 27 W of acoustic power from 600 W of thermal power. All of this occurred in the 1960s.

It wasn't until much later that it was postulated that the effect could somehow be reversed, i.e., a temperature gradient could be created along a tube using a powerful, resonating acoustic signal as the driving force. It is only more recently that advances in acoustic technology have allowed serious research toward this goal.

B. RECENT WORK

The heat transfer effect related to this thermoacoustic phenomenon has since been used in the creation of heat pumps and has been explored by several scientists. The results of these attempts include what was termed a pulse-tube refrigerator as developed by Gifford and Longsworth (1966). This refrigerator utilized low frequency, high amplitude oscillations to excite the gas in a tube and create a cooling effect along the surface. The invention of "modern" thermoacoustic refrigeration occurred in the early 1980s at Los Alamos National Laboratory. It was in essence a modification to the work that Carter did, using stacks of plates with a much smaller temperature gradient. Additional engineering developments by others, such as the work at the Naval Postgraduate School with a thermoacoustic refrigerator intended for use on the space shuttle, led to increases in efficiency, as well as to an increase in commercial interest and development. Currently, there are major projects ongoing in several countries as outlined by Swift (1995), including a prototype food refrigerator based upon the Naval Postgraduate School's work being built in the Republic of South Africa. The Ford Motor Company has developed its own version of a thermoacoustic refrigerator while the Tektronix Corporation is working towards a pulse-tube type of refrigerator to be used for cooling electronics to cryogenic temperatures.

All of these attempts are especially significant given the current stigma surrounding the environmentally hazardous use of CFC's. Even though thermoacoustic refrigeration is

still not as efficient as that of current energy efficient vapor compression models, there is a growing demand for something to take their place. By advancing our knowledge-base in this area, and further incorporating a new understanding of how increases to the efficiency of thermoacoustic designs can be made, that it may well be possible that a new thermoacoustic revolution is in our future.

C. THERMOACOUSTIC PROCESS

The basic process behind a thermoacoustic engine can be best described by the model in Figure 2. The upper portion of the figure shows a sound chamber with an acoustic driver at the left end which is used to create a resonant, standing wave in the chamber. At an appropriate point within the chamber, a thermoacoustic stack (Figure 3) is placed with a heat exchanger (Figure 4) on either side of it. The flow of heat is from right to left in the figure. The process of heat transport across the plate is illustrated in the lower portion of the figure. The fluid within the chamber will oscillate due to the acoustic wave, traveling from a point of low pressure to one of high pressure, gaining and losing energy during each half cycle.

For instance, a parcel of gas at temperature T_0 at low pressure moves along line 1, increasing in pressure and temperature until it reaches T++ (has gained two units of heat). At that point, it loses one unit of heat to the plate, thereby reducing its temperature to T+. As the parcel of gas continues through the second half of the oscillatory cycle, it decreases in pressure, and it loses two unit of heat, dropping to T-. It is then able to retrieve a single unit of heat from either the plate at the right hand side of the cycle, or from a heat exchanger at that end. In effect, a "bucket-brigade" of little parcels of gas is formed as the heat transport mechanism. It is the heat exchangers on either end of the thermoacoustic stack and the heat transport mechanisms involved with them that this experiment intends to analyze.

D. HEAT TRANSFER IN ACOUSTIC FIELDS

The early 1950's saw an increased interest towards understanding the heat transfer behavior in oscillatory flows and an earnest effort towards understanding the possible benefits thereof began. Richardson (1967) produced the first significant contribution to this field by providing a coherent and detailed account on the general nature of heat transfer in oscillatory flows. He gave concise documentation on how sound and vibration fields had

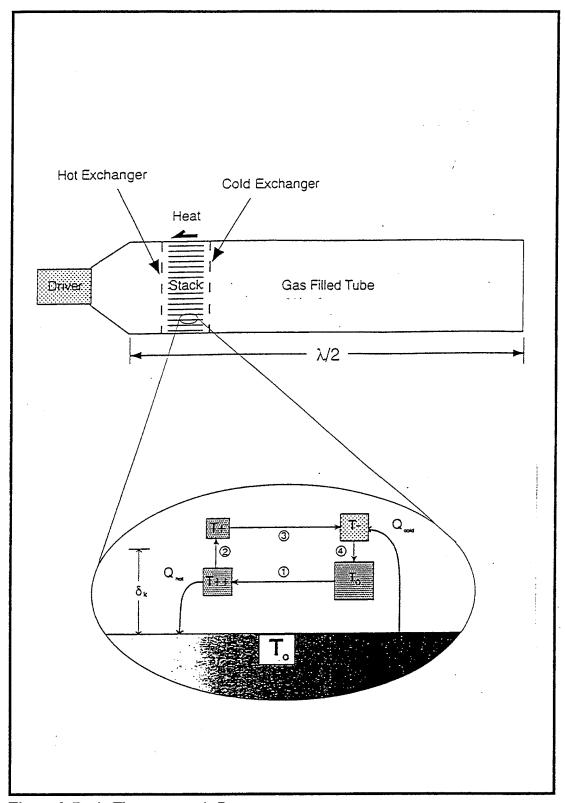
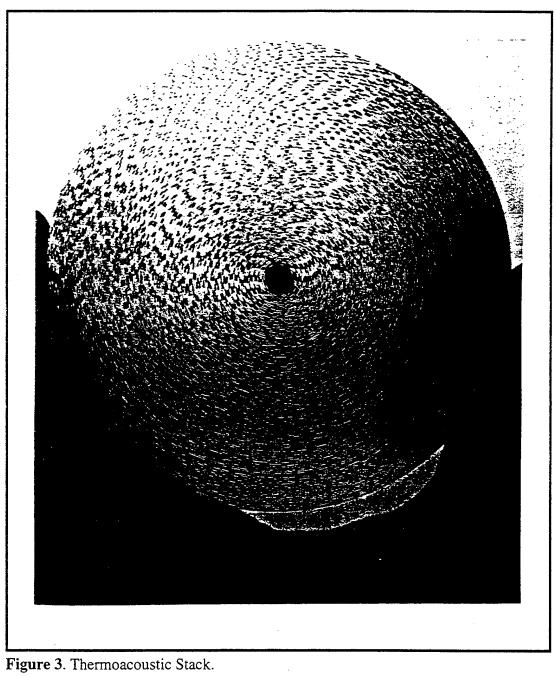



Figure 2. Basic Thermoacoustic Process.

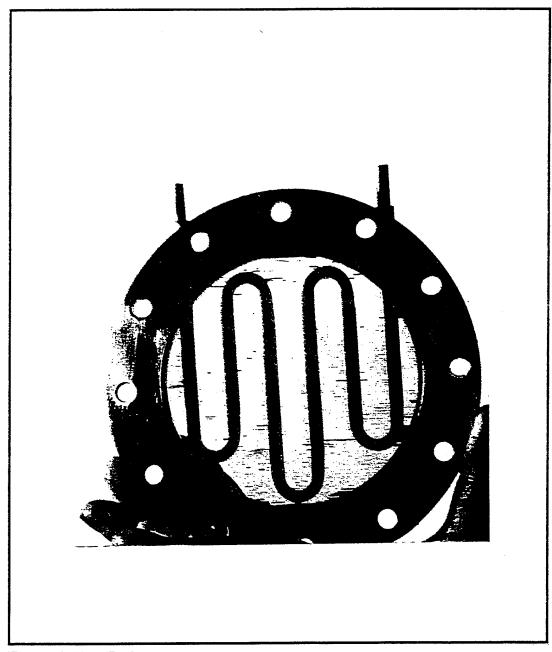
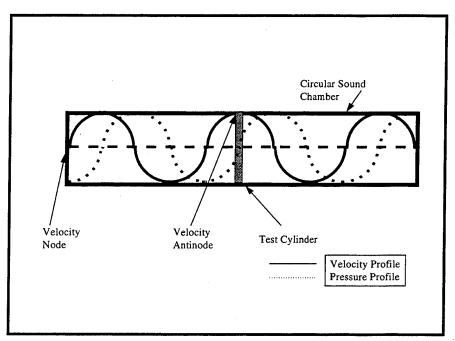


Figure 4. Heat Exchanger.


made an impact in the heat transfer field up to that point. He additionally conducted a preliminary study on how the effect can be related to that of a more traditional fluid-mechanical analysis. Davidson (1974) further expanded upon Richardson's work, analyzing the heat transfer behavior of cylinders in oscillatory flow. That occurred in the early 1970's, and since then, very little work on the subject can be found in literature.

Most recently, though, Mozurkewich (1995) performed heat transfer experiments in an acoustic field utilizing a transient analysis of a heated wire. His results, although informative in some respects, were lacking in data within the most basic flow regimes and his conclusions left some doubt to the reader.

When first attempting to analyze the process behind convective heat transfer in an acoustic field, it is often simpler to think of the heat transfer phenomenon as something akin to that of forced convection due to a steady mean flow. Initially, that there is a separate power source placed away from the test object which produces a disturbance in the fluid medium in which that object is immersed. In forced convection, that power source may be considered to be a fan or a pump which creates a pressure gradient, which in turn causes a steady flow of fluid. In the current problem, the power source is instead an acoustic driver which causes an oscillatory (or vibrational) type of time-periodic flow around the object being considered. This oscillatory flow has a zero-mean and results in no net through flow. Before analyzing this flow for heat transfer characteristics, though, it is necessary to first note which aspects of the acoustic field dominate.

A resonant, standing wave acoustic field excited across the ends of a closed cylindrical chamber has very distinct properties. Of particular interest is the fact that when such a field exists, the pressure along the length of the chamber varies sinusoidally such that a point of maximum pressure occurs at the rigid end termination at the opposite end of the chamber from which the acoustic signal is being generated. In addition, depending upon the frequency being used, there may be more than one zero-crossing, or pressure minimum, along the length of the chamber (Figure 5).

At resonance, the acoustic velocity is out of phase with the pressure. For instance, at a point of minimum pressure, a pressure node, the particle oscillations will be at their point of maximum velocity, a velocity antinode. The reverse then also holds true, (i.e., a pressure

Figure 5. Pressure and Velocity Profiles in a Circular Tube in the Presence of an Acoustic Signal.

antinode can also be designated a velocity node).

To understand the reason why this relationship is extremely valuable to this research, it is useful to again refer to the forced convection model. In general, as the fluid velocity in a forced convection application increases within a particular regime, so does the heat transfer coefficient. The case is essentially the same for heat transfer in an acoustic field, and hence it is expected that the heat transfer rate would also increase as the particle velocity increases. Thus, for experimental purposes it is of prime importance that the test object be placed at a velocity anti-node to get the maximum effectiveness out of the process for a given acoustic signal. However, in contrast to the forced convective mean flow case, the current issue with oscillatory flow is considerably more complicated due to the wide range of flow parameters, and hence flow patterns and heat transport mechanisms, that can result.

II. EXPERIMENT

A. INTENT

As with any other advance in technology or new scientific discovery with which engineers desire to predict and quantify results in some manner, it is best to begin by first breaking the process down into its basic component parts. By completing an analysis for the simplest version of the model in question, a stepping stone will be established upon which the analysis of more complicated scenarios can be built. It stands to reason that this is how the analysis of the thermoacoustic heat transfer process should also begin.

For an initial starting point, the analogy once again to forced convection heat transfer is used. The problem of an isolated cylinder in a mean cross flow is well documented and understood, and has in turn been used to develop correlations for flow over a collection of cylinders, such as a tube bank, a more practical application as is evident from any basic heat transfer textbook. This is the motivation for a study of the behavior of simple shapes such as a cylinder placed in an acoustic field. It is hoped that with this knowledge for an isolated cylinder, it would be possible to extend the solution to other models.

It is only necessary then to concentrate on the evaluation of the acoustic signal itself in terms of its many different parameters. But before this analysis may begin, the type of acoustic flow around the cylinder must be established. To allow corroboration with established theory, the flow pattern initially desired is that of basic laminar, incompressible flow where well understood streaming patterns are the principal forms of flow and heat transport. This meets the requirement for maintaining the most simplified version of flow for the analysis.

The geometry of how the test cylinder is placed with reference to the acoustic signal is also of utmost importance. A theoretically perfect scenario would have the test cylinder situated normal to a unidirectional sound field with no interference from the surroundings. Such a situation cannot be exactly duplicated, though, due to the nature of acoustic waves to spread and travel in all directions. In order to restrict the acoustic signal to only one

direction, it is proposed that the sound field be set up in a cylindrical, resonant sound chamber so that the analysis is properly limited to axial wave modes only.

B. FUNDAMENTAL IDEAS

Unlike the well known dependence on the Reynolds and Prandtl numbers found in conventional cross flow over bluff bodies, the issue of heat transfer in the presence of an acoustic field is significantly more complicated due to the presence of a multitude of competing length (or time, or velocity) scales. The ways in which these length scales may be ordered are many and lead to numerous distinct parameter regimes with quite drastically different flow properties, and hence heat transfer properties. In order to closely examine the properties of heat transfer in oscillatory flows then, it is first necessary to enumerate some of the different parameters and variables involved. By establishing and maintaining a set of criteria surrounding these parameters, and by modeling the test apparatus to conform to them, the job of evaluating different regimes of flow and drawing correlations from the data obtained will become possible.

This section lists the most important of these parameters and provides reasoning for the choices involved, keeping in mind the desire to maintain the most basic and core set of conditions that flow around the test cylinder be laminar, incompressible and attached, and that only the steady-state solution be considered.

1. Criterion A

Following the first assumption that the acoustic streaming flow around the test cylinder be incompressible, two different length scales must be specified. The first of these requires that the relative size of the test cylinder be very small compared to the radian wavelength of the acoustic field, where the radian wavelength is defined as

$$\overline{\lambda} = \frac{\lambda}{2\pi} \tag{1}$$

and the characteristic length scale of the test cylinder is chosen as the radius, a. The radian wavelength can be related to the frequency by:

$$\overline{\lambda} = \frac{\lambda}{2\pi} = \frac{c/f}{2\pi} = \frac{c}{\omega} \tag{2}$$

Now, by asserting that $a \ll \overline{\lambda}$, and designating the ratio between the two as χ , it follows that:

$$\frac{a}{\overline{\lambda}} \ll 1$$
 (3)

and finally that

$$\chi = \frac{a\omega}{c} \ll 1 \tag{4}$$

The criterion $\chi \ll 1$ ensures that radiation effects due to the acoustic streaming are negligible, as presented by Lighthill (1963) and indicates that it is only the local acoustic field conditions that are of importance.

2. Criterion B

The second criterion which is required to support the assumption that flow be incompressible is derived from the relationship between displacement amplitude of particle oscillation in the sound field, \overline{A} , and the cylinder radius, a. The ratio between the two, $\overline{\frac{A}{a}}$, will be designated as the amplitude parameter, ϵ , and dictates whether or not separation will occur.

When the amplitude parameter is very small,

$$\epsilon = \frac{\overline{A}}{a} \ll 1$$
 (5)

the particles in the sound field move a very short distance along the cylinder wall before reversing their direction. This ensures that the flow remains attached, with little chance of separation occurring, and hence the flow will remain laminar at all times. It can also be noted that ϵ is directly proportional to the pressure ratio P_0 / P_m and can therefore take on much larger values for strong acoustic fields. This is accomplished by observing that the displacement amplitude of a particle in the flow is directly related to its velocity and that the

particle velocity is in turn related to the pressure ratio by the following (in a plane standing sound field)

$$\overline{A} = \frac{U_0}{\omega} \tag{6}$$

and

$$U_0 = \frac{cP_0}{\gamma P_m} \tag{7}$$

therefore

$$\epsilon = \frac{c}{a\omega} (\frac{P_0}{\gamma P_m}) \ll 1 \tag{8}$$

Yet another form of this parameter often used in the literature is called the Keulegan Carpenter number and is defined as $KC=U_0/2af$ and can additionally be expressed as

$$KC = \pi \epsilon$$
 (9)

Of importance is the fact that the product of the parameters defined in the first two criteria (A and B) is the flow Mach number, which can be defined as

$$M = \chi \epsilon = \frac{U_0}{c} \tag{10}$$

When criteria A and B are satisfied, $M \ll 1$, and this in turn is the second condition which satisfies the assumption of incompressible flow.

3. Criterion C

The Stokes boundary layer thickness δ is related to the kinematic viscosity and the radian frequency of oscillations by

$$\delta = \sqrt{\frac{v}{\omega}} \tag{11}$$

and is the well known length scale which is a measure of the extent of viscous effects in an oscillatory flow. A frequency parameter Λ^2 can be defined as follows

$$\Lambda^2 = (\frac{a}{\delta})^2 = \frac{a^2 \omega}{v} \tag{12}$$

For the case when $\Lambda^2 \gg I$, the Stokes shear layer is confined to a narrow region and the acoustic streaming effect appears as a slip velocity along the cylinder surface. Utilizing the knowledge that the boundary layer thickness is on the order of 10δ and imposing the condition (somewhat arbitrarily) that

$$\frac{a}{10\delta} > 4 \tag{13}$$

it follows that

$$\Lambda^2 > 1600 \tag{14}$$

is a good criterion to ensure "large" values of the frequency parameter.

The frequency parameter may also be often found in the literature in the form of $\beta = (2a)^2 f/v$, and can be expressed as

$$\beta = (\frac{2}{\pi})\Lambda^2 \tag{15}$$

4. Criterion D

When criteria A - C are satisfied, the acoustic streaming velocity is of magnitude $O(\epsilon U_0)$. A streaming Reynolds number, R_s , can then be defined as

$$R_s = \frac{(\epsilon U_0)a}{v} \tag{16}$$

Through substitution for ϵ and U_0

$$R_{s} = \frac{U_{0}}{a\omega} \frac{U_{0}a}{v} = \frac{U_{0}^{2}}{\omega v} = \frac{c^{2}}{\omega v} (\frac{P_{0}}{\gamma p_{m}})^{2}$$
 (17)

which yields

$$R_{s} = \epsilon^{2} \Lambda^{2} \tag{18}$$

This streaming Reynolds number becomes the driving factor in determining what will be the primary mode of heat transport within the region due to the acoustic streaming flow. Stuart (1966) demonstrated that when $R_s \ll 1$, a Stokes flow becomes prevalent in the outer region while a boundary layer flow is predominant when this parameter takes on values much greater than one. In order to ensure that forced convective heat transfer is dominant then, we impose the following constraint

$$R_s \gg 1$$
 (19)

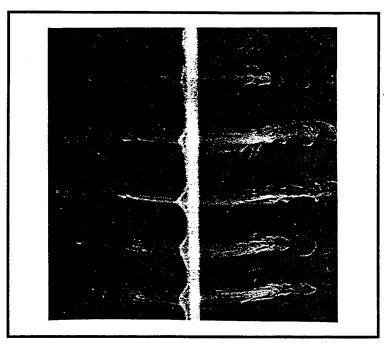
5. Criterion E

It was first observed by Honji (1981) that flow around a cylinder will become centrifugally unstable and separate into vortices as the amplitude of particle oscillation increases. This instability occurs in the Stokes layer where the flow is parallel to the direction of particle oscillation. This was confirmed by Hall (1984) who conducted a linear stability analysis on the unsteady boundary layer in the high-frequency limit. He found that a critical value of the Reynolds streaming number exists for which instabilities begin to form, namely when R_s becomes greater than 4.24Λ . Recent work in the area by Sarpkaya (1986) provides further explanation for this phenomenon. Since vortex shedding can make a large impact on the heat transport from the cylinder, we will maintain the following criterion, which can be expressed in two different ways as

$$R_{s} < 4.24\Lambda \tag{20}$$

or, alternately as

$$\epsilon < \frac{2.06}{\sqrt{\Lambda}} \tag{21}$$


An example of what these vortices may look like is shown in Figure 6.

6. Criterion F

In order to maintain the condition in which there is minimal influence from the buoyancy effects of natural convection as compared to the forced convective heat transfer due to the acoustic streaming effects, a dimensional analysis of the governing equations produces the following requirement for the Grashof number

$$\frac{Gr}{R_s^2} \ll 1 \tag{22}$$

For the case when $Gr / R_s^2 \approx 1$ or greater, buoyancy effects must be taken into account and any heat transfer correlations developed will have to be modified accordingly.

Figure 6. Vortices Due to Oscillatory Flow Around a Cylinder. (Sarpkaya, 1986)

7. Criterion G

This final criterion stems from the desire to maintain only a plane standing sound field within the test chamber. This means that only the axial wave components excited by the resonant acoustic signal be present, without interference from transverse modes such as the azimuthal modes and radial modes. It may be shown from theory that there is a certain cut-off frequency developed from a solution of the wave equation, below which the transverse modes will not be present. For the cylindrical waveguide geometry being used, the solution for the above condition is obtained in the form of appropriate roots of Bessel functions. If L is the length of the test chamber, the longitudinal frequency can be expressed as

$$f_l = \frac{lc}{2L} \tag{23}$$

where l is the 1^{st} , 2^{nd} , ..., mode number. The transverse frequency mode is expressed by

$$f_{mn} = \alpha'_{mn} \frac{c}{\pi D} \tag{24}$$

where D is the test chamber diameter and α'_{mn} represents the eigenvalues obtained from roots of the Bessel functions. Transverse modes will be present if $f_l = f_{mn}$, so it is desired to maintain f_l well below f_{mn} and f_l now represents the maximum frequency possible while still maintaining this criterion. By substituting for both frequencies, the condition becomes

$$\frac{lc}{2L} < \alpha'_{mn} \frac{c}{\pi D} \tag{25}$$

which is reduced to

$$\frac{l}{2(\frac{L}{D})} < \frac{\alpha'_{mn}}{\pi} \tag{26}$$

By introducing a new parameter called the aspect ratio,

$$Z = \frac{L}{D} \tag{27}$$

and finding the smallest root of this Bessel function,

$$\frac{\alpha'_{mn}}{\pi}min = 0.586 \tag{28}$$

the criterion now becomes

$$\frac{l}{2Z} < 0.586$$
 (29)

which can be rearranged to finally get

$$Z = \frac{L}{D} > 0.85 l_{\text{max}} \tag{30}$$

where

$$l_{\text{max}} = \frac{f_{\text{max}}}{f_{\text{min}}} \tag{31}$$

This gives a relationship between the geometry and the maximum frequency. But since the maximum frequency is already defined using criteria A - F, criterion G in fact gives us the maximum diameter that can be used, or if the diameter is also given, it determines the length of the chamber instead.

8. Basic Flow Description

When a cylinder is immersed in a standing acoustic field and all of the previous criteria have been met, particle oscillations will initiate the most basic form of an acoustic streaming flow. This steady flow (Figure 7) is symmetrical about two axis, is circular in nature, and includes a well defined boundary layer. The boundary layer is actually quite small and is greatly exaggerated in the figure for clarity. Although this is not the only flow which is present, it does represent the flow pattern that has the biggest impact as a heat transport mechanism when these criteria are satisfied.

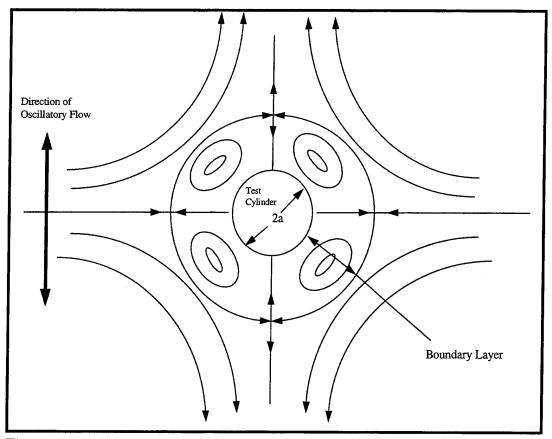


Figure 7. Outer Acoustic Streaming Flow (also known as Boundary Layer Flow)

As discussed earlier, this fluid flow regime is the main focus of this investigation in which at first we consider only laminar, unseparated flow around the test cylinder. One of the goals of this experimental study is to determine the range of values for the previously discussed parameters where one flow regime transitions to another and relate them in terms of the streaming Reynolds number. It is believed that such transitions will be reflected in the heat transfer behavior.

In order to define a specific range for laminar flow, though, these criteria needed to refinement by asking the questions; how small is "much less than one" or how big is "much

greater than one"? It was determined that Criterion A in Eq. 4 would be met by picking $\chi < 0.1$ and Criterion B in Eq. 5 would be met by choosing $\epsilon < 0.3$. This ensures incompressible flow around the test cylinder and that flow remains attached. Criterion C becomes $\Lambda^2 > 1600$, confining the Stokes shear layer to a narrow region. The above ranges have been fixed based on prior experience and preliminary experimentation, but are not by any means intended to be "hard and fast". They may indeed be modified if necessary. Criteria D and E require verification after each experimental run.

C. APPARATUS

As previously discussed, the experiment consists of a heated test cylinder placed normal to a simple acoustic standing wave within a resonating sound chamber (Figure 8). This general description can be broken down into three major components; the test cylinder, the sound chamber and the acoustic electronics package, which are further described below.

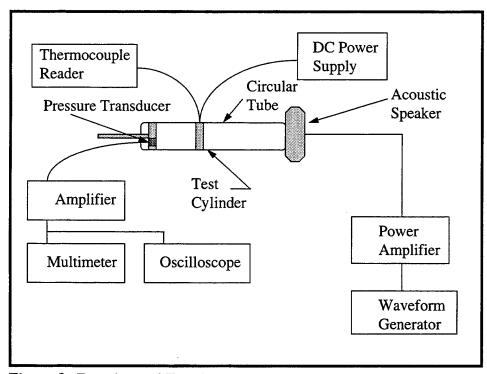


Figure 8. Experimental Test Apparatus.

1. Test Cylinder

It was originally proposed that a Watlow stainless steel cartridge heater be used as the test cylinder for the experiments. They are available in varying diameters and additionally feature an imbedded type "J" thermocouple placed at the midpoint of its length. This presented problems, however, since the heating along the length of the cartridge heater was uneven and the relatively large thermal resistance of the stainless steel produced large variances in surface temperature along the length. Since constant surface temperature is a feature which is very important to the analysis of heat transfer characteristics, this was unacceptable. Therefore, a copper sheath was designed to fit over the cartridge heater. It was assumed that the large thermal conductivity of copper would even out the axial surface temperature gradient. In addition, silicon oil was liberally applied to the inside of the copper sheath prior to insertion of the cartridge heater before each experimental run (Figure 9). This provides better thermal contact in the narrow annular gap (approximately 2 mm) between the sheath and heater, preventing air gaps which can cause local temperature discontinuities at the surface. This arrangement (as was later verified, Appendix B) provides for an axial temperature variation of less than 0.5°C from one end of the heater to the other for the temperature range of interest in this experiment. A picture of the test cylinder is shown in Figure 10.

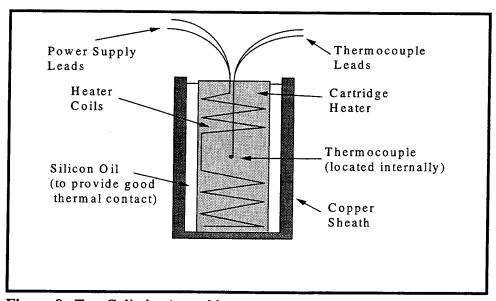


Figure 9. Test Cylinder Assembly.

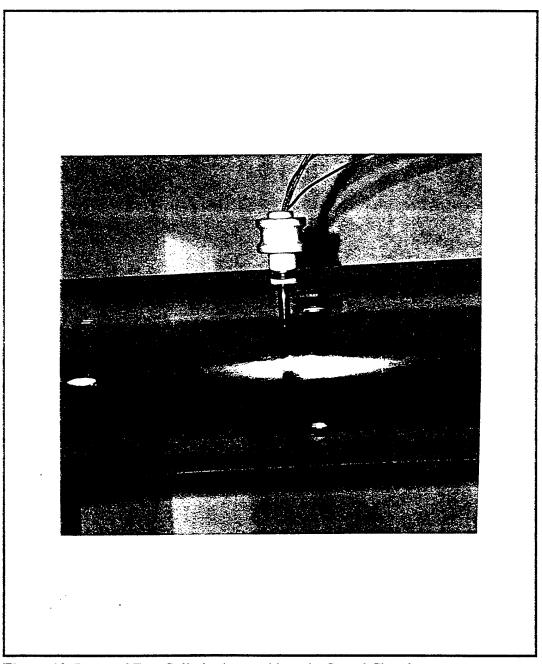


Figure 10. Photo of Test Cylinder inserted into the Sound Chamber.

As was stated earlier, the surface temperature of the test cylinder is a required datum point for the analysis. Since the only provision for temperature measurement is at the thermocouple placed at the center of the test cylinder, the equivalent resistance of the steel/oil/copper circuit is required in order to deduce the surface temperature from the cartridge heater center temperature as measured by the imbedded thermocouple. Appendix B gives a detailed analysis of the derivation of the resistance, which is approximately 1.019 K/W.

The cartridge heater receives its power from a Kikusui Model PAR 160A regulated DC power supply. It provides power control measurement down to 0.01 amps and 0.01 volts. Thermocouple measurements are provided by a Keithley Model 740 scanning thermometer system. Calibration data for all thermocouples and the thermocouple reader is provided in Appendix B.

2. Sound Chamber

The purpose of the sound chamber is to provide an environment through which acoustic signals of various frequencies can be used to excite a resonant standing wave. In order to accomplish this for all frequencies which may be used during the experiment, a resonant chamber that would be adjustable in length was highly desired. Figure 11 shows the final configuration of the test chamber while Figure 12 shows a photo of the test apparatus.

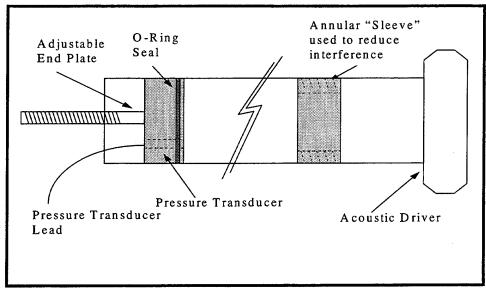


Figure 11. Sound Chamber Assembly.

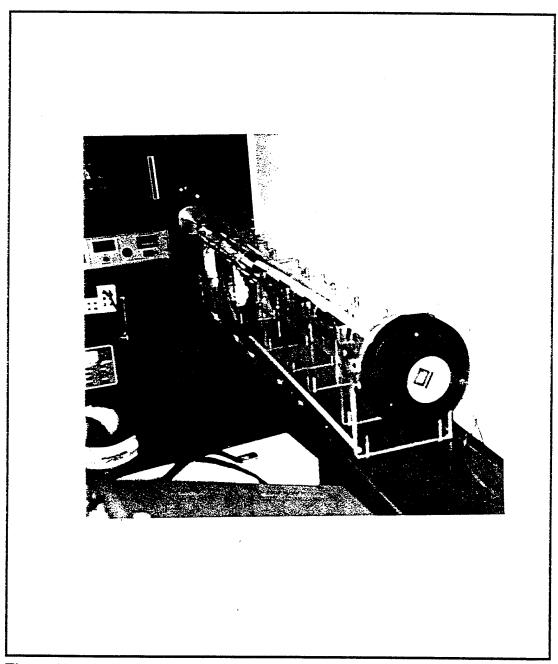


Figure 12. Photo of Test Apparatus. Acoustic Driver is on to the right.

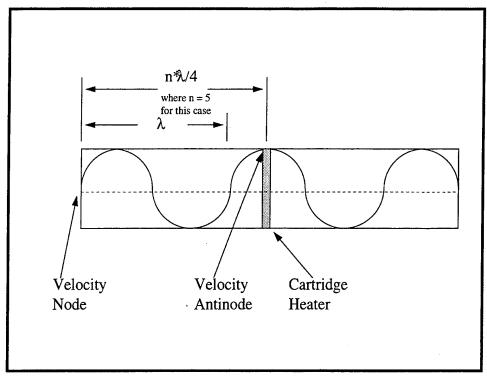
The test chamber itself is a plexiglass tube approximately two meters long which is mounted firmly to a plexiglass base plate. The acoustic driver is mounted at one end and provides the source of the acoustic signal. The opposite end has a movable flat end plate which has an o-ring seal to help isolate the acoustic wave in the chamber. The end plate serves as the rigid end termination while the o-ring provides good sound confinement, as well as good stability for the end face so that it doesn't become offset to either side as its position is varied along the length of the enclosing resonant chamber.

A hole through this end plate provides access for a pressure transducer which is used to help deduce the pressure ratio, and hence the sound pressure level for that configuration of frequency and input power. The pressure transducer used is an Endevco model 8510B-5 which has an output in millivolts and has a pressure sensitivity of 50.89 mV/psi. This is connected to a preamplifier with a gain of 100 and provides output to both an oscilloscope and a Hewlett-Packard model 34401A multimeter. Measurement of the voltage output from the multimeter is important to determine when resonance has occurred within the chamber for as the frequency is varied, the output voltage from the microphone decreases on either side of the resonant operating point.

The oscilloscope provides a visual representation of the time trace of the acoustic signal at the end of the sound chamber, corresponding to a pressure antinode, and is used to ensure that the signal remains sinusoidal throughout the experimental range of powers and frequencies. During the initial stages of the experiment, the oscilloscope allowed for the discovery of interference patterns in the sinusoidal waveform as caused by higher order harmonics at high SPLs (> 155 dB). In order to limit the interference that was present, the use of "sleeves" within the chamber was recommended to detune the resonant mechanism. This would prevent the harmonics from being integral multiples of each other and thereby prevent them from reinforcing each other to form interference patterns. By placing a sleeve at an appropriate spot in the chamber, some of the high frequency harmonics leading to interference could be eliminated, allowing for even higher SPLs to be achieved before interference occurred.

3. Acoustic Electronics Package

Of great importance to the experiment is the ability to generate a nearly pure sinusoidal waveform at varying frequencies and high power ranges. As the strength of the signal generated increases, the effect of the flow around the test cylinder becomes more pronounced, enhancing the heat transfer characteristics of the system.


The acoustic signal being generated at the driver end of the sound chamber is provided by a Hewlett-Packard model 33120A arbitrary waveform generator. It sends a sinusoidal waveform at the proper frequency through a Techron model 7540 power supply amplifier to a JBL model 2490H acoustic compression driver.

A more detailed review of each item of equipment used in the system is provided in Appendix D.

D. EXPERIMENTAL METHOD

Prior to gathering data for this experiment, it was first necessary to develop a coherent plan with which to approach the problem. The first step required was to find specific frequencies at which resonance occurred within the chamber, and which would also provide a velocity anti-node at the position of the test cylinder. By looking at the geometry of the problem (Figure 13), it became obvious that these limiting factors could be met by a combination of adjusting the end plate distance from the test cylinder, as well as the signal frequency, so that the length L from the heated cylinder to the end plate termination was an odd multiple of $\lambda/4$. This could be further refined to state that the value of 4Lf/c needs to be an odd integer. When this condition was satisfied, the requirement of a velocity anti-node occurring at the cylinder location was met.

The next thing needed was an estimate of the maximum pressure ratio, and therefore the sound pressure level that could be obtained. This was achieved by increasing the amplitude of the input signal waveform until the output waveform on the oscilloscope began showing traces of interference or other disturbances. When the maximum input amplitude was obtained, the multimeter output was recorded.

Figure 13. Proper Geometry so that Maximum Velocity occurs at the Test Cylinder.

In order to convert the output voltage to an actual pressure ratio and sound pressure level, it was necessary to first understand what form the multimeter uses to present the output. The multimeter gives the voltage output in terms of the true RMS value of the sinusoidal signal, or rather $V_0/\sqrt{2}$, where Vo represents the voltage amplitude from zero to peak of the sinusoidal signal. Recall that the true RMS value for the pressure can also be expressed as $P_0/\sqrt{2}$. Then, the following relationship holds true, that

$$P_0 / \sqrt{2} = \frac{V_0 / \sqrt{2}}{S} \tag{32}$$

where S is the sensitivity of the pressure transducer in mV/Pa.

The sensitivity of the pressure transducer after passing through the 100 gain setting of the preamplifier was converted and expressed as 0.74 mV/Pa. By substituting into the above equation, the pressure amplitude becomes

$$P_0 = \frac{V_0 / \sqrt{2}}{0.523 m V / Pa} \tag{33}$$

where it is noted again that $\,V_0^{}$ / $\sqrt{2}\,$ is the multimeter output.

From this, a pressure ratio can be defined as

$$PR = \frac{P_0}{P} \tag{34}$$

 $PR = \frac{P_0}{P}$ where P_m is the mean ambient pressure of 101 kPa. The pressure ratio is typically expressed in terms of a percentage.

The sound pressure level is defined as the logarithmically scaled ratio of the RMS pressure and a predetermined reference pressure, P_{ref} , where P_{ref} is chosen to be 20 μPa for gases (by convention). This gives

$$SPL = 20 \log_{10} \frac{P_0 / \sqrt{2}}{P_{ref}}$$
 (35)

In order to obtain an idea of how strong the acoustic signal is during the experiments, Table 1 gives the sound pressure level for various activities

Activity	Sound Pressure Level	Pressure Ratio	
	(dB)	(%.)	
Normal Conversation	60	< 0.001	
Jet Airplane at Take-off	90	< 0.01	
Pain Threshold	120	0.28	
Minimum Experimental Level	150.6	0.94	
Maximum Experimental Level	161.2	3.20	

Table 1. Samples of SPL and PR for Comparison.

After finding the pressure ratio, and therefore the SPL, the actual data extraction phase of the experiment could be initiated. It was preceded by with an understanding of what type of data was needed for analysis. A crucial element of this experiment is the need to obtain a broad base of data with which to incorporate the results. In order to obtain this, experiments were run at several different pressure ratios for each resonant frequency found, starting from as low as 0.9% and building up to the maximum pressure ratio by increments of 0.1%. In order to obtain a spread of data points at each pressure ratio evaluated, the test cylinder was heated to approximately 8, 12 and 16 degrees above the ambient temperature. This kept the power requirements low and reduced the amount of thermal input into the ambient air within the sound chamber. This latter point was necessary as the ambient temperature could rise as much as 0.3 degrees during a single experimental trial. In order to ensure reproducibility and reduce the effect of anomalistic behavior, three runs at each temperature point were conducted to ensure consistency of data. The selected temperatures were only guidelines and were not meant to be hard set points for the experiment. Instead, they were treated as aim points with an acceptable range of ± 1 degree. Therefore, in order to produce an even broader spread of data, the power input to the test cylinder was varied slightly for each of the three trials at each specific temperature point.

Once the selected frequencies and pressure ratios had been determined and a suitable starting pressure ratio and temperature had been obtained, the experimental process was initiated. In order to obtain the selected pressure ratio for a particular set of runs, it was necessary to get an idea of the settings required for each specific piece of equipment. This was done by selecting the appropriate frequency on the waveform generator and modifying the power amplification on both the waveform generator and the power amplifier until the appropriate pressure ratio was obtained from the multimeter. The frequency was then adjusted to fine tune the resonance. A check of the oscilloscope at this point ensured that the signal being generated was of the right waveform and that interference was not occurring. Then the power amplifier to the acoustic driver was turned down to zero after noting the level at which it was set. This allowed for obtaining the correct pressure ratio in a quick manner by simply turning the power amplifier up to the previously noted value.

It was necessary at this point to ensure that the test cylinder was properly prepared. This entailed introducing approximately ten drops of silicon oil into the copper sheath and inserting the cartridge heater. The cartridge heater would be completely immersed in the silicon oil after being fully inserted. After a period of time, there would be some loss of silicon oil due to the wick action of the thermocouple and power leads emerging from the top. This was insignificant during the runs required for a single pressure ratio and caused a negligible change in the center-to-surface resistance as noted in Appendix B, but it became good practice to add some of drops of oil each time a new set of runs at a different pressure ratio were to be taken.

The test cylinder was then inserted into the sound chamber, making sure that the bottom of the cylinder was resting in a shallow indentation specifically machined into the inside face of the chamber. Power to the cartridge heater was then turned on and set so that a steady state temperature of approximately eight degrees above ambient would occur when the acoustic signal was present. This became more of an art form and required familiarity with the system to accomplish it with any degree of accuracy.

Since the power to the acoustic driver at this point was still at zero, the power to the cartridge heater would drive the temperature of the test cylinder past the projected steady state temperature. As it approached the projected temperature, though, the power to the acoustic driver was increased to the previously noted set point. This provided the fluid flow at the predetermined pressure ratio, in effect beginning to cool the test cylinder until it reached a steady state condition. At this point, the rate of energy input to the cylinder was equal to the rate of energy being convected away from the cylinder. By monitoring the interior thermocouple temperature, it was easy to see when the lowest temperature was reached. When the temperature began to rise once again, it was determined that the steady state condition had been reached and that the resultant temperature rise being witnessed was due only to the test cylinder transferring heat into the surrounding fluid medium, thus raising the overall ambient temperature.

Two situations other than the ideal one presented above occurred frequently due to the coarse means of trying to arrive at the desired cylinder temperature. If upon engaging the power to the acoustic driver the temperature of the test cylinder did not decrease but continued to increase at a slower rate instead, then the power being supplied to the cartridge heater was deemed too high and the voltage reduced until a decrease in temperature was witnessed. If upon engaging power to the acoustic driver the temperature of the test cylinder were to continue decreasing lower than the desired temperature range, it was an easy matter to increase the voltage to the cartridge heater to increase the steady state temperature solution.

When the steady state solution point was reached, the frequency and microphone voltage were noted, as was the voltage and current supplied to the cartridge heater and the temperature of the thermocouple in the cartridge heater. The power to the heater and the power to the acoustic driver were then simultaneously turned off and the test cylinder was quickly removed from the sound chamber. A second thermocouple was then introduced through the access hole in the sound chamber (from which the test cylinder had just been removed) such that the location of the thermocouple was approximately at the center (i.e., along the axis) of the sound chamber. This thermocouple temperature was then monitored until it "plateaued" and provided the measurement of the ambient temperature within the sound chamber.

This completed a single experimental trial for a specified resonant frequency, pressure ratio and temperature. The procedure was carried out a total of nine times for each different pressure ratio. Once the six outputs for each run were recorded, they were then transferred over to a spreadsheet where all other significant parameters were computed automatically. The following section delineates the various calculations performed in the spreadsheet.

E. EXPERIMENTAL CALCULATIONS

The first calculation desired from the spreadsheet entails finding the actual power being supplied to the cartridge heater. This is expressed in terms of the current and voltage outputs from each experimental run.

$$P = IV \tag{36}$$

Once the power to the cartridge heater was known, the surface temperature of the test cylinder itself could be calculated. Knowing the resistance of the thermal circuit as given in Appendix B, the difference between the interior temperature and the surface temperature is simply

$$\Delta T = PR_{ea} \tag{37}$$

Utilizing the interior temperature output as provided by the thermocouple embedded in the cartridge heater, the surface temperature of the cylinder is then expressed as

$$T_s = T_c - PR_{eq} \tag{38}$$

Once the surface temperature is known, the difference between it and the ambient temperature, as measured during the experiment, is calculated. The result is then combined with the power calculated in Eq. 35, as well as with the external surface area of the test cylinder, to find the convective heat transfer coefficient

$$h = \frac{P}{A(T_s - T_a)} \tag{39}$$

The Nusselt number is then derived from the following equation

$$Nu = \frac{hd}{k} \tag{40}$$

where d is the test cylinder diameter and k is the thermal conductivity of air.

The next step is to calculate the various criteria as previously listed in the theory section. In order to find the length scale ratio, χ , the speed of sound within the chamber must first be calculated using the ambient temperature

$$c = \sqrt{\gamma R(T_a + 273.15)} \tag{41}$$

The value of χ can now be found from Eqs. 1 - 4. The amplitude parameter, ϵ , is derived in the spreadsheet by combining the pressure ratio from Eq. 33 along with Eq. 8. The third parameter calculated is the frequency parameter, Λ^2 , from Eqs. 10 and 11.

The streaming Reynolds number, R_s , is found by using Eq. 16. This, however, does not represent the true value at the test cylinder position due to its not being precisely at the velocity antinode. A corrected value for R_s can be deduced by finding the particle velocity offset between the velocity antinode location and the test cylinder position. This offset is derived by knowing the frequency of the sinusoidal signal being generated, the speed of sound within the chamber from Eq. 40, and the distance from the test cylinder to the end plate termination face, L. Hence

$$U_{0_{corrected}} = U_0 |\sin(\frac{4L}{c/f} \frac{\pi}{2})| \tag{42}$$

or

$$U_{0_{corrected}} = U_0 | \sin \left(\frac{2\pi L}{\lambda} \right) |$$
 (43)

Since R_s is proportional to U_0^2 , it then follows that

$$R_{s_{corrected}} = R_s |\sin(\frac{2\pi L}{\lambda})|^2$$
 (44)

from which it was found that the corrected value for R_s had less than a 0.1% error due to the slightly displaced location of the cylinder.

IV. RESULTS AND DISCUSSION

Nearly 600 experimental trials were performed throughout the course of this study which produced results for 183 distinct data points. Data were obtained for five different frequencies at various pressure ratios ranging from 0.9 % to 3.2 %. Three separate series of trials were performed at each acoustic signal setting, (i.e., at each frequency and pressure ratio setting) corresponding to three separate settings for the driving temperature difference between the test cylinder surface and ambient conditions. The resultant values of the streaming Reynolds number ranged from 40 to 1070 while the corresponding Nusselt numbers obtained varied from 8 to 38. Figure 14 is a parameter map as suggested by Richardson (1967) which shows the range of values for the experimental data covered plotted as a function of the amplitude parameter versus the frequency parameter, and delineates the expected different regimes of flow. The data obtained cover a very narrow regime of this parameter map as was intentionally planned for this experiment. Now it can be seen that the heat transfer results obtained through experimentation are quite evenly distributed between two distinct regions on the map. Region A represents the regime in which the flow is expected to remain laminar, incompressible and attached, and outer acoustic streaming is the main heat transport mechanism. This region is well understood in theory but has yet to be thoroughly verified through experimentation. It is anticipated that the heat transport mechanism for the data in region B will be presented as a combination of effects, including that of vortex shedding, as predicted by Honji (1981), Hall (1984) and Sarpkaya (1986).

The heat transfer results are presented as plots of Nu vs. R_s (Figure 15). Here the difference between the two regions of varying heat transport mechanisms becomes more apparent. A break clearly occurs in the region where $R_s \sim 240$ (± 20) and it can be concluded that there is some critical point in this range where there is a transition in the flow at which vortex shedding begins to become a dominant factor in the heat transport away from the test cylinder. In order to better examine the differences between these two regimes, the data is divided into their respective groups and individually analyzed.

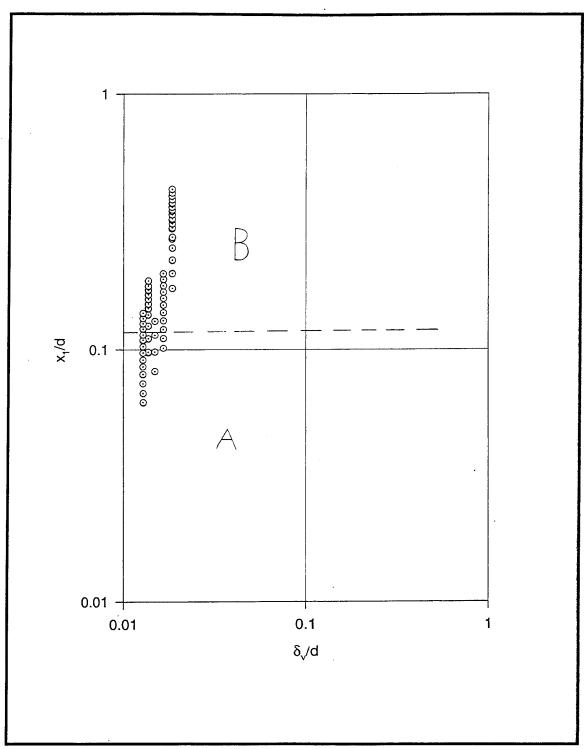


Figure 14. Parameter Map of Expected Heat Transfer Regimes as presented by Richardson (1963): Convection by Inner Acoustic Streaming (A), by Outer Acoustic Streaming (B).

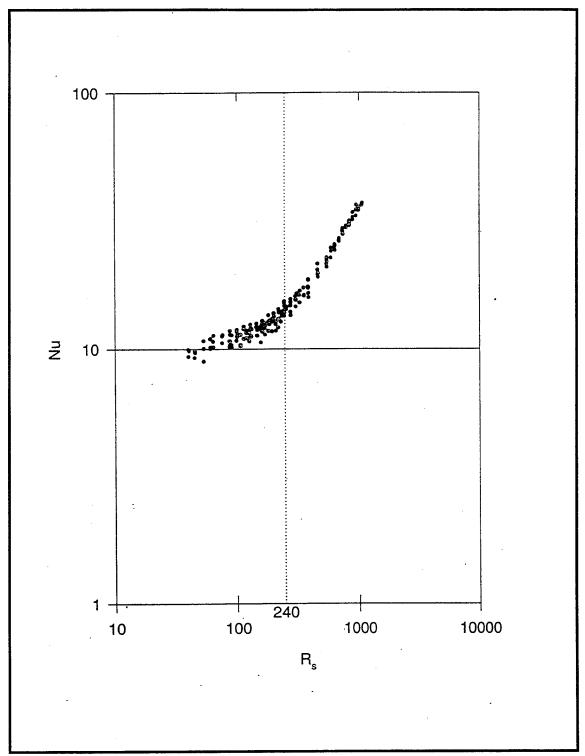


Figure 15. All Data Plotted as a Function of Nusselt Number vs. Streaming Reynolds Number.

A. LAMINAR, ATTACHED FLOW REGIME

Figure 16 is a plot of the heat transfer results in terms of the Nusselt number versus the streaming Reynolds number for the data in which $R_s < 240$, and for which criteria A through C (Eqs. 4, 5, 15) have been met. Those data points which do not meet these criteria have been disregarded. The critical parameters for the remaining data are as follows:

- $\chi < 0.1$
- $\epsilon < 0.3$
- $\qquad \Lambda^2 > 1800$
- $\frac{R_s}{\Lambda} < 4.5$

Theory clearly indicates that the dependency of the Nusselt number on the streaming Reynolds number in this regime is of the form $\mathrm{Nu} = \mathrm{xPr}^{\mathrm{y}}\mathrm{R_s}^{0.5}$. Since the Prandtl number remains constant throughout the experiment, the solution for this dependency be can further simplified as $\mathrm{Nu} = \mathrm{CR_s}^{0.5}$, where the term "C" encompasses both the Prandtl number and the qualitative constant of the previous equation. However, this solution form is only valid for "large" values of $\mathrm{R_s}$. Since the theory does not provide a definite limit for what qualifies as "large", this criterion had to be determined from a careful examination of the experimental data. From Figure 16, it can be observed that there is indeed a break point at $\mathrm{R_s} \sim 130$ where the results diverge into two separate solutions. It was found that the square-root dependency on $\mathrm{R_s}$ does not significantly change past this value, and it is therefore suggested that this may be in the range of the lower limit of "large" values of $\mathrm{R_s}$. For those values in which $\mathrm{R_s} > 130$, a curve fit of the heat transfer characteristics results in a solution of the form

$$Nu = 0.94R_s^{0.5} (45)$$

and it can therefore be determined that the range of values $130 < R_s < 240$ is representative of "large" values of the streaming Reynolds number. The values below $R_s = 130$ are excluded as not being large enough due to a variety of reasons as described later.

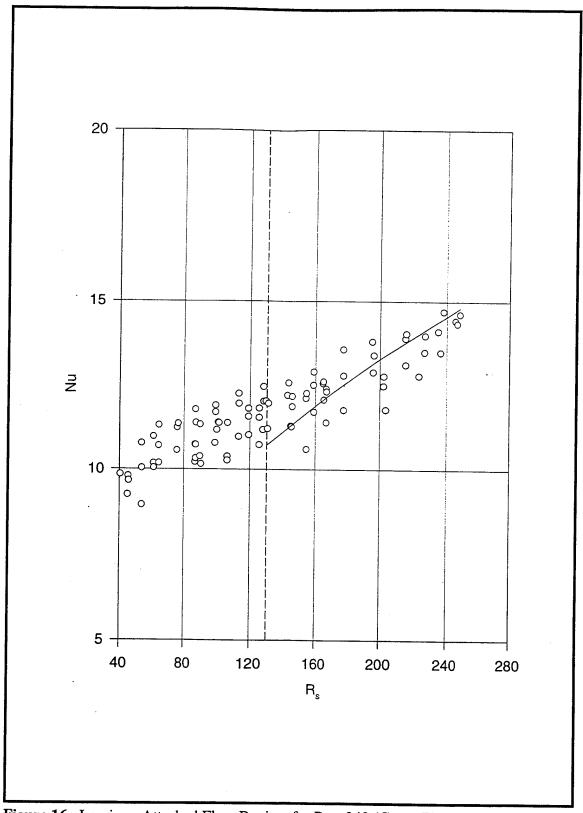


Figure 16. Laminar, Attached Flow Regime for $R_s < 240$ (Curve Fit Shown).

Davidson (1973), in an extension of the work by Richardson, analytically and numerically tackled the problem of heat transfer from a cylinder in a strong acoustic field in great detail. He obtained a correlation of the dependency of the Nusselt number on both the Prandtl and streaming Reynolds numbers. The correlation, as extracted from the work of Davidson by Gopinath and Mills (1993) for this regime, is of the form

$$Nu = 1.388Pr^{0.73}R_s^{0.5} (46)$$

By taking Pr = 0.7 for air for these experiments, the equation then becomes

$$Nu = 1.07R_s^{0.5} (47)$$

The experimental fit in Eq. 45 under predicts by about 13%, but supports this correlation well within the limits of uncertainty.

Figure 17 is a plot of the region in which Eq. 45 is valid, and includes the experimental uncertainty of each data point as derived in Appendix C. It can be observed from this plot that the deviation from the curve fit in this range of values for R_s is well within experimental uncertainty limits.

Although the lower end of the range for "large" R_s in which the predicted solution is valid has been determined to be 130 for the results obtained from these experiments, it is by no means an absolute boundary. Even though the resultant heat transport characteristics deviate significantly below that point in the region where "intermediate" values of R_s are present, there are several factors which could account for part of the discrepancy, especially in the region around $100 < R_s < 130$. These include uncertainty due to equipment limitations and the effects of natural convection and conduction of heat away from the test cylinder.

The effect of natural convection on most of the intermediate values of \mathbf{R}_s is negligible, though, as characterized by the very low ratio of the Grashof number to the square of the streaming Reynolds number (except at very low values of \mathbf{R}_s). The effect due to conduction is much harder to quantify in so simple a form, though. Conduction can and does occur during the experiment at two separate places where the test cylinder is in contact with

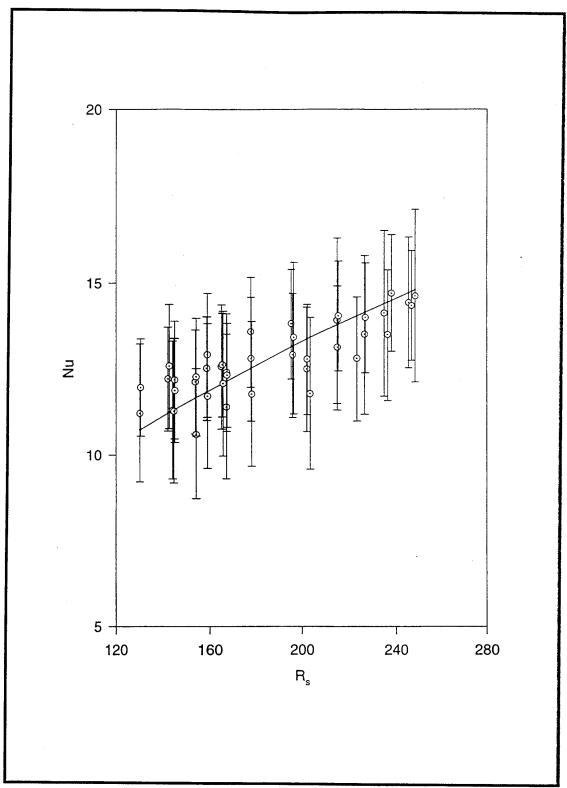


Figure 17. Laminar, Attached Regime for Large R_s with Uncertainty Bars.

other apparatus. The top of the test cylinder is in contact with the "plug" used to hold it in place, while the bottom of the test cylinder is allowed to rest in a small depression on the wall of the plexiglass sound chamber. Realizing, though, that the contact area at both points is very small, and that the thermal resistance of the plug and the plexiglass wall are both relatively high (due to their low thermal conductivity), the heat transport away from the test cylinder can be assumed to be negligible as well.

The uncertainty in the results due to the equipment limitations, though, does have a very significant impact on the results. The calculated value of the Nusselt number has an uncertainty of up to 20% (see Appendix C) depending upon the power being dissipated by Since the experiment revolves around finding the heat transfer the test cylinder. characteristics at specific values of temperature difference between the test cylinder surface and the ambient conditions, correspondingly low power dissipation from the cylinder occurs as the streaming Reynolds number decreases. Therefore, the region of intermediate values of R_s have relatively low electrical heat dissipation, and hence low current values associated with them, dropping to as low as 0.06 amps in some cases. Since the equipment uncertainty for the current reading is of the order of the last digit present, this particular component of the Nusselt number has an uncertainty of nearly 18% by itself and greatly influences the overall uncertainty. Therefore, it may be more accurate to define the lower limit of large R_s values as somewhere between 100 and 130. However, the error due to equipment measurements is not enough to compensate for the disparity between theory and experiment at values much less than 100.

B. SEPARATED FLOW REGIME

The second regime which this experiment encompasses is that in which vortex shedding and other forms of unsteady flow begin to affect the heat transport characteristics. Figure 18 is a plot of the resultant data in this regime as obtained during experimentation in terms of the Nusselt number versus the streaming Reynolds number. A curve fit of the data results in a solution of the form

$$Nu = 0.31R_s^{0.69} (48)$$

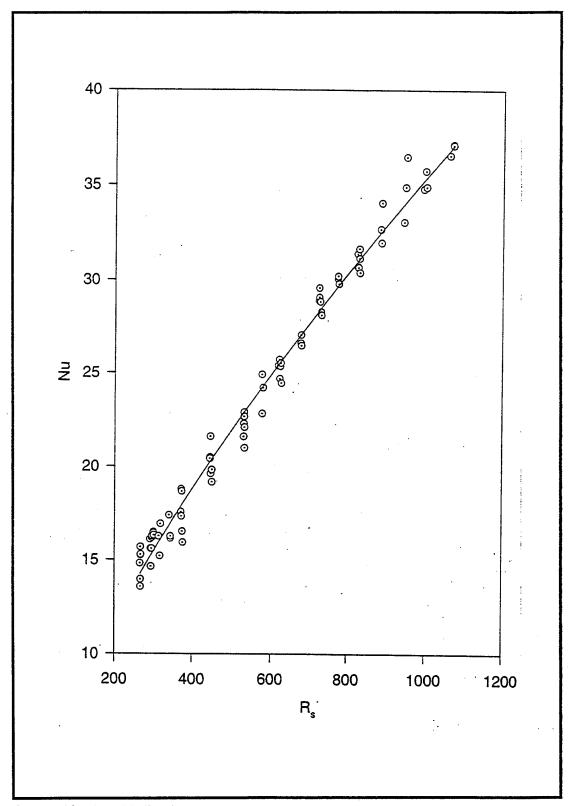


Figure 18. Unstable Regime.

There is no theory for this flow regime with which to compare the results, but it is reasonable to assume that this curve fit is representative of the correct solution. As expected, the unstable flow resulting at higher values of R_s would increase the heat transfer rate from the cylinder, and hence the stronger dependency that the Nusselt number has on the streaming Reynolds number, as opposed to the usual square root dependence.

V. CONCLUSIONS

Experiments were conducted to observe the convective heat transfer rates to an isolated cylinder in an acoustic standing wave. A comparison of the various length scales and other parameters was conducted, and the experimental method stated. During the experiment, the properties of the acoustic field were varied to provide a large base of data which was then analyzed and discussed. Several regimes of interest were investigated and the results presented. Figure 19 is a plot of all data obtained with curve fits for the regimes of interest.

Essentially, heat transfer from a cylinder in a zero-mean oscillatory flow as represented by an acoustic standing wave can be divided into at four separate regimes in which different heat transport mechanisms dominate. For very low values of the streaming Reynolds number, R_s, convective effects due to the acoustic field are negligible and natural convection is then the dominant mode of heat transport. For intermediate values of R_s, there is a stronger dependence on R_s but not yet on the order of R_s 0.5 since R_s is still not large enough for flow to be of the boundary layer type. Buoyancy effects are comparable in the lower end of this regime, becoming small for larger values of R_s. For much larger values of R_s, past 100 or so, an acoustic streaming flow presents itself in the boundary layer, resulting in a square-root dependency on R_s. Experimentally, the results obtained in this regime closely match the expected theory, and the heat transfer characteristics may be estimated by Eq. 45. Finally, past a critical value of $R_s \sim 240$ (which confirms well with theory), an unstable flow with vortex shedding begins to take place at the surface of the cylinder, increasing the dependency on R_s which the overall heat transfer solution has. The heat transfer characteristics in this regime may be estimated from Eq. 48. It is these last two of the above regimes that formed the focus of this study.

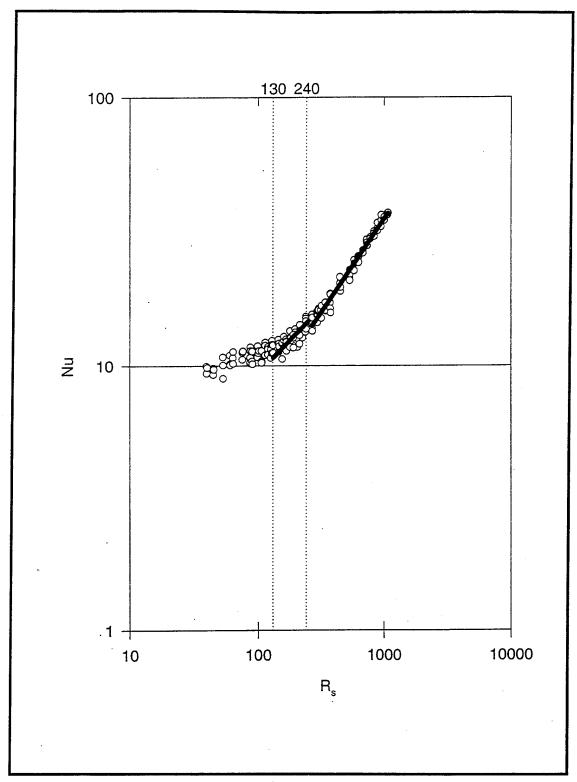


Figure 19. Data Plotted with Curve Fits for the Regimes of Interest.

VI. RECOMMENDATIONS

Several directions for further study may be suggested by the data obtained from this work. One factor which may need further investigation is a study of the effects of varying the aspect ratio of the chamber diameter to the cylinder length to determine whether it was large enough for these experiments. A ratio of 15 was used for this experiment, and was assumed to be large enough to discount flow effects caused by the walls of the chamber, but this number was chosen somewhat arbitrarily and only a detailed experimental study can determine the actual effect.

Another possible source of error which cannot be accurately accounted for concerns itself with the experimental method used. Specifically, the measurement of the ambient temperature within the chamber at the time of each experimental trial. The method used, that of removing the test cylinder from the sound chamber after its temperature has been recorded and the acoustic signal has ceased, then placing a thermocouple through the hole it has just evacuated in the chamber wall, can be improved upon. During the time required while waiting for the thermocouple temperature to peak, the heated air in the sound chamber is rising to the top of the chamber and the accuracy of correlating the thermocouple temperature reading to that of the ambient temperature at the time of the experimental trial is left in doubt. A better method would be to permanently affix the thermocouple in the chamber so that simultaneous measurement of both the cylinder temperature and the ambient temperature can be taken.

Additional research into three different areas of the problem come to mind. First, a test of the effects of placing the test cylinder horizontally in the sound chamber is suggested, although there should be little if any dependency on this orientation since natural convection effects are small for the strong acoustic fields being used. Completely new geometries may also be tested which would mimic actual heat exchanger component shapes expected in a thermoacoustic engine. Finally, additional research using different gases in the sound chamber would provide data on the dependency of the Nusselt number on the Prandtl number.

APPENDIX A. CALIBRATIONS AND CALCULATIONS

Several pieces of the experimental apparatus required some form of calibration, or calculation of a specific parameter, prior to initiating the experiments. The most important equipment items of concern were the "unattached" J-type thermocouples which were to be used for various applications throughout the experiment, as well as the thermocouple which was embedded in the cartridge heater. In addition, an equivalent thermal resistance for the cartridge heater/silicon oil/copper sheath circuit needed to be calculated along with assurances that the linear temperature distribution along the test cylinder was within reasonable limits. An additional study was performed to analyze the heat transfer effects on the test cylinder due only to natural convection.

Three J-type thermocouples were used throughout the experiment and were the first items to be calibrated. Since accurate temperature information was crucial to the reliability of the data obtained through experimentation, the thermocouples were tested to see if any of them showed a tendency to read either higher or lower than the actual temperature (a somewhat common occurrence). The embedded thermocouple in the cartridge heater was also tested for the same reason. All thermocouple leads were attached to the thermocouple reader to be used throughout the experiment to ensure that the entire circuit was tested concurrently.

The unattached thermocouples and the cartridge heater were all placed in an ethyl glycol solution belonging to a Rosemont Model 913A calibration bath. A Rosemont Model 920A commutating bridge, which utilizes a precision temperature probe as its input, provides the reference temperature. The temperature of the bath was then set at varying points between 22° and 48°C, the expected experimental temperatures being well within that range. Table 2 shows the results of the calibration. All thermocouples were found to read within 0.1°C of the reference temperature for all cases. This was well within the possible uncertainty of 0.5°C listed for J-type thermocouples.

Next, Figure 20 shows the thermocouple arrangement which was used to experimentally derive the equivalent thermal resistance and the linear temperature

Reference Temperature (C)	Cartridge Heater (C)	Thermocouple "A" (C)	Thermocouple "B" (C)	Thermocouple "C" (C)	Maximum Deviation (C)
22.83	22.8	22.8	22.8	22.8	< 0.1
23.96	23.9	23.9	23.9	23.9	< 0.1
26.83	26.8	26.8	26.8	26.8	< 0.1
29.63	29.6	29.6	29.6	29.6	< 0.1
32.49	32.5	32.5	32.5	32.5	< 0.1
35.37	35.4	35.4	35.4	35.4	< 0.1
38.04	38.1	38.0	38.0	38.0	< 0.1
40.74	40.8	40.8	40.8	40.8	< 0.1
43.02	43.0	43.0	43.0	43.0	< 0.1
45.68	45.7	45.7	45.7	45.7	< 0.1
48.19	48.2	48.2	48.2	48.2	< 0.1

Table 2: Thermocouple Calibration Data (all values in °C)

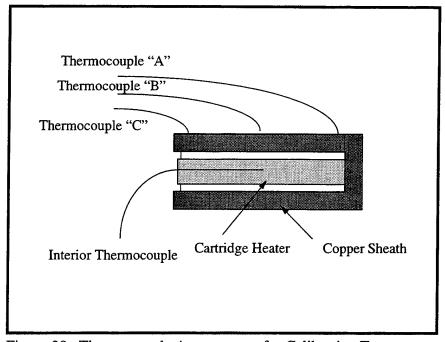


Figure 20. Thermocouple Arrangement for Calibration Tests.

distribution data. The three unattached thermocouples which were previously calibrated were securely placed on the outer surface of the test cylinder using clamps, the test cylinder being already prepared as it normally would for an experimental run. The test cylinder was then suspended horizontally and power was supplied to the cartridge heater. Once all four of the thermocouples reached a steady-state temperature, the temperatures were recorded along with the voltage and current being supplied to the heater. The equivalent thermal resistance was then derived using the equation

$$R_{eq} = \frac{T_c - T_s}{IV} \tag{A.1}$$

Temperatures which were to be comparable with those used during the experiments were obtained in a still air environment. Some additional tests were performed using a fan blowing air across the test cylinder to create a higher heat transfer rate away from the cylinder so that higher power levels to the heater could be reached while staying within the limits of the expected temperature range. An average temperature was then obtained using all three thermocouples, and this value was in turn utilized to derive an equivalent thermal resistance for each test run. The final value of the thermal resistance resulted in averaging the values from each test run, obtaining 1.022 K/W with a maximum deviation of 0.089 K/W. The results are annotated in Table 3.

The same test results were used to determine the change in temperature along the length of the test cylinder. The difference in temperature along the length at the lower power settings demonstrated a fairly even distribution of heat, with a variation of less than 0.6° C. This variation increased as the power to the heater was also increased, as could be expected. For the temperature range in which the experiments were run (again, 26° to 40° C), a maximum variation of 1.6° C occurred, although this was at a very high level of power being supplied to the heater and was not representative of the remaining data.

		1					1	
		·	Interior	Thermo-	Thermo-	Thermo-	Average	Equiv
Current	Voltage	Power	Temp	couple "A"	couple "B"	couple "C"	Surf Temp	Resistance
(Amps)	(Volts)	(Watts)	(C)	(C)	(C)	(C)	(C)	(C)
0.08	8.30	0.664	38.4	37.8	38.1	37.3	37.73	1.009
0.07	7.40	0.518	36.0	35.5	35.5	35.4	35.47	1.023
0.08	8.40	0.672	37.3	36.9	36.8	36.3	36.67	0.938
0.09	9.50	0.855	40.8	40.2	40.1	39.5	39.93	1.018
0.09	10.30	0.927	42.9	42.3	42.0	41.5	41.93	1.046
0.10	10.70	1.070	44.8	44.2	43.7	43.2	43.70	1.028
0.08	9.00	0.720	27.4	26.9	26.6	26.3	26.60	- 1.111
0.09	10.00	0.900	28.6	27.9	27.8	27.2	27.63	1.078
0.10	11.00	1.100	30.1	29.3	29.2	28.6	29.03	0.973
0.11	12.00	1.320	31.5	30.5	30.5	29.6	30.20	0.985
0.14	15.50	2.170	37.6	35.7	36.0	34.4	35.37	1.028

Table 3: Thermal Resistance and Linear Temperature Distribution Trials

APPENDIX B. UNCERTAINTY ERROR ANALYSIS

In order to obtain a measure of the reliability of the data obtained during experimentation, an uncertainty error analysis was performed for both the Nusselt number and the streaming Reynolds number. The analysis consisted of finding the maximum possible deviation for all components appearing in the equations which define both parameters. Then, in a standard fashion, a root mean square analysis was performed to derive a reasonable overall possible error for each experimental run. The error analysis formulae were themselves incorporated into the "results worksheet" provided in Appendix C so that each data point has an associated possible error derived from the input provided.

The Nusselt number can be derived as shown from Eqs. 37 through 40

$$Nu = \frac{IV}{\pi k l (T_c - IVR_{eq} - T_a)}$$
 (B.1)

where l is the length of the test cylinder.

Using the manufacturers' recommended equipment error ranges, the maximum uncertainty in each measured component in Eq. B.1 is as follows

$$V = 0.05\% \text{ reading} + 0.02\% \text{ full scale} + 1 \text{ digit}$$
 (B.2)

$$I = 0.5\% RDG + 1 digit$$
 (B.3)

$$T_c = \pm 0.5^o C \tag{B.4}$$

$$T_a = \pm 0.5^o C \tag{B.5}$$

The maximum uncertainty in the equivalent resistance is obtained from the calibration data in Appendix A as

$$R_{eq} = \pm 0.089 \ \text{K/W}$$
 (B.6)

The analysis for the overall uncertainty itself is structured as follows. For the Nusselt number, the root mean square error is given by

$$\triangle(Nu) = \left[\sum_{i} \left(\frac{\partial Nu}{\partial X_{i}} \triangle X_{i}\right)^{2}\right]^{1/2}$$
(B.7)

where X_i represents each individual component of Eq. B.1. The $\frac{\partial Nu}{\partial X_i}$ term, as the partial derivative indicates, physically represents the sensitivity of the Nusselt number to the variable X_i , provided all other variables are unchanged. The ΔX_i represents the uncertainty in the corresponding variable as given in Eqs. B.2 to B.5. For instance, the contribution to the uncertainty due to the voltage measurement is

$$(\triangle Nu)_V = \frac{\partial Nu}{\partial V} \triangle V = Nu \frac{(T_c - T_a)(\triangle V)}{V(T_c - VIR_{eq} - T_a)}$$
(B.8)

A value with more significance, though, is the individual fractional uncertainty which takes into account the calculated value of the Nusselt number and can be expressed as a percentage possible error. This is represented by dividing the individual uncertainty by the Nusselt number in the following manner

individual fractional uncertainty =
$$\frac{(\triangle Nu)_V}{Nu} = \frac{(T_c - T_a)(\triangle V)}{V(T_c - VIR_{eq} - T_a)}$$
 (B.9)

This new term leads directly to the desired method of expressing the possible error in the calculated value of the Nusselt number as an overall fractional uncertainty using a root mean square analysis.

$$\frac{\triangle(Nu)}{Nu} = \left[\sum_{i} \left(\frac{\triangle(Nu)_{i}}{Nu}\right)^{2}\right]^{\frac{1}{2}}$$
 (B.10)

In a similar fashion, the individual fractional uncertainty of the remaining terms are

as follows

$$\frac{\left(\triangle Nu\right)_{I}}{Nu} = \frac{(T_{c} - T_{a})(\triangle I)}{I(T_{c} - VIR_{eq} - T_{a})}$$
(B.11)

$$\frac{\left(\triangle Nu\right)_{T_c}}{Nu} = \frac{\left(\triangle T_c\right)}{\left(T_c - VIR_{eq} - T_a\right)}$$
(B.12)

$$\frac{\left(\triangle Nu\right)_{T_a}}{Nu} = \frac{\left(\triangle T_a\right)}{\left(T_c - VIR_{eq} - T_a\right)}$$
(B.13)

$$\frac{(\triangle Nu)_{R_{eq}}}{Nu} = \frac{VI(\triangle R_{eq})}{(T_c - VIR_{eq} - T_a)}$$
(B.14)

By examining the data results, the largest contributor to the overall error in the Nusselt number is due to the current. This is caused by the small currents being utilized during the experiment, which were as low as 0.05 amps. Since the uncertainty in the current is of the order of 0.01 amps, there can be an error in the calculated Nusselt number of approximately 20% due to the current term alone. One way to lessen the effect that the current term has on the overall error is by decreasing the voltage output of the power supply and hence increasing the current needed to maintain the same power being generated. This capability, though, is not a feature of the equipment being used. It must also be noted that although $\Delta T_{c,a} = \pm 0.5^{\circ}$ C in Eqs. B.4 and B.5, the calibration of the thermocouples described in Appendix A indicated an error of less than 0.1°C for the temperature range of the experiment. If this is taken into account, the error due to the ambient temperature (T_a) and the center temperature (T_a) terms in Eq. B.1 would diminish by 80%.

The error analysis for the streaming Reynolds number is similar to that just performed for the Nusselt number. Utilizing Eq. 17 and substituting Eqs. 33 and 41 into it, the value of R_s can be shown to be

$$R_s = \frac{R(T_a + 273.15)(V_0/\sqrt{2})^2}{2\pi f v \gamma P_m^2 (0.523)^2}$$
(B.15)

Recall that $V_0/\sqrt{2}$ is the multimeter output voltage as derived from the pressure transducer

after being passed through the 100 gain preamplifier. Thus, R_s becomes a function of only the following measured variables: the frequency, the ambient temperature and the pressure transducer output as read on the multimeter, while all additional parameters remain constant. The maximum uncertainty for the thermocouple is the same as previously listed ($\pm 0.5^{\circ}$ C) while the other two variables have uncertainties provided in the manufacturers' specifications. Calibration data for the pressure transducer used during the experiment indicates an uncertainty equivalent to 0.15% of the percentage of Full Scale Output (FSO) where the FSO is 254 mV. This correlates to a maximum deviation of 2.3 mV after passing through the 100 gain preamplifier. In addition to this, the multimeter which is used to read this voltage has an error of 0.06% reading + 0.03% Range. These combine to give a total microphone voltage output error of

$$Mic = 2.3 \ mV + 0.06\% \ reading + 0.03\% \ range$$
 (B.16)

The uncertainty in the frequency signal from the function generator error is given as 20 ppm, i.e.,

$$f = 20x10^{-6} reading (B.17)$$

Again a root mean square analysis was performed in a manner similar to Eq. B.7 to derive the overall fractional uncertainty for the streaming Reynolds number.

$$\frac{\Delta(R_s)}{R_s} = \left[\sum_{i} \left(\frac{\Delta(R_s)_i}{R_s} \right)^2 \right]^{1/2}$$
 (B.18)

The individual fractional uncertainties are

$$\frac{(\triangle R_s)_{T_a}}{R_s} = \frac{\triangle T_a}{(T_a + 273.15)}$$
 (B.19)

$$\frac{(\triangle R_s)_{Mic}}{R_s} = \frac{2(\triangle Mic)}{V_c/\sqrt{2}}$$
 (B.20)

$$\frac{(\triangle R_s)_f}{R_s} = \frac{\triangle f}{f} \tag{B.21}$$

The largest contribution to the error in the streaming Reynolds number is the error due to the microphone output voltage, specifically, the possible error in the pressure transducer itself. However, the data presented in Appendix C shows that this error is very small and in the range of <2% of the total value.

APPENDIX C. EXPERIMENTAL DATA

The following pages contain the data obtained through experimentation in spreadsheet fashion. All of the relevant parameters are listed, although some constants have been left out due to size constraints.

14S	153.5	53.5	53.5		53.5	73.5	53.5		53.5	153.5	53.5		55.7	55.7	55.7		55.7	55.7	55.7		55.7	55.7	55.7	İ	57.5	57.4	57.5		157.5	157.5	57.5		157.5	57.5	157.5	_
PH %	.3244		1.		.3263	3244	3263		1.3263	1			1.7092	7074	7074		7017	7036	7036		1.7055	1.7055	.7074	<u> </u> 	0828	.0733	.0884		1	2.0884			6080	0884	0884	
Hs -	692 1	704	705 1	1	705 1	694	708	4.702		!	4.696 1	4.704	7.82	-	-	-		-	-	j	7.79 1	<u> </u>	7.809 1	797	11.6 2.	N	1.67 2.	11,59	1.65 2.		11.68 2.	·	1,59 2.	N	2	11.65
Gr Is*Re	0.005 4	0.005 4	0.006	0.005	0.009 4	4		_38980	ા	!	0.012 4	0.012 4	0.002	0.002 7	0.002 7	0.002 7	0.003 7	0.003 7	0.003 7	0.003 7	0.004	0.004 7	0.004 7	0.004 7	9E-04	0.001	1E-03	1E-03	0.001	0.001	0.001	0,001	0.002	1		2007
B B	944.6	944.6	944.6	944.6 0	944.6	946.2	:	_3399	<u></u>	946.2 0	946.2 0	946.2 0	946.2 0	946.2 0	946.2 0	946.2 0	946.2 0	947.9	947.9	947.3 0	947.9 0	947.9 0	947.9 0	947,9 0	944.6 9	944.6 0	946.2 11	945.2 11	946.2 0	946.2 0	946.2 0	946.2 0	946.2 0	947.9		847.3 0
(2)	1484 9	1484 9	1484 9	1484 9	1484 9	1486 9		1485 9	3	1486 9	1486 9	1486 9	1486 9	1486 9	1486 9	1486 9	1486 9	1489 9		1488 9	1489 9	1489 9		1489 9				1485 9	1486 9	1486 9	1486 9	1486 9	1486 9	1489 9	23	1488 S
KC (IE)	104	.105	.105	1.105	.105	102	104	.104	104	.105	104	.104	.423	.422	.422	.423	.418	418	.418	1.418	.419	1.42	.422	1.42	735	.728	739	.734	.738	1.74	1.74	.739	.735	1.738	. 3	
9	0.351	0.352	0.352	0.352	0.352	0.351	0.351	0.351	0.352	0.352	0.351	0.352 1	0.453	0.453 1	0.453	0,453 1	0.451 1	0.451	0.452	0.451	0.452	0.452	0.453 1	0.452	0.552	_	_		0.553 1	0.554	0.554	0.554	0.552 1	0.553 1	:363	
×	0.027	0.027		0.027	0.027	0.027	-	0.027	0.027	0.027		0.027	0.027	0.027	0.027	0.027 (<u> </u>	0.027	0.027 (0.027		0.027		0.027 (0.027	0.027	0.027	333		0.027		***
Nu	12.2		4	12.5	13	<u></u>	12.7	12.9	12.5	13.3	12.6	12.8		15.9			16.6	16.4	16.5	16.5					50	19.2	19.7	19.6	19.3	20	20.5	19.8			200	2.0
Corr Fis	1 181	29 181			i	1	1	1 181	4 182	1 182	7 181	7 181	8 301	3 301		7 301		1 300		900	1			6 301	j			4 447	7 449				İ	:	4 451	
h (Wm/2	62		84 63.34	63.98	_	83 66.73		66.1	84 63.94		84 64.27	200				83.57		۳		3880					- :				98.7			ಜಾಬ∟		6 95.84		7.2
nic V. iRs (mV)	-	-	0,703 18		_	0,702 18			_	-	702 18	1	إ	905 305	l				903 304		بأسما		905 305			099 449	.107 45		06 455	07 456	07 456			<u>!</u>	07 456	
			582 0.7			0.00	583 0.7			583 0.7	0		Ó	583 0,6	Ó		Ó	O	584 0.9		584 0,8	Ċ	584 0,6	٠ [582 1.1				583 1.1	583 1,1	583 1.1			584 1.1	584 1,1	
					9.53					1.82			9,36	/u: }			10,75					3,15			9.46		20.00			1,86			99	3.89	88	
(V)	90'0	0.07	0.07		0.09	0.09	0.09		0,1	0.11	-		0.09	0,08	0,08		3				0.11	0.12	0,12		0.09	80'o	60.0			0.11	0.11			0,12		
184 (6)			8 6.86			5 10.4	5 11.1				8 14.7				1 7.37	L			10.6		,	3 15.1	7 15			7.49				- 1	10.3		14		9.	
	29 28.6	3,4 28.9	3 29.		34.6 33.7	33.6			39.4 38		40 38.8		32.2 31.3		1.18		35.5 34.4	35	3.2 35.			41.2 39.6			30.6 29.7	20.7			34.8	35.7 34.4	5 34		38.	40.3 38.6	25.	
	23.5	22.7 25	22.9 3(23.1 34				23.5 39				23.6 32				24 35	24.3 36	24.5 36		24.2 35	24.5 41	24.7 41		22.9					23,9 35				24.3 40		
netri Non													j	_	i										rossia.	ene pe	233920									
World Union	1 ~ 583	L = 73 cm	PR ~ 1.3										~ 283	L = 73 cm	PR ~ 1.7									,	283	L = /3 CI	7 ~ H.J									

	11(0.0)11	uncett	uncant uncan	uncert	uncert	umcent	uncert	uncen	uncen	uncert
f ~ 583	0.2123	18.493	9.2866	9.2866	0.6972	22.693	0.1687	0.9402	0.002	0.9552
73	0.2059	9	8	8.0759	0.7416	19.674	0.169	0.9388	0.005	0.9539
PR ~ 1.3	0.1968	15.947	7.2873	7.2873	0.7086	19.001	0.1689	0.9388	0.002	0.9539
						20.456				0.9543
	0.1677	12.567	4.7056	4.7056	0.7426	14.24	0.1688	0.9388	0.002	0.9539
	0.1692	12.572	4.7908	4.7908	0.7465	14.302	0.1687	0.9402	0.002	0.9552
	0.1646	12.549	4.5034	4.5034	0.7294	14.093	0.1686	0.9388	0.005	0.9539
						14.2.2				0.9543
	0.15		3.4592	3.4592	0.7154	12.365	0.1685	0.9388	0.002	0.9538
	0.146	10.402	3.1899	3.1899	0.7631	11.365	0.1684	0.9388	0.002	0.9538
	0.1478	11.337	3.3952	3.3952	0.719	12.333	0.1682	0.9402	0.002	0.9551
						12.021				0.9543
f ~ 583	0.1742	12.899	6.4589	6.4589	1.0011	15.838	0.1685	0.7285	0.002	0.7477
23	0.1806	14.312	1	7.0574	0.9111	17.473	0.1684	0.7293	0.002	0.7485
PR ~ 1.7	0.1779	14.286	6.7834	6.7834	0.8927	17.232	0.1684	0.7293	0.002	0.7485
						16.848				0.7482
	0.1581	11.606	4.8058	4.8058	0.9506	13.484	0.1683	0.7317	0.002	0.7508
	0.1562	11.595	4.6791	4.6791	0.941	13.384	0.1681	0.7309	0.002	0.75
	0.1569	11.597	4.7201	4.7201	0.9432	13.415	0.168	0.7309	0.00	0.75
						13.428				0.7502
	0.1417	10.554	3.5271	3.5271	0.9066	11.71	0.1682	0.7301	0.002	0.7492
	0.1395	9.7749	3.3131	3.3131	0.962	10.883	0.168	0.7301	0.005	0.7492
	0.1404	9.7692	3.3312	3.3312	0.9562	10.889	0.1679	0.7293	0.00	0.7484
						11.161				0.7489
l ~ 583	0.1755	13.086		7.3184	1.1465	16.724	0.1689	0.5978	0.005	0.6212
7	0.1691	13.022		6.6756	1.0966	16.122	0.1687	0.6005	0.002	0.6238
PR ~ 2.1	0.171	13.061	6.9436	6.9436	1.1269	16.38	0.1686	0.5962	0.005	0.6196
						16.409				0.6215
	0.1484	10.765	4.4897	4.4897	1.105	12.548	0.1684	0.5967	0.002	0.6201
	0.1514	10.809	4.7755	4.7755	1.1463	12.798	0.1683	0.5962	0.005	0.6195
	0.1525	10.817	4.8616	4.8616	1.1542	12.87	0.1683	0.5962	0.005	0.6195
						12.739				0.6197
	0.1379	9.8854	3.564	3.564	1.075	11.149	0.1682	0.5984	0.002	0.6215
	0.1365	9.8828	3,4963	3.4963	1.0723	11.103	0.1681	0.5962	0.005	0.6195
	0.1353	9.2322	3.354	3.354	1.1456	10.443	0.168	0.5962	0.005	0.6194
						10,899				0,6201

-1:	, c	D C	D : C	0 :	Ic	D : C	ن د) i	Ισ	0.	10	1	-	.; +	-1+		T=	. , —	. , ,		1-	. , , .		. ,	<u></u>			_	12				IN	_	
SPL	7 03 5	2 4	7 0 0 0	2			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		158	158	158		160	T	- -	• !	160	160	160 1		160	160	160.1		154.	154.7	154.		154	154.7	154		1547	154.7	154.7
PR %	097	4582	4601	2	4563	4506	2 4526	2	462	4582	4601		8318	8299	2 8318		8299	8185	8242	!	8355	8299	8299		5168	5168	3168		3168	5149	3168		5149	5149	149
88	03) la	1 0	1	. —			-		C	ijΩ	1				_	10	0	ŀΝ	l :	2	101	iQ	<u> </u>	_	_		1	-	-	-			-	
	16	19	=		Ē			3/4	Ľ			16	21			21.48	<u>. </u>			21.38			2			6.157				6.143	6.159	6.15	6.14	6.144	6.144
As*Rs	4F-04	5F-04	4F-04	5F-04	7F-04	7F-04	7E-04	7E-04	9E-04	9E-04	8E-04	9E-04	2E-04	2E-04	2E-04	2E-04	4E-04	4E-04	4E-04	4E-04	4E-04	4E-04	5E-04	4E-04	0.003	0.003	0.004	0.003	0.005	0.005	0.005	0.005	0.007	0.007	0.007
A A (#)	9479						947.9		949.5	949.5	949.5	949.5	10	10	949.5	10		: 10		10		951.1		951.1	946.2	946.2	946.2	946.2	946.2	946.2	946.2	946.2	346.2	946.2	946.2 946.2
VAV	1489	1489	1489	1489	1489	<u> </u>	1489		}	1491	-	1491	ļ		1491		 -	-	1491	- A C		1494		1494	1486			1486	486	1486		9000	:	1486	4500
9	0.48	045	048	047	045	043	2.043	.044	1	2.046		2.047	2.355	353	356	2.355	355	346	2.351	2.351		: :	354	2.355	.262	٠,	263	262	.263			263 1	262 1	1 1	
EÚ.	.		52 2.	CV	N	65 2	0.65 2.	51 2				6.00							<u> </u>					ें।		٠.	_	.402 1.	ļ	-	_	402 1.	-	-	- T
بر	<u> </u>		7 0.652	-0:0		_		70.00	<u> </u>	7 0.651		73.13	7 0.749					7 0.747		- 200 1		7 0.749		7 0.75		7 0.402		0		0:		9			7 0.402 7 0.402
	3	0		0.027				337.77		0.027		-00 c 61	0.027				0	0.027		0.027				의	0.027	0	o'	L	0	0.027		0.027	0.027	0.05	0.027
PN	1		25.5	- 328	ــــــ		24.2	130.21		ά;		48.30	32.1				30.1					29.4		30.4	15.2	15.4	14.8	15.1	15.4	15.3	15.4	15.4	15.4	15	15.1 15.2
Corr h 'Rs	626	i		625			i	622	;		627	627	830	829	830	830						830	3		- 1	1	, il	237	237	237	237	237	237	237	237
W/m/S	133.8	127.6	130.6	130.7	130.4	124.7	124	126.4	131	121.7	122.7	125.1	164.4	155.1	166.7	162,1	154.2	161	156.8	157.3	156.7	150.4	159.8	155.6	77.83	/8.88	75.69	77.47	79.02	78.44	78.78	78.75	78.71	76.84	77,59
As	633	631	633		631	630	630		634	632	634		838	837	839		838	832	835		841	839	839	333.L	240		3	2004		240		3320 <u>L</u>	<u> </u>	240	
7 (VIII)	1.305	1,303	1,304		1,302	ტ.			1.305	.303	1.304		.50	 3.	1.501		1.5	1.494	1.497		503	. 5	 		0.804	4000	,804 ,		0,804	0.803	,804		.803		
Frad (Hz)	0.000	584	584		584	584	584		585	585	585		585	282	585		585	. 283	586	000	. 986 200	586	286	1		000	300		920	70 B	583 0	- 1		583 O.	
Volt (V)	0.61	0.85	99'0		2.97	3.24	13,4		5.27	5.04	5.04		1.93	1.23	1,76		4.63	4.31	4,74		٠ ټون ټون	 10.0	6.76 0		אַנ מעליי	0 0 0 0 0	20.0		0.59	B.0.0	_ 	;		2.4 1.6 1.6	5
jā (s	0.1				0.12	- 2	25		4.	1.13	က က		0,11		0.11	ı		0.13	70 i	Ţ	→ 、	2. c	2 2	8	3 8	2 8	3	I.		- ·		ď,		_;	- 1
.Ta	:52	66.	7.	***	9.81		~		ਹ	13.2	-/		0.55			≸	- la	200 ga	o i	- l'	•	ט כ ס כ	-	~ .	7 11	2222	w.	;			+ +		wy.	14.6 0.1	
T918:T8 (Ö)**(Ö)	30.5		3		34.3	5.2	5.5			38.4			5 5			-	35.2	į				30.4			30.			0	0.4.0	- -	5.0			38.7	
T-tc (O)	31.6 3	أدى	1		95.9 95.9					4. 4. 4 5. 10				5 5			2.75 2.00	ο : Ο :	م. ئارى	9	0 0	2	م. ي ا	0	0 + 0 0 + 0) 	5 !	ŗ		100,1		c c	9 c	2000 2000 2000	3
T.	24 3				24.5 3					20.2		000,000	7.4.0 2.4.0	10000	1000		20.00			7 7 2	o ₹	5 C C C C C C C C C C C C C C C C C C C	₹ 20		60.00 0.00 0.00 0.00					20.00				24.1.4C	
ent	80.0342	omogo '			N ·	OI.	N.		N	NI C	7	C	36.7306 j			13	vi č	vi č	V.	े	u c	u ĉ	ű 	Š		er an	April 1	Š	ű ĉ	úδ	์ 	100	น์ c	200	F
Expariment: Information - T a : (O)	584	L = /3 cm	~ 2.5						1			207	704	1000	χ. Σ.		-		- !		1			78	73 cm	2R ~ 15									
ΔĒ	~	(<u>ו</u>							į			2	<u>ן</u>	<u>ב</u>						:			f = 584	11	PB	:		!						1

	- E 5			To		overall Nusselt uncert	T.a. uncert	Mic V Underf	f uncert	overall Rs uncert
0.1646 12.16 7.149			7.149	7.149	1.4975	15.879	0.1683	0.5057	0.002	0.533
0.1671 12.2 7.4478	1	1	82	7	1 1	16.184	1 .	0.5061	0.002	0.5333
					1	16.163				0.5334
10.261	į	į	95	1	:	12.624			0.005	0.534
10.198			8	4.7708			0.1679		0.002	0.5347
0.1438 10.191 4.6901			티	4.6901	1.3877	12.24	0.1678	0.5077	0.005	0.5347
	—∔				İ	1				0.5345
8.8839		3.72	99		1.4655		0.1676	0.5057	0.002	0.5328
341 9.4286			59		-	. :		0.5065	0.005	0.5335
0.1342 9.438 3.8148			48	3.8148	-	10.958	0.1675	0.5061	0.002	0.5331
0 1611 11 5/8 7 61		7 61	3	i		10.773	0.00	1007	000	0.0332
			219	8 306	1 7349	15.901	0.1679	0.4397	0.002	0.4707
11.573 7			53	1	1	16.131	0.1676	0.4397	0.002	0.4706
			1		İ	16.458				0.4707
9.7581		4.9	63	4.963	1.7249	12.144	0.1676	0.44	0.005	0.4709
9.827		5.26	\equiv	5.2611	1.8009	12.458	0.1675	0.4418	0.002	0.4725
0.1408 9.7851 4.9768		4.97	98	4.9768	1.7547	12.181	0.1675	0.4409	0.005	0.4716
						12.261				0.4716
9.1272		4.29	27	4.2957	1.7528	11.104	0.1673	0.4391	0.00	0.4699
1 9.0681	-+	4.00	84	4.0084	1.6831	10.827	0.1672	0.44	0.00	0.4707
0.1314 8.5863 3.8648	5863	3.86	48	3.8648	1.7878	10.335	0.1672	0.44	0.002	0.4707
0 1885 14 054 7 0137	1	7 04	15	70107	70700	47 554	0 4007	0000	000	0.4704
14.271		7.03	7.5	7.0371	0.8826	17.422	0.1687	0.0209	0.002	0.0301
0.1831 14.22 6.752	: 1	6.7	52	6.752	0.8468	17.15	0.1687	0.8209	0.002	0.838
						17.374				0.838
11.529		4.5	37	4.537	0.8841	13.224	0.1685	0.8209	0.002	0.838
0.1566 11.521 4.4243		4.45	က္		0.8776	13.141	0.1684	0.8219	0.005	0.839
0.1555 11.525 4.3906	1.525	4.390	9	4.3906	0.8814	13.122	0.1683	0.8209	0.005	0.838
	:					13.162				0.8383
10.527		3.56				11.705	0.1683	0.8219	0.002	0.839
10.504		3.45				11.599	0.1682	0.8219	0.002	0.839
		3.46			0.8639	11.63		0.8219	0.005	0.839
			-			11.645				0.839

Jus (gp)	156.7	156.7	156.7	-	156.6	156.7	156.7		156.7	156.6	156.7		158.2	158.2	158.2		158.2		158.2		158.2	158.2	158.2	-	159.6	159.6	159.6		159.6	159.6	159.6		159.6	159.6	159.6
PR %	9268.	8979	1.8979		1.896	8979	8998		8998	1.8941	1.9054		2.2677	2.2677	2.2639		2.2696	2.2677	2.2714		2714	2696	2.2658		6582	9059	2.6563		.6601	2.6582	.6582	1	.6563	.6544	.6563
Bs.	, w	9.642	9.642	9.642	9.624	9.647	6.667	9.646	1	9.61		9.667	1	1	13.72		1	13.77			_	13.8			į		18.9		96	18.93	93	4	18.91	18.89 2.	
GI Rs*Rs		<u> </u>	0.001	-(20)			0.002	_3837	4	0.003		- 1.18			7E-04		1E-03	1E-03	1E-03	100	-	0.001	0.001	- 33	4E-04			1132	5E-04	5E-04	5E-04	5E-04	3E-04	3E-04	6E-04
β (μ/γ/μ)	946.2	946.2	946.2	946.2	Ĺ	_	947.9		6	6		947.9		946.2		946.2		947.9	947.9	947.9				947.9	947.9	947.9	947.9	947.9	2	949.5	10	949.5	5		2 2
₹**		1486		1486	1486	1489	1489	1488	1489	1489	1489	1489	1486	1486	1486	1486	1489	1489	1489	1489			1489	1489		1489		1489	1491	1491	1491	1491	1491	1491	1491
5 (ag	1.581	1.581	1.581	1.581	1.58	1.579	1.581	1.58	1.581	1.577	1.586	1.581	1.889	1.889	1.886	1,888	1.888	1.887	1.89	1.889	1.891	1.89	1.887	1.889	2.212	2.206	2,211	2.21	2.211	2.21	2.21	2,21	2.21	2.209	2.211
ω.	0.503	0.503	0.503	0.503	0.503	0.503	0.503	0.503	0.503	0.502	0.505	0.503	0.601	0.601	9.0	0.601	0.601	0.601	0.602	0.601	0.602	0.602	0.601	0,601	0.704	0.702	0.704	0.703	0.704	0.703	0.704	0.704	0.703	0.703	0.704
×	0	0.027	0	0.027	0.027		0.027	0,027	0.027	0	0.027	0.027				0.027				0.027		0.027			0.027					0.027		200	0	0	2.36
IS NE	18	72 19.2	18	2 18.8	17.4	72 17.4	17	2 17.3	∟	1	18	3 18.7		1 20.8		0.21.6	2 21.1		_	2 21		2 22.1		38.03	0 29.6			27 L		1 26.6		ಾ			0 28.5 0 28.3
Cor. h Rs W/m^2K		98.16 372		96,19 372	.82 371		88.32 373	88,75 372	.55 373	95.48 371		95,53 373	108.1 531			10.5 530				07.4 532	14.1 533		112.1 531		151.4 730	N	4 1			136,3 731		(V)		144 729	
Rs W/			377 96	96	376 88		377 88	1000		375 95		95	537 10		536 11	Ξ			539 10	10	_	539 11		200	738 15		3	- L	:	738 13		್ಟ್ ಓ		:	(38)
mla V (mV)	1	1,006				1,006			*********	1,004	1		1.202	:				1.202				1,203	an an Is			<u>.</u>	808		14		409			· •	, 804
Freq (Hz)	583	10	583		583				584	584	584				583			584				584			584	20	584		585	585	585		585	585	585
	8.97		,		11.19				13,	13,41	13			10,3	10,55		12.51	12,73	12,6	- I		14.66			12.12) (2) (3)	[8:3] [8:3]		14,34	13,94	14.17	-	ှိ		
a Cur	222.75	10000	200		0,1	4	7		3 0.1	9 0.12	2 0.	2.03	0.09	او	0.1		5 0.11	<u> </u>	~		(0	9 0,13			0.11			Ì	5	; ;		300 KG	0000	9 0.14 1.4	
11to TSF9-Ta (D) + (C) + (C)	30.1 6.2				34.5 10.		35 10	- 1	37.6 13.		,	- 1	30.5 6.8	30.8 7.1	1.2 7.4	1		34.9	34.9 10			38.5 13.6			31.4 7.24	2.7				34.6 10.1				38 72	
. <u>2</u> 9	30.8	31.8	32.1 3		35.6		36.2		39.2 3					31.7			35.9 3	36,3	36.3		40	40,4	40,8 3		22.8				200	מיני מיני מיני	יים מסים		D (0.00	40.00 40.00 70.00	2
T (0)	23.8				24.1				24.3				23.6				24					24.6			7.47 7. 6			1	4,4	0 1		100	G ;	- C 20.	£0.5
Experiment Information	584	= /3 cm	~ 1.9										584	L = /3 cm	~ 2.3			1							79 500	00 07	, E								
ŭΞ	~	را ال دار	Ĭ		;				İ					11 1 11 1	<u> </u>		:		1					,	- 284	ם ו		\perp	-				į	:	

	Ç) (0)	(0)	(0)	To	1 (200) i cr	عاد	2110	1		14	: 1	101	110	<u>.</u>	100		-	1~			_												
pyeral Rs	0.6773		-		_			1	0.676	0.6785	0.6747	0.6766	0.5744	0.5744	0.5752	0.5746	0.5739	0.5743	0.5734	0.5738	0.5733	0.5738	0.5746	0.5739	0.4977	0.4989	0.498	0.4982	0.4973	0.4976	0.4976	0.4975	0.4978	0.4981	0.4978	0.4979
f. grant	000	0.002	0.002		0.002	0 000	0.005		0.002	0.002	0.005		0.005	0.005	0.005		0.005	0.005	0.002		0.005	0.002	0.002			0.005	0.005		0.002	0.002	0.005		(0.002		
Mary			1		_	:			0.6554	0.6574			0.5491	0.5491	0.55	!	0.5486	0.5491	0.5482		0.5482	0.5486	0.5495		0.4684	0.4698	0.4688		0.4681	0.4684	0.4684		0.4688	0.4691	0.4688	_
Ta	·	0	0.1683		0.1682				0.1681				0.1685	0.1685	0.1684		0.1683	0.1682	0.1682		0.168				0.1682		0.1681		0.168	_ ;	0.1679			0.1676		
Overall Nusselt uncert	_	16.406	16.226	17.016	13.545	13.52	_	13.496	11.28					-	5	16.211	12.848	12.791	12.772	12.804	10.779	10.72	10.662	10.72	12.1	15.063	14.548	14.904	11.952	:		_				10.716
Red uncert	1.0532	1.0983	1.0771		0.9938				1.0802	1.0682			1.2099	1.1919	1.3073		1.206	1.2071	1.1931		1.2762	1.2653	1.2539		1.6939	1.0091	1.5931		1.6491	1.5245	1.6579		1.6165	1.6107	1.6334	
Ta	7.9764		6.8253				4.6617			3.6076	3.5133		7.2696	6.9881	6.7344		4.7632	4.6849	4.6785		3.6819	3.6082	3.537	1 2 3 3	0.9051	0.0091	6.3941				4.8913		3.9568		3.963	
Ta	7.9764		6.8253		_	4.7865	4.6617			က	3.5133				6.7344		4.7632	4.6849	4.6/85		3.6819	3.6082	3.537	1200	0.800	0.0031	0.3941		4.8078	- 1	4.8913		3.9568		3.963	
V uncert - uncert	14.517		12.997		— i	11.66	!			6	9.869		+	-!'	12.021	0.00	10.873	10.874	668.01	1010	9.3507	9.3408	9.3305	1,001	1 200	2000	11.404	0000	9.6893		9,09/2			9.0069	9.0201	
ı V uncert	0.1803	0.1747	0.1734		0.1547	0.1536	0.1518		0.142	0.1393	0.1378		0.1695	0.000	0.1658	01,7	0 4/3	0.1457	0.1400	0.40	0.1358	0.1348	0.1338	0.4574	0 1500	0 1544	0.1044	0,17	0.1416	_ :	0.1427	-+-		0.132		
Experiment Internation V	~ 584	73	PH ~ 1.9										~ 364	C = /3 C(1)	n~ 2.3									587			i				1	+		-	-	-

PR% SPL	2 5	200	3210 150 6	.03	1	53	1.3376 153.6	153.		153	3338 153 6	7.2) 	-	-:0	5140 154.7	2	- 1-	. i	. .	104	1		5149 154 7		-	1.7036 155.7	_		-	6998 155.7		i		7036 155.7	_
E Bs	1 006	1.920	1 05	000	- T	-!	1.966		1,96	_	1.953			L	ПС		- 0	-1	ုင	2 408	10		2 528	2.522	2.522	3.182		•	3,187	.175 1	74	174 1	74	92	0.191	- 40
B As*As n	0		4 0 021	٠,	்ட		0.03	4	4		4 0.041	_	4	4	4	4 0 0 12	,		- 4		- -	6 0 02	o i co	10	6 0.023	0	6 0.007		이		6 0.011	0 (2	0 0	7 0.014	<u>خ</u>
A*A (2AA)		2690 17	2692 17	- 35	L	- ; ,	7602	_	2692 171		2692 1714	-	2692 171		: -	2692 171	×	L	, ,-	2695 171			2695 171	-	2695 171	121	2695 171	17		171	2695 171	<u> </u>		5,7	2697 171	=
KG (fg)			0.612	- 65	613	2 4	2000	4	614	4	613	N	0.613 2	695	969	0.696	_'77	1	1	0.693		1	0.697			0.782 26			_]-		0.781 26		8L		0.782 26	
ŭ,	0.194	0.194	0.195	0.194	0 195	100	200	0.1	0.195	0.195	0.195	0.195	0.195	0.221	0.222	0.222	0.222	0.221	0.221	0.22	0.221	0.221	0.222	0.222	222	249	0.249	0.249	249		249	243	240	240	0.249	
Nu	1.1 0.049	0	1.1 0.049	1.2 0.049	0.0 0.049	: 0	11 7 0 040	> (2	o i	.3 0.049	0	.4 0.049	0		1.3 0.049	.2 0.049	2	O	.9 0.049	12 0.049		9 0.049	-	이		0.048	>	5 c	5 C		<u>ء</u> د	i c		0	
h. Rs A2K	1 99.9 1	99.8	101	100	101	102	100	J 6	201	-	101	_	T	130	131	131	131 11	l	129	130 11	. 130	_	131	À	131	165	- : -	_ Ţ	ΞĽ	200	100	1	L	_	+	
Rs t		101 57.75		57,16	02 54.42		03 59 64) ü	~~		03 57.83	-	المنتنا	<u> </u>	32 57.5	32 57.79	57,37	11 62.47			61,56		33 60.82		**\	67 60 40	67 50 30	_,32	~ _		7 64 17	600	67.6	<u> </u>	62	
					0,707			i		-:	0,707	٦:	1	1	803	_		0.8	7,789 13	0,799 13		802	804 1	803		0.808	1	•	901 16	200	901 167		0,9 16	8	902 1	12000
Fred (HZ)	1055	1055	1056		1056	1056	1056		4050		gan,	9001	0107	000	1056	1056		1056	1056	1057		1057	1057		4057	1057	1057			1057	1057		100	1058	•	
Cur Volt		.07 7.49			0.08 9,3	6	တ		7]	3 3	_	15	S :	\ \ O	07		0.09 9.95		09 9,49			0.1 11.28			0.07				C	0.09 9.96		-	.1 11.16	<u> </u>	
F ()	7.38	7.47	7.85		11.2	11.5	11.8) 	1		2 2 2	1	7 57) (1.75 (1.75)	7.84		9). []	c.[_		0 6	15.3	<u>င</u>	8 13	7.45	7.64		10.9		11.5	2233	15.8	14.6 0,	14.9	9006
0 to	30°	31,1 30.6	31.4 30.		35.1 34.3						40.7 30.6				2.0			30.4 35.5					40.4 39.3			31.8 31.3			5.8 34.9	36 35.1	36.5 35.6		1.5 40.2	40,2 39.1	0.6 39.4	
Ta O	25.8 25.8	83.	3		23.1						200				t u			20.7			33, 100	000	4 4 4	0.000	C 200000	23,8 3	12.000				24.1 3		200	24.5	11	
Information	2000	L = /3 CM	ნ ~ ⊓							:		-	. 1055	- 73 cm	100	? ~									1055	L = 73 cm	3 ~ 1.7							-		

Ingritation v	ncert	l uncert	Ta	To uncert	Requincert	Nusselt uncart	Ta uncert	Mic V uncert	funcert	Rs uncert
~ 1055	0.2	15.831	6.7765	6.7765	0.638	18.518	0.1689	0.9402	0.002	0.9552
73	0.1966	2		6.6974		18.472	0.1688	0.9402	0.002	0.9552
PR ~ 1.3	0.192	15.825	6.3707	6.3707	0.6343	18.222	0.1688	0.9348	0.002	0.95
						18.404				0.9535
	0.1682	13.877	4.4478			15.249	0.1688	0.9335	0.002	0.9487
	0.1675			4.3354		13.926	0.1687	0.9309		0.9461
	0.1664	12.47			0.6673	13.846		0.9322		0.9473
						14.34				0.9474
	0.1471	11.262		3.0999	0	12.104	0.1685	0.9322	0.002	0.9473
	0.1502	11.253	3.1707	3.1707	0.647	12.131	0.1684		0.002	0.9486
	0.1493	11.261		3.1731	0.6545	12.141	0.1684	0.9362	0.002	0.9512
						12.125				0.949
~ 1055	0.1968	15.827	6.6077	6.6077		_	0.1684	0.824	0.005	0.841
73	0.192	15.84	6.4535	6.4535	0.6434	18.293	0.1686	0.8219	0.002	0.839
PR ~ 1.5	0.1898	15.845	6.3788	6.3788		-	0.1685		0.002	0.839
						18.31				0.8397
	0.1622	12.51	1	4.2419	0.6989	13.893	0.1684	0.825	0.002	0.842
	—∶	12.493		4.2698		13.894	0.1684	0.826	0.002	0.843
	0.1671	12.488	4.3368	4.3368	0.6815	13.93	0.1684	-	0.002	0.843
						13.906				0.8427
	0.1525	11.3		3.4275	0.6881	12.316	0.1683	0.8229	0.002	0.84
	0.1491	11.292	0	3.2787	0.6805	12.226	0.1683	0.8209	0.00	0.838
	0.1503	11.298	3,3415	3.3415	0.6855	12.266	0.1683	0.8219	0.002	0.839
						12.27				0.839
~ 1055	0.1858	14.072		6.1503	0.7442	16.561	0.1683	0.7317	0.002	0.7508
73	0.1931	15.876		6.7109		18.51	0.1684	0.7309	0.002	0.75
PR ~ 1.7	0.1899	15,874	6.5465	6.5465	0.6644	18.39	0.1684	0.7309	0.005	0.75
						17.82				0.7503
	0.1687	12.527	4.5714	4.5714	0.7116	14.115	0.1683	0.7325	0.005	0.7516
	0.1656	12.549	ਧ	4.5409	0.7287	14.116	0.1682	0.7325	0.005	0.7516
	0.1624	12.535	4.353	4.353	0.718	13.984	0.1682	0.7325	0.005	0.7516
						14.072				0.7516
	0.146	10.395	3.1692	3.1692	0.7569	11.347	0.168	0.7333	0.005	0.7523
	0.1505	11.32	3.4335	3.4335	0.705	12.339	0.168	0.7309	0.005	0.75
	0.1481	11.32	3.3481	3.3481	0.7048	12.291	0.168	0.7317	0.005	0.7507
٠						11.992				0.751

— =	e u	2 0	ט י כ	D :	10	0 ; 1	910	51	10	Ö i G	0 : 0) ·	Į ur) LC	ט נ	Ö :	14	· : •		-	1=	F : 17	אונ) i	IC	N	0	-	10	1: ^	11.0	i.	TA.	II.O.		
SPL	_	- ! -	156.6	9	7 00	.00	156.6	2	7 2 7	0 0	7 20		157	5 2	157	2	157	57	157	2	157				158	158.	158		158	158.2	158		158	158.2	158.	
PR %	1 AAGG	1 8888	1 8004	1	1 00 47	1,00047	1.8809	0.0	4 070	1.07.0	1 8800		2 0979	2 0828	0 080g	2.002.	2 079	2 0771	2 0715	2	2 079	2 0809	2.0809		2.2696	2.2696	2.2733		2.2677	2.2714	2 2639		2 2582	2.262	2.2639	
Hs <	σ	• ! 🕶		20.02	2000	0 0	3.88/	0000	0.08	500	3 892	3 892	4 836	4 766	4 766	4 789	4 748	4.738	4 711	4.732			4.758								5.629		909		633	5.621
As*Rs	0.005	000	0.00	0.00	2000		0.000	0000	000	0000	0000	0.009	0.003		0.003	0.00	0.005	0.005	0.005	0.005				200.0	0.002		0.002	0.005	0.003	0.003		- 360	L	0.005	-	0,005
β (2.λ.λ/π)	1717	1717	1717	1717	1717	1717	1717	1717	1710	1710	1719	1719	1712	1712	1712	1712	1712	1712	1712	1712	1714		1714	1714	1714		1714	1714	1714				1716			1716
1*4	2697	2607	2697	2697	2697	1000	26.97	2697	2000	2700	2700	2700	2690	2690	2690	2690	2690	2690	2690	2690	2692	2692	2692	2692	2692	2692	2692	2692	2692	2692	2692	2692	2695	2695	2695	2695
9 (a)	0.867	0.867	0.869	0.867	1		0.003		0 863	0.865	0.864	0.864	0.963	0.956	0.956	0.959	0.955	0.954	0.952	0.954	0.955	0.956	0.956	0.956	1.043	1.043	1.044	1,043	1.042	1.044	1.041	1.042	1.037	1.039	1.04	1.039
ů.	0.276	0.276	0.277	0.276	0.276	0.075	0.275	0.275	0.275	0.275	0.275	0.275	0.307	0.304	0.304	0.305	0.304	0.304	0.303	0.304	0.304	0.304	0.304	0.304	0.332	0.332	0.332	0.332	0.332	0.332	0.331	0.332	0.33	0.331	0.331	0.331
×		0.049			0.049	-	Ö	0.049	0.049	0.049	0.049	0.049	1		O	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049
r Is Nu		<u> </u>	4 11.7		3 12.8		1 12.9	.365		3 12.7	12	2 12.8			7 14.5	. 333	L.,	4	15	5 14.4	5 14.2	7 14.4	7 14.4	~			4	7	15.	15.		ંા		15.2		16.1
Cor h Re /m^2K	61.2 203	74 203	59.95 204	60,3 204	52 203	1	1		L	03 203	<u> </u>	37 202	82 25		46 247	84 248	69.8 246			84 245		84 247		L		+				÷		€ L	!	292		8 292
Rs Wr		205 59	206 59	Ö	205 65.52		204 65.81	63,91	204 66.68		204 64.39	30000	253 76.82			74.	248 66	48 75.02		200	249 72.64		249 73.68	-	297 75.05	-	298 /4.98	aaa L		297 80.01		- L	<u> </u>	295 77.54		82.4B
m/a V (mV)	1	-	1,002		0,999	!	i		1	0,998	i i	1		,104			1,102 2		į	İ	102		.103		. Ju	203					ري در	erredo	26	, .	N N	
_	1058	1058	1058 1	3,000	1058 C		26.63			8 A.			1055 1	~		981	1055 1	300		1	T.,	1056 1	7	010	056	020	000		056 1,	056 1	056			_	Š	
₹ Ş	7.61	7.73	7.95		9.58	9.14	9.62		11,16	11.49	11.24		8,21	8.47	8.29		10,33	10.6	. 66'01		12,45	12.19	12.39	100	0,00	90.0		201	10,61	L 8'01'		1		- ·	- 2	
	2 0,07	\$1000 P		33000	8 0.09	Section	0.09			0,1		4 A	0.08	eng:	200		٥.			an e	•	0	200,000	I	800			П	5			- I	3336	 	<u>u</u>	
	.5 7.16				9	9.9	5		.7 13.8					19./		- 1		9.11.6				8 14.9			7.7				10.8		0			14.8	2	-
	32 31.5				36,3 35		6.5 35.6		39.8 38.7				28.8 29.1				4.63 33.4					39,4 38				30.00			30.K 34.1		2			40 F 38 9		
20	24.3				24.6				24.9 3				- 0 - 0 V 0				4.75 4.00 5.00 5.00			80.80		23.1 1.00 1.00			200				60,00 0,00 0,00		£.03	M. 200	90000	23.8 2.4 4.9		
Information	22	E C	9.					000:	, com	2000			au yar	107937				4.96/6			4400				8738 											
	CCO ~	L = /3 cm	ĭ			į						ļ	2000	1000	r L									f ~ 1055	= 73	PR ~ 23										

	overal	uncert uncert	0.002 0.6811		0.002 0.6798		0.002 0.6817		0.002 0.6836			0.002 0.6823	0	0.6829			0.002 0.6213								0	0.6219	0.002 0.574	002	0.002 0.5731		0	0.002 0.5735	0	0.5744	0	0	0.002 0.5752
	MicV		0.66	0.66	0.6587		0.6607		10		1	0.6613	0.662			0	0.5978			0.5995			0.5989	0.5984	0.5984		0.5486	0.5486	0.5477		0.5491	0.5482	0.55		0.5514	0.5505	0.55
	Ta	uncert	1 0.1681	5 0.1681	0.168	0.1	3 0.1679	!									0.1692			0.1691				0.1688			0	0	0.1688			!	0.1686			0.1684	
0.00	Nusselt	uncert	3 18.74	3 18.515		18.552	3 14.173		1	14.681	1		12.384	1			1	17.207	<u>.</u>	13.018		13.458	_		=	_	:		9		T			13.206			10.869
	Red		0.6848	3 0.6683	0.6708		0.733						0.7204			0			•	0.8393	- 1	- 1			0.8243		0.8397	0.8377	0.8389		0.9013	0.8952	0.8843		0.9501	0.8676	0.9498
	10	uncert	5 6.9862	3 6.7128			3 4.6206				3.6331		3.4833				6.8269			4.3031				3.3483				0	6.5057			4	4.3571		3.3697	3.3831	3.3091
	Та	uncert		9	6.5507			3 5.0228		_		3.4415		- 11		6.5709				4.3031		1		3.3483		i.		- 1	6.5057			4.504	4.3571			က	3.3091
		uncert			15.885				12.558		Ξ	=	11.338	_	٦;		14.2			Ξij	11.498	_i.		10.469		000		14.207			11.549	11.541	11.529		9.7633	10.513	9.763
	> -> -	uncert	0.1952	0.1926	0.1886		0.1669	0.1713	0.1665		0.1511	0.1481	0.1501	000	0.1882	0.1833	0.1864		0.1595	0.15/8	5	3,7	0.1421	0.1441	0.1426	0.10	0.000	0.1820	0.1794	000,0	0.1588		0.1544	0	0.1418	0.1413	0.1403
Experimen	Information V		1055	23	PH ~ 1.9									1000		-	PH ~ Z.1									4055	70 02	5 0	rn ~ 2.3								

F 6	O	į o	0	! ;		ې ا د		9.1	O	0	0	<u> </u>	4	4	4		4	4	4	;	4	4	14.	-	ς.	Ŋ	Ŋ		N.	N	į C	ļ;	2	α	N
TaS	Ľ	1	158.9		158	1	0 2		158	158	158		-	157	157		157	157.4	157	į	1.	-	-	1	Ľ	158	_		Ľ	158.2			158	158	158.
PR %	2.4544	2.4563	2.4563		2 4563	0 4569	2 4507	7	2 445	2.445	2.4393		2.079	2 0771	2.0733		2.0733	2.0733	0	1	2.0696	2.0733	2.0733		2.2639	2.2658	2.2677		2.2639	2.2677	2.2658	İ	2.2677	2.2639	2.2601
B.	6.622	6.632	6.632	6.629		69	3 9	200	6.568	6.568	6.537	6.558	11.55	11.53	11.49	11.52	11.49	11.49	11.49	11.49	11.45	11.49	11.49	11.48	13.7	13.73	13.75	13.73	13.71	13.75	13.73	13.73	13.76	13.71	13.67
Gr. Rs*Rs	002	0.002	002	0.6	0 002	0000	0000	0000	_			-: 535	9E-04	0.001	0.001	0.001	0.001	0.005	0.001	0.002	0.002	0.002	0.002	0.005	7E-04	7E-04	7E-04	7E-04	1E-03	1E-03	0.001		_	0.001	
(2AA/m)	1716	1716	1716	1716	1716	1 (<u> </u>	9	19		1716	L		952.7	-000	952.7		954.3	953.3		954.3		954.3	954.3	954.3	954.3	954.3		954.3		954.3	L	954.3	
. A+A.	2695	2695	2695	2695	2695	2695	2695	2695	2695	2695	2695	2692	L		1497	1497	1497			1497		1499		1499	1499			1499		1499	1499	1499	1499	:	
OX (an	1.128	1.128	1.128	1.128	1.129	1 129	178	1.128	1.124	1.124	1.121	1.123	1.719	1.718	1.715	1.717	1.715	1.715	1.713	1.715	1.711	1.714	1.714	1,713	1.872	1,873	1.875	1.873	1.872	1.875	1.874	1.874	1.876	1.873	1.87 1.873
ú	0.359	0.359	0.359	0.359	0.359	0.359	0.358	0.359	0.358	0.358	0.357	0.357	0.547	0.547	0.546	0.547	0.546	0.546	0.545	0.546	0.545	0.545	0.546	0.545	0.596	0.596	0.597	0,596	0.596	0.597	0.596	0,596	0.597	0.596	0.595 0.596
×	049	0.049	049	0.049	0.049	1	0.049	690	0.049	0.049	0.049	0.049	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027		027		0.027		027	0.027 0.027
Nu	_	: '	17.3	. 16.3	16.3		16.1	_00	⊢	17.4		17.4	-	22.4	21.4	21.6	50	2		20,4		ŭ	α:					}_		κ		383.			22 22.3
Corr h Rs	344	344		344	344	i	343	333			339	340	447	446	445	446	445	445		445	:	1	- 3	ા	53			L		532			:		529 531
wm.	_			83,25			82.38	3800.00	89.32		88.85	89,07	_	114.	109.8	110,6	102	108.9	102	104,6		:		104.9		8	Ξ,	5	110	-	Ξ.		15	113.9	112.
Rs	347	348				i.	346	A	L.,	! too see			448		446			446	Sanas		444	in at	446		532	533	534	[:	533		535	533	55
mia V (mV)	1.301	1,302	1,302		1,302	1,302	1,299		1.296	1.296	1,293		1.102	1,101	1,099		1,099	1,099	1,099		1.097	1,099	1,099		1.2	1,201	1.202		75	1,202	1,201		1,202	1.2	1.138
l Freg (Hz)		•	7 1057		3 1057	100			7	5 1057					1 587				5 588			2 588		- 1)	5 588		-		588		- I		588	
is Volt							111.18			2 13,25			9	1 10,64	10		Čį.	12.9	12.1		e) E)	3 14.22	7		10.66	10.6	10.8	1	<u> </u>	13,01	5		Π.	3 14,94	
	7 0.08	~ i	7.7.				2. 0.1		200000	7 0.12	15 0.1		О.	32 0.1		2222		.7 0.12	~		9	O	0					ŀ	o (.7 0.12	o .	ŀ	0	2	- -
T\$[8:T8 (0) (0)	30.7	31 7.2		- 1			35.1 11.2		18.5 14.5	38.7 14	- 1			31.2 7.0	1.8 8.1			35.5 11.		- 1		38.5 14.3			31.7 7.41					35.1 10.7		I	i	38.7 14	
	31.4			- 1			36.2 3			40.3 3				32.3		- 1		37.1 3	1			40,4			32.8					36.7 2.0				40,7 3	
T 0	23,7	20.00	34.70 S	0.000	200,740	16200	23.9		24			V 102 6	92 W.S	23.6		3333	23.8	8000	24			24.2			24.0 0.40	1000	. 1998 S	23.00	883VX	4.44	300 60	4.800 B C	33375	24.7	A 65.507
Experiment Information)55	3 cm	2.5							1			35	3 cm	2.1		:	:			1				S	200	ر. د								
	f ~ 1058	L=7	PR ~ 2.5						i	!			. 585	L = 7	PR ~ 2.1		;	:							~ 282	L = 73 CID	⊏:								

	1.0	101			_		-0'	110	100	100	_		Tall			-	1						10:					_		_						_
overal Rs uncert	0.5345	0.5342	0.5342	0.5343	1	0.5341	0.5352	0.5345	0.5363	0.5363	0.5374	0.5367	0.6222		0.6237	0.6229				0.6237	0.6247	0.6236	0.6236	0.624	0.5751	0.5747	0.5742	0.5747		0.5742	0	0.5747	0.5742	0.5751	0.5759	0.575
f	0.002	0.002	0.002		0.002	0.005	0.002		0.002	0.002	0.002		0.002	0.002	0.002		0.005	0.002	0.005		0.005	0.002	0.002		0.005	0.005	0.005		0.005	0.002	0.002		0.002	0.002	0.002	
Mig V uncert	0.5073	0.5069	0.5069		0.5069				0.5093	0.5093	0.5104				0.6005		0.6005	0.6005	0.6005		0.6016	0.6005	0.6005		0.55	0.5495	0.5491		0.55	0.5491	0.5495		0.5491	0.55	0.5509	
Ta	0.1684	0.1684	0.1684		0.1683	0.1683	0.1683		0.1683	0.1683	0.1682		0.1686	0.1685	0.1684		0.1684	0.1684	0.1683		0.1682	0.1682	0.1681		0.1681	0.1681	0.1681		0.168	0.168	0.168		0.1679	0.1679	0.1678	
Overall Nussett uncert	17.534	17.315	15.759	16.869	13.349	: -			11.004	10.974	-	10.97	16.65	15.225	14.835	15.57	12.602	11.766	12.709	12.359	11.272	10.572	10.62	10.822	15.417	15.417	15.099	15.311	12.852	12.181	12.016	12.35	10.782	10.7	10.641	10.708
Req uncert	0.9032	0.9016	0.9895		0.9351	0.9178	0.9216		0.9993	0.9965	0.9937		1.1979		1.2281		1.146	1.2182	1.1451		1.1275	1.188	1.2048		1.3229	1.3229	1.2861		1.2316	1.3413	1.3198		1.2928	1,2745	1.2611	
Td	7.1434	6.8744	6.3773		4.637	4.3718	4.4801		3.4494	3.4062	3.3437		7.1692	6.5656	6.1743		4.5079	4.2668	4.6565		3.6762	3.4927	3.5422		6.7446	6.7446	6.4186		4.7352	4.6692	4.4775		3.6642	3.5663	3.4961	
Ta	7.1434	6.8744	6.3773		4.637	4.3718	4.4801		3.4494	3.4062	3.3437		7.1692	6.5656	6.1743		4.5079	4.2668	4.6565		3.6762	3.4927	3.5422		6.7446	6.7446	6.4186		4.7352	4.6692	4.4775	_	3.6642	3.5663	3.4961	
T uncert	14.301	14.299	12.884		11.588	11.568	11.572		9.8114	9.8087	9.8059		13.152	11.995	11.929		10.809	10.026	10.808		9.9368	9.2707	9.286		12.039	12.039	11.996		10.9	10.146	10.125		9.3658	9.3492	9.337	-
heart	0.1831	0.1784	0,1739		0.1559	0.1516	0.1537		0.1402	0.1393	0.138		0.1689	0.1645	0.1619		0.1461		0.1491		0.1372	0.1362	0.1364		0.1649	0.1649	0.162		0.1453	0.1457	0.1432		0.1347	0.1334	0.1326	
Experiment / Information V	~ 1055	73	PR ~ 2.5										~ 585	. = 73 cm	PR ~ 2.1										~ 585	23	PR ~ 2.3									

Tas	0		6.6		σ α	0) o	2	6	6.00	6		9.5	. 6	5.0		5.0	9	9		5.	9.5	9.6	į	0.1	5.1	7.7	-		7.	7.1			-	7.	_
s) à	Ľ		2 158		Ľ		7 2	1	1		5 158	_	1		9 159		L	i	5 159		-	! -	5 159.	!	-	9 160.	-	:	1-	9 160.			L		160.1	
PR %	7		2.4582		2 4544	2 452	2 4488		2.44	2.4469	2.445		2.646	2 64	2.6469		2.641	2.650	2.6525		2.64	2.64	2.6506	!	2.8318	2.8299	2.8374		2.8318	2.8299	2.82		2.8261	2.8204	2.8318	
RS <		6.13	١-	- 7-7	60	0.2	009	99			15.98	5,99	:	18.7	18.73	3,72	1		18.8		18.7	3.71	18.79	<u>.</u>	<u> </u>	14.	.48	44	_	39	<u> </u>	.39	1.34	26	42	40,
98	-	'-	-	سو د شور	L	-			_		1	.00	┖-			3500	4			2864				1,500	L	<u> </u>	04 21	J. 1833	4	04	24		ı	04		04 2.
10 E	1-	1	7 5E-04	O.	1		7 7E-04	~			7 1E-03	~	7 3E-		7 4E-04	~	1	. ന	3	മ	3	3	3		3	3 3E-	7 3E-04	8 3E-	4	7 4E-	7 4E-	7 4E-	7 5E-	7 5E-	3 SE-04	- a o n
→ <	10		952	952.	952.	952	952	952		952.7		952	952.	952.	952.	952.	ţ	954	954	953	954.	954	954.	954.	954.	954.	952.	953.	952.	952.	952.	952.	952.	952.	954	903
V.V.	1494	1497	1497	1496	1497	1497	1497	1497	1497	1497	1497	1497	1497	1497	1497	1497	1497	1499	1499	1498	1499	1499	1499	1499	1499	1499	1497	1498	1497	1497	1497	1497	1497	1497	1499	148
₽	035	031	031	035	028	028	025	027	022	2.024	2.023	2,023	189	188	2.19	2.189	186	19	192	2.189	187	2.187	192	2,188	.341	339	344	341	.34	339	338	339	337	332	339	330
ω	2	i	646 2.	647 2.	2	N	645 2.	22				644 2,	1			697 2.	L.	!	, cu	C		.696 2.		3333	7	CI:	Q.	745 2.		.745 2.	ζ	45 2.	2	CI.	OI C	٧
	o	0	0	Ó	0	ŀO	0	O	0	0	0	0			7 0.697	0	_				0	0	0	0	0.745			0	0	0	_	0.7	0	0	00	- 1
× .	0.027		0	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027			0		0.027						0	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	3 2 2
Ž	25.9	25.2	25	25.4	26.1	25.8	25.3	25.7	24.4	26.2	25.5	25.4	28.2	29.4	29.1	28.9	30.6	29.5	28.7	29.6	27.9	29.7	29.7	29.1	30.7	31.3	31.5	31.2	30.9	30.8	30.3	30.7	31.4	:	31.7	5
Oor HS	624	624	624	624	622	622	620	621	618	619	618	619	724			724	722	727	728	725	724	724	727	725	830	829	83	830	828	827	826	827	826	822	820	7
h V/m/2	132.7	128.9	127.7	129,8	133.5	131.9	129.4	131.6	124.9	134.3	130.5	129.9	144.6	150.4	149.1	148	156.5	151.1	146.7	151,4	142.6	151.9	152.1	148.9	157.1	160	161.4	159,5	158.1	157.6	155.2	157	60.8	59.1	62.2	3
Rs	627	625		A3300	624	623	622	250	620	621	621	See			727	.E.L.	724			9224		726	8		832	831	833		830	830	829		828	825	83 	
mle V (mV)	303	.303	303		301	ب دن	298		296	297	296		1,403	402	403		₹.	,405	406		402	.402	405		Ξ	ശ	504		501	ري دي	499	- 1	1	405	. 1	
Freq m		7	587 1		587 1	87	87 1		-	587 1,	-		587 1,	200	2000		587				▔	588 1,	-		588 1.	88	87 1.		587 1.		ť	- 1	-	587 1,	7	
SOL FI	96	સુ	13		23 5	မွ	6		3.7	15.6 5			.33 5		Q.,	×I		52 5				.48 5			12.5				.09			o i	₩.		Sec. 7	
>.	10)	Ξ	Ξ		.		13.		7	4 15			Ξ	CV -	잗			4	4	ı	9	Ψ,			2	<u>.</u>	<u> </u>	1	E	3			T.	17.13		
a Cur			۵.,		0	ö	0		0	<u>;</u>	0		.0.	V. 200			0	ö	<u>.</u>		6	0.15	0		0.1		22.00		0.13	3	0		0	0.15	5	
16-T	6.7	7.7	7.1				10.5		5		-		6.45				9.63			-	65	6	65		7.2				10.2	2	5			13.3		
Tto TSF9-T (C) (C) (C)	29.8	30.1	99.1		32.9	33.4	33.5		36.7	37.1	37.8		8	8	31.2		33.5	94.3	34.7		37.4	37.8	37.8	ľ	31.5	2	7.62		33.3	SS S).		36.4	36.8	9	
Ť.(0)	23 30.9	31.2	34.2		34.5				38.7	39,3	40.1		31.2				35/4					40,3			3 6 3 6				35,3				S .	4 6	N D	
	ន	22.9	22.0		23.1	23.3	23.4		23.6	23.7	23.8		23,6	23.7	23.7		23.9	24	24	ľ	24.3	24.4	24,4	1	24.5	7. 4. 6	27.8		23.1	2. C	, 50, 50,		43.4	0 6 7 6	0 3 4	
Experiment Information		m _O	ιč						!					cm	9			-			-					5	o.		:	1						-
Experimen Information	~ 585	L = 73 cm	H~2								!		~ 585	L = 73 cm	R ~ 2		ļ					1		1	282	2 9	7 ~ L				:			:		
	<u> </u>	<u> </u>	۱		- 1		:					٠	<u> </u>	اإل	<u>. </u>		!	-					_!_			ا ا	L!	_		-	-!	┸				J

overall Rs uncert	0.5339		0.5339	0.5339	1		.0	0.5351		0.536	0.5364	0.5363	0.4997	0.5	0.4	0.4998	0.5006	0.499	0.4987	0.4994	0.4999	0.4999	1	0.4995	0.4707	0.471		0.4707		0.4712			0.4718	0.4726	0.4708
f uncert	0.005	0.005			0.005		0.002				0.002			0	0.002						0.005	0.005	0.002		0.005	0.002	0.002		0.002	0.002	0.005		0.005	0.005	0.002
Mia V uncert	0.5065					0.5077			10	0.5089	0				0.4704		0.4714	0.4698			0.4708		0.4698		0.4397	0.44	0.4388		0.4397	0.44	0.4403		0.4406	0.4415	0.4397
Ta	0.1688	0.	0.1689		1	0.1687			0.1685		0.1684		0.1685		0.1684			0.	0.1683		0.1681	0.168	0.168		0.1681	0.1681	0.1689		0.1688		0.1687			0.1685	
overall Nusselt uncert	16.137		15.728	15.872	Ξ	12.508	_	12.508	10.988		-	10.592	Τ;	15.083	14.851	15.519	12,356	_	11.851	i	:	10.167		10.317	15.195	15.477	15.501	15.391	12.133	12,158	12.029	12.107	10.329	10.254	10.383
Req	1.485	-	1.429			_	1.4481		1.3977	-	1.4596	1	1.6173		1.6678		1.7509	1.69	1.6412		1.5954	1.6997	1.7022		1.7573	1.7898	1.8056		1.7693	1.7628	1.7367		1.7994	1.78	1.8146
To	7.3705	9	6.9779		5.1116					3.7387				6.8977					4.6899	- 1			3.7377		6.946	7.2188	7.2293		4.9018	4.9393	4.8082		3.8442	3.7649	3.8995
Ta uncert		9	6.9779						3.8241			- 1		6.8977				4	4.6899		3.8207		3.7377		6.946	7.2188	7.2293		4.9018		4.8082		3.8442	3.7649	3.8995
l uncert	_		12.163		10.295					8.9152	- 1		12.382				9.7816	9.7263	9.6821		8.9939	8.5164	8.5183		11.458	11,493	11.51		9.7983		9.7687	·	8.5956	8.5801	8.6076
V uncert	0.1646	0.1614	0.162		0.1464	0.144	0.1422		0.1333	0.1331	0.1312		0.163	0.1578	0.1549		0.1444	0.1411	0.1399		0.1314	- -!	0.1315		0.1553	0.1577	0.1573		0.1391	0.1399	0.1386		0.1307	0.1298	0.1313
Experiment Information V	f ~ 585	33	PH ~ 2.5									,	- 585	73	PR ~ 2.6			***							- 585 - 1	5	PH ~ 2.8								

	<u></u>	<u> </u>	\ . r	<u>, </u>	11	<u> </u>	<u> </u>		_	_			- 1	OI:	N C	N:	1,	N ·	NI C	N:	-,	OI.	N.	ΔI:	7-		-	- 1	1-				_			
SPL	*		160.7	- !	1	- ' '	160.7	- :		_	160.7				0				161			-	161.2	-	167	157.	157.1		157 1	157	157	2	157 4	57.1	157 1	
PR %	900	30.00	3.0336	0.000	0000	3.0298	3.0261	3.0242		3.0242	3.0185	3.0204	. 000	3.2091	3.2072	3.2033	00,00	3.2166	3.2204	3.4443		2	3.2166	N:	1004	0.0047	2.0017		1 9885	19828	9828		0070	9799	9998	
As	A 10	27.70	24.57	04.57	├—		74.47		24,48	24.44	24.36	24.39			04.72		L		00.72		S			0.72	3 9			يو.ف	4.323	4.297	4 297	4.306	4 371	1.371	4.379	4.374
G <u>r</u> As*As	2E.04	2E-04	25-75	2E-04			200				4E-04				100		ாட		100 100 100 100 100 100 100 100 100 100	221	40.E		3E-04		்ட		0.004	0.004	-		0.006	- 27.7	OG		800	0.008
В			954.3				0.4.0		954.3	954.3	954.3	0.400			051				932.7				952.7		ـــا د			1709	-	1709			=	1711		1711
V*V		1499			-		_:_		1488		1499	_ :: :			1494	_ 8			1407	_386	்ட		1497			2685	2685	2685	2685	2685	2685	2685	2687	2687	2687	2687
õ	2.501	2.535	2.505	2.504	2 503		2 400	, i c	1,0,0	7.4	2.4.35	767.6	9 651	2 651	2 649	0.0.0	2 655	2,650	2,661	0.55 0.658		7.029	2.028	2.658	0.919	0.922	0.922	0.921	0.916			1.00	0.92	0.92		0.92
3			0.797	والمتحاصي	0 797	0 796	0.795	0.70A	200		0.794			0.044	843	844			0.847				0.040				293	No. 311	-		0.291	. 3.25	293	0.293	293	0.293
×	0.027	0.027	0.027	0.027		-		- 77	0.057	0.027		027	0.027	0.027	0.027	0.027	-		0.027					-983	0.049		049	0.049	0.049	049		33877		049	049	30.1
DZ .	·	-	36.4		⊢	-	34.5	- 44			3 8	_ 1008	35 B	36.9	37	36.5	36.7	37.4	37.1	37.1	4	200	36.0	37.1	13.5	13.5	13.4	13.5	12.8			12.8	_	4	13.9	14 (
Corr h As	4		5 951	့		3 947		_98	_		944	-399	3 1062		1060			3 1070	7 1071				6 1068	-035		5 227			224	- 1				227	3	/22
\$ 15 m	0 185.		186	186.	L	-	·	_000	12	1			183	-	3 189.4	187		===	, —	189.	195		-	190.1		<u>.</u>		See 1	62.59	_		8	Ε.	71.41	7	92.17
>5		38 953	608 95			604 950		İ		16 945	ndee n		106				5 1069	-		 	ľ	1.	- 1		278	1 231	mode	200	4 228	noords:					o comito o	
Valm pe		$\overline{}$	588 1.6		-	-	_		8 1.603		Ξ		6 1,70		6 1,699			7 1,707			Γ	1	7 1.704		$\overline{}$	3 1,061	7		3 1,054			1	1.059	-	1,06	
(all Fred	59	- 26	. 90		88	35	46 588		1	49 588	17.6 588		91 586	8	21 586		76 587	5.87 587			67 58		39 587			23 1053			.12 1053	24 105	24 1053		26 105	1054	18 1054	
Cur		12	_		5	0.14 15,	5				15			2 13	2 13,		$\overline{}$		14 16.		17	16 18.	18		80	08 8.	œ.	Ş	.01 60.	2 9	9	1	2	() 	12.	
	7.07 0.		6.9	80.33		9.91 0.				Sec.	12.9 0.			7.05 0.1	S		o	9.54 0,	o.		11.9 0.	2.9 0.	12.9 0,		0	7.83 0.(o.	्र	D. (0 0	٥.			15.2 0.1		
TST6-Tat (C) (C)	30.8			,	33.6	33.9	34.1		i		37.1	1		29.3						1			36.1			30.8 7			04.0					38.4		-
# <u>2</u> 0	32,4	32.1	82. 22.	ŀ	35,8	36.1	36.3		39.2	39.6	39,8		33.1	30,9	30,7		34.3	34,3	34.6	1	37.7					31.5			4,00					20.0		
ni Ta (C)	23.7	23.7	23.7		23,9	24	24		24.1	24.2	24.2		21.9	22.2	22.5		22.4	22.5	22,6		22,9	23.1	23.2		3	833	3		3 5			200	10000	7 0 7 0 7 0	dillan.	
Experiment Information	585	L = /3 cm	~ 3.0			-							~ 585	L = 73 cm	~ 3.2				-					100	~ 1035	L = /3 cm	~ K.O		1							
mir=	<u>.</u>	ָיי בי	Ĭ.	\perp	_				į	į			2	-	Ξ,			-							<u>. </u>	ן מור			i						i	

V f. Ta uncert uncert uncert 0.154 10.863 7.0678
10.89 7.3384
0.1559 10.876 7.2425 7
0.1413 9.3576 5 1444 5 1444
9.3324 5.0457
4.9536
8.6781
3.9291
28 8.0007 3.8733
1495 10.838 6.668
10.899 7.0911
1552 10.907 7.2631 7.2631
9.424 5.1809
0.1388 9.4582 5.2437 5.2437
2
ᅼ
8 3194 3 8758
8.3194 3.8758
14.114 6.3866
14.114 6.38
1852 14.109 6.31
12.551 4.3586
4.3251
- 4
10.446
0.1448 10.44 3.2787
0.000

	: C	0:0	O i a	э ·	ı c	n i	010	0:	17	: C	D : 0	<u> </u>	110	217	O : 6	3	1.	2.11	2.16		10	2.166			100										
ids	727	- -	157.8	_	1	2	15/	2			5.7.0		150	200	0.00	20.0	100	000	158.5	2	150 6	158.6	158.6		159.3	159.3	159.3		159.3	159.3	159.3		159.2	159.2	4:
PR %		- -	2 1715	- :	1774	7 / 7	2.1008	080	- 17	+	000	- ,	25.62	2658	280	2002	2000	2488	2 3563	3	3659	3658	3677		.5714	5695	2676		5657	5657	5639		5582	5525	
Bs.	8		5 164				5 150		L		5 120 5	136	ORG	134	6 1 1 4				091			6.137			N	7.24 2.	α;			7.215 2		Ŀ	N C	7 138 2	1
G.	7 500			- 1.0	· I	200					000						٤١٥	οiα) : C	ဗ	-			004 6			_	6 / L			6	- SS -	<u> </u>	003	
B.As*					; -	o i c) C) () C	· C	0	100	1	1 0 002		- -			ัณ	0	010	2	2 0.0	2 0.0	O l	0 (⊢		2 0.002	V 6	2 C	Dic	200	0
7440	17.	171	1	_ 🐰	Ľ	· •	17.		Ľ		17				171		-	+-	+	171	17	171	171	171	171	17			<u> </u>		<u> </u>		71	1	171
\ \partial \tag{\partial tial \tag{\partial \tag{\partial \tag{\partial \tag{\tag{\partial \tag{\tag{\tag{\partial \tag{\tag{\tag{\tag{\tag{\tag{\tag{\tag{	2687	2687	2687	2687	2687	2687	2687	0697	2687	2687	2687	2687	2687	2687	2687	2687	2687	2690	2690	2689	2690	2690	2690	2690	2690	2690	2690	0602	2690	2690	0607			2690	
Q (a)		0.999		0.998	1 000	0 007	666.0	0000	0 998	799.0	0.997	0.998	1.084	1.088	1.087	1.086	1.079	1.08	1.084	1.081	1.088	1.088	1.089	1,089	.183	1.182	- - - - - - - - - - - - - 	707	0	1.181	0 0	1 1 70	177	175	1.176
ů.		100	0.318	0.318	0.319	6	0.318	č	318	318	0.318	0.318	0.345	0.346	0.346	346		344	0.345	.344	.346	.346	.347	.347	.377	0.376	0/5.	070	2/6	376	5 6	5 6		37	374
×	049	049	049	.049	049	049	049	049	049	049	049	_89/91	049	049	049	. S.S	049 0	049		049 C	049 0	.049 0.		222200	049		23	1		010	_200	%	' -	049 0	049 0
n N	1_	3.9 0.		14 0	9	9	3.6	6.0	> L	14.9		4.8 0.	-	0	0	0	16.3 0.	6.4 0.	6.1	6.3 0.	0	17 0.	8	္ပါ	010	- u) C		5 c	ء اد	, r	2	7.5	5.0	9
Corr As	266	267 1		267	Ľ		267 1	267 1	·		266 1		_	-	317 1	77	L	314	0	314 1	318	318	_	8		375		- -	- : -						371 17
1 4 A	L.	.27	27	1,45	Ĺ		69.61	69,45	1	76.12		1800			77.89	77,85			_	\sim 1			3	/ L		80.07	_33	L		83.74		L	29	29	35
Hs W	271 7		272 71	7			272 6	Ö	1=	-	271	Section 1			322 77	,3%	L	318 83		L		323 86		8801	301 05		_,000	380 86				۹	377 89.		88
mic.V (mV)	148 2	1,15				48			1	.148 2			:	,254 3		7.	0000 A	245 3	i Common		on on a d	254 3	i e a asta i		andam.	361		Ι.		0.00		1	,355 3	. 1	
Freq m (Hz) (r	054 1.		054 1.			054 1;			Γ	054 1,7	T.			054 1,2	7		054 1,2	~	_	- 1	_	055 1,2				,		ľ					_	T	
/olt Fr (V) (t	52 10	. T	66 10	:: I		0.27 10				. To	38 10			T.,	07 10		•	್	·	80 B		ω, •		JO 4 OFF		19 105			300	.44 1055		10000	.32 1055	30 0000	
		8			7	09 10,			12.	1 12	흔	1	D)		6			_	1 11,08			S. 5		C) a	, 0			1 11 44			13	5	13	
	31 0.08		33.40		0.0	0.0	0,0		9	Ó	ω !	- ')	O .	o o		က က			ŀ	0	2,5	3			5 0.08				2 0.		0	7 0.12	0	
	31 7.81			-	N.	34.3	က	_	.9	38.2 14.7	4.			30.5 7.57			10.			- 1		2 14.8	- 1		4	7.55				8 11.2			4 14.7		-
£ 0	31.7					35,2 34				39,6 38		١,	- 3	N (r)		6 33.5					38.2		4 30 7		7 31				36 34.8		0 38.	0 38.4	38.	
	23.2 3					23,3 36				23,5 39		Š	<u> </u>	122.9 GT	, m	337 1	23.2 34.6	. 89946	4.CD 2.4			23.4 39.8 29.8 40.4				.4 31.7		,5 35.4				000000	.7 40	4.4	
	7	004QX 	900 (3). 		Ý	લ	ત્યં		તં 	સં	N	35. 1 53.			o aya i		₹ 8	N 6	ઉ	C	3 6	3 6	3	St \$2000	npasso U	23.4		g	g	23,6		23	23.7	23	
Experiment Information	~ 1055 Hz	L = /3 cm	~ 2.2		-	-					1	055 1	1000	L = /3 Cm	~ Z.4		:	:					-	~ 1055 Hz	73 cm	PR ~ 2.6								:	
ŵ S F	,	11 0	۲!		-	:				į	:			ן ב	<u> </u>		-		!		:	-		~	= 1	PB,									

SPL (db)	9.	9	9) (C		0	<u>ن</u> د	9 (4) ·	10	1 0	1 0	!	12	N	N	:	0	1.0	ıįα	i	9	(9)	9	1			9		9	9	9	-
	150	150	150		150	٠!٣	2 2			0 0	-:-	-:	1		152		1-		152		152	152	152		-	-	153			1	153		L	153	_	
PB %	0.9471	0.9471	0.9471	1	0.9489	0.0471	0.0771		0.0474	0 0 1 80	0.0480	2	1.1338	1338	1.1338		1.1338	1.1338	1.1357	:	1.1357	1.1357	1.1357 15	1	1.3282	1.33	1.3282		1.3282	1.3282	1.3282		1.3282	1.3282	1.3282	
As A	1.268	1.268	1.268	1.268	1.273	1 268	1.26g	1001	1 060	1 973	1 273	1.272	1.818	1818	1.818	1.818	1.818	1.818	1.824	1,82	1.824	1.824	1.824	1.824	2.494	2.501	2.494	2,497	2.495	2.495		2,495	2,495	2.495	2.495	2,495
Gr. (s.'Hs	0.054	0.055	0.055	0.055	0.084	7800	0.007	0.086	100	107	107	0.108	0.027	0.027	0.028	0.027	0.041	0.041	0.041	0.041	0.051	0.051	0.051	0.051	١,	10		ൂ	- J		0.022		<u></u>	<u> </u>	-	0,029
β R ΔΔ/π)		1456	1456	100	1		1456		5 1		1456	2.3	1		1456	5	1			- 5.		1456				1456		1456 (·				1	1456		1456 (
Λ*Λ (2)	2287	2287	2287	2287	2287	7967	2287	2287	2287	2287	2287	2287	2287	2287	2287	2287	2287	2287	2287	2287	_	2287	·	2287	2287	2287	2287	2287	L.		2287	2287	287	2287	2287	2287
KC (HE)	512	512	512	512	513	512	512	513	L		0.513	_ 🔆	614	614	614	614	<u> </u>	0.614		614	615	615	615	615	719		719	719	719	719	719	719	719	719	719	719
ú	163	.163 0.	163	163 0	163	163	163	- 63	163	163	163	163	195	195	195 0	195 0	195	195	196	의	0	0	0	C	229 0	229	229 C	229 0	Í	229 0		229 0		229 0		229 0,
×	041	041	041	041 0	=	041	041	041	041	041	041	041	_		-	041 0	041	041 0.	041	200		0.041 0.		- 0.0	041 0	0	_	041 0.	0	041 0.	0	2	0	041	0	1.0
Ŋű	-	10.9	11 0	11 0	10.2 0	<u>: </u>	10.2	10.2 0	1	·	10	-31 (d)			10.6	10.7 0.	10.2 0	10.2 0.	6	Q	6	10.4	6	10.3 0.	0	6	0	11 0.	0	0	11.9 0.	0	0	11.5	0	11.6 0.
Corr As	9.09	9.09	9.09	60,6	6		9	-,23	9	6.09	6.09	60,8	6	6	0	6'98	86.9			7	N:	Q.	Ŋ	æΙ	119	120		119	119	119	119	119	119	119	119	119
	56.56	55.69	56.19	56,15	52.34	51.71	52.19	52,08	51.56	51.18	51.4	51,38	55.61	54.87	54.4	54,96	52.12	52.12	52.49	52,25	52.61	52.98	52.84	52.81	57.4	55.97	55.89	56,42	60.53	60.01	69.09	60,41	59.46	29.02	59.09	59.21
Яŝ	90.	60.8	90.		•		60.8		1		1				87.2		87.2	87.2	87.5			87.5			120	120	120		120	120	120	200000		120		
Mio V (MV)	0.502	0,502	0.502		0,503	0,502	0.502		0.502	0,503	0.503		0.601	0.601	0.601		0.601	0,601	0.602		0.602	0,602	0,602		0,704	0,705	0.704		0.704	0,704	0,704		0.704	0.704	0,704	
			1 897	·			1 897			1 897	80		SW.	1 897	200	08	1 897		200			897		<i>.</i>		268			897	897	897			897		
	7.07				9.04				10	10,08	10		7.14				9.08	Φ.	σ.			10,21			7.82				9.51	G	O		10.91	10,91	10.98	
All the second second	2 0.07	8298			4 0.08	O	O		9 0	6 0.09	0 9		0,07	o	o.	- 1	5 0.08	0	o.	and the		3 0,09	6. 1.70		4 0.07	٠ ز ح	o		o,	a si	o`			2.0		
TS 16-1	30.2 7.2	0.5	0.5 7.39				34.8 11.6		3.1 14.		38 14.		30.8 7.39		31.1 7.6		34.9 11.5					37.8 14.3	38 14.5		31.1 7.84			L		35.1 11.7				38.9 15.2		-
	noceable:		anada		35.3					38.9			31,3	31.5	31.6 3		35,6 3,					38,7 37			S 7.18				35,9		36.1		ສ ກຸເ	90.	2	
, <u>1</u> 0		- : :::::::::::::::::::::::::::::::::::	 		23.5					23.4			23.4				23,4 4,63					23.5			33 C				23.4 3		130 1.70	200	X (2004)	,	800	
Experiment Information	2 HZ	E S	9.0		andida.	30.400		1700SS	A. 1179				900 Hz	ES.			r-est pla	anaya) 	- SE ES	1		2,50				1236				3 2	ino (S			aragii	83
Expe	1 ~ 900 HZ	L = 0/ cm	7H ~ 0.9		-								1 ~ 30 ~ 1	/9 = 7	PR ~ 1.1			:							ZH 006 ~ 1	L = 0/ CI	2									

Experimen	1					0.00				
Information	, , , u		Ta	To	Bea	Nisselt	t To	KAIAW	•	overall
	uncert	incert / uncert	uncert	uncert	uncert	urcen	uncer	uncert	Uncert	Incar
~ 900 Hz	0.2049	<u> </u>		6.9488	0.6328		0.168		0.00	L
67	0.203	5	6.76	6.7661	0.6231	<u>:</u>		1		1 3255
PH ~ 0.9	0.2018	3 15.816	5 6.77	6.77	0.6287	18.5			i	
	-	_				18.542	-			!-
	0.171			4.4003	0	15.19	0.1687	1		-
	0.1694	13.833		4.2907					1	-
	0.168		4.2931	4.2931	0	5		1.3147	0.002	
		\rightarrow				15.145			î	1.3247
	0.1567		က		0.5768	13.263	L	1	0.002	-
	0.1587	12.348	က	3.4305	Ö		0.1686	1.3	0.002	
	0.1583				0.575	13.283		-	0.002	1.3229
		_[13.276		İ		1.3238
뒭	0.2032		ဖ		0.6222	18.487	0.1686	1.0982	0.005	1.11
/9	0.2011	_	6.5927	!	0.6139	18.35	0.1686	1		111
PH ~ 1.1	0.2004	15.783	9	6.5088	0.6086	18.282	0.1686		0.005	<u>-</u>
						18.373				-
	0.1705		4.3632	4.3632		15,165		•	ı	1.11
	0.1/02	1.			0.5832	15,165	0.1685		0.002	1.11
	0.00	13.040		4.365		15.172				1.1092
	- -	┵	7,70			15.168				1.1104
	0.1570	12.300	ס∖נג	3.4811	0.5886	13.326		1.0963	0.005	1.1092
	0.1377		o ! د	3.5055		13.344		1.0963	0.005	1.1092
	0.1303	-		3.4594	0.5912	13.318	0.1685	1.0963	0.005	1.1092
900 H2	0 1005	15 000	0.0750	0.000		13.329				1.1092
67 cm	1000	-;	0.3/39	0.3/59	0.6422	18.237	0.1687	0.9375		0.9526
	0 1888		פוע	6 1750	0.6262	18.104	0.1687	0.9362	0.002	0.9512
			3	20.14	0.0233	18.053	0.168/	0.9375	0.005	0.9526
		007	1000			18.131				0.9521
	0.1008	12.482	4.3001	4.3001	0.6772	13.902	0.1686	0.9375	0.002	0.9525
	70010	12.4/5	4.2635		0.6714	13.873	0.1686	0.9375	0.002	0.9525
	0.1000	12.485	4.2668	4.2668	0.679	13.884	0.1685	0.9375	0.002	0.9525
	700	1,01				13.886				0.9525
	0.1321			3.3139	0.6652	12.228	0.1684	0.9375	Щ.	0.9525
	0.132	202	3.2921			12.212	0.1684	0.9375	0.002	0.9525
	10.0	607.			0.6611	12.201	0.1684	0.9375		0.9525
						12.214			r	0.9525

	를 (원 (원	4.7	54.7	4.7	:	4.7	4.7	54.7		4.7	54.7	4.7	;			58.6				58.6		8.6	9.6	58.5		9.3	59.3	6.9	-	59.3	6.3	9.5	:	9.2	9.3	ි ල
	ne g	1 15	_		:	15	15	15	-	-	15	15		-		_		Ę	-		! 	-	-	-		-		-		_	_	_		Ι_		2 159
	Ĭ	1.511	1.511	1.511	:	1.511	1.511	1.51		1.509	1.5093	1.509	!	2.36	2.363	2.3658		2.367	2.369	2.367		2.367	2.36	2.3601		2.563	2.5639	2.56		2,5639	2.56	2.554	1	2.558	2.562	2.56
6	HS Y		3.23		3.23		3.23	3.23	3.23	3.222	3.222	3.222	3.222	14.9	14.92	14.94	14.92	14.97	14.99	14.97	14,98	14.97	14.91	14.88	14,92	17.57	17.57	17.54	17.56	17.57	17.55	17.43	17.52	17.48	17.54	17.55
ä	18. HS	0.01	0.01	0.01	0.01	.013	013	0.013	.013	1	0.016			E-04	-04	6E-04	1.04	9E-04	-04	-04	9E-04	001	0.001		0.001	4E-04	40	-04	4E-04	6E-04	-04	-04	-04	L_		8E-04
	Ω CEV	1	456		456			456 0	456 0.		456 0		456 0				50.6 61	_	951.1 9		-	<u> </u>	951.1			951.1 4			200	951.16					952.7 91	
	, (2A.A	Ì		. —	7	-	•	: "	70		_						0				14 951.				100				் ட				- 121	-		- 27
	۲.	Ł				L		2287		L	2287		2287	_	_	_	1493	1494	_		1494		1494	_	N	1494			8.1	1494	-	_	1495	1497	_	1496 1496
3	(me)	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818		0.817		0.817	1.956	1.954	1.956	1.955	1.958	1.96	1.958	1.959	1.959	1.955	1.953	1.956	2.122	2.122	7	4.14	2.122	2.121	2.112	2.118	2.115	_	2.12
		0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.623	0.622	0.623	0.622	0.623	0.624	0.623	0.623	0.623	0.622	0.622	0.622	0.675	0.675	0.6/5	0,0,0	0.676	0.6/5	0.672	0.674	0.673	0.674	0.675
3	•	0.041	0.041	0.41	0.041	.c41	0.041	0.041	1,041	0.041	0.041	0.041	1500	0.027				0.027	027	027	50		0.027		- C.	0.027		2	יספר	0.027	.027	.027	027	027		027 027
1	חאַר		10.5	9	10.6 C	2	N	12.4	က	2	12.2	ā	2.1	25.9				24 0		_			22.6					ດີພ		NI.	4	<u></u>	100		9	26.4 0. 27.1 0.
Corr	ŝ	154	154	154	154	154	154	154	154	<u></u>	154		154	576			350.	6/5					976		× 1.		6/9		1	6/9			. 1		879	
2		4.63	53.99	4.22	4.28	2.45	2.45	63.41	62.77	1.38	62.23	2.47	2,03	132.4	25.7	24.3	27.4	123	23.9	24.6	23.8	119	115.6	15.7	16,8	34.6	50.3	0.00 0.00 0.00	7 7 7	20.00	34.9	34.4	36.2	38.9	41.1	135.4 138.5
ă		2	155 5	IO:	3367			155 6	A		155 6		1000	578 1			ી	580	-		000		578 1	3		681			۱Ľ	700	<u> </u>		Add L		680	
1, 514	(mV)	801	0,801	801		0.801	801	801		8	8.0	ထ		252			- 1	,255				معرب ما	252			.359	1	- !	٠	200			- 1	- 1	358	1
		0 268	***	897 0		897 0	10.0	200		26	897	25		585 1.		Ť.		586 1,	-				586 1,	-	1	586 1.	ĸ.				000	7		7	587 1.	7
	///////		æ	<u></u>		9.79				990	1,03 B	130		0.51				87	92	91		22	5.04				N C		30	بر در در	n (A D			6.65	
		22		77 8							0.1					_		12.	์ ณ	CS.		თ	г С	თ	1				ç	a c	3 (2			.15 16.	
2	8	43 0.0	8.53 0,0	0.00		11.6 0.09	C. A. ces	05/00/229		8	9	7		0				υ. Ο .	ကျ	N!		o Ni	O (O ⊗∣))			8 08	3 c ≥ 3		200		0	0 (0
Tefe	(0) (0)	.9	32 8.	œ 		35.1 11.6			- 1		38.3 14.			28.7 6.5				32.8 10.					36.8 13.			29.7 6.76				32 4 0 04					38 14.6	
2	20	2,5	32.6	رج ا		38	3.1	36 38			39.4			29.8				34,4					38.8 36			30.00				A CO				96	40,5 38	75 97
200000000000000000000000000000000000000		3.5 3,	23.5 38	3.5		23.5					23.7 39			22.2.2				22.5 34					22.9 36			10.7 200	3 °C	0.3082	100	- 000	10000,000	0.000			23.4 40	
300000						€.	αí	O.		αí	αí	N.	7	saviga, I	- Arja	J. 80[]		V (N (N		N i	où d	N.				100 mg 100 mg 1	100	íò	ú Č	Ý		N .	લાં લ	ú
Experiment		900 Hz	L = 67 cm	. † ئ5		1		1		1	:	:		ZH CRC ~ 1	/3 cm	× 23		:	:	:			-	1	1 1 20 2	~ 365 HZ	PB . 26	2		:		!			:	
O E		~	# 	H.							:			<u> </u>) : اا) ا لــ	Ξ:			:	-		:		-		ا ا	10			:	:		\perp	į	:	

	-	. —	_		-	_			lai	O.	101	<u> ()</u>	1/	m	-6	160	4	101	4	6	4	: 60	4	· (C)	N		LIC	m	-	-10	100		<u> </u>	1 5	**	
overa Rs uncert	0.84	0.84	0.841	0.841	0.84	0.84	0.84	0.841	0.84	0.84	0.842	0.84	0.5537	0.5533	0.552	0.5533	0.5524	0.55	0.5524	0.5523		0.5536		0.553	0.514	0.514	0.5145	0.5140	0.514	0.5145	0.5158	0.5148	0.515	0.5144	0.5144	0.5147
f uncert	0.002	0.002	0.002		0.005	0.002	0.002		0.002	0.002	0.002	:	0.002	0.002	0.002		0.002	0.002	0.002		0.002	0.002	0.002		0.002		0.002		0.002	0.002	0.002		0.002	0.005	0.005	
Mic V uncert	0.824	0	0.824				0.824			;	0.825		0.5272	0			0.5259	0.5255	0.5259		0	: -	0		0.4857	0.4857			0.4857		0		0.4867		0.486	
Ta uncert			0.1685				0.1685		o	Ö			0.1693	0	0.1692		0.1691		0.1691				0.1689		0.1689	0.1688	0.1688			0.1687	0.1687		0.1687	0.1686		!
overall Nusselt uncert	17.889	1	17.795	17.839	13.934	<u>'</u>	13.972	13.947	12.291	12.327	12.319	12.312	16.399	_	15.743	15.996	12.347	12.36	_	12.37	10.894		10.753	10.795	16.17	16,201	16.104	16.158	_	12.619	12.511	12.665	10.515	9.8496	10.406	10.257
Req uncert	0.6112	0.604	0.6066		0.6987	0.6987	0.7094		0.6868	0.6962	0.6989		1.481	1.4059	1.3906			1,3859	1.3945		1.3319	1.2934	1.2949		1.5056	1.5246	1.5165		1.5568	1.5098	1.5033		1.554	1.5787	1.5144	
To uncert	5.9318	Ŋ	5,8001		4.3097	4.3097							7.6586		7.0371		4.8423	4.8469	4.892		က	က				7.3983	7.3002		5.2815	5.0314	4.9015		3.7331	3.4355	3.6267	
Ta uncert		2	5.8001		4.3097	4.3097	4.3492		3.3839	3.4304	3.4096		7.6586				4.8423	4.8469	4.892		က္	3.5953	က		7.3849				5.2815	5.0314	4.9015		3.7331	3.4355	3.6267	-
l uncert		15.775	15.779		12.51	12.51	12.524		=	11.31	÷		12.223				10.18		10.198		9.4013	9.3664	9.3677		12.252	12.274	12.264		10.357	10.311	10.305			8.4203		
V Uncert	0.1869		0.1848		0.1639	0.1639	0.1634		0.1514	0.1515	0.1506		0.169	0.1657	0.1652		0.1472	0.1468	0.1472		0.1352	0.1332	0.1336		0.1636	0.1628	0.1619		0.1465	0.1443	0.1423		0.1311	0.1293	0.1304	
Experiment Information	t ~ 900 Hz	29	PR ~ 1.5										f ~ 585 Hz	L = 73 cm	PR ~ 2.3										- 585 Hz	L = 73 cm	PR ~ 2.6									

7 6	α	00	0	!!	0		ο α	5	00	100	- α		4	4	. 4	::	4	4	4		7	4	4		155		0.		0.		6		ō.	0	ှတ	
(db)	1	: -	159.8	1	ľ	- ! -	150		I	159	. —	<u> </u>	Ĺ	160					160		160		160.	:	16	161	Ť	1	160.	161	Ĕ	1	160	160.	160	
PB %	7393	2.7412	2.7355		2 7431	9 7/15	2 7393		7393	2.7374	7355	1	9317	9317	2.9374		2.9374	' ^ I	2.9355	!	9317	2.9204	9299		11147	1.1147	3.1015		1129	3.1147	1129		3.1034	1091	3.094	
BB≺	.		19.99		L		20.05		L	20.03	20	်ဗ	91	92	0.1	á.,	1	22.88		97		22.78				25.91			-				L_	25.83		
.As	1		3E-04 1	- 350 €	L	<u> </u>	5E-04	- 150		6E-04 2		6E-04 20,	ı	-04 22	3E-04 2				4E-04	-04 22	<u></u>	5E-04 2						2E-04 28				- Sala		4E-04 25		-04
B As																					-				-	Τ.	-	~	-	-	-	•	1 4E	-	_	.1 4E
2,40			7 952.7		-		7 952.7		-	7 952.7		. 58.73			1 951.1		1 951.1		1 951.1	- 100		951.1		951.1		00		951		951		951	<u> </u>	, 0,	σ :	951
V*V	1497	1497	1497	1497	1497	149	1497	1497	1497	1497	1497	1497	149	149	1494	1494	1497	1494	149	1494	1494	1494	149	1494	1494	149	1494	1494	1494	1494	1494	1494	1494	1494	1494	1494
KC (me)	2.265	2.266	2.262	2.264	2.268	2 269	2.265	2.267	2.265	2.264	2.263	2.264	2.421	2.422	2.427	2.423	2.428	2.421	2.427	2.425	2.425	2.416	2.424	2,421	2.577	2.577	2.566	2.573	2.576	2.578	2.576	2,577	2.569	2.573	2.561	2,568
3		0.721		0.721			0.721	- 2333		0.721						0.771		0.771				0.769		0.771	0.82				0.82	,		0.82	818	819	815	.817
×	027	027	027		┝		0.027	- 11 c		0.027		408	0.027			180	_		0.027	(2000)		0.027		2000	0.027	:		ျ				027		027 0.		027 0
NG	0	29.8 0.	0	30.2 0.	ı		29.7 0.		30.1			30.1		~		32 0.	34.6 0.					-			36 0.			8 8 1	34.1 0.		0	0	0	35 0.	0	0
Corr Rs	776 3	777		775 30	<u></u>		775 2	777		775	74	775 3(886 3		887		884 3		888 34.	_	880 33		8.99	002		0	2.2	<u> </u>	36		266				994 34
h /m^2K	2	9	O)	7		í	io	30.0	154.3 7			6	-	8	7	100	- 1							W	4	e	- 2		74.6 10		6	9	2	<u>.</u>	2	
\$ 5	8 155.	9 15		154,		_	<u> </u>	152.		_	(0)	300			_	163.	2 176.9			. [3 169.2		<u></u>		1	_ ∂	٦L	-	i		T	9 179.		3 175.	2
	CZ.	3	5 7			_			200.000	1 77	JD.				7 89		7 892	- :			i Marian	Ļ.	t emmete	2000	0000000	1 1005	<u></u>			· i	5 1005			 ;	4 993	
1 = 3		1,453			•		1,452		1,452	7	4.	1	1,554	7	-		1,557	7	1,556		-	1,548	-		Ť.	1,651	-	- [1,6			9	1.64	
1 1	587	109			. 16	587			587			- 1		586		1	586			33	genis/d	586				999		Т		986				586		
इंझ	က 	11,92	11.86		14.44	14,66	14.59		16.8	16,96	16,96		12.51	12,43	12.52		15,25	15.39	15,42		17,46	17,65	17.7		13.21	13.17	13.2		16,08	16,14	15,52		18,08	18.17	18.08	
35C260 C45580	<u>.</u>	0110,310			0.13	0,13	0.13		0,15	0.15	0,15			0.11	0.11		0.14	0.14	0.14		• **	0.16	•		21.0	5.300			0.14 4 :	2. ¢	0.14			0.16	- 388 1886	
£ 0	6.88	7.06	6.87		10.1	10.3	10.3		13.4	13.6	13.6		6.9	6.91	6.9		9.95	10.1	10.4		13.2	13.7	13.7		7.08	60.	. J	9	10.6	7.0	9.99	0	13.3	13.3	3.0	
\$0	30.3	30.4	30.3		.33.4	33.6	33.6		36.8	37.2	37.2	1	28.6	28.7	28.8		32	32.4	32.7	1	35.7	36.3	36.5		20.00				<u></u>	 -	<u> </u>	- 6		36.3	30.7	-
720	31.6) :	31.6			35,5			39.4 4				9				34.2				38.4	39,5	4,05		ر اران اران	₹ L			8 8 9 9	\$ 000 000 000 000 000 000 000 000 000 00	- 22		20 20 20 20 20 20 20 20 20 20 20 20 20 2	39.3	0, 0,	
10 0.0	23.4	6.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	£3.4			23,3			23.4				, . ,				22.1				22.5	9 6 77 0	77.7 77.8	600 800	, K	2000	100,2000) () () ()				3	300		
Speriment niormation	HZ	E)	,	ľ						#100000 1			77	ES .	o.						:	-27 00,000			ZH 2	<u> </u>	_	31								
Experimen Information	~ 585 Hz	L = /3 cm	7 ~ H									100	ZII CQC ~	L = /3 cm	- H ~ 2							:	-	200	~ 383 HZ	200	? 									

-			Ta	Req	overall Nusselt				overall Rs
uncert uncert unc 0.1607 11.436 7.3	ĭĽ	uncert 7 2708	Uncert 7 2708	uncert 17365	uncert 15 478	311	Uncert 0.4545	uncert	uncort
11.406 7	1	.0787	7.0787	:	1	0.1587	0.4542	0.002	0.4845
0.1603 11.447 7.27	_	.2779	7.2779			0.1686	0.4552	0.002	0.4854
		7							0.4849
		4.9571			12.128	0.1687	0.4539		0.4842
9.7439 4		746		1.7094	- i	0.1687	0.4536	0	0.484
4	4	3/05	4.8/02	- 1	 -	0.1687	0.4545	0.002	0.4848
31.01				- 1	12.070			`	0.4843
0.1305 8.5373 3.7227		27	3.7227		10.178	0.1686	0.4545	0.002	0.4848
287 8.5325		4	3.6/4/		10.138	0.1685		- 1	0.4851
0.1297 8.5325 3.6747		47	3.6747	1.7201	10.138	0.1685		:	0.4854
t	t	93	1	1	ļ,	0.1696		0.002	0.4573
0.1568 11.527 7.2399		99	7.2399	1.8214	15.525	0.1695	0.4247	0.002	0.4573
		8	7.2504	1.8373		0.1695		0.002	0.4565
					15.541			!	0.457
9.319 5	3	.0385	5.0385	1.9793	11.898	0.1693	0.4239	0.005	0.4565
9.3043 4	ॼ :	.9487	4.9487	1.9619		0.1692	0.4253	0.002	0.4577
0.1392 9.2602 4.8		8	4.808	1.9098		0.1692	0.4242	0.002	0.4567
	1				11.784				0.457
8.6128		792	3.7792	1.8212	10.299	0.1691	0.4247	0.002	0.4571
8.1661	- 1	3.644	3.644	1.8935	9.841	0.1691	0.4264	0.005	0.4587
0.1289 8.171 3.6	3.6	3.6461	3.6461	1.9	9.8478	0.1689	0.425	0.005	0.4573
					9.9961				0.4577
10.848 7	<u>~</u> !	.0581	7.0581	2.0587	14.886	0.169	0.3998	0.002	0.434
545 10.841 7	_	.0532	7.0532	2.051	14.874	0.169	0.3998	0.005	0.434
0.154 10.818 6.95	6.9	989	6.9586	2.0281	14.765	0.169	0.4015	0.005	0.4356
					14.842				0.4345
9.2967	4.71		4.7147	1.9529	11.607	0.1689	0.4	0.005	0.4342
9.3693	4.90		4.9036	2.0387	11.834	0.1689	0.3998	0.005	0.434
0.1398 9.3382 5.0075	5.00		5.0075	2.002	11.89	0.1689	0.4	0.005	0.4342
					11.777				0.4341
8.2521	3.7		3.7733	2.0084	10.031	0.1688	0.4012	0.005	0.4353
8.2499	3.7		3.7491	2.0055	10.011	0.1688	0.4005	0.002	0.4346
0.1282 8.2188 3.6897	3.68		3.6897	1.9639	9.9323	0.1688	0.4024	0.002	0.4364
					9.9913		_		0.4354

Tus (qp)	9.0	O.	50.6) :) :	10	1 :	100.	<u>.</u>	1	7	7.7	5	7	T : K	1 4		-		r : <	-		1 <	7 7	: :		52.2				2.5					1.0	
8	匚	1		•			•				- : -	-	100	1 1) u	- :	-		214	- 1	-	- ' -	- : -	• :	-	. ;				8 152		'	L		9 152.	_
PH			0.9508		0.05/		0.000	0	0.056	0.00	0.9500		1 037		1037	3	1 037	2 6	1 0357	3	1 035	200	1 0357		1 135	1.1357	1.135	-	1.133	1.1338	1.135		1.135	1.135	1.1319	!
Bs.		81	0.812	8	ά	و د ا	20.00	5 6	0,0,0	0.020	0.02	0.821	7960	0000	0 067	0.00	969	0.00	0.000	0.966	0 966	962	0.963	0.964	1	1.158	1.158	1.158	154	1.155	159	1.156	161	162	151	158
Gr s*Rs			0.107	-0.0	1		160			0 0	2 4	216	084	070	075	079	22	112		. 6	1		0.156	- 65.	1	0.056		.020	078	0.078	0.08	0	0.11	.105	0.107	0.107
β. (π/)			946	3	-		2 8	-04	்ட		949	_ 0.00	949 0		049		_	949 0					951	5,35.55	1	951 0	` -	951 0.	 -	951 0	5	0	L_	951 0	-	951
4.1 (2.1)	1	_	3057	.35	L	· •	3050			- !	3062	ैं		· ; -	3062		L					_		<u>.</u>	Ľ		_			_	_			· -		
~	L		:	_333	L_			_ 46	L		1	30	L	300		_ ::6;:	30		7 3062	_ တ	L		7 3064	_357	L.,	3064		3064	L_	7 3064		7 3064		3 3064		7 3065
(3μ)	0	0	0.383	O	10	-	0.385	· C	0	ijΟ	0.385	0	L	C	jo	Ó	0.41	O	O	O	0	0.4	0	0.4	0	0.458	O	0.458	0.4	0	0.4	0.457	0.4	0.458	0.4	0.45
	:	_	0.122	0.122	0	C	0 125	Č		0	0.122	0.123	0.133	0.133	0.133	0.133	0	0	0.133	0.1		0.133	0.133	0,133	0	0.146	0	0.146	0.145	0.145	0.146	0.145	0.146	0.146	-	0.146
×	0.056	0.056	0.056	0,056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056		0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
Ŋ	9.23	9.18	9.35	9.25	96.6	9.75	9.69	ď	9.51	9.68	9.8	29.6			8.72	8.95	2	0	10	10	10.1	=	==	10.8	10.3	10.		10.2	10.8	10.8	10.5	10.7	=	1.5	<u></u>	E
7 5 38	44	4.	44.9	44,	45	45	45.2	45	45.5	45.4	45.3	45.4	53.5	53.5	53.5	53.5	1		53.4	53,5	53.4	53.3	53.3	53,3	64.1	64.1	64.1	64.1	63.9	63.9	64.1	65	64.3	64.3	63.7	54.1
W/m/2I	47.22	46.99	47.88	47,36	50.98	49.88	49.57	50.14	48.69	49.54	50.18	49,47	49.21	43.59	44.63	45.81	51.31	51.39	51.35	51,35	51.75	56.75	56.9	55,13	52.86	51.66	51.73	52,09	55.34	55.1	თ.	54,76	56.97	58.74	58.01	5.2
	,	45.	45	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	45.8	46	45.8		46.1	46.1	45.9		-	· 4	54.2	5.3501	54.3	54.1	54.1		54.1	54	54.1		S	65	S		64.8	64.8	65	dad	2	65.1	4.6	
일	0.504	0,504	0.504		0.506	0,507	0,506			0.507			0.55	0.55	0.55		0.55	0.549	0.549		0.549	0,549	0.549		0.602	0,602	0,602		0.601	0.601	0,602		0.602	0.602	0.6	
Freq (rtz)	1190	1199	1199		1200	1200	1200		1200	1201	1201		1201	1201	1201		1201	1201	1201		1201	1202	1202		1202	1202	1202	- 8 L	1202	363	Sv.			202	203	
ξS	6.51	99'9	6,87		8.31	8.64	8.59		9,99	10.09	10.15		7.01	6.79	6.6		8.8	8.96	8.88		10,25	10,51	10,6		\$,	7.09	6.99		8.91		9.03		10.81	10.55	10,63	
SS.	0.06	90.0	90'0		0.08					0.09			0.07	0.06	90.0		0.08	0.08	0,08		0.09	-0			0.07	0.07	\ 0:0		0.08				L.,		3	
50	6.8						11.4			15.1			8.2	7.68	7.3		1.3	11.5	11.4		14.7	15.2	15.3		7.88	7.99	R'/		10.9		4.11	1	15.9	15.3	15.4	~
	27.5						32.4				36.7				28.9		33.1					37.1				8			32.9					37.7		
	7) Y	X2740	28.802	97 G 🖸	1000	* 5000	33,1		2.00000	37,5	29.3002	2000	35 S S S S	29.7	200	etinoe 🛊	33.8	878	33.9	Section.	20,000	38.2	Acres 1	100	2000	30.5	C. 100			† (A 19	anso.	χ χ χ		
) i); (X)	20.8		20.9	~	2		21.3	21,5	21.7	1	21.6	21.6	21.6		21.8 8	ς. Θ.	21.8		21.9	21.9	ଝ	18	N (N C	Y Y	6	75	יי עני	- V		א ה ה	7, 7, 6, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	0 7 7	
Information	2H 0021	1100 CU	~ 0.9			1	1						1200 Hz	cm	0.							:			~ 1200 HZ	E,					-		:		-	
i i i	7 2	1	ž						-		i		121~1	L = 6£	PR ~ 1.0		:	:	i					,	× 1 0	C = 00	2 C		!							

SPL (dB)	156.1	156.1	156.1		156.1	156.1	156.1		156.1	156.1	156.1		156.6	156.6	156.6		156.6	156.6	156.6		156.6	156.6	156.6		157.1	157	157.1		157	157	157		157	157	157
PR %	1.7885	1.7904	1.7904		1.7885	1.7885	1.7885		1.7866	1.7866	1.7866		1.8941	1.8904	1.8866		1.8885	1.8885	1.8885		1.8866	1.8866	1.8866		1.9885	1.9809	1.9885		1.9866	1.9809	1.9828		1.9771	1.979	1.979
As.	2.867	2.876	2.873	2.872	2.87	2.87	2.873	2.871	2.866	2.866	2.866	2.866	3.222	3.209	3.196	3.209	3.206	3.203	3.206	3.205	3.202	3.202	3.202	3.202	3.554	3.527	3.554	3.545	3.547	3.527	3.534	3.536	3.52	3.527	3.527
<u>Gr</u> Rs*Rs	0.008	0.008	0.008	0.008	0.012	0.012	0.012	0.012	0.017	0.017	0.017	0.017	0.007	0.007	0.007	0.007	0.01	0.01	0.01	0.01	0.014	0.014	0.014	0.014	1			0.006	0.008	0.008	0.008	0.008		0.011	0.011
λ (2ΑΑΥπ)	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1953 1953
) V*V	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067
KC (TE)	0.72	0.721	0.721	0.721	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.763	0.762	0.76	0.762	0.761	0.761	0.761	0.761	0.76	0.76	0.76	0.76	0.801	0.798	0.801	0.8	0.8	0.798	0.799	0.799	0.797	0.798	0.798
3	0.229	0.23	0.229	0.229	0.229	0.229		0.229	0.229	0.229	0.229	0.229	0.243		0.242	0.242		0.242		0.242	0.242			0.242	0.255			0.255	0.255	0.254	0.254	0.254	0.254	0.254	0.254
X	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
r s Nu	11.6	11.8		11.7	12.9		12.8	12.9	12.5	12.5	12.5	12.5	3 11.1	3 11.1	7 13.1	3 11.8	<u> </u>	7 12.8		7 12.8	7 13.5	13.4	7 13.8	7 13.6			_	13,4	_	-		3 12.9	5 13.8	5 13.8	5 13.9
Corr h Rs ^2K	-	159	_	159	159	26 159	99 159	159	159	159	159	33 159	178	74 178	3 17	24 178	92 178	17,	4 178	17.	3 17	177	17.	3 175	_	_	_	196		195	55 196	66 196	195	195)6 195 32 195
Rs h W/m/2f	161 59.49		162 59.71	59.94	1 66.17	161 66.26		66.04	1 63.97	161 64.07	1 64.06	64.03	181 57.05	180 56.74	179 66.9	60.24		180 65.29		65,46	180 69.03		180 70.44	69.43			199 68.43	68,58		.99	65.	•	197 70.43	198 70.48	18 70.96 70.62
			0.949 16		١.		0.948 161			0.947 16	947 16		1,004	002 18	-		.001	100.	.001		1 18	1 +8	1				.054 19		Γ.	10	051 19			1,049 19	
Freq mi (Hz) (n	4000		203 0.9		203 0.9	1203 0.9	1203 0.9		203 0.5	1203 0.9	1203 0.5		203 1.0	1203 1.0	203		203 1.0		203 1.0		1203	1203	1203		Τ.		203 1.0	1			203 1.0		1203 1.0		1203 1.0
	7.7 12		7.63 12		•	9.68 12	9.85 12			11,55 12				7.92 12	8.08 12		0.05 12	8 G 1998	0,18 12		11.88 12	11.92 12	11,96 12		8.16 12	8.19.12	_			10.17 12			555000 3		11.97 12
			0.07											20.0	0.08			0.09 1					0.11		0.08			- 3	333.7	0.09					0.11
Tsfs-Ta (O) (C)	7.45		7.36		10.9	10.8	11.1		14	14.8	4		8.03	8.03	7.94		11.3	11.5	11.6		15.6	15.7	15.4		7.83	7.83	7.84		11.3	11.4	11.6		15.5	15.5	15.3
*	3 29.8	3 29.7	2 29.7		2 33.3	1 33.2	5 33.6		4 37.2	5 37.3	6 37.4		1 30.5	1 30.5	1 30.4	V-13	က	9 34	1 34.2		6 38.3	7 38.4	4 38.1		1 30.4				8 33.9	9 34	1 34.2	8.83	6 38.3	7 38.3	4 38.1
Ta T(c)	22.3 30.3	2,4 30,	2.3 30.		2.4 34.2	2.4 34.	22.5 34.		2.5 38.	22.5 38,5	2.5 38.		2.5 31.1	22.5 31.	2.5 31.1		2.6 34.	22.5 34.9	2.6 35.			22.7 39.7			22.6 31.1	2.6 31.	2.6 31.		2.6 34.	22.6 34.9	2.6 35.		2.8 39.	22.8 39.7	2.8 39.
= =	7	usun.			ŭ	Ň	ઍ		72	હ્યું	Ñ		N		(87 ± 1)		72	Ñ	Ñ		7	čĭ	7	1000.000		oriene.			Ň	ૡ	Ň		Ñ	તૉ	72
Experiment Information	~ 1200 Hz	= 65 cr	PR ~ 1.8										~ 1200 Hz	L = 65 cm	R~1.9										f ~ 1200 Hz	= 65 cr	R ~ 2.0								

Experiment						overall				overell
Information V	>	-	Ta	10	Red	Nusselt	Ta	Mic V		Rs
	uncert	uncert	unceri	uncert	uncert	uncert	uncert	uncert	uncert	uncert
f ~ 1200 Hz	0.1948	15.8	6.3609	6.3609	0.6194	18.193	0.1692	0.824	0.005	0.8412
9	0.197	15.826	6.607	6.607	0.6348	18.39	0.1692	0.824	0.005	0.8412
PR ~ 1.5	0.1961	15.818	6.5233	6.5233	0.6302	18.324	0.1692	0.824	0.002	0.8412
						18.302				0.8412
	0.167	12.515	4,4541	4.4541	0.7029	14.03	0.1692	0.824	0.002	0.8412
	0.1675	12.519	4.4926	4.4926	0.706	14.058	0.1692	0.824	0.002	0.8412
	0.1661	12.507	4.3786	4.3786	0.6961	13.974	0.1692	0.824	0.005	0.8412
						14.021				0.8412
	0.1511	11.296	3.3619	3.3619	0.6842	12.276	0.1691	0.824	0.005	0.8411
	0.1506	11.294	3.3406	3.3406	0.6829	12.263	0.1691	0.824	0.002	0.8411
	0.152	11.299	3.4054	3.4054	0.6867	12.303	0.1691	0.824	0.002	0.8411
						12.28				0.8411
f ~ 1200 Hz	0.1928	15.818	6.3678	6.3678	0.6299	18.213	0.1692	0.7765	0.005	0.7947
L = 65 cm	0.1929	15.831	6.45	6.45	0.638	18.283	0.1692	0.7765	0.005	0.7947
PR ~ 1.6	0.1956	15.853	6.7013	6.7013	0.6517	18.483	0.1692	0.7765	0.005	0.7947
						18.326			:	0.7947
	0.1666	12.529	4.496	4.496	0.7133	14.069	0.1691	0.7756	0.005	0.7938
	0.1663	12.532	4.4971	4.4971	0.7157	14.072	0.1691	0.7765	0.005	0.7947
	0.165	12.526	4.4212	4.4212	0.7109	14.019	0.1691	0.7765	0.005	0.7947
						14.053				0.7944
	0.1495	11.3	3.3216	3.3216	0.6876	12.258	0.1691	0.7765	0.00	0.7947
	0.149	11.298	3.3007	3.3007	0.6863	12.245	0.1691	0.7765	0.005	0.7947
	0.1502	11.304	3.3644	3.3644	0.6915	12.285	0.1691	0.7756	0.005	0.7938
						-				0.7944
f ~ 1200 Hz	0.1933		6.5336	6.5336	0.6455	Τ:	0.1691	0.7309	0.002	0.7502
0	0.1933	-	6.5336	6.5336	0.6455	•	0.1692	0.7293	0.002	0.7486
PR ~ 1.7	0.1943	15.85	6.617	6.617	0.6494	_	0.1692		0.002	0.7486
						18.375				0.7492
	0.1663			4.5383	0.723	14.108	0.1691	0.7333	0.002	0.7526
,	0.1652	12.533		4.4603		14.05	0.1691	0.7333	0.002	0.7526
	0.1657		4.4993	4.4993	0.7205	14.08	0.1691	0.7341	0.005	0.7534
						14.079				0.7528
	0.1489	11.311			0.6975	12.282	0.1691	0.7358	0.002	0.755
	0.1498	11.315		3.3889		12.309	0.1691	0.7358	0.005	0.755
	0.1489	11.312	3.3458	3.3458	0.6981	12.283	0.1691	0.735	0.005	0.7542
						12.291				0.7547

SPL (dB)	154.7	154.7	154.7		154.7	154.7	154.7	:	154.7	154.7	154.7		155.2	155.2	155.2		155.2	155.2	155.2		155.2	155.2	155.2		155.7	155.7	155.7		155.7	155.7	155.7		155.7	155.7	155.7	
PR %	3	5111	5111		_	.5111			.5111		5111		1.6036	1.6036	9609.		1.6055	1.6036	9609.		9609.	1.6036			9807.	1.7074	.7074		6269.	6269.	1.696		.6923	1.6923	.6941	
Rs I	049 1	2.049 1	2.049 1	2.049	2.049	-	2.049 1	2.049	1	-	2.051 1	.051	2.307 1	2.307 1	2.307 1	307		2.309 1	2.309 1	.311	.311	2.311 1		2.313		2.615 1		.612	-	_	.583	.587	2.574 1		2.58	.576
Gr Rs*Rs	.017 2	017	017	0.017 2	0.025 2		0.025 2	0.025 2	0.033 2.	:		0.033 2		0.013 2		0.013 2.	0.019 2	0.019 2		0.019 2	0.026 2		0.025 2	0.026 2	0.01 2	_	_	0.01 2.		0.015 2		0.015 2.	0.021 2	ca		0.021 2
C C	1953 0	1953 0.	1953 0	1953 0	1953 0	1953 0	1953 0	1953 0	1953 0	1		1953 0	1953 0	1953 0	1953 0	1953 0	1953 0	1953 0		1953 C	1953 0		1953 0	1953 C	1953	1953	1953	1953				1953 C	1953 C			1953 (
^*A (2AA/		2908	2908	. 2908	2908	3067	3067	2908	2908	3067	3067	3067	2908	2908	3067	2908	2908	3067	<u>. </u>	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067
KC (TE)		609.0	609.0	0.609	609.0	609.0	609.0	0,609	609.0		609.0	0.609	١.,	0.646	0.646	0.646		0.646	0.646	0,646	0.646	0.646	0.647	0,646			0.688	0.687	0.684	0.684	0.683	0.684	0.682	0.682	0.683	0,682
3		0.194 (0.194 (0.194	0.194	94	0.194 (0.194				0.194	0.206	0.206		0.206	0.206			0.206	0.206		0.206	0,206				0.219	0.218	.218		0.218	0.217	0.217		0.217
×	;		0.056	0.056	0.056		0.056	0.056	0.056		0.056	0.056	0.056	0.056		0.056		0.056		0.056	0.056	0.056	0.056	0.056				0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
Να	10.8	1.1	-	F	12.3	12.3	12.2	12.3	11.9	11.9	12	12	11	- :-	11.4	11.2	12.5	12.5	12.4	12.5	12	12	12.1	12	11.3	1.3		11.3	12.6	12.5	12.6	12.6	12.2		12.	
Corr h Rs ^2K	.36 113	4 113	2 113	4 113	3 113	1 113	2 113	2 113	5 114	-	114	9 114	3 128	3 128	5 128	9 128	Ľ.			5 128	5 128	128	128	3 128	9 144			145	<u> </u>	143	4 143	5 143	143		-	143
Rs h W/m/2	15 55.3		15 56.32	56,14	5 62.83	115 63.11	5 62.22	62.72			115 61.38	61.19	30 56.3	130 57.03	30 58.25	57.19	30 63.75	130 63.97	30 63.54	63.75	130 61.45	130 61.34	30 61.81	61.53	146 57.69		47 58.05	57.81	45 64.62	145 64.04	145 64.4	64.35	144 62.34	144 62.64	145 62.4	62.46
mic V F (mV)		2000	0,801 11		0.801 11	cara	0,801				0,801 11	. 23	0.85 13	0,85 13	85	l I	0.851 13	0,85 13	0.85 13		0.85 13	0,85 13	0,851 13		0,903 14	0.905 14	905 14				899 14		0.897 14	 	0,898 14	
Freq mi (Hz) (n	0880	203 0.8	203 0.8		203 0.8	8,41	203 0.8		203 0.8		1203 0.8		203 0	1203 0	203 0.		203 0.8	1203 0	203 0		203 0		1203 0.1		203 0.9	320.7	203 0.9			1203	203 0.1		1203 0.	1203 0.1	1203 0.	
Volt F (V) (3.95				3.00	9,49 1	9,6		1000	11,11	80 O		7.68 1		7.55 1		9.58 1	61	9.71		11.25 1	50.00	635			7.67 1			1000	9.7 1	9.67 1				200	
Cur.	100000	0.07	0.07		60'0	0.09	60.0		0.1	0.1	0.1		20.0	60 (A)	0.07	1.50	60.0	0.09	60:0		0.1				ಟಿಎಲಿ	0.07	433.7			0.09			0.1	0.1	0.1	
Tsfs-fa (C) (C)	7	^	^		-	!				5 15			7	2 7.75	~		-	-	8 11.3		-		-		7	1 7.65	_	i	11	7 11.2	6 11.1		ļ۳		-	
T to Ts (C) (C)	ന	30.5 30	30.1		1.5 33.	34,4 33.	1.7 33.8		3.5 37.	38.6 37.5	3.3 37.		30.8 30.3	30,7 30.2	7.4 29.		1.5 33.	34.5 33.6	1.7 33.		3.8 37.7	38.9 37.7	3.6 37.5	200	30.7 30.2	30.6 30.1	7.5 3		34,4 33.	34.6 33.7	1,5 33.		38.7 37.	38.5 37.4	3.7 37.	
Tå T (C)	-34888					22,4 34			22.5 38	22.5 38	22.5 38		22.4 30		22.4 30		22.5 34	22.5 34	22.5 34		22.6 38	22.6 38	22.6 38		22.5 3(22.4 30	22.4 3(22.5 34	22.5 34	22.5 34		22.6 38	22.6 38	22.6 38	
Experiment Information	~	L = 65 cm 2	jas 300 :		7						7			7*61000	300.00 1	3400									~ 1200 Hz	raine L		1		, F, T						

						overall				overall
Information V	>	_	Та	Tc	Red	Nusselt	Ta	Mic V		Rs
	uncert	uncert	uncert	uncert	##	uncert	uncert	uncert	uncert	uncert
- 1200 Hz	0.1971	15.491	6.1921	6.1921	0.587	17.805	0.1692	1.0092	0.002	1.0233
65	0.198	15.451	6.2669	9	0.59	17.823	0.1692	1.0092	0.002	1.0233
PR ~ 1.2	0.1933	14.834	6.6083	6.6083	0.6367	17.545	0.1692	1.0092	0.002	1.0233
			- 1			17.724				1.0233
	0.165	13.524		4.3747	0.6085	14.885	0.1692	1.0092	0.002	1.0233
	0.1673	12.359	4.2601	4.2601	0.6639	13.766	0.1691	1.0092	0.002	1.0232
	0.1674	12.392	4.2242	4.2242	0.6582	13.773	0.1691	1.0076	0.002	1.0217
						14,142				1.0227
:	0.1524	11.356	3.1868	3.1868		12.236	0.169	1.0061	0.002	1.0202
	0.1509	11.188		3.23	0.6532	12.103	0.1689	1.0061	0.002	1.0202
	0.1502	11.103	3.2517	3.2517		12.037	0.1689	1.0061	0.002	1.0202
						12.125				1.0202
f ~ 1200 Hz	0.1986	15.797	6.5148	6.5148	0	18.299	0.1696	0.9375	0.002	0.9527
L = 65 cm	0.1995	15.79	6.5118	6.5118	0.6131	18.291	0.1696	0.9375	0.005	0.9527
PR ~ 1.3	0.1962	15.789	6.3563	6.3563	0	18.18	0.1696	0.9375	0.002	0.9527
						18.257				0.9527
	0.1675	12.484	4.3354	4.3354	0.6785	13.926	0.1695	0.9362	0.002	0.9514
	0.1679	12.473	4.2968	4.2968	0.6696	13.891	0.1695	0.9362	0.005	0.9514
	0.168	12.48	4.334	4.334	0.6754	13.921	0.1695	0.9388	0.002	0.954
						13.913				0.9523
	0.1521	-	3.2701	3.2701		12.193	0.1693	0.9388	0.002	0.954
	0.1512		3.23	- 1	0	12.17	0.1692	0.9375	0.002	0.9527
	0.1508	11.252	3.1895	3 1895	0.6467	12.141	0.1692	0.9348	0.002	0.95
						12.168				0.9522
~ 1200 Hz	0.1963	15.971	6.4381	6.4381	0.6203	18.395	0.1692	0.8812	0.002	0.8973
93	0.1973	15.872	6.5191	6.5191	- !	18.367	0.1692	0.88	0.002	0.8961
PR ~ 1.4	0.1955	15.76	6.2782	6.2782	0.6073	18.1	0.1693	0.88	0.005	0.8961
						18.287				0.8965
	0.1667	12.492	4.3381		0	13.935	0.1693	0.8788	0.002	0.895
	0.166	12.36	4.3029	4.3029	0.6833	13.795	0.1693	0.8788	0.002	0.895
	5	16.03/	4.699		>	13.924	0.1692	0.8788	0.00	0.895
:	0.1508	11.28	3.2523	3.2523		12.2	0.1692	0.88	0.002	0.8961
:	0.1525	11.516	3.3807	3.3807	0.6774	12.488	0.1691	0.88	0.002	0.8961
	0.1508	11.178	3,2954	3.2954		12.13	0.1691	0.88	0.002	0.8961
						12.273				0.8961

SPL	(dB)	152.9	152.9	152.9		152.9	152.9	152.9		152.9	152.9	152.9		153.6	153.6	153.6		153.6	153.6	153.5		153.5	153.6	153.6		154.1	154.1	154.1		154.1	154.1	154.1		154.1	154.1	154.1	
PR%		.2338	.2338	.2338		Į.	1.2338				1.2376			1.3282	.3282	.3282		1.33	1.33	.3263		.3263	.3282		!	1.413	.4149	!	!	.4168	.4168	.4168		1.4149	1.4149	.4149	_
Bs	¥	1.366	1.366	1.366	1,366	1.366		<u></u>	1.368	1.378	1.379	1.379	1,379	1.577	1.577	1.579	1,578	1.58	1.58	1.571	1.577	1.575	1.581	1.59	1,582	1.79	1.795	1.793	1.792	1.798	1.798	1.799	1.798	1.796	1.798	1.798	7.67
Gr As*As		0.04	0.04	0.038	0.039	0.057	0.058	0.058	0.058	0.075	0.074	0.074	0.074	0.03	0.03	0.03	0.03	0.044	0.044	0.044	0.044	0.058	0.058	0.058	0.058	0.023	0.022	0.023	0.023	0.033	0.034	0.033	0.033	0.044	0.042		0,043
6 2.7	(ZVVII)	1953		1953	1953	1953	1953	1953	1953	1953	1953	1953	1953	1951	1951	1951	1951			1953	1953	1953	1953		1953	1953	1953		1953	1953		1953	1953	1953	1953		1953
V*V	(2	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	2908	3064	3064	3064	3064	3067	3067	3067	3067	3067	2067	3067	3067	2908	3067	3067	3067	2908	3067	3067	3067	3067	3067	3067	3067
Ã.	(311)	0.497	0.497	0.497	0.497	0.497	0.497	0.498	0.497	0.499	0.499	0.499	0.499	0.535	0.535	0.535	0.535	0.535	0.535	0.534	0.535	0.534	0.535	0.536	0.535	0.569	0.57	0.57	0.57	0.57	0.57	0.571	0.57	0.57	0.57	0.57	\ \ \ \ \ \
မ			0.158		0.158		0.158	0.158	0.158	0.159		0.159	0.159	0.17	0.17		0.17	0.17	· 	0.17	0.17	0.17		0.171	2.4223		0.181		0.181	0.182		0.182	0.182	0.181	- 2	0.181	
×			0.056		0.056		0.056		0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0,056	0.056	0.056	0.056	0.056	0.056	0.056		0.056	0.056			0.056	0.056			0.056	0.056	0.056	—-8	acn'n
orr As Nu			.6 10.3		.6 10.6	.6 10.6	7 11.6	·—	8 11.2	3 11.2	4 11.4	4 11.5	4 11.4	.3 10.8	6	.4 10.7	4 10.7	5 11.8	5 11.7	87 11.8	.3 11.8	2 11.4		1.3	6 11.4	-	4 10.9	,	3 10.8	_	6 11.9	7 11.8	6 11.9	5 11.5	6 11.8	6 11.7	_
(C)	- 1	52.47 75.6	52.74 75.6		54.04 75.6		.34 75.7	58.83 75.9	57.52 75.8	57.07 76.3	58.38 76.4	58.93 76.	58.13 76.	55.2 87	87	87	54.91 87		59.85 87.5	60.36 E	60.28 87.	58.57 87.2	58.38 87.6		58.25 87.6		55.76 99.		55.16 99.3	61.19 99.6		60.32 99.7	60.86 99.6	59.1 99.5		59.94 99.6	333
Rs	XXX				54		76.8 59		57	77.3 57	77.3 58	77.3 58	0840		88.8	88.8 54	54		89 59		90	88.6 58	6		58			101 54	100		101 61		90	101 5		101 59	S.
V mid V				0.654			*		i	0,656	656	0.656 7			0.21	0.704 8				0.703		l		0,706				0.75		0.751	0.751	0,751		0.75	0,75	0.75	
Freq	(HZ)	1203	1203	1203		1203	1203	1203		1203	1203	1203		1202	1202	1202		1203	1203	1203		1203	1203	1203		1203	10.00	1203		1203	1203	1203		1203		1203	
				7.01	. 1		9.33			1000		10.86				7.48			O.	9.41						7	7.43	7			9,59				2	11.06	
fa Cur		7	98 0.07	~	400	15.700	.7 0.09			7	.5 0.1	4		7	38 0.07	~		-0.00	6 0.09	200		3	5 0.1	7		77 0.07		(Sec. 1)		1000	6 0.09	ဖ			.8 0.1		
Ts1s-T	3		30.4 7.9	30 7.		33.8 11	34.2 11	34.3 11				38.2 15.			29.3 7.6			33.4 11	33.5 11	33.4 11		37.5 15		38 15.		30.1 7.77	30 7.	30.2 7.9		13.7	33.8 11	3.9 11			37.3 14.8		_
	3	9	30,9	30.5		34.6	35.1	35.2		39.5	39,4	39.3		29.8	29.8	30.1		34.3	34,4	34.3		38.6	38.9	39.1		30.6 30.1	30,5	30.7		34.6	34.7	34.8		38.9	38,4	38.8	
	3	22.4	22,4	22.4		22.4	22.5	22.5		22.7	22.8	22.8		21.6	9296	21.7		21.9	21.9	21.9		22.2	22.3	22.3		22.3	22.3	22.2		22.2	22.2	22.3		22.4	22.5	22.5	
Experiment Information		f ~ 1200 Hz	L = 65 cm	PR ~ 1.2										f ~ 1200 Hz	L = 65 cm	PR ~ 1.3										f ~ 1200 Hz	L = 65 cm	PR ~ 1.4									

			1			236563866				overall
information				<u>o</u>		Nusselt		MicV	•	ŝ
		uncert	uncert	nucert	uncert	uncert	uncert	uncert	uncert	uncert
~ 1200 Hz	0.2155	18.172	7.351	7.351	0.5283	20.943	0.1702	1.3095	0.005	1.3205
. = 65 cm	0.2118	18.167	7.1504	7.1504	0.5257		0.1702	1.3095	-	1,3205
PR ~ 0.9	0.2072	18.185	7.0623	7.0623	0.5356	20.756	0.1701	1.3095	0.002	1.3205
						20.833				1.3205
	0.1811	13.822	4.6632	4.6632	0.5704	15.326	0.17	1.3043	0.002	1.3154
	0.176	13.804	4.3877	4.3877	0.558	15.146	0.17	1.3018	1	1.3128
	0.1766	13.799	4.3862	4.3862	O	15.14	0.17	1.3043	:	1.3154
						15.204				1.3145
	0.1592		I	3.2931	0.5448	13.176	0.1698	1.3018	0.005	1.3128
	0.1583	12.324	3.3169	3.3169	0.5542	13.199	0.1697	1.3018	0.002	1.3128
	0.1578	12.333	3.3403	3.3403	0.5614	13.22	0.1696	1.3043	0.002	1.3153
						13.198				1.3136
~ 1200 Hz	0.2044	15.688	6.0977	6.0977	0.5506	17.911	0.1696	1.2	0.002	1.2119
L = 65 cm	0.2079	18.094	6.5064	6.5064	0.4877	20.307	0.1696	1.2	0.002	1.2119
ñ ~ 1.0	0.2127	18.116	6.8528	6.8528	0.4993	20.553	0.1696	<u>-</u>	0.002	1.2119
						19.59				1.2119
	0.174	13.827		4.4317	0.5741	15.193	0.1695	1.2	0.002	1.2119
	0.1719	13.828	4	4.3595	0.575	15.152	0.1695	1.2022	0.002	1.2141
:	0.173	13.828	4.3953	4.3953	0.5745	15.172	0.1695	1.2022		1.2141
						15.172				1.2134
	0.157	12,356		3.4107		_	0.1695	1.2022		1.2141
:	0.1554	11.239	က	3.2833	0.6349	-	0.1695	1.2022		1.2141
	0.1545	11.241	3.2638	3.2638		2	0.1694	1.2022		1.2141
						12.541				1.2141
~ 1200 Hz	0.199	15.755	6.3425	6.3425	0	18.14	0.1694	1.0963	0.002	1.1094
65	0.201	15.733	ဖ၂	6.2591		18.062	0.1694	1.0963	0.002	1.1094
PR ~ 1.1	0.2049	15.734	ဖ	6.4104	0.5788	18.169	0.1694	1.0963	0.005	1.1094
			- 1			18.124				1.1094
	0.1677	13.892		4.5667	0.6191	15.333	0.1694	1.0982	0.005	1.1112
	0.1662	13.888	4	4.4887	0.6165	15.283	0.1693	1.0982	0.002	1.1112
	0.1654	13.868	4.3719	4.3719	0.6024	15,196	0.1693	1.0963	0.00	1.1093
						15.271	-			1.1106
	0.1499	11.241	,	3.1489		12.109	0.1692	1.0963	0.002	1.1093
	0.1501		<u>က</u> ်	3.2708	0.6572	•	0.1692	1.0963	0.002	1.1093
	0.1512	11.255	3.2482	3.2482	0.6491	12.175	0.1691	-	0.002	1.1129
	-			-		16.10				COLL

overall Rs uncert	0.7165	0.7158	0.7158	0.716	0.7165	0.7165	0.7165	0.7165	0.7172	0.7172	0.7172	0.7172	0.6788	0.6801	0.6813	0.6801	0.6807	0.6807	0.6807	0.6807	0.6813	0.6813	0.6813	0.6813	0.6486	0.6509	0.6486	0.6494	0.6492	0.6509	0.6503	0.6501	0.652	0.6515	0.6515
f uncert		0.002	0.002		0.002		0.002	-	i	0.002			0.005	0.005	0.005	:	0.002	0.005	0.002		0.002	0.005	0.005		0.005	0.002	0.002			0.002				0.002	
Mia V uncert	0.6962		0		ı	10	0	į		0.6969				0.6587	0.66		L	0.6593				99.0			0.6262				0.6268	0.6286	0.628			0.6292	
Ta		0.1692			0	0	0.1691	<u>i</u>		0.1691				0.1691		!	-	0					0.169				0.1691		0.1691	0.1691	0.1691		0.1689	0.1689	
overall Nusselt uncert	 -	18.596	18.576		14.158	, +			12.329			12.318			16.676	: "	14.059	14.003	13.979	14.013		Ξ,	=	-1			16.762	16.765	14.063	14.04	13.986	14.03	11.416	- :	11.446
Req 1. uncert	0.6656	0.6784	0.668		0.7403		0.735			0.7					0.7489		0.7378						0.788			0	0.7656		0.741	0.7408	0.7334		0.7879	0.7885	0.7939
Ta uncert	6.7109		6.7976		4.5848			!		3.3732	ෆ			6.2229	6.2964			4	4.323		3.2117				6.382	6.384	6.3813		4.4349	4.3987	4.3251		3.236	3.2171	3.277
Ta	6.7109	9	6.7976				4.506			3.3732	ന :		ဖ	ဖ			4.4334		4.323				3.2554	i	:		6.3813		4.4349		4.3251		3.236	3.2171	3.277
i uncert	ļ	15.8	15.88				12.557		11.333	=	11.334		:	15.826			12.56	12.551				2		j.			14.103		2	12.564	12			10.429	
V uncert	0.1931	0.1927	0.1945		0.1651	0.1659	0.1639		0.1481	0.1474	0.1469		0.188	0.1887	0.1882		0.1617	0.1609	0.1602		0.1457	0.1453	0.1453		0.1872	0.1868	0.1873		0.1614	0.1605	0.1597		0.1447	0.1442	0.1453
Experiment Information	f ~ 1200 Hz	92	PR ~ 1.8										f ~ 1200 Hz	65	PR ~ 1,9										I ~ 1200 Hz	65	PH ~ 2.0								

	3 10) : IC	1.10	1:	Tur	ي ادر	<u>م ا</u> ز		LC	Nic	ilc		Id	V CC) i or	1	100			<u>.</u>	Ισ				15		_				_			_		_
JAS (AB)	157.5	157	157.5		157 5	157	157	2	157	157	157.5		157	157	27.0	5	157.	157	157 9		157	7	157.9		150.7	150.7	150.7	-	150.7	150.7	150 7		1507	150.7	150.7	
% Hd	0828	0809	0828		2 0R2R	0847	0771		OROG	2 0828	0809		2.179	1771	2 1771	- ;	1809	1771	2 179) 	1828	1847	2.1865		9546	0.9565	9546		9546	.9546	9546		9565	9565	9546	
Bs	881 2	100	885 2.		15		3 867 2	ı		3 899					4 235 2		4.271 2.		268		_					1.754 0.	.747 0.	1.75	10	0	-0		0	0	0	2
P.S.	က	က	က	က	-			-10	·		<u> </u>	- 35 %	1 .				١,٠		. 4	4	4	∵ 4	7 4.305	_ 0.000	į.		_		L	1.7			L.,	7 1.753		(I./B
Hs.	1	-	0.005		2		0.007	20	0	10	0	0	L		0.004		_			- 0	1		0.007	1000	! -	0.038		0.037	0.05	0.061	0.062	0,061		0.077		S
(2.A.A.)	1953	1953	1953	1953	1953	1959	1953	1953	1953	1953	1954	1953	1954	1954	1954	1954	1953	1953	1953	1953	1953	1953	1953	1953	1177	1177	1177	1177	1177	1177	1177	1177	1178	1178	1178	2/2
V*V	3067	3067	3067	3067	3067	3067	3067	3067	3067	3067	3070	3068	3070	3070	3070	3070	3067	3067	3067	2908	3067	3067	3067	3067	1848	1848	1848	1848	1848	1848	1848	1848	1851	1851	1851	200
5 (g)	838	0.838	839	0.838	839	0.84	836	838	0.838	0.839	838	838		876		928	<u></u>	0.877		86.	1		0.881	300	0.636	0.638	0.636	0.637	0.637	637	0.637	. 637	269	0.637	0.636	120
Li Li				323			0	0			<u> </u>	267 0.				0	1			0	28	28 0.	81 0.	0.28 (10.0				203 0.				1
			6 0.267	6.46	6 0.267			-390	L		6 0.267		6 0.279		6 0.279	-372			6 0.279	, 10 SH			3 0.281			4 0.203		1 0.203	_			0	0.203			٦
		i	0.056	0.056	0.056	0	0	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056		0.056		0.056		0.056		34.33				0,034	O	0	0	ଠା	0.034	0,034	0.034	3
N	14		13.7	13.9	13.1	13.2	:	13.1	14		14.1	14	14.2	4	14.1	14.1	- 1	13.5		13.5	14.7	14.7	14.6	14.7	9.67		9.5	9,35	9.83	9.84	9.88	9.82	2		0.01	
Corr As		215	:	215	215	:		215	L	216	2	215		235		235	237			236		238		<u>-</u>				75,2			75.	75,3	75.4	75.4	7 20 20 20 20 20 20 20 20 20 20 20 20 20	
h W/m/2K	71.63	71.63	70.16	71,14	66.97	67.57	66.78	67,11	71.63	71.89	71.99	71.83	72.8	71.82	72.1	72,24	69.04	69.22	68.77	69,01	75.39	75.31	74.97	75,23	49.52	46.92	47.07	47.83	50.32	50.34	50.54	50.4	51.18	50.89	50.74 50.94	
Яs	218	218	219	800	219	219	217		218	219	218	228	239	239	239	.0386.		239		2000			241		75.8				75.9			60000	- 5	76.2		
mia V (mV)	1:104	1,103	1.104		1,104	1,105	101		1,103	104	1,103		1,155	154	1,154		1,156	1,154	155		.157	1,158	.159	I.	0.506	. 1		and b	206	0,506	506	I.		0,507		
Freq (Hz)	203	203	203		203	503	203		203	503	82		204		204				203		60	203		200 K	725 (100	430			725	3 O	::::::::::::::::::::::::::::::::::::::	726 C		2 8	
	8,2	8,3 1	8.34						3000		1.91			8.12.1				2 5	0.36_1			2.26 1	77.00		6,43		· /o.o		95		=	- 1		10,22		-
Cur.	0.08			×1		0.09	_							0.08					7 8		_	÷ =				96		1			3) 80	1	A.	9	2	
	7.53 0,	ww.ņ	san,	and i	~		11.4 0,		15.2 0.	0	15 0.	9000 K		7.44 0.	Sec. 35		O .	o -	o -	2.1	Ó	o.	o,	86 C) (5 (Š	ŀ	0 (5 (o.	9	3 (0 ()	
	29.6 7.	.8	30 7.	- F	- 1	3.4 11.1	33.7 11	. ,		37.7 15	:			29.8 7.					7 11.			.5 14.7				0.03		- 1		9.11.6			14.6	4.9	2	
20	30,3 20	25	i			34,3 33			1 37	39,1 37	.9 37			30.5 29			33.4					9 37.5		- E	5.73	+ E) ()			32.9			20 6	36.4	9 0 -	
Experiments Train to Ts (C) (C) (C)	22.1 30	2.2 3(9 8 8			22,3 34			3.6 39	22.6 39	.6 38	900.00	0.000,00	22.4 30	n 3233		22,5 34,3			17		.8 38.9			7.72 80.00			933.53	හ. භාගිත භාගිත	ത്താവര	200000				0.70	
t E	~1		***************************************		22	Ci Ci	S.		22	8	2	S 13	NOS.		820.40		Z 6	W (N		7	22.8	25		1	60,550 -	- 1		2.5	Σ č	¥ .	ै	¥ ?		.	
Experiment Information	~ 1200 Hz	35 cm	PH ~ 2.1				1			i	1		~ 1200 HZ	S cm	~ 2.2				:					9	3 5	0000	5		:	1						
<u> </u>	[]	" "	Ĭ		-		-		:		1		1	ا با ا الــــــــــــــــــــــــــــــــــ	Ě		i	:				:		ì	200	ם ני				1			***************************************		****	

<u>a</u> +	7	6	(5)	140	6.	Ια	0.00	1	- α	: co	80	9	100	14	14	(0)	150	4	0	6	2	2	14	2	4	80	4	:40	4	4	-4	1 1	T _m	:00	ım	ien
overal Rs							0.6229		1_		0.6218		ш.		0.5964		0.595	0.5964	0.595	0.5959	0.595	0.5945	0.594	0.5945	1.3154	1.3128	1.3154	1.3145	1.315	1.3154	1.315	1.3154	1.312	1.3128	1.315	1,3136
f	/		!		1	1	0.002		0.005		:		0.005	0	0.002		l	0.002			0.002	1	0.002		0.005	0.005	0.005		0.005	0.002	0.005		0.002	0.002	0.002	
Mig V	-	!					0.5995		-	0.5978			0.5714	0	0.5719	!		0.5719			0.5704	0.5699	0.5695		1.3043	1.3018	1.3043		1.3043	1.3043	1.3043		1.3018	1.3018	1.3043	
Ta uncert		6					0.1692		_	:	0.1691							0.1691			0.169	0.1689	0.1689		0.17	0.17	0.17		0.1698	0.1698	0.1698		0.1698	0.1697	0.1696	
Overall Nussell uncert		16.943	16.796	16.914	<u> </u>	14.133	•	14.094	11.466	11.47	Ξ	11.477				17.082			` ;	- 1	11.592		-	11.572		- ;	20.801	20.948	15.175	15.113	15.058	15.115	13.28	13.242	13.218	13.247
Bequincert	0.8013	0.8013	0.785		0.7493	0.756	-		0.8013		0.8054			0.8035							1	0.8426	0.8388		0.554	0.5249	0.5266		0.563	0.5632	0.5655		0.5726	0.5694	0.5677	
Ta uncert	6.639	9	6.394				4.4016		3.2994		3.3412				6.6426			4	4.4845			က	3.3942		7.8043	7.0544	7.151		4.4266		4.2169		3,4305	3.3642	3.3216	
Ta	9	9	6.394	_		4.5157	4.4016		က	က	3.3412	\perp		6.7224			4.5999		4.4845	_	<u> </u>	3.3955	3.3942	0.00	7.8043	7.0544	7.151		4.4266	4.3187	4.2169		3.4305	3.3642	3.3216	
I. Uncert	14.154		14.131		긷	72	12.572				10.447	_1			14.162		12.605		12.601			10.486	10.482	000	18.22	18, 105	18.168		13.811	B)	13.815	9	12.348	12.344	12.341	
r V uncent	0.1872	0.1856	0.1847		0.1613	0.1614	0.1598		0.1452	0.1449	0.1459	30,	0.1888	0.1886	0.1865		0.1613	0.1602	0.159	- 11	0.1449	0.1438	0.1442	70,0	0.2181	0.2033	0.2116		0.1761	0.173	0.1698	1000	0.1587	0.1572	0.1561	
Experiment Information	f ~ 1200 Hz	0	PH ~ 2.1										~ 1200 HZ	ရွှ	PH ~ 2.2			-						705	C2/~		2.0°2									

- 6	i L	ا زن	Ω L	<u>.</u>	T.	ΩįI	ا زی	n i	Т	S.	růi.	4	T	N i	N I	N:	Ìc	VI C	VIC	NΙ	Ta	V: C	N C	M:	Te	n i c	D C		To				T.		
1ds			0.10	-:	7	2	[2]	151		15	151	<u> </u>		152	152	152			מלים				152.		150	1500	155.0	70	150 0	152 9	55	7		152.9	
PR %	0.45.0	27.00	0452	40.0	0474	147	.0489	0489		0471	0489	0383	0.00	13/6	13/6	13/6	1976	4076	0/0	2/0	2501	3/0	1 1376	2	9338	2220	9338		233B	2338	2338	3	2338	.2338	5338
88	000	1 0	2 000	100	7 5		2 :	- 20	90	7		- u	3 6	2 3	9 9	478	σ 2	4 2 2	2 0	479	٠Ŀ	_		i i	L		917		<u> </u>	. 6	10	- - co	9	0:	<u></u>
9.8 1	S S —			-//	10	u ; c	V		N		2.7.0		°		2.4/8	٠	40	110	1:0	1 0	i c		410	٠.٠	10	110	110	િ	۱۱۹	2.91	0	i N	2	(C)	
Ha*	0.028) C	0.029	· C	0		0.00	200	0,04	2 0	0.000	0.000			20.0				0000	0.029		5 : C	0.03	0.00	0.015	0.0	0.015	0.015	0.021	0.022	0.022	0.021	0.028	0.028	0.028
8 (1)	Ξ	1178	1178	1178	1178	1170	1170	1 10	0/1	1170	1170	1178	1170	1 10	1170	0/1	1178	1178	1178	1178	1178	172	1178	1178	1178	1178	1178	1178	1178	1178	1178	1178	8		178
VV	1	85.1	851	851	851	ם מ	25.2		200	000	3.5	851	95.1	2:4	2 2	- 2	851	851	851	851	851	5.1	851	851	351	351	851	851	351	851	351	851	351	321	851
ر پر کر پر کر	1 96	96	696	696	Ľ	:	800		ĪĽ				Ľ		1 **		1		_	55	ľ	• ! •			Ľ	-	-		1-	_	-		_		
ш ш	ု	0	0	0	0	C		· C			0.693		1		0.75		-	_	0.758	• 250 G	<u> </u>	·	0.758	 (2) 	0	0.822	0	0.822	10	0.822	0	9		0.822	
	0.25	0.22	0.222	0.222	0	10	0.223) C		0000	0.221	0.222	0 24	0.24	0.241	0.24	0.24	0.241	0.241	0.241	0.241	0.241	0.241	0.241	0.262	0.262	0.262	0.262	0.262	0.262	0.262	0,262	0.262	0.262	0.262
*		0.034	0.034	0.034	0.034	0.034	0.034	0.034	700	0.034	0.034	0,034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	.034	0.034		.034		.034	.034	034	,034
DN.	10.4	10.4	10.4	10.4	-	_	10.2	- (3) T		<u> </u>	1.4	- 20	2	10.3	. 4	- 🕹	=	10.2	4	10.3	1.3			1.4		0.7		0.7. C	L.,	8.1		: L		0.0	-34
Corr	90	90.1	90	90	30.4	90.7	90.8	ે 90.6	406	90.8	89.2	90.1	107	-		_24	<u> </u>	107		107	107	107	107	107		156		126 1	26 1	156	26 1	26 1	56	26	26 1
h /m/2k	2	N	3.1	3.14			52.04	_255	1		57		3.72	69	53	3.14	51.92	.46	19	52.52	96.	58.19	.55	58.23	9	54.66	96.	. 89	. 73	60.3		4	က	58.84	90
As W	9 8	_	90.9	က်	3	9	/	_2008	3		- 43				80	- 62560	08 51			23.00		108 58		383		27 54	3	22.7		27 6		940 <u>F</u>		27 58	
mte, V (mV)	54 90.		0,				.556 91		6	556 91	51 90				603		603 1	- :			en court				-				- [- Control		- I	:	
					0	0	0		0	0	0	1	O	0	O		0	o	o		o.	Ö	o	333		0.654	9300	- [0	0.654	⊃.	K	Э (0.054 0.654	
	1 726		7 726		5 726					726		- 1	5 726		726	× «	726	. 3				726				726			726	726	07)			97. 28.	
Voll	7	7.3	7.2		9,05	9.1	' '6		10.69	10,74	10.80		7.35	7.39	7.48		9.12	90'6	8.95		10.85	10.89	10.82	ľ	7.43	7,56	7.42		9.31		t D	000	2 5	10.8	
D. Q.	200	OF 150	100		0.08	0.08	0,08			0.1			0.07	0,07	0.07		0.08	3 3 3 3	0.08				-,	100) (0.0	70.0) ()		0.09	3 6		7	- 3 2	 3 0	-
<u> </u>				- 1			11.6		15.2	15.3	15.3		7.88	8.07	8.07		11.6	4.		Ļ	15.4	15.4	15.2	1	7.7	7.30);;	3		 	- - -	15.0	7 0	15	
TSTS-TE	29.1	29.5	29.3	18	3	33.1	33.2		36.8	36.9	37	6	29.3	29.5	29.5		33	2018	32.6	15	9		36.8			20.0			30.0	 -	-			36.6	
*, <u>₽</u> 0	9. G	3	8.62 8.62	1	3 3 5	33. 33.	93.0			38		9	29.Q	ဓွ	ස		\ 33.7 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27			8		28.1				2 6		r		5 6				37.7	
- E O	4. 1		47.4	3	0 1	2.5	21.6		21.6	21.6	21.7		3300	21.4	0.000	1400	22 S	80.586		ŭ	o (9.5	ø	u		0,17 0,10	C)	*****			?	0.000	14.1	27.6	
200	3000000	myr.	Procyale	at ti.						3365			1		3963733 !	× × ×		1.5%	2 5 000						.033.60	a (a.	3.,, 				apai			·······································	
Experiment Information	3 5	000	~									705	3/2	10 OG	- H		-		:			-		795		10000	× .		1						
₩ <i>=</i> ,	1	ו נ	<u> </u>	_	!		-	_	-				} : :-	1 1	Ľ.		!		į		ļ	İ		1		10			i					. :	

						overall				overall
Information	>			Ľς	Rad	Nussett	Ta	MicV		Hs
	uncert	ungert	iert	uncert	uncert	uncert	uncert	undert	uncert	uncert
í ~ 725	0.2034	15.759	6.4991	6.4991	0.5943	18.255	1698	1.1913	0.005	1.2034
L = 60 cm	0.1979	15.761	6.2703	6.2703	0.5952	18.095	0.1697	1.1913	0.005	1.2034
PR ~ 1.0	0.1999	15.759	6.3442	6.3442	0.5941	18.145		1.1913	0.005	1.2034
				!	<u>.</u>	18.165	1	:	!	1.2034
	0.1708	13.837	4.3622	4.3622	0.5811		0.1697	1.1892	0.005	1.2012
	0.17	13.836	4.3264	4.3264		15,14	0.1697	1.1871	0.002	1.1991
	0.1697	13.839	4.3273	4.3273	0.5822		0.1696	1.1871	0.005	1.1991
										1.1998
	0.1538	11.252	3.2872	3.2872			0.1696	1.1892	0.005	1.2012
	0.1533	11.251	3.2669	3.2669			0.1696	1.1871	0.005	1.1991
	0.1521	11.262	3.2701	3.2701		12.193	0.1696	1.1978	0.005	1.2098
						12.189				1.2034
~ 725	0.1984	15.77	6.3488	6.3488	0.601	18.158	0.1698	1.0945	0.005	1.1076
. = 60 cm	0.1974	15.752	6.1937	6.1937	0.5895	18.034	0.1698	1.0945	0.005	1.1076
PR~1.1	0.1967	15.757	6.1959	6.1959	0.5929	18.04	0.1698	1.0945	0.005	1.1076
						18.077				1.1076
	0.1699	13.837	4.3267	4.3267	0.5808	15.141	0.1698	1.0945	0.005	1.1076
	0.1708	13.845	4.401	4.401	0.5869	15.192	0.1697	1.0945	0.005	1.1076
	0.1724	13.857	4.5167	4.5167	0.595	15.271	0.1697	1.0945	0.002	1.1076
						15.202				1.1076
	0.1524	11.254	3.248	3.248	0	12.174	0.1696	1.0945	0.002	1.1076
	0.1521	11.257	3.2489	3.2489	0.651	12.177	0.1696	1.0945	0.002	1.1076
	0.1528	11.262	3.2901	3.2901		12.204	0.1696	1.0945	0.002	1.1076
705	0 4070	15 705	6 4954	6 4054	0 2150		7007	4 0000	000	0/0/0
= 60 cm	0.1946	15.78B	6.281	6.981	0.0130	18 196	0.1097	1.0092	2000	1.0233
PR ~ 12	0 1974	15 793	6 4346	6 4346	0.00		0.1697	1 0000	0.00	1 0033
							i i	2		1.0233
	0.1693	12.485	4.4069	4.4069	0.6794	13.972	0.1697	1.0092	0.002	1.0233
_	0.1681	12.479	4.3337	4.3337	0.6746	. :	0.1696	1.0092	0.002	1.0233
	0.1681	12.479	4,3337	4.3337	0.6746	13.92		1.0092	0.005	1.0233
										1.0233
	0.152	11.27		3.2923	0.6615		0.1696	1.0092	0.005	1.0233
	0.1524	11.266	3.2912	3.2912	0.6583		0.1696	1.0092	0.005	1.0233
	0.1531	11.271		3.3335	0.6624	12.236	0.1696	1.0092	0.002	1.0233
·						12.219				1.0233

	্লা	0:4) [() ;	۲	o i cc) ; C		19	19	. 9);	1-				1-	- 1 -			1-				12	7	7		1		. 7	·i				_
TdS	ë l	153.6	533	5	153	, r	153.6		153	153.	153		154	154	154	:	154	154	54	2	154	154	154	d d	154	154	154	:	154	154	154		154	154.7	154	
% HB %		3282	3263	1	3282	3282	3282		3282	3282	3282	 - -	4225	4225	4206		4206	1206	4206		4206	4206	.4206	Ī	5168	5168	5149		5149	5149	5149	!	5149	5149	5149	
	ĬĽ.	ר י			1			j.,	L	. —			_			i : _i	L				1			1	匚		-	•	_	_	-	.	匚	-	_	a
			337		1	3.38	(1)	က		3.384			1		3.874		100	(0)	3.881	- 600			3.883		ł	4.409	4	4,405	4	4.401	∀	4.401	4.406			4.408
As"Rs	3	5 6	0.011	0.0	0.015	0.016	0.016	0.016	0.02	0.02	0.021	0.02	0.008	0.008	0.008	0.008	0.012	0.012	0.012	0.012	0.015	0.015	0.015	0.015	0.006	900.0	0.006	0.006	0.009	0.009	0.009	0.009	0.011	0.011	0.012	0,0
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	983 II.	178			£		178	- 60 in	1	178			178			- ()	178	178	178	178	L	178		178		180		180	Ł		180	180	180		:	20
V*V	100	851	851	851	851	51	851	851	851	51	851	851 1	51	51	51	851	51	-		- 🗓	L	-	851	51	53 1	853 1	53	853 1	53 1	853	853 1	853 1	53 1	853 1		
	Ţ		- -		_			. 7	_	_		÷	_	_	•		_		185	<u>.</u>	Ľ	_		. 370 54	Ξ	_			Ľ		_	- 			_ [Š
8		0.000	0.884	0,884	0.886	0.885	0.885	0.885	0.885	0.885	0.88	0.885	0.948	0.948	0.947	0.948	0.947	0.948	0.948	0.948	0.948	0.948	0.948	0.948	1.011	1.011	1.00	1:0	1.01	<u>.</u>	-0.	1.01	1.01	10.	5	5 3
ω	Sec	0.281	281	- 1	282	282	282	285	282	282	.282	.282	.302	0.302	0.301	0.302			0.302		302	0.302	.302	305	.322	.322	.321	.322	.321	.321	.321	.321	.321	322	322	190
×	83 <u> </u>	0.034		. 30	_	0.034 0.	0.034 0	034 0	,	.034 0.		034 0	034 0		0.034 0	034 0	⊢-	034 0		034 0	034 0	034 0	034 0	034 0,	0	0	0	034 0.	34 0.	34		0	0	0	0 0	
N.C.	98.	3 0		ന	6			2	9 0.0	1.9 0.0	0	9	0		1.2 0.0	0	0.	4.0	0	0	o	0	0	3 0.0	8 0.0	7 0.034		.7 0.0	_	8 0.034		8 0.0	8 0.0	7 0.034	9 0.0	3
	ΣĽ	45		Ξ	145 12.	:	46 12.1	45 12.	46 11		46 11.	46 11.	7 11.6	67 11.4	67 11.	67 11.4	67 12	67 12	67 12.4	67 12.				12	90 11.	0 11.7	=	90 11.	12	12	72	89 12.	12	90	<u>ල</u> ද	
Corr Corr Corr	21			7 145			-	7	ļ				_	_	_	7	-	_	:		-	_	_	4 167	-!	- !			3 189	-	_					1
h W/m/sh	82.E		140	57.7	63.1	61.75	62.13	62,33			60,39	60,76	59.12	58.4	57.42	58,33	63.4	63.62	63.34	63,45	63.34	63.19	62.5	63,04	60.32	59.7	59.65	59,91	65.33	65.3	65.8	65,53	65.6	65.0	/0.94 67.23	3
Rs	147	146	146		147	147	147		147	147	147		169	169	168		168	168	168		169	169	168		192	192	16		191	191	16		192	192	192	
V Similar V Similar	200	0.703	0.703		,704	0,704	0,704		.704	0,704	.704		0,754	0,754	753		0.753	0.753	0,753		753	0.753	,753		0.804	,804	.803		0.803	0,803	.803		.803	0,803	SO8.	30.00
Fred :		W. 34.			80.00	726 (9000	726 (8 W		726 (3664			9000	1,004	726 (~~~		727 C	v. ()	27 0	. I	727 0		800		49 D.	727 0		
Volt P						9.61	_			10,7			7,56	Ŵ.	8				9.84			1,26				7,83				9,89			7.3		/ 0/1	
																	C)					_												= ;		
a Cur		8 0.07		223	2000	$\frac{5}{2}$ 0.09	600Q		Œ.	4 .0			6:0.07	w.ş	20420	8866	with the	4 0.09	en q			7 0.1		400 L	4 0.07	1400	0000	800 B	0,09					<u> </u>		32.2
Tic Ts [s-Ta (C) (C) (C)	9 7.3	7 7.1	1 7.56			3 11.5				14.4		_		3 7.55					11.5			7 14.7			7.44				=					4.4		
10	28	28.7	29.		32.5		32.9	•		36.1				29.3				33.5				37			29.6	53	29.6		33.4					37		
- 20	29.4	29.2	29.6			33.9		33000	20, 1912	37.2	2.000		29.6					34,4		Section 1	12000	38.1	1000	20.00	300 300 300 300 300 300 300 300 300 300	eresie.	2000	00 G 50	34.3	2000	200	20 m	UM 256	38,2	3000	
Ta O	21.5	21.5	21.5		2.5	21.5	21,6		21,7	21.7	21.7		7117	 	21.8		22	22.1	22:1		22.3	22.3	22.2		N (2)	777	K K K K		22.3	22.0	4.74	100	2,2	22.6	יני על	
Experiment Information		Щ	63											: چ	4			:				ľ				Ę,	ລ		:	1					!	
Experiment Information	~ 725	= 60 cm	PR ~ 1.3							1	1	1	~ (2) ~	L = 60 cm	π' Έ			1	-					1	~ (25)	L = 60 cm	~		:	1				:		
	<u> </u>	ليا	<u>م</u> :		- !	!	i				:			110	ጉ		_ 1		;	_1	- :		;		<u> </u>	ع زر	<u> </u>		:	:	ì	┸	!		į	1

overal	ncert uncert	5 0.002 0.9527		3 0.002 0.954	0.9536	0.002	:			0.002		0.005	0.9527	0.005	0.002 0.8916	0.005			0.005	0.005		0.005	0.002 0.8927	0.002	0.8927	0.005	0.005	0.005		:	0.005	0.005	0.8392	0.002 0.8391	0.002	
	Mig V Uncert	$\overline{}$	0			0.937	0.937	0.937		0.937	0.937	0.937			6 0.8753				3 0.8765			0		0			0	3 0.8219	_	2 0.8219				0.821	1 0.8219	0.821
200000000	en ra T'uncer	25 0.1697				32 0.1697					35 0.1696		38		27 0.1696		72	16 0.1694		97 0.1693			0	0.1693	=	o	o	3 0.1693			o.	3 0.1692	21		0.	
DVera	r incert	18 18.525		<u>.</u> ,	18.535	06 14.082	08 13.944	—	-	1.		56 12.253				25 18.292	18.42	93 14.016		86 13.97	13.995			02 12.297	\Box		37 18.456			1	Τ.	4	14.107	_	-	37 11.48
ć	r uncert	92 0.6418	.9605 0.6491	45 0.6458		03 0.706	0			4249 0.68	3.47 0.6832	3381 0.6756		0		29 0.6423			- 1		_	9	,	74 0.7002	_		02 0.6687		_		0	33 0.737			35 0.7277	
Ė		792 6.7792	9	145 6.6145		303 4.5303	•		-	.4249 3.42	į	3381 3.33			201 6.6201	*				3489 4.3489			က	3674 3.3674	1	:		7122 6.7122				5833 4.5833			35 3.4635	
ž		15.837 6.7792	9	.844 6.6145		12.519 4.5303	2.5 4.3409		-	1.292 3.42	i	1.286 3.33	-		15.857 6.6201			524 4.42	4	523 4.34			က	.315 3.36	-+		اص	879 6.71		- :		4	- 1		47 3.4635	
1	ert uncert	0.1993 15.	017	949 15						Ľ	_	515 11.				.1921 15.		12	12			-	=	492 11.3			12	15		2	2	1655 12.5	-+	11.355		14/ 10.434
lent ()	uncer	0.1	0.2	0.1		0.1	0.1	0.1		0.1533	0.15	0.16		0.1956	0	0.16		0.1652	0	0.1635			0.14	0.14	-	Ť	1	0.1928	-	0.1644	0.1634	0.16		0.1498	0.1487	- -
Experiment		f ~ 725	8	PR ~ 1.3										f ~ 725	L = 60 cm	PR ~ 1.4										- 725	졍.	PH ~ 1.5							***************************************	

	1	וַב	155.2	2	1	155.	155.2	155		155	155.2	155	[`	155.7	155.	-		_	155.7	-:		7	155.7	- 1	5	200	7.00.7		1500	156.2	156.0	1	156.2	156.2	156.2
PR %	Ĭ	- 1	0030	_:	1 6000	1.0035	1.6036	1.6036		1.6036	1.6036	1.0035	0000	1.6998	1.6998	1.6998		1.6998	1.6998	1.6998		1.6998	1.6998	1.0998	4 7000	1 7000	1 7008	2	1 7070	1 796	1 796	3	1.796	1.796	1.796
B.		7 3	4.937		Ľ	† · ·	4.937	4	4	4	-	<u>.</u> .	١١	5.537	U ! r	ດຸ			- 1		5.541	5.544	5.547	0.047	0.040	0.0	6 215	210	6 209	6.196	6.5	6.202	6.2	6.204	6.208
Gray Rs	C) c	-	_		0.007		ၣ႞	o j	0.009) -	9.1	0.00				2:0	0.005	> 6	اِح	0.007	0.007	7000			0.003	0.003		0.004					0.005
27.00	7	- ; -	1		∃ F	- +	200	- 7		= }	1160	- <u>-</u>	Ľ		700	- 7	╢	-: -	=:;	- }			1 182	Ī	1182	1182	1182	1182	1182	1182	1182	1182	182	1182	1182
*	185		1853		Ľ		1003		202	-:•	1859	1853	1856	1856	200	1000	1856	000	1000	1856	000	020	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	185	1856	1856
99	1.069	1 080	1.069	1.069	1.069	1080	1.009	200	800.	000	1.003	1 069	1 135	133	133	1 135	1 135	133	1 1 2 2		3 6	200	133	1.133	1.2	2	1.199	1.199	1.198	1.197	1.197	1.198	1.197	1.198	1.198 1.198
3	0.34	0.34	0.34	0.34	0.34	2	0.34	200	500	200	0.34	0.34	0.36	0.36	36.0) 36.0 36.0	0.36	36.0	0.361	0.361	0 26 1	26.0	0.361	0.361	0.382	0.382	0.382	0,382	0.381	0.381	0.381	0.381		0.381	
*	0.034	0.034			0.034	0.034	0.034	NEO 0	0.03	0.00	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.00	0.034	0.034	1	034	034	0.034	034		034	0.034	034		034
D. W			3 12.2	3 12.1	二	13	• ! 	Ç.	ા		4	14.3	12.7	7	4.9	7	13	13	13.0	0	Ľ		14.7	14.8	15.4	15.3	15.2	15.3	_	15.7		7	رنا	5.2	
0.5	21	2	2	2	6 213		213	_88	7		6 213	2000	ш		1	_04	L		9 239	-34	5 239	1	4 239	4 239		7 268		8 268		- !	. 3	- L		267	_ 78
Rs h W/m/21	2	2	5 62.33	62,0	2	S	5 66.54	_000 1	2	140	5 73.6	73.32	1	_			1			70,85	⊢	-	<u> </u>	75,74	78.87	78.0	77.5	78.1		80.17		٦١,	- 1	7.0	
	0.85 21		1				85 21		5 21	21	21		\$1,000	24	Heren	i	24	200 - 200	11 241		2000	James en	11 241		Ì.	4 271		- 1		2 270	- ;			270	1 1
	727 0				727 0.	o	O				727 0.8		0	728 0.901	Ó		0	O,	728 0,901		0	728 0,901	0	3800	8 0,954		0.000		0	8 0,952	>	ľ	> (0.952	
Volt. Fi					0,22 7					,95 7	.93		7	8.2 7.	20.8		23	.31	35		14	5 8	34		8.3 728	44 728		1		0.73				56 728	
ξŒ		04	20		60	8	60		11 11	.11	11 11		07	80	88		60	09 10	09 1		=	11 12,	=		8 8	8 8	8	1.				4.5	4 C	<u>i</u> <u>ci</u>	
	22//0	7.43		ಯಿ	11.3		11.5			14.9 0			0.03	7.13 0.	7.03 0		10.7 0	26.0		I	14	14.6 0.		ľ) (ز د	7.21 0,			110		14.4.0		14.5 0.1	
20	29.8	29.9	29.7	100	33.8	33.7	34		37.3	37.6	37.5	1	29.9	8	29.9		33.7	33.8	34			37.8		- 1	200			7 70			_ 1	37.8.1			
Ta Tito (C) (C)	30.4 20.4	30.5	3 30,3		7. 45. C				38'6					200			34.6	7	**************************************		38.9	39,2	39,4	000	6 7 7		ב ס	0 30	20.00 A RE	3,5	· }	39.2	39.6	39.5	
	מאא מ	ינים ענים	K K K	C	KK.3	i) V	22.5		22.7	22.7	22.8	8	אר איני אר איני	77.3 77.3	22.9		3	3	23.1	,	3.	23.2	23.5	000	A. C.O.	4.00	- 3	0.00	6.00 0.00 0.00	23.4		23.4	23.5	23.6	
Experiment Information	60 00		0.									20.	Calc	UD 00 =	/`! ~ U.									35	- 60 cm	ξ α Σ	9								
ŵ E	2	ן נ			-	1						705	2	ء ال	Ė						-	1	-	105	9	n d				!			***************************************		

overall Rs	1 7047	0 7947	0.7947	0.7947	0 7947	0 7947	0.7947	0.7947	0.7947	0.7947	0.7946	0.7946	0.7517	0.7517	0.7517	0.7517	0.7517	0.7517	0.7517	0.7517	0.7517	0.7517	0.7517	0.7517	0.7121	0.7121	0.7121	0.7121	0.7128	0.7135	0.7135	0.7133	0.7135	0.7135	0.7135
f	0.00	i	1		0000	1	0.002	i	1	0.005					0.005			0.002			0.002				,		0.002		.1	0.005				0.002	
Mic V	0 7765	0.7765	0.7765		-	_	0.7765			0.7765			0.7325				0.7325	0.7325	0.7325		0.7325	0.7325	0.7325		0.6918	0.6918	0.6918		0.6925	0.6933	0.6933		0.6933	0.6933	0.6933
Ta	0.1691	<u> </u>	0.1691		0.1691	٠.,	0.1691		0.169		0.1689	- 1		o	0.1689		0.1688	0.1688	0.1688		0.1688	0.1687	0.1687		0.1687	0.1687	0.1688		0.1687		0.1686		0.1686	0.1685	
Overall Nusselt uncert	-	18.56	18.698	18.628	14.079	14.101		14.068	11.567		11.554			=	17.446	. 1	:		14.233	14.263	11.614	11.585	11.553	11.584	17.573	17.406	17.324	17.434	13.306	13.242	13,185	13.244			11.633
Requincert	0.6944	0.6916	0.6973		0.7514		0.7445			0.8138	0.8234			- 1	0.8549		0.7945	0.7938	0.7898		0.8509	0.8483	0.8429		0.8824	0.8735	0.8681		0.9051	0.8969	0.8917				
Tc	6.8161	1	6.9055		4.4396		4.3649			က	3.4101			7.0113			4.6898	4.6494	4.6081		3.4629	3.4187	3.3747		7.2222	7.0306	6.9379		4.623	4.5429	4.4667	-		3.4046	
Ťa	6.8161		9	- 1	•		۷;	- 1	က (က၂	3.4101				7.1086	- 1		4	4.6081		3.4629	3.4187	3.3747	000	7.2222	7.0306	6.9379			4.5429		,		3,4046	
f uncert		끈	15.928			12.577			10.466		10.466	2	15.98	14.219	14.231	0000	12.633	25037	7707		10.495	10.492	10.487	1000	14.277	4.238	14.25		11.553			0,7		10.514	
ı V uncert	0.19		0.1913		0.1602	0.1611	0.1592		0.1466	0.1457	0.146	900	0000	000	0.188/	000	0.1008	0.1088	0.1384	0,1,0	0.1449	0.1439	0.1433	4014	0.10/1	0.00	0.1838		0.1584	0.15/4	0.1562		0.1	0.1418	0.1462
Experiment Information V	725	8	~ 1.6									705	- 60 cm	1000										705	60 cm	2 a	-								
û'=	2		Ĭ.		-							,		100				-	İ					Ì											

SPL (dB)	9	ľ										
<u>8</u>	156.	156.	156.6		156.6	156.6	156.6		156.6	156.6	156.6	
PR %	1.8922	1.8922	1.8922		1.8922	1.8922	1.8941		1.8941	1.8941	1.8941	
As A	6.853	6.857	6.853	6.854	6.857	6.866	6.879	6.867	6.879	6.883	6.892	6.885
Gr. 1s*Hs			0.002									
<u>Gr</u> β Rs*Hs E	1183	1183	1183	1183	1183	1183	1183	1183	1183	1183	1183	1183
V. V.	1859	1859	1859	1859	1859	1859	1859	1859	1859	1859	1859	1859
λ (3.5)	1.26	1.26	1.26	1.26	1.26	1.26	1.262	1.261	1.262	1.262	1.262	1.262
12	0.401	0.401	0.401	0.401	0.401	0.401	0.402	0.401	0.402	0.402	0.405	0.402
×	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034	0.034
Na			15.3									
			295									
3			78.43									83.3
	- 1	299	- 1		299	539	300			300		
		1,003		00000	1,003	2000	200000		₩.	1,004	Ţ.,	
200000000000000000000000000000000000000		****	729						****		4.4	
		24	9.91		10,94	<i></i>	**			12.8		
(6) (A)	30.0	00.	0.0	2	0.1	တ္	2.4		.2: 0.1	1.5 0.11	4 0.18	
8	4 6.5	8.7.2	9.7.	-		위	=		~	~	-	
	30.4	8	ဓ		34		34.9		3 37	38	0 38.4	
1.8 (0.8	23,4 31,	23.5 31.	23,4 31,		23,5 35,6 34.5	23.7 35.7	23.7 36		23,7 39,3 37.9	23.8 39,	24 4	
Experiment	Section 1	ے	PR ~ 1.9				-					entra

			Ta	Tc	Baq	overall Nusseit Ta	Ta	Mic V *f	-	overall Rs
Ence 18	<u> </u>	uncert 14.316	nncert uncert uncert uncert uncert uncert uncert uncert 0.1819 14.316 7.1509 7.1509 0.9137 17.552 0.1686	. uncert uncert	uncert 0 9137	uncert uncert	uncert 0 1686	undert uncert	uncert	Deat uncert
0.17	98	14.281	0.1798 14.281 6.8659 6.8659 0.8894	6.8659	0.8894	17.293 0.1685	0.1685		1	0.6793
o	178	14.264	0.178 14.264 6.6904	6.6904 0.8775	0.8775	17.14	0.1686	0.658	0.002	0.6793
						17.329				0.6793
<u>.</u>	558	11.566	0.1558 11.566 4.5517 4.5517 0.9162 13.269 0.1685	4.5517	0.9162	13.269	0.1685	0.658	0.002	0.002 0.6793
9	547	11.593	0.1547 11.593 4.6005 4.6005 0.9396	4.6005	0.9396	13.328 0.1684	0.1684	0.658	0.005	0.6792
0.	0.1533		11.578 4.4822 4.4822	4.4822	0.9262	13.233	0.1684	0.6574	0.002	0.6786
						13.277				0.679
0.	418	10.552	0.1418 10.552 3.5263 3.5263 0.9043 11.707 0.1684 0.6574	3.5263	0.9043	11.707	0.1684	0.6574	0.005	0.6786
0.	0.1408	10.543	10.543 3.4567 3.4567 0.8955 11.656 0.1684	3.4567	0.8955	11.656	0.1684	0.6574	0.005	0.6786
9	0.1409	9.8081	3.4699	3.4699	0.996	0.996 11.013 0.1683	0.1683	0.6574	0.005	0.6786
						11.459				0.6786
1			***************************************				-			

LIST OF REFERENCES

Carter, R. L., from Swift, G. W., "Thermoacoustic Engines", J. Acoust. Soc. Am., vol. 84, no. 4, pp. 1145-1180, 1988.

Davidson, B. J., "Heat Transfer From a Vibrating Circular Cylinder", *Int. J. Heat Mass Transfer*, vol. 16, pp. 1703-1727, Great Britain, 1973.

Feldman, K. T., "A study of heat generated pressure oscillations in a closed pipe", Ph.D. dissertation, Mechanical Engineering, University of Missouri, 1966.

Gifford, W. E., and Longsworth, R. C., "Surface heat pumping", Adv. Cryog. Eng., vol. 11, no. 171, 1966.

Gopinath, A., and Mills, A. F., "Convective Heat Transfer from a Sphere Due to Acoustic Streaming", *Journal of Heat Transfer*, vol. 115, pp. 332-341, 1993.

Hall, P., "On the stability of the unsteady boundary layer on a cylinder oscillating transversely in a viscous fluid", *J. Fluid Mech.*, vol. 146, pp. 347-367, 1984.

Honji, H., "Streaked flow around an oscillatory cylinder", J. Fluid Mech., vol. 107, pp. 509-520, 1981.

Lighthill, M. J., "Introduction. Real and Ideal Fluids", *Laminar Boundary Layers*, pp. 1-45, Clarendon Press, Oxford, 1963.

Lord Rayleigh, The Theory of Sound, 2nd ed., vol. 2, Dover, New York, 1945.

Mozurkewich, G., "Heat Transfer form a Cylinder in an Acoustic Standing Wave", *Journal of Accoust. Soc. Am.*, vol. 98, pp. 2209-2216, 1995.

Richardson, P. D., "Effects of sound and vibration on heat transfer", *Applied Mechanical Review*, vol. 20, no. 3, pp. 201-217, 1967.

Sarpkaya, T., "Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan-Carpenter Numbers", *Journal Fluid Mechanics*, vol. 168, pp. 61-71, 1986.

Sondhauss, C., "Ueber die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckton Pfeifen von ungleichen Weite", *Annual Physics*, vol. 79, no. 1, 1850.

Stuart, J. T., "Double boundary layers in oscillatory viscous flows", *J. Fluid Mech.*, vol. 24, pp. 673-687, 1966.

Swift, G. W., "Thermoacoustic engines and refrigerators", Physics Today, pp. 22-28, 1995.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center 8725 John J. Kingman Rd., STE 0944 Ft. Belvoir, VA 22060-6218	No. Copies 2
2.	Library, Code 13 Naval Postgraduate School Monterey, CA 93943-5002	2
3.	Prof. Ashok Gopinath Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5002	1
4.	Prof. Matthew Kelleher Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5002	1
5.	Prof. Oscar Biblarz Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943-5002	. 1
6.	Prof. Daniel Collins Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943-5002	1
7.	LT. Don Harder N. 5404 Walnut Spokane, WA 99205	1