Calculation

1.Flat path

$>$ restart :
$>C r r=0.01, U \cdot I \cdot \eta=$ Fwheel \cdot Vab, $\eta=0.7$

$$
\text { Crr }=0.01 \text {, I } U \eta=\text { Fwheel Vab, } \eta=0.7
$$

Assumtion $\eta=70 \%$
$>I=0.91, U=7$

$$
\mathrm{I}=0.91, U=7
$$

We can find on panel diagram

$>T_{\text {wheel }}=8.55 \cdot 0.7 \cdot 0.91 \cdot 10^{-3} \cdot i$

$$
T_{\text {wheel }}=0.005446350000 \quad i
$$

> Fwheel $=\frac{T \text { whee } 1}{\text { Rwheel }}$

$$
\text { Fwheel }=\frac{\text { Twheel }}{\text { Rwheel }}
$$

We just think our Rwheel $=0.04$
$>$ Fwheel $=\frac{0.005446350000 \quad i}{0.04}$

$$
\text { Fwheel }=0.1361587500 \quad i
$$

$>2 \cdot s=V a b \cdot t a b$

$$
2 s=V a b t a b
$$

$>m=1$, Frolling $=\operatorname{Crr} \cdot N, \quad N=1 \cdot 9.81$

$$
m=1, \text { Frolling }=\operatorname{Crr} N, N=9.81
$$

$>$ Frolling $=0.01 \cdot 9.81$

$$
\text { Frolling }=0.0981
$$

$>$ eq1 $:=\frac{(\text { Fwheel }- \text { Frolling }) \cdot 12}{\text { Vab }}=m \cdot V a b$

$$
\text { eq1 }:=\frac{12(\text { Fwheel }- \text { Frolling })}{V a b}=m \text { Vab }
$$

$>$ eq $2:=7 \cdot 0.91 \cdot 0.7=$ Fwhee $1 \cdot$ Vab

$$
e q 2:=4.459=\text { Fwheel Vab }
$$

$>$ Fwheel $:=0.1361587500 \quad i$; Frolling $:=0.0981 ; m:=1$

$$
\text { Fwheel }:=0.1361587500 \quad i
$$

Frolling $:=0.0981$

$$
m:=1
$$

$>$ eq1 $:=\frac{(\text { Fwhee } 1-\text { Frolling }) \cdot 12}{\text { Vab }}=m \cdot V a b$

$$
\text { eq1 }:=\frac{12(0.1361587500 \quad i-0.0981)}{\operatorname{Vab}}=V a b
$$

$>$ eq $2:=7 \cdot 0.91 \cdot 0.7=$ Fwhee $1 \cdot V a b$

$$
e q 2:=4.459=0.1361587500 \quad \text { i Vab }
$$

$>$ sol $:=\operatorname{solve}([e q 1, e q 2],[i, V a b])$

$$
\left.\begin{array}{rl}
\text { sol }: & =[[i=8.937571391, \quad V a b=3.664142817], \quad[i= \\
& -4.108544433-7.520683546 \quad \mathrm{I}, V a b=-1.832071408 \\
& +3.353603575 \\
& \mathrm{I}], \quad[i=-4.108544433 \\
& +7.520683546 \\
& \mathrm{I}, \operatorname{Vab}=-1.832071408 \\
& -3.353603575 \\
\mathrm{I}
\end{array}\right] \quad \text {. }
$$

So our $\mathrm{i}=8.94, \mathrm{Vab}=3.66 \mathrm{~m} / \mathrm{s}$
>tflat $=\frac{12}{3.664142817}$

$$
t f l a t=3.274981517
$$

$>i:=8.937571391$

$$
i:=8.937571391
$$

> Fwheel

$$
\text { 1. } 216928549
$$

$>$

On slope

$>F r=0.61$

$$
F r=0.61
$$

Fr $=$ Frolling $+\operatorname{mgsin}(3)=0.61 \mathrm{~N}, \mathrm{Fr}=$ Fwheel
> Fwheel $:=0.61$

> Fwheel :=0.61
$>$ Twheel $:=$ Fwheel $\cdot 0.04$

$$
\text { Twheel }:=0.0244
$$

$>I=\frac{T \text { wheel }}{8.55 \cdot 0.7 \cdot 10^{-3} \cdot 8.937571391}$

$$
\begin{gathered}
\mathrm{I}=0.4561483915 \\
\mathrm{U}=7.863 \mathrm{~V}
\end{gathered}
$$

$>V=\frac{7 \cdot 0.4561483915 \cdot 0.7}{\text { Fwheel }}$

$$
V=3.664142816
$$

$$
\mathrm{V}=4.115 \mathrm{~m} / \mathrm{s}
$$

$$
>\text { tslope }=\frac{8}{3.664142817}
$$

$$
\text { tslope }=2.183321011
$$

Tslop=1.944se

$>t$ tot $=2.18+3.27$

$$
\text { ttot }=5.45
$$

Ttot=5.214se
Vfinal $=3.66 \mathrm{~m} / \mathrm{s}(4.115 \mathrm{~m} / \mathrm{s})$, ttotal $=5.45 \mathrm{~s} / 5.214 \mathrm{se}$
This is just the normal Assumption, we need caculate the bigger or smaller gear ratio

2.Assume that, $\mathrm{i}=12$

when $\mathrm{I}=0.91$ (reach the max current)

On the flat path(at point A)

> Twheel $:=8.55 \cdot 0.7 \cdot 0.91 \cdot 12 \cdot 10^{-3}$

$$
\text { Twheel }:=0.06535620000
$$

$>$ Rwheel $:=0.04$
Rwheel :=0.04
$>$ Fwheel $:=\frac{T w h e e l}{\text { Rwheel }}$

$$
\text { Fwheel := 1. } 633905000
$$

$>$ Frolling $:=0.01 \cdot 9.81 ; m:=1$

$$
\begin{gathered}
\text { Frolling }:=0.0981 \\
m:=1
\end{gathered}
$$

$>a:=\frac{(\text { Fwheel }- \text { Frolling })}{m}$

$$
a:=1.535805000
$$

$>I=0.91, U=7, \eta=0.7$

$$
I=0.91, U=7, \eta=0.7
$$

$>U \cdot I \cdot \eta=F$ whee $I \cdot V A$

$$
\text { I } U \eta=1.633905000 \mathrm{VA}
$$

$>V A:=\frac{0.91 \cdot 7 \cdot 0.7}{\text { Fwheel }}$

$$
V A:=2.729044834
$$

$>t A:=\frac{V A}{a}$

$$
t A:=1.776947486
$$

$>S A:=\frac{1}{2} \cdot a \cdot t A^{2}$

$$
S A:=2.424684678
$$

on the rest of flat path $(\mathrm{A} \rightarrow \mathrm{B})$

$>$ Fwheel $:=0.0981$

$$
\text { Fwheel := } 0.0981
$$

$>$ eq1 $:=$ Fwhee $1 \cdot$ Rwheel $=8.55 \cdot 0.7 \cdot I \cdot 10^{-3} \cdot 12$

$$
\text { eq1 }:=0.003924=0.07182000000 \mathrm{I}
$$

$>$ Iab $:=\frac{0.003924}{0.07182}$

$$
I a b:=0.05463659148
$$

$>\quad U-I$ diagram; $U 1:=8.25$

$$
\begin{gathered}
U-I \text { diagram } \\
U 1:=8.25
\end{gathered}
$$

$>V a b:=\frac{U 1 \cdot I a b \cdot 0.7}{\text { Fwheel }}$

$$
V a b:=3.216374269
$$

$>$

on the slope

$\mathrm{Fr}:=0.0981+1 \cdot 9.8 \cdot \sin (3)$
$>$ Fr $:=0.6109923712$
Fr :=0.6109923712
$>$ Fwheel $:=F r$

$$
\text { Fwheel }:=0.6109923712
$$

$>$ Islope $:=\frac{\text { Fwheel } \cdot 0.04}{8.55 \cdot 0.7 \cdot 10^{-3} \cdot 12}$

$$
\text { Islope }:=0.3402909336
$$

$>U-I$ diagram; $U:=7.98$

$$
\begin{gathered}
U-I \text { diagram } \\
U:=7.98
\end{gathered}
$$

$>$ Vslope $:=\frac{U \cdot \text { Islope } \cdot 0.7}{\text { Fwheel }}$

$$
\text { Vslope }:=3.111111112
$$

$>$ ttot $:=t A+\frac{(6-S A)}{V a b}+\frac{8}{V \text { lope }}$

$$
\text { ttot }:=5.459974092
$$

$>$

3.Assume that, $\mathrm{i}=7$

Flat path:-

Twheel $=8.55 * 0.7 * 0.91 * 10^{-3} * 7=0.0381$
Fwheel $=$ Twheel $/$ Rwheel $=0.953$
$a=($ Fwheel - Frolling $) / m=0.855$
U*I*n=Fwheel * Va
$\mathrm{Va}=(7 * 0.91 * 0.7) / 0.953=4.679 \mathrm{~m} / \mathrm{s}$
ta $=\mathrm{Va} / \mathrm{a}=5.4724 \mathrm{~s}$
$\mathrm{Sa}=0.5 * \mathrm{a} * \mathrm{ta}^{2}=12.8 \mathrm{~m}$
But the total length of the flat path is 6 m , so we have to calculate the time for the flat path only.
$6 \mathrm{~m}=0.5$ * a * tflat
tflat $=3.746 \mathrm{~s}$

For the slope part:-

Assume that, it has constant acceleration
Means it reaches at equilibrium
$\mathrm{Fr}=$ Frolling $+\mathrm{mg} \sin (3)=0.61 \mathrm{~N}$
Assume that
Fwheel $=\mathrm{Fr}=0.61 \mathrm{~N}$
Twheel $=$ Fwheel $*$ Rwheel $=0.0244$
$\mathrm{I}=$ Twheel/(8.55 * $\left.0.7 * 7 * 10^{-3}\right)=0.58$
From the U-I graph we get:-
$U=7.78 \mathrm{~V}$
Vslope $=(7.78 * 0.58 * 0.7) / 0.61=5.177 \mathrm{~m} / \mathrm{s}$

$$
\text { tslope }=8 / \text { Vslope }=1.545 \mathrm{~s}
$$

Ttotal $=$ tflat + tslope $=3.746+1.545=5.29 \mathrm{~s}$

4.Another calculation

Air resistance (no wind):

1. $\quad \underline{F}_{\underline{w}}=1 / 2 \cdot C_{\underline{w}} \cdot A \cdot \rho \cdot v^{2}$
$C w=0.47, A=\pi^{*} r^{\wedge} 2, \rho=1.29 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$,

$$
\begin{aligned}
& F_{\text {wpath }}=\frac{1}{2} \times 0.47 \times \pi \times 0.04^{2} \times 1.29 \times 3.66^{2}=0.0204 \mathrm{~N} \\
& F_{\text {wslope }}=\frac{1}{2} \times 0.47 \times \pi \times 0.04^{2} \times 1.29 \times 4.115^{2}=0.0258 \mathrm{~N}
\end{aligned}
$$

It is too small, I think we can ignore it but we should simulate it first.
2. Another one

Check the table
We know Terminal resistance $=3.20 \Omega$; Torque constant $=8.55$;
Our U $=7 \mathrm{~V}, \mathrm{I}=0.91 \mathrm{~A}$
$\mathrm{T}=8.55^{*} 0.7^{*} 0.91^{*} 10^{\wedge}-3=5.446 \times 10^{-3}$
$\mathrm{n}=1120$ *E
$\mathrm{E}=\mathrm{U}-\mathrm{I} * \mathrm{R}=7-0.91 * 3.2=4.088 \mathrm{~J}$
$n=4578.56$
3.Static Friction

$$
\mathrm{F}_{\mathrm{rs}}=\eta * \mathrm{~N}
$$

We can find on Toledo the static friction coefficient $=0.9=\eta$
$N=1 / 3 * 9.81=3.27 \mathrm{~N}$

$$
\mathrm{F}_{\mathrm{rs}}=0.9 * 3.27=2.943 \mathrm{~N}
$$

