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EMC effect in the next-to-leading order approximation based on the Laplace transformation

Javad Sheibani,1,* Abolfazl Mirjalili,1,† and S. Atashbar Tehrani2,‡
1Physics Department, Yazd University, P.O.Box 89195-741, Yazd, Iran

2Independent researcher, P.O.Box 1149-834413, Tehran, Iran

(Received 8 August 2018; published 25 October 2018)

In this article, using Laplace transformation, an analytical solution is obtained for the DGLAP evolution
equation at the next-to-leading order of perturbative QCD. The technique is also employed to extract, in the
Laplace s-space, an analytical solution for the nuclear structure function, F A

2 (x,Q2). Firstly, the results for
separate nuclear parton distributions for all parton types are presented which include valence quark densities,
the anti-quark and strange sea PDFs and finally the gluon distribution. Based on the Laplace transformation,
the obtained parton distribution functions and the nuclear structure function in the x-space are compared with
the results from the AT12 Phys. Rev. C 86, 064301 (2012) model. Our calculations are in good agreement with
the available DIS experimental data as well as theoretical models which contain both small and large values of
x-Bjorken variable. We compare our nuclear PDFs sets with those from other recent collaborations, in particular
with the nCTEQ15 and HKN07 sets. The comparison between our results and those from the literature indicates a
good agreement.
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I. INTRODUCTION

QCD factorization theorems [1–3] and parton distribution
functions (PDFs) create a framework to fully describe nucle-
ons. A wide range of different hard scattering processes, in-
cluding deep inelastic scattering (DIS), Drell-Yan (DY) lepton
pair production, vector boson production, and the inclusive
jet production can be employed to determine PDFs through a
global analysis. Considering the parton distribution functions
inside nuclei, characterized by the atomic mass and atomic
number, A and Z respectively, it is possible to achieve a
proper theoretical description of hard scattering processes
which occurs in lepton-nucleon and proton-nucleon interac-
tions. The nucleon bound states can be described by nuclear
PDFs (nPDFs) and finally the nucleus can be parameterized
effectively in terms of the bonded nucleons. Strong interac-
tions between the nucleons in a nucleus were first recognized
as EMC effects, which can theoretically be described by the
exchange quark model [4,5]. These interactions are charac-
terized by the nPDFs and will affect the bounded nucleon
structure. Like the PDFs of free nucleons, the nPDFs can be
obtained by fitting experimental data for nuclear deep inelastic
scattering as well as nuclear collisions.
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To access the PDFs and then nPDFs, it is required
to get the solution of Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations [6–9].

Using the Laplace transform technique, some analytical
solutions of these equations have been reported in recent
years [10–18], which have resulted in noticeable success from
the phenomenological point of view. There has also been
some progress toward extracting the analytical solutions of
the proton spin-independent structure function F

p
2 (x,Q2)

[19], charged-current structure functions xF3(x,Q2) [20],
and also the spin-dependent one, i.e., xg

p
1 (x,Q2), at the

next-to-leading order (NLO) and next-to-NLO (NNLO)
approximations [21,22], using the Laplace transform
technique.

In this paper, the required analysis has been performed
using sequential Laplace transforms, which lead us to an
analytical solution of the DGLAP evolution equations at
NLO approximation. For this purpose, singlet, nonsinglet,
and individual gluon distributions inside the nucleus are an-
alytically calculated. We present our results for the valence
quark distributions xuA

v and xdA
v , the antiquark distributions

xuA and xd
A

, the strange sea distribution xsA, and finally for
the gluon distribution xgA inside the nucleus. Furthermore,
we extract the analytical solutions for the nuclear structure
function FA

2 (x,Q2) as the sum of a flavor singlet F S
2 (x,Q2),

gluon F
g
2 (x,Q2), and a flavor nonsinglet F NS

2 (x,Q2). The
obtained results indicate an excellent agreement with the DIS
data as well as those obtained by other methods such as the
fit to FA′

2 /FA
2 structure function ratio performed by the AT12

model [23].
The remainder of this paper consists of the following

sections: In Sec. II, we shall provide a brief discussion
on the theoretical formalism to obtain the PDFs at the
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NLO approximation in perturbative QCD, based on the
Laplace transformation technique. In Sec. III, we discuss the
theoretical formalism of the EMC effect and how to
parametrize the nPDFs at the initial input scale. In Sec. IV,
details of extracting nuclear structure function FA

2 (x,Q2)
in Laplace space would be discussed. Section V is de-
voted to present our results, based on the Laplace trans-
formation. Finally, we give our summary and conclusion in
Sec. VI.

II. A BRIEF REVIEW ON THE SOLUTION OF DGLAP
EVOLUTION EQUATIONS, USING THE LAPLACE

TRANSFORM TECHNIQUE

The singlet xqS(x,Q2) and gluon xg(x,Q2) distribution
functions can be described by the DGLAP evolution equa-
tions [6–9]. At the next-to-leading order approximation, in
the convolution notation ⊗, the coupled DGLAP evolution
equations can be written as [24,25]

4π

αs (Q2)

∂FS

∂lnQ2
(x,Q2) = FS ⊗

(
P 0

qq + αs (Q2)

4π
P 1

qq

)
(x,Q2) + G ⊗

(
P 0

qg + αs (Q2)

4π
P 1

qg

)
(x,Q2), (1)

4π

αs (Q2)

∂G

∂lnQ2
(x,Q2) = FS ⊗

(
P 0

gq + αs (Q2)

4π
P 1

gq

)
(x,Q2) + G ⊗

(
P 0

gg + αs (Q2)

4π
P 1

gg

)
(x,Q2). (2)

In Eq. (2), αs (Q2) is the running coupling constant and
the Altarelli-Parisi splitting kernels with one- and two-loop
corrections are denoted respectively by P 0

ij (x, αs (Q2)) and
P 1

ij (x, αs (Q2)) [9,26,27]. The masses of charm, bottom, and
top quarks (mc,mb, mt ) would be taken into account in the
energy scale μ by setting the number of active quark flavors;
for m2

c < μ2 < m2
b we would set Nf = 4, and for m2

b < μ2 <
m2

t we would fix Nf = 5 in the evolution equations. Through
this, the QCD parameter � can be adjusted at each heavy
quark mass threshold, μ2 = m2

c and m2
b. Therefore, when Nf

changes at c and b mass thresholds, the renormalized coupling
constant αs (Q2) will be continuously running [28].

It is now possible to discuss briefly the method which
is based on the Laplace transformation technique to extract
analytical solutions for the parton distribution functions, using
the DGLAP evolution equations. The evolution equations
presented in Eqs. (1) and (2) can be rewritten with respect
to ν and τ variables and in term of the convolution inte-
grals where ν ≡ ln(1/x) and τ is defined as τ (Q2,Q2

0) ≡
1

4π

∫ Q2

Q2
0

αs (Q′2)d ln Q′2 [10,19]. Consequently, the related
DGLAP equations appear as [10,11]

∂f

∂τ
(s, τ ) =

[
�LO

f (s) + αs (τ )

4π
�NLO

f (s)

]
f (s, τ ) +

[
�LO

f (s) + αs (τ )

4π
�NLO

f (s)

]
g(s, τ ), (3)

∂g

∂τ
(s, τ ) =

[
�LO

g (s) + αs (τ )

4π
�NLO

g (s)

]
g(s, τ ) +

[
�LO

g (s) + αs (τ )

4π
�NLO

g (s)

]
f (s, τ ) . (4)

It should be noted that in deriving the above equations, the
following property is used: The Laplace transform of convo-
lution factors is simply the ordinary product of the Laplace
transform of the factors. This is the reason why the usual
DGLAP equations can be converted to ordinary first-order
differential equations in Laplace space s with respect to τ
variable as in Eqs. (3) and (4).

In continuation, the leading-order splitting functions of the
PDFs, presented in Refs. [9,29] in Mellin space, are given in
Laplace s space by �LO

(f,g) and �LO
(f,g) [19]:

�LO
f = 4 − 8

3

{
1

s + 1
+ 1

s + 2
+ 2[γE + ψ (s + 1)]

}
, (5)

�LO
f = 2Nf

(
1

1 + s
− 2

2 + s
+ 2

3 + s

)
, (6)

�LO
g = 12

{
1

s
− 2

1 + s
+ 1

2 + s
− 1

3 + s
− [γE + ψ (s + 1)]

}

+ 33 − 2Nf

3
, (7)

and

�LO
g = 8

3

(
2

s
− 2

1 + s
+ 1

2 + s

)
, (8)

where Nf is the number of active quark flavors, γE is the Eu-
ler’s constant, and ψ is denoting the mathematical digamma
function.

The next-to-leading order splitting functions �NLO
(f,g) and

�NLO
(f,g) have too long expressions to be included here and

were presented in Appendix A of Ref. [19]. A very simple
parametrization can be taken for αs (τ )

4π
= a(τ ) as a(τ ) = a0.

One can consider using the following expression for a(τ ) in a
generally more precise calculation at the next-to-leading order
(NLO) approximation, as in Ref. [19]:

a(τ ) ≈ a0 + a1e
−b1τ . (9)

An excellent result accurate to a few parts in 104 is ob-
tained by this expansion. Based on the definition of a(τ )
given by the above equation, the following simplified no-
tations for the splitting functions in s space at the NLO
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approximation can be introduced where the conventions pre-
sented in Refs. [10,11,19] are also used:

�f,g (s) ≡ �LO
f,g (s) + a0�

NLO
f,g (s),

�f,g (s) ≡ �LO
f,g (s) + a0�

NLO
f,g (s) . (10)

The solution of the coupled ordinary first-order differential
equations in Eqs. (3) and (4) at the next-to-leading-order
approximation and in terms of the initial distributions are
straightforward. The evolved solutions in the Laplace s space
at input scale Q2

0 = 2 GeV2, taking into account the initial
distributions for the gluon g0(s) and singlet distributions
f 0(s), are given by [10,11,19]

f (s, τ ) = kff (a1, b1, s, τ ) f 0(s) + kfg (a1, b1, s, τ ) g0(s),

g(s, τ ) = kgg (a1, b1, s, τ ) g0(s) + kgf (a1, b1, s, τ ) f 0(s).

(11)

The analytical expressions for the coefficients kff , kfg , kgf ,
and kgg at the NLO approximation are given in Appendix B of
Ref. [19].

Now if we intend to get the solution for the nonsinglet part,
FNS(x,Q2), its NLO contribution can be written as

4π

αs (Q2)

∂FNS

∂lnQ2
(x,Q2)

= FNS ⊗
(

pLO,NS
qq + αs (Q2)

4π
pNLO,NS

qq

)
(x,Q2). (12)

The first-order differential equations in Laplace s space for
the nonsinglet distribution and in terms of the τ variable can
be obtained as in [10,11,19]

fNS(s, τ ),

∂fNS(s, τ )

∂τ
=

(
�LO

NS + αs (τ )

4π
�NLO

NS,qq

)
fNS(s, τ ). (13)

The solution of the above equation would simply be

fNS(s, τ ) = eτ�NS(s)f 0
NS(s). (14)

Here �NS(s) includes the NLO contribution of the splitting
functions in s space such that

�NS(s) ≡ �LO
NS (s) + τ2

τ
�NLO

NS,qq(s). (15)

Evaluation of �NLO
NS,qq(s) = L[e−νpNLO,NS

qq (e−ν ); s] is too
lengthy but straightforward and its analytical result in the
transformed Laplace s space at NLO approximation is given
in Appendix A of Ref. [19].

To amend the notations which are used in the article, it
should be noted that at the leading order approximation, Q2

dependence of the evolution equation is in fact represented by
τ variable and at the NLO approximation, by τ2; the former is
defined in Refs. [10,11,19,21]:

τ2 ≡ 1

4π

∫ τ

0
α(τ ′)dτ ′ =

(
1

4π

)2 ∫ Q2

Q2
0

α2
s (Q′2) d ln Q′2.

(16)

We should use the variable τ2 since the current analysis is
done at NLO approximation, but for simplicity in the notation,
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FIG. 1. Parton distribution for free proton at Q2
0 = 2 GeV2.

τ will be used in the remainder of the paper in its place. It
should be finally noted that the NLO expansion parameter, a1,
in the iterative solution of Eq. (9) is quite small. For instance,
a1 = 0.025 for M2

c < Q2 � M2
b GeV2 while b1 = 10.7 and

a1 = 0.017 with b1 = 8.63 for M2
b < Q2 � 105 GeV2. Fur-

thermore, a0 = 0.025 and is constant over the whole range of
Q2 scale [10].

III. THEORETICAL FORMALISM FOR THE EMC EFFECT

To calculate the parton distribution in nuclear media, we
would need to have the parton distributions for a free proton.
To achieve this, it is required to use a set of PDFs at the input
scale Q2

0 = 2 GeV2, which are depicting in Fig. 1 and have
the following standard parametrization, as in Ref. [30]:

xuv = 0.37328x0.32182(1 − x)3.59165

(1 + 3.62456x0.50629 + 21.31705x),

xdv = 0.51354x0.39354(1 − x)5.03622

(1 − 1.26057x0.47037 + 15.98368x),

2x(d + u) = 0.29795x−0.2052(1 − x)9.06901

(1 + 0.93542x0.33012 + 14.46062x),

x(d − u) = 9.49265x1.33727(1 − x)18.559

(1 − 7.82741x0.54431 + 20.60532x),

xs = 0.03724x−0.2052(1 − x)9.06901

(1 + 0.93542x0.33012 + 14.46062x),

xg = 3.60703x0.062467(1 − x)6.75001

(1 + 3.91106x2 − 0.813601x). (17)

On the other hand, using a number of parameters, the
nPDFs are specified at a fixed Q2 which is usually taken as
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Q2
0. There is a relation between the nPDFs and the PDFs in

free proton in which the PDFs are multiplied by a weight
function wi such that [31]

f A
i

(
x,Q2

0

) = wi (x,A,Z)fi

(
x,Q2

0

)
. (18)

Using a χ2 analysis procedure, the parameters in the
weight function which are dependent on x, A (atomic mass),
and Z (atomic number) can be obtained.

The following functional forms would be assumed for the
weight function in Eq. (18) which are based on the analysis in
Refs. [23,31–37]:

wi = 1 +
(

1 − 1

Aαi

)

×ai (A,Z) + bi (A)x + ci (A)x2 + di (A)x3

(1 − x)βi
. (19)

The following nPDFs can be obtained, considering the
weight function in Eq. (19) which is combined with PDFs in
Eq. (17):

uA
v

(
x,Q2

0

) = wuv
(x,A,Z)

Zuv

(
x,Q2

0

) + Ndv

(
x,Q2

0

)
A

,

dA
v

(
x,Q2

0

) = wdv
(x,A,Z)

Zdv

(
x,Q2

0

) + Nuv

(
x,Q2

0

)
A

,

uA
(
x,Q2

0

) = wq (x,A,Z)
Zu

(
x,Q2

0

) + Nd
(
x,Q2

0

)
A

,

d
A(

x,Q2
0

) = wq (x,A,Z)
Zd

(
x,Q2

0

) + Nu
(
x,Q2

0

)
A

,

sA
(
x,Q2

0

) = wq (x,A,Z)s
(
x,Q2

0

)
,

gA
(
x,Q2

0

) = wg (x,A,Z)g
(
x,Q2

0

)
. (20)

The Z term and the N (= A − Z) term in the above
equations are indicating the atomic number (the number of

protons) and the number of neutrons in the nuclei respectively.
Here, the SU(3) symmetry is not assumed.

For the case of isoscalar nuclei in which the number of
protons and neutrons in a nucleus are equal to each other,
valence quarks as well as antiquarks would have similar
distributions. But since in heavy nuclei the number of the
neutrons is larger than the number of protons (N > Z), as can
be seen in Eq. (20), the distribution of down-valence quarks
would be greater than that of up-valence quarks. Following
that, it can be seen as well that in this type of the nuclei,

antiquark distributions (uA, d
A
, sA) would not be equal to

each other [38,39].
As in Ref. [40], αi is taken to have the value 1/3 in Eq. (19).

Also it should be noted that there exist three constraints on
the parameters in the equation, considering nuclear volume
and surface contributions. These constraints are related to the
nuclear charge Z, baryon number (atomic number) A, and
momentum conservation [23,31,32,41], which can be written
in the Laplace space as follows:

Z = A

3
L[

2e−vuA
v

(
e−v,Q2

0

) − e−vdA
v

(
e−v,Q2

0

)
; s = 0

]
,

A = A

3
L[

e−vuA
v

(
e−v,Q2

0

) + e−vdA
v

(
e−v,Q2

0

)
; s = 0

]
,

A = AL{
e−v

[
uA

v + dA
v + 2(uA + d

A + sA) + gA
]

× (
e−v,Q2

0

)
; s = 1

}
. (21)

In order to be able to do the required calculations for iron
(Fe), calcium (Ca), carbon (C), helium (He), and deuterium
(D) nuclei, we need the relevant weight functions which
are presented in the following relations in which the effects
of shadowing, antishadowing, Fermi motion, and the EMC
regions are included [23]:

wFe
uv

= 1 +
(

1 − 1

561/3

)−0.0979153 + 2.08684x − 6.91749x2 + 5.50217x3

(1 − x)0.4
,

wFe
dv

= 1 +
(

1 − 1

561/3

)−0.0980722 + 2.08684x − 6.91749x2 + 5.50217x3

(1 − x)0.4
,

wFe
q = 1 +

(
1 − 1

561/3

)−0.344557 + 7.71619x − 45.8738x2 + 66.9498x3

(1 − x)0.1
,

wFe
g = 1 +

(
1 − 1

561/3

)−0.305125 + 2.59586x + 0.369233x3

(1 − x)0.1
, (22)

wCa
uv

= 1 +
(

1 − 1

401/3

)−0.0972234 + 2.08106x − 6.90323x2 + 5.47457x3

(1 − x)0.4
,

wCa
dv

= 1 +
(

1 − 1

401/3

)−0.0972234 + 2.08106x − 6.90323x2 + 5.47457x3

(1 − x)0.4
,

wCa
q = 1 +

(
1 − 1

401/3

)−0.325852 + 7.19981x − 42.7529x2 + 60.2908x3

(1 − x)0.1
,

wCa
g = 1 +

(
1 − 1

401/3

)−0.300195 + 2.59586x + 0.369233x3

(1 − x)0.1
, (23)
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wC
uv

= 1 +
(

1 − 1

121/3

)−0.0944919 + 2.0605x − 6.85243x2 + 5.37693x3

(1 − x)0.4
,

wC
dv

= 1 +
(

1 − 1

121/3

)−0.0944919 + 2.0605x − 6.85243x2 + 5.37693x3

(1 − x)0.4
,

wC
q = 1 +

(
1 − 1

121/3

)−0.266859 + 5.61929x − 33.2257x2 + 41.4429x3

(1 − x)0.1
,

wC
g = 1 +

(
1 − 1

121/3

)−0.288775 + 2.59586x + 0.369233x3

(1 − x)0.1
, (24)

wHe
uv

= 1 +
(

1 − 1

41/3

)−0.0920426 + 2.04191x − 6.8064x2 + 5.28935x3

(1 − x)0.4
,

wHe
dv

= 1 +
(

1 − 1

41/3

)−0.0920426 + 2.04191x − 6.8064x2 + 5.28935x3

(1 − x)0.4
,

wHe
q = 1 +

(
1 − 1

41/3

)−0.2224 + 4.48189x − 26.3976x2 + 29.4371x3

(1 − x)0.1
,

wHe
g = 1 +

(
1 − 1

41/3

)−0.284205 + 2.59586x + 0.369233x3

(1 − x)0.1
, (25)

wD
uv

= 1 +
(

1 − 1

21/3

)−0.0905182 + 2.03027x − 6.77752x2 + 5.23484x3

(1 − x)0.4
,

wD
dv

= 1 +
(

1 − 1

21/3

)−0.0905182 + 2.03027x − 6.77752x2 + 5.23484x3

(1 − x)0.4
,

wD
q = 1 +

(
1 − 1

21/3

)−0.198243 + 3.8859x − 22.8312x2 + 23.7229x3

(1 − x)0.1
,

wD
g = 1 +

(
1 − 1

21/3

)−0.283108 + 2.59586x + 0.369233x3

(1 − x)0.1
. (26)

In Fig. 2, the weight functions for the Fe, Ca, C, He, and D
nuclei are depicting at the initial scale Q2

0 = 2 GeV2, and in
Fig. 3, the parton distribution functions inside 56Fe nucleus at
Q2

0 = 2 GeV2 are presented.

IV. NUCLEAR STRUCTURE FUNCTION F A
2 (x, Q2 )

IN THE LAPLACE SPACE

Based on the Laplace transform technique, we perform
here an analytical calculation of the nuclear structure function
FA

2 (x,Q2) at NLO approximation. We should first extract the
nucleon structure function, using the singlet, gluon, and nons-
inglet parton distributions which were obtained in the previous
sections. The nuclear structure function FA

2 (x,Q2) in Laplace
s space, up to the next-to-leading order approximation, can be
written as

FA
2 (s, τ ) = FS

2 (s, τ ) + FG
2 (s, τ ) + FNS

2 (s, τ ), (27)

where the flavor singlet FS
2 and gluon FG

2 contribution
reads

FS
2 (s, τ ) =

[
4

9
2ūA(s, τ ) + 1

9
2d̄A(s, τ ) + 1

9
2s̄A(s, τ )

]

×
[
1 + τ

4π
C (1)

q (s)
]
, (28)

FG
2 (s, τ ) = 2

9
gA(s, τ )

[ τ

4π
C (1)

g (s)
]
. (29)

Finally, the nonsinglet contribution for three active (light)
flavors is given by

FNS
2 (s, τ ) =

[
4

9
uA

v (s, τ ) + 1

9
dA

v (s, τ )

][
1 + τ

4π
C (1)

q (s)
]
,

(30)

where C (1)
q (s) and C (1)

g (s) represent Wilson coefficients func-
tions at NLO and can be derived in Laplace s space by
cq (s) = L[e−νcq (e−ν ); s] and cg (s) = L[e−νcg (e−ν ); s]. Ex-
plicit expressions for the corresponding Wilson coefficients
functions are as follows [19]:
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C (1)
q (s) = CF

(
−9 − 2π2

3
− 2

(1 + s)2
+ 6

1 + s
− 2

(2 + s)2
+ 4

2 + s

+ 3[γE + ψ (s + 1)] + 2[γE + ψ (s + 2)]

1 + s
+ 2[γE + ψ (s + 3)]

2 + s

+ 1

3
{π2 + 6[γE + ψ (s + 1)]2 − 6ψ ′(s + 1)} + 4ψ ′(s + 1)

)
,

(31)

C (1)
g (s) = f

{
2

(1 + s)2
− 2

1 + s
− 4

(2 + s)2
+ 16

2 + s
+ 4

(3 + s)2
− 16

3 + s

− 2[γE + ψ (s + 2)]

1 + s
+ 4[γE + ψ (s + 3)]

2 + s
− 4[γE + ψ (s + 4)]

3 + s

}
.

(32)

As before, Q2 dependence of the nuclear structure
function in Eq. (27) is given again by τ (Q2,Q2

0) ≡
1

4π

∫ Q2

Q2
0

αs (Q′2)d ln Q′2. Using the inverse Laplace transform
and the appropriate change of variables [19], the desired
solution for the nuclear structure function in Bjorken x space,
F A

2 (x,Q2), can be readily obtained.
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FIG. 2. Weight function for Fe, Ca, C, He, and D nuclei, sub-
leveled by (a) to (d) for different types of PDFs.

V. LAPLACE TRANSFORMATION TECHNIQUE AND THE
EMC RESULTS

Based on the analytical solution for the DGLAP evolution
equations, using the Laplace transformation technique, we
shall first present in this section our results that have been
obtained for the parton distribution functions after which the
nuclear structure function ratio FA′

2 (x,Q2)/FA
2 (x,Q2) would

be presented. Figure 2 illustrates the weight function for
56Fe, 40Ca, 12C, 4He, and 2D nuclei. In Fig. 3, we depict
parton distribution functions inside the 56Fe nucleus at Q2

0 =
2 GeV2 while according to Eq. (20) SU(3) symmetry breaking
is supposed to be in place and hence the down-antiquark
distribution is assumed to be larger than the up-antiquark dis-
tribution, where additionally we see as well that down-valence
quark distribution is greater than up-valence distribution.
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x
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0.1
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0.4

0.5

0.6
xuv
xdv

xu
xd
xs
xg/5

NLO
Q0

2=2 GeV2

56Fe

FIG. 3. Parton distribution for 56Fe at Q2
0 = 2 GeV2.
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FIG. 4. Parton distribution function for 4He at Q2 = 4 GeV2,
resulted from the Laplace transform, represented by the solid line
(SMA18 Laplace) which has been compared with the AT12 [23],
HKN07 [33], and nCTEQ15 [42] models. The plots for different
types of PDFs are specified by sublevel (a) to (f).

Based on Eq. (14), the required calculations could be per-
formed to obtain, at the NLO approximation, the valence
quark distributions xuA

v (x,Q2) and xdA
v (x,Q2). In Figs. 4

and 5, these distributions have been presented alongside other
parton distributions, including the antiquarks and gluon distri-
bution functions for 4He and 56Fe nuclei at Q2 = 4 GeV2 in
Laplace s space. Furthermore, they have been compared with
AT12 [23], HKN07 [33], and nCTEQ15 [42] models. As can
be seen, a good agreement does exist between the presented
results and the results obtained from the other models. The
solid line represents our solution, resulting from the Laplace
transform technique, and the red circles represent the parton
quark distributions from the AT12 model.

In Fig. 6, the EMC effect has been demonstrated for 4He
nucleus in Laplace s space and Mellin space [23] at Q2 =
4 GeV2 and compared with DIS data in nuclear reactions from
NMC [43] and E139 [44] Collaborations. The EMC effect
for 12C nucleus in Laplace s space and Mellin momment
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FIG. 5. Parton distribution function for 56Fe at Q2 = 4 GeV2,
resulted from the Laplace transform, represented by the solid line
(SMA18 Laplace) which has been compared with the AT12 [23],
HKN07 [33], and nCTEQ15 [42] models. The plots for different
types of PDFs are specified by sublevel (a) to (f).

space [23] at Q2 = 4 GeV2 has been shown in Fig. 7 and
compared with the results from the DIS data in nuclear
reactions by NMC [45] as well as EMC [46], E139 [44], and
E665 [47] Collaborations. The corresponding results for the
EMC effect in 40Ca structure function in Laplace s space
and Mellin moment space [23] at Q2 = 4 GeV2 have been
presented in Fig. 8 and they have been compared with the
results from DIS data in nuclear reactions by NMC [43] and
EMC [48], E139 [44], and E665 [47] Collaborations.

It is seen that our analytical solutions, based on the inverse
Laplace transform technique at the NLO approximation for
the nuclear structure function over a wide range of x and
Q2 values, correspond well with the experimental data and
the AT12 model. One can conclude that in spite of small
disagreements for the parton densities, we find a satisfactory
agreement for the nuclear structure function ratio over a wide
range of x’s and Q2’s. The overall agreement is found to have
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FIG. 6. EMC effect for 4He/2D at Q2 = 4 GeV2, resulted from
the Laplace transform, represented by solid line (SMA18 Laplace)
which has been compared with the AT12 model [23] and DIS data of
NMC [43] and E139 [44] Collaborations.

a deviation of 1 part in 105. In Fig. 9, we present the EMC
effect for 56Fe structure function in Laplace space and Mellin
space [23] at Q2 = 4 GeV2 and a comparison with the DIS
data in nuclear reactions by BCDMS [49] and also E140 [50],
E139 [44], and E87 [51] Collaborations is done.

Finally, in Fig. 10 we compare the EMC effect for
40Ca/12C structure function in Laplace s space as well as
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FIG. 7. EMC effect for 12C/2D at Q2 = 4 GeV2, resulted from
the Laplace transform, represented by a solid line (SMA18 Laplace)
which has been compared with the AT12 model [23] and DIS data of
NMC [45], EMC [46], E139 [44], and E665 [47] Collaborations.
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FIG. 8. EMC effect for 40Ca/2D at Q2 = 4 GeV2 resulted from
the Laplace transform, represented by a solid line (SMA18 Laplace)
which has been compared with the AT12 model [23] and DIS data of
NMC [45], EMC [46], E139 [44], and E665 [47] Collaborations.

in the Mellin moment space [23] at Q2 = 4 GeV2 with the
DIS data from the NMC Collaboration [43]. In all figures,
including, for example, Fig. 11, the effects of the shadowing
region and Fermi region are identical in the Mellin and
Laplace spaces while the effect of the antishawdowing region
and EMC region in Laplace space are more acceptable and
better than in the Mellin space.
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FIG. 9. EMC effect for 56Fe/2D at Q2 = 4 GeV2 resulted from
the Laplace transform, represented by a solid line (SMA18 Laplace)
which has been compared with the AT12 model [23] and DIS
data of BCDMS [49], E140 [50], E139 [44], and finally E87 [51]
Collaborations.
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FIG. 10. EMC effect for 40Ca/12C at Q2 = 4 GeV2 resulted from
the Laplace transform, represented by solid line (SMA18 Laplace)
which has been compared with the AT12 model [23] and DIS data in
nuclear reaction NMC [43].

VI. SUMMARY AND CONCLUSION

The results for NLO decoupled analytical evolution equa-
tions for singlet FS(x,Q2), gluon G(x,Q2), and nonsinglet
FNS(x,Q2) have been presented in this article, which resulted
from the solution of coupled DGLAP evolution equations in
the Laplace s space. Following that, we performed the re-
quired calculations and obtained the results for valence quark
distributions xuv and xdv , the antiquark distributions xd and
xu, the strange sea distribution xs = xs, and finally the gluon
distribution xg, using the input parton distributions at Q2

0 =
2 GeV2 for free protons, which is initiated from the KKT12
model [30]. We also calculated in this work the nuclear
structure function FA

2 (x,Q2), which is a direct result from the
Laplace transform technique. To derive this structure function,
the corresponding analytical solutions for singlet F S

2 (x,Q2),
gluon F G

2 (x,Q2), and nonsinglet F NS
2 (x,Q2) structure func-

tions, inside the nucleus, are needed. Having the initial distri-
butions for singlet, gluon, and nonsinglet distributions at the

0.0001 0.001 0.01 0.1 1
x

0.8

0.9

1

1.1

F 2Fe
(x

,Q
2 )/F

2D
(x

,Q
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Anti-Shadowing

EMC
effect
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FIG. 11. EMC effect for 56Fe/2D at Q2 = 4 GeV2 resulted from
the Laplace transform, represented by solid line (SMA18 Laplace)
which has been compared with the AT12 model [23] while the
antishadowing, shadowing, EMC, and Fermi motion regions are
included.

input scale Q2
0, we could obtain the nuclear structure function

at any arbitrary Q2 scale. The employed method, in our anal-
ysis, creates the possibility of obtaining a strictly analytical
solution in terms of the x variable for nuclear parton densities
as well as the structure function. As a final point, we got the
general solutions such that they are in satisfactory agreement
with AT12, HKN07, and nCTEQ15 models and also with
the available experimental data including those of the NMC,
BCDMS, E87, E139, E140, and E65 Collaborations. As a
further research task, it is possible to extend the calculation
up to NNLO approximation to investigate the EMC effect,
using the Laplace transformation while new updated data are
employed. We hope to report on this issue in future.
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