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Library.

PREFACE

THE object of an elementary college course in Analytic Geom-

etry is twofold : it is to acquaint the student with new and

interesting and important geometrical material, and to provide
him with powerful tools for the study, not only of geometry
and pure mathematics, but in no less measure of physics in the

broadest sense of the term, including engineering.

To attain this object, the geometrical material- should be

presented in the simplest and most concrete form, with emphasis
on the geometrical content, and illustrated, whenever possible,

by its relation to physics. This principle has been observed

throughout the book. Thus, in treating the ellipse, the methods

actually used in the drafting room for drawing an ellipse from

the data commonly met in descriptive geometry are given a

leading place. The theorem that the tangent makes equal

angles with the focal radii is proved mechanically : a rope which

passes through a pulley has its ends tied at the foci and is drawn
taut by a line fastened to the pulley. Moreover, the meaning
of foci in optics and acoustics is clearly set forth. Again, there

is a chapter on the deformations of an elastic plane under stress,

with indications as to the three-dimensional case (pure strain,

etc.).

The methods of analytic geometry, even in their simplest

forms, make severe demands on the student's ability to compre-
hend the reasoning of higher mathematics. Consequently, in

presenting them for the first time, purely algebraic difficulties,

such as are caused by literal coefficients and long formal compu-
tations, should be avoided. The authors have followed this

principle consistently, beginning each new subject of the early

chapters with the discussion of a simple special, but typical,

case, and giving immediately at the close of the paragraph
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VI PREFACE

simple examples of the same sort. They have not, however,

stopped here, but through carefully graded problems, both of

geometric and of analytic character, have led the student to

the more difficult applications of the methods, and collections

of examples at the close of the chapters contain such as put
to the test the initiative and originality of the best students.

As a result of this plan the presentation is extraordinarily

elastic. It is possible to make the treatment of any given topic

brief without rendering the treatment of later topics unin-

telligible, and thus the instructor can work out a course of any
desired extent. For example, one freshman course at Harvard

devotes about thirty periods to analytic geometry and the ma-

terial covered consists of the essential parts of the first nine

chapters. Another freshman course gives twice the time to

analytic geometry (the students having already had trigo-

nometry), taking up determinants and the descriptive properties

of the quadric surfaces, and also devoting more time to the less

elementary applications of the methods of analytic geometry/
The advanced courses in the calculus and mechanics require the

material of the later chapters. In fact, a thorough elementary
treatment of the rudiments of Solid Analytic Geometry is in-

dispensable for the understanding of standard texts on applied

mathematics. It is true that these texts are chiefly Continental.

But we shall never have American treatises which are up to the

best scientific standards of the day until the subjects above men-

tioned are available in simply intelligible form for the under-

graduate.

The subject of loci is brought in early through a brief intro-

ductory chapter, and problems in loci are spread throughout
the book. A later chapter is devoted to a careful explanation
of the method of auxiliary variables. There is a chapter on

determinants, with applications both to analytic geometry and

to linear equations. Diameters and poles and polars in the

plane and in space receive a thorough treatment. Cylindrical

and spherical coordinates and quadric surfaces are illumined by
the concept of triply orthogonal systems of surfaces. The re-
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duction of the general equation of the second degree in space

to normal forms by translations and rotations is sketched and

illustrated by numerical examples.
The question may be asked : In so extensive a treatment of

analytic geometry should not, for example, homogeneous co-

ordinates find a place ? The authors believe that the student,

before proceeding to the elaborate methods of modern geometry,
should have a thorough knowledge both of the material and the

methods which may fairly be called elementary, and they felt

that a book which, avoiding the conciseness of some of the

current texts and the looseness of others, is clear because it is

rigorous will meet a real need.

This book is designed to be at once an introduction to the

subject and a handbook of the elements. May it serve alike

the needs of the future specialist in geometry, the analyst, the

mathematical physicist, and the engineer.

HARVARD UNIVERSITY

. April, 1921
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PLANE ANALYTIC GEOMETRY

INTRODUCTION

DIRECTED LINE-SEGMENTS. PROJECTIONS

Elementary Geometry, as it is studied in the high school

to-day, had attained its present development at the time when
Greek culture was at its height. The first systematic treat-

ment of the subject which has come down to us was written

by Euclid about 300 B.C.

Algebra, on the other hand, was unknown to the Greeks.

Its beginnings are found among the Hindus, to whom the so-

called Arabic system of numerals may also be due. It came

into Western Europe late, and not till the close of the middle

ages was it carried to the point which is marked by any school

book of to-day that treats this subject.

When scholars had once possessed themselves of these two

subjects Geometry and Algebra the next step was quickly
taken. The renowned philosopher and mathematician, Rene

Descartes, in his Geometric of 1637, showed how the methods

of algebra could be applied to the study of geometry. He
thus became the founder of Analytic Geometry.*
The "

originals
" and the locus problems of Elementary

Geometry depend for their solution almost wholly on ingenu-

ity. There are no general methods whereby one can be sure

of solving a new problem of this class. Analytic Geometry,

*Also called Cartesian Geometry, from the Latinized form of his name,
Cartesius.

1



2 ANALYTIC GEOMETRY

on the other hand, furnishes universal methods for the treat-

ment of such problems ; moreover, these methods make pos-

sible the study of further problems not thought of by the

ancients, but lying at the heart of modern mathematics and

mathematical physics. Indeed, these two great subjects owe

their very existence to the new geometry and the Calculus.

The question of how to make use in geometry of the nega-

tive, as well as the positive, numbers is among the first which

must be answered in applying algebra to geometry. The solu-

tion of this problem will become clear in the following

paragraphs.

1. Directed Line-Segments. Let an indefinite straight line,

L, be given, and let two points, A and B, be marked on L.

. -D f,
Then the portion of L which is

1 1 1 bounded by A and B is what is

A Q g called in Plane Geometry a line-

' ' '

segment, and is written as AB.

Q A B -^e^ a third point, C, be marked
'

' ' on L. Then three cases arise,

as indicated in the figure. Cor-

responding to these three cases we have :

(a) AB + BC = AC;

(6) AB-CB = AC;

(c) CB-AB= CA.

Three other cases will arise if the original points A and B are

taken in the opposite order on. the line. Let the student

write down the three corresponding equations.

A unification of all these cases can be effected by means of

an extension of the concept of a line-segment. We no longer

consider the line-segments AB and BA as identical, but we

distinguish between them by giving each a direction or sense.

Thus, AB shall be directed from A to B and BA shall be

directed from B to A, i.e. oppositely to AB. These directed
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line-segments we denote by AB and BA, to distinguish them

from the ordinary, or undirected, line-segments.

We may, for the moment, interpret the directed line-seg-

ment AB as the act of walking from A to B
;
then BA repre-

sents the act of walking from B to A. With this in mind, let

us return to Fig. 1 and consider the directed line-segments

AB, BC, and AC. We have, in all three cases represented by

Fig. 1, and also in the other three :

AB + BC=AC,
since walking from A to B and then walking from B to C is

equivalent, with reference to the point reached, to walking
from A to C.

Accordingly, we unify all six cases by defining, as the sum
of the directed line-segments AB and BC, the directed line-

segment AC :

(1) AB + BC=AC.
From this definition it follows that, if A, B, C, and D are

any four points of L,

(2) AB + BC+CD = AD.

For, by (1), the sum of the first two terms in (2) is AC, and,

by the definition, the sum of AC and CD is AD.

Similarly, if the points M, M1} M2 , ,
Mn_ N- are any points

of L, we have

(3) MM
l + MiMz + + JGH*+ +Mn_^N= MN.

Given two directed line-segments on the same line or on

two parallel lines, we say that these two directed line-segments

are equal, if they have equal lengths and the same direction or

sense.

2. Algebraic Representation of Directed Line-Segments. On
the line L let one of the two opposite directions or senses be

chosen arbitrarily and defined as the positive direction or sense

of L
;
and let the other be called the negative direction or sense.
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A directed line-segment AB, which lies on L, is then called

positive, if its sense is the same as the positive sense of L, and

negative, if its sense is the same as the negative sense of L.

To such a directed line-segment AB we assign a number,
which we shall also represent by AB, as follows. If I is the

length of the ordinary line-segment AB, then

AB = I,
if AB is a positive line-segment ;

AB = l,
if AB is a negative line-segment.

If AB = I, then BA = - I
;
and if AB = I,

then ~BA= I

In either case

(1) AB + BA = Q or AB = -BA.

Since the act of walking from A to B is nullified by the act

of walking from B to A, we might have arrived at equations

(1) from consideration of the line-segments themselves, instead

of by use of the numbers which represent them.

It is easy to verify the fact that equations (1), (2), and (3)

of the preceding paragraph, which relate to directed line-seg-

ments, hold for the corresponding numbers. Consequently,
no error or confusion arises from using the same notation AB
for both the directed line-segment and the number correspond-

ing to it. We shall, however, adopt a still simpler notation,

dropping the dash altogether and writing henceforth AB to

denote, not merely the directed line-segment or the number

corresponding to it, but also the line-segment itself, stating

explicitly what is meant, unless the meaning is clear from the

context.

Absolute Value. It is often convenient to be able to express

merely the length of a directed line-segment, AB. The nota-

tion for this length is
|

AB
\

;
read :

" the absolute value of

AB."
The numerical, or absolute, value of a number, a, is

denoted in the same way :
|

a
|. Thus, |

3
1

= 3. Of course,

13|=3.
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3. Projection of a Broken Line. By the projection of a point
P on a line L is meant the foot, M, of the perpendicular

dropped from P on L. If P lies on L, it is its own projection

on L.

Let PQ be any directed line-segment, and let L be an arbi-

trary line. Let M and N be respectively the projections of

P and Q on L. The projection

of the directed line-segment PQ
on i shall be denned as the di-

rected line-segment MN, or the

number which represents MN al-

gebraically. Since MN= NM,
it follows that

M N
FIG. 2

Proj. PQ = -Proj. QP.

If PQ lies on a line perpendicular to L, the points M and

^T coincide, and we say that the projection MN of PQ on L is

zero. Such a directed line-segment MN, whose end-points are

identical, we may call a nil-segment ;
to it corresponds the

number zero. It is evident that in taking the sum of a num-

ber of directed line-segments, any of them which are nil-

segments may be disregarded, just as, in taking the sum of a

set of numbers, any of them

which are zero may be disre-

garded.

Consider an arbitrary
broken linePP^ Pn_iQ.

By its projection on L is

meant the sum of the pro-

jections of the directed line-
FIG. 3

segments PPX ,
PtP2 , ,

Pn_iQ, or

This sum has the same value as MN, the projection on L
of the directed line-segment PQ ;

cf. 1, (3) :

MMl +M 2̂ + + Mn_ lN= MN.
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Hence the theorem :

THEOREM 1. The sum of the projections on L of the segments

PPi, P\PK -,
Pn-iQ of a broken line joining P with Q is equal

to the projection on L of the directed line-segment PQ.

If, secondly, the same points P and Q be joined by another

broken line, PP[P'2 PL-iQ, the projection of the latter on

L will also be equal to MN:

MM[ + M[M'2+ . + M'm_ lN= MN.

Hence the theorem :

THEOREM 2. Given two broken lines having the same extremi-

ties,

P and

Let L be an arbitrary straight line. Then the sum of the pro-

jections on L of the segments PP\, PiPz) >
Pn-iQ} of which the

first broken line is made up, is equal to the corresponding sum

for the second broken line.



CHAPTER I

N

O

y

COORDINATES. CURVES AND EQUATIONS

1. Definition of Rectangular Coordinates. Let a plane be

given, in which it is desired to consider points and curves.

Through a point in this plane take two indefinite straight

lines at right angles to each other, and choose on each line a

positive sense.

Let P be any point of the plane. Consider the directed

line-segment OP. Let its projections on the two directed lines

through be OM and ON. The numbers which represent

algebraically these projections,

that is, the lengths of OM and

ON taken with the proper signs

(cf. Introduction, 2), are called

the coordinates of P. We shall

denote them by x and y :

x = OM, y = ON,

and write them in parentheses :

(a?, y). The first number, x, is

known as the x-coo'rdinate, or

abscissa, of P; the second, y, as the y-coordinate, or ordinate,

of P.

The point is called the origin of coordinates. The directed

lines through are called the axes of coordinates or the coordi-

nate axes
;
the one, the axis of x

;
the other, the axis of y. It

is customary to take the coordinate axes as in Fig. 1, the axis

of x being positive from left to right, and the axis of y, posi-

tive from below upward. But, of course, the opposite sense

on one or both axes may be taken as positive, and an oblique

M

FIG. 1
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position of the axes which conforms to the definition is legiti-

mate, the essential thing being solely that the axes be taken

perpendicular to each other.

Every point, P, in the plane has definite coordinates, (x, y).

Conversely, to any pair of numbers, x and y, corresponds a

point P whose coordinates are (x, y). This point can be con-

structed by laying off OM=x on the axis of x, erecting a per-

pendicular at M to that axis, and then laying off MP = y.

We might equally well have begun by laying off ON= y on

the axis of y (cf. Fig. 1), and then erected a perpendicular to

that axis at N and laid off on it

NP= x. It shall be understood that

the positive sense on any line parallel

to one of the coordinate axes, such as

x the perpendicular to the axis of x at

M, shall be the same as the positive
"PTn 9

sense of that axis. For other lines

of the plane there is- no general principle governing the choice

of the positive sense.

The coordinates of the origin are (0, 0). Every point on

the axis of x has as its ordinate, and these are the only

points of the plane for which this is true. Hence the axis of

x is represented by the equation

y = 0, (axis of x).

Similarly, the axis of y is represented by the equation

x = 0, (axis of y).

The axes divide the plane into four regions, called quadrants.

The first quadrant is the region included between the positive

axis of x and the positive axis of y ;
the second quadrant, the

region between the positive axis of y and the negative axis of

x
;

etc. It is clear that the coordinates of a point in the first

quadrant are both positive ;
that a point of the second quad-

rant has its abscissa negative and its ordinate positive ;
etc.

The system of coordinates just described is known as a sys-

tem of rectangular or Cartesian coordinates.
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EXERCISES

The student should provide himself with some squared

paper for working these and many of the later exercises in

this book. Paper ruled to centimeters and subdivided to mil-

limeters is preferable.

1. Plot the following points, taking 1 cm. as the unit :

(a) (0,1); (6) (1,0); (c) (1,1);

(d) (1, -1); (e) (-!,-!); (/) (2, -3);

(90 (0, -21) ; (ft) (- 3.7, 0) ; (f) (-lj, -If)
.

(.;) (-4,3.2); (*) (3.24, -0.87); (-1,1).

2. Determine the coordinates of the point P in Fig. 1 when
1 in. is taken as the unit of length ;

also when 1 cm. is the

unit of length.

3. The same for the point marked by the period in

Fig. 1."

2. Projections of a Directed Line-Segment on the Axes. Let

PI, with the coordinates (xl} y^), and P2 : (o^, y2)* be any two

points of the plane. Con-

sider the directed line-seg-

ment PiP2 . It is required
to find its projections on the

axes.

To do this, draw the

broken line P^P.,. By In-

troduction, 3, Th. 1, the

projections of this broken

line on the axes are the

same as those of the directed line-segment PiP2 .

taking first the projections on the axis of x, we have

FIG. 3

Hence,

Proj. = Proj.
= -Proj.

* We shall frequently use this shorter notation, P2 :

breviation for " P2,
with the coordinates (x2, 2/2)-"

OP2

OP2 .

(xj, 2/2), as an ab-
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But the terms in the last expression are by definition x

and a^. So

(1) Proj. PiP2 on ovaxis = a% x^

Similarly,

(2) Proj. PjP2 on y-axis = t/2 yx.

The projections of PiP2 on two lines drawn parallel to the

axes are obviously given by the same expressions.

EXERCISES

1. Plot PjP2 when Pj is the point (a) of Ex. 1, 1, and P2

is (6). Determine the projections from the foregoing formulas,

and verify directly from the figure.

2. The same, when

i) PI is (e) and P2 is (/) ;

ii) P! is (c) and P2 is (d) ;

iii) PI is (i) and P2 is
(I).

3. Distance between Two Points. Let the points be P1}

with the coordinates (a^, 2h), and P2 : (a^, y2). Through Pj

draw a line parallel to the axis of x and through P2 ,
a line

parallel to the axis of y\ let Q
y v^v^v denote the point of intersection of

these lines. Then, by the Pytha-

gorean Theorem,

-* (!)
O

FIG. 4
or

(2)

where D denotes the distance between P
t
and P2 . Hence

(3) D =

In the foregoing analysis, we have used PtQ (and similarly,

QP2)
in two senses, namely, i) as the length of the ordinary

line-segment P^ty of Elementary Geometry ; ii) as the algebraic
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expression x2 x
l
for the projection P^Q, of the directed line

segment P^P2 on a parallel to the axis of x. Since, however,
these two numbers differ at most in sign, their squares are

equal, and hence equation (2) is equivalent to equation (1).

In particular, Pt
P2 may be parallel to an axis, e. g. the axis

of x. Here, y2
= yl}

and (3) becomes

The student must not, however, hastily infer that

D = X.2 05i.

It may be that x2 x
t
is negative, and then *

D = -(x2 -x1).

A single formula which covers both cases can be written in

terms of the absolute value (cf . Introduction, 2) as follows :

(4) D=\x2 -x1 \.

EXERCISES

1. Find the distances between the following pairs of points,

expressing the result correct to three significant figures. Draw
a figure each time, showing the points and the line connecting

them, and verify the result by actual measurement.

(a) (2, 1) and (- 2,
-

2). (6) (- 7, 6) and (2,
-

3).

(c) (13, 5) and (- 2, 5). (d) (7, 3) and (12, 3).

(e) (4, 8) and (4,
-

8). (/) (- 1, 2) and (- 1, 6).

2. Find the lengths of the sides of the triangle whose ver-

tices are the points ( 2, 3), ( 2, 1), (4, 1).

3. How far are the vertices of the triangle in question 2

from the origin ?

* There is no contradiction here, or conflict with the ordinary laws of

algebra. For, the -^-sign always calls for the positive square root, that

being the definition of the symbol, and we must see to it in any given
case that we fulfill the contract.
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4. Find the lengths of the diagonals of the convex quadri-

lateral whose vertices are the points (4, 1), (1, 3), (3, 1),

(-2,-!).

4. Slope of a Line. By the slope, A, of a line is meant the

trigonometric tangent of the angle, 6, which the line makes
with the positive axis of x :

(1) A = tan 0.

To find the slope of the line,

let P with the coordinates (xiy ?/i),

and P2 : fa, y2) be the extremities

of any directed line-segment
on the line. Then

(2)

or

(3)

If, instead of P^, we had taken its opposite, P2P!, we
should have obtained for A the value (yt yz)/(%i ty)- But

this is equal to the value of A given by (3). Thus, A is the

same, whether the line is directed in the one sense or in the

opposite sense. Hence we think of A as the slope of the line

without regard to sense.

Variation of the Slope. Consider the slopes, A, of different

lines, L, through a given point, P. When L is parallel to the

axis of x, A has the value zero. When L rotates as shown in

the figure, A becomes positive and increases steadily in value.

As L approaches the vertical line L', A becomes very large,

increasing without limit.

When L passes beyond L', A changes sign, being still nu-

merically large. As L continues to rotate, A increases alge-

braically through negative values. Finally, when L has again
become parallel to the axis of x, A has increased algebraically

through all negative values and becomes again zero.
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FIG. 6

When L is in the position of L', is 90 and tan = X is

undefined, that is, has no value. Hence L' has no slope. One

often sees the expression : tan 90 = oo, and, in accordance with

it, one might write here, A = oo . This does not mean that L' has

a slope, which is infinite, for "
infinity

"
is not a number. It

is merely a brief and

symbolic way of describ-

ing the behavior of X for

a line L, near to, but not

coincident with L'
;

it

says that for such a line

X is numerically very

large ;
and further that,

when the line L ap-

proaches L' as its limit,

X increases numerically
without limit, that is,

increases numerically be-

yond any preassigned number, as 10,000,000 or 10,000,000 !, and

stays numerically above it.

The Angle 0. In measuring the angle from one line to an-

other, it is essential, first of all, to agree on which direction

of rotation shall be considered as positive. We shall take

always as the positive direction of rotation that from the posi-

tive axis of x to the positive axis of y ;
so that the angle from

the positive axis of x to the positive axis of y is -f 90, and

not - 90.

The complete definition of is, then, as follows : The slope-

angle of a line is the angle from the positive axis of x to the

direction of the line. There are in general two positive values

for less than 360
;

if the smaller of them is denoted by 0, the

other is 180 + 0. Which of these angles is chosen is imma-

terial, since tan (180 + 0)
= tan

;
this result is in agreement

with the previous one, to the effect that the slope pertains to

the undirected line without regard to a sense on it.
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The student should now draw a variety of lines, indicating

for each the angle 0, and assure himself that the deduction of

formula (3) holds, not merely when the quantities 052 x
1
and

#2 y\ are positive, but also when one or both are negative.

Hight-Handed and Left-Handed Coordinate Systems. For the

choice of axes in Fig. 1, the positive direction for angles is

the counter-clockwise direction. But for

x such a choice as is indicated in the

present figure, a choice equally legiti-

mate, it is the clockwise sense which is

positive.

-. The above formulas apply to either

FKJ. 7 system of axes. The first system is

called a right-handed system ;
the other,

a left-handed system. We shall ordinarily use a right-handed

system.

PROBLEM. To draw a line through a given point having a

given slope. In practice, this problem is usually to be solved

on squared paper. The solution will be sufficiently clearly

indicated by an example or two.

Example 1. To draw a line through the point (2, 3) hav-

ing the slope 4.

Proceed along the parallel to the a>-axis through the given

point by any convenient distance, as 1 unit, toward the left.*

Then go up the 'line through this point, parallel to the ?/-axis,

by 4 times the former distance, here, 4 units. Thus, a sec-

ond point on the desired line is determined, and the line can

now be drawn with a ruler.

If the given point lay near the edge of the paper, so that

the above construction is inconvenient, it will do just as well

to proceed from the first point toward the right by 1 unit, and

then down by four units.

* The student will follow these constructions step by step on a piece

of squared paper.
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Example 2. To draw a line through the point (1.32, 2.78)

having the slope .6541.

Here, it is clear that we cannot draw accurately enough to

be able to use the last significant figure of the given slope.

Open the compasses to span 10 cni. (if the squared paper is

ruled to cm.) and lay off a distance of 10 cm. to the right on a

parallel to the ic-axis through the given point. This parallel

need not actually be drawn. Its intersection, Q, with the cir-

cular arc is all that counts, and this point, Q, can be estimated

and marked. Its distance above the axis of x will be 2 cm.

and 7.8 mm. The error of drawing will be of the order of the

last significant figure, namely, more than T̂ mm. and less than

.5 mm.

Next, open the compasses to span 6 cm. and 5.4 mm. Put

the point of the compasses on Q, and lay off the above dis-

tance, 6.54 cm., on a parallel through Q to the y-axis and

above Q. The point R, thus found, will be a second point on

the desired line, which now can be drawn.

EXERCISES

1. The points Pj, P2 ,
P3 ,

with the coordinates (2, 5), (7, 3),

( 3, 7) respectively, lie on a line. Show that the value for

the slope of the line as given by equation (3) is the same, no

matter which two of the three points are used in obtaining it.

2. Find the slopes of the sides of the triangle of Ex. 2, 3.

3. Find the angles which the sides of that triangle make
with the axes, and hence determine the angles of the triangle.

4. Show that the points (- 2,
-

3), (5,
-

4), (4, 1), ( 3, 2)

are the vertices of a parallelogram.

5. Draw a line through the point (1, 2) having the

slope 3.

6. Draw a line through the point (2, 1) having the

slope li.

7. Draw a line through the point (1.32, 0.14) having the

slope -.2688.
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5. Mid-Point of a Line-Segment. Let P1} with the coordi-

nates
(a,

1

!, 2/i),
and P2 : (^ y-i)

^e the extremities of a line-seg-

ment. It is desired to find the

Ja
(^2^2) coordinates of the point P which

bisects P^.
Let the coordinates of P be

(x, y). It is evident that the

directed line-segment PiP is

x equal to the directed line-seg-

FIG. 8 ment PP2 . Hence the projec-

tion of PjP on the axis of x, or

x ojj, must equal the projection of PP2 on that axis, or a^ x :

x x1
= x2 x. ";.-'

Hence

Similar considerations apply to the projections on the axis

of y, and consequently

2

We have thus obtained the following result : The coordinates

(x, y~) of the point Ptohich bisects the line-segment PiP2 are given

by the equations :

EXERCISES

1. Determine the coordinates of the mid-point of each of

the line-segments given by the pairs of points in Ex. 1, 3.

Draw figures and check your answers.

2. Find the mid-points of the sides of the triangle mentioned

in Ex. 2, 3, and check by a figure.

3. Determine the coordinates of the mid-point of the line

joining the points (a + b, a) and (a 6, 6).

4. Show that the diagonals of the parallelogram of Ex. 4,

4 bisect each other.



COORDINATES. CURVES AND EQUATIONS 17

6. Division of a Line-Segment in Any Ratio.* Let it be re-

quired to find the coordinates (x, y} of the point P which

divides the line-segment PiP2 in an arbitrary ratio, W1/m2 : f

PlP_m1

PP2

~
mz

'

Obviously the projections of PjP and PP2 on the axis of x

must be in the same ratio, m^m^, and hence

x Xj _ Wi

#2 x m-i

On solving this equation for x, it is found that

Similar considerations, applied to the projections on the

axis of y, lead to the corresponding formula for y, and thus

the coordinates of P are shown to be the following :

x _.

If ?^i and m2 are equal, these formulas reduce to those of

5.

External Division. It is also possible to find a point P on

the indefinite straight line through Pl and P2 and lying outside

the line-segment P]P2 ,
which makes

P
L
P= m1

P2P w^"

where m
1
and m2 are any two unequal positive numbers. Here,

x1 x _ mi

x% x m2

This paragraph may well be omitted till the results are needed in

later work.

t The given numbers mi and m2 may be precisely the lengths PiP
and PP2 ;

but in general they are merely proportional respectively to

them, i.e. they are these lengths, each multiplied by the same positive or

negative number.
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On solving this equation for x and the corresponding one for

y, we find, as the coordinates of the point P, the following :.

/2\ x
m2 wii ra2 mx

The point P is here said to divide the line PiP2 externally in

the ratio m1/m2 ; and, in distinction, the division in the earlier

case is called internal division. Both formulas, (1) and (2),

can be written in the form (1) if one cares to consider external

division as represented by a negative ratio, m l/mz , where, then,

one of the numbers m^ m2 is positive, the other, negative.

EXERCISES

1. Find the coordinates of the point on the line-segment

joining (1, 2) with (5, 4) which is twice as far from the

first point as from the second. Draw the figure accurately
and verify.

2. Find the point on the line through the points given in

the preceding problem, which is outside of the line-segment

bounded by them and is twice as far from the first point as

from the second.

3. Find the point which divides internally the line-segment

bounded by the points (3, 8) and ( 6, 2) in the ratio 1 : 5, and

lies nearer the first of these points.

4. The same question for external division.

y^
7. Curve

Pitting. Equation of a Curve. Since the subject

of graphs is now very generally taught in the school course

in Algebra, most students will already have met some of the

topics taken up on the foregoing pages, and moreover they
will have plotted numerous simple curves on squared paper
from given equations. Thus, in particular, they will be famil-

iar with the fact that all the points whose coordinates satisfy

a linear equation, i.e. an equation of the first degree, like

(1) 2x-3y-l = 0,



COORDINATES. CURVES AND EQUATIONS 19

lie on a straight Hue, though they may never have seen a

formal proof.

A number of points, whose coordinates satisfy equation (1),

can be determined by giving to x simple values, computing
the corresponding values of y from (1), and then plotting the

points (x, y). Thus

if x = 0, y = ^, and the point is (0, ) ,

if x = 1, y = i, and the point is (1, -j) ;

if x = 2, y = 1, and the point is (2, 1) ;

if x = 1, y = 1, and the point is
( 1, 1);

etc.

Of course, if it is known that (1) represents a straight line,

i.e. that all the points whose

coordinates satisfy (1) lie on a

straight line, it is sufficient

to determine two points as above,

and then to draw the line O

through them.

This process of determining a

large number of points whose

coordinates satisfy a given equa- FIG. 9

tion and then passing a smooth

curve through them is known as "
plotting a curve * from its

equation."

The mathematical curve f defined by an equation in x and

y consists of all those points and only those points whose coordi-

nates, when substituted for x and y in the equation, satisfy it.

Suppose, for example, that the equation is

(2) y = x\

The point (2, 4) lies on the curve defined by (2), because, when

* In Analytic Geometry the term curve includes straight lines as well

as crooked curves.

t This curve is sometimes called the locus of the equation.



20 ANALYTIC GEOMETRY

x is set equal to 2 and y is set equal to 4 in (2), the resulting

equation,
4 = 4,

is true. We say, equation (2) is satisfied by the coordinates of

the point (2, 4), or that the point (2, 4) lies on the curve (2)

On the other hand, the point ( 1, 2), for example, does not

lie on the curve denned by (2). For, if we set x = 1 and

y = 2, equation (2) becomes

2 = 1.

This is not a true equation; i.e. equation (2) is not satisfied

by the coordinates of the point ( 1, 2), and so this point does

not lie on the curve (2).

Equation of a Curve. A curve may be determined by simple

geometric conditions
; as, for example, that all of its points

be at a distance of 2 units from the origin. This is a circle

with its center at the origin and having a radius of length 2.

It is easy to state analytically the condition which the coor-

dinates of any point (x, y) on the circle must satisfy. Since

by 3 the distance of any point (x, y) from the origin is

the condition that (x, y) be a point of the curve is clearly this,

that

or that

(3) 0^ + 2/2
= 4.

Equation (3) is called the equation of the curve in question.

The equation of a curve is an equation in x and y which is

satisfied by the coordinates of every point of the curve, and by

the coordinates of no other point.

In this book we shall be engaged for the most part in find-

ing the equations which represent the simpler and more im-

portant curves, and in discovering and proving, from these

equations, properties of the curves.
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Nevertheless, the student should at the outset have clearly

in mind the fact that any equation between x and y, like

y = x3
, y = \ogx, y= sin x,

represents a perfectly definite mathematical curve, which he

can plot on paper. Moreover, he is in a position to determine

whether, in the case of a chosen one of these curves, a given

point lies on it. He will find it desirable to plot afresh a few

simple curves, and to test his understanding of other matters

taken up in this paragraph by answering the questions in the

following exercises.

EXERCISES

1. What does each of the following equations represent?
Draw a graph in each case.

(o) a? = 2; (c) a? y = 0; (e) 2x - 3y + 6 = 0;

(6) 2y + 3 = 0; (d) 2# -f- 5y = ; (y) 5x -j- Sy 4 = 0.

Plot the following curves on squared paper.

2. y x\

Take 2 cm. or 1 in. as the unit of length. Use a table of

squares.

3. y
1 = x.

Take the same unit as in question 2 and use a table of square

roots.

4. Show that, when one of the curves of Exs. 2 and 3 has

been plotted from the tables, the other can be plotted from

the first without the tables.

Work the corresponding exercises for the following curves.

5. y = x3. 6. y = Va/. 7. y
1 = x3

.

9. Plot the curve

from a table of logarithms for values of x from 1 to 10, taking
1 cm. as the unit.
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10. Which of the straight lines of Ex. 1 go through the

origin ?

I/ 11. Show that the curve

(a) y = sin x

goes through the origin.

Do the curves

(6) y = tan x, (c) y = cos x,

go through the origin ?

12. Do the following points lie on the curve

xy = l?

(a) (-!,-!); (6) (-1,1); (c) (f, f) ;

(rf)(-i-f); 00 (i, -2); (/)(o,i).

( 13) Find the equations of the following curves.

(a) The line parallel to the axis of x and 8 units above it.

(6) The line parallel to the axis of y and If units to the

left of it.

(c) The line bisecting the angle between the positive axis

of y and the negative axis of x.

(d) The circle, center in the origin, radius p.

(e) The circle, center in the point (1, 2), radius 3.

Ans. z-l

8. Points of Intersection of Two Curves. Consider, for ex-

ample, the problem of finding the point of intersection of the

lines

L: 2x-3y = ,

L': 3z + 4t/ = -ll.

Let
(a?!, yi) be the coordinates of this unknown point, Pj.

Any point P, with the coordinates (x, y), which lies on L, has

its x and y satisfying the first of the above equations. Hence,
in particular, since P

T
lies on L, x

l
and yt

must satisfy that

equation, or

(1) 2^-3^ = 4.
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Similarly, a point P : (x, y), which lies on L', has its x and

y satisfying the second of the above equations. Hence, in

particular, since PI lies on L', x^ and yl must satisfy that equa-

tion, or

(2) 3^+4^ = -11.

Thus it appears that the two unknown quantities, x and y1}

satisfy the two simultaneous equations, (1) and (2). Hence

these equations are to be solved as simultaneous by the

methods of Algebra.

2x
1 3y1

= 4, 4

To do this, eliminate yl by multiplying the first equation

through by 4, the second by 3, and then adding :

17 #! = 17, or x
l
= 1.

On substituting this value of x
l
in either equation (1) or (2),

the value of yi is found to be : y\ = 2. Hence P
l
has the

coordinates ( 1, 2).

The equations (1) and (2) are the same, except for the sub-

scripts, as the equations of the given lines, L and L'. Hence

we may say : To find the coordinates of the point of intersection

of two lines given by their equations, solve the latter as simul-

taneous equations in the unknoivn quantities, x and y, by the

methods of Elementary Algebra.

The generalization to the case of any two curves given by
their equations is obvious. The equations are to be regarded
as simultaneous equations between the unknown quantities, x and

y, and solved as such.

The student should observe that the letters " x " and "
y
"

have totally different meanings when they appear as the co-

ordinates of a variable point in the equation of a curve, and when

they represent unknown quantities in a pair of simultaneous

equations. In the first case, they are variables, and a pair of

values, (x, y), which satisfy equation L will not, in general,

satisfy L' In the second case, x and y are constants, the
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coordinates of a single point, or of several points ;
but of

isolated and not variable points.

EXERCISES

Determine the points of intersection of the following curves.

Check your results by plotting the curves and reading off as

accurately as possible the coordinates of the points of

intersection.

1. The straight lines (a) and (<f)
of Ex. 1, 7.

2. The straight lines (c) and (e) of Ex. 1, 7.

3. The straight lines (e) and (/) of Ex. 1, 7.

f y
i= 4#,

+ y=3. Ans. (1, 2), (9, -6).

xy = 6.
}

a; + y = 0.

f

7. = 144.

z2
.i^/

2 = 2,

^- (1,1), (-1, -1).

10. Show that the curves

intersect in the point (1, 0).

11. Show that the curves

intersect in the point (4, 3), and also in ( 4, 3).

^T^XERCJSES ON CHAPTER I

X-Show that the points (2, 0), (0, 2), (1 + V3, 1 + V3) are

the vertices of an equilateral triangle.

.Xfc- Prove that the triangle with vertices in the points (1, 8),

(3, 2), (9, 4) is an isosceles right triangle.
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Show that the points (- 1, 2), (4, 10), (2, 3), and

5) are the vertices of a parallelogram.

Given the points A, B, C with coordinates (7, 2),

, 0), (5, 3). By proving that

AB + BC=AC,

show that the three points lie on a line.

vL Show that the three points of the previous problem lie

on a line by proving that AB and AC have the same slope.

vA. Prove that the two points (5, 3) and ( 10, 6) lie on

a Itiie with the origin.

a-^t* Prove that the two points (o^, 3^), (cc2 , 3/2)
lie on a line

witn the origin when, and only when, their coordinates are

proportional :

X1 :y1
= x2 : y2 .

"^ Determine the point on the axis of x which is equidis-

tant from the two points (3, 4), (2, 6).

9. If (3, 2) and (3, 2) are two vertices of an equilateral

triangle which contains within it the origin, what are the co-

ordinates of the third vertex ?

10. If (3, 1), (4, 3), (1, 5) are three vertices of a

parallelogram and the fourth lies in the first quadrant, find

the coordinates of the fourth. Ans. (8, 7).

11. If P is the mid-point of the segment PiP2 ,
and P and

Pl have coordinates (8, 17), (5, 3) respectively, what are

the coordinates of P2 ?

12. If P divides the segment PiP2 in the ratio 2 : 1, and Pt

and P have coordinates (3, 8) and (1, 12) respectively, deter-

mine the coordinates of P2 . Ans. (0, 14).

13. Find the ratio in which the point B of Ex. 4 divides

the segment AC of that exercise. Ans. 2 : 3.

14. A point with the abscissa 6 lies on the line joining the

two points (2, 5), (8, 2). Find its ordinate.
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Suggestion. Determine the ratio in which the point divides

the line-segment between the two given points.

"l^. Prove that the sum of the squares of the distances of

any point in the plane of a given rectangle to two opposite

vertices equals the sum of the squares of the distances from it

to the two other vertices.

Suggestion. Choose the axes of coordinates skillfully.

16. If D is the mid-point of the side BO of a triangle ABC,
prove that

ABZ + AC2 = 2 AD2 + 2 BD2
.

Show that the lines joining the mid-points of opposite
sides of a quadrilateral bisect each other.

*"^S,
Prove that the lines joining the mid-points of adjacent

sides of a quadrilateral form a parallelogram.

19. Prove that, if the diagonals of a parallelogram are equal,

the parallelogram is a rectangle.

20. If two medians of a triangle are equal, show that the

triangle is isosceles.



CHAPTER II

THE STRAIGHT LINE

1. Equation of Line through Two Points. Let P] : (xl} t/x)

and P2 : (x2 , y2)
be two given points, and let it be required to

find the equation of the line through
them.

The slope of the line, by Ch. I,

4, is

FIG.

Let P, with the coordinates (x, y\
be any point on the line other than Pv
the line is also given by

y yi T

Then the slope of

X
Hence

(1)
X Xl

Conversely, if P : (x, y) is any point whose coordinates

satisfy equation (1), this equation then says that the slope of

the line PjP is the same as the slope of the line PiP2 and

hence that P lies on the line PiP2 .

A more desirable form of equation (1) is obtained by multi-

plying each side by (x x
l)/(y2 y^. We then have :

(I)
x - xi = V yi .

Equation (I) is satisfied by the coordinates of those points and

only those points which lie on the line PiP2 . Consequently,
27
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by Ch. 1, 7, (I) is the equation of the line through the two given

points.

Example 1. Find the equation of the line which passes

through the points (1, 2) and ( 3, 4).

Here

<KI
= 1, 2/i

= 2 and x^ = 3, y2 = 4.

By (I) the equation of the line is

-3-1 4 -(-2)' -4
"

6

On clearing of fractions and reducing, the equation becomes

3x + 2y + 1 = 0.

Let the student show that, if (xt , y^) had been taken as

( 3, 4) and (a^, y%) as (1, 2), the same equation would have

resulted.

Example 2. Find the equation of the line passing through
the origin and the point (a, 6).

Here, fa, yl)
= (0, 0) and (a^, ?/2)

=
(a, 6), and (I) becomes

- = -

,
or foe ay = 0.

a 6

Lines Parallel to the Axes. In deducing (I) we tacitly as-

sumed that

2/2 2/1^0 and x* x^ ^ ;

for otherwise we could not have divided by these quan-
tities.

If
2/2 2/i

= 0, the line is parallel to the axis of x. Its

equation is, then, obviously

(2) y = y*

Similarly, if x% x{
= 0, the line is parallel to the axis of y

and has the equation

(3) x = xi.

These two special cases are not "included in the result eui-
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bodied in equation (I). We see, however, that they are so

simple, that they can be dealt with directly.*

Example 3. Find the equation of the line passing through
the two points (5, 1) and (5, 8).

It is clear from the figure that this line is parallel to the

axis of y and 5 units distant from it to the

left. Accordingly, the abscissa of every point
on it is 5

; conversely, every point whose

abscissa is 5 lies on it. Therefore, its equa-

tion is
o1

x = 5, or x + 5 = 0. FIG. 2

EXERCISES t

Draw the following lines and find their equations.

1. Through (1, 1) and (3, 4). Ans. 3x-2y l = 0.

2. Through (5, 3) and (- 8, 6).

3'. Through (0,
-

5) and
( 2, 0). Ans. 5x+2y +W = 0.

4. Through the origin and (1, 2).

5. Through the origin and ( 2, 3).

6. Through (2,
-

3) and (- 4,
-

3). Ans. y + 3 = 0.

* It is not difficult to replace (I) by an equation which holds in all

cases, namely, the following :

(I') (2/2
-

2/i)O -
Xi) = (x2

- xO (y
-

yi).

We prefer, however, the original form (I). For (I) is more compact
and easier to remember, and the special cases not included in it are best

handled without a formula.

t In substituting numerical values for (xi, y\) and (x2 , 3/2) in (I), the

student will do well to begin with a framework of the form

x - y
i

and then fill in each place in which Xi occurs
; next, each place in which

j/i occurs
;
and so on. When x\ or y\ is negative, substitute it first in

parentheses ; thus, if xt
= 3, begin by writing

-"
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7. Through (0, 8) and (0,
-

56).

8. Through (5, 3) and parallel to the axis of y.

9. Through (5, 3) and parallel to the axis of x.

10. Through (a, 6) and (b, a). Ans. x + y = a + b

11. Through (a, 0) and (0, 6). A^ x
+ y =l

a b

2. One Point and the Slope Given. Let it be required to find

the equation of the line which passes through a given point

PI
'

(xi> y\) and has a given slope, A.

If P : (x, y) be any second point on the line, the slope of the

line will be, by Ch. I, 4,

y - yi
.

X Xi

But the slope of the line is given as A. Hence

X Xl

or

(II) y - yi = A(a? i).

The student can now show, conversely, that any point, whose

coordinates (x, y~) satisfy (II), lies on the given line. Hence

(II) is the equation of the line passing through the given point

and having the given slope.

Example. Find the equation of the line which goes through
the point (2, 3) and makes an angle of 135 with the posi-

tive axis of x.

Here, X = 1 and (xl} yl)
= (2, 3), and hence, by (II), the

equation of the line is

</ + 3 = -l(z-2),
or x + y + 1 = 0.

Slope-Intercept Form of Equation. It is frequently conven-

ient to determine a line by its slope X, and .the ^-coordinate

of the point in which it cuts the axis of y.
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Here, Xi = ; and, if we denote yt by the letter b, (II) be-

comes

(III) y = \x + b.

This is known as the slope-intercept form of the equation

of a straight line
;

b is known as

the intercept of the line on the axis

of y.

Example. Find the equation of the ^
line which makes an angle of 60 with

!

the axis of x and whose intercept on the

axis of y is 2.

Since A = V3 and b = 2, the equation is

(0,6)

FIG. 3

EXERCISES

Draw the following lines and find their equations.

1. Through ( 4, 5) and with slope 2.

Ans. 2x + y+3 = 0.

^2. Through (3, 0) and with slope f.

3. Through (f, i) and with slope f .

4. Through the origin and making an angle of 60 with the

axis of x.

5. Through (4, 0) and making an angle of 45 with the

axis of y.

6. With intercept 1 on the axis of y and with slope f.

Ans. 3x -\-2y 2 = 0.

//\1. With intercept ^ on the axis of y and making an angle
of 30 with the axis of x.

8. With slope 1 and intercept c on the axis of y.

9. With slope a/b and intercept 6 on the axis of y.

I. The General Equation of the First Degree. Let there be

given an arbitrary line of the plane. If the line is parallel
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to neither axis, its equation is of the form (I), 1, an equa-

tion of the first degree in x and y. If the line is parallel to

the axis of re, its equation is of the form y = yl} a special

equation of the first degree in x and y, in which it happens
that the term in x is lacking. Similarly, if the line is parallel

to the axis of y, its equation is of the form x = xl} an equa-

tion of the first degree which lacks the term in y. Conse-

quently, we can say : The equation of every straight line is of the

first degree in x and y.

Given, conversely, the general equation of the first degree in

x and y, namely

(1) Ax + By+C=0,
where A, B, C are any three constants, of which A and B are

not both zero
;

* this equation represents always a straight line.

The Case B^Q. In general, B will not be zero and we
can divide equation (1) through by it:

and then solve for y :

v x
B B

But this equation is precisely of the form (III), 2, where

A , .~C
\ --

, o = ----
B B

Therefore, it represents a straight line whose slope is A/B
and whose intercept on the axis of y is C/B.

The Case B = 0. If, however, B is zero, the equation (1)

becomes

Now, A cannot be zero, since the case that both A and B are

zero was excluded at the outset. We can, therefore, divide by
A and then solve for x :

* In dealing with equation (1), now and henceforth, we shall always
assume that A and B are not both zero. /
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This is the equation of a straight line parallel to the axis

of y, if = 0. If C = 0, it is the equation of this axis.

This completes the proof that every equation of the first

degree represents a straight line. In accordance with this

property, such an equation is frequently called

a linear equation.

Example. What line is represented by the

equation

If we solve for y, we obtain

l\
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The point of intersection of a line, for example,

with the axis of x has its ^/-coordinate equal to 0. Conse-

quently, to find the ^-coordinate of the point, we have but to

set y = in the equation of the line and solve for x. In this

case we have, then,

2 x -f- 4 = 0, or x = 2.

Similarly, the cc-coordinate of the point of intersection of

the line with the axis of y is 0, and its y-coordinate is obtained

by setting x = in the equation of -the line and solving for y.

In the present case this gives

_ 3y + 4 = 0, or y = -f
.

The points of intersection of the line (1) with the axes of

coordinates are, then, (2, 0) and (0, -|).
We now plot these

y points and draw the line through them.

<fo,4) We recognize the number f as the

intercept of the line (1) on the axis of y ;

- t-x the number 2 we call the intercept on

the axis of x. We have plotted the line

(1), then, by finding its intercepts.

In general, the intercept of a line on the axis of or is the

^coordinate of the point in which the line meets that axis. The

intercept on the axis of y is similarly defined. These defini-

tions admit of extension to any curve. Thus, the circle of Ch. I,

7, has two intercepts on the axis of x, namely, + 2 and 2.

An axis or a line parallel to an axis has no intercept on that

axis. Every other line has definite intercepts on both axes,

and these intercepts determine the position of the line unless

they are both zero, that is, unless the line goes through the

origin.

EXERCISES

Determine the intercepts of the following lines on each of

the coordinate axes, so far as such intercepts exist, and draw
the lines.

FIG. 5
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1. 2x + 3y-6 = 0. 6. 2x + 3 = 0.

Ans. 3, 2. Ans. 1^, none.

2. x y + 1 = 0. 7. 8 5y = 0.

3x-5y + 10 = 0. ^8. a?=0.

4. 5a + ly + 13 = 0. 9. x + y = a.

5. 2z-3y = 0. >^10. 2ax-3by = ab.

5. The Intercept Form of the Equation of a Line. Given a

line whose position is determined by its intercepts. Let the

intercept on the axis of x be cr, and let that on the axis of y be

b. To find the equation of the line in terms of a and b.

Since one point on this line is (a, 0) and a second is (0, 6),

we have, by (I), 1,

x a _ y
0-a~6-0'

or

(IV) ? + =!.
a b

Only lines which intersect the axes in two points that are

distinct can have their equations written in this form. A line

through the origin is an exception, because one or both its

intercepts are zero and division by zero is impossible. Also a

line parallel to an axis is an exception, since it has no inter-

cept on/ that axis.

EXERCISES

\Find the equations of the following lines.

*4l. With intercepts 5 and 3.

2. With intercepts 2- and 8.

With intercepts -|
and |.

4. The diagonals of a square lie along the coordinate axes,

and their length is 2 units. Find the equations of the four

sides (produced).
Ans. x + y = 1

;
x ?/

= 1
;

a; + y = 1
;

~ x y = 1.
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5. A triangle has its vertices at the points (0, 1), ( 2, 0),

(1, 0). Draw the triangle and find the equations of its sides

(produced). Use formula (IV), when possible.

^6. A triangle has its vertices at the points (a, 0), (6, 0),

(0, c).
Find the equations of the sides (produced).

7. A line goes through the origin and the mid-point of that

side of the triangle of Ex. 5 which lies in the first quadrant.
Find its equation.

8. Find the equations of the lines through the origin and

the. respective mid-points of the sides of the triangle of Ex. 6.

Parallel and Perpendicular Lines. Parallels. Given two

lines oblique to the axis of y, so that both have slopes. The

lines are parallel if, and only if, they have equal slopes. For,

if they are parallel, their slope angles, and hence their slopes,

are equal ;
and conversely.

Example 1. To find the equation of the line through the

point (1, 2) parallel to the line

(1) 3x-2y + 6 = Q.

The slope of the line (1) is f. The required line has the

same slope and passes through the point (1, 2). By (II), 2,

its equation is

y-2f(*-l),
or

If the given line is parallel to the axis of y, it has no slope and

hence the method of Example 1 is inapplicable. But then the

required line must also be parallel to the axis of y and its

equation can be written down directly. For example, if the

given line is 3x + 8 = 0, and there is required the line parallel

to it passing through the point (8, 2), it is clear that the

required line is parallel to the axis of y and 8 units to the left

of it, and consequently has the equation x = 8, or x -f- 8 = 0.

Perpendiculars. Given two lines oblique to the axes, so that

both have slopes, neither of which is zero. The lines are per-
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pendicular if, and only if, their slopes, \{ and A2 ,
are negative

reciprocals of one another :

(2) A2 = -f, or Xi = -f, A^O, A2
= 0.

A! A2

For, if the lines are perpendicular, one of their slope angles,

61 and #2 >
may be taken as 90 greater than the other, viz. :

2
= 0j + 90,

and hence

Ao = tan 2
= tan (0 t + 90)= - cot ^ =

tan Oi \i
or

A. i:
Xi

Conversely, if this last equation is valid, the steps can be

retraced and the lines shown to be perpendicular to each

other.

Example 2. To find the equation of the line through the

point (1, 2) perpendicular to the line (1).

The slope of (1) is f . Hence the required line has the slope

|. We have, then, to find the equation of the line through
the point (1, 2) with slope -|. By (II), 2, this equation is

If the given line is parallel to an axis, it has no slope or its

slope is zero. In either case, equation (2) and the method of

Example 2 are inapplicable. But then th^ required line must

be parallel to the other axis and it is easy to write its equation.

Suppose, for example, that the given line is 2y 3=0, a

line parallel to the axis of x, and that the required line per-

pendicular to it is to go through the point (3, 5). Then this

line must be parallel to the axis of y and at a distance of

3 units to the right of it. Consequently, its equation is

x - 3 = 0.

The methods of this paragraph are applicable to all problems
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in which it is required to find the equation of a line which

passes through a given point and is parallel, or perpendicular,

to a given line.

EXERCISES

In each of the following exercises find the equations of the

lines through the given point parallel and perpendicular to

the given line.

Line Point

-8y = 5, (-1, -3).
Ans. x 2y 5 = 0; 2x + y + 5 = Q.

2. x-y = l, (0,0).

3. 5x + 13y - 3 = 0, (2,
-

1).

4. 3x + 5y =0, (5,0).

>. 2x = 3, (5, -6).

6. V2y + 7r = 0, (-2,0). Ans. y = 0; x + 2 = 0.

. 1 - x = 0, (0, *-).

8. Find the equations of the altitudes of the triangle of

5, Ex. 5.

9. Find the equations of the perpendicular bisectors of the

sides of the triangle of 5, Ex. 5.

"HO. Show that the equation of the line through the point

(a?!, y^) parallel to the line

(3) Ax + By = C
is Ax + By = Ax + By.

Show that the equation of the line through the point

perpendicular to the line (3) of Ex. 10 is

Bx Ay = Bxy

Angle between Two Lines. Let L and L2

lines, whose slopes are, respectively,

A! = tan #1, and \2
= tan 62 .

To find the angle, <, from L to L2 .
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j. n n9 = "2 Vly

it follows from Trigonometry that

and hence that

(1) tan d> = -X, ^
FIG. 6

1 -I- AjA2

The angle <f>
is the angle from LI to L<>. That is, it is the

angle through which LI must be rotated in the positive sense,

about the point A, in order that it coincide with L. In par-

ticular, we agree to take it as the smallest such angle, always

less, then, than 180 : < <f> < 180.*

If L
l
and Z/2 are perpendicular, then, by (2), 6, A2 = V^-i

and 1 + A.^2 = 0. Consequently, cot <, which is equal to the

reciprocal of the right-hand side of (1), has the value zero, and

so <j> = 90.

Example. Let L and L2 be given by the equations,

A:

Here \i = 2 and A.2 = 3, and (1) becomes

3-2
tan < = = 1.

is 45

1-6
Hence the angle < from LI to

In deducing (1) it was assumed that L1
and

Lz both have slopes. If this is not the case,

at least one of the lines is parallel to the axis

of y and no formula is needed. The angle

</> may be found directly. Suppose, for ex-

ample, that LI and L2 are, respectively,

x + 2 = and x y 1.

* The figure shows LI and L2 as intersecting lines, but formula (1) and
the deduction of it are valid also in case LI and L2 are parallel. In this

FIG. 7
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Then L^ is parallel to the axis of y, and Lz is inclined at an

angle of 45 to the positive axis of x, since Xj = 1. Conse-

quently, < = 135.

In each of the following exercises determine whether the

given lines are mutually parallel or perpendicular, and in case

they are neither, find the angle from the first line to the second.

M. z + 2y=3, x + 2y=4.
V 2a? + 5 = 0, 4<c - 2 - 7 = 0.

6,

7.

8. 2o;-32/ =

10. 2z-

By the method of this paragraph determine each of the

three angles of the triangle whose sides have the equations

x 2y 6 = Q, 2x-fy-4 = 0, 3x y + 3 = Q.

\ Check your results by adding the angles.

T.2. Prove that if Lt and L2 are represented by the equations

^ : Ajx + By + d = 0,

Lz :

then
^^2 + -01-02

What can you say of Lv and i2 if ^1-82 -^2^1 = ? If

case, we take the angle from LI to Lz as
,
not as 180, as is conceiv-

able. Hence arises the sign < (less than or equal to) in the place in

which it stands in the double inequality.
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13. Show that the formula of Ex. 12 for tan < is valid even

if one or both of the lines has no slope, i.e. is parallel to the

axis of y.

8. Distance of a Point from a Line. Let P:(xlt y^ be a

given point and let

L:

be a given line. To find the dis-

tance, .D, of P from L.

Drop a perpendicular from P
on the axis of x, and denote the

point in which it cuts L by Q.

The abscissa of Q is x. Denote

its ordinate by yq. Then
o

FIG. 8

Since Q : (xlf y^) lies on Z, its coordinates satisfy the equation

of L
;
thus

Axl + ByQ +C=0.

Solving this equation for
y^,

we find :

Hence

(1) QP =

Let 6 be the slope-angle of L and form the product QP cos 0.

One or both of the factors of this product may be negative,

according to the positions of P and L.* But' always the

numerical value of the product is equal to the distance D :

(2) D=\QPco*0\.
This is clear in case P and L are situated as in Fig. 8

;

* There are four essentially different positions for P and L, for L may
have a positive or a negative slope, and P may lie on the one or on the

other side of L.



42 ANALYTIC GEOMETRY

the student should draw the other typical figures and show
that for them, also, (2) is valid.

Since the slope of L is

we have

A=tan0=- ,B

-s sec1 6 = 1 -f tan- =
B*

~Z cos = B
4-

It is immaterial to us which sign in (3) is the proper one.

For, according to (2), we have now to multiply together the.

values of QP and cos 0, as given by (1) and (3), and take the

numerical value of the product. The result is the desired

formula :

(4)

D = +
V^2 +

where, in the second formula, that sign is to be chosen which

makes the right-hand side positive.

Example. The distance of the point (3, 2) from the line

is

__
V32 + 42 V25

The deduction of formula (4) involves division by B and

hence tacitly assumes that B =j= 0, i.e. that L is not parallel to

the axis of y. The formula holds, however, even when L is

parallel to the axis of y. For, in this case it is clear from a

figure that

and (4) reduces precisely to this when B = 0.
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Ans. 2f.

Ans. 2VIO, or 6.32.

EXERCISES

In each of the first seven exercises find the distance of the

given point from the given line.

Point Line

*. (5,2),

2. (2,3),

V (6, -1),

4. (3,4),

. (-2, -5),

. Origin,

. Origin,

. Find the lengths of the altitudes of the triangle with

vertices in the points (2, 0), (3, 5), (1, 2).

9. Area of a Triangle. Let a triangle be given by means of

its vertices (x^ y^, fa, y2), fa, yz\ y

To find it's area.

Drop a perpendicular from one

of the vertices, as (x3 , y3~),
on the

opposite side. Then the required

area is

3x + 5 = 0.

2/
= 0.

x + y 1 = 0.

FIG. 9
where D denotes the length of

the perpendicular and E, the length of the side in question.

By Ch. I, 3, we have

XT'
JSj =

D is the distance of (x3 , yz )
from the line joining (a^, y^

and (x2 , y2).
The equation of this line, as given by (I) or (I'),

1, may be put into the form :

(2/2 yi)
- (2 - *i)y

-

Consequently, by (4), 8, we find :
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Thus
A =

The result may be written more symmetrically in either of

the forms

(1) A =
or

(2) -4 = |[(yi
-

2/2)a3 + (y,
-

where in each case that sign is to be chosen which makes the

right-hand side positive.

EXERCISES

Find the area of the triangle whose vertices are in the

points

1. (1,2), (-1,2), (-2,1).

/"2. (5,3), (-3,4), (-2,-!).
3. (1, 2), (2, 1), (0, 0).

Find the area of the triangle whose sides lie along the lines

4. x y = 0, x + y = 0, 2x + y 3 = Q.

5. 2x + y-6 = Q, x-y + 3 = Q, x-2y-8 = 0.

6. Find the area of the convex quadrilateral whose vertices

are in the points (4, 2), (- 1, 4), (- 3,
-

2), (5,
-

8).

7. What do formulas (1) and (2) become when one of the

vertices, say (#3, t/3),
is in the origin ?

Ans. A =

10. General Theory of Parallels and Perpendiculars. Iden-

tical Lines.* The line through the point (xlt y^ parallel to

the line

(1) Ax + By = C,

has the equation, according to 6, Ex. 10,

Ax + By = Ax]_ + By^
* The discussion in the class-room of the subjects treated in this and the

following paragraph may well be postponed until the need for them arises.
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This equation is of the form

(2)
Ax + By = C',

since the constant Ax^ + By-^ may be denoted by the single

letter C".

Conversely, equations (1) and (2), for C' =J= C, always repre-

sent parallel lines. For, if -5=^0, the lines have the same

slope, A/B ;
if B = 0, A cannot be zero, and the lines are

parallel to the axis of y and hence to each other.

THEOREM 1. Ttvo lines are parallel when and only when their

equations can be written in the forms (1) and (2), where C = C".

The line through the point (x^ yi), perpendicular to the

line (1), has the equation ( 6, Ex. 11) :

Bx Ay = BXi Aylt

and this equation is of the form

(3)
Bx Ay = C'.

Let the student show, conversely, that equations (1) and (3)

always represent perpendicular lines.

THEOREM 2. Two lines are perpendicular when and only

when their equations can be ivritten in the forms (1) and (3).

The equations of two parallel lines can always be written

in the forms (1) and (2). But they need not be so written.

Thus the lines,

2x-y=-l,
6x-3y = 2,

are parallel, though the equations are not in the forms (1) and

(2). The coefficients of the terms in x and y are not respec-

tively equal. They are, however, proportional : 2 : 6= 1 : 3.

This condition holds in all cases. For the two lines

2
= 0,

we may state the theorem :
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THEOREM 3. Tlie lines LI and L2 are parallel
*

if and only if

A
l

: A2 = B! : B*.

For, LI and L2 are parallel if and only if the angle < be-

tween them, as defined in 7, is zero
; but, according to 7,

Ex. 12, <f>,
or better, tan <, is zero, when and only when

AiBz A2Bi = 0. But this equation is equivalent to the pro-

portion AI : A2
= Bl : B2 .

As a second consequence of 7, Ex. 12, we obtain the fol-

lowing theorem.

THEOREM 4. The lines LI and L2 are perpendicular if and

only if

AtA2 + BiB2
= 0.

Identical Lines. Two equations do not have to be identically

the same in order to represent the same line. For example,
the equations,

represent the same line. The corresponding constants in

them are not equa!4 but they are proportional. We have,

namely,
2:6 = -l: -3 = 1:3,

or, what amounts to the same thing,

2:-l:l=6: -3:3.

This condition is general. We formulate it as a theorem :

THEOREM 5. The lines LI and L2 are identical if and only if

AI '. A2^Bi '. B% = GI : ^2,

or A1 :B1 :C1
= A2 : B2 : C2 .

For, LI and L2 are the same line when and only when they
have the same slope and the same intercept on the axis of y,

that is, when and only when

_^i = _4* and _^L = _^?,
BI .Bo BI -B2

* Or, in a single case, identical. Cf . Th. 5.
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or AI : A2
=B

l
: B2 and B1 : B2=Ci: C2)

or, finally, A l : Az
= B^ : B2 = Ci : C2 .

This proof assumes that Uj = and JB2 = 0. The proof,

when this is not the case, is left to the student.

EXERCISES

1. Prove Th. 3 directly, without recourse to the results

of 7.

2. The same for Th. 4.

See also Exs. 15, 16, 17, 18 at the end of the chapter.

11. Second Method of Finding Parallels and Perpendiculars.

Problem 1. To find the equation of a line parallel to the

given line

(1) Ax + By=C,
and satisfying a further condition.

By 10, Th. 1, the desired equation can be written in the

form

(2) Ax + By=C',

where C' is to be determined by the further condition.

Example. Consider the first example treated in 6. In

this case the equation of the desired line can be written in the

form

3x-2y = k,

where we have replaced the C' of (2) by "k. The "further

condition," by means of which the value of k is to be deter-

mined, is that the line go through the point (1, 2), Hence
x = i, y = 2 must satisfy the equation of the line, or

3 1 - 2 2 = Jc.

Consequently, k = 1, and the equation of the line is

Problem 2. To find the equation of a line perpendicular to

the given line (1) and satisfying a further condition.
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By 10, Th. 2, the desired equation can be written in the

form

(3) Bx-Ay= C",

where C" is to be determined by applying the further condition.

This condition does not always have to be that the line

should go through a given point. It may be any single con-

dition, not affecting the slope of the line, which it seems de-

sirable to apply. We give an example illustrating the method
in such a case.

Example. To find the equation of the line perpendicular to

2s -y -4 =

and cutting from the first quadrant a triangle whose area is 16.

Equation (3) may, in this case, be written as

(4) x + 2 y = k.

We are to determine k so that the line (4) cuts from the first

quadrant a triangle of area 16. The intercepts of the line (4)

are k and ^k, and hence the area of the triangle in question is

^k
z

. Accordingly, i&2 = 16, and k = 8. But the line cuts

the first quadrant only if k is positive, and so we must have

7; = 8. The equation of the desired line is, then,

EXERCISES

1. Work Exs. 1-4, 8, 9 of 6 by this method.

r 2. There are two lines parallel to the line

x 2y = 6

and forming with the coordinate axes triangles of area 9.

Find their equations.

/ \SJ Find the equations of the lines parallel to the line of

Ex. 2 and 3 units distant from it.

Suggestion. Write the equation of the required line in the

form (2) and demand that the distance from it of a chosen

point of the given line be 3.
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4. Find the equations of the lines parallel to the line

and 2 units distant from the origin.

J/ 5. The same as Ex. 2, if the lines are to be perpendicular,
instead of parallel, to the given line.

6. The same as Ex. 4, if the lines are to be perpendicular,

instead of parallel, to the given line.

7. A line is parallel to the line 3x-\- 2y 6 = 0, and forms

.a triangle in the first quadrant with the lines,

x 2 y and 2 x y = 0,

whose area is 21. Find the equation of the line. '

Ans. 3z + 2y-28=0.

1. Find the equation of theWine whose intercepts are twice

those of the line 2x 3y 6 = 0.

2. Find the equation of the line having the same intercept

on the axis of x as the line V3# y 3 = 0, but making with

that axis half the angle.

3. Find the equation of the line joining the point (7, 2)

with that point of the line 2x y = S whose ordinate is 2.

4. A perpendicular from the origin meets a line in the point

(5, 2). What is the equation of the line?

r 5. The coordinates of the foot of the perpendicular dropped
from the origin on a line are (a, 6). Show that the equation
of the line is

ax + by = a2
-f- ft

2
.

6. The line through the point (5, 3) perpendicular to a

given line meets it in the point (3, 2). Find the equation
of the given line.

7. Prove that the line with intercepts 6 and 3 is perpen-
dicular to the line with intercepts 3 and 6. Is it also per-

pendicular to the line with intercepts 3 and 6 ?
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. Prove that the line with intercepts a and 6 is perpen-
dicular to the line with intercepts b and a.

9. Show that the two points (5, 2) and (6, 15) subtend a

right angle at the origin.

I/ 10. Prove that the two points, (xl} y^) and (a^, y2), subtend a

right angle at the origin when, and only when, x^ + y\yz = 0.

11. Do the points (6, 1) and (3,4) subtend a right

angle at the point (4, 6) ? At the point ( 4, 2) ?

12. Given the triangle whose sides lie along the lines,

x 2y + 6 = Q, 2x-y = 3, x + y 3 = 0.

Fin(jl the coordinates of the vertices and the equations of the

lines through the vertices parallel to the opposite sides.

tX 13. Two sides of a parallelogram lie along the lines,

A vertex is at the point (2, 1). Find the equations of the

other two sides (produced).

14. One side of a rectangle lies along the line,

A vertex on this side is at the point (1, 1) and a second vertex

is at (2, 1). Find the equations of the other three sides

(ppgduced).

l5J For what value of A will the two lines,

'(a) be parallel? (6) be perpendicular ?

\/ 16. For what value, or values, of m will the two lines,

4a; my + 6 = 0, x + my + 3 = 0,

(a) be parallel ? (6) be perpendicular ?

17. For what value of m will the two equations,

mx + y + 5 = 0, 4a; + my + 10 = 0,

represent the same line ?
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'18. For what pairs of values for k and I will the two

equations,

represent the same line ?

19. The equations of the sides of a convex quadrilateral are

aj = 2, y = 4, y = x, 2y = x.

Find the coordinates of the vertices and the equations of the

diagonals.

20. Find the equation of the line through the point of

intersection of the lines,

3x - 5y 11 = 0, 2x7y = ll,

and having the intercept 5 on the axis of y.

21 ) Find the equation of .the line through the point of in-

fection of the lines,

and perpendicular to the first of these two lines.

22. Find the distance between the two parallel lines,

Suggestion. Find the distance of a chosen point of the first

line from the second.

ir 23. Let

Ax + By + C = and Ax + By -f C" =

be any two parallel lines. Show that the distance between

them is

\G'-C\ or
C'-C

'

24. There are two points on the axis of x which are at the

distance 4 from the line 2x 3y 4 = 0. What are their

coordinates ?

25. Find the coordinates of the point on the axis of y which

is equidistant from the two points (3, 8), (2, 5).
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There are two lines through the point (1, 1), each

cutting from the first quadrant a triangle whose area is 1\.

Find their slopes. Ans. ^, 2.

27. Find the equation of the line through the point (3, 7)

such that this point bisects the portion of the line between

the axes. Ans. Ix + 3y 42 = 0.

28. The origin lies on a certain line and is the mid-point of

that portion of the line intercepted between the two lines,

3x 5y = 6, 4a + 2/ + 6 = 0.

Find the equation of the line. Ans. x + Qy = 0.

29. The line

(1) 3x - 8y + 5 =

goes through the point (1, 1). Find the equation of the line

(2) through this same point, if the angle from the line (1) to

the line (2) is 45. Ans. llx 5y - 6 = 0.

30. Find the equations of the two lines through the origin

making with the line 2x 3y = angles of 60.



CHAPTER III

APPLICATIONS

1. Certain General Methods. Lines through a Point. In

many theorems and problems of Plane Geometry the question

is to show that three lines pass through a point. Plane Geom-

etry affords, however, no general method for dealing with this

question. Each new problem must be discussed as if it were

the first of this class to be considered.

Analytic Geometry, on the other hand, affords a universal

method, whereby in any given case the question can be settled.

For, from the data of the problem, the equation of each of the

lines can be found. These will all be linear, and can be writ-

ten in the form

^ : Ajx + B$ + d = 0,

L2 : A.2x + Bzy + <72 = 0, ,

L3 : Asx + B3y + C3
= 0-

The coordinates of the point of intersection of two of these

lines, as Lt and L2) can be found by solving the corresponding

equations, regarded as simultaneous, for the unknown quanti-
ties x and y. Let the solution be written as

x = x', y = y'.

The third line, L3) will pass through this point (a/, ?/'), if and

only if the coordinates of the latter satisfy the equation of L3 ;

i.e. if and only if
A3x' + B3y' + C3

= 0.

Points on a Line. A second question which presents itself

in problems of Plane Geometry is to determine when three

53
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points lie on a straight line. Here, again, the reply of Analytic

Geometry is methodical and universal. From the data of the

problem it will be possible in any given case to obtain the

coordinates of the three points. Call them

Now, we know how to write down the equation of a line

through two of them, as (xl9 y^ and (a^, y2 ~).
This equation

will always be linear, and can be written in the form

Ax + By + C = 0.

The third point, (x3 , ys~),
will lie on this line if and only if its

coordinates satisfy the equation of the line; i.e. if and only if

The student should test his understanding of the foregoing

theory by working Exs. 1-6 at the end of the chapter.

2. The Medians of a Triangle. We recall the proposition

from Plane Geometry, that the medidns of a triangle meet in a

point. The proof there

given is simple, provided
one remembers the con-

struction lines it is desir-

able to draw. By means,

however, of Analytic Ge-

ometry we can establish
j?'(-i,3)

the proposition, not by
artifices, but by the natural

and direct application of

the general principle enun-

CV(0,6)

A:(2,3)

.-(4,0)

FIG. 1

ciated in the preceding

paragraph.
The first step consists in

the choice of the coordinate axes. This choice is wholly in

our hands, and we make it in such a way as to simplify the

coordinates of the given points. Thus, clearly, it will be well
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to take one of the axes along a side of the triangle. Let this

be the axis of x.

A good choice for the axis of y will be one in which this

axis passes through a vertex. Let this be the vertex not on

the axis of x.

We begin with a numerical case, choosing the vertices A, B,

C at the points indicated in the figure.

The Equations of the Medians. Consider the median AA'.

One point on this line is given, namely A :
( 2, 0). A second

point is the mid-point A' of the line-segment BC. By Ch. I,

5, the coordinates of A' are (2, 3).

The student can now solve for himself the problem of finding

the equation of the line L} through A : ( 2, 0) and A' : (2, 3).

The answer is,

A: 3x-4y + 6 = 0.

In a precisely similar way the coordinates of B' are found

to be ( 1, 3), and the equation of the median BB' is

Finally, the coordinates of C1 are (1, 0), and the equation of

the median CO' is

The Point of Intersection of the Medians. The next step con-

sists in finding the point in which two of the medians, as LI
and L2 ,

intersect. The coordinates of this point will be given

by solving as simultaneous the equations of these lines :

*

3x - 4y + 6 = 0,

The solution is found to be :

And now the third median, L3 ,
will go through this point,

(|-, 2), if the coordinates of the point satisfy the equation of L3 ,
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On substituting for x in this equation the value ^ and for y
the value 2, we are led to the equation

This is a true equation, and hence the three lines LI, L2 ,
and

L3 pass through the same point.

Remark. It can be shown by the formulas of Ch. I, 6,

that the above point (-|, 2) trisects each of the' medians AA',

BB', and CO1

.

\.s\ EXERCISES
if 1
IV nJ Taking the same triangle as before, choose the axis of x

along the side AB, but take the axis of y through A. The

coordinates of the vertices will then be :

,,

-4: (0,0); B : (6, 0) ; C:(2,6).

Prove the theorem for this triangle.

2. The vertices of a triangle lie at the points (0, 0), (3, 0),

(0, 9). Prove that the medians meet in a point.

3. Continuation. The General Case. We now proceed to

prove the theorem of the medians for any triangle, ABC. Let

the axes be chosen as in the text of 2. Then the coordinates

of A will be (a, 0), where a may be any number whatever,
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positive, negative, or zero. The coordinates of B will be (6, 0),

where b may be any number distinct from a :

b =
a, or a b-=f=. 0.*

Finally, the coordinates of C can be written as (0, c), where c

is any positive number.

Next, find the coordinates of A', B 1

,
C'. They are as shown

in the figure.

The equation of LI is given by Ch. II, (I), where

(aa, &)= (<, 0); (z2 , 3fe)

# a_T/!*: 6~~ ~c I'
a u

2 2

or

Z/i : cic + (2 a b}y = ac.

The equation of L2 can be worked out in a similar manner.

But it is not necessary to repeat the steps, since interchanging
the letters a and b interchanges the points A and B, and also

A' and B'. Thus L^ passes over into L2. Hence the equation
of Lz is :

L2 : ex + (2 b a)y = be.

The line L3 is determined by its intercepts, (a + 6) and c
;

by Ch. II, (IV), its equation is found to be :

L3 : 2 ex + (a -+- V)y = (a + 6)c.

To find the coordinates of the point in which LI and L2 in-

tersect, solve as simultaneous the equations of L and L2 :

\cx+(2a b)y = ac,

[
ex + (2 6 a)y = be.

The result is :

a + b c
x = !

, y =-
3 3

* The figure has been drawn for the case in which a is negative and b

positive.
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Finally, to show that this point,
(

a
, -\ lies on LZ) sub-

\ 3 3J
stitute its coordinates in the equation of L3 :

Since this is a true equation, the point lies on the line, and we
have proved the theorem that the medians of a triangle pass

through a point.

That this point trisects
each median can be proved as in the

special case of the preceding paragraph, by means of Ch. I, 6.

The details are left to the student.

EXERCISE

Prove the theorem of the medians by taking the coordinate

axes as in the first exercise of the preceding paragraph. Here,
the vertices are

^:(0,0); :(a,0); C : (6, c),

where a may be any number not 0, 6 any number whatever,

and c any positive number. Draw the figure, and write in the

coordinates of each point used.

4. The Altitudes of a Triangle. Another proposition of

Plane Geometry is, that the perpendiculars dropped from the

vertices of a triangle on the opposite sides meet in a point.

The proof of the proposition by Analytic Geometry is direct

and simple. Let us begin with a numerical case, taking the

triangle of Fig. 1. One of the perpendiculars is, then, the

axis of y, and so all that is necessary to show is that the other

two meet on this axis, or that the ^coordinate of their point

of intersection is 0.

The equation of the line BC can be written down at once in

terms of its intercepts :

f + |
= l, or

4 6



APPLICATIONS 59

The slope of this line is A = f . The slope of any line

perpendicular to it is A' = f . Hence the equation of LI, the

perpendicular which passes through the point A : ( 2, 0), is

or

L! : 2x 3y + 4 = 0.

In a similar manner the student can obtain the equation of

the perpendicular L2 from B on the side AC. It is,

Z/2 : x -{-3y 4 = 0.

On computing the avcoordinate of the point in which LI and

L2 intersect, it is found that x = 0, and hence the proposition

is established for this triangle.

Remark. For use in a later problem it is necessary to

know the exact point in which the perpendiculars meet. It is

readily shown that this point is (0, -|).

EXERCISES

1. Prove the above proposition for the special triangle con-

sidered, choosing the coordinate axes as in Ex. 1 of 2.

2. Prove the proposition for the triangle of Ex. 2, 2.

3. Prove the proposition for the general case, choosing the

axes as in Fig. 2. First show that the equation oi the perpen-

dicular LI from A on BC is

L! : bx cy = ab,

and that the equation of the perpendicular L>2 from B on AC is

Lz : ax cy = ab.

Then show that these lines intersect each other on the axis

off.

^ /p Show that the point in which the perpendiculars in the

preceding question meet is (0, }

V C J

5. Prove the theorem of the altitudes, when the axes of

coordinates are taken as in the exercise of 3.
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5. The Perpendicular Bisectors of the Sides of a Triangle.

It is shown in Plane Geometry that these lines meet in a

point. Since the student is now in full possession of the

method employed in Analytic Geometry for the proof of this

theorem, he will find it altogether possible to work out that

proof without further suggestion. Let him begin with the

special triangle of Fig. 1. He will find that the equations of

the perpendicular bisectors of the sides are the following :

L2 :

L3 : x - 1 = 0.

These lines are then shown to meet in the point (1, ).

He can work further special examples corresponding to the

exercises at the end of 2 if this seems desirable.

Finally, let him work out the proof for the general case, tak-

ing the coordinate axes as in Fig. 2. The three lines will be

found to have the equations

L! : bx-cy = |(6
2 - c2),

Z/2 : ax cy = |(a
2 c2),

L3 : x == |(a + 6).

They meet in the point

fa + b ab 4- c2\

, ( 2 2c )'

EXERCISE

Give the proof when the axes of coordinates are taken as in

the exercise of 3.

6. Three Points on a Line. The foregoing three propositions

about triangles have led to three points, namely, the three

points of intersection of the three lines in the various cases.

In the case of the special triangle of Fig. 1, these points are

(|,2); "(0,1); (I,*)-
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These points lie on a straight line. Let the student try to

prove this theorem by Plane Geometry.
The proof by Analytic Geometry is given immediately as a

direct application of the second of the general principles enun-

ciated in the opening paragraph of the chapter.

Write down the equation of the line through two of these

points, say, through the first and third. It is found to be :

3x -3y + 4 = 0.

The coordinates of the second point,

x = 0, y = |,

are seen to satisfy this equation, and the proposition is proved.

EXERCISES

1. Prove the proposition for the general case (Fig. 2). The

points have been found to be :

b ab -+- c-fa 4- b c\ f~ _&
(3 '

3j' V "T

2. On plotting the three points obtained in the special case

discussed in the text it is observed that the line-segment de-

termined by the extreme points is divided by the intermedi-

ate point in the ratio of 1:2. Prove this analytically. Is it

true in general?

EXERCISES ON CHAPTER III

Prove that the three lines,

x - 3y 5 = 0, 3x + 4y 16 = 0, 4# 23y + 7 = 0,

go through a point.

2. Prove that the three lines,

ax + by = 1, bx + ay = 1, x y = 0,

gaestiirough a point.

f
5y

Prove1 that the three points (4, 1), ( 1, 9), and

(27 3) lie on a line.
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4. Prove that the three points (a, 6), (b, a), and

( a, 2a -4- &) lie on a line.

5. Find the condition that the three lines,

bx + ay = 2ab, ax + by = a? + W, Bx 2y = 0,

where a2 is not equal to 62
,
meet in a point.

6. Find the condition that the three points (a, 6), (b, a),

and (2 a, 6), where a is not equal to 6, lie on a line.

LINES THROUGH A POINT

7. Show that the line drawn through the mid-points of the

parallel sides of a trapezoid passes through the point of inter-

section of the non-parallel sides.

8. Show that, in a trapezoid, the diagonals- and the line

.drawn through the mid-points of the parallel sides meet in a

point.

9. A right triangle has its vertices A, B, and in the points

(4, 0), (0, 3), and (0, 0). The points A' : (4,
-

4) and B' : (- 3,

3) are marked. Prove that the lines AB', BA', and the per-

pendicular from on the hypothenuse meet in a point.

10. (Generalization of Ex. 9.) Given a right triangle ABO
with the right angle at 0. On the perpendicular to OA in

the point A measure off the distance AA', equal to OA, in the

direction away from the hypothenuse. In a similar fashion

mark the point B' on the perpendicular to OB in B, so that

BB' = OB. Prove that the lines AB', BA', and the perpen-

dicular from on the hypothenuse meet in a point.

11. Let P be any point (a, a) of the line x y = 0, other

than the origin. Through P draw two lines, of arbitrary slopes

AI and A2 , intersecting the cc-axis in A] and A2 and the y-axis

in Bl and B2 respectively. Prove that the lines AiB.2 and

A^Bi will, in general, meet on the line x + y = 0.

12. If on the three sides of a triangle as diagonals paral-

lelograms, having their sides parallel to two given lines, are
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described, the other diagonals of the parallelograms meet in a

point.

Prove this theorem, when the given lines are the coordinate

axes, and the triangle has as its vertices the points (1, 6),

(4, 11), (9, 3).

13. Prove the theorem of the preceding exercise, when the

given lines are the axes, and the triangle has its vertices in the

points (0, 0), (a, a), (6, c).

POINTS ON A LINE

14. Show that in the parallelogram ABCD the vertex D,
the mid-point of the side AB, and a point of trisection of the

diagonal AC lie on a line.

15. Prove that the feet of the perpendiculars from the

point (2, 1) on the sides of the triangle with vertices in the

points (0, 0), (3, 0), and (0, 1) lie on a line.

16. Prove that the feet of the perpendiculars from the point

(1,4) on the sides of the triangle with vertices in the points

(2, 0), (- 3, 0), and (0, 4) lie on a line.

17. Show that the feet of the perpendiculars from the point

( 0,
J
on the sides of the triangle with vertices in the points

(a, 0), (6, 0), and (0, c) lie on a line.

18. Let J/be the point of intersection of two opposite sides

of a quadrilateral, and N, the point of intersection of the other

two sides. The mid-point of MN and the mid-points of the

diagonals lie on a right line.

Prove this proposition for the special case that the vertices

of the quadrilateral are situated at the points (0, 0), (8, 0), (6, 4),

(1, 6).

19. Prove the proposition of Ex. 18 for the general case.

Suggestion. Take the axis of x through M and N, the

origin being at the mid-point. The equations of the sides can

then be written in the form
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y = \i(x -K), y = As(aj
- h\

y = A3(a + K), y = A.4(> + h).

20. Let be the foot of the altitude from the vertex C of

the triangle ABC on the side AB. Then the feet of the per-

pendiculars from O on the sides BC and AC and on the other

two altitudes lie on a line.

Prove this theorem for the triangle ABC with vertices in

the points (1, 0), (- 4, 0), (0, 2).

21. Prove the theorem of the preceding exercise for the

triangle with vertices in the points (a, 0), (6, 0), (0, c). It

will be found that

bci 62C \

a2 + c2
'

a2 + c2/ \6'
J + c2

'

&2
-j- c2/

aft2 a6c\

are the coordinates of the four points which are to lie on a

line, and that

c(a + b~)x -\- (ab c2

~)y
= abc

is the equation of the line.



CHAPTER IV

THE CIRCLE

1. Equation of the Circle. According to Ch. I, 7, the

equation of the circle whose center is at the origin, and whose

radius is p, is

In a precisely, similar manner, the equation of a circle with

its center at an arbitrary point

C: (a, ft)
of the plane, the length

of the radius being denoted by p, is

found to be :

Example. Find the equation of 75

the circle whose center is at the FIG. l

point ( f, 0), and whose radius is |.

Here, a = f , ft
= 0, and p = f . Hence, from (2) :

This equation can be simplified as follows :

or, finally,
3x2 + 3t/

2 + 8x + 4 = 0.

EXERCISES

Find the equations of the following circles, and reduce the

results to their simplest form. Draw the figure each time.

1. Center at (4, 6) ; radius, 3.

AM. x2 + y
2 - 8a - 12 y + 43 = 0.

2. Center at (0, 2) ; radius, 2. Ans. a;
2 + y

z + 4y = 0.

65
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3. Center at ( 3, 0) ; radius, 3.

4. Center at (2, 4) ; radius, 8.

5. Center at (0, f) ; radius, f.

6. Center at (3, 4) ; radius, 5.

7. Center at ( 5, 12) ; radius, 13.

8. Center at (, f) ; radius, 2.

9. Center at ( f, f) ; radius, JJ-.

10. Center at (a, 0) ; radius, a.

11. Center at (0, a) ; radius, a.

12. Center at (a, a) ; radius, aV2.

2. A Second Form of the Equation. Equation (2) of 1 can

be expanded as follows :

x"- + y
1 - 2ax - 2py + a2

-|- /S
2 -

p
2 = 0.

This equation is of the form

(1) tf + yt + Ax + By+C=Q.
Let us see whether, conversely, equation (1) always repre-

sents a circle.

Example 1. Determine the curve represented by the

equation

(2) a;
2 + y* + 2x- 6^ + 6 = 0.

We can rewrite this equation as follows :

(X
s + 2x ) + <y-67/ )

= -6.

The first parenthesis becomes a perfect square if 1 is added
;

the second, if 9 is added. To keep the equation true, these

numbers must be added also to the right-hand side. Thus

or

This equation is precisely of the form (2), 1, where
= 1, /8

= 3, p = 2. It therefore represents a circle whose

center is at ( 1, 3), and whose radius is 2.
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Example 2. What curve is represented by the equation

(3) z2 + y2 + l = 0?

It is clear that no point exists whose coordinates satisfy this

equation. For, x* and y
2 can never be negative. Their least

values are 0, namely, for the origin, (0, 0), and even for

this point, the left-hand side of the equation has the value + 1.

Hence, there is no curve corresponding to equation (3).

Example 3. Discuss the equation

(4) a;
2 + y' + 2a;-4y + 5 = 0.

Evidently, this equation can be written in the form :

(5) (x + l)*+(y- 2)^
= 0.

The coordinates of the point ( 1, 2) satisfy the equation.

But, for any other point (x, y), at least one of the quantities,

x -f- 1 and y 2, is not zero, and the left-hand side of the equa-
tion is positive. Thus the point ( 1, 2) is the only point
whose coordinates satisfy the equation. Hence equation (4)

represents a single point ( 1, 2).

Remark. Equation (5) can be regarded as the limiting case

of the equation

when p approaches the limit 0. This equation represents a

circle of radius p for all positive values of p. When p ap-

proaches 0, the circle shrinks down toward the point ( 1, 2)

as its limit. Accordingly, equation (5) is sometimes spoken
of as representing a circle of zero radius or a null circle.

The General Case. It is now clear how to proceed in the

general case, in order to determine what curve equation (1)

represents. The equation can be written in the form :

(z
2 + Ax + \Ay

)+ (y
i + By + {B2

)
= - C+^AZ -

or

.'KJ+K)^^^
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If the right-hand side is positive, i.e. if

then equation (1) represents a circle, whose center is at the

point ( ^A, ^B) and whose radius is

If, however, A2 + B2 4 C = 0, then equation (1) represents

just one point, namely, ( A, \B), or, if one prefers, a

circle of zero radius or a null circle.

Finally, when A2 + B2 4 C < 0, there are no points whose

coordinates satisfy (1). To sura up, then :

Equation (1) represents a circle, a single point, or there is no

point whose coordinates satisfy (1), according as the expression

,42 + 52 _ 4(7

is positive, zero, or negative.

Consider, more generally, the equation

(6) a(x
l + y^)+ bx + cy + d 0.

If a = 0, but b and c are not both 0, the equation represents

a straight line.

If, however, a = 0, the equation can be divided through by

a, and it thus takes on the form :

This is precisely the form of equation (1), and hence the above

discussion is applicable to it.

EXERCISES ^
Determine what the following equations repltesent. Apply

each time the method of completing the square ai^d examining
the right-hand side of the new equation. Do not Merely sub-

stitute numerical values in the formulas developed in the text.
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Ans. A circle, radius 5, with center at (3, 4).

2. x2 + f- 6x + 4y + 13 = 0. Ans. The point (3,
-

2).

3. x 1
-f-?/

2
-f 2x + 4:y + 6 = 0. -4ns. No point whatever.

4. a?
2 + y

2 lOz + 24y = 0.

y x"- + y
z 7x=5.

6. XB" + y"-
6ic + Sy + 25 = 0.

y 494* + 49y
2 - 14 a? + 28y + 5 = 0.

^4ns. The point (^, ^|).

8.

12.

13. x> + ?/- + 3 = 0.

14. x* ,+ y
2 2x + 4y + 10 = 0.

15. 3cc2 -\- 3yz 4# + 2y + 7 =
16. y5x- + 5u2 60; + 8w = 12.

/
IV 3

gents. Let the circle

f (1)

be given, and let P! :
(a?!, y^) be any point of this circle. To

find the equation of the tangent

at P!.

The tangent at Px is, by Ele-

mentary Geometry, perpendicular to

the radius, OPi- Hence its slope,

A', is the negative reciprocal of the

slope, t/i/o?!,
of OP! ;

or

FIG. 2
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We wish, therefore, to find the equation of the line which

passes through the point (xi, yt)
and has the slope A/ = x\/y\.

By Ch. II, 2, (II), the equation of this line is

(2) y-y^-^x-xj.
Vi

This equation can be simplified by multiplying through by

yi and transposing : ,^ .

(3) Bp+Jbf~W + )tfr

Now, the point (xl} y^ is, by hypothesis, on the circle
;
hence

its coordinates satisfy the equation (1) of the circle :

*i
2 + 2/i

2 = P
2

.

The right-hand side of equation (3) can, therefore, be replaced

by the simpler expression, p-.

We thus obtain, as the final form of the equation of the

tangent, the following :

In deducing this equation it was tacitly assumed that yl 3= 0,

since otherwise we could not have divided by it in obtaining

X'. The final formula, (4), is true, however, even when yt
= 0,

as can be directly verified. For, if yl
= and xl

=
p, then (4)

becomes

px = p
2 or x = p,

and this is the equation of the tangent in the point (p, 0).

Similarly, when yl
= and xl

=
p.

Any Circle. If the given circle is represented by the

equation

(5) (s-)+(y-/8) l =
p',

precisely the same reasoning can be applied. The equation
of the tangent to (5) at the point Pl : (xly y^ of that circle is

thus found to be : .

(6) (i-)(a!-a)+ (y1 -/8)(y-/8)=p.

The proof is left to the student as an exercise.
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If the equation of the circle is given in the form

(7) a2 + tf + Ax + By + (7=0,

or in the form (6), 2, the equation can first be thrown into

the form (5), an' then the equation of the tangent is given

by (6).

Example. To find the equation of the tangent to the circle

(8) 3x2 + 3?/
2 + 8a;-5?/ =

at the origin.

"First, reduce the coefficients of the terms in x- and y
z to

unity :

Next, complete the squares :

Now, apply the theorem embodied in formula (6). Since

?i = 0, 2/i
= 0, = -|, =

f,

we have f(z + *)- fly
- |)= If,

or 8* -5y = 0,

as the equation of the tangent to (8) at the origin.

EXERCISES

Find the equation of the tangent to each of the following

circles at the given point.

x* + y*
= 25 at (-3, 4). Ans. 3x - y + 25 = 0.

x2 + f = a2 at (0, a). Ans. y = a.

x2 + f- = 49 at (- 7, 0).

(3.
^

i)2+ (y + 2)2
= 25 at (4, 2). Ans. 3x + y = 20.

5. (
a, + 5)2+ (2/ _3)2 = 49 at (2, 3).

6. x2 + ?/
2 9a; + ll?/ = at the origin.
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V 7

^3

7. 2x* + 2y2 -3x-y = ll at (1,2). ,

3. Find the intercepts on the axis of x made by the tangent
at (- 5, 12) to

169.
/

Ans. -
33f .

9. Find the area of the triangle cut from ,he first quadrant

by the tangent at (1, 1) to

3z2 + 3y2 + Sx + 16y = 30.

VjO. If the equation

a2 + y
2 + Ax + By + C=

represents a circle, and if the point (xl9 y^) lies on the circle,

show that the equation of the tangent at this point can be

written in the form :

(9) XlX + y}y + A(X + Xl)+ ^(y + y^ + C=Q.
z A

Suggestion. Find the values of a, ft, and p for the circle,

substitute them in (6), and simplify the result.

11. Do Exs. 6 and 7, using formula (9), Ex. 10.

12. The same for the tangent to the circle in Ex. 9.

13. Show that, if Px : (xly yt ) is any point of the circle

at which the tangent is not parallel to the axis of y, then the

slope of the tangent at Pl is

4. Circle through Three Points. It is shown in Elementary

Geometry that a circle can be passed through any three points

not lying in a straight line.

If the points are (x1} y^, (x%, y2),
and (x3 , y3), and if the

equation of the circle through them is written in the form

then clearly the following three equations must hold :
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+ Axi + %i + = 0,

y-2
2

We thus have three simultaneous linear equations for de-

termining the three unknown coefficients A, B, C.

Suppose, for example, that the given points are the

following :

(1, 1), (1,
-

1), (- 2, 1).
*

f
The equations can be thrown at once into the form

A + B + C = - 2,

A-B+C = -2,
-2A + B+C= -5.

Solve two of these equations for two of the unknowns in

terms of the third. Then substitute the values thus found in

the third equation. Thus the third unknown is completely

determined, and hence the other two unknowns can be found.

Here, it is easy to solve the first two equations for A and B
in terms of C. On subtracting the second equation from the

first, we find :

2JS = 0; hence B = 0.

Then either of the first two equations gives for A the value :

A = -C-2.

Next, set for A and B in the third equation the values just

found :

Hence, finally,

A = l, B = Q, C = -3,

and the equation of the desired circle is :

& + y~ + x 3 = 0.

Check the result by substituting the coordinates of the

given points successively in this last equation. They are

found each time to satisfy the equation.



74 ANALYTIC GEOMETRY

The circle through the three given points has its center in

the point (- |, 0). Its radius is of length V&25 = 1.803.

EXERCISES

Find the equations of the circles through the following

triples of points. Plot the points and draw the circles.

V (1, 0), (0, 1), the origin. Ans. x* +yz x- y = 0.

2. (1,1), (-!,-!), (1,-1).

3. (5,10), (6,9), (-2,3).

4. The vertices of the triangle of Ex. 15 at the end of

Ch. Ill, p. 63. Show that the point (2, 1) of that exercise

lies on the circle.

5. The same question for Ex. 17, p. 63. Show that <ihe

point [0, )

of that exercise lies on the circle.

V c J

6. The vertices of the triangle of Ch. Ill, Fig. 1. Find the

coordinates of the center and check by comparing them with

those of the point of intersection of the perpendicular bisectors

of the sides of the triangle, as determined in Ch. Ill, 5.

7. The same question for the triangle of Ch. Ill, Fig. 2.

Check.

^J. The vertices of the triangle formed by the coordinate

axes and the line 2x 3y = 6.

^9. The vertices of the triangle whose sides are :

Ans. 3^ + 3^ + 17or

EXERCISES ON CHAPTER IV

Nl. Find the equation of the circle with the line-segment join-

ing the two points (3, 0) and (5, 2) as a diameter.

2. A circle goes through the origin and has intercepts 5

and 3 on the axes of x and y respectively. Find its equation.

3. A circle goes through the origin and has intercepts a and

6. Find its equation.



THE CIRCLE 75

*4. Find the equation of the circle which has its center in

the point ( 3, 4) and is tangent to the line 3x + 8y 6 = 0.

5. A circle has its center on the line 2x 3y = Q and

passes through the points (4, 3), (2, 5). Find its equation.

VB. Find the equation of the circle which passes through the

point (5, 2) and is tangent to the line 3x y 1 = at

the point (1, 2).

7. There are two circles passing through the points (3, 2),

( 1, 0) and having 6 as their radius. Find their equations.

8. There are two circles with their centers on the line,

5x 3.y = 8, and tangent to the coordinate axes. Find their

equations.

Q^. Find the equations of the circles tangent to the axes and

passing through the point (1, 2).

10. Find the equations of the circles passing through the

points (3, 1), (1, 0) and tangent to the line x y = 0.

Suggestion. Demand that the center (a, j3) be equally
distant from the two points and the line.

\I. Find the equations of the circles passing through the

origin, tangent to the line x -(- y 8 = 0, and having their

centers on the line x = 2.

12. Find the equations of the circles of the preceding exer-

cise, if their centers lie on the line 2x y 2 = 0.

\\13. Find the equation of the circle inscribed, in the triangle

formed by the axes and the line 3x 4y 12 = 0.

14. Find the equation of an arbitrary circle, referred to two

perpendicular tangents as axes.

15. Do the four points (0, 0), (6, 0), (0,
-

4), (5, 1) lie on

a circle ?

16. Find the coordinates of the points of intersection of the

circles
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17. Find the coordinates of the points of intersection of the

circles
2-2 _j_ yi _|_ ax _|_ ty

_ o
?

2 + y
2 + bx ay = 0.

ORTHOGONALITY

18. A circle and a line intersect in a point P. The acute

angle between the line and the tangent to the circle at P is

known as the angle of intersection of the line and the circle at

P. If the line meets the circle in two points, the angles of

intersection at the two points are equal. Determine the angle

in the case of the circle

0^+2/2=25,

and the line 2x y 5 = 0.

19. A circle and a line are said to intersect orthogonally if

their angle of intersection is a right angle. Prove that the

circle,

is intersected by the line, 5x + y = 7, orthogonally.

Suggestion. First answer geometrically the question : What
lines cut a given circle orthogonally ?

-^0. Show that the circle,

intersects the line,

ax + by -f c = 0,

orthogonally when and only when

21. If two circles intersect in a point P, the acute angle
between their tangents at P is known as their angle of inter-

section. If the circles intersect in two points, their angles of

intersection at these points are equal. Find this angle in' the

case of the circles,



THE CIRCLE 77

22. Prove geometrically that two circles intersect orthog-

onally, that is, at right angles, when and only when the sum
of the squares of their radii equals the square of the distance

between their centers. Then show that the circles

2=0,
2 a2 + 2y- + 4 a; 6y - 19 = 0,

intersect orthogonally.

<-^!$. Prove that the two circles,

X2 + ?/2 + AiX + ^y + Ci = 0,

a2 + tf- + A2x + B2y + <72 = 0,

intersect orthogonally when and only when

A1A2 + B
1B2

= 2 C1 +2<72 .

24. Find the equation of the circle which cuts the circle

at right angles and passes through the points (1, 0) and (0, 1).

25. There are an infinite number of circles cutting each of

the two circles,
a? + 2/2

_ 4y + 2 = 0,

2 = 0,

orthogonally. Show that they are all given by the equation

x2 + y
1 + ax - 2 = 0,

where a is an arbitrary constant. Where are their centers?

Draw a figure.

26. Find the equation of the circle cutting orthogonally the

three circles,
- = 9,

y-19 = 0.

Ans. x
1
- + f + 10z + 9 = 0.
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MISCELLANEOUS THEOREMS

27. Prove analytically that every angle inscribed in a semi-

circle is a right angle.

28. Prove analytically that the perpendicular dropped from

a point of a circle on a diameter is a mean proportional between

,
the segments in which it divides the diameter.

29. The tangents to a circle at two points P, Q meet in the

point T. The lines joining P and Q to one extremity of the

diameter parallel to PQ meet the perpendicular diameter in

the points R and S. Prove that RT=ST.
30. In a triangle the circle through the mid-points of the

sides passes through th'e feet of the altitudes and also through
the points halfway between the vertices and the point of inter-

section of the altitudes. This circle is known as the Nine-

Point Circle of the triangle.

For the triangle with vertices in the points (4, 0), (2, 0),

(0, 6) construct the circle and mark the nine points through
which it passes.

31. For the triangle in the preceding exercise find the equa-
tion of the nine-point circle, as the circle through the mid-

points of the sides. Ans. So;2 + 3y7 + 3x lit/ = 0.

32. Show that this circle goes through the other six points.

33. For the triangle with vertices in the points (a, 0), (6, 0),

(0, c) find the equation of the nine-point circle, as the circle

through the mid-points of the sides.

Ans. 2c(x
>
- + y)-(a + V)cx +(ab - &)y = 0.

34. Show that this circle goes through the other six points.



CHAPTER V

INTRODUCTORY PROBLEMS IN LOCI. SYMMETRY OF

CURVES

1. Locus Problems.* A point is moving under given condi-

tions; its locus is required. This type of problem the student

studied in Plane Geometry. But he found there no general

method, by means of which he could always determine a locus
;

for each problem he had to devise a method, depending on the

particular conditions of the problem.

Analytic Geometry, however, provides a general method for

the determination of loci. Some simple examples of the

method have already been given. Thus, in finding the equa-

tion of a circle, we determined the locus of a point whose dis-

tance from a fixed point is constant. Again, in deducing the

equation of a line through two points, we found the locus of a

point moving so that the line joining it to a given point has a

given direction.

The method in each of these cases consisted merely in ex-

pressing in analytic terms i.e. in the form of an equation

involving the variable coordinates, x and y, of the moving

point the given geometric condition under which the point
moved. We proceed to show how this method applies in less

simple cases.

Example 1. The base of a triangle is fixed, and the dis-

tance from one end of the base to the mid-point of the opposite
side is given. Find the locus of the vertex.

* The locus problems In this chapter may be supplemented, if it is de-

sired, by 6-8 of the second chapter on loci, Ch. XIII, in which the loci

of inequalities and the bisectors of the angles between two lines, together
with related subjects, are considered.

79
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Let the triangle be OAP, with M as the mid-point of AP.
Let a be the length of the base OA, and let I be the given

distance. It is required to

find the locus of P, so that

always

(1) OM= I.

It is convenient to take

the origin of coordinates in
C O A:(a,o) _.

and the positive axis of x

along the base. The coordi-

nates of A are then (a, 0). The coordinates of the moving

point P we denote by (x, y). The coordinates of the point
Jtfare

The distance OM is

a y\
'

2/

Thus condition (1), expressed analytically, is

Squaring both sides of this equation and simplifying, we have

(2) (x +

This equation represents the circle whose center is at ( a, 0)

and whose radius is 2 1. We have shown, therefore, that, if

(1) is always satisfied, the coordinates (x, y} of P satisfy (2),

arid P lies on the circle. The locus of P appears, then, to be

the circle.

How do we know, though, that P traces the entire circle ?

To prove this, we must show, conversely, that, if the coordi-

nates (x, y) of P satisfy (2), condition (1) is valid. If (x, y)

satisfy (2), then, on dividing both sides of (2) by 4 and extract-

ing the square root of each side, we obtain two equations :
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Equation ii) says that a positive or zero quantity equals a

negative quantity, and is therefore impossible. Thus only

equation i) remains. This equation says that OM= I. Hence

condition (1) is satisfied by every point of the circle,* and so

the circle is the locus of P.

We have yet to describe the locus, independently of the

coordinate system, with reference merely to the original tri-

angle. Produce the base, in the direction from A to 0, to the

point (7, doubling its length. Then the locus of P is a circle,

whose center is at C and whose radius is twice the given
distance.

Example 2. Determine the locus of a point P which moves

so that the difference of the squares of its distances from two

fixed points P1} P2 is constant,

and equal to c :

(3)

PP2
2- PPj2 = c.

P:(x,y)

P,:(a,o)

FIG. 2

Take the mid-point of the

segment P\P^ as origin and

the axis of x along PiP2 .

The coordinates of P: and P2

can be written as (a, 0), (a, 0) ;
those of P, as (x, y).

By Ch. I, 3,

P?V = (a + a)
2+ y*, PP2

2= (x
-

a)
2+ y\

Then the equations (3), expressed analytically, are

* The two points in which the circle cuts the axis of x are exceptions,

since these do not lead to a triangle, OAP.
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a)
2+ y*(x a)

2
y
2 =

c,

(x
- a)2+ y* -(x + a)

2 -y^=c.

These reduce to

(4) 4 ax = c, 4 ax = c.

Hence, if condition (3) is satisfied, P lies on one or the

other of the lines

(5)
*= '

*?4a 4a

Conversely, if P lies on one or the other of the lines (5),

then (4) holds, and from (4) we show by retracing the steps

that one or the other of the equations (3) is valid.

Consequently, the locus of P consists of two straight lines,

perpendicular to the line PiP2 ,
an(i symmetrically situated

with reference to the mid-point of PiP2 ,
the distance of either

line from the mid-point being c/4 a. Thus the locus consists

of two entirely unconnected pieces, one corresponding to each

of the equations (3). If c = 0, these equations are the same,

and the two lines forming the locus coincide in the perpendic-

ular bisector of the segment PiP2 .

EXERCISES

In solving the following problems, the first step is to find

the equation of a curve, or the equations of curves, on

which points of the locus lie. The student must then take

care (a) to show, conversely, that every point lying on the

curve or curves obtained satisfies the given conditions
;
and

(6) to describe the locus, finally, without reference to the

coordinate system used.

1. A point P moves so that the sum of the squares of its

distances to two fixed points Pl} P2 is a constant, c, greater

than \ PiP2
2

- Show that the locus of P is a circle, with its

center at the mid-point of PiP2 .

What is the locus if c = PiP2
2 ? If c < |
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2. Find the locus of the mid-point of a line of fixed length

which moves so that its end points always lie on two mutually

perpendicular lines.

3. Determine the locus of a point which moves so that the

sum of the squares of its distances to the sides, or the sides

produced, of a given square is constant. Is there any restric-

tion necessary on the value of the constant ?

4. Determine the locus of a point which moves so that the

square of its distance to the origin equals the sum of its

coordinates. Ans. A circle, center at (-|, ^), radius = ^V2.
5. Show that the locus of a point which moves so that the

sum of its distances to two mutually perpendicular lines

equals the square of its distance to their point of intersection

consists of the arcs of four circles, forming a continuous curve.

Where are the circles, and which of their arcs belong to the

locus ?

6. The base of a triangle is fixed, and the trigonometric

tangent of one base angle is a constant multiple, not 1,

of the trigonometric tangent of the other. Find the' locus of

the vertex.

* 2. Symmetry. In the problems of the preceding paragraph,
the equations of the loci were familiar and the curves they

fr represented were easily identified. In subsequent chapters,

f\J(r however, we shall have locus problems to consider in which
* the resulting equations will be new

I I to us. In drawing the curves which

these equations represent, it will be (-x-v>-

useful to have at hand the salient

facts concerning the symmetry of

curves. ^^
Symmetry in a Line. Two points,

P and P', are said to be symmetric
in a line L, if L is the perpendicular bisector of PP'.

If L is the axis of x and (x, y) are the coordinates of P, then

it is clear that (x, y~)
are the coordinates of P'.
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FIG. 4

Similarly, if L is the axis of y and P has the coordinates

(x, y), then P' has the coordinates ( x, y).

Example 1. Given the curve

(1) y* = os.

Let P :
(a?!, yi) be any point on it, i.e. let

/ON 2 />

v y c/i
~~

i

be a true equation. Then the point P' : (a^, y^), symmetric
to P in the axis of x

}
also lies on the curve.

For, if we substitute the coordinates of P' into

(1), the result is
( y^

2 = x
1} or (2), and (2) we

know is a true equation. We say, then, that

the curve (1) is symmetric in the axis of x.

The test for symmetry in the axis of x,

employed in this example, is general in appli-

cation. We state it, and the corresponding
test for symmetry in the axis of y, in the form

of theorems.

THEOREM 1. A curve is symmetric in the axis of x if the sub-

stitution of y for y in its equation leaves the equation unchanged.
THEOREM 2. A curve is symmetric in the axis of y if the sub-

stitution of x for x in its equation leaves the equation unchanged.

Symmetry in a Point. Two points, Pand P', are symmetric
in a given point, if the given point is the mid-point of PP'.

If the given point is the origin of

coordinates and P has the coordinates

(x, y), then the coordinates of P' are
;

evidently (- x, y). t-*,-v)'

Example 2. Consider the curve FlG> 5

/Q\ 3
(o) y x.

If P :
(a?!, 2/i)

is any point on this curve, then the point

P' :
( &!, 7/t), symmetric to P in the origin, is also on the

curve. For, the condition that P' lies on the curve, namely,

2/i =( O 3 or yl
= xf,
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FIG. 6

is equivalent to the condition : y = xf, that P lie on the curve.

We say, then, that the curve (3) is symmetric in the origin.

This test, too, is general in application ;

we formulate it as a theorem.

THEOREM 3. A curve is symmetric in the

origin of coordinates, if the substitution of

x for x, and of y for y, in its equation

leaves the equation essentially unchanged.

A case in which the test leaves the

equation wholly unchanged is that of the

circle, x2 + y
1 = p

2
,

or the curve xy = a-

(Fig- 7).

Now the circle in question is symmetric in both axes. It

follows then, without further investigation, that it is sym-
metric in the origin, the point of intersection of the axes.

This conclusion holds always ;
in fact,

we may state the theorem.

THEOREM 4. If a curve is symmetric
in both axes of coordinates, it is symmetric
in the origin.

The details of the proof are left to

the student as an exercise. It is to be

noted that the converse of the theorem,

namely, that if a curve is symmetric in

the origin, it is symmetric in the axes, is

not true. For, the curve of Example 2

is symmetric in the origin, but not symmetric in either axis
;

this is true also of the curve xy = a2 of Fig. 7.

FIG. 7

EXERCISES

1. Prove Theorem 4.

2. Test, for symmetry in each axis and in the origin, the

curves given in the following exercises of Ch. I, 7 :

(a) Exercise 2
; (c) Exercise 7

;

(6) Exercise 6
; (d) Exercise 8.
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In each of the following exercises test the given curve for

symmetry in each axis and in the origin. Plot the curve.

3. xy + 1i=(). 6. t/
2 + 4a; = 0.

4. 10y = x*. 7. x* y
2 =4.

5. 20x = y*. 8. xz + 2 y* = 16.

EXERCISES ON CHAPTER V

The base of a triangle is fixed and the ratio of the
^

lengths of the two sides is constant. Find the locus of the

vertex. Ans. A circle, except for one value of the constant.

A point P moves so that its distance from a given line

is proportional to the square of its distance to a given point
not on Z/. If P remains always on the same side of L as

K, show that its locus is a circle.

3. Find the locus of P in the preceding exercise, if it re-

mains always on the opposite side of L from K. Does your
answer cover all cases ?

4. If, in Ex. 2, K lies on L and P may be on either side of

L, what is the locus of P?
5. Three vertices of a quadrilateral are fixed. Find the

locus of the fourth, if the area of the quadrilateral is constant.

6. Find the locus of a point moving so that the sum of

the squares of its distances from the sides of an equilateral

triangle is constant. Discuss all cases.

Ans. A circle, center at the point of intersection of the me-

diansj this point ;
or no locus.

.X* The feet of the perpendiculars from the point P : (X, Y)
on the sides of the triangle with vertices in the points (0, 0),

(3, 0), (0, 1) lie on a line. Find the locus of P.

Ans. The circle circumscribing the triangle.

8. The preceding problem, if the triangle has the points

(2, 0), (- 3, 0), (0, 4) as vertices.

9. Problem 7, for the general triangle, with vertices at

(a, 0), (b, 0), (0, c).
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10. Show that the equation of the circle described on the

line-segment joining the points (x1} y^, (x^, y%) as a diameter

may be written in the form

(x
- x^(x -x2)+ (y- y^(y

- y2)
= 0.

Suggestion. Find the locus of a point P moving so that the

two given points always subtend at P a right angle.

11. The two points, P and P', are symmetric in the line,

x y = 0, bisecting the angle between the positive axes of x

and y. Show that, if (x, y} are the coordinates of P, then

(y, x) are the coordinates of P'.

12. Prove that a curve is symmetric in the line x y =
if the interchange of x and y in its equation leaves the equation

unchanged.

13. If P and P' are symmetric in the line x + y = and

P has the coordinates (x, y), show that the coordinates of P'

are (-y, -
x).

14. Give a test for the symmetry of a curve in the line

x + y = 0.

15. Test each of the following curves for symmetry in the

lines x y = and x + y = 0.

(a) xy = a*; (c) x*- y
z = a2

;

(6) xy = -a-; (d) (x- yf- 2x - 2y = 0.

16. Plot the curve of Ex. 15, (d).

In each of the following exercises find the equation of the

locus of the point P. Plot the locus from the equation, mak-

ing all the use possible of the theory of symmetry.

17. The distance of P from the line x -+- 2 = equals its

distance from the point (2, 0).

18. The sum of the distances of P from the points (3, 0)

and (- 3, 0) is 10.

19. The difference of the distances of P from the points

(5, 0) and (- 5, 0) is 8.



CHAPTER VI

FIG. 1

THE PARABOLA

1. Definition. A parabola is defined as the locus of a point

P, whose distance from a fixed line D is always equal to its

distance from a fixed point F, not on

the line. It is understood, of course,

that P is restricted to the plane deter-

mined by D and F.

One point of the locus is the mid-point

A, Fig. 2, of the perpendicular FE
dropped from F on D. Through A
draw T parallel to D. Then no other

point on T, or to the left of T, can belong

to the locus, for all such points are

clearly nearer to D than they are to F.

Further points of the locus can be

obtained as follows. To the right of T
draw L parallel to D, cutting AF, pro-

duced if necessary, in S. With ES as

radius and F as center describe a circle,

cutting L in P and Q. Then P and Q
lie on the locus.

A large number of points having been

obtained in this way, a smooth curve

can be passed through them. The curve

is symmetric in the line AF, and evi-

dently has T as a tangent.

The line D is called the directrix, and the point F, the focus,

of the parabola ;
A is the vertex, and the indefinite line AF,

the axis
;
FP is a focal radius.

88

Fia. 2
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The student is familiar with the fact that all circles are

similar; i.e. have the same shape, and differ only in size. A
like relation holds for any two parabolas. Think of them as

lying in different planes, and choose in each plane as the unit

length the distance be-

tween the focus and the

directrix. Then the one

parabola, in its plane, is

the replica of the other,

in its plane. Conse-

quently, the two parab-
olas differ only in the

scale to which they are

drawn, and are, there-

fore, similar.

The details of the

proof just outlined can be supplied at once by showing that

the triangles FPM and MFE are similar, respectively, to

F'P'M' and M'F'E', the angles ^ in Fig. 3 being equal by
construction. Hence

FP _ EF
F'P' E'F''

i.e. focal radii, FP and F'P', which make the same angle with

the axes always bear to each other the same fixed ratio.

FIG. 3

EXERCISES

1. Take a sheet of squared paper and mark D along one of

the vertical rulings near the edge of the paper. Choose F
at a distance' of 1 cm. from D. Then the points of the locus

on the vertical rulings or on as many of them as one desires

can be marked off rapidly with the compasses. Make a

clean, neat figure.

2. Place a card under the curve of Ex. 1 and, with a needle,

prick numerous points of the curve through on the card, and

mark, also, the focus and axis in this way. Cut the card along
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the curve with sharp scissors. The piece whose edge is con-

vex forms a convenient parabolic ruler, or templet, to be used

whenever an accurate drawing is desired.

A small hole at the focus and a second hole farther along

the axis make it possible, in using the templet, to mark the

focus and draw the axis.

A second templet, to twice the above scale, will also be

found useful.

3. The focus of a parabola is distant 5 units from the

directrix. In a second parabola, this distance is 2 units. How
much larger is the first parabola than the second, i.e., how do

their scales compare with each other ?

2. Equation of the Parabola. The first step is to choose

the axes of coordinates in a convenient manner. Evidently,
one good choice would be to take

the axis of x perpendicular to D
and passing through F. Let us do

this, choosing the positive sense

from A toward F.

For the axis of y three simple
choices present themselves, namely :

(a) through A ;

(&) along D ;

(c) through F.

Perhaps (&) seems most natural
;

but (a) has the advantage that the

curve then passes through the

origin, and this choice turns out in practice to be the most

useful one. We will begin with it.

Let P : (x, y) be any point on the curve. Denote the dis-

tance of F from D by ra. Then

FIG. 4

=~ and
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By Ch. I, 3,

On the other hand, the distance of P from D is

definition, these two distances are equal, or

Square each side of the equation, so as to remove the radical,

and expand the binomials :

(2) x2_ ma. +^ +2/
2 = a.2 + ma. + ^L

2
.

The result can be reduced at once to the form

(3) y* = 2mx,

and this is the equation of the parabola', referred to its vertex

as origin and to its axis as the axis of x.

The proof of this last statement is not yet, however, com-

plete ;
for it remains to show conversely that, if (x, y) be any

point whose coordinates satisfy (3), it is a point of the parab-
ola. From (3) we can pass to (2). On extracting the square
root of each side of (2), we have two equations :

one of which must be true, and both of which may conceivably

be true. Now, x is a positive quantity or zero
; for, by

hypothesis, the coordinates of the point (x, y) satisfy equation

(3). Hence
ii)

is impossible, for it says that a positive or

zero quantity is equal to a negative quantity. Thus only i)
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remains, and this equation is precisely the condition that the

distance of (x, y) from D be equal to its distance from F.

Hence the point (x, y) lies on the parabola, q. e. d.

EXERCISES

1. Show that the choice (6) leads to the equation

(4) y
2 = 2mx ra2.

This is the equation of the parabola referred to its directrix

and axis as the axes of y and x respectively, with the positive

axis of a; in the direction in which the curve opens.

2. Show that the choice (c) leads to the equation

(5) y
z = 2mx + ra2.

This is the equation of the parabola when the focus is the

origin and the positive axis of x is along the axis of the curve

in the direction in which the curve

/ opens.
P-(x y\'

3. Taking the axes as indicated in
~x

Fig. 5, show that the equation of the
D

parabola is

FlG. 5 /vS 9
7/3,?/

4. Choosing the axis of y as in the foregoing question, show
that the equation of the parabola is

xz = 2my ra2
,

in case the axis of x is along D, and is

xz = 2my + ra2
,

in case F is taken as the origin.

5. If the axis of x is taken along the axis of the parabola,
but positively in the direction from F toward D, and if the

origin is taken at the vertex, show that the equation of the

curve is

y2 = 2mx.
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6. If the axis of y is taken along the axis of the parabola,

but positively in the direction from F toward D, and if the

origin is .taken at the vertex, show that the equation of the

curve is

xz = 2my.

7. Determine the focus and directrix of each of the follow-

ing parabolas :

(a) y
1- = 4a;. Ans. (1,0); x + 1 = 0.

(6) y = &. Ans. (0, ) ; 4=y + 1 = 0.

(c) 3y
? 5x = 0. (d) 3yz

-\

(e) y = -2x*. (/) 5a?H

8. It appears from the foregoing that any equation of the

form

y~ = Ax, or x
1
* = Ay,

where A is any positive constant, represents a parabola with

its vertex at the origin. Formulate a general rule for ascer-

taining the distance of the focus of such a parabola from the

vertex.

9. Find the equations of the following parabolas :

(a) Vertex at (0, 0) and focus at (2, 0).

(&) Vertex at (0, 0) and 2x + 5 = as directrix.

(c) Vertex at (0, 0) and focus at (0, |).

(d) Vertex at (0, 0) and 2 y 1 = as directrix.

(e) Focus at (0, 0) and vertex at ( 3, 0).

(/) Focus at (0, 0) and 3y + 4 = as directrix.

(0) Focus at (6, 0) and axis of y as directrix.

(Ji)
Focus at (0, 7) and axis of x as directrix.

3. Tangents. The student will next turn to "Chapter IX
and study 1, 2. It is there shown that the slope of the

parabola

(i) y
2
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at any one of its points (x1} yt) is, in general, given by the

formula

(2) A = ^;
y\

and that the equation of the tangent line at any point (x1} yt)

can, without exception, be written in the form

(3) yly = m(x + x1).

Latus Rectum. The chord, PP', of a parabola which passes

through the focus and is perpendicular to the axis is called the

latus rectum (plural, latera recta).

Its half-length is found by setting x = ra/2
in the equation of the parabola, and solving

P:(-%,
m ) for the positive y :

E F

p> Thus the length, PP1

,
of the latus rectum

is 2m.\ The tangent at either P or P' makes an

angle of 45 with the axis of x. For, the

slope of the tangent at P is, from (2) :

mm
Let E be the point in which the tangent at P meets the

axis of x. Since FP = m, and Z.FEP= 45, EF= m and so

E lies on the directrix. Consequently, the tangents at P and

P cut the axis of x at the point of intersection of the directrix

with that axis.

This theorem can also be proved by writing down the equa-

tion of the tangent at P,

and rinding the intercept of this line on the axis of x.
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EXERCISES

1. Find the equation of the tangent to the parabola y
2 = 3x

at the point (12, 6). An*, x - 4y + 12 = 0.

2. Find the equation of the normal to the same parabola /"

at the given point. Ans. 4x + y = 54.

3. Find the length of the latus rectum of the parabola of

Ex. 1.

4. Show that the tangents to any parabola at the extremi-

ties ofthe latus rectum are perpendicular to each other.

Show that the tangent to the parabola y
1 = 4 a; at the

point (36, 12) cuts the negative axis of a; at a point whose dis-

tance from the origin is 36.

6. At what point of the parabola of Ex. 5 is the tangent

perpendicular to the tangent mentioned in that exercise ?

7. Show that the two tangents mentioned in Exs. 5 and

A 6 intersect on the directrix, and that the chord of contact of

these tangents, i.e. the right line drawn through the two points

.^of tangency, passes through the focus.

*\ 8. Show that the tangent to the parabola (1) at any point
P cuts the negative axis of x at a point M whose distance

from the origin is the same as the distance of P from the axis

of y.

9. Prove that the two parabolas,

2/
2 = 4o; + 4 and y"'

= 60: + 9,

intersect at right angles. Assume that the slope of the parab-
ola of Ex. 2, 2, at the point (xl} yt) is m/y^.

10. If two parabolas have a common focus and their axes

lie along the same straight line, their vertices, however, being
on opposite sides of the focus, show that the curves cut each

other at right angles.

4. Optical Property of the Parabola. If a polished reflector,

like the reflector of the headlight of a locomotive or a search-
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light, be made in the form of a paraboloid of revolution, i.e.

the surface generated by a parabola which is revolved about

its axis, and if a source of light be placed at the focus, the

reflected rays will all be parallel.

This phenomenon is due to the fact that the focal radius FP
drawn to any point P of the parabola makes the same angle

with the tangent at P as does the

line through P parallel to the axis.

The proof of this property can

be given as follows. Let the

tangent at P : (x^ y^) cut the axis

of a; in M. Then the length of

OM is equal to x, by 3, Ex. 8.

Furthermore, OF= m/2. Hence
the distance from M to F is

D

FIG. 7

But this is precisely the distance of P from D, 2, and

hence, by the definition of the parabola, it is also equal to FP.

We have, then, that MF=FP. Consequently, the triangle

MFP is isosceles, and

FMP = 4 MPF.

But %FMP=%SPT,
and the proposition is proved.

The result can be restated in the following

THEOKEM. The focal radius FP of a parabola at any point

P of the curve and the parallel to the axis at P make equal angles

with the tangent at P.

Heat. If such a parabolic reflector as the one described

above were turned toward the sun, the latter's rays, being

practically parallel to each other and to the axis of the reflector,

would, after impinging on the polished surface, proceed along

lines, all of which would pass through F. .Thus, in particu-

lar, the heat rays would be collected at F, and if a minute
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charge of gunpowder were placed at F, it might easily be

tired.

It is to this property that the focus (German, Brennpunkt)
owes its name. The Latin word means hetirth, or fireplace.

The term was introduced into the science by the astronomer

Kepler in 1604.

EXERCISES ON CHAPTER VI

1. A parabola opens out along the positive axis of y as axis.

Its focus is in the point (0, 3) and the length of its latus

rectum is 12. Find its equation. Ans. x2 = 12 y.

2. A parabola has its vertex in the origin and its axis along
the axis of x. If it goes through the point (2, 3), what is its

equation ? .4ns. 2?/
2 9 a; = 0.

3. Show that the equation of a parabola with the line x = c

as directrix and with the point (c + m, 0) or (c ra, 0) as

focus is

y
z = 2m(x c) m2

,
or y

1
* = 2m(x c) m2

.

Hence prove that every parabola with the axis of x as axis

has an equation of the form : x = ay
1 + 6, where a and b are

constants, a = 0.

4. Find the equation of the parabola which has its axis

along the axis of x and goes through the two points (3, 2),

(_2, -1). Ans. 3x = 5y*-ll.
5. Prove that every parabola with an axis parallel to the

axis of y has an equation of the form

y = ax2 + bx + c,

where a, 6, c are constants, a = 0.

Suggestion. Find the equation of the parabola which has

the line y = k as directrix and the point (I,
k + m) or

(I, Jc m)
as focus.

6. Find the equation of the parabola which has a vertical

axis and goes through the points (0, 0), (1, 0), and (3, 6).

Ans. y = x l x.
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7. A circle is tangent to the parabola y
1 x at the point

(4, 2) and goes through the vertex of the parabola. Find its

equation.

8. What is the equation of the circle which is tangent to

the parabola y- = 2mx at both extremities of the latus rectum ?

Ans. 4<c2 + 4y2 12mo; + ra2 = 0.

9. Find the coordinates of the points of tangency of the

tangents to the parabola y
- = 2mx which make the angles 60,

45, and 30 with the axis of the parabola. Show that the

abscissae of the three points are in geometric progression, and

\ that this is true also of the ordinates.

A 10. Show that the common chord of a parabola, and the

circle whose center is in the vertex of the parabola and whose

radius is equal to three halves the distance from the vertex to

the focus, bisects the line-segment joining the vertex with the

focus.

11. Let N be the point in which the normal to a parabola
at a point P, not the vertex, meets the axis. Prove that the

projection on the axis of the line-segment PN is equal to one

half the length of the latus rectum.

12. On a parabola, P is any point other than the vertex,

and N is the point in which the normal at P meets the axis.

Show that P and N are equally distant from the focus.

13. The tangent to a parabola at a point P, not the vertex,

meets the directrix in the point L. Prove that the segment
LP subtends a right angle at the focus.

14. Show that the length of a focal chord of the parabola

y
1 = 2mx is equal to xt + xz + ra, where x

l}
x2 are the abscissae

of the end-points of the chord. Hence show that the mid-

point of a focal chord is at the same distance from the direc-

trix as it is from the end-points of the chord.

Exercises 15-26. The following exercises express properties
of the parabola which involve an arbitrary point on the parab-
ola. In order to prove these properties, it will, in general, be
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necessary to make actual use of the equation which expresses

analytically the fact that the point lies on the parabola.

15. An arbitrary point P of a parabola, not the vertex, is

joined with the vertex A, and a second line is drawn through

P, perpendicular to AP, meeting the axis in Q. Prove that

the projection on the axis of PQ is equal to the length of the

latus rectum.

16. The tangent to a parabola at a point P, not the vertex,

meets the tangent at the vertex in the point K. Show that

the line joining K to the focus is perpendicular to the tangent
at P.

17. The tangent to a parabola at a point P, not the vertex,

meets the directrix and the latus rectum produced in points
which are equally distant from the focus. Prove this

theorem.

18. Prove that the coordinates of the point of intersection

of the tangents to the parabola y
z =2 mx at the points (x1} y^,

(fy) y-t)
mav be put in the form

(Ml Ih + y*\

\2m' 2 j

Suggestion. To reduce the coordinates to the desired form,

use the equations which express analytically the fact that the

two points lie on the parabola.

19. Show that the intercept on the axis of x of the line join-

ing the points ( u yx), (*j, y2 )
of the parabola y

2 = 2 mx may be

expressed as

2m

By means of the results of the two preceding exercises prove
the following theorems.

20. The point of intersection of two tangents to a parabola
and the point of intersection with the axis of the line joining
their points of contact are equally distant from the tangent at

the vertex, and are either on it or on opposite sides of it.
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21. Tangents to a parabola at the end-points of a focal

chord meet at right angles on the directrix.

22. If the points of contact of two tangents to a parabola
are on the same side of the axis and at distances from the axis

whose product is the square of half the length of the latus

rectum, the tangents intersect on the latus rectum produced.

23o The end-points of a chord of a parabola, which sub-

tends a right angle at the vertex, are on opposite sides of the

axis and at distances from the axis, whose product is the

square of the length of the latus rectum.

24. The chords of a parabola, which subtend a right angle
at the vertex, pass through a common point on the axis

;
this

point is at a distance from the vertex equal to the latus rectum.

25. The distance from the focus of a parabola to the point
of intersection of two tangents is a mean proportional between

the focal radii to the points of tangency.

26. The tangents to a parabola at the points P and Q inter-

sect in T, and the normals at P and Q meet in N. Then the

segment TM, where M is the mid-point of TN, subtends a

right angle at the focus.

Locus PROBLEMS

27. Show that the locus of a point which moves so that

the difference of the slopes of the lines joining it to two fixed

points is constant is a parabola through the two fixed points.

What are its axis and vertex ?

28. Determine the locus of a point which moves so that its

distance from a fixed circle equals its distance from a fixed

line passing through the center of the circle.

Ans. Two equal parabolas, with foci at the center of the

circle and axes perpendicular to the fixed line.

29. The base of a triangle is fixed and the sum of the trigo-

nometric tangents of the base angles is constant. Find the

locus of the vertex.



CHAPTER VII

THE ELLIPSE

1. Definition. An ellipse is defined as the locus of a point

P, the sum of whose distances from two given points, F and

F', is constant. It is found con-

venient to denote this constant

by 2 a. Then

(1) FP+F'P = 2a.

It is understood, of course, that P
always lies in a fixed plane pass-

ing through F and F'. ~~~Fm"T
The points F and F' are called

the foci of the ellipse. It is clear that 2 a must be greater

than the distance between them.

Mechanical Construction. From the definition of the ellipse

a simple mechanical construction readily presents itself. Let

a string, of length 2 a, have its ends fastened at F and F', and

let the string be kept taut by a pencil point at P. As the

pencil moves, its point obviously traces out on the paper the

ellipse.

The student will find it convenient to use two thumb tacks

partially inserted at F and F'. A silk thread can be tied to

one of the thumb tacks and wound round the other so that

it will not slip. Thus a variety of ellipses with different foci

and different values of a can be drawn.

Let the student make finally one ellipse in this manner, and

draw it neatly.
101
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Center, Vertices, Axes. It is obvious from the definition,

and the fact becomes more striking from the mechanical
.
con-

struction, that the ellipse is symmetric in the line through
the foci. It is also symmetric in the perpendicular bisector

of FF'. Hence it is symmetric, furthermore, in the mid-point,

0, of the line FF'.

The indefinite line through
the foci, F and F', is called the

transverse axis of the ellipse ;

the perpendicular bisector of

FF', the conjugate axis. The

point is called the center of

the ellipse ;
the points A, A',

its vertices.

The line-segments AA' and

BB', which measure the length and breadth of the ellipse,

are known respectively as the major axis and the minor

axis of the ellipse. The word " axes " refers sometimes to

the transverse and conjugate axes, and sometimes to the major
and minor axes, or their lengths, the context making clear in

any case the meaning.
When P is at A, equation (1) becomes

But

Hence

FA = A'F 1
.

and OA = a.

Thus it appears that the length of the semi-axis major, OA,
is a. Let the length of the minor axis be denoted by 26, and

the distance between the foci by 2c. Then, from the triangle

FOB, we have :

(2) a? = V + c2 .

Note that, of the three quantities a, b, and c, the quantity a

is always the largest.

Eccentricity. All circles have the same shape, i.e. are simi.

lar
;
and the same is true of parabolas. But it is not true of
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ellipses. As a measure of the roundness or flatness of an

ellipse a number, called the eccentricity, has been chosen
;
this

number is defined as the radio c/a and is denoted by e :

(3)^

.-.

> Since c is always less than a, it is seen that the eccentricity

orVan ellipse is always less than unity :

In terms of a and b, e has the value :

(4) c^y^y2

All ellipses with the same eccentricity are similar, and con-

versely. For the shape of an ellipse depends only on b/a, the

ratio of its breadth to its length, and since from (4)

all ellipses for which the ratio b/a is the same have the same

eccentricity, and conversely.

A circle is the limiting case of an ellipse whose foci ap-

proach each other, the length 2 a remaining constant. The

eccentricity approaches 0, and a circle is often spoken of as an

ellipse of eccentricity 0.

EXERCISES

1. The semi-axes of an ellipse are of lengths 3 cm. and 5 cm.

Find the distance between the foci, and the eccentricity.

Ans. 8
; f .

2. The eccentricity of an ellipse is and the semi-axis

minor is 4 in. long. How long is the major axis ?

3. The major axis of an ellipse is twice as great as the

minor axis. What is the eccentricity of the ellipse ?

4. The major axis of an ellipse is 39 yards, and the eccen-

tricity, y
5
^.

Find the minor axis.
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5. Express the eccentricity of an ellipse in terms of b and c.

6. Show, from Fig. 2, that the eccentricity is given by the

formula
e = cos OFB.

7. Give a proof, based on similar triangles, that two ellipses

having the same eccentricity are similar.

2. Geometrical Construction. Points on the ellipse may be

obtained with speed and accuracy by a simple geometrical

construction. Draw the major
~^~ axis and mark the points A, F,

F', A' on it. Mark an arbitrary

*-,

-H--f i i point Q between F and F'.
Jp' W A

With F as center and AQ as

. , radius describe a circle, and

FlG 3
with F' as center and A'Q as

radius describe a second circle.

The points of intersection of these two circles will lie on the

ellipse, since the sum of the radii is

'Q=2a.

It is, of course, not necessary to draw the complete circles,

but only so much of them as to determine their points of in-

tersection. Moreover, four points, instead of two, can be ob-

tained from each pair of settings of the compasses by simply

reversing the roles of F and F'.

EXERCISES

1. Construct the ellipse for which c = 21 cm., a = 4 cm.

2. From the ellipse just constructed make a templet, with

holes at the foci and with the axes properly drawn.

3. Construct the ellipse whose axes are 4 cm. and 6 cm.

3. Equation of the Ellipse. It is natural to choose the axes

of the ellipse as the coordinate axes (Fig. 4). Let the foci lie
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on the axis of x, and let P : (x, y) be any point of the ellipsa

Then, from (1), 1,

v

FIG. 4

(1) V( -
c)

2+ 2/
2 + V(a? + c)

2+ 2/
2 = 2 a.

Transpose one of the radicals and square :

(x c)
2+ y

z= (x + c)
2+ y

2 4 a\(x + c)
2 + y* + 4 a1

.

Hence

(2) aV(a? + c)
2 + ^

2 = a2 + ca.

To remove this radical, square again :

(3) a2 2 + 2 a2ca + a2c2 + a2
?/
2 = a4 + 2 a2cx + c2z2

,

or (a
2 c2)o;

2 + a2
?/
2 = a2

(a
2 - c2

).

But, by (2), 1, a2 - c2 = 62
,

and hence

(4) 62
a;
2 + a2

?/
2 = a2

6*,

or

(5)
^ + ^=1.
a2 62

This is the standard form of the equation of the ellipse, re-

ferred to its axes as the axes of coordinates. The proof, how-

ever, is not as yet complete, for it remains to show, conversely,
that any point (x, y) whose coordinates satisfy equation (5)

is a point of the ellipse. To do this, it is sufficient to show
that x, y satisfy (1). From (5) we mount up to (4) and thence

to (3), since all of these are equivalent equations. When,
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however, we extract a square root we obtain two equations
each time, and so we are led, finally, to the four equations

V( c)
2+ y* V(ar + c)

2+ y* = 2 a,

the ambiguous signs being chosen in all possible ways. The
four equations can be characterized as follows :

i) + +5 ii) + -;

iii)
- +; iv)

- -.

We wish to show that i) is the only possible one of the four

equations. This is done as follows.

Equation iv) is satisfied by no pair of values for x and y,

since the left-hand side is always negative and so can never be

equal to the positive quantity 2 a.

Equations ii) and iii) say that the difference of the distances

of (x, y) from F and F' is equal to 2 a, and hence greater than

the line FF'= 2 c. Thus, in the triangle FPF' the difference

of two sides is greater than the third side, and this is absurd.*

Hence equations ii)
and

iii) are impossible and equation i)

alone remains, q. e. d.

Consequently, if we start with equation (5) as given and

require that a > b, then (5) represents an ellipse with

semi-axes a and b and foci in the points ( c, 0), where

c=Va2 -6?
.

The Focal Radii. From equation (2) we obtain a simple

expression for the length of the focal radius, F'P. Dividing

(2) by a and remembering that c/a = e, we have,:

V(o; + c)
2 + y

1 = a + ex.

But the value of the left-hand side of this equation is precisely
F'P. Hence

(6) F'P=a + ex.

*
If, in particular, the point (x, y) lay on FF', we should not, it is

true, have a triangle. But it is at once obvious that in this case, too,

equations ii) and iii) are impossible.
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If, in transforming (1), the other radical had been transposed

to the right-hand side and we had then proceeded as before,

we should have found the equation :

a~\/(x c)
2 + y

l a? ex.
,

From this we infer that

V(# c)
2 + y

2 = a ex,

or

(7) FP=a-ex.

EXERCISES

1. What is the equation of the ellipse whose axes are of

X
1
' V2

lengths 6 cm. and 10 cm. ? Ans. \-
= 1.

2. Find the coordinates of the foci of the ellipse of Ex. 1. . _

<^) The foci of an ellipse are at the points (1, 0) and (1,0), ^
and the minor axis is of length 2. Find the equation of the

ellipse. Ans. y? + 2yz = 2.Q ~^

4. Find the lengths of the axes, the coordinates of the foci,

and the eccentricity of the ellipse ; .*-

'

25 y? + 169 y
2 = 4225.

5. An ellipse, whose axes are of lengths 8 and 10, has its

center at the origin and its foci on the axis of y. Obtain its

equation.

6. Show that, if B > A, the equation

still represents an ellipse with its axes lying along the axes of

coordinates
;
but the foci lie on the axis of y at the points

(0, C) and (0,
-

C), where

B2 = A- + C2
.

The eccentricity is
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7. Find the lengths of the axes, the coordinates of the foci,

and the value of the eccentricity for each of the following

ellipses :

(a) 9x2 + 42/2 = 36; (d) 5z2 + 3*/2 = 45
;

"2 = 19-
(e) 2z2+72/2 = 10;

(/) Ilx2 + y2 = 3.
\t/ J * \7

lr
'{Tangents. The ellipse has the remarkable property that

tangent to the curve at any point makes equal angles with

the focal radii drawn to that point :

JIG . 5

i) MecJianical Proof. The simplest

proof of this theorem is a mechanical

one. Think of a flexible, inelastic string

of length 2 a with its ends fastened at

the foci, F and F'. Suppose a small,

smooth bead to be threaded on this string. Let a cord be

fastened to the bead and then pulled taut, so that the cord

and the two portions of the string will be under tension.

Evidently, the bead can be held in this manner at any point.

(No force of gravity is supposed to act. The strings and bead

may be thought of as resting on a smooth horizontal table.)

The forces that act on the bead are :

(a) the tension S in the cord
;

(6) two equal tensions, R, in the string,

directed respectively toward the foci.*

Draw the parallelogram of forces for the

forces R. It will be a rhombus, and so

the resultant of these forces will bisect

the angle between the focal radii.

On the other hand, the force S, equal and opposite to this

resultant, is perpendicular to the tangent at P. In fact, if

* Since the bead is smooth, the tension in the string is the same at all

its points, and so, in particular, is the same on the two sides of the bead.

FIG. 6
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instead of the flexible string we had a smooth rigid wire, in the

form of the ellipse, for the bead to slide on, the bead would be

held at P by the cord exactly as before. But the reaction of

a smooth wire is at right angles to its tangent. This is the

very conception of a smooth wire. For otherwise, if S were

oblique, it could be resolved into a normal and a tangential

component. But the smooth wire could not yield a reaction,

part of which is along the tangent.

It follows, then, that the normal at P bisects the angle be-

tween the focal radii, and hence these make equal angles with

the tangent at P, q. e. d.

ii) Proof by Means of Minimum Distances. A Lemma. A
barnyard is bounded on one side by a straight river. The

cows, as they come from the pasture,

enter the barnyard by a gate at A,

go to the river to drink, and then

keep on to the door of the barn at B.

What point, P, of the river should a

cow select, in order to save her steps FlG 7

so far as possible ?

It is easy to answer this question by means of a simple con-

struction. From B drop a perpendicular BM on the line of

the river bank, L, and produce it to B', making MB' = BM.
Join A with B', and let AB' cut L at C. Then C is the posi-

tion of P, for which the distance under consideration,

AP + PB,
is least.

For, the straight line AB' is shorter than any broken line

APB':
AB'< APB'.

But PB = PB' and CB = CB'.

Hence
AB'= AC + CB and APB'= AP+ PB.

It follows, then, that

AC+CB<AP+ PB,
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if P is any point of L distinct from C. Hence C is the point
for which APB is a minimum.
The point C is evidently characterized by the fact that

We can state the result, then, by saying that the point P, for
which the distance APB is least, is the point for which

Optical Interpretation. We have used a homely example of

cows and a barnyard. The problem we have solved is, however,
identical with the optical problem of finding the point at

which a ray of light, emanating from A, will strike a plane
mirror L, if the reflected ray is to pass through B. For, the

law of light is, that it will travel the distance in the shortest

possible time, and hence it will choose the shortest path.

Application to the Ellipse. The application of this result

to the ellipse is as follows. The tangent to any smooth, closed,

convex curve evidently is characterized

by the fact that it meets the curve in

one, and only one, point.

Let P be any point of the ellipse.

Draw the tangent, T, at P. Let Q be

any point of T distinct from P. Now

F'P+ FP= F'R + PR,

since the sum of the focal radii is the same for all points of an

ellipse. But

FR<RQ + FQ
and so

F'R + FM< F'R + RQ + FQ = F'Q + FQ.
Therefore

F'P+ FP< F'Q + FQ.

Hence Pis that point of T for which the distance F'QF is

least, and consequently the lines F'P and FP make equal

angles with T, q. e. d.
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EXERCISE

Show that the normal of an ellipse at any point distinct from

the vertices A, A' cuts the major axis at a point which lies

between the foci.

5. Optical and Acoustical Meaning of the Foci. Let a thin

strip of metal, say, a strip of brass a yard long and a quarter

of an inch wide, be bent into the form of an ellipse and

polished 011 the concave side. Let a light be placed at one of

the foci. Then the rays, after impinging on the metal, will

be reflected and will come together again at the other focus,

which will, therefore, be brilliantly illuminated.*

The same is true of heat, since heat rays are reflected from

a polished surface by the same law as that of light rays. If,

then, a candle is placed at one focus and some gunpowder at the

other, the powder can be ignited by the heat from the candle.

Sound waves behave in a similar manner. The story is told

of the Ratskeller jn Bremen, the walls of which are shaped
somewhat like an ellipse, that the city

fathers were remarkably well informed

concerning the feelings and views of the

populace. For, the former drank their FIG. 9

wine at a table which was situated at a

focus, and thus could hear distinctly the conversation at a dis-

tant table, which stood at the other focus and about which the

Burger congregated.

lope and Equation of the Tangent. The student will

next turn to Ch. IX, 2, where the slope of the ellipse

+ y~ = 1
a2

ft"
2

* The statement is, of course, strictly true only for such rays as travel

in the plane through the foci, which is perpendicular to the elements of

the cylinder formed by the polished band. Since, however, only a nar-

row strip of this cylinder is used, other rays will pass veiy near to the

second focus and contribute to the illumination there.
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at the point (x1} yi) is found to be

j,

(1)
o

The equation of the tangent line at this point is

(2)
62

Latus Rectum. The latus rectum of an ellipse is defined as

a chord perpendicular to the major axis and passing through
a focus. The term is also used to mean
the length of such a chord.

Thus, in the ellipse

25
+

16
= 1

'

FIG. 10

one focus is at the point (3, 0). The length
of the latus rectum is twice that of the positive ordinate

corresponding to this point. Setting, then, x = 3 in the equa-

tion of the curve and solving for that ordinate, we have

y^_1 9__ 16 _ 16 _ Q,

16 ~25~25' y ~~5~

Hence the length of the latus rectum is 6.

EXERCISES

1. Find the equation of the tangent to the ellipse

Ji- + #l = 1
225 25

at the point (9, 4). Ans. x + 4i/ = 25.

2. Find the equation of the normal to the ellipse of Ex. 1

at the same point. Ans. 4 a; y = 32.

3. At what point does the tangent to the ellipse

at the point (1,2) cut the axis of y ?
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4. At what angle does the straight line through the origin;

which bisects the angle between the positive axes of coordinates,

cut the ellipse 3z
2 + 4y2 = 7 ? Ans. 81 53'.

5. Find the area of the triangle cut off from the first quad-
rant by the tangent to the ellipse of Ex. 3 at the point (1, 2).

Ans. 8|.

6. Find the length of the latus rectum of the ellipse of

Ex. 1. Ans. 3|.

7. The same for the ellipse of Ex. 3.

8. Show that the length of the latus rectum of the ellipse

b<a,

is given by any one of the expressions

- e2
;

2 o(l
-

e*).
H

Find its value in terms of c and e.

9. Find the length of the latus rectum of the ellipse

25 x2 + 16 y* = 400. ^4ns. 6|.

10. Prove that the minor axis of an ellipse is a mean pro-

portional between the major axis and the latus rectum.

7. A New Locus Problem. Given a line D and a point F
distant m from D. To find the locus of a point P such that

the ratio of its distance FP from F to

its distance MP from /> is always

equal to a given number, c :

(i)^ } MP or FP=eMP.

It is understood that P shall be re-

stricted to the plane determined by F
and D.

If, in particular, e = 1, the locus FIG. 11
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is a parabola with D as directrix and F as focus
;

Ch.

VI, 1.

To treat the general case, let D be taken as the axis of y
and let the positive axis of x pass through F. Then

FP= V(z m)
2+ y\ MP= x,

the lower sign holding only when x is negative, and (1) be-

comes

(2) V(as
- m)

2+ y
2 = e x.

On squaring and transposing we obtain the equation :

(3) (1
- 2

)x
2 - 2mx + if + m2= 0.

This is the equation of the proposed locus.

The student will now turn to Ch. XI and study carefully
1.

EXERCISES

1. Take c = \ and m = 3, the unit of length being 1 cm.

With ruler and compasses construct a generous number of

points of the locus,* and then draw in the locus with a clean,

firm line.

2. Work out the equation of the locus of Ex. 1 directly,

using the method of the foregoing text, but not looking at the

formulas. Ans. 3 x* + 4 y
2 - 24 x + 36 = 0.

3. Take c = and m = 4, the unit of length being 1 cm.

Draw the locus accurately, as in Ex. 1.

4. Work out directly the equation of the locus of Ex. 3.

Ans. 16 x2 + 25 y
2 - 200 x = - 400.

5. By means of a transformation to parallel axes show that

the curve of Ex. 2 is an ellipse whose center is at the point

(4, 0) and whose axes are of lengths 4 and 2V3. What is its

eccentricity ?

* The details of the construction are an obvious modification of the

corresponding construction for the parabola in Ch. VI, 1. A circle of

arbitrary radius is drawn with its center at F, and this circle is cut by a

parallel to Z>, whose distance from D is twice the radius of the circle.
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6. Show that the curve of Ex. 4 is an ellipse whose axes

are 7^ and 6. > What is its eccentricity ?

8. Discussion of the Case e < 1. The Directrices. From

equation (3) of 7 follows:

C\ .-. . .> - . o

(1) 1*> "I *> "1 9
(.- 1 2 1 2

The first two terms on the left-hand side are also the first two

in the expansion of

x - m Y= z2
2m

x 4.
m*

1-eV 1-e2 (1-e2
)
2

If, then, we add the third term of the last expression to both

sides of (1), we shall have :

o 2m m2
y- m2 m2

1 e2

or

(2)

_ e2 (1_ C2)2 1_

1 - 1 e2 (1 c2)
2

This equation reminds us strongly of the equation of an

ellipse. In fact, if we transform to parallel axes with the

new origin, 0', at the point
m

%o
ij 2

> 2/o ">

the equations of transformation are

(3) x' = x
m

y' = y,

and (2) then takes on the form

(4) z'2 +

or

(5)

where

(6)

1_ C
2

(1_ 2)2'

FIG. 12

em
1 -(

i
b =

VF^72
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Thus the locus is seen to be an ellipse with its center, 0', at

the point

(7)

the semi-axes being given by (6).

The value of c is given by the equation c2 = a2 62
. Hence

(8) c =
1-e2

The eccentricity, e = c/a, is now seen to be precisely c :

i.e. the given constant, e, turns out to be the eccentricity of the

ellipse.

Finally, F is one of the foci. For, the distance from F to O'

is

OOf-OF= m
19 19'

ej 1 e2

and this, by (8), is precisely c.

The line D is called a directrix of the ellipse. Its distance

from the center is

rm m me 1 a
(J\J

TTie Directrices. From the symmetry of the ellipse it is

clear that there is a second directrix, Df

,
on the other side of

the conjugate axis, parallel to that

axis, and at the same distance

from it as D. This line D' and

the focus F' stand in the same re-

lation to the ellipse as the first

D
'

line, D, and the focus F. Thus

the ellipse is the locus of a point

so moving that its distance from a

focus always bears to its distance from the corresponding
directrix the same ratio, e, the eccentricity.

Since the distance of D from the center of the ellipse is a/e,

the equations of the directrices of the ellipse

FIG. 13
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^ + 5i
=1

' a>6

are

a a

e e

EXERCISES

1. Show that the distances of the vertices, A and A', from

are:

OA =
,

OA' =^
2. Collect the foregoing results in a syllabus, arranged in

tabular form, giving each of the quantities a, 6, c, 00', OA,

OA', OF, OF' in terms of m and e.

3. Work out each of the quantities of Ex. 2 directly for the

ellipse of 7, Ex. 4, and verify the result by substituting the

values e =
|, m == 4 in the formulas of the syllabus.

4. Between the Jive constants of the ellipse, a, b, c, e, m,
there exist three relations, which may be written in a variety

of ways ; as, for example,
'

"1 ^

i) a"- = V- + c 1

; ii) e = -
; iii) m

~ e
a.

a e

By means of these relations, any three of the five quantities

can be expressed in terms of the other two. Thus, in Ex. 2,

m and e are chosen as the quantities in terms of which all

others shall be expressed.

Taking the semi-axes, a and 6, (a > 6), as the preferred pair,

express the other quantities in terms of them.

5. Show that the tangent to the ellipse

25
+

16
= :l

at an extremity of a latus rectum cuts the transverse axis in

the same point in which this axis is cut by a directrix.
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6. The same for any ellipse.

7. Prove directly that, if P is any point of the ellipse

s+S- 1 -

the ratio of its distance from a focus to its distance from the

.^-corresponding directrix is equal to the eccentricity.

Show that in an ellipse the major axis is a mean propor-
tional between the distance between the foci and the distance

between the directrices.

9. Show that the distances from the center and a focus of

an ellipse to the directrix corresponding to the focus are in

the same ratio as the squares of the semi-axis major and the

semi-axis minor.

9. The Parabola as the Limit of Ellipses. We have proved

that, when e < 1, equation (3), 7, represents an ellipse with

eccentricity e = e. We
know that

,
if e = 1, the

equation represents a

- parabola. If, then, in the

equation we allow e to

approach 1 through values

< 1, the ellipse which the

equation defines ap-

proaches a parabola as its

limit.

We can visualize the

ellipse, going over into

a parabola, by drawing
a number of ellipses

having the same value of

are increasing toward 1

FIG. 14

whichra, but having values for

as their limit, viz. e = -, e = f ,
e = --, . The directrix D,

along the axis of y, and the focus F : (ra, 0) are the same for

all the ellipses. But the center 0' and the right-hand vertex
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A' of each successive ellipse are farther away from 0, and
their distances from 0, namely,

m ^ A, m
00' = OA' =

R

1 i1 e2 1 e

increase without limit. Thus, as e approaches 1, the ellipse

approaches as its limit the parabola whose directrix is D and
whose focus is F.

10. New Geometrical Construction for the Ellipse. Para-

metric Representation. Let it be required to draw an ellipse

when its axes, AA'and BB', are given.

Describe circles of radii a = OA and

b = OB, with the origin as the

common center. Draw any ray from

0, making an angle <f>
with the posi-

tive axis of x, as shown in the

figure. Through the points Q and R
draw the parallels indicated. Their

point of intersection, P, will lie on

the ellipse. For, if the coordinates of

Pbe denoted by (x, y), it is clear that

(1) x = a cos <, y = b sin <.

From these equations < can be eliminated by means of the

trigonometric identity

sin2
<f> -f cos2 = 1.

Hence

(2)
*+ !.
a2 &2

Conversely, any point (x, y} on the ellipse (2) has corre-

sponding to it an angle 0, for which equations (1) are true.

Equations (1) afford what is known as a parametric repre-

sentation of the coordinates of a variable point (#, y) of the

ellipse in terms of the parameter 0. When b = a, the ellipse

becomes a circle, and the equations (1) become

(3) x = a cos 0, y = a sin 0.

FIG. 15
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These parametric representations, though little used in Ana-

lytic Geometry, are an important aid in the Calculus.

The larger of the two circles in Fig.

15 is commonly called the auxiliary

)P:(x,y) circle of the ellipse, and the points R
and P are known as corresponding points.

The angle < is called the eccentric angle.

EXERCISE

16 By means of the foregoing method,
draw on squared paper an ellipse whose

axes are of length 4 cm. and 6 cm.

EXERCISES ON CHAPTER VII

1. The earth moves about the sun in an elliptic orbit.* The

shortest and longest distances from it to the sun are in the

ratio 29 : 30. What is the eccentricity of the orbit ?

2. Show that the slopes of the tangents to an ellipse at the

extremities of the latera recta are e.

3. The axes of an ellipse which goes through the points

(4, 1), (2, 2) are the axes of coordinates. Find its equation.

4. The center of an ellipse is in the origin and the foci are

on the axis of x. The ellipse has an eccentricity of f and goes

through the point (12, 4). What is its equation?
-r2 ?/2 1 fiQA <~ t V -LUc7

A.US. h -- '

25^16 25

5. Solve the preceding problem if the foci may lie on either

axis of coordinates.

6. Find the equations of the ellipses which have the axes

of coordinates as axes, go through the point (3, 4), and have

their major and minor axes in the ratio 3 : 2.

7. Show that the ellipses represented by the equation

* The planets describe ellipses about the sun as a focus, and the comets

usually describe parabolas with the sun as the focus.
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where c 1 is an arbitrary positive constant, are similar. What
is the common value of the eccentricity ?

8. How many ellipses are there with eccentricity ^, having
their centers in the origin and their foci on the axis of a?

Deduce an equation which represents them all.

Ans. 3 a;
2 + 4^ = c2 .

9. The foci of an ellipse lie midway between the center

and the vertices. What is the eccentricity ? How many such

ellipses are there, with centers in the origin and foci on the

axis of x? Write an equation which represents them all.

10. The line joining the left-hand vertex of an ellipse with

the upper extremity of the minor axis is parallel to the line

joining the center with the upper extremity of the right-

hand latus rectum. Answer the questions of the preceding
"-'''

foci of an ellipse subtend a right angle at either

extremity of the minor axis. What is the eccentricity?
Find the equation of all such ellipses with centers in the

origin and foci on the axis of y.

12. Prove that the ratio of the distance from a focus of an

ellipse to the intersection with the transverse axis of the

normal at a point P, and the distance from this focus to P
equals the eccentricity of the ellipse.

13. The projections of a point P of an ellipse on the trans-

verse and conjugate axes are P^ and P2 . The tangent at P
meets these axes in 7\ and T2 . Prove that OP

}
OTl

= a2 and

OP? - OT2 = b2
,
where is the center and a and b are the

semi-axes of the ellipse.

14. Prove that the segment of a tangent to an ellipse be-

tween the point of contact and a directrix subtends a right

angle at the corresponding focus.

15. Determine the points of an ellipse at which the tangents
have intercepts on the axes whose absolute values are propor-
tional to the lengths of the axes.



122 ANALYTIC GEOMETRY

16. Through a point M of the major axis of an ellipse a line

is drawn parallel to the conjugate axis, meeting the ellipse in

P and the tangent at an extremity of the latus rectum in Q.

Show that the distance MQ equals the distance of P from the

focus corresponding to the latus rectum taken.

17. Prove that the line joining a point P of an ellipse with

the center and the line through a focus perpendicular to the

tangent at P meet on a directrix.

18. Prove that the distance from a focus F to a point P of

an ellipse equals the distance from F to the tangent to the

auxiliary circle at the point corresponding to P.

19. Find the equation of a circle which is tangent to the

ellipse
* + _!
a? &2

-

at both ends of a latus rectum.

20. In an ellipse whose major axis is twice the minor axis,

a line of length equal to the minor axis has one end on the

ellipse, the other on the conjugate axis. The two ends are

always on opposite sides of the transverse axis. Prove that

the mid-point of the line lies always on the transverse axis.

21. A number of ellipses have the same major axis both in

length and position. A tangent is drawn to each ellipse at

the upper extremity of the right-hand latus rectum. Prove

that these tangents all pass through a point.

Exercises 22-28. In these exercises, in which properties in-

volving an arbitrary point P of an ellipse are to be proved, it

will, in general, be necessary to make actual use of the equa-

tion expressing the fact that the point P lies on the ellipse.

22. The tangent to an ellipse at a point P meets the tan-

gent at one vertex in Q. Prove that the line joining the other

vertex to P is parallel to the line joining the center to Q.

23. The lines joining the extremities of the minor axis with

a point P of an ellipse meet the transverse axis in the points
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M and N. Prove that the semi-axis major is a mean propor-

tional between the distances from the center to M and N.

24. Prove the theorem of the preceding exercise when the

major and minor axes, and the transverse and conjugate axes,

are interchanged.

25. Show that the segment of a directrix, between the

points of intersection of the lines joining the vertices with a

point 011 an ellipse, subtends a right angle at the correspond-

ing focus.

26. Prove that the product of the distances of the foci of

an ellipse from a tangent is a constant, independent of the

choice of the tangent.

27. Let F' and F be the foci of an ellipse and P any point
on it. Prove that 62

: FK- = F'P : FP, where FK is the dis-

tance from F to the tangent at P.

28. The normal to an ellipse at a point P meets the axes in

NI and N2 . Show that PN^ PN2 is equal to the product of

the focal radii to P.

Loci

29. A point moves so that the product of the slopes of the

two lines joining it to two fixed points is a negative constant.

What is its locus ?

30. A circle whose diameter is 10 cm. is drawn, center at 0.

On a radius OA a point B is marked distant 4 cm. from 0.

If OQ is any second radius, show how to construct, with ruler

and compasses, a point P on OQ, whose distance from the

circle equals its distance from B. In this way plot a number
of points on the locus of P.

31. Find the equation of the locus of the point P of the

preceding exercise. Take the origin of coordinates at the

mid-point of OB.

32. The base of a triangle is fixed and the product of the

tangents of the base angles is a positive constant. Find the

locus of the vertex.



CHAPTER VIII

FIG. 1

THE HYPERBOLA

1. Definition. A hyperbola is defined as the locus of a point

P, the difference of whose distances from two given points, F
and F', is constant. It is found

convenient to denote this constant

by 2 a. Then

FP- F'P=2a,
or F'P-FP=2a.
It is understood, of course, that P
is restricted to a particular plane

through F and F'.

The points F and F' are called the foti of the hyperbola.

It is clear that 2 a must be less than the distance between

them. Denote this distance by 2 c.

Geometrical Construction. Draw the indefinite line FFr

,

mark the mid-point, 0, of the segment FF', and the points A
and A' each at a distance a

P P
from 0:

<X4=(M' = a; OF=OF' = c.

h 1

The point ^4. lies on the locus
;

F *

for, v
^

J"-4 = c + a,

A F

FA = c- a,

and hence

FIG. 2

#4 = 2 a.

Likewise, A' lies on the curve.

Mark any point, N, to the right of F. With radius AN and

center JF
1

,
describe a circle. Next, with radius ^.'^Tand center

124
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F', describe a second circle. The points P and Q in which

these circles intersect are points of the locus. For,

F'P- FP= A'N-AN= A'A = 2 a.

Two more points, P' and Q', can be obtained from the same

pair of settings by interchanging the centers, F and F', of the

circles.

By repeating the construction a number of times, a goodly

array of points of the hyperbola can be obtained. These

points will lie on two distinct arcs,

symmetric to each other in the

perpendicular bisector BOB' of

FF'. Thus it will be seen that

the hyperbola consists of two

parts, or brandies, as they are

called. These branches, besides

being the images of each other in

BB', are each the image of itself

in FF'. It is natural to speak of the indefinite straight lines

FF' and BB' as the axes of the hyperbola. FF' is called the

transverse, BB' the conjugate axis
;

is the center, and A, A'

are the vertices.

EXERCISES

~l] Taking c = 3 cm. and a = 2. cm., make a clean drawing of

the corresponding hyperbola.

2. Reproduce the drawing on a rec-

tangular card and, with a sharp knife

or a small pair of scissors, cut out the

center of the card along the hyperbola
and two parallels to the transverse axis.

On the templet which remains make

holes at the foci and draw the two axes.

FIG. 3

FIG. 4

2. Equation of the Hyperbola. The treatment here is paral-

lel to that of the ellipse, Ch. VII, 3. Let the transverse axis
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be chosen as the axis of x
;
the conjugate axis, as the axis of y.

Then the equation of the right-hand branch of the hyperbola
can be written in the form

(P:(x,y) , . n

F:C,O)F:(-c,o)

FIG. 5

-
V(a?

-
c)

2 + y* = 2 a.

Transpose the first radical and square :

TjHence

4 aV(x + c)
2+ y

2
-f 4 a2

.

-f c)
2+ y

2 = a2 + ex.(2) a

Square again :

a2a? + 2 a2ca; + a2c2 -f ay = a4 + 2 a?cx

or

(3) (a
2 C2)a

2 + a7
y
2= 2

(
a2 c2

).

This is precisely the same equation that presented itself in

the case of the ellipse ;
but the locus is a curve of wholly dif-

ferent nature. The reason is, that a and c have different

relative values. In the ellipse, a was greater than c, and hence

a- c- was positive. It could be denoted by 62. Here, a is

less than c
;
a2 c- is negative, and it cannot be set equal to 62

..

It can, however, be set equal to 62
. This we will do :

(4) a2 c2 = 62
,

or c2 = a2 + ft
2

,

thus defining the quantity b in the case of the hyperbola by
the equation :

6=Vc2 a2
.

The final equation between x and y can now be written in

the form
T- 4/2

(5)
^_ _-=!.
a2 &2

This equation is satisfied by the coordinates of all points on

the right-hand branch, as is seen from the way in which it

was deduced. It is, however, also satisfied by the coordinates

of all points on the left-hand branch. For such a point, the
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signs of both radicals in (1) will be reversed. Starting, now,
with the new equation and proceeding as before, we find the

same equation (3), which we may again write in the form (5),

and thus the truth of the statement is established.

Is (5) satisfied by the coordinates of still other points ? To
answer this question, let (x, y) be any point whose coordinates

satisfy (5). Then, starting from (5), we retrace our steps,

admitting, each time that we extract a square root, both signs

of the radical as conceivably possible. Thus we can be sure

that (x, y) will satisfy one of the four equations

V( + c)-+ f- V(* -c)
2+ f- = 2a,

corresponding to the four conceivable choices of the signs of

the radicals :

i) + 5 iii)
-

5

ii) + -5 iv) + +.

If (x, y) satisfies i) or
ii), the point lies on the hyperbola.

The other two cases are impossible. For, case iii) says that a

negative quantity is equal to a positive quantity, and case iv)

says that F'P + FP= 2 a. Now F'P + FP, being the sum of

two sides of the triangle FPF', is greater than the third side,

FF', or 2 c. But 2 a is actually less than 2 c. Hence we have

a contradiction, and this case cannot arise.

We have shown then, finally, that (5) is the equation of the

hyperbola.

EXERCISE
Plot the hyperbola

^!_^!_= i

25 16

directly from its equation, taking 1 cm. as the unit of length.

3. Axes, Eccentricity, Focal Radii. The transverse and the

conjugate axis have already been defined in 1. The segment
AA' of the transverse axis is called the major axis, and this

term is also applied to its length, 2 a. The segment BB' of

the conjugate axis, whose center is at and whose length is
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26, is called the minor axis, and this term is also applied to

its length, 2 6.

The major axis of an ellipse is always longer than the minor

axis. In the case of the hyperbola, however, this is not al-

ways true. For example, if 2c and 2 a

are taken as 10 and 6 respectively, then

26 = 8. Thus the major axis of the

hyperbola is to be understood as the

principal axis, but not necessarily as the
FIG. 6

^ .

longer axis.

The eccentricity of the hyperbola is defined as the number

Since c is greater than a, the eccentricity of a hyperbola is

always greater than unity.
The eccentricity characterizes the shape of the hyperbola.

All hyperbolas having the same eccentricity are similar, differ-

ing only in the scale to which they are drawn, and conversely ;

cf. Exercise 8.

The focal radii FP, F'P can be represented by simple ex-

pressions, similar to those which presented themselves in the

case of the ellipse. On dividing equation (2), 2, through by
a, we have :

V(# + c)
l+ y

l = a + ex.

Hence, when P is a point of the right-hand branch,

(1) F'P = ex + a.

The evaluation,

(2) FP = ex- a,

is obtained in a similar manner.*

If P is a point of the left-hand branch, these formulas

become :

(3) F'P= -(ex + a); FP=- (ex
-

a).

* P being a point of the right-hand branch, x is positive and greater

than or equal to a
; also, e> 1. Hence ez> a, and ex a is positive,

as it should be.
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EXERCISES

Q Find the lengths of the axes, the coordinates of the foci,

and the value of the eccentricity for each of the following

hyperbolas.

Ana. 8,6; (5, 0), (- 5, 0) ; If

(b\ x 1--
y*-
= a2

. Ana. 2 a, 2 a
; (aV2, 0), (- a V2, 0) ;

V2.

- 3?/
2 = 24. (e) 5tf -6^ = 8.

- - ^ = 4. (/) 6 & - 9y- = 4.

2. If the eccentricity of a hyperbola is 2 and its major axis

is 3, what is the length of its minor axis ? Ans. 3 V3.

[3^
How far apart are the foci of the hyperbola in Ex. 2 ?

Ans. 6.

4. What is the equation of the hyperbola whose eccentricity

is V2 and whose foci are distant 4 from each other ?

Ans. x 1

y
2 = 2.

^ The extremities of the minor axis of a hyperbola are in

the points (0, 3) and the eccentricity is 2. Find the equa-

tion of the hyperbola.

Tel Show that, in terms of a and b, e has the value

m Express 6 in terms of a and e.

8. Prove that two hyperbolas which have the same eccen-

tricity are similar, and conversely.

9. Establish formulas (3).

4. The Asymptotes. Two lines, called the asymptotes, stand

in a peculiar and important relation to the hyperbola. They
are the lines ^ and ,-*.

a a
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Let a point P : (x, y) move off

along a branch of the hyperbola

(1) a2 &2

FIG. 7

and let this take place, for def-

initeness, in the first quadrant.
The slope of the line OP is

OM x

Since the coordinates (x, y) of P satisfy (1), it follows that

(2)

and hence

(3)
x a

When P recedes indefinitely, x increases without limit, and

the right-hand side of this equation approaches the limit b/a.

Thus we see that the slope of OPapproaches that of the line OQ,

as its limit, always remaining, however, less than the latter

slope, so that P is always below OQ.
It seems likely that P will come indefinitely near to this

line
;
but this fact does not follow from the

foregoing, since P might approach a line

parallel to (4) and lying below it. In that

case, all that has been said would still be true.

That P does, however, actually approach

(4) can be shown by proving that the dis-

tance PQ approaches as its limit. Now, FIG. 8

and, from (4),
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Furthermore, MP is the y-coordinate of the point P on the

hyperbola :

Hence PQ = -
[x
- Vas 4 - a2

].
a

To find the limit approached by the square bracket, we re-

sort to an algebraic device. The value of the bracket will

clearly not be changed if we multiply and divide it by the

expression x + V#2 a2
:

/-= (x Va2 a2
) (x + Va;2 - a2

)x V#2 a2 = > *

z + Va;2 a2

But the numerator of the last expression reduces at once to a2
.

Hence
x

From this form it is evident that the bracket approaches
when x increases indefinitely; and hence the limit of PQ is

zero,* q. e. d.

Similar reasoning, or considerations of symmetry, applied in

the other quadrants, show that in the second and fourth

quadrants P approaches the line

(5) y = -l
x

>

while in the third quadrant, as in the first, P approaches (4).

The equations (4) and (5), of the asymptotes, can also be

written in the form

SL-f^O,
* + Z = 0.

a b a b

* The limit approached by the variable x -\/& a2 can be found

geometrically as follows. Construct a variable

right triangle, one leg of which is fixed and of

length a, the hypothenuse being variable and of -Jx
z-az

length x. Then the above variable, x Vx2 a2
, FIQt 9

is equal to the difference in length between the

hypothenuse and the variable leg. This difference obviously approaches
as x increases indefinitely.
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It is easy to remember these equations, since they can be

written down by replacing the right-hand side of (1) by 0, fac-

toring the left-hand side :

and putting the individual factors equal to zero.

The slopes of the asymptotes are b/a and b/a. Conse-

quently, the asymptotes make equal angles with the transverse

axis.

Since the ratio of 6 to a is unrestricted, the asymptotes can

make any arbitrarily assigned angle with each other. If, in

particular, b = a, this angle is a right angle, and the curve is

called a rectangular, or equilateral, hyperbola. Its equation can

be written in the form :

(6)
x"- y

1 = a2
.

Its eccentricity is e = V2.

Construction of the Asymptotes. Mark with heavy lines the

major and minor axes, and through ..the extremities of each

draw Jines parallel to the other,

thus obtaining a rectangle. The

olagonals of this rectangle, pro-

duced, are the asymptotes, since

their slopes are clearly b/a.

The diagonals of the rectangle
have lengths equal to the distance

2 c between the foci, for, c2 = a? + 62

and the lengths of the sides of the rectangle are 2 a and 26.

If the acute angle between an asymptote and the transverse

axis is denoted by a, then

e = sec a.

FIG. 10

EXERCISES

1. Find the equations and slopes of the asymptotes of the

hyperbolas of Exercise 1, 3. Draw the hyperbolas.
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Show that the asymptotes of the hyperbola

Ax"- - By- = C,

where A, B, and C are any "three positive quantities, are given

by the equations

~\/Ax +'V-B?/ = 0, ~\/~Ax ~\/By = 0.

|3\ Find the equation of the hyperbola whose asymptotes
make angles of 60 with the axis of x and whose vertices are

situated at the points (1, 0), and ( 1, 0). Ans. Sx"1

y
z = 3.

>^I Show that the slopes of the asymptotes are given by
the expression Ve2 1.

^ The slope of one asymptote of a hyperbola is f. Find

the eccentricity. Ans. e -

1^.

6. The distance of a focus of a certain hyperbola from the

center is 10 cm., and the distance of a vertex from the focus is

2 cm. What angle do the asymptotes make with the conju-

gate axis ? Ans. 53 8'.

7. Show that the circle circumscribed about the rectangle

of the text passes through the foci.

^8.^
A perpendicular di-opped from a focus F on an asym-

plote meets the latter at E. Show that OE = a, and EF = b.

9. Find the equation of the equilateral hyperbola whose

foci are at unit distance from the center.

[lOj Find the equation of the equilateral hyperbola which

js through the point (5, 4).

Tangents. The method of finding the slope of an ellipse,

Ch. IX, 2, can be applied to the hyperbola, and it is thus

shown that the slope of this curve,

l~f~2
= 1

'

at the point (xl} y^) is
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The equation of the tangent of the hyperbola at this point is

(1)
&2

THEOREM. The tangent of a hyperbola at any point bisects the

angle between the focal radii.

To prove this proposition we recall the theorem of Plane

Geometry which says that the bisector of an angle of a triangle

divides the opposite side into seg-

ments which are proportional to the

adjacent sides. It is easily seen

that the converse* of this proposi-
tion is also true, and hence it is

sufficient for our proof to show that

FlG

FM
We already have simple ex-

pressions for the numerators. If

P'- (XD y\) be a point of the right-hand branch of the curve,

then, by 3,

FP = exl a; FP= e^ + a.

To compute the denominators, find where the tangent at P,
whose equation is given by (1), cuts the axis of x. Denoting
the abscissa of M by x', we have :

x =
x

l

Now,

and

But c = ae, and so

Thus

FM= OF - OM= c - x',

xl

cxi a2 = a(exl a).

c x' = (exi a),

* Let the student prove this proposition as an exercise.
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and we arrive finally at the desired expression for FM :

x
l

In a similar manner it is shown that

F'M=-(ex1 + a).
i

From these evaluations it appears that

FP__Xi F'P x
v

FM a F'M~ a
'

Hence (2) is a true equation, and the proof is complete for the

case that P lies on the right-hand branch. Since, however,
the curve is symmetric in the conjugate axis, the theorem is

true for the left-hand branch also.

Latus Rectum. The latus rectum of a hyperbola is defined

as a chord passing through a focus and perpendicular to the

transverse axis. The term is also applied to the length of

such a chord.

EXERCISES

|^J
Find the slope of the hyperbola 4 x2

y* = 15 at the

point (2,
-

1). Ans. - 8.

2. Find the equation of the tangent of the hyperbola of

Ex. 1 at the point there mentioned. .4ns. 8 x + y = 15.

J3j Find the angle at which the line through the origin bi-

secting the angle between the positive axes of coordinates cuts

the hyperbola of Ex. 1. Ans. 30 58'.

4. Find the length of the latus rectum of the hyperbola
rfi /2

fg-|=l.
Ans. 4J.

te^ Find the length of the latus rectum of the hyperbola of

Ex. 1. Ans. 15.49.

6. Find the equation of the normal of the hyperbola

^._J/L = 1
25 144
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at the extremity of the latus rectum which lies in the first

juadrant. Ans. 25 x + 65 y 2197.

Show that the length of the latus rectum of the hyperbola

is
2&2 a2 62

8. Prove that the tangents at the extremities of the latera

recta have slopes e.

/l In an ellipse, the focal radii make equal angles with the

tangent. Prove this theorem by the method employed in this

paragraph to prove the corresponding theorem relating to the

hyperbola.

6. New Definition. The Directrices. The locus defined

in Ch. VII, 7, can now be shown to be a hyperbola when
c > 1. The analytic treatment given there and in 8 down
to equation (2) and the transformation (3) holds unaltered

for the present case.

When, however, c > 1, the new origin, O
7

,
lies to the left of

/ m \

0, in the point ( , ),
and it is more natural to write

V c2 - 1 J

(3) in the form

(1) ^ = 3+ y =y,

and likewise (4) as

(2) x *

_ I (
2 _

This equation passes over into the form

(3)
*~'

2

on setting

(4) a =

62 FIG. 12

e'-l'
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Thus the locus is seen to be a hyperbola with its center, 0',

at the point [

--
, 0), the semi-axes being given by (4).

\
2 - 1 /

The value of c is given by the equation c2 = cC- + 62
. Hence

(5)
e2 -!

The eccentricity, e =c/a, is seen to .be precisely c :

e = e,

and thus the given constant, e, turns out to be the eccentricity of the

hyperbola.

Finally, F is one of the foci. For, the distance from 0' to F
is

0'0+ OF=^ *

2 ?'2 1

and this, by (5), is precisely c.

The line D is called a directrix of the hyperbola. Its dis-

tance from the center is

cm
E" L f.

The Directrices. There is a second directrix, namely, the

line D' symmetric to D in the conjugate axis. It is clear

from the symmetry of the figure that what is true of the hy-

perbola with respect to the focus F and the corresponding
directrix D is equally true with respect to the focus F' and

the directrix D'. Accordingly, the hyperbola is the locus of a

point whose distance from a focus bears to its distance from

the corresponding directrix a fixed ratio, the eccentricity'.

The equations of the directrices of the hyperbola,

a2 &2

are x = - and
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EXERCISES

y[ Take c = 2 and m = 3, the unit of length being 1 cm.

With ruler and compasses construct a generous number of

points of the locus, and then draw in the locus with a clean,

firm line.*

2. Work out the equation of the locus of Ex. 1 directly,

using the method of Ch. VII, 7, but not looking at the

formulas. Ans. 3 x 1

y
1 + 6 x = 9.

/3J By means of a transformation to parallel axes show

that the curve of Ex. 2 is a hyperbola whose center is at the

point ( 1, 0) and whose axes are of lengths 4 and 4V3.

4. Show that in the general case the distances of the

vertices, A and A', from are :

^5.1 Collect the results of this paragraph in a syllabus,

arranged in tabular form, giving each of the quantities, a, 6, c,

O'O, OA, A'O, OF, and F'O, in terms of m and e.

6. Work out each of the quantities of Ex. 5 directly for

the curve of Ex. 2 and verify the result by substituting the

values e = 2, m = 3 in the formulas of the syllabus.

rn Show that the tangent to the hyperbola

*l_2?=i
16 9

at an extremity of a latus rectum cuts the transverse axis in

the same point in which this axis is cut by a directrix.

8. The same for any hyperbola.

* The footnote of p. 114 applies in the present case with the obvious

modification that the distance of the parallel from D must now be half

the radius of the circle. Moreover, two parallels to D must now be drawn,
the second one, as soon as the radius has increased sufficiently, giving

points on the left-hand branch.
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( 91 Prove directly that, if P is any point of the hyperbola

a?~V
=

'

the ratio of its distance from a focus to its distance from the

corresponding directrix equals the eccentricity.

10. Prove that the ratio of the distance between the foci of

a hyperbola to the distance between the directrices equals the

square of theegcentricity.

The Parabola as the Limit of Hyperbolas. Summary.

Equation (3) of Ch. VII, 7, namely,

(1) (1
- e2)z

2 + y
1 - 2mx + m"- = 0,

represents a hyperbola when c > 1 and a parabola when = 1.

If, then, we let c approach 1 through values greater than 1,

the hyperbola which (1) represents will approach a parabola
as its limiting position.

Suppose, for example, that we take m = 2 and let e take on

successively the values 2, 1^, 1-J, li, . Drawing the corre-

sponding hyperbolas, we find that, whereas the directrix D
and the right-hand focus F are always fixed, the center and the

left-hand vertex keep receding to the left, and that their

distances from 0, namely,

O'O m A'O m

increase without limit. Thus, when e approaches 1, the left-

hand branch of the hyperbola recedes indefinitely to the left

and disappears in the limit, whereas, meanwhile, the right-

hand branch gradually changes shape and in the limit becomes

the parabola whose directrix is D and whose focus is F.

Summary. Let us now combine the results of 6 with those

of 8, Ch. VII. We have proved that equation (1) repre-

sents an ellipse, a parabola, or a hyperbola, according as c< 1,

e = 1, or e > 1. In case of the ellipse and the hyperbola the
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constant e turned out to be the eccentricity e. We are led

then to give to the parabola an eccentricity, namely,
e = e = 1.

THEOREM. The locus of a point which moves so that its dis-

tance from a fixed point bears to its distance from a fixed line,

not passing through the fixed point, a given ratio e is an ellipse,

a parabola, or a hyperbola, according as e is less than, equal to,

or greater than unity. In every case the constant e equals the

eccentricity.

Since always e = e, we may suppress e in future work, and

use e exclusively. Thus equation (1) becomes

(2) (1 e'X + f' 2 mx + m2
i

= 0-

The theorem furnishes a blanket definition for the ellipse,

parabola, and hyperbola, which might have been used instead

of the separate definitions which we have given. It should

be noted, however, that this blanket definition does not include

the circle. For, if we set e = in (2), the equation reduces to

which represents merely the focus F : (m, 0).

The fact that the blanket definition does not yield a circle

as a special case in no way discredits the circle as the limiting

form of an ellipse when the eccentricity approaches zero,

Ch. VII, 1. The reason that a circle cannot be defined in

the new manner is because it has no directrices. When the

eccentricity of an ellipse approaches zero, the major axis

remaining constant, the distance a/e of the directrices from

the center increases indefinitely, so that in the limit, when the

ellipse becomes a circle, the directrices have disappeared.*

* It is, of course, possible to obtain the circle as a limiting curve ap-

proached by ellipses defined in the new way. If the points F and A of

Fig. 12, Ch. VII, are held fast and m is allowed to increase indefinitely,

then it can be shown that e approaches zero and that a and 6 both approach
the fixed distance AF. Thus the variable ellipse approaches a circle as

its limit.
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8. Hyperbolas with Foci on the Axis of y. Conjugate

Hyperbolas. Let the student show that the equation of the

hyperbola whose foci are at the points (0, (7)
on the axis

of y and the difference of whose focal radii is 2J3 is

where
C2 =

The transverse axis of this hyperbola is the axis of y ;
the

conjugate axis, the axis of x. The length of the major axis is

2B
;
that of the minor axis, 2 A. The eccentricity is C/B and

the asymptotes have the equations,

= and I- = 0.

,
A B A B

Conjugate Hyperbolas. The two hyperbolas,

a2 62
and

have the same asymptotes. The transverse axis of each is the

conjugate axis of the other, and the major axis of each is the

minor axis of the other.

Taken together, the two

hyperbolas form what is

called a pair of conjugate

hyperbolas. The relation-

ship between them is per-

fect in its duality. We
say, then, that each is the

conjugate of the other.

The two hyperbolas to- FIG. 13

gether are tangent exter-

nally at their vertices to the rectangle of 4 at the mid-points
of its sides. Moreover, all straight lines through the common
center 0, except two, meet one hyperbola or the other in two

points, and the segment thus terminated is bisected at 0.



142 ANALYTIC GEOMETRY

The student should compare these facts with the correspond-

ing ones concerning a single ellipse and the circumscribed

rectangle.

EXERCISES

1. Find the coordinates of the foci, the lengths of the axes,

the slopes of the asymptotes, and the value of the eccentricity

for each of the hyperbolas :'

(6) 5af- - 4^+ 20 =
; (d) 3x^- -2y* + 6 = 0.

Draw an accurate figure in each case.

2. What are the equations of the hyperbolas conjugate to

the hyperbolas of Ex. 1 ?

3. Find the equation of the hyperbola whose vertices are in

the points (0, 4) and whose eccentricity is f.

Ans. 4z2 -5^ + 80 = 0.

4. Find the equation of the hyperbola the extremities of

whose minor axis are in the points ( 3, 0) and whose eccen-

tricity is ^.

5. Prove that the sum of the squares of the reciprocals of

the eccentricities of the two conjugate hyperbolas

^-UL=l ^!_l! = _l
9 16 9 16

is equal to unity.

6. Prove the theorem of Ex. 5 for the general pair of conju-

gate hyperbolas.

7. Show that the foci of a pair of conjugate hyperbolas
lie on aicircle.

^V>
9. Paip,metric Representation. It is possible to construct a

hyperbola, given its axes, AA' and BB', by a method much

like that of Ch. VII, 10, for the ellipse.
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Let the two circles, C and C", and the ray from 0, be drawn

as before. At the point L
draw the tangent to C", and

mark the point Q where the

ray cuts this line. At R draw

the tangent to C and mark the

point S where this tangent

cuts the axis of x.

The locus of the point

P : (x, y), in which the paral-

lel to the axis of x through
FIG. 14

Q and the parallel to the

axis of y through S intersect, is the hyperbola.

For,

and

Hence

and since

it follows that

OR = a,

x = OS = a sec
<f>,

OL = b,

y= LQ = b tan<.

* = tan
<f>,

'sec 2

<f>
tan 2

< = 1,

a

Conversely, any point (x, y) whose coordinates satisfy this

equation is seen to lead to an angle <f>,
for which the above

formulas hold.

We thus obtain the following parametric representation of

the hyperbola :

x = a sec
</>, y = b tan

<f>.

The circle C, constructed on the major axis of the hyperbola
as a diameter, is known as the auxiliary circle of the hyperbola,
and the angle </>

is called the eccentric angle.

EXERCISES

1. Carry out the construction described above for the cases :

(a) a = 3 cm., 6 = 2 cm.
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(6) a = 3 cm., b = 3 cm.

(c) a = 2 cm., b = 3 cm.

2. Obtain a parametric representation of the hyperbola

~A*~!&
=

10. Conic Sections. The ellipse (inclusive of the circle), the

hyperbola, and the parabola are often called conic sections,

because they are the curves

in which a cone of revolution

is cut by planes.

Suppose a planeM cuts only
one nappe of the cone, as is

shown in the accompanying

drawing. Let a small sphere
be placed in the cone near O,

tangent to this nappe along a

circle. It will not be large

enough to reach to the plane
M. Now let the sphere grow,

always remaining tangent to

the cone along a circle. It

will finally just reach the

plane. Mark the point of

tangency, F, of the plane M
with the sphere, and also the

FIG- 15 circle of contact, (7, of the

sphere with the cone.

As the sphere grows still larger, it cuts the plane M, but

finally passes beyond on the other side. In its last position, in

which it still meets M, it will be tangent to M. Let the point
of tangency be denoted by F', and the circle of contact of the

sphere with the cone by C'.

Through an arbitrary point P of the curve of intersection of

M with the cone passes a generator OP of the cone
;
let it cut

Gin R and C' in R. Then RR, being the slant height of
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the frustum * cut from the cone by the planes of C and C-, is

of the same length, 2 a, for all points P.

Join P with F. Then PF and PR, being tangents from P
to the same sphere, are equal. Similarly, PF 1 and PR' are

equal. Hence

FP + F'P= RP + R'P= RR',

or FP+F'P = 2a.

But this locus is by definition an ellipse with its foci

at F and F', and hence the proposition is proved for the case

that M cuts only one nappe, the intersection being a closed

curve.

If the plane M cuts both nappes, but does not pass through

0, it is a little harder to draw the figure, one sphere being
inscribed in the one nappe, the other, in the other nappe.

A similar study shows that here the difference between

FP and F' P is equal to RR', and hence the locus is a

hyperbola.
The parabola corresponds to the case that M meets only one

nappe, but does not cut it in a closed curve. This case is

realized when M does not pass through and is parallel to a

generator of the cone.

Let L be a line which is perpendicular to the axis of the

cone in a point of the axis distinct from the vertex. As a

plane, M, rotates about L, it will cut from the cone all three

kinds of conies. This will still be true if we take, as L, any
line of space which does not pass through the vertex and is

not parallel to a generator.

11. Confocal Conies. Two conies are said to be confocal if

they have the same foci
;
in the case of two parabolas, we de-

mand, further, that they have the same axis.

* No technical knowledge of Solid Geometry beyond the definitions of

the terms used (which can be found in any dictionary) is here needed.

On visualizing the figure, the truth of the statements regarding the space
relations becomes evident.
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FIG. 16

Consider an ellipse and a hyperbola which are confocal.

They evidently intersect in four points.*

Let P be one of these points. Join P with F and F'.

Then FP and F'P are focal radii both of the ellipse and of the

hyperbola. Now, the tangent to a hyper-
bola at any point not a vertex bisects the

angle between the focal radii drawn to

that point, 5
;
and the normal to an

ellipse at any point not on the transverse

axis bisects the angle between the focal

radii drawn to that point, Ch. VII, 4.

It follows, then, that the tangent to

the hyperbola at P and the normal to the ellipse at this

point coincide. Hence the two curves intersect at right

angles, or orthogonally, as we say. We have thus proved the

following

- THEOREM. A pair of confocal conies, one of which is an el-

lipse and the other a hyperbola, cut each other orthogonally.

Confocal Parabolas. Consider two parabolas having the

same focus and the same axis. If both open out in the same

direction, they have no point in common. If, however, they

open out in opposite directions, they intersect in

two points which are symmetrically situated with

respect to the axis.

In the latter case, the parabolas intersect orthogo-

nally, as has already been proved analytically ;
cf .

Ch. VI, 3, Ex. 10.

This result could have been forecast, as a conse-

quence of the relations established in 7. For, if

one focus, F, and the two corresponding directrices of a pair

of confocal conies, consisting of an ellipse and a hyperbola,
are held fast, and if the other focus is made to recede in-

definitely, each of the conies approaches a parabola. But the

FIG. 17

* Let the student satisfy himself that two confocal ellipses do not in-

tersect, and that the same is true of two confocal hyperbolas.
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FIG. 18

conies always intersect orthogonally, and so the same will be

true of the limiting curves, the parabolas.

To obtain a prescribed pair of parabolas, like those described

above, as limiting curves, it is necessary merely to choose the

two confocal conies so that the directrices corresponding to F
are at the proper distances from F.

Mechanical Constructions. It is possible to draw with ease a

large number of confocal ellipses by the method set forth in Ch.

VII, 1. Let thumb tacks be inserted at F
and F', but not pushed clear down. Let a

thread be tied to the tack at F, passed round

the tack at F', and held fast at M. Then an

ellipse can be drawn with F and F' as foci.

Now let the thread be unwound at F'
and drawn in or paid out slightly, so that

the length of the free thread between F and F' is changed.
On repeating the above construction, a second ellipse with

its foci at F and F' is obtained
;
and so on.

There is an analogous construction for a hyperbola, which

has not yet -been mentioned. Tie a thread to a pencil point,*

pass the thread round the pegs at F and
F' as shown, hold the free ends firmly

together at M, and, keeping the thread

taut by pressing on the pencil, allow M to

move. The pencil then obviously traces

out a hyperbola.

By pulling one end of the

thread in slightly at M, or by
paying it out, and then repeating the construction,
a new hyperbola with the same foci is obtained

;

and so on.

Parabolas. The accompanying figure suggests
a means for drawing a parabola mechanically.

* To keep the thread from slipping off, cut a groove in the lead, such

as would be obtained if the pencil were turned about its axis in a lathe

and the point of a chisel were held against the lead close to the wood.

FIG. 19

FIG. 20
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A ruler, D, is held fast and a triangle, T, is allowed to slide

along the ruler. A thread is tied at F and Q, and a pencil

point, P, keeps the thread taut and pressed against the

triangle.

EXERCISES

1. Show that the conies,

*+*_! and |_g =1
,

are confocal.

2. Prove that the equation,

9+A 5+A

represents an ellipse for each value of A greater than 5 and

represents a hyperbola for each value of A between 9 and

5. Show that all these ellipses and hyperbolas are confocal,

with the points ( 2, 0) as foci.

3. For what values of A does the equation

a2 + x
+

&2 + A
=

'

where a and b are given positive constants such that a > 6,

represent i) ellipses ? ii) hyperbolas ? Show that all these

conies are confocal.

4. Draw a set of confocal ellipses and hyperbolas.

5. Draw a set of confocal parabolas, all having the same

transverse axis, some opening in one direction, some in the

other.

EXERCISES ON CHAPTER VIM

1. The axes of a hyperbola which goes through the points

(1, 4), ( 2, 7) are the axes of coordinates. Find the equation
of the hyperbola. Ans. y

2 llo;2 = 5.

2. Show that the hyperbolas denned by the equation

4#2 5 y
1 =

c,
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where c is an arbitrary constant, not zero, all have the same

asymptotes.

3. How many hyperbolas are there with the lines

3 a?

as asymptotes ? Find an equation which represents them all.

Ans. 3 x 1 16 y
1 =

c, c = 0.

4. What is the equation of all the rectangular hyperbolas
with the axes of coordinates as axes?

5. A hyperbola with the lines 4 x 1

y"
1 = as asymptotes

goes through the point (1, 1). What is its equation ?

Ans. 4 x~- y
2 = 3.

6. The asymptotes of a hyperbola go through the origin

and have slopes 2. The hyperbola goes through the point

(1, 3). Find its equation. Ans. 4^- y
2 = 5.

7. The two hyperbolas of Exs. 5 and 6 have the same

asymptotes, but lie in the opposite pairs of regions into which

the plane is divided by the asymptotes. Show that the sum
of the squares of the reciprocals of their eccentricities equals

unity.

8. Prove that of the hyperbolas of Ex. 2 those for which

c is positive are all similar, and that this is true also of those

for which c is negative. If e is the common value of the ec-

centricity of the hyperbolas of the first set and e' is that of

the hyperbolas of the second set, show that

(i) I+l-i.
e2 e'2

9. Prove that the relation (1) is valid for the eccentricities

of any two hyperbolas which have the same asymptotes but

lie in the opposite regions between the asymptotes.

10. Show that two hyperbolas which are related as those

described in the previous exercise have the same eccentricity
if and only if they are rectangular hyperbolas.
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11. A hyperbola with its center in the origin has the eccen.

tricity 2. Find the equations of the asymptotes, (a) if the

foci lie on the axis of x
; (6) if the foci lie on the axis of y,

Ans. (a) 3a?-y' = 0; (6) x"--3y'
i = 0.

12. What is the equation representing all the hyperbolas
which have their centers in the origin and eccentricity 2,

(a) if the foci lie on the axis of x ? (&) if the foci lie on the

axis of y? Show that in either case the vertices lie midway
between the center and the foci.

13. Prove that the vertices of the hyperbola

subtend a right angle at each of the points (0, 6) when and

only when the hyperbola is rectangular. What is the corre-

sponding theorem in the case of the ellipse ?

14. The projections of a point P of a hyperbola on the

transverse and conjugate axes are PI and P2 . The tangent at

P meets these axes in 2\ and T2 . Show that OP 07\= o2

and OP2 OT2=b fi

,
where is the center of the hyperbola

and a and b are the semi-axes.

15. Prove that the segment of a tangent to -a hyperbola be-

tween the point of contact and a directrix subtends a right

angle at the corresponding focus. .

16. The projection of a point P of a hyperbola on the

transverse axis is P
t
and the normal at P meets this axis at

NI. Show that the ratio of the distances of the center from

N! and PI equals the square of the eccentricity.

17. Prove that the line joining a point P of a hyperbola
with the center and the line through a focus perpendicular to

the tangent at P meet on a directrix.

18. Find the equation of the circle which is tangent to a

hyperbola at the upper ends of the two latera recta.

19. Let be the center, A a vertex, and F the adjacent
focus of a hyperbola. The tangent at a point P meets the
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transverse axis at T and the tangent at A meets OP at V.

Show that TV is parallel to AP.

20. Show that an asymptote, a directrix, and the line through
the corresponding focus perpendicular to the asymptote go

through a point.

21. A line through a focus F parallel to an asymptote meets

the hyperbola at P. Show that the tangent at P, the other

asymptote, and the line of the latus rectum through F meet in

a point.

22. Let F be a focus and D the corresponding directrix of

a hyperbola. A line through a point P of the hyperbola parallel

to an asymptote meets D in the point K. Prove that the tri-

angle FPK is isosceles.

Exercises 23-33. In proving the theorems in these exercises

it will, in general, be necessary to make actual use of the

equation expressing the fact that a certain point lies on the

hyperbola.

23. The tangent to a hyperbola at a point P meets the tan-

gent at one vertex in Q. Prove that the line joining the other

vertex to P is parallel to the line joining the center to Q.

|24?)
Let F be a focus and D the corresponding directrix of a

hyperbola. Prove that the segment cut from D by the lines

joining the vertices with an. arbitrary point on the hyperbola
subtends a right angle at F.

25. Prove that the product of the distances of the foci of a

hyperbola from a tangent is constant, i.e. independent of the

choice of the tangent.

26. Let A and A' be the vertices of a rectangular hyperbola
and let P and P' be two points of the hyperbola symmetric in

the transverse axis. Prove that AP is perpendicular to A'P1

and that AP is perpendicular to A'P.

27. Show that the product of the focal radii to a point on a

rectangular hyperbola is equal to the square of the distance of

the point from the center.
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28. Prove that the angles subtended at the vertices of a

rectangular hyperbola by a chord parallel to the conjugate axis

are supplementary.

29. Prove that the product of the distances of an arbitrary

point on a hyperbola from the asymptotes is constant, i.e.

the same for every choice of the point.

30. A line through an arbitrary point P on a hyperbola

parallel to the conjugate axis meets the asymptotes in M and
-2V. Show that the product of the segments in which P divides

MN is constant.

31. Prove that the segment of a tangent to a hyperbola cut

out by the asymptotes is bisected by the point of contact of

the tangent.

32. Show that the tangent to a hyperbola at an arbitrary point
forms with the asymptotes a triangle which has a constant area.

33. The tangent to a hyperbola at a point P meets the tan-

gents at the vertices in M and N. Prove that the circle on

MN as a diameter .passes through the foci.

Loci

34. Find the locus of a point whose distance from a given
circle always equals its distance from a given point without

the circle. First give a geometric construction, with ruler and

compass, for points on the locus. Then find the equation of

the locus.

35. The base of a triangle is fixed and the product of the

tangents of the base angles is a negative constant., What is

the locus of the vertex?

36. A line moves so that the area of the triangle which it

forms with two given perpendicular lines is constant. Find

the locus of the mid-point of the segment cut from it by these

lines.

Ans. Two conjugate rectangular hyperbolas, with the given

lines as asymptotes.
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37. Given a fixed line L and a fixed point A, not on L. A
point P moves so that its distance from L always equals the

distance AQ, where Q is the foot of the perpendicular dropped
from P on L. What is the locus of P?

38. What is the locus of the point P of the preceding exer-

cise, if the ratio of its distance from L to the distance AQ is

constant ?



CHAPTER IX

CERTAIN GENERAL METHODS

1. Tangents. Let it be required to find the tangent line to

a given curve at an arbitrary point.

In the case of the circle the tangent is perpendicular to the

radius drawn to the point of tangency. But
%
this solution is

of so special a nature that it suggests no general method of

attack. A general method must be

based on a general property of tan-

gents, irrespective of the special curve

considered. Such a method is the

following. Let P be an arbitrary

point of a given curve, (7, at which it

is desired to draw the tangent, T. Let

a second point, Pf

,
be chosen on (7,

and draw the secant, PP'. As P'

moves along C and approaches the

fixed point P as its limit, the secant rotates about P as a pivot

and approaches the tangent, T, as its limiting position. Thus

the tangent appears as the limit of the secant.

If, now, in a given case we can find an expression for the

slope of the secant, the limit approached by this expression
will give us the slope of the tangent. The slope of the tangent

to the curve at P we shall call, for the sake of brevity, the

slope of the curve at P.

Example 1. Find the slope of the curve

(1) y = tf

at a given point, P.

154

FIG. 1
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Let the .coordinates of P be

(zi, 2/1) ;
those of P', (', y'),

or
(a?! -f /t, 2/1 + ft).

Then

and we have, for the slope of

the secant PP\ the expression :

(2)
itanr = -, FIG. 2

where T' = QPP'. The slope of the tangent line, T7

,
at P is,

then,
A;

(3)
'tan T = lira tan r' = lim -

,

P'=P h0 h

where T =
*$. QPT. The sign = is used to mean "approaches

as its limit," and the expression : lim tan T', is read :
" the

P'=P

limit of tan T', as P' approaches P."

Suppose, for example, that P is the point (1, 1). Let us

compute A; and tan T' for a few values of h. Here, Xi = 1 and

?/!
= 1. If h = .1, then

z' = a?! + = 1.1,

and hence

k = .21,

=^ = 2.1.

Next, let P' be the point for which

x' =1.01.

Then y' = 1.0201,

h = .01, ft = .0201,

.0201
and hence tan T' =

.01
= 2.01.

Let the student work out one more case, taking x'= 1.001.

He will find that here k = .002001 and

tan T' = 2.001.
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These results can be presented conveniently in the form of

a table :
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We can say, then, that the slope of the curve (1), at an arbi-

trary point P : (xi, y^) on it, is

X = 2x{ .

If, in particular, P is the point (1, 1), the slope of the tan-

gent there is A. = 2 1 = 2, and thus the indication given by
the above table is seen to be borne out.

Example 2. Find the slope of the curve

(6) ,-

at an arbitrary point P :. (xt , y^) of the curve.

Denote, as before, the coordinates of a second point, P',by
x' =

ajj. + h, y
f = yl + k.

Then, since P and P' lie on the curve,

and

Hence

h

a2

Nothing is more natural than to reduce the right-hand side

of this equation to a common denominator. Thus

^ __ (i fa
t

Xi(xi -j- K)

Consequently,
, k a2

tan T =- =
h

We are now ready to let P' approach P:

a2

lim tan T' = lim
P'P =o x^Xi + h)

The limit approached by the right-hand side is obviously

a2
/#!

2
,
and so

a2

tan T = ---
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We have, then, as the final result : The slope of the curve (6),

at an arbitary point (x1} y^) on it, is

\ = -^.

Equation of the Tangent. Since the tangent to the curve (1),

at the point (1, 1) has the slope 2, its equation is

y-l=2(x-l), or 2x-y-l=0.

Similarly, the equation of the tangent to the curve (1) at an

arlfitrary point P : (x1} y^ is

or

This equation may be simplified by use of the equality,

y\ = i

2
,

which says that the point P lies on the curve. For, if we re-

place the term 2 x^ by its equal, 2 y1} and then combine the

terms in y1}
the equation becomes

This equation of the tangent is of the first degree in x and y,

as it should be. The quantities a^ and y are the arbitrary,

but in any given case fixed, coordinates of P and are not

variables.

Equation of the Normal. The line through a point P of a

curve perpendicular to the tangent at P is known as the

normal to the curve at P.

Since the tangent to the curve y = x2 at the point (1, 1)

has the slope 2, the normal at this point has the slope -|.

Consequently, the equation of the normal is

or
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EXERCISES

1. Determine the slope of the curve y = x2 x at the point

(3, 6). First make out a table like that under Example 1, and

hence infer the probable slope. Then take an arbitrary point

(xi> y\) on the curve and determine the actual slope at this

point by finding

v k
lim
*=y) h

2. The same for the curve 8y = 3x* at the point (2, 3).

\$. The same for the curve y = 2xz 3 a; + 1 at the point

(1, 0).

Find the slope of each of the following curves at an arbitrary

point P : (xi, y^). No preliminary study of a numerical case,

like that which gave rise to the table under Example 1, is

here required.

4. y = x" 3 x + 1. Ans. X = 2x
l

3-

6. y = y? x. 8. y = x3 + x"- + cc + 1.

= ic'+px-l- q. Ans. \ = 3x1
2

10. y = x* a*. Ans. A = 4or1
3

.

i3. Jf Ans. \ =l-x (1-
Q rf Q

t A & " A \ O
14- y = ^ : Ans. A =

/
= ace" + 60; 4- c. u4s. X = 2 a^! + &.

16. y = ax3 + 6x7
-\-cx-\-d.

. ?/
=

a;", (n, a positive integer) u4?^s. X = no?!""
1
.

18. = cxn.
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Find the equations of the tangents' to the following curves

at the points specified. In each case reduce the equation ob-

tained to the simplest form.

19. The curve of Ex. 1 at the points (3, 6) ; (ajl5 y^).

Ans. 5x y 9 = 0; (2 a?t T)x y x? = 0.

20. The curve of Ex. 3 at the points (xl9 y^) ; (1, 0).

21. The curve of Ex. 4 at the points (a^, y^) ; ( 1, 5).

22. The curve of Ex. 11 at the points (1, 1) ; (xl} 3^).

23. The curve of Ex. 17 at the point (xl} y^.
Ans. nxi

n~lx y(n l)yl
= 0.

24. The curve of Ex. 13 at the point whose abscissa is 2.

25. The curve of Ex. 14 at the point whose abscissa is 4.

26. Find the equations of the normals to the curves of Exs.

21, 22 at the designated points,

2. Continuation. Implicit Equations. We have applied the

general method to curves whose equations are given in the

form : y = a simple expression in x. More precisely, this

"
simple expression

" has each time been a polynomial (or even

a monomial), or the ratio of two such expressions.

But even the simplest forms of the equations of the conies

are, as a rule, such that, if the equation be solved for y, radi-

cals will appear. In such cases, the following method of treat-

ment can be used with advantage.

The Parabola. Let it be required to find the slope of the

parabola

(1) y*

at any point P : (xl} y^ on the curve.

We will treat first a numerical case, setting m = 2:

(2) jf = 4o.

Since P is on the curve, we have

(3) 2^ = 4^.
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Since P' : (xt + h
) yl -\- k) is also on the curve, we have :

or

(4) yi
2 + 2 yjc + V = 4*! -f 4 A.

Subtract (3) from (4) :

Divide this equation through by h, to obtain an equation for

tan T' = k/h :

k
,

, k
2 2/1

- 4- k - = 4, or 2
h h

Solve the latter equation for tan T'

tan / =

We are now ready to let P' approach P as its limit. This

means that h and k both approach 0. We have, then,

lim tan T' ;= lirn ,

P'P A=O 2
y-i + k

or

4 2
tan T = =

2
2/i 2/i

It has been tacitly assumed that y^ 3= 0. If yt
= 0, then

tanr' increases indefinitely as h, and with it k, approaches
zero. Thus the tangent line is seen to be perpendicular to the

axis of x at this point, as obviously is, in fact, the case, since

the point is the vertex of the parabola.

The student will now carry through by himself the corre-

sponding solution in the general case of equation (1). He
will arrive at the result : The slope A of the parabola

y
1
* = 2 mx

at an arbitrary point (xv , y^ of the curve is

(5)
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The Ellipse. The treatment in the case of the ellipse,

is precisely similar. Writing (6), for convenience, in the

form

(7) &"" -f- a'y" = a"b
n

,

we are led to the following equations
*

:

(8) Wx? + aV = a2&2
;

or

(9) b^xj
2 + a2

!/!
2 + 2 IPxJi + 2a?yik + 62

/i
2 +a2

fc
2 = a262.

Subtract (8) from (9) :

2 b^h + 2 tfyjc + bW + a%2 = 0.

Divide by h :

- = 0,
h h

or 2 b^ + 2 a2
2h tan T' + 62

/i + a2
A; tan r' = 0.

Solve this equation- for tan T' :

tan T' =
+ a2

fc

Now let P' approach P as its limit :

,
,.hm tan r' = lim

Hence tan T =

We have thus obtained the result : The slope X of the ellipse

x2
y! =1

a2 62

at an arbitrary one of its points (xt , y^) is

(10) X = -^i-
0^1

* The student will do well to paraphrase the text at this point with a

numerical case, say, 4x2 + 9j/
2 = 36.
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The Hyperbola. The treatment is left to the student. The

result is as follows.

The slope \ of the hyperbola

?_
2
_2/?= l

a2 62

at an arbitrary one of its points (x1} y^) is

(11) X =^.
<fyi

Equation of the Tangent. Since the slope of the ellipse at

the point (x^ yi) is fe^/a
2
^, the equation of the tangent at

* is

or, after clearing of fractions and rearranging terms,

If we divide both sides of this equation by a262
,
we have

ftifl - .Vi.V__^i
2

. y\
z

a?
^

52 a2 62

'

But, since the point (xly y^) lies on the ellipse, it follows that

,

a2
ft
2

and the equation of the tangent becomes

xix
i .Viy -

equation of the tangent to the ellipse

+<-l
a2 62

a< ^e pom? (xj,

(12)
a2 62

In a similar manner let the student establish the equations
of the tangents to the hyperbola and the parabola.
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a2 62

at the point (x1? y^) has the equation

rt% 7i2

tangent to the parabola

y* = 2 maj

Ci, f/i)
^ ^e equation

/i A\ .. -. j rm(w -I- /* \

EXERCISES

Find the slope of each of the following six curves at an

arbitrary one of its points, applying each time the method

set forth in the text.

1. 2#2 + 3?/
2 = 12. 3. y

z = 12x.

2. x2 4y2 = 4. 4. cc
2

t/
2 = a2

.

5. ^4x2 + .Bi/
2 = C, where A, B, C are all positive.

6. ?/
2 = Ax + S, where A 4=- 0.

7. Find the slope of the parabola y
z + 2y = 6 a; at the point

V 1) Vl/" ^J.rvS* ^ *

^1 + 1

8. What is the slope of the parabola of Ex. 7 at the origin?

Ans. 3.

9. Find the slope of the curve

at the origin. Ans. X= f.

Suggestion. First find the slope at an arbitrary point (xy , y^).

Then substitute in the result the coordinates of the origin.

10. What angle does the curve

make with a parallel to the axis of x at the point (1, 1) ?

Ans. 45.
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11. Find the slope of the curve xy = a2 at any point (xlf yt)

by the method of the present paragraph, and show that your
result agrees with that of 1, Example 2.

Find the equation of the tangent to each of the following

curves at the point designated, applying each time the method

of the text. Reduce the equation to its simplest form.

12. The curve of Ex. 1 at the point (xi} yi).

Ans. 2 X]X + 3 y^y = 12.

13. The curve of Ex. 3 at the points (xl} y^) ; (3, 6).

14. The curve of Ex. 5 at the point (xt , y^.
Ans. Ax-p + By$ = C.

15. The curve of Ex. 6 at the point (a?i, yi).

16. The curve of Ex. 7 at the points (xi} y^ ; (, 1).

17. The curve of Ex. 9 at the origin.

18. Find the equations of the normals to the curves of Exs.

12, 13 at the points specified.

\

3. The Equation u + kv = 0. Consider the following ex-

ample.
The equations

(1) x + y-2 = 0,

(2) x-y = 0,

represent two straight lines intersecting

in the point (1, 1), as shown in Fig. 3.

What can we say concerning the curve *

(3) (x + y-2)+k(x-y)=0,
where k denotes a constant number ?

This curve is a straight line, since (3) is an equation of the

first degree in x and y. Suppose, now, that various different

values are given to k. Then (3) represents various straight

lines in turn. What do all these lines have in common ?

* The word "curve" is used here in the sense common in analytic

geometry, to denote merely the " locus of the equation." Consequently
a curve in this sense is not necessarily crooked

;
it may be a straight line.

FIG. 3
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Since the lines (1) and (2) intersect in the point (1, 1), the

coordinates of this point make the left-hand sides of equations

(1) and (2), namely, the expressions,

x + y 2 and x y,

vanish. Consequently, they always make the left-hand side

of equation (3) vanish. In other words, equation (3) is satisfied

by the coordinates of the point of intersection of the lines (1) and

(2), NO MATTER WHAT VALUE Jc HAS. This means that all the

straight lines represented by (3) go through the point of inter-

section of the lines (1) and (2).

The result can be restated in the following form. Let the

single letter u stand for the whole expression x + y 2 :

u = x+ y 2,

the sign
= meaning identically equal, i.e. equal, no matter what

values x and y have. Similarly, let v stand for x y :

v = x y.

Then (3) takes on the form :

(4) u + kv = 0.

We now restate our result.

Ifu= and v = are the equations of two intersecting straight

lines, then the equation
u + kv =

represents a straight line which goes through the point of inter-

section of the two given lines.

By giving to k a suitable value, u + kv = can be made to

represent any desired line through the point of intersection

(XD y\) f the given lines, with the sole exception of the line

v = 0. For, let L be the desired line, and let
(ccj, t/2) be a

point of L distinct from (x^ y^. Then, on substituting for x

and y the values x2 and y2 in the equation u -J- Jcv = 0, we ob-

tain an equation, in which Jc is the unknown. This equation
can be solved for k, since v does not vanish for the point
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Example. Find the equation of the line L which goes

through the point of intersection of the lines (1) and (2) and

cuts the axis of y in the point (0, 4).

The required line, L, is one of the lines (3) ;
i.e. for a suit-

able value of k, (3) will represent L. To find this value of A:,

we demand that (3) contain the given point (0, 4) of L.

We have, then, setting x = and y = 4 in (3) :

(0_4-2)+fc(0 + 4)=0 or k = f .

Consequently, the equation of the line L is

x + y 2 + | (a; y)= or 5x y 4 = 0.

That the line represented by the latter equation does actually

go through the points (1, 1) and (0, 4) can be verified

directly.

The principle which has been set forth for two straight lines

evidently applies to any two intersecting curves whatever, so

that we are now in a position to state the following general

theorem.

THEOREM 1. Let u = and v = be the equations of any
two intersecting curves. Then the equation,

u -f kv = 0, k = 0,

represents, in general,* a curve u-hich pa.sses through all the

points of intersection of the two given curves, and has no other

point in common with either of them.

The last statement in the theorem is new. To prove it,

we have but to note that, if the coordinates of a point P satisfy

the equation u + kv and also, for example, v = 0, they
must satisfy the equation u =

;
that is, if P is a point on the

curve u + kv = 0, which lies on one of the given curves, it

lies also on the other and so is a point of intersection of the

two.

* It may happen in special cases that the locus u -f- kv = reduces to

a point, as when, for example,

u - 2 z2 + 2 y2
x, v = x2 + y* x, k - 1.
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Suppose, now, that the equations u = and v = represent
two curves which have no point of intersection. It follows,

then, from the argument just given, that the curve

u + kv = 0, k = 0,

has no point in common with either of the given curves. But

it may happen, in this case, that there are no points at all

whose coordinates satisfy the equation u + kv = 0. Thus, if

u = xz + y
z

1,

v = x> + y2
-

4,
and k = 1, we have

u -f- kv = 3,

and there are no points whose coordinates satisfy the equation
3 = 0.

The general result can be stated as

THEOREM 2. Let u = and tv = be the equations of two

non-intersecting curves. Then the equation

u + kv = Q, k =f= 0,

represents, in general, a curve not meeting either of the two given

curves. In particular, it may happen that the equation has no

locus.*

In the special case that u and v are linear expressions in

x and y, it is possible to say more.

Ifu = and v = are the equations of two parallel straight

lines, the equation

represents, in general, a straight line parallel to the given lines.

For a single value of Jc, the equation has no locus.

Thus, if the parallel lines are

the equation

(5) u + kv =(1 + fc)
x +(1 + k}y + k =

* It may happen, also, that the equation represents just one point, as

when, for example,
u = x2 + j/

2
2, v = x2 + y2 1. k = 2,
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has no locus when k 1, but otherwise it represents a line,

of slope 1, parallel to the given lines. In fact, it yields all

the lines of slope 1, except the line v = 0, since, if we re-

write it in the form,

the quantity fc/(l + it) may be made to take on any value, ex-

cept 1, by suitably choosing k.

Pencils of Curves. All the lines through a point, or all the

parallel lines with a given slope, form what is called a pencil

of lines. Equation (5) represents, when k is considered as an

arbitrary constant, all the lines of slope 1, except the line

v = x + y + 1 = 0;

in this case, then, u + kv = and v = together represent all

the lines of slope 1, that is, a pencil ofparallel lines.

Similarly, u + kv = 0, when v. = and v = are the lines

(1) and (2), yields all the lines through the point (1, 1),

except the line (2) ;
hence u +- kv = and v = together

represent all the lines through the point (1, 1), a pencil of

intersecting lines.

Thus, if u = and v = are any two lines, the equations

(6) u + kv = and v =

together represent a pencil of lines.

If we set k = m/l in u + kv = and multiply by I, the re-

sulting equation

(7) he + mv =

is equivalent to the equation u + kv = when 1 3= 0, and when

I = (ra
=

0), it becomes v = 0. Consequently, the two equa-

tions (6) may be replaced by the single equation (7).

The pencil of lines through the point (1, 1), for example,

may now be given by the single equation

where I and m have arbitrary values, not both zero.
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In general, if u = and v = are any two curves, all the

curves represented by the equation

lu + mv = 0,

where I and m have arbitrary values, not both zero, form what

is called a pencil of curves.

Applications. Example 1. Let

u = x2 + y
1 + ax + by + c = 0,

v = x* + y? + a'x + &'?/ + c' = 0,

be the equations of any two circles which cut each other.

Then the equation

u v=(a a')'x+(b W)y+(c c')=0

represents a curve which passes through the two points of

intersection of the circles. But this equation, being linear,

represents a straight line, and is, therefore, the equation of

the common chord of the circles.

The foregoing proof is open to the criticism that conceivably

we might have
a T a' = 0,

* b - b' = 0,

and then the equation u v = would not represent a straight

line. But in that case the circles would be concentric, and we
have demanded that they cut each

other.

Example 2. We can now prove
the following theorem : Given three

circles, each pair of which intersect.

Then their three common chords

pass through a point, or are parallel.

Let two of the three given circles

be those of Example 1, and let the

equation of the third circle be

w = x* -f f + a"x + V'y + c" = 0.

Mi-0
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Then the equations of the three common chords can be written

in the form :

u v = Q, v to = 0, w M = 0.

Let

Ui = V W, Vi
= W U, Wi = U V.

We observe that the equation,

(8) HI + Vi -f Wj = or Wi = % + 'y1?

holds identically for all values of x and y. Consequently, the

line wv
= is the same line as

i + -Wi
= 0,

and therefore it passes through the point of intersection of

Ui = and v = 0, or, if these lines are parallel, is parallel to

them. Hence the theorem is proved.

The above proof is a striking example of a powerful method

of Modern Geometry known as the Method of Abridged Nota-

tion* By means of this method many theorems, the proofs of

which would otherwise be intricate, or for whose proof no

method of attack is readily discerned, can be established with

great ease.

EXERCISES

1. Find the equation of the straight line which passes

through the origin and the point of intersection of the lines

Ans. I2

2. Find the equation of the straight line which passes

through the point ( 1, 2) and meets the lines

at their point of intersection.

* The first general development of this method was given by the

geometer, Julius Pliicker, in his Analytisch-geometrische Entwicklungen
of 1828 and 1831.
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3. Find the equation of the straight line which passes

through the point of intersection of the lines

5x-2y-3 = 0, 4w+ 7^-11 =

and is parallel to the axis of y.

4. Find the equation of the straight line which passes

through the point of intersection of the lines given in Ex. 3

and makes an angle of 45 with the axis of x.

5. Find the equation of the straight line which passes

through the point of intersection of the lines of Ex. 1 and is

perpendicular to the first of the lines given in Ex. 3.

Ans. 38x + 95^ + 58 = 0.

6. The same, if the line is to be parallel instead of per-

pendicular.

7. Find the equation of the common chord of the parabolas

y
i - 2y + x = 0, y* + 2x-y = 0.

Ans. x + y = Q.

8. The same for the parabolas

9. Write the equation of the pencil of curves determined

by the two curves (a) of Ex. 1
; (&) of Ex. 3

; (c) of Ex. 7.

10. What is the equation of the pencil of circles determined

by the two circles

2a; 1 = 0,

Draw a figure showing the pencil. Find the equation of that

circle of the pencil which goes through the point (2, 4).

11. Find the equation of the pencil of parallel lines (a) of

slope 1
; (&) of slope 3

; (c) of slope AO.

Ans. (a) y = x-\-k.

12. Find the equation of the pencil of lines through (a)

the point (0, 0) ; (6) the point (3, 2) ; (c) the point (0, 6) ;

(d) the point (x0) y ). Ans. (a) Ix + my = 0.



CERTAIN 'GENERAL METHODS 173

4. The Equation uv = 0. Consider, for example, the, equa-

tion

(1) rf-jf = 0.

Since x2
y
2 =

(x y}(x -f- y),

it is clear that equation (1) will be satisfied

(a) if (x, y) lies on the line

(2) *-3f= 0;

(6) if (x, y) lies on the line

(3) x + y = 0;

and in no other case. Equation (1), therefore, is equivalent to

the two equations (2) and (3) taken together, and it represents,

therefore, the two right lines (2) and (3).

It is clear from this example that we can generalize and

say:

THEOREM. The equation

uv =

represents those points (x, y) tvhich lie on each of the two curves,

, u = 0, v = 0,

and no others.

It follows as an immediate consequence of the theorem that

the equation OT ... = ^
whose left-hand member is the product of any number of

factors, represents the totality of curves corresponding to the

individual factors, when these are successively set equal to zero.

Example. Consider the equation,

x* - y* = 0.

Here,*

X4 -
tf =(& -

7/2) (cc2 + yV)
=

(
X _ y) (35 + y) (& + y*).

* It is true that the following equation is an identity, and so the sign
= instead of = miglit be expected. The use of the sign

= for an identical

equation is not, however, considered obligatory, the sign = being used

when it is clear that the equation is an identity, so that the fact does

not require special emphasis.
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The given equation is, therefore, equivalent to the three equa-

x y = 0, x + y = 0, x- + f- = 0.

The first two of these equations represent right lines. The

third is satisfied by the coordinates of a single point, the

origin. Since this point lies on the right lines, the third

equation contributes nothing new to the locus.

EXERCISES

What are the loci of the following equations ?

/v.2 7/2

i. ~5" a 2 - ^+ 3*+ 2 =-

3. 2x i + 3xy 2?/
2 = 0. 4. xy + x + 2y + 2 = 0.

5. x- + xy 2x 2y = 0. 6. x3 +xy2 = x.

7. 3x^y-2xy = Q. 8. a4 -
y*
- 2a2 + 2y2 = 0.

9. (x-\- y l)(x
? + y

2)= 0. Ans. The line whose inter-

cepts on the axes are both 1, and the origin.

10. (z+?/)(a;"- + 2/
2 + l)=0.

11.
(a; + y)[(aj-l)2 + ^]=0.

12. a^ + x"2/ xy
2

y
3 = 0.

Find, in each of the following exercises, a single equation
whose locus is the same as that of the given systems of equa-
tions'.

13. a; -2 = 0, 2/-4 = 0.

14. x = 2, 2/
= 4i

15. a? + 2/-2 = 0, x-y + 2 = 0.

16. o--32/ = 5, 4a: + 3 = 0.

17.
* =

,

'^ = _^.
a 6' a b

5. Tangents with a Given Slope. Discriminant of a Quad-

ratic Equation. From elementary algebra we know that the

roots of the quadratic equation
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2A 2A
B 1

From these formulas the truth of the following theorem at

once becomes apparent.

THEOREM 1. The roots of the quadratic equation (1) are

equal if and only if

The quantity B- 4AC is known as the discriminant of the

quadratic equation (1).

By means of the theorem we shall solve the following prob-

lem.

Problem. Let it be required to find the equation of the

tangent to the parabola

(2) tf = fix,

which is of slope -|.

Let L be a line of slope -^

which meets the parabola in

two points, Pj and P2 . If we
allow L to move parallel to

itself toward the tangent, T,

the points Pl and P2 will move

along the curve toward P, the

point of tangency of T
;
and

if L approach T as its limit, the points Px and P2 will approach
the one point P as their limit.

It is clear that these considerations are valid for any conic.

Accordingly, we may state the following theorem.

THEOREM 2. A line which meets a conic intersects it in

general in two points. If these two points approach coincidence

FIG. 5
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in a single point, the limiting position of the line is a tangent to

the conic.*

In applying Theorem 2 to the problem in hand, let us denote

the intercept of the tangent T on the axis of y by /3. The

equation of T is, then,

(3) y =& + p.

The coordinates of the point P, in which T is tangent to the

parabola, are obtained by solving equations (2) and (3) simul-

taneously. Substituting in (2) the value of y given by (3),

we have

(4) z2 + 4(/3 -6) x + 4^ = 0.

The roots of equation (4) are equal, since they are both the

abscissa of P. Accordingly, by Theorem 1, the discriminant

of (4) is zero. Hence

16
(
-

6)
2-

16/3
2 = 0, or -

12/8 + 36 = 0.

Thus ft
= 3, and the tangent to the parabola (2) whose slope

is ^ has the equation

(5) x - 2y + 6 = 0.

If in (4) we set (3
= 3, the resulting equation,

a2 -12 a; + 36 = 0,

has equal roots, as it should. The common value is x = 6, and

the corresponding value of y, from (2), is y = 6. The coordi-

nates of the point of tangency, P, are, then, (6, 6).

Second Method. We proceed now to give a second method

of solution for the type of problem just discussed. Let the

conic be the ellipse

(6) 4x2 +*/2 = 5,

and let the given slope be 4.

* A tangent to a conic might then be denned as the limiting position

of a line having two points of intersection with the conic, when these

points approach coincidence in a single point ;
this is a generalization of
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It is evident from the figure that there are two tangents of

slope 4 to the ellipse. Let the intercept on the axis of y of

one of the tangents be ft. The equation of

this tangent is then

(7) y = x+ft.

Our problem now is to determine the value

of
ft. To this end, let the coordinates of the

point of contact of the tangent be (x: , y^).

Then a second equation of the tangent is,

by (12), 2,

(8) 4xjx + y$ = 5.

Since equations (7) and (8), which we
rewrite as

Fia. 6

5 = 0,

represent the same line, it follows, from Ch. II, 10, Th. 5,

that

4 ft

From the equality of the first and third ratios we have

(9) X! = - -.

Since the second and third ratios are equal,

fc-.jf

Furthermore, the point (a^, y^ lies on the ellipse and so the

values of x and ylt given by (9) and (10), satisfy equation (6).

Accordingly,
100

,

25 K
-\ =5, or

ft
2

ft
2

ft
2

Hence ft has the value 5 or 5.

the definition of 1. A tangent cannot be defined as a line meeting the

conic in a single point, for there are lines of this character which are not

tangents, viz., a line parallel to the axis of a parabola, or to an asymptote
of a hyperbola.

=1
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Substituting these values of /? in turn in (7), we obtain

4 y + 5 = 0, 4# y 5 = 0,

as the equations of the two tangents of slope 4 to the 'ellipse

(6). From equations (9) and (10) it follows that the points of

contact of these tangents are, respectively, ( 1, 1) and

(1,
-

1).

Both the methods described in this paragraph are general

in application. For the usual type of problem met with in a

first course in Analytic Geometry either method may be used

with facility. It is, however, to be noted that the second

method presupposes that the equation of the tangent to the

curve at an arbitrary point on the curve is known, whereas

the first does not. Accordingly, in case a curve is given, for

which the general equation of the tangent is not known, for

example, the parabola, y =3 #2 2#+l, the first method

will be shorter to apply.

EXERCISES

Determine in each of the following cases how many tan-

gents there are to the given conic with the given slope. Find

the equations of the tangents and the coordinates of the points

of tangency. Use both methods in Exs. 1, 2, 3, checking the

results of one by those of the other.

Conic Slope

1. z2
-f2/

2 = 5, 2.

Ans !
2x -y-5 = Q> tangent at (2,

-
1),

1 2x y + 5 = 0, tangent at ( 2, 1).

2. f- = 3x, f.

3. 2*2 + 2/
2 = ll, _|.

4. z2 + 87/ = 0, 2.

5. 4x2
-2/

2 = 20, 3.

6. x* + f- + 2x = Q, f
7. 6y2 -5a; = 0, If.
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8. What are the equations of the tangents to the circle

32+2,2 = 10,

which are parallel to the line 3x y -\- 5 = 0?

9. What is the equation of the tangent to the ellipse

4z2 + 5?/
2 = 20,

which is perpendicular to the line x + 3y 3 = and has a

positive intercept on the axis of y ?

10. Find the equation of the tangent to the parabola

y = 3x- 2x + 1,

which is perpendicular to the line # + 4r/ + 3 = 0.

Ans. 4 # y 2 = 0.

11. Make clear geometrically that, no matter what direction

is chosen, there are always two tangents to a given ellipse,

which have that direction.

12. How many tangents are there to the parabola y
1 = 2mx,

which have the slope 0? State a general theorem relating

to the number of tangents to a parabola which have a given

slope.

13. Are there any tangents of slope 3 to the hyperbola

4aj2 -y2 = 5?

If so, what are their equations ?

14. The preceding exercise, if the given slope is (a) 1
;

(6) 2. Give reasons for your answers.

6. General Formulas for Tangents with a Given Slope.

Consider first the hyperbola
2 nfi

(1) ^-1=1.
a2 62

Before attempting to find a general formula for the equations
of the tangents to the hyperbola, which have a given slope, A.,

we shall do well to ask if such tangents exist. In answer to

this question we state the following theorem.
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THEOREM. All the tangents to the hyperbola (1) are steeper

than the asymptotes. Their slopes X all satisfy the inequality

(2) or

Conversely, if X satisfies (2), there are two tangents of slope X

to (1). If, however, A2 <62
/a

2
,
there are no tangents of slope X

to (1).

To prove the theorem, let a point P, starting from the vertex

A, trace the upper half of the right-hand branch of (1). Then

the tangent, T, at P, starting from

the vertical position at A, turns

continuously in one direction, and,

as Precedes indefinitely, approaches
the asymptote S as its limit. In

other words, the slope, X, of T
decreases continuously through all

positive values greater than the

slope, 6/0, of S, and approaches 6/0
as its limit.* Consequently, X is always greater than b/a :

FIG. 7

* The geometrical evidence of this is convincing, but not conclusive.

To clinch it, we give the following analytical proof : If the coordinates

of P are (x, #), the slope \ of T is, by (!!), 2,

X =
aty

According to Ch. VIII, 4, eq. (3),
- = ? 1

y "
I- a2

Hence

When P traces the upper half of the right-hand branch of (1) and re-

cedes indefinitely, x increases continuously from the value a through all

values greater than a. Then a2
/x

2 decreases continuously from 1 and

approaches as its limit
;
and 1 a2

/x
2
, and hence Vl a2

/x
2
,

in-
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If P now traces the lower half of the right-hand branch, X

is negative, and always :

These two inequalities can be combined into the single in-

equality (2). Thus (2) is satisfied by the slope X of every tan-

gent to the right-hand branch of (1), and hence also, because

of the symmetry of the curve, by the slope X of every tangent
to the left-hand branch.

From the reasoning given in the first case, when P traces

the upper half of the right-hand branch of (1), it follows, not

only that X > 6/a, but also that X takes on every value greater

than 6/a. Hence, if a value of X, greater than 6/a, is arbi-

trarily chosen, there is surely at least one tangent of this

slope X to (1), and consequently, because of the symmetry of

the curve, there are actually two. Similarly, if a value of X

less than 6/a is given.

To find the equations of the two tangents of slope X to (1),

in the case that X does satisfy (2), we apply the first of the

two methods of 5. Let the equation of one of the tan-

gents be

(3) y = Xx + p,

where /@ is to be determined. Proceeding to solve (1) and (3)

simultaneously, we substitute for y in (1) its value as given by

(3) and obtain the equation,

62 2 - a2
(Xa + /3)

2= a2
**
2
,

or

(4) (6
2 - a2X2>2 - 2 cfipte

- a2
(6

2 + 2
)
= 0.

The roots of equation (4) are both equal to the abscissa of the

creases continuously from and approaches 1 as its limit. Conse-

quently, the reciprocal, 1/Vl a2
/x2

,
of Vl a2

/*
2 decreases continu-

ously through all positive values greater than 1 and approaches 1 as its

limit. Hence, finally, X decreases continuously through all positive values

greater than 6/a and approaches b/a as its limit, q. e. d.
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point of contact of the tangent (3), and hence the discriminant

of (4) must vanish. We have, then,

4 a4 2X2 + 4 a' (&
2 + 2

) (V
- a2X2

)
= 0,

or, simplifying,

(5)
'

/3
2 = aW-V.

Hence (3 has either of the values

Va2X2 - V,

and the equations of the two tangents, written together, are

(6) y = Xx Va-X2 - b\

Since X satisfies (2), or the equivalent inequality cCX* V- > 0,

the quantity under the radical is positive and so has a square
root.* We have thus obtained the following result.

The equations of the tangents to the hyperbola (1), which have

the given slope X, where X satisfies the inequality (2), are given

by (6).

Let the student deduce the following results, using either of

the two methods of 5.

The equations of the tangents to the ellipse

tchich have an arbitrarily given slope X, are

(8) y = \x

The equation of the tangent to the parabola

(9) f- = 2mx,

which has a given slope X, not 0, is

(10) y^As +
IL.

* If we take a value of X, for which X2 < 52/<z
2
,
then a2X2 62 is

negative and has no square root. Consequently, there are no tangents
with this slope, as the theorem states. Finally, if X = 6/a, then

a2\2 52 0, and (4) is not a quadratic equation.
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Condition that a Line be Tangent to a Conic. The two

methods used to find the tangent to a conic with a given slope

apply equally well to the problem of determining the condi-

tion that an arbitrary line be tangent to a given conic. In

fact, in finding the equations of the tangents of slope X to the

hyperbola (1), we have at the same time shown that the con-

dition that the line

(11) y = Xx + ft,

where we now consider X and /3 both arbitrary, be tangent to the

hyperbola (1), is that X and ft satisfy the equation (5) :

Similarly, the work of deriving formula (8) or (10) involves

finding the condition that the line (11) be tangent to the ellipse

(7) or the parabola (9).

Example. Is the line 3x 2 ?/ -f- 5 = tangent to the hyper-
bola x- 4?/

2 = 4?

It is, if, when we write the equations of the line and the

hyperbola in the forms (11) and (1), the values which we
obtain for X, ft, a-, and b-, namely, f, 4, 4, and 1, satisfy (5).

It is seen that they do not, and hence the line is not tangent

to the hyperbola.

EXERCISES

1. Derive formula (8) and at the same time show that the

condition that the line (11), where now X and ft are both arbi-

trary, be tangent to the ellipse (7) is that X and ft satisfy the

equation

(12)
2 = a2X2 + 62

.

2. Show that the line (11) is tangent to the parabola (9) if

and only if

(13) 2Xft = m.

Hence prove the validity of formula (10).
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3. By direct application of the methods of the text, show

that the condition that the line (11) be tangent to the circle

(14) a2 + f = a2

is that

(15) /?
2 = a2

(l + A2
).

4. Using formulas (6), (8), and (10), find the equations of

the tangents which are required in Exs. 1, 2, 3, 5, and 7 of 5.

5. Has the hyperbola 9#2 4y2 = 36 any tangents whose

inclination to the axis of x is 60 ? Whose inclination is 45 ?

If so, find their equations.

6. Find the equations of the tangents to the parabola

y
z = $x, one of which is parallel to and the other perpendicu-

lar to the line 3x 2y + 5 = 0. Show that these tangents

intersect on the directrix.

7. Prove that any two perpendicular tangents to a parabola
intersect on the directrix.

In each of the following exercises determine whether the

given line is tangent to the given conic. If it is, find the

coordinates of the point of contact.

Conic Line

8. 2a?'! + 3 ! = 5, 2x 3-5 = 0.

In each of the following cases the equation of the given line

contains an arbitrary constant. Find the value or values of

this constant, if any exist, for which the line is tangent to the

given conic.

Conic Line

11. z- + 3;?/'
! = 4, x 3y + c = 0. Ans. c = 4.

12. ^-y2 = 3, 2x + dy-3 = Q.

13. 5y* = 3x, Jcx lOy + 15 = 0.

14. 4^ 3 = 1 o: + 2?/ + fc = 0.
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15. Is the line x + y = 1 tangent to the parabola y = x x*?

16. Show that the lines 3x y -f 10 = are common tan-

gents of the circle x'- -+ y* = 10 and the parabola y
1 = 120 x.

17. Find the equations of the common tangents of the

parabola ?/
2 = 4V2a and the ellipse x2 + 2y2 = 4.

FIG. 8

7. Tangents to a Conic from an External Point. Given a

point P external to a conic, that is, lying on the convex side of

the curve. From P it is possible, in general, to draw two

tangents to the conic. It is required

to find the equations of these tan-

gents.

Let the conic be the ellipse

(1) x2 + 2y2 = 3

and let P be the point (- 1, 2). We
find the equations of the two tangents

drawn from P to the ellipse by find-

ing first the coordinates of the

points of tangency. Let Pv be the

point of tangency of one of the tangents, and let the coordi-

nates of JPj, which are as yet unknown, be (xlf y^. The

equation of this tangent is then, by (12), 2,

(2) 0^ + 2^ = 3.

There are two conditions on the point P1; to serve as a means

of determining the values .of xt and y. In the first place, the

tangent (2) at PI must go through the point ( 1, 2) ;
hence

(3) -^ + 401 = 3.

Secondly, the point Pj lies on the ellipse (1) ;
that is,

(4) 0^ + 2^ = 3.

Equations (3) and (4) are two simultaneous equations in the

unknowns xl} yt . If we solve (3) for xl
:

(5) 1
= 4y1 -3,
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and substitute its value in (4), we obtain, on simplification, the

following equation for y :

(6) 3^-4^ + 1 = 0.

The roots of this equation are y^ = 1 and yl
= ^ ;

the corre-

sponding values of Xi are, from (5), 1 and f. Hence (xlt y^)

=
(1, 1) and

.(ajj, y1)
=

( |, ) are the solutions of (3) and (4).

The coordinates of the points of tangency are, therefore,

(1, 1) and ( f, ^). Substituting the coordinates of each point
in turn for x yi in (2) and simplifying the results, we obtain,

as the equations of the two tangents,

(7) a; + 2y-3 = and 5x -2y + 9 = 0.

The method used in this example is universal in its applica-

tion, not only to conies, but to other curves as well. It should

be noted, however, that the equation corresponding to (6) does

not, in general, have rational, that is, fractional or integral,

roots. Usually its roots involve radicals and hence so do the

final equations of the tangents. If one were dealing with an

arbitrary point P external to an arbitrary conic, for example,
the ellipse

these radicals would be complicated. Accordingly, we make no

attempt to set up general formulas for the tangents to a given
conic from an external point. We have expounded a method

which is applicable in all
causes,

and this is the purpose we set

out to achieve.

Second Method. We give briefly an alternative method of

finding the equations of the tangents from the point ( 1, 2) to

the ellipse (1).

Suppose one of the tangents is the line

(8) y = \x + (3.

Since it is a tangent to (1), we have, according to 6, Ex. 1,

2^ = 6 A2 + 3.
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Since it contains the point ( 1, 2),

If we solve these equations in X and ft simultaneously, we find

that A. = i or | and that /3
= f or f . Substituting these pairs

of values for A and (3 in turn in (8) and simplifying the results,

we obtain the equations (7).

EXERCISES

1. Make clear geometrically that from a point external to

an ellipse or a parabola there can always be drawn just two

tangents to the curve.

2. How many tangents can be drawn to a hyperbola from

its center ? From a point on an asymptote, not the center ?

From any other external point ? Summarize your answers in

the form of a theorem.

3. Let P be a point external to a hyperbola from which two

tangents can be drawn to the curve. How must the position of

P be restricted, if the two tangents are drawn to the same

branch of the hyperbola ? To different branches ?

4. The point (2,0) is a point internal to the hyperbola
a2 2y2 = 2. Prove analytically that no tangent can be

drawn from it to the curve.

In each of the following exercises determine how many tan-

gents there are from the point to the conic, and when there are

tangents, find their equations. Use the first method.

Conic Point

9 K /o -i\
5. **je*4 (3,1). An,.

6. 0^-3^ = 4, (I, -I)-

7. a? -202 = 2, (1, -2).

8. 4z2 -9y2 = 36, (4,1).

9. ?/
2 -4a; = 0, (4,5).

10. x2 -4y2 = 4, (2,1).
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11. B2 -8y = 0, (3,2).

12. 2z2 -3y2 = -10, (-2,1).

13. x* + y
2 - 4s - y = 0, (5, 2).

14. a2 + 2,
2 = 25, (-1,7).

15. Work Exercises 5-10 by the second method.

16. Show, by use of the second method, that the tangents

from the point (2, 3) to the ellipse 4^ + 9y2 = 36 are perpen-

dicular.

EXERCISES ON CHAPTER IX

1, Prove that the slope of the conic

(1 e2
)as

2+ #
2 2 mx + ra2 =

at the point fa, y^) is

_ (1 e2)a?i
~ m

2/i

Hence show that the equation of the tangent at fa, yj is

(1 e^x^x + y$ m(x + x:)+ m2 = 0.

2. Show that the slope of the curve

Ax* + Bxy + <7?/
2 + Dx + Ey + F=

at the point fa, yj is

Then prove that the equation of the tangent at fa, y^ is

= 0.

3. The following equations contain arbitrary constants.

What does each represent ?

(a) y = \x + 3;

Ans. All the lines through (0, 3) except x = 0.

(c) 7x

(d) (2a
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(e) lx+(2l + m)?/-3m = 0;

4. A line moves so that the sum of the reciprocals of its

intercepts is constant. Show that it always passes through a

fixed point.

5 A line with positive intercepts moves so that the excess

of the intercept on the axis of x over the intercept on the axis

of y is equal to the area of the triangle which the line forms

'with the axes. Show that it always passes through a fixed

point.

6. Prove that the straight lines,

meet in a point, by showing that the equation of one of them
can be written in the form lu + mv = 0, where u = and v =
are the equations of the others.

7. Show that the three lines,

x + 3y- 4 = 0,

5x 3y+ 6 = 0,

3x-9y + U = 0,

meet in a point.

8. Prove that the three lines

Jca
1(3
= 0, 1(3 my = 0, my Tea = 0,

where cc=0, /?=0, and y=0 are themselves equations of

straight lines and k, I,
and m are constants, meet in a point.

9. Find the equation of the common chord of the two in-

tersecting circles

X2 + y2 + Q x _8y + 3 = 0,

2x*~ + 2y2 -3x + 4y-12 = 0.

10. Show that the two circles,

a;
2 + y

2 - 4z - 4y - 10 = 0,

a2
-I- y

2 + Qx + 6y + 10 = 0,
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are tangent to one another. Find the equation of the common

tangent and the coordinates of the common point.

11. Find the equation of the circle which goes through the

points of intersection of the two circles of Ex. 9 and through
the origin.

12. Find the equation of the circle which is tangent to the

circles of Ex. 10 at their common point and meets the axis of

x in the point x = 2.

13. What is the equation of the circle which passes through
the points of intersection of the line

and the circle

z2 + 2/
2 + 2a-4y + l = 0,

and goes through the point (1, 1) ?

14. Determine the equation of the ellipse which passes

through the points of intersection of the ellipse

cc
2 + 4 y

2- = 4

and the line 3x 4 y 3 = 0,

and goes through the point (2, 1). By a transformation to

parallel axes (cf. Ch. XI, 1), prove that this ellipse has axes

parallel to those of the given ellipse and has the same

eccentricity.

15. Find a single equation representing both diagonals of

the rectangle whose center is at the origin and one of whose

vertices is at the point (a, 6).

16. What is the condition that the equation

aW - bY =

represent two perpendicular lines ?

17. Find the locus of each of the following equations :

(a) 6a;2 + 5xy- 4y2 = 0;

(6) 4a2

(c) a?'
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18 Prove that the equation

(1) Ax* + Bxy + Cy2 =

represents the origin, a single straight line, or two straight

lines, according as the discriminant, B' ^AC, is negative,

zero, or positive.

19. Show that, if equation (1), Ex. 18, represents two

straight lines, the slopes of these lines are the roots of the

equation

20. Prove that the equation

14 x2 45 xy 14 y
1 =

represents two perpendicular straight lines.

21. Show that equation (1), Ex. 18, represents two perpen-

dicular straight lines if and only if A + (7=0.

22. Prove that the equation

y
z 2 xy sec + tf =

represents two straight lines which form with one another the

angle 0.

23. A regular hexagon has its center at the origin and two

vertices on the axis of x. Find a single equation which repre-

sents all three diagonals. Ans. y
3

3x-y = 0.

24. Determine the points of contact of the tangents drawn

to an ellipse from the points on the conjugate axis which are

at a distance from the center equal to the semi-axis major.

25. Find the equations of the common tangents of each of

the following pairs of conies :

(a) <

/j.\
*"

i y 1
*

i !/' 1 .^ 2^
+

Q~
'

Ifi
+ fs J '

&*J <3 -L\J &*j

i\ *._i.y! = i ^!_^ = i
16 9

~
25 16

~

Draw a good figure in each case, showing the common tangents
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26. Show that the line

(2)

^

"

l +J-1
is tangent to the circle

if and only if --
1
-- =

A* B2 a2

27. Find the condition that the line (2), Ex. 26, be tangent
to the ellipse

'^=1. Ans. + = 1.
a2 &2 A2 W

28. What will the condition obtained in Ex. 27 become in

the case of the hyperbola

- y- = 1 ?
a2 6*

29. Prove that the line (2), Ex. 26, is tangent to the

parabola y~ = 2 ma;, if and only if 2 JB- + Am = 0.

30. Find the condition that the line y = \x -f- ft be tangent
to the conic

(1 e2)z
2 + f 2 mx + m? = 0.

-4ns. 03 + mX)
2 e2

(
2 + m2

)
= 0.

31. In an ellipse there is inscribed a rectangle with sides

parallel to the axes. In this rectangle there is inscribed a

second ellipse, with axes along the axes of the first. Show
that a line joining extremities of the major and minor axes of

the first ellipse is tangent to the second.



CHAPTER X

POLAR COORDINATES

1. Definition. It is possible to describe completely the

position of a point in a plane by telling its distance and its

direction from a given point. This idea forms the basis of the

system of polar coordinates.

Let be the given point, and draw from O a ray, OA, from

which to measure angles. Let P be any point of the plane.

Denote its distance from by r, and the

angle AOP by 6. Then
(r, 0) form the

polar coordinates of the point P. is

called the pole or origin ; OA, the prime
direction or initial ray ;

and r, the radius FIG. 1

vector (pi. radii vectores).

When r and 6 are given, one, and only one, point is deter-

mined. When, on the other hand, a point is given, r is com-

pletely determined, but may have any one of an infinite

set of values differing from one another by multiples of 360

(or 2?r). Thus, if 6' is one value of 0, the others will all be

comprised in the formula

0=0'360w (or 6'

where n is a whole number.

For the point 0, r =
;
but there is no more reason for

assigning to 6 one value rather than another. As the coordi-

nates of 0, therefore, we take (0, 0), where 6 may be any num-

ber whatever.

It is possible to define polar coordinates so that r can be

negative. Thus the point ( 2, 30) would be obtained by
193
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drawing the ray which makes an angle of 30 with OA and

then laying off on the opposite ray a distance of 2 units. This

system of polar coordinates is not

widely used in later work in mathe-

matics, and even in analytic geometry
,'' A it is a matter of custom rather than

S'T= 2

F of any logical necessity. We shall,

therefore, adhere to the original

definition and exclude negative values of r, unless an explicit

statement to the contrary is made.

EXERCISES

For use in these and later exercises the student should pro-

cure polar coordinate paper, ruled like a cobweb. Otherwise

he should use a scale and protractor.

\Plot the following points :

V (1, 0). 4. (5,
-

30). ^7. (3, 180).

2. (0,1). *5. (2,200). 8. (4,i).

\3. (5,30). 6. (2, -90). ^9. (6, ITT).

10. What are the coordinates of the vertices of a square
whose center is at 0, the prime direction being perpendicular

to a side, if the length of one side is 2 a ?

^11. Write down the coordinates of the vertices of an equi-

lateral triangle, the pole being at the center and one vertex

lying on OA.

12. The same for a regular heptagon.

^13. What loci are represented by the following equations?

(a) r = 5; (b) cos 6 = 0; (c) 6 = 90.

2. Circles. Among the simplest curves in polar coordinates

are

(a) the circles with center 0. The equa-
tion of one of them is

(1) r = a,

where a is the radius. FIG. 3
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(6) the circles which pass through 0.

Begin with one whose center lies on OA.
If its radius is a, then evidently its equa-

tion is

r = 2 a cos 6.

FIG. 4

If the coordinates of the

center of an arbitrary circle through are

(a, y), then the equation is

A (3)
= 2acos(0-y).

FIG. 5

\ EXERCISES

1. Plot directly each of the following curves (making a

convenient numerical choice of a; as, for example,' 2 cm.):

(a) r = 2a sin 6
;

(6) r = 2 a cos
;

c) r = 2 a sin 0.

2. Obtain each of the equations in Ex. 1 as a special case

under (3), by choosing y properly.
*

3. Circles are described with their centers at the vertices

of the equilateral triangle of Ex. 11, 1, each circle passing

through the center of the triangle. Find their equations.

4. A circle of radius 2 has its center on OA at a distance 3

from 0. Show that its equation is

r2 - 6 r cos 6 + 5 = 0.

5. A circle whose radius is 4 has its center at the point

(5, 90). Show that its equation is

r2 10rsin0 + 9 = 0.

6. Show that the equation of any circle is

r2 2 cr cos (0 y) + c2 = p
2
,

where p denotes the radius and (c, y) are the coordinates of the

center.

What curve is represented by each of the following equa-
tions ?
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\
8'

\9. r2 8r sin = 9.

10. r2 + 2 r cos
1

2 r sin = 7.

Nil. r2 2rcos#-f 2r sin = 7.

12. r2 6r cos 8r sin = 11.

3. Straight Lines. Let us consider first a line L which does

not pass through O, and assume, to begin with, that L meets

the prime direction at right angles at the

P distance h from 0. The equation of L is,

evidently,

h
~~'

~A (1) r cos = h.

L
FlQ 6 If L is parallel to the prime direction

and at a distance h above it, it is easily

shown that its equation is

(2) r sin = h.

Let L, now, be any line not going through 0. Draw a line

through perpendicular to L, and let B be the point in which

it cuts L (Fig. 7). Denote the length

of the line-segment OB by h, and the

% AOB by y. Let P :
(r, 0) be any

point of L,

Then BOP= 6 y.

Consequently, we have

(3) rcos(0-y) = A O \A
FIG 7

as the equation of L.

Bays from 0. The equation of a ray, or half-line, emanating
from 0, is

where a is a constant angle. Thus = is the equation of the

prime direction, and = 90 is the equation of a ray drawn
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from at right angles to the prime direction. There are two

such rays ;
the equation of the other one is = 90.

To the right-hand side of any of these equations can be added

any positive or negative multiple of 360, without altering the

locus.

Lines through 0. The equation of the line through per-

pendicular to the prime direction is

(4) cot 6 = 0.

For then = 90 -or 0=-90
and we have just seen that these are equations of the two rays

making up the line.

The equation of any other line through is

(5) tan =
c,

where c is a constant. Thus

tan = 1

represents a line through 0, for the points of which one or the

other of the two equations

= 45 or 6 = 225
holds. V

EXERCISES

NU. Establish equation (2).

2. Derive equations (1) and (2) from equation (3).

"S3. If a line is perpendicular to the prime direction but

does not cut it, what is its equation ? Let h be its distance

from the pole.

4. Find the equation of a line which is parallel to the prime
direction and a distance h below it.

"\5. Find the equation of the line which cuts the prime
direction at a distance of 5 units from the pole and makes an

angle of 45 with the prime direction.

What does each of the following equations represent?
Make a plot in each case.
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6. r cos = 4.

8. r cos = 4.

10. r sin -+- r cos = 3.

12.

>7. r sin = 4.

N9. r sin 6 = 4.

Hll. r sin r cos = 3.

5r sin0 12r cos0 = 26.

N
17. = 180.

w
4. Graphs of Equations. If an equation in polar coordinates

as given, which cannot be reduced to one of the forms recog-

nized as representing a known curve, it is necessary, in order

to determine what curve is denned by the equation, to plot a

reasonable number of points whose coordinates satisfy the

equation. But considerations of symmetry will often shorten

the work.

Example 1. Consider the equation

(1) r2 = 16 sin 6.

This equation is equivalent to

(2) r = 4Vsin 0,

where we have taken only the positive square root, since nega-
tive values of r have for us no meaning.
When = 0, r = ft; as increases, r increases, and when
= 90, r = 4. Using a table of sines and a table of square

roots, we compute the following coordinates of further points

of the curve.

10 20 30 40 50 60 70 80

1.67 2.34 2.83 3.21 3.50 3.72 3.97

7P
More computations are unnecessary.

For, the curve is symmetric in the ray
Q = 90. To prove this, we note that, if

P: (r, 0) is any point of the curve, then

the point P' : (r, 180 -
0), which is

symmetric to P in the ray = 90, is

also a point of the curve, inasmuch as

sin (180
-

0)
= sin 0.
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We now have points on the curve for values of 8 from to

180. These points determine the entire curve, since, if is

greater than 180 (and less than 360), sin is negative and (2)

is meaningless.
100 90

70"

To make sure that the curve has not sharp corners at and

B, we must compute r for small values of 6 and also for values

of e near 90.

85 88

.53 .92 1.18 3.99 4.00 -

The corresponding points, when plotted (Fig. 9), show that

the curve is smooth at and B.

If we admit negative r's, we obtain for 90

each point of the present curve a new point

symmetric to it in 0. We have, then, in-

stead of a single loop, a curve with two

loops (Fig. 10) which are symmetric to each iso 2

other in 0, and also in OA.

Example 2. Given the equation

(3) r = 10 cos 3 8.

When 8 = 0, r = 10. But here, as 8 in- FIG. 10

O
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creases, r decreases, and when = 30, r = 0.

of intermediate points of the curve are :

The coordinates

10 15 20 25 27.5

8.7 7.1 5.0 2.6 1.3

FIG. 11

The curve is symmetric in the prime direction. For, if the

point P:
(r, 0) is any point of the curve,

then the point P' : (r, 0), which is

symmetric to P in OA (Fig. 11), is also

a point of the curve, since

cos3( 0)= cos 30.

If we plot the points already computed and those symmetric
to them, we obtain a piece of

the curve (Fig. 12). By plot-

ting, further, the points for

equal, say, to 1, 2, and 3,
we would find that the curve is

smooth in the point A.

When increases beyond

30, 30 is greater than 90

and r becomes negative, so that

there are no points on the

curve. This situation persists

throughout the angle

30 < < 90.

In the angle 90 < < 150,

however, r is again positive. The piece of the curve which

lies in this angle is congruent to the piece

OA already plotted and may be obtained

by rotating the piece OA through an

angle of 120 about the pole. For, if

P: (r, 0) is a point of the curve (Fig. 13),

then P' :(r,e + 120) is also, since

FIQ. 12

O
FIQ. 13

cos 3 (0 + 120)= cos (30 + 360)= cos 3 0.
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Hence every point on the first lobe of the curve yields a point
on the second lobe by merely rotating the radius vector

through 120.

The second lobe again gives rise to a third lobe congruent

to it and advanced by 120. If this last lobe were again ad-

vanced, it would yield the first. Hence

the thTee lobes complete the curve.

If we admit negative r's, the curve is

unchanged. The points which we then vv >

get, for example, for values of between ^rf^r~ ^
30 and 90 lie on the third lobe of the ^
curve. Thus, for values of 6 from to

360, each point of the curve is obtained

twice, once for = 0' and once for FIQ 14

= 0' + 180.

Tests for Symmetry. Let the student show that the test for

symmetry in the ray = 90, given in Example 1, also insures

symmetry in the ray = 270, and that the test for symmetry
in the prime direction, given in Example 2, also yields sym-

metry in the ray = 180.

These tests are general, and can be stated as theorems.

THEOREM 1. A curve is symmetric in the line of the prime
direction if, on substituting for in its equation, the equa-

tion is unaltered.

THEOREM 2. A curve is symmetric in the line through the

pole perpendicular to the prime direction if, on substituting

180 - for in its equation, the equation is unaltered.

EXERCISES

Plot the following curves.

1. The lemniscate (take a = 5 cm.),

r2 = a- cos 2 0.

2. The cardioid (take a = 2-1- cm.),

r = 2a(l cos0).
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3. The limagon (a generalization of the cardioid),

r = 4 3 cos 0.

4. A second type of limaqon,

r = 3 4 cos 0.

Show that if negative r's are admitted, a piece is added to the

curve.

5. r2 = 16cos0. 6. r = 10sin30. 7. r2 = a-sin20.

8. How are the curves of Exs. 5, 6, and 7 related, respec-

tively, to the curves of Examples 1, 2 of the text and the lem-

niscate of Ex. 1 ?

9. r = 10. r = sec2 --
1 + cos 2

1 - 1 cos 1 + 2 cos 6

13. r=5cos20.
Show that this curve has two lobes, but that it would have

four lobes, if negative r's were admitted.

14. r = 5cos40. 15. r = a cos w0.

16. Show that the curve of Ex. 15 has n lobes
; but, if n is

even and negative r's are admitted, it has 2 n lobes.

17. The spiral of Archimedes,

r = 0,

taking 6 in degrees and -^ cm. as the unit of length.

18. The hyperbolic spiral,

taking 6 in radians and 2 cm. as the unit of length.

19. r = l- 6\ 20. r + 02 = i,

5. Conies. The equation of a conic section, when the defini-

tion of Ch. VIII, 7 is used, is simple in polar coordinates.
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Let the pole be taken at the focus F, and

let the prime direction be chosen perpendicular

to the directrix D and away from Z); let

KF=m.
If P : (r, 6) is a point lying to the right of D

(Fig. 15) and on the conic, then

FP= r, MP r cos + m.

Now, by definition,

FP^ eMP
and hence the equation of the locus of P is

r

K

or, if we solve for r,

(1)

r cos + m

e cos

Ellipses and parabolas lie to the right of D and hence are

represented by (1), when e < 1 and

e = 1, respectively.

When e > 1, however, (1) repre-

_
sents just the right-hand branch of a

hyperbola. The equation of the left-

hand branch isFia. 16

(2) r = em
1 + e cos

For, if P : (r, 0) lies on the left-hand branch (Fig. 16), it is to

the left of D and
PM= r cos 6 m.

We then have, since FP/PM e,

r

r cos v m
which reduces to (2).

If negative r's are admitted, the single formula (1) gives

both branches. For, in this case we may take r, for a point
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P on the left-hand branch, as nega-

tive (Fig. 17). Then we have

FP= r,

and hence
r

FIG. 17 m r cos $
= e,

which reduces to (1).

It is seen, then, that the choice we have made, admitting

only positive or zero r's, is more discriminating, for we are

able to represent a single branch of the curve by a simple

formula, (1) or (2). In analytic geometry we do not usu-

ally care to do this, the curve that interests us being the pair

of branches. But in applied mathematics it often happens that

one branch of a hyperbola plays a role and the other has no

meaning. Thus when a comet is traveling in a hyperbolic orbit,

it is only one branch of the hyperbola which forms the path.*

New Choice of Prime Direction. If the prime direction had

not been chosen along KF produced, but at an angle y with

it, as shown in Fig. 18, then evidently

y would take the place of in the

foregoing formulas, but there would be

no other change. The final equations

would now read

(3)
em

1 e cos (0 y)
'

em
1 + e cos (0 y)

* We note that this is not the only way in which we are able, by

simple formulas, to discriminate between the two branches of a hyper-

bola. Thus the equation - x2 + y2 = 1

represents a hyperbola on the axis of y. The equation

y = Vl + x2

represents one of its branches, and the equation

the other.
y= Vl
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Example. What curve is represented by the equation

6
r = ?

1 + 2 sin 6

The equation can be reduced to the form (3) by choosing y
so that

cos (0 y)
= sin 6.

Obviously, y must be 270 or, what amounts to the same

thing, 90. Moreover, e = 2 and m = 3.

Thus the equation represents one branch of a hyperbola
whose eccentricity is 2. The transverse axis is perpendicular
to the prime direction and the branch in question is the one

opening downward. The center of the hyperbola is at the

point (4, 90). Its asymptotes make angles of 60 with the

transverse axis. The lengths of the semi-axes are a = 2 and

b = 2V3. The vertices are at the points (2, 90) and (6, 90).
The second focus is at (8, 90) and the equations of the direc-

trices are r sin = 3 and r sin = 5.

Let the student verify each of these statements, using the

formulas of Ch. VIII, 6, and then draw the curve to the

scale of 1 cm. as a unit, marking each of the points mentioned

with its coordinates and drawing in the asymptotes and direc-

trices. What is the length of the latus rectum ?

EXERCISES

What conic or, in the case of a hyperbola, what branch is

represented by each of the following equations ? Draw a

rough figure showing the position of the curve.

!. r = !_ 2. r=
*

1 ^ cos 9 1 cos 6

12 12
3. r = 4. r =

1 3 cos 6 1 + 3 cos 6

7.2 4
5. r = - - 6.

1 .8 sin 1 + cos

24 -15
7. r = 8. r =

1 + 4 sin 1 - 3 sin



206 ANALYTIC GEOMETRY

9. r = = = -^ 10. r =

11. r =

5 -f 3 cos 6 4 sin 6 1 + sin + cos

2

1 + sin cos

12. Draw an accurate figure, to scale, for each of the curves

of Exs. 5, 6, and 7, marking the coordinates of all the impor-
tant points and drawing in all the important lines.

6. Transformation to and from Cartesian Coordinates. Let

P be any point of the plane, whose coordinates, referred to a

pair of Cartesian axes, are (x, y). Let the

polar coordinates of P be (r, 6), where

the origin, 0, is taken as the pole, and

the positive axis of x as the prime direc-
-x

O\ x tion. Then it is clear from the figure that

(1) x = r cos 6, y = rsw6.

Thus x and y are expressed in terms of r and 0. To express
r and in terms of # and y, we have, for r :

(2)
= x* + y

2
,

or

and, for 6, the .pair of equations :

(3) cos =
,

sin B =
+ y

2 Va;2 + y
z

For we have, also, the equation,

(4) tan = 2.
mi

But not all values of 9 satisfying this equation are admissible.

Some determine the ray OP, as they should
;
the others give

the opposite ray and are to be excluded. If = 0' is one ad-

missible value, the others are 6 = 0' + 360 n, where n is a

whole number.

Example 1. What are the polar coordinates of the point

(-5, -5)?
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Here, r = V52 + o2 = 5V2, tan $ = 1.

But = 45 is not a correct value of 0, for the point lies in the

third quadrant. The values of 6 are, then :

6 = 225 + 360 n.

It is frequently of importance to obtain, from the equation

of a curve in one system of coordinates, its equation in the

other system. We illustrate the method of doing this by a

number of examples.

Example 2. Find the equation of the equilateral hyperbola

in polar coordinates,

Replacing x and y by their values as given by (1), we have :

r2 cos2 B r2 sin2 = a2
,

or r2 cos 2 6 = a-.

Example 3. Transform the equation of the lemniscate,

r2 = a2 cos 2 8,

to rectangular coordinates.

We perform the transformation piecemeal, first getting rid

of 0. Write the equation as

r2 = a2

(cos
2 - sin2

0),

and then replace cos and sin by their values, x/r and y/r,

from (1) ;
on multiplying both sides of the resulting equation

by r2
,
we have

r4 = a 2
(a;

2
y

2

).

Finally, we replace ?-
2
by its value x2 + y

2
,
and obtain

(x
2 + 2/

2
)
2 = a2

(x
2 -y2

).

This is an equation of the fourth degree in x and y.

Example 4. Transform the equation of the curve of Exam-

ple 1, 4

(5) r2 = a2 sin

to rectangular coordinates.
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Replacing sin 6 by y/r and multiplying through by r, we
have

(6) 7*=a*y.

This becomes

(7) (V 2 + ?/
2
)
3 = az

y, or V(ar
2 + y

2

)
3 = a2

y.

Negative Values of r. If we admit negative values of r, then

(2) and (3) become

r = Vfl?
2

-f- y
2
,

cos0 =
Va? + .V'

2 V
where the plus signs are to be taken if r is positive, the

minus signs if r is negative ; (1) does

not change, as Fig. 20 shows. The

x admissible solutions for of (4) are

those determining the ray OP (Fig.

19), if r is positive, or those deter-

mining the ray OP (Fig. 20), if r is

negative.

If in (5) negative values of r are admitted, then (6) be-

comes, since now r = Vo;2 + y
2
,

which may be written as

(8) (

The fact that (5) transforms into (7) when negative r's are

excluded and transforms into (8) when negative r's are ad-

mitted corresponds to the fact that in the first case the curve

(5) consists of a single loop, whereas in the second it is made

up of two loops (4).
This situation is not .met with in the case of the lemniscate,

Example 3, since this curve is the same whether negative r's

are excluded or admitted.
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EXERCISES

1. Find the Cartesian coordinates of the points :

(a) (2,60); (6) (5,120); (c) (10,225);

(d) (3.281, 110 32'); (e] (2.847, 242 27').

Plot the given point each time and check the results by direct

measurement.

2. Find the polar coordinates of the points :

(a) (6,6); (6) (- 2,
-

2) ; (c) (2,3);

(d) (-4,3); (e) (7, -8); (/) (- 12,
-

5).

Transform the following equations to polar coordinates.

3. x = 3. 4. y = 4.

5. y = 3x. 6. 2x 3y = 8.

7. y
2 = 4x. 8. xy = a?.

9. z2 + ?/
2 2a + 4y=0. 10. 4x2 + 3?/

2 =12.

ll^Tr^asform the equation of the cardioid,

r = 2a(l cos-0),

esian coordinates. Of what degree is the resulting

on ?

Ans. (x
2 + ^ + 2 ax)

2 = 4 a2
(x

2 + y~), of the fourth degree.

Find the equation in Cartesian coordinates of each of the

following curves.

12. r2 =a2 cos0. 13. 7-" = a2 sin 20.

14. r = a esc 6. 15. r = 4 3 cos 0.

16. r = a cos 3 0. Ans. (x
2 + y

2
)
2 = ax (x

z 3 ?/
2
).

17. r = a sin 3 6. Ans. (x
z + y

2
*)

2= ay (3 x
2

y
2
).

18. r = a sin 2 0. Ans. V( 2 + y
2
)
3 = 2 axy.

19. ? = a sin 2 0, if negative r's are admitted.

Ans. (x
2 + y

2
)
3 = 4 a2

a;
2
2/
2
.

20. r = a cos 2 0. Ans. V(a;
2 + y

2
)
3= a (a

2
y
2
).

^
21. r = a esc2 Ans. y

2 4aa: 4 a2 = 0.

A Vi equati

Ans
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OO
*)* if g "^^ 1

1 e cos
'

Ans. (1 e2)
2 + y

2 2 e2m e2m2 = 0.

23. r =
,
if e > 1. ^4ws. Vo^+1/2 = e(* + m).

1 e cos

24. Same as Ex. 23, if negative r's are admitted.

Ans. That to Ex. 22.

EXERCISES ON CHAPTER X

1. Show that the distance between the two points (rt , 6^,

(r2 , 2)
is given by the formula

D = Vrx
2 + r2

2 2 rjr2 cos (0j
-

2 ).

2. Deduce a formula giving the area of a triangle, one of

whose vertices is at the pole.

3. Determine the angle of intersection of the two lines

r(sin $ + cos 6)= 3, r(4 sin + 3 cos 0)= 5.

Suggestion. Put the equations into the normal form,

rcos(0 y)= h,

and thus find the value of y for each line.

4. Show that the line,

s+f-i,a 6

is represented in polar coordinates by the equation

ab
r =--

a sin + 6 cos

5. What lines are represented by the following equations ?

Plot the line each time.

-_
'

__
sin + cos 0' 2 sin 3 cos

Find the equations in polar coordinates of the following

conies.

6. z = 2mx. Ans. r = 2m cos esc2 0.
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7. + =!. Ans. r* =. .

a2 d2 a2 sin2

,

a2 62 -a2 sin2 0'+62 cos2

9. What curves are represented by the following equations ?

400
~

25 sin2 + 16 cos2 cos2 - sin2

2cos2 0+3sin2 0' cos 2 - 2 sin2
'

(e\ r = 4cos0. ,,,
?
. = 4sin0

sin2
'

cos2

10. Transform the equation of the circle,

to polar coordinates; represent the polar coordinates of the

center by (c, y). Ans. r2 2 cr cos (0 y)+ c2 = p
2
.

CONICS

11. A comet moves in a parabolic orbit with the sun as

focus. When the comet is 40,000,000 miles from the sun, the

line from the sun to it makes an angle of 60 with the axis of

the orbit (drawn in the direction in which the curve opens).

How near does the comet come to the sun ?

12. A comet is observed at two points of its parabolic orbit.

The focal radii of these points, neither of which is the vertex

of the parabola, make an angle of 90 with one another and

have lengths of 10,000,000 and 20,000,000 miles, respectively.

Find the equation of the orbit and determine how near the

comet comes to the sun.

13. An ellipse which has a focus at the pole and its trans-

verse axis along the prime direction passes through the two

points (4, 60) and (2, 90). What is its equation? Where is

the second focus?

14. A hyperbola has its transverse axis along the prime
direction and a focus in the pole. The branch adjacent to this
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focus goes through the points (|V2, 45), (V2, 90). Find the

equation of this branch.

15. Show that in a parabola a, focal radius inclined at an

angle of 60 with the direction in which the curve opens is

equal in length to the latus rectum.

16. Show that a focal radius of a hyperbola which is parallel

to an asymptote is equal in length to a quarter of the latus

rectum.

17. Prove that in any conic the sum of the reciprocals of

the segments of a focal chord is constant.

18. Prove that the length of the focal chord of any conic is

given by the formula
2em

l-e2 cos2
'

where is the angle which the chord makes with the trans-

verse axis.

19. Show that the sum of the reciprocals of the lengths of

two perpendicular focal chords of a conic is constant.

ROTATION OF THE PRIME DIRECTION

20. Let the prime direction OA be rotated about through
the angle into a new position OA'. Let an arbitrary point

have the coordinates (r, 8) with respect to as pole and OA as

prime direction and the coordinates (/, 0') with respect to as

pole and OA' as prime direction. Show that

r' = r, O' = 0- eo.

21. Equation (1), 5, when e < 1, represents an ellipse with

one focus in and the other on OA. From it obtain, by rota-

tion of the prime direction, the equation of an ellipse with one

focus at and the other on the ray = 90.

22. Equations (1) and (2), 5, when e > 1, represent a

hyperbola with one focus in O and the other on the ray 0=180 ;

obtain from them the equations of a hyperbola with one focus

at and the other on the ray 6 = 90.
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23. Obtain equations (3) and (4), 5, from equations (1)

and (2), 5, by a rotation of the prime direction.

24. What does the equation of the line

r(sin + cos 0}
= 3

become, when it is referred to the perpendicular to it from the

pole as the new prime direction ?

25. By rotating the prime direction through a suitable angle
reduce the equation of the circle, r = 6 cos (0 30), to simpler
form.

26. The same for the circle, r = 4 cos + 3 sin 0.

27. The same for each of the conies :

i \
^ fh\ 1

3 -3 cos 4 sin 0' V2 + sin - cos

28. Prove that the curves r = a sin 2 and r = a cos 2 are

the same curves, referred to a common pole and to prime direc-

tions making an angle of 45 with one another.

29. Show that the equations r = a cos 3 and r = a sin 3

represent the same curve.

30. Show that the equation of the curve r = a cos 3 remains

unchanged if the prime direction is turned through any angle
which is an integral multiple of 120.

31. The same for the curve r = a sin 40, if the angle is 90.

POLE IN AN AKBITBABT POINT

32. Given the point (2, 3) in the Cartesian plane. The polar
coordinates of a point P, referred to (2, 3) as pole and to the

directed line through (2, 3) in the direction of the positive axis

of x as prime direction, are known to be (2, 13). What are

the rectangular coordinates of P ?

Ans. (2 + 2 cos 13, 3 + 2 sin 13)
33. The polar coordinates of a point P, referred to the point

(
xw 2/o) as Ple an^ the directed line through (xQ, ?/)

in the
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direction of the positive axis of x as prime direction, are

(r, 6}. Show that the rectangular coordinates, (x, y), of Pare

x = x -f- r cos 6, y = y + r sin 0.

34. By the direction 6 is meant the direction which the posi-

tive axis of x would assume if it were rotated about one of

its points (in the positive sense of rotation) through the angle 6.

From the point (5, 2) one proceeds 2 units distance in the

direction 135, and from the point thus reached one proceeds 3

units distance in the direction 60. What are the coordinates

of the final position?

35. Prove that the equations of Ex. 33 can be considered as

the equations of a transformation of coordinates, from
(a;, y) to

(r, 0), which consists first of a change of origin to the point

(x , yQ)
: cf. Ch. XI, 1 and then of the introduction of polar

coordinates.

36. By shifting the origin to the point (2, 1) and then in-

troducing polar coordinates, identify the locus of the equation

y^-2x- 2y + 4 = 0.

37. By shifting the origin to a suitable point and then in-

troducing polar coordinates, identify the locus of the equation

(x* + y
2 - 2x - 2y + 2)

2 = 25 (a
2 -

f- -2x + 2y).

Ans. A lemniscate.

Loci

Solve the following problems in loci, using polar

coordinates and excluding negative r's. In Exs.

39^41, determine when two equations are necessary
' *

to represent the locus.

38. Cissoid of Diodes. OA is a fixed diameter

of a circle. A variable secant through meets

the circle in M and the tangent at A in N. De-

termine the locus of the point P, so situated on the

segment ON that OP = MN, and plot it.

39. LimaQon of Pascal. A variable secant through a fixed
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point of a circle of diameter a meets the circle again in R.

The constant length b is laid off in both directions along the

secant from K. Find the locus of the two points thus reached.

Show that, if a = 6, the locus is a cardioid. Plot the locus

(a) when a = 4, b = 5
; (6) when a = 4, b = 3. Of. 4, Exs. 2,

3,4.

40.
*
Conchoid of Nicomedes.

A variable straight line through
a fixed point meets a fixed

straight line, at the distance a

from 0, in Q. From Q the

constant length b is laid off

in both directions along QO.
Find the locus of the two

points thus reached. Plot it

for each of the following pairs of values of a and b :

a = 4, 6 = 6; a = 6 = 4
;

a = 4, 6 = 3.

41. Ovals of Cassini. Given two points, Fl and F2 ,
with

coordinates (a, 0), (a, 180). Determine the locus of a point

b=a b<a

G
b>a

P which moves so that the product of its distances from Fl

and F2 is constant, and equal to 6% Show that, if a2 = 62
,
the

locus is a lemniscate. Plot the locus (a) when a = 6, 6 = 7;

(6) when a = 6, 6 = 5.



CHAPTER XI

lAN^FORMATION OF COORDINATES

1. Paralle Axes. It sometimes happens that it is desirable

to shift from a given system of Cartesian axes to a new

system of axes having the same direc-

tions as the old, but with a different

origin.

Let P be any point of the plane ;

let the coordinates of P, referred to

the old axes, be (x, y), and let the

coordinates be (a/, y') with respect to

the new axes. Let the new origin,

0', have the coordinates (x , yQ) in the old system. Then it is

easy to show that

(1)
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referred to parallel axes, with the new origin

at the point (2, 1).

Here, XQ = + 2, y = 1,

and we have

(4) aj = aj' + 2

Hence
y = y'

-

FIG . 2

or, on simplification,

Thus the curve is seen to be a parabola whose vertex is at

the new origin. Referred to the old axes, the vertex is at the

point (2, 1) and the focus at (3, 1).

Example 2. What curve is represented by the equation

9x* + 4:f + ISx 16 y= 11?

We can rewrite the equation in the form :

The first parenthesis becomes a perfect square if 1 is added.

This means that 9 must be added to each side of the equation.

Again, the second parenthesis becomes a perfect square if 4

is added. This means that 16 must be added to each side of

the equation. Hence, finally,

or 9

If we transform to parallel axes, setting

f
X' = X + 1, XQ = 1,

\y' = y-2, y = 2,

the equation becomes

or
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This equation represents an ellipse with its center at the

new origin, (x , y )
=

( 1, 2) ;
its semi-axes are of lengths 2

and 3 and its foci lie on the y'-axis at the

points

(*',y')=(<>, V5),
or (a, y)= ( 1, 2 V5).

If, in Example 1, the position of the

new origin (the vertex of the parabola)
had not been given, it could have been

found by the method employed in Ex-

ample 2. Equation (3) can be written as

To complete the square of y* -f 2 y, add 1 to each side of the

equation :

FIG. 3

Put this into the form :

Hence we are led to set

x' = x 2, y'
= y + l,

that is, to transform to parallel axes with the new origin at

the point (2, 1). But this is precisely the transformation

(4) which was applied in Example 1.

/ EXERCISES

Vl. Find the coordinates of the points (3, 2), (2, 5),

( 4, 1), (0, 0), referred to new axes having the same direc-

tions as the old, if the new origin is at the point

() K 2/o)
= (1,1); (6) fa, 2/o)

=
(5, -3).

In each of the following exercises transform the given equa-

tion to parallel axes having the same directions, the new origin

being at the point specified. Thus identify the curve repre-

sented by the equation, and describe carefully its position with

respect to the original axes. Draw the curve roughly.
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Equation New Origin

= 2z + 4, (x ,y )
= (-2,0).

Ans. A parabola with its vertex at (2, 0), with its focus

at (+- -| , 0), and with x = f as its directrix.

K,2/o)= (-i, 1).

= 0, (ajb, </ )
=

(l, 2).

18a; - 50 y - 191 = 0, (z , y )
= (- 1, !)

ins. An ellipse, center at
( 1, 1); foci at (3, 1) and

( 5, 1) ;
semi-axes of lengths 5 and 3.

Ify
x* -4:f-6x-32y-59 = 0, (xa , y )

=
(3,

-
4).

Show that each of the following equations represents a conic

^Section. Draw a rough graph of the conic and find, when

they exist, the coordinates of the center and the foci, the

equations of the directrices and the asymptotes, and the value

of the eccentricity.*

8.

9. y--12a; + 4y + 28 = 0.

m) 2ic2 + 3y2 -4a:-62/-l = 0.

12. o;
2 + 4?/

2 +2aj 24?/ + 36 = 0.

13. 4x2
9?/

2 16 x + 18 y 29 = 0.

Ans. A hyperbola, center at (2, 1) ;
foci at (2 Vl3, 1) ;

directrices : x = 2 T
9
^\/13 ; asymptotes : 2 x + 3y 1 = 0,

2a;-3y 1 = 0; e = V13.

15.

16. a2 -25i/2- 50^-50 = 0.

2. Eolation of the Axes. Let the new,_'7*1/')-axes have

the same origin as the given (x, ?/)-axes, and let the angle

* Further exercises of this type are Exs. 1-9, of Ch. XII, 1.



220 ANALYTIC GEOMETRY

from the positive axis of x to the positive axis of x' be de-

noted by y (Fig. 4). Let P be any point, whose coordinates,

referred to the old and the new axes,

are (x} y) and (x', y
1

) respectively, and

let M and M' be the projections of P
on the axes of x and x' respectively.

Then is joined with P by two broken

lines, namely, OMP and OM'P. It

follows that the projections of these

broken lines along any direction are equal :

(1) Proj . M+ Proj . MP = Proj . M' + Proj . M'P.

If the direction is taken, first, as the positive axis of x and

then, again, as the positive axis of y, we have

OM= OM 1 cos y
- M'Psiu y,

MP= OM 1 sin y + M'P cos y.

But, by the definition of coordinates (Ch. I, 1),

OM=x, MP = y; OM' = x', M1P = y'.

The final result is, then, the following :

x = x' cos y y' sin y,

y = x' sin y + y' cos y.

To express x' and y' in terms of x and y, these equations can

readily be solved for the former variables, regarded as the un-

known quantities in the pair of simultaneous equations (2).

Or, the formulas can be deduced directly from the figure by

taking the projections in equation (1) along the positive axes

of x' and y' in turn. The result in either case is

(3)

x' = x cos y -f y sin y,

y' = x sin y + y cos y.

Example ~L Transform the equation of the equilateral

hyperbola,
x'i i = a2
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to new axes with the same origin, the angle from the positive

axis of x to the positive axis of x' being 45.

Here, y = 45, and formulas (2) become

V2
= (x'*3T2x'y< + y'*),Hence

On substituting these values in the given

equation we have :

2 x'y' = a2
. FIG. 5

This, then, is the equation of an equilateral hyperbola re-

ferred to its asymptotes as the coordinate axes.

If we had rotated the axes through + 45 instead of 45,
the transformed equation would have read :

= of.

Example 2. Transform the equation

or
B* A2

to new axes, obtained by rotating the given axes about the

origin through 90.

Here, y = 90, and equations (2) become

Hence
A*

Thus it appears that the original equation represents a

hyperbola with its center at the origin, its transverse axis

lying along the axis of y ;
cf . Ch. VIII, 8. The length of the

major axis is 2B, that of the minor axis, 2 A. The asymptotes
are given by the equations

x' y'and
B A
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Referred to the original axes, they have the equations

= y~ and = _2L.
A B A E

EXERCISES

Obtain the equations of transformation in each of the fol-

win

1.

lowing three cases :

When y = 30. Ans.
"' = t 1

2. When y = - 120. 3. When y = 135.

Draw a figure and deduce from it directly the formulas of

transformation in each of the following three cases. Check

the results by application of formulas (2) and (3) of the

text.

4. y = 90. 5. y=-90. 6. y=180.
7. Find the coordinates of the points (2, 0), (3, 1), ( 2, 4),

( 5, 8), referred to new axes obtained by rotating the old

through an angle of 45
;
of 150.

8. Show directly by means of a suitable rotation of the

axes that the equation xy = k2
represents an equilateral hyper-

bola referred to its asymptotes as the coordinate axes. Deter-

mine the coordinates, referred to these axes, of the vertices

and the foci.

9. The same for the equation xy = k2
.

By rotating the axes through an angle of 45 determine the

curve represented by each of the equations :

N^A. 17x*-l6xy + 172/
2 = 225.

11. 3x lOxy + 3y
2 + 8 = 0.

12. z2
-t-lxy + y* + 3 = 0.

13. By rotating the axes through 30 determine the curve

represented by the equation
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.\ By rotating the axes through an angle y of the first

quadrant, whose sine is f,
determine the curve represented by

the equation
52 a;'- 72 ay + 73y

2 = 100.

15. Show that the equation of a circle whose center is at

the origin is not changed by rotating the axes through any
angle. Actually carry through the transformation.

The General Case. Let it be required to pass from one

system of axes to a new one, in which both the origin and

the directions of the axes have been

changed. Let the (x, y)-axes, with

origin at 0, be the given system and

the (#', ?/')-axes, with origin at 0', the

new system. Let the coordinates of

0', referred to the (x, ?/)-axes, be (x0) y ),

and let the angle from the positive axis

of x to the positive axis of x' be y.

The transition from one system to the other can be made in

two steps :

(a) Transform first to a system of parallel axes having the

same direction, but with origin at 0'. If the new coordinates

are denoted by (X, Y), then

(1)
I
x = X + x

,

(2)

(&) Now rotate the (X, F)-axes through the angle y :

[ X = x' cos y y' sin y,

[
Y= xf sin y + y' cos y.

Combining these results we get, as the final formulas, the

following :

/
3

x f
x = x' cos y

-
y' sin y + xo,

\y = x f

sin y + y' cos y + y -

The formulas for
(x', y') in terms of (x, y) are

f x' = (x x
)
cos y + (y 2/ )

sin y,

( y'
= - (x

-
XQ) sin y + (y

- y ) cos y.
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These can be written in the form :

. .

|
x' = x cos y -\- y sin y a\,,

1 y'
= x sin y -\- y c s y yo>

where

/ Q
=

a\> cos y + y sin y,

.% = x sin y + y cos y.

It is to be noted that, inasmuch as x
, y ,

and y are constants,

so are x and y .

Example. Identify the curve represented by the equation

by transforming to new axes through the point (2, 1), the

angle from the old axis of x to the new being 45.

Here x = 2, y = 1, and y = 45. We might substitute these

values in formulas (3) and then apply the formulas to the

given equation. It is, however, more feasible in general to

make the transformation in the two steps (1) and (2).

Formulas (1) are, in this case,

x = X + 2, y=Y+l.
Hence (6) becomes

Since y = 45, formulas (2) are :

V2 V2
Then (7) becomes

or, on simplification,

Consequently, equation (6) repre-

FIG. 7 sents a hyperbola with its center at
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the point (2, 1) and with its transverse axis inclined at an

angle of 45 to the axis of x.

In deducing formulas (3), we first shifted the origin and

then rotated the axes. We might equally well have proceeded
in the opposite order :

(a) Rotate the (x, y)-axes through the angle y into the new
axes of x and y :

x = x cos y + y sin y,

y
~ x sin y + y cos y-

The coordinates of 0', referred to

the new axes, are obtained by setting

x = XQ and y y in (8) ; they are, then, FIG. 8

the x and y given by formulas (5).

(6) Transform from the
(a;, y)-axes to the parallel axes of

a/ and y', with origin at 0'. Since the coordinates of 0', re-

ferred to the (x, y)-axes, are (x , y ~),
the equations of this trans-

formation are

f
x' = z iT

,

Eliminating x and ^from (8) and (9), we obtain, as the final

formulas

x' = x cos y + y sin y x
,

y' = x Sin y + ?/ COS y ?/ .

But these are precisely the formulas (4) which we had before.

EXERCISES

Obtain the equations of transformation in each of the follow-

ing cases. First find the formulas for x and y in terms of y!

and y', and then solve for x' and y' in terms of x and y.

V 0% 2/o)
=

(1> 1) 5 y=45. 2. (# , ?/ )
=

( 2, 1); y=30.
'

3. (x , y )
= (0,3); y=-60. 4. (z , y )

=
(
-

5, -3); y=120.

Draw a figure and deduce from it directly the formulas of

transformation for each of the following values of y, the new
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origin in each' case being at an arbitrary point (xw y ).
Check

the results by the use of formulas (3) and (4) of the text.

^. y=90. 6. y = 180. 7. y = -90.

8. Find the coordinates of the points (0, 0), (1, 2), (3, 4),

(2, 5), referred to new axes passing through the point (2, 1),

the angle from the old axis of x to the new being 45.

9. The same, if the new origin is at the point (3, 4) and

the angle from the old axis of x to the new is 30.

Identify the curve represented*by each of the following

equations by transforming to parallel axes at the point (x , y )

specified, and then rotating the new axes through the given

angle y. Draw a figure in each case.

Equation (x , y ) y

\p. 5a;2-6xy + 5?/
2 -4a;-47/-4 = 0, (1,1), 45.

11. a^-4a;y + ^ + 10a!-2y + 7= 0, (1,3), -45.

12. a!
2
-10ajy + y

2 + 46aj + 10y-47 = 0, (2,5), 135.

13. Find the curve represented by the equation

66 a - 24 xy + 59 y
2 + 108aj + 94 y + 76 =

by introducing parallel axes at the point ( 1, 1) and then

rotating these axes through the acute angle whose tangent is ^.

Draw a graph.

14. The equation

7x* - ISxy 17 y
2 - 28 a; + 36y + 8 =

represents a conic whose center is at the point (2, 0), and one

of whose axes has the slope ^. Identify the conic, and

draw a rough graph of it.

4. Determination of the Transformation from the Equations
of the New Axes. Consider the general transformation given

by formulas (4) of the preceding paragraph. If, in these for-

mulas, we set x'= and y' = 0, we obtain

x cos y + y sin y
- >r = 0,

x sin y + y cos y y = 0.
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These are the equations of the new axes, referred to the old

system ;
the first is the equation of the axis of y', the second,

that of the axis of x'.

Conversely, if we set the expressions on the left-hand sides

of equations (1) equal to x' and y' respectively, we obtain the

equations of the transformation.

Problem. Let it be required to find the equations of a trans-

formation which introduces the two perpendicular lines,

x +
2x- y-3 = 0,

as coordinate axes.

The natural procedure, in order to obtain the required equa-

tions, would be to set the left-hand sides of equations (2) equal
to x' and y'. But, in order to obtain the correct result in this

way. we must first put the left-hand sides of equations (2) into

the form of those of equations (1).

These latter are of the form

ax + by - ,

- bx + ay - y ,

where

(4) a2
4- 62 = 1.

The left-hand sides of equations (2) will be of the form

(3) if we multiply the second of the equations through

by-1:

-2x+

To bring about the fulfillment of condition (4), we multiply
each of these equations through by a constant p=0:

-2 P x +

Thereby we have not changed the lines which the original

equations (2) represent.
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The value of p is to be determined so that condition (4) is sat-

isfied by the left-hand sides. of equations (2 a), that is, so that

or

Hence p = I/V5.
We choose p = I/V5. If this value is substituted for p in

equations (2 a), these equations will be precisely of the form (1).

Hence the equations of a transformation
v l

x
introducing the lines (2) as the axes are

(5)

The first of the lines (2) is the axis of y' ;

the second, the axis of x'.

The new origin is at the point (1, 1); for, this is the point
of intersection of the lines (2). The old origin (x, y) = (0, 0)

(1
3 \

,
),

referred to

V5 V5/
the new axes, and must lie, then, in the first quadrant formed

by these axes. Consequently, the new axes must be directed

as shown in the figure.

The slope of the axis of #', the second of the lines (2), is 2

and so its slope angle is 63 26', or 243 26'. It is clear from

the figure that it is the first of these angles which is the angle y.

We obtain a second transformation, for which the lines (2)

are the new axes, by taking the value 1/V5 for p. For this

transformation the directions of both axes are opposite to those

for (5), and y has the value 243 26'.

For both transformations the first of the lines (2) is the axis

of y' ;
the second, the axis of x'. By reversing the roles of the

lines, two more transformations can be obtained. Thus, there

are in all four transformations introducing a given pair of

mutually perpendicular lines as coordinate axes.
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EXERCISES

In each of the following exercises find the equations of a

transformation which introduces the given perpendicular lines

as new axes. Find the position of the new origin and the value

of y ;
draw an accurate figure, and indicate the directions of

the new axes.

Axis of y' Axis ofx'

2. x + y 3 = 0; x y 1 = 0.

3. 2x-3y = Q. 3x + 2y + 5 = Q.

4. 5z-2y=0; 2x+5y = Q.

5. x--2 = 0; y + 3 = 0.

6. y-8 = 0; z-5=0.

7. If the lines of Ex. 1 are introduced as axes, what does the

equation

(4 a? - 3y + 2)
2 = 3x + 4y - 11

become ? What curve does it represent ? Draw a rough graph.

By a suitable transformation of axes determine the nature

and position of each of the following curves. In each case

draw a figure showing accurately the new axes, properly
directed

;
then sketch the curve.

8. 2z-3 2 + 6z + 4 + 10 = 0.

9.

10.

11. (x + y I)
3

5(x y 1)=0.

12. Find the equations of all four transformations which

introduce the lines

5-12y + 7 = 0, 12a? + 5y 17 =

as axes of coordinates. Draw the four corresponding figures,

and find the four values of
y.
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13. Obtain the equations required in Ex. 1 by finding the

coordinates of the new origin and a value for y and then ap-

plying formulas (3) of 3.

5. Reversal of One Axis. There is one more case which

deserves mention. Suppose that the sense of one axis is re-

versed, while the other axis remains un-

changed. Let the axis which is reversed

be the axis of x (Fig. 10). Then, evidently,
'

X
? I

"""*""

j'

O M
FIG. 10 (1)

( y y i (
J J ~

If the sense of the axis of y had been reversed, the axis of

x remaining unchanged, we should have had :

/ON I fl! B
j

j

X = X,

Consider, for example, the equation of a parabola in the

normal form,

y- = 2 mx.

If the sense of the axis of x is reversed, the equation becomes

y'
2 = - 2 mx'.

We could use this result to interpret the equation,

y
' ^^ Zt TYioC)

if we knew the parabola only in its normal form. Taking the

axis of x' opposite to the axis of x, and starting with the

known parabola

y'- = 2 mx',

we see that the transformed equation,

y
1 = 2 mx,

represents a parabola on the negative axis of x,

its vertex being at the origin. FIG. 11
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EXERCISES

1. Assuming that the equation of the parabola in the form x

x2 = 2 my

is known, interpret the equation

xz = 2 my

by the method of the text.

2. Plot the so-called semi-cubical parabola

f- = y?.

From the graph determine the curve denned by the equation

EXERCISES ON CHAPTER XI

CHANGE OF ORIGIN

In each of the following exercises prove, by making a suit-

able transformation to parallel axes, that the given equation

represents two straight lines. Find the equations of the lines,

referred to the original axes.

2 4z2 9 2 4-8z + 18 5 = 0.

3. 4z>

What does each of the following equations represent ?

4. z2
-f 2y*-Wx + 12y + 43 = 0.

-4ns. The point (5, 3).

5.

6. By completing the cube for the terms in x in the equa-
tion

and by making the transformation to parallel axes which is

suggested by the result, determine the curve defined by the

equation. Draw the curve roughly.
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By the method of Ex. 6, identify and plot the locus of each

of the following equations.

7. 6y = x*

8. x = 2y*

9. x3 3a2

10. Determine the position of the point (x , y )
such that, if

the straight lines

are referred to parallel axes at (x , ?/ ),
their equations will

contain no constant terms. What will these equations be ?

11. Show that, if the two intersecting straight lines

A& + #+<?! = 0, A2x + Biy+C2
= Q

are referred to parallel axes at their point of intersection, the

equations of the lines become

A,?! + Biy' = 0, A& 1 + B<$' = 0.

12. Determine the position of the point (x , t/ )
such that, if

the curve

xy -2x y 2 =

is referred to parallel axes at (x , y ),
it equation will contain

no linear terms in x and y. Identify and plot the curve.

13. Identify and plot roughly the locus of the equation

6xy + 7x 5y + 3 = 0.

14. Determine the point (x , ?/ )
such that, if the curve

3xz - 7xy - 6y
2 - 19z + 2y + 20 =

is referred to parallel axes at
( , ?/ ),

its equation will contain

no linear terms in x and y. Show that the equation will also

contain no constant term and hence that it will represent two

straight lines. Find the equations of these lines with respect

to the original axes.
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ROTATION OF AXES

15. Given the two perpendicular lines through the origin

of slopes ^ and 2. Find the equations of a transformation

introducing these lines as axes.

16. The equation 2xz
-\-3xy 2y2 = represents two per-

pendicular lines through the origin. Show that it may be

transformed into the equation x'y' = by a suitable rotation

of axes.

Identify and plot roughly the curve defined by each of the

following equations. Cf. Ex. 16.

17. 2x2 + 3xy 2y* = Q. 18. 12x2 - 7 xy 12y2=25.

19. Determine the equations of a rotation of axes where-

by the axis of y comes into coincidence with the line

4z + 3?/ = 0.

20. Identify and plot roughly the curve denned by the

equation (4 x + 3?/)
2 = 125 x. Cf. Ex. 19.

The same for each of the following equations.

21. (x + t/)
2 = 4V2y.

22. 4aj2 + 4o*/ -f- y
2 =

23.

24. The line 2x y is an axis of the conic

By a suitable rotation of axes determine the nature and posi-

tion of the conic.

Show that, by a suitable rotation of axes, each of the follow-

ing equations becomes linear in y and hence capable of solu-

tion for y, without radicals.

25. z2 -y2 + 2a;-3 = 0.

26. 4ic2 4as + 2 + 3x = 2.

27. 2x'2
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GENERAL TRANSFORMATION OF AXES

28. Prove that the straight lines

3x -4y 2 = 0, x + 2y = ,

when referred to suitable axes, will have equations the first

of which is x' = 0, while the second contains no constant term.

29. Find the equations of the circle

z2_|_ y2_|_6a;-Sy-t-6 =
and the line 5x + 12y 13 = 0,

when they are referred to axes through the center of the circle

parallel and perpendicular, respectively, to the line.

30. Find the equations of the two circles

a2 + y
2 + 4x 6y 4 = 0,

x~ + y
2 - 6 x + 4y 4 = 0,

when they are referred to the point midway between their

points of intersection as origin and the line joining the points

of intersection as axis of x'.

31. What will the equations of the circles of Ex. 30 become,
if they are referred to the mid-point between their centers as

origin and the line of the centers as axis of y' ?

32. A transformation consists of a change of origin to the

point (x , y ),
of a rotation of the new axes through the angle

y, and of a reversal of the sense of the axis of x thus obtained.

Show that the equations of the transformations are.

x = x' cos y y' sin y + #o>

= x' sin y + y' cos y + y .



CHAPTER XII

THE GENERAL EQUATION OF THE SECOND DEGREE

1. Change of Origin of Coordinates. The aim of this chapter
is twofold : To determine what curves are represented by

equations of the second degree in x and y ;
and to develop

methods by means of which the curve represented by any

particular equation may be easily identified and its size and

position accurately described. The methods used consist

primarily in transformations of coordinates. We begin, then,

by investigating what can be accomplished by a change of

origin, i.e. a transformation to parallel axes.

Example 1. Let it be required to identify and to describe

accurately the curve represented by the equation

Completing the square of the terms in x and then of the

terms in y, according to the method of Ch. XI, 1, we obtain :

5
(a-
_

2)2
- 4 (y + 3)

2 = - 20.

On setting

x' = x - 2, y
f = y + 3,

that is, on changing the origin of coordi-

nates to the point (2, 3), this equation
becomes

Sa/2
4y'

2 = 20,

QJ* . y_ i

4 5 FIG. 1

Consequently, equation (1) represents a hyperbola with its

center at the point (2, 3) and with its transverse axis par-
235
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allel to the axis of y. The coordinates of the foci, referred

to the new axes, are (0, 3) ; consequently, when referred

to the original axes, they are (2, 0) and (2, 6). The equa-

tions of the asymptotes, with respect to the new axes, are

hence they are, with respect to the original axes,

The semi-axis major is V5, and the semi-axis minor, 2
;
the

eccentricity has the value fVB. .

Example 2. Consider the equation

(2) 3xy-6'x + 3y-10 = 0.

We rewrite this equation, first, in the form

3(xy-2x + y )=10,
and then as 3 [x (y 2)+ (y )]

= 10.

If 2 is added to the y in the second parenthesis and, in

equalization, 3-1 -(2) or 6 is added to the right-hand

side, this equation becomes

We now change the origin to the point
f/

(- 1, 2) by setting

= x

-x The equation thus becomes

Fio. 2

Accordingly, (2) represents a rectangular hyperbola with the

lines x + 1 = and y 2 = as asymptotes.

Example 3. The equation.

(3) z2 + 2o;-2?/-l = 0,

can, according to the method of Ch. XI, 1,

be put into the form
o'

FIG. 3
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and hence represents a parabola with vertex at the point

( 1, 1) and with axis parallel to the axis of y.

Example 4. Consider, now, an equation in which all three

quadratic terms are present :

(4) 6x2 -xy-2y* + 4;X + 9y-W = Q.

In this case, completing the squares of the terms 6 a;
2 + 4 a;

and of the terms 2y 2+9y does not help. Let us make an

arbitrary change of origin, setting

(5) x = x' + x
, y = y'+y ,

and aim to determine the new origin, (x , y ), so that in the re-

sulting equation the linear terms in x' and y' do not appear.

Setting in (4) the values of x and y as given by (5) and

collecting terms, we have

(6) 6x'*-x'y' -2y lz

+ (12 a- - y + 4)z' +(- x - 4y + 9)</' + F' = 0,

where

(7) F' = 6 z 2 - a^ -
2?/o

2 + 4a> + 9y - 10.

If the terms in x' and y' are to drop from this equation, x and

y must be so chosen that

12a? - ?/ + 4 = 0,

-z -42/ + 9 = 0.

Solving (8) simultaneously for x
, y ,

we have

ZQ = - |, y = -V
1

.

The value of F', for these values of XQ and yQ ,
is 0. Conse-

quently, we have shown that equation (4), when referred to a

new origin at
( -f, 2|), becomes

6xn
--x'y'-2y'2 = Q.

The left-hand side of this equation can be factored :

(9) (3x'-2y')(2x'+y')=Q.

Thus (4) represents two straight lines through the point

(- |, 2f) with slopes f and - 2.
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If in (9) we set

i.e. if we transform back to the original axes, we obtain, finally,

This equation is seen to be precisely equation (4), with the

left-hand side factored into two linear factors. The two

straight lines represented by (4) have, then, the equations

3x-2y + 5 = Q, 2x + y 2 = Q.

It should be noted that the constant term (7) of equation (6)

is the value of the left-hand side of (4) for x = xw y = y . In

this example, this constant term took on the value zero when
x

, y were chosen so that the coefficients of the linear terms in

x' and y' vanished. This does not, however, occur in general,

as we shall see in the next paragraph.

EXERCISES

In each of the following exercises identify and plot roughly
the curve represented by the given equation. If the curve is

a conic section, find, when they exist, the coordinates of the

center and the foci, the equations of the directrices and the

asymptotes, and the value of the eccentricity.

2. 18x* + 12y*-12x + 12y- 19 = 0.

3. 4 xz
-f 3 y* + 16 x 6y + 31 = 0. Ans. No locus.

4.

5.

6. 7x"- 5y- + 2x 4y 1 = 0.

7. y
1 - 8x + 6 y + 49 = 0.

8. 3 x*- 6x -5?/-f3 = 0.

9. 2^+4z + 3?/-8 = 0.

10. xy+ 2x-3y -11 = 0.

11. 5xy 5x + y -f 1 =0.
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12. 3xy + x 18y 6 = 0.

13. 2x'i +5xy-3y* -\- 3x + I6y- 5 = 0.

14. x
n
- +zy + 3if 2x 2y = 0.

15. 3*' xy + 5y
2 6x + y-f 3 = 0. Ans. The point (1, 0).

16. Prove that every equation of the form

y = Ax* + Bx + (7, ^1 =
0,

or of the form

represents a parabola with its axis parallel to an axis of coor-

dinates.

17. Show that every equation of the form

bxy + dx + ey +/= 0, b = 0,

represents either a rectangular hyperbola with its asymptotes

parallel to the axes, or two perpendicular straight lines parallel

to the axes. Prove that the latter case occurs if and only if

bf= de.

18. Given the equation

ax2 + cy
2 + dx + ey +/=0,

where neither a nor c is : ac ^ 0.

(a) If ac > 0, prove that the equation represents an ellipse,

or a point, or that it has 110 locus.

(6) If ac < 0, show that the equation represents a hyperbola,
or a pair of intersecting straight lines.

2. Rotation of Axes. Example 1. Let it be required to

identify the curve defined by the equation

(1) 5x*-Gxy + 5y*-8 = Q.

We transform (1) by a rotation of the (x, y)-axes through
an arbitrary angle y into the (x', y')-axes. For x and-y in (1)

we set, then, according to Ch. XI, 2,

2
. x = x' cosy -y' sin

y,

y = x' sin y + y' cos y,
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and obtain, after collecting terms and simplifying,

(5 6 cos y siny)o3
12

6x'y'(GOS
z

y sin2
y) +-(5 + 6 sin y cos y)y'

2

- 8 ='o,

or, on replacing the trigonometric functions of y by functions

Of2y,

(3) (5-3 sin2y)o;'
2 -

Qx'y' cos 2y +(5 + 3 sin2y)y'
2 -8 = 0.

We now choose y so that the coefficient of x'y' will become :

cos 2 y = 0.

Values of 2 y satisfying this equation are 90, 270, 450, 630
;

the corresponding values of y are 45, 135, 225, 315. We
choose, arbitrarily, the smallest of these values, namely, y=45.
Equation (3) thus becomes

or

T + T =: '

Consequently, equation (1) represents an ellipse with its

center at the origin and with the transverse axis inclined at an

angle of 45 to the axis of x.

Example 2. Consider the equation

We proceed, as in 1, Example 4, transforming (5) to arbi-

trary parallel axes, x, y, and then choosing the new origin,

(x , y ),
so that in the equation resulting

from (5) the linear terms in x and y drop
out. We find that the new origin must be

at the point (1, 1), and that the resulting

equation then becomes

F
'

1G 4
where the constant term, 8, is found as

the value of the left-hand side of (1) for

x = 1, y = 1
;
cf . end of 1.

Now (6) is the same equation in x, y as (1) is in #, y.
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Hence, it follows that (5) represents an ellipse with its center

at the point (1, 1) and with the transverse axis inclined at an

angle of 45 to the axis of x.

The procedure, then, for any equation similar in form to (5)

consists first in transforming to parallel axes so that the linear

terms in x and y drop out, and then in rotating the new axes

so that the quadratic term in #, y drops out. We shall show

later that this procedure is always valid except in one case.

EXERCISES

Identify the curves represented by the following equations.

Draw a graph in each case, showing the original and the new
axes and the curve.

2. 5

3. lxz + 2xy + 7 ?/
2 + 2 = 0.

4. 6 a2 + 2^/3xy + 7y* 16 = 0.

5. 2 x2 + 4V3xy- 2 y
2 16 = 0.

6. 3a2 2xy + 3y
2 4x 4# = 0.

7. x* + 6xy + y
1 - Wx 14y + 14 = 0.

8. 4a2 + 16a*/ + 4?/
2 4z 8y + 13 = 0.

9. Show that, if 6 = 2 a, the equation

ax* + bxy + ay
2 +/= 0, 6/=jt 0,

represents an ellipse, or a hyperbola, with its center at the

origin and with its axes bisecting the angles between the

coordinate axes.

3. Continuation. General Case. We propose to develop and

simplify the method of 2, Example 1, for the removal of the

term in xy. Take the equation

(1) Ax2 + Bxy +Cy* + F' = Q, B = 0,

and rotate the axes through the arbitrary angle y, by means of

formulas (2), 2. The resulting equation can be written as
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(2) ax'* + bx'y' + cy'
2 + F' = 0,

where
a = A cos2

y + B sin y cos y + Cy sin2

y,

(3) 6 = -(^4- <7)sin2y + .Bcos2y,

c = A sin2
y B sin y cos y + C cos2

y.

Since y is to be chosen so that b. = 0,

(4) -(A- <7)sin2y + .Bcos2y = 0,

(5) cot2y =^^'.B

Of the values of 2y which satisfy this equation, we choose

arbitrarily that one which lies between and 180. Then y
is a positive acute angle.

If the axes are rotated through this angle y, (2) becomes

(6) ax'2 + cy'* + F' = Q.

The values of a and c are still to be determined. There is

a simpler way of doing this than substituting the value found

for y in the formulas for a and c, as given by the first and last

equations of (3). First, add these two equations ;
the result is

(7) a + c = A+C.
Thus we have one very simple equation for the two unknown

quantities a and c. ,

Next, subtract the second of the two equations from the

first:

(8) a - c = (A - C) cos 2y + B sin 2 y.

Square both sides of (8) and both sides of the second equation
Of (3) :

b = - (A- C) sin2y+ Bcos2y,

and add the equations thus obtained
;
the 'final result is

(9) (a
-

c)
2 + &2 = (A - C)

2 + B2
.

But y was chosen so that 6 = 0. Consequently, (9) becomes
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or

(10) a-c = V(4 - O)
2 + &.

Thus we have a second simple equation for the two unknowns
a and c.

From equations (7) and (10) the values of a and c are easily

found in terms of the known coefficients, A, B, and (7, of (1).

There are, however, two values of each, due to the double

sign before the radical in (10). Which values should we
take?

If in (8) we substitute for A C its value as given by (4),

we obtain

a - c = B cos2 2 y + B sin 2y,
sin2y

or

B
a c =

sin 2-

But 2 y lies, by choice, between and 180 and, consequently,
sin 2 y is positive. It follows that a c must have the same

sign as B.

Accordingly, if we rewrite (10) as

the plus sign must be chosen. Hence, always,

(11) a-c =

From equations (7) and (11) unique values for a and c can

now be found.

Example,. Consider the equation

(12) 7x*-Sxy + y
z + Ux-8y-2 = Q.

By shifting the origin properly, to the point ( 1, 0), (12)
becomes

(13) 7 a/2 - 8ajy + y'
2 - 9 = 0.
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Next, rotate the new axes through the positive acute angle

given by formula (5), which in this case is

7-1 3
COt 2 y = .

= -,

so that y has the value 63 26'. Thus (13) becomes

(14) ax"2 + cy"* -9 = 0.

The values of a and c are determined from equations (7)

and (11), which are, here,

a + c = 8,

a c =

Then the values for a and c are : a = 1, c = 9. Conse-

quently, (14) becomes

FIG. 5

*
y_ i

~9~"T~

Equation (15) represents a hyperbola
with its transverse axis along the axis of

y". Hence (12) represents a hyperbola
with its center at (1, 0) and with its

transverse axis inclined at an angle of 63 26' + 90 = 153 26'

with the axis of x.

TJie Expression B2 4AC. If from (9) we subtract the

square of (7), we obtain

or, since we chose y so that 6 = 0,

(17) -4ac = B2

The Case B* - 4AC > 0. If B2 - 4AC is positive, ac is, by

(17), negative ;
hence a and c have opposite signs. Thus, if

F' = 0, (6) represents a hyperbola. If F' = 0, (6) becomes

(18) ax'2 + cy'
2 = 0.
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Since a and c have opposite signs, the left-hand side of (18)

can be written as the difference of two squares and then fac-

tored. Therefore, (18) represents two straight lines (Ch. IX,

4) which intersect at the origin.

These results for (6) are true for the original equation (1).

They hold not only if B=Q, the case which we have been

treating, but also if .6 = 0. For, if 2? = 0, (1) is itself in

the form (6), and hence may be considered directly. We have,

then, the following theorem.

THEOREM 1. When .B2 4 AC > 0, the equation

Ax* + Bxy + Cf- + F' =

represents a hyperbola, if F'^Q; ifF' = Q, it represents two

intersecting straight lines.

The Case B2 4:AC<0. In this case, according to (17),

ac is positive, and a and c have the same signs. Then if

F' 3= 0, (6) represents an ellipse, or, in the case that a, c, and F1

are all of the same sign, has no locus. If Fr

0, (6) reduces

to (18). But now the left-hand side of (18) can be written

as the sum of two squares, since a and c have the same sign.

Hence it is satisfied only by x = 0, y = 0. It represents, then,

a single point, or, as we may say, a null ellipse.*

Not merely a and c have the same signs in this case, but

also A and C. For, if A and C have not the same signs, the

product AC < or =
; consequently, B2 4AC> 0, a con-

tradiction. It follows, further, from (7), that A and C have

the same signs as a and c.

We can now characterize more fully the two cases which

arise when F'=Q. We have seen that equation (6) has no

locus, if F' is of the same sign as a and c, or, as we can now

say, if F' is of the same sign as A and C, i.e. if AF' (or

CF'}> 0. On the other hand, (6) represents an ellipse, if F' is

opposite in sign to A and C, i.e. if AF' (or CF') < 0.

We summarize our results in the form of a theorem.

* Cf . null circle, Ch. IV, 2.
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THEOREM 2. When B2
4:AC < 0, the equation

Bxy + Cyz + F' = 0,

if F' =. 0, represents ah ellipse or has no locus, according as AF'

(or OF") is negative or positive; if F' = 0, the- equation repre-

sents a single point

The Case .B2 - 4.4(7=0. If & -4.4(7=0, there is no

need of rotating the axes. Consider, for example, the equation

(19) 9o;2

for which B2 4AC = 36 - 4 9 = 0. This equation can be

written in the form

or

and hence represents two parallel lines of slope 3.

EXERCISES

Identify the curves represented by the following equations.

Draw a graph in each case, showing the original and the new
axes and the curve.

=0.

2. 3xz + 12xy + 8yz + 6x + 16y + 38 = 0.

3. 73aj2+72xy + 52y* + 7<lx-32y 47 = 0.

4. 2x2 + 3xy-2y2- 16z - 12?/ + 22 = 0.

5. *2 5xy + 13y*-3x + 21y = 0.

6. 15 xy-Sy* + 450^-450 = 0.

7. 20z2 -16a^ + 8y2 + 52z-40?/ + 5 = 0.

8. 8x* + 8xy- 7^ + 36^ + 36 = 0.

9. 7 x2 - 3 xy + 3y2 + 5x + I5y + 35 = 0. Ans. No locus.

10.

11.

12. xz + 3xy y
z + 2x Wy =0.
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4. The General Equation, IP 4AC = 0. We consider here

the general equation of the second degree :

(1) Ax2 + Bxy +Cf + Dx + Ey + F = Q,

assuming that B2 4AC = 0. From the results of the preced-

ing paragraph, we should expect that, in general, (1) represents

an ellipse or has no locus, if B2 4AC < 0, and represents

a hyperbola, if B2 4 .4(7 > 0. Accordingly, we shall call

(1) an equation of elliptic type or of hyperbolic type, according as

W 4 .4(7 is negative or positive.*

To remove the terms in x and y from (1), we set

x = x' + ZQ, y = y' + y

in (1), obtaining

(2) Ax'2

where

(3) F' =

is the value of the left-hand side of (1), formed for x = 05
,

2/
=

2/o-

Setting the coefficients of x' and y' in (2) equal to zero :

xx 2Ax + By + D = 0,

and solving these equations simultaneously for x and y ,
we

have

,- _2CD-BE 2AE-BD~

Since it has been assumed that the denominator, B2 4 4(7,

of these fractions is not 0, it is always possible to solve equa-
tions (4), and the solution (5) is unique.

If the new origin (x , y ) is taken at the point (5), equation

(2) becomes

(6) Ax'2 + Bx'y' + Cy'
2 + F' = 0.

* If B2 - 1AC - 0, we shall say that (1) is of parabolic type. This

case will be treated in the next paragraph.
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Equation (6) is exactly the equation treated in 3. There-

fore the theorems of 3 are valid for it and, consequently, for

the original equation (1).

The value of F' as given by (3) can be put in a more con-

venient form. Multiply the first of the equations (4) by x
,

the second by y ,
and add :

2 Axf + 2 BXMO + 2 Cy? + Dx,, + Ey = 0.

Multiply this equation by ^ and add it to (3) :

Finally, substitute the values of x and y as given by (5).

The result is

F , = 4:ACF- &F - AE 2 - CD2 + BDE
B*-4:AC

The numerator of the fraction is known as the discriminant

of equation (1) and is denoted by A :

(7) A = 4ACF B*F AN-

In terms of A, F' has the value

(8) F' = - A
B*-AC

It is clear that if F' = 0, then A = 0, and conversely. In

stating the theorems of 3 for equation (1) above, we can,

therefore, replace F' = and F' = by A = and A = respec-

tively. Furthermore, in case .B2 4AC is negative and F'

and A are not 0, A has the same sign as F'. In this case,

then, AF' (or CF') is positive or negative, according as AA
(or CA) is positive or negative.

We now restate, for equation (1), the theorems of 3.

THEOREM 3. An equation (1) of hyperbolic type :

represents a hyperbola, if A = 0. If A = 0, it represents two

intersecting straight lines.
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THEOREM 4. An equation (1) of elliptic type :

if A = 0, represents an ellipse or has no locus, according as A&.

(or CA) is negative or positive ; if A = 0, the equation represents

a single point.

If an equation of the form (1) is given, and IP 4 AC =
0,

the type of curve which the equation represents can be de-

termined by finding the sign of B2 4AC and by ascertaining

whether or not A = 0. Further investigation is necessary

only in case B2 4AC< and A =
;
the sign of AA (or CA)

must then be determined.

For example, the equation

a2 3xy + 2yi + x 5y + 3 =

represents a hyperbola, inasmuch as .B2 4.4(7=9 4 2=1>0,
and A = - 15 = 0.

To find the position and size of an ellipse or a hyperbola
defined by an equation of the form (1), it is necessary to carry

through in detail the work of changing the origin and rotating

the axes. If, however, A = 0, it is sufficient merely to make

the proper change of origin. The equation then takes on the

form (6), where F' 0. In the elliptic case, it represents a

single point, the new origin. In the hyperbolic case, it can

be factored into two linear equations, which determine the

two lines typical of this case.

EXERCISES

Determine the nature of the curve defined by each of the

following equations. In case the equation represents two

straight lines or a single point, find the equations of the lines,

or the coordinates of the point, referred to the (x, ?/)-axes.

1. 4a? 5xy

2. 3xi

3. 3x*

Ans. The point (1, 1).
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4. 2x* + 3xy 2y* lla; - 2t/ + 12 = 0.

Ans. The lines 2x y 3 = 0, a + 2y 4 = 0.

5. x* + xy + y- + 3y + 4 = 0. Ans. No locus.

6. 3a2
xy 2y2 -5x-2y 56 = 0.

7. 2xz
xy + y

z 7y + 10 = 0.

8.

9.

10. 4 cc
2 2 xy + y

2 4# + y + 5 = 0.

11. 2 a2 3xy + y
2 6a,- + 5?/ + 4 = 0.

12. Prove that the general equation is of hyperbolic type,

if AC< 0, i.e. if -4 and G are of opposite signs.

13. The same, if B = and AC = 0.

5. The General Equation, B2 AC= 0. .Fmrt Method. If

jB2 4 ^4C has the value 0, the equation

(1)

is said to be of parabolic type. The method used in the case

.B2 4^4(7^=0, which begins with shifting the origin so that

the linear terms in x and y drop out, is inapplicable here, since

equations (4) of 4, for the determination of the new origin,

have in general no solution if jB2 AC= 0.*

Let us begin, not with a change of origin, but with a rota-

tion of axes, assuming that B=fcO. Applying to (1) the trans-

formation (2) of 2, we obtain

(2) ax'2 + bx'y' + cy
12 + dx' + ey' + F=0,

where a, 6, c are as given by formulas (3) of 3, and

d= Dcosy + ./siny,
e = D sin y + E cos y.

* They have no solution if the lines

2 Ax + By + D = 0, Bx + 2 Gy + E =
are parallel ; infinitely many solutions, if these lines are identical.
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Since formulas (3) of 3 are valid, so are the equations which

were deduced from them
;
in particular,

(4) a + c = A+C,
(5) 62 -4ac = jB 2 -4^C.

Here,, B2
4:AC = 0, and hence 6 2 - 4 ac = 0. It follows,

then, that we can make b = by choosing y so that b = 0, or

by choosing y so that either a = or c = 0. The second of

these two methods is in the end the simpler. We will follow

ill and, in particular, choose to make a = 0.

If a = 0, we have, by the first of the formulas (3) of 3,

A cos2

y + B sin y cos y + C sin2
y = 0.

TJ2

Divide by sin2
y, substitute for Cits value -,* and clear of

fractions
;
the result is

4 A* cot2

y + 4:AB cot y + B2 = 0,

or (2 A cot y + B)
2 = 0.

Hence

(6) COty

We choose that value of y satisfying (6) which lies between

and 180.

If the axes are rotated through this angle y, then a = 0,

6 = and, from (4), c = A + C. Thus (2) becomes

(7) (A + C)y'
2 + dx' + ey' + F=0,

where the values of d and e are to be computed from (3).

Equation (7) can now be treated by the method of 1, Ex-

ample 3.

Example. The equation

(8) 3z2 + 12o;?/ + 12?/
2 + 10a + 10?/-3 = ,

is of parabolic type, since B2 4 AC = 144 4 3 12 = 0.

* A = 0, for otherwise B =
;
and we have assumed B ^ 0.



252 ANALYTIC GEOMETRY

Here, (6) becomes

whence

y = 153 26',

Rotate the axes through this angle y and compute the values

which A + C, d, and e have in this case. There results, as

the equation into which (8) transforms,

15 y'
2 - 2V5V - 6V5V -3 = 0.

This equation can be rewritten as

or 15 (y'
-

\V5> = 2V5 (x
1 + fV5),

or, finally, as

(9)

where

(10)

has been introduced as new origin of coordinates.

It follows from (9) that equation (8) represents a parabola

with its vertex at the new origin (10) and with its axis inclined

at an angle of 153 26' to the axis of x.

To find the coordinates of the

vertex (10) with respect to the

original axes, we substitute in for-

mulas (2) of 2, first, the values

which sin y and cos y have in this

case :

/

FIG. 6

V5 V5
We obtain, asand then the values for x', y' given by (10).

the desired coordinates, (x, ?/)
=

(!, 1).

We return now to the general case. If d = 0, equation (7)

represents a parabola ;
cf. Ex. 16, 1. If d = 0, (7) can be

written in the form

(11) y*
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where we have divided through by A -f- C * and introduced

simpler notations for the resulting constants. Equation (11)

becomes immediately

(12) (y' + A0
2 = fc

2 + *

consequently, it represents two parallel lines, a single line, or

has no locus, according as k2
4- 1 is positive, zero, or negative.

To obtain the condition for the exceptional case, d = 0, in

terms of the coefficients of (1), we note that, since B2 4AC
= 0, AC> and A and C are of the same sign. We assume

that A and C are positive ;
if they were negative, equation (1)

could be multiplied through by 1. Since

(13) B = 2^AC,
(6) can be written as

whence it can be shown that

C
siny =

Hence, from (3),

-VA+C ^/A
If d = 0,

(14)

Squaring and replacing T 2^/AC by B, we have

(15) AE2 + CD2 - BDE = 0.

Now A may be written as

A = F(AC - 2)
- (AE2 + CD2 - BDE).

Since we are treating the case B2 4AC= 0, it follows from

(15) that A =
; conversely, if A = 0, then (15), and hence

(14), holds and d = 0. Thus the condition for the exceptional

case is A = 0.

* A + C = 0, since otherwise (7), and therefore (1), would not be of

the second degree.
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We collect our results in the form of a theorem.

THEOREM 5. An equation (1) ofparabolic type:

.B2 - 4^0=0,

represents aparabola, (/"A = 0. IfA = 0, it represents two parallel

lines, a single line, or has no locus.

We have proved the theorem on the assumption that B ^ 0.

If B = 0, then either A = or (7=0, and the content of the

theorem is easily verified.

If A = 0, the given equation may be treated directly, with-

out change of axes. An equation of this type is

8x2 + 24:xy +18y2 14x - 21y + 3 = 0.

It can be written in the form

2(2x + 3yy- 7(2 x + By) + 3 =
;

the left-hand side can then be factored :

[2(2 aj + 3y)
-

1] [(2a? + 3y)- 3]= 0.

The equation, therefore, represents the two parallel lines

4a? + 6y 1=0, 2x + 3y-3 = 0.

Second Method. We notice that equation (8) can be written

in the form

(16) 3(x + 2^)
2 + 10a; + 10y 3 = 0.

There are two linear expressions in (16), namely, that in the

parenthesis and that consisting of the remaining terms in the

equation. If the lines represented by these expressions, set

equal to zero, were perpendicular, (16) could be simplified by

introducing these lines as coordinate axes. As the equation

stands, these lines are not perpendicular. We can, however,

rewrite it in a form in which they will be.

Add an arbitrary constant Tc to the expression in the paren-

thesis in (16) and, in equalization, subtract 6 k(x + 2 y)+ 3 fc
2

from the remaining terms :

(17) 3( + 2y + fc)
2
+(10 - 6Jc)x + (10

- 12% - 3 - 3fc2 = 0.
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Determine k so that the two lines defined by the linear ex-

pressions in (17) are perpendicular, that is, so that

10 -12 A;

Thus -10 + 6fc = 20 -24 k and fc=l,

For k = 1, (17) becomes

(18) 3(x + 2 y + 1)' + 2(2 x - y - 3)= 0,

and the two lines in question are perpendicular. The equations
of a transformation introducing these lines as axes were found

in 4 of Ch. XI, and are given by
formulas (5) of that paragraph.

Keferred to the new axes, (18)

becomes

or
FIG. 7

Hence we have shown again that

(8) represents a parabola with its vertex at the point (1, 1)

and with its axis inclined at an angle of 153 26' to the axis

of x*
The first of the two methods described is more direct and

more in keeping with previous methods. Its application to

a particular equation, however, is handicapped by the early

*To treat the general equation (1) by this method, assume that A and

C are positive. Then, since B = 2 VJ.C, (1) can be written as

( VAx VCy)* + Dx + Ey + F = 0.

From this point the discussion proceeds as in the example in the text.

It can be shown that the exceptional case arises when and only when

V2x VCy = 0, Dx + Ey + F =
are parallel ;

i.e. when and only when

EVA T DVC = 0.

But this is precisely the equation (14) obtained by the first method.

From it follows that A = is the condition for the exceptional case.

Thus we have, in sketch, the proof of Theorem 5 by the second method.
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introduction of radicals. The second method avoids this dis-

advantage, and is the more elegant, though perhaps theoreti-

cally the more difficult, of the two.

EXERCISES

Identify and plot roughly the curve denned by each of the

following equations. If a change of axes is necessary, show
the new axes on the graph.

2. 9z2 -
3. 25z2 + 120ary + 144 y* + 86 x-233y + 270 = 0.

4. 5x2 -20xy + 2Qy2 + 2x + y + 3= 0.

5. 25x* + 30xy + 9y2 + Wx + 6y+l = Q.

6. a2 2 xy + f- + 3 x y 4 = 0.

7. x"<-4:xy + 4:y* + 3x 6#-10 = 0.

8. 27 x2 - 36xy + 12y* 40z + 18 y + 32 = 0.

9. 2xz + 12xy +18i/2
4-a; + 137/ + 9 = 0.

10. 4z2
-f 12z?/ + 9 2 + 2x + 3i/ + 2 = 0. ^Ins. No locus.

6. Summary. Invariants. The content of Theorems 3, 4, 5

we summarize in the following table.
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a cylinder as its limit, and the plane approaches a position

parallel to the rulings of the cylinder. But the section of a

cylinder by a plane parallel to the rulings is two parallel lines,

a single line, or nothing. These sections of the cone or cylin-

der are called degenerate ;
those first mentioned, non-degenerate.

From the above table we can now draw a general conclusion.

THEOREM 6. An equation of the second degree, if it has a

locus, represents a conic section, ivhich is non-degenerate if A =
0,

and degenerate if A = 0.

Invariants. We have seen that the value of the quantity
A + C is unchanged by a rotation of axes [ 3, (7) and 5, (4)].

This is true also of the value of the quantity ZJ2 4.4(7 [ 3,

(16) and 5, (5)]. We say that A + C and W-AC are

invariant under a rotation of axes. They are ajso invariant

under a change of origin, since we saw, in 4, that the quadratic
terms in the general equation are not affected by a change of

origin.

Consequently, A + C and B2 4AC are invariant under any

change of axes. For, any change of axes consists of a change
of origin, combined with a rotation of axes.

It can be shown that the discriminant A is also invariant

under any change of axes.

The importance which these quantities, A, W 4.4(7, and

A + C, have assumed in the course of the treatment is closely

related to the fact that they are invariants with respect to any

change of, axes. For, it is clear that a quantity whose value

varies with the choice of axes can have no particular signifi-

cance in a theory which deals primarily with properties of

the curve which are independent of the choice of axes, whereas

it is to be expected that an invariant quantity would play an

important role.

EXERCISES ON CHAPTER XII

In each of the following exercises, determine the nature of

the curve represented by the given equation, and then find its
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position. Draw a figure, showing the curve, the original axes,

and any new axes used.

1. Ilx2 + 6xy + 3y*-l2x-l2y -12 =0.

2. 7 x2 - 8 xy + ?/
2 + 14 a - 8.y + 16 = 0.

3. 8z2 + 8z?/ + 22/
2 -6a;-32/-5 = 0.

4. 4x2 + 8>y + 4t/
2 + 13z + 3y + 4 = 0.

5. 9a2 -8o*/ + 24?/
2 -32a;-16?/ + 138 = 0.

6. a;
2 + ccy

- 2y2 - 11 a: - y + 28 = 0.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16. 7a? 18xy 17if- -28x + 36y + 8 = 0.

17. 9x2 -
12a;y + 4y

2 + 4a;-59i/ + 38 = 0.

18. 7x*5xy + y* 42 + 15y + 63 = 0.

19. 14a;2 + 2xy + 2ly* + 52x + 66 y + 14 = 0.

20.

21.

22. 25x2 -7x + z 107x+W + 13 = 0.

23. 49x2

24. 4a;2

25. a;
2

26. 2 a2
xy + y

2 7 ?/ + 6 = 0.

27. Show that an equation of the second degree represents

an equilateral hyperbola or two perpendicular lines, if and

only ifA + C 0.
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28. If the equation (1), 3, represents a hyperbola, show

that the asymptotes are defined by the equation

Ax* + Bxy + Cy
2 = 0.

29. If the general equation of the second degree represents

a hyperbola, prove that the asymptotes have the directions of

the lines defined by the equation of Ex. 28.

30. Prove that every equation of the form

AB (x*
- y

2
)
-

(A*
-

B*)xy = C,

where C=0 and not both A and B are 0, represents a rectan-

gular hyperbola with the lines

Ax + By = 0, Bx Ay = Q

as asymptotes.

31. Show that the equation of every rectangular hyperbola
can be written in the form

AB(xi - y*)-(A*
-

B*)xy + Dx + Ey + F= 0.

32. Find the equation of each of the rectangular hyperbolas

(a) 12x*-7xy-12y'*-17x + 31y-13 = 0,

(6) 6x2 + 5xy-6y*-39x + 26^-13 = 0,

referred to the asymptotes as axes.

33. Show that for just one value of A the equation

Xa;2 + 4 xy + y* 4x 2 y 3 =

represents two straight lines. Find the equations of the lines.

34. If the general equation of the second degree represents

an ellipse or hyperbola, what is the condition that the center

be at the origin ?

35.' If the general equation represents a parabola, show that

the vertex is at the origin if and only if

AD"- + CE* + BDE =0 and ^=0.

Suggestion. Write the equation in the form (7), 5.
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36. Prove that, if the equation (1), 3, represents an ellipse

or hyperbola, the axes are denned by the equation

B(x*
-

jf)
- 2(A -C)xy = 0.

37. Show that, in case .B2 4AC= and A = 0, the gen-

eral equation represents two parallel lines, a single line, or

has no locus, according as the expression

is positive, zero, or negative.

Suggestion. Consider equation (7), 5, where d = 0, and

use (15), 5, in simplifying the result.

38. Prove that the expression in Ex. 37 can be replaced by
D2 - 4 AF, if A 3=. ;

and by E* - 4 OF, if C=?= 0.

Definition. Two conies are said to be similar and similarly

placed, if their eccentricities are equal and their corresponding
axes are parallel.

39. Prove that the conies,

11 xz
-f 6 xy + 3 y

2 12 x 12y - 12 = 0,

11 x2 + 6xy + 3y* - 34 a; - ISy + 29 = 0,

are similar and similarly placed.

40. Show that, if the coefficients of the quadratic terms in

two equations which represent nonrdegenerate conies are re-

spectively equal or proportional, the conies are of the same

type. Prove further that, if they are ellipses or parabolas,

they are similar and similarly placed, and that, if they are

hyperbolas, they are similar and similarly placed or each is

similar and similarly placed to the conjugate of the other.



CHAPTER XIII

A SECOND CHAPTER ON LOCI. AUXILIARY VARIABLES.

INEQUALITIES

1. Extension of the Method for the Determination of Loci.

If we look back over the locus problems which we have thus

far solved, we find that there is invariably but a single essen-

tial condition governing the motion of the point tracing the

locus. For example, the sum or the difference of two dis-

tances or of their squares is required to be .constant ;
or the

slope of one line is given as proportional to that of another.

This single condition it is comparatively simple to express

analytically and thus to determine the locus.

In a great many problems, however, the motion is governed

by not just one, but by two or more essential conditions, in-

terdependent on one another.

An example of such a problem
is the following : A triangle

has a fixed base AB and its

vertex Vmoves on an indefinite

straight line L, parallel to the

base. Find the locus of the

point of intersection P of the ~v . /_a Q\

altitudes.

Here the motion of P is

governed by tivo essential conditions
; first, by the motion of

V, and secondly, by the fact that P is the point of intersection

of the altitudes. The two conditions are interrelated, since

the position of V determines the position of the altitudes and

hence of their point of intersection. Consequently, they are

261

V:(y,h)

O C B:(a,0)

FIG. 1
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in substance equivalent to a single condition, which, when

expressed analytically, would give the equation of the

locus.

Our problem, then, is to reduce the two conditions to a single

condition. This it is, in general, very difficult to do geometri-

cally. Analytically, however, the task is simpler. For, condi-

tions expressed in analytical form, in terms of equations, are

usually more easily combined than when they are in geometri-

cal form.

Accordingly, we proceed to express analytically the two

conditions governing the motion of P. Take the mid-

point of the base of the triangle as the origin and the

axis of x along the base. Let the length of the base be

2 a and the distance of L above the base, h.
' The coordinates

of A and B are ( a, 0) and (a, 0). Denote those of P by

(X, Y}.
The first of the two conditions is that V move along L.

But then the distance, KV, of V from the axis of y varies.

Accordingly, we can express the motion of V along L by tak-

ing the abscissa of F"as a variable. Denote this variable by y.

The coordinates of Fare, then, (y, h).

We now have coordinates for the three vertices of the tri-

angle. Hence we can find the coordinates (X, Y) of the

point of intersection of the altitudes. Thus we shall have

expressed the condition that P be this point.

The coordinates (X, Y) of P will be obtained in terms of

the constants, a and h, and the variable y. If we eliminate y
from the two equations which give the values of X and Y, the

resulting equation will contain only a and h, and X and Y, and

will be the equation of the locus of P.

The variable y is known as an auxiliary variable, or param-
eter. It helps in expressing analytically the conditions

governing the generation of the locus. The method involving

its use, which we have just described, is general in scope, and

may be applied with advantage to any locus problem contain-

ing multiple conditions.
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2. One Auxiliary Variable. In illustrating the method by

examples, let us first complete the problem of the previous

paragraph.
Consider P as the point of intersection of VC and BD.

The equation of VC is

(1) X=y.
The slope of AV is

h

y +
'

hence the equation of the perpendicular, BD, to AV is

(2)

Solving equations (1) and (2) simultaneously, we obtain the

coordinates of P,

(3) X=y, Y=>
in terms of the constants a and h and the auxiliary variable y.

By eliminating y from equations (3), we obtain

(4) X* = -hY+a?
as the equation of the locus.

The locus of P is, then, a parabola, with its axis along the

perpendicular bisector of the base of the triangle ;
it goes

through the extremities of the base and opens away from the

line L. Every point of it is included in the locus.*

* In the locus problems considered hitherto, particularly in Ch. V,
care was taken to emphasize that two things are necessary : (a) to

determine the curve, or curves, on which points of the locus lie; (6) to

show, conversely, that eVery point lying on the curve, or curves, obtained

is a point of the locus. In the problems of the present chapter, for

example, in the one above, part (6) of the proof is usually omitted. It

consists, as a rule, in retracing the steps of part (a) and so presents, in

general, no difficulty. And it is more important, now, that the student

gain facility in deducing the equation of the curve, or the equations of the

curves, which turn out, in the great majority of cases, to be precisely the

locus.
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Remark. It was not necessary to find the actual coordinates

(3) of P. The fact that P is the point of intersection of the

altitudes might have been expressed by writing down the

conditions that (X, F) satisfy equations (1) and (2), namely,

If we eliminate y from these equations, we obtain equation

(4) of the locus.

Example 2. A straight line L passes through a fixed point

P
;
find the locus of the mid-point P of the portion of L inter-

cepted by two given perpendicu-
lar lines, neither of which goes

through P .

Take the two given lines as

axes, and let the coordinates of

P
,
referred to them; be (x , y )-

The conditions governing the

motion of P are, first, the rota-

tion of L about P
,
and secondly,

the fact that P is the mid-point
of the segment AB.

. We express the rotation of L
by taking its slope, X, as aux-

FIG. 2

iliary variable. The equation of L is, then,

The coordinates of the points of intersection of L with the

axes are :

Hence the coordinates of P, the mid-point of AB, are

To eliminate A from these two equations, we might solve

the first for X and substitute its value in the second. But we



A SECOND CHAPTER ON LOCI 265

notice an easier method
; rewriting the equations in the form

O V- rf _ 2/0* -A- x ----
,

A

2 Ty = -Xx
,

and multiplying together the left-hand sides and then the

right-hand sides, we obtain the equation

(5) (2X-x )(2T-y )=x y0)

devoid of X.

The equation of the locus, in this form, or better, in the

form:

suggests that we change to parallel axes, with the new origin

-,
The locus, referred to the new axes, has the equation,

and is, therefore, a rectangular hyperbola. It follows from (5)

that the hyperbola goes through and P .

To describe the locus independently of the coordinate sys-

tem : Let be the point of intersection of the given lines
;

the locus is a rectangular hyperbola through and P
,
with

its center at the mid-point of OP an(i with its asymptotes

parallel to the given lines.

EXERCISES

1. Given a line L parallel to the axis of x. Through the

origin draw a variable line meeting L in Q, and on this vari-

able line mark the point P whose ordinate equals the abscissa

of Q. What is the locus of P ?

Ans. The parabola y"
1 = hx, where h is the algebraic distance

from the axis of x to L.
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2. A line-segment AB of fixed length moves so that its

extremities lie always on two perpendicular lines. Find the

locus of the point dividing AB in the ratio 2 : 1, using as

auxiliary variable the angle which the moving line makes with

one of the two perpendicular lines.

Ans. An ellipse, center in the point of intersection of the

given lines, axes along them, with length and breadth in the

ratio 2 : 1.

3. Determine the locus described in Ex. 2, when the given
ratio is mj : m2 .

4. The line L is the perpendicular bisector of the fixed

horizontal line-segment AB. The points R and S are taken

on L, with R always below S, so that the distance US is one

half the distance AB. Find the locus of the point of inter-

section of AR and BS, taking the axes of x and y along AB
and L. Ans. The hyperbola, 2 xy -f a? = a2

, through A and B.

5. A variable line is drawn through a fixed point Pl meet-

ing a fixed line L in P2 . Points P are taken on this line so

that the product of the distances P^ and PiP-2 is constant.

Find the locus of these points.

Ans. Two circles, tangent at PI to the line through P^ par-

allel to L.

6. Find the locus of points from which the tangents drawn
to a parabola are perpendicular.

Suggestion. Use the equation of the tangent with given

slope, Ch. IX, 6, eq. (10).

7. The same for the ellipse.

8. The same for the hyperbola.

9. Determine the locus of the mid-points of all the chorda

drawn from the vertex of a parabola.

3. Coordinates of a Point Tracing a Curve, as Auxiliary Vari-

ables. In the problems of the previous paragraph one of the

conditions governing the motion of the point tracing the locus

was the auxiliary motion of a line or of a second point. In
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each case this auxiliary motion could be expressed analytically

by the introduction of one auxiliary variable.

Suppose, now, that the auxiliary motion consists of the trac-

ing of a given curve, not a straight line, by a point R. Let
the curve be, for example, the circle

(1)
2 + y~ = a2

.

The motion of R on the circle might be represented analyti-

cally by the introduction of a single auxiliary variable, e.g.

one of the coordinates of R
;
but it is in general simpler, ana-

lytically, to represent the motion by two auxiliary variables,

namely, by both the coordinates (x
f

, y'} of R. These will be

connected by the equation,

(2) a^ + y2 = a2
,

which states that R is on the circle.

The reason for this choice of auxiliary variables lies partly
in the fact that we thereby avoid radicals

;

*
partly in the

principle of algebraic symmetry. By this term we mean to

signalize the fact that equation (1) bears equally on x and y,

and so it is well to carry the solution through in such a man-

ner that it, too, will bear equally on the two coordinates of

each of the principal points involved.|

Example 1. Let AA! be a fixed diameter of a given circle

and let RR' be a variable chord perpendicular to AA'. What
is the locus of the point of intersection, P, of AR and A'R' ?

Choose the center of the circle as the origin and the axis of

x along AA'. Then (1) is the equation of the circle.

* If we had taken x' as a single auxiliary variable, the coordinates of

R would be (x', Va2 x' 2
).

t It is possible to represent the motion of -R by a single auxiliary vari-

able and at the same time to avoid radicals and preserve symmetry, by

choosing as the auxiliary variable the angle 6 which the radius drawn to

R makes with a fixed direction, e.g. the axis of x
;
the coordinates of jR

are then : x a cos 0, y' = a sin 6. We prefer, however, to use as aux-

iliary variables the coordinates of R connected by equation (2).
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Take, as the auxiliary motion, the tracing of the circle by
the point R and, as auxiliary variables, the coordinates (#', y'}

of R, These are connected
v

by the equation (2). The

(X Y) coordinates of R' are, evi-

dently, (',
-

y'\

The equations of AR
and A'R' are

x a

FIG. 3

its coordinates (X,

(3)

(4)

Since P is the point of in-

tersection of AR and A'R',

satisfy both these equations :

x' a

We have, then, three equations, (2), (3), and (4), involving,

besides the constant a, the coordinates (X, Y) of the moving

point and the auxiliary variables x', y'. To obtain an equa-

tion in X, y alone, we must eliminate x', y'.^ We shall do this

by solving two of these equations, preferably (3) and (4),

simultaneously for x' and y'}
and substituting the values

obtained for them in the third equation, (2).

To this end we rewrite equations (3) and (4) as follows :

(3a) Yxf

(X+a~)y
f =-aY,

(4a) Yx'+(X-a}y' = aY.

Hence x' =
, y' = a

Substituting these values in (2) and reducing, we obtain

X2 - F2 = a2

as the equation of the locus.
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The locus is thus seen to be a rectangular hyperbola with the

given diameter of the circle as major axis. It is evident from

the figure, however, that if R is restricted to the upper half of

the circle, and R' to the lower half, only the upper half of one

branch and the lower half of the other belong to the locus. It

is only when R and R' are each permitted to trace both halves

of the circle that the locus consists of the entire hyperbola.

Remark. The points A and A' do not belong to the locus.

For, the only possible way in which P can take on the position
of the point A', for example, is for R and R' to coincide in A'

;

but then there is no chord RR 1 and also no line A'R', so that

no point P on the locus is determined.

Let us return now to equations (3a) and (4a). In solving
them for x', we actually obtain

TXx' = a? Y
But Y"= 0, since P cannot lie on the axis of x, in either A or

A'
;
hence we were justified in dividing by Y, and the result,

x' = a?/X, is correct.

In subsequent problems we shall lay no stress on exceptional

points such as A and A'. Their importance for the student at

this stage is relatively small.

Example 2. A point R traces a pa-

rabola. Find the locus of the point of

intersection, P, of the line through the

focus and R with the line through the

vertex perpendicular to the tangent
at R.

The parabola, referred to the coor-

dinate axes shown in the figure, has

the equation

2/
2 = 2 mx.

The motion of R can be expressed by taking, as auxiliary

variables, its coordinates
(as', y'\ connected by the relation

(5) y"
y-

FIG. 4



270 ANALYTIC GEOMETRY

which states that R, in moving, stays always on the pa-
rabola.

The slope of the tangent at R is m/y', Ch. IX, 2, eq. (5);

consequently, the line through perpendicular to the tangent is

y'

m
As the equation of FR we have

y (y=-^(*-o

The equations expressing the fact that P : (X, F) is the

point of intersection of these two lines are, therefore,

(6) Y=-^X,

From equations (5), (6), and (7) we have to eliminate x' and

y'. Solving (6) and (7) for x' and y', we have :

, T , m(m X)y'=m ,
x' = 1,

X' 2 X
Substituting these values for y' and x' in (5) and reducing the

result, we obtain

X 2 + F2 - mX =

as the equation of the locus.

The locus is therefore a circle, passing through the vertex of

the parabola and having its center at the focus. The vertex,

0, is not a point of the locus.*

Elimination of x', y'. In each of the above examples we
eliminated the auxiliary variables x', y' by solving the last

two of a set of three equations for x', y' and substituting the

values thus obtained for x', y' in the first equation, the

* It is an exceptional point, similar in type to the exceptional points,

A and A', of Example 1. For, when R is at 0, FR and OP coincide and

consequently determine no point on the locus.
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equation stating that the point (x
r

, y') lies on the given curve.

This method is valuable because of its general applicability.

The student should, however, be on the alert for short cuts in

the elimination. For example, he might have noticed by close

inspection that, in Example 1, x', y' can be eliminated easily

from equations (2), (3), (4) by multiplying equations (3) and

(4) together :

and by noting, from equation (2), that the quantity

-y'2

x'2 - a2

has unity as its value.

EXERCISES

1. Let AA' be the major axis of an ellipse and RR' be a

variable chord perpendicular to AA'. Find the locus of the

point of intersection of AR and A'R'.

2. Given a fixed diameter of a circle and a variable chord

parallel to it. Find the locus of the point of intersection of

the line through the mid-point of the chord and one extremity
of the diameter with the radius drawn to the corresponding

extremity of the chord. What is the locus if the radius is

drawn to either extremity of the chord ?

Ans. Part of a parabola ;
the parabola.

3. Find the locus of the point of intersection of the line

drawn through a given focus of an ellipse perpendicular to a

variable tangent with the line joining the center to the point of

tangency.
Ans. The directrix corresponding to the given focus.

4. Let R be a point tracing an ellipse. Find the locus of

the point of intersection of the line drawn through the center

perpendicular to the tangent at R with the line drawn through
R parallel to the conjugate axis.

Ans. An ellipse, similar to and having the same axes as

the given ellipse, but with foci on the opposite axis.
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5. The preceding problem for a hyperbola.

6. Find the locus of the point of intersection of the line

drawn through a variable point R of a parabola parallel to the

axis and the line through the vertex perpendicular to the tan-

gent at R.

7. A variable tangent to an ellipse meets the transverse

axis in the point T. Determine the locus of the point of

intersection of the line drawn through T parallel to the con-

jugate axis and the line joining the point of contact of the

tangent to a vertex.

8. The preceding problem for a hyperbola.

9. Let RR' be an arbitrary chord of an ellipse parallel to

the conjugate axis
;
let the normal at R meet the line joining

the center to R' in the point S. Find the locus of the mid-

point of RS.

10. The preceding problem for a hyperbola.

4. Other Problems Involving Two or More Auxiliary Vari-

ables. There are problems in which it is convenient to use

two auxiliary variables other than those of the type which

we considered in the preceding paragraph.

Example. The points A and B are fixed and the line L is

perpendicular to AB at its mid-point, 0; R and S are two

points on L, both on the same side

of AB and moving so that the

product of their distances from
P:(X,Y) is constant, and equal to V1

. Find
(0,r)-

A'-(-a,0)

of intersec-

tion, P, of AR and BS.

~0 B'- (a,0) Take the axes as shown in the

5 figure and let AB = 2 a. The

motions of R and S can be repre-

sented by taking their ordinates, which we denote by r and s,

as auxiliary variables. The condition that R and S are on the
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same side of AB and relatively so situated that OR OS = b2

is then given by the equation,

(1) rs = b2
.

The equations of AR and BS are

a r as
Since P : (X, F) is the point of intersection of these lines, we
have

To eliminate the auxiliary variables r and s from equations

(1), (2), (3) is now our problem. We notice that in the product
of equations (2) and (3) :

i_.x
2= Z!

o2 rs
'

r and s enter only in the form rs, and that the value of rs is

given by (1) as &-. We have, therefore, as the equation of the

locus

The locus of P is, therefore, an ellipse, with its axes along
AB and L, and passing through the points A and B. These

points are not, however, points of the locus.

EXERCISES

1. What is the locus of P in the problem in the text, if R
and S are always on opposite sides of AB ?

2. The points Px and P2 are fixed, and the lines LI and L2

are perpendicular to PxP2 in P: and P2 respectively ; Qi and

Q.2 are two points on LI and L2 respectively, both on the same

side of PiP2 and mpving so that the product of their distances
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from P1 and P2 respectively is constant. Find the locus of

the point of intersection, P, of PjQ2 an(i PzQi-

3- What is the locus of P in the preceding example, if Qi

and Q2 are always on opposite sides of PiP2 ?

4. Do Ex. 2, 2, using the intercepts of the moving line AB
on the two given perpendicular lines as auxiliary variables.

5. The same for Ex. 3, 2.

6. The points R and S move, one on each of two fixed

perpendicular lines, so that the segment RS subtends always
a right angle at a fixed . point, not at the intersection of the

two lines. Find the locus of the mid-point of RS.
Ans. Perpendicular bisector of the line-segment joining the

fixed point with the intersection of the fixed lines.

7. Two right angles, having their vertices in fixed points

A and B, rotate about these points, so that the point of inter-

section of two of their sides traces a line parallel to AB.
What is the locus of the point of intersection of the other two

sides ?

5. Use of the Formula for the Sum of the Roots of a Quad-

ratic Equation. The sum of the roots of a quadratic equation

(Ch. IX, 5),
Ax 1 + Ex + C = 0, A = 0,

is the negative of the ratio of the coefficients of the terms in

x and x 1

;
that is,

7J

(1) 0?! + ^ = --,
where xt and x2 are the roots.

As a simple example of the way in which this fact may be

used to advantage, let us find the coordinates of the point P
midway between the points of intersection, Px and P2,

of a

line and a conic. Take, for example, the line

(2) 2x-y = l,

and the ellipse

(3) 3
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The coordinates (xly y^) and (x2 , y2), of P: and P2 ,
are the

simultaneous solutions of equations (2) and (3). Substituting

in (3) the value of y from (2) and

collecting terms, we have the quad-

ratic equation,

19 x2 -

for the determination of x
l and xz .

We are interested, not in the

actual values of x
a
and x.2,

but in

half their sum
;

for this is the

abscissa of the mid-point, P, of

P
X
P2. By (1) the sum is

-^|.
Then the abscissa of P is

and, since P lies on the line (2), its ordinate is

FIG. 6

Consider now the following locus problem : A variable tan-

gent to the parabola,

y~ = 2 mar,

meets the hyperbola,

in the points PI and P2 -

What is the locus of the mid-

point, P, of PiP-j ?

As auxiliary variables we
take the coordinates (x

f

, y') of

the point R tracing the parab-
ola

; they satisfy the equa-
tion of the parabola :

FIG . 7

(4) y'*

The tangent at R has the equation

(5) y'y = m(x + a/).

To find the coordinates of P1 and P2 ,
we solve (5) simultane-

ously with the equation of the hyperbola. Eliminating y, we
have :

mx" + mx'x c-y' = 0.
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Half the sum of the roots of this equation is X; hence,

^ (i),

(6) X==
-|'

Since Y is the ordinate of the point on the line (5) whose

abscissa is given by (6), we have

(7) /r=

We now have three equations, (4), (6), and (7), from which

to eliminate the auxiliary variables x' and y'. We solve (6)

and (7) for x' and y', obtaining

Substituting these values of x' and y' in (4) and simplifying

the result, we have
4F2=-raX.

Consequently, the locus of P is a parabola with vertex at

the origin and opening out along the negative axis of x as

axis. The origin is not a point of the locus.

EXERCISES

1. A variable tangent to the circle

a2 + y
2 = a2

meets the hyperbola
2xy = a?

in the points Px and P2 . Find the equation of the locus of the

mid-point of PiP2 . Plot the locus.

Ans.
|

=
,
a curve which does not, despite its ap-

x2
y
2 a2

pearance, consist of two conjugate rectangular hyperbolas.

2. Two equal parabolas have the same axis and vertex, but

open in opposite directions. Find the locus of the mid-points

of the chords of one which, when produced, are tangent to the

other.
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3. Find the locus of the mid-points of the focal chords

chords through the focus of a parabola.

Ans. A parabola with its vertex in the focus of the given

parabola, with the same axis, but half the size.

4. Determine the locus of the mid-points of one set of focal

chords of an ellipse.

5. The same for a hyperbola.

6. A variable tangent to a parabola meets the tangents at

the extremities of the latus rectum in the points Pl and P2 .

Find the locus of the mid-point of PiP2 .

7. The asymptotes of a hyperbola intercept the segment

P\PZ on a variable tangent. What is the locus of the mid-

point of P\P2 ? Ans. The hyperbola itself.

6. Loci of Inequalities. Though we are concerned primarily
in mathematics with equalities, it is not infrequent that in-

equalities become important. Accordingly, it is not out of

place to consider here the loci of some inequalities.

Example 1. The equation x 1 = represents all the

points of the line parallel to and one unit to the right of the

axis of y, and no other points. Consequently, the inequality,

x 1 = 0, represents all the pojnts of the plane not on this

line. In particular,
x-l>0

represents all the points to the right of it and

z-l<0

represents all the points to the left of it.

Example 2. What is the locus of points whose coordinates

satisfy the inequality

(1) 5 + 12y + 6>0?
The equation obtained by replacing the sign > by the sign

of equality represents the line L shown in the figure. From
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Example 1 we should expect that the locus of (1) would con-

sist of all the points on one side of L. This is, in fact, the

case : If the quantity,

F = 5 x + 12 y -f 6,

is positive for a certain point

(x , y ),
then it is positive for all

points on the same side of L as

(XQ, V ).
FIG 8 We prove this by showing that

the opposite assumption leads to a contradiction. Suppose
that F becomes negative for some point (x1} y^) on the same

side of L as (x0) y ).
Join

(o? , y ) to (x1} yx) by any curve C
not cutting L, and let a point (#, y) trace this curve. For

(x , ?/ ),
F is positive; but when (x, y) has reached (xlt y^), F

has become negative. Consequently, for some intermediate

point R on C, F has the value zero, inasmuch as its value

changes continuously as (x, y) moves along C. Hence R must

lie on L, a contradiction, since we took C as a curve never

cutting L.

To ascertain on which side of L the points represented by

(1) lie, we have but to find the value of F for one point not

on L. In this case the simplest point to take is the origin.

But, when x = and y = 0, Fjs positive. Therefore the locus

of (1) consists of all points on the same side of L as the origin.

Example 3. What is the locus of the inequality

(2) y* >2x?
The equation, obtained by replacing the sign > by the

equality sign, represents a parabola. By the reasoning of

Example 2, then, the inequality represents all the points

within, or all the points without, the parabola. The latter is

clearly the case, since (2) is not satisfied by the coordinates

of the point (1, 0), a point which is within the parabola.
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EXERCISES

Find the loci of the following inequalities. Draw a figure

in each case and shade the area of points represented by the

inequality.

1. a + 2>0. 2. 2?/ + 3<0.
3. x + y + l > 0. 4. 3z 4y 2 > 0.

5. 2x 3y<Q. 6. 2 + y
2 <l.

7. f- + 7 x > 0. 8. 3 x2 + 4 s > 8.

7. Locus of Two or More Simultaneous Inequalities.

Example 1. Find the locus of points whose coordinates

satisfy simultaneously the two inequalities

(1) 5aj + 12?/ + 6>0,

(2) 3x-4y-2>0.
Denote the left-hand sides of (1) and (2) by FI and F2 ,

re-

spectively. By Example 2 of 6, the points whose coordi-

nates satisfy (1) are all the

points which are on the same

side of the line L^ : FI = as

the origin ; similarly, the points

whose coordinates satisfy (2)

are all the points which are on

the opposite side of the line

L2 : F2
= from the origin.

The points whose coordinates FIQ- 9

satisfy (1) and (2) are the

points common to these two sets, namely, those of region I

of the figure.

Lying between the lines LY and L2 there are four regions,

I, II, III, IV. It is clear from the foregoing that the pairs of

simultaneous inequalities representing these regions are :

*
\ TF -^ f\

* *
1 TF ^* A .

J.J-J-
i -w-j

y-v J. v . s _
^.

\ J? 9 ^ U i \ J? o <^ UI lxfo<CUI .To^lA
\ & ^ V*^ \ * ^ "

\ * ^
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Example 2. Find the points satisfying simultaneously the

inequalities :

?/
2 2a; < 0, x + y l<0.

The equations obtained by replacing the signs < by signs of

equality represent a parabola and a line intersecting it. The
locus of the first inequality is the interior of the parabola;
that of the second is the half-plane bounded by the line and

containing the origin. Common to these two regions is the

finite region contained between the parabola and the line
;

this, then, is the locus of the two inequalities taken simul-

taneously.

EXERCISES

Find the locus of points whose coordinates satisfy simul-

taneously the following sets of inequalities. Draw a figure in

each case, and shade the region represented.

J4aj-3<0, !5x-12y + 26 > 0,

\3x + 2y-6 < 0. |3z + 4y-10>0.
\2x-y + 3 <0,

ja;

2 +?/2 <4, Ans.

\4:X-2y+9 > 0. }a?-3>0. No locus.

|3a;
2 + 4y J -12 > 0, |o;

2 -7y<0,
5 '

\2x-3y + 12 >0. ja;
2
-2/2 + l>0.

f2aj-y-3<0, [^ + ^-l>0,
7. |aj+3y-5<0, 8. s y > 0,

[5a;_j_ y + 3> 0. [2x-y>0.

Each of the following pairs of curves divide the plane

(minus the points on the curves) into a number of regions.

Find the pairs of simultaneous inequalities representing these

regions.

9. 5*/ + 8 = 0, 3x+8y-2=0.
10. 5x- 12s/ + 26 = 0, 3x+4?/-10 = 0.

11. 2z2 + ?/
2 = 8, 4:X-3y-2 = Q.

12.
'

2 = 2mx x = Q.
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13. x 1

-y"- = 4:,
2a- y -2=0.

14. z-+4?/ = 0, 2x-3y-6 = 0.

15. ?/
2 + 8o; = 0, z2 +</2 = 9.

8. Bisectors of the Angles between Two Lines. The two lines

L2 : 3x 4y-2 = 0,

are given. It is required to find the equations of the lines bi-

secting the angles between them.

We solve this problem by finding the locus of the point

P:(-X", F) moving so that its distance DI from
'

L\ equals its

distance D2 from Lz :

A = D2 .

According to Ch. II, 8, Z>x and D2 are

n ,
5.X + 12F+6 n ^3X-4F-2i/i := T- , J_/n := -\-- ,

13 5

where, in 'each case, that sign is to be chosen which will make
the distance positive.

The lines Lt and L2 are those of Example 1, 7. It follows,

from the results there given in connection with Fig. 9, that

the signs which must be taken to make DI and D2 both positive

are:
If P is in I, + for D1} + for D2 ;

if P is in II, + for Dlt for D2 ;

if P is in III, for DI, for D2 ;

if P is in IV, - for Dlt + for D2,

For, if P lies, for example, in the region I, then the numerators

in the expressions for DI and D2 are both positive and the +
sign must be taken in each case to make DI and D2 positive.

If, now, P is in I or III and Z>r
= D2 ,

we have

5(5 X+ 12 Y+ 6)= 13(3 X - 4 F- 2),

or, on reducing,

(1) X-8F-4 = 0.
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Thus (1) is that bisector of the angles between Z/t and L2 which

lies in the regions I and III.

If P is in II or IV and D t
= Z)2 >

we have

5(5X + 12 F+ 6)= - 13(3X - 4F- 2)
or

(2) 16X+ 2F+1 = 0.

This is the bisector which lies in the regions II and IV.

Simplification. We now give in condensed form the method

of finding the bisectors. By equating DI and D2,
we have

5X+12Y+6 =+ 3X-4:Y-2
13 5

If we take both signs positive or both negative and reduce the

result, we get (1). If we take the plus sign on the right and

the minus sign on the left or vice versa, and then simplify, we

get (2). The equations (1) and (2) represent the bisectors
;

which equation represents a chosen bisector is easily deter-

mined by making a plot.

EXERCISES

1. Find the equations of the bisectors of the angles between

the following pairs of lines, and draw a figure which shall

indicate each bisector.

-
, -,

\3x+ 4^-10 = 0; \
*- 0-4 = 0.

2. Find the equation of that bisector of the angle between

the two lines,

4cc 3?/ + 3 = and 3x y 6 = 0,

which passes through the region between the two lines which

contains the origin.

3. Find the equations of the circles tangent to the lines of

Ex. 1, Part (a), and having their centers on the line y = 8.

4. Find the equations of the circles tangent to the lines of

Ex. 2 and passing through the point (1, 0).
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Given the triangle ABC with the sides

AB: 3x + 4y 3 = 0,

BC: 3x-y- 3 = 0,

CM: 12-5y + 15 = 0.

5. Prove that the bisectors of the interior angles of the

triangle meet in a point. Find its coordinates. Ans, (^, 0).

6. Find the equation of the circle iiascribed in the triangle.

Ans. 121(z2 + f) _j_ 88 x - 65 = 0.

7. Show that the bisector of the interior angle at the vertex

A and the bisectors of the exterior angles at the vertices B and

C meet in a point. Find its coordinates. Ans. (1, 5).

8. Find the equation of the circle tangent to BC, and to AB
and AC produced. Ans. x 1 + y- 2 x + 10 y + 10 = 0.

9. How many circles are there tangent to three lines?

Draw a figure showing these circles.

10. Given the triangle with vertices A, B, and C in the three

points (1, 0), (2, 4), and ( 5, 8). Prove analytically that

the bisector of the interior angle at A divides the side BC into

segments proportional to AB and AC.

See also Exs. 26-30 at the end of the chapter.

'EXERCISES ON CHAPTER xm
1. Let AA' be a fixed diameter of a circle and R a point

tracing the circle. Find the locus of the point of intersection

of A'R and the line through A perpendicular to the tangent at

E.

2. Find the locus of the point of intersection of the nor-

mals to an ellipse and to the auxiliary circle at corresponding

points. Take the eccentric angle (Ch. VII, 10) as the aux-

iliary variable.

3. The circle xz + y* = a2 cuts the axis of y in A : (0, a).

A point S traces the tangent at A and the second tangent from

S touches the circle in R. Find the locus of the point of in-

tersection of the altitudes of the triangle ARS.
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Suggestion. Take the abscissa of S and the coordinates of

R as auxiliary variables, and use the fact that OS is perpen-
dicular to AR.

4. Let AA' be a fixed diameter of a circle and R a point

tracing the circle. Find the locus of the point of intersection

of AR and the line joining A' to the point of intersection of

the tangents at A and R.

5. The normal to a hyperbola at a variable point R meets

the transverse axis in N. Determine the locus of the mid-

point of RN,

6. Find the locus of the point of intersection of the line

drawn through one focus of an ellipse perpendicular to a

variable tangent and the line drawn through the point of

tangency parallel to the transverse axis.

Ans. An ellipse, center in the focus chosen, with axes

having the same directions as those of the given ellipse.

7. Find the locus of the point of intersection of the line

drawn through one vertex of a hyperbola perpendicular to a

variable tangent and the line drawn through the point of tan-

gency parallel to the transverse axis.

8. Find the locus of the point of intersection of the line

drawn through the focus of a parabola perpendicular to a

variable tangent and the line joining the vertex with the

point of tangency.
Ans. An ellipse, whose minor axis is the line-segment join-

ing the vertex. of the parabola to the focus.

9. Two lines, passing through the points A and B respec-

tively, are originally in coincidence along AB. They are

made to rotate in the same direction about A and B respec-

tively, the first twice as fast as the second. What is the locus

of their point of intersection ?

10. Find the locus of the center of a circle which touches

one of two perpendicular lines and intercepts a segment of

constant length on the other.
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11. Find the locus of the point of intersection of the line

drawn through the vertex of the parabola y
z = 2 rnx perpen-

dicular to a variable tangent and the line drawn through the

point of tangency perpendicular to the axis.

Ans. The semi-cubical parabola, my2= 2 a?.

12. A vertex of a quadrilateral and the directions of the

sides through are fixed. The two angles adjacent to are

right angles and the diagonal joining their vertices has a fixed

direction. Find the locus of the fourth vertex.

Ans. Straight line through 0, perpendicular to the line

through which makes an angle with the fixed direction equal
to the sum of the two angles which the sides through make
with the fixed direction.

13. A parallelogram has sides of constant length a and b

and has one vertex fixed at a point 0. It opens and closes

so that the two sides through are always equally inclined

to a fixed line throiigh 0. Taking the angle which these sides

make with the fixed line as auxiliary variable, find the locus

of the vertex opposite to 0.

14. Each of two straight lines moves always parallel to

itself so that the product of the distances of the lines from a

fixed point is constant. Find the locus of their point of

intersection, taking the axes so that is the origin and the

directions of the two lines are equally inclined to the axis of x.

Ans. Two conjugate hyperbolas, center at 0, with asym-

ptotes parallel to the fixed directions.

15. Find the locus of the center of a circle which passes

through a fixed point on one of two perpendicular lines and

intercepts a segment of constant length on the other.

16. Find the locus of points from which it is possible to

draw two perpendicular normals to a parabola.

17. Find the locus of the point of intersection of the tangents

to an ellipse at points subtending a right angle at the center.

18. The preceding problem for the hyperbola.
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19. Determine the locus of the mid-point of a variable

chord of an ellipse drawn from a vertex.

20. Find the locus of the mid-point of a variable chord of

a parabola which subtends a right angle at the vertex.

21. A point R traces an ellipse, of which A and A' are the

vertices. Find the locus of the point of intersection of the

lines drawn through A and A perpendicular to AR and A'R

respectively.

Ans. An ellipse, similar to and with the same center as the

given ellipse, but with opposite transverse and conjugate axes.

22. The asymptotes of a hyperbola intercept the segment
AB on a variable tangent. What is the locus of the point

dividing AB in a given ratio, w^ : ra2 ?

Ans. A similar hyperbola, with the same transverse and

conjugate axes.

Exercises 23-25. Determine the equations of the desired loci

by use of rectangular coordinates. To identify the locus from

its equation introduce polar coordinates.

23. Find the locus of the point of intersection of a variable

tangent to a rectangular hyperbola with the line through the

center perpendicular to the tangent. Ans. A lemniscate.

24. Find the locus of the point of intersection of a variable

tangent to the circle x 1 + y
1 + 2 ax = and the perpendicular

to this tangent from the origin. Ans. A cardioid.

25. What is the locus of the mid-points of the chords of the

circle x 1

-f y
1 = a2

which, when produced, are tangent to the

hyperbola 2 xy = c- ? Ans. A lemniscate.

26. Show that the line

x cos 30 + y sin 30 = 5

is 5 units distant from the origin and that the perpendicular
from the origin to it makes with the positive axis of x an angle

of 30. Prove that the distance of the point (XQ, y )
from the

line is

-
(XQ cos 30 -f y sin 30 -

5),
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if (x , y ~)
is on the same side of the line as the origin, and is

XQ cos 30 + 2/
sin 30 -

5,

if (x , y )
is on the opposite side of the line from the origin.

27. State and prove for the line

(1) xcos<f> +y sin< = p, p>Q
the results corresponding to those given in the preceding exer-

cise for the particular line for which
<f>

306
, p = 5. Prove

that the equation of every line can be written in the form (1).

28. Two lines, with their equations in the form (1), are

given. Let a = 0, /3
= be the abridged notation (Ch. IX, 3)

for these equations. Prove that the bisectors of the angles

between the two lines are given by the equations a ft
=

and a + ft
= 0. Show that, if neither line goes through the

origin, the bisector a ft
= passes through that opening

between the lines in which the origin lies,

29. The equations of the sides of a triangle, given in the

form (1), are a = 0, /3
= 0, and y = 0. Assuming that the

origin lies within the triangle, find the equations of the bisec-

tors of the interior angles and prove that they meet in a point.

30. Prove that the bisectors of two exterior angles of the

triangle of the preceding exercise and the bisector of the

interior angle at the third vertex meet in a point.



CHAPTER XIV

DIAMETERS. POLES AND POLARS

1. Diameters of an Ellipse. By the axes of an ellipse we

may mean either the transverse and conjugate axes, indefinite

straight lines, or the major and minor axes, the segments of

these lines intercepted by the ellipse ;
cf. the dual definition,

Ch. VII, 1.

By a diameter of an ellipse we may mean, also, one of two

things, either an indefinite straight line through the center of the

ellipse, or the segment of this line intercepted by the ellipse ;
and

we agree to adopt this dual definition. The length of the seg-

ment is called the length of the diameter; its end points, the

extremities of the diameter.

Problem. What is the locus of the mid-points of a set of

parallel chords of an ellipse ?

In the special case of a circle, the locus is a diameter, con-

sidered as a line-segment. This is true, also, for the general

ellipse. For, if the chords are parallel to an axis of the

ellipse, the theorem is geometrically
obvious

;
if they are oblique to the

axes, as is generally the case, we
resort to an analytical proof.

Let the ellipse be

FIG. 1
(1)

and let A. (= 0) be the slope of the chords. Consider a variable

chord of slope A. moving always parallel to itself. Its

288

mo-
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tion we express analytically by taking ft,
its intercept on the

axis of y, as auxiliary variable. The equation of the chord is,

then,

where A is constant and ft is variable.

The work now proceeds according to the method of

Ch. XIII, 5. If in (1) we set for y its value as given by

(2), we obtain the equation

or (a
2A2 + &2

)
2 + 2 a2

A/to + a\^ ft
2
)
= 0,

whose roots are the abscissae of the two points of intersection

of the line (2) with the ellipse. Half the sum of these roots

is X, the abscissa of the mid-point, P, of the chord. Hence,

by the formula, Ch. XIII, 5, (1), for the sum of the roots of

a quadratic equation,

(3) X= *M_.
a2A2 + ft

2

Since, moreover, P: (X, F) lies on the chord (2), we have

It remains to eliminate ft from (3) and (4). Substituting
its value, as given by (4), into (3) and simplifying the result-

ing equation, we obtain

(5) 62x+a2AF=0.

This is the equation of a line through the center of the

ellipse, that is, a diameter. It is clear geometrically, however,
that it is not the indefinite line which is the locus, but merely
the portion of it lying within the ellipse. We have thus ob-

tained the following result.

THEOREM 1. The locus of the mid-points of a set of parallel

chords of the ellipse (1) is a diameter, considered as a line-seg-

ment (exclusive of the end points'). If the slope of the chords is

A(= 0), the slope A' of the diameter is

(6) A' = -^r-
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EXERCISES

1. Find the locus of the mid-points of the chords of the

ellipse

which are inclined at an angle of 135 to the axis of x. First

draw an accurate figure, showing the chords and the locus
;
then

solve the problem analytically, using the method, but not the

formulas, of the text.

2. Prove the converse of Theorem 1, namely, that every
diameter of the ellipse (1) bisects some set of parallel chords.

Show that, if A'(= 0) is the slope of the diameter, then the

chords which it bisects are of slope A, where

\= -*-.
a2A'

3. Prove analytically that the tangent to an ellipse at an

extremity of a diameter is parallel to the chords which the

diameter bisects.

Suggestion. Let (x1} y: ~)
be the coordinates of the extremity

of the diameter and find, by using (6), the slope A of the

chords in terms of a^ and y{ .

2. Conjugate Diameters of an Ellipse. Two mutually per-

pendicular diameters of a circle have the property that each

bisects the chords parallel to the other. The axes of an el-

lipse have this same property. Are there other pairs of

diameters of the ellipse which have it? This question is

answered in the affirmative by the following theorem.

THEOREM 2. If one diameter bisects the

chords parallel to a second, the second di-

ameter bisects the chords parallel to the first.

The two diameters stand in a reciprocal

relationship ;
each bisects the chords paral-

lel to the other. We call them a pair of

conjugate diameters, and say that each is conjugate to the

other.
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We now prove Theorem 2. Let the diameter D' bisect the

chords parallel to the diameter D
;

to prove that D bisects

the chords parallel to D'.

Denote the slopes of D and D' by A and A'. By hypothesis,
the diameter of slope A' bisects the chords of slope A

;
conse-

quently, by Th. 1, 1,

A' -*-
a2A

But then x =
a2A'

This equation says that the diameter of slope A bisects the

chords of slope A'
;
that is, D bisects the chords parallel to Z)',

q. e. d.

Incidentally, we have also proved the following theorem.

THEOREM 3. Two diameters D and D' of the ellipse

are conjugate, if and only if they are the axes or have slopes A

and A' related by the equation

(2) AA'=-.
az

The symmetry of (2) in A and A' corresponds to the sym-

metry in the geometrical relationship of D and D'.

To each diameter D there corresponds a conjugate diameter

the diameter parallel to the chords which D bisects. There

are, then, infinitely many pairs of conjugate diameters. Since,

by (2), the product of the slopes of any pair, other than the

axes, is negative, the two diameters of the pair pass through

different quadrants.

The axes are the only mutually perpendicular pair, unless

the ellipse becomes a circle. For, if any other pair were per-

pendicular, the product, AA', of their slopes would be 1, and

this is impossible, according to (2), unless 62 = a2
;
but then

the ellipse becomes a circle.
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We now find the conjugate diameters which are equally
inclined to the axes. It is evident, geometrically, that these

will also be the conjugate diameters of equal lengths. If they

exist, their slopes must be equal except for sign : X' = X.

Hence, by (2),

. 52 j
X2 = and X =

a2 a

We see, then, that there is a single pair of conjugate diameters

which are equally inclined to the axes, or have equal lengths.

They are the diagonals of the rectangle circumscribed about

tKe ellipse (Fig. 3). We denote

them by DI and Z)/.

Now let a diameter D, starting

from coincidence with the trans-

verse axis AA', rotate about

into coincidence with DI ;
then

the conjugate diameter, D', starts

from coincidence with the con-

jugate axis BB', and rotates into

coincidence with Z)/. But D' rotates more quickly than D,*
so that the angle from D to D', at first 90, becomes obtuse

and steadily increases. When D continues to rotate from DI
to BB', then D' rotates from Z>/ to AA'

;
but now D' rotates

less quickly than Z>, so that the angle from Z> to D' decreases

and becomes again 90 in the final position.

EXERCISES

1. Draw accurately an ellipse whose axes are 10 cm. and

7 cm. Construct the axes and the pair of conjugate diameters'

equally inclined to the axes. Then draw the diameters in-

* Since the slope of is - < 1, X A'ODi < 45 and X B'ODi' > 45
a

hence D has a smaller angle through which to rotate than D' . Con-

sequently, it is to be expected that D' will rotate more quickly than D.

A proof of the fact may easily be given later, when the student studies

the Calculus.
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clined at angles of 10, 20, 30, 40, 50, 60, 70, and 80' to the

transverse axis. For each of these diameters compute the

slope, and the angle of inclination, of the conjugate diameter

and construct it. Find the angles between the successive

diameters of this new set, and also the angles between the

successive pairs of conjugate diameters. Mark clearly the

pairs, and study the results and the figure in light of the text.

2. Prove that, if one of a pair of conjugate diameters of

an ellipse has the slope e or e, where e is the eccentricity,

the other joins two extremities of the latera recta.

3. If the equal conjugate diameters of an ellipse form with

one another an angle of 60, what is the eccentricity of the

ellipse ?

4. The axes of an ellipse are the axes of coordinates and

the slopes of two conjugate diameters are
-|
and |.

What is

the eccentricity ?

5. The same, if the slopes of two conjugate diameters are

f and f.

6. Prove that the line joining a focus to the point of inter-

section of the corresponding directrix and a diameter is per-

pendicular to the conjugate diameter.

3. Diameters of a Hyperbola. A diameter of a hyperbola is

denned in the same way as a diameter of an ellipse, 1.

Certain diameters of a hyperbola, however, do not meet the

curve. Special definitions of the length and extremities of such

a diameter must, then, be adopted. These we shall consider

later.

The locus of the mid-points of a set of parallel chords of

slope A. (= 0) of the hyperbola

(1)
i*_^ = l
a2 62

can be found by the method of 1. It is, however, unneces-

sary to repeat the work there given. For, this work becomes
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valid immediately for the hyperbola (1) if, in it, we replace
62

by 62
. It follows, then, that the locus now required is

the diameter

(2)
- Ifa + a?Xy = or 62cc - a2

Ay = 0.

The locus consists of all the points of this diameter only if

the given chords connect points of opposite branches of the

FIG. 4 FIG. 5

hyperbola (Fig. 4). If the chords connect points on the same

branch (Fig. 5), the locus is merely the points of the diameter

which lie within the curve. The result can be stated as follows.

THEOREM 4. Tlie locus of the mid-points of a set of parallel

chords of the hyperbola (1) is a diameter, or so much of a diame-

ter as lies ivithin the curve. If the slope of the chords is A (
=

0),

the slope A' of the diameter is

(3) x ' =
^- -.T'

1

There are chords of an ellipse with any given direction.

This is not true, however, for a hyperbola. For, there are no

chords of a hyperbola parallel to an asymptote, since a line

parallel to an asymptote meets the curve in but one point.

Consequently, the slope, A, of the chords of Theorem 4 cannot

have either of the values, b/a.

EXERCISES

1. A set of parallel chords of the rectangular hyperbola

x2 -
y*-
= 6

are inclined at an angle of 30 to the positive axis of x.

What is the inclination of the diameter which bisects them ?



DIAMETERS. POLES AND POLARS 295

First draw an accurate figure, showing the chords and the

diameter
;
then solve the problem analytically, without refer-

ence to the formulas of the text.

2. If a set of parallel chords has a slope nearly equal to

that of an asymptote S, then the diameter D bisecting the

chords has a slope nearly equal to that of S, and when the

chords approach a limiting position of parallelism to S, then

D approaches S as its limit. Draw a figure showing the rea-

sonableness of this theorem and then prove the theorem ana-

lytically by use of (3). \

3. Prove the converse of Theorem 4, namely : Every
diameter of a hyperbola, not an asymptote, bisects some set

of parallel chords. Cf. 1, Ex. 2.

4. Show that the mid-point of a chord of a hyperbola is also

the mid-point of the chord of the conjugate hyperbola which

lies on the same line. Hence show that the mid-points of the

chords of a given slope lie on one and the same diameter,

whether the chords are chords of the given hyperbola or of

its conjugate.

5. Prove Ex. 3, 1, for a hyperbola.

4. Conjugate Diameters of a Hyperbola. Let the diameter,

ZX, of slope A', bisect the chords of the hyperbola

(1) *_=!
a2 62

which are parallel to the diameter D, of slope A(= 0). Then,

by Th. 4, 3,

X'-*- or XV.*.
a2A a2

Since these equations are symmetric in A and A', it follows that

the diameter D bisects the chords parallel to D'.

Thus Theorem 2, 2, is established for the hyperbola, and

the two diameters D and D' are, in the sense of that theorem,

conjugate diameters; each bisects the chords parallel to the

other.
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We have also proved, incidentally, the following theorem.

THEOREM 5. Two diameters, D and D', of the hyperbola (1)

are conjugate if and only if they are the axes or have slopes, \

and A', related by the equation

(2) AV=|.
There are infinitely many pairs of conjugate diameters, as

in the case of the ellipse. But here the two diameters of a

pair, not the axes, pass through the same quadrants, since the

product, XA', of their slopes is positive.

The value, 62/a
2
,
of this product is the square of the slope

of an asymptote. The slope of an asymptote, therefore, is a

mean proportional between the slopes

of any two conjugate diameters, not

the axes. Consequently, two such

conjugate diameters, D and D', are

always separated by the asymptote S
which lies in the same quadrants with

Fl

'

G 6 them, and the nearer D lies to S on

the one side, the nearer D' will lie to

S on the other side. If D approaches S as a limiting position,

then so will D'. Thus, an asymptote is often spoken of as a

self-conjugate diameter
; actually, however, it has no conju-

gate, since, as we have seen, there are no chords parallel to it.

It is now clear that if a diameter, D, starting from coinci-

dence with the transverse axis, rotates in one direction about

into coincidence with an asymptote, then the conjugate

diameter, D', starting from the conjugate axis, will rotate in

the opposite direction about into coincidence with the same

asymptote.

Conjugate Hyperbolas. Consider now the hyperbola,

conjugate to the hyperbola (1). Since the two hyperbolas
have the same center, they have the same diameters, con-
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sidered as indefinite straight lines. Moreover, they have the

same pairs 'of conjugate diameters. For, the chords of (3) of a

given slope and the chords of (1) of the same slope are bisected

by one and the same diameter, Ex. 4, 3.

We see now a suitable definition for the extremities of a

diameter which does not meet the given hyperbola. They
shall be the points in which the diameter meets the conjugate

hyperbola (Fig. 7), and the distance between these points shall

be the length of the diameter.*

Conjugate Diameters of a Rectangular Hyperbola. A special

ellipse, all of whose conjugate diameters are mutually perpen-

dicular, is the circle. There is no special

hyperbola with this property, since two

conjugate diameters of a hyperbola, other

than the axes, always pass through the

same quadrants. For this reason, too,

there are no conjugate diameters equally
inclined to the axes.

There may, however, be conjugate di-

ameters, each of which has the same

inclination to one axis as the other has to the other axis. The

product, XA', of the slopes of two such diameters is 1
; hence,

by (2), such diameters exist only if

FIG. 7

or
a

a2 = 62
,

that is, only if the hyperbola is rectangular. In this case

AA' = 1, and every pair of conjugate diameters are in the re-

quired relation. Consequently, the two diameters are equally
inclined to the asymptotes, inasmuch as the asymptotes are

now the bisectors of the angles between the axes. They are

also equal in length, as considerations of symmetry immedi-

ately show (Fig. 7). We have thus proved the following
theorem.

* An asymptote, considered as a diameter, we shall not think of as

having length or extremities.
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THEOREM 6. Two conjugate diameters of a rectangular hyper-

bola are always equally inclined to the asymptotes and always

equal in length.

It can be shown that the rectangular hyperbola is the only
one with either of these properties. Cf. Ex. 6, below, and 6,

Ex. 5. Thus the rectangular hyperbola plays a role among the

hyperbolas which is somewhat similar to that played by the

circle among the ellipses.

EXERCISES

1. Draw accurately the hyperbola for which 2 a = 10 cm. and

26 = 7 cm. Construct the axes, AA' and BB', the asymptote
S passing through the first quadrant, and the diameters Z>15 D2,

Ds inclined at angles of 10, 20, 30 to the transverse axis.

Compute the slopes and angles of inclination of the conjugate

diameters, )/, D2 ',
D3 ',

and draw these diameters. Find the

angles between the successive diameters, BB', Z)/, D2 ',
D3 ', S,

and compare them with the corresponding angles between the

diameters, AA', D1} D.2 ,
D3 ,

S. Study the results and the fig-

ure in light of the text.

2. Prove Ex. 2, 2, for the hyperbola.

3. Prove that the asymptotes of the hyperbola

^2_2/2_
a2 b*~

are conjugate diameters of the ellipse

*4- = 1

a2 &2

4. The axes of a hyperbola are the axes of coordinates, and

the slopes of two conjugate diameters are 2 and f . What is

the eccentricity of the hyperbola? Two answers.

5. Prove Ex. 6, 2, for the hyperbola.

6. Show that two conjugate diameters of a hyperbola are

never equally inclined to the asymptotes unless the hyperbola
is rectangular.
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5. Diameters of a Parabola. When one focus and the cor-

responding directrix of a central conic an ellipse or a hyper-
bola are held fast and the center is allowed to recede in-

definitely along the transverse axis, the limit of the cdnic is a

parabola and the limit of the diameters of the conic is a set

of lines parallel to the axis of the parabola.

Accordingly, by a diameter of a parabola we
shall mean any line in the direction of the axis

of the parabola.

If this definition is really in accord with

that of a diameter of a central conic, we
should find that the mid-points of a set of

parallel chords of a parabola lie on a line in

the direction of the axis. This is the case.

If the chords are perpendicular to the axis,

their mid-points evidently lie on the axis
;

if the slope of the

chords is A(= 0), and the equation of the parabola is

(1) y
1 = 2 mx,

the mid-points of the chords lie on the line

(2) 2/
=

,

as may easily be shown.
4

EXERCISES

1. Establish the result embodied in formula (2).

2. What is the equation of the diameter of the parabola

which bisects the chords of slope ^ ?

3. Prove Ex. 3, 1, for the parabola.

4. There are no conjugate diameters for a parabola. Why ?

6. Extremities and Lengths of Conjugate Diameters. Ellipse.

Let the coordinates of one extremity of a diameter D (not an

axis) of the ellipse
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be (!, yi).
. The slope of D is then X = yi/

the slope X' of the conjugate diameter D' is

From (2), 2,

2
A.

Consequently, the equation of D' can be written in the form

O "a?"
1

""^2
"" 1

It follows that D' is parallel to the tangent to the ellipse at

(x\> Vi)- In other words, the tan-

v
gents at the extremities of a diam-

eter are parallel to the conjugate

\
Xl>1/1 diameter.

The coordinates of the ex-

tremities of D' may be found by

solving equations (1) and (2)

simultaneously. -The solutions

are found to be
FIG. 9

teA

a)
ayl bxj\

b
'

a/
We summarize the foregoing results in a theorem.

THEOREM 7. If (xi, yi) is one extremity of a diameter D of
the ellipse (1), then (2) is the equation of the conjugate diameter

D', and one extremity (#/, ?//) of D' is

b
' 1

a

Suppose, now, that we denote the length of D by 2 a and

that of D' by 2 b\. Then it can be shown, by application of

(3) and the equation which states that (xlt 3/1)
is on the ellipse,

that

(4) cd
2 = 62 + e2^2 and b? = a2 e2^2

.

We have, then,

ai
2 + &!

2 = a2 + & 2 or (2 aj)
2 + (2 6i)

2 = (2 a)
2 + (2 6)

2
.

This result we express as a theorem.
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THEOREM 8. TJie sum of the squares of the lengths of any two

conjugate diameters of an ellipse is constant, and equals the sum

of the squares of the axes.

Hyperbola. Of two conjugate diameters, D and D', of the

conjugate hyperbolas

(*) (> S-S- 1
- (6) 3-E---

one meets the one hyperbola ;
the other, the other hyperbola.

Suppose that D meets (5 a) and D' meets (5 6), and that the

coordinates of an extremity of D on (5 a) are (xlf yj, while

those of an extremity of D' 011 (5 6) are (a;/, y/).

Then the equations of D' and D are, respectively,

as is evident, from analogy to the

corresponding equation (2) in the

case of the ellipse. From (6) it

follows that the tangents, at the

extremities of a diameter, to the

hyperbola on which these extremi-

ties lie are parallel to the con-

jugate diameter.

The coordinates of the extremi-

ties of D' can be found by solving equations (6 a) and (56)

simultaneously. The solutions are

FlG 10

^A and f_Sfc--.*a\
a ) \ b

'

a )

One of these extremities is (a:/, y/) ;
let us say, the first one.

Then the values of x/ and y/ in terms of xl and yl} and vice

versa, are

6 a 6
'

a

where the equations (6) are obtained by solving equations (a)

for ON and w,.
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The student should note the symmetry of formulas (6) and

(7) in
(a5a , yi) and (oV, 3^'). The results embodied in these

formulas we state as a theorem.

THEOREM 9. If (xt , y^) is one extremity of a diameter D
meeting the hyperbola (5 a), and (#/, y/) is a properly chosen one

of the extremities of the conjugate diameter D', then (6) are the

equations ofD and D', and (7) give the relations between the two

extremities.

Let 2 ai be the length of D and 2 b that of D'. It can be

shown that

&2 = eV2 + a2
,

2 22 -a2 = eV2 + 62
.

Hence ax
2 - b{ = a2 - 62

and. we have the following theorem.

THEOREM 10. The difference of the squares of the lengths of

any two conjugate diameters of a hyperbola is constant, and equals

the difference of the squares of the axes.

EXERCISES

Establish the following formulas.

1. Formulas (3). 3. Formulas (7).

2. Formulas (4). 4. Formulas (8).

5. Show that two conjugate diameters of a hyperbola are

never equal unless the hyperbola is rectangular and that in

this case they are always equal.

6. Prove that the product of the focal radii to any point of

an ellipse equals the square of half the diameter conjugate to

the diameter through the point.

7. State and prove the corresponding theorem for the

hyperbola.

7. Physical Meaning of Conjugate Diameters. Ellipse.

Consider a flat bar of iron, on the end ABCD of which a

circle is drawn. Let D and D' be any two mutually perpen-
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dicular, and therefore conjugate, diameters of the circle.

Imagine that the bar is subjected to heavy pressure. Then

the lengths of all lines parallel to

AB and CD will be shortened in the

same ratio, and the lengths of lines

parallel to AD and BC will all be

lengthened in the same ratio
;
the FIG. n

two ratios will not, however, be

equal.* The circle will thereby be jjiljjl
carried over into an ellipse, and the

diameters D and D' will become

conjugate diameters of this ellipse.

A proof of these facts will be given Fio. 12

shortly.

The student can perform a suggestive experiment by taking

an ordinary four-sided eraser, drawing a circle and the diame-

ters D, D' on one of the broader faces of it, and then pinching
the eraser in a vise. The circle will go over into an oval that

looks like an ellipse, and D and D' will remain sensibly straight

lines.

If the vise is set too hard, the bulging will be considerable.

But imagine the ends of the eraser cut off square and the

eraser then fitted snugly into a tube or chamber of rectangular

cross-section, with the broader faces and the ends in contact

with the -walls of the chamber. Let the chamber be closed at

one end by a rigid, plane diaphragm, against which the eraser

is to be pressed.

If, now, a plunger, which just fits the chamber, is introduced

and pressed down, the deformation will be much like that de-

scribed in the opening paragraph ;
the circle will become a

true ellipse, and D, D', remaining straight lines, will become

* Near the ends AB and CD of the cross-section these statements will

be only approximately true, since there will be a slight bulging ; and, in-

deed, there will also be a slight bulging of the ends themselves. But near

the middle of the cross-section the deformation will be, to a high degree
of approximation, as described.
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conjugate diameters of the ellipse. But there will be one es-

sential difference, in that in the first case lines parallel to AD
are lengthened, whereas in this second case they remain un-

changed ;
cf . Figs. 11 and 12, which have been drawn for the

second case, rather than for the first. The first case can, how-

ever, be reduced geometrically to the second if, after the def-

ormation has been made, the new figure is reduced in scale,

so that lines parallel to AD again assume their original

lengths.

We shall confine ourselves to the second case. The defor-

mation of the plane of the circle may, in this case, be called a

compression in one direction or a simple compression. All line-

segments in the direction of compression are shortened in the

same ratio, the ratio of compression. All line-segments in the

perpendicular direction remain the same in length ; they are

all moved parallel to themselves, with the exception of one

which remains fixed. In the case described this one rests

against the diaphragm, either along AD or BC. If, however,
the diaphragm is replaced by a second plunger, the fixed line

might be AD or BC or any parallel line such as EF, depending
on the manner in which the pressures on the two plungers are

applied. This line, perpendicular to the direction of compres-
sion and having all its points fixed under the compression, we
shall call the central line.

In studying the effects of a compression let us take the cen-

tral line as the axis of x and the ratio of compression as Z;

I is a positive constant < 1. We prove first that the compres-
sion carries a straight line L into a

straight line L. This is obvious if L
is parallel to either axis. If L is any
other line, the similar triangles in

Fig. 13 show that it goes over into a

F line L, and that if L is of slope \, L is

of slope IX.

Next, consider an arbitrary circle, with center (Fig. 1'4).

The diameter AA of the circle which is parallel to the central
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V,Y,y

line, the axis of x, goes over into a parallel line-segment, A'A,

of equal length, and the mid-point, 0, of A'A goes over

into the mid-point, 0', of A'A.

Let the circle be referred to

axes
(oj, y) with the origin at O,

the axis of x lying along A'A.

Its equation will be

(1) 3? + y* = a2
.

Let the curve into which the circle

is deformed be referred to axes

(X, Y) with the origin at 0', the

axis of X lying along A'A. Then

any point (x, y) on the circle goes over into a point (X, Y)
such that

Y
X=x, Y=ly, or x=X, */=-

I

It follows, then, that the circle (1) is transformed into the

curve

or

(2) 1 =1, b = la.
a? &2

Thus the circle is seen to be carried into an ellipse.

It remains to prove that the lines D and D', into which two

conjugate diameters D and D' of the circle are carried by the

compression, are conjugate diameters of the ellipse. If the

angle < is as shown in Fig. 14, the slopes of D and D' are

tan < and tan(< + 90)= cot<. Hence the slopes of D
and D' are

X = I tan < and X' = I cot
<f>.

Then AX'= - 1
2 tan cot < = - I

2
,

or, since, by (2), I = b/a,

XX' = - -.
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p't

FIG. 15

Consequently, D and D', according to Th. 3, 2, are conjugate

diameters of the ellipse, q. e. d.

If the center of the circle lies on the central line (Fig. 15),

the circle is the auxiliary circle of the ellipse (Ch. VII, 10),

and the angle <f>
is the eccentric

angle for the extremity P of the

diameter D. The eccentric angle
for the extremity P' of the con-

jugate diameter D' is, clearly,

< + 90, or < + n90, where n is

an odd number. Consequently, we
have proved the following theorem.

THEOKEM 11. The eccentric angles

for two points of an ellipse which are

extremities of two conjugate diame-

ters differ by 90, or by an odd multiple of 90.

The theorem is essentially the geometrical equivalent of the

physical property of conjugate diameters which we have been

discussing. It furnishes a method of constructing rapidly as

many pairs of conjugate diameters of an ellipse as may be

desired.

The parametric representation of the ellipse can be used to

great advantage throughout the study of conjugate diameters.

The extremity P of the diameter D (Fig. 15) has, by Ch. VII,

10, the coordinates

(3) x = a cos <, y = b sin <.

Then the extremity P' of the conjugate diameter D' has, by
Th. 11, the coordinates

(4) xr = a sin
</>, y' = b cos

<f>.

Hence we obtain, for the squares of the half-lengths of D and

D':

aj
2 = d? cos2

<f> + 62 sin2
<f>, b? = a2 sin2 + i2 cos2 <.

Therefore, af + b? = a2 + 62
,

and we have a simple proof of Th. 8, 6.
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Hyperbola. Consider, now, a set of four steel girders A, B,

C, and D in the form of a square, and a cross girder E through
the center of the square parallel to A and C. Suppose that

tie-rods are spanned into the frame along the diagonals of

the square and along pairs of lines making equal angles with

the diagonals. These pairs of tie-rods,

then, lie along conjugate diameters of a

rectangular hyperbola, of which the

diagonals of the square are the asymp-
totes (Th. 6, 4).

Suppose that the girder E is firmly
set in masonry, so that it is immovable,
and suppose that equal tensions are

exerted on the girders A and C as

shown. Then the square is elongated into a rectangle, except
for a slight bulging ;

the diagonal rods come to lie along the

diagonals of the rectangle and the other pairs of tie-rods take

on the positions of pairs of lines which are conjugate di-

ameters in a hyperbola having the diagonals of the rectangle

as asymptotes, as we shall presently
show.

In this case we speak of an elongation

in one direction or a simple elongation.

The line of the girder E is the central

line of the elongation, and the ratio

I
(> 1), in which all distances perpen-

dicular to E are stretched, is the ratio of

elongation.

Let us take the central line as axis of x.

Since the slope of the diagonal S of the

square is 1, the slope of the diagonal S of the rectangle is I.

If thejmgle fa is as shown, Fig. 16, the slopes of the two
lines D and D' making equal angles with S are tan fa and
tan (90 fa) cot fa. JHence the slopes, A and A.', of the lines

D and D', into which D and D' are carried, are

A = I tan fa and A' = I cot fa.

t t
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But then XX' =Z2
,

and, according to Th. 5, 4, the lines D and D' are conjugate
diameters of a hyperbola, of which the diagonals of the rec-

tangle are the asymptotes. The ratio b/a of the axes of the

hyperbola equals the ratio of elongation, I :

Finally, let us show that the elongation carries the rectangu-

lar hyperbola

/K\ y ^^ "iW tf~tfCt Ur

into the hyperbola

(6)
*?_#!= i.
a2 62

The two hyperbolas have the same

auxiliary circle, and the same eccentric

angle, fa, for points, P :
(a^, y^) and

P :
(a?i, 7/i),

with the same abscissa.

Hence, according to the method of

parametric representation of a hyperbola (Ch. VIII, 9), the

coordinates of P and P are

FIG is

(5 a)

(6 a)

Therefore

= a sec fa,

a sec fa,

yl
= a tan fa ;

yi = b tan fa.

or, since b/a = 1, yi = fiji.

Hence the elongation does carry the hyperbola (5) into the hy-

perbola (6).

Let P, with coordinates (6 a), be an extremity of the diam-

eter D. Then the coordinates of an extremity P' of the conju-

gate diameter D' are, by (7), 6,

(7) i
= = b sec fa.
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Here again, then, the use of the eccentric angle gives sym-

metry to the results.

One-Dimensional Strains. In the case of the ellipse we

might equally well have subjected the given circle to an elon-

gation, and in the case of the hyperbola we might have com-

pressed the given equilateral hyperbola, instead of elongating it.

Compression and elongation in one direction are but two types
of a single kind of deformation, known as a one-dimensional

strain. If the coefficient I of the strain is greater than unity,

the strain is an elongation ;
on the other hand, if I < 1, the

strain is a compression.

EXERCISES

1. Repeat Ex. 1 of 2, drawing the auxiliary circle and

constructing the diameters conjugate to the given diameters

by application of Theorem 11.

2. Draw in pencil the asymptotes and a number of pairs of

conjugate diameters, including the axes, of a rectangular

hyperbola. Construct in ink the lines into which the given
lines are carried by the compression of ratio

-f
which has

an axis of the hyperbola as central line. What does the re-

sulting figure represent ?

3. Prove Th. 10, 6, by means of formulas (6 a) and (7) of

the present paragraph.

8. Harmonic Division. Let P^ be a line-segment, and let

Q x be one of its points. Then Q divides PiP2 internally in a

certain ratio, p. (Ch. I, 6) :

PiQi = ~~% PI 4' 3~~

QiP2

**'
FIG. 19

On PiPz produced construct the point Q2 which divides

externally in the same ratio :
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The points Qi and Q.z are said to divide the segment PXP2

harmonically; they divide PiP2 internally and externally in

the same ratio :

a) ifhtpr
Let us start with /* as given and trace the changes in Qx and

Q2 as
fji

varies. If p.
= 0, Qi and Q2 coincide in P^ As p. in-

creases from to 1, Qi moves to the right from P: to the mid-

point M of PiP2 ,
and Q2 moves to the left and recedes indefi-

nitely. If
fj.
= 1, Qi is at M

;
but Q2 has disappeared. Thus

there is no point which, with the mid-point of a segment, divides the

segment harmonically. As
/u,

increases from 1 without limit, Qt

proceeds from M toward P2 as its limit, and Q2 appears again

from the extreme right, continually moving in and approach-

ing P2 as its limit.

The proportion (1) may be written in the form :

this new proportion says that Pl and P2 divide the segment

QiQz harmonically. Thus we have the following theorem.

THEOREM 1. If the points Qi and Q2 divide the line-segment

P^Pz harmonically, then, reciprocally, the points Px and P2 divide

the line-segment QiQ2 harmonically.

In other words, the relationship between the two pairs of

points is symmetric.

Suppose that P! and P2 have the coordinates (a^, y^ and

(cc-j, y2).
Then the coordinates (xi, t//) and (a^', y2')

of Qx and

Q2 are given by formulas (1) and (2) of 6, Ch. I. If, in

each of these formulas, we divide the numerator and denomi-

nator by ra2 and then set mi/m?, = p.,
we obtain, as the desired

coordinates :

1+f.

<*'.:
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EXERCISES

1. Four points Px ,
P2 , Q1} Q2 on the axis of x have, respec-

tively, the abscissas 3, 8, 5, 7. Show that Qlt Q2 divide PjP2

harmonically, and find the common ratio p. of internal and ex-

ternal division. Find, also, the value of the ratio, //, for the

division by PI and P2 of the segment QiQ2 .

2. Find the point on the axis of x which, with the point

(1, 0), divides harmonically the segment of the axis joining
the points (-8,0), (3, 0).

3. Exercise 1, for the four points Pj, P2 , Qlf Q2 with the

respective coordinates (2, 3), ( 1, 9), (1, 5), (5, 3).

4. Find the point which, with the point (2, 1), divides har-

monically the line-segment joining the points (5, 2), (1, 2).

9. Polar of a Point. Consider the following locus problem.
The ellipse * L

P:(X.Y)

FIG. 20

and the point Pl : (xl} yt) are

given. A line L is drawn through

PX meeting the ellipse in Qt and

Q2 ,
and on L the point P : (X, Y)

is marked which, with P1? divides

QiQ2 harmonically. What is the locus of P, as L revolves

about PX?
Since Plf P divide QiQ2 harmonically, Qif Q2 divide P^P

harmonically. Hence the coordinates (#/, y/), (x2 , y2 ) of Ql}

are :

tSfm T3 ~~'
1+/X

.i-

As L rotates, the ratio p. varies
;

it is, then, an auxiliary
variable expressing analytically the" rotation of L.
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The coordinates of Q1 and Q2 satisfy (1). Substituting them
in turn in (1) and clearing each of the resulting equations of

fractions, we have

To eliminate /A,
we subtract the second equation from the first,

thus getting

F= 4
/.xa

262,

or, finally, + = 1.
a2 o2

The locus of P is, therefore, a straight line, or a portion of

a straight line.* This line is known as the"polar of the point

P! with respect to the ellipse. Hence we may say :

TJie polar of the point (xi} y^ with respect to the ellipse (1) has

the equation

(2} ^+M = i
a2 62

This equation is identical in form with the equation /)f the

tangent to the ellipse at the point (xl} y^), Ch. IX, 2, (12).

But in the present problem (a^, y^) is, in general, not on the

curve, and then (2) represents a line which is not a tangent.

If, in particular, Pl : (a^, y) is on the ellipse, then (2) does

represent the tangent at P!. Accordingly, we should like to

say : The polar of a point on the ellipse is the tangent at the

point. Now there is trouble, geometrically, when P is on the

ellipse. For then Ql or Q coincides with PI, and P coincides

with them, so that, actually, no polar is defined. Suppose,

however, that P! is a point near to P1} but not on the curve.

Then it can be shown
(
Exs. 1, 2) that the limiting position

of the polar of Pls when P: approaches Px as its limit, is the

tangent at Px . Hence the above statement is substantiated,

* If PI is inside the coni<5, the locus is the entire line, but if PI is out-

side the conic, the locus consists of only those points of the line which

are inside the conic.
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not as a conclusion, but as a proper definition of the polar of

a point on the ellipse.

If P! is at the origin, it is always the mid-point of QiQ2 ,
and

so there is never a point P which, with Pl} divides Q^Q^ har-

monically. Consequently, the origin has no polar.

The foregoing discussion is valid for the hyperbola

if in the equations we replace 6- by &2
. Thus, the polar of

the point (x1} y^) with respect to the hyperbola (3) has the equation

(A\ !_M.= 1

a? 62

The polar of a point on the hyperbola is defined as the tangent
at the point. The center of the hyperbola has no polar.

We can now state the following theorem.

THEOREM 2. Given a central conic, C. Every point in the

plane, except the center of C, has a polar with respect to C.

Let the student show that the polar of the point (xi} y^) with

respect to the parabola

(5) y* = 2mx

has the equation

(6) y jy=m(x+xl').

If we define the polar of a point on the parabola as the tangent
at the point, equation (6) shows that there are no exceptions
in this case. Accordingly, we have the theorem :

THEOREM 3. Every point in the plane has a polar with re-

spect to a parabola.

From the definition of a polar it is evident that the polar of

a point internal to a conic does not cut the conic, and that the

polar of a point external to a conic does cut the conic. In the

intermediate case, when the point lies on the conic, the polar
is a tangent.



314 ANALYTIC GEOMETRY

FIG. 21

EXERCISES

1. Show that the polar of a point PI external to a conic is

the line LI drawn through the points of contact of the tangents

to the conic from P^
.Suggestion. Prove that P (Fig. 21)

approaches K as its limit, when the line

L, rotating about P1} approaches T.

2. Prove that, if the point PI of Ex. 1

approaches a point on the conic as its

limit, then its polar, LI, will approach
the tangent at this point.

3. Establish formula (6).

In each of the following exercises, find the equation of the

polar of the given point with respect to the given conic and
draw a figure, showing the conic, point, and polar.

Conic Point

4. x* + tf = 9, (0,2).

5. 3x- + 5y2 = 15, (5,6).

6. a5*-2f=16, (2,1).

7. 2y*-5x = Q, (-3,4).

8. Prove that in any conic the polar of a focus is the cor-

responding directrix.

9. Prove that the polar of a point Px with respect to a

circle, center at 0, is perpendicular to the line OP^
10. Show, further, that the product of the distances of

from P1 and the polar of Pt is the square of the radius of the

circle.

11. On the basis of the results of Exs. 9, 10, discuss the

variation in position of the polar of a point P with respect to

a circle, (a) when P moves on a straight line through the

center of the circle; (6) when P traces a circle, concentric

with the given circle.
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Find the equation of the polar of the point (x1} y^) with re-

spect to each of the following conies.

12. The hyperbola : xy = k.

13. The circle : (a a)
2 + (y /3)

2 = p
z

.

14. The conic : (1 e2
)
a2 + y

2 2mx + m2 = 0.

10. Pole of a Line. If, with respect to a given conic, the

line L is the polar of the point P, the point P is known as the

pole of the line L.

Given a conic and a line L
;

to find the pole, P, of L with

respect to the conic.

Let the conic be the ellipse,

(1) 2*2+82,2 = 6,

and L, the line,

(2) 4z-3y-2 = 0.

If we denote the coordinates of P by (xif 3^), the polar of P
with respect to (1) is

(3) 20^+3^-6=0.
But the polar of P was given as the line (2). Equations (2)

and (3), then, represent the same line. Consequently, by
Ch. II, 10, Th. 5,

4 -3 -2
Then xl

= 6, yt
= - 3

and so the point (6, 3) is the pole of the line (2) with re-

spect to the ellipse (1).

We now raise the question: Has every line a pole with

respect to a given conic ? Let us answer this question first

for the central 'conies. Equations (2) and (4) of 9, which

represent the polars of a given point with respect to the central

conies (1) and (3) of 9, are never satisfied by x = 0, y = 0,

no matter where the given point lies. Consequently, the polar



316 ANALYTIC GEOMETRY

of a point with respect to a central conic never passes through
the center of the conic. In other words, a diameter of a central

conic has no pole.

We proceed to show that every other line has a pole, giving

the proof in the case of the hyperbola

(4) -=1.
a2

Z>
2

Any line not a diameter of (4), that is, not passing through
the origin, can be represented by an equation of the form *

(5) Ax + By = 1.

If
(a?!, 2/1)

is the pole of this line, the line also has the equation

xix y\y _ i
a2 62

Hence ^: A = -^:B = 1 : 1,
a2 62

and x
v
= a2

A, y\ = o2B.

We see, then, that the line (5) has always a definite pole,

namely, the point (a
2
A, bz

B), q. e. d.

In the case of the ellipse the proof is similar.

As regards the parabola,

y
2 = 2 mx,

the equation of the polar of (a^, y^) :

y$ = mx + ma?!,

has one term which can never drop out, no matter where fa, y^)

lies, namely, the term mx. Thus the polar can never be

parallel to the axis of x, or coincide with it. In other words,
a diameter of a parabola has no pole. It can be shown, how-

ever, that every other line has a pole. The proof is left to the

student
;

cf. Ex. 1.

The foregoing results we now summarize in the form of a

theorem.

* A and B are not both zero.
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THEOREM 4. Given a conic C. Every line of the plane,

which is not a diameter of C, has a pole with respect to C.

By comparing this theorem with Theorems 2, 3, 9, we
see that the lines which have no poles with respect to a conic

go through the point which has no polar, provided these lines

intersect.

EXERCISES

1. Give the proof of Theorem 4 for the parabola.

In each of the following exercises find the pole of the given
line with respect to the given conic.

Conic Line

2. a? + ty = 8, 2x-3y-2 = Q.

3. 5 a2 -
6?/

2 -30 = 0, 4a + 2y-7 = 0.

4. 3y
n~-Sx = Q, 2 a- 3 = 0.

5. Itf- + 2y*=U, 6x + 5y-8 = Q.

6. Prove that the pole of any line through the focus of a

conic is a point on the corresponding directrix.

7. Given the circle x- + y
1 = a2

. Prove that the pole^ with

respect to this circle, of a line moving so that it is always

tangent to a concentric circle traces a second concentric circle.

Cf. Exs. 9-11, 9.

11. Properties of Poles and Polars. The poles and polars
*

discussed in this paragraph are all taken with reference to an

arbitrarily given conic. For the

sake of brevity mention of the

conic is, in general, suppressed.

THEOREM 5a. If a point Pv lies

on the polar of a second point P2,

then, conversely, P2 lies on the polar
FIG. 22

of PI.

Let the polats of the points Pt and P2 be LI and L2 . Then
the theorem says that, if P1 lies on Z/2 ,

P2 lies on L^ But this

* Only those points which have polars and those lines which have poles

are considered.
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is the same as saying that, if 2 goes through P1} L goes

through P2 ,
r vice versa. This second form of the statement

we enunciate as a theorem.

THEOREM 56. If a line Li goes through the pole of a second

line L2, then, conversely, L2 goes through the pole ofLt.

Since the two theorems are equivalent in content, and differ

only in point of view, a proof of one also proves the other.

We choose to prove Theorem 5a, and to give the proof in the

case that the given conic is the hyperbola

a2 62

The proofs in the other two cases are similar.

Let PI and P2 have the coordinates (x1} y^) and (a^, ?/2).

Then Ll and L2 have the equations

Ei?_M = l and ^^M= l
a2 62

~
a2

ft
2

The cpndition that Pt lies on L2 is

a2 62

"

and the condition that P2 lies on LI is

a2

But these two conditions are the same. Hence, if Pj lies on

L2 ,
then P2 lies on LI, and conversely, q. e. d.

Suppose, now, that we join the points P! and P2 of "Fig. 22

by the line L. Since P! lies on L, it follows, by Th. 5cr, that

the pole, P, of L lies on Lv. Similarly, since P2 lies on L, P
lies also on L. Hence, P is the point of intersection of Lt and

L2 . Thus we have the theorem :

THEOREM 6a. The pole of the line joining two points, P^ and

P2, is the point of intersection of the polars of Pl and P2 .

Starting again, we bring the lines LI and L2 of Fig. 22 to

intersection in P. By Th. 56, since each of the lines Lt and
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FIG. 23

LZ goes through P, it follows that the polar, L, of P goes

through each of the poles, PI and P2 ,
of LI and L. Conse-

quently, L is the line joining PI and P2 and we have proved
Theorem 66 :

THEOREM 66. Tlie polar of the point of intersection of two

lines, LI and Lz ,
is the line joining the poles of LI and L&

By application of either Ths. 5a, 56 or Ths. 6a, 66, the

student can easily prove the following theorems.

THEOREM la. If a number of points

all lie on a line, L, their polars all go

through a point, namely, the pole of L.

THEOREM 76. If a number of lines all

go through a point, P, their poles all lie on

a line, namely, the polar of P.

Finally, take a line L which cuts the

given conic in two points, P^ and P2 .

Since L is the line joining Pl and P2) the pole, P, of L is the

point of intersection of the polars of PI

and P2 (Th. 6a), that is, of the tangents

to the conic at Pt and P2 - Thus we have

proved the theorem :

THEOREM 8a. The, pole, of a line inter-

secting the given conic in two points, Pl

and P2 ,
is the point of intersection of the

tangents to the conic at P and P.2 .

Let the student prove the mate of this theorem, namely :

THEOREM 86. The polar of a point external to the given

conic is the line joining the points of contact of the tangents to the

conic from the point.

Theorem 8a furnishes a means of constructing the pole of

a line which meets the given conic
;
Theorem 86, a means of

constructing the polar of a point external to the conic.

To construct the pole, P, of a given line, L, which does not

meet the conic (Fig. 25), choose any two points, Px and P2 ,
on

FIG. 24
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FIG. 25

L, and construct their polars, Z/j and Lz .

Since L is the line joining Pt and P2 ,
its

pole, P, is the point of intersection of L
and Z/2 .

The student should now establish the

analogous construction for the polar of

a given point which is internal to the

conic.*

EXERCISES

1. Prove Theorems 7a, 76.

2. Prove Theorem 86.

3. Show how to construct the polar of a given point which

is internal to the conic. Prove the validity of the construction.

4. On the basis of Theorem 86 develop in detail a method

for finding the equations of the tangents to a conic from an

external point.

By means of this method find the equations of the tangents

required in each of the following exercises of Ch. IX, 7.

5. Exercise 5. 6. Exercise 6.

7. Exercise 9. 8. Exercise 12.

12. Relative Positions of Pole and Polar. Central Conies.

The following theorem is in-

structive concerning the rela-

tive positions of pole and polar

with regard to a central conic.

THEOREM 9. Let the point P
and the line LI be pole and polar

in a central conic, center at ;

let D be the diameter through FIG . 26

* These methods are not very serviceable if accurate constructions are

desired, since they involve the construction, not only of the tangent at a

given point of the conic, but also of the tangents from an external point ;

cf . 13. They are, however, useful in rough work.
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PI, D' the diameter conjugate to D, and Pz the point of inter-

section of Li with D. Then LI is parallel to D' and the half-

length, d, ofD is a mean proportional between OP\ and OP2 :

(1) OP1 .OP2
= d2

.

We will prove the second part of the theorem first. By the

definition of the polar of a point, PjP2 is divided harmonically

by the points, Qi and Qz, in which D meets the conic. Conse-

quently, by (1), 8,

Expressing each of the four distances in terms of OP\, 0P2 ,

and OQi = OQ2
= d, we have

(OP1
- d)(OP2 + d)= (0Pi + d)(d

- OP2).

On multiplying out and reducing, we obtain equation (1),

q. e. d.

We will give the proof of the first part of the theorem in

the case that the conic is the ellipse

(f F

Let the coordinates of Pj be fa, y^) and those of Q1} fa, y2).

Then the equations of LI and D' are, respectively, by 9; (2),

and 6, (2),

/O\ k\X . y \jj -t T *t/o*C . ylV /\
( 6 ) h ^^^ = ana =

(-
^^^ = u.

a2 62 a2 62

Since Px and Qx are on a line with 0, their coordinates are

proportional :

and hence so are the left-hand sides of

equations (2). Consequently, L and^'
are parallel, q. e. d.

The proof of the second part of the

theorem assumes that D meets the conic.

This is not true, however, if the conic is

a hyperbola and Px lies in an opening FIG. 27

v /D
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between the asymptotes not containing a branch of the hyper-
bola. In this case, too, the theorem is valid, but the points

PI and P2 ,
instead of being on the same side of 0, are on

opposite sides.*

COROLLARY. The points Px and P2 are on the same or oppo-

site sides of 0, according as D meets or does not meet the conic.

Given, now, a point, P, and its polar, L, with respect to a

central conic. If P traces a diameter D, then L moves always

parallel to the conjugate diameter.

In the case that D intersects the conic, and P is an intersec-

tion, L is the tangent at P. If P then moves in along D
toward the center as its limit, L ceases to meet the conic, and

recedes indefinitely. On the other hand, if P moves out

along Z), receding indefinitely, L moves in toward the center,

and approaches the diameter conjugate to D as its limit.

The case in which the conic is a hyperbola and D intersects

the conjugate hyperbola remains. If P is at one of the inter-

sections, L is the tangent to the conjugate hyperbola at the

other
;

cf. Ex. 6. If P then moves in toward the center, L
moves away from it, and so forth, as before.

Parabola. Corresponding to Theorem 9, we have the fol-

lowing theorem, the proof of which is left to

the student.

THEOREM 10. Let PI and LI be pole and

polar in a parabola, and let the diameter

through PI meet L^ in P2 and the parabola in

Q. Then LI is parallel to the tangent at Q,

and Q is the mid-point ofPiP.2 .

FIG. 28 Consequently, if a point P traces a diameter

* Let the student give an analytical proof of these facts and hence of

the corollary ;
cf. Exs. 1, 2. There is no geometrical proof, analogous

to that of the text. The r61es of Qi and Q2 in that proof cannot be

played here by the points in which D meets the conjugate hyperbola ;

these points do not divide P\Pi harmonically: LI is the polar of PI

with respect to the given hyperbola, and not with respect to its conjugate.
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D of a parabola, its polar L moves always parallel to the

tangent at the point in which D meets the curve. If P moves

along D in either direction, receding indefinitely, then L moves

in the opposite direction, and recedes indefinitely.

Theorems 9 and 10 furnish new methods for the construc-

tion of the polar of a given point or the pole of a given line.

These we shall consider in the next paragraph.

EXERCISES

1. Give an analytical proof of the second part of Theorem

9, in the case that D meets the conic.

2. The same if the conic is a hyperbola and D does not meet it.

3. Theorem 9 is no longer valid if the conic is a hyperbola
and P1 lies on an asymptote. Prove that, in this case, L\ is

parallel to the asymptote, and that the product of the distances

OPi and OP2 is constant, where P2 is the point in which LI
intersects the other asymptote.

4. Prove Theorem 10.

5. A pair of conjugate hyperbolas and a point P are given.

Show that the polars of P with respect to the two hyperbolas
are parallel to, and equally distant from, the diameter conju-

gate to the diameter through P.

By applying Th. 9, the Corollary, and Th. 10, prove the fol-

lowing theorems.

6. Let C be a hyperbola, C' the conjugate hyperbola, and D a

diameter meeting C'. Then the polar of an extremity of D with

respect to C is the tangent to C' at the other extremity of D.

7. The polar of a point with respect to a central conic (not

a circle) is perpendicular to the line joining the point to the

center, if and only if the point is on an axis of the conic.

8. If a line is normal to a parabola at one extremity of the

latus rectum, its pole lies on the diameter passing through the

other extremity.
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13. Construction Problems. In problems of construction re-

lating to conies, diameters play an important role. To con-

struct a diameter of a conic, one has but to draw two parallel

chords and join their mid-points.

Center, Axes, Foci. Consider first a central conic, drawn on

paper. Construct two diameters
;
their point of intersection

will be the center, 0, of the conic. With as center, describe

a circle cutting the conic in four points ;
the lines through

parallel to the sides of the rectangle determined by the four

points will be the axes.

If the conic is an ellipse, the lengths a and b are now known,
and c = Va2 62 can be constructed by means of a right tri-

angle ;
cf. Ch. VII, Fig. 2. Thus the foci will be located.

If the conic is a hyperbola, only a is known. But then 6

can be found by reversing the construction of Ch. VIII, 9.

Hence the asymptotes and foci may be accurately constructed.

Let a parabola be given. Construct a diameter and two

chords perpendicular to it; the line joining the mid-points of

these chords is the axis of the parabola. The construction of

the focus we postpone until we have given that of a tangent.

Tangents. To construct the tangent to a central conic at a

point P, construct the center 0, and then draw OP and a chord

parallel to OP. Let K be the mid-point of this chord. Then
the line through P parallel to OK is the tangent at P. Why ?

If the conic is a parabola, construct the

axis. LetTif be the foot of the perpendicular

dropped from P on the axis, and make OM
equal to OK (Fig. 29). Then, by Ch. VI, 3,

Ex. 8, MP is the tangent at P. The focus can

now be constructed by use of the focal prop-

erty, namely, by constructing the focal radius

FIG. 29
^ PF as the line making MPF = %. TP8.

Of course, if the focus, or foci, of a conic

are given, the tangent at a point can be constructed by means
of the focal property of the conic.
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To construct the tangents to a conic from an external point
is a more difficult problem. We shall give presently a solu-

tion involving poles and polars and refer the student else-

where for one based on more elementary, though less elegant,

principles.*

Poles and Polars. Given an elementary construction for the

tangents from an external point, we can carry through ac-

curately the constructions of
%
11 for the polar of a given point

and the pole of a given line.

We are more interested, however, in the constructions of

poles and polars, based on the theorems of 12. We will

describe, for example, the construction by this method of the

polar of a given point PI with respect to a central conic.

Draw the diameter D through Pl (Fig. 26) and, by drawing a

chord parallel to D and bisecting it, construct the diameter D'

conjugate to D. On a separate sheet construct the third pro-

portional to the length OPt and the half length, d, of ZXf

Lay off the resulting length from on D in the proper direc-

tion, according to the Corollary of Theorem 9, and through the

point thus reached draw the line parallel to D'. This line is

the polar of P^
The construction is the same whether Pl lies inside, on, or

outside the conic.

Tangents from an External Point. Let the point be P and

construct its polar L by the method just described. The lines

joining P to the points of intersection of L with the conic are,

by 11, Th. 8&, the required tangents.

*
Cf., for example, Wentwortlrs Plane and Solid Geometry, Ed. of

1900, pp. 416, 435, 455.

t If D does not meet the conic (as may happen in the case of a hyper-

bola) and the conjugate hyperbola is not given, the length d (Fig. 27)

is unknown, so that a separate construction for it is necessary. Here d

equals the 61 of the formula, a^ b^ = a2 62
,

of 6, Th. 10. The

lengths a, ft,
and ai are known or can be constructed by methods already

given ;
the length k = Va2 62 is found by using a right triangle and,

finally, that of 61 = Va!2 fc2
,
in the same way.
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EXERCISES

1. Using a templet, draw an ellipse. Carry through in de-

tail the constructions for (a) the center, (6) the axes, (c) the

foci. Devise a method for constructing the directrices.

2. The same problem for the hyperbola. Construct also

the asymptotes.

3. Construct the axis, a tangent, the focus, and the directrix

of a parabola. ,

4. Construct the tangent to a hyperbola at a given point by
use of the focal property. Use a templet to draw the hyper-
bola and consider that the foci are given.

5. The same for an ellipse.

6. Perform in detail the construction, based on Theorem 9,

12, of the pole of a given line with respect to a central conic.

7. Carry through carefully the construction, based on

Theorem 10, 12, of the polar of a given point with respect

to a parabola.

8. The same for the pole of a given line.

EXERCISES ON CHAPTER XIV

DIAMETERS

1. Prove that two similar ellipses with the same center

and the same transverse axis have the same pairs of conjugate
diameters.

2. A line meets a hyperbola in the points Pt and P2 an(i

meets the asymptotes in the points Ql and Q2 . Prove that

the segments PiP2 and QiQ% have the same mid-points.

3. Using the result of Ex. 2, show that any two hyperbolas
with the same asymptotes have the same pairs of conjugate
diameters.

4. Prove that the line-segment joining two extremities of

conjugate diameters of a hyperbola is parallel to one asym-

ptote and is bisected by the other.
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5. The chords of an ellipse from a vertex to the extremi-

ties of the minor axis are parallel to a pair of conjugate
diameters. Prove this theorem.

6. Two chords connecting a point of a central conic with

the ends of a diameter are called supplemental chords. Show
that chords of this nature are always parallel to a pair of con-

jugate diameters.

7. Show that, if a parallelogram has its vertices on a cen-

tral conic, its center is at the center of the conic
;
hence prove,

by Ex. 6, that the sides of the parallelogram are parallel to a

pair of conjugate diameters.

8. Prove that the angle which a diameter of an ellipse,

not an axis, subtends at a vertex is the supplement of the

angle which the conjugate diameter subtends at an extremity
of the minor axis.

9. A parallelogram is circumscribed about an ellipse by

drawing the tangents at the ends of a pair of conjugate diam-

eters. Prove that the area of this parallelogram is the same,

no matter what pair of conjugate diameters is chosen.

Suggestion. Compute the area of the triangle with one

diameter as base and an extremity of the other as vertex.

10. State and prove the corresponding theorem for the

hyperbola.

11. Show that in the case of the hyperbola* the parallelo-

gram of the two preceding exercises always has its vertices on

the asymptotes.

12. Prove that the segment of a tangent to a hyperbola cut

off by the asymptotes is equal in length to the diameter paral-

lel to it.

13. Prove that the tangents to a central conic at the extrem-

ities of a chord meet on the diameter bisecting the chord.

14. Show that a line through a focus of a central conic per-

pendicular to a diameter meets the conjugate diameter on a

directrix.
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15. Prove that, if P and P' are extremities of a pair of con-

jugate diameters of a central conic, the normals at P and P'

and the line through the center perpendicular to PP1 meet in

a point.

POLES AND POLARS

16. Find the polar of a focus of a central conic with respect

to the auxiliary circle.

17. Prove, for a central conic, that the line-segment joining

any point to the intersection of the polar of the point with a

directrix subtends a right angle at the corresponding focus.

18. The same for a parabola.

19. Show, for a central conic, that any chord through a focus

is perpendicular to the line joining the focus to the pole of

the chord.

20. The same for a parabola.

21. Two rectangular hyperbolas are so situated that the

axes of one are the asymptotes of the other. Prove that the

polars of a point with respect to the two hyperbolas are always

perpendicular.

22. The perpendicular from a point P on the polar of P
with respect to a central conic meets the transverse axis in A
and the conjugate axis in jB. Show that PA : PB = 62 : a2

.

23. The segment of the axis of a parabola intercepted by
the polars of two points is equal to the projection on the axis

of the line-segment joining the two points.

Locus PROBLEMS

24. A line is drawn through the focus of a central conic per-

pendicular to a variable diameter. Find the locus of the point
in which it intersects the conjugate diameter.

25. A point moves so that its polar with respect to an ellipse

forms a triangle of constant area with the axes of the ellipse.

What is its locus ?
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Ans. A pair of conjugate rectangular hyperbolas with the

axes of the ellipse as asymptotes.

26. Find the locus of the poles, with respect to a central

conic, of the tangents to a circle whose center is the center of

the conic.

27. Find the locus of the poles, with respect to the circle

X2
_j_ yz a2

?
of t^ tangents to the parabola y

1 = 2 mx.

28. Find the locus of the poles, with respect to the parabola

y
2 = 2 mx, of the tangents to the parabola y

2 = 2 mx.

29. Find the locus of the mid-point of a chord of an ellipse,

if the pole of the chord traces the auxiliary circle.

30. The same for a hyperbola.



CHAPTER XV

FIG. 1

TRANSFORMATIONS OF THE PLANE. STRAIN

1. Translations. Definition. By a translation of a plane

region S is meant a displacement of S whereby each point of

S is carried in a given (fixed) direc-

tion by one and the same given dis-

tance. Thus, when a window is

raised, a pane of glass in the window

experiences a translation.

It is not important what particular

region S is considered. Indeed, it is usually desirable to

consider the whole unbounded plane as S. The essential

thing is the above law which connects the initial position of

an arbitrary point of S with its final position.

Analytic Representation. Let P : (x, y} be an arbitrary

point of the plane, and let P' : (x
f

, y') be the point into which

P is carried by the translation. Let a

and 6 be respectively the projections of

the directed line-segment PP' on the

axes of x and y. Then

(i)
{$!",+* .

These formulas are the same as those which represent a

transformation of coordinates, the new axes being parallel to

the old and having the same respective directions. But the

interpretation of the formulas is wholly different. There, the

point P remained unchanged. It had new coordinates as-

signed to it by referring it to a new set of axes. Here, the

330
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axes do not change. It is the point P that changes. The

point P is picked up and set down in a new place, namely,
atP'.

Example 1. Represent analytically the translation whereby
the plane is carried in the direction

of the positive avaxis a distance of 2

units :

Solution : x' x + 2, y' = y.

Example 2. Let the curve C:-

FIG. 3

(2) y = x*-x + %

be carried in the direction of the negative axis of y a distance

of units. What will be the equation of the new curve, G' ?

The formulas representing the translation are :

Hence x = x', y = y' +
and equation (2) goes over into

or y'
= x''

FlG 4 The new curve, C', is evidently symmetric
in the origin. But the shape of C" is the

same as the shape of C. Hence O is symmetric in the point

A : (0, f), which corresponds to the origin.

Example 3. A freight train is running northwest at the

rate of 30 miles an hour. If (x, y) are, at noon, the coordi-

nates of an arbitrary point of the floor of one of the platform

cars, referred to axes directed east and north respectively, de-

termine the coordinates (x', y') of the same point t hours

later.

Here, the components of PP', after one hour has elapsed,

are clearly :

a = 30 cos 135 = - 15 V2, b = 30 sin 135 = 15V2.
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After t hours they are

a = -15V2f, 6 = 15V2*.
Hence

xf = x- 15V2J, y'= y + 15V2 .

EXERCISES

1. Express analytically the translation which carries the

origin into the point (2, 1), and hence show that the point

( 1, 2) is carried into (1, 1). Draw a figure showing what

happens to the unit circle, xz
-f y

z = 1.

2. Apply the translation of Ex. 1 to the curve

2/
= 22 + 8a; + 9.

3. Determine a translation which will carry the curve

y = 4a;2 8a + 3

into a parabola whose equation is in a normal form.

4. An aeroplane is flying at the rate of 120 miles an hour

on a straight, horizontal course having a direction 30 south of

east. If (x, y) are, at a given instant, its coordinates, referred

to axes directed east and north respectively, determine its co-

ordinates (x', y') after t minutes have elapsed.

Prove analytically (i.e. by means of the representation (1)

of the text) the following theorems.

5. A translation carries a straight line, in general, into a

parallel straight line. What are the exceptions ?

6. A translation carries a circle into a circle of the same

radius.

7. A translation carries two mutually perpendicular right

lines into two mutually perpendicular right lines.

2. Rotations. Lefr the plane be rotated about the origin

through an angle 0. What will be the coordinates, (x
1

, y'), of

the point P' into which a given point P, with the coordinates

(x, y), is carried ?
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The solution can be read off at sight from the figure. We
have:

(1)

P:(x,V)

Fia. 5

x = UM =
x'= OM', y' = M'P'.

Now, Proj OP' = Proj OJtfi+ Proj M^P',

and if we take the projections first along the axis of x, and

then along the axis of y, we obtain
p'-(x'y')

immediately the desired relations :

f x' = x cos y sin 0,

\ y' = x sin Q + y cos 0.

It is easy to solve these equa-
tions algebraically for x and y ;

or ^^
the formulas for x and y, in terms

of x' and y', can be written down

directly by projecting the broken line OM'P' along OMt and

perpendicularly to OJ/i :

,o\ I x= x' cos 4- y' sin 6,

\ y = x' sin + y' cos 0.

Example. It is clear geometrically that a circle with its

center at the origin must be carried over into itself by any of

the above rotations. Let us see what the analytic effect on

its equation is if such a rotation is performed.
The equation of the given circle is

& + y* = p
2

.

Replacing x and y by their values from (2), we have :

(x
f cos 6 + y' sin 0)

2+ (
x' sin & + y' cos 0)

2= p
2
,

or

COS2

+ sin2

a'2 + 2 sin cos

2 sin cos 6

x'y' + sin2

+ cos2

Hence x1* + y'
2.= p '-,

and we get the same circle, as we should.
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EXERCISES

1. Write down directly from a figure the formulas which

represent a rotation of 90 about the origin, and verify the re-

sult by substituting = 90 in (1).

2. Show that, if the curve xy 2 a? is rotated about

the origin through an angle 6 = 45, its equation goes

over into the usual form of the equation of an equilateral

hyperbola.

3. Kotate the parabola y* = 2mx through 90 about the

origin.

4. Prove analytically that, if an arbitrary straight line be

rotated about the origin through 90, the new line will be per-

pendicular to the old one.

5. Prove that, if an arbitrary line be rotated about the

origin through the angle 6, the angle from this line to the new
line will be 0.

3. Transformations of Similitude. Let the plane be stretched,

like an elastic membrane, uniformly in all directions away from

the origin. This tranformation

is evidently represented analyti-

cally by the equations :

/-i\

where k is a constant greater

FIG 6 than unity. If k is positive, but

less than unity, the transforma-

tion represents a shrinking toward the origin. The stretchings

and shrinkings defined by (1) are known as transformations of
similitude.

These transformations, like the translations and the rota-

tions, preserve the shapes of all figures ; but, unlike those

transformations, they alter the sizes of figures.
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Example. The equilateral hyperbola

y? f = a2

is carried by (1), if Jc is taken equal to -:
a

' = -, y' = %-, or x=ax', y = ay
f

,

a a

into the curve
aV2 - a2

?/'
2 = a2

,

or a/2 y'
2 = 1.

Thus all equilateral hyperbolas are seen to be similar to one

another, since each can be transformed by (1) into the particu-

lar equilateral hyperbola

Inverse of a Transformation. The transformation,

x'

(2)

nfl*

obtained by solving the formulas (1) for x, y, is called the in-

verse of the transformation (1). In general, if a given trans-

formation carries (x, y) into (x' } y'), the transformation carry-

ing (a/, y') into (x, y) is known as the inverse of the given
transformation. Thus, the rotation (2), 2, is the inverse of

the rotation (1), 2.

It is clear that the effect of the inverse transformation, if

performed after the given one, is to nullify the given one.

Thus (1), 2, rotates all figures through the angle 0, and then

(2), 2, rotates them through the angle 0, i.e. back into

their original positions.

EXERCISES

1. Show that the parabola y
2 = 2 mx, < m, can be trans-

formed by (1) into the parabola t/
2 = x. What value must be

taken for Jc ?
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2. Show that the effect of performing transformation (1)

and then transformation (2) is to leave the plane unchanged.

4. Reflections in the Axes. Let the plane be reflected in

the axis of x. In other words, let it be rotated through 180

about the axis of x. Let P: (x, y) be an

arbitrary point, and let P '

: (x', y') be the

point into which P is carried. Then,

obviously,

(1)
x' =x

FIG. 7

Similarly, a reflection in the axis of y is

represented by the formulas :

f x' = xv I,:*
The condition that a curve be symmetric in one of the axes

(cf. Ch. V, 2) is obtained at once from these transformations.

Thus the curve C will be symmetric in the axis of x if the

curve C 1

,
into which C is carried by (1), is the same curve as C;

and the test for this is, that the equation of C be essentially

unchanged when the transformation (1) is performed on it.

For example, if C is the curve

7/4 + a;2 = 2 y
2 + y?,

its equation is unchanged by (1), and hence C is symmetric in

the axis of x. But it is changed by (2), and C is, therefore,

not symmetric in the axis of y.

Isogonal Transformations. A transformation is said to be

equiangular or isogonal if the angle which any two intersecting

curves, Ci and G>, make with each other is the same as the

angle which the transformed curves, C\ and C"2 ,
make with

each other.

All of the transformations considered thus far are evidently

isogonal. We turn now to a transformation which is not.
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EXERCISE

Show that the equations of the inverse of the reflection (1)

[or (2)] are precisely of the same form as the equations of the

reflection. A transformation for which this is true is said to

be involutory.

5. Simple Elongations and Compressions. Let the plane be

stretched directly away from the axis of x, so that each point

is carried, along a parallel to the

axis of y, to twice its original dis-

tance from the axis of x (Fig. 8).

Evidently, the analytic condition

is that

x' = x, y'
= 2y-

More generally, if a point
P : (x, y) is to be carried to I times

its original distance from the axis

of x, where I may have any positive constant value, not unity,
the transformation will be given by the formulas :

FIG. 8

(1)

X = X,

y' = iy-

When I is greater than unity, these formulas represent an

elongation $ when I is less than unity, they represent a com-

pression.

If the elongation is away from the axis of y or the compres-
sion is toward it, then

(2)
\* = *x,

where k is greater than unity in the first case and less than

unity, but positive, in the second.

These transformations were discussed geometrically in Ch.

XIV, 7. There we called them one-dimensional, or simple,

elongations and compressions; or, jointly, one-dimensional

strains.
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Example 1. Let the circle

i)
x* + y*=l

be subjected to the transformation (1). Then it goes over into

*"+f=i.
Thus the circle i) is carried into the ellipse

.., cc
2

, y
1

.,
,

7

11) T+&
=1

'
b = l

>

whose axis lying along the axis of x is identical with the cor-

responding diameter of the circle, but whose axis lying along

the axis of y is the corresponding diameter of the circle

stretched in the ratio 1 : 1.

Example 2. Let the ellipse ii) be subjected to the trans-

formation (2). Then
*+ =!
fc
2

ft
2

Thus the ellipse ii)
is carried into the ellipse

From these examples we see that the particular circle i) can be

carried by means of two one-dimensional strains into an arbi-

trary ellipse iii)
whose axes lie along the axes of coordinates.

Exercise. Show that the circle i) can be carried into the

ellipse iii) by a single one-dimensional strain and a transforma-

tion of similitude.

Product of Two Transformations. The combined effect of

the two transformations of Examples 1 and 2 can be repre-

sented analytically as follows. First, we have

(a) x' = x. y' ly-

Next, the point (x', y'} is carried into (a;", y") by the trans-

formation

(6) x" = kx', y" = y'.

Eliminating the intermediate stage (x', y'~),
we get :

(c)
x" = Jcx, y" = ly.
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A transformation, as (c), which arises as the result of two

successive transformations, as (a) and (&), is called the product of

these transformations. Similarly, (a) and (6) are spoken of as

the factors of (c) ;
or (c) is said 'to be factored into (a) and (6).

Let the student verify the fact that, if the circle i) is sub-

jected to the transformation (c), it is carried over into the

same ellipse iii) into which i) was carried by the successive

applications of the transformations (a) and (6).

Properties of the Transformation. One of the most impor-
tant properties of one-dimensional strains is that, like the trans-

formations previously studied, they carry straight lines over into

straight lines.

This was proved geometrically on p. 304. The transforma-

tion considered there is given analytically by (1). It was

proved also that, if L is a line of slope A, the slope of the line

into which L is carried by (1) is *

(3) A' = ZA.

From the theorem contained in formula (3), it is seen that

a one-dimensional strain carries parallel lines into parallel lines.

Consider an arbitrary curve, C. Its

slope at any one of its points, P, is v

Perform the transformation (1) on C.

Then PM remains unchanged in

length ;
but MQ goes over into

Hence the slope, A', of C" is FIG. 9

q'=p'P'M' QP PM
or A' = ZA.

We have thus extended the validity of formulas (3).

* The proofs on p. 304 were given for compressions, but they are valid,

also, for elongations.



340 ANALYTIC GEOMETRY

It follows from this extension that, if two curves, C\ and (72,

are tangent to each other, the transformed curves, G\ and (72,

will also be tangent. Fpr, if d and (72 are tangent, they have

the same slope X at the point of tangency. Hence, at the cor-

responding point, C"i and C"2 will each have the slope A' = l\

and consequently will be tangent to each other.

Angles are not in general preserved by a one-dimensional

strain. It is true that right angles whose sides are parallel

respectively to the coordinate axes go over into right angles

satisfying the same condition. But consider, for example, the

angle between a line L and the axis of a; (p. 304, Fig. 13).

L is carried into L by the transformation (1), and the axis of x

remains fixed. It is clear, then, that the new angle is not

equal to the original one.

The areas of figures, also, are

changed, and changed in precisely

the ratio of I (or fc)
: 1. This is obvi-

ously true for rectangles whose sides

/I W are parallel to the coordinate axes.

\J Jr The area, A, of any other figure is the

limit approached by the sum, JB, of

the areas of rectangles inscribed as

shown in the drawing :

A = lim B.

By the transformation (1), A is carried

x into A' and B into B'
; evidently

A' = lim B'.

Since the area of each rectangle represented in the sum B'

is I times the area of the rectangle from which it originated,

B' = IB.

Hence A' = lim IB = I lim B,

or A' = IA, q. e. d.

Example. The area of the circle i) is ir. It follows, then,

that the area of the ellipse ii)
is TT b. Applying the method

FIG. 10
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again to this ellipse, we obtain as the area of the ellipse iii)

the value -n- ab. We have thus obtained the following result.

The area of the ellipse

+ = 1
a2 bz

is A = irab.

EXERCISES

1 . Show that the circle #2 + y* = a2 can be carried into the

ellipse

by a one-dimensional strain
;

cf. p. 306.

2. Prove that the rectangular hyperbola a? y
1 = a2 can be

carried into the hyperbola

^_ = 1
a2 62

by a one-dimensional strain.

3. In Examples 1, "2 of p. 338 can the order of the trans-

formations be reversed ? Prove your answer.

4. A one-dimensional strain changes, in general, the shapes

of curves. Is this true in all cases? For example, in the

case of a parabola ?

5. Prove analytically that the transformation (1) carries a

straight line into a straight line.

6. Show analytically that, if a line L is carried by (1) into

a line L', the slopes of L and L' are connected by formula (3).

7. Find the equations of the transformation which is the

product of the two transformations :

x' = x-l, y' = y + 2, x" = x', y" = -y'.

8. The same for the rotation about the origin through 45,
followed by the translation which carries the origin into

the point (3, 1).
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9. The same for the transformation of similitude which

doubles all the lengths, followed by a reflection in the axis of y.

10. Prove analytically, for the following transformations,

that the product of a transformation and its inverse is the

identical transformation, x' = x, y' = y.

(a) translations
; (6) rotations

;

(c) reflections
; (d) one-dimensional strains.

11. Factor the transformation

(a) into two one-dimensional strains
;

(&) into a one-dimensional strain and a transformation of

similitude.

12. Prove that the rotation about the origin through 180

also called the reflection in the origin is the product of the

reflections in the axes.

13. Factor the transformation

x' = 4#, y' = 2y

into two one-dimensional strains and the reflection in the axis

of x. How else can it be factored ?

Express each of the following transformations as the prod-
uct of two or more simple transformations.

14. x = 3x, y' = 2y.

15. x' = x + 2, y'
= y 3.

16. X' :

17. a/ = ^=^-6, 2/'
=^^ + 3.

V2 V2

6. The General Affine Transformation. By the title is

meant the transformation

|

x' = ax+ by + c,

where A = ab' a'b = 0.
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All of the foregoing transformations come under this type,

but there are transformations comprised under (1), for

example,

(2) x' = 2x-3y + l, y' = _aj + 4y-2,
which are not of any of the above forms. We shall prove the

following theorem.

THEOREM 1. The transformation of the plane defined by

means of equations (1) can be generated by a succession of the

transformations studied in 1-5. In other words, it can be

FACTORED itito transformations of the type of those o/ 1-5.

Proof. If c and c' are not both 0, let the (x, 2/)-plane be

subjected to a translation :

where
, rj

are arbitrary and shall be determined presently.

Thus equations (1) are replaced by the following :

\x' = ax! + byl (a + brj c),

\y' = a'x,+b'yl -(a'^b'ri
-cf

).

We now determine and
rj

so that both parentheses will

disappear. This is done by solving the simultaneous linear

equations :

a + brj c = 0,

a' + b'rj
- c' = 0.

The solution is always possible and unique, since, by hypothe-

sis, A = ab r
a'b 3= 0.

We thus have a simpler pair of equations to study, namely,

(5)
f
yf = a*i + tyi,

It will be sufficient, then, if we can prove our theorem for

the case that c = and c' = 0, i.e. for the pair of equations

x' ax+ by,

/'
= a'x + b'y,
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for we have just seen that we can pass from equations (1) to

equations (5) by a translation, and this is one of the transfor-

mations admitted by the theorem.

Consider an arbitrary circle with its center at the origin :

Let us see into what curve it is carried by (6).

To do this, solve equations (6) for x and y. The result is

the inverse of (6), namely :

lx = Atf + By't

V / A t ~*t \ T?//ii/

where

and

' = --, A' = --, ' = -,A A .A

Next, substitute these values for x and y in (7) :

(9) (A* + A'*) x"> -f 2(AB + A'B') x'y' + (B
2 + B'2

) y'*
= P\

The locus of this equation is an ellipse with its center at

the origin. For, first, the equation has a locus, since all the

points (x
f

, y'} into which the points

(x, y) of the circle (7) are carried by

(6) lie on (9). Secondly, the locus

does not extend to infinity in any
direction.*

In general, this ellipse will not

be a circle. Let L' be the extremity
of an axis. Since the transforma-

tion (8) carries any straight line

through the origin into a straight

line through the origin, OL' will

correspond to a certain radius OL
of the circle (7).

We now rotate the (x, ?/)-plane

*Or, the expression & 4 AC (Ch. XII, 3), formed for (9), is

negative.:

FIG. 11
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about the origin through an angle such that OL comes to lie

along the positive axis of x :

xl
= x cos 6 y sin 0,

yl
= x sin 6 + y cos 0.

Furthermore, we rotate the (x', t/')-plane about the origin

through such an angle 6' that OL' comes to lie along the

positive axis of x :

i
= x' cos 6' y' sin 6',

\ y/ = x' sin 0' + y' cos 6'.

What is the final result? Obviously the following. An
arbitrary point (xlt y^) of the plane is carried by the inverse of

(10) into a point (x, y} ;
this point is carried by (6) into a

point (x', y
f

) ;
and finally the point (x', y') thus obtained is

carried by (11) into (/,?//). To write out these transforma-

tions explicitly would be a long piece of work
;
but it is not

necessary to do so. For, first of all, each is linear and leaves

the origin unchanged. Hence the final transformation, carry-

ing the point (x^ y^) directly into the point (#/, y/), is also

linear,* and it leaves the origin unchanged. It is, then, of the

form :

Consider next what we know about this transformation.

i) It carries the positive axis of xv over into itself. Hence,
when yl

= 0, y/ must also vanish, no matter what value x may
have; thus

Q = yxl ,

and, consequently, y = 0.

ii) The axes of the ellipse which corresponds to the

circle,

(13) *i
2 + 2/1

2 = P
2

,

are the coordinate axes.

* Cf . Ex. 1 at the end of the chapter.
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To find the equation of the ellipse, solve (12) for ajj, y^ re-

membering that y = :

= 21V -1- Sy/,

aw,

Thus (13) is seen to go into the ellipse

(15) 21V2 + 2 2l#*i'</i' + (S3
2 + >

2
) y/

2 = P
7

-

Since the axes of the ellipse (15) lie along the coordinate

axes, the term in x^y^ must disappear, and so we must have

2133 = 0.

Now, 21 cannot be 0, for A = I/a. Hence 33 must vanish :

33 = 0.

It follows, then, that
= 0,

and thus (12) reduces to the transformation:

Moreover, since the positive axis of xl goes over into the

positive axis of #,, we see that

0< .

But 8 may be negative. In this case, a reflection in the axis

of xl will change the sign of 8, and hence the case is reduced

to the one in which 8 is positive :

0<8.

Finally, the transformation (16) is the product of two one-

dimensional strains :

x1 = a x, I x' = x,

one along the axis of x and one along the axis of y.

Let us now recapitulate. The point (x, y} is carried into the

point (ajj, 2/j) by the rotation (10) ; (xl} y^ is carried into (#/, y\)
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by (16), which is a product of two one-dimensional strains and,

perhaps, the reflection in the axis of x
; finally, (x/, y/) is

carried into (x', y') by the inverse of (11), another rotation.

The transformation (6) is, then, the product of these trans-

formations in the order enumerated. The proof of Theorem I

is thus complete.

Properties which all the component transformations of (1)

have in common are also properties of (1). Consequently, the

general qffine transformation carries straight lines into straight

lines, parallel lines into parallel lines, and tangent curves into tan-

gent curves. It does not, in general, preserve angles or areas.

Isogonal Transformations. Of the component transformations

of (6), the rotations (10) and (11) always preserve angles.

This is true of the transformation (16) if and only if it is a

transformation of similarity, with or without a reflection in the

axis of x, i.e. if and only if 8 = a. Hence the most general

isogonal transformation of the form (6) is the product of the

rotation (10), the transformation

and the inverse of the rotation (11). This product is easily

found to be

x' = P[>cos(0:F0')-;ysin(0 qp0')],

y'
= p[>sin(0=F0') + y cos(0 T 0')].

But the angle 6 6' (or Q + 0') is no more general than a

single angle, which we may denote by <. Thus the result can

be written as

x' = p(x cos
<f> y sin <), y'

= p(x sin
<f> -f y cos <).

Replacing x, y by x
1} yl} so that this transformation of the

form (6) reverts to the form (5), and then applying the trans-

lation (3), we obtain as the most general transformation of the

form (1) which is isogonal :

x' = p(x cos < y sin <) -f c,
(17)

} y' = p(x sin < + y cos
</>)+ c'.

Here
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(18) a=pcos<j>, b= /osin<, a'= p sin
<f>, b'=pcos<f>,

and hence,

(19) b' = a, o' = T 6.

Conversely, every transformation (1), for which (19) is true

for one set of signs, can be written in one of the forms (17)

and hence is isogonal. For, if a, b, a', b' are given, satisfying

(19) for one set of signs, values of p, cos <, and sin< can be

found, so that equations (18) hold for the same set of signs.

These values are, namely,
,- a b %

=Va2 + &2
,

cos <ft
= .

,
sin

<j>
=

'p=a + ,
cos < = .

,
sin <> = .

Va2 + 62
' Va2 + W

The following theorem summaries our results.

THEOREM 2. TJie transformation (1) is isogonal when and

only when either

b' = a and a' = b or b'= a and a'=b.

If it is isogonal, it can be written in one of the forms (17).

Homogeneous and Non-Homogeneous Transformations. A
polynomial in x and y is homogeneous, if its terms are all of

the same degree in x and y* Thus, the left-hand sides of for-

mulas (6) are homogeneous polynomials of the first degree. Ac-

cordingly, a transformation of the form (6) is called a homo-

geneous affine transformation ; and, in distinction, a transforma-

tion of the form (1), where c and c' are not both zero, a non-

homogeneous affine transformation.

Since (1) can be reduced to (6) by means of a translation, we
have the theorem.

THEOREM 3. A non-homogeneous affine transformation is the

product of a translation and the corresponding homogeneous

transformation.

* Only those terms with non-vanishing coefficients need be considered,

since a term whose coefficient vanishes has the value of 0, and is not de-

fined as having a degree. For example, if, in the polynomial x2 + 2 xy

+ ax, a has the value 0, the polynomial is homogeneous of the second

degree.
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EXERCISES

1. Prove analytically that the affine transformation (1)

carries a straight line into a straight line.

2. Show that, if L is a line of slope A, the line into which L
is carried by (1) has the slope

v= a'+ b'X

a+b\
3. Using the result of Ex. 2, prove that (1) carries parallel

lines into parallel lines.

7. Factorization of Particular Transformations. We proceed
to illustrate the theory of the preceding section by carrying it

through, step by step, for a particular case.

Let the given transformation be

(1) x' = x + 3 y, y' = 3 x y.

The first step is to find the ellipse into which the circle,

(2) tf + ^ = P ,

is carried by (1). Solving equations (1) for x and y, and sub-

stituting the values obtained, namely,

in (2), we have, finally,

(3) 5 x'2 + 6 x'y' + 5 y"
1 = 32 p

2
.

This ellipse is as shown. One axis,

OL', lies along the line x'+y' = 0.

By adding equations (1), we have

and hence the radius OL of the circle

which is carried into OL' is along the

line x y 0. Furthermore, if L'

lies in the fourth quadrant, as in the

figure, then L lies in the first not

in the third. FIG> 12
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Consequently, a rotation of the (x, y)-plane about through
-45:
/A\
(4) a

V2 V2

brings OL to lie along the positive axis of x. And a rotation

of the (x
f

, 2/')-plane about through + 45 :

r ' - x
Xl ' ~

does the same for OL'.

The next step is to find the transformation carrying fa, 3^)

directly into fa', #/). This we do by eliminating x, y and

x', y' from (1), (4), (5). Thus,

V2 V2
or

(6) a51

' = 4s1, yi' = 2yi.

Finally, we solve (5) for x' and y' :

n\ x'

V2 V2

The transformation (1) is now seen to be the product of the

transformations (4), (6), and (7) ; (4)

carries fa y) into fa, y^ by a rotation

about through 45
; (6) carries

fa, yi) into fa', y~i) by two one-di-

mensional strains
; (7) carries fa', t//)

into
(a;', y') by another rotation about

-*
through - 45.

FIG. 13 Simplifications in Technique. In-

stead of seeking the ellipse in the

(x', y')-plane into which the circle (2) is carried, we might

equally well ask for the ellipse in the fa ?/)-plane which is
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carried into the circle

(8) ^-fy'2 =
p2.

The roles of the two planes are merely reversed. Adopting
this procedure obviates the necessity of solving (1) for the

values of x, y to be substituted in (2). For now (2) is replaced

by (8) and x' and y' are given by (1). Thus one step in the

process is eliminated. The others remain unchanged.

Another simplification arises in factoring a transformation

of the form

/ON
' = -3x- y-2.

Instead of proceeding as in 6, we set

K = * + 4
> and /-

(y' = y-2, [y = -3x- y.

Thus (9) is the product of the transformation (1) and the

translation which carries the origin into the point (4, 2).

EXERCISES

Factor the following transformations, using the simplified

method.

1. x' = x + 3y,. y' = -3x-y.
2. x' = 3x-2y, y' = -2x + 3y.

3. x' = 5x + lly, y' = Wx+2y.
4. xt'=6x + 18y 2, y

1 = ITx + y + 3.

5.
/ sslllaj + 4y + l, y' = 52x+78y-7.

8. Simple Shears. In a rectangle with its center at the

origin and with its sides parallel to the coordinate axes, draw

the lines parallel to the axis of x. Twist this rectangle as

shown in the figure, leaving the line along the axis of x fixed

and sliding each parallel line along itself into a new position.

Thinking of the lines as representing the edges of a pack of

cards or of a block of paper is an aid in visualizing the motion.
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COrW

If the line one unit above the a>axis slides to the right

through the distance k, then the line y units above the o>axis

will evidently slide to the

right through the distance ky,

while a line which is, say, 2

units below the ic-axis will

slide a distance 2 ft to the

left. In other words, the

algebraic distance through
which each line slides is

equal to k times the algebraic

distance of the line from the

=1=F

FIG. 14

' ovaxis.

This is true, also, of the

motion of each point of the

rectangle, since the lines slide as units. If, then, the whole

plane is twisted according to this law, an arbitrary point (x, y)

will be carried along a parallel to the axis of x through the

algebraic distance ky. Hence

tx' = x+ky,

are the equations of the transformation.

Thus far we have i assumed that k is positive. It may
equally well be negative. Then points above the axis of x are

shifted to the left, and points below it to the right.

If the sliding were along parallels to the axis of y, the trans-

formation would be

(
2
) lir'

where Z is any constant, not zero.

These transformations are known as simple shears, and the

motions which they generate are called shearing motions.

Example 1. Subject the curve

(3)
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to the shear

Here

(4)

and (3) becomes

x' = x,

x = = 2x'+y',

2x'
or

(5) y'
= x>\

Conversely, the curve (5) is carried by the shear (4) into the

curve (3). The shear (4) adds to the ordinate of a point

(x
1

, y'~)
the amount 2x' equal to the cor-

responding ordinate of the line y'
= 2 x'.

Consequently, the ordinates of the curve

(3) can be obtained by adding to the ordi-

nates of the line y'
= 2x' the corresponding

ordinates of the curve (5), whose graph is

known. Thus the curve (3) can be easily

plotted. It is tangent to the line y = 2 x

at the origin.

Example 2.

(2) l/

FIG. 15

Construct the curve

y = 4 x3 x.

This is done by plotting the line y = x

and the curve y = 4 a^, and then adding their ordinates al-

gebraically for a new ordinate that of the required curve.

The process is equivalent to subjecting the curve y' = 4a;'3 to

the shear

x = x', y = x' + y'.

Properties of Simple Shears. Since

the transformations (1) and (2) are

special affine transformations (cf. 6),

it follows that simple shears carry

straight lines into straight lines, parallel

lines into parallel lines, and tangent
curves into tangent curves. They do

not in general preserve angles.

d)j/=4a;

FIG. 16
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FIG. 17

Simple shears do, however, preserve
areas. For, first, this is true for any
rectangle whose base is parallel to the

direction of shearing, since such a rec-

tangle is carried into a parallelogram
with the same lengths of base and alti-

tude
;

cf. Fig. 14. Secondly, the area A
of any other figure can be considered

as the limit of the sum of the areas of

rectangles of the type just described,

which are inscribed in the figure as

shown. But this sum is equal always
to the sum of the areas of the corre-

sponding parallelograms, whose limit is

the area A' of the transformed figure.

Consequently, A = A', q. e. d.

EXERCISES

Construct the following curves.

1. y = 2x* + %x. 4. x = y* + 3y.

5. 3x = y
3

6y.

6. 2 x = 4#3
3y.

2. y = 2x3 -%x
3. y = y? + x.

The same for the following curves, making use of a transla-

tion as well as a shear.

+ x-2. 9. x = 2y* 3y + l.

2x* x + 3. 10. 3x = 6yz 2y 7.

11. Construct the curve

y = 2x3 -6x2 + 7x 1,

beginning by putting the equation into the form :

y b = 2(x a)
3 + k(x a).

The same for the curves :

12. y = i?
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Factor the two following shears by the method of 6, 7.
%

14. x = x -f- -?~v 3y y == v.

9. Second Method of Factorization. Homogeneous Strains.

THEOREM. The homogeneous affine transformation

(1)

f x' = a x + b y,
, , ;

.
,

' A = ab' - a'b = 0,
\ y' == a'x + b'y,

can be factored into one-dimensional strains and simple shears,

with the addition, in certain cases, of a reflection in one or both

axes.

Case 1 : a and b' not both 0. In proving the theorem we

begin with the case in which a and b' are not both zero, and

assume first that a =f= 0. A simple shear which suggests itself

as a probable component of (1) is

(2)

x1
= x+-y,

a

2/i y-

Eliminating x, y from (1) and (2), we obtain

(3)

x' = axt ,

y = aX + -
a

This transformation suggests as a factor the second shear :

*' = 2,

' = kxi + y,

where the value of k is to be determined. Elimination of

x', y' from (3) and (4) gives

(4)

(5)

An obvious choice for k is that which makes a' ka=
;
then

k = a'/a.
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We have now factored (1) into the transformations (2), (5),

(4), where k = a'/a, namely into :

(6) A
2/2
=-
a

The first and last of these transformations are simple shears.

The second can be factored into two one-dimensional strains,

or, in case a or A/a or both are negative, into these and a re-

flection in one or the other or both axes. Thus the theorem

is proved in this case.

The proof is similar in the case that b' = 0. The factors of

(1) are

(7)

y' = 2/2, 2/2
=

(8)

Case 2 : a = b' = 0. Here (1) becomes
' = by,

( y'
= a'x.

A = - a'b = 0.

This transformation can be factored into a rotation about the

origin through 90 :

(9) i= y, 2/i
= a,

and the transformation

x' = bxl} y' = ayi.

It can be shown that the rotation (9) is the product of three

simple shears, namely,

and this completes the proof of the theorem.

Homogeneous Strains. The extension to space of the trans-

formations (1) is given by the formulas

x' = a x + b y + c z,

y'
= a' x -f b

1

y + c' z,

z' = a"x + b"y + c"z.
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The three-dimensional case admits a treatment similar

to the foregoing, and the results are like those obtained

above.

Transformations of the form (1) or (9) are known in

physics as homogeneous strains. They are of particular

importance in the theory of elasticity. For, it can be shown

that, if an elastic body, such as a solid piece of rubber

or of steel, is slightly deformed from its normal shape, the

displacement of its points can be represented to a high

degree of approximation by a transformation of the form (1)

or (9).

It is a fact, which we shall not attempt to prove, that a

transformation (1) representing in the above sense a slight de-

formation cannot have a reflection in an axis as one of its com-

ponent transformations.

One-dimensional strains simple elongations and compres-

sions and simple shears are often given the single name,

simple strains. Adopting this terminology, we can say : Every

homogeneous strain representing in the above sense a slight deforma-

tion can be generated by a succession of simple strains without

rejections.

EXERCISES

Factor the following homogeneous strains by the method of

this paragraph.

1. The strain of Ex. 1, 7. 2. The strain of Ex. 3, 7.

3. x' = 6y, y' = 2x + y. 4. x'= 3x 5y, y
1 = 4a; + 3y.

The following homogeneous strains represent slight dis-

placements. Factor them and note that a reflection in an axis

never appears as a component transformation.

5. aj' = 1.01a? + .02y, y
r = .03z + .98 y.

6. aj' = .9a?-.ly, y'=.2x + l.ly.

7. x'=(l + a)x + py, y
1 = y x + (1 + %,

where a, (3, y, S are small quantities, such as .01 or .08.
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Factor the following transformations.

8. The transformation of Ex. 4, 7.

9. x' = -2x + y + 3, y' = 3x-2y + l.

EXERCISES ON CHAPTER XV

1. Prove that the product of any two affine transformations

is an affine transformation.

Definition. The general affine transformation (1), 6, is

called non-singular, if

A = a&' - a'& =
;

if A = 0, it is called singular. The expression A is known as

the determinant (cf. Ch. XVI) of the transformation.

2. The inverse of any non-singular affine transformation

is non-singular. This was proved incidentally on p. 344 in

the case of a homogeneous transformation. Prove it in the

general case.

3. Show that the product of two non-singular affine trans-

formations is non-singular.

Suggestion. Prove that the determinant of the product
transformation is the product of the determinants of the given
transformations.

4. The transformation,

x' = 2x-y, y' = x-2y,

is singular. Verify this and show that the transformation

carries all the points of the plane into points of the line

2x' y' = 0. Has the transformation any inverse ?

5. The product of the general rotation about the origin,

followed by the general translation, is a transformation known
as the general rigid motion. Find its equations.

-4ns. x' = x cos 6 y sin 6 + a
; y' = x sin 6 + y cos 6 + b.

6. The product of the transformation of similitude of 3

and the general rigid motion of the preceding exercise is

known as the general transformation of similitude. Find its
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equations, and show that it is identical with the general isogonal

transformation for which b' = a, a' b ( 6, Th. 2).

7. A non-singular affine transformation carries the four

collinear points Plt PZ) Qi, Q2 ,
into the four collinear points

P'i, ?'* Q'i> Q'*> Prove that, if Qj, Q2 divide P
lt
Pz harmon-

ically, Q'i, Q'2 will divide P'iP'i harmonically.

Suggestion. Prove the theorem first for the transformations

considered in 1-5.

8. Find the equations of a rotation of the plane about the

point (x , y ) through the angle 6.

9. The plane is stretched uniformly in all directions away
from the point (XQ, y ).

Find the equations representing the

transformation.

10. Deduce the equations of the reflection in the line

Ax + By+ C=0.

11. Deduce the formulas representing a one-dimensional

strain away from the line of Ex. 10.

12. Find the equations of the simple shear which leaves

each point of the line of Ex. 10 fixed.

13*. Let the simple shear (1), 8, be factored into the three

transformations of 6, namely (10), (16), and the inverse of

(11). Prove that sin 20' = sin 26, but that the only allowable

solutions of this equation are 0' = 90 and 6'= 270 -
0,

together with those equivalent to them. Show that, if the

first of these solutions is chosen, a = tan 0, 8 = cot 0, whereas,

if the second is taken, a = tan 0,8 = cot 0. Prove that, in

either case, 2 cot 2 = Jc.

Suggestion. Form the product of the three transformations

and demand that it be identical with the transformation (1),

8.



CHAPTER XVI

DETERMINANTS AND THEIR APPLICATIONS

I. DETERMINANTS

1. Simultaneous Linear Equations. The solution of the

simultaneous equations,

y = kz ,

is

/o\ _ kjbz K20i _
\r)

--
1
-

T"'
" ~

provided a^ 2&i = 0.*

If we have three simultaneous linear equations in three

unknowns,
CL& + biy + c& = kit

(3) a& + b%y + c& = kz ,

ayx + b3y + c3z = k3 ,

and first eliminate 0, obtaining two equations in x and y, and

then from these equations eliminate y, we find, as the value of x,

u\ x _ kjbzCa + kjfyA +
1&2C3 + 2^3C1 +

Similarly, we can find the values of y and z. These will also be

in the form of quotients, with the same denominator as in (4),

*If a^bz 2&i = (but ai and 61, and a2 and 62 , are not both zero),

the two straight lines represented by equations (1) are either parallel

or coincident (Ch. 2, 10, Ths. 3, 5) ;
in the former case the equations

have no solution, in the latter, infinitely many solutions. Both cases are

exceptional to the general case, ai&2 2&i = 0, in which the solution

(2) is unique.

360
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and the solution is valid subject to the condition that this

denominator is not zero.

2. Two- and Three-Rowed Determinants. The expressions

in the numerators and denominators of the quotients in (2)

and (4) are of so great importance that they are given a name.

They are called determinants, those in (2), determinants of

the second order, and those in (4), determinants of the third

order. A determinant, then, is a polynomial of the above type.

The determinant of the second order,

can easily be remembered by means of the diagram

+

(1)

in which the lines and the signs show how the terms of the

determinant are to be obtained.

The diagram

^:x^
(2)

fulfills the same purpose for the determinant of the third order,

The four quantities a l} ct 2 , 61, &2 , arranged in a square as in

(1), form what is known as a square array of the second order.

Similarly, the system of nine quantities, which forms the basis

of the diagram (2), is known as a square array of the third order.

The square array is not itself the determinant. It is merely
a convenient arrangement of the given four, or nine, quantities,

from which the value of the determinant can be written down.

However, it is common practice to use, as a symbol or nota-
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tion for the determinant, the square array inclosed between

vertical bars, and to write, accordingly :

a 2

(4) 03

These symbols for the determinants are' sometimes abbreviated

still further. Instead of the first, we often find
|
ai 62

1

or

merely |

a b
|,
and for the second,

|
Oj 62 cs |

r
|

o 6 c
(.*

The solution of the equations (1), 1, we can now write

in the form

x =

"j

or more compactly,

(5) y =

The solution of the equations (3), 1, becomes

k b c\ \a k c\ \a b k
(6) x = y =

b c\'

z = I ,
,a b c

The value of a; is as given by (4), 1. The determinant

|

o 6 c
|

in the denominator is evidently the determinant of

the coefficients of x, y, z in the given equations, and the

determinant \k b c
|

in the numerator is obtained from
|

a 6 c
|

by replacing, respectively, a^ a 2 ,
a3 the coefficients of x

by klt k2 ,
k3 the constant terms. Similarly, the numerator

|

a k c
|

of the value of y is obtained from
|

a b c
\ by replacing

* The vertical bars must not be confused with the absolute value signs.

They have nothing to do with these. The context will always show

which meaning is intended.
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the 6's the coefficients of y by the k's
;

and likewise

for z*

The four, or nine, quantities from which the determinant is

formed are known as the elements of the determinant. The

rows and columns in which they are arranged are called the

rows and columns of the determinant. The diagonal contain-

ing the elements av ,
b2 (c3) is the principal diagonal ;

the other,

the secondary diagonal. The determinants are often called two-

and three-rowed determinants, instead of determinants of the

second and third orders.

EXERCISES

Evaluate the following determinants.

1.

5.

2 3

3 5

352
213
437

2.
1 3
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3. Determinants of the Fourth and Higher Orders. Given

sixteen quantities arranged in a square array :

tti 61 GI d\

xv 02 62 C2 ^2

at 64 c4 dt

What shall we mean by the determinant symbolized or de-

noted by
&!

0*2

a3 c3

a4 &4 c4

or, more simply, by | a^ b2 <% d
\

or
|

a 6 c d \?

If we were to proceed as before, we should write down four

simultaneous linear equations in four unknowns, with the

elements of (1) as the coefficients of the unknowns and fc1} k2 ,

A;3 ,
k4 as the constant terms, and then solve the equations.

The value of each unknown would
4
be a quotient, and all four

quotients would have the same denominator, which we should

then define as the determinant
|

a b c d
|.

As a matter of fact,

this denominator and each of the numerators contains 24 terms.

The prospect of solving the equations is, then, forbidding.

Why not form the products suggested by a diagram"based on

(1), similar to the diagram for the three-rowed determinant, pre-

fix the proper signs, and call the result the determinant ? Un-

fortunately this method yields but 8 terms, whereas according
to our prediction the determinant, properly defined, contains 24.

We adopt here a new method of attack. Let us inspect

more closely the relationship between the square arrays of

orders two and three and the corresponding determinants.

Consider a specimen term of the determinant (4), 2. It con-

tains just one a, just one 6, and just one c
; furthermore, each of

the subscripts 1, 2, 3 appears just once. In other words, the

term is the product of three elements, one from each row and one
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from each column of the square array. Moreover, every product
of this type is present as some term in the determinant, as can

be shown by writing down all such products and comparing
them with the terms of the determinant.

By analogy, then, to form the determinant \a b c d\, we
should write down all the products of elements of (1), each of

which contains just one factor from each row and just one

factor from each column of (1), that is, all the products of the

form Gi&yC/Z,, where i, j, Jc, I are the numbers 1, 2, 3, 4 in all

possible orders. There are 24 such products. For, we can

choose the first factor, say from the column of a's, in four ways
from any one of the four rows

;
and then the second factor,

say from the column of 6's, in three ways from any one of the

three remaining rows
;
and the third factor, in two ways ;

the

fourth is then uniquely determined. The number of possible

products is, therefore, 4 3 2 1 = 4 ! = 24.

It remains to determine the signs to be given to the 24

products. Toward this end, let us write down the subscripts of

the terms of (4), 2, in the order in which they occur, ivhen

the letters a, b, c are in their natural order. For the terms with

plus signs we have

123, 231, 312,

and for the terms with minus signs,

321, 213, 132.

The first set 1 2 3 is normal. In the second set, 2 3 1, 2 and

3 each precede 1, and we say that there are two inversions from

the normal order. In 3 1 2, 3 precedes 1 and 2, again two

inversions. In the three sets for the negative terms the num-
ber of inversions is respectively three, one, and one.

It appears, then, that the number ofinversions in the set of sub-

scripts for a term with a plus sign is even (or zero), whereas for a
term with a minus sign, this number is always odd.

Proceeding according to this rule, we should give to each of

the 24 products, a.&^d,, formed from (1) a plus sign or a minus
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sign, according as i j k I presents an even or an odd number of

inversions from the normal order 1234. Thus the product

&2d1a3c4 would be taken as plus, since, when the factors are

arranged in the order of the letters, viz. a362c4c?i, the num-

ber of inversions in the subscripts 3 2 4 1 is even, namely 4.

The product afi&di would be taken as minus, since the num-

ber of inversions in 4 2 3 1 is odd, namely 5.

We can now give a complete definition of the determinant of

the fourth order.

DEFINITION. Form all the products of elements of (1) which

contain just one factor from each row and one factor from each

column of (1) ; to each product a
f&yC fcd, prefix a plus sign or a

minus sign, according as the number of inversions of i j k I from
the normal order 1 2 3 4 is even or odd. The sum of the

products, thus signed, is the determinant.

Determinants of the fifth, sixth, and higher orders are

similarly defined. Let the student think through the definition

for a five-rowed determinant, and let him show, also, that in the

case of two-and three-rowed determinants the definition yields

precisely the expressions which were defined as these determi-

nants in 2.

The signed products which make up a determinant are known
as the terms of the determinant. Thus, + o^c^i and

i are terms of
|
a b c d

\.

EXERCISES

1. What is the number of inversions of each of the following

orders, from the normal order ?

(a) 3 1 4 2
; (c) 2 5 3 1 4

; (<?)
3 1 6 4 5 2

;

(6) 2 4 3 1
; (d) 4 3 5 2 1

; (/) 6 5 4 3 2 1.

2. Write out all the terms of
|

a 6 c d
\.

-To how many pro-

ducts have you prefixed plus signs ? To how many, minus signs ?

3. How many terms has a determinant of the fifth order ?

Prove your answer.
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4. The same for a determinant of the nth order.

367

5. Show that the sign to be prefixed to the product of the

elements of the principal diagonal is always the plus sign,

no matter what the order of the determinant.

4. Evaluation of a Determinant by Minors. Fix the atten-

tion on a particular element of a determinant A. Cross out

the row and column in which this element stands. There will

remain a determinant of order one less than that of A. This

determinant is known as the minor of the element chosen.

For example, the minor of a2 in the determinant

(1)

is the determinant

Consider the product a2A.,. The terms in this product are

and a2&3ci ,
and by (4), 2, these are terms of (1) ex-

cept for sign; moreover, they are, except for sign, all the

terms of (1) which contain a2 .

Again, the terms of b.2 B<>, where B% is the minor of 62 in (1),

are a-f>^ and ajb^. These are precisely terms of (1) and,

in fact, all the terms of (1) which contain 62 .

In general, let tn be an element of a determinant A and let

M be its minor. Then the terms of the productmM are terms

of A, except perhaps for sign ; furthermore, they are, except

perhaps for sign, all the terms of A which contain m.

For, if we take the factor m from a term of A which con-

tains m, the product which remains contains just one element

from each row and column other than the row and column in

which m stands, and is, therefore, a product occurring in the

determinant M. And, if we take the factor m. from all the

terms of A containing m, the products which remain are all
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the products of the type described and hence are all the

products occurring in M, q. e. d.

It will be shown later ( 7) that the terms of mM as they

stand, or the terms of mM with all their signs changed, are

precisely terms of A, according as the sum of the number of

the row and the number of the column in which m stands is

even or odd. Assuming this, we can now state the theorem :

THEOREM 1. Ifm is the element in the i-th row and j-th column

of A, and M is its minor, + mM or mM, according as i + j
is even or odd, consists of all the terms of A which contain m.

Thus, in the case of the element a2 of (1), i = 2,j = 1, and

i -}- j = 3
; accordingly, a^Az gives all the terms of (1) con-

taining 02. For 62 >
* = 2, j = 2, and i + j = 4, and so + b2B2

consists of all the terms of (1) containing &2.* Similarly, if

(72 is the minor of <%, <%% consists of all the terms of (1)

containing c%.

The sum

(2)
- a2^l2 + b2B2

-
C2<72

is precisely the value of the determinant (1). For, it consists

of all the terms of (1) containing a^ or 62 or
c-j, i.e. containing

an element of the second row, and every term of (1) contains

such an element. The student should also verify the state-

ment by comparing the terms of (2), when expanded, with

those of (1).

In (2) we have the sum of the products of the elements of

the second row by their minors, each product having the

proper sign according to Theorem 1. We say that (2) is the

evaluation or expansion of the determinant (1) by the minors of

the second row.

Similarly, the sum,

(3) c1 <71 -c2C2 + c3C3 ,

of the products of the elements of the third column of (1) by
their minors, where the signs have been determined by Theorem

* Compare these results with those obtained directly at the beginning
of the section.
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1, is precisely the determinant (1). We speak of (3) as the

evaluation of (1) by the minors of the third column.

The reasoning here is perfectly general, applying to a deter-

minant of any order and to any row or column of the deter-

minant. The result we summarize as follows :

EVALUATION OF A DETERMINANT BY THE MlNORS OF A

Row OR A COLUMN. Single out a row or a column of a

determinant. Multiply each element of it by the minor of
the element and prefix to the product the proper sign, as

determined by Tfieorem 1. The sum of the signed products is

the determinant.

We now have a feasible means of finding the values of de-

terminants of the fourth and higher orders. For example, the

determinant
2

4

-3
-1

5

-9
6

4

-2
3

-4
-3

8

-7
4

5

evaluated by the minors of the first row, is equal to

-9 3 -7
6-4 4

4-3 5

-5
3 -7

-3 -4
-1 -3

+ (-2)

4 -9 -7
-3
-1

-8
4-9 3
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2. (Generalization of Ex. 1.) Given a determinant A of

the nth order and the n quantities k
i}
k2 , ,

kn . Single out a

column (or row) of A, form the minors of its elements and

prefix to each the sign prescribed by Th. 1. Multiply each

signed minor by the corresponding k and take the sum of these

products. Prove that this sum is equal to the determinant

obtained from A by replacing the column (or row) in question

by &!, k2, ,
kn .

By the method of this section, evaluate the following de-

terminants

3.

5.

That
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It is clear from this example that a determinant which has

the property that all but one of the elements in some row or

in some column are zero is very simply evaluated. Conse-

quently, if a determinant which has not this property can be

transformed into an equal determinant which has the prop-

erty, a simple method is at hand for the evaluation of all

determinants.

The transformation in question is always possible. It is

based on the following theorem.

THEOREM 2. If the elements of a row (or column) of a de-

terminant are each multiplied by the same quantity and are then

added to the corresponding elements of a second row (or column),

the value of the determinant is unchanged.

Let us first try to appreciate the value of the theorem,

postponing the proof until later. Consider the determinant

(4) of 4, namely,

(1)

2

4

-3

5

-9
6

4

-2
3

_ 4

-3

8

-7
4

5

By application of the theorem we proceed to transform this

determinant into an equal determinant with the first three ele-

ments of the first column all zero.

Rewrite (1), putting in, to begin with, only the last row :

(2)

-14-35
Multiply the elements of the last row of (1) by 2 and add the

numbers obtained to the elements of the first row of (1) ;
the

result is 0, 13, 8, 18 as a new first row, to be put into (2).

Similarly, multiply the last row by 4 and add to the second

row, thus getting 0, 7, 9, 13 as a new second row, to be

written in (2). Finally, the last row multiplied by 3 and
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added to the third row gives 0, 6, 5, 11 as a new third

row. Thus (2) has become

18

13

-11
5

(3)

-9
5

-3

13

7

-6
-1 4

a determinant whose value, by Th. 2, is equal to that of (1).

Expansion of (3) by the minors of the first column gives

13-8 18

_(_!) 7-9 13-
- 6 5-11

The evaluation of this three-rowed determinant by means of

the schematic diagram of 2 involves the multiplication of large

numbers. This may be avoided as follows. Apply Theorem 2

so as to introduce 1 or 1 as an element
;
for instance, by multi-

plying the last row through by 2 and adding to the first row :

1 2-4
7-9 13

- 6 5-11
Now rewrite the determinant, putting in just the first column.

Multiply the first column by 2 and add to the second

column, for a new second column
;
and multiply the first

column by 4 and add to the third column, for a new third

column. The result is the equal determinant100
7-23 41

,

- 6 17-35
which, on expansion by the minors of the first row, has the value

-23 41

17 -35 '

or (- 23)(- 35)- 17 . 41 = 805 - 697 = 108.*

Thus the determinant (1) has the value 108.

* Here, too, the long multiplications could be replaced by simpler ones,

through the application of the above method of reduction.
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EXERCISES

Evaluate, by the above method, the following determinants.

57-3897
1. 7 6 5 . 2.

,074
4.. That of Ex. 5, 4.

6. That of Ex. 7, 4.

10

21

30

12

26

33

15

30

37

3.

-6
5. That of Ex. 6, 4.

6. Fundamental Properties of Determinants. The following

theorems are fundamental in the transformation and evalua-

tion of determinants. They lead up to a simple proof of

Theorem 2.

THEOREM 3. If all the elements of a row (or column) are

multiplied by the same quantity, the value of the determinant is

multiplied by this quantity.

For, each term of a determinant A contains as a factor just one

element from the row (or column) in question, and consequently,
when the elements of this row (or column) are all multiplied

by the same quantity, m, the terms of A will all be multiplied

by m, and the resulting determinant will have the value mA.

The theorem is often of use in evaluating a determinant.

For example, if A is

then

A = 7
5 2

20 42
= 7-5
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Consider, next, a determinant of the third order, with two

rows identical. Expand the determinant by the minors of

the third, or odd, row. Each of these minors has its two rows

identical and is, therefore, zero, since the theorem has been

proved for two-rowed determinants. Consequently, the given

determinant is zero.

Similarly, having proved the theorem for three-rowed" de-

terminants, we can prove it for a four-rowed determinant.

For, we have but to expand the four-rowed determinant by the

minors of a row which is not one of the two identical rows.

This expansion will have the value zero, since each of the

minors in question is a three-rowed determinant with two

identical rows.

The process perpetuates itself. Hence the theorem is true

for a determinant of any order.

The method of proof used here is known as mathematical

induction. The fact that the theorem is true for a two-rowed

determinant leads up to its truth for a three-rowed deter-

minant, etc.

COKOLLARY. If the elements of two roius (or columns) of a

determinant are proportional, the determinant has the value

zero.

For, each element of one of the two rows (or columns) in

question is by hypothesis a multiple, ra, of the corresponding
element of the other. Thus m can be taken out from the first

of the two rows (or columns) as a factor (Th. 3). The two

rows (or columns) are then identical, and Theorem 4 can be

applied.

THEOKEM 5. If each element of a roiv (or. column) is the sum

of two quantities, the determinant can be written as the sum of

two determinants.

Denote the determinant by A and the elements of the col-

umn (or row) in question by m t + m/, m? -\- m2', . Denote by
A the determinant obtained by replacing all the m"s in A by

zeros, and by A' the determinant obtained by replacing all the
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m's in A by zeros. We shall prove that

A = A + A'.

For example,

i + wh' h
m2 -+- m2

'
62

3 + Wls' 63 Cs W13 63 C3

m2
'

m3
'

Proof. Every term of A, since it contains just one element

from the column (or row) under discussion, is the sum of two

quantities, one containing an m and the other an m'. All the

quantities containing m's form the determinant A, and all those

containing m"s, the determinant A'. Hence, A= A + A'.

Or, expand A by the elements of the column (or row) in

question, denoting the minors of these elements by MI, M2,
.

The result is

(1) A =
=

+ m/) MI - (m2 + m2 ')
M2 +

+ ] [mi MI -f- ]

The values of A and A can be obtained from (1) by replacing,

first, the m"s, and then the m's, by zeros :

A =

Hence

m2M2 ],
A =

A = A + A'.

The proof of Theorem 2, 5, is now simple. The deter-

minant A', which is obtained from the given determinant A

by adding to the elements m l5 wio., of, let us say, a column

the corresponding elements pi, p2 ,
of a second column, each

multiplied by a quantity fc, contains the column mi + Jcpi,

m2 + kp2 ,
"'. Hence A' equals the sum of two determinants,

the first of which is A. The second has the two columns

Jcpi, kp2 ,
and ply p2)

... and is therefore zero (Th. 4, Cor.).

Consequently, A' = A.

For example, if A is the three-rowed determinant (4), 2,

and to the elements of the second column are added those of

the first, each multiplied by ft, we have
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A' =
+

a3 63 + ka3 c3

a2 .

TCO.I

A;a2

a3

= A + = A.

EXERCISES

1. Prove the theorem : If all the elements of a row (or column)
are zero, the determinant has the value zero.

2. Given the determinant
|

a b c
|

. Using Ex. 1, 4, show

that

biAi b2A2 -}- 63^3 = 0.

3. (Generalization of Ex. 2.) If to the minors of a column

(or roiu) of ~a determinant are prefixed the signs prescribed by

Theorem 1, and if each signed minor is then multiplied by the

corresponding element of a different column (or row), the sum

of the resulting products has the value zero. Prove this theorem.

Cf. Ex. 2, 4.

Evaluate the following determinants, making as much use

as possible of Ths. 2-5.

4.

866
292
661

5.

2

-4
-2
24

16 20 16

6.

4 15 -6
6 12 9

2 38 -3

7. Interchanges of Rows and of Columns. Given the first n

integers in natural order :

(1) 1 2 3 I I + 1 n
;

in this order (1) interchange two successive integers, I and

l + l:

(2) 123...? + lZ...n.

Consider, now, the n integers in an arbitrary order,

(3) p q r .

t,

and compare the number of inversions of this order from the

order (2) with the number of its inversions from the order (1).
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Each pair of integers is in the same order in (2) as it

was in (1), except the pair I,
I + 1. Consequently, if a pair

of integers in (3), not the pair I, I -f 1, presents an inversion

from the order (1), it also presents an inversion from the

order (2), and vice versa. But the pair I, I + 1 in (3) presents
an inversion from one of the orders, (1) and (2), and not from

the other. Hence, we conclude :

LEMMA 1. The total number of inversions from the order (2),

which (3) presents, differs by one from the total number of inver-

sions from the order (1), which it presents.

For example, 23145 has two inversions from the natural

order 12345 and three from the order 12435.
In the general determinant of the nth order,

A =

02 Cj

*>n Cn k
r

the normal order for the subscripts is the order of the rows,

namely the order (1). Accordingly, if in A two adjacent rows,

the Zth and (I + l)st, are interchanged, the normal order for

the subscripts in the new determinant, A', is the order (2).

The terms in A and in A' are the same, except perhaps for

sign. To determine the sign of a term ajbq
cr k

t ,
as a term

of A, the number of inversions which the subscripts

(3) p q r t

present from the order (1) is counted
;
to determine its sign,

as a term of A', the number of inversions of (3) from the order

(2) is counted. We have just shown that the two results

differ always by unity. Consequently, the term in question
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has one sign in A and the opposite sign in A'. Therefore,
A' = A. We have thus proved the theorem :

THEOREM 6. If two adjacent rows of A are interchanged, the

sign of A is changed.

Suppose, now, that we carry a row over m rows. This can

be effected by m interchanges of adjacent rows
;
for example,

if the row is to be carried downward, by interchanging it with

the row just below it, then with the row just below its new

position, etc. Since each interchange of adjacent rows changes
the sign of A, the final determinant will be equal to A or A,

according as m is even or odd. This result we state in the

form of a theorem :

THEOREM 7. If a row of A is carried over m rows, the result

is A or A, according as m is even or odd.

Finally, interchange any two rows. If there are m rows

between the two, the interchange can be effected by carrying
one of the rows over these m and then by carrying the second

one over this one and the m, i.e. over m + 1 rows. Thereby
the determinant experiences m + m + l=2?n,-fl changes of

sign, i.e. an odd number. Thus we have the result:

THEOREM 8. If any two rows of A are interchanged, the sign

of A is changed.

New Rules for Determining the Sign of a Term. We first

state the following lemma :

LEMMA 2. Take the first n integers in an arbitrary order:

(4) p q r - i j -
t,

and in this order interchange two ADJACENT integers, i andj:

(5) p q r j i t.

Then the number of inversions of (5) from the natural order

differs from the number of inversions of (4) from the natural

order by one.

The proof of this lemma is exactly like the proof of Lemma 1.
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An arbitrary term of A, without its sign, can be written in

the form

(6) vpwq
x

r
za

where

(7) v w x z

are the letters a b c A; in some order and

(8) p q r *

are the subscripts 123 n in some order. Let N be

the number of inversions of the letters (7) from the natural

order and let M be the number of inversions of the subscripts

(8) from the natural order. N+ M is the total number of

inversions in letters and subscripts.

If we interchange two adjacent factors in (6), the effect is to

interchange two adjacent letters in (7) and two adjacent sub-

scripts in (8). Hence, ty Lemma 2, N is changed by one *

and M by one
; consequently, the sum N+ M is changed by

2 or left unchanged. But any reordering of the factors in (6)

can be effected by a number of interchanges of adjacent fac-

tors. It follows, then, that any reordering of the factors of

(6) changes N + M by an even number or leaves it unchanged.
That is, the evenness or oddness of the total number of inver-

sions in letters and subscripts in a term of A is independent of
the order of the factors in the term.

We may, therefore, arrange the factors with the letters in

the natural order and count the inversions in the subscripts,

as in the definition, 3, or we may arrange the factors with

the subscripts in the natural order and count the inversions

in the letters, or we may leave the factors unarranged and

count the inversions in both letters and subscripts. The re-

sult will always be even or always be odd, no matter which

of the three methods is used, and consequently the sign to

be given to the term will always turn out to be the same.

* Lemma 2 is stated in terms of integers ;
it holds equally well for

letters.
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In the above methods of determining the sign of a term the

letters and' subscripts (or the columns and rows) enter sym-

metrically. The columns and rows also play the same roles

in the choice of the factors which constitute the term. In

other words, the formation of a determinant from its square

array bears equally on the rows and columns of the array.

We have, then, the following theorem.

THEOREM 9. If the rows and columns of A are interchanged,

A is unchanged.

Consequently, Theorems 6, 7, and 8, which have been proved
for rows, are true also for columns.

Completion of the Proof of Theorem 1. If m is the element

in the ith row and jth column of A, we have to show that

-f- mM or mM gives terms of A, according as i -f j is even

or odd
;
or more briefly, that ( l)*'

+%Jlf always gives terms

of A.

If i = 1, j = 1, i.e. if m is the element in the upper left-hand

corner of A, the natural orders of letters and subscripts in M
are

b c Jc and 2 3 n.

A term T of M will present the same number of inversions in

letters and subscripts with respect to these orders as the cor-

responding 'term, aiT, of A presents with respect to the orders

a b c k and 123 n.

Hence it is + mM which gives terms of A and, since i +j = 2,

this is in accordance with the theorem.

Consider, now, the general case: m in the ith row and jth
column. Carry the ith row over i 1 rows to the top of A
and then carry the jth column over j i columns to the ex-

treme left of A. By Th. 7, the resulting determinant is

(9) (- l)<
+
'-'A,

and in it m is in the upper left-hand corner. It follows, then,

from the case first considered, that + mM gives terms of (9).
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Hence ( l)'
+'mJ/ gives terms of

and therefore of A, since 2 i + 2j 2 is even, q. e. d.*

EXERCISES
1. Prove Lemma 2.

2. Determine, by each of the three methods above described,

the signs to be given to the following products :

(a) 63Cia25 (&) CsMAj (c)

8. Cramer's Rule. In 2, we stated that the three simul-

taneous equations in three unknowns,

a& + biy + <?!
= klt

(1) a*x -f &;# + c-jz
=

fcj,

030; + 6jy + c32 = k3 ,

have the solution

_|fc6c| _ |

a fc c
| _ I

a ^ ^
I=

|a 6 c|'
y=

\a b c|'

=
|a 6 c

|'

provided |
a 6 c

|

= 0.

This rule for finding the solution of (1) is due to Gabriel

Cramer (1760). "We proceed to prove it.

Assuming that equations (1) have a solution, we begin by

multiplying them respectively by + Alt
A2) + A3 ,

i.e. by the

signed minors of al} a?, 03 in the determinant
|

a 6 c
|.

Add-

ing the resulting equations, we have

- bzA2+ 63^3) y

The coefficient of x is the evaluation of
|

a 6 c
| by the minors

of the a's. Similarly, the constant term is
|

k b c
\

;
cf. 4,

* All the theorems of this paragraph have been proved directly from

the definition of a determinant, without the use of any of the preceding

theorems, of 4, 5, 6. So the paragraph could be inserted immediately
after 3. Its importance, in comparison with that of 4, 5, 6, is not,

however, sufficient to justify this.
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Ex. 1. The coefficients of y and z are
|

b b c\ and
|

c 6 c
|,

and these determinants are zero (Th. 4). Consequently,

|a b c\x=\k b
c\.

Since we are assuming that
|

a b c
\

= 0,

\k b c\/f i .

1 1 i

1

a b c\

This is the value of x, as given by (2). Multiplying the

equations (1) respectively by B1} -f jB2 ,
J53 and adding,

we obtain the value of y. That of z is arrived at in a similar

manner.

What we have proved is this : If the equations (1) have a

solution, it is given by formulas (2). It follows, then, that

equations (1) have at most one solution, since formulas (2) give

unique values for x, y, z.

It remains to show that these values of x, y, z actually are a

solution, i.e. actually satisfy equations (1) in all cases. This

can be done by direct substitution. Setting the values into

the first of equations (1) and multiplying through by |

a b c
|,

we have

(3) ^
|

fc b c\ + bi\a Jc c
\
+ c^

\

a b Tc
\ Tc^ \a b

c|
= 0.

By proper rearrangement of columns in the first two deter-

minants (cf. Ths. 6-8), this becomes

Oi
|

6 c fe
|

&!
|

a c A;
|
+ G!

|

a b k\ &j
|

a 6 c
|

= 0.

The left-hand side here is the evaluation of the determinant

&1

3

by the minors of the first row. But this determinant is zero,

because the first two rows are identical. Consequently, (3) is

a true equation and the values of x, y, z given by (2) satisfy
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the first of the equations (1). In like manner it can be shown

that they satisfy the other two equations.

This completes the proof that equations (1), provided |

a b c
\

^= 0, have a unique solution, which is given by Cramer's rule.

Both the proof and the rule can be generalized to the case of

any number of simultaneous linear equations in the same num-
ber of unknowns. We state the result in general form. -

THEOREM 10. A number of simultaneous linear equations in

the same number of unknowns, for which the determinant of the

coefficients of the unknowns does not vanish, has one and only one

solution, which is given by Cramer's rule.*

EXERCISES

1. Deduce the value of y given by (2).

2. Prove that the values of x, y, z given by (2) actually

satisfy the third of equations (1).

3. Give Cramer's rule for four simultaneous linear equations
in four unknowns. First write down the equations and then

the formulas analogous to formulas (2). No proof is required.

Solve the following systems of simultaneous equations.

2x- y + 3z+ t= 6, 3y-4z+2- 4 = 0,

= 6, 2x +3z-4+ 3 = 0,
'

3x-2y z + 4* = -l, -4x+2y
= 8. 3x-4+2z - 5 = 0.

9. Three Equations in Two Unknowns. Compatibility. The
three linear equations,

!* +% + Cj = 0,

(1) a^x + bfl -f c2 = 0,

a& + batf + C3 = 0,

* In case the determinant of the coefficients does vanish, the facts are

more complex. For two equations in two unknowns, they are given in

the footnote on p. 360. For a treatment of the general case, cf . Bdcher,
Introduction to Higher Algebra, Ch. IV.
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in the two unknowns x, y are said to be compatible, or consist-

ent, if they have a simultaneous solution. They will, in

general, be incompatible, since a solution of two of them will

not, in general, satisfy the third. It is important, then, to

determine the condition for their compatibility.

Two cases arise, according as the minors d, C2 ,
C3 of the

elements c: ,
c2, c3 in the determinant

|

a b c
\

are not, or are,

all zero. In case they are not all zero, at least one of them
must be different from zero. Suppose that (73 = |

al b2 \

is

not zero. Then the first two of the equations (1) have, by
Th. 10, one and only one solution, namely :

(2) x

This will be a solution of the third equation if and only if

s 1 i GZ
|

63 tti 2
1
+ c3

1

a
t
62 1

= 0,

or, since the left-hand side here is the expansion of
|

a b c
| by

the minors of the third row, if and only if

(3) |

a b
c|
= 0.

Before formulating this result as a theorem, we give a

definition.

DEFINITION. The numbers al} a2 ,
a3 and b

} ,
62 ,

53 are pro-

portional :

ot! : a2 : a3
= &! : 52 : b3 ,

if and only if there exist two numbers I and m, not both zero, such

that

(4) Zaj = m&x, Ia2 = mb2 ,
las = mb3 .

If &u &2 > &3 are a^ zero an(i we ^ake I = and m any number

^fc 0, equations (4) are satisfied no matter what values ab a2 ,
a3

have. In other words, three arbitrary numbers a
1} a?, a3 ,

on

the one hand, and 0, 0, 0, on the other, are always proportional.

In particular, a 1?
a.2 ,

a3 may also all be zero.

Suppose, now, that bi, 62 ,
63 are not all zero and let blt for

example, be not zero. If, then, I were 0, we should have,
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from the first of equations (4), m = ;
but I = 0, m = is con-

trary to the definition. Consequently, in this case, I cannot

be 0. Hence we can divide each equation through by I. The
result is the equations

di = kbly a2 = fc&2, as
= &&3>

where 7c has the value m/l. Conversely, if in any given case

there exists a number k, zero or not zero, such that these equa-
tions hold, then a1} a2 ,

a3 and ftj, &2 ,
b3 are proportional. For,

the equations are but a special case of equations (4), when
I = 1 and m = k. We have thus proved the following theorem :

Ifbi, 62 ,
63 are not all zero, the numbers a 1? cu, a3 and bi, 62 ,

b3

are proportional if and only if there exists a number k, zero or

not zero, such that

(5) a x
= kbi, a? = kb2 ,

a3 = kb3 .

By application of the definition it is easy to show that the

minors Cl} C2 ,
C3 in the above discussion are not all zero when

and only when c^, a2 ,
a3 and 6j, 62 ,

63 are not proportional ;
cf.

Ex. 2. The foregoing result can be stated, then, as follows :

THEOREM 11. If, in the equations (1),

aj : a2 : a3 = b^ : b2 : b3 ,

the three equations will be compatible when and only when the

determinant of their coefficients vanishes. TJiey then have one

and only one solution.

The case in which C^ = C2
= C3

= is left to the student
;

cf. Ex. 3.

EXERCISES

1. Show that the equations,

aix -f- &! = 0, atfc + 62 = 0, a l
= 0, o^ = 0,

are consistent if and only if
|

a 6
1

= 0.

2. The proportion a : a2 : a3
= 6 X : 62 : 63 is valid if and only

if the three two-rowed determinants, which are formed from

the array
i a2 03

bi b2 b3
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by dropping each column in turn, are all zero. Prove this

theorem.

3. If in the equations (1) a
} ,
a2 ,

a3 ,
b l} b2 ,

b3 are not all zero

and ai} a2 ,
a3 are proportional to b

lf b2 ,
63 ,

the three equations
will be compatible if and only if ci} c2 , <% are proportional to a

i}

0%, a3 and bl} b2 ,
bs . They then have infinitely many solutions.

Prove this theorem.

In each of the following exercises determine whether or not

the given system of simultaneous equations is compatible. If

it is, find the solution.

4. 3 X - y+ 5 = o,

5. 2x+ ?/-l = 0, 3x

6. x-2y + 3 = 0, -3x + 6y-9 = 0, 2x- 4^ + 6 = 0.

7. 4x + 2?/-l = 0, 2x+ y-

8. THEOREM. If, in the equations

aix + hy + CjZ + dj = 0,

d% = 0,

d3 = 0,

+ d4 =* 0,

the four minors DI, Dz ,
D3 ,

-D4 of the elements d1? d2) d^, d4 in the

determinant
\

a b c d
\

are not all zero, the equations are com-

patible when and only when \a b c d
\

= 0. TJtey then have one

and only one solution. Prove this theorem.

Determine in each case if the four given equations are com-

patible. If so, what is the common solution ?

4:X-2y + 2z 5 = 0,

2x- y+,

z + 5 = 0, 6x - 3y + 3z + 4 = 0,

2 + 2 = 0. -2x+ y- 2 + 2 = 0.

11. State the generalization of Theorem 11 and the

theorem of Ex. 8 for the case of n -j- 1 linear equations in n

unknowns.
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10. Homogeneous Linear Equations. The equations,

i* + b ty + cjz = 0,

(1) ax + &<# + c2z = 0,

a3x + b3y + c3z = 0,

form what is called a system of homogeneous
* linear equations.

In considering them, we assume that not all the coefficients

a i> i)
'

*> cs are zero-

Let
, y ,

2 be a simultaneous solution of the equations (1).

Then kx
, ky ,

kz
,
where k is an arbitrary constant, is also a

solution of (1). For, if these values are substituted for x, y, z

in (1), we have
k (0,1X0 + 6iy + Cib)= 0,

k (a,,x + &2?/ + c2Zo)
= 0,

fc fa*k + b3y + c32 )
= 0.

The three parentheses in these equations all have the value

zero, since x
, y ,

z is a solution of (1). Hence the equations

are true, q. e. d.

This proof is applicable to the general case of n homogene-
ous linear equations in n unknowns. Hence we can state the

following theorem :

THEOREM 12. If x
, y ,

z
, -,

t is a simultaneous solution

of n homogeneous linear equations in the n unknowns x, y, z, ,

t, then kx
, ky ,

kz0) -,
kt

,
where k is an arbitrary constant, is

also a solution.

An obvious solution of the equations (1) is 0, 0, 0. This

is the only solution, if the determinant
|

a b c
|

is not 0. For,

equations (1) are a special form of equations (1), 8, when

ki = k% = A;3
= 0. If

|

a b c
\

= 0, the latter equations have,

by Th. 10, just one solution, given by formulas (2), 8. But

this solution is 0, 0, 0, since each of the determinants in the

numerators in (2) now contains a column of zeros.

This result is also general :

THEOREM 13. If the determinant of the coefficients of n homo-

geneous linear equations in the n unknowns x, y, z, ,
t does

* Cf. p. 348.
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not vanish, the only simultaneous solution of the equations is

a = 0, y = 0, 2 = 0, -,* = 0.

If, then, the equations are to have a solution other than the

obvious solution 0, 0, 0, , 0, it is necessary that the determi-

nant of the coefficients vanish. It can be shown, conversely,

that if this determinant does vanish the equations will have

solutions other than the obvious solution. That is, the follow-

ing theorem is true.

THEOREM 14. A system of n homogeneous linear equations in

n unknowns has a solution other than the obvious solution, 0, 0,

0, , 0, if and only if the determinant of the coefficients vanishes.

To complete the proof of this theorem in the case of equa-

tions (1), we must show that, if
|

a 6 c
|

= 0, the equations have

solutions other than 0, 0, 0. This we shall do by actually ex-

hibiting such solutions.

By hypothesis, \a b c|
= 0. Then two cases arise, as

follows :

Case 1. Not all the minors in \a b c\ are zero. In this case

at least one minor in
|

a b c
\

does not vanish. Suppose that

the minor, |a] b.2 \,
in the upper left-hand corner is not zero.*

We proceed, then, to show that equations (1) have a solution

x, y, z, in which z = 1
;

i.e. that the equations,

a^x + biy + G! = 0,

(2) a2x + b 2y + c2 = 0,

s + bsy + c3 = 0,

obtained from the equations (1) by setting 2 = 1, have a simul-

taneous solution for x and y.

Since, by hypothesis, \a b c|=0 and |a! 62 |

= 0, equations

(2) have, according to Th. 11, just one solution, that given by
formulas (2), 9, namely :

(3)

* If in any particular case this minor were zero, the equations and the

terms in them could be rearranged, so that the minor would not be zero.
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Consequently, equations (1) have the solution

/ \

(4) x

and hence, by Th. 12, the solution

(5) x=\bj, c.2 |, 2/
= -| a i c2 |, z=| a i 68 |,

or, finally, again by Th. 12, the solutions

(6) x = Jc\b t c2 |, y = k\a>i c%\,
z = k\a,i &2 |.

There are infinitely many solutions given by (6), since k

may have any value. Inasmuch as
|
c^ &2

1
^ 0, only one of

these solutions is the solution 0, 0, 0, namely the one for which

A; = 0. Hence the theorem is proved in this case.

Furthermore, (6) gives all the solutions of (1). To prove

this, let x
, y ,

z be an arbitrary solution of (1). If z = 0,

then x = y = 0, since for z = the first two of equations (1)

become

a-fl + b$ = 0, a^x + b^ = 0,

and the only solution of these equations is 0, 0, because

|aj. ^I^O; cf. Th. 13. If z ^Q, then XQ/ZO, y /zQ,
1 is a solu-

tion of (1) and XQ/ZQ, yo/zo is therefore a solution of (2). But

the only solution of (2) is given by formulas (3). Hence it

follows that

z

or that

a = fc|6 ; C2J, 2/o
= fc|i c2 1,

2 = A;la1 &2|>

where A; has a definite value, not zero.

We may state the final result by saying that every solution

of (1) is proportional to the solution (5), meaning, thereby, that

it is given by equations of the form (6) ;
cf. 9, eq. (5).

Case 2. All the minors in
\

a b c\ are zero. -In this case it

follows, by 9, Ex. 2, that

aj : 6 X : G! = a2 : 62 : Ca = a3 : 63 : C3 .



390 ANALYTIC GEOMETRY

This means that the left-hand sides of equations (1) are pro-

portional to one another. Consequently, all the solutions of

one of the equations are solutions of the other two, and hence

are all the solutions of the system (1).

The equation thus singled out must be one in which the

three coefficients are not all zero. This is true of at least one

of the equations (1), since, by hypothesis, not all the coefficients

in (1) are zero. Let it be true of, say, the first equation :

(7) a& -f b$ + CjZ = 0,

and let at ,
for example, be not zero.

In solving (7), the values of y and z can be chosen at

pleasure : y = k, z =
l,
and the value of x is then determined.

Consequently, all the solutions of (7), and hence of (1), are

given by

(8) a? = -fc^-Z^-, y = k, z = l.

! tti

Here there are two arbitrary constants, k and I. We say, then,

that the equations (1) have a two-parameter family of solutions

in this case; and, in distinction, a one-parameter family of

solutions in Case 1.

The proof of Theorem 14, for n = 3, is now complete. In

the general case the facts and, consequently, the proof are

much more complicated.* See p. 403, footnote.

EXERCISES

1. Prove Theorem 14 for the case n = 2.

2. Prove the Theorem: If xi} y v , , ^ and x2, y^ ,
t2 are

two simultaneous solutions of n homogeneous linear equations in

the n unknowns x, y, z, -, t, then xv + x%, y l + y2 , , ti + 2 *

also a solution. Take first n = 3.

3. (Continuation of Ex. 2.) Show, further, that kxl + lxz ,

ty\ + ^2/2> "? ^i + ^2 ls a solution.

* Cf. Bdcher, Introduction to Higher Algebra, Ch. IV.
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Solve the following systems of simultaneous equations, ob-

taining all the solutions in each case.

4. x-2y=0, -6x + 3y=Q.
5. 3x+5y+8z=Q, <lxy+z=0, x+2y2z=0.
6. 3x+2y-2z=Q, 2x+3yz= Q, 8x+7y5z0.
7. x 2y+3z=0, 3x+6y9z=Q, 2x-4y+6z=0.

II. APPLICATIONS

11. The Straight Line. Equation of the Line through Two

Points, in Determinant Form. Let (x, y) be an arbitrary point
on the line determined by the two points (xl} y^ (x, y2),

and let

(1) Ax + By +0=0
be the equation of the line. Since (x, y), (xlf yi), (#2, yz) lie

on the line, we must have

Ax + By +(7 = 0,

(2) Ax1 + By1 +C=0,

These equations are linear and homogeneous in the three un-

knowns A, B, C. They have a solution for A, B, C other than

the obvious solution 0, 0, 0, inasmuch as there is a line (1) on

which the three points (x, y), (xl} y^), (0^,2/2) lie - Consequently,

by Th. 14, the determinant of the coefficients vanishes.

In other words, every point (x, 'y} or, on dropping the dashes,

every point (#, y) on the line satisfies the equation

(3)

x y

= o.

By a careful retracing of the steps, it can be shown, con-

versely, that every point (x, y) satisfying (3) lies on the line.

It would follow, then, that (3) is the equation of the line. We
shall adopt, however, a quite different method to prove this,
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regarding the foregoing work as primarily of value in furnish-

ing us equation (3).

To show that equation (3) represents the line through

(xi> 2/i)> fat 2/a)> develop the determinant by the minors of the

first row. Equation (3) then takes on the usual form (1) of a

linear equation in x and y ; moreover, the values obtained for

A and B :

A = 2/i 2/2 B = x2 x1,

are not both zero, since the given points do not coincide.

Consequently, (3) represents some straight line.

This line is the required line, if the coordinates of the given

points satisfy (3). They do, for, if we replace x, y in the de-

terminant by a/
1} 2/1, or by 0%, y2 ,

two rows of the determinant

will be identical and hence the value of the determinant will

be zero.

Three Points on a Line. Let the three points, which we
assume are distinct, be (xl} 2/1), (&, 2/2)? (%> 2/s)-

The equation
of the line through the second and third is, according to (3),

x y I

(4) x2 2/2 1=0.

^ 2/3 1

The first point lies on this line if and only if (xt , yt) -satisfies

(4), i.e. if and only if

(5) 2/2

2/3

= 0.

This result we state as follows :

THEOREM 15. The three points (x1} y^, (x.2 , 3/2), (#3> 2/s) o,re

collinear, if and only if the determinant in (5) vanishes.

Three Lines through a Point. Consider the three distinct

lines

(6)
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They are parallel, by Ch. II, 10, Th. 3, if and only if .

AI'. B! = A2 : B2
= As . B3 ,

i.e. if and only if

(7) AI : A2 : As
= Bl

: B2 : Bs .

Suppose, now, that the three lines go through a point.

This means, analytically, that the equations (6) have a common
solution for x, y, i.e. are compatible. Hence, it follows, by
Th. 11, since in this case (7) cannot hold, that \ABC\ = 0.

The determinant
\

A B O\ vanishes also when the three

lines are parallel, since then (7) is valid and the first two

columns in the determinant are proportional.

Conversely, if
|

A B C
\

= 0, the lines (6) are parallel or

concurrent. For, if the determinant vanishes by virtue of the

first two columns being proportional, (7) holds and the lines are

parallel. On the other hand, if (7) does not hold, equations

(6), by Th. 11, are compatible and this means, geometrically,

that the three lines have a point in common.

We have thus proved the theorem :

THEOREM 16. The three lines (6) are concurrent or parallel

if and only if the determinant of their coefficients vanishes:

\A B C
|

= 0.

EXERCISES

Find the equations of the following lines in determinant

form.

1. The line through (xlf y^ with intercept b on the axis

of y-

2. The line with intercepts a and b.

Find, in determinant form, the equations of the lines re-

quired in the following exercises of Chapter II. Reduce the

equation each time to the usual form.

3. Ex. 1, 1. 4. Ex. 2, 1. 5. Ex. 4, 1. 6. Ex. 6, 1.

7. Ex. 7, 1. 8. Ex. 10, 1. 9. Ex. 1, 5. 10. Ex. 3, 5.
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By the method of this paragraph, do the following exercises

at the end of Chapter III concerning three lines through a

point or three points on a line.

11. Ex. 1. 12. Ex. 2. 13. Ex. 3.

14. Ex. 4. 15. Ex. 5. 16. Ex. 6.

Are the lines given in the following exercises concurrent ?

parallel ?

17. Ex. 4, 9. 18. Ex. 5, 9. 19. Ex. 7, 9.

12. The Circle and the Conies. Equation of the Circle through

Three Points. If the three points (xl} yi), (x2 , y^), fa, y^,

which we assume are not collinear, lie on the circle

(1)

it follows that

(2)

Cy3 + D = 0.

(3)
= o.

In (1) and (2) we have four homogeneous linear equations

in the four unknowns A, B, C, Z>, which have a solution other

than the obvious solution, 0, 0, 0, 0. Consequently, by Th. 14,

x y I

*i y\ i

X2 7/2 1

a* y3
i

Equation (3) is the equation of the circle through the three

given points. For, if we develop the determinant in (3) by
the minors of the first row, we obtain an equation of the form

(1), where

y\

A xz 2/2 1^=0,

since the three points were assumed non-collinear (Th. 15).

Consequently, equation (3) represents a circle, or a point, or
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it has no locus
;

cf. Ch. IV, 2. That it represents a circle,

and, in particular, the required circle, is clear since the coor-

dinates of each of the three points satisfy it.

Condition that Four Points Lie on a Circle.

THEOREM 17. The four points fa, y^, fa, y2)> fa, 2/s), fa, y<),

oftvhich we assume no three collinear, lie on a circle if and only if

(4)

2/i
2

= 0.

-t

7/1 _L

2/2
i

I 2 "1

~r 2/3 xz 2/s
-1-

+ 2/4
2 z4 2/4 1

The proof is left to the student.

Conic through Five Points. The general equation of the

straight line (1), 11 contains three constants, A, B, C, enter-

ing homogeneously one in each term and we can always

pass just one line through two points. Also, the general

equation (1) of the circle contains four homogeneous constants

A, B, C, D, and through three points (non-collinear) we can

always pass just one circle.

The general equation of a conic,

contains six homogeneous constants, and accordingly we
should expect that through FIVE points we can, in general, pass

just one conic.

We prove this by writing down the equation of the conic

through the five points fa, y^, fa, y2), fa, y,), fa, y4), fa, y,).

Proceeding as in the cases of the straight line and circle,

we find as the probable equation :

(6)

x2
xy y

2 x y 1

4

2/2 1

2/3 1

2/4
1

2/5 1

= 0.



396 ANALYTIC GEOMETRY

When the determinant is developed by the minors of the

first row, equation (6) takes on the form (5). -Two cases then

arise, according as the values obtained for A, B, C are not, or

are, all zero.

Case 1.
'

A, B, C not all zero. In this case it follows that

equation (6) represents some conic, in particular, a conic

through the five given points, since it is clear that the coordi-

nates of each of the points satisfy the equation.

We state, without proof, that this case occurs unless four,

or all five, of the given points are collinear.

If no three of the points are collinear the conic just found

must be non-degenerate. It is the only conic through the

five points. For, if there were a second conic through them,

the two conies (both non-degenerate) would intersect in five

points, and this is impossible.*

If three of the points are collinear, the conic found must

be degenerate ; f in particular it must consist of two straight

lines (Fig. 1). Clearly, these lines

are uniquely determined by the five

points and hence so is the conic.

FlQ j
The results of this case we formu-

late as a theorem :

THEOKEM 18. Through Jive points, no four of which are

collinear, there passes one and only one conic. If three of the

points are collinear, the conic is degenerate ; otherwise, it is non-

degenerate.

Case 2. A = B = C=0. Then D = E = F= also, and

equation (6) reduces to the trivial equation : = 0. Stated

without proof.

This case occurs if at least four of the five points are col-

* That two non-degenerate conies cannot intersect in more than four

points is geometrically evident
;
an analytical proof is beyond the scope of

this book.

I If it were non-degenerate, we should have a non-degenerate conic

intersected by a line in three points an impossibility.
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linear. If just four are collinear, there are infinitely many
degenerate conies through the five points, each consisting of

the line of the four points and some line through the fifth.

If all five points are collinear, their line, taken with any
line in the plane, forms a degenerate conic through them, so

that here, too, there are infinitely many degenerate conies

through the five points.*

Parabolas through Four Points. Demanding that the conic

defined by equation (5) be a parabola puts one condition on

the coefficients in (5), namely,

(7) B2 - AC=0.

Consequently, we cannot prescribe more than four points

through which a parabola must' pass.

Let (0, 0), (1, 1), (- 1, 1), (3, 9) be the four points. Then

F=Q,
A+ B + C+ D + E+F=0,
A- B+ C- D+ E + F=0,

To solve equations (7) and (8) simultaneously, find the values

of D, E, F in terms of A, B, C from the first three of equa-
tions (8) :

(9) D = -B, E = -A-C, F=0,
and substitute them in the fourth equation. The result is

(10) B = - 3 C.

Hence (7) becomes

and (7=0 or C = $A.
Prom equations (9) and (10) we have, then :

(7=0, = 0, D = 0, E = -A, F=Q,
orC=$A, B =-A, D = A, E = -^A, F=0.

* There is a one-parameter family of degenerate conies in the first

case, a two-parameter family in the second; cf. p. 390. Can the student

explain why ?
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Setting A = 1 in the first case and A = 9 in the second, we
find as the resulting equations

x2 - y = 0,

9x2 I2xy + 4 #
2 + 12x- 13y = 0.

There are, then, two parabolas through the four given points.

We state without proof that this is, in general, true. Of

course, one or both of the parabolas may be degenerate, and

for special positions of the four points the two may coincide.

Finally, if the four points are collinear, there are an infinite

number of degenerate parabolas through them.

EXERCISES

1. State and prove the theorem giving the condition that

six points, no four of which are collinear, lie on a (non-degen-
erate or degenerate) conic. If four or more of the points are

collinear, is there a conic through the six ?

Find, in determinant form, the equations of the circles re-

quired in the following exercises of Chapter IV. Reduce the

equation each time to the usual form.

2. Ex. 1, 4. 3. Ex. 2, 4. 4. Ex. 3, 4.

In each of the following exercises determine whether or not

the four given points lie on a circle.

5. (0,0), (3,0), (0,1), (2,- 1).

6. (2,0), (-3,0), (0,4), (-1,4).

7. (a, 0), (b, 0), (0, c), (0,
V

Find, in each exercise that follows, the equation of the conic

through the given five points. Is the conic non-degenerate ?

8. (0, 0), (2, 0), (0, 2), (5, 2), (2, 5).

Ans. 2z2
3xy + 2y* 4a- 4y = 0.

9. (1,0), (-1,0), (0,1), (0, -1), (1,1).
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10. (1,
-

1), (1, 1), (3, 11), (-3, -
11), (5, 19).

Ans. 15 x2
y
2 = 14.

11. (0,0), (2,1), (3, -4), (0,2), (-2,0).

12. (1, 2), (0, 1), (6,
-

1), (- 1,
-

2), (3, 0).

Find the equations of the parabolas through each of the

following sets of four points. Are they degenerate or not ?

13. (0,0), (1,1), (1, -1), (4,2).

Ans. y
z x

; (x y)(x y 2) = 0.

14. (0, 0), (3, 1), (1, 3), (6, 3).

15. (2,0), (0,1), (-1,1), (5, -2).

16. (2, 1), (7, 0), (4, 3), (5, -2).

In each of the following exercises determine whether or not

the six given points lie on a conic. If they do, find if the

conic is degenerate.

17. (0, 0), (1,
-

1), (1, 3), (5, 5), (2, 4), (6, 3).

18. (- 1,
-

1), (0, 2), (- 1, 0), (5, 2), (0,
-

1), (9, 5).

19. (0, 1), (1, 0), (1,
-

1), (3, 1), (- 1, 3), (-3, -2).

20. (0, 0), (2, 0), (-1, 1), (3, 1), (5,
-

1), (- 4, 2).

EXERCISES ON CHAPTER XVI

Evaluate each of the following determinants, expressing the

result, if it is different from zero, in factored form.

1.

4.

a a2

b 62 2.

a + 6

b +c
c + a

ab c

be a

ca b

3.

-a -b
a c

b c

a b

b c

c a

Ans. to Ex. 1. (a 6)(6 c)(c a).

Ans. to Ex. 2. (a 6) (6 c)(c
-

a) (a + b + c).

1 a a2

b3

c3

a +
&4-c
c +a

5.
6 62

c c2

d d2
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Prove that the following determinants have the value zero.

&! 2 C&! + 3 &!

6.

7.

o<> 62 2 a2 + 3 b

a3 63 2 a3 + 3 b,

1 3 e! &! + 2 at

1 3 a2 62 2 a2

2 3 a3 63 + 4 a3

1 3 a4 & 4 + 2 a4

&!

62

&3

64

Definition. Let^, p2 , ,pn , g\, g2 , , gn ,
and r^, r2 , -,

rn be

three columns (or rows) of a determinant. The third is said

to be a linear combination of the first two, if two numbers,
Jc and I,

exist such that

In the determinant of Ex. 6, for example, the third column is

a linear combination of the first two
;
and in that of Ex. 7 the

second column is a linear combination of the third, fourth, and

first.

8. THEOREM. If one column, or row, of a determinant is a

linear combination of two others, the value of the determinant is

zero. Prove this theorem. How can it be extended ?

Solve the following equations for x.

9.

10.

Determine k so that the following equations have solutions

other than 0, 0, ;
then find the solutions.
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z = 0,

11.

kx- y
12. 4 03 2y

6x-3y

401

z = 0,

Determine k so that the following equations are compatible.

Find the common solution in each case.

2x 3y- k = 0, x

13. kx y k = 0, 14. kx

kx +3y 5 = 0. z-f

Find all the solutions of the following equations.

x + y z = 0,

+ 5 =0,
1 =0.

15. 16.

17. Show that all the solutions of the equations,

n& = 0,

are given by x:y:z = |mn|:|nZ|:|Zm|,
provided not all three of the determinants on the right are zero.

APPLICATIONS

18. Show that the area of the triangle with vertices at the

points (a?!, y^, (xz , y8), (x,, y3)
is

2/i

2/2

2/3

19. Prove that the equation of the line of slope X through
the point (xl} y^) can be written in the form

x y I

! 2/1 1=0.
1X0

20. Show that every equation of the form

x y 1

a3
= 0,
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where the minors of x and y are not both zero,- represents a

straight line.

21. Show that the points (xlf y^, (a^, y2) are collinear with

the origin when and only when

*a 2/i

2 2/2

= 0.

22. Prove that the distinct lines LI, L2 of Ch. II, 10, are

parallel if and only if

A

\ J =0'

'"

23. Show that the lines LI, L2 of Ch. II, 10, are identical,

if and only if the three two-rowed determinants, which are

formed from the array
Al B, C,

by dropping each column in turn, are all zero.

24. Show that the discriminant, A, of the quadratic equation

Ax* + Bx+C=Q,
(cf. Ch. IX, 5) can be written in the form

2A B
B 2C'

A= -

25. Show that the discriminant, A, of the general equation
of the second degree in x and y (cf. Ch. XII, 4) can be

written as

2A B D
B 2C E.

D E 2F

26. Prove that the polars of all points (having polars) with

respect to a degenerate conic are concurrent or parallel.

Suggestion. The conic can be represented either by

by* = or by y
2 = c.
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27. By applying Ex. 26, show that the general equation of

the second degree represents a degenerate conic when and

only when its discriminant, as given by the determinant in

Ex. 25, vanishes.

Suggestion. Demand that the polars of three non-collinear

points, as (0, 0), (1, 0), (0, 1), be concurrent or parallel. The

equation of the polar of (xlt y\) is that of Ex. 2, p. 188.

28. Prove that, if the general equation of the second degree

represents a non-degenerate conic, the line ax + by + c = will

be tangent to the conic if and only if

2A B D a

B 2C E b

D E 2F c

a b c

= 0.

Suggestion. Apply the second method of Ch. IX, 5. The

equation of the tangent at (xl} yt) is given by Ex. 2, p. 188.

Note to p. 390. Theorem 14 leads to an important result concerning
the compatibility (cf. 9) of equations (2), p. 388, namely :

THEOREM. If equations (2) are compatible, the determinant of their

coefficients vanishes.

For, if equations (2) have a solution, x$, y ,
then equations (1) have

a solution, xo, yo, 1, not the obvious solution, 0, 0, 0. Consequently, by
Th. 14,

|

a 6 c
|

= 0.

The extension of the theorem and the proof to the equations of 9,

Ex. 8, and to the general case of 9, Ex. 11, is immediate.

The determinant of the coefficients of the equations of 9, Ex. 7,

vanishes; the equations are, however, incompatible, they represent
three parallel lines. In other words, the converse of the theorem is not

true ; cf . Th. 11.





CHAPTER XVII

PROJECTIONS. COORDINATES

1. Directed Line-Segments. In the Introduction to Plane

Analytic Geometry directed line-segments on a line L were

denned and discussed. Since L might be situated anywhere in

space, the theory there developed holds equally well for the

geometry of space. The student should review the details of

this theory. Of the formulas, let him recall in particular the

relation,

(1) MMl +MM + .- +Mn_zMn_i +Mn^N= MN,

which holds for any n -f- 1 points, M, MI, M2 , ,
Mn_i} N,

lying on L.

2. Projection of a Broken Line. Given a point P and a line

Z< in space. The projection of P on L is denned as the foot, M}

of the perpendicular dropped from P
on L, or as the point M in which the

plane p, passing through P perpen-
dicular to L, meets L. If P lies on

L, it is its own projection on L.

Let PQ be any directed line-seg-

ment in space and let M and N be

the projections of P and Q on L'

The projection of the directed line-

segment PQ on L is denned as the

directed line-segment MN.
405

FIG.
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If p and q are the planes through P and Q perpendicular to

L, the projection, MN, of PQ on L is equal to the directed line-

segment intercepted by the planes p and q on any parallel to L.

For example, it is equal to the directed line-segment PR in

Fig. 1
*

Consider a broken line joining P to Q and consisting of the

directed line-segments PP
1? PiP2 , ,

Pn_iQ, which do not

necessarily lie in a plane. The sum of the projections of these

directed line-segments is

MMl

By (1), 1, this sum is equal to MN, i.e. to the projection on

L of the directed line-segment PQ.
Thus Theorem 1 of the Introduction, 3, is extended to the

geometry of space :

THEOREM. The sum, of the projections, on any line L of space,

of the directed line-segments, PP], P\P%, ,
Pn_iQ, of any broken

line joining a point P of space with a second point Q is equal to

the projection on L of the directed line-segment PQ.

Theorem 2 of the Introduction, 3, may be extended in a

similar manner. Let the student state and prove the result.

The projection of a point P on a plane K is denned as the

foot of the perpendicular dropped from P on K. If P lies in

K, it is its own projection on K.

Let a plane K and a line L be given. If L is not perpen-
dicular to K, the projection of L on JfTis denned as the line in

which the plane through L perpendicular to K intersects K.

If L is perpendicular to K, the projection of L on Kis merely
a point, the point in which it meets K.

3. The Angle between Two Directed Lines. Given any two
indefinite straight lines in space and on each of them a sense

;

to define the angle between these two directed lines.

*In drawing this figure, we have placed ourselves in space so that the

plane through L and P appears to us as a vertical plane.
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If the lines meet, they lie in a plane. The angle between

them shall be denned as the angle between the half-lines, or

rays, issuing from their point of intersection

in the given directions (Fig. 2).

If the lines do not meet, choose an arbitrary

point A of space, and draw from A two rays F
respectively parallel to and having the same

senses as the given lines. The angle between the given lines

shall be denned as the angle between these rays.*

Remarks. The angle is the angle betiveen the directed lines,

not the angle from one to the other. It has always a positive

or zero value, i.e. a numerical, and not an algebraic, value.

It is futile, in the geometry of space, to try to distinguish

between positive and negative angles. For instance, suppose

that, in an attempt to define the angle from one of two directed

lines lying in a plane to the other, we should agree that angles

measured in the counter-clockwise sense are to be considered

positive and those measured in the clockwise sense, negative.

Then the angle/row the one directed line to the other, if viewed

from a certain side of the plane, would appear positive ; but,

viewed from the other side of the plane, the same angle would

be negative. Viewing the angle from one side of the plane is

as justifiable as viewing it from the other, since the plane is im-

mersed in space and not displayed on a blackboard or on the

page of a book. Consequently, we should still be at a loss as

to whether the angle is positive or negative.

There are two angles between the rays shown in Fig. 2, namely,
and 360 0. One of these is necessarily less than or equal

to 180. It is this angle which we agree to take as the angle be-

tween the directed lines.

* For example, in Fig. 1, the line of PQ, directed from P to Q, and L,
directed to the right, are two directed lines. The angle between them is

the angle 6 constructed by choosing A on the first line, at P, and by draw-

ing through P the line L' parallel to and having the same sense as L.
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EXERCISES

1. Fasten a sheet of paper to the floor with one edge against

the wall, and tack a second sheet to the wall with one edge

along the floor. Draw on each sheet a directed line so that the

two lines meet. (It is wise to draw the lines before fixing the

sheets in position.) Crease a third sheet of paper so as to form

an angle which will just fit between the two directed rays. By
measuring this angle with a protractor determine the angle be-

tween the two directed lines.

2. EepeatEx. 1 with two directed lines differing widely in

position from the first two chosen.

3. What is the angle between the two lines of Ex. 1, if the

sense on one of them is reversed ?

4. By the method of Ex. 1 find the angle between two

directed lines, one 011 the floor and one on the wall, if the two

lines do not meet.

5. Prove that, if L and L' are any two lines in space and any

plane F is passed through L, there will be a plane W through
L' perpendicular to F. That is, show that the above method is

applicable to the problem of determining the angle between

any two directed lines.

4. Value of the Projection of a Directed Line-Segment.

Assign to a line L of space a sense and adopt a unit of

length for all measurements in space. Then a directed

line-segment AB on L is represented by an algebraic num-

ber, equal numerically to the length of AB and positive or

negative according as the direction from A to B is the same

as, or opposite to, the direction given to L] cf. Introduc-

tion, 2.

In particular, to the projection MN on L of a directed line-

segment PQ corresponds a certain algebraic value or number,
which we can, without confusion, denote also by MN. Clearly,

Proj. PQ = -
Proj. QP.
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Let the length | PQ \
of the directed line-segment PQ be given

and also the angle 6 which the line of PQ, directed from P to

Q, makes with the directed line L. If

PQ, lies in a plane with L, we know from

Plane Trigonometry that

(1) MN= Proj.j PQ = |
PQ

\

cos 6.

The general case, in which PQ is not in
FlQ 3

a plane with L, is shown in Fig. 1. Con-

sider the projection, PR, of PQ on the line L' through P,

parallel to and having the same sense as L. Since PQ lies in

a plane with L', we have the previous case. Consequently,

PR = \PQ\ cos6.

But PR = MN and thus formula (1) is established in the gen-

eral case.

EXERCISES

1. Draw Fig. 1 for various positions of P and Q and in each

case verify formula (1).

2. By application of (1) verify that Proj. PQ = - Proj. QP.

3. If P and Q lie in a plane perpendicular to L, M and N
coincide and MN= 0. Prove this by applying formula (1).

4. Prove that the directed line-segments MN and M'N1

,

which are the projections on L of two directed line-segments

PQ and P'Q' on the same line, are proportional to PQ and PQ' :

MN = PQ
M'N' P'Q''

5. Prove that the theorem of the preceding exercise is true

if PQ and P'Q' are on parallel lines.

5. Coordinates. Three directed lines drawn through a point
of space, so that each is perpendicular to the other two,

form a system of rectangular coordinate axes. The coordinates

of a point P of space with respect to the system of axes are
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defined as the numbers which represent algebraically the

projections of the directed line-segment OP on the three

directed lines. Thus, if Ox, Oy, Oz

denote the three directed lines and x, y, z

stand for the coordinates of P,

x = Proj.o, OP, y = Pro].,* OP,

The projections of OP on the three

directed lines can be constructed by pass-

ing planes through P perpendicular to

the three lines (Fig. 4). These form with

the planes of the lines a rectangular parallelepiped, or box.

The directed edges of the box which issue from are the

projections of OP.

Every point P of space has unique coordinates (x, y, z). Con-

versely, if any three numbers x, y, z are given, there is a

unique point P having these numbers as its coordinates. This

point can be located, either by constructing a box or, more

simply, by laying off OM= x on the axis of x, then MN= y
on a parallel throughM to the axis of y, and finally NP = z on

a parallel through N to the axis of z, as shown in Fig. 4. It

is to be remembered that OM, MN, and NP are directed line-

segments. The direction of OM, for example, is the same

as, or opposite to, that of Ox, according as the number x

is positive or negative. The figure is drawn for the case that

x, y, z are all positive.

The point O is the origin of coordinates, the directed lines

Ox, Oy, Oz are the coordinate axes, and the planes xOy, yOz,

zOx are the coordinate planes. The origin has the coordinates

(0, 0, 0), a point on a coordinate axis always has two of its

coordinates zero, and a point in a coordinate plane always has

one zero coordinate. Thus the point on the axis of y three units

distant from in the positive direction has the coordinates

(0, 3, 0), and the point in the (y, z)-plane, whose coordinates

in that plane are y = 2, z = 3, has the coordinates (0, 2, 3).
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Octants. Bounded by the coordinate planes there are eight

regions, called octants. It is clear that, if the x-cob'rdinate of

one point of an octant is, for example, negative, the ^coordi-

nates of all points of the octant are negative ; similarly, for

the y- and z-cob'rdinates. Thus we can speak of the octant

( , +, +), and mean thereby that octant in which the

a^coordinate of every point is negative and the y- and z-coor-

dinates are both positive. The octant (+, +, +) is known as

the first octant
;
we make no attempt to number the others.

Figures. In drawing a figure in a plane to represent a

figure in space, we make use of what is known as a parallel

projection. The axes of y and z are represented by two per-

pendicular lines and the axis of a; by a line drawn in a con-

venient direction. All distances in the (y, z)-plane or in any

parallel plane are drawn to scale, so that a figure in such

a plane appears as it actually is in space. Distances on or

parallel to the axis of x are foreshortened a convenient amount.

The direction of the line representing the axis of x and the

amount of foreshortening along this axis depend largely on

the figure in space which is to be represented. In general,

however, we shall draw the line representing the axis of x at

an angle of 120 with that representing the axis of y and take

as the unit distance on the axis of x three-fourths the unit

distance on the other axes.

Right-Handed and Left-Handed Coordinate Systems. The

system of axes in Fig. 4 is the one we shall employ. Another

system in common use is shown in Fig. 5. The

essential difference between the two is this :

If, from a point on the negative axis of x, we
view the (y, z)-plane, the direction of rotation

from the positive y-axis to the positive z-axis /
is that of a right-handed screw in case of the /v

first system and that of a left-handed screw in

case of the second. Accordingly, the system we are using is

called a right-handed system ;
the other, a left-handed system.



412 ANALYTIC GEOMETRY

Any other rectangular system of axes is essentially the

same as one or the other of these
;
that is, it is either right-

handed or left-handed, by the above test (cf. Ex. 7).

EXERCISES

1. Plot the following points, drawing the line representing

the axis of x at an angle of 120 with that representing the

axis of y, and taking 1 in. as the unit on the axes of y and z

and | in. as the unit on the axis of x.

(a) (0,3,0); (6) (0,1,3); (c) (2,5,0);

(d) (4,0,0); () (0, -2,0); (/) (4,1,3);

(3) (5,
-

2, 4) ; (A) (3, 2,
-

5) ; (t) (- 2, 3, 1J) ;

(j) (!,-!,- 3); (*)(-2,4,-3); (Z) (- 1,
-

1, -2).

2. Determine the coordinates of the point P in Fig. 4 when
the units on the axes are taken as in Ex. 1.

3. The same for the point marked by the period in "
Fig. 4,"

if this point is ^ a unit above the (x, 2/)-plane.

4. What are the coordinates of the projections of each of

the following points on the coordinate axes ? On the coordi-

nate planes ?

(a) (3,5,2); (6) (-3,2,-!); (c) (x, y, z).

5. What equation is satisfied by the coordinates of those

points and only those points which lie in the (y, z)-plane?
In the (z, #)-plane ? In the (x, y)-plane ?

6. What two equations are satisfied by the coordinates of

those points and only those points which lie on the ic-axis ?

On the ?/-axis ? On the 2-axis ?

7. Through a point draw three mutually perpendicular

lines, which, when directed, are to serve respectively as the

axes of x, y, and z. Show that there are eight possible com-

binations of the directions which can be given to the lines and

that, of the eight resulting systems of axes, four are right-

handed and four, left-handed.
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6. Projections of a Directed Line-Segment on the Axes. Given

the points Pl and P2 with the coordinates (xl} yl} zt) and

(x2 , y2 ,
z2). To determine the projections of the directed line-

segment PiP2 on the coordinate axes, project the broken line

PiOP2 on each of the axes in turn. Since always

Proj. AP2
= Proj. P,0 + Proj. OP2 ,

it follows that

Proj. PiP2
= Proj. OP2

-
Proj. OPX .

But the projections of OP2 and OP: on the three axes are, by

definition, the coordinates of P2 and P^ Consequently, the

projections of the directed line-segment PiP2 on the three

axes are, respectively,

(i) 2 i y* y\ s i-

By passing planes through the points Pl and P2 perpen-
dicular to the three axes, we obtain on the axes the actual

projections, -X^-X^, Y^Y^ Z^Z*,

of the directed line-segment

PiP2.* The planes also -deter-

mine a rectangular parallele-

piped, or box, whose three

dimensions are equal to the

numerical values of the three

projections. Accordingly, the

edges of the box, when properly
x*

directed, are precisely equal to

the projections. In particular,

the three edges emanating from P1? i.e. the directed line-

segments PiR, PiS, PiT, are equal respectively to the three

projections X^Xz, YiY2 , Z^.

EXERCISES

1. Plot P1PZ when P1 is the point (6) of Ex. 1, 5, and P2

is (c).
Determine the projections from the figure and verify

by applying formulas (1).

* To keep the figure simple, only X\Xi and Y\Yi are shown.

FIG. 6
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2. The same when

i) Pi is (c) and P2 is (/) ; ii) Px is (/) and P2 is (g).

3. The projections of PiP2 on the axes are 2, 5, 3 and

those of P2P3 are 3, 2, 1. What are the projections of P:P3 ?

Justify your answer.

4. If the points P1} R, S, T of Fig. 6 have, respectively,
the coordinates (2, 1, 3), (5, 1, 3), (2, 4, 3), (2, 1, 6), what are

the coordinates of P2 ?

5. If the projections of PxP2 on the axes are 3, 5, 2

and P! has the coordinates (2, 1, 3), what are the coordinates

ofP2 ?

7. Distance between Two Points. Let the two points be

the points P1} P2 of 6. Then the segment PjP2 is a diagonal
of the box in Fig. 6. It is a simple matter to shtiw that the

square of the length of a diagonal equals the sum of the

squares of the lengths of the edges :

PiP* =P^ + P^ + PiT*.

Hence D* = (x2
-

xtf + (y,
- y^ + (z2

-
ztf,

and D = V(x2
-

xtf + (yt
-

y,)
2 + (z2

-
ztf.

Inasmuch as it is the squares of the quantities (1), 6,

which appear here under the radical, it is immaterial that

these quantities have algebraic values, i.e. may in some cases

be positive and in others, negative ;
cf. Ch. I, 3.

EXERCISES

1. Find the distances between the following pairs of points,

expressing the results correct to three significant figures.

(a) (5, 1, 4), (4, 3, 2) ; (6) (2, -1,3), (-1, 1, -3) ;

(c) (2, -1,8), (-2, -3,5); (d) (3, 6, -2), (5, -1, 4) ;

(e) (2, -3,5), (-1,4,5); (/) (1, 2, 4), (1,
-

3, 4).

2. Find the distances of each of the following points from

the origin :

(a) (4,2,8); (6) (3,
-

5,
-

2) ; (c) (x, y, z).
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3. Find the distances of each of the points of Ex. 2 from

the coordinate axes.

4. Find the lengths of the projections on the coordinate

planes of the line-segment joining the points (2, 3, 5) and

(5, 6, 7). Draw a figure showing the projections, or line-

segments equal to them.

5- What equation is satisfied by the coordinates of those

points and only those points which lie on the unit sphere,

the sphere whose center is at the origin and whose radius is

one unit ?

8. Mid-Point of a Line-Segment. Let Pl :
(ajt , yl} z^ and

P2 : (x2 , y2 ,
z2) be the extremities of the line-segment PiP2 . If

P : (x, y, z) is the mid-point of PiP2 ,
the directed line-seg-

ments PiP and PP2 are equal and have, therefore, equal pro-

jections on the coordinate axes. Thus we have, by (1), 6,

x x
l
= x2 x,

and similar equations in the y- and z-coordinates. Hence,

m r _?L^2 v yi+J* * *L*I.~~~' ~~' ~~~

This result can be stated in words as follows : Tfie coordi-

nates of the mid-point of a line-segment are, respectively, the

averages of the corresponding coordinates of the end-points of

the segment.

EXERCISES

1. Determine the coordinates of the mid-point of each of

the line-segments given by the pairs of points in Ex. 1, 7.

Draw figures and check your answers.

2. Show that the sum of the squares of the diagonals of the

quadrilateral whose successive vertices are at the four points

(5, 0, 0), (0, 6, 0), (1, 2, 3), (3,
-

2, 8) is double the sum of

the squares of the line-segments joining the mid-points of the

opposite sides. N. B. The four points do not lie in a plane.



416 ANALYTIC GEOMETRY

3. Show that the line-segments joining the mid-points of

the opposite sides of the quadrilateral of Ex. 2 intersect and

bisect each other.

9. Division of a Line-Segment in a Given Ratio. Let it be

required to find the coordinates (x, y, z) of the point P divid-

ing the line-segment PxP2 in the given ratio m,i/m2. Since

the directed line-segments PjP and PP2 are to be in the ratio

m1/m2 ,
this must also be the ratio of their projections on any

one of the axes (4, Ex. 4). Accordingly, we obtain the

equation
x Xi _ nil

x2 x m2

and similar equations involving the y- and z-cob'rdinates.

Solving these equations respectively for x, y, and z gives, as

the required coordinates of the point P,

External Division, It is sometimes of value to have at

hand formulas giving the coordinates (x, y, z) of a point P
which lies on the line of PI and P2 ,

but exterior to the seg-

ment PiP2 ,
and whose distances to PI and P2 are in a given

ratio mi/m2 ,
not equal to unity. Let the student show that

in this case it is the directed line-segments PXP and P2P
which are in the given ratio m1/m2 ,

and that the type of

equation now obtained is

x x2 m2

so that the required coordinates of P are

_ _x
, y

The point P is said to divide the segment PjP2 internally,

in the first case
; externally, in the second. The numbers mi

and ra2 entering into the ratio of division do not have to be the
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actual lengths of the corresponding line-segments, but rnay be

any numbers proportional to these lengths.*

EXERCISES

1. Find the coordinates of the point on the line-segment

joining (2, 3, 6) with (5, 4, 2), which is twice as far from

the first point as from the second. Ans. (4, |, |-).

2. Find the point on the line through the two points of,Ex.

1, which is outside the line-segment bounded by them and is

twice as far from the first point as from the second.

3. Find the point which divides internally the line-segment
from (2, 3, 4) to (o,

-
3, 0) in the ratio 3 : 4.

4. The preceding exercise for external division.

EXERCISES ON CHAPTER XVII t

1. Show that the points (2, 4, 3), (4, 1, 9), (10,
-

1, 6) are

the vertices of an isosceles right triangle.

2. Prove that the tetrahedron with vertices at the points

(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) is a regular tetrahedron.

3. Show that the points (0, 0, V2), (1, 1, 0), (0, 0,
-
V2),

(1, 1, 0), (2, 2, 0) are the vertices of a regular pyramid
with a square base.

4. Given the points A, B, C with coordinates (2, 3, 5),

(4, 2, 3), (6, 7,.l). By proving that AB+BC=AC, show that

the three points lie on a line.

5. Show that the three points of Ex. 4 lie on a line by

proving that their projections on each of two coordinate

planes lie on a line. Justify this method of proof.

6. Determine the point on the axis of y which is equidis-

tant from the two points (3, 2, 4), ( 2, 6, 5).

* Thus, in the case of internal division, if PiP = 100 cm. and PP2 =
26 cm., mi and m2 might be properly and wisely chosen as 4 and 1.

t Exercises 1-6, 14-18 of Ch. XIX, 1, and Exercises 1-8, 18-22 of

Ch. XX, 1, may be introduced here, if it seems desirable.
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7. Determine the point in the (y, z)-plane which is equi-

distant from the three points (3, 0, 2), (2, 3, 0), (1, 0, 0).

8. Two vertices of a regular tetrahedron are at the points

(0, 0, 2V2), (0, 2, 0). If the other two vertices lie in the

(x, y)-plane, find their coordinates.

9. A regular pyramid, of altitude h, has a square base

whose vertices lie on the axes of x and y and whose edges are

of length a. What are the coordinates of the vertices of the

pyramid ?

10. If P is the mid-point of the line-segment PiP2 ,
and P

and P2 have the coordinates (3, 2, 5) and ( 2, 4, 3) respec-

tively, what are the coordinates of Pj ?

11. If P divides the line-segment P^a internally in the

ratio 2 : 3, and P! and P have respectively the coordinates

(1, 4, 3) and (3, 2, 1), determine the coordinates of P2.

Ans. (6,
-

1,
-

7).

12. Find the ratio in which the point B of Ex. 4 divides the

segment AC of that exercise. Ans. 1 : 1.

13. A point with ^coordinate 6 lies on the line joining

the two points (2, 3, 4), (8, 0, 10). Find its other two

coordinates.

Suggestion. Determine the ratio in which the point divides

the line-segment bounded by the two given points.

14. Find the point in which the line joining the two

points (2, 3, 1), (5, 4, 6) meets the (z, o;)-plane.

Ans. (3f 0, 3}).

15. If the length of the line-segment PiP2 is D and the

lengths of its projections on the coordinate planes are A> Az>

A> show that

2 Z)2 = D? +A2
-fA2

-

16. Show that the lines joining the mid-points of the

opposite sides of any quadrilateral ABCD intersect and bisect

each other. N.B. The points A, B, C, D do not necessarily lie

in a plane.
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17. Show that the sum of the squares of the diagonals of any

quadrilateral is twice the sum of the squares of the line-seg-

ments joining the mid-points of the opposite sides.

18. Prove that the center of gravity (intersection of the

medians) of the triangle with vertices at (x1} yi} z^), (x2> y2 ,
z2),

(03, y3 ,
z3) has the coordinates

19. Prove that the lines joining the vertices of a tetrahedron

with the centers of gravity of the opposite faces all go through
a point P, which divides each of them in the ratio 3 : 1.

20. Prove that the lines joining the mid-points of opposite

edges of a tetrahedron all go through a point, which bisects

each of them. Show that this point is identical with the

point P of Ex. 19.



CHAPTER XVIII

DIRECTION COSINES. DIRECTION COMPONENTS

1. Direction Cosines of a Directed Line. Given a directed

line L in space ;
to find a means of determining or fixing its

direction.

The directed line L makes definite angles, a, ft, y, with the

positive axes of x, y, z, respectively. If L does not go through

the origin, 0, draw L' through

parallel to L and agreeing with it in

sense. Then K, ft, y are equal respec-

-/ tively to the angles which L' makes

with the axes (Ch. XVII, 3). The

angles a, ft, y are called the direction

angles of the directed line L.

Direction Cosines. The cosines of

the angles a, ft, y, namely cos a, cos ft,

cos y, are known as the direction

cosines of L. Since a, ft, y are, by definition (Ch. XVII, 3),

angles between and 180 inclusive, they are uniquely deter-

mined when their cosines are given, and conversely. Accord-

ingly, we can use either the direction angles or the direction

cosines to fix the direction of L. We choose the direction

cosines.

Evidently, two directed lines which are parallel and have

the same sense have the same direction angles and the same

direction cosines.

Exercise. If two lines are parallel but have opposite senses,

show that the direction angles of one are the supplements of

420

FIG. 1
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the direction angles of the other, and that the direction cosines

of one are the negatives of the direction cosines of the other.

Example 1. What are the direction cosines of the positive

axis of y ?

Here, a = 90, 0=0, y = 90
;

and cos a = 0, cos (3
= 1, cos y = 0.

Example 2. Find the direction cosines of the line bi-

secting the angle between the negative axis

of y and the positive axis of z, and directed

upward.
In this case,

a = 90, = 135, y = 45
;

cos a = 0, cos /3
= 1V2, cos y =|V2. FIG. 2

THEOREM 1. The sum of the squares of the direction cosines

of a directed line is equal to unity :

(1) cos 2 a + cos2
(B + cos2

y = 1.

To prove this theorem, take a point P : (x , yQ ,
z ) on Le

(Fig. 1) so that the direction from Oto P will be the direction

of L', and consider the projections of the directed line-segment

OP on the axes. These are equal, on the one hand, to the coor-

dinates x
, yQ ,

z of P (Ch. XVII, 5), and on the other, to the

quantities OP cos a, OP cos
/3, OP cosy (Ch. XVII, 4).

Hence

(2) x = OPcos a, y = OP cos
/3,

z = OP cos y ;

(3) , ,

Thus cos2 a + cos2
ft + cos2

y =
X
" + y

\

But

and the theorem is proved.

We have shown, then, that every directed line has definite

direction cosines, the sum of whose squares is unity. The con-
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verse is also true: Any three numbers, the sum of whose squares
is unity, are the direction cosines of some directed line.

Preliminary to proving this, we revert

to the proof of Theorem 1 and choose

the point P in particular as the point
in which the ray issuing from in the

direction of L' meets the unit sphere

(Fig. 3). Then OP =1, or

and (2) becomes

FIG. 3

That is, the direction cosines of a ray

issuing from are equal to the coordinates of the point in which

the ray pierces the unit sphere.

The desired proof is now simple. If there are given any
three numbers, x

, y ,
z

,
the sum of whose squares is unity,

they will be the coordinates of some point P of the unit sphere,

and hence they will also be the direction cosines of a certain

directed line, namely, the line L' passing through and P and

directed from to P, q. e. d.

Example 3. The three numbers f , ^, f are the direction

cosines of some directed line, for

The direction angles of the line are, respectively, 48 11',

70 32', 131 49'.

Example 4. A directed line makes angles of 60 and 45

with the axes of x and y, respectively. What angle does it

make with the axis of z?

Here,

cos a = cos 60 =
\, cos ft

= cos 45 = V2.
Hence

(I)
2 + (iV2)

2 + cos2

y = 1 and cos y = .
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Thus y = 60 or 120. There are, then, two directed lines

making the given angles with the x- and ?/-axes. The one

makes an angle of 60 with the z-axis
;
the other, an angle of

120.

Direction Cosines of the Line through Two Points. Let PiP2

be a directed line-segment lying on the directed line L and

having the same sense as L. If XiX 2 , Y^Y^ ^1^2 are the

projections on the axes of PtP2 (Ch. XVII, Fig. 6), we have,

by Ch. XVII, 4,

where D is the length of the segment PiP2 .

Hence

(5)
cos a = t, cos ft

=
,

cos y =

The content, of these equations can be stated in words, as

follows :

THEOREM 2. If a directed line L is given and on L any
directed line-segment PjP2 having the same sense as L is chosen,

the direction cosines of L are equal to the projections of PiP2 on

the axes, each divided by the length of PiP2.

If P! and P2 have the coordinates (xl} y^ z^) and (xz, y2 ,
z2),

formulas (5) become, by Ch. XVII, 6, 7,

(6) , ,D D D
where D = V(z2

-
xtf + (y%

-
ytf + (z2

-
ztf.

These are the formulas giving the direction cosines of the line

passing through P1 : (xl} y1} Zj) and P2 : (x2 , y2 ,
z2), and directed

from Px to P2 .

EXERCISES

1. What are the direction cosines of a line parallel to the

axis of z and having the same sense? Having the opposite
sense?
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2. A line bisects the angle between the positive axes of y
and z and is directed upward. What are its direction cosines ?

3. What are the direction cosines of a directed line which

lies in the (z, #)-plane and makes an angle of 30 with the

positive z-axis ? Two answers.

4. A line in the
(a;, y)-plane has the slope V3. What are

its direction angles and direction cosines, if it is directed for-

wards ?

5. Construct the directed lines through the origin having the

following direction cosines. What are the direction angles ?

(a)
-

1, 0, 0; (6) |, V3, 0; (c)
- |VS, 0, i;

(d) 0, -iV2,V2; (e) -f, -4,0; (/) iV3, -^VS^VS.
6. Find the direction angles and the direction cosines of a

line if

(a) cosa = l; (6) .cos = 1, cos.y=|V3;

(c) cos a = i, cos /3
= |V2.

7. Find the direction angles and the direction cosines of a

directed line if

(a) <*=120, = 60; (6) a = 135, y = 120
;

(<0 ^ = |'y
=

|5 (d) a = 45, y
8 = y ;

(e)
=

/3
= y; (/) =y=180-/?.

8. Find the direction cosines of the line passing through the

origin and each of the following points, and directed from the

origin to the point :

(a) (2, 3, 6) ; (6) (4, -1, 8); (c) (3, -4, 0); (ef) (5, 8, -1).

9. Find the direction cosines of the lines determined by the

pairs of points in Ex. 1 of Ch. XVII, 7, if each line is directed

from the first of the given points to the second.

10. A line-segment P\P<i has the length 6 and the line of Pl

and P2 >
directed from P

l
to P2 ,

has the direction cosines f ,

^, f. If the coordinates of Pv are (3, 2, 5), what are those

of P2 ?
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N

FIG. 4

2. Angle between Two Directed Lines. Let it be required to

find -the angle between the two directed lines, LI and 7/2,

whose direction angles are 1} fa, yi

and 2 , /32 , y2 .

We can assume without loss of

generality that LI and L2 pass

through the origin.* Take any
point P : (x , yQ,

z ) on Ll} so that the

direction from to P is that of LI,

and draw the broken line OMNP,
whose directed segments OM, MN, AT/

NP are, respectively, the coordi-

nates x
, y ,

z of P. The projection
of this broken line on L2 equals the projection of OP on Z*2

(1) Pro
j

.

Li
OP= Proj .

Lt
M+ Pro

j.^
MN+ Proj .

Jf
NP.

By Ch. XVII, 4,

Proj. 2
OP= OP

Similarly, Proj.Za OM= \OM\ cos

where J?" is a point on L2 ,
such that O^fiT has the direction of

L2 . If the directed line-segment OM has the direction of the

positive axis of a?, as is the case in the figure, we have

| OM\ = OM, % KOM= 02,

Proj.z M= M cos a%.

If OM has the direction of the negative axis of x,

| OM\ = - OM and KOM= 180 -
2 ;

in this case, then,

Proj. 2
OM= - OM cos (180

- a2)
= OM cos a*

Consequently, in either case, we have, since OM= x
,

Proj.z OM= x cos o-j.

* For, if they did not, we could consider equally well the angle between

the two parallel lines through the origin having respectively the same

senses as the given lines.

and therefore,
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Similarly,

j. 2
MN= y cos ft2 , Proj.Xj

NP = z cos y2 .

Thus (1) becomes

(2) OP cos = x cos 02 + 2/0 cos /?2 + z cos y2 .

By (2), 1,

i^o
= OP cos

!, ?/
= OP cos

/Si, z = OP cos y^

Substituting these values in (2) and dividing through by OP,
we obtain, finally,

(3) COS 6 = COS ttj COS 2 + COS Pi COS /32 +- COS yt COS y2.

We have, then, the result : The cosine of the angle between

two directed lines equals the sum of the products of the corre-

sponding direction cosines of the lines.

Example. Find the angle between the two directed lines

whose direction cosines are, respectively, -|, ^, | and ^, ^, ^.

2. 3 + (-1). 2 + (-2). 6 8
Here cos0=-i-i-

3.7
- =

~2l'

whence is found to be 112 24'.*

Parallel and Perpendicular Directed Lines. LI and L2 are

perpendicular if and only if 6 = 90 or cos = 0, that is, if and

only if

(4) COS ! COS 2 + COS (3i COS /?2 + COS y! COS
yjj
= 0.

In words : Two directed lines are perpendicular, if and only if

the sum of the products of the corresponding direction cosines of
the lines is equal to zero. Thus the directed lines which have

the direction cosines f, |, f and ^, \^, T
5 are perpendicular,

since

2. 2-1- 14 + 2. 5

3-15
= 0.

* It is to be remembered that the angle between two directed angles is

an angle between and 180 inclusive
;
cf . Ch. XVII, 3.
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We repeat here the results concerning parallelism obtained

in 1. The directed lines LI and L2 are parallel and have

the same sense if and only if they have equal direction cosines :

(5) cos !
= cos 2, cos /?!

= cos (32 ,
cos yi

= cos y2 .

On the other hand, they are parallel, but with opposite senses,

when and only when the corresponding direction cosines are

negatives of each other :

(6) COS !
= COS 2, COS PI

= COS /?2 ,
COS yt

= COS y2 .

EXERCISES

In each of the following exercises find the angle between

two directed lines with the given direction cosines.

-
T
9
T,

V21 V2I V21 V14 V14 V14

7. Show that three directed lines with the direction cosines

12._3__4 4123 3 412
T3~> 13' T> T^J T5> T3"> T"3"J T3"' TJ'

are mutually perpendicular.

.
8. Find the angle subtended at the point (5, 2, 3) by the

points (2, 0,
-

3), (- 9, 7, 5). Ana. 79 1'.

9. Determine the angles of the triangle with vertices at the

points (1, 0, 0), (0, 2, 0), (0, 0, 3).

3. Direction Components of an Undirected Line. The quan-
tities ^, 7-, 7-

are the direction cosines of some line, properly

directed, and the quantities f, f, -f-
are the direction co-

sines of this line, oppositely directed.

1.
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Both sets of direction cosines are proportional to the quan-

tities 2, 3, 6. Consequently, these quantities pertain, not to

the line directed in the one sense or the other, but to the line

bare of sense, i.e. to the undirected line. We call them direc-

tion components of the undirected line.

It is clear that instead of 2, 3, 6 we might have taken

equally well - 2, 3, -6, or 4,
-

6, 12, or 200,
-

300, 600, since

the two sets of direction cosines are proportional to the quan-
tities in any one of these triples. In other words, the direc-

tion components of the undirected line are not uniquely deter-

mined. There are infinitely many sets of direction components ;

if one set is 2, 3, 6, all are given by the quantities 2p, 3p,

6p, where p is an arbitrary number, not zero.

Conversely, if we have given the set of direction components,

2, 3, 6, of the undirected line, and divide each by the square
root of the sum of the squares of the three, i.e. by

we obtain the direction cosines, -^, f, ^, of the line directed

in one sense. Those of the line directed in the opposite sense

are the negatives, 2, 3, 6, of the given direction com-

ponents, each divided by the above square root.

The General Case. Let a line L be given and on it the arbi-

trary directed line-segment PiP2 whose projections on the

axes are X^, YiF2 , Z& (Ch. XVII, Fig. 6). The direction

cosines of L, when directed in the sense of PiP2 , are, by (5),

1.

D D D '

if, however, L is oppositely directed, in the sense of PZP\, they
are

/o\ XzXi ^2^1 -^2-^1

D '

/)
'

Z)
'

where, in each case,

(3) D =
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The two sets of direction cosines are proportional to the

quantities
*

(4) X,X2 , TiTi, Z,Z2 .

These quantities pertain merely to the undirected line L. We
call them a set of direction components of L.

Since the quantities (4) are the projections of PiP2 on the

axes, this definition can be stated as follows.

DEFINITION. A set of direction components of an UNDIRECTED

line L are the projections on the axes of a directed line-segment

on L.

Instead of XiX.2 , Yi F2 , Z^Z^ we might have taken, as direc-

tion components of L, X2Xi} Y2 Yi, ^2-^1? i-e - the projections of

P2Pi on the axes
;

or 3 X^X^, 3 Y\Y^ 3 Z^ZZ) i.e. the projec-

tions of a directed line-segment on L having the 'same sense as

PiPz but three times the length.

There are, then, infinitely many sets of direction components
for L. Any two sets are, however, proportional. For, two arbi-

trary sets consist of the projections on the axes, -X^-Xj, Y]YZ ,

Z^Z^ and XJXZ', TV Y2 ', ZiZ2 ',
of two arbitrary directed line-

segments, Pt
P2 and P/P2 ',

on L. But the projections of P/P2
'

and PiP2 on any line are in the same ratio as P/P2
' and PiP2

(Ch. XVII, 4, Ex. 4), and, therefore,

V'"V' P'P' V'V P'P' 7 '7' P'P'
-A-i -A2 _ Jr

j .T;) 2 i JL 2 _ -T \ f 2 ^1 -^2 _ -* 1 -^2

or

(5) XiXz
' = p XiX2 , YI Y2

' = p YI Y2 , Zi'Z^ = p ZiZz,

where the factor of proportionality, p, is P1'P2'/P 1P2 , q. e. d.

Not all three direction components can be zero. For, if X^X^
YYz, ZtZ? were all zero, then, by (3), D = \

PtP2
1

would be

zero. But this is absurd, since P: and P2 are distinct points.

We summarize our results in the form of a theorem.

* The factor of proportionality is, in the first case, 1/D ;
in the second,

-l/D.
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THEOREM 1. An undirected line L has infinitely many sets of
direction components; if I, m, n is one set, all the sets are given by

pi, pm, pn, where p is an arbitrary number, not zero; moreover,

I, m, n are not all zero. Any line parallel to L has the same sets

of direction components as L.

The last statement has not been explicitly proved. We leave

the proof to the student
;

cf. Ch. XVII, 4, Ex. 5.

Example 1. Find the direction components of a line parallel

to the axis of z.

Take any directed line-segment PxP2 on the line. Its pro-

jections on the axes are 0, 0, PiP2, or, if a is the number

representing PiP2 , they are 0, 0, a. One set of direction com-

ponents is, then, 0, 0, a (a =f= 0) ;
a simpler set, and the one

generally used, is 0, 0, 1.

Example 2. A line bisects the angle between the positive

axes of y and z. What are its direction components ?

The projection on the a/-axis of any directed

line-segment PiP2 on the given line is zero,

and the projections on the axes of y and z are

equal. If the number representing both the

latter projections is a, a set of direction com-

ponents for the line is 0, a, a. A simpler set

is 0, 1, 1.

Geometrical Representation of Direction Components. The

FIG. 5

directed line-segments XiXz ,
Y

1
Y2 ,

jections of P:P2 on the axes, rep-

resent geometrically the set of

direction components (4) of L.

Instead of them we prefer to use

the equal directed line-segments

P!^, PI S, P^T, issuing from Pj

(Fig. 6). These form what we
shall call a directed trihedral-,

PiR, PiS, PiT are its directed

edges, and Pb its vertex.

which are the pro-
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The directed trihedral P^RST represents the set of direc-

tion components (4). Any second set, consisting of the pro-

jections on the axes, Xj'-XV, ri'iy> Zi'Z.2 ',
of any second

directed line-segment P//Y on L is represented by the directed

trihedral P^-R'S' T'. For the two directed trihedrals we have,
from (5),

(6) P^R'^pP.R, P1'S' = PP1S, P1'T' = pP1 T.

Because of this relationship we call them similar. That is,

two directed trihedrals are similar, if homologous directed edges
are proportional, i.e. if the directions of the three edges of

one trihedral are all the same as, or all opposite to, the direc-

tions of the three edges of the other, and if the lengths of

homologous edges are proportional.
Since any two sets of direction components of L are in the

relation (5), the directed trihedrals representing them are in

the relation (6) and are, therefore, similar. Consequently,
the directed trihedrals representing the infinitely many sets

of direction components of L are all similar.

Construction of a Line with Given Direction Components.
Let it be required to construct the line L passing through a

given point P1 in space and having
the direction components 4, 3, 2.

Construct a directed trihedral

Pi-RST with Pl as vertex and with

edges P!#, P
:#, P^T defined, both

in length and direction, by the

numbers 4, 3, 2. Complete the

box determined by the trihedral

and draw the diagonal PtP2 issuing
from Pj. 'The line of this diagonal
is the required line L. For, the

projections of PiP2 on the axes FIG. 7

have the values 4, 3, 2.

Incidentally, we have shown that the triple 4, 3, 2 is

actually a set of direction components of some line, L. We
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proceed to show, further, that L and the lines parallel to it

are the only lines having this triple or, more generally, the

triples 4
p,

3 p, 2 p, p = 0, as direction components.

Evidently L is the only line through Pl with the direction

components 4, 3, 2. For, these components determine the

trihedral at P uniquely, the trihedral determines the box

uniquely, and the box the line.
,

If we took 8, 6, 4 instead of 4, 3, 2 as the given direc-

tion components, the resulting trihedral would have edges with

the same directions, but twice as long, as the edges of the

original trihedral, i.e. it would be similar to the original trihe-

dral. The diagonal of the new box which issues from P1

would be on a line with the diagonal Pi-P2 of the old box

and so the same line L would be determined. Similarly,

if any multiple, 4p, 3p, 2p, of 4, 3, 2, where p is any

positive or negative number, were taken as the direction com-

ponents.

Finally, if we start from a new point P/, it is clear

that the line fj through it with the given direction com-

ponents will be parallel to L or, in case P/ lies on L, the

same as L.

The reasoning here is perfectly general, applying to any

triple of numbers, I, m, n, not all zero. The result is the fol-

lowing converse of Theorem 1.

THEOREM 2. If I, m, n are any three numbers, not all zero,

the triples of numbers pi, pm, pn, where p is arbitrary but not

zero, are sets of direction components of some undirected line L
and of the lines parallel to L, and of these lines only.

Remark. If one direction component is zero, the corre-

sponding edge of the directed trihedral disappears, and the

box becomes a rectangle, with L along its diagonal. If two

direction components are zero, the directed trihedral becomes

a directed line and L lies along this line.
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EXERCISES

In each of the following exercises find all the sets of direc-

tion components of the given line and then choose from them

a simple set.

1. A line parallel to the axis of x.

2. The line bisecting the angle between the positive axis

of x and the negative axis of z.

3. A line in the (x, t/)-plane having the slope 2.

Ans. p,2 P , 0; 1,2,0.

4. A line in the (y, z)-plane making an angle of 60 with

the y-axis. Two answers.

5. A line making equal angles with the three coordinate

axes.

6. The line through the origin and the point (2, 1, 3).

7. The line through the points (2, 3, 5), (4, 7, 8).

8. What can you say of the position of a line if one of its

direction components is zero ? If two are zero ?

In each of the following exercises construct the line through
the given point with the given direction components.

Point Direction Components

9. Origin, 3, 5, 2.

10. Origin, 2,
-

3, 6.

11. (2,4,3), p,p,2 P (P =t=Q).

12. (5, -4,6), 3,0, -1.

13. (2, 5,
-

3), 0, 1, 0.

4. Formulas for the Use of Direction Components. Direction

Components of the Line through Two Points. Let the two points

-Pi ' 0i> 2/i>
2
i)> A : (X2> Vii %z) be given. Since the projections of

PjP2 on the axes are (Ch. XVII, 6),

(l) a-a;i, y*-y\, za-zi,
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these three quantities are a set of direction components of the

undirected line passing through Pl and P2 .

Relationship between Direction Components and Direction

Cosines. We saw in 3 that the direction components of an

undirected line are any three numbers, not all zero, propor-
tional to the direction cosines of the line, directed in one sense

or the other.

Conversely, starting with the arbitrary set of direction

components, XiX2 , Y^Y^, ZiZ2 ,
of an undirected line, and

dividing each component by the square root of the sum
of the squares of the three, i.e. by the quantity D given by

(3), 3, we obtain the direction cosines (1), 3 of the

line, directed in one sense. And dividing the negatives
of the direction components by the same square root, we

get the direction cosines (2), 3 of the line, directed

oppositely.

We state this result as a theorem.

THEOREM. Ifl,m,n are a set of direction components of an

undirected line L, the direction cosines of L, when given a sense,

are

cos a =
VZ2

-f ra2 + n2

(2) cos (3
= m
VZ2 + m2 +

n
COSy = -

;

VZ2 + m2 + n2

where either all the upper signs, or att the lower signs, are to be

chosen according to the sense which has been given to L.

If we had used, as the direction components of L, the arbi-

trary set pi, pm, pn (p ^ 0) instead of the particular set I, m, n,

the same formulas (2) would have resulted. For if in (1) Z,

m, n are replaced by pi, pm, pn, p comes out as a factor from

the square root in the denominator of each fraction and can-
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eels the p in the numerator, so that the fractions are left

unchanged.*

Example 1. A directed line has the direction cosines $,
_

^ ?

_
|. What are the direction components of the line,

undirected ?

Obviously, 2, 1, 2 are one set of direction components,
the one generally used

;
all sets are given by 2p, p, 2p,

where p ^ 0.

Example 2. An undirected line has the direction compo-
nents 4, 3, 12. What are the direction cosines of the line

when directed ?

The sum of the squares of the given direction components
is 169. Hence the direction cosines of the directed line are

either ^, - ^, if, or - T\, T
3

,

-
|f, depending on the sense

in which the line is directed.

Angles between Two Undirected Lines. Between two di-

rected lines there is but one angle such that < < 180.

Between two undirected lines LI and L there are, in general,

two such angles, as can be seen readily from a figure. The

two angles are supplementary and have, therefore, cosines.

which are negatives of each other.

If the direction components of Z t and Lz are llt mt, HI and

12 ,
w2 , n-i, these cosines are given by the formula

(3)

VZr + mi2 + M!*VZ2
2 + ma2 + 2

2

To establish this formula, write down by use of (2) the direc-

tion cosines of each line, directed in either sense, and then

apply formula (3), 2.

It follows from (3) that the two lines L{ and Lz are perpen-
dicular when and only when

(4) l^ + ??i1m2 + w 1wi8
'= 0.

* If p is negative, it is p which comes out as a factor from each

square root and hence each sign becomes T.
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The lines L^ and L2 are parallel if and only if their direction

components are proportional, i.e. if and only if

(5) k = pli, wi2 = pW!, n2 = Pn1 ,

where p is a number not 0. This follows directly from

Theorems 1, 2, 3.

EXERCISES

1. From the direction cosines of the directed lines of

Exs. 1, 4, 6, 2, find the direction components of the lines,

undirected.

2. From the direction components of the undirected lines

of Exs. 9-13, 3, find the direction cosines of the lines, directed

first in one sense and then in the other.

3. A line has the direction components 2, 8, 9. What are

its direction cosines, if it is directed upwards ?

4. Find the direction components of the lines joining the

origin with the points (c), (/), (t), (I)
of Ex. 1 of Ch. XVII,

5.

5. Find the direction components of the lines determined

by the pairs of points in Ex. 1 of Ch. XVII, 7.

In each of the following cases determine the angles between

two lines with the given direction components. First test the

lines for parallelism or perpendicularity.

6. 3, 4,
- 1

; 5,
-

2, 7. 7. 4,
-

2, 6
;

-
6, 3,

- 9.

8. 2,
-

1, 3
; 2, 1,

- 1. 9. -
3, 4, 2

; 5, 8, 1.

10. Show that the line joining the origin to the point

(2, 1, 1) is perpendicular to the line determined by the

points (3, 5,
-

1), (4, 3,
-

1).

5. Line Perpendicular to Two Given Lines. If two lines,

intersecting in a point P, are given, there is a single line

through P perpendicular to each of them, namely, the line

through P perpendicular to the plane determined by them.
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More generally, let any two non-parallel lines,* LI and L2 ,

with the direction components l
i} m^ n t and 1%, m, n^ be

given. Let L be a line perpendicular to each of themf
and let it be required to find for it a set of direction com-

ponents, Z, ra, n.

We begin with a special case. Let 2, 3, 1 and 1, 4, 2 be the

direction components of Li and L2 , respectively. Since L,

with the direction components I, m, n, is perpendicular to L
and also to L2 ,

we have, by (4), 4,

21 +. 3m + 7i = 0,

From these tuo homogeneous linear equations it is impossible

to determine uniquely the three unknowns
I, m, n. But this

was to be expected. For, there is not a unique set of direction

components, I, m, n, of L, but infinitely many sets.

In general, then, there will be a set for which n = 1. To

determine the values of m and n for this set, we must solve

simultaneously the equations

r2
x 2Z + 3m + l = 0,

I + 4 m + 2 = 0.

The solutions are I = 4, m = f. Consequently, one set of

direction components of L is
-|, f,

1. A simpler set is 2,

-3,5.

In the general case, since L is perpendicular to both Ll and

Z/2 ,
it follows that

= 0,
I ^j }

= 0.

* From now on we drop the qualifying adjective "undirected," and

speak merely of lines and directed lines, as usual.

t There are infinitely many common perpendiculars to LI and i2-

They are, however, all parallel to one another and hence the direction

components of any one of them will be the direction components of all

the others.
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Here, too, we try to find a set of direction components /, m, n

of L, for which n = 1. Then equations (3) become

(4)
I2l + mzm =

The solutions of these equations are

(5) I:

These values for I and m, together with w = 1, form a set of

direction components of Z/. A simpler set is

or, in determinant form,

(6) m2 m2

For the special case first treated, these determinants have

the values

or 6 - 4 = 2, 1 - 4 = - 3, 8 - 3 = 5. But 2,
-

3, 5 were the

direction components found, and thus the work in the special

case is checked.

Rule of Thumb. To obtain the determinants in (6) easily,

write the two given sets of direction components under one

another :

12 ra2 w2 .

The first determinant in (6) is formed from the second and

third columns of this array ;
the second is formed

from the third and first columns not the first

and third and the third from the first and second

columns. Thus the sets of numbers, 23, 31,
1 2, represent the columns used in the three de-

FIG.' 8 terminants. The first set, 2 3, is all that need
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be remembered. For, by advancing the numbers of this set ac-

cording to the cyclic order 1 2 3 1 2
,
this set 2 3 becomes

3 1, i.e. the second set
;
and advancing the second set 3 1

cyclicly, we get the third set, 1 2.

Critique. Not all the determinants (6) are zero, for if

l\Wv ltfn<\
=

fti-pii mtfii = nil2 nzli
= 0,

then I1 :l2 = m 1 :m<i
= nl : n2

or ^ : mi : n^ = 12 : m2 : n 2

and hence the lines LI and L2 would be the same or parallel,

which is contrary to hypothesis.
In obtaining the solution (5) of equations (4) we assumed,

tacitly, that ^m2 Z2w<i =
;

there was, then, a set of com-

ponents I, m, n, for which n = 1. If ^m2 Z2wi
= 0> at least

one of the two remaining determinants cannot be zero. If,

for example, nj^ nJi = 0> there will be a set of components

I, m, n, for which m = 1, and we can find this set by putting
m = 1 in (3) and solving the resulting equations for I and n.

EXERCISES

In each of the following exercises determine the direction

components of a line which is perpendicular to each of two lines

having the given direction components. Actually solve the

equations and then check the result by the rule of thumb.

1.

4.

7. The two directed lines LI and Z2 passing through the

origin and having respectively the direction cosines ^A/2,

^V2, and ^V2, V2, are perpendicular to each other.

Find the direction cosines of a third line Ls through the origin,

perpendicular to both L l and L2 ,
and so directed that LI, L2 ,

L3

(3,
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form a directed trihedral (with edges of indefinite length)

which is right-handed by the test of Ch. XVII, 5.

Ans. 0, 0, 1.

8. The above problem, if the direction cosines of L^ and L2

are, respectively, f, f, f ,
and

-^, f, ^. Ans.
fy, fy, fy.

6. Three Lines Parallel to a Plane. Given three lines, with

the direction components J1? m^ n1} L, m^, n2 ,
and 3, m3 ,

ns .

The lines will be parallel to a plane or will lie in a plane,

if and only if there is a line, with the direction components

I, m, n, which is perpendicular to each of them, i.e. if and

only if

lil + mini + n^n = 0,

(1)
I2l + m2m + ntfi = 0,

I3l + m3m + nsn = 0.

But, by Ch. XVI, 10, these three homogeneous linear equa-

tions have a solution for I, m, n, other than the obvious solu-

tion 0, 0, 0, when and only when the determinant of their

coefficients vanishes :

?! m,i ni

(2) 1% m? r? 2 = 0.

k ^3 n3

We have, therefore, the theorem :
*

THEOREM. Three lines are parallel to a plane or lie in a

plane, if and only if the determinant of their direction components
has the value zero.

EXERCISES

1. Show that three lines through the origin with the

direction components 2, 1, 5, 3, 2, 4, 7, 0, 6 lie in a

plane.
* The proof covers not only the general case, when the given lines

have but one common perpendicular direction and the equations (1) a

one-parameter family of solutions, but also the special case in which the

given lines are parallel, when the lines have infinitely many common

perpendicular directions"and the equations (1) a two-parameter family
of solutions.
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In each of the following exercises show that three lines with

the given direction components are parallel to a plane.

2. 3,1,2; 5, -4,3; 1,6,1.

3. -1,1,2; 2, -1,1; 1,1,8.

EXERCISES ON CHAPTER XVIII

1. Show that the triangle with vertices at the points

(1, 3,
-

5), (3, 4,
-

7), (2, 5,
-

3) is a right triangle.

2. Prove that the points (2,
-

1, 5), (3, 4,
-

2), (6, 2, 2),

(5, 3, 9) are the vertices of a parallelogram.

3. Show that (2, 3, 0), (4, 5,
-

1), (3, 7, 1), (1, 5, 2) are

the vertices of a square.

4. Prove that the three points A, B, C with the coordinates

(5, -2, 3), (2, 0, 2), (11, -6, 5) lie on a line by showing that

the line AB has the same direction as the line AC.

5. Show that the two points (4, -2, 6), (-6, 3, 9) lie

on a line with the origin.

6. Show that two points fa, y^, z^, (x.2 , y^ z<i)
lie on a line

with the origin when and only when their coordinates are

proportional : x1 :yl :z
l
= x2 : y2 : z2 -

7. Show that the four points A, B, C, D, with the co-

ordinates (3, 4, 2), (1, 6, 2), (3, 5, 1), (4, 5, 0), lie in a plane by
proving that the sum of the angles which BC and CD subtend

at angle A equals the angle which BD subtends at A.

8. Find the projection, on a directed line having -, f, f
as its direction cosines, of the directed line-segment joining the

origin to the point (5, 2, 4). Ans. 4.

Suggestion. Use the method of 2 or employ formula (2)

of Ch. XVII, 4.

9. Show that the projection, on a directed line having
cos

,
cos /?, cos y as its direction cosines, of the directed line-

segment joining the origin to the point (x, y, z) is

x cos a + y cos /3 + z cos
y.
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10. Find the projection, on a directed line with the direc-

tion cosines f , f , ^, of the directed line-segment joining the

point (3, 2, 5) to the point (8, 0, 2). Ans. 5.

11. The previous problem, in the general case.

12. Two lines, LI and L2 ,
have the direction components 1,

1, and 0,1, 1, respectively. Find the direction com-

ponents of a line which is perpendicular to Li and makes an

angle of 30 with L* Ans. 1,
-

1, 2.

13. Prove that each two opposite edges of the tetrahedron,

with vertices at the points (0, 0, 0), (1, 1, 0), (0, 1, 1),

(1, 0, 1), are perpendicular.

14. A tetrahedron has three pairs of opposite edges.

Prove that, if the edges of each of two pairs are perpendicular,

the edges of the third pair are also perpendicular. Choose the

coordinate axes skillfully.

15. Prove the identity

= (V + Mi
2 + v^)(X2

2 + tf + v2
2

)
-

In the following exercises X1? ^ V], X2 , /^ "2 (and A3 ,

jn3 ,
v3) denote the direction cosines of directed lines, Lj, L2

(and L3),
which we can assume go through the origin. In

solving the exercises, the identity of Ex. 15 will be found

useful.

16. If 6 is the angle between LI and L2 ,
show that

sin2 =
(/*iv2 ftevi)

2 + (vjX2 vaXi)
2
-f- (Xiju,2 X2/Ai)

2
-

17. Prove that if L^ and Z/2 are perpendicular, the direction

cosines of their common perpendicular L3 are

G"-!^ /
A2"l) ("lX2 V2X!), (Xj/A2 Xo/Xi).

18. Show that, if the plus signs are taken in the above

formulas, L3
will be so directed that the lines L1} L>2 ,

L3 will
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form a directed trihedral which is right-handed by the test of

Ch. XVII, 5.

19. Prove that, if Ll9 L2 ,
and Ls are mutually perpendicular,

the determinant,
|

A
/u,

v
\,

of their direction cosines has the

value 4- 1 or 1, according as the directed trihedral consist-

ing of Ll} L2 ,
L3 is right-handed or left-handed.



CHAPTER XIX

THE PLANE

1. Surfaces and Equations. Example 1. The equation

x = 5

is satisfied by the coordinates of those points and only those

points which lie in the plane parallel to the (y, z)-plane and

5 units in front of it. We say that the equation represents

this plane.

Example 2. Consider the equation

x = y.

The points in the (x, y)-plane whose coordinates satisfy it are

the points of the line L bisecting the angle between the posi-

tive x- and y-axes. Since z is unrestricted by the equation,

the points in space whose coordinates satisfy it are the points

which lie directly above or below L, or are on L, i.e. the

points of the vertical plane through L. The equation, then,

represents this plane.

Example 3. The equation

represents, in the (z, x)-plane, a circle, C, with its center at the

origin and of radius 5. But the equation does not restrict in

any way the value of y. Consequently, it represents in space

the circular cylinder formed by drawing through each point
of the circle C a line parallel to the axis of y and extending

indefinitely in both directions.

Surfaces. The planes and the cylinder represented by the

three equations considered are known as surfaces ;
the cylinder

444
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is a curved surface and the planes are plane surfaces. In gen-

eralizing the foregoing discussions we should, then, say :

An equation in x, y, z represents, usually,* a surface. The

surface consists of all those points and only those points whose

coordinates, when substituted for x, y, z in the equation,

satisfy it.

Shifting the point of view, we assume now that it is a sur-

face, and not an equation, which is given. Then we should

say:

The equation of a given surface is an equation in x, y, z which

is satisfied by the coordinates of every point of the surface and by

the coordinates of no other point.

Problem 1. Find the equation of the sphere whose center

is at the origin and whose radius is a.

A point (x, y, z) lies on this sphere if and only if the square
of its distance from the origin is equal to a2

:

z = a.

Therefore, this is the required equation.

Problem 2. Find the equation of the plane which passes

through the axis of x and makes an angle of

30 with the (x, y)-plane, as shown in Fig. 1.

This plane intersects the (y, z)-plane in the

line whose equation in the (y, z)-plane is

z = tan 30 y or a = W3y.
FIG. l

But this equation, considered as an equation in

x, y, z, leaves x unrestricted
; consequently, it represents in

space the given plane, i.e. it is the equation of the given

plane.

* An equation in x, y, z does not always represent a surface. For

example, the equation x2
-f yz = represents a line, namely, the z-axis

;

the equation x2 + y2
-f z2 = represents just one point, the origin ;

and

the equation x2 + y2 + z 2 + 1 = represents noypoint whatsoever.
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EXERCISES

What does each of the following equations represent ? Draw
a figure in each case.

1. 2 = 0. 5. 2t/ + 3z = 6. 9. x2 + 2y2 = 4.

2. y + 3 = 0. 6. y = \x + b. 10. t/
2 z2 = 9.

3. ic + y = 0. 7. a-
2 + y

z = a2 . 11. s2 9z2 = 9.

4. 2 2a = 0. 8. z2 = 2z. 12. a2 + y
z + z2 = 4.

13. Which of the surfaces represented by the above equa-
tions pass through the origin? Which contain a coordinate

axis?

Find the equations of the following surfaces.

14. The (y, z)-plane.

15. The plane parallel to the
(a;, y)-plane and 3 units above

it.

16. The plane parallel to the (z, x)-plane and 2 units to the

left of it.

17. The plane bisecting the angle between the (x, y)- and

(y, z)-planes and passing through the first octant.

18. The plane perpendicular to the (x, y)-plane whose trace *

on that plane has the slope 3 and the intercept 2 on the axis

of y.

19. The circular cylinder whose radius is 3 and whose axis

is parallel to the cc-axis and passes through the point (0, 1, 2).

20. The parabolic cylinder whose rulings are parallel to the

y-axis and whose trace on the (z, #)-plane is a parabola with

its vertex at the origin and its focus at the point (2, 0, 0).

21. The elliptic cylinder whose rulings are parallel to the

z-axis and whose trace on the (x, y)-plane is an ellipse which

has its center at the origin, its foci on the .r-axis, and axes of

lengths 6 and 4.

* The trace of a surface on a plane is the line, or curve, of intersec-

tion of the surface with the plane.
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22. The hyperbolic cylinder whose rulings are parallel to

the z-axis and whose trace on the
(a;, i/)-plane is a rectangular

hyperbola with its center at the origin and foci at the points

(0, 2,0).

23. The sphere whose center is at the point (1, 0, 0) and

whose radius is unity.

24. The sphere whose center is at the point (1, 2, 3) and

whose radius is 5.

2. Plane through a Point with Given Direction of its Nor-

mals. Let there be given a point P, with the coordinates

(XQ , y ,
z

)
and a line L with the direction

components I, m, n. Through PQ perpen-
dicular to L there is just one plane.* We
propose to find its equation.

Let P :
(#, y, z) be any point of the plane

other than P . Then it determines with P
a line, PoP, which is perpendicular to the FIG. 2

line L. Since, by Ch. XVIII, 4,

a z
, 'y-y ,

Z ZQ

are the direction components of P P and I, m, n are the direc-

tion components of L, it follows, by (4), Ch. XVIII, 4, that

(1) I(x-x ) + m(y-y )+ n(z-z )=0.

Conversely, if P: (x, y, z) be any point other than P whose

coordinates satisfy equation (1), this equation says that the line

PQP is perpendicular to L and hence that P lies in the plane.

The coordinates x
, y ,

z of the excepted point, P , obviously

satisfy equation (1). We have shown, then, that this equa-

tion is satisfied by the coordinates of those points and only
those points which lie in the plane. Hence it is the equation

of the plane.

There are infinitely many lines L perpendicular or, as we

say, normal to the plane, and they are all parallel to one an-

* The figure is drawn for the special case in which L passes through PQ.
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other. It is their common direction or, analytically, their

common direction components, which are essential. Accord-

ingly, we speak of (1) as the equation of a plane through a given

point with a given direction of its normals.

EXERCISES

In each of the following exercises find the equation of the

plane through the given point with the given direction of its

normals.

Point Direction Point Direction

1. (2,1,3), 1,1, -2. 5. Origin, 3, -2,0.

2. (-5, 3, 4),
-

2, 2, 1. 6. (5,
-

8, 2), 0, 1, 0.

3. (4, -3,2), 5,0,3. 7. (3,1,0), 0,0,1.

4. Origin, 2, 3, 5. 8. Origin, I, m, n.

9. Find the equations of the three planes which pass

through the point (5, 6, 3) and are parallel respectively to

the coordinate planes.

10. How is a plane situated if one of the direction com-

ponents of its normals is zero ? If two are zero ?

3. The General Equation of the First Degree. Since any

plane can be determined by one of its points and the direction

components of a normal, the result of the preceding paragraph
embraces all planes. Moreover, equation (1) of that paragraph
is of the first degree in x, y, z. We have thus proved the

theorem: Every plane can be represented analytically by a

linear equation in x, y, z.

Given, conversely, the general equation of the first degree in

x, y, z, namely,

(1) Ax + By + Cz + D = 0,

where A, B, C, D are any four constants, of which A, B, G
are not all zero.*

* In dealing with equation (1), here and henceforth, we shall always
assume that J., J5, C are not all zero.
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Let (XQ, y0) z )
be a point whose coordinates satisfy equation

1

(1) =

(2) Ax + By +Cz + D = 0.

Subtracting equation (2) from equation (1) we obtain

A(x - x )+ B(y - y ~)+ C(z
- 2 )

= 0.

But this equation is of the form (1), 2, where

I : m : n = A : B : C.

Therefore it represents a plane which has A, B, C as the

direction components of its normals. This result we state as a

theorem.

THEOREM. The general linear equation (1) always represents

a plane. The coefficients A, B, G are the direction components

of the normals to the plane.

Example 1. The equation

represents a plane whose normals have 2, 3, 4 as direction

components. The point (2, 2, 2), for example,
lies in the plane, since when we set x = 2,

y = 2 in the equation, we find z = 2 as the

value of z.

We obtain a rough plot of the plane by
constructing the point (2, 2, 2) and the line

through it with the direction components 2,
'*

3, 4, and by drawing then, as accurately

as possible, the plane through the point perpendicular to

the line.

Example 2. The equation

x = 2, or a + 0y + 0=2,
is the equation of a plane having the lines with the direction

components 1, 0, as normals. But these lines are parallel

to the axis of x and hence the plane is parallel to the (y, z)-

plane. In particular, it is two units in front of that plane.
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1 Remark. In the proof of the theorem it was assumed that

there is always a point whose coordinates satisfy equation (1).

This assumption is easily justified. By hypothesis, at least

one of the three coefficients A, B, C is not zero. Suppose that

C^ 0. Then equation (1) can be solved for z :

Ax + By + D
~C~

Giving to x and y definite values, XQ and y ,
we obtain for z from

this equation a definite value, z . Then the point (XQ) y ,
z )

has coordinates which satisfy (1). For example, if XQ = and

yQ = 0, then z = D/C, and the point is (0, 0, D/C).

EXERCISES

In each of the following exercises determine the direction

components of the normals to the given plane and the coordi-

nates of a point lying in it. Construct the plane by the method

of Example 1.

1. 3x + 5y + Qz-5 = Q.' 5. 2x + 3y 5 = 0.

2. 2x y + 2 3 = 0. 6. 3x 2 z - 4 = 0.

3. 4:X + 2y 3z+6 = 0. 7. 5y + 8 = 0.

4. 5x 2y 32 + 4 = 0. 8. 2 z - 7 = 0.

4. Intercepts. Let a plane be given by means of its equation.
A simple method of plotting the plane, in case it cuts the axes

in three distinct points (one on each axis), consists in determin-

ing from the equation the coordinates of these three points
and then in plotting the points and constructing the plane

through them.

The point of intersection of a plane, for example,

(1) 2z-32/+4z-6 =
0,

with the axis of x has its y- and z-coordinates both equal to

zero. Consequently, to find the ^-coordinate of the point, we
have merely to set y = and z = in the equation of the plane
and to solve for x. Thus, in this case, we have

2 a -6 = 0, or a = 3.
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The point of intersection of the plane (1) with the axis of x

is, then, (3, 0, 0). In a similar manner we find (0, 2, 0) and

(0, 0, |) as the points of intersection of the plane with the axes

of y and z respectively. By plotting these

three points and joining them by lines, we
obtain a good representation of the plane.

The numbers 3, 2, f are known as the

intercepts of the plane (1) on the axes of x, y, z,

respectively. That is, the intercept of a plane
on the axis of x is the x-coordinate of the

point in which the plane meets the axis of x.

The intercepts on the axes of y and z are FIG. 4

similarly defined.

A plane which passes through an axis or is parallel to an axis

has no intercept on that axis. Every other plane has definite

intercepts on all three axes and these intercepts determine the

position of the plane unless they are all zero, that is, unless the

plane goes through the origin.

EXERCISES

Determine the intercepts of the following planes on the

coordinate axes, so far as they exist, and construct the

planes.

1. 2x+3y + 4:Z 12 = 0. 6. x-\-3y z = 0.

2. 3x-2y + z-6 = 0. 7. 2 a - 3 y + 12 = 0.

3. x + y z 2 = 0. 8. 3 y + 4 z 6 = 0.

4. 2x + oy 3 2 + 8 = 0. 9. 5 .T + 2 z = 0.

5. x + 2y + z + 3 = 0. 10. 3 a + 5 = 0.

5. Intercept Form of the Equation of a Plane. Given a

plane whose position is determined by its intercepts. Let

these intercepts, on the axes of x, y, z, be respectively a, 6, c.

To find the equation of the plane in terms of a, &, c.

We have the problem of finding the equation of a plane
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through the three points (a, 0, 0), (0, 6, 0), (0, 0, c). Let this

equation be

(1) Ax + By + Cz + D = 0,

where the values of A, B, C, D are to be determined. Since

the plane does not go through the origin, D ^ 0. Since it

contains each of the given points, the following equations must

hold:

Aa + D = 0, Bb + D = 0, Cc + D = 0.

Hence A = - D/a, B = - D/b, C= D/c. Substituting

these values for A, B, C in (1) and dividing through by D, we
obtain

(2)
* + | + ? = l.

a o c

That this is the desired equation can easily be checked by
substituting successively in it the coordinates of the three

points in question.

Only planes which intersect the axes in three points that are

distinct can have their equations written in the form (2). A
plane through the origin is an exception, because at least one of

its intercepts is zero and division by zero is impossible. A
plane parallel to an axis is also an exception, since it has no in-

tercept on that axis.

EXERCISES

Find the equations of the planes with the following inter-

cepts.

1. 2, 3, 4. 3. -
2, 4, 5. 5. -

4,
-

6,
- 2.

2. 2, -3, -1. 4. -5, -3, 2. 6. 2, -8,-6.

Find the equations of the following planes.

7. "With intercepts on the x- and y-axes equal to 2 and 3 and

parallel to the axis of z.

8. With intercept 3 on the z-axis and parallel to the

(x, 2/)-plane.
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9. A regular quadrangular pyramid has its vertices at the

points (0, 0, 6), (2, 0, 0), (0, 2, 0), (- 2, 0, 0), (0,
-

2, 0).

Find the equation of its faces.

10. The same, if the vertices are at the points (0, 0, c),

(a, 0, 0), (0, a, 0), (- a, 0, 0), (0,
-

a, 0).
<

6. Plane through Three Points. Three points, not lying in a

straight line, determine a plane. In any particular case the

equation of the plane can be found by the method of the pre-

ceding paragraph. In the general case, when the points are

arbitrary and have the coordinates (xly yly z^, (a?2 , t/2 ,
22)>

(xs> 2/3> 3)5 this method could still be applied. It is, however,

simpler to write the equation in determinant form, by analogy
to the equation in that form of the straight line through two

points (Ch. XVI, 11). We have, namely,

1

(1)

x y

= 0.
Xi y\ Zi

#2 2/2 *2

#3 2/3 *3

To show that this '

equation actually represents the plane

through the three points, develop the determinant by the minors

of the first row. The equation then takes on the usual form,

Ax + By + Cz + D = 0,

of a linear equation ; moreover, the values obtained for A, B, C:

c= 2/2

2/3

are not all zero, since otherwise the projections of the three

points on each of the coordinate planes would lie on a line

(Ch. XVI, 11, Th. 15)
* and hence so would the three points

themselves. Consequently, (1) represents some plane.

* If C, for example, were zero, the three points (Xi, j/i, 0), (X2, y%, 0),

(x3 , ^3, 0) in the (x, y)-plane would lie on a line. But these points are

the projections of the given points on the (x, y)-plane.
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This is the plane through the three points, since the sub-

stitution of the coordinates of any one of the points for x, y,

z in (1) makes two rows of the determinant identical and hence

causes the determinant to vanish and the equation to be

satisfied.

EXERCISES

Find the equations of the following planes by applying
formula (1) and simplifying the result.

1. Through (1, 2, 0), (- 2, 3, 3), (3,
-

1,
-

3).

2. Through (2, 5,
-

3), (- 2,
-

3, 5), (5, 3,
-

3).

3. Through (1, 1, 0), (0, 1, 1), (1, 0, 1).

4. Through (1, 1,
-

1), (6, 4,
-

5), (- 4,
-

2, 3).

5. Through (4, 5, 2), (- 3,
-

2,
-

5), the origin.

6. Through (xly yl} z^), (xz , yz ,
z2), the origin. Keep the

equation in determinant form, but simplify it.

7. Establish the intercept form of the equation of a plane

by applying formula (1).

8. By the method of the preceding paragraph find the

equation of the plane of

(a) Exercise 1
; (6) Exercise 3

; (c) Exercise 5.

9. Find the equations of the faces of the tetrahedron whose

vertices are at the points (0, 0, 0), (0, 3, 0), (2, 1, 0), (1, 1, 2).

Ans. z = 0, 2x = z, 2x 4y+z =

7. Perpendicular, Parallel, and Identical Planes. Angle be-

tween Two Planes. The normals to the two planes,

(1) AiX + Bfl + Cp + D^Q,
(2) A2x + B& + C2z +A = 0,

have AI, BI, GI and A2 ,
B2 , Co, respectively, as direction com-

ponents.

The planes are perpendicular if and only if their normals

are perpendicular; and parallel (or identical), if and only if
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the normals of one are also the normals of the other. Conse-

quently, we have, by Ch. XVIII, 4, the following theorems.

THEOREM 1. The planes (1) and (2) are perpendicular when

and only ivhen

(3).

THEOREM 2.

AiA* + B& + CiC8
= 0.

The planes (1) and (2) are parallel
* when and

only when

(4ij j?i : x>i : GI =.42 : _t>2 : G2 .

The condition that the two planes be identical is analogous
to the condition that two straight lines be identical

;
cf. Ch. II,

10. We can state, then, the theorem :

THEOREM 3. The planes (1) and (2) are identical when and

only when

(5) A! : B! : Ci : Dl
= Az : B2 : C2 : D2 .

The proof of the theorem is left to the student.

Angle between Two Planes. Between the two

planes (1) and (2) there are, in general, two

different angles having values between and

180 inclusive, and these angles are supple-

mentary. They are equal to the angles be-

tween the normals to the two planes. Since

AI, jBt, Ci and A2 ,
B2) C2 are the direction com-

ponents of the normals, the cosines of the

angles are given, according to (3), Ch. XVIII,

4, by
A A i T> T> i n n

(6) cos =

FIG. 5

+ A2 + + BJ + C2
2

EXERCISES

In each of the following exercises determine whether the

given planes are parallel or perpendicular, and in case they
are neither, find the angles between them.

* Or, in a single case, identical. Cf. Th. 3.
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0, 3z-?/- 92 + 2 = 0.

2. 2x-y + 3z-l = 0, 2x y + 3z + 3 = 0.

3. oj + ?/ + z = 0, 3z + 6y-22 + 12 =
4. 2<c-2.?/ + 42 + 5 = 0, 3z-3i/ + 62-l = 0.

5. 7z + 5?/ + 62 + 30 = 0, 3x y - Wz + 4 = 0.

6.

7.

8. 4z+'8y + 2-8 = 0, y + 2-3 = 0.

9. 2x + y + 3z 2 = Q, x~2y + 5 = Q.

10. Show that two planes are parallel when and only when
their equations can be written in the forms

Ax + By + Cz = D, Ax + By+Cz = D',

D^D'.

8. Planes Parallel or Perpendicular to a Given Plane.

Example 1. Find the equation of the plane which passes

through the point (5, 2, 4) and is parallel to the plane

(1) 2z + 4?/-62-7 = 0.

The normals to the plane (1) have the direction components

2, 4, 6 or, more simply, 1, 2, 3. The required plane has

the same normals and passes through the point (5, 2, 4).

By (1), 2, its equation is

l(a; _5)+ 2(t/-2)-3(2*+4)=0,
or x + 2y-3z-2l = 0.

Through a given point and parallel to a given plane there is

but one plane ;
its equation can always be found by the above

method. But 'through a given point and perpendicular to a

given plane there is not just one plane, but infinitely many,

namely, all the planes which pass through that normal to the

given plane which goes through the given point. To single

out one of these planes we must impose a further condition.

We might demand, for instance, that the required plane pass

through a second given point or, again, we might specify that
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it be perpendicular to a second given plane. We proceed to

consider illustrative examples of these two types.

Example 2. Find the equation of the plane passing through
the two points (3, 2, 9), ( 6, 0, 4) and perpendicular to

the plane

(2) 2x-y + 4:z-8 = 0.

First Method. Let the equation of the plane in question be

(3) Ax + By + Cz + D = 0.

Since the plane contains the two given points, we must have

(4) 3A-2B + 9C+D = 0,

(5) -6A -4O+Z>=0.
Since it is perpendicular to the plane (1), it is necessary that

(6) 2^-5 + 4(7=0.

In (4), (5), (6) we have three simultaneous linear equations
in the four unknowns A, B, C, D. But from three linear

equations it is impossible to determine uniquely the values of

four unknowns. It may be possible, however, to determine

the values of three of the unknowns in terms of the fourth,

say the yalues of A, B, C in terms of D.

Accordingly, we rewrite the equations in the form

3A-2B + 9C = - D,
6A +4(7= D,
2A- 5 + 4(7= 0,

and solve for A, B, C, either directly or by determinants. We
do obtain a solution, namely,

A = \D, B = -D, C = -\D.
Hence (3) becomes

Dx - Dy - %Dz + D = 0.

The plane represented by this equation is always the same, no

matter what value, other than zero, is given to D. A simple
choice is : D=2. We obtain, then, as the equation of the

required plane,
x -2 z + 2 = 0.
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Second Method. Let N be any normal to the required plane.

Since the plane contains the two given points, N is perpen-

dicular to the line Lt joining these points. Since the plane is

perpendicular to the given plane (2), N is perpendicular to

any line L2 normal to (2). Thus N is a common perpendicular
to the lines LI and L*.

The direction components of LI are, by Ch. XVIII, 4,

3_(_6), -2-0, 9 -(-4), i.e.

9, -2, 13;
those of Lz are 2, 1, 4.

Consequently, by (6), Ch. XVIII, 5, the direction components
of N are

-2 13

-1 4

13 9

4 2

9 -2
2 -1

i.e. 5,
-

10, 5, or 1,
-

2,
- 1.

Our problem is now reduced to that of finding the equation
of the plane which passes through one of the given points,

say (3, 2, 9), and has 1, 2, 1 as the direction com-

ponents of its normals. This equation is

1(X
_ 3)_ 2(3, + 2)- l(z

- 9)= 0,

or x 2y z + 2=0.

Example 3. Find the equation of the plane passing through
the point (2, 5, 8) and perpendicular to each of the

planes :

Either of the methods employed in the previous example is

applicable. We choose the latter. A normal N to the re-

quired plane is perpendicular to the normals to both the given

planes. These have, respectively, the direction components

2, 3, 4 and 4, 1, 2. Consequently, the direction compo-
nents of N are 2, 20, 14 or 1, 10, 7.

The equation of the plane through (2, 5, 8) with 1, 10, 7

as the direction components of its normals is
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(x
-

2) + 10 (y
- 5 ) -f- 7(z + 8)

= 0,

or x + 10y + 7z+- 4 = 0.

This is the required equation.

EXERCISES

In each of the following exercises find the equation of the

plane which is parallel to the given plane and passes through
the given point. In Exs. 5, 6 find the equation directly

by inspection of a figure.

Plane Point

1. 5x-2y + 3z-4: = 0, (2,4,3).

2. 3z + 4?/-8z-2=0, (0,0,0).

3. 4z-2y-6z=9, (2,
-

1, 0).

4. 3z-4z = 0, (5,2, -3).

5. 3z + 8 = 0, (1, -2,5).

6. 2y-6 = 0, (4,0,3).

7. Find the equation of the plane passing through the

points (3, 1, 2), (3, 4, 4) and perpendicular to the plane
5x + y + 4z=0. Apply both methods, checking the result of

one by that of the other. Ans. 2x + 2y 3z 2 = 0.

The previous problem, if the given points and the given

plane are as specified. Use either method in Exs. 8-10
;
in

Exs. 11, 12 solve the problem directly by inspection of a

figure.
Points Plane

8. (3, 4, 1), (2, 6,
-

2), 2x-3y + 4z-2 = 0.

9. (0, 0, 0), (4, 3, 2), x + y + z=0.

10. (3, 2,
-

4), (5,
-

1, 3), 4 x - 5y = 8.

11. (1, 0, 0), (1, 2, 5), 3y-7 = 0.

12. (0, 2, 0), (2, 0, 0), 22 + 5 = 0.

13. There are infinitely many planes which pass through
the two points (2, 3, 4), ( 2, 3, 6) and are perpendicular
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to the plane whose equation is2a; 3t/ + 52 10 = 0. Why ?

Justify your answer.

14. What is the equation of the plane which passes through
the point (1, 2, 1) and is perpendicular to each of the

planes :

2 = 0, a;

Apply both methods, checking the result of one by that of the

other. Ans. 3x2y7z = Q.

The previous problem for the following given planes and

given point. In Exs. 15-17 use either method
;
in Exs. 18, 19

obtain the result directly from a figure.

Planes Point

-
,

~
g

(6* + 2y-3* + 4 = 0,

16. ja
+ y + * =

'

(1, -1,1).

17.

18. a? = 2, y = 3, (2, -5,3).

19. 2z + z = 0, 3o;-2 = 6, (2, 1,
-

3).

20. There are infinitely many planes which pass through
the point (2, 5, 0) and are perpendicular to each of the

planes :

x-2y-6z + 3 = 0,
- 6x + 3y + 92 + 10 = 0.

Why ? Justify your answer.

9. Distance of a Point from a Plane. To find the distance

A of the point P : (x , y ,
2 ) from the plane

Ax + By + Cz + D = 0,

draw a line through P perpendicular to the
(a?, y)-plane and

mark the point Q in which this line cuts the given plane.
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Then, as the figure shows, A is the numerical value of the

product QP cos 6, i.e.

A =
| QPcosO\,

where is the acute angle between the line QP and the normal

PP to the plane.

The normal P'P has the direction

components A, B, C and the line QP
has the direction components 0, 0, 1.

Consequently,
C

cos = .

V-42+ BP+ C2
/I?

Fra. 6

It is immaterial to us which of the

two signs is the proper one, for we are interested only in

numerical values.

It remains to find QP. The x- and y-coordinates of Q are

the same as those of P, namely, x
, y ;

denote the z-coordinate

of Q by z
q

. Since Q : (XQ , y , Zq}
lies in the given plane, it fol-

lows that

Ax + By -f- Czq + D = 0, .

and hence that

Then

or

C

_ Ax + By
C

Multiplying the values obtained for QP and cos 9 together

and taktag the numerical value of the product, we obtain the

desired formula :

(1)

+ 52 + (T2

or

= Ax
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where, in the second formula, the sign to be taken is that

which gives a positive result.

In the above deduction we assumed that the line through P
perpendicular to the (x, y)-plane meets the given plane, i.e. that

the given plane is not perpendicular to the (x, #)-plane. This

means, analytically, that we have assumed that (7^0.
Since we know that at least one of the three coefficients

A, B, C is not zero and since the final formula (1) bears equally
on A, B, and C, it is immaterial which one of the three coeffi-

cients we assume not zero. The result would have been the

same if we had assumed, say, A^Q, instead of C = 0.

EXERCISES

1. Establish formula (1) on the assumption that A = 0.

Find the distance of each of the given points from the cor-

responding given plane. In Exs. 6, 7 check the result by in-

spection of a figure.

Point Plane

2. (3, -2,1), 2x-y + 2z + 3 = 0. Ans. 4|.

3. (2, 5, -3), 6z-32/ + 2z-4 = 0.

4. (0,2,1), 4x + 3y + 9 = 0.

5. Origin, 8x+y 4z 6 = 0.

6. (3, 8,
-

6), y - 5 = 0.

7. (-2,3,4), 20+7 = 0.

8. Find the lengths of the altitudes of the tetrahedron of

Ex. 9, 6.

10. Point of Intersection of Three Planes. Let there be

given three planes which intersect in a point, i.e. three planes
which have just one point in common, as, for example, the

planes of the ceiling and two intersecting walls of a room, or

the planes of three faces of a tetrahedron.

The point of intersection of the planes is that point whose

coordinates satisfy each of the three equations of the planes.
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In other words, it is the point whose coordinates form the

simultaneous solution of the three equations. Consequently,
to find its coordinates we have but to solve the three equations

simultaneously.

Consider, for example, the three planes represented by the

equations
Sx + ly -5z = - 11,

2x+ y + 6z = 13,

x-3y + 2 = 6.

The simultaneous solution of these three equations is most

simply effected by the use of determinants (Ch. XVI, 2, 8).

The result is x = 1, y = 1, z = 2. Accordingly, the point of

intersection of the three planes is (1, 1, 2).

Intersections of TJiree Surfaces. The method to be used

in finding the point (or points) of intersection of any three

surfaces, given by their equations, is now obvious. The equa-
tions are to be regarded as simultaneous equations in the un-

known quantities, x, y, and z, and solved as such.

Three Arbitrary Planes. Let the equations,

A& + B,y + dz +A = 0,

(1) A2x + B2y + C& + Dz
= 0,

A3x + B3y + C\z + A = 0,

represent three distinct planes. If the determinant, \A B C\,
of the coefficients of x, y, and z is not zero, the three equations
have a unique solution (Ch. XVI, 8, Th. 10) and hence the

three planes intersect in a single point.

Conversely, if the three planes have just one point in com-

mon, \A B C |^=0. For, if \A B C\ vanished, the normals to

the three planes would all be parallel to a plane, M, by
Ch. XVIII, 6. Consequently, the lines of intersection of

the three planes, taken in pairs, would be perpendicular to M.
If there were just one such line of intersection, the three

planes would have all the points of this line in common
;

if

there were no line of intersection or more than one, the three
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planes would have no point in common. In either case the

hypothesis is contradicted. Hence we may state the theorem :

THEOKEM. The three planes (1) intersect in a single point, if

and only if \

A B C\ =0.*

If
|

A B C
|

= 0, two or all three of the planes may be parallel ;

these cases are easily detected by inspection of the equations.

Or, the three planes, taken in pairs, may intersect in three

distinct parallel lines. Or, finally, they may have a line in

common. We shall learn later, Ch. XXI, 2, how to dis-

tinguish, from the equations of the planes, between these last

two cases.

EXERCISES

In each of the following exercises show that the three given

planes intersect in a single point, and find the coordinates of

the point.

1. The planes of Ch. XVI, 2, Ex. 10.

2. The planes of Ch. XVI, 2, Ex. 11.

3. The planes of Ch. XVI, 2, Ex. 12.

4. The planes of Ch. XVI, 2, Ex. 13.

5. Find the coordinates of the vertices of the tetrahedron

whose faces lie in the planes

z = 0, 2y-3z = 0, x-y + 3 = 0, 5x-2y + 3z = 0.

Find the points of intersections of the following surfaces.

Draw a figure in each case.

6. x 4, 2 = -
2, xz + ?/

2 = 25.

7. x + y 2, x-y = Q, a;
2 + z2 1 = 0.

8. x2
-f y

2 + z2 = 9, 5x + y 3z = 5, x = z.

Ana. (2, 1, 2), (|, I I).

* Or, the three equations (1) have a unique solution, if and only if

\A B C
|

= 0. This is the converse of Th. 10, Ch. XVI, 8. We have

thus completed, by geometric methods, the proof of an important fact in

the theory of linear equations.
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In each of the exercises that follow give all the information

you can concerning the relative positions of the three given

planes.

Sx 4y-4z4-l = 0, 9x + 6y-3z + 7 = 0,

9. 2x + y+ 2 + 5 = 0, 10. x 2y + z + 3 = 0,

Qx-3y-3z-2 = 0. 6x + 4y - 2z - 1 == 0.

11. 2x-3y + 12 = Q, 3x + 5y-l = Q, 5o;+2y+ll= 0.

12. 4z 3z-5 = 0,

EXERCISES ON CHAPTER XIX

1. When will the plane Ax+By+Cz-\-D = pass through
a coordinate axis, e.g. the axis of z ? When will it be parallel

to a coordinate axis, e.g. the axis of x ?

2. Find the equation of the plane through the axis of z

and the point (1, 2, 0).

3. Find the equation of the plane through the axis of y and

the point (2, 3, 1).

4. What is the equation of the plane whose intercepts are

one half those of the plane 2 x 3 ?/ + 4 z 12 = 0?

5. A perpendicular from the origin meets a plane in the

point (2, 3, 4). What is the equation of the plane?

6. A line through the point (2, 3, 7) meets a plane in the

point (5, 1, 2). Find the equation of the plane.

7. Find the equation of the plane which bisects perpendic-

ularly the line joining the points (4, 3, 1), (2, 5, 3).

8. Determine the point on the axis of y which is equidis-

tant from the points (3, 7, 4), ( 1, 1, 2).

9. One vertex of a box is at the origin and the edges

issuing from Q lie along the positive coordinate axes. Prove

that the intercepts of the plane which bisects perpendicularly

the diagonal through are inversely proportional to the

lengths of the edges.
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10. For what value of m will the two planes,

2x + my 2 = 4, 6x 5y 82 = 8,

(a) be perpendicular ? (6) be parallel ?

11. For what value of m will the two equations

mx y + z-\-3 = Q, 4 my + raz + 6 =

represent the same plane ?

12. Find the angle which the line through the points

(3, 2,
-

1), (0, 4, 1) makes with the plane 2x-y-z + 3 = 0.

Suggestion. Find first the angle between the line and a

normal to the plane.

13. What angle does the plane 3x y 2 = 5 make (a) with

the (x, y)-plane ? (&) with the y-axis ?

14. Find the distance between the two parallel planes

Suggestion. Find the distance of a chosen point of the first

plane from the second.

15. Show that the distance between the two parallel planes

Ax + By + Cz + D = 0, Ax + By + Cz + D' =

IZX-DI
IS

V4^+W+C*
16. There are two points on the axis of z which are distant

four units from the plane 2 x y + 2z + 3 = Q. Find their

coordinates. Ans. (0, 0, 4|), (0, 0, 7|).

17. Show that the equation of any plane parallel to the

plane
Ax + By + Cz + D=Q

can be written in the form

Ax + By + Cz = k.

18. Using the method of Ch. II, 11, work Exs. 1-4, 8, of

the present chapter.
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19. There are two planes parallel to the plane 2x 6y+3 z

= 4 and distant 3 units from the origin. Find their

equations.

20. Find the equation of the plane parallel to the plane

given in Ex. 19 and so located that the point (3, 2, 8) is mid-

way between the two planes. Ans. 2 x 6 y -f- 3 z 32 = 0.

21. Three faces of a box lie in the planes 2x y=6,
x -\- 2 y 8, 2 = 8 and a vertex is at the point (9, 5, 2). Find

the equations of the planes of the other three faces.

22. Find the equation of the plane which passes through
the point (2, 1, 8) and is parallel to each of two lines hav-

ing 2, 3, 4 and 5, 7, 8 as their direction components.
Ans. Ix + ly + z 12 = 0.

23. Show that the equation of the plane passing through
the points (xl} y^ z^), (x, y2 ,

22) an(i perpendicular to the plane
Ax + By + Cz + D = can be written in the form

x y z 1

2 y2 2

J. JS C

24. Show that the four planes,

2 x y z 3 = 0, x -

= 0.

meet in a point.

25. The six planes, each of which passes through the mid-

point of an edge of a tetrahedron and is perpendicular to the

opposite edge, go through a point.

Prove this theorem for the tetrahedron of Ex. 9, 6.

26. Prove the theorem of Ex. 25 for the general tetrahedron,

choosing the coordinate axes skillfully.

27. Show that the plane
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is 5 units distant from the origin and that ^, ^, ^ are the di-

rection cosines of a normal to it, directed away from the

origin.

28. State and prove for the plane

(1) x cos a + y cos /3 + z cos y = p, p > 0,

the results corresponding to those give"n in the preceding exer-

cise. Show that the equation of every plane can be written in

the form (1). Prove, also, that the distance of the point

(
x
o> yo> 2o) from the plane is

|

x cos + y cos ft + ZG cos y P }

29. Prove that, if a plane has the intercepts a, 6, c and is

distant p units from the origin,

SYMMETRY

30. A surface is symmetric in the (x, y)-plane if the substitu-

tion of z for z in its equation leaves the equation essentially

unchanged. Prove this theorem and state the corresponding
theorems for symmetry in the (y, z)- and (z, ar)-planes.

31. A surface is symmetric in the axis of z if the substitution

of x for x, and of y for y, leaves the equation essentially un-

changed. Prove this theorem and state the corresponding
theorems for symmetry in the axes of x and y.

32. Prove that a surface is symmetric in the origin if the

substitution of x for x, of y for y, and of z for z, leaves

the equation essentially unchanged.

33. Test the surfaces of the following exercises of 1 for

symmetry in each coordinate plane, in each coordinate axis, and

in the origin.

(a) Ex. 8
; (6) Ex. 9

; (c) Ex. 10
; (d) Ex. 12.

34. Prove the following theorems :
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(a) If a surface is symmetric in each of two coordinate

planes, it is symmetric in the coordinate axis in which the two

planes meet.

(6) If a surface is symmetric in each coordinate plane, it is

symmetric in the origin.

(c) If a surface is symmetric in a coordinate plane and in

the coordinate axis perpendicular to this plane, it is symmetric
in the origin.



CHAPTER XX

THE STRAIGHT LINE

1. Equations of a Curve. Example 1. Given the two equa-
tions

(1) x = Q, y = 0.

The points whose coordinates satisfy both equations simultane-

ously are the points on the axis of z, and no other points. We
say that the two equations represent the axis of z.

Example 2. Consider the two equations

(2) Sx ly 2 + 6 = 0, 5x + 3y + 22-8 = 0.

A point whose coordinates satisfy both equations at once must

lie in each of the two planes represented by the equations, i.e.

it must be a point on the line of intersection of these planes.

Conversely, the coordinates of any point on this line satisfy

both equations. Thus the two equations, considered simultane-

ously, represent a line, the line of intersection of the two planes
which the two equations, taken individually, define.

Example 3. Take, now, the pair of equations

(3) z2 + / + z2 = 4, x-y = 0.

By reasoning similar to that of Example 2, it follows that

these equations, taken together, represent the curve of inter-

section of the two surfaces which are defined by the two equa-
tions considered individually. The first equation is that of the

sphere whose center is at the origin and whose radius is two

units long. The second equation represents the plane through
the axis of z bisecting the angle between the positive x- and y-

470
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axes. Consequently, the two equations, considered simultane-

ously, represent the circle in which the plane intersects the

sphere.

Example 4. Consider, lastly, the pair of equations

(4) x-
2 + y* + z2 = 4, a;

2 +(y - I)
2 = 1.

The first represents the sphere of Example 3. The second is

the equation of the circular cylinder erected vertically on the

circle in the (x, ?/)-plane whose center

is at the point (0, 1, 0) and whose

radius is unity. The curve of inter-

section of the two surfaces, i.e. the

curve represented by the two equa-

tions taken simultaneously, is shown

in Fig. 1. It does not lie in a plane ;

to distinguish it from curves which

do, we call it a twisted curve.

Space Curves. The straight lines

(1) and (2), the circle (3), and the

twisted curve (4) are all called space

curves. There are, then, three types
of space curves: straight lines, plane

curves other than straight lines, and

twisted curves.

We now put into definitive form

what we have learned from the fore-

going examples :

Two equations in x, y, z, considered simultaneously, represent

usually
* a space curve. The curve consists of all those points and

only those points whose coordinates satisfy simultaneously both

equations. It is the total intersection of the two surfaces which

are defined by the two equations when taken individually.

* Two equations do not always represent a curve. For example, the

pair of equations x2 + ?/
2 = 0, x2 + 2 2 = represents just one point, the

origin ;
and the equations of two parallel planes, asx y + z = 2 and

x y + z = 3, represent no point at all when considered simultaneously.

FIG. 1
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If on the other hand it is a curve, and not a pair of equations,

which is given, we should say :

A space curve can be represented by two simultaneous equations.

These can be ANY two equations which are satisfied simultaneously

by the coordinates of every point of the curve and by those of no

other point. This means, geometrically, that the curve can be

considered as the intersection of any two surfaces on which it

lies, provided the two surfaces have no other point in common.

For example, a straight line can be considered as the inter-

section of any two planes through it. Consequently, it can be

represented by the equations of any two of these planes. In

other words, the two equations of the line are not unique. Thus,
as equations of the axis of z we might take the equations (1) or

we might take, equally well, any other two equations represent-

ing planes through the axis of z, as

Equations (1) are, however, the simplest choice, and naturally
we shall find it of aid in analytical work to choose always that

pair of equations representing the curve under consideration

which seems most simple.

Problem 1. What are the equations of the straight line L
through the origin with the direction components 2, 3, 1 ?

If P: (x, y, z) is any point on the line,

other than the origin 0, then x, y, z, con-

sidered as the projections of OP on the axes,

are also direction components of L. Hence,

x, y, z are proportional to 2, 3, 1 :

44

FIG. 2
(5) x 2 p y y 3p}

z = p,

where the factor of proportionality, p, is not constant, but vari-

able, depending for its value on the position of P on the line.*

* From (5),

V14
That is, p is equal numerically to the distance of P from O, divided by
V14. Its sign depends on the side of on which the point P lies.
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Conversely, if P : (x, y, z) is any point other than 0, whose

coordinates satisfy equations (5) for some value of p, these

equations say that the direction of OP is that of L and hence

that P lies on L.

The coordinates (0, 0, 0) of the excepted point, 0, obviously

satisfy (5) ,
when p is given the value 0. Consequently, equa-

tions (5) represent those points and only those points which

lie on L, i.e. they represent L.

Instead of equations (5) it is more convenient to write :

//*\ *^ V *

2 s rr
This continued equality yields the three equations :

(7) 3-2w = 0, y + 3 = 0, x + 2z = 0.
\ / 7 7 7 7

One of these equations must be superfluous, since we know
that two equations are all that are necessary to represent a

line. As a matter of fact, the three planes defined by the

three individual equations all pass through L and hence one of

them is superfluous in determining L. We prove this analyti-

cally by showing that a simultaneous solution of any two of

the three equations always satisfies the third. Thus, if x
, y ,

z are any values of x, y, z which satisfy the first two equations,

i.e. if

3z -2y =0, y + 3z = 0,

elimination of y gives the relation

x + 2 z = 0,

which says that these values also satisfy the third equation,

q. e. d.

Since one of the equations (7) is superfluous, we might take

any two of these equations, as

to represent L. It is more convenient, however, to consider

the continued inequality (6) as defining L, and to call this

continued inequality the equations of L, remembering always,

that one of the equations which follow from it is superfluous.
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Problem 2. Find the equations of the curve of intersection

C of two circular cylinders of the same radius a, whose axes

are respectively the axes of x and y.

The equations of the two cylinders are

(8) f + z2 = a2
,

x2 + z2 = a2
,

and these two equations, taken together, represent the curve C.

They are not, however, the simplest pair of equations possi-

ble. If x0) 2/ ,
z are any set of values of x, y, z satisfying them

simultaneously, i.e. if

*/o
2 + *o

2 = 2
, Ob

2 + zo
2 = 2

,

elimination of z gives the relation

^2-^ = 0,

which says that a^, y ,
z also satisfy the equation

(9) x* - y* = 0.

That is, the curve of intersection C of the cylinders (8) lies on

the surface (9).

Conversely, the surface (9) intersects each of the cylinders

(8) in the curve C and in no other points. For, if x
, y ,

2 are

any values of x, y, z satisfying equation (9) and the first, say,

of equations (8), we have :

Elimination of y gives the relation

which says that x
, y ,

z satisfy also the second equation of

(8), q.e.d.

We have proved, then, that the total intersection of any two

of the surfaces (8) and (9) is the curve C. Hence any two of

the equations (8) and (9) define C. A simpler pair than the

pair (8) is the combination of one of the equations (8) with the

equation (9), for example

(10) z2 + z2 = a2
a-
2 - f = 0.
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The surface (9) consists of the two planes,

x y = 0, x + y = Q,

passing through the 2-axis and

bisecting the angles between

the (y, z)- and (z, #)-planes.

Each of these planes intersects

either cylinder in an ellipse ;
cf.

Ch. XII, 6. Consequently,
the curve C consists of two el-

lipses. We have, then, not only
obtained the simpler equations

(10) to represent the curve, but

we have also, in the process, succeeded in determining
nature of the curve.

EXERCISES

In each of the following exercises determine what the given

equations, considered simultaneously, represent. Draw a

figure.

FIG. 3

the

1. y = 0,2 = 0.

3. x + 4 = 0, z 3 = 0.

5. y z = 0, x = 3.

7. y + 2 = 2, 2 x =5.

9. - = ^ = --326

2. x = 4, y = 0.

4. 2 y+ 3 = 0,3 z-5=0.
6. 3x + 2y=Q, 2-4=0.
8. x y = 0, x z = 0.

10. x = y = 2.

11. x2 + y
2 + z2 9 = 0, y 2.

12. x2 + y
z + z2 16 = 0, x + z = 4.

13. x 1 + y
z = 4, 2 y + z = 3.

14. x2 + y* + z2 25 = 0, x2 + y
2 = 16.

15. a2 + ?/
2 + z2 - 16 = 0, 4 z2 + (y 2)

2 = 4.

16. xz + y
2 = a2

,
z2 = ay.

17. Which of the curves represented by the above pairs of

equations pass through the origin ?
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Find the equations of the following curves :

18. The axis of y.

19. The line in the (x, y)-plane 3 units in. front of the

(y, z)-plane.

20. The line 2 units to the left of the (z, x)-plane and 3

units above the (x, y)-plane.

21. The line f units behind the (y, z)-plane and units to

the right of the
(z, ce)-plane.

22. The line which lies in the plane passing through the

ovaxis and bisecting the angle between the positive y- and

z-axes and is 4 units above the (x, y)-plane.

23. The line through the origin with the direction com-

ponents 1, 1, 1.

24. The line through the origin with the direction com-

ponents 2, 0, 3.

25. The circle of radius 3 whose center is on the axis of z

and whose plane is 4 units above the (x, 2/)-plane.

26. The circle of radius 2 whose center is at the origin

and whose plane passes through the y-axis and bisects the

angle between the positive axis of x and the negative axis of z.

Find a simpler pair of equations to represent the curve

given in each of the following exercises and then identify the

curve. Draw a figure.

27. 2 y - 3 z = 0, 5 y + 16 z = 0.

28. x + y + z = 2, x + y 5 = 0.

29. The curve of Ex. 14.

30. or
2 + ?/

2 + z2 = a2
,
2 y

z + z2 = a2
.

2. Line of Intersection of Two Planes. Let the plane

and the plane
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be two planes which meet. According to the theory of the

preceding paragraph, their line of intersection is represented

by the two simultaneous equations

A2x + B2y+C2z + D2
= 0,

i.e. by these equations, where the only sets of values of x, y,

z considered are those which satisfy both equations.

Since the line lies in each plane, it is perpendicular to the

normals to each plane. That is, it is a common perpendicular

to the normals to the two planes. From this fact its direc-

tion components can easily be determined, by the method of

Ch. XVIII, 5.

Consider, for example, the line (2) of 1. The normals to

the two planes determining this line have 3, 4, 1 and 5,

3, 2 as direction components. Consequently,

-4
3

-1
2

-1
2

3 -4
5 3

or 5, 11, 29 are the direction components of the line.

The planes determining the line (1) have normals with AI,

BI, Ci and A, B2 , Q as direction components. Hence, the

direction components of the line (1) are

(2)
-B

d
C2

A, A,

Parallel Planes. If two planes are parallel and so have no

line of intersection, their equations are incompatible, i.e. they
have no simultaneous solution. For example, the equations

2z + 5 = 0,

which represent two parallel planes, are obviously incompati-

ble, since the first says that the quantity 2x + y z has the

value 3, whereas the second says that it has the value f.
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EXERCISES

Find the direction components of each of the following
lines. Determine also a point on the line and hence construct

the line.

2. 3x-y-6z + 7 =0,

3. x + 3y 3z + 5=Q,
4. 2x y z = 0,

5. 3x-5y-z-l = 0,

6. x + 2 =

2x- y- 2z + 1 = 0.

3x + y + 62 - 5 = 0.

x 4- y = 5.

x 4 = 0.

y-3z = 0.

FIG. 4

7. What are the equations of the edges of the tetrahedron

of Ch. XIX, 6, Ex. 9 ? Draw a figure and label the edges
and the pairs of equations to correspond.

8. The same for the tetrahedron of Ch. XIX, 10, Ex. 5.

9. Show that the lines of Exs. 1

and 4 are perpendicular.

10. Show that the lines of Exs. 3

and 6 are parallel.

11. Each side of a hip roof (Fig. 4)

makes an angle with the horizontal whose tangent is ^. What

angle do the edges of the roof make with the horizontal ?

3. Line through a Point with Given Direction Components.
Let it be required to find the equations of

the line L which goes through the point

P : (x , ?/ ,
z ) and has the direction com-

ponents I, m, n.

Let P : (x, y, z) be any point on L, other

than P . Then the direction components
of P P, namely,

(1)



THE STRAIGHT LINE 479

are direction components of L. They are, then, proportional

to I, m, n:

/O\ 7
( ) *C "~~

*/Q
^ P^J y """""

jO """" P 9
~~~ ~"~~ P 9

where the factor of proportionality, p, varies in value as P
changes position.*

Conversely, if P : (x, y, z) is any point other than P
,
for

which equations (2) hold for some value of p, i.e. for which

the quantities (1) are proportional to
Z, m, n, it follows that

the direction of P P is that of L and hence that P lies on L.

The coordinates (x , y ,
z

)
of the excepted point P obviously

satisfy (2), when p = 0. Consequently, equations (2) are satis-

fied by the coordinates of those points and only those points

which lie on L and so they represent L.

Instead of equations (2), we can write

/o\ *B BQ y yp 3 ZQ
^

I m n

We calk this continued equality the equations of the line,

remembering from 1 that, of the three equations which in

general result from it, one is superfluous.

If one of the denominators in (3) is zero, so is the cor-

responding numerator
; thus, if w = 0, then z z = 0. For,

equations (3) are but an abbreviated form of the equations of

proportionality f (2), and if n = the last equation in (2)
reduces immediately to z z = 0.

Suppose, for example, that the line is to go through the

point (3, 4, 6) and have 0, 5, 3 as its direction components.
Here I = 0, and hence x x = 0, i.e. x 3 = 0. Thus,

* From (2), P P2 = p2 (P + m? + n),

PoPor p =
Vl2 + m2 + n2

That is, the numerical value of p is proportional always to the distance

of P from P . The sign of p depends on the side of P on which the

point P is situated.

t Cf. Ch. XVI, 9, eq. (5).
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x 3 = is one of the equations of the line. The other,

obtained from the equality of the last two members of (3), is

or
5 3

Hence the desired equations are

x -3 = 0, 3 z-5 z-42 = 0.

Again, let the point be (1, 2, 3) arid let the direction com-

ponents be 0, 0, .1. In this case, I = 0, and m =
;
therefore

x x = and y y = 0, i.e.

x 1 = 0, y-2 = 0,

and these are the equations of the line. This result might
have been obtained directly, by inspection, since it is clear

that the line is parallel to the axis of z.

Reduction of a Continued Equality to the Form (3). Ex-

ample 1. What are the direction components of the line

x 5 _ y -f 4_z + 3 9

6 32
This continued equality will be of the form (3), if the minus

sign before the second fraction is associated with the denomi-

nator. Accordingly, the direction components are 6, 3, 2.

Example 2. Consider a more complicated case :

2x-l = 2-5y = 3z

3 4 2
'

To put this continued equality in the form (3), divide the

numerator and denominator of each fraction by the coefficient

of the variable in the numerator :

I -* *

Here, each variable x, y, z, as it appears in the numerator, has

the coefficient unity, and there is complete conformity to (3).
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The direction components of the line are, then, | , -|, f or

45, 24, 20. Furthermore, it is clear that the line goes

through the point (-^, f , 0).

EXERCISES

In each of the following exercises find the equations of the

line through the given point with the given direction com-

ponents.

Point Components
1. (2, -3,1), 5,2, -4.

2. (0, 0, 0), 3,
-

1, 2.

3. (4, -1, -2), -6,5,8.

4. (2,0, -3), 1,1,1.

5. (3,2, -8), 1,3,0.

6. (2,0,1), 4,0,1.

7. (-3,4,6), 0,1,0.

In each of the exercises which follow, find the direction

components of the line represented by the given equations

and the coordinates of a point on the line. Construct the line.

3

= y = 2z-l9-64
10. 1 x = y 2 = z 6.

11. 3x+ 4 = 2 5y = 4:Z 7.

12. 2x = l y = 3z.

13. Show that the lines of Exs. 8 and 10 are perpendicular.

14. Show that the lines of Exs. 9 and 12 are parallel.

4. Line through Two Points. The line through the two

points (xi, yi, z^), (#2 , y^ z2) has the direction components

a
-

*i> 2/2
-

2/i, *2
~ zi-
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It can be considered, then, as the line which has these direction

components and goes through the point (xl} 2/1, Zi). Conse-

quently, by (2), 3, it is represented by the equations

(1) x x1
= P(x2 -x1') ) 2/

-
2/1
= /0/2

-
2/i)>

z-zi

Instead of (1) we can write, as the equations of the line, the

continued equality

(2)
x Xj _ y yl _ z

z^
2
-

KI ?/2-2/i z2
- i

Since (2) is an abbreviated form of (1), it follows that, if a

denominator in (2) is zero, the corresponding numerator is also

zero.
'

Thus, if the two points are (3, 5, 4), (8, 5, 4), so

that 2/2 2/1
= an(i z2 z l

= 0, we have y yl
= and

z Zi = 0, that is,

2,
_ 5 = 0, 2 + 4 = 0.

These are, then, the equations of the line. The result might
have been obtained directly by noting in the beginning that

the 2/-coordinates, and also the z-coordinates, of the two points

are equal and by concluding, then, that the line is parallel to

the axis of x.

EXERCISES

Find the equations of each of the following lines.

1. Through (2, 5, 8), (- 1, 6, 3).

2. Through (- 1, 0, 2), (3, 4, 6).

3. Through the origin and (5, 2, 3).

4. Through (2, 0, 3), (0, 3, 2).

'

5. Through (2,
-

5, 8), (2, 3, 7).

6. Through (3,
-

2,
-

5), (3,
-

2, 6).

7. The edges of the tetrahedron of Ch. XIX, 6, Ex. 9.

8. The edge of the quadrangular pyramid of Ch. XIX, 5,

Ex. 10.
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5. Line or Plane in Given Relationship to Given Lines or

Planes. Problem 1. To find the equations of the line through
a given point perpendicular to a given plane.

The direction components of the line are those of a normal to

the given plane and hence can easily be found. The problem
then becomes that of finding the equations of a line through a

given point with given direction components.
For example, if the given point is the origin and the given

plane is

3x 4y + 5z + 6 = 0,

the required line goes through (0, 0, 0) and has the direction

components 3, 4, 5. Hence its equations are

x0_y = z

3 -4
=

5

or 20x = -15y = 12z.

Problem 2. To find the equation of the plane through a given

point perpendicular to a given line.

The direction of a normal to the plane is that of the given line

and therefore the direction components of the normal are easily

written down. We then have the problem of finding the equa-

tion of a plane through a given point with given direction com-

ponents of its normals.

Thus, if the point is (3, 2, 1) and the line is given., as the

intersection of two planes, by the equations,

3x-5y-2z + 6 = Q, 4x + y + 3z 1 = 0,

the direction components of the line are, by (2), 2,

-5 -2
1 3

-2 3

3 4

3 -5
4 1

i.e. 13, 17, 23, or 13, 17, 23. The required plane has

these direction components for its normals and passes through
the point (3, 2, 1). Consequently, its equation is

13(a;
-

3)+ 17(y + 2)
-

23(z
- 1)= 0,

or
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Problem 3. Let two non-parallel lines, LI and Z/2 ,
and a point

P be given. Through P parallel to each of the lines there is a

unique plane. To determine this plane.

A normal to the plane is a common perpendicular to the lines

LI and Z/2 an(i so its direction components can be found by the

method of Ch. XVIII, 5. The problem is then that of finding

the equation of a plane through a given point with given direc-

tion components of its normals.

If LI and Z/2 have the equations

x 1_2/ 2 z # + 3__y_z 1

5 3 ~2' ~~4~~ ~2~ 3
'

their direction components are, respectively, 5, 3, 2 and 4, 2,

3. The direction components of a common perpendicular to

them are, by Ch. XVIII, 5, (6), 13,
-

23,
- 2. Thus the

plane parallel to LI and Z/2 and passing through a given point,

say (3, 2, 4), has the equation

13 (x
-

3)
- 23 (y

-
2)
- 2 (z + 4) = 0,

or 13ce-23t/-2z-l = 0.

Problem 4. Given two intersecting planes, Ml and M2 ,
and

a point P. Through P parallel to each of the planes there is a

unique line. To find this line.

Since the line is parallel to each of the planes, it is parallel

to their line of intersection. It is, therefore, itself the line of

intersection of the two planes which pass through P and are

parallel respectively to Ml and Mz .

For example, if P is (2, 0, 1) and Mv and Mz are

2x-3y + z- 6 = 0, 4z - 2y + 3z + 9 = 0,

the planes through P parallel respectively to J/i and M2 have

the equations

2(aj- 2)- 3y + (z + 1)= 0, 4(
- 2)- 2y + 3(z + 1)= 0,

or 2a; 3y + 2 3 = 0, 4z - 2y + 3z - 5 = 0.

These equations, considered simultaneously, represent the re-

quired line.
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The problem might have been solved by determining the di-

rection components of the line of intersection of Ml andM2 ,
as

given by (2), 2, and by finding the equations of the line which

has these direction components and passes through P.

Problem 5. To find the equation of a line which passes

through a given point and is parallel to a given line.

If the line is given as the intersection of two planes, this is

the previous problem. If its equations are given in the form of

a continued equality, the solution is simple. We leave it to the

student.

Problem 6. To find the equations of a line which passes

through a given point and is perpendicular to each of two given

non-parallel lines.

The solution of this problem we also leave to the student.

EXERCISES

In each one of the following exercises in which it is possible,

solve the given problem directly, by inspection of a figure.

Find the equations of the line passing through the given

point and perpendicular to the given plane.

Point Plane

1. (2,
-

8, 3),

2- (0,0,0),

3. (3, -4,0),

4. (-1,2,5), 22 + 3 = 0.

Find the equation of the plane passing through the given

point and perpendicular to the given line.

Point Line

2x-3y + 6z-4= = Q,

66<
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Point Line

7. (3, -2, -8), =l___*_r

8. (6, 0,.-1),

9. (4, -i,3),-

Find the equation of the plane passing through the given

point and parallel to each of the given lines.

Point Lines

10. (3, 5, 1) The lines given in Exs. 7, 8.

11. (0, 2,
-

3) The lines given in Exs. 6, 7.

12. (0, 0, 0) The lines given in Exs. 5, 6.

13. (2, -|,3) ^ = 4,3 = 3; 2* = 5,32/ = 7.

Find the equations of the line passing through the given

point and parallel to each of the given planes.

Point Planes

14. (0, 0, 0) The planes given in Exs. 1, 2.

15. (2, 1, 3) The planes given in Exs. 1, 3.

16. (0, 2, f) The planes given in Exs. 2, 3.

17. (|, 0, |) The planes given in Exs. 3, 4.

Find the equations of the line passing through the given

point and parallel to the given line.

18. The point and line given in Ex. 5.

19. The point and line given in Ex 7.

20. The point and line given in Ex. 8.

21. The point and line given in Ex. 9.

Find the equations of the line passing through the given

point and perpendicular to the given lines.

Point Lines

22. (0, 0, 0) The lines given in Exs. 7, 8.

23. (3,
-

2, 5) The lines given in Exs. 6, 7.
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Point Lines

24. (2, 4, 0) The lines given in Exs. 5, 6.

25. (0, 0, 3)] The lines given in Ex. 13.

6. Angle between a Line and a Plane. Given a plane M
and a line L which is not perpendicular to the plane. Pro-

ject the line on the plane. The acute

angle, <, which the line makes with this

projection is the angle between the line

and the plane. It may be determined /M
by finding the acute angle, 0, which the FlG 6

line makes with a normal N to the plane.

For, it is clear that 6 and
<f>

are complementary angles.

Example. Find the angle between the line

2z + 2 =
2/ + l=-4

and the plane

The direction components of the line are 2, 4, 1
;
those of

a normal to the plane are 2, 3, 2. Hence

V4 + 16 + 1V4 +
where we are to take that sign which makes the right-hand
side positive.

Thus, cos = -^- = 0.9527. and = 17 42'.

V357

Finally, < = 90 - = 72 18'.

EXERCISES

Find the angle between the given line and the given plane.

Line Plane

1. 3aj + 3 = 2y + 2=-6 12, 3x + y + 2z + 1 =0.

2. f3*-42,
+ 2* = 0, 3x-2 2 -12 = 0.

14# 3y + z = 5,
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3. Through (0, 0, 0), (1, 2,
-

2), 2x - 6y + 3z - 4 = 0.

4. Through (2, 5, 3), (4,
-

1, 6), y + 2 z + 4 = 0.

5. Find the angles which the plane given in Ex. 1 makes

with the coordinate axes.

6. Find the angles which the line given in Ex. 2 makes

with the coordinate planes.

7. Point of Intersection of a Line and a Plane. Given a plane,

(1) Ax + By + Cz + D = 0,

and a line,

(2) AIX + B& + C& +A = 0, A& + B& + C2z + D2
= Q,

which intersects the plane. The coordinates of the point of

intersection satisfy the equation of the plane, since the point

lies in the plane. They also satisfy each of the equations of

the line, for the point lies on the line. They are, then, the

simultaneous solution of the three equations

Ax+By + Gz + D = 0,

(3) Ap + Btf + Ci* + Dj = 0,

= 0.

Example. Find the coordinates of the point of intersection

of the line and the plane of 6. Take, as the equations of

the line, those obtained by equating the first and second mem-

bers, and then the first and third members, of the continued

equality which represents the line. Then the three equations,

which are to be solved simultaneously, are

The solution is found to be x = 1, y = 3, z = 6. Thus, the

line meets the plane in the point (1, 3, 6).

Intersection of a Curve and a Surface. The above method

applies also to the problem of finding the point (or points)

of intersection of a curve and a surface which are given by
their equations. The two equations of the curve and the



THE STRAIGHT LINE 489

equation of the surface are to be considered as simultaneous

equations in the unknowns, x, y, z, and solved as such.

Plane and Line Arbitrary. The line (2) has one and just

one point in common with the plane (1), if and only if the

three planes (3) intersect in a single point, i.e. by the theorem

of Ch. XXIX, 10, if and only if the determinant of the coeffi-

cients of x, y, z in equations (3) does not vanish.

If this determinant vanishes, it follows, either directly or

from the discussion in Ch. XXIX, 10, that the line either is

parallel to the plane or lies in it.

EXERCISES
.

Show that the given line has just one point in common with

the given plane and find the coordinates of the point.

1. The line and plane of Ex. 1, 6.

2. The line and plane of Ex. 2, 6.

3. The line and plane of Ex. 3, 6.

Find the points of intersection of the given curve with the

given surface. Draw a figure for each exercise.

Curve Surface
4. x = y = z, xt + y* + z* = l.

5. z2 + ?/
2 + z2 = 29, z = 2, 4:X-3y = 0.

6. 12-6o; = 2?/ + 2 = 32-9,
7. a;

5 + 02 + 2 = 12, x = y,

Find out all you can about the relative positions of the given
line and the giyen plane.

Line Plane

8.

"

9. x = y = z. 5x + 3y 8z 3 = 0.

I 2x + 3y- 8 = 0,10.
\

9 8x~y6 = 0,
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8. Parametric Representation of a Curve. The Straight Line.

Given a directed straight line passing through
the point PQ : (x , y ,

z
)
and having the direction

cosines cos a, cos ft,
cos y. Let P : (x, y, z) be an

arbitrary point of the line other than P and let

r be the algebraic distance from P to P, positive

if the direction from P to P is that of the line

and negative if this direction is opposite to that

of the line.

FIG. 7 The projections of P^P, each divided by r, are

equal respectively to the direction cosines of the

line, by Ch. XVIII, 1, Th. 2. Thus

o = Cos a,
- = cos p, = cos y.

r r r

These equations can be put into the form

(1) x = x + r cos a, y = y + r cos
/?, z = z + r cos y.

Equations (1) give the coordinates (x, y, z) of the point P on

the given line at the arbitrary distance r from P . If r is

allowed to vary through all values, positive, zero, and nega-

tive, P takes on all positions on the line, and always its

coordinates are given by equations (1). These equations, then,

represent the line. Since they express the coordinates of the

point P : (x, y, z) tracing the line in terms of the auxiliary

variable, or parameter, r, we call them a parametric representa-

tion of the line.

If the line is determined by the point P : (x0) y ,
z

)
and its

direction components I, m, n, we have, according to (2), 3,

the following parametric representation

(2) x = x + pl, y = y + pm,, z = zQ + Pn.

The parameter p is not, in general, equal to the distance from

P to P : (x, y, z), but is merely proportional to this distance.*

* Cf. footnote, p. 479.
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The Helix. Given the cylinder

a? + y* = a2

with the axis of z as axis. The circle in the (#, y)-plane on

which the cylinder is erected has the parametric representa-

tion (Ch. VII, 10) :

x a cos 0, y = a sin 0, z = 0,

where is the angle which the radius, OP, to the point

P : (x, y, 0) makes with the positive axis of x. On the ruling of

the cylinder through P mark the point Pf at a height above P*
equal to a constant multiple, IcO, of the

angle 0. The coordinates of P' are

(3) a;=

When = 0, P and P1 coincide in the

point P on the axis of x. As increases

from to 2 TT, the point P traces the circle,

and the point P', always directly above P,

traces a locus on the cylinder, encircling it

just once. When increases from 2-n- to

47r, P retraces the circle, whereas P' con-

tinues on its rising path, encircling the

cylinder a second time. Consequently,
when increases through all positive values,

the locus traced by P' encircles the cylinder

infinitely many times.

As 9 decreases from zero through all

negative values, P', starting from P
,
en-

circles the lower half of the cylinder infinitely many times.

The complete locus of P1

is, then, an unbroken curve continu-

ously winding about the cylinder in both directions. It is this

curve which is represented parametrically by the equations (3).

Since the height of P' above (or below) P is always propor-

tional to the angle through which the radius OP of the circle

has turned, the curve (3) which P' traces is mounting on the

* Above P, if is positive ;
below P, if 6 is negative.

FIG. 8
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cylinder with a uniform steepness. It is ,the curve of the

thread of a machine screw and is called a circular screw or a

circular helix.

The Twisted Cubic. Consider the curve represented para-

metrically by the equations

(4) x = at, y = bP, z = cP,

where t is the parameter, and a, 6, c a're constants, not zero.

Like the helix, this curve is a twisted curve. It is known as

a twisted cubic.

Points of Intersection of a Curve and a Surface. Example 1.

The straight line of 6 can be represented parametrically by
setting each of the members of the continued equality

equal to a parameter t and by solving the three resulting

equations for x, y, z:

(5) x = 1 1 1, y = t 1, z = 7 %t.

A point of this line lies in the plane of 6,

2x + 3y 2z + l = 0,

'

if and only if its coordinates, as given by (5), satisfy the equa-

tion of the plane ;
i.e. if and only if t is a solution of the

equation

or f-18 = 0.

Hence t = 4. But the point t = 4 of the line (5), i.e. the point

corresponding to the value 4 for the parameter t, has the

coordinates :

a? = 2 - 1 = 1, y = 4 - 1 = 3, z = 7 - 1 = 6.

Hence the line intersects the plane in the point (1, 3, 6).

Example 2. Find the points of intersection of the twisted

cubic
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(6) x =
t, y = t\ z = t*

with the plane 2x + y z = 0.

A point of the cubic lies in the given plane when and only
when its coordinates, as given by (6), satisfy the equation of

the plane. Hence the solutions of the equation

for t determine all the points of intersection.

One solution is t =
;
the others are t = 2, t = 1. The

points of the cubic (6) corresponding to these values of t are

respectively (0, 0, 0), (2, 4, 8), (- 1, 1,
-

1). Thus the cubic

meets the plane in these three points and nrno further point.

The above method may be used to find the points of inter-

section of any given curve with a given surface, provided the

curve is defined by a parametric representation. The sim-

plicity and effectiveness of the method is one of the advan-

tages of representing a curve parametrically.

. EXERCISES

Find a parametric representation for each of the following

straight lines.

1. Through (2, 3, 5) with the direction cosines ^, ^, ^.

2. Through (2, 3, 5) with the direction components

2, -6,3.

3. Through (ajb y1} zj, (x, yz ,
z2) ;

cf. (1), 4.

4. 3z-4?/-6z + 7 = 0, 2x-y-2z + l = Q.

Suggestion. First find the direction components of the line

and the coordinates of a point on it.

The same for the lines of the following exercises of previous

paragraphs.

5. Ex. 1, 3. 7. Ex. 1, 4. 9. Ex. 1, 2.

6. Ex. 2, 3. 8. Ex. 2, 4. 10. Ex. 3, 2.-
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Find equations for the lines with the following parametric

representations.

11. x = 3 2t, ?/
= 4, z = 3t + 2.

12. x = 3t, y = 5t, z=8t.

13. If from the point (3, 2, 6) one proceeds 12 units in

the direction whose cosines are
-|, ^, f, what are the coordi-

nates of the point reached ? Ans, (11, 2, 2).

14. Draw to scale the circular helix for which a = 4, k = 2.

15. Show that the twisted cubic (6) is the total intersection

of the parabolic cylinder y = x2 with the cylinder z = x3
.

Hence construct the cubic.

16. Find a parametric representation of the curve

2/
2 = 2x, z = 3y3

.

17. The same for the curve of 1, Example 4.

Suggestion. Let x = sin 2 6.

By the method of this paragraph find, in each of the follow-

ing exercises, the point (or points) of intersection of the given
curve and the given surface. *

18. The line and plane of Ex. 1, 6.

19. The line and plane of Ex. 3, 6.

20. The line and cylinder of Ex. 6, 7.

EXERCISES ON CHAPTER XX

1. Find the equations of the line which passes through
the point (1, 2, 3) and intersects the axis of z at right

angles.

Find the coordinates of the points in which the given
line meets the coordinate planes and hence construct the

line.

f x + 5y- -7 = 0, x -l-y+ 2 -2-z= U.
3 "

~

3"
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Show that the first of the two following lines intersects the

axis of z and that the second intersects the axis of x.

[2x + 3y- z + 2 = 0, x + 4 = 2y + 6 = 3z + 4

j
x _ 2y + 2z- = 0. 4 3 2

6. What is the condition that the line

A& + B^y + CiZ + Dl
= 0, A2x + B2y + C2z + Z>2 = 0,

where (71C
f

2
= 0, meet the axis of z ? ^4ws. CiZ)2 CZD1

= 0.

Show that the following lines are identical.

2x - 2y + z - 1 = 0.

9. Find the equations of the altitudes of the tetrahedron of

Ch. XIX, 6, Ex. 9.

10. Find the equation of the plane which contains the point

(2, 1, 5), is perpendicular to the plane 2x ?/ + 3z = 4, and

is parallel to the line

5x + 2y + 3z = 0, 4* + y + 2z - 8 = 0.

Ans. 3z-9y-5z + 10 = 0.

11. Find the equation of the plane which passes through the

points (2, 1, 3), (5, 0, 2) and is parallel to the line

2z-5 = l-2/ = 2-3z.

12. Find the equations of the line which contains the point

(4, 2, 3), is parallel to the plane x + y + z = 0, and is per-

pendicular to the line whose equations are x + 2y 2 = 5,

2 = 4. Ans. 6a-24 = 3?/-6= - 2z -6.

13. A line is parallel to the plane 2x 3y + 4 = 0. If the

perpendicular from the origin on the line meets it in the point

(2, 5, 3), what are the equations of the line ?

14. Show that the equation of the plane which passes

through the point (oj , y ,
z

)
and is parallel to two (non-parallel)
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lines having llf m1} n t and 1%, ra2 ,
w2 as direction components

can be written in the form

x

15. Two lines with the direction components lt , raj, HI and

12 , m-2, n2 intersect in the point (a: , y ,
z

). Find the equation
of the plane containing them.

16. Find the equations of the line determined by the point

(2, 1, 0) and the point of intersection of the three planes

17. Find the equations of the line through the origin and

the point of intersection of the plane and the line whose equa-

tions are x -}-2y 3 z + 4 = and 3 cc -f- 1 = 2 2y = z + 3.

18. Determine the equations of the line which lies in the

plane 2x y + z 3 = and is perpendicular to the line

in the point in which this line meets the plane.

Ans a-2_y-l_ _ z

12 19 5

19. A line through the origin with the direction cosines

T> f > f intersects the plane 3x + 5y + 2z 6 = in the

point P. Find the length of OP. Ans. 14.

Suggestion. Represent the line parametrically.

20. A line through the point A : (3, 2, 5) with the direc-

tion cosines
-f , -|-, f meets the plane 2x + 3y z + 7 = in the

point P. What is the length of AP?

Loci

21. Find the locus of a point which is always equidistant

from the three points (2, 0, 3), (0,
-

2, 1), (4, 2, 0).
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22. Determine the point in the plane x y 22 = which

is equidistant from the three points (2, 1, 5), (4, 3, 1),

(-2, -1,3). Ans. (1,1, i>

23. Show that the locus of a point moving so that it is

always equidistant from three given non-collinear points is a

line perpendicular to the plane of the three points. In what

point does it intersect this plane ?

Suggestion. Choose the coordinate axes skillfully.

24. Find the locus of a point which is equidistant from the

points (2, 3, 0), (4, 1, 2) and also equidistant from the

points (5, 2,
-

3), (3, 0, 1).

25. The previous problem for any four non-coplanar points

PI, PI and P3 ,
P4 . Show that the locus is a line which is

perpendicular to each of the lines PiP2 , P%Pt and goes

through the center of the sphere determined by the four points.

26. Find the locus of a point which moves so that the dif-

ference of the squares of its distances from two given points is

constant.



CHAPTER XXI

THE PLANE AND THE STRAIGHT LINE.

ADVANCED METHODS

1. Linear Combination of Two Planes. A linear combination

of two planes,

(1) Ajx + Biy + dz +A = 0,

(2) A2x + B2y + C2z + A = 0,

shall be defined as any plane

(3) A! (Atfc + B$ + dz 4- ^i)+ \2(A2x + B^y + dz + -^2)
= 0>

whose equation is obtained by multiplying the equations of

the two planes by constants, Al5 A2 ,
and adding the results.

The constants A1? A2 can be chosen at pleasure, provided merely
that the coefficients of x, y, z in (3), namely \iAt + A2v42 >

A^! + A2.B2 , X-id + A2C2, do not all vanish. In particular, the

case AX = A2
= is thus excluded.

For example, if the given planes are

(4) x-2y-2z + 9 = 0,

(5) 2x-3y-2z + S = 0,

and we multiply the equation of the first by 3 and the equa-

tion of the second by 2 and add, the plane defined by the

resulting equation,

(6) x + 22-11 = 0,

is a linear combination of the given planes.

If the planes (1) and (2) meet, the plane (3) passes through
their line of intersection. For, if

(a; , y z
,)

is an arbitrary

point of this line, then

498
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Bflo + CJ.ZQ + A =
0,

A2x + BO/* + (722 + A = 0,

since the point lies in both the planes (1) and (2). If it is also

to lie in the plane (3), the equation

\I(A!XO + Btfo -t- <7iZ + A)+ A2 (^2z + B2y + C2z + A)=
must be a true equation ;

and this it is, since the two paren-

theses on the left-hand side both vanish by virtue of equa-

tions (7). Thus the plane (3) contains the arbitrary point

(XQ, y ,
z ) on the line of intersection of the planes (1) and (2)

and hence contains the whole line, q. e. d.

We have thus proved the theorem :

THEOREM 1. A linear combination of two intersecting planes
is a plane through their line of intersection.

For example, the plane (6) passes through the lice of inter-

section of the planes (4) and (5).

If the planes (1) and (2) are parallel, it follows, by Ch. XIX,
7, Th. 2, that

A2
= pAi, B2

= pB1} Co = pCi, p= 0.

The direction components of the normals to the plane (3),

namely,
\\AI + \2A2) AI.BI -\- A2 .B2 , Xjv/i + A2 2 ,

become, then,

(Ai + p\2}
Al} (A! + pAOA, (A! -1- PA2) C: .

Now A! + p\z = 0, since otherwise the coefficients of x, y, z in

(3) would all be zero
;
that is, in this case we must exclude,

according to the definition, not only the values A! = A2
= but

also the values of A! and A2 for which Ax/A2
=

p. It follows,

then, that the plane (3) is parallel to or identical with the

plane (1). Thus we have the theorem :

THEOREM 2. A linear combination of two parallel planes is

a plane parallel to them or coincident with one of them.

Plane through a Line and a Point. It is now a simple matter

to find the equation of a plane determined by a line and a point.
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For example, let the line be the line of intersection of the

planes (4) and (5) and let the point be (5, 1, 2). By
Th. 1, the plane

(8) A.1 (aj-22/-2z + 9)+A2 (2a;-3i/-2z + 8)=0

passes through the given line. If it is also to contain the

given point, (5, 1, 2), we must have

A! (- 5 + 2 - 4 + 9)+ A2 (- 10 + 3 - 4 + 8)= 0,

2A1 -3X2
= 0.

This equation determines the ratio Ai/A2 . It will be satisfied

if, in particular, we take AI = 3 and A2
= 2. Then (8) becomes

3
(a;
- 2y - 2z + 9)+2'(2a;

- 3y - 2z + 8)= 0,

or 7z-12y- lOz + 43 = 0.

This is the equation of the required plane.

In the general case, when the given line is the line common
to two intersecting planes, (1) and (2), and (xi, y1} z^ is the

given point, not on the line, the procedure is quite the same.

The plane (3) passes through the given line. Demanding,

further, that it contain the point (x1} yi} Zj) leads to an equa-

tion for the determination of the ratio Ar/A2 ,
and any values

for A! and A2 which have this ratio yield, when substituted in

(3), the equation of the required plane.

Converses of Theorems 1, 2. Since every plane through the

line of intersection of the given planes (1) and (2) can be

thought of as determined by this line and a point (xh ylt z^)

external to it, we have proved that every plane through the

line of intersection of the given planes is a linear combination

of them. This is the converse of Theorem 1.

The converse of Theorem 2 can be proved in a similar

manner. The details are left to the student. Both converses

can be stated in a single theorem.

THEOREM 3. Any plane through the line of intersection of
two intersecting planes, or parallel to two parallel planes, is a

linear combination of the two planes.
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Projecting Planes of a Line. Consider the line L :

I x-2y-2z + Q = 0,

\2x-3y-2z + S = 0,

in which the planes (4) and (5) intersect, and also the plane (6) :

x + 2 z - 11 = 0.

This plane passes through L, since it is a linear combination of

the planes (4) and (5). In particular, it is the plane through
L which is perpendicular to the (z, x)-

plane, for equation (6) contains no term

in y. It is, then, the plane which projects

L on the
(z, o;)-plane. Accordingly, it is

known as a projecting plane of L.

Equation (6) represents, in space, this

projecting plane. Considered merely in

the (z, x)-plane, it defines the line which

is the actual projection of L on the FIG. 1

(z, #)-plane.

By combining equations (4) and (5) linearly so that the re-

sulting equation contains no term in x, e.g. by multiplying
the first of the equations by 2 and adding it to the second,

we obtain the equation of the plane which projects L on the

(y, z)-plane, namely,

(10) y + 2 z - 10 = 0.

In a similar manner the equation of the plane which projects

L on the (x, y)-plane is found to be

(11) s-y-l = 0.

The planes (6), (10), and (11) are the three projecting planes

of L. Any two of the three projecting planes of a line will,

in general,* determine the line. For example, the pair of

equations

(12) a? + 2 2 - 11 = 0, y + 2z- 10 =
* Exceptions occur when the line is parallel to, or lies in, a coordinate

plane ;
cf . Ex. 13.
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is as proper an analytic representation of L as the pair (9),

and much more simple.

Equations (6), (10), and (11) are equivalent to the continued

equality

(13) x - 11 = y - 10 = - 2 z,

and conversely. In other words, the representation of a line

by means of its projecting planes is essentially the same as

the representation of it by means of a continued equality of

the usual form. The three equations which result from

equating the members of the equality are the equations of

the projecting planes.

Furthermore, we now have a method of finding, from the

representation of a line as the intersection of two planes, a

representation of it by a continued equality. Thus, in the

case of L, we passed from the equations (9) to the continued

equality (13).

EXERCISES

Find the equation of the plane determined by the given
line and the given point.

Line Point

j2*-32,
+ 4z-2 = 0,

-

,

2z = S,
(3,

-
1, 2).

3. 3 x - 5 y = 6, 2 x + 3 z = 9, (4, 3,
-

5).

4 a+i_y-i_z-3 n 1 2^
5 -2

"

4 (1~1>2)-

5. Find the equation of the plane containing the line of

Ex. 1 and having the intercept 2 on the axis of y.

6. Find the equation of the plane passing through the line

of Ex. 2 and having equal intercepts, not zero, on the axes of

x and y. Ans. 13 x + 13 y + 22 z + 8 = 0.
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7. What is the equation of the plane which contains the line

of Ex. 4 and is perpendicular to the plane 3x y + 4 2 = ?

Ans. <ix-\-8y z 1 = 0.

8. Find the equations of the line which is the projection of

the line of Ex. 3 on the plane 2x + y 3 z + 5 = 0.

9. Find the equations of the projecting planes of the line

of Ex. 1 and from them determine a continued equality which

represents the line.

10. The preceding exercise for the line of Ex. 2.

11. The line of Ex. 3 is denned by two of its projecting

planes. What is the equation of the third ?

12. What are the equations of the projecting planes of the

line of Ex. 4 ?

13. A line which is not parallel to or in a coordinate plane
has three projecting planes, which are distinct

;
a line parallel

to or in one coordinate plane has three projecting planes, just

two of which are identical
;
a line parallel to or in two coordi-

nate planes i.e. parallel to or coincident with an axis has

but two projecting planes, which are distinct. Consequently
there are always at least two distinct projecting planes of a line

and the line is determined by them. Prove these statements.

14. A line not parallel to or in the (x, y)-plane can be

represented by equations of the form

x = az -f- b, y = cz + d
;

a line parallel to or in the (x, y)-plane can have its equations

put into the form

y = ax -j- b, z = c,

unless it is parallel to or coincident with the y-axis ;
in this

case, its equations can be written as

x = a, z = b.

Prove these statements.

15. Prove that the plane determined by the point (x2 , y2 ,
z2)

and the line through the point (x1} y1} z
}) with the direction
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components Z, m, n can have its equation written in the form

x X! y -yi z -

m
= 0.

Suggestion. Determine the direction components of the

normals to the plane.

2. Three Planes through 'a Line. Three Points on a Line.'

By means of the results of the preceding paragraph we can

prove the following theorem.

THEOREM 1. Three planes pass through a line or are paral-

lel, when and only when any one of them is a linear combina-

tion of the other two.

If the three planes pass through a line, or are parallel, any
one of them passes through the line of intersection of the

other two, or is parallel to the other two. Consequently, by
Th. 3, 1, this plane is a linear combination of the other two.

Conversely, if a particular one of the planes is a linear com-

bination of the other two, it goes through the line of intersec-

tion of these two, if they intersect, or is parallel to them, if

they are parallel (Ths. 1, 2, 1). It follows then, further-

more, by the first part of the proof, that any one of the three

planes is a linear combination of the other two, q. e. d.

For example, the three planes,

3a;_2y+ z+ 6 = 0,

(1) 2a? +6y-3- 2 = 0,

4x-9y + 5z + 14 = 0,

pass through a line, inasmuch as the equation of the third can

be obtained by multiplying that of the first by 2, that of the

second by 1, and by adding the results.

Three Points on a Line. The three points P1
: (xlt ylf Zi),

P2 : (#2, y2 >
22)> PS

'

(
xs> ys) zs) lie on a line if and only if the

* It is assumed, here and in 4, that the given planes, or the given

points, are distinct.
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direction components of PiP3 are proportional to those of

*!>, y, yi = p(yz
-

yi), z3 -z,= P(z2
-

z$.

These equations can be rewritten as

(2) 2/3 =(l-p)
z3 = (1 p) i + p 2-

They then say that the coordinates of P3 are a linear combina-

tion of the coordinates of PI and P2 with constants of combina-

tion, 1 p and p, ivhose sum is unity. Since any one of the

points might have been called P3 ,
this result can be stated

more generally.

THEOREM 2. Three points lie on a line when and only when

the coordinates of any one of them can be expressed as a linear

combination of those of the other two, with constants of combina-

tion whose sum is unity.

This theorem is of importance because of the analogy be-

tween it and Theorem 1, and because of its theoretical value

in later work. It has not the practical value of Theorem 1,

since testing three points for collinearity can be more easily

done directly.

Thus, if the three points are (2, 1, 5), (4, 2, 6), (-2, -7, 3),

the direction components of PjP2 and PiP3 are, respectively,

2, 3, 1 and 4, 6, 2. Since these triples are propor-

tional, the three points lie on a line.

EXERCISES

What can you say of the three planes in each of the follow-

1. 2x y z = 2, 3x

2. x + 3y z = l, 3x-5y + 7z = 3, 3x + 2y + 2z = 3.

3. 6x~3y + 9z = 2, 2x-y + 3z = Q, -x+2y- 6z=3.

Are the three given points collinear ?
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4. (5, 3, 4), (1,5, 10), (11,0, -5).

5. (- 13, 12,
-

15), (- 5, 6,
-

11), (7,
-

3,
-

5).

6. (2, -3,8), (5,4,7), (8,10,6).

7. Determine k so that the three planes

kx 3y + z = 2, 3x + 2y + 4z = l, x Sy 2z = 3

will pass through a line.

8. Determine k so that the three points (2, 3, A;), (5, 5, 1),

( 1, 1, 9) will be collinear.

3. Line in a Plane. From Theorem 1 of the preceding para-

graph follows immediately the theorem :

THEOREM. A line lies in a plane, if and only if the plane is a

linear combination of any two planes which determine the line.

For example, the line of intersection of the first two of the

planes (1), 2 lies in the third plane, since the third plane
was shown to be a linear combination of the first two.

A second method of testing whether or not a given line lies

in a given plane presents itself if the line is represented para-

metrically. The line through the point (2, 1, 3) with the

direction components 3, 2, 4 has the parametric representa-

tion (Ch. XX, 8, (2)) :

x = 3t + 2, y = 2t-l, z = -4:t + 3.

It will lie in the plane
2x + 5y + 4z- 11 = 0,

if and only if the coordinates of every one of its points satisfy

the equation of the plane, i.e. if and only if

2(3 1 + 2) + 5(2 1 - 1) + 4(- 4 1 + 3)
- 11 =

is a true equation for all values of t. But the equation re-

duces to
. t + = 0,

and so is satisfied by all values of t. Consequently, the line

lies in the plane.
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It is clear that this method can also be applied to test

whether or not a given curve, represented parametrically, lies

on a given surface.

EXERCISES

In each of the following exercises determine whether or not

the given line lies in the given plane. Apply both methods.

Line

x-l_y+_2_z_+3,
~T~ -3~ -1 '

2. 2x-3 = l-5y = 3

3. x-l=-3y = l-

Plane

v _ z _ 2 -0.

4x + 5y - 3z - 7 = 0.

2x-y + 3z + 5 = Q.

4. Find the conditions under which the line through the

point (o; , y0) 2 ) with the direction components I, m, n will lie

in the plane Ax + By + Cz + D = 0.

Ans. Al + Bm + Cn = 0, Ax + By + Cz + D = 0.

5. Does the twisted cubic x = t
, y = t1

,
z = 2fi lie on the

surface 2 x3 z = ?

6. Show that the curve

x = a sin2 1, y = a sin t cos
,

2 = a cos t

lies on the sphere ce
2 + y

2 + z2 = a2
.

4. Four Points in a Plane. Four Planes through a Point.

Given the four points Plf P2 ,
P3> P4, with the coordinates

(i> 2/i> *i)> (^2, 2/2, 2*2) > (^3, 2/3, 2
s), (^4, 2/4, 0- To determine

when they lie in a plane.

Unless all four points lie on a line, there will be three of

them which determine a plane. Let these three be P2 ,
P3 ,

P4.

The equation of the plane through them is, by Ch. XIX, 6,

1x y

2 2/2

*3 2/3

= 0.
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The four points will be coplanar if and only if Pl : (xl} yi}

lies in this plane, i.e. if and only if

(1)

2/1

2/2

2/3

2/4

= 0.

If the four points do lie on a line, they are certainly coplanar.

On the other hand, equation (1) is satisfied in this case also.

For, equations (2), 2, must hold for some value of p, since

the points P1}
P2 ,

Ps are collinear. Consequently, if in the

determinant in (1) we subtract from the third row the first

row multiplied by 1 p and the second row multiplied by p,

the new third row will consist exclusively of zeros,* and hence

the determinant will vanish.

We have proved, then, the following theorem.

THEOREM 1. Thefourpoints (a?i,yi,i), (afc, y2 ,
z2), (x3 , y3 ,

z3),

(c 4 , 2/4,
z4) lie in a plane if and only if the determinant in (1)

vanishes.

Four Planes through a Point. Let the four planes be

(2) A3x

B2y
B3y C3z + D3

= 0,

<74z + Z>4 = 0.

Form the determinant of the coefficients in these equations,

namely, \A lB2C3 T)/^\ or, more simply, \ABCD \.
In this de-

terminant let AU A2 ,
A3 ,

A4 be the minors of the elements D1}

D2 ,
Z>3 ,

D4 ;
for example, A4

=
|
A^B^C^ |-t

We first prove the following Theorem :

THEOREM 2. The normals to the planes (2) will all be parallel

to a plane if and only if

Aj = A2
= A3

= A 4
= 0.

* The fourth element in the new third row is 1 (1 p) p = 0.

t Throughout this paragraph we denote determinants by writing the

elements of their principal diagonals between two parallel bars.
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For, if the normals to the four planes are parallel to a plane,

the normals of any three are parallel to this plane, and hence

the determinant of their direction components vanishes, by Ch.

XVIII, 6. But this determinant is one of the four determi-

nants A in question. Hence all four determinants A vanish.

Conversely, if all four determinants A vanish, the normals

of each set of three planes are parallel to a plane, and this

plane can be taken as the same plane in all four cases.*

Hence the normals to all four planes are parallel to it.

Suppose, now, that the planes have one and only one point

in common. Then the four determinants A are not all zero.

For, if they were all zero, the normals to the four planes would

all be parallel to a plane. Consequently, either the four

planes would be all parallel or all the lines of intersection

obtained by taking them in pairs would be parallel or identical

(of. Ch. XIX, 10), and hence the planes would have either

no point in common or a -whole line of points in common.

But this contradicts the hypothesis that they meet in just one

point. At least one of the determinants A, then, does not

vanish. Let us assume, say, that A4
= AiBzC3

\

is not zero.

Then the first three planes meet in a single point (Ch. XIX,
10), whose coordinates, found by Cramer's rule, are

or

,f =
A4

Since this point lies in the fourth plane, we must have

* This is obvious if the four planes are parallel. In the contrary case,

when at least two of the planes, say the first two, are not parallel, the state-

ment is substantiated as follows. The normals to the first two planes and

the third are parallel to a plane M\, and the normals to the first two planes
and the fourth are parallel to a plane M2 . But M\ and M2 ,

since they
are both parallel to the normals of the first two planes are, in any case,

parallel to each other and hence can always be taken as the same plane.
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or, since the expression on the left is the development of the

determinant
|

ABCD
\ by the minors of the last row,

(4) \ABCD\=0.

Conversely, if
|

ABCD
\

= and not all four of the determi-

nants A are zero, the planes (2) meet in a single point. For,
we can assume that A4

= 0. Then the first three planes meet

in a single point (3) and this point lies in the fourth plane,

since by hypothesis (4) holds.

Thus we have proved the theorem :

THEOREM 3. The four planes (2) meet in a single point if and

only if the determinant of their coefficients vanishes and not all

four minors A 1? A2 ,
A3 ,

A4 are zero.*

If the normals to the planes (2) are all parallel to a

plane, the determinant \ABCD\ obviously vanishes, for then

A! = A2
= A3

= A4 = and the expansion of
|

ABCD
\ by the

minors of the fourth column, namely:

has the value zero.

Conversely, if
|

ABCD
[
vanishes by virtue of the vanishing

of A!, A2 ,
A3 ,

A4 ,
the normals of the planes (2) are, by Theorem

2, all parallel to a plane.

Consequently, we can combine Theorems 2 and 3 in the more

general, though less useful, theorem :

THEOREM 4. The four planes (2) meet in a single point or

their normals are all parallel to a plane, if and only if the deter-

minant of their coefficients vanishes.

Finally, we enumerate the cases which can occur when the

normals to the four planes are parallel to a plane. First, the

* Stated algebraically this theorem reads : The four equations (2)

are compatible and have, moreover, a unique solution, if and only if

| ABCD\ = and AI, A2,
A3 ,

A4 are not all zero. This theorem includes

the theorem of Ch. XVI, 9, Ex. 8, and also its converse. It is to be

noted that it was geometric considerations which led us here to a proof

which covered the converse as well as the theorem.
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planes can be all parallel ;
this case can easily be detected by

inspection. Secondly, the planes can all go through a line;

the test of 3 reveals this case. Finally, whatever lines of in-

tersection the planes have, when taken in pairs, are all paral-

lel
;
this case will make itself known by exclusion of the others.

Example. Consider the four planes

x+ y + 3z 6 = 0,

x + 2y-5z + 8 = 0,

Sy- Iz + 22 = 0,

2x-3y + z- 7 = 0.

Here
|

ABCD
\

= and A4
= 0, as can easily be verified.

Hence the four planes meet in a single point. Let the student

show further that the last three planes pass through a line,

which is intersected by the first plane in the point in ques-

tion.

EXERCISES

Do the four given points lie in a plane ? If so, do three,

or do all four, lie on a line?

1. (2, 3, 1), (1, 5, 2), (- 3, 4,
-

1), (- 2, 2,
-

2).

2. (2, 5, 3), (0, 2,
-

3), (1, 3, 7), (- 1,
-

1, 15).

3. (1, 2,
-

1), (3, 1, 2), (- 1, 3,
-

4), (7,
-

1, 8).

4. (0, 2, 1), (1, 0, 2), (- 1,
-

1, 1), (4, 2, 3).

5. For what values of k will the four points (k, 5, 6),

(4,
_

4, k), (5, 1, 2), (2, 0, 7) lie in a plane ?

What can you say of the relative positions of the four given

planes ?

6. The planes of Ch. XVI, 9, Ex. 9.

7. The planes of Ch. XVI, 9, Ex. 10.

2x + y-3z- 1 = 0, x2y + 3z-2 = 0,

5x- y- z + 2 = 0,

'

3x+ y + 2z + 3 = 0,

= 0. 5x +4+ z - 5 = 0.
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10. For what value of k will the four planes,

kx+ y z 6 = 0, x y + z = 0,

x + ty + z 3 = 0, 2x + y + 4:Z 1 = 0,

go through a point?

5. Two Intersecting Lines. Given the two distinct lines

(
Ajas + B$ + C,z + A = 0, f AJx + BSy + Ci'z + A' = 0,

1 A2x + JS-ji/ + C2z + D = 0; 1 ^'a; + JBj'y + Cz'z + Dz
' = 0.

The two lines intersect in a point, when and only when the

four planes which in pairs determine them meet in a single

point. The condition for this is given in Theorem 3 of the

preceding paragraph.
The two lines are parallel if and only if the normals to the

four planes are all parallel to a plane. Theorem 2 of 4 tells

when this occurs.

These results can be combined in the general theorem :

THEOREM 1. Two lines intersect or are parallel when and

only tuhen the determinant of the coefficients in the equations of

the four planes which in pairs determine the two lines vanishes.

The simplest way to decide in any case whether the two

lines intersect or are parallel is to compute the direction com-

ponents of the lines and compare them.

The above proof assumes tacitly that the four planes in

question are distinct
;

otherwise the theorems of 4 could

not be applied. Theorem 1 still holds, however, in the ex-

ceptional case when one of the planes determining one line

is identical with one of the planes determining the other line.

For, the two lines lie, then, in a plane and hence intersect or

are parallel ;
on the other hand, the determinant in question

contains two rows which are proportional and hence it vanishes.

Lines Given by Continued Equalities. Let the first line be

determined by the point P1 : (xl} yit Zj) and the direction com-

ponents llf mi, ! and the second by the point P2 :
(a^, yz , z%)

and the direction components 1%, m2 ,
n2.
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The lines are parallel if and only if 11} m i} Wj are proportional

to 12) wi2 ,
w2 .

If the lines are not parallel, there is a unique plane which

contains the first line and is parallel to or contains the second.

A normal to this plane is perpendicular to both lines and

hence has the direction components |
m^ |, |

n^z \, \
ZjW^

|
;

cf.

Ch. XVIII, 5. The equation of the plane is, then,

(1) |
ra^a

| (as i)+ | nj,z \ (y
- y^+ \

^2
\ ( i)

= 0,

or

x-xl

(2) raj HI

If this plane contains the point P2 it wiH contain the entire

second line, and conversely. Consequently, the two non-parallel

lines intersect if and only if

= 0.

(3) m1 = 0.

Equation of the Plane Determined by Two Intersecting or

Parallel Lines. If two given lines intersect or are parallel, the

plane in which they lie can be determined by one of the lines,

say the first, and a point of the second which does not lie on

the first. Its equation, then, can be found by the method of

1. This method, though always applicable, is designed

primarily for the case when at least one of the lines is given
as the intersection of two planes.

If both lines are represented by continued equalities, the

plane which they determine has (2) as its equation, in case the

lines intersect. If the lines are parallel, a similar equation
for their plane can be found

;
cf. 1, Ex. 15.

EXERCISES

Show that the given lines intersect or are parallel. In each

case find the equation of the plane which they determine.
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2x y z = 0,

Ans. The plane is 5 a; 4 y 2 z -f 1 = 0.

1 x y z = 0; 1 3cc-f 3y z + 4 = 0.

z-6y-3 = y-2 =z-l
2

"

-5 3

1__

2

4a- 1=0,

6. Distance of a Point from a Line. Distance between Two
Lines. Let it be required to find the distance D of the point

P2 : fa, yz ,
z2) from the line L which passes

through the point PI : (x1} yit Zj) and has the
r
L direction cosines cos a, cos /?,

cos y.

It is clear from the figure that

D = PiP2 sin 0,

FIG. 2 where is the angle which the line P^PZ makes
with L.

By Ex. 16 at the end of Ch. XVIII,

(1) sin2 6 =
| piv2 1

2 +
|
Vl\2

1

2 +
| A.i/12 1

2
,

where A.J, ^ vi and A2 , p*, v2 are the direction cosines of

and L.

Now,

Hence

Similar values are found for
j
viA.2

1

a>nd
| Aj^ |.

A,--
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Substituting these values in (1), multiplying the resulting

equation through by P]_P{- and extracting the square root of

both sides, we obtain, as the final result :

COS /? COS y COS y COS a cos a cos

Distance between Two Skew Lines. Let the line through
the point P{ : (xlt yi} 2^) with the direction components Z

1} m^ nt

and the line through the point
P2 : (#2> 2/2>

Z2) with the direction

components 1%, 7^2, 713 be two

skew lines, r'.e. two lines which

neither intersect nor are paral-

lei. To find the distance D be-

tween them measured along their common perpendicular.

The plane through the first line parallel to the second has

the equation (1), 5, namely,

FIG. 3

(x
- - = 0.

The required distance D is the uniform distance of the sec-

ond line from this plane, or it is the distance of the point
P2 : (#2, 2/2 >

z2) from this plane. Thus,

2) | (ya

or

where A is the determinant in fprmula (3), 5, and where

that sign is to be chosen which will make the right-hand side

positive.

Distance between Two Parallel Lines. The distance between

two parallel lines can be found as the distance of a point

on one of the lines from the other line.
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EXERCISES

Find the distance of the given point from the given line.

Point Line

1. (2,3,4),
1=^=

1=:^=*.
Ans. fVlOl = 4.31.

2. (0,0,0),
*=

/ O

3. (-1,2, -3), 3a + l=4

5. (3, 1,
-

1),

Find the distance between the two given lines.

6. The lines of Exs. ^ 2. 7. The lines of Exs. 2, 3.

Ans. MV89 = 1.59.
o y

8. The lines of Exs. 1, 3. 9. The lines of Exs. 2, 4.

10. The lines of Exs. 3, 4. 11. The lines of Exs. 4, 5.

12. A cube has edges of length a. Find the distance be-

tween a diagonal and an edge skew to it. Ans. ^V2 a.

7. Area of a Triangle. Volume of a Tetrahedron. We
first prove the following theorem.

THEOREM 1. If a region of area A in a plane M is projected

on a second plane M', the area of the projected region equals

A cos 6, where is the acute angle between M and M'.*

In the case of a rectangle whose sides are respectively

parallel and perpendicular to the line of intersection of M
and M'

,
the proof is immediate. For, when the rectangle is

projected on M', one dimension remains the same and the

other is multiplied by cos B.

* The theorem is trivial if M is parallel or perpendicular to M'
;
we

exclude these cases.
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The area A of an arbitrary region in- M is the limit ap-

proached by the sum B of the areas of rectangles, of the type

just described, which are inscribed

in the region :

A = lim B.

If A' is the area of the projected

region and B' is the sum of the

areas of the projected rectangles,

evidently
A' = lim B'.

Since the area of each projected

rectangle is cos times the area of the original rectangle,

B' = B cos e.

Hence A' = lim B cos 6 = cos lim B
or A' = A cos 6, q. e. d.

Let the areas of the projections of the given region on the

coordinate planes be denoted by A
yz , A,x) Axy ,

and let the

normals to M have the direction angles a, (3, y. By Th. 1,*

A
v.
=

|

A cos a
|

,
Atx =\Acosp\, A

zy
=

|

A cos y \

.

Hence

(1) A^AJ + AJ + AJ.
Thus we have proved the theorem :

THEOREM 2. The sum of the squares of the areas of the pro-

jections of a region on the three coordinate planes equals the

square of the area of the region.

Area of a Triangle. It is now easy to write down a

formula for the area A of the triangle whose vertices are at

the points P^ :
(x,, yl}

2^,
P2 : (x2 , y.2 ,

z2), Pz : (x3 , y3 ,
z3). For,

the areas of the projections of the triangle on the coordinate

planes are, by Ex. 18 at the end of Ch. XVI,

* The absolute value signs are necessary since a, /3, y are not neces-

sarily acute angles.
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where
|
i/fa 1

1 ,
for example, is the determinant whose three

columns are ylf y2, y3 ;
zlt z2,

z3 ; 1, 1, 1. Hence, by (1),

(2) A =

Volume of a Tetrahedron. Let the above triangle be the

base of the tetrahedron and let the fourth vertex be at the

point P : (x , y ,
z ). The volume V

of the tetrahedron is known from

Solid Geometry to be equal to one

third the area A of the base times the

.y length D of the altitude :

(3) V=\AD.
The equation of the plane of the

base, the plane of Pl} P2 ,
P3 ,

is given
in determinant form in Ch. XIX, 6.

This equation, when the determinant is developed by the

minors of the first row, becomes

= 0.

FIQ. 5

The distance of the point P :
( , yQ , z

)
from this plane, i.e.

the length D of the altitude of the tetrahedron, is, by Ch.

XIX, 9,

(4) D = I yiZ* *
I

x ~

Substituting in (3) the values of A and D as given by (2)

and (4), and at the same time writing the numerator in (4) in

determinant form, we obtain, as the value of V,

2/2

2/3 28

where that sign is to be taken which yields a positive result.
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EXERCISES

Find the areas of the following triangles.

1. With vertices at (2,
-

1, 3), (4, 3,
-

2), (3, 0,
-

1).

Ans. iVl34 = 5.79.

2. With vertices at (0, 0, 0), (xly y^ zj, (a^, y2 ,
z2).

3. Cut from the plane 2 x 3 y + 4 z 12 = 0by the coor-

dinate planes.

4. With vertices at. (a, 0, 0), (0, b, 0), (0, 0, c).

Find the volumes of the following tetrahedra.

5. That of Ch. XIX, 6, Ex. 9.

6. That of Ch. XIX, 10, Ex. 5.

7. Included between the plane 2x 3 ?/ + 4 z = 12 and the

coordinate planes.

8. Included between the coordinate planes and the plane
with intercepts a, b, c on the axes.

9. With vertices at (0, 0, 0), (xlt ylt Zi), (a^, yz , Zj), (a^, ?/3 , Zs).

EXERCISES ON CHAPTER XXI

1. Find a parametric representation of the line

x y z + 1 = 0, 2x y + z 8 = 0.

2. What are the equations of the projecting planes of an

arbitrary line passing through the origin ?

3. Find the equation of the plane which contains the line of

Ex. 1 and is parallel to the line 2x 3 = y 3 = 2z 1.

4. Find the equation of the plane which is perpendicular to

the plane 2x + 5y 3z 2=0 and meets it in the line in

which it intersects the (x, y)-plane.

Ans. 6a + 15y + 29z- 6 = 0.

5. Do Ex. 16 at the end of Ch. XX without finding the

coordinates of the point of intersection of the three given planes.

Suggestion. Find two planes through the given point, each

containing the line of intersection of a pair of given planes.
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6. Do Ex. 17 at the end of Ch. XX without finding the

coordinates of the point of intersection of the given line and the

given plane.

7. Find the equations of the line which contains the point

(2, 0, 1) and intersects each of the lines

-2z=2; 3x+y- z + 1 = 0.

8. Find the equations of the line which intersects each of the

lines given in Ex. 7 and is parallel to the line 4 6x= y + $ 2z.

9. A plane intersects the (x, ?/)-plane in the line whose equa-
tion in the (x, ?/)-plane is 2 x + 3 y = 12. If the plane cuts from

the first octant a tetrahedron whose volume is 12, find its

equation. Ans. 2x + 3y + 4:Z 12 = 0.

10. There are two planes which contain the line

x + 2y + z + ~L=Q, 2x+y-z-7=Q
and make angles of 30 with the plane x z + 2 = 0. Find

their equations. Ans. x y 2z8 = 0, 2x-\-y z 7 = Q.

11. Find the equation? of the planes which contain the line

given in Ex. 10 and are V2 units distant from the point

(2,2, -3).

12. The planes through the edges of a trihedral angle perpen-
dicular to the opposite faces pass through a line. Prove this

theorem in the case that the faces lie in the planes

13. Prove the theorem of Ex.. 12 in the general case.

THE EQUATIONS A.W -f pv = 0, uv = *

14. THEOREM. If u = 0, v = are the equations of two sur-

faces, the equation \u+ /ru=0, A/A^tO, represents in general] a

*Cf. Ch. IX, 3, 4.

t In particular, it may represent a curve or a point ;
cf . footnotes, pp.

445, 167.
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surface which contains the total intersection of the two surfaces,

if they intersect, and has no other point in common, ivith either of

them. If the given surfaces do not intersect, the equation repre-

sents in general
* a surface not meeting either of them or it has no

locus. Prove this theorem.

15. Find the equation of the sphere which contains the

circle

& _|_ f _|_ 22 _ 4 _ o, 2-5 =

and passes through the point (3, 0, 2).

Ans. x2 + y* + z2 + 3 z = 19.

16. Prove that the curve of intersection of the cylinders

xz + y
z = 4, y

2 + z2 = 5 lies on the surface x2 z2 -f 1 = and is

the total intersection of this surface with each cylinder.

17. THEOREM. If u = 0, v = 0, w = are the equations of

three planes which meet in a single point, the equation

\u + fj,v + vw = represents a plane through this point. Con-

versely, every plane which contains this point is a linear combina-

tion of the three given planes. Prove this theorem.

18. Find the equation of the plane which is determined by
the points (0, 0, 0), (1, 2, 0) and the point of intersection of the

three planes

2x+ y + 3z + l = Q, x + y-4z + 2 = Q, 2x-2y + 5z 3 = 0.

Ans. 2x y 6z = 0.

19. THEOREM. The equation uv = represents those points

and only those points which lie on the surfaces u = and v = 0.

Prove this theorem.

20. What do the following equations represent?

(a) a;
2

y
2 =

; (c) x2
xy xz + yz = ;

(6) x* - y* = ;

-

(d) xy - xz - 2y + 2z = 0.

* In particular, it may represent a curve or a point ;
cf . footnotes, pp.

445, 168.



522 ANALYTIC GEOMETRY

BISECTORS OP THE ANGLES BETWEEN Two PLANES *

21. What is the locus of the inequality

2 X -y + 2z 4>0?
22. There are four regions lying between the planes

2x-y + 2z- = Q, 8a; + 4y + z-8 = 0.

Find the pairs of simultaneous inequalities representing these

regions, specifying the region which each pair represents.

23. Find the equations of the planes bisecting the angles be-

tween the two planes of Ex. 22.

Ans. 2x + 7y 52 + 4 = 0, 14ar + y + 7z - 20 = 0.

24. The same for the following pairs of planes

x-y + z-2 = 0, 3x-Gy + 2z- = 0,
) x + y-z + 3 = 0-,

w 6x + 2y-$z-5 = 0.

25. Find the equation of that bisector of the angle between

the two planes of Ex. 24 (6) which passes through the region be-

tween the two planes which contains the origin. -.

26. The planes which bisect the dihedral angles of any
trihedral angle meet in a line. . Prove this theorem when the

faces lie in the planes

x + y + z 1 = 0, x y+z 1 = 0, 2x + y z + l = 0.

27. Prove the theorem of Ex. 26 in the general case.

Suggestion. Cf. Exs. 28, 29 at the end of Ch. XIII and

Ex. 28 at the end of Ch. XIX.

28. Show that by a proper choice of axes two arbitrarily

chosen skew lines, LI and L2 ,
can have their equations written as

x = c, z my\ x = c, z = my; cm =/=0.

29. Prove that, if the line L^ of Ex. 28 is taken as the 2-axis,

the x- and y-axes can be so chosen 'that Lz has the equations,

x = c
}
z = my, where c = 0.

Cf. Ch. XIII, 6, 7, 8.



CHAPTER XXII

SPHERES, CYLINDERS, CONES. SURFACES OF
REVOLUTION

1. Equation of the Sphere. The equation of the sphere
whose center is at the origin and whose radius is p is, accord-

ing to Ch. XIX, 1,

(1) z2 +y2 + 22 =
/0
2.

It can be shown in a similar manner that, if the center is

at the point (a, /?, y) and the radius is p, the equation of the

sphere is

(2) (aj
-

)t +(y - fl*+(z - y)2 = f,

Thus the sphere whose center is at the point (2, 3, 4)

and whose radius is 6 has the equation

(x
-

2)2 +(y + 3)2 +(Z - 4)2
= 36,

or a;2_j_

EXERCISES

Find the equations of the following spheres and reduce the

results to their simplest form.

1. Center at (3, 1, 2) ; radius, 5.

Ans. o;
2 + r/

2 + z2_ 6z- 2y 4 11 = 0.

2. Center at ( 2, 3, 6) ; radius, 7.

3. Center at (4, 0, 0) ; radius, 4.

4. Center at (0, 5, 0) ; radius, 2.

5. Center at (0, 4, 3) ; radius, 5.

6. Center at (f , ^, 0) ; radius, 1.

523
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7. Center at (, f, ) ; radius, f .

8. Center at (0, 0, a) ; radius, a.

9. Center at (a, 0, a) ; radius, aV2.

10. Center at (a, a, a) ; radius, aV3.

2. General Form of the Equation. The equation of a sphere
can always be written in the form

(1) x2 + f- + z2 + Ax + By + Cz + D = 0,

as is seen by expanding equation (2), 1.

Let us investigate whether, conversely, every equation of

the form (1) represents a sphere.

Consider, first, the particular equation

(2) x2 + y
z + z2_2x + 6y + 4:Z-35 = 0.

If we complete the square of the terms in x, and do the same

for the terms in y and in z, the equation becomes

(3) (x
-

I)
2 +(y + 3)2 +( + 2)2 = 35 + 1 + 9 + 4 = 49.

This equation is of the form (2), 1, where a = 1, /?
= 3,

y = 2, p = 7, and hence represents a sphere whose center

is at the point (1, 3, 2) and whose radius is 7.

If the constant term, 35, in (2) is replaced by 14, the

right-hand member of (3) becomes 14 + 1 + 9 + 4 = 0. In

this case, then, we have

The point (1, 3, 2) has coordinates satisfying this equa-

tion. For the coordinates (x, y, z) of any other point at least

one of the parentheses is not zero and the left-hand side of the

equation is positive. Consequently, the equation represents

the single point (1, 3, 2) or, if we define a null sphere (a

sphere of zero radius) as a point, it represents a null sphere.

If the constant term, 35, in (2) is replaced by 15, the

equation becomes

(x- 1)2 +(y + 3)2 +(2 + 2)2
= - 1.
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Since the left-hand member of this equation can never be

negative, no matter what values are assigned to x, y, z, the

equation represents no point whatever in space.

These three examples indicate what to expect of the general

equation (1). On completing the squares for the pairs of terms

in x, y, and z, respectively, in (1), the equation takes on the

form (2), 1, where

A R _ B C
a ~TT> P ~"9 y- ~n>

(4)
z = A* + &+C*-4:D

4

Hence, we have the following

THEOREM. Equation (1) represents a sphere, a single point,

or no point whatever, according as the quantity

is positive, zero, or negative. In case it represents a sphere, the

coordinates of the center and the square of the radius are given

by formulas (4).

Consider, more generally, the equation

(5) a (x
2 + y* + z2)+bx + cy + dz + e = Q.

If a = 0, but b, c, and d are not all zero, the equation repre-

sents a plane.

If a = 0, the equation can be divided through by a, and it

then becomes

aj2 + ya + aB + &a; + -3/ + -+- = 0.

a a a a

This equation is of the form (1) and hence the foregoing con-

siderations apply to it.

EXERCISES .

Determine what the following equations represent. Apply
in each case the method of completing the square. Do not

merely substitute numerical values in formulas (4).

1. z2 + 2/
2 + z2 + 4a;- Qy 2z + 5 = 0.

Ans. A sphere, radius 3, with center at (2, 3, 1).



526 ANALYTIC GEOMETRY

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Ans. The point (3,
-

4,
-

2).

. No point.

+

4 = 0.

?/

z2 = 2 ax.

4z + 6 = 0.

-8z- 5 = 0.

= 0.

3. Sphere through Four Points. Through four points which

do not lie in a plane there passes a single sphere. If the

points are (x1} ylt zj, (a^>, yz ,
z2), (a;3 , y3 ,

z3 ), (a;4, j/4 ,
z4), the equa-

tion of the sphere, in determinant form, is

x y z 1

xl yl Zj 1

X2 ?/2 Z2 1

x3 7/3 z3 1

^4 2/4 Z4 1

To prove this, develop the determinant by the minors of

the elements of the first row. The equation takes on the

form (5), 2. The coefficient of a;
2 + y

2 + z2 is the determinant

\

x
il/2

z3 1 1>
and is different from zero, since the four points do

not lie in a plane (Ch. XXI, 4). Consequently, the equa-

tion represents a sphere, a point, or no point whatever.

But the coordinates of the four given points satisfy the

equation, since the substitution for x, y, z of the coordinates
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of any one of these points makes the first row of the deter-

minant identical with a later row, so that the determinant

vanishes. Therefore the equation actually represents a sphere
and this sphere is the one through the four given points.

EXERCISES

Find the equations of the spheres through the following

sets of four points.

1. (1, 0, 0), (0, 1, 0), (0, 0, 1), the origin.

Ans. x2 + y
2 + z* x y z = Q.

2. (1, 1, 1), (- 1, 1, 1), (1, -1, 1), (1, 1,
-

1).

3. (2, 3, 1), (5,
-

1, 2), (4, 3,
-

1), (2, 5, 3).

4. The vertices of the tetrahedron of Ch. XIX, 6, Ex. 9.

5. The vertices of the tetrahedron formed by the coordinate

planes and the plane 2x 3 ?/ + 4 z 12 = 0.

6. The vertices of the tetrahedron of Ch. XIX, 10, Ex. 5.

7. When will five points, no four of which are coplanar, lie

on a sphere ?

Do the five given points lie on a sphere ?

8. (0, 0, 0), (- 1, 0,
-

1), (3, 1, 0), (2, 4,
-

4), (3, 3,
-

4).

9. (0, 2, 3), (4, 1, 0), (- 4, 5, 0), (1, 5,
-

1), (4, 2,
-

5).

4. Tangent Plane to a Sphere. Let P be a point of a sphere
and let the radius to P be drawn. The plane through P per-

pendicular to the radius is the tangent plane to the sphere at P.

If the sphere is

(1) X* + ?/2 + 22 = p
2

and P has the coordinates (xlt ylt Zj), the radius to P has the

direction components Cj, ylf z t . The tangent plane at P is the

plane through (xl} y1} z^, whose normals have these direction

components. Consequently, its equation is

i G
- +yi(y- yj + i (

- = 0,

or !* + yfl + ZjZ = i
2 + 2/i

2
4- i

2
.
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Since the point (x1} yi} z^ lies on the sphere (1),

and hence the equation of the tangent plane, in final form, is

(2) X& + y$ + z& = p
2

.

In a similar manner the equation of the tangent plane to

the sphere

(3) (a!
_ a)

2 + (2,_ /j)2 + (2
_

y)2
= p

2

at the point (o^, yl} z^) of the sphere can be shown to be

(4) (Xl
-

a)(x
-

a)+ (y,
-

ft)(y
-

fi+ fa
- y)(-y) = p

2
.

The use of (4) to find the equation of the tangent plane to

a sphere whose equation is in the form

(5) a2 + y* + z2 + Ax + By + Cz + D =
involves the reduction of the equation of the sphere to the

form (3). Thus, if the sphere is

(6) o;
2 + ?/

2 + z2 -2a; + 62/ + 4z-35 = 0,

the equation must first be rewritten as

(x- I)
2 + (y + 3)2 + (z + 2)

2 = 49.

The equation of the tangent plane at the point (3, 6, 4), for

example, is then, according to (4),

(3
-

l)(a?
-

!)+ (- 6 + 3)(y + 3)+ (4 + 2)(z + 2) =49,

or

(7) 2-32/-t-6z-48 = 0.

The coordinates of the center (a, ft, y) and the square of the

radius, p
2

,
of a sphere whose equation is in the form (5) are

given by formulas (4), 2. If these values for a, ft, y, p
2 are

substituted in (4) and the equation obtained is simplified, the

result is

(8)

This is the equation of the tangent plane at the point

(#!> yi> z
i)

to a sphere whose equation is in the form (5). By
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means of it the equation of the tangent plane to (6) at the

point (3, 6, 4) can be written down directly. We have,

namely,

3 X - Q y + 4z -(x + 3)+ 3(*/
_

6)+ 2(z + 4)- 35 = 0,

and this reduces to the equation (7) obtained by the indirect

method.

EXERCISES

Find the equation of the tangent plane to each of the follow-

ing spheres at the given point.

1. *2 + y
2 + z2 = 9at(2, _2, -1).

2. x* + f + z2 = 49 at (3,
-

6, 2).

3. ,(*
-

I)
2 + (y

~
2)

2 + (z + 3)2
= 81 at (2, 6, 5).

4. a?+(y + 6) + (2-4)* = 9at(l, -3, 2).

6. a?
2 + y

2 + z2 2 x y + 4 z = at the origin.

6. z2 + y
2 + z2 -6a;-h4?/ + 10z-ll = 0at (1,1,1).

7. Find the volume of the tetrahedron cut from the first

octant by the tangent plane at (1, 2, 3) to the sphere

2a2 + 2t/
2 + 2z2 + 2x - 3y - 4z - 12 = 0.

8. The coordinates of one of the points of intersection of the

plane 2x y 2 = with the sphere of Ex. 1 are (2, 2, 1).

Find the angle between the plane and the sphere.

<t
Ana. 72 39'.

9. Find the angle which the line x = y = z makes with the

sphere of Ex. 5. Ans. 11 6'.

5. The Circle. A plane intersects a sphere in a circle, is

tangent to it, or fails to meet it, according as the distance D
of the center of the sphere from the plane is less than, equal

to, or greater than, the radius p of the sphere.

In other words, the equations of a sphere and a plane, con-

sidered simultaneously, represent a circle, a point, or no point

whatever, according as D < p, D = p, or D > p.
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Consider, for example, the sphere and the plane

The center of the sphere is at the point (1, 3, 2) and its

radius is p = 1
;

cf. 2. The distance of the center from the

plane is

Vl + 4 + 4 3

Consequently, the plane meets the sphere in a circle, and equa-

tions (1), considered simultaneously, are the equations of the

circle.

It is readily seen that p
z D2

,
i.e. 72 62 = 13, is the square

of the radius of the circle. Hence the radius of the circle is

Vl3. The center of the circle is the point of intersection of

the plane and the line through the center of the sphere perpen-

dicular to the plane. Its coordinates are thus found to be

(-1,1,2).

Radical Plane of Two Spheres. Given the two spheres

a? + y* + z* + 2 x - 2 z - 1 = 0,

Z2 + x _+_ 4 y _ iOz - 9 = 0.

Subtract the equation of the second from that of the first.

The resulting equation,

(3) ^-42/4-82 + 2 = 0,

represents a plane. This plane is known as the radical plane

of the two spheres. Since its equation is a linear combination

of the two spheres, we conclude, by Ex. 14 at the .end of

Ch. XXI, the following :

If the spheres intersect, the radical plane is the plane of

their common circle
;

if the spheres are tangent, it is their

tangent plane at the point of tangency ;
and if the spheres

fail to meet,* the radical plane intersects neither of them.

* Two concentric spheres have no radical plane ;
this is the only ex-

ceptional case.
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Conversely, the spheres intersect in a circle, are tangent, or

fail to meet, according as their radical plane intersects one of

them in a circle, is tangent to it, or fails to meet it. Thus

the question of the relationship between two spheres is re-

duced to that of the relationship between a plane and a sphere,

and this we have already discussed.

The center of the first of the spheres (2) is at the point

( 1, 0, 1) and its radius is 3. The distance of the center

from the plane (3) is found to be 1. The radical plane and

the first sphere intersect, then, in a circle, and consequently
this is true of the two spheres.

Equations (2), considered simultaneously, are a pair of equa-

tions of the circle. A simpler pair consists in one of the

equations (2) and the equation (3).

EXERCISES

In each of the following exercises, determine what the given

equations represent. If they represent a circle, find its center

and radius
;

if they represent a point, find its coordinates.

1. x2 + y
1 + z2 25 = 0, z = 4.

2. xz + y
z + zz -Qx 4 ?/

= 0, 2x + y + 2z 1=0.

3. z2 +?/
2+ z2-4:-2?/ + 6z-2 = 0,

4. x2 + y* + z2 2x = 0, 8a? y 3=0.

Find the radical plane of the spheres given in the following

exercises. If the spheres intersect in a circle, find its center

and radius. If the spheres are tangent, find the coordinates

of the point of contact.

5. xz + y
2 + & = 13, a2 + f + z2 + 3x - 4 = 0.

Jz
2 + /+22 -2a; 4=y Sz -4 = 0,

6>

\a? + y* + z* + 2y-5z-5 = Q.

7. 32
+2/

2+z2-2 = 0, 2x2+2y2+2z*+3x 4:y + z + 2 = 0.

Find the equation of the sphere determined by the given
circle and the given point ;

cf. Ex. 15 at the end of Ch. XXI.
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8. The circle of Ex. 1 and the origin.

9. The circle of Ex. 2 and the point (1, 1, 1).

10. The circle of Ex. 5 and the point (1, 2, 3).

6. Cylinders. Given a plane curve, not a straight line, and

through each point of the curve draw an indefinite straight

line perpendicular to the plane. The surface generated by
these lines is called a cylinder. The lines are its rulings, or

generators, and the given curve its directrix.

We shall consider here only cylinders whose rulings are

parallel to a coordinate axis.

If the rulings of a cylinder are parallel, for example, to the

axis of z, the equation of the cylinder does not contain z.

For, the directrix can be thought of as lying in the (x, y)-

plane, and its equation in this plane will represent in space

the cylinder, inasmuch as the points whose coordinates

satisfy the equation are those points and only those points

which lie on the directrix, or directly above or below it, i.e.

which lie on the cylinder. But this equation does not con-

tain z, q. e. d.

Conversely, a curved surface represented by an equation in

which z does not appear is a cylinder whose rulings are

parallel to the axis of z. For, the equation defines in the

(
x

> y)-plane a curve, and in space it represents those points

and only those points which lie on, or directly above, or

below, this curve, i.e. which lie on the cylinder erected on

the curve.

We have, then, the following theorem : A curved surface is

a cylinder with rulings parallel to a coordinate axis when and

only when its equation does not contain the variable correspond-

ing to that axis.

Quadric Cylinders. A cylinder whose directrix is a conic is

known as a quadric cylinder. In particular, it is called elliptic

(or circular), hyperbolic, or parabolic, according as the directrix

is an ellipse (or circle), a hyperbola, or a parabola.
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Figure 1 shows the quadric cylinders of the three types,

whose equations are

The two hyperbolic cylinders represented by the second

equation are known as conjugate hyperbolic cylinders, and the

planes

shown also in Fig. 1, as their common asymptotic planes.

The elliptic cylinder, or either hyperbolic cylinder, of Fig. 1

is symmetric in each point of the axis of z. That is, every

FIG. 1

quadric cylinder whose directrix is a central conic is symmetric
in each point of the line drawn through the center of the conic

parallel to the rulings. This line is called the axis of the

cylinder.

Sections of Quadric Cylinders. The curve in which a quadric

cylinder is met by a plane, M, which is not parallel to the rul-

ings, we shall call a (plane) section of the cylinder.

THEOREM 1. A section of a quadric cylinder is a conic of the

same type as the directrix.

We give the proof in the case in which the directrix, D, is a
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central conic. LetM intersect the plane Kof D in the line L.*

As coordinate axes in K take Ox parallel to L and Oy perpen-
dicular to L, as shown. The

equation of D, referred to these

axes, is of the form (Ch. XII,

3):

(3) Ax* + Bxy + Cy2 + F'=0.

Draw in M the rectangular

axes, O'x', O'y',whose projections

on K are respectively Ox, Oy.

Let P1
: (x

1

, y') be an arbitrary

point ofM and let P : (x, y) be

its projection on K. Then

(4) x = x', y = y' cos e,

where is the acute angle between M and K.

Since D is the curve in K into which the section, S, of the

cylinder by M projects, the equation of S is obtained from

equation (3) of Z) by substituting for x and y in (3) their values

as given by (4). Thus the equation of S is

(5)

FIG. 2

Ax'2 + Bx'y' cos + Cy'
2 cos2 6 + F* = 0.

This equation represents a conic and, furthermore, a conic of

the same type as D, since the discriminant of the quadratic

terms :

B2 cos2 4 AC cos2 6 = (B* 4: AC) cos2

is of the same sign as the
'

discriminant, B1 4 AC, of the

quadratic terms in (3), q. e. d.

It is clear that (5) is independent of the height 00' at which

M cuts the axis of the cylinder. In otlier words, the sections by

two parallel planes are congruent conies.

Suppose, now, that B2 4 AC > and that to F' is given in

turn the values 1, 1, 0. Then (3) represents in turn a hyper-

* If M is parallel to A', the section by M is congruent to the directrix
;

in this case, then, no further proof is required.
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bola, the conjugate hyperbola, and the common asymptotic
lines

;
but this is true, also, of (5). We have, then, the follow-

ing result.

THEOREM 2. The sections of tico conjugate hyperbolic cylinders

by a plane M are two conjugate hyperbolas whose common asymp-
totes are the lines in which M cuts the common asymptotic planes

of the cylinders.

Returning to the general case, we assume that there is given

a second cylinder with vertical rulings, whose directrix, D, is

similar and similarly placed to D, or, if D is a hyperbola, is

similar and similarly placed to D or to the conjugate of D.

The equation of 2), as a curve in K, can be written, according
to Ex. 40, p. 260, in the form :

(6) As? + Bxy + Cy2 + Dx + Ey + F = 0.

The equation of the section S of the second cylinder by the

plane M is, then,

(7) Ad* + Bx'y
1 cos + Cy'

2 cos2 + Dx' + Ey 1 cos 6 + F= 0.

Since equations (5) and (7) fulfill the conditions of Ex. 40,

p. 260, it follows that S and ^ are in the same relation as D
and D. We have thus proved, in the case in which D and D
are central conies, the following theorem.

THEOREM 3. If the directrices of two cylinders (with parallel

rulings') are similar and similarly placed conies, or if, in the case

of hyperbolas, each is similar and similarly placed either to the

other or to the conjugate of the other, then the sections of the

cylinders by the same plane or by two parallel planes stand in like

relationship.

The converses of Theorems 1, 2, 3 are true, as is readily seen.

The three theorems and their converses can be stated equally
well in terms of projections. Thus Theorem 1 and its con-

verse are equivalent to the theorem : A plane curve is a conic

of a certain type if and only if its projection on a plane not per-

pendicular to its plane is a conic of this type.
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EXERCISES

1. Do Exs. 9, 10, 11 of Ch. XIX, 1.

2. Do Exs. 20, 21, 22 of Ch. XIX, 1.

What does each of the following equations represent ?

3. 4z2 + i/
2 8x + 4y 4 = 0.

4. 3o2 + 6o;-2?/ + l = 0.

5. xy + 2x-y 6 = 0.

6. Prove Theorem 1 when D is a parabola.

7. Prove Theorem 3 when D is a parabola.

8. State Theorems 2 and 3 and their converses in terms of

projections.

9. Show that if a central conic S in a plane M projects into

the central conic D in the plane A", then the center 0' of S
projects into the center of D.

7. Cones. Let a plane curve, not a straight line, and a

point 0, not in the plane of the curve, be given. Draw an

indefinite straight line through and each point of the curve.

The surface formed by these lines is known as' a cone. The

lines are its rulings, or generators, and the point is its vertex.

If the given curve is a circle and lies on the line L
through its center perpendicular to its plane, the cone can be

generated by the rotation about L of any ruling. Accordingly,

it is known as a cone of revolution or a circular cone. The line

L is its axis and the constant angle between L and a ruling

is the generating angle.

Problem. To find the equation of a cone of revolution whose

vertex is at the origin, whose axis is the axis of z, and whose

generating angle is </.

Let P : (x, y, z) be any point of the cone other than O. The

ruling K on which P lies determines with the axis of z a

plane M which cuts the (x, ?/)-plane in a line L. Direct the

line L as shown in the figure and denote the projection of OP
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on L, thus directed, by r. Then the directed line L and the

axis of z form in the plane M a system of coordinate axes,

with respect to which the point P has

the coordinates (r, z).

The equation of the ruling R, as a line

of M, is
'

r = z tan
</>.

Since P lies on R, its coordinates (r, z)

satisfy this equation. But, clearly,

r=

where the plus sign or the minus sign is

to be taken, according as P lies on the

upper nappe of the cone (as shown) or

on the lower nappe. Consequently, the coordinates (x, y, z)

of P satisfy the equation
*

FIG. 3

! = z tan <,
or

Conversely, every point whose coordinates satisfy this equa-

tion lies on the cone, for the steps can be retraced. Hence

this is the equation of the cone.

Equation (1) is homogeneous in x, y, z. This is characteristic

of the equation of a cone with its vertex at the origin. In fact,

we can state the theorem : A curved surface is a cone with its

vertex at the origin, when and only when its equation is homogeneous
in x, y, z.

Before giving the proof we consider a particular homo-

geneous equation

(2) 4 x2 3 y
1 + 12 z2 = 0.

If ccj, ylt z
l
is a solution of this equation, i.e. if

(3) 4aj1*-3y1
' + 12 Zl

* = 0,

* The coordinates of the origin, originally ruled out, clearly satisfy the

equation.
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kx
1} kyi, kzlf where k is any constant, is also a solution. For,

the equation

= or - 3^ + 12 zfi =

is true, inasmuch as the parenthesis has, by (3), the value zero.

It follows that, if P : (x1} yly z^) is an arbitrary p<5int, not

the origin, on the surface represented by (2),* any point with

coordinates .of the form (kxly kyl} kz^) is also on the surface.

But the points (kxl9 kyl} kz^, where k is an arbitrary constant,
are all the points of the line OP passing through the origin

and P (Ex. 6 at the end of Ch. XVIII). That is, the line OP
through the origin lies wholly on the surface. But P was an

arbitrary point on the surface, other than 0, and therefore the

surface is formed by lines through the origin, i.e. it is a cone

with its vertex at the origin.

The cone can be constructed by drawing the curve in which

it intersects a plane not passing through and by joining
with the points of this curve by
straight lines. If y = 1 is the

plane taken, the curve of intersec-
~v tion is the ellipse

FIG. 4 and thus the cone is as shown in

Fig. 4.

This example suggests the following proof for the theorem.

An equation in x, y, z is homogeneous if and only if, when
x

i> y\i z\ (
n t all zero) is a solution, kx

1} kyl} kzi} where k is an

arbitrary number, is also a solution. On the other hand, a

curved surface is a cone with its vertex at the origin if and

only if, when P : (xi} yly Zj) is a point of the surface other than

0, an arbitrary point, (kx1} ky1} kz^), of OP is also a point of the

surface. Thus the algebraic condition that an equation be

homogeneous is equivalent to the geometrical condition that a

* The locus of (2) is actually a surface (and not a curve or a point),

since all pairs of values (x, z) lead to points on it.
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curved surface be a cone with its vertex at the origin, and the

theorem is proved.

Quadric Cones. A cone represented by a homogeneous equa-'

tion of the second degree in #, y, z, i.e. by an equation of the

form,

(4) ax2 + by
2 + cz* + dxy -f eyz + fzx = 0,

is called a quadric cone.

We state, without proof, that equation (4), if it represents
a cone,* can always be transformed by a rotation of axes

(cf. Ch. XXIV, 6) into the equation,

(5) Ax2 + By2 - Cz"- = 0,

where A, B, and C are positive constants.

The quadric cone (5) is, in particular, a cone of revolution,

when and only when it can be written in the form (1), i.e.

when and only when A = B.

All quadric cones are of one general type. They cannot be

classified into three types, corresponding to those for quadric

cylinders. For ellipses, hyperbolas, and parabolas can all be

obtained as plane sections of any one of them.f

EXERCISES

Construct the cones represented by the following equations.

If the cone is circular, determine its axis and the generating

angle.

1. cc
2
+2/

2 -z2 = 0. 4. 4 a2 + 2/
2 4z2 = 0.

2. <c
2 -3#2 + z2 = 0. 5. 60? 3y* 2z* = 0.

3. 4z2 -/2 z2 =0. 6. 2

* Equation (4) represents in general a curved surface, and hence, by
the theorem, a cone. Under special conditions it may, however, repre-

sent two planes, a single plane, a line, or merely the origin. For example,
x2

y* = represents two planes ; (x y)
2= 0, a single plane ;

x2 + j/
2 = 0,

a line
;
and x2

-f y2 + z2 = 0, only the origin. These cases are here excluded.

t This was proved geometrically for the case of a cone of revolution in

Ch. VIII, 10. An analytical proof covering all cases will be given later,

Ch. XXIII, 6.
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Find the equations of the following cones.

7. The cone of revolution whose vertex is at the origin,

whose axis is the axis of y, and whose generating angle

is 30.

8. The cone of revolution whose vertex is at (0, 0, a),

whose axis is the axis of z, and whose generating angle is 45.

Ans. xz + y*(z a)
2 = 0.

9. The quadric cone which has its vertex at the origin and

intersects the plane z = 1 in the ellipse whose center is on the

z-axis, whose transverse axis is parallel to the axis of y, and

whose major and minor axes are 6 and 4.

10. The quadric cone which has its vertex at (0, 1, 0) and

intersects the (z, <c)-plane in the hyperbola 2 a? z2= 4.

11. The cone of revolution which has the line bisecting the

angle between the positive y- and z-axes as axis and which

contains the y- and z-axes. Ans. x2 = 2 yz.

12. The cone of revolution which has the line x=y = z as

axis and passes through the coordinate axes.

Ans. xy + yz + zx = 0.

8. Surfaces of Revolution. Let a plane curve and a line L in

the plane of the curve be given. The surface generated by the

curve when the plane is rotated about L through 360 is known
as a surface of revolution. The line L is its axis.

It is clear that spheres are surfaces of revolution. So also are

circular cylinders and circular cones
;
in the one case the gener-

ating curve is a line parallel to L, and in the other, it is a line

which intersects L.

Quadric Surfaces of Revolution. The surfaces obtained by

rotating the conies about their axes, together with the spheres
and the circular cylinders and cones, are known as quadric

surfaces of revolution.

Problem. To find the equation of the ellipsoid of revolution

generated when the ellipse in the (y, z)-plane, whose equation
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in that plane is

is rotated about its conjugate axis, the axis of z,

Let M be the rotating plane in an arbitrary position, and let

P : (x, y, z) be an arbitrary point on

the ellipse in M. Establish in M the

same system of axes as was set up in

the plane M of Fig. 3 in finding the

equation of a cone of revolution. The

equation of the ellipse in M, referred

to these axes, is

ZL+1=1. FIG. 5

Since P lies on the ellipse, its coordinates (r, z) satisfy this

equation. Consequently, inasmuch as

r2 = x* + y\

the coordinates (x, y, z) of P satisfy the equation

(1) 2
+ ^ + ^= 1, a > 6,

and this is the equation of the ellipsoid of revolution.

In a similar manner, the equation of the ellipsoid of revolu-

tion obtained by rotating the ellipse about its transverse axis,

the axis of y, is found to be

(2) a>b.

The first of the two ellipsoids of revolution (Fig. 6) is often

called an oblate spheroid ;
and the second (Fig. 7), a prolate

spheroid. Both approach as ttteir limits the sphere, whose

center is at the origin and whose radius is a, when 6 is made
to approach a as its limit.

The hyperboloids of revolution generated when the hyperbolas

(3)
62
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situated in the (y, z)-plane, are rotated about the axis of z, the

conjugate axis of the first hyperbola, and the transverse axis

of the second, have respectively the equations :

(4)

(5)

|_
j .

a? a2 62

?L 4. Vl _ ?! = _
6^

1, or _ ur- _ */- z- __ .

a2 a2 &2

FIG. 6 FIG. 7

The two hyperboloids of revolution are shown in Figs. 8 and

9. The first is known as a hyperboloid of one sheet or an

imparted hyperboloid ;
the second, as a hyperboloid of two sheets,

or a biparted hyperboloid.

Taken together, the hyperboloids (4) and (5) are known as

conjugate hyperboloids of revolution. They are generated by

FIG. 8 FIG. 9

the conjugate hyperbolas (3) revolving about the same axis, the

axis of z. The cone which results from the rotation about this
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axis of the common asymptotes of the hyperbolas, namely, the

cone

is called the common asymptotic cone of the conjugate hyper-

boloids. See Ch. XXIII, Fig. 5.

Since a parabola has but one axis, there can be obtained

from it but one quadric surface, or paraboloid, of revolution,

namely, that which results from rotating

it about its axis. If the equation of the

parabola, in the (y, z)-plane, is

y
2 = 2 raz,

the equation of the paraboloid of revolution

is

(7) x* + y
2 =-2mz.

An ellipsoid or hyperboloid of revolu-

tion is symmetric in the center, 0, of the

ellipse or hyperbola which generates the

surface. Accordingly, we call the center

of the surface.

Every surface of revolution is symmetric
in its axis and in every plane passing through the axis. An

ellipsoid or hyperboloid of revolution is also symmetric in the

plane through the center perpendicular to the axis, and in

every line through the center lying in this plane. Thus the

surface (1) is symmetric, not only in the axis of z and in all

planes through this axis, but also in the (x, t/)-plane and all

lines lying in this plane and passing through 0.

EXERCISES

Establish each of the following equations.

1. Equation (2). 2. Equation (4). 3. Equation (5).

What surface does each of the following equations represent ?

Construct the surface.

Fio. 10
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4. x
'
i + y* + 4z2 = 4. 8. 3a;2 4y2 4z2 =12.

5. 4z2 + 9</
2 + 9z2 =36. 9. 3a? -5y* + 3z2 = 15.

6. 2 2 + 3y2 + 2z2 = 6. 10.

7. a2 + y
2 2z2 = 2. 11.

12. The parabola of the text is rotated about the axis

of y. Find the equation of the surface generated and con-

struct it.

13. The surface generated by the rotation of a circle of

radius a about a line L in the plane of the circle at the dis-

tance b > a from its center is called an anchor ring, or torus.

Find its equation, if L is the axis of z and the circle is in the

(y, z)-plane with its center on the axis of y.

Ans. (Vo;
2 + f 6)

2 + z2 = a?.

EXERCISES ON CHAPTER XXII

1. Find the equation of the sphere having the line-segment

joining the two points (3, 2, 1), (5, 4, 3) as a diameter.

2. Find the equation of the sphere which has its center at

the point (5, 2, 3) and is tangent to the plane3a;-|-2y-fz=0.

3. A sphere has its center in the plane x + y + 3z 2 =
and passes through the three points (2, 3, 1), (2, 1, 5),

(2, 3, 3). Find its equation.

4. Find the equation of the sphere which has its center on

the line 4o; + 8 = 3y + 7 = 4z and passes through the points

(4, 3,
-

1), (3, 2, 3).

5. A sphere is tangent to the plane # 2y 2z = 7 in the

point (3, 1, 1) and goes through the point (1, 1, 3).

Find its equation. Ans. xz + y
2 + z1 10 y 10 z 31 = 0.

6. There are two spheres passing through the points

(4, 0, 3), (5, 4, 0), (5, 1, 3) and having the radius 3. Find their

equations.
f x*+ y*+ z2 6x 4y 2z+ 5 = 0.
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7. Find the equations of the spheres which are tangent to

the plane x + 2y 2z 12 = and pass through the three

points (3,
-

2, 0), (2,
-

3, 0), (3, 1,
-

3).

8. Find the equations of the spheres which are tangent
to the planes 2x y + 2z + 1 = 0, Qx + 3y 2z + 5 = and

have their centers on the line 1 a? =y -f 1 = 2 z.

9. Find the equation of the sphere inscribed in the tetra-

hedron formed by the plane 2x + 2y + z 4 = and the

coordinate planes.

10. A sphere goes through the point (4, 6, 3) and meets the

(x, y)-plane in a circle whose center is at the point (1, 2, 0)

and whose radius is 5. Find its equation.

Ans. z2 + ?/
2 + z2 -2z-4?/-3z- 20 = 0.

11. Find the equations of the tangent line to the circle

a;
2 + y* + z~ z + 4z = 0, 3z-2?/ + 4z + l =

at the point (1,
-

2,
-

2).

12. Does the line 2x l=y+3=4 z intersect the sphere

2 + 2/
2

-I- z- Gx + 8 y 4z + 4 = ?

13. Show that the radical planes of three spheres, taken in

pairs,* pass through a line or are parallel.

ORTHOGONALITY f

14. Prove that the plane x + y + z 1 = intersects the

sphere of Ex. 12 orthogonally.

15. When does the plane ax + by + cz + d = Q intersect the

sphere
a2 + y

z + z2 + Ax + By + Cz + D =

orthogonally ?

Ans. When and only when aA + bB + cC = 2 d.

* It is assumed that no two of the three spheres are concentric
;
cf .

footnote, p. 530.

t Cf. Exs. 18-26 at the end of Ch. IV.
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16. Show that the line 3z + 8 = 6y 7 = 2z + 13 inter-

sects the sphere of Ex. 12 orthogonally.

17. Find the condition that the line

dx
= 0, 020; + b?y + c2z + d2 =

intersect the sphere of Ex. 15 orthogonally.

18. Find the angle of intersection of the spheres (2) of 5.

19. Prove that the two spheres

a2 + y
2 + z2 - 9 = 0, z2 + / + z2 -6a; + 82/ + 9 =

intersect orthogonally.

20. When does the sphere of Ex. 15 intersect the sphere

orthogonally ?

Ana. When and only when AA' + BB' + CC' = 2D+2D'.
21. Find the equation of the sphere containing the circle of

Ex. 11 and intersecting orthogonally the first of the spheres
of Ex. 19.

Loci

22. Do Ex. 1 of Ch. V, 1, when P is not restricted to lie

in a plane.

23. The same for Ex. 4 of Ch. V, 1.

24. A point P moves so that the ratio of its distances from

two fixed points is constant. Find its locus.

25. A point P moves so that its distance from a given plane
M is proportional to the square of its distance to a given point

P
,
not in M. If P remains always on the same side of M as

P
,
find its locus.

26. If, in the preceding exercise, P lies in M and P may be

on either side of M, what is the locus of P?

27. What is the locus of a point which moves so that its

distance from a given line is proportional to its distance from

a given plane perpendicular to the line ?
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28. What is the locus of a point which moves so that its

distance from a given point is proportional to its distance to a

given plane through the point ?

29. What is the locus of a point P which moves so that the

difference of the squares of its distances from a given point
and a given sphere is constant, if the distance from P to the

sphere is measured along a tangent line to the sphere

through P?

30. A given point P is distant 2 a units from a given plane
and P' is an arbitrary point in the plane. What is the locus

of the point P so chosen on the line P P' that P P P P' = 4 a2 ?

Suggestion. Take the coordinates of P' as auxiliary

variables.

31. A is a fixed point and R an arbitrary point of a given

sphere whose center is 0. The radius OA is produced four

times its length to the point A' and the radius OR, twice its

length to the point R'. What is the locus of the point of

intersection of AR and A'R' ?



CHAPTER XXIII

QUADRIC SURFACES

1. The Ellipsoid. A quadric surface is any surface defined

by an equation of the second degree in x, y, z. The sphere and

the quadric cylinders, cones and surfaces of revolution studied

in the previous chapter are special types of quadric surfaces.

We proceed to consider more general types.

The surface defined by the equation

(1) /' l +l+ 5
= 1

-;;;'

is known as an ellipsoid. If two of the three numbers a, &, c

are equal, it is in particular an ellip-

soid of revolution (Ch. XXII, 8).

To construct the surface in the general

case when no two of the three numbers

a, &, c are equal, plot first the sections

by the coordinate planes, that is, the

curves of intersection with the planes

x = 0, y = 0, z = 0. These are, respec-

tively, the ellipses

x2 z2 .. x1
. y* _ i

Fia. 1

&2 c2

The parts of these ellipses which lie in the quarter-planes

bounding the first octant connect the points (a, 0, 0), (0, 6, 0),

(0, 0, c), as shown.

The section of (1) by a plane z = k parallel to the (x, y)-

plane has the equations :

548
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?_l_ = l_fc? = k.

If kz < c2
,
these equations represent, in the plane z = k, an

ellipse whose center is on the axis of z and whose axes lie in

the (z, x)- and (y, z)-planes and have the lengths

2a\ 1--
c2

FIG. 2

As A; increases from toward c as its limit, this ellipse, rising

from the section by the (x, ?/)-plane, grows continuously
smaller and shrinks finally to a point, the point (0, 0, c).

Similarly, if k decreases from toward c as its limit.

The surface generated by the

changing ellipse is the ellipsoid.

Fig. 2 (or Fig. 6 of Ch. XXII *)

shows it in its entirety. The sur-

face is evidently symmetric in the

origin, 0, and in the coordinate

axes and coordinate planes. is

called the center of the ellipsoid ;

the coordinate axes, the axes of the

ellipsoid ;
and the coordinate planes, the principal planes of the

ellipsoid. The sections by the principal planes are known as

the principal sections.

The dimensions of the ellipsoid, measured along the axes,

are 2a, 26, '2c. These numbers, in the order of their magni-

tude, are known as the major axis, mean axis, and minor axis

of the ellipsoid.

Here, and throughout the chapter, we speak of a (plane)

section of a surface only when the plane in question meets the

surface in a curved line. Sections by parallel planes we shall

call parallel sections.

*
Figs. 6-10 of Ch. XXII, drawn originally to represent quadric sur-

faces of revolution, picture equally well the corresponding general quad-
ric surfaces studied in this chapter. One has merely to imagine that a

different ratio of foreshortening along the axis of x has been chosen.
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EXERCISES

Construct the following ellipsoids, drawing accurately the

principal sections and the sections parallel to one principal

plane. What are the lengths of the axes ?

352 ** _ 1 2. 9 z2 + 36 y
2 + 4 z2 = 36.

3. Discuss the generation of the ellipsoid (1) by sections

parallel to the (z, x)-plane.

4. Prove that the sections of the ellipsoid (1), which are

parallel to a principal plane, e.g. the (x, y)-plane, are similar

and similarly placed ellipses ;
cf. p. 260.

2. The Hyperboloids. The Hyperboloid of One Sheet.

surface represented by the equation

The

(1)
&2

is called a hyperboloid of one sheet or an imparted hyperboloid.

If a = 6, it is in particular a hyper-
boloid of revolution of one sheet

(Ch. XXII, 8).

In the general case, a ^= b, the

surface can be constructed by the

method of 1. The sections by
the vertical coordinate planes,

x = and y = 0, are the hyper-
bolas

FIG. 3
62

-=1
a2 c2

"

The smallestThe sections by the planes z = k are ellipses.

one is the section by z = 0, the (x, ?/)-plane ;
it is known as

the minimum ellipse. The general one increases in size as its

distance from the (x, y)-plane increases. The surface can be

thought of as generated by it
;

cf. Fig. 8, Ch. XXII.
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The Hyperbola id of Two Sheets. This surface, also known

as the biparted hyperboloid, is denned by the equation

(3)
-I- ^ = 1 or

a2

A particular case, when a = b, is the hyperboloid of revolution

of two sheets.

In the general case, a = 6, the sections by the vertical coor-

dinate planes are the hyperbolas conjugate to the hyperbolas

(2). The (x, y)-plane, z = 0, does not

intersect the surface. This is true

of all the planes z = k, for which

k2 < c2. The planes z = c meet the

surface in the points (0, 0, c),
and

the planes z = k, where kz > c2
,
meet

it in ellipses, which increase in size

as k increases in numerical value
;

cf. Fig. 9, Ch. XXII.

FIG. 4

Center, Axes, Principal Planes.

Each hyperboloid is symmetric in

the origin and in the coordinate

axes and coordinate planes ; is the center, the coordinate

axes, the axes, and the coordinate planes, the principal planes

for each surface. The sections by the principal planes are the

principal sections.

The Asymptotic Cone. The hyperboloids (1) and (3) are

called conjugate hyperboloids. We have seen that each vertical

coordinate plane intersects them in conjugate hyperbolas whose

common asymptotes pass through the origin. This is true also

of any vertical plane,

(4) y = mx,

which passes through the axis of z. For, the sections of (1)

and (3) by the plane (4) are also the sections by this plane of

the cylinders,

O^!+ M_- =
c2
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whose equations are obtained by eliminating y from (4) and

(1), and from (4) and (3). But these cylinders are conjugate

hyperbolic cylinders whose common asymptotic planes are

(5)

Consequently, by Ch. XXII, 6, Th. 2, their sections by the

plane (4) are conjugate hyperbolas whose common asymptotes,
denned by equations (4) and (5), pass through
the origin, q. e. d.

The equation of the locus of these asym-

ptotes, as the plane (4) rotates about the axis

of z, is obtained by eliminating ra (now an

auxiliary variable expressing the motion of

the plane) from equations (4) and (5). The
result is

(6)
a2 b2 c2

FIG. 5
The locus of the asymptotes is, therefore, a

cone whose vertex is at the origin. This

cone is called the asymptotic cone of each of the hyperboloids

(1) and (3). Evidently (1) lies wholly without the cone, that

is, on the convex side of it, while (3) lies wholly within it.

EXERCISES

Construct the following hyperboloids, drawing accurately

the principal sections which exist-and the sections parallel to

one principal plane.

i *
i y_

"

94 25

3.

2.

25

- 9z2 = 36.

5. What is the equation of the hyperboloid conjugate to the

hyperboloid of Ex. 3 ? of Ex. 4 ? Give also in each case the

equation of the common asymptotic cone.
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6. Show that the sections of the hyperboloid of two sheets

(3), which are parallel to a vertical principal plane, are similar

and similarly placed hyperbolas.

7. The sections of the hyperboloid of one sheet (1) by two

planes parallel to a vertical principal plane are similar and

similarly placed hyperbolas, or are hyperbolas each of which

is similar and similarly placed to the conjugate of the other.

Prove this theorem and determine when each of the two cases

occurs.

3. The Paraboloids. Tlte Elliptic Paraboloid. The surface

defined by the e'quation

1-2 ?/2
/-\ \ "" v o ~
(1) h = - 2

a2 b2

is called an elliptic paraboloid. If a = b, it is in particular a

paraboloid of revolution (Ch. XXII, 8).

In the general case, a 3= b, the =i

sections of the surface by the verti

cal coordinate planes, y = and

x = 0, are the parabolas

both of which open upwards. The

(x, y)-plane intersects the surface

only in the origin. A plane parallel

to the (x, ?/)-plane and below it does

not meet the surface, while a plane

parallel to the (x, y)-plane and

above it intersects the surface in

an ellipse, which increases in size as the height of the plane

increases
;

cf. Fig. 10, Ch. XXII.

Fia. 6

The Hyperbolic Paraboloid.

the equation

(2)
-

v ; *

This is the surface defined by
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It is never a surface of revolution, no matter what values are

assigned to a and 6.

The sections of the surface by the vertical coordinate planes
are the parabolas

FIG. 7

of which the first opens upwards and the second, downwards.

The section by the (x, y)-plane
consists of the two lines,

OA: *+2 = 0,
a b

O 7?
x ^un . u.
a b

A section parallel to and above

the (x, y)-plane is a hyperbola
whose vertices are on the parabola

opening upwards, whereas a sec-

tion parallel to and below the (x, y)-plane is a hyperbola
whose vertices are on the parabola opening downwards. It is

seen, then, that the surface is saddle-shaped; it rises along the

parabola which opens upwards, and falls along the parabola

which opens downwards. The (z, o;)-plane contains the pommel
and the (y, z)-plane, the

stirrups.

The surface can best

be plotted by drawing
the sections parallel to a

vertical coordinate plane,

for example, the (y, z)-

plane. These sections

are all parabolas opening
downwards and having
their vertices on the parabola in the (z, a)-plane. Figure 8

shows part of the surface constructed by means of them.

Vertex, Axis, Principal Planes. Each paraboloid is sym-
metric in only one line, the axis of z, and in only two planes,

FIG. 8
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the vertical coordinate planes. The line is known as the axis,

and the planes as the principal planes. The sections by the

principal planes are called the principal sections, and the point

0, the vertex.

EXERCISES

Construct accurately the following paraboloids.

1.
x- + y- = 2z. 2. ?- = 2z.94 94

3. 2z2 + 322 = 12. 4. z2 -4i/2 = 82.

5. Prove that the sections of a paraboloid of either type,

which are parallel to a principal plane, are equal and similarly

placed parabolas.

6. Prove that the elliptic paraboloid (1) can be generated

by the parabola x2 = 2 a-z moving so that its vertex traces the

parabola y
z = 2 b"z in x = 0, while its axis remains vertical and

its plane parallel to the (z, #)-plane.

7. Describe and prove a method of generating the hyper-
bolic paraboloid, which is similar to that given in Ex. 6 for

the elliptic paraboloid.

8. Show that the equation xy = az represents a hyperbolic

paraboloid.

4. Rulings. The Hyperboloid of One Sheet. The equation

CD -i
a-

can be written in the form

Consider the equations

H - = --i
b c a

obtained from (2) by setting the first factor on the left equal
to the parameter u times the first factor on the right, and
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then the second factor on the right equal to u times the sec-

ond factor on the left.

These equations represent a one-parameter family of lines,

each line being given by a particular value of the parameter w.

All the lines lie on the surface (1). For, if P is an arbitrary

point of the line u = u0) the coordinates (x, y, z) of P satisfy

equations U\ for u = u
;
hence they also satisfy equation (2),

since, if u = MQ is eliminated from equations Ui by multiplying
them together, side for side, the result is precisely equation (2).

There will be just one line t/i through an arbitrary point

(o; , y ,
z

)
of the surface (1) if the equations

(3)
& + 5>=be

have a unique simultaneous solution for u. Let us see when
this is the case.

If 1 -f x /a =f= 0, the first equation determines u uniquely,
and the value obtained is seen to satisfy the second, since,

when it is substituted in the second, this equation takes on

the form (2) for (x, y, z)
==

(x$, y ,
ZQ}. In this case, then,

there is just one line C/i through (a: , y , z^).

If 1 + x /a = 0, but y /b z /c = 0, it follows from (2) that

y /b + z /c = 0. Then the first equation of (3) is satisfied, no

matter what value u has. The second equation determines

u uniquely, and so in this case, too, there is just one line C/i

through (XQ , y ,
z

).

Finally, if 1 + xQ/a = and y /b z /c = 0, at least one of

the equations (3) is contradictory and there is no line Ui

through (x , y ,
z

).
It is, however, natural to supplement the

lines C/i by the line

U : I--=> 1 + - = 0,be a

for, if we divide each of the equations C/i by u and then allow

u to become infinite, the line t/i approaches U as its limit.

We have proved, then, that the lines U consisting of the

family of lines t/i and the line U fill out the surface just
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once. They form what is called a set of rectilinear generators

or rulings of the surface.

There is a second set of rulings, V, consisting of the family
of lines

b

and the line

1 + - = 0.
a

It is readily seen that this set has the same properties as the

set U. Hence we have the theorem :

THEOREM 1. A hyperboloid of one sheet contains two sets of

rulings. Through each point of the surface passes one ruling of
each set.

It is conceivable that the ruling U and the ruling V which

go through the same point coincide. This is not the case,

however, as will appear later
;

* cf. Theorem 5.

The lines through the origin parallel to the lines U have the

equations
i/ fy /)*

- +- = U
c a'

(4)

rz\ x__=__;
cl a

S'-H

Their locus, obtained by eliminating u, is the asymptotic cone

/v.2 iff ?1- + y~ _ *. = o.

a2 6 2 c2

Moreover, the lines fill out the cone just once, as can be shown

by the method used in proving Theorem 1.

Similarly, the lines through the origin parallel to the. lines

V, i.e. the lines

y _z __ x

be a'

/y g\ /

[ \b cj a'

* It is not difficult to give a direct proof of the fact at this point.

(5)
b c
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also fill out the asymptotic cone just once. Consequently, we
have proved the theorem :

THEOREM 2. The lines ivhich pass through the center of a

hyperboloid of one sheet and are parallel to the rulings U (or V}
are precisely the elements of the asymptotic cone. In other words,

there is one and only one ruling of each set which is parallel to a

given element of the cone, and conversely.

From this theorem we can draw the following conclusions.

THEOREM 3. No three rulings of one set are parallel to a plane.

For otherwise there would be three elements of the cone

lying in a plane, and this is impossible.

THEOREM 4. Two rulings of one set neither intersect nor are

parallel; that is, they are never coplanar.

For, they are not parallel, since no two elements of the cone

are parallel ;
and they do not intersect, since otherwise there

would be a point on the surface, through which pass two rul-

ings of the same set.

THEOREM 5. Two rulings of different sets either intersect or

are parallel; that is, they are always coplanar.

For, first, the rulings of the two sets are parallel in pairs,

since there is just one ruling of each set which is parallel to

a given element of the cone. From equations (4) and (5) it

appears that u = MO (= 0) and v = v (3= 0) determine a pair of

parallel rulings if and only if 1 + U^VQ = 0, and that the ruling

u = is parallel to F"
,
and the ruling v = to U .

Secondly, two non-parallel rulings of different sets intersect

in just one point. For, it is easily shown that the four equa-

tions t/i and Fi* which define in pairs two rulings which are

not parallel, i.e. for which 1 -f uv = 0, have one and just one

simultaneous solution for x, y, z, namely,

/c\
(6)

1 uv , u 4- v u v
-, y = b -, z = c -,

1 -J- UV 1 + UV 14- UV

* The proof in the special cases, in which U or F or both are in-

volved, is left to the student.
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If u and v take on all possible pairs of values for which

1 + uv = 0, equations (6) give the coordinates of the points of

intersection of all the lines C/i with the lines V}, that is, the

coordinates of all the points of the surface (1) except those

on the lines U and V . They constitute, then, a parametric

representation of the surface (1) in terms of the two parameters
u and v.

The Hyperbolic Paraboloid. The equation

a2 52

can be written as

(8)
6,

Accordingly, there are tivo sets of ridings on the hyperbolic

paraboloid, namely:

u '- I+?-'
V- ?_^

a b

The first equation of U represents a plane parallel to or

coincident with the plane AOz (Fig. 8) :

a b

Consequently, the rulings U lie one each in the planes parallel

to (and including) the plane AOz. Moreover, they are the

total intersection of these planes with the surface
; for, if the

first equation of U is solved with equation (8) of the surface,

the result is precisely the second equation of U. Similarly,

the rulings Flie one each in the planes parallel to (and in-

cluding) the plane BOz :

and are the total intersection of these planes with the surface.

The planes AOz and BOz are known as the directrix planes.
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There is just one ruling of each set through each point of the

surface, for the planes parallel to (and including) a directrix

plane exhaust all points of space just once, and hence their

lines of intersection with the surface exhaust all points of the

surface just once.

It is easily shown that the direction components of a

ruling U are a, 6, u, and that those of a ruling F are a,

6, v. Since the two triples are never proportional, two rulings

of different sets are never parallel or coincident. In particu-

lar, the two rulings which pass through one and the same point

of the surface are distinct.

The following theorems are now easily proved.

THEOREM 6. Three ridings of one set are always parallel to

a plane.

For, all the rulings of a set are parallel to a directrix plane.

THEOREM 7. Two rulings of one set are never coplanar.

For, they do not meet since they lie in parallel planes, and

they are not parallel, as inspection of the direction components

just found shows.

THEOREM 8. Two rulings of different sets ahvays intersect.

For, their projections on the (x, y)-plane, being lines in the

direction of OA and OB respectively, intersect in a point M.
Now there is but one point, P, on the surface which projects

into M, since a line perpendicular to the (x, i/)-plane meets the

surface just once. Consequently, the two rulings in question
intersect at this point P.

The coordinates of P, found by solving the four equations

U and V simultaneously for x, y, z, are

/m U + V , U V UV
(9) x = a

, y = b z =
2 22

These equations constitute a parametric representation of the

surface (7) in terms of the parameters u and v
;

there are no

exceptional points.



QUADRIC SURFACES 561

EXERCISES

1. Find the equations of the rulings which pass through the

point (3, 2, 5) of the hyperboloid of one sheet of Ex. 1, 2.

2. The same for the hyperbolic paraboloid of Ex. 2, 3, the

point on the surface being (9, 2, 4).

Exercises 3-5. Use considerations of symmetry in the proofs.

3. The two rulings through a point P on a principal section

of a hyperboloid of one sheet are equally inclined to the plane
of the section and lie in a plane M which is perpendicular to

the plane of the section.

4. The same for a hyperbolic paraboloid.

5. If P and P1 are points of a hyperboloid of one sheet

which are symmetric in the center, the rulings through P are

parallel to those through P.

6. Assuming Th. 1, 7, prove that the plane M of Ex. 3

passes through the tangent line at P to the principal section.

Hence show that the projections of the rulings of either set

on a principal plane are the tangents to the principal section

in that plane.

7. The same for a hyperbolic paraboloid, applying the re-

sults of Ex. 4.

8. Prove that the plane determined by two parallel rulings

of a hyperboloid of one sheet is tangent to the asymptotic cone

along the element which is parallel to the two rulings.

9. Prove that there are no straight lines on (a) an ellipsoid ;

(6) a hyperboloid of two sheets
; (c) an elliptic paraboloid.

5. Parallel Sections. Equations (1), (3), and (6), (2), of a

hyperboloid of one sheet, HI, of the conjugate hyperboloid of

two sheets,. H^ and of the common asymptotic cone, C, can be

written as the one equation
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where A is given the values 1, 1, and in turn. The three

surfaces can thus be considered simultaneously.
We propose to determine the sections of the surfaces (1) by

an arbitrary plane,

(2) Ax + By + Cz = k.

At least one of the coefficients A, B, C is not zero. Assume
that (7 = 0. Then the sections in question are also the curves

in which the plane (2) meets the cylinders whose equations
result from the elimination of z from equations (1) and (2),

namely, the cylinders

(3)
_--- =

a2 62 c2<72

Considering the sections from this point of view, we conclude

the following theorems.

THEOREM 1. The section of a hyperboloid or a cone is a conic.

For, the cylinders (3) are quadric cylinders, and a section

of a quadric cylinder is a conic
;
cf. Ch. XXII, 6, Th. 1.

THEOREM 2. Two parallel sections of a hyperboloid or a cone

are conies of the same type. They are, moreover, similar and

similarly placed, or, in the case of two hyperbolas, each is similar

and similarly placed either to the other or to the conjugate of the

other.

To prove this theorem, we fix our attention on one of the

surfaces (1), say the hyperboloid Hly and give to k two arbi-

trarily chosen values, ki and k2 ,
thus obtaining two arbitrary

'parallel sections of HI. The coefficients of the quadratic

terms in the two equations (3) which result are respectively

equal, since these coefficients in the general equation (3) do

not contain k. Hence, by p. 260, Ex. 40, the directrices of the

cylinders defined by the two equations are similar- and simi-

larly placed conies, or, in the case of two hyperbolas, each is

similar or similarly placed either to the other or to the conju-

gate of the other. Consequently, by Ch. XXII, 6, Th. 2,
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this is true also of the sections of the cylinders by the two

planes, q. e. d.

THEOREM 3. The sections of two conjugate hyperboloids and

the common asymptotic cone by the same plane or by parallel

planes are similar and similarly placed conies, or, in the case of

hyperbolas, one of any two is similar or similarly placed either

to the other or to the conjugate of the other.

It is sufficient to prove the theorem for the sections of the

three surfaces by a single plane, since its truth for sections by

parallel planes will then follow from Theorem 2. Here, then,

k is fixed, and A takes on successively the values 1, 1, 0.

But the coefficients of the quadratic terms in (3) do not

contain X, and hence we reach the desired conclusion imme-

diately, by reasoning identical with that used in the proof of

Theorem 2.

The following theorem is now obvious.

THEOREM 4. A plane which intersects a hyperboloid or a cone,

but not in a non-degenerate conic, cuts it in a degenerate conic,

which is of the same type as any section by a parallel plane.

Accordingly, to ascertain the type of conic (degenerate or

non-degenerate) in which a plane intersects a hyperboloid, it

is necessary merely to determine the type of degenerate conic

in which the parallel plane through the center meets the

asymptotic cone. But the planes through the center intersect

the cone in degenerate conies of all three types. Consequently,
a hyperboloid has sections of all three types.

EXERCISES

1. Show that every plane section of an ellipsoid is an ellipse

and that parallel sections are similar and similarly placed

ellipses.

2. Prove that an elliptic paraboloid has no hyperbolic sec-

tions, that sections by parallel planes cutting the axis are

similar and similarly placed ellipses, and that sections by
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parallel planes parallel to the axis are equal and similarly

placed parabolas.

3. Prove that a hyperbolic paraboloid has no elliptic sec-

tions, that sections by two parallel planes cutting the axes

are hyperbolas, one of which is similar and similarly placed
either to the other or to the conjugate of the other, and that

sections by parallel planes parallel to the axis, but not to. a

directrix plane, are equal and similarly placed parabolas.

6. Circular Sections. Consider a section of the ellipsoid

by a plane M passing through the axis of y. The section is an

ellipse, one of whose axes is always the mean axis, 26, of the

ellipsoid, no matter how M is situ-

ated. When M, starting from the

(x, 2/)-plane, rotates in either direc-

tion into coincidence with the (y, z)-

plane, the second axis of the ellipse,

starting from the major axis, 2a, of

the ellipsoid, decreases continuously
to the minor axis, 2c. Consequently,
there must be a single position of M,
in each direction of rotation, for

which the second axis of the ellipse takes on the value 2b

equal to the first. But then the ellipse is a circle.

These two positions, KOB and LOB, of the plane M can

be constructed by describing in the upper half of the
(z, x)-

plane a semicircle whose center is at and whose radius is &.

The semicircle will meet the ellipsoid in the desired points K
and L.

Since the sections of (1) by the planes KOB and LOB are

circles, so also are the sections by planes parallel to KOB and

LOB, by 5, Ex. 1. The ellipsoid has, then, these two sets of

circular sections and, as can be shown (Ex. 1), only these two.
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It can be proved in the same way that the hyperboloid of

one sheet

contains just two sets of circular sections. Hence it follows,

by 5, Th. 3, that this is true also of the cone and the hyper-
boloid of two sheets. It is to be noted, however, that there

are no circular sections of the cone by planes through the

vertex and none of the hyperboloid of two sheets by planes

through the center.

The results obtained we now consolidate into a theorem. ,

THEOREM. An ellipsoid, a hyperboloid, or a cone, which is

not a surface of revolution, contains just two sets of circular

sections.

If, in Fig. 9, b approaches a as its limit, the planes KOB
and LOB both approach as their limits the (x, y)-plane. Con-

sequently, an ellipsoid of revolution has but one set of circu-

lar sections. This is true also of the hyperboloids and cones

of revolution.

The circles in which the planes KOB, LOB intersect the

ellipsoid evidently lie on the sphere whose center is at and

whose radius is b :

(3)
*l
2

+ ^+ - = l.

62 6 2 62

They therefore lie on the surface whose equation results from

subtracting (1) from (3) :

or c2 (a
2
-6-)

2 -a2
(6

2 -c2
)2

2

But this surface consists of the two planes

(4) cVa2 - 62 x aV&2 - c2 z = 0.

Consequently, these are the equations of the planes KOB,
LOB.
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EXERCISES

1. To show that the ellipsoid (1) has but two sets of circu-

lar sections, prove first, using the fact that the centers of the

circles of any set lie on a line ( 8, Problem 1), that every
circular section must be symmetric in a principal plane ;

then

show that a section of (1) by a plane passing through the x-

axis or the z-axis is never a circle.

2. Prove geometrically that the hyperboloid (2) has two

sets of circular sections. Give a construction for the planes

through the origin which yield circular sections.

3. Find the equations of the planes just mentioned.

4. Show that the elliptic paraboloid (1), (3), where a > 6,

has two sets of circular sections, by proving first that this is

true of the elliptic cylinder

C2 tft

5+fc-i.
'

5. A hyperbolic paraboloid has no circular sections.

Why?

7. Tangent Lines and Planes. Let the line L through the

point PQ : (x , y ,
z ) with the direction cosines cos a = A,

cos ft
=

PL,
cos y = v meet the ellipsoid

(1) + +^1
a?^b* c*

in two distinct points, Pt and P2. To find the coordinates,

(xi, y\> z
i)
and (

X2, K2> 2)j
of Pl and P2 .

The parametric representation of L is

(2) x = x + Xr, y = y + p.r, z = z + vr,

where r is the algebraic distance from P to P : (x, y, z) ;
cf.

Ch. XX, 8. The point P of L lies on the ellipsoid, if and

only if its coordinates (x, y, z), as given by (2), satisfy (1),

that is, if and only if r satisfies the equation



QUADRIC SURFACES 567

Since L intersects the ellipsoid in two distinct points, (3)

has two distinct roots. If we denote them by r
}
and r2 ,

the

coordinates of P and P2 are

yl
= t/ + /An, Zi = + ^'i 5

Tangent Line. Suppose, now, that P lies on the ellipsoid.

Then one of the points of intersection of L, say P2 ,
coincides

with PQ. Analytically, we have

ff 2 ,,2 M Z

(A\ ^0 _|_ yp, I

Z
1

a2+ 62+^-
so that the absolute term in (3) is zero

; also, rz = and r! is

the distance from P to Px .

Imagine a curve drawn on the surface through P and Pt,

for example, an arbitrary plane section, C, through P and Pj.

The line L is the secant P Pi of C and its

limiting position, as Pl moving along C
approaches P as its limit, is the tangent
to C at P . We define this tangent as the

tangent line to the surface at P in the direc-

tion of the curve C. Fia. 10

When P approaches P ,
then no matter

what curve C of approach is chosen rj approaches zero. But,
when r approaches zero, the coefficient of r in (3) approaches

zero, and conversely. Consequently, the line L is a tangent to

the ellipsoid (1) at the point P on the ellipsoid if and only if

(5} g(A . yw . V-Q
a2 &2 c2

Tangent Plane. There are evidently infinitely many lines

L tangent to the surface at P . For them X, p, v have varying
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values, which, however, always satisfy (5). To obtain the

locus of all the tangent lines L, we have only to eliminate the

auxiliary variables A, p, v, r from equations (2) and (5). Sub-

stituting the values of X, p., v as given by (2) into (5) and sup-

pressing the factor 1/r, we get the equation

o
|

which reduces, by virtue of (4), to

/6\ %* , M , o? _ i

a*
T

6* c2

But this is the equation of a plane. Hence we have the

theorem :

THEOREM 1. The tangent lines at a point PQ of an ellipsoid

all lie in a plane.

The plane of the tangent lines at P we define as the tan-

gent plane to the ellipsoid at P . Its equation is given by (6).

EXERCISES

Find for each of the following surfaces the condition that

a line L through a point P of the surface be tangent to the

surface. Prove the analogue of Theorem 1 and deduce the

equation of the tangent plane at P .

1. The unparted hyperboloid. 2. The biparted hyperboloid.

3. The elliptic paraboloid. 4. The hyperbolic paraboloid.

5. The cone, P not being at the vertex.

6. Prove that the tangent plane to a hyperboloid of one

sheet at a point P is the plane determined by the rulings

which pass through P . Hence show that the two sets of

rulings found in 4 exhaust all the straight lines on the

surface.

7. The same for a hyperbolic paraboloid.

8. Let Q be a quadric surface, not a cone or a cylinder.

Prove that a plane is tangent to Q if and only if it intersects
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Q in a point (a degenerate ellipse) or in two intersecting lines

(a degenerate hyperbola).

8. Diameters. Diametral Planes. Problem 1. Find the

locus of the centers of parallel sections of the ellipsoid999
T** 1 /* *y*

(!)
L
2
+ r2 + l = 1 -

a2 b2
<?

Let the common normals to the planes of the sections have

the direction components A, B, C. Let P: (X, T, Z) be the

center of one of the sections and let L, with the direction

cosines X, p., v, be an arbitrary line through P, which lies in

the plane of this section. The parametric equations of L are,

then,

(2) x = X + \r, y=Y+fir, z=Z + vr,

where r is the algebraic distance from P to (x, y, z).

Since the points of intersection of L with the ellipsoid are

equally distant from P, their algebraic distances, r and r2 ,

from P are negatives of each other : rx -f r =0. But rl} r2 are

the roots of the quadratic equation

and consequently, by Ch. XIII, 5,

This equation says that the direction whose components are

X/a?, Y/&, Z/c
2 is always perpendicular to L. But L is an

arbitrary line in one of the planes of the sections and the only
direction which is always perpendicular to it is that of the

normals to these planes, that is, the direction whose compo-
nents are A, B, C. Consequently, X/cf-, Y/b"

1
, Z/c

2 are pro-

portional to A, B, C, or

(5)
A = ^. = _^.
a2A WB <?C
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The centers of the sections lie, then, on a line through the

center of the ellipsoid. Such a* line is known as a diameter.

Accordingly, we can state our result as follows.

THEOREM 1. The locus of the centers of parallel sections of
the ellipsoid (1) is that portion of a diameter which lies within

the ellipsoid. If the direction components of the normals to the

planes of the sections are A, B, C, those of the diameter are a2
A,

Exercise. The tangent planes at the extremities of a

diameter are parallel to the sections whose centers the diame-

ter contains.

Problem 2. Find the locus of the mid-points of a set of

parallel chords of the ellipsoid (1).

Let X, p., v be the given direction cosines of one of the chords

and let P : (X, Y, Z) be the mid-point of the chord. Then

equations (2) represent the chord parametrically.

Since P is the mid-point of the chord, the algebraic dis-

tances, ri and r, from it to the end points of the chord are

negatives of each other : rv + r2
= 0. Hence, as in Problem 1,

we obtain the equation (4). But, whereas in that problem

X, /*, v were auxiliary variables, here they are given constants,

and hence (4) is the equation satisfied - by the point P of the

locus. But (4) represents a plane through the center of the

ellipsoid. Such a plane is known as a diametral plane. Thus

our result is :

THEOREM 2. The locus of the mid-points of a set of

parallel chords of the ellipsoid (1) is that portion of a dia-

metral plane lying within the ellipsoid. If the direction com-

ponents of the chords are I, m, n, the equation of the diametral

plane is

-2
c
2
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Conjugate Diameters and Diametral Planes.

THEOREM 3. If a diameter D contains the centers of sections

parallel to a diametral plane M, then M bisects the chords

parallel to D, and conversely.

For, let D have the direction com-

ponents I, m, n, and let M be the plane

Ax + By + Cz = 0.

The condition that D contain the cen-

ters of sections parallel to M is, by Th.

1, that %
'

FIG. 11

l:m:n = a2A:b2
: c

2
C.

The condition that M bisect the chords parallel to D is, by
Th. 2, that

4.<*:CN.ifS : .

a2 62
c
2

The two conditions can both be written in the form

(K\
? m n

~a*A~WB~&C'
%

and are, therefore, equivalent, q. e .d.

A diameter D and a diametral plane M in the relationship

described are said to be conjugate. We have, then, the follow-

ing theorem.

THEOREM 4. The diameter D with the direction components

I, m, n and the diametral plane Ax + By + Cz = are conjugate

if and only if

fR\
I _ m n

a*A~tfB~~c*C'

Exercise. Show that an axis and the principal plane per-

pendicular to it are conjugate, and that in no other case is D
perpendicular to its conjugate, M.

THEOREM 5. If two diameters, DI and D2 ,
are conjugate in

the ellipse E in which their plane meets the ellipsoid, each lies in

the diametral plane of the other.
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E

FIG. 12

For, since Dt is conjugate to D2 in E, DI bisects the chords

of E parallel to D2 . But the diametral plane M2 conjugate to

D2 also bisects these chords. Hence

DI must be the line in which M2 meets

the plane of E, and so DI lies in M2 .

Similarly, D2 lies in the diametral plane,

M1} conjugate to Dt .

THEOREM 6. If one diameter lies in

the diametral plane conjugate to a second,

then the second diameter lies in the diametral plane conjugate to

the first.

Suppose that D lies in the diametral plane Mz conjugate to

D2. It will follow, then, by Th. 5, that D2 lies in the di-

ametral plane Ml conjugate to D
1}

if we can show that Dl and

D2 are conjugate diameters in the ellipse E (Fig. 12). This is

the case, for, since M2 bisects all chords parallel to D2 ,
then

D! bisects all chords of E parallel to D2 .

Conjugate Diameters. Conjugate Diametral Planes. Given

three diameters DI, D2 ,
D3 and three diametral planes MI, M2 ,

Mz such that DI, D?, D3 are the lines of

intersection of M1} -M2 ,
M3 or Ml} M.2 ,

M3

are the planes determined by DI, D2 ,
D3

(Fig. 13). Consider the following re-

lationships :

RI : DI, D2 ,
D3 and Mlt M2 ,

M3 are re-

spectively conjugate ;

Each diameter contains the centers of sections parallel to

the plane of the other two
;

Each diametral plane bisects the chords parallel to the

line of intersection of the other two.

According to the definition of conjugacy of a diameter and a

diametral plane, these relationships are equivalent :

THEOREM 7. Any one of the relationships R is equivalent to

each of the other two ; that is, if any one holds, so does each of

the other two.

FIG. 13

R

R.
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Three diameters in the relationship R2 are called conjugate

diameters, and three diametral planes in the relationship R3

are called conjugate diametral planes.

There are infinitely many sets of three diameters and three

diametral planes in the relationship Rv . For, let E be an

arbitrary section of the ellipsoid by a plane through 0, and

let Dl and D2 be any two diameters conjugate in E. Then
the diametral planes MI and M2 conjugate to D and D2 will,

by Th. 5, pass through D2 and Dt respectively. Finally, the

diametral plane, M3) conjugate to the diameter, D3 ,
in which

MI and M2 intersect will, by Th. 6, contain DI and D2 and

hence must be the plane of DI and D2.

The following theorems follow directly by application of

Theorems 2 and 1, respectively.

THEOREM 8. The diameters with the direction components
li} mi, ni} 12 ,

m2 ,
n2,

Z3 ,
m3 ,

n3 are conjugate if and only if

,2 t2 , 2 _ ft-
j

-
j
- \) *

a2 6- c2

m2m3 23 _ A"-
:()>

,

^"
H

THEOREM 9. The diametral planes

Ajx +B& + C}
z = 0, A2x+ B2y + C& = 0, A3x+ B3y+C3z =

are conjugate if and only if

tfAiAt + WBiBz + c-Ci(72 = 0,

a2^2^3 + Z>
2B2B3 + C2(72 (73 = 0,

a*A3Ai + VB.^ + c^CsC, = 0.

EXERCISES

State and prove for the following surfaces the theorems

analogous to Theorems 1, 2.

1. The unparted hyperboloid.
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2. The biparted hyperboloid.

3. The elliptic paraboloid. Show, in particular, that the

diameters and diametral planes are all parallel to the axis.

4. The hyperbolic paraboloid. Describe the positions of

the diameters and diametral planes.

Give reasons for the following exceptions to the theorems

just proved.

5. Hyperboloids. There is no analogue to Theorem 1 for

parallel sections parallel to an element of the asymptotic cone,

and no analogue to Theorem 2 for lines parallel to an element

of the asymptotic cone.

6. Paraboloids. There is no analogue to Theorem 1 for

parallel sections parallel to the axis, and no analogue to Theo-

rem 2 for lines parallel to the axis. In the case of a hyper-
bolic paraboloid there is also no analogue to Theorem 2 for a

set of parallel lines parallel to a directrix plane.

State and prove for the following surfaces the theorems

analogous to Theorems 3, 4.

7. The imparted hyperboloid.

8. The biparted hyperboloid.

9. There are no conjugate diameters and diametral planes
for a paraboloid. Why ?

10. Find for the ellipsoid (1) the equation of the diametral

plane conjugate to the diameter through the point (x0) y ,
z )

of the surface.

11. Prove that the pairs of conjugate diameters and dia-

metral planes are the same for two conjugate hyperboloids.

12. Discuss the conjugacy of three diameters or three dia-

metral planes for either hyperboloid.

13. Prove Theorems 8, 9.

14. State and prove the analogues of Theorems 8, 9 for

either hyperboloid.
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9. Poles and Polars. Through a point PQ : (x , y ,
z ) not on

the ellipsoid :

an arbitrary line L is drawn meeting the ellipsoid in Qt and

Q2- What is the locus of the point P which with P divides

QiQ2 harmonically?

By the method used in solving the corresponding problem
in the plane, Ch. XIV, 9, the locus is found to be the plane

or a portion of this plane.

The point P (not on the ellipsoid) and the plane (2) are

said to be pole and polar in the ellipsoid : P is the pole of (2),

and (2) the polar of P - A point on the ellipsoid and the

tangent plane at the point are defined to be pole and polar.

By the methods of Ch. XIV, 9-11, the following theorems

can now be proved.

THEOREM 1. Let Q be a central quadric (an ellipsoid or

hyperboloid). Every point in space, except the center of Q, has

a polar with respect to Q.

THEOREM 2. Every point in space has a polar with respect

to a paraboloid.

THEOREM 3. Let Q, be a central quadric or a paraboloid.

Every plane in space, which is not a diametral plane of Q, has

a pole with respect to Q.

The poles and polars considered in the following theorems

are taken with respect to an arbitrarily chosen central quadric
or paraboloid.

THEOREM 4a. If one point lies in the polar plane of a second,

the second point lies in the polar plane of the first.

THEOREM 46. If one plane contains the pole of a second, the

second plane contains the pole of the first.
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THEOREM 5a. If a number of points lie on a line L, their

polar planes pass through a line L' or are parallel.

L]
THEOREM 56. If a number of planes pass

through a line L' (or are parallel), their poles

lie on a line L.

Theorems 5a, 56 are peculiar to the geometry
of space. We give a proof of Theorem 5a.

Let P^fo, yl} Zi), P2 :(2, 2/2, z2) be. two

FIG. 14 distinct points. Their polar planes are

WEE^ +M +^_i=0,
V^+M +^_ 1 = .

or cr cr a 2 62
c2

Let P3 : (xs , 2/3,
z3) be an arbitrary point of the line

Then, by Ch. XXI, 2,

x3
= pxi + (1

-
p)xt, 2/3

= pyi + (1
-

p)2/2, 3 = pzi + (1
-

Consequently, the polar plane of P3 , namely

XsX.ysV ,
z3z

-,
_ ft

i~ """ TF "~ ~Ia"
~

'

a 2
62

c
2

can have its equation written in the form

pu + (1 p) v = 0,

and hence passes through the line of intersection of the polar

planes of Pt and P2 ,
if they intersect, or is parallel to them, if

they are parallel, q. e. d.

Two lines L and L', in the relationship described in The-

orem 5a or 56, are each said to be polar or conjugate to the

other. The following theorems concerning polar lines are

readily proved ;
cf. Ths. 8a, 86 of Ch. XIV, 11.

THEOREM 6a. The polar of a line intersecting the quadric in

two distinct points is the line of intersection of the tangent planes

at these points.

THEOREM 66. The polar of a line not meeting the quadric is

the line joining the points of contact of the two planes through the

line tangent to the quadric.
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THEOREM 6c. The polar of a tangent to a quadric, not a

ruling, is a second tangent line with the same point of contact.

A ruling of a quadric is self-polar.

EXERCISES

Establish formula (2) and the analogous formulas for the

other quadrics. Prove the theorems stated without proof in

the text.

Discuss poles and polars with respect to a sphere (cf. Ch.

XIV, 9, Exs. 9-11), showing, in particular, that two polar

lines are always perpendicular.

10. One-Dimensional Strains, with Applications.* The one-

dimensional strain which stretches all space directly away from

the (y, z)-plane (or compresses all space directly towards the

(y, z)-plane), so that each point is carried, along a parallel to

the axis of x, to a times its original distance from the
(?/, 2)-

plane, where a is a positive constant not unity, has the equa-
tions

i) x' = ax, y' = y, z' = z.

Similarly, the equations

ii) x' = x, y' = by, z' = z,

iii) x' = x, y' = y, z' = cz,

where b and c are positive constants different from unity,

represent one-dimensional strains in the directions of the axes

of y and z respectively.

One-dimensional strains have the following properties :

A. Planes go into planes, and hence straight lines go into

straight lines
;

B. Parallel planes go into parallel planes and hence paral-

lel straight lines go into parallel straight lines
;

C. Tangent surfaces go into tangent surfaces, and tangent
curves into tangent curves.

* Cf. Ch. XIV, particularly 5.
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One-dimensional strains do not in general preserve angles

or areas. They never preserve volumes
;
for example, i) car-

ries a portion of space of volume V into a portion of space of

volume aV.

The product of the three one-dimensional strains
i), ii), iii)

is the transformation

T: x' = ax, y' = by, z
r = cz.

It is clear from the foregoing that T carries a portion of space
of volume V into a portion of space of volume abc V.

Applications. The sphere

(1) x* + y* + z* = l

is carried by the transformation T into the ellipsoid

The volume of the sphere is
|TT.

That of the ellipsoid is,

then,

THEOREM 1. The volume of the ellipsoid (2) is

V= firabc.

Let the triples

(3) AX, /*!, vi, A2, pv, v2,
A3 , p.3, v3

be the direction cosines of three mutually perpendicular (and
hence conjugate) diameters, Di}

D2 ,
D3 ,

of the sphere (1).

They are, then, also the coordinates of three points, Plt P2 , Pa,

on the sphere, which are respectively extremities of Dj, DZ) D3 .

Now T carries Dlt D2 ,
D3 into three diameters, ZV> D-t, D3

'

t

of the ellipsoid (2), and carries PI, P2 ,
P3 into three points,

PI, PZ, PS'> on the ellipsoid, which are respectively extremi-

ties of ZV, D2 ', D3 '. Evidently, the triples

(4) aAi, 6/*i, cvj, aAa, b^, cv2 ,
aA3, bp*, Cv3

are both the coordinates of P/, P2
'

PS' an{l the direction com-

ponents of DI, D2', D3'.
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Considered as the direction components of A'> A'> A'> the

triples (4) satisfy the conditions of Th. 8, 8. Hence we
have the theorem :

THEOREM 2. The transformation T carries three mutually

perpendicular (and therefore conjugate) diameters of the sphere

(1) into three conjugate diameters of the ellipsoid (2).

It follows, by Th. 7, 8, that T carries three mutually

perpendicular diametral planes of (1) into three conjugate
diametral planes of (2), and carries a diameter and the per-

pendicular diametral plane of (1) into a diameter and the con-

jugate diametral plane of (2).

Considered as the coordinates of P/, P2', P3', the triples

(4) give immediately, as the squares of the half-lengths of the

diameters A'> A'> A'>

aV + &V + cV, aV + &V + cV, 2A3
2 + &W + cV-

The sum of these squares is

a2
(Aj

2 + V + A3
2
)+ b*-(tf + tf + M3

2)+ c>t
2 + v2

2 + v3
2
).

Since the triples (3) are the direction cosines of three mutu-

ally perpendicular lines, so also are the triples

A!, AS, A3 , pi, /x2 , fj.3 , vi, v2, v3 ;

cf. Ch. XXIV, 6. Hence the above sum has the value

tt
2 + &2'+ C2

and is therefore independent of the three conjugate diameters

A'i A', A' taken.

THEOREM 3. The sum of the squares of the lengths of three

conjugate diameters of an ellipsoid is constant.

EXERCISES

1. Prove analytically the properties A, B, C of one-dimen-

sional strains.

2. What angles and what areas does the transformation i)

preserve ?
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3. Prove that i) carries a region of volume V into a region
of volume a V.

4. Show that T carries a line with the direction components

Z, m, n into a line with the direction components al, bm, en.

5. The plane M goes into the plane M' under T. If the

direction components of the normals to M are A, B, C, what

are those of the normals to M' ?

6. Assuming the equation of the tangent plane to the sphere

(1) at the point (x , y ,
z

),
deduce by means of the transforma-

tion T the equation of the tangent plane to the ellipsoid (2)

at the point (x ', y ',
2

').

7. Show that a hyperboloid of general type can always be

carried into a hyperboloid of revolution by means of a trans-

formation of the form T.

EXERCISES ON CHAPTER XXIII

1. Find the equation of the quadric surface generated by
the lines x Xz = 0, \y z = 0, where A is a parameter. De-

termine the equations of the second set of rulings and set up
a parametric representation of the surface.

2. The same for the lines y A 1=0, \x z + 2 = 0.

3. Find the equations of the planes which pass through the

line y = 2, x + 2z = and are tangent to the ellipsoid

aj + 3y2 + 2z2 = 6.

4. Prove that the sections of the hyperbolic paraboloid and

hyperbolic cylinder :

by the same plane or by parallel planes, oblique to the z-axis,

are hyperbolas, each of which is similar and similarly placed
to the other or to the conjugate of the other.

5. The umbilics of a quadric surface which has circular sec-

tions are the extremities of the diameters which contain the
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centers of these sections. Find their coordinates in the case

of the ellipsoid (1), 1.

SIMILAR QUADRICS

Definition. Two central quadrics are said to be similar if

the principal sections of one are similar, respectively, to the

principal sections of the other.

6. Prove that the ellipsoids defined by the equation

(1) *+ + -*= *> X >>
a- b- c2

where A. is a parameter, are similar.

7. Show that, of the hyperboloids represented by the

equation

those for which A. is positive are all similar, and that this is

true also of those for which A. is negative. Prove that all the

hyperboloids have the same asymptotic cone.

8. Prove that all the ellipsoids (1) have the same pairs

of conjugate diameters and diametral planes.

9. The same for the hyperboloids (2).

Definition. Two paraboloids of the same type are similar,

if the principal sections of one are proportional in scale

(Ch. VI, 1) to the principal sections of the other.

10. Prove in each case that the paraboloids defined by the

given equation are all similar :

*cr o' a- o-

EULED SURFACES

11. Show that the pencil of planes through the ruling V of

the hyperboloid (1), 4, cuts the surface in the set of rulings

U and that the pencil of planes through C7 cuts it in the

rulings V.
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12. Let P be a point on the minimum ellipse of the hy-

perboloid (1), 4, and let < be the common angle which the

two rulings through P make with the z-axis. Prove that

tan < =&i/c, where &! is the half-length of the diameter of the

minimum ellipse which is conjugate to the diameter through P.

13. Using the result of Ex. 12, show that a hyperboloid of

revolution of one sheet can be generated by the rotation of a

ruling of either set about the axis which does not meet the

surface.

14. Prove that the rulings of one set on a hyperbolic para-

boloid intercept proportional segments on two rulings of the

other set.

Loci

15. Find the locus of a point which moves so that its dis-

tance from a fixed point bears to its distance from a fixed

plane, not through the point, a constant ratio, k.

Ans. A quadric of revolution which is an ellipsoid, an

elliptic paraboloid, or a hyperboloid of two sheets, according

as k is less than, equal to, or greater than unity.

16. A point moves so that its distance to a fixed point bears

to its distance to a fixed line, not through the point, a constant

ratio. Find its locus.

Exercises 17-19. In connection with these exercises, Exs.

28, 29, p. 522 will be found useful.

17. Find the locus of a point which moves so that its dis-

tances to two skew lines are always in the same ratio, k.

18. Prove that a line which is rotated about an axis skew

to it generates a hyperboloid of revolution of one sheet
;

cf.

Ex. 13.

19. Let L and L' be two fixed skew lines and let M and M'

be two planes, which pass through L and L' respectively and

so move that they are always mutually perpendicular. Find

the locus of their line of intersection.
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20. The locus of a line which so moves that it always inter-

sects three fixed skew lines, not parallel to a plane, is a hyper-
boloid of one sheet. Prove this theorem in the case that the

fixed lines are

f
X = C,

f X = C, \X = Z COt 0,

\ y = z cos
; \ y = z cos 6

; } y = c sin 0,

where c = and 6 = 0, n-.

21. The locus of a line which so moves that it always inter-

sects three fixed skew lines, parallel to a plane, is a hyperbolic

paraboloid. Prove this theorem in the case that one of the

fixed lines is the axis of z and the others have the equations
x = c, z = my ;

x = c, z = my, where cm 3= 0.

22. A line moving so that it is always parallel to a fixed

plane, M, and always intersects two fixed skew lines, neither

of which is parallel to M, generates a hyperbolic paraboloid.

Prove this theorem when M is the (x, z)-plane and the two fixed

lines are the last two of the three in Ex. 21.



CHAPTER XXIV

SPHERICAL AND CYLINDRICAL COORDINATES.
FORMATION OF COORDINATES

TRANS-

1. Spherical Coordinates. Given a point 0, a ray OA issu-

ing from 0, and a half-plane m bounded by the line of the ray
OA. Let P be any point of space. Join P
to O and construct the half-plane, #, deter-

mined by OA and OP. Denote the distance

OP by r, the angle AOP by <f>,
and the angle

from the half-plane m to the half-plane p by 6.

Then (r, <, 0) are the spherical coordinates of

the point P.

For a given value, r
,
of the radius vector r,

the point P lies on a sphere whose center is

at and whose radius is r = r . The angle

6 is the longitude of P, measured from the

prime meridian m, and the angle < is the

colatitude (complement of the latitude), at least for a point P
on the upper half of the sphere.

The radius vector r is, by definition, positive or zero. The
colatitude

<f>
shall be restricted to values between and TT in-

clusive : <
</>
< TT. The longitude 9 shall be unrestricted

;
it

shall be taken as positive if measured in the direction shown,
and as negative, if measured in the opposite direction.*

* It is possible to define spherical coordinates so that r or <j>
or both

are also unrestricted. Systems of these extended types are not oftjen

necessary, and when exceptional need for them occurs, they can easily

be introduced.

584

FIG. 1
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It is clear that the r- and ^-coordinates of a given point P
are unique, while the 0-coordinate has infinitely many values,

each two differing by an integral multiple of 2 TT.* Conversely,

if r, <," e are given, such that r > and < $ < IT, a unique

point P is determined.

Let r
,

<
,

be particular values of r, (f), e, such that r >
and < < < TT. The equation r = r represents a sphere,

whose center is at and whose radius is r
;

< =
<j!>

defines

one nappe of a circular cone whose vertex is at and. whose

axis lies along OA ; finally = represents a meridian half-

plane issuing from the line of OA.

Transformation to and from Rectangular Coordinates. Let

P be any point of space whose coordinates, referred to a system
of rectangular axes, are (x, y, z). Let P have the spherical

coordinates (r, <, 6) with respect to 0,

OA, and m, as chosen in the figure. It is

clear that

x = ON cos e, y = ON sin 0,

and ON= r sin
<f>,

z r cos <.

Hence the values of x, y, z in terms of r,

(f>,
e are

x = r sin < cos 0, y = r sin
<f>

sin 0,

z = r cos d>. FlG - 2(1)

Since r is the distance from to P : (x, y, z), we have also that

(2) ^ = a? + 3/2 + 2.

EXERCISES

1. Plot the points (2, 90, 180), (4, 60, - 30), (8, f TT, f TT).

2. Find the rectangular coordinates of the points of Ex. 1.

3. Find the spherical coordinates of the points (0, 2, 0),

(3, 4, 12), (2, 2, 1), checking each result by a figure.

* It is to be noted, however, that for every point P on the line of OA
6 is undetermined and that for in particular is also undetermined.
Cf. Ch. X, 1.
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4. What do the following equations represent ?

(a) r = 7; (6) < = 30
; (c)

= f7r;

(d) tan 6 = 1
; (e) tan < = 1

; (/) 4 cos2
</>
= 1.

5. Find the equations in spherical coordinates of the follow-

ing surfaces :

(a) The sphere of radius 5, center at
;

(&) The meridian half-plane of longitude 35
;

(c) The complete plane determined by this half-plane ;

(d) The upper nappe of the circular cone whose vertex is

at 0, whose axis is along OA, and whose generating angle is

60;

(e) The lower nappe of the cone of (d) ;

(/) The cone of (d).

6. What do the following pairs of equations represent ?

(a) r = 3, ( = 120; (d) r = 3, tan2
< = l;

(6) r = 3, 0=f7r; (e) tan = 2, <f>
= *;

(c) 6 = 30, 4 = 45
; (/) tan = -

1, cos2
</> =f

7. Find the equations in spherical coordinates of the fol-

lowing curves :

(a) The small circle on the earth of colatitude 47
;

(6) The semicircle on the earth of longitude 135
;

(c) The complete circle determined by the semicircle of (6) ;

(d) The ray from of colatitude 60 and longitude 25.

8. Determine the locus of each of the following equations :

(a) r = 4 cos <
; (6) r 6 sec <

; (c) r = 3 esc <.

Find the equations in spherical coordinates of the following

surfaces. Identify each surface.

9. x* + f + z2 = 9. 13. 3x + 2y = Q.

10. x> + / - fcV = 0. 14. 3 z - 4 = 0.

11. a2 + f- + z2 = 4 y. 15.

12. 4(x
2 + ?/

2
) + 9 z2 = 36. 16.
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FIG. 3

2. Cylindrical Coordinates. Given a point 0, the axis of z

through 0, and the plane K through perpendicular to the

axis of z. In K introduce a system of polar coordinates, as

shown. Let P be any point of space and let N be its projec-

tion on K. Then the polar coordinates, r and 0, of N and the

directed line-segment NP = z deter-

mine the position of P. The three

numbers, taken together, are known
as the cylindrical coordinates (r, 0, z)

of P.

As in the case of polar coordinates

in the plane (Ch. X, 1), r is re-

stricted to be positive or zero, while

is unrestricted. The positive direc-

tion of rotation for the measurement

of 6 is as indicated in the figure.

If r (> 0), #o, ZQ are particular values of r, 0, z, the equation
r = r represents a circular cylinder whose axis is the axis of

z
;
6 = defines a half-plane issuing from the axis of z, and

z = z represents a plane perpendicular to the axis of z.

Transformation to and from Rectangular Coordinates.

Choose in the plane K the Cartesian axes of x and y shown in

Fig. 3. Referred to these axes and the axis of z, P has the

rectangular coordinates (x, y, z).

It is clear that the z of the rectangular coordinates of P is

precisely the z of the cylindrical coordinates of P. The for-

mulas for x, y in terms of r, 6 and for r, 6 in terms of x, y
are those of transformation in a plane from polar to rectangu-

lar coordinates, and vice versa (Ch. X, 6). In particular,

(1) x = r cos 0, y = r sin 0,

(2) r2 = a2 + y
2

.

EXERCISES

1. Plot the points (2, 40, 5), (4,
-

f TT,
-

3), (0, 122, 1).

2. Find the rectangular coordinates of the points of Ex. 1.
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3. Find the cylindrical coordinates of the points (3, 4, 8),

(12, 5, 3), (0, 0, 6), checking each result by a figure.

4. What do the following equations represent ?

(a) r = 5; (6)
= 225; (c) tan = 1.

5. Find the equations in cylindrical coordinates of the fol-

lowing surfaces :

(a) The circular cylinder of radius 7 whose axis is the axis

of 2;

(6) The half-plane bounded by the axis of z, the angle from

OA to it being 60
;

(c) The complete plane determined by this half-plane.

6. What do the following pairs of equations represent ?

(a) r=3, = -7r; (c) 2z = 5, = 120;

(6) r = 5, z = - 6; (d) 3z - 8 = 0, tan0 = 2.

7. Find the equations in cylindrical coordinates of the

following curves :

(a) An arbitrary line parallel to the z-axis
;

(6) The circle of radius 3, whose center is on the 2-axis and

whose plane is parallel to K and 5 units below it
;

(c) An arbitrary ray perpendicular to the axis of z and issuing

from a point on it
;

(d) The line of this ray.

8. Determine the locus of each of the following equations :

(a) r2 + z2 = 9; (6) r = 4sin0; (c) r sin = 5.

Find the equations in cylindrical coordinates of the follow-

ing surfaces. Identify each surface.

9. Ex. 9, 1. 10. Ex. 10, 1. 11. Ex. 11, 1.

12. Ex. 13, 1. 13. Ex. 14, 1. 14. Ex. 15, 1.

15. 3 (x
2- + y-} 2 z- = 6. 16. xy -f yz + zx = 0.

17. Prove that a plane through OA (Fig. 1) or Oz (Fig. 3)

is represented by the same equation in both spherical and

cylindrical coordinates.
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3. Triply Orthogonal Systems of Surfaces. Consider the

three sets, or families, of planes which are parallel to the co-

ordinate planes of a Cartesian system. These families of

planes evidently have the following properties : (a) Through
each point of space there passes just one plane of each family ;

(6) Two planes of different families intersect at right angles.

We say, then, that the three families of planes form a triply

orthogonal system ofplanes.
The equations of the families are, respectively,

(1) x = k, y = I, z = m,

where k, I, m are arbitrary constants, or parameters, each tak-

ing on any value, positive, zero, or negative.

Since through a point P: (x , y ,
z ) there pass just three

planes, one from each family, namely the planes x = x
, y y ,

z = z
,
and since, further, P is the only point which the three

planes have in common, the position of P can be thought of as

determined by the three planes. From this point of view,

then, the basis of the rectangular coordinate system is seen to

be the triply orthogonal system of planes (1).

In the case of a system of cylindrical coordinates, consider

the three families of surfaces :

(2) r = k, 6 = 1, z=m,

where, of the parameters k, I, m, k cannot be negative (or zero),

I may be restricted to the range of values : < I < 2?r, and m
is unrestricted.

The first family of surfaces consists of the

circular cylinders with the axis of z as axis
;

the second family is made up of the half-planes

issuing from the axis of z
;
and the third, of

the planes perpendicular to the axis of z. It

is easily seen that through each point of space,

with the exception of those on the z-axis, there

passes just one surface of each family, and
that two surfaces of different families intersect FIG. 4
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orthogonally. We say, then, that the three families form a

triply orthogonal system of surfaces.

A point P: (r , ,
z

),
not on the z-axis,* is the single point

of intersection of the three surfaces, r = r
,
6 = 6

,
z = z which

pass through it. Thus the basis of cylindrical coordinates is

the triply orthogonal system of surfaces (2).

EXERCISE

Write the equations of the three families of surfaces peculiar

to a spherical coordinate system. Describe each family and

draw a figure showing three surfaces, one from each family,

their curves of intersection and their common point. Prove

that the three families constitute a triply orthogonal system
of surfaces and show that this system can be considered as the

basis of spherical coordinates.

4. Confocal Quadrics. Consider the quadrics

a o c A;

/v.2 ,/2 2

(2)
-2 + -^--- =1, c2 < I < b\

2 _ i^ 52 _ i i_ G2

(3)
-----^ -- = 1, V < m < a\

a2 ra m b* m c2

where a, b, c are positive constants such that .a > 6 > c and

k, I, m are parameters subject to the given restrictions.

The surfaces (1) are all ellipsoids ;
the surfaces (2), all

hyperboloids of one sheet opening out along the axis of z
;
and

the surfaces (3), all hyperboloids of two sheets cutting the

axis of x.

The coordinate planes are the principal planes of all the

* To remove this exception, add to the family of cylinders, r = k > 0,

the axis of z, r = 0. Through a point P of this axis passes, then, one

surface each from the first and third families, and every surface of the

second. However, all these surfaces have but the one point P in com-

mon and hence can be considered as determining the position of P.
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surfaces. It is readily shown that the sections by the (x, y)-

plane of all the surfaces are confocal conies, the common foci

being at the points ( Va2 62
, 0, 0). Similarly, for the sec-

tions by the (z, cc)-plane of all the surfaces, and for the sections

by the (y, z)-plane of the surfaces (1) and (2), the (y, z)-plane

does not cut the surfaces (3). This property of the surfaces

(1), (2), (3) is expressed b*y calling them confocal quadrics.

It can be shown that through each point of space, with the

exception of those in the coordinate planes, there passes just

one surface of each type and that two surfaces of different

types intersect orthogonally all along a curve.* Consequently,
the confocal quadrics form a triply orthogonal system of surfaces.

This triply orthogonal system differs in one respect from

those studied in 3, in that the three surfaces, one of each

type, which pass through a

point P situated in a given
octant intersect not only in P
but also in one point of each

of the other octants
;

this is

clear since all three surfaces

are symmetric in each coordi-

nate plane. Consequently, in

the so-called ellipsoidal coordi-

nate system based on the con-

focal quadrics there are eight points with the same coordinates.

This ambiguity can be avoided, however, by considering only
a restricted region of space, for example, the first octant.

The equations (1), (2), (3) can be written as the single

equation

FIG. 5

(4) _ \ &2 _
= 1,

where X is arbitrary except that it shall not take on the values

c2
,
&2

,
a2

. If X < c2
, equation (4) defines the surfaces (1), etc.

;

finally, if X > a2
, (4) has no locus.

* Cf . Osgood, Differential and Integral Calculus, p. 326.
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EXERCISE

.Show that the equation

where A is a parameter not taking on the values a2 and 62
,

represents three families of paraboloids defined by the in-

equalities A < b2
,
W < A < a2

,
a2 < A. Describe each family

and show that the sections of all the surfaces by the common

principal planes the (y; z)- and (z, )-planes are confocal

parabolas with the axis of z as axis. The surfaces are known
as confocal paraboloids. They form a triply orthogonal system.

TRANSFORMATION OF COORDINATES

5. Transformation to Parallel Axes. To transform from a

system of rectangular axes to a new system of axes having the

same directions as the old, but with a dif-

ferent origin, consider a point P whose

coordinates with respect to the two systems

are, respectively, (a;, y, z) and (x' } y', 2
/

).

Then

x cc

Z = Z' + Z
,

,

2N x' = x -x . y' = y -
2/o,

z' = z z
,

where (x , y ,
z

)
are the coordinates of the new origin, O'

?

referred to the old axes
;

of. Ch. XI, 1.

Example. What surface is represented by the equation

Completing successively the squares of the terms in x, y,

and z, we have

2(aj
-

I)
2 + 3(y + I)

2 - 4(z- )
2 = 12.

On setting

x ==^ *c i
j y ^ y ~T~ J-j i?

~~
~s-j
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that is, on transforming to parallel axes with the new origin

at the point (1, 1, ^), the equation becomes

2z'2 + 3t/'
2 -4z'2 =12.

Equation (3) is thus seen to represent a hyperboloid of one

sheet whose center is at (1, 1, ^) and whose axes are parallel

to the coordinate axes. The hyperboloid opens out in the

direction of the axis of z and the semi-axes of the minimum

ellipse have the lengths V6 and 2.

EXERCISES

Determine and draw roughly the surface represented by
each of the following equations.

1. z2 -4z-6z
2.

3.

4. a;
2 - 3 y

2 + z2 - 8 x + 12 y + 6 z + 13 = 0.

5. 3y2
-f 4z2 -f-4a-6*/ + 16z + 27 = 0.

6. 2 x2 + 4 ?/
2

-T- 3 z2 - 8 x - 24 y 30 z - 19 = 0.

7. 2x>-3f + z* + 8x + 18y-16z-3 = 0.

8. z2
4-2?/

2 + 6z2 -2a;-2?/ + 18z + 9 = 0.

9. 2z2 -5?/2 + 3z2 + 202/ + 6z-47 = 0.

10. y* 2xz-2x-6y + 2z + 11 = 0.

6. Rotation of the Axes. Through the origin of the

(right-handed) system of (x, y, z)-axes, choose arbitrarily

mutually perpendicular directed lines to

serve as the axes of a new (right-handed)

system of coordinates
(#', y', z'). Let the

direction angles of the axis of x', referred

to the old system, be al9 /3j, ylt
let those

of the axis of y' be 2, fa, y2 >
and those

of the axis of z', 3 , /33 , ys .

Let an arbitrary point P of space FIG. 7

usual

three
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have the coordinates (x, y, z) and (a/, y', z') with respect to the

two systems. Join to P by the two broken lines OMNP
and OM'N'P, where

OM= x, MN= y, NP=z-, OM' = xf

,
M'N' = y', N'P= z'.

Then

(1) Proj. OM+ Proj. MN+ lProj. NP
= Proj. OM' + Proj. M N' + Proj. N'P,

no matter on what directed line the projections are taken.

Choosing the positive axes of x, y, and z in turn as this directed

line, we have

x = x' cos ! + y' cos o + z' cos 03,

(2) y = x' cos & + y' cos /32 + 2' cos f}3,

Z = X COS yi + y' COS y2 + z
'
cos 7s-

Here cos ax , cos/?!, cosyj the coefficients of a;' are the

direction cosines of the axis of x1

;
cos 2, cos /32 ,

cos y2 ,
those of

the axis of y' ;
and cos 03, cos /33 ,

cos y3 ,
those of the axis

of z'. Let us denote these direction cosines, for the sake of

brevity, by Xx , m, Vi , Xa, ^ v2,
X3 , /*3 ,

v3, respectively.

Since these triples of numbers are direction cosines and,

moreover, direction cosines of three mutually perpendicular

lines, we have

V + /"-I

2 + Vi
2 = 1, Xi\2 + p.lf*V + ViV2 0,

(3) X2
2 + tf + v2

2 = 1, X2X3 + f^n.3 + v2v3 = 0,

V + /*3
2 + V3

2 = 1, AgXi + /I3ft! + V3Vi = 0.

Since the three directed lines form a right-handed system, it

follows by Ex. 19 at the end of Ch. XVIII that the determi-

nant of their direction cosines has the value plus one :

(4) |X/Mv| = l.

Equations (3) and (4) express completely the fact that the

three given lines through which serve as the new axes are

directed, mutually perpendicular lines forming a right-handed

system.
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The direction cosines of any one of the three directed lines

can be expressed simply in terms of those of the other two

(Exs. 17, 18 at the end of Ch. Xyill) :

(") A2
=

P-S^I Mi^s? /^2
== ''sAi ^iA3 ,

v2 ^=

A3
==

/*iv2 PWi) P"S
== ^iX2 ^Xij v3 ==

A]ju,2 A<J/II.

Since a1} a2, 03 are the angles which the axes of x', y', z'

make with the axis of x, they are the direction angles of the

axis of x with respect to the new axes. Similarly, fa, /32 , fa

and yx , y2 , ys are respectively the direction angles of the axes

of y and z, referred to the new system. Consequently, the

equations of transformation from the new axes to the old are

x' = x cos KI + y cos fa -f- z cos y1?

(6) y' = x cos 05 + y cos fa + z cos y2 ,

z' x cos 3 + ?/ cos fa + z cos y3 .

The direction cosines of the old axes with respect to the new

are, in our notation, X1? A2 ,
A3 , ^ /u,2 , />t3 ,

vu v2 ,
v3 . It is clear

that between these three triples there exist relations similar

to the relations (3), (4), (5) for the original triples.*

The accompanying diagram gives equations

(2) and (6) in skeleton. Reading across we
obtain (2) and reading down we get (6). Also, x
the rows give the direction cosines of the old

axes with respect to the new, and the columns,7 Z V\ V2 V3
those of the new axes with respect to the old.

Example 1. Transform the equation of the surface

(7) 13 x2 + 13 f + 10 z
1 + 8 xy - 4 yz

- 4 xz - 36 =

to new axes through 0, whose direction cosines are respectively
_121 2_1_2 22_J_

i

* Of the new equations only those of the form (3) are different from the

old. The new equation (4) is obtainable from the old by interchanging
rows and columns in the determinant. Similarly, if in the present equa-
tions (5) the columns are written as rows, the result is the new equations

(6).
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Here * = i(- *' + 2 y' + 2
'),

y = i( 2*'- </' + 2z'),

z =
(

2rf + 2y'- z').

Substituting these values for a;, y, z in (7) and simplifying the

result, we obtain

as* + y'* + 2 z'2 = 4.

This equation represents an ellipsoid of revolution about

the-z'-axis as axis. Hence (7) represents an ellipsoid of revo-

lution whose axis is the line through with the direction

components 2, 2, 1.

Example 2. What surface is represented by the equation

(8)

We make the transformation to parallel axes

(9) x = x' + x
, y = y' + y ,

z =

aiming to choose the new origin (x , yQ ,
z ) so that in the equa-

tion resulting from (8) the linear terms in x', y', z' do not

appear. Substituting the values of x, y, z given by (9) into

(8), collecting terms, and then setting the coefficients of x', y',

and z' equal to zero, we obtain the equations :

47/0- 2z - 5 = 0,

a* + yo 5 zo + 10 = 0.
.

These equations have a unique solution, namely, x = 1,

y = - 1, z = 2.

If (8) is transformed to parallel axes with the new origin at

the point (1, 1, 2) thus determined, it becomes

13 x'2 + 13 y'
2 + 10 z'2 + 8 x'y'

- 4 y'z'
- 4 x'z' - 36 = 0.

But this is the same equation in x', y', z' as (7) is in x, y, z.

Hence (8) represents an ellipsoid of revolution whose center is

at the point (1, 1, 2) and whose axis of revolution has the

direction components 2, 2, 1.
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Example 3. Consider an equation in which only one of the

terms in xy, yz, zx is present, for example, the equation

(10) 2x"--y'
2 -z'>-2yz-4:X + 6y + 2z + 2 = Q.

The term in yz in this equation can be removed by rotating

the y- and z-axes about the axis of x through a suitable acute

angle ;
that is, by application of the transformation

(11) x = x', y = y' cos 6 z' sin 0, z = y' sin + z' cos 6.

According to Ch. XII, 5, the desired angle is 45. Trans-

forming (10) by the rotation of axes (11), where 6 = 45, we
obtain

x'2 _ y
<2 _ 2 x' + 2V2 y'

-V2 z' + 1 = 0.

This equation can be written in the form

(
X > _

1)2
_

(y
> _ V2)

2 = V2(z'
-
V2),

and hence becomes

when referred to axes through the point (1, V2, V2) parallel

to the axes of 05', y', z'.

It follows, then, that (10) represents a hyperbolic paraboloid
whose vertex, referred to the (x

f

, y', z')-axes, is at the point

(1, V2, V2) and whose axis is parallel to the axis of z'.

Remark. The general method of procedure to determine

the surface represented by an equation of the second degree in

x, y, z is that of Examples 1 and 2
;
the equation is first trans-

formed by a change of origin to remove the linear terms in

x, y, z and is then subjected to a rotation of the axes to get
rid of the terms in xy, yz, zx. This method cannot be applied,

however, to equation (10) of Example 3, for it is impossible to

transform (10) so that the linear terms disappear, since, if this

were possible, the surface would be symmetric in the new

origin (Ex. 11 at the end of the chapter), whereas we know
that a paraboloid has no point of symmetry. Accordingly.
in Example 3 and in similar cases, the axes are first rotated to
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remove the terms in xy, yz, zx and then a proper change of

origin, as suggested by the new equation, is made.

EXERCISES

1. Find the equations of the rotation of the axes which

introduces the two directed lines through with the direction

cosines
^-, %, f and

-f-, ^, ^ as the axes of x' and y' respectively.

2. Find the equations of a rotation of the axes which in-

troduces the planes,

as the (a/, y')-, (y', z')-, and (z, #')- planes, respectively.

3. Find the equations of a rotation of the axes which in-

troduces the planes

as the (x', y')- and (y', z')- planes.

4. Transform the equation of the hyperbolic paraboloid

a;
2

y
2 = 2 raz

by a rotation of the x- and y-axes through an angle of 45

about the axis of z. Ans. x'y' = mz'.

Determine the surface represented by each of the following

equations.

5. 5

6. 3o;2

7. x2 -

8. Transform the equation of the surface

5z2 - 2y2 + 11 z2 + 12 xy + 12yz - 14 =

by the rotation of the axes of Ex. 1. Thus identify the sur-

face.

9. The equation

13z2 - xy - lOi/z - 4zz - 36y + 36z =
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represents a central quadric whose axes have the direction

components 2, 1, 1, 0, 1, 1, 1, 1, 1. Identify the

quadric.

10. The equation

represents a paraboloid whose principal planes are x + y = 0,

x y + z = 0. Identify the paraboloid.

11. Show that the equation of a sphere whose center is at

the origin is not changed by any rotation of the axes. Actu-

ally carry through the transformation.

7. The General Equation of the Second Degree. We have

defined a quadric surface as any surface represented by an

equation of the second degree in x, y, z, that is, by an equation
of the form :

(1) Art + Rf + Cz"- + 2 A'yz + 2 B'xz + 2 C'xy

+ 2A"x + 2B"y + 2 C"z + F= 0.

We propose now to ascertain whether there are types of

quadric surfaces other than those already discussed in Chs.

XXII, XXIII, and to sketch a method whereby the type of

surface defined by a given equation of the form (1) can be

determined.

As in the corresponding problem in the plane (Ch. XII),
transformations of coordinates play an important role. In

particular, the expressions formed from the coefficients of (1),

which are invariant (Ch. XII, 6) under any change of axes,

are fundamental. Chief among these invariant expressions
are the determinants

A ' B 1 A"

D =
C" Pi A' R"

r 7i A> \ -B A
,

A-
, ,

B' ^1' (7
A" B" C" F

which correspond to the invariants B2 4 AC and A in the

case of the general equation of the second degree in x and y

(Ch. XII, 6).



600 ANALYTIC GEOMETRY

We state, without proof, the following theorems :

THEOREM 1. If equation (1) represents a surface, and if

D = 0, the surface is symmetric in just one point. If D = 0,

there is in general no point of symmetry, and when there is one,

there are infinitely many.

THEOREM 2. If equation (1) represents a surface and if

D 3= 0, the surface is symmetric in three mutually perpendicular

planes, and these are, in general, all the planes of symmetry. If
D = 0, it is symmetric in two perpendicular planes and these

are, in general, all the planes of symmetry.

It is clear from these theorems that, in discussing equation

(1), two essentially different cases arise, according as D =

or D = 0. -

Case 1. D = 0. A surface defined by an equation of the

form (1) for which D = is symmetric in a unique point 0',

by Th. 1. The coordinates of 0' can be found by the method

of Example 2, 6. A transformation to parallel axes with

the new origin at 0' removes the linear terms in (1), leaves the

quadratic terms unchanged, and, as can be shown, makes the

constant term into A/Z>. Thus (1) becomes

(2) Ax'* + By'
2 + Cz'2 + 2 A'y'z' + 2 B'x'z' + 2 C'x'y' + A/Z)=0.

Since D 3= 0, the surface is, by Th. 2, symmetric in three

mutually perpendicular planes whose common point, since it

is a point of symmetry, must be 0'. To determine from equa-
tions (1) or (2) the precise positions of these planes through
0' is a problem of intrinsic difficulty which we shall not

attempt to discuss. When once the positions are known, how-

ever, a rotation of the axes which brings the coordinate planes
into coincidence with them serves, either immediately or

eventually, to remove the terms in y'z', z'x', and x'y' in (2);

cf. Ex. 12 at the end of the chapter. We obtain, then, the

final equation

(I) ax'"2 + by'"- + cz" 2 + A/D = 0,
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For this equation, D = abc and hence, since D = 0, no one of

the coefficients a, b, c can be zero.

If A = 0, (I) and hence (1) represents a central quadric (an

ellipsoid or hyperboloid) or, in case a, b, c, A/Z) are all of the

same sign, it has no locus.*

If A = 0, (I) and hence (1) represents a cone, or, in case a, b, c

are all of the same sign, a point.

Case 2. D = 0. A surface defined by an equation of the

form (1) for which D = has in general no point of symmetry

(Th. 1), and hence it is in general impossible to transform to

parallel axes so that the linear terms in (1) disappear. There

are, however, at least two mutually perpendicular planes of

symmetry, by Th. 2. If the positions of two such planes are

known, a rotation of the axes whereby two of the coordinate

planes become respectively parallel to them serves, either im-

mediately or eventually, to remove the terms in yz, zx, and xy
in (1) ;

cf. Ex. 13 at the end of the chapter. Thus (1) becomes

(3) ax'2 + by'
2 + cz'2 + 2 a"x' + 2 b"y' + 2 c"z' + F=Q.

For this equation, D = abc, and, since D 0, abc = 0. Now
a, b, c are not all zero, since otherwise (3), and hence (1),

would not be a quadratic equation. Two cases then arise,

according as one or two of the coefficients a, b, c vanish.

A. One of the coefficients a, b, c vanishes. Since (3) bears

equally on x', y', z' it is immaterial which one of the coefficients

a, b, c we assume to be zero. Suppose that c = :

ax'2 + by'
2 + 2 a"x' + 2 b"y' + 2 c"z

r + F=Q, ab^O.

By a change of origin to the point ( a"/a, b"/b, 0), this

equation becomes

(Ha) ax"2 + by"
2 + 2 c'Y +/= 0, ab = 0.

* In reducing (1) to the form (I), it was assumed that (1) represents

a surface
;
the method of reduction is quite the same, however, if (1) has

no locus. Similarly, the method of reduction in case 2 is always applica-

ble, both when (1) represents a surface, as assumed, and when it does not.
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For (Ila), A = abc"2 and hence A = or A = 0, according
as c" ^= or c" = 0. If c" = 0, a change of origin to the point

(0, 0, -//2c") reduces (Ila) to

ax"2 + by"
2 + 2 c"z" = 0, a& = 0.

If c" = 0, (Ha) becomes

ax"2 + by"
2 +/= 0, ab = 0.

Hence we conclude the following :

Jjf A = 0, (Ha) and Aewce (1) represents a paraboloid (elliptic

or hyperbolic).

If A = 0, (Ha) and hence (1) represents, in the case /= 0,

an elliptic or hyperbolic cylinder, or it has no locus; iff= 0, it

represents two intersecting planes or a line.

B. Two of the coefficients a, b, c vanish. Here again it is

immaterial which two of the three coefficients we assume to

be zero. Suppose that b = c = :

ax'2 + 2 a"x' + 2b'y' + 2 c"z' + F = 0, a = 0.

By a change of origin to the point ( a"/a, 0, 0) and by a

proper rotation of the axes about the axis of x', this equation
becomes

(116) ax"2 + 2 dz" +/= 0, a = 0.

Here A is always zero. Equation (116), and hence (1), repre-

sents a parabolic cylinder, if d = 0; if d = 0, it represents two

parallel planes, a single plane, or has no locus.

Summary. The new types of loci of equations of the form

(1) which have resulted from this investigation, are:

i)
A point, which is a limiting form of an ellipsoid and is

frequently spoken of, in this connection, as a null ellipsoid. It

is to be noted, from the discussion of (I), that the correspond-

ing limiting form of a hyperboloid is a cone.

ii) Two intersecting planes, a line, two parallel planes or a

single plane, all of which are limiting forms of cylinders. We
shall call them degenerate cylinders; two intersecting planes,

a degenerate hyperbolic cylinder ;
a line, a degenerate (or null)
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elliptic cylinder ;
two parallel planes, or a single plane, a de-

generate parabolic cylinder.

We can now summarize our results :

THEOREM 3. An equation of the form (1), if it has a locus,

represents a central quadric, a paraboloid, a cone or a point, or

a cylinder (non-degenerate or degenerate).

The following table shows when each of the four cases

occurs and thus furnishes a means of determining the type of

surface denned by any given equation of the form (1).
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5.

- 26x - Uy - 18z - 18 = 0.

6. 7 x2
-f 7 y

1 + 4 z"- 8 yz + 8 zz 2 a*/

7. The surface (3) is symmetric in three planes whose

normals have the direction components 6, 3, 2, 2, 6, 3,

3, 2, 6. Determine the precise nature and position of

the surface.

8. The surface (4) is symmetric in three lines whose direc-

tion components are 2, 1, 1, 0, 1, 1, 1, 1, 1. De-

termine its precise nature and .position.

9. The surface (5) is symmetric in two planes whose

normals have the direction components 1, 1, 2, 3, 1, 1.

Determine its precise nature and position.

10. Two principal planes of the surface (6) are parallel

respectively to the planes

x y + z = 0, a? + y = 0.

Determine the precise nature and position of the surface.

EXERCISES ON CHAPTER XXIV

1. Prove that a curved surface whose equation in spherical

coordinates does not contain r is a cone with the pole as vertex.

2. Show that a curved surface whose equation in spherical

coordinates does not contain 6 is a surface of revolution.

What is its axis ?

3. Prove that a curved surface whose equation in cylindri-

cal coordinates does not contain z is a cylinder.

4. Show that a curved surface whose equation in cylindri-

cal coordinates does not contain is a surface of revolution.

TRANSFORMATION OF AXES

5. Prove that the transformation to new axes through
whose direction cosines are

-|, f, f, , , , f , f, ^ is
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identical with a rotation of the original axes about the line

x = y = z through 180.

Suggestion. Show that the equations of transformation are

equivalent to those connecting the coordinates of two points

symmetric in the line.

6. Find the equations of the transformation which intro-

duces as axes the three mutually perpendicular lines through
the point (x , y ,

z
)

with the direction angles al} fa, y1}

2> fa, 72> 3> fa) 73-

7. Set up the equations of a rotation of the axes which

introduces the plane x + y + z = Q&s the
(a;, y)-plane.

8. Determine the precise nature of the curve of intersec-

tion of the plane x + y + z = with the surface

x2
xy + yz zx x y 2 = 0.

Suggestion. Use the result of Ex. 7.

9. A line of symmetry of the surface

xy + yz + xz = 2

is the line x = y = z. Determine the precise nature of the

surface.

10. A plane of symmetry of the surface

xz +y2 + z2 + xy + yz xz x + y z =

is the plane x y 2 z = 0. What is the exact nature of the

surface ?

11. Show that, if a quadric surface is symmetric in the ori-

gin, its equation contains no linear term in x, y, z, and con-

versely.

12. A quadric surface is symmetric in each of the coordinate

planes. Prove that either the equation of the surface is

of the form
ax*+ by* + cz- = d,

or that the surface consists of two coordinate planes. Show
that in the latter case the equation can be reduced to the
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desired form by rotating two of the axes about the third

through an angle of 45.

13. A quadric surface is symmetric in two planes which

are parallel to or identical with two coordinate planes. Show
that either the terms in yz, zx, xy do not appear in the equation
of the surface or the surface itself consists of two planes of

the type described. Prove that in the latter case the terms

in yz, zx, xy can be removed from the equation by rotating two

of the axes about the third through an angle of 45.

14. Show that, if a quadric surface is symmetric in a coordi-

nate plane or in a plane parallel to a coordinate plane, its

equation contains, in general, at most one of the three terms

in yz, zx, xy. When does the exception occur ?

15. Prove that the conclusion of the previous exercise fol-

lows if the surface is symmetric in a coordinate axis or in a

line parallel to a coordinate axis. When does the exception
occur in this case ?
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Abridged notation, 171 ;

problems in , 189, 287.

Absolute value, 4 ;

use of , 11, 41, 42, 5lf 466.

Acoustical property of conies, cf.

Focal property.
Affine transformations, 342 ;

homogeneous , 348, 355
;

singular , 358.

Anchor ring, 544.

Angle, in the plane, positive sense

for measurement of, 13
;

slope , 13 ;

between two lines, 38.

Angle, in space, between two lines,

407, 425, 435, 442 ;

direction of a directed line, 420 ;

between two planes, 455 ;

between a line and a plane, 487.

Asymptotes, 129, 259.

Asymptotic cone, 543, 552, 557.

Asymptotic planes of a hyperbolic

cylinder, 533.

Axes of a conic, 88, 102, 125, 127 ;

equations of , 260 ;

construction of , 324.

Axes of a quadric surface, 533, 549,

551, 555.

Axes of coordinates, 7, 410.

Auxiliary circle of an ellipse, 120 ;

of a hyperbola, 143.

Bisectors of angles, between two
lines, 281, 287;
between two planes, 522.

Brennpunkt, 97.

Cardioid, 201, 209, 215, 286.

Cassini, ovals of, 215.

Center of a conic, 102, 125, 247,

259;
construction of , 324.

Center of a quadric surface, 543,

549, 551.

Central conies, 299, 313.

Central line of a strain, 304.

Central quadrics, 575, 601.

Circle, see Contents, Ch. IV ;

null , 67 ;

equation of in determinant

form, 394, 398 ;

nine-point , 78 ;

as limit of ellipses, 103, 140 ;

parametric representation of ,

119;
common chords of three , 170 ;

equations of in polar coordi-

nates, 194, 211;
inscribed in a triangle, 283 ;

four points on a , 395, 398.

Circle in space, 529
;

tangent line to , 545 ;

as section of a quadric surface,

564.

Cissoid, 214.

Coefficient of a strain, 309.

Colatitude, 584.

Columns and rows of a determinant,

363;

interchanges of , 376, 380.

Compatibility of n-\-l equations in

n unknowns, 384, 401, 403,
510.

Compression, simple, cf. Strain,

one-dimensional.

Conchoid, 215.

Condition that

the roots of a quadratic equation
be equal, 175

;

two sets of numbers be propor-
tional, 385;

an equation be homogeneous, 538.

Condition, in the plane, that

a point lie on a curve, 19
;

two points be collinear with the

origin, 25, 402 ;

three points be collinear, 54,

392 ; problems, 60-63, 394 .

607
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four points lie on a circle, 395, 398 ;

six points lie on a conic, 398 ;

two lines be parallel, 36, 45, 46,

402;
two lines be perpendicular, 37,

45; 46;
two lines be identical, 46, 402 ;

three lines be concurrent, 53, 189,

393; problems, 54-60, 62, 189,

394;
a line be orthogonal to a circle,

76;
two circles be orthogonal, 77;
a line be tangent to a conic, 183,

192, 403 ;

two diameters be conjugate, 291,

296;
a conic be degenerate, 257, 403 ;

a transformation be isogonal, 348.

Condition, in space, that
a point lie on a surface, 445 ;

a point lie on a curve, 471 ;

two points be collinear with the

origin, 441 ;

three points be collinear, 505 ;

four points be coplanar, 508 ;

five points lie on a sphere, 527 ;

two lines be perpendicular, 426,

435;
two lines be parallel, 420, 427,

430, 432, 436 ;

two lines intersect, 512 ;

three lines be parallel to a plane,

440;
the normals to four planes be

parallel to a plane, 508;
three lines be mutually perpendic-

ular, 594 ;

a line lie in a plane, 506 ;

a line be tangent to a quadric,

567;
two planes be perpendicular, par-

allel, identical, 455 ;

three planes pass through a line,

504;
four planes pass through a point,

510;
a plane be orthogonal to a sphere,

545;
a line be orthogonal to a sphere,

546:
two spheres be orthogonal, 546 ;

a diameter and a diametral plane
be conjugate, 571 ;

three diameters be conjugate,

573;
three diametral planes be conju-

gate, 573 ;

three numbers be direction cosines,

422;
a directed trihedral be right-

handed, 443.

Cones, 536.

Confocal conies, 145, 148.

Confocal parabolas, 95, 146.

Confocal paraboloids, 592.

Confocal quadrics, 590.

Conies as sections, of a circular

cone, 144 ;

of a quadric cylinder, 534 ;

of a quadric surface, 562.

Conies, definition of, 144 ;

equations of in polar coordi-

nates, 202, 210, 211;
as loci of equations of the

second degree, 257 ;

equation of through five points,

395, 398 ;

six points on a , 398, 399.

Conies, degenerate, definition of,

257;
equations of , 191, 244, 253,

260, 402 ;

examples of , 237, 246, 254, 259 ;

through five points, 396, 397 ;

condition for , 257, 402 ;

as intersections with quadric
surfaces, 256, 257, 563, 569.

Conies, similar and similarly placed,

260;
as sections of two quadric

surfaces, 535, 563, 580 ;

as parallel sections of a quad-
ric surface, 550, 553, 555, 562-

564, 580.

Conjugate diameters and diametral

planes, 571-574, 579.

Conjugate diameters of a conic,

see Contents, Ch. XIV.
Conjugate diameters of a quadric

surface, 572-574, 579.

Conjugate diametral planes, 572-

574, 579.

Conjugate hyperbolas, 141, 298.
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Conjugate hyperbolic cylinders, 533.

Conjugate hyperboloids, 551
;

of revolution, 542 ;

sections of , 563.

Construction,' geometrical, of a pa-
rabola, 88;
of an ellipse, 104, 114, 119;
of a hyperbola, 124, 138, 143

;

of center, axes, foci, tangents
of a conic, 324, 325 ;

of poles and polars, 319, 320,

325..

Constructions, mechanical, of a

parabola, 147
;

of an ellipse, 101, 147 ;

of a hyperbola, 147.

Continued equality, cf. Equality.
Coordinate planes, 410.

Coordinates, rectangular, 7, 14
;

in

space, 409, 411, 589;
polar ,193;
spherical , 584, 590, 604 ;

cylindrical , 587, 589, 604 ;

ellipsoidal ,
591.

Cramer's rule, 381, 464.

Cubic equations, graphs of, 85,

331, 353, 354.

Cubic, twisted, 492, 494.

Curves, in the plane, definition of,

19;

plotting of , 19, 86, 331, 353;
in polar coordinates, 198 ;

symmetry of , 84-87
;

in polar
coordinates, 201.

Curves, in space, definition 'of, 471 ;

parametric representation of
,

490;

Cylinders, equations of special, 444,

446;
definition and equations of gen-

eral , 532.

Cylindrical coordinates, 587, 589, 604.

Deformation of an elastic body, 357.

Degenerate conies, cf. Conies.

Descartes, 1.

Determinant of a transformation,
358.

Determinants, see Contents, Ch.

XVI;
applications of to linear equa-

tions, 381-391, 401, 403;

applications of to plane ana-

lytic geometry, 391-399, 401-

403;
applications of to solid ana-

lytic geometry, 438, 440, 443,

453, 463, 467, 477, 489, 496,

504, 507-511, 512-515, 517,

518, 526, 594, 599.

Diagonals of a determinant, 363.

Diameters of a conic, see Contents,
Ch. XIV.

Diameters of a quadric surface,

569-574, 579.

Diametral planes of a quadric sur-

face, 570-574, 579.

Diocles, cissoid of, 214.

Directed line-segments, cf. Line-

segments.
Directed trihedrals, 430-432 ;

right-handed and left-handed ,

443.

Direction angles of a directed line,

420.

Direction components, see Contents,
Ch. XVIII.

Direction cosines, see Contents, Ch.
XVIII ;

of three mutually perpendic-
ular lines, 594.

Directrices of conies, 88, 116, 137.

Directrix of a cylinder, 532.

Discriminant, of a quadratic equa-
tion in x, 175, 402 ;

of general equation of second

degree in x, y, 248, 402, 403.

Distance, between two points, 10;
in polar coordinates, 210; in

space, 414 ;

of a point from a line, 41 ;
in

space, 514;
between two parallel lines, 51 ;

of a point from a plane, 460 ;

between two parallel planes,

466;
between two lines in space,

515.

Division of a line-segment, 17, 416 ;

harmonic , 309, 359, 575.

Eccentric angle, of an ellipse, 120,

306;
of a hyperbola, 143.
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Eccentricity of a conic, 102, 116,

128, 137, 140.

Element of a determinant, 363.

Ellipse, see Contents, Ch. VII ;

equations of not in normal

form, 114, 140;

equations /of in polar coordi-

nates, 203, 211 ;

as locus of equation of second

degree, 239, 241, 246, 249;
null or degenerate , 245, 256 ;

area of , 341.

Ellipsoid, 548 ;

sections of , 548, 550, 563,

564-566, 569 ;

volume of , 578 ;

similar , 581 ;

null , 602.

Ellipsoids of revolution, 541, 548.

Elongation, simple, cf. Strain, one-

dimensional.

Equality, continued, representing a
line in space, 473, 479, 482 ;

reduction of to normal form, 480 ;

equivalent to representation

by projecting planes, 502.

Equation, general, of the second

degree in x, y, see Contents,
Ch. XII.

Equation, general, of the second de-

gree in x, y, z, 599 ;

reduction of in special cases,

592, 595-597 ;

reduction of - in general case,

597, 600-603, 605.

Equation of a curve, 20.

Equation of a surface, 445.

Equations, linear, cf. Linear equa-
tions.

Equations, simultaneous, of a space
curve, 472.

Equation u+kv = 0, 165, 188-190;
in space, 520.

Equation uv = 0, 173, 190; in space,
521.

Equiangular hyperbola, cf. Rec-

tangular hyperbola.

Equiangular transformations, cf.

Isogonal transformations.

Factorization of a transformation,

343, 355 ;

of particular transformations,
349;

exercises in
, 342, 351, 357.

Figures in plane representing space
relations, 411.

Focal chords, 95, 98, 212.

Focal property of conies, 96, 108,

134, 324.

Focal radii, 88, 106, 128, 212.

Focus, 88, 101, 124 ;

origin of name , 97 ;

construction of , 324.

Generator, cf. Ruling.
Graphs of equations, in rectangular

coordinates, 18-20, 21, 83, 86,

87, 331, 353, 354 ;

in polar coordinates, 198.

Harmonic division, 309, 575 ;

unchanged by an affine trans-

formation, 359.

Helix, 491.

Homogeneity, 348, 537, 538.

Homogeneous linear equations, 387,
401.

Hyperbola, see Contents, Ch. VIII ;

equations of not in normal
form, 140;

equations of in polar coordi-

nates, 203, 211 ;

as locus of equations of the
second degree, 239, 241, 245,

248, '250 ;

with foci on the axis of y,

141, 221.

Hyperboloid, biparted or of two
sheets, 551

;

sections of , 551, 553, 561-563,
565;

similar -. 581.

Hyperboloid, unparted or of one

sheet, 550
;

sections of , 550, 553, 561-
563, 565, 566;

asymptotic cone of , 551, 557 ;

rulings of , 555-559, 568, 581-

583;
parametric representation of ,

559;
similar , 581.
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Hyperboloids of revolution, 541,

550, 551.

Identical transformation, 342.

Inequalities, loci of, 277, 279, 522.

Infinity, 13.

Initial ray, 193.

Intercepts, of a line, 33 ;

of a plane, 450.

Intersection, of two lines, 22 ;

of two curves, 23 ;

of three planes, 463 ;

of two planes, 470, 476 ;

of a line and a plane, 488, 492 ;

. of a plane and a sphere, 529 ;

of two spheres, 530 ;

of a curve and a surface, 488,

492;
of two surfaces, 472 ;

of three surfaces, 463.

Invariants of general equation of

second degree, 257, 599.

Inverse of a transformation, 335.

Involutory transformations, 337.

Isogonal transformations, 336, 347,
359.

Kepter, 97.

Latus rectum, 94, 112, 135.

Lemniscate, 201, 207, 215, 286.

Limacon, 202, 215.

Line, equations of,

perpendicular to a given plane,

483;
parallel to two planes, 484 ;

parallel to a given line, 485 ;

perpendicular to two lines, 485.

Line, in plane, see Contents, Ch.
II;

equation of in polar coordi-

nates, 196, 210;

equation of in normal form,
286. 287 ;

equations of in determinant
form, 391, 393, 401 ;

three through a point, 53,

189, 392 ;

problems in three through a

point, 54-60, 62, 189, 394 :

single equation for two , 173,

190, 191.

Line, in space, see Contents, Chs.

XVIII, XX, XXI.
Line-segments, see Contents, Intro-

duction, Chs. I, XVII.
Linear combination, of two lines,

165, 168, 169 ;

of two curves, 167, 168, 170;
of two planes, 498, 504, 506 ;

of two surfaces, 520 ;

of three planes, 521 ;

of sets of numbers, 400.

Linear equation, in x, y, 31 ;

in x, y, z, 448.

Linear equation, simultaneous, see

Contents, Cb. XVI, 8-10;
also 401, 403, 464, 510.

Loci of inequalities, 277, 279, 522.

Loci problems in plane, see Con-

tents, Chs. V, XIII ;

further exercises in , 100, 123,

152, 214, 328 ;

in polar coordinates, 214.

Loci problems in space, 497, 546,

582.

Locus of an equation, 19 ;
in space,

445;
of two simultaneous equations,
471.

Longitude, 584.

Mid-point of a line-segment, 16,

415.

Minimum ellipse of an unparted
hyperboloid, 550.

Minor of a determinant, 367 ;

use of to evaluate a determi-

nant, 367, 370, 380.

Nappe of a cone, 537.

Nicomedes, conchoid of, 215.

Nil-segment, 5.

Normal to an arbitrary curve, 158 ;

exercises in finding equations of

, 160, 165.

Normal, to a parabola, 95 ;

to an ellipse, 111, 112;
to a hyperbola, 135.

Normal, to a plane, 447 ;

direction components of ,

449;
to three planes parallel to a

plane, 463 ;
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to four planes parallel to a

plane, 508.

Octants, 411.

Optical property of conies, cf. Focal

property.
Orbits of planets and comets, 120,

211.

Origin of rectangular coordinates,

7,410;
of polar coordinates, 193.

Orthogonality, of a line and a circle,

76;
of two circles, 76 ;

of two confocal conies, 95,

146;
of a sphere and a plane, 545 ;

of a sphere and a line, 546 ;

of two spheres, 546 ;

of confocal quadrics, 591.

Ovals of Cassini, 215.

Parabola, see Contents, Ch. VI ;

equations of not in normal

form, 92, 97, 140, 230 ;

equations of in polar coordi-

nates, 203, 210, 211;

equations of through four

points, 397, 399 ;

eccentricity of , 140 ;

as limit of ellipses, 118 ;

as limit of hyperbolas, 139 ;

as locus of equation of the sec-

ond degree, 239, 254 ;

confocal , 95, 146.

Paraboloid, elliptic, 553 ;

sections of , 553, 555, 563, 566 ;

similar , 581.

Paraboloid, hyperbolic, 553 ;

sections of , 554, 555, 564, 580 ;

rulings of , 559-561, 568, 582,

583;
directrix planes of , 559 ;

parametric representation of ,

560;
similar , 581.

Paraboloid of revolution, 543, 553.

Parabola, semi-cubical, 231, 285.

Parametric representation, of an

ellipse, 119, 306;
of a hyperbola, 143, 308 ;

of a line in space, 490 ;

of a helix, 491 ;

of a twisted cubic, 492 ;

of an unparted hyperboloid,
559;

of a hyperbolic paraboloid,
560.

Pascal, limacon of, 215.

Pencil, of lines, 169, 172, 188 ;

of curves, 170, 172.

Plane, see Contents, Chs. XIX, XX,
XXI.

Plane, equation of,

parallel or perpendicular to a
given plane, 456, 466, 467 ;

perpendicular to a given line,

483;
parallel to two lines, 484, 496;
through a line and a point, 499,

504;
through a line parallel to a second

line, 513 ;

determined by two non-skew lines,

513.

Planes, three through a line, etc., cf.

Condition, in space, that.

Pliicker, abridged notation of, 171.

Points, three on a line, etc., cf.

Condition, in the plane, that.

Polar coordinates, see Contents,
Ch. X;

rotation of prime direction of ,

212;
pole of in an arbitrary point,

213.

Polar lines with respect to a quad-
ric surface,, 576.

Pole of polar coordinates, 193.

Poles and polars, with respect to a

conic, see Contents, Ch. XIV ;

with respect to a degenerate
conic, 402 ;

with respect to a quadric
surface, 575.

Prime direction, 193.

Prime meridian, 584.

Principal planes of a quadric sur-

face, 549, 551, 555.

Principal sections of a quadric sur-

face, 549, 551, 555.

Product of two transformations,

338;
exercises in , 341, 342, 358.
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Projecting planes of a line, 501,

503.

Projection, of a point on a line, 5,

405;
of a directed line-segment on a

line, 5, 405, 408, 441 ;

of a broken line on a line, 5,

406;
of a directed line-segment on

the axes, 9, 413
;

of a point on a plane, 406 ;

of a line on a plane, 406, 501-

503;
of an area on a plane, 516,

517;
of a plane curve on a plane,

534.

Quadrants, 8.

Quadratic equation, discriminant of,

175, 402 ;

sum of roots of ,
274.

Quadric cones, 539 ;

sections of , 144, 539, 561-563,
565.

Quadric cylinders, 532 ;

sections of , 533 ;

degenerate , 602.

Quadric surfaces, see Contents, Ch.
XXIII ;

confocal , 590, 592 ;

of revolution, 540
;

similar , 581.

Radical plane of two spheres, 530.

Radius vector, 193, 584.

Ray, equation of, in polar coordi-

nates, 196.

Rectangular hyperbola, 132 ;

problems concerning , 151, 152,

157;

equation of in polar coordinates,

207;
equation of in form 2xy = at

,

221;
more general equations of ,

239, 258, 259.

Reflection in the origin, 342.

Reflections in the axes, 336.

Rigid motion of the plane, 358.

Rotation of axes, 219, 239, 241 ;

in space, 593.

Rotations of the plane, 332.

Rows and columns of a determinant,
363;

interchanges of , 376, 380.

Rulings, of a cylinder, 532 ;

of a cone, 536 ;

of an unparted hyperboloid,
555-559, 568, 581-583

;

of a hyperbolic paraboloid,

559-561, 568, 582, 583.

Sections, of quadric cylinders, 533 ;

1 of quadric cones, 144, 539,

561-563, 565
;

of a quadric surface, defined,

549;
parallel , 549, 561 ;

circular
,
564 ;

cf. also Ellipsoid, etc.

Shears, simple, 351
;

factorization of , 355, 359.

Shrinkings of the plane, 334, 337.

Similar and similarly placed conies,
cf. Conies.

Similarity, of two parabolas, 89 ;

of two ellipses, 103, 121 ;

of two hyperbolas, 128, 149 ;

of two quadric surfaces, 581.

Similitude, transformations of, 334,
358.

Slope angle, 13.

Slope of a curve, definition of,

154;

general method of finding , 154-

158, 160-163;
exercises in , 159, 164, 188.

Slope, of a line, 12 ;

of a circle, 72 ;

of a parabola, 94, 161
;

of an ellipse, 162 ;

of a hyperbola, 163 ;

of a general conic, 188.

Sphere, see Contents, Ch. XXII,
1-5;

null , 524 ;

further problems concerning ,

544-546 ;

transformed by one-dimen-
sional strains, 578, 579.

Spherical coordinates, 584, 590, 604.

Spiral, of Archimedes, 202 ;

, hyperbolic, 202.
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Square array of a determinant, 361,

364.

Square root sign, 11.

Strains, see Contents, Ch. XV.
Strains, one-dimensional, 304, 307,

309, 337; in space, 577.

Strains, homogeneous, 357.

Strains, simple, 357.

Stretchings of the plane, 334, 337.

Supplemental chords, 327.

Surface, definition of, 444 ;

symmetry of , 468.

Surfaces of revolution, 540.

Symmetry, in a line, 83 ;

in a point, 84 ;

of curves, 84-87 ; in polar co-

ordinates, 201 ;

algebraic , 267 ;

of surfaces, 468 ;

of quadric surfaces, 600, 605,
606.

Tangent at a given point, to a

circle, 69
;

to a parabola, 93, 164 ;

to an ellipse, 111, 163;
to a hyperbola, 133, 164, 180;
to a general conic, 188

;

construction of , 324.

Tangent line to a quadric surface,

567.

Tangent plane, to a sphere, 527 ;

to a quadric surface, 568, 580.

Tangent to a conic, with a given

slope, 174, 179;
from an external point, 185

;

construction of the latter, 325
;

condition that a line be , 183,

192, 403 ;

common , 185, 191.

Tangent to an arbitrary curve,
definition of, 154, 176;

general method of finding slope
of , 154-158, 160-163 ;

exercises in finding equations of

, 158, 160, 165.

Term of a determinant, 366 ;

determination of sign of , 365,

366, 378.

Tetrahedron, center of gravity of,

419;
volume of , 518.

Torus, 544.

Transformation of coordinates, polar
to rectangular, 206, 214 ;

, spherical to rectangular, 585;
, cylindrical to rectangular, 587.

Transformation of rectangular co-

ordinates, see Contents, Chs.

XI, XXIV, 5, 6.

Transformation to parallel axes,

216, 235; in space, 592.

Transformations of similitude, 334.

Transformations of the plane, see

Contents, Ch. XV.
Translations, 330.

Triangle, area of, 43 ;
in determi-

nant form, 401
;

in space, 517 ;

medians of , 54, 56, 419 ;

altitudes of , 58 ;

perpendicular bisectors of sides

of, 60;
circle circumscribing , 74 ;

circle inscribed in , 283 ;

nine-point circle of , 78 ;

bisectors of angles of , 283, 287.

Triply orthogonal systems of sur-

faces, 589-592.

Umbilics, 580.

Vertex of a cone, 536.

Vertex of a paraboloid, 555.

Vertices of a conic, 88, 102, 125.
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