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ABSTRACT

This work is an application of the methods in obtaining

the correlation functions. In particular, the method of

correlation without a "pure" time-delay is presented

together with the concept of "orthogonal filters", which are

Laguerre function type filters. Of these filters, the

non-symmetric Laguerre type is analyzed and used to realize

a practical correlator designed for low frequency signals.

The correlator was computer-simulated by the DSL

subroutine and the results of the autocorrelation of a 155

Hz sine wave were compared to the results obtained for the

autocorrelation of a similar wave in the actual correlator.

A detail description of the design of the correlator and of

the DSL program used are also presented.
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!• INTRODUCTION

The detection of a signal in the presence of noise

requires a process which becomes more complex when little is

known of the noise characteristics and of the signal. To

this end, correlation analysis is one of the most valuable

techniques used to filter noise from very low level signals.

In fact, the problem of getting the signal out of noise is

the major function of analyzing data in many areas today.

When properly used and understood, correlation provides

the engineer with a technique as powerful as Fourier

Analysis or any of the other classical techniques.

Essentially, correlation analysis and Fourier transform can

be thought of as duals of each other since in general the

transform of any extended signal in time is a narrow

frequency signal and viceversa, and the autocorrelation of a

single frequency sine wave extends over the entire time

delay axis. Familiarization then with this technique and

the ability to shift from the time to frequency to delay

axes in order to extract more and more useful information

from a multitude of signals is of the most importance for

communications and related fields.

The mathematical background of the correlation

functions, autocorrelation and crosscorrelation, is

presented first, [3ef. 1,2,3,5] together with their

properties and Fourier transform correspondence. Then, the

method of obtaining the correlation functions are briefly

explained. In particular, the practical application of the

correlation method without a "pure" time delay is presented.

This method is based on the application of the concept of

orthogonal filters which are Laguerie Functions type

filters.

A practical application of this method was carried out

in the laboratory to verify the analysis. The analysis was

done by means of the DSL subroutine which simulated the





correlator. The experimental results of the autocorrelation

of a sine wave of 155 Hz were as predicted by the

simulation.
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II • CORRELATION ANALYSIS*

Correlation analysis is a technique used to determine

the spectral characteristics of a signal or the similarity.

of two different signals.

A good method of measuring the similarity between two

signals is to multiply them together, ordinate by ordinate

and to add the products over the duration of the waveforms.

The result is a single number which represents the

similarity between the two wave forms. [Ref. 3]

The two correlation functions, autocorrelation and

crosscorrelation, can be explained as follows [Ref. 1,2]:

Suppose that a stationary, physical process is producing

the time functions x (t) , x (t) , ... x (t) simultaneously.
1 2 n

(A process is said to be stationary if its amplitude

statistics do not change with time) . It is also assumed

that:

(1) The time functions being generated are not zero. Or

they have zero mean if the time functions correspond to a

stochastic process

(2) They do not have a DC component.

(3) They can be simple or complex periodic waves.

(4) They may vary in a random fashion.

Under these conditions, the two correlation functions

are defined as:

A» AUTOCORRELATION FUNCTION* [Ref. 1,2]

The time average autocorrelation function for

deterministic or known signals is defined for two different

classes of signals:

a) signals of finite average power.

b) signals of finite energy or pulse signals

For signals of finite average power the definition is:

11





E
xx

(u) = lin 1/2T \ x (t) x (t+u)dt (2.01)
T->co -TJ 1 1

where "u" represents a time-shift.

For signals of finite energy the definition is

R (u) = \x (t) x (t+u) dt (2.02)
xx .ooJ 1 1

The autocorrelation of functions generated by a

stochastic process is defined as:

R(u) = E[ x (t)x (t+u) ] (2.03)
1 1

and if the process is ergodic, the autocorrelation function

is defined as:

R (u) = R (u) (2.04)
xx

In general, the autocorrelation function of a waveform

x (t) is a graph of the similarity between the waveform

x (t) and a delayed replica of itself, x (t+u) as a function

of the time shift "u".

Based on the mathematical definition of

autocorrelation, Figure 1 shows an elementary device

designed to obtain the autocorrelation function. Here, the

signal is multiplied by its delayed replica and the result

is averaged over a sufficiently long time. The final result

is the autocorrelation function if u has also been varied

during the process. This is essentially a time-delayed

autocor relator.

12
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1 . Pro pert ies of the Autocorrelation Fu net ion^

The final output of figure 1, that is, the

autocorrelation function, will always have the following

characteristics for any x(t):

(1) When u = the product is maximum. This is

represented mathematically by Schwartz Inequality:

|R (U) |
< R (0)

XX XX
(2.05)

(2) The value of the output at u = represents the

total power of the signal. If x (t) is a voltage, then for

2
u = , R (0) = x ~{t.) is the average power of the signal

xx 1

(as measured on a 1 ohm resistor)

.

(3) The autocorrelation function is also a

function of u,

(4) The shape of the function is characteristic

of the original signal x (t)

.

(5) The autocorrelation function is an even

function of u. Mathematically:

R (u) = R (-u)
XX XX

(2.06)

(6) If x (t) contains periodic frequency

components, then R (u) will contain each of these frequency
xx

components. This means that for certain time functions, if

x (t) is given then R (u) is known which is useful in
1 XX

detecting signals by radar.

(7) For a real process of this kind, the

autocorrelation function approaches zero as u --> CO . In

other words, the signal loses coherence as the delay u is

1<*





increased. So the coherence tine of the original signal is

measured by that value of u that produces a significant

reduction in the value of the autocorrelation function.

The coherence time of any process producing very wideband,

uniform (white) noise, is practically zero or very short

because its instantaneous value is nearly independent of the

value at any other time.

(8) The autocorrelation function and the power

spectral density are Fourier transform pairs. So they

contain the same information, however, the autocorrelation

function contains this information in the form of a function

of time rather than frequency.

Mathematically:
00 -jwu
R (u) e du (2.07)
xx

r
°° jwu

B (u) = 1/2n\0(w)e dw (2.08)

The power spectral density of finite average power

signals is:

(v) = lim 1/2T X (w)X (w) (2.09)
T-}co 1T 1T

2
= lim 1/2T |X (w)

J

(2.10)
T-^co 1T

where * means the conjugate value of the quantity it refers

to. The signal has been observed through a window of

observation of duration T.

The power spectral density for signals of finite

energy is:

* 2
0(w) = X (w)X (w) = |X (w)

| (2.11)11 1

15





This is also true for stochastic processes in which

case:

R (u) <=> 0(v) (2.12)
xx

and

2
0{v) = lim 1/2T E{|X (w)

| } (2.13)
T 1T

If the Fourier components of the waveform are

squared in amplitude, set into phase at the origin of a new

time scale, and added together, the result is a visual

picture of the autocorrelation function.

(9) The process of autocorrelation of a waveform is

equivalent to passage of the waveform through its matched

filter.

Figure 2 shows the autocorrelation function of some

typical waveforms.

B« CROSSCORRELATION FUNCTION* [Ref. 1,2,3]

Autocorrelation can be easily visualized because it can

be related to the power density spectrum of Fourier

Analysis. But crosscorrelation does not have a similar

analogy.

Crosscorrelation is concerned with the relationship

between two different signals generated by some common

process. In general, the crosscorrelation function of two

waveforms, x (t) and x (t) is a graph of the similarity
1 2

between x (t) and the delayed x (t) , x (t-u) as a function
1 2 2

of the delay "u" between them.

Mathematically, crosscorrelation is expressed as:

16
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T
R (u) = lim 1/2T C x ft) x n (t + u) du (2.14)xx T -TJ 1 2

1 2

Figure 3 shows a device, similar to that shown in Figure

1, designed to obtain the crosscorrelation function from

its mathematical definition. In this case, one of the two

signals is delayed, multiplied by the other signal and the

result averaged over a long enough period of time. The

result is the crosscorrelation function provided that u has

also been varied over the process. This is also a

time-delayed crosscorrelator

.

1 • Properties of the Crosscorr elati^o n Function.

The autocorrelation and the crosscorrelation

functions have different properties. The properties of the

crosscorrelation function are:

(1) The crosscorrelation function is not an even

function of u. In other words:

R (u) * R (-u) (2.15)
xy xy

However

R <-u) = R (u) (2.16)
xy yx

and this relationship is useful for obtaining R (u) for
xy

negative delays.

(2) The coherence of a signal generated by a

physical process approaches zero very fast as u approaches

infinity due to the presence of noise and the uncertainty

principle. If, added to this, x (t) and x (t) come from
V *

.
12

two different, unrelated processes, then:
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R (u) = (2.17)
xy

(3) In the frequency domain there exists a Fourier

transform pair:

R (u) <=> W (w) (2.18)
xy 12

but in this case, W (w) is sometimes called the spectrum of
12

crosscorrelation of the time functions x (t) and x (t)
1 2

Crosscorrelation analysis provides a powerful analytical

tool. The ability to measure the degree to which the signals

that arise free a common physical phenomenon resemble each

other as a function of the delay time between them, can

provide a much deeper insight into the phenomenon being

studied than a separate analysis of the properties of either

signal alone. [Ref. 1]

C. APPLICATIONS OF CORRELATION ANALYSIS*

1 • Detection. [Ref. 1,7]

Correlation analysis plays its most important role

when noise is to be filtered from very low level signals. In

this case, noise is any undesired disturbances that mask the

signal transmitted, and in practice, it is a signal with

random amplitude variations. In the case of wide band noise,

the instantaneous value of the signal is nearly independent

of the value at any other instant which means that the

coherence time of the process is very short.

20





Signal detection, such as radar detection, is

basically the solution of a very important problem common to

all echo-ranging systems: a signal of known waveform is

transmitted into a medium and is received, unchanged in form

but inmersed in noise.

When two functions consisting of a signal, S (t) , and

noise, N (t) , such as:

X^(t) = S^t) + N
1

(t) (2.19)

x (t) = S (t) + N ft) (2.20)
2 2 2

are crosscorrelated, the result is:

R (u) = lim 1/2? \" [S (t)+N (t)][S (t + u) +N (t+u) ]dt
xx T-^co -TJ 112 2

(2.21)

= R (u) + R (u) + R (u) + R (u)
SS S N NS NN
12 12 12 12

(2.22)

which will approach zero as u approaches infinity.

If x (t) = x (t) , then the crosscorrelation is:
1 2

R (u) = R (u) + R (u) + R (u) R (u) (2.23)
XX SS SN NS NN

but in this case,

21





R (u) = R (u) = (2.24)
SN NS

because the signal S (t) and the noise N (t) are uncorrelated.

R (u) is the autocorrelation function of the
SS

original signal and it is a function of u other than zero

even for large values of u. R (u) is the autocorrelation
NN

function of noise. If the transmitted signal is periodic

then R (u) becomes very small for large values of u while
NN

R (u) does not. so R (u) is almost equal to R (u) and
SS xx SS

this result can be used for signal detection.

In the case of radar detection, the transmitted and

the received signals are crosscorrelated. Let

x^t) = S^t) + N(t) (2.25)

be the received signal and

x (t) = S (t) (2.26)
2 2

be the transmitted signal. The frequency of the transmitted

signal is known so that an internal generator in the

receiver can be used to generate x (t) as a second input to

the correlator. When these two signals are crosscorrelated,

the result is:

R (u) = R (u) + R (u) (2.27)
12 S S NS

1 2 2

22





since N (t) and S (t) are not correlated, then

B (u) = (2.28)
NS

2

eventually. So

R (u) = R (u) (2.29)
12 S S

1 2

If x (t) is only noise [S (t)=0], then
1 1

R = (2.30)
s s

1 2

so R (u) = 0. This means that if the crosscorrelation
12

between transmitted and received signal is not identically

zero, then a useful signal exists in the received

transmission.

2- Direction Finding. f_Ref ._ 3j

Direction finding is another application of

crosscorrelation. In this case, the direction of a source of

arbitrary waveforms (acoustic, electromagnetic, seismic,

etc) , can be determined by crosscorreiating the responses at

two receivers that may be located far from the source. The

procedure is represented in figure 4. The waveforms can be

completely arbitray, and can even be noise. In the figure,

the wave front gets to receiver 2 first and it will get to

receiver 1 t seconds later where t = (D/c) cos9 and c is the

velocity of propagation. The crosscorrelation has its

maximum at a delay time egual to the difference in

23





Source

Receiver 1

Wave front

Receiver 2

X= Dcos^-

t= (D/c)cosA i Time difference between
receptions at receivers.

c= Velocity of propagation.

Figure kt Direction Finding.
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propagation time from the source to each of the two

receivers. Since D is a constant, then the direction to the

source, which is the angle 9 measured between the

propagation direction and the base line between receivers,

is a function of the delay t (time difference) . So, if a

source is at 6 and another is
1

at then the crosscorrelation of the siqnals at the

receivers from both sources will peak at two different

times.

This technique can be used to find the direction of

any disturbance which radiates a plane wave such as cosmic

noise sources, earthquakes, submarines, and radar or sonar

targets.

3. Testing Control System Response OUzLiHSLL [.Ref. 3 ]

It is often necessary to determine the transfer

function or the impulse response of a control system or

plant which may be in continuous use. In this case, the

adjustment should be done without taking the control system

out of work. Crosscorrelation is idealy used for these

cases, and the adjustment can be performed on-line.

Figure 5 represents a typical control system.

Low-level wideband noise is introduced into the servo loop

and it is crosscorrelated with the output. The control

system acts as a filter and the crosscorrelation represents

the impulse response of that system. Figure 6 represents a

typical control system response.
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Overdamped-
slugglsh system
with too
low gain.

damping

o u

i System bandwidth
* (BW)

Correctly
damped-max.
response, max.
stability.

Natural
frequency

o u

Underdamped-
too high gain.

c~ u
Natural

~*i frequency

Figure 6 t Typical Control System response.
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III^ GENERATION OF THE CORRELATION FUNCTIONS*

The correlation functions, autocorrelation and

crosscorrelation, can be generated by three different

methods. The first two methods (time-domain definition and

indirect frequency-domain) will be briefly explained in this

section. The third method (method without pure time delay)

will be explained in the follwing sections. This last

method can generate the correlation functions in a fairly

easy and inexpensive way and it is the main concern of this

thesis.

A« METHOD I: TIMS-DOMAIN DEFINITION* [Ref. 1]

This is an expensive but widely used method. Here, the

correlation functions are generated by a simple application

of the mathematical definition of autocorrelation and

crosocor relation.

Figure 1 shows a simple device to obtain the

autocorrelation function and it consists in a step by step

solution of equation (2.01). Figure 3 shows the same

application but for the crosscorrelation function.

The method consists in delaying one of the signals "u"

units of time, then both signals under consideration are

multiplied together and the product is fed into a low-pass

filter. The filter output is one point of the correlation

function. The complete correlation function is generated

when the delay between the two signals is varied. Note that

if the two functions being correlated are equal except for

the delay "u", the result is the autocorrelation function.

Otherwise the result is the crosscorrelation function.

There are some disadvantages to this method, mainly:

(1) If the two signals are fluctuating, and if the delay

,f u" is too long, a distortion is introduced in the system.

(2) Since this method is a discrete process, the total

28





number of points which generate the complete correlation

function depends upon the number of individual delay devices

used.

B« METHOD II; INDIRECT OR FREQUENCY-DOMAIN METHOD*

One of the properties of the correlation functions is

the fact that they are related to the power spectrum through

the Fourier Transforms, the autocorrelation being the

inverse transform of the auto- spectrum and the

cross-correlation the inverse of the cross-spectrum. Thus,

the indirect method consists in transforming to and from the

frequency domain so that the correlation in the time domain

is equivalent to a complex conjugate multiplication of the

signals spectra in the frequency domain.

This method is expensive and its application is based on

the Fast Fourier Transform algorithm which is a descrete

(digital) process and is mainly used for special purpose

machines. [Pef. 1,8]

C« METHOD III: METHOD WITHOUT PURE TIMS DELAY*

The third method used to generate the correlation

fuactions is based on the fact that either autocorrelation

or crosscorrelation can be represented as a series expansion

of orthogonal terms. The problem is now how to obtain the

coefficients of the series expansion and how to use them in

order to get practical results in a fairly inexpensive and

simple way. This method will be fully discussed in the

following sections.

29





IV* CORRELATION ANALYSIS WITHOUT TIME DELAY*

A« THE03Y* [Ref. 2]

The autocorrelation function can be expanded in a series

of orthogonal functions as follows:

CO

R(u) = L a (u)[p(u)]
g

0<u<co (4.01)
n=0 n n

where

a : coefficients of the series expansion,
n

p (u) : a weight function to be defined later.

3 (u) : polynomials that form an orthonormal set with

respect to p (u) in the range 0<u<CO .

The coefficients a are given by:
n

1-g
a = \R(u)e (u)[p(u)] du (4.02)
n

U(u)e (uj

1 • Orth ogo nal Filters. Lief.^ \ lm 2 J

Figure 7 shows a system that can be used to generate

the coefficients a .

n

If it is supposed that the linear network has an

impulse response h (t) , then the filter output is:
n
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Con^
lahA

.x (n;t) = \x (t-v)h (v) dv
o J 1 n

(4.03)

and the multiplier output is:

00

x (n;t)x (t) = \x (t-v) x (t) h (v) dv (4.04)
1 2 fl V1 2 n

The output of the low-pass filter is the mean or

average value of equation (4.04) So:

so

x (n;t)x (t) = \x (t-v)x (t) h (v) dv (4.05)
2 n

f

J

co

R (v) h (7) dv
n

(4.06)

By comparing equations (4.02) and (4.06) namely:

.00
,1-g

a = P. (u)6 (u)[p(u) ] du
n r> J n

(4.02)

and

.co

x (n;t) x (t) = \ R(v)h (v) dv12 \ n
o

(4.06)

it can be seen that
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a = x (n;t)x (t) (4.07)
n 1 2

if h (t) is chosen to be
n

h (t) = 9 (t)[p(t) ]

9
(4.08)

n n

Equation (4.08) is a definition. Any filter whose

impulse response satisfies equation (4.08) is defined as an

orthogonal filter.

The above development shows that at least

mathematically, the coefficients a of the series expansion
n

can be obtained. Actually, it will be shown next that the

orthogonal filters can be realized and the coefficients a
n

can be obtained from a practical system which uses a finite

number of these filters.

2- Synthesis Problem..

Equation (4.01)

CD

R(u) = E a 9 (u)[p(u)] 0<u< (4-01)
n=0 n n

can be written as:

R(u) = [p(u)]
g £ a (u)[p(u)] (4.09)

n=0 n n

33





or
oo

2g-1 ^.
R(t) = [p(t) ] L a h (t) 0<t<oo

n=0 n n
(4.10)

where

h (t) = 9 (t)[p(t) ]

"
9

(4.08)
n n

for an orthogonal filter.

In a practical system, only a finite number of

filters is used. If N filters are used then equation (4.09)

can be approximated as:

2 -1 N

R <t) = [P(t) ] Ea h (t) (4.11)
N n=0 n n

If g=1/2, which is called the "symmetry" case, then

R (t) = E a h (t) (4.12)
N n=0 n n

and if g = then:

-1 N

R (t) = [P(t) ] £ a h (t) (4.13)
N n=0 n n

pi'

Figure 8 shows a basic synthesis of the system. The

approximate correlation function would be seen as a

transient following the application of the impulse.
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Figure 8, Correlator System without Time Delay
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A convenient system results if in fact the pulsing

can be carried out repetitively at intervals that are long

compared with the filter time constants, and yet

sufficiently frequently to give a steady trace on a CRT

screen. [ Ref . 1 ]

B« TWO REALIZABLE SYSTEMS* [Ref. 1,2]

By properly choosing the weight function p (t) and the

parameter "g" two systems can be realized so that the

impulse responses of the filters satisfy the definition of

orthogonality as expressed by equation (4.08). This is so

because h (t) and Q (t) depend only on p(t) and "g".
n n

For both systems, the weight function was chosen as:

p(t) = ae
-at

(4.14)

1 • System 1^. g=0

When g=0, equation (4.10) becomes

CO

R(t) = [p{t) j Ea h (t)
n=0 n n

(4.15)

where h (t) reduces to:
n

h (t) = G (t)[p(t) ]

n n

(4.16)

The Laplace transfer function of an RC low-pass

filter is:
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H (s) = = L[h(t)] (4.17)
L s+a

where

a = 1/t = 1/RC (4.18)

Now

L [H <s) ] = h (t) = ae (4.19)
L L

For a simple CR high-pass filter, the transfer

function is:

H(s) = - = (4.20)
s+ 1 s+a
T"

1

Now if one low-pass cell and n high-pass cells are

cascaded together but isolated by a buffer amplifier, the

resultant circuit will have a transfer function in the

s-domain expressed as:

n nas as
H (s) = . = (4.21)
N

n n+1
s+a (s + a) (s+a)

Figure 9 shows such a circuit. The inverse Laplace

transform of equation (4.21) is:
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n
a 1

h (t) = a-
n

vhich can be written as

dt n

n -at
t e (4.22)

Tl

h (t) = ae E[nl/(n-k)l ][ (-at) /k! k! ]
11 Jv ™ \J

(4.23)

-at
= ae L (at) = p(t) L (at)

n n
(4.24)

where the product is a set of Laguerre functions and L (at)
n

is defined as a set of Laguerre polynomials.

It can be seen that equation (4.24) is of the same

form of equation (4.08) where L = 9 and so the circuit of
n n

figure 9 is by definition an orthogonal filter and can be

used to realize the correlator.

2. System IX:. ^=1^.2^ (symmetry) .

The realization of this filter is presented briefly

here for completness since the experimental work was carried

out with filters of the first kind (g=0)

.

For g=1/2 equation (4.10) reduces to:

R(t)

oo

= L a h (t)
n=0 n n

(4.25)
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and h (t) reduces to:
n

h (t) = 9 [p(t) ]
n n

1/2
(4.26)

Figure 10 shows the circuit diagram of a filter

that can also satisfy equation (4.08). In this case:

a a

H (s)
n

2
s—

2

a
s+—

2

a
s+—

2

(4.27)

where

a/2 = 1/P.C (4.28)

and its inverse Laplace transform is:

h(t) =
ae

-a/2t

-L (at)
n

4.29)

which is identical to equation (4.24) except for a constant

factor.
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V*. EXPERIMENTAL PROCEDURE*.

The practical work was carried out in two parts. First,

the correlator system shown on figure 11 was simulated in

the computer using the DSL program, and second, experiments
were conducted on an actual correlator built in the

laboratory.

In both cases, the results of the autocorrelation of a

sine wave of 155 hz were compared. The practical results

obtained were very much as predicted by the simulation.

A detailed explanation of both the simulation and the

experiment will be shown in the following pages.

A. NATURE OF THE PROBLEM*

Figure 11 represents the block diagram of the proposed

correlator. la this case, economy, availability of parts,

the accuracy of the results and the area in which the

correlator could be used as a practical device, were the

guidelines for the design and construction of the correlator

shown.

Minimum cost was one of the main objectives of the

design work. For this reason, the orthogonal filters were

designed without the buffer amplifiers but this reguirement

limited the range of values of the resistors and capacitors

necessary to realize the linear filters. Also, the values

of the resistances and capacitances used were fixed which

presented the problem of restricting the correlator to

operate in a very narrow band of frequencies. Fortunately,

since the filters are linear, the possibility exists of

increasing the frequency of operation by varying the time

constant t = RC.

The low-pass filters, shown after the multipliers, were

designed as simple RC circuits.

All of the above considerations mean that several
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non-linearities were introduced in the system. Nevertheless
the final results were consistently accurate for practical
purposes

.

The correlator was also restricted to operate at low

frequencies which together with its narrow-band operation
made it useful in underwater detection.

The next problem that had to be worked out was to

determine the frequency of operation of the train of pulses

necessary to produce the transient needed to generate the

coefficients a . After some considerations on the
n

limitations of the correlator it was decided to use the same

frequency of the sine wave. The pulses then were in phase

with the positive peaks of the wave.

B« LINEAR-FILTER DESIGN*

It can be seen in figure 11 that the total number of

filters used to generate the coefficients a was equal to 6
n

for the orders n = 0,1,. ..5. Mathematically, an infinite

number of linear filters are required to generate the

coefficients, but the results obtained by using only six

filters were very much within the theoretical considerations

and computer predictions.

Higher order filters were not used because of the

availability of components and the characteristics of the

available pulse generator and oscilloscope.

1 • Orthogonal Filters w i thout Buffer Amplifiersr

Buffer amplifiers have ideally infinite input

impedance, zero output impedance and unity gain. Figure 9

shows an orthogonal filter which uses buffer amplifiers to

isolate the cells.
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Figure 12 shows a method which can also effectively

isolate the cells and at the same time eliminates the buffer

amplifiers. The method consists in introducing a factor of

isolation k which multiplies the values of the resistors and

capacitors in such a way as to maintain the time constant

the same throughout the cells. [Ref. 1]

The maximum value of k that can be used depends upon

the number of cells and the available values of resistors

and capacitors. It was found that for this waork, a factor

of isolation of over 10 would reguire values much too big

for the resistors and too small for the capacitors. For k

less than 5, the approximation of the ideal impulse response

was not accurate enough, k value of 5 was finally used and

the results are presented in figures 19,20, and 21.

The number of cells of the filters depends upon the

degree of the Laguerre polynomial. The low-pass F.c cell

represents the Laguerre Polynomial of degree (n=0) . The

degree is increased by cascading high-pass RC cells. The

maximum number of cells that could be used without

introducing appreciable distortion was found to be 6 (n=5)

:

one low-pass cell and five high-pass cells.

2. Details of circuitry

.

A simplified schematic diagram of the orthogonal

filter for n=5 is shown in Figure 13. Theoretically:

n n
R = k P. C = C /k
n n

and the following values were chosen
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R = 100ohm C = 10 MF

a = 1/RC = 1000 k = 5

Table I shows the actual values used together with
the theoretical values.

The filters required for the lower orders can be

obtained by simply eliminating one high-pass cell for each

order. Figures 19, 20 and 21 shows the actual results.

TABLE !•

Theoretical Values Actual Values.

R C R K
B

C K
C

R . 1K C 10MF . 1K 10MF

R
1

. 5K C
1

2KF .51K 5.

1

2MF 5.

1000.00

R 2.5K C .40MF 2.1K 4.6 .47MF 4.6 1013.17
2 2

R 12. 5K C .08MF 12.51K 5.0 .082MF 4.9 974.83
3 3

R 62. 5K C .016HF 62.51K 5.0 .02MF 4.7 953.65
4 4

R 312. 5K C .0032MF 312K 4.8 .0039MF 5.1 931.46
5 5

C« MULTIPLIERS*

Integrated circuit multipliers were used to realize the

correlator. In this case, the Intersil 8013A was used which

is a four quadrant analog multiplier and whose output is

proportional to the algebraic product of two input signals.
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Figure 15 » Connection Diagram of Multiplier,
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The multipliers can operate with standard ± 15 volts

supplies, and have a maximum dissipation power of 500 mW.

The block diagram of the multipliers is shown in figure

14 while figure 15 shows the connection diagram together

with the trimming circuit necessary for gain accuracy,

offset voltage and feedthrough performance.

D» LOW-PASS FILTER DESIGN* [Ref. 4]

The low-pass filters were designed as simple R-C

low-pass cells with a cut-off frequency of about 600 Hz.

More accurate filters can be designed, such as second order

Butterworth filters, but in this case, the simple R-C

low-pass filters were accurate enough for practical

purposes.

The designed of the filters was carried out as follows:

^C

Figure 16: Low-pass Filter Design

f =
H

2YcRC

(5.01)

If R is chosen to be 510 Ohms and C equal to 0.47 MF,

51





then the cut-off frequency would be:

f =— = 663.97 Hz = 664 Hz
n

2 (510) (0.47x10*
) (5.02)

For the computer simulation, a real-pole transfer
function is required. This transfer function is given by:

1 1

H
LP

(S) = =
(5 *° 3)

Ps+1 RCs+1

-6 -4 -4
where P = RC = 510(0.47x10 )= 2.397x10 = 2.4x10

and P is a parameter required for the real-pole transfer

function computer block.

E« THE ADDER AMPLIFIER* [Ref. 4]

The output of the adder or summing amplifier of figure

17 is a linear combination of the input signals. This

arrangememt was used to construct the adder required in the

last stage of the correlator.

As will be explained in the next section, the output of

the amplifier is not the true correlation function but the

product of the correlation with the weight function used to

realize the linear filters. Nevertheless, the shape of the

output can very well be used for signal identification since

it is a characteristic of the signal being correlated.

Figure 18 is the circuit diagram of the correlator.
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Figure 19: Impulse ResDonse of Linear Filters.

n=l
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Figure 20i Impulse Resuonse of linear filters.

n=3
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r,TT-*

tianire 21: Impulse Response of Linear filters.

n=5
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ri2;ure 22: Practical Correlator Output.
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Hi_CQMPUTER SIMULATION*

Figure 22 shows the diagram used to simulate the

correlator on DSL (Digital Simulation Language) together

with the name of the variables used for the program which

appears in appendix A.

Since the linear filters used to build the correlator

were those for which g=0, the actual output of the

correlator is not the true correlation function but the

correlation function multiplied by the inverse of the weight

function p (t) . In the case of the autocorrelation of the

sine wave, the output of the correlator which is shown in

Figure 24, is:

-at
R« (u) = ae R (u) (6.01)
XX XX

In order to get the true autocorrelation function of the

sine wave shown in Figure 23 R 1 (u) has to be multiplied by
xx

at
the function e /a shown on figure 25 This function is an

exponential which increases very rapidly and overflows the

computer results for times beyond those shown on the figure.

Scaling can be used to compensate the overflow and increase

the time of observation of the autocorrelation function.

Thus:

at
e

R (u) = R« (u) (6.02)
xx xx
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or

Figure 26 = Figure 24xFigure 25

Figures 28 to 33 show the response of the linear filters

for a train of impulses. They can be compared to Figures 19

to 21 which show the impulse response of the filters. The

pictures were obtained from the experimental work.

The response of the filters are of the same form as the

Laguerre Functions shown on Figure 27 and which are

necessary to generate the coefficients a of the series
n

expansion.

Figure 22 shows the output of the experimental

correlator. This figure can be compared to Figure 25 which

represents the output of the simulation. It can be seen

that the experimental results were in agreement with the

computer predictions.
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VII • CONCLUSIONS*

The orthogonal filters were designed in such a way as to

eliminate the buffer amplifiers which were required to

isolate the cells. This requirement, together with the fact

that the values of the resistances and capacitances used

were fixed, restricted the correlator to operate in a narrow

band of frequencies. .

Some work can be done in this area in order to

investigate the possibility of increasing the range of

frequencies of operation of the correlator by means of

variable resistances and capacitances which will vary the

time constant t=RC. This is entirely possible because the

filters are linear.

Also, further investigation may be required for the use

of some other type of multipliers in such a way that they

can be grouped as one unit instead of using 12 separated

units as designed^

The actual output of the correlator is not the true

correlation function but is an exponentially decayed

correlation as shown in section VI. So, it would be worth

investigating on the possibility of obtaining the true

correlation function by the generation of an exponential of

+ at
the type e /a in order to compensate the exponentially

decayed correlations obtained in this study.
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APPENDIX A.

SIMULATION OF CORRELATOR.

(DSL SUBROUTINE)

TITLE CORRELATION ANALYSIS
*

INTEG TRAPZ
INTGER NPLOT
CONST NPLOT=2
PARAM PI=3. 14159
PARAM LPT=2.4E-04
PARAM FREQ=50
PARAM TETA=0.0
PARAM ALFC=1000
PARAM ALFi=990.2
PARAM ALF2=997.65
PARAM ALF3=992.1
PARAM ALF4=953.7
PARAM ALF5=931.46

,*/>

INITIAL
*

5)

STORAG

Al
A2
A3
A4
A5
61
Bl
Bl
B2
B2
B2
B2
B3
B3
B3
B3
B3
B4
B4
B4
B4
B4
B4
B5
B5
B5
B5
B5
B5
B5
WR
PI
P2
AL
AL
WI

-i

(1
(1
(1
( 1

(1
(1
(2
(3
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*
*

Bl(3)tB2(4),B3(5),B4(6),B5<7),...
A1(1),A2(1),A3(1),A4(1),A5<1)

TABLE ICU 1-2) = 2*0.0, IC2( 1-3) = 3*0.0 , 1 C3( 1-4) =4*0.0 ,.. .

IC4( 1-5) =5*0. 0t IG5(l-6)=6*0.0

DYNAMIC
INPT=I MPULS(P1,P2)
DIN=PULSE( INPT, WIDTH)

*

DERIVATIVE 1
*

* .?

*
YIN=SINE(0.0,W^AD,TETA )

NOSCRT
DOUT0=REALPL(0.

,

ALJ f DIN)
Y0UT0=REALPL(0. ,ALJ,YIN)
D0UT1=TRNFR( l,2,ICl,Al,Bl,DINi _
Y0UT1=TRNFR{1,2, IC1,A1 ,B1, YIN) , ,

D0UT2=TRNFR(2,3,IC2,A2,B2,DIN) TOT YA/?J/rr
YOUT2=TRNFR(2 f 3, IC?,A2,B2,YIN)
DCUT3=TRNFR(3,^ , IC:>,A3,B3,DiN) r tl
Y0UT3=TRNFR(3,4,IC3,A3,B3,YIN) '

'

'

D0UT4=TRNFR(4,5 , I C4, A4, B4, DI N)
Y0UT4=TRNFR(4,5 , IC4, A4, B4, YIN )

DOUT5=TRNFR<5,6, I C5, A 5 , 3 5 , D IN

)

Y0UT5=TRNFR(5,6 , IC5, A5,B5 f YIN

)

* FOR MULTIPLIERS
*

MUL0=Yuu i 0*V IN
MUL1=Y0UT1*YIN
MUL2=YOUT2*YIN
MUL3=YOUT3*YIN
MUL4=Y0UT4*YIN
MUL5=YOUT5*YIN

* FOR RESPONSE OF LP
*

RESO=REALPL(0.0 , LPT, MULO)
RES1=REALPL(0.0,LPT, MUL1

5

RES2=REALPL(0.0,LPT,MUL2)
RES3=REALPL(0.0,LPT, MUL3)
RES4=REALPL(O.O f LPT,MUL4)
RES5=REALPL(0.0,LPT,MUL5)

* FOR SECOND SET OF MULTIPLIERS
*

MULD0=DOUT0*RESO
MULD1=D0UT1*RES1
MULD2=DOUT2*RES2
MULD3=D0UT3*RES3
MULD4=D0UT4*RES4
MULD5=DOUT5*RES5

*
* FOR ADDER
*

XC0R=MULD0+MULDl+MULD2+MULD3+MULD4+MULD5
ARGU=ALFN*TIME
EXPO=EXP(ARGU)/ALFN
CORR = XCOR*EXPO

SAMPLE
PRINT 10E-05 ,MULD0,MULD1 ,MULD2,MULD3 , MULD4, MULD5 t Y IN , . .«

XCOR, CORR, EXPO
PRE PAR 10E- 5, YIN, XCOR, CORR, EXPO
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CONTRL
GRAPH
LABEL
GRAPH
LABEL
GRAPH
LABEL
PRPLOT
*

FINTIM=20E-03 f 0ELT=2 0E-06,DELS=10E-05
TIME, XCOR
XCOR VS TIME.
TIMEtCORR
CORR VS TIME.
TIME, EXPO
EXPO VS TIME.
ONLY

CALL DRWGl 1 , 1

,

TIME, Y IN )

CALL DRWG<2,1, TIME, XCOR)
CALL DRWG(3,1, TIME, CORR)
CALL DRWG<4,1, TIME, EXPO)

TERMINAL
CALL ENORW(NPLOT)

END
STOP
//PLOT.STEPLIB OD DSN=SYS3 .DSLPLOT , UNI T=232 1

,

V0L=SER=CEL009,DISP=SHR
//PLOT.SYSIN DD *
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