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ABSTRACT 

 With a strong nuclear arsenal, rapidly expanding Navy, and increasing economic 

influence, China is quickly turning into a peer adversary that matches the United States’ 

military and economic strength. Strategies must be developed and analyzed that 

effectively curb Chinese aggression. Jeffrey E. Kline and Wayne P. Hughes, both 

professors at the Naval Postgraduate School and retired Navy Captains, developed the 

“War at Sea Strategy,” which relies heavily on U.S. submarines creating a maritime 

exclusion zone in the South and East China Seas. In Zachary P. Schwartz’s 2013 thesis, 

“Using Undersea Assets to Establish a Maritime Exclusion Zone in the South and East 

China Seas,” Schwartz developed the submarine anti-shipping engagement model 

(SASEM) to analyze the feasibility of the “War at Sea Strategy.” 

 This thesis developed a new model to test the viability of SASEM and build upon 

its conclusions. The new model uses a different methodology that removes many of 

SASEM’s underlying assumptions and allows for more complicated modeling behaviors, 

such as changing submarine search and movement patterns. By comparing our results to 

SASEM’s, we found that the SASEM methodology was flawed and produced unreliable 

results. By testing various search patterns, we found that barrier search is superior when 

the targets move in predictable paths. Additionally, we found the difference between 

random and grid search to be small but statistically significant. 
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Executive Summary

The purpose of this thesis is twofold. First, it determines the effectiveness of the Submarine
Anti-shipping Engagement Model (SASEM) [1] in predicting the capability of U.S. sub-
marines in establishing a maritime exclusion zone. Second, it expands upon SASEM and
removes a number of its assumptions in order to better estimate the feasibility of the War at
Sea Strategy in curbing Chinese aggression [2].

The War at Sea Strategy, developed in 2012 by retired Navy Captains L. Kline and W.
Hughes, was developed in response to growing tensions between East Asian countries
regarding disputed ownership of islands and land masses in the South China Sea (SCS)
and East China Sea (ECS). In the event of open hostilities between the PRC and the U.S.
or one of its allies, the strategy suggests avoiding a costly and possibly unwinnable ground
war with the PRC by relying extensively on U.S. submarines. By using U.S. submarines to
establish a maritime exclusion in the South China Sea (SCS) and East China Sea (ECS),
Chinese merchant trade would be disrupted severely enough that the PRC would yield to
U.S. demands without the need for total warfare.

The SASEM was developed in 2013 to model the effectiveness and feasibility of the War at 
Sea Strategy. Statistical analysis was performed to determine the most significant factors that 
could affect the outcome of the War at Sea Strategy, and Lanchester empirical differential 
equations were used to simulate the outcome of the strategy. The model predicted that, given 
a set of ideal initial conditions, the strategy would require 88 to 165 days to be successful 
and result in minimal U.S. losses.

Today, territorial disputes in the SCS and ECS continue to escalate as the PRC continues
to develop man-made islands in order to expand their territorial claims. Additionally,
relationships are worsened by growing trade and economic disputes between the U.S. and
the PRC. Combined, these factors mean that the U.S. military must now, more than ever, be
prepared to intervene to stop or prevent Chinese aggression. Therefore, another look at the
War at Sea Strategy is warranted, with a focus on examining the techniques and outcomes
of the SASEM. Specifically, this thesis seeks the answers to the following questions:

• How effective was the SASEM at predicting the outcomes of a submarine centric

xv



anti-shipping campaign?
• Can the results of the SASEM be verified using an independent methodology?
• How does changing the SASEM assumptions concerning unit level search and en-
gagement behavior affect the predicted results?

• Does improving upon the assumptions and methodology of SASEM make the War at
Sea Strategy more or less feasible?

To answer the previous questions, a new simulation model is used and compared to SASEM.
Unlike SASEM, which relies on differential equations to track different force levels, the
new model tracks the course, speed, and position of all units involved and uses their
predefined search and engagement behavior to determine their actions. The approach is
more computationally expensive than the SASEM approach and therefore does not allow
for analysis over a wide range of parameter values. However, since each unit is tracked
separately and independently, it allows for the analysis of more dynamic force level behavior.
For instance, this approach allows for simultaneous engagements, differing force level search
patterns, and differing unit level tactical priorities. Therefore, this thesis focuses primarily
on the recommended parameters set forth by SASEM, and explores how changes to force
behavior affect the outcome. For each set of behavioral settings, the simulation was
performed 500-1200 times. The results of these experiments are as follows:

The SASEM results are unrealistic. Decisions made within the SASEM model caused the
model’s reported time-to-completion to be excessively large. Additionally, the model’s
reported U.S. attrition was excessively small.

Our model produced a time-to-completion that was one-to-two orders of magnitude smaller
than SASEM’s model. This increases the feasibility of the War at Sea Strategy. However,
our model’s U.S. attrition was also larger, which may make the strategy too costly. Though
our model does not show the strategy to be infeasible, it also does not offer evidence in
support of the strategy. More research is required to determine acceptable U.S. losses and
potential methods for minimizing them.

Concerning search techniques, when the PRC force movements are predictable and well-
defined, a barrier search outperformed any other searchmethod. Otherwise, placing theU.S.
submarines in a grid was slightly preferable to allowing the submarines to move randomly.
However, the difference was slight, you using random search in place of grid search in a

xvi



combat simulation would not result in a serious loss of fidelity.
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CHAPTER 1:
Introduction

Relations between the United States and the PRC have been strained ever since the PRC
rose to power in 1949. Differences in ideological views and practices have always been a
source of tension, and more recently, territorial water disputes and economic competition
have furthered the divide. This tension has resulted in indirect conflict between the two
nations, as was the case with the Korean War. Since the mid-1990s, the People’s Liberation
Army (PLA) has steadily increased its military budget, which rose by about 10 percent from
2017 to 2018 alone [1]. Therefore, it is more important than ever that the United States
be prepared for conflict with the PRC. It is necessary not only to identify comprehensive
strategies but also to test these strategies using both quantitative and qualitative methods.

This chapter explores the relations between theUnited States and the PRC in the South China
Sea (SCS) and East China Sea (ECS). It describes the area’s geographical characteristics
and the roles of regional U.S. allies in this U.S.-PRC dynamic. Next, it will provide
an brief overview of the War at Sea Strategy, which was developed as a possible U.S.
response to Chinese aggression. Finally it will detail the basics of Submarine Anti-shipping
Engagement Model (SASEM) [2], a model developed to test the feasibility of the War at
Sea Strategy [3], and the primary focus of this thesis.

1.1 The First Island Chain
Though not an official part of either the PRC or U.S. military policy, unofficial doctrine
divides Chinese maritime defense into three perimeters defined by a series of islands and
archipelagoes. Of chief concern for the War at Sea Strategy, SASEM, and our thesis is the
first island chain inside the South China Sea (SCS) and East China Sea (ECS). These are
the waters that start at the east coast of Asia and end at an imaginary line which starts at
the southern tip of Japan, runs south through the Ryukyu Islands and down the east coast
of Taiwan, passes west across the northern coast of Borneo, and reconnects to East Asia at
the southern tip of the Malay Peninsula [4]. An approximation of this region is highlighted
in Figure 1.1, along with its area and perimeter.
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Establishing sea control within the first island chain comes with various geographical and
military difficulties. Geographically, access to the SCS and ECS is restricted by the island
chain, creating choke points such as at the Luzon Strait. Militarily, much of the SCS
and ECS are within operating range of the formidable PRC diesel submarine fleet, which
numbered 59 as of 2015. Besides being armed with torpedoes, over half of the PRC’s
submarines also carry cruise missiles that pose a long-range threat to surface ships [5].
Additionally, surface ships are also vulnerable to the PRC’s DF-21, a shore-based anti-ship
ballistic missile [6]. Overall, the operating environment is dangerous for any asset operating
within its waters, but surface ships would be extremely vulnerable.

1.1.1 U.S.-PRC Relations
U.S.-PRC relations are becoming steadily worse due to a combination of economic conflict
and geographical disputes. Economically, disagreements over trade practices led to a trade
war, which began to escalate in early 2018 [7], threatening the health of both nations’
economies. Geographically, China continues to build and occupy islands in the SCS and
uses them as justification for claiming ownership over large swaths of water for navigational,
economic, and military use. This practice has led to territorial disputes with many other
actors in the region, including Vietnam, Brunei, Malaysia, the Philippines, and Japan [5].

The territorial tension in the region is of particular note due to the large amount of allies
the United States has in and around the SCS and ECS. Specifically, the United States
has defense treaties with the Philippines, Japan, Vietnam, Malaysia, Brunei, South Korea,
and Singapore, including mutual defense treaties with the Philippines, Japan, and South
Korea [8]. This means that a conflict between any of these nations and China could be a
triggering event that necessitates U.S. intervention, further emphasizing the need for the
United States to have well analyzed strategies in place to deter and, if necessary, defeat
Chinese aggression.

1.2 SASEM
SASEM was developed in 2012 by Zachary Schwartz [2] in order to evaluate the feasibility
of the War at Sea Strategy. The approach uses differential equations and stochastic inputs
to determine how quickly United States and PRC force levels attrite. Since one goal of our
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thesis is to validate the results of SASEM, this section will give an overview of its major
components. All information regarding SASEM is taken from Schwartz’s master’s thesis
“Using Undersea Assets to Establish a Maritime Exclusion Zone in the South and East
China Seas,” and a more complete discussion on SASEM can be found there.

1.2.1 Approach
SASEM tracks the force levels for five types of units: blue submarines, red submarines, red
surface ships, red logistic ships, and red merchants. At its core, SASEM uses Lanchester
differential equations to determine the expected casualty rate for each unit type. These ca-
sualty rates are then used to determine the engagement type that occurs next by determining
the time-to-next-encounter for each possible engagement.

If X(t) represents the number of blue submarines at time t, and Y(t) represents the number
of red submarines at time t, then the casualty rate of red submarines would be calculated by,

dY
dt
= A · X(t) · Y (t), (1.1)

where A is a constant determined by assumptions concerning unit level exchange ratios,
sensor performances, and search techniques. Using this process, a casualty rate is calculated
for each unit type.

Using the casualty rates, the time-to-next-encounter for each type of engagement is calcu-
lated. This is a random variable with a probability curve determined by the casualty rate
and assumptions concerning unit level search behavior. The lowest time-to-next-encounter
determines the next simulated engagement. For instance, if the times until a blue submarine
encountered a red submarine, red warship, and red merchant were randomly determined
to be one second, 3 seconds, and five seconds, respectively, then the next engagement to
occur would be blue submarine versus red submarine, and the simulation time would be
advanced by one second. One of the two forces involved in that engagement loses a unit.
The losing side is determined by a uniformly distributed random variable, which is then
compared to an assumed exchange ratio. Finally, the simulation time is advanced by a preset
prosecution time. The prosecution time is used to reflect that an engagement does not occur
instantaneously.

3



Table 1.1. SASEM Recommended Parameters

PARAMETER VALUE
Red Break Point >0.7

Merchant Prosecution Time <3hr45min
Total Blue Subs >24

Merchant Search Radius >6 nm
Submarine Exchange Ratio 3:1

These are the SASEM recommended values for maximizing the likelihood of a blue
force victory.

The above process is repeated until one of the forces reaches a preset breakpoint level, at
which point the simulation ends and one of the sides is determined to be the victor. For
Schwarz’s analysis, the simulation was repeated several times using different combinations
of parameter values. Statistical analysis was performed to determine which parameters had
the most impact on the simulation outcome and which parameter values maximized the
likelihood of a blue victory.

1.2.2 Parameters of Interest
SASEM contains 21 adjustable parameters. However, only the most significant parameters
will be discussed here. Some of these parameters have recommended values to increase the
probability of a blue victory. Since these values heavily influenced the choices made for
our model’s parameters, they are summarized in Table 1.1.

Force Levels
These parameters include Total Blue Submarines, Initial Blue Submarines, Initial Red
Submarines, Initial Red Merchants, Initial Red Warships, and Initial Red Logistics Ships.
Since SASEM allows for blue force reinforcements at preset times within the simulation,
Total Blue Submarines and Initial Blue Submarines are not necessarily the same.

Exchange Ratios
These parameters include the Submarine Exchange Ratio and Warship Exchange Ratio.
They represent how many of the respective unit type is lost per blue submarine lost, and

4



control the probability of a unit being destroyed in an encounter.

Search Radii
These parameters include the Merchant Submarine Search Radius, Warship Search Radius,
Logistics Ship Search Radius, and Merchant Search Radius. This is the range at which
a blue submarine detects a red submarine, surface warship, logistics ship, and merchant,
respectively. Note that since SASEM assumes simultaneous detection, none of the red force
units has its own search radii.

Merchant Breakpoint
After the percentage of red merchants remaining is reduced below this breakpoint level, the
blue force wins the simulation.

Merchant Prosecution Time
This is the amount of time added to the simulation every time a blue submarine engages a
red merchant.

1.2.3 Assumptions
This section highlights the most important assumptions used by SASEM.

Random Search
All units move according to random search theory. For more on random search theory, see
Section 2.5.

Perfect Sensors
If the range from a red unit to a blue submarine is equal to or less than its respective search
radius, then the blue submarine will detect it. If a unit is outside its respective search radius,
then the blue submarine will not detect it. This is often called a “Cookie Cutter” sensor.

Every Engagement Results in Exactly One Casualty
For every engagement, exactly one unit must be destroyed. The cases where both or neither
units are destroyed are not considered.
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1.3 Problem Statement
Any military conflict with the PRC will invariably require an advanced force of U.S.
submarines to neutralize threats both in and around the SCS and ECS. SASEM’s use
of the War at Sea Strategy carries this idea further, tasking U.S. submarines with the
responsibility of disrupting PRC merchant activity to the point where the PRC is unwilling
to engage in further conflict. Since such a large significance is placed on the ability of the
U.S. submarines to find and destroy PRC merchants in a timely manner, a thorough analysis
should be performed to test the feasibility of the strategy. Though SASEM and its use of
differential equations is a good launching point for this analysis, it is unable to model the
more dynamic behaviors and outcomes that can occur from havinig multiple units engaging
each other simultaneously. A new model is required that builds upon the SASEM model to
improve the accuracy of the results.

1.4 Objectives
This thesis will use a new combat simulation model based on the significant parameters
obtained from SASEM. The new model will be used to attempt to validate and improve
upon SASEM’s results. Additionally, it will be used to re-evaluate the feasibility of the War
at Sea Strategy. The following questions will be examined:

• How effective was SASEM at predicting the outcomes of a submarine focused anti-
shipping campaign?

• Can the results of SASEM be verified using an independent methodology?
• How does changing SASEM assumptions concerning unit level search and engage-
ment behavior affect the predicted results?

• Does improving upon the assumptions and methodology of SASEM make the War at
Sea Strategy more or less feasible?

1.5 Methodology
In order to test the validity of SASEM, we have created a new model using a different
approach from SASEM. Initially, we will force our model to use most of the assumptions
made by SASEM in order to ensure they produce similar results. Then, we will further the
analysis of the War at Sea Strategy by removing some of the assumptions made by SASEM.
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This section gives a brief overview of our model’s construction and the analysis performed
on its results. For more information on our model, see Chapter 2, and for more information
on our experiment design and data analysis, see Chapters 3 and 4, respectively.

1.5.1 Model and Experiment
Our model does not use equations to predict force levels and unit interactions. Instead,
it tracks the position and velocities of individual units. This removes the abstraction
caused by using differential equations, and it allows units to interact naturally as they move
within detection range of each other. Initially, many of the parameters and behaviors of
our simulation will be set to best imitate the restraints and behaviors of SASEM. After
comparing these results to SASEM’s, we will then begin modifying unit behavior outside
the bounds of SASEM’s assumptions to determine how that affects the simulation’s results.

Our aim is to make three determinations. First, we wish to determine if SASEM is a
valid model for simulating the War at Sea Strategy. Second, given the improvements we
make upon SASEM, we wish to re-evaluate the feasibility of using submarines to create
a maritime exclusion zone in the SCS and ECS. Finally, regardless of the feasibility of
the strategy, we wish to determine which search technique gives the U.S. force the most
successful outcome. The level of U.S. success will be judged based on two measures of
effectiveness (MOEs). First, the amount of time required to complete the simulation, which
we call Time-to-Finish (TTF). Second, the amount of U.S. submarines that are able to
survive the simulation, which we call Blue-Survival-Percent (BSP).

1.5.2 Data Analysis
To perform data analysis, we will compile the variable input parameters, TTF, and BSP for
each iteration of the combat model. The variable inputs will consist of U.S. force behavior,
PRC force behavior, and the initial number of merchants. The statistical analysis software
JMP will be used to perform multi-factor analysis of variance (ANOVA) with the variable
inputs representing the different factors. Using this analysis, we will be able to identify
statistically significant changes in TTF and BSP for the different levels of force behavior
and merchants.
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1.6 Thesis Organization
Chapter 1 of this thesis provides background information and defines the problem. Chapter 2
is a full description of our combat model. Chapter 3 describes the design our experiments
and the specific parameter values used in each experiment. Chapter 4 presents the results
of the experiments and uses statistical analysis to analyze those results. Finally, Chapter 5
contains our conclusions and recommendations.
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Figure 1.1. Waters within the First Island Chain

The highlighted portion of this map roughly represents the waters defined by the
First Island Chain. The area of the highlighted portion will be used to determine
the area of our combat model. Source: [9]
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CHAPTER 2:
Model Description

This chapter will explain the methodology and features of our combat simulation model.
The model was developed solely using MATLAB and its code can be referenced in Ap-
pendix C. First is an overview of the combat model, including its assumptions, algorithm,
and parameters. Then the basics of random search theory are explained, along with how this
model replicates these random search conditions. This last portion is important since accu-
rately creating random search patterns is essential for comparing this model with SASEM.
For ease of labeling and to conform with standard modeling convention, the U.S. force is
designated as the blue force and the PRC force is designated as the red force.

2.1 Building upon SASEM
The results obtained using SASEM provide a useful set of key parameters and values that
can be used as a starting point for the newmodel. However, in order to validate and improve
upon SASEM, a different approach to combat modeling will be used. The new model will
still track the force levels of U.S. submarines, PRC submarines, PRC surface warships, and
PRCmerchants as the simulation progresses in time. Whereas SASEM advanced time using
random increments calculated with stochastic equations, this model will advance time in
set increments. At each new time increment, the position of each individual unit will be
tracked in the X-Y plane, and encounters will occur organically as opposing forces move
within detection range of each other. Randomness will be introduced through unit starting
positions, unit course changes, and battle outcomes. Once a force level is reduced to a
breakpoint value, the simulation is ended. Since the model tracks the course and speed of
every unit, various behaviors can be simulated beyond random search. Behaviors of interest
will include random search from random starting locations, random search from uniformly
distributed starting locations, and a barrier search technique.

2.2 Assumptions
Though thismodel removes several assumptions required by SASEM, other key assumptions
still remain. First, a list of the assumptions key to this model will be explained. Then, the
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assumptions from SASEM that are no longer applicable will be explained.

2.2.1 New Model Assumptions
The following is a list of major assumptions used in this model.

Perfect Sensors
In order to improve computational efficiency, all sensors are assumed to have 100 percent
detection capability up to a predefined range, after which they will have no detection capa-
bility. No sensor degradation is modeled based on range or environment. The predefined
sensor range will vary depending on the pairing of detecting unit and detectable unit. For
instance, the detection range for a blue submarine is different against red submarines and
red surface ships, and the range a blue submarine can detect a red submarine is different
from the range a red submarine can detect a blue submarine.

Unit Types
Though an operating environment will contain many types of assets from multiple organi-
zations, this model assumes only four types of units exist: blue submarines, red submarines,
red surface warships, and red merchants. Additionally, though in reality much variability
exists within each of those classes, this model assumes all units of the same type are iden-
tical. Of note, SASEM also includes red logistics ships. However, since SASEM did not
allow for logistics ships to detect or kill blue submarines, their contribution to the model is
assumed to be insignificant.

Combatants
Of the unit types discussed above, only submarines and surface warships are considered
combatants capable of attacking enemy forces.

Every Detection Event Results in an Engagement
The scenario where a combatant unit ignores all detected enemies is not considered. In
real life, a vessel may avoid combat due to possible ongoing repairs, tactical or strategic
priorities, or armament inventory. Temporary damage and armament levels are not tracked
in this model. If a combatant gains multiple enemy detection at the same time, then only
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one of the enemies will be pursued for engagement. If multiple types of units are detected
at the same time, then the type of enemy pursued depends on preset behavior programming.

Prosecution Times
When a combatant detects an enemy unit, a predefined prosecution time must pass before
the combatant can attempt to kill the enemy. During this prosecution time, the combatant
can neither detect nor engage other units. The prosecution time is specific to the detected
enemy, with submarines having a longer prosecution time than surface ships.

2.2.2 SASEM Improvements
The following is a list of assumptions that existed in SASEM that do not exist in this model.

Random Search
With SASEM, the predicted time until next detection is derived using the probability
distribution expected from random blue force movement. Though our model can simulate
random search as one of its behavioral options, it is not restricted to it.

Every Engagement Results in Exactly One Vessel Being Destroyed
SASEM attrites forces by removing exactly one unit per engagement. The unit removed is
determined randomly using a predefined exchange ratio. For our model, both units have a
chance to survive an engagement based on predefined survival rates. Likewise, both units
have a chance to be destroyed in an engagement. The survival rates used are determined
from the unit types involved in the engagement and which side shoots first.

Simultaneous Detections
Our model does not require simultaneous detections. If units have different detection ranges
relative to each other, or if one unit is already engaged with a different unit, then a one-way
detection will occur. This can result in a unit surprising an enemy, which will increase its
likelihood of killing the enemy.
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2.3 Algorithm Description
At its core, our model tracks the positions, speeds, and courses of all units, advances them
throughout an X-Y plane at a specified time increment, and causes units to engage enemies
that are within their detection range. Below is a more detailed step-by-step description of
the algorithm. The full algorithm can be viewed in Appendix C.

1. Set force levels, movement behaviors, and combat behaviors based on specified
parameters.

2. Start a master loop that determines howmany times the simulation will be performed.
3. Determine unit starting positions, courses, and speeds based on specified parameters.
4. Start the time loop which will advance the simulation at a specified time increment

(typically six minutes per iteration).
5. Calculate the distance between actively searching units and their enemies.
6. For each searching unit, determine which of its enemies are within its detection range.

Begin tracking the detected unit with the highest priority level.
7. Determine which units have been tracking an enemy for the required prosecution

time, and have them attack their enemy.
8. Use randomly generated numbers to determine if units survive combat based on the

specifics of the encounter and the specified parameters.
9. End the simulation if any force is reduced to a breakpoint level.

10. Determine if any unit changes course or speed based on specified parameters.
11. Advance all units to their new positions based on their current positions, velocities,

and the time increment used.
12. Reiterate the time loop until a breakpoint is reached.
13. Save battle results.
14. Reiterate the master loop for the specified number of iterations.

2.4 Model Parameters
Our model has a total of 44 parameters. This includes continuous parameters that can
be chosen from a range of values, Boolean parameters that are either TRUE or FALSE,
and categorical parameters that can be set to one of several available options. A list and
brief description of each parameter is given in Tables 2.1, 2.2, and 2.3 for miscellaneous,
movement, and combat related parameters, respectively. Some common abbreviations used
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Table 2.1. Miscellaneous Parameters

PARAMETER TYPE DESCRIPTION
Breakpoint N Merchant breakpoint percentage
Iterations N Number of times simulation is performed
Initial-b N Initial number of blue submarines
Initial-rs N Initial number of red submarines
Initial-rw N Initial number of red surf. warships
Initial-rm N Initial number of red merchants
Width N Width of combat box (x-direction)
Length N Length of combat box (y-direction)

This table is a summary of all the miscellaneous model parameters, including their
value type. Value types can be (N)umerical, (C)ategorical, or (B)oolean.

throughout the parameter names are as follows:

• b - blue force
• r - red force
• rs - red submarine
• rw - red surface warship
• rm - red merchant

Parameters types are defined as (N)umerical, (C)ategorical, or (B)oolean.

2.4.1 Breakpoint
This value controls when the simulation ends. It can take values between zero and one.
Once the percentage of the red merchant fleet remaining falls below the breakpoint level,
the simulation will end. It is at this level that it is assumed the PRC will be unwilling to
continue combat operations.

2.4.2 Initial Force Levels
These values control the starting number of blue submarines, red submarines, red surface
warships, and red merchants. Our model does not include reinforcements of any units, so
this is also the maximum number of each unit type for a given simulation.
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Table 2.2. Movement and Positioning Parameters

PARAMETER TYPE DESCRIPTION
Waterspace C Sets the navigational boundaries of blue submarines
Movement-b C Controls blue movement behavior
Movement-r C Controls red movement behavior
Lambda C Rate that randomly moving units change course
Vb-search N Blue search speed
Vb-sub N Blue attack speed against submarines
Vb-surf N Blue attack speed against surf. warships
Vb-m N Blue attack speed against merchants

Vrs-search N Red submarine search speed
Vrs-sub N Red submarine attack speed

Vrw-search N Red surf. warship search speed
Vrw-sub N Red surf. warship attack speed
Vrm N Red merchant cruising speed

This table is a summary of all the movement and positioning related model param-
eters, including their value type. Value types can be (N)umerical, (C)ategorical,
or (B)oolean.

2.4.3 Width and Length
The Width and Length define the boundaries of the combat area. The area is a rectangular
box with x-values from zero to Width and y-values from zero to Length. If any unit moves
outside these dimensions, it will alter its course to return to the combat area. Since SASEM
used an area of 1,350,000 nm2, our model uses a Width and Length of 900nm x 1500nm.
These dimensions result in the same area and geographically approximate the dimensions
of the combined SCS and ECS.

2.4.4 Waterspace
This categorical parameter determines blue force navigational boundaries, in addition to
those already defined by Length and Width. Options for this categorical parameter include
Random, Grid, and Barrier. Each option is discussed in detail below, and pictorial repre-
sentation of Grid and Barrier can be seen from Figures 2.1 and 2.2, respectively. In these
figures, the downward facing blue triangles represent blue submarines, and the bolder black
lines represent their navigational boundaries. The light grey lines only correspond to x-axis
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Table 2.3. Combat Parameters

PARAMETER TYPE DESCRIPTION
Pros-sub N Prosecution time against a submarine
Pros-surf N Prosecution time against a surface ship
Rec-time N Recovery time after attacking or being attacked

Cooperation B Minimizes the prosecution times of red units
SASEM B Restricts model to cause it to act more like SASEM

Priority-ws B Blue prioritizes attacking warships over merchants
b-rs-b N Blue prob. of surviving a red submarine, blue shoots first
rs-b-b N Red submarine prob. of surviving, blue shoots first
b-rw-b N Blue prob. of surviving surf. warship, blue shoots first
rw-b-b N surf. warship prob. of surviving, blue shoots first
rm-b-b N Merchant prob. of surviving a blue attack
b-rs-rs N Blue prob. of surviving a red submarine, red shoots first
rs-b-rs N Red submarine prob. of surviving, red shoots first
b-rw-rw N Blue prob. of surviving a surf. warship, red shoots first
rw-b-rw N surf. warship prob. of surviving, red shoots first
b-rs-s N Blue prob. of surviving a red submarine, simultaneous fires
rs-b-s N Red submarine prob. of surviving, simultaneous fires
b-rw-s N Blue prob. of surviving a surf. warship, simultaneous fires
rw-b-s N surf. warship prob. of surviving, simultaneous fires
R-b-rs N Range that blue can detect red submarines
R-b-rw N Range that blue can detect surf. warships
R-b-rm N Range that blue can detect merchants
R-rs-b N Range that red submarines can detect blue
R-rw-b N Range that surf. warships can detect blue

This table is a summary of all the combat related model parameters, including
their value type. Value types can be (N)umerical, (C)ategorical, or (B)oolean.

and y-axis tick marks. Also note that the density of red units is not representative of the
experiments presented later in this thesis.

Random
All blue forces will start at a random point within the operational area. No further naviga-
tional boundaries exist.
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Figure 2.1. Grid Waterspace Starting Positions

This is an example of the blue submarines’ starting positions when Waterspace =
Grid. The blue force is represented by blue downward facing triangles. The red
units plotted are not representative of the actual number used in the experiments.

Grid
The operational area will be subdivided into a number of smaller boxes equal to the initial
number of blue submarines. Each submarine will be assigned one of the boxes and placed
randomly within its assigned box. The dimension and placement of the boxes will be as
uniform as possible. If a blue submarine dies, the boxes of neighboring submarines will
expand to encompass the waterspace of the dead submarine. Navigationally, if a blue
submarine moves outside its assigned box, it will correct its course to return to its own
waterspace.
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Figure 2.2. Barrier Waterspace Starting Positions

This is an example of the blue submarines’ starting positions when Waterspace =
Barrier. The blue force is represented by blue downward facing triangles. The red
units plotted are not representative of the actual number used in the experiments.

Barrier
Similar to Grid, each submarine will be assigned its own navigational box. However, all the
boxes will be placed in one column centered at half the Width of the combat area, creating
a barrier of closely positioned blue submarines that is hard to pass through undetected.

2.4.5 Movement
Movement-b and Movement-r are categorical parameters which determine the blue and red
force movement behaviors, respectively. Movement-b can take the values of Random and
Barrier. Movement-r can take the values of Random and Straight.
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Random Movement
This option causes forces to change direction at random times. Unless the unit is engaging
an enemy or outside its navigational area, it will change directions with a probability
determined by Lambda, where Lambda is the average amount of times a unit will change
course per hour.

Straight Movement
This option is available to the red force. Unless engaged with an enemy, each red unit will
always move from west to east or east to west. When a unit passes a navigational boundary
of the combat area it turns around to proceed in the opposite direction.

Barrier Movement
This option is available to the blue force. Unless engaged with an enemy or outside its
navigational area, each blue unit will move up and down between the northern and southern
boundaries of its navigational box.

2.4.6 Lambda
See Random Movement under Section 2.4.5.

2.4.7 Unit Speeds
These are the unit travel speeds in Knots. The red merchants have only one speed, but each
combatant has a different speed for searching and for attacking. The attack speed is used
to close distance with a detected enemy prior to the prosecution time expiring. Of note, if
an attacking unit becomes sufficiently close to its target, it will instead attempt to match the
course and speed of its target until the prosecution time expires.

2.4.8 Prosecution Times
These numbers represent how much time must pass after a unit detects an enemy before it
can begin searching for additional enemies. This is intended to simulate the time required
for a unit to determine its enemy’s course, speed, and position with enough certainty to
make an accurate shot. Since submarines are harder to detect and track, it will typically
take longer to prosecute a submarine than a surface ship.
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2.4.9 Recovery Time
This number represents the amount of time a unit must take to recover after attacking or
being attacked. If the unit is the attacking unit, then Recovery Time is included as part of
Prosecution Time. Recovery Time is intended to simulate a unit taking evasive action and
going through the process of preparing additional shots after attacking or counter-attacking
an enemy. While a unit is in recovery, it may not detect, attack, or counter-attack any enemy
units.

2.4.10 Cooperation
This Boolean determines the extend of red force cooperation. When TRUE, if multiple
red units engage the same target, the prosecution time for all red units will be reduced to
whichever red unit has the minimum prosecution time. This is intended to represent the
combined efforts and communications of the red units attempting to determine the blue
unit’s position. This will allow all red units to fire upon the blue unit at the same time, and
if Recovery Time is greater than zero, the blue unit will only get to counter-attack against
one of them. Since U.S. submarines do not train to operate in the same water space, there
is no option for blue forces to cooperate.

If Cooperation is set to FALSE, multiple red units may still engage the same blue unit, but
they will each have an individual prosecution time. In general, this Boolean will be set to
TRUE, but may be set to FALSE to cause our model to more closely match the behavior of
SASEM.

2.4.11 SASEM Mode
To distinguish the parameter from the model, quotation marks are used for the “SASEM”
parameter. “SASEM” is a Boolean which is used to make our model assumptions and
behaviors more closely match the model SASEM. When this Boolean is set to TRUE, only
one unit is allowed to detect and engage another unit at any given time. This not only means
that simultaneous engagements cannot happen at the same time, but it also means that two
units cannot detect and engage each other and that multiple units cannot detect and engage
the same enemy at the same time. This last stipulation makes the Cooperation Boolean
moot. In general, this Boolean will be set to FALSE, but may be set to TRUE to cause our
model to more closely match the behavior of SASEM.
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2.4.12 Engagement Priority
Priority-ws is a Boolean that, when set to TRUE, will cause blue units to prioritize attacking
warships over merchants. The specific priority order would be red submarine, red surface
ship, and then red merchant. When set to FALSE, the priority order would be reversed.
Of note, an actively searching blue unit cannot decline to engage a red unit if at least one
has been detected. These priority orders only apply when multiple types of red units are
detected at the same time. Once a blue unit has made the decision to engage a red unit, it
will not start looking for a new enemy to attack until the engagement is complete.

2.4.13 Survival Rates
These parameters are probabilities between zero and one and are named in an X-Y-Z format.
Their value is the probability that an X unit will survive a Y unit if Z unit fires first. For
instance, the value assigned to b-rs-b is the probability that a blue submarine will survive
a red submarine if the blue submarine fires first. Simultaneous shots are also considered.
For instance, b-rs-s is the probability that a blue submarine will survive a red submarine if
they both fire simultaneously. Note that the parameters which represent a unit’s probability
of surviving a counterattack, such as b-rs-b or rs-b-rs, will only apply if the attacked unit is
not in a state of recovery. See Section 2.4.9 for more on recovery.

2.4.14 Detection Ranges
Detection ranges are numerical values and are named in an R-X-Y format. Their values
are the maximum ranges in nautical miles (nm) that unit X can detect unit Y. For instance,
R-b-rs is the maximum range a blue submarine can detect a red submarine.

2.5 Simulating Random Search
SASEM uses random search theory to stochastically determine the time-to-next-encounter
for each possible type of engagement. Since one goal of this thesis is to determine the validity
of SASEM, it was important to develop search behavior that mimicked the theoretical
random search. In this section, a brief overview of random search theory will be given and
it will be shown how our model effectively simulates it.
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2.5.1 Random Search Theory
Random search theory predicts the probability that a single searcher will detect a single
target over time if the searcher’s course is random. For any given time t, the searcher has a
detection rate γ(t), which is determined by the searcher’s speed (V), the target’s speed (U),
sensor performance, and the search area (A). If the detection rate is constant, then γ(t) = γ,
and the probability that the searcher will detect the target at time t is given by the following
probability distribution function (PDF):

f (t) = γ · e−γ·t (2.1)

Integrating f(t) gives the probability that the searcher will have found the target by time t,
which is given by the following cumulative distribution function (CDF):

F(t) = 1 − e−γ·t (2.2)

Next, we develop a random search model for a simple case where the target is stationary [10]
and for a more complex case where the target is moving [11]. For the simple case, the
following assumptions are made:

• The searcher is moving randomly with a constant speed V.
• The target is stationary within the search area, and therefore U = 0.
• The searcher has a sensor with 100 percent detection probability up to range R and
zero percent detection probability at ranges greater than R.

At any given time during the search, the searcher will have a sweep width of 2R and a
forward speed of V. This means over a small period of time ∆, the searcher will cover a
swath of area equal to 2RV∆. The probability of detecting the target over this small period
of time is the percentage of the total area which has been searched over ∆, and so the
probability of detection is 2RV∆/A. Dividing by the time component gives the following
detection rate:

γ(t) = 2RV/A (2.3)
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Note that since R, V, and A are all constant, then γ(t) is also constant and γ(t)=γ. Therefore,
by substituting γ into Equation 2.2, the CDF is given by

F(t) = 1 − e−2RVt/A (2.4)

Next, we wish to further our model by allowing the target to move. For this model, the
following assumptions are made:

• The searcher is moving randomly with a constant speed V.
• The target is moving randomly with a constant speed U.
• The searcher has a sensor with 100 percent detection probability up to range R and
zero percent detection probability at ranges greater than R.

In this model, the V in Equation 2.4 is replaced with an enhanced average searcher speed
(Ṽ). Though it is not explained here, it can be shown that [11]

Ṽ =
2
π
(V +U)E(K)/π, (2.5)

where
K = 2

√
UV/(U + V),

and

E(K) =
∫ 2π

0

√
1 − K2 sin2(φ)dφ

Ṽ is an enhancement to the searcher’s speed due to the speed of the target. For a given V,
Ṽ will be equal to or greater than V.

2.5.2 Modeling Random Movement
In our model, we control exactly when and if a unit changes course. In order to simulate
random search, a unit must change course at random times. In order to accomplish this, we
define Lambda as the average number of course changes per hour. For every iteration of the
time loop, we generate a random number p for each unit, where p is a uniformly distributed
random variable between zero and one. Over the time period ∆, a unit has a probability of
changing course equal to Lambda·∆. Therefore, if p < Lambda·∆, then the unit will change
course. The new course is random and uniformly distributed over the full 2π radians of
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possible courses.

In order to keep all the different units within the combat area, we will also have a unit change
course if it leaves the combat area. This will result in units being temporarily outside the
boundaries of the combat area, but is is assumed the effect is insignificant. To ensure the
unit rapidly returns to and stays within the combat area, we first set the new course so that
it is perpendicular to the violated area boundary. To introduce some randomness, we then
adjust the course using a standard normal distribution with a standard deviation of 0.3. For
example, if a unit were to exit the search area by crossing the southern boundary, its new
course (in radians) would be selected using the probability distribution shown in Figure 2.3.

2.5.3 Validating our Model
To validate our random search model, a simple simulation was performed to determine how
long it takes a single searcher to detect a single target. For this simulation, the search area
was set at 60 nm x 60 nm, sensor range R was set at 5 nm, and both searcher and target
speeds were set at 5 knots. Next, the probability of a unit changing courses (Lambda)
needed to be set. The selection of Lambda was not arbitrary. Choosing Lambda to be
too large relative to the search area would result in a unit becoming nearly stationary, and
choosing λ to be too small relative to the search area would cause most course changes to
occur due to boundary violations. For the search area selected, we set Lambda = 0.2.

The simulation was run 500 times and the time of detection was recorded for each iteration.
For any given time t, let D(t) be the number of detections that occurred at or before t. By
dividing D(t) by the total number of iterations, we obtained the probability of a detection
occurring at or before time t. These values represent the CDF of our model.

Finally, to ensure our data approximated a theoretical random search, we used our data
to calculate the detection rate that would give a best fit random search CDF. Both the
empirical data and the best fit curve are plotted on Figure 2.4. As can be seen, the empirical
data closely matches the theoretical curve, giving us confidence that our model provides a
suitable tool for evaluating the results of SASEM. The code that was used to generate this
test is found in Appendix B.

The only change from this test to our larger model is the frequency of random course
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Figure 2.3. New Course Selection PDF

This is the probability distribution for the new course selected if a unit exited the
search area to the south. New course is given in radians.

changes. Since our combat model uses an area that is 1500 nm x 900 nm, we needed to
decrease the likelihood of random course changes. The dimensions of the combat model
are 25 and 15 times larger than this test, so we decreased the course change probability by
a factor of 20. Therefore, in the combat model, Lambda = 0.01.
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Figure 2.4. Empirical versus Theoretical Random Search CDFs

This is a plot of the empirically generated CDF from our model compared to a
best fit theoretical CDF from random search theory.
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CHAPTER 3:
Experiment Design

Our experiments are designed in order to answer the following three questions:

1. Is SASEM a valid model for simulating the War at Sea Strategy?
2. Given the improvements we have made upon SASEM, is it still feasible to use

submarines to create a maritime exclusion zone in the SCS and ECS?
3. Regardless of the feasibility of the strategy, which search technique gives the U.S.

force the most successful outcome?

To help answer these questions, we perform four experiments. Experiment 1 tests if our
model is suitable for judging the performance of SASEM. To do this, we create behaviors
and assumptions within our model that most closely reflect SASEM. We expect that the
results of these simulations will be close to SASEM’s in both time required and blue force
attrition. Experiment 2 then removes many of SASEM’s behavioral assumptions. It will
allow for multiple engagements and for red force movement, but otherwise it keeps most
parameters as unchanged from experiment 1, including random search. Experiment 2 can
be viewed as a stepping stone to experiments 3 and 4. By only changing parameters that
affect core assumptions, we can analyze how changing from SASEM’s assumption set to
our assumption set performance.

Next, in experiments 3 and 4, we test the affect of varying red and blue force behaviors.
Additionally, we adjust some of the performance parameters to values we believe are more
realistic. Experiment 3 will focus on relevant cases with the red force exhibiting random
movement. The blue force will be varied between two behaviors: random search and grid
search. Experiment 4 will focus on relevant cases with the red force exhibiting predictable,
straight movement. The blue force will be varied between three behaviors: random search,
grid search, and barrier search. Therefore, in both these experiments, the red force behavior
is held constant and blue force behavior is treated as an independent variable. Additionally,
the number of initial red merchants will be varied from 250 to 3000. This way, we can also
determine if merchant density causes a significant change to any search technique effect
that may be present.
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By comparing the results of experiment 1 to those of experiment 2, we attempt to help
answer the first and second questions above. If the results are significantly different,
this will suggest that SASEM may be unreliable due to overly restrictive and unrealistic
assumptions. Additionally, since experiment 2 uses more intelligent unit behavior than
SASEM, the results should give us more insight into the feasibility of the War at Sea
Strategy. By analyzing the results of experiment 3 and experiment 4, we attempt to help
answer the second and third questions above. Our goal is to perform enough simulations
that a superior search technique can be determined with at least 95 percent confidence for
both types of red force behavior.

What follows in this chapter is a description of the parameter values used in each experiment
and a justification for those values. First, the parameter values that are constant to all
experiments will be discussed. Then, each individual experiment and its unique parameter
values will be discussed. For all experiments, results and analysis will be focused on the
two MOEs, TTF and BSP. Further information regarding results and analysis is presented
in Chapter 4.

3.1 Recommended SASEM Parameters
Since the work of this thesis is building upon SASEM, many of our parameter values
adhere to SASEM’s recommended parameter value set. These are parameter values that
will help minimize both mission accomplishment time and blue force attrition. From [2],
these recommended values are as follows:

• Breakpoint > 0.7
• Merchant Prosecution (Pros-surf) <3hr45min
• Blue Submarines (Initial-b) > 24
• Merchant Search Radius (R-b-rm) > 6 nm
• Submarine Exchange Ratio > 3:1

Only Submarine Exchange Ratio does not have a direct counterpart in our model. Instead,
this parameter is replaced by engagement survival rates, as is explained in Section 3.2. For
experiments 1 and 2, we select values for all these parameters that are near the SASEM
recommended value. For experiments 3 and 4, we change R-b-rm and Pros-surf to values
we believe are more realistic. Therefore, further discussion on R-b-rm and Pros-surf can be
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found within the description of each individual experiment, whereas further discussion on
Breakpoint, Initial-b, and engagement survival probabilities can be found in Section 3.2.

3.2 Universal Parameters
This section discusses the parameter values that are the same for all experiments. For quick
reference, a list of all constant parameter values is provided in Table 3.1.

3.2.1 Breakpoint and Initial-b
These two values were set based on the SASEM recommended values given in Section 3.1.

3.2.2 Survival Probabilities
In Section 3.1, the recommended submarine exchange ratio (>3:1) has no direct counterpart
in our model. Instead, our model uses survival probabilities for each type of encounter. In
order to ensure we honored this recommended value, we first set the survival probabilities
for a blue submarine versus red submarine engagement with the blue submarine shooting
first. We assume that a PRC submarine would not be proficient at counter-firing if they
were surprised, so we set the chance that the blue submarine survives the encounter, b-rs-b,
equal to 0.8. This gives the blue submarine a 20 percent chance of being destroyed in this
encounter. To ensure a 3:1 exchange ratio, the red submarine must have a 60 percent chance
of being destroyed, which makes the chance of a red submarine surviving this encounter,
rs-b-b, equal to 0.4.

All other survival probabilities were set based on these two initial numbers. In general, we
set a blue submarine as more lethal than a red submarine, and a red submarine as more
lethal than a red surface warship. Additionally, the chance that a unit survives an encounter
is greatest when they shoot first. A unit shooting simultaneously with its enemy has the
next best survival rate, and a unit surprised by its enemy has the worst survival rate. The
exchange ratio for blue submarines to red surface warships ends up being 16:1 (when blue
shoots first), which falls with the range of 5-20 set within SASEM.
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3.2.3 Length and Width
With Length = 1500 nm and Width = 900 nm, the simulation area A = 900 nm x 1500 nm
= 1,350,000 nm2. This is the same area used in SASEM. A representative waterspace that
has approximately this much area can be seen in Figure 1.1. For simplicity, we made our
simulation area into a simple rectangle, and although we made the y-direction longer than
the x-direction, the perimeter of our area does not match the shaded area of Figure 1.1.

3.2.4 Lambda
Lambda determines how often our units will randomly change course. When we verified
the validity of our random search model in Section 2.5, we set Lambda = 0.2. Since that
test used a 60 nm x 60 nm test area and our combat model uses a 900 nm x 1500 nm combat
area, we reduce Lambda to 0.01 to ensure our units do not turn too often.

3.2.5 Blue Submarine Speeds
SASEM has a blue submarine search speed range of 3 kts - 7 kts. As a submarine moves
faster through the water, it creates more ownship noise, making it harder to detect other
units. However, we believe that 7 kts does not significantly inhibit a U.S. submarine’s ability
to search, and so we set Vb-search = 7 kts.

Our model also allows a blue submarine to increase speed when it is engaging an enemy,
allowing it to close distance to a detected unit. This is important because, at the time of
fire, if the target is too far away it will affect kill accuracy. We limit the attack speed of
the blue submarine based on how quiet its target is. We assume that red submarines make
less noise than red surface warships, and that red surface warships make less noise than red
merchants. Therefore, blue force attack speeds are more limited against red submarines and
least limited against red merchants.

Unlike SASEM, our model also includes speeds for all red force units as well. Since a
majority of PRC submarines are diesel submarines, which operate at slower speeds than
nuclear powered submarines, we set Vrs-search = 3 kts and Vrs-sub = 6 kts, where Vrs-sub
is the red submarine attack speed. The values for red surface ships were similarly set
based on expected performance. Since it is assumed that red merchants cannot detect blue
submarines, they are only given one cruising speed.
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3.2.6 Detection Ranges
As explained in Section 3.1, the detection range for a blue submarine detecting a red
merchant, R-b-rm, should be greater than 6 nm. All other values were based on this initial
value, assuming that a blue submarine has better search capability than a red submarine and
that a red submarine has better search capability than a red surface warship.

3.3 Experiment 1
The purpose of this experiment is to restrict the operation of our model to more closely
represent SASEM and verify we produce similar results. Even though SASEM uses Lanch-
erster differential equations and our model uses unit level position tracking, the mission
completion time and blue force attrition should be comparable if we force our model to use
the same assumptions as SASEM. This will ensure our model is operating correctly and that
it can be used to evaluate and build upon SASEM’s results. All parameter values specific
to experiment 1 are shown in Table 3.2.

3.3.1 Setting SASEM Engagement Behavior
To start, we set the Boolean “SASEM” to TRUE. When “SASEM” is TRUE and one unit
detects an enemy, all other units are prevented from searching for enemies. This means there
will only be one active engagement at a time, and these engagements will only be one-way
detections. Since blue submarines have longer detection ranges than both red submarines
and red surface warships, and since the blue force searches for enemies prior to the red
force in the algorithm’s time loop, it will always be true that blue submarines shoot first in
engagements. Additionally, in this mode, unit survival rates will not be affected by distance
at the time of firing. These effects all result in exchange ratios comparable to SASEM’s
values, as explained in Section 3.1.

Next, since the SASEM recommended parameters have Merchant Prosecution < 3hr45min
(see Section 3.1), we set Pros-surf = 3hr30min. This parameter gives the prosecution time
for both red merchants and red surface warships. Prosecution times are primarily meant to
represent the time required for a unit to exactly locate its target after initial detection has
occurred. Since it is assumed a red submarine will be harder to track and locate than a
surface ship, we create a longer prosecution time and set Pros-surf = 5hrs.
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Finally, Cooperation and Priority-ws are set to FALSE, and Rec-time is set to zero. Co-
operation and Rec-time actually have no effect on the simulation when “SASEM” is set
to TRUE, so their values here are meaningless. Setting Priority-ws to FALSE causes blue
submarines to prioritize attacking merchants when they detect multiple types of units. We
do not expect this to have a significant impact on the simulation, but we prioritize merchants
since the value of red combatants is severely diminished when only one engagement can be
active at any given time.

3.3.2 Setting Random Search
In order to simulate random search, we set Waterspace, Movement-b, and Movement-r to
Random and set the speed of all red force units to zero. Setting the categoricals to random
will cause ourmodel to simulate the random search theory used in SASEM (see Section 2.5).
Since SASEM does not model red force movement, we must keep the red force stationary.
Note that, if we allowed the red force to move, we would still be simulating random search.
However, it would be equivalent to a random search process that uses the enhanced search
speed Ṽ , whereas SASEM only uses the blue search speed V to calculate its detection rate.

As a point of comparison between the two types of search theory, we consider the case
where blue submarine speed V = 5 kts and red merchant speed U = 20 knots. For this
example, we set area A = 3,600 nm2 and detection radius R = 7 nm. For the simple
case where the red merchant is assumed stationary, the detection rate for a single blue
submarine γ = 2RV/A = 0.0272 detections / hr. On the other hand, when we account
for the red merchant speed, we get Ṽ = 2

π (V + U)E(K) = 20.6173 kts. This results in
γ = 2RṼ/A = 0.0802 detections / hr. As can be seen, when the enhanced search velocity
is calculated the merchant speed becomes dominant to the submarine speed and results in
a much higher detection rate. Therefore, at the very least, we expect experiments 2 and 3
will be faster due to the enhancement to search speed caused by red force movement.

3.3.3 Variable Parameters
In this experiment, only Initial-rm is variable. We split the experiment into two trials..
For the first trial, Initial-rm = 1500 merchants, and for the second trial, Initial-rm = 3000
merchants. These values correspond to the allowable SASEM Initial-rm range of 1500-
3000. For each trial, we will run the simulation through 300 iterations, for a total of 600
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iterations for experiment 1.

3.4 Experiment 2
Experiment 2 is designed to test the viability of the SASEM model. Assuming the results
of experiment 1 are similar to SASEM, we can use it as a representation of expected results
given SASEM’s assumptions apply. In experiment 2, we remove many of those assumptions
and observe how significantly that affects the simulations results. The parameters that are
held constant between trials and the parameters that vary between trials are discussed
separately, below. All parameter values specific to experiment 2 are shown in Table 3.2.

3.4.1 Constant Parameters
For experiment 2, we remove many of the restrictions set by SASEM. Now we allow
multiple engagements to occur simultaneously, and we allow multiple units to engage the
same target. We also allow red units to work together in order to minimize their prosecution
time. These effects are accomplished by setting ’Cooperation’ and ’Priority-ws’ to TRUE
and setting “SASEM” to FALSE. Finally, red force combatants are given search and attack
speeds and red force merchants are given a cruising speed.

To add additional realism to the combatants’ behavior, Rec-time is set to 30 min. This will
cause units to fire with 30 min remaining in their prosecution time, but will not let them
begin searching for new targets until their recovery time has ended. It also causes units to
enter a 30 min recovery period after being attacked.

All other constant parameters match their value from experiment 1.

3.4.2 Variable Parameters
As in experiment 1, Initial-rm is varied between 1500 merchants and 3000 merchants for a
total of two trials. Each trial will be run through 300 iterations, for a total of 600 iterations
for experiment 2.
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3.5 Experiment 3
Experiment 3 is designed to test if different blue submarine search behaviors create different
performance results given that the red force exhibits random movement behavior. The
parameters that are held constant between trials and the parameters that vary between trials
are discussed separately, below. All parameter values specific to experiment 3 are shown in
Table 3.3.

3.5.1 Constant Parameters
As in experiment 2, we wish to allow for more realistic combat behaviors, so we set
Cooperation = TRUE, Priority-ws = TRUE, “SASEM” = FALSE, and Rec-time = 30 min.
See Section 3.4 for a description of their effects. Additionally, we adjust prosecution
times and blue submarine detection ranges to values we believe are more realistic but still
conservative. Pros-surf and Pros-sub are each reduced to 2 hrs and 3hrs30min, respectively.
R-b-rm, R-b-rw, and R-b-rs are increased to 9 nm, 6nm, and 5 nm, respectively. To create
random red force movement, we set Movement-r = Random. Finally, red force speeds are
left unchanged from experiment 2.

3.5.2 Variable Parameters
The two variables for this experiment are blue force movement behavior and red merchant
density. The blue force is varied between two different behaviors: random search with
random distribution (Movement-b = Random, Waterspace = Random) and random search
with a uniform distribution (Movement-b = Random, Waterspace = Grid). The number of
red merchants, Initial-rm, is varied from 250-3000 merchants at intervals of 250 merchants
(250, 500, 750, etc.). Therefore, there are two factors. The blue force behavior factor has
two treatment levels and the Initial-rm factor has 12 treatment levels, for a total of 2 x 12 =
24 different trials. Each trial is repeated through 300 iterations, for a total of 7,200 iterations
in experiment 3.

3.6 Experiment 4
Experiment 4 is designed to test if different blue submarine search behaviors create dif-
ferent performance results given that the red force exhibits straight, predictable movement
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behavior. The parameters that are held constant between trials and the parameters that vary
between trials are discussed separately, below. All parameter values specific to experiment
4 are shown in Table 3.3.

3.6.1 Constant Parameters
To adjust the red forcemovement behavior, we setMovement-r = Straight. All other constant
parameters and their values are identical to experiment 3.

3.6.2 Variable Parameters
The variables for this experiment are blue force movement behavior and red merchant
density. The blue force is varied between three different behaviors: random search with
random distribution (Movement-b = Random, Waterspace = Random), random search with
a uniform distribution (Movement-b = Random, Waterspace = Grid), and barrier search
(Movement-b = Barrier, Waterspace = Barrier). The number of red merchants, Initial-rm,
is varied from 250-3000 merchants at intervals of 250 merchants (250, 500, 750, etc.).
Therefore, there are two factors. The blue force behavior factor has three treatment levels
and the Initial-rm factor has 12 treatment levels, for a total of 3 x 12 = 36 different trials.
Each trial is repeated through 300 iterations, for a total of 10,800 iterations in experiment
4.
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Table 3.1. Parameters: Universal

PARAMETER VALUE
Breakpoint 0.7
Initial-b 25
Initial-rs 60
Initial-rw 60
Width 900 nm
Length 1500 nm
Lambda 0.01
Vb-search 7 kts
Vb-sub 10 kts
Vb-surf 13 kts
Vb-m 15 kts
b-rs-b 0.8
rs-b-b 0.4
b-rw-b 0.95
rw-b-b 0.2
rm-b-b 0.1
b-rs-rs 0.5
rs-b-rs 0.7
b-rw-rw 0.6
rw-b-rw 0.6
b-rs-s 0.6
rs-b-s 0.5
b-rw-s 0.7
rw-b-s 0.5
R-rs-b 3 nm
R-rw-b 2 nm

This is a list of parameter values that will remain constant throughout all experi-
ments.
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Table 3.2. Parameters: Experiments 1 and 2

PARAMETER EXP 1 EXP 2
Iterations 500/trial 500/trial
Initial-rm 1500/3000 1500/3000
Waterspace random random
Movement-b random random
Movement-r random random
Pros-sub 5 hrs 5 hrs
Pros-surf 3hrs30min 3hrs30min
Rec-time 0 30 min

Cooperation FALSE TRUE
Priority-ws FALSE TRUE
SASEM TRUE FALSE
Vrs-search 0 kts 3 kts
Vrs-sub 0 kts 6 kts

Vrw-search 0 kts 15 kts
Vrw-sub 0 kts 25 kts
Vrm 0 kts 20 kts
R-b-rs 4 nm 4 nm
R-b-rw 5 nm 5 nm
R-b-rm 7 nm 7 nm

These are the parameter values specific to experiment 1 and 2.
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Table 3.3. Parameters: Experiments 3 and 4

PARAMETER EXP 3 EXP 4
Iterations 300/trial 300/trial
Initial-rm 250-3000 250-3000
Waterspace Random/Grid Random/Grid/Barrier
Movement-b Random Random/Barrier
Movement-r Random Straight
Pros-sub 3hrs30min 3hrs30min
Pros-surf 2 hrs 2 hrs
Rec-time 30 min 30 min

Cooperation TRUE TRUE
Priority-ws TRUE TRUE
SASEM FALSE FALSE
Vrs-search 3 kts 3 kts
Vrs-sub 6 kts 6 kts

Vrw-search 15 kts 15 kts
Vrw-sub 25 kts 25 kts
Vrm 20 kts 20 kts
R-b-rs 5 nm 5 nm
R-b-rw 6 nm 6 nm
R-b-rm 9 nm 9 nm

These are the parameter values specific to experiments 3 and 4.
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CHAPTER 4:
Results and Analysis

This chapter analyzes the results of the experiments described in Chapter 3. The results will
be presented in four different sections. First, the results of experiment 1 will be compared
to the expected SASEM results to verify the validity of our model. Second, the results of
experiments 1 and 2 will be compared to determine the reliability of the SASEM model.
Third, the results of experiments 3 and 4 will be independently analyzed to determine the
effects of varying blue force behavior and red force merchant density. Forth, the TTF data
will be compared to the BSP data to determine if there is a correlation.

For experiments 1 and 2, no special analysis technique will be performed. These are merely
surface level checks to help identify any major inconsistencies or defects among the two
models. For experiments 3 and 4, the JMP software will be utilized to perform statistical
analysis. Primarily, ANOVAwill be performed to identify any statistically significant effects
due to blue force behavior, red merchant density, or the interaction between the two. JMP
will also be used to compare TTF to BSP. For this comparison, we use a linear regression
model to determine if there is a statistically significant correlation between the two MOEs.

Though each of the following sections will explore the results in more detail, a summary of
mean TTFs and BSPs is given in Appendix A for all experiments.

4.1 Experiment 1 versus SASEM
Here we compare our model’s results to SASEM’s results to ensure compatibility. In
Schwartz’s thesis [2], he reports an estimated TTF of between 88-165 days and an estimated
BSP of 89%, assuming the recommended parameter values are used. Since the recom-
mended parameters do not include an Initial_rm (initial number of red merchants) value,
we ran our simulation once at the low end of SASEM’s merchant range (1500 merchants)
and once at the high end of SASEM’s merchant range (3000 merchants).

The TTF versus Initial_rm and BSP versus Initial_rm are plotted in Figures 4.1 and 4.2,
respectively. The 95% confidence intervals and means for TTF and BSP are as follows:
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• Initial_rm = 1500: 78.07-78.47 (78.27) days, 88.3-89.8 (89.1) percent
• Initial_rm = 3000: 150.38-150.77 (150.58) days, 88.2-89.7 (89.0) percent

For both values of Initial_rm, the mean BSP nearly matches the value predicted by SASEM.
The range of mean TTF, 78.27-150.58 days, is close to, but slightly under, the values
predicted by SASEM. We can contribute two factors to this discrepancy. First, though our
modeling of random search behavior is close to the predicted results (see Section 2.5), some
deviation may exist. Second, and more importantly, the SASEM recommended values are
not specific values but instead limits on the parameter values. Therefore, we do not know
the specific SASEM parameters used to create the 88-165 days estimated range of TTF.
Given these uncertainties, we believe the results of experiment 1 show that our model is
able to replicate the conditions created using SASEM.

Before proceeding to experiment 2, it is worth noting an unusual behavior produced by
SASEM conditions. Even though the TTF approximately doubled when the number of
red merchants was double, the BSP remained the same. In fact, an ANOVA analysis of
the BSP factor shows no statistically significant difference in BSP between the two levels
of Initial_rm. One would expect that a longer mission time would result in more blue
force casualties. This behavior results due to a discrepancy in SASEM. When Initial_rm
is doubled, more engagements are required to reach the merchant Breakpoint level, giving
more opportunities for a blue submarine to be destroyed by a red combatant. However, the
higher merchant density reduces the probability that a blue submarine will encounter a red
combatant for each engagement. Since only one engagement is allowed to occur at any
given time, the two effects offset each other, resulting in the same BSP. To see how allowing
multiple engagements affects TTF and BSP, proceed to Section 4.2.

4.2 Experiment 2 versus Experiment 1
Here we compare the results of experiment 2 to the results of experiment 1. The major
difference between the two experiments is that experiment 2 allows formultiple simultaneous
engagements and also allows for more than two units to participate in single engagements.
The results for experiment 1 are presented in Section 4.1, above. Like in experiment
1, experiment 2 contains one trial with Initial_rm = 1500 merchants and one trial with
Initial_rm = 3000 merchants. The TTF versus Initial_rm and BSP versus Initial_rm are
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Figure 4.1. Experiment 1: TTF versus Initial_rm

This is a plot of TTF versus Initial_rm for experiment 1. The green lines represent
the mean value for each level of Initial_rm. The grey line represents the overall
mean.

plotted in Figures 4.3 and 4.4, respectively. The 95% confidence intervals and means for
TTF and BSP are as follows:

• Initial_rm = 1500: 11.72-12.22 (11.97) days, 68.3-71.0 (69.6) percent
• Initial_rm = 3000: 19.24-19.75 (19.49) days, 56.4-59.2 (57.8) percent

There are several differences between the results of experiments 1 and 2. Some worth
pointing out are as follows:

• TTF is significantly less in experiment 2.
• BSP is significantly less in experiment 2.
• In experiment 2, BSP appears to have an inverse relationship with TTF, whereas in
experiment 1 it was constant.
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Figure 4.2. Experiment 1: BSP versus Initial_rm

This is a plot of BSP versus Initial_rm for experiment 1. The green diamonds
represent the mean value and 95% confidence interval for each level of Initial_rm.

All these differences can be explained by a flaw in the SASEM approach. SASEM does
not allow for multiple engagements simultaneously. If engagements were resolved instan-
taneously, this could have been an acceptable assumption for the model. However, when
combined with the inserted prosecution time for each encounter, it made the model unre-
alistic. The purpose of the prosecution time was to simulate two units being unavailable
during the course of an engagement, but since no other unit could act until the engagement
ended, it resulted in all units being unavailable during the course of an engagement. Put
another way, every time an engagement would occur, the simulation clock would be pushed
forward by the prosecution time without any actual combat simulation occurring.

The net effect results in a TTF that depends mostly on the prosecution time and the amount
of engagements required to reduce the red merchant force to its Breakpoint value. Take
the case where merchant prosecution time (Pros-surf) is 3hrs30min, Initial_rm is 1500
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Figure 4.3. Experiment 2: TTF versus Initial_rm

This is a plot of TTF versus Initial_rm for experiment 2. The green lines represent
the mean value for each level of Initial_rm. The grey line represents the overall
mean.

merchants, and Breakpoint = 70%. In this scenario, the number of merchants that must
be destroyed is (1-0.7)*1500 = 450 merchants. Therefore, the total amount of prosecution
time that passes while engaging merchants is 3.5*450 = 1,575 hrs = 65.63 days. For these
parameters in experiment 1, the mean TTF was 78.27 days. That’s only about 13 days
the simulation was not paused for merchant engagements. For most of that 13 days, the
simulation would be paused for combatant engagements, and a very small portion of it
would represent search time between engagements.

As was discussed in Section 4.1, the prosecution time dynamic also negatively affected BSP
in SASEM.With SASEM conditions, the BSPwas independent of TTF. In experiment 2, we
can see the BSP declines as TTF increases. The difference in BSP between different levels
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Figure 4.4. Experiment 2: BSP versus Initial_rm

This is a plot of BSP versus Initial_rm for experiment 2. The green diamonds
represent the mean value and 95% confidence interval for each level of Initial_rm.

of Initial_rm is visually statistically significant in Figure 4.4, since the 95% confidence
intervals do not overlap. This fact can be further validated by the t-test data presented in
Figure 4.5, where it can be seen that the statistical significance of the difference in means is
greater than 99%.

In addition to BSP changing with TTF, we can also observe that it is much lower in
experiment 2. This result is not surprising. With SASEM conditions, the relatively high
density of red merchants provided a shielding effect for the blue submarines. As long as a
blue submarine could find a red merchant before a red combatant found a blue submarine,
then the blue submarines remained safe. When simultaneous engagements are allowed, red
combatants can attack blue submarines even while the blue submarines are attacking red
merchants. This also allows the red combatants to fire first in many of the engagements,
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Figure 4.5. Experiment 2: BSP t-test

This is a t-test comparing mean BSP values at different levels of Initial_rm. The
data shows that the difference in BSP mean values at Initial_rm = 1500 versus
Initial = 3000 is statistically significant with greater than 99% confidence.

which reduces the Red-to-Blue exchange ratio. The exchange ratios were not tracked for
any of the experiments described in Chapter 3. However, 200 additional simulations were
conducted in order to obtain a rough estimate. In the first 100 simulations, red surface
warships were removed, and the resulting mean (red submarine):(blue submarine) exchange
ratio was 6:5. In the second 100 simulations, red submarines were removed, and the
resulting mean (red surface ship):(blue submarine) exchange ratio was approximately 5:1.
As a reminder, with SASEM mode enabled, the exchange ratio against red submarines and
red surface ships was 3:1 and 16:1, respectively.

Overall, allowing multiple, simultaneous engagements reduced TTF and BSP to such a
significant degree that SASEM cannot be considered a reliable model for either making
combat predictions or determining key parameter values. It should be noted that the
reduction in TTF occurred despite a significantly greater merchant survival percent in
experiment 2. In the original SASEM model, a detected merchant was always destroyed.
In experiment 1, a merchant had a 10% chance of survival if detected. In experiment 2, the
combatants’ accuracy was allowed to degrade with distance, which resulted in a merchant
having a 47% mean chance of survival if detected. It should also be noted that SASEM’s
results would have been more useful if the model removed the prosecution time and allowed
engagements to occur simultaneously.

Since the recommended SASEM values cannot be considered reliable, it is hard to make
a determination concerning the feasibility of the War at Sea Strategy by restricting the
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simulation to those values. The significant drop in TTF certainly makes time less of a
restraint, increasing the strategies feasibility. However, the large blue force attrition rate
makes the strategy more problematic. Of course, some of the additional time gained in
the simulation could be sacrificed to allow for more cautious blue force behavior, which
would help manage the amount of blue force casualties. Additional information is required
to determine how realistic it is for blue submarines to avoid red combatants while they
prosecute red merchants, so no determination will be made concerning the War at Sea
Strategy using these results. Regardless, we will still analyze the results of experiments 3
and 4 to determine how changing red and blue force behaviors affects TTF and BSP.

4.3 Experiment 3 and Experiment 4 Results
This section analyzes the results of experiments 3 and 4. Each experiment has two factors:
blue force behavior (Waterspace) and Initial_rm. The key focus of this analysis is determin-
ing how changing blue force behavior affects TTF. Additionally, we determine if the effect
on TTF due to blue behavior is dependent on Initial_rm.

4.3.1 Experiment 3 - Random red force movement
For every trial in this experiment, the red force units moved randomly, as described in Sec-
tion 2.5. Initial_rm was divided into 12 treatment levels ranging from 250-3000 merchants
in 250 merchant increments. Waterspace was divided into two treatment levels: random
and grid. Additional information on the experimental setup is given in section 3.5.

Two-way ANOVA was used to analyze the significance of the factors as well as their
interaction. First, the least squares mean (LSM) plots for TTF versus Initial_rm and TTF
versus Waterspace are given in Figures 4.6 and 4.7, respectively. As can be seen, TTF
increases steadily and significantly as Initial_rm increases. TTF is also higher for random
search behavior versus grid behavior, though only slightly. Regardless, both factors are
shown to be statistically significant in the ANOVA model, as can be seen in Figure 4.8.

Also from Figure 4.8, note that the interaction Waterspace*Initial_rm is not significant.
Therefore, even though changing Waterspace type has a statistically significant effect on
TTF, the size of that effect will not change for different values of Initial_rm. This can also
be seen in the interaction plots presented in Figure 4.9. Note that in both plots the slopes
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for the different effect levels are the same. If an interaction effect was present, you would
expect different slopes at different factor levels.

Overall, while both Initial_rm and Waterspace had statistically significant effects on TTF,
only Initial_rm was practically significant. The effect size of Waterspace was less than a
fifth of a day for this experiment. You can also note that the Initial_rm F-ratio reported in
Figure 4.8 is about 25 times larger than the Waterspace F-ratio, which means most of the
model’s variability is explained by Initial_rm. The small effect size of grid versus random
behavior is an important take-away. Actual U.S. submarines would be more likely to operate
in a grid to minimize the chances of friendly forces colliding with or attacking each other.
However, random behavior is easier to model mathematically. Therefore, we can see from
this experiment that, when creating models, random search locations can be used as an
approximate substitute for a uniform grid of units.

4.3.2 Experiment 4 - Straight red force movement
For every trial in this experiment, the red force units moved in straight lines either directly
west or directly east, as described in Section 2.5. Initial_rm was divided into 12 treatment
levels ranging from 250-3000 merchants in 250 merchant increments. Waterspace was
divided into three treatment levels: random, grid, and barrier. Additional information on
the experimental setup is given in section 3.6.

Two-way ANOVA was used to analyze the significance of the factors as well as their
interaction. First, the LSM plots for TTF versus Initial_rm and TTF versus Waterspace are
given in Figures 4.10 and 4.11, respectively. As can be seen, TTF increases steadily and
significantly as Initial_rm increases. For Waterspace, Barrier mode minimizes TTF and
Random maximizes it. None of the 95% confidence intervals overlap, meaning each level’s
mean is statistically different from each other level. Though the results are not given, a
pair-wise t-test was performed to confirm this result, and the metrics for each effect can be
seen in Figure 4.12. Note that for experiment 4, the F-ratio for the Initial_rm effect is only
twice the F-ratio of the Waterspace effect, meaning that the Waterspace factor accounts for
a much larger fraction of the model’s variability.

Unlike in experiment 3, the Inital_rm*Waterspace effect is statistically significant for ex-
periment 4. This can be best seen in the interaction plots presented in Figure 4.13. Note
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Figure 4.6. Experiment 3: LSM of TTF versus Initial_rm

that in the bottom-left plot, the drop in TTF when Waterspace = Barrier is slightly greater
when Initial_rm = 250 merchants vice Initial_rm = 3000 merchants. You can also note
that, in the top-right plot, the plots of TTF versus Initial_rm for each Waterspace begin to
converge as Initial_rm increases. The effect size, however, is small. The F-ratio for the
interaction effect is only 4.08, compared to F-ratios of 3028.38 and 6049.27 for the other
two effects. If this effect was removed from the model, the model would still be viable.
It is likely that further decreasing or increasing the value of Initial_rm would increase the
Initial_rm*Waterspace effect. However, since these levels of Initial_rm would be outside
the bounds of reality, such an experiment would be purely theoretical.

Overall, changing red force movement from Random to Straight increased the significance
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Figure 4.7. Experiment 3: LSM of TTF versus Waterspace

of blue force behavior. Interestingly, the Grid and Random blue force behaviors produced
mean TTFs that were slightly higher in experiment 4 than in experiment 3. However, the
addition of the Barrier behavior produced the smallest TTF among all behavior modes
in both experiments. The advantage of setting Waterspace = Barrier was amplified when
Initial_rm was small, though only slightly. Theoretically, we expect that blue force search
behavior becomes insignificant when target density is increased to a certain threshold, but
for the values of Initial_rm used in our experiments, that threshold was not reached.

4.4 TTF versus BSP
As previously stated, the two MOEs for our experiments are TTF and BSP. The analysis for
our experiments has primarily focused on the effect of different factors on TTF. The reason
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Figure 4.8. Experiment 3: ANOVA Effects

These are the effect metrics for the experiment 3 ANOVA model. The effects
include Initial_rm, Waterspace, and the Initial_rm*Waterspace interaction.

is that BSP directly follows from TTF. An ANOVA analysis of BSP versus Waterspace and
Initial_rm reveals that both factors are significant in the determination of BSP. However,
this is expected since both factors are significant in the determination of TTF. Of more
interest is whether there are significant interaction effects between TTF*Waterspace and
TTF*Initial_rm.

Two BSP ANOVAs were conducted. One used TTF and Waterspace as factors, and the
other used TTF and Initial_rm as factors. Their respective parameter effects are shown
in Figures 4.16 and 4.17. Note that statistically significant interaction effects do exist.
However, as seen by the F-ratio values, these interaction effects are slight compared to the
TTF effect.

The TTF*Waterspace interaction plot is shown in Figure 4.14. In general, given a constant
TTF, a more effective Waterspace level, such as Barrier, leads to a slightly lower BSP than
a less effective Waterspace level, such as Random. This is probably because the advantage
gained from smarter search patterns is amplified against slower targets, such as the red
force submarines. Since the red force submarines are the most lethal red force unit, the
effectiveness of the barrier search leads to a slightly higher casualties for the blue force.

The TTF*Initial_rm interaction plot is shown in Figure 4.15. Here the plots of BSP versus
TTF at two different levels of Initial_rm will cross. At low TTFs, a smaller Initial_rm
yields a smaller BSP. This is simply because, at higher values of Initial_rm, a low TTF is
not possible unless nearly all the blue submarines stay alive for the entirety of the simulation.
At high TTFs, a smaller Initial_rm yields a higher BSP. We suspect this is due to the fact
that with higher red merchant density a blue submarine is more likely to be engaged with a
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Figure 4.9. Experiment 3: Interaction Plots

These are the interaction plots for the experiment 3 ANOVA model. The bottom-
left is a plot of TTF versus Waterspace at each level of Initial_rm. The top-right
is a plot of TTF versus Initial_rm at each level of Waterspace.

merchant at any given time, which makes them more vulnerable to being ambushed by red
combatants.

As was previously stated, even though interaction effects do exist, they are relatively small
compared to the overall TTF effect. Therefore, a reasonable prediction of BSP can be made
using TTF data alone. Figure 4.18 is a plot of BSP versus TTF using all data collected in
experiments 3 and 4. The solid line is a degree-4 prediction model.
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Figure 4.10. Experiment 4: LSM of TTF versus Initial_rm
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Figure 4.11. Experiment 4: LSM of TTF versus Waterspace

Figure 4.12. Experiment 4: ANOVA Effects

These are the effect metrics for the experiment 4 ANOVA model. The effects
include Initial_rm, Waterspace, and the Initial_rm*Waterspace interaction.
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Figure 4.13. Experiment 4: Interaction Plots

These are the interaction plots for the experiment 4 ANOVA model. The bottom-
left is a plot of TTF versus Waterspace at each level of Initial_rm. The top-right
is a plot of TTF versus Initial_rm at each level of Waterspace.
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Figure 4.14. TTF*Waterspace effect on BSP
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Figure 4.15. TTF*Initial_rm effect on BSP

Figure 4.16. BSP ANOVA with Waterspace and TTF factors
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Figure 4.17. BSP ANOVA with Initial_rm and TTF factors

Figure 4.18. BSP versus TTF

This is a plot of BSP versus TTF for all data collected from experiments 3 and 4.
The solid line is a degree-4 best-fit polynomial with the following equation: BSP
= 0.9666553 − 0.0248921 ∗ TTF − 0.0053815 ∗ (TTF − 5.05586)2 − 0.0033247 ∗
(TTF − 5.05586)3 + 0.0004695 ∗ (TTF − 5.05586)4
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CHAPTER 5:
Conclusion

Heightening political and economic tensions with China have re-emphasized the need for
well sought out strategies in the SCS and ECS. Due to the vulnerability of surface ships
and air assets near mainland China, the undersea domain must play a pivotal role in these
strategies. This thesis sought to further our understanding of U.S. submarine capabilities
in the SCS and ECS by building upon the results of SASEM. By creating an independent
model, we were able to further explore the viability of SASEM and the War at Sea Strategy.

5.1 Research Questions
The goal of this thesis was to address the following questions:

1. Is SASEM a valid model for simulating the War at Sea Strategy?
2. Given the improvements we have made upon SASEM, is it still feasible to use

submarines to create a maritime exclusion zone in the SCS and ECS?
3. Regardless of the feasibility of the strategy, which search technique gives the U.S.

force the most successful outcome?

To help answer these questions, four experiments were conducted and their results were
analyzed based on two MOEs: Time-to-Finish (TTF) and Blue-Survival-Percent (BSP). In
the following sections, each question is addressed separately.

5.1.1 SASEM Viability
Since SASEM and our model use different methodologies, we first attempted to replicate
SASEM conditions in experiment 1 to ensure we produced similar results. We found our
BSP was identical to SASEMs. TTF was slightly lower with a range of 78.27-150.58 days
versus SASEM’s 88-165 days. However, since the exact parameter values that produced
SASEM’s range for TTF are unknown, we conclude that our results are close enough to
SASEM’s results that we believe we successfully reproduced SASEM conditions using our
methodology.
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After validating that we could reproduce SASEM’s results, we removed many of SASEM’s
assumptions from our model to see how significantly the model was affected. Most im-
portantly, we removed the SASEM restraint that only allowed one engagement to occur
at a time. We found that mean TTF significantly dropped to a new range of 11.97-19.49
days. Additionally, BSP dropped from a constant 89% to a range of 57.8-69.6%. The
reason for these large deviations was determined to be a flaw in the SASEM methodology.
The prosecution time used by SASEM effectively paused all the units in the simulation
while an engagement was in progress, which meant most units spent the majority of the
simulation as inactive. Additionally, by not allowing simultaneous engagements, the blue
force submarines were protected from red force combatants by the relatively high density
of red merchants. Considering both of the previously described deficiencies in SASEM,
we conclude that SASEM is not a valid model for providing combat simulations. There-
fore, we also conclude that the recommended values provided by Schwarz’s thesis [2] are
meaningless.

5.1.2 Viability of the War at Sea Strategy
The original design of this thesis was to gain further insight into the War at Sea Strategy by
combining the original recommended parameters from SASEM with the more intelligent
behavioral modeling of our combat simulation. However, since we no longer view SASEM
as a viable model, its recommended values have no bearing on the War at Sea Strategy,
which makes it difficult to judge the feasibility of the strategy based on our results.

In experiment 2, when we removed SASEM’s limitations but otherwise used the recom-
mended parameters, we saw that TTF and BSP both significantly decreased. Therefore,
TTF is less of a restraint, which makes the strategy more viable. However, the level of blue
force casualties could be considered unacceptable, which makes the strategy less viable. It
would be useful to fix the deficiencies with SASEM and re-perform its analysis to find a
new set of recommended key parameters. However, that is outside the scope of this thesis,
and so we conclude that the War at Sea Strategy is neither more nor less viable based on
our results.
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5.1.3 Search Technique Analysis
Despite our results concerning SASEM, we still proceeded with experiments 3 and 4 to
determine the effects of using different search and movement patterns. This was accom-
plished by analyzing red force patterns independently of each other and determining how
TTF and BSP changed at different levels of blue force behavior. Experiment 3 focused on
random red force movement, and experiment 4 focused on straight, predictable red force
movement.

For experiment 3, we analyzed two blue force behaviors: random search and grid search.
We found that, regardless of the amount of initial red force merchants, grid search produced
TTFs that were in the range of 0.1-0.2 days lower than random search. We conclude that,
even though the effect was statistically significant, it was small enough that very little fidelity
would be lost in a model by replacing grid search with random search. Also, this statement
remains true regardless of the initial target density.

For experiment 4, we analyzed three blue force behaviors: random search, grid search, and
barrier search. Once again grid search produced lower TTFs than random search. This
time the difference was approximately 0.2-0.3 days. Barrier search produced the lowest
TTFs with results that were 0.6-0.7 days lower than random search. Though the advantage
gained by barrier search began to decrease at higher numbers of merchants, the effect was
not practically consequential for the merchant densities we examined. We conclude that
barrier search is the superior search behavior when the targets’ paths and trajectories are
well defined. Additionally, the advantage gained by barrier search was significant enough
that it should not be replaced by random or grid search for modeling purposes.

BSP was examined separately from TTF using all data from experiments 3 and 4. The
relationship between TTF and BSP was analyzed for different levels of red force behavior,
blue force behavior, and initial number of merchants. Overall, we found that TTF was the
most significant predictor of BSP. The greatest interaction effect occurred with blue force
behavior. At a constant TTF, mean BSP was highest for random search and lowest for
barrier search. However, this interaction effect produced around 350 times less variability
than the TTF effect. Therefore, we conclude that TTF alone is a reliable indicator for BSP.
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5.2 Follow-on Research
The following is a list of possible follow-on research topics related to this thesis:

• SASEM recommended parameters: This thesis was originally designed to build upon
SASEM’s results for further insight into the War at Sea Strategy. Since SASEM’s re-
sults were found to be unreliable, themodel should be fixed and its analysis concerning
recommended parameters should be re-performed.

• Sensors and environment: Adjusting sensor performance based on environmental
analysis would remove one of the simplifying assumptions of this thesis.

• Intelligent PRC response: Though it is an improvement from SASEM, the behaviors
in this model are still simplistic. Most notably, more intelligent PRC strategies, such
as coordinated maneuvers and conveys, are required.

• Expanding the War at Sea Strategy: Submarine use is only one aspect of the War at
Sea Strategy. Implementing other components in the SCS and ECS would further our
understanding of the strategy’s feasibility.

• Using classified data: The parameters used in this thesis are rough estimates and
not based on actual military performance parameters or intelligence. Classifying the
thesis would allow for more accurate estimates of performance.

• Faster computation time: Increasing the performance speed of this thesis’ model
would make it easier to analyze a larger range of parameter values.
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APPENDIX A:
Summary of Experiment Results

This appendix gives result summaries for all experiments described in Chapter 3. All
figures presented are taken from the JMP software package. The independent variables are
the different levels of initial red force merchant count (init_rm) and blue force behavior
(Waterspace). The results experiments 3 and 4 have been split into separate tables for
each value of Waterspace. The dependent variables are the days required to reduce the
red merchant force to the breakpoint level (days) and the percent of blue force submarines
remaining (%surv). The dependent variables’ means and standard deviations are given for
each combination of independent variables.
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Figure A.1. Experiments 1 and 2 Results Summary

Top: Experiment 1. Bottom: Experiment 2

Figure A.2. Experiment 3 Results Summary: Waterspace = Random
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Figure A.3. Experiment 3 Results Summary: Waterspace = Grid

Figure A.4. Experiment 4 Results Summary: Waterspace = Random
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Figure A.5. Experiment 4 Results Summary: Waterspace = Grid

Figure A.6. Experiment 4 Results Summary: Waterspace = Barrier
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APPENDIX B:
MATLAB Code for Random Search Test

1 close all

2 clc

3 %% set parameter

4 A = 3600; % Area = 60 * 60

5 V = 10; % Searcher speed

6 U = 5; % Target speed

7 lams = .2; % Searcher's mean course change rate of .2/hr

8 lamt = .2; % Target's mean course change rate of .2/hr

9 lam = 15; % Poisson Scan Model with ? = 15 independent looks/hr

10 sig = 5; % Sigma of signal excess

11 rep = 1000; % Iteration time

12 R = 6; %detection range

13

14 %% Start the main iteration loop

15 time = NaN(1,rep);

16 rng = NaN(1,rep);

17 for i = 1:rep

18

19 %% Initialize x and y positions and courses

20 % Searcher

21 sx = rand(1)*60;

22 sy = rand(1)*60;

23 sc = rand(1)*2*pi;

24 % Target

25 tx = rand(1)*60;

26 ty = rand(1)*60;

27 tc = rand(1)*2*pi;

28

29 %% Time loop

30 dt = .1;

31 for t = 0:dt:150

32 r = sqrt((sx-tx)^2 + (sy-ty)^2);

33
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34

35 % If dectection occurs, then save detection time

36 % and range, and break out of the Time Loop

37 if r <= R

38 time(i) = t;

39 rng(i) = r;

40 break

41 end

42

43 % Course changes of Searcher

44 if sx <= 0

45 sc = normrnd(0, .3);

46 elseif sx >= 60

47 sc = pi + normrnd(0, .3);

48 elseif sy <= 0

49 sc = pi/2 + normrnd(0, .3);

50 elseif sy >= 60

51 sc = -pi/2 + normrnd(0, .3);

52 elseif rand(1) <= lams * dt

53 sc = rand(1)*2*pi;

54 else

55 sc = sc;

56 end

57

58 % Course changes of Target

59 if tx <= 0

60 tc = normrnd(0, .3);

61 elseif tx >= 60

62 tc = pi + normrnd(0, .3);

63 elseif ty <= 0

64 tc = pi/2 + normrnd(0, .3);

65 elseif ty >= 60

66 tc = -pi/2 + normrnd(0, .3);

67 elseif rand(1) <= lams * dt

68 tc = rand(1)*2*pi;

69 else

70 tc = tc;

71 end

72

73 % Advance searcher and target position
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74 sx = sx + cos(sc)*V*dt;

75 sy = sy + sin(sc)*V*dt;

76 tx = tx + cos(tc)*U*dt;

77 ty = ty + sin(tc)*U*dt;

78 end

79 end

80

81 %% Compute CDF for time of initial detection

82 cdf(1) = length(find(time<=1 & time>=0)) / rep;

83 for t = 2:150

84 cdf(t) = cdf(t-1) + length(find(time<=t & time>t-1)) / rep;

85 end

86

87 %% Figure of CDF

88 t = 1:150;

89 figure

90 plot(t, cdf, 'r.')

91 grid on

92 hold on

93

94 %% Calculate F(t)

95 lam_1 = -log(1-cdf(150))/150; % best fit detection rate

96 % relative speed of V, U

97 Vdet = 1/pi*integral(@(theta) ...

98 sqrt(V^2 + U^2 -2*U*V*cos(theta)), 0, pi);

99 R = lam_1*A/(Vdet*2) % best fit detection range

100 Ft = @(t) 1 - exp(-lam_1*t);

101 fplot(Ft, [0, 150])

102

103 %% Plot

104 xlabel('time (hr)')

105 ylabel('F(t)')

106 legend('Model CDF','Best Fit Theoretical CDF', ...

107 'Location','SouthEast')
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APPENDIX C:
MATLAB Code for Combat Model

1 %Code used to simulate submarine combat in SCS and ECS.

2 %Relevant parameters are explained at the start of the code.

3 %Indenting has been removed do to page size constraints.

4

5 %Author: Bryan McDonough

6

7 %Last Updated: 8/30/19

8

9 clear

10 close all

11

12 %% choose data options

13 plot_sim = 0; %plots the simulation and records movie if true

14 movie_length = 0; %length of movie in days (plot_sim must be true)

15 movie_name = 'sim_movie2.avi'; %name for movie .avi file

16 save_name = '412.mat'; %name for data .mat file

17 plot_hist = 0; %plots course history at end of simulation if true

18 iter = 300; %number of combat simulations performed

19

20 %% choose behavioral options

21 waterspace = "random"; %random,grid,barrier-affects blue force locations

22 movement_b = "random"; %random,barrier-affects blue force movement

23 movement_r = "random"; %random,straight-affects red force movement

24 cooperation = 1; %determines if red forces fire simultaneously

25 SASEM = 0; %when true, makes simulation more like SASEM

26 priority_warship = 1; %if true, blue prioritizes attacking warships

27

28 %% set breakpoints

29 bp_rm = 0.7; % percent merchants remaining

30

31 %% set misc parameters

32 initial_rm = 3000; %number of red merchants

33 initial_b = 25; %number of blue submarines
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34 initial_rs = 60; %number of red submarines

35 initial_rw = 60; %number of red surface warships

36 Width = 900; %length of x-dir 900

37 Length = 1500; %length of y-dir 1500

38 A = Length*Width; % Area for submarines to search in

39 Vb_search = 7; % Blue search speed

40 Vb_sub = 10; %prosecuting submarine

41 Vb_ws = 13; %prosecuting warship

42 Vb_m = 15; %prosecuting merchant

43 Vrs_search = 3; % Red sub search speed - 3

44 Vrs_sub = 6; % Red sub attack speed - 6

45 Vrw_search = 15; % Red warship search speed - 15

46 Vrw_sub = 25; % Red warship attack speed - 25

47 Vrm = 20; % Red merchant speed - 20

48 lambda = .01; % Searcher's mean course change rate of occurances/hr

49 lamt = lambda; % Target's mean course change rate of occurances/hr

50 rec_time = 5; %time required to recover after shooting or being shot at

51 pros_sub = 50; %time to prosecute a submarine (includes recovery time)

52 pros_surf = 35; %time to prosecute surface ship (includes recover time)

53

54 %% Set encounter survival rates: UnitInQuestion_EnemyUnit_FirstToShoot

55 %blue shoots first against red sub - 3:1 exchange ratio

56 b_rs_b = .8; %.8

57 rs_b_b = .4; %.4

58 %blue shoots first against red warship - 8:1 exchange ratio

59 b_rw_b = .95;

60 rw_b_b = .2;

61 %blue shoots against red merchant

62 rm_b_b = .1;

63 %red sub shoots first against blue

64 b_rs_rs = .5;

65 rs_b_rs = .7;

66 %red warship shoots first against blue

67 b_rw_rw = .6;

68 rw_b_rw = .6;

69 %red and blue subs shoot at each other simultaneously

70 b_rs_s = .6;

71 rs_b_s = .5;

72 %red warship and blue sub shoot at each other simultaneously

73 b_rw_s = .7;
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74 rw_b_s = .5;

75

76 %% Set sensor parameters

77 %cookie-cutter model - r_DetectingUnit_DetectedUnit (in nm)

78 R_b_rm = 7;

79 R_b_rw = 5;

80 R_b_rs = 4;

81 R_rs_b = 3;

82 R_rw_b = 2;

83 det_c_b = @(r,unit_type) (r<=R_b_rs).*(unit_type==1)...

84 +(r<=R_b_rw).*(unit_type==2)+(r<=R_b_rm).*(unit_type==3);

85 det_c_rs = @(r) r<=R_rs_b;

86 det_c_rw = @(r) r<=R_rw_b;

87

88 %% Start the main iteration loop

89 %preallocate data vectors

90 days = zeros(iter,1);

91 PERCREM_B = days;

92 PERCREM_RS = days;

93 PERCREM_RM = days;

94 PERCREM_RW = days;

95 RM_DETECTS = days;

96 KILLperDETECT_RM = days;

97 end_movie = 0;

98 for m = 1:iter

99 if plot_sim == 1

100 figure

101 if movie_length > 0

102 vidobj = VideoWriter(movie_name);

103 vidobj.FrameRate = 240;

104 open(vidobj)

105 end_movie = 1;

106 end

107 end

108 %% Initialize blue and red initial velocities

109 %blue subs

110 vb = ones(1,initial_b)*Vb_search;

111 %red forces

112 vr_default = [ones(1,initial_rs)*Vrs_search,...

113 ones(1,initial_rw)*Vrw_search,ones(1,initial_rm)*Vrm];
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114 vr = vr_default;

115

116 %% Initialize blue and red initial x and y positions and courses

117 %Blue Forces

118 positions = zeros(25,25);

119 switch waterspace

120 case "grid"

121 s = floor(sqrt(initial_b));

122 excess = initial_b-s^2;

123 grd = ones(1,s)*s;

124 for i = 1:excess

125 col = mod(i-1,s)+1;

126 grd(col) = grd(col) + 1;

127 end

128 maxgrd = max(grd);

129 positions = zeros(maxgrd,s);

130 unit = 1;

131 for j = 1:s

132 if mod(j,2)~= 0

133 order = 1:maxgrd;

134 else

135 order = maxgrd:-1:1;

136 end

137 for i = order

138 if i > maxgrd-grd(j)

139 positions(i,j) = unit;

140 unit = unit+1;

141 end

142 end

143 end

144 bx = zeros(1,initial_b);

145 by = bx;

146 row_subs = length(grd);

147 for i = 1:initial_b

148 [I,J] = find(positions==i);

149 col_subs = grd(J);

150 I = 1+maxgrd-I;

151 bx(i) = (J-1)/row_subs*Width + rand(1)/row_subs*Width;

152 by(i) = (I-1)/col_subs*Length + rand(1)/col_subs*Length;

153 end
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154 case "barrier"

155 grd = [0,0,0,0,0,initial_b,0,0,0,0,0];

156 maxgrd = initial_b;

157 positions = zeros(initial_b,11);

158 positions(:,6) = (1:initial_b)';

159 unit = 1;

160 bx = zeros(1,initial_b);

161 by = bx;

162 row_subs = length(grd);

163 for i = 1:initial_b

164 [I,J] = find(positions==i);

165 col_subs = grd(J);

166 I = 1+maxgrd-I;

167 bx(i) = (J-1)/row_subs*Width + rand(1)/row_subs*Width;

168 by(i) = (I-1)/col_subs*Length + rand(1)/col_subs*Length;

169 end

170 case "random"

171 bx = rand(1,initial_b)*Width;

172 by = rand(1,initial_b)*Length;

173 end

174 switch movement_b

175 case "random"

176 bc = rand(1,initial_b)*2*pi;

177 case "barrier"

178 ran = rand(1,initial_b);

179 bc = round(ran)*pi/2 - ~round(ran)*pi/2;
180 end

181 % Red Forces

182 initial_r = initial_rs+initial_rm+initial_rw;

183 rx = rand(1,initial_r)*Width;

184 ry = rand(1,initial_r)*Length;

185 if movement_r == "random"

186 rc = rand(1,initial_r)*2*pi;

187

188 elseif movement_r == "straight"

189 ran = rand(1,initial_r);

190 rc = 0*(ran>.5)+pi*(ran<=.5);

191 end

192 %form engagement matrix

193 eng_trckr_b = zeros(initial_b,2);
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194 eng_trckr_r = zeros(initial_rs+initial_rw,2);

195 status_b = ones(1,initial_b);

196 status_r = zeros(1,initial_r);

197 status_r(1:initial_rs+initial_rw) = 1;

198

199

200 %% Start Time Loop

201 %preallocate position matrices

202 end_time = 10000;

203 dt = .1;

204 time_steps = floor(end_time/dt)+1;

205 bx_1 = zeros(time_steps,initial_b);

206 by_1 = bx_1;

207 rx_1 = zeros(time_steps,initial_r);

208 ry_1 = rx_1;

209 %set other initial values

210 k = 1;

211 alive_r = 1:initial_r;

212 alive_b = 1:initial_b;

213 rm_detects = 0; %tracks total number of merchant detections

214 engagement = 0; %tracks if engagement is in progress

215 for t = 0:dt:end_time

216

217 %% PERFORM PLOTTING

218 %save current positions for history plot

219 if plot_hist == 1

220 bx_1(k,:) = bx;

221 by_1(k,:) = by;

222 rx_1(k,:) = rx;

223 ry_1(k,:) = ry;

224 end

225 %Plot Simulation

226 if plot_sim == 1

227 dr = [.5,0,0]; %dark red color

228 %red merchants

229 hold off

230 alive_rm = alive_r(alive_r>(initial_rs+initial_rw));

231 plot(rx(alive_rm), ry(alive_rm), 'rs','MarkerFaceColor','r')

232 hold on

233 plot(rx(initial_rs+initial_rw+1:end),...
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234 ry(initial_rs+initial_rw+1:end), 'rs')

235 %red subs

236 alive_rs = alive_r(alive_r<=initial_rs);

237 plot(rx(alive_rs), ry(alive_rs), 'rv','MarkerFaceColor',dr,...

238 'MarkerEdgeColor',dr)

239 plot(rx(1:initial_rs), ry(1:initial_rs), 'rv',...

240 'MarkerEdgeColor',dr)

241 %red warships

242 alive_rw =...

243 alive_r(alive_r>initial_rs&alive_r<=initial_rw+initial_rs);

244 plot(rx(alive_rw), ry(alive_rw), '^','MarkerFaceColor',dr,...

245 'MarkerEdgeColor',dr)

246 plot(rx(initial_rs+1:initial_rs+initial_rw),...

247 ry(initial_rs+1:initial_rs+initial_rw), 'r^',...

248 'MarkerEdgeColor',dr)

249 %blue subs

250 plot(bx(alive_b), by(alive_b), 'bv','MarkerFaceColor','b')

251 plot(bx(:), by(:), 'bv')

252 %plot options

253 axis([0,Width,0,Length])

254 axis square

255 grid on

256 xlabel('x (nm)')

257 ylabel('y (nm)')

258 ttl = sprintf('Number of Days = %.2f', t/24);

259 title(ttl)

260 %Plot Waterspace Grid

261 switch waterspace

262 case "grid"

263 longs = 0:Width/row_subs:Width;

264 X = [longs',longs'];

265 Y = [zeros(length(longs),1),...

266 ones(length(longs),1)*Length];

267 plot(X',Y','k')

268 for i = 1:row_subs

269 lats = 0:Length/grd(i):Length;

270 x = [longs(i),longs(i+1)];

271 [X,Y] = meshgrid(x,lats);

272 X = X';

273 Y = Y';
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274 plot(X,Y,'k')

275 end

276 case "barrier"

277 long1 = floor(row_subs/2);

278 long2 = ceil(row_subs/2);

279 longs = [long1,long2]/row_subs*Width;

280 X = [longs',longs'];

281 Y = [zeros(length(longs),1),...

282 ones(length(longs),1)*Length];

283 plot(X',Y','k')

284 lats = 0:Length/length(alive_b):Length;

285 [X,Y] = meshgrid(longs,lats);

286 X = X';

287 Y = Y';

288 plot(X,Y,'k')

289 end

290 if t/24 < movie_length

291 Movie = getframe(gcf);

292 writeVideo(vidobj,Movie)

293 elseif end_movie

294 close(vidobj)

295 end_movie = 0;

296 end

297 shg %show current figure

298 end

299

300 %% DETERMINE CONTACT GAINS

301 %determine distance between living red and blue forces

302 [Rx,Bx] = meshgrid(rx(alive_r),bx(alive_b));

303 [Ry,By] = meshgrid(ry(alive_r),by(alive_b));

304 r = sqrt((Bx-Rx).^2 + (By-Ry).^2); %range matrix

305 %determine if blue submarines gain any contacts

306 searching_of_alive = find(status_b(alive_b)==1);

307 pd = zeros(size(r));

308 for i = 1:length(alive_r)

309 red_unit = alive_r(i);

310 if red_unit<=initial_rs

311 unit_type = 1;

312 elseif red_unit<=initial_rw

313 unit_type = 2;
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314 else

315 unit_type = 3;

316 end

317 pd(:,i) = det_c_b(r(:,i),unit_type);

318 end

319 for i = searching_of_alive

320 if SASEM && engagement

321 break %only one engagement allowed in SASEM mode

322 end

323 blue_unit = alive_b(i);

324 detected = find(pd(i,:)>=1);

325 if ~isempty(detected)
326 engagement = 1;

327 if priority_warship

328 red_unit = alive_r(detected(1));

329 else

330 red_unit = alive_r(detected(end));

331 end

332 status_b(blue_unit) = 0;

333 eng_trckr_b(blue_unit,1) = red_unit;

334 if red_unit <= initial_rs

335 eng_trckr_b(blue_unit,2) = pros_sub;

336 else

337 if red_unit > initial_rs+initial_rw

338 rm_detects = rm_detects+1;

339 end

340 eng_trckr_b(blue_unit,2) = pros_surf;

341 end

342 end

343 end

344 %determine if red forces detect any blue forces

345 searching_of_alive = find(status_r(alive_r)==1);

346 for j = searching_of_alive

347 if SASEM && engagement

348 break %only one engagement allowed in SASEM mode

349 end

350 red_unit = alive_r(j);

351 if red_unit <= initial_rs

352 pd(:,j) = det_c_rs(r(:,j));

353 else
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354 pd(:,j) = det_c_rw(r(:,j));

355 end

356

357 detected = find(pd(:,j)>=1);

358 if ~isempty(detected)
359 engagement = 1;

360 blue_unit = alive_b(detected(1));

361 status_r(red_unit) = 0;

362 prior = find(eng_trckr_r(:,1)==blue_unit);

363 eng_trckr_r(red_unit,1) = blue_unit;

364 if ~isempty(prior) && cooperation

365 eng_trckr_r(red_unit,2) = eng_trckr_r(prior(1),2);

366 else

367 eng_trckr_r(red_unit,2) = pros_sub;

368 end

369 end

370 end

371

372 %% RETURN FORCES TO ACTIVELY SEARCHING

373 %red forces

374 engaged_r = eng_trckr_r(:,2)~=0;
375 eng_trckr_r(:,2) = eng_trckr_r(:,2)-round(10*dt)*engaged_r;

376 resume_searching = (eng_trckr_r(:,2)~=0)~=engaged_r;
377 status_r(resume_searching) = 1;

378 %blue forces

379 engaged_b = eng_trckr_b(:,2)~=0;
380 eng_trckr_b(:,2) = eng_trckr_b(:,2)-round(10*dt)*engaged_b;

381 resume_searching = (eng_trckr_b(:,2)~=0)~=engaged_b;
382 status_b(resume_searching) = 1;

383

384 %% RESOLVE COMBAT

385 %resolve blue subs firing

386 attacking_b =...

387 find(eng_trckr_b(:,2)==rec_time & eng_trckr_b(:,1)~=0);
388 attacked_r = eng_trckr_b(attacking_b,1);

389 for i = 1:length(attacking_b)

390 engagement = 0;

391 incoming_b = rand(1);

392 incoming_r = rand(1);

393 blue_unit = attacking_b(i);
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394 red_unit = attacked_r(i);

395 if ~SASEM
396 %reduce firing accuracy with range

397 pa = max(1,2/5*r(alive_b==blue_unit,alive_r==red_unit)-1);

398 else

399 pa = 1;

400 end

401 %ensure red target still lives

402 if status_r(red_unit) ~= -1

403 %blue attacking red combatant

404 if red_unit <= initial_rs+initial_rw

405 %determine if red is allowed to counterfire

406 if ~(eng_trckr_r(red_unit,1) == 0 && ...

407 (eng_trckr_r(red_unit,1)<=rec_time && ...

408 eng_trckr_r(red_unit,1)>0))

409 %simultaneous fire

410 if eng_trckr_r(red_unit,1) == blue_unit &&...

411 eng_trckr_r(red_unit,2) <= ceil(1.5*rec_time)

412 %determine if blue dies

413 if (red_unit<=initial_rs && ...

414 incoming_b>b_rs_s*pa) || ...

415 (red_unit>initial_rs && incoming_b>b_rw_s*pa)

416 status_b(blue_unit) = -1;

417 eng_trckr_b(blue_unit,2) = 0;

418 positions(positions==blue_unit) = 0;

419 end

420 %determine if red dies

421 if (red_unit>initial_rs && ...

422 incoming_r>rw_b_s*pa) || ...

423 (red_unit<=initial_rs && incoming_r>rs_b_s*pa)

424 status_r(red_unit) = -1;

425 eng_trckr_r(red_unit,2) = 0;

426 else

427 eng_trckr_r(red_unit,2) = rec_time;

428 end

429 %blue fires first

430 else

431 %determine if blue dies

432 if (red_unit<=initial_rs && ...

433 incoming_b>b_rs_b*pa) || ...
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434 (red_unit>initial_rs && incoming_b>b_rw_b)

435 status_b(blue_unit) = -1;

436 eng_trckr_b(blue_unit,2) = 0;

437 positions(positions==blue_unit) = 0;

438 end

439 %determine if red dies

440 if (red_unit>initial_rs && ...

441 incoming_r>rw_b_b*pa) || ...

442 (red_unit<=initial_rs && incoming_r>rs_b_b*pa)

443 status_r(red_unit) = -1;

444 eng_trckr_r(red_unit,2) = 0;

445 else

446 status_r(red_unit) = 0;

447 eng_trckr_r(red_unit,2) = rec_time;

448 end

449 end

450 %red cannot counterfire

451 %red dies

452 elseif (red_unit>initial_rs && ...

453 incoming_r>rw_b_b*pa) || ...

454 (red_unit<=initial_rs && incoming_r>rs_b_b*pa)

455 status_r(red_unit) = -1;

456 eng_trckr_r(red_unit,2) = 0;

457 %red lives

458 else

459 status_r(red_unit) = 0;

460 eng_trckr_r(red_unit,2) = rec_time;

461 end

462 eng_trckr_r(red_unit,1) = 0;

463 %blue attacking red merchant

464 elseif incoming_r > rm_b_b*pa

465 status_r(red_unit) = -1;

466 end

467 end

468 end

469 eng_trckr_b(attacking_b,1) = 0;

470

471 %resolve red firing

472 attacking_r = ...

473 find(eng_trckr_r(:,2)==rec_time & eng_trckr_r(:,1)~=0);
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474 attacked_b = eng_trckr_r(attacking_r,1);

475 for i = 1:length(attacking_r)

476 engagement = 0;

477 red_unit = attacking_r(i);

478 blue_unit = attacked_b(i);

479 incoming_b = rand(1);

480 incoming_r = rand(1);

481 if ~SASEM
482 %reducing firing accuracy with range

483 pa = max(1,2/5*r(alive_b==blue_unit,alive_r==red_unit)-1);

484 else

485 par = 1;

486 end

487 %ensure blue target still lives

488 if status_b(blue_unit) ~= -1

489 %determine if blue is allowed to counterfire

490 if ~(eng_trckr_b(blue_unit,1) == 0 && ...

491 (eng_trckr_b(blue_unit,1)<=rec_time ...

492 && eng_trckr_b(blue_unit,1)>0))

493 %simultaneous fire

494 if eng_trckr_b(blue_unit,1) == red_unit &&...

495 eng_trckr_b(blue_unit,2) <= ceil(1.5*rec_time)

496 %determine if blue dies

497 if (red_unit<=initial_rs && ...

498 incoming_b>b_rs_s*pa) || ...

499 (red_unit>initial_rs && incoming_b>b_rw_s*pa)

500 status_b(blue_unit) = -1;

501 eng_trckr_b(blue_unit,2) = 0;

502 positions(positions==blue_unit) = 0;

503 else

504 eng_trckr_b(blue_unit,2) = rec_time;

505 end

506 %determine if red dies

507 if (red_unit>initial_rs && incoming_r>rw_b_s*pa) || ...

508 (red_unit<=initial_rs && incoming_r>rs_b_s*pa)

509 status_r(red_unit) = -1;

510 eng_trckr_r(red_unit,2) = 0;

511 end

512 %red fires first

513 else
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514 %determine if blue dies

515 if (red_unit<=initial_rs && ...

516 incoming_b>b_rs_rs*pa) || ...

517 (red_unit>initial_rs && incoming_b>b_rw_rw*pa)

518 status_b(blue_unit) = -1;

519 eng_trckr_b(blue_unit,2) = 0;

520 positions(positions==blue_unit) = 0;

521 else

522 eng_trckr_b(blue_unit,2) = rec_time;

523 end

524 %determine if red dies

525 if (red_unit>initial_rs && ...

526 incoming_r>rw_b_rw*pa) || ...

527 (red_unit<=initial_rs && incoming_r>rs_b_rs*pa)

528 status_r(red_unit) = -1;

529 eng_trckr_r(red_unit,2) = 0;

530 end

531 end

532 %blue cannot counterfire - determine if blue dies

533 elseif (red_unit<=initial_rs && ...

534 incoming_b>b_rs_rs*pa) || ...

535 (red_unit>initial_rs && incoming_b>b_rw_rw*pa)

536 status_b(blue_unit) = -1;

537 eng_trckr_b(blue_unit,2) = 0;

538 positions(positions==blue_unit) = 0;

539 else

540 status_b(blue_unit) = 0;

541 eng_trckr_b(blue_unit,2) = rec_time;

542 end

543 end

544 end

545 eng_trckr_r(attacking_r,1) = 0;

546 eng_trckr_b(attacked_b,1) = 0;

547

548 %% CHECK BREAKPOINT CONDITIONS

549 remain_rm = sum(alive_r>(initial_rs+initial_rw));

550 prev_alive_b = alive_b;

551 alive_b = find(status_b~=-1);
552 if remain_rm/initial_rm<bp_rm || isempty(alive_b)

553 break
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554 end

555

556 %% COURSE AND SPEED CHANGES

557 % Course and speed changes of Blue

558 vb(1:initial_b) = Vb_search;

559 for i = 1:length(alive_b)

560 blue_unit = alive_b(i);

561 track = eng_trckr_b(blue_unit,1);

562 %if tracking enemy, get close to enemy

563 if track~=0
564 if r(i,alive_r==track)>3.5

565 dx = rx(track)-bx(blue_unit);

566 dy = ry(track)-by(blue_unit);

567 bc(blue_unit) = atan2(dy,dx);

568 vb(blue_unit) = Vb_sub*(track<=initial_rs)+Vb_ws*...

569 (track<=(initial_rw+initial_rs)&track>initial_rs)...

570 +Vb_m*(track>(initial_rw+initial_rs));

571 else

572 bc(blue_unit) = rc(track);

573 vb(blue_unit) = min(vr(track),Vb_m);

574 end

575 %if not tracking use preset default behavior

576 else

577 %set boundries

578 switch waterspace

579 case "barrier"

580 [~,J] = find(positions==blue_unit);

581 col = positions(:,J);

582 col(col==0) = [];

583 I = find(col==blue_unit);

584 col_subs = length(col);

585 grd(J) = col_subs;

586 I = 1+col_subs-I;

587

588 x_low = (J-1)/row_subs*Width;

589 x_high = J/row_subs*Width;

590 y_low = (I-1)/col_subs*Length;

591 y_high = I/col_subs*Length;

592 case "grid"

593 [~,J] = find(positions==blue_unit);
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594 col = positions(:,J);

595 col(col==0) = [];

596 I = find(col==blue_unit);

597 col_subs = length(col);

598 grd(J) = col_subs;

599 I = 1+col_subs-I;

600

601 x_low = (J-1)/row_subs*Width;

602 x_high = J/row_subs*Width;

603 y_low = (I-1)/col_subs*Length;

604 y_high = I/col_subs*Length;

605 case "random"

606 x_low = 0;

607 x_high = Width;

608 y_low = 0;

609 y_high = Length;

610 end

611 %determine movement type

612 switch movement_b

613 case "random"

614 if bx(blue_unit) <= x_low

615 bc(blue_unit) = normrnd(0, .3);

616 elseif bx(blue_unit) >= x_high

617 bc(blue_unit) = pi + normrnd(0, .3);

618 elseif by(blue_unit) <= y_low

619 bc(blue_unit) = pi/2 + normrnd(0, .3);

620 elseif by(blue_unit) >= y_high

621 bc(blue_unit) = -pi/2 + normrnd(0, .3);

622 elseif rand(1) <= lambda * dt

623 bc(blue_unit) = rand(1)*2*pi;

624 end

625 case "barrier"

626 if bx(blue_unit) <= x_low

627 bc(blue_unit) = 0;

628 elseif bx(blue_unit) >= x_high

629 bc(blue_unit) = pi;

630 elseif by(blue_unit) <= y_low

631 bc(blue_unit) = pi/2;

632 elseif by(blue_unit) >= y_high

633 bc(blue_unit) = -pi/2;
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634 elseif bc(blue_unit)~=pi/2 && bc(blue_unit)~=-pi/2
635 ran = rand(1);

636 bc(blue_unit)=round(ran)*pi/2-~round(ran)*pi/2;
637 end

638 end

639 end

640 end

641 % Course and speed changes of Red

642 vr = vr_default;

643 alive_r = find(status_r ~= -1);

644 red_units = alive_r;

645 for i = 1:length(red_units)

646 red_unit = red_units(i);

647 %if combatant, determine if it is actively tracking

648 if red_unit <= initial_rs+initial_rw

649 track = eng_trckr_r(red_unit,1);

650 else

651 track = 0;

652 end

653 %if tracking, get close to enemy and match course and speed

654 if track~=0
655 %close distance

656 if r(prev_alive_b==track,i) > 2

657 dx = bx(track)-rx(red_unit);

658 dy = by(track)-ry(red_unit);

659 rc(red_unit) = atan2(dy,dx);

660 %Red unit increases speed

661 if red_unit <= initial_rs

662 vr(red_unit) = Vrs_sub;

663 else

664 vr(red_unit) = Vrw_sub;

665 end

666 %match course and speed

667 else

668 rc(red_unit) = bc(track);

669 if red_unit <= initial_rs

670 vr(red_unit) = min(vb(track),Vrs_sub);

671 else

672 vr(red_unit) = vb(track);

673 end
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674 end

675 %if not tracking use preset default behavior

676 elseif rx(red_unit) <= 0

677 if movement_r == "straight"

678 rc(red_unit) = 0;

679 else

680 rc(red_unit) = normrnd(0, .3);

681 end

682 elseif rx(red_unit) >= Width

683 if movement_r == "straight"

684 rc(red_unit) = pi;

685 else

686 rc(red_unit) = pi + normrnd(0, .3);

687 end

688 elseif ry(red_unit) <= 0

689 rc(red_unit) = pi/2 + normrnd(0, .3);

690 elseif ry(red_unit) >= Length

691 rc(red_unit) = -pi/2 + normrnd(0, .3);

692 elseif movement_r == "random" && rand(1) <= lambda * dt

693 rc(red_unit) = rand(1)*2*pi;

694 elseif movement_r == "straight" && ...

695 (rc(red_unit)~=0 && rc(red_unit)~=pi)
696 ran = rand(1);

697 rc(red_unit) = 0*(ran<.5)+pi*(ran>=.5);

698 end

699 end

700

701 %% ADVANCE RED AND BLUE FORCE POSITIONS

702 bx(alive_b) = bx(alive_b) + cos(bc(alive_b)).*vb(alive_b)*dt;

703 by(alive_b) = by(alive_b) + sin(bc(alive_b)).*vb(alive_b)*dt;

704 rx(alive_r) = rx(alive_r) + cos(rc(alive_r)).*vr(alive_r)*dt;

705 ry(alive_r) = ry(alive_r) + sin(rc(alive_r)).*vr(alive_r)*dt;

706 k = k +1;

707

708

709 end

710 %plot course history

711 if plot_hist == 1

712 figure

713 plot(bx_1(1:k,:), by_1(1:k,:), 'b')
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714 hold on

715 plot(rx_1(1:k,:), ry_1(1:k,:), 'r')

716 hold on

717 plot(bx_1(1,:), by_1(1,:), 'bo')

718 hold on

719 plot(rx_1(1,:), ry_1(1,:), 'ro')

720 hold on

721 plot(bx_1(k,:), by_1(k,:), 'bs')

722 hold on

723 plot(rx_1(k,:), ry_1(k,:), 'rs')

724 grid on

725 xlabel('x')

726 ylabel('y')

727 end

728 %save performance data

729 days(m,1) = t/24;

730 PERCREM_B(m,1) = length(alive_b)/initial_b; %remaining blue forces

731 PERCREM_RS(m,1) = sum(alive_r<=initial_rs)/initial_rs;

732 PERCREM_RM(m,1) = remain_rm/initial_rm;

733 PERCREM_RW(m,1) = sum(alive_r>initial_rs&alive_r<= ...

734 (initial_rs+initial_rw))/initial_rw;

735 RM_DETECTS(m,1) = rm_detects;

736 KILLperDETECT_RM(m,1) = (1-PERCREM_RM(m))*initial_rm/rm_detects;

737 end

738 t_res = table(days,PERCREM_B,PERCREM_RS,PERCREM_RW,...

739 PERCREM_RM,KILLperDETECT_RM);

740 display(t_res)

741 parameters = table(waterspace,sensor_type,movement_b,movement_r,...

742 movement_r,cooperation,SASEM,priority_warship,initial_b,initial_rs,...

743 initial_rm,initial_rw,lambda,lamt,rec_time,pros_sub,...

744 pros_surf,b_rs_b,rs_b_b,b_rw_b,rw_b_b,rm_b_b,b_rs_rs,rs_b_rs,...

745 b_rw_rw,rw_b_rw,b_rs_s,rs_b_s,b_rw_s,rw_b_s,R_b_rm,R_b_rw,...

746 R_b_rs,R_rs_b,R_rw_b);

747 save(save_name,'t_res','parameters')
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