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Abstract:  

 

Determination of the average diameter of micro particles such as 

lycopodium particles by scattering is well known classical experiment in 

optics. The size of lycopodium particles can be determined by scattering of 

sodium light. With advent of laser light (which is highly monochromatic), 

this experiment can be easily done. With availability of semiconductor 

laser, many optics experiments can be done elegantly with cost 

effectiveness. In this paper an experiment on the determination of the 

average size of lycopodium particle, with necessary theory, is presented.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Introduction:  
 

After the advent of laser, the experiments on interference, 

diffraction and scattering of light have gained tremendous importance in 

physics curriculum. Nowadays semiconductor lasers are available at a 

relatively low cost.  Some classical experiments such as average size of 

lycopodium particles, diffraction at a slit, double slit, grating, etc can be 

done with simplicity and elegance.  Some of these experiments are 

included in the list of physics practical in graduate physics programs and 

engineering programs of colleges affiliated to reputed universities. But 

lycopodium particles, strewn on a glass substrate, form a random opaque 

micro objects. When the Babinet’s principle is invoked this diffraction 

pattern is similar to the diffraction pattern due to a collection of random 

circular apertures. So the diffraction pattern is Airy’s pattern. The maxima 

and minima circular rings are not equispaced. The Airy’s pattern is 

intimately related to the resolving power of imaging system with circular 

geometry.  

 

Babinet’s principle: 

 

Complementary screens are those in which the transparent portions 

of one are the opaque portions of the other. Let the amplitude of light after 

propagation through a distance be )( pu  when a coherent beam is 

intercepted by a screen with an aperture in it. When two complementary 

screens are superimposed the result is not a full-opaque screen but a full 

wave-front as if no screen were present. According to Babinet’s principle, 

complementary screens produce the same diffraction pattern. If )(1 pu  

and )(2 pu  are the amplitudes at a point p  on a screen at a distance 

from the aperture then their sum is the amplitude )( pu of the entire 

wave-front:                                         

                                               )()()( 21 pupupu  .                           (1)                             

 

If we set the amplitude of a uniform plane wave-front as unity, we write 

eq. (1) as 

                  )(1)(1)( 112 pupupu  .                                      (2) 

As )(1 pu  is binary and takes 1 for clear area and 0 for opaque area, 

 pu2  is also binary and takes 1 for opaque area of  pu1  and 0 for the 

transparent area of  pu1  .  pu1  and  pu2  interchange their transparent 

and opaque areas. Hence  pu2  and  pu1
 are complementary to each 

other. As an example a circular aperture and a circular opaque disk of the 

same diameter are complementary (see figs.1 and 2). 

 



 

 

 

 

 

It is well known that Fraunhofer diffraction is a two dimensional Fourier 

transform of the
 

transmittance of aperture
1, 4,7,13

.                        

 









 dxdyeyxuffU

yfxfi

yx
yx )(2

),(),(


 .                                   (3) 

 

On the Fraunhofer plane, yx fandf  are spatial frequencies with respect to 

the screen/aperture/obstacle plane. They are respectively given by 
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                                                  (4) 

where ),( YX  are the actual co-ordinates on the Fraunhofer plane which is 

at a distance of Z  from the aperture plane.   is the wavelength of 

coherent light incident on the aperture/screen/obstacle. ),( yx  are the co-

ordinates of a point p  on the screen. Taking the Fourier transform of eq. 

(1) and noting that the Fourier transform of the amplitude ),( yxu  of the 

entire wave-front is a delta function )0( , we get
 

                                        )0(),(),( 21  yxyx ffUffU .                (5)             

Use is made of the fact that Fourier transform is  linear.  

 

On the Fraunhofer plane, the bright spot at the centre of symmetry 

is due to the plane wave propagating along the axis. This is referred to as 

‘d.c.’ component. (zero spatial frequency). This is conspicuous when an 

opaque object is causing diffraction
2
. The bright ‘Poisson spot’ on 

Fraunhofer plane due to a circular disk can be interpreted as a delta 

function. It is a ‘caustic’ point for a circular disk. C.V. Raman investigated 

this for an elliptic disk and found this caustic curve to be the evolute of an 

ellipse
2
. It is an interesting example of boundary diffraction wave.  

 

The amplitude on the Fraunhofer plane, other than the origin, is 

zero as delta function has nil (in practice very small) spread. Thus the total 

amplitudes of the sum of complementary screens is zero on the Fraunhofer 

plane! For points other than the centre on the diffraction plane, eq. (5) 

satisfies      

 

),(),( 21 yxyx ffUffU  .                 ( 00  yx andff ).   
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Figure.2 Geometry for observing Fraunhofer diffraction of complementary screen 

 

X 
Y 

Figure. 1  Geometry for observing Fraunhofer diffraction  

 

 

 

 

In Fraunhofer diffraction, )( pu  is of constant amplitude as a plane 

wave-front is incident on the object/aperture. There is over all phase of 

difference of    between the amplitudes which is not important as in 

intensity it does not manifest. 

 

Thus                                         
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Therefore the intensity pattern due to either of the complementary 

screen is the same except at the origin. This is an interesting result. This is 

the principle behind the experiment on the determination of average size of 

lycopodium particles. 

 

The Airy’s pattern: 

 

A random collection of (opaque) lycopodium particles produces the 

same diffraction pattern as the random collection of circular apertures of 

very small diameter comparable to the wavelength of light
7, 9

. The 

Fraunhofer diffraction pattern due to a large number of random circular 

apertures is the well-known Air’s pattern. The diffraction pattern of a 

circular aperture is Airy’s pattern
4, 5, 6

. The diffraction pattern of a random 

collection of N identical circular apertures is also Airy pattern with N  

times the brightness due to one aperture. Thus the Fraunhofer  

diffraction pattern due to lycopodium particles is also an Airy’s pattern 

only (see Fig.2). 
 

 

The normalized Fraunhofer diffraction amplitude due to a circular 

aperture of diameter d is given by 
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where )(1 qJ  is the Bessel function or order 1 and argument q .  
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R  is the radial distance from the centre of the Fraunhofer plane. The 

amplitude and intensity of Airy’s patern are shown in fig.3. Airy’s disc 

extends up to the first diffraction minimum and then secondary maxima 

and minima are seen as circular bright and dark rings respectively. The 

widths of the secondary maxima and minima are not equal. The angular 

diameters of rings are not proportional to integer. The radii nR of dark 

rings are given by
5, 11  
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and the radii of the centres of bright rings are given by 
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Thus it is evident that the radii are not equi-spaced.  In a good dark room,   

two or three dark rings can be seen clearly. The first dark ring is 

conspicuous as more than 90% of the intensity of the diffraction pattern is 

contained in the Airy’s disk.   

 

The diameter d of the circular aperture or equivalently average 

diameter of lycopodium particles is given by 

                            ...238.3233.222.1
321






























R

Z

R

Z

R

Z
d  .   

Z   is the distance of the screen from the glass plate on which the 

lycopodium powder is strewn. nR  are the radii of the successive dark 

rings. The radius of the first dark ring is the radius of the Airy’s disc. nR is 

not integral multiple of 
1R

Z
.  

 

 

 

 

                      Figure. 3 Airy's function for amplitude 
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     Figure. 4 Modulus square of Airy’s function: Intensity Distribution 

 

The Airy pattern plays a key role in resolution of optical instruments with 

imaging optics having circular symmetry. So the factor 1.22 for the first 

dark ring can not be ignored [15]. 

  

 

Figure. 5 Intensity distribution of a Circular aperture    

 

 

 

 

Figure. 6Fraunhofer  diffraction of micro particles          



 

 

 

 

 

 

 

   

                             

                               Figure. 7 Aperture matrix and its Diffraction pattern 

      

 

 

 

   

                 Figure. 8 Complimentary Aperture matrix and its Diffraction pattern 

 

Conclusions 

Students at entry level to engineering program are from the higher 

secondary level. They may not be familiar with Fraunhofer diffraction. 

Even if a detailed theory of diffraction at a slit, grating, circular aperture 

are outside the scope of the book, the presence of the factor 1.22 has to be 

emphasized to distinguish the diffraction at a circular aperture from those 

of diffractions at a slit and a grating. Earlier practical physics manuals 

provided a brief description of theory for every experiment
14

. Since we 

give importance to develop scientific temper among students, we have to 

be perfect in giving formulae and theory in support of the experiments. 
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