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Lesson5:  
Generative Models for Text on the Web 

Unit4:  
Increasing the number of model parameters 

Rene Pickhardt 
 

Introduction to Web Science Part 2 
Emerging Web Properties 
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Completing this unit you should 
•  See that one can always increase the model 

parameters 

•  Know that increasing model parameters often 
yields a more accurate model  

•  Be aware of the bigram and mixed models as 
examples for our generative processes 

 



Rene Pickhardt CC-BY-SA-3.0 Generative Models for Text on the Web 44 

What happens if we try to encode the length 
into our model? 
•  Make a 2 step process 

•  First step learn the word length distribution 
– Randomly select a word length “n” for the next 

word that should be generated 

•  Learn the unigram distribution (without) space 
– Draw “n” characters from the unigram distribution 

•  We call this model the “mixed model” 
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Plotting the Zipf distribution looks worse for 
the mixed model 



Rene Pickhardt CC-BY-SA-3.0 Generative Models for Text on the Web 46 

Also cumulative plot verifies this 
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•  For every character 

– Learn a unigram distribution which contains the 
likelihood for the next character. 

– Draw the next character from this distribution 

•  This disregards the length distribution 

Let us try another model – the bigram model 



Rene Pickhardt CC-BY-SA-3.0 Generative Models for Text on the Web 48 

Bigram model seems closer in the plot 
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Cumulative plot says the same! 
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Comparing the length distribution 
•  bigram model still 

falls exponentially 
– Though for n=2 it 

fits exactly 
 

•  Mixed model 
obviously follows 
original length 
distribution 
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•  All models are still far from being close to the 
observed data 

•  More sophisticated models tend to be closer. 
•  Goal is always to find small, close models 

Comparing all 3 generative models 
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•  Remember a reason to build generative models was to 
explain how or why something is in the way it is. 

•  We might say that the zipf distribution of words come 
from the character distribution (which was also Zipf) 

•  More model parameters yield better approximations 

•  Will they also explain more?  
–  Not clear parameters have to be explained 

What can we explain now? 
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Thank you for your attention! 
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