


Irving Stringham







AN

ELEMENTARY TEEATISE

ON

MECHANICS,
FOE THE USE OF THE JUNIOE CLASSES AT THE UNIVERSITY

AND THE HIGHER CLASSES IN SCHOOLS.

WITH

Colledixw 0f

BY

S. PARKINSON, D.D.
FELLOW AND PRELECTOR, OF ST JOHN'S COLLEGE, CAMBRIDGE.

FOURTH EDITION REVISED.

MACMILLAN AND CO.

1869.

[All Eights reserved.]



PRINTED BY C. J. CLAY, M.A.

AT THE UNIVERSITY PRESS.



PREFACE TO THE FOURTH EDITION.

IN preparing a fourth edition of this work I have kept the

same object in view as I had in the former editions, namely,

to include in it such portions of Theoretical Mechanics as

can be conveniently investigated without the use of the

Differential Calculus, and so render it suitable as a manual

for the Junior Classes in the University and the Higher

Classes in Schools. With one or two short exceptions, the

Student is not presumed to require a knowledge of any

branches of Mathematics beyond the elements of Algebra,

Geometry and Trigonometry.

Motion on a Curve, which is treated of in the last

Chapter of the Dynamics, does not seem to admit of any

complete discussion without the aid of the Differential Cal-

culus; but in consequence of the present requirements of

the Senate-House Examinations, I have put together those

theorems respecting cycloidal oscillations and curvilinear
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IV PREFACE TO THE FOURTH EDITION.

motion which admit of a tolerably simple Geometrical ex-

position.

Several additional propositions have been incorporated in

the work for the purpose of rendering it more complete :

and the collection of Examples and Problems has been

largely increased : to most of them I have annexed results,

which I hope will render the collection more useful both to

tutor and pupil.

ST JOHN'S COLLEGE,

Feb. 1869.
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STATICS.

CHAPTEE I.

INTRODUCTION.

1. MECHANICS is the science which treats of the laws of

rest and motion of matter.

A general notion of the meaning of the term matter is

acquired in the daily experience of life, since matter in

various forms and under various circumstances is perpetually

affecting our senses : we shall therefore assume that the

notion of it is familiar to the student.

A particle or material point is a portion of matter inde-

finitely small in all its dimensions; so that its length, breadth,

and thickness are less than any assignable linear magnitude.

A body of finite size may be regarded as an aggregation of

an indefinitely great number of particles ;
and the dimensions

of any given body being limited in every direction, it will

consequently have a determinate form and volume.

A body or system of bodies all the points of which are

held together in an invariable position with respect to one

another, is said to be rigid.

2. When a body or particle constantly occupies the same

position in space, it is said to be at rest; and when its position

in space changes continuously in any manner whatever, it is

said to be in motion. All matter is capable of motion, but

we can only judge of the state of rest or motion of a particle

P. M. 1
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INTRODUCTION.

by comparing it with other particles ;
for this reason all the

motions which we can observe are necessarily relative mo-

tions.

When a great number of objects maintain the same rela-

tive position, our first impression is to consider them as at

rest
;
and if one of them changes its position relatively to the

others, it is to it that we ascribe the motion. Thus for in-

stance, the earth was for a long time considered to be fixed in

space, notwithstanding the motions of the sun, moon and stars

relatively to objects on the earth's surface with which the

observer compared them. The motion was ascribed to them

whilst the earth was assumed to be fixed. A careful study of

natural phenomena may modify this first impression, but we
can never arrive at absolute certainty in this respect ;

and the

conclusions respecting absolute motions, to which we are led

by the observation of relative motions, can only be regarded
as inductions which may have indeed a high degree of proba-

bility, but which have always need of being verified by the

accordance between the logical consequences to which they

lead, and the phenomena directly observed.

3. The following principle we assume as being in accord-

ance with experiment and observation, viz. a particle which

is absolutely at rest will continue so, until some cause, extra-

neous to itself, begins to operate so as to put it in motion.

This principle asserts that matter at rest has no tendency to

put itself in motion, and that any motion or tendency to

motion which it may possess, must arise entirely from some

external cause. To such causes we give the name of forces,
and we give the following definition :

Any cause which excites motion in a particle, or which

only tends to excita it when its effect is prevented or modified
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by any other cause (or which tends to modify existing motion),

is called force,.

And the line of action of the force is the line in which the

particle would begin to move in consequence of the action of

the force, if the particle were at rest and perfectly free.

When several forces act simultaneously on a free particle

or on a system of connected particles, the forces will modify
each other's effects : if they are so related that no motion of

the particle or system takes place, the forces are said to ba in

equilibrium.

That part of Mechanics which treats of the conditions of

equilibrium of forces (applied to matter) is called Statics: the

other part which treats of the conditions of motion is called

Dynamics. The two combined constitute the whole subject.

4. Forces are brought into action by various causes, and

different terms are applied to them in different cases. Thus,

for example, if one body press against another, each body is

subjected to a force acting at the point of contact, such force

is frequently called pressure ; again, when a body is pulled by
means of a string, or pushed by a rod, the force exerted by the

string or rod is called tension; again, experience teaches us

that if a body be let free from the hand it will fall to the sur-

face of the earth in a certain definite direction, however often

the experiment be tried the result is the same, the body strikes

the same spot on the ground in each trial, provided the place

from which it is dropped remain the same: this unvarying
effect must result from some cause equally unvarying.

This cause is assumed to be an affinity which all bodies

have for the earth, and is termed the force of attraction. It

is found to prevail at all parts of the earth
;
and is, in fact,

included in the general law of gravitation established by
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Newton, viz. that every particle of matter attracts every other

particle of matter according to a certain law. The name

weight is given to the force which the earth's attraction causes

a body at rest to exert downwards. The term gravity is fre-

quently used in the same sense statically.

5. We have a simple example of the simultaneous action

of two equal forces when a body rests on a horizontal table, or

is supported by the hand. The pressure of the table in the

former case, or of the hand in the latter, exactly counter-

balances the weight of the body, and is equal to it.

If a body be suspended freely by a string, the tension of

the string, which is the force it exerts on the body, is exactly

equal and opposite to the weight of the body.

6. The question may suggest itself to the student whether

the weight of a body remains the same at different times.

The answer to this must necessarily depend upon experiment,
since we have no means of determining, d priori, whether the

attraction of the earth remains the same : but if we can ascer-

tain that the mechanical effect of the weight of the body is

unvarying (for instance, if it deflect a spring through the same

space under precisely similar circumstances), the answer would

be in the affirmative. Bat it would be very difficult to ascer-

tain whether the spring were under exactly similar conditions

at the different times, and so no reliance could be placed on

the result of the experiment. We are able, however, to assert

from dynamical considerations that the weight of the same

body at the same place of the earth's surface is invariable.

We may also here state, as a result of experiment, that the

weight of a body is not altered by altering its figure. It

depends solely upon the volume and material. Thus, for
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example, a cubic inch of iron requires the same effort to

support it, whatever be its form.

This of course we could not know except from experiment;

for we could easily conceive it to have been otherwise, as, for

instance, if the attraction of the earth had been of a kind

similar to magnetic attractions which do not influence all

substances, and which besides do not exert equal influence

over those which are subject to them.

7. Mass. Common experience makes us acquainted with

the fact, that the constitution of all material bodies is not the

same. Equal volumes of different substances are differently

affected by equal forces applied to them. A cubic inch of

wood and a cubic inch of lead require different efforts to

support them in the hand. Equal weights of different sub-

stances occupy different volumes. We are thus led to con-

sider a quality of matter to which the term mass has been

given. So long as the volume and constitution of a given

portion of matter remain the same, this quality mass remains

the same. The mass of a body has been sometimes defined

as the quantity of matter in it : but this vague definition does

not assist us in forming a distinct conception of it. The

notion of mass is one as completely sui generis as those of

space, time, weight are so: and as in these cases, so in that

of mass, our principal business must be to establish some

mode of measuring or comparing different masses.

Our only means of measuring mass are derived from

dynamical considerations, and we shall have occasion hereafter

(in Dynamics) to consider this subject again. For the present,

if necessary, the student may assume that the masses of bodies

are proportional to their weights at the same place on the

earth's surface.
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8. Method of estimating and comparing forces .

When a force acts on a material point, there are three

things necessary to be known in order to render the force

perfectly determinate, viz. the intensity of the force, the direc-

tion in which it acts, and the position of the point where it is

applied, in other words, its point of application. These three

things may be called the elements of the force : and when
the two latter are assigned, i. e. the point of application and

the direction, the line of action becomes determinate, that is,

the line in which the particle would begin to move by the

action of this force only, if the particle were perfectly free.

If two forces be applied in opposite directions to a point
which is free and at rest, and constitute an equilibrium, they
are said to be equal forces. The rtotion of the equality of

two forces will readily lead to the conception of forces having

any proposed ratio to one another: thus if two equal forces

be applied in the same direction to the same point, we shall

have a double force
;

if in the same way we combine three

equal forces there results a triple force, and so on; so that, in

general, to measure forces we have only to adopt the same

method as when we measure or compare any homogeneous

quantities : i. e. we must take some known force as unit and

then express in numbers the relation which the other forces

bear to this unit.

For example, if F represent the unit of force (the weight
of a given body for instance), PF will represent a force the

intensity of which is P times that of the unit: or we may
speak of a forceP simply, in the same sense, the unit of force

being understood.

9. We have seen that the gravitation of bodies to the

earth is unceasing, and, as has been observed, the gravity
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or weight of the same body is invariable
;

so that weight
affords a very useful means of estimating all statical forces.

The tension of a string may be measured by the weight (the

number of pounds if we please) which it will sustain
;

the

force exerted by a string under constraint may be measured

by the weight which will just hold it in its constrained posi-

tion; the force of attraction of a magnet may be measured by
the weight it would support: and so of all statical forces.

The standard of weight in England is the pound Troy, consisting of 5760

grains; and it is stated that a cubic inch of distilled water weighed in air by
brass weights at 62 Fahrenheit, the barometer being at 30 inches, weighs

252*458 such grains: the pound Avoirdupois contains 7000 such grains.

5 GEOR. IV. c. 74.

10. We proceed to explain how forces may be repre-

sented geometrically and algebraically.

The three things necessary to render a force perfectly

determinate are (as we have said) its point of application, the

direction in which it acts, and its magnitude or intensity.

Now if there be two forces P, Q
acting at the points A, C in the

directions AB, CD respectively, we

may take the lengths of the lines

AB, CD such that

AB : CD = P : Q.
Or if we take Q for our unit of force and CD for our unit

of length, then the force P will be represented geometrically

by the line AB
;
for this line is drawn in the direction of the

force AP, from ih& point of application A, and also represents
the force in magnitude : the convention in this respect being
understood to be that the line contains as many units of

length as the force contains units of force.

The student must be careful to observe the order of the
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letters which indicate the line
;
thus AB expresses that the

force acts in direction of the arrow from A towards B; a

force represented by BA would indicate a force of equal
magnitude, but acting in the opposite direction, i.e. from B
towards A.

The force P would be represented algebraically by ex-

pressing in algebraic symbols, the magnitude and position of

the line AB which represents the

force geometrically: thus its direc-

tion would be assigned by assigning

the angle 9 at which it is inclined

to a known fixed line Ox in the

same plane with AB: its magnitude
will be assigned by assigning the

numerical value of P, the number

of units of length ;
and the point of application A will be

assigned by assigning the position of A with respect to the

fixed lines Ox, Oy in the same plane with AB.

11. This mode of representing forces by lines is of great

utility, as we shall see more particularly in the next chapter.

We may illustrate it here by

supposing several forces as P, -

A
fc>

5^
D
.^

Q, E to act simultaneously at

the point A in the same direction : if they would be separately

represented by AB, A C, AD, they will when acting simul-

taneously be together represented by a line AD', the length
of which is equal to the sum of AB+ AG+ AD.

If one of the forces as E, acts in a direction opposite to

that of the others P, Q, we
shall have to subtract the line -J? i-

B
> ^-

AD from the sum of the others
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AB, AC, and the three would be represented by a line AD'

equal in length to AB + AC AD. This is still the algebraic

sum of the lines AB, AC, AD, if lines in one direction from

A be considered positive, and lines in the opposite direction

negative ;
and generally if any number of forces act simul-

taneously at a point and be affected with the sign + or as

they act in a given direction or the opposite, they will be

equivalent to a single force represented by the algebraic sum
of the several forces; and if this sum be affected with a

positive sign, the equivalent force will act in the direction

which has been considered positive; and if it be affected with

a negative sign, it will act in the opposite direction.

12. From the definition which has been given of equal

forces (in Art. 8), it is obvious that two equal forces applied
at a point in opposite directions will be in equilibrium.

Further, it will readily be granted
that two equal and opposite forces -<? d >.

P, Q applied at the extremities of a

straight rigid rod AB and acting ~^ "

"J

in direction of the rod will be in

equilibrium; for there is no reason that the rod should move

in one direction rather than in another; and this result will

be true whatever be the length of the rod: from hence we

infer that P will balance Q at whatever point of the rod Q
be applied : in other words the effect of Q is the same at

whatever point of the rod B, C, . . . it be applied, the direction

remaining the same.

These considerations lead us to the following principle,

called the principle of the transmission offorce, which we shall

hereafter find to be of great utility.

The effect of aforce on a partide to which it is applied will
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l)e the same, if we suppose the force applied at any point we

please in the line of action, provided the point be rigidly con-

nected with the original particle.

This principle which is the fundamental one of the

science of Statics will hold whether we consider the particle
as isolated, or as a constituent element of a body of finite size

;

and we shall find it of great use when we wish to transfer

the point of application of a force from one point to another

for convenience of calculation. We shall not think it neces-

sary in every case where the supposition is required, to state

that the system is supposed to be rigidly connected, but in

any instance where this is not done the student will under-

stand it to be so.

13. As an illustration of the above principle we may
give the following. If a weight be supported by
the hand by means of a string, the effort which the

hand must exert will be the same whatever be the

length of the string (the weight of the string being

neglected), i.e. whether the force, which the hand

exerts, be applied at A, or B, or C, or any point in

the line of action of the force.

Obs. In this example the student will observe

that the connection between the points A, B and the

weight is not a rigid one, and in general when the

force Q (fig. Art. 12), which we transfer from the point to B,
acts as in the upper figure, i. e. tends to draw C towards B,
the connection between C and B need not be essentially rigid ;

but the two points may be otherwise connected, as for instance,

by a fine inextensible thread
;
when however (as in the lower

figure) the force tends to thrust B towards (7, the connection

must be a rigid one.
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14. We have called the example above an illustration
,

and not a proof of the principle of Art. (12), for as this prin-

ciple has been enunciated with reference to & particle, and since

particles as such cannot be subjected to experiment, it would

be vain to look for or expect a direct proof of this, or in fact

of any other physical law. The student must be prepared to

admit its truth as established by evidence similar to that by
which other physical laws are established.



CHAPTER II.

OF FORCES ACTING IN ONE PLANE.

15. WHEN a system of forces acting on a particle at rest

is not in equilibrium, the particle will begin to move in some

definite direction, but a single force might be found of proper

intensity which when applied independently to the particle

and acting in the same direction would cause the particle to

move in exactly the same manner; such a force is called the

resultant of the system of forces; and the constituent forces

of the system, with reference to this resultant, are called

components.
In other words, the single force which is capable of pro-

ducing the same effect on a particle or system of particles as

would result from the combined action of several other forces,

is called their resultant.

We do not enter into the question what the dynamical
effect might be if the system of forces were not in equi-

librium but whatever it may be, the resultant is equivalent

to the components.

When a system of forces acting on a particle or body is

in equilibrium, the particle has

no tendency to motion, and the

resultant is consequently nil.

Hence when a system of forces

(as P, Q,R,.. .} is in equilibrium,
R

one of them (as P) may be regarded as counterbalancing the

combined action of all the rest, Q, J?, S. It appears then that

the remaining forces (Q, R, 8) produce the same effect on the

particle as would result from a single force equal and opposite
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to P. We infer then, that when a system of forces acting on

a body is in equilibrium, any one of the forces is equal and

opposite to the resultant of all the rest.

Again, since the resultant of a system of forces in equi-

librium is nil, such a system of forces has no tendency to

excite or prevent motion
;
we may therefore (in any case

where we find it convenient) suppose such a system of forces

to be annihilated without altering the state of rest or motion

of the body upon which they act; or stating this principle

more generally, any system of equilibrated forces may be

applied to or withdrawn from a body without affecting its

state of rest or motion. The student, however, must bear

in mind the observation of Art. (13) whenever this principle

is employed in dealing with a system of bodies not in rigid

connection.

16. We now proceed to deduce the rules for the com-

position of forces, that is, to find the resultant of two or more

forces acting simultaneously ;
and it will then be easy to

ascertain the conditions of equilibrium of a system of forces.

We shall confine ourselves in the present chapter to the

discussion of forces acting in one plane.

The case of forces acting in the same straight line has

been already considered in Art. 11.

When two forces P and Q are applied at the same point
Am directions inclined to each other

at any angle whatever, it is easy to

see that some third force R properly

applied at the point A would con-

stitute an equilibrium with P and

Q : for by virtue of the combined

action of P and Q the point A
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tends to leave the position in which it is; but since it could

move in one direction only, it follows that if we apply a

proper force R in a direction contrary to this in which it would

move, the point could not move at all, i.e. would be at rest.

The three forces P, Q, R acting on the point A would be in

equilibrium, and the force R is equal and opposite to the

resultant of the other two. Two forces then, whose lines of
action meet, have a resultant.

Again, it is obvious that this resultant must lie in the

plane which passes through the direc-

tions of the two components AP, AQ;
for no reason can be assigned in favour

of this resultant's lying in any proposed

position above the plane PAQ, which

would not hold with equal validity in

favour of the resultant's being in a per-

fectly symmetrical position below the

same plane.

Further, the resultant must lie within the interior angle

PAQ (< 180) contained by the directions of the two forces,

for it is clear that the point A could not by the action of the

forces P, Q move in the plane PA Q, on the side of A Q remote

from P and towards Z>; and similarly, it could not. move on

the side of AP remote from Q and towards B : consequently
it could only move within the angle PA Q, the direction there-

fore of the resultant R must lie within this angle.

17. There is one case in which we can see a priori what

will be the direction of the resultant : viz. when the two

forces P, Q are equal; it is clear in that case that the direc-

tion of the resultant bisects the angle between the direction

of the two component forces P, Q: for there is no reason
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why the resultant should make with one of the component
forces an angle different from that which it makes with the

other.

Obs. The student may remark that the conclusion of the

preceding article is based on reasoning ex absurdo ; instances

will have come under his notice, in which the elementary
theorems of a subject do not admit of a direct demonstration,

but he will regard the proof as equally valid though the

demonstration is indirect. The general principle involving
all such proofs is this: If under assigned circumstances, one

issue or conclusion and one only can result, and the arguments
in favour of two hypothetical issues or conclusions A and B
are of equal value, then that hypothetical issue must be the

true one in which the two hypotheses A and B coalesce.

18. We proceed to establish an important theorem which

enables us to determine the resultant of any two forces acting

at a point : the theorem is called the parallelogram of forces,
and may be thus enunciated.

If two forces acting at a point be represented in magnitude
and direction by two straight lines drawnfrom that point, and

if a parallelogram be constructed having these two lines for

adjacent sides, then that diagonal of the parallelogram which

passes through the point of application of the forces will

represent their resultant in magnitude and direction.

That is, if the two forces P, Q be

represented by AB, AC, and the

parallelogram BC be completed,
their resultant E will be represented

by the diagonal AD. The same

is true if P, Q act at points E, F,

provided their directions meet in
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some point A. We shall divide the proof of this proposition
into two parts; and

(i.) To prove that the resultant acts in direction of the

diagonal, the forces being commensurable.

We have seen (Art. 17) that when the forces are equal

(AB-AC], their resultant bisects the angle between the direc-

tions of the forces, and therefore acts along the diagonal AD;
that is, this first part of the proposition is true for two equal

forces.

Let us assume (a) for the present that it is also true for two

sets of forces P and 0, P and R
7 7 .,

equal or unequal ; we can then

prove that it is true for the forces

Pand Q + R.

Let P act at A in direction AS,

Q and R in direction A CE, and let

AB, AC represent P, Q in magnitude; and since R may be

supposed to act at any point in the line ACE which is

rigidly connected with A, let R act at (7, and let CE repre-

sent R. Complete the parallelograms BC, DE.
Then since by the hypothesis (a) the resultant T of P, Q

acts along AD, let them be replaced by their resultant, and

let this resultant be applied at D which may be done with-

out altering its effect (Art. 12).

Now this resultant T acting at D may be decomposed into

two forces P,, Q1 (equal respectively to P, Q) acting at D in

directions CD, D Gr which are parallel to AB, A C.

Let T be replaced by P1? Qv and let the point of appli-

cation of Pj be removed to C and that of Ql
to Gr.

Again Pl
and R acting at C have a resultant acting in

direction CG
;

let them be replaced by this resultant, and let

its point of application be transferred to G.
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{The student may suppose all the points A, C, D, 6r,

rigidly connected together, Art. (12).}

We have thus shewn (on the hypothesis a) that the forces

P, Q, R which are applied at A, may be supposed to be applied

at G- without altering their combined effect, that is, AG- must

be the direction of the resultant of P and Q + It in any case

in which the hypothesis (a) holds true.

But this hypothesis is true when P, Q, R are each equal
to any the same force / therefore the conclusion is true for

two forces/ and 2/ and again, (making Q=2/ R=f, P=/),
it is true for/and 3/ and so by induction it is true for/and
inf. Again, putting P = mf, Q = It f, our conclusion is true

for two forces mf, and 2/ and again for mf, and 3/ and gene-

rally for mf and nf : if m, n be any integers whatever.

Now any two commensurable forces may, by assigning a

proper value to/ be expressed by mf, nf.

Hence proposition (i)
is proved.

19. (ii.)
To prove that the resultant acts in direction of

the diagonal, if the forces are incommensurable.

Let AB, AG represent two such forces. Complete the

parallelogram BC> and ifAD be not

the direction of the resultant, let it

be some other line, (AV suppose).

Let AC be divided into an integral

number of equal parts each less

than DV, which is always pos-

sible; and mark off from CD portions equal to these, the

last division E clearly falling between D and V. Complete
the parallelogram CF, then the resultant of AC, AF will

be in direction AE, and we may suppose this resultant to

be substituted for them.

P.M. 2
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The resultant then of A G and AB is equivalent to the

resultant of some force in direction AE, together with FB
which acts along AB: and this resultant must lie within the

angle BAE. But by hypothesis it acts in direction AV,

without the same angle, which is absurd.

In like manner it may be shewn that no direction but AD
can be that of the resultant of the forces AB, AC. The

theorem is therefore completely proved so far as the direction

of the resultant is concerned : it will be easy now to prove

that

20. (iii.)
The diagonal represents the magnitude of the

resultant.

Let AB, AC be the directions of the given forces, AD
that of their resultant : in DA pro-

duced take AE of such a length as to

represent the magnitude of the result-

ant. Then the forces represented by

AB, AC, AE balance each other.

Complete the parallelograms BE, BC:
then AF will be the direction of the

resultant of AB, AE, and therefore

since each of the three forces AB, AC,
AE is equal and opposite to the re-

sultant of the other two, AC, AF are in one straight line.

Hence FD is a parallelogram, and .'. AE=FB = AD; i.e.

the resultant of AB, AC is represented in magnitude as well

as in direction by AD the diagonal of the parallelogram.

21. The theorem which we have just proved is of so

much importance that it may fairly be considered the fun-
damental proposition of Statics. It was enunciated in its

present form by Sir Isaac Newton, and Varignon the celebrated
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mathematician, in the year 1687, probably independently
of each other : since that time various proofs of it have been

given by different mathematicians, several of which have been

reviewed by Jacobi.

The proof given above is due to M. Duchayla.

Several very interesting theorems can be readily deduced

from the parallelogram of forces : the first we shall give,

called the triangle of forces, was announced in the year 1586

by Stevinus of Bruges, without any strict proof of it.

22. The Triangle of Forces. If three forces acting at a

point be represented in magnitude and direction by the sides

of a triangle taken in order , they will be in equilibrium.

Let ABG be the triangle whose sides taken in order re-

present in direction and magnitude
three forces applied at any point,

(A suppose).

Complete the parallelogram BD.

Then the forces AB, BG applied

at A are expressed by AB, AD (since AD is equal and

parallel to Bty.

But the resultant of AB, AD is a force represented

by AC.

Therefore the three forces represented by AB,BG, CA, all

applied at A, are equivalent to A C, CA, which will clearly

balance one another.

Therefore the three forces represented by AB, BC, CA,

applied at any point A, will be in equilibrium.

The converse of this is also true, viz. If three forces acting

at a point balance one another, an 1 any triangle be constructed

22
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^

having its sides parallel to the directions of the forces, the

sides of the triangle will be proportional to the forces.

Let P, Q, E be three such forces ^v
p ff

acting at any point A, and let AB, /\~
AD, represent P, Q, then will the

Qjr
\ /

diagonal GA of the parallelogram

BD represent E.

And if A'B' Cf

be any triangle

whose sides are parallel to the sides

of ABC, we shall have by similar

triangles :

AB' : B'C : C'A' = AB : BC : GA
= P: Q:E.

23. From the parallelogram of forces we can easily de-

duce the following theorem first stated by Lami, in 1687.

If three forces acting at a point are in equilibrium, each

force is proportional to the sine of the angle contained betweeti

the directions of the remaining two.

For referring to the fig. of Art. (20), if P, Q, E, the three

forces, be represented by AB, AC, AE, and the parallelogram
BC be completed, since AE AD, we have

P : Q : E = AB : AC : AD = CD : AC : DA
= sin DA C : sin ADC : sin A CD.

But smJ)AC = sm QAE,
sin ADC= sin DAB = sin PAE,
smACD = sin DCQ = sin PAQ ;

/. P: Q :^ = sin QAE : sin PAE : sin PAQ (a);

or, we may express these relations in the form

P Q_ R
sin (Q,R}~ sm (li, P) sin (P, Q)

'
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(Q, R) meaning the angle (< 180)' included "between the

directions of Q and R, and so of (J?, P), (P, Q}.

We can readily obtain the equivalent formulae

= R* +P2 + 2RP cos (R, P)

by which any one of the three forces P, Q, R is expressed in

terms of the other two and the angle between them.

24 The student will observe that this result is still true

if the direction of any one of the forces be exactly reversed
;

for example, it would hold if we took a force R (= R) repre-

sented by AD instead of AE, for we should then have

P: Q: R'= sin RA Q : sin PAR' : sin PA Q,

but the three forces P, Q, R, would not be in equilibrium; in

fact, the resultant of P, Q being R, the resultant of the three

would be 2R'.

Hence the converse of the theorem of this Article is not

true without some additional condition, such as that each

force lies without the angle (< TT) formed by the other two.

The student however will have no difficulty in proving
the following :

If each of three forces acting at a point be proportional

to the sine of the angle between the directions of the other

two, either the three forces are in equilibrium, or they have a

resultant double of some one of the forces.

25. We may now give a theorem which is an extension

of that contained in Art. 22, and is called the Polygon of
Forces.
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Polygon of Forces. If any number offorces acting at a

point be represented in magnitude and direction by the sides

of a polygon taken in order, they will be in equilibrium.

If the forces be represented in magnitude and direction by
the sides of the polygon ABODE,
joining AC, AD we see that forces

represented by AB, BG acting at A
are equivalent to a force AC, which

may therefore replace them. Again,
A C, CD acting at A are equivalent

&~ ^

to AD
;

i.e. AD is equivalent to

forces AB, BC, CD all acting at A. Again, AD, DE are

equivalent to AE
;
and therefore AD, DE, EA will balance.

(Art. 22.)

Hence the forces represented by AB, BC, CD, DE, EA
will be in equilibrium. Q.E.D.

The same mode of proof will hold whatever be the num-

ber of the forces, and the student will observe that there is

no necessity for all the forces to be in the same plane : the

polygon whose sides represent the forces may have re-enter-

ing angles, or some of its sides may intersect each other.

The only condition is that the polygon must be a closed one.

By drawing a line parallel to one of the sides of the

polygon, as BC, we might form a new polygon whose sides

are parallel to those of the former, but the sides of the two

polygons are not in the same proportion.

Hence the converse of the proposition of this Article is

not necessarily true.

26. COR. From the proposition of the previous Article



RESOLUTION OF A FORCE. 23

we can obtain at once a theorem given by Leibnitz for de,ter-

mining geometrically the resultant of any number of forces

acting at a point.

From any point A draw a straight line AS to represent

one of the forces in 'magnitude and direction
;
from the ex-

tremityB draw BG to represent the next force
;
from C draw

CD to represent the third force, and so on
;
and let E be the

extremity of the line representing the last force.

Then if E coincide with A the resultant is nil, and the

forces are in equilibrium ;
but if not, AE will represent the

resultant in magnitude and direction. The student will easily

deduce this from the preceding Article.

27. We have seen in Article (18), that if BC be a paral-

lelogram, the two forces AB, AC acting

at a point A are equivalent to a single force

AD acting at the same point ;
which single

force might be substituted for the two com-

ponent forces : vice versa if a line AD
represent a force, and any parallelogram as BC be constructed

having AD for a diagonal, the single force AD may be

replaced by two forces represented by AB, A C, i. e. AD may
be resolved into two forces AB, A C.

Also, since the number of parallelograms which can be

constructed with AD as diagonal is unlimited, it follows that

a single force can be resolved into two others equivalent to it

in an unlimited number of ways.

Further, each of the forces AB, A C, may be resolved into

two others, in a way similar to that by which AD was re-

solved into two, and so on to any extent ; so that we arrive

at the conclusion that a single force may be resolved into any
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number of forces we please, the combined action of which is

equivalent to the original force.

On comparing the sides of the triangle ADB in which
BD =ACwQ readily obtain

sin BAG'

. n sin BAD
sin BAG'1

or if AD represents a force R, we conclude that a force E
acting in a direction AD is equivalent to the two forces

sin GAD . ,. . n . .

-
Y
m direction AB, = P (suppose),sin

smBAD

Hence if we put BAG=a, BAD = /3, CAD = 7, we have

sma sin a

and E2 = P*

formulas which enable us to find the resultant of two forces,

or to resolve a single force into two others.

N.B. We shall hereafter meet with instances of the

resolution of one force into two others equivalent to it
; per-

haps the most frequent case which occurs, is when the angle
CAB = 90, or the parallelogram becomes a rectangle : in this

case a force P acting in direction AD is equivalent to the two

forces

Pcos DAB in direction AB]
and PcosDAC ...............AC)

*
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28. We may now proceed

To find the resultant of any number offorces acting in one

plane at a point.

We may proceed geometrically thus,

Let AB, AC, AD,... represent the forces P, P, P"...

Take any two forces AB, AC,

complete the parallelogram B C ;

and A Q, the resultant of P, P',

may be substituted for them.

Find the resultant of A Q and

AD (or P") in a similar way;
then the three forces P, P', P',

are equivalent to AR, and so on,

till the resultant of all the forces is obtained.

Or we may proceed thus by the

aid of trigonometry.

Through the point drawtwo lines

Ax, Ay at right angles to each other

in the plane of the forces, and let

the directions of P, P',...rnake an-

gles a, a',.-- with Ax.

Then since P, P',... are equiva-
lent to

Pcos a in direction of Ax, and P sin a in direction

P'cosa' P'sina'

all the forces P, P/

,... are equivalent to

Pcos a + P' cos a' + ... in direction of Ax,

P sin a + P' sin a' + Ay.

of Ay,
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Or as we may write it 2 (Pcos a) in direction of Ax,

2 (Psina) Ay.

If then R be the resultant making an angle 6 with Ax,

we must have R cos = 2 (Pcos a),

.5 sin = 5 (Psina).

Whence^2 = {2 (P cos a)}
2 + {2 (Psina)}

2

(i),

. 2 (Psina) ...

tan = ^r-h5 (
u

) ;2 (Pcos a)

the results (i) and
(ii) determine the magnitude and direction

of the resultant.

COR. 1. If the separate forces P, P'... be resolved in

direction of their resultant R and perpendicular to it, the

algebraic sum of the former resolved parts will be = R, and of

the latter will be = 0.

COR. 2. If such a system of forces as is considered in this

Article is in equilibrium, the resultant must be zero; i.e. R= Qj

and therefore {2 (P cos a))
2 + {2 (Psin a)}

2 =
0,

which requires that

2 (Pcos a)
=

0, and 2 (Psin a) =0,

that is, the sum of the forces resolved in any two directions at

right angles to each other must be severally zero.

29. Tofind the resultant of two forces whose directions are

p arallel.

Let A, B be any two points in the lines of action of the two
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forces P, Q, which act in the pa-

rallel directions AP, BQ.
At A apply any force 8 in di-

rection BA8, and at B apply an

equal force S' in the direction

ABS', this will not modify

fhe combined action of the other

forces.

Now S, P acting at A, are equivalent to a single force R
t

acting in some direction AR
t
.

And S', Q acting at B, are equivalent to a single force R
Jt

acting in some direction BRn .

Let these two pairs of forces be replaced by R t , R^, whose

directions will meet in some point ;
let the points of appli-

cation of R
t ,
R

tl
be transferred to 0.

Draw OCR parallel to AP or BQ, and 80S' parallel

to AB.

Now let R
t acting at be resolved into two components

in directions OS and OG, which will clearly be 8 and P, and

let R
tl acting at be resolved into two components in direc-

tions 08' and 00, which will be 8' and Q.

Then 8 and 8' being equal in magnitude and opposite in

direction, will balance each other, and may therefore be

removed, and there remain P and Q acting at in the

line OCR.

Hence, if R be the resultant of P and Q,

S =P+Q (i).

Again, in the triangle AGO, the sides are proportional to

S, P, R t ,
and in the triangle BOO the sides are proportional

to 8', Q, Btl
. Hence
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P_OG , S'_BC
S~Zcy?ancl Q" 777^

therefore multiplying together, and remembering that S= S',

we get

P BG ....

Hence the point G in the line AB, through which the

resultant acts parallel to each of the forces, divides the line

AB into segments which are inversely proportional to the

forces.

(i) and
(ii)

determine the resultant completely.

30. If the two forces act in opposite directions the method

is very similar : the point G lies

outside AB;
and R = P- Q
P BG___
Q~ AC"

It will be observed that
(iii)

and (iv) are the same as (i) and

(ii),
ifthe sign of Q be changed,

so that algebraically (i) and
(ii) comprise both cases.

COE. 1. The position of the point G does not depend

upon the direction of the forces. Hence if the directions of

the forces be turned through any the same angles in the same
direction about the points A, B, the position of G will not be

changed.

COE. 2. In the case of Art. 30, we have from (iv),

(iii),

...
I IV I

/IB

P BG AB
Q AC 1

AC'
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If now P= Q, we get -777= 0, or AC= oo
, and E= 0.

^L (_/

A system of two equal forces acting in opposite directions

and not at the same point is called a couple; and tlie

results ^ = 0, and AC<x> with reference to such a system

indicate that a couple cannot be replaced by any single finite

force acting at & finite distance.

31. Moment of a Force.

The, product of a force into the perpendicular distance of

its line of action from a given point is called the moment of the

force with respect to the point, or the moment of theforce about

the point.

If an axis be drawn through the point at right angles to

the plane which contains the point and the direction of the

force, this product is called the moment of the force about

the axis.

Further, The moment of a force about any line is defined 10

be the product of the resolved part of the force perpendicular

to the line into the perpendicular distance between the line

and the line of action of the force. This perpendicular dis-

tance is the shortest distance between the two lines.

The student will be careful to observe that the force and

distance here spoken of are ex-

pressed numerically in terms of

their respective units; and the

moment consequently is the pro-

duct of two numerical quantities.

Thus if AB represent a force P,

and be any given point,
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Op perpendicular to AB, and if m, n be the number of linear

units in AS, Op respectively, then will mn be the moment ofP
about }

or about an axis through perpendicular to the plane

AB 0. Also since the area of the triangle AB = ^ AB. Op,

it is obvious that mn = twice the number of units of area in

the triangle AB 0. We may then represent moments geo-

metrically by areas, and the moment ofP about would thus

be represented by twice the triangleABO : the unit of moment

(i.e. the product of a unit of force into a unit of distance)

being represented geometrically by a unit of area.

Further, the force P would tend to twist the body on

which it acts in one direction or the reverse, according as

is on one side of AB or the other. We shall for convenience

consider the moment of a force negative or positive, according

as it tends to twist the body in the same direction as the

hands of a watch revolve, or the contrary.

If P, Q be two equal forces acting in parallel but oppo-

site directions constituting a couple if C be any point in

the plane of the forces, and CBA be perpendicular to their

lines of action (fig. Art. 30), we have the moment of the two

forces about C = P.AC - Q.BC = P. AB = constant, i.e.

the moment of a couple is the same about any point in the

plane of the couple.

32. The following proposition is important.

The algebraic sum of the moments of two forces acting in

one plane about any point in the plane is equal to the moment

of their resultant.

When the forces are not parallel it admits of a simple

geometrical proof.
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Let AB, A C represent the two

forces P, Q, and complete the par-

allelogram BC, and through the

point draw r Os parallel to A C
;

then taking those moments to be

positive which tend to twist a

"body in a direction opposite to

that of the hands of a watch,

sum of moments of P and Q about

=
parallelogram Cr

= parallelogram BC parallelogram rD 2&ABO
= 2 (&ABD-&BOD- &AB 0)

= moment ofR the resultant of P and Q.

The above construction will apply if the point lie within

the angle BA C, or the vertically op-

posite angle. If lie within either

of the supplemental angles of BA (7,

as in fig. 2, draw Ors parallel to

A C, then

sum of moments of P, Q about c/-

= 2&A C + 2A-4 0-S
/0

=
parallelogram <7r + 2A-4 05

= parallelogram CB parallelogram Bs + 2AA OB
= 2 (&ABD+&AOB- &BOD) = 2&A OD
= moment of R the resultant of P and 0.

33. It remains to prove the proposition for two parallel
forces.
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Let A, B be two points through

which the forces P, Q act, G a

point in the line AB through which

the resultant R passes.

Take any point and through

it draw Obca at right angles to

the directions of the forces
;

then

since the resultant of P, Q passes

through (7,

and .*. P.ac=Q.bc'j

when the forces P, Q act in the

same directions (fig. 1), we have

sum of the moments of P, Q about the point

= Q . Ob + P . Oa

=
(<2 + P) Oc v Q.lc = P.ac

= R. Oc
=moment of the resultant about 0. Q.E.D.

If the forces act in opposite directions (fig. 2), the student

will have little difficulty in proving that

Q. Oc-P. Oa=(Q-P}. 01,

which expresses the same proposition in this case.

Obs. The point has been taken in such a position that

the moment of the resultant is in each case positive. The

proposition is readily proved for any other position of 0.

COR. 1. If the point be taken anywhere in the line of

action of the resultant R, the moment of R vanishes, and
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we conclude that

The moments of two forces about any point in the line

of action of their resultant are equal in magnitude and op-

posite in direction.

This result which is required in discussing the equilibrium

of a lever (Art. 89, see also Art. 36) is an important one : it

can be very readily proved directly from the parallelogram

of forces thus

If AP, AQ be the directions

of two forces, AE that of their

resultant : D any point in AE.

If the parallelogram ApDq be

completed, it is clear that Ap,

Ayr are proportional to P, Q.

And the moments of P and Q about D (tending in opposite

directions] are measured by the doubles of the triangles ApD,
AqD which are obviously equal to each other.

If the directions of P and Q are parallel the same result

follows from Arts. (29, 30.)

COR. 2. We can readily extend the proposition of

Art. (32) to any number of forces in one plane. For since the

sum of the moment of two forces is equal to the moment of

their resultant, we may substitute the resultant for the two

forces
;
we may now combine this resultant with a third, and

suppose them replaced by their resultant, and so on whatever

be the number of forces. Hence

The moment of the resultant of any number offorces in one

plane, taken with respect to any point in that plane, is equal

to the algebraic sum of the moments of the several forces with

respect to the same point.

P.M. 3
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When the moment of the resultant vanishes, we conclude

either that the resultant is nil, or that the resultant passes

through the point with respect to which the moments are

taken.

34. The sum of the moments of two parallel forces about

any line at right angles to their direction, is equal to the moment

of their resultant about the same line.

Let Opq be any line in the plane of the paper and let

R be the resultant of two

parallel forces P, Q acting

perpendicular to this plane,

their directions meeting
it in the points R, P, Q.

Draw Pp, Rr, Qq per-

pendicular to Opq then if the line Opq is parallel to PQ,
these perpendiculars are equal, and since R P + Q the

moment of R about pq is equal to the sum of the moments

of P and Q.

But if Opq is not parallel to PQ, let them meet in

then taking moments about 0,

R. Ofi = P.OP+Q. OQ;

but by similar triangles,

Rr _ Pp _ Qq
OR~ OP~ OQ*

whence we get

which proves the proposition.

Obs. The proposition may easily be extended to any

number of parallel forces.
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35. Let two forces P, Q act in one plane at points

A, B of a rigid body, and let Q be a fixed point of the body
about which it might turn freely;

if the two forces P, Q balance about

0, the force arising from the re-

action of the fixed point (which of

course passes through the point)

must with P, Q constitute a system

of forces at equilibrium : in other

words, the reaction of the fixed point

is equal and opposite to the resultant of P and Q.

Ifp, q be the perpendiculars from on the lines of action

of P and Q, we have, since the moments of P, Q about

must be equal and of opposite tendency, P . p = Q . q.

And the pressure on the fixed point

Such a fixed point as is commonly called a fulcrum ;

the rigid body, whatever be its form, is called a lever.

COR. If more than two forces act on the body in one

plane, and balance about a fixed point or fulcrum 0, the

resultant of the forces must pass through 0, and the algebraic

sum of the moments of the forces about must be zero ; or in

other words the sum of the moments of the forces which tend

to turn the body in one direction about 0, must be equal to

the sum of the moments which tend to turn the body in the

contrary direction.

36. Further, any point of a body at rest under the action

of any forces may be regarded hypothetically as a fulcrum:

for since the body is at rest, no point of it hrs a tendency to

move; we shall not therefore disturb its equilibrium or the

32
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relations between the forces by supposing any point we please

to be incapable of moving, i. e. by supposing it to be a fixed

fulcrum. Hence the sum of the moments of the forces about any

point whatever must be zero, if the forces be in equilibrium.

The principle of this article when applied to a rigid body
in equilibrium is frequently referred to as the principle of the

lever.

37. The theorem stated in Article (32) admits of the fol-

lowing simple analytical proof, in the case of forces which

are not parallel.

Let AP, AQ be the directions of two forces P, Q whose

resultant R acts in direction AR. Let

be any point in the plane PAQ,

join A and draw Op, Oq, Or per-

pendiculars to AP, AQ, AR. If the

forces P} Q be resolved in direction of

AO and at right angles to AO, the

sum of the parts resolved in the latter direction will

= P. smPAO + Q . sin QAO,

and R . sin RA is the resolved part of R in the same direc-

tion; hence from the nature of a resultant

Multiply each term of this equation by A 0, then

P . A sin PA + Q . A sin QA = R . -A sin RA 0,

or P. Op + Q. Oq = R. Or-,

a result which expresses that the sum of the moments of two

forces about any point in the plane, in which they act is equal to

the moment of their resultant about the same point.
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38. We are now in a position

To find the conditions of equilibrium of a system offorces

acting in one plane.

We have seen (Art. 32) that the sum of the moments of

a system of forces in one plane about any point is equal to

the moment of their resultant. Hence if the sum of the

moments of the forces about any proposed point A be zero,

either the resultant is zero or the direction of it passes through

A. Again, if the sum of the moments about another point B
be zero, the resultant, if there be any, must pass through B ;

i.e. it must act in the line AS. If, further, the sum of the

moments of the forces about a third point C (not lying in the

line AB) be also zero, it would follow that the resultant, if

any, would act in each of the lines AC and BC, which is

absurd. Hence the resultant must be zero, and consequently
the system of forces in equilibrium. The conditions of equi-

librium then of a system of forces acting in one plane on a

rigid body or system are these three :

" The sums of the moments

of the forces taken with respect to three points in the plane (but

not lying in one straight line) must be severally zero.
11

Obs. There are then three and only three mechanical

conditions for the equilibrium of a system of forces acting

in one plane.

39. The conditions of equilibrium obtained in the pre-

ceding article may be ex-

pressed analytically some-

what differently as fol-

lows:

Let the system of forces

be referred to two lines

Ax, Ay, at right angles

to one another in the plane of the forces.
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Let be the point of application of any one of the forces

P, and let P be resolved into two components X, F, in

directions parallel to Ax, Ay respectively.

If x, y be co-ordinates of 0, and a, b of any point B, the

moment of P about B
= (*-a)r-(y-J)X

And if similar expressions be taken for each of the

forces of the system,

the sum of the moments about B
= 2{(*-o) Y-(y-V)X] (i).

Similarly, if a', ~b' be co-ordinates of (7, another point,

sum of moments about G
= Z{(x-a}Y-(y-V}X] (ii),

and sum of moments about A
= Z(xY-yX) (iii).

Now if A, B, C be three points not in a straight line,

the conditions of equilibrium are that
(i), (ii), (iii),

must be

severally zero
;

(iv),

(v),

2{(a-<OF-(y-5')Jn =
(vi),

(iv) and (v) combined, give a2Y-&2X=0,
(iv) and (vi) a'2Y-b'2X=Q,

from these latter two we get (since isnot = p, the

points A, B, C not being in one line),

2x=o, sr=o,
which with (a),

2(aF-y.X) = 0,

are the conditions of equilibrium ;
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or we may interpret (a) as follows :

In order that the forces may be in equilibrium, the sums

of the resolved parts of the forces in two directions at right

angles to each other must severally be zero, and the sum of the

moments about some one point must be zero also.

40. The conditions (a) of th'e preceding article, might
have been obtained directly from (i) by the consideration that

if the system is in equilibrium, the resultant is zero, and

therefore the sum of the moments about any and every point
must =0, i.e. the expression

must = for any and every value of a, b which can only
be satisfied by having each of the conditions of (a) satisfied.

COE. 1. We may further interpret the equations of con-

dition (a) thus, 2JT=0, 2F=0, indicate that the body
must have no tendency to move parallel to itself, (i.e. without

rotation) in direction of Ax or Ay respectively, and the con-

dition 2 (xY yX) = indicates that it must have no tend-

ency to twist about the point A. That is, there must be no

tendency to any motion of translation or rotation.

COR. 2. If the system of forces be not in equilibrium,

and a, b be co-ordinates of any point in the line of action of

the resultant B, we must have

2{(x-a)Y-(y-b)X} = 0',

and regarding a, b as current co-ordinates, this will be the

equation to the line of action of R, or if we use x', y instead

of a, b in accordance with the usual notation, we may arrange

the equation (i)
in the form
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If < be the angle which R makes with Ax, we should

easily get E cos = 2 (X), R sin
</>
= 2 ( Y) ,

and therefore ^2 =
( 2 ^)

2 + (2 T)
2
.

. ^ 41. General Remarks.

Before closing this chapter, we may make a few remarks

which may be some guide to the student in applying the

principles and results of this chapter to the solution of

problems.

The forces which affect a body's state of equilibrium
must arise from some agent external to the body, such as

(i) the tension of a string attached to a particular point of

the body ; (ii) the action of a rod in contact with the body,
and which may be a pulling or a thrusting action

; (iii) the

pressure arising from some other body in contact with it

either at a point or over a finite surface
; (iv) the attractive

or repulsive force exercised by some external agent, and

which may be conceived as acting like the tension of a string

or the thrusting of a rod.

42. I. Mutual Pressure of smooth and rough Surfaces.

If two bodies be in free contact at one point (7, there is a

mutual action between them, the direction

of which passes through that point. Draw
the common tangent plane at C.

Then, (i)
if the surfaces be smooth, they

can exercise no tangential action on each

other; the mutual force between them must

therefore in this case be in the common

normal, and the pressure on each body will

tend within the body ;
for instance, the body

A will exert a force on B in direction CB, and vice versa.



MUTUAL PRESSURE OF SMOOTH AND ROUGH SURFACES. 41

(ii)
If the surfaces be rough, the mutual pressure between

the surfaces may be resolved into two, P and F, one in the

direction of the normal, and the other in the tangent plane ;

the latter is counteracted by the tangential force brought into

play by the roughness of the surfaces
;
each of these com-

ponent forces (normal and tangential) which act on one body
are severally equal and opposite to the corresponding forces

acting on the other body.

If the full amount of friction which the roughness of the

surfaces can give rise to is brought into exercise, then, as

will be seen in Chap. III. (to which the student is referred),

F=nP,fju being some quantity found by experiment; and

the direction in which the friction acts in the tangent plane is

exactly opposite to the direction in which the point C would

tend to slide if the surfaces were for an instant supposed
smooth

;
of course the full amount of force which the rough-

ness of the surfaces is capable of exercising will not in every

case be brought into action
;
no more, in fact, will be exercised

than is necessary to prevent a tangential sliding motion.

II. The same principles apply
in the case of a rod in free contact

with a smooth or rough surface.

If a rod be connected by a free

compass-joint or hinge with another

rod (or with a body), there will be a

force exercised on each rod equal in

magnitude and opposite in direction.

If we wish to find the magnitude
and direction of this mutual reaction,

we must assume some unknown force

R acting in an unknown direction,

R <._
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and obtain equations for determining them by taking the

conditions of equilibrium of each rod. It will not unfre-

quently be the case, however, that the symmetry of the parts

of the system will enable us to assign at once the direction

or magnitude of R, or both.

43. III. Tension of Strings.

If we consider a string as a line of consecutive particles,

the force which binds successive particles of the string toge-
ther is called the tension, and since each particle of the string
is urged in opposite directions by the forces which the con-

secutive particles on either side of it exercise upon it, these

forces must be equal and opposite ;
i.e. on each element of

the string there are two tensions, equal and opposite. If

we neglect the weight of the string, the tension at all points
of the same rectilinear portion is the

same : for if A, B be any two points .< 4- >.

of the string AB, it is obvious that

the tensions at A and B must be equal, otherwise the string

would move.

(i) Also the tension of the string is not altered if it pass over

a smooth surface
;

for let pq be a

small element of the string on the

smooth surface, pq may be re-

garded as a small arc of the circle

of curvature at the middle point of

pq, and we may consider pq as a

rigid body kept in equilibrium by
the tensions t, t' at p, q acting along
the tangents pt, qt

f

,
and by the reaction of the surface R,

which acts along the line OR bisecting the angle p Oq, since
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the arc pq is symmetrical with respect to OR, and the re-

sultant pressure of the surface will therefore act along OR.

Since then t, t', R are three forces in equilibrium, we get

by resolving them perpendicular to OR
tcospOE = t' cosqOE; }mtqOR = pOIt, .: t=t'-

t

i.e. the tension at successive elementary distances is the

same, and therefore it is so at finite distances. Hence if

the string be pulled by forces T, T at its two ends, we must

have T= T' = tension at any intermediate point.

A stricter proof of this result will be given hereafter,

Art, (65, 66).

(ii)
If a string pass over a rough surface, the tension at

successive points will not be the same.

If P, Q be the tensions at the extremities of a string which

passes in one plane over a rough curve or surface, and the

string be on the point of motion in the direction in which

P acts, then P= Q&4 : where p = coefficient of friction (see

chapter on Friction) and
</>

is the circular measure of the

angle included between the normals to the curve at the points

where the string quits the curve. Art. (66).

(iii) Elastic Strings. If an elastic string whose natural

or unstretched length is I be stretched to a length I' by the

action of a tension t which is uniform throughout the length
of the string, it is found by experiment that the extension

I I is proportional to the natural length I, and also to the

tension t, so that

I' Ice It = -
; saye .

or -

where e which is called the modulus of elasticity of the
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string is some quantity depending upon the nature of each

particular string. If t = e, then I' = 2, i.e. if the string be

subject to a tension equal to the modulus of elasticity, it will

be stretched to twice its natural length.

N.B. In all the above cases the weight of the string is

neglected.

44. When a system of bodies is at equilibrium under the

action of any forces, no part of the system has any tendency
to move

;
and we shall not affect the statical condition of the

system, if we suppose any part or parts of the system to be

deprived of the power of motion
; as, for example, by sup-

posing a body in contact with others to be rigidly attached

to them. In accordance with this principle, which is of

frequent and useful application, when we are considering the

equilibrium of any system, or part of a system of bodies, we

may suppose the portion under consideration to be rigid ;

which supposition will enable us to lay out of account all

mutual forces within the system. As an illustration of the

application of this principle, sup-

pose a system of bodies A, B, C, D
kept at rest under the operation of

a known system of forces; in con-

sidering the equilibrium of the

body G (for example) we may re-

gard the rest A, B, D as rigidly

connected together, so that we thus avoid the introduction of

the mutual pressures between A and D, and B and D.

Again, if a string passes round a surface B, quitting it at

the points Vt T, we may suppose the string to be attached to

the body B at the points V, T, which is equivalent to sup-

posing that the portion of the string in contact with the body

is rigid and rigidly attached to the body.
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45. The case of a body kept in equilibrium by three

forces acting in one plane is of so frequent occurrence as to

deserve special notice.

The conditions of equilibrium of a body kept at rest by
three forces P, Q, E in one plane may be stated thus :

I. If their directions are parallel
:

(i)
Their algebraic sum must be zero, or

B =P+ ft Art. (29).

(ii)
The moments of any two

of the forces about a point in the

line of action of the third must be

equal and of opposite tendency, or

P.AC = Q.BC, or P.AB=B.BC, or R.AC=Q.AB,
which are all equivalent to one another, Art. 33, Cor. 1.

II. If their directions are not parallel :

(i)
Their lines of action must meet in a point, Art. (22).

(ii)
Each force is proportional to

the sine of the angle between the other

two, the direction of each force lying
without the angle formed by the other

two, Art. (23).

For this latter condition we may
substitute the following ;

viz. each force

is equal and opposite to the resultant

of the other two,

(for example E = V(^
2 + Q' + 2PQ cos PCQ)}.

COR. In each case I. and II. we have three, and only three

conditions from mechanical considerations. In I. the forces

are parallel, which with (i) and
(ii) constitute the three con-
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ditions. In case II., (i) gives one condition, and (ii) two in-

dependent conditions
;
three in all. If in any problem more

than three quantities have to be determined, the subsidiary

equations of condition must be sought for from geometrical
considerations

;
and whenever the weight of a body is one of

the forces to be taken into account it must always be sup-

posed to act in a vertical line passing through the centre of

gravity of the body. (See Chap. V.)

If more than three forces act on the body in one plane,
the conditions of equilibrium given in Art. (38) or the

equivalent forms given in Art. (39), will furnish all the re-

quisite mechanical equations. Geometrical relations as stated

above must furnish any additional data required.

These considerations would equally apply in the case of

the preceding Article when only three forces act, and may be

used by the student instead of them, at his discretion.

The following problems are worked out as examples :

46. I. To find the conditions of equilibrium of a uniform

heavy rod, which is suspended by two strings attached to its

ends, the strings being of given length and attached to the same

fixed point.

If AB be the rod, G its middle point, AC, BG the two

strings attached to a fixed point C,

we have the rod kept in equilibrium

by three forces, viz. the tensions

(T, T'} of the two strings and the

weight of the rod which acts through
G in a vertical line.

Since the two tension? act through

(7, the third force must also pass through (7, and therefore
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CG- must be vertical
;

this determines geometrically the

position of the rod, and if we draw Gp parallel to A (7, the

sides of the triangle GGp taken in order, are in the directions

of the three forces.

Hence, T: T : W= Gp : Gp : CG. ...... (a).

Since the triangle GGp is geometrically determinate, the

proportions (a) determine T, T .

"We may express T, T' thus analytically.

Let ACGr = a, BCG =
fi, then a, @ are known quantities

since all the lines of the figure are of known length.

Then, T: T' : W=sm : sin a : sin

/. T= sn sm a

sin (a+/3)
'

sin

47. II. Two spheres are supported ly strings attached to

a given point, and rest against each other : find the tensions

of the strings.

Let A, B be the two spheres, T, T' the tensions of the two

strings, Tf, W the weights of the spheres
which may be supposed to act through
their centres.

Then in considering the equilibrium
of -4, there are three forces acting on it,

viz. the tension of the string J7

,
the weight

W and the pressure at the point of contact

: now the directions of the two latter

forces pass through A, hence the third
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does so also
;

i. e. the direction of the string passes through

A, or CTA is a straight line.

Similarly, CT'B is a straight line.

Further, in considering the equilibrium of the whole, we

may regard A and B as forming one rigid body, Art. (44) ;

let G be the centre of gravity of the two spheres.

Hence, since the forces which keep the united mass of A
andB at rest are T, T' and W+ W, of which the two former

pass through (7, and the latter acts in a vertical line through

G, this vertical line must pass through C also, or CG must

be vertical.

This determines the position of equilibrium geometrically,

and the tensions T and T' might be found as in the last

problem : the only difference being that G is not necessarily

the middle point of AB.

If it be required to find the mutual pressure (P) between

the two spheres, we have by considering the equilibrium of

the three forces which pass through A,

P: F=sin TAW:sm TAB
= smACG : sin TAB;

a known ratio, since A C6f, TAB, are known or easily found.

Hence P is determined.

48. III. A heavy particle (weight W) is attached to the

middle point of a rod AB without weight, the ends of which rest

against two inclined planes at right angles to one another : the

vertical plane whichpasses through the rod being at right angles

to the line of intersection of the two planes. Find the position of

equilibrium of the rod, and the pressure on each plane.
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Let R, R be the pressures which the planes exert on the

rod at its ends A, B,

then the only forces

which act on the rod are

R, R and W, and there-

fore when the rod is in

a position of equilibrium

these forces must satisfy

the conditions of equi-

librium of three forces in one plane. Art. (45), Case II.

Let the normals to the planes at A, B meet in (7, then

the vertical line through G must pass through TF; and

therefore the diagonal GWO of the rectangle GO must be

vertical.

Hence a 6=tTBO=tWOB = '^a 1

2

Also,

E : R : W= sinR CW : sin ROW : sinROR
= sin a : cos a : 1.

7T 7T

O O '

whence R = TFsin a, R = IFcos a (ii).

(i) and
(ii) express the complete solution.

77"

If a <- ,
i.e. if OB be that plane which is least inclined

to the horizon, assumes a negative value, which indicates

that the rod is inclined in the other direction to the horizon.

49. IV. A rectangular picture-frame is suspended by a

string attached to the ends of one side of the frame, the string

passing over a smooth peg ; determine theposition of equilibrium.

p. M. 4
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Let C be the peg over which the string ACB passes

freely; we may suppose the weight
of the frame to act at G, the point

where the diagonals intersect, and

which is the centre of gravity of the

frame. Then the forces which must

be in equilibrium are the weight W
which acts in the vertical line through

6r, and the tensions which act on the

frame at A, B in directions AC, BC;
hence the vertical line through G must pass through (7;

i. e. CG must be vertical. Also, since the peg is smooth, the

tension of the string is the same throughout its length.

Since then of the three forces in equilibrium whose direc-

tions pass through (7, two of them, viz. the tensions at A, B,
are equal in magnitude, the direction of the third CG- must

bisect the angle ACB. The problem then is reduced to the

following geometrical one.

To determine the position of the string ACB of given

length in order that the line CG,

passing through G a given point in

the frame, may bisect the angle

ACB. We may construct it geo-

metrically thus, with A, B as foci

describe an ellipse whose major axis

equals ACB\ also describe a circle I NL

round the triangle ABO. The V"'"a

points of intersection of this ellipse

and circle (C and C') will determine

the point C of the string, which

must coincide with the peg; for the arcs AG, BG being
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equal, it is obvious that GQ-, C'G bisect the angles ACB,
A C'B, respectively. There is a third position of equilibrium,

viz. when the string is in the position A C"B, C" being the

extremity of the minor axis of the ellipse, for in this case

also C" (2 bisects the angle AG"B.

It appears then, that if the circle and ellipse intersect,

there are three positions of equilibrium. But if they do not

intersect, (7, C' have no existence, and there is only one

position of equilibrium. The condition that there may be

three positions of equilibrium is that the two curves may
intersect; i.e. the length of string must be <2 chord AT.
If AB= a, AD =

c, the condition becomes

50. Y. The determination of the action of a hinge or

joint is well illustrated in the following problem.

Three rods, forming a triangle, are connected by freejoints

or hinges at their extremities, and the system is at equilibrium

when certain forces are applied perpendicularly to the rods at

their middle points shew that

(i)
the force applied to any rod is proportional to the length

of the rod ;

(ii) the strain at each angular point is the same, and

acts in the direction of a tangent to the circle circumscribing

the triangle;

(iii) this strain is proportional to the radius of the circle.

(i) Since the mutual action at any one of the hinges
42
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will be equal in magnitude
and opposite in direction

upon the two rods which

meet at that hinge the

strains of the hinges may
be left out of considera-

tion when we are consi-

dering the conditions of />

equilibrium of the three -4'

rods as one system.

Now the directions of the forces P, Q, R meet in the

centre of the circumscribing circle; and since P, Q, R are in

equilibrium we must have

P : Q : J? = sin QOR : sin ROP : sin POQ
= sin A : sin B : sin G= a : b : c,

which proves the first part of the problem.

(ii)
Let us consider the conditions of equilibrium of one

rod AB, and let S, Tbe the strains which the hinges at A, B
exert upon the rod AB in directions making angles 77' say,

with AB respectively.

Since AB is in equilibrium under the action of the three

forces $, T, R, the directions of these forces must meet in a

point G' suppose and since R bisects AB at right angles we

easily infer that 7= C'AB= C'BA=y, and S= T. Simi-

larly the strain at G is equal to S or T therefore the strain

at each angular point is the same.

Also the strains at A, B make equal angles 7 with AB,

similarly the strains at A, G upon the rod A G make equal

angles /3 say with AG\ and the strains at B, G equal

angles a say with BG:
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From the geometry we readily see that

CC+/3+ <7=7T,

/3 + 7 + ^=?r, and A

7 + a +B TT,

and /. a. = A, j3
= B, 7 = C;

and it follows that the direction of the strain at any hinge is

a tangent to the circumscribing circle. Hence the second

part of the proposition is proved.

(iii) Since 8 at A, and S at B balance R, we have

25sin7 = jR or 2#sin C = B,

but if r be the radius of the circumscribing circle

2r sin C= c
;

== =
r c

' a~ b
'

Hencs the strain at any hinge bears to any of the forces

P, Q, R the same ratio which the radius of the circumscribing
circle bears to the side to which the force is applied which is

the third part of the problem to be proved.

51. The following is an exercise on the parallelogram of

forces.

VI. Assuming the truth of the parallelogram of forces

(Art. 18) for the magnitude of the resultant, prove it also for
the direction of the resultant.

Let three forces P, Q, R acting in one plane at a point
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A be in equilibrium, and let them be

represented by AB, ACj AE respec-

tively.

Complete the parallelogram BC\
then by the assumption the diagonal

AD represents the resultant of P, Q
in magnitude: and since any one of

the three forces P, Q, R is equal in mag-
nitude to the resultant of the other two,

it follows that AE= AD.

Complete the parallelogram BE-, then AF represents the

resultant of P, R in magnitude, and therefore AF = AC.

Hence BF, AD are equal, since they are each equal

toAE,

and AF, BD are equal, since they are each equal

to AC,

that is, the opposite sides of the quadrilateral AFBD are

respectively equal to each other, and therefore AFBD is a

parallelogram.

Hence AD, AE being each parallel to BF are in the

same straight line; which proves the parallelogram of forces

for the direction of the resultant.
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CHAPTER III.

OF FRICTION.

52. WHEN a heavy body rests on a plane horizontal

surface, on a table for example, and we wish to make it slide

along the surface, we encounter a resistance to this motion
;

there exists between the particles of the body and the table

an adhesion which resists their separation, and this adhesion

is only overcome by applying to the body a force of traction

sufficiently great. This adhesive force is called friction, and

the magnitude of the force which is necessary to overcome

the resistance to motion will be a measure of the friction.

More generally, when one surface presses against another,

if the direction of this pressure be not normal to the surfaces

in contact, there will be a tendency of one surface to rub or

slide over the other; and no sliding motion will ensue, unless

the resolved part of the pressure along the surface be sufficient

to overcome the friction. When a body is just on the point

of sliding, it is said to be in a state bordering on motion, and

the greatest amount of friction which the surfaces can exert

is then in operation. In other cases no more friction is called

into action than is just sufficient to balance the part of the

pressure resolved along the surface in contact.

In this point of view, friction may be called a self-adjusting

force, since it adapts itself to the requirements of each parti-

cular case; no more being called into operation than is just

necessary to prevent motion.
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53. If R be the normal pressure between two surfaces in

contact, F the friction when the bodies are just on the point

of sliding over each other, i.e. the maximum friction which

F .

the substances can exercise, the ratio -~ is called the coefficient

offriction, and is commonly designated by /A:

so that F = aR.

If in any particular case the full amount of friction which

the substances can exert is not called into action, the amount

of friction which is actually in operation is one of the unknown

forces which it is the object of the problem to determine.

54. The results of careful experiments made with the

object of determining the laws of friction are thus given by

Coulomb, and M. Morin : viz.

(i)
When the substances in contact remain the same, the

friction varies as the pressure; i.e.
fju

is the same for the

same substances, but will vary for different substances. When
the pressure is very great indeed, it is found that the friction

is a little less than this law would give.

(ii) So long as the normal pressure between the surfaces in

contact remains the same, the whole amount offriction is inde-

pendent of the extent of surface in contact.

These two laws are true when the body is in a state

bordering on motion, and also when actually in motion
; only

it is to be remarked that in the latter case the magnitude of

the friction is much less than in the former. If we call the

friction in the former case statical, and that in the latter

dynamical, we may express the above by saying that the coeffi-

cients of dynamical and statical friction are severally constant
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for the same substances, but that the dynamical is less than

the statical.

It is also found :

(iii)
That the friction is independent of the velocity when

the hody is in motion.

55. The friction between two bodies will generally be

diminished by smearing them with some unctuous substance,

as oil, &c., and the friction when they are on the point of

moving, or what we may call the friction at starting, is pretty

nearly the same as during motion when the bodies are made

of hard material, like stone or metal. But in the case of com-

pressible substances like wood, the friction at starting is very

considerably greater than during motion. When two bodies

are placed one upon the other, one of them at least being

compressible, the amount of friction at starting will partly

depend upon the length of time they have been in contact.

For wood sliding upon wood, the maximum friction is attained

after a contact of a few minutes
;
but for wood upon metal it

requires a much longer time, frequently several days for the

friction to attain its maximum : but when it has attained

this, the friction at starting is not altered by any continued

duration of contact.

Further, it is found that rolling friction is much less than

sliding friction : for example, when a cylinder rolls on a plane,

or a cylindrical axis turns within a hollow socket (when there

is simply a line in contact and not a finite area), the amount

of friction is much less than would be given by the above

laws (i) and
(ii) ,

for the same amount of pressure.

The fact that rolling friction is much less than sliding

friction is taken advantage of in various contrivances for faci-
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litating the transport of heavy bodies
;

thus for instance,

heavy blocks of stone or other material are often transported

by placing them on a platform beneath which rollers are

placed : the wheels of carriages are examples of the same

principle, the most delicate application of which perhaps is

that of friction wheels, such as those employed in Atwood's

Machine (see Dynamics, Art. 82).

56. The values of
/j,

for different substances have been

determined by experiment, and arranged in tables
;
the follow-

ing may be taken as approximate results in many cases for

friction at starting :

wood upon wood (without oil) p = '5,

(with oil) //,= '2;

wood upon metal (without oil) /z
=

'6,

(with oil) yLt
= '12;

leather upon wood (without oil) //,
=

'63,

(wetted with water) //,
= '87;

metal upon metal (without oil) yu,
= 18,

(with oil) yu,
= -12;

When a cylinder of wood rolls upon wood so that there

is a single line of contact only, ^ ^ ;
when the surface in

contact is a physical point the statical friction is inconsider-

able.

57. To find the coefficient of friction between two sub-

stances practically.

Let AB be the plane surface of one substance, upon which
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is placed a mass M
of the other sub-

stance with its plane

face in contact with

AB. If the plane
AB be horizontal,

no friction will be

called into action, but if it be gradually inclined more and

more to the horizon till the body M is just on the point of

sliding down AB, then the full amount of friction between the

two substances is called into action and only just prevents M
from moving down the plane.

The forces which act upon M and balance each other are

W the weight of If, E the pressure of the plane AB upon M
normal to AB, and pR the friction up the plane AB.

If
</>

be the angle which AB makes with the horizon,

the conditions of equilibrium give resolving along the

plane and perpendicular to it,

TFsin <
= pR,

TFcos <
= R

whence tan < =
/*. Hence if be observed, the value of p is

known. The angle < is commonly called the angle of

friction.

58. The above can only be regarded as an approximate
method of determining friction. For a complete account of

the refined contrivances which have been employed with this

object, the student is referred to the memoirs of Coulomb and

M. Morin.

Experiments have been made on a large scale by Stephen-
son

j
De Pambour and others for the purpose of determining
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the dynamical friction on railroads by which the laws stated

in Art. (53) have been substantially confirmed. In some of

the more favorable cases detailed by Mr Nicholas Wood in

his Practical Treatise on Railroads the rolling friction from

the contact of the wheels with the rails was about roVo tn Part

of the whole weight of the train, and the friction at the axles

about as much more making the total resistance to the

motion of the train arising from friction to be about -^th part

of the load. But the results of different experiments differ

considerably.
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CHAPTER IV.

OF FORCES, THE DIRECTIONS OF WHICH MEET IN A

POINT TENSION OF STRINGS ON SMOOTH AND

ROUGH SURFACES.

59. WE proceed to discuss the resultant and the con-

ditions of equilibrium of a system of forces whose directions

meet in a point, but which do not lie all in one plane.

60. THEOREM. If three forces X, Y, Z, not in one plane,

be applied at the same point O

(in space) and be represented by

the three lines OA, OB, OC, and

the parallelopiped OABCR be

completed, the resultant R of
these three forces will be repre-

sented by the diagonal OR of this

parallelopiped.

For the two forces X, Y, which are represented by OA,
OB two sides of the parallelogram OA GB, are equivalent to

a resultant P, which is represented by the diagonal OGof this

parallelogram.

And since OC is equal and parallel to GR, the figure

OCBGris a parallelogram, and consequently the two forces

P and Z represented by OG, OC sides of this parallelogram,

will be equivalent to a resultant R represented by the

diagonal OR.

Hence the resultant of the three forces X, Y, Z, is repre-

sented by the diagonal OR of the parallelopiped.
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This theorem is sometimes called the parallelopiped of

forces. It is an easy extension of the parallelogram offorces.

COR. 1. By the preceding theorem we see how a given

force E may always "be resolved into three others, severally

parallel to three lines given in space : these three lines not

being in one plane, and no two of them parallel.

For if we take OR to represent the given force E in

magnitude and direction and draw through the point 0,

lines OA, OB, 00 severally parallel to the proposed three

lines, we have three planes XOY, YOZ, ZOX, and if we
draw through the point E three planes severally parallel to

these three, the six planes will form a parallelopiped, three

adjacent edges of which OA, OB, 00 will represent the three

components X, Y, Z.

COR. 2. If the parallelopiped be rectangular, we have in

the rectangle OAGB, OG*=OA*+OB*,
'

and in the re ctangle CE G, OE* = G* + C2

,

whence OE* = OA 2 + OB* + 00*;
and therefore .ZF = Z" + F8 + 2 ......... . ..... (i)

the value of the resultant in terms of the three components.

61. If we wish to express each component in terms of

the resultant, and the angles which they make with it, and if

we denominate by a, /?, 7 the angles which the direction of

E makes with the directions of X, Y, Z,

we shall have 00= OE cos 7 ;

and therefore Z= E cos 7 1

similarly, Y=ficos fi > ..................... (ii),

X= E cos a J



THE DIRECTIONS OF WHICH MEET IN A POINT. 63

comparing (i) with (ii) we get

cos
2
a 4- cos

2

y + cosfy
=

1,

a well-known relation which holds whenever a, /3, 7 represent

the angles which any given line makes with three rectangular

axes.

If we multiply the three equations of
(ii) successively by

cos 7, cos ft, cos a, we get by virtue of the relation

cos
2
a -f cos

2

/3 4- cos
2

7 = 1
;

JTcos a + Ycos /3 + Zcos 7 = R .....(iii),

which expresses that the resultant is equal to the sum of the

resolved parts of the components estimated in its direction

a theorem which is true for any system of forces which

admits of a single resultant: for if each force be resolved

into two parts, one in direction of the resultant and the other

at right angles to it, these latter parts must be in equilibrium

themselves, and there remains the sum of the former parts

equal to the resultant.

62. We can now proceed

To find the resultant of any number offorces whose direc-

tions pass through a point.

Let be the point through which the directions of all

the forces pass, and through draw

any three lines OX, OY, OZ
mutually at right angles.

Let P be any one of the forces

acting in direction OP, making

angles a, & 7 with OX, OY, OZ,

then P is equivalent to three com-

ponents
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P cos a, P cos /3, P cos 7,

acting in directions OX, Y, OZ, respectively.

Similarly, if P' be another force, a', ft, 7' the angles its

direction makes with OX, Y, OZ, it is equivalent to

P'cosa', P'cos/3', P'cos 7 ',

in direction of the same lines
;

and so on whatever be the number of forces.

The system of forces is equivalent then to three com-

ponents X, Y, Z, which are severally equal to

P cos a. +P cos a' + ...in direction of OX or 2 (P cos a)
|

Pcos/3 + P' cos/3' + OF... 2 (Pcos )[(!)
Pcos7 + P' cosy + OZ...^ (Pcos7)'

Now these three components (i) are equivalent to a single

resultant R making angles X, p, v with the line OX, Y, OZ,

provided

PcosX = 2 (Pcosa),

J?cos/x = 2 (Pcos/3), ^cos^ = 2 (Pcos7) (ii),

and remembering that cos
2 \ + cos

2

p + cos
2
v = l,

these give us the magnitude of the resultant, i. e.

Ez = {2 (P cos a)}
2 + {2 (P cos /3)}

2 + (2 (P cos 7))

2

;

and this being known, the equations of
(ii) give X, //., v, which

assign the direction of the resultant.

This analytical mode of finding the resultant of a system
of forces applied at a point is of course equivalent to the

geometrical construction of Leibnitz noticed in Art. (26).

63. If the forces be in equilibrium the resultant is nil,

i.e. ^ = 0;
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and /. {2 (P cos a)}
2 + {2 (P cos /3)}

2 + (2 (P cos 7)}
2 = 0;

which requires

2(Pcosa)=0, 2(Pcos)=0, 2(Pcos7)=0,

the three conditions of equilibrium of a system of forces acting

through a point.

That is, the sum of the forces resolved in three directions

mutually at right angles must be severally zero.

Or we may reason thus:

In considering any system of forces whose directions

pass through a point, if they be in equilibrium, we may (as

has been observed before) regard any one of the forces as

equal and opposite to the resultant of all the rest. Hence, in

any case in which we are discussing the conditions of equi-

librium of a body or system of bodies acted on by such a

system of forces, we may resolve all the forces in a particular

direction (any we please) and perpendicular to the direction

so taken : the conditions of equilibrium then will be

(i) The algebraic sum of the former resolved parts must

be zero.

(ii) The resolved parts acting in a plane perpendicular

to the direction taken, must be in equilibrium inter se,

and must satisfy the condition of equilibrium of forces in one

plane: .and we may apply the principles established in the

second chapter in the same way as if these resolved parts

had been the only forces acting.

And it will in general constitute part of the solution of

the problem to shew that these resolved parts are in equi-

librium.

P.M. 5
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64. The remaining articles of this chapter contain de-

monstrations of two results relating to the tension of strings

passing over smooth and rough surfaces referred to in

Article (43) and some properties of a funicular polygon.

They may be omitted by a student whose previous read-

ing has not prepared him for the consideration of small

quantities.

65. The tension of a string which passes in one plane

over a smooth curve or surface, is the same at every point

the weight of the string being neglected.

Letps be any finite length

of the string in contact with

the curve, the normals to

which at p, s include an / <.

Let ps be divided into n

parts, such that the normals

at the extremities of consecu-

tive parts include the same

angle 6 so that nO
<j>.

pq the first of these parts, the normals at p, q meeting
in 0, t^ t

z,...tn+l
the tension of the string at/>, g,...s.

R the measure of the pressure on the curve at p then

we may regard the resultant pressure of the curve on the

element pq of the string as equal to (R 4- K) . arc pq, acting
in some direction rV intermediate to Op, Oq, and making

angles a,, /3t say with pO, qO, so that a
x
+& = 6. and K

is some small quantity which vanishes in the limit, when 6 is

taken smaller arid smaller.
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Considering now the equilibrium of the element pq of the

string as a rigid body resolve the forces upon it parallel and

perpendicular to rV
t
and we obtain the equations

Z
x
sin

Ofj -M2
sin & = (R + /e)pq ..............

(i),

*!
cos Oj

- *
8
cos

x
= ........................

(ii),

equation (ii) may be written in the form

(1),

and if we write down the corresponding equation for each

consecutive element ofps, we shall obtain

(2),

adding equations (1), (2) ... (w), we obtain

Now if r be the greatest of the quantities tv t
2
... t

n+l ,

we see that

2
/J

,
sin

2 ~ + t
z
sin

2 -2
-f- . . . + tn sin

2

-^<nr
sin

2

Similarly

52
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If now n be increased indefinitely, (/> remaining unchanged,
and therefore 6 being indefinitely diminished the expression

-~ vanishes, and equation (iii) becomes

i.e. the tension of the string is the same at every point.

Further, from equation (i) suppressing the suffixes

- pq
sin a + sin

and if p be the radius of curvature at p,

'DO

p = -~ in the limit

-li- ==
p, in the limit,.

-

sm a + sin 8 a + /3

in which case K vanishes
;
whence

t = Ep ........................... (v),

a relation which gives the pressure on the curve at any point

in terms of the tension and radius of curvature.

Hence in the same curve

3-ioci.
P P

Obs. For simplicity we have supposed the string to be

all in one plane the demonstration might without much

trouble be extended to shew that the tension is the same at

every point in whatever manner the string passes freely

along a smooth surface or tube of any form.

66. A string passes in one plane over a rough curve or

surface, the tensions of the extremities being such that the string

is on the point of motion to find the relation between these

tensions, the weight of the string being neglected.
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Let P, Q be the tensions at the points where the string quits

the curve and suppose
it to be on the point of

motion in the direction

in which P acts then

the friction at every

point of the arc will act

tangentially in the op-

posite direction.

Let ps be any finite

length of the string, the normals at p, s including an / <,

let ps be divided into n parts the normals at the extremities

of successive parts including the same z 6, so that nd = <,

pq the first of these parts, the normals at p, q meeting in

0, t
lt

t
2
...tn+l the tension of the string at p, q...s.

E the measure of the normal pressure on the curve at p,

pR that of the friction along the tangent at p.

Then we may regard the resultant of the normal pressure

of the curve on the element pq of the string as equal to

(R + K) . arc pq acting in some direction rV intermediate to

Op, Oq, and making an /L a say with Op, and the resultant

friction on the arc pq as equal to p (R + K) . arc pq acting in

some direction inclined at an JL {3 say to the tangent at p
a, /3 being each < 0, and K K small quantities which vanish

in the limit when 6 is taken smaller and smaller.

Considering now the equilibrium of the elementpq of the

string as a rigid body resolve the forces upon it parallel

and perpendicular to the tangent at p, and we obtain the

equations

j
1
2
cos = (R + K) pq . sin a + p (R + rc')pq . cos ft. . . (i),

t
z
sin = (R + ic)pq . cos a p (R + K) pq . sin ft. .

*(ii) ;
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whence

Jj
*
2
cos 6 _ (R + K) sin a + /*(# + #') cos /3

#
2
sin 6 (R + K) cos a

//, (J2 + K) sin /3

"

Now the second member of this equation becomes =
/n

if 6 and consequently a and ft be taken indefinitely small,

we may therefore write it =//, (I + X), X being some quantity
which = when =

0,

or =
*2

= 1 - 2 sin
2

{1 + /A (1-1- X) tan 0}

where X' is some quantity which = when 6 = 0. Hence

log ^
-

log t,
= log {1 + /*0 (1 + X')}

=
//,# (1 +\) say, \ vanishing with 6.

Similarly,

tfj log t
n+1
= find (1+ tfj, if K^ be the mean value

of X
1?
X

2
...Xn ,

If now w be increased indefinitely, <> remaining unchanged,
and therefore 6 being indefinitely diminished, each of the

quantities \, X
2
... Xn will vanish, and therefore K^ will do so

likewise, and our equation becomes

log ^
-

log t
n+l

=
fifa or ^ = <#+ t^,
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winch expresses the relation between the tensions at any two

points of the curve of contact.

If ty be the angle between the normals where the string

quits the curve, we have

P= Qe** (iii),

if p be the radius of curvature at p, we shall obtain from equa-

tion (ii) the result

t = Ep (iv).

Obs. The results of Arts. (65, 66) are true whether the

string be elastic or inelastic if it be elastic, we may remark

that in Art. (66) every element of the string must be sup-

posed to be simultaneously on the point of motion.

67. The funicular polygon.

If a series of n weights P
15
P

2
...Pn be suspended by

knots at given points

of a string (without

weight), and the string

be attached totwo fixed \
B

points A, B, it will

when in equilibrium
form a polygon in a

vertical plane, and is

called ^funicularpoly-

gon.

To find the conditions of equilibrium in such, a system.
Let tv t

z ,
t
3
... t

n+} be the tensions of the successive portions
of the string AP19 Pfv PJP9 ...PJ3, and let a

l9 a,,...^ be

the angles which these successive portions make with the

horizon.

We shall have for the equilibrium of P
x , P2,

P
3
... in

succession the following sets of equations,
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j
cos c^

= 22 cos <x
2, ^ sin a

x
t
z
sin a

2
= P

x (i),

2
cos a

2
= t

3
cos

3 , 2
sin a

2 3
sin a

3
= P

2 (ii) ,

tn cos an = tf^ cos a^, tn sin an ^ sin a^ = Pn (n).

If !,
a

2
...an+l be the lengths of the successive portions

of the strings AP^ Pl
P

2
...PnB, and a, b the horizontal and

vertical distance between A and B, we have from the geome-

try of the figure the following equations,

^cos Oj + a.cos j+ ... an+1 cosan+1
=

a)
, ,

7 f [**~r -Lj.

Oj sin
ctj + c?

2
sin a

2 + . . . an+1 sin ot
n+1
=

oj

The sets of equations (i), (ii)...(n + l) are sufficient to

determine the 2?i+ 2 quantities tv t
2
... tn+v a

l5 2 ,
... an+1 ,

and

contain implicitly a complete solution of the problem.

From the first column of equations in (i), (ii)
... (n) it

appears that the tension of each portion of the string resolved

horizontally is of the same magnitude, and if we put this

=
c, so that c = t

l
cos

otj
=

2
cos a

2
=

. . . we obtain from the

sets of equations (i), (ii) ... (n) the following results,

P,
tan a, tan a

c

p
tan

2
tan cc

3
=

tan o-n tan a.n = -

(A),

from which we may obtain the following relations connecting

the angles a
1? 2

. . .

tan a, tan a
2
P

t
tan CL - tan a. P x x* * =^ ,

8 = 77 ,
&c. &c.

tan a tan oc
a
P

2
tan - tan a jT

B
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If we simplify the problem by supposing the weights
P

l ,
P

2
. . . each equal to w, the equations (A) become

w- = tan
!

tan
2
= tan

2
- tan

3
=

. .. = tan an
~ tan

n+1 ,

c

which results shew that the tangents of the angles cc
x ,

cc
2

. . .

are in Arithmetical progression.

68. COR. If A CB be a heavy uniform string or chain sus-

pended from two points A ,
B

;
C

the lowest point of the string, and
(/>

the angle which the tangent to it

at any point P makes with the

horizon, we may obtain a simple
relation connecting <f>

with the

length of the arc CP (= s).

For we may regard the heavy

string as made up of a series of

small equal weights attached at small equal intervals, and so

forming a funicular polygon : and since the tangent at C is

horizontal and the tangents of the angles which the succes-

sive elements of the string (taken from C) make with the

horizon are in Arithmetic progression, tan
</>

will for different

positions of P vary as the number of the elements in the

arc CP, i. e. tan
(j>

oc s.

And further, if c, t be the tensions of the string at C
and P, we shall obtain for the conditions of equilibrium of

CP (which for this purpose we may regard as a rigid body)
o

t cos
(f)
=

c, sin
(/>
=

s, and /. tan
<f>
= -

,

c

the weight of a unit of length of the string being here taken

as the unit of weight.
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CHAPTER V.

OP THE CENTRE OF GRAVITY.

69. THE attraction of the earth on any body would,
if unopposed, draw it towards the surface of the earth.

The direction in which a particle would fall freely at any

place is called the vertical line at that place. It coincides

with the direction of a plumb-line, or the normal to the

surface of standing water.

A plane perpendicular to this vertical line is said to be

horizontal.

If we regard the earth as a sphere (which is very nearly
the case), the vertical lines would all converge to the centre,

and therefore the directions of the forces which the earth

exerts on the different particles composing a body are not

parallel, strictly speaking. But since the dimension of any

body we shall have to consider is very small compared with

the radius of the earth, we may consider these directions to

be appreciably parallel, and the resultant attraction on the

body or system equal to the sum of the attractions on the

constituent particles; i.e. the weight of the whole equal to

the sum of the weights of the several parts.

The object of the present chapter is to shew that for

every body or system of particles there exists a point through
which the resultant attraction of the earth may be supposed
to act; i.e. a point at which we may suppose the weight of

the body to be collected, a point whose position depends

only on the relative arrangement of the particles composing



DEFINITIONS, &C. 75

the body or system, and on the relative constitution of these

particles. If this point then were in rigid connexion with all

the parts of the system, all positions of the body or system
would be positions of equilibrium, if this point were supported.

Such a point in a body or system is called the centre of

gravity of the body or system, and we give the following

definition. The point at which the weight of a body or

system may always be supposed to act, whatever be the

position of the body or system with respect to a horizontal

plane, is called the centre ofgravity of the body.

70. We shall first shew that such a point exists in any

system of particles.

PROP. Every system of heavy particles has one and only

one centre of gravity.

First let us consider two heavy particles A, B, whose

weights are P, $, and suppose them

connected by a rigid rod without

weight. Now, since P and Q act

through A and B in parallel direc-

tions and towards the same parts,

they are equivalent to a single resultant, the magnitude of

which = P + Q, and which acts through a point E in the line

AB, such that P : Q=BE : AE\ and since the position of

E in the line AB does not at all involve the direction of

action of gravity, if this point E were supported, this system
of two particles would balance about E in any position.
E then is the centre of gravity of A, B, and the statical

effect of P and Q will be the same as if they were collected

into one particle and placed at E.
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Again, if there are three particles A, B, C whose weights
are P, Q, R, we can take E the centre of gravity of P, Q as

before, and suppose P + Q placed at E instead of A and B,
and we then have two particles at E and C whose weights
are P + Q and R

;
these then, as before, have a centre of

gravity at a point F in the line EC, such that

P + Q : R = OF : FE,

and we may suppose P, Q, R all collected at F so far as

their statical effect is concerned. And so on whatever be the

number of particles, so that every system of heavy particles

has a centre of gravity.

Also a system of particles can have but one centre of

gravity. For, if possible, let a system have two such points

G and 6f'
,
and let the system be turned about if necessary

till the line joining 6r, G' is horizontal. Then we have the

weight of the system acting in a vertical line through 6r, and

also in another vertical line through G 1

;
which is impossible,

since it cannot act in two different lines at the same time.

We should arrive at the same point G in whatever order

we may take the points A, B, C...

COR. 1. Since every continuous body is an aggregation

of a great number of particles, every body has a centre of

gravity through which the resultant weight of the particles

acts : and we may suppose the weight of the whole body
collected at its centre of gravity.

And we may proceed to find the centre of gravity of a

system of bodies by supposing them to be a series of heavy

particles, the weights of which are equal to the weights of the

bodies, and which are in the position of the centres of gravity

of the several bodies.
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COR. 2. The determination of the successive points JE,

F, &c. in the previous proposition does not require the actual

weights P, Q, R, but only their ratios. Hence if the weights
of the several parts of a system be all diminished or all in-

creased in any the same proportion, the position of the centre

of gravity will not be altered.

COR. 3. Since the weights P, Q, J?...are equivalent to

a series of parallel forces acting at the points A, J3, C..., and

the position of the centre of gravity does not depend on the

direction in which these forces act, but only on their relative

magnitude and their points of application; it would therefore

remain in the same position if the direction of these forces

were turned about their points of application in any manner,
still remaining parallel. Hence the point under consideration

is sometimes called the centre ofparallelforces.

71. Having given the centre of gravity of a body and

also of a part of the ~body, to fnd the centre of gravity of the

remaining part.

Let w
,
w

2
be the weights of the two parts of the body;

GI} 6r
2
their respective centres of

gravity: then G the centre of

gravity of the whole body must be

a point in the straight line which

joins 6r
x

6r
2 ,

such that

Hence if G and 6r
x
are given

in position, join G^ G and produce

it to 6r
2 making GG^ = -

. GG
l ,

and thus the position of 6r
2w

z

the point required is determined.
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72. Before proceeding to give a general method of finding

the centre of gravity of any system of particles, we will give

a few examples of finding the centre of gravity, premising
that when we speak.of a line, or plane, or surface as having
a centre of gravity, we suppose it to be made up of equal

particles of matter uniformly diffused over it : unless some

other supposition is stated.

I. To find the centre ofgravity of a right line.

Considering it as a line of equal particles uniformly

arranged, it is clear that the middle point of the line is its

centre of gravity. For we may divide the line into a series

of pairs of equal elements, the particles composing any pair

being equidistant from the middle point. Hence the centre

of gravity of each pair is at the middle point, and therefore

the centre of gravity of the whole is there also.

II. To find the centre ofgravity of a parallelogram.

Let AECD be a parallelogram regarded as a uniform

lamina of matter, and draw the line ^ 21 B
EF parallel to AB or CD and bisect- F~ ~1

ing AD and BC, and also the line I

"

f
j

HK parallel to AD and bisecting rf ^
AB and CD. The point G in which

HK, EF intersect is the centre of gravity required. For by
drawing lines parallel to BC and at equal distances from each

other, we may divide the parallelogram A C into a number

of equal small parallelograms whose lengths are all equal BC
and breadths as small as we please ;

and we may take the

breadths so small that each may be regarded as a line of

particles,
the centre of gravity of which is at its middle point,
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and which therefore is on the line EF, since EF bisects every

line that is parallel to BC.

Hence the centre of gravity of the whole parallelogram

lies in EF. Similarly it may be shewn to lie in HK.

Therefore G the point of intersection of EF, HK is the

centre of gravity of the parallelogram.

III. To find the centre ofgravity of a plane triangle.

Let ABC be a plane triangular lamina of matter. From

any two of the angular points B, C,

draw lines BF, CE bisecting the

opposite sides in F, E and cutting

each other in G. Gr is the centre of

gravity of the triangle.

By drawing a series of lines par-

allel to one of the sides AC at equal

distances, we may divide the triangle into a number of qua-

drilaterals, each of which, when their number is sufficiently

increased, may be regarded as a uniform material line.

Let ac be one such line cutting BF in /; then we have

of: AF=Bf: BF
= cf: CF;

by the two pairs of similar triangles afB, AFB and cfB, CFB.
Hence of : cf= AF : CF

= 1:1;

.'.af=cf; i.e. /is the middle point of ac, and is consequently
its centre of gravity.

Hence the centre of gravity of each of the lines composing
the triangle is in BF, and therefore the centre of gravity of

the triangle is in BF.
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Similarly the centre of gravity of the triangle may be

shewn to be in CE, whence we infer that G is the centre of

gravity required.

Further, if we join EF,

By similar triangles BGC, FGE;
BG : GF=-BG : EF

=BA:AE by similar triangles AEF, ABC
= 2 : 1;

2. GF;

i.e. GF= i BF, and B G = f BF.

In words, if a line be drawn from an angular point to the

middle of the opposite side, the centre of gravity of the

triangle lies on this line at a distance from the angular point

equal to two-thirds of the length of the line.

COR. From this result it is easily seen that the centre of

gravity of the triangle coincides in position with that of three

equal particles placed at the angular points.

73. To find the centre of gravity of the perimeter of a

triangle regarding the sides as material lines of uniform

thickness.

Let A 1

, B', G' be the middle

points of the sides of the proposed

triangle ABC then the centre of A

gravity of the perimeter ABC will

be in the same position as that of

three particles placed at A', B', C',

and whose weights are proportional

toBC, CA,AB respectively. Draw
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A 'a, B'fi bisecting the angles A', B' of the triangle A'

then Euclid vi. 3,

B'a : C'a.= A'B' : A'C' = AB : AC.

Hence a is the centre of gravity of the two sides AB,
AC, and therefore the centre of gravity of the whole peri-

meter lies in the line A 'a. similarly it lies in the line B'/3,

the centre of gravity required must therefore be the point of

intersection of these two lines which is the centre of the

circle inscribed in the triangle A'B'C'.

74. Having shewn that every system of particles has

one and only one centre of gravity, we proceed to shew how
to find it in any case

;

(i)
for a series of particles lying in a straight line.

(ii) in one plane.

(iii) arranged in any manner in space.

I. To find the centre of gravity of a series of heavy

particles lying in a straight line.

Let A, B, C... be the several

particles whose weights are P, Q, -I 4 -P
. __

R... and lying in the straight line

Ox. Let be a fixed point in the line, and let xlt x9 ,
x

a
...

be the distances of the particles A, B, C... from
; then if gl

be the centre of gravity of A and B,

Q) Off^Pkt+Qx, (i);

a result which we might have obtained at once from the

P.M. 6
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consideration that since the resultant of the forces P and Q at

A and B passes through gv the sum of the moments of

P and Q about any point is equal to the moment of their

resultant P + Q.

Again, considering Pand Q as collected at g^ if gz
be the

centre of gravity of P+ Q at g^ and R at C, we have as

before

+ Exa , by (i) ...... (ii).

Similarly (P+ Q + B + 8) Ogz
= (P + Q + R) Gg, + 8x4

=Povf Qxj-Exz+ Sx
4

. . .
(iii).

And so on for any number of particles.

Hence if we call x the distance of G the centre of gravity

of the whole from 0,

_ iv .

The centre of gravity then is in the same line as the

particles, and the distance of it from any assumed point is

given by (iv).

IT. To find the centre of gravity of a series of heavy

particles lying in one plane.

Let A, B, C...be the system of

particles whose weights are P, Q,

R... and let them be referred to two

axes Ox, Oy at right angles to one

another in the plane in which the

particles are. Join AS, and take

tgl
the centre of gravity of P and Q
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at A and B so that P : Q = %t
: Ag^ Join ffl C, and take

^2
the centre of gravity of P + Q at

</
and R at (7 so that

P + Q *&**(%,:&&>

and so on till we find Gr the centre of gravity of the whole, as

in Art. 70. Draw AN^ g^nv BNZ
...parallel to Oy, meeting

Ox in
.ZVj,

n
lt ...

T -
,.Know we call &c.

our object is to find x, y which determine the position of 6r,

in terms of a?^...and P, Q...

Now, considering g the centre of gravity of A and J?, we
have B

and if through A and g l
we draw two

lines parallel to N^N^ we should have

two similar triangles ; comparing the

sides of which we get

whence from
(i)

and
(ii)

P . (gft
- AN,) = Q .

now introducing a third particle C we have similarly

iv),

and so on whatever be the number of particles ;

62
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By a similar mode of proceeding we shall obtain

(vi).

These two results (.v)
and (vi) determine the position of the

centre of gravity of the system of particles, which lies in the

plane of the particles.

III. To find the centre of gravity of a system of particles

arranged in any manner in space.

Let the system of particles

A, Bs C...whose weights are P,

Q, jR...be referred to three lines

Ox, Oy, Oz mutually at right

angles;

let g^ be the C.G. of A and B.

g2
...............A,B, and (7, &c.

Through A B C ...g^... draw

AN BN
z...g^ g2

n
z parallel

to Oz meeting the plane xOy in

Nv N9
...n

l9
w

2
...and through these

points draw in the plane xOy the lines N^M^ NaMt
...nl

m
lt

. . .parallel to Oy meeting Ox in Mv M2
...

If now

^NI
= y and similar quantities for each particle,

and if x y z be the corresponding quantities for Or, the centre

of gravity of the system, we have, considering A and B only

at first,
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or if we draw lines through A19 g parallel to N^N^ we have

by similar triangles

whence P . (g^ - AN,) = Q . (BN2
-g^} ;

Le.

similarly introducing another particle C, gz being the centre

of gravity of A, B, C, and therefore the centre of gravity of

P + Q &tgl
and R at (7;

and so on for any number of particles till we get

_

we should similarly have

2 (Py) 2___
These three expressions for ^ y

~
determine the position

of the centre of gravity of the system of particles considered.

This includes I. and II. as particular cases.

75. 05s. In the case III. of the preceding article it will

in general be convenient to take the lines Ox, Oy, Oz at right

angles, but the student will observe that the course of the

proof does not require that the lines Ox, Oy, Oz should be

inclined at any particular angles : he may then in any par-
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ticular case assume three lines (not in one plane) inclined at

any angles which may appear to him most convenient in the

case tinder his consideration
;

and a similar remark applies to

case II.

DBF. The moment of a force with respect to a plane is the

product of the force into the distance of its point of application

from the plane. If the points of application of two forces

are on opposite sides of a given plane, the moments of the

forces with respect to that plane will have opposite signs.
This must be carefully distinguished from the moment of a

force with respect to a point or an axis. Art. 31.

COR. 1. We see from the results of Art. 74, that the alge-

braic sum of the moments of the particles of a system with

respect to any plane is equal to the moment of the whole

(supposed to be collected at the centre of gravity) with re-

spect to the same plane.

From whence follows the conclusion, that if the algebraic

sum of the moments of a system taken with respect to any

proposed plane be zero, the centre of gravity of the system
lies in that plane ;

and vice versa, if the centre of gravity of a

system lie in a given plane, the algebraic sum of the mo-

ments of the particles with respect to that plane is zero, or

in other words, the sum of the moments of the particles which

are on one side of the plane is equal to the sum of the mo-

ments of the particles which are on the other side of the

plane.
4

COR. 2. If we suppose a system to be divided into any
number n of particles of equal weights we have the distance

of centre of gravity from any plane
= - th the sum of the
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distances of all the particles from the same plane. Viewed

in this manner, the centre of gravity of a body or system is

sometimes called the centre of mean position of the body or

system, or the centre offigure.

COR. 3. If a system of particles be projected on any

plane, the projection of the centre of gravity of the system
on that plane will be the centre of gravity of a system of

particles in the plane, equal to the former and coincident

with the points of projection of the original system.

This appears at once from the results of Art. (74), for the

values of x y ~~z depend only on the weights of the particles

and their distances estimated parallel to Ox, Oy, Oz from the

planes yOz, zOx, xOy severally.

76. Centre ofparallel forces.

If in any of the cases of Art. (74), A, B, C...be the point

of application of a system of parallel forces P, Q, R... the

method pursued in that article will lead to formulas for the

co-ordinates of the point of application of the resultant of such

a system of parallel forces, viz.

- S(P*) - 2(Py) -_"

Tpv^'sTPT'
~

in the most general case.

These results are algebraically true whether the forces act

all in the same direction or not and we may interpret them

as stating that the resultant of a system of parallel forces

is = 2) (P) acting at a point whose co-ordinates are given by

equation (i).
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If however 2 (P)
=

0, and the expressions 2 (P#), 2) (P?/),

2 (Pz) do not each = also, the system will be equivalent
to a couple which does not admit of being represented by a

single resultant force, Art. (30).

77. The position of the centre of gravity of a body or

a system of particles depends (as we have seen, Art. 74) only
on two things ; (i), the form of the body, or, in other words,
the arrangement of the particles of the system ;

and
(ii),

the

relative density of the different parts.

Formulas have been obtained in Art. 74, by which the

centre of gravity of any system of particles whose relative

weights and position are known, may be found
;
and we have

seen in Cor. 1, Art. 70, that a body may be considered as

a particle placed at the centre of gravity of the body, so

that if the centres of gravity of the several bodies composing
a system be known, we are enabled to find the centre of

gravity of the system, and the problem assumes a general
character.

The determination however of the centre of gravity of a

body (either a continuous solid body, or a surface regarded
as a lamina of matter of indefinitely small thickness) will in

general require the aid of the Integral Calculus.

Obs. Cases will not unfrequently arise in which the

position of the centre of gravity can be assigned from geo-
metrical considerations such as the following, which are

suggested for the consideration of the student.

1. If in any body or system a plane can be found which

divides the body into two parts which are symmetrical with

respect to the plane on opposite sides of it, the centre of

gravity of the body must lie in that plane.
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For since the body is divided symmetrically into two

parts, these parts must be equal, and their centres of gravity

at equal distances from the plane on opposite sides of it.

Hence the centre of gravity of the whole, which is the middle

point of the line joining the centre of gravity of the two

parts, must lie in the plane under consideration.

2. Hence it follows readily, that if three planes can be

assigned, each of which divides the body or system symme-

trically into two parts, the common point of intersection of

the planes is the centre of gravity of the body.

3. Observation 1 applies to all bodies or systems of

bodies of uniform density ;
it is also true if the densities are

not uniform, provided the densities of all elements of the

body symmetrically situated on opposite sides of the plane
are severally the same. The same may be said of curved

surfaces. But in the case of plane areas we need only con-

sider lines in its plane which divide the area symmetrically,
and we may assert (with a proof similar to that of 1), that

in any plane area if a line can be found which divides it

into symmetrical parts, the centre of gravity lies in that

line
;
and further, if two such lines can be found their point

of intersection is the centre of gravity of the area.

The same remarks apply in this case as in that of a body,
if the density of the area be not uniform.

78. Some conclusions arising from these observations,

1, 2, 3, are the following.

(i) The centre of gravity of a right line is its middle

point.
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(ii) The centre of gravity of a parallelogram is tlie

intersection of its two diagonals ;
in other words, the middle

point of one of them.

(iii) The centre of gravity of a solid parallelepiped, or

of the surface of a parallelepiped, is the intersection of its

four diagonals, which is the middle point of any one of them.

(iv) The centre of gravity of a circular area, or of a

circular ring, is the centre of the circle.

And that of a solid sphere, or a spherical surface, or sphe-
rical shell, is the centre of the sphere.

These results will be of frequent use.

79. To find the centre of gravity of a pyramid on a

triangular base.

Let ABC be the base of the pyramid, and Fits vertex.

Take D the middle point of

one of the sides BC, and join AD,
VD, in which take E and H such

that AE=\AD and VH=$VD,
(and HE is therefore parallel to

A V) ;
then E, H are the centres of

gravity of the triangles AB C, VB C',

if now we join VE, AH, they will

intersect in some point Gr, since ^ ^
they both lie in the plane A VD.

Gr is the centre of gravity of the pyramid.

For suppose the pyramid to be made up of an indefinite
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number of thin triangular plates all parallel and similar to

ABC, and let dbc be any one of these
;

if VD meet be in d, and VE meet ad in g, we have by
similar triangles,

ag : AE= Vg : VE=gd : ED ;

.'. ag : gd=AE : ED = 2 : 1.

Hence since d is the middle point of be, g is the centre of

gravity of the plate abc.

Similarly it may be shewn that the centres of gravity of

all the plates of which the pyramid is composed lie in the

line VE.

And in a similar way by supposing the pyramid made up
of plates parallel to VBC, the centre of gravity of the whole

may be shewn to lie in AH.

Hence G the point of intersection of VE, ATI is the centre

of gravity of the pyramid.

Further if we join HE which will be parallel to A V, we
have by similar triangles A VG, HGE.

VG AV AD
GE HE ED

.'. VE=GE, or EG = VE, and /. F =
f VE;

i.e. if the vertex be joined with the centre of gravity of the

base, the centre of gravity of the pyramid is a point in this

line at a distance of fths of it from the vertex, and Jth of it

from the base.
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COR. 1. To find the centre, of gravity of any pyramid
whose base is a plane polygon.

Join V the vertex with the centre of gravity of the

base, and in this line take a point G at

a distance from the base equal to ^th of

the length of the line. G shall be the

centre of gravity of the pyramid. For

it may be shewn as in the present article,

by supposing the pyramid to be made

up of plates parallel to the base, that

the centre of gravity of the pyramid lies

in this line.

And again, by dividing the base into triangles the py-
ramid may be divided into a series of triangular pyramids

having a common vertex : and if we draw a plane through G
parallel to the base, this plane will contain the centres of

gravity of all the triangular pyramids, since it would cut the

line which joins the vertex with the centre of gravity of the

base of any of the triangular pyramids in a point whose

distance from the base is Jth of the length of the line.

Since then the centres of gravity of all the triangular

pyramids lie in this plane, and it has been shewn to lie

in the line V0
t
G must be the centre of gravity of the

pyramid.

COR. 2. Since a curve may be regarded as the limit of a

polygon, whose sides are indefinitely increased in number

and diminished in magnitude, we may consider a cone on any
base as the limit of a pyramid, and its centre of gravity will

be in the line joining the vertex with the centre of gravity of
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the base, at a distance from the vertex equal to fths of this

line.

If the cone be a right cone on a circular base, the centre

of gravity is in the axis of the cone, at a distance from the

vertex equal to fths of its length.

COR. 3. The centre of gravity of a triangular pyramid
coincides in position with the centre of gravity of four equal

heavy particles placed at its angular points.

For we easily see by the construction that E is the centre

of gravity of three equal particles P placed at A, B, C, and
G will be the centre of gravity of 3P at E, and P at V, since

GV : EV=3 : 4.

COR. 4. We can proceed to find the centre of gravity of

any solid bounded by plane faces. For we may divide the

solid into a series of pyramids, the centre of gravity of each

of which can be found, and if we suppose at each of these

points weights to be placed proportional to the several pyra-

mids, the centre of gravity of these weights will coincide with

the centre of gravity of the solid.

Similarly with any plane area bounded by straight lines,

by dividing it into a series of triangles, and .supposing par-
ticles placed at the centre of gravity of each triangle pro-

portional to the areas of the triangles, the centre of gravity
of these particles will be the centre of gravity of the area.

80. Before concluding this chapter we will give a few

general theorems relating to the centre of gravity.

I. If a body be suspendedfrom a point about which it can

swing freely, it will rest with its centre of gravity in the verti-

cal line which passes through the point of suspension.
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Let A C be the body, G its centre of gravity, and S the

point of suspension. Draw GV ver-

tical, and 8V horizontal to meet GV
in V\ then the only forces which act

on the body are its weight, which acts

in the vertical line F6r, and the reac-

tion arising from the fixed point 8.

These two forces cannot balance

each other (and consequently the

body cannot be at rest) unless they
act in the same line in opposite directions, i.e. unless VG
pass through 8.

i.e. the body cannot be at rest unless the vertical line

through G pass through S\ and when this is the case, the

fixed point will exert a force on the body sufficient to balance

the weight of the body and therefore equal and opposite to

that weight.

Or we might reason thus. When a body is at rest

under the action of forces in one plane, the moments of the

forces about any point vanish : but in this case, if we take

the moments about 8, the weight of the body has a moment
about S= weight x SV, which is not counterbalanced by any
other moment, and this cannot vanish unless $F=0, i.e.

unless the line joining 8 and G is vertical. Whence the

same conclusion as before.

COR. This proposition leads to a mode of determining
the centre of gravity of a body which may sometimes be

practically available, thus, Let the body be suspended freely
from any points of its surface in succession, and let the line

in the body which is vertical and passes through the point
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of suspension be noted in each case, the point of intersec-

tion of two such lines is the centre of gravity sought.

81. In the proposition, G may either be directly above

or below S when in a position

of equilibrium ;
but the nature of

the equilibrium is very different in

the two cases. In fig. 2 if the body
be slightly displaced by turning it

about 8 through a small angle, it

is evident Q would be raised, and

if the body be then left to the action

of gravity, its first tendency would

be to return towards its former po-
sition of equilibrium.

But in figure 1 if the body were slightly displaced by

being turned about 8 through a small angle, the tendency of

the body would be to recede further and further from its

position of equilibrium.

The above are simple cases of equilibrium, which are

called stable and unstable respectively ;
the meaning of which

the student will understand from the following definition.

DEF. When a body is in equilibrium under the action of

a system of forces, if the body be slightly displaced the action

of the forces on the body in its new position will in general tend

either to make it return towards or recede from its original

position of equilibrium ;
in the former case the equilibrium is

said to be stable, or the body to be in a position of stable equi-

librium
;
in the latter, the equilibrium is said to be unstable,

or the body is said to be in a position of unstable equilibrium.
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We say in general, because the above is not always the

case, for in certain cases the forces in the new position of the

body may still have no tendency to make the body move one

way or the other
;
a position of this kind is called one of

neutral equilibrium as in the case of a sphere resting on a

horizontal table.

Or again, the forces in the new position may tend to make

the body neither return to its former position nor recede from

it, but to give it a rocking or rolling motion
;
as in the case of

an ellipsoid resting on a horizontal plane at the extremity of

its mean axis.

82. II. A body placed on a horizontal plane will stand

or fall over, according as the vertical line drawn through

the centre of gravity of the body falls within or without the

base.

Let ABCD be the base of the body in contact with the

plane, GE the vertical line drawn

through the centre of gravity of the

body and meeting the base in some

point E within it.

Now the pressure which the

weight of the body exercises on the

plane is equal to a weight W acting
in GE.

And if E lies within the base,

the plane will be capable of exercising a vertical pressure

passing through E of sufficient magnitude just to balance W\
and the body will be in equilibrium.
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But ifE fall without the base the plane cannot exert a

pressure which shall pass through
E and balance W: in this case

then the body will not be in equi-

librium, but will begin to fall over

by turning round some tangent line

to the perimeter of the base, and this

will obviously be about the point of

the base which is nearest to E.

Obs. By the base here is meant

the extreme polygon formed by

joining all the points of contact of the base or the area

enclosed by a string drawn tightly about the base.

COR. 1. In a similar manner it may be shewn that if a

body be placed on an inclined plane and it be prevented from

sliding along the plane by friction or otherwise, the body
will stand or fall over according as a vertical line drawn

through the centre of gravity of the body falls within or

without the base.

COR. 2. In figure (1) if an effort were made to make the

body turn about some point A in the perimeter of its base,

the moment about A of the force employed must be at least

equal to the moment of the weight of the body about A
;

which moment is = W. AE. This moment then measures

the effort necessary to make the body fall over
;
and it is

clear that the less AE is, the less effort will be required. If

AE=Qj the moment vanishes, and any the slightest effort

would make the body fall over. This accounts for the diffi-

culty of making a body balance about a point immediately

under the centre of gravity.

p. M. 7
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Compare with this the remarks on stable and unstable

equilibrium, in the previous article.

83. When a rough body BA C rests upon another PAQ
fixed the surfaces near A the

point of contact being spherical

the condition of the stability or

instability of the equilibrium may
be simply investigated thus.

The common normal to the

two surfaces at A will be vertical

and will pass through 0, O
l
the

centres of the spherical surfaces

of BA (7, QAR, and also through

G- the centre of gravity of BA Q.

Let BA G be displaced by rolling

through a small angle so as to

come into the position B'A'G' through P the new point of

contact draw PM vertical, meeting A' 0' in M. Then accord-

ing as A'G-' is < or > AM, the weight of B'A'G' will tend

to make it return towards or recede further from its original

position of equilibrium by turning about the point of contact

P that is, the equilibrium will be stable or unstable respec-

tively.

Let A0 = r, AO T
= R, AG =

h, L AOf = = MPO',
A O'P = 0, so that

r<f>
= R0, since the arc AP= arc A'P.

OM OM sin 6 sin0 r
Now

O'P sin (0 fR + r^ R + r'
sin -

V r
6

in the limit when 6 is taken very small ;
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v. O'M. R + r

Er
R + r R + r'

and the equilibrium is stable or unstable according as h is

< or > AM, i.e. ho ^-- .

Or, as it may be written,111
01s. If Cr'j M coincide the displacement being very

^5Rsmall, in which case = = - + ^ the equilibrium is said to
h * "

be neutral.

84. Obs. (i)
If the sur-

face QAR be concave, we may
change the sign of R, and we

shall have the equilibrium

stable or unstable according as

1 11
> or < -- -5 .

R

(ii)
If the surface of BA C be plane as in the

a solid resting with its plane base

upon a curved surface r = co
,
and the

equilibrium is stable or unstable ac-

cording as

h < or > R.

(iii)
If the surface of QAR be

plane as in the case of a solid resting

case of

72
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with its curved surface upon a horizontal plane E = GO
,

and the equilibrium will be stable

or unstable according as

h < or > r.

The above particular cases

(i), (ii), (iii)
of the general one,

may be investigated independ-

ently by the student.

85. The following is an example of finding the centre

of gravity which leads to some useful results.

To find the centre of gravity of n equal particles arranged
at equal intervals along a circular arc.

Let be the centre of the circular arc AB, along which

the n equal particles A, P, Q,

*>, ... B are arranged ; y B

so that 0-1) = 2a
(i).

Then if
^

fo,^) (a^yj...

be the co-ordinates of the suc-

cessive particles^., P, ^...re-

ferred to Ox, Oy as rectangular axes, we have (Art. 74)

-
{1 + cos + cos 20 + ... + cos (n- 1) 6}

a cos^-0sin|0
n sin i d (by Trigonometry)
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cos a sin a
a n l

n !

~
sm-n-l

by substituting for 6 in terms of a from
(i).

= - (sin 6 + sin 20 + ... + sin (n
-

1)0}n

. n l a . n asm - sm -
a 2 2

~
n sin ^

n
sm a sin a

a n l

If G be the centre of gravity,

sm _
n-l

and tan AOGr = = = tan a,

i. e. G lies in the line OG which bisects the tAOB, and (iii)

gives its distance from 0.

86. COR. From the preceding investigation we may
deduce some useful results.
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If the number of particles n be supposed to become in-

definitely great,

becomes = a, and n sin becomes = a

in the limit,

and in this case OG a
sma

I. Since a uniform material circular arc may be regarded
as a series of equal particles at small

equal intervals, if AB be a uniform

circular arc of which is the centre,

and G the centre of gravity, 2a the

circular measure of the z A OB and

then we infer from the above that

OG bisects the ^ A OB,

and
sin a

II. Again, since we may regard the circular arc AB
the limit of a polygon of a very large

number of sides, we may regard the

circular sector AOB as made up of a

very large number of triangles having
a common vertex at 0, and the sides

of this polygon for their bases, and

if Or be the distance from of the

centre of gravity of any one of these

triangles Opq, we shall have (when
the L p Oq is taken very small)

2 2
Or = - Op = -

a, in the limit,
o o
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and the centre of gravity g of the sector A OB will coincide

with the centre of gravity of a uniform circular arc ab whose

,. 2
radius = -

. a.
o

i.e. Og bisects the / A OB, and Og = - .a -
.

o Ot

If a = the sector becomes a semicircle, and in this case

4 a

III. The centre of gravity G of

the sector A OB being known, as well

as 6r
t
that of the triangle A OB, we

can easily (Art. 71) find G
z
the cen-

tre of gravity of the circular segment

ABC.
For AA OB = a2

sin a cos a,

sector A OB = a
2

a,

segment ABC a? (a sin a cos
a).

Also

/.a
2

(a -sin a cos a). G = a2
a .

- a
3 a

2 . 2
a sin a cos a .

- a cos a
3

2=
g
a3

(sin a sin a cos
2

a)

= - a3
sin

3 a
;o

3 a sm a cos a

which determines the C. G. of the segment.
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IV. The centre of gravity G
of a solid hemisphere ABC lies in

the radius 00 which is perpendicu-

lar to the base, and
8

Also, the centre of gravity of the

hemispherical surface ABC bisects

00.

These results may be obtained

by processes similar to those employed in this article but

much more easily by employing the Integral Calculus : we
have therefore thought it sufficient to state the results for the

information of the student.

87. We will close this chapter with the following

elegant theorem due we believe to Leibnitz.

If a system of forces in equilibrium acting at a point A
be represented in magnitude and direction by the lines AP,
AQ, A^R.'..then will the point A be the centre of mean position

of the points P, Q, H, . . .
; (in other words) the point A will

be the centre of gravity of a system of equal particles placed
at the points P, Q, H...

Take any line x'Ax passing through A and draw Pp,

^...perpendicular to this line;

then will Ap, Aq ... represent the

projections on x'Ax of the lines

AP, AQ... i.e. of the forces P, Q...

But since these forces are at equi-

librium the algebraic sum of their

resolved parts in any assigned

direction must be zero by Art. (39).

Hence since the algebraic sum of the lines Ap, Aq ... is zero
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the centre of gravity of the points P, Q...must be in the plane

which passes through A at right angles to x'Ax, and since

the direction of x'Ax is arbitrary, this centre of gravity must

lie in every plane which can be so drawn, and must therefore

coincide with the point A, the common point of intersection

of these planes.

Hence, when any number of forces acting on a point are

in equilibrium, this point is the centre of gravity of a series

of equal particles placed at the extremities of lines which

represent the forces in magnitude and direction.

And vice versa. If we consider a series of equal particles

and we draw lines from each to the centre of gravity of the

series, it is clear that a system of forces represented by these

lines will be in equilibrium.

For as before draw the lines AP, AQ... ;
it is clear that A

being the centre of gravity, the algebraic sum of the lines Ap,

Aq... is zero ; i. e. the sum of the resolved parts of the forces

AP, AQ... taken in any direction x'Ax is zero, and therefore

the forces are in equilibrium.

COR. 1. We see from this theorem that if three forces are

in equilibrium about a point, this point is the centre of gravity

of the triangle formed by joining the extremities of lines

representing the forces in magnitude and direction; for the

centre of gravity of a triangle is the same as that of three equal

particles placed at its angular points.

Similarly, if four forces are in equilibrium about a point,

this point is the centre of gravity of the pyramid whose

angular points are the extremities of the straight lines
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representing the forces : for the centre of gravity of a trian-

gular pyramid is in the same position as that of four equal

particles placed at the angular points.

The converse of each of these is also true.

COR. 2. More generally : If all the equal particles of a

rigid body of any form are attracted to the same point by
forces proportional to their distances from this point they will

be in equilibrium if the point be the centre of gravity of the

body ;
and conversely.
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CHAPTER VI.

OF THE MECHANICAL POWERS.

88. THE simplest- machines employed for supporting

weights, communicating motion to bodies, or speaking gene-

rally, for making a force which is applied at one point prac-

tically available at some other point, are called the Mechanical

Powers ; and by a combination of them all machines, however

complicated, are constructed.

They are commonly reckoned as six in number: the

lever, the wheel and axle, the putty, the inclined plane, the

wedge, and the screw.

In explaining and discussing these simple machines we
shall suppose them to be at rest, so that the force applied at

one point is balanced by the force or pressure called into

action at some other point : we shall also suppose the several

parts of them to be without weight and perfectly smooth

except when the contrary is expressly stated.

When two forces acting on a machine balance each other,

one of them is for convenience called the power and the other

the weight.

89. The Lever.

A rigid rod or bar capable of turning about a fixed

point of it is called a lever. The point about which it can

turn is called the fulcrum, and the parts into which the rod

is divided by the fulcrum are called the arms of the lever.

When the arms are in a straight line, it is called a straight

lever ; in all other cases it is a lent lever.
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We have seen in Art. 35, 36, that a body of any form

capable of turning about a fixed

point may be considered as a

lever, and if two forces P, Q act

upon it in a plane passing through

0, the lever will be in equilibrium

if P . Op= Q . Oq; i.e. if the

moments of P and Q which tend

to turn the lever about be equal,

and tend in opposite directions.

In order however to render our explanation as simple as

possible, we will for the present consider the arms of the

lever as straight and uniform, or approximately so.

90. Levers are sometimes divided into three classes ac-

cording to the relative position of the points where the power

and the weight are applied with respect to the fulcrum.

Thus in levers of the first class, Fig . L

the power and the weight are applied

on opposite sides of the fulcrum C,

but act in the same direction, as in

fig. 1.

In levers of the second class, FIS 2.

the power and weight are applied

on the same side of the fulcrum^ ^ jg nfg
but act in opposite directions (as

<*-

Y
in fig. 2), the power being applied

at a greater distance from the fulcrum than the weight is.

Fig . 3.

In levers of the third class hy ^R

(fig. 3), the power and the weight ?! <* U.

act on the same side of the fulcrum \
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in opposite directions, the power being nearer the fulcrum

than the weight is.

The second and third classes it will be observed do not

substantially differ from each other in their character.

When a lever is employed practically to transmit force

applied at one point to some other point, as, for example,

when a crowbar is employed to raise a block of stone the

pressure applied by the hand to one end of the bar corre-

sponds to the power P in the above explanation, and the

pressure which the block exerts upon the other end of the

crowbar corresponds to the weight W, the fulcrum being

the fixed obstacle against which the crowbar rests, and about

which it can turn if P and W do not balance each other.

We have familiar examples of the first species of lever

in the common steelyard, a poker, the brake of a pump, the

common claw-hammer ; a pair of scissors and carpenter s

pincers are double levers of this kind, the joint being the

fulcrum.

An oar, a cork-squeezer, a pair of nutcrackers are exam-

ples of the second class. In the case of the oar, the blade of

the oar in the water is the fulcrum.

The treadle attached to the axle of the wheel of a lathe, a

pair of shears, are instances of the third class of levers, and

to this class we may refer the bones of the arm and fingers

when put in motion by muscular action.

91. Conditions of equilibrium ofa lever.

(I) When the lever is a straight one and the power and

weight act perpendicularly to the arms, as in any of the three

cases represented in figs. \, 2, 3 (Art. 90).

Let R be the force (or reaction) which the fulcrum exerts

upon the lever, and the lever upon the fulcrum in the opposite
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direction, then the lever ABC is kept in equilibrium by th&

three forces P, TF, R acting at A, B, C respectively, and

these forces must satisfy the conditions of equilibrium of three

forces (Art. 45).

Hence, since the directions of P and W are parallel, R
must also act in a parallel direction, and in

fig. 1. R = P+W,
fig. 2. R= W-P,
fig. 3. R = P-W.

Also the moments of any two of the forces P, TF, R about a

point in the line of action of the third must be equal in mag-
nitude and of opposite tendency. Hence taking the moments

of P and W about (7, we have P ,AC= W.BG
(i)

in each

of the three cases.

In levers of the first class it is obvious from equation

(i)
that P will be > or < W according as AC is < or > BC>

i. e. according as the fulcrum is nearer to P or to W.

In levers of the second class, P is always < W.

In levers of the third class
,
P is always > W.

(II) When the lever is of any form, and the power and

weight act in any given directions (fig.
Art. 89).

In this case also the three forces P, W, R must act in one

plane (Art. 45), and, taking moments about the fulcrum 0,

we get P. Op = Q. Oq (ii),

Op, Oq being the perpendiculars from the fulcrum upon the

lines of action of P and W (Q and W having the same

meaning).

The results (i) and
(ii) maybe stated thus: "the power

and the weight which balance each other on a lever must be
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Aversely proportional to the lengths of the perpendiculars

drawn from the fulcrum upon their directions," or

P perpendicular upon direction of W
W perpendicular upon direction of P

92. The magnitude and direction of the pressure R which

the fulcrum exerts in case (ii) may be expressed thus,

supposing for simplicity A OB to be a straight line ;

put 040 =
a, 050 =& COB=6, A0 =

a, B0 = l',

then resolving the three forces P,

W, R parallel and perpendicular

to AH, we get

R cos 6 = Pcos a TFcos /?,

R sin 6 = Psin a + W sin /3 ;

whence, squaring and adding,

P = V{P
2 + TF2

-2PFcos(a
also dividing the latter by the former

a^Psina + Fsin/3
t

~Pcosa-Fcos/3
;

which two equations express R and in terms of known

quantities.

Obs. We might, in cases (I) and (II), have obtained other

equations of condition by taking moments about some other

point ; as, for example, about -A, in which case we get

R.AC=W. AB, fig. Art. 90,

or, in fig. Art. 92, if AT, Aco be perpendiculars drawn from A
upon the lines of action of R, TT,

R.Ar= W.Aco,
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which gives E at once independent of P; "but conditions so

obtained are not independent of those already obtained, but

might have been deduced from them, as the student will infer

by examining this case in particular, or by referring to the

more general case discussed in Art. 45.

93. If two weights balance each other on a straight lever

in any position which is not vertical, they will balance in any
other position of the lever.

Let P, Q be the two weights suspended from the points

A, B of the lever whose fulcrum is C and centre of gravity G,

W= weight of the lever, draw EC horizontal in the vertical

plane in which the lever can move. Suppose the lever to be

in equilibrium when inclined at an ^ 6 to the horizon, the

points A, 6r, (7, B being in a straight line, then since P, Q,W
act in vertical lines, the reaction R of the fulcrum must also

be vertical, and we must have

+W ..................... (i).

Also taking moments about the fulcrum (7, we must have

P.ACcos6+W. CGcos6=Q.BCcos0 ......... (ii),



THE STEELYARD. 113

or since 6 is not = 90, and .*. cos 6 is not = 0, we may divide

out cos 0, and obtain

P. AC+ W. CG = Q.BG (iii)

as the condition of equilibrium and this is satisfied if the

lever assume any other position A' G'S inclined at any other

angle to the horizon. Hence the lever will balance in any
other position.

Note. If 9 = 90 then cos 6 = 0, and we should not be jus-

tified in deriving equation (iii)
from

(ii) by dividing out cos 6,

in fact when the lever is vertical it will balance with any

weights suspended at A, B. It is necessary that -4, B, G and

C the point where the fulcrum acts on the lever should be

in a straight line.

94 The various kinds of balances which are in use for

determining the weight of substances are constructed on the

principle of the lever. We will here give a description of

the common or Roman steelyard, the Danish steelyard, and of

the common balance ; referring the student for a more complete

account to Delaunay's Cours elementaire de Mecanigue.

The common or Roman steelyard.

This balance consists of a straight

lever AB suspended by the point C,

and capable of turning about this

point. At a point A on the short

arm is attached a hook (or some-

times a scale-pan), from which is

suspended the substance whose weight W is required. A
ring Z>, carrying a weight P of constant magnitude, can

slide along the graduated arm CB till P and W balance

P.M. 8
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each other about C, when the lever is horizontal. The

graduation at which P rests when this is the case indicates

the weight of the substance.

In graduating the arm BC account must be taken of the

weight of the lever : let Q be the weight of the lever, and

G its centre of gravity, D the point from which P is sus-

pended when it balances W at A
;
then taking moments about

(7, we have

P.CD+Q. GG= W.CA... (a).

If on the arm CA we take a fixed point such that

P . CO = Q . CGr, the equation (a) becomes

P.CD + P. CO=W. CA, or P.OD=W. CA
;

... OD = ~.CA.

We may now graduate OB by taking distances from

successively equal to CA, 2CA, 3CA, ... and marking them

1, 2, 3, ... if necessary these distances may be subdivided.

Suppose, for example, that P rests at the fifth graduation,

then OD=5.CA, and .'. IF=5P, and the weight of P
being known that of W is known also.

Obs. By increasing CA, or by diminishing P, the sen-

sibility of the steelyard would be increased ;
i. e. the distance

would be increased between the points from which P must

be suspended in order successively to balance two weights

of given difference.

For suppose D' the point of suspension of P when the

weight is W
;

then P. OD'=W. CA,
and P. OD = W.CA;
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therefore P.D0=CA.(W- W),

r A
'

i. e. W W being given, DD' would be increased by an

increase of CA or by a diminution of P.

CAWe may regard -p-
as a measure of the sensibility of the

steelyard, and this being constant in the same steelyard for

different positions of D, we infer that the same steelyard is

equally sensible for all positions of P.

The name of this steelyard has often led to a mistaken

idea of its origin Romman is an Eastern word for the pome-

granate, and the form of the weight P gave rise to the name.

95. The Danish Steelyard.

This steelyard consists of a bar

AB terminating in a ball B which A '" ' 5 '

fC)

serves as the power, and the sub- ^w pr
stance to be weighed is suspended
from the end A

;
the fulcrum C which is frequently a loop

at the extremity of a string by which the instrument is

suspended is moved backward or forward till P and W
balance about it.

To graduate the Danish Steelyard.

Let P be the weight of the bar and ball of the steelyard,

which we may suppose to act through its centre of gravity G :

and let C be the position of the fulcrum when the substance

82
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whose weight is W balances P about the fulcrum. Taking
moments about (7, we have

P. CG=W.AC=P. (AG-AC)\ ,

P.AG ...

....(a);.:AC =P+ W

by making W successively equal to P, 2P, 3P...the successive

graduations are determined.

COE. It is obvious from the formula (a) that the distances

of successive graduations from A are in harmonic progres-

sion.

96. The common balance.

This balance consists of a lever AB called the learn,

suspended from a fulcrum C about

which it can turn freely ;
the

point G is a little above the centre

'of gravity G- of the beam, and A
from the extremities A, B of the

arms GA, CrB (which ought to be

similar and equal) are suspended

two scale-pans, in one of which is

placed the substance whose weight
W is required, and weights of

known magnitude are placed in

the other till their sum P just balances W; this being the

case if the beam be exactly horizontal in a position of

rest. In this case if the arms are perfectly equal and

similar, and the scale-pans also of equal weight, P will be

exactly equal to W. If these weights differ by ever so little,
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the horizontally of the beam will be disturbed, and after

oscillating for a short time, it will rest in a position inclined

to the horizon, and the greater this inclination is for a given

difference of P and W the greater is the sensibility of the

balance. A simple way of testing the accuracy of a balance

is by interchanging P and W in the scales. The balance

ought to retain the same position when this is done.

97. To determine the position of equilibrium of a balance

when loaded with unequal weights.

Let P and W be the weights in the scales. AB = 2a
;

h = the distance of G the fulcrum from the line joining A, B,
W the weight of the beam and scales, and k the distance

from C (measured along the line h) of the point through which

the resultant of W acts k remains unchanged when the

balance is tilted, the angle which the beam makes with

the horizon when there is equilibrium.

If we take moments about (7, the algebraic sum must be

equal to zero.

Now the perpendicular from C

on the direction of P a cos 6 h sin 6 ;

..................... W = a cos 6 -{-h sin 6;

we shall have then, taking account of the tendency of the

moments of the several forces,

P(aco$6-h sin 0)
- W (a cos + h sin 6}

- Wk sin =
;

d--
(P+W)h+W'k'

This equation determines the position of equilibrium.
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98. TJie requisites for a good balance are

(i)
The beam ought to be horizontal when loaded with

equal weights in the scales at A and B. This will be the

case if the scales are of equal weight, and if the line drawn

through C at right angles to AB divides the beam into two

similar and equal arms.

(ii) The balance ought to be sensible ; i.e. the angle 6

which the beam makes with the horizon ought to be easily

perceptible when the weights P and W suspended at A and

B differ by a very small quantity ;
and the greater tan 6 is

for a given small difference P W, the greater is the sensi-

bility of the balance. We may take -~
T/r/

. as a measure of
L rr

the sensibility, and hence we see that this requisite will be

, ; ,. (P+W)h+W'k ..,
secured by making

v - as small as possible ;

thus the smaller h and Jc are made, the greater will be the

sensibility of the balance.

(iii) The balance ought to be stable ; i. e. if the equi-

librium be a little disturbed either way, there ought to be a

decided tendency to return to its original position of rest.

This tendency, for any position of the beam, will be measured

by the moment of the forces tending to restore the beam t o

its former position of rest. If for examplePW^ then when

the beam is inclined at / 6 to the horizon the moment of the

forces which tend to diminish 0, and therefore to restore

the balance to its position of equilibrium, is

W)h+
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Hence this ou^ht to be made as large as possible in order to

secure the third requisite.

This condition, it will be observed, is to some extent at

variance with the condition for sensibility ;
but they may be

reconciled by making (P + W) h + Wk considerable and a

large; i.e. by placing the fulcrum at some distance above

the centre of gravity of the beam, and by making the arms

long.

In a balance of great delicacy the fulcrum should be as

thin as possible it is generally a knife-edge of hardened steel

working upon agate plates.

The comparative importance of these qualities of sensi-

bility and stability in a balance will depend upon the service

for which it is intended : for weighing heavy goods, stability

is of more importance ;
the balance employed in a chemical

laboratory must possess great sensibility, and such instru-

ments have been constructed to indicate a variation of weight
as small as a million-th part of the whole, and even less.

99. There are various kinds of compound balances

formed by combinations of levers in use for weighing heavy

articles, as merchandise, baggage, &c. it will suffice here to

give a brief description of the arrangement of the levers in the

Balance of Quintenz in a simple form.

The figure represents a section of the machine by a plane

dividing it into two symmetrical parts.

The platform AB upon which the weight Q is placed is

supported at one end upon the knife-edge fulcrum JS, and at
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the other by a piece DH which is connected with the upright

piece BC by a strong brace CD.

GF is a lever turning about a fulcrum F and connected

with the horizontal lever LMN by a vertical rod GL
;
HK is

another vertical rod connecting DH with the lever LMN
which turns about the fulcrum If, and from the end N of this

lever the scale-pan P is suspended.

The ratio of FE : FG is by construction the same as the

ratio KM : LM, usually 1 : 5.

The weight Q thus produces pressures at E and H: the

pressure at E by means of the lever FG and rod GL trans-

mits a pressure to the lever LMN at L, and the pressure at H
is transmitted to the same lever LMN at K, and in conse-

quence of the ratios FE : FG and KM : LM being equal, the

pressure at L produces the same effect on the lever LMN
as a pressure equal to that at E would do if applied at K.

Thus the effect on the lever LMN is the same as if the

whole weight Q were suspended at K, and equilibrium is

produced by placing suitable weights in the scale-pan P.

The ratio KM \ MN is commonly 1 : 10, so that the

weight of Q is ten times that required to balance it at P.
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100. The Wheel and Axle.

This machine consists of a cylin-

der HH, called the axle, and a wheel

AB, the two having a common axis

terminating in pivots (7, (7', about

which the machine can turn
;

the

pivots resting in fixed sockets at

(7, C'. A rope, to one end of which

the weight W is attached, passes

round the axle, and has its other

end fixed to the axle. Another rope

passes round the wheel, being at-

tached at one end to the circum-

ference of the wheel, and at the

other end the power P is applied.

The ropes pass round the wheel and

the axle in opposite directions, and

thus tend to turn the machine in

opposite directions.

Conditions of equilibrium of the wheel and axle.

The efforts which P or W make to turn the machine

about its axis will be the same in whatever plane they act

perpendicular to the axis.

Let fig. 2 represent a section of the machine perpendicular

to its axis
;
M and N the points at which the strings quit

the circumferences of the wheel and axle
; join OM, ON,

which will be perpendicular to MP, NW respectively.

We may regard MON as a lever kept in equilibrium

about the fulcrum by the forces P, W acting at arms
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MO, ON, and there will be equilibrium if P . MO = W. NO,
P NO

or = -r ;
i. e. if the power is to the weight as the radius

of the axle is to the radius of the wheel.

101. Obs. If the thickness of the ropes cannot be neg-

lected, we must suppose the action of P and W to be trans-

mitted along the middle or axis of the ropes, and in this case

OM radius of wheel + radius of rope,

ON radius of axle + radius of rope.

Instead of the wheel AB (fig. 1), the power P is some-

times applied to a rigid rod fixed into the axle at right angles

to it
;
and in the previous condition of equilibrium we must

take OM= length of the arm at which P is applied. The

capstan is an example of this construction.

COR. 1. In a combination of wheels and axles, in which

the string passing round one axle also passes round the wheel

of the next machine, and so on, we should readily obtain

P
__ product of radii of all the axles

W product of radii of all the wheels
*

Combinations of toothed-wheels are substantially examples
of this kind.

COR. 2. If the power and weight act in parallel directions

on the wheel and axle, and on opposite sides of the axis, the

pressure on the axis = P+ W; but if they act on the same
side of the axis, the pressure on the axis = P~ W. (Art. 91.)

102. The Pully.

The pully is a small circular disc or wheel having a

uniform groove cut on its outer edge, and it can turn about
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an axis which passes through its centre. This axis rests in

sockets within the Hock to which the _

pully is attached. When the block is

fixed, the pully is said to be fixed;

in other cases it is movedble. A cord

passes round the pully along the

groove, and at its extremities the

power and weight are applied.

The pully is very useful for changing

the direction of the tension of a string ;

and as we shall here suppose the groove

to be perfectly smooth, the tension at

all points of the string between the points of application of

P and W will be the same. (Art 43.)

In the following account of some of the more simple com-

binations ofpullies, we shall neglect the weight of the strings,

and suppose the radius of any pully to be the distance from

the axis to the centre of the chord which passes round it.

103. Conditions of equilibrium on a single moveable pully.

(i)
When the strings are parallel.

Since the tension of the string PABC which passes round

the pully is the same throughout, the tension

upwards of the portions AP, BG are each equal

to P; and since there is equilibrium we may
suppose the strings AP, BG attached to the

pully at A and B, the points where they quit

the pully ;
and the weight W, which is sus-

pended from 0, the axis of the pully, is sup-

ported by the upward tension of the strings

AP, B G. Hence, considering A OB as a lever kept in equi-
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Then since

librium 'about a fulcrum 0, we have (Art. 90) 2P = W the

condition required.

(ii) When the strings are not parallel.

Let the string quit the pully at A and B.

the tension along AP is equal to that

along BC, their resultant will bisect

the angle between them, and this re-

sultant must be equal and opposite to

the weight W suspended from the axis

of the pully, and acting in a vertical

direction.

Hence AP, BC must be equally
inclined to the vertical; let 6 be this inclination, then the

resultant of the two tensions, which we may regard as acting

at A and B, is = 2P cos 0, and this must be equal to W ;

i.e. 2Pcos 0= W, the condition of equilibrium.

Ols. If the weight of the pully be taken into account,

let it be w, and we shall obtain

2Pcos 6=W+ w for the condition of

equilibrium.

If instead of a weight W hanging

vertically, a force E be applied to the

pully in direction OR by a string or

otherwise, we may shew as before that

when there is equilibrium AP, BO
must be equally inclined to the direc-

tion of R, and we shall have 2P cos 6 = R for the condition of

equilibrium, 20 being the angle which AP makes with BC.

104. Conditions of equilibrium in a system ofputties.

I. In a system of pullies in which the string which passes
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round any pully has one extremity fixed

and the other attached to the pully next

above it (as in the figure), the portions not

in contact with any pully being all parallel.

Let ^ be the tension of the string which

passes round the lowest pully, 2 ,
ty ...

that of the string passing round the second,

third... pully, and let w
lt
w

2 ,
?#

3
...be the

weights of the pullies Av A^ A
z
...

Then for the equilibrium of the pully

Av we shall have the equation of condition

(1) (Art. 91),

and for the equilibrium of J
2 ,
the force upon it downwards

is equal to the tension of string A Z
A + w# and the force

upwards is 2
2 ,
hence we get

2*
8
= *!+?, (2),

similarly, 2t
3
= t

a + ws (3),

and so on for every moveoble pully ;
if there be n moveable

pullies the last equation will be

%tn=tn_i + Wn (n).

Now if we multiply the equations (1), (2), (3) ... (n) by
1 . 2 . 2

2
. . . 2

71
'1

severally, add the corresponding sides together

and strike out terms w^hich cancel each other on opposite

sides of the resulting equation, we get

2
n
tn=W+wl + 2w

2 + 2
2w

3, + ... + 2"~
1

n,

and it is clear that tn
= P, hence the condition of equilibrium

becomes

2
nP= W+ w, + 2w

2 + 2X + .- + 2
71
'1 wn (a).

COR. 1. If the weight of the pullies be neglected,
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and the condition (a) becomes

2
nP= W.

COR. 2. If the pullies are all equal and the weight of

each = w, the condition (a) becomes

TP= W+ (1 + 2 + ... + 2
n
->,

or 2
nP= W-}- (2

n
-l) w,

which may be written

2
n
(P-w)= W-w.

105. II. In a system of pullies where there are two

blocks, and the same string passes round

all the pullies (as in the figure), the parts

of the string between successive pullies

being parallel.

Since the tension of the string is the

same throughout, if n be the number of

strings at the lower block, nP will be the

resultant upward tension of the strings

upon the lower block, and this must be

equal to W when there is equilibrium,
that is, nP= W is the condition required ;

the weight W including the weight of the

lower block.

106. III. In a system of pullies

where the string which passes round any

pully is attached at one end of it to the

weight, and at the other end to the next

pully (as in the figure), the strings being all parallel.
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Let t
lt 2 ,

t
z
... be the tensions of the

strings which pass round the successive

pullies AV A
t ,
A

3 ...,
and let wv w# w

a
...

be the weights of these pullies severally.

Then for the equilibrium of the pullies

A^ A 2 ,
A

3
... in succession, we shall have

LP .

n being the number of pullies of which n 1 only are

moveable.

Also for the equilibrium of TFwe shall have W= resultant

of the upward tensions of the strings attached to the bar AD
;

W ........................ 3.

Multiplying the n equations of (a) by 2
n

,
2n

~1
, 2W

~2
...... 2 in

order, and adding, we get

Again, adding equations (a), we get by means of (/3)

Subtracting (8) from (7), we get

F= (T- 1) P+ (2*-
1 -

the relation which must hold good between P and TF when

the system is in equilibrium.
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COR. 1. If the weight of the pullies be neglected,

Wi
= w

2
= ... = 0,

and the relation "between P and W requisite for equilibrium
becomes

a result which the student may investigate independently.

01)8. It is readily seen that the weight of the pullies

assists the power P in system III., but in the systems I. and

II. it increases W.

COR. 2. If the weight W be suspended from a horizontal

bar AD, the point K to which W is attached must be such

that the resultant of the tensions at A, B, C... passes through

K, otherwise the bar would not remain horizontal.

For example, suppose there are four pullies of equal
radius a : then the tension at A = P, at B= 2P, at C= 2

2

P,
and at D = 2

3

P, the weights of the pullies being neglected ;

then, taking moments about A, we must haveK such that

(P + 2P + 2
2P+ 2

3

P) AK= P.O + 2.P. a + 2
2P.2a + 2

3

P.3a;

2 + 2
2

. 2 4- 2
3

. 3 _34
2 + 2 2 + 2

3
' a ~

15
a 'i.e. AK =

107. A very simple and useful combination of pullies is

employed in the Spanish Barton, the principle ,,

of which will be obvious from the annexed

figure. C is a fixed pully round which passes

a string attached to the two moveable pullies

A and B. The weight W is attached to B, and

the string which passes round A and B is fixed

at one end at D, and the power P acts at the

other end.

For the conditions of equilibrium we have
w
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from the equilibrium of the pully A, tension of string
A CB = 2P+A = T suppose, and the tension of the string
PABD being the same throughout and equal to P, we have

for the equilibrium of pully B,

B+ W=2P+ T=.:P + A',

.-. 4P = W+B-A.
108. The Inclined Plane.

By an inclined plane, as a mechanical power, is meant a

plane inclined to the horizon, and the inclination is measured

as in Euclid, Book XL, Definition 6. Or thus: If a vertical

plane be drawn perpendicular to the inclined plane, which

for simplicity of definition we shall call a principal plane
the angle between the lines of intersection of this vertical

plane with the inclined plane and a horizontal plane is the

inclination of the proposed plane to the horizon.

Conditions of equilibrium on an inclinedplane

When a l)ody whose weight is W
is supported on an inclined plane ly
a force P, the direction ofwhich makes

an angle e with the plane the plane

being smooth.

I. Let the figure represent a A c

section of the inclined plane, made

by a vertical plane perpendicular to the inclined plane;
BA G= a, the inclination of the plane. Then the forces acting
on the body at are W its weight vertically, R the reaction

of the plane acting at right angles to the plane, and P the

given force. Hence, in order that the body may be in equi-

librium, P must act in the same plane with W and R, i. e. in

the vertical plane perpendicular to the inclined plane (repre-

sented in the figure).

p. M. 9
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Let POB= 6. Then resolving the forces which act on 0,

along the plane and at right angles to it, we get

Pcose TFsina = ......... (i),

Psine + .Z2- TFcosa = 0..c ......
(ii).

Equation (i) gives the relation which must hold between

W and P
;
and the second gives

sin a sin e\ W cos (e + a)

which gives the pressure on the plane in terms of W.

109. II. Let the plane be rough; and/ro^ let Pact in

the vertical plane which is perpen-

dicular to the inclined plane i.e. in a

principal plane (as in case I.). R,

P, W, a, e, the same as in case I.:

fa the coefficient of the friction actu-

ally exerted, down the plane suppose,

so that faR is the friction
;

then resolving the forces act-

ing on the body, parallel and at right angles to the plane,

we get

P cos e TFsin a - faR = 0,

Psin e +R IFcos a = 0,

whence we get

p= ^sinoc
+ ^cosa ...

cos e + fa sin e
"

cos (a ..

cos e -f fa sm e

Equation (i) gives the relation between P and W
;
and

(ii)
the pressure on the plane.

If the friction acts up the plane, we have only to change
the sign of fa in the preceding investigation.
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Obs. If p be the coefficient of maximum friction between

the substance of which the body is composed and the plane

(which is determined by experiment, and generally given in

tables of the coefficients of friction), /^ cannot be greater than

IL numerically, and may be positive or negative so far as equi-

librium is concerned.

If the body is just on the point of moving up the plane

-, D -fjr sin a -f
/ju

cos a
Lu

t

u, and P = W -
COS 6 + fJ,

Slli 6

If it be on thepoint ofmoving down the plane p. l

= p and

p_ -rySi'n
a

fju
cos q

cos e p, sin e

If P have any value intermediate to these two, the body
will be in equilibrium, and for a given value of P the co-

efficient of the friction actually in operation will be given

, t
~ . Pcose TFsin a

by (i) : i. e. u, -^ ^ -. .W cos a P sine

Secondly. If the direction of P does not lie in the vertical

plane which is perpendicular to the

inclined plane.

Let OD be the projection of OP
on the inclined plane, AB the sec-

tion of the inclined plane made by
the vertical plane through per-

pendicular to the inclined plane,

POJ) = e, BOD = $, BAG=a. t

Now friction always acts in the direction opposite to that

in which the body would begin to move, if the friction were

to cease.

The forces acting on parallel to the plane are P cos e

along OD, and TFsin a along OA.
92
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Hence j*R the friction must be equal and opposite to the

resultant of these two forces. Let 6 be the angle which this

resultant makes with OA.

Then resolving the forces which act on (i) perpen-

dicular to the plane ; (ii) along OA ;
and

(iii) perpendicular

to OA along the inclined plane, we get successively

Pame + R- TFcosa =
(i),

P cos e cos ft + fiR cos & TFsin a =
(ii),

P cos e sin /3 /j,R sin 6= (iii).

From these three equations we get P, R, and 0; i. e. the

force P necessary for equilibrium, the pressure on the plane,

and the direction in which friction acts.

If /3
=

0, then 6 = 0, and the results of this case coincide

with the preceding.

110. If /A
= tan <, the result of the first case of II. gives

P= TF^-S ,
cos (e <)

and if we suppose e and P to vary so as to satisfy this relation,

we see that P is least when cos (e <) is greatest; i. e. when

e = 0, and the least force which will pull the body up the

plane is = W sin (a + </>).

Also the result P W . z ,{ compared with that of
cos (e + <)

case I. shews that the condition of equilibrium on a rough

plane is the same as that on a smooth plane whose inclination

to the horizon is increased or diminished by the angle $, the

direction of P remaining unchanged increased or diminished

according as the friction acts down or up the plane.
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COR. If the force P acts horizontally, then e = a, and

the conditions of equilibrium become

in case I. P= JFtan a,

p_ w sin a + //,
cos a

cos a /* sin a
"in the first instance of case II.

111. The Screw.

The screw is a spiral thread running along the surface of

a circular cylinder, which may be imagined to be generated

thus:

Let A G- be a rectangle whose base AS is exactly equal to

the circumference of the cylinder ;
make

the rectangles BD, CF, EH... equal in

every respect, and draw the straight lines

AC, DE, FG...} then if the rectangle

BH be applied to the surface of the

cylinder so that the base AB coincides

with the base of the cylinder, the broken

lines AC, DE, FG... will form a con-

tinuous line on the surface of the cylinder,

the point C coinciding with D, E with F,

and so on. If we now suppose this line

to become a protuberant thread, we obtain

a screvj, in which the distance between any point of one

thread and the one next below it, measured parallel to the

axis of the cylinder, is everywhere the same and equal to

BC: the angle CAB which the thread at any point makes

with the base of the cylinder is called the pitch of the screw.

The screw formed on the solid cylinder, as above, works

in a hollow cylinder of equal radius, in which a spiral groove

is cut exactly equal and similar to the thread on the solid
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cylinder, and in which groove the thread of the former can

work freely.

A solid and hollow screw related as above are called

companion screws ; and when in action, one of them is fixed

and the other is turned by means of a lever fixed into the

cylinder at right angles to its axis. By turning the lever a

weight is raised, or a pressure produced, at the end of the

screw, which pressure acts in direction of the axis of the

screw.

When the solid screw is small, it is sometimes called

a nut.

112. The figure in the margin
will convey some idea of one mode of

applying a screw to produce pressure,

and in all the various applications

of the screw we may regard a power
P as applied at the extremity of an

arm which is at right angles to the

axis of the screw so as to produce
a pressure in direction of the axis,

which we shall call the weight.

The form of the thread of the

screw is not always the same in

different screws
;
we shall suppose a section of it made by a

plane through the axis of the screw to be rectangular, so that

the surface of the thread will present the same appearance as

the under surface of a circular spiral staircase.

113. Conditions of equilibrium on the screw.

In investigating the relation between P and W we shall

for the sake of simplicity suppose the screw to be vertical,
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and the pressure which balances P to be a weight W placed

on the end of the screw, and which the screw supports.

I. When the screw is smooth.

We may suppose the whole weight

W to be distributed along the surface

of the screw which is in contact with

the companion screw.

Let w be a portion of W supported

at by the pressure r of the companion
screw and by a force p acting hori-

zontally, i.e. perpendicular to the axis

of the screw : a = the pitch of the screw,

i.e. the complement of the angle which

the tangent to the thread of the screw at makes with the

axis of the screw.

Then the conditions of equilibrium of w under the action

of r and p are the same as those of a body resting on an

inclined plane (inclination
=

a) under the action of a force p
acting horizontally ;

hence p =w tan a. (Art. 110, Cor.)

Similarly, if w', w" ... be the portions of the weight sup-

ported at successive points by the forces^/, p" ... we should

have

p'
= w tan a, p" w" tan a

and .'. p+p +p" + ... = (w + w + w" + ...)tana.

Now w + w' + w" + . . . must equal W the whole weight,

and^, p, p"... acting at the surface of the cylinder perpen-

dicular to its axis produce the same effect to turn the cylinder

round its axis as the power P acting at the arm CA.

Hence the moments of p, p, p"... about the axis must

together be equal to the moment of P about the same
;

i. e. if
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c be the radius of the cylinder, a the length of the arm CA
at which P acts, we must have

pc + pc +p"c + . . .
= Pa

;

whence we get = "FTtan a
;

c

We tan a

the relation between P and W required.

Since 27rc tan a = distance between two threads, measured

parallel to the axis,

and 2-Tra = circumference of the circle described by A,

we may write the condition
(i) in the form

P _ 2?rc tan a _ distance between two threads

W ZTTO, circumference of circle, radius CA *

II. If the screw le rough.

In this case supposing W distributed, as in case I., the

forces which act at are the weight of w vertically, p hori-

zontally, p the normal pressure on the thread of the screw, and

lip the friction along the surface of the thread
;
hence taking

the conditions of equilibrium on a rough inclined plane as in

(Art. 109), i.e. resolving the forces along the tangent line and

perpendicular to it, we get (supposing the friction to act down

the screw; i.e. to oppose P,)

p cos a w sin a
/jup

=
0,

p sin a + w cos a p
=

;

whence we obtain

sin a + ti cos a w
f)
= w . ; p : \

cos a fi sin a cos a
//-
sm a
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or if we put //,
= tan

</>,
these become

sin (a + 0) w cos
~

P= ''~
'

cos (a

whence as before

p+p + p" + ...

and P
|
= W. tan (a + <ft ;

or P=
JF^

tan (a

the relation between P and W.

114. Olis. If the friction acts up the screw (i.e.
assists P),

then we must change the sign of jt and therefore of <, and

we get in this case

P=F-tan (a-<).

Note. Since the distance between two threads, measured

parallel to the axis, is the same at all points of the screw, but

the length of one revolution of the screw is greater at greater

distances from the axis, it is clear that the pitch a is different

at points on the surface of the thread which are at different

distances from the axis, being greatest at points nearest the

axis. But when the screw is smooth, as in case 1., the

relation between P and TF, viz.

P _ distance between two threads

W~ circumference of the circle, radius CA '

depends only on the distance between the threads and the

]ength CA
;
hence this result will be true whatever be the

breadth of the thread.

115. The Wedge.

The wedge is a solid triangular prism made of hard

material such as iron or steel, and is used for separating two
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bodies, or two parts of the same body, which adhere power-

fully to each other. The edge of the wedge is introduced

between the parts of the substance, and it is then driven

forward by smart blows of a hammer applied at its back, or

by some equivalent process. Hatchets, chisels, nails, carpenters'
1

planes, swords, are modifications of the wedge.

The action of the wedge is so essentially dynamical that

it would serve no useful purpose to discuss its statical con-

dition at any great length; we will only obtain the condi-

tion of its equilibrium in a very simple case.

Condition ofequilibrium ofa wedge.

Suppose the wedge isosceles, and let

the figure represent the position of the

wedge inserted in the obstacle and in

contact with it at A and J5; R, R the

pressures perpendicular to the faces of

the wedge at J3, A ; pR, pR' the friction

on the wedge at those points; W the

force applied at the middle point of the

back of the wedge, and a the angle between

the faces of the wedge; then resolving

the forces which act on the wedge in

direction of W which bisects the angle a,

and at right angles to this, we get

W+ p (R + R'} cos 2 _ (E + R'} sin
" =

0,
"2 2

/fc(JS->in" + (-#) cos ? =
<),

the latter equation gives R R
',
and substituting this in the

former, we get
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W= 2B (sin - -
fj,

cos
-J

,

/j, being the coefficient of friction actually in operation.

It may be remarked that in many cases the wedge 13 kept

in its place by friction alone, in such cases W=Q, and

.-.

sin|-/*cos|
= 0; i.e. ^ = tan|,

which gives the coefficient of friction actually required for the

equilibrium of the wedge.

116. Principle of Virtual Velocities.

Def. If A be the point of application of a force P, and

this point receive a small

displacement so as to come

to A', the small space AA
is called the virtual velocity

of the point A, and if Aa

be drawn perpendicular to

AP, the small space Aa is called the virtual velocity of the

force P, and is regarded as positive or negative according as a

lies on the side ofA towards which P acts, or the opposite,

in other words, the virtual velocity or displacement of the

point of application resolved in direction of the force is the

virtual velocity or displacement of the force : the direction of

the force AP in the new position being supposed to remain

parallel to AP, or very nearly so.

If A'Aa = a = AAP
f
we have Aa = AA . cos a

;
hence

the virtual velocity of a force is equal to the virtual velocity

of its point of application multiplied by the cosine of the

angle, which the direction of the displacement of the point
makes with the direction of the force,
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The product of any force into its virtual velocity is called

the virtual moment of the force.

117. When a machine or system of bodies is in equilibrium

under the action of several forces, if the point at which any
one force is applied be slightly displaced without breaking the

connexion of any of the parts of the system, the points at

which the other forces are applied will, in general, also be

displaced to an extent dependent upon the displacement of

the first point ;
and the following singular relation exists

among the forces and their several displacements or virtual

velocities, viz. The algebraic sum of each force multiplied by
its virtual velocity is equal to zero, or, in other words, The

algebraic sum of the virtual moments of a system offorces in

equilibrium is zero.

This is sometimes called the equation of virtual velocities,

or the principle of virtual velocities.

Since the displacement of the several points would all

take place in the same time, it is obvious that they would, if

small, be in the ratio of the velocities of the several points ;

and further, since a system in equilibrium cannot move of

itself, the displacements above supposed are hypothetical or

virtual only, and such as would ensue upon the application of

some additional force which is supposed to cease as soon as

the displacement is effected, and the system to be in equi-

librium and at rest in its new position. Hence the term

virtual velocity.

118. The proof of the principle of virtual velocities in

its general form is of too difficult a character to be introduced

into an elementary work. We will here shew that the principle

holds true in the case of the lever, the wheel and axle, the

several systems of putties, the screw, and the inclined plane;
in other words, when a power and a weight balance each
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other on any one of these machines, if the power be slightly

displaced, the consequent displacement of the weight is such

that P . displacement of P=* W . displacement of W,

or P . virtual velocity ofP W . virtual velocity of W...(l).

In each of the following cases, the student will observe

that if the displacement of P is in direction of P's action,

that of W will be in the direction opposite to TF's action
;

i.e. the virtual velocities of P and Ware of contrary algebraic

sign, so that, although for the sake of obtaining more conve-

nient formulae we shall neglect the algebraic signs of the

displacements and regard their actual magnitude alone, the

equation (1) would algebraically be written

P. P's virtual velocity + W. TV's virtual velocity
= 0.

119. Case I. When P and W balance each other on a

bent lever.

Let ACE be a bent lever whose fulcrum is C\ CM, CN
the perpendiculars from C on

the lines of action of P and W.

Let the lever turn about C

through a small angle A CA
t

a

so as to come into the position

A
I
CB

I ;
then AA

t ,
BB

t
are small

circular arcs which may approxi-

mately be regarded as straight

lines, and the angles CAA
t ,

CA
tA, CBB

t ,
CBB as very nearly right angles.

Hence if A a, BJ) be drawn perpendicular to AP, BW,
then Aa, Bb will be the displacements or virtual velocities of

P and W respectively, and we shall have AA
t

= a . A C, and
Aa = AA

t
. cos AAa = AA

t
. sin CAM

y.. CM.
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Similarly,

Bl = BB
t

. cos B,Bb = BBi
. sin CBN

= a. CB sin CBN=a.. CN.

Aa
Whence

Bb
W

=?(A,t. 89) ;

and /. P.Aa^W.Eb,
or P . P's virtual velocity

= W . TF's virtual velocity.

120. Case II. The wheel and axle.

Let the machine be turned about its axis through a small

angle a, so that the line MON comes

into the position mOn\ then Mm, Nn
will represent the lengths of string

which have unwrapped from the wheel

and wrapped upon the axle respec-

tively; i.e. Mm, Nn will be equal to

the corresponding displacements of P
and If.

Mm M0.t* MO

W

/. P.P's virtual velocity
= W. TF's virtual velocity.

121. Case III. J7*e single moveable pully,
when the strings are parallel.

If the weight be raised through any space

s, it is clear that the parts of the string on the A\
.....

opposite sides of the pully have to be shortened,

each by a length s, in order that the string

may become tight; i.e. P must move through a

space 2s
;
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P's virtual velocity _ '2s _ ^ _
W

t

W's virtual velocity s P

/. P . P's virtual velocity
= W. TF's virtual velocity.

122. Case IV. The single moveable pully when the strings

are not parallel.

Suppose the string fixed at B and to "pass round a small

peg at A. Let the centre of the pully

be raised from to 0, in a vertical

direction, and let Q, Qt
be the points

where the string quits the pully in the

two positions; draw OQnT perpen-

dicular to AQ and therefore parallel to

OQ. The angle Q,0,Qlt
is small and

equal to QAQ t ,
and we may regard

Q,Q tl
as very nearly equal to the small

arc of the pully intercepted by O
tQ t

and #,<?,,; therefore

since * QOC=* Qlt
O

t G, we shall have QC=Q /iQCt ,
and

AQlt

= AT very nearly.

Hence it is clear that TQ will very nearly be the differ-

ence of lengths of the strings AQC and AQ f
C

t ;
and by the

raising of the pully SO is shortened just as much as AC
',

L e. 2 TQ is the length of string which passes over A, in other

words, 00
1
and 2TQ are the corresponding displacements of

If and P;
P's virtual velocity _ 2TQ . n

.*. TTTT =~T i i ~I~ r\ r\
== * S1U JL U \JW s virtual velocity O

1

= 2 cos 6
9

if 20 be the angle between the strings,

W
and this is = T> >
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.'. P . P's virtual velocity
= W. TP's virtual vzlocity.

123. Case V. In the system ofputties described in (Art,

104).

If the pully A^ to which W is fixed ^

be raised through a space s, the next

pully A 2
will be raised through 2s

;
the

next A
3 through 2 . 2s, i.e. 2

2

s, and so on

so that if n be the number of moveable

pullies, P will move through 2
n
s

;

P's virtual velocity __
2
n
s _ _ W^

W s virtual velocity s P '

.'. P . P's virtual velocity W. TF's virtual

velocity.

124. Case VI. In tlie system ofpullies described in (Art.

106).

If the weight be raised through a space _^

s, the pully A
3
will be lowered through s

;

^
9

will be lowered through 2s in conse-

quence of A
B being lowered through s, and

through s besides in consequence of W
being raised through s

;
i. e. A

2
will be

lowered through (2 + 1) s
; similarly A l

will

be lowered through 2 (2 + 1) s +8 ;
i.e.

through (2
2 + 2 + 1) s ... and if there be n

pullies P will be lowered through a space

(2
n" 1 + 2

w-2
+... + l) s, or (2

n
-l) s.

P's virtual velocity (2
n

1) s
Hence, ,

T7 >
.

s

r rf-
-^ ' = 2

n = 1 =W s virtual velocity s

/. P. P's virtual velocity Tf . TF's virtual velocity.
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Note. In the last two cases the weight of the pullies has

been neglected, we leave it as an exercise for the student to

prove that when the weight of the pullies is taken account of

virtual moment ofP+ that of W+ that of each pully
= 0.

125. Case VII. In the system of pullies described in

(Art. 105).

If the weight be raised through a space s, each of the

strings at the lower block will be shortened by a length s,

and consequently Pwill have to move through ns in order that

the string may become tight. Hence

P's virtual velocity
._ >

Ws virtual velocity

.'. P. P's virtual velocity
= W. TT's virtual velocity.

ns W_ /n _
s

COR. In this system of pullies whilst a length s of string

passes round the pully A, a length 2s will

pass round the next pully B, 3s round the

next pully G, 4s round D, and so on.

If then the radii of the pullies A,B, C...

are in the ratio of consecutive numbers

1, 2, 3, ... the pullies will all revolve

through the same angle, since the arcs of

circles subtending equal angles at the

centre are proportional to the radii of the

circles.

Instead of supposing the pullies to be

distinct and separate, we may suppose
circular grooves cut in the upper block (in

the figure) with radii in the proportion of

the even numbers 2, 4, 6,... and in the

P. M. 10
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lower block grooves with radii in the proportion of the odd

numbers 1, 3, 5,... and these grooves will answer the purpose
of so many distinct pullies ;

and every point of the circum-

ference of each groove moving just as fast as the part of the

string which is in contact with it, there will be no sliding or

rubbing of the string over any groove. This is the principle

of Whites pully.

126. Case VIII. The Screw (Fig. Art. 113).

If the power P make a complete revolution, it is obvious

that the weight W will be raised through a space equal to

the distance of two threads measured parallel to the axis of

the screw, and proportionately for any smaller displacement
of P. Hence

P's virtual velocity _ circumference of circle described by P
W's virtual velocity distance between two threads

W
~
P~'

*'. P . P's virtual velocity
= W. WB virtual velocity.

127. Case IX. The inclinedplane supposed smooth.

Let the weight be displaced along
the plane through a small space 0^
the direction of P remaining appre-

ciably the same after as before the

displacement, draw O^p perpendicular
to OP, and On horizontal

;
then Op /-,w\

and OjH are the corresponding dis-
^

placements of P and W. Hence

P's virtual velocity __ Op _ O
l
cos e _ cos e W

W's virtual velocity

~
Up

~
6^ sin a

~~

sin a
~

~P
'
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.'. P. P's virtual velocity
= W. FP's virtual velocity.

Note. The student will have little difficulty in proving
the equation of virtual velocities to hold good in the case of a

rough inclined plane.

128. Case X. Any combination of Machines.

We have seen that the virtual moment of the power Papplied
to any machine is equal to the virtual moment of the weight or

force which balances P in that machine. If now we have any
combination of machines A, B, C... the force which balances

P on A may be regarded as a power applied to B, and the

force which balances this on B may be regarded as a power

applied to (7, and so on
;
and from what precedes we infer that

the virtual moments of each of these forces are equal. If then

P be the power applied to the first of a train of machines, and

W be the weight or force which balances it on the last

machine of the train, we shall have

P . P's virtual velocity
= W'

. TF's virtual velocity.

Conversely, if this equation is satisfied in any combination

of machines, we readily infer that P and W balance each

other.

129. Mechanical advantage and efficiency.

Def. The mechanical advantage of a simple machine is

the number expressing the multiple which the weight or force

produced is of thepower or force producing it, in other words,

W
it is the ratio

-p-
; for instance, in the case of the system of

W
pullies (Art. 104) the mechanical advantage = -p

= 2
W

.

If for example there be four moveable pullies, then the

102
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mechanical advantage is 16, and a power equivalent to 8 Ibs.

would be able to raise a weight of 16 . 8 or 128 Ibs.

The advantage of a combination of machines will be equal
to the product of the advantages of the several machines in the

combination.

130. In the several machines described in this chapter we
have supposed the forces just to balance each other, so that no

motion would ensue
;
and we have also in most cases neglected

the friction which will in practice exist among the parts of the

machine. These suppositions, however, are not quite accurate

when any mechanical agent is employed to produce a certain

effect by means of a machine
;
as for instance, when the pres-

sure of the air is employed by means of a windmill to grind

corn, or a horse draws a cart along a rough road horizontal or

inclined, or a locomotive is propelled along a railroad by steam

pressure. In all such cases it is obvious that the pressure

applied at first to put the machine in motion must exceed the

resistance to be overcome; and so long as this excess continues,

the rate of working of the machine will be increasing : when
this rate of working has become sufficiently great, if we

suppose the excess of the force over the resistance to cease, the

machine will go on working uniformly, and the force or power

applied willjust balance the resistance.

131. The amount of work done by a machine is com-

monly measured by the product of the pressure exerted at the

work and the space through which it is exerted, no regard

being had to the rate or speed at which the machine is

working.

Def. This is sometimes called the labouringforce or viork

done, or efficiency, in other words, we may define the efficiency
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of a force to be the product of the number of units of force ex-

erted into the number of units of space through which it acts.

Thus for illustration, if we take as the unit of efficiency or

the dynamical unit, the work performed in raising 1 Ib. verti-

cally through 1 foot, then the efficiency required to raise a ton

through 1 yard would be = 6720.

The standard of efficiency or work done assumed by Watt

and adopted generally by engineers is 33000 Ibs. raised

through I foot per minute, the agent working steadily. This

is called a horse-power, and the efficiency of steam-engines and

other machines is commonly expressed in terms of this unit.

Thus if a machine of H horse-power can raise P Ibs. through

f feet in t minutes, we shall have these quantities connected

by the relation of Pf= 33000 H, t.

132. "We have seen in the case of the simple machines,

or any combination of them, that if the system be put in

motion, then

P. P's displacement = W'. TF's displacement.

This result shews us that however the application of a force

be modified or rendered more useful by the intervention of a

machine, yet no efficiency is gained thereby ; and further, the

same result put in the form

.Ps velocity _ W
F's velocity" ~P '

shews that in whatever proportion the intensity of a force be

increased by means of a machine, yet the space through which

the increased force will operate will be diminished in the in-

verse proportion as compared with the space through which

the force applied must operate. Thus for the sake of illustra-

tion, suppose a weight of 500 Ibs. is supported on a machine



150 OF THE MECHANICAL POWERS.

by a power equivalent to 10 Ibs., then in order that the weight

might be raised through one inch it would be requisite for the

power to move through a space of 50 inches in the same time.

This diminution of velocity in the inverse proportion of the

increase of force is the foundation of the common phrase, ap-

plied to machines, that what is gained in power is lost in

velocity ; and we may regard it as another form of stating the

principle of virtual velocities in this particular case, or the

same as asserting that no efficiency is gained by the intervention

of a machine.

133. Before closing this chapter we will briefly allude

to the principle of the differential axle and Hunter s Screw.

On the wheel and axle we have seen that (Art. 100)

radius of axle
or W=P radius of wheel

W radius of wheel '
radius of axle

from which it would appear that by sufficiently diminishing

the radius of the axle a given power P might be made to raise

a weight W of any magnitude we please. Practically how-

ever there is a limit to the thickness of the axle
;
for if it be

made too small, the material of which it is made will not bear

the strain upon it, and it will break.

This imperfection is obviated in the

differential axle, the mode of action of

which will be sufficiently clear from

the figure, the string from which W
is suspended by a pully passing round

the two axles J5, C in opposite direc-

tions : if Tbe the tension of this string,

a, by c the radii of A, B, G respec-

tively, we shall have for equilibrium



HUNTER S SCREW. 151

Pa+Tc=Tb',
b-cW

and the mechanical advantage = .-=j
-L

~~>

which may be increased to any extent by making the axles

B and C as nearly equal as we please without unduly re-

ducing the strength of the axle.

134 Again, in the case of the screw, it is obvious from

the expression

W_ circumference of circle described by P . . .

P distance of two threads

that by diminishing the distance between two threads

sufficiently, we might obtain any mechanical advantage we

please ;
but the distance between the threads must not be less

than the thickness of the threads, otherwise the companion
screws could not work together ;

and further, if the thickness

of the threads be unduly diminished, they will not be able to

bear the strain upon them. This

difficulty is obviated in Hunter s

Screw, in which a screw A works

within another screwB
;
thus if c be

the radius of the circle described

by P, bj a the distance between

two threads in the screws B, A re-

spectively, then whilst P makes

one revolution, W will descend

through b, in consequence of the

screw B descending through &, but it will also rise through



152 OF THE MECHANICAL POWERS.

a in consequence of the screw A making one turn within

B-j i.e. W will descend through I a:

"Whence P.P's displacement
= W. Ws displacement gives

= W.(b-a),
, W 27TC

and -

and by making b as nearly equal to a as we please, the me-

chanical advantage may be increased to any extent without

unduly weakening the threads of the screws.

135. It has been stated in Art. 117 that the algebraic sum

of the virtual moments of a system offorces in equilibrium is

zero: a result which is known as the principle of virtual

velocities. The following is a simple proof of this principle

for a system of forces acting in one plane on a body, for

which I am indebted to Mr Besant^

LEMMA. Any small displacement of a rigid body in one

plane can be effected by a rotation about some one point in the

plane.

Let ABCD be a rigid

body in one plane, which

by a small displacement in

its plane comes into the posi-

tion A'BC'D'-.Pp, Qq the

directions of displacement of

any two points P, Q of the

body. Draw lines PO, QO
at right angles to Pp, Qq

respectively. Then it is easily

seen that P could be displaced in direction Pp only by a

rotation about some point in PO, and Q in direction



PRINCIPLE OF VIRTUAL VELOCITIES. 153

Qq by rotation about some point in QO : and if the small

motions of two points (as P, Q) of the body are known,
the corresponding motion of any other point of the body is

determined, and will arise from a rotation of the body about

the point 0, where the lines PO, Q intersect.

This point may be called the instantaneous centre of
rotation of the body.

Proof of the principle of virtual velocities for a system of

forces in one plane.

Let be the instantaneous

centre of rotation of the body,
P the point of application of

any force F of the system of

forces
;

OF the displaced

position of OP : * POP' = 0.

Draw P'n, OY perpendi-
culars on the line of action of

F. Then by similar triangles

Pn : PP :: OY : OP and PP = 6. OP,

since the system of forces being in equilibrium, the sum
of the moments of the forces about any point is zero. The
result (a) proves the proposition.



DYNAMICS.

CHAPTER I.

INTRODUCTION.

1. A MATERIAL particle has been defined to be a portion

of matter indefinitely small in all its dimensions. It has there-

fore no determinate form or volume, but it has mass, it may
be subject to the action of force, and may exert pressure on

other particles. This conception of a particle is of course

conventional, a result of arbitrary definition, so that calcu-

lations respecting such a body cannot be at once practically

applied, since no bodies of which we have any experience

correspond to this idea. But a particle having no parts, its

motion is one and indivisible, and is therefore of a simpler
kind than that of a body of finite size, different points of

which might move differently. Hence we are led to con-

sider the motion of a particle preparatory to that of bodies of

finite size, and which have a real existence. The motion of

such bodies can be reduced to a dependence on that of par-

ticles, by the application of suitable principles, but in the

present treatise we do not propose to consider the motion of

anything but particles or bodies regarded as particles ;
for

example, a ball or a body of any kind, whenever it may occur

in the following pages, will be considered, so far as its motion

is concerned, as a particle coincident in position with the

centre of gravity of the ball or body.
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2. When the position of a particle relative to certain

fixed points is being altered, it is said to be in motion, and

its path is the line (straight or curved) along which it moves.

The tangent to the path at any point is the direction of the

particle's motion at that point.

Def. Velocity is the term employed to express the degree
of swiftness or speed with which a body is moving, and this

velocity is said to be uniform when equal lengths of path are

passed over in equal intervals of time, however large or small

the intervals be taken; when this is not the case, the velocity

is variable.

When the velocity of a body is uniform, it is measured by
the space passed over in a unit of time, and is the same at

every instant whilst the motion continues uniform.

When the velocity is not uniform, it is measured at any
instant by the space which the body would describe in a

unit of time, if the body retained during that unit the same

velocity which it has at the instant when it is under con-

sideration.

3. An illustration may serve to make this mode of mea-

suring variable velocity clearer. The speed of a railway-train

is in general continually varying, and considering its motion at

any instant we should say that it was travelling at so many

(say 30) miles an hour, without much risk of being misunder-

stood; we should mean, not that it had travelled 30 miles

during the last hour, nor that it would travel 30 miles during

the next hour, but that if it were to travel for an hour with

the speed it possesses at the instant considered, it would pass

over exactly 30 miles.

In fact, the velocity of a body at any given instant must

be regarded as a quality which it then possesses without any
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reference to its anterior or subsequent state, and without any
reference to causes which may have produced or may alter

the velocity.

This velocity may and will be influencedfrom time to time

by different agents, but the velocity at any instant we regard
as a quality which the body then possesses in the same sense

that it possesses mass and position.

When then we represent the velocity of a body by a

symbol, as v, we mean (certain units of time and of length

being understood) that if the velocity continued of the same

intensity for a unit of time, the body would in that unit of

time pass over v units of length.

And the magnitude of this numerical representative of the

velocity (v) will depend upon the magnitudes of the units of

time and space, and will vary with them, viz. directly as the

unit of time, and inversely as the unit of space.

Thus a velocity of 360 feet per minute is equivalent to

120 yards per minute, or to 6 feet per second, or to 2 yards

per second.

Or more generally If v, v be the numerical values of any
the same velocity referred to units of time and space T, cr : T', a'

respectively, then v, v are connected by the relation

,
cr .r

v = . v.
cr .T

4. Formula for uniform motion.

Let s be the space described in time t by a body moving
with uniform velocity v, then since in each successive unit of

time the body passes over v units of length, we shall have

vt for the whole space passed over in t units of time, i. e.

s = v . t, a formula which holds true whether t be integral or

fractional.
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5. We proceed next to explain how change of velocity is

measured.

When the velocity of a body is continually increasing in

such a way that it receives equal increments of velocity in

equal successive intervals of time, however large or small

these intervals may be, the body is said to be uniformly

accelerated, or the acceleration is said to be uniform.

When the velocity changes in any other way, the accele-

ration is variable.

Measure of acceleration.

When the acceleration is uniform, it is measured by the

quantity by which the velocity is increased in a unit of time,

and is the same at all times during the motion. When the

acceleration is variable, it is measured at any instant by what

would be the increase of velocity in a unit of time, supposing
the rate of increase of velocity to be uniform for that unit,

and of the same intensity as at the instant considered.

6. When then we express the acceleration of a body by
a symbol/, we mean (certain units of time and space being

understood) that if the rate of increase of velocity continued

of the same intensity for a unit of time, the velocity would be

increased by/at the end of that unit.

A second is frequently taken as the unit of time, and a

foot of length, but as before in Art. (3), any other units might
be chosen instead, and the numerical value of / for given
units of time and length being given, its numerical value for

any other assigned units of time and length may be found.

Thus, let/ feet be the velocity generated in one second,
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the acceleration being uniform, then 60/ will be the velocity

generated in 60 seconds, i.e. in one minute.

This means that the body at the end of one minute would

have acquired a velocity of 60fper second.

Remembering then that when we use a minute as the

unit of time we must measure velocities by the spaces whicli

would be described in one minute, the velocity acquired would

be 60. 60. f per minute. Hence/feet being the measure of

the acceleration when one second is the unit of time, 60
2

./
will be the measure of acceleration when a minute is the unit

of time.

Thus if the unit of time be altered, the numerical value of

the acceleration will vary as the square of the unit of time,

and besides as in the case of velocity, Art. (3) if the unit of

space be altered, the numerical value of/will vary inversely

as the unit of length.

These considerations may be expressed in general terms

as follows,
"
If//' be the numerical values of any the same

acceleration referred to units of time and space r, o- : T, a

respectively, then//' are connected by the relation

Ols. Retardation may in all cases be regarded as a nega-
tive acceleration.

7. The term force has been applied to any cause which

tends to move a body or to alter the state of its existing

motion. This conception of it renders it unnecessary to con-

sider the manner in which force is produced, whether it be

by the agency of living bodies, or the pressure of inanimate

substances, or by the intrinsic attraction of matter. We shall



MASS. 159

regard force simply with reference to its effects, viz. the pro-
duction of motion in material bodies

; and, this points directly

to the two particulars to which the student is requested to

give his attention in estimating the effects offeree, the matter

or mass moved, and the velocity and change of velocity pro-

duced.

8. We here introduce a new quality, viz. that of mass,

which is perhaps not familiar to the student. But experience

teaches us that equal efforts are not required to produce the

same motion in different bodies. It will probably be admitted

without hesitation that equal volumes of the same substance

would acquire equal velocities by the application to them of

equal forces for the same time
;
but this would not be the

case with equal volumes of different substances. In fact it

will frequently happen that when equal forces are applied

for the same time to bodies of different substance and of

unequal volume, the velocity acquired by the body of greater

volume will be greater than that of the other, and vice versa, ;

so that the consideration of volume is not sufficient for the

comparison of bodies under this aspect, and it is necessary to

introduce a new idea, viz. that of mass or massiveness, and

this must be regarded as a quality of matter sui generis, as

much so as its weight, form, volume, &c.

9. We give no definition of this new species of quantity,

which is a fundamental one in Dynamical science
;

for such

definitions as might be given would be as illusory as those

which might be given of time, space, and many other species

of magnitudes.

But it is necessary clearly to define equality between quan-
tities of this new species, so that in estimating the mass of a
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body it may be referred to the like quality of some other body
taken as a standard.

We give then the following definition of equal masses ;

Def. "The masses of two particles are said to be equal
when two equal forces acting on them similarly for the same

time generate in them equal velocities."

The notion of equality of mass of two bodies will readily

lead to that of bodies whose masses have any assigned ratio.

Thus if the masses of two bodies A and B are said to be in

the ratio m : n, it is meant that A arid B might be divided, the

former into m equal parts and the latter into n equal part?,

any two of which parts are of equal mass and satisfy the

above definition.

Def. The mass of a unit of volume of any substance is

called its density, so that if m be the mass of a body whose

volume is V and density p, we have m = Vp.

10. If the notion of mass is not familiar to the student,

he will perhaps consider the account of it given above in Arts.

(8, 9) vague and unsatisfactory. The same vagueness attaches

to any species of quantity or quality till the conception of it

is impressed on the mind by continued experience, and this

holds more especially with such qualities as are not obvious

to the senses. For exam pie, form and volume being qualities

obvious to the eye, the conception of form and volume is

much more readily acquired than that of hardness, which

requires further experience to familiarize the conception of it.

So the conception., of the mass or massiveness of matter, not

being obvious to the sight or touch requires further experience

before it becomes familiar to the mind.

We may regard the massiveness of matter as that quality
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which enables it to act upon other matter isolated from

itself: for instance, in the case of bodies at the earth's sur-

face it is that quality which subjects them to the influence

of the earth's attraction and causes in them the quality which

we call iveight.

11. The unit of mass may be assumed at our convenience
;

thus we might take the mass of a cubic inch of lead for our

unit if it be convenient to do so under any particular circum-

stances.

And when we express the mass of a body by a symbol m
we mean that the body has m times the mass of that body
whose mass we have taken for our unit of reference. See

Art. (44).

12. Momentum.

Def. If m and v be the numerical measures of the mass

and velocity of a body, the product mv is called the momentum

of the body.

The momentum of a particle must be viewed as a quality

sui generis, and is to be compared only with the same quality

of other particles, and apart from any external agency which

may have been instrumental in producing it.

Obs. The velocity considered in Arts. (2, 3) is sometimes

called absolute velocity, having been defined and measured

with reference to points fixed in space : and this is distin-

guished from relative velocity, which is the term applied to the

same quality defined and measured with reference to points

which maintain an invariable position with regard to one

another, but which are not necessarily fixed in space.

A similar remark applies to absolute and relative accele-

ration, and to absolute and relative momentum.

P.M. 11



162 INTRODUCTION.

13. Supposing then a particle's geometrical and dynamical
state to be defined at any instant by a knowledge of its mass,

position, velocity, acceleration and direction of motion, we

proceed to examine and measure the forces to which it is

subjected.

It is often convenient to consider the transfer of a body
from one position to another without introducing any con-

sideration of the mass of the body, i. e. to treat of the velocity

and acceleration exclusively of the mass.

Def. When we regard a force under this aspect, witli

reference that is to the acceleration it can produce, or its

power of accelerating a given body, we speak of it as an
'

accelerating force," and we measure the accelerating force

simply by the acceleration of the body, i. e. by the velocity

which it can generate in the body in a unit of time, if

uniform
;
or if variable, by the velocity which it would gene-

rate in a unit of time, if it acted for a unit of time with the

same intensity as at the instant considered.

14. Obs. The term acceleration or power of acceleration

would better express that particular effect of a force which is

here considered, but the term accelerating force has been long
sanctioned by usage, and the student is here cautioned that

the term is used in the above sense. For example, the phrase
"A body subject to an accelerating force f, &c." must be un-

derstood to mean " A body subject to a force which can pro-

duce an acceleration/in that body, &c."

Thus when we say the accelerating force on a body is ft

or a body is subject to an accelerating force /, we .mean that

f is the acceleration of the body at the instant considered,
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or, that velocity is being generated in the body at that instant

at the rate of/ units of space per unit of time.

15. Def. A force considered as communicating motion to

matter, i. e. regarding both the amount of mass moved and
the amount of motion which it can communicate to it, is called

a moving force ; and it is measured by the momentum which

it can generate in a unit of time, the intensity of the force

remaining constant for that time.

Thus, if F be the symbol which represents a moving force,

and / represents the accelerating force of F on a mass m, i. e.

if f represent the velocity which F can generate in m by
acting uniformly upon it for a unit of time, we have F= mf.

Hence we see that a moving force is expressed by the

product of the number of units of mass in the body, and the

number of units of acceleration which it can produce in the

body.

Obs. This is sometimes given as the definition of moving
force, i.e. moving force has sometimes been defined to be

the product of the mass into the accelerating force.

16. The definitions above given of mass, momentum,

accelerating force, moving force, must be looked upon as

arbitrary ;
but we accept them as convenient terms to employ

in expressing the laws of the action of force upon matter and

in deducing from them their legitimate consequences. For a

knowledge of these laws we must have recourse to experiment,

for we can have no d priori knowledge of -the constitution of

matter, or of the principles which regulate and modify its

dynamical state or condition.

112
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17. Impulsive Force.

The effect of a force to which our attention is to be

directed is the motion produced in a given mass
;
and this

effect we regard as produced gradually in all cases. In other

words, we consider that some time is necessary during which

a force produces its effect. This time may be finite and

appreciable, as when a body is pulled along a plane, or when

a body falls to the earth under the action of gravity, or when

a railway-train gets up its speed from a state of rest by the

action of steam-pressure. But cases frequently occur in which

the time required for the effect of a force to manifest itself

is very small and, so to speak, inappreciable ; as for example,

when a body is put in motion by a blow, almost instanta-

neously.

When a force requires a finite and appreciable time in

order to produce an appreciable motion, it is not unfrequently

called a finite force, as in the cases first mentioned. But

when motion is produced by a blow or impulse, as in the

latter case, in an indefinitely small time, the force is gene-

rally called impulsive ; but still we regard the effect as pro-

duced by the action of a force operating for a very short

time.

In such cases the impulsive force, or the force of tlie

blow, is measured by the momentum generated in the body by
the impulse.

18. To illustrate this, we may suppose a ball B at rest to

be suddenly put in motion by a ball A striking it. The balls

will be in contact for a short time (T suppose), and during this

interval A will press B with a force varying in intensity from

the beginning to the end of the interval T. The movingforce
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which acts on B will thus be varying, but we may practically

consider it to have a mean intensity and to remain uniform

during the time of contact. If we call this moving force F,

and/ the acceleration which F can produce in the ball B (the

mass of which we will call m), and v the velocity acquired by
B at the end of the time T, we shall have, Arts. (6, 15),

v=fr, and F=mf,

consequently FT = mfT = mv.

Now v the velocity acquired by B is finite, and therefore

the momentum mv is finite, so that although r is in general
so small as to be inappreciable, yet Fis so large as to render

the product FT finite, and we take this finite product to be

the measure of the impulsive force, in other words, if P be

an impulsive force which produces a velocity v in a mass m,
then P = mv.

19. Before stating the laws of motion, we proceed to

give some explanation of the geometrical representation of the

position and motion of a particle ;
and for the sake of simpli-

city we will in the following Articles (19 24) suppose the

motion to take place in one plane (that of the paper suppose).

If two lines Ox, Oy be drawn in

the plane of motion inclined at any

given angle, the position of any point
P may be simply defined with re-

ference to these lines (as fixed lines

of reference), by drawing two lines / #

through P, one of them PN parallel

to Ox, the other PM parallel to Oy : if the distances OM,
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ON corresponding to any point are known, the position of

the point is easily determined
;

for we have simply to draw

lines through the points M9
N parallel respectively to Oy

and Ox, and the point in which these lines intersect is the

geometrical position of P.

The point M is called the projection of the point P on the

line Ox, or the position ofP referred to the line Ox, and simi-

larly N is the projection of P on the line Oy, or the position of
P referred to the line Oy.

Note. The above mode of representing the position of a

point will be familiar to the student who is acquainted with

co-ordinate geometry as the method of co-ordinates, OM and

ON being the co-ordinates of P measured along Ox and Oy.

20. Resolution and composition of velocities.

Further, if a particle be -moving
with uniform velocity in a given
direction (as PQR), so that Py Q,

R are the positions of the particle at

given instants, and if we regard those

points P, Q, R as determined by
their projections on -two fixed lines Ox, Oy, then will p, q, r be

the projections of P, Q, R on Ox, and we readily see by simple

geometry that the ratio of pq : pr is the same as that of

PQ : PR, whatever be the intervals of time in which the lengths

PQ, PR are described by the particle. That is, if the particle

move uniformly, its projection on a given line Ox will also

move uniformly, not with the same velocity as the particle,

but with a velocity which bears to that of the particle a ratio

dependent only on the inclination of the direction of motion
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of the particle to the two lines of reference Ox, Oy. The

same is obviously true of the projection of the particle upon
the other line of reference Oy.

The velocity of the projection of P along Ox is called the

velocity ofP resolved along Ox, or the velocity of P referred to

Ox
;
and similarly with respect to the velocity referred to Oy.

21. Now since we regard the velocity of a particle at

a given instant as a quality which the particle then possesses,

without any reference to the time during which it retains that

velocity, or the space through which it moves in consequence
of it, and also without reference to any causes which may
subsequently modify it, we may represent

& _Q
the velocity of a particle P by a line PQ / ^^1
drawn in the direction of motion, and pro- /^ /

portional to the velocity in magnitude ;

** 'h

and if a parallelogram be constructed, of which PQ is the

diagonal, and the sides of which (viz. PR, PS) are in the

direction of known lines of reference, the sides PR, PS will

represent the velocity of P resolved along those lines of refer-

ence severally.

THEOREM. In other words, we have this theorem :

" If a

straight line PQ which represents the velocity of a particle be

made the diagonal of a parallelogram PQRS, whose adjacent
sides PR, P$are in assigned directions, the resolved velocities

in the direction of the sides will be represented by those

sides respectively."

And conversely,
"
If the resolved velocities of a particle in two given direc-

tions be represented by two lines PR, PS drawn from a point

P, the actual velocity of the particle will be represented in
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magnitude and direction by the diagonal of the parallelogram
constructed on those two lines as adjacent sides."

22. In the preceding Article we have represented velo-

cities as to magnitude and direction by lines, and in a similar

manner we may represent accelerations by lines, and we may
regard an acceleration as resolved in given directions in the

same way as we supposed a velocity to be resolved in given

directions; and with this understanding we shall have the

following theorems respecting acceleration analogous to the

preceding ones respecting velocity, viz.

THEOREM. " If a line AD, which

represents the acceleration of a

particle, be made the diagonal of a

parallelogram ACDB, whose ad-

jacent sides AC, AB are in assigned

directions, the resolved accelera-

tions in the directions of the sides will be represented by
those sides respectively."

And conversely,

"
If the resolved accelerations of a particle

in two given

directions be represented by two lines A C, AB drawn from a

point A, the actual acceleration of the particle will be repre-

sented in magnitude and direction by the diagonal of the

parallelogram constructed on those two lines as adjacent

sides."

23. The theorems of the two preceding Articles may
be called the Parallelogram of Velocities, and the Parallelo-

gram of Accelerations. They are analogous to the Paral-

lelogram of Forces in Statics, and admit of the same exten-
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sion as the latter theorem, so far as composition and resolution

are concerned
;
but the student must bear in mind that these

two theorems respecting velocity and acceleration form part

of a purely conventional mode of representing geometrically the

position and motion of a particle ;
and he must be careful not

to confound the meaning of lines which in one problem may
be employed to represent velocity, with the meaning of other

lines, which in the same or other problems may be taken to

represent acceleration, and vice versa.

24 The results of the parallelo-

gram of velocities maybe stated as fol-

lows, with algebraic symbols results

which may easily be obtained by

trigonometry. A velocity F, in a

direction inclined at angles a, /3 to

the lines Ox, Oy is equivalent to the

velocities

^ sin 8 , Tr sin a
F- ; ^-7^ and F-

resolved in the direction of Ox and Oy respectively.

And conversely, if these component velocities in direction

of Ox, Oy be represented by X and F, the actual velocity F
and its direction will be determined from the equations

sin (a + /3)

'

sin (a + /3)

'

which give F2 = X* + F2+ 2A7Tcos (a

Fsin (a -f /3)

which two equations determine the magnitude and direction
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of the actual velocity, the angle (a + /3) between the fixed

lines Ox, Oy being a known angle.

The same formulas, substituting acceleration for velocity,

will hold good for the resolution and composition of accelera-

tion.

25. The advantage of the mode of geometrical repre-

sentation explained in Articles (19 24) will become obvious

to the student when he has become acquainted with the laws

of motion, and the application of them to determine the

position and motion of a particle when acted on by known
forces.

Obs. We have supposed, as was before mentioned (19),

that the motion is entirely in one plane ;
when this is not the

case, the method must be extended by taking three lines of

reference in space analogous to the method of co-ordinates in

geometry of three dimensions
;
but in the present treatise we

shall have occasion to consider but few cases of motion which

may not be regarded as taking place in one plane.

26. Having explained the mode of representing the

motion of a particle geometrically, we proceed to enunciate

and illustrate certain principles deduced from observation and

experiment which are commonly called laws of motion, and

according to which the motion of a body considered as a

particle are calculated.

FIRST LAW OF MOTION.

27. A particle if at rest will continue at rest, and if in

motion will move in a straight line with uniform velocity unless

it is acted on by an extraneous force.
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This law is sometimes referred to as the law of Inertia or

the principle of Inertia. It expresses the fact that a particle

of matter has no power within itself of altering or influencing

its own state of rest or motion.

Of this principle no direct proof can be given, but it may
be rendered probable by such experiments as the following.

If a ball be projected along a smooth pavement it will con-

tinue in motion for a considerable time, and its path will be

more nearly a straight line the smoother the pavement is;

but the friction will gradually reduce it to rest : if it be pro-

jected along a sheet of ice, it will continue longer in motion,

and will move more uniformly. Such experiments may suggest

the inference that if all extraneous force could be removed,

the ball would go on for ever with uniform velocity.

28. Having established the principle that a particle can-

not put itself in motion, nor alter in any manner the nature

of its own motion when it is in motion, we next require some

principle which will enable us to calculate the effects of

forces on a particle in motion. The experiments and re-

searches of philosophers have led to the following, which

may be called

THE SECOND LAW OF MOTION.

29. When a particle is in motion under the action of any

force, the acceleration of the particle estimated in any assigned
direction is wholly due to the force resolved in that direction,

and is the same in intensity as ifthat resolvedforce alone acted

on the particle at rest.
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Tims for example, if the particle P be moving with any
velocity v in the direction PF, and
if X, Y be the forces acting upon
P at that instant resolved in direc- /---- ^
tions parallel to two fixed lines Ox,

Oy, this second law asserts that

(at the instant under consideration)

the accelerations of P estimated in

directions parallel to Ox and Oy are the same as would arise

from the separate and independent action of X, Y upon P at

rest, in direction of Ox and Oy.

By the acceleration due to a force is meant of course the

acceleration which that force is capable of producing in the

particle. And if several forces act simultaneously on the par-

ticle, the force mentioned in the enunciation of the second law

must be taken to mean the resultant of the several forces

which act upon the particle : this resultant being determined

in the same way as the resultant of statical forces is de-

termined.

The enunciation of this second law further implies the fact,

that the accelerating power of a given force upon a particle (or

what we have before called the accelerating force] estimated

in the direction of its action, is of the same intensity what-

ever be the dynamical state of the particle, i.e. whatever be

the velocity and direction of the particle's motion, or, the

same as it would be if the particle were for an instant at rest.

30. The principle stated in the second law of motion will

be sufficient (theoretically speaking) when the accelerating
forces acting upon a particle are given, to enable us to deter-

mine the motion of the particle, i.e. to determine its position and
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velocity at any time; for we should only have to calculate its

position and velocity referred to two fixed lines as Ox and Oy
(Art. 19, &c.) (or referred to three lines fixed in space if the

motion be not in one plane), and when its motion referred to

these lines is known, its actual position and velocity are

known.

It will however frequently be the case in nature that the

forces on a particle will vary with the position of the particle,

and thus its motion will indirectly affect the forces which act

upon it. To determine the motion of a particle generally will

require the processes of the Integral Calculus, but in the pre-

sent treatise we do not propose to consider any motions which

require for their calculation anything beyond ordinary alge-

bra; such for example as arise from the action of uniform

forces or from impulsive action, or these combined.

31. Illustrations of the second law of motion.

Experiments such as the following may be mentioned as

illustrating and confirming the second law of motion.

If a ship be moving uniformly, a ball when thrown with

the same force will go to equal distances from the ship,

whether it be thrown towards the bow or the stern, or at

right angles to the direction in which the ship is moving. A
ball let drop from the top of the mast will strike the deck at

the foot of the mast, and will fall in the same time, whether

the ship be at anchor or moving uniformly. A ball let drop

from the top of a railway-carriage in uniform motion, will

strike the floor of the carriage at the point directly beneath

the point from which it started. A pendulum will vibrate in

the same time from east to west, as from north to south, or

in any other direction
;
thus shewing that whilst it is carried



INTRODUCTION.

uniformly in one definite direction by the earth's rotation, its

motion relatively to bodies on the earth's surface which have

the same motion as the pendulum arising from the earth's

rotation, is uninfluenced by the motion thence arising.

32. Experiments such as these, of course, do not prove

the law. Strictly speaking it could only be proved by shew-

ing it to be true for every individual case that can occur,

which is manifestly impracticable. But when the results of

numerous and intricate calculations based upon it are invari-

ably found to agree with observation, we arrive at a moral

conviction of its truth. And the principle itself having been

obtained by induction from a considerable number of facts and

observations, we employ it with confidence in deducing other

consequences from it.

33. The mode of obtaining the magnitude of the accele-

ration which a given force is capable of producing in a given

particle will be explained presently (see third law of motion] ;

and assuming the principle which has been stated in the second

law of motion, and illustrated in the preceding articles, we
shall know how to obtain the magnitude of the acceleration

of the particle, estimated in any proposed direction, when we
know the forces which are acting upon it. Now the effect of

an acceleration on a particle is to create or modify velocity

in the particle, and we may regard the velocity with which

a particle is at any instant animated, as the accumulation

of the effects of the accelerating forces which have acted

upon it during the successive portions of the interval of time

during which it has been in motion. This consideration will

readily lead us to the following conclusion as a necessary

consequence of the second law of motion stated in Article 29,
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viz. the velocity of a particle estimated in a given direction

is wholly due to the acceleration which has operated on it in

that direction.

34. In order to obtain actually the velocity acquired by
a particle by the action of given forces, we shall in general

require (as before remarked) the integral calculus : but we
will here give the solution of a particular problem of frequent

occurrence, which can be readily inferred from the second law

of motion.

35. If there be simultaneously impressed on a particle
two velocities which would separately be represented by the

lines AB, A C, the actual velocity will be represented by the line

AD, which is the diagonal of the paral-

lelogram of which AB, AC are adja-
cent sides.

Let the motion of the particle be

referred to the directions AB, AC,
then we may suppose the particle at

rest at A to receive simultaneously

two blows in directions AB, AC respectively, which would (if

they operated independently of each other) generate velocities

represented by AB, A C. Complete the parallelogram ABD C.

Then since the instant after the blows are communicated to

the particle it is subject to no force, it must move with

uniform velocity in some straight line (by first law of motion),

and this straight line must be such that the velocity along it

when referred to the lines AB, AC will be represented by the

lines AB, AC (by the second law). The resultant velocity

then must be represented by AD the diagonal of the paral-

lelogram ABDC.
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36. In the problem of the previous article instead of

supposing two blows to be given to the particle simultane-

ously, we may suppose one blow given to the particle already

in motion
;
for example, if the particle be moving in direc-

tion AC with a velocity represented by AC, and at the

instant the particle is at A let a blow be given to it in

direction AB, capable of producing on the particle at rest a

velocity represented by AB: the actual velocity as regards

direction and magnitude (by the same reasoning as the above)

will be represented by AD.

Hence it appears that velocities (regarded as the effects

of impulses) may be compounded in the same way that

statical forces are compounded by the polygon offorces, and

the same theorem mutatis mutandis will hold good for velo-

cities as for statical forces.

37. The theorem stated and proved in Article (35), may
for convenience be referred to as the dynamical parallelogram

of velocities ; it is a consequence of the second law of motion,

and exhibits the application of that law to find the effect of

one or more impulsive forces those effects being expressed

in accordance with the geometrical mode of denning and

estimating motion previously explained (Art. 19 25). The

student will be careful to distinguish it from the geometrical

parallelogram of velocities explained in Art. (20), which is

simply a geometrical convention.

In a similar manner from observing the analogy between

the statical parallelogram of force and the second law of

motion, we may regard the second law as the dynamical

parallelogram of accelerations ; carefully distinguishing it

from the geometrical parallelogram of accelerations stated in

Art. (22).
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38. We may, ifwe please, regard any velocity with which

a particle is animated as remaining permanently impressed

upon it, and when force acts on the body, the velocity arising

from the action of that force may be regarded as superadded

(so to speak) to the existing velocity so that the actual

velocity of the particle at any time in a given direction will

be the algebraic sum of the velocities which have been im-

pressed upon it in that direction.

39. The following experimental illustration may be given
of the dynamical parallelogram of velocities.

Let AB represent the deck of a ship which is moving

uniformly parallel to itself from left to right, and let a body
on the deck have a velocity communicated to it, which if the

ship were at rest would make it move uniformly from (7 to D
along the line CD in the same time that the ship moves from

AB to the position A'B'.

It is found by experience that the body moves on the deck

relatively to it in exactly the same way as if the ship were at

rest, i. e. (drawing the parallelograms as in the figure) if in any
time T the line CD would have been brought to G

t
D

l by the

motion of the ship, and CP be the space which the body
would have moved through in the same time T if the ship had

been at rest, then it is found that P
t
is the position of the

body (CP=CP) at the end of the time T, whatever be the

magnitude of T.

P. M. 12
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Thus, in reality, the velocity of the ship has been com-

pounded with that of the body, and the body has described

in space the line CD' uniformly and in the same time that the

point G on deck has moved to C'.

This confirms the dynamical parallelogram of velocities,

and by inference the second law of motion also, so far as one

experiment can do so.

40. Thus we see that if a body be moving along with a

space which moves uniformly, and if any velocity be impressed
on the body, the motion of the body relatively to that space

will be the same as if the body and the space had been origi-

nally at rest; and more generally (if the second law of motion

be true) we infer that if several bodies be in uniform motion,

but be at rest relatively to each other ; and if any force acts on

one of them, the motion of this one relatively to the others is

the same as if they had been all originally at rest. Or we may
state this principle as follows: " If all the points of a system
have uniform and equal velocities and move in parallel direc-

tions, and if one of these points or particles be acted on by
any force, its motion relative to the other particles will be the

same as if the common motion of the system did not exist,

and the particle in question were acted on by the same force

acting in the same direction."

And from hence also it is obvious that we may (when we
find it convenient to do so) impress any the same uniform

velocity on each of the bodies composing a system, without

affecting the motion of these several bodies relative to each
other.

41. When the acceleration of a body for all successive
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instants is known, the motion of the body can be calculated as

has been stated before. Now experience shews that the ac-

celerations produced in different bodies by equal forces are not

the same. We require then some principle based upon experi-

ment which will enable us to determine the acceleration of a

body of given mass when acted on by a given force or pressure.

The principle required for this purpose is called the third law

of motion, and may be stated thus.

THIRD LAW OF MOTION.

42. When a force or pressure acts on a particle, the moving

force on the particle is proportional to the force or pressure

acting upon it.

That is, if P, P be two forces measured statically (viz.

by the weights they would respectively support) acting on

two particles whose masses are m, m, and if f, f be the

consequent accelerations of the two particles, then

P :P "mf'.mf,
or P cc mf.

Since our units of force, mass, and acceleration are arbi-

trary, we may for convenience make P 1 =
I,/'

=
1, m =

1, and

we shall then obtain P = mf. In other words, if we take our

unit of mass to be such that a unit of force acting upon it

would produce in it a unit of acceleration, then referred to

these units the number expressing the force will be equal to

the product of the numbers which express the mass and

acceleration.

43. If W be the weight of a body whose mass is m, and#
the accelerating force of gravity at the surface of the earth

(i.e. the acceleration which the attraction of the earth, acting

122
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freely on the body in vacuo, would produce in the body), we
shall have by the previous article W mg = Vpg. (Art. 9.)

The numerical value of g must of course be determined by

experiment, and the observations made upon pendulums are

those which give the most trustworthy results. They are

however of too refined a character to be introduced here
;
and

it may be sufficient for the present purpose of the student to

state, that if a foot and a second be taken for the units of

space and time, the numerical value of g, in the latitude of

London, is 32' 19 or 32 '2 nearly.

The value of g is found by experiment to be slightly differ-

ent at different places on the earth's surface, but the variation

is so small, that we may for all ordinary purposes assume the

value of g to be that just given.

Or we may state the above result respecting the value of

g thus :

A body falling freely from rest in vacuo under the action of

gravity will, in one second from the beginning of its motion,

have acquired a velocity of 32
-

2 feet per second.

44. If we call the moving force the dynamical measure of

a force, the third law of motion establishes a connexion

between the statical and dynamical measures of force, and

asserts that the statical measure is proportional to the

dynamical measure.

Considering the equations

m = Vp, W= mg = Vpg ;

we see from the former that the unit of mass would be the mass

of a body of a unit of volume and a unit of density ; and from

the latter, since # = 32'2 when a foot and a second are taken

for the units of space and time respectively, the unit of weight
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is the weight of a body of the unit of density, and of volume

equal to the 32'2
th

part of the unit of volume.

The density of distilled water is generally taken as the

unit of density, and a cubic foot as the unit of volume.

The weight of a cubic foot of distilled water is 1000 oz.

avoirdupois, nearly.

45. The equation P=mf must be always understood in

accordance with the explanation given in Article (42). As a

further illustration, we will apply it to the following problem.

A body weighing 24 Ibs. is moved by a constant force, which

generates in a second a velocity of 3 feet per V \find what weight
the force would statically support.

If we take m to represent the mass of the body and P for

the number of Ibs. the force would support, g the accelerating
force of gravity, we have

24 = 77^,

P = mf,

m being the same in both equations. And by the question,

/the acceleration produced by P in the mass m is represented

by 3, a foot and a second being the units of space and time,

and with the same units, g the accelerating force of gravity
is = 32-2.

Whence P =^24= -~- 24 = 2'236 Ibs. nearly; that is, the

force which acts on the body would support in equilibrium

a weight equal to 2*236 Ibs.

46. Action and Reaction.

If two bodies A and B are in contact and at rest, we know
from statical principles that the pressure which A exerts upon
B is equal in magnitude, and opposite in direction to that
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which B exerts upon A ;
and again, if two bodies A and B at

rest are connected by a fine thread, the strain which the

thread exerts upon one of the bodies is equal in magnitude
and opposite in direction to that which it exerts upon the

other. The question will arise,
"
Is this the case when the

bodies are in motion ? or, if the mutual pressures which they
exert on each other are not equal, what relation subsists

between them ?" And to these questions (which must arise

in all problems where there is any mutual action between the

different parts of a system of bodies), the principles which

we have already stated afford no satisfactory answer. It is

assumed, however, that when one particle acts on another

particle, in motion as well as at rest, the second exerts on

the first a force equal in magnitude and opposite in direction

to that which the first exerts on the second. If the force

which the first exerts on the second be called " action" that

which the second exerts on the first may be called " reaction"

and the principle just stated may in other words be expressed
thus :

" Whenever one loUy A acts on another B, the latter

reacts on the former, and this action and reaction are equal

in magnitude and opposite in direction"

47. The action here spoken ofmay be of any kind what-

ever; as for example, when two bodies in motion or at rest

press against each other, their mutual pressures are equal and

opposite ;
or in other words, the action and reaction are equal

in magnitude and opposite in direction. Or again, when two

particles, move in any manner connected by a string, the force

which the string exerts on one is equal and opposite to the

force it exerts on the other. Or again, if two particles attract

or repel each other, the dynamical measure of the force which

one of them A exerts upon the other B, is equal to that which
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B exerts upon A. This principle is frequently embodied in

the brief statement that " Action and Reaction are equal and

opposite."

48. For some illustration of the third law of motion, we

may refer to the observations made with Atwood's machine

(Arts. 80 82) ;
but the motions of the heavenly bodies afford

the most interesting as well as the most searching test of the

truth of the dynamical principles which are employed in

investigating them.

It has been before remarked, that the laws of motion are

enunciated and asserted to be true only with respect to

particles, and of course, as we have no practical experience of

particles, in the mathematical sense of the word, the student

must not expect to find them proved with that degree of

strictness which attaches to geometrical demonstration. He
is recommended for the present to accept them as conclusions

which have been arrived at by philosophers after much painful

inquiry and observation, and not to trouble himself much
with the particular experiments which may be said to suggest
these laws, or with the calculations of more complex phe-
nomena which are based upon them, till he has grasped their

meaning, and applied them to a variety of problems. He will

then be able more fully to appreciate the bearing of particular

experiments on the principles which they are intended to

illustrate and confirm. But as no individual experiment will

involve one law of motion to the exclusion of the others, the

laws of motion must be taken as a whole, and when we find

the observations of numerous and complex phenomena agree-

ing with calculations based upon thes principles and involv-

ing them in every variety of combination, we arrive at a moral

conviction of their truth.
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The following remarks on the Laws of Motion may be
omitted by the student until he is further acquainted with

the subject.

48*. a. Much difference of opinion has prevailed at

different times as to the proper mode of stating the prin-

ciples derived from experience and observation which are

commonly spoken of as Laws of Motion. These principles

were the subject of much discussion among mathematicians

at the close of the 16th and the beginning of the 17th

centuries, and it would appear that to Galileo is due the

credit of first apprehending and stating the principles in-

volved in t\\Q first and second laws. Newton's Principia was

published A. D. 1687, and the celebrated Axioms or Laws

of Motion which stand at the beginning of the book are a

much clearer and more general statement of the grounds of

Mechanics than had yet appeared, though they do not

involve any doctrines which had not been previously stated

or taken for granted by other mathematicians.

The distinction between Statics and Dynamics now ac-

cepted is of recent date, and was not made till the be-

ginning of the present century : and the statement of the

several Laws of Motion given in this chapter is substantially

that adopted by Dr Whewell and the principal English
writers on Elementary Mechanics of late years.

/9. The three Laws of Motion given by Newton are as

follows.

LEX I. Corpus omne perseverare in statu suo quiescendi

vel movendi uniformiter in directum, nisi quatenus a viribus

impressis cogitur statum suum mutare.

"
Every body continues in its state of rest or of uniform
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motion in a straight line, except in so far as it may be com-

pelled by impressedforces to change that state"

LEX II. Mutationem motus proportionalem esse vi mo-

trici impressce, et fieri secundum lineam rectam qud vis ilia

imprimitur.
"
Change of motion is proportional to the impressedforce,

and takes place in the direction of the straight line in which

the force acts"

LEX III. Actioni contrariam semper et cequalem esse

reactionem : sive, corporum duorum actiones in se mutuo semper
esse cequales et in partes contrarias dirigi.

" To every action there is always an equal and contrary

reaction : or, the mutual actions of any two "bodies are always

equal and oppositely directed"

Remarks.

7. The first Law of Motion as stated in Art. 27 agrees

substantially with the first Law as stated by Newton.

B. The second Law of Motion as stated in Art. 29 has

regard to acceleration: and the velocity will be derived from

this in the manner described in Art. 30.

Newton defines quantity of motion to be its measure ex-

pressed by the product of the mass and the velocity so that

the word motion used in his statement of the Second Law
must be understood as synonymous with momentum. Writers

who adopt Newton's statement of the three Laws, derive

their method of measuring mass frpm a discussion of his

second Law.

It has been explained in Art. 30, how the velocity at any
time has to be calculated from the acceleration from instant
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to instant by methods which except in very simple cases -

require the Integral Calculus : so that we may look upon
the second Law given in Art. 29 as taking up the problem
of determining the motion of a body subject to given forces

at a step earlier in the process than does the second Law
of Newton.

e. The statement in Art. 46, that whenever one lody A
acts on another B, the latter acts on the former ,

and this action

and reaction are equal in magnitude and opposite in direction

agrees substantially with Newton's third Law.

It is maintained by Dr Whewell that the Law (Art. 42),

that the Moving Force is proportional to the Pressure is only

another form of stating Newton's principle that Action and

Eeaction are, equal and opposite.

He illustrates his view of it by the impact of balls in

which the momentum gained by one ball is lost by the

other i. e. that the Action of one is equal and opposite to the

Eeaction of the other. He applies his reasoning to cases of

continued pressure, e.g. a boat and a ship afloat, if a person

in one of them pull the other by means of a rope, the force

on each of the two is the same, namely, the tension of the

rope, but in opposite directions. He extends his reasoning

to attractions : if two bodies, as a magnet and a piece of

iron, are at liberty to approach each other, the attraction will

act in exactly the same manner as the tension of a cord by
which one should be pulled to the other the pressure on

each of the two, arising from the attraction, is equal and in

opposite directions.

f. The three Laws of Newton are not adopted in the

principal French treatises
;

but we find in them two prin-

ciples only as borrowed from experience, viz.
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FIRST. The Law of Inertia, that a body not acted upon

by any force would go on for ever with a uniform velocity.

This coincides with 'Newton's First Law.

SECOND. That the velocity communicated is proportional

to the force, and the second and third Laws of Motion are

reduced to this second principle by the French writers,

especially Poisson and Laplace.

The student may consult on this subject a paper by
Dr Whewell On the principles of Dynamics, particularly as

stated ~by French writers, in the Edinburgh Journal of Science,

Vol. 8.

/

77. It would seem difficult to express the principles by
which the motion of matter is governed in simpler or more

elementary terms than those given in this chapter : but we
recommend the student to endeavour to apprehend clearly

what the several principles are which have to be determined

from observation and experience, without attaching much

importance to the mere phrase Law of Motion : after he has

mastered the principles of the subject, if he has leisure, he

may examine for himself the different views adopted by
different writers.

A disposition to return to Newton's statement of the

Laws of Motion has recently been shewn in this country.

See CH. 2 of a Treatise on Natural Philosophy, by Sir W.

Thomson and Professor Tait.

The student may also read with interest WHSWELL'S

History of the Inductive Sciences, BOOK VI., and History of

Scientific Ideas, BOOK ill. CH. 7, by the same author.
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CHAPTEE II.

OF UNIFORM MOTION AND COLLISION.

49. WHEN a body, regarded as a particle, is subject to

no extraneous force it moves with uniform velocity in a

straight line (first law of motion). If then v represent this

uniform velocity, and s be the length of path described or

passed over in any interval of time t, we shall have s = vt
;

which is the formula for uniform motion.

The equation s = vt which connects the three quantities

s, v, t will still be true if the path of the body be curvilinear,

provided the velocity be uniform : but when the path is not

a straight line there must be some force acting on the body
which deflects it from a rectilinear path ;

and if the velocity

be uniform, this force must always act perpendicularly to the

direction of the body's motion at any time, and the magnitude
of this force will depend upon the curvature of the path.

This kind of motion however we do not propose to discuss.

50. The position, velocities, and direction of motion, of two

particles at any time being given, to find after what interval

they will be at an assigned distance

from each other, and to determine their

position at that time : the motion being

in one plane.

Let A, B be the position of the

particles at first, and AO, BO the

directions of their motion. Take A
to represent the velocity of A, and BT, on the same scale,
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to represent that of B. Complete the parallelogram A C arid

join CT. Let a circle with centre and radius equal to

the proposed distance, cut GT in D: join OD and com-

plete the parallelogram PD. Then will P, Q be contemporary

positions of the particles originally at A, B, and the time of

moving from A to P : that from A to :: CD : CT.

For by the construction

PO : QT= QD : QT=BG : BT=AO : BT-,
.-. AO-PO: BT- QT=AO : BT-,

that is, AP} Q are in the proportion of the velocities of the

particles, and therefore they are simultaneously at P, Q, and

the distance PQ is equal to OD, the distance proposed ;
and

further, time of moving from A to P : time from A to

CD : CT by similar triangles.

COR. 1. Since the circle with centre and radius OD
will in general cut CT in two points, there will in general be

two periods at which the particles are at a distance from each

other equal to OD
;
we leave it as an exercise for the student

to form the construction for the other position.

COR. 2. Since OD cannot be less than a certain dis-

tance, viz. the perpendicular from to CT (unless T and

coincide) we see that the particles will approach each other

till their distance is equal to this perpendicular, and is then

a minimum, and afterwards they will recede from each other.

If P, Q be the centres of two spherical balls, the proposition

will enable us to examine the circumstances of their approach

to each other &c.
;

if the distance PQ = sum of the radii of

the balls, we find when arid where they will come into con-
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tact if the sum of their radii be < the perpendicular from

to CT, we can find when and where they are nearest to

each other.

51. An analytical solution of the above problem may be

given as follows.

Let a, b be the co-ordinates of one particle A, and a', b' of

the other B, at first; u, v the velocities of A estimated in

direction of the axes of x, y ; u', v the corresponding velocities

of the other B
;
then after an interval of time t the co-

ordinates of

A will be a + ut, b + vt, and of

B ......... a + u't, b' + v't,

and if 8 be their distance at this time we must have

tf=
[
a - a' + (u- u) . t}*+{b -V + (v-v) .

t}

2

,

an equation for determining t, the time when the distance

between the particles is 8. This equation has two roots, from

which we may draw the same conclusion as in Cor. 1, Art. 50.

We may arrange the equation in the form

in which E, D, C do not involve t, but only the known

quantities a, a, b, &', u, u, v, v,

from which we see that as EG D2
is essentially positive,

8 will be least when Ct D 0, which corresponds to the

case of Cor. 2.

52. We proceed to discuss the problem of the collision

of two bodies.
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All bodies with which we are acquainted are capable

of being compressed more or less, and have a tendency in

different degrees to recover their original forms when the

compressing force is removed. This property we call their

elasticity : and the internal force which any body exerts to

recover its original form is called the force of restitution.

The ratio which the force of restitution bears to the force

of compression is found by experiment to be the same for the

same substance, whatever be the amount of the compressing

force, but to be different for different substances. This ratio,

which is generally represented by the symbol e, is taken as

the measure of the elasticity of any substance, and is fre-

quently called the modulus of elasticity.

This modulus can in no case be greater than unity ; those

substances for which it is equal to unity are said to be

perfectly elastic, all others are imperfectly elastic; and the

greater the numerical value of this modulus, the greater do we

regard the elasticity of the substances we are comparing.

Probably no substances are perfectly elastic
;
in steel

balls the value of the modulus e is about , in glass about ^f .

For the results of experiments on the elasticity of bodies

see Reports of the British Association for the Advancement of
Science, Vol. in.

53. In considering the effects of collision we shall sup-

pose the bodies to be spheres, perfectly smooth, and of uni-

form density, so that their centres of gravity coincide with

their geometrical centres.

Def. The line joining the centres of the spheres at the

instant of impact is called the line of impact; when the centres

are moving in the line of impact, the impact is said to be

direct, and in all other cases oblique.
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When a ball A impinges directly on a ball B, the effect

of the mutual pressure between them will be to accelerate

B and retard A; and this will continue till their velocities

become equal. When the velocities are equal the mutual

pressure between them will cease, if the balls are inelastic,

and the balls will move on together uniformly with the

velocity which they then possess.

The intensity of this mutual pressure will vary during
the short time the balls press against each other

;
but so far

as its effect in producing momentum is concerned we may
regard it as retaining some mean uniform value (see Art. 38),.

and we may measure the effect of the collision by the mo-

mentum X gained by B and lost by A : these effects on A
and B being equal in magnitude and opposite in direction

(Art. 46).

54 If the balls are elastic, the mutual pressure between

them will continue after their velocities have become equal,

in consequence of the efforts they make to recover their

original forms
;
and the momentum gained by one and lost

by the other after that time (which we may call X') will bear

to the momentum generated during the first part of the

collision a ratio (e : 1) depending upon the elasticity of the

substances : so. that X' = eX, and the whole momentum gained

by B and lost by A will be expressed by X+X or (1 + e)X.

The time during which this entire action is performed is

too small to be appreciated, but the illustration we have given

may serve to render the nature of it more intelligible, and

convey an idea of what is meant when it is said that Impact

is a pressure of short duration.
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55. Two inelastic balls moving with given velocities im-

pinge directly upon each other ; to find the velocity of each after

impact.

Let u, v be the velocities of the two balls A and B
respectively, before impact; and let

the direction of the arrows indicate I (A\^B\
the direction of motion. Since they of ~T~"" ^"~yr *y

x
N. ,/ x.^ ^X

are inelastic, they will move on

together in the same direction after the impact with some

common velocity, which we may call u, let X be the

momentum lost by A and gained by B during the impact;

then Au = momentum of A after the impact,

= momentum before impact X,
= A.u-X.

(i),

Bu = Bv +X by similar reasoning (ii) ;

.'. adding (A + B) u' = Au + Bv (iii),

Au + Bv

and substituting this in
(i),

X= Au - Au =A(u u)

+ Bv\ AB(u-v)
A +B)- A + B

Equation (iv) gives the common velocity of each ball

after the impact, and (v) gives the momentum gained by B
and lost by A.

COR. 1. We see from (iii) that the whole momentum of

the two balls is the same after impact as before it, a result

we might have anticipated from the principle of Art. 46.

P. M. 13
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COR. 2. We may put the results in the following form :

, X B(u-v]
velocity lost DJ A u u = -r =

^ ^ ,

, .. . , , _, ,
X A (u v)

velocity gained by B u v = -^ = j ^ ;

jD Ji -\- JLJ

in which shape they are sometimes useful.

Obs. If B be moving in a direction opposite to that of A
before impact, we have only to change the sign of v in the

above investigation : in other words, we may regard u, v

as representing the velocities of A, B algebraically, the proper

signs being given to them in any particular example in

accordance with the actual directions of motion.

The same remark applies to the subsequent propositions of

this chapter.

COR. 3. If A impinges on B at rest, we have simply
to put v = in the above results.

56. Two imperfectly elastic lolls moving with given velo-

cities impinge directly upon each other; tofind the velocity ofeach

after impact. (See fig. Art. 55.)

Let u, u be the velocity of A before and after the impact ;

v, v the same with respect to B
;

and let A., B represent the masses of the balls, the direction of

their motion being indicated by the arrows in the figure.

Let A impinge upon B, and let X be the momentum lost

by the former and gained by the latter during the first part

of the impact, i.e. before their velocities become equal, gene-

rated by the force of compression; and X' the momentum

generated by the force of restitution, after the velocities

have become equal, and which causes the balls to separate.
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Then if e be the modulus of elasticity X' = eX, and X +X
or (1 + e) X is the whole momentum lost by A and gained

byJ,
whence Au = Au (1 + e) X

Bv =Bv + (l + e] X
Now X, being the momentum generated by the mutual

pressure of the balls before their elasticity comes into play, is

the same in magnitude as if the balls were inelastic, and

^i r -L i v AB (u v)
therefore, by the previous proposition A =

-j*
7 .

Hence, substituting in
(i),

B(u-v]\

,..(ii).

' B A +

These two equations give the velocities of A and B after

impact.

COR. 1. By adding equations (i) we get Au + Bv' = Au
+ Bv

;
that is, the whole momentum is unchanged by the

impact.

COR. 2. We may put the results expressed by (ii) in the

form

velocity lost by A = u u =
(1 + e)

velocitjr gained byB = v v = (1 -f- e)
-
A + B

Also from
(ii) we get by subtraction

v - u = v u + (1 + e) (u
-

v)
= e . (u

-
v) (iv) ;

132
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i.e. the relative velocity of A and B after impact: their

relative velocity "before impact =v u' : u v = e: 1.

COR. 3. If A impinges upon B at rest, we have simply
to put v = in the above results.

57. The problem of direct collision of two balls (Art. 56),

is sometimes solved by assuming (i)
that the total momentum

after impact is the same as before impact, this would follow

from the principle that action and reaction are equal and

opposite ;
and

(ii)
that the relative velocity of the two balls

after impact bears a constant ratio to their relative velocity

before impact, say the ratio e : 1
;

this result being the state-

ment of an experimental fact, and e being then defined to be

the modulus of elasticity.

On these two assumptions we should have, with the

notation of the preceding article,

Au' + Bv =Au + Bv]

and v u = e (u v) )

'

from which we readily obtain the results marked
(ii)

in

Art. (56), or we may obtain u v in the equivalent forms

,_Au + Bv B(u v)~}

A + B
~

' A + B I

, _ Au + Bv A (u v)

"^TS" ~A^B
Obs. We prefer the mode of treating the problem given

in Art. (56), as it is more strictly referred to the simple laws

of motion than the method of this article.

58. Two smooth imperfectly elastic balls, moving in one

plane with given velocities in given directions, impinge obliquely

on each other, to determine the motion of each after impact.
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Let Ox be the line passing through the centres of the

"balls at the instant of impact,

and let the arrows indicate the

direction of motion of the balls

before and after impact.

Let u, u be the velocities of A
before and after impact in directions

making angles a, with Ox,

v, v, /8, <f>
similar quantities with respect to B.

Now, since the balls are smooth the mutual action between

them will take place entirely in the direction Ox, and hence

it will be convenient to estimate the velocities of the balls in

direction of Ox (Art. 20), and at right angles to Ox; and

these motions may, by the second law of motion, be treated

separately. Since no force acts on either ball perpendicular

to Ox their velocities resolved at right angles to Ox will

remain unchanged by the impact, whence we get

u sin = u sin a)
(i),

v sin
<f>
= v sin ft) (ii),

and further, the resolved velocities in direction Ox are affected

by the impact just to the same extent as if these resolved

velocities alone existed.

Now, u cos a] v cos /3\ , . , , . . - . D
/ /if' > jf being the velocities of A. B

u cos 6} v cos $)

OPTO1*P 1

resolved along Ox, > the impact, if X be the momen-

tum gained by B and lost by A during the impact, we should

get as in Art. (56),

v_ (1 -f e) AB (u cos a v cos ff)*~ A + B
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and we get

u cos = M cos a - (1 + e) -j
-~ (u cos a - v cos /9)

ft

t>' cos
<t>
= i? cos + (1 + e) pjj (w cos a v cos

The equations (i), (iii) suffice to determine u and 0, and

(ii), (iv) to determine v and 0: and these four quantities

define the magnitude and direction of the velocities of the

two balls.

Obs. The above expresses in general terms the solution

of the problem of the collision of two balls moving in one

plane ; any particular cases can of course be deduced from it,

by assigning to the symbols involved their proper values, and

this the student can readily do for himself. We will only
notice the following interesting case.

COR. If a ball A impinge obliquely upon a very large

ball B at rest, we have

A , B
=1, very nearly,

so that we get

u' sin 6 = u sin a) , . , .
, -, Q

n K which give u and 6,
u cos0= eucosa.)

and v = 0, very nearly.

This shews that the motion which is

communicated to B is inappreciable; and

since cot e cot a we must have 6 > 90,

and therefore A is reflected : a ball strik-

ing a fixed plane is a case of this kind
;

or again, when a ball strikes the earth, the

mass of the earth is so great compared with

that of the ball that the motion communi-

cated to it is insensible.
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59. When two balls impinge upon one another and their

motion does not take place in one plane, in order to de-

termine the subsequent motion of the balls we must employ
the same principles as those we have used in Art. (58), viz.

resolve the velocities of the balls in the direction of impact

and at right angles to it ; the latter will be unaffected by the

impact, and the former will be altered in the same manner

as if they alone existed. The formulae which express the

general solution of the problem require a knowledge of Geo-

metry of three dimensions, and are too complicated to be given

here.

60. A ball impinges obliquely upon a fixed smooth plane;
to find the motion of the ball after impact.

Let PQ be the normal to the plane at the point where the

ball is in contact at the instant of

impact: let the plane of the paper
contain this normal, as well as the

line of A*s motion before impact, and

intersect the fixed plane in the line

CPD ; then the line of ^'s motion

after impact will lie in this same

plane, since no force acts on the ball during the impact at

right angles to this plane.

Let a, 6 be the inclination to PQ ofA1

.8 velocities before

and after the impact ; u, u the velocity of A before and after

impact, X the momentum destroyed by the force of compres-
sion. Then the velocity parallel to CD being unaffected by
the impact, we have

u sin = u sin a (i);
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and since the momentum of A resolved along the normal QP
is entirely destroyed by the plane

X = Au cos a,

and eX is the additional momentum generated in the opposite
direction by the elasticity, or force of restitution

;

.*. eX = Au cos 0,

whence, u
f

cos = eu cos a
(ii).

From (i)
and (ii) we get

cot = e cot a

These equations (iii) determine the velocity and direction

of motion of A after impact.

Obs. The student may compare this solution with the

solution of what is substantially the same problem, deduced

in Art. (58), Cor.

COR. 1. If the ball be inelastic, e 0-
} whence = 90,

and u = u sin a
; i.e. when an inelastic ball impinges obliquely

on a fixed plane, after impact it will move along the plane with

a velocity equal to u sin a.

COR. 2. The impulse sustained by the plane will be
= A (u cos a + u cos 6) (1 + e) Au cos a.

61. To find the velocity of the centre ofgravity of two lolls

moving uniformly in one plane.

Let the position and motion

of the two balls be referred to the

two rectangular axes Ox, Oy in

the plane in which they move,
which we may suppose to be the

plane of the paper.
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Let A, B be the centres of the balls at first,

A', B' ................................. after an interval t,

a, b co-ordinates of A, B measured along Ox,

x,x .................A,B ........................

u, u the velocities of A and B resolved parallel to Ox,

which will be uniform, since the balls are supposed to move

uniformly (Art. 20),

then x = a + ut
\

,~

x' = b + uty'

and if x, x be the co-ordinates of G the centre of gravity of

A and B in the first and second positions ofA and B, measured

along Ox, we have by Statics, Art. 74,

. (A+B)(x-x)=A(x-a)+B(x-l>)
= (A

Au + Bu

Now this represents the space passed over by Gr, measured

parallel to Ox, and it oc t the time consequently the velo-

city of G parallel to Ox is uniform and

Au + Bu -.= A+B
= u suppose.

Similarly, if v, v', v be the velocities of A, B, G parallel

to Oy we should have

Av + Bv'
~--

whence u, v being known, the motion of G is known.
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COR. 1. If there were three or more balls, by a similar

process we should obtain

_Au + Bu + Cu"+... _ 2 (Au)
A + B+C+...

=T
__

and if the motions of the balls were not confined to one plane,

and we introduced a third co-ordinate axis at right angles to

Ox and Oy, and represented the velocities parallel to this

axis by w, w, w ... we should have

Cw"+.. 2 (Aw)' - >_
A + B+C+... ~2 (A)

'

These formulas are- analogous to those for the position of

the centre of gravity of a system of bodies (Statics, Art. 74).

They may be expressed generally thus : The velocity of the,

centre of gravity of a system of bodies estimated in a given

direction is equal to the sum of the momenta of the several

bodies estimated in the same direction, divided by the mass of
the system. Or, ifeach body of a system be moving uniformly,
the centre of gravity of the system also moves uniformly with a

velocity such that the whole momentum of the system estimated

in any given direction is equal to that of a single body (equal in

mass to that of the system) coincident with the centre ofgravity,
and moving with the same velocity as the centre ofgravity.

N.B. The acceleration of the centre of gravity would be

obtained by formulae exactly similar to those obtained above

for the velocity the accelerations of the several bodies being
written in the formulae instead of their velocities.

COR. 2. Since it appears by Art. 40 that if we impress

any the same velocity upon each body of a system, the relative
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motions of the parts of the system are not affected thereby,

suppose we wish to reduce the centre of gravity of two balls

to rest by impressing velocities equal to u, v... on each

ball, we see that the momentum to be communicated to

A
t
B for this purpose would be

Au + Buf

,
Au + Bu

parallel to Ox
;
and Av, Bv parallel to Oy.

62. When two smooth balls impinge upon one another the

motion of the centre ofgravity is unaltered by the impact.

First, let the balls be moving in the line of impact Ox,
i.e. let the impact be direct

(fig. Art. 55),

'

, J velocities of ! before and after impact,v
t
v

[ B)

u, u velocity of the centre of gravity before and after

impact ;

_ Au + Bv -, Au' + Bv

and (Art. 56, Cor. 1) the whole momentum is the same after

impact as before, therefore Au + Bv = Au +Bv'-, whence we

get u = u', which proves the proposition.

Secondly, let the impact be oblique.

Eesolve the velocity of each ball in direction of impact
and at right angles to it; by the first case the velocity of the

centre of gravity in direction of impact will be unaltered;

and since the velocity of each ball resolved at right angles to

the direction of impact is unaffected by the impact, the

velocity of the centre of gravity in this direction will not be

changed by the impact, consequently the velocity and diree-
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tion of motion of the centre of gravity of the balls are the

same after impact as before.

COE. We can without much difficulty extend the theo-

rem of this article to the case of several balls, and shew that

"the motion of the centre of gravity of any number of smooth

balls is not changed by the impact inter se of two or more

balls of the system."

Examples and Problems.

63. (I) A ball of 4lbs. weight moving from left to right,

with a velocity of 8 yards per second, impinges directly upon
a ball of lOlbs. weight moving in the same direction with

a velocity of 2 yards per second; determine their motion after

the impact.

(i) When the balls are inelastic. (Art. 55.)

Since the weights of the balls are in the ratio of their

masses, we may take 4 and 10 to represent their masses, and

we shall have

,,. , .. f. . Au + Bv
their common velocity after impact

=
. =-

-^L ~T~ _O

4.8 + 10.2 52 ,

4+10
=
jj
= 3f yards per second

;

, v AB(u-v) 4. 10. (8-2) 240

A+3
1

. -4 + 10- 'IT.-
17*

i. e. the mutual pressure between the balls is capable of gene-

rating a velocity of 17f yards per second in a mass whose

weight is 1 Ib.

(ii) If the balls are elastic, then using the same nota-

tion as in Art. (56),
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. . (l+e)10(8-2) 26 30
velocity of A after impact = 8 - '

-

?
=

e,

_ (1+6) 4 (8-2)_26 12

4 + 10.
~

7
H T 6

'

and JT=17f (1+e).

i ^
If e =

,
the ball A will be at rest after the impact ;

1 o

13
and according as e < or > -

,
A will follow B with a less

velocity or be reflected back and move in the opposite

direction.

64. (II) A ball A moving with a given velocity impinges

directly upon a ball B at rest, and B afterwards impinges

directly upon a ball C at rest
;
find the velocity communicated

to C.

If u be the original velocity of A, we have by Art. (56),

(\ -\- e] A
velocity of B after first impact = u==v suppose,

(1 + e)*AB
velocity of C after impact=

-- v =
(A +^ (B+ Q]

u.

COR. 1. The velocity communicated to (7 by the interven-

tion of B will vary with the magnitude of B, and will be the

T)

greatest possible when /^.^ /g+ 0)
is greatest;

. (4 + 5) (5+0) . ,

i.e. when s -^A_ Z 13 feast,

and since this may be written in the form
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this will be the case when B = J(AC}\ in other words, the

velocity of C will be greatest when B is a mean proportional
between A and C.

65. (Ill) A particle is to be projected from a given point

P so as to pass through another

given point Q, after being reflected

at a given fixed plane AB-, to

find the direction of projection.

Suppose T to be the point

where the particle must strike the

plane, then the plane PTQ must

be perpendicular to the fixed plane, and will cut it in a straight

line AB.

Now the particle impinging on the plane in direction PT
and being reflected in direction TQ, we must have

tan QTO = e.tan PTA ...... (i) Art. (60).

If QS\)Q drawn perpendicular to ABy and PT produced to

meet QS in R, we shall have

tan QTS=ettmRTS,
and therefore QS=e. SB.

This suggests the following simple construction for deter-

mining T. Draw QS perpendicular to AB and produce it to

making = -.QS', join PR cutting AB in T. Then

the condition
(i)

is satisfied, and PTis the direction in which

the particle must be projected.

COR. If the particle is to pass through Q after reflexion

at two planes TV, US in succession, we have the following
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construction. Draw QSR perpendicular to the latter plane,

making

8R = -

e
. Q8.

Draw RVD perpendicular to the

first plane, making

1

e
'

join PD cutting the first plane in T, join TR cutting the

second plane in U, then if the particle be projected in direc-

tion PT it will be reflected along TU and again reflected at U
in direction UQ, and so pass through the point Q.

66. (IY) A heavy particle impinges upon a fixed rough

plane ;
to find its motion after impact.

Let the plane of the paper represent the plane of impact,

i. e. the plane which contains the

direction of motion of the particle

before impact, and the normal to

the fixed plane at the point of

contact.

Let u, u be the velocities of

the particle (mass A) before and after impact.

a, 6 the angles its direction of motion makes with the

normal QN before and after impact.

X, F the momentum generated by the fixed plane in the

particle, in directions QN and. QC the latter arising from the

roughness of the plane.

Then resolving the motion in direction QN and CD, we

have, as in Art. (60),
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u cos 6 = eu cos a
(i),

the complete value of X=
(1 + e) Au cos a

(ii),

and Au sin 6 = Au sin a. F.
(iii).

Now we may take F=pX (iv), where p depends upon
the roughness of the plane, and is a numerical quantity to be

determined by experiment, it is sometimes called the coefficient

of dynamicalfriction ; from these four equations we get

u cos Q = eu cos a

u sin 6 = u sin a
yu, (1 + e] u cos a

which two equations determine u' and 0, i. e. the velocity and

direction of motion after impact.
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CHAPTER III.

OF UNIFORMLY ACCELERATED MOTION.

67. THE accelerating force upon a particle is said to be

uniform when equal increments of velocity are added in equal
increments of time, however large or small these increments

of time may be.

Hence, in accordance with ths definitions and conventions

of Arts. 5, 13, if v be the velocity of a particle at the end of a

time t, during which it has been subject to a uniform accele-

rating force f, and if u were its velocity to begin with, we
shall have/, t to represent the increment of velocity, and

v = u+ft ............... (i).

If the particle started from rest u = and v ft.

Obs. The formula (i)
is algebraically true in any case

where the force is really a retarding force (Art. 6, Obs.), or

where the velocity u at the beginning of the time t exists in

a direction opposite to that in which v is measured : in any
case it is necessary simply to assign the proper algebraic sign
to u and/, and the result

(i)
will be available.

68. If s be the space described from rest in time t by a

particle under the action of a uniform accelerating force f, then

Let the time t be subdivided into n intervals, each equal
to T, so that nr = t'

}
then the velocities at the beginning

of the

1st 2nd 3rd nth of these intervals of T

will be fr 2/r... (ra-l)jfr;

p. M. 14



210 OF UNIFORMLY ACCELERATED MOTION.

and at the end of the same intervals will be

/T, 2/T, 3/T...W/T.

Now if the particle were to move during each successive

interval of T, with the velocity which it has at the beginning

of that interval, the space described would be

= . T+/T.T + 2

which is

=/T
2

{1+2 + ... +

n (n 1) 1 ,- =

And again, if the particle were to move during each

successive interval, with the velocity which it has at the end

of that interval, the space described would be

=/T.T + 2/T.T + 3/T.T+...+7?/T.T,

which is

Since the velocity is continually increasing during the

time t, the space actually described by the particle will be

intermediate to the spaces described under these two hypo-

theses, i.e.

s lies between I ft
2

(l
-

-} and \f? (l + -)
2
J

V / 2 y
V /

however large n be taken ;
but when n is taken indefinitely

large, these two limits each become ^ft*, and therefore s

which always lies between them must coincide with them in

the limit, that is s = \ftf ;
and if v be the velocity at time t

we have v ft and thence tf 2fs.
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69. The same result (s
= ^ff) may be arrived at very

simply by the following geome-
trical process.

Let the straight line AK re-

present the time (s) of motion

from rest, and let this be divided

into n equal parts AB, BC, CD...

let the lines Bb, Cc,.. .KT drawn ^^ jy K
at right angles to AK represent

the velocities acquired at the end of the successive intervals
;

the points b, c... Twill lie in a straight line, since the velo-

city varies as the time from rest. Complete the inner and

outer series of parallelograms, as in the figure.

Now if the particle be supposed to move uniformly during

any interval (as CD) with the velocity Cc which it has at the

beginning of that interval, the number of units of area in the

parallelogram cD will represent the number of units of length

passed over by the particle during that interval. With this

understanding, the sum of the inner or outer series of paral-

lelograms will represent the space passed over by the particle,

supposing it to move during each interval with the velocity

which it has at the beginning or end of that interval respec-

tively; and the actual space described lies between the spaces

described on these two several suppositions. But when the

number of intervals is increased, and their magnitude dimi-

nished indefinitely, each series of parallelograms approximates
to the triangular area AKT, which will represent the actual

space described by the particle ;
and since

AK t, and KTft velocity at time t,

.\ s = \AK. KT= \t .ft
=

Obs. The student will remark that the above is sub-

142
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stantially a geometrical illustration of the proof of the pro-

position given in Art. 68.

70. A particle is projected with velocity u, and acted upon

l}y
an accelerating force f in the direction of motion. Tofind

the relation between the space (s) passed over, the time (t) of

motion and velocity (v) acquired.

The particle at any time is moving with a certain velocity,

and so far as the subsequent motion is concerned it is imma-

terial how we suppose that velocity to have been acquired.

Let then the force /generate a velocity u by acting for a time

t' and through a space s
1

, then we have u = ft'j and if the

particle continues subject to the action of the same force, and

passes over a space s in time t, we have s + s' described from
rest in time t + t'

;

.-. s + 8
f = \f(t + O

2 and 8
f = i/r

a

;

..-j/^+210-irf + iA
1

(i);

also v=f(t
f

+ t)=u+ft (ii);

whence also

tf = (
u +ft}*

= u* + 2f(ut + Iff] = u* + 2/. . .
(iii).

Equations (i), (ii) express the relations required.

Obs. If the force act in a direction opposite to that in

which 5, u, and v are estimated positive, we must change the

sign of/in (i), (ii), (iii),
and we get

s = ut-%ff, v=u-ft, v* = u*-2fs (iv).

The student will have little difficulty in obtaining any of

the results of (i), (ii), (iii), (iv), of this article, by a geometrical

proof similar to that in Art. 69.

71. We may arrive at the same results thus by an appli-

cation of the principle stated in Art. 40.

A' A
H r
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Let the particle be projected from A in direction AP with

the velocity u
;

the relative motion of A and P will be the

same if we impress upon loth a velocity equal to u in the

opposite direction
;
this reduces P to initial rest, and if P, A

be simultaneous positions of the particle and of A, v their

relative velocity at that time
,
and AP =

s, we have

AA =ut...... (i);

and v = u +ft ;

the same results as before.

72. Note. The same results might have been arrived at

by a process similar to those employed in Art. 69. These

we leave as an exercise for the student.

We would here caution him likewise against a loose and

incorrect application of the second law of motion to this

problem which we have noticed in some works on dynamics.

They state that the space described in consequence of the

initial velocity is = ut, and the space that would be described

in the same time by the action of the accelerating force /is
=

J/P, and therefore by the second law of motion, the whole

space described is the sum of these two, or s = ut + \ft*. The

result arrived at is true, but the principle assumed is unsound,

for the second law of motion states the theory of the action of

forces at a particular instant, and asserts nothing directly as to

the quantitative effects accruing in any finite time.

73. When a particle starts from rest (Art. 68)

v=ft and s = i/
2

;

and from these two equations a relation can be obtained

between any three of the quantities v, s, f, t.
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Thus

2s

25

And again, if the particle start with the velocity u

v=u +ft,

forms which it is desirable the student should remember.

COR. The space described in t" from rest =

.\ space described during the t
ih second = $f(%t !)

Hence the spaces described during the 1st, 2nd, 3rd,...

seconds are \f . 1, \f. 3, \f . 5, ...&c., and are in the ratio

of the consecutive odd numbers, 1, 3, 5...

The result s =- 1 shews that the space described in

any time is the same as if the particle had moved uniformly

during the whole time with the mean velocity.

74. One of the simple cases of a uniform force is that

of gravity, the accelerating effect of which is uniform. (Art.

43.) We give an example of the application of the preceding

results to this case.
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Ex. A particle is projected vertically upwards with a velo-

city of 100 feet per second, to find (i) its height at the end of"3",

and (ii) the time when it is at a height of 140 feet above the

point of projection.

When a foot and a second are taken as the units of space
and time the numerical value of g 32.2, (Art. 43), and if u

be the velocity of projection, and s the height at time t after

projection, we have s =utgtz

, (Art. 70).

For the first part of the example t = 3, u = 100 ;

.'. s = 3.100 - 1 32.2 . (3)
2 =155.1 feet

= height of the particle at the end of 3 seconds.

For the second part of the example s= 140, u = 100; and

we have to find t from the quadratic equation

s = ut- \g?.

Solving the equation we get

3

Substituting the numerical values of u, g, s, we get after

reduction,

a double result, which is to be explained thus, at the end of

2".13 the particle is at a height 140 feet in its ascent, and at

the end of 4".08 it is again at the same height of 140 feet on

its descent, after having reached its highest point and then

descending.

75. We subjoin a few interesting problems which can be

solved by the principles already explained.
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PROB. Two bodies P, Q are connected by an inextensible

string which passes over a smooth fixed pully ;

to determine the motion of each body, and the

tension of the string.

Let P, Q represent the masses of the bodies
;

T the tension of the string, the mass of which

we will neglect, and suppose P > Q.

Now movingforce on P downwards = Pg T,

Q upwards = T Qg\

.'. accelerating force on P downwards =

Q upwards = T-Qg
Q

Now the string being always stretched and inextensible,

the velocity of P downwards and of Q upwards will be always

equal, and therefore the rate of change of their velocities,

i.e. the acceleration of the two bodies must be equal;

Pg - T_ T- Qg'

P Q
'

whence T=

which gives the tension of the string, and further substituting

this value of T in either of the expressions (i), we get the

acceleration on P downwards and on Q upwards
T 20 P-Q

iff-

P Q
Also velocity of P and Q after time tfrom rest =

space described
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COR. 1. By taking P Q as small as we please we may
make the motion as slow as we please, and so capable of being

measured, by which means the value ofg might be obtained

from observation. This is substantially the principle of

Atwood's machine, which will be described hereafter, (Art. 82).

COR. 2. If at any instant a part (R) of one of the bodies

(Q for instance) were suddenly detached, there would be no

instantaneous change of the velocity of either body, but the

p_ Q + E
acceleration would become p , Q_ft9>

an(* ^e tension of

<2P(Q R]
the string would become p Q_ T> 9-

76. PROB. Two bodies P, Q are in motion, connected by

a string which passes over a smooth fixedpully ;

another body R is suddenly attached to Q; find

the change of velocity and the impulsive strain on

the string.

Let P, Q, R be the masses of the bodies, and

suppose R to become attached to Q by a string

connecting them suddenly becoming tight. Let V
be the velocity of P and Q at the instant before this takes

place, and V the common velocity of the three the instant

after, Xiy
X

z
the impulsive strain on the strings PAQ, QR,

respectively; then for the motion of the three bodies we

have (Art. 46)

whence by adding (P+ Q + R) V'=(P+Q) V,
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(ii),

(P+Q)E~ v

Equations (i), (ii), (iii) determine the three quantities

required to determine the change of motion completely.

MOTION ON AN INCLINED PLANE.

77. PEOB. A heavy body Q is drawn up a smooth inclined

plane by another body P, which descends vertically; P being

connected with Q by an inextensible string passing over the

vertex of the plane.

Let P, Q be the masses of the bodies,

T the tension of the string, and a

the inclination of the plane to the

horizon, R the pressure of Q on the

plane.

Then resolving the motion of Q parallel to the plane
and perpendicular to it, the weight of Q is equivalent to

a force Qg sin a down the plane,

Qg cos a perpendicular to the plane,

the latter force is balanced by E, the pressure of the plane,

whence R= Qg cos a (i),

T Qq sin a
and acceleration of Q up the plane 7V

P downwards = -

And since the string continues stretched, the velocities of
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P and Q in these two directions are always equal and there-

fore the accelerations upon them are equal, that is,

P Q

whence T=W
and acceleration on P downwards and on Q up the plane

Pg-T P-Osina
-V--pw^ <

m
>.

equation (ii) gives the tension of the string, and
(iii) gives

the acceleration from which the velocity acquired and space

passed over in any time may readily be obtained.

COR. The preceding problem may be varied by sup-

posing Q to move on a smooth hori-

zontal table. The student may either

investigate the motion in this case inde-

pendently, or deduce the results from

the present Art. by making a = 0.

78. A heavy body descends freely down a smooth inclined

plane; to find the time of motion and the velocity acquired.

Let P be the mass of the

body moving down the plane

BA, the inclination of which to

the horizon is a, R the pressure
on the plane.

Then resolving the forces on AT

P parallel to the plane and per-

pendicular to it,
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we have moving force down the plane = Pg sin a,

............... perpendicular to the plane
= Pg cos a,

and this latter force is counteracted by R, since there is no

motion perpendicular to the plane ;

.'. R Pg cos a, which determines R,

and accelerating force down the plane
= g sin a;

if t be the time of moving over BA from rest, and v the velo-

city acquired,

AS = J g sin a .

2

,
v = g sin a . t.

. I\. ) , and v = \/(2<7.sm a.AB)V V^sina/
Whence t

The latter result shews that the velocity at A is the same

as that of a body falling f eely through a vertical height equal

to BC, that of the plane.

COR. If the body start at B with a velocity w, and v be

its velocity after describing any length BA, and h be the

vertical depth of A below B, we shall readily obtain

79. J. Aeavy particle is projected .with given velocity up an

inclined plane to find its velocity at any point of its course.

We suppose the motion to take place in a vertical plane

BAG which {^perpendicular to

the inclined plane.

Let the particle P be pro-

jected from A with velocity u

up the plane, v the velocity

after a time t when it has

described the space AP =
5,

z the vertical height of P above

the horizon A C, a the inclina-
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tion of the plane, so that z = s . sin a : the resolved force of

gravity down the plane tending to retard Pis = g sin a.

Hence (Art. 70) v = u #sin a.t (i),

s = ut \g sin a . f (ii),

two equations connecting the three quantities v, $, t, so that

any one of them being given, the other two may be found :

these results are algebraically true if v and s be one or both

If we eliminate t we obtain

<y
2 = uz

%g sin a . s = w2

<%gz (iii),

a result which shews that the change of velocity can be ex-

pressed in terms of the vertical height through which the

particle has ascended and is the same in amount as if the

particle had been moving freely in a vertical line upwards
the time of motion however would not be the same in the

two cases.

From
(ii) we can derive the value of t corresponding to

any value of s, viz.

u + V if 2qs. . sin a it + V u2

2gz .. N=-^- -r-^ =- *-
(iv),

g sm a g sin a

a double result, indicating the times at which the particle

will pass through the position P (AP = s) on its way up
and down the plane.

The maximum value of s is = -. and of z is =
,

2y sm a 2g
as may be seen from equations (iii) or (iv).

Obs. The results of this article will be applicable to the

case of a particle projected freely vertically upwards ,
if we

write a = 90, and /. sin a = 1.
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80. We may apply the results of the previous article to

the following problem.

The time of descent of a particle down any chord of a

vertical circle beginning at the highest point of the circle is

the same.

Let AB be the vertical diameter of

the circle, AP any chord drawn from A.

Then the accelerating force on the par-

ticle down AP =g cos PAB = g sin PBA,
If 2AP \

and time down AP=. : pp A
sin PBAj

}
since AP=AB sin PBA

;

and since this result is independent of the direction of AP,
the time down all chords drawn from A will be equal.

COR. Similarly, it may be ^4
shewn that the times down all / A \
chords terminating in B are equal.

The above result leads to the

solution of several curious pro-

blems of lines of quickest descent.

We give one such problem.

To find the line of quickest

descentfrom a given point A to a given circle.

Construct a circle of which A shall be the highest point,

and which shall touch the given circle in some point P, then

will AP be the line of quickest descent required. For if

we join A with any other point of the given circle, the joining
line will be longer than the part of it intercepted by the second

circle, and therefore the time down the joining line would

be longer than the time down the corresponding chord of the
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second circle, i.e. greater than the time of descent down

AP; consequently AP is the line of quickest descent from

A to any point of the given circle.

If the circle be drawn it can easily be shewn that AP
produced will pass through the lowest point of the given

circle, whence we have the simple rule: Join A with the

lowest point of the given circle, and the part of this line

without the circle is the line required.

81. An accurate knowledge of the numerical value of g the

accelerating force of gravity is of great importance, and various

methods have been employed to determine it. If a body were

sliding down a smooth inclined plane of elevation a, the ac-

celeration upon it would be g sin a
;
so that by diminishing

a sufficiently, the force acting upon the body might be reduced

so as to admit of the motion being observed, without the law

of the motion being affected. This method of determining g
was suggested by Galileo, but since no surface can be obtained

sufficiently smooth, the method does not practically admit of

great accuracy.

A machine invented by Atwood for the purpose of making
observations on the laws of falling bodies, leads to results

much more trustworthy than the preceding.

We will here give a short description of the machine.

82. Two equal weights P, Q are attached to the extre-

mities of a fine thread which passes round a pully C. The
axis of G rests in a horizontal position on four wheels, of

which two only are represented in the figure; the object

of these wheels being to diminish the friction on the axis

of (7, which they do very considerably, since the friction of
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rolling is much less than that of rubbing.

called friction wheels.

Now P and Q being equal would

be in equilibrium, but if a weight R
be placed upon P, it would begin
to descend subject to an acceleration

75

7, (see Art. 75),

Hence they are

tne

ft
p

motion of the pully G were neg-

lected. It is found that the rotation

of the heavy pully C has the effect

of adding something to the weights

moved (viz. P + Q -f R), without

altering the force which produces

motion, (viz. the weight of N). At-

wood determines by experiment what

this is,. call it TF, then the accele-

ration upon P becomes

P+Q +B+W*' (=/) suPP se
>
and

by diminishing R sufficiently, this

may be reduced to as small a quantity

as we please.

AB is a vertical graduated bar,

and St T are two platforms capable

of motion backward and forward along
the bar, and of being fixed in any position by screws. The

platform S is pierced so that P can pass freely through it,

but not R.

If now the system be allowed to start from rest with P at

a given position (say A), Pwill move through the space AS
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subject to the uniform acceleration f, and R being caught off

at S, P will move on through ST uniformly with the velocity

acquired. The times occupied in moving through A 8 and ST
are observed with considerable accuracy by a contrivance of

clock-work attached to the machine.

83. The results of numerous experiments made with

Atwood's machine, lead to the conclusions that gravity has

a uniform accelerating effect, and that its numerical value is

that stated in Art. 43. The most trustworthy results however

are (as there stated) to be obtained from experiments on

pendulums, but they are of too refined a character to be

discussed here.

P. M. 15
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CHAPTER IV.

OF THE MOTION OF PKOJECTILES.

84. IN the present Chapter we shall consider :

(i)
The projectile as a single heavy particle, (ii) that the

accelerating force of gravity is uniform, and acts in the same

direction at all points of the path of the projectile ; (iii) that

the effect of the rotation of the earth is neglected, and

(iv) that the motion takes place in vacuo no account being
taken of the resistance of the air. See Art. 94.

85. A body projected in any direction which is not vertical,

and acted on by the force of gravity only, will describe a

parabola.

Let the body be projected from the point A in direction

AT with velocity v.

vertical and downwards, and

let P be the position of the

body at any time t after the

instant of projection.

Let the motion of the body
be referred to the directions A T,

AV (Art. 19), and draw PT,
PV parallel to AV, AT; now the motion being at any and

every instant referred to the directions AT, A V the force of

gravity will have a uniform accelerating effect (g) in direction

A V and there will be no acceleration in direction A T, we
shall have therefore
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PV=AT=vt (Art. 49),

(Art. 68),

whence PV2 = v*t* = -
. A V.

g

This relation between PV and A V shews that the path
AP is a parabola whose axis is vertical, and directrix con-

sequently horizontal; AV being a diameter, and AT the

2-y
2

tangent at A, the, parameter at A being = .

y

COR. 1. If li be the space due to the velocity of pro-

jection v, (i.e. the space through which a body must fall freely

from rest under the action of gravity, in order to acquire the

velocity v,) v* = 2gh ;
wherefore PV2 4A . AV. Hence 4.h

is the parameter at A, and therefore h is equal to the vertical

distance of A below the directrix.

COR. 2. The result of Cor. 1 may be thus interpreted :

"The velocity of projection of a projectile is the same as

would be acquired by a body falling freely from the directrix

to the point of projection."

And further, since the body after passing through any

point of its path will move in the same way as if it had been

projected from that point with the velocity it then has, and

in the direction in which it is then moving, hence, "the

velocity of a projectile at any point P of its path is equal to

that due under the action of gravity to the vertical distance of

that point from the directrix."

Obs. Let, the horizontal plane which passes through
the point of projection A meet the parabola again in H, and

let T be the time of passing from A to H, AH = R, then

152
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E, T are called the range, and time offlight of the projectile on

the horizontal plane ;
and if a be the angle which the direction

of projection makes with the horizon, the angle a is called the

elevation of the projectile.

86. If the motion of the body be estimated vertically and

horizontally along Ay and Ax, the velocity of projection

vertically is v sin, and horizon-

tally is vcosa; the horizontal

velocity will remain uniformly

equal to v cos a during the

motion, since there is no force

in direction Ax; the vertical

velocity will gradually be re-

duced to zero by the action of

gravity, and the body is then

at its greatest height z above the horizontal plane AH, but

the continued action of gravity will generate velocity down-

wards, and bring the body to the plane at -ET after a time

equal to that in which it moved from A to the highest point.

We shall have the following results,

if T be the time of moving from A to the highest point

= time in which the initial vertical velocity v sin a is destroyed

by force of gravity g,

, (v sin a)
2

and z = ~
(i).

Hence T= *2v sin a

~9
'

and the horizontal velocity is uniform and equal to v cos a
;

sin a cos a v
2
sin 2a

/. R= T . v cos a = 111
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7T
This result is the same if a. be put for a

; shewing

that there are two directions in which a body may be pro-

jected with a given velocity, so as to have the same horizontal

range.

For a given velocity of projection v, the horizontal range
R will be greatest when sin 2 a = 1

;
i.e. when a = 45.

Again, the latus rectum of the parabola is the, parameter at

the highest point, and the velocity at the highest point being
= v cos a, the distance of that point from the directrix is

v cos a

hence the latus rectum

(Cor. 2),

2v* cos
2

cc . ,= 4A cos a,

87. To find the range (R) and time offlight (T) of a pro-

jectile on an inclined plane.

Let i be the inclination of the

plane to the horizon,

a the elevation of projection ;

then initial velocity perpendicular

to the plane AP v sin (a i),

initial velocity parallel

to the plane AP = v cos (a t) ;

accelerating force of gravity per-

pendicular to the plane g cos
,

accelerating force of gravity parallel

to the plane g sin i;

and these two resolved parts of gravity are constant.

Hence if T be twice the time in which the velocity
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v sin (a i) would be generated or destroyed by the force

gcosi; we have

g cos

.'. .# = v cos (a
-

i) . T- \g sin i . T2

(Art. 70),

2#
2
cos a sin (a i)

by substituting for T, and reducing ;

or we might obtain R, thus

cos ^ cos i

(since the horizontal velocity v cos a is uniform)

2v
2
cos a sin (a i)

g cos
2

COR. The greatest perpendicular distance of the particle
from the plane will be when the velocity is entirely parallel
to the plane,

fj. j.*

i. e. aiter a time
g cos i

, . . ,. , ,.

and this perpendicular distance =
2# cos t

Further, by putting (iii)
in the form

-p_v*' {sin (2a i) sin
?'}

-ti 2~i >

^7
cos ^

we see that for a given velocity of projection the range is

greatest when sin (2a i)
=

1,

. 7T 7T ^
i.e. 2a-i= -, or a=j + -,

tn o^Aer words, when the direction of projection bisects the

angle between the plane and the vertical.
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88. To find the equation to the path of a projectile referred

to horizontal and vertical co-ordinate axes.

Let A be the point of pro- ^
jection, Ay vertical, and Ax
horizontal in the plane in which

the projectile moves.

AN=x, NP=y, the hori-

zontal and vertical co-ordinates /

of the particle at time t after

projection, v the velocity and a

the elevation of projection. Let NP be produced to meet in

T the line AT which represents the direction of projection.

Then the horizontal velocity = v cos
cc, which remains

uniform, and the initial vertical velocity
= v- sin a.

And we have

x = AN=vco$ a . t
(i).

And NP represents the space passed over parallel to Ay
in time t by a particle projected with a velocity v sin a, and

retarded by a force g hence by Art. (70)

y = NP = v sin a . t \gtf (ii).

Eliminating t between (i), (ii), we get

gx*
y ~

2fl*cos
2
a'~

** '
'*

which is the equation to the path required, and represents

a parabola.

If h be the height due to the velocity of projection

and equation (iii) may be written

= x tan a
cos a (iv).
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From equation (iii) or (iv) the elements of the parabolic

path may easily be deduced.

COR. 1. The equation ^ = #tana 7
-

^- may by a

little reduction be put in the form

(x
- 2h sin a cos a)

2 = 4A cos
2
a (h sin

2 a - y),

from which we may readily infer that the co-ordinates (xot y )

of the vertex of the parabola are

# = 2h sin a cos a, y = h sin
2 a

;

and the latus rectum = 4A cos
2
a.

COR. 2. If we make y = in equation (iv), we get

3?= x tan a ?
-

2~ ;4A cos a

i. e. a? = 0, or x = 4/i, sin a cos a;

the former value of x indicates the point of projection, the

latter gives the range on the horizontal plane Ax, arid accords

with the result obtained in Art. (86).

COR. 3. If
<f>
be the angle which the direction of motion

of the projectile at a time t after projection makes with the

horizon, its altitude above the point of projection being y and

its velocity v we shall have

vertical velocity
= v sin

</>
= v sin a gt,

horizontal velocity
= v cos

<j>
= v cos a,

whence we get

v Bin a at
tan 6 =-- ,

v cos a
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and

v'
2=

(v sin a #)
2+ (v cos a)

2

= v
2

2g (v sin a . J^
2

)

89. Motion of a projectile on a smooth fixed inclinedplane

under the action ofgravity.

With the diagram, of Art. 88, let Ax, Ay be rectangular

axes on the inclined plane (elevation ="), Ax being drawn

horizontal and Ay up the plane Ay will be a line of greatest

slope on the inclined plane.

If the projectile start from A with a velocity v in direction

AT along the plane (
TAx = a) the acceleration of P will be

zero parallel to Ax, g sin i parallel to Ay and g cos i per-

pendicular to the plane, the equation to the path will be as in

Art. 88,

a sin i . x2

y x tan a '-^-o~~ >

2v cos
2
a

'

a parabola, the elements of which can be obtained as in the

previous article.

If v be the velocity at any point P (x, y) of the path,
< the angle which the tangent at P makes with Ax, t the time

of motion from A to P, z the vertical altitude of P above A,
so that z = y sin z, we shall have

v' cos
<f)
= v cos a ........................... (i),

v sm<j>
= vBm a g siui.t ............

(ii),

y v sin a . t J^ sin * . ......... (iii),

x v cos a . t....................... (iv) ;
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from
(i), (ii), (iii),

we get

v'
z = v

2

2g sin i.y = v
2

2gz,

a result which shews that the change of velocity is the same

as if the projectile had moved freely under gravity, through
the same vertical height.

90. PKOB. A body is projected with a given velocity v

from a given point, to find the direction ofprojection that it may
strike another given point.

Employing the notation of Art. (88),

Let A be the point of projection, P the point through
which the body is to pass, h the. height due to the velocity of

projection, and a the required elevation of projection.

Then the equation of the path is

a?
y = x tan a =

-
^ ;4Acos2
a

if (a, 5) be the co-ordinates of P, we have the equation

a8

o = a tan a -77
--

^ ,

4A cos a

or I = a tan a (1 + tan
2

a),

from which to determine a.

This equation is a quadratic in tan a : when the two roots

are real and unequal, there are two directions of projection

which will satisfy the problem ;
when the two roots are real

and equal, these two directions coincide, and when the roots

are unreal the problem is impossible, i.e. there is no direction

in which the body could be projected with the proposed velo-

city so as to pass through the given point.
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Tliis problem admits of a simple geometrical construction.

From the point of projection A
drawAH vertical and = A, through
Hdraw HL horizontal, then HL
will be the directrix of the para-

bolic path Art. (85), Cor. The

problem then resolves itself into

this to construct a parabola which

shall pass through each ofthe points

A
,
P and shall have HL for its directrix. With A and P as

centres describe circles touching the line HL, and let S be

one of the points in which these circles intersect.

Then since 8A = AH and SP = PL, A, P are points in

a parabola whose focus is 8 and HL the directrix, and if AT
bisect the angle HAS it is a tangent to the parabola at A,
and consequently indicates the direction of projection.

If 8* be the other point in which the circles intersect, and

AT' bisect the angle HAS, then AT' indicates another

direction of projection which will equally satisfy the problem.
If the circles touch each other, then S, S' coincide, and there

is but one parabola and one direction of projection. If the

circles do not meet there exists no direction of projection
which will satisfy the problem.

The student will have little difficulty in reconciling the

results of the above analytical and geometrical solutions of

this problem.

COR. The locus of points P to any one of which there

is but one parabolic path for the particle projected from A
with given velocity, is a parabola having A for its focus, and

H its vertex. /V**e. ^ /-/ - <
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91. We have seen in Art. (89) that when a particle

moves on a smooth inclined plane the change of velocity

in passing from one position to another is the same as if the

particle moved freely under the action of gravity through the

same vertical space. We shall see in the next chapter that

the same conclusion is true, if the particle be moving on a

smooth curve.

If then a particle moving on a smooth plane or curve

quit it and subsequently describe a parabolic trajectory un-

der the action of gravity and if 9= j2gh be the velocity

at any point A of the path on the surface, h will be the

vertical altitude above A of the directrix of the parabola : so

that we may find the position of this directrix without neces-

sarily determining where the particle quits the surface.

We will make use of the above result in the following

problem.

92. An inclined plane is fixed on a table, and from the

foot of it a body is projected upwards along the plane with the

velocity due to the height h; after passing over the top of the

plane the body strikes the table at distance z from the foot of
the plane; shew that if the length of the plane be I, and a.

its inclination to the horizon be<-
,
the greatest value of z for

qiven values of h and a is .
-

, and corresponds to the
sin a cos a

7 7 _
value l=2

cos a.

Let AB(=l) be the inclined plane, AP the table. Draw

AD = h vertical, DT horizontal, produce AB to meet DT in T
and draw TP at right angles toAT meeting the table in P.
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Now the particle projected from A with velocity

after quitting the plane at B will describe a parabola to which

B Tis a tangent and of which DTis the directrix.

D

A

\\ f

?"'*.._ \:i <t\

\

Also since tangents to a parabola which meet in the direc-

trix are at right angles to one another, therefore TP touches

the parabola somewhere : since then the body cannot pass

beyond the line J!P, the range on the plane AP will evidently

be greatest when it touches at P, and we have

AT ^ ^
sin a cos a sin 2a

'

Also BP will pass through the focus $, T8 will be perpen-

dicular to BP, and the angles which TP makes with PB and

the vertical are each = a,

whence
I AB cos 2a

z AP
~~

cos a

2h cot 2a

cos a

Further, BP would not meet the table to the right of A
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if 2a be > -
,
hence in order that the problem may be pos-

sible a must be < -
.

Senate-House Prob. Jan. 18, 1854.

93. PROB. A particle (whose elasticity is e) is projected

with velocity v at an elevation a from a point in a horizontal

plane / to find the time in which the vertical velocity will he

destroyed hy successive rebounds and the total horizontal range
described in that time.

The particle will describe a series of parabolic curves in

one plane ;
the initial vertical velocity being v sin a, and the

vertical velocities at the successive rebounds being ev sin a,

e*v sin a, e
3
v sin a, &c.

Now the time of describing any one of these parabolic

*2u
curves in which the initial vertical velocity is u, is =

,

Art. (86). Hence the whole time which elapses before the

initial vertical velocity v sin a is destroyed by successive

rebounds is

g

And since the horizontal velocity continues uniform and

= v cos a, the whole horizontal range described in this time

will be

2v sin a v* sin 2a
.

g(\~e)

The particle will afterwards move along the horizontal plane

(supposed smooth) with the uniform velocity v cos a.
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COR. The vertical velocity at the beginning of the nih

curve will be = e
n~l

. v sin a, and if an be the elevation at that

time, we shall have, since v cos a is the horizontal velocity,

vertical velocity
tan a" = , * -, r = e

n l
. tan a.

horizontal velocity

Also the time of describing the first n parabolas

= 2PBin 2j^ l_-g
9 9 !-'

and the sum of the ranges of these n parabolas

2v sin a 1 e
n

v* sin 2a 1 e
n

g
'

1 - e' g '1-6*

94. The theory of the motion of projectiles given in this

Chapter depends upon the suppositions stated in Art. 84,

which are all inaccurate. The force of gravity without the

Earth's surface varies inversely as the square of the distance

from the centre of the Earth
; but the height to which a body

can be projected from the surface is so small, that the varia-

tion of the force arising from the change of the distance from

the centre may be safely neglected. The direction of the

force is everywhere perpendicular to the horizon, but if per-

pendiculars were drawn to the horizon at points on the Earth's

surface five miles apart, the angle between them would not

exceed 1', so that any error arising from the non-parallelism
of the force of gravity may be neglected ;

and the same may
be said of the very small errors arising from the rotation

of the Earth about her axis, and her motion of translation

in space about the Sun. The principal cause of error is the
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resistance of the air, and this is so considerable as to render

the conclusions drawn from the theory almost entirely inap-

plicable in practice. From experiments made to determine

the motion of cannon-balls, it appears that when the initial

velocity is considerable, the resistance of the air is 20 or

30 times as great as the weight of the ball
;
and the horizontal

range is often a small fraction of that which the preceding

theory gives. Such experiments have been made with great

care, and shew how little the parabolic theory is to be de-

pended upon in determining the motions of military projectiles.

From a long series of experiments made at Woolwich,
Dr Hutton arrived at the conclusion that the velocity v of a

cannon-ball on quitting the gun could be nearly expressed by

/2P
the formula v = 1600A/

-rp
,
P being the weight of the charge

of powder and W that of the ball.

And further, if the projectile be of finite size, and have a

rotatory as well as & progressive motion, the resistance of the

air, which acts along the surface of the body (or tangentially),

will in general change its direction, or the plane of its motion,

or both. For this resistance increases with the velocity and

the density of the air, and will consequently be greater on

that side of the body where the rotatory and progressive

motions conspire, than on the other side where they oppose
each other : and the density of the air immediately in front

of the body is greater than behind it.

Another cause of irregularity will also exist if the ball

be not homogeneous as for example if it contain air-bubbles

within, from imperfection in the casting so that its centre of

gravity does not coincide with its centre of figure.
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The non-symmetrical action of these causes on the "body

will make it deviate from its plane of motion, except in the

single case when the axis of rotation coincides with the

direction of progressive motion. On this principle has been

explained the irregular motion of a tennis-ball and the devia-

tion of a bullet from the vertical plane. It is in a great
measure remedied in the case of a rifle ball, since the rifling

of the barrel communicates to the ball a rotation about an

axis in the direction in which the ball is projected.

(See Eobins' Gunnery ; Hutton's Tracts ; Art. Gunnery
in the Encyclopaedia Britannica.}

P.M. 16
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CHAPTER V.

MOTION ON A CURVE.

95. WHEN a body moves along a smooth curve the

curve exerts a pressure or reaction upon the body at every

point, but since this reaction is always perpendicular to the

curve, it has no tendency to accelerate or retard the body.

In order to determine the velocity of the body in any position

we must resolve the forces upon the body in direction of the

motion at successive instants, and examine the effect of these

resolved forces.

96. An inelastic particle descends down a smooth curve in

a vertical plane under the action of gravity, to find the velocity

of the particle in any position.

We may regard the curve as the limit of a polygon whose

sides are equally inclined to one

another, by supposing the number of

sides to be indefinitely increased,

and the angle between consecutive

ones to become evanescent.

Let AAr ..An be such a poly-

gon; draw A^av A
2
a

2 , ^^...per-
pendiculars on the vertical line

through A.

Let be the angle between suc-

cessive sides of the polygcfn which

are not necessarily of equal length,
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u the velocity at A in direction

2
A

z A^a>

*> A A^An .

Then we shall have (Art. 89)
"
== w2 + 2<7 . Aa

t 1
when the particle

similarly, vf
= v* cos

2 + 2g. a^ comes to A ii; is de~

flected in direction

A^A^ and starts along
A

t
A

z
with velocity

__ cos 6 -f- 2^ . c?w_1
<7n.J 'Z? cos u

j

adding and transposing we get

Now if a be the angle between the directions of motion at

A and An ,
and v' the greatest of the velocities v

l9
v
9

. . .

and Aan
=

h, we have a= (n1) 0,

and (v? + <+...+ ^Vi) sin
2
^ < (n

-
1) ^'

2
sin

2

;

and this vanishes in the limit when n is indefinitely increased,

a remaining finite, (in which case the polygon becomes the

curve) ;

/. d fortiori (v* + v*+ ... +^5

n_1)
sin

2 Q

vanishes in the limit, in comparison with ^n
2
.

Hence in the limit when the polygon becomes the curve,

the equation (i) becomes

162
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which expresses the velocity at any point on the curve in

terms of the initial velocity, and the vertical height through
which the particle has fallen

;
or suppressing the suffix,

97. Obs. In the above investigation we have supposed

the particle inelastic and moving on the concave side of the

curve, towards which the force of gravity pulls the particle ;

these suppositions being made in order that the particle may
remain in contact with the curve. We shall see hereafter that

a particle moving on a curve will; under certain conditions,

quit the curve; but the necessity of the supposition here

referred to would be obviated by supposing the polygon

AA^A^.. to be a polygonal tube (becoming a curvilinear

one in the limit) of small bore, just sufficient to allow the free

passage of the particle. The result arrived at for the velocity

at any point would hold good in this case, and will be equally
true for a particle moving either on the concave or convex side

of a curve, so long as it remains in contact with the curve.

COR. 1. If the particle start from rest at A, then u 0,

and v
z =

2gh ;
i.e. the velocity, acquired from rest, down a

smooth curve is equal to that which would be acquired by a

body falling freely through the same vertical height. More

generally we may interpret the equation v
2 = u

2 + 2gh thus :

the square of the velocity at any point An ,
is equal to the square

of the velocity at any other point A, increased ly the square

of the velocity which the force ofgravity would generate in the

lody in drawing itfrom rest through the same vertical space.

This result it will be observed is independent of any par-

ticular form of the curve.

COR. 2. If a body be projected up a curve, the vertical
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height to which it will rise is equal to that through which it

must fall in order to acquire the velocity of projection; for

the body in its ascent will be retarded by the same degrees

that it would be accelerated in its descent.

If u be the velocity at any point of a particle moving up
a curve, v its velocity after describing a vertical height h, we

shall have v
2 = u2

2gh.

Hence if BAB' be a curve in a ver-

tical plane, the lowest point of which

is A, and the parts AB, AB' are similar

and equal, a body in falling down BA I

will acquire a velocity which will carry \

it up to B'
;
and the velocities at all equal

altitudes in the ascent and descent be-

ing equal, the whole time of ascent will

be equal to the whole time of descent.

It is moreover obvious that when

the particle has arrived at B' it will descend again to A and

rise to B, and so on continually ; i.e. the motion will be a reci-

procating or oscillatory one, and the time of passing from B
to B' through the lowest point A is called the time of oscil-

lation.

COR. 3. Let BAB' be a circle (radius a) of which A is

the lowest point, AO the vertical radius, and BN drawn per-

pendicular to A
;
v the velocity acquired by a particle in

descending from rest at B to the lowest point A then we
shall have

* = 2? . AN-

.-. v =

= . (chord ASf ;

a

- chord ABv chord AS;
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i. e. the velocity at the lowest point varies as the chord of the

arc of descent.

The result will be the same if instead of the curve BAB'
we suppose the particle attached to an inextensible string of

length OA, and fixed at 0.

98. Obs. The time in which a particle will fall from

rest from a point B to the lowest point A will not, in most

cases, be the same for different positions of B. But if the

curve be a cycloid the time of falling to the lowest point will

be the same, whatever be the point from which the body
starts

;
in other words, the time of oscillation in a cycloid

(whose axis is vertical and vertex downwards) is the same

whatever be the arc of oscillation. For this reason the cycloid

is called an isochronous curve.

This property of the cycloid is of great importance in the

theory and construction of pendulums.

We proceed to give a proof of it : but for the convenience

of the student we will first give a proof (in the following three

articles) of the properties of the cycloid which it will be neces-

sary for him to be acquainted with.

99. Def. If a circle as TPS roll in one plane upon a straight

line CBD, any point P fixed on the circle will trace out a curve

CPAD called a cycloid.

Let CPAD be the complete curve formed in one revolution of

the circle, C, D the points where the tracing point P quits and

returns to the line CD, SPT the position of the circle when the

tracing point is at P, BQA its position when the tracing point
P is furthest from the line CD-, then it is evident that the parts of

the curve AC, AD will be equal and similar, AB which bisects

CD at right angles is called the axis, CD the base, and A the vertex

of the cycloid.
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Draw PQN perpendicular to AB, join PS, PT.
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T

Since P starts from C, and every point of the arc SP has been

in contact with the line CS, the arc SP = SC ;
and since the line

CB is equal to the semicircle BQA, which is = semicircle SPT,

therefore arc PT=S= PQ, since BQ is parallel and equal to PS.

Hence if we suppose the circle to begin rolling from the posi-

tion BQA with the tracing point at A, when it arrives at any

position P, the arc AQ = BS = PQ.

(i)
PT is a tangent to the cycloid at P.

For when the tracing point is at P, the generating circle is in

contact with the line CD at S, and this point S of the circle is at

rest for an instant, or the circle is turning about S, consequently

P is moving perpendicularly to SP, i.e. PS is a normal to the

cycloid at P, and PT- (which is at right angles to SP) is the

tangent at P.

(ii)
The length of any arc AP starting from the vertex is

twice the chord AQ of the circular arc AQ cut off by the ordinate

PQ&.

Let P,QN, be an ordinate very near to PQN
'

draw AV, VQt

tangents to the circle at A, Q ; then AV is parallel to the base

(and also to P$N) let VQ, AQ produced meet P,QNt
in t, q;

and draw tn perpendicular to Qq.

Now AV, VQ being tangents to the same circle /. VAQ=t VQA,
and z VQA = opposite /.tQq, and ttqQ - alternate z. VAQ.
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Hence ttQq=ttqQ, and .-. tq
= tQ; consequently Qq = 2.Qn.

Further, the smaller QQ/
is taken, the more nearly does the

arc QQ, coincide with its tangent Qt, and is ultimately equal

to it (Newton, Lemma vn). Hence tn is ultimately a small arc

of a circle, whose centre is A and radius A Qt
i. e. AQ, and Qn

ultimately measures the increment of the chord A Q.

Also Qq is parallel to the tangent to the cycloid at P, and is

therefore ultimately equal to the arc PP,.

Hence the increment PP
/
of the arc of the cycloid is ultimately

twice the corresponding increment of the chord AQ, and the arc

AP and chord A Q begin together at A, therefore arc AP = 2 . chord

AQ = 2. chord TP.

COR. 1. Since AQ
2 = AN. AB, .: AP = 2J(AB . AN).

COR. 2. The arc A0=2. AB.

100. (iii)
To make a pendulum oscillate in a given cycloid.

Let AB be the axis and

DC the base of the given

cycloid, and let EG be a

semicycloid exactly equal to

DA placed with its vertex

at C and base EF parallel

to BG j
ED another semi-

cycloid equal to GA placed

with its vertex at D and

base parallel to DB.

Let JRQS, SPT be any positions of the generating circles of the

cycloids touching each other at S j Q,P the positions of the tracing

points, join QS, SP.

Then arc PS=SG =RF= arc SQ ; hence since the circles are

equal, the angles PSC, QSB are equal, and therefore PSQ is a

straight line.

D
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But QS is a tangent at Q to the cycloid EQC, and PS is normal

at P to the cycloid GPA.

Also the arc CQ=2. chord SQ = PQ.

Hence if we suppose a string of length = length of semicycloid

EQC to be fastened at E and applied to the cycloid EQC, and

if it be then unwrapped, being kept always stretched, it will

always be a tangent to the cycloid EQC, and its extremity will

trace out the cycloid CA.

We have then this practical way of making a pendulum
vibrate in a cycloid.

Let two equal material semicycloids EQC, ED, be placed so

as to have a common vertical tangent at E, and let a fine string

of length equal to the semicycloid EQC be fastened at E, and

have a heavy particle attached to its other end P. The particle

will oscillate in the cycloid CAD, the string unwrapping from

EC as P describes CA and then wrapping itself on ED, whilst P
describes AD, and vice versa, continually.

101. (iv) The radius of curvature at any point P of the

cycloid =PQ = 2. PS= 2 .normal; as is evident from the pre-

ceding article, or we may arrive at this result independently thus

with the fig. Art. 99.

Join BQf, .#<) the latter cutting AQf in o, let PS, P'S' the

normals at P, P' intersect in 0' the centre of curvature at P,
then since PO', P'O' are parallel to BQ, BQf

respectively, and

PF = 2. Q'o ultimately,

.'.PO' =2.o = 2.Q = 2.PS ultimately,

i. e. rad. curv. = 2 . normal.

102. To find the time in which a particle will fall down

any arc ofan inverted cycloid.
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Let V be the point from which the particle starts from

rest
;
VH horizontal meeting the axis of the cycloid AB in H.

On AH describe a circle, and let the ordinates PN, P'N' of

two contiguous points meet this circle in q, q\ join Hq, Hq,
and Aq cutting Hq in Z>.

Now

arc Ar

similarly arc AP' = 2Aq
AB\
AH7

;

AB\
AH)'

Again, since the particle starts from rest at V, the velocity

at P = velocity acquired in falling freely through the vertical

height HN

and since PP' is very small the velocity of the particle whilst

describing PP' will be very nearly uniform and equal to its

velocity at P, and the smaller PP' is taken the more nearly
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will this supposition be true
; also, on the same supposition

Aq Aq may be ultimately taken to be = bq, since Aq'b

being = 90, Ab = Aq ultimately, and .*. Aq Aq =
bq.

arc PP'
Hence time of describing PP =--r

'- = ultimately.
velocity at P

f since 77- = circular measure of ^ qHq, ultimately) ;

i.e. the time of describing any small arc PP varies as the

circular measure of the corresponding angle qHq.

If then we take the sum of successive small intervals

starting from F, we get the time of describing VP, and the

sum of the corresponding small angles is = z VHq,

whence time of describing VP = / VHq. /( -
J

.

COR. 1. When Pcomes toA the ^ VHq becomes VHA -
;

2i

.'. time from Fto A =
f^ (^ )

The body after coming to A will ascend the opposite

semicycloid AD to a point V such that AV = A V; and the

time of ascending AV will be equal to the time of descending

VA. Hence the time of a complete oscillation from V to V is
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COR. 2. Since the time of oscillation in a cycloid does not

depend upon the particular point from which the body starts

from rest, the time is the same whatever be the arc of oscilla-

tion, in other words, the curve is isochronous.

COR. 3. If two equal semicycloids EC, ED (fig. Art. 100)

be placed in contact at E with their common tangent vertical,

and a string of length equal to either of them be fastened at

E, and have a heavy particle attached to the other end, this

particle will oscillate in the cycloid CAD in exactly the same

way as a free particle moving on a material cycloid CAD.

If Z be the length of the string, i. e. of the pendulum,
l AE=^^AB\ and the time of an oscillation from rest to

rest will be

7
9

Hence at the same place on the Earth's surface the time of
oscillation oc \f (length of the pendulum).

COR. 4. The cycloid for a short distance from A will very

nearly coincide with its circle of curvature at A, which is the

circle whose centre is E and radius AE.
If then a pendulum of length I oscillate in a circular arc

of very small amplitude, the time of oscillation = TT A/ -
.

^7

COR. 5. If I be the length of the seconds pendulum,
i.e. of the pendulum which oscillates from rest to rest in

a second,

/'the length of the pendulum which oscillates once in n seconds,

we have

7 /?
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103. The length of the seconds pendulum in the latitude

of London has been found by experiment to be 39*1386

inches : from this value of I we can find g the accelerating

force of gravity, for we have 1 = TT \/ -
;

u

/. g = 7T
2
.1 = 386-28 inches = 3219 feet.

COR. If #, g be the force of gravity at two places A, B
where the same pendulum beats n, ri times respectively in the

same given time, we can easily compare #, g in terms of n, ri.

For if T be the given interval, we have

T II T II'' ? v

-9

n n n -\- n n n= . =2 - nearlv,
n n n

if ri ~ n be small compared with n.

104. A seconds pendulum is taken to the top of a mountain

of height A; to find the number of beats it will lose in a day.

Suppose the force of gravity to vary inversely as the

square of the distance from the centre of the Earth.

Let r be the Earth's radius, h = the height of the mountain,

g, g the force of gravity at the foot and top of the mountain,
..2

then/=*-
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if t, t' be the time of an oscillation at the foot and top of th

mountain,

and if n, n be the number of beats in the same time at the

foot and top respectively,

nt = n't'
;

kn _t' _ / g r + Ji

'

n
f ~t~V'--~r~
n = 1

1 ,= -
nearly ;

if A be 1 mile, 4000
;
n = 24.60.60,

24.60.60

4000 21-6;

that is, a seconds pendulum would in this case lose about

21'6 beats in 24 hours.

N. B. For points outside the Earth, the force of gravity varies inversely as

the square of the distance from the centre of the Earth: for points within the

Earth the force of gravity varies as the distance from the centre.

105. When a particle moves on a plane curve under the

action of any force, to find an expression for the acceleration at

any point of its path in the direction of the normal.

Let v be the velocity of the par-

ticle at any point P of its path, P the

normal, PT the tangent at P. Take

PQ any small arc described in time t,

and draw QS perpendicular to PT, and

therefore parallel to PO. As the par-

ticle moves from P to Q the velocity

and acceleration will in general vary.
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Let v', v" be the greatest and least velocity estimated

parallel to PT, as the particle moves from P to Q ; /', /" the

greatest and least acceleration estimated parallel to PO
;
then

QS being the space through which the particle is drawn in

direction PO in the time t by a force always intermediate

to/',/", we shall have

and PS>v"t<vt;

PS2
v"* v'

2

therefore ^~ > jr < -^ .

Now when the arc PQ is taken continually smaller and

v"2
v'

2
-y
2

smaller, each of the expressions r, , ^,
becomes 77 in the

J J J
P 02

limit, and -
^ Q in the same limit becomes the radius of

2 , (j/o

curvature at P (= p suppose). (See Evans's Newton, p. 15.)

2 2

Hence -7 = p, or /"= the expression for the normal
/ P

acceleration required.

106. By the first law of motion we know that if the

force acting upon a particle were to cease at any instant

it would proceed to move with the velocity it then has and in

the direction in which it is then moving, i. e. in the tangent

to the curve at the point where it was at the instant the force

ceased. If then the particle continues to pursue a curvilinear
2

path, the value of the expression at any point measures

the acceleration in direction of the normal, which must operate

upon the particle in order to deflect it from the tangent and
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retain it in its curvilinear path. This accelerating force in

direction of the normal has been frequently called the centri-

fugalforce of the particle, vaguely conveying an impression
as it were that the particle of itself resisted curvilinear motion

and exerted a force per se to move in a rectilinear path, which

innate tendency was only overcome by the action of some

external force
;
whereas the dynamical principles now univer-

sally accepted, teach us that a particle of matter exerts no

force upon itself, but submits passively to the action of any
external force

; retaining whatever motion has been impressed

upon it till it is modified by the action of some new force.

We would recommend the student to avoid this vague use of

the term centrifugal force, or if he uses it at all, to use it

simply as an equivalent for the force in direction of the nor-

7? 777 ?>

mal, viz. or
, according as he is estimating the accele-

rating or moving force in that direction (m being the mass of

the particle).

107. A particle moves on a cycloid whose axis is vertical

under the action of gravity ; to find the pressure on the curve.

(Fig. Art. 100.)

Let m be the mass of the particle moving on the concave

side of the curve, R the reaction or pressure which the

material curve exerts on the particle towards the concavity,

which is consequently equal to the pressure which the par-
7->

tide exerts on the curve in the opposite direction, then -

will be the accelerating force of this pressure; also let
</>

be

the angle which the normal PQ makes with the vertical
;
then

since gravity acts downwards, g cos < will be the resolved

part of the accelerating force of gravity estimated in direction
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r>

QP, and #cos< will be the whole actual acceleration in

direction of the normal.

Bat
v- measures the acceleration necessary to make the
P

particle move on the curve as it actually does (Art. 105).

'These two expressions then must be equivalent, and we

shall have

v
9 R- =--**;

fv
z

.'. R = m (-

the required expression for the pressure.

COR. 1. If the particle describe a cycloid by being
attached to a string, as in Art. (102, Cor. 3), the tension of the

string on the particle must be the same as the pressure of the

curve in the previous Article, i.e. tension of the string in any

positionEQP = ml h g cos

COR. 2. If a particle move on any curve under the action

of any force, and S be the resolved accelerating force in

direction of the normal, estimated positive towards the con-

cavity, we should get by the same reasoning as in the

present Article, R = m I
Sj .

COR. 3. Since the curve can only exercise a pushing
force upon the particle, if the expression for R becomes nega-
tive in any case (which indicates that the curve ought to

exercise a pulling force) the particle will quit the curve, and

moreover will quit it at the point where R is = 0, provided
P.M. 17
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that as the particle passes through that point the expression

for R changes sign from positive to negative.

If the particle be moving in a tube of very small bore,

instead of on a curve simply, the direction of the pressure

which the tube exerts upon the particle will change its

direction at such a point as is here contemplated, i.e. if

when the particle is on one side of the point the pressure acts

towards the concave side of the curve, when the particle is

on the other side of the point the pressure will act towards the

convex side of the curve, and vice versa.

108. We will illustrate the principles of this chapter by
the following problems.

PROB. A particle descends down the arc of a smooth ver-

tical circle, starting from rest at the vertex; to find where the

particle will quit the circle.

Let v be the velocity of the particle

in any position P in its course down

the circle.

AO the vertical diameter, the

centre of the circle whose radius = a.

PN horizontal, POA =
0, E the

pressure of the circle on the particle

outwards from 0.

Then v* = 2g . AN since the particle starts from rest at A,
and since the radius of curvature is the same at every point,

v
z

and = a. therefore measures the acceleration at P in direc-
a

tion PO: but g cos 6 is the resolved part of gravity in direction

-p

PO, and therefore gcosO is the whole actual acceleration

on the particle in direction PO ;
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R
;m

f
l$\

.\R=m(g cos 6
-J ,

and v
z = 2gAN= 2ga (1 cos 6) ;

.'. R= ma (3 cos 0-2).

This gives the pressure at any point P, and so long as cos 6

2
is > -

,
R is positive and the particle remains in contact with

o

2
the curve; but when 6 becomes so large that cos 6 < -, then

o

R becomes negative, and it would require the curve to exert

a pulling force in order to retain the particle in contact with

2
it. Hence at the point where cos 6 = -

,
R changes sign from

o

positive to negative, and the particle quits the curve.

2 1
At the point where cos 6 = -

, AN = - A 0.
3 o

After quitting the curve the particle proceeds to describe

a parabola.

109. PROB. A particle is whirled round in a verticalplane,

being attached to one end of an inelastic string, the other end of
which isfixed, to find the tension of the string in any position,

and the conditions that the particle may describe a complete

circle.

Let (Fig. p. 258) be the fixed end of the string whose

length is = a, P the position of the particle when the stringP
makes any angle with the vertical OA

9
draw PN horizontal,

then

172
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Let T be the tension of the string when the particle is at P
;

u, v the velocity when it is at A, P respectively ; then

. AN= u* + 2ga (1
- cos 6}.

T
Also - =

accelerating force of the tension of the string in

direction PO,

g cos 6 = resolved part of gravity in direction PO ;

T
.'.

- + g cos 6 whole acceleration in P 0,

=
, by Art. (107),

.-. T=mj+g (2-3 cos 0)1

This gives the tension of the string in any position.

T is least when cos = 1; i.e. when 6 or P is at A
,

and increases continually as 6 increases, till when 6 = TT (or

the particle is at the lowest point), T is greatest.

In order that the particle may describe a complete circle,

the tension must never be negative, otherwise the string would

become slack.

If we make the least value of T zero, i.e. put T when
6 = 0, we get

\-g (2 3)
=

0, or w2 = ga 7
or u = \/(ga) ;a

which expresses the least velocity the particle may have at

the highest point in order to describe a complete circle.
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The greatest velocity is at the lowest point, and if

the greatest velocity

The expression for the tension in this case becomes

T=3mg (l-cos0),

the maximum value of which is when cos =
1, or when

the particle is at the lowest point ;
the tension is then equal

to 6mg = 6 . weight of theparticle.

The conditions necessary to be fulfilled in order that a

complete circle may be described are

(i)
the velocity at the lowest point must not be < *J(5ga).

(ii) the string must be capable of sustaining a strain

equal to at least six times the weight of the particle.

110. We will conclude this chapter with a short account

of the method employed by Newton to determine the elas-

ticity of different substances.

Let A, B be two balls suspended from fixed points C, D
by parallel strings, so that they

may be in contact at the extremi-

ties of horizontal diameters. If the

balls be drawn aside through given

arcs, the velocities with which they

strike each other can be found

(Art. 97, Cor. 3), and by a proper

arrangement of these arcs they can be made to impinge upon
each other when they are in their lowest position. By ob-

serving the arcs through which they rebound, the velocities

with which they separate after the impact can be obtained,

and thence the coefficient of elasticity.

\
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By experiments of this kind Newton determined the co-

efficient (e) of elasticity of balls of worsted to be about -
,

of
y

balls of steel it was nearly the same, of cork a little less, of

8 15
ivory e - -

,
and of glass e = . See Principia, Bk. I. Scho-

y io

Hum to the Laws of Motion; where Newton further shews

how allowance may be made for errors arising from the resist-

ance of the air.

Again, if B be drawn aside and allowed to impinge upon
A at rest, the velocities of each after impact will be found to

be the same as result from the principles assumed in the

chapter on collision.

Or again, suppose the balls to be of wood, and let one of

them B have a small steel point projecting from it which

would cause it to stick to A after the impact, by properly

adjusting the arcs through which the balls are displaced their

velocities at impact can be made to be inversely proportional

to their masses, and by loading one of them with lead their

masses can be made to bear any proportion, it will be found

that they remain at rest after the impact, shewing that equal

momenta in opposite directions destroy each other.
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PEOBLEMS AND EXAMPLES.

EXAMPLES NOT INVOLVING FRICTION. CHAPTERS I. II.

1. Two given forces act at a point ;
if the angle between

their directions be increased, the magnitude of their resultant

will be diminished, and vice versa.

2. Three given forces cannot be made to balance each

other by any arrangement of their directions, if the sum of

any two be less than the third.

3. Two equal forces applied at a given point have a

resultant given in magnitude and direction, find the locus

of the extremity of the straight line which represents either

force.

4. If be a point within a triangle ABC, and D, E, F
the middle points of the sides, the system of forces repre-

sented by OA, OB, OG will be equivalent to those repre-

sented by OD, OE, OF.

5. A circular hoop is supported in a horizontal position,

and three weights P, Q, E are suspended over its circumfer-

ence by three strings meeting in the centre; what must be

their positions so that they may balance each other ?

The angle between the directions of any two strings will be given by the

formulae of Art. 23.

6. The angles A, B, of a triangle are 30, 60, 90

respectively. The point C is acted on by forces in directions
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CA, CB inversely proportional to CA, CB. Find the magni-
tude and direction of their resultant.

Result. The resultant makes an angle 60 with CA and its magnitude
: force in CA :: AB : CB.

7. If a point be acted on by three forces parallel and

proportional to the three sides AB, BC, DC of a, quadrilateral,

shew that the resultant of the forces is represented in magni-
tude and direction by ECE', E being the middle point of

AD, and CE' being equal to EC.

8. If two forces P and Q act at such an angle that

R = P, shew that if P be doubled, the new resultant will be

at right angles to Q.

9. The resultant of two forces 'P and Q acting on a

particle is the same when their directions are inclined at an

z. 6 as when they are inclined at an z - 6 to each other :

shew that tan 6 = >/2 1.

10. A uniform sphere moveable about a fixed point in

its surface, rests against an inclined plane ;
find the pressure

on the fixed point.

Result. If a be the inclination of the plane and
ft

the angle which the

radius to the fixed point makes with the vertical,

sin a . , . , ,

pressure = . . weight of sphere.

11. Two equal weights P, Q are connected by a string

which passes over two smooth pegs A, B situated in a hori-

zontal line, and supports a weight W which hangs from

a smooth ring, through which the string passes. Find the

position of equilibrium.
Result. The depth of the ring below the line AB

.length AB.
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12. The resultant of two forces P, Q acting at an angle

6 is equal to (2m + 1) */(P
z + Q

2

); when they act at an angle

-
6, it is equal to (2m

-
1) */(P

2 + Q*) ; shew that
2t

- 1atan 6 = - -
m + 1

13. Six forces in one plane represented in magnitude
and direction by the lines OA, OB, OG, O'A, OB, OC,
when applied at a point, balance each other. Prove that the

algebraical sum of the triangles OBC, OBC (considered of

different signs when 0, 0' are on opposite sides of BG) is

equal to two-thirds of the triangle ABC.*******
14. Two equal forces acting along the bisectors of the

angles B and C of a vertical triangular lamina, keep it in

equilibrium with the base BG horizontal. Shew that the

triangle is either isosceles, or that

. B . G^ .

A_
11

2
Sm

2
" *

2
'

15. is the centre of the circle circumscribing the

triangle ABO and forces act along OA, OB, OG propor-

tional to the sides of the triangle : shew that their resultant

passes through the centre of the inscribed circle.

16. Three rods AB, BG, CD, whose weights are propor-

tional to their lengths a, b, c, are jointed at BC, and rest in a

horizontal position over two pegs P, Q : find the strain at

the joints B, C, and shew that the distance PQ between the

PeSs is = ^rn, + TT^TT + &-
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17. A weight is supported by several strings of different

elasticity, which are fastened to the same point of suspension

and to the same point of the weight : find the tension of the

several strings.

18. ABCD, A'B'C'D' are two parallelograms, prove
that forces acting at a point, parallel and proportional to

AA, BB', CG'} DD 1

will be in equilibrium.

19. Three forces P, Q, R acting in one plane at a point
are in equilibrium ; prove that the cosine of half the angle
between the direction of Q and R is

(R +P-Q)(P+Q-R)
QR

20. Assuming the parallelogram of forces with respect to

the direction of the resultant for equal forces (Art. 18, i.),

state the steps of the proof for forces in the ratio of 57 to 82,

and reduce the number of steps to seven.

21. Forces P, Q, R act at a point ;
the direction of Q

is opposite to that of the resultant of R and P, and the

direction of R is opposite to that of the resultant of P and

Q : shew that P, Q, R are in equilibrium.

22. Determine a curve on which a heavy particle will

rest at any point under the action of a central force varying
as the distance from the centre.

23. The altitude of a" right cone is h, and the radius of

its base is r; a string is fastened to the vertex and to a

point on the circumference of the circular base, and is then

put over a smooth peg : shew that if the cone rests with its

axis horizontal, the length of the string is = VA2 + 4r
2
.
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24. A rod 5 feet long has a string 7 feet long attached

to its ends, and by this it is hung over a small smooth

fixed peg, so that the parts of the string are as 4 : 3. Find

the position of the centre of gravity of the rod and the

pressure on the peg.

Result. Depth of centre of gravity of the rod below the peg =

clination of the rod to the vertical = sin- 1
, pressure on peg= weight of

5/v/2
rod.

25. A smooth circular ring is fixed in a horizontal posi-

tion, and a small ring sliding upon it is in equilibrium when

acted on by two strings in the direction of the chords PA,
PB

;
shew that if PC be a diameter of the circle the tensions

of the strings are in the ratio of BC to AC.

26. Three forces P, <?, R acting upon a point and keep-

ing it at rest, are represented by lines drawn from that point.

If P be given in magnitude and direction, and Q in magni-

tude only, find the locus of the extremity of the line which

represents the third force R.

27. At any number of points of a parabola forces are

applied, represented by the tangents and normals at those

points, shew that the parabola will remain at rest if the

focus is fixed.

28. A circular disc is kept at rest by three forces acting

perpendicularly to the circumference at three given points

therein
;
shew that the forces are as the sides of the circum-

scribing triangle that pass through those points.

29. R being the resultant of P and Q, let R be equal to
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V3.$, and make an angle of 30 with P; find P in terms

of Q.

Result. P=QorP=2Q.

30. AB is a uniform rod, of weight W, moveable in

a vertical plane about a hinge A ;
a given weight P sustains

the rod by means of a string BCP passing over a smooth

pin (7, situated in the vertical through A and at a distance

AC=AB. In the oblique position of equilibrium of the rod,

W
31. Two rods similar in every respect (the weight of

each being W) are capable of motion in a vertical plane
round a common fixed pivot at one extremity of each, and

they are kept in equilibrium in a position inclined at +0 to

the horizon by a string placed over the other ends and kept
stretched by two equal weights (P, P) at its extremities.

Shew that

,_2P+ W
~2F~-********

32. ABDC is a quadrilateral, and is acted on by forces

which act in the direction of, and are proportional to, AB, A (7,

DB, DC respectively; shew that their resultant is parallel

and proportional to the line joining the middle points of the

diagonals.

33. A lever without weight in the form of the arc 2a of

a circle subtending an z2a at its centre, having two weights
P and Q suspended from its extremities, rests with its con-

vexity downwards upon a horizontal plane; determine the

position of equilibrium.
Result. The chord PQ, is inclined to the horizon at an angle

'P Q
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34. The ends of a uniform heavy rod are connected, by in-

extensible strings without weight, with the ends of another

uniform rod which is moveable about its middle point. Prove

that, when the system is in equilibrium, either the rods or

the strings are parallel.

35. If a uniform heavy rod be supported by a string

fastened at its ends, and passing over a smooth peg; prove
that it can only rest in a horizontal or vertical position.

36. Two equal circles intersect in A and B: any line

PQN perpendicular to AB meets the circles in Pand Q and

AB in N. Prove that the resultant of four forces repre-

sented by PA, PB, QA, QB is of constant magnitude.

37. Explain how a vessel is enabled to sail in a direction

nearly opposite to that of the wind.

38. Explain how the force of the current may be taken

advantage of to urge a ferry-boat across a river
;
the centre of

the boat being attached, by means of a long rope, to a moor-

ing in the middle of the stream.

39. The whole length of each oar of a boat is 10 feet,

and from the hand to the rowlock the distance is 2 ft. 6 in.
;

each of eight men sitting in the boat pulls his oar with a force

of 54 Ibs. Supposing the blades of the oars not to move

through the water, find the resultant force propelling the boat.

Result. Propelling force= 144 Ibs.

40. At what height from the base of a pillar must the

end of a rope of given length be fixed, so that a given power
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acting at the other end may be most effectually exerted to

overturn the pillar ?

Result. . length of rope.

41. A uniform beam of length 2a rests against a vertical

plane and over a peg at a distance h from the plane ; shew

that the inclination of the beam to the vertical is =sin~1

42. A uniform rod whose weight is W is supported by
two fine strings (one attached at either end), which passing-
over small fixed smooth pullies carry weights w^ wz respec-

tively. Shew that the inclination of the rod to the horizon

is

43. Two equal uniform heavy straight rods are con-

nected at one extremity by a string, and rest upon two

smooth pegs in the same horizontal line, one rod upon one

peg, and the other upon the other : the distance between

the pegs being equal to the length of each rod, and the

length of the string being half the same: shew that the

rods rest at an angle to the horizon, such that

2 cos
3 = 1.

44. A string is knotted so as to form an equilateral

triangle, and is placed symmetrically within another equi-

lateral triangle nine times as great, each knot being con-

nected with the two nearest angles of this triangle by strings

solicited with a tension P. If Tbe the tension of the tri-

angular string, then will P=
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45. Two straight lines AB, AC make an z2 with

each other: when a certain force R is resolved into two

forces parallel and perpendicular to AB, P is the component

parallel to AB; similarly, when R is resolved into two

forces parallel and perpendicular to AC, Q is the compo-
nent parallel to A C, shew that

R = i((P+ Q)
2
sec

2 a + (P- <))
2
cosec

2

a] ^,

and that the direction of R makes an angle

cot a

with the straight line bisecting the ^BA C.

46. Two equal weights (P, P) are attached at the ex-

tremities of a string which passes over three small pullies

forming an equilateral triangle; a small heavy ring (W) is

slipped over the uppermost pully and descends by its own

weight ;
find the position of equilibrium.

Result. The portions of the string which are not vertical are inclined to

the vertical at an angle 2 sin- 1
( -\/_

J
.

47. A uniform heavy rod of given length is to be sup-

ported in a given position, with its upper end resting at a

given point against a smooth vertical wall, by means of a fine

thread attached to the lower end of the rod and to a point in

the wall. Find by a geometrical construction the point in the

wall to which the string must be attached.

48. A flat semicircular board with its plane vertical, and

curved edge upwards, rests on a smooth horizontal plane,

and is pressed at two given points (P, Q) of its circumference

by two beams which slide in smooth vertical tubes; find the
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ratio of the weights of the beams that the board may be in

equilibrium.

Result. If a, fi be the angles which the radii at P, Q make with the

horizon then the weight of the beam at P : that at Q= tan a : tan/3.

49. Three equal heavy cylinders, (weight of each = W),
each of which touches the other two, are bound together by
a string and laid upon a horizontal plane; the tension (T)
of the string being given, find the pressures between the

cylinders.

Result. Pressure between the upper and either of the lower cylinders

W W= 2M-_1_ -between two lower cylinders=T--- .

50. Three straight tobacco-pipes rest upon a table, with

their bowls mouth-downwards in the angles of an equilateral

triangle, the tubes being supported in the air by crossing

symmetrically, each under one and over the other, so as to

form another equilateral triangle ;
shew that the mutual pres-

sure of the tubes varies inversely as the side of the latter

triangle.

51. If ABC be a right-angled triangle, and ABDE,
ACFG be the squares on the sides constructed as in Euclid

I. 47, prove that the resultant of forces represented by CD,
BF is parallel to a diagonal of the rectangle whose sides are

AE,AG.

52. An elliptic lamina is acted on at the extremities of

pairs of conjugate diameters by forces in its own plane

tending outwards and normal to its edge : there will be equi-

librium if the force at the end of every diameter be propor-

tional to the conjugate.
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53. Three equal rods are j ointed by smooth compass-joints

at the extremities so as to form an equilateral triangle. Find

the direction of the pressures on the lower joints when the

triangle is suspended from one angle.

Result. They are inclined to the horizon at an angle tan"1 V .

2

54. One corner of a square lamina is fixed, and equal
forces (P, P) act in order of direction along the two sides

which do not pass through that corner. If a single force

applied at the centre of the lamina keeps it at rest, deter-

mine this force, and the pressure on the fixed point.

Result. A single force R=2^2P acting perpendicular to the diagonal

passing through the fixed point: and pressure on fixed point =^/2P acting

parallel and opposite to R.

55. A cylindrical shell, without a bottom, stands on a

horizontal plane, and two smooth spheres are placed within it,

whose diameters are each less whilst their sum is greater than

that of the interior surface of the shell; shew that the cylinder

will not upset if the ratio of its weight to the weight of the

upper sphere be greater than 2c a b : c, where a, b, c are

the radii of the spheres and cylinder.

56. Two forces in the ratio l + n:l where n is small y

act upon a point in directions inclined at an angle a
;
shew ,,

that the sine of the angle which the direction of the resultant

makes with that of the larger force =
(
1

)
sin - nearly.

\ 2/ 2

57. An endless string supports a system of equal heavy'

pullies, the highest one of which is fixed, the string passing
round every pully and crossing itself between each. If

a, ft, 7, &c. be the inclinations to the vertical of the successive

rectilinear portions of string, prove that cos a, cos /:?,
cos 7,

&c. are in arithmetic progression.

p. M. 18
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58. A heavy rod (weight W, length 2a) can turn freely

about a hinge at one extremity A ;
and it carries a heavy ring

(P) which is attached to a fixed point C in the same hori-

zontal plane with the hinge, by means of a string of length

(c) equal ,to the distance between the point and the hinge.

The Z0 which the rod makes with the horizon in the position

of equilibrium is defined by the equation

cos 2 + cos 0=0.

59. A sphere of weight W is moveable about a point in

its circumference, at which a string is attached which passes

over the sphere and supports a weight P
;
shew that the

diameter of the sphere which passes through the point of

suspension is inclined to the vertical at an angle

sm
\P+

60. In a triangular lamina ABC, AD, BE, OF are the

perpendiculars on the sides, and forces represented by the

* lines BD, CD, CE, AE, AF, BF, are applied to the lamina
;

prove that their resultant will pass through the centre of the

circle described about the triangle.

61. Two uniform rods AB, BC of similar material are

connected by a smooth hinge at B, and have smooth rings at

their other extremities, which slide upon a fixed horizontal

wire: shew that the only positions of equilibrium are those

in which the lesser rod is vertical.

62. Two small rings without weight slide on the arc of

a smooth vertical circle, a string passes through both rings,

and has three equal weights -attached to it, one at each end
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and one between the rings; in the position of equilibrium

the distance between the rings is equal to the radius of the

circle.

63. A ring whose weight is P, is moveable along a

smooth rod inclined to the horizon at an angle a, another

ring of weight P' is moveable along another rod in the same

vertical plane as the former, and inclined at an angle a' to the

horizon
;
a string which connects these rings passes through

a third ring of weight 2Wwhich hangs freely ;
shew that the

system cannot be in equilibrium unless

Ptan a-P tan a + TF(tan a -tan a!)
= 0.

64 A square rests with its plane perpendicular to a

smooth wall, one corner being attached to a point in the

wall by a string whose length is equal to a side of the square;

shew that the distances of three of its angular points from

the wall are as 1 : 3 : 4.

65. A uniform square board is capable of motion in a

vertical plane about a hinge A at one of its angular points ;
a

string attached to G one of the nearest angular points and

passing over a pully vertically above the hinge, at a distance

from it equal to a side of the square, supports a weight whose

ratio to the weight of the board is 1 : V(2) Find the posi-

tions of equilibrium.

Result. AC makes with the vertical an ^ 30 or ^ 90.

66. One end of a beam whose weight is Tf, is placed on

a smooth horizontal plane ;
the other end, to which a string is

fastened, rests against another smooth plane inclined at an

angle a to the horizon ;
the string passing over a pully at the

top of the inclined plane hangs vertically, supporting a weight
P. Shew that the beam will rest in all positions if

2P = T'Fsina.

182
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67. Two equal circular discs of radius r with smooth

edges are placed on their flat sides in the corner between two

smooth vertical planes inclined at /2a, and touch each other in

the line bisecting the angle ;
the radius of the least disc which

may be pressed between them without causing them to separate

1 cos a

cos a

68. One end of a string is fixed to the extremity of a

smooth uniform rod, and the other to a ring without weight
which passes over the rod, and the string is hung over a

smooth peg. Determine the least length of the string for

which equilibrium is possible, and shew that the inclination

of the rod to the vertical cannot be less than 45.

69. Two similar and equal smooth rods AB, BC, have

a compass-joint at B\ a ring without weight slides on BC,

"being attached to A by a string, so that the rods can rest with

their ends on a smooth horizontal plane. Shew that the

mutual pressure B is perpendicular to BG.

70. Shew that the moment of a force represented by AB
about any line passing through a point P will be represented

by double the projection of the triangle PAB on a plane per-

pendicular to the line.

Prove by this method of projection or otherwise that

the sum of the moments of two forces (whose lines of action

intersect) about any line is equal to the moment of their re-

sultant about the same line.#####%#
71. The sides of a rhombus ABGD are hinged together

at the angles ;
at A, G are two pulling forces (P, P) acting
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in the diagonal A C', and at B, D there are two other pulling
forces (Q, Q) acting in BD

;
shew that

72. If the parallelogram of forces be true for any two

forces making a given angle with each other, prove that it X

will be also true for any two forces making any other angle
with each other.

73. A particle P is placed in a smooth horizontal tube

AB, and is acted on by two forces tending to two fixed points

C, D, and proportional to the distances GP, PD ;
find the force

necessary to keep P at rest in a given position.

74. Two equal heavy beams AB, CD are connected

diagonally by similar and equal elastic strings AD, BG,
determine the position of equilibrium when AB is held hori-

zontal : and shew that if the natural length of each string

equals AB, and the elasticity be such that the weight of AB
would stretch the string to 3 times its natural length, then

JL J^ J_
AB BG^ AC'

75. A small smooth ring is capable of sliding on a fine

elliptic wire, whose transverse axis is vertical
;
two strings

attached to the ring pass through small smooth rings at the

foci and sustain given weights : shew that if the ring be in

equilibrium at any point, besides the highest and lowest

points of the wire, it will be in equilibrium in every position.

76. Two equal rods AB, A G without weight are con-

nected by a hinge at A and are placed in a vertical plane

rearing on a smooth sphere so that the point A is vertically
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over the centre 0. A heavy ring slides on a string attached

to the two ends B and C, the length of the string being twice

that of either rod. If BD be the perpendicular drawn from

B on A produced, prove that in the position of equilibrium

AO . AD = 2 BD* : supposing the sphere to be so small that

the string is clear of it.

77. A small ring (weight WJ is moveable on a rod

whose inclination to the horizon is a
x ;

another ring (weight
TF

2)
is moveable on another rod in the same vertical plane,

whose inclination is
2 ;

a slender thread connecting the rings

carries a ring (weight W). Shew that

tan a

78. Forces are applied at the middle points of the sides

of a rigid plane polygon, perpendicular to the sides, and pro-

portional to them in magnitude, all the forces tending in-

wards or all outwards
;
shew that the system of forces is in

equilibrium.

79. Two rods of equal uniform thickness have their ends

joined by a compass-joint and rest in a circle whose plane is

vertical
; prove that if the rods are at right angles they are

equally inclined to the horizon.

80. A smooth heavy rod AB weight W moveable in

a vertical plane about a hinge at A, leans against a heavy

prop CD weight P also moveable in the same plane about

a hinge at C. Find the position of equilibrium.

Result. IfAB= 2a, CD= 26, CA = c, LBAC=Q, z DCA = 0, we shall have

c sin = 26 sin (6 + 0) and a Wsin 26 cos (0 + 0) + Pb sin 20= 0.
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81. A cylinder (length
= h, rad. base=, weight= W)

rests with its base on a smooth inclined plane (inclination

=
a) ;

a string attached to its highest point, passing over a

pally at the top of the inclined plane, hangs vertically and

supports a weight P ;
the portion of the string between the

cylinder and pully is horizontal : determine completely the

conditions of equilibrium.

Result. We must have PWia.na, with the condition that tana is

2a
not > .

n

82. A cylinder with its base resting against a smooth

vertical plane is held up by a string fastened to it at a point

of its curved surface whose distance from the vertical plane

is h. Shew that h must be > b 2a tan 6 and < 5
;
where

2b is the altitude of the cylinder, a the radius of the base,

and 9 the angle which the string makes with the vertical.

83. Four rods jointed at their extremities form a quadri-

lateral which may be inscribed in a circle
;

if they be kept in

equilibrium by two strings joining the opposite angular points,

shew that the tension of each string is inversely proportional

to its length.

84. A regular hexagon composed of six equal heavy
rods, moveable about their angular points, is suspended from

one angle, which is connected by threads with each of the

opposite angles. The tensions of the threads are as \/3 : 2.

85. A string 9 feet long has one end attached to the

extremity of a smooth uniform heavy rod two feet in length,

and at the other end carries a ring which slides upon the rod.

The rod is suspended by means of the string from a smooth

peg ; prove that if 6 be the angle which the rod makes with

the horizon, then tan 3~^ 3~* .
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86. If two forces acting along chords of a circle are

inversely proportional to the lengths of the chords, their

resultant will pass through one or other of the points of

intersection of lines drawn through the extremities of the

chords.

87. A thread passing over a vertical hoop is held to the

hoop by two equal rings Pv P
z ,

and a third equal ring

P
3 hangs on the thread between the two

; prove that if Q be

the point in which a tangent to the hoop parallel to P
l
P

3

meets the vertical through P3 ,
then P

3
is situated at the centre

of gravity of the triangle Px QPZ
.

88. If lines be drawn from any point whatever to four

fixed points in the same plane with it, and these lines repre-

sent forces all acting from or all towards the point ;
shew

that their resultant will pass through a certain fixed point

and will be proportional to the distance of the first fixed

point from it.

89. Three uniform beams AB, BC, CD, of the same

thickness and of lengths ?, 2/, I respectively, are connected by

hinges at B and (7, and rest on a perfectly smooth sphere, the

radius of which = 2l, so that the middle point of BG and the

extremities of A, D are in contact with the sphere; shew that

91
the pressure at the middle point of B C = of the weight of

the beams.

90. Three forces act in equilibrium at the angles of a tri-

angle, one bisecting the angle at which it acts, and the other

two making equal angles with the side opposite to that angle;

shew that the forces are as the sides opposite to their points of

application, and that they will balance if turned through any

equal angles in the same direction.
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91. A quadrilateral is formed by four rigid rods jointed

at the ends
;
shew that two of its sides must be parallel, in

order that it may preserve its form when the middle points of

either pair of opposite sides are joined together by a string in

a state of tension.

92. A cube whose weight is W rests upon a horizontal

table, and is cut by three planes passing through a diagonal

of the upper face and the several corners of the lower face.

If the parts cut off be placed together again, their faces being

supposed perfectly smooth, and be kept in equilibrium by a

horizontal string tied round the cube, prove that the tension

of the string is JTF.

93. A uniform beam P Q of given weight ( W] and length

rests in contact with a fixed vertical circle, whose vertical

diameter is AB, in such a manner that strings AP, BQ at-

tached to the rod and circle are tangents to the circle at the

points A and B. Find the tensions of the strings, and shew

that the conditions of the problem require that the inclination

of the beam to the vertical must be

Result. If a= inclination of beam to the vertical, the tensions of the strings

are ^ W(cot a sec a).

94. A particle is placed on a smooth square table at

distances cv c
2 ,

c
3 ,

c
4
from the corners, and to it are attached

strings passing over smooth pullies at the corners, and sup-

porting weights P,, P2,
P

8,
P

4 ;
shew that if there is equi-

librium,

a being a side of the table.



282 PROBLEMS.

95. A cone of given weight W is placed with its base

on a smooth inclined plane (a), and supported by a weight
W which hangs by a string fastened to the vertex of the

cone, and passing over a pully in the inclined plane at the

same height as the vertex. Find the angle (2/3) of the cone

when the ratio of the weights is such that a small increase of

W would cause the cone to turn about the highest point of

the base, as well as slide.

o

Result, tan j3=~sin 2 a.
o

96. A cone, the vertical angle of which is 2 tan"
1

!,

rests with its vertex against a smooth vertical wall, a point

in its base being attached to a point in the wall by a string

to which the axis of the cone is parallel when it is in equi-

librium
;
shew that the tension of the string is W A/2, and

that the distance of the vertex of the cone from the fixed

3^ A/2

point in the wall is -
: where W is the weight of the

8

cone, and h the length of its axis.

97. A bowl is formed from a hollow sphere of radius

a : it is so placed that the radius of the sphere drawn to

each point in the rirn makes an /a with the vertical, and

the radius drawn to a point A of the bowl makes an z/3

with the vertical
;

if a smooth uniform rod remains at rest

when placed with one extremity at A, and with a point in

its length on the rim of the bowl, shew that the length of

the rod is = 4a sin f$ sec
-

.

2
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FRICTION. CHAP. III.

1. Two parallel vertical walls at a distance c are one

smooth and the other rough, and between them is supported
a hemisphere radius a and weight W with its curved

surface in contact with the smooth wall, and a point in its rim

in contact with the rough wall
;
the pressure on each wall

= -
TF, and the least coefficient of friction consistent with

.-i., . "V ZC C

equilibrium = - ,-.
c a + f V2ac c'

2

2. Two rough bodies rest on an inclined plane in a prin-

cipalplane, and are connected by a string which is parallel to

the plane ;
if the coefficient of friction be not the same for

both, find the greatest inclination (a) of the plane which is

consistent with equilibrium.

Result. If W, W be the weights, p, /*' their coefficients of friction, the

value of a= tan~1 ^^ ^7- .

3. A uniform ladder 10 ft. long rests with one end against

a smooth vertical wall and the other on the ground, the

coefficient of friction being = -| ;
find how high a man (whose

weight is 4 times that of the ladder) may rise before it begins
to slip, the foot of the ladder being 6 feet from the wall.

filt

Result. feet, along the ladder.

4. A uniform and straight plank length 2a rests with

its middle point upon a rough horizontal cylinder radius c
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which is fixed, their directions being perpendicular to each

other. Find the greatest weight that can be put upon one

end of the plank without its sliding off the cylinder.

Result. P = an
**. . weight of plank.a -c tan"1

/*

5. At what angle of inclination should the traces be

attached to a sledge, that it may be drawn up a given hill

with the least exertion ?

Result. The inclination of the traces to the hil^tan-1
^.

6. A string fixed to a point in a rough vertical wall is

wrapped round a ball, which is then allowed to hang in con-

tact with the wall
;
determine the limiting positions of equi-

librium. Find the coefficient of friction so that it may be

possible for the position of the string not in contact with the

ball to be horizontal.

Result. The angle the string makes with the wall= sin""1 - . For the latter

part of the question ^i=l.

7. Two uniform rods of equal weight AB, BO are in

a vertical plane and connected by a free joint at B
;
the point

A is fixed and C can move on a rough horizontal plane pass-

ing through A : if X be the ^ of friction and 6, (f>
the angles

which the rods make with the vertical when on the point of

sliding,
cot 6 - 3 cot = 2 cot X.

8. P, Q are two pegs, G the centre of gravity of a slender

rod passing over the nearer pegP and under the farther peg Q,

and just kept from sliding in direction of its length by the

friction between it and the pegs. Find the ratio of PG to PQ
in terms of

yu,,
the coefficient of friction between the rod and

pegs, and of a the inclination of the rod to the vertical.

Result. PG : PQ,= cot a - p : 2jt.
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9. A ladder rests against a vertical wall, and is prevented
from sliding by the friction of the ground and wall

;
shew that

when the ladder is on the point of sliding down in a vertical

plane

tangent of inclination to horizon = - ~-
,

where
//,, // are the coefficients of friction of the ground and

wall, and a, b the distances of the foot and top of the ladder

from its centre of gravity.

Will the extreme angle of inclination be increased or

diminished if a man stand on the ladder ?

10. A heavy hoop weight W which has a string coiled

round its circumference and a weight P attached to the free

extremity of the string, is hung on a rough horizontal peg ;

determine the positions in which it will rest.

Result. If 6 be the angle which the radius drawn through the peg makes

with the vertical, then :
- = w and tan 0=/i= coefficient of friction

actually in operation.

11. The axis of a rough parabola is vertical, shew that

the distance of the extreme points at which a particle will rest

under the action of gravity is =
/-t

. latus rectum.

12. A heavy body is kept at rest on a given inclined

plane by a force making a given angle with the plane ;
shew

that the reaction of the plane, when it is smooth, is a har-

monic mean between the normal components of the greatest

and least reaction, when it is rough.

13. A right cone, the height of which is Ji, rests with its

base on an inclined plane ; when the cone is on the point of

sliding the coefficient of friction between the plane and the
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base of the cone is
/JL.

Shew that the resultant action of the

plane on the cone then acts at a point distant ~ from the

centre of its base.*******
14. A square lamina has a string, of length equal to a

side, attached to one of the angular points ;
the string is also

attached to a point in a rough vertical wall, against which the

lamina rests
;
shew that, the coefficient of friction being unity,

the angle which the string makes with the wall lies between

77"

and ^ tan"
1

1-.

15. One end A of a heavy rod ABC rests against a rough
vertical plane, and a point B of the rod is connected with a

point in the plane by a string, the length of which is equal to

AB = c
;
determine the position of equilibrium of the rod, and

shew how the direction in which the friction acts depends

upon the position of B.

Result. The angle 6 which the rod makes with the vertical upwards
. 2c - a= tan~1

.

V-a

and the friction acts up or down according aso or < . .

16. A cylinder, with its axis horizontal, is held at rest

on an inclined plane (a) by a string coiled round its middle,

und then fastened on the plane ;
find the conditions of equi-

librium, friction being considered.

If B be the angle the string makes with the* plane obtain the equation

... . sin a
cos (6 ~ a)

= cos a,

and discuss it.

17. A cylinder with its axis horizontal, is supported on

a rough inclined plane, by a string coiled round it, which
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after passing over a smooth fixed pully supports a weight n

times the weight of the cylinder. Prove that sin a is < 2?i,

and that
//- {cos a + V2rcsin a sin

2

a} is > n, where a is the

inclination of the plane, and
//,

the coefficient of friction.

Determine the sign of the radical.

18. A sphere of radius a is supported on a rough in-

clined plane (friction
=

jj) by a string of length ,
at-

tached to it and to a point in the plane. Prove that the

greatest possible elevation of the plane in order that the

sphere may rest when the string is a tangent is 2 tan"
1

p,

and find the tension of the string and the pressure on the

plane in this case.

19. An elastic string has its ends attached to two points

on the circumference of a vertical circular wire, the line

joining them being horizontal and equal to the string's

natural length and their distance 120. The string passes

through a small ring which slides on the wire. Find the

oblique positions of equilibrium, and shew that there are

2
none if the coefficient of elasticity be not > of the ring's

weight.

20. OA, OS are radii of a circular arc AB, the former

horizontal and the latter inclined at 60 to OA
;
find the co-

efficient of friction according as a weight Q at B is on the

point of moving up or down the arc, a weight P being
attached to Q by a string PAQ and hanging freely.

/) /*> n
j^\

Result. In the latter case u= -,_
-

,
in the former u.= ~^

'
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21. A heavy hemisphere rests with its convex surface

1 on a rough inclined plane. Find the greatest possible incli-

nation (a) of the plane.
o

Result, a^tan-1 -.
o

22. A board moveable about a horizontal line in its own

plane is supported by resting on a rough sphere which lies

on a horizontal table
;
find the greatest inclination at which

the board can rest.

Result. If p. coefficient of friction between the board and sphere,

tan- = /x.

23. A cylinder is supported on a rough inclined plane,

with its axis horizontal, by means of a string which is coiled

round it, and is attached to a point in the plane, so that the

part uncoiled is horizontal. If a be the angle of the plane

and the cylinder be only just supported shew that the

coefficient of friction = tan -
,
and the resistance of the plane

Jt

= weight of the cylinder.

24. A heavy circular tube hangs over a rough peg, and

a rough particle of -th the weight of the tube rests within

it
;
find the highest position of equilibrium of the particle.

If tan
<j>
be the coefficient of friction between the particle

and the tube, shew that the tube will be on the point of

slipping over the peg, provided the coefficient of friction

T i

between the tube and peg be

25. Two weights P, Q of similar material, rest on a

double rough inclined plane, and are connected by a fine
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string passing over the common vertex : Q is on the point of

motion down the plane shew that the weight which may be

added to P without producing motion is

sin 2<f> sin (a

sin (J3 </>)
sin (a <f>)

'

a, /3 being the angles of inclination of the planes, and tan <

the coefficient of friction.

26. A uniform rod rests with one extremity against a

rough vertical wall (/A
=
-),

the other extremity being sup-

ported by a string three times the length of the rod, at-

tached to a point in the wall
;
shew that the angle the string

makes with the wall in the limiting position of equilibrium is

tan"
1

27
or tan'

1 -
.

27. A heavy uniform rod is placed over one and under

the other of two horizontal pegs, so that the rod lies in a

vertical plane : shew that the length of the shortest rod

which will rest in such a position = a \ 1 -\
---

) ; where
V * /

a = distance between the pegs, a = the / of inclination of

the line joining them, /JL
= coefficient of friction.*******

28. Two equal rough balls lie in contact on a rough
horizontal table, and another equal ball is placed upon them

so that the centres of the three are in a vertical plane ; find

the coefficient of friction between the upper and lower balls

/JL,
and between the lower balls and the fable //, when the

system is on the point of motion.

Kesult. ft= Zfi!
= 2 - *j%.

P. M. 19
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29. A rectangular table stands on a rough inclined

plane, and has two sides horizontal; if the coefficient of

friction of the lowest feet be p, and that of the two others

be ft, find the inclination (a) of the plane when the table is

on the point of sliding.

Result. If the centre of gravity of the table be at a distance c from the

plane, and 2a be the distance between the upper and lower feet, then

tan a =
2a + ((*'-

30. A straight uniform beam is placed upon two rough

planes, whose inclinations to the horizon are a and a', and the

coefficients of friction tan X and tanX'
;
shew that if 6 be the

limiting value of the angle of inclination of the beam to the

horizon at which it will rest, W its weight, and R, R' the

pressures upon the planes,

2 tan 6 = cot (a + V) - cot (a
-

X),

E = R' W
cos X sin (a' + X') cos X' sin (a X) sin

(/,
X + a' + X')

'and

31. One end of a beam can turn in every direction about

a fixed point. The other rests upon the upper surface of a

rough plane (coefficient of friction /A), which is inclined to the

horizon at an angle a. If /3 be the angle which the beam

makes with the plane, prove that the beam will rest in any

position if tan a be not >

32. Find the minimum eccentricity (e) of an ellipse

capable of resting in equilibrium on a perfectly rough in-

clined plane.

Result. If a= inclination of plane, we must have

e* not < 2 tan a (sec a - tan a).
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33. A rod of uniform thickness is placed within a rough
hollow sphere, in a vertical plane passing through the centre

;

shew that if 6 be the inclination of the rod to the horizon, when

bordering upon motion, 2a the angle subtended by it at the

centre of the sphere, and tan /3 the coefficient of friction, then

A sin j3 cos
tan# =

cos (a + ft) cos (a /3)

*

34. A smooth sphere BCD rests against a smooth ver-

tical plane CE, and is propped up by & beam AB whose

extremity A rests on the rough horizontal plane EA, the

weights of the sphere and beam being equal. Shew that if

A be on the point of sliding, the angle which the beam makes

C3

\
7- h A* being the coefficient of fric-

tion between the beam and plane.

35. Two bodies of the same weight rest upon two equally

rough inclined planes, being connected by a string passing

over the common vertex of the planes, the vertical plane

which contains the two bodies being at right angles to each

inclined plane : if they be bordering on motion, shew that

the coefficient of friction is equal to the tangent of half the

difference of the angles of inclination of the planes to the

horizon.

36. A smooth sphere of radius a rests upon two parallel

rods, which themselves are supported upon two fixed hori-

zontal rods also parallel, and at right angles to the former.

If tan X be the coefficient of friction, and the weight of one of

the moveable rods be = Jsec2X. weight of sphere, then the dis-

tance between the two moveable rods in the position of rest

= 2a sin 2X,

192
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37. A rough elliptical ring hangs across a horizontal

rod : shew that it will balance on it with any point in contact

38. A uniform rod passes over one rough peg and under

another (friction
=

//.).
The pegs are distant Z> feet apart and

the line joining them makes an / /3 with the horizon. Shew
that equilibrium is not possible unless the length of the rod be

39. A rod of length a turns freely about a point which

is at a vertical distance c above a rough inclined plane ;
the

lower end of the rod rests upon the plane : shew that if in its

position of equilibrium the vertical plane through the rod

cuts the inclined plane in a horizontal line, then

a2
c
2
cos

2 a

40. A rod rests in a state bordering on motion, with one

end fixed at a hinge and the other resting against a rough

vertical wall. Prove that the pressure on the hinge is to

the weight of the rod as

Vl+^2 +4cot
2
a : 2 Jtf + cot

2

a,

fi being the coefficient of friction, and a the angle between the

rod and the wall.

FORCES NOT IN ONE PLANE. CHAPTER IV.

1. If a uniform heavy triangle is suspended from a fixed

A point by strings attached to the angles, the tension of each

string is proportional to its length.
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2. If forces act along the sides AS, A C, BC of a triangle,

respectively proportional to those sides find the line of action

of their resultant.

3. The line joining the hinges of a gate whose weight
is W is inclined at an angle a to the vertical ; shew that the

moment of the couple which will hold the gate in a position

inclined at an / /3 to its position of equilibrium is proportional
to sin a sin {3.

4. A straight rod without weight is placed between two

pegs and forces P and Q act at its extremities in parallel

directions, inclined to the rod
; required the conditions under

which the rod will be at rest and the pressures on the pegs.

5. ABCD is a square, and forces P, 2P act along AS,
SC respectively, forces 4P, 2P along AD and D (7, find the

locus of the points, any one of which being fixed equilibrium
would exist, and the pressure on such a point.

6. A string fastened at a point A supports a weightP by

passing under a rough handle of any form, the loose end being
held so that the parts on each side of the handle are parallel ;

find the least force which will prevent the weight from falling,

and the greatest which will not draw it up.

7. A heavy uniform beam has its extremities attached

to a string which passes round the arc of a rough vertical

circle
;

if in the limiting position of equilibrium the beam be
*

inclined at an z 60 to the vertical, and the portion of string

in contact with the circle cover an arc of 270, shew that the

coefficient of friction is = loge 3.
O7T

8. A heavy particle is attached to an endless string ,

which passes round a rough circular cylinder in a vertical
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plane perpendicular to its axis. If in the limiting position of

equilibrium the string in contact with the cylinder covers an

arc of 270, shew that the inclination to the horizon of the

two portions of the string adjacent to the particle are

3jnr JZTT

tan~*e 2 and tan^e" 2 .

9. An unstretched elastic string just surrounds a fixed

square, two of whose sides are vertical, an equal square being
introduced in the same plane as the former, and between it

and the lower portion of the string, just rests without touch-

ing it. The lower square is now turned about a vertical axis

through an / TT, so that the string crosses between the squares;

shew that the acute / 6 included in the position of equili-

brium by the two portions of the string between the squares
is given by the equation

10. The ends of an elastic string without weight are

fastened to two points A, B, which are in the same horizontal

line, at a distance equal to the unstretched length of the

string. A weight equal to the modulus of elasticity is at-

tached to any point G of the string. If AD, BD be drawn

at right angles to AC, BC, prove that

AC BC
BA +BD

= 1.

11. A number of unequal weights are attached to an

endless string which is slung over a rough horizontal cylinder
so that all the weights hang free from the cylinder. Shew
that in the limiting positions of equilibrium the vertical

through the centre of gravity of the weights divides the line
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joining the points where the string leaves the cylinder in the

ratio 1 : e**, where a is the circular measure of the part of

the cylinder free from the string.

If the cylinder be smooth' the centre of gravity of the

weights is vertically below the centre of the cylinder.

12. An elastic string whose natural length
= c passes

round three rough pegs A, B, (7, which form an equilateral

triangle whose side = a. The natural length of the part AB
of the string c a, and it is on the point of slipping both at

A and B\ shew that the coefficient of friction

3 ,

13. A string passes over a rough pully (rad.
=

a) having
a concentric circular hole of radius b supported by a rough
axle. If the equilibrium be limiting for both, shew that

ua, -*_ (l

where a is the angle of contact.

14. Three equal smooth spheres each weighing TF, rest

within a hollow sphere of n times their radius : shew that the

pressure between any two of the small spheres

2W

15. An elastic band whose unstretched length is 2a is

placed round four rough pegs A, B, (7, Z>, which constitute

the angular points of a square whose side is a : if it be taken

hold of at a point P between A and B and pulled in direction

AB, shew that it will begin to slip round A and B at the

same time, ifAP = -

v , //, being the coefficient of friction.

1 H- eV
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CENTRE OF GRAVITY. CHAPTER V.

1. ABCD is any plane quadrilateral figure, and a, b, c, d
are respectively the centres of gravity of the triangles BCD,
CDA, DAB, ABC, shew that the quadrilateral abed is similar

to ABCD.
2. A triangular lamina, of which the sides are a, b, c

cannot rest on its side c on a horizontal plane if c be

3. At each of n 1 of the angular points of a regular

polygon of n sides a particle is placed, the particles being

equal. Shew that the distance of their centre of gravity from
A*

the centre of the circle circumscribing the polygon is -
,

r being the radius of the circle.

4. From an isosceles triangular lamina ABC, of which

the sides AB, BC are equal, an isosceles portion APC is cut

away, AP, PC being equal; (i)
find G the centre of gravity

of the remainder. Also (ii)
find the condition that it may

rest in neutral equilibrium when supported at the point P.

Result. Draw BPD perpendicular to AC, then G is in this line, and

(i) B0=l (BP+BD) (ii) BD=2.BP.

5. Find the locus of the centres of gravity of all triangles

inscribed in a circle, the vertex being fixed, and the base of a

given length.

Result. A circle.

6. A triangular lamina ABC having a right angle at C
is suspended from the angle A, and the side AC makes an za
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with the horizon
;

it is then suspended from B, and the side

EG makes an ^
/3 with the horizon ; shew that

7. If the sides of a triangle be taken, two and two, to

represent forces, acting in each case from the angle made by
the sides, prove that there is one point about which each of

the three pairs will balance, and find the point.

Result. The point is the centre of gravity of the triangle.

8. If the centre of gravity of a triangular pyramid be

the common vertex of four pyramids whose bases are the faces

of the original pyramid severally, shew that these four pyra-
mids are of equal volume.

9. A square is divided into four equal triangles by draw-

ing its diagonals which intersect in
;

if one triangle be

removed, find the centre of gravity G of the figure formed by
the three remaining triangles.

Result. OG= -
. side of square.

10. Five pieces of a uniform chain are hung at equidistant

points along a rigid rod without weight, and their lower ends

are in a straight line passing through one end (0) of the rod;

find the centre of gravity of the system.

Also, shew that if the system balance about a point of the

rod in one position it will balance about it in any position.

Result. If OC be drawn to C the middle point of the longest piece of chain,

G the centre of gravity is in OC and OG= . 00, the distance from to the
lo

first piece of chain being the same as the distance between any two adjacent

pieces.

11. AB, BG are two rods freely jointed at B, A is fixed;

find at what point in B G a prop must be placed so as to sup-

port them in a horizontal position,
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12. A triangle rests in a fixed hemispherical bowl, shew

that the pressures at its three angular points are all equal.

13. A straight uniform wire ABC is bent at B so that

the ^ ABC=a, and it is then suspended by a string from

the point A : shew that it will rest with BG horizontal, if

BC* = (AB
2 +2 AB. BG} cos a.

14. Explain why in ascending a hill, we appear to lean

forwards
;
in descending, to lean backwards.

15. Why does a person rising from a chair bend his

body forward and his leg backward ?

16. What is the use of a rope-dancer's pole ?

17. A cone whose height is equal to four times the

radius of its base is hung from a point in the circumference

of its base
;
find the position in which it will rest.

Result. The base and axis are equally inclined to the vertical.

18. Of what dimensions must a right cone be, in order

that, when the greatest sphere possible has been cut out of

it, the centre of gravity of the remainder may coincide with

that of the cone ?

Result. The diameter of the base : altitude of cone= l : A/2.

19. A smooth body in the form of a sphere is divided

into hemispheres, and placed with the plane of division ver-

tical upon a smooth horizontal plane : a string loaded at its

extremities with two equal weights hangs upon the sphere,

passing over its highest point and cutting the plane of

division at right angles ;
find the least weight P which will

preserve the equilibrium.
o

Result. P- weight of sphere,
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20. A weight of given magnitude moves along the cir-

cumference of a circle in which are fixed also two other

weights ; prove that the locus of the centre of gravity of the

three weights is a circle.

If the immovable weights be varied in magnitude, their

sum being constant, prove that the corresponding circular

loci intercept equal portions of the chord joining the immov-

able weights.

21. The three corners of a triangle are kept on a circle

by three rings capable of sliding along the circle, and the

circle is inclined to the horizon at a given angle ;
find the

positions of equilibrium.

22. If the lengths of the sides of a polygon be inversely

proportional to the perpendiculars let fall upon them from a

point 0, within the polygon, and if 6r, 6r' be the centres of

gravity, respectively, of the polygon, and of a series of equal

heavy particles placed at its angular points, prove that OGrGr

will be a straight line, and that 0#= 2 . ##'.

23. A thin uniform wire is bent into the form of a tri-

angle ABC, and heavy particles of weights P, Q, R are

placed at the angular points ; prove that if the centre of

gravity of the weights coincide with that of the wire

P : Q : R :: AB +AC : BC + BA : CA+ CB.

24. If a, /3, 7 be the feet of the perpendiculars from

A, B, C upon the opposite sides of the triangle ABC; p, y, r

the distances of the centre of gravity of triangle afty from

the sides a, 6, c of ABC, shew that

a? cos (B
-

C) F cos
(
C - A) c* cos (A

- B)
*
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25. The portion of a right cone cut off by a plane will

only just balance on a horizontal plane with the shortest side

VA in contact : prove that the vertical through A in that

position divides the opposite side VB in the ratio 3:2.

26. Three uniform rods connected by smooth hinges
form a triangle ABC: the weights of the rods being pro-

portional to their lengths. If the rod AB be held in a hori-

zontal position with the plane of the triangle vertical, shew

that the direction of the strain on the hinge at C is inclined

to AB at an angle 9 given by
/, A-B\ sin (-4 -5)

tan(0- J--^^^.
27. If

a?, ,
x

2,
x

3
be the co-ordinates of the angular points

of a triangle referred to any axis, the co-ordinate of the centre

of gravity of the triangle is = J (xl + x
2 + xs).

And if
ajj,

o?
2 ,
#

3,
a?

4
be the co-ordinates of the angular

points of a tetrahedron, the co-ordinate of its centre of gravity'

28. A
t By C, D, E, F are six equal particles at the angles

of any plane hexagon, and a, Z>, c, d, e,f are the centres of

gravity respectively of ABC, BCD, ODE, DEF, EFA, and

FAB. Shew that the opposite sides and angles of the

hexagon abcdefare equal, and that the lines joining opposite

angles pass through one point which is the centre of gravity
of the particles A, B, C, D, E, F.

29. The line which joins the middle points of any two

opposite edges of a triangular pyramid is bisected by the

centre of gravity of the pyramid.
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30. From the fact that a system of heavy particles has

one centre of gravity only, shew that the lines joining the

middle points of opposite sides of any plane quadrilateral

bisect each other.

31. If the centre of gravity of a four-sided figure coincide

with one of its angular points, shew that the distances of this

point and of the opposite angular point from the line joining

the other two angular points are as 1 : 2.

32. A cone whose semivertical angle is tan"
1

r - is

V (2)

enclosed in the circumscribing spherical surface; shew that

it will rest in .any position.

33. Give a geometrical construction for finding the

centre of gravity of a plane quadrilateral area.

'34. If G be the centre of gravity of a triangle ABC,
shew that

3 (AG
Z + BG2 + CG-*}

= AS2 + BC* + CA\

35. Two sides AB, CD of a quadrilateral are parallel,

and their middle points 0, T are joined by a line OT of

length c
;

if AB =
a, CD = b, and G be the centre of gravity

of the figure, shew that

c a + 2b
U(jr-. r-.

3 a + b

36. A pack of cards is laid on a table, and each projects

in direction of the length of the pack beyond the one below

it
;

if each projects as far as possible, prove that the distances

between the extremities of successive cards will form a har-

monic progression.

37. Prove the following geometrical construction for the

centre of gravity of any quadrilateral. Let E be the inter-)
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section of the diagonals, and ^the middle point of the line

which joins their middle points ;
draw the line EF and pro-

duce it to (r, making FG equal to one-third of EF\ then G
shall be the centre of gravity required.

38. A right cone whose axis is a, and vertical angle

2 sin"
1
A I ( -

J
,
is placed w

Tith its base in contact with a smooth

vertical wall, and its- curved surface on a smooth horizontal

rod parallel to the wall
;
shew that it will remain at rest if

the distance of the rod from the wall be not > a nor < -
.

39. The weights of three particles A, B, C at the angu-

lar points of the triangle AB G are respectively proportional

to the opposite sides of the triangle ;
the centre of gravity of

the three particles coincides with the centre of the circle in-

scribed in the triangle.

40. A piece of uniform wire is bent into three sides of a

square ABCD of which the side AD is wanting; shew that

if it be hung up by the two points A and B successively, the

angle between the two positions of BG is tan'
1
18.

41. A frustum is cut from a right cone by a plane bisect-

ing the axis and parallel to the base. Shew that it will rest

with its slant side on a horizontal table if the height of the

cone bear to the diameter of the base a greater ratio than

V7 : V17.

42. A weight W is placed at on a triangular table

ABC, supported in a horizontal position by three props at

the angular points ;
shew that the portions of the weight sus-

tained by the props at A, B, C are proportional to the areas

of the triangles BOG, AOC, A OB.
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43. A right-angled triangle is suspended successively

from its acute angles, and when at rest, the side opposite the

point of suspension in each case makes angles 0, $ with the

vertical, shew that tan 6 tan < = 4.

44. Through the angles of a triangular board lines are

drawn to the opposite sides, each dividing the triangle into

two equal parts. Shew that the area of the figure formed by

joining the centres of gravity of these parts is
j-
of the area

of the triangle.

45. A heavy square board of uniform thickness is sus-

pended freely by one corner : and at each end of the diagonal

which does not pass through that corner a weight is sus-

pended, shew that the inclination of that diagonal to the

/ P~ Q \
horizon is = tan"

1

(-73 j- rj-J
,

where P, Q are the

weights and W the weight of the board.

46. Parallel forces act at the angles A, B, G of a triangle,

and are respectively proportional to the sides a, b, c, shew

that their resultant acts at the centre of the inscribed circle.

47. Prove the following rule for finding the centre of

gravity of any quadrilateral lamina ASCD. a, c are the per-

pendicular distances of A and C from BD. Take F in A G
such that FA : FG :: c : a. Join F with E the middle

point of BD and take GE= J EF. G is the centre of gravity

required.

48. A heavy triangle ABC is hung up by the angle A,
and the opposite side is inclined at angle a to the horizon,

shew that

2 tan a =F cotB~ cot (7.
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49. If the weight of each of three particles be proportional
to the tangent of the angle subtended at it by the straight

line joining the other two, prove that the centre of gravity

of the three particles is situated at the intersection of the

straight lines drawn from each particle perpendicular to the

straight line joining the other two.

50. If G- be the centre of gravity of a triangle ABC,

prove that

cotAGB + cot CGB cosec A GB cosec CGB _~~~ ~~ ~~
51. The corners of a pyramid are cut off by planes parallel

to the opposite sides : if the pieces cut off be of equal weight,

prove that the centre of gravity of the remainder will coincide

with that of the pyramid.

52. A round table stands upon three equidistant weight-

less legs at its edge. A man sits upon its edge, opposite a

leg. It just upsets and falls upon its edge and two legs. He
then sits upon the highest point and just tips it up again.

Prove that the radius of the table is \/2 times the length of a

leg.

53. If the vertical angle of a right cone of circular base

be > sin"
1

J, the upper frustum cut off by any plane will be

supported with its base on a horizontal plane.

If the vertical angle be < sin"
1

J, determine the limits for

the inclination of the cutting plane to the axis that the frustum

may stand.

54. A heavy right cone rests with its base on a fixed

rough sphere of given radius, determine the greatest height of

the cone compatible, with stability.
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55. Find the centre of gravity of an isosceles triangle,

out of which an inscribed square has been cut.

Result. If jB= C in the triangle ABO and AD be drawn from A perpen-
dicular to the base, G the centre of gravity required lies in AD, and if

LA=2a
1+6 tan2 ct + 8 tan3 a~

3 3 (1 +2 tan a) (1 + 4 tan2 a)

56. A triangular prism, each side of whose base = or,

rests symmetrically between two smooth parallel horizontal

bars at a distance = 2c from each other
;

if the prism be

divided into two equal parts by a vertical plane which

bisects the lowest angle of the prism, the parts will remain

in equilibrium, provided c be < a and > a.

57. A cube has two equal portions cut off by planes

passing through a diagonal of one of its faces and two

corners of the opposite face. If it be suspended freely from

one of the extremities of the diagonal, shew that its two

remaining edges will be inclined at tan'
1 - to the vertical.

o

58. Two pieces of flexible chain of different weights

but of equal lengths are fastened together so as to have a

common extremity. They are then laid over a smooth verti-

cal circle resting wholly in contact with it. Find the posi-

tion of equilibrium.

59. A piece of uniform heavy wire is formed into a tri-

angle ABC, and the middle points of the sides are joined by

pieces of wire of the same thickness. If the framework so

p. M. 20
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formed be hung up from the * A, shew that AB, AC make
with the vertical angles 0, (f>

such that

sin _ 5c (a + c) + 2bc

sin
<f>

~
56 (a + b) + 2bc

"

60. The centres of gravity of the area and perimeter of

a polygon circumscribed about a circle, lie on a diameter;
and their distances from the centre are as 2 : 3.

61. IfABC be an isosceles triangle having a right angle
at (7, and D, E be the middle points of A C, AB respectively,

prove that a perpendicular from E upon BD will pass through
the centre of gravity of the triangle BD C.

62. From a given rectangle ABCD cut off a triangle CD
(the point being in AD) so that when the figure ABCO is

suspended from the sides A 0, B C may be horizontal.

Remit. A : AD= *Jl$
- 1 : 2.

63. A uniform beam of thickness 2& rests symmetrically
on a perfectly rough horizontal cylinder of radius a

;
shew

that the equilibrium of the beam will be stable or unstable

according as b is less or greater than a.

64. A uniform wire is bent into the form of three sides

AB, BC, CD of an equilateral polygon, and its centre of

gravity is at the intersection of AC, BD] shew that the

polygon must be a regular hexagon.

65. A pyramid, the base of which is a square, and the

other faces equal isosceles triangles, is placed in the circum-

scribing spherical surface
; prove that it will rest in any

position, if the cosine of the vertical angle of each of the

triangular faces be = f .
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66. Two equal heavy particles are situated at the ex-

tremities of the latus rectum of a parabolic arc without weight,

which is placed with its vertex in contact with that of an

equal parabola whose axis is vertical and concavity down-

wards
; prove that the parabolic arc may be turned through

any angle without disturbing its equilibrium, provided no

sliding be possible between the curves.

67. Find the centre of gravity of the volume included

between two similar parallelepipeds which have a common

angle. Also determine the limiting position of the centre of

gravity when the parallelepipeds approach equality.

68. The centres of two circles which touch each other

internally are made to approach indefinitely near to each *

other, find the ultimate position of the centre of gravity of

the area included between the circumferences of the circles.

Also find according to what power of the distance from

a fixed point in the circumference the density of a circular

wire must vary, that its centre of gravity may coincide witfy

that of the above figure.

69. The centres of gravity of the area and perimeter of a

plane triangle lie in a line which passes through the centre of

the inscribed circle, at distances from it which are as 2 : 3.

70. If n lines drawn from a point represent in magnitude
and direction a system of forces acting at that point, shew

that the resultant of the system of forces will be represented \

in magnitude and direction by n times the line drawn from

that point to the centre of gravity of n equal particles placed
at the extremities of the lines.

202
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71. The centre of the circumscribing circle of any triangle

is the centre of gravity of four equal particles placed at the

centres of the inscribed and escribed circles.

72. If a portion of a parabola bounded by the latus

rectum (L) be placed with its vertex on that of a given

cycloid, the convexities of the two curves being turned in

opposite directions, the equilibrium will be neutral if 3L = 2Sa,

where a equals diameter of generating circle of the cycloid.

73. An elliptic cylinder, whose semiaxes are a, b, rests

between two smooth inclined planes at right angles to one

another, prove that there will be three positions of equi-

librium if the inclinations of the planes to the horizon be

-i&> tan
1 -

.

a

74. A plane quadrilateral ABCD is bisected by the

diagonal -4(7, and the other diagonal divides AC into two

parts in the ratio p : q; shew that the centre of gravity of

the quadrilateral lies in A G and divides it into two parts in

the ratio 2p + q : p + 2q.

75. If a right-angled triangular lamina ABC be sus-

pended from a point D in its hypotenuse AB, prove that in

the position of equilibrium, AB will be horizontal if

AD : DB :: AF + AC*

76. If Gr be the centre of gravity of a system of particles,

D, A the distances of any one of them m from 6r, and (any

other point), shew that

2(mZ)
2

)
= 2 (A2

)
- 2 (m) G0\

77. AB, BC are rods having a joint at B, A being a

fixed hinge ;
find the position in which the system will rest
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when a string from A is attached to a ring sliding on BC,
supposed smooth. Find also the tension of the string.

78. In a triangular pyramid ASCD if a, I, c be the sides

of the triangle ABC, and a, , 7 the edges meeting in D,
shew that if G be the centre of gravity of the pyramid

=i {3 (a
2
+/S

2

+7
2

)
-

(a'+F+c")}*.

79. If each particle of a system be multiplied by the

square of its distance from an assumed point 0, the sum of

these products will be least when coincides with the centre

of gravity of the system of particles.

MACHINES. CHAPTER VT.

1. The arms of a balance are equal in length, but one

scale is loaded
;
find the true weight of the body in terms of its

apparent weights when suspended at each end in succession.

Result. The true weight= semi-sum of the apparent weights.

2. Two men A, B of the same height bear a weight

hung on a pole which rests on their shoulders
;
where must

the weight be placed in order that A may support n times as

much as B?

Result. The distance of the weight from B must = n . times its distance

from A.

3. A uniform steel rod AB having a constant weight

P, and a scale-pan of weight kP, suspended at B and A
respectively, is used as a balance by moving the rod back-
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wards and forwards upon the fulcrum C on which the whole

rests. Shew that the beam must be graduated by the formula

; .AB:
5+1

AC=<

the weight of the rod being k'P, and n being each of the

i:atural numbers 1.2.3... taken in succession.

4. If the pitch of a screw be --
,
tan

<f>
the coefficient of

friction, P the least force which will prevent the weight from

descending, P the greatest which can be applied without

its rising, then

P'-P

5. Weights of 3 oz. and J Ib. balance on a straight

lever of which the longer arm is 2 feet
;

find the length of the

shorter arm.

Jtesult. 9 inches.

6. In any system of pullies in which a separate string

passes over each pully and the strings are parallel, prove that,

if the tensions of the strings increase in geometric progression,

so do the weights of the pullies.

7. Two weights P, Q are connected by a string PA Q
passing over a pully A, P hangs vertically and Q rests on a

rough inclined plane (a) and (X) is the angle of friction : if

the greatest and least angles which AQ can make with the

plane be e, X, shew that

tan
2 = tan X . cot a.
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8. If P support W on a rough inclined plane (a), P act-

ing in a principal plane and at an angle e with the plane,

and if P may have any magnitude intermediate to P', P'

without producing motion and the plane fce but slightly

P' ~ P" sin a cos e
7

rough, shew that /*
=

, / , . , nearly.gn

In what case will this be the exact value of p ?

9. The length of the shorter arm of a common steelyard

= 4 inches: the removal of P through J inch indicates an in-

crease of 2 oz. in the weight W: and the notch correspond-

ing to a weight of 4 Ibs. is 3 inches from the fulcrum :

determine the moment of the beam.

10. It' the same body be weighed successively at the two

ends of a false balance whose arms are of unequal length, its

true weight is the square root of the product of the apparent

weights. *******
11. If a man sitting in one scale of a weighing-machine

press with a stick against any point of the beam between the

point from which the scale is suspended and the fulcrum, he

will appear to weigh more than before.

12. Explain how a man by walking slowly up the surface

of a large rough sphere may make it roll up an inclined plane

or along a horizontal plane in any direction,

13. If a tradesman's balance have unequal arms, a, b,

and he weighs goods alternately from one scale and the other,

does he gain or lose by his balance not being true ? and how

much?

Result. His loss : apparent weight which he dispenses :: (a-6)
2

: 2a5.
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14. The sensibility of a Danish steelyard at any point

varies as the square of the distance of the point from the end

where W is suspended.

15. If a uniform wire be bent into the form of a triangle,

and at the middle points of the sides there be placed three

beads whose weights are proportional to the sides on which

they are
; prove that when the beads are moved with equal

velocities in the same direction along the sides there will be

no change in the position of the centre of gravity of the

whole system.

16. If two weights support each other on inclined planes

by means of a string passing over the common vertex of the

planes, and the system is set in motion, the centre of gravity
of the weights moves in a horizontal line.

17. When P supports W on a rough inclined plane, and

R is the pressure on the plane, explain the result when

>90. (Art 110.)

18. In the system of pullies where each string is at-

tached to the weight, if one of the strings be nailed to the

block through which it passes, shew that the power may be

increased up to a certain limit without producing motion.

If there be three pullies, and the action of the middle one be

checked in the manner described, find the tension of each

string for given values of P and W.

19. In a wheel and axle, if the axis about which the

machine turns coincide with that of the axle but not with

the axis of the wheel, find the greatest and least ratios of the

power and weight necessary for equilibrium, neglecting the

weight of the machine.
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20. Why is it easier to move a heavy body when placed

upon rollers than to draw it upon a rough horizontal plane ?

Compare the rates of motion of the body and of the centres of

the rollers.

21. In the system of pullies of Article 106 if the

weight of the lowest pully be equal to the power P, of the

second 3P, and so on, that of the highest movable pully

being 3
M"2P the ratio of P to W will be 2 : 3

n - 1.

22. In the Danish Steelyard, if an be the distance of the

fulcrum from that end of the steelyard at which the weight
is suspended, the weight being n Ibs. prove that

.L-J-+1-0.
"n+2 *+!

* * *

23. In each of the three systems of pullies, if P and

W receive any displacement their centre of gravity remains

unchanged in position.

24. If three forces P, Q, R are in equilibrium when

acting on a particle, and the particle be slightly displaced so

that^>, </,
r are the virtual velocities of P, Q, R respectively,

shew that Pp + Qq + Rr 0.

Prove the principle of virtual velocities in the case of

the Spanish Barton. (Art. 107.)

25. In the system of pullies where each hangs by a

separate string, determine the relation between the radii of

the pullies in order that, if their centres be at any time in a

straight line, they may always continue to be so.

26. If a common steelyard be constructed with a given

rod, whose weight is inconsiderable compared with that of



314 PEOBLEMS.

the sliding weight, shew that the sensibility varies inversely
as the sum of the sliding weight and the greatest weight
which can be weighed.

27. A heavy insect of weight w crawls on the lower cir-

cumference of the wheel of a wheel and axle, and so just raises

a weight 5w, the ratio of the radii of the wheel and axle being
10 : 1, find the inclination to the vertical of the radius of

the wheel which passes through the position of the insect :

shew that the insect is in a position of stable equilibrium,

but that if it were on the upper surface of the wheel and

at a point vertically above its present position, its equili-

brium would be unstable.

28. If a wheel and axle be similar coaxial regular prisms
so placed that every plane bisecting an angle of one bisects a

side of the other, shew that the ratio of the least to the great-

77"

est power which will support a given weight is cos
2

: 1,

where n is the number of faces of the prism.

29. If a power P balance a weight W in a combination

of n movable pullies, each of weight w, shew that

W= (P+to) (2
n+1 -

1)
-

(n + 1) w,

the cords being parallel and each attached to the weight.

Also if the weights of the movable pullies be P, 2P,

3P,...the pully whose weight is P being farthest from the

weiht, shew that

30. Apply the principle of Virtual Velocities to de-

termine the ratio of the power to the weight, when the weight

slides along a smooth vertical rod, .and is attached by an
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inextensible string to a point in the rod, while the power acts

horizontally at the middle point of the string.

31. A heavy particle rests on a rough inclined plane (a),

being attached to a point in the plane by a string which

makes an angle 6 with the line of greatest slope down the

plane ;
find the tension of the string, and shew that 6 must

not be > sin"
1

(//,
cot a) : where p = coefficient of friction.

Explain this result if
/-t
> tan a.

32. A rod AB, whose weight (p) and centre of gravity Cr

are given, is to be used as a Danish balance, the substance to

be weighed being suspended from B; Av A 2,...An the points

where the fulcrum is to be placed to weigh 1, 2,...n pounds

respectively, are marked by pins (each of a given weight o>)

being driven in
;
find a formula for the graduation.

Result. If A be the position of the fulcrum when there is no weight at B,
A =z, A

(t
A

l
= xi ,

A
l
A 2= x2...A r_ l

A r=xr ...we shall have n equations of the

type

rz
r
~
r+p + nw J 2

by giving r successive integral values 1.2.3...W, which together with the

equation

p (BG-z)= u{xn + 2x^l +...(n-r + l) xr + ... + na?i}

are sufficient to determine the n + 1 quantities z, Xi, x2 ...xn .

33. A person suspended in a balance of which the arms

are equal, thrusts its centre of gravity out of the vertical by
means of a rod fixed to the furthest extremity of the beam

of the balance, the direction of the rod passing through his

centre of gravity ; given that the rod and the line from the

nearer end of the beam of the balance to his centre of gravity

make angles a, /3 with the vertical, shew that his apparent
and true weights are in the ratio

sin (a + )
: sin (a-/S).



316 PROBLEMS.

MISCELLANEOUS EXAMPLES IN STATICS. .

1. A body consisting of a cone and hemisphere having
the same base, is placed upon a rough horizontal table

;
de-

termine the greatest height of the cone that the equilibrium

may be stable.

Result. Altitude of cone= >/?. radius of the hemisphere.

2. A solid is composed of a cylinder and hemisphere of

equal radius, fixed base to base; find the ratio of the height

to the radius of the cylinder, that the equilibrium may be

neutral when the spherical surface rests on a horizontal plane.

Result. Altitude of cylinder= radius.

3. When a man stands on a hill, how is he inclined to

the horizon and to the hill ?

4. Two forces F and F' acting in the diagonals of a

parallelogram, keep it at rest in such a position that one of

its edges is horizontal
;
shew that

F sec a' = F' sec a = W cosec (a 4- a'),

where W is the weight of the parallelogram, a and a' the

angles between its diagonals and the horizontal side.

5. A cylinder rests with the centre of its base in contact

with the highest point of a fixed sphere, and four times the

altitude of the cylinder is equal to a great circle of the

sphere ; supposing the surfaces in contact to be rough enough
to prevent sliding in all cases, shew that the cylinder may
be made to rock through an angle of 90, but not more,
without falling off the sphere. The base of the cylinder

being supposed to be sufficiently large.



MISCELLANEOUS EXAMPLES IN STATICS. 317

6. If three parallel forces acting at the angular points

A, B, C of a triangle are respectively proportional to the op-

posite sides a, b, c
; prove that the distance of the centre of

parallel forces from A
2bc A

z cos -^a + b + c 2

7. Two equal spheres placed in a paraboloid with its

axis vertical touch one another at the focus. If W be the

weight of a sphere, R, R' the pressures upon it, prove that

TF : R . R' :: 3 : 2.

8. Three equal cylindrical rods are placed symmetrically
round a fourth one of the same radius, and the bundle is then

surrounded by two equal elastic bands at equal distances from

the two ends ;
if each band when unstretched would just pass

round one rod, and a weight of 1 Ib. would just stretch one to

twice its natural length, shew that it would require a force of

9 Ibs. to extract the middle rod, the coefficient of friction

being equal to .

9. ABCD... is a string without weight suspended from

two points A, F in a horizontal line
;
and given weights Wv

TF
2 , TF

3
...are hung from the knots B, C, D...

;
determine

the proportion of these weights when the string hangs in a

given form. (N.B. This is called & funicular polygon.)

If the weights be all equal, shew that the co-tangents of

the angles which successive portions of the string make with

the vertical are in arithmetic progression.

10. Two strings of the same length have each of their

ends fixed at each of two points in the same horizontal plane.

A smooth sphere of radius r and weight W is supported upon
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them at the same distance from each of the given points.

If the plane in which either string lies makes an angle a with

Wa
the horizon, prove that the tension of each is = cosec a ;

a being the distance between the points.

11. Strings are fixed to any number of points A, B, C...

in space, and are pulled towards a point P with forces propor-

tional to PA) PB, PG\ shew that wherever the point P be

situated the resultant of these forces will always pass through
a fixed point.

12. Two equal weights P, P are attached to the ends of

two strings which pass over the same smooth peg, and have

their other extremities attached to the ends of a beam AB
(weight W) which rests thus suspended ;

shew that the incli-

nation of the beam to the horizon is

= tan'
1

f
-

^ tan a
(
-
\a

a, b being the distances of the centre of gravity of the beam

from its ends, and sin a = ^ .

13. A particle is placed in the middle point of a hori-

zontal, equilateral, and triangular board, and is kept in equi-

librium by three equal weights, which act by means of strings

passing through the angular points. When the particle is

moved in direction of one of the angular points, find the force

tending to restore it to its position.

If the force be half of the weight, the inclination of the

strings will be = cos
l
( 7)
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14. A cylinder length Z>,
diameter c open at the top,

stands on a horizontal plane, and a uniform rod length 2a

rests partly within the cylinder, and in contact with it at its

upper and lower edges ; supposing the weight of the cylinder

to be n times that of the rod, find the length of the rod when

the cylinder is on the point of falling over.

Result. 2a= (n + 2) >jv + c\

15. A uniform bent lever whose arms are at right angles

to each other, is capable of being enclosed in the interior of

a smooth spherical surface, determine the position of equi-

librium.

Result. The arms of the lever will be equally inclined to the vertical.

16. If c be the length of the axis of a frustum of a

pyramid, a, b homologous sides of its larger and smaller

ends, the distance of the centre of gravity from the end a

measured along c is

_c
~4*

What does this become
(i)

when a = b, (ii)
when 5 = 0?

17. If a triangle be supported in a horizontal position

by vertical threads fastened to its angular points, each of

which can just bear an additional tension of 1 lb., determine

within what portion of the area a weight less than 3 Ibs. may
be placed without destroying the equilibrium.

18. A square whose side = 2a is placed with its plane

vertical between two smooth pegs which are in the same

horizontal line at a distance c
;
shew that it will be in equi-

librium when the inclination of one of its edges to the horizon

7T
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19. A sphere rests upon a string fastened at its extre-

mities to two fixed points ;
shew that if the arc of contact of

the string and sphere be not <2tan~1

||, the sphere may
be divided into two equal portions by means of a vertical

plane without disturbing the equilibrium.

N.B. The centre of gravity of a half sphere, is at a distance from the

centre of the spherical surface equal to f of the radius.

20. A polygon of an even number of sides is formed by
a number of rods which are connected by free joints at their

extremities, and is kept in equilibrium by forces applied

perpendicularly to the rods at their middle points shew that

the sums of the alternate angles are equal.

If the polygon be of an odd number (2n + 1) of sides,

and
j,

a
2
...a

2n+i
be tne angles, shew that the direction of the

strain at
x
on the side adjacent to av a

2n+1
is inclined to that

side at an angle whose complement is
2nH * ^

,
the

forces being all supposed to tend inwards.

21. An endless elastic string (without weight) when

unstretched, just passes round two pegs in a horizontal plane:

two weights W, W are hung upon it in such a manner that

the string forms two festoons, the angles in these being 20
?

2c respectively: shew that if X be the modulus of elasticity,

then
W W

cosec 6 + cosec < 2 = sec 6 = sec <.
\ A.

22. Three equal rods connected by two free joints are

attached by similar joints to two points in the- same hori-

zontal plane. If the rod next to one of these joints makes

an z a with the horizon and the reaction on the joint at its

lower end an ^ 0, then tan 6 = J tan a.
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23. A heavy equilateral triangle hung up on a smooth

peg by a string, the ends of which are attached to two of its

angular points, rests with one of its sides vertical shew that

the length of the string is double the altitude of the tri-

angle.

24. A fine string A CBP tied to the end A of a uniform

rod AS of weight W, passes through a fixed ring at C, and

also through a ring at the end B of the rod, the free end of

the string supporting a weight P : if the system be in equi-

librium, prove that A C : BC :: 2P + W : W.

25. A vertical cylinder is cut into parts by a plane in-

clined at an ^ a to the axis, and the parts are held together

by a string passing in a horizontal plane round the cylinder,

find the tension of the string, and shew how it varies for

different positions of the string : the common surface of the

two parts being smooth.

26. AB, BC are two equal uniform beams united by a

free joint at B, and hanging freely from a peg at A to which

is attached a string passing to (7; prove that the action at

the joint is to the weight of each beam as

\/4 - 3 cos
2

: 2V4 - 3 sin
2
C.

27. A picture frame is supported by one cord, which

passes over a smooth peg and through two smooth rings,

symmetrically situated at the back of the frame : the cord is

weightless and elastic, and when unstretched, it just reaches

through the rings : e being the modulus of elasticity, and w
the weight of the frame. Shew that the vertical z (2a) of

the triangle formed by the string is determined by the equa-

tion e (1 sin a)
= w tan a.

p. M. 21
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28. Two small smooth rings of equal weight slide on a

smooth elliptical wire of which the axis major is vertical, and

are connected by a string passing over a smooth peg at the

upper focus : prove that the rings will rest in whatever

position they may be placed.

29. A right cone is held with its base against a rough
vertical wall by means of a string attached to its vertex, and

to a point of the wall vertically above the highest point of its

base : find the greatest length of the string for which equi-

librium in such a position is possible.

30. A rectangular board whose sides are a, Z>, and weight
Wy

is supported in a horizontal position by vertical strings at

three of its angular points, a weight 5W being placed on the

board the tensions of the strings become TF, 2 IF, 3W ;
find

all the positions of the weight.

Compare Prob. 42, p. 302.

31. Two weights support each other on two smooth in-

clined planes, which have a common vertex, by means of a

string which passes over a smooth pully at a given height

vertically above the vertex
;
find the position of equilibrium,

and, if the planes themselves be capable of motion along a

smooth horizontal plane, determine the horizontal force neces-

sary to keep them at rest.

32. Any number of forces act upon a rigid body in one

plane, one point being supposed fixed, whose co-ordinates

x, y are given by the equations

prove that the forces will keep the body at rest
;
and will also
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keep it at rest if their directions be also turned through any

given angle.

33. A number n of particles of equal weight w are

fastened to an endless inelastic thread of given length c,

at equal distances from each, and the necklace so formed is

placed on a smooth cone (2a) with its axis vertical and

vertex upwards ;
find the tension t of the portions of thread,

and the distance x of each particle from the vertex of the

cone.

Deduce the tension T of a, heavy string W placed in the

same manner on the cone.

W fir sin a\
Result. t - cos a cosec I

-- cos a cosec -
,

c fir sin a\ m Tr_cotax=~ cosec (- -), F=W .

2n \ n J 2ir

34. A thin rod rests in a horizontal position between two

rough planes equally inclined to the horizon and whose incli-

nation to each other is 2a
;

if /^ be the coefficient of friction,

shew that the greatest possible inclination of the line of inter-

section of the planes to the horizon is tan"
1

. . .

sm a

35. The line of intersection of two smooth planes A, B
is horizontal; a rod CD rests first with its extremity G in

contact with the plane A, and secondly with the extremity D
in contact with the same plane. If 6, <j>

be the inclinations of

the rod to the horizon in these two positions of equilibrium,

prove that tan 6 + tan < is invariable, whatever be the

length of the rod, or the position of its centre of gravity.

36. Three rods OA, OB, 00 are jointed together at

in such a manner that they can be fixed in any position in

212
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which the angles they make with one another are not less

than right angles. The system is then placed successively

on each of its three points A, B, C with the lower rod ver-

tical, the angle between the upper two being the greatest

possible. If a, /:?, 7 be the values of this angle in the three

cases (a the least of them) prove that

cos a + cos /3 cos 7 = 0.

37. Two smooth rings are connected with a third by
inextensible strings without weight. The three rings slide

on a smooth wire bent into the form of a vertical circle.

Find the position of equilibrium : and prove that, if the mass

of each ring be multiplied by its distance from the vertical

diameter of the wire, the algebraical sum of the products

(considered of different signs when the rings are on opposite

sides of the diameter) will be zero.

38. A rodAB is placed in a fixed smooth hemispherical
bowl of radius c, so as to lean against the edge of the bowl

at P, with one end A within it. Find the position of equi-

librium.

Result. If
<f>

be the inclination of the rod to the horizon, it is determined

by the equation

cos 20= cos 0.

39. Three equal right cones stand on a rough horizontal

plane with the rims of their bases in contact with each other

and a heavy smooth sphere is placed between them. If the

vertical angle of each cone be 60, and the coefficient of fric-

tion for the surface in contact be cot 60, shew that the greatest

weight of the sphere consistent with equilibrium is two-

thirds of the weight of each cone : and find the magnitude
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and position of the sphere if the cones are on the point of

falling over.

40. A weight P being placed upon a triangular table,

place another given weight Q upon the table in such a posi-

tion that the pressure on the three props at the angles may be

equal. Within what limits is the problem possible ?

Employ Prob. 42, p. 302.

41. If an even number of uniform beams of equal length

and weight rest in equilibrium in the form of an arch, and

a
t ,
a

2
...an be the respective angles of inclination of the first,

second...nih beams to the horizon, counting from the top,

prove that

2/1 + 1

n+1==2^T ' tana -

42. ABGC, DEF are two horizontal levers without

weight, B, F their fulcrums
;

the end D of one lever rests

upon the end C of the other
;
HR is a rod without weight

suspended by two equal parallel strings from the points E, G.

Prove that a weight P at A will balance a weight W placed

any where on the rod HK, provided

_^~'* W~AB'
43. Two equal particles (w, w) are connected by two

given strings (2c, 2c') without weight, which are placed like a

necklace on a smooth cone (2 a) with its axis vertical and

vertex upwards ;
find the tensions of the strings.

Result. The tensions t, t' are given by the equations

t t' w cos a

cos 0' cos sin (TT sin a)
'

C sin (TT sin a) c
f
sin (TT sin a)and tan* = -7

-*
, .

'

. , tan 0' =

c' + c cos (TT sin a)
'

c + c' cos (TT sin a)

'
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44. Two particles are joined by a string, and the system
is in equilibrium on the convex surface of a cycloid whose

axis is vertical, and convexity upwards ;
shew that their dis-

tances along the cycloid from the highest point are inversely

proportional to their weights.

45. A sphere of given weight rests upon three planes
whose equations are Ix + my + nz =

; l^+ mjj + njs
=

;

l
z
x -}-mzy + n

z
z

; the axis of z being vertical
;
shew that

the pressures upon them are respectively proportional to

l
zm^ m^, mz

l l/n and m\ mj, and find each pressure.

46. Six thin uniform rods of equal lengths and equal

given weights are connected by smooth hinge joints at their

extremities so as to constitute the six edges of a tetrahedron
;

one face of the tetrahedron rests on a smooth horizontal

plane : find the longitudinal strain of each of the rods of the

lowest face.

47. Two uniform beams of the same material and

thickness, but of unequal lengths, are connected by a hinge ;

the system is placed with the hinge on a smooth horizontal

plane and the free ends in contact with parallel smooth

vertical planes, the distance between the planes being less

than the length of either beam : determine by virtual velo-

cities the positions of equilibrium and the nature of the

equilibrium.

48. From any point within a regular polygon perpen-
diculars are drawn on all the sides of the polygon : shew

that the direction of the resultant of all the forces represented

by these perpendiculars passes through the centre of the

circle circumscribing the polygon, and find the magnitude of

the resultant.
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49. A right circular cone has a plane base in the form

of an ellipse, and when suspended from the point in which

the shortest generating line -meets the base rests with its

longest generating line horizontal : if 2oc be the vertical angle
of the cone and f$ the angle between the plane base and

shortest generating line, prove that

4 cot ft
= cot a (3 sec 2a 4).

50. Three particles of masses A, B, C respectively are

placed at the angular points of a triangle whose sides are

a, b, c : prove that the square of the distance of their centre

of gravity from A is

(A+B+C)*
51. A heavy particle P is suspended from a fixed point

by two inextensible strings, each of length I : and a uniform

rod of weight W and length 2a has a small smooth ring at

each end, through each of which one string passes : prove

^ . .,a2 W(W+2P) , .v , .

that it = - -
,
the system will be in equilibrium

when the rod is horizontal, and the upper part of each

string inclined to the vertical at an angle whose sine is the

greater root of the equation

52. The twelve edges of a regular octahedron are formed

of rods hinged together at the angles, and the opposite angles

are connected by elastic strings : if the tension of the three

strings are X, Y", Z respectively, shew that the pressure

along any of the rods connecting the extremities of the

strings whose tensions are Y and Zis -=. (F+ZX) .
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53. Three equal forces act at one point : a, /3, 7 are the

angles between their directions so that a + /3 + 7 = 2?r
;
shew

that their resultant bears to any one of these the ratio

(l

- 8 cos
I
cos- cos

1)*
: 1.

54. Two systems of three forces (P, Q, R), (P, Q', E)
act along the sides taken in order of a triangle ABC : prove
that the two resultants will be parallel if

(QE - QE) sinA + (EF - E'P] sin B
+ (PQ-PQ)smC=0.

55. In a system of pullies where each hangs by a sepa-

rate string, if W be the weight supported, and to
l9

o>
2 ,...

&>n

the weights of the moveable pullies, there will be no me-

chanical advantage, unless

W-con+2(W-O + 2
2

(W-<O + . . . + 2"-
1

(W- coj

be positive.

56. A weight is suspended from the middle point of a

string whose ends are attached to rings which can slide along
a fixed horizontal rod, prove by the principle of virtual

velocities that the inclination of each part of the string to the

vertical cannot be > tan"
1

//,.

57. Three beads (of masses cc, /3, 7) are strung on an

endless string; if they repel each other with a force
<f> (r),

where r is the distance, shew that in equilibrium they will

form a triangle whose sides a, b, c are determined by
(q) = </> (I) = (c)

a
'

/3 7

58. Four equal rods (each of weight W) forming a

rhombus ABCD (^ BCD = 2a), and connected by smooth

joints at A, B, C, and D, rest in a vertical plane with the joint
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C on a horizontal plane and the diagonal AC vertical the

middle points of BC, CD being joined by a string : find the

magnitude and direction of the strain at the joints A and B,
and shew that the tension of the string = 4W tan a.

59. One fixed and n equal moveable pullies are arranged

according to the first and third systems respectively. The

weights which the same power P can sustain are found to be

in the ratio of 1 : 2. Shew that the weight of a pully
p

must be

60. The centre of gravity of the four faces of a tri-

angular pyramid coincides with the centre of the sphere
inscribed in the pyramid whose angular points are the

centres of gravity of the faces.

61. If through the centre of gravity of each of the faces

of any polyhedron there act a force, in direction perpendicular
to the face and in magnitude proportional to its area, the

system will be in equilibrium, supposing all the forces to act

inwards or all to act outwards.

62. A frame formed of four uniform rods of the length (a)

connected by smooth hinges is hung over two smooth pegs

in the same horizontal line at a distance =
, the two pegs

being in contact with different rods. Shew that in the

position of equilibrium each angle = 90.

Is the equilibrium stable or unstable ?

63. A heavy triangle ABC is suspended from a point

by three strings, mutually at right angles, attached to the
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angular points of the triangle ;
if 6 be the inclination of the

triangle to the horizon in its position of equilibrium, then

3
cos 6 =

C)

64. From a right cone, the diameter of whose base is

equal to its altitude, is cut a right cylinder the diameter of

whose base is equal to its altitude, their axes being in the

same line, and the base of the cylinder lying in the base of

the cone
;
from the remaining cone a similar cylinder is cut,

and so on, indefinitely ;
shew that the distance of the centre

of gravity of the remaining portion from the base of the cone

is JJ altitude of cone.

65. A uniform rod of length I is cut into three pieces

a, b, c, and these are formed into a triangle ;
when the triangle

is placed in unstable equilibrium, resting with its plane ver-

tical and one of its angular points upon a smooth horizontal

plane, find the angle which the uppermost side makes with

the horizon
;

and shew that if a, /5, 7 be the three angles

corresponding to the several cases of a, b, c being the upper-

most side, then

(l+a) tana+(Z +

66. A string of equal spherical beads is placed upon a

smooth cone (2a) having its axis vertical, the beads being just

in contact with each other, so that there is no pressure be-

tween them. Find the tension t of the string; and deduce

the limiting value T, when the number of beads is indefinitely

great.

Result. If W=sum of the weights of the beads

W cot q W cot q
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67. A weight is supported on a rough inclined plane (a)

by a force exactly equal to it. Shew that the direction of the

force may be changed through an angle 4 tan"
1

//,
without

disturbing the equilibrium of the weight, provided that

_i CC 7T
tan

ft,
is not < - nor > -

cc.

68. An even number of equal and uniform spherical

balls are slung in contact with each other on a fixed smooth

cylinder, whose axis is horizontal, by means of a string

which passes through smooth grooves pierced from the points

of contact of adjacent balls to the centres of the respective

balls. If the balls entirely surround the cylinder, and the

tension of the string be such that there is no pressure between

the fixed cylinder and the lowest ball which touches the

cylinder at its lowest point, shew that the pressure between

the cylinder and the highest ball is four times the weight of
each ball.

69. Three particles are connected by strings so as to

form a triangle, and they are mutually repulsive : shew that if

one particle be suddenly annihilated the tension of the string

connecting the other two will remain unaltered.

70. The particles of two circular discs repel each other

with a force varying as the distance. An endless elastic

string passes round their circumferences crossing between

them. If the discs were held in contact, the string would be

unstretched, and the resultant repulsion would be equal to the

modulus of elasticity. Shew that for equilibrium

sin0(sin0-0cos0) = ^,2

where 20 is the z between the radii of either disc at the points

where the string leaves it.
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71. Two uniform beams whose lengths are a and c are

capable of moving about hinges at their extremities placed
in the same horizontal plane. Another beam b is hinged to

their other extremities so that the system is above the hori-

zontal plane. If there be equilibrium, the difference between

the lengths of the beam will be proportional to the difference

between the tangents of the angles which they make with

the horizon.

72. Two equal beams AB, AC, connected by a hinge
at A, are placed in a vertical plane with their extremities

B, G resting on a horizontal plane ; they are kept from falling

by strings connecting B and G with the middle points of the

opposite sides; shew that the ratio of the tension of either

string to the weight of either beam =
-J */(8 cot

2 + cosec
2

0),

being the inclination of either beam to the horizon.

73. A uniform beam is supported upon the circumference

of a circle of radius r in a vertical plane, by means of a string

of given length c, fastened at one end to the highest point of

the circumference, at the other end to one extremity of the

beam
;
find the length of the beam that the string may be

horizontal.

A-2 -4-r2 \ 2

Result. Length of beam= 2c (^^ J
.

74. If the sector of a circle balance about the chord of

the arc, prove that, 2a being the angle of the sector,

2 tan a = 3a.

75. Two spheres of densities p, a- and radii a, Z> rest in

a paraboloid whose axis is vertical, and touch each other at

the focus, shew that pV = <7
3
6
10

. Also if F, W be their
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weights, and R, R' the pressures on the paraboloid at the

points of contact,

RL _R_ _l(R__K\w w~2\w Wr
76. Two weights of different material are laid on an

inclined plane, connected by a string extended to its full

length, inclined at an ^ to the line of intersection of the

inclined plane with the horizon; if the lower weight be on

the point of motion, find the magnitude and direction of the

force of friction on the upper weight.

77. An endless string hangs at rest over two pegs in the

same horizontal plane, with a heavy pully in each festoon of

the string ;
if the weight of one pully be double that of the

other, shew that the angle between the portions of the upper
festoon must be > 120.

78. Two uniform beams loosely jointed at one extremity
are placed upon the smooth arc of a parabola, whose axis is

vertical and vertex upwards. If I be the semi-latus-rectum

of the parabola, and a, b the lengths of the beams, shew that

they will rest in equilibrium at right angles to each other,

if I (a + b) (a* + 5
4

)
f = aV, and find the position of equili-

brium.

79. A heavy ring hangs loose upon a fixed horizontal

cylinder, and is pulled by a string at its lowest point parallel

to the axis of the cylinder : find the limiting position of rest

when the coefficient of friction is given ;
and shew that if

the coefficient of friction exceed a certain value, no force so

applied can make the ring slide.

80. A rod of length a is placed horizontally between

two pegs whose distances from opposite ends are respectively
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Ja and \a ;
if weights w and 3w be suspended from the ends

of the rod, find the tendency to break at any point of the

rod, and shew at what point it is the greatest.

81. A uniform rod (of length c) has smooth rings at

each extremity, one of which slides on a fixed vertical rod,

and through the other passes a fine string which is fixed at

two points A, B in the same horizontal line, the length of the

string being = 2 . AB ; prove that the z which the rod makes

with the horizon in a position of equilibrium = cos"
1 - -

;

h being the distance of the fixed rod from the middle point

of AB and AB = 2o.

82. Five equal rigid heavy rods (each of weight W)
hinged together so as to form a regular pentagon ABODE,
are set in a vertical plane with one of them CD resting on a

horizontal table, and the form of the regular figure is pre-

served by help of an inextensible string connecting the hinges
B and E. Shew that the tension of the string

= 1 W (tan 54 + 3 tan 18).

83. A string of length I is laid over two smooth pegs
which are in the same horizontal line and at a distance a

from each other. Two unequal heavy particles, which attract

each other with forces varying as the distance, are attached,

one to each end of the string : shew that the inclination (0)

of either portion of the string to the horizon is given by the

equation
a tan 6 I = (I a) sin 6,

where 25 = (the sum of the weights) -f- (the attraction of the

particles at the unit of distance).

84. Four equal particles are mutually repulsive, the law

of force being that of the inverse distance. If they be joined
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together by four inextensible strings of given length so as to

form a quadrilateral, prove that when there is equilibrium,

the four particles lie in a circle.

85. A particle is at rest on a smooth vertical circle

under the action of gravity, and a force varying as the dis-

tance from the extremity of a horizontal diameter, the

absolute force being such that the attraction on a particle

placed at the centre equals gravity: shew that the particle

will rest half-way between the centre of force and the lowest

point of the circle, and find the pressure on the curve.

86. A uniform bar is bent so as to form a triangle, and

the System rests on a smooth horizontal cylinder, whose

radius is nearly equal to that of the inscribed circle, shew

that there will be no pressure on the greatest side a, and that

its inclination to the vertical will be

r being the radius of the cylinder, a, b, c the sides of the

triangle and 25 = a + b -f- c.

87. A heavy rod is placed in any manner resting on two

points of a rough horizontal curve, and a string attached to

the middle point C of the chord is pulled in any direction, so

that the rod is on the point of motion. Prove that the locus

of the intersection of the string with the directions of the

frictions at the points of support is an arc of a circle and

a part of a straight line.

Find also how the force must be applied that its inter-

sections with the frictions may trace out the remainder of the

circle.

Routli and Watsons Senate-House Problems for 1860, p. 26.
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88. ABCD is a quadrilateral, the intersection of the

diagonals ; P, Q points in BD, A such that QA = C and

PB= OD. Prove that the centre of gravity of the quadri-
lateral coincides with that of the triangle OPQ.

This simple and elegant construction for the centre of gravity of a plane

quadrilateral is given in the Quarterly Journal of Mathematics, Vol. vi. p. 127.

DYNAMICS.

INTRODUCTION. CHAPTER I.

1. A railway train travels over 150 miles in 5k. 40 w.

What is its average velocity in feet per second ?

Result. 38 '8 nearly.

2. What is the velocity of a particle which describes

4*38 miles in 31' 50": a foot and a second being the respec-

tive units of space and time ?

3. What would be the numerical value of the accelerating

force of gravity, if a mile and an hour were the units of space

and time ? (See Art. 7.)

4. If v, v' be two component velocities of a particle, and

a the angle between their directions, the resulting velocity is

=
*/(v

z + v* + 2vv cos a).

5. If the unit of pressure (or statical force) be 1 Ib. and

the unit of accelerating force be the force which in a second

f" generates a velocity of one foot per second, what is the unit

of mass ?

Result. The mass of a weight of 32'21bs.

6. If the area of a field of ten acres be represented by

100, and the acceleration of a heavy falling particle by 58-f ,

find the unit of time.
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7. In the equation w = mg, what must be the relation

between the units of time and space, in order that the unit

of mass may be the mass of a unit of weight ?

8. Shew from the second law of motion that if a system
of particles subject to gravity be projected simultaneously

from a point in directions which all lie in one plane, the locus-

of the particles at any subsequent instant will be a parallel

plane.

9. If the unit of weight be 1 oz., and one cubic foot of

the substance of standard density weigh 162 Ibs., what must x.

be the unit of linear measure, that the formula W=Vpg may
be true, g being equal to 32 feet?

Result. 4 inches.

10. In the equation of relation P = w/(Art. 42) sup-

posing the unit of force to be 5 Ibs. and the unit of accelera- ^
tion, referred to a foot and a second as units, to be 3, find

the unit of mass.

Result. The unit of mass is the mass of 53 fibs, nearly.

11. The radius of the earth at the equator is 3962'8

miles, and it makes a complete revolution about its axis in

23 Ji. 56 w.; find the velocity of a point at the equator in feet

per second.

Result. 1526 nearly.

12. If the accelerating effect of gravity be numerically

represented by 9660, a yard being the linear unit, find the
'

unit of time.

Result. Half a minute.

13. If a body weighing 30 Ibs. be moved by a constant

force which generates in it in a second, a velocity of 50 feet x

P.M. 22
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per second, find what weight the force would statically sup-

port.

Result. 4677 Ibs. nearly.

14. The wind blowing exactly along a line of railway,

two equally quick trains, moving in opposite directions, have

the steam track of the one twice as long as that of the other .

compare the velocities of the trains and of the wind.

Result. Velocity of the train = 3 times that of the wind.

15. If j^,/2 be the measure of the accelerating effect of a

force when m + n and m n seconds are the respective units of

^ time, and a and b feet the respective units of distance, shew

that the measure becomes - (v^a+V^)
2

, provided 2m seconds
G

be the unit of time, and c feet the unit of distance.

16. A point, moving with a uniform, acceleration, de-

scribes 20 feet in the half-second which elapses after the first

second of its motion; compare its accelerationf with that of

a falling heavy particle : and give its numerical measure,

taking a minute as the unit of time, and a mile as that of

space.

Result, (i)/ : g= l : 1 nearly. (ii)/=21T
9
r -

17. A pressure P produces an accelerating effectf on a

mass m, determine the relation between P, m and/; the unit

of pressure being 1 Ib. the unit of mass the mass of a cubic

foot of water, and the unit of acceleration the acceleration

produced by gravity.
Result. P= 62-5 . m . f.

18. If a point be situated at the intersection of the per-

pendiculars drawn from the angular points of a triangle to

the sides respectively opposite to them, and have component
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velocities represented in magnitude and direction by its dis-

tances from the angular points of the triangle, prove that

its resultant velocity will tend to the centre of the circle

circumscribing the triangle, and will be represented by twice

the distance of the point from the centre.

19. If a be the distance at any time between two points

moving uniformly in one plane, V their relative velocity, and

u, v the resolved parts of V in and perpendicular to the direc-

tion of a, shew that their distance when they are nearest to

each other is y ,
and that the time of arriving at this near-

, ,. . . au
est distance is = ^ .

20. A straight rod moves in any manner in a plane ;

prove that at any instant the directions of motion of all its

particles are tangents to a parabola.

21. A person travelling eastward at the rate of 4 miles an

hour, observes that the wind seems to blow directly from the

north
;
on doubling his speed the wind appears to come from

the north-east
;
determine the direction of the wind, and its

velocity.

Result. The true direction of the wind is from the north-west and its

velocity is 4^/2 miles an hour.

22. The measures of an acceleration and a velocity when
referred to (a + b) ft, (m + n)" and (a b) ft., (m n)" respec-

tively, are in the inverse ratio of their measures when referred

to (a b) ft, (m n)" and (a + b) ft., (m + n)" ;
their measures

when referred to a ft, m" and b ft,V are as ma : nb, shew

that

222
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COLLISION. CHAPTER II.

1. What must be the elasticity of two balls A, B in

order that A impinging directly upon B at rest may itself be

reduced to rest by the impact ?

Result. e=
.f..
S3

2. A man can pull a boat with three times the velocity

of the stream at what angle to the stream must the boat

be rowed in order that he may land at a point directly oppo-
site his starting place ?

Result. At an angle with the stream = cos" 1 -
.

o

3. A ship sails N.W. at the rate of 9 knots per hour,

and is drifted S.S.W. by the current at the rate of 2 knots

an hour find the actual speed and direction of motion.

Result. Her speed=^85-18v2- >/2 knots an hour, her direction

/9-2cos
37r

\

makes an angle cot" 1
(

8 to the west of north-west.

4. A ball of 9 ounces moving with a velocity of 7 feet

a second impinges directly upon a ball of 12 ounces moving
with a velocity of 5 feet a second in the opposite direction

;

rind the change in the velocity and momentum of each ball,

supposing them, inelastic.

5. Under what conditions will the velocities of two balls

A, B impinging directly upon each other, be interchanged

after impact ?

Result. If the balls he equal and the elasticity perfect.
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6. Two balls A, B are moving in directions at right

angles to each other with the same velocity, the line joining
their centres at the instant of impact being in direction of A's

motion; find the velocity and direction of motion of each

after impact (elasticity
=

e).

Result. In the formulae of Art. 58 write a=0, /3
= 90, u= v.

7. Two bodies of masses 2A and 3A are moving with

the same velocity in directions making angles 45 and 30

with the common tangent at the point of impact. Find the

direction and velocity of the centre of gravity.

8. A, B are two equal and perfectly elastic spheres ;

A moving with a given velocity impinges on B at rest, the

direction of A's motion before impact making an angle of 60"

with the straight line which joins their centres at the instant

of impact ;
determine the directions and velocities of A and B

after impact.

9. Compare the velocity of a place at the earth's equa-
tor arising from the earth's rotation, with the velocity of the

earth in her orbit about the sun
; assuming the earth's radius

= 4000 miles, the radius of the earth's orbit = 95000000 miles,

and the length of the year
= 365J days.

Result. 1 : 65 nearly.

10. A ball A impinges directly with a given velocity

upon another ball B at rest; if the vis viva before impact
be n times the vis viva after impact, find their common

elasticity.

A + B - nA
Result. e

2= = .

nB

11. A ball A moving with a given velocity impinges

directly upon a ball B at rest, and B afterwards impinges
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upon C at rest
;
determine the velocity communicated to C.

If A and C be of given mass and B variable, shew that O's

velocity will be greatest when B* =A . G.

Apply the formulae of Art. 58.

12. A ball A strikes a ball B at rest, the direction of

A's motion before impact being 45 inclined to the line AB
;

find the velocity and direction of motion of each after impact,
and the condition that they may move at right angles to each

other.

13. A perfectly elastic ball acted on by no force, is pro-

jected from the focus of an ellipse and impinges upon the

curve; it will return to the focus again in the same time,
whatever be the direction of projection.

14. Two planes make an angle of 5 with each other,

and a perfectly elastic body is projected against one of them

at an angle of 105; how many reflexions will take place
towards the angle where the planes meet ?

Result. Three.

15. A ball A impinges obliquely on another ball B at

rest, and after impact the directions of motion of A and B
make equal angles (a) with As previous motion : find a, and

shew that if the masses of the balls be equal and e the

mutual elasticity, a = tan"
1
Ve.

16. A smooth table has a smooth rim in the form of a

regular hexagon ;
shew that an inelastic ball, projected along

one side of the hexagon, performs n complete revolutions in

(2
6n

1) time of describing the first side.

17. Two imperfectly elastic balls, equal in size, but un-

equal in mass, are placed between two perfectly hard parallel
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planes, to which the line joining the centres of the balls is

perpendicular, each ball being initially at a distance from

the plane nearest to it, inversely proportional to its mass.

The balls approach each other with velocities inversely pro-

portional to their masses
; prove that every impact will take

place at the same point as the first does.

18. Two balls, of elasticity e, moving in parallel direc-

tions with equal momenta, impinge ; prove that if their direc-

tions of motion be opposite, they will move after impact in

parallel directions with equal momenta
;
and that these direc-

tions will be perpendicular to the original direction if their

common normal is inclined at an angle tan"
1
*Je to that

direction.

19. A ball of elasticity e is projected along a horizontal

plane in an equilateral triangle, and after reflexion at two

sides it impinges perpendicularly on the third. Shew that the

angle of incidence was tan"
1 3e (1 e)

^

l+3e

20. If u, v be the velocities before direct impact of two

balls A, .Z?, u, v their velocities after impact, shew that

A u* + Bv* = Au'* + Bv* +-- (1
- e

2

) (u
- v

21. A body whose elasticity is e is projected from a point
in the circumference of a circle, and after three rebounds from

the circumference returns to the point from which it was pro-

jected; shew that the direction of projection is inclined to

the radius of the circle at an angle
= tan"

1

(e?).
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22. A ball projected from a point in one side of a billiard

table returns to the point of projection after striking each side

in succession; find the direction of projection, and shew that

if it ever returns to its original position it does so after the

first circuit.

23. Two equal balls (A, A) , moving with equal velocities

in directions passing through the centre of a third ball C,

impinge upon it and upon one another simultaneously ;
find

the ratio of the masses of the balls, that after impact the direc-

tions of motion of the two balls may be perpendicular to that

of the third, the coefficients of elasticity being \.

Result. (7=4-4.

24. A ball A impinges upon a ball B at rest
;
find the

direction of the line joining the centres of A and B, in order

that they may after impact move in directions making equal

angles with the original direction of A's motion.

Remit. "With the notation of Art. (58) we must have

25. If ABO be a triangle and Z>, E, F the points where

the circle inscribed in it meets the sides BO, CA, AB respec-

tively ;
shew that if a ball, of elasticity e, be projected from

D so as to strike A in E and then rebound to F,

AE=e. CE.

If the ball return to D, AB = e.AC.

26. Two equal balls (of elasticity e) start at the same

instant with equal velocities from the opposite angles of a

square along the sides and impinge ;
determine the angle

between their directions after the impact.
2(9

Result, tan"1
7 .
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27. Three equal smooth balls rest on a horizontal table

and each is in contact with the other two; if one of them

receive a blow at a given point in the plane passing through

the centres of the balls, determine the direction of its motion

after impact.

28. Two particles connected by an inextensible string

are projected in given directions in one plane with given velo-

cities
;
determine their motions immediately after the string

becomes tight.

29. A body of elasticity e is projected along a horizontal

plane from the middle point of one of the sides of an isosceles

right-angled triangle, so as after reflexion at the hypotenuse
and remaining side to return to the same point ;

shew that

the cotangents of the angles of reflexion are e + 1 and e + 2

respectively.

30. The tangents of the angles of a triangle ABO are

in geometrical progression, tan B being the mean proportional ;

and a ball is projected in a direction parallel to the side CB,
so as to strike the sides AB, BG successively. Shew that if

its course after the first impact be parallel to AC, its course

after the second will be parallel to BA : and that if e be the

modulus of elasticity,

e\ _j_ e
-k __ sec J2.

31. A ball is projected from the middle point of one side

of a billiard table so as to strike in succession one of the sides

adjacent to it, the side opposite to it, and a ball placed in -the

centre of the table : shew that if a, b be the lengths of the

sides of the table, e the elasticity of the ball, the inclination
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of the direction of projection to the side a of the table from

which it is projected must be

= tatrl
a(V+)-

32. A smooth inelastic ball, mass m, is lying on a

horizontal table in contact with a vertical wall, and is struck

by another ball, mass m moving in a direction perpen-

dicular to the wall, making an angle (a) with the common
normal at the point of impact ; shew that if be the angle

through which the direction of motion of the striking ball is

turned,

(yvi

cot0.cota= +1.m

33. An elastic ball is projected from a point in one of

the sides of a square billiard table so as to describe an in-

scribed square ; prove that if e be the mutual elasticity of the

cushions and ball, the time of describing the square is

I-*2
1

-I--I*
1 & ef

time of describin the first side.

34. A particle, of elasticity e, is projected from the middle

point of one side of a square, in a direction making an z 6

with it
; shew that if the ball strike the four sides in order,

6 must lie between

- 2^-
35. Two billiard balls are lying in contact on the table

;

in what direction must one of them be struck by a third, so

as to go off in a given direction ?
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36. A ball A impinges obliquely on a ball B at rest, their

mutual elasticity being e, shew that the maximum deviation

of A is = tan"
1

.
______ ______ provided A > eB : and

l

examine the case when A < eB.

37. In a game of croquet a ball which is to be croqueted

is at a certain distance on one side of a hoop : the striker

wishes to place his ball so that after the croquet it may be

in front of the hoop, and the other ball be at the same

distance behind it : shew that the player must give his

stroke in direction of the hoop, and that the line joining the

centres of the two balls must be inclined at an angle tan"
1

Ve to this direction: e being the coefficient of elasticity

between the balls.

38. A row of elastic balls A, B, C, ... P, are at rest; if

A be made to impinge directly with given velocity upon B,

then B on C with the velocity acquired, C on Z>, and so on,

find the velocity of P.

Shew that if A and P be of given magnitude, but B, G ...

capable of being changed, the velocity communicated to P
will be greatest when the masses of the balls are in geo-

metrical progression.

And if the number of balls interposed between A and P
become indefinitely great, then the velocity acquired by

P = . / ( -f] . original velocity of A.
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ACCELERATED MOTION. CHAPTER III.

1. A body is projected upwards with a velocity w, and

after rising through a space s, has a velocity v
;
shew that

v* = u? 2gs.

If the velocity of projection is Sg, find the time in whicli

the body rises through the height 14^.

2. A particle of elasticity -| drops through 16 feet, and

then rises after impact on a horizontal plane. Find the velo-

city after rising 3 feet, and the time of this ascent : force of

gravity being taken to be 32 feet.

Result. Velocity = 8 feet, and the time= J second.

3. A particle moves over 7 feet in the first second of the

time during which it is observed, and over 11 and 17 feet in

the 3rd and 6th seconds respectively. Is this consistent with

the supposition of its being subject to the action of a uniform

force ?

Result. Yes.

4. A weight Q is drawn along a smooth horizontal table

by a weight P hanging vertically, find (1) the acceleration

of P, (2) the acceleration of the centre of gravity of P
and Q.

P
Result,

(i)
Acceleration of P=p ^ff- (") Of the centre of gravity

2 pQ
g vertically, a,nd= g horizontally.

5. A constant force (/) acts upon a body from rest during

3 seconds, arid then ceases. In the next 3 seconds it is found
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that the body describes 180 feet. Find both the velocity (v)

of the body at the end of the 2nd second of its motion and the

numerical values of the accelerating force (1) when a second,

(2) when a minute is taken as the unit of time.

Result. Z> = 40, (i) /=20. (ii) /= 72000.

6. A force which can statically support 50 Ibs. acts uni-

formly for one minute on a body, the weight of which is

200 Ibs.
;

find the velocity and momentum acquired by the

body.

7. A body acted on by a uniform force is found to be

moving at the end of the first minute from rest with a velocity

which would carry it through 10 miles in the next hour.

Compare this force/with that of gravity g.

Result, f : gl : 131 nearly.

8. If the force of gravity be taken as the unit of force,

and a rate of ten miles an hour as the unit of velocity, what

must be the units of time and space ?

(11Y'

121
) ,

unit of space = - feet.

J 18

9. A bullet fired directly into a block of wood will pene-
trate a inches : find what proportion of its velocity it would

lose in passing through a board of the same wood one inch

thick, supposing the resistance uniform.

10. A particle slides down a rough inclined plane (a) ;

find the acceleration f.

Result. /= g (sin a - /u cos a).

11. If a weight of ten pounds be placed upon a plane
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which is made to descend with a uniform acceleration of 10

feet per second, what is the pressure upon the plane ?

Result. 6'8751bs.

12. A body falling in vacuo under the action of gravity
is observed to fall through 144'9 feet and 177'1 feet in two

successive seconds
;
determine the accelerating force of gravity,

and the time from the beginning of the motion.

Result. <7
= 32'2, and the first of the two seconds spoken of is the fifth from

the beginning of motion.

13. The velocity generated by a gun in a bullet of 1 oz.

is 1000 feet per second; supposing that the bullet described

the length of the barrel in y^ of a second, and that the force is

uniform, find the acceleration and moving force (f, F).

Result. /= 10000 feet per second,

^T

=19-41ba. nearly.

14. A body falling vertically is 'observed to describe

112*7 feet in a certain second: how long previously to this

has it been falling?

Result. Three seconds.

15. A person drops a stone into a well, and after t" hears

' it strike the water; find the depth (x) to the surface of the

water (assuming velocity of sound = 35 . g nearly).

Result. Find x from the equation

"x+35 4/2gx=35gt.

16. ,A balloon ascends with a uniformly accelerated

velocity so that a weight of 1 Ib. produces on the hand of the

^ aeronaut sustaining it a downward pressure equal to that

which 17 oz. would produce at the earth's surface; find the

height which the balloon will have attained in one minute
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from the time of starting, not taking into account the varia-

tion of the accelerating effect of the earth's attraction.

Result. 1207'S yards, taking g= 32 '2.

17. AB is the vertical diameter of a circle; through A
the highest point any chord A C is drawn, and through C a

tangent meeting the tangent at B in the point T. Shew that

the time of a body's sliding down CTcc -r
Y

.

jA.

18. A particle uniformly accelerated describes 108 and

140 feet in the 5th and 7th seconds of its motion : find the

velocity of projection and the numerical measure of the ac-

celeration.

19. Shew how to place a plane of given length in order

that a body may acquire a given velocity by falling down it.

20. Prove that the locus of the points, from which the

times down equally rough inclined planes to a fixed point

vary as the lengths of the planes, is a right circular cone.

21. In a parabola whose axis is vertical, a tangent is

drawn at any point P cutting the axis produced in T', shew

that if gravity alone acts, the time of descent down TP bears

a constant ratio to the time of descent from Tto the focus.

22. APB, AQC are two circles with their centres in the

same vertical line ABC, and touching each other at their

highest points. If APQ, Apq be any two chords, the times

of descent down P Q, pq from rest at P and p are equal.

23. A particle is moving under the action of a uniform

force, the accelerating effect of which is /:, if u be the arith-
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metic mean of the first and last velocities in passing over any

portion h of the path, and v the velocity gained, shew that

uv =fh.

24. In what time will a force which would support a

5 Ib. weight move a mass of 10 Ibs. weight through 50 feet

along a smooth horizontal plane, and what will be the velo-

city acquired ?

25. If a body subject to a uniform acceleration describes

36 feet, whilst its velocity increases from 8 to 10 feet per

second, how much farther will it be carried before it attains

a velocity of 1 2 feet per second ?

26. A heavy body is projected up an inclined plane,

inclined at 60 to the horizon, with the velocity which it

would have acquired in falling freely through a space of

12 feet, and just reaches the top of the plane; find the alti-

tude of the plane, the coefficient of dynamical friction being

Result. 9 feet.

27. Two bodies uniformly accelerated, in passing over

the same space, have their respective velocities increased

from 5 to 7 and from 8 to 10, compare the accelerating-

forces, and the respective times of describing the space.*******
28. AP, AQ are two inclined planes of which AP is

rough (fi
= tan PAQ) and AQ is smooth, AP lying above

AQ : shew that if bodies descend from rest at P and Q, they
will arrive at A, (i) in the same time if PQ be perpendicular

to A Q, (ii)
with the same velocity if PQ be perpendicular to

AR
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29. An engine whose power is sufficient to generate a

velocity of 150 feet a second in a mass m (which is its own

mass) is attached to a carriage, mass =
, by means of an

y
inelastic weightless chain 3 feet long ;

this carriage again in

exactly the same way to another, mass = -^ ;
this to a third,

mass = -3 . The engine and carriages are in contact when

the train starts
;
shew that the last carriage will begin to move

with a velocity
= 33 feet per second nearly.

30. A body P descending vertically draws another body

Q up the inclined plane formed by the upper surface of a

right-angled wedge which rests on a smooth horizontal table ;

find the force F necessary to prevent the wedge from sliding

along the table.

Q sin a - P
Result. F= Off cos a

-p
.

31. A uniform string hangs at rest over a smooth peg.

Half the string on one side of the peg is cut off : shew that

the pressure on the peg is instantaneously reduced to two-

thirds its previous amount.

32. A smooth wedge (of
*
a) on a horizontal plane is

moved from rest with a uniform acceleration
;
find the direc-

tion and amount of the acceleration that a heavy particle

placed on its inclined plane surface may be in equilibrium

relative to it.

Result. The wedge must move in a principal plane with an acceleration

=
rj
tan a.

p. M. 23
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33. Find the locus of points from which inelastic parti-

cles may be let fall on a smooth inclined plane, so as always
to have the same velocity on arriving at the same horizontal

line in the plane.

Result. A plane passing through the given horizontal line.

34. If a body is projected with velocity u in the direc-

tion of a uniform force /, and if v be the velocity and s the

space described at the end of time t, prove that

v u 2s

f ~v + u~
The velocity of a body increases from 10 to 16 feet per

second in passing over 13 feet under the action of a constant

force
;
find the numerical value of the force.

35. Find by geometrical construction or otherwise the

line of quickest descent,

(i) From a given straight line to a given point.

(ii) From a given point within a given circle to the

circle.

(iii)
From a given circle to a given point within it.

(iv) From a given circle to a given straight line or to

another circle without it.

(v) From a given circle to another given circle either

within it or without it.

36. Two circles lie in the same plane, the lowest point
of one being in contact with the highest point of the other;

shew that the time of descent from any point of the former

to a point in the latter, down the chord passing through the

point of contact, is constant.
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37. Two equal bodies connected by a string are placed

upon two planes which are inclined at angles a, ft to the

horizon, and have a common altitude. Prove that the acce-

leration of their centre of gravity is

. a-/3 2 +/3
g.sm .cos

2 -.
~j A

38. A number of heavy particles start at once from the

vertex of an oblique circular cone, whose base is horizontal,

and fall in all directions down generating lines of the surface
;

prove that they will at any subsequent moment lie in a sub-

contrary section.

39. Two bodies A and B descend from the same ex-

tremity of the vertical diameter of a circle, one down the

diameter, the other down the chord of 30. Find the ratio of

A to B when their centre of gravity moves along the chord

of 120.

Result. A : B=

40. A series of particles slide down the smooth faces of

a pyramid, starting simultaneously from rest at the vertex
;

shew that after any time t they are in a certain spherical

surface whose radius = %gt*.

41. P pulls Q over a smooth pully ;
and Q in ascend-

ing as it passes a certain point A, catches and carries with it

a certain additional weight which makes it altogether heavier

than P
;
and on its descent the additional weight is again

deposited at A. Supposing no impulse to take place when
the weight is so caught up, and that Q in this manner oscil-

lates through an equal space on either side of A, find the

additional weight.

232
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42. If the weight attached to the free end of the string

in a system of pullies, in which the same string passes round

each pully, be m times that which is necessary to maintain

equilibrium, shew that the acceleration of the ascending
/777 ____ "I

weight is .g, where n is the number of strings at themn + 1
*

lower block, and the grooves of the pullies are supposed
smooth. What is the tension of the string ?

43. A weight W is connected with a weight Pby a sys-

tem of n movable pullies, in which the string passing round

any pully has one end fixed and the other attached to the

pully next above it the string to which P is attached passing
round a fixed pully, and the strings between the pullies

being all parallel : shew that the acceleration of W upwards

_~

44. If 8 be the focus of a parabola whose axis is hori-

zontal and plane vertical, SP the line of quickest descent

from S to the curve, shew that SP is inclined at 60 to the

axis.

45. Two weights P, Q move on two planes inclined at

angles a, /3 to the horizon respectively, being connected by a

fine string passing over the common vertex, in a vertical

plane which is at right angles to this common vertex
;
their

centre of gravity describes a straight line with uniform ac-

celeration equal to

Qsin/S Psina
9
~~~*~ ~ ^P* + 2P cos

46. A heavy particle is projected directly up an inclined

plane (a) with velocity u
t
and is attached to the point of
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projection by an inextensible string whose length is half the

distance a free particle would ascend : determine the time

which elapses before the particle returns to the point of pro-

jection.

47. Supposing the weights in Atwood's machine to be

7 and 9 pounds and to rest on scale-pans without weight, find

the pressure on each scale-pan.

48. A body starts from rest under a uniform acceleration,

but at the commencement of each successive second the ac-

celeration is decreased in a geometrical proportion (r
=

J) :

shew that the space described in n seconds = (2n 3 + J 2s,

where s is the space described in the first second.

49. Two bodies whose weights are P and Q hang from

the extremities of a cord passing over a smooth peg ;
if at the

end of each second from the beginning of motion P be sud-

denly diminished and Q suddenly increased by - th of their

original difference
;
shew that their velocity will be zero at

the end of n + 1 seconds.

50. In the problem of Art. 75, prove that the sum of

the weights being given, the tension is the greater the less

the acceleration.

51. A railway carriage detached from a train going at

the rate of 30 miles an hour is stopped by the friction of

the rails in half a minute
;
find the coefficient of friction.

52. A parabola is placed in a vertical plane and its axis

is inclined to the vertical. S is the focus, A the vertex and

Q the point in the curve which is vertically below S: if SP
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be the straight line of quickest descent from the focus to the

curve, shew that the angle ASP is equal to twice the

angle PSQ.

53. A string charged with n + m+l equal weights, fixed

at^qual intervals along it, and which would rest on a smooth

inclined plane with m of the weights hanging over the top,

is placed on the plane with the (m + l)
tb
weight just over

the top ;
shew that if a be the distance between each two

adjacent weights, the velocity which the string will have

acquired at the instant the last weight slips off the plane,

will be = Nnag.

54. A fine inelastic thread is loaded with n equal par-

ticles at equal distances c from one another
;

the thread is

stretched and placed on a smooth horizontal table, perpen-

dicular to its edge, over which one particle just hangs ;
find

the velocity of the system when the r
th

particle is leaving the

table.

Hence shew that if a heavy string of length a be simi-

larly placed on a horizontal table, its velocity in falling off

will be = V (
a
ff)-

Result. v*=ge^^.
'

: \
"

Jflt
**

55. A number n of equal balls connected by a string are

laid upon a smooth table, the string being stretched at right

angles to the edge of the table
;

if one ball hanging over the

edge draws the others after it, determine the lengths of suc-

cessive portions of the string, that each may fall over at the

end of successive equal intervals of time.

Result. If a r be the length of string between the rth and (r*+l)
th

ball?,

we must have ar=r" . a,, and if vr be the velocity of the system when the r^

ball is passing over the edge, v
r
= r(r- 1) A/~ .
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56. A string loaded with a series of equal heavy par-

ticles at equal distances along it, is coiled up in the hand

and held close to a peg to which one end of the string is

attached. The support of the hand being withdrawn suddenly
from the coil, find the finite and impulsive strains on the peg
when the rih section of the string becomes tight : the mass

of the string being neglected.

If a uniform heavy chain (of length a and weight W) be

treated in a similar manner, shew that the strain on the peg
H3Q

when a length x of chain becomes tight is = 3 - W.
CL

PROJECTILES. CHAPTER IV.

1. A particle, acted on by two equal, centres of force

which vary as distance, one repulsive and the other attrac-

tive, will, however projected, describe a parabola.

2. A body is projected with a vertical velocity (16'7)

and a horizontal velocity ('8) ; prove that its distance from

the point of projection at the end of one second is one foot

(#
= 32-2 feet).

3. If a body fall down an inclined plane (a), and another

be projected from the starting point horizontally along the

plane with velocity v, find the distance D between the two

bodies (i)
after a given time i, (ii)

after the first body has

descended through a given space s.

Result, (i)
D=-* <H)D=, J- -.

4. Find the angle which the direction of a projectile
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makes with the horizon at any point of its path, and deter-

mine its distance from a line drawn through the point of pro-

jection parallel to this direction.

Result. With the notation of Art. 88, Cor. 3,

tan <b= tan a--'-
,

v cos a

and 2= distance required= v sin (a
-
0) . t - \y cos

<j> . &.

5. If 0, <f>
be the angles which the tangents to the curve

at the points P, Q of the path of a projectile make with the

horizon, the time of describing the arc PQ oc tan tan <.

6. A body slides down an inclined plane of given height,

and then impinges upon an elastic horizontal plane ;
what

must be the elevation of the inclined plane in order that the

range on the horizontal plane may be the greatest possible ?

Remit. 45.

7. Having given the velocities at two points of the path
of a projectile, find the difference of their altitudes above a

horizontal plane.

8. If a ship is moving horizontally with a velocity 3$r,

and a body is let fall from the top of the mast, find its velocity

and direction after 4".

Result. Velocity= 5g, inclination to the horizon= tan-1 .

9. A body is projected from the top of a tower with a

given velocity in a given direction ;
find where it will strike

the ground.

10. A heavy particle is projected from one point so as

to pass through another not in the same horizontal line with

it; prove that the locus of the focus of its path will be a

hyperbola.
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11. Particles are projected from the same point in a ver-

tical plane with velocities which vary as (sin 0)~* 5 being the

angle of projection ;
the locus of the vertices of the parabolas

described is an ellipse whose horizontal axis is double the

vertical axis.

12. Two heavy bodies are projected from the same point,

at the same instant, in the same direction, with different

velocities
;
find the direction of the line joining them at any

subsequent time.

Result. It is always parallel to the direction of projection.

13. An imperfectly elastic ball is projected from a point
between two vertical planes, the plane of motion being per-

pendicular to both
;
shew that the arcs described between the

rebounds are portions of parabolas whose latera recta are in

geometric progression.

14. A body is projected vertically upwards from a point

A with a given velocity (u) ;
find the direction (i) in which

another body must be projected with a given velocity (v)

from a point B in the same horizontal line with A, so as to

strike the first body.

Result. sina= --.

15. A ball is projected from a point in a horizontal plane
and makes one rebound

;
shew that if the second range is equal

to the greatest height which the ball attains, tan a = 4e :

a being the angle of projection and e the elasticity.

16. Particles are projected from the same point in the

same direction, but with different velocities
;
find the locus of

the foci of their paths.

Result. The straight line y+ x cot 2a= (Art. 88).
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17. The greatest range of a rifle-ball on level ground is

1176*3 feet. Find the initial velocity of the ball, and shew

that the greatest range up an incline of 30 will be 784'2 feet

neglecting the resistance of the air.

18. If a body be projected at an angle a to the horizon

with the velocity due to gravity in 1", its direction is inclined

at an angle
- to the horizon at the time tan -

,
and at an

I- 2

, TT a a.

angle
- - at the time cot - .

"2

19. A body is projected from a given point A with a

given velocity and in a given direction. After a lapse of

m seconds another equal body is projected from the same

point so that the line joining the two bodies always passes

through A : shew that the paths of the two bodies and that

of their centre of gravity will be equal parabolas.

20. A perfectly elastic particle -is projected with a given

velocity from a given point in one of two planes equally in-

clined to the horizon and whose line of intersection is hori-

zontal : determine the angle of projection in order that the

particle may after reflexion return to the point of projection,

and be again reflected in the same path.

Shew that each plane must be inclined at an angle to

the horizon.

21. A particle projected with velocity v impinges per-

pendicularly on an inclined plane drawn through the point

of projection at an inclination a, shew that the range on the

2v* sin a



PROJECTILES. CHAP. IV. 363

22. A body is projected from a given point in a liori- 1

zontal direction with a given velocity, and moves upon an

inclined plane passing through the point. If the inclination

of the plane vary, the locus of the directrix of the parabola
which the body describes is a horizontal plane,

23. A body is projected horizontally with a velocity 4j/

from a point whose height above the ground is 16^; find the

direction of motion (1) when it has fallen half-way to the

ground, (2) when half the whole time of falling has elapsed.
l

Result, (i)
= 45. (ii)

= tan~1
,-.

24. A cylinder is made to revolve uniformly about its

axis, which is vertical, while a body descends under the

action of gravity, carrying a pencil which traces a curve on

the surface of the cylinder : if the surface of the cylinder be,

unwrapped, what will be the nature of the curve ?

Result. A parabola with axis vertical.

25. If a ball of elasticity J is let fall through a height h

on a plane whose inclination is 30, shew that it will strike
O 7

the plane again at a distance from the first point where it

strikes the plane.

26. If the initial velocity of a projectile be given, the

horizontal range is the same, whether the angle of projection

be - 4-a. or a. Prove this, and compare the times of
4 4

flight.

27. The velocities at the extremities of any chord of the

parabola described by a body projected obliquely and acted
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on by gravity, when resolved in a direction perpendicular to

the chord, are equal.

28. From the top of a tower two bodies are projected

with the same given velocity at different given angles of

elevation, and they strike the' horizon at the same place ;
find

the height of the tower.

29. Having given the velocity and direction of projec-

tion of a projectile, determine by a geometrical construction

the points where it will strike (i)
the horizontal plane passing

through the point of projection, (ii) and inclined plane through
the same point.

Compare Art. 90.

30. Chords are drawn joining any point of a vertical

circle with its highest and lowest* points ; prove that if a

heavy particle slide down the latter chord, the parabola,
which it will describe after leaving the chord, will be touched

by the former chord, and that the locus of the points of con-

tact will be a circle.

31. If the plane in Art. 89, Dynamics, be a rectangle

of given sides, find the velocity with which the particle must

be projected from one corner so as to leave the plane hori-

zontally at the other corner: and shew that the ratio of the

horizontal range after leaving the plane to that described on

the plane is the sine of the ^ of elevation of the plane.

32. The barrel of a rifle sighted to hit the centre of the

bull's-eye which is at the same height as the muzzle and

distant a yards from it, would be inclined at an elevation a

to the horizon. Prove that if the rifle be wrongly sighted
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so that the elevation is a + 0, being small compared with a,

the target will be hit at a height
-

'~*^ 6 above the centre

of the bull's-eye.

cos

If the range be 960 yds., the time of flight 2", and the

error of elevation l", the height above the centre of the bull's-

eye at which the target will be hit will be nearly th of an

inch.

33. A ball of elasticity e is projected obliquely up an

inclined plane so that the point of impact at the third time

of striking the plane is in the same horizontal line as

the point of projection. Prove that the distances from this

line of the points of first and second impact are in the

ratio 1 : e.

34. If a ball be projected from a point in an inclined

plane in a direction such that the range on the plane is the

greatest, shew that the direction of motion on striking the

plane is perpendicular to the direction of projection.

35. An imperfectly elastic particle falls down an inclined

plane of given length, and at the foot impinges on a hori-

zontal plane ;
shew that the range on this plane will be

greatest when the angle of elevation of the inclined plane is

= tan"
1

V2.

36. A body of elasticity e is projected from a point in a

horizontal plane. If the distance of the point of nih

impact be

equal to four times the sum of the vertical spaces described,

1 -t- 6
- is the tangent of the angle of projection.l -j- (j
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37. If a be the angle of projection of a projectile, T
the time which elapses before the body strikes the ground,

T
prove that at the time - r-r- the angle which the direction

4 sura

of motion makes with the direction of projection is equal to

7T

38. If three heavy particles be projected simultaneously
from the same point in any directions with any velocities,

prove that the plane passing through them will always
remain parallel to itself.

39. A perfectly elastic ball is projected from the middle

point of one of the sides of an equilateral three-cornered room.

It strikes the other two sides and returns to the point of pro-

jection. If a be the length of a side of the room and the

velocity of projection be that due to the height ,
shew that

1 3
the ball must be projected at an angle = - sin"

1 -
.

40. An elastic ball is let fall from a given height above

a smooth inclined plane; shew that the time of making a

given number of hops is the same for all inclinations of the

plane.

41. Heavy particles are projected horizontally with dif-

ferent velocities from the same point ;
shew that the extre-

mities of the latera recta of the parabolas which they generally

describe, lie on a cone, of which the axis is vertical and the

vertical angle 2 tan"
1
2.

42. AEG is a right-angled triangle in a vertical plane

with its hypotenuse AB horizontal
;
a particle projected from
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A passes through C and falls at B : prove that the tangent

of the angle of projection
= 2 cosec 2^1, and that the latus

rectum of the path described is equal to the height of the

triangle.

43. A perfectly elastic particle dropped from a point P
impinges upon an inclined plane at Q. If PN be perpen-

dicular to the plane, shew that the range = 8 . QNt
and

hence find the locus of P in order that the particle may after

one reflexion strike a given point in the plane.

44. A particle A is projected at an angle a to the horizon

with velocity F, and is met by a second particle B which is

let fall from the directrix at the instant of projection of A,

shew that the distance of the line described by B from the

vertical line drawn through the point of projection of A is

P= cot a.

W
45. If ?\,

r
2 ,

r
3
be three distances of a projectile from

the point of projection at which its angular elevations above

the point of projection are respectively ar 2 , 3
shew that

9\ cos
2

cCj
sin

( 2 3) -f rz
cos

2

2
sin (aB ccj

4- r
s
cos

2

3
sin (cq 2)

= 0.

46. If tangents be drawn to the parabolic paths of two

projectiles, having the same focus, from any point in the com-

mon axis, the velocities at the points of contact are equal.

47. A stone is thrown in such a manner that it would

just hit a bird at the top of a tree, and afterwards reach a

height double that of the tree : if at the moment of throwing
the stone, the birl flies away horizontally, prove that the
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stone will notwithstanding hit the bird, if its horizontal

velocity be to that of the bird as V2 + 1 : 2.*******
48. From several points of a plane superficies inclined

to the horizon bodies are projected simultaneously in different

directions, in such a manner that the times of flight along the

superficies are the same. Prove that the locus of the bodies

at any moment is a plane parallel to the superficies.

49. Tangents at points P, Q in the parabolic path of a

particle acted on by gravity, meet in T. If S be the focus,

shew that the velocity due to the height 8T is a mean pro-

portional between the velocities at P and Q.

50. A plane is inclined at an angle of 45 to the horizon,

and from the foot of it a body is projected upwards along the

plane, and reaches the top with th of its original velocity

(v) ;
where will it strike the ground ?

3 v2

Result. At a distance = - from the point of projection.
9

51. A perfectly elastic particle is dropped from a point

on the interior surface of a fixed smooth sphere : shew that

after its second impact on the sphere it will ascend vertically,

and will continually pass and repass along the same vertical

and parabolic paths, if the horizontal distance of its first

vertical path from the centre be 4^3 V2 a, where a = rad.

of sphere.

52. Two inclined planes of the same altitude h and the

same inclination a are placed back to back on a horizontal

plane. A ball is projected from the foot of one plane along

its surface and in a direction making an ^
ft with its hori-
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zontal edge. After flying over the top of the ridge it falls*

at the foot of the other plane : shew that the velocity of pro-

jection is

J 4gJi (8 -f cosec
2

a) . cosec /9.

53. An imperfectly elastic ball is dropped into a hemi-

spherical bowl from a height n times the radius of the bowl
1

above the point of impact, so as to strike the bowl at a point"

30 from its lowest point, and just rebounds over the edge of

the bowl : shew that the elasticity of the ball is = \/3 . n~J
.

54. An imperfectly elastic particle is projected with a

given velocity from a point in a horizontal plane from which

it continually rebounds
;
shew that the sum of the areas of the

parabolic segments it will describe will be a maximum when

the / of projection is 60, and that then it is

_ \/3 v4
=

-8V(l-eT
55. A ball of elasticity e is projected from a point in an

inclined plane, and after once impinging upon the inclined

plane, rebounds to its point of projection ; prove that, a being
the inclination to the horizon of the inclined plane, and /3 that

of the direction of projection to the inclined plane,

cot a . cot /3
= 1 -f e.

56. If a projectile can be shot through three points (a, 5),

(a', &'), (a", b") in the same vertical plane, prove that

aV'-a"b
=

aV-a'b
a"

(a
"
-a)~ a (a

-
a)

'

the point of projection being the origin and the axis of x

horizontal.

57. If v, v'
9
v" be the velocities at three points P, Q, R

of the path of a projectile, where the inclinations to the hori-

P. M. 24
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zon are
ct,

a /?, a 2/3, and if
t, t' be the times of describing

PQ, QR respectively, shew that

, 1
,

1
,

2 cos 13
v t = vt . and - + -r,-\ ^

v v v

58. A body is thrown over a triangle, passing from one

extremity of the horizontal base just over the vertex to the

other extremity of the base
; prove that tan 6 = tan a + tan /3,

where 6 is the angle of projection, and a, /5 are the angles at

the base of the triangle.

59. From every point in the path of a projectile particles

are projected, in the same direction as the projectile at that

point, and with - th of the velocity, shew that the locus of

the foci of the paths described is a parabola.

60. A number of particles are projected in one vertical

plane, from the same point P, so that the foci of their paths

shall be in a given straight line not passing through P, and

making an angle a with a horizontal plane. If v be the

velocity, and < the angle of projection of any one, shew that

v
z
cos (a 2<) is the same for all : and if PS be perpendicular

to the given line, S is the focus of the parabola when the

angle of projection is - .

2

61. If n equal particles be projected from the same point
with the same velocity v, and in directions making the angles

a, 3a, 5a, &c. with the horizon, and in the same plane, prove
that their centre of gravity will describe the path of a body

. , , . , , . v sin no.

projected at an angle no. with a velocity
-

.J wsma

62. From a point P on the ground equidistant between

two vertical planes A and B, an imperfectly elastic ball is
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projected with a velocity
= V(2#A) towards A, and reflected

by it to B
;
find c the altitude of the highest point of B the

ball can reach, and shew,

(i)
That if a be the elevation of the direction of pro-

jection which enables the ball to attain that altitude,

htana=_
c

;

(ii)
That if a

f

,
a" be two elevations such that

tan a! + tan a" = 2 tan a,

two balls projected in those directions towards A will hit the

same point of B,

63. The time of a particle under the action of gravity

describing any arc of its parabolic path bounded by a focal

chord, is equal to the time of falling from rest vertically

through a distance equal to the length of that chord.

64. An elastic ball is projected in a given manner from

a point A in a horizontal plane, and at the moment it is

moving horizontally it impinges directly upon an equal ball

moving in the opposite direction with the same velocity ;

shew that it will return to A after one rebound if its elas-

ticity
= .

65. Two elastic balls are projected towards each other in

the same vertical plane, v being the velocity and a the angle
of projection of each

;
shew that after impinging on each other

they will return to the points of projection if

ga (1 + e)
= ev

2
sin 2a,

e being the coefficient of elasticity and 2a the distance be-

tween the points of projection.

66. Two bodies are projected simultaneously from a point
with velocities v, v at elevations a, a'; shew that the time

242
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"between tlieir passage through the point common to their

path is

2 vv sin (a a')

g
'

v cos a + v cos a!
'

67. A particle is projected from the vertex of a parabolic
tube with velocity due to height h : the axis of the parabola

being vertical and vertex downwards
;
shew that after quit-

ting the tube it will strike the horizontal plane through the

vertex in a point whose greatest distance from the vertex is

= 2 >Jah + W,

where 4a is the latus rectum.

Give a geometrical construction for determining the length
of the tube for this maximum range.

Apply the method employed in Art. 92.

68. A ball whose elasticity is e falls through a vertical

height h, and is then reflected by a plane inclined at an

angle a to the horizon
;
shew that the range on a horizontal

plane passing through the point of incidence is

2A (1 + e) sin 2a (e cos
2
a sin

2

a).

Interpret the meaning of this expression when 6 = 0.

69. Bodies are projected with the same velocity in dif-

ferent directions from the same point A\ the locus of the

vertices of the parabolas described is an ellipse whose axis

minor is the height due to the velocity of projection, and axis

major double the axis minor.

70. Planes are drawn in every direction from the point

A, and bodies are projected from A with given velocity and

at such angles that the ranges on each of these planes shall

be the greatest; shew that the locus of their extremities is -
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a parabola, which touches the parabolic paths of all the

bodies.

71. A ball projected from a point on an imperfectly

elastic horizontal plane strikes a like vertical plane placed at

right angles to its direction at the highest point of its tra-

jectory. After n rebounds on the horizontal plane it returns

to the point of projection, shew that if e be elasticity

(l-e)
2 = 2e

2

(l-e
re

).

72. A plane AB inclined at angle a to the horizon leads

up to a horizontal plane BC: a particle is projected from the

point A directly up AB, with velocity F, traverses the plane

AB, and falls upon the plane BG\ if the times of motion

from A to B and from B to C be equal, shew that

. _ 2 F2
sin a (I + sin

2

a)''~ '

CURVILINEAR MOTION. CHAPTER V.

1. If the length of the seconds pendulum be 39*1393

inches, find the value of g to three places of decimals.

2. A clock loses 5" per diem; how much must its pen-
dulum be shortened in order that the error may be corrected,

the length of the pendulum being 3914 inches nearly ?

Result. "0045 inches nearly. .

3. The force which accelerates a body's motion in a

cycloid whose axis is vertical and vertex downwards

varies as the arc incepted between, the body and the lowest

point.
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4. What is the length of a pendulum which vibrates,

(i) in J a second, (ii)
in J of a second, in the latitude of

London ?

Result. (i) 97846 inches, (ii) 2'4462 inches nearly.

5. In a series of experiments made at the Harton coalpit,

a pendulum which beat seconds at the surface, gained 2j
beats in a day at a depth of 1260 feet: if g, g' be the force

of gravity at the surface and at the depth mentioned, shew

that

g 19200
'

6. How much must a seconds pendulum be shortened in

order that it may oscillate seconds on the top of a mountain

3000 feet high assuming the radius of the Earth to be 4000

miles, and the force of gravity to vary as (distance)"
2 from the

centre of the Earth ?

7. A railway carriage weighing 12 tons is moving along

a circle of radius 720 yards at the rate of 32 miles an hour ;

find the horizontal pressure on the rails, or what is commonly
called the centrifugalforce.

Result. '39 tons, nearly.

8. A railway train is going smoothly along a curve of

500 yards radius at the rate of 30 miles an hour
;
find at what

angle a plumb-line hanging in one of the carriages will be

inclined to the vertical.

Result. 2. 14' nearly.

9. The breadth between the rails in a railway is &ft.
S'in. Shew that on a curve of 500 yards radius, the outer

rail ought to be raised about 2j inches for trains travelling
30 miles an hour.
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10. A pendulum is found to make 640 vibrations at the

equator in the same time as it makes 641 at Greenwich; if

a string hanging vertically can just sustain 80 pounds at

Greenwich, how many pounds can the same string sustain

at the equator ?

Result. About 80- Ibs.

11. The time of oscillation of a particle in a small arc of

a circle is half the time of oscillation in the cycloid which

could be generated by the circle.

12. A seconds pendulum was too long on a given day by
a small quantity a, it was then over-corrected so as to be too

short by a during the next day; shew that the number of

minutes gained in the two days was 1080y2 nearly, if L be

the length of the seconds pendulum.

13. The time of descent to the lowest point in a small

circular arc is to the time of descent down its chord = TT : 4.

14. A perfectly elastic ball is projected obliquely, and

on reaching its highest point strikes directly another equal

ball hanging by a string from the directrix of its path ;
shew

that the ball struck will just reach the directrix.

15. Two particles A, B of elasticity e are let fall in

opposite directions, at the same instant, from the highest point

of a smooth circular tube of very small bore, placed in a

vertical position ;
find the ratio of their masses in order that

the heavier may remain at rest after impact, and determine

the height to which the other will rise.

Result. A = (1 + 2e) B, and B will rise to a height= 4e2 . diameter, after the

impact.
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16. The attractive force of a mountain horizontally isf,

and the force of gravity is >g ;
shew that the time of vibra-

4 /
-

a

tion of a pendulum will be = TT A/ -5 : a being the length
3
~

./

of the pendulum.

17. A pendulum which would oscillate seconds at the

equator, would if carried to the pole, gain 5' a day ;
shew that

gravity -at the equator : gravity at the pole
= 144 : 145.

18. In motion on a cycloid as in Art. 99, prove that

the vertical velocity of the particle is greatest when it has

completed half its vertical descent.

19. When a particle falls from the highest to the lowest

point of a cycloid it describes half the path in two thirds of

the time.

20. A railway train is moving smoothly along a curve at

the rate of sixty miles an hour, and in one of the carriages

a pendulum, which would ordinarily oscillate seconds, is

observed to oscillate 121 times in two minutes. Shew that

the radius of the curve is very nearly two furlongs.

Suppose a stone to be dropped from the window of this

carriage, find approximately how far from the rail it will fall.

21. A particle is suspended by two equal strings from two

fixed points in the same horizontal line, the distance between

them being equal to the length of either string ;
if the particle

be raised to one of the fixed points and then dropped, find

where it will first come to rest.

Result. When the second string which becomes stretched makes an angle
O /O

^=sin~1 with the horizon.
o
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22. A groove is cut along the surface of a right cone of

height h, so as always to intersect the generating line at a

given angle /3 ;
shew that the time in which a heavy particle

will arrive at the base is = ./ J ** I sec a sec /3 : where
V tJ )

2a is the vertical angle of the cone and \ the vertical dis-

tance of the particle from the vertex at the beginning of the

motion.

23. If a heavy particle slide freely from the highest

point of a cycloid, of which the axis is vertical and vertex

downwards, the angular velocity of the generating circle

passing through the point will be constant, and inversely

proportional to the square root of its radius.

24 A number of cycloids are drawn through a given

point A and having their vertices situated on a given curve

and their axes vertical. Prove that if the given curve be a

cycloid whose vertex is at A and whose axis is vertical, the

time of descent from A down all the cycloids to the given

curve will be the same: and that whatever be the form of

the given curve the cycloid down which a particle will slide

in the greatest or least time will have the tangent at A paral-

lel to the tangent drawn to the given curve at the point where

the cycloid meets it.

25. Two unequal weights P, Q are connected by a string

of given length (c) which passes through a small ring; find

how many times in a second the lighter one Q must revolve

as a conicalpendulum ,
in order that the heavier may be at rest

at a given distance a from the ring.
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26. Gravity cc
-^ ^ mass of the Earth = 49 . mass

of the Moon, and radius of the Earth = 4 radius of the Moon ;

prove that a seconds pendulum carried to the moon would

oscillate in - seconds.
4

27. A heavy particle being projected horizontally from

the lowest point of a smooth spherical cavity of radius r, shew

that it will never leave the surface of the cavity if the velocity

of projection be either < ^/2gr or not < \/5gr.

28. A bead running upon a fine thread, the extremities of

which are fixed, describes an ellipse in a plane passing through
the extremities, under the action of no external force : prove
that the tension of the thread for any given position of the

bead is inversely proportional to the square of the conjugate
diameter.

29. If a particle start from the extremity of the base of

a cycloid (as in Art. 102), the velocity at any point will be

proportional to the radius of curvature at the point.

30. Two beads of equal weight are sliding down a per-

fectly smooth circular wire in a vertical plane, and are at the

same instant at the extremities of a vertical chord subtending
a right angle at the centre

;
find the velocity and direction

of motion of their centre of gravity at that instant, each

bead having been started from the highest point with an

indefinitely small velocity.

31. A particle is projected from the vertex of a parabolic

arc, whose axis is horizontal and plane vertical, up the con-
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cave side of the arc with a velocity v, and describes an angle

20 about the focus before leaving the curve
;
shew that

tan 6,
C9

2c being the length of the latus rectum and the length of

the latus rectum of the parabola subsequently described is

= 2c tan
3
#.

32. A smooth parabola is placed with its axis horizontal

and plane vertical, and a particle is projected from the vertex

so as to move on the concave side of the curve
;
shew that

the vertical space described before leaving the curve is two-

thirds of the greatest height attained.

33. A cycloidal arc is placed with its plane vertical, its

base horizontal and vertex upwards, and a heavy particle is

projected from the cusp up the curve with a velocity due

to a height li\ shew that the latus rectum of the parabola
h2

described after leaving the curve will be
,
a being the

length of the axis of the cycloid.

34. A body suspended from a fixed point by a string of

length a is projected horizontally from the lowest point with

Igo,

velocity
=

(V 3 + 1) \J ^~ ;
shew that it will pass through the

point of suspension, and that its direction of motion at that

point will make an z cos""
1

^ with the horizon.



380 MISCELLANEOUS PROBLEMS

MISCELLANEOUS PEOBLEMS IN DYNAMICS.

1. If E, E' be the ranges of the two projectiles, which

being thrown from the same place, attain the same vertical

height, and pass through a common point, then will

where H is the greatest height attained, and ^, K are co-ordi-

nates of the point common to the two paths.

2. From a number of points, bodies subject to gravity

are projected, all directed towards one point with velocities

proportional to the distances of the points of projection from

that point. All hit another point. Shew that the points of

projection lie in a conic section.

3. Two bevilled wheels roll together ; having given the

angular velocity co of the first wheel and the inclination (a) of

the axes of the cones, find their vertical angles that the second

wheel may revolve with a given angular velocity &>'.

Result. If 20, ~2<f> be vertical angles of the first and second wheels, we
must have

a, and w sin 6= a/ sin
<f>.

4. The highest point of the wheel of a carriage, rolling
on a horizontal road, moves twice as fast as each of two

points in the rim, whose distance from the ground is half the

radius of the wheel.

5. A ball projected with a velocity v would penetrate
into a block of wood m feet

; what velocity would it lose in
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passing through a board n feet thick, the resistance being

uniform ?

6. A ball is thrown vertically down on a horizontal

pavement, and just rebounds to its original height. Shew

that the velocity of projection is to that due to the original

height above the pavement as tan (cos~
l

e) : 1 e being the

elasticity at impact.

7. A particle is projected up a rough inclined plane ;

shew that if ^ = time of ascending, 2
= time of descending, we

shall have

ty sin fa -

if the coefficient of friction = tan
<f>.

8. Two balls are moving in the same straight line, one

of them only being acted on by a force
;

if the force be con-

stant and tend towards the other ball, shew that the times

which elapse between consecutive impacts decrease in geome-
trical progression.

9. A point moves in such a manner that the sum of the

squares of its distances from any number of given points in

the same plane with it is constant. Prove that if perpendicu-

lars from the points be at any time let fall on its direction of

motion, the point itself will be the centre of gravity of the

feet of these perpendiculars.

10. The curve y*
-
y . f (x) + or = is such that the

times down the chords from the origin to any two points in

it vertically below each other are the same; the axis of x

being horizontal and that ofy vertical.
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11. Shew that the time of quickest descent from any

point of an ellipse to the horizontal axis major down the

/2le
normal is = A/ ,

I being the latus rectum, e the eccen-
o

tricity.

12. Shew that the circumferences of two circles contain

all points from which the time of quickest descent to a given
vertical circle is the same.

13. A ball whose elasticity is J projected from the floor

of a room 12 feet high, strikes the ceiling and floor and just

rises to the ceiling again, find the velocity of projection.

Result. JaiZ.g.

14. A perfectly elastic ball is thrown into a smooth cylin-

drical well from a point in the circumference of the circular

mouth. Shew that if the ball be reflected any number of

times from the surface of the cylinder, the intervals between

the reflexions will be equal.

In the last question, if the ball be projected horizontally,

making an angle with the tangent at the point of projection,

it will reach the surface of the water at the instant of the

wth
reflexion, if the space due to the velocity of projection be

(radius)
2

depth

/ . rV
. in sin .

V n)

15. From a point T two tangents are drawn to touch a

circle in the points P, Q: given that the velocity acquired

by a body sliding down the chord PQ is equal to l-ntb of
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the velocity down the vertical diameter of the circle, prove

that the locus of T is the curve whose equation is

o

the centre of the circle being the pole, and (a) the radius.

16. One end of a string is attached to an angular point
of a fixed regular polygon of n sides, its length being equal to

the perimeter c; a particle, attached to the other end of the

string which is stretched in direction of a side, is projected in

the plane of the polygon perpendicularly to the string with a

given velocity F. Determine after what time the string will

coincide with the perimeter of the polygon (the action of gra-

vity being neglected).

Deduce the time when, the perimeter remaining the same,
the number of the sides is infinitely increased.

n+l ire
Result. . -^.n V

17. Explain the object and advantages of rifling the

ban el of a gun.

18. Find the amount of work done in drawing up a

Venetian blind. How must the same problem be solved for

a curtain ?

19. A ship is sailing with a uniform velocity in a southerly

direction, and is fired upon at the instant it is due east of a

battery; given the velocity of a cannon-ball, determine at

what elevation and towards what point of the compass it

must be fired that it may strike the ship.

20. Two perfectly elastic balls are dropped from two

points not in the same vertical line, and strike against a

perfectly elastic horizontal plane; shew that their centre of
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gravity will never reascend to its original height, unless the

initial heights of the balls be in the ratio of two square

numbers.

21. A smooth tube of uniform bore and radius a, is bent

into the form of a circular arc
(
= 2?r 2a) greater than a

semicircle, and placed in a vertical plane with its open ends

upwards, and in the same horizontal line. Find the velocity

u with which a ball that fits the tube must be projected along
the interior from the lowest point, in order that it may pass
out at one end and re-enter at the other.

Result. u?=ga (2 + 2 cos a + sec a).

22. A body P lying on a table is connected with another

Q by a string passing over a pulley directly over P; if Q fall

through a given height before the string becomes tight, deter-

mine the impulsive tension of the string when that takes

place, and the change of velocity of Q.

Compare Art. 75, 76.

23. Two particles start simultaneously from the same

point and move along two straight lines, the one with uni-

form velocity, the other from rest with uniform acceleration.

Prove that the line joining the particles at any time is always
a tangent to a fixed parabola.

24 If be the centre of curvature corresponding to

any point P of the path of a projectile prove that the ver-

tical velocity of C will be proportional to the time elapsed
since P was at the highest point of its path.

25. Several bodies are projected from the same point A
in different directions with the same velocity; shew that the

locus of them all at any time is a sphere, and find the radius

of the sphere arid the position of its centre at any time.



IN DYNAMICS. 385

26. A given weight descending vertically draws another

up a smooth inclined plane by a string passing over the vertex

of the plane. Find the path of their centre of gravity when
the bodies move from rest.

Result. A straight line.

27. Tangents are drawn to a vertical circle, find the

locus of points in them from which particles would descend

in straight lines to the centre in the shortest time.

28. From what height must a perfectly elastic ball

be let fall into a fixed hemispherical bowl, in order that it

may rebound horizontally at the first impact and strike the

lowest point of the bowl at the second ?

29. From a given height a perfectly elastic particle is let

fall on a perfectly hard inclined plane, so as to strike it at

a given fixed point: prove that whatever be the inclination

of the plane to the horizon, the vertex of the parabola which

the particle describes after impact will lie in a certain

ellipse.

30. A perfectly elastic ball is projected from the foot of

one of the walls of a room, against the opposite wall, in a

vertical plane perpendicular to both the walls; shew that if

it be required to hit the ceiling after the rebound, the ball

must strike the wall at a point at least fths of the height of

the room from the floor.

31. A rigid wire without appreciable mass is formed

into an arc of an equiangular spiral, and carries a small heavy

particle fixed in its pole. If the convexity of the wire be

placed in contact with a perfectly rough horizontal plane,

p. M. 25
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prove that the point of contact with the plane will move with
uniform acceleration and find this acceleration.

32. AA, BB' are the axes of an ellipse. A smooth
tube is bent into the shape of the portion AB' AB, the ends

A, B being open, and the tube is held with B on a given
horizontal plane. A particle is dropped from a certain height
into the tube at A so that after emerging at B it again enters

at A. The tube is then held with A on the horizontal plane
and the particle is dropped from the same point so as to fall

into the tube at B, and it is found that after emerging at A,
it again enters at B. Prove that the eccentricity of the ellipse

is =

33. If two parabolas be placed with their axes vertical,

vertices downwards and foci coincident, prove that there are

three chords down which the time of descent of a particle

under the action of gravity from one curve to the other is

a minimum
;

and that one of these is the principal diameter

and the other two make an angle of 60 with it on either side.

34. A ball thrown from any point in one of the walls of

a rectangular room after striking the three others returns to

the point of projection before it falls to the ground. Shew
that the space due to the velocity of projection is greater than

the diagonal of the floor.

35. There are three equal and perfectly elastic balls

A, B, C. A is let fall from a given point, and at a moment

when it reaches a given horizontal plane, B is let fall from the

same point, and at the moment when A in returning meets B,
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C is let fall. Shew that B will meet C for the second time

where it first met A.

36. Two planes having a common altitude h are inclined

*7T

at angles a and a to the horizon
;
two equal, indefinitely

small and perfectly elastic balls are projected along them with

equal velocities V from their feet, and so that they may im-

pinge at the top ;
shew that if the ball which ascends along

the former plane falls at its foot after impact, then

F2

-r=(l+ cot a) + (1 + cot a)'
1
.

37. There are generally two directions in which a pro-

jectile may be projected with given velocity from a point A,
so as to pass through another point B; and one of these di-

rections is inclined to the vertical at the same angle that the

other is inclined to the line AB. Hence shew that the locus

of points, for which a given sight must be used in firing with

a given charge of powder, is the surface generated by the

revolution, about the vertical, of the path of the bullet obtained

by aiming at the zenith with the given sight, and the given

charge of powder.
See Solutions of Senate-House Problems for 1854, Walton and Mackenzie,

p. 33.

38. A perfectly elastic particle projected against one side

of a plane polygon is reflected at the other sides in succes-

sion, the polygon being such that the angle of incidence

on each side is the same; find the impulse on the particle

at each impact, and deduce the expression for the normal

pressure (
J
on a particle moving freely on a curve under the

action ot no other impressed force.
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39. A body falls from rest under the action of an

accelerating force which remains constant during certain

successive equal intervals of time, but is changed at the

expiration of each such interval so that the space described

2
w+! _ 3

in the nih interval is always ^ times the space described

in the first of them. If the velocity acquired at the end of

the first interval be v, shew that after a long lapse of time

the velocity approaches a uniform velocity 2v.

40. Three smooth equal perfectly elastic billiard balls

A, Bt C are placed with their centres in the angular points

of an equilateral triangle ; shew that it will be impossible,

with another equal ball, to cannon off A on to B, A itself

striking (7, unless the diameter of each ball be equal to half

a side of the triangle.

41. A particle of given elasticity e is projected down a

smooth vertical cylinder of indefinite length, but terminated

by a horizontal plane at its lower end
;
the particle initially

remaining in contact with the cylinder. If it be projected at

a height h from the bottom with velocity V at an z a with

the vertical, then after the time

F2
cos

2 a

it will be moving uniformly with velocity V. sin a.

42. Two perfectly elastic balls A and B impinge upon
each other. First A impinges upon B at rest and goes off in

a direction making an / 6 with the line joining their centres :

then B impinges upon A at rest and at the same angle of

incidence, and goes off at an / &. Prove that 6 + 6' = 180.
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Prove also that if the balls be imperfectly elastic, and the

angles of incidence in the two cases be a and a', then

cot cot 6'
. I 1 _ a

cot a cot a'

43. Two equal balls, one perfectly elastic, the other

inelastic, are dismissed by the same horizontal blow from the

top of a flight of uniform steps, so that each falls just on the

margin of the first step : shew that the number of steps

cleared by the elastic ball in its successive flights is the

series of successive odd numbers, and that the two balls

reach the bottom of the steps simultaneously.

44. From a point in the lower one of two parallel

horizontal planes a ball of elasticity e is projected at an

angle a, is reflected by the upper plane, and again reflected

by the lower one; the distance between the planes being

0th
that due to the velocity V of projection If v be the

velocity of the ball in rebounding for the mih time from the

lower plane, (/>2
1 _ />

4*\

cos
2a + e

4m
sin

2
a + -- - 1.

n lej
45. Two nations estimate the force of gravity by num-

bers in the ratio 300 : 1, but the velocity of the Earth by
numbers in the ratio of 5 : 1. Find the ratios of their units

o ftime and space.

46. Is a railway train heavier when going East or going
West? Shew that for a train weighing 180 tons, travelling

60 miles an hour in latitude 60, the difference is about the

weight of two men.

47. If the attraction of gravitation between two unit-

masses at the unit-distance from one another be taken as the
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unit-force, express the unit-mass in Ibs. when the units of

space and time are a foot and a second respectively: gravity

at the Earth's surface being regarded as due solely to the

attraction of the Earth considered as a sphere of radius

21000000 and of uniform density equal to 5f of the density

of water. Find (approximately) the attraction of two pound

weights, a foot apart in terms of the weight of a Ib.

48. Shew that in any tetrahedron the centres of gravity

of the surface and of the volume and the centre of the in-

scribed sphere lie in a straight line in the order named, and

that the distance between the first and second is one-fourth of

that between the first and third.

49. An imperfectly elastic ball is projected along a

smooth horizontal table in the direction AO, it strikes a

smooth vertical plane at 0, and rebounds in the direction

OS-, it is then projected along SO and rebounds in the

direction OG. If the angle AOG be the greatest possible,

prove that the acute angles of inclination of OA, OB, OC to

the vertical plane are in arithmetical progression.

50. Two equal molecules are connected together by a

fine inelastic thread, one of them is placed on a smooth table,

the other just over the edge, the thread being at full stretch

at right angles to the edge : find the velocity of the centre of

gravity of the molecules the instant after the former has left

the table, and prove that the whole interval of time from the

commencement of the motion to the instant when the thread

first becomes horizontal, varies as the square root of the

length of the thread.

51. A string hangs over a given pully: a weight of

2 Ibs. hangs at one end and a pully at the other : over the
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pully hangs a string carrying a weight of 1 Ib. at each end :

when the whole is in equilibrium any force is applied to one

of the smaller weights ; shew, that when it has pulled it

down 3 inches the other 1 Ib. weight and the 2 Ib. weight

have each risen 1 inch
;
shew also that if the motion of the

weight to which the force was applied be stopped in any

gradual manner, the whole will be brought to rest and the

distances traversed by the weight will be as 3 : 1 : 1.

52. A shot of mass m is fired from a gun of mass M
with a velocity u relative to the gun : shew that the actual

velocity of the shot is r, and that of the gun
- v> .

J m -t-M m +M

53. A company of length a whose thickness may be

neglected, wheels uniformly to the left, prove that the accele-

ration of a sergeant who moves from left to right in such a

manner as to pass successive files in successive intervals of

time and to arrive at the right just as the wheel is completed

v
z

_ Q
is - V0a+4 in a direction inclined at an z cot'

1 - to the com-
a .

*

pany ;
v being the velocity of the right file, and 6 the inclina-

tion of the company to its initial position.

54. If a be the L of projection in order that a ball pro-

jected with a velocity V from a platform at rest may strike

an object in the same horizontal plane, shew that when the

platform is moving towards the object with a velocity u

(small compared with V) the angle of projection must be

v i , -i
u sin a 180 , . , , ,, , .

. ,

diminished by T? nearly, provided the object be
* V cos 2a TT

well within range for the given velocity.
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55. Two equal scale-pans, each of mass M are connected

by a string which passes over a smooth peg and are at rest.

A particle of mass m is dropped on one of them from a height
uz

-j the coefficient of elasticity between the particle and
j

scale-pan being e : find the velocity of the scale-pan after the

first impact, and shew that if the length of the string exceed

2eu(l+e) mu

~~g
' m + 2M '

a second impact will take place.

Also prove that if the string be long enough the velocity

of the scale-pans after the nth

impact will be

_ , x 1 e
n mu

~
e)''

and that the particles will come to relative rest after a time

2eu

THE END.
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