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1. Trigonometry and Right Angles

Basic Functions

Learning objectives

A student will be able to:

• Determine if a relation is a function.

• State the domain and range of a function.

• Categorize a function according to a function family.

• Identify key characteristics of functions, including the concept of a periodic function.

Introduction

This chapter will introduce you to a particular family of functions, the trigonometric functions, which are the
basis for this book. In this first lesson, we will review the basic characteristics of functions in general: what
a function is, what the graph of a function looks like, and the characteristics of several families of functions.
While this lesson will not define trigonometric functions, we will consider one of their basic characteristics,
and some important applications of these functions.

The basics of functions

Consider two situations shown in the boxes below:

Situation 1: Your car can travel 30 miles on one gallon of gasoline at 55mph. For every
mile per hour faster you drive, the car travels half a mile less per gallon of gasoline.

Situation 2: You collect data from several students in your class on their ages and
their heights in inches:

1718181718Age
66"68"67"64"65"Height

In the first situation, let the variable x represent the speed of your car, and let y represent the number of
miles it can travel using one gallon of gasoline. If you travel at x miles per hour, you will go y = 30 - .5(x -
55) miles on one gallon of gasoline. For example, if you travel at 60 mph, you will travel 30 - .5(60 - 55) =
27.5 miles on one gallon of gasoline. Notice that you can use your speed to “predict” how far you can travel
with one gallon of gasoline.

Now consider the second situation. Can you use the data to “predict” height, given the age of a student?

This is not the case in the second situation. For example, if a student is 18 years old, there are several
heights that the student could be.

Both situations are relations. A relation is simply a relationship between two sets of numbers or data. For
example, in the second situation, we created a relationship between students’ ages and heights, just by
writing each student’s information as an ordered pair. In the first situation, there is a relationship between
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the car’s speed and how efficiently it can use one gallon of gasoline. The first example is different from the
second because it represents a function: every x is paired with only one y. Some relations are mathematically
important. For example, circles and ellipses are graphical representations of important relations between x
and y coordinates, but there is not a unique y-coordinate for each x-coordinate. Because of the unique y for
each x, functions play an important role in mathematics and the science.

We can represent functions in many ways. Some of the most common ways to represent functions include:
sets of ordered pairs, equations, and graphs. The figure below shows a function depicted in each of these
representations:

ExampleRepresentation
(1,3),(2,6),(3,9),(4,12) (a subset of the ordered pairs for this function)Set of ordered pairs
y = 3xEquation

Graph

In contrast, the relation shown in the figure below is not a function:

ExampleRepresentation
(4,2),(4,-2),(9,3),(9,-3) (A subset of the ordered pairs for this relation)Set of ordered pairs

x = y 2Equation

Graph

To verify that this relation is not a function, we must show that at least one x value is paired with more than
one y value. If you look at the first representation, the set of ordered pairs, you can see that 4 is paired with
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2 and with -2. Similarly, 9 is paired with 3 and with -3. Therefore the relation is not a function. If we look at
the graph above, we can see that, except for x = 0, the x values of the relation are each paired with two y
values. Therefore the above relation is not a function.

One way to quickly determine whether or not a relation is a function is perform the vertical line test, which
means that you draw a vertical line through the graph. For example, if we draw the line x = 4 through the
graph of x = y 2, the line will intersect the graph twice. This means the relation is not a function.

Example 1: Determine if the relation is a function or not

a. (2,4),(3,9),(5,11),(5,12)

b.

Solution:

a. (2,4),(3,9),(5,11),(5,12)

This relation is not a function because 5 is paired with 11 and with 12. If you plotted the pints, the line x = 5
would touch 2 points in the relation.

b. This relation is a function because every x is paired with only one y.

Once you are able to determine if a relation is a function, you should then be able to state the set of x values
and the set of y values for which a function is defined.

The domain of a function is defined as the set of all x values for which the function is defined. For example,
the domain of the function y = 3x is the set of all real numbers, often written as . This means that x can
be any real number. Other functions have restricted domains. For example, the domain of the function

is the set of all real numbers greater than or equal to zero. The domain of this function is restricted
in this way because the square root of a negative number is not a real number. Therefore the domain is re-
stricted to non-negative values of x so that the function values will be defined.

It is often easy to determine the domain of a function by (1) considering what restrictions there might be and
(2) looking at a graph.
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Example 2: State the domain of each function:

c. (2,4),(3,9),(5,11)

b.
a. y = x 2

Solution:

a. y = x 2

The domain of this function is the set of all real numbers. There are no restrictions.

b.

The domain of this function is the set of all real numbers, except . The domain is restricted this way
because a fraction with denominator zero is undefined.

c. (2,4),(3,9),(5,11)

The domain of this function is the set of x values {2,3,5}

The variable x is often referred to as the independent variable, while the variable y is referred to as the
dependent variable. We talk about x and y this way because the y values of a function depend on what the
x values are. That is why we also say that “y is a function of x.” For example, the value of y in the function
y = 3x depends on what x value we are considering. If x = 4, we can easily determine that y = 3(4) = 12.
Returning to the situation in the introduction, we can say that the amount of money you take in depends on
the number of candy bars you have sold.

When we are working with a function in the form of an equation, there is a special notation we can use to
emphasize the fact that y is a function of x. For example, the equation y = 3x can also be written as f(x) =
3x. It is important to remember that f(x) represents the y values, or the function values, and that the letter f
is not a variable. That is, f(x) does not mean that we are multiplying a number f by another number x. I like
to think of a function as a machine that takes in a number, x, and produces another number. In the expression
f(x), f is the machine and the parenthesis ( ) are the place where the input, x, is entered into the machine.
f(x) is the output that the machine produces with the input x. For example, consider that your machine adds
5 to an input. Then f(3) = 8, or more generally, f(x) = x + 5.

Now that we have considered the domain of a function, we will turn to the range of a function, which is the
set of all y values for which a function is defined. Just as we did with domain, we can examine a function
and determine its range. Again, it is often helpful to think about what restrictions there might be, and what
the graph of the function looks like. Consider for example the function y = x 2. The domain of this function
is all real numbers, but what about the range?

The range of the function is the set of all real numbers greater than or equal to zero. This is the case because
every y value is the square of an x value. If we square positive and negative numbers, the result will always
be positive. If x = 0, then y = 0. We can also see the range if we look at a graph of y = x 2:
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Some functions have sudden jumps. Consider the “rounding” function that takes a number and rounds it to
the nearest whole number (rounding up if the number is exactly between two whole numbers). So some
values for this function are (2, 2), (1.4, 1), (3.9, 4), (5.5, 6), and (-5.5,-5). The domain of this function is all
real numbers, but the range of the function is the integers.

Another function that jumps comes from the way taxis often charge. Suppose a taxi costs $5.00 for the first
2 miles but then $1 for each additional mile or fraction of a mile. Consider the function that has the distance
traveled as the input and the cost of the taxi ride as the output. So some values for this function are (1, 5),
(1.9, 5), (2.1, 6), (10, 13). The domain of this function is the non-negative real numbers (since you can’t
travel a negative distance in a taxi cab). The range of this function is all positive integers greater than or
equal to 5: {5, 6, 7, 8, …}.

Example 3: State the domain and range of the function

Solution: The domain and range of the function

For this function, we can choose any x value, except . Therefore the domain of the function is the

set of all real numbers, except .

The range is also restricted to the non-zero real numbers, but for a different reason. Because the numerator
of the fraction is 2, the numerator can never equal zero, so the fraction can never equal zero.

Now that we have defined what it means for a relation to be a function, and we have defined domain and
range of a function, we can look at some specific examples of functions and their graphs.

Families of functions

The examples we have seen so far have included several different types of functions. From your previous
experience working with equations and graphs, you may have already made connections between the forms
of the equations of functions, and what the graphs look like. Here we will examine several “families” of
functions. A family of functions is a set of functions whose equations have a similar form. The “parent” of
the family is the equation in the family with the simplest form. For example, y = x 2 is a parent to other func-
tions, such as y = 2x 2 - 5x + 3. The table below summarizes the key aspects of several families of functions.

5



ExampleKey aspectsParent(s)Family
The graph of a linear
function is a straight
line, which is often
identified in terms of
its slope and its y-in-
tercept.

The slope of the line
is the coefficient ½,
and the y-intercept is
the constant 1.

y = xLinear

These functions have
a highest exponent of
2. The graph is a
parabola, which has
a vertex that is either
a global maximum or
minimum of the
graph.

The vertex is the
point (1,0). The graph
is symmetric across
the line x = 1.

y = x 2Quadratic

These functions have
a highest exponent of
3. The ends of the
graph have opposite
behavior. Cubic
graphs either have a
local maximum and
minimum, like the one
in the graph to the
right, or no local maxi-
mums or minimums,
like y = x 3

y = x 3Cubic
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Exponential functions
have a variable as an
exponent. The graph
has a horizontal
asymptote.

As x approaches
, the function

values approach the
x-axis (y=0).

y = 2 x , y = 3 x , etc
Exponential

These are functions
that contain fractions
with polynomials in
the numerator and
denominator. The
graphs have a hori-
zontal and a vertical
asymptote.

As x approaches ±
, the y values ap-

proach 0 (the x-axis).

As x approaches 1,
the y values approach
±

, etc

Rational

All of these functions can be used to represent real situations. For example, the linear function y = 3x was
used above to represent how much money you would make selling candy bars for $3.00 each. This type of
situation is known as direct variation.We say that the amount of money you make varies directly with the
number of candy bars you sell. Direct variation between two variables will always be modeled with a linear
function of the form y = mx. The slope of the line, m, is the constant of variation. Notice that the y-intercept
of the line is 0; that is, the line contains the point (0,0). This makes sense in terms of the candy selling situ-
ation: if you sell 0 candy bars, you make 0 dollars.

Other situations can be modeled with a different kind of linear function. Consider the following situation: a
restaurant is having a special: a large cheese pizza costs $8.00, and each topping costs $2.00. The cost of
a pizza can be modeled with the function c(x) = 2x + 8, where x is the number of toppings on the pizza. The
slope of the line is 2, as each topping adds $2 to the price. The y-intercept is 8: if you do not choose any
additional toppings, the pizza costs $8.00.

Quadratic, cubic, and other polynomial functions can be used to model many types of situations Another
important family of functions is the rational functions, or quotients of polynomials, such as:
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For example, a rational function is used to model inverse variation between two variables. Inverse variation

means that the product of two variables is constant: xy = k. If we solve this equation for y,we have
, a rational function. The following example shows inverse variation in a real situation:

Example 4: Some days you drive to work, and other days you ride your bike. Yesterday you drove at an
average rate of 40 miles per hour, and it took 15 minutes. Today you rode your bike a rate of 20 miles per
hour, and it took half an hour.

Write an equation that shows the relationship between your speed and the time it takes to get to work.

Solution: , where x is your speed in miles per hour and y is the time it takes to get to work in hours.

First, note that the distance between home and work is 10 miles:

We know that in general:

Therefore if you drive or ride at a rate of x miles per hour, it will take you y hours to get to work: .

In general, functions can be used to model real phenomena in many contexts, including different areas of
science, business, economics, and more. The type of function that can be used to model a specific situation
depends on the key aspects of a function that will match key aspects of the situation. One aspect of many
situations is not seen in the function types we have seen so far, but will be seen in the trigonometric functions
you will learn about in this chapter. Consider for example, the table below, which shows the average monthly
high and low temperatures in the city of Boston, MA, from 1971 to 2000. (Source: rssweather.com)

HighLowMonth

36.5oF22.1oFJan

38.7oF24.2oFFeb

46.3oF31.5oFMar

56.1oF40.5oFApr
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66.7oF50.2oFMay

76.6oF59.4oFJun

82.2oF65.5oFJul

80.1oF64.5oFAug

72.5oF56.8oFSept

61.8oF46.4oFOct

51.8oF37.9oFNov

41.7oF27.8oFDec

The graph below shows the average low temperatures.

Notice that the graph includes a full year of data, and then ends with December, the 12thmonth. It is possible
that the curve suggested by this graph can be approximated by a function in one of the families of functions
we’ve discussed. Not all natural phenomena can be modeled with mathematical functions, but many can.

Suppose this data was representative of Boston weather in general. We could make a function whose input
is the time in months from the present and whose output is the average temperature expected. For example
f(1) = 22.1, f(5) = 50.2. The function will repeat after one year. What does 13 represent? What is the temper-
ature expected to be based on this data?

Because the months cycle each year, 13 represents January of the next year, and in general, we can predict
the weather in January given our knowledge of the usual climate in a location. For example, January is the
coldest month of the year in the city of Boston. For the years shown in the table, the average low temperature
was about 22 degrees. We can therefore predict that the average low temperature in January in Boston will
be about 22 degrees. We could use such a function to compare current weather to past weather and test
for climate changes over time.

Because the months of the year and the weather patterns are cyclical in nature, we need to model this situ-
ation with a function that is also cyclical in nature. Such functions are referred to as periodic. A function is
periodic if there exists some value p such that f(x + p) = f(x) for all x in the domain of the function. The
trigonometric functions you will learn about in this chapter are one type of periodic function, and we can use
certain trigonometric functions to model the weather data shown above. We will return to this topic at the
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end of this lesson, but now we will look at the graphs of functions.

Graphing functions and technological tools

While there are techniques you can use to efficiently graph many functions by hand, using a graphing cal-
culator allows you to quickly graph any function, and to identify key aspects of the function. The following
two examples will show you how to use a TI graphing calculator to explore a function.

Example 5: Graph the function y = x 3 - 3x 2 + 1

a. Evaluate the function for x = 0, x = 2, and x = -2.

b. Describe the end behavior of the function

c. Approximate all x-intercepts

d. Approximate any local maxima and minima

Solution:

To graph this function, press , and clear any equations already entered. In Y1, enter the equation. If you
have never entered an equation before, here are some tips:

The x button is right next to the green button (on the TI-83 model)

To raise x to the 3rd power, press .

To raise x to the second power, press the button, which is in the left column.

Be careful with negatives: the blue “-” button on the right side is for subtraction. The button on the bottom
that says “(-)” is for negative numbers.

Once you have entered the equation, press . This will take you to the “standard” window: you can
see both x and y from -10 to 10. (Note that if you scroll down to option 6, you have to press enter. However,
if you just enter the number 6, you will be taken to the graph. )
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a. To evaluate the function, you can “trace” on the graph. Press the button. You should see the
equation at the top of the screen, and the cursor should be on the y-intercept, (0, 1). At the bottom of the
screen you should see x = 0 and y = 1.This tells us that for x = 0, the function value is 1.

Now that you are in tracing mode, you can enter any x value, and the calculator will tell you the y value. For
example, if you press , you will see the cursor move to the point (2, -3) and at the bottom of the
screen, you will see x = 2 and y = -3. If you press - , you will see x = -2 and y = -19 at the bottom
of the screen. Notice that you cannot see the point on the graph. To see that point, we need to change the
window. Press and scroll down to Ymin. Change the -10 to -25. Then press . Now press

- . You should see the point (-2, -19).

b. End behavior: the left-hand side of the graph appears to be going down, and the right-hand side appears
to be going up. If we want to seemore of the graph, we can zoom out. Press . This will increase
the size of the window. If you press again, the window will increase again. If you do this twice, you
will notice that the axes look thick and that the graph is hard to see. This is because the tick marks on the
axes are set in 1’s. Press and scroll down to Xscl. If you press , this will remove all tick
marks. (You can also set the scale to something larger.). To see the graph better, you can also reduce the
Xmin and Xmax. Set Xmin to -20 and Xmax to 20. Press . Now you can see the function. Press

in either direction, and you will be able to see that the left-hand side of the graph continues going
down, and the right-hand side continues going up.

c. The x-intercepts: to return the graph to a smaller window, press . If you want to see the graph in
a smaller window, press . You should see that the graph has 3 x-intercepts. You can visually approx-
imate them by tracing: press and move the cursor left. The leftmost x-intercept is around -.5. To find
a good approximation of the x-intercept, press . This sends you back to the graph. On the
screen you will see the question “Left bound?” Move the cursor to the left of the x-intercept. (You will be
moving down, in this case.) Press . Then you will see the question “Right bound?” Move the cursor
to the right of the x-intercept, but don’t go too far (You don’t want to pass the next x-intercept.) Press
. Then you will be asked to “guess” the intercept. Move the cursor back to the left, as close to the x-intercept
as possible. Press . You should see x = -.5320888. This is an approximation of the x-intercept. If
you use the use same steps, you will find that the other x-intercepts are approximately .6527 and 2.879.

d. Maxima and minima: notice that the graph as a “hill” and a “valley.” The hill is called a “local maximum”
because it is the highest point on the graph, within a certain interval. The valley is similarly a “local minimum.”
To approximate the coordinates of the maximum, press and trace close to the maximum. It appears
that the maximum is (0, 1). To verify this, press . To find the maximum, we have to do the same
“left bound, right bound, guess” process we used to find the x-intercepts. This process should tell you that
the maximum is (0, 1). (Note: the x value may say something like “9.64487E-7.” This is just a small calculator
error. This number if very close to 0!) To find the minimum, trace towards the “valley.” (If you want, you can
go to the and make the Ymin a lower number, so that you can clearly see the minimum of the
graph.) Now press . This will bring you back to the graph. Doing the “left bound, right bound,
guess” process should show you that the minimum point is (2, -3).

Example 6: You have 100 feet of fence with which to enclose a plot of land on the side of a barn. You want
the enclosed land to be a rectangle.

a. Write a function to model the area of the plot as a function of the width of the plot.

b. Graph the function using a graphing calculator.

c. What size rectangle should you make with the fence in order to maximize the area of the rectangular
enclosure?

d. Explain the significance of the x-intercepts/
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Solution: The plot of land will look like the picture below:

a. The equation: The area of the rectangular plot is the product of its length and width. We can write the
area as a function of x: A(x) = 2xh. We can eliminate h from the equation if we consider that we have 100
feet of fence, and we write an equation about how we are using that 100 feet of fence: x + 2h = 100. (The
fourth side of the rectangle does not require fence because of the barn.) We can solve this equation for h
and substitute into the area equation:

b. The graph: Press and clear any equations. Then enter the equation in Y1. Notice that if you press
, you will not see any graph. You can zoom out by pressing , but it may be more efficient to

choose a window based on function values. Press in order to set up the table. TblStart is the
first entry you want to see in the table. Tbl allows you to set the increments. For example, if you want to
see x = 1, 2, 3, 4, etc, set this to 1. For this example, set this to 10. Make sure Indpnt and Depend (x and
y) are set to “auto.” Then press to see the table. If you scroll through the table, you will see that
the y value reaches 2500 at x = 50, and then the values decrease. Now we can set the window. Press

. and set Xmin = -1, Xmax = 105, Ymin = -200, and Ymax = 3000. (Note: you can set Xmin and
Ymin each to 0, but setting them at -1 and -200 allows you to see the axes.)

The graph of A(x) is shown here on the interval [0, 100].
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c. The maximum possible area: using the process from example 6, you should find that (50, 2500) is the
maximum point. This tells us that when the rectangle’s width is 50 ft, the area is 2500 ft2.

d. Intercepts: Using the process from example 6, you should find that the x intercepts are at 0 and 100. This
tells us that if the width of the garden is 0, then the area is 0. If the width of the plot of land is 100, then the
area is 0. This is the case because there is only 100 feet of fence. If the width is 100, there is no more fence
for the rest of rectangle!

Now we can return to the weather example.

Introduction to trigonometric functions

Consider again the temperature data from above:
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As was noted above, this kind of data needs to be modeled with a function that is periodic. In particular, this
kind of data is often modeled by a sinusoid, a graph that oscillates in a particular way, as seen in the graph
below.

Every sinusoid repeats its values on a regular interval. If we modeled the weather data with such a graph,
the values will repeat every 12 months. Therefore we say that the period of the function is 12.

Notice that the data ranges from about 22 to 65. Also notice that the “wave” centers in between these values,
around y = 43. Therefore we say that the amplitude of the wave is about 21, which is the distance from the
middle to the top or the bottom of the wave.

Many real phenomena can be modeled with this kind of function.

Lesson Summary

In this lesson we have reviewed the concept of a function, including major aspects of functions, and different
types of functions. We have also used graphing calculators to graph and explore different functions. A key
point of this lesson is that we can use functions to model real phenomena. A second key point is that in order
to model phenomena that are cyclical in nature, we need to use functions that are periodic. In lesson 4 in
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this chapter we will define six trigonometric functions. However, because the inputs of these functions are
angles, in the next two lessons we will focus on angles. First we will review angles in triangles from Geom-
etry, and then we will consider angles in rotation.

Points to Consider

1. What distinguishes a function from a relation?

2. What makes a function periodic?

3. What are the pros and cons of using a calculator to graph a function?

Review Questions

1. Determine if each relation is a function:

a. (-1,4),(0,3)(1,5),(1,7),(2,15)

b. y = 3 - x

c.

2. A train travels at a constant speed of 95 miles per hour.

a. Write an equation that shows the relationship between the number of hours the train has traveled and
the distance it has traveled.

b. Is this situation direct variation, inverse variation, or neither?
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c. Use the equation to determine the distance the train has traveled after 3 hours.

3. You decide to start a small business making picture frames. You spend $100 on paint and other supplies,
as well as $2.00 per wooden frame. You decide to sell each frame for $10.00.

a. Write a linear function that models the costs of your business

b. Write a linear function that models the revenue of your business. (Revenue is the amount of money you
take in.)

c. Write a linear function that models the profits of your business. (The profits can be found by subtracting
the costs from the revenue.)

d. Use your profit function to determine the minimum number of frames that must be sold to make a profit.

4. Consider the function defined by the equation f(x) = x 2 - x - 3.

a. To what family does this function belong?

b. State the domain and range of the function.

c. Use a graphing calculator to graph the function, to identify the approximate coordinates of the vertex, and
the approximate values of the x-intercepts.

5. Consider the function

a. Use a graphing calculator to graph the function.

b. Identify all asymptotes.

6. The price of reserving a private party room in a restaurant is $500. The price per person varies inversely
with the number of people who attend the party.

a. Write an equation that represents the relationship between c, the cost per person, and p the number of
people attending.

b. Use the equation to find the cost per person if 32 people attend.

7. Use a graphing calculator to graph the functions y = x 3 + x, y = x 3 + 2x, y = x 3 - x, and y = x 3 - 2x. What
is the effect of changing the coefficient on the second term?

8. The equation p(x) = -.5x 2 + 90x - 200 represents the profits of a company, where x is the number of units
the company sells. Use a graphing calculator to graph the function, and use the graph to answer the questions.

a. What is the maximum profit, and how many units must be sold to reach the maximum profit?

b. Find the x-intercepts and explain the meaning of these points on the graph in terms of the profits of the
company.

9. The table below shows the average daylight hours each month in Anchorage, Alaska.

a. Use your graphing calculator to plot the data, or graph by hand. Use January = 1.

b. What is the period of the data?

c. How might the graph look different if the data represented daylight hours where you live?
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Average daylight hoursMonth
5.65Jan
7.77Feb
10.4March
13.37April
16.87May
18.72June
19.18July
17.12August
14.27September
11.43October
8.53November
6.13December

Answers

1.

c. Not a functionb. Is a functiona. Not a function

2.

a. y = 95x

b. The situation is direct variation.

c. 285 miles

3.

a. C(x) = 2x + 100

b. R(x) = 10x

c. P(x) = 8x - 100

d. You must make and sell 13 frames to make a profit.

4.

a. This is a quadratic function.

b. The domain is the set of all real numbers. The range is the set of all real numbers greater than or equal
to 3.25.

c. Vertex: (.5, -3.25); x-intercepts: -1.3, 2.3.

17



5.

a.
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b. x = -3, y = 1

6.

ora.

or

b.

7.

The equations with positive coefficients look more and more like y = x 3, as the coefficient gets larger. The
equations with negative coefficients have local maxes and mins. Decreasing the coefficient increases the
size of the” hill” and the “valley.”

8.

a. Maximum profit is $3850, with 90 units sold.

b. 2.25 and 177.75. These are the break-even points. When 2 – 3 units are sold, the company has made
enough money to make up for initial costs. After selling 177 units, the company is no longer profitable.
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9.

a.

b. Period = 12.

c. In other U.S. cities, the daylight hours do not vary so greatly. The amplitude of the graph would be smaller.

Vocabulary

The input variable of a function, usually denoted x.Dependent variable
The domain is the set of input values (x) for which a function is defined.Domain
A relation in which every element of the domain is paired with exactly one element of
the range.

Function

The output variable of a function, usually denoted y.Independent variable
Any function that repeats regularly.Periodic Function
The set of output or function values (y) for a function.Range
A pairing between the items in two sets of numbers or data.Relation

Angles in Triangles

Learning objectives

A student will be able to:

• Categorize triangles by their sides and angles.

• Determine the measures of angles in triangles using the triangle angle sum.

• Determine whether or not triangles are similar.

• Solve problems using similar triangles.

Introduction

The word trigonometry derives from two Greek words meaning triangle and measure. As you will learn
throughout this chapter, trigonometry involves the measurement of angles, both in triangles, and in rotation
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(e.g, like the hands of a clock.) Given the important of angles in the study of trigonometry, in this lesson we
will review some important aspects of triangles and their angles. We’ll begin by categorizing different kinds
of triangles.

Triangles and their interior angles

Formally, a triangle is defined as a 3-sided polygon. This means that a triangle has 3 sides, all of which are
(straight) line segments. We can categorize triangles either by their sides, or by their angles. The table below
summarizes the different types of triangles.

NoteDescriptionName
This type of triangle is acute.A triangle with three equal sides and 3

congruent angles
Equilateral/equi-angular

An equilateral triangle is also isosceles.A triangle with 2 equal sides and two equal
angles

Isosceles

A triangle with no pairs of equal sidesScalene
It is not possible for a triangle to have more
than one 90o angle (see below.)

A triangle with one 90o angleRight

A triangle in which all 3 angles measure
less than 90o

Acute

It is not possible for a triangle to have more
than one obtuse angle (see below.)

A triangle in which one angle is greater
than 90o

Obtuse

In the following example, we will categorize specific triangles.

Example 1: Determine which category best describes the triangle:

a. A triangle with side lengths 3, 7, and 8

b. A triangle with side lengths 5, 5, and 5

c. A triangle with side lengths 3, 4, and 5

Solution:

a. This is a scalene triangle.
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b. This is an equilateral, or equiangular triangle. It is also acute.

c. This is a scalene triangle, but it is also a right triangle.

While there are different types of triangles, all triangles have one thing in common: the sum of the interior
angles in a triangle is always 180o. You can see why this true if you remember that a straight line forms a
“straight angle,” which measures 180o. Now consider the diagram below, which shows the triangle ABC,
and a line drawn through vertex B, parallel to side AC. Below the figure is a proof of the triangle angle sum.

• If we consider sides AB and CB as transversals between the parallel lines, then we can see that angle
A and angle 1 are alternate interior angles.

• Similarly, angle C and angle 2 are alternate interior angles.

• Therefore angle A and angle 1 are congruent, and angle C and angle 2 are congruent.

• Now note that angles 1, 2, and B form a straight line. Therefore the sum of the three angles is 180o.

• We can complete the proof using substitution:

22



We can use this result to determine the measure of the angles of a triangle. In particular, if we know the
measures of two angles, we can always find the third.

Example 3: Find the measures of the missing angles.

a. A triangle has two angles that measures 30o and 50o.

b. A right triangle has an angle that measures 30o.

c. An isosceles triangle has an angle that measures 50o .

Solution:

a. 100o

180 - 30 - 50 = 100.

b. 60o

The triangle is a right triangle, which means that one angle measures 90o.

So we have: 180 - 90 - 30 = 60.

c. 50o and 80o, or 65o and 65o

There are two possibilities. First, if a second angle measures 50o, then the third angle measures 80o as 180
- 50 - 50 = 80.

In the second case, the 50o angle is not one of the congruent angles. In this case, the sum of the other two
angles is 180 - 50 = 130. Therefore the two angles each measure 65o.

Notice that information about the angles of a triangle does not tell us the lengths of the sides. For example,
two triangles could have the same three angles, but the triangles are not congruent. That is, the correspond-
ing sides and the corresponding angles do not have the same measures. However, these two triangles will
be similar. Next we define similarity and discuss the criteria for triangles to be similar.

Similar triangles

Consider the situation in which two triangles have three pair of congruent angles.
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These triangles are similar. This means that the corresponding angles are congruent, and the corresponding
sides are proportional. In the triangles shown above, we have the following:

Three pair of congruent angles: , and

The ratios of sides within one triangle are equal to the ratios of sides within the second triangle:

, and
The ratios of corresponding sides are equal:

, and

Example 4: In the triangles shown above, , and . What are the
lengths of sides DF and EF?

Solution: EF = 3.5 and DF = 2.5.

Given that , we have .

Similarly, as , we have
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Recall that these triangles are considered to be similar because they have three pair of congruent angles.
This is just one of three ways to determine that two triangles are similar. The table below summarizes criteria
for determining if two triangles are similar.

ExampleDescriptionCriteria
Two triangles are similar of
they have three pair of con-
gruent angles

AAA

Two triangles are similar if
all three pair of correspond-
ing sides are in the same
proportion

SSS

Two triangles are similar if
two pair of corresponding
sides are in the same propor-
tion, and the included angles
are congruent.

SAS

A special case of SSS is “HL,” or “hypotenuse leg.” This is the case of two right triangles being similar. This
case is examined in example 5 below.

Example 5: Determine if the triangles are similar.
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Solution: The triangles are similar

Recall that for every right triangle, we can use the Pythagorean Theorem to find the length of a missing side.
In ABC we have:

= 102(AC)2 + 82

= 100(AC)2 + 64
= 36(AC)2

= 6AC

Similarly, in triangle DEF we have:

= 52(DF)2 + 42

= 25(DF)2 + 16
= 9(DF)2

= 3DF

Therefore the sides of the triangles are proportional, with a ratio of 2:1.

Because we will always be able to use the Pythagorean Theorem in this way, two right triangles will be
similar if the hypotenuse and one leg of one triangle are in proportion with the hypotenuse and one leg of
the second triangle. This is the HL criteria.

Applications of similar triangles

Similar triangles can be used to solve problems in which lengths or distances are proportional. The following
example will show you how to solve such problems.

Example 6: Use similar triangles to solve the problem:

A tree casts a shadow that is 24 feet long. A person who is 5 feet tall is standing in front of the tree, and his
shadow is 8 feet long. Approximately how tall is the tree?
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Solution:

The picture shows us similar right triangles: the person and his shadow are the legs of one triangle, and the
tree and its shadow form the legs of the larger triangle. The triangles are similar because of their angles:
they both have a right angle, and they share one angle. Therefore the third angles are also congruent, and
the triangles are similar.

The ratio of the triangles’ lengths is 3:1. If we let h represent the height of the tree, we have:

Lesson Summary

In this lesson we have reviewed key aspects of triangles, including the names of different types of triangles,
the triangle angle sum, and criteria for similar triangles. In the last example, we used similar triangles to
solve a problem involving an unknown height. In general, triangles are useful for solving such problems, but
notice that we did not use the angles of the triangles to solve this problem. This technique will be the focus
of problems you will solve later in the chapter.

Points to Consider

1. Why is it impossible for a triangle to have more than one right angle?

2. Why is it impossible for a triangle to have more than one obtuse angle?

3. How big can the measure of an angle get?

Review Questions

1. Triangle ABC is an isosceles triangle. If side AB is 5 inches long, and side BC is 7 inches long, how long
is side AC?

2. Can a right triangle be an obtuse triangle? Explain.

3. A triangle has one angle that measures 48o and a second angle that measures 28o. What is the measure
of the third angle in the triangle?

4. Claim: the two non-right angles in any right triangle are complements.

a. Explain why this claim is true
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b. Use this claim to find the measure of the third angle in the triangle below.

5. In triangle DOG, the measure of angle O is twice the measure of angle D, and the measure of angle G
is three times the measure of angle D. What are the measures of the three angles?

6. Triangles ABC and DEF shown below are similar. What is the length of ?

7. In triangles ABC and DEF above, if angle A measures 30o, what is the measure of angle E?

8. Determine if the triangles are similar:

a.
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b.

9. A building casts a 100-foot shadow, while a 20 foot flagpole next to the building casts a 24 foot shadow.
How tall is the building?

10. Explain in your own words what it means for triangles to be similar.

Answers

1. Either 5 inches or 7 inches.

2. A right triangle cannot be an obtuse triangle. If a triangle is right triangle, one angle measures 90 degrees.
If a triangle is obtuse, one angle measures greater than 90. Therefore the sum of the two angles would be
greater than 180 degrees, which is not possible.

3. 104o

4.

a. The angle sum in the triangle is 180. If you subtract the 90-degree angle, you have 180-90 = 90 degrees,
which is the sum of the remaining angles.

b. 90 - 23 = 67o

5.

6. 7.5

7. 130o

8.

a. No

b. Yes, by SSS or HL

29



9.

10. Answers will vary. Responses should include (1) three pairs of congruent angles and (2) sides in propor-
tion, or some other notion of “scaling up” or “scaling down”

Vocabulary

An acute angle has a measure of less than 90 degrees.Acute angle
In the diagram show below, lines M and N are parallel, and they are intersected by
a transversal T. Angles 1 and 3 are alternate interior angles. Angles 2 and 4 are also

Alternate interior angles of
parallel lines

alternate interior angles.
Two angles are congruent if they have the same measure. Two segments are con-
gruent if they have the same lengths.

Congruent

A triangle with all acute angles.Acute triangle
A triangle with two congruent sides, and, consequentially, two congruent angles.Isosceles triangle
A triangle with all sides congruent, and, consequently, all angles congruent.Equilateral triangle
A triangle with no pairs of sides congruent.Scalene triangle
One of the two shorter sides of a right triangle.Leg
The longest side of a right triangle, opposite the right angle.Hypotenuse
An angle that measures more than 90 degrees.Obtuse angle
Lines that never intersect.Parallel lines
An angle that measures 90 degrees.Right angle
A line that intersects parallel lines.Transversal

Measuring Rotation

Learning objectives

A student will be able to:

• Determine if an angle is acute, right, obtuse, or straight.

• Express the measure of angles in degrees, minutes, and seconds.

• Express the measure of angles in decimal degrees.

• Identify and draw angles of rotation in standard position.

• Identify quadrantal angles.

• Identify co-terminal angles.

Introduction

In this lesson you will learn about angles of rotation, which are found in many different real phenomena.
Consider, for example, a game that is played with a spinner. When you spin the spinner, how far has it
gone?

You can answer this question in several ways. You could say something like “the spinner spun around 3
times.” This means that the spinner made 3 complete rotations, and then landed back where it started.
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We can also measure the rotation in degrees. In the previous lesson we worked with angles in triangles,
measured in degrees. You may recall from geometry that a full rotation is 360 degrees, usually written as
360o. Half a rotation is then 180o and a quarter rotation is 90o. Each of these measurements will be important
in this lesson, as well as in the remainder of the chapter.

Acute, Right, Obtuse, and Straight Angles

In general, angles are categorized by their size. The table below summarizes the categories, which might
be familiar from the previous lesson.

DescriptionName
An angle whose measure is less than 90 degreesAcute
An angle whose measure is exactly 90 degreesRight
An angle whose measure is more than 90 degrees, but less than 180 degrees.Obtuse
An angle whose measure is exactly 180 degreesStraight

You should make sure that you can visually determine which category an angle belongs to.

Example 1: Determine if the angle is acute, right, obtuse, or straight.

c.b.a.

Solution:

a. This angle is an acute angle

If it is difficult to categorize the angle visually, you can compare it to a right angle. Doing this will help you
see that the angle is smaller than a right angle.
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b. This angle is an obtuse angle

Again, you can compare the angle to a right angle, if needed.

c. This angle is a right angle.

It is important to note that usually a right angle is marked with a small square.

It is also important to note that you can determine the measure of an angle using a protractor. This measure
will of course be an approximation, as no protractor is perfect and the person measuring cannot perfectly
line up the protractor or hold it steady.

Example 2: Use a protractor to measure the angle in example 1a.

Solution: The angle is about 50o.

32



When working with angles measured in degrees, we often report our answers using a decimal, such as
78.5o. However, in some contexts, angles are measured using fractional parts.

Measuring angles

Example 3: Two wheels are in direct contact. The radius of one is .5 meters. The radius of the other is 1
meter. The smaller one rotates four full turns. How many rotations does the larger wheel make? How many
degrees does the larger wheel rotate through?

Solution: Every time the small wheel rotates once, its entire circumference passes along the larger wheel,

Since the circumference of the large wheel is the large wheel rotates half way around.
So if the small wheel rotates 4 times, or 360 x 4 = 1440o the large wheel rotates 2 times, or 360 x 2 = 720o.

We can measure angles in much the same way we measure time. A minute is of a degree. A second

is of a minute, so it is of a degree. For example, 48o20'45" is the way we write 48 degrees, 20
minutes, and 45 seconds. We can write this angle using fraction notation, as well as decimal notation:

We can also write a decimal degree using degrees, minutes, and seconds. For example, we can rewrite
125.88o if we write the decimal part as a fraction:

Now solve for x:

Now we have 125.88o = 125o 52.8'. We need to write .8 minutes as seconds:
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Therefore 125.88o = 125o 52' 4.8".

Notice that the angle 125.88o is an obtuse angle. Its measure is less than 180o. What does angle look like
that is more than 180o? More than 360o?

Next you will learn about a particular way to represent angles that will allow you to represent 180o, 360o, or
any other angle.

Angles of rotation in standard position

We can use our knowledge of graphing to represent any angle. The figure below shows an angle in what
is called standard position.

The initial side of an angle in standard position is always on the positive x-axis. The terminal side always
meets the initial side at the origin. Notice that the rotation goes in a counterclockwise direction. This means
that if we rotate clockwise, we are generating a negative angle. Below are several examples of angles in
standard position.
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The 90 degree angle is one of four quadrantal angles. A quadrantal angle is one whose terminal side lies
on an axis. Along with 90o, 0o, 180o and 270o are quadrantal angles.
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These angles are referred to as quadrantal because each angle defines a quadrant. Notice that without the
arrow indicating the rotation, 270o looks as if it is a 90o, defining the fourth quadrant. Notice also that 360o

would look just like 0o. The difference is in the action of rotation. This idea of two angles actually being the
same angle is discussed next.

Coterminal angles

Consider the angle 30o, in standard position.
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Now consider the angle 390o. We can think of this angle as a full rotation (360o), plus an additional 30 degrees.

Notice that 390o looks the same as 30o. Formally, we say that the angles share the same terminal side.
Therefore we call the angles co-terminal. Not only are these two angles co-terminal, but there are infinitely
many angles that are co-terminal with these two angles. For example, if we rotate another 360o, we get the
angle 750o. Or, if we create the angle in the negative direction (clockwise), we get the angle -330o. Because
we can rotate in either direction, and we can rotate as many times as we want, we can keep generating
angles that are co-terminal with 30o.

Example 3.Which angles are co-terminal with 45o?

d. 135oc. -315ob. 405oa. -45o
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Solution: b. 405o and c. -315o are co-terminal with 45o.

Notice that terminal side of the first angle, -45o, is in the 4th quadrant. The last angle, 135o is in the 2nd

quadrant. Therefore neither angle is co-terminal with 45o.

Now consider 405o. This is a full rotation, plus an additional 45 degrees. So this angle is co-terminal with
45o. The angle -315o can be generated by rotating clockwise. To determine where the terminal side is, it can
be helpful to use quadrantal angles as markers. For example, if you rotate clockwise 90 degrees 3 times
(for a total of 270 degrees), the terminal side of the angle is on the positive y-axis. For a total clockwise ro-
tation of 315 degrees, we have 315-270 = 45 degrees more to rotate. This puts the terminal side of the angle
at the same position as 45o.

Lesson Summary

In this lesson we have categorized angles according to their size, and we have extended our knowledge of
angles to include angles of rotation. We have defined what it means for an angle to be in standard position,
and we have looked at angles in standard position, including the quadrantal angles. We have also defined
the concept of co-terminal angles. All of the ideas in this lesson will be used in the following lesson, to define
the trigonometric functions that are the focus of this chapter.

Points to Consider

1. How can one angle look exactly the same as another angle?

2. Where might you see angles of rotation in real life?

Review Questions

1. Determine if the angle is acute, right, obtuse, or straight.
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a.

b.

2. Approximate the measure of the angle. Explain how you approximated.

3. Rewrite the measure of each angle in degrees, minutes, and seconds.

a. 85.5o

b. 12.15o

c. 114.96o

4. Rewrite the measure of each angle in decimal degrees.

a. 54o 10' 25"

b. 17o 40' 5"

5. Determine the measure of the angle between the clock hands at the given time.

a. 6:00

b. 3:00

c. 1:00

6. Through what angle does the minute hand of a clock rotate between 12:00am and 1am?

7. A car goes around a 90 degree circular curve in a racetrack. The diameter of an automobile’s wheel is .6
m. The distance between the wheels is 2 m. The radius of the curve the car is following is 100 m measured
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at the closest wheel to the track. What is the difference in number of rotations that the outer wheel must turn
compared with the inner wheel?

8. State the measure of an angle that is co-terminal with 90o

9. Name two angles that are co-terminal with 120o

a. An angle that is negative

b. An angle that is greater than 360

10. A drag racer goes around a 180 degree circular curve in a racetrack in a path of radius 120 m. Its front
and back wheels have different diameters. The front wheels are .6 m in diameter. The rear wheels are much
larger; they have a diameter of 1.8 m. The axles of both wheels are 2 m long. Which wheel has more rotations
going around the curve. Howmanymore degrees does that wheel rotate compared with the wheel that rotates
the least making that curve?

Answers

1.

a. Acute

b. Straight

2. The angle is about 120 degrees. You can approximate the measure of the angle using a protractor, or
by using other angles, such as 90 and 30.

3.

a. 85o 30'

b. 12o 9'

c. 114o 57' 36"

4.

a. 54.236o

b. 17.681o

5.

a. 180o

b. 90o

c. 30o

6. 360o

7. 5/6

8. Answers will vary. Examples: 450o, -270o
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9. Answers will vary. Examples: -240o, 480o

10. The front wheel rotates more. It rotates 100 revolutions versus 33.89 revolutions for the back wheel,
which is a ~23800 degree difference.

Vocabulary

An acute angle is an angle with measure between 0 and 90 degrees.Acute angle
Angles of rotation in standard position are co-terminal of they share the same terminal
side.

Co-terminal angles

A minute is 1/60 of a degree.Minutes
An obtuse angle is an angle with measure between 90 and 180 degrees.Obtuse angle
A protractor is a tool used to measure angles.Protractor
A quadrantal angle is an angle in standard position whose terminal side lies on an
axis.

Quadrantal angle

A right angle is an angle with measure exactly 90 degrees.Right angle
A second is 1/60 of a minute, or 1/360 of a degree.Seconds
An angle in standard position has its initial side on the positive x-axis, its vertex at the
origin, and its terminal side anywhere in the plane. A positive angle means a counter-

Standard position

clockwise rotation. A negative angle means a clockwise rotation.
A straight angle is an angle with measure 180 degrees. A straight angle makes a
straight line.

Straight angle

Defining Trigonometric Functions

Learning objectives

A student will be able to:

• Find the values of the six trig functions for angles in right triangles.

• Find the values of the six trig functions for angles of rotation.

• Work with angles in the unit circle.

Introduction

Consider a situation in which you are building a ramp so that people in wheelchairs can access a building.
If the ramp must have a height of 8 feet, and the angle of the ramp must be about 5o, how long must the
ramp be?

Solving this kind of problem requires trigonometry. Recall that in the first lesson, you learned that the word
trigonometry comes from two words meaning triangle and measure. In this lesson we will define six
trigonometric functions. For each of these functions, the elements of the domain are angles. We will define
these functions in two ways: first, using right triangles, and second, using angles of rotation. Once we have
defined these functions, we will be able to solve problems like the one above. (We will, in fact, solve such
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problems in lesson 7.)

The Sine, Cosine, and Tangent Functions

The first three trigonometric functions we will work with are the sine, cosine, and tangent functions. As noted
above, the elements of the domains of these functions are angles. We can define these functions in terms
of a right triangle: The elements of the range of the functions are particular ratios of sides of triangles.

We define the sine function as follows: For an acute angle x in a right triangle, is the sin x ratio of the side
opposite of the angle to the hypotenuse of the triangle. For example, in the triangle shown above, we have:

Since all right triangles with the same acute angle are similar, this function is will produce the same ratio,
no matter which triangle is used. Thus, it is a well defined function.

Similarly, the cosine of an angle is defined as the ratio of the side adjacent (next to) the angle to the hy-
potenuse of the triangle. In the triangle above, we have:

Finally, the tangent of an angle is defined as the ratio of the side opposite the angle to the side adjacent to
the angle. In the triangle above, we have:

There are a few important things to note about the way we write these functions. First, keep in mind that the
abbreviations sin(x), cos(x), and tan(x) are just like f(x). They simplify stand for specific kinds of functions.
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Second, be careful about how you pronounce the names of the functions. When we write sin x it is still pro-
nounced sine, with a long “i”. When we write cos x, we still say co-sine. And when we write tan x, we still
say tangent. (Sometimes casually people say “cos” and “tan, however, it shouldn’t be surprising that “sin”
is always pronounced “sine”!)

We can use these definitions to find the sine, cosine, and tangent values for angles in a right triangle.

Example 1: Find the sine, cosine, and tangent of angle A:

Solution:

One of the reasons that these functions will help us solve problems is that these ratios will always be the
same, as long as the angles are the same. Consider for example, a triangle similar to triangle ABC.
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If CP has length 3, then side AP of triangle NAP is 6. Because NAP is similar to ABC, side NP has length
8. This means the hypotenuse AN has length 10. (We can show this either using the proportions from the
similar triangles, or by using the Pythagorean Theorem.)

If we use triangle NAP to find the sine, cosine, and tangent of angle A, we get:

Example 2: Find sin(B) using triangle ABC and triangle NAP

Solution:

Using triangle ABC:

Using triangle NAP:

Secant, Cosecant, and Cotangent functions

We can define three more functions also based on a right triangle.
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ExampleDefinitionFunction name

In triangle ABC,
Secant

In triangle ABC,
Cosecant

In triangle ABC,

Cotangent

Example 3: Find the secant, cosecant, and cotangent of angle B.

Solution:

First, we must find the length of the hypotenuse. We can do this using the Pythagorean Theorem:

= H 252 + 122

= H 225 + 144

= H 2169

= 13H

Now we can find the secant, cosecant, and cotangent of angle B:
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Trigonometric Functions of Angles in Standard Position

Above, we defined the six trigonometric functions for angles in right triangles. We can also define the same
functions in terms of angles of rotation. Consider an angle in standard position, whose terminal side intersects
a circle of radius r. We can think of the radius as the hypotenuse of a right triangle:

The point (x, y) where the terminal side of the angle intersects the circle tells us the lengths of the two legs
of the triangle. Now, we can define the trigonometric functions in terms of x, y, and r:

Now we can extend these functions to include non-acute angles.

Example 4: The point (-3, 4) is a point on the terminal side of an angle in standard position. Determine the
values of the six trigonometric functions of the angle.

Solution:

Notice that the angle is more than 90 degrees, and that the terminal side of the angle lies in the second
quadrant. This will influence the signs of the trigonometric functions.

46



Notice that the value of r depends on the coordinates of the given point. You can always find the value of r
using the Pythagorean Theorem. However, often we look at angles in a circle with radius 1. As you will see
next, doing this allows us to simplify the definitions of the functions.

The Unit Circle

Consider an angle in standard position, such that the point (x, y) on the terminal side of the angle is a point
on a circle with radius 1.
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This circle is called the unit circle.With r = 1, we can define the trigonometric functions in the unit circle:

Notice that in the unit circle, the sine and cosine of an angle are the x and y coordinates of the point on the
terminal side of the angle. Now we can find the values of the trigonometric functions of any angle of rotation,
even the quadrantal angles, which are not angles in triangles.
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We can use the figure above to determine values of the trig functions for the quadrantal angles. For example,
sin(90o) = y = 1.

Example 5: use the unit circle above to find each value:

c. sec 0ob. cot 180oa. cos 90o

Solution:

a. cos 90o = 0

The ordered pair for this angle is (0,1). The cosine value is the x coordinate, 0.

b. cot 180o is undefined

The ordered pair for this angle is (-1,0). The ratio is , which is undefined.

c. sec 0o = 1

The ordered pair for this angle is (1, 0). The ratio is .

There are several important angles in the unit circle that you will work with extensively in your study of
trigonometry: 30o, 45o, and 60o. To find the values of the trigonometric functions of these angles, we need
to know the ordered pairs. Let’s begin with 30o.
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The terminal side of the angle intersects the unit circle at the point . (You will prove this in one
of the review exercises.). Therefore we can find the values of any of the trig functions of 30o. For example,

the cosine value is the x-coordinate, so . Because the coordinates are fractions, we have
to do a bit more work in order to find the tangent value:

.

In the review exercises you will find the values of the remaining four trig functions of this angle. The table
below summarizes the ordered pairs for 30o, 45o, and 60o on the unit circle.

y-coordinatex-coordinateAngle

30o

45o

60o

We can use these values to find the values of any of the six trig functions of these angles.

Example 6: Find the value of each function.

c. tan (45o)b. sin (60o)a. cos (45o)

50



Solution:

a.

The cosine value is the x coordinate of the point.

b.

The sine value is the y coordinate of the point.

c.

The tangent value is the ratio of the y coordinate to the x coordinate. Because the x and y coordinates are
the same for this angle, the tangent ratio is 1.

Lesson Summary

In this chapter we have defined the six trigonometric functions. First we defined the functions for angles in
right triangles, and then we defined them for angles of rotation. We considered angles formed when the
terminal side of an angle intersected a circle of radius r, and then we focused in on the unit circle, which has
radius 1. The unit circle will be used extensively throughout the remainder of the chapter.

Points to Consider

1. How is the Pythagorean Theorem useful in trigonometry?

2. How can some values of the trig functions be negative? How is it that some are undefined?

3. Why is the unit circle and the trig functions defined on it useful, even when the hypotenuses of triangles
in the problem are not 1?

Review Questions

1. Find the values of the six trig functions of angle A.

2. Consider triangle VET below.

a. Find the length of the hypotenuse.

b. Find the values of the six trig functions of angle T.
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3. The point (3, -4) is a point on the terminal side of an angle in standard position.

a. Determine the radius of the circle.

b. Determine the values of the six trigonometric functions of the angle.

a. The radius is 5.

b. The values are:

4. The point (-5, -12) is a point on the terminal side of an angle in standard position.

a. Determine the radius of the circle.

b. Determine the values of the six trigonometric functions of the angle.

a. The radius is 13.

b. The values are:

5. The terminal side of the angle 270o intersects the unit circle at (0, -1). Use this ordered pair to find the six
trig functions of 270.

6. In the lesson you learned that the terminal side of the angle 30o intersects the unit circle at the point

. Here you will prove that this is true.
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a. Explain why Triangle ABD is an equiangular triangle. What is the measure of angle DAB?

b. What is the length of BD? How do you know?

c. What is the length of BC and CD? How do you know?

d. Now explain why the ordered pair is .

e. Why does this tell you that the ordered pair for 60o is ?

7. In the lesson you learned that the terminal side of the angle 45o is . Use the figure below
and the Pythagorean Theorem to show that this is true.

8. State the values of the six trig functions of 60o.

9. In what quadrants will an angle in standard position have a positive tangent value? Explain your thinking.

10. Sketch the angle 150o on the unit circle is. How is this angle related to 30o?What do you think the ordered
pair is?
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Answers

1.

2. The length of the hypotenuse is 17.
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3.

4.

5.

6.

a. The triangle is equiangular because all three anglesmeasure 60 degrees. Angle DABmeasures 60 degrees
because it is the sum of two 30 degree angles.

b. BD has length 1 because it is one side of an equiangular, and hence equilateral triangle.

c. BC and CD each have length ½, as they are each half of BD. This is the case because Triangle ABC
and ADC are congruent.

d. We can use the Pythagorean theorem to show that the length of AC is . If we place angle BAC as
an angle in standard position, then AC and BC correspond to the x and y coordinates where the terminal

side of the angle intersect the unit circle. Therefore the ordered pair is .

e. If we draw the angle 60o in standard position, we will also obtain a 30-60-90 triangle, but the side lengths

will be interchanged. So the ordered pair for 60o is .
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7.

Because the angle is in the first quadrant, the x and y coordinates are positive.

8.
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9. An angle in the first quadrant, as the tangent is the ratio of two positive numbers.

An angle in the third quadrant, as the tangent in the ratio of two negative numbers, which will be positive.

10. The terminal side of the angle is a reflection of the terminal side of 30o. From this, students should see

that the ordered pair is .

Vocabulary

A side adjacent to an angle is the side next to the angle. In a right triangle, it is the
leg that is next to the angle.

Adjacent

The hypotenuse is the longest side in a right triangle, opposite the right angle.Hypotenuse
The legs of a right triangle are the two shorter sides.Leg
The Pythagorean theorem states the relationship among the sides of a right triangle:
Leg 12 + Leg 22 = Hypotenuse 2

Pythagorean Theorem

The radius of a circle is the distance from the center of the circle to the edge. The radius
defines the circle.

Radius

The unit circle is the circle with radius 1 and center (0,0). The equation of the unit
circle is x 2 + y 2 = 1

Unit Circle

Trigonometric Functions of Any Angle

Learning objectives

A student will be able to:

• Identify the reference angles for angles in the unit circle.

• Identify the ordered pair on the unit circle for angles whose reference angle is 30o, 45o, and 60o, or a
quadrantal angle, including negative angles, and angles whose measure is greater than 360o.

• Use these ordered pairs to determine values of trig functions of these angles.

• Use tables and calculators to find values of trig functions of any angle.

Introduction

In the previous lesson we introduced the six trigonometric functions, and we worked with these functions in
two ways: first, in right triangles, and second, for angles of rotation. In this lesson we will extend our work
with trig functions of angles of rotation to any angle in the unit circle, including negative angles, and angles
greater than 360 degrees. In the previous lesson, we worked with the quadrantal angles, and with the angles
30o, 45o, and 60o. In this lesson we will work with angles related to these angles, as well as other angles in
the unit circle. One of the key ideas of this lesson is that angles may share the same trig values. This idea
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will be developed throughout the lesson.

Reference Angles and Angles in the Unit Circle

In the previous lesson, one of the review questions asked you to consider the angle 150o. If we graph this
angle in standard position, we see that the terminal side of this angle is a reflection of the terminal side of
30o, across the x-axis.

Notice that 150o makes a 30o angle with the negative x-axis. Therefore we say that 30o is the reference
angle for 150o. Formally, the reference angle of an angle in standard position is the angle formed with the
closest portion of the x-axis. Notice that 30o is the reference angle for many angles. For example, it is the
reference angle for 210o and for -30o.

In general, identifying the reference angle for an angle will help you determine the values of the trig functions
of the angle.

Example 1: Graph each angle and identify its reference angle.

c. 380ob. 240oa. 140o

Solution:
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a. 140o makes a 40o angle with the x-axis. Therefore the reference angle is 40o .

b. 240o makes a 60o with the x-axis. Therefore the reference angle is 60o.

c. 380o is a full rotation of 360o, plus an additional 20o. So this angle is co-terminal with 20o, and 20o is its
reference angle.

If an angle has a reference angle of 30o, 45o, or 60o, we can identify its ordered pair on the unit circle, and
so we can find the values of the six trig functions of that angle. For example, above we stated that 150o has

a reference angle of 30o. Because of its relationship to 30o, the ordered pair for is 150o is .
Now we can find the values of the six trig functions of 150o:

Example 2: Find the ordered pair for 240o and use it to find the value of sin 240o.
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Solution:

As we found in example 1, the reference angle for 240o is 60o. The figure below shows 60o and the three
other angles in the unit circle that have 60o as a reference angle.

The terminal side of the angle 240o represents a reflection of the terminal side of 60o over both axes. So the

coordinates of the point are . The y-coordinate is the sine value, so .

Just as the figure above shows 60o and three related angles, we can make similar graphs for 30o and 45o.
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Knowing these ordered pairs will help you find the value of any of the trig functions for these angles.

Example 3: Find the value of cot(300)

Solution:

Using the graph above, you will find that the ordered pair is . Therefore the cotangent value

is

We can also use the concept of a reference angle and the ordered pairs we have identified to determine
the values of the trig functions for other angles.

Trigonometric Functions of Negative Angles

Recall that graphing a negative angle means rotating clockwise. The graph below shows -30o.
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Notice that this angle is coterminal with 330o. So the ordered pair is . We can use this ordered

pair to find the values of any of the trig functions of -30o. For example, .

In general, if a negative angle has a reference angle of 30o,45o, or 60o, or if it is a quadrantal angle, we can
find its ordered pair, and so we can determine the values of any of the trig functions of the angle.

Example 4: Find the value of each expression.

c. cos(-90o)b. sec(-300o)a. sin(-45o)

Solution:

a.

-45o is in the 4th quadrant, and has a reference angle of 45o. That is, this angle is coterminal with 315o.

Therefore the ordered pair is and the sine value is .
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b. sec(-300o) = 2

The angle -300o is in the 1st quadrant and has a reference angle of 60o. That is, this angle is coterminal with

60o. Therefore the ordered pair is and the secant value is .

c. cos(-90o) = 0

The angle -90o is coterminal with 270o. Therefore the ordered pair is (0,-1) and the cosine value is 0.
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We can also use our knowledge of reference angles and ordered pairs to find the values of trig functions of
angles with measure greater than 360 degrees.

Trigonometric Functions of Angles Greater than 360 Degrees

Consider the angle 390o. As you learned previously, you can think of this angle as a full 360 degree rotation,
plus an additional 30 degrees. Therefore 390o is coterminal with 30o. As you saw above with negative angles,
this means that 390o has the same ordered pair as 30o, and so it has the same trig values. For example,
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In general, if an angle whose measure is greater than 360 has a reference angle of 30o, 45o, or 60o, or if it
is a quadrantal angle, we can find its ordered pair, and so we can find the values of any of the trig functions
of the angle. The first step is to determine the reference angle.

Example 5: Find the value of each expression.

c. cos(540o)b. tan(840o)a. sin(420o)

Solution:

a.

420o is a full rotation of 360 degrees, plus an additional 60 degrees. Therefore the angle is coterminal with

60o, and so it shares the same ordered pair, . The sine value is the y-coordinate.

b.

840o is two full rotations, or 720 degrees, plus an additional 120 degrees:

840 = 360 + 360 + 120

Therefore 840o is coterminal with 120o, so the ordered pair is . The tangent value can be
found by the following:

c. cos(540o) = -1

540o is a full rotation of 360 degrees, plus an additional 180 degrees. Therefore the angle is coterminal with
180o, and the ordered pair is (-1, 0). So the cosine value is -1.

So far all of the angles we have worked with are multiples of 30, 45, 60, and 90. Next we will find approximate
values of the trig functions of other angles.

Trigonometric Function Values in Tables

As you work through this chapter, you will learn about different applications of the trig functions. In many
cases, you will need to find the value of a function of an angle that is not necessarily one of the “special”
angles we have worked with so far. Traditionally, textbooks have provided students with tables that contain
values of the trig functions. Below is a table that provides approximate values of the sine, cosine, and tangent
values of several angles.
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TangentSineCosineAngle ( o )
0.00000.00001.00000
0.08750.08720.99625
0.17630.17360.984810
0.26790.25880.965915
0.36400.34200.939720
0.46630.42260.906325
0.57740.50000.866030
0.70020.57360.819235
0.83910.64280.766040
1.00000.70710.707145
1.19180.76600.642850
1.42810.81920.573655
1.73210.86600.500060
2.14450.90630.422665
2.74750.93970.342070
3.73210.96590.258875
5.67130.98480.173680
11.43010.99620.087285
undefined1.00000.000090
-11.43010.9962-0.087295
-5.67130.9848-0.1736100
-3.73210.9659-0.2588105
-2.74750.9397-0.3420110
-2.14450.9063-0.4226115
-1.73210.8660-0.5000120
-1.42810.8192-0.5736125
-1.19180.7660-0.6428130
-1.00000.7071-0.7071135
-0.83910.6428-0.7660140
-0.70020.5736-0.8192145
-0.57740.5000-0.8660150
-0.46630.4226-0.9063155
-0.36400.3420-0.9397160
-0.26790.2588-0.9659165
-0.17630.1736-0.9848170
-0.08750.0872-0.9962175
0.00000.0000-1.0000180

We can use the table to identify approximate values.

Example 6: Find the approximate value of each expression, using the table above.

c. tan(50o)b. cos(15o)a. sin(130o)

Solution:
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a. sin(130o) 0.7660

We can identify the sine value by finding the row in the table for 130 degrees. The sine value is found in the
third row of the table. Note that this is an approximate value. We can evaluate the reasonableness of this
value by thinking about an angle that is close to 130 degrees, 120 degrees. We know that the ordered pair

for 120 is , so the sine value is , which is also in the table. It is reasonable
that sin(130o) 0.7660, which is slightly less than the sine value of 120, given where the terminal sides of
these angles intersect the unit circle.

b. cos(15o) 0.9659

We can identify this cosine value by finding the row for 15 degrees. The cosine value is found in the second
column. Again, we can determine if this value is reasonable by considering a nearby angle. 15o is between
0o and 30o, and its cosine value is between the cosine values of these two angles.

c. tan(50o) 1.1918

We can identify this tangent value by finding the row for 50 degrees, and reading the final column of the table.
In the review questions, you will be asked to explain why the tangent value seems reasonable.

Using a Calculator to Find Values

If you have a scientific calculator, you can determine the value of any trig function for any angle. Here we
will focus on using a TI graphing calculator to find values.

First, your calculator needs to be in the correct “mode.” In chapter 2 you will learn about a different system
for measuring angles, known as radian measure. In this chapter, we are measuring angles in degrees. (This
is analogous to measuring distance in miles or in kilometers. It’s just a different system of measurement.)
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We need to make sure that the calculator is working in degrees. To do this, press . You will see that
the third row says Radian Degree. If Degree is highlighted, you are in the correct mode. If Radian is high-
lighted, scroll down to this row, scroll over to Degree, and press . This will highlight Degree. Then
press to return to the main screen.

Now you can calculate any value. For example, we can verify the values from the table above. To find
sin(130o), press . The calculator should return the value .7660444431.

You may have noticed that the calculator provides a “(“ after the SIN. In the previous calculation, you can
actually leave off the “)”. However, in more complicated calculations, leaving off the closing “)” can create
problems. It is a good idea to get in the habit of closing parentheses.

You can also use a calculator to find values of more complicated expressions.

Example 7: Use a calculator to find an approximate value of sin(25o) + cos(25o). Round your answer to 4
decimal places.

Solution: sin(25o) + cos(25o) 1.3289

To use a TI graphing calculator, press . The calculator should return the
number 1.328926049. This rounds to 1.3289.

Lesson Summary

In this lesson we have examined the idea that we can find an exact or an approximate value of each of the
six trig functions for any angle. We began by defining the idea of a reference angle, which is useful for
finding the ordered pair for certain angles in the unit circle. We have found exact values of the trig functions
for “special” angles, including negative angles, and angles whose measures are greater than 360 degrees.
We have also found approximations of values for other angles, using a table, and using a calculator. In the
coming lessons, we will use the ideas from this lesson to (1) examine relationships among the trig functions
and (2) apply trig functions to real situations.

Points to Consider

1. What is the difference between the measure of an angle, and its reference angle? In what cases are these
measures the same value?

2. Which angles have the same cosine value, or the same sine value? Which angles have opposite cosine
and sine values?

Review Questions

1. State the reference angle for each angle.

d. -135oc. 1470ob. -60oa. 190o

2. State the ordered pair for each angle.

c. 405ob. -150oa. 300o

3. Find the value of each expression.
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c. csc(120o)b. tan(270o)a. sin(210o)

4. Find the value of each expression.

c. csc(405o)b. cos(930o)a. sin(510o)

5. Find the value of each expression.

c. sin(-240o)b. tan(-45o)a. cos(-150o)

6. Use the table in the lesson to find an approximate value of cos(100o)

7. Use the table in the lesson to approximate the measure of an angle whose sine value is 0.2.

8. In example 6c, we found that tan(50o) 1.1918. Use your knowledge of a special angle to explain why
this value is reasonable.

9. Use a calculator to find each value. Round to 4 decimal places.

b. tan(55o)a. sin(118o)

10. Use the table below or a calculator to explore sum and product relationships among trig functions.

Consider the following functions:

f(x) = sin (x+x) and g(x) = sin (x) + sin (x)

h(x) = sin (x) * sin(x) and j(x) = sin (x2)

Do you observe any patterns in these functions? Are there any equalities among the functions? Can you
make a general conjecture about sin (a) + sin (b) and sin (a+b) for all values of a, b?

What about sin(a) sin(a) and sin (a2)?

sin(a + b)sin a + sin bboao

.6428.67363010

.98481.20806020

.73141.79737855

.54461.270725122
-.9962.623975200

11. Use a calculator or your knowledge of special angles to fill in the values in the table, then use the values
to make a conjecture about the relationship between (sin a)2 and (cos a)2. If you use a calculator, round all
values to 4 decimal places.

(cos a)2(sin a)2a

0
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25
45
80
90
120
250

12. Use your knowledge of trigonometry to conjecture the value of the function:

Graph it and confirm or revise your prediction. What did you have to change, if anything?

Answers

1.

a. 10o

b. 60o

c. 30o

d. 45o

2.

a.

b.

c.

3.

a.

b. 0

c.

4.
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a.

b.

c.

5.

a.

b. -1

c.

6. -.1736

7. Between 165 and 160 degrees.

8. This is reasonable because tan(45o) = 1

9.

a. .8828

b. 1.4281

10. Conjecture: sin a + sin b sin(a + b)

11.

(cos a)2(sin a)2a

100
.8216.178625
½½45
.0302.969880
0190

120
235
310

Conjecture: (sin a)2 + (cos a)2 = 1.

Vocabulary

Two angles in standard position are coterminal if they share the same terminal side.Coterminal angles
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The reference angle of an angle in standard position is the measure of the angle be-
tween the terminal side and the closest portion of the x-axis.

Reference angle

Relating Trigonometric Functions

Learning objectives

A student will be able to:

• State the reciprocal relationships between trig functions, and use these identities to find values of trig
functions.

• State quotient relationships between trig functions, and use quotient identities to find values of trig
functions.

• State the domain and range of each trig function.

• State the sign of a trig function, given the quadrant in which an angle lies.

• State the Pythagorean identities and use these identities to find values of trig functions.

Introduction

In previous lessons we defined and worked with the six trig functions individually. In this lesson, we will
consider relationships among the functions. In particular, we will develop several identities involving the
trig functions. An identity is an equation that is true for all values of the variables, as long as the expressions
or functions involved are defined. For example, x + x = 2x is an identity. In this lesson we will develop several
identities involving trig functions. Because of these identities, the same function can have very many different
algebraic representations. These identities will allow us to relate the trig functions’ domains and ranges, and
the identities will be useful in solving problems in later chapters.

Reciprocal identities

The first set of identities we will establish are the reciprocal identities. A reciprocal of a fraction is the

fraction . That is, we find the reciprocal of a fraction by interchanging the numerator and the denominator,
or flipping the fraction. The six trig functions can be grouped in pairs as reciprocals.

First, consider the definition of the sine function for angles of rotation: . Now consider the cosecant

function: . In the unit circle, these values are and . These two
functions, by definition, are reciprocals. Therefore the sine value of an angle is always the reciprocal of the

cosecant value, and vice versa. For example, if , then .

Analogously, the cosine function and the secant function are reciprocals, and the tangent and cotangent
function are reciprocals:

or
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or

We can use these reciprocal relationships to find values of trig functions. The fundamental identity stemming
from the Pythagorean Theorem 1 = sin2 x + cos2 x can take a great many new forms.

Example 1: Find the value of each expression using a reciprocal identity.

b.
a.

Solution:

a.

These functions are reciprocals, so if , then . It is easier to find the reciprocal if we

express the values as fractions: .

b.

These functions are reciprocals, and the reciprocal of is .

We can also use the reciprocal relationships to determine the domain and range of functions.

Domain, Range, and Signs of Functions

While the trigonometric functions may seem quite different from other functions you have worked with, they
are in fact just like any other function. We can think of a trig function in terms of “input” and “output.” The
input is always an angle. The output is a ratio of sides of a triangle. If you think about the trig functions in
this way, you can define the domain and range of each function.

Let’s first consider the sine and cosine functions. The input of each of these functions is always an angle,
and as you learned in the previous chapter, these angles can take on any real number value. Therefore the
sine and cosine function have the same domain, the set of all real numbers, R.We can determine the range
of the functions if we think about the fact that the sine of an angle is the y-coordinate of the point where the
terminal side of the angle intersects the unit circle. The cosine is the x-coordinate of that point. Now recall
that in the unit circle, we defined the trig functions in terms of a triangle with hypotenuse 1.
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In this right triangle, x and y are the lengths of the legs of the triangle, which must have lengths less than 1,
the length of the hypotenuse. Therefore the ranges of the sine and cosine function do not include values
greater than one. The ranges do, however, contain negative values. Any angle whose terminal side is in
the third or fourth quadrant will have a negative y-coordinate, and any angle whose terminal side is in the
second or third quadrant will have a negative x-coordinate.

In either case, the minimum value is -1. For example, cos (180o) = -1 and sin (270o) = -1. Therefore the sine
and cosine function both have range from -1 to 1.
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The table below summarizes the domains and ranges of these functions:

RangeDomain
Sine

Cosine

Knowing the domain and range of the cosine and sine function can help us determine the domain and range
of the secant and cosecant function. First consider the sine and cosecant functions, which as we showed
above, are reciprocals. The cosecant function will be defined as long as the sine value is not 0. Therefore
the domain of the cosecant function excludes all angles with sine value 0, which are 0o, 180o, 360o, etc.

In Chapter 2 you will analyze the graphs of these functions, which will help you see why the reciprocal rela-
tionship results in a particular range for the cosecant function. Here we will state this range, and in the review
questions you will explore values of the sine and cosecant function or order to begin to verify this range, as
well as the domain and range of the secant function.

RangeDomain

orCosecant

orSecant

Now let’s consider the tangent and cotangent functions. The tangent function is defined as .
Therefore the domain of this function excludes angles for which the ordered pair has an x-coordinate of 0:

90o, 270o, etc. The cotangent function is defined as , so this function’s domain will exclude angles
for which the ordered pair has a y-coordinate of 0: 0o, 180o, 360o, etc. As you will learn in chapter 3 when
you study the graphs of these functions, there are no restrictions on the ranges.

RangeDomainFunction
Tangent

Cotangent

Knowing the ranges of these functions tells you the values you should expect when you determine the value
of a trig function of an angle. However, for many problems you will need to identify the sign of the function
of an angle: Is it positive or negative?

In determining the ranges of the sine and cosine functions above, we began to categorize the signs of these
functions in terms of the quadrants in which angles lie. The figure below summarizes the signs for angles
in all 4 quadrants.
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Example 2: State the sign of each expression.

c. tan(370)ob. csc(220)oa. cos(100)o

Solution:

a. The angle 100o is in the second quadrant. Therefore the x-coordinate is negative and so cos(100o) is
negative.

b. The angle 220o is in the third quadrant. Therefore the y-coordinate is negative. So the sine, and the
cosecant are negative.

c. The angle 370o is in the first quadrant. Therefore the tangent value is positive.

So far we have considered relationships between pairs of functions: the six trig functions can be grouped
in pairs as reciprocals. Now we will consider relationships among three trig functions.

Quotient Identities

The definitions of the trig functions led us to the reciprocal identities above. They also lead us to another
set of identities, the quotient identities.

Consider first the sine, cosine, and tangent functions. For angles of rotation (not necessarily in the unit circle)
these functions are defined as follows:
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Given these definitions, we can show that , as long as :

.

The equation is therefore an identity that we can use to find the value of the tangent function,
given the value of the sine and cosine.

Example 3: If and , what is the value of ?

Solution:

Example 4: Show that

Solution:

This is also an identity that you can use to find the value of the cotangent function, given values of sine and
cosine. Both of the quotient identities will also be useful in chapter 3, in which you will prove other identities.

Pythagorean Identities

The final set of identities that we will examine in this lesson are called the Pythagorean identities because
they rely on the Pythagorean Theorem. In previous lessons we used the Pythagorean theorem to find the
sides of right triangles. Consider once again the way that we defined the trig functions in lesson 4. Let’s look
at the unit circle:
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The legs of the right triangle are x, and y. The hypotenuse is 1. Therefore the following equation is true for
all x and y on the unit circle:

x 2 + y 2 = 1

Now remember that on the unit circle, and . Therefore the following equation is an
identity:

Note: Writing the exponent 2 after the cos and sin is the standard way of writing exponents. Just keeping

mind that means and means .

We can use this identity to find the value of the sine function, given the value of the cosine, and vice versa.
We can also use it to find other identities.

Example 5: If what is the value of ? Assume that is an angle in the first quadrant.

Solution:
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Remember that it was given that is an angle in the first quadrant. Therefore the sine value is positive, so

.

Example 6: Use the identity to show that

Solution:

Divide both sides by .

Write the squared functions in terms of their factors.

Use the quotient and reciprocal identities.

Write the functions as squared functions.

Lesson Summary

In this lesson we have examined relationships between and among the trig functions. The reciprocal identities
tell us the relationship between pairs of trig functions that are reciprocals of each other. The quotient identities
tell us relationships among functions in threes: the tangent function is the quotient of the sine and cosine
functions, and the cotangent function is the reciprocal of this quotient. The Pythagorean identities, which
rely on the Pythagorean theorem, also tell us relationships among functions in threes. Each identity can be
used to find values of trig functions, and as well as to prove other identities, which will be a focus of chapter
3. We can also use identities to determine the domain and range of functions, which will be useful in chapter

79



2, where we will graph the six trig functions.

Points to Consider

1. How do you know if an equation is an identity? [hint: you could consider using a the calculator and
graphing a related function, or you could try to prove it mathematically.]

2. How can you verify the domain or range of a function?

Review Questions

1. Use reciprocal identities to give the value of each expression.

b.
a.

2. In the lesson, the range of the cosecant function was given as: or .

a. Use a calculator to fill in the table below. Round values to 4 decimal places.

b. Use the values in the table to explain in your own words what happens to the values of the cosecant
function as the measure of the angle approaches 0 degrees.

c. Explain what this tells you about the range of the cosecant function.

d. Discuss how you might further explore values of the sine and cosecant to better understand the range
of the cosecant function.

CscSinAngle
10
5
1
0.5
0.1
0
-.1
-.5
-1
-5
-10

3. In the lesson the domain of the secant function were given:

Domain:

Explain why certain values are excluded from the domain.

4. State the quadrant in which each angle lies, and state the sign of each expression

d. tan(110o)c. cot(325o)b. cos(200o)a. sin(80o)
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5. If and , what is the value of ?

6. Use quotient identities to explain why the tangent and cotangent function have positive values for angles
in the third quadrant.

7. If , what is the value of ? Assume that is an angle in the first quadrant.

8. If , what is the value of ? Assume that is an angle in the first quadrant.

9. Show that .

10. Explain why it is necessary to state the quadrant in which the angle lies for problems such as #7.

Answers

1.

a. ¼

b. 3/1 = 3

2.

a.

CscSinAngle
5.759.173710
11.4737.08725
57.2987.01751
114.5930.00870.5
572.9581.00180.1
undefined00
-572.9581-.0018-.1
-114.5930-.0087-.5
-57.2987-.0175-1
-11.4737-.0872-5
-5.759-.1737-10

b. As the angle gets smaller and smaller, the cosecant values get larger and larger.

c. The range of the cosecant function does not have a maximum, like the sine function. The values get
larger and larger.

d. Answers will vary. For example, if we looked at values near 90 degrees, we would see the cosecant
values get smaller and smaller, approaching 1.

3. The values 90, 270, 450, etc, are excluded because they make the function undefined.

4.

a. Quadrant 1; positive

81



b. Quadrant 3; negative

c. Quadrant 4; negative

d. Quadrant 2; negative

5.

6. The ratio of sine and cosine will be positive in the third quadrant because sine and cosine are both negative
in the third quadrant.

7.

8.

9.

10. Using the Pythagorean identities results in a quadratic equation, which will have two solutions. Stating
that the angle lies in a particular quadrant tells you which solution is the actual value of the expression. In
#7, the angle is in the first quadrant, so both sine and cosine must be positive.

Vocabulary

The domain of a function is the set of all input (x) values for which the function is de-
fined.

Domain

An identity is an equation that is always true, as long as the variables and expressions
involved are defined.

Identity

A quotient is the result of division. A fraction is one representation of a quotient.Quotient
The range of a function is the set of all output (y) values.Range
The reciprocal of a fraction is the fraction obtained by interchanging the numerator
and denominator. That is, if you “flip over” a fraction, the result is the reciprocal.

Reciprocal

Applications of Right Triangle Trigonometry

Learning objectives

A student will be able to:

• Solve right triangles.
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• Solve real world problems that require you to solve a right triangle.

Introduction

In this lesson we will return to right triangle trigonometry. Many real situations involve right triangles. In your
previous study of geometry you may have used right triangles to solve problems involving distances, using
the Pythagorean Theorem. In this lesson you will solve problems involving right triangles, using your
knowledge of angles and trigonometric functions. We will begin by solving right triangles, which means
identifying all the measures of all three angles and the lengths of all three sides of a right triangle. Then we
will turn to several kinds of problems.

Solving Right Triangles

You can use your knowledge of the Pythagorean Theorem and the six trigonometric functions to solve a
right triangle. Because a right triangle is a triangle with a 90 degree angle, solving a right triangle requires
that you find the measures of one or both of the other angles. How you solve will depend on how much in-
formation is given. The following examples show two situations: a triangle missing one side, and a triangle
missing two sides.

Example 1: Solve the triangle shown below.

Solution:

We need to find the lengths of all sides and the measures of all angles. In this triangle, two of the three sides
are given. We can find the length of the third side using the Pythagorean Theorem:

= 10282 + b 2

= 10064 + b 2

= 36b 2

= 6 b = 6b

(You may have also recognized the “Pythagorean Triple,” 6, 8, 10, instead of carrying out the Pythagorean
Theorem.)

You can also find the third side using a trigonometric ratio. Notice that the missing side, b, is adjacent to
angle A, and the hypotenuse is given. Therefore we can use the cosine function to find the length of b:
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We could also use the tangent function, as the opposite side was given. It may seem confusing that you
can find the missing side in more than one way. The point is, however, not to create confusion, but to show
that you must look at what information is missing, and choose a strategy. Overall, when you need to identify
one side of the triangle, you can either use the Pythagorean Theorem, or you can use a trig ratio.

To solve the above triangle, we also have to identify the measures of all three angles. Two angles are given:
90 degrees and 53.13 degrees. We can find the third angle using the triangle angle sum:

180 - 90 - 53.13 = 36.87o.

Now let’s consider a triangle that has two missing sides.

Example 2: Solve the triangle shown below.

Solution:

In this triangle, we need to find the lengths of two sides. We can find the length of one side using a trig ratio.
Then we can find the length of the third side either using a trig ratio, or the Pythagorean Theorem.

We are given the measure of angle A, and the length of the side adjacent to angle A. If we want to find the
length of the hypotenuse, c, we can use the cosine ratio:

If we want to find the length of the other leg of the triangle, we can use the tangent ratio. (Why is this a better
idea than to use the sine?)
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Now we know the lengths of all three sides of this triangle. In the review questions, you will verify the values
of c and a using the Pythagorean Theorem. Here, to finish solving the triangle, we only need to find the
measure of angle B:

180 - 90 - 40 = 50o

Notice that in both examples, one of the two non-right angles was given. If neither of the two non-right angles
is given, you will need new strategy to find the angles. You will learn this strategy in chapter 4.

Angles of Elevation and Depression

You can use right triangles to find distances, if you know an angle of elevation or an angle of depression.
The figure below shows each of these kinds of angles.

The angle of elevation is the angle between the horizontal line of sight and the line of sight up to an object.
For example, if you are standing on the ground looking up at the top of a mountain, you could measure the
angle of elevation. The angle of depression is the angle between the horizontal line of sight and the line of
sight down to an object. For example, if you were standing on top of a hill or a building, looking down at an
object, you could measure the angle of depression. You can measure these angles using a clinometer or a
theodolite. People tend to use clinometers or theodolites to measure the height of trees and other tall objects.
Here we will solve several problems involving these angles and distances.

Example 3: How tall is the tree?

You are standing 20 feet away from a tree, and you measure the angle of elevation to be 38o. How tall is
the tree?

Solution:

The solution depends on your height, as you measure the angle of elevation from your line of sight. Assume
that you are 5 feet tall. Then the figure below shows the triangle you are solving.
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The figure shows us that once we find the value of T, we have to add 5 feet to this value to find the total
height of the triangle. To find T, we should use the tangent value:

The next example shows an angle of depression.

Example 4: You are standing on top of a building, looking at park in the distance. The angle of depression
is 53o. If the building you are standing on is 100 feet tall, how far away is the park? Does your height matter?

Solution:

If we ignore the height of the person, we solve the following triangle:
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Given the angle of depression is 53o, angle A in the figure above is 37o. We can use the tangent function to
find the distance from the building to the park:

If we take into account the height if the person, this will change the value of the adjacent side. For example,
if the person is 5 feet tall, we have a different triangle:

If you are only looking to estimate a distance, than you can ignore the height of the person taking the mea-
surements. However, the height of the person will matter more in situations where the distances or lengths
involved are smaller. For example, the height of the person will influence the result more in the tree height
problem than in the building problem, as the tree is closer in height to the person than the building is.

Right Triangles and Bearings

We can also use right triangles to find distances using angles given as bearings. In navigation, a bearing is
the direction from one object to another. In air navigation, bearings are given as angles rotated clockwise
from the north. The graph below shows an angle of 70 degrees:
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It is important to keep in mind that angles in navigation problems are measured this way, and not the same
way angles are measured in the unit circle. Further, angles in navigation and surveying may also be given
in terms of north, east, south, and west. For example, N70o E refers to an angle from the north, towards the
east, while N70o W refers to an angle from the north, towards the west. N70o E is the same as the angle
shown in the graph above. N70o W would result in an angle in the second quadrant.

The following example shows how to use a bearing to find a distance.

Example 5: A ship travels on a N50o E course. The ship travels until it is due north of a port which is 10
nautical miles due east of the port from which the ship originated. How far did the ship travel?
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Solution:

The angle opposite d is the complement of 50o, which is 40o. Therefore we can find d using the cosine
function:

Other Applications of Right Triangles

In general, you can use trigonometry to solve any problem that involves right triangle. The next few examples
show different situations in which a right triangle can be used to find a length or a distance.

Example 6: The wheelchair ramp

In lesson 4 we introduced the following situation: you are building a ramp so that people in wheelchairs can
access a building. If the ramp must have a height of 8 feet, and the angle of the ramp must be about 5o, how
long must the ramp be?

Given that we know the angle of the ramp and the length of the side opposite the angle, we can use the
sine ratio to find the length of the ramp, which is the hypotenuse of the triangle:
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This may seem like a long ramp, but in fact a 5o ramp angle is what is required by the Americans with Dis-
abilities Act (ADA). This explains why many ramps are comprised of several sections, or have turns. The
additional distance is needed to make up for the small slope.

Right triangle trigonometry is also used for measuring distances that could not actually be measured. The
next example shows a calculation of the distance between the moon and the sun. This calculation requires
that we know the distance from the earth to the moon. In chapter 5 you will learn the Law of Sines, an
equation that is necessary for the calculation of the distance from the earth to the moon. In the following
example, we assume this distance, and use a right triangle to find the distance between the moon and the
sun.

Example 7: The earth, moon, and sun create a right triangle during the first quarter moon. The distance
from the earth to the moon is about 240, 002.5 miles. What is the distance between the sun and the moon?

Solution:

Let d = the distance between the sun and the moon. We can use the tangent function to find the value of d:

Therefore the distance between the sun and the moon is much larger than the distance between the earth
and the moon.

(Source: www.scribd.com, Trigonometry from Earth to the Stars.)

Lesson Summary

In this lesson we have returned to the topic of right triangle trigonometry, to solve real world problems that
involve right triangles. To find lengths or distances, we have used angles of elevation, angles of depression,
angles resulting from bearings in navigation, and other real situations that give rise to right triangles. In later
chapters, you will extend the work of this chapter: you will learn to find missing angles using trig ratios, and
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you will learn how to determine the angles and sides of non-right triangles.

Points to Consider

1. In what kinds of situations do right triangles naturally arise?

2. Are their right triangles that cannot be solved?

Trigonometry can solve problems at astronomical scale as well as earthly even problems at a molecular or
atomic scale. Why is this true?

Review Questions

1. Solve the triangle

2. Two friends are writing practice problems to study for a trigonometry test. Sam writes the following problem
for his friend Anna to solve:

In right triangle ABC, the measure of angle C is 90 degrees, and the length of side c is 8 inches. Solve the
triangle.

Anna tells Sam that the triangle cannot be solved. Sam says that she is wrong. Who is right? Explain your
thinking.

3. Use the Pythagorean Theorem to verify the sides of the triangle in example 2.

4. Estimate themeasure of angle B in the triangle below using the fact that and
. Use a calculator to find sine values. Estimate B to the nearest degree.

5. The angle of elevation from the ground to the top of a flagpole is measured to be 53o. If the measurement
was taken from 15 feet away, how tall is the flagpole?

6. From the top of a hill, the angle of depression to a house is measured to be 14o. If the hill is 30 feet tall,
how far away is the house?
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7. An airplane departs city A and travels at a bearing of 100o. City B is directly south of city A. When the
plane is 200 miles east of city B, how far has the plan traveled? How far apart are city A and City B?

8. The modern building shown below is built with an outer wall (shown on the left) that is not at a 90-degree
angle with the floor. The wall on the right is perpendicular to both the floor and ceiling.

What is the length of the slanted outer wall, w? What is the length of the main floor, f?

9. A surveyor is measuring the width of a pond. She chooses a landmark on the opposite side of the pond,
and measures the angle to this landmark from a point 50 feet away from the original point. How wide is the
pond?

10. Find the length of side x:
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Answers

1.

2. Anna is correct. There is not enough information to solve the triangle. That is, there are infinitely many
right triangles with hypotenuse 8. For example:

3. 62 + 5.032 = 36 + 25.3009 = 61.3009 = 7.832.

4.

5. About 19.9 feet tall

6. About 120.3 feet

7. The plane has traveled about 203 miles.

The two cities are 35 miles apart.

8.
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f 114.44 ft

w 165.63 ft

9. About 41.95 feet

10. About 7.44

Vocabulary

The angle between the horizontal line of sight, and the line of sight down to a given
point

Angle of depression

The angle between the horizontal line of sight, and the line of sight up to a given pointAngle of elevation
The direction from one object to another, usually measured as an angleBearings
A device used to measure angles of elevation or depressionClinometer
A device used to measure angles of elevation or depressionTheodolite
A nautical mile is a unit of length that corresponds approximately to one minute of
latitude along any meridian. A nautical mile is equal to 1.852 meters.

Nautical Mile
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2. Circular Functions

Radian Measure

Learning Objectives

A student will be able to:

• Define radian measure.

• Convert angle measure from degrees to radians and from radians to dgrees.

• Calculate the values of the 6 trigonometric functions for special angles in terms of radians or degrees.

Introduction

In this lesson students will be introduced to the radian as a common unit of angle measure in trigonometry.
It is important that they become proficient converting back and forth between degrees and radians. Eventually,
much like learning a foreign language, students will become comfortable with radian measure when they
can learn to “think” in radians instead of always converting from degree measure. Finally, students will review
the calculations of the basic trigonometry functions of angles based on 30, 45, and 60 degree rotations.

Understanding Radian Measure

Many units of measure come from seemingly arbitrary and archaic roots. Some even change over time. The
meter, for example was originally intended to be based on the circumference of the earth and now has an
amazingly complicated scientific definition! See the resources for further reading. We typically use degrees
to measure angles. Exactly what is a degree? A degree is 1/360th of a complete rotation around a circle.
Radians are alternate units used to measure angles in trigonometry. Just as it sounds, a radian is based
on the radius of a circle. One radian is the angle created by bending the radius length around the arc of a
circle. Because a radian is based on an actual part of the circle rather than an arbitrary division, it is a much
more natural unit of angle measure for upper level mathematics and will be especially useful when you move
on to study calculus.

What if we were to rotate all the way around the circle? Continuing to add radius lengths, we find that it takes
a little more than 6 of them to complete the rotation.
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But the arc length of a complete rotation is really the circumference! The circumference is equal to the 2π
times the length of the radius. 2π is approximately 6.28, so the circumference is a little more than 6 radius
lengths. Or, in terms of radian measure, a complete rotation (360 degrees) is 2π radians.

360 degrees = 2π radians

With this as our starting point, we can find the radian measure of other angles easily. Half of a rotation, or
180 degrees, must therefore be π radians, and 90 degrees must be one-half pi. Complete the table below:

Angle in RadiansAngle in Degrees
90

45
30
60
75

Because 45 is half of 90, half of one-half π is one-fourth π. 30 is one-third of a right angle, so multiplying
gives:

and because 60 is twice as large as 30:

Here is the completed table:

96



Angle in RadiansAngle in Degrees
90

45

30

60

75

The last value was found by adding the radian measures of 30 and 45:

There is a formula to help you convert between radians and degrees that you may already have discovered
and we will discuss shortly, however, most angles that you will commonly use can be found easily from the
values in this table, so learning them based on the circumference should help increase your comfort level
with radians greatly. For example, most students find it easy to remember 30 and 60. 30 is π over 6 and
60 is π over 3 . If you know these angles, you can find any of the special angles that have reference angles
of 30 and 60 because they will all have the same denominators. The same is true of multiples of pi over 4
(45 degrees) and pi over 2 (90 degrees).

”Count”ing in Radians

Do you remember as a child watching the Count on Sesame Street? He would count objects like apples,
“one apple, two apples, three apples…” and then laugh fiendishly as lightning and thunder erupted around
him. Well, to be successful with radian measure, you need to learn to count all over again using radians in-
stead of apples. Let’s start counting right angles, which are really pi/2 radians.

“one π over 2, two π over 2 (really just π), three π over 2 (a ha, ha, ha, ha!!!), four π over 2 (which is really
2π)”
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Figure: 90 degree rotations expressed in radian measure.

You just covered all the angles that are multiples of 90 degrees in one rotation.

Here is the drawing for 45-degree angles:

Figure: 45-degree rotations

Notice that the additional angles in the drawing all have reference angles of 45 degrees and their radian

measures are all multiples of . Complete the following radian measures by counting in multiples of

and :
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Figure: 60-degree reference angles

Figure: 30-degree reference angles

Figure: 60-degree reference angle radian measure through one rotation.
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Figure: 30-degree reference angle radian measure through one rotation

Notice that all of the angles with 60-degree reference angles are multiples of , and all of those with 30-

degree reference angles are multiples of . If you can learn to count in these terms, rather than constantly
having to convert back to degrees, it will help you to be effective dealing with most radian measures that
you will encounter.

For other examples there is a formula. Remember that:

π radians = 180 degrees

If you divide both sides of this equality by 180 you will uncover the formula for easy conversion:

so

If we have a degree measure and wish to convert it to radians, then manipulating the equation above gives:

Example 1

Convert to degree measure
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Well, if you followed the last section, you should recognize that this angle is a multiple of (or 60 degrees),

so there are 11, ’s in this angle, .

Here is what it would look like using the formula:

Example 2

Convert -120o to radian measure.Leave the answer in terms of π.

Using the formula:

and reducing to lowest terms gives:

However, you could also realize that 120 is 2 × 60. Since 60o is radians, then 120 is 2, ’s, or .

Make it negative and you have the answer, .

Example 3

Express radians in degree measure.

***Note: Sometimes students have trouble remembering if it is or . It might be helpful to remember
that radian measure is almost always expressed in terms of π. If you want to convert from radians to degrees,
you want the π to cancel out when you multiply, so it must be in the denominator.
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Radians, Degrees, and a Calculator

Most scientific and graphing calculators have a MODE setting that will allow you to either convert between
the two, or to find approximations for trig functions using either measure. It is important that if you are using
your calculator to estimate a trig function that you know which mode you are using. Look at the following
screen:

If you entered this expecting to find the sine of 30 degrees you would realize based on the last chapter that

something is wrong because it should be . In fact, as you may have suspected, the calculator is interpreting
this as 30 radians . In this case, changing the mode to degrees and recalculating we give the expected
result.
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Scientific calculators will usually have a 3-letter display that shows either DEG or RAD to tell you which
mode you are in. Always check before calculating a trig ratio!!

Example 4

Find the tangent of

First of all, shame on you if you are using a calculator to find this answer! You should know this one! is

a 2nd quadrant angle with a reference angle of (45 degrees). The tangent of is 1, and because tangent
is negative in quadrant II, the answer is –1. To verify this on your calculator, make sure the mode is set to

Radians, and evaluate the .

Example 5

Find the value of to four decimal places.

Again, you should know the exact value based on your previous work. has a reference angle of

(30 degrees) and the sign of is . Because is in the 4th quadrant, the cosine is positive and so

the exact answer is . Using the calculator gives:
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Which, when rounded, is 0.8660. You can verify that it is indeed a very good approximation of our exact
answer using your calculator as well.

Example 6

Convert 1 radian to degree measure.

Many students get so used to using π in radian measure that they incorrectly think that 1 radian means
1π radians. While it is more convenient and common to express radian measure in terms of π, don’t loose
sight of the fact that π radians is actually a number! It specifies an angle created by a rotation of approximately
3.14 radius lengths. So 1 radian is a rotation created by an arc that is only a single radius in length. Look
back at Figure 1.1. What would you estimate the degree measure of this angle to be? It is certainly acute
and appears similar to a 60º angle. To find a closer approximation, we will need the formula and a calculator.

So 1 radian would be degrees. Using any scientific or graphing calculator will give a reasonable approx-
imation for this degree measure, approximately 57.3o.

Example 7

Find the radian measure of an acute angle θ with a sin θ = 0.7071.

First of all, it is important to understand that your calculator will most likely not give you radian measure
in terms of π, but a decimal approximation instead. In this case you need to use the inverse sine function.

104



This answer may not look at all familiar, but 0.7071 may sound familiar to you. It is an approximation of

. So, as you may know, this is really a 45o angle. Sure enough, evaluating will show that the calculator
is giving its best approximation of the radian measure.

If it bothers you that they are not exactly the same, good, it should! Remember that 0.7071 is only an ap-

proximation of , so we are already starting off with some rounding error.

Lesson Summary

Angles can be measure in degrees or radians. A radian is the angle defined by an arc length equal to the
radius length bent around the circle. One complete rotation around a circle, or 360o is equal to 2π radians.
To convert from degrees to radians you use the following formula:

To convert from radians to degrees the formula becomes:

Much like learning a foreign language where you have to memorize vocabulary to be successful, it will be
very helpful for you to understand and be able to communicate in radian measure if you become familiar

with the radian measures of the quadrant angles and
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special angles

Further Reading

http://www.mel.nist.gov/div821/museum/timeline.htm

http://en.wikipedia.org/wiki/Degree_(angle)

http://www.joyofpi.com/

Review Exercises

1. The following picture is a sign for a store that sells cheese.

(Source: Derived from http://commons.wikimedia.org/wiki/File:Nealsyarddairy1.jpg, License: GNU Free
Documentation License)

a. Estimate the degree measure of the angle of the circle that is missing.

b. Convert that measure to radians.

c. What is the radian measure of the part of the cheese that remains?

2. Convert the following degree measures to radians. Give exact answers in terms of π, not decimal approx-
imations.

a. 240o

b. 270o

c. 315o

d. –210o

e. 120o
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f. 15o

g. -450o

h. 72o

i. 720o

j. 330o

3. Convert the following radian measures to degrees:

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

4. The drawing shows all the quadrant angles as well as those with reference angles of 30o, 45o, and 60o.
On the inner circle, label all angles with their radian measure in terms of π and on the outer circle, label all
the angles with their degree measure.
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5. Using a calculator, find the approximate degree measure (to the nearest tenth) of each angle expressed
in radians.

a.

b. 1 radian

c. 3 radian

d.

6. Gina wanted to calculate the cosine of 210 and got the following answer on her calculator:

Fortunately, Kylie saw her answer and told her that it was obviously incorrect.

a. Write the correct answer.

b. Explain what she did wrong.
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7. Complete the following chart. Write your answers in simplest radical form.

Tan(x)Cos(x)Sin(x)x
5π/4
11π/6
2π/3
π/2
7π/2

Answers

1. a. Answer may vary, but 120o seems reasonable.

b. Based on the answer in part a., the ration masure would be

c. Again, based on part a.,

2. a.

b.

c.

d.

e.

f.

g.

h.

i.

j.
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3. a. 90o

b. 396o

c. 120o

d. 540o

e. 630o

f. 54o

g. 75o

h. -210o

i. 1440o

j. 48o

4.

5. a. 154.3o

b. 57.3

c. 171.9

d. 327.3
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6. a. The correct answer is

b. Her calculator was is the wrong mode and she calculated the sine of 210 radians.

7.

Tan(x)Cos(x)Sin(x)x
15π/4

11π/6

2π/3

undefined01π/2
undefined0-17π/2

Applications of Radian Measure

Learning Objectives

A student will be able to:

• Solve problems involving angles of rotation using radian measure.

• Solve problems by calculating the length of an arc.

• Solve problems by calculating the area of a sector.

• Approximate the length of a chord given the central angle and radius.

Introduction

In this lesson students will apply radian measure to various problem-solving contexts involving rotations.

Rotations

Example 1

The hands of a clock show 11:20. Express the obtuse angle formed by the hour and minute hands in radian
measure to the nearest tenth of a radian.

The following diagram shows the location of the hands at the specified time.

111



Because there are 12 increments on a clock, the angle between each hour marking on the clock is

(or 30o). So, the angle between the 12 and the 4 is (or 120o). Because the rotation from 12
to 4 is one-third of a complete rotation, it seems reasonable to assume that the hour hand is moving contin-

uously and has therefore moved one-third of the distance between the 11 and the 12. So, ,

and the total measure of the angle is therefore . Using a calculator to ap-
proximate the angle would give:

To the nearest tenth of a radian it is 2.3 radians.

Length of Arc

The length of an arc on a circle depends on both the angle of rotation and the radius length of the circle. If
you recall from the last lesson, we defined a radian as the length of the arc the measure of an angle θ in
radians is defined as the length of the arc cut off by one radius length, so that a half-rotation is π radians,
or a little more than 3 radius lengths around the circle. What if the radius is 4 cm? The length of the half-
circle arc would be π radius lengths, or 4π cm in length.
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This results in a formula that can be used to calculate the length of any arc.

s = rθ,

where s is the length of the arc, r is the radius, and θ is the measure of the angle in radians.

Solving this equation for θ will give us a formula for finding the radian measure given the arc length and the
radius length:

Example 2

The free-throw line on an NCAA basketball court is 12 ft wide. In international competition, it is only about
11.81 ft. How much longer is the half circle above the free-throw line on the NCAA court?

Arc Length Calculations:
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So the answer is approximately 12π - 11.81π ≈ 0.19π

This is approximately 0.6 ft, or about 7.2 inches longer.

Example 3

Two connected gears are rotating. The smaller gear has a radius of 4 inches and the larger gear’s radius
is 7 inches. What is the angle through which the larger gear has rotated when the smaller gear has made
one complete rotation?

Because the blue gear performs one complete rotation, the length of the arc traveled is:

s = rθ

s = 4 x 2π

So, an 8π arc length on the larger circle would form an angle as follows:
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So the angle is approximately 3.6 radians.

Area of a Sector

One of the most common geometric formulas is the area of a circle:

A = πr2

In terms of angle rotation, this is the area created by 2π radians.

2π radian angle = πr2 area

A half-circle, or π radian rotation would create a section, or sector of the circle equal to half the area or:

So an angle of 1 radian would define an area of a sector equal to:

From this we can determine the area of the sector created by any angle, θ radians, to be:

Example 4

Crops are often grown using a technique called center pivot irrigation that results in circular shaped fields.
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(Source: http://en.wikipedia.org/wiki/Image:PivotIrrigationOnCotton.jpg, License: PD-USGov-NOAA)

Here is a satellite image taken over fields in Kansas that use this type of irrigation system. You can read
more about this at: http://en.wikipedia.org/wiki/Center_pivot_irrigation

(Source: http://upload.wikimedia.org/wikipedia/commons/e/e4/Crops_Kansas_AST_20010624.jpg, License:
PD-USGov-NOAA)

If the irrigation pipe is 450 m in length, what is the area that can be irrigated after a rotation of radians?

Using the formula:
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The area is approximately 212,058 square meters.

Length of a Chord

You may recall from your Geometry studies that a chord is a segment that begins and ends on a circle.

is a chord in the circle.

We can calculate the length of any chord if we know the angle measure and the length of the radius. Because
each endpoint of the chord is on the circle, the distance from the center to A and B is the same as the radius
length.
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Next, if we bisect angle, the angle bisector must be perpendicular to the chord and bisect it (we will leave
the proof of this to your Geometry class!). This forms a right triangle.

We can now use a simple sine ratio to find half the chord, called c here, and double the result to find the
length of the chord.
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So the length of the chord is:

Example 5

Find the length of the chord of a circle with radius 8 cm and a central angle of 110o. Approximate your answer
to the nearest mm.

It’s always a good problem solving technique to estimate the answer first. A thought process for estimating
the measure might look something like this:

The angle is slightly more than a 90o, or radians. radians is slightly more than 1.5 radius lengths.
One and a half radii would be 12, so we might expect the answer to be a little more than 12 cm. Let’s see
how the actual answer compares.

We must first convert the angle measure to radians:

Using the formula, half of the chord length should be the radius of the circle times the sine of half the angle.

(Make sure your calculator is in radians!!!)

Multiply this result by 2.
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So, the length of the arc is approximately 13.1 cm. This seems very reasonable based on our estimate.

Further Reading

http://en.wikipedia.org/wiki/Basketball_court

http://en.wikipedia.org/wiki/Center_pivot_irrigation

http://www.colorado.gov/dpa/doit/archives/history/symbemb.htm#Flag

Review Exercises

1. The following image shows a 24-hour clock in Curitiba, Paraná, Brasil.

(Source: http://commons.wikimedia.org/wiki/File:24_hour_analog_clock_rua_24_horas_curitiba_brasil.jpg,
License: GNU-Free Documentation License)

a. What is the angle between each number of the clock expressed in:

i. exact radian measure in terms of π ?

ii. to the nearest tenth of a radian?

iii. in degree measure?

b. Estimate the measure of the angle between the hands at the time shown in:

i. to the nearest whole degree

ii. in radian measure in terms of π

2. The following picture is a window of a building on the campus of Princeton University in Princeton, New
Jersey.
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(Source: http://commons.wikimedia.org/wiki/File:Alexander_Hall_Princeton_University_NewJersey_USA.jpg,
License: CC by SA 2.0)

a. What is the exact radian measure in terms of π between two consecutive circular dots on the small circle
in the center of the window?

b. If the radius of this circle is about 0.5 m, what is the length of the arc between the centers of each consec-
utive dot? Round your answer to the nearest cm.

3. Now look at the next larger circle in the window.
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a. Find the exact radian measure in terms of π between two consecutive dots in this window.

b. The radius of the glass portion of this window is approximately 1.20 m. Calculate an estimate of the length
of the highlighted chord to the nearest cm. Explain the reasoning behind your solution.

4. The state championship game is to be held at Ray Diaz Memorial Arena. The seating forms a perfect
circle around the court. The principal of Archimedes High School is sent the following diagram showing the
seating allotted to the students at her school.

It is 55 ft from the center of the court to the beginning of the stands and 110 ft from the center to the end.
Calculate the approximate number of square feet each of the following groups has been granted:

a. the students from Archimedes.

b. general admission.
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c. the press and officials.

5. This is an image of the state flag of Colorado

(Source: http://commons.wikimedia.org/wiki/Image:Flag_of_Colorado.svg, License: Public Domain)

The detailed description of the proportions of the flag can be found at:

http://www.colorado.gov/dpa/doit/archives/history/symbemb.htm#Flag

It turns out that the diameter of the gold circle is the total height of the flag (the same width as the yellow

stripe) and the outer diameter of the red circle is of the total height of the flag. The angle formed by the

missing portion of the red band is radians. In a flag that is 33 inches tall, what is the area of the red portion
of the flag to the nearest square inch?

Answers

1. a. i.

ii. ≈ 0.3 radians

iii. 15o

b. i. 20o. Answers may vary, anything above 15o and less than 25o is reasonable.

ii. Again, answers may vary

2. a. π/6

b. ≈ 26 cm

3. a. π/6

b. Let’s assume, to simplify, that the chord stretches to the center of each of the dots. We need to find the
measure of the central angle of the circle that connects those two dots.
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Since there are 13 dots, this angle is . The length of the chord then is:

The chord is approximately 2.30 cm.

4. Each section is radians. The area of one section of the stands is therefore the area of the outer sector
minus the area of the inner sector:
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The area of each section is approximately 2376 ft2.

a. The students have 4 sections or ≈ 9503 ft2

b. There are 3 general admission sections or ≈ 7127 ft2

c. There is only one press and officials section or ≈ 2376 ft2

5. There are many difference approaches to the problem. Here is one possibility:

First, calculate the area of the red ring as if it went completely around the circle:
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Next, calculate the area of the total sector that would form the opening of the “c”

Then, calculate the area of the yellow sector and subtract it from the previous answer.

Finally, subtract this answer from the first area calculated.
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The area is approximately 998 in2

Circular Functions of Real Numbers

Learning Objectives

A student will be able to:

• Identify the 6 basic trigonometric ratios as continuous functions of the angle of rotation around the origin.

• Identify the domain and range of the six basic trigonometric functions.

• Identify the radian and degree measure, as well as the coordinates of points on the unit circle for the
quadrant angles, and those with reference angles of 30o, 45o, and 60o.

Introduction

In this lesson students will view the trigonometric ratios of angles of rotation around the coordinate grid as
a continuous, circular function. The connection will be made between how the ratios change as the angle
of rotation increases or decreases, and how the graph of the function depicts that change.

y = sin(x), The Sine Graph

By now, you have become very familiar with the specific values of sine, cosine, and tangents for certain
angles of rotation around the coordinate grid. In mathematics, we can often learn a lot by looking at how
one quantity changes as we consistently vary another. In this case, what will happen to the value of, let’s
say, the sine of the angle as we gradually rotate around the coordinate grid. We would be looking at the
sine value as a function of the angle of rotation around the coordinate grid. We refer to any such function
as a circular function, because they can be defined using the unit circle. First of all, you may recall from

earlier sections that the sine of an angle in standard position in the coordinate grid is the ratio of , where
y is the y-coordinate of any point on the angle and r is the distance from the origin to that point.

Because the ratios are the same for a given angle, regardless of the length of the radius r, we can use the
unit circle to make things a little more convenient.
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The denominator is now 1, so we have the simpler expression sin(θ) = y. The advantage to this is that we
can use the y-coordinate of the point on the unit circle to trace the value of sin(θ) through a complete rotation.
Imagine if we start at 0 and then rotate counter-clockwise through gradually increasing angles. Since the y-
coordinate is the sine value, watch the height of the point as you rotate.

Through Quadrant I that height gets larger, starting at 0, increasing quickly at first, then slower until the angle
reaches 90o, at which point, the height is at its maximum value, 1.
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As you rotate into the third quadrant, the change in the height now reverses itself and starts to decrease
towards 0.
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When you start to rotate into the third and fourth quadrants, the length of the segment increases, but this
time in a negative direction, growing to –1 at 270o and heading back toward 0 at 360o.

After one complete rotation, even though the angle continues to increase, the sine values will simply repeat
themselves. The same would have been true if we chose to rotate clockwise to investigate negative angles,
and this explains why the sine function is periodic. The period is 2π radians or 360o, because that is the
angle measure required before the sine of the angle will simply repeat the previous sequence of values.

Let’s translate this circular motion into a graph of the sine value vs. the angle of rotation. The following se-
quence of pictures demonstrates the connection. As the angle of rotation increases, watch the y-coordinate
of the point on the angle as it traces horizontally. Ignore the values along the horizontal axis at this point as
they just relative. What is important is that you make the connection between the circular rotation and the
change in the height of the point.
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Notice that once we rotate around once, the point traces back over the same values again. The red curve
that you see is one period of a sine “wave”. If you would like to see this happen in “real time”, look at one
of the links in the readings section or just do a search for Java applets and “sine” online and you will find
many excellent demonstrations.

Let’s look at some specific values so we can graph the sine function more precisely. Since we already know
what happens in between, you can draw a fairly accurate sketch by plotting the points for the quadrant angles
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The value of sin(θ) goes from 0 to 1 to 0 to –1 and back to 0. Graphed along a horizontal axis showing θ, it
would look like this:
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Filling in the gaps in between and allowing for multiple rotations as well as negative angles results in the
graph of y = sin(x) where x is any angle of rotation(usually expressed in radians):

As we have already mentioned, sin(x) has a period of 2π. You should also note that the y-values never go
above 1 or below –1, so the range of a sine wave is {-1 ≤ y ≤ 1}. Because we can continue to spin around
the circle forever, there is no restriction on the angle x, so the domain of sin(x) is all reals.

y = cos(x), The Cosine Graph

In chapter 1, you learned that sine and cosine are very closely related. The cosine of an angle is the same
as the sine of the complementary angle. So, it should not surprise you that sine and cosine waves are very
similar in that they are both periodic with a period of 2π, a range from –1 to 1, and a domain of all real angles.

The cosine of an angle is the ratio of , so in the unit circle, the cosine is the x-coordinate of the point of
rotation. If we trace the x-coordinate through a rotation, you will notice the change in the distance is similar
to sin(x), but cos(x) starts in a different place. The x-coordinate of a 0o angle is 1 and the x-coordinate for
90o is 0, so the cosine value is decreasing from 1 to 0 through the 1st quadrant.
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Here is a similar sequence of rotations to the one we used for sine. This time compare the x coordinate of
the point of rotation with the height of the point as it traces along the horizontal.
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Plotting the quadrant angles and filling in the in-between values shows the graph of y = cos(x)

The graph of y = cos(x) has a period of 2π. Just like sin(x), the x-values never “escape” from the unit circle,
so they stay between -1 and 1. The range of a cosine wave is also {-1 ≤ y ≤ 1}. And also just like the sine
function, there is no restriction on the angle of rotation, so the domain of cos(x) is all reals.

y = tan(x), The Tangent Graph

The graph of the tangent ratio as a function of the angle of rotation presents a few complications. First of
all, the domain is no longer all real angles. As you may remember there are some angles (90o and 270o, for
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example) for which the tangent is not defined. As we will see in this section, the range of tan(x) is actually
all real numbers.

The measurement of each of the six trig functions can be found by using a single segment from the unit
circle, however, the remaining functions are not as obvious as sine and cosine. The name of the tangent
function comes from the tangent line, which is a line that is perpendicular to the radius of a circle at a point
on the circle so that the line touches the circle at exactly one, and only one, point. So, to create the tangent
segment, first we draw a tangent line perpendicular to the x-axis.

If we extend angle θ through the unit circle so that it intersects with the tangent line, the tangent function is
defined as the length of the red segment.

The dashed segment is 1 because it is the radius of the unit circle. Recall that the tangent of θ is , so we
can verify that this segment is indeed the tangent by using similar triangles.
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So, as we increase the angle of rotation, think about how this segment changes. When the angle is 0, the
segment has no length. As we begin to rotate through the first quadrant, it will increase, very slowly at first.
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But, you can see very soon that the value increases past one. As the angle gets closer to 90o, the segment
will need to stretch quite high in order to intersect the extension of the angle and it will grow at a faster and
faster rate.
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As we get very close to the y-axis that the segment gets infinitely large, until when the angle really hits
90o, at which point the extension of the angle and the tangent line will actually be parallel and therefore
never meet!

This means there is no definition for the length of the tangent segment, or as it may be helpful to think of it,
the tangent segment is infinitely large.
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Before continuing, let’s take a look at this portion of the graph through the first quadrant. The tangent starts
at 0, for a 0o angle, then increases slowly at first. That increase gets much steeper and as we approach a
90o rotation.

Again, just a small break in the x-axis on these graphs will make it more clear that these two concepts to
not lie side-by-side on the same coordinate grid.

In fact as we get infinitely close to 90o, the tangent value increases without bound, until when we actually
reach 90o, at which point the tangent is undefined. A line that a graph gets infinitely close to without touching
is called an asymptote. So the tangent function has an asymptote at 90o.
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As we rotate past 90o, now the intersection of the extension of the angle and the tangent line is actually
below the x-axis. This fits nicely with what we know about the tangent for a 2nd quadrant angle being negative.
It will be first be very, very negative, but as the angle rotates, the segment gets shorter, reaches 0, then
crosses back into the positive numbers as the angle enters the 3rd quadrant.
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The segment will again get infinitely large as it approaches 270o. After being undefined at 270o, the angle
crosses into the 4th quadrant and once again changes from being infinitely negative, to approaching zero
as we complete a full rotation.

So, this motion graphed over several rotations would look like this:
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Notice that the x-axis is measured in radians (not in terms of π). Our asymptotes occur every π radians,

starting at . The period of the graph is therefore π radians. The domain is all reals except for the “holes”

at and the range is all real numbers.

The Three Reciprocal Functions: cot(x), csc(x), and sec(x)

Cotangent

Cotangent is the reciprocal of tangent, so it makes sense to generate the circular function for cotangent by
drawing the tangent line at a point on the y-axis and extending the angle, instead of the x-axis.

147



We can verify that this is the case again by using similar triangles. Because the purported cotangent segment
is parallel to the base of the yellow triangle, then angle θ is in the opposite corner and the triangles are indeed
similar, even though their positions are reversed.

So,

Now that we have established the cotangent segment, think about how this segment changes as we rotate
around the coordinate grid starting at 0o. First of all, at 0o itself, the cotangent is undefined because the
segment is parallel to the ray of the angle θ. As we begin to increase the angle of rotation, the segment will
be extremely large and begin to get smaller as we approach 90o, very quickly at first, but then slowing down
as it gets closer to 0 length at 90o.
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After passing 90o, the segment will again start to lengthen, but this time it will be in the negative direction,
increasing slowly at first, then getting infinitely large in the negative direction until 180o, at which point it is
again undefined.

After passing this point, the periodic behavior kicks in and the function now repeats the same sequence of
values as we rotate from 180o, back to 360o.
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Tracing this motion on the graph over several rotations gives:
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Remember that cotangent and tangent are reciprocals of each other, so any point at which the tangent was
equal to 0, the cotangent will be undefined and any point at which the tangent was undefined, the cotangent
is equal to 0.

You might also notice that the graphs consistently intersect at 1 and –1. These are the angles that have 45o

reference angles, which always have tangents and cotangents equal to 1 or –1. It makes sense that 1 and
–1 are the only values for which a function and it’s reciprocal are the same. Keep this in mind as we look at
cosecant and secant compared to their reciprocals of sine and cosine.

151



The cotangent function has a domain of all real angles except multiples of π {...-2π. –π. 0, π, 2π...} The
range is all real numbers.

Cosecant

There are many ways possible to find the cosecant segment. One approach is to look at the right triangle
formed by the cotangent segment and use the Pythagorean Theorem to generate the cosecant.
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From the original triangle in the unit circle, y 2 + x 2 = r 2

Since is cosecant, then the cosecant must be the same as side c.

Tracing the length of this segment, it is undefined at 0º, infinitely large for very small angles, decreasing to
1 at 90o and then increasing infinitely until it is undefined at 180o. The process repeats from 180o to 360o,
however, the segment starts infinitely negative, increases to –1 at 270o before approaching an infinitely
negative length.
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The period of the function is therefore 2π with a domain of all real angles except multiples of π {...-2π. –π.
0, π, 2π...}. The range is all real numbers greater than 1 or less than –1.

The graph then would look as follows:
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Here is the graph of y = sin(x) as well:
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Notice again the reciprocal relationships at 0 and the asymptotes. Also look at the intersection points of the
graphs at 1 and –1. Many students are reminded of parabolas when they look at the half period of the
cosecant graph. While they are similar in that they each have a local minimum or maximum and they begin
and end in the same direction the comparisons end there and they shouldn’t be referred to as parabolic.
The mathematics that defines the values, and therefore shape, of the graph is completely different from the
quadratic function of a parabola.

Secant

Much like the relationship between sine and cosine, secant and cosecant share many similarities. The
segment used to generate y = sec(x) is shown below:

You will be asked to demonstrate this in the exercises section. This segment is 1 unit for 0o, then grows
through the first quadrant, and is undefined at 90o. It is infinitely negative shrinking down to -1 through the
2nd quadrant, before lengthening back towards infinite negativity and is undefined at 270o. Translating this
motion to a graph of y = sec(x) gives us:
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Comparing it with the cosine graph:

158



The period is 2π, the range is the same as y = csc(x) {y: y ≥ 1 or y ≤ -1}, and the domain is all real angles

except multiples of

Lesson Summary

The six trigonometric functions defined by the ratios in a right triangle can be placed in the context of the
coordinate grid by thinking of them in terms of a point (x, y) rotating around a circle centered at the origin
with a radius of one. This circle is called the unit circle. The sine of the angle of rotation is the y-coordinate

of the point, the cosine of the angle is the x coordinate, and the tangent is . The values of the other three
ratios; cotangent, cosecant, and secant can also be found in terms of their reciprocal relationships, but all
of these values can be constructed geometrically as various segments around the angle of rotation on the
unit circle. Instead of finding isolated values, we can look at each ratio as a function of the angle of rotation.
These are called circular functions. Here are the domains and ranges of the six circular trigonometric
functions.

RangeDomainFunction
{y : -1 ≤ y ≤ 1}all realssin(x)
{y : -1 ≤ y ≤ 1}all realscos(x)
all realstan(x)
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{y : y > 1 or y < -1}{x : x ≠ nπ, where n is any integer}csc(x)
{y : y > 1 or y < -1}sec(x)

all reals{x : x ≠ nπ, where n is any integer}cot(x)

Further Reading

http://www.mathnstuff.com/math/spoken/here/2class/330/unit.htm

http://mathdemos.gcsu.edu/mathdemos/family_of_functions/trig_gallery.html

http://mathforum.org/library/topics/trig/branch.html

Review Exercises

1. Show that side A in this drawing is equal to sec(θ)

2. In Chapter 1, you learned that tan2(θ) + 1 = sec2 (θ). Use the drawing and results from question 1 to
demonstrate this identity.

3. This diagram shows a unit circle with all the angles that have reference angles of 30o, 45o, and 60o, as
well as the quadrant angles. Label the coordinates of all points on the unit circle. On the smallest circle, label
the angles in degrees, and on the middle circle, label the angles in radians.
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4. Draw and label the line segments in the following drawing that represent the six trigonometric functions
(sine, cosine, tangent, cosecant, secant, cotangent)

5. Which of the following shows functions that are both increasing as x increases from 0 to ?

a. sin(x) and cos(x)
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b. tan(x) and csc(x)

c. sec(x) and cot(x)

d. csc(x) and sec(x)

6. Which of the following statements are true as x increases from to 2π?

a. cos(x) approaches 0

b. tan(x) gets infinitely large

c. cos(x) < sin(x)

d. cot(x) gets infinitely small

Answers

1. Use similar triangles:

So:
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2.

Using the Pythagorean theorem then, tan2(θ) + 1 = sec2 (θ).

3.
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4.

5. b

6. d
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Linear and Angular Velocity

Learning Objectives

A student will be able to:

• Calculate linear velocity.

• Calculate angular velocity.

• Apply the calculation of linear velocity to real-world situations.

• Apply the calculation of angular velocity to real-world situations.

Introduction

In this lesson students will review the formula and calculation of simple velocity and use them to investigate
some practical applications. Then students will then discover that the velocity of an object traveling around
a circle can be calculated in terms of the angle of rotation and apply that relationship in practical situations.

Linear Velocity v = s/t

Linear Velocity

An approximation for the speed of light in meters per second≈3 x 108 m/s
The approximate speed of “The World’s Fastest Man,” Usain Bolt, when he set
the World Record in the 100m in the 2008 Beijing Olympics

≈10.3 m/s

The approximate orbiting speed of the space shuttle in miles per hour≈18,000 mi/hr
An estimate of the average rate of fingernail growth in millimeters per month≈3 mm/mo
The approximate top speed of a Cheetah≈75 mi/hr
The approximate speed at which the Galapagos Islands are moving towards
the continent of South America

≈5 cm/yr

Table of Interesting Velocities

This table lists some common velocities from some of the fastest moving particles and objects, to some of
the slowest. Notice in each case that the units used to measure velocity can be used to remember the formula
for velocity. In each case the velocity, or speed (we’ll let your physics teacher clarify the difference between
the two) is expressed in terms of a distance divided by a unit of time.

In symbolic form we will use s to represent distance(sometimes referred to as position) Replacing v for
velocity and t for time, results in the formula:
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You may remember from some of your earlier math courses, that this is simply the distance formula (distance
= rate, or velocity in this case, times the time) solved for the value of the velocity. The distance traveled is
equal to the speed at which you travel, multiplied by the time for which you have been going at that speed.

Solve the equation for v by dividing both sides by t .

The t cancels on the right side and the result is the velocity formula.

If we are using this formula to calculate the velocity of someone or something, that object must be moving
at a constant speed. If not, the velocity that we calculate is an average velocity for the entire time period.

Example 1

A toy racecar is traveling around an oval track (at a constant rate) that measures 15 ft in length. It takes the
car 7.5 seconds to complete one lap. Find the speed of the car in feet per second.

Using the formula, replace the values given for distance and time:

Example 2

Lois finishes her 3.5 mile cross-country race in 21:14 (21 minutes, 14 seconds). What is her average velocity
for the race? Express this velocity in miles per hour.

In this example, it is reasonable to assume that she is not going to run at the same rate of speed for the
entire race, and therefore our calculation will result in an average velocity. She may start out at the beginning
of the race quickly to establish a position before settling into a reasonable pace. Parts of the course may
be up or downhill causing her velocity to change, and there may even be a sprint for the finish line.

First, we need to take her time and change it to a single unit. Let’s express it in minutes only. There are 60
seconds in a minute so 14 seconds is 14/60 of a minute. Her total time in minutes is:
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Now we can use the formula:

Because there are 60 min in every hour, multiply this result by 60 to express the speed in miles per hour.

Her average speed was approximately 2.8 mi/hr.

Example 3

Gauss and Newton are riding bicycles toward each other at constant rates of 15 mi/hr and 10 mi/hr, respec-
tively. They start 25 miles apart. Meanwhile, at the same time, a fly flying 20 mi/hr starts at Gauss and
travels towards Newton. When the fly reaches Newton, it turns around and flies back to Gauss. The fly
continues flying back and forth between the two riders until they collide and crush the fly. What is the total
distance the fly has traveled?

This problem, though perhaps not too realistic, is often used to teach students problem solving techniques.
Can you think of any ways in which we have to simplify the situation in order to do any calculations? One
significant simplification has to do with the fly changing directions. As we have learned, in order to calculate
simple velocity, we must assume that the object in question is traveling at a constant rate. It is actually
physically impossible for the fly to instantaneously change directions and maintain the exact same speed.
In order to simplify the problem, let’s say that the fly is somehow able to maintain a constant rate of speed.

Even after making that assumption, many students struggle with this problem. It is tempting to use the distance
formula to begin to measure each leg of the fly’s journey. The problem quickly becomes overwhelming when
viewed in this manner. The trick to solving it is to change your point of view. Even though we have titled this
section “linear velocity,” it might be more properly named “constant velocity.” As long as the fly is traveling
at the same rate of speed, the distance it travels is related to that speed and the time, not the direction that
the fly travels. So the fact that the fly is flying back and forth can be ignored in the solving of the problem.

Look at the following diagram of the problem:

How long does it take for the riders to collide? If Gauss rides for 1 hour, he will have gone exactly 15 miles.
Similarly, Newton will travel 10 miles in one hour. Because the total distance is 25 miles, they will collide in
exactly one hour! So, the fly will also travel for one hour at a constant rate of 20 mi/hr. The fly will cover a
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total distance of 20 miles, whether it flies in a straight line, circles, or back and forth!

Angular Velocity ω = θ/t

In the last example, we introduced the idea that the direction of motion does not affect the calculation of
velocity. What about objects that are traveling on a circular path? Do you remember playing on a merry-go-
round when you were younger (or maybe you don’t want to admit it was last week!)?

(Source: http://en.wikipedia.org/wiki/Image:W.F._Mangels_Kiddie_Galloping_Horse_Carrousel.jpg, License:
Public Domain)

If two people are riding on the outer edge, their velocities should be the same. But, what if one person is
close to the center and the other person is on the edge? They are on the same object, but their speed is
actually not the same.

Look at the following drawing.

Imagine the point on the larger circle is the person on the edge of the merry-go-round and the point on the
smaller circle is the person towards the middle. If the merry-go-round spins exactly once, then both individ-
uals will also make one complete revolution in the same amount of time. However, it is obvious that the
person in the center did not travel nearly as far. The circumference (and of course the radius) of that circle
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is much smaller and therefore the person who traveled a greater distance in the same amount of time is
actually traveling faster, even though they are on the same object. So the person on the edge has a greater
linear velocity. If you have ever actually ridden on a merry-go-round, you know this already because it is
much more fun to be on the edge than in the center! But, there is something about the two individuals trav-
eling around that is the same. They will both cover the same rotation in the same period of time. This type
of speed, measuring the angle of rotation over a given amount of time is called the angular velocity.

The formula for angular velocity is:

ω is the last letter in the Greek alphabet, omega, and is commonly used as the symbol for angular velocity.
θ is the angle of rotation expressed in radian measure, and t is the time to complete the rotation.

In this drawing, θ is exactly one radian, or the length of the radius bent around the circle. If it took point A
exactly 2 seconds to rotate through the angle, the angular velocity of A would be:

In order to know the linear speed of the particle, we would have to know the actual distance, that is, the
length of the radius. Let’s say that the radius is 5 cm.

If linear velocity is:

then,

169



If the angle were not exactly 1 radian, then the distance traveled by the point on the circle is the length of
the arc. You may recall from an earlier section that the formula for arc length is:

s = rθ,

or, the radius length times the measure of the angle in radians. Substituting into the formula for linear velocity
gives:

Pull the r out in front:

Notice the formula for angular velocity! Substituting ω gives the following relationship between linear and
angular velocity.

v = rω

so the linear velocity is equal to the radius times the angular velocity.

Remember that in a unit circle, the radius is 1 unit, so it turns out that the linear velocity is the same as the
angular velocity.

v = rω

v = 1 x ω

v = ω

In this case the actual distance traveled around the circle is the same for a given unit of time as the angle
of rotation measured in radians.

Example 4

Lindsay and Megan are riding on a Merry-go-round. Megan is standing 2.5 feet from the center and Lindsay
is riding on the outside edge 7 feet from the center. It takes them 6 seconds to complete a rotation. Calculate
the linear and angular velocity of each girl.
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We are told that it takes 7 seconds to complete a rotation. A complete rotation is the same as 2π radians.
So the angular velocity is:

radians per second, which is slightly more than 1 (about 1.05), radian per second.
Because both girls cover the same angle of rotation in the same amount of time, their angular speed is the
same. In this case they rotate through approximately 60 degrees of the circle every second.

As we discussed previously, their linear velocities are different. Using the formula, Megan’s linear velocity
is:

Lindsay’s linear velocity is:

Lesson Summary

The linear velocity of an object is defined as the distance traveled divided by the time, or . The
angular velocity is a measure of the angle of rotation through which a point rotates around a circular path

and is found by dividing the angle of rotation by the time, or . If you know the angular velocity of an
object, you can find its linear velocity by multiplying the angular velocity and the radius length of the rotation
circle: v = rω

Further Reading

http://en.wikipedia.org/wiki/Speed_of_light

http://hypertextbook.com/facts/2001/InnaSokolyanskaya1.shtml

http://en.wikipedia.org/wiki/Fingernails
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http://en.wikipedia.org/wiki/Cheetah

http://www.pbs.org/odyssey/voice/20000503_vos_transcript.html

Review Exercises

(Source: http://commons.wikimedia.org/wiki/Image:Mechanical_electricity_meter_1965_(1).jpg, License:
Public Domain)

1. Suppose the radius of the dial of an electric meter on a house is 7 cm.

a. How fast is a point on the outside edge of the dial moving if it completes a revolution in 9 seconds?

b. Find the angular velocity of a point on the dial.

2. Suppose the person inside the house from question 1 turns on the air-conditioner, turns on all the lights
in the house, boots up several computers, turns on a big-screen tv, makes a piece of toast, and heats up
his coffee in the microwave. At that moment, it takes only 3.5 seconds for the dial to complete a rotation.

a. Calculate the velocity of the point on the outside of the dial.

b. Calculate the angular velocity.

3. Doris and Lois go for a ride on a carousel. Doris rides on one of the outside horses and Lois rides on one
of the smaller horses near the center. Lois’ horse is 3 m from the center of the carousel, and Doris’ horse
is 7 m farther away from the center than Lois’. When the carousel starts, it takes them 12 seconds to complete
a rotation.

a. Calculate the velocity of each girl.

b. Calculate the angular velocity of the horses on the carousel.

4. The large hadron collider near Geneva, Switerland began operation in 2008 and is designed to perform
experiments that physicists hope will provide important information about the underlying structure of the
universe. The LHC is circular with a circumference of approximately 27,000 m. Protons will be accelerated
to a speed that is very close to the speed of light (≈3 × 108 meters per second).

a. How long does it take a proton to make a complete rotation around the collider?

b. What is the approximate (to the nearest meter per second) angular speed of a proton traveling around
the collider?

c. Approximately how many times would a proton travel around the collider in one full second?

Sources:
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http://en.wikipedia.org/wiki/Large_Hadron_Collider

http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/lhc-vital-statistics.htm

Answers

1. a. ≈ 4.89 cm/sec

b. ≈ 0.70 radians/sec

2. a. ≈ 12.57 cm/sec

b. ≈ 1.80 radians/sec

3. a. Lois: ≈ 1.57 m/s, Doris: ≈ 5.24 m/s

b. ≈ 0.52 radians per second

4. a. ≈ 9 × 10-5 seconds or 9 hundred-thousandths of a second

b. ≈ 69,813 radians/second

c. about 11,111 rotations in just a second!!!!

Graphing Sine and Cosine Functions

Learning Objectives

A student will be able to:

• Identify periodic functions.

• Identify the basic graphs of y = sin(x) and y = cos(x).

• Calculate the amplitude of a sine or cosine wave.

• Calculate the period of a sine or cosine wave.

• Calculate the frequency of a sine or cosine wave.

• Graph transformations of sine and cosine waves involving changes in amplitude and period (frequency).

Introduction

In this lesson students will generalize their knowledge of the basic trigonometric ratios to investigate the
functional behavior of sine and cosine values. Because these values are repetitive, an understanding of the
behavior of periodic functions will be developed. Students will learn the basic characteristics of periodic
functions including period, amplitude, and frequency. The students will be expected to be able to identify
these characteristics from an equation, or use them to create a graph.

Periodic Functions

“I just need to get back into a routine.”

“I am just stuck in this routine and I can’t break out of it.”
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You have probably heard people make, or perhaps even made yourself, similar comments about events in
their lives. The fact that human behavior seems to be repetitive can be both a good thing, and a bad one.
Think about all the things you do during a typical day that are part of a routine that repeats over and over
again. The alarm clock, your breakfast, the radio or television schedule, the traffic lights on the way to school,
and your class schedule tend to be the same every day, and while we sometimes complain about the
drudgery, many would say that we also need this repetition to be healthy. If you look outside of our own
behavior to the world around us we see repetitive phenomena in the seasons, sunlight, and weather. If we
started tracking the time of the sunrise in a particular city (ignoring the changes of daylight savings time) on
January 1, we would see it gradually getting earlier towards summer and becoming later into the fall and
winter. This cycle would repeat itself all over again if we continued to track it for a second year. Situations
that behave in this manner are called periodic. If this behavior is measurable and we graph the change s
over time t, the resulting graph of s(t) is called a periodic function. The period is the distance we must
travel on the t-axis before the function repeats itself.

Example 1

Look at the following periodic graph and assume that the graph continues in the same way for all values of
t.

No matter where you start on this graph, it will eventually repeat the same behavior. For example, if we start
at the s-axis one period of the graph looks like this:

This shape is 5 units along the t-axis, so we would say that this is a periodic function and the period of the
graph is 5. The period is defined as the distance required to complete one cycle.

Example 2

Identify the period of the following graph and draw one period.
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This graph repeats itself every 4 units. Defining the shape of one period depends on where you start in the
cycle. Imagine if you turn on your mp3 player, start a playlist, and place it on continuous play If you put on
the earphones and listen to it for a while, it doesn’t matter when you happen to start listening, if you listen
long enough, you will hear all of the songs in the list. If you set it down and pick it up to listen again later,
you will still hear the same songs in the same sequence, just at a different starting point. So, here are a few
possible ways to view one period of this graph.

In this first example, we could start at 1. The period would then finish at 5. The next example could start at
–5 and finish at –1.

Or, in this final example, we could start at 2 and finish at 5.

Graphing y = sin(x) and y = cos(x) on a graphing calculator

To graph the basic sine and cosine waves on a graphing calculator, enter the functions in the <ti-font> y =
menu.
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In this case the graphing style has been changed on the cosine graph to help identify the different graphs.

Make sure you check the mode to be sure it is in radian measure.

Next, we need to set a window that would be appropriate. Because the period is 2π, it is very common to
graph two entire periods by showing from –2π to 2π. When entering the window values, you can actually
type –2π and the calculator will estimate it for you.

In order to mark the quadrant angles, make the xscl . The y-axis settings of –4 to 4 make the aspect ratio
of the screen very close to being correct.
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Note again that sine and cosine are essentially the same graph. If you were to push either graph over
units, it would be identical to the other. We call this being “out of phase” with each other and we will investigate
this further in the next lesson. For now, just remember that the cosine function has a y-intercept of 1 and
the sine a y-intercept of 0. Because of this, we use the general term “sinusoid” to describe the graphs of
both sine and cosine.

Amplitude

The amplitude of a wave is basically a measure of its height. Because that height is constantly changing,
amplitude is defined as the farthest distance the wave gets from the center of the wave. In a graph of f(x) =
sin(x), the wave is centered on the x-axis and the farthest it ever strays (in either direction) from the axis is
1 unit.

So the amplitude of f(x) = sin(x) (and cos(x) for that matter) is 1.

Period and Frequency

We defined the period earlier as the horizontal distance needed before the values begin their periodic repe-
tition. For both the graphs of y = sin(x) and y = cos(x), the period is 2π. As we learned in section 3, after
completing one rotation of the unit circle, these values are the same.

Frequency is a different measure that is related to period. In science, the frequency of a sound or light wave
is the number of complete waves for a given time period (like seconds). In trigonometry, because all of these
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periodic functions are based on the unit circle, we usually measure frequency as the number of complete
waves every 2π units. Because the sine and cosine graphs have exactly one complete wave over this interval,
their frequency is 1.

Period and frequency are inversely related. That is, the higher the frequency (more waves over 2π units),
the lower the period (shorter distance on the x-axis for each complete cycle).

Period and Frequency of other Trigonometric Functions

y = tan(x)

Here is the graph of tangent from section 3.
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Notice that one period of this graph looks like this:
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This occurs over a horizontal distance of π radians, so the period of y = tan(x) is π. If we were to graph this
function over 2π radians, we would see 2 complete tangent waves, so the frequency is 2.

y = csc(x)

Look at the graph of the cosecant.
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What would you consider to be one period of this wave? It really depends on where you begin, but it does
take 2π units for the graph to repeat itself. A full period is one “valley” and one “mountain” shape together.
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So, just like the sinusoids, the cosecant function has a period of 2π and a frequency of 1.

Identifying the period and frequency of the secant and cotangent functions will be left to you in the exercise
section.

Transformations of Sine and Cosine Graphs: Dilations

Change of Amplitude, y = A sin(x), y = A cos(x)

Once you understand the basic features of the graphs of sinusoids, we can begin to learn how to alter their
graphs. Recall how to transform a simple linear function like y = x. By placing a constant in front of the x
value, you may remember that the slope of the graph affects the steepness of the line:
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The same was true of the basic parabolic function, y = x2. By placing a constant in front of the x2 (you may
have used the variable A), the graph would be either “steeper” or “flatter” in terms of the rate at which it grew
(or decreases). In transformational geometry terms, we call this a dilation. A dilation is a stretching or

shrinking of the graph that distorts the graph proportionally. So a function such as , has the same
parabolic shape but it has been “squeezed” flatter so that it increases or decreases at a lower rate than the
graph of y = x2. No matter what the basic function; linear, parabolic, or trigonometric, the same principle
holds. If you want to dilate the function, multiply the function by a constant. Constants greater than 1 will
stretch the graph out vertically and those less than 1 will shrink it vertically.

Look at the graphs of y = sin(x) and y = 2 sin(x).

Notice that the amplitude of y = 2sin(x) is now 2. An investigation of some of the points will show that each
y value is twice as large as those for y = sin(x). A look at a table of values with our special angles will show
this numerically.

2sin(x)sin(x)angle
0.00000.00000
1.00000.500030
1.41420.707145
1.73210.866060
2.00001.000090
1.73210.8660120
1.41420.7071135
1.00000.5000150
0.00000.0000180
-1.0000-0.5000210
-1.4142-0.7071225
-1.7321-0.8660240
-2.0000-1.0000270
-1.7321-0.8660300
-1.4142-0.7071315
-1.0000-0.5000330
0.00000.0000360

Multiplying values less than 1 will decrease the amplitude of the wave as in this case of the graph of

:
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So, in general, the constant that creates the dilation is the amplitude of the sinusoid.

Change of Period/Frequency, y = sin(Bx), y = cos(Bx)

After observing the transformations that result from multiplying a number in front of the sinusoid, it seems
natural to look at what happens if we multiply a constant inside the argument of the function, or in other
words, by the x value.

For example, look at the graphs of y = cos(2x) and y = cos(x)

As you can see, we have increased the number of waves in the same interval. There are now 2 waves over
the interval from 0 to 2π. Consider that you are doubling each of the x values, so when you plug in π, for
example, the argument of the function becomes 2π. So the portion of the graph that normally corresponds
to 2π units on the x-axis, now corresponds to half that distance—so the graph has been “scrunched” hori-
zontally. Here is the table of values:

cos(2x)cos(x)angle
1.00001.00000
0.50000.866030
0.00000.707145
-0.50000.500060
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-1.00000.000090
-0.5000-0.5000120
0.0000-0.7071135
0.5000-0.8660150
1.0000-1.0000180
0.5000-0.8660210
0.0000-0.7071225
-0.5000-0.5000240
-1.00000.0000270
-0.50000.5000300
0.00000.7071315
0.50000.8660330
1.00001.0000360

Notice that the values at the end of each complete wave have been highlighted, so you can see that the
graph of y = cos(2x) completes a wave every 180 (π) units, or two complete waves from 0 to 360 degrees
or 2π radians. The frequency of this graph is therefore 2, or the same as the constant we multiplied in the
argument. The period (the distance for each complete wave) is π.

Example 3: What is the frequency and period of y = sin(3x)?

If we follow the pattern from the previous example, multiplying the angle by 3 should result in the sine wave
completing a cycle three times as often as y = sin(x). So, there will be three complete waves if we graph it
from 0 to 2π. The frequency is 3, and if there are 3 complete waves in 2π units, one wave will take a third

of that distance, or radians. Here is the graph:

This number that is multiplied by the angle (it is called B), will create a horizontal dilation. The larger the
value of B, the more compressed the waves will be horizontally. To stretch out the graph horizontally, we
would need to decrease the frequency, or multiply by a number that is less than 1. Remember that this dilation
factor is inversely related to the period of the graph.

In general:

185



Where B is the frequency, and the period is equal to .

Example 4: What is the frequency and period of

Using our generalization above, the frequency must be and therefore the period is , which simplifies

to:

Thinking of it as a transformation, the graph is stretched horizontally. We would only see of a complete
wave if we graphed the function from 0 to 2π. To see a complete wave, therefore, we would have to go four
times as far, or all the way from 0 to 8π.

Changes of period, amplitude, and frequency

If we generalize and allow for both horizontal and vertical dilations at the same time, the equations would
become:

where A is the amplitude, B is the frequency, and the period is .

Example 5: Find the period, amplitude and frequency of and sketch a graph from
0 to 2π.

This will be a cosine graph that has been stretch both vertically and horizontally. It will now reach up to 2
and down to –2, and we would need to graph it all the way out to 4π in order to see a complete period of
the cosine wave. Since we are only going out to 2π, we will only see half of a wave. A complete cosine wave
looks like this:
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so half of it is this:

We need to stretch this out so it finishes at 2π, which means that at π, or halfway, the graph should cross
the x-axis:

The final sketch would look like this:
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amplitude = 2

frequency =

period = 4π

Example 6: Identify the period, amplitude, frequency, and equation of the following sinusoid:

The amplitude is 1.5. Notice that the units are not labeled in terms of π in this example. This appears to be
a sine wave because the y-intercept is 0. Remember however, that sine and cosine are essentially the same,
so in the next section when we learn to translate the graph horizontally, we will be able to treat it as a cosine
wave as well.

One wave appears to complete in 1 unit (not 1π units!), so the period is 1. If one wave is completed in 1
unit, how many waves will we see in 2π units? In previous examples, you were given the frequency and
asked to find the period using the following relationship:

Where B is the frequency and p is the period. With just a little bit of algebra, we can transform this formula
and solve it for B:

Because these are inverse relationships, we can simply interchange the values.

So, the frequency is:
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If we were to graph this out to 2π we would see 2π (or a little more than 6) complete waves.

Replacing these values in the equation gives:

Lesson Summary

A periodic function is one in which the function repeats the same values over a given interval, or period.
Because they are based on the repetition of rotations around the unit circle, all trigonometric functions are
periodic. The frequency of a periodic function is the number of waves over a given interval, or 2π radians
for trigonometric functions. Sine and cosine are similar periodic functions that are called sinusoids. The
amplitude of a sinusoid is the height of the wave, measured from its center. For y = sin(x) and y = cos(x),
the amplitude is 1, the frequency is 1, and the period is 2π. We can transform the sinusoids using a vertical
or horizontal dilation. These transformations behave according to the following guidelines:

where A is the amplitude and B is the frequency.

The period and frequency are inversely related by the following equations:

where p is the period and B is the frequency.

Review Exercises

1. Using the graphs from section 3, identify the period and frequency of y = sec(x) and y = cot(x).

2. Identify the minimum and maximum values of these functions.

a. y = cos(x)

b. y = 2 sin(x)

c. y = -sin(x)

d. y = tan(x)

e.

f. y = -3 sin(4x)

3. How many real solutions are there for the equation 4 sin(x) = sin(x) over the interval 0 ≤ x ≤ 2π?
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a. 0

b. 1

c. 2

d. 3

4. For each equation, identify the period, amplitude, and frequency.

a. y = cos(2x)

b. y = 3 sin(x)

c. y = 2 sin(πx)

d. y = 2 cos(3x)

e.

f.

5. Given each of the sinusoids that follow:

-identify the period, amplitude, and frequency. -write the equation.

a.

b.

c.
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d.

6. For each equation, draw a sketch from 0 to 2π.

a. y = 3 sin(2x)

b. y = 2.5 cos(πx)

c.

Answers

1. y = sec(x): period = 2π, frequency = 1

y = cot(x): period = π, frequency = 2

2. a. min: -1, max: 1

b. min: -2, max: 2

c. min: -1, max: 1

d. there is no minimum or maximum, tangent has a range of all real numbers

e. min: , max:

f. min: -3, max: 3

3. d.

4. a. period: π, amplitude: 1, frequency: 2

b. period: 2π, amplitude: 3, frequency: 1

c. period: 2, amplitude: 2, frequency: π
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d. period: , amplitude: 2, frequency: 3

e. period: 4π, amplitude: , frequency:

f. period: 4π, amplitude: 3, frequency:

5. a. period: π, amplitude: 1, frequency: 2, y = 3cos(2x)

b. period: 4π, amplitude: 2, frequency:

c. period: 3, amplitude: 2, frequency:

d. period: , amplitude: , frequency: 6,

6. a.

b.
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c.
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Translating Sine and Cosine Functions

Learning Objectives

A student will be able to:

• Translate sine and cosine functions vertically and horizontally.

• Identify the vertical and horizontal translations of sine and cosine from a graph and an equation.

Introduction

In this lesson students will apply the general concepts of translation for any function to the sine and cosine
functions. Both horizontal and vertical translations will be reviewed and then generalized to apply to any si-
nusoid.

Vertical Translations

When you first learned how to do vertical translations in a coordinate grid, you most likely started with simple
shapes. Here is a rectangle:

If we would like to translate this rectangle vertically, we simply would move all points and lines up by a
specified number of units. We do this by adjusting the y-coordinate of the points. So to translate this rectangle
5 units up, we would simply add 5 to every y-coordinate.
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This process worked the same way for functions. Since the value of a function corresponds to the y-value
on its graph, to move a function up five units, we would increase the value of the function by 5. Here is the
graph of the parabola, y = x2.

To translate this function up five units, we increase the y-value by 5. Because y is equal to x2, then the
equation y = x2 + 5, should show this translation.

In general, anything that we graph will be translated when we increase the value of the function by a constant.
If we have any random shape, let’s call it a “blob,” adding a constant to the equation will move it up, and
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subtracting a constant will move it down.

So, the graphs of y = sin(x) and y = cos(x) follow the same rules. That is, the graph of y = sin(x) + 2 will be
the same as y = sin(x), only it will be translated, or shifted, 2 units up.

To help avoid some confusion, we will write this translation in front of the function: y = 2 + sin(x).

To translate a cosine wave down 2 units then, we would write the function as:

This would be a cosine wave with an amplitude of and a frequency of 2 that has been shifted 2 units down.
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Various texts use different notation, but we will use c as the constant for vertical translations. This would
lead to the following equations:

where C is the vertical translation.

There is another way to view this. Think of a sine or cosine wave as like a “snake” wrapped around a pole.
For y = sin(x) and y = cos(x), the graphs are wrapped around the x-axis, or the horizontal line, y = 0.

For y = 3 + sin(x), we have already learned that it should be a “normal” sine wave that has been translated
up 3 units. In this context though, let’s think of it as a sine wave that is wrapped around the line, y = 3.

To generalize,

are sine/cosine waves wrapped around the line, .

Example 1

Find the minimum and maximum of y = -6 + cos(x)

This is a cosine wave that has been shifted down 6 units, or is now wrapped around the line y = -6. Because
it still has an amplitude of 1, the cosine wave will extend one unit above the wrapping line and one unit below
it. The minimum is –7 and the maximum is –5.
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Horizontal Translations (phase shift)

Horizontal translations are a little less intuitive. If we return to the example of the parabola, y = x2, what
change would you make to the equation to have it move to the right or left? Many students instinctive guess
that if we move the graph vertically by adding to the y-value, then we should add to the x value in order to
translate horizontally. This is essentially correct, but behaves in the opposite way than what you may think.

Here is the graph of y = (x + 2)2.

Notice that adding 2 to the x-value appears to have shifted the graph 2 units to the left.

Sure enough, the graph y = (x – 2)2 moves the graph 2 units to the right.

Let’s use the letter d to represent the horizontal shift value. If this is the case, then subtracting d from the x
value will shift the graph to the right. Adding d can be thought of as subtracting the opposite of d (x - -d).
So, x + d will move the graph d units to the left.

So, the sine and cosine functions follow this general rule:
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are sine/cosine waves that have been translated units horizontally.

Students sometimes find this counterintuitive. It may help to think of it in these terms. If we graph y = cos(x
– 2), we have to move it back two units in order to transform it back to a “normal” cosine wave. For cos(x
+ 2), we must move it to the right 2 units to return it to the correct place. The graph of y = cos(x + 2) is
identical to that of y = cos(x), but for x-values that are two less than those of the original cosine function.

Example 2

Sketch

This is a sine wave that has been translated units to the right.

Horizontal translations are also referred to as phase shifts. Two waves that are identical, but have been
moved horizontally are said to be “out of phase” with each other. Remember that cosine and sine are really
the same waves with this phase variation.

y = sin(x) can be thought of as a cosine wave shifted horizontally to the right by 90o, or radians.

Alternatively, we could also think of cosine as a sine wave that has been shifted radians to the left.
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Functions with both horizontal and vertical translations

If we combine the two types of translations, the general functions become:

sine/cosine waves that have been translated units horizontally and units vertically.

Example 3

Draw a sketch of y = 1 + cos(x – π)

This is a cosine wave that has been translated up 1 unit and π units to the right. It may help you to use the

quadrant angles to draw these sketches. If you plot the points of y = cos(x) at 0, , , , (as well
as the negatives), and then translate those points before attempting to draw the curve you will most likely
get better results.

Example 4

Draw a sketch of

This is a sine wave that has been translated 2 units down. Think of the argument of the function as equivalent

to so it is also being moved radians to the left.

Again, start with the quadrant angles on y = sin(x) and translate them down 2 units.
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Then, take that result and shift it , or 270 degrees, to the left.

Example 5

Write the equation of the following sinusoid:
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Notice that you have been given some points to help identify the curve properly. Remember that sine and
cosine are essentially the same wave so you can choose to model the sinusoid with either one. If we think
of the function y = cos(x) as starting on the y-axis at a maximum point, it is often easier to use the cosine
function. The general formula is:

From the points on the curve, the first maximum point to the right of the y-axis occurs at halfway between

π and 2π, or . In the next lesson we will combine these translations with changes in period and amplitude

as well, but for now, because the next maximum occurs 2π units to the right of that, or at , there is no
change in period in this function. This means we can think of this as a “normal” cosine wave that has been

translated units to the right, or . The vertical translation value can be found by
locating the center of the wave. If it is not obvious from the graph, you can find the center by averaging the
minimum and maximum values.
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This center is the wrapping line of the translated function and is therefore the same as C. In this example,
the maximum value is 1.5 and the minimum is –0.5. So,

Placing these two values into our equation gives:

Actually, because the cosine graph is periodic, there are an infinite number of possible answers for the
horizontal translation. If we keep going in either direction to the next maximum and translate the wave back
that far, we will obtain the same graph. Some other possible answers are:

Because sine and cosine are essentially the same function, we could also have modeled the curve with a
sine function. Instead of looking for a maximum peak though, for sine we need to find the middle of an in-
creasing part of the wave to consider as a starting point. Can you see why we usually use cosine? It is even
difficult to describe!

The coordinates of this point may not always be obvious from the graph. It this case, the drawing shows

that one of those points occurs at . So the horizontal, or d value would be π. The vertical shift,
amplitude, and frequency are all the same as the were for the cosine wave because it is the same graph.
So the equation would become:
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And, once again, there are an infinite number of other possible answers if you extend away from the C value
multiples of 2π in either direction. Here are two examples.

Lesson Summary

We can transform any sinusoidal function using a vertical or horizontal transformation. These transformations
behave according to the following guidelines:

sine/cosine waves that have been translated units horizontally and units vertically.

Review Exercises

For problems 1-5, find the equation that matches each condition.

A.____the minimum value is 01.

B.____the maximum value is 32.

C.____the y-intercept is -23.

D.____the y-intercept is –14.

E.____the same graph as y = cos(x)5.

6. Express the equation of the following graph as both a sine and a cosine function. Several points have
been plotted at the quadrant angles to help.
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For problems 7-10, match the graph with the correct equation.

7.____

8.____

9.____

10.____

A.
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B.

C.

D.

11. Sketch the graph of on the axes below.
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Answers

1. B

2. E

3. D

4. C

5. A

6.

note: this list is not exhaustive, there are other possible answers.

7. C

8. D

9. A

10. B

11.
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General Sinusoidal Graphs

Learning Objectives

A student will be able to:

• Given any sinusoid in the form: y = C + A cos(B(x – D)) or y = C + A sin(B(x – D)), identify the transfor-
mations performed by A, B, C, and D.

• Graph any sinusoid given an equation in the form y = C + A cos(B(x – D)) or y = C + A sin(B(x – D)).

• Identify the equation of any sinusoid given a graph and some critical values.

Introduction

Now that we have covered the four basic transformations of sine and cosine graphs, students will combine
them by finding equations and graphing waves that have undergone any combination of these various
transformations.

The Generalized Equations

In the previous two sections, you learned how to translate and dilate sine and cosine waves both horizontally
and vertically. Now you are ready to combine these transformations. If we put together all the constants that
we have covered, the general equation of a sinusoid becomes:

where is the amplitude, is the frequency, is the vertical translation, and is the horizontal
translation.

Remember also the relationship between period and frequency. The frequency is given in the equation as
B and the period can be found given the formula:

If we are given the period and need to find the frequency, the formula becomes:
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With this knowledge, we should be able to sketch any sine or cosine function as well as write an equation
given a graph.

Drawing Sketches/Identifying Transformations from the Equation

Example 1

Given the function: f(x) = 1 + 2 sin(2(x + π)):

a. Identify the period, amplitude, and frequency.

b. Explain any vertical or horizontal translations present in the equation.

c. Sketch the graph from –2π to 2π.

a. From the equation, the amplitude is 2 and the frequency is also 2. To find the period we use:

So, there are two waves from 0 to 2π and each individual wave requires π radians to complete.

b. C = 1 and D = -π, so this graph has been translated 1 unit up, and π units to the left.

c. To sketch the graph, start with the graph of y = sin(x)

Then, translate the graph π units to the left (the D value).
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Next, move the graph 1 unit up (C value)

No we are ready to tackle the dilations. Remember that we are considering the “starting point” of the wave
to be –π because of the horizontal translation. A normal sine wave takes 2π units to complete a cycle, but
this wave completes one cycle in π units. Where will this sine wave complete its cycle?

The first wave will complete at 0, then we will see a second wave from 0 to π and a third from π to 2π. There
is also a complete wave from –2π to π. Start by placing points at these values:

Using symmetry, each interval needs to cross the line y = 1 in the center.

One sine wave contains a “mountain” and a “valley”.
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So the mountain “peak” and the valley low point must occur halfway between the points above.

Connect the points with a smooth curve.

Extend the curve through the domain.

Finally, extend the minimum and maximum points to match the amplitude of 2.

211



Example 2

Given the function: :

a. Identify the period, amplitude, and frequency.

b. Explain any vertical or horizontal translations present in the equation.

c. Sketch the graph from –2π to 2π.

a. From the equation, the amplitude is 3 and the frequency is . To find the period we use:

So, there is only one half of a cosine wave from 0 to 2π and each individual wave requires 4π radians to
complete.

b. C = 3 and , so this graph has been translated 3 units up, and units to the right.

c. To sketch the graph, start with the graph of y = cos(x)
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Adjust the amplitude so the cosine wave reaches up to 3 and down to negative three. This affects the
maximum points, but the points on the x-axis remain the same. These points are sometimes called nodes.

Many students think that one complete cosine wave has more of a v-shape.

According to the period, we should see one of these shapes every 4π units, or one-half over 2π.

So this half of a wave needs to be spread symmetrically between 0 and 2π, which means it will cross the
x-axis halfway through, or at π. Plot these points.
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Then connect them with a smooth curve.

Fill in the rest of the curve to –2π.
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Now, shift the graph units to the right.

Finally, we need to adjust for the vertical shift by moving it up 3 units.

So, the completed graph will look like this:

Writing the Equation from a Sketch

In order to be able to write the equation from a graph, you need to be provided with enough information to
find the four constants.
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Example 3

Find the equation of the sinusoid graphed here.

First of all, remember that strictly speaking, both sine and cosine could be used to model these graphs.
However, it is usually easier to use cosine because the horizontal shift is easier to locate in most cases.

Therefore, the model that we will be using is:

One of the first things that should jump out at you in this graph is that if we think of it as a cosine function,
it has a horizontal translation of zero. The maximum point is also the y-intercept of the graph, so there is no
need to shift the graph horizontally and therefore, D is really 0.

The amplitude is the height from the center of the wave. If you can’t find the center of the wave just by sight,
you can calculate it. The center should be halfway between the highest and the lowest points, which is really
the average of the maximum and minimum. This value will actually be the vertical shift, or C value.

In this case, the maximum is 60 and the minimum is –20.

The amplitude is the height from the center line, or vertical shift, to either the minimum or the maximum.
Since this distance is half of the total height, this can be calculated by taken the difference between the
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minimum and maximum values (the total height), and dividing it by 2.

The last value to find is the frequency. In order to do so, we must first find the period. The period is the dis-
tance required for one complete wave. To find this value, look at the horizontal distance between two con-
secutive maximum points.

On our graph, the period is 3, so

We have now calculated each of the four parameters necessary to write the equation.
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Replacing them in the equation gives:

If we had chosen to model this curve with a sine function instead, the amplitude, period and frequency, as
well as the vertical shift would all be the same. The only difference would be the horizontal shift. The sine
wave starts in the middle of an upward sloped section of the curve as shown by the red circle.

This point intersects with the vertical translation line and is a third of the distance back to –3. So, in this
case, the sine wave has been translated 1 unit to the left. The equation using a sine function instead would
have been:
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Lesson Summary

The general equations for any sinusoidal function are:

where is the amplitude(vertical dilation), is the frequency(horizontal dilation), is the vertical
translation, and is the horizontal translation.

The period and frequency exhibit an inverse relationship to each other such that:

Cosine and sine waves are really the same function, but are out of phase with each other. A cosine wave
is usually considered to have a maximum value equal to the y-intercept, but once you allow for horizontal
translations any sinusoid could be considered to be either sine or cosine. When finding the equation of a
sinusoidal graph, it is often easier to use cosine in the equation if you are given the coordinates of the
maximum and/or minimum points. The horizontal shift for a cosine model is the x-coordinate of the first
maximum peak to the right of the y-axis. The period is the horizontal distance between two consecutive
maximum points.

The vertical shift, or C value, can be found by averaging the maximum and minimum points. The amplitude,
or A value, can be found by subtracting the minimum from the maximum and dividing by 2.

Review Exercises

For problems 1 through 5, identify the amplitude, period, frequency, maximum and minimum points, vertical
shift, and horizontal shift.

1. y = 2 + 3 sin(2(x – 1))

2.

3. y = cos(40x - 120) + 5

4.

5. y = 3 + 2 cos(-x)

6.
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7.

8.

220



9.

10.

Answers

1. This is a sine wave that has been translated 1 unit to the right and 2 units up. The amplitude is 3 and the
frequency is 2. The period of the graph is π. The function reaches a maximum point of 5 and a minimum of
-1.

2. This is a sine wave that has been translated 1 unit down and radians to the left. The amplitude is 1
and the period is 2. The frequency of the graph is π. The function reaches a maximum point of 0 and a
minimum of -2.

3. This is a cosine wave that has been translated 5 units up and 30 radians to the right. The amplitude is 1

and the frequency is 40. The period of the graph is . The function reaches a maximum point of 6 and a
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minimum of 4.

4. This is a cosine wave that has not been translated vertically. It has been translated radians to the left.

The amplitude is 1 and the frequency is . The period of the graph is 4π. The function reaches a maximum
point of 1 and a minimum of -1. The negative in front of the cosine function does not change the amplitude,
it simply reflects the graph across the x-axis.

5. This is a cosine wave that has been translate up 3 units and has an amplitude of 2. The frequency is 1
and the period is 2π. There is no horizontal translation. Putting a negative in front of the x-value reflects the
function across the y-axis. A cosine wave that has not been translated horizontally is symmetric to the y-
axis so this reflection will have no visible effect on the graph. The function reaches a maximum of 5 and a
minimum of 1.

***other answers are possible given different horizontal translations of sine/cosine

6.

7.

8.

9.

10.
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3. Trigonometric Identities

Fundamental Identities

Reciprocal, Quotient, Pythagorean

The three fundamental trigonometric functions are sine, cosine and tangent, and can be defined in terms of
an angle, θ, in a right triangle.

sin θ = (opposite leg)/(hypotenuese) = b/c

cos θ = (adjacent leg)/(hypotenuese) = a/c

tan θ = (adjacent leg)/(opposite leg) = b/a

At times during this chapter and beyond, it may be useful to know the reciprocals of these basic functions.

The three fundamental reciprocal trigonometric functions are cosecant (csc), secant (sec) and cotangent
(cot) and are defined as:

Using the fundamental trig functions, sine and cosine and some basic algebra can reveal some interesting
trigonometric relationships. Note when a trig function such as sin θ is multiplied by itself, the mathematical
convention is to write it as sin2 θ. [sin θ 2 can be interpreted as the sine of the square of the angle, and is
therefore avoided.]

sin2 θ = (opposite leg)2/(hypotenuese)2 and cos2 θ = (adjacent leg)2/(hypotenuese)2 or

sin2 θ + cos2 θ = (opposite leg)2/(hypotenuese)2 + (adjacent leg)2/(hypotenuese)2 or

= [(opposite leg)2 + (adjacent leg)2 ]/(hypotenuese)2
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Using the Pythagorean Theorem: (opposite leg)2 + (adjacent leg)2 = (hypotenuese)2

= [(hypotenuese)2]/[(hypotenuese)2]

OR: sin2 θ + cos2 θ = 1

Using the notation from the diagram above, this calculation is:

and , so and

or

By the Pythagorean Theorem a2 + b2 = c2

So Therefore sin2 θ + cos2 θ = 1

This is known as the Trigonometric Pythagorean Theorem.

sin2 θ + cos2 θ = 1

Alternative forms of the Theorem are: 1 + cot2 θ = csc2 θ tan2 θ + 1 = sec2 θ

The second form is found by taking the first form and dividing each of the terms by sin2 θ, while the third
form is found by dividing all the terms of the first by cos2 θ.

If the sine of the angle is divided by the cosine of the angle or (opposite leg/hypotenuse)/(adjacent leg/hy-
potenuse), the result will equal (opposite leg)/(adjacent leg) and that is also equal to the tangent of the angle.
Or, using the notation from the picture above,

since and , then or

, and since .

This final statement, , is an important trigonometric identity, as well as the its reciprocal,

There is another way to look at the tangent function besides (opposite leg)/(adjacent leg). For example by

knowing the tangent function is equivalent to provides insight that the tangent function cannot be
defined at 90o, since the cosine of 90o is zero. By knowing alternative forms of a trigonometric function or a
trigonometric expression, students can have a better understand of the behavior of these functions.
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In summary, these two forms of tangent and cotangent are::

Note since and , then or

, and since

Confirm Using Analytic Arguments

The unit circle is defined as a circle whose radius is one unit, and whose center is the origin in the rectangular
coordinate system. The unit circle has circumference equal to 2π. By making one revolution around the unit
circle the length of the arc would equal 2π.

Starting at the point (1, 0), go t units. Also starting from the point (1, 0) go counterclockwise s units along
the arc of the circle, until s = t, that is point P = (x, y). In a sense, the length s (which equals t) is being
wrapped around the unit circle.
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If t is negative, again begin at point P (1, 0) on the unit circle and travel s = |t| units in the Clockwise direction
to arrive at Point Q (x, y)

If t > 2π or if t < -2π, the distance traveled along the unit circle will be greater than one revolution before
arriving at Point P or Point Q.

Following this procedure shows that for any real number t, a unique point (x, y) can be found on the unit
circle, and the following 6 trigonometric functions of t can be defined:

Let t be a real number, and let P = (x, y) be on the unit circle that corresponds to traveling t units about the
unit circle as described above. Then:

sin t = y

cos t = x

Since the unit circle helps define these trigonometric functions, these functions are usually referred to as
circular functions.
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In the unit circle drawn above, for points such as (x1, y1), the angle α that ends at that point forms the triangle
shown with side lengths x1, y1, and 1, which can be used to find the values of the six trigonometric functions.
For a point in the second quadrant, such as (x2, y2), the marked triangle and the corresponding angle β is
used instead. In each quadrant, signs of the trigonometric functions change with the signs of the coordinates
(x, y). For example, for (x2, y2), since the cosine function is defined as the x-value divided by the hypotenuse,
or 1 in this case, the cosine function will have a negative value in this quadrant. Similarly, for points in the
third and fourth quadrants we use angles formed by the radius that meets that point and the y axis, and the
signs of the various trigonometric function vary accordingly to the quadrant the point is in..

It is important to note that when x = 0, tan t and sec t are both undefined, and when y = 0, csc t and cot t
are both undefined.

Confirm Using Technological Tools

When working with a calculator, be sure to know the mode it is in—are the input angles in degrees or in ra-
dians (which correspond to the length traveled around the circumference of the unit circle)? In most standard
graphing calculators press the mode key and in the display there is a line that shows radian and degree.
Identify the input that will be used by moving the cursor to the desired angle input and pressing enter to
highlight that angle preference. This preference needs to be changed whenever the input angle changes
from radian to degrees or degrees to radians.

Reciprocal trigonometric functions such as csc, sec and cot require the use of the basic trigonometric func-

tions, sin, cos, and tan, and the reciprocal key: or x -1. For example to find the sec 23o, first find the cos

23o (0.9205) and then press the or x -1 key (1.0864)
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Alternative Forms

The unit circle can help determine the sign of any trigonometric function. Consider the angle t, that brings
us around the unit circle. For example in the following diagram, if I brings us to (x1, y1) we consider the angle
α = t, while if t brings us to the third quadrant to points (x3, y3) we consider the angle θ = t - 180. At θ, what
are the signs of the x and y values? Once that question is answered, the signs of the six trigonometric
functions can be found. In the example where t is in the third quadrant, the signs of the trigonometric functions
are: sin(t) is negative (y/1 is negative), cos(t) is negative (x/1 is negative), tan(t) is positive (y/x is positive).
Since the reciprocal functions agree in sign, csc(t) is negative (like sin(t)), sec(t) is negative (like cos(t)) and
cot(t) is positive (like tan(t)).

What would be the sign of each of the trigonometric functions in the fourth quadrant. First try to visualize
the unit circle, and then ask what the signs of the x and y coordinates of any point in the fourth quadrant?
Once those signs are known, the sign of each of the trigonometric functions are also know.
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In this quadrant, we have sin(t) negative, cos(t) positive, tan(t) negative, and correspondingly for the co-
functions.

Reviewing all of the signs of the trigonometric functions from the first quadrant through the fourth, a short
cut method is found for remember which trigonometric functions (and therefore their reciprocal functions)
are positive:

To remember which quadrants the three fundamental trigonometric functions are positive, there is amnemonic:
All Students Take Calculus.

All functions are positive in the 1st quadrant.

Sine is the only primary function that is positive in the 2nd quadrant.

Tangent is the only primary function that is positive in the 3rd quadrant.

Cosine is the only primary function that is positive in the 4th quadrant.

If a trigonometric value is given, there are two possible angles, θ, where 0 ≤ θ ≤ 360o or in radian notation
0 ≤ θ ≤ 2π whose trigonometric value will equal the given value.

For example, if , θ could be a first or second quadrant angle- that is θ could be either 30o or 150o,

alternatively, in radian form: or
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However, if more information is provided, such as knowing that tan θ is known to be negative, then there is
only one possible solution, in this case, knowing that sin θ is positive, the angle must be in either the first
or second quadrant, and tan θ is negative, meaning that the angle must be either in the second or fourth

quadrant reveals that if both are to be valid, that the angle must be a second quadrant angle- 150o or

An alternative form of this problem may be: Given , find the value of cos θ.

In this situation use the Pythagorean Trigonometric Identity: sin2 θ + cos2 θ = 1,

substitute to obtain: or

or

Notice that there are two possible solutions to this problem, since only one bit of information, ,
was given.

Visualize the unit circle and utilize the mnemonic mentioned previously. Given that the sine of the angle is
positive and is in the first quadrant, the visualization yields the result that a second quadrant angle will also
satisfy the given information. Therefore the angle can be either a first or a second quadrant angle, and the
cosine of these angles, is either positive or negative as the algebra above proved.

Lesson Summary

The unit circle provides a mental image of several important features of the trigonometric functions. Another
name for the image created when thinking of the unit circle is the wrapping function. The length of the line
segment when wrapped around the unit circle helps to visualize the (x, y) coordinate that is generated on
the circle. The value of each of the six trigonometric functions can be found in terms of x and y. The wrapping
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function also reveals that when the length of the line segment exceeds the circumference of the circle (2π),
the value of the functions repeat. The same is true when the length of the line segment exceed 4π or 6π,
etc. This helps to demonstrate the PERIODIC nature of trigonometric functions.

Review Questions

1. and cos θ > 0. Find sin θ.

2. and tan θ > 0. Find the exact values of remaining trigonometric functions.

3. find the value(s) of cos θ.

4. , and θ is a second quadrant angle. Find the exact values of remaining trigonometric functions.

5. (3, -4) is a point on the terminal side of θ. Find the exact values of the six trigonometric functions.

6. (2, 6) is a point on the terminal side of θ. Find the exact values of the six trigonometric functions.

7. Verify sin2 θ + cos2 θ = 1 using:

a. the sides 5, 12, and 13 of a right triangle, in the first quadrant

b. the ratios from a 30-60-90 triangle

8. Factor:

a. sin2 θ - cos2 θ

b. sin2 θ + 6 sin θ + 8

9. Simplify using the trig identities

10. Prove tan2 θ + 1 = sec2 θ (the alternative form of the Trig Pythagorean Identity)

Answers

1. If , it must be in either Quadrant II or IV. Because cos θ > 0, we can eliminate Quadrant
IV. So, this means that the 3 is negative. (All Students Take Calculus) From the Pythagorean Theorem, we
find the hypotenuse:
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So, or (Rationalize the denominator)

2. If csc θ = -4, then , sine is negative, so θ is in either Quadrant III or IV. Because tan θ > 0,
we can eliminate Quadrant IV, therefore θ is in Quadrant III. From the Pythagorean Theorem, we can find
the other leg:

So, or

or

3. , sine is positive in Quadrants I and II. So, there can be two possible answers for the cos θ .
Find the third side, using the Pythagorean Theorem:

In Quadrant I,

In Quadrant II,
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4. and is in Quadrant II, so from the Pythagorean Theorem

So, and

5. If the terminal side of θ is on (3, -4) means θ is in Quadrant IV, so cosine is the only positive function.
Because the two legs are lengths 3 and 4, we know that the hypotenuse is 5. 3, 4, 5 is a Pythagorean Triple
(you can do the Pythagorean Theorem to verify).

Therefore,

6. If the terminal side of θ is on (2, 6) means θ is in Quadrant I, so sine, cosine and tangent are all positive.
From the Pythagorean Theorem, the hypotenuse is:

Therefore, and

7. a. Using the sides 5, 12, and 13 and in the first quadrant, it doesn’t really matter which is cosine or sine.

So, sin2 θ + cos2 θ = 1 becomes .

Simplifying, we get: , and finally .
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b. sin2 θ + cos2 θ = 1 becomes . Simplifying we get: and .

8. a. Factor sin2 θ - cos2 θ using the difference of cubes.

sin2 θ - cos2 θ = (sin θ + cos θ) (sin θ - cos θ)

b. sin2 θ + 6 sin θ + 8 = (sin θ + 4) (sin θ + 2)

9. You will need to factor and use the sin2 θ + cos2 θ = 1 identity.

10. To prove tan2 θ + 1 = sec2 θ, first use and change .

Verifying Identities

Working with Trigonometric Identities

During the course, you will see complex trigonometric expressions. Often, complex trigonometric expressions
can be equivalent to less complex expressions. The process for showing two trigonometric expressions to
be equivalent (regardless of the value of the angle) is known as validating or proving trigonometric identities.
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There are several procedures that can be thought of when attempting to validate a trigonometric identity.

Procedure One: Often one of the steps for proving identities is to change each term into their sine and
cosine equivalents:

Prove the identity: csc θ × tan θ = sec θ

Reducing the left side of the identity to:

Notice when working with identities, unlike equations, conversions andmathematical operations are performed
only on one side of the identity. In more complex identities sometimes both sides of the identity are simplified
or expanded. The thought process for establishing identities is to view each side of the identity separately,
and at the end to show that both sides do in fact transform into identical mathematical statements.

Procedure Two: Another strategy used when proving identities is to use the Trigonometric Pythagorean
Theorem:

Prove the identity:

Procedure Three: When working with identities where there are fractions- combine using algebraic tech-
niques for adding expressions with unlike denominators:

Prove the identity: :

combine the two fractions on the left side of the equation by finding the common denominator: (1 + cos θ)
× sin θ:
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Procedure Four: If possible, factor trigonometric expressions. Actually procedure four was used in the
above example:

is factored to

and in this situation, the factors cancel each other.

Prove the identity: Now use

Now combine terms in the denominator

or Now invert and multiply

Technology Note

A graphing calculator can help provide the correctness of an identity. For example looking at: csc x × tan x
= sec x, first graph y = csc x × tan x, and then graph y = sec x. Examining the viewing screen for each
demonstrates that the results produce the same graph.
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Lesson Summary

When verifying a trigonometric identity there are some guidelines to follow, that will usually help.

1. Work on one side of the identity- usually the more complicated looking side.

2. Try rewriting all given expressions in terms of sine and cosine.

3. If there are fractions involved, combine them.

4. After combining fractions, if the resulting fraction can be reduced, reduce it.

5. The goal is to establish identicality—so as you change one side of the identity, look at the other side for
a potential hint to what to do next.

Note in all of the above validating identities, only one side of the identity was worked on. Sometimes it is
necessary to work only on the left side of an identity, sometimes only on the right side of the identity.

Review Questions

Verify the following identities:

1. sin x tan x + cos x = sec x

2. cos x - cos x sin2 x = cos3 x

3.

4.

5.
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6. cos4 b - sin4 b = 1 - 2 sin2 b

7.

8.

9. Show that 2 sin x cos x = sin 2x is true using .

10. Use the trig identities to prove sec x cot x = csc x

Answers

1. Step 1: Change everything into sine and cosine

Step 2: Give everything a common denominator, cos x.

Step 3: Because the denominators are all the same, we can eliminate them.

sin2 x + cos2 x = 1

We know this is true because it is the Trig Pythagorean Theorem

2. Step 1: Pull out a cos x

cos x - cos x sin2 x = cos3 x

cos x (1 - sin2 x) = cos3 x

Step 2: We know sin2 x + cos2 x = 1, so cos2 x = 1 - sin2 x is also true, therefore cos x (cos2 x) = cos3 x

This, of course, is true, we are done!

3. Step 1: Change everything in to sine and cosine and find a common denominator for left hand side.
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LCD: sin x (1 + cos x)

Step 2: Working with the left side, FOIL and simplify.

4. Step 1: Cross-multiply

Step 2: Factor and simplify

sin2 x = 1 - cos2 x

sin2 x + cos2 x = 1

5. Step 1: Work with left hand side, find common denominator, FOIL and simplify, using sin2 x + cos2 x = 1.
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Step 2: Work with the right hand side, to hopefully end up with .

Both sides match up, the identity is true.

6. Step 1: Factor left hand side

Step 2: Substitute 1 - sin2 b for cos2 b because sin2 x + cos2 x = 1.

(1 - sin2 b) - sin2 b

1 - sin2 b - sin2 b

1 - 2 sin2 b

7. Step 1: Find a common denominator for the left hand side and change right side in terms of sine and cosine.

240



Step 2: Work with left side, simplify and distribute.

8. Step 1: Work with left side, change everything into terms of sine and cosine.

Step 2: Substitute 1 - sin2 b for cos2 b because sin2 x + cos2 x = 1

be careful, these are NOT the same!

Step 3: Factor the denominator and cancel out like terms.
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9. Plug in for x into the formula and simplify.

This is true because sin 300o is

10. Change everything into terms of sine and cosine and simplify.

Sum and Difference Identities for Cosine

Recall from earlier work with functions, that functions usually do not behave as algebraic expressions. For
example if f(x) = 3x + 2, f(a + b) does not equal f(a) + f(b). In this example f(a + b) = 3(a + b) + 2 or 3a + 3b
+ 2, where as f(a) + f(b) = 3(a) + 2 + 3(b) + 2 or 3(a) + 3(b) + 4. The important thing to remember is that
what is done with algebraic expressions is usually not the same for functions, although the expression and
the function look somewhat alike. This is the case with trigonometric functions. cos(a + b) might look like it
should equal cos a + cos b, but it does not.

Difference and Sum Formulas for Cosine

Is there a method that can be used when a given angle can be expressed as the difference of two key angles
by finding the cosine of the difference of the two angles? That is, is there an expression that can be found
for cos(a - b)?

Let the two given angles be a and b where 0 < b < a < 2π
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Begin with the unit circle and place the angles a and b in standard position as shown in Figure A. Point Pt1
lies on the terminal side of b, so its coordinates are (cos b, sin b) and Point Pt2 lies on the terminal side of
a so its coordinates are (cos a, sin a). Place the a - b in standard position, as shown in Figure B. The point
A has coordinates (1, 0) and the Pt3 is on the terminal side of the angle a - b, so its coordinates are (cos[a
- b], sin[a - b]).

Triangles OP1P2 in figure A and Triangle OAP3 in figure B are congruent. (Two sides and the included angle,
a - b, are equal). Therefore the unknown side of each triangle must also be equal. That is:

d (A, P 3) = d (P 1, P 2)

Applying the distance formula for each of these:

d(A, P 3) = d(P 1, P 2)=
Square both sides= (cos a - cos b)2 + (sin a - sin b)2[cos(a - b) -1]2+[sin(a - b) -0]2

Squaring= cos2 a - s cos a cos b + cos2 bcos2 (a - b) - 2 cos(a - b) + 1 + sin2 (a - b)

+ sin2 a - 2 sin a sin b + sin2 b
Use Pythagorean Trig Id= 2 - 2 cos a cos b - 2 sin a sin b2 - 2 cos(a - b)
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Subtract 2 from each side
of equation

= - 2 cos a cos b - 2 sin a sin b-2 cos(a - b)

Divide each side by -2= cos a cos b + sin a sin bcos (a - b)

In cos(a - b) = cos a cos b + sin a sin b, the difference formula for cosine,

use a - (- b) = a + b to obtain:

cos(a + b) = cos[a - (- b)] or cos a cos (- b) + sin a sin(-b)

since cos(-b) = cos b and sin (-b) = -sin b

cos(a + b) = cos a cos b - sin a sin b, the sum formula for cosine

Use Cosine of Sum or Difference Identities to Verify Other Identities

The sum/difference formulas for cosine can be used to establish other identities:

For example: Find an equivalent form of using the cosine difference formula

or

or , that is (Identity A)

This identity can be used to establish the equivalence for

Let in equation A to obtain: or or

That is (Identity B)

Use Cosine of Sum or Difference Identities to Find Exact Values

The sum and difference formulas for cosine can be used to find exact values when a and b are key angles:

For example, to find the exact value of cos 15o, use the difference formula where a = 45o and b = 30o or

cos(45o - 30o) = cos 45o cos 30o + sin 45o sin 30o
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Applying the Sum and Difference Identities

To find the sin 105o, first ask what two key angles when added (or subtracted) will yield 105o? There may
be more than one pair of key angles that can achieve this goal. A key angle is an angle such as 30o, because
the trigonometric values for that angle is known in fraction form. cos 105o = cos(45o + 60o) or

cos(45o + 60o) = cos 45o cos 60o - sin 45o sin 60o, substitute known values for key angles:

cos 45o cos 60o - sin 45o sin 60o =

or

Now find the value of , in fraction form only:

, notice that and

or

, can be verified using a calculator in radian mode.

Technology Note

a. Recall that by graphing both sides of an identity such as: , using a graphing
calculator can provide evidence about the correctness of the identity.

b. For , use the calculator to first find the cos(15o), then find the value of
to verify that the values are identical.

Lesson Summary

Trigonometric functions have interesting patterns and behaviors. The important issue to remember is that
what may seem obvious to students first learning about these functions may not, and usually are not, correct.
An example of this would be that the cos(a + b) does NOT equal cos a + cos b. Another thing to observe
and remember is that no matter how complicated in appearance a trigonometric identity may be, all of these
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identities are derived from basic geometric principles as seen when deriving the sum formulas for cosine.

Review Questions

Find the exact value for:

1.

2. If , y is in quad II, and , z is in quad I find cos(y - z)

3. Find the exact value of cos 345o.

4. cos 80o cos 20o + sin 80o sin 20o

5.

6. Verify the identity:

7. Verify cos(π + θ) = -cos θ

8.

9. Show cos(a + b) cos(a - b) = cos2 a - sin2 b

10. Find all solutions to , when x is between [0, 2π).

Answers

1. From the sum formula, we get:
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2. If and in Quadrant II, then by the Pythagorean Theorem (122 + b 2 = 132).

And, if and in Quadrant I, then by the Pythagorean Theorem (a 2 + 32 = 52). So, to
find cos(y - z)

3. cos 345o = cos(315o + 30o)

4. This is the cosine sum formula, so:

cos 80o cos 20o + sin 80o20o
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5. From the sum formula, we get:

6. Step 1: Expand using the cosine sum formula and change everything into sine and cosine

Step 2: Find a common denominator for the right hand side.

7. Expand using the cosine sum formula:

8. Step 1: Expand left hand side using the sum and difference formulas

Step 2: Divide each term on the left side by cos c cos d and simplify
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9. Step 1: Expand left hand side using the sum and difference formulas

cos(a + b) cos(a - b) = cos2 a - sin2 b

(cos a cos b - sin a sin b)(cos a cos b + sin a sin b)

cos2 a cos2 b - sin2 a sin2 b→ FOIL, middle terms cancel out

Step 2: Substitute 1 - sin2 b for cos2 b and 1 - cos2 a for sin2 a and simplify

cos2 a(1 - sin2 b) - sin2 b(1 - cos2 a)

cos2 a - cos2 a sin2 b - sin2 b + cos2 a sin2 b

cos2 a - sin2 b

10. To find all the solutions, between [0, 2π), we need to expand using the sum formula and isolate the cos
x.

rationalize the denominator to get
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This is true when or

Sum and Difference Identities for Sine and Tangent

Again, be careful to avoid confusing function notation with algebraic operations, as was seen previously.

Sum and Difference Identities for Sine

To find sin(a + b), use identity A and identity B as discussed previously.

Identity A, where θ = a + b

=

sin(a + b)

Regrouping

=
Difference Formula for Cosines

=
Identity A and B= sin a cos b + cos a sin b

In conclusion, sin(a + b) = sin a cos b + cos a sin b, the sum formula for sines.

To obtain the identity for sin(a - b):

= sin[a + (-b)]sin(a - b)
Use the Sine sum formula= sin a cos(-b) + cos a sin (-b)
Use cos(-b) = cos b, and sin(-b) = -sin b= sin a cos b - cos a sin bsin(a - b)

In conclusion, sin(a - b) = sin a cos b - cos a sin b, the difference formula for sines

Example 1: Find the exact value of

or

or

In the following problem, the sum formula can be used, but the Pythagorean Trigonometric Identity is used
first:

Example 2: Given: , where α is in Quadrant II, and , where β is in Quadrant I, find
the exact value of sin(α + β).

To find the exact value of sin(α + β), here we use sin(α + β) = sin α cos β + cos α sin β. The values of sin α
and sin β. However the values of cos α and cos β need to be found.
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Use sin2 α + cos2 α = 1, to find the values of each of the missing cosine values.

For cos a : sin2 α + cos2 α = 1, substituting transforms to

or , however, since α is in Quadrant II and cosine is

negative in Quadrant II,

For cos β use sin2 β + cos2 β = 1 and substitute

or and and since β is in Quadrant I,

Now the sum formula for the sine of two angles can be found:

sin(α + β) = sin α cos β + cos α sin β

or

Sum and Difference Identities for Tangent

To find the sum formula for tangent:

Using

tan(a + b)

Substituting the sum formulas for sine and co-
sine

Divide both the numerator and the denominator
by cos a cos b

Reduce each of the fractions

Substitute

Sum formula for tangenttan(a + b)
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In conclusion, Substituting –b for b in the above results in the difference
formula for tangents:

Using the Sum and Difference Identities to Verify Other Identities

Example: Verify the identity

Lesson Summary

Trigonometry is a course that high schools (and thus in their admission process, colleges) require their
students to know. In this light, Trigonometry is a liberal arts course. Think of this aspect of trigonometry
when working through the continually growing list of identities and formulas that will need to be known. Think
of this activity as a method of learning how to organize many thoughts efficiently, not unlike a set of folders

in a file drawer- and the key organizing element is the Unit Circle. When asked to find the , first ask
what quadrant will the (x, y) point fall in, what will be the sign of the x and y values, what composition of
angles can be a sum or difference that will equal the angle, etc. When substituting –b for b in the difference
formula for tangents visualize how this plays out on the unit circle. The successful trigonometry student will
develop this visualizing as a habit.

Review Questions

Find the exact value:

1.

2. sin 345o

3. If , y is in quad III, and , z is in quad II find sin(y + z)

4. sin 25o cos 5o + cos 25o sin 5o

5. Verify the identity: sin(a + b) sin(a - b) = cos2 b - cos2 a
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6. Simplify tan(π + θ)

7. Find the exact value of tan 15o

8. Verify that , using the sine sum formula.

9. Reduce the following to a single term: cos(x + y) cos y + sin(x + y) sin y.

10. Solve for all values of x between [0, 2π)

Answers

1. Use the sine sum formula:

2. Use the sine sum formula:
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3. If and in Quadrant III, then cosine is also negative. By the Pythagorean Theorem, the

second leg is 12(52 + b 2 = 132) , so . If the and in Quadrant II, then the cosine

is also negative. By the Pythagorean Theorem, the second leg is 3 (42 + b 2 = 52), so . To find
sin(y + z), plug this information into the sine sum formula.

4. sin 25o cos 5o + cos 25o sin 5o is the expanded sine sum formula, so it can be compressed to sin(25o +

5o) = sin 30o. The , thus

5. Step 1: Expand sin(a + b) and sin(a - b) using the sine sum and difference formulas.

sin(a + b) sin(a - b) = cos2 b - cos2 a

(sin a cos b + cos a sin b) (sin a cos b - cos a sin b) =

Step 2: FOIL and simplify.

sin2 a cos2 b - sin a cos a sin b cos b + sin a sin b cos a cos b - cos2 a sin2 b

sin2 a cos2 b - cos a 2 sin2 b

Step 3: Substitute 1 - cos2 a for sin2 a and 1 - cos2 b for sin2 b, distribute and simplify.

(1 - cos2 a) cos2 b - cos a 2 (1 - cos2 b)

cos2 b - cos2 a cos2 b - cos2 a + cos2 a cos2 b

cos2 b - cos2 a

6. Expand tan (π + θ) using the tangent sum formula.

7. To find the exact value of tan 15o, expand it using the tangent difference formula.
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8. Using the sine sum formula, we have:

9. Step 1: Expand using the cosine and sine sum formulas.

cos(x + y) cos y + sin(x + y) sin y = (cos x cos y - sin x sin y) cos y + (sin x cos y + cos x sin y) sin y

Step 2: Distribute cos y and sin y and simplify.
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10. To find all the solutions, between [0, 2π), we need to isolate , expand using the sum
formula and then isolate the tan x.

This is true when or .

Double-Angle Identities

There are ways for finding the value of a trigonometric function of a double angle if the value of the
trigonometric function of the angle is known. For example: sin 2a can be found in terms of trigonometric
values of the angle “a.”

Deriving the Double-Angle Identities

We can derive the double angle formulas by using the sum formulas with a = b.

When we take if a = b the formula sin(a + b) = sin a cos b + cos a sin b becomes sin 2a = sin a cos a + cos
a sin a or

sin 2a = 2 sin a cos a This is known as the Double Angle Formula for Sines the same procedure can be
used in the sum formula for cosine:
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cos(a + b) = cos a cos b - sin a sin b, and if a = b

cos(2a) = cos a cos a - sin a sin a or

cos(2a) = cos2 a - sin2 a

Note: We can use the trigonometric identities to come up with alternate forms of these formulas. Since sin2

a + cos2 a = 1 or sin2 a = 1 - cos2 a, this can now be substituted into the above identity:

cos(2a) = cos2 a - sin2 a or cos2 a - (1 - cos2 a)

cos(2a) = 2 cos2 a - 1

Similarly, in sin2 a + cos2 a = 1, cos2 a = 1 - sin2 a

cos(2a) = cos2 a - sin2 a or

cos(2a) = (1 - sin2 a) - sin2 a

cos(2a) = 1 - 2 sin2 a

Applying the Double-Angle Identities

If and a is in Quadrant II, both sin 2a and cos 2a can be found:

To use sin 2a = 2 sin a cos a, the value of cos a must be found first

cos2 a + sin2 a = 1 or

, or . However since a is in Quadrant II, cos a is negative or

or

For cos 2a, use cos(2a) = cos2 a - sin2 a

or
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Finding Angle Values Given Double Angles

Example 1: Given and x is a Quadrant II angle, find the value of sin x

from the Pythagorean Identity
= 2 sin x cos xsin(2x)

Square both sidessin(2x)

Substitute
= 4 sin2 x(1 - sin2 x)sin2(2x)

Multiply both sides by
= 4 sin2 x - 4 sin4 x

Rewrite in descending order= 9 sin2 x - 9 sin4 x1

Substitute a = sin2 x= 9 sin4 x - 9 sin2 x + 10

Use quadratic formula to solve for a= 9a 2 - 9a + 10

Substituting sin2 x = aa

Use Square Root Propertysin2 x

Evaluate that if sin 2x is a quadrant II angle, sin x is a quadrant I angle
and therefore positive

sin x

Since and x is a quadrant II angle, the minimum value
for x is 45o and sin 45o is 0.7

sin x

This is the value that is greater than 0.7sin x

Simplify Expressions Using Double-Angle Identities

GivenVerify: tan θ

Substitute double angle formulas. Use cos 2θ = 1 - 2 sin2 θ, since
it will produce only one term in the numerator

Simplify numerator

Divide common factor in numerator and denominator
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use

= tan θ

Lesson Summary

The identities in this chapter widen the array of angles for which we can find trigonometric values, For example,
suppose we know that for a first quadrant angle, sin(θ) = 0.6. Now we can find the value of sin(2θ). By visu-
alizing the unit circle and knowing that x must be a bit larger than 45 degrees (because sin(45) = 0.5 and
sin is increasing in the first quadrant), sin(2θ) must be an angle in the beginning of the second quadrant,
and therefore must equal to a little less than 1 (because sin(90) = 1.0 is the maximum value of sine and sine
is decreasing in the second quadrant).

If sin θ = 0.6 or , then or . Now using the double angle formula for sine:

sin 2θ = 2 sin θ cos θ

or

Notice that the value for sin 2θ was a bit less than 1 as predicted when visualizing the unit circle.

Example 2: Find the Notice that is in the 4th quadrant, being between or and 2π
and in All Students Take Calculus mnemonic the C (for the 4th Quad) means that cosine is positive. Also

notice that when visualizing the unit circle, being just a tad over , means that the cosine value is

a little larger than or 0. Now use the sum formula for cosine: or

and

and

0.26 when found using a calculator.

Notice that this value corresponds to our prediction made at the beginning of the problem when visualizing
the unit circle.

Review Questions

1. If and x is in Quad II, find the exact values of cos 2x, sin 2x and tan 2x
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2. Find the exact value of cos2 15o - sin2 15o

3. Verify the identity: cos 3θ = 4 cos3 θ - 3 cos θ

4. Verify the identity: sin 2t - tan t = tan t cos 2t

5. If and x is in Quad III, find the exact values of cos 2x, sin 2x and tan 2x

6. Find all solutions to sin 2x + sin x = 0 if 0 ≤ x < 2π

7. Find all solutions to cos2 x - cos 2x = 0 if 0 ≤ x < 2π

8. If you solve cos 2x = 2 cos2 x - 1 for cos2 x, you would get . This new formula
is used to reduce powers of cosine by substituting in the right part of the equation for cos2 x. Try writing cos4

x in terms of the first power of cosine.

9. If you solve cos 2x = 1 - 2 sin2 x for sin2 x, you would get . Similar to the new
formula above, this one is used to reduce powers of sine. Try writing sin4 x in terms of the first power of cosine.

10. Rewrite in terms of the first power of cosine:

a. sin2 x cos2 2x

b. tan4 2x

Answers

1. If and in Quadrant II, then cosine and tangent are negative. Also, by the Pythagorean Theorem,

the third side is . So, and .

Using this, we can find sin 2x, cos 2x, and tan 2x.

260



2. This is one of the formulas for cos 2x.

3. Step 1: Use the cosine sum formula

Step 2: Use double angle formulas for cos 2θ and sin 2θ

Step 3: Distribute and simplify.
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4. Step 1: Expand sin 2t using the double angle formula.

Step 2: change tan t and find a common denominator.

5. If and in Quadrant III, then and (Pythagorean Theorem,

). So,
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6. Step 1: Expand sin 2x

Step 2: Separate and solve each for x.

OR

7. Expand cos 2x and simplify

cos x = 1 when x = 0, 2π
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8. Using our new formula,

Now, our final answer needs to be in the first power of cosine, so we need to find a formula for cos2 2x. For

this, we substitute 2x everywhere there is an x and the formula translates to .

9. Using our new formula,

Now, our final answer needs to be in the first power of cosine, so we need to find a formula for cos2 2x. For

this, we substitute 2x everywhere there is an x and the formula translates to .
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10. a. First, we use both of our new formulas, then simplify:

b) For tangent, we using the identity and then substitute in our new formulas.

now, use the formulas we derived inn #8 and 9.

Half-Angle Identities

There are ways for finding the value of a trigonometric function of half of an angle if the value of the

trigonometric function of the angle is known. For example: can be found in terms of trigonometric
values of the angle “a”.

Deriving the Half-Angle Formulas

The double angle formulas can be used to derive the half angle formulas, simply by solving for the inside
term of the formula.
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Double angle formula for cosine= 1 - 2 sin2 θcos 2θ

Substitute α for 2θcos α

Solving for

This is known as the half angle formula for sine.

Double angle formula for cosine= 2 cos2 θ - 1cos 2θ

Substitute α for 2θcos α

Solving for

This is known as the half angle formula for cosine.

Basic Identity:

Substitute half-angle formulas from above for sine and cosine

Reduce fractions, then combine as one radical. This is the half angle
formula for tangent.

Note: Examining each of the half angle formulas, the answer appears to have two values- one positive, and
the other negative (observe the “±” in front of the radicals) When using any half angles formulas in a specific
problem, there will be only one correct answer. Again, the unit circle can help determine which sign is correct.
To obtain the appropriate sign, first identify which quadrant α is in, and then assess the quadrant θ is in to
determine whether the final answer is positive or negative.

Use Half-Angle Identities to Find Exact Values

Example 1: Use to find exact value of sin 112.5o

Since , use the half angle formula for sine, where α = 225o. In this example, the
angle 112.5o is a second quadrant angle, and the sin of a second quadrant angle is positive.

sin 112.5o
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sin 112.5o

267



Find Half-Angle Values Given Angles

Example 2: Given that the , and that θ is a fourth quadrant angle, find

Given

Half-angle formula for cosines. Note that the given angle is fourth
quadrant, making the half angle second quadrant

Substituting . The cosine of a second quadrant angle is
Negative
Reducing fraction

Reducing the radicand and rationalizing the denominator

Using the Half- or Double-Angle Formulas to Verify Identities

Example 3:

Verify the following identity:

giventan θ

Use cos 2θ = 1 - sin2 θ

Use double angle formula for sine in the denominator

Reduce by dividing 2sin θ in both numerator and denominator

Use basic identity

= tan θ

Lesson Summary

Remember that trigonometric identities and formulas usually do not follow algebraic patterns such as

. The trigonometric formulas and identities are derived logically from basic principles
of geometry and algebra.
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Technology Notes

The graphing calculator can demonstrate that an apparently obvious pattern such as

is incorrect. First graph: . Then graph: to observe that the two graphs are in
not the same and therefore the obvious pattern does not have equivalent values.

Review Questions

Find the exact value of

1. cos 112.5o

2. sin 105o

3.

4.

5. If and θ is in Quad II, find

6. verify the identity:

7. Verify the identity:

8. If , find

9. Solve for 0 ≤ x < 2π

10. Solve for 0 ≤ x < 2π

Answers

1. Using the half angle formula, we get:
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2. Using the half angle formula, we get:

3.

Finally, we need to rationalize the denominator:

The tangent is negative because is in Quadrant II.

4.

Finally, we need to rationalize the denominator:
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5. If , then by the Pythagorean Theorem the third side is 24. Because θ is in the second

quadrant, .

6. Step 1: Change right side into sine and cosine.
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Step 2: At the last step above, we have simplified the right side as much as possible, now we simplify the
left side, using the half angle formula.

7. Step 1: change cotangent to cosine over sine, then cross-multiply.

8. First, we need to find the third side. Using the Pythagorean Theorem, we find that the final side is

. Using this information, we find that . Plugging this into
the half angle formula, we get:
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9. To solve , first we need to isolate cosine, then use the half angle formula.

cos x = 0 when

10. To solve , first isolate tangent, then use the half angle formula.

Using your graphing calculator, when x = 152o, 208o
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Product-and-Sum, Sum-and-Product and Linear Combinations of

Identities

Transformations of Sums, Differences of Sines and Cosines, and Products of Sines
and Cosines

In some problems, the product of two trigonometric functions is more conveniently found by the sum of two
trigonometric functions by use of identities such as this one:

This can be verified by using the sum and difference formulas:

= sin α + sin β

The following variations can be derived similarly:

Transformations of Products of Sines and Cosines into Sums and Differences of
Sines and Cosines

We present two formulas for transforming a product of sines or cosines into sums and differences of sines
and cosines.
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Sum formula for Cosines= cos α cos β + sin α sin βcos(α - β)
Difference formula for Cosines= -(cos α cos β - sin α sin β)- cos(α + β)
Subtract line 2 from line 1= 0 + 2sin α sin βcos(α - β) - cos(α + β)
Reverse order of equality= cos(α - β) - cos(α + β)2 sin α sin β
Multiply both sides by a halfsin α sin β

Triple-Angle Formulas and Beyond

By combining the sum formula and the double angle formula, formulas for triple angles can be found:

Example 1: Find the formula for sin(3x)

= sin(2x + x)sin(3x)
= sin(2x) cos x + cos(2x)sin x

= (2 sin x cos x) cos x + (cos2 x - sin2 x) sin x

= 2 sin x cos2 x + cos2 x sin x - sin3 x

= 3 sin x cos2 x - sin3 xsin(3x)

= 3 sin x(1 - sin2 x) - sin3 x

= 3 sin x - 4 sin3 xsin(3x)

Example 2: Find the formula for cos(4x)

= cos(2x + 2x)cos(4x)

= cos2 2x - sin2 2x

= (cos2 x - sin2 x)2 - (2 sin x cos x)2

= cos4 - 2sin2 x cos2 x + sin4 x - 4sin2 x cos2 x

= cos4 - 6 sin2 x cos2 x + sin4 xcos(4x)

= cos4 - 6(1 - cos2 x) cos2 x + (1 - cos2 x)2
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= 1 - 8cos2 x - 4 cos4 x

Linear Combinations

Finally, we present a formula which takes a linear combination of sines and cosines and converts it into a
simpler cosine function.

acosx + bsinx = cos(x - d) where c = sqrt a^2 + b^2, cos d = a/c and sin d = b/c

Example 3: Transform 3 cos 2x - 4 sin 2x into the form C × cos(2x - d)

A = 3

B = -4

Therefore and The reference angle is 53.1o or 0.927 radians

Since cosine is positive and sine is negative, the angle must be a fourth quadrant angle. D must therefore
be 306.9o or 5.35 radians.

3 cos 2x - 4 sin 2x = 5 cos 2(x - 5.35)

Lesson Summary

In this section, we discussed several trigonometric identities and formulas which when first observed do not
seem correct. Trigonometric manipulations can produce patterns that may not seem correct, but are logically
derived and are correct. Be sure to utilize a graphing calculator to confirm results that may appear surprising.
And, as always, utilize the unit circle as a visual reference to help recall formulas and identities.

Review Questions

1. Express the sum as a product: sin 9x + sin 5x

2. Express the difference as a product: cos 4y - cos 3y

3. Verify the identity (using sum-to-product formula):

4. Express the product as a sum: sin(6θ) sin(4θ)

5. Transform to the form C cos(x - D), (a) 5 cos x - 5 sin x (b) - 15 cos 3x - 8 sin 3x

6. Solve sin 4x + sin 2x = 0 for all solutions 0 ≤ x < 2π.

7. Solve cos 4x + cos 2x = 0 for all solutions 0 ≤ x < 2π.

8. Solve sin 5x + sin x = sin 3x for all solutions 0 ≤ x < 2π.

9. In the study of electronics, the function f(t) = sin(200t + π) + sin(200t - π) is used to analyze frequency.
Simplify this function using the sum-to-product formula.
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10. Derive a formula for tan 4x.

Answers

1. Using the sum-to-product formula:

2. Using the difference-to-product formula:

3. Using the difference-to-product formulas:

4. Using the product-to-sum formula:
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5. a. If 5 cos x - 5 sin x, then A = 5 and B = -5. By the Pythagorean Theorem, and

. So, because B is negative, D is in Quadrant IV, therefore . Our

final answer is .

b. If -15 cos 3x - 8 sin 3x, then A = -15 and B = -8. By the Pythagorean Theorem, C = 17. Because A and

B are both negative, D is in Quadrant III, therefore rad. Our final answer is
17 cos 3(x - 2.65).

6. Using the sum-to-product formula:

So, either sin 3x = 0 or sin x = 0,

7. Using the sum-to-product formula:

So, either cos 3x = 0 or cos x = 0,
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8. Move sin 3x over to the other side and use the sum-to-product formula:

So, either sin x = 0

x = 0, π

9. Using the sum-to-product formula:

10. Derive a formula for tan 4x.
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Summary and Review of Trigonometric Identities

The sum and difference identities, the double and half angle identities, and the product to sum and sum to
product identities derived and discussed in this section help to expand the set of angles for which trigono-

metric functions can be obtained. For example knowing the values for the sine and cosine of and ,
and the sum and difference formulas for sine and cosines gives us the opportunity to know the fractional

values for sine and cosine of , that is or , that is or the

, that is . Using the key angles for the first quadrant , what
are some of the other classes if angles can be found? Then list some of the angles that can be obtained
using key angles from other quadrants. Here are the identities studied in this chapter to help with this culmi-
nating exercise.

cos(α + β) = cos α cos β - sin α sin β

cos(α - β) = cos α cos β + sin α sin β

sin(α + β) = sin α cos β + cos α sin β

sin(α - β) = sin α cos β - cos α sin β

cos(2α) = cos2 α - sin2 α or cos(2α) = 2 cos2 α - 1 or cos(2α) = 1 - 2sin2 α
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sin(2α) = 2 sin α cos β

\mbox{sin}\frac{\alpha}{2}= \pm \sqrt{\frac{1-\mbox{cos}\ \alpha}{2}}

Chapter Review Exercises

1. Find the sine, cosine, and tangent of an angle with terminal side on (-8, 15).

2. If and tan a < 0, find sec a.

3. Simplify: .

4. Verify the identity:

Find all the solutions in the interval [0, 2π).

5.

6.

7. 2 sin2 x + sin 2x = 0

8. 3 tan2 2x = 1

Find the exact value of:

9. cos 157.5o

10.

11. Write as a product: 4(cos 5x + cos 9x)
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12. Simplify: cos(x - y) cos y - sin(x - y) sin y

13. Simplify:

14. Derive a formula for sin 6x

Answers

1. If the terminal side is on (-8,15), then the hypotenuse of this triangle would be 17 (by the Pythagorean

Theorem, ). Therefore, , , and .

2. If and tan a < 0, then a is in Quadrant II. Therefore sec a is negative. To find the third side,
we need to do the Pythagorean Theorem.

3. Factor top, cancel like terms, and use the Pythagorean Theorem Identity.

4. Change secant and cosecant into terms of sine and cosine, then find a common denominator.

5.
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6.

7. 2 sin2 x + sin 2x = 0

2 sin2 x + 2 sin x cos x = 0

2 sin x (sin x + cos x) = 0

So, 2 sin x = 1 or sin x + cos x = 1

or

8.
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9. Use the half angle formula with 315o.

10. Use the sine sum formula.

11.

12. cos(x - y) cos y - sin(x - y) sin y
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cos y (cos x cos y + sin x sin y) - sin y (sin x cos y - cos x sin y)

cos x cos2 y + sin x sin y cos y - sin x sin y cos y + cos x sin2 y

cos x cos2 y + cos x sin2 y

cos x (cos2 y + sin2 y)

cos x

13. Use the sine and cosine sum formulas.

14. Use the sine sum formula as well as the double angle formula.
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4. Inverse Functions and Trigonometric Equations

Lesson 1

General Definitions of Inverse Trigonometric Functions

Learning Objectives

A student will be able to:

• Relate the knowledge of inverse functions to trigonometric functions.

• Understand and evaluate inverse trigonometric functions.

Introduction

A new outdoor skating rink has just been installed outside a local community center. A light is mounted on
a pole 25 feet above the ground. The light must be placed at an angle so that it will illuminate the end of the
skating rink. If the end of the rink is 60 feet from the pole, at what angle of depression should the light be
installed? This problem differs from other trigonometry problems we have seen so far. The standard
trigonometric functions take angles as inputs, and give ratios between the sides of a triangle. In this problem
we are given information about the sides of a triangle and need to use them to solve for the angle. This
means we need a function which does the opposite – or inverse.

Inverse Functions

In a previous lesson, you learned that each function has an inverse relation and that this inverse relation is
a function only if the original function is one-to-one. A function whose inverse is a function will have a graph
that passes both the vertical line test and the horizontal line test. Each line will intersect the graph in one
place only.

This is the graph of f(x) = x/(x + 1) The graph
suggests that f is one-to-one. It passes both the
vertical and the horizontal line tests. If f is one-to-
one, the inverse function f -1 will satisfy the equa-
tion x = y/(y + 1).

This can be proven algebraically. (Switch the x
and the y)

Multiply by (y + 1)

Apply the Distributive property
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Put all y terms on one side

Factor out y

Divide by (x – 1)

Multiply by -1

Therefore “f inverse” or

The symbol f -1 is read “f inverse” and should not be read as the reciprocal of “f”. The reciprocal of f must be
written as 1/f. Determining an inverse function algebraically can be both involved and difficult. Therefore,
determining an inverse function will be done by applying what we know about f mapping x to y and f -1

mapping y to x. The graph of f can be used to produce the graph of f -1 by applying the inverse reflection
principle:

The points (a, b) and (b, a) in the coordinate plane are symmetric with respect to the line y = x.
The points (a, b) and (b, a) are reflections of each other across the line y = x.

This is the graph of the . It is
also a one-to-one function.

If you study the graph in figure 1, it is obvious that
the inverse reflection principle is shown here.

Not all functions have inverses that are one-to-
one. However, the inverse can be modified to a
one-to-one function if a “restricted domain” is ap-
plied to the inverse function. This concept of “re-
stricted domains” will be vital when we examine
the inverse functions of the trigonometric func-
tions.

Inverse Trigonometric Functions

It is time to return to the situation that was pre-
sented in the introduction. The first step is to draw a proper diagram to represent the problem.

In this diagram, the angle of depression which is located
outside of the triangle, is not known. However, the angle
of depression equals the angle of elevation. (Remember
from Geometry, when two parallel lines are crossed by a
transversal, opposite internal angles are congruent.)
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For the angle of elevation, the pole where the light is located is the opposite and is 25 feet high. The length
of the rink is the adjacent side and is 60 feet in length. To calculate the measure of the angle of elevation
the trigonometric ratio for tangent can be applied.

The angle of depression at which the light must be placed to light the rink is 22.6o

The trigonometric value tan θ = 0.4166 of the angle is known, but not the angle. In this case the inverse of
the trigonometric function must be used to determine the measure of the angle. This function is located

above the button of the calculator. To access this function, press 2nd tan and the measure of the

angle appears on the screen Notice the notation tan-1. This inverse of the tangent
function is the arctan relation. The inverse of the cosine function is the arccosine relation (also called the
arccos relation) and the inverse of the sine function is the arcsine relation (also called the arcsin relation).
Let’s consider another example:

Example 1:

A deck measuring 10 feet by 16 feet will require laying boards with one board running along the diagonal
and the remaining boards running parallel to that board. The boards meeting the side of the house must be
cut prior to being nailed down. At what angle should the boards be cut?

Solution:

289



The boards should be cut at an angle of 32 o.

Example 2:

You live on a farm and your chore is to move hay from the loft of the barn down to the stalls for the horses.
The hay is very heavy and to move it manually down a ladder would take too much time and effort. You
decide to devise a make shift conveyor belt made of bed sheets that you will attach to the door of the loft
and anchor securely in the ground. If the door of the loft is 25 feet above the ground and you have 30 feet
of sheeting, at what angle do you need to anchor the sheets to the ground?

Solution:
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The sheets should be anchored at an angle of 56.4 o.

Lesson Summary

You have learned that each function has an inverse relation, and that the inverse relation is a function only
if it is a one-to-one function. A one-to-one function passes both a vertical line test and a horizontal line test.
A formula for the inverse of a function can be determined algebraically but the process can often be complex.
Therefore, the knowledge that we know about functions and their inverse will be applied to determine the f
-1. The inverse of the trigonometric functions can be used to calculate the measure of an unknown angle in
a triangle. The graphing calculator is an asset to performing this task.

Points to Consider

• Are the inverse relations of the six basic trigonometric functions one-to-one?

• Is there an interval on which these inverse relations are one-to one functions?

• What are the restricted domains for the inverse relations of the trigonometric functions?

Review Questions

1. Study each of the following graphs and answer these questions:

a. Is the graphed relation a function?

b. Does the relation have an inverse that is a function?

i.
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ii.

iii.

2. A 9-foot ladder is leaning against a wall. If the foot of the ladder is 4 feet from the base of the wall, what
angle does the ladder make with the floor?

Answers

1. i) The graph represents a one-to-one function. It passes both a vertical and a horizontal line test.

At this point we will have to say that the inverse of this relation is not a function.

ii) The graph represents a one-to-one function. It passes both the vertical and horizontal line tests.

It does not have an inverse that is a function.

iii) The graph does not represent a one-to-one function. It fails a vertical line test.
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It does have an inverse that is a function.

2.

Vocabulary

One-to-one function – a function that passes both the vertical line test and the horizontal line test.

arccosine – the inverse function of y = cos x.

arcsine – the inverse of y = sin x.

arctangent – The inverse of y = tan x.

Using the “inverse” notation: y = sin-1 x, y = cos-1 x, tan-1x

Learning Objectives

A student will be able to:

• Understand the inverse sine function, inverse cosine function and the inverse tangent function.

• Extend the inverse trigonometric functions to include the csc-1, ses-1 and cot-1 functions.

• Understand the meaning of restricted domain as it applies to the inverses of the six trigonometric functions.

• Apply the domain, range and quadrants of the six inverse trigonometric functions to evaluate expressions.

Introduction

The function f(x) = sin x, x εR is not one-to-one and therefore has no inverse. In the following graph of f(x)
= sin x, the graph fails the horizontal line test.
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Inverse Trigonometric Equations

In order to consider the inverse function, we need to restrict the domain so that we have a section of the

graph that is one-to-one. If the domain of f is restricted to a new function

. is defined. This new function is one-to-one and takes on all the values that

the function f(x) = sin x takes on. Since the restricted domain is smaller,
takes on all values once and only once.

In the previous lesson the inverse of f(x) was represented by the symbol f -1(x), and y = f -1(x) f(y) = x

The inverse of will be written as sin-1 x. or arcsin x.

In this lesson we will use both sin-1 x and arcsin x and both are read as “the inverse sine of x ”or “the number

between and whose sine is x.”

The graph of y = sin-1 x is obtained by applying the inverse reflection principle and reflecting the graph of

in the line y = x. The domain of y = sin x becomes the range of y = sin-1 x, and
hence the range of y = sin x becomes the domain of y = sin-1 x.
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Another way to view these graphs is to construct them on separate grids. If the domain of y = sin x is restricted

to the interval , the result is a restricted one-to one function. The inverse sine function y = sin-1

x is the inverse of the restricted section of the sine function.

The domain of y = sin x is and the range is [-1, 1].

The restriction of y = sin x is a one-to-one function and it has an inverse that is shown below.

The statements y = sin x and x = sin y are equivalent for y-values in the restricted domain
and x-values between -1 and 1.

The domain of y = sin-1 is [-1,1] and the range is .
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The inverse functions for cosine and tangent are defined by following the same process as was applied for
the inverse sine function. However, in order to create one-to-one functions, different intervals are used. The
cosine function is restricted to the interval 0 ≤ x ≤ π and the new function becomes y = cos x, 0 ≤ x ≤ π. The
inverse reflection principle is then applied to this graph as it is reflected in the line y = x The result is the
graph of y = cos-1 x (also expressed as y = arccos x).

Another way to view these graphs is to construct them on separate grids. If the domain of y = cos x is restricted
to the interval [0, π], the result is a restricted one-to one function. The inverse cosine function y = cos-1 x is
the inverse of the restricted section of the cosine function.

The domain of y = cos x is [0, π] and the range is [-1, 1].

The restriction of y = sin x is a one-to-one function and it has an inverse that is shown below.

The statements y = cos x and x = cos y are equivalent for y-values in the restricted domain [0, π] and
x-values between -1 and 1.
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The domain of y = cos-1 x is [-1, 1] and the range is [0, π].

The tangent function is restricted to the interval and the new function becomes

. The inverse reflection principle is then applied to this graph as it is reflected
in the line y = x. The result is the graph of y = tan-1 x (also expressed as y = arctan x).

Another way to view these graphs is to construct them on separate grids. If the domain of y = tan x is restricted

to the interval , the result is a restricted one-to one function. The inverse tangent function y =
tan-1 x is the inverse of the restricted section of the tangent function.

The domain of y = tan x is and the range is [-∞, ∞].

The restriction of y = tan x is a one-to-one function and it has an inverse that is shown below.

The statements y = tan x and x = tan y are equivalent for y-values in the restricted domain
and x-values between - 4 and + 4.
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The domain of y = tan-1 x is [-∞, ∞] and the range is .

The above information can be readily used to evaluate inverse trigonometric functions without the use of a
calculator. These calculations are done by applying the restricted domain functions to the unit circle.

Example 1:

Find the exact value of each expression without a calculator.

a.

b.

c.

Solution:

a. Sketch a diagram that shows the point on the unit circle (right half) that has as its y-coordinate.
Draw a reference triangle.

From the diagram, you can see that this is one of the special ratios.

The angle in the interval whose sine is is .

In other words, .

b. Follow the same steps as in the solution of part a. The point on the unit circle (top half) will have
as its x-coordinate.
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From the diagram, you can see that this is one of the special ratios.

The angle in the interval [0, π] whose cosine is is .

In other words, .

c. Follow the same steps as in the solution of part a. The point on the unit circle (right side) will have
times its x-coordinate as its y-coordinate.

From the diagram, you can see that this is one of the special ratios.

The angle in the interval whose tangent is is .

In other words, .
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Inverse Trigonometric Functions

QuadrantsRangeDomainInverse Trigonomet-
ric Function

Restricted Domain
Function

1 AND 2 1 AND 4y = arcsin x y = sin-1

x
y = sin x

1 AND 4 1 AND 2y = arccos x y = cos-1

x
y = cos x

1 AND 2 1 AND 4y = arctan x y = tan-1

x
y = tan x

1 AND 2 1 AND 4y = arc csc x y =
csc-1 x

y = csc x

1 AND 4 1 AND 2y = arc sec x y =
sec-1 x

y = sec x

1 AND 4 1 AND 2All Real Numbersy = arc cot x y = cot-1

x
y = cot x

Now that the six trigonometric functions and their inverses have been summarized, let’s take a look at the
graphs of the six inverse trigonometric functions.
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The above graphs of the 6 inverse trigonometric functions are from the website: www.intmath.com/Analytic-
trigonometry/7

Lesson Summary

In this lesson you have learned that although the trigonometric functions, as you them, are not one-to-one,
it is very important to study their inverses. The trigonometric functions can be made one-to-one by simply
restricting the domain of the original function to one that creates the one-to-oneness. The graphs of each
of these restricted domain functions are readily created using the graphing calculator or by using suitable
software. The results were then applied to evaluating inverse function values without the use of a calculator.

Points to Consider

• Can the values of the special angles of the unit circle be applied to the inverse trigonometric functions?

• Is it possible to determine exact values for the special inverse circular functions?

Review Questions

1. Determine the exact value of the following expressions without using a calculator. Provide a sketch to il-
lustrate each expression.

a.

b. tan-1 (-1)

c.

Answers

a. Does not exist. is greater than 1 and the domain of sin-1 is [-1, 1].
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b.

c.

Applications, Technological Tools

Learning Objectives

A student will be able to:

• Use technology to graph the inverse trigonometric functions.

• Solve real world problems using the inverse trigonometric functions.

Introduction

The following problems are real-world problems that can be solved using the trigonometric functions. In
everyday life, indirect measurement is used to obtain answers to problems that are impossible to solve using
measurement tools. However, mathematics will come to the rescue in the form of trigonometry to calculate
these unknown measurements. In addition to solving problems, we will also use the graphing calculator to
produce graphs of these functions.

1. On a cold winter day the sun streams through your living room window and causes a warm, toasty atmo-
sphere. This is due to the angle of inclination of the sun which directly affects the heating and the cooling
of buildings. Noon is when the sun is at its maximum height in the sky and at this time, the angle is greater
in the summer than in the winter. Because of this, buildings are constructed such that the overhang of the
roof can act as an awning to shade the windows for cooling in the summer and yet allow the sun’s rays to
provide heat in the winter. In addition to the construction of the building, the angle of inclination of the sun
varies according to the latitude of the building’s location.

If the latitude of the location is known, then the following formula can be used to calculate the angle of incli-
nation of the sun on any given date of the year:

Angle of sun = where N represents the number of the
day of the year that corresponds to the date of the year.

a. Determine the measurement of the sun’s angle of inclination for a building located at a latitude of 42o,
March 10th, the 69th day of the year.

Angle of sun =

Angle of sun = 48o + -23.5o(0.2093)

Angle of sun = 48o - 4.92o

Angle of sun = 43.08o

Note: This formula is accurate to
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b. Determine the measurement of the sun’s angle of inclination for a building located at a latitude of 20o ,
September 21st , the 264th day of the year.

Angle of sun =

Angle of sun = 70o + -23.5o(0.0043)

Angle of sun = 70.10o

2. A tower, 28.4 feet high, must be secured with a guy wire anchored 5 feet from the base of the tower. What
angle will the guy wire make with the ground?

3. Using technology, graph y = sin x and y sin-1 x

This is the graph on the one-to-one function y = sin x.
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This is the graph of the inverse of the one-to-one function y = sin x.

All of these functions can be graphed using the TI-83 graphing calculator. However, when doing the arcsecant,
arccosecant and arccotangent functions, the ≤ and ≥ symbols are found under the TEST menu 2nd Math.
As well the words and/or are in the same location under the LOGIC section of the TEST menu.

Lesson 2

Ranges of Inverse Circular Functions

Learning Objectives

A student will be able to:

• Understand the ranges of the six circular functions and of their inverses.

Introduction

The graph of the equation x 2 + y 2 = 1 is a circle with its center at the origin and a radius of one unit.
Trigonometric functions are defined such that their domains are sets of angles and their ranges are sets of
real numbers. Circular functions are defined such that their domains are sets of numbers that correspond
to the measure of angles in radian units. Radian measure is the distance traveled on the unit circle after
rotating about the circle for a given angle. So for a non-unit circle, it is the ratio of the arc length to the radius

of the circle. where s is the length of the arc of the circle and r is the radius of the circle. All points
on the unit circle have coordinates P(x, y) such that these coordinates are defined as the cosine and sine
of the arc length from the x-intercept of (1, 0) to the point P on the circumference of the unit circle. The arc
length can be created by moving counter clockwise (positive) or clockwise (negative) from the x-intercept.
Therefore, the domain of all of the circular functions is the set of real numbers. However, the ranges are
more restricted. The remaining functions of tangent, cotangent, secant and cosecant can all be expressed
in terms of sine and cosine by using the identities.
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Domain and Range of the Circular Functions and their Inverses

The ranges of these circular functions, like their corresponding trigonometric functions, are sets of real
numbers. These functions are called circular functions because radian measures of angles are determined
by the lengths of arcs of circles. Trigonometric functions defined using the unit circle lead directly to these
circular functions.

The graph of the equation x 2 + y 2 = 1 is a circle in the rectangular coordinate system. This graph is called
the unit circle and has its center at the origin and has a radius of 1 unit. Trigonometric functions are defined
so that their domains are sets of angles and their ranges are sets of real numbers. Circular functions are
defined such that their domains are sets of numbers that correspond to the measures (in radian units) of
the angles of trigonometric functions.

The following diagram begins with the unit circle x 2 + y 2 = 1. Point A (1, 0) is located at the intersection of
the unit circle and the x-axis. Let q be any real number. Start at point A and measure | q | units along the
unit circle in a counterclockwise direction if q > 0 and in a clockwise direction if q < 0, ending up at point P(x,
y). The sine and cosine of q define the coordinates of point P.

Sin q and cos q exist for each real number q because (cos q, sin q) are the coordinates of point P located
on the unit circle, that corresponds to an arc length of | q |. Because this arc length can be positive (counter-
clockwise) or negative (clockwise), the domain of each of these circular functions is the set of real numbers.
The range is more restricted. The cosine and sine are the coordinates of a point that moves around the unit
circle, and they vary between negative one and positive one. Therefore, the range of each of these functions
is a set of real numbers.

The domain and the range of these six circular functions and their inverses can be best understood by
graphing the functions. The TI-83 will be used to graph all of the circular functions and their inverses.

The Graph of y = sin x

For the circular function y = sin x, the domain is the set of Real numbers and the range is [-1, 1]

The Graph of y = cos x
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For the circular function y = cos x, the domain is the set of Real numbers and the range is [-1, 1].

The Graph of y = tan x

For the circular function y = tan x, the domain is all Real numbers except and the range is the

set of Real numbers. The tangent function can also be expressed as the quotient of , and when the
value of cos θ equals zero, the tangent function is undefined (as is division by zero). As a result, the graph
approaches infinity as it approaches these points.

The Graph of y = cot x

For the circular function y = cot x, the domain is all Real numbers except (kπ) and the range is the set of
Real numbers. Since cotangent is the reciprocal of tangent, the graph approaches infinity when the value
of sin θ equals zero.

The Graph of y = sec x

For the circular function y = sec x, the domain is all Real numbers except and the range is

. The secant function has as its reciprocal function and the graph will approach
infinity as it nears the points where cos θ equals zero.

The Graph of y = csc x
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For the circular function y = sec x, the domain is all Real numbers except (kπ) and the range is

. The cosecant function has as its reciprocal function and the graphwill approach
infinity as it nears the points where sin θ equals zero.

Now we will examine the graphs of the inverse circular functions

The Graph of y = sin-1x

For the inverse circular function, y = sin-1 x, the domain is [-1, 1] and the range is

The Graph of y = cos-1x

For the inverse circular function, y = cos-1 x, the domain is [-1, 1] and the range is [0, π]

The Graph of y = tan-1x

For the inverse circular function, y = tan-1 x, the domain is the set of Real numbers and the range is

The Graph of y = cot-1x

For the inverse circular function, y = cot-1 x, the domain is the set of Real numbers and the range is (0, π)

The Graph of y = sec-1 x
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For the inverse circular function, y = sec-1 x, the domain is and the range is

The Graph of y = csc-1 x

For the inverse circular function, y = csc-1 x, the domain is and the range is

.

Now that all of the graphs have been created, the domains and ranges of the circular functions and their
inverses should be evident. These values will be important when it comes to determining values for these
functions.

Lesson Summary

You have seen the graphs of the circular functions and of their inverses as they are created using technology
(TI-83). The notation used for indicating the domain and ranges of some of the functions is probably new.
However, as you apply the values to the graphs, this new notation should become easier to remember.

Points to Consider

• How do the values of the ranges of the inverse circular functions apply when values for these functions
are determined?

Exact Values of Special Inverse Circular Functions

Learning Objectives

A student will be able to:

• Use the 16-point unit circle to determine exact values of special inverse circular functions.

Introduction

In earlier lessons you learned about the reference triangles used to evaluate trigonometric functions for all

integer multiples of 30o, 45o and 60o or radians, radians and radians respectively. These values
can be displayed on the unit circle or on the two special triangles.

The Unit Circle
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The Special Triangles

Whichever format you prefer to become familiar with, the important thing is that you are able to use these
reference diagrams to evaluate these special trigonometric functions.

Example 1: Use the special triangles or the unit circle to evaluate each of the following:

a.

b.

c.

d.

Solution:
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a.

b.

c.
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d.

Example 2: Use the special triangles or the unit circle to find the exact values of each of the following:

a.

b.
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c. tan-1(-1)

Solution: Use the unit circle. Remember that the inverse sine and inverse tangent functions have values

in , and the inverse cosine function has values in [0, π]. Also, a point on the unit circle P(x, y) →
P(cos x, sin x)

a.

b.

c.

Lesson Summary

In this lesson, you learned how to use the unit circle to determine exact values of the inverse circular functions.
When the unit circle is used to determine these values, the results are readily available in both degree and
radian measure. These values are exact as compared to those obtained by using a calculator.

Points to Consider

• Is it possible to apply the inverse composition rule to trigonometric functions?

Review Questions

1. Use the special triangles or the unit circle to evaluate each of the following:

a. cos 120o

b.

c.

2. Use the special triangles or the unit circle to find the exact values of each of the following:

a. cos-1(0)

b.

c.

Answers

1. a.

b.
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c.

2. a.

b.

d.

Vocabulary

Unit Circle – A circle with its center at the origin and a radius of 1 unit.

Recognize f(f -1(x)) = x and f -1(f(x)) = x (Range of the outside function, domain of the
inside function)

Learning objectives

A student will be able to:

• Determine whether or not two functions are inverses by composing a function and its inverse.

• Graph functions f and f -1. If the graphs are symmetric about the line y = x, then the functions are inverses.

Introduction

Due to an unusually regular growth pattern, the population of a known region in Africa is given by the formula
P = f(t) = 25 + 0.4t where P is the population in thousands and t is the number of years since 1970. What
are the results of evaluating f(35) and f -1(35)? What do these values mean with respect to the problem?
This problem will help you to understand the definition of an inverse function and we will revisit it later in the
lesson.

< f(f -1(x)) = x And f -1(f(x)) = x >

The statement f -1(25) = 10 means that f(10) = 25. This relationship is used to determine values of f -1. Suppose
that y = f(x) is a function with the property that each value of y determines one and only one value of x. Then
f has an inverse function, f -1 and f -1(y) = x if and only if y = f(x). Let’s take a closer look at this general
definition of an inverse function by graphing a function and its inverse.

Given, create a table of values.

f(x) = 2 x
x

0.125-3
0.25-2
0.5-1
1.00
2.01
4.02
8.03
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To create a table of values for f -1(x), the columns of the first table can be simply interchanged.

f -1 (x)
x

-30.125
-20.25
-10.5
01.0
12.0
24.0
38.03

Both tables contain the same values, but with the columns interchanged. Therefore, the relationship between
the function f(x) and f -1(x) can be demonstrated by exploring a few of the values.

f -1(2) = 1 and f(1) = 2 hence f -1(f(1)) = 1

f -1(0.125) = -3 and f(-3) = 0.125 hence f -1(f(-3)) = -3

The above result will hold true for any input x, so f -1(f(x)) = x for all values of x for which f(x) is defined.

Likewise, f(f -1(3)) = 3 and f(f -1(0.5)) = 0.5

The above result will hold true for any x, so f(f -1(x)) = x for all values of x for which f -1(x) is defined.

Using technology, the graphs of the function and its inverse can be created without finding a formula for the
inverse. Technology will graph the inverse by entering a command – Draw Inverse.

The red curve represents the function f(x) = 2 x . The dotted line is the graph of y = x. The curve below y =
x is the mirror image of the graph of f(x). If the x-axis and the y-axis have the same scale, the point (a, b) is
reflected on the mirror image as (b, a) It is evident that these graphs are symmetrical across the line y = x.

The function f(x) = 2 x is an exponential function that has all the real numbers as its domain and all the
positive numbers as its range. The function f -1(x) has all the positive numbers as its domain and all the real
number as its range. In other words, the domain of f is equal to the range of f -1 and the domain of f -1 is
equal to the range of f.

Now, let’s revisit the problem at the beginning of the lesson.

To evaluate f(35):
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f(t) = 25 + 0.4t

f(35) = 25 + 0.4(35)

f(35) = 39

This means that in the year 2005 (1970 + 35) the population was 39,000 people.

To evaluate f -1(35)

t = f -1(P) so in f -1(35), 35 represents the population and f -1(35) is the year in which the population was
35,000 people.

This means that it took 25 years for the population to reach 35,000 people and this occurred in the year
1995.

Now that you have a better understanding of a function and its inverse, we will apply this knowledge to some
questions to prove whether or not two given functions are indeed inverses and to determine the inverse of
a given function.

Example 1:Prove that and are inverse functions and show the results
graphically on the same axes with the same scale.

Solution:
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Graphing:

The red graph is the graph of and the black graph is the graph of .
Both graphs are symmetric about the dotted line y = x.

Example 2:What is the inverse of the function?

Solution:

Let and solve for x.
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Common Factor

written in terms of x

If this function is the inverse of then their graphs should be mirror-
images about the line y = x.

Graphing the function and its inverse is a way to check the solution. The red graphs is

and the blue one is .

Leson Summary

In this lesson you learned a very important property about functions and their inverses. This property included
the statements f -1(f(x)) = x for all values of x for which f(x) is defined and f(f -1(x)) = x for all values of x for
which f -1(x) is defined. You have also learned how to determine an inverse of a given function algebraically,
how to prove algebraically that functions are invertible and how to prove graphically that functions are inverses.
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Points to Consider

• Can this property be applied to derive properties about other functions and their inverses?

Review Questions

1. Use a graph to determine whether or not the following functions are invertible. Explain the results of each
graph.

a. y = x 6 + 2x 2 - 8

b. y = cos(x 3)

2. Prove that the following functions are inverses.

and

Answers

1. a.

The function is not invertible because the inverse x = y 6 + 2y - 8 is not a mirror-image about the line y = x.

b.

The function is invertible because the inverse x = cos(y 3) is a mirror-image about the line y = x.

2. Prove that f(f -1(x)) = x and f -1(f(x)) = x algebraically. Following is the correct way to begin the proof:

Vocabulary

Inverse Function – Two functions are inverse functions if and only if f(f -1(x)) = f -1(f(x)) for all values of x.
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Invertible – If a function has an inverse, it is invertible.

Applications, Technological Tools

Learning objectives

A student will be able to:

• Use technology to graph functions and their inverses.

• Solve world problems using the fact that f(f -1(x)) = f -1(f(x)).

Introduction

The following problem that involves functions and their inverses will be solved using the property f(f -1(x)) =
f -1(f(x)). In addition, technology will also be used to complete the solution.

1. To commemorate the centennial of the flight of the Silver Dart, an exact replica was built and was suc-
cessfully flown on Baddeck Bay on Sunday, February 22, 2009. One of the attempts saw the plane fly suc-
cessfully feet before it lost a wheel and landed on the frozen Bay. The following parabola is a graph of the
plane’s height, h, in feet as a function of time, t, in minutes.

a. Approximately, what is the maximum height reached by the plane?

b. Approximately, when did the Silver Dart land on Baddeck Bay?

c. Restrict the domain of h(t) so that h(t) has an inverse. Graph this new function with the restricted domain.

d. Graph the inverse of the function from part (c).

e. Rewrite the problem to reflect the new function from part (c).

Solution:

a. The maximum height reached by the plane is approximately 110 feet.

b. The Silver Dart landed on Baddeck Bay 6 minutes after becoming airborne.

c. The axis of symmetry for the parabola that depicts the flight is x = 6. Therefore the domain of the right
half of the parabola is the interval 6 ≤ t ≤ 8.5.
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d.

e. Answers will vary. One response could reflect that the pilot preformed a stunt at 6 minutes into the flight
at a height of 110 feet and then immediately descended for a landing at 8.5minutes.

The TI-83 was used to create the graphs.

Example 1: Find the inverse of the following trigonometric functions:

a.

b. f(x) = 4 tan-1 (2x + 4)

Solution:

a.
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If these are inverses, then the graphs should be reflections about the line y = x. The following graph shows

that this is true and that the inverse of the function is

Example 2:

Find the inverse of the trigonometric function f(x) = 4 tan-1(3x + 4)

Solution:
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The following graph shows that the inverse of the trigonometric function f(x) = 4 tan-1(3x + 4) is indeed

Lesson 3

Derive Properties of Other Five Inverse Circular Functions in terms of Arctan(short)

Learning Objectives

A student will be able to:

• Relate the concept of inverse functions to trigonometric functions.

• Compose each of the six basic trigonometric functions with tan-1 x.

• Reduce the composite function to an algebraic expression involving no trigonometric functions.

Introduction

In the previous lesson you learned that for a function f(f -1(x)) = x for all values of x for which f -1(x) is defined.
If this property is applied to the trigonometric functions, the following equations will be true whenever they
are defined:

a. sin(sin-1(x)) = x

b. cos(cos-1(x)) = x

c. tan(tan-1(x)) = x
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As well, you learned that f -1(f(x)) = x for all values of x for which f(x) is defined. If this property is applied to
the trigonometric functions, the following equations that deal with finding an inverse trig. function of a trig.
function, will only be true for value of x within the restricted domains.

a. sin-1(sin(x)) = x

b. cos-1(cos(x)) = x

c. tan-1(tan(x)) = x

These equations are better known as composite functions and are composed of one trigonometric function
in conjunction with another different trigonometric function. The composite functions will become algebraic
functions and will not display any trigonometry. Let’s investigate this phenomenon.

Composing Trigonometric Functions with Arctan

Let’s express trig functions in a new way – one that works better with arctan than with any of the other inverse
functions. To begin this investigation, we will draw a representation of the tangent function as it appears on
the unit circle. The unit circle is the circle with its center at the origin and a radius of 1. Angle x is formed by
rotating OA about the origin to OP. Point T is the intersection of line OP and the line x = 1.

The vertical line x = 1 is a tangent to the unit circle (a tangent is a line that touches a curve at only one point).
T is the point where the diagonal line OP meets the tangent line and A is where the tangent line meets the
circle and the horizontal line. The line AT is called the tangent of x or tan x. The angle x is the t coordinate
in the ordered pair (t, tan t). The value of the tangent is the slope of the line OP (the terminal side of angle
x in standard position).

Now that you understand the meaning of the tangent function and its importance to trigonometric functions,
we will continue by first drawing a triangle that has θ measured in radians such that θ = tan-1 x.
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The hypotenuse of the right triangle can be determined by using the Pythagorean Theorem.

Using the triangle, all of the required ratios can be written as algebraic expressions with no trig. functions.
To do this, remember tan-1 (x) = θ. You will also have to recall:
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If x < 0, then tan-1 x is a negative angle in quadrant IV. This same process can be used to compose
trigonometric functions with the other basic inverse functions. However, the triangle that you begin with will
have to be different because θ will have to equal sin-1 x or cos-1 x. You can explore these on your own and
check your results with a classmate. Now, let’s apply the results of this investigation to some exercises.

Example 1:Without using technology, find the exact value of each of the following:

a.

b.

c.

Solution: Use the unit circle or special triangles to determine the exact values.

a.

b.
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c.

Example 2: In the main concourse of the local arena, there are several viewing screens that are available
to watch so that you do not miss any of the action on the ice. The bottom of one screen is 3 feet above eye
level and the screen itself is 7 feet high. The angle of vision (inclination) is formed by looking at both the
bottom and top of the screen.

a. Sketch a picture to represent this problem.

b. Calculate the measure of the angle of vision that results from looking at the bottom and then the top of
the screen. At what distance from the screen does this value of the angle occur?

Solution:

a.

and

To determine these values, use a graphing calculator and the trace function to determine when the actual
maximum occurs.
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From the graph, it can be seen that the maximum occurs when x ≈ 5.59 ft. and θ ≈ 32.57o.

Lesson Summary

In this lesson you learned how to find inverse trig functions of trig functions. The surprise was that these
reduced to purely algebraic expressions- not ones that involved standard trigonometric functions

Points to Consider

• Is it possible to graph these composite functions?

• If so, is it possible to analyze the graphs.

Review Questions

1. Express each of the following functions as an algebraic expression involving no trigonometric functions.

a. cos2(tan-1 x)

b. cot(tan-1 x 2)

2. Graph the function tan-1(tan x) and state its domain and range.

Answers

1. a.

b.

2.

The domain is all of the real numbers except where k is an integer.
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The range is .

Derive Inverse Cofunction Properties (short)

Learning objectives

A student will be able to:

• Understand the cofunction identities.

• Use the cofunction identities to prove identities.

Introduction

Recall that two angles are complementary if their sum is 90o. In every triangle, the sum of the interior angles
is 180o and the right angle has a measure of 90o. Therefore, the two remaining acute angles of the triangle
have a sum equal to 90o, and are complementary angles. Let’s explore this concept to identify the relationship
between a function of one angle and the function of its complement in any right triangle. In other words, let’s
explore the cofunction identities. A cofunction is a pair of trigonometric functions that are equal when the
variable in one function is the complement in the other.

Cofunction Identities

In , is a right angle, and are complementary.

The Trigonometric Ratios with respect to are:

The Trigonometric Ratios with respect to are:
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The value of a function with respect to is identical to the value of its cofunction with respect to .
Therefore the following statements are true:

and for each of the above . The sine and cosine functions are cofunctions so:

and

The tangent and cotangent functions are cofunctions so:

and

The cosecant and secant functions are cofunctions so:

and

The following graph represents two complete cycles of the sinusoidal curve y = sin x and of the sinusoidal
curve y = cos θ.
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Using the cofunction identities, the function y = sin x, can be written as .

The graph of this function is shown below:

Notice that the two graphs are identical. The equation for the second graph that was entered as

begins units to the right of the graph of y = sin x. In other words, the graph of y =

cos θ is simply the graph of y = sin x has undergone a phase shift or a horizontal translation of radians.

These cofunction identities hold true for all real numbers for which both sides of the equation are defined.
Now that we have derived these new identities, it is time to see them in action.

Example 1:

1. Use the cofunction identities to evaluate each of the following expressions:

a. If determine cot θ

b. If sin θ = 0.91 determine .

Solution:

a. therefore cot θ = -4.26

b. therefore

Example 2:

2. Prove .

Solution:

and
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Lesson Summary

In this lesson you learned the derivation of the cofunction identities. In the examples, you were able to see
the application of the identities. These identities are used in trigonometry to prove identities and to derive
other formulas that are used in solving trigonometric equations.

Points to Consider

• Is there a relationship between the three basic trigonometric functions and their reciprocal functions.

Review Questions

1. Prove

2. If find cos (- θ)

Answers

1. and

2.
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Vocabulary

Cofunction a pair of trigonometric functions that are equal when the variable in one function is the comple-
ment in the other.

Complementary angles two angles whose sum is 90o.

Inverse Reciprocal Properties

Learning objectives

A student will be able to:

• Understand the Inverse Reciprocal Properties of Inverse Trigonometric Functions.

Introduction

In previous lessons you learned the three basic trigonometric functions and their reciprocals. The reciprocal

of sin x is csc x. and . The product of these reciprocals is one which

is true for the definition of reciprocal. The other reciprocal functions are and

and likewise and . Now, let’s apply the
definition of reciprocal to the reciprocals of the inverse trigonometric function, keeping in mind the sin-1 x
does not mean the reciprocal of sin x but rather the inverse of the sine function.

Inverse Reciprocal Functions

We already know that the cosecant function is the reciprocal of the sine function. This will be used to derive
the reciprocal of the inverse sine function.
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The other inverse reciprocal identities can be proven by using the same process as above. However, remem-
ber that these inverse functions are defined by using restricted domains and the reciprocals of these inverses
must be defined with the intervals of domain and range on which the definitions are valid. The remaining
inverse reciprocal identities are:

For use on the calculator, the following conversion identities are used:
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Now, let’s apply these identities to some problems that will give us an insight into how they work.

Example 1:

Evaluate

Solution:

Example 2:

2. Evaluate sec-1(-2).

Solution:

is in the interval
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Lesson Summary

In this lesson you learned the identities for the inverse reciprocal trigonometric functions. The most difficult
part in applying these identities is remembering the domain and range that is applicable to each function.
These identities are used to evaluate trigonometric expressions as shown above.

Points to Consider

• Do exact values of functions of Inverse functions exist if Pythagorean triples are used?

Review Questions

1. Evaluate each of the following:

a.

b.

c.

Answers

a.

b.

c.

Find Exact Values of Functions of Inverse Functions using Pythagorean Triples.
Repeat with non-integer values with calculator...

Learning objectives

A student will be able to:

• Find exact values of functions of inverse functions using Pythagorean triples.

Introduction

A right triangle ABC has sides a, b, and c where a and b are the legs of the triangle and c is the hypotenuse.
This leads to the Pythagorean Theorem

a 2 + b 2 = c 2

If a, b and c are positive integers, this is called a Pythagorean triple. The smallest and best known example
of a Pythagorean triple is 3, -4, -5.
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The integers 3, 4, and 5 satisfy the Pythagorean Theorem.

Pythagorean Triples and Exact Values

A Pythagorean triple can consist of three even numbers or two odd numbers and one even number. It can
never consist of three odd numbers or two even numbers and one odd number. The reason for this is the
square of an odd number is odd and the square of an even number is even. The sum of two even numbers
is an even number and the sum of an odd number and an even number is an odd number. Therefore, if either
a or b is odd, then the other must be even and this would make c an odd number. If both a and b are even
numbers, then this would make c an even number also. There are many ways to generate Pythagorean
triples, but here is one method that will work all the time.

If m and n are two positive integers such that m < n, then the values of a, b, and c can be determined by
using the following formulas:

a = n 2 - m 2 b = 2mn c = n 2 + m 2

Before we explore any further, let’s substitute the formulas for a, b and c into the Pythagorean Theorem to
determine if they satisfy the theorem.

Both sides of the equation are equal which tells us that the formulas satisfy the Pythagorean Theorem.
Therefore, the formulas can be used to generate Pythagorean triples.

Example 1:

If two positive integers m and n are given such that m = 2 and n = 3 generate a Pythagorean triple for these
integers.

Solution:

a = n 2 - m 2

a = 32 - 22

a = 9 - 4

a = 5

b = 2mn

b = 2(2)(3)

b = 12
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c = n 2 + m 2

c = 32 + 22

c = 9 + 4

c = 13

The Pythagoren triple is 5 - 12 - 13.

Check the values of a, b, and c using the Pythagorean Theorem.

Now that you are able to generate a Pythagorean triple, let’s determine the exact values of functions of inverse
functions using a Pythagorean triple.

The above triangle represents the most common Pythagorean triple and we will use this to determine exact
functions of inverse functions.

Example 2:

Evaluate .

Solution:

Let

and θ is in the Quadrant 1
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Example 3:

Evaluate

Solution:

Let

and is in the Quadrant IV.

or

Now, let’s use our calculator and do the same questions.

Example 4:

Solution:

Using the TI-83 calculator
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Example 5:

Solution:

Using the TI-83 calculator

Lesson Summary

In this lesson you learned how to generate Pythagorean triples by using simple formulas for a, b and c. You
also used these values to evaluate functions of inverse functions by using both the right triangles and tech-
nology.

Points to Consider

• Can these inverse circular functions be applied to other concepts that we have learned previously?

Review Questions

1. Evaluate the following using the Pythagorean triple 5 - 12 - 13

and it is in Quadrant I

Check using technology:
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Lesson 4

Revisiting y = c + a cos b(x - d)

Learning objectives

A student will be able to:

• Understand the graph of y = cos x and its transformations.

• Solve for x in terms of y to calculate values of x given specific values for y

Introduction

A remote control helicopter was being tested for its consistent flying ability.Under correct monitoring; the
helicopter could fly up and down in a sinusoidal pattern. To demonstrate this movement, a graph was drawn
to show the helicopter’s height at various times. The graph showed that the helicopter reached its maximum
height of 60 feet in 3 seconds and at 11 seconds it was at its minimum height of 6 feet. We will revisit this
scenario later in the lesson.

Consider the graph of y = cos x

You will notice that the graph has an amplitude of 1, a period of 2π, a sinusoidal axis of y = 0 and no phase
shift. However, all of these parts of the cosine curve can undergo transformations that will change the graph.
The general form of the cosine curve that includes all of the transformations is y = c + a cos b(x - d). The
letter a represents the amplitude of the function. The amplitude is the (maximum-minimum)/2 and the |a| is
the vertical stretch of the graph. The letter b represents the stretching or shrinking (horizontal stretch) of the
graph along the x-axis. The following relationship exists between b and the period of the graph:

and solving for the period . The letter d represents the phase shift (horizontal
translation) of the graph along the x-axis. The phase shift of the graph will be to the left if d is negative and
if it is positive the shift will be to the right. The letter c represents the vertical translation of the graph and
will affect the location of the sinusoidal axis.

Transformations of y = cos x

The following graphs will be used to see the affect that each of these transformations have on the graph of
y = cos x.

A vertical translation of y = cos x will cause the graph to slide vertically upward if the value of c is positive
and downward if the value of c is negative. This affects sinusoidal axis and its equation will no longer be y
= 0. The following figure displays the graph of y = cos x and the graph y = cos(x) + 2
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The value of c is +2 and the graph of y = cos x has moved upward such that the equation of the sinusoidal
axis is now y = 2.

A vertical stretch of y = cos x will cause the graph stretch vertically. This affects the amplitude of the graph
and it will no longer be one. The following figure displays the graph of y = cos x and the graph y = 3 cos(x)

The value of a in the equation y = 3 cos(x) is 3 and this represents the amplitude of the graph. Notice that
the graph of y = cos x has undergone a vertical stretch of 3 and now has an amplitude of this same value.
The amplitude of a cosine curve is one half of the difference between the maximum value and the minimum

value of the graph. In this particular graph the amplitude is . The amplitude is always the |a|.

The value of d will affect the phase shift of the graph. In other words, the first x-value will no longer be zero.
If d is negative, the graph will undergo a horizontal translation to the right. If d is positive, the graph will un-
dergo a horizontal translation to the left. The entire curve will slide horizontally along the x-axis.

Notice that in the graph of y = cos(x - 90o), the graph of y = cos x was translated horizontally and to the right
along the x-axis. The translation is to the right because cos(x - d) will only remain negative if the value of d
is indeed positive. Therefore the phase shift of y = cos(x - 90o) is + 90o.

As the graph of y = cos x can be stretched or shrunk vertically, it can also be stretched or shrunk horizontally.
This means that the period of 360o can be increased or decreased. This transformation depends upon the
value of b.
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Notice that when the period was increased to 720o, the graph of y = cos x became two cycles of the curve.

However, when the graph of was drawn, only one cycle of the curve was produced. This
is due to the fact that the one cycle of the curve y = cos x was horizontally stretched by a factor of 2. The

period of is the period of one cycle divided by the value of b which in this case is ½. This
yields a period of 720o.

The final transformation that exists is a vertical reflection. The graph is reflected in the x-axis. This transfor-
mation is denoted by a negative sign before a.

In the above figure, the graph of y = cos x is vertically reflected across the x-axis. This reflection is indicated
by the negative sign in the equation y = -cos x. This negative sign can be thought of as being before the
coefficient of the letter a, which in this case is understood as being one. The reflection has no affect on the
amplitude, the sinusoidal axis, the phase shift or the period.

All of these graphswere drawn using x-values in degrees. The same results would occur for x-values
in radian measure. It is time to apply these concepts to solve a problem.

Example 1:

Sketch the graph of .

Solution:
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From the graph it can be seen that the period is

The equation of the sinusoidal axis is y = 5

The phase shift is

The amplitude is (8 - 2)/2 = 6/2 = 3

These parts of the sinusoidal curve are directly related to the transformations of y = cos x.

V.R. = None

V.S. = 3

Amplitude

V.T. = + 5

Sinusoidal axis

Phase Shift

Example 2:

For the following graph, list the transformations of y = cos x and write an equation to model the graph.
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Solution:

V.R. = No

V.T. = -3

H.T. = -20o

An equation, in standard form, to model this graph is y = 5 cos(4(x - 70o)) - 3. Now, we will revisit the problem
that was posed at the beginning of the lesson.

A remote control helicopter was being tested for its consistent flying ability. Under correct monitoring; the
helicopter could fly up and down in a sinusoidal pattern. To demonstrate this movement, a graph was drawn
to show the helicopter’s height at various times. The graph showed that the helicopter reached its maximum
height of 60 feet in 3 seconds and at 11 seconds it was at its minimum height of 6 feet. Write an equation
to model this problem.

Solution:

The first step in writing an equation to model this situation would be to sketch a graph of the given information.

Table of Values of Equation y = 27 cos(22.5(x - 3)) + 33

f(x)x
43.330
52.091
57.942
603
57.944
52.095
43.336
337
22.678
13.919
8.05510
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611
8.05512
13.9113
22.6714
3315
43.3316
52.0917
57.9418
6019
57.9420

The five critical points that are used to plot the graph of the equation are highlighted in blue in the above
table of values. The table of values was generated by using technology(software program Autograph).

Some students will find it necessary to draw the entire graph while others may need only to plot the given
points as shown below:

Whichever graph is drawn, the students will now have to obtain an equation that will model this situation.
The equation can be presented in degree measure or in radian measure. The results will be the same.

y = 27 cos(22.5(x - 3)) + 33 0r y = 27 cos(2.25(x - .48)) + 33

The following is the graph drawn in radian measure.

Lesson Summary

In this lesson, you have reviewed the sinusoidal curve of y = cos x and the transformations associated with
it. In addition to reviewing these concepts, you have also graphed y = cos x and all of the transformations
individually to determine the affect that a, b, c and d has on the graph of y = cos x. To demonstrate your
understanding of these affects, you applied your knowledge to a real world problem.
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Points to Consider

• Is it possible to solve the y = c + a cos b(x - d) for x in terms of y in order to obtain values for x given
values for y?

Review Questions

1. For the following graph, list the transformations of y = cos x and write an equation to model the graph.

Answers

V.R. = No

V.T. = 3

H.T. = 30o

The equation that would model this graph is y = 3 cos(2(x - 30o)) + 2

Solving for Particular Values in Trigonometric Equations

Learning objectives

A student will be able to:

• Use the equation y = c + a cos b(x - d) to solve for x in terms of y.

• Determine the value of x when given a specific value for y.

Introduction

The equation y = c + a cos b(x - d) is an equation that is used to determine values for y when specific values
of x are given. However, in real world applications, it is often necessary to determine values for x when
specific values for y are given. To explore this further, we will return to the problem presented in lesson 5.1.
As an extension to the problem, we will calculate the first time at which the helicopter reaches an altitude
of 57.9 feet.

Once again, here is the problem with the added extension:
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A remote control helicopter was being tested for its consistent flying ability. Under correct monitoring; the
helicopter could fly up and down in a sinusoidal pattern. To demonstrate this movement, a graph was drawn
to show the helicopter’s height at various times. The graph showed that the helicopter reached its maximum
height of 60 feet in 3 seconds and at 11 seconds it was at its minimum height of 6 feet. At what time will the
helicopter first reach an altitude of 57.9 feet?

Using the equation y = c + a cos b(x - d) to solve for x in terms of y.

The equation used to model this problem was in the form y = c + a cos b(x - d) and was determined to be
y = c + a cos b(x - d) y = 33 + 27 cos(22.5(x - 3)). The format of the equation is such that any value for y
can be readily determined given any specific value for x. To calculate y, you need only substitute the given
value for x and proceed with the calculations as shown in the equation. However, such is not the case to
determine a value for x. To calculate a value of x using y = c + a cos b(x - d) involves a great deal of math-
ematical manipulation. Before beginning the task of calculating the value of x, the equation y = c + a cos
b(x - d) will be solved for x in terms of y. With the equation expressed in terms of y, the chance of making
errors in the calculations should be minimized.

y = c + a cos b(x - d)

y - c = c - c + a cos b(x - d)

y - c = a cos b(x - d)
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Similar manipulations can be done to solve for x in the general forms of the other trigonometric functions
such as y = c + a cos b(x - d)

Now that we have manipulated the equation to facilitate solving for x, we shall proceed to deal with the ex-
tension of the previous problem.

Example 1:

y = c + a cos b(x - d)

y = 33 + 27 cos(22.5(x - 3))

c = 33, a = 27, b = 22.5, d = 3, y = 57.9 feet

Solution:

The helicopter reaches a height of 57.9 feet for the first time at approximately 4.01 seconds. Due to the fact
that not all of the given decimal places were used while performing the calculations, the answer is an approx-
imate, equal answer.

The result can be checked by using the graphing calculator.
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Lesson Summary

This lesson was intended to demonstrate the advantage of solving the equation y = c + a cos b(x - d) for x
in terms of y. When this task was completed, you were given the opportunity to work with this formula to
determine a specific value for x given a specific value for y.

Points to Consider

• Can the same process be applied to problems that have measurements given in radian measure?

Review Questions

1. Geothermal energy is an important natural resource of Iceland. A geology student, doing field work, noticed
that steam from a vent flowed in a sinusoidal nature. Twelve seconds into his recording he noted that the
steam plume reached its maximum height of 52 feet above the vent and four seconds later it subsided to
its lowest plume of 12 feet above the vent. Use this information to determine an equation to model this
problem and then use the equation to determine when the steam plume would first reach a height of 40
feet?

Answers

Although the problem does not request that you sketch a graph, it is often the first step in obtaining a solution.
The graph can be obtained quickly using a graphing calculator. From the graph; the transformations can be
used to determine the equation to model the situation and the values can be used to calculate a value of x.

Using the trace function on the calculator gives an estimate of the x value.

The equation that models this problem is

Calculations done on the TI-83
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Applications, Technological Tools

Learning objectives

A student will be able to:

• Solve real world problems using the equation y = c + a cos b(x - d) and the equation solved for x in terms

of y

Introduction

In the previous lesson you learned how to apply to determine a value for x given a
specific value for y. In addition to using the formula, you also explored the use of the graphing calculator to
represent the problem graphically as well as to confirm your answer. In this lesson, you will solve another
real world problem using the techniques previously presented.

Examples

Example 1:

While on a cruise in the Caribbean, I noticed a dolphin swimming along side of the ship. He was consistently
reaching a height of 5 feet out of the water while diving to a depth of only 3 feet. I decided to begin timing
his jumping actions. At four seconds, he was at the top of his leap and every three seconds thereafter. Find
a model to represent the jumping pattern of the dolphin and use the model to determine the time that the
dolphin was at a height of 4 feet.

Equation: y = 1 + 4 cos 120 (x - 4)

Using the trace function of the calculator, the dolphin was at a height of 4 feet at 4.34 seconds.
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Calculations done on the TI-83

.

Lesson 5

Solving Trigonometric Equations Analytically

Learning objectives

A student will be able to:

• Use the fundamental trigonometric identities to solve trigonometric equations and to express trigonometric
expressions in simplest form.

Introduction

By now we have seen trigonometric functions represented in many ways: Ratios between the side lengths
of right triangles, as functions of coordinates as one travels along the unit circle and as abstract functions
with inverses and graphs. The applications thus far have been mainly computational. Now it is time to make
use of the properties of the trigonometric functions to gain knowledge of the connections between the
functions themselves. The patterns of these connections can be applied to simplify trigonometric expressions
and to solve trigonometric equations.

Example 1:

Simplify the following expressions using the basic trigonometric identities:

a.

b.

c. cos x - cos3 x

Solution:

a.

Pythagorean Identity
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and Reciprocal Identity

Quotient Ientity

b.

Pythagorean Identity

Pythagorean Identity

c. cos x - cos3 x

cos x (1 - cos2 x) Factor out cos x

sin2 x = 1 - cos2 x

cos x (sin2 x)

In the above examples, the given expressions were simplified by applying the patterns of the basic trigono-
metric identities.

Example 2:

Without the use of technology, find all solutions to the following equations such that 0 ≤ x ≤ 2π.

a.

Solution:

a.
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The tangent function is also positive in the third quadrant.

Therefore

Likewise, the tangent function is negative in Quadrants 2 and 4.

Therefore and

b. 2 cos x sin x - cos x = 0

cos x (2 sin x - 1) = 0

cos x = 0 and 2 sin x - 1 = 0

cos-1(cos x) = cos-1(0)

2 sin x = 1

The cosine function is also positive in the fourth quadrant.
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Therefore

Likewise the sine function is also positive in the second quadrant.

Therefore

In the above examples, exact values were obtained for the solutions of the equations. These solutions were
within the domain that was specified.

Lesson Summary

In this lesson you have learned that the trigonometric functions have relationships that can be applied to
both simplifying expressions and to solving trigonometric equations. The results were obtained by applying
previously learned trigonometric identities as well as the necessary skills for solving equations.

Points to Consider

• Are there other methods for solving equations that can be adapted to solving trigonometric equations?

• Will any of the trigonometric equations involve solving quadratic equations?

Review Questions

1. Solve the equation sin 2θ = 0.6 for 0 ≤ θ < 2π.

2. Solve the equation over the interval [0, 2π]

3. Solve the trigonometric equation sin 4θ - cos 2θ = 0 for all values of θ such that 0 ≤ θ ≤ 2π

4. Solve the trigonometric equation tan 2x - cot 2x = 0 such that 0o ≤ x < 360o

Answers

1. Because the problem deals with 2θ, the domain values must be doubled, making the domain 0 ≤ 2θ < 4π

The reference angle is α = sin-1(0.6) = 0.6435

The angles for 2θ will be in Quadrants 1, 2 5, 6

2θ = 0.6435, π - 0.6435, 2π + 0.6435, 3π - 0.6435

2θ = 0.6435, 2.2980, 6.9266, 8.7812

The values for θ are needed so the above values must be divided by 2.

θ = 0.3218, 1.1490, 3.4633, 4.3906

The results can readily be checked by graphing the function. The four results are reasonable since they are
the only results indicated on the graph that satisfy sin 2θ = 0.6.
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2.

Then

Or

However, cosine x is also positive in the fourth quadrant, so the other possible solution for is
2π - 1.3181 = 4.9651 radians.

In addition, cosine x is also negative in the third quadrant, so the other possible solution for
is 2π - 1.8235 = 4.4597 radians
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Now we can confirm the results by graphing the function . For graphing purposes, the function

was entered as

Our results have been confirmed from the graph such that x = 1.3181, 1.8235, 4.4597 and 4.9651 radians.

3. sin 4θ - cos 2θ = 0

2 sin 2θ cos 2θ - cos 2θ = 0 Double Angle Identity

cos 2θ (2 sin 2θ - 1) = 0 Common Factor

Then

Or

By graphing the function sin 4θ - cos 2θ = 0 (y = 4θ - cos 2θ) the above results can be confirmed.
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Confirming the values for θ may be easier if the values were converted to decimal form.

θ = 0.2618, 0.7854, 1.3090, 2.3562, 3.4034, 3.9269, 4.4506, 5.4978,

4.

Reciprocal Identity

Since the interval is 0o ≤ x < 3600, we must consider the values for 0o ≤ 2x < 7200.

2x = 45o, 135o, 225o, 315o, 405o, 495o, 585o, 675o

x = 22.5o, 67.5o, 112.5o, 157.5o, 202.5o, 247.5o, 292.5o, 337.5o

Once again, the values for x can be confirmed by graphing the function tan 2x - cot 2x = 0 (y = tan 2x - cot
2x)
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Solve Trig Equations (Factoring)

Learning objectives

A student will be able to:

• Solve trigonometric equations by factoring

Introduction

A trigonometric equation is an equation involving a trigonometric function. If the equation is true for all values
of the variable, it is an identity. The same methods that are applied to solve other equations are used to
solve trigonometric equations. The algebra skills like factoring and substitution that are used to solve various
equations are very useful when solving trigonometric equations. As with algebraic expressions, one must
be careful to avoid dividing by zero during these maneuvers. Most often these equations are solved for
principal values of the variable. These are the values for the variable that are in the domain of the trigono-
metric function.

Example 1:

Solve 2 sin2 x - 3 sin x + 1 = 0 for principal values of x

Solution:

2 sin2 x - 3 sin x + 1 = 0

(2 sin x - 1) (sin x - 1) = 0 Factor

Then
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or

Or

or

Example 2:

Solve 2 tan x sin x + 2 sin x = tan x + 1 for all values of x .

Solution:

2 sin x (tan x + 1) = tan x + 1

2 sin x (tan x + 1) - tan x - 1 = tan x - tan x + 1 - 1 Common factor

2 sin x (tan x + 1) -1 (tan x + 1) = 0 Decomposition

(2 sin x - 1)(tan x + 1) = 0

Then
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Or

where k is any integer

Example 3:

Solve 2 sin2 x + 3 sin x - 2 = 0 for principal values of x.

Solution:

2 sin2 x + 3 sin x - 2 = 0

(2 sin x - 1)(sin x + 2) = 0 Factor

Then

or

Or
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There is no solution since sin x is in the interval [-1, 1]

Some trigonometric equations have no solutions. This means that there is no replacement for the variable
that will result in a true expression.

Lesson Summary

In this lesson you learned how to apply the strategies used in algebra to solve equations to solving trigono-
metric equations. This lesson dealt with applying the skills required to factor both linear and quadratic ex-
pressions.

Points to Consider

• Is there a way to solve a trigonometric equation that will not factor?

• Is substitution of a function with an identity a feasible approach to solving a trigonometric equation?

Review Questions

1. Solve sin2 x - 2 sin x - 3 = 0 for principal values of x .

2. Solve tan2 x = 3 tan x for principal values of x .

3. Find all the solutions for the trigonometric equation over the interval [0o, 360o)

4. Solve the trigonometric equation 3 - 3 sin2 x = 8 sin x over the interval [0, 2π]

Answers

1. or

2. x = 0o and x ≈ 71.5o

3.
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Then

and

Cosine is positive in Quadrants 1 and 4

Or

364



4. 3 - 3 sin2 x = 8 sin x

3 - 3 sin 2 x - 8 sin x = 0

3 sin2 x + 8 sin x - 3 = 0

(3 sin x - 1)(sin x + 3) = 0

Then

Or

Does not exist

The sine function is also positive in the second quadrant. Therefore the value of x is also π - 0.3398 = 2.8018
radians.

Vocabulary

Principal Value - Values for the variable that are in the domain of the trigonometric function.

Solve Equations (Using Identities)

Learning objectives

A student will be able to:
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• Use trigonometric identities to write trigonometric expressions in terms of one trigonometric function by
using the identities for the purpose of solving the equation.

Introduction

Some trigonometric equations cannot be readily solved by factoring. As an alternative method, the trigono-
metric equation should be rewritten in terms of one function. This can be done by substituting an existing
expression with an equivalent identity. The object is to express the equation with only one function and then
to apply the necessary skills of algebra to solve for that function and then use an inverse trigonometric
function to solve for the variable.

Example 1:

Solve 2 sin2 x - cos x - 1 = 0 for all values of x .

Solution: The equation now has two functions – sine and cosine. Study the equation carefully and decide
in which function to rewrite the equation. sin2 x is readily expressed in terms of cosine by using the
Pythagorean Identity sin2 x + cos2 x = 1.

2 sin2 x - cos x - 1 = 0

2(1 - cos2 x) - cos x - 1 = 0

2 - 2 cos2 - cos x - 1 = 0

-2 cos

2 x

- cos

x

+ 1 = 0

2 cos2 x + cos x - 1 = 0

(2 cos x - 1)(cos x + 1) = 0

Then
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Or

where k is any integer.

Example 2:

Solve 2 cos2 x tan x - tan x = 0 for 0 ≤ x ≤ 2π

Solution: The equation now has two functions – cosine and tangent. Study the equation carefully and decide
in which function to rewrite the equation. In this case we actually don’t need to change all of the functions
to one, as the function can be separated by factoring. If the common factor tan x were factored out, then a
double angle identity for cosine could be substituted into the new expression.

2 cos2 x tan x - tan x = 0

tan x (2 cos2 x - 1) = 0

tan x (cos 2x) = 0 Double Angle Identity for Cosine

Then tan x = 0

tan-1 (tan x) = tan-1(0)

x = 0, π

Or cos 2x = 0

cos-1(2x) = cos-1(0) 2x = 0 and 0 ≤ x ≤ 2π, then 0 ≤ 2x ≤ 4π
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The solutions are:

Lesson Summary

In this lesson you learned that by substituting trigonometric identities into an equation provided you with one
that could be solved. Without these substitutions, the trigonometric equations would be impossible to solve.
You must be careful when doing using these identities to ensure that you make the correct substitution and
use the applicable identity to achieve success.

Points to Consider

• Is using the quadratic formula an option when solving a trigonometric equation?

Review Questions

1. Solve 2 sin x tan x = tan x + sec x for all values of x [0, 2π]

Hint: and

2. Solve cos 2x = -1 + cos2 x for all values of x.

Hint: Use the double angle identity for cos 2x

3. Solve the trigonometric equation 2 cos2 x + 3 sin x - 3 = 0 over the interval [0, 2π].

Answers

1.

2.

3. 2 cos2 x + 3 sin x - 3 = 0

2(1 - sin2 x) + 3 sin x - 3 = 0 Pythagorean Identity

2 - 2 sin2 x + 3 sin x - 3 = 0

-2 sin

2 x

+ 3 sin
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x

- 1 = 0

Multiply by -1

2 sin2 x - 3 sin x + 1 = 0

(2 sin x - 1)(sin x - 1) = 0

Then

Or

Solving Trigonometric Equations (Using the Quadratic Formula)

Learning objectives

A student will be able to:

• Solve trigonometric equations by using the quadratic formula.

Introduction

When solving quadratic equations that do not factor, the quadratic formula is often used. The same can be
applied when solving trigonometric equations that do not factor. The values for a is the numerical coefficient
of the function2 term, b is the numerical coefficient of the function term and c is a constant. The formula will
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result in two answers and both will have to be evaluated within the designated interval.

Example 1: Solve 3 cot2 x - 3 cot x = 1 for exact values of x over the interval [0, 360o].

Solution:

3 cot2 x - 3 cot x = 1

3 cot2 x - 3 cot x - 1 = 1 - 1

3 cot2 x - 3 cot x - 1 = 0

The equation will not factor. Use the quadratic formula for cot x.
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The tangent function is positive in the first and third quadrant.

Therefore x = 38.4o

x = 218.34o

The tangent function is negative in the second and fourth quadrant.

Therefore x = 104.8o

x = 284.8o

Example 2: Solve -5 cos2 x + 9 sin x + 3 = 0 for values of x over the interval [0.2π]

Solution:

-5 cos

2 x

+ 9 sin

x

+ 3 = 0 -5 (1 - sin

2 x

) + 9 sin
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x

+ 3 = 0

Pythagorean Identity

-5 + 5 sin

2 x

+ 9 sin

x

+ 3 = 0

5 sin2 x + 9 sin x - 2 = 0

5y 2 + 9y - 2 = 0 Let y = sin x

radians

372



There are no solutions for x since -2 is not in the range of values for x -1 ≤ x ≤ 1

The sine function is positive in the first and second quadrants.

Therefore x ≈ .201π rad

x ≈ 2.94π rad

Lesson Summary

In this lesson you have learned how to solve trigonometric equations that are quadratic. The same rules
from algebra are used when the quadratic formula is used to solve a trigonometric function. Two solutions
are obtained and these solutions must be adapted to the designated interval of the problem.

Points to Consider

• Are there other methods that can be used to solve trigonometric equations?

• Can these methods be applied to solve trigonometric equations that have multiple angles?

Review Questions

1. Solve 3 cos2 x - 5 sin x = 4 for values of x over the interval 0o ≤ x ≤ 360o

Hint: Replace cos2 x with 1 - sin2 x

2. Solve tan2 x + tan x + 2 = 0 for values of x over the interval

3. Solve the trigonometric equation such that 5 cos2 θ - 6 sin θ = 0 over the interval [0, 2π].

Answers

1. x ≈ 193.5o and x ≈ 346.5o

2.

3. Hint: Replace cos2 θ with 1 - sin2 θ
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x = 0.6018 radians ± 2π and x = 2.5397 radians ± 2π

Applications and Technological Tools

Learning objectives

A student will be able to:

• Use technology to solve trigonometric equations

Example 1

Solve the equation sec2 x + 2 tan x - 6 = 0 over the interval [0, 2π)

Solution:

1 + tan2 x + 2 tan x - 6 = 0 Pythagorean Identity sec2 x = 1 + tan2 x

tan2 x + 2 tan x - 5 = 0

Let y = tan x Therefore: y 2 + 2y - 5 = 0

Using the quadratic formula:

In radians, tan x = 1.4495 for x = 0.9669 And in the third quadrant x = 4.108

tan x = -3.4495 for x = 1.853 And in the fourth quadrant x = 4.995

We can verify the solution graphically:
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The solution agrees with the values of x for which the graph of y = sec2 x + 2 tan x - 6 crosses the x-axis in
the above graphs. The values pictured in the four smaller graphs were obtained by using the zoom feature
of the TI-83.

Often, solving a trigonometric equation algebraically can be very involved and complicated. To solve the
equation takes a great deal of skill and time. As an alternative to this long process, the equations can be
readily solved by using technology. The trigonometric equation 4 sin3 x + 2 sin2 x - 2 sin x - 1 = 0 can be
solved algebraically as well as by using technology. The following graph of the cubic function was created
by using the software program – Autograph.

However, using a graphing calculator will produce the same graph. The x-intercepts can be determined by
using the functions available on the calculator.

We will begin by solving the equation algebraically.

Solution:
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Then

x = -0.5236 radians

x = π - -0.5236

x = 3.6652 radians

Or

x = -0.7854 radians

x = π - -0.7854

x = 3.9270 radians

Or
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x = 0.7854 radians

x = π - 0.7854

x = 2.3562 radians

The period of sin x is 2π which means that the solutions will repeat every 2π units.

Therefore the solutions are:

1. x = -0.7854 ± 2πk

2. x = -0.5236 ± 2πk

3. x = 0.7854 ± 2πk

4. x = 2.3562 ± 2πk

5. x = 3.6652 ± 2πk

6. x = 3.9270 ± 2πk

where k is any integer.

Solving the equation algebraically was quite involved and required a lot of time to complete. Now, we will
use the graphing calculator to solve the equations. The solutions will be estimates of the solutions.
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The solutions are very close to those that resulted from the algebraic solution of the equation.

Lesson 6

Solve equations (with double angles)

Learning objectives

A student will be able to:

• Use the double angle identities for the sine, cosine and tangent functions to solve trigonometric equations

Introduction

The double angle formulas can be used to compute exact values or to change the form of existing trigono-
metric equations. You learned about these formulas in the previous chapter, but we will briefly review them
here before investigating how they will be useful when working solving equations involving trigonometric
functions. These formulas are quite simple to derive , so we will start by deriving them again below, followed
by examples which show how they can be used to solve equations.

Double Angle Identity for the Sine Function

One of the formulas for calculating the sum of two angles is:

sin(α + β) = sin α cos β + cos α sin β

If α and β are both the same angle in the above formula, then

sin(α + α) = sin α cos α + cos α sin α

sin 2α = 2 sin α cos α
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This is the double angle formula for the sine function.

Example 1:

Find all solutions to the equation sin 2x = cos x in the interval [0, 2π]

Solution:

2 sin x cos x = cos x Apply the double angle formula sin 2x = 2 sin x cos x

2 sin x cos x - cos x = cos x - cos x

2 sin x cos x - cos x = 0

cos x (2 sin x - 1) = 0 Factor and cos x

Then cos x = 0 or 2 sin x - 1 = 0

cos x = 0 or 2 sin x - 1 + 1 = 0 + 1

The values for cos x = 0 in the interval [0, 2π] are and

The values for in the interval [0, 2π] are and

Double Angle Identity for the Cosine Function

Another formula for calculating the sum of two angles is:

cos(α + β) = cos α cos β - sin α sin β

If α and β are both the same angle in the above formula, then

cos(α + α) = cos α cos α - sin α sin α

cos 2α = cos2 α = sin2 α

This is one of the double angle formulas for the cosine function. Two more formulas can be derived by using
the Pythagorean Identity sin2 α + cos2 α = 1

sin2 α = 1 - cos2 α and likewise cos2 α = 1 - sin2 α

cos 2α = cos2 α - sin2 α

cos 2α = cos2 α - (1 - cos2 α)
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cos 2α = cos2 α - 1 + cos2 α

cos 2α = 2 cos2 α - 1

cos 2α = cos2 α - sin2 α

cos 2α = 1 - sin2 α - sin2 α

cos 2α = 1 - 2 sin2 α

The double angle formulas for cos 2α are:

cos 2α = cos2 α - sin2 α

cos 2α = 2 cos2 α - 1

cos 2α = 1 - 2 sin2 α

Example 2:

Find cos 4θ.

Solution:

cos 2θ = 2 cos2 θ - 1

cos 4θ = 2 cos2 2θ - 1

cos 4θ = 2(2 cos2 θ - 1)2 - 1

cos 4θ = 2(4 cos4 θ - 4 cos2 θ + 1) - 1

cos 4θ = 8 cos4 θ - 8 cos2 θ + 2 - 1

cos 4θ = 8 cos4 θ - 8 cos2 θ + 1

Double Angle Identity for the Tangent Function

Another formula for calculating the sum of two angles is:

If α and β are both the same angle in the above formula, then
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Example 3:

If and x is an acute angle, find the exact value of tan 2x.

Solution: Cotangent and tangent are reciprocal functions. .

Therefore

Example 4:

Solve the trigonometric equation sin 2x = sin x such that (- π ≤ x < π)

Solution:

sin 2x = sin x
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2 sin x cos x = sin x Double angle Identity for sin 2x

2 sin x cos x - sin x = 0

sin x (2 cos x - 1) = 0

Then sin x = 0

sin-1(sin x) = sin-1(0)

x = -π

x = 0

Or

Lesson Summary

In this lesson we reviewed how to derive the double angle formulas (also referred to as the double angle
identities) for the sine, cosine and tangent functions. Then we used these formulas to determine exact values,
to solve equations and to write expressions. The more you use these formulas, the more adept you will be-
come at manipulating them and at choosing the correct one to arrive at the solution for the problem.

Points to Consider

• Are there similar formulas that can be derived for other angles?

• How can these other formulas be used?

Review Questions

1. If and 0o < x < 90o, use the double angle formulas to determine each of the following.

a. tan 2x
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b. sin 2x

c. cos 2x

2. Use the double angle formulas to prove that the following equations are identities. Prove that the left hand
side is equal to the right hand side by working with the left hand side only.

a. 2 csc 2x = csc2 x tan x

b. cos4 θ - sin4 θ = cos 2θ

c.

3. Solve the trigonometric equation cos 2θ = 1 - 2 sin2 θ such that - π ≤ θ < π

4. Solve the trigonometric equation cos 2x = cos x such that 0 ≤ x < π

Answers

1. a. 3.429

b. 0.960

c. 0.280

2. a.

b. cos4 θ - sin4 θ = (cos2 θ + sin2 θ)(cos2 θ - sin2 θ)
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cos4 θ - sin4 θ = 1(cos2 θ - sin2 θ)

cos 2θ = cos2 θ - sin2 θ

cos4 θ - sin4 θ = cos 2θ

c.

3. Hint: Replace cos 2θ with 1 - 2 sin2 θ

and

4. Hint: Replace cos 2x with 2 cos2 x - 1

Vocabulary

Double Angle Identity the formulas that result from α and β being equal in the angle sum formulas.
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Identity A statement of equality between two expressions that is true for all values of the variable for which
the expressions are defined.

Solving Trigonometric Equations Using Half Angle Formulas

Learning objectives

A student will be able to:

• Apply the half angle identities for the sine, cosine and tangent functions

Introduction

As you learned in the last chapter, the half angle formulas can be used to compute exact values or to simplify
trigonometric expressions. As you remember, these formulas are quite simple to derive by using the double
angle formulas and performing some manipulations. We will review these derivations and then apply the
formulas to solve trigonometric equations.

Half-Angle Identity for the Sine Function

In the previous lesson, one of the formulas that was derived for the cosine of a double angle is:

Set
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if is located in either the first or second quadrant.

if is located in the third or fourth quadrant.

Example 1:

Use the half angle formula for the sine function to determine the value of sin 30o.

Solution:

α = 30o and the angle is located in the first quadrant. Therefore,

Another way to do this problem would be to use which is the value of the sine of 30o as one of the

special angles. The result would be . If this were entered into a calculator, the result
would be the same as the first solution.

This value can also be determined by using a calculator but it is necessary to practice working with the formula.

Half-Angle Identity for the Cosine Function

In the previous lesson, one of the formulas that was derived for the cosine of a double angle is:

Set
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if is located in either the first or fourth quadrant.

if is located in either the second or fourth quadrant.

Example 2:

Use the half angle formula for the cosine function to prove that the following expression is an identity.

Solution:

Use the formula and substitute it on the left-hand side of the expression.
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Half-Angle Identity for the Tangent Function

The half angle identity for the tangent function begins with the reciprocal identity for tangent.

The half angle formulas for sine and cosine are substituted into the identity.

Or multiply by

There are two half angle formulas for the tangent function.

Example 3:
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Without the use of technology, use the half-angle identity for tangent to determine an exact value for
.

Solution:

Example 4:

Solve the trigonometric equation over the interval [0, 2π).

Solution:

Half-angle identity

Pythagorean identity

Common factor cos θ

Then cos θ = 0

cos-1(cos θ) = cos-1(0)

Or

389



1 - cos θ = 0

1 - 1 - cos θ = 0 - 1

- cos

θ

= -1

cos θ = 1 Divide both sides by -1

cos-1(cos θ) = cos-1(1)

or or θ = 0 These are the three solutions in [0, 2π) and the following solutions are the result
of the function being periodic.

where k is any integer.

Lesson summary

In this lesson you have learned how to derive the half-angle angle formulas (also referred to as the half-
angle identities) for the sine, cosine and tangent functions. These formulas are used to determine exact
values, to solve equations and to write expressions to prove that they are equal. Once again, practice makes
perfect, so you will have to use these formulas in order to arrive at the correct solution for the various prob-
lems.

Points to Consider

• All of the examples in both this lesson and the previous lesson dealt with single angles. Can these for-
mulas be used to solve trigonometric equations when multiple angles are in the solution?

Review Questions

1. Without the use of technology, use the half-angle identities for the trigonometric functions to determine
an exact value for each of the following:

a. sin 67.5o

b. tan 165o

2. Prove that

3. Solve the trigonometric equation such that 0 ≤ x < 2π.

Answers

1. a.
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b.

2.

3.

Half angle identity

Square both sides

Then
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Or

cos x + 1 = 0

cos x + 1 - 1 = 0 - 1

cos x = -1

cos-1(cos x) = cos-1(-1)

x = π

Solving Trigonometric Equations with Multiple Angles

Learning objectives

A student will be able to:

• Solve equations with multiple angles by applying the half angle identities and the double angle identities
for the sine, cosine and tangent functions

Introduction

The double angle and the half-angle identities can be used to compute exact values or to change the form
of existing trigonometric equations. These formulas have been derived in the previous lessons and will be
applied to problems in this lesson to demonstrate that they can work with other trigonometric formulas.

Example 1:

Find the exact value of cos 2x given and x is in quadrant 2.

Solution:

392



Example 2:

Solve the trigonometric equation over the interval [0, 2π].

Solution:

The solutions for 2θ are

The solutions for θ are

Lesson summary

In this lesson you have learned how to solve trigonometric equations with multiple angles. The methods
used to solve these equations will be often used when solving trigonometric equations. The solutions that
you present require a that you understand the defined interval for the values of the angle.

Points to Consider

• Can technology be used to either solve these trigonometric equations or to confirm the solutions?
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Review Questions

1. Solve the trigonometric equation over the interval [0, π].

2. Solve the trigonometric equation 2 cos 3x - 1 = 0 over the interval [0, 2π].

3. Solve the trigonometric equation 2 sec2 θ - tan4 θ = -1 for all real values of θ.

4. Solve the trigonometric equation sin2 x - 2 = cos 2x such that 0o ≤ x < 360o

Answers

1. x = .3747 radians and x = 2.7669 radians

2.

3. Hint: Rewrite the equation in terms of tan by using the Pythagorean identity

1 + tan2 θ = sec2 θ

and where k is any integer.

4. Hint: Use the double angle identity for cos 2x.

x = 90o and x = 270o

Applications and Technological Tools

Learning objectives

A student will be able to:

• Use technology to solve trigonometric equations.

• Explore real life problems that involve solving trigonometric equations.

Example 1:

1. The range of a small rocket that is launched with an initial velocity v at an angle with θ the horizontal is

given by . If the rocket is launched with an initial velocity of 15m/s, what
angle is needed to reach a range of 20m?

Solution:

θ = 30.3o or θ = 59.7o

2. Using the TI-83 to solve a trigonometric equations is sometimes easier than solving the equation alge-
braically.

Solve sin x = 2 cos x such that 0 ≤ x ≤ 2π using technology.

i. Graph y = sin x
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ii. Graph y = 2 cos x

iii. Use CALC to find the intersection points of the graphs.

3. Show that

Solution:

This can be verified graphically:
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The graph of is the same as the graph of y 2 = 1

4. A spring is being moved up and down. Attached to the end of the spring is an object that undergoes a
vertical displacement. The displacement is given by the equation y = 3.50 sin t + 1.20 sin 2t. Find the first
two values of t (in seconds) for which y = 0.

Solution:

Let y = 0.

3.50 sin t + 1.20 sin 2t = 0

3.50 sin t + 2.40 sin t cos t = 0 Double-Angle Identity

sin t(3.50 + 2.40 cos t) = 0 Factoring the common factor

sin t = 0

t = 0.00, 3.14

OR cos t = -1.46 No Solution - cos t cannot be larger than one.

The solution can be verified graphically:

Lesson 7

Solving Trigonometric Equations Using Inverse Notation

Learning objectives

A student will be able to:

• Solve trigonometric equations using inverse notation

Introduction

Many trigonometric equations use inverse trigonometric functions to obtain a solution. An inverse trigono-
metric function can be written by using -1 as an exponent for the function or by using the word ‘arc’ before
the function. When solving equations, to avoid confusing the exponent of -1 as meaning a reciprocal function,
it is recommended that arccos, arcsin, arctan, etc. be used.

It is often necessary to express a functional relationship with y in terms of x. For example:

a. y = cos-1 x is read as “y is the angle whose cosine is x.” In this case, x = cos y.

b. y = tan-1 2x is read as “y is the angle whose tangent is 2x.” In this case, 2x = tan y.
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c. y = csc-1 (1 - x) is read as “y is the angle whose cosecant is 1 – x.” In this case, 1 – x = csc y, or x = 1 -
csc y

Following the above examples, y = sin-1 x means that x = sin y. Using this relationship means that there is
an unlimited number of possible values for y for a given value of x in x = sin y . For x = sin y, we know that

and . In fact, for , and , just to name a few. To have a
properly defined function, there must be only one value of the dependent variable for a given value of the
independent variable. In order to have only one value of y for each value of x in the domain of the inverse
trigonometric functions, it is not possible to include all values of y in the range. For this reason, the range
of each of the inverse trigonometric functions is defined as:

Therefore, is the only value of the function that is acceptable since it is the only one that

lies within the defined range. The value is outside the defined range for sin-1 x. A second quadrant angle
cannot be chosen for sin-1 x, since its sine is also positive and this would lead to ambiguity. The sine is
negative for fourth quadrant angles, and to have a continuous range of values, all angles in this quadrant
would be expressed in the form of negative angles. The same concept applies to determining values for
tan-1 x. However, the range for cos-1 x cannot be chosen on this way since the cosine of a fourth quadrant
angle is also positive. To maintain a continuous range of values for cos-1 x, the second quadrant angles are
chosen for negative values of x.

The following graphs of the inverse trigonometric functions will show the domains and ranges. The graph
of the inverse sine function is obtained by first graphing x = sin y along the y-axis and then highlighting the

section of the curve within the restricted range . The following graphs are simply another
view of the inverse trigonometric functions:
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The following examples will help to develop a clearer understanding of the values and the meanings of the
inverse trigonometric functions.

Example 1:

Evaluate each of the following expressions without using technology. The unit circle (special angles) can
be used.

a.

b.

c. arccos(-1)

Solution:

a. An angle in the fourth quadrant that lies within the restricted range is or

b. An angle in the first quadrant that lies within the restricted range is or

c. An angle in the second quadrant that lies within the restricted range is π or 180o

Example 2:

Using technology, find the value in radian measure, of each of the following:
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a. arcsin 0.6384

b. arccos (-0.8126)

c. arctan (-1.9249)

Solution:

a.

b.

c.

Example 3:

Find the value of cos(arcsin 0.5) and of sin(cot-1 1)

Solution:

arcsin 0.5 is a first quadrant angle equal to . The next step is to find .

is .

which is a first quadrant angle. The next step is to find

is .

Lesson Summary

In this lesson you learned that inverse trigonometric equations could be solved by using function notation.
In order to determine the correct values when evaluating, the restricted ranges of the inverse trigonometric
functions must be considered. The restricted ranges were also presented graphically to enhance your un-
derstanding of the inverse trigonometric functions.

Points to Consider

• Is it possible to use other trigonometric identities to sole inverse trigonometric equations?

Review Questions

1. Given y = π - arc sec 2x, solve for x.

2. Find sin (cot-1 1)

3. Solve the trigonometric equation over the interval [0, 2π)

4. Solve the trigonometric equation such that 0o ≤ θ < 360o
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Answers

1.

Since the values of arc sec 2x are restricted, so are the values of y.

2. A first quadrant angle Or using technology 0.7071

3.

The graph of the cosine function is one-to-one on the interval [0, π]

If we restrict the domain of the cosine function to that interval , we can take the arccosine of both sides of
each equation.

However, this is the reference angle and we know that cosine is also positive in the fourth quadrant. This

gives another answer of that is in the interval [0, 2π) To include all real solutions, the solu-

tions would repeat every 2π units. Therefore the solutions would be written as or
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where k is any integer.

4.

The graph of the cosine function is one-to-one on the interval [0, π]. If we restrict the domain of the cosine
function to that interval, we can take the arccosine of both sides of each equation.

However, this is the reference angle and we know that cosine is also positive in the fourth quadrant. This
gives another answer of x = 360o - 45o = 315o that is in the interval 0o ≤ θ < 360o.

To include all real solutions, the solutions would repeat every 360o. Therefore the solutions would be written
as x = 45o + 360o k or x = 315o + 360o k, where k is any integer.

Solving Trigonometric Equations Using Inverse Functions

Learning objectives

A student will be able to:

• Solve trigonometric equations using inverse functions

Introduction

In this lesson, you will use the inverse trigonometric functions of arcsine, arccosine and arctangent to solve
trigonometric equations. These types of questions have been presented in other lessons of the chapter, but
it as good idea to practice more of these problems.

Example 1:

Solve the following trigonometric equation

Solution:
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or

Example 2:

Solve y = 2 cos 2x for x.

Solution:

Example 3:

Use inverse trigonometric functions to solve the following equation in terms of t.

y = A cos 2 (wt + φ)

Solution:
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Lesson Summary

In this lesson you have solved trigonometric equations by using the inverse trigonometric functions. As you
have seen, it is not always necessary to obtain a numerical value as an answer. The second and third ex-
amples display this fact very well. These examples are also very good problems for keeping your formula
manipulation skills keen.

Points to Consider

• Is it possible to solve trigonometric equations by using trigonometric identities?

Review Questions

1. The electric current in a certain circuit is given by

i = I m[sin(wt + α) cos φ + cos(wt + α) sin φ] Solve for t.

Answers

1.

Solving Inverse Equations Using Trigonometric Identities

Learning objectives

A student will be able to:

• Solve trigonometric equations using identities

403



Introduction

When solving an inverse trigonometric equation, it is often necessary to apply one or more of the trigono-
metric identities that you have studied in previous lessons. Applying these identities involves making a
substitution for one or more terms in the given equation. Once the substitutions have been made, the
equation can be readily solved.

Example 1:

Use the triangle to find cos(2 sin-1 x).

Solution:

From the triangle

cos(2 sin-1 x)

cos(2 sin-1 x) = cos 2θ Substitution θ = sin-1 x

cos 2θ = 1 - 2 sin2 θ Double Angle Identity

cos(2 sin-1 x) =1 - 2x 2

Example 2:

Solve sin 2x + sin x = 0 for x over the interval [0, 2π)

Solution:

sin 2x + sin x = 0

sin 2x = 2 sin x cos x Double Angle Identity

2 sin x cos x + sin x = 0
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sin x(2 cos x + 1) = 0 Factoring

sin x = 0

sin-1(sin x) = sin-1(0)

x = 0 and

The solution is over the interval [0, 2π)

Lesson Summary

In this lesson you learned that substituting a trigonometric identity into an equation made it possible to solve.
Without these identities, a solution would be impossible. In order to be successful when solving these
equations, you will have to remember the various identities.

Points to Consider

• Is solving these equations by using trigonometric identities applicable to real world problems?

Review Questions

1. The intensity of a certain type of polarized light is given by the equation

I = I 0 sin 2θ cos 2θ. Solve for θ.

2. The following diagram represents the ends of a water-trough. The ends are actually isosceles trapezoids.
Determine the maximum value of the trough and the value of θ that maximizes the volume.
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Answers

1.

2. Hint: The volume is 10 feet times the area of the end. The end consists of two congruent right triangles

and one rectangle. The area of each right triangle is and that of the rectangle is (1)(cos
θ).

The maximum value is approximately 13 cubic feet and occurs when .
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5. Triangles and Vectors

The Law of Cosines

Learning Objectives

A student will be able to:

• Understand how the Law of Cosines is derived.

• Apply the Law of Cosines when you know two sides and the included of an oblique (non-right) triangle
(SAS).

• Apply the Law of Cosines when you know all three sides of an oblique triangle.

• Identify accurate drawings of oblique triangles.

• Use the Law of Cosines in real-world and applied problems.

Introduction

Real-World Application:

An architect is designing a kitchen for a client. When
designing a kitchen, the architect must pay special at-
tention to the placement of the stove, sink, and refriger-
ator. In order [insert figure 1 here] for a kitchen to be
utilized effectively, these three amenities must form a
triangle with each other. This is known as the “work
triangle.” By design, the three parts of the work triangle
must be no less than 3 feet apart and no more than 7
feet apart. Based on the dimensions of the current
kitchen, the architect has determined that the sink will
be 3.6 feet away from the stove and 5.7 feet away from
the refrigerator. If the sink forms a 103o angle with the
stove and the refrigerator, will the distance between
the stove and the refrigerator remain within the confines
of the work triangle? If he moves the stove so that it is
4.2 feet from the sink and makes the fridge 6.8 feet
from the stove, how does this affect the angle the sink forms with the stove and the refrigerator?

Up until this point, we have only looked at how to solve problems involving right triangles. We learned to
use the Pythagorean Theorem and the trigonometry functions such as sine, cosine, and tangent, to find
missing pieces in right triangles. However, not every situation we encounter in life involves a right triangle.
Right triangles are really a special case of all triangles. Faced with problems that deal with generalized tri-
angles, including triangles with all acute angles or ones with an obtuse angle and two acute angles we need
other, more general, tools. In the application above, we have an obtuse triangle, which means that we cannot
use the Theorem of Pythagoras to solve this problem.

We will refer back to the above application in a little while.

The Law of Cosines is one tool we can use in certain situations involving all triangles: right, obtuse, and
acute.
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The Law of Cosines is a general statement relating the lengths of the sides of any general triangle to the
cosine of one of its angles. There are two situations in which we can and want to use the Law of Cosines:

1. When we know two sides and the included angle in an oblique triangle and want to find the third side
(SAS)

2. When we know all three sides in an oblique triangle and want to find one of the angles (SSS)

In this lesson, we will learn more about the Law of Cosines, how it is derived, and how to apply it to different
problems and situations. We will also look at applications involving the Law of Cosines and how it can be
useful in finding angles and lengths when other methods (such as measuring) can be unreliable.

Derive the Law of Cosines

∆ABC contains an altitude BD that extends from B and intersects AC. We will refer to the length of BD as
y. The sides of ∆ABC measure a units, b units, and c units. If DC is x units long, then AD measures (b – x)
units.
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Using the Theorem of Pythagoras, we know that:

Theorem of Pythagorasc 2 = y 2 + (b - x)2

Expand (b - x)2c 2 = y 2 + b 2 - 2bx + x 2

a 2 = y 2 + x 2 by Theorem of Pythagorasc 2 = a 2 + b 2 - 2bx

cosC = , so a cos C = x (cross multiply)
c 2 = a 2 + b 2 - 2b(a cosC)

Simplifyc 2 = a 2 + b 2 - 2ab cosC

We can use a similar process to derive all three forms of the Law of Cosines:

a 2 = b 2 + c 2 - 2bc cos A

b 2 = a 2 + c 2 - 2ac cos B

c 2 = a 2 + b 2 - 2ab cos C

Note that if either or is 90o then cos 90o= 0 and the Law of Cosines is identical to the
Pythagorean Theorem.

Side of an Oblique Triangle (given the other two sides)

One case where we can use the Law of Cosines is when we know two sides and the included angle in a
triangle (SAS) and want to find the third side.

Since ∆DEF isn’t a right triangle, we cannot use the
Theorem of Pythagoras or trigonometry functions to
find the third side. However, we can use the Law of
Cosines. First we will look at how to use the Law of
Cosines in this situation. Then, we will look back at the
baseball application from earlier.

Example 1:

Using ∆DEF from above, , d = 18, and f = 16.8. Find e.

Law of Cosinese 2 = 182 + 16.82 - 2(18)(16.8) cos 12
Simplify squarese 2 = 324 + 282.24 - 2(18)(16.8) cos 12
Multiplye 2 = 324 + 282.24 - 591.5836689
Add and subtract from left to righte 2 = 14.6563311
Square roote ≈ 3.8
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• Note that the negative answer is thrown out as having no geometric meaning in this case.

We will now refer back to the Real-World Application at the beginning of the section.

Part 1: In order to find the distance from the sink to the refrigerator, we need to know side x. To find side x,
we will need to use the Law of Cosines since we are dealing with an obtuse triangle and thus have no right
angles to work with. We know the length two sides: the sink to the stove and the sink to the refrigerator. We
also know the included angle (the angle the sink forms with the fridge and the stove) is 103o. This means
we have the SAS case and can apply the Law of Cosines.

Law of Cosinesx 2 = 3.62 + 5.72 - 2(3.6)(5.7) cos 103
Simplify squaresx 2 = 12.96 + 32.49 - 2(3.6)(5.7) cos 103
Multiplyx 2 = 12.96 + 32.49 + 9.23199127
Evaluatex 2 = 54.98133127
Square rootx ≈ 7.4

Answer: No, the sink and the refrigerator are too far apart by 0.4 feet.

Part 2: In order to find how the angle is affected, we will again need to utilize the Law of Cosines since we
do not know the measures of any of the angles.
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Law of Cosines6.82 = 4.22 + 5.72 - 2(4.2)(5.7) cos Y
Simplify squares46.24 = 17.64 + 32.49 - 2(4.2)(5.7) cos Y
Multiply46.24 = 17.64 + 32.49 - 47.88 cos Y
Add46.24 = 50.13 - 47.88 cos Y
Subtract-3.89 = -47.88 cos Y
Divide0.0812447786 = cos Y

cos-1 (0.081244786)85.3 ≈ Y

Answer: The new angle would be 85.3o, which means it would be 17.7o less than the original angle.

Any Angle of a Triangle (given three sides)

Another situation where we can apply the Law of Cosines is when we know all three sides in a triangle
(SSS) and we need to find one of the angles. The Law of Cosines allows us to find any of the three angles
in the triangle. First, we will look at how to apply the Law of Cosines in this case, and then we will look at
a real-world application.

Example 2:

In oblique ∆MNO, m = 45, n = 28, and o = 49. Find .

Since we know all three sides of the triangle, we can use the Law of Cosines to find . It is important
to note that we could use the Law of Cosines to find or also.

Law of Cosines452 = 282 + 492 - 2(28)(49) cos M
Simplify squares2025 = 784 + 2401 - 2(28)(49) cos M
Multiply2025 = 784 + 2401 - 2744 cos M
Add2025 = 3185 - 2744 cos M
Subtract 3185-1160 = -2744 cos M
Divide by -27440.422740525 = cos M

cos-1 (0.422740525)65o ≈ M

Answer: The measure of .
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Real-World Application: Sam is building a retaining wall for a garden
that he plans on putting in the back corner of his yard. Due to the
placement of some trees, the dimensions of his wall need to be as
follows: side 1 = 12ft, side 2 = 18ft, and side 3 = 22 feet. At what angle
do side 1 and side 2 need to be? Side 2 and side 3? Side 1 and side
3?

Part 1: Since we know the measures of all three sides of the retaining
wall, we can use the Law of Cosines to find the measures of the angles
formed by adjacent walls. We will refer to the angle formed by side 1
and side 2 as , the angle formed by side 2 and side 3 as ,
and the angle formed by side 1 and side 3 as . First, we will find

. How far from 90 degrees will angle A be?

Law of Cosines222 = 122 + 182 - 2(12)(18) cos A
Simplify squares484 = 144 + 324 - 2(12)(18) cos A
Multiply484 = 144 + 324 - 432 cos A
Add484 = 468 - 432 cos A
Subtract 46816 = -432 cos A
Divide by –432-0.037037037 ≈ cos A

cos-1 (-0.037037037)92.1 ≈ A

Answer: .

Part 2: Next we will find the measure of using the Law of Cosines.

Law of Cosines182 = 122 + 222 - 2(12)(22) cos B
Simplify squares324 = 144 + 484 - 2(12)(22) cos B
Multiply324 = 144 + 484 - 528 cos B
Add324 = 628 - 528 cos B
Subtract 628-304 = -528 cos B
Divide by –5280.575757576 = cos B

cos-1 (0.575757576)54.8 ≈ B

Answer: The measure of .

Part 3: Now that we know two of the angles, we can find the third angle using the Triangle Sum Theorem.
Remember that all three angles in a triangle must add up to 180. We will now find the measure of

Triangle Sum Theorem

Answer: The measure of .

Identify Accurate Drawings of General Triangles

The Law of Cosines can also be used to verify that drawings of oblique triangles are accurate. In a right
triangle, we might use the Theorem of Pythagoras to verify that all three sides are the correct length, or we
might use trigonometric rations to verify an angle measurement. However, when dealing with an obtuse or
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acute triangle, we must rely on the Law of Cosines.

Example 3: In ∆ABC at the right, a = 32, b = 20, And c = 16. Is the drawing accurate if it labels as
35.2o? If not, what should measure?

Part 1:We will use the Law of Cosines to check whether or not is 35.2o.

Law of Cosines162 = 202 + 322 - 2(20)(32) cos 35.2
Simply squares256 = 400 + 1024 - 2(20)(32) cos 35.2
Multiply256 = 400 + 1024 - 1045.94547
Add and subtract256 ≠ 378.05453

Answer: Since 256 ≠ 378.05453, we know that is not 35.2o.

Part 2:We will know use the Law of Cosines to figure out the correct measurement of .

Law of Cosines162 = 202 + 322 -2(20)(32) cosC
Simplify Squares256 = 400 + 1024 - 2(20)(32) cos C
Multiply256 = 400 + 1024 - 1280 cos C
Add256 = 1424 - 1280 cos C
Subtract 1424-1168 = -1280 cos C
Divide0.9125 = cos C

cos-1(0.9125)24.1o ≈

Answer: should measure 24.1o.

For some situations, it will be necessary to utilize not only the Law of Cosines, but also the Theorem of
Pythagoras and trigonometric ratios to verify that a triangle or quadrilateral has been drawn accurately.

Real-World Application: A builder received plans for the construction of
a second-story addition on a house. At the right is the diagram of how the
architect wants the roof framed. The builder decides to add a perpendicular
support beam from the peak of the roof to the base. He estimates that new
beam should be 8.3 feet high, but he wants to double-check before he
begins construction. Is the builder’s estimate of 8.3 feet for the new beam
correct? If not, how far off is he?

If we knew either or , we could use trigonometric ratios to find
the height of the support beam. However, neither of these angle measures
are given to us. Since we know all three sides of ∆ABC, we can use the
Law of Cosines to find one of these angles. We will find .
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Law of Cosines142 = 122 + 202 - 2(12)(20) cosA
Simplify196 = 144 + 400 - 480 cos A
Add196 = 544 - 480 cos A
Subtract-348 = -480 cos A
Divide0.725 = cos A

cos-1 (0.725)43.5o ≈

Now that we know , we can use it to find the length of BD.

Cross multiply

Evaluate

Answer: Yes, the builder’s estimate of 8.3 feet for the support beam is accurate.

Points to Consider

1. How is the Pythagorean Theorem a special case of the Law of Cosines?

2. In the SAS case, is it possible to use the Law of Cosines to find all missing sides and angles?

3. In which cases can we not use the Law of Cosines? Explain.

4. Give an example of three side lengths that do not form a triangle.

Lesson Summary

• The Law of Cosines is used in oblique (non-right triangles) because we cannot use the Theorem of
Pythagoras or trigonometric ratios.

• We can use the Law of Cosines when we know two sides and the included angle in a triangle (SAS).
This allows us to find the third side of the triangle.

• We can also use the Law of Cosines when we know all three sides in a triangle (SSS). This enables us
to find any or all three of the angles in the triangle.

• The Law of Cosines can be used to verify the oblique triangles are accurately drawn.

• There are many real-world situations in which the Law of Cosines is used. The Law of Cosines comes
in handy when measurements are hard to obtain or are not reliable due to uneven surfaces.

Review Questions

1. Using each figure and the given information below, decide which side(s) or angle(s) you could find using
the Law of Cosines. (Level 1)

What can you find?FigureGiven Information
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a. , b = 8, c = 11

b. t = 6, r = 7, i = 8

c. , m = 22.4, p = 13.7

d. q = 17, d = 12.8, r = 18.6,

e. , d = 43, e = 39

f. c = 9, d = 11, m = 13
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2. Using the figures and information from the chart above, use the Law of Cosines to find the following:
(Level 1)

c. side lb. the largest anglea. side A
f. the second largest anglee. side bd. the smallest angle

3. In ∆CIR, c = 63, I = 52, and r = 41.9. Find the measure of all three angles. (Level 1)

4. Find AD using the Theorem of Pythagoras, Law of Cosines, trig functions, or any combination of the three.
(Level 2)

5. Find HK using the Theorem of Pythagoras, Law of Cosines, trig functions, or any combination of the three
if JK = 3.6, KI = 5.2, JI = 1.9, HI = 6.7, and . (Level 2)

6. Use the Law of Cosines to determine whether or not the following triangles are drawn accurately. (Level
2)

a. Is ∆ABC drawn accurately? If not, determine how much is off by.
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b. Is ∆DEF drawn accurately? If not, determine how much side d is off by.

7. A businessman is traveling down Interstate 43 and has intermittent cell phone service. There is a trans-
mission tower near Interstate 43. The range of service from the tower forms a 47o angle and the range of
service is 26 miles to one section of I-43 and 31 miles to another point on I-43. (Level 2)

a. If the businessman is traveling at a speed of 45 miles per hour, how long will he have service for?

b. If he slows down to 35mph, how much longer will he be able to have service?

8. A dock is being built so that it is 183 yards away from one buoy and 306 yards away from a second buoy.
The two buoys are 194.1 yards apart. (Level 3)

a. What angle does the dock form with the two buoys?

b. If the second buoy is moved so that it is 329 yards away from the dock and 207 yards away from the first
buoy, how does this affect the angle formed by the dock and the two buoys?
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9. An artist is making a large sculpture for the lobby of a new building. She has drawn out what she wants
the sculpture to look like at the left. If she wants BC = 51.4 feet, BD = 32.6 feet, AD = 37.3 feet and

, verify that the length of AB would be 34.3 feet. If not, figure out the correct measure. (Level
3)

10. A golfer hits the ball from the 18th tee. His shot is a 235 yard hook (curves to the left) 9o from the path
straight to the flag on the green. (a) If the tee is 384 yards from the flag, how far is the ball away from the
flag? (b) If the golfer’s next shot is 98 yards and is hooked 3o from the path straight to the flag, how far is
ball away now? (Level 3)

11. Given the numbers 127, 210 and 17 degrees write a problem that uses the Law of Cosines. (Level 2)

12. The sides of a triangle are 15, 27 and 39. What is its area? (Level 3)

Hint: Use the Law of Cosines then use some right triangle trig.

13. A person inherits a triangular piece of land with dimensions 300 ft, 600ft, and 850 ft. What is the area
of the piece of land? How much of an acre is it? (Level 3)

14. A family’s farm plot is a quadrilateral with dimensions: the longest side is 3,000 ft and the shortest side
is 2,100 ft. The side opposite the long side is 2,400 ft. The shorter diagonal is 2,200 ft. What is the area of
the land in square feet? (Level 3)
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15. The height of a crane off the ground is determined by the steel cable from the drum it wraps around.
The lowest angle with the vertical the crane can make is 17o. The largest angle the crane can make with
the ground is 82o. The length of the crane boom is 20m. The distance from the base of the crane to the edge
of the drum is 4 m. (Level 3)

a. How long is the cable at the crane’s lowest reach?

b. How long is the cable at the crane’s highest reach?

16. A biomechanics class is designing a functioning artificial arm for an adult. They are using a hydraulic
cylinder (fluid filled) to be the bicep’s muscle. The elbow is at point E. The forearm dimension EH is 24 cm.
The upper arm dimension EA is 21 cm. The cylinder attaches from the top of the upper arm at point A and
to a point on the lower arm 4 cm from the mechanical elbow at point B. When fluid is pumped out of the
cylinder the distance AB is shortened. The forearm goes up raising the hand at point H.

Some fluid is pumped out of the cylinder to make the distance AB 5 cm shorter. What is the new angle of
the arm, (Level 3)

Answers

1.

a. side a
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b. and

c. side l

d. and

e. side b

f.

2.

(c) l ≈ 24.0,(b) ,(a) a ≈ 8.5,

(f) .(e) b ≈ 45.5,(d) ,

3. .

4. AD = 3.7.

5. HK = 9.8

6.

(a) is off by 7.4o,

(b) side d is off by 1.9o

7.

(a) He will have service for 30.9 minutes.

(b) He will have service for 8.9 minutes longer.

8.

(a) The angle formed is 37o.

(b) The angle will need to be 34.8o rather than 37o or 2.2o less.

9. The length of AB would need to be 35.4 feet, not 34.3 feet.

10.

(a) The ball is 103.6 yards away from the flag.

(b) His second shot is 7.8 yards away from the flag.

11. Student answers will vary.

12. The area is 144.6

13. The area of the land is 58.813.1ft2 or 1.4 acres.

14. The area of the land is 5,209,051.3 square feet.
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15. The cable is 16.2m at the crane’s lowest reach and 19.8m at the crane’s highest reach.

16. The new angle of the arm is 43.4o.

Supplemental Links

http://math.boisestate.edu/~tconklin/MATH144/Main/Extras/Law%20of%20Cosines%202.pps -

Vocabulary

A general statement relating the lengths of the sides of a general triangle
to the cosine of one of its angles.

Law of Cosines:

A non-right triangle.oblique triangle:

Area of a Triangle

Learning Objectives

A student will be able to:

• Understand how the area formula is derived.

• Apply the area formula to triangles where you know two sides and the included angle (SAS).

• Apply the are formula to triangles where you know all three sides (SSS).

• Understand Heron’s Formula.

• Use the area formulas in real-world and applied problems.

Introduction

Real-World Application: The Pyramid Hotel recently installed a
triangular pool. One side of the pool is 24 feet, another side is 26
feet, and the angle in between the two sides is 87o. If the hotel
manager needs to order a cover for the pool, and the cost is $35
per square foot, how much can he expect to spend?

In this situation, we need to find the area of the surface of the pool
in order to calculate the cost of the cover. We have already learned

that the formula for the area of a triangle is where b is
the base of the triangle and h is the height. The problem with this formula is that it can only be used when
the height of the triangle is known. In this situation, we don’t know the height of the triangle formed by the
sides of the pool. How do we find the area if we don’t know the height?

We will refer back to this application later on.

In this section, we will look at how we can derive a new formula using the area formula that we already know
and the sine function. This new formula will allow us to find the area of a triangle when we don’t know the
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height. We will also look at when we can use this formula and how to apply it to real-world situations.

Derive Area = 1/2 bcsinA

We can use the area formula from above , as well as the sine function, to derive a new formula
that can be used when the height is unknown.

In ∆ABC at the right, BD is altitude from B to AC. We will refer to the length of BD as h since It represents
the height of the triangle. Also, we will refer to the area of the triangle as K to avoid confusing the area with

Area of a triangle

therefore
Simplify

We can use a similar method to derive all three forms of the area formula:

Find the Area Using Two Sides and an Included Angle--SAS (side-angle-side)

The formula requires us to know two sides and the included angle (SAS) in a triangle.
Once we know these three things, we can easily calculate the area of an oblique triangle.
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Example 1:

In ∆ABC, , b = 23.9, and a = 31.6. Find the area of the triangle.

Evaluate

Answer: The area of the triangle is approximately 333.4.

We will now refer back to the application at the beginning of the chapter.

In order to find the cost of the cover, we first need to know the area of
the cover. Once we know how many square feet the cover is, we can
calculate the cost.

In the illustration above, you can see that we know two of the sides
and the included angle. This means we can use the formula

.

Evaluate

311.6 square feet × $35 per square foot = $10,905.03

Answer: The area of the pool cover is 311.6 square feet. The cost of the cover will be $10,905.03.

Find the Area Using Three Sides--SSS (side-side-side) Heron’s Formula

In the last section, we learned how to find the area of an oblique triangle when we know two sides and the

included angle using the formula . We could also find the area of a triangle in which we
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know all three sides by first using the Law of Cosines to find one of the angles and then using the formula

.While this process works, it is time-consuming and requires a lot of calculation. Fortunately,
we have another formula, called Heron’s Formula, which allows us to calculate the area of a triangle when
we know all three sides.

Heron’s Formula:

where or half of the perimeter of the triangle.

Example 2:

In ∆ABC, a = 23, b = 46, and C = 41. Find the area of the triangle.

Heron’s Formula

Subtract

Multiply

Square root

Answer: The area is approximately 470.9.
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Real-World Application:

Tile: A handyman is installing a tile floor in a kitchen. Since the corners
of the kitchen are not exactly square, he needs to have special trian-
gular shaped triangles made for the corners. One side of the tile needs
to be 11.3”, the second side needs to be 11.9”,and the third side is
13.6” If the tile costs $4.89 per square foot, and he needs four of them,
how much will it cost to have the tiles made?

In order to find the cost of the tiles, we first need to find the area of
one tile. Since we know the measurements of all three sides, we can
use Heron’s Formula to calculate the area.

Heron’s Formula

Subtract

Multiply

square root

The area of one tile would be 201.9 square inches. The cost of the tile is given to us in square feet, while
the area of the tile is in square inches. In order to find the cost of one tile, we must first convert the area of
the tile into square feet.

Covert square inches into square feet

Cost for one tile is $6.86

The cost for four tiles is $27.42

Answer: The cost for four tiles would be $27.42.

Applications, Technological Tools

We have already looked at two examples of situations where we can apply the two new area formulas we
learned in this section. In this section, we will look at another real-world application where we know the area
but need to find another part of the triangle, as well as an application involving a quadrilateral.

Real-World Application:

The jib sail on a sailboat came untied and the rope securing it was lost. If the area of the jib sail is 56.1
square feet, use the figure and information at the right to find the length of the rope.

Since we know the area, one of the sides, and one angle of the jib sale, we can use the formula

to find the side of the jib sale that is attached to the mast. We will call this side y.
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Multiply

Divide

Now that we know side y, we know two sides and the included angle in the triangle formed by the mast, the
rope, and the jib sail. We can now use the Law of Cosines to calculate the length of the rope.

Law of Cosinesx 2 = 212 + 272 - 2(21)(27) cos 18
Evaluatex 2 = 91.50191052
Square rootx ≈ 9.6 ft

Answer: The length of the rope is approximately 9.6 feet.

Quadrilaterals: In quadrilateral QUAD at the right, The area of ∆QUA = 5.64, the area of ∆UAD = 6.39,

, and UD = 7.8. Find the perimeter of QUAD.

In order to find the perimeter of QUAD, we need to know sides QU, QD, UA, and AD. Since we know the

area, one side, and one angle in each of the triangles, we can use to figure out QU and
UA.
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Now that we know QU and UA, we know two sides and the included angle in each triangle (SAS). This
means that we can use the Law of Cosines to find the other two sides, QD and DA. First we will find QD.

Law of CosinesQD 2 = 2.82 + 7.82 - 2(2.8)(7.8) cos 31
EvaluateQD 2 = 31.23893231
Square rootQD ≈ 5.6

Now, we will find DA.

Law of CosinesDA 2 = 2.52 + 7.82 - 2(2.5)(7.8) cos40
EvaluateDA 2 = 37.21426672
Square rootDA ≈ 6.1

Finally, we can calculate the perimeter since we have found all four sides of the quadrilateral.

pQUAD = 2.8 + 5.6 + 6.1 + 2.5 = 17

Answer: The perimeter of QUAD is 17.

Points to Consider

1. Why can’t s (half of the perimeter) in Heron’s Formula be smaller than any of the three sides in the triangle?

2. How could we find the area of a triangle is AAS, SSA, and ASA cases?
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3. Is it possible to figure out the length of the third side of a triangle if we know the other two sides and the
area?

Lesson Summary

In an oblique triangle where we know two sides and the included angle, we can use the formula

to calculate the area of the triangle.
In an oblique triangle where we know all three sides of the triangle, we can calculate the area using
Heron’s Formula.
Given the area, we can use these two area formulas to find an unknown side or angle.

We have explored three scenarios where we can use these area formulas in real-world situations. We
will look at more applications in the review questions.

Review Questions

1. Using the figures and given information below, determine which formula you would need to use in order
to find the area of each triangle (A = ½ bh, K = ½ bcsinA, or Heron’s Formula).

FormulaFigureGiven
a. CF = 3, FM = 8, and CO = 5

b. HC = 4.1, CE = 7.4, and HE = 9.6

c. AP = 59.8, PH = 86.3,

d. RX = 11.1, XE = 18.9,
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2. Find the area of all of the triangles in the chart above to the nearest tenth.

3. Using the given information and the figures below, decide which area formula you would need to use to
find each side, angle, or area.

FormulaFindFigureGiven
ha. Area = 1618.98, b = 36.3

b. Area = 387.6, b = 25.6, c = 32.9

Area of ∆ABCc. Area ∆ABD = 16.96, AD = 3.2,

4. Using the figures and information from the table above, find the angle, side, or area requested.

5. The Pyramid Hotel is planning on repainting the exterior of the building. The building has four sides that
are isosceles triangles with bases measuring 590 ft and legs measuring 375 ft.

a. What is the total area that needs to be painted?
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b. If one gallon of paint covers 25 square feet, how many gallons of paint are needed?

6. A contractor needs to replace a triangular section of roof on the front of a house. The sides of the triangle

are 8.2 feet, 14.6 feet, and 16.3 feet. If one bundle of shingles covers square feet and costs $15.45,
how many bundles does he need to purchase? How much will the shingles cost him? How much of the
bundle will go to waste?

7. A farmer needs to replant a triangular section of crops that died unexpectedly. One side of the triangle
measures 186 yards, another measures 205 yards, and the angle formed by these two sides is 148o.

a. What is the area of the section of crops that needs to be replanted?

b. The farmer goes out a few days later to discover that more crops have died. The side that used to measure
205 yards now measures 288 yards. How much has the area that needs to be replanted increased by?

8. Find the perimeter of the quadrilateral at the left If the area of ∆DEG = 56.5 and the area of ∆EGF = 84.7.

9. In ∆ABC, BD is an altitude from B to AC. The area of ∆ABC = 232.96, AB = 16.2 , and AD = 14.4. Find
DC.
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10. Show that in any triangle DEF, d 2 + e 2 + f 2 = 2(ef cos D + df cos E + de cos F).

Answers

1. (a) A = ½ bh, (b) Heron’s formula, (c) K = ½ bcsinA, (d) A = ½ bh

2. (a) A = 22, (b) A = 14.3, (c) = 2514.2, (d) = 144.7

3. (a) A = ½ bh, (b) K = ½ bcsinA, (c) A = ½ bh

4. (a) h = 89.2, (b) , (c) Area of ∆ABC = 82.5

5.

(a) The total area is 419,550 square feet.

(b) 16,782 gallons of paint are needed.

6. He will need 2 bundles. The shingles will cost him $30.90. 6.9 square feet will go to waste.

7.

(a) The area that needs to be replaced is 10.876.4 square yards.

(b) The area has increased by 4079.2 yards.

8. The perimeter of the quadrilateral is 50.5.

9. DC is approximately 24.94.

10.

d 2 = e 2 + f - 2ef cos D

e 2 = d 2 + f - 2df cos E

f 2 = d 2 + e 2 - 2de cos F

d 2 + e 2 + f 2 = e 2 + f 2 - 2ef cos D + d 2 + f 2 - 2df cos E + d 2 + e 2 - 2de cos F

d 2 + e 2 + f 2 = 2(d 2 + e 2 + f 2) - 2(ef cos D + df cos E + de cos F)

- (d 2 + e 2 + f 2) = -2(ef cos D + df cos E + de cos F)

d 2 + e 2 + f 2 = 2(ef cos D + df cos E + de cos F)

Supplemental Links

http://www.mste.uiuc.edu/dildine/heron/triarea.html

Vocabulary

A formula used to calculate the area of a triangle when all three sides are
known.

Heron’s Formula:
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The Law of Sines

Learning Objectives

A student will be able to:

• Understand how both forms of the Law of Sines are obtained.

• Apply the Law of Sines when you know two angles and a non-included side (AAS).

• Apply the Law of Sines if you know two angles and the included side (ASA).

• Use the Law of Sines in real-world and applied problems.

Introduction

Real-World Application:

Consider an airline flight: In order to avoid a large and
dangerous snowstorm on a flight from Chicago to Buffalo,
pilot John starts out 27o off of the normal flight path. After
flying 412 miles in this direction, he turns the plane toward
Buffalo. The angle formed by the first flight course and the
second flight course is 88o.

Neither the Theorem of Pythagoras or the Law of Cosines
applies here. We are given two angles and a side, but the
side is not included. For the pilot, two issues are pressing:

1. What is the total distance of the modified flight path?

2. How much further did he travel than if he had stayed on course?

We will solve this problem later on.

By now, we have learned that the Theorem of Pythagoras and trigonometry functions such as sine, cosine,
and tangent are useful when we need to find a missing angle or side in a right triangle. But what do we use
when we want to find sides or angles in triangles that are not right triangles?

We also learned about the Law of Cosines, a generalization of the Theorem of Pythagoras for non-right
triangles, in a previous lesson. We know that we can use the Law of Cosines when:

1. We know two sides of a triangle and the included angle (SAS) or

2. We know all three sides of the triangle (SSS)

What happens if the triangle we are working with doesn’t fit either of those scenarios? For example, in ∆ABC
at the right:
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1. The triangle is not a right triangle, which means we cannot use the Theorem of Pythagoras.

2. We know a side and two angles, which doesn’t fulfill the requirements for using the Law of Cosines.

This is why we need the Law of Sines.

The Law of Sines is a statement about the relationship between the sides and the angles in any triangle.
While the Law of Sineswill yield one correct answer in many situations, there are times when it is ambiguous,
meaning that it can produce more than one answer. We will explore the ambiguity of the Law of Sines in
the next section.

We can use the Law of Sines when:

1. We know two angles and a non-included side (AAS) or

2. We know two angles and the included side (ASA)

In this lesson, we will learn more about the Law of Sines and how and when we can use it. We will also
look at applications of the Law of Sines, and how it can be useful in finding heights and distances when they
cannot be easily measured or an uneven surface makes the measurements unreliable.

Derive Two Forms of the Law of Sines

∆ABC contains altitude CE, which extends from C and intersects AB. We will refer to the length of altitude
CE as x.

Definition of sine

Cross multiply

Substitution

Divide both sides by
ab

Or, if we divide both sides by sin A sin B instead:

Using the same principles, we arrive at both forms of the Law of Sines:
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Form 1:

(sines over sides)

Form 2:

(sides over sines)

AAS (Angle-Angle-Side)

One case where we need to use the Law of Sines is when we know two of the angles in a triangle and a
non-included side (AAS).

For instance, in ∆GMN:

We know and either g or m

We know and either g or n

We know and either m or n

Using the Law of Sines allows us to find the other non-in-
cluded side. First we will look at how to use the Law of Sines.
Then we will apply this case to a situation involving a basketball
game.

Example 1:

Using ∆GMN above, , and g = 12. Find n.

Since we know two angles and one non-included side (g), we can find the other non-included side (n).
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Law of Sines

Substituting the values we know

Cross multiply

Divide both sides by sin 73

Evaluate

Real-World Application:

A business group wants to build a golf course on a plot of land
that was once a farm. The deed to the land is old and informa-
tion about the land is incomplete. If AB is known to be 5382
feet, BC is known to be 3862 feet, is known to be 101o,

is known to be 74o, is known to be 41o, and
is known to be 32o, what are the lengths of the sides

of each triangular piece of land? What is the area of the land?

Solution: Before we can figure out the area of the land, we
need to figure out the length of each side. In triangle ABE, we know two angles and a non-included side.
This is the AAS case. First, we will find the third angle in triangle ABE by using the Triangle Sum Theorem.
Then, we will use the Law of Sines to find both AE and EB.

Triangle Sum Theorem

Law of Sines

Cross Multiply

Divide by sin 101

Evaluate
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Now, we will find EB using the Law of Sines.

Law of Sines

Cross Multiply

Divide by sin 101

Evaluate

Next, we will find the missing side lengths in triangle DCB. In this triangle, we again know two angles and
a non-included side (AAS), which means we can use the Law of Sines.

Triangle Sum Theorem

Since both and measure 74o, triangle DCB is an isosceles triangle. This means that
since BC is 3862 feet, DC is also 3862 feet. All we have left to find now is DB.

Law of Sines

Cross Multiply

Divide by sin 74

Evaluate

Finally, we need to calculate the area of each triangle and then add the two areas together to get the total

area. From the last section, we learned two area formulas, and Heron’s Formula. In this

case, since we have enough information to use either formula, we will use since it is
less computationally intense.

First, we will find the area of triangle ABE.

Evaluate

Next, we will find the area of triangle DBC.

Evaluate

The total area is 5,959,292.8 + 3,951,884.6 = 9,911,177.4 ft2.
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Answer: AE = 3375.5ft, EB = 3597.0ft, DC = 3862ft, DB = 2129.0ft, and the total area is 9,911,177.4
square feet.

ASA (Angle-Side-Angle)

The second case where we need to use the Law of Sines is when we know two angles in a triangle and
the included side (ASA). We will begin by looking at how to use the Law of Sines to solve this case and
then we will solve the Real-World Application #1, involving the flight path of a plane, from earlier.

For instance, in ∆TRI:

We know and i

We know and r

We know and t

In this case, the Law of Sines allows us to find either of the
non-included sides (t or r).

Example 2:

In , and i = 18.5. Find the measure of t.

Since we know two angles and the included side (i) we can find either of the non-included sides using the
Law of Sines.

First, since we already know two of the angles in the triangle, we can find the third angle using the fact that
the sum of all of the angles in a triangle must equal 180o.

and

Addition

Subtraction

Now that we know , we can use the Law of Sines to find t.
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Law of Sines

Substituting the values we know

Cross multiply

Divide both sides by sin 73

Evaluate

We could use a similar process to find side r.

We will now refer back to Real-World Application at the beginning of the section.

Part 1: In order to find the total distance of the modified flight path, we need to know side x. To find side x,
we will need to use the Law of Sines. Since we know two angles and the included side, this is an ASA case.
Remember that in the ASA case, we need to first find the third angle in the triangle.
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The sum of angles in a triangle is 180

Law of Sines

Cross multiply

Divide by sin 65

Evaluate

Sum of path 1 and path 2

Answer: The total distance of the modified flight path is 618.4 miles.

Part 2: To find how much further John had to travel, we need to know the distance of the original flight path
(y). We can use the Law of Sines again to find y.

Law of Sines

Cross multiply

Divide by sin 65

Evaluate

Modified path minus original path

Answer: John had to travel 164.1 miles further.

Applications

The Law of Sines can be applied in many ways. Below are some examples of the different ways and situa-
tions to which we may apply the Law of Sines. In many ways, the Law of Sines is much easier to use than
the Law of Cosines since there is much less computation involved.
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Situation #1: Using the Law of Sines in conjunction with the Law of Cosines.

In the figure at the right, , BC = 12, DC = 14.3,
, and . Find AB.

First, in order to find AB, we must know one side in ∆ABD. In
∆BCD, we know two sides and an angle, which means we can
use the Law of Cosines to find BD. In this case, we will refer to
side BD as c.

Law of Cosinesc 2 = 122 + 14.32 - 2(12)(14.3) cos 22
Evaluatec 2 28.86
Square rootc 5.4

Now that we know BD 5.4, we can use the Law of Sines to find AB. In this case, we will refer to AB as
x.

Triangle Sum Theorem

Law of Sines

Cross multiply and divide by sin103

Evaluate

Answer: AB 5.0

Situation #2: Using the Law of Sines in Conjunction with trigonometry functions.

Real-World Application: A group of forest rangers are hiking
through Denali National Park towards Mt. McKinley, the tallest
mountain in North America. From their campsite, they can see
Mt. McKinley, and the angle of elevation from their campsite to
the summit is 21o. They know that the slope of mountain forms
a 127o angle with ground and that the vertical height of Mt.
McKinley is 20,320 feet. How far away is their campsite from
the base of the mountain? If they can hike 2.9 miles in an hour, how long will it take them to get the base?

As you can see from the figure above, we have two triangles to deal with here: a right triangle (∆MNO) and
non-right triangle (∆MOU). In order to find the distance from the campsite to the base of the mountain (m)
we first need to know one side of our non-right triangle, ∆MOU.

If we look at in ∆MNO, we can see that side o is our opposite side and side u in our hypotenuse. Re-

member that the sine function is the .

Therefore we can find side u using the sine function.
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Definition of sine

Multiply by u

Divide by sin 21

Evaluate

Now that we know side u, we know two angles and the non-included side in ∆MOU. We can use the Law
of Sines to solve for side m.

Triangle Sum Theorem

Law of Sines

Cross multiply

Divide by sin 127

Evaluate (5280 feet = 1 mile)

If they can hike 2.9 miles per hour:

Ratio of miles: minutes

Cross multiply and divide by 2.9

Answer: Their campsite is approximately 7.1 miles from the base of the mountain and it will take them about
2 hours and 27 minutes to hike there.
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Points to Consider

1. Are there any situations where we might not be able to use the Law of Sines or the Law of Cosines?

2. Considering what you already know about the sine function, is it possible for two angles to have the same
sine? How might this affect using the Law of Sines to solve for an angle?

3. By using both the Law of Sines and the Law of Cosines, it is possible to solve any triangle we are given?

Lesson Summary

• The Law of Sines has two forms:

and

• There are two cases where we use the Law of Sines:

AAS (angle-angle-side)1.
ASA (angle-side-angle)2.

• The AAS case allows us to find the other non-included side.

• The ASA case allows us to find either of the non-included sides.

• We can use the Triangle Sum Theorem to find the third angle in either of these cases.

• The Law of Sines can be applied to different real-world situations. We’ve already explored three different
situations where the Law of Sines can be applied. We will look at more situations in the Review Questions.

Review Questions

1. In the table below, you are given a figure and information known about that figure. Decide if each situation
represents the AAS case or the ASA case.
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CaseFigureGiven

a. b = 16, A = 11.7o, C = 23.8o

b. e = 214.9, D = 39.7o, E =
41.3o

c. G = 22o, I = 18o, H = 140o

d. k = 6.3, J = 16.2o, L = 40.3o

e. M = 31o, O = 9o, m = 15

f. Q = 127o, R = 21.8o, r = 3.62

2. Even though the triangles and given information in the table above represent two different cases of the
Law of Sines, what do they all have in common?

3. Using the figures and the given information from the table above, find the following if possible:

a. side a

b. side d

c. side i

d. side l

e. side o

f. side q

4. In ∆GHI, , and i = 108. Find g and h. (Level 2)

5. Use the Law of Sines to show that is true. (Level 2)

443



6. For each figure below, state whether you would use the Law of Sines, the Law of Cosines, or the one of
the trig functions (sin, cos, tan) to solve for x. (Level 2)

b.a.

d.c.

7. Use the Law of Sines, the Law of Cosines, and trigonometry functions to solve for x. (Level 3)

b.a.

8. In order to avoid a storm, a pilot starts out 11o off path. After he has flown 218 miles, he turns the plane
toward his destination. The angle formed between his first path and his second path is 105o. If the plane
traveled at an average speed of 495 miles per hour, how much longer did the modified flight take? (Level
2)

9. A delivery truck driver has three stops to make before she must return to the warehouse to pick up more
packages. The warehouse, Stop A, and Stop B are all on First Street. Stop A is on the corner of First Street
and Route 52, which intersect at a 41o angle. Stop B is on the corner of First Street and Main Street, which
intersect at a 103o angle. Stop C is at the intersection of Main Street and Route 52. The driver knows that
Stop A and Stop B are 12.3 miles apart and that the warehouse is 1.1 miles from Stop A. If she must be
back to the warehouse by 10:00 a.m., travels at a speed of 45 MPH, and takes 2 minutes to deliver each
package, at what time must she leave?
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10. A surveyor has the job of determining the distance across the Palo Duro Canyon in Amarillo, Texas, the
second largest canyon in the United States. Standing on one side of the canyon, he measures the angle
formed by the edge of the canyon and the line of sight to a large boulder on the other side of the canyon.
He then walks 12 ft and measures the angle formed by the edge of the canyon and the new line of sight to
the boulder.

a. If the first angle formed is 61o and the second angle formed is 87o, find the distance across the canyon.

b. The surveyor spots another boulder while he is at his second spot, and finds that it forms a 37o angle
with his line of sight. He then walks 15 feet further and finds that the boulder forms a 65o angle with this line
of sight. What is the distance between the two boulders?

Answers

1. a. ASA, b. AAS, c. neither, d. ASA, e. AAS, f. AAS

2. Student answers will vary but they should notice that in both cases you know or can find an angle and
the side across from it.

3. (a) a = 5.6, (b) d = 208.0, (c) not enough information, (d) l = 4.9, (e) o = 4.6, (f) q = 7.8

4. Side g = 295.3 and side h = 262.8.

5.

Law of Sines

Cross multiply

Divide by b(sin B)

6.

Tangent functionb.Law of Cosinesa.
Law of Sinesd.Law of Sines or Cosinesc.

7.

x x 14.9b.x 23.17a.

8. The modified flight took 3.6 minutes longer.

9. The driver must leave by 8:49 a.m.

10.

(a) The distance across the canyon is 19.8 feet.

445



(b) The distance between the two boulders is 16.7 feet.

Supplemental Links

PowerPoint presentation on the Law of Sines:

http://www.mente.elac.org/presentations/law_sines.pps

Vocabulary

The angle in between two known sides of a triangle.included angle:
The side in between two known sides of a triangle.included side:
A statement about the relationship between the sides and the angles in
any triangle.

Law of Sines:

An angle that is not in between two known sides of a triangle.non-included angle:
A side that is not in between two known sides of a triangle.non-included side:

The Ambiguous Case

Learning Objectives

A student will be able to:

• Find possible triangles given two sides and an angle (SSA).

• Use the Law of Cosines in various ambiguous cases.

• Use the Law of Sines in various ambiguous cases.

• Apply the Law of Sines and Cosines to real-world and applied problems involving the ambiguous case.

Introduction

Real-World Application: A boat leaves lighthouse A and travels
6.3km. It is spotted from lighthouse B, which is 8.2km away from
lighthouse A. The boat forms an angle of 65.1owith both lighthouses.
How far is the boat from lighthouse B?

In the example above, we are given two sides of a triangle and a
non-included angle (SSA). This is a case that we have not yet en-
countered.We will refer back to this example later on.

In previous sections, we learned about the Law of Cosines and the
Law of Sines.We learned that we can use the Law of Cosines when

we know all three sides of a triangle (SSS) and1.
we know two sides and the included angle (SAS).2.

We learned that we can use the Law of Sines when

we know two angles and a non-included side (AAS) and1.
we know two angles and the included side (ASA).2.
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However, we have not explored how to approach a triangle when we know two sides and a non-included
angle (SSA). In this section, we will look at why the SSA case is called the ambiguous case, the possible
triangles formed by the SSA case, and how to apply the Law of Sines and the Law of Cosines when we
encounter the SSA case.

Possible Triangles Given SSA

In Geometry, you learned that two sides and a non-included angle do not necessarily define a unique triangle.
Consider the following cases given a, b, and

Case 1: No triangle exists (a < b)

In this case a < b and side a is too short to reach the base
of the triangle. Since no triangle exists, there is no solution.
Case 2: One triangle exists (a < b)

In this case, a < b and side a is perpendicular to the base
of the triangle. Since this situation yields exactly one trian-
gle, there is exactly one solution.
Case 3: Two triangles exist (a < b)

In this case, a < b and side a meets the base at exactly
two points. Since two triangles exist, there are two solu-
tions. This is referred to as the ambiguous case.
Case 4: One triangle exists (a = b)

In this case a = b and side a meets the base at exactly one
point. Since there is exactly one triangle, there is one solu-
tion.

447



Case 5: One triangle exists (a > b)

In this case, a > b and side a meets the base at exactly
one point. Since there is exactly one triangle, there is one
solution.

Case 3 is referred to as the Ambiguous case because there are two possible triangles and two possible
solutions. One way to check to see how many possible solutions (if any) a triangle will have is to compare
sides a and b.

Then:If:
No solution, one solution, two solutionsa < b
One solutiona = b
One solutiona > b

If you are faced with the first situation, where a < b, we can still tell how many solutions there will be by using
a and bsin A.

Then:If:
No solutiona < bsinA
One solutiona = bsinA
Two solutionsa > bsinA

In the next two sections we will look at how to use the Law of Cosines and the Law of Sines when faced
with the various cases above.

Using the Law of Sines

In triangle ABC at the right, we know two sides and a non-included angle. Remember that the Law of Sines

states: . Since we know a, b, and , we can use the Law of Sines to find . However,
since this is the SSA case, we have to watch out for the Ambiguous case. Since a < b, we could be faced
with either Case 1, Case 2, or Case 3 above.
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Law of Sines

Cross multiply

Divide

Evaluate

Since no angle exists with a sine greater than 1, there is no solution to this problem.

We also could have compared a and bsinA beforehand to see howmany solutions there were to this triangle.

a = 12, bsinA = 15.1: since 12 < 15.1, a < bsinA which tells us there are no solutions.

In triangle ABC, a = 15, b = 20, and . Find
.

Again in this case, a < b and we know two sides and a
non-included angle. By comparing a and bsinA, we find
that:

a = 15, bsinA = 10: since 15 > 10 we know that there
will be two solutions to this problem.
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Law of Sines

Cross multiply

Divide

Evaluate

There are two angles less than 180o with a sine of 0.6666667, however. We found the first one, 41.2o, by
using the inverse sine function. To find the second one, we will subtract 41.2o from 180o.

To check to make sure 138.8o is a solution, we will use the Triangle Sum Theorem to find the third angle.
Remember that all three angles must add up to 180o.

180 - (30 + 138.8) = 11.2or180 - (30 + 41.2) = 108.8

This problem yields two solutions. Either angle B is 41.2o or 138.8o.

We will now refer back to the Real-World Application at the beginning of the section.

In this problem, we again have the SSA angle case. In order to find the distance from the boat to the lighthouse
(a) we will first need to find the measure of angle A. In order to find angle A, we must first use the Law of
Sines to find angle B. Since c > b, this situation will yield exactly one answer for the measure of angle B.
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First, we will find angle B.

Law of Sines

Cross multiply and divide

Evaluate

There is another angle less than 180o with a sine of 0.6968752793. That angle would be 180 – 44.2 = 135.8.
However, if we add 135.8 to our other angle of 65.1, we exceed 180, which means 135.8 is not a solution.
Due to the fact that c > B, we already knew that there was only one solution to this problem.

Now that we know the measure of angle B, we can find the measure of angle A.

Triangle Sum Theorem

We can now use the Law of Sines to find side a.

Law of Sines

Cross multiply and divide

Evaluate
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Answer: The boat is approximately 8.5km away from lighthouse B.

Using the Law of Cosines

Real –World Application: In a game of pool, a player
must the eight ball into the bottom left pocket of the table.
Currently, the eight ball is 6.8 feet away from the bottom
left pocket. However, due to the position of the cue ball,
she must bank the shot off of the right side bumper. If
the eight ball is 2.1 feet away from the spot on the
bumper she needs to hit and forms a 168o angle with
the pocket and the spot on the bumper, at what angle
does the ball need to leave the bumper?

In the scenario above, we have the SAS case, which means that we need to use the Law of Cosines to
begin solving this problem. The Law of Cosines will allow us to find the distance from the spot on the bumper
to the pocket (y). Once we know y, we can use the Law of Sines to find the angle (X). We will begin by
finding y.

Law of Cosinesy 2 = 6.82 + 2.12 - 2(6.8)(2.1) cos 168
Evaluatey 2 = 78.58589548
Square rooty = 8.7 feet

The distance from the spot on the bumper to the pocket is 8.7 feet. We can now use this distance and the
Law of Sines to find angle X. We could use the Law of Cosines again, since we now know all three sides of
the triangle, but it is more time consuming and requires more computation.

To find the measure of angle X, we will use the Law of Sines. Since we are finding an angle, we are faced
with the SSA case, which means we could have no solution, one solution, or two solutions. However, since
8.7 > 6.8 (a > b), we know that this problem will yield only one solution.

Law of Sines

Cross multiply and divide

Evaluate

Answer: The ball must leave the bumper at a 9.7o angle.

Applications and Tools

In the previous example, we looked at how we can use the Law of Sines and the Law of Cosines together
to solve a problem involving the SSA case. In this section, we will look at situations where we can use not
only the Law of Sines and the Law of Cosines, but also the Theorem of Pythagoras and trigonometric ratios.
We will also look at another real-world application involving the SSA case.

Example:
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In triangle ABC at the right, BD is the altitude of the trian-
gle. If BD = 26, DC = 19, and c = 42, find
the measure of angle C.

In order to find the measure of angle C, we must first
know the measure of side a. Once we know side a, we
can use the Law of Sines to solve for angle C. To find
side a, we can use the Theorem of Pythagoras since
BDC is a right triangle.

Theorem of Pythagoras= a 2262 + 192

Simplify= a 21037

Square roota32.2

Now that we know that side a is 32.2, we can use the Law of Sines to find angle C. Since a < c, however,
and we have the SSA case, we must watch out for multiple or no solutions. By compare a and csinA, we
find that a = 32.2 and csinA = 19.7. Since 32.2 > 19.7 we know that there will be two solutions.

Law of Sines

Cross multiply and divide

Evaluate

One possible measure for angle C is 37.80. To find the other possible measure for angle C, we will subtract
37.8 from 180.

180 - 37.8 = 142.2

Answer: is either 37.80 or 142.20.

Real-World Application:

Three scientists are out setting up equipment to gather data on a local mountain. Person 1 is 131.5 yards
away from Person 2, who is 67.8 yards away from Person 3. Person 1 is 72.6 yards away from the mountain.
The mountains forms a 1030 angle with Person 1 and Person 3, while Person 2 forms a 92.70 angle with
Person 1 and Person 3. Find the angle formed by Person 3 with Person 1 and the mountain.
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In the triangle formed by the three people, we know two sides and the included angle (SAS). We can use
the Law of Cosines to find the remaining side of this triangle, which we will call x. Once we know x, we will
two sides and the non-included angle (SSA) in the triangle formed by Person 1, Person 2, and the mountain.
We will then be able to use the Law of Sines to calculate the angle formed by Person 3 with Person 1 and
the mountain, which we will refer to as Y.

To find x:

Law of Cosinesx 2 = 131.52 + 67.82 -2(131.5(67.8) cos 92.7
Evaluatex 2 = 22729.06397
Square rootx = 150.8 yds

Now that we know x = 150.8, we can use the Law of Sines to find Y. Since this is the SSA case, we need
to check to see if we will have no solution, one solution, or two solutions. Since 150.8 > 72.6, we know that
we will have only one solution to this problem.

Law of Sines

Cross multiply and divide

Evaluate

Answer: Person 3 forms an angle of 28.00 with Person 1 and the mountain.

Points to Consider

1. Why is there only one possible solution to the SSA case if a > b?

2. Explain why a > bsinA yields two possible solutions to a triangle.
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3. If we have a SSA angle case with two possible solutions, how can we check both solutions to make sure
they are correct?

Lesson Summary

1. The SSA case is called the Ambiguous case because two sides and a non-included angle do not neces-
sarily form a unique triangle.

2. If side a is less than side b in the SSA, we could have no solution, one solution, or two solutions. If side
a is equal to or greater than side b, we will have only one triangle.

3. If a > b, we can check to see how many solutions a triangle will have by comparing a with bsinA. If a >
bsinA we will have two solutions. If a = bsinA we will have only one solution. If a > bsinA we will have no
solution.

4. There are many real-world situations where we may be faced with the SSA case in a triangle. We already
looked at a few in the example above. We will explore some more scenarios in the review questions.

Review Questions

1. Using the table below, determine how many solutions there would be to each problem based on the given
information and by calculating bsinA and comparing it with a. Sketch an approximate diagram for each
problem in the box labeled “diagram.” If a problem has no solution or two solutions, provide an explanation
of why.

Explanation for 2 or no
solutions

Number of solutionsDiagrama >, =, or < bsinAGiven

a. A = 32.50, a = 26, b = 37

b. A = 42.30, a = 16, b = 26

c. A = 47.80, a = 13.5, b = 18.2

d. A = 51.50, a = 3.4, b = 4.2

2. Using the information in the table above, find all possible measures of angle B if any exist.

3. Prove using the Law of Sines:

4. Give the measure of a non-included angle and the lengths of two sides so that two triangles exist. Explain
why two triangles exist for the measures you came up with.

5. If a = 22 and b = 31, find the values of A so that:

a. There is no solution

b. There is one solution

c. There are two solutions

6. In the figure below, AB = 13.7, AD = 9.8, and C = 42.6. Find A, B, BC, and AC.
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7. In the figure below, C = 21.8, BE = 9.9, BD = 10.2, ED = 7.6, and B = 109.6. Find the following:

a. BC

b. AB

c. AC

d. AE

e. ED

f. DC

g.

h.

i.

j.

k.

l.

m.

n.
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8. Radio detection sensors for tracking animals have been placed at three different points in a wildlife preserve.
The distance between Sensor 1 and Sensor 2 is 4500ft. The distance between Sensor 1 and Sensor 3 is
4000ft. The angle formed by Sensor 3 with Sensors 1 and 2 is 560. If the range of Sensor 3 is 6000ft, will it
be able to detect all movement from its location to the location of Sensor 2?

9. In problem 8 above, a fourth sensor is placed in the wildlife preserve. Sensor 2 forms a 36 angle with
Sensors 3 and 4, and Sensor 3 forms a 49 angle with Sensors 2 and 4. How far away is Sensor 4 from
Sensors 2 and 3?

10. Two cell phone companies have towers along Route 47. Company A’s tower is 38 miles from one point
on Route 47 and 47 miles from another point. This tower’s signal forms a 72.8 angle. Company B’s tower
is 52 miles from one point of Route 47 and 59 miles from another. Company B’s signal forms a 12 angle
with the road at the point that is 52 miles from the tower. For how many miles would a person driving along
Route 47 have service with Company A? Company B? For how many miles is there an overlap in coverage?
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Answers

1.

a. a > bsinA, 2 solutions

b. a < bsinA, no solution

c. a = bsinA, one solution

d. a > bsinA, two solutions

2.

a. 49.90 or 130.10

b. no solution

c. 87.90

d. 75.20 or 104.80
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3.

4. Student answers will vary. Student should mention using a > bsinA in their explanation.

5.(a) A > 45.20, (b) A = 45.20, (c) A < 45.20

6. A = 91.60, B = 45.80, BC = 20.2, AC = 14.5.

7. (a) 25, (b) 12.4, (c) 31.4, (d) 4.8, (e) 7.6, (f) 19, (g) 21.30, (h) 110.10, (i) 48.60, (j) 69.90, (k) 65.70, (l) 44.40,
(m) 43.90, (n) 114.30

8. Yes, it will be able to detect all motion between its location and the location of Sensor 2.

9. Sensor 4 is 2768.2 feet from Sensor 2 and 3554.4 feet from Sensor 3.

10. The driver would have service with Company A for 51 miles and with Company B for 52.2 miles. There
is 1.2 miles of overlap in coverage.

Supplemental Links

http://www.algebralab.org/studyaids/studyaid.aspx?file=Trigonometry_LawSines2.xml

Vocabulary

A situation that occurs when applying the Law of Sines in an oblique triangle
when two sides and a non-included angle are known. The ambiguous case

Ambiguous case:

can yield no solution, one solution, or two solutions.

General Solutions of Triangles

Learning Objectives

A student will be able to:

• Use the Theorem of Pythagoras, trigonometry functions, the Law of Sines, and the Law of Cosines to
solve various triangles.
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• Use combinations of the above methods to solve triangles.

• Understand when it is appropriate to use each method.

• Apply the methods above in real-world and applied problems.

Introduction

Real-World Application:

A cruise ship is based at Island 1, but makes trips to Island 2 and Island 3 during the day. If the distance
from Island 1 to Island 2 is 28.3 miles, from Island 2 to 3 is 52.4 miles, and Island 3 to 1 is 59.8 miles, what
heading (angle) must the captain:

a. Leave Island 1

b. Leave Island 2

c. Leave Island 3

*Remember that when using a compass, 00 is due North and 1800 is due South which means wemust convert
our angle measures from the traditional x- and y-axis measures.

In this example, we must calculate all of the angles in the triangle, thereby solving the triangle.

We will refer back to this application later on.

In the previous sections we have discussed a number of methods for finding a missing side or angle in a
triangle. Previously, we only knew how to do this in right triangles, but now we know how to find missing
sides and angles in oblique triangles as well. By combining all of the methods we’ve learned up until this
point, it is possible for us to find all missing sides and angles in any triangle we are given.

In this section, we will review the methods we’ve learned for finding missing angles and triangles and we
will combine these methods to solve a number of triangles. In addition, we will look at real-world and appli-
cation problems that require us to solve different triangles.
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Summary of Triangle Techniques

Below is a chart summarizing the triangle techniques that we have learned up to this point. This chart de-
scribes the type of triangle (either right or oblique), the given information, the appropriate technique to use,
and what we can find using each technique.

What we can find:Technique:Given Information:Type of Triangle:
Third sidePythagorean TheoremTwo sidesRight
Either of the other two
sides

Trigonometric ratiosOne angle and one sideRight

Either of the other two an-
gles

Trigonometric ratiosTwo sidesRight

The other non-included
side

Law of Sines2 angles and a non-in-
cluded side (AAS)

Oblique

Either of the non-included
sides

Law of Sines2 angles and the included
side (ASA)

Oblique

The angle opposite the
other side (can yield no,

Law of Sines2 sides and the angle op-
posite one of those sides

Oblique

one, or two solutions)(SSA) – Ambiguous case
The third sideLaw of Cosines2 sides and the included

angle (SAS)
Oblique

Any of the three anglesLaw of Cosines3 sidesOblique

Using the Law of Cosines

It is possible for us to completely solve a triangle using the Law of Cosines. In order to do this, we will need
to apply the Law of Cosines multiple times to find all of the sides and/or angles we are missing.

Example 1:

In triangle ABC, a = 12, b = 13, c = 8.

Solve the triangle.

Since we are given all three sides in the triangle, we can use the Law of Cosines. Before we can solve the
triangle, it is important to know what information we are missing. In this case, we do not know any of the
angles, so we are solving for angle A, angle B, and angle C. We will begin by finding .

Law of Cosines

Simplify

Subtract

Divide

The measure of . Now, we can find by again using the Law of Cosines.

Law of Cosines132 = 8o + 12o - 2(8)(12) cos B
Simplify169 = 208 - 192 cos B
Subtract-39 = -208 cos B
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Divide0.1875 = cos B

cos-1 (0.1875)79.2

The measure of . We can quickly find by using the Triangle Sum Theorem.

Answer: , and

Example 2:

In triangle DEF, d = 43, e = 37, and .

Solve the triangle.

In this triangle, we have the SAS case because we know two sides and the included angle. This means that
we can use the Law of Cosines to solve the triangle. In order to solve this triangle, we need to find side f,

, and . First, we will need to find side f using the Law of Cosines.

Law of Cosinesf 2 = 432 + 372 - 2(43)(37) cos 124
Evaluatef 2 = 4997.351819
Square rootf 70.9

Now that we know f, we know all three sides of the triangle. This means that we can use the Law of Cosines
to find either angle D or angle E. We will find angle D first. Law of Cosines

Law of Cosines432 = 70.72 + 372 - 2(70.7)(37) cos D
Simplify1849 = 6367.49 - 5231.8 cos D
Subtract-4518.49 = -5231.8 cos D
Divide0.863658779 = cos D

cos-130.3

To find angle E, we need only to use the Triangle Sum Theorem.

Triangle SumTheorem

Answer: , and .
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Real-World Application: A control tower is receiving signals
from two microchips implanted in wild tigers. Microchip 1 is 135
miles from the control tower and microchip 2 is 182 miles from
the control tower. If the control tower forms a 119o angle with
both microchips, how far apart are the two tigers? What angle
does microchip1 form with the tower and microchip 2? What
angle does microchip 2 form with the tower and microchip 1?

Part 1: First, we will find the distance between microchip 1 and
microchip 2, which will tell us how far apart the two tigers are.
We will call this distance x. Since we know two sides and the
included angle, we can use the Law of Cosines to find x.

Law of Cosinesx 2 = 1352 + 1822 = 2(135)(182) cos 119
Evaluatex 2 = 75172.54474
Square Rootx = 274.2 miles

Answer: The two tigers are 274.2 miles apart.

Part 2: Now that we know the third side of the triangle, we can use the Law of Cosines to find either of the
other two angles. We will find the angle formed by microchip 1 with the tower and microchip 2. We will refer
to this as angle Y.

Law of Cosines1822 = 1352 + 274.22 - 2(135)(274.4) cos Y
Simplify33124 = 93410.64 - 74034 cos Y
Subtract-60286.64 = -74034 cos Y
Divide0.8143101818 = cos Y

cos-135.5 =

Answer: The angle formed by microchip 1 with the tower and microchip 2 is 35.5o.

Part 3: Now that we know two of the three angles, we can use the Triangle Sum Theorem to find the other
angle – the angle formed by microchip 2 with microchip 1 and the tower.

Triangle Sum Theorem180 - (119 + 35.5) = 25.5

Answer: The angle formed by microchip 2 with the tower and microchip 1 is 25.5o.

Using the Law of Sines

It is also possible for us to completely solve a triangle using the Law of Sines if we begin with the ASA case,
the AAS case, or the SSA case. We must remember that when given the SSA case, it is possible that we
may encounter the Ambiguous case.

Example 3:

In triangle ABC, A = 43o, B = 82o, and c = 10.3. Solve the triangle.
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This is an example of the ASA case, which means that we can use the Law of Sines to solve the triangle.
In order to use the Law of Sines, we must first know angle C, which we can find using the Triangle Sum
Theorem.

C = 180 - (43 + 82) = 55

Now that we know angle C, we can use the Law of Sines to find either side a or side b. Let’s begin by finding
side a.

Law of Sines

Cross multiply and
divide

Evaluate

We can use the same process to find side b.

Law of Sines

Cross multiply and divide

Evaluate

Answer: C = 55o, a = 8.6, and b = 12.5.

We will now refer back to the application at the beginning of the section.

In order to find all three angles in the triangle, we must use the
Law of Cosines because we are dealing with the SSS case.
Once we find one angle using the Law of Cosines, we can use
the Law of Sines to find a second angle. Then, we can use the
Triangle Sum Theorem to find the third angle.

We could use the Law of Cosines to find all of the angles, but
this process is time consuming and requires a lot of computa-
tion. Therefore, we will use the Law of Cosines only once in
solving this problem.

When using the Law of Sines after the Law of Cosines to find angles, we have to be aware of the Ambiguous
SSA case. In order to avoid the Ambiguous case, we should start by finding the largest angle, which is
across from the largest side. The largest angle has the greatest chance of being obtuse. So, if we find that
angle first, we won’t have to worry about the Ambiguous case.

We will begin by finding angle B since it is the largest angle.

Law of Cosines59.82 = 52.42 + 28.32 -2(52.4)(28.3) cos B
Simplify3756.04 = 3546.65 - 2965.84 cos B
Subtract29.39 = -2965.84 cos b
Divide-0.0099095029 = cos B
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cos-1B = 90.6o

Now that we know B, we can find either A or C. We will find C first since it is the second largest angle.

Law of Sines

Cross multiply and divide

Evaluate0 . 876203135 =
\mbox{sin}\ C

Now that we know B and C, we can use the Triangle Sum Theorem to find A.

Triangle Sum TheoremA = 180 - (61.2 + 90.6) = 28.2

Now, we must convert our angles into headings. See the figures below.

In the first figure, we see that 61.20 is a heading of 28.80 east of north. In the second figure, we see that
90.60 is a heading of 0.60 west of north. In the third figure, we see that 28.20 is a heading of 61.80 east of
north.

Answer: The captain’s heading from Island 1 to Island 2 is 28.80 east of north, from Island 2 to Island
3 is 0.60 west of north, and from Island 3 to Island 1 is 61.80 east of north.

Points to Consider

1. Is there ever a situation where you would need to use the Law of Sines before using the Law of Cosines?

2. In what situation might you consider using the Law of Cosines instead of Law of Sines if both were appli-
cable?
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3. Why do we only have to use the Law of Cosines one time before we can switch to using the Law of Sines?

Lesson Summary

• We have a number of tools to find the missing sides and angles in right and oblique triangles. These
tools include:

Theorem of Pythagoras
Trigonometric ratios
Law of Cosines
Law of Sines

• We can use combinations of the above tools to find all the missing sides and angles in a trying. We call
this solving the triangle.

• When using the Law of Cosines, we need only to use it once. Then, we can use the Law of Sines, which
requires much less computation.

• When dealing with the SSS case, find the largest angle first will help us to avoid the Ambiguous case
later on.

• There are a number of real-world applications that involve using the tools we have learned. We have
already explored a few examples in this lesson. We will look at some more situations in the review
questions.

Review Questions

1. Using the information provided, decide which case you are given (SSS, SAS, AAS, ASA, or SSA), and
whether you would use the Law of Sines or the Law of Cosines to find the requested side or angle. Make
an approximate drawing of each triangle and label the given information. Also, state how many solutions (if
any) each triangle would have. If a triangle has no solution or two solutions, explain why.

Number of Solutions &
Explanation

LawCaseDrawingGiven

a. A = 69o, B = 12o, a = 22.3, find b.

b. a = 1.4, b = 2.3, C = 58o, find c.
c. a = 3.3, b = 6.1, c = 4.8, find A.

d. a = 15, b = 25, A = 58o, find B.

e. a = 45, b = 60, A = 47o, find B.

2. Using the information in the chart above, solve for the requested side or angle.

3. Using the information in the chart in question 1 and your answers from question 2, determine what infor-
mation you are still missing from each triangle.

4. Find the missing information from question 3, thereby solving each triangle.

5. The side of a rhombus is 12 cm and the longer diagonal is 21.5cm. Find the area of the rhombus and the
measures of the angles in the rhombus.

6. Find the area of the pentagon below. Also find the measures of angles 2, 4, and 5.
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7. In the figure drawn below, angle T is 56.8o. Using the figure below, find the length of the altitude draw to
the longest side, the area of the two triangles formed by this altitude, and the measure of all the angles in
both triangles.

8. Refer back to the real-world application at the beginning of the section. Suppose there is a fourth island
that tourists can visit. Island 4 is 22.6 miles away from Island 1 and the heading from Island 1 to Island 4 is
86.2o.

What is the distance from Island 3 to Island 4?a.
What is the angle formed by Island 3 with Islands 1
and 4?

b.

What is the angle formed by Island 4 with Island 1
and 3?

c.

9. A golfer is standing on the tee of a golf hole that has a 115o bend to the left. The distance from the tee to
the bend is 218 yards. The distance from the bend to the green is 187 yards.

How far would the golfer need to hit the ball if he wanted to make it to the green in one shot?a.
At what angle would he need to hit the ball?b.

10. A golfer is standing on the tee, which is 320 yards from the cup on the green. After he hits his first shot,
which is sliced to the right, his ball forms a 162.2o angle the tee and the cup, and the cup forms a 14.2o angle
with his ball and the tee.

What is the degree of his slice?a.
How far was his first shot?b.
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How far away from the cup is he?c.

Answers

1.

a. AAS, Law of Sines

b. SAS, Law of Cosines

c. SSS, Law of Cosines

d. SSA, Law of Sines

e. SSA, Law of Sines

2.

a. b = 100.1

b. c = 2.0

c. A = 32.6o

d. No solution

e. B = 77.2o or 102.8o

3.

a. c and C

b. A and B

c. B and C

d. None – there is no solution

e. c and C

4.

a. C = 99o, c = 105.9

b. A = 38.9o, B = 83.1o

c. B = 95.8o, C = 51.6o

d. No solution

e. C = 55.8o or 30.2o, c = 50.9 or 30.9

5. The area of the rhombus is 114.7 square centimeters. The two larger angles of the rhombus measure
127.2o and the smaller angles measure 52.8o.
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6. The area of the pentagon is 41,149.12 square units. Angle 2 is 129.4o, angle 4 is 164.4o, and angle 5 is
92.2o.

7. The length of the altitude is 31.8. The area of triangle TRG = 330.72 square units. The area of triangle
RGI is 1068.5 square units. Angle T is 56.8o, angle TRG is 33.2o, angle I is 25.5o, angle GRI is 64.5o, and
angle R is 67.7o.

8. (a) 62.5 miles, (b) 21.1o, (c) 72.7o.

9. (a) He would need to hit the ball 342.0 yards. (b) He would have to hit the ball at a 29.7o angle.

10. (a) 3.6o, (b) 256.8 yards, (c) 65.7 yards.

Supplemental Links

http://demonstrations.wolfram.com/SolvingObliqueTriangles/

Vectors

Learning Objectives

A student will be able to:

• Understand directed line segments, equal vectors, and absolute value in relation to vectors.

• Perform vector addition.

• Perform vector subtraction.

• Find the resultant vector of two displacements.

Introduction

Real-World Application: A cruise ship is traveling south at 22
mph. A westward wind is blowing the ship eastward at 7 mph.
What speed is the ship traveling at and in what direction is it
moving?

Not all applications deal with stationary objects. Many applications,
such as this one, deal with displacement, velocity, or force.

Displacement is when an object moves a certain distance in
a certain direction.
Example: A car travels 65 miles south.

Velocity is when an object travels at a certain speed in a cer-
tain direction.
Example: The wind is blowing at 25 mph from the northeast.

Force is when a push or pull is exerted on an object in a certain
direction.
Example: A 35-lb upward force is required to lift a crate.

The problem above is an example of velocity. We will refer back to this problem later on.
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In the examples above, we could not simply use triangles to represent these as we have been in the past
few sections. The boat’s engines are working to give the boat a constant speed in the water. The wind is
simultaneously working to make the boat go at 90o to the direction that the engines are making the boat go.
We need another tool to represent not only direction but also magnitude (length) or force. This is why we
need vectors. Vectors capture the interactions of real world velocities, forces and distance changes.

Any application in which direction is specified requires the use of vectors. A vector is any quantity having
direction andmagnitude.Vectors are very common in science, particularly physics, engineering, electronics,
and chemistry in which one must consider an object’s motion (either velocity or acceleration) and the direction
of that motion.

In this section, we will look at how and when to use vectors.Wewill also explore vector addition, subtraction,
and the resultant of two displacements. In addition we will look at real-world problems and application involving
vectors.

Directed Line Segments, Equal Vectors, and Absolute Value

A vector is represented diagrammatically by a directed line segment or arrow. A directed line segment
has both magnitude and direction. Magnitude refers to the length of the directed line segment and is
usually based on a scale. The vector quantity represented, such as influence of the wind or water current
may be completely invisible.

A 25 mph wind is blowing from the northwest. If 1 cm = 5 mph, then the vector would look like
this:

An object affected by this wind would travel in a southeast direction at 25 mph.

A vector is said to be in standard position if its initial point is at the origin. The initial point is where the
vector begins and the terminal point is where it ends. The axes are arbitrary. They just give a place to draw
the vector.
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If we know the coordinates of a vector’s initial point and terminal point, we can use these coordinates to find
the magnitude and direction of the vector.

Magnitude:

Vectors have magnitude. This measures the total distance moved, total velocity, force or acceleration.
“Distance” here applies to the magnitude of the vector even though the vector is a measure of velocity, force,
or acceleration. In order to find the magnitude of a vector, we use the distance formula. A vector can have
a negative magnitude. A force acting on a block pushing it at 20 lbs north can be also written as vector acting
on the block from the south with a magnitude of -20 lbs. Such negative magnitudes can be confusing;
making a diagram helps. The -20 lbs south can be re-written as +20 lbs north without changing the vector.

Example 1:

If we know the coordinates of the initial point and the terminal point, we can find the magnitude by using the
distance formula.

Initial point (0,0)

Terminal point (3,5)

The magnitude of is 5.8.

If we don’t know the coordinates of the vector, we must use a ruler and the given scale to find the magnitude.

Direction:

If a vector is in standard position, we can use trigonometric ratios such as sine, cosine and tangent to find
the direction.

Example 2:

If a vector is in standard position and its terminal point has coordinates of (12, 9) what is the direction?

The horizontal distance is 12 while the vertical distance is 9. We can
use the tangent function since we know the opposite and adjacent
sides of our triangle.

The direction of the vector is 36.9o.

If the vector isn’t in standard position and we don’t know the coordinates of the terminal point, we must a
protractor to find the direction.

Equal Vectors:
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Two vectors are equal if they have the same magnitude and direction. Look at the figures below for a visual
understanding of equal vectors.

Vector Addition and Subtraction

As you know from Algebra, A - B = A + (-B). When we think of vector subtraction, we must think about it in
terms of adding a negative vector. A negative vector is the same magnitude of the original vector, but its
direction is opposite.

In order to subtract two vectors, we can use either the triangle method or the parallelogram method from
above. The only difference is that instead of adding vectors A and B, we will be adding A and –B.

Example using the triangle method:

Vector Addition

The sum of two or more vectors is called the resultant of the vectors. There are two methods we can use
to find the resultant: the triangle method and the parallelogram method.

The Triangle Method:

To use the triangle method, we draw the vectors one after another and place the initial point of the second
vector at the terminal point of the first vector. Then, we draw the resultant vector from the initial point of the
first vector to the terminal point of the second vector. This method is also referred to as the tip-to-tail method.

472



To find the sum of the resultant vector we would use a ruler and a protractor to find the magnitude and di-
rection.

The resultant vector can be much longer than either , or it can be shorter. Below are some more
examples of the tip-to-tail method.

Example 1:

Example 2:

The Parallelogram Method:

Another method we could use is the parallelogram method. To use the parallelogram method, we draw the
vectors so that their initial points meet. Then, we draw in lines to form a parallelogram. The resultant is the
diagonal from the initial point to the opposite vertex of the parallelogram. It is important to note that we
cannot use the parallelogram method to find the sum of a vector and itself.

To find the sum of the resultant vector, we would again use a ruler and a protractor to find the magnitude
and direction.

If you look closely, you’ll notice that the parallelogram method is really a version of the triangle or tip-to-tail
method. If you look at the top portion of the figure above, you can see that one side of our parallelogram is
really vector b translated.

473



Resultant of Two Displacements

We can use vectors to find direction, velocity, and force of moving objects. In this section we will look at a
few applications where we will use resultants of vectors to find speed, direction, and other quantities. A
displacement is a distance considered as a vector. If one is 10 ft away from a point, then any point at a radius
of 10 ft from that point satisfies the condition. If one is 28 degrees to the east of north, then only one point
satisfies this.

We will now refer back to the application at the beginning of the section.

A boat’s engines are capable of moving it at 22 mph. Its compass says that it is moving south. The ocean
current at that spot happens to be 7 mph east. What is the true speed and direction of the boat’s path? In
order to find the direction and the speed the boat is traveling, we must find the resultant of the two vectors
representing 22 mph south and 7 mph east. Since these two vectors form a right angle, we can use the
Theorem of Pythagoras and trigonometric ratios to find the magnitude and direction of the resultant vector.

First, we will find the speed.

222 + 72 = x 2

533 = x 2

23.1 = x

The ship is traveling at a speed of 23.1mph.

To find the direction, we will use tangent, since we know the opposite and adja-
cent sides of our triangle.

Definition of tangent

The ship’s direction is 17.7o SE.

Real-World Application:

474



A hot air balloon is rising at a rate of 13 ft/sec, while a wind is blowing at a rate of 22 ft/sec. Find speed at
which the balloon is traveling as well as the angle it makes with the horizontal.

First, we will find the speed at which our balloon is rising.

Since we have a right triangle, we can use the Theorem of Pythagoras to find
calculate the magnitude of the resultant.

x 2 = 132 = 222

x 2 = 653

x = 25.6 ft / sec

The balloon is traveling at rate of 25.6 feet per second.

To find the angle the balloon makes with the horizontal, we will find the angle A in the triangle and then we
will subtract it from 90o.

We will use the tangent function to find angle A.

Angle with the horizontal = 90 – 59.4 = 30.6o.

The balloon forms an angle of 30.6o with the horizontal.

Here are some other things to consider using the above problem:

How far from the lift off point is the balloon in 2 hours? Assume constant rise and constant wind speed.
(Total displacement)

a.

After two hours, the balloon will be 184,320 feet from the lift off point (25.6ft/sec times 7200
seconds in two hours).
How far must the support crew travel on the ground to get under the balloon? (Horizontal displacement)b.
After two hours, the horizontal displacement will be 158,400 feet (22ft/sec times 7200 seconds
in two hours).
If the balloon stops rising after 2 hours and floats for another 2 hours, how far did it travel total? How
far away does the crew have to go to be under the balloon when it lands?

c.

After two hours, the balloon will have risen 93,600 feet vertically (13ft/sec times 7200 seconds in two
hours). After an additional two hours of floating in the 22ft/sec wind, the balloon will have traveled 368,640
feet horizontally (22ft/second times 14,400 seconds in two hours). We must recalculate our resultant
vector using Pythagorean Theorem.
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Pythagorean Theorem936002 + 368,6402 = x 2

Sum of the squares144656409600 = x 2

Square root380,337.2 ft = x

The balloon has traveled 380,337.2 feet from its lift off point. The crew will have to travel 368,640
feet (horizontal displacement) to be under the balloon when it lands.

Points to Consider

1. Is it possible to find the magnitude and direction of resultants without using a protractor and ruler and
without using right triangles?

2. How can we use the Law of Cosines and the Law of Sines to help us find magnitude and direction of re-
sultants?

Lesson Summary

• Vectors are used in situations where we have moving objects or force being applied to objects. These
situations deal with displacement, velocity, and force.

• Vectors have both magnitude and direction. Equal vectors have the same magnitude and direction. We
always calculate the absolute value of the magnitude using coordinates of the initial and end points.
Length is not a magnitude. The magnitude of a vector is commonly associated with a positive value. -20
mph East is the same vector as 20 mph West. Both have a magnitude of 20 mph.

• If we know the coordinates of the initial and terminal points of a vector, we can use the Theorem of
Pythagoras and trigonometric ratios to calculate magnitude and direction.

• When adding vectors, we can use either the triangle method (tip-to-tail) or the parallelogram method (tail
to tail).

• When subtracting two vectors, we add the negative if the vector being subtracted. A negative vector has
the same magnitude but the opposite direction.

Review Questions

1. Vectors and are perpendicular. Make a diagram of each addition or subtraction. Find the magnitude
and direction (with respect to and ) of their resultant if:

a.

b.

c.

d.

e.
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2. Use and to find the magnitude and direction of each resultant. Make a diagram of each addition
or subtraction.

, direction = 30o,, direction = 45o,

, direction = 80o, direction = 110o
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ResultantDiagramOperation

a.

b.

c.

d.

e.

f.

3. Does ? Explain your answer.

4. A plane is traveling north at a speed of 225 mph while an easterly wind is blowing the plane west at 18
mph. What is the direction and the speed of the plane?

5. Two workers are pulling on ropes attached to a tree stump. One worker is pulling the stump east with 330
Newtons of forces while the second working is pulling the stump north with 410 Newtons of force. Find the
magnitude and direction of the resultant force on the tree stump.

6. Assume is in standard position. For each terminal point is given, find the magnitude and direction of
each vector.

d. (3, -2)c. (-1,-9)b. (-3, 6)a. (12, 18)

7. Given the initial and terminal coordinates of , find the magnitude and direction.

initial ( 2, 4) terminal (8, 6)a.
initial (5, -2) terminal (3, 1)b.
initial (-4, 19) terminal (12, 1)c.
initial (11, -21) terminal (21, -11)d.
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8. The magnitudes of vectors and are given along with the angle between them theta. Find the mag-
nitude of the resultant and the angle it makes with a.

a.

b.

c.

d.

9. Car A is traveling at a speed of 35 mph in a direction of 48o. Car B is traveling at a speed of 52 mph in a
direction of 87o. If the two cars collide, what is the magnitude and direction of their resultant?

10. Two bulldozers are moving a boulder. One is pushing the boulder with 4210 lbs of force and the other
is pushing with 3750 lbs of force. If the angle between the two forces is 25.4o, what is the magnitude of the
resultant and the direction made with the smaller force?

Answers

1.

magnitude = 45.1, direction = 51.7oa.

magnitude = 6.1, direction = 62.6ob.

magnitude = 15.2, direction = 38.3oc.

magnitude = 67.8, direction = 44.6od.

magnitude = 25.5, direction = 43.3oe.

2.

magnitude = 9.1cm, direction = 40oa.

magnitude = 10.3, direction = 61ob.

magnitude = 6, direction = 86oc.

magnitude = 10.3, direction = 50od.

magnitude = 3, direction = 359oe.

magnitude = 3.7, direction = 40of.

3. This is only true if both a and b are positive. If either a or b is negative, this will not be true.

4. The plane’s speed is 225.7 mph and its direction is 4.6o NE.

5. The magnitude is 526.3 Newtons and the direction is 51.2o NE.
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6.

magnitude = 21.6, direction = 56.3oa.

magnitude = 6.7, direction = 116.6ob.

magnitude = 9.1, direction = 251.6oc.

magnitude = 3.6, direction = 326.3od.

7.

magnitude = 6.3, direction = 18.4oa.

magnitude = 3.6, direction = 56.3ob.

magnitude = 24.1, direction = 48.4oc.

magnitude = 14.1, direction = 45od.

8.

magnitude = 19.5, direction = 37.2oa.

magnitude = 29.6, direction = 71ob.

magnitude = 25.2, direction = 66oc.

magnitude = 71.2, direction = 17.6od.

9. The magnitude is 82.2 and the direction is 71.5o.

10. The magnitude is 7766.0 lbs and the direction is 12.0o.

Supplemental Links

http://hyperphysics.phy-astr.gsu.edu/hbase/vect.html
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Vocabulary

A line segment having both magnitude and direction, often used to represent
a vector.

directed line segment:

When an object moves a certain distance in a certain direction.displacement:
Vectors with the same magnitude and direction.equal vectors:
When an object is pushed or pulled in a certain direction.force:
The starting point of a vectorinitial point:
Length of a vector.magnitude:
A vector with the same magnitude as the original vector but with the oppo-
site direction.

negative vector:

The sum of two or more vectorsresultant:
A vector with its initial point at the origin of a coordinate plane.standard position:
The ending point of a vector.terminal point:
Any quantity havingmagnitude and direction, often represented by an arrow.vector:
When an object travels at a certain speed in a certain direction.velocity:

Component Vectors

Learning Objectives

A student will be able to:

• Perform scalar multiplication with vectors.

• Understand component vectors.

• Find the resultant as a sum of two components.

• Find the resultant as magnitude and direction.

• Use component vectors to solve real-world and applied problems.

Introduction

Real-World Application:

A car has traveled 216 miles in a direction of 46o north of east. How far
east of its initial point has it traveled? How far north has the car traveled?

We will refer back to this application later on.

The car traveled on a vector distance called a displacement. It moved in
line at fixed distance from the starting point. Having two components in
their expression, vectors are confusing to some. A diagram helps sort out
confusions. Looking at vectors by separating them into components allows
us to neatly a great many real-world problems. The components often relate
to very different elements of the problem, such as wind speed in one direc-
tion and speed supplied by a motor in another.

In this section, we will learn about component vectors and how to find them. We will also explore other ways
of finding the magnitude and direction of a resultant of two or more vectors. We will be using many of the
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tools we learned in the previous sections dealing with right and oblique triangles.

Vector Times a Scalar

In working with vectors there are two kinds of quantities employed. The first is the vector, a quantity that
has both magnitude and direction. The second quantity is a scalar. Scalars are just numbers. The magnitude
of a vector is a scalar quantity. A vector can be multiplied by a real number. This real number is called a

scalar. The product of a vector and a scalar k is a vector, written . It has the same direction as

with a magnitude of if k > 0. If k < 0, the vector has the opposite direction of and a magnitude of

.

Example 1: The speed of the wind before a hurricane arrived was 20 mph from the SSE (135o on the
compass). It quadrupled when the hurricane arrived. What is the current vector for wind velocity? The wind
is coming now at 80 mph from the same direction.

Example 2: A sailboat was traveling at 15 knots due north. After realize he had overshot his destination,
the captain turned the boat around and began traveling twice as fast due south. What is the current vector
for the speed of the ship? The ship is traveling at 30 knots in the opposite direction.

If the vector is expressed in coordinates with the tip of the vector at origin, standard form, to scalar multipli-
cation, we multiply our scalar by both the coordinates of our vector. The word scalar comes from “scale.”
Seen from the origin, multiplying by a scalar just makes the vectors larger or smaller proportionally.

Example 3:

Consider the vector from the origin to (4,6). What would the representation of a vector that had three times
the magnitude be? Here k = 3 and = the directed segment from (0,0) to (4,6).

The new coordinates of the directed segment
are (0, 0), (12, 18).

What would happen if we had a negative value
for k? How would this affect our vector?

Example 4: Consider the vector from the origin
to (3, 5). What would the representation of a
vector that had –2 times the magnitude be?

Here, k = -2 and = the directed segment from (0, 0) to (3, 5).

Since k < 0, our result would be a directed segment that is twice and long but in the opposite direction of
our original vector.
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Translation of Vectors and Slope

What would happen if we performed scalar multiplication on a vector that didn’t start at the origin?

Example 5: Consider the vector from (4, 7) to (12, 11). What would the representation of a vector that had
2.5 times the magnitude be?

Here, k = 2.5 and = the directed segment from (4, 7) to (12, 11).

Mathematically, two vectors are equal if their direction and magnitude are the same. The positions of the
vectors do not matter. This means that if we have a vector that is not in standard position, we can translate
it to the origin.

The initial point of is (4, 7). In order to translate this to the origin, we would need to add (-4, -7) to both
the initial and terminal points of the vector.

(4, 7) + (-4, -7) = (0,0)Initial point:
(12, 11) + (-4, -7) = (8, 4)Terminal point:

Now, to calculate :

The new coordinates of the directed segment are (0, 0) and (20, 10). To translate this back to our original
terminal point:
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(0, 0) + (4, 7) = (4, 7)Initial point:
(20, 10) + (4, 7) = (24, 17)Terminal point:

The new coordinates of the directed segment are (4, 7) and (24, 17).

Vectors with the same magnitude and direction are equal. This means that the same ordered pair could
represent many different vectors. For instance, the ordered pair (4, 8) can represent a vector in standard
position where the initial point is at the origin and the terminal point is at (4, 8). This vector could be thought
of as the resultant of a horizontal vector with a magnitude or 4 units and a vertical vector with a magnitude
of 8 units. Therefore, any vector with a horizontal component of 4 and vertical component of 8 could also
be represented by the ordered pair (4, 8).

All of these vectors have a horizontal component of 4 and a vertical com-
ponent of 8, even though they are in different positions on the coordinate
plane.

If you think back to Algebra, you know that the slope of a line is the change in y over the change in x, or
the vertical change over the horizontal change. Looking at our vectors above, since they all have the same
horizontal and vertical components, they all have the same slope, even though they do not all start at the
origin.

Unit Vectors and Components

A unit vector is a vector that has a magnitude of one unit and can have any direction. Traditionally is the

unit vector in the x direction and is the unit vector in the y direction. and . Unit vectors
on perpendicular axes can be used to express all vectors in that plane.” Vectors are used to express position

and motion in three dimensions with as the unit vector in the z direction. We are not studying 3D space
in this course. The unit vector notation may seem burdensome but one must distinguish between a vector
and the components of that vector in the direction of the x- or y-axis. The unit vectors carry the meaning for
the direction of the vector in each of the coordinate directions. The number in front of the unit vector shows
its magnitude or length. Unit vectors are convenient if one wishes to express a 2D or 3D vector as a sum
of two or three orthogonal components, such as x- and y-axes, or the z-axis.

Component vectors of a given vector are two or more vectors whose sum is the given vector. The sum is
viewed as equivalent to the original vector. Since component vectors can have any direction, it is useful to
have them perpendicular to one another. Commonly one chooses the x and y axis as the basis for the unit
vectors. Component vectors do not have to be orthogonal.

A vector from the origin (0, 0) to the point (8, 0) is written as . A vector from the origin to the point (0, 6)

is written as .
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The reason for having the component vectors perpendicular to one another is that this condition allows us
to use the Theorem of Pythagoras and trigonometric ratios to find the magnitude and direction of the com-
ponents. One can solve vector problems without use of unit vectors if specific information about orientation,
direction in space such as N, E, S or W are not part of the problem.

Resultant as the Sum of Two Components

We can look at any vector as the resultant of two perpendicular components. In the figure below, is

the horizontal component of and is the vertical component of . Therefore must be some
magnitude times the unit vector in the x direction.

The sum of vector r plus vector s is: . This addition can also be written as
.

From this figure, we can see how would be the resultant if we added and together using the triangle

method. If we are given the vector , we can find the components of , , and using trigonometric

rations if we know the magnitude and direction of .

Example 6: (refer to the figure above)

If and its direction is 73o, find the horizontal and vertical components.

If we know an angle and a side of a right triangle, we can find the other remaining sides using trigonometric

ratios. In this case, is the hypotenuse of our triangle, is the side adjacent to our 73o angle, is the
side opposite our 73o angle, and is directed along the x-axis.

To find , we will use cosine since we are using the adjacent side and the hypotenuse. Please note this
is a scalar equation so all quantities are just numbers. It is written as the quotient of the magnitudes, not the
vectors.
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Definition of Cosine

Cross multiply

Evaluate

To find , we will use sine since we are using the opposite side and the hypotenuse.

Definition of Sine

Cross multiply

Evaluate

Answer: The horizontal component is 5.7 and the vertical component is 18.7. One can rewrite this

in vector notation as

We will now refer back to the application at the beginning of the section.

A car has traveled 216 miles in a direction of 46o north of east. How far east of its initial point has it traveled?
How far north has he traveled?

In order to find how far the car has traveled east and how far it has traveled north, we will need to find the
horizontal and vertical components of the vector.
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To find x:

Definition of Cosine

Cross multiply

Evaluate

To find y:

Definition of Sine

Cross multiply

Evaluate

Answer: The car has traveled 150 miles east and 155.4 miles north of its original destination. In a

vector equation it is = displacement .

Resultant as Magnitude and Direction

If we don’t have two perpendicular vectors, we can still find the magnitude and direction of the resultant
without a graphic estimate with a construction using a compass and ruler. This can be accomplished using
both the Law of Sines and the Law of Cosines.

Example 7:

Vector A makes a 54o angle with vector B. The magnitude of A is 13.2. The
magnitude of B is 16.7. Find the magnitude and direction the resultant makes
with the smaller vector.

There is no preferred orientation such as a compass direction or any neces-
sary use of x and y coordinates. The problem can be solved without use of
unit vectors

In order to solve this problem, we will need to use the parallelogram method.
Since vectors only have magnitude and direction, one can move them on the
plane to any position one wishes, as long as the magnitude and direction remain the same First, we will
complete the parallelogram: Label the vectors. Move vector B so its tail is on the tip of vector B. Move vector
A so its tail is on the tip of vector B. This makes a parallelogram because the angles did not change during
the translation. Put in labels for the vertices of the parallelogram.
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Since opposite angles in a parallelogram are congruent, we know that opposite angles in a parallelogram
are congruent, we can find angle A.

Now, we know two sides and the included angle in an oblique triangle. This means we can use the Law of
Cosines to find the magnitude of our resultant.

Law of Cosinesx 2 = 13.22 + 16.72 - 2(13.2)(16.7) cos 126
Evaluatex 2 = 712.272762
Square rootx = 26.7

To find the direction, we can use the Law of Sines since we now know an angle and a side across from it.
We choose the Law of Sines because it is a proportion and less computationally intense than the Law of
Cosines.

Law of Sines
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Cross multiply, divide

Evaluate

Answer: The magnitude of the resultant is 26.7 and the direction it makes with the smaller force is
30.4o counterclockwise.

We can use a similar method to add three or more vectors.

Example 8: Vector A makes a 45o angle with the horizontal and has a mag-
nitude of 3. Vector B makes a 25o angle with the horizontal and has a magni-
tude of 5. Vector Cmakes a 65o angle with the horizontal and has a magnitude
of 2. Find the magnitude and direction (with the horizontal) of the resultant
of all three vectors.

To begin this problem, we will find the resultant using Vector A and Vector
B. We will do this using the parallelogram method like we did above.

Since Vector A makes a 45o angle with the horizontal and Vector B makes a
25o angle with the horizontal, we know that the angle between the two

is 20o.

To find :

Now, we will use the Law of Cosines to find the magnitude of DE.

Law of CosinesDE 2 = 32 + 52 - 2(3)(5) cos 160
EvaluateDE 2 = 62
Square rootDE = 7.9

Next, we will use the Law of Sines to find the measure of angle EDB.

Law of Sines

Cross multiply and divide

Evaluate
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We know that Vector B forms a 25o angle with the horizontal so we add that value to the measure of
to find the angle DE makes with the horizontal. Therefore, DE makes a 33o angle with the horizontal.

Next, we will take DE, and we will find the resultant vector of DE and Vector C from above. We will repeat
the same process we used above.

Vector C makes a 65o angle with the horizontal and DE makes a 33o

angle with the horizontal. This means that the angle between the two

is 32o. We will use this information to find the measure of
.

Now we will use the Law of Cosines to find the magnitude of DF.

Law of CosinesDF 2 = 7.92 + 22 - 2(7.9)(2) cos 148
EvaluateDF 2 = 93.2
Square rootDF = 9.7
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Next, we will use the Law of Sines to find .

Law of Sines

Cross multiply and divide

Evaluate

Finally, we will take the measure of and add it to the 33o angle that DE forms with the horizontal.
Therefore, DF forms a 39o angle with the horizontal.

Answer: The resultant has a magnitude of 9.7 and forms a 39o angle with the horizontal.

Applications

Real-World Application: Two forces of 310 lbs and 460 lbs are acting on an
object. The angle between the two forces is 61.3o. What is the magnitude of the
resultant? What angle does the resultant make with the smaller force?

We do not need unit vectors here as there is no preferred direction like a com-
pass direction or a specific axis. First, to find the magnitude we will need to figure
out the other angle in our parallelogram.

Now that we know the other angle, we can find the magnitude using the Law of Cosines.

Law of Cosinesx 2 = 4602 + 3102 - 2(460)(310) cos 118.7
Evaluatex 2 = 444659.7415
Square rootx = 667
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To find the angle the resultant makes with the smaller force, we will use the Law of Sines.

Law of Sines

Cross multiply, divide

Evaluate

Answer: The magnitude of the resultant is 667 lbs and the resultant makes an angle of 37.2o counter-
clockwise with the smaller force.

Application:

Two trucks are pulling a large chunk of stone. Truck 1 is pulling with a force
of 635 lbs at a 53o angle from the horizontal while Truck 2 is pulling with a
force of 592 lbs at a 41o angle from the horizontal. What is the magnitude
and direction of the resultant force?

Since Truck 1 has a direction of 53o and Truck 2 has a direction of 41o, we
can see that the angle between the two forces is 12o. We need this angle
measurement in order to figure out the other angles in our parallelogram.

Now, use the Law of Cosines to find the magnitude of the resultant.

L a w o f
Cosines

x 2 = 6352 + 5922 -
2(635)(592) cos 168

Evaluatex 2 = 1489099
Square rootx = 1220 lbs

Now to find the direction we will use the Law of Sines.

Law of Sines

Cross multiply, divide

Evaluate
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Since we want the direction we need to add the 6o to the 41o of the smaller force.

6o + 41o = 47o

Answer: The magnitude is 1220 lbs and 47o clockwise from the horizontal.

Points to Consider

1. How you can verify if your answers to problems involving vectors that are not perpendicular are correct?

2. In what ways are solving problems with oblique triangles and solving problems involving vectors similar?

3. In what ways are the different?

4. When is it appropriate to use vectors instead of oblique triangles to solve problems?

5. When is it helpful to use unit vectors? When can one solve without explicitly using them?

Lesson Summary

• Scalar multiplication with vectors involves distributing the scalar to both coordinates of the vector. If the
scalar is positive, the direction is the same. If the scalar is negative, the direction is opposite

• Component vectors are helpful because we position them at right angles with one another. This allows
us to use trigonometric ratios and the Theorem of Pythagoras to solve problems.

• A vector has a horizontal and vertical component. If we know the magnitude and direction of the vector,
we can find the horizontal and vertical components.

• In order to find the resultant of the sum of two vectors that are not perpendicular, we need to use the
parallelogram method. This allows use to utilize the Law of Sines and the Law of Cosines to find the
magnitude and direction of the resultant.

Review Questions

1. Find the resulting ordered pair that represents in each equation if you are given and

and .

a.

b.

c.

d.

2. Find the magnitude of the horizontal and vertical components of the following vectors given that the coor-
dinates of their initial and terminal points.

terminal = (2, -1)initial = (-3,8)a.
terminal = (11, 19)initial = (7, 13)b.
terminal = (-1.3, -9.4)initial = (4.2, -6.8)c.
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terminal = (-0.237, 0)initial = (5.23, 4.98)d.

3. Find the magnitude of the horizontal and vertical components if the resultant vector’s magnitude and di-
rection are given.

direction = 35omagnitude = 75a.

direction = 162omagnitude = 3.4b.

direction = 12omagnitude = 15.9c.

direction = 223omagnitude = 189.27d.

4. Two forces of 8.50 Newtons and 32.1 Newtons act on an object at right angles. Find the magnitude of
the resultant and the angle that it makes with the smaller force.

5. Forces of 140 Newtons and 186 Newtons act on an object. The angle between the forces is 43o. Find the
magnitude of the resultant and the angle it makes with the larger force.

6. Find the resultant and the direction made with vector if the magnitudes of vectors and and the

angle between them is given. Make a rough sketch of the vectors, and then make a drawing of the re-
sultant. Check your answers with the drawing to see if it makes sense.

a.

b.

c.

7. An incline ramp is 12 feet long and forms an angle of 28.2owith the ground. Find the horizontal and vertical
components of the ramp.

8. An airplane is traveling at a speed of 155 km/h. It needs to head in a direction of 83o while there is a 42.0
km/h wind from 325o. What should the airplane’s heading be?

9. A speedboat is capable of traveling at 10.0 mph, but is in a river that has a current of 2.00 mph. In order
to cross the river at right angle, in what direction should the boat be heading?

10. If AB is any vector, what is AB + BA?

Answers

1.

(0,0) to (10,8)a.
(0,0) to (1.5, -3.5)b.
(0,0) to (3, 2.4)c.
(0,0) to (–15, -12)d.

2.
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vertical = 9horizontal = 5a.
vertical = 32horizontal = 18b.
vertical = 16.2horizontal = 5.5c.
vertical = 4.98horizontal = 5.467d.

3.

vertical = 43horizontal = 61a.
vertical = 3.2horizontal = 1.1b.
vertical = 3.3horizontal = 15.6c.
vertical = 129.1horizontal = 138.4d.

4. magnitude = 33.2, direction = 14.8o from the horizontal

5. magnitude = 304, direction = 24.7o counterclockwise from the smaller force

6.

magnitude = 33.8, direction = 22.5o from the horizontala.

magnitude = 88.2, direction = 5.80o from the horizontalb.

magnitude = 14.7, direction = 20.4o from the horizontalc.

7. horizontal component = 10.6, vertical component = 5.67

8. The airplane is traveling at 179 km/h at a heading of 95.0o.

9. 11.3o against the current.

10. (0,0)

Vocabulary

Two or more vectors whose vector sum, the resultant, is the given vector.
Components can be on axes or more generally in space.

component vectors:

A real number by which a vector can be multiplied. The magnitude of a
vector is always a scalar.

scalar:

A vector that has a magnitude of one unit. These generally point on coordi-
nate axes.

unit vector:

Real-World Triangle Problem Solving

Learning Objectives

A student will be able to:

• Represent situations using right and oblique triangles and label the information given.
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• Formulate a problem-solving plan to find the unknowns.

• Choose the appropriate tool to solve the problem from the Law of Sines, the Law of Cosines, the Theorem
of Pythagoras, trigonometric ratios, vectors, and area formulas.

• Confirm your findings using another method than the one you originally chose.

Introduction

In this section, we will look at three different real-world applications. The situations are given below:

1. A mountain climber is getting ready to scale a climbing wall that is 133 feet high. If the angle of elevation
from where he’s standing to the top of the wall is 77.6o and the wall is perpendicular with the ground, how
far way from the wall is he? How much rope will he need to get to the top if his partner will be standing in
his current position?

2. An engineer needs to solve a storage problem. The engineer must design a way to keep three 5-meter
long cylinders together in a stack, until they are used. One cylinder has a radius of 1.4 meters, the second
has a radius of 1.9 meters, and the third has a radius of 2.3 meters. The center of each cylinder has an axel
projecting outwards. What is the length of a steel cable needed to hold the cylinders together? Consider
both ends in your answer. What are the angles that the cable will make?

3. Two tractors are being used to pull down the framework of an old building. One tractor is pulling on the
frame with a force of 1675 pounds and is headed directly north. The second tractor is pulling on the frame
with a force of 1880 pounds and is headed 33 north of east. What is the magnitude of the resultant force
on the building? What is the direction of the result force?

Each of these situations is different and requires a different method for solving them. Up until this point, we
have been learning many different tools to solve various types of problems. In this section, we will explore
each of these problems, develop a problem-solving plan, find a solution, and check that solution to see if it
is correct. We will be utilizing all of the tools we have learned in this chapter, as well as some tools learned
in previous chapters.

Represent Problem Situations as Triangle(s)

Each of the situations above presents a unique problem. In order to form a plan for solving the problem, we
must first know what information we have and what information we still need to find. Our first step in solving
all of these problems will be to represent the situations using a triangle or multiple triangles. We must then
label each triangle with the information we are given. Once we have a visual image of our problem, we can
figure out what we need to find and which tool(s) would be most helpful in finding that information.

First, let’s look at situation #1.

In this problem, we are told that the wall and the ground are perpendicular, which means we have a right
triangle. The climber is standing away from the ground and looking up at the wall with an angle of elevation
of 77.6. This means that the bottom of the wall, the climber, and the top of the wall make a right triangle.
Below is a sketch of the current situation.
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In this figure, we have labeled what we know and what we still need to find. In this case, x represents the
distance the climber is from the wall. Y represents the length of the rope from the climber to the top of the
wall. We will refer back to this diagram later on.

Now, let’s look at situation #2:

In our second problem, we need to begin by drawing three circular shapes to represent our cylinders and
the axels in the middle of them. We then need to label each cylinder and its radius.

Once we have done that, we see that our three axels form a triangle. We don’t know that any of the axels
are perpendicular and therefore cannot assume that they form a right triangle. We need to find the perimeter
of the triangle which we will call p and we need to find each of the angles, which we will refer to as A, B,
and C.

Finally, we will look at situation #3:

In our last problem, we have two tractors with a different force and direction. We will use arrows to represent
each tractor’s force and direction.
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We are asked to find the resultant force and direction, which means we are dealing with vectors. In order
to complete our diagram, we will need to connect our two vectors and draw in our resultant. We will refer to
the magnitude of our resultant as x and the direction of our resultant as θ.

Now that we have diagrams or visual representations of each of our problems, we will begin to formulate a
problem-solving plan for each situation.

Make a Problem-Solving Plan

Once we have our visual aid and an understanding of what we know and what we need to find, we can for-
mulate a problem-solving plan. Often, we will not be able to directly solve for what is asked for. Instead, we
will have to find other pieces of information first before we can find our unknown. When coming up with a
problem-solving plan, we need to ask:

What do I know?1.
What am I trying to find?2.
What other information do I need before I can find what I’m looking for?3.

We will look at the three situations discussed earlier and formulate a problem-solving plan for each one using
the questions above.

Situation #1:
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In this triangle, we know two angles (right angle and 77.6) and one side (133 ft wall). The side we
know is opposite of our 77.6 angle.

1.

We are trying to find the other two sides of the triangle. Side x is adjacent to our 28.6 angle and side
y is the hypotenuse of our triangle.

2.

In order to solve this problem, we have all of the information that we need.3.

Situation #2:

In this triangle, we know the radius of all three cylinders, which happen to form the sides of our triangle.1.
We are triangle to find p, the perimeter of our triangle, and all three angles in our triangle (A, B, and
C).

2.

In order to find any of the angles in the triangle, we first need to know the lengths of the sides.3.

Situation #3:

In this situation, we know the magnitude and direction of each of our vectors.1.
We need to find the magnitude (x) and direction (θ) of our resultant.2.
In order to solve this problem, we have all of the information we need.3.

Choose Among All Available Tools

Now that we know what information we have and what we still need to find, we can choose the best tool(s)
to use. Below, we will again look at the three situations from earlier. We will discuss our plan of action as to
how to solve for the unknowns in the problem. We will decide which of our tools would be most effective in
finding what we are looking for,

Situation #1: Since this problem involves a right triangle, we can choose from using the Theorem of
Pythagoras or trigonometric ratios. We can only use the Theorem of Pythagoras if we know two sides of
triangle, which we don’t. This means we will need to use trigonometric ratios to find x and y.

To find x:

Our wall is opposite our 77.6 angle and x is adjacent. This means we will need to use the tangent function
to solve for x.

Definition of Tangent

Cross multiply and divide

Evaluate

Answer: The climber is 29 feet away from the wall.

To find y:

The side representing the rope (y) is the hypotenuse of our right triangle. If we use the climbing wall again
as our opposite side, we will need to use the sine function to find the length of the rope.
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Definition of Sine

Cross multiply and divide

Evaluate

Answer: The climber will need 136 feet of rope.

Situation #2: Since we are dealing with an oblique triangle, we will not be able to use the Theorem of
Pythagoras or trigonometric functions. Our first step will be to find the perimeter of the triangle. Once we
know the perimeter, we will know all three sides of the triangle. Knowing all three sides will allow us to use
the Law of Cosines to find one of the angles. Then, we can use the Law of Sines and the Triangle Sum
Theorem to find the other two angles.

To find the perimeter:

All of the radii of our triangles meet. This means we can figure out the length of each side of the triangle by
adding together the two radii that form each side.

Side a: 2.3 cm + 1.9 cm = 4.2 cm
Side b: 1.9 cm + 1.4 cm = 3.3 cm
Side c: 1.4 cm + 2.3 cm = 3.7 cm
a + b + c = 4.2 + 3.3 + 3.7 = 11.2 cm

Answer: The length of the cables needs to be 11.2 cm for one side. This means we need a total of
22.4 cm of cable, one for each end.

To find all three angles:

Now that we know the lengths of all three sides of our triangle, we can use the Law of Cosines to find one
of the angles in the triangle. We will begin by finding angle A because it is across from our largest side. This
helps us to avoid the ambiguous case when we use the Law of Sines later on.

Angle A:

Law of Cosines4.22 = 3.72 + 3.32 - 2(3.7)(3.3) cos A
Simplify17.64 = 24.59 - 24.42 cos A
Subtract-6.95 = -24.42 cos A
Divide0.2846027846 = cos A

cos-173.52 =

Angle C:

Now to find angle C, we will use the Law of Sines since it is much less computationally intense than the Law
of Cosines. We will find angle C first since it is the next largest angle.
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Law of Sines

Cross multiply and divide

Evaluate

Angle B:

Since we now know two of our three angles, we can use the Triangle Sum Theorem to find our third angle.
While we could use the Law of Sines or Law of Cosines again, the Triangle Sum Theorem is much quicker.

Triangle SumTheorem

Answer: Angle A is 73.5o, angle B is 48.9o, and angle C is 57.6o.

Situation #3: This problem involves magnitude and direction, which means we will need to use vectors in
order to solve it. When finding the resultant of two vectors, we can choose from either the triangle method
or the parallelogram method. We will solve this problem using the parallelogram method.

Looking at the diagram, we can see that the two vectors form an angle of 57, (90 – 33). This means that the
angle opposite the angle formed by our two vectors is also 57. To find the other two angles in our parallelo-
gram, we know that the sum of all the angles must add up to 360 and that opposite angles must be congruent.

Now, we can use two sides of our parallelogram and our resultant to form a triangle in which we know two
sides and the included angle (SAS).

This means that we can use the Law of Cosines to find the magnitude (x) of the resultant.
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Law of Cosinesx 2 = 16752 + 18802 - 2(1675)(1880) cos 123
Evaluatex 2 = 9770161.643
Square rootx = 3125.7

Answer: The magnitude of the resultant is 3126 pounds. **There are four significant digits in the
problem, so the answer should have only four digits

To find the direction ( θ ), we can use the Law of Sines since we now know an angle and the side opposite
it.

Law of Sines

Cross multiply and divide

Evaluate

Now that we know θ, in order to find the angle of the resultant, we must add the 33o from the x-axis to θ.

33o + 30.5o = 63.5o

Answer: The direction of the resultant is 63.3o.

Confirm with Alternate Methods

Once we’ve solved our problem, we need to know if the answer we came up with is actually correct. In this
section, we will look at ways to confirm our answer using different tools than what we used to solve each
problem.

Situation #1: In this situation we have found the twp missing sides in a right triangle. Now that we know all
three sides, a simple way of checking our answer is to use the Theorem of Pythagoras.

Theorem of Pythagoras136.182 = 1332 + 29.242

Simplify18500 = 18500

Situation #2: In order to double check that we found all three angles correctly, we can set up the Law of
Sines for all three ratios and check to see if they are equal. If they are, we can assume that our angle
measures are correct.

Law of Sines

Evaluate

Since all three ratios are equal, we can assume that our angle measures are correct.
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Another way to quickly check to see if our answer makes sense is to see if the largest angle is across from
the largest side and the smallest angle is across from the smallest side. This doesn’t verify our answer, but
it gives us a good idea as to whether or not we are on track.

Situation #3: One way we can verify whether or not we found the correct magnitude for our resultant is to
find the two component vectors that form it.

Since our two component vectors form a right angle, we can use trigonometric ratios to find their lengths (x
and y).

Definition of cosine

Cross multiply

Our horizontal component is 1404. Next we will find our vertical component.

Definition of sine

Cross multiply

Our vertical component is 2792.

Now that we know our horizontal component, our vertical component, and our resultant, we can use the
Theorem of Pythagoras to verify our side lengths.

Theorem of Pythagoras

Since our calculations using the Theorem of Pythagoras yield the same answer as the one we found for the
magnitude of our resultant, we can assume our answer is correct.

Points to Consider

1. In the situations discussed in this section, are there alternate methods we could to verify our answers?
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2. Are there any situations where you might solve a problem and check your answer, but still get the problem
wrong?

3. Why might using the Law of Sines to check an answer be unreliable at times?

4. In the above problems, are there other tools we could have used to initially solve the problem? If so, what
are they?

Lesson Summary

• We have many different methods to solve problems involving right and oblique triangles and vectors.
These include:

The Law of Sines
The Law of Cosines
The Theorem of Pythagoras
Trigonometric rations
Vectors

• It is important to begin solving a problem by drawing a diagram and labeling the given information.

• When creating a problem-solving plan, we must look at what we know, what we’re trying to find, and
what other information we need in order to find what we’re looking for.

• After we have a plan, we must choose the most appropriate tool given the type of triangle we have or
what we are trying to find.

• Once we’ve arrived at an answer, we must check our work. We can do this by using another method
than the one we used to find our answer.

Review Questions

For each question below, find a solution. When finding the solution, be sure to set up a diagram and
label the known information.

1. A soldier at a command post spots a helicopter that is 2500 feet high at an angle of elevation of 9.3o.
What is the horizontal distance from the command post to a point on the ground directly below the helicopter?

2. A hiker is standing at the edge of a canyon, looking down at the base of the opposite canyon wall. The
angle of depression from where he is standing to the base of the opposite canyon wall is 67o. If he knows
that the canyon wall on the opposite side is 387.6 feet high, what is the distance across the canyon?

3. Street A runs north and south and intersects with Street B, which runs east and west. Street C intersects
both A and B, and it intersects Street A at a 36o angle. There are stoplights at each of these intersections.
If the distance between the two stoplights on Street C is 0.5miles, what is the distance between the two
stoplights on Street A?

4. During a baseball game, a ball is hit into right field. The angle from the ball to home to 2nd base is 18o.
The angle from the ball to 2nd to home is 127o. The distance from home to 2nd base is 127.3 ft. How far was
the ball hit? How far is the 2nd baseman from the ball?

Solve using the diagram below.

5. A pool player is preparing to make his final shot of the game and the cue ball is 2.2 ft from the 8-ball. The
8-ball is 4.3ft from pocket 1 and 5.7ft from the pocket 2. If the cue ball is 6.3ft from the pocket 1 and 6.1 ft
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from the pocket 2, which shot has the smaller angle?

Solve using the diagram below.

6. The military is testing out a new infrared sensor that can detect movement up to thirty miles away. Will
the sensor be able to detect the second target? If not, how far out of the range of the sensor is Target 2?

Solve using the diagram below.

7. An environmentalist is sampling the water in a local lake and finds a strain of bacteria that lives on the
surface of the lake. In a one square foot area, he found 5.2 X 1013 bacteria. There are three docks in a certain
section of the lake. If Dock 3 is 396 ft from Dock 1, how many bacteria are living on the surface of the water
between the three docks?

8. A forest ranger in Tower A spots a fire 45 miles away at a direction 37o east of north. If Tower B is 100
miles directly east of Tower A, how far is the fire from Tower B?

9. Two bulldozers are pushing a large footing for a building at the same time. One bulldozer exerts a force
of 1870 lbs in an easterly direction. The other bulldozer pushes with a force of 2075 lbs in a southerly direction.

What is the magnitude of the resultant force on the footing?a.
What is the direction of the resultant force?b.

10. A pilot leaves the airstrip and travels 342km at a heading of 118°. Then, he travels 215km at heading
of 34o. How far from the airstrip has he traveled and at what heading?

Answers

1. The horizontal distance is 15,267 feet.
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2. The distance across the canyon is 164.5 feet.

3. The distance between the two stoplights is 0.4 miles.

4. The ball is hit 296.3 feet. The second baseman is 370.3 feet away from the ball.

5. The shot to pocket 2 has the smaller angle.

6. No, the sensor will not be able to detect the second target. It is 4.3 miles out of the sensor’s range.

7. 2.41 X 1018 bacteria.

8. The fire is 69.6 miles from Tower B.

9. The magnitude is 2793 lbs. The direction is 48o.

10. He has traveled 423 km from the airstrip at a heading of 87.6o.

Supplemental Links

http://www.coastal.edu/mathcenter/HelpPages/Handouts/oblique.PDF
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6. Polar Equations and Complex Numbers.

Polar Coordinates

Learning Objectives

A student will be able to:

• Distinguish between and understand the difference between a rectangular coordinate system and a polar
coordinate system.

• Plot points with polar coordinates on a polar plane.

Introduction

Have you ever wondered how a surveyor is able to obtain accurate measurements of land that is neither
rectangular nor flat? A device called a theodolite is used. This device is able to measure horizontal and
vertical angles to determine exact land locations and features. Let us suppose that you are surveying a
piece of land on which to build your dream home.You notice two distinct landmarks that indicate the
boundary of your property.You see an oak tree 500 feet away and 40o to the left and an apple tree 650 feet
away and 60o to the right. What is the length of your property? We will determine this answer later in the
lesson.

(

Source:

http://en.wikipedia.org/wiki/File:Big_tree.jpg;

License:

GNU)

(Source: http://en.wikipedia.org/wiki/File:Appletree.jpg; License: GNU)

The graph paper that you have used for plotting points and sketching graphs has been rectangular grid paper.
All points were plotted in a rectangular form (x, y) by referring to a perpendicular x- and y-axis. In this section
you will discover an alternative to graphing on rectangular grid paper – graphing on circular grid paper.

Look at the two options below:
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You are all familiar with the rectangular grid paper shown above. However, the circular paper lends itself to
new discoveries. The paper consists of a series of concentric circles-circles that share a common centre.
The common center O, is known as the pole or origin and the polar axis is the horizontal line r that is drawn
from the pole in a positive direction. The point P that is plotted is described as a directed distance r from the

pole and by the angle that makes with the polar axis. The coordinates of P are (r, θ).

These coordinates are the result of assuming that the angle is rotated counterclockwise. If the angle were
rotated clockwise then the coordinates of P would be (r, θ). These values for P are called polar coordinates
and are of the form P(r, θ) where r is the absolute value of the distance from the pole to P and θ is the angle

formed by the polar axis and the terminal arm .

Example 1:

Plot the point A (5, -255o) and the point B (3, 60o)

Solution:

To plot A,move from the pole to the circle that has r = 5 and then rotate 255o clockwise from the polar axis
and plot the point on the circle. Label it A.

508



Solution:

To plot B, move from the pole to the circle that has r = 4 and then rotate 75o counter clockwise from the
polar axis and plot the point on the circle. Label it B.

These points that you have plotted have r values that are greater than zero. How would you plot a polar
point in which the value of r is less than zero? How could you plot these points if you did not have polar

paper? If you were asked to plot the point (-1, 135o) or (-1, 3 π/4) you would rotate the terminal arm
counterclockwise 135o or 3 π/4. (Remember that the angle can be expressed in either degrees or radians).

To accommodate r = -1, extend the terminal arm in the opposite direction the number of units equal
to |r|. Label this point M or whatever letter you choose. The point can be plotted, without polar paper, as a
rotation about the pole as shown below.

The point is reflected across the pole to point.
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There are multiple representations for the coordinates of a polar point P(r,θ). If the point P has polar coordi-
nates (r, θ), then P can also be represented by polar coordinates (r, θ + 360ko) or (-r, θ + [2k + 1] 180o) if θ
is measured in degrees or by (r, θ + 2 π k) or (-r, θ + [2k + 1] π) if θ is measured in radians. Remember that
k is any integer and represents the number of rotations around the pole. Unless there is a restriction placed
upon θ, there will be an infinite number of polar coordinates for P(r, θ).
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Example 2: Determine four pair of polar coordinates that represent the following point P(r, θ) such that -
360o ≤ θ ≤ 360o.

Solution:

Using K = -1 and (r, θ + 360o k)Pair 1 (4, 120o)

[4, 120o + 360(-1)]Pair 2 (4, -240o)

(4, -240o)

Using k = 0 and (-r, θ + [2k + 1] 180o)Pair 3 (-4, 300o)

(-4, 120o + [2(0) + 1] 180o)

(-4, 120o + (1) 180o)

(-4, 300o)

Using k = -1 and (-r, θ + [2k + 1] 180o)Pair 4 (-4, -60)

(-4, 120o + [2(-1) + 1] 180o)

(-4, 120o + (-1) 180o)

(-4, -60o)

These four pairs of polar coordinates all represent the same point P. You can apply the same procedure to
determine polar coordinates of points that have θ measured in radians. This will be an exercise for you to
do at the end of the lesson.

Example 3: Did you forget about building your dream home?

What is the length of your property on which you are going to build your dream home? Before you can cal-
culate this distance, you should represent your property to indicate the landmarks. Here is a sketch of what
you know.
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A represents the apple tree 60o is negative – clockwise from zero degrees

O represents the oak tree 40o is positive- counter clockwise from zero degrees

C represents the pole

60o represents θ 2.40o represents θ 1represents r2.represents r1.

If you joinO to A this will create a side of ∆ACO and its length can be determined by using the polar distance
formula which is the polar version of the Law of Cosines.

The length of your property is approximately 886.2 feet.

Lesson Summary

In this lesson, we have explored an alternative method of graphing. We have plotted points with polar coor-
dinates by using a polar grid form. We have also noticed that this has connections to previously learned
topics like rectangular graphing, the Law of Cosines, and angles in standard position. In subsequent lessons,
we will explore additional relationships between rectangular and polar graphing and extend these relationships
to involve the world of complex numbers.

Points to Consider

1. How is the polar coordinate system similar/different from the rectangular coordinate system?

2. How do you plot a point on a polar coordinate grid?

3. How do you determine the coordinates of a point on a polar grid?

4. How do you calculate the distance between two points that have polar coordinates?

Review Questions

1. Graph each point:
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b.M (2.5, - 210o)a.

2. For the given point , list four different pairs of polar coordinates that represent this point
such that -2π ≤ θ ≤ 2π.

3. Given P 1 (1,30
o) and P 2 (6,135

o), calculate the distance between the points.

Answers

1. a.

b.
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2.

Using (r, θ + [2k + 1] π) and k = -1Using (r, θ + 2 π k) and k = -1

Using (r, θ + [2k + 1] π) and k = 0

Using (r, θ + 2 π k) and

First Pair

Second Pair

Third Pair

Fourth Pair
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3.

Using

The distance between the two points is approximately 6.33 units.

Vocabulary

A method of recording the position of an object by using the distance from
a fixed point and an angle consisting of a fixed ray from that point. Also

Polar coordinate system:

called a polar plane.
In a polar coordinate system, it is the fixed point or origin.Pole:
In a polar coordinate system, it is the horizontal ray that begins at the pole
and extends in a positive direction.

Polar axis:

The coordinates of a point plotted on a polar plane (r, θ).Polar coordinates:

Sinusoids of One Revolution (e.g., limaçons, cardioids)

Learning Objectives

A student will be able to:

• Graph polar equations.

• Graph and recognize limaçons and cardioids.

• Determine the shape of a limaçon from the polar equation.

Introduction

An unidirectional microphone is sensitive to sounds
from one direction with the most common of these
being the cardioid microphone. This name comes
from the fact that the sensitivity pattern is heart-
shaped.

( S o u r c e :
http://en.wikipedia.org/wiki/File:Us664a_micro-
phone.jpg; License: CC-SA-3.0)
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Where have you seen pictures that display sound as it travels from different directions? If you think about
animated captions, they are frequently drawn around a megaphone or a microphone. A polar coordinate
system can also be used to represent the patterns of these frequencies. The pole represents the microphone
and θ is used to locate the source of the sound that travels around the pole. The amplitude of the sound is
the value of r. Later in the lesson, we will look more closely at this relationship by sketching a graph to rep-
resent the polar pattern.

Just as in graphing on a rectangular grid, you can also graph polar equations on a polar grid. These equations
may be simple or complex. To begin, you should try something simple like r = k or θ = kwhere k is a constant.
The solution for r = 1.5 is simply all ordered pairs such that r = 1.5 and θ is any real number. The same is
true for the solution of θ = 30o. The ordered pairs will be any real number for r and θ will equal 30o. Here are
the graphs for each of these polar equations.

Example 1: On a polar plane, graph the equation r = 1.5

Solution:

Example 2: On a polar plane, graph the equation θ = 30o

Solution:
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To begin graphing more complicated polar equations, we will make a table of values for y = sin θ or in this
case r = sin θ. When the table has been completed, the graph will be drawn on a polar plane by using the
coordinates (r, θ).

Example 3: Create a table of values for r = sin θ such that 0o ≤ θ ≤ 360o and plot the ordered pairs. (Note:
Students can be directed to use intervals of 30o or allow them to create their own tables.)

360o330o300o270o240o210o180o150o120o90o60o30o0oθ

0-0.5-0.9-1-0.9-0.500.50.910.90.50sin θ

Remember that the values of sin θ are the r-values.

This is a sinusoid curve of one revolution.

We will now repeat the process for r = cos θ.

Example 4: Create a table of values for r = cos θ such that 0o ≤ θ ≤ 360o and plot the ordered pairs. (Note:
Students can be directed to use intervals of 30o or allow them to create their own tables.)

360o330o300o270o240o210o180o150o120o90o60o30o0oθ

10.90.50-0.5-0.9-1-0.9-0.500.50.91cos θ

Remember that the values of cos θ are the r-values.

517



This is also a sinusoid curve of one revolution.

Notice that both graphs are circles that pas through the pole and have a diameter of one unit. These graphs
can be altered by adding a number to the function or by multiplying the function or by doing both. We will
explore the results of these alterations by first creating a table of values and then by graphing the resulting
coordinates (r, θ)

Example 5: Create a table of values for r = 2 + 3 sin θ such that 0 ≤ θ ≤ 2π and plot the ordered pairs. Re-
member that the values of 2 + 3 sin θ are the r-values.

2π11π/65π/33π/24π/37π/6π5π/62π/3π/2π/3π/60θ
2.00.5-0.6-1.0-0.60.52.03.54.65.04.63.52.02 + 3 sin θ

This sinusoid curve is called a limaçon. It has r = a ± b sin θ or
r = a ± b cos θ as its polar equation. Not all limaçons have this
shape-an inner loop. Some may curve to a point, have a simple
indentation known as a dimple or curve outward. The shape of

the limaçon depends upon the ratio of where a is a constant
and b is the coefficient of the trigonometric function. In example

5, the ratio of which is < 1. All limaçons that meet this
criterion will have an inner loop.

Using the same format as was used in the examples above, the following limaçons were graphed. If you
like, you may create the table of values for each of these functions.

r = 4 + 2 sin θ such that 0 ≤ θ ≤ 2πii)r = 4 + 3 cos θ such that 0 ≤ θ ≤ 2πi)

which is ≥ 2which is > 1 but < 2
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This is an example of a convex limaçon.
This is an example of a dimpled limaçon.

Example 7: Create a table of values for r = 2 + 2 cos θ such that 0 ≤ θ ≤ 2 π and plot the ordered pairs.
Remember that the values of 2 + 2 cos θ are the r-values.

2π11π/65π/33π/24π/37π/6π5π/62π/3π/2π/3π/60θ
4.03.73.02.01.0.2700.271.02.03.03.74.02 + 2 cos

This type of curve is called a cardioid. It is a special type of li-
maçon that has r = a + a cos θ or r = a + a sin θ as its polar

equation. The ratio of which is equal to 1.

Examples 3 and 4 were shown with θ measured in degrees while examples 5 and 7 were shown with θ
measured in radians. The results in the tables and the resulting graphs will be the same in both units.

Now that you are familiar with the limaçon and the cardioid, also called classical curves, it is time to examine
the polar pattern of the cardioid microphone that was introduced at the onset of the lesson.. The polar pattern
is modeled by the polarequation r = 2.5 + 2.5 cos θ. The values of a and b are equal which means that the

ratio . Therefore the limaçon will be a cardioid.

Create a table of values for r = 2.5 + 2.5 cos θ such that 0o ≤ θ ≤ 360o and graph the results.

360o330o300o270o240o210o180o150o120o90o60o30o0oθ

5.04.73.82.51.30.300.31.32.53.84.75.02.5 + 2.5 cos θ
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What does this pattern tell you about the cardioid microphone?

This pattern reveals that the microphone will pick up loud sounds
behind it but softer sounds in front.

Lesson Summary

In this lesson we have explored graphing polar equations - both simple and complicated. We have also be-
come familiar with the various functions that model the different sinusoids of one revolution. These ideas
will be utilized in further lessons to extend your knowledge of limaçons and transformations of these curves.

Points to Consider

• How do you graph a polar equation?

• What type of graph results from graphing a polar equation?

• Is it possible to name type of classical curve without graphing the function? Justify your response

Review Questions

1. Name the classical curve in each of the following diagrams and be specific in your response.

b)a)
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c)

2. Another classical curve is called a rose and it is modeled by the function r = a cos nθ or r = a sin nθ where
n is any positive integer. Graph r = 4 cos 2θ and r = 4 cos 3θ. Is there a difference in the curves? Explain.
What role does n play in relation to the graphs?

r = 4 cos 2θ for 0o ≤ θ ≤ 360o

Answers

1.

c) a dimpled limaçonb) a cardioida) a limaçon with an innerloop.

2.

360o330o300o270o240o210o180o150o120o90o60o30o0oθ

42-2-4-2242-2-4-2244 cos2 θ

r = 4 cos 3θ for 0o ≤ θ ≤ 360o

360o330o300o270o240o210o180o150o120o90o60o30o0oθ
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40-4040-4040-4044 cos3 θ

In the graph of r = 4 cos 2 θ, the rose has four petals on it but the graph of r = 4 cos 3 θ has only three petals.
It appears, that if n is an even positive integer, the rose will have an even number of petals and if n is an
odd positive integer, the rose will have an odd number of petals.

Applications, Trigonometric Tools

Polar Coordinates and Polar Equations

Learning Objectives

A student will be able to:

• Understand real-world applications of polar coordinates and polar equations.

Introduction

In this lesson we will explore examples of real-world problems that use polar coordinates and polar equations
as their solutions.

Example 1:

The pole or origin is the black dot at the center of the clock face. The polar axis, the hour hand, is three units
in length and extends from the pole to the number three. The minute hand is four units in length. What are
four possible polar coordinates of the tips of the hour hand at 1:00 o’clock such that 0 ≤ θ ≤ 2π?
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Solution:

We have the polar coordinates for point T. Three other pairs of polar coordinates for T are:

Using (-r, θ + [2k + 1] π) and k = -1Using (r, θ + 2 π k) and k = -1

Using (-r, θ + [2k + 1] π) and k = 0

Example 2: A local charity is sponsoring an outdoor concert to raise money for the children’s hospital. To
accommodate as many patrons as possible, they are importing bleachers so that all the fans will be seated
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during the performance. The seats will be placed in an area such that and 0.5 ≤ r ≤ 4, where
r is measured in hundreds of feet. The stage will be placed at the origin (pole) and the performer will face
the audience in the direction of the polar axis (r).

a. Create a polar graph of this area?

b. If all the seats are occupied and each seat takes up 5 square feet of space, how many people will be
seated in the bleachers?
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Solution:

Now that the region has been graphed, the next step is to calculate the area of this sector. To do

this, use the formula .

The number of people in the bleachers is 33510.

Example 3:When Valentine’s Day arrives, hearts can be seen everywhere. As an alternative to purchasing
a greeting card, use a computer to create a heart shape. Write an equation that could be used to create this
heart and be careful to ensure that it is displayed in the correct position.

The classical curve that resembles a heart is a cordioid. You may have to experiment with
the equation to create a heart shape that is displayed in the correct direction.

Solution:

One example of an equation that produces a proper heart shape is r = -2 -2 sin θ.

You can create other hearts by replacing the number 2 in the equation. Another equation is r = -3 - 3 sin θ.

Example 4: For centuries, people have beenmaking quilts. These are frequently created by sewing a uniform
fabric pattern onto designated locations on the quilt. Using the equation that models a rose curve, create
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three patterns that could be used for a quilt. Write the equation for each rose and sketch its graph. Explain
why the patterns have different numbers of petals. Can you create a sample quilt?

Solution:

a.

b.

c.

The rose curve is a graph of the polar equation of the form r = a cos nθ or r = a sin nθ.

If n is odd, then the number of petals will be equal to n. If n is even, then the number of petals will
be equal to 2 n.

A Sample Quilt:
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Graphs of Polar Equations

Learning Objectives

A student will be able to:

• Use the TI graphing calculator to create the graphs of polar equations.

Introduction

In today’s world mathematics is not always done using pencil and paper. In a world of technology, graphs
can be created very quickly by using a graphing calculator or a computer program. Both are capable of
performing mathematical computations accurately and quickly. Since calculators have become an essential
item for all students of mathematics, we will focus on using the TI calculator to create graphs of polar
equations.

You have all become familiar with the graphs of polar equations. Now you will use technology, the TI
graphing calculator, to create these graphs. The TI-83, TI-83 Plus and the TI-84 are very popular graphing
calculators used by math students. However, there are steps that must be followed in order to graph polar
equations correctly on the graphing calculator. We will go through the step by step process to plot the polar
equation r = 3 cos θ.

Example 1: Graph r = 3 cos θ using the TI-83 graphing calculator.

Press the button. Scroll down to Func and over to highlight Pol. Also, while on this screen, make

sure that Radian is highlighted. Now you must edit the axes for the graph. Press 0
[π] .05 (-) 4 4 1 (-) 3 3 1 . When you have com-
pleted these steps, the screen should look like this:
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The second WINDOW shows part of the first screen since
you had to scroll down to access the remaining items.

Enter the equation. Press Press .

Sometimes the polar equation you graph will look more like an ellipse than a circle. If this happens, press

5 to set a square viewing window. This will make the graph appear like a circle.

Polar to Rectangular

Learning Objectives

A student will be able to:

• Convert from polar to rectangular coordinates.

• Write an equation given in polar form in rectangular form.

Introduction

Look at the following diagrams. What do you think would happen if we replaced the rectangular coordinate
system, which measures how far a point is from the x- and y-axes, by a new coordinate system, which instead
measures how far a point is from the origin and what angle it has with respect to a ray called the polar axis
(which is aligned with the positive x-axis.) This new system is called a polar coordinate system, as it is focused
around a central pole, or point. Figure 1 below shows a rectangular coordinate system and Figure 2 shows
a polar coordinate system.
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Polar to Rectangular

Just as x and y are usually used to designate the rectangular coordinates of a point, r and θ (the Greek letter
theta) are usually used to designate the polar coordinates of the point. r is the distance of the point to the
origin. θ is the angle that the line from the origin to the point makes with the positive x-axis. The diagram
below shows both polar and Cartesian coordinates applied to a point P. The pole is the origin and the polar
axis is the positive side of the x-axis. By applying trigonometry, we can obtain equations that will show the
relationship between polar coordinates (r, θ) and the rectangular coordinates (x, y)

The point P has the polar coordinates (r, θ) and the rectangular coordinates (x, y).

Therefore

These equations, also known as coordinate conversion equations will enable you to convert from polar to
rectangular form.

Example 1: Given the following polar coordinates, find the corresponding rectangular coordinates of the
points:

Solution:
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b)a)

For and
For and

The rectangular coordinates of H are or
approximately (2, 3.46)

The rectangular coordinates of W are approximately
(-3.76, 1.37)

In addition to writing polar coordinates in rectangular form, the coordinate conversion equations can also
be used to write polar equations in rectangular form.

Example 2:Write the polar equation r = 4 cos θ in rectangular form.

Solution:

r = 4 cos θ
Multiply both sides by r.r 2 = 4r cos θ

r 2 = x 2 + y 2 and x = r cos θx 2 + y 2 = 4x

The equation is now in rectangular form. The r2 and θ have been replaced. However, the equation, as it
appears, does not model any shape with which we are familiar. Therefore, we must continue with the con-
version.

x 2 - 4x + y 2 = 0

Complete the square for x 2 - 4x.x 2 - 4x + 4 + y 2 = 4

Factor x 2 - 4x + 4.(x - 2)2 + y 2 = 4

The rectangular form of the polar equation represents a circle with its centre at (2, 0) and a radius of 2 units.
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This is the graph represented by the polar equation
r = 4 cos θ for 0 ≤ θ ≤ 2 π or the rectangular form (x
- 2)2 + y 2 = 4.

Example 3:Write the polar equation r = 3 csc θ in rectangular form and graph the result.

Solution:

divide by csc θ

The graph of r = 3 csc θ is a horizontal line passing through (0, 3) and parallel to the x-axis. [y = 3].
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Lesson Summary

In this lesson we have learned how to convert polar coordinates and polar equations to rectangular form.
This has been accomplished by using the coordinate conversion equations. We will use a similar format to
in the next lesson to convert from rectangular form to polar form. Each coordinate system has its benefits
and drawbacks. Tasks that are simple in one system may be very complicated in another. For example, the
equation for a line is simple in

Points to Consider

• When we convert coordinates from polar form to rectangular form, the process is very straightforward.
However, when converting a coordinate from rectangular form to polar form there are some choices to
make. For example the point 1,0 could translate to 0,1 or to (2π,1) or to (-4π,1), and so on.

• How does your graphing calculator confront the above problem when converting a rectangular coordinate
to a polar coordinate?

• How many solutions should you provide when doing these conversions?

• How is converting from polar form to rectangular form and vice versa different?

Review Questions

1. For the following polar coordinates that are shown on the graph, determine the rectangular coordinates
for each point.

2. Write the polar equation r = 6cos θ in rectangular form and define the graph.
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Answers

1.

2.
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r = 6 cos θ

r 2 = 6r cos θ
The graph is a circle with center (3, 0) and a radius of 3 units.x 2 + y 2 = 6x

x 2 - 6x + y 2 = 0

x 2 - 6x + 9 + y 2 = 9

(x - 3)2 + y 2 = 9

Rectangular to Polar

Learning Objectives

A student will be able to:

• Convert rectangular coordinates to polar coordinates.

• Convert equations given in rectangular form to equations in polar form.

Introduction

After having a hip replacement, the doctor will order the patient not to bend over for a period of six weeks.
To retrieve fall en objects, canes are equipped with a "hand" at the end of a detachable arm. The hand acts
as a grabber and can be manipulated by the user to pick up objects. If the hand is to move from a point with
rectangular coordinates of (6,4) to another point with rectangular coordinates (16,4), what polar equation
can be used to represent this straight line movement? We will address this problem later in the lesson after
we learn to convert from rectangular from to polar form.

Rectangular to Polar

When converting rectangular coordinates to polar coordinates, we must remember that there are many
possible polar coordinates. We will agree that when converting from rectangular coordinates to polar coor-
dinates, one set of polar coordinates will be sufficient for each set of rectangular coordinates. Most graphing
calculators are programmed to complete the conversions and they too, provide one set of coordinates for
each conversion. The conversion of rectangular coordinates to polar coordinates is done using the
Pythagorean Theorem and the Arctangent function. The Arctangent function only calculates angles in the
first and fourth quadrants so π radians must be added to the value of θ for all points with rectangular coor-
dinates in the second and third quadrants.
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In addition to these formulas, is also used in converting rectangular coordinates to polar
form.

Example 1: Convert the following rectangular coordinates to polar form.

Q (-9, -12)andP (3, -5)

For P (3, -5) x = 3 and y = -5. The point is located in the fourth quadrant and x > 0.

The polar coordinates of P (3, -5) are P (5.83, -1.03)

For Q (-9, -12) x = -9 and y = -5. The point is located in the third quadrant and x < 0.

The polar coordinates of Q (-9, -12) are Q (15, 4.07)

To write a rectangular equation in polar form, the conversion equations of x = r cos θ and y = r sin θ are
used.

Example 2: Write the rectangular equation x 2 + y 2 = 2x in polar form. Remember if then
r 2 = x 2 + y 2 and x = r cos θ.

x 2 + y 2 = 2x
Pythagorean Theorem and x = r cos θr 2 = 2(r cos θ)
Multiplyr 2 = 2r cos θ
Divide each side by rr = 2 cos θ

Example 3: Write the rectangular equation (x - 2)2 + y 2 = 4 in polar form. Remember x = r cos θ and y = r
sin θ.

(x - 2)2 + y 2 = 4
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x = r cos θ and y = r sin θ(r cos θ - 2)2 + (r sin θ)2 = 4
expand the terms in bracketsr 2 cos 2 θ - 4r cos θ + 4 + r 2 sin2 θ = 4
subtract 4 from each sider 2 cos 2 θ - 4r cos θ + r 2 sin2 θ = 0
isolate the squared termsr 2 cos 2 θ + r 2 sin2 θ = 4r cos θ

factor r 2- a common factorr 2 (cos 2 θ + sin 2 θ) = 4r cos θ
Pythagorean Identityr 2(1) = 4r cos θ

r 2 = 4r cos θ
Divide each side by rr = 4 cos θ

If the graph of the polar equation is the same as the graph of the rectangular equation, then the conversion
has been determined correctly.

(x- 2)2 + y2 = 4

The rectangular equation (x - 2)2 + y 2 = 4 represents a circle with center (2, 0) and a radius of 2 units.

The polar equation r = 4 cos θ is a circle with center (2, 0) and a radius of 2 units.

We will now return to the problem involving the grabber and the cane. The two points were given by the
rectangular coordinates (6, 4) and (16, 4). The equation of the straight line that passes through these points
is y = 4. To express this equation in polar form, remember y = r sin θ.

The equation in polar form is
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Lesson Summary

In this lesson we learned how to convert from rectangular form to polar form for both coordinates and
equations. When doing these operations, the conversion equations were different than those used in the
previous lesson. Although there are many possible solutions when converting rectangular coordinates to
polar coordinates, they all represent the same point.

Points to Consider

• Are there any advantages to using polar coordinates instead of rectangular coordinates? List any situations
in which this is the case. What types of curves are easier to draw with polar coordinates?

• List situations in which rectangular coordinates are preferable.

• Will polar coordinates be useful in graphing polar curves?

• Can graphing two different polar equations ever produce the equivalent curves? Can this ever be true
of rectangular equations?

Review Questions

1. Write the following rectangular points in polar form.

B(5, -4)andA( -2, 3)

2. Write the rectangular equation (x - 4)2 + (y - 3)2 = 25 in polar form and sketch the graph.

Answers

1. For A (-2, 5) x = -2 and y = 3. The point is located in the second quadrant and x < 0.

The polar coordinates for the rectangular coordinates A(-2,5) are A(5.39,1.95)

For B (5,-4) x = 5 and y -4. The point is located in the fourth quadrant and x > 0.
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The polar coordinates for the rectangular coordinates B(5, -4) are A(6.40, -0.67)

2. (x - 4)2 + (y - 3)2 = 25

x 2 - 8x + 16 + y 2 - 6y + 9 = 25

x 2 - 8x + y 2 - 6y + 25 = 25

x 2 - 8x + y 2 - 6y = 0

x 2 + y 2 - 8x - 6y = 0

r 2 - 8(r cos θ) - 6(r sin θ) = 0

r 2 - 8r cos θ - 6r sin θ = 0

r(r - 8 cos θ - 6 sin θ) = 0

r = 0 or r - 8 cos θ - 6 sin θ = 0

The graph of r - 8 cos θ - 6 sin θ = 0 contains the single point, the origin, produced by the graph of r = 0.
Therefore the polar form of the equation is the single equation:

r = 8 cos θ + 6 sin θ

Polar Equations and Complex Numbers

Conic Section Transformations

Learning Objectives

A student will be able to:

• Recognize the curves that are collectively known as conics.

• Understand the terms focus, directrix and focal axis as they apply to conics.
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• Write the equation of a parabola and an ellipse in standard form.

• Write polar equations of conics.

• Recognize transformations of polar curves and change the equations to produce these transformations.

Introduction

Are you in the dark? Are you prepared for the next power outage in your neighborhood? If you are not totally
prepared, at least make sure that you have a dependable flashlight nearby- one that emits a good light and
of course has functioning batteries installed. A flashlight is a unique device that uses the characteristics of
a parabola in its structure. If you consider the focus as the location of the filament (light source) the light
rays are emitted as lines parallel to the axis of symmetry. To produce the best rays, the filament must be
placed in the proper spot. If the mirror of the flashlight has a diameter of 8 cm. and a depth of 3 cm, how far
from the vertex should the filament of the light bulb be placed to yield the best parallel rays of emission?

On a hot summer day, many of us enjoy the refreshing taste of an ice cream scooped into a sugar cone.
The cone is hollow and symmetrical about an imaginary line, the axis, which extends through the center of
the cone perpendicular to the base. A conic section is simply a thin section of the cone. To better understand
these sections of a cone, two cones are lined up vertically tip to tip. Cones aligned in this manner form a
circular conical surface. If you look at the figure below, the cones are being sliced by a plane. The manner
in which the plane intersects the cones determines the shape of the section. Below is a view of the three
standard types of conic sections:

An Ellipse
A Hyperbola

A Parabola

An ellipse is the result of the intersection of a cone on both sides by a plane that is not parallel to the circular
base.

A parabola is the result of the intersection of a cone on one side by a plane that is not parallel to the circular
base.

A hyperbola is the result of the intersection of a cone and a plane perpendicular to the circular base.

All of these conics have standard equations that are shown in the table below:

or if the center is (0, 0)

Ellipse
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or if
the center is translated to (h, k)

X 2 = 4 py if the parabola opens up or down. Y 2 = 4 px if the
parabola opens right or left

Parabola

(x - h)2 = 4 p(y - k) if the vertex is translated to (h, k) and the
parabola opens up or down.

(y - k)2 = 4 p(x - h)2 if the vertex is translated to (h, k) and the
parabola opens right or left.

or if the center is (0, 0)

Hyperbola

if the center is translated to (h, k)

What types of transformations can be performed on these conics?

Parabola – The standard parabola y = x 2 can be reflected vertically across the x-axis. The vertex can be
translated from the origin (0, 0) horizontally and/or vertically. The parabola can also be stretched vertically.
These transformations can be seen best when the equation is written in this form: (y – a) = c(x – b)2, where
a is the horizontal translation, b is the vertical translation, and c is the vertical stretch.

Ellipse – For an ellipse of the above form, there are two lines of symmetry, one horizontal and one vertical.
The center of the ellipse can be changed by translating the ellipse horizontally and/or vertically.

Hyperbola – The branches of the hyperbola can extend right and left if the foci are on the x-axis or up and
down if the foci are on the y-axis. The center can also be translated horizontally and/or vertically.

It is time to investigate graphs of the equations of these conics in order to obtain their standard equations.
We will begin with the parabola and move on to the ellipse.

A parabola can be defined as the set of all points in a plane that are equidistant from a fixed line (the directrix)
and a fixed point (the focus) in the plane.
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The axis is the line of symmetry.

The vertex is the point where the parabola intersects
the axis and it is midway between the focus and the
directrix.

The focal axis is the perpendicular line passing
through the focus to the directrix.

To obtain the standard form of the equation for this parabola, we will use the focus (0, p) and the directrix
y = -p. Wemust prove that a point P(x, y) on the parabola equidistant from the focus and the directrix satisfies
the equation x 2 = 4py. The diagrams below will help to facilitate the process.

Using the distance formula the distance from P(x, y) to F (0, p) and the
distance from P(x, y) to D(x, -p) must be calculated. Remember that these distances are equal.

Square both sides

The results of squaring both sides

Simplify

Expand

Solve in terms of x2

Combine like terms
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If the above steps are reversed, it can be confirmed that a solution (x, y) of x 2 = 4py is equidistant from the
focus and the directrix. If p > 0 the parabola will open upward and if p < 0, the parabola will open downward.

Inverse relations of these parabolas are ones that open right if p > 0 and left if p < 0. The x and y variables
of x 2 = 4py change places and the standard equation becomes y 2 = 4px. All of these parabolas can be
translated vertically and/or horizontally from the vertex (0, 0) thus changing the coordinates of the vertex
and the standard equation. If the vertex is located at (h, k) the standard equation of x 2 = 4 py will be (x - h)2

= 4 p(y - k) and that of y 2 = 4 px will be (y - k)2 = 4p(x - h)2.

An ellipse can be defined as the set of all points in a plane such that the distances from two fixed points
(foci) in the plane have a constant sum of 1. The line that passes through the foci is called the focal axis.
The point on this axis that is midway between the foci is the centre of the ellipse and the points where the
ellipse intersects the focal axis are the vertices.

To derive an equation for an ellipse, F 1 (-c, 0) and F 2 (c, 0) will represent the foci and for the constants a
and c, a > c and c ≥ 0. The ellipse is defined by the set of points P(x, y) such that PF1 + PF2 = 2a.

Using the distance formula , the length of PF1 plus the length of PF2

equals 2a will be determined.

Substitution

Simplifying

Squaring

Simplifying

Simplifying

Squaring

Expanding
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Simplifying

Simplifying

Let (a2 - c2) = b2

Divide by a2 b2

The point P(x, y) satisfies this equation if the point P is on the ellipse defined by PF1 + PF2 = 2a and a > c
and c ≥ 0. The inverse of this ellipse is one that has the y-axis as its focal axis and therefore the equation

is written as

We now have the standard equation of two conics. The standard equation of the hyperbola is derived by
following the process similar to that shown for the ellipse. This is a project that you can complete. Now we
look at how these formulae can be used in solving problems.

Example 1: Find an equation in standard form for the parabola that satisfies the following conditions:

b) Focus (-2, -4) and Vertex (-4, -4)a) Focus (0, 5), directrix y = -5

Solution:

a) The directrix is y = -5 and the focus is (0, 5) making the focal length p = 5. This means the parabola opens
upward. The equation of the parabola in standard form is x2 = 4py or x2 = 4(5) y x2 = 20y.

b) The axis of this parabola is the line passing through the vertex (-4, -4) and the focus (-2,-4). The equation
of the axis is y = -4. Therefore the equation will be of the form (y - k)2 = 4 p(x - h)2 where h = -2 and k = -4.
p = -2- (-4) = 2, so 4p = 8

The equation in standard form is: (y + 4)2 = 8(x + 4)

Example 2: Find an equation in standard form for the ellipse that satisfies the following conditions:

a) Major axis endpoints (0, ±6), minor axis length 8.

b) Major axis endpoints are (3, -7) and (3, 3); the minor axis length is 6.

Solution:

a) The endpoints of the ellipse are on the y-axis at (0,6) and (0, -6). The centre is at the origin (0, 0). The
length of the major axis is 12 so a = 12/2 = 6. The length of the minor axis is 8 so b = 8/2 = 4. Therefore the

equation of the ellipse in standard form is . This makes the equation

b) The endpoints of the ellipse are on the line x =3 and the endpoints are located at (3, -7) and (3, 3). The
vertex is located at (3, -2) which is the midpoint of the major axis. The length of the major axis is 10 so a =
10/d = 5 and the length of the minor axis is 6 so b = 6/2 = 3. The equation of the ellipse in standard form is
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.

This makes the equation

Prior to converting the standard equation of a conic section to polar form, we must become reacquainted
with some terms. Look at the figure below.

F is a fixed point known as the focus.

D is a point on the fixed line x = d. (d>0).

The fixed line is called the directrix.

P a point on the conic

The ratio of the distance from P to F and the distance from P to D is called the eccentricity (e) of the conic.
This value will determine the shape of the graph. If 0 < e < 1, the graph will be an ellipse. If e = 1, the graph
will be a parabola. If e > 1, the graph will be a hyperbola.

Definition of Eccentricity

Substitution

Multiplication

Distributive Property

Add re cos θ to both sides

Factor ‘r’

Solve for ‘r’

This equation, can also be written as or

Example 3: a) Graph the polar equation where and the directrix is x = 4. Write
the polar equation for the conic and describe the shape of the graph.

b) Graph the polar equation where e = 1 and the directrix is x = -2. Write the polar
equation for the conic and describe the shape of the graph.

Solution:
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Set and d = 4

a)

The graph is an ellipse with the x-axis as its major
axis of and the y-axis as its minor axis.

The ellipse has been translated horizontally and
is not symmetrical about the pole.

Set e = 1 and d = 2b)

The graph is a parabola opening right with its vertex
at (-1, 0) and its directrix at x = -2.

For a circle that has its center at the origin (pole) the polar form of the equation is r = k and k is the radius.
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For a circle with radius “a” and passing through the origin the polar form of the equation is r = 2a sin θ or r
= 2a cos θ.

Example 4: Graph the equation r = 5 and describe the graph.

r = k

r = 5

Solution:

The graph is a circle with center (0, 0) and a radius
of 5 units. The equation in rectangular formwould
be x2 + y2 = 25.

Example 5: Graph the equation of the circle that has a radius of “a” and passes through the origin.

a < 0r = 2a sin θa > 0r = 2a sin θ
r = 2(-2) sin θr = 2(2) sin θ

Solution:

In figure 7, the circle passes through the origin and is symmetrical about the positive y-axis.

In figure 8, the circle passes through the origin and is symmetrical about the negative y-axis.
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a < 0r = 2a cos θa > 0r = 2a cos θ
r = 2(-2)cos θr = 2(2) cos θ

In Figure 9, the circle passes through the origin and is symmetrical about the positive x-axis.

In Figure 10, the circle passes through the origin and is symmetrical about the negative x-axis.

By changing the value of “a” in the above equations, the axis of symmetry was changed for each
circle.

Equations of limaçons have two general forms:

r = a ± b cos θandr = a ± b sin θ

The values of “a” and “b” will determine the shape of the graph and whether or not it passes through the
origin. When the values of “a” and “b” are equal, the graph will be a rounded heart-shape called a cardiod.
The general polar equation of a cardiod can be written as r = a(1 ± sin θ) and r = a (1 ± cos θ)

Example 6: Graph the following polar equations on the same polar grid and compare the graphs.

r = 5 - 5 sin θr = 5 + 5 sin θ
r = 5(1 - sin θ)r = 5(1 + sin θ)

Solution:
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The cardiod is symmetrical about the
positive y-axis and the point of indenta-
tion is at the pole.

The result of changing + to – is a reflec-
tion in the x-axis.

The cardiod is symmetrical about the
negative y-axis and the point of indenta-
tion is at the pole.

r = -5 + 5 sin θr = -5 - 5 sin θ
r = -5(1 - sin θ)r = -5(1 + sin θ)

Changing the value of “a” to a negative did not
change the graph of the cardiod.

Example 7:What affect will changing the values of a and b have on the cardiod if a > b? We can discover
the answer to this question by plotting the graph of r = 5 + 3 sin θ.

Solution:

548



The cardiod is symmetrical about the positive y-axis and the point of indentation is pulled away from
the pole.

Example 8:What affect will changing the values of a and b or changing the function have on the cardiod if
a < b? We can discover the answer to this question by plotting the graph of r = 2 + 3 sin θ.
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Solution:

The cardiod is now a looped limaçon symmetrical
about the positive y-axis. The loop crosses the
pole.

r = 2 + 3 cos θ

The cardiod is now a looped limaçon symmetrical
about the positive x-axis. The loop crosses the
pole. Changing the function to cosine rotated the
limaçon 90o counter clockwise.

As you have seen from all of the graphs, transformations can be performed on all the rectangular equations
as well as the polar equations. The transformations are done by making changes in the constants and/or
the functions of the polar equations. Remember the general polar equation for a rose is (r = a cos θ) or (r =
a sin θ). Now you can have some fun and discover the transformations of these graphs by plotting various
forms of the equations.

Let’s return to our flashlight. For the light rays to be parallel to the axis of the mirror, the filament of the bulb
should be located at the focus. You have learned that the equation of a parabola in standard form x 2 = 4
py. The point (± 4,3) that is located on the parabola will be used to determine the value of p.
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The filament must be placed cm. from the vertex along the axis of the mirror.

Lesson Summary

In this lesson you learned about the shapes that are classified as conics and how they received the name.
You also learned that standard equations of the graphs change when transformations occur. Transformations
were then extended to the graphs of polar equations and you learned how to manipulate the equations to
produce new images of these shapes.

Points to Consider

• Which curves are easiest to represent it with rectangular coordinates and which with polar coordinates?

• Is it possible for polar curves to intersect?

• Can two different equations produce the same polar curve?

• List several ways in which polar representation differs from rectangular representation.

Review Questions

1. Prove that the graph of the equation y 2 - 4y - 8x + 20 = 0 is a parabola. Determine the vertex, focus and
the directrix.

2. Determine the center, vertices, foci and the eccentricity of an ellipse that has 9x 2 + 16y 2 + 54x - 32y -
47 = 0 as its equation.

3. For the equation , determine the eccentricity, the type of conic and the directrix.

Answers

1. y 2 - 4y - 8x + 20 = 0

y 2 - 4y = 8x - 20

y 2 - 4y + 4 = 8x - 20 + 4

(y - 2)2 = 8x - 16

(y - 2)2 = 8(x - 2)

The equation is in standard form (y - k)2 = 4p (x - h)2. The vertex (h, k) is (2, 2) and 4p = 8 or 8/4 = 2.
Therefore the focus is (h + p, k) which equals (2 + 2, 2) (4, 2).
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The directrix x = h - p is x = 2 – 2 or x = 0.

Directrix: x = 0Focus: (4, 2)Vertex: (2, 2)

2.

or

The equation is in standard form and the centre (h, k) is (-3,1).

The semimajor axis is and the vertices are (h ± a, k) = (-3 ± 4,1) (-7, 1) and (1, 1).

and the foci are and

The eccentricity is .

Foci
Vertices (-7, 1) and (1, 1)Center (-3, 1)

Eccentricity .66

3.
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The numerator and denominator must be divided by 4. If 0 < e < 1, the graph will be an ellipse. The eccen-

tricity is .25 so the conic is an ellipse. The numerator de = .5 therefore . The directrix is
x = -2.

Directrix x = -2Conic is an ellipseEccentricity .25

Applications, Technological Tools

Rectangular Form or Polar Form

Learning Objectives

A student will be able to:

• Realize the solutions to real world problems in either rectangular form or polar form.

• Manipulate both forms of equations.

Introduction

Sometimes it is not convenient to solve a real world problem using the rectangular coordinates of points nor
is it appropriate to express the solution in rectangular form. To simplify the solution and often to create a
better overview of the problem, the polar form is more suitable.

1. Mr. Goldbar, the town’s most recent millionaire, wants to erect a large rock-climbing wall in the public
park. He feels that this would be entertaining for everyone as well as a great exercise unit for the people.
He has access to a flat circular plot of land that has a 5000 foot radius. He has marked off a possible location
for the wall at coordinates (125, 130o) and (300, 70o), where r is measured in feet. Sketch the plot of land
showing the location of the markers and determine the polar equation of the line between these markers.
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Answers for solution:

2. Our local team has qualified for a position in the playoffs. The arena has planned to create a special
tribute to the five players who turn 20 and must leave the league. They would like to create a light image at
centre ice that will show the faces of the five players on a circle. To do this, they wish to create equal distances
between each picture and have it large enough to be seen from the farthest location in the arena. They have
a 40 foot circular tube to produce the circle and must work on the location of the pictures. The first photo is
placed at (40, 0o) and (40, 72o). What is the equation of the line that contains these points and what shape
should they create within the circle?

Answers for solution:

The shape that they should create within the circle to enhance the projection at centre ice is a pentagon –

one vertex for each picture. The equation of the line containing the first picture is

Polar equations for conics are used extensively when dealing with the orbit of a planet based on the farthest
distance from the Sun (aphelion) and the closest distance to the Sun (perihelion). The orbit of a planet is
elliptical in shape and each planet has a defined eccentricity and semimajor axis. Using the ellipse shown

below and the formula , derive a formula that expresses the standard equation in
terms of a and e . Using this formula, determine the aphelion and perihelion distances of the planet Venus
that has a semimajor axis of 108.2 Gm. and an eccentricity of 0.0068.

Solution:
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and

Aphelion:

Perihelion:

Applications, Trigonometric Tools: Polar Coordinates to Rectangular Coordinates

Learning Objectives

A student will be able to:

• Use the TI graphing calculator to convert polar coordinates to rectangular coordinates and vice versa.

Introduction

You have learned how to convert back and forth between polar coordinates and rectangular coordinates by
using the various formulae presented in this lesson. The TI graphing calculator allows you to use the angle
function to convert coordinates quickly from one form to the other. The calculator will provide you with only
one pair of polar coordinates for each pair of rectangular coordinates.

Example 1: Express the rectangular coordinates of A (-3, 7) as polar coordinates.

Polar coordinates are expressed in the form (r,θ). An angle can be measured in either degrees or radians,
and the calculator will express the result in the form selected in the menu of the calculator.

Press and cursor down to Radian Degree. Highlight radian.Press to return to home screen.
To access the angle menu of the calculator press and this screen will appear:

555



Cursor down to 5 and press or press 5 on the calculator. The following screen will appear .

Press -3, 7) and the value of r will appear . Press . Access the angle menu
again by pressing . When the angle menu screen appears, cursor down to 6 and pres or
press 6 on the calculator. The screen will appear. Press -3, 7) and the value of θ will appear

.

This procedure can be repeated to determine the rectangular coordinates in degrees. Before starting, press
and cursor down to Radian Degree and highlight degree.

Example 2: Express the polar coordinates of (300, 70o) in rectangular form.

The angle θ is given in degrees so the mode menu of the calculator should also be set in degree. Therefore,
press and cursor down to Radian Degree and highlight degree. Press to return to home
screen. To access the angle menu of the calculator press and this screen will appear:

Cursor down to 7 and press or press 7 on the calculator. The following screen will screen will appear:

Press 300, 70) and the value of x will appear Press . Access the angle menu
again by pressing . When the angle menu screen appears, cursor down to 8 and pres or
press 8 on the calculator. The screen will appear. Press 300,70) and the value of y will appear

.

Applications, Trigonometric Tools: Graphs of Polar Equations

Learning Objectives

A student will be able to:

• Use Geometer’s Sketchpad software to display the graph of a polar equation.

Introduction

A graphing calculator is a very good source of technology for students. It is compact, portable and readily
accessible. However, most students also have access to a computer. This software would be an asset for
any student and it presents visual representations that are larger than those displayed on a calculator screen.
The process involved in producing the graph acts as a valuable learning tool for the student. In this lesson,
the students will learn how to graph a polar equation using Geometer’s Sketchpad.
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The software program, Geometer’s sketchpad, is extremely useful in graphing polar coordinates and polar
equations. We will go through the process of graphing the polar equation r = 3 + 3 cos θ.

To begin, left click on Graph. Scroll down to Grid Form and over to Polar Grid and left click. The following
screen appears:

This screen may be maximized like any document. If the grid seems off centre, point and click on the red
dot of the origin and drag the grid to where you want it on the screen. The tool at the top of the upper left
corner should be highlighted. This is the arrow and it is the select tool. Also, the red dot – the unit point on
the x-axis can be hidden. Point on the dot and right click. A list of options will appear. Scroll down and
highlight Hide Unit Point. Left click and the point disappears. To rescale the graph, left click on a number
on either axis until a double arrow appears. Drag the number toward the origin until the proper scale is
reached. Notice the difference in the scale of this figure and the previous one.
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To enter the equation, left click on Graph and scroll down to New Function. The equation editor appears.

Enter the equation: Left click on equation and scroll down to r = f(θ). Using the keypad, left click on 3 + 3
functions and scroll to sin and then θ. This function will appear in the upper left corner of the grid.
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To plot the New Function, left click on Graph and scroll down to Plot New Function. A screen may appear
asking you if you want the graph in radians. Click yes and the graph will appear on the grid. The graph will
be a fuzzy pink picture. Point and click on the plotted graph and it will be restored to a smooth line.

To copy the graph, left click on Edit and scroll down to Select All. This will highlight the entire page. Then
left click on Edit again and highlight Copy. You can now paste the graph in a document or print it. The ap-
pearance of the graph can be changed by using the Display menu. Left click on Display and scroll to line
width. You can select dashed, thin or thick. In the same menu, you can change the color of the graph.
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Graph and Calculate Intersections of Polar Curves

Given Two Polar Curves, Find All Intersection Points

Learning Objectives

A student will be able to:

• Graph polar curves to see the points of intersection of the curves.

• Understand the difficulty of determining polar coordinates for intersection points.

• Use Cartesian coordinates to determine points of intersection.

Introduction

Josie has painted two murals that she is trying to combine to form one large mural. The mural is going to
hang on a wall in the front entrance of her new home. After several attempts, Josie has decided that she
should overlap the paintings to produce the most appealing view of her art. If she does this, where will the
murals intersect?

When you worked with a system of linear equations with two unknowns, finding the point of intersection of
the equations meant finding the coordinates of the point that satisfied both equations. If the equations are
rectangular equations for curves, determining the point(s) of intersection of the curves involves solving the
equations algebraically since each point will have one ordered pair of coordinates associated with it.

Example 1: Solve the following system of equations algebraically:

x 2 + 4y 2 - 36 = 0

x 2 + y = 3

Solution:

Before solving the system, graph the equations to determine the number of points of intersection.
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The graph of x 2 + 4y 2 - 36 = 0 is an ellipse and that of x 2 + y = 3 is a parabola. There are three points of
intersection.

The estimated points of intersection are labeled on the graph. To determine the exact values of these points,
algebra must be used.

x 2 + 4y 2 + 0y = 36x 2 + 4y 2 + 0y = 36x 2 + 4y 2 - 36 = 0 x 2 + 4y 2 = 36

- x 2 + 0y 2 - y = -3- 1(x 2 + 0y 2 + y = 3)x 2 + y = 3 x 2 + 0y 2 + y = 3
_______________

4y 2 - y = 33

4y 2 - y - 33 = 0

a = 4 b = -1 c = -33

Using the quadratic formula,

These values must be substituted into one of the original equations.

The three points of intersection as determined algebraically in Cartesian representation are A (0, 3),
B (2.4, -2.75) and C (2.4, 2.75).

The points of intersection are those shown above. However, if we are working with polar equations to deter-
mine the polar coordinates of a point of intersection, wemust remember that there are many polar coordinates
that represent the same point. Remember that switching to polar form changes a great deal more than the
notation. Unlike the Cartesian system which has one name for each point, the polar system has an infinite
number of names for each point. One option would be to convert the polar coordinates to rectangular form
and then to convert the coordinates for the intersection points back to polar form. Perhaps the best option
would be to explore some examples. As these examples are presented, be sure to use your graphing
calculator to create your own visual representations of the equations presented. To view the inter-
section points, use the zoom function and the trace function on the calculator.
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Example 2: Determine the polar coordinates for the intersection point(s) of the following polar equations: r
= 1 and r = 2 cos θ

Solution:

Begin with the graph. Using the process described in the technology segment of section one in this chapter;
create the graph of these polar equations on your graphing calculator. Once the graphs are on the screen,
use the trace function and the arrow keys to move the cursor around each graph. As the cursor is moved,
you will notice that the equation of the curve is shown in the upper left corner and the values of θ, x, y are
shown (in decimal form) at the bottom of the screen. The values change as the cursor is moved.

in the first quadrant and in the fourth quadrant.

The obvious points of intersection are and . However, these two solutions only cover

the possible values 0 ≤ θ ≤ 2π. If you consider that is true for an infinite number of theta these

solutions must be extended to include and . Now the solutions include all
possible rotations.

This example was solved as any system of rectangular equations would be solved. Does this approach work
all the time?

Example 3: Find the intersection of the graphs of r = sin θ and r = 1 - sin θ

Solution:

Begin with the graph. You can create these graphs using your graphing calculator.
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in the first quadrant and in the second quadrant.

The intersection points are and
Another intersection point seems to be the origin (0, 0).

If you consider that is true for an infinite number of theta as was in the previous ex-
ample, the same consideration must be applied to include all possible solutions. To prove if the origin is indeed
an intersection point, we must determine whether or not both curves pass through (0, 0).

From this investigation, the point (0, 0) was on the curve r = sin θ and the point was on the curve
r = 1 - sin θ. Because the second coordinates are different, it seems that they are two different points.

However, the coordinates represent the same point (0,0). The intersection points are
and (0,0)
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Sometimes it is helpful to convert the equations to rectangular form, solve the system and then convert the
polar coordinates back to polar form.

Example 4: Find the intersection of the graphs of r = 2 cos θ and r = 1 + cos θ

Solution:

Begin with the graph:

r = 2 cos θr = 2 cos θ expressed in rectangular form

r 2 = 2r cos θ Multiply by r

r 2 = x 2 + y 2 andx 2 + y 2 = 2x Substitution
x = r cos θ

expressed in rectangular form

Multiply by r

Substitution(as above)

The equations are now in rectangular form. Solve the system of equations.

Substituting these values into the first equation:
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The points of intersection are (0, 0) and (2, 0)

The rectangular coordinates are (0, 0) and (2, 0). Converting these coordinates to polar coordinates give
the same coordinates in polar form. The points can be converted by using the angle menu of the TI calculator.
This process was shown in the previous lesson.

We will now return to Josie and try to solve her problem. One mural is represented by the equation r = 3
cos θ and the other by r = 2 - cos θ. To determine where they will intersect, we will begin with a graph.

and
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Josie’s murals would intersect and two points and

Lesson Summary

In this lesson you learned how to graph polar equations to see the points of intersections of the polar curves.
In addition to seeing the points, you learned how to determine the coordinates of these intersection points
using several approaches. The fact that many polar coordinates can represent the same point was revisited
as well.

Points to Consider

• Will polar curves always intersect?

• If not, when will intersection not occur?

• If two polar curves have different equations, can they be the same curve?

Review Questions

1. Find the intersection of the graphs of r = sin 3θ and r = 3 sin θ.

2. Find the intersection of the graphs of r = 2 + 2 sin θ and r = 2 - 2 cos θ
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Answers

1.

There appears to be one point of intersection.

r = 3 sin θr = sin 3 θ
0 = 3 sin θ0 = sin 3 θ
0 = sin θ0 = θ
0 = θ

The point of intersection is (0, 0)

2.
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The coordinates represent the same point (0, 0).

The points of intersection are and (0,0)

and

Equivalent Polar Curves

Learning Objectives

A student will be able to:

• Graph equivalent polar curves.

• Recognize equivalent polar curves from their equations.

• Understand that equivalent polar curves are often symmetrical about different axis but are still equal.

• Understand why equivalent polar curves do not intersect.

Introduction

The expression “same only different” comes into play in this lesson. We will graph two distinct polar equations
that will produce two equivalent graphs. Use your graphing calculator and create these curves as the
equations are presented.

Previously, graphs were generated of a limaçon, a dimpled limaçon, a looped limaçon and a cardioid. All of
these were of the form r = a ± b sin θ or r = a ± b cos θ. The easiest way to see what polar equations produce
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equivalent curves is to use either a graphing calculator or a software program like Geometer’s Sketchpad
to generate the graphs of various polar equations.

Example 1: Plot the following polar equations and compare the graphs.

r = 5 cos (90)b)r = 1 + 2 sin θa)
r = 2 cos (-90)r = -1 + 2 sin θ

Solution:

Although the polar equations are differentr = 1 + 2 sin θ.These graphs represent
r = -1 + 2 sin θ

the resulting graphs shows that they are equivalent.a = 1,
a = -1

r = 5 cos(90).These graphs represent the equations
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r = 5 cos(-90)

The difference between these equations is the values for theta. Now it is visible that the equations are equal.

Describe the graphs.x 2 + y 2 = 16.Graph the equationsExample 2:

r = 4

Solution:

Both equations, one in rectangular form and one in polar form, are circles with a radius of 4 and center at
the origin.

Describe the graphs.(x - 2)2 + (y + 2)2 = 8Graph the equationsExample 3:

r = 4 cos θ - 4 sin θ

There is not a visual representation shown here, but on your calculator you should see that the graphs are

circles centered at (2, -2) with a radius .

Lesson Summary

In this lesson you were introduced to the notion that the graphs of solution sets of polar curves can be
equivalent. It is difficult to predict equivalent graphs by looking at the equation in isolation. However, once
the graphs are created, the equivalence of the sets is visible.

Points to Consider

• When looking for intersections, which representation is easier to work with? Look over the examples and
find some in which doing the algebra in polar coordinates is more direct that finding intersections in
Cartesian form.

Review Questions

1. Write the rectangular equation x 2 + y 2 = 6x in polar form and graph the equations.
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2.

Are they equivalent?

.

Graph the equations

Answers

1.

x 2 + y 2 = 6x

r 2 = x 2 + y 2 and x = y cos θr 2 = 6(r cos θ)
divide by rr = 6 cos θ

Both equations produced a circle with center (3, 0) and a radius of 3.
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2.

Yes, the equations produced the same graph so they are equivalent.

Applications, Technological Tools: Systems of Polar Equations

Learning Objectives

A student will be able to:

• Understand the useful application of the intersection of polar curves as it applies to real world problems.

Introduction

In this section we will look at some real world applications of the topics visited in this lesson.

Stephanie is making a quilt. In each block, she is sewing a rose with 4 petals and adding a sheer, metallic
overlay on top of the rose. She plans to repeat this pattern in every fourth block of her quilt. To keep the
pattern repeating in a perfect manner, Stephanie must decide the exact position of the overlay on the rose.
If she knows this, she can be certain that every fourth block will repeat exactly. The limaçon, which is the
shape of the overlay, was designed by using the equation r = 3 + 2 cos θ, while the shape of the rose was
designed by using the equation r = 5 sin 2 θ. Create a graphic representation of this design so you can
explain the intersection points to Stephanie.
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There appear to be 8 intersection points between the
limaçon, and the rose. However, the true points of
intersection are the two points in the first quadrant
and the two points in the third quadrant. At the other
four intersection points, the r-values on the rose are
negative.

Technology Application: Using the TI-8s calculator to graph polar curves is an excellent learning tool. You
can actually simulate the graphing process by using the simulation mode.

On the menu of the calculator, scroll down to Radian Degree and highlight Degree. Continue to the
next line, and highlight Pol. Continue to scroll down and highlight Simul. Press 5 to access a square
viewing window.

Press y = and type in r1 = 3 + 2 cos θ and in r2 = 5 sin 2 θ. Now press .

You will see the graph plot slowly. To ensure that you see the entire graphing process, press and
enter θ step as a small number. The smaller the number, the slower it graphs. The graph pauses at various
intervals throughout the graphing process. These points can be determined by using the trace feature. As
the graph is traced the various values appear on the screen.

You can see the graph in this screen capture of the calculator.

Vocabulary

The polar coordinates of a point P are written in the
form (r, θ), where r is the distance from the pole to
point P and θ is the measure of an angle between

and the polar axis (which aligns with the the

Polar Coordinates:

positive x-axis.)
An equation which uses polar coordinates.Polar Equation:
A graph that represents the set of all points (r, θ)
which satisfy a given polar equation.

Polar Graph:

Recognize

Recognize .
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Learning Objectives

A student will be able to:

• Understand the concept of a complex number.

• Recognize a complex number.

Introduction

In solving algebraic equations, you have probably come across equations such as x 2 + 4 = 0 that have no
solutions because no real number squared equals a negative number. While using the quadratic formula,
you have probably encountered a similar problem, when b 2 - 4ac produces a negative value and there is
no real solution. Complex numbers are introduced to produce solutions to these equations. Even though
these numbers don’t exist on the real number line, they follow strict arithmetic laws similar to the real numbers,
and it is convenient to have a larger system where all algebraic equations have solutions.

The square of any positive number or any negative number results in a positive number. Therefore, it seems
natural to say that it is impossible to square any real number and have the result be a negative number. In
order to include square roots of negative numbers, we must define a new number system. These numbers,
called the complex numbers, are a formal extension of the real numbers. It might seem arbitrary or capricious
to define a number that is “imaginary” and does not exist in the sense that counting numbers do, but the
complex system has remarkable mathematical properties and applies in a surprising number of real-world
instances. The first important insight was the Fundamental Theorem of Algebra, proved by Gauss at age
21. All equations over the complex numbers have solutions. More specifically, all polynomials of degree n
with real coefficients have n roots in the complex system. So all quadratics have two roots; all cubics have
three etc.

To build the complex number system, we begin with the simplest root of a negative number: . The

symbol is defined as the imaginary unit and is represented by the symbol i . The only thing we

know about is what we know about the square root of any number—that when you multiply it by itself

it equals the number inside. As a result, if i = then i2 = -1. We also extend the well-known rule for

square roots of positive numbers, , to square roots of negative numbers. The rule holds
when a or b is negative, but not both, as we will see below. First, here are some applications of this extended
rule.

Example 1: Express the following square roots in terms of i .

c)b)a)

Solution:

c)b)a)

Writing the solution to , with i in front of the radical, shows that i is not under the radical sign with 3.
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Operations with radicals are defined under the assumption that all letters represent positive numbers. For

example is valid if neither a nor b is negative.

The radical expression can be written as but not as since this later

representation will produce an incorrect solution of 9. The correct solution is

Example 2: Simplify the following expression:

c)b)a)

Solution:

c)b)a)

Lesson Summary

In this lesson you learned to determine the square root of a negative number. You also learned that operations
performed on radicals do not apply to negative radicands. However, you did learn to apply the rule for the
product of radicals to reflect the product of square roots of negative numbers.

Points to Consider

• Can complex numbers exist in another form?

• Can complex numbers be expressed in rectangular form? In polar form?

• Do complex numbers fit in the Real Number System?
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Review Questions

1. Express each of the following in terms of i. Write each solution in simplest form.

b.a.

d.c.

Answers

b.a.

d.c.
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Standard Form of Complex Numbers (a + bi)

Learning Objectives

A student will be able to:

• Recognize the standard form of a complex number.

• Understand the term imaginary as it applies to complex numbers.

• Write complex numbers in standard form.

Introduction

You are now able to recognize a complex number as defined in the previous lesson. You are also able to
express them in terms of i. In this lesson you will learn to express complex numbers in rectangular/standard
form. It is in this form that we will later learn to perform basic operations with complex numbers.

Using real numbers and the imaginary unit I, a new kind of number can be defined. A complex number is
any number that can be written in the form a + bi , where a and b are real numbers. If a = 0 and b≠ 0, the
number is in the form bi , which is referred to as a pure imaginary number. If b = 0, then a + bi is a real
number. The form a + bi is known as the rectangular form of a complex number. In the rectangular form,
a is called the real part and b is the imaginary part. As a result, the complex numbers include both the
real numbers and the pure imaginary numbers.

Although we think of the word imaginary as portraying something that does not exist, such is not the case
with respect to complex numbers. They are as real as real numbers in the sense that they are well-defined
concepts (neither real number nor imaginary numbers exist in a physical sense!) As well, the term complex
indicates complicated and again this is not the case with complex numbers. The rules are quite simple.
Before we move on to basic operations with complex numbers, we must first explore the notion of equality
of complex numbers.

From its definition, a complex number is the sum of a real number and an imaginary number.

Since the sum is one of two distinct parts, the number is not negative or positive as we would normally think
of these values. Instead, each real part and each imaginary part are positive or negative.

Using the same trend, two complex numbers are equal if the real parts are equal and the imaginary parts
are equal. In other words a + bi = x + yi only if a = x and b = y. This definition for equal complex numbers
can be applied to equations. Remember that the solution for an equation is the value that makes both sides
equal.

Example 1: Perform the indicated operations and simplify each complex number to its standard form.

c)b)a)
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Solution:

c)b)a)

Example 2:What values of x and y satisfy the equation 7x - 4i - 2yi = 14?

Solution:

7x - 4i - 2yi = 14
Arrange the equation with all x and y terms on the lef.7x - 2y i = 14 + 4i
Definition of equality of complex numbers.7x = 14 and -2y = 4

x = 2 and y = -2

Complex numbers also have conjugates. The conjugate of a + bi is a - bi and vice versa. To obtain the
conjugate of a complex number, the sign of the imaginary part is changed.

Example 3: Find the conjugate of each complex number.

3ic)-5 + 4ib)6 - 11ia)

Solution:

3ic)-5 + 4ib)6 - 11ia)
-3i-5 - 4i6 + 11i

Lesson Summary

In this lesson you learned that a complex number was the sum of a real part and an imaginary part. Using
this definition, you were able to express a complex number in standard form. You also explored the equality
of complex numbers and applied this definition to solving equations. The final topic you learned about was
the conjugate of a complex number that is obtained by changing the sign of the imaginary part.

Points to Consider

• What operations can be performed using complex numbers?

• Are there specific rules or laws for performing these operations?

• Will the results of these operations also be complex numbers?
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Review Questions

1. Perform the indicated operations and simplify each complex number to its standard form. Write the con-
jugate for each solution.

2. What values of x and y satisfy the equation 6i - 7 = 3 - x - yi.

Answers

1.

b)a)

2.

6i - 7 = 3 - x - yi
x + yi = 3 + 7 - 6i
x + yi = 10 - 6i
x = 10 and y = -6

The Set of Complex Numbers (complex, real, irrational, rational, etc)

Learning Objectives

A student will be able to:

• Recognize the Complex Number System.

• Position numbers in the correct category within the system.

Introduction

Every number that you can imagine belongs to the complex number system. The set of complex numbers
is made up of all real and imaginary numbers and all possible combinations. They take the form of a + bi

where a and b are real numbers and . We will explore the subsets of this number system and
present the results in a flow chart representation.

The complex number system includes the real numbers and the imaginary numbers. Real numbers include
all decimals…rational and irrational numbers. Every real number can be found on a line. Rational numbers
consist of the quotient of two integers and yield decimals that repeating patterns. Some examples of rational
numbers are ½, 7/3, 0.5, 3.14 and 0.3333. Included in the rational numbers are the integers. Integers are
rational numbers that consist of positive and negative whole numbers including zero. Another subset of the
rational numbers is the whole numbers. These include zero and the counting numbers 1, 2, 3,... The irrational
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numbers are also part of the real numbers. Irrational numbers produce decimals that have no repeating

patterns. Some examples of irrational numbers are , and π. The imaginary
numbers that are included in the complex number system, are those that cannot be expressed as decimals.

Examples of imaginary numbers are and all of these use . The following
flow chart demonstrates the structure of the complex number system

This lesson is meant as a conveyor of information to familiarize you with the complex number system.
Therefore there are no exercises that need to be completed for the lesson. However, you should concentrate
on learning the members of each subset of the complex number system.

Lesson Summary

In this lesson you explored the subsets that make up the complex number system. You also learned of the
types of numbers that belong to each one.
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Points to Consider

• If all of these numbers are included in the complex number system, can complex numbers be represented
on a graph?

• If complex numbers can be graphed, which coordinate will be represented by the real part? By the
imaginary part?

• While the Complex plane looks like the Cartesian plan, the horizontal x-axis the real part of a complex
number and the vertical y-axis represents the imaginary part of a complex number. A single complex
number a + bi is plotted on this plane with a determining its x-coordinate and b determining its y-coordinate.

Complex Number Plane

Learning Objectives

A student will be able to:

• Graph complex numbers in the complex plane.

• Assign coordinates to points plotted in the complex plane.

In the same way that ordered pairs of real numbers are assigned to points in a plane, so are complex
numbers. Beginning with two perpendicular number lines that intersect at the origin, like the axis of a
Cartesian graph, place real numbers on the horizontal line and i-numbers on the vertical line. To plot a point
(x, y) on a Cartesian coordinate system, the x-value was located on the horizontal x-axis and from here the
point was moved upward (+) or downward (-) the value of y. The point was plotted here. A complex number
in standard form a + bi has a as the real part and bi as the imaginary part. Therefore, the a is the x-value
and the bi is the y-value in a complex plane. A big distinction between the real Cartesian plane and the
complex plane is that in the former, pairs of real numbers are plotted as points, and in the latter single
complex numbers are plotted as points.

This is a model of the complex plane. The horizon-
tal number line is called the real axis. Every real
number is the coordinate of a point on this axis. The
vertical line is called the imaginary axis. Each pure
imaginary number or i-number is the coordinate of a
point on the axis.

Every point in the complex plane has a complex number a + bi as its coordinate to define the position of
the point with respect to the axes. There is a correlation between the Cartesian coordinate system and the
complex number plane. This can be seen by letting the real axis be the x-axis and the imaginary axis be
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the y-axis. Thus, the point with coordinates a + bi in the complex number plane has coordinates (a, b) in
the Cartesian coordinate system.

The distance from the origin to the point with coordinate a + bi is called the absolute value of the complex
number a + bi . In the complex number plane the coordinate of a + bi is often referred to as z. This distance,

according to the Pythagorean Theorem, is . Therefore,

OR

Now that the complex number plane has been explored, it is time to plot some points.

Example 1: Plot each number on the complex number plane and determine the distance from the origin of
points 3 + 2i and 6 – 3i.

-2 - 2id)6 - 3ic)-4 + 3ib)3 + 2ia)

Solution:

Distance from the origin:

It is time to return to the two students who are walking home to determine who walked the greater distance.
If the distance walked by each student is represented by x and y , respectively, the following system of
equations could represent the problem.
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Solving this system of equations:

Substituting into the first equation:

y = x + 4y = x + 4
y = (-2) + 4y = 4 + 4
y = 2y = 8

The solutions we obtain for (x, y) are (4, 8) and (-2, 2). These solutions are confusing because if we look at
them on a number line, we would see:

In the first solution, Jacob walked 4 miles to home while Kyle walked 8 miles.

The second solution indicates that both Jacob and Kyle each walked 2 miles.

If we take another look at the problem, it does not specify which distance is one-half the square of the other.

As a result, the equations y - x = 4 and could have been used to represent the problem.
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Solving this system of equations:

Using the quadratic formula

and

and

and

Substituting into the first equation

The solutions we obtain for (x, y) are and The distance
walked by Jacob and Kyle can be represented on a complex number plane.

Kyle walks to point B with coordinate x and Jacob walks
to point A with coordinate y.

According to our definition of absolute value
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The distances from the origin (school) to the points on the complex plane (home) are not confusing. Kyle
walked the greater distance.

Lesson Summary

In this lesson you learned how to plot complex numbers on a complex number plane. You also learned of
the similarities between this plane and the Cartesian number plane. The absolute value of a complex number
was shown to be an asset when solving a problem.

Points to Consider

• Are there other times when solutions to problems are best determined by using complex numbers?

• If we could perform basic operations on complex numbers, would the results be useful?

• What are the applications of complex numbers in the real world?

Review Questions

1. Give the coordinates of each point plotted on the complex number plane and calculate the absolute value
of any two of the points.

Answers

1.

(3 + 6i)E(-2 + 4i)D(2 - 5i)C(6 + 2i)B(-5 - 3i)A
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Vocabulary

Any number that can be written in the form a + bi, where a and
b are real numbers and i is the imaginary part.

Complex Number:

A coordinate plane used to represent complex numbers. This
plane looks like the Cartesian plan, except that instead of both

Complex Number Plane:

axes representing real numbers, the horizontal x-axis the real
part of a complex number and the vertical y-axis represents the
imaginary part of a complex number. A single complex number
a + bi is plotted on this plane with a determining its x-coordinate
and b determining its y-coordinate.
The conjugate of the complex number a + bi is a – bi.Conjugate of a Complex Number:
A complex number of the form a + bi where b ≠ 0.Imaginary Number:

Quadratic Formula

Learning Objectives

A student will be able to:

• Find complex zeros of quadratic equations.

• Understand the concept of the conjugate with respect to the roots of a quadratic equation and complex
numbers.

Introduction

Consider the graph of y = x 2 + 3x + 5. You can see that the graph does not intersect the x-axis. Does this
mean that there are no roots for the quadratic function y = x 2 + 3x + 5? We will explore this later in this
lesson.
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The quadratic formula is used to determine the roots of a quadratic equation ax
2 + bx + c = 0 where a, b, and c are real numbers and a ≠ 0.The radicand of the formula b 2 - 4ac is known
as the discriminant and is very useful in determining the nature of the roots of the equation. The following
table summarizes the results:

Nature of the rootsValue of the discriminant
Two different real rootsb2 – 4ac > 0
One repeated real rootb2 – 4ac = 0
A complex conjugate pair of rootsb2 – 4ac < 0

Note that in the function graphed in the figure above, the value of b 2 – 4ac is negative, corresponding to
the fact that the function has no roots. Unless the parabola depicting touches the x-axis exactly at its vertex,
it will cross the x-axis twice and have exactly two roots.

Complex roots do not appear in the graph of a quadratic function, as they do not lie in the real numbers.
Any quadratic equation that has a root of the form a + bi (b ≠ 0) also has a root of the form a - bi. These two
roots are called conjugates.

Example 2: For the following equations, evaluate the discriminant and describe the roots of the equation.

3x 2 - 4x = 15b)x 2 + x + 12 = 7x - 9a)

Solution:

3x 2 - 4x = 15b)x 2 + x + 12 = 7x - 9a)

3x 2 - 4x - 15 = 0x 2 - 6x + 21 = 0
a = 3, b = -4, c = -15a = 1, b = -6, c = 21

b 2 - 4acb 2 - 4ac

(-4)2 - 4(3)(-15)(-6)2 - 4(1)(21)
196-48

b 2 - 4ac > 0b 2 - 4ac < 0
Two different real rootsA complex conjugate pair of roots

Example 3: Solve the equation x 2 + 2x + 5 = 0. a = 1, b = 2, c = 5

Solution:

and
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and

Let us return to the graph of y = x 2 + 3x + 5. As we saw, the parabola did not intersect the x-axis. We can
learn about the roots if we evaluate the discriminant.

- 4acb 2

- 4(1)(5)(3)2

- 11
- 4ac < 0b 2

A complex conjugate pair of roots

If the roots are a complex pair of roots, the parabola will NOT intersect the x – axis.

Lesson Summary

If the radicand b 2 - 4ac of the quadratic formula produced a negative value, you carefully checked your
calculations for an error because the square root of a negative number did not exist. In this lesson you
learned that you no longer have to check your calculations, if you are certain that they are correct, because
the square root of a negative number does exist and it is in the form of a complex number. We applied this
fact to determining the roots of a quadratic equation by using the quadratic formula. You also learned that
if you calculated the value of the discriminant, you could predict the nature of the roots of the equation.

Allowing complex roots enables a much more robust theory. The Theorem of Algebra proved by Gauss
states that in the complex system, a polynomial of degree n has n roots. Finding the algebraic expression
for these roots leads to much more difficult problems, but the extension of the real numbers to the complex
plane guarantees a number of roots equal to the degree of the equation.

Points to Consider

• What does the complex conjugate pair of roots tell us about the graph of the quadratic function?

• What does the graph of a quadratic equation of the form ax 2 + bx + c = 0 tell us about the roots of the
function?

Review Questions

1. For the following quadratic equation, describe the nature of the roots and solve the equation to determine
the exact roots.

5x 2 - x + 5 = 6x + 1

2. What does the following graph tell you about its quadratic function?

Answers

1.
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5x 2 - 7x + 4 = 0

a = 5, b = -7, c = 4

- 4acb 2

- 4(5)(4)(-7)2

-31

A complex conjugate pair of roots

2. The graph does not intersect the x-axis. The value of the discriminant, will be less than zero. This means
that the roots of the quadratic function will be a complex conjugate pair.
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Sums and Differences of Complex Numbers

Learning Objectives

A student will be able to:

• Add and subtract complex numbers.

The sum or difference of two pure imaginary numbers is consistent with the rules of arithmetic. If bi is con-
sidered to be b∙i and the distributive property is applied to the operation of addition then 4i + 5i can be ex-
pressed as (4 + 5)i or 9i. The same is true for subtraction. 7i – 3i can be written as (7 – 3)i or 4i. A complex
number consists of a real part and an imaginary part. The real parts are added or subtracted and the imag-
inary parts are added or subtracted as shown above. Therefore these basic operations of complex numbers
can be defined as:

for addition(a + bi) + (c + di) = (a + c) + (b + d) i
for all real numbers a, b, c, and d
and

for subtraction(a - bi) - (c + di) = (a - c) + (b - d) i
for all real numbers a, b, c, and d.

Many of the properties of real numbers are also applicable to complex numbers. The commutative property
is one that applies to both real and complex numbers for addition.

If (a + bi) + (c + di) = (a + c) + (b + d) i then (c + di) + (a + bi) = (c + a) + (d + b) i

In a similar way, we can show that the addition of complex numbers is associative.

0 + (a + bi) = (0 + a) + bi

0 + (a + bi) = a + bi

From the above, we can conclude that zero is the additive identity element for the complex number system.
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The negative of a complex number in standard form is -a + (-bi) . Therefore

(a + bi) + [-a + (-bi)] = [a + (-a)] + [b + (-b)] i

(a + bi) + [-a + (-bi)] = 0 + 0i = 0

From this we can conclude that the additive inverse of a complex number a + bi is -(a + bi).

Example 1: Perform the indicated operations in each the following:

(2 + 7i) - (3 + 4i) + (7 - 6i)c)(11 - 3i) - (15 + 7i)b)(5 + 3i) + (6 - 8i)a)

Solution:

(2 + 7i) - (3 + 4i) + (7 - 6i)c)(11 - 3i) - (15 + 7i)b)(5 + 3i) + (6 - 8i)a)
(2 - (+3) + 7) + (7 - (+4) + (-6)) i(11 - 15) - (-3 - (+7)) i(5 + 6) + (3 + (-8)) i
= 6 - 3i= 4 - 10i= 11 - 5i

Two complex numbers and their sum can be represented graphically in a complex plane. If two complex
numbers are graphed in a plane and lines are drawn from the origin to each point, we can consider these
complex numbers as being vectors. Therefore the sum of the two numbers can be called the vector sum.
To represent this graphically, plot one of the complex numbers and draw a line from the origin to the point.
Repeat this process for the second complex number. Complete a parallelogram with the lines drawn as
adjacent sides. The resulting fourth vertex is the point that represents the sum.

Lesson Summary

In this lesson you learned that the properties of real numbers apply to complex numbers. You also learned
the method for adding and subtracting complex numbers. By representing two complex numbers graphically,
you saw one way in which these numbers can be applied to real-world problems.

Points to Consider

• If complex numbers in a complex plane are related to real numbers of a Cartesian coordinate system,
are they related to polar numbers in a polar plane?

• Is there a way to convert complex numbers to a polar form?

Review Questions

1. Perform the indicated operations graphically and check the results algebraically.

(7 - 3i) - (8 - 7i)a)
(4.5 - 2.0i) + (6.0 + 8.5i)b)
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Answers

1.

a) (7 - 3i) - (8 - 7i) Subtracting (8 - 7i) from (7 - 3i) is equivalent to adding (-8 + 7i). Therefore we graph the
solution by adding (7 - 3i) + (-8 + 7i) and the result is -1 + 4i .

Check:

(7 - 3i) - (8 - 7i)

(7 - 3i) + (-8 + 7i)

(7 + (-8)) + (-3 + 7)i

= -1 + 4i
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b. (4.5 - 2.0i) + (6.0 + 8.5i) Adding these two complex numbers Graphically produced the result 10.5 + 6.5i

Check:

(4.5 - 2.0i) + (6.0 + 8.5i)

(4.5 + 6.0) + (-2.0 + 8.5) i

= 10.5 + 6.5i

Products and Quotients of Complex Numbers (conjugates)

Learning Objectives

A student will be able to:

• Multiply and divide complex numbers.

Introduction

The impedance of an electric circuit is the total effective resistance to the flow of current by a combination
of the elements in the circuit. In an alternating-current circuit, the voltage E is given by E = IZ where I is the
current in amperes and Z is the impedance in ohms. If E = 4.20 – 3.00i volts and Z = 5.30 + 2.65i ohms,
what is the complex number representation for I?We will determine this value later in this lesson.

Just as we were able to define the sum of two complex numbers, we can also define their product. The
multiplication of complex numbers is based on the multiplication of binomials with real coefficients. This
operation is performed without regard for the fact that i has a special meaning. However, before performing
the multiplication, all the complex numbers must be expressed in terms of i. The multiplication of two bino-
mials that have real coefficients is completed by applying the distributive property. In general, (a + b)(c + d)
= a (c + d) + b(c + d). Since these same operations are valid for complex numbers, multiplication can be
defined as:

(a + bi)(c + di) = (ad - bd) + (ad + bc)i for all real numbers a, b, c, and d.

Example 1: Determine the product of the following complex numbers:

(-9.4 - 6.2i)(2.5 + 1.5i)

Solution:

(-9.4 - 6.2i)(2.5 + 1.5i)
(-9.4)(2.5) + (-9.4)(1.5i) + (-6.2i)(2.5) + (-6.2i)(1.5i)

- 23.5 - 14.1i - 15.5i - 9.3i 2

-23.5 - 29.6i - 9.3(-1)
-23.5 - 29.6i + 9.3
-14.2 - 29.6i

Example 2: Determine the product of the following complex numbers:
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Solution:

These numbers must first be expressed in terms of i.

The operation of division of complex numbers involves the same process that is used for rationalizing the
denominator of a fraction that has a radical in the denominator. Therefore, to divide a complex number, the
numerator and the denominator must be multiplied by the conjugate of the denominator. This procedure
makes it possible to write the solution in the standard form of a complex number. As a result, the operation
of division of complex numbers can be defined as:

for all real numbers a, b, c, d

Example 3: Determine the quotient of the following complex numbers:
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Solution:

Therefore the numerator and denominator of the
fraction will be multiplied by this conjugate.

The conjugate of is .

or expressed as a decimal .12 – 1.16i

Another way to express the answer is . However, most results that are in the form of a fraction
are usually written as a single fraction.

Let us return to the problem of representing the current of the alternating circuit in the form of a complex

number. We were given the formula E = IZ but to solve for the current the formula must be used.

Solution:

amperes OR amperes

Lesson Summary

In this lesson you learned how to perform the basic operations of multiplication and division on complex
numbers. The processes involved in both are very similar to performing the operations on binomials with
real coefficients.
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Points to Consider

• Will these operations be performed the same way for numbers in a complex number plane?

• Are there other forms of complex numbers that may facilitate these operations on complex numbers in
a complex number plane?

Review Questions

1. Perform the indicated operations and express all answers in the form a + bi.

b)a)

Answers

1.

a.

b.

Applications, Trigonometric Tools

Operations on Complex Numbers

Learning Objectives

A student will be able to:
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• Understand real-world applications of complex numbers.

Introduction

In this lesson we will explore examples of real-world problems that use complex numbers in the solutions
of these problems.

Example 1: The voltage E in a particular circuit is the product of the current I and the impedance (the resis-
tance) Z. Calculate the voltage in a circuit that has a current of 4.00 – 5.00i and an impedance of 8.00 +
12.00i ohms.

Solution:

E = IZ
E = (4.00 - 5.00i)(8.00 + 12.00i)

E = 32.00 + 48.00i - 40.00i - 60.00i 2

E = 32.00 + 8.00i - 60.00(-1)
E = 92.00 + 8.00i volts.

Example 2: An airplane heads north of west with a velocity that can be represented by -320 + 140i km/h.
The wind is blowing from south of west with a velocity that be represented by 40 + 140i km/h. Determine
the resultant velocity of the plane graphically and algebraically.

Solution:

(-320 + 140i) + (40 + 140i)

(-320 + 140) + (140 + 140) i
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= -280 + 280i

Using the TI Calculator

Learning Objectives

A student will be able to:

• Use the TI calculator to perform basic operations on complex numbers.

Introduction

The TI calculator is programmed to perform operations with complex numbers

Turn on the calculator and press Cursor down to Real and over to a + bi.

Press Now press (quit) to return to home screen.

To express a complex number in standard form a + bi, simply enter the number into the calculator and press
The result will be the complex number in standard form.

Example 1: Express in standard form.

Press 3 + 2nd x2 ( ) - 49 and press 3 + 7i appears on the screen.

To multiply complex numbers that are in standard form requires you to access i by pressing 2nd decimal.

Example 2: (9 - 3i)(5 + 6i)

Press (9minus 3 decimal)(5 plus 6 decimal) 63 + 39i appears on the screen.

The other basic operations can all be done in the same manner on the calculator.

Trigonometric Form of Complex Numbers: Relationships among x, y, r,

and θ

Learning Objectives

A student will be able to:
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• Understand the relationship between the rectangular form of complex numbers and their corresponding
polar form.

Introduction

Despite their names, complex numbers and imaginary numbers have very real and significant applications
in both mathematics and in the real world. The fields of physics and electronics and use these numbers to
model phenomena all the time. In particular, the fields of mechanics, circuit analysis, and acoustics also use
complex and imaginary numbers extensively. “say. The abstract mathematical formalism of trigonometry
and complex notation carry important physical meanings in these disciplines. Complex numbers are also
useful for pure mathematics, providing a more consistent and flexible number system that helps solve algebra
and calculus problems. We will see some of these applications in the examples throughout this lesson,
though our focus will be on understanding of the notation and manipulation, not engineering or science. It
is remarkable that an abstract mathematical theory invented over three centuries ago could find important
applications in modern electronics. Mathematics is like that. It surprises us.

We have just seen the relationship between vectors and complex numbers by representing the addition of
two complex numbers on the complex plane. The resulting vector was the sum of the two complex numbers.
Since we can use one to represent the other, we will apply this fact to write complex numbers in another
form. This new form will prove to be advantageous when performing the basic operations of multiplication
and division on complex numbers.

The following diagram will help you understand the relationship between complex numbers and the new
form of complex numbers.

In the figure above, the point that represents the number x + yi was plotted and a vector was drawn from
the origin to this point. The relation between vectors and complex numbers can be seen. As a result, an
angle in standard position, θ, has been formed. In addition to this, the point that represents x + yi is r units
from the origin. Therefore, any point in the complex plane can be found if the angle θ and the r - value are
known. The following equations relate x, y, r and θ.
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The Trigonometric or Polar Form of a Complex Number (r cis θ)

Learning Objectives

A student will be able to:

Recognize the equations for converting complex numbers from standard form to polar form and vice versa.

Introduction

This short lesson will expose you to the equations used to convert complex numbers written in standard
form to their polar form. In the previous section, you were introduced to the equations that showed the rela-
tionship between x, y, r, and θ.

Recall the equations that you learned in the previous lesson.

These demonstrated the relationship between rectangular coordinates and polar coordinates

If we now apply the first two equations to the point x + yi the result would be:

x + yi = r cos θ + r i sin θ r (cos θ + i sin θ)

The right side of this equation r(cosθ + i sinθ) is called the polar or trigonometric form of a complex number.
A shortened version of this polar form is written as r cis θ. The length r is called the absolute value or
the modulus, and the angle θ is called the argument of the complex number. Therefore, the following
equations define the polar form of a complex number:

Trigonometric Form of Complex Numbers: Steps for Conversion

Learning Objectives

A student will be able to:

• Convert complex numbers from standard form to polar form and vice versa.

Introduction

Now that the various equations have been explored for converting complex numbers from standard form to
polar form, we will now put these equations into action. The polar form of complex numbers is used extensively
in the field of optics and electricity. We will discover their use in solving electrical problems later in the lesson.

It is now time to implement the equations explored earlier to perform the operation of converting complex
numbers in standard form to complex numbers in polar form. The following equations will be used to complete
the conversions:
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x + yi = r cos θ + ri sin θ r (cos θ + i sin θ)

Example 1: Represent the complex number 5 + 7i graphically and express it in its polar form.

Solution:

From the rectangular form x = 5 and y = 7

The polar form is 8.6(cos 54.5o + i sin 54.5o)

Another widely used notation for the polar form of a complex number is . This

is not a new form – merely a shorthand way of writing . Now there are three ways to
write the polar form of a complex number.
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Example 2: Express the following polar form of each complex number using the shorthand representations.

a) 4.92 (cos 214.6o + i sin 214.6o)

b) 15.6 (cos 37o + i sin 37o)

Solution:

b)a)

Example 3: Represent the complex number -3.12 – 4.64i graphically and give two notations of its polar
form.

Solution:

From the rectangular form of -3.12 – 4.64i x = - 3.12 and y = - 4.64
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This is the reference angle so now we must determine the measure of the angle in the third
quadrant. 56.1o + 180o = 236.1o

One polar notation of the point -3.12 – 4.64i is 5.59 (cos 236.1o + i sin 236.1o)

Another polar notation of the point is So far we have expressed all values of theta in degrees.
Polar form of a complex number can also have theta expressed in radian measure. This would be bene-
ficial when plotting the polar form of complex numbers in the polar plane.

The answer to the above example -3.12 – 4.64i with theta expressed in radian measure would be:

(reference angle) .9788 + 3.14 = 4.12 rad.

Now that we have explored the polar form of complex numbers and the steps for performing these conver-
sions, we will look at an example in circuit analysis that requires a complex number given in polar form to
be expressed in standard form. The field of circuit analysis was one that was mentioned at the beginning of
the lesson as using complex and imaginary numbers frequently.

Example 4: The impedance Z, in ohms, in an alternating circuit is given by . Express
the value for Z in standard form. (In electricity, negative angles are often used. The physical rationale for
representing quantities in circuits as vectors rather than simple scalers is beyond the scope of the study of
trigonometry. Electrical quantities in alternating circuits are vectors with magnitude and direction.)

Solution:

The value for Z is given in polar form. From this notation, we know that r = 4650 and θ = -35.2o Using these
values, we can write:

Z = 4650 (cos(-35.2o) + i sin(-35.2o))

x = 4650 cos(-35.2o) 3800

y = 4650 sin (-35.2o) -2680
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Therefore the standard form is Z = 3800 - 2680i ohms.

Lesson Summary

In this lesson you learned how to convert complex numbers expressed in standard form to their corresponding
polar form and vice versa. You were also introduced to a shorthand notation for the polar form of a complex
number. The relation between the two forms was readily seen when both were related to graphical repre-
sentations.

Points to Consider

• A polar form of a complex number exists. Is it possible to perform basic operations on complex numbers
in this form?

• If operations can be performed, do the processes change for polar form or remain the same as for
standard form?

Review Questions

1. Express the complex number 6 – 8i graphically and write it in its polar form.

2. Graph the complex number and express it in standard form.

Answers

1.

6 - 8 i

and
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Since θ is in the fourth quadrant then θ = -53.1o + 360o = 306.9o Expressed in polar form 6 – 8i is 10(cos
306.9o + i sin 306.9o) or

2.

The standard form of the polar complex number is

Vocabulary

In the complex number r(cosθ + i sinθ), the argument is the angle θ.Argument:
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In the complex number r(cosθ + i sinθ), the modulus is r . It is the distance
from the origin to the point (x, y) in the complex plane.

Modulus:

Also called trigonometric form is the complex number x + yi written as r

(cosθ + i sinθ) where and .

Polar Form:

Product Theorem

Learning Objectives

A student will be able to:

• Determine the product theorem of complex numbers in polar form.

Introduction

In previous lessons, we have implemented the formula E = IZ to determine the voltage E or the current I of
an alternating current. To determine E involved calculating the product of I and Z. This calculation was done
with all quantities expressed as complex numbers in standard form. In lesson 7.3, the calculations will be
done by using the polar form of the complex numbers.

Multiplication of complex numbers in polar form is similar to the multiplication of complex numbers in standard
form. However, to determine a general rule for multiplication, the trigonometric functions will be simplified
by applying the sum/difference identities for cosine and sine. To obtain a general rule for the multiplication
of complex numbers in polar from, let the first number be r 1(cosθ 1 + i sinθ 1) and the second number r 2(cosθ

2 + i sinθ 2). Now that the numbers have been designated, proceed with the multiplication of these binomials.

r 1(cos θ 1 + i sin θ 1) r 2(cos θ 2 + i sin θ 2)

r 1 r 2(cos θ 1 cos θ 2 + i cos θ 1 sin θ 2 + i sin θ 1 cos θ 2 + i
2 sin θ 1 sin θ 2)

r 1 r 2[(cos θ 1 cos θ 2 - sin θ 1 sin θ 2 + i (sin θ 1 cos θ 2 + cos θ 1 sin θ 2)]

r 1 r 2[cos(θ 1 + θ 2) + isin(θ 1 + θ 2)]

To arrive at the general rule, i2 = -1 and the sum identity cos α cos β + sin α sin β = cos(α + β) and sin
α cos β + cos α sin β = sin (α + β) were applied. Therefore:
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OR

Quotient Theorem

Learning Objectives

A student will be able to:

• Determine the quotient theorem of complex numbers in polar form.

Introduction

In previous lessons, we have implemented the formula E = IZ to determine the voltage E or the current I of
an alternating current. To determine I involved calculating the quotient of E and Z. This calculation was done
with all quantities expressed as complex numbers in standard form. In lesson 7.3, the calculations will be
done by using the polar form of the complex numbers.

Division of complex numbers in polar form is similar to the division of complex numbers in standard form.
However, to determine a general rule for division, the denominator must be rationalized by multiplying the
fraction by the conjugate. In addition, the trigonometric functions must be simplified by applying the
sum/difference identities for cosine and sine as well as one of the Pythagorean identities. To obtain a general
rule for the division of complex numbers in polar from, let the first number be r 1(cos θ 1 + i sin θ 1) and the
second number r 2(cos θ 2 + i sin θ 2) The conjugate of cos θ 2 + i sin θ 2 is cos θ 2 - i sin θ 2. Now that the
numbers have been designated, proceed with the division of these binomials.

To arrive at the general rule, i2 = -1 the difference identity cos α cos β - sin α sin β = cos(α - β) and sin
α cos β - cos α sin β = sin (α - β) and the Phythagorean identity cos2 θ + sin2 θ were applied. Therefore:
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OR

Using the Quotient and Product Theorem

Learning Objectives

A student will be able to:

• Determine the product and the quotient of complex numbers in polar form.

Introduction

In previous lessons, we have implemented the formula E = IZ to determine the voltage E or the current I of
an alternating current. To determine E involved calculating the product of I and Z. To determine I involved
calculating the quotient of E and Z. These calculations were done with all quantities expressed as complex
numbers in standard form. The calculations can be done now by using the product theorem and the quotient
theorem for the polar form of complex numbers.

Now that general rules have been obtained for the multiplication and division of complex numbers in polar
form, they can now be implemented. Recall that these rules are:

AND

Example 1: Find the product of the complex numbers 3.61(cos 56.3o + i sin 56.3o) and 1.41(cos 315o + i sin
315o)

Solution:
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r 1(cosθ 1 + i sinθ 1) . r 2(cosθ 2 + i sinθ 2) = r 1 r 2[cos (θ 1 + θ 2) + i sin (θ 1 + θ 2)]

3.61(cos 56.3o + i sin 56.3o) ∙ 1.41(cos 315o + i sin 315o)

(3.61)(1.41)[cos(56.3o + 315o) + i sin(56.3o + 315o)=

5.09(cos 371.3o + i sin 371.3o)=

5.09(cos 11.3o + i sin 11.3o)=

*Note: Angles are expressed 0o ≤ θ ≤ 360o unless otherwise stated.

Example 2: Find the product of

Solution:

Doing these calculations prior to substituting into the rule simpli-
fies the process.

Example 3: Find the quotient of

Solution:

Express each number in polar form.
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Example 4: Find the quotient of the two complex numbers and

Solution:

Lesson Summary

In this lesson you learned how to apply the general rules for the multiplication and the division of complex
numbers in polar form. If the numbers are given in polar form and the basic operations of multiplication and
division are performed, the product or quotient can then be converted to standard form, if required.

Points to Consider

We have performed the basic operations of arithmetic on complex numbers, but we have not dealt with
any exponents other than 2 or any roots other than .

Are these the only ones that exist for complex numbers?

How are operations like those mentioned above carried out on complex umbers?

Applications and Trigonometric Tools: Real-Life Problem

Learning Objectives

A student will be able to:
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• Solve everyday problems that require you to use the product and/or quotient theorem of complex numbers
in polar form to obtain the correct solution.

Introduction

We have learned how to determine both the product and the quotient of complex numbers that are expressed
in polar form. Now it is time to apply these procedures to real – life problems.

1. The electric power (in watts) supplied to an element in a circuit is the product of the voltage e and the
current i (in amps). Find the expression for the power supplied if volts and

amperes. Note: Use the formula P = ei.

Solution: watts

2. If the angular velocity of a wire rotating through a magnetic field is w, the capacitive and inductive reac-
tances are determined by the relation:

and

If R = 12.0 ohms, L = 0.300H, C = 250µF, and w = 80.0rad/s, find the impedance between the current and
the voltage.

Solution: X C = 50 ohms X L = 24 ohms

3. In a series alternating current with a resistor, an inductor and a capacitor, R = 6250 ohms, Z = 6720 ohms,
and XL = 1320 ohms. Determine the phase angle.

Solution: θ = -21.6o

4. For an alternating current circuit in which R = 3.5 ohms, XL = 6.20 ohms, and XC = 7.35 ohms, find the
impedance between the current and the voltage.

Solution: Z = 3.68 ohms.

De Moivre’s Theorem: Powers and Roots of Complex Numbers

Learning Objectives

A student will be able to:

• Use De Moivre’s Theorem to find the powers of complex numbers in polar form.

Introduction

The basic operations of addition, subtraction, multiplication and division of complex numbers have all been
explored in this chapter. The addition and subtraction of complex numbers lent themselves best to those in
standard form. However multiplication and division were easily performed when the complex numbers were
in polar form. Another operation that is performed using the polar form of complex numbers is the process
of raising a complex number to a power.

The polar form of a complex number is r(cos θ + i sin θ). If we allow z to equal the polar form of a complex
number, it is very easy to see the development of a pattern when raising a complex number in polar form
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to a power. To discover this pattern, it is necessary to perform some basic multiplication of complex numbers
in polar form.

If z = r(cos θ + i sin θ) and z2 = z ∙ z then:

z2 = r(cos θ + i sin θ) r(cos θ + i sin θ)

z2 = r 2 [cos (θ + θ) + i sin (θ + θ)]

z2 = r 2 (cos 2θ + i sin 2θ)

Likewise, if z = r(cos θ + i sin θ) and z3 = z2 ∙ z then

z3 = r 2(cos 2θ + i sin 2θ) r(cos θ + i sin θ)

z3 = r 3 [cos (2θ + θ) + i sin (2θ + θ)]

z3 = r 3 (cos 3θ + i sin 3θ)

Again, if z = r(cos θ + i sin θ) and z4 = z3 ∙ z then

z4 = r 4(cos 4θ + i sin 4θ)

De Moivre’s Theorem

These examples suggest a general rule valid for all n. We offer this rule and assume its validity for all n
without formal proof, leaving the proof for later studies. The general rule for raising a complex number in
polar form to a power is called De Moivre’s Theorem, and has important applications in engineering, partic-
ularly circuit analysis. The rule is as follows:

z n = [r(cos θ + i sin θ)]n = r n(cos nθ + i sin nθ)

Let z = r(cos θ + i sin θ) and let n be a positive integer.

Notice what this rule looks like geometrically. A complex number taken to the nth power has two motions:
First, its distance from the origin is taken to the nth power; second, its angle is multiplied by n. Conversely,
the roots of a number have angles that are evenly spaced about the origin.

Example 1: Find. [2(cos 120o + i sin 120o)]5

Solution:

Using De Moivre’s Theorem:
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is in the third quadrant so both
are negative.

Example 2: Find

Solution:

The polar form of is

Now use De Moivre’s Theorem:

Write the result in standard form.
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Lesson Summary

In this lesson you discovered the pattern for raising complex numbers in polar form to a power. This pattern
was then transferred into a general rule. This general rule is called De Moivre’s Theorem.

Points to Consider

• If a complex number in polar formed can be raised to a power, can the roots of a complex number be
determined?

• If the roots can be determined, will some form of De Moivre’s Theorem be used?

• What do powers and roots of complex numbers look like on the complex plane.

Review Questions

1. Show that z3 = 1, if

2. Rewrite the following in rectangular form: [2(cos 315o + i sin 315o)]3

Answers

Express z in polar form:

The polar form is z = 1 (cos 120o + i sin 120o)

zn = [r(cos θ + i sin θ)n = r(cos nθ + i sin nθ)

z3 = 1 3 [cos3 (120o) + i sin (120o)]

z3 = 1(cos 360o + i sin 360o)

z3 = 1(1 + 0i)

z3 = 1

There are two other cube roots of 1 in the complex plane. Can you find them and plot them on the complex
plane? What do the three roots look like geometrically?
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2.

and or

is in the third quadrant so both are negative.

nth Root Theorem

Learning Objectives

A student will be able to:

• Find the nth roots of complex numbers in polar form.

Introduction

We have explored all of the basic operations of arithmetic as they apply to complex numbers in standard
form and in polar form. The last discovery is that of taking roots of complex numbers in polar form.

We have discovered the general rule for raising a complex number in polar form to a power. This general
rule is known as De Moivre’s Theorem. This rule will be used to develop another general rule –one for
finding the nth root of a complex number written in polar form.

As before, let z = r(cos θ + i sin θ) and let the nth root of z be ν = s (cos α + i sin α)

615



nα can be any coterminal angle with θ.cosnα + i sin nα = cos θ + i sin θ

Therefore, for any integer k, v is an nth root of z if and

The n distinct nth roots of r(cos θ + i sin θ) are determined when k = 0, 1, 2... (n – 1).

The general rule for finding the nth roots of a complex number if z = r(cos θ + i sin θ) is:

, where k = 0, 1, 2... n - 1.

Let’s begin with a simple example and we will leave in degrees.

Example 1: Find the two square roots of 2i.

Solution:

Express 2i in polar form.

If x = 0 then

To find the other root, add 360o to θ
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Example 2: Find the three cube roots of

Solution:

Express in polar form:

Lesson Summary

In this lesson you learned that it was possible to determine the nth root of a complex number in polar form.
De Moivre’s Theorem, which is used to raise a complex number in polar form to a power, can be adapted
for finding the roots because roots are merely powers with fractional exponents.

Points to Consider

• If the root of a complex number in polar form can be determined, can the solution to an exponential
equation be found inn the same way?

617



• What do the roots of a number look like when plotted together on the complex plane?

Review Questions

1. Find .

2.

Remember the principal root is the positive root i.e. so
the principal root is +3.

Find the principal root of (1 + i)1/5.
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Answers

1.

and

and

Polar From

2.

In standard form and this is the principal root of .
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Solve Equations

Learning Objectives

A student will be able to:

• Solve equations(find their roots) using the general rule for nth terms.

Introduction

The roots of a complex number are cyclic in nature. This means that when the roots are plotted on the
complex plane, the nth roots are equally spaced on the circumference of a circle.

Since you began Algebra, solving equations has been an extensive topic. Now we will extend the rules to
include complex numbers. The easiest way to explore the process is to actually solve an equation. The so-
lution can be obtained by using De Moivre’s Theorem.

Example 1:

Consider the equation x 5 - 32 = 0. The solution is the same as the solution of x 5 = 32. In other words, we
must determine the fifth roots of 32.

Solution:

and
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Write an expression for determining the fifth roots of 32 = 32 + .0i

for

for

for

for

for

Lesson Summary

In this lesson, you extended your knowledge of De Moivre’s Theorem to include solving equations. The
process was the same as that followed to determine the roots of a complex number in polar form.

Points to Consider

• If the solutions to the equation were represented graphically, would the result be cyclic in nature?

• Does the number of roots have anything to do with the shape of the graph?

Review Questions

1. Solve the equation x 4 + 1 = 0

Answers

1.

Write an expression for determining the fourth roots of x 4 = -1 + 0i
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for

for

for

Applications, Trigonometric Tools: Powers and Roots of Complex

Numbers

Learning Objectives

• Incorporate geometry with the results of applying De Moivre’s Theorem.

Introduction

In this lesson we will explore the cyclic nature of the roots of a complex number. The nth roots of a complex
number, when graphed on the complex plane, are equally spaced around a circle. All that is necessary to
graph the roots is one of the roots and the radius of the circle.

1. Calculate the three cube roots of 1 and represent them graphically. When you have successfully completed
this task, plot the fifth roots of 32 that you found in the previous lesson. What shape did the roots form? A
pentagon

Solution:

In standard form, 1 = 1 + 0i r = 1 and θ = 0

The polar form is 1 + 0i = 1 [cos (0 + 2πk) + i sin (0 + 2πk)]

The expression for determining the cube roots of 1 + 0i is:

For k = 0, k = 1 and k = 2 the three cube roots of 1 are
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When these three roots are represented graphically, the three points, on the circle with a radius of , form
a triangle. (Three roots resulted in the geometric shape – a triangle)

2. Jessie Neal is an engineer for Eastlink Communications. Her job involvesmanaging the location of antennae
and signal towers for mapping relay signals. The figure below shows the location of a transmitting tower T
and a possible location of antenna A for receiving the signal.

The transmitting tower T emits the signal that could be picked up by an antenna located at A. The location
of A is not definite and depends upon the strength of the signal between T and A. The fixed pointO is r units

from T. and OA = x1. The length of L will determine the location of A. As L increases, the
strength of the signal decreases. By using the Pythagorean theorem and polar coordinates, Josie is able to
determine the length of L and thus interpret the strength of the signal.

Calculate L if r = 28km, θ = 60o, and x1 = 7 km.

Solution: L = 25.2 km.

Trigonometric Applications:

The computer software program, Autograph, is an excellent resource for graphing the roots of a complex
number in polar form. The coordinates are easily entered and the software plots the points when the coordi-
nates are entered. This program also allows you to edit the axis so that the resulting graph fits nicely into a
document.
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