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Stem cells are important to generate all specialized tissues at an
early life stage, and in some systems, they also have repair
functions to replenish the adult tissues. Repeated cell divisions
lead to the accumulation of molecular damage in stem cells,
which are commonly recognized as drivers of ageing. In this
paper, a novel model is proposed to integrate stem cell
proliferation and differentiation with damage accumulation in
the stem cell ageing process. A system of two structured PDEs is
used to model the population densities of stem cells (including
all multiple progenitors) and terminally differentiated (TD) cells.
In this system, cell cycle progression and damage accumulation
are modelled by continuous dynamics, and damage segregation
between daughter cells is considered at each division. Analysis
and numerical simulations are conducted to study the steady-
state populations and stem cell damage distributions under
different damage segregation strategies. Our simulations suggest
that equal distribution of the damaging substance between stem
cells in a symmetric renewal and less damage retention in stem
cells in the asymmetric division are favourable strategies, which
reduce the death rate of the stem cells and increase the TD cell
populations. Moreover, asymmetric damage segregation in stem
cells leads to less concentrated damage distribution in the stem
cell population, which may be more robust to the stochastic
changes in the damage. The feedback regulation from stem cells
can reduce oscillations and population overshoot in the process,
and improve the fitness of stem cells by increasing the
percentage of cells with less damage in the stem cell population.
1. Introduction
Stem cells are characterized by their ability to give rise to a variety
of cell types through self-renewal and differentiation [1]. Although
the process is very dynamic, the stem cell population is stable and
remains almost steady. When a stem cell divides, each progeny
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Figure 1. Cell divisions and damage segregation in stem cells. (a) Three types of division in stem cell population: SR stands for
symmetric renewal, ASR & D stands for asymmetric renewal and differentiation and SD stands for symmetric differentiation.
(b) Commonly recognized ageing factors, such as protein aggregates, dysfunction organelles and DNA damage are segregated
asymmetrically between two cells during division.
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has the potential to remain as a stem cell (self-renewal) or becomes a cell with a more specialized function
(differentiation) (figure 1a). If the division produces the same type of cells, such as two stem cells and two
differentiated cells, it is called a symmetric division. On the other hand, if the division produces two
different types of cells, i.e. a stem cell and a differentiated cell, then it is called an asymmetric
division. Available data suggest that most stem cells are able to switch between symmetric and
asymmetric divisions, and the balance between these modes is controlled by various internal and
external signals to produce appropriate numbers of stem and differentiated cells [1–3].

Stem cells can be found in most mammalian tissues, and they participate in tissue repair in response
to damage and maintaining tissue homeostasis [4,5]. Research suggests that the decline in adult tissue
maintenance and the increase in cancer formation might be a consequence of stem cell ageing [6].
Although age-related manifestation in stem cell population and function differ across tissues and
organisms, decline in regenerative capacity due to depletion or dysfunction of stem cells is a hallmark
[7]. Protein aggregates, dysfunction organelles and DNA damage are commonly identified as factors
of ageing [4,5]. To slow down the accumulation of ageing factors, a hypothesis suggests that mitotic
cells (actively dividing cells) might asymmetrically segregate damage away from the cell whose fate is
to become a new stem cell [8]. The asymmetric inheritance of cellular components in dividing cells
was first observed in yeast, and has been extensively studied over the past decades. In yeast,
carbonylated proteins, extrachromosomal ribosomal DNA circles and dysfunction mitochondria are
retained by a mother cell during asymmetric division, while its daughter is rejuvenated with little
damage [9–11]. Recent evidence suggests that stem cells may employ a similar mechanism to protect
one progeny from ageing [12–18] (figure 1b). An asymmetric partition of damaged proteins in stem
cell division was observed in adult flies’ intestine and germline [12], mammalian stem cells [16], and
murine neural stem cells [18]. Despite these emerging findings, it still remains elusive how stem cells
cope with damage accumulation and how this is related to stem cell proliferation and differentiation.

Driven by the lack of knowledge of mechanisms regulating stem cell maintenance and differentiation
in the ageing process, mathematical models have been employed to address key questions and provide
quantitative insights into stem cell renewal and differentiation, as well as the decline of cellular functions
in the ageing process. Several mathematical models were proposed to study stem cell population and
ageing, which fall into two categories: individual-based modelling and continuous population
modelling [19,20].

Individual-based modelling simulates individuals or agents that have a unique set of state variables
and usually interact with each other in the local environment [20,21]. The advantages of this approach
include that it can take stochastic effects into consideration to describe phenomena on the level of
individual cells, and that detailed molecular dynamics and cell–cell interaction can be incorporated. In
[22], a stochastic model of stem cell organization was introduced to explain the observed heterogeneity
of haematopoietic stem cells by the stochastic switching between the growth environments and the self-
organizing process based on within-tissue plasticity properties. Assuming that cell proliferation is
negatively affected by telomere shortening, an agent-based stochastic model [23] was proposed to study
telomere-dependent stem cell replicative ageing. This model provides a good approximation of the
qualitative growth of cultured human mesenchymal stem cells. In [24], mutation accumulation in large
populations of stem cells was modelled by a discrete-time branching process where each division
produces 0, 1 or 2 stem cell daughters, each of which randomly accumulates a mutation. This model
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demonstrated that symmetric division could reduce the risk of accumulating phenotypically silent heritable

damage in individual stem cells. However, a major drawback of individual-based modelling is the
computational inefficiency, especially when the population is large. When a population is large and
homogeneous, continuous population model using ODEs [25–31] or PDEs [32–38] are more appropriate
to describe the population dynamics. In [39], a maturity-structured two-compartment model was
proposed to study the regulation of mammalian red blood cell production. The model consists of two
transport equations describing population densities of mitotic cells and post-mitotic cells, and an ODE
describing hormone dynamics. The model showed that a perturbation of blood-donation type leads to
damped oscillatory return to normal status, and that an elevated random peripheral destruction of red
blood cells leads to sustained oscillations. In [40], a three-compartment ODE model was applied to
study the dynamics of stem cells, transit-amplifying cells and terminally differentiated (TD) cells in the
olfactory epithelium of mice. The authors identified conditions on parameters for the stability of the
system when negative feedback loops are present either as Hill functions or in more general forms.
Their analysis suggested that two factors, autoregulation of the proliferation of transit-amplifying
progenitor cells and low death rate of TD cells, enhance the stability of the system. In [41], the authors
applied the mean-field approach to approximate an agent-based model for studying heterogeneity
within the haematopoietic stem cell population. Their proposed PDE model can capture the key
structure of the model including the ‘age’-structure of stem cells and improve the efficiency of the
numerical algorithms. In [42], a system of PDEs was used to model mutation accumulation hierarchy
and differentiation hierarchy of cells with stem cells on the top level and to examine cancer
development and growth. In their model, maturity is treated as a continuous variable, while the
number of mutation accumulation and telomere shortening are treated as discrete cell classes. The
boundary conditions describe transition among different cell classes at division: cells lose telomeres and
acquire mutations. The study showed that the more mutation classes and higher proliferation rate are
sufficient to explain the faster growth of the cancer cell population.

To understand the effects of different damage segregation strategies on stem cell ageing, we propose a
novel model to integrate stem cell proliferation and differentiation with damage accumulation in the stem
cell ageing process, and feedback regulation from stem and TD cells. A system of hyperbolic PDEs is
constructed to model two compartments in cell lineage: mitotic cells (stem cells) and post-mitotic cells
(TD cells). It is assumed that the cell cycle progression of stem cells is a continuous process while
stem cell division is discrete. The boundary conditions of the PDEs model the stem cell renewal and
differentiation at division when damage segregation takes place. Cell death is modelled as an outcome
of damage accumulation. Stem cell proliferation and differentiation are regulated by feedbacks from
the population of TD cells and stem cells. Ageing effect is modelled through the inhibition from the
damage accumulation on stem cell proliferation and self-renewal. Our analysis and numerical
simulations are carried out to compare the effects of different regulation and damage segregation
strategies on population dynamics and stem cell fitness, which have not been discussed in the
previous studies of stem cell regulation.

Our simulations suggest that equal distribution of the damaging substance between stem cells in
symmetric renewal and less damage retention in stem cell in asymmetric division are favourable
strategies, which reduce the death rate of stem cells and increase TD cell populations. Also,
asymmetric damage segregation in stem cells leads to less concentrated damage distribution in stem
cells population, which may be more robust to the stochastic change in damage. Compared to the
feedbacks solely from TD cells, the feedback regulation from stem cells (autoregulation) can reduce
oscillations and population overshoot in the process, and improve the fitness of stem cells by
increasing the percentage of stem cells with less damage in the stem cell population.

This paper is structured as follows. The general description of our model is given in §2. In §3, a simple
model without feedback regulations is presented to analyse the relation between population dynamics
and various parameters. In §4, two more complex models with feedbacks from TD cells and stem
cells are proposed to study different regulation mechanisms and the effect of segregation strategies.
2. Model description
In our mathematical model, a simplified conceptual model, we consider two types of cells: mitotic cells,
which include stem cells and multiple progenitor cells, and post-mitotic cells, which include all TD cells.
For simplicity, we call mitotic cells stem cells, and denote its population density by S; and we call
post-mitotic cells TD cells, and denote its population density by T.
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Figure 2. Model descriptions of two-compartment stem cell system. Stem cells (mitotic cells) and TD cells ( post-mitotic cells) are
modelled as two compartments. (a) Stem cells renew themselves and replenish TD cells. The cell cycle progression (p) and damage
accumulation (a) are modelled as continuous processes. Stem cell division and damage segregation take place at the end of its cell
cycle (p= p�). Cells die when damage reaches a lethal threshold (a� or ac). (b) In the simple model in §3, the proportions of three
types of division are constants δi, and the damage segregation rules are fixed, i.e. αi, βi, γi are constants.
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To consider the evolution of cell populations, we define both S(t, p, a) and T(t, p, a) as functions of
time t and two other continuous biological state variables: cell cycle progression p and damage
level a. To describe cell maturation and ageing processes, we make the following assumptions:

—When the amount of damage a accumulates and reaches a certain threshold a�, stem cells die by an
apoptosis-like process as a result of ageing via damage accumulation; similar to stem cells, when
the amount of damaged substance reaches a certain threshold ac, TD cells are removed by an
apoptosis-like process.

— Cell cycle progression p is an indicator variable, for which a stem cell divides when p increases to a
threshold p�, unless damage has already reached a threshold a�, in which case the stem cell is
removed before division. Although TD cells no longer divide, for simplicity, we keep cell cycle
progression variable p in T, but assume the upper boundary for p is infinity.

By conservation law, a system of transport equations are derived to describe the evolution of S and T:

@S
@t

þ @

@p
(VpS)þ @

@a
(VaS) ¼ 0 (2:1)

and

@T
@t

þ @

@p
(UpT)þ @

@a
(UaT) ¼ 0, (2:2)

where Vp and Up are rates of cell cycle progression for stem and TD cells, respectively; Va and Ua are rates
of damage accumulation for stem and TD cells, respectively. Note that various of feedbacks may regulate
cell cycle progression and cell damage accumulations, and these functions will be specified in the
following sections.

The boundary conditions at p= 0 describe the reproduction/division process accompanied by the
segregation of damage substances. First, we assume that there are three types of cell divisions:

(i) The daughter cells after division are two stem cells; this occurs with probability δ1.
(ii) The daughter cells after division are two TD cells; this occurs with probability δ2.
(iii) The daughter cells after division are one stem cell and one TD cell; this occurs with probability δ3.

One of these three types of cell division occurs at the end of cell cycle p= p� with probability δ1, δ2 or δ3,
where δ1 + δ2 + δ3 = 1 (figure 2a). These three probabilities may be regulated by various feedbacks and will
be specified in later sections.
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Upon the completion of a cell cycle, the stem cell cycle progression p will be reset to zero and the

damaged proteins are inherited from mother to daughters. The damage inheritance can be described
by transition kernels ri,S(a, a0) and ri,T(a, a0). Based on the above assumptions, the boundary conditions
for S and T cells at p=0 are as follows:

VpS(t, 0, a) ¼
ða�
0
d1Vpr1,S(a, a0)S(t, p�, a0) da0 þ

ða�
0
d3Vpr3,S(a, a0)S(t, p�, a0) da0 (2:3)

and

UpT(t, 0, a) ¼
ða�
0
d2Vpr2,T(a, a0)S(t, p�, a0) da0 þ

ða�
0
d3Vpr3,T(a, a0)S(t, p�, a0) da0: (2:4)

The first term of the right-hand side of (2.3) represents the stem cell production process through type
(i) cell division; the second term of the right-hand side of (2.3) represents the stem cell process
through type (iii) cell division; the first term of the right-hand side of (2.4) represents the TD cell
production process through type (ii) cell division; the second term of the right-hand side of (2.4)
represents the TD cell production process through type (iii) cell division. The transition kernel ri,S(a, a0)
describes how daughter stem cells with damage a come from the mother cells with damage a0 after
the i-th type of division; the transition kernel ri,T(a, a0), describes how daughter TD cells with damage
a come from the mother cells with damage a0 in the i-th type of division. The transition kernels satisfy
the following conservation conditions:ða�

0

ða�
0
r1,S(a, a0) dada0 ¼ 2,

ða�
0

ðac
0
r2,T(a, a0) dada0 ¼ 2,ða�

0

ða�
0
r3,S(a, a0) dada0 ¼ 1,

ða�
0

ðac
0
r3,T(a, a0) dada0 ¼ 1,ða�

0
a r1,S(a, a0) da ¼ a0,

ðac
0
a r2,T(a, a0) da ¼ a0ða�

0
a r3,S(a, a0) daþ

ðac
0
a r3,T(a, a0) da ¼ a0:

Since type (i) and type (ii) divisions induce two daughter stem cells and two daughter TD cells,
respectively, the integrals of r1,S(a, a0) and r2,T(a, a0) equal 2; since type (iii) division induces one
daughter stem cell and one daughter TD cell, the integrals of r3,S(a, a0) and r3,T(a, a0) both equal one.
The last three integrals are based on the assumption that the amount of damage is conserved during
cell division. No-flux conditions on the boundary a=0 are imposed to ensure conservation of
population in the direction of a

S(t, p, 0) ¼ 0, for t . 0, p [ [0, p�] (2:5)

and

T(t, p, 0) ¼ 0, for t . 0, p [ [0, 1): (2:6)

For TD cells, we assume that the population density of TD is zero when p is very large

lim
p!1T(t, p, a) ¼ 0: (2:7)

The populations of stem and TD cells at time t are given by the integrals

PS(t) ¼
ða�
0

ð p�

0
S(t, p, a) dpda and PT(t) ¼

ðac
0

ð1
0
T(t, p, a) dpda:

Based on this model, we will study the population dynamics under two scenarios:

(i) For the simplest case where no feedbacks are involved in regulating the stem cell division and
differentiation, the dynamics of stem cell population mainly depend on stem cell damage
segregation rules. Different segregation rules may result in exploded, stabilized or extinct stem
cell pool.

(ii) Feedbacks from TD cells and stem cells are introduced and population evolutions are simulated to
study the effect of different damage segregation rules.
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3. Model without feedback regulations

In this section, we start with the simple model where no feedbacks are included, and we additionally
make the following assumptions to simplify the model (figure 2b):

— Cell cycle progression velocities Vp= vp and Up=up are constants, so are the damage accumulation
rates Va= va and Ua=ua.

— The portions of three types of divisions δi are constants.
—When stem cells divide, damage is partitioned into portions α1 and α2 between stem cells, β1 and β2

between TD cells, or γ1 and γ2 between stem and TD cells, where α1 +α2 = 1, β1 + β2 = 1 and γ1 + γ2 = 1.
Without loss of generality, we assume α1≤ α2 and β1≤ β2.

Under these assumptions, the transition kernels in the boundary conditions are Dirac delta functions

r1,S(a, a0) ¼ d
a
a0
� a1

� �
þ d

a
a0
� a2

� �
, r2,T(a, a0) ¼ d

a
a0
� b1

� �
þ d

a
a0
� b2

� �
,

r3,S(a, a0) ¼ d
a
a0
� g1

� �
, r3,T(a, a0) ¼ d

a
a0
� g2

� �
,

and the boundary conditions in (2.3) and (2.4) become

S(t, 0, a) ¼ d1
a1

S
�
t, p�,

a
a1

�
þ d1
a2

S
�
t, p�,

a
a2

�
þ d3
g1

S
�
t, p�,

a
g1

�
(3:1)

and

T(t, 0, a) ¼ vp

up

d2
b1

S
�
t, p�,

a
b1

�
þ vp

up

d2
b2

S
�
t, p�,

a
b2

�
þ vp

up

d3
g2

S
�
t, p�,

a
g2

�
: (3:2)

Now, we study the role of the damage segregation rules in the long-term behaviour of the stem cell
population. Since the segregation rule is fixed, after sufficiently long time, the cellular damage at the
end of cell cycle, temporarily assuming no death, converges to a limit damage band

p�

vp(1� v1)
,

p�

vp(1� v2)

� �
,

where ω1 and ω2 are the minimum and the maximum of α1, α2, γ1, respectively. The derivation of damage
limit band can be found in appendix A1.

The population dynamics turns out to depend on the proportions of three division types of stem
cells and the position of the lethal threshold a�/va with respect to the limit damage band [ p�/vp(1−ω1),
p�/vp(1−ω2)]. Before proceeding, we define a key lumped parameter for studying the long-term
population behaviour

fr ¼ 2d1 þ d3
2

¼ 1þ d1 � d2
2

:

Here, the parameter fr is called the self-renewal fraction. Using the limit damage band and the self-renewal
fraction, we can find some conditions for different long-term behaviours.

Proposition 3.1. Stem cells become extinct, if the renewal fraction fr<1/2 or the limit damage band is
completely above the lethal threshold, i.e. a�/va< p�/vp(1−ω1).

Proposition 3.2. Assume that the limit damage band lies completely below the lethal threshold, i.e. a�/va>
p�/vp(1−ω2) and ð p�

0

ða��va(p��p)=vp

0
S
�
0, p, a

�
dadp . 0:

Then stem cell population blows up if the renewal fraction fr>1/2, or is eventually conserved if fr=1/2.

The proofs of propositions 3.1 and 3.2 can be found in appendix A 2. In the situations shown in
propositions 3.1 and 3.2, either damage accumulation does not affect cells or no cell can survive after
sufficiently long time. Next, we consider the more intriguing intermediate situations as follows, based
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on the following assumptions on the renewal fraction and the lethal threshold a�/va lies within the limit

damage band

fr .
1
2

and
p�

vp(1� v1)
� a�

va
,

p�

vp(1� v2)
: (3:3)

Under the above assumptions in (3.3), there are many situations of damage segregation rules, and
more importantly not all of the situations are biologically meaningful. Here, we will focus on one
situation: the damage retention in stem cells through asymmetric division is smaller than the damage
segregation portions in symmetric stem cell renewal, i.e.,

g1�a1,a2: (3:4)

This setting is based on the biological observation that asymmetric division is a favourable mechanism
for stem cell lineage to remove the damage. For avoiding the case that the lethal threshold a�/va lies
below p�/va(1− α1), i.e. all asymmetrically renewing stem cells are destined to die, we further assume that

p�

vp(1� a1)
,
a�

va
: (3:5)

By the assumptions (3.3)–(3.5), we obtain that

fr.
1
2

and
p�

vp(1� g1)
� p�

vp(1� a1)
,
a�

va
,

p�

vp(1� a2)
: (3:6)

Under the assumption (3.6), the stem cell population may approach zero or blow up in the long-term
behaviour. The following proposition provides a condition to guarantee extinction of stem cells, as
well as a condition for population blow-up, with the proof given in appendix A 2.

Proposition 3.3. Assume that (3.6) holds.

(a) Define

n ¼ min m [ N:
a�

va
,

p�

vp(1� a2)
� p�

vp

1
1� a2

� 1
1� g1

� �
am
2

� 	
: (3:7)

If there exists a combination of δi such that (2fr)
n � dn1 , 1, then the stem cell population is eventually zero.

(b) If δ2 = 0 and ð p�

0

ða��va(p��p)=vp

0
S
�
0, p, a

�
dadp . 0,

then the stem cell population goes to infinity, or is bounded below to avoid stem cell extinction.

From proposition 3.3, we can obtain several necessary conditions to maintain the stem cell
population. Since the term (2fr)

n � dn1 is increasing with n and goes to infinity when n tends to infinity,
n has to be small enough to satisfy the condition (2fr)

n � dn1 , 1 in proposition 3.3. From the definition
of n, we observe that if

— the difference between a�/va and p�/vp(1− α2) becomes small, or
— the difference between 1/(1− α2) and 1/(1− γ1) becomes large, or
— the right-hand side p�=vp(1� a2)� ( p�=vp)(1=(1� a2)� (1=(1� g1)))am

2 becomes large for each m,

the value of n will increase and then (2fr)
n � dn1 , 1 cannot be satisfied in most of the combinations of δ1,

δ2 and δ3. This result provides some conditions of the parameters to prevent stem cell extinction.
Let us discuss the above three possibilities. To reduce the difference between a�/va and p�/vp(1− α2),

the ratio of cell cycle progression speed vp to damage accumulation speed va should be large enough and
close to p�/a�(1− α2); to increase the difference between 1/(1− α2) and 1/(1− γ1), damage retention in
asymmetric division should decrease, i.e. γ1 should be small; to increase the right-hand side
p�=vp(1� a2)� ( p�=vp)(1=(1� a2)� (1=(1� g1)))am

2 for each m, damage distribution in self-renewal
should become more symmetric, i.e. α1 should increase to close to 0.5. In conclusion, when vp/va
increases, γ1 decreases or α1 increases, it may provide a better condition to maintain the stem cell
population. These results are supported by the numerical simulations shown in figure 3.
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In figure 3, we study the long-term population dynamics with different combinations of the division
probabilities δ1 and δ3. We uniformly generate 600 pairs of δ1 and δ3 with 0< δ1 + δ3≤ 1 and 2δ1 + δ3≥ 1.
We skip the region 2δ1 + δ3 < 1 as it implies stem cell extinction whatever other parameters are (by
proposition 3.1). For each pair of δ1 and δ3, the system is solved by the numerical method described
in appendix A 5. The blue regions in figure 3 represent the cases of stem cell extinction and the yellow
regions represents the non-extinction cases (the stem cell population may tend to a constant non-zero
value, approach infinity, or keep oscillating). When vp/va increases (in figure 3a, vp/va=1.67;
in figure 3b, vp/va=2), γ1 decreases (in figure 3c, γ1 = 0.3; in figure 3d, γ1 = 0.05) or α1 increases (in
figure 3e, α1 = 0.1; in figure 3f, α1 = 0.45), the blue regions become smaller (the yellow regions become
larger), which implies that there are more combinations of parameters (δ1, δ3) allowing stem cell survival.

For most of the combinations of parameters, the stem cell populations in the models without feedback
regulation blow up to infinity or diminish to zero. Although the no-regulation assumption is not realistic,
the simple model not only provides us a guidance on the selection of parameters used in the model with
feedbacks but also reveals that population dynamics are results of all factors: the cell cycle progression of
stem cell, damage accumulation, fractions of divisions and damage segregation rules. In the next section,
we will consider the combinations of parameters that guarantee exponential growth in the stem cell
population and study feedback regulations that could lead to non-zero steady-state population.
4. Model with feedback regulations
Biological evidence shows that some mammalian stem cells can switch between symmetric and
asymmetric divisions in response to external and internal regulations [1,3]. For example, both
epidermal [43] and neural [44] progenitors change from the primarily symmetric division that
expands the stem-cell pool during embryonic development to primarily asymmetric in mid to
late gestation. It is also observed that nervous [45] and haematopoietic [46] stem cells in adults can
divide symmetrically to replace lost cells through injury, although they divide asymmetrically under
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steady-state conditions. In particular, two types of feedbacks have been proposed [34,47,48] (also see
figure 4a): long-range feedbacks responding to the population of TD cells, and short-range feedbacks
acting in an autocrine fashion from stem cells. These two types of feedbacks regulate stem cell
population through controlling two types of parameters:

(i) the speed of stem cell division, Vp (or stem cell cycle progression),
(ii) the probabilities of three types of cell division, δi (differentiation versus renewal).

However, the underlying mechanisms are not fully understood. In addition, the effect of damage
segregation rules on cell population is completely unknown. In the following, we use mathematical
models with different feedbacks and damage segregation rules to study which types of feedback and
damage segregation mechanisms are more plausible given the experimental observations.

For simplicity, we assume that damage segregation rules are fixed, i.e. αi, βi, γi are constants. Based on
the results from the simple model in §3, to ensure that the stem cell population will blow up to infinity
without any feedback regulation, additional assumptions are made:

— Self-renewal fraction fr . 1
2.

—Damage accumulation speed Va= va is slower than cell cycle progression of stem cells.

4.1. Feedback only from TD cells
The long-range feedback, which acts through signals sent by differentiated cells and inhibits stem cell division
and self-renewal, has been biologically observed in numerous tissues, including muscle [49], bone [50], skin
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[51], nervous system [52] and haematopoietic systems [53]. Despite this wealth of data, there is less

understanding of the exact mechanisms of feedback regulation. A significant number of mathematical
models have been developed to explore the possible mechanisms behind feedback regulations [26,27,32,34–
40,54,55]. The dynamics of signalling molecule s(t) can be described by a simple ODE as follows:

d
dt

s(t) ¼ a� (mþ bPm)s(t), (4:1)

where α is a constant synthesis rate, and the degradation is proportional to the level of s and affected by the cell
populationPof stemorTDcells. Since the dynamics of the signallingmolecules take place on a faster time scale
than the processes of cell proliferation and differentiation, we assume that the feedback signal can be
approximated by a quasi-steady-state solution [25,27,32,34–40,54,55]. By properly rescaling s, the quasi-
steady state of s is given by a Hill function

s ¼ 1
1þ (kP)m

, (4:2)

where k is a regulation constant to account for the sensitivity to the cell population andm is the Hill exponent.
The function in (4.2) reflects the assumption that the signal intensity achieves its maximum in the absence of
cells and decreases asymptotically to zero if the number of cells increases. Note that Hill functions are widely
used to describe ligand–receptor interactions, which also makes them natural choices to model the actions of
secreted feedback factors [37].

According to biological evidence, we may model the feedback from TD cells in the following ways
(figure 4b): when stem cell or TD cell population is small (in the early stage of development or with
drastic loss due to injury), symmetric division predominates over asymmetric division; during the
stable stage (mid and late gestation or tissue homeostasis), stem cells switch to asymmetric division.
Such feedbacks may be added to the model by modifying division fractions δi as follows:

di(PT) ¼ d0i
1þ (kTi PT)

mT
, (4:3)

where i∈ {1, 2}, d0i are basal division fractions, kTi are regulation constants, mT is the Hill exponent and
PT(t) is the TD cell population. The remaining division fraction δ3 is defined as 1− δ1− δ2.

Recent studies on cell cycles of neural stem cells have shown evidence that TD cells may be a source of
signalling molecules that inhibits cell cycle progression of stem cells [56]. Therefore, besides the above
regulation on cell fate decisions, negative feedback from TD cells can also be involved in stem cell
proliferation Vp (cell cycle progression speed), i.e. excessive number of TD cell may slow down the
proliferation of stem cell, and hence reduce the population of both stem cells and TD cells. Thus, Vp

can be modified as

Vp(PT) ¼
vp

1þ (kTv PT)
mT

, (4:4)

where vp is the initial cell cycle progression speed and kTv is a regulation constant. For other velocities, we
set Va= va, Ua=ua and Up=up.

Among all parameters, we are most interested in the effect of segregation rules αi, βi, γi on the
population dynamics. A set of reasonable estimations of the parameters other than αi, βi, γi are chosen
based on appropriate biological and mathematical assumptions, and are shown in table 1. The
detailed reasoning of the selection of parameters is provided in appendix A.3.1. In brief, we assume
that initially, the stem cells are expanding, the cell cycle progression is fast, and the symmetric
renewal predominates in three types of division. In the rest of this subsection, we will focus on the
discussion of the effect of different combinations of segregation rules αi, βi, γi.

In the simulations, we consider the following situations: α1 varies from 0.1 to 0.5, indicating that the
symmetry in damage segregation increases between the two stem daughter cells; β1 varies from 0.1 to 0.5,
indicating that the symmetry in damage segregation increases between TD cells; γ1 varies from 0.1 to 0.9,
indicating that the damage retention in stem cells increases in asymmetric division. Under different
segregation rules, the following aspects are studied:

— the population size of TD cells and the population ratio of TD cells to stem cells at steady state;
— the death rate of stem cells and the fraction of three types of division at steady state; and
— the dynamics of population evolution and the damage distribution in stem cell population at steady

state.



Table 1. The choices of parameters, estimated based on biological evidence and previous modelling works, with details in
appendix A.3.1.

parameters meaning value

p� cell cycle threshold 1

a� damage level threshold for stem cell 1

ac damage level threshold for TD cell 1

vp maximum cell cycle progression speed of stem cells 0.2

va constant damage accumulation speed of stem cells 0.06

up constant cell cycle progression speed of TD cells 0.02

ua constant damage accumulation speed of TD cells 0.02

d01 maximum fraction of symmetric renewal of stem cells 0.6

d02 maximum fraction of symmetric differentiation of stem cells 0.3

d03 maximum fraction of asymmetric division of stem cells 0.1

kT1 regulation constant 10−8

kT2 regulation constant 0.5 × 10−8

kTv regulation constant 0.5 × 10−8

mT Hill exponent 2
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Figure 5. Model with feedback only from TD cells: TD cell population and population ratio at steady state for different combinations
of α1, β1 and γ1. The parameters used in these simulations are shown in table 1.
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4.1.1. Population size of TD cells and population ratio of TD cells to stem cells

Figure 5 shows that the damage distribution between TD cells in symmetric differentiation (β1 and β2)
does not affect population size at steady state. When the parameter β1, which determines how
damage is distributed between two TD cells in the symmetric differentiation of stem cells, varies from
0.1 to 0.5, neither stem cell population nor TD cell population has a big change. This result is
biologically meaningful, since the replenishment of TD cells is efficient compared to the loss of TD
cells due to damage accumulation. In the following part, we will focus on the case with β1 = 0.5.

Figure 5 also shows that as damage segregation αi between stem cells becomes more symmetric, TD
cell populations increase, while the ratios PT/PS are almost constant with a slight decrease. For fixed α1,
as damage retention γ1 in asymmetric division increases, both TD cell populations and the population
ratios decrease. Interestingly, when α1 = 0.5, although the populations of TD cells are very close for the
cases γ1 = 0.1, 0.3 and 0.5, the population ratios differ dramatically. Compared to γ1 = 0.1, one needs a
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larger stem cell pool to generate a similar number of TD cells when damage retention is relative higher,
i.e. γ1 = 0.5. Moreover, it would be very difficult to find explicit formulae for the populations, since the
population sizes at steady state are affected by all parameters as observed in the simulations.
However, when steady state exists, we can give an upper-bound estimate of the populations of stem
cells and TD cells, with details given in appendix A4.

4.1.2. Death rate of stem cells and fraction of three types of division

Other than studying the population size, we also compare the death rate of stem cells and the fraction of
three types of division at steady state. In our model, the death rates of stem cell (rS) and TD cell (rT) are
measured in the following way:

rS ¼
Ð p�
0 vaS(t, p, a�) dp

PS
and rT ¼

Ð1
0 uaT(t, p, ac) dp

PT
, (4:5)

where the numerators are population out-fluxes due to death and the denominators are the total
populations. Figure 6 shows that more equal distribution of damage in symmetric renewal and less
damage retention in asymmetric division result in a lower death rate of stem cells and less symmetric
division at steady state. According to our simulations, the segregation rules do not have much impact
on the death rate of TD cells, which ranges from 2.130× 10−4 to 3.345× 10−4. However, the death rate
of stem cells changes dramatically as we vary the segregation rules. From figure 6a, we can see that
the death rate of stem cells increases as α1 decreases or γ1 increases. The lowest death rate of stem
cells is attained when damage is equally distributed between stem cells in symmetric renewal and
damage retention is minimal in asymmetric division. To maintain the steady stem cell population and
to replenish the short-lived TD cells, a higher death rate should be associated with a fast turnover of
stem cells. Indeed, when we examine the fractions of three types of division, we find that the higher
death rate of stem cells is always associated with the higher fraction of symmetric renewal (figure 6b).
These results suggest that to maintain stabilized populations, tissues may have different mechanisms
that involve different damage segregation rules and division rules.

4.1.3. Dynamics of population evolution and damage distribution of stem cell population

The comparison of population dynamics among different combinations of α1 and γ1 (figure 7a) shows
that higher damage retention results in oscillations in population evolution. Oscillations start to
appear as we increase the damage retention γ1 in stem cells during asymmetric division (γ1 = 0.7 in
figure 7a). Also, the oscillations become more severe when the damage distribution among stem cells
in symmetric renewal becomes more symmetric (α1 = 0.5 and γ1 = 0.7 in figure 7a). Moreover,
population overshoots before steady state are observed in all cases with α1≠ 0.5.

The results above suggest that more equal distribution of damage in symmetric renewal and less damage
retention in asymmetric division are favourable segregation rules in four aspects: populations converge to
steady states faster without oscillations or severe population overshoot; the death rate of stem cells is
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much smaller than that of TD cells; asymmetric division predominates in three types of division at steady
state; not only the size of TD cell population is larger, the population ratio PT/PS is also larger.

However, the asymmetric damage segregation between stem cells in self-renewal may have benefits
that cannot be shown from the analysis of total populations as integrated results. Our PDE modelling
approach allows us to investigate more details of population density and damage distribution of stem
cells. Figure 7b gives the stem cell population densities corresponding to different segregation rules.
As we studied in §3, damage segregation rules determine the limit damage band after a sufficiently
long time. In particular, the less symmetric the segregation rules are, the wider the limit damage
bands will be. Although asymmetric segregation rules may result in a greater percentage of stem cells
inheriting more damage and accelerated death, it also leads to a higher percentage of healthier stem
cells with less damage. This can be observed in the samples shown in figure 7b. When the symmetry
of damage segregation in stem cell population increases, the damage distributions at the end of cell
cycle for stem cells become more concentrated, as such symmetry increases. The concentrated damage
distribution could be a disadvantage, since it is less resistant to external perturbations. In this sense,
we think that some stem cells may sacrifice the lower death rate for more diversified damage
distribution, in order to protect the stem cell pool from a possible unfavourable situation that may
lead to a sudden increase in damage.
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4.2. Feedback from both TD and stem cells

The maintenance of the stem cell pool is not only affected by signalling from mature cells, but also by the
stem cell pool itself. Stem cells reside in the so-called stem cell niche, where both cellular and non-cellular
components interact in order to control stem cell proliferation and differentiation [57–60]. The regulations
from the stem cell population include two aspects: a negative feedback control of stem cell proliferation
as a result of contact inhibition; and a self-renewal inhibition factor secreted by the stem cell niche,
in which case the more stem cells there are, the less likely stem cells will divide symmetrically.
Experiments also show that cells inheriting the majority of damage protein aggregates during
asymmetric division have an increased cell cycle length and tendency to differentiate [13,14,18].

In addition to feedback regulations from differentiated cells, we are also interested in how the
dynamics of populations would change if regulations from stem cells are included (figure 4c). Many
modelling works (e.g. [34,40]) only consider the feedbacks from stem cell populations, due to the
simplicity of their models. However, we include damage as a state variable in our model and could
simulate feedbacks from both the stem cell population and the stem cell cellular damage level.

Thus, in our model, we assume that the excessive stem cell population and elevated stem cell cellular
damage slow down stem cell proliferation and modify Vp in (4.4) as

Vp(PT , PS, a) ¼
vp

1þ (kTv PT)
mS þ (kSvPS)

mS
f(a), (4:6)

where

f(a) ¼ a1 þ b1
1þ e�ka1(a�a01)

is a decreasing function of a with sigmoid shape, in which ka1, a
0
1, a1 and b1 are constants.

We also assume that the excessive stem cell population inhibits stem cell symmetric division, and that
the elevated stem cell cellular damage promotes stem cell differentiation via decreasing stem cell self-
renewal. As a result, we modify δ1 and δ2 in (4.3) in the same way as above

d1(PT , PS, a) ¼ d01
1þ (kTi PT)

mS þ (kSi PS)
mS

g(a) (4:7)

and

d2(PT , PS, a) ¼ d02
1þ (kTi PT)

mS þ (kSi PS)
mS

, (4:8)

where

g(a) ¼ a2 þ b2
1þ e�kd2(a�a02)

is another function of a sigmoid shape with constants ka2, a
0
2, a2 and b2.

As a continuation of §4.1, our analysis still focuses on the discussion of segregation rules. In addition
to the parameters in table 1, the values of more parameters are given in table 2, for which the detailed
reasoning can be found in appendix A.3.2.

To examine the change in population dynamics after introducing feedbacks from stem cells, the same
combinations of segregation rules as in §4.1 are considered: α1 varies from 0.1 to 0.5, β1 varies from 0.1 to
0.5, and γ1 varies from 0.1 to 0.9. Here, we study the effect of the feedbacks from stem cells on the
following two aspects:

— the population size of TD cells and the population ratio of TD cells to stem cells at steady state; and
— the dynamics of population evolution and the damage distribution of stem cell population at steady

state.

4.2.1. Population size of TD cells and the population ratio of TD cells to stem cells

Similar to the model in §4.1, damage distribution βi between TD cells does not affect the results much.
Since the regulation is stronger when we consider feedbacks from both stem cells and TD cells, the
stabilized population of TD cells is smaller than that in §4.1 under the same parameters. It may not
be meaningful to directly compare the size of populations in different models, since we do not have



Table 2. The choices of additional parameters, estimated based on biological evidence and previous modelling works, with
details in appendix A.3.2.

parameters meaning value

kS1 regulation constant 10−7

kS2 regulation constant 0.25 × 10−7

kSv regulation constant 0.5 × 10−7

mS Hill exponent 2

a1, a2 constant for sigmoid regulation 1.1

b1, b2 constant for sigmoid regulation − 0.7

ka1 , k
a
2 stiffness parameter 20

a01, a
0
2 damage threshold for sigmoid regulation 0.75
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real experimental data. However, similar trends are observed in the model with the feedbacks from stem
cells (figure 8): for fixed α1, as damage retention γ1 in stem cell increases, both the TD cell population and
the population ratio PS/PT decrease; for fixed γ1, as damage segregation between stem cells becomes
more symmetric, the TD cell population increases, but the population ratio is almost unchanged. It is
worth mentioning that the population ratio increases a little bit for each damage segregation
configuration, after adding feedbacks from stem cells. This means that the regulation is more efficient,
since one needs a smaller stem cell pool to generate the same number of TD cells.
4.2.2. Dynamics of population evolution and damage distribution of stem cell population

A notable consequence of adding feedbacks from stem cells is the reduction of the oscillations in
population dynamics. Comparing figure 7a with figure 9a, after considering the feedbacks from stem
cells, the oscillations in population dynamics disappear even when γ1 is large, and that the population
overshoot problem resolves when α1 is small.

Since the feedbacks from stem cells described by (4.7) and (4.6) also depend on stem cell cellular
damage level, we want to examine the effect of such regulations on damage distribution at the end of
cell cycle by comparing the models with/without the feedbacks from stem cells (figures 7b and 9b).
Similar to §4.1, the damage distributions at the end of cell cycle become more concentrated, as the
degree of symmetry in damage segregation increases. However, compared to the results in §4.1
(figure 7b), the model with the feedback from stem cells (figure 9b) provides better fitness, since under
the same segregation rules, there are more cells with less damage at the end of cell cycle at steady state.
This effect becomes most significant when the segregation rule is symmetric. This result suggests that
slowing down the cell cycle progression of stem cells with a high level of damage and promoting such
stem cells to differentiate can indeed improve the overall health of the stem cell population.
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5. Conclusion
In this research, a novel model was developed to integrate stem cell proliferation and differentiation with
damage accumulation in stem cell ageing process. A system of two structured PDEs are used to model
stem cells (including all multiple progenitors) and TD cells. In our model, cell cycle progression and
damage accumulation are continuous while division is discrete, and the damage segregation takes
place at each division. Ageing effect is included through the inhibition from damage accumulation on
stem cell proliferation and self-renewal. Regulations from TD cell and stem cell populations are
incorporated through negative feedbacks on stem cell proliferation and symmetric division.

Our results showed that more equal distribution of damage between stem cells in symmetric renewal
and less damage retention in stem cell in asymmetric division are still favourable segregation rules resulting
in higher population size and greater population ratio; asymmetric damage segregation in stem cells leads
to less concentrated damage distribution in stem cells population, which may be more robust to sudden
increase in damage. These two results provide an answer for why some types of stem cells can switch
between symmetric and asymmetric divisions in response to external and internal regulations [1,3].

Other than the feedbacks solely from TD cells, adding feedback regulations from stem cells can
reduce oscillations and population overshoot in some situations with unfavourable damage
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segregation rules, say, in the situation where α1 is small and γ1 is large. Moreover, the stem cell feedback

regulation can slow down the proliferation of stem cells with high level of damage to increase their
tendency to differentiate. Overall, the feedback regulation system can improve the fitness of stem cells
by increasing the percentage of stem cells with low level of damage. This result provides a new aspect
to understand the role of the self-regulations in stem cell lineage [32,47,52,61].

In this study, our model provides a framework to study how the damage segregation rules at division
affect the population dynamics. Moreover, our model is an excellent tool to understand the data which
may result from observing the dynamics of regeneration with damage distribution in stem cell
population after a knock-out process. In the future work, we can extend our study to the system with
more than two stages, including progenitor cells [40,61] to get a better understanding for the system
of stem cell lineage.
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Appendix A
A.1. Derivation of the limit damage band
Suppose a stem cell currently has damage level a0 in the beginning of a cell cycle. We want to record the
damage in the following cycles. At the end of the first cycle, the damage accumulates to a0 + p�/vp. After
division, a stem daughter cell inherits damage (a0 + p�/vp)ℓ1 with ℓ1∈ {α1, α2, γ1}, whose damage gets to
(a0 + p�/vp)ℓ1 + p�/vp= a0ℓ1 + ( p�/vp)(ℓ1 + 1) at the end of the second cycle. After division, a stem
daughter cell inherits damage (a0ℓ1 + ( p�/vp)(ℓ1 + 1))ℓ2 with ℓ2∈ {α1, α2, γ1}, and the damage
accumulates to (a0ℓ1 + ( p�/vp)(ℓ1 + 1))ℓ2 + tp�/vp= a0ℓ1ℓ2 + ( p�/vp)(ℓ1ℓ2 +ℓ2 + 1) at the end of the third
cycle. By induction, we can easily show that the damage in a stem daughter cell (if not dead yet) at
the end of the m-th cycle is

a0
Ym�1

i¼0

‘i þ p�

vp

� �Xm�1

i¼0

Ym�1

k¼i

‘k with ‘0 ¼ 1 and ‘i [ {a1, a2, g1} for i � 1:

Let ω1 and ω2 be the minimum and the maximum of α1, α2, γ1. In the above, considering a fixed
segregation portion ℓi=ωj for all i≥ 1, we get the damage level

a0vm�1
j þ p�

vp

� � 1� vm
j

1� v j
, j ¼ 1, 2:

The limits as m→∞ yield the limit damage band

p�

vp(1� v1)
,

p�

vp(1� v2)

� �
:

A.2. Proofs of the propositions

A.2.1. Analytic solution

Before we prove the propositions, we first obtain the analytic solution which can provide us a tool
used in the proofs. To simplify the analysis, we make the following change of variables which will be
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used in the proofs:

ep ¼ p
vp

and ea ¼ a
va

,

and the domains of new variables are 0 � ep � t p ¼ p�=vp and 0 � ea � ta ¼ a�=va. Given constant cell
cycle progression and damage accumulation for stem cells, the biological meaning of tp and ta can be
interpreted as

— tp is the duration of one cell cycle.
— ta is the duration needed to accumulate damage to the lethal threshold from zero damage.

With the new variables, (2.1) and (2.2) become

@eS
@t

þ @eS
@epþ @eS

@ea ¼ 0 (A 1)

and

@eT
@t

þ up

vp

@eT
@epþ ua

va

@eT
@ea ¼ 0, (A 2)

where eS(t, ep, ea) ¼ S(t, p, a) and eT(t, ep, ea) ¼ T(t, p, a). For simplicity, we will drop all the tildes on the
notations. The dynamics of stem cells is independent of TD cells, while the dynamics of TD cells is
determined by stem cell through boundary condition (3.2). Once the behaviour of stem cell is
determined, the behaviour of TD cell can be easily derived. So we mainly focus on the dynamics of
stem cells.

After a change of variable, (A 1) together with the initial condition and boundary condition (3.1) can
be solved by the method of characteristics. Due to the complexity of boundary conditions, no closed form
of S(t, p, a) can be obtained, and the solution is expressed in a recursive form.

For the first cell cycle, i.e. 0 < t< tp, we have three cases

(i) If t≤ p and t≤ a, the solution is determined by the initial condition

S(t, p, a) ¼ S(0, p� t, a� t); (A 3)

(ii) If t> a and a< p, the solution is determined by the boundary condition on a=0

S(t, p, a) ¼ S(t� a, p� a, 0); (A 4)

(iii) If t> p and p< a, the solution is determined by boundary condition on p= 0

S(t, p, a) ¼ S(t� p, 0, a� p): (A 5)

According to these three cases, S(t, p, a) can be solved as

S(t, p, a) ¼

S(0, p� t, a� t) if t � p and t � a,
0 if t . a and a , p,

H(t, p, a, a1, ta)
d1
a1

S
�
0, t p � (t� p),

a� p
a1

� (t� p)
�

þH(t, p, a, a2, ta)
d1
a2

S
�
0, t p � (t� p),

a� p
a2

� (t� p)
�

þH(t, p, a, g1, ta)
d3
g1

S
�
0, t p � (t� p),

a� p
g1

� (t� p)
�

if t . p and p , a,

8>>>>>>>>>><>>>>>>>>>>:
(A 6)

where the function H is given by

H(t, p, a, v, ta) ¼ 1 if a�p
v , ta and

a�p
v � (t� p) . 0,

0 otherwise:

�
(A 7)

For the time beyond the first cell cycle, i.e. t> tp, by tracing back the process of damage accumulation by
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one cycle, S(t, p, a) is solved as

S(t, p, a) ¼ H(t p, p, a, a1, ta)
d1
a1

S
�
t� t p, p,

a� p
a1

� (t p � p)
�

þH(t p, p, a, a2, ta)
d1
a2

S
�
t� t p, p,

a� p
a2

� (t p � p)
�

þH(t p, p, a, g1, ta)
d3
g1

S
�
t� t p, p,

a� p
g1

� (t p � p)
�
:

(A 8)

Applying (A8) iterativelyandeventually (A6),wecanobtain thedensityof the stemcell populationat any time.
journal/rsos
R.Soc.open

sci.7:191848
A.2.2. Proof of proposition (3.1)

First, we suppose fr<1/2. Consider any fixed time t≫ tp. By (A 8), we have

0 � S(tþ t p, p, a) � d1
a1

S
�
t, p,

a� p
a1

� (t p � p)
�

þ d1
a2

S
�
t, p,

a� p
a2

� (t p � p)
�

þ d3
g1

S
�
t, p,

a� p
g1

� (t p � p)
�
:

Then by integration and substitutions

0 � PS(tþ t p) ¼
ðt p
0

ðta
0
S(tþ t p, p, a) dadp

� (d1 þ d1 þ d3)
ðt p
0

ðta
0
S(t, p, a) dadp

¼ (2fr)PS(t):

By the continuity of PS(t), it attains a maximum Pmax in a time interval [t0, t0 + tp] for a fixed t0. Repeated
application of the above inequality, in view of the arbitrariness of t, implies that for any n≥ 1, and for any
t in [t0 +n tp, t0 + (n+1)tp], we have

PS(t) � (2fr)
nPmax,

which clearly establishes that limt→∞PS(t) = 0.
For the second part, when the limit damage band exceeds the lethal threshold, i.e. ta< tp/(1−ω1), we

let ɛ= tp/(1−ω1)− ta> 0. If we assume that (a− p)/ω< ta, where ω∈ {α1, α2, γ1}, we have

a , vta þ p,

a , v
t p

1� w
� 1

� �
þ p

and a .
a� p
v

� (t p � p)þ C,

where C= (1−ω2)ɛ>0 which is independent of a and p. Suppose that t≪ tp, by (A 8), we have

S(t, p, a) ¼ H(t p, p, a, a1, ta)
d1
a1

S
�
t� t p, p, g(a, a1)

�
þH(t p, p, a, a2, ta)

d1
a2

S
�
t� t p, p, g(a, a2)

�
þH(t p, p, a, g1, ta)

d3
g1

S
�
t� t p, p, g(a, g1)

�
,

where g(a, ω) = (a− p)/ω− (tp− p). For each term in the right-hand side, if (a− p)/ω≥ ta, H is zero; if
(a− p)/ω< ta, we have g(a, ω) < a−C. When g(a, ω) is less than or equal to zero, the term S(t− tp, p,
g(a, ω)) = 0; when g(a, ω) is larger than zero, we can repeat the process and express the solution at t in
terms of the solutions at t− ntp where n is a positive integer. Because g(a, ω) < a−C, the damage level
will be reduced by a constant value in each process. Hence, with finite value n, all the terms S(t−ntp,
p, g) will become zero as g is less than zero.
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Intuitively, the stem cell population always diminishes to zero, since after sufficiently long time the

offspring of stem cells with initial zero damage, even in the slowest way of accumulating damage, i.e.
ℓi=ω1 for every i, would gain damage to reach ta and die, and other offspring in the evolution gain
more damage and would die sooner. This result is true, no matter what the proportions of three
division types are.
publishing.org/journal/rsos
R.Soc.open

sci.7:191848
A.2.3. Proof of proposition (3.2)

By the assumption that ta> tp/(1−ω2), no cell will die due to damage accumulation and fr completely
determines the evolution of stem cell population. If fr> 1/2, the portion of generated stem cells
through divisions is greater than 1, which means that the stem cell population is increasing to infinity.
Indeed, for any t, let ω∈ {α1, α2, γ1}, we define

I(v) :¼ 1
v

ðt p
0

ðv2taþp

0
H(t p, p, a, v, ta)S

�
t� t p, p,

a� p
v

� (t p � p)
�
dadp:

By the definition of H and change of variables with ω≤ω1 and ta> tp/(1−ω2),

I(v) � 1
v

ðt p
0

ðvtaþp

vt p�vpþp
S
�
t� t p, p,

a� p
v

� (t p � p)
�
dadp

¼
ðt p
0

ðta�t pþp

0
S
�
t� t p, p, a

�
dadp

�
ðt p
0

ðv2taþp

0
S
�
t� t p, p, a

�
dadp:

(A 9)

By (A 8) and (A 9),

PS(t) �
ðt p
0

ðv2taþp

0
S
�
t, p, a

�
dadp

¼ d1I(a1)þ d1I(a2)þ d3I(g1)

� 2fr

ðt p
0

ðv2taþp

0
S
�
t� t p, p, a

�
dadp:

Repeating this procedure, if t ¼ ntp þ~t and ~t [ [0, t p), then we have

PS(t) � (2fr)
n
ðt p
0

ðta�t pþp

0
S
�
~t, p, a

�
dadp:

By (A 6), we can have ðt p
0

ðta�t pþp

0
S
�
~t, p, a

�
dadp �

ðt p
0

ðta�t pþp

0
S
�
0, p, a

�
dadp:

With the assumptions fr>1/2 and ðt p
0

ðta�t pþp

0
S
�
0, p, a

�
dadp . 0:

Now we proved that the population will blow up when n→∞.
Intuitively, after sufficiently long time, there is no death by damage accumulation since ta≥ tp/(1−ω2).

Hence in the situation that fr=1/2, we can use a similar method to show that one of the offspring after stem
cell division remains a stem cell and the stem cell population is conserved.
A.2.4. Proof of proposition (3.3)

We assume that (3.6) holds

fr .
1
2

and
t p

1� g1
� t p

1� a1
, ta ,

t p
1� a2

:
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We first prove (a). For integers m≥ 1, define

n(k) ¼ min m [ N:ta ,
1� gk1
1� g1

t pam
2 þ 1� am

2

1� a2
t p

� 	
:

Let PS(ktp) denote the stem cell population at the end of the k-th cycle, when the damage levels in all
cells are larger than ak ¼ (1� gk1)=(1� g1)t p, from the discussion in A1. The damage level in stem
daughter cells (if not dead yet) after n(k) more cycles would be greater than

ak
Yn�1

i¼0

‘i þ t p
Xn�1

i¼0

Yn�1

k¼i

‘k with ‘0 ¼ 1 and ‘i [ {a1, a2, g1} for i � 1, (A 10)

where n=n(k). If we set ℓi= α2 for all 0≤ i≤ n(k), the definition of n(k) can imply that the damage level in
(A 10) is larger than ta at the end of the (k+n(k))-th cycle, and the daughter cells in this situation will die.
Thus, for the possible situations for the cell to survive at the end of the (k+n(k))-th cycle, there should be
at least one ℓi= γ1 or α1 for 1≤ i≤ n(k). Clearly, the proportion of such stem daughter cells in the
population is

(2fr)
n(k) � dn(k)1 :

Suppose there exists a combination of m and δi such that (2fr)
n(k) � dn(k)1 , 1. By the similar method

used in A.2.2, we have

PS((k þ n(k))t p) � PS(kt p)((2fr)
n(k) � dn(k)1 ):

It is easy to show that the sequence {(2fr)
n− (δ1)

n} is increasing in n, under the assumption fr . 1
2; the

sequence {n(k)} is non-increasing in k, i.e. n(k+ 1)≤n(k). Then applying the above inequality with k
replaced by k+n(k), one gets

PS((k þ n(k)þ n(k þ n(k)))t p)

� PS((k þ n(k))t p)((2fr)
n(kþn(k)) � dn(kþn(k))

1 )

� PS((k þ n(k))t p)((2fr)
n(k) � dn(k)1 )

� PS(ktp)((2fr)
n(k) � dn(k)1 )2:

Repeating this argument, we have a sequence of population approach to zero as (2fr)
n(k) � dn(k)1 , 1. Since

{(2fr)
n(k)− (δ1)

n(k)} is non-increasing in k, we can just consider the condition {(2fr)
n(k)− (δ1)

n(k)} < 1 when k is
sufficiently large. Then, we can simplify the condition {(2fr)

n− (δ1)
n} < 1 with

n ¼ min m [ N:ta ,
1

1� g1
t pam

2 þ 1� am
2

1� a2
t p

� 	
:

Therefore, part (a) is proven. Next we work with (b). Similar to the method used in the proof of A.2.3
with the assumption

p�

vp(1� g1)
� p�

vp(1� a1)
, ta,

we obtain

PS(t) �
ðt p
0

ðv2taþp

0
S
�
t, p, a

�
dadp

� d1I(a1)þ d3I(g1)

� (d1 þ d3)
ðt p
0

ðv2taþp

0
S
�
t� t p, p, a

�
dadp:

When δ2 = 0, δ1 + δ3 = 1 and

PS(t) �
ðt p
0

ðv2taþp

0
S
�
t� t p, p, a

�
dadp:
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By repeating this procedure, we have

PS(t) �
ðt p
0

ðta�t pþp

0
S
�
0, p, a

�
dadp . 0

which implies that the stem cell population blows up to infinity, or is bounded below to avoid stem cell
extinction.
lishing.org/journal/rsos
R.Soc.open
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A.3. Parameter estimation

A.3.1. Parameters in the model with feedback from TD cells

Although there is no concrete biological data in stem cell division types or specific regulation
mechanisms to our knowledge, we discuss the selection of parameters in table 1 referring to both the
biological observations [43–46] and the previous mathematical models [25–27,32,34–40,54,55]. For the
simulations we considered here, we assume that damage segregates symmetrically between stem cells
and between TD cells, i.e. α1 = 0.5, β1 = 0.5, while the damage retention in asymmetric division is low,
i.e. γ1 = 0.25.

Cell cycle progression speed and damage accumulation speeds vp, va and ua. It is generally accepted that the
population of mitotic cells is much smaller than that of TD cells, although it is very difficult to identify
and count stem cells and progenitors [57–60]. Due to lack of experimental data, we refer to some existing
modelling works for a reasonable range for the ratio of mitotic cells to TD cells. In the simulations of
[37,55], populations of post-mitotic cells are about 4–10-fold that of mitotic cells.

On the other hand, mitotic cells are assumed to have a smaller death rate than post-mitotic cells [7].
However, there is no precise description of death rates due to two reasons: the death rate of stem cells is
not observable, and the death rate of TD cells is tissue specific. In various modelling works, the assumed
death rate of TD cells ranges from 10−1 to 10−4 of the total population [25,39]. Analysis and simulations in
[25,39,40] suggest that a large death rate of TD cells results in instability of population. In our model, the
death rates are measured in the following way:

rS ¼
Ð p�
0 vaS(t, p, a�) dp

PS
(A 11)

and

rT ¼
Ð1
0 uaT(t, p, ac) dp

PT
, (A 12)

where the numerators are population out-fluxes due to death and the denominators are the total
populations. By properly choosing vp, va, ua, we wish to achieve that PT/PS is no less than 5, rT is
about 10−4, and rS is reasonably small, compared to rT. Here, we take vp=0.2, va= 0.06 and ua=0.02.

Maximum fractions of three types of cell division d01, d
0
2 and d03. It was observed that stem cells mainly

undergo asymmetric renewal and differentiation when stem cell pool is expanding or when TD cells
suffer from great loss, and enter into an inactively dividing stage and then mainly undergo
asymmetric division at steady state [43–46]. Since the feedbacks we consider are negative regulations,
d01 provides the maximum fraction of symmetric renewal. By the property of the Hill function, δ1(PT)
can switch between large and small values in response to small and large populations of TD cells. But
we observed that as we increase the initial d01, population overshoot and oscillations appear before
convergence (figure 10a). Moreover, the population ratio PT/PS decreases (from 5.664 to 3.622) and
death rates of stem cell rS increases (from 1.191 × 10−7 to 1.365× 10−4) as d01 increases from 0.6 to 0.8.
Hence, we take d01 ¼ 0:6, d02 ¼ 0:3 and d03 ¼ 0:1.

Regulation constants kT1 , k
T
2 and kTv . Many works suggest that regulation parameters kTi and kTv are

closely related to the TD cell population at steady state [26,27,35,39]. These modelling works mainly
focus on the blood system, which is one of the most well-studied systems and serves as a paradigm
for understanding stem cells. The regulation parameter k in those models ranges from 10−7 to 10−10,
which corresponds to red blood cell population of size 107∼ 1010. However, some other works that do
not specify the type of stem cells may choose some other ranges. For example, [37] chose 10−3 for
regulation constant and the resulting population magnitude is about 103. In our simulations, we
choose 10−8 as the scale for the magnitudes of kTi and kTv .
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Figure 10. Simulations for the model with feedback from TD cells for different settings of parameters. (a) Comparison of different
initial division fractions. (b) Comparison of different regulation parameters. (c) Comparison of Hill exponents. The other parameters
which are not listed in the figures are kT1 ¼ 10�8, kT2 ¼ 0:5� 10�8, kTv ¼ 0:5� 10�8, α1 = 0.5, β1 = 0.5, γ1 = 0.25, vp= 0.2,
va= 0.06, ua= 0.02, mT= 2, d01 ¼ 0:6, d02 ¼ 0:3, d03 ¼ 0:1.
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On the other hand, by choosing appropriate regulation parameters kT1 , k
T
2 and kTv in equations (4.3) and

(4.4), asymmetrical division will predominate in three types of division of stem cells at steady state. In our
simulations shown in figure 10b, we found that equal strengths of feedback on stem cell symmetric renewal
δ1 and cell cycle progression Vp would result in oscillations. Stronger regulation on Vp relative to δ1 is
needed to obtain stabilized population evolution (figure 10b). We also found that the relative strengths
of regulation on symmetric renewal δ1 and symmetric differentiation δ2 play a role in determining the
death rate of stem cells (rS=2.408 × 10−4 when (kT1 , k

T
2 , k

T
v ) ¼ (10�8, 10�8, 0:5� 10�8); rS=1.191× 10−7

when (kT1 , k
T
2 , k

T
v ) ¼ (10�8, 0:5� 10�8, 0:5� 10�8)). To obtain a reasonably small death rate of stem cells,

stronger regulation on δ2 is also needed. Hence, we take kT1 ¼ 10�8, kT2 ¼ 0:5� 10�8 and kTv ¼ 0:5� 10�8.
Hill exponent for feedbacks mT. The modelling work [40] suggests that a low Hill exponent in the

feedback is needed to avoid oscillations, where the authors observed unstable steady states for Hill
exponent m≥ 3 through direct simulations in their ODE models. We also found similar phenomena in
our model, where oscillations appear in the simulations with mT>4. Thus we need mT∈ {1, 2, 3}.
To make the best estimation of mT, we also need to consider all biological observations. Our
simulations show that when mT=1 the death rate of stem cell is only about one third of that of TD
cells (rS=9.586× 10−5 when mT= 1; rS=1.191 × 10−7 when mT=2), while when mT= 3 there is
population overshoot before convergence to steady state although the death rate of stem cell decreases
to 10−15 (figure 10c). Hence we choose mT=2 in our model.

After a large number of trials, we arrive at the best choice of the parameters in table 1 with
consideration of all biological and mathematical reasons. Under these parameters, the resulting death
rates are rS= 1.191× 10−7 and rT= 2.357× 10−4. The populations at steady state are PS=2.496× 107, PT=
1.414× 108 with the ratio PT/PS= 5.664. But we need to point out that all our assumptions are pieced
together through different biological and mathematical research, more precise estimations of
parameters need real experimental data.
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A.3.2. Parameters in the model with feedbacks from TD cells and stem cells

Inspired by the analysis in appendix A.3.1, we selected the most reasonable parameters in table 2, based
on both biological and mathematical reasons as follows.

Regulation constants kS1 , k
S
2 and kSv , and Hill exponent for feedbacks mS. Similar to appendix A.3.1, due to

the consideration of reasonable population ratio and death rate of stem cells, we still assume that the
feedbacks from stem cell population on cell cycle progression Vp and symmetric differentiation δ2 are
stronger than that on symmetric renewal δ1. That is, we intentionally choose smaller kSv , k

S
2, compared

to kS1 . And the Hill exponent mS is chosen to be 2.
To determine the magnitude of kS1 , we simulate the population evolution with kS1 ranging from 10−6 to

10−8. We found that the relative magnitude of kT1 and kS1 has little influence on the population ratio. To
effectively model the regulation from the stem cell population, 10−7 turns out to be the best choice,
according to our simulations under the choice of parameters in table 1. Hence, we take kS1 ¼ 10�7,
kS2 ¼ 0:25� 10�7 and kSv ¼ 0:5� 10�7.

Constants for sigmoid regulation. According to experiments, mitotic cells inheriting more damage
protein aggregates have an increased cell cycle length and tendency to differentiate [13,18]. To model
these observations, we assume that the multipliers f (a) and g(a) decrease in a and have sigmoid shape.
Parameters ai and bi in the multipliers determine their maximum and minimum strengths, a0i locates
the threshold in damage of the transition and kai controls the stiffness of the transition. Due to lack
of experimental data or previous modelling works to refer to, we assume f (a) and g(a) take the
same form and range between [0.4, 1.1] with a transition at a01 ¼ 0:75. Hence, we take a1 = a2 = 1.1, b1 =
b2 =−0.7, ka1 ¼ ka2 ¼ 20 and a01 ¼ 0:75.

With a large number of simulations, we present the best choice of the parameters in table 2 and
conclude that this set of parameters is our best estimation. Under these parameters, the resulting
death rates are rS=2.560× 10−7, rT= 2.314× 10−4 for stem cells and TD cells, respectively. The
populations at steady state are PS= 9.593× 106, PT= 6.709× 107 with the ratio PT/PS=6.994.
A.4. Estimation of populations in the models with feedbacks from TD cells
First, we recall the assumptions: a� ≤ ac, Va= va, Up= up and Ua=ua are constants, and δi and Vp have
feedbacks from TD cells described by (4.3) and (4.4). The populations of stem and TD cells at time t
are give by

PS(t) ¼
ða�
0

ð p�

0
S(t, p, a) dpda (A 13)

and

PT(t) ¼
ðac
0

ð1
0
T(t, p, a) dpda: (A 14)

Under the above assumptions, we integrate (2.1) and (2.2) in p and a to get

dPS

dt
¼ �va

ð p�

0
S(t, p, a�)� S(t, p, 0) dp� Vp(PT)

ða�
0
S(t, p�, a)� S(t, 0, a) da (A 15)

and

dPT

dt
¼ �ua

ð1
0
T(t, p, ac)� T(t, p, 0) dpþ up

ðac
0
T(t, 0, a) da: (A 16)

By boundary conditions (2.5), (2.6), (3.1) and (3.2), we rewrite the above equations as

dPS

dt
¼ �va

ð p�

0
S(t, p, a�) dp� Vp(PT)

ða�
0
S(t, p�, a) da� d1(PT)

a1

ða�
0
S
�
t, p�,

a
a1

�
da

�

� d1(PT)
a2

ða�
0
S
�
t, p�,

a
a2

�
da� d3(PT)

g1

ða�
0
S
�
t, p�,

a
g1

�
da
�
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and

dPT

dt
¼ �ua

ð1
0
T(t, p, ac) dpþ Vp(PT)

d2(PT)
b1

ðac
0
S
�
t, p�,

a
b1

�
da

�

þ d2(PT)
b2

ðac
0
S
�
t, p�,

a
b2

�
daþ d3(PT)

g2

ðac
0
S
�
t, p�,

a
g2

�
da
�
:

Making a change of variable in a and noticing that a� ≤ ac, we obtain a system of ODEs, called system I:

dPS

dt
¼ �va

ð p�

0
S(t, p, a�) dpþ Vp(PT)(d1(PT)� d2(PT))

ða�
0
S(t, p�, a) da (A 17)

and

dPT

dt
¼ �ua

ð1
0
T(t, p, ac) dpþ Vp(PT)(1þ d2(PT)� d1(PT))

ða�
0
S(t, p�, a) da: (A 18)

Consider a related system II given by the following equation and (A 18):

dPS

dt
¼ Vp(PT)(d1(PT)� d2(PT))

ða�
0
S(t, p�, a) da: (A 19)

Then under the same initial condition, the solution to system I is not larger than that to system II, by
comparison theorems for ODEs.

Now we assume that both systems I and II have steady-state solutions, denoted by (�PS, �PT) and
(~PS, ~PT), respectively. Then ~PT can be obtained by solving

d1(PT)� d2(PT) ¼ 0:

Assuming appropriate values of parameters to guarantee solvability of the last equation, we have the
upper-bound estimate

�PT � ~PT ¼ d01 � d02
d02(k

T
1 )

mT � d01(k
T
2 )

mT

 !1=mT

: (A 20)

Next, we continue to estimate �PS. First, we observe that in the steady state both S(t, p, a) and T(t, p, a)
are constant along characteristic curves and we refer the reader to figure 11 for an illustration of the
situation. Since in system II, there is no outflux of stem cells on the boundary a= a�, we have

~PS ¼ p�
ða�
0
S(t, p�, a) da:

On the other hand, by the intermediate value theorem for integrals, we have, for some h∈ [h1, h2] that

~PT ¼ h
ð1
0
T(t, p, ac) dp,

where

h1 ¼ ac � h2

1� v2
Da and h2 ¼ ac � h1

1� v1
Da

with η1 =min{β1, β2, γ2}, η2 =max{β1, β2, γ2} and Da ¼ ( p�=Vp(�PT))va. Using that ~PT is a steady-state
population, we have by (A 17)

ua~PT ¼ hVp(~PT)
ða�
0
S(t, p�, a) da ¼ hVp(~PT)~PS

p�

and thus the estimate

�PS � ~PS ¼ uap�

hVp(~PT)
~PT � uap�

Vp( �PT)h1
~PT , (A 21)

where ~PT is given in (A 20).
Since in §4.1, we intentionally choose the parameters such that the death rate of stem cells is small, i.e.

the outflux va
Ð p�
0 S(t, p, a�) dp is small, the upper bound in (A 20) is very close to the real TD cell
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Figure 11. Demonstration of upper bound estimation of the population.
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population in the steady state. However, the estimation for stem cells may not be sharp, due to the
variation of the segregation rules. As an example, with the parameters in table 1, we have that
the estimated populations are (�PS, �PT) ¼ ( 6

13

ffiffiffi
2

p � 107,
ffiffiffi
2

p � 108) and the steady-state populations
in the simulation are (�PS, �PT) ¼ (2:496� 107, 1:414� 108):
A.5. Numerical scheme
Consider functions Vp, Va, Up, Ua dependent on p, a only, equations (2.1) and (2.2) can be rewritten as the
following system, with W= [S, T ]t:

@

@t
W þ @

@p
F(W)þ @

@a
G(W) ¼ 0, (A 22)

where

F(W) ¼ [f1(W), f2(W)]t ¼ [VpS, UpT]
t

and

G(W) ¼ [g1(W), g2(W)]t ¼ [VaS, UaT]
t:

In the following simulation, we use third-order WENO scheme and third-order TVD Runge–Kutta
time integrator.

As Up, Ua, Vp, Va are all positive, the numerical approximation Wi,j to the exact solution W( pi, aj, t)
satisfies the following ODE system:

dWi,j(t)
dt

¼ � F̂iþ1=2,j � F̂i�1=2,j

Dp
� Ĝi,jþ1=2 � Ĝi,j�1=2

Da
, (A 23)

where F̂iþ1=2,j is called numerical flux, the design of which is the key ingredient to a successful scheme.
For the third-order WENO scheme, the numerical flux F̂iþ1=2,j is defined as follows:

F̂iþ1=2,j ¼ v1F̂
(1)
iþ1=2,j þ v1F̂

(2)
iþ1=2,j, (A 24)

where F̂
(m)
iþ1=2,j for m= 1, 2, are the two second-order accurate fluxes on two different stencils given by

F̂
(1)
iþ1=2,j ¼ � 1

2
Fi�1,j þ 3

2
Fi,j F̂

(2)
iþ1=2,j ¼

1
2
Fi,j þ 1

2
Fiþ1,j: (A 25)

The nonlinear weights ωm are given by

vm ¼ amP2
k¼1 ak

, m ¼ 1, 2, (A 26)
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where

ak ¼ gk

(1þ bk)
2 k ¼ 1, 2, (A 27)

and

b1 ¼ (Fi,j � Fi�1,j)
2 b2 ¼ (Fiþ1,j � Fi,j)

2 (A 28)

and

g1 ¼
1
3

and g2 ¼
2
3
: (A 29)

The parameter ɛ ensures that the denominator never gets to 0, and is fixed at ɛ=10−6 in the computation
in this work. Similar construction can be applied to the direction of a.

The time concretization is implemented by a third-order TVD Runge–Kutta method

W (1) ¼ Wn þ DtL(Wn, tn),

W (2) ¼ 3
4
Wn þ 1

4
W (1) þ 1

4
DtL(W (1), tn þ Dt)

and Wnþ1 ¼ 1
3
Wn þ 2

3
W (2) þ 2

3
DtL(W (2), tn þ 1

2
Dt),

9>>>>>=>>>>>;
(A 30)

where L denotes the r.h.s. of equation (A 23).
A CFL condition is needed for stability

a
Dt

min {Dp, Da}
, 1, (A 31)

where α=max{Up, Ua, Vp, Va}. In this paper, we take Δp=Δa=0.01 and Δt= 0.005.
The code for the numerical method can be found in electronic supplementary material.
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