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PREFACE.

The original work of M. Biot was for many years

the Text Book in the U. S. Mihtary Academy at

West Point. It is justly regarded as the best ele-

mentary treatise on Analytical Geometry that has

yet appeared. The general system of Biot has

been strictly followed. A short chapter on the

principal Transcendental Curves has been added,

in which the generation of these Curves and the

method of finding their equations are given. A
Table of Trigonometrical Formulae is also append-

ed, to aid the student in the course of his study.

The design of the following pages has been to

prepare a Text Book, which may be readily em-

braced in the usual Collegiate Course, without in-

terfering with the time devoted to other subjects,

while at the same time they contain a comprehen-
sive treatise on the subject of which they treat.

Virginia Military Institute^

July, 1840.



\



CONTENTS.

CHAPTER I.

PRELIMINARY OBSERVATIONS.

Unit of Measure p. 1

Construction of Equations , . 3

Constrnction of Equations of the second degree .... 8

Signification of Negative Results . . . . . . 11

CHAPTER II.

DETERMINATE GEOMETRY.

Analytical Geometry defined 13

Determinate Geometry 13

Having given the base and altitude of a Triangle to find the side

of the Inscribed Square . 13

To draw a Tangent to two Circles 14

To construct a Rectangle, when its surface and the difference be-

tween its adjacent sides are given 16

Rules for solving Determinate Problems .18
Examples 18

CHAPTER III.

INDETERMINATE GEOMETRY.

Indeterminate Geometry defined 19

Of Points, and a Right Line in a Plane.

Space defined 21

Abscissas and Ordinates defined 21

Co-ordinates and Co-ordinate Axes defined .... 21

Origin of Co-ordinates . . . . . . . . 21

Equations of a Point 22

Distance between two Points . . . . . . . 25

i



Vm CONTENTS.

Equation of a Line defined ^.27
General Equation of a Straight Line 30

Linear Equation 30

Equation of a Straight Line passing through two given Points . 31

Condition of two Lines being parallel 32

Angle included between two Lines 33

Intersection of two Straight Lines 34

Examples 34

Of Points^ and the Straight Line in Space.

When a Point is determined in Space 35

Equations of a Point 36

Projections of a Point
"

.

'

. . . . . . . 36

Distance between two Points ... . . . . 38

Projection of "a Line, and Projecting Plane of a Line . . 40

Equations of a Line . . . . . « . . 40

Equations of Curves 43

Projections of Curves 43

Equations of a Right Line passing through two given Points . 43

Angle included between two given Lines 44

Conditions of Perpendicularity of Lines 48

Conditions of Intersection of Lines ... . . . 49

To find the number of Intersections of Curves . . . .60
Of the Plane.

Equation of a Plane . .

•

52

Traces of a Plane 54

General Equation of a Plane" 55

Equation of a Plane passing through three given Points . . 57

Intersection of two Planes ....... 58

Of the Transformation of Co-ordinates.

Algebraic and Transcendental Curves defined .... 59

What is meant by the Discussion of a Curve .... 59

Formulae for passing from one System of Co-ordinates to a par-

allel System . . 60

Formulse for passing from Rectangular to Oblique Axes . . 61
" "

Oblique to Rectangular ... 61
'•

'

"
'

Oblique to Oblique .

'

. . . 62

Transformation of Co-ordinates in Space 63

Of Polar Co-ordinates.

Polar Co-ordinates defined . . . . . . . 68

Radius Vector and Pole 69



CONTENTS. IX

CHAPTER IV.

OF THE CONIC SECTIONS.

Conic Sections defined p. 72

Equation of a Conic Surface 73

General Equation of Intersection of a Cone and Plane . . 74

Ellipse. . 75

Parabola 75

Hyperbola 75

Of the Circle.

Equations of a Circle 76

General Form of Equation of a Circle 79

Equation of a Tangent Line to the Circle .... 79

Equation of a Normal to the Circle 81

Conjugate Diameters 83

Of the Polar Equation of the Circle.

General Polar Equation of the Circle 84

Of the Ellipse.

Equation of the Ellipse referred to its Centre and Axes . . 88

Parameter 89

Equation of the Ellipse referred to its Vertex .... 90

Supplementary Chords 93

Foci of the Ellipse 94

Eccentricity 94

Equation of a Tangent Line to the Ellipse .... 95

To draw a Tangent Line to the Ellipse 98

Conjugate Diameters 99

Subtangent 99

Normal Line 100

Subnormal 101

Of the Ellipse referred to its Conjugate Diameters.

Equation of the Ellipse referred to Conjugate Diameters . . 105

Method of finding the Conjugate Diameters when Axes are known 110

Of the Polar Equation of the Ellipse^ and Measure of its Surface.

General Polar Equation Ill

When the Pole is at the Focus Ill

Values for the Radius Vector used in Astronomy . . . 113

Equation of the Ellipse deduced from one of its properties . . 113

Measure of its Surface 115



CONTENTS.

Of the Parabola.

Equation of the Parabola . p. 116

Parameter of the Parabola 117

To describe the Parabola .

'

117

Focus and Directrix 118

Equation of a Tangent Line to the Parabola . . . . 119

Subtangent 121

Equation of the Normal 122

Subnormal . . 122

To draw a Tangent Line to the Parabola .... 123

Of the Parabola referred to its Diameters.

All the Diameters of the Parabola are parallel to the Axis . 125

Of the Polar Equation of the Parabola, and Measure of its Surface.

Polar Equation . 126

When the Pole is at the Focus 127

Measure of its Surface . . 129

Quadrable Curves 131

Of the Hyperbola.

Equation of the Hyperbola referred to its Centre and Axes . 134

Equilateral Hyperbola 135

Supplementary Chords 136

To draw a Tangent 139

Of the Hyperbola referred to Conjugate Diameters.

Relations between Conjugate Diameters and Axes . . . 140

Of the Asymptotes of the Hyperbola, and its Properties when referred to

the Asymptotes.

Asymptotes defined 142

To construct the Asymptotes
'

. . 143

Power of the Hyperbola 145

Equations of the Hyperbola referred to its Asymptotes . . 145

To describe the Hyperbola by Points
'

147

Of the Polar Equation of the Hyperbola, and Measure of its Surface.

Polar Equation
•

. . . 148

Formute used in Astronomy 149

Common Form for the Conic Sections 151



CONTENTS. XI

CHAPTER V.

OF TRANSCENDENTAL CURVES.

Transcendental Curves defined p. 152

Of the Logarithmic Curve.

Logarithmic Curve defined 152

Axis of Numbers 152

Axis of Logarithms 152

Different Systems of Logarithms produce different Curves . 153

Point in which they cut the Axis of Numbers .... 153

Asymptote to the Curve 153

Of the Cycloid.

Its Generation . . . 154

Its Transcendental Equation 155

Base and Altitude 155

Its Properties as a Tautochronal and Brachystochronal Curve . 155

Of Spirals.

Varieties of Spirals 155

Spiral of Archimedes.

Its Generation 156

Its Equation 157

Of the Hyperbolic Spiral.

Its Equation . 157

Its Asymptote . . 158

Of the Parabolic Spiral.

Its Generation and Equation 158

Of the Logarithmic Spiral.

Its Equation 158

Its Character . . 159

CHAPTER VI.

DISCUSSION OF EQUATIONS.

Discussion of General Equation 160

First Class—Ellipses . . . . . .

'

. . 163

Application to a Numerical Example . . . . . 166

Examples for Practice . . 167



Xll CONTENTS.

Particular Case of the Circle p. 168

Second Class—Parabolas 170

Examples 171

Third Class—Hyperbolas 174

Examples 175

Particular Case of Equilateral Hyperbola . . . .179

Of Centres and Diameters of Plane Curves.

Definition of Centre 180

Centres of Curves of the Second Order 181

Diameter defined 182

Application to Curves of the Second Order .... 182

Conjugate Diameters 184

Identity of Curves of the Second Degree with the Conic Sections.

Discussion 185

CHAPTER VII.

OF SURFACES OF THE SECOND ORDER.

How Surfaces are divided 189

Equation of a Surface of the Second Order .... 189

Equation of the Surface of a Sphere . .
•

. .190
Surfaces of the Second Order which have a Centre . . 196

Principal Sections defined 197

Principal Axes defined 197

Case First . .197
Ellipsoid 199

Ellipsoid of Revolution ........ 200

Sphere 201

Cylinder 201

Case Second 202

Of Surfaces ivhich have no Centre.

Case First •
. 205

Paraboloids 207

Of Tangent Planes to Surfaces of the Second Order.

Tangent Plane defined 208

Condition of a Straight Line being Tangent to a Surface . . 209

Tangent Plane and its Equation 210



ANALYTICAL GEOMETRY.

CHAPTER I.

PRELIMINARY OBSERVATIONS.

1. Algebra is that branch of Mathematics in which quan-

tities are represented by letters, and the operations to be

performed upon them indicated by signs. It serves to ex-

press generally the relations which must exist between the

known and unknown parts of a problem, in order that the

conditions required by this problem may be fulfilled. These

parts may be numbers, as in Arithmetic, or lines, surfaces, or

solids, as in Geometry.

2. Before we can apply Algebra to the resolution of Geo-

metrical problems, we must conceive of a magnitude of

known value, which may serve as a term of comparison

with other magnitudes of the same kind. A magnitude
which is thus used, to compare magnitudes with each other,

is called a unit of measure, and must always be of the same

dimension with the magnitudes compared.

3. In Linear Geometry the unit of measure is a line, as a

foot, a yard, &c., and the length of any other line is ex-

pressed by the number of these units, whether feet or yards,

which it contains.

1



2 ANALYTICAL GEOMETRY. [Chap. L

Let CD and EF be two lines, which we. wish cjea

to compare with each other; AB the unit of

measure. The Une CD containing AB six times,

and the Une EF containing the same unit three

times, CD and EF are evidently to each as the

numbers 6 and 3. .

4. In the same manner we may compare surfaces with

surfaces, and solids with solids, the unit of measure for

surfaces being a known square, and for solids a known

cube.

5. We may now readily conceive lines to be added to,

subtracted from, or multiplied by, each other, since these

operations have only to be performed upon the numbers

which represent them. If, for example, we have two lines,

whose lengths are expressed numerically by a and h, and it

were required to find a line whose length shall be equal to

their sum, representing the required line by x, we have from

the condition,

X — a -{- b,

which enables us to calculate arithmetically the numerical

value of X, when a and b are given. We may thus deduce

the line itself, when we know its ratio x to the unit of.

measure.

6. But we may also resolve the proposed question geo-

metrically,- and construct a line which shall be equal to the

sum of the two given lines. For, let I represent the abso-

lute length of the line which has been chosen as the unit of

measure, and A, B, and x the absolute lengths of the given

and required lines. The numerical values «, b, Xj will ex-

press the ratios of these three lines to the unit of measure,

that is, we have,
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A ,. B X
« — —» o = —-j a: = —.

These expressions being substituted in the place of a, &, x

in the equation

X — a -\-h,

the common denominator / disappears, and we have

X = A + B.

Hence, to obtain the required line,

draw the indefinite line AB, and lay 4 c b

off from A in the direction AB the

distance AC equal to A, and from C the distance CB equal

to B, AB will be the line sought.

7. The construction of an analytical expression, consists

in finding a geometrical figure, whose parts shall bear the

same relation to each other, respectively, as in the proposed

equation.

8. The subtraction of lines is performed as readily as their

addition. Let a be the numerical value of the greater of

the two lines, b that of the less, and x the required difference,

we have,

x = a — b,

an expression which enables us to calculate the numerical

value of x, when a and b are known. To construct this

value, substitute as before, for the numerical values «, 6, x,

A B a:
the ratios — ,

—
,
—

, of the corresponding lines to the unit

of measure ; the common denominator I disappears, and the

equation becomes

X = A — B,

which expresses the relation between the absolute lengths of
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these three Hnes. Drawing the in-

definite Hne AC, and laying off from 4 n ^ c

A a distance AB equal to A, and

from B in the direction BA, a distance BD equal to B, AD
will express the difference between A and B.

9. Comparing this solution with that of the preceding

question, we see by the nature of the operations themselves,

that the direction of the line BD or B is changed, when the

sign which affects the numerical value of B is changed.

This analogy between the inversion in position of lines, and

the changes of sign in the letters which express their numer-

ical values, is often met with in the application of Algebra to

Geometry, and we shall have frequent occasion to verify it,

in the course of this treatise.

10. From the combination of quantities by addition and

subtraction, let us pass to their multiplication and division.

Let us suppose, for example, that an unknown Hne X depends

upon three given lines A, B, C, so that there exists between

their numerical values the following relation,

ah
a; = —

c

This relation enables us to calculate the value of x, when

a, b, and c are known. To make the corresponding geome-
trical construction, substitute for a, h, c, and x, the ratios

A B C X—> —5 —> —, of the corresponding lines to the unit of meas-
l L L t

ure ; / disappears from the fraction, and we have

Y AB

from which we see that the required

line is a fourth proportional to the

three lines A, B, C. Draw the in-

t
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definite lines MB and MX, making any angle with each

other ; Lay off MC = C, MB = B, and MA = A, join C

and A, and draw BX parallel to CA, MX is the required

line. For, the triangles MAC, MXB, being similar, we
have

MC : MB : : MA : MX

or C : B : : A : X

and consequently X = -—-

which fulfils the required conditions.

11. In the example which we have just discussed, as well

as in the two preceding, when we have passed from the nu-

merical values of the lines, to the relations between their ab-

solute lengths, we have seen that the unit of measure / has

disappeared ; so that the equation between the absolute

lengths was exactly the same as that between the numerical

values. We could have dispensed with this transformation

in these cases, and proceeded at once to the geometrical

construction, from the equation in «, b, and x, by considering

these letters as representing the lines themselves. But this

could not be done in general. For, this identity results from

the circumstance that the proposed equations contain only

the ratios of the lines to each other, independently of their

absolute ratio to the unit of measure. This will be evident,

if we observe that the equations

X — a -\-b, X — a— &, x ——
c

may be put under the following forms,

1 ——i- — , 1 — —
, 1XX XX ex

which express the ratios of a, b, c, and x, with each other,
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and whose form will not be changed,

these letters the equivalent expressions

and whose form will not be changed, if we substitute for

A
B^

B X

12. But it will be otherwise, should the proposed equation,

besides containing the ratios of the lines A, B, C and X, with

each other, express the absolute ratio of any of them to the

unit of measure. For example, if we. had the equation

X = ah \
'

the numerical value of x can be easily calculated, since it is

the product of two abstract numbers ; and this value being

known, we can easily construct the line which corresponds

to it. But, if we wished to pass from . this equation to the

analytical relation between the absolute lengths of the

lines A, B, X, by - substituting for a, b, x, the .expressions
•

A B X
,-—,—, / being of the square power in the denominator of

the second member, and of the first power in the first mem-

ber, it would no longer disappear, and we should have, after

reducing,

x<_,

in which the line X is a fourth proportional to the lines /, A,

B. In this, and all other analogous cases, we cannot sup-

pose the same relation to exist between the absolute lengths

of the lines as between their numerical values ; and this im-

possibility is shown from the equation itself For, if a, 6,

and Xf represented lines, and not abstract numbers, the pro-

duct a h would represent a surface, which could not be

equal to a line x,

13. By the same principle,we may construct every equa-

tion of the form
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_ a b c d . . , .

b'c'd' ...

in which «, b, c, d, b', c\ d\ &c., are the numerical values of

so many given Hnes. If we suppose the equation homoge-

neous, which will be the case if the numerator contain one

factor more than the denominator, then substitiiting for the

numerical values their geometrical ratios, we have

A B C D . . .X =
B' C D'

AR
But the first part — may be considered as representing

B'

a line A", the fourth proportional to B', A, and B. Combin-

C A" G
ing this Hne with the following ratio —, the product -——G G
will represent a new line A'", the fourth proportional to C,

A", and G. This being combined with — would give a

A'" D
product , which may be constructed in the same man-

ner. The last result will be a line, which will be the

value oi X.

14. We. have supposed the numerator to contain one

more factor than the denominator. If this had not been the

case, I would have remained in the equation to make it

homogeneous. For example, take the equation

X — abed

the transformed equation becomes

an expression which may be constructed in the same manner

as the preceding.

15. Besides the cases which we have just considered, the
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unknown quantity is often given in terms of radical expres-

sions, as

The first v^ofe^, expresses a mean proportional between a

and h, or between the lines which these ...—.^x

values represent. Laying offon the line

AD, AB = A, BD = B, and on AD as

a diameter describing the semi-circle ^''

AXB, BX perpendicular to AB at the point B, will be the

value of X. For, from the properties of the circle, the line

BX is a mean proportional between the segments of the

diameter.

16. Ifwe take the example.

x^ yfa'^ 4-fe2

it is evident that the required line is the hypothenuse of a

right angled triangle, of which the

sides are AB = A, and BD = B ; for

we have

AD' = AB' + BD'

or X2 = A^ + B2

X = ^^A^ -f B^

17. We may also construct by the right angled triangle,

the expression

the required line being no longer the hypothenuse, but one of

the sides. Making BD = A, and DA = B, we have

AB' = AD' — BD'
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X^ = A2 —. B2or

X = VA^ — B^

18. Let us now apply these principles to the example,

x^ — 2 a X = — 6^.

Solving the equation with respect to x^ we get the two

roots,

at any point B
a perpendicular,

a: = « + V a2 — 52^ x =^ a — V a^ — 6^

The radical part of these expressions may be evidently

represented by a side of a right-angled triangle, of which the

line A is the hypothenuse, and the line B the other side.

Draw the indefinite hne

ZZ';

erect

and make BC = B. From

the point AC as a centre

with a radius equal to A,

describe a circumference of a .circle, which will cut ZZ',

generally, in two points X, X', equally distant from B. The

segment BX, or BX', will represent the radical V A.^ — B^,

and if from the point B we lay off on ZZ', a length BA = A,

AX = \/ A^ — B^ + A will represent the first value of X,

and AX' = A — V A^ — B^ will represent the second

value.

19. If B = A, it is evident that the circle will not cut the

line ZZ', but be tangent to it at B. The two lines BX and

BX' will reduce to a point, and AX and AX' will be equal to

each other, and to the line A. This result corresponds

strictly with the change which the Algebraic expression un-

dergoes ; for a = h causes the radical V a^ — h^ to disap-

2
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pear, and reduces the second member to the first term, and

the two roots become equal to a.

20. If B > A, the circle described from the point C as a

centre will not meet the line ZZ', and the solution of the

question is impossible. This is also verified by the equation,

ioxhy a makes the radical s/ a^ — h^ imaginary, and con-

sequently the two roots arc impossible.

21. If the second member of the equation had been posi-

tive, the construction would have been a little different. In

this case we would have,

x^ —2 ah = })'' ;

and the roots would be.

X = a -\' \^ a'^ -\- b^ , x = a— V a^ -^h'-

Here the radical part is re-

presented by the hypothenuse

of a right-angled triangle, whose

sides are A and B. Take

DB = B ;
at the point B, erect

a perpendicular BC = A ; DC
will be the radical part common to the two roots. If, then,

from the point C as a centre, with a radius CB = A, we
describe a circumference of a circle, cutting DC in E',

and its prolongation in E, the line DE will be equal to

A + "^ A^ + B^, which will represent the first value of a:,

but the second segment DE' = •/ A^ -j- B^ — A will only

represent the second root, by changing its sign, that is, the

root will be represented by -— DE'.

22. Here the change of sign is not susceptible of any di-

rect interpretation, since, admitting that it implies an inver-

sion of position, we do not see how this happens, as there is
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no quantity from which DE' is to be taken. But the diffi-

culty disappears, if we consider the actual value of a: as a

particular case of a more general problem, in which the

roots are,

a; = a + c + \^ a- + <?>^
a; = fl5 + c -r- v/ a2 4- 62.

c, representing the numerical value of a new line, which is

also given. This form of the roots would make x depend

upon another equation of the second degree, which would be,

x"".— 2 (« -f c) x = 62 — 2 t? c — c^ ;

in which, if we make c = <?, we obtain the original values

of a:.

In the new example, the construction of the radical part is

precisely the same, for, taking DB = B and BC = A, the

hypothenuse DC will repre-

sent \/ A2 +B^ From the

point C as a centre with a

radius equal to A, describe

a circumference of a circle,

DE = A -h

and

+ B^

DE'

\/ A^

A— V/A2+ B2.

To obtain the first root, we have only to add C to DE, which

is done by laying off DF = C, and FE will represent

C + A + V A^ -I- B^. To get the second root, it is evi-

dent DE' must be subtracted from DF. Laying off from

D to E", in a contrary direction, DE" = DE', FE" will be

the root, and will be equal toC + A+ v^A^+B^, and this

value will be positive, if the subtraction is possible ;
that is

if C or its equal DF is greater than DE', and negative,

if less.

23. In general, when a negative sign is attached to a re-
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suit in Algebra, it is always the index of subtraction. If

the expression contain positive quantities, on which this sub-

traction can be performed, the indication of the sign is satis-

fied. If not, the sign remains, to indicate the operation yet

to be performed. To interpret the result in this case, we

must conceive a more general question, which contains

quantities, on which the indicated operation may be per-

formed, and discover the signification to be given to the

result.

EXAMPLES.

^ abc + def— slii,
1. Construct j^

^—

2. Construct \/ a.

3. Construct V a"" -\- h'^ + c^ -\- d^ .
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CHAPTER II.

DETERMINATE GEOMETRY.

24. Analytical Geometry is divided into two parts :

1st. Determinate Geometry, which consists in the appHca-

tion of Algebra to determinate problems, that is, to problems

which admit of only a finite number of solutions.

2ndly. Indeterminate Geometry, which consists in the in-

vestigation of the general properties of lines, surfaces and

solids, by means of analysis.

25. We will first apply the principles explained in the first

chapter, to the resolution and construction of problems of

Determinate Geometry.

Having given the base and altitude of a triangle, it is re-

quired to find the side of the in-

scribed square. Let ABC be the

proposed triangle, of which AC is

the base, and BH the altitude. De-

signate the base by h, and the altitude

by h, and let x be the side of the inscribed square. The side

EF, being parallel to AC, the triangles BEF and ABC are

similar ; and we have,

AC : BH : : EF : BI,

or b : h : : X : h — x.

Multiplying the means and the extremes together, and put-

ting the products equal to each other, we have,

bh — bx = hx

bh
x —

b-\-h
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from which the numerical value of x may be determined,

when h and h are known.

26. We may also from this expression, find the value of x

by a geometrical construction, since it is evidently the fourth

proportional to the lines h + h, h, b

and h. Produce AC to B', making
CB' = A, erect the perpendicular

B'H' = A, join A and H', and through

C draw CI' parallel to H' B', it will be the side of the re-

quired square, and drawing through I' a parallel to the base,

DEFG will be the inscribed square. . For, the triangles

AB'H', ACr being similar, we have,

A. a K G c

or

hence

AB' : B' H' : : AC : CI'

h -\-li \ li \ \ h '. x\

hh
X —

h-\-h

27. There are some questions of a more complicated

nature, than the one which we have just considered, but

which when applied to analysis lead to the most simple and

satisfactory results.

Let it be required to draw a common tangent to two cir-

cles, situated in the same plane, their radii and the distance

between their centres being known.

Let us suppose the problem solved, and let MM' be the

common tangent. Produce MM' until it meets the straight

line joining the centres at T. The angles CMT and CM' T
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being right, the triangles CMT and CM' T will be similar,

and give the proportion,

CM : CM' : : CT : CT.

Designating the radii of the two circles by r and r', the

distance between the centres by a, and the distance CT by

X, the above proportion becomes.

or

hence

r '. r : : X : X — a,

rx — ra = r'x;

ar
X =

:,

which shows that the distance CT = x is a fourth proportion-

al to the three lines r — r', a, and r.

To draw the tangent line.

Through the centres C and C, draw any two parallel

radii CN, CN', the line NN' joining their extremities will cut

the line joining the centres, at the same point T, from which,

if a tangent be drawn to one circle, it will be tangent to the

other also. For, the triangles CNT, CN'T, will still be

similar, since the angles at N and N' are equal, and will give

the same proportion. But to show the agreement of this

construction with the algebraic expression for x^ draw

through N', N' D parallel to C C, N' D will be equal to «,

and ND to r — r'
;

the triangles N'DN, CNT, being

similar, give the proportion,

ND : DN' : : NC : CT,
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or r — r' : a '. '. r : CT ;

ar
hence CT =

r— r'

which is the same vakie found before. TMM' drawn

tangent to one circle, will also be tangent to the other. As

two tangents can be drawn from the point T, the question

admits of two solutions.

28. If we suppose, in this example, the radius r of the

large circle to remain constant, as well as the distance be-

tween the centres, the product ar will be constant. Let the

radius r' of the small circle increase, as r' increases, the de-

nominator r — r' will continually diminish, and will become

zero, when r — r'. The value of x then becomes =

infinity. This appears also from the geometrical construc-

tion, for when the radii are equal, the tangent and the line

joining the centres are parallel, and of course can only meet

at an infinite distance.

29. If r' continue to increase, the denominator becomes

negative, and since the numerator is positive, the value of x

will no longer be infinite, but negative, and equal to — CT,
which shows that the point T is changed in position (Art. 9),

and is now found on the left of the circle whose radius is r.

30. To construct a rectangle, when its surface and the

difference between its adjacent sides are given :

Let X be the greater side, 2a the difference, x— 2a will

be the less. Let b be the side of the square, whose surface

is equal to that of the rectangle. This condition will give,

X (x
—

«)
= 62 Qj. ^2 — 2ax = Z?2 ;

from which we obtain the two Talues,

x==a+ V^TZfT^, x = a "^ a^ -{- b^
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There are the same values of x constructed in Art. 18, the

first being represented by DE, the second by— DE. But

we can easily verify this, and .show that DE = a -^
^ a^ + b^

is the greater side of the rectangle. For, if we subtract from

this value the difference 2a, the remainder — « -f-
"^c^ -^-W

multiplied by the greater side, is equal to i^ the surface of the

rectangle,
— a -\-

^ <j^ -\-W\^ therefore the smaller side.

31. We see also that the second value of x taken with a

contrary sign, represents the smaller side of the rectangle.

Hence the calculation not only gives us the greater side,

which alone was introduced as the unknown quantity, but

also the less. This arises from the general nature of all

algebraic results, by virtue of which the equation which ex-

presses the conditions of the problem, gives, at the same

time, every value of the unknown quantity which will satisfy

these conditions. In the example before us we have repre-

sented the greater side by + ^> and have found that its

value depended upon the equation

x^ — 2ax — h^.

If we had made the smaller side the unknown quantity, and

represented its value by — .t, which we were at liberty to

do, it would have depended upon the equation

— X (
— X -^-^d)

-
h^, or x^— 2ax = h^,

which is the same equation as the preceding. Hence, this

equation should not only give us the greater side, which was

at first represented by + x, but also the less, which in this in-

stance is represented by — x.

32. The preceding examples are sufficient to indicate gen-

erally the steps to be taken, to express analytically the con-

ditions of geometrical problems :
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1st. We commence by drawing a figure, which shall

represent the several parts of the problem, and then such

other lines, as may from the nature of the problem lead to its

solution.

2d. Represent, as in Algebra, the known and unknown

parts by the letters of the alphabet.

3d. Express the relations which connect these parts by
means of equations, and form in this manner as many
equations as unknown quantities ; the resolution of these

equations will determine the unknown quantities, and resolve

the problem proposed.

EXAMPLES.

1. In a right-angled triangle, having given the base, and

the difference between the hypothenuse and perpendicular ;

find the sides.

2. Having given the area of a rectangle, inscribed in a

given triangle ; determine the sides of the rectangle.

3. Determine a right-angled triangle ; having given the

perimeter and the radius of the inscribed circle.

4. Having given the three sides of a triangle ;
find the

radius of the inscribed circle.

5. Determine a right-angled triangle, having given the

hypothenuse and the radius of the inscribed circle.

6. Determine the radii of the three equal circles, described

in a given circle, which shall be tangent to each other, and

also to the circumference of the given circle.
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CHAPTER III.

INDETERMINATE GEOMETRY.

33. In the questions which we have been considering,

the conditions have Hmited the values of the required parts.

We propose now to discuss some questions of Indeterminate

Geometry, which admit of an infinite number of solutions.

For example, let us consider any line

AMM'. From the points M, M', let fall

the perpendiculars MP, MP', upon the

line AX taken in the same plane. These

perpendiculars will have a determinate

length, which will depend upon the nature and position of

the fine AMM', and the distance between the points M, M',

&c. Assuming any point A on the line AX, each length

AP will have its corresponding perpendicular MP, and the

relation which subsists between AP, PM ; AP', P'M' ; for

the different points of the line AMM' will necessarily deter-

mine this line. Now, this relation may be such as to be

always expressed by an equation, from which the values of

AP, AP', &c. can be found, when those of PM, P'M', are

known. For example, suppose AP = PM, AP' = P'M', &c.

representing the bases of these triangles by x, and the per-

pendiculars by y, we have the relation

l/
= x.

In this case, the series of points MM', &c., forms evi-

dently the straight line AMM', making an angle of 45°

with AX.

34. Again, suppose that the condition established was
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such, that each of the Hnes

PM, P'M', should be a mean

proportional between the dis-

tances of the points P, P', &c.

from the points A and B taken -p p'

on the line AB. Calling PM y, AP x^ and the distance AB
2«, we would have,

y^ — X {2a
—

x), or, y^ ~ 2ax — x^.

This equation enables us to determine y when x is known,

and reciprocally, knowing the different values of x, we

can determine those of y. It is evident that this line is the

circumference of a circle described on AB as a diameter.

35. Since each of the equations

y=^Xf y^ —2ax — x^,

serves to determine all the points of the straight line and

circle, it follows that they are equivalent to the actual con-

struction of these lines, and may be used to represent»them.

36. Generalizing this result, we may regard every line as

susceptible of being represented by an equation between

two indeterminate variables ; and, reciprocally, every equa-

tion between two indeterminates may be interpreted geo-

metrically, and considered as representing a line, the diffe-

rent points of which it enables us to determine. It is this

more extended application of Algebra to Geometry, that

constitutes the Science of Analytical Geometry.

Of Points, and the Right Line in a Plane,

37. As all geometrical investigations refer to the posi-

tions of points, our first step must be to show how these

positions are expressed and fixed by means of analysis.
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38. Space is indefinite extension, in which we conceive

all bodies to be situated. The a^so/z^te positions of bodies

cannot be determined, but their relative positions may be,

by referring them to objects whose positions we suppose to

be known.

39. The relative positions of all the points of a plane are

determined by referring them to two straight lines, taken at

pleasure, in that plane, and making any angle with each

other.

Let AX and AY be these two lines,

every point M situated in the plane of

these lines, is known, when we know

its distances from the lines AX and

AY measured on the parallels PM and

QM to these lines, respectively.

The Hues QM, Q'M', or their equals AP, AP', are called

abscissas, and the Hnes PM, P'M', or their equals AQ, AQ',

ordinates. The line AX is called the axis of abscissas, or

simply the axis of x's, and the line AY the axis of ordinates,

or the axis of y's. The ordinates and abscissas are desig-

nated by the general term co-ordinates, AX and AY are

then the co-ordinate axes, and their intersection A is called

the origin of co-ordinates.

40. It may be proper here to remark, that the terms line

and plane are used in their most extensive signification,
—

that is, they are supposed to extend indefinitely in both

directions.

41. Let us represent the abscissas by x, and the ordinates

by y, X and y will be variables, vfhioh will have diflferent

values for the different points which are considered. If, for

example, having measured the lengths AP, PM, which deter-

mine the point M, we find the first equal to a, and the
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second equal to b, we shall have for the equations which fix

this point,

X = a, y ~h.

These are called the equations of the point M.

42. If the abscissa AP remain constant, while the ordi-

nate PM diminishes, the point M will continually approach

the axis AX ;
and when PM =

o, the point M will be on

this axis, and its equations become

a; = a, y ~o.

If the ordinate PM remain constant, while the abscissa

AP diminishes, the point M will continually approach the

axis AY, and will coincide with it when AP = o ; the equa^

tions will then be,

X = 0, y ~h.

Finally, if AP and PM become zero at the same time, the

point M will coincide with the point A, and we have,

x = o, y=^o,

for the equations of the origin of co-ordinates.

43. From this discussion we see, that, in giving to the

variables x and y every possible positive value, from zero to

infinity, we may express the position of every point in the

angle YAX. But how may points situated in the other

angles of the co-ordinate axes be expressed ?

Instead of taking YA for the

axis of y, take another line, Y'A',

parallel to YA and in the same

plane, at a distance AA' = A
from the old axis.

Calling ar' the new abscissas,
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counted from the origin A', we have for the point M, situa-

ted in the angle Y'A'X,

AP = AA' + A'P,

or, x = A-{- a;'.

But if we consider a point M' in the angle Y'A'A, we

have,

AF = AA'— AT,

or, ^ = A— x'.

Hence, in order that the same analytical expression,

x = A-{-a;',

may be applicable to points situated in both these angles,

we must regard the values of x' as negative for the angle

AA'Y', so that the change of sign corresponds to the change
of position with respect to the axis A'Y'.

44. To confirm this consequence, and show more clearly

how the preceding formula can connect the different points

in these different angles, let us consider a point on the axis

A'Y'. For this point we have x' = o, and the formula

x = A-\-x'

becomes ^ = + A.

This is the value of the abscissa AA' with respect to AX,
AY. But if we wish that this equation suit points on the

axis AY, for any point of this axis x = o^ and the preceding
formula will give,

^' = — A,

which is the same value of the abscissa AA' referred to the

axis A'Y^ The analytical expression for this abscissa be-

comes then positive for the axis AY, and negative for the

axis A'Y', when we consider the different points of the plane

connected by the equation



24 ANALYTICAL GEOMETRY. [Chap. IIL

X = \ -{- x'.

This result applies equally to the negative values of a:, afid

proves that they belong to points situated on the opposite

side of the axis AY to the positive values.

45. Moving the axis AX parallel to itself, and fixing the

new origin at A", making AA" = B, and j
calling y' the new ordinates counted

from A", we have,

y = P + y
for points in the angle YA"X", and

for those in the angle AA"X". To express points situated

in both these angles by the same formula, we must regard

those points corresponding to negative values of y' as lying

on the opposite side of the axes of A"X" to the positive

values ; and as this applies equally to the axes AX and AY,
we conclude that the change of sign in the variable y cor-

responds to the change of position of points with respect to

the axis of abscissas.

46. From what has been said, we conclude, that if the

abscissas of points lying on the right of the axis of y be

assumed as positive, those of points lying on the left of this

axis will be negative ; and also if the ordinates of points

lying above the axis of x be assumed as positive, those

below this axis will be negative. We shall have, therefore,

In the first angle, x positive and y positive ;

In the second angle, x negative and y positive ;

In the third angle, x positive and y negative ;

In the fourth angle, x negative and y negative ;

and the equations

X — a^ y —
h^
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which determine the position of a point in the angle YAX,
become, successively,

x= Jr (ij y —— ^;

^ = -4-
<z, y =— h,

47. From what precedes we may find the analytical ex-

pression for the distance between two points, when we
know their co-ordinates referred to rectangular axes. Let

M', M", be the given points. Draw M'Q' parallel to the

axis of :r. The right-angled triangle M'M"Q' gives.

W

Let X* if represent the co-ordinates of the point M', ^r" y\

the co-ordinates of the point M" ; M' Q' = :r" — x\ and

M" Q' = ?/"
—

y\ ; representing the distance between the two

points by D, we have.

D = V
(:r"
—

:c')

' + (2/"
—

y'f-

If the point M' were placed at the origin A, its co-

ordinates would become

ar' = 0, y =
0,

and the value ofD would reduce to

D = V y' 2 + 3/"

Which is the expression for the

distance of a point from the origin

of co-ordinates. This value is easily

verified, for the triangle AMP being

right-angled, gives,

4
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am' = AP' + Fm' = x^'\-y^

or

D = V a:2 + 3/2.

48. Let us resume the equations x — a^y — h, which de-

termine the positions of a point in a plane, a and h being

any quantities whatever.

The equation x = a considered

by itself, corresponds to every point

whose abscissa is equal to a. Take

AP = a. Every point of the line PM
drawn parallel to AY, and extend-

ing indefinitely in both directions, will

satisfy this condition. x — a is,

therefore the equation of a line drawn parallel to the axis of

y, and at a distance from this axis equal to a. In like manner

y —his the equation of a straight line parallel to the axis of

X. The point M, which is determined by the equations

x=za, 2/
= 5,

is therefore found at the intersection of two straight lines

drawn parallel to the co-ordinate axes. The line whose

equation is x = a will be on the positive side of.the axis of y
if a is positive, and the reverse if a is negative. If a = o, it

will coincide with the axis of y, and the equation of this

axis will be

X = 0.

The straight line whose equation isy — h will be situated

above or below the axis oi x, according as y is positive or

negative. When y = o, it will coincide with the axis of x,

and the equation of this axis is therefore

V — 0,
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Finally, the origin of co-ordinates being at the same time

on the two axes, will be defined by the equations

X — 0^ y =
0,

as we have before found.

49. The method which we have used to express analyti-

cally the position of a point, may be therefore used to de-

signate a series of points, situated on the same straight fine

parallel to either at the co-ordinate axes. Generalizing this

result, we see, that if there exist the same relation between

the co-ordinates of all the points of any line whatever, the

equation in x and y which expresses this relation, must

characterize the line. Reciprocally, the equation being

given, the nature of the line is determined, since for every

value oi X ox y we may find the corresponding value of the

other co-ordinate.

50. An equation which expresses the relation which exists

between the co-ordinates of every point of a line,"is called the

equation of that line,

51. Let it be required to find the equation of a straight

fine passing through the or-

igin of co-ordinates, and

making an angle a with the

axis of X. Let the angle

which the co-ordinate axes

make with each other be

called /3. From any point M draw PM parallel to the axis

of y, we will have,

PM sin a sin a

AP sin (^
--

a)
' ^

sin {(3
—

a)

^ u., 0^-
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and as this eqtiatioa exists for erery pmnt <^ fbe fine A]( it

is the equation of that line.

521 The value of ft is the same ioir every pmnt of the fine

AM, but varies from one line to another. If we suppose :r.

to diminish, the line AM unll indine more and more to the

aids of X, and when a = o coinddes with this axis. In this

case the analytical expression becomes y = o, wMdi is the

same equation for the axis of 2; which was foond before.

53. Again, let a increase. The line AM approaches the

axis AY and coinddes with it when a = ^. In tfaos case the

sin (/S
—

a) = o, and the equation becomes x = Oy iirbkAi is

the equation of the axis of y.

54. li a continue to increase (^— a) become n^ative,

and tho equation becomes

sin (jS
—

a)

and is the equation of the line A^I. When a = 180^,

sin a = 0, and the line coincides with the axis of x, and we
have again y = 0.

55. Finally, for a y 180° sin a is negative, as well as

sin (/3
—

a), and the equation becomes

sin a
y = x

sin (/3
—

a)

and represents the line MAM". Hence the formula

sm a
y = x -

sin (;3
—

a)

is applicable to every straight line drawn through the origin

of co-ordinates.

56, Let us now consider a line A' M' making the same
\



Chap. III.]
ANALYTICAL GEOMETRY. 29

angle a with the axis of x,

but which does not pass

chrough the origin ; and as its

ndination to the axis of x

loes not determine its posi-

ion, suppose it cut the axis

)f y at a distance AA' from

he origin, equal to h. The

equation of a line parallel to A' M', and passing through the

)rigin, will be

y =^ sm a

sin (/3
—

a)

The value of any ordinate PM will be composed of the

»art PN = a;
sm a

sm
(fi
—

a)

and MN = AA' = &. Hence

y^x
sm a

sin (/3
—

a)
+ &;

vhich is the most general equation of a straight line con-

idered in a plane.

57. To find the point in which this line cuts the axis of ar^

lake y — Of which is the condition for every point of this

xis ; and making x = o, determines the point in which it

uts the axis of y.

Should the line A' M' cut the axis of y below the origin of

o-ordinates, the value of the new ordinate would be less

lan that of the ordinate of the line passing through the

rigin, by the distance cut off on the axis of y ; hence we
ave for the equation of the line,

y -=-x
sm a

sin (/3
—

a)
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58. In this discussion we have supposed the co-ordinate

axes to make any angle (3 with each other. They are most

generally taken at right-angles, since it simplifies the calcu-

lation. If therefore /3 = 90

sin {(3
—

a)
= sin (90°

—
a)
= cos a,

and the equation becomes

y = X —i——
-{- b — X tan a + &.

cos a

Representing the tangent of a by a, the equation is

y=^ax + b,

which is the equation of a right line referred to rectangular

axes. In this equation a represents the tangent of the

angle which the line makes with the axis of x, and b the dis-

tance from the origin at which it cuts the axis of y.

69. The most general form of an equation of the first de-

gree is

Ay + Ba: + C = 0,

which may also be written thus

B C
^=~A ^-A

This equation will be of the same form as that just dis-

cussed, if we make

B jr C
a ~—— and o = — --

A A

Hence every equation of the first degree between two va-

riables is the equation of a straight line.

Every equation of this form, whatever be the number of

variables, is called a linear equation.

60. So long as a and b arc indeterminate, the position of
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the line is unknown. The equation only shows that its

points are on a straight line. But if a and h be known, the

position of the line is fixed, since we know one of its points

on the axis of y, and the angfe it makes with the axis of x.

The determination of the co-efficients a and h leads to

some interesting questions, which we will now examine.

61. To find the equation of a straight line, which shall

pass through two given points :

Let x^ y\ x" y", be the co-ordinates of these points.

The line being straightfits equation will be of the form

y = ax -i-h;

it is required to determine a and b.

Since the required line must pass through the point whose

co-ordinates are x', y', its equation must be satisfied when

x' and y' are substituted for x and y ; hence

y'
= ax' + b.

But it also passes through the point whose co-ordinates

are x" y". We have for the same reason,

2/"
= ax" + b.

These two equations determine a and b. Substituting

their values in the given equation, the line will be determined.

The elimination is very easily performed, by subtracting the

second equation from the first, and the third from the second,

which give

y — y'^a{x — x')

y'
— y"^a (^'

—
x") ;

from which we have

y — 3/'
= -^^^^ (^

— ^% and a =
^|

""
^"

.

a;' — x" x' — x''
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The first of these equations is that of the required line,

and the second determines the angle which it makes with

the axis of x. It is easy to show that the conditions of the

problem are fulfilled ; for ^r = ^' gives y — y\ and x — a;"

gives y =
?/". If y'

—
?/"
=

o, we have a = o and y =
?/",

which shows that the line is parallel to the axis of x. If

y — x" — 0, we have — = o and x = a?", which shows that

the line is perpendicular to the axis of x,

62. To find the conditions necesiiiry that a straight line

be parallel to a given straight line.

Let

y — ax-\-h

be the equation of the given line, in which a and h are

known. That of the required line will be of the form

y = a^x + Vi

in which a! and V are unknown.

In order that these lines should be parallel, it is neces-

sary that they should make the same angle with the axis of

X, Hence

a — a\

and the equation of the parallel, after substitution, becomes

y = ax -{- b\

in which b' is indeterminate, since an infinite number of lines

may be drawn parallel to a given line.

63. Were it required that the line should pass through a

point whose co-ordinates are x', y\ they must satisfy the

equation, and we have

/
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These two equations determine b', and, combining them,

we have

y — y'
= a(x— x')

for the equation of a Une drawn through a given point

parallel to a given line.

64. To find the angle included between two lines, given

by their equations.

Let

y ^ax -}- bhe the equation of tSd first line,

y = a'x + b' the equation of the second line.

The first line makes with the axis of :r, as^-angle the trigo-

nometrical tangent of which is a ;

the second, an angle whose tan-

gent is «'. The angle sought is

ABC = a' — a, since BAX =

ACB + CBA. But we have

from Trigonometry,

tanff a! — tanff a
K tanff (a*

—
a) = T—-^ rz.—^ ^ ^

1 -f- tang a' tang a

Calling ABC = V, and putting, for tang a and tang a' a and

a', we have

tanff y =
;.

65. If the lines be parallel, V = o
; and the tang V =

o,

which gives a — a' — o and a = a\ which agrees with the

condition before estabhshed, (Art. 62.)

66. If the lines be perpendicular to each other, V = 90^

and

a'— a

5
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which gives
1 -\- aa = o,

which is the condition that two straight Hnes should be per-

pendicular to each other. If one of the quantities a or a' be

known, the other is determined by this equation.

67. To find the intersection of two straight lines, given

by their equations.

Let

y = ax -{- h\

be the equations of the two lines. As the point of intersec-

tion is on both of the lines, its co-ordinates must satisfy at

the same time the two equations. Combining them, we
shall deduce the values of x and y which correspond to the

point of intersection. We have by elimination,

h— h' ah' — a'b
x =^ , y=

a — a a — a

When a — «', these values become infinite. The lines are

then parallel, and can only intersect at an infinite distance.

68. The method which we have just employed is general,

and may be used to determine the points of intersection of

two curve lines, situated in the same plane, when we know

their equations ; for, as these points must be at the same

time on both curves, their co-ordinates must satisfy the equa-

tions of the curves. Hence, combining these equations, the

values we deduce for x and y will be the co-ordinates of

the points of intersection.

EXAMPLES.

1. Construct the line whose equation is

y = 3:i: + 5.
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2. Construct the line whose equation is

3. Construct the line whose equation is

y =— X— 2.

4. Draw from a given point a line perpendicular to a

given straight line, and find the length of the perpendicular.

Of Points, and the Straight Line in Space,

69. A point is determined in space, when we know the

length and direction of three lines, drawn through the point,

parallel to three planes, and terminated by them.

For more simplicity we will suppose three planes at right

angles to each other,

and let them be repre-

sented by YAX, XAZ,
ZAY. Suppose the

point M at a distance

MM', from the first

plane, MM" from the

second, and MM'" from

the third. If we draw

through these lines, three planes parallel to the rectangular

planes, their intersection will give the point M. The rectangu-

lar planes to which points in space are referred, are call Co-or-

dinate Planes. They intersect each other in the lines AX,
AY, AZ, passing through the point A and perpendicular to

each other. The distance MM' of the point M from the

plane YAX, may be laid off on the line AZ, and is equal to

AR. Likewise the distance MM" may be laid off on AY,
and is AQ. Finally, AP laid off on AX is equal to MM'".
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70. The lines AX, AY, AZ, on which hereafter the res-

pective distances of points from" the co-ordinate planes will

be reckoned, are called the Co-ordinate Axes, and the point

A is the Origin.

71. Let us represent by x the distances laid off on the first,

which will be the axis oi x, by y those laid off on Ay, which

will be the axis 'of y; and by % those laid off on AZ, which

will be the axis of z.

If then the distances AP, AQ, AR, be measured and found

equal to a, b, c, we shall have to determine the point M, the

three equations

X = a, y — h, z — c.

These are called the Equations of the point M.

72. The points M', M", M'", in which the perpendiculars

from the point M meet the co-ordinate planes, are called the

Projections of the point M.

These projections are determined from the three equations

given above, for we obtain from them

y =
bf X = a, which are the equations of the projection M',

X = ay z = c,
" " " of the projection M'V

z = c,y =
b,

" " " of the projection M'";

and we see from the composition of these equations, that two

projections being given, the other follows necessarily.

In the geometrical construction they may be easily deduced

from each other. For example, M", M'", being given, draw

M"'Q, M"P, parallel to AZ, and QM', PM', parallel respect-

ively to AX and AY, M' will be the third projection of

the point M. .

73. There results from what has been said, that all points in

space being referred to three rectangular planes, the points
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in each of these planes are naturally referred to the two

perpendiculars, which are the intersections of this plane

with the other two.

74. The plane YAX is called the plane of x's, and y^s, or

simply xy;
The plane XAZ, that oi x's, and z's, or xz ;

And the plane ZAY, that of %'s, and y's, or %y.

75. The same interpretation is given to negative ordinates,

as we have before explained, and. the signs of the co-ordi-

nates X, y, z, wil] make known the positions of points in the

four angles of the co-ordinate planes.

76. Let us resume the equations,

X =^ a, y = h, % = c \

a, b, c, being indeterminate.

The first x = a considered by itself, belongs to every

point whose abscissa AP is equal to a. It belongs therefore

to the plane MM'PM", supposed indefinitely extended in

both directions. For every point of this plane, as it is par-

allel to the plane ZAY, satisfies this condition. The equa-

tion y = b corresponds to every point of. the plane MM'"

QM', drawn through the point

"M parallel to ZAX, and

finally z = c corresponds to every point of the plane MM"
RM'" drawn through M parallel to the plane XAY. Hence

the equations

X = a, y =
b, z =^

Cf

show that the point.M is situated at the same time on three

planes drawn parallel respectively to the co-ordinate planes,

and at distances represented by a, b, c.

77. When these distances are nothing, the equations be-

come
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X = 0, y = 0, z = o,

which are the equations of the origin. The first of these

X = corresponds to the plane yz, the second y = o to the

plane xz, and the third z = oio the plane xy. Since for every

point of these planes, these separate conditions exist.

78. To find the expression for the distance between two

points whose co-ordinates are known, let M M, be the two

points, whose co-ordinates are x, y, z ; x', y',
z' ; if through

the first we draw a line MQ parallel to the plane of xy, and

terminated by the ordinate M, M', we shall have

QM, is equal to iVI', M,
— M'Mor^— 2:';QM

is equal to M'M',. If,

through the point M/
we draw M'R parallel

to the axis of x, M.', R =

y'
— y; M'R = x' -^ x,

and we shall have,

mm;'=qm'+qm^.

1 ym
raf

.^''

ISL

MM72 M'R' + M',R' = (?/'
— yf + {x'

—
x)^.

Substituting these values, we have,

MM> (%'
— zf+ M'M'; = (z'

— zf + (y'
— yf + {x'

— x)\

Calling D the required distance, this value becomes

D zy^Y + (2/'
— yf + (^'

which is the expression for the distance between any two

points in space.

79. We may remark that x^— a;, ?/'
—

y,z^
—

z, are the

projections of the line D on the three axes of x, y, z, from



Chap. III.]
ANALYTICAL GEOMETRY. 39

which results this theorem. The square of any portion of

a straight line is equal to the sum of the squares of its pro-

jections on the three rectangular axes,

80. If one of the points, as that whose co-ordinates are

ar, y, z, coincide with the origin A, the preceding formula

would become,

which expresses the distance of a point in space from the

origin of the co-ordinates. In

fact, the triangles MAM', AM'P,

being right-angled at M' and P,

give,

AM' = MM'' + AM'" = MM''+ -V

MP' + AP'=^'+r+^'
M

as we have just found.

We see by this result, that the square of the diagonal of

a rectangular parallelopipedon is equal to the sums of the

squares of its three edges.

8L This last result gives a relation between the cosines

of the angles which any line AM makes with the co-ordi-

nate axes. For, let these angles be represented by X, Y, Z,

calling r the distance AM. In the right-angle triangle

AMM' we have MM' equal to z, and AMM' = MAZ in the

angle Z, and we have,

z — r cos Z.

Reasoning in the same manner, the others give,

y — r cosY,

x = r cos X.

Squaring these three equations and adding them together,

we get,
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^H 2/^ + 2^ = ^Mcos^ X + cos2 Y -f cos2 Z) ;

but

Hence,

r2 = r2 (cos2 X + cos^ Y + cos^ Z),

1 = cos2 X + cos2 Y + cos2 Z,

which proves that the sum of the squares of the cosines of the

angles which a straight line in space makes with the co-ordi-

nate axes
^ is always equal to unity.

82. Let us now determine the equation of a straight line.

To do this, we will remark, that if several points be in a

straight line in space, their projections on the. co-ordinates'

planes will also be in straight lines ; for, the projection of a

point on a plane is the foot of a perpendicular let fall from

the point on this plane. The straight line which contains

the several points will be in the same plane with the per-

pendiculars drawn through these points, and consequently

the points in which these perpendiculars meet the co-ordi-

nates' plane will be in one and the same straight line. The

plane which contains these perpendiculars is called the Pro-

jecting Plane of the Line, and its intersection with the co-

ordinate plane the Projection of the Line.

83. A straight Hne is determined when we know two

planes which contain it : it will therefore be known when

we have two of its projecting planes, and these are deter-

mined when we know the projections through which they

pass. Hence, a straight line is determined when we know

its projections on two of the co-ordinate planes. And as the

equations of these projections on the planes ofxz and y z are

X = az -\- Uf y = b z -{- (3f

these equations fix the position of the line in space.
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If the line pass through the origin, a = o, and /3
= o.

84. These resuhs are easily verified ; for the equation

X = az -^ a.

being independent of y, is not only the equation of the pro-

jection of the given line on the plane of xz^ but corresponds

to every point of the projecting plane of the given line, of

which this projection is the trace. It is therefore the equa-

tion of this plane.

Likewise the equation

being independent of x, not only represents the equation of

the projection of the given hne on the plane of yz^ but is

the equation of the plane which projects this line on the

plane of yz. Consequently the system of equations

X = az \- a^ y = bz -{- ^f

signifies that the given line is situated at the same time on

both these planes. Hence they determine its position.

85. Eliminating z from these equaticns, we get,

X — ay — 8 b . V-— = Sr-' or y - /3
= - (^-«).

which is the equation of the projection of the given line on

the plane of yx, and also corresponds to the plane which

projects this line on the plane of xy.

86. We conclude from these remarks, that, in general,

two equations are necessary to fix the position of a line in

space, and these equations are those of the two planes,

whose intersection determines the line. When a line is

situated in one of the co-ordinate planes, its projections on

6
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the other two are in the axes. If, for example, it be in the

plane of x%^ we have for this plane,

h = 0, (3
= o;

and its equations become

y = 0, X — az -{- a.

The first shows that the projection of the line on the plane

of yz is in the axis, and the second is the equation of its

projection on the plane of xz, which is the same as for the

line itself, with which it coincides.

87. Let us resume the equations

X = az -\- a, y = bz -\- (3,

So long as the quantities, a, b, a, (3, are unknown, the

position of the line is undetermined. If one of them, a for

example, be known, this condition requires that the line shall

have such a position in space, that its projection on the

plane of xz, shall make an angle with the axis of z, the tan-

gent of which is a. If a be also known, this projection must

cut the axis of x at this given distance from the origin, and

these two conditions will limit the line to a given plane.

If b be known, a similar condition will be required with

respect to the angle which its projection on the plane of yz

makes with the axis of z
; and finally, if all four constants

be known, the line is completely determined.

88. The determination of the constants a, 6, a, (3, from

given conditions, and the combination of the lines which

result from them, lead to questions which are analogous to

those we have been considering.

89. Before proceeding to their discussion, we will remark,

that the methods which we have just used, may be applied

i
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to curve as well as straight lines. In fact, if we know the

equations of the projections of a curve on two of the co-

ordinate planes, we can for every value of one of the varia-

bles a:, y or z, find the corresponding values of the other

two, which will determine points on the curve in space.

90. The projection of a curve is the intersection of a

cylindrical surface, passed through the curve perpendicular

to the plane on which the projection is made with this plane.

If we know the equations of two of its projections, these

equations show that the curve lies on the surfaces of two

cylinders, passing through these projections, and perpen-

dicular to their planes respectively. Hence their intersection

determines the curve.

91. The term Cylinder is used in its most general sense,

and applies to any surface generated by a right line moving

parallel to itself along any curve.

92. To find the equations of a right line, passing through

two given points.

Let x\ y\ %', x'\ y", z" : be the co-ordinates of these points.

The equations of the required line will be of the form

X == az -{• a

y = bz + (3

a, b, a, /3, being unknown. In order that the line pass through
the point whose co-ordinates are If*, y', z', it is necessary

that these equations be satisfied when we substitute x', y
and z', for x, y and z. Hence

For the same reason, the condition of its passing through



44 ANALYTICAL GEOMETRY. [Chap. IIL

the point whose co-ordinates are x", y", 2", requires that we
have

x" = az" + ^

These equations make known a, b, a, ^, and substituting

their values in the equation of the straight Kne, it is deter-

mined. Operating upon these equations as in Art. 61, we
have

(^r
_-

x') =a{z — z'), (x'
—

x'')
= fl

(z'
—

z")

(y -y')=b(z-^ z% (3/'
-

7/")
= & (z'

-
z")

from which we get
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Draw through the origin of co-ordinates two lines re-

spectively parallel to those whose inclination is required

their equations will be

az

hz

a'z

y= h'z

for the first,

for the second.

Take on the first any point at a distance r' from the origin,

the co-ordinates of this point being x\ y', z^ ; and on the

second line take another point at a distance ?•" from the ori-

gin, and call the co-ordinates of

this point x^\ 2/", js;", and let D
represent the distance between

these two points. In the trian-

gle formed by the three lines r',

r", and D, the angle V included

between r' and r" will be (by

Trigonometry), given by the

formula,

/''2 _L y."2
COS V = D2

2 r' r"

We have only to determine r', r", and D.

Designating by X, Y, Z, the three angles which the first

line makes with the co-ordinate axes, respectively, and by
X', Y', Z', those made by the second line, we have by
Art. 81,

x' = r' cos X, ?/'
= r' cos Y, z' = r' cos Z

57" = r" cos X', ?/"
= r" cos Y', z'' = r" cos Z'.

Besides, D being the distance between two points, we
have
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D2 = (x"
—

x'y + (?/"
—

y'Y + (x"
— xf ;

or

D2 = a:'2 + ?/'2 + z'^ + a7"2 -f y"^ + 2:"2 — 2 {x" x' + 2/" +
y' + ;^"

2;').

Putting for x\ y', z\ &:c. their values in terms of the angles,

we have

D2 = r'2 {cos^ X + cos2 Y + cos^ Z\ + r"2 Jcos^ X' +
cos2 Y' + cos2 Z'l

— 2 r' r"
J
cos X cos X' + cos Y cos Y'

+ cos Z cos 7J\,

But we have (Art. 81),

cos2 X + cos^ Y + cos2 Z = 1, cos2 X' + cos2 Y' + cos2 Z' = 1;

hence

D2 ^ ^/2 j^ r"^^2r' r" (cos X cos X' + cos Y cos Y' + cos Z
cos Z').

Substituting this value of D^ in the formula for the cosine

V, and dividing by r' r", we have

cos V = cos X cos X' -f- cos Y cos Y' + cos Z cos Z' ;

which is the expression for the cosine of the angle formed

in space.

94. We may also express cos V in functions of the co-

efficients «, b, a', h\ which enter into the equations of the

lines

X = az, X — dz,

y^hz, ?/
= Vz.

For this purpose let us consider the point which we have

taken, or the first line, whose co-ordinates are x\ y\ z'.

These co-ordinates must have between them the relations

expressed by the equations of the line ; hence
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x' = az'

and as we have always for the distance r'

these three equations give

^» y

But we have . ^

cos X = ——
, cos Y = -^, cos Z = —-. rr

*^ "

r r r'
'

hence

-
,

COS Y =
-; — «

COS Z =
Vl+a2 4.^2.

Reasoning in the same manner on the equations of the

second hne, we shall have

cos X' -
^'

cos Y' = ^'

Vl-|-a'2-[-6'2 Vi 4-tt'2+6'2'

cos Z' =
^

and these values being substituted in the general value of

cos V, it becomes

cos y = l+aa-Jrhb'

This value of cos V is double, on account of the double
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sign of the radicals in the denominator. One value belongs

to the acute angle, the other to the obtuse angle, which the

lines we are considering make with each other.

95. The different suppositions which we make on the

angle V being introduced into the general expression of cos

V, we shall obtain the corresponding analytical conditions.

Let V = 90°.

Cos V =
0, and then the equation which gives the value of

cos V will give

!+««' + bb' = 0,

which is the condition necessary that the lines he perpendicu-

lar to each other.

96. If the lines be parallel to each other, cos V = ± 1, and

this gives

I -\-aa' -\- bb'

± 1 =
^l+a^+ b^ V 1 4- a'2 + 6'2'

Making the denominator disappear, and squaring both mem-

bers, we may put the result under the form

<h\2 ^
(a'
— ay + (b'

— by + {ab'
—

a'b)

But the sum of the three squares cannot be equal to zero,

unless each is separately equal to zero, which gives

a = a', b — b\ ab' = a'b.

The two first indicate that the projections of the lines on

the planes of xz and yz are parallel to each other ; the third

is a consequence of the two others.

97. It is evident that the angles X, Y, Z, which a straight

line makes with the co-ordinate axes, are complements of

the angles which the same line makes with the co-ordinate
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planes. Hence, if we designate by U, U', U", the angles

which this line makes with the planes of xz, xjz and xy, we

shall have

h
sin U =

V 1 + flr2 _j_ 52

sin U" =

sin U' =
^ \-\-a^-\-h^

V 1 + a2 + 62*

98. Let it be required to find the conditions necessary

that two lines should intersect in space, and also find the co-

ordinates of their point of intersection.

Let

X = az -\- a.^ X — a!z Ar a',

y = hz-{-^, y = b'z-\- (3',

be the equations of the given lines. If they intersect, the

co-ordinates of their point of intersection must satisfy the

equations of these lines at the same time. Calling x', y', z',

the co-ordinates of this point, we have

x' = az' -\- OL, X' = a' + a',
/

y = hz^ + ,,e, ?/'
= Vz' + /3'.

These four equations being more than sufficient to deter-

mine, the three quantities x\ y\ z', will lead to an equation of

condition between <z, h, a, /8, a', /3', «', h', which determine

the positions of the lines, and eliminating x' and y\ we have

{a
_

«') z' + ot — a' = 0, {h
_

&') z' + /3
—

/3'
=

0,

and afterwards z', we get

(a
_

a') (/3
_

/3')
_

(a
_

a') (6
—

y) =
o,

which is the equation of condition that the two lines should

intersect If this condition be fulfilled, we may, from any
7

#
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three of the preceding equations, find the values of x\ y\ z',

and we get

/3'
_

/3 ,
«a' — a'a

, bl3'
—

b'(3

These values become infinite w^hen a = a' and h = h\

The point of intersection is then at an infinite distance. In-

deed, on this supposition the lines are parallel.

99. The method which has just been applied to the inter-

section of two straight lines, may also be used to determine

the points of intersection of two curves when their equations

a;re known. For these points being common to the two

curves, their co-ordinates must satisfy at the same time, the

equations of the curves. This consideration will generally

give one more equation than there are unknown quantities.

Eliminating the unknown quantities, we obtain an equation

of condition which must be satisfied, in order that the two

curves intersect.

100. Although the preceding method be correct, it is

nevertheless deficient. It establishes the condition necessa-

ry for the intersection of the curves, but does not determine

the number of intersections. To find this, let

be the equations of the projections of the first curve, and

x =
^' (z), y =

4.' (%),

those of the second, 9, 9', -^j 4.', being any functions of z.

As these four equations must subsist at the same time for

the points of intersections of the curves, we have

9(^)=V(^) (1), + (z) =+'(%) (2).

Eliminating z between these two equations, we shall have
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the equation of condition of which we have just spoken.

To comprehend the use of this equation, we must distinguish

two cases: 1st. When, knowing the constants which enter

mto the equations of the two curves, it is required to deter-

mine their points of intersection ; 2ndly. These constants be-

ing arbitrary, to establish between them the relations which

will give a determinate number of points of intersection.

101. In the first case, the equations of condition (1) and.

(2) are entirely known, and the values of all their co-effi-

cients are given.

Find their greatest common divisor, and put it equal to

zero
;
we shall obtain an equation in z, which being resolved,

will make known all the values of z common to the two

curves. Substitute these values, successively, in the equa-

tions of the two curves, and find those of x and y.

Every real value for these variables, which is the same

for the two curves,- will indicate as many real points of

intersection.

102. But if the constants which enter into the equations of

the curves be arbitrary, we may profit by this indetermina-

tion, to establish between the equations (1) and (2), a com-

mon divisor of a degree, not exceeding the number of these

constants. If there be but one arbitrary constant, we can

establish a common divisor . of the first degree ; For, if c be

this constant, since it is arbitrary, we can have a common

divisor of the form (z
—

c). The degree of the common
divisor being determined, substitute the values of z, obtained,

by putting the divisor equal to zero, in the equations of the

curves. The values of a; and y, which are real and common
to the two curves, will determine whether the required

number of the intersections really exist.

103. To represent these conditions geometrically; the
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values of z, which satisfy equation (1), make known the or-

dinates of the points of intersection of the projection of the

two curves on the plane of %x.

Equation (2) expresses an analogous condition with res-

pect to their projections on the plane of y%. But these con-

ditions do not determine whether the curves themselves in-

tersect, unless the points in which the projections intersect,

correspond, two and two, to the same point in space.

Of the Plane.

104. We have seen that a line is characterized when we

have an equation which expresses the relations between the

co-ordinates of each of its points. It is the same with sur-

faces, and their character is determined when we have an

equation between the co-ordinates x, y, and z, of the points

which belong to it
;
for by giving values to two of these

variables, the third can be deduced, which will give a point

on the surface.

105. The Equation of a Plane is an equation which

expresses the relations between the co-ordinates of every

point of the plane.

106. Let us find this equation.

A plane may be generated by considering it as the locus

of all the perpendiculars, drawn through one of the points

of a given straight line. Let x\ y\ z\ be the co-ordinates

of this point, we have

Vfor the equations of the given line.

2/
—

2/'
= ^ (-

—
z')j

Those of another line drawn through the same point,

will be

X — x' = a' (z
—

z')
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y-y^ = h'{z-z').

If these two lines be perpendicular, we have (Art. 95)

the condition

\-\-aa'-\- bb' = o,

a' and b' being constants for one perpendicular, but varia-

bles from one perpendicular to another. If we substitute

for a' and b' their values drawn from the above equations,

the resulting equation will express a relation which will

correspond to all the perpendiculars, and this relation will

be that which must exist between the co-ordinates of the

plane which contains them. The elimination gives

z — z' -{- a {x
—

x') -\- b (y
—

y')
=

o,

which is the general equation of a plane, since a and b are

entirely arbitrary, as well as .r', y', and z'.

107. If we make a: = o, and y = o, we have

z = z' -{- ax' + by'

for the ordinate of the

point C, at which the

plane cuts the axis of

z. Representing this

distance by c, the equa-

tion of the plane be-

comes

z -\-ax -{-by
— c = o,

and we see that it is linear with respect to the variables

X, ?/, and z. It contains three arbitrary constants, a, 6, c,

because three conditions are, in general, necessary to deter-

mine the position of a plane in space. If c = o, the plane

passes through the origin.
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108. To find the intersection of this plane with the plane

of xz, make y —
o, and we have .

y — 0, z -\- ax •— c = 0,

for the equations of the intersection CD.

The first shows that its projection on the plane of xy is in

the axis of x, and the second gives the trigonometrical

tangent of the angle which it makes with the axis of x.

109. Making ^ =
o, we obtain the intersection CD', the -

equations of which are,

X = 0, X -{- by
— c = o;

and z =
gives

z =
Of ax -\- by —^.c = Of

for the equations of the intersection DD'.

The intersections CD, CD', .DD', are called the Ti^aces of

the Plane.

110. The projections of the line to which this plane is

perpendicular, have for their equations

^x
-

a:')
== a {z

- z% (y -y<) =h{z - z').

Comparing them with those of the traces CD, CD', put

under the form

1 c I c
x~-—— z-[-—> 11 = — TT + ir-a a ^ o b

We see (Art. QQ) that these lines are respectively perpen-

dicular to each other; Hence, if a plane be perpendicular

to a line in space, the traces of the plane will be perpendicu-

lar to the projections of the line.

111. Making 2; = o in the equations of the traces CD,

CD', we have



Chap. III.] ANALYTICAL GEOMETRY. 55



56 ANALYTICAL GEOMETRY. [Chap. III.

Substituting for x^ and y' their values az + a, 6^ + /3, we
have

(A« + B& + C) 2;' -f Aa + B^ + D =
0,

which is the equation of condition in order that the hne and

surface have a common point.

Let a;", y", 2;", be the co-ordinates of another point com-

mon to the Kne and surface. We deduce the corresponding

condition

{ka + B& + C) 2" + Aa + B./3 + D = 0.

Now, these two equations cannot subsist at the same

time, unless we have separately

A<x + B& -f- C = 0, and Aa + B/3 + D = 0,

These are, therefore, the necessary conditions that the

line and surface have two points common.

If the values of «, &, a, /3, are such that these two con-

ditions are satisfied, every point of the line will be common

to the surface. For, if y, ?/'", %'", be the co-ordinates of

another point, in order that it be on the surface, we must

have

(Aa + B6 + C) z'" + Aa + B/3 + D = 0.

But this equation is satisfied whenever the two others

are, and consequently this point is also common to the line

and surface.

As the same may be proved for every other point, it fol-

lows that every straight line which has two points in com-

mon with the surface whose equation is

A:?; 4- B?/ + C% + D =
0,

will coincide with it, and consequently this surface is a

plane.
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113. If we make y — o,wo have

A^ + Cz + t> =

for the. equation of the trace CD, on the plane xz. If the

plane be perpendicular to the plane of yz, this trace will be

parallel to the axis of x, and its equation will be of the form

z = a, which requires that A =
o, and the equation of the

plane becomes

By + Cz-\-B = o.

We shduld in like manner have B =
o, if the plane were

perpendicular to the plane of xz. Its traces on the plane of

yz would be parallel to the axis of y, and its equation

would be

Ax + Cz + 1) ^0. .

For a plane perpendicular to the plane of xy, we have the

equation

Ax + By + D =. 0.

This co^idition requires that we have C = o.
,

We may readily see that these different forms result from

the fact that — —
?
— —

represent the trigonometrical tan-

gents of the angles which the traces on the planes of xz

and yz make with the axes of x and y.

114. There are many problems in relation to the plane
which may be resolved without difficulty after what has

been said. We will examine one or two of them.

115; Let it be required to find the equation of a plane

passing through three given points.
'

Let x\ y\ z'; x\ y\ 2"; x'\ y'", %'"
; be the co-ordinates

of these points,

A:c + By + C2: +. D =
8
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will be the form of the equation of the required plane.

Since this plane must pass through the three points, we

will have the relations

A^' +B?/' 4-Cz' +D =
o,

Aar" + By" + C%" + D =
o,

Ax'" + By"' + Cz'" + D = 0.

Then these equations will give for A, B, C, expressions of

the form

A-A'D, B = B'D, C = C'D,

A', B', C, being functions of the co-ordinates of the given

points.

Substituting these values in the equation of the plane, we

have

A'x + B'^ + C'% + 1 =

for the equation of a plane passing through three given

points.

116. To find the intersection of two planes represented

by the equations

Ax +By +Cz +1) =0,

A'x + B'y + Cz + D' = 0.

These equations must subsist at the same time for the

points which are common to the two planes. We may then

determine these points by combining these equations.

If we ehminate one of the variables, z for example, we
have

(AC— A'C) X + (BC— B'C) y -f- (DC— D'C) = o.

This equation being of the first degree, belongs to a
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straight line. It represents the equation of the projection

of this intersection on the plane of xy.

By ehminating x or y, we can in a similar manner find

the equation of its projection on the planes of yz and xz.

117. Generalizing this result, we may find the intersec-

tions of any surfaces whatever. For, as their equations

must subsist at the same time for the points which are com-

mon, by eliminating either of the variables, the resulting

equations will be those of the projections of the intersections

on the co-ordinate planes.

Of the Transformation of Co-ordinates.

118. We have seen that the form and position of a curve

are always expressed by the analytical relations which exist

between the co-ordinates of its different points. From this

fact, curves have been classified into different orders from

the degree of their equations.

119. Curves are called Algebraic or transcendental, ac-

cording as the equations which express them are algebraic

or transcendental.

120. Algebraic Curves are classified from the degree of

their equation, and the order of the curve is indicated by the

exponent of this degree. For example, the straight line is

of the first order, because its equation is of the first degree

with respect to the variables x and y.

121. The discussion of a curve consists in classifying it

and determining its position and form from its equations.

This discussion may be very much facilitated by means of

analytical transformations, which, by simplifying the equa-

tions of the curve, enable us more readily to discover its
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form and general properties. The niethods used to effect

this simpKfication consists in changing the position of the

origin, and the direction of the co-ordinate axes, so that the

proposed, equations, when referred to them, may have the

simplest form which the nature of the curve will admit of.

122. When, we wish to pass from one system of co-ordi-

nates to another, w6 find, for any point, the values of the old

co-ordinates in terms of the new. Substituting these values

in the proposed equation, it will express the relations be-

tween the co-ordinates of the same points referred to this

new system. Consequently the properties of the curve will

remain the same, as we have only changed the manner of

expressing them.

123. The relations between the new and old co-ordinates

are easily established,when

the origin alone is changed

without altering the direc-

tion of the axes. For, let

A' be the new origin, and

A'X', A'Y', the new axes,

parallel to the old axes, Kx,

AY. For any point M, we
have

:af'

AP = AB + BP, PM = PP' + P'M = A'B + P'M.

Making AB = «, and AB' =
6, and representing by x and

y the old, and x^ ?/' the new co-ordinates, these et[uations

become

X = a -\- x\ y = h -\- z/',

which are the equations of transformation from one system

of co-ordinate axes, to another system parallel to the first.
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124. To pass from one system of rectangular co-ordinates

to another system oblique to the first, the origin remaining

the same.

Let AY, AX be two axes

at right angles ,
to each other

and AY', . Ax', two axes

making any angle with each

other. Through any point

M, draw MP, MP', respec-

tively parallel to AY and AY', and through P' draw P'Q,

P'R parallel to AX and Ay, we shall have

a: = AP = AR + P'Q, ?/
= MP = MQ + P'R.

But AR, P'R, MQ, PQ, are the sides of the right-angled

triangles AP'R, P'MQ, in wliich AP' =
x', and P'M =

y'.

We also know the angles P'AR = a and MP'Q = a'. We
deduce from these triangles

X — x' cos a + ?/' cos o^'f y
— x' sin a -{- y' sin a',

which are the relations which subsist between the co-

ordinates of the two systems.

125. If we wished to pass from the system whose co-

ordinates are x' and y' to that of x and y, we have only to

deduce the values x' and y' from the two last equations.

We .find by elimination these values to be

X sm a cos a
2/

y cos a— X sm a

sin (a'
—

a)
^-

sin (a'
—

a)

If the new axes of x' and y' be rectangular also, we have

a' — a = 90°. and a' = 90° -f- a, sin (a'
—

a)
= sin 90° = 1.

sin a' = sin (90° -\- a)
~ sin a cos 90° + cos a sin 90° = cos a>

cos cc = — sin a.
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Substituting these values, we have for the formulas for

passing from a system of rectangular co-ordinates to

another system also rectangular, the origin remaining the

same,

X — x^ cos a — ?/' sin a, y = x' sin a + ?/' cos a.

126. To pass from a system of oblique co-ordinates to

another system also oblique, the origin remaining the same.

Let AX', AY' be the axes of x\ y\ and AX", AY", the new

axes whose co-ordinates are x'\ y". Let us take a third

system at right angles to each other X .y'

as AX, AY, the co-ordinates being

X, y. Calling a, a', /3, /3', the angles

which the axes of x\ y\ x", y", make

with the axis of x, we have (Art.

124) for passing from this system to

the two systems of oblique co-ordinates, the formulas

X = x' cos a -\- y' cos a', y = x' sin a + y' sin a',

X = x" cos /3 -|- y" cos ^', y = x" sin (3 + y" sin (3'.

Eliminating x and y from these equations, we shall obtain

the equations which will express the relations between the

co-ordinates x', y', and x", y", which are

x' cos a + 2/'
cos a' = x" cos /3 + y" cos jB'

x' sin a + y' sin a' = a;" sin /3 -f ?/" sin /3'.

Multiplying the first by sin a, and subtracting from it the

second multiplied by cos a, we obtain the value of y'.

Operating in the same manner, we get the value of x', and

the formulas become

^, ^ x" sin {a'
—

/8) + y" sin (a'
—

(3')

sin (a'
—

a)
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, _ a;" sin {(3
—

a) -[- y" sin (/3'
—

a)

sin (a'
—

a)

127. Generalizing the foregoing remarks, we may easily

find the formulas for the transformation of co-ordinates in

space. We have only to find the value of the old co-

ordinates in terms of the new, and reciprocally. If the

transformation be to a parallel system, and a, b, c represent

the co-ordinates of the new origin, we have the formulas

X = a + x', y - b + y', z = c + z\

in which Xj y, and z are the old, and x', y' and z' the new

co-ordinates.

128. Let us now suppose that the direction of the new

axes is changed. As the introduction of the three dimen-

sions of space necessarily complicates the constructions of

the problems, if we can ascertain the form of the relations

which must exist between the old and new co-ordinates,

this difficulty may be obviated.

Now it can be proved, in general, that in passing from

any system of co-ordinates, the old co-ordinates must

always be expressed in linear functions of the new, and

reciprocally. This has been verified in the system of co-

ordinates for a plane, since the relations which we have

obtained are of the first degree. To show that this must

also be the case with transformations in space, let us con-

ceive the values of x, y, z, expressed in any functions of

x'f y', z', which we will designate by <p, 'n', 4^, so that we
have

a; = 9 {x', ij', z'), y = '^
{x', i/, z'), 2; = + {x', y\ z').

If we substitute these values in the equation of the plane,

which is always of the form
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Ax -\-Bij + Cz + 1) = 0,

it becomes

A.
cp {x',y', %',) .+ B. ^

{x', y\ %',) + C. + {x\ y\ %',) + D = o.

But the equation of the plane is always of the first degree,

whatever be the direction of the rectilinear axes, to which

it is referred, since the -equations of its linear generatrices

are always of the first, degree. Hence, the preceding equa-

tions must reduce to the form

Mx^ + By + C'z' + D' = (>,

in which A', B', C, D', are independent of x\ y\ z\ but de-

pendent upon the primitive constants A, B, C, D, and the

angles and distances whicl^ determine the relative positions

of the two systems.

This reduction must take place whatever be the values of

the . primitive co-efficients A, B, C, D, and without there re-

sulting any condition from them. Hence this reduction

tnust exist in the functions 9, *, %|y, themselves, for if it were

otherwise, the terms of (p which are multiplied by A, would

not, in general, causQ those of * and 4^ to disappear, which

are multiplied by B and C. It would follow from this, that

the powers of x', y', z', higher than the first, would necessa-

rily remain in the transformed equation, if they ex:isted in

the functions 9, -Tf, 4^, These functions are therefore limited

by the condition that the new' co-ordinates x', y', z', exist

only of the first power, and consequently the most general

form which we can suppose, will be

X — a + mx' + m'y' + m"z',

y =^b -\- nx' + n'y' + n"z',

z = c + px' + p'y' + p"z',
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in which the co-efficients of x', y', z', are unknown constants

which it is required to determine. But since they are con-

stants, their values will remain always the same, whatever

be those of x', y', z'. We can then give particular values to

these variables, and thus determine those of the constants.

If we make

x' = 0, ?/'
=

o, z'
—

0,

we have

X —
a, y =

h, z =
G,

which are the co-ordinates of the new origin with respect to

the old. We will suppose for more simplicity that the di-

rection of the axes is changed, without removing the origin ;

the preceding formulas become under this supposition

X = mx' + m'ff' -{-' m"%',

y = nx' + n'y' + 'n"z'^

z —
px' + p'y' + p"z'.

To determine the constants, let us consider the points

placed on the axis oix', the equations of this axis are

y[
=

0, z' = 0.

We have then for points situated on it,

X = mx', y = nx'; z — px'.

Let AX' be this axis,

and let the old axes AX,
AY, AZ, be taken at

right angles, for any

point M we have AM
= X', MM' =

z, and the

triangle AMM' will give

9
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z = X' cos AMM'.

The angle AMM' irs that which the new axis of x' makes

with the old axis of z. Let us call it z, and represent by
XY the angles formed by this same axis AX', with AX
and AY. We shall have for points on this axis

X — x' cos X, y — x' cos Y, z = x' cos Z.

This result determines ?i, wz, jo, and gives

m = cos X, ?z = cos Y, p = cos Z.

If we consider points on the axis of?/', whose equations are

x' = 0, z' = 0,

we shall have relatively to these points

X =
m'y', y = n'y\ z = p'y'.

Designating by X', Y', Z', the angles which this axis forms

with the axes of x, y, z, we have

w! — cos X', n' = cos Y', p'
= cos Z'.

Reasoning in the same manner with the axis z', we have

m" = cosX", 7i" = cosY", p" = cos Z" ;

from which we get

a: =^ x' cos X -|- ^' cos X' -{ z' cos X",

y = x' cos Y + ?/' cos Y' + z' cos Y",

Z = x' cos Z + y' cos Z' + z' cos Z". (1).

129. We must join to these values, the equations of con-

dition which take place between the three angles, which a
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straight line makes with the three axes, and which are

(Art. 81),

cos2 X -\- cos2 Y + cos2 Z =
1,

cos2 X' + cos2 Y' + cos2 Z' = 1,

cos2 X" + cos2 Y" + cos2 Z" = 1. (2).

These formulas are sufficient for the transformation of co-

ordinates, whatever be the angles which the new axes make

with each other.

130. Should it be required that the new axes make par-

ticular angles with each other, there will result new condi-

tions between X, Y, Z, X' &c. which must be joined to the

preceding equations. If we represent by V the angle

formed by the axis of x' with that of ?/', by U that made by

y' with z'f and by W that made by z' with x', we have by
Art. 93,

COS V = COS X cos X' + cos Y cos Y' + cos Z cos Z',

cos U = cos X' cos X" + cos Y' cos Y" + cos Z' cos Z",

cosW = cos X cos X" -f cos Y cos Y" -f cos Z cos Z". (3).

And these equations added to those of (1) and (2), will enable

us in every case to establish the conditions relative to the

new axes, in supposing the old rectangular.

131. If, for example, we wish the new system to be also

rectangular, we shall have

cos V =
0, cos V =

0, cos W ~
0,

and the second members of equations (3) will reduce to zero
;

then adding together the squares of x, y, z, we find

^2 + ?/2 + 2;2 = X'^ + 7/'2 + z'^.
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This condition must in fact be fulfilled, for in both sys-

tems the sum of the squares of the co-ordinates represents

the distance of the point we are considering, from the com-

mon origin.

132. If we wished to change the direction of two of the

axes only, as, for example, those of x and y, let us suppose

that they make an angle V with each other, and continue

perpendicular to the axis of z. We have from these con-

ditions,

cos U =
f), cos W =

0,

cos X" =
0, cos Y" =

0, cos Z" = 1.

Substituting these values in equations (3), we have

cos 7i' = 0,

'

cos Z =
0,

that is, the axes of x' and y' are in the plane oi xy.

From this and equations (2), there results

cos Y = sin X, cos Y' = X',

and the values of x, and y, become

X = .x' cos X + ?/' cos X', ?/
= x' sin X -f y' sin X' ;

which are the same formulas as those obtained (Art. 124.)

Polar Co-ordinates.

133. Right lines are not the only co-ordinates which may
be used to define the position of points in space.. We may

employ any system of lines, either straight or curved, w-hose

construction will determine these points.

134. For example, we may take for the co-ordinates of
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points situated in a plane, the

distance AM, from a fixed point

A taken in a plane, and the an-

gle MAX, made by the line AM
with any line AX drawn in the

same plane. For, if we have

the angle MAP, the direction of Hne AM is known ; and if

the distance AM be also knowp, the position of the point

M is determined. •

135. The method of determining points by means of a

variable angle and distance, is called a System of Polar

Co-ordinates. The distance AM is called the Radius Vec-

tor, and the fixed point A the Pole.

136. When we know the equation of a line, referred to

rectilinear co-ordinates, we may transpose it into polar co-

ordinates, by determining the values of the old co-ordinates

in terms of the new, and substituting them in the proposed

equation. For example, let A' be taken

as the pole,whose co-ordinates are x=a,

y = b. Draw A'X' parallel to the axis

of x, and designate the angle MA'X' by

Vj the radius vector A'M by r,we have

r
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which are the formulas for passing from rectangular co-

ordinates to polar co-ordinates.

137. If the pole coincide with the origin, a = o, h~o, and

we have

x = r cos V, y = r sin v.

If the line AX' make an angle a with the axis of x, formu-

las (1) will become

x = a-\-r cos {v-\-oi), y = b -{-r sin (v + a).

138. By giving to the angle v every value from o to

360°, and varying the radius vector from zero to infinity,we

may determine the position of every point in a plane. But

from the equation

we get

r cos V

cos V

Now, since the algebraic signs of the abscissa and cosine

vary together, that is, are both positive in the first and

fourth quadrants, and negative in the second and third, it

follows that the radius vector can never be negative, and we

conclude that should a problem lead to negative values for

the radius vector, it is impossible.

139. Polar co-ordinates may also be used to determine

the position of points in space. For this purpose we make

use of the angle which the radius vector AM makes with its

projection on the plane of xy, for example, and that which

this projection makes with the axis of x. MAM' is the first

of these angles ;
MAP the second. Calling them

cp
and ^,

and representing the radius vector AM by r, and its projec-

tion AM' by r', we have
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x — r cos 9, y — r sin d, z = r sm Q.

Besides, we have

r' = r cos ^
;

from which we get

x — r cos (p cos ^, y — r cos ^ sin 9, 2 = r sin ^.

Formulas which may be applied to every point in space

by attributing to the variables ^, 9, and r, every possible

value.
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CHAPTER IV.

OF THE CONIC SECTIONS.

140. If a right cone with a circular base, be intersected

by planes having different positions with respect to its axis,

the curves of intersection are called Conic Sections. As this

common mode of generation- establishes remarkable analo-

gies between these curves, we shall employ it to find their

general equation.

141. Let O be the origin of a system of rectangular co-

ordinates OX, OY, OZ. If

the line AC at the distance

OC = C from the origin, re-

volve about the axis OZ,

making a constant angle v

with the plane of xy, it will

generate the surface of a

right cone with a circular

base, of which C will be the

vertex and CO the axis. The

part CA will generate the

lower nappe, CA' the upper

nappe of the cone. To find

the equation of this sur-

face.

The equation of a line passing through the- point C, whose

co-ordinates are

y = 0, 2? = C,
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is of the form (Art. 92),

X = a {z
—

c), y =z b {z
—

c) ;

the co-efficients a and b being constants for the same posi-

tion of the generatrix, but variables from one position to

another. But we have (Art. 97),

sijrv
1 + a^ _]_ ^2

'

from which we obtain

(a2 -f- 62) tang2y
= 1.

Substituting for a and b, their values drawn from the equa-

tion of the generatrix, we shall have

(?/2 + 2'2) tang^v
—

(z
— cY.

This equation being independent of a and b, it corresponds

to every position of the line AC in the generation, it is there-

fore the equation of the conic surface.

142. Let this surface be intersected by a plane BOY,
drawn through the origin O, and perpendicular to the plane

of xz. Designating by u the angle BOX which it makes

with the plane of xi/, its equation will be the same as that of

its trace BO (Art. 113), that is

Z = X tang u.

If we combine this equation with that of the conic surface,

we shall obtain the equations of the projections of the curve

of intersectioii on the co-ordinate planes. But as the pro-

perties of the curve may be better discovered, by referring

it to axes, taken in its own plane, let us find its equation re-

ferred to the two axes OB, OY, which are situated in its

plane, and at right angles to each other, calling x' ?/' the

10
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co-ordinates of any point, the old co-ordinates of which

were a:, y, z, we shall have in the right-angled triangle

OPP',

X = OP = a:'cos2^ Z = PF = x' sin 2^;

and since the axes of y and y' coincide, we shall also have

Substituting these values for x, y, z, in the equation of the

surface of the cone, we shall obtain for the equation of inter-

section

y'^ tang^u + x'^ cos^u (tang^i;
—

tang^z^) + 2c.t' sin u — c^ ;

or suppressing the accents,

y^ tang^u + ^^ cos^u (tang^z)
—

tang^w) + 2cx sin u == c\

143. In order to obtain the different forms of the curves

of intersection of the plane and cone, it is evident that all

the varieties will be obtained by varying the angle u from

to 90°. Commencing then by making

u = Of

which causes the cutting plane to coincide with the plane of

xy, the equation of the intersection becomes

y^ + X*

tang^i)

which shows that all of its points arc equally distant from

the axis of the cone. The intersection therefore is a circle,

described about O as a centre and with a radius equal

c
to

tang V

144. Let u increase, the plane will intersect the cone in
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a re-entrant curve, so long as u < v, which will be found

entirely on one nappe of the cone. But u <. v makes tang

u < tang V, and the co-efficients of x^ and y^ will be positive

in the equation of intersection. This condition characterizes

a class of curves, called Ellipses,

145. When u = v, the cutting plane is parallel to CD.

The curve of intersection is found limited to one nappe of

the cone, but extends indefinitely from B on this nappe.

The condition u ^ v causes

the co-efficient of x^ to dis-

appear, and the general equa-

tion of intersection reduces

to

y tang ^v + 2cx sin u = (?,

These curves are called

Faraholas.

146. Finally, when % > tJ, the

cutting plane intersects both nap-

pes of the cone, and the curve of

intersection will be composed of

two branches, extending indefinitely

on each nappe. ^
In this case tang

u ;> tang v^ and the co-efficient of

x^ becomes negative. This con-

dition characterizes a class of

curves called Hyperbolas,

147. If we suppose the cutting plane to pass through the

vertex of the cone, the circle and ellipse will reduce to, a
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point, the parabola to a straight line, and the hyperbola to

two straight lines intersecting at C. This becomes evident

from the equations of these different curves, by making

c = 0, and also introducing the condition of u being less

than, equal to, or greater than, v.

We will now discuss each of these classes of curves, and

deduce from their general equation the form and character

t)f each variety.

Of the Circle.

148. If a right cone with a circular base be intersected

by a plane at a distance c, from the vertex, and perpen-

dicular to the axis, we have found for the equation of in-

tersection (Art. 143),

2 I ^2 _ <^

r +^'
tang ^v

Representing the second member by R^ we have
tang^i)

0:2 + 2/2
=3 R2.

In this equation, the co-ordinates x and y are rectangular

the quantity ^/^'^ + y'^ expresses therefore the distance of

any point of the curve from the origin of co-ordinates

(Art. 47.) The above equation shows that this distance is

constant. The curve which it represents is evidently the

circumference of a circle, whose centre is at the origin of

co-ordinates, and whose radius is R.

149. To find the points in which the curve cuts the axis

of X, make y = o, and we have

:r = ± R,
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•which shows that it cuts this axis in two different points,

one on each side of the origin, and at a distance R from

the axis of
y. Making a; = o, we find the points in which

it cuts the axis of y. We get

?/
= ±R,

which shows that the curve cuts this axis in two points,

one above and the other below the axis of x, and at the

same distance R from it.

150. To follow the course of the curve in the inter-

mediate points, find the value of y from its equation, we

get

y=± \/R2_^^2,

These values being equal and with contrary signs, it

follows that the curve is symmetrical with respect to the

axis of X. If we suppose x positive or negative, the values

of y will increase as those of x diminish, and when x = o

we have 2/
= ± R, Which gives the points D and D'. As x

increases, y will diminish, and when a; = ± R the values of

y become zero. This gives the ^-

points B and B'. If x be taken

greater than R, y becomes imagi-

nary. The curve therefore does

not extend beyond the value of

a; = ± R.

161. The equation of the circle may be put under the form,

?/2
= (R + X) (R — x).

R 4- a:, and R — x, are the segments into which the ordi-

nate y divides the diameter. This ordinate is therefore a

mean proportional between these two segments.



78 ANALYTICAL GEOMETRY. [Chap. IV.

152. The equation of a line pass-*

ing through the point B, whose co-

ordinates are
3/
=

o, .2; = + R, is

y = ci (x — R) ;

and for a hne passing through the

point B', for which y — o and

:r = — R,

y = a {x \- R).

In order that these lines should intersect on the circum-

ference of the circle, these equations must subsist at the

same time with the equation of the circle. Combining the

equations with that of the circle, by multiplying the two

first together, and dividing by the equation of the circle, we

have first

y^
= aaJ {x"

—
R^) ;

and the division by ?/^
=

(R^
—

x^), gives

aa' 1, or «a' + 1 — ;

but this last equation expresses the condition that two lines

should be perpendicular to each other (Art. ^^ ; hence^ if two

lines he drawn from the extremities of a diameter of the

circle to any point of its circumference, they will he per-

pendicular to each other.

153. The equation of the circle may be put under

another form, by referring it to a system of a co-ordinate,

whose origin is at the extremity B' of its diameter B'B.

For any point M, we have

AP = X = B'P — B'A = a:' — R.
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Substituting this value of x in the equation y^ + x^ — R^,

we get

if + x'^— 2 Rx' - 0.

In this equation x' — o gives y'
=

o, since the origin of co-

ordinates is a point of the curve. Discussing this equation as

we have done the preceding, we shall arrive at the same

results as those which have just been determined.

154. If the circle be referred to a system of rectangular

co-ordinates taken without the circle, calling x' and y' the

co-ordinates of the centre, and x and y those of any one of

its points, we shall have

X' ^x = BC, y'
— y = CJ)',

and calling the radius R, we
have (Art. 47),

(x'
— xy + (y'

— yf = R2,

which is the most general equa-

tion of the circle, referred to

rectangular axes.

155. To find the equation of a tangent line to the circlej

let us resume the equation

x^ -{- y^^ R2.

Let a;", y", be the co-ordinates of the point of tangency,

they must satisfy the equation of the circle, and we have

X"2 + y"2 ^ R2,

The equation of the tangent line will be of the form

(Art. 61),
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y — y" = a {x — x") ;

it is required to determine a.

For this purpose, let the tangent be regarded as a secant,

and let us determine the co-ordinates of the points of inter-

section. These co-ordinates must satisfy the three preceding

equations, since the points to which they belong are common

to the line and circle. Combining these equations, by sub-

tracting the second from the first, we have

y^
—

y"^ -\' ^^ -— ^"^ — 0,

or {y
—

y") {y + y") + {x
-^

x") {x + x") = o.

Putting for y, its value y" + «
(a;
—

x") drawn from the

equation of the Hne, we get

\2ay" + «2 (^
__

^//) _|_ ^ + x"\ (x
—

x") = o.

This equation will give the two values of a; corresponding

to the two points of intersection. The co-ordinates of one

point are obtained by putting

s — x" = 0,

which, gives

X =^ a;", and y — y" ;

and those of the second point are made known by the

equation

2aij" \- a" {x
—

x") \- x \- x" = o,

when a is given.

If now we suppose the points of intersection to approach

each other, the secant line will become a tangent, when

those points coincide
; but this supposition makes

X = x"y and y = y" ;
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and the last equation becomes

2ay" + 2x" = o,

from which we get

y"'

Substituting this value of a in the equation of the tangent,

it becomes after reduction

yy" + XX" = R2.

156. The value which we have just found for a being

single, it follows that but one tangent can be drawn to the

circle, at a given point of the curve.

157. A line drawn through the point of tangency perpen-

dicular to the tangent is called a Normal. Its equation will

be of the form

y ~~
y" — ^ (^ — ^")-

The condition of its being perpendicular to the tangent

gives

a'a + 1 = 0, Qx a! — ——
But we have found (Art. 155),

y"'

hence,

/ y"a' = ^^
• x"

Substituting this value in the equation of the normal, it

becomes
11
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y" =
J7 (.^

-
X") ;

and reducing, we have

yx"— y"x =

for the equation of the normal line to the circle.

158. The normal line to the circle passes through its

centre, which, in this case, is the origin of co-ordinates.

For, if we make one of the variables equal to zero, the other

will be zero also. Hence the tangent to a circle is perpen-

dicular to the radius drawn through the point of tangency.

159. To draw a tangent to the circle, through a point

without the circle, let x' y' be the co-ordinates of this point.

Since it must be on the tangent, it must satisfy the equation

of this line, and we have

y' y" + x' x" = R2.

We have besides.

These two equations will determine x" and ?/", the co-

ordinates of the point of tangency, in terms of R and the

co-ordinates x' y' of the given point. Substituting these

values in the equation of the tangent, it will be determined.

The preceding equations being of the second degree, will

give two values for x" and y". There will result conse-

quently two points of tangency, and hence two tangents

may be drawn to a circle from a given point without the

circle.

160. We have seen that the equation of the circle re-

ferred to rectangular co-ordinates, having their origin at the
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centre, only contains the squares of the variables x and y^

and is of the form

if •\- X^ = R2.

Let us seek if there be any other systems of axes, to

which, if the curve be referred, its equation will retain the

same form.

Let us refer the equation of the circle to systems having

the same origin, and whose co-ordinates are represented by
x' and y'. Let a, «', be the angles which these new axes

make with the axis of x. We have for the formulas of

transformation (Art. 124),

X = x' cos cL -{- y' cos a', y = a;' sin cc + y' sin a'.

Substituting these values for x and y in the equation of

the circle, it becomes

y'^ (cos^a' + sin^a') + 2x'y' cos (a'
—

a) + x'^

(cos^a + sin^a)
=r R2 ;

or, reducing,

?/'2 + 2x'y' cos (a'— a) + x'^ = R2.

The form of this equation differs from that of the given

equation, since it contains a term in x'y'. In order that

this term disappear, it is necessary that the angles a a' be

such that we have

cos (a'
—

a)
=

0,

which gives

a' = a + 90°, or a' = a + 270°,

which shows that the new axes must be perpendicular to

each other.

161. Conjugate Diameters are those diameters to which,

if the equation of the curve be referred, it will contain only



84 ANALYTICAL GEOMETRY. [Chap. IV.

the square powers of the variables. In the circle, we see

that these diameters are always at right angles to each

other; and as an infinite number of diameters may be

drawn in the circle perpendicular to each other, it fol-

lows that there will be an infinite number of conjugate

diameters.

Of the Polar Equation of the Circle.

162. To find the equation of the circle referred to polar co-

ordinates, let O be taken

as the pole, the co-ordi-

nates of which referred

to rectangular axes are a

and h ; draw OX' making

any angle a with the axis

of X. OM will be the

radius vector, and MOX'
the variable angle v. The

formulas for transformation are (Art. 137),

x= a + r cos (v + a), y = b + r sin (v + a).

These values being substituted in the equation of the circle

f + x^ = R2,

it becomes

r^ + 2\a cos {v -\- a) -}- b sin (v + a)\ r + a^ -{-h^ — R^ = o,

which is the most general polar equation of the circle.

This equation being of the second degree with respect to

]
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r, will generally give two values to the radius vector. The

positive values alone must be considered, as the negative

values indicate points which do not exist.

163. By varying the position of the pole and the angle v,

this equation will define the position of every point of the

circle.

164. If the pole be taken on the circumference, and we
call a, h, its co-ordinates, these co-ordinates must satisfy the

equation of the circle, and we have the relation

a2 ^ 52 _ R2 ^ 0.

The polar equation reduces to

1^ — 2 \a cos (u + a) -f 6 sin {v -f a) rj
= o.

If OX' be parallel to the axis of x^ the angle a will be zero,

and this equation becomes

7^ — 2
(<2

cos V -\- h ^m v) r = 0.

This equation may be satisfied by niaking r = 0. Hence,

one of the values of the radius vector is always zero, and it

may be satisfied by making

r + 2 (a cos t) + & sin
?))
=

0,

which gives

r =— 2 {a cos -u + & sin v)\

from which we may deduce a second value for the radius

vector for every value of the angle v.

165. If we have in this last equation r — 0, the equation

becomes
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a cos u + 6 sin 2) = 0,

or
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and the angle B =^ v + u and the side OC =
c, and we

get

QT» _ C COS V

sin (v + u)

from which results

c cos V
,X = ~ X.

sin (v + u)

Substituting this value of x in the equation of the curve,

we have

y'^ sin^u + x'^ sin (v + u) sin {v
—

u)
— 2cx' sin v

cos V cos u = ;

and suppressing the accents, we have

y^ sin^v + x^ sin (v + "^0 ^^^^ (^
—

^)
— ^^^ sin u

cos V cos ?z =
;

which is the general equation of the ellipse referred to the

vertex B.

168. To find the points in which it meets the axis of ar,

make y = v, we have

a:^sin {v + u) sin (v
—

u)
— 2cx sin v cos v cos u = o ;

which gives for the two values of x,

2c sin V cos v cos u
X =0, and x —

sin (u + u) sin (u
—

u)

which shows that it cuts the axis of x in two points B
and B', one at the origin, the other at the distance

e
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2ca: sin vcos V cos u ,i ... -j rxu - con the positive side oi the axis oi y,
sin (v + u) sin {v

—
u)

Making ;c = o, we have the

points in which it cuts the axis of at

y. This supposition gives

2/2
= 0.

This equation takes a very simple and elegant form when

we introduce in it the co-ordinates of the points in which

the curve cuts the axes. For, if we suppose

A2 _ ^^ siv^v cos^v cos% r

sin^ {v + u) sin^ {v
—

u)

T>2 _ C^ COS^l) COS^Z^

sin {v + u) sin {v
—

u)

we have only to multiply all the terms of the equation in y
and x'^ by

c^ cos^u cos^u

sin^ {v -f u) sin^ {v — uf

and putting x for
:??', we have

2 c^ sin^i; cos^u cos^M , 9 ^^ cos^v cos22^

sin^ {v + 2^)
sin^ {p

—
u) sin (u + u) sin (u

—
u}

c^ sin^?; cos^y cos^?^ c^ cos^i) cos^z^

sin
(t; + u) sin

(t;
—

: u) sin^ (u -i- v) sin^ (u
—

2^)

and making the necessary substitutions, we obtain

169. The quantities 2A and 2B are called the Axes of
the Ellipse. 2A is the greater or transverse axis ; 2B the
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conjugate or less axis. The point A is the centre of the el-

lipse, and the equation

Ah/ + BV = A2B2

is therefore the equation of the Ellipse referred to its centre

and axes.

170. If the axes are equal we have A = B, and the equa-

tion reduces to
'

which is the equation of the circle.

171. Every line drawn through the centre of the ellipse

is called a Diameter, and since the curve is symmetrical, it is

easy to see that every diameter is bisected at the centre.

2B^
172. The quantity ——- is called the parameter of the

curve, and since we have

2A : 2B : : 2B : ^,

it follows that the parameter of the ellipse is a third propor-

tional to the two axes.

173. Introducing the expressions of the semi-axes A and

B in the equation

y^ sin^u + ^^ sin (v + u) sin (v
—

u)
— 2cx sin v

cos V cos u = 0,

in which .the origin is at . the extremity of the transverse

axis, by multiplying each term by the quantity

12
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sin^ (v + u) sin^ (v
—

u)

it becomes

which may be put under the form

If we designate by x', y', x", y", the co-ordinates of any
two points of the ellipse, we shall have

y^ ^ x' (2A

y"^ X" (2A x")

which shows that in the ellipse, the squares of the ordinates

are to each other as the products of the distances from the

foot of each ordinate to the vertices of the curve.

174. The equation of the ellipse referred to its centre and

axes may be put under the form

B^
(A2
~

x").

If from the point A as a

centre with a radius AB = A,

we describe a circumference

of a circle, its equation will

be

2/2
= A2 — X\

Representing by ;/ and Y the ordinates of the ellipse and

circle, which correspond to the same abscissa, we have
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According as B is less or greater than A, y will be less

or greater than Y, hence iffrom the centre of the ellipse with

radii equal to each of its axes, two circles he described, the

ellipse loill include the smaller and be inscribed within the

large circle.

175, From this property we deduce, 1st. That the trans-

verse axis is the longest diameter, and the conjugate the

shortest ; 2ndly. When we have the ordinates of the circle

described on one of the axes, to find those of the elUpse, we

have only to augment or diminish the former in the ratio of

B to A. This gives a method of describing the elhpse by

points when the axes are known.

From the point A as a centre with radii equal to the

semi-axes A and B, describe the circumferences of two cir-

cles, draw any radius ANM, and through M draw MP per-

pendicular to AB. The point Q will be on the elhpse, for

we have

AN B

or,

as in Art. 174.

B

176. We have seen that for every point on the elhpse,

the value of ordinate is

B2

For a point without the ellipse, the value of y would be
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greater for the same value of a:, and for a point within, the

value of y w^ould be less. . Hence,

For points without the ellipse, A^ + B^a:^— A^B^ > o.

For points on the ellipse, Khf -j- Wx^— A^B^ = o.

For points within the ellipse, khf + Wx'^— A?W < o.

177. If through the point B', whose co-ordinates are

y = 0, X = — A, we draw a line, its equation will be

y =^ a {x -{- A).

For a line passing through B,

whose co-ordinates are y = o^

a: = + A, we have

y = a' {x
— A.)

If it be required that these

lines should intersect on the ellipse, it is necessary that

these equations subsist at the same time with the equation

of the'elHpse. Multiplying them together, we have

y^
= —aa' (A^ — x^);

and in order that this equation agree with that of the ellipse,

^/^=X2(A^-^^),.

we must have

aa'
B2

A^'

B2
or aa' = — -r^'

which establishes, a constant relation .between the angles

formed by the chords drawn from the extremities of the

transverse axis with this axis. In the circle B = A, and this

relation becomes

aa' = 1,

as we have seen (Art. 152).
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178. The lines which are drawn from the extremities of

any diameter of a curve intersecting .
on the curve, are

called Supplementary Chords. When the relation which

has just been established (Art. 177) takes place between the

angles which any two lines form with the axis of x, these

lines are Supplementary chords of an ellipsS, the ratio of

whose axis is w*

179. As we proceed in the examination of the properties

of the ellipse, we are struck with the great analogy between

this curve and tie circle.' We may trace this analogy far-

ther. In the circle we have seen that all the points of its

circumference are equally distant from the centre. A1-'

though this property, does not exist in the ellipse, we find

something analogous to it ; for, if on the transverse axis we

take two points F F' whose" abscissas are ±^ A^ — B^, the

sum of the distances of these points to the same point of the

Qurve is always constant and equal to the transverse axis.

To prove this, let x and y be the co-ordinates of any point

M of the elhpse; represent the abscissas of the points F F'

by ± x'. CaUing D the distance MF, or MF', we have

Putting for y lis value drawn from the equation of the
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ellipse, and substituting for x^'^ its value A^ — B^ this ex-

pression becomes

D2 = B2 — -^ + x'—^xx' + A2— B2 =

A2— B2
"

—^%
—

a;2 — 2^57' + A2;

or, substituting for A^— B^ its value rzr'^,

xH^"^ „ / . xx\'2.
D2= -^ — ^xx' + ^ =

(^
— x) •

Extracting the square root of both members, we have

^ / xx\

Taking the positive sign, and substituting for x^ its two

values ± '^ A^ — B^, we have for the distance MF, or MF',

T.TT. K
x^K^ — W ,^^, ,

x-^K^ — W
MF = A — ^ , MF' = A + J

Adding these values together, we get

MF + MF' = 2A,

which proves tliat the sum of the distances of any point of

the ellipse to the points F F' is constant and equal to the

transverse axis.

180. The points F, F', are called the Foci of the ellipse,

and their distance ± "^ A? — B^ to the centre of the ellipse

is called the Eccentriciti/. When A = B, the eccentricity
= 0. The foci in this case unite at the centre, and the

ellipse becomes a circle. The maximum value of the ec-

centricity is when it is equal to the semi-transverse axis.
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In this supposition B

line.

0, and the elHpse becomes a right

Making x = ± VA^

we find

B^ in the equation of the elhpse,

B2 ^ ,
2B2

y = ± _, or 22/ = ± _,

which proves that the double ordinate passing through the

focus is equal to the parameter.

181. The property demonstrated (Art. 179) leads to a

very simple construction for the ellipse. From the point B

lay off any distance BK on the axis BB'. From the point

F as a centre with a radius equal to BK, describe an arc of

a circle ; and from F' as a

centre with a radius B'K,

describe another arc. The

point M where these arcs

intersect, is a point of the

elhpse. For

MF + MF = 2A.

When we wish to describe the ellipse mechanically, we
fix the extremities of a chord whose length is equal to the

transverse axis, at the foci F, F', and stretch it by means of

a pin, which as it moves around describes the ellipse.

182. To find the equation of a tangent line to the elhpse,

let us resume its equation,

Ay -I- BV ^ j^2 B2,

Let x", y", be the co-ordinates of the point of tangency,

they will verify the relation,

A23^"2 + B^x"^ = A2 B^
4
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The tangent line passing through this point, its equation

will be of the form •

.

2/
—-

?/"
= a

(:z:
-^ x") .

It is required to determine a.

To do this, we will find the points in which this line

considered as a secant- meets the curve. For thes.e points

the three preceding equations must subsist at the same tinie.

Subtracting the two first from each other, we have

•

A2 (2/
—

2/") (y + 3/") + B2
(:?;
—.

X") {x + x") = 0.

Putting for y its value y" rf <z (^
—

a^") drawn from the

equation of the line, we find

(^
_

x") lA""pay" + a^ (x
—

x'') ) + B^ (x + x") \
= o.

This equation may be satisfied by making

X —- x" = o,

which gives . .

• •

•

from which we get

V,

y = y'.' ;

and also by making
*"

.

A2 \2ay" + a^ (x
—

x")\ + B^ {x + x") = 0.

Now when the secant becomes a tangent, we must have

X =
ic"; which gives

'

A^ay 4-BV^ = 0;

hence •
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AV*

Substituting this value of a in the equation of the tangent,

it becomes

y — y"-- AY (^-^")^

or reducing, and recollecting that A^z/"^ + B^^r"^ = A^ B^'

we have

A%" + B^xx" = A2 B2

for the equation of the tangent line to the ellipse.

183. If through the centre and the point of tangency we

draw a diameter, its equation will be of the form

from which we get

ij'
= a"x",

x"

But we have just found the value of a, corresponding to

the tangent line, to be

BV
a =

Multiplying these values of a and «' together, we find

B2
aa' = — —

A?

This relation being the same as that found in Art. 177,

shows that the tangent and the diameter passing through
the point of tangency, have the property of being the sup-

13
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plementary chords of an ellipse, whose axes have the same

ratio —.

B

184. This furnishes a very simple method of determining

the direction of the tangent. For if we draw any two sup-

plementary chords, and designate by a, a, the trigonometri-

cal tangents of the angles which they make with the axis,

"vre have always between them the relation

. B2
a a = — .

A2

We may draw one of these chords parallel to the diame-

ter, passing through the point of tangency. In this case we
have

from which results also

a = a;

that is, the other chord will be parallel to the tangent.

185. To draw a tangent through a point M taken on the

ellipse, draw through this point AM, and through the ex-

tremity B' of the axis BB' draw the chord B'N parallel to
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AM ; MT parallel to BN will be the tangent required. We
see, by this construction also, that if we draw the diameter

AM' parallel to the chord BN, or to the tangent MT, the

tangent at the point M' will be parallel to the chord B'N, or

to the diameter AM.

186. When two diameters are so disposed that the tan-

gent drawn at the extremity of one is parallel to the other,

they are called Conjugate Diameters. It will be shown pre-

sently that these diameters enjoy the same property in the

ellipse as those demonstrated for the circle (Art. 161).

187. To find the point in which the tangent meets the

axis of ar, make y = o in its equation

A2?/!/" + B2;rx" = A2B2,

and we obtain for the value of x

A2
a; = — ,

a;"

which is the value of AT. If we subtract from this ex-

pression AP = x'\ we shall have the distance PT, from the

foot of the ordinate to the point in which the tangent meets

the axis of x. This distance is called the suhtangent. Its

expression is

pm A. X

This value being independent of the axis B, suits every

ellipse whose semi-transverse axis is A, and which is con-

centric with the one we are considering. It therefore cor-

responds to the circle, described from the centre of this

ellipse with a radius equal to A Hence, extending the
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ordinate MP, until it

meets the circle at M',

and drawing through

this point the tangent

M'T, MT will be tan-

gent to the ellipse at the

point M. This construction apphes equally to the conjugate

axis, on which the expression for the subtangent would be

independent of A.

188. To find the equation of a normal to the ellipse, its

equation will be of the form

y-y" = a^(x-x").

The condition of its being perpendicular to the tangent,

for which we have (Art. 182),

requires that there exist between a and a' the condition

aa' -\- 1 = Of

which gives

a' = —-^-.
B^x" .

This value being substituted in the equation for the normal,

gives

y-y" =
^,(^-'^'^-

189. To find the point in which the normal meets the

axis of :r, make y = o in this equation. It gives
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A2 — B2 „

A2

This is the value of AN. Subtracting it from AP, which

is represented by ^", we shall, have the distance from the

foot of the ordinate to the foot of the normal. This distance

is the subnormal, and its value is found to be

PN = _-
A?

190. The equation of the ellipse being symmetrical with

respect to its axes, the properties which have just been de-

monstrated for the transverse, will be found apphcable also

to the conjugate axis.

191. The directions of the tangent and normal in the

elUpse have a remarkable relation with those of the lines,

drawn from the two foci to the point of tangency. If from

the focus F, for which y = o and x =^ VA^ — B^, we draw

a straight line to the

point of tangency, its

equation will be of the

form

y — y"=a{x-

If we make for more simplicity -v^A^— B^ = c, the con-

dition of passing through the focus will give

But we have for the trigonometrical tangent which the

tangent line makes with the axis oix (Art. 182),
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a = — .

AY
The angle FMT which the tangent makes with the Hne

drawn from the focus, will have for a trigonometrical

tangent (Art. 64,)

1 -\- aa

Putting for a and a their values, it reduces to

A2z/'2 -I- B^x"^ — B^cx"

which reduces to

cy"'

in observing that the point of tangency is on the elhpse, and

that A2— B2 = c2.

In the same manner, if from the focus F', for which y ~ o

and X = — c, a line be drawn to the point of tangency, its

equation will be

y--y" = a' {x
— x'% a' = ^"

,.
c— x'

The angle F'MT which this line makes with the tangent,

will have for a trigonometrical tangent,

a — a' B2

1 + act' cy"

when we put for a and a' their values.

The angle FMT, F'MT, having their trigonometrical

tangents equal, and with contrary signs, are supplements of

each other, hence

FMT + FMT = 180° ;
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but

FMT + F'Mt' = 180°,

hence

FMT = F'MT ;

which shows that in the ellipse, the lines drawnfrom thefoci

to thepoint oftangency, make equal angles with the tangent,

and it follows from this, that the normal bisects the angle

formed hy the lines drawn from the point to the samepoint of
the curve.

192. The property just demonstrated, furnishes a very-

simple construction for

drawing a tangent line

to the ellipse through a

given point. Let M be

the point at which the

tangent is to be drawn.

Draw FM, F'M, and

produce F'M a quantity

MK = FM. Joining K
and F, the line MT, per-

pendicular to FK, will

be the tangent required ; for from this construction, the angles

TMF, TMK, FMT, are equal to each other.

193. If the given point be without the elHpse, as at t, then

from the point F' as a centre, with a radius F'K = 2A de-

scribe an arc of a circle ; from the point ^ as a centre, with

a radius t¥, describe another arc, cutting the first in K.

Drawing F'K, the point M will be the point of tangency,

and joining M and t, M^ will be the tangent required. For,

from the construction, we have ^F = ^K. Besides F'M +
FM = 2A and F'M -f MK = 2A. Hence
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MF = MK.

The line M^ is then perpendicular at the middle of FK.

The angles FMT, F'M^ are then equal, and tMT is tangent

to the ellipse.

194. The circles described from the points F' and t as

centres, cutting each other in two points, two tangents may
be drawn from the point t to the ellipse.

Of the Ellipse referred to its Conjugate Diameters.

195. There is an infinite number of systems of oblique

axes, to which, if the equation of the ellipse be referred, it

will contain only the square powers of the variables. Sup-

posing in the first place, that its equation admits of this re-

duction, it is easy to see that the origin of the system must

be at the centre of the ellipse. For, if we consider any

point of the curve, whose co-ordinates are expressed by

+ x', + y'i since the transformed equation must contain only

the squares of these variables, it is evident it will be satisfied

by the points whose co-ordinates are -{-x',
—

y' ;
—

x', + y' ;

that is, by the points which are symmetrically situated in

the four angles of the co-ordinate axes. Hence every line

drawn through this origin will be bisected at this point, a

property which, in the ellipse, belongs only to its centre,

since it is the only point around which it is symmetrically

disposed.

The oblique axes here supposed will always cut the

ellipse in two diameters, which will make such an angle

with each other as to produce the required reduction.

These lines are called Conjugate Diameters, which, besides
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the geometrical property mentioned in Art. 186, possess the

analytical property of reducing the equation of the curve to

those terms which contain only the square powers of the

variables.

196. The equation of the ellipse referred to its centre

and axes is

Ay + B^x^ = A2B2.

To ascertain whether the ellipse has many systems of

conjugate diameters, let us refer this equation to a system

of oblique co-ordinates, having its origin at the centre. The

formulas for transformation are (Art. 124),

X = x' cos OL -{- y' cos a', y = x' sin oi -{- y' sin a'.

Substituting these values for x and y in the equation of

the ellipse, it becomes

C (A2 sin^ a' -f- B2 cos2 a') ?/'2 -f (A2 sin^ a+ B^ cos^ a) ) _
i x'^ + 2(A2 sin a sin a' + B^ cos a cos a') x' y' S

In order that this equation reduce to the same form as

that when referred to its axes, it is necessary that the term

containing x' y' disappear. As a and a' are indeterminate,

we may give to them such values as to reduce its coeffi-

cient to zero, which gives the condition

A^ sin a sin a' + B^ cos a cos a' = o,

and the equation of the ellipse becomes

(A3 sin^a' + B^ cos^a') ?/'2 _|_ (A2 gin^a + B^ cos^a)

x'^ =A2 B^

197. The condition which exists between a and a' is not

sufficient to determine both of these angles. It makes

known one of them, when the other is given. We may
14
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then assume one at pleasure, and consequently there exists

an infinite number of conjugate diameters,

198. The axes of the ellipse enjoy the property of being

conjugate diameters, for the relation between a and a' is

satisfied when we suppose sin a = o, and cos a' = o, which

makes the axis of x' coincide with that of x, and y' with that

of y. These suppositions reduce the equation to the same

form as that found for the ellipse referred to its axes. Or,

these conditions may be satisfied by making sin a' = o, and

cos a = 0, which will produce the same result, only x' will

become y, and y' x.

199. The axes are the only systems of conjugate diame-

ters at right angles to each other. For, if we have others,

they must satisfy the condition

a' _ a = 90°, or a' = 90° + a,

which gives

sin a' = sin 90° cos a -f cos 90° sin a = + cos a,

cos a' = cos 90° cos a— sin 90° sin a =— sin a
;

but these values being substituted in the equation of con-

dition

A^ sin a sin a' + B^ cos a cos a' = 0,

it becomes

(A^
—

B^) sin a cos a = o,

which can only be satisfied for the eUipse by making sin a

=
0, or cos a —

•

0, suppositions which reduce to the two

cases just considered.

200. If we make A^— B^ = o, we shall have A = B, the

elHpse will become a circle, and the equation of condition

being satisfied, whatever be the angle a, it follows that all

the conjugate diameters of the circle are perpendicular to

each other.
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201. Making, successively, x^ =
o, and y'

=
o, we shall

have the points in which the curve cuts the diameters to

which it is referred. CalHng these distances A' and B',

we find

A^ sin^a -|- B^ cos^a A^ sin^a' +B^ cosV

and the equation of the ellipse becomes

A'2 ?/'2 + B'2 a:''2 = A'2 B'2,

2A' and 2B' representing the two conjugate diameters.

202. The parameter of a diameter is the third propor-

2B'2
tional to this diameter and its conjugate; -ry is therefore

2A'2
the parameter of the diameter 2A', and -^r is that of its

conjugate 2B'.

203. If we multiply the values of A'^ and B'^ (Art. 201)

together, we get

^2
A^B^~

A* sinV sin^a
-j-

A^ B'^ (sin'^a cos-a' -f- cos^a sin'^a') -f- B* cos'^o cos'-^a'

which may be put under the form

A 4 ID 4

A'2 B'^ =
(A^ sin a' sin a + B^ cos a' cos ay+ A^ B^ sin^ (a'

—
a)

But we have, from Art. 199,

A^ sin a' sin a -|- B^ cos a' cos a = o,

and reducing the other terms of the fraction, we have

A2B2
A2 B'2 =

sin^ (a'
—

a)
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which gives

AB = A'B' sin (a'
—

a).

(a'
—

a) is the expression of the angle B 'AC which the

two conjugate diameters

make with each other.

A'B' sin (a'
—

a) express-

es therefore the area of

the parallelogram Ac'

R'B'. This area being

equal to the rectangle Ac

KB formed on the axes,

we conclude, that in the ellipse, the parallelogram constructed

on any two conjugate diameters is equivalent to the rectangle

on the axes.

204. The equation of condition between the angles a and

a' being divided by cos a cos a', becomes

A^ tang a tang a' + B^ = o. (!)

We may easily eliminate by means of this equation the

angle a' from the value of B'^, or the angle a from A'^. For

this purpose we have only to introduce the tangents of the

angles instead of their sines and cosines. Since we have

always

sm^'a = tangV
1 + tang^a

tang^a' cosV

1 + tang^a

1

1 + tang^a' 1 + tangV

Substituting these values for A'^ and B'^ we have

_A.'2_-
A^ B^(l + tang^-^) . p„ _ A^ B^I + tangV)
A2 tang^a + B2

'

A^ tang^a' + B^
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To eliminate a' we have only to substitute for tang a! its

value deduced from equation (1), and after reduction, the

value of B'^ becomes

T5,2 _ A* tang^a + B"

A^ tang^a + B-

Adding this equation to the value of A'^ the common nu-

merator

A2 W + A2 B2 tang^a + A* tang^a + B*

may be put under the form

W (A2 + W) + A2 tang^a (B^ + A^),

or (A^ + W) (A2 tang^a + B^),

and the same after reduction becomes

A'2 + B'2 = A2 + B2;

that is, in the ellipse the sum of the squares of any two con-

jugate diameters is always equal to the sum of the squares of

the two axes.

205. The three equations

A^ tang a tang a' + B^ = o,

AB = A'B' sin (a'
—

a),

A2 + B2 = A'2 + B'2,

suffice to determine three of the quantities A, B, A', B', a, a',

when the other three are known. They may consequently

serve to resolve every problem relative to conjugate diam-

eters, when we know the axes, and reciprocally.

206. Comparing the first of these equations with the rela-

tions found in Art. 177 ; when two lines are drawn from
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the extremities of the transverse axis to a point of the elUpse,

we see that the angles a, a', satisfy this condition. It is

then always possible to draw two supplementary chords

from the vertices of the transverse axis, which shall be

parallel to two conjugate diameters.

207. From this results a simple method of finding two

conjugate diameters, which shall make a given angle with

each other, when we know the axes. On one of the axes

describe a circle capable of containing the given angle.

Through one of the points in which it cuts the ellipse draw

supplementary chords to this axis. They will be parallel to

the diameters sought, and drawing parallels through the

centre of the ellipse, we shall have these diameters. If the

given angle exceed the limit assigned for conjugate diam-

eters, the problem is impossible.

Of the Polar Equation of the Ellipse, and of the measure

of its surface.

208. To find the polar equation of the EUipse, let o be

taken as the pole, the co-ordinate.s

of which are a and h. The for-

mulas for transformation are (Art.

136),

a; = a + r cos v, ?/
= & + r sin v.

Substituting these values oi x and

y, in the equation of the ellipse.

AY + B2^2 = A2BS

it becomes



Chap. IV.] ANALYTICAL GEOMETRY. Ill

A^ sin^u 7'^ + 2A^b sin v

+ 2B^a cos V

r + K%^ + Wa? — A?W = o,

which is the polar equation of the ellipse.

209. If the pole be taken at the centre of the ellipse, we
shall have

a = 0, and 6 = ;

and the equation becomes

(A2 sin^u + W co^H) r = A^B,

210. If the pole be taken on the curve, this condition

would require that

A.%^ + Wa" — A2 B2 = 0,

and the polar equation would reduce to

(A^ sin^u 4- B^ cos^y) r + (2A^i sin v -\- 2B^a cos v) r = o.

The results in this and the last article may be discussed

in the same manner as in the polar equation of the circle.

211. Let us now suppose the pole to be atone of the

foci, the co-ordinates of which are h — o, a = + VA^ — B^.

These values being substituted in the general polar equa-

tion, it becomes

(A^ sin^u + W co^H) i^ + 2Wa cos u. r = B^.

Resolving this equation with respect to r, the quantity,

under the radical becomes

B^ (A2 sin^u + B2 cos^d) + B^aZ cos^u
;

and putting for a? its value A^ — B^ it reduces to
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A^B^ (sin^D + cos^d), or A^B* ;

and we have for the two values of r,

-— B^ (<2
cos V — A)

A^ sin^u + B^ cos^u

a„dr=
B- (COB v +_^_,

A^ sin^u + B^' cos^v

which may be put under another form, for we have

A2 sin^u + B2 cos^u = A^— (A^
—

B^) cos^t) = A*— a^ cos^t)

= (A — a cos v) {A + a cos v).

Making the substitutions, and reducing, We have

B2 B2
r = .

, r = — .

A -{- a cos V A — a cos li

212. If now the pole be at the focus F, for which a is

positive and less than A, as the cos v is less than unity, the

product a cos v will be positive and less than A, so that

whatever sign cos v undergoes in the different quadrants,

A 4- a cos Vj and A — a cos v, will be both positive. The

first value of r will then be always positive and give real

points of the curve, while the second will be always nega-

tive, and must be rejected (Art. 138). The same thing

takes place at the focus F', for although a is negative in this

case, a cos v will be always less than A, and the denomi-

nators of the two values will be positive. The first value

alone will give real points of the curve.

213. If, for more simplicity, we make

we shall have
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B2 = A2 (1
—

e2), and a = ± Ae.

These values being substituted in the positive value of r,

gives .

A (1
—

e^)

1 + e cos V

A (1
—

e^)

1 — e cos V

These formulas are of frequent use in Astronomy.

214. In the preceding discussion w^e have deduced from

the equation of the ellipse, all of its properties ; reciprocally

one of its properties being known vi^e may find its equation.

For example, let it be required to find the curve, the sum

of the distances of each of its points to two given points

being constant and equal to 2A.

Let F, F', be the two given

points, and A the middle of

the line FF' the origin of co-

ordinates. Represent FF' by
2c. Suppose M to be

.
a

point of the curve, for which

AP = Xf PM =2/, and desig-

nate the distances FM, F'M, by r, r'. W^ shall have

r2 = t/2 ^ (c
—. xf ; V'2 = ?/2 + (c + xf

r i-r' == 2A.

Adding the two first equations together, and then sub-

tracting the same equations, we shall have

r2 + r'2 = 2 (y2 4- X? + c2), r"^ — r^ = 4cx.

The second equation may be put under the form

(r'
—

r) (r' + r)
= 4ca;,

Substituting for r' -\- r its value 2A, we get

15
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2c3:
r =

from which we deduce

r' = A + ?, r=A— ^.
A A

Putting these values in the equation whose first member is

r'2 _j- y^j we have

or A2 (?/2 + a;2)
— cV = A^ (A^

—
c^).

When we make x = o, this equation gives

?/2
= A2 — 6-2,

which is the square of the ordinate at the origin. As c is

necessarily less than A, this ordinate is real, and representing

it by B, we have

If we find the value of c from this result, and substitute it

in the equation of the curve, we have

Ay + Wx^ = A2B2,

which is the equation of the ellipse referred to its centre

and axes.

215. We may readily find the expression for the area of

the ellipse. For we have seen (Art. 174) that if a circle be

described on the transverse axis as a diameter, the relation

between the ordinates of the circle and ellipse will be

y-A*
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The areas of the elHpse and circle are to each other in

the same ratio of B to A.

To prove this, inscribe

in the circumference

BMM'B' any polygon,

and from each of its

angles draw perpendic-

ulars to the axis BB'.

Joining the points in

which the perpendicu-

lars cut the ellipse, an

interior polygon will be formed. Now the area of the

trapezoid PNP'N is

•s(}^ \wZJ-.
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transverse axis. We shall then have for the area of the

ellipse,

S^^jr. AB.

Of the Parabola,

216. We have found for the general equation of intersec-

tion of the cone and plane, referred to the vertex of the

cone (Art. 167),

y^ sin^ V -\- x^ ^m {v -^r u) sin (v
—

u)
— 2cx sin v cos v cos u — o.

This equation represents a parabola (Art. ) when u — v,

which gives

y^ sin^u + 2cx sin v cos^u = o, or y^
—

-,

= o ;

sin V

for the general equation of the parabola referred to its

vertex.

Making y
— o \o find the points in which it cuts the axis,

and we have

X = Oy

hence the curve cuts the axis at the origin.

Making x — o^ determines the points in which it cuts the

axis of y. This supposition gives

2/^
=

0,

hence the axis of y is tangent to the curve at the origin.

217. Resolving the equation with respect to y, we have
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2/
= ± cos 1J \/ ?.— •

117

sm V

These two values being equal and with contrary signs, the

curve is symmetrical with respect to the axis of x. If we

suppose X negative, the values of y become imaginary, since

the curve does not extend in the direction of the- negative

abscissas. For every positive value of x, those of y will be

real, hence the curve extends indefinitely in this direction.

218. The ratio between the square of the ordinate y^

to the abscissa x, being the same for <
every point of the

curve, we conclude, that in the parabola the squares of the

ordinates are to each other as the corresponding abscissas.

219. The line AX is called the

axis of the parabola, the point A
the vertex, and the constant quantity

2c cos^v

sm V

breviation make

the parameter. For • ab-

2c cos^u
2p, the

sm V

equation of the parabola becomes

2/2
= 2px.

220. To describe the pa-

rabola, lay off on the axis

AX in the direction AB, a /

distance AB =
2p. From

any point C taken on the

same axis, and with a ra-

dius equal to CB, describe

a circumference of a circle ; from the extremity of its diam-

eter at P, erect the perpendicular PM ; and drawing through

the point Q, QM parallel to the axis of x, the point M will



118 ANALYTICAL GEOMETRY. [Chap. IV.

X
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the point A, lay off on both sides of the axis of y, distances

AB and AF, equal to a fourth of the parameter. Through

any point P of the axis erect the perpendicular PM, and

from F as a centre with a radius equal to PB, describe an

arc of a circle, cutting PM in the two points M M', these

points will be on the parabola. For, from the construction,

we have

FM = AP + AB = ^ +
I".

223. The same property enables us to describe the para-

bola mechanically. For this purpose, apply the triangle

EQR to the directrix BL. Take

a thread whose length is equal to

QE, and fix one of its extremities

at E, and the other at the focus F.

Press the thread by means of a

pencil along the line QE, at the

same time slipping the triangle

EQR along the directrix, the pencil

will describe a parabola. For,

FM 4- ME = QM + ME, or QM = MF.

224. If we make a: =
-^ ^ in the equation of the parabola,

we get

?/2
—

p2^ Qj. y —p^ QP 2y = 2p.

Hence in the parabola, the double ordinate passing through
the focus, is equal to the parameter.

225. Let it be required to find the equation of a tangent
line to the parabola whose equation is

y^
=

2px.

X
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they must satisfy the equation of the parabola, and we have

The equation of the tangent Hne will be of the form

y— y" — a {x
—

x")i

It is required to determine a.

Let the tangent be regarded as a secant, whose points of

intersection coincide. To determine the points of intersec-

tion, the three preceding equations must subsist at the same

time. Subtracting the second from the first, we have

(y
—

y") iy + y") =-2p{x — x").

Putting for y its value drawn from the equation of the

tangent, we get

{2ay" -^ a^ {x
—

x")
-^

2p) {x
—

x") = o.

This equation may be satisfied by making x — x" = o,

which gives x = x" and y = y" for the co-ordinates of the

first point of intersection, or by making

2ay" -\- a^ {x
—

x")
—

2p = o.

This equation will make known the other value of x when

a is known. But when the secant becomes a tangent, the

points of intersection unite, and we have for this point also

X = x", which reduces the last equation to

2ay" = 2p ;

hence,

a = —r.'

y

Substituting this value in the equation of the tangent, it

becomes
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y' = Z(.

or reducing and observing that y"^
= 2px", we have

W p {x + x"),

for the equation of the tangent Hne.

226. By the aid of these formulas we may draw a tan-

gent to the parabola from a point without, whose co-ordi-

nates are x', y'. For this point being on the tangent, we
have

y'y" =p {x' + x")y

and joining with this the relation

y'2 == 2px\

we may from these equations determine the co-ordinates of

the point of tangency. The resulting equation being of the

second degree, there may in general be two tangents drawn

to the parabola, from a point without.

227. To find the point in which x

the tangent meets the axis of x,

make y ~ o\n the equation

yy" =-p {x -\- x"),

we get

which is the value of AT. Adding to it the abscissa AP,
without regarding the sign, we shall have the subtangent,

PT = 2x'\

that is, in the parabola, the subtangent is double of the abscis-

16
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sa. This furnishes a very simple method of drawing a tan-

gent to the parabola, when we know the abscissa of the

point of tangency.

228. The equation of a hne passing through the point of

tangency is of the form

y — y" = a' (x
—

x").

In order that this line be perpendicular to the tangent, for

which we have (Art. 225),

y

it is necessary that we have

aa' + 1
—

Of

hence

a - — ^.
P

The equation of the normal becomes

P

Making y = o^we have

X — X'

which shows that in the parabola the subnormal is constant

and equal to half theparameter.

229. The directions of the tangent and normal have re-

markable relations with those of the lines drawn from the

focus to the point of tangency.

The equation of a line passing through the point of tan-

gency is
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Xj ^y^^ =. o! {x — X"),

and the condition of its passing through the focus, for which

V •

y = Oy x= i— gives

a! ^—
2

The angle FMT which this line makes with the tangent,

has for a trigonometrical tangent (Art. 64),

a' — a

1 + aa'

Substituting for a its value -^, and for a' that found

above, and observing that y"^ = 2px", we have

tang FMT = -^ = a ;

y"

hence, in theparaholay the tangent line makes equal angles

with the axiSf and with a line drawn from the focus to the

point of tangency, so that the triangle FMT is always

isosceles ; consequently, when the point of tangency M is

given, to draw a tangent, we have only to lay off from F
towards T a distance FT = FM. FM will be the tangent

required.

230. If through M we draw MF' parallel to the axis, the

tangent will make the same angle with this line as with the

axis, hence in the parabola the lines drawn from the point of

tangency to the focus and parallel to the axis make equal

angles with the tangent. From this, results a very simple
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method of drawing a tangent to the parabola from a point

without. Let G be the point, F the focus, BL the directrix.

From G as a centre, with a radius equal to GF, describe a

circumference of a circle, cutting BL, in L, L'. From these

points draw LM, L'M', parallel to the axis. M and M' will

be the points of tangency, and GM, GM', will be the two tan-

gents that may be drawn from the point G. For, by the

nature of the parabola ML = MF, and by construction GF
= GL, the line GM has all of its points equally distant from

F and L. It is therefore perpendicular to the line FL, con-

sequently the angle LMG, or its opposite ^MF', is equal to

the angle GMF. MG is therefore a tangent at the point M.

The same may be proved with regard to GM'.

Of the Parabola referred to its Diameters.

231. Let us now examine if there are any systems of

oblique co-ordinates, relatively to which the equation of the

parabola will retain the same form as when it is referred to

its axis. The general formulas for transformation are

X = a -^r x' cos a + ?/' cos a', y — b -{ x' sin a + ?/' sin a'.

These values being substituted in the equation of the

parabola

it becomes

y'^ sinV + 2x'y' sin a sin a' + x'^ sin^a -\- b^ — 2ap ) ^
+ 2{b sin a' — p cos a') y' + 2 (6 sin a — p cos a) x' )

In order that this equation preserve the same form as the

preceding, we must have
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sin a' sin a = o, sin^a = o 6 sin a' — p cos a' = o, h^— 2ap = o,

and the equation reduces to

y
12 ^— x' ;

sinV

and putting for —£-—
, »', we have

sin^a'

2/'2
=

2p'x',

232. The second of the preceding equations of conditions

shows that sin a = o, that is, the axis of x' is parallel to the

axis of X. Hence, all the diameters of the parabola are

parallel to the axis.

233. The two other equations give

p
h^ = 2ap, tang a' = -r-

The first shows that the co-ordinates a and h of the new

origin satisfy the equation of the parabola. This origin is

therefore a point of the curve. The second determines the

inclination of the axis of y' to the axis of x, and shows that

this axis is tangent to the curve at the origin, since it

makes the same axis of x as the tangent Hne at this point

(Art. ).

234. The equation y'^
=

2p'x', giving two equal values

for y\ and with contrary signs for each value of x', each

diameter bisects the corresponding ordinates.

235. The equation of the parabola being of the same

form when referred to its diameters and axis, all of its pro-

perties which are independent of the inclination of the co-

ordinates will be the same in these two systems. Thus, to
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describe a parabola when we know the parameter of one of

its diameters, and the inclination of the corresponding ordi-

nates, describe a parabola on this diameter as an axis with

the given parameter, and then incline the ordinates without

changing their lengths, we shall have the parabola required.

Of the Polar Equation of the Parabola, and of the

Measure of its Surface.

236. Let us resume the equation of the parabola referred

to its axis,

t/2
=

2px,

and take O for the position of the pole,

the co-ordinates of which are a and b ;

draw OX' parallel to the axis. The

formulas for transformation are (Art.

136),

X = a + r cos v, y = b -{- r sin v.

Substituting these values in the equation of the parabola, it

becomes

r^ sin^u + 2
(Z)

sin u — p cos v) r + b^ — 2pa ~ o.

If the pole be on the curve,

b^ — 2pa = 0,

and the equation reduce to

r^ sin^u + 2 (6 sin t; — p cos v) r = o,

which may be satisfied by making

r = 0, or r sin V -{- 2 (6 sin i? — p cos v)
— o.
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The last equation gives

2 (p cos V— 6 sin 1?)

f =r -; •

sin^v

If this second value of r w^ere zero, the radius vector

would be tangent to the curve. But this supposition re-

quires that we have

2jo cos V — 2& sin V — o,

which gives

sin V p= tanff u = -7-»
cos V ^

which is the same value found for the inclination of the tan-

gent to the axis (Art. 225).

237. If the pole be placed at the focus of the parabola,

the co-ordinates of which are b ~ o a = ?-, the general

polar equation becomes

r sin^i) — 2p cos v. r — p^

and the values of r are

_ p (cos D + 1) __p (cos x>
—

1)

sm^i) sm^u

The second value of r being always negative, since cos

V < 1 and (cos v — 1) consequently negative, must be re-

jected. The first value is always positive, and will give

real points to the curve. It may be simplified by putting

for sin^u, 1 — cos^u, which is equal to (1 + cos v) (1
— cos u),

and this value reduces to
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r = p {I + cos v) P
(1 + cos v) (1

— COS v) 1 — cos~ir

which is the polar equation of the parabola when the pole is

at the focus.

238. If u = 0, r = ^ = infinity. Every other value of v

from zero to 360° will give finite values to r. When
V = 90°, cos D = o and r = p. When v = 180°, cos i; =— 1

and r =
-f-.^

results which correspond with those already-

found.

239. In the preceding discussion we have deduced all the

properties of the parabola from its equation ; reciprocally

we may find its equation when one of these properties is

known.

Let it be required, for example, to find a curve such that

the distances of each of its points from a given line and

point shall be equal. Let F be the

given, BL the given line. Take the

line FB perpendicular to BL for the

axis of X, and place the origin at A,

the middle of BF, and make BF ~
p.

For every point M of the curve, we

shall have these relations

Xj
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ITT
M'

V

To find the area of any portion of the parabola, let APM
be the parabolic segment

whose area is required. Draw

MQ parallel and AQ perpen-

dicular to the axis. The

area of the segment APM is

two-thirds of the rectangle

APQM.
Inscribe in the parabola any rectilinear polygon MM'M".

From the vertices of this polygon draw parallels to the lines

AP, PM, forming the interior rectangles PP';?M, V'F'p'M"*

and the corresponding exterior rectangles QQ'^'M". Repre-

senting the first by P, P', P" and the last p, jd', p", we
shall have

V = y'{x — a;'), p = x' (y
^ y%

which gives

P

P X' {y
—

y')
'

but the points M, M', M", belong to the parabola, and we
have

y^ = 2px, ys
_

2px',

which gives

^ '

Up 2p

Substituting these values, the ratio of P to j9 becomes

P ^ y (y — y") ^ y + y
'

p y'^ iy—y') y'

'

17
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The same reasoning will apply to all the sides of the poly-

gon, and we have the equations

p_ .v + y
p y'

y If

The polygon M, M', M", being entirely arbitrary, wo

may place the vertices in such a manner that designating

by u any constant quantity, we have always

y — y'
=

uy'

y>
—

if
= uy"

y"
—

y'"
-

'^y"'i <^c.

which is equivalent to making y, ?/,' ?/", decrease in a

geometrical progression. But from supposition we have

y'

y' + y" _= 2 +a
y"

7//T
y'"

and the several ratios become

? = 2 + w,

P

P

t-. = 2 + w, &C.
P
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Hence these ratios will be equal, whatever be u. By com-

position we have

but the numerator of the first member is the sum of the in-

terior rectangles, and the denominator that of the exterior

rectangles. As u diminishes, this ratio approaches more

and more the value of Q, and we may take u so small, that

the difference will be less than any assignable quantity.

But, under this supposition, the inscribed and circumscribed

rectangles approach a coincidence with the inscribed and

circumscribed cuvilinear segments, consequently the limit of

their ratio is equal to the ratio of the segments, and repre-

senting the first by S, and the second by 5, we have

S— = 2,
s

*

which gives

S + s—— = 3,

and dividing these equations number by number,

S =
-| (S + 5) ;

but S -f- 5 is the sum of the inscribed and circumscribed

segments, and is consequently the surface of the rectangle

APMQ.. Hence, the area of the parabolic segment APM is

equal to two-thirds of the rectangle clescj'ibed upon its ab-

scissa and ordinate.

240. Quadrable Curves are those curves any portion of
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whose area may be expressed in a finite number of alge-

braic terms. The parabola is quadrable, while the ellipse

is not.

Of the Hyptrbola»

24L We have found (Art. 167) for the general equation

of the conic sections,

y^ sin^u + x^ sin {p + v) sin {v—^v)
— 2cx sin v cos v cos w = o,

and (Art. 146) that this equation represents a class of curves

called Hyperbolas, when u y v.

To discuss this curve, let us find the points in which it

cuts the axis oi x, make y = o,we have

x^ sin {v + u) sin {v u) 2cx sin V) cos v cos u ~ o^

which gives for the two values of x

2c sin V cost; cos 2^

sm {v + u) sm {p
—

u)

which show that the curve

cuts this axis at two points

B B', one of which is at the

origin, and the other at a dis-

2c sin V cos v cos u
tance BB' =—^—7

—
r~T~^/ \

sm(v4-%)sm(u
—

u)

from the origin, and on the negative side of the axis of y,

since sin {v
—

u) is negative. Making ^ = 0, we find

hence the axis of y is tangent to the curve at the origin.
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242. Resolving this equation with respect to ?/, we have

y = -r— V— x^ sin {v+u) sm{v— u)+2cx sin v cos v cos u.

These two values being equal, and with contrary signs,

the curve is symmetrical with respect to the axis oi x. For

every positive value of x, we shall have a real value of y,

since sin {v
—

u) being negative, the sign of the first term

under the radical is essentially positive. The curve there-

fore extends indefinitely on the positive side of the axis of y.

If X be negative, y will only have real values when — x^ sin

{v + u) sin {v
—

v) > 2cx sin v cos v cos u. Putting the

value of ?/ under the form

-:—V/ —X sin (v-\-u) sin (v— u) I
2c sin 1) cosi; cosm'

sin(u-i-2^)sin(v
—u.

we see that the factor — x sin {v + u) sin {v
—

u) will be

always positive, whatever be the sign of x. The value

of y will therefore be real so long as the negative value at-

., ,
. 2c cos V cos w sin u

, , , ...

tributed to a; < -^~,—r
—

r
——

7 v and that they willsm (u + u) sm {v
—

u)
^

be imaginary for every negative value of x from

2c sin V cos v cos u
o Xo x

sin {v •\" u) sin {v
— uf

that is, from B to B'; hence there is no point of these points,

but it extends indefinitely from B' in the direction BB'.

243. Let the origin of co-ordinates be taken at A, the

middle of BB'.

The formula for transformation is

t
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c sin V cos V cos u
X =^ x^ -{-

sin (u -f u) sin (t)
—

u)

Substituting this value of x in the equation of the curve,

and reducing, v^^e have

c^ sin^y cos^y cos^z^

y^ B\nH+x-^ sin {v+u) sm {v-u) +
s,a2(„+„)s,,.2(^^

= <>•

Making ?/
=

o, to find the point in which it cuts the axis of

x^ we find

_ c sin V cos V cos u
x' — AB = + —. ;^ ^^ ±

sin (v + u) sin (u
—

z^)

but for a; = 0, we find that the values of y are imaginary ;

the curve therefore does not intersect the axis of y.

If we make

•
2

c^ sin^D cos^u cos^M ,

smr \p + u) sir/ [v — u)

p.2 _ c^ cos^u cos^z^

sin {v -\- u) sin {v
—

u)

and multiplying the two members of the equation of the

highest value by

c^ cos^u cos^z^

sin^ {v + u) sin^ {p
—

u)

and put x for x'^ we shall have

A2?/2 — B^.r^ =_ A^B

for the equation of the hyperbola referred to its centre and

axes.
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244. The quantities 2A, 2B, are called the axes of the

hyperbola. The point A is the centre. Every line drawn

through the centre and terminated in the curve is called a

diameter, and there results from the symmetrical form of the

hyperbola that every diameter is bisected at the centre.

245. The equation of the ellipse referred to its centre and

axes, is

Comparing this equation with that of the hyperbola, we
see that to pass from one to the other we have only to change

B into B v' — 1. This simple analogy is important from

the facility it affords in passing from the properties of the

ellipse to those of the hyperbola.

246. When the two axes of the hyperbola are equal, its

equation becomes

y2 ^2 = ^2 .

we say then that the hyperbola is equivalateral.

When tli'j axes of the ellipse are equal, its equation

becomes

y^ -Yx^ =AS

which is the equation of a circle. The equilateral hyper-
bola is then to the common hyperbola what the circle is to

the ellipse.

247. It follows from this analogy between the ellipse and

hyperb#la, that if these curves have equal axes and are

placed one upon the other, the ellipse will be comprehended
within the limits, between which the hyperbola becomes

imaginary, and reciprocally, the hyperbola will have real

ordinates, when those of the ellipse are imaginary.
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248. The equation of a line passing through the point B',

for which y = o, x ~ — A, is

y — a {x -\- A).

That of a line passing through B, for which ?/
=

o, x = -f-

A, is

y = a(x —A).

In order that these lines intersect on the hyperbola, these

equations must subsist at the same time with that of the

hyperbola. Multiplying them member by member, we
have

y2 ^ aa' {x^ + A3).

Combining this with the equation of the hyperbola, put

under the form

we have

aa' = — ,

which establishes a constant relation between the angles

which the supplementary chords make with the axis of x.

249. When the hyperbola is equilateral B = A, and this

relation reduces to

aa' = 1,

which shows that in the equilateral hyperbola, the sum of

the two acute angles which the supplementary chords make
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with the transverse axis, on the same side, is equal to a right

angle.

250. If we put X in the place of ?/ and y for x in the equa-

tion of the hyperbola, it becomes

B23/2
— A^'x^ = A^B^.

If in this equation we make x = o,y becomes' real, and

y = o makes x imaginary. Hence

the curve cuts the axis of y, but does

not meet that of x. It is then sit-

uated as in the figure, the trans-

verse axis being h, b'. The curve

is said to be referred to its conju-

gate axis, because the abscissas are

reckoned on this axis.

251. The analogy between the ellipse and hyperbola

leads us to inquire if there are not points in the hyperbola

corresponding to the foci of the ellipse.

In the ellipse the abscissas of these points were

a: = ± Va2— Bl

Changing B into B V — 1, we have for the hyperbola

a; = ± v^A^-l-B^

Let tis for simplicity make

c =- ± a/ A2 + B2,

and let F, F', be the points at this

distance from the centre, we will

have

FM2=2/^ + (a:
—

c)2 =^(^'
—.A2)4-a;-— 2ca:-f-c%

18

I
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from which we obtain

FM = ex

In the same manner we will have

F'M = ^ + A,A

that is, the distances FM, F'M, are expressed in rationalfunc-

tions of the abscissa x.

Subtracting these equations from each other, we get

F'M' — FM = 2A.

Hence, the difference of these distances is constant and

equal to the transverse axis.

252. To find the position of the foci geometrically, erect

at one of the extremities of the transverse axis a perpendic-

ular BE = B the semi-conjugate axis, and draw AE. From

the point A as a centre with a radius AE describe a cir-

cumference of a circle, cutting the axis in F, F'. These

points are the foci of the hyperbola.

253. The preceding properties enable us to construct the

hyperbola. From the focus

F as a centre with a radius

BO, describe a circumference

of a circle. From F' as a

centre with a radius B'O =
BB' + BO describe another

circumference. The points

M, M', in which they intersect, are points of the hyperbola,

for

F'M —- FM = 2A.

-r

254. By following the same course explained in Art. 182,
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for the ellipse, we may find the equation of a tangent line to

the hyperbola. But this equation may be at once obtained

by making B = B v — i in the equation of a tangent line

to the ellipse, and have

A2?/?/" — B^xx" = — A^B^

for the equation of a tangent line to the hyperbola.

255. The equation of a line passing through the centre

and point of tangency is

y" = a'x",

which gives , _ y"

Multiplying this by the value of a corresponding to the tan-

gent, we have

,
B2

aa = —
.

A2*

Comparing this result with Art. 248, we find the same value

for aa'. Hence to draw a tangent to the hyperbola, at any

point M, draw the diameter AM, then through B' draw the

chord B'N parallel to AM ; MT parallel to BN will be the

tangent required.
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Of the Hyperbola referred to its Conjugate Diameters.

256. The properties of the hyperbola referred to its diam-

eters may be easily deduced from those of the eUipse. By

making B' = BV — 1 in the equation of the elHpse (Art.

201), we find

A'y — B'V2 = — A'2B'2.

The quantities 2A', 2B', are called the conjugate diame-

ters of the hyperbola.

This equation could be also obtained by the same method

demonstrated for finding the equation of the eUipse.

257. In the same manner, by making B = Bv — i^ and

B' = B^~^^^ i^ the equations Art. 205, we have the

relation

A'2 — B'2 = A^— B%

A'B' sin (a'
— a)= AB,

A^ tang a tang a' = B^ = o.

The first signifies that< the difference of the squares con-

structed on the conjugate diameters is always equal to the

difference of the squares constructed on the axes. Hence the

conjugate diameters of the hyperbola are unequal. The

supposition of A' = B' gives A = B, and reciprocally. The

equilateral hyperbola is the only one which has equal conju-

gate diameters.

The second of the preceding equations shows that thepar-

allelogram constructed on the conjugate diameters is always

equivalent to the rectangle on the axes.
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The third relation compared with that of Art. 248, shows

that the supplementary chords drawn to the transverse axis

are respectively parallel to two conjugate diameters.

Of the Asymptotes of the Hyperbola, and of the Properties of

the Hyperbola referred to its Asymptotes.

258. The indefinite extension of the branches of the hy-

perbola introduces a very remarkable law which is peculiar

to it. The equation of the hyperbola referred to its centre

and axes may be put under the form

which gives for the two values of y,

Developing the second member, it becomes

,_^ A2__^ A* _ 1
A'

Ar

and multiplying by -— , it becomes
A. .

., ^ /Bx ,
BA

,
BA^ /BA^ . \

>A X x^ ^^ X^
.

F

In proportion as x augments.A, and B remaining constant,

BA BA^
the terms— , , &c., will diminish. The values of y will

X x"^

Ba:

continually approach to those, of the first term ± "t- -^s x
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is indefinite, we may give it such a value as to make the

difference smaller than any assignable quantity. If, there-

fore, we construct the two lines whose equations are repre-

sented by

,

B:c
,^

Bx
^=+A' ^ = -A'

these lines will be the limits of the branches of the hy-

perbola, which they will continually approach without ever

meeting. And this may be readily shown, for we have

y^
=

A2
— S^ ^or points on the hyperbola ;

BV
y^
= —^ for points on the lines ;

which shows that the ordinates corresponding to the same

abscissas are always smaller for the curve than for the lines.

These lines are called Asymptotes.

259. We can easily prove from the preceding expressions

that the asymptotes continually approach the hyperbola;

for, subtracting the first from the second, and designating

the ordinates of the asymptotes by y', we have
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and y\ The more y and y' increase, the smaller will be this

difference. As there is no limit to the values of y and y\

the difference may be made smaller than any assignable

quantity.

260. To construct the asymptotes of the hyperbola, draw

through the extremity of the transverse axis a perpendicu-

lar, on which lay off above and below the axis of x two dis-

tances equal to half of the conjugate axis. Through the

centre of the hyperbola and the extremities of these distan-

ces, draw two lines ; they will be the asymptotes required,

for they make with the axis of x, angles whose trigonomet-

.
,

B
rical tangents are ± -r-*

261. If the hyperbola be equilateral, B = A, and the

asymptotes make angles of 45° with the axis of x,

262. The asymptotes are the limits of all tangents drawn

to the hyperbola. In fact, the equation of a tangent line to

this curve being (Art. 254),

A%" — B^xx" = — A2 B2,

the point in which it meets the axis of the hyperbola, has for

an abscissa

_ A2
^ "

x"'

In proportion as x'\ which is the abscissa of the point of

tangency, increases, the value of x diminishes ; and when

x" — infinity, x = o. In this supposition the value of ?/" be-

Bx"
comes also infinite and equal to ± —r-, so that, substitutingA

this value in the expression for a^ which is
,,

, we find
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B

which is the value of «, corresponding to the asymptotes.

263. The equation of the hyperbola takes a remarkable

form when we refer it to the asymptotes as axes. The

general formulas for transformation are

X = x^ cos a + y' cos a', ?/
= ^' sin a -f yf sin a'.

But, as the asymptotes make with the axis of x angles

whose tangents are ± -—, we have^
. A

tang a = — -, tang a' = -f- _.

Substituting these values of x and y in the equation of the

hyperbola,

Ay — B2:r2 = — A2 B2,

it becomes

(A2 sin^a'— B2 cos^a') ?/'2 -f (A2 sin^a— B^ cos^a)

x^^ + 2(A2 sin a sin a'— B^ cos a cos a') x^ y' ^

The coefficients of a:'^ ?/'^ disappear in virtue of the pre-

ceding value of tang a, tang a', and that of x' y' reduces to

4 A2 B2
'

—
A2 I P2 >

^^^ the equation of the curve becomes
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, ,

A2 + B2
x'y'

=
1

If we take the line BB' for the transverse axis of the hy-

perbola, and AX', AY', for the asymptotes, BE parallel to

AX' will be equal to ^A^-\- B^. But BK drawn perpen-

dicular to BB' at B is equal to BE. Hence, AK = BE, and

AD = BD. As the same thing may be shown with respect

to the other asymptote, ADHD' will be a rhombus, whose

side AD = ^AK = — ^ Let B represent the an-

gle X'AY' which the asymptotes make with each other,

the preceding equation of the hyperbola multiplied by sin

B, gives

x'y' sm B = sm B.^
4

The first member represents the area of the parallelogram

APMQ, constructed upon the co-ordinates AP, PM, of any

point of the hyperbola ; the second member represents the

area of the parallelogram ADBD', constructed upon the co-

ordinates AD', D'B, of the vertex B of the hyperbola.

Hence the area APMQ is equivalent to that of the figure

ADBD'. The rhombus BEB'E is called the Power of the

Hyperbola.

264. When the hyperbola is equilateral A = B, angle B =

90°, sin B = 1 and the rhombus ADBD' becomes a square

which is equivalent to the rectangle of the co-ordinates. For

more simpUcity, put -I- =: M^, and suppress the ac-
4

cents of x\ y\ we shall have

xy = M^,

for the equations of the hyperbola referred to its asymptotes.
19
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265. By pursuing the same method which has been ex-

plained, we may find the equation of a tangent hne to the

hyperbola referred to its asymptotes. This equation is

y-y" = -t-{x-x").
X

Making y =^ o gives the point in which it cuts the axis of

x^ and X — a;" will be the subtangent, which we find to be

that is, the subtangent is equal to the abscissa of the points

of tangency. To draw the tangent, take on the asymptote

a length PT = AP = x", MT will be the tangent required.

We see by this construction, that if we produce the line MT
until it meets the other asymptote at t, we shall have M^ =

MT. The portion of the tangent which is comprehended
betv/een the asymptotes is therefore bisected at the point

of tangency.

266. The equation of a line passing through any point M",

whose co-ordinates are x'\ y", is

y — y''
= a {x

—
x").

The other point M'" in which this line

meets the curve, is determined from

the equation

ax + ?/"
=

0,

which gives

X = —— .
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This is the value of the abscissa AP'''. But if we make y~o
in the equation of the straight line, it gives also

a

in which x represents the abscissa AQ" of the point in which

this hne meets the axis Aa;, and x — x" is the value of P"Q".

Hence P"Q" = AP'". Consequently if we draw M"'Q' pa-

rallel to AX, the triangles P"M"Q", Q'M'"Q"' will be equal,

and the lines M"Q", M"'Q"', will be also equal, that is, if

through any point of the hyperbola, a straight line he drawn

terminated in the asymptotes, the positions of this line compre^

hended between the asymptotes and the curve will be equal.

267. This furnishes us with a very simple method of

describing the hyperbola by points, when we know one

point M" and the position of its asymptotes, for drawing

through this point any line Q"M"Q,'" terminated by the

asymptotes, and laying off from Q,'" to M'" the distance Q"M",
M" will be a point of the curve. Drawing any other line

through either of these points, we may in the same way find

other points of the curve. This construction may also be

used when we know the centre and axes of the hyper-

bola. For with these given, we may easily construct the

asymptotes.

Of the Polar Equation of the Hyperbola, and of the

Measure of its Surface,

268. Resuming the equation of the hyperbola referred to

its centre and axes,



148 ANALYTICAL GEOMETRY. [Chap. IV.

we derive its polar equation, by substituting this value of a

and bj drawn from the formulas for transformation from rec-

tangular to polar co-ordinates, in the place of x and y in this

equation. The substitution gives

A2 sin^u )r2 -f 2A^b sin v )r + A^b — Wa + A^B^ = o

— B^ cos^u 5
— 2Wa cos v S

for the general polar equation of the hyperbola.

269. When the pole is at one of the foci, we have a = ±

-/A^-j-B^. b = taking the positive value of a, correspond-

ing to the point F, the substitution gives for the two values

of r,

r = B2
r =

B2

a cost) A + a cos V

If we make v ==
o, the

radius vector takes the

position FX. cos v = I,

the denominator of r be-

comes A — a = A —
-/ A^ + B^, a quantity

which is essentially nega-

tive. Hence the curve

has no real points in this direction, and this will be the case

until cos V is so small, that the product a cos v shall be less

than A. The condition will be fulfilled when A + « cos v

=
0, which gives

cos V A^
a VA2 + B2*
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This value of the angle v is the same which the asympto-

tes make with the axis. For every value of v greater than

this Hmit, but less than 90°, a cos v is positive, and less than

A ;
when v > 90°, a cos v becomes negative, and— a cos v

positive. In this case A — a cos v is positive as well as r.

The points which this value of r gives, correspond then to

the branch of the hyperbola situated on the positive side of

the axis of x.

270. But in discussing the second root, we shall see that

it belongs to the other branch. In fact, it gives imaginary

values for all values of the cos v between the Hmits cos v = 1

A
and cos v = — — All the other values of v greater than

a

that of the second limit will give positive values for r, and

when V = 180°, the radius vector will determine the ver-

tex B'.

271. To put the preceding expressions under the form

adopted in the ellipse, make

A A
'

in which e represents the ratio of the eccentricity to the

semi-transverse axis, and the values of v become

A (1
—

e2) A (1
—

e^)

1— e cos V 1 + e cos v

These two equations determine points situated on the two

branches of the h}perbola.

272. We have seen that a similar transformation gives

two values for thi radius vector in the ellipse, but that one

of these values is constantly negative and consequently

belongs to no point of the curve, while for the hyperbola we
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find two separate and rational values for r corresponding to

the two branches of the hyperbola. Let us examine this

difference. If in the first of the preceding equations, we

count the angle v from the vertex of the curve, it will be

necessary to change v into 180° — v, and we have then

_ A(l-e^)
I -\- e cos V

This value of r will equally give every point of the branch to

which it belongs by attributing suitable angles to v. But

operating in the same way in Art. 212 on the ellipse, that is,

counting the angle v from the nearest vertex, we get

_ A (1
—

e^)

I -\- e cos V

This equation is therefore absolutely the same for the

two cases, only in the ellipse e is less than unity, while it is

greater in the hyperbola. Besides, the sign of A is changed.

Let us now make e = 1 and A =
infinity, we shall have,

making A (1
—

e^)
= p,

I + cos V

which is the polar equation of the parabola. Hence we see

that the equation

. - A (1
-

e^)

1 -f e cos V

may in general represent all the conic sections, by giving

suitable values to A and e.

273. We may deduce the equation of the hyperbola in the

same manner as we have that of the ellipse in Art. by

introducing one of its properties w^ch characterize it. The
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method being similar to that of the ellipse, it will be unne-

cessary to repeat it here.

274. We have seen that the equilateral hyperbola bears

the same relation to other hyperbolas that the circle does to

the ellipse. In applying here what has been said (Art. 215),

we may compare a portion of any hyperbola, to the cor-

responding area of an equilateral hyperbola having the same

transverse axis, and there results that these are to each

other in the ratio of the conjugate axes. The absolute areas

however can only be obtained by means of logarithms.

275. We have found (Art. 173) for the equation of the

Ellipse referred to its vertex,

t
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CHAPTER V.

OF TRANSCENDENTAL CURVES.

276. Curves whose equations are not purely algebraic,

are called Transcendental. Their equations involve, gene-

rally, logarithmic expressions, and functions of the sine, co-

sine, tangents, &c., of arcs. As many of these curves enjoy

remarkable mechanical properties, vie propose discussing a

few of those which are most commonly found in works on

Mechanics.

Of the Logarithmic Curve.

277. This curve derives its name from one of the co-or-

dinates being the logarithm of the other.

If the axis of :?; be
f

taken as the axis ofnum-
^

hers, that of y will be the

axis of logarithms ; and

laying off any numbers,

1, 2, 3, 4, &c., on AX,

the logarithms of these

numbers, as found in the

Tables of Logarithms,

estimated in parallels to

the axis of y, will be the

corresponding ordinates

of the curve.
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278. From what has been said, the equation of the

curve is

or, calling a the base of the system of logarithms, we have

If the base of the system be changed, the values of y will

vary for the same value of x ; hence, every system of loga-

rithms willproduce a different logarithmic curve,

279. The equation

x = ay

enables us at once to construct points of the curve; for,

making successively

y = o, 2/
=

i, y =
I, &c.,

we find

X — \, X — v'a, X — ^a, &c.

As y = 0, gives a; = 1, whatever be the system of loga-

rithms, it follows that every logarithmic curve cuts the axis

of numbers of an unites distancefroin the origin.

280. If (Z > 1, all values oi x greater than unity will give

real and positive values for y ; the curve, therefore, extends

indefinitely above the axis of numbers. For values of x less

than unity, y becomes negative, and increases as x diminish-

es ; and when x = o^y — — infinity. The curve, therefore,

extends indefinitely below the axis of numbers, and as it ap-

proaches continually the axis of logarithms, this axis is an

asymptote to the curve.

20
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If X he negative, y becomes imaginary ; the curve is,

therefore, limited by the axis of logarithms.

281. Taking the axis of y for the axis of numbers, that of

X would be the axis of logarithms, and the curve would

enjoy, relatively to this system, the same properties which

have demonstrated above.

Of the Cycloid.

282. If a circle QMG be rolled along the line AB, any

point M of its circumference will describe a curve AMKL,
which is called a Cycloid. For any position of the genera-

ting ^circle, as QMG, the distance AQ = arc MQ. Erect

the perpendicular QG ; it will be a diameter of the circle.

Draw MN parallel to AB, MN will be the sine of the arc

MQ, and NQ its versed sine. Making

QO = a, AP =
a;, MP = NQ =

y,

we shall have *

a; = AQ— PQ = arc MQ— sin MQ, y = ver-sin MQ ;

and since MN is a mean proportional between the segments;

QN and NG, we have



Chap. V.] ANALYTICAL GEOMETRY. 155

MN = sin MQ =
V2ay —"^ ;

hence

X = arc MQ— V2ay — y^^

or representing by vers-sin -^
y the arc of which y is the

versed sine, we have

X = versed sine y — a/ 2ay — yh

for the transcendental equation of the cycloid,

283. When the point of contact is at a distance AI from

the origin equal to the semi-circumference of the generating

circle,' the generating point is at K, the distance KI being

equal to the diameter of the circle; when the circle has

made an entire revolution, the generating point is at L. The

cycloid is not terminated at this point, but as the generating

circle moves on, similar cycloids are described along AB

produced.

284. AB is called the base and KI the altitude of the cy-

cloid. This curve enjoys many important mechanical pro-

perties. It is a tautocronal and brachystochronal curve, or

curve of equal and swiftest descent.

Of Spirals.

285. Spirals comprise a class of transcendental curves

which are remarkable for their form and properties. The

principal varieties are the Spiral of Archimedes, the Hyper-

bolic, Parabolic and Logarithmic Spiral.
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Spiral of Archimedes.

286. If a line AO revolve uniformly around a centre A,

at the same time that one of its points commencing at A,

with a regular angular and outward motion, describes a

curve AMO, and is found at O, when AO has completed one

entire revolution, and at X at the end of the second revolu-

tion, and so on, the curve AMOM'X will be the spiral of

Archimedes. From the nature of this generation, it follows

that the ratio of the distance of each of its points from the

point A to the line AO, will be equal to that of the arc passed

over by the point O from the commencement of the revolu-

tion to the entire circumference ; or, for any point M', we
have the equation

AM' _ OGO + OGN
AN OGO

and making

OGN =
^, AM = u, AN =

1,
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the circumference OGO will be represented by 2'rr, and the

equation of the spiral becomes

u =
2^

287. The variables in this equation are those of polar co-

ordinates. The point A is the pole, AM the radius vector,

and the angle subtending OGN the variable angle,

288. The curve vi^hich has just been considered is a par-

ticular case of the class of spirals, whose general equation

may be represented by

u = aP ;

a and n representing any quantities whatsoever.

Of the Hyperbolic Spiral,

289. If in the general equation

u ~
at^,

we have n = — 1, the resulting equation

a
« =

r

will be that of the hyperbolic spiral. This curve takes its

E
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name from its having an asymptote. In fact, if we make

successively

we shall have

f = 1 z= J = 1, &c.

u = a = 2a = 3a, &c.

which shows that as the spiral departs from the point A, it

approaches continually the line DE drawn parallel to AO,
and a distance AD = a ; DE is therefore an asymptote to the

'curve.

If the values of^ be negative, we shall have a similar

spiral, 'to which DE' will be .an asymptote.

Of the Parabolic Spiral.

290. The parabolic spiral is generated by wrapping the

axis of a parabola around the circumference of a circle, the

ordinates of the parabola will then coincide with the prolong-

ation of the radii, and the abscissas of the parabola will be-

come the arcs of the circle. The equation of the curve is

evidently

u^ — at.

Of the Logarithmic Spiral.

291. The' equation of this curve is t = lii.- Making ^ = d,

we have u = \. The curve therefore passes through the
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point O. As u increases, ^in-

creases also ; there is there-

fore an infinite number of

revolutions about the circle

OGN. When u<\, t be-

comes negative, and its val-

ues give the part of the

curve writhin the circle OGN.
As u diminish, t increases, and

when u ^ Oft — — infinity. The spiral therefore colitinu-

ally approaches the pole, but never meets it.

s*
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CHAPTER VI.

DISCUSSION OF EQUATIONS.

292. Having discussed in detail the particular equations of

the Circle, Ellipse, Parabola, and Hyperbola, we will apply

the principles which have been established to the discussion

of the general equation of the second degree between two

indeterminates.

293. Let us take the general equation

A2/2 + Bxy + C^2 ^ Dy + E^ + F = o,

in which x and y represent rectangular co-ordinates. Let

us seek the form and position of the curves which it repre-

sents, according to the different values of the independent

coefficients A, B, C, D, E, F. Resolving this equation with

respect to y, we have

2/
= —

Br+D . _!_ . /^(B2—4AC):r2^2(BD—2AE):r+D'—4AF.
2A 2AV
In consequence of the double sign of the radical, there

will, in general, be two ordinates corresponding to the same

abscissa, which we may determine and construct, if the val-

ues given to x, under the radical, be real. If this reduce it

to zero, there will be but one value of y, and if they render

it imaginary, there will be no point of the curve correspond-

ing to these abscissas.

Hence to determine the extent of the curve in the direc-
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tion of the axis of x^ we must seek whether the values given

to X render the radical, real, zero, or imaginary,

294. In this discussion we will suppose that the general

equation contains the second power of at least one of the

variables x or y. For, if the equation were independent of

these terms, its discussion would be rendered very simple,

and the curve which it represents immediately determined.

The general equation under this supposition would reduce

to

Bory + Dy + E:r + F = 0,

which may be put under the form

and making

it becomes

B

.
D

, ,E ,

x'y^
= ^ + F,

which is the equation of an hyperbola referred to its asymp-
totes.

295. The result would be still more simple if the coeffi-

cients A, B, C, reduced the three terms in x^, y^, and xy, to

zero. In this case the general equation would become of

the first degree, and would evidently represent a straight

line, which could be readily constructed. These particular
cases presenting no difficulty, we will suppose in this dis-

cussion that the square of the variable y enters into the

general equation.

21
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296. Resuming the value of y deduced from the general

equation,

?^±Ei .i_ ^/(B2—4AC):2;2+2(BD—2AE):27-fD2—4AF,
2A 2A V

we see that the circumstances which determine the reahty

of y depend upon the sign of the quantity under the radical.

But we know from Algebra, that in an expression of this

kind, we can always give such a value to x, as to make the

sign of this polynomial depend upon that of the first term:

and since x^' is
. positive for all values of x, the sign will

depend .upon that of the quantity (B^
— 4AC). .We may

therefore conclude, .

1st. When W — 4AC is negative, there will be values

of X both positive and negative, for which the values of y
will be imaginary. The curve is therefore hmited on both

sides of the axis of y.

2dly. When (B^
— 4AC) =

o, the first term of the poly-

nomial disappears, and the sign of the polynomial will

then depend upon that of the second term (BD — 2AE) x.

If (BD— 2AE) be positive, the curve will extend indefinitely

for all values of x that are positive. But if x be negative, y
becomes imaginary. The curve is therefore Hmited on the

side of the negative abscissas. The reverse will be the

case if (BD — 2AE) is negative. The, curve will in this

case extend indefinitely when x is
negative,

and be limited

for positive values oi x.

3dly. When (B^
— 4AC) is positive^ there will be posi-

tive and negative values for x, beyond which those of y will

be always real. The curve will therefore extend indefinite-

ly in both directions.
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297. We are therefore led to divide curves of the second

order into three classes, to v^^it,

1. Curves limited in every direction ;

Character, . . . B^ — 4AC < o.

2. Curves limited in one direction, and indefinite in the

opposite ;

Character, ... B2 — 4AC = o.

3. Curves indefinite in all directions
;

Character, . . . B^ — 4AC > o.

The ellipse is comprehended in the first class, the para-

bola in the second, and the hyperbola in the third. We will

discuss each of these classes.

First Class.—Curves limited in every direction.

Analytical Character, B^ — 4AC < o.

298. Let us resume the general value of ?/,

y = —
Bx + B
2A

l_ /(B2—4AC)a;2+2(BD—2AE):z;+D2—4AF.
2A

This expression shows, that, to find points in the curve,

we must construct for every abscissa AP an ordinate equal

(
B:c + D ) .

to— \
—^— J

which will determine a point N, above and

below which we must lay oflT the

distance represented by the radical.

From which it follows that each of

the points N bisects the correspond-

ing line MM', which is limited by the

Bx + B)
curve. This quantity 2A
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which varies with x, is the ordinate of a straight Hne whose

equation is

2/
= —

2A

This Hne is, therefore, the locus of the points N, which

we have just considered. Hence, it bisects all the lines

drawn parallel to the axis of y and limited by the curve.

This line is called the diameter of the curve.

299. Let us now determine the limit of the curve in the

direction of the axis of x. For this purpose we may put

the polynomial under the radical under another form,

B:r + D
.y=— 2A

BD— 2AE . D2— 4AF)
2A V V ^ \

^
B2 — 4AC W — 4AC.

and if we represent by x' and x" the two roots of the

equation

2 . o-BD — 2AE
,

D2 — 4AF
x^ + 2 -— X + = 0,

B2 — 4AC B2 — 4AC

the value of y will take the form

__ Bx + D
.

1
/(B2 _- 4AC) (x

—
X') (x

—
X").^ 2A 2A V

Hence we see, the values of y will be real or imaginary

according to the signs of the factors {x
—

x') and {x
—

x"),

and consequently, the limits of the curve will depend upon

the values of x' and x". These values may be real and un-

equal^ real and equals or imaginary. We will examine

these three cases.

300. 1st. If the roots are real and unequal^ all the val«<^'
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of X greater than x' and less than x", will give contrary

signs to the factors x — x', x — x", and this product will

be negative, but as B^ — 4AC is also negative, the quantity

(B^
— 4AC) {x

—
x') {x

— x") will be positive, and the or-

dinate y will have two real values. If we make x = x' or

X = x", the radical will disappear, the two values of y will

Ba; +D
be real and equal to — . In this case the abscissas^ 2A
x^ and x" belong to the points in which the curve meets its

diameter, that is, to the vertices of the curve. Finally, for

X positive or negative, but greater than x' and a:", the two

factors {x
—

x'), {x
—

x"), will be positive, as well as their

product {x
—

x') {x
—

x") ; and since B^— 4AC is nega-

tive, the quantity (B^
— 4AC) {x

—
x') {x

—
x") will be

negative also, and both values of y will be imaginary.

301. We see from this discussion that the curve is con-

tinuous between the abscissas x\ x", but does not extend

beyond them ;
and if at their extremities we draw two per-

pendiculars to the axis of x^ these lines will' limit the curve,

and be tangent to it, since we may regard them as secants

whose points of intersection have united.

302. By resolving the equation with respect to a:, we
would arrive at similar conclusions, and the limits of the

curve in the direction of the axis of ?/, would be the tangents

to the curve drawn parallel to the axis of a;.

303. Having thus found four points of the curve, we could

ascertain the points in which the curve cuts the co-ordinate

axes. By making a: = o, we have

A2/2 + Dy + F = o,

and the roots of this equation will give the points in which

the curve cuts the axis of y. According as the values of y
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are real and unequal, real and equal, or imaginary, the curve

will have two points of intersection with the axis of ?/, be

tangent to it, or not meet it at all.

304. By making y = o, we have

•

Ca;2 4- E:z; + F = .0,

and the roots of this equation will in the same manner deter-

mine the points in which the curve cuts the axis oi x.

305. In comparing this curve with those of the Conic

Sections, we see at once its similarity to the Ellipse. Its

position will depend upon the particular values of the co-

efficients A, B, C, &c.

306. Let us apply these principles to a numerical example,

and construct the curve represented by the equation

y^
— 2xy + 2x^ — 2y + 2x = o.

Resolving this equation with respect to y, we have

y = {x + 1) ± n/> + 1)2
— 2x {x +~T).

The equation

y = {x + 1),

is that of the diameter of the curve, and laying off on the

axis of y a distance: AB equal to

1, and drawing BC making an angle

of 45° with the axis of x, BC will

be this diameter. The roots of the

equation

{x -f iy — 2x (x-{- iy=

are

p
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X = + 1, X - — \.

Laying off on both sides of the axis of?/ distance AC and AD
equal to 1, the perpendiculars CP, DP', will limit the curve

in this direction. Substituting the values of x in the pre^

ceding equation, vv;e have the corresponding values of y,

y = + 2, ?/
=^ 0.

The first gives the point P, the second the point C,

Making x =
o, the equation becomes

r 2?/ = 0,

w^hich gives

y =
0, y = + 2,

for the points A and H, in which the curve cuts the axis

oi x.

For y =
0, we have

x^ -\- X =
0,

and

X = 0, — 1.

corresponding to the points A and C on the axis oi\x.

The following examples may be discussed in the same

manner :

2. 7/
—

2a;y + 2x^'— 2x = o.
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?/2
__ 2xy + 2a:2 + 2?/ + a: + 3 = 0.

307. There is a particular case comprehended under this

class, which it would be well to examine. It is that in which

A = C and B = o in the general equation. This supposi-

tion gives

A?/2 + Ar^ + Dy + Ex + F = ;

or dividing by A,

y^ J^ X^ +
A^'^A'^ A^^'

If we add —X-— to both sides of this equation, it may

be put under the form

\y^M^h-M' D2 -I- E^ — 4AF
4A2

If the co-ordinates x, y, are rectangular, this equation is

of the same form as that in Art. and therefore represents

D E
a circle, the co-ordinates of whose centre are — —-r >

— —
r>

2 A 2A'

and whose radius is
L> + E 4A.b

^ jj^ order that
2A

this circle be real, it is necessary that the quantity (D^ +
E2— 4AF) be positive. If D^ + E^— 4AF -

o, the circle

reduces to a point. If the system of co-ordinates be oblique,

this equation will be that of an ellipse.
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308. We come now to the second supposition, in which

the roots x', x'\ are equal. The product {x
—

x') {x
—

a:")

becomes {x — x'Y, and the general value of y is

Bx* + D
.

:r — x' ,-— ——

Whatever value we give to x which does not reduce x — x'

to zero, will give imaginary values for y, since B^ — 4AC is

negative. But if a; = x', there will be but one value for z/,

( Ba: 4- D )

which will be real and equal to — ]
——

[ . In this^
( 2A S

case the curve reduces to a single point, situated on the

diameter, the co-ordinates of which are

x\ ?/
= By + D

2A !•

EXAMPLES.

3^ -^ y^
=z

0, y^ -{• x^ — 2a; + 1 = a.

309. Finally, when the roots are imaginary. In this case

the product {x
—

x') {x
—

ar") will always have the same

sign, whatever value be given to x. But we can always
take X sufficiently large to render this product positive,

since the first term is + x^. The product {x
—

x') {x
—

a;")

will therefore always be positive, and as (B^
— 4AC) is ne-

gative, it follows that the values of y will always be imagin-

ary, and there will be no curve.

EXAMPLES.

y^ -\- xy -\- 3^ -\- \x -{ y -\- \ = 0, y^ + oc^ -\- 2x -\- 2 =^
Oy

22
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which may be put under the forms

{2lJ + X -f 1)2 + SX- + 3 = 0, 7/2 -f (x + 1)2 -I- 1 = 0.

310. There results from the preceding discussion, that the

curve of the second order, comprehended in the first class,

for which B^ — 4AC is negative, are in general re-entrant

curves as the ellipse, but the secondary conditions give rise

to three varieties, which are
tli^ Point, the Imaginary/

Curve, and the Circle.

Second Class.—Curves limited in one direction and indefi-

nite in the opposite.

Analytical Character, B^ — 4AC = o.

311. In this case the general value of z/ becomes

_ B:r+D
,

1 / 2 (BD — 2AE) x + D^— 4AF.
^ 2A 2A V
Making, for more simplicity,

D^ -- 4AF ^__ ,

2 {)iD
— 2AE)

^ '

it may be put under the form

_ B^+JD 1 /2 (BD — 2AE) {x
~

x').
/ 2A 2A V
If BD — 2AE is positive, so long as x is greater than x\

the factor x — x' will be positive, and the radical will be

real. If a: = x', the radical will disappear, and if x be less

than x', the factor x — x' will be negative, and the radical

will be imaginary. The curve therefore extends indefinitely
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from X = x' to X =
-{- infinity. The ordinate corresponding

to X =
x', will be tangent to the curve at this point.

312. The contrary will be the case if BD — 2AE is ne-

gative. The curve will extend indefinitely on the side of the

negative abscissas, and will be limited in the opposite di-

rection.

In both cases, the straight line whose equation is

Bx + B
y =

2A

will be the diameter of the curve.

EXAMPLES.

\. y^
— 2xy + x^ -\- X = 0.

2. y^
— 2xy + x^ -\- 2y = o.
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3. y^—.2xy+x^-\-2y-{'l= o.

4. y^
— 2xy + x^ — 2y
— 1=0.

5. y^
— 2xy -{• x^ — 2y
— 2x = o.

313. If BD — 2AE = 6, the value ofy becomes
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The curve becomes two parallel straight lines, which

will be real, one straight line, or two imaginary lines, accord-

ing as D^ — 4AF {^positive, nothing, or negative.

EXAMPLES.

L y^
— 2xy -\- x^ — 1

2. y^ -f ^^y + 4a;2 — 4 = o.

3. y^ '—2xy-\-x^ + 2y — 2a; -f I
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4. y^
— ^xy + 4a:^ = o.

6. y^ + ^^y \- x^ -\- \
—

0.

\. y^ \- y -\- \ — 0.

314. There results from this discussion, that the curves of

the second order, comprehended in the second class, for

which B^ — 4AC =
o, are in general indefinite in one direc-

tion as the parabola, but include as varieties two 'parallel

straight lines, one straight line, and two imaginary straight

lines.

Third Class.—Curves indefinite in every direction.

Analytical Character, W — 4AC > o.

315. The discussion of this class of curves presents no

difficulty, as the method is precisely similar to that of the

first class. Resuming the general value of y,

B.r + D ^
1 /~

2A 2A V ^
.
-
B2— 4AC '

2— 4AC
BD~2AE .

D2— 4AF

and representing by x\ x", the roots of the equation
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x^-{-2
BD
B2 — 4AC

the value of 7/ becomes

Bx + B
,

1

2AE ^ D2 4AF
B2 _ 4AC

y 2A
± -J V

(B2
— 4AC) (a:

—
x') (x

— x'%2A

So long as x' and x" are real, the curve will be imaginary

between the limits x\ x", since (B^
— 4AC) is positive, but

for all values of x^ positive as well as negative, beyond this

limit, the values of y will be real. The abscissas x', x'\

correspond to the points in which the curve intersects its

diameter ; and the equation of this diameter is,

y =— B:r + D
2A

•

EXAMPLES*

\. y'^
— 2xy— x^ {•2-0.
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2. y^
— x^—2x— 2y-\-l = o.

3. ?/2
—

2a;.y
— x^—-2y-\-

2a; + 3 = 0.

\

4. ?/2
__ 2a:2 — 2!/ -f 6^— 3 = o.

/
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316. We may find the points in which the curve cuts the

axes by the methods pursued in Arts. 304 and 305.

317. When the roots a;', a:", are equal, the product {x
—

s;')

(x
—

x") would reduce to
{a:
—

x'Y^ and we would have

y
Bx + B x — x'

2A 2A v/B2 _ 4AC.

This equation represents two straight lines, which are al-

ways real, since B^— 4AC is positive.

EXAMPLES.

1. y^
—

2x^-{-2y + l= o.

2, f

3. y^ -^ xy — 2x^ + Sx^l = o.

23
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318. When x' and x" are imaginary, the quantity under

the radical will be always positive, since a value may be

given to x to make {x
—

x') {x
—

x^') always positive, and

B^— 4AC. is positive for this class of curves. Hence, what-

ever value we give to x, that of y will be real, and will

give points of the curve. This curve will be composed of

two separate branches, and the line represented by the

equation

B^ + Dy=— 2A

will be its diameter.

As the radical V (B^
— 4AC) {x

—
x') {x

-- x") can

never reduce to zero, this diameter does not cut the curve.

EXAMPLES.

1. 1/2 ^2xy -—x^ — 2 ^ 0.

2. y^ {2xy— x^ -\- 2x -{• 2y—\ = o.
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3. y^
— 2xy— x^ 2x 2 = 0.

319. If A
becomes

Af
or,

C, and B =
0, the general equation

Ax"^ -\-I)y + Ex + F=o,

D E F
y''
— x'' +

-J-1J+ J-X +
—

0,

which may be put under the form

2 D2— E2— 4AF
\y

+ 2A)
-

v'^'-2a; 4A^

Hence we see, that if the co-ordinates a; and y are rectangu-

lar, this equation represents an equilateral hyperbola, the co-

D
*

F
ordinates ofwhose centre are—^, + -y, and whose power

D2_E2— 4AF
is This case is analogous to that of the

4A2

circle (Art. 30.7).

320. We conclude from this discussion that the curves of

the second order, comprehended in the third class, for which

B^— 4AC is positive, are always curves composed of two

separate and infinite branches, as the hyperbola, and that

they include, as varieties, two straight lines and the equila^

teral hyperbola.
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Of the Centres and Diameters of Plane Curves.

321. The centre of a curve is that point through which, if

any Hne be drawn terminated in the curve, the points of

intersection will be equal in number, and the line will be

bisected at the centre.

322. If we suppose this condition satisfied, and that the

origin of co-ordinates is transferred to this point, then it fol-

lows, that if + x', + y\ represent the co-ordinates of one of

the points in which the line drawn through the centre inter-

sects the curve, the curve will have another point, of which

the co-ordinates will be — x',
—

y\ that is, its equation will

be satisfied when — x',
—

y', are substituted for + x', + y'.

This condition will evidently be fulfilled if the equation of

the curve contain only the even powers of the variables x

and y, for these terms will undergo no change when — x' is

substituted for + x', and — y' for + ?/'. To determine,

therefore, whether a given curve has a centre, w^e must ex-

amine if it have a point in its plane, to which, if the curve

be referred as the origin of co-ordinates, the transformed

equation will contain variable terms of an even dimension

only.

323. For example, to determine whether curves of the

second order represented by the general equation

A?/2 + B:r?/ -f Ca:2 + Dy + Ez + F = 0,

have centres, we must substitute for x and y, expressions of

the form

x = a -\- x', y = h-\- x',

in which a and h are the co-ordinates of the new origin, and
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see whether we can dispose of these quantities in such a

manner as to cause every term of an uneven dimension to

disappear from the transformed equation. If this substitu-

tion be made, the transformed equation will generally con-

tain two terms of an uneven dimension, to wit, (2A6 + Ba +
D) y' and {2Ca + B6 + E) x'. And in order that these

terms disappear, a and h must be susceptible of such values

as to make

2A6 + Bfl + D = 0, 2Ca + B6 + E = o,

and then the equation referred to the new origin becomes

Ky'^ + Bx'y'-\- Cx'^ -\- Ab^+ B«6 + Ca^ + D6 + Ea + F = o ;

and under this form we see that it undergoes no change
when — x'f

—
y', are substituted for + x', + y'.

324. The relations which exist between the co-ordinates

a and b are of the first degree, and represent two straight

lines. These lines can only intersect in one point. Hence,

curves of the second order have only one centre.

325. In fact these equations give for a and b, the follow-

ing values,

2AE — BD , 2CD — BE
a =

B2 _ 4AC
'

B2 — 4AC
'

and these values are single. They become infinite when

B^ — 4AC =
0, which shows that there is no centre, or that

it is at an infinite distance from the origin, which is the case

with curves of the second class. Here the two lines whose

intersection determines the centre become parallel. If one

of the numerators be zero at the same time with the denom-

inator, the values of a and b become indeterminate. This

arises from the fact, that this supposition reduces the two

equations to a single one, which is not sufficient to deter-
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mine two unknown quantities. There are therefore an infi-

nite number of centres situated on the same straight hne.

But in this case the curve reduces to two parallel lines, and

the centres are found on a line between the two,

326. The diameter of a curve is any straight lines which

bisects all the parallel chords drawn in the curve. If, there-

fore, we take a diameter for the axis of a;, and take the axis

of y parallel to the chords which are bisected by this diame-

ter, the transformed equation will be such, that if it be satis-

fied by the values -\- x', + ?/', it must also be by + x',
—

?/',

that is, by the same ordinate taken in an opposite direction.

Consequently, to ascertain whether a curve has one or more

diameters, we must change the diameters of the axes by
means of the general formulas

X — a -[- x' cos a + ?/' cos a', y — h -{- x' sin a + ?/' sin a',

and after substituting these values we must determine a, b,

a, a', in such a manner, that all the terms affected with un-

even powers of one of the variables disappear, without the

variables themselves ceasing to be indeterminate. If this be

possible, the direction of the other variables will be a diam-

eter of the curve.

327. Let us apply these principles to the general equation

Aif + Bxy + Cx^ + By -\-Ex -\-F = o.

Making the substitutions, we shall find, that the transformed

equation will generally contain three terms, in which one of

the variables x', y', will be of an uneven degree, and these

terms are

\
2A sin a sin a' + B (sin a cos a' + sin a' cos a) +

2C cos a COS a'
J x'y'
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+ \(2Ab + Ba + D) sina +(2Ca -{- B6 + E) cos a
J
x'

4- \{2Ab + Ba + D) since' + {2Ca + B6 + E) cos a'
J?/'.

Now, if we wish to render x' a diameter, the co-efficients

of the terms in y' must disappear, which requires that we
make

\
2A sin a sin a' + B (sin a cos a' + sin a' cos a) + 2C cos a

cos a'\ x'y'
= o;

or, what is the same thing,

2C + B (tang a' + tang a) + 2A tang a tang a' = o, (1).

and that we also have

\{2A.h + Ba + D) sin a' + {20a + B6 + E) cos cl'\ y'^o. (2).

If, on the contrary, we wished the axis of ?/' to be a diame-

ter, the co-efficients of the terms in x' must disappear. But

this supposition would also require equation (1) to be satis-

fied, and that, in addition to this, we have

\ {2Ab + Ba + D) sin a + {2Ca + Bb + E) cos a\x'=o, (3).

328. Let us examine what these equations indicate.

We see in the first place, that whichever axis we select

for a diameter, equation (1) must always exist, and it is

also necessary to connect with it one of the equations (2) or

(3). The first equation determines the relation between a

and a', and when one of them is given, it assigns a real value

to the other. But after this equation is thus satisfied, the

second equation (2) or (3) which is connected with it, can

only be fulfilled by giving proper values to a and b
; so that

while equation (1) assigns a direction to the chords which

are bisected by the diameter, equation (2) or (3) between

a and b, will be the equation of this diameter relatively to

the first co-ordinate axes.
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329. Equations (2) and (3) are evidently both satisfied

when we make

2A6 + Ba + D =
0, 2Ca + B6 + E = o. (4).

Hence the values of a and b given by these conditions be-

long to a point which is common to every diameter. But

these conditions are the same as those which determine the

centre (Art. ).

Hence every diameter of curves of the second order

passes through the centre, and reciprocally every line drawn

through the centre is a diameter.

330. If both of the axes x', y', be diameters, the transform-

ed equation will not contain the uneven powers of either of

the variables. For equations, (1), (2), and (3) 'must in this

case exist.

331. This condition is always fulfilled in curves of the

second order, when the origin of the co-ordinate axes is taken

at the centre, and their direction satisfies equation (1). For,

in this case, the first powers of x' and y' having disappeared,

as well as the term in x'y', the equation will contain only

the square powers of the variables. These systems of di-

ameters are called Conjugate Diameters. But the condition

of passing through the centre really limits this property to

the Elhpse and Hyperbola, the only cases in which equa-

tion (4) can be satisfied for finite values of a and b.

332. When the transformed equation contains only even

powers of the variables, it is evident that if this equation be

satisfied by the values + x', + y', it will also be for — x\

-\- y' ;
—

x',
—

y' ; + x',
—

?/' ; that is, in the four angles

of the co-ordinate axes, there will be a point whose co-ordi-

nates will only vary in signs. If the axes be rectangular,

the form of the curve will be identically the same in each of
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these angles. In this case, it is said to be symmetrical with

respect to the axes. In the elHpse and hyperbola, for exam-

ple, these curves are symmetrically situated, when the co-ordi-

nate axes coincide with the axes of the curves. When x'

and y' are at right angles, we have a' = a + 90°, and elimi-

nating a' from equation (1), we have

— 2C sin a cos a + B (cos^a
—•

sin^a) -f 2A sin a cos a = o,

and

(A — C) tang 2a + B =
0,

an equation which will always give a real value for tang ^a,

from which we deduce two real values for tang a. But

these two values will be such, that if one be a, the other will

be 90° + a, consequently the system of co-ordinate axes

will be the two axes.

Identity of Curves of the Second Degree, with the

Conic Sections.

333. The curves which have been discovered in the dis-

cussion of the general equation of the second degree, have

presented a striking analogy to the Conic Sections. We
will resume this equation, and see how far this analogy
extends.

834. We will suppose the equation to contain the second

power of at least one of the variables, and that the system
of axes is rectangular. We have found for the general

value of y (Art. ),

-1-(R.+D)±i- v^(B^^AC)^^+2(H)=:2AE)+I^=4AF.2A 2A ^

24
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The expression

y=-^j^(B^
+ D),

is the equation of the diameter of the curve, and the radical

expresses the ordinate of the curve counted from this diam-

eter. Let us construct these re-

sults. The diameter cuts the

axis of y at a distance from the

origin equal to — — , and makes

an angle v^^ith the axis of x, the

trigonometrical tangent of which
T>

is — —-. Laying off a length

AD= ——
, and through D draw^-

2A

ing LDX', making the angle LOX equal to that whose tan-
"D

gent is -, LDX' will be the diameter of the curve.
2A

Let us now consider any point M whose abscissa AP = x,

and ordinate PM =
y. Produce PM until it meets the di-

1
ameter OX', the distance PP' will represent 2A (Bx+ B)

and PM the radical part of the value of y. But as the

equation of a curve is simplified by referring it to its di-

ameter, let us refer the curve to new co-ordinates, of which

DP' = x' and P'M = y', and call the angle LOX, a, we
have

— x' cos a, y 2A (Bx -f D) 4- y',

Substituting these expressions in the general value of y,

we get
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y'
=

± / (B2—4AC)cos2a:2:'2_2(BD—2AE)cosax'+D2—4AF,
2AV

or, squaring both members,

4A2y'2 ==
(B2

_^ 4AC) cos^a . :r'2 — 2(BD — 2AE)

cos a.x' + W — 4AF, (2.)

or,

4A2z/'2 =

(B2—4AC) cos^a
\
x''— 2i55jIl^Ml£' I + D2— 4AF.

^
i (B2

— 4AC) cos a i

Adding ,J^
~
^^^— to the quantity within the paren-

(B^
—

4AC)2 cos^a

theses, and subtracting without the parentheses the equivalent

(B2
— 4AC) cos^cc _PLz^^^M)!__,the equation becomes

^ ^

(B2
— 4AC)2 cosV ^

4A^y<2
= (B2— 4AC) cos^a

I

x'—^^
BD— 2AE

(B2
— 4AC)cosa

(BD-2AE)2
B2_4AC ^^ — 4Ar.

Let us introduce for :?;' a new variable x", such that

,

BD — 2AE
"^

~(B2_4AC) cosa"^"'

which is the same thing as transferring the origin of co-ordi-

TiT) 9 A T*

nates from the point D to D', so that DD' = 77^ iitf^^
(B2— 4AC) cos a.

The equation in y' and x" becomes

4A2y'2=:(B2—4AC)cos2a.a:"2—^•^_=^^+D2—4AF. (3.)

And since under this form it contains only the squares, pow-
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ers of the variables, and a constant term, we see that it can

only represent an ellipse or hyperbola, referred to their centre

and axes, or conjugate diameters. It will represent an el-

lipse if B^ — 4AC is negative, and the hyperbola if it is

positive.

335. This reduction supposes that the last transforma-

tion is possible. But this will always be the case, unless

— -—
, which represents DD', become infinite,

B2— 4AC) cos a
^ -^ '

which can only be the case when (B^
— 4AC) cos a - o.

But cos a cannot be zero, for then we should have a = 90°,

which would make A =
o, and the diameter DX' parallel to

the primitive axis of y, a case which we excluded at first;

hence, in order that DD' =
infinity, we must have B^— 4AC

=
0, and this reduces the transformed equation to

4A2?/'2 ^ _ 2(BD— 2AE) cos a. x' + B^-— 4AF, (4.)

which is the equation of a parabola referred to its diameter

DX'. Thus, in every possible case, the equation of the

second degree between two indeterminates can only repre-

sent one or the other of the conic sections.

336. All the particular cases which the conic sections

present may be deduced from these transformations. For

example, if in equation (4) we suppose BD — 2AE =
o, the

term in a:' disappears, and the parabola is changed into two

straight lines parallel to the axis of x'. If D^ — 4AF = o

also, the equation will represent but one straight line, which

coincides with this axis. If in equation (3), we make diflTe-

rent suppositions upon the quantities A, B, C, D, and E, we

may deduce all the known varieties of the sections which

this equation represents, which proves the perfect identity

of every curve of the second order with the conic sections.
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CHAPTER VII.

OF SURFACES OF THE SECOND ORDER.

337. Surfaces, like lines, are divided into orders, accord-

ing to the degree of their equations. The plane, whose equa-

tion is of the first degree, is a surface of the first order.

338. We will here consider surfaces of the second order,

the most general form of its equation being

A2;2 + A'?/2 + A"a;2 + -^yz + "Q'xz + Wxy + C2; +

C'y + C'x + F = 0. (1.)

Since two of the variables x, y, z, may be assumed at

pleasure, if we find the value of one of them, as z, in terms of

the other two, we could, by giving different values to x and

y, deduce the corresponding values of z, and thus determine

the position of the different points of the surface. But as

this method of discussion does not present a good idea of

the form of the surfaces, we shall make use of another

method, which consists in intersecting the surface by a

series of planes, having given positions with respect to the

co-ordinate axes. Combining then the equations of these

planes with that of the surface, we determine the curves of

intersections, whose position and form will make known the

character of the given surface.

339. To exemplify this method, take the equation

x^ -\-y^ -\- z^ = R2,

and let this surface be intersected by a plane, parallel to the

plane oixy ; its equation will be of the form (Art. 76),
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X = a,

and substituting this value of x, in the proposed equation, we
have

a;2 + ?/2
= R2 _ a\

for the equation of the projection of the intersection of the

plane and surface on the plane of xy. It represents a circle

(Art. 148), w^hose centre is at the origin, and v^^hose radius

is -/R^— a^. This radius vi^ill be real, zero, or imaginary,

according as a is less than, equal to, and greater than, R.

In the first case the intersection w^ill be the circumference of

a circle, in the second the circle is reduced to a point, and

in the third the plane does not meet the surface.

340. The proposed equation being symmetrical with res-

pect to the variables x, y, z, we shall obtain similar results

by intersecting the surface by planes parallel to the other

co-ordinate planes. It is evident, then, that the surface is

that of a sphere.

341. The co-ordinate planes intersect this surface in

three equal circles, whose equations are,

x^ + y''=^ R2, x^ -^ z^ = R2, y^Jrz^ = R2.

342. We may readily see that the expression
"^x^ -\- y^ -{- z^

represents a spirical surface, since it is the distance of any

point in space from the origin of co-ordinates (Art. 80), and

as this distance is constant, the points to which it corres-

ponds are evidently on the surface of a spire, having its cen-

tre at the origin of co-ordinates.

343. The discussion has been rendered much more simple,

by taking the cutting planes, parallel to the co-ordinate

planes, since the projections of the intersections do not differ

\
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from the intersections themselves. Had these planes been

subjected to the single condition of passing through the

origin of co-ordinates, the form of their equations would

have been

Ax + By + Cz =
;

and combining this v^ith the proposed equation, v^^e should

have,

(A2 + C2) :r2 + 2ABxy + (B^ + C^) t/
= RSC^,

v^hich is the equation of the projection of the intersection on

the plane of xy. This projection is an elHpse, but we can

readily ascertain that the intersection itself is the circumfer-

ence of a circle, by referring it to co-ordinates taken in the

cutting plane.

344. We may in the same manner determine the charac-

ter of any surface, by intersecting it by a series of planes,

and it is evident that these intersections will, in general, be

of the same order as the surface, since their equations will

be of the second degree.

345. Before proceeding to the discussion of the general

equation

Az2 + Ay + A"a;^ + Byz + B'xy + B"xy + C^ +
C'y + C"x + F = 0,

let us simplify its form, by changing the origin, so that we

. have, between the two systems of co-ordinates, the relations

(Art. 127),

X = x' + a, y = y' -{- (3, z = z' -|- 7.

As a, (3, 7, are indeterminate, we may give such values to
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them as to cause the terms of the transformed equation

affected with the first power of the variables to disappear.

This requires that we have

2A7 + B/3 + B'(x + C =
0,

2A'/3 + B"a + B7 + C =
0,

2A"a + B'y + B"^ + C" = ; (2.)

and, representing all the known terms in the transformed

equation by L, it becomes

A%'2 + A'?/'2 + A"5r'2 4. Bz'y' + B'z'x' + B"x'y' + L = 0. (3.)

As all the terms in this equation are of an even degree,

its form will not be changed, if we substitute — x',
—

y',—
%', for + x', + y', + z'. If, then, a line be drawn through

the origin of co-ordinates, the points in which it meets the

surface will have equal co-ordinates with contrary signs.

This line is therefore bisected at the origin, which will be

the centre of the surface, if we attribute the same significa-

tion to this point in reference to surfaces that we have for

curves.

346. The equations (2) which determine the position of

the centre being linear, they will always give real values for

a, /3, 7 ;
but the coefficients A, B, C, &c., may have such

relations as to make these values infinite. In this case the

centre of the surface will be at an infinite distance from the

origin, which will take place when

AB"2 + A'B'2 + A"B2— BB'B"— 4AA'A" = 0, (D.)

which is the denominator of the values of a, /3, y, drawn

from equation (2) placed equal to zero.
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347. If this condition be satisfied, and we have at the

same time

C ==
0, C'= 0, C" = 0,

the values of a, /3, 7, will no longer be infinite, but will be-

come — , which shows that there will be an infinite number

of centres. In this case the surface is a right cylinder, with

an elliptic or hyperbolic base, whose axis is the locus of all

the centres.
"

348. If condition (D) be not satisfied, but we have simply

C = o, C' = o, C" = o,

the values of a, (3, 7, become zero, and the centre of the sur-

face coincides with the origin. This is evident from the

fact that equations (2) represent three planes, whose inter-

section determines the centre ; and these planes pass through

the origin when C, C, C", are zero.

349. We may still further simpHfy the equation (2) by re-

ferring the surface to another system of rectangular co-ordi-

nates, the origin remaining the same, so that its equation

shall not contain the product of the variables. The formu-

las for transformation are

x' = x" cos X + y" cos X' -f z" cos X",

y'
= x" cos Y + y" cos Y' -f 2" cos Y",

z' = x" cos Z + y" cos Z' + z" cos Z",

with which we must add (Arts. 129 and 130),

cos^X + cos^Y + cos^Z = 0,

cos^X' + cos^Y' + cos^Z' =
0,

cos^X" + cos^Y" + cos^Z" = 0, (A.)

25
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cos X cos X' + cos Y cos Y' + cos Z cos Z' = o,

cos X cos X" + cos Y cos Y" + cos Z cos Z" = o,

cos X' cos X" + cos Y' cos Y" + cos Z' cos Z" = o. (B.)

Equations (B) are necessary to make the new axes rec-

tangular. These substitutions give for the surface an equa-

tion of the form

Mz"2+ M'2/"2 + M"x"^ + Nz"y" + N'z"x" + NVy" + P = o.

In order that the terms in z"y", z"x", x"y", disappear, we

must have

N =
o, N' = o, N" = o.

Without going through the entire operation, we can

readily form the values of N, N', N", and putting them

equal to zero, we have the following equations :

2A cosZcosZ' + B (cosZ cosY' + cos
YcosZ')^^

+ 2A' cos Y cos Y' 4- B' (cos Z cos X' + cos X cos Z') >= o.

+ 2A" cos X cos X' + B" (cos Y cos X' + cos X cos Y') J

2A cos Z cos Z" + B (cos Z cos Y'' + cos Y cos
Z")^

4-2A' cosY cos Y"+ B' (cos Z cos X" + cosX cos Z") ^=0. (C)

+2A"cosX cosX" -|-B"(cosY cosX" +cosX cos Y")j

2A cosZ'cosZ" + B (cosZ' cos Y" +cos Y'cosZ")"^

+2A' cos Y' cos Y" + B' (cos Z' cos X" + cos X' cos Z") y = o.

+2A"cosX' cos X" + B"(cosY' cos X" + cos X' cos Y")j

The nine equations (A) (B) (C) are sufficient to deter-

mine the nine angles which the new axes must make with

the old, in order that the transformed equation may be inde-

pendent of the terms which contain the product of the varia-

1
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bles. Introducing these conditions, the equation of the

surface becomes

M;2;"2 + M'?/"2 + M"x"^ + L =
0, (4.)

which is the simplest form for the equations of Surfaces of

the Second Order which have a centre.

350. We may express under a very simple formula sur-

faces with, and those without, a centre. For, if in the gene-

ral equation, we change the direction of the axes without

moving the origin, the axes also remaining rectangular, we

may dispose of the indeterminates in such a manner as to

cause the product of the variables to disappear. By this

operation the proposed equation will take the form

Mz'^ + M'?/'2 + M"x'^ + Kz' + K'y' + K."x' + F = o.

If now we change the origin of co-ordinates without

altering the direction of the axes, which may be done by

making

z' = z" + a, y'
= y" + a', %' = z" + a",

we may dispose of the quantities a, a', a", in such a manner

as to cause all the known terms in the transformed equation

to disappear. This condition will be fulfilled if the new

origin be taken on the surface, and we have

Ma2 + M'a'2 + M"a"2 + Ka + K'a' + K'V + F = o. (5.)

Suppressing the accents, and making, for more simpHcity,

2Ma + K = H, 2M'a' + K' = H', 2M"a" + K" = H",

every surface of the second order will be comprehended in

the equation
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Mz2 + My + Wx^ + Hz 4- H'y + H"^; = o. (6.)

351. In order that equation (6) may represent surfaces

which have a centre, it is necessary that the values of a, a',

a", reduce this equation to the form of equation (4), which

requires that the terms containing the first power of the

variables disappear. This condition will always be satisfied,

if the equations

2Ma + K =
o, 2M'a' + K' = o, 2M"a" + K" =

o,

give finite values for a, o', a". These values are

^
2M''* SM''"* 2M"'

and will always be finite, so long as M, M', M", are not

zero. But if one of them, as M, be zero, the value of a be-

comes infinite, and the surface has no centre, or this centre

is at an infinite distance from the origin.

Of Surfaces which have a Centre.

352. We have seen (Art. 349), that all surfaces of the

second order which have a centre are comprehended in the

equation

Mz"2 + M'?/"2 + M"x"^ + L = 0.

Suppressing the accents of the variables, we have

Mz2 + My + MV + L = 0.

Let us now discuss this equation, and examine more par-

ticularly the different kinds of surfaces which it represents.

Resolving this equation with respect to either of the vari-
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ables, we shall obtain for it two equal values with contrary

signs. These surfaces are therefore divided by the co-or-

dinate planes into two equal and symmetrical parts. The

curves in which these planes intersect the surfaces are called

Principal Sections, and the axes to which they are refer-

red, Principal Axes.

If now the surface be intersected by a series of planes

parallel to the co-ordinate planes, the intersections will be

curves of the second order referred to their centre and axes,

and the form and extent of these intersections will determine

the character of the surface itself But these intersections

will evidently depend upon the signs of the co-efficients M,

M', M", and supposing M positive, which we may always

do, we may distinguish the following cases :

1st, case, M' and M" positive,

:^ 2nd " M' positive, M" negative,

3d " M' negative, M" positive,

4th " M' and M" negative.

The three last cases always give two co-efficients of the

same sign ; they are therefore included in each other, and

will lead to the same results by changing the variables in

the different terms. It will be only necessary therefore to

consider the first and last cases.

Case I.—M, M', W, being positive.

353. Let us resume the equation

M5;2 4- My + m."x^ + L = 0.

Let this surface be intersected by planes parallel to the

co-ordinate planes, their equations will be (Art. ),
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a; = a, y = /3, js; = y.

Combining these with the equation of the surface, we
have

Mz^ + My + M"a2 + L =
o,

M2;2 + MV + M'/32 + L =
o,

My + M'V + M72 4- L =
0,

for the equations of the curves of intersection. Comparing
them with the form of the equation of the eUipse, we see

that they represent elUpses whose centres are on the axes of

X, ?/, and z.

354. To determine the principal sections^ make

a = 0, (3 = 0, 7 = 0,

and their equations are

Mz^ + My + L =
0,

Mz2 + MV + L =
0,

My + M"x^ + L = 0,

which also represent elHpses.

355. If L =
0, all the sections as well as the surface

reduce to a point.

If L be positive, the sections become imaginary, since

their equation cannot be satisfied for any real values of the

variables. The surface is therefore imaginary.

Finally, if h be negative, and equal to — L', the sections

will be real so long as

— L' + M"a2, — L' + M'/32,
— L' + Mf,

are negative ; when these values are zero, the sections and
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surface reduce to a point, and become imaginary for all

values beyond this limit.

This surface is called an Ellipsoid.

356. If we make y=^o

and z = in the equa-

tion of the ellipsoid, the

value of X will represent

the abscissa of the points

in which the axis of x

meets the surface. We
find

X = AC = ± y/- M'

The double sign shows that there are two points of inter-

sections, symmetrically situated and at equal distances from

the origin.

Making in the same manner y = o and x =
o, and after-

wards X = and z = o, we obtain

= AB = ± v/lli^,^ M
= AD = ±

>y/: M'

The double of these values are the axes of the surface,

and we see that they can only be real when L is negative.

357. The equation of the ellipsoid takes a very simple

form when we introduce the axes. Representing the semi-

axes by A, B, C, we have

A2 = —
M'

P2 _ L p2 _ L
,

and substituting the values of M, M', M", drawn from these

equations in that of the surface, it becomes
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A^BV + A^Cy + B^C^a:^ =r A^B^C^.

358. If we make the cutting planes pass through the axis

of z, and perpendicular to the plane of xy, their equation

will be

y — ax, - -

or, adopting as co-ordinates

the angle NAC = (p, and the

radius AN=r, we shall have

x=^r cos (p, ?/=r sin 9;

and substituting these values

in the equation of the sur-

face, we shall have for the

equation of the intersection

referred to the co-ordinates 9, z, and r,

Mz2 4- r2 (M' sin2(p + M" cos^cp) + L = 0.

This equation will represent different ellipses according ^^
to the value of 9. If M' = M", the axes AC and AD be-

'

come equal, the angle 9 disappears, and we have simply

Mz2 + M'r2 + L = o.

Every plane passing through the axis of %, will intersect

the surface in curves which will be equal to each other, and
^

to the principal sections in the planes of x% and yz. The

third principal section becomes the circumference of a cir-

cle, and all the sections made by parallel planes will also be

circles, but with unequal radii. The surface may therefore

be generated by the revolution of the ellipse BC or BD
around, the axis oi z.

This surface is called an Ellipsoid of Revolution.
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359. The supposition ofM = M', or M = M", would have

given an ellipsoid of revolution around the axes of x and y,

360. If M = M' = M" the three axes ABC are equal,

and the equation of the surfaces becomes

%^
^' + ^' + ^' + M^^'

which is the equation of a Sphere.

361. Generall^r, as the quantities M, M', M", diminish, L

remaining constant, the axes which correspond to them aug-

ment, and the ellipsoid is elongated in the direction of the

axis which increases. If one of them, as M", becomes zero,

the corresponding axis becomes infinite, and the ellipsoid is

changed into a cylinder^ whose axis is the axis of z, and

whose equation is

Mz^ +My + L = 0.

The base of this cylinder is the ellipse BD. (See figure,

Art. 356.)

362. If M" = 0, and M = M', the ellipse BD becomes a

circle, and the cylinder becomes a right cylinder with a cir-

cular base. This is the cylinder known in Geometry.

363. Finally, if M" = o, and M' = o, the equation redu-

ces to

M%2 -f- L =
0,

which gives

= .v/-M̂
This equation represents two planes, parallel to that of

xy, and at equal distances above and below it.

J
26
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Case IL—M positive, M' and M" negative.

364. In this case the equation of the surface becomes

Mz2—My— M'x^ + L = 0,

and the equations of the intersections parallel to the co-ordi-

nate planes are

Mz^ —. My — MV + L =
0,^"^%^.,, ;

Mz2 — Wx^— M'i82 + L = 0,

My + MV — My — L-o.

The two first represent hyperbolas; the last is an ellipse.

The sections parallel to the planes of xz and yz are always
real. The section parallel to xy will be always real when

L is positive. If L be negative and equal to — L', it will

be imaginary for all values of 7, which make the quantity

(L'
— M7) positive : when we have L'— M7 —

0, it redu-

ces to a point. Thus, in these two cases, the surface ex-

tends indefinitely in every direction, but its form is not the

same.

365. Making a = 0, /3
=

0, 7 = 0, we have for the equa-

tions of the principal sections,

Mz2 — Wy^ + L - 0,

Mz2 — Wx^ + L =
0,

My + Wx^— L = 0.
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When L is positive, the

two first, which are hyper-

bolas, have the axis of z for

a conjugate axis, and are

situated as in the figure.

Every plane parallel to the

plane of xy produces sec-

tions which are-ellipses.

366. Maldng the co-ordinates successively equal to zero,

we may find the expressions for the semi-axes, as in Art.

357^; and representing them respectively by A, B, C V— 1,

and introducing them in the equation of the surface, it

becomes

4232^2 _ ^zQ2y2
__ 32^2^2 ^ A^B^C^ = 0. (1).

367. When L is negative, the principal

sections, which are hyperbolas, have BB' for

the transverse axis; the surface, is imagi.

nary from B to B', and the secant planes

between these Hmits do not meet the sur-

face. In this case, the semi-axes will be

found to be A V — b B V — l', and C,

and the equation of the surface becomes

A^BV_-A^Cy_ B2C2^2_ A2B2C2= 0. (2).

The surfaces represented by equations (1) and (2) are

called Hyperholoids. In the first, two of the axes are reah

the third being imaginary ; and in the second, two are imagi-

nary, the third being real.

368. If M' = M", we have A - B, these two surfaces

become Hyperholoids of Revolution about the axis of z.
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369. If M" =
0, the corresponding axis becomes infinite

and the surface becomes a cyhnder perpendicular to the

plane of Z7/, whose base is a hyperbola. ..The situation of

the cylinder depends upon the sign of L. Its equation is

Mz^ ~ MY + L = 0.

If L diminish, positively or negatively, the interval BB'

diminishes, and when L = o, we have BB' = o. The prin-

cipal sections in the planes of zx and pz become straight

lines, and the surfaces reduce to a right cone with an elhpti-

cal base, having its vertex at the origin of co-ordinates. In

this case, we have the equation

Mz^ —- MY — M"^2 ^ f, j-

Sections made by planes parallel to the planes of xz and

yz, are still hyperbolas, which have their centre on the axis

of y or X.

370. If M" =
0, the cone reduces to two planes perpen-

dicular to the planes of yz, and passing through the origin.

371. The cone which we have just considered, is to the

hyperboloids what asymptotes are to hyperbolas, and the

same property may be demonstrated to belong to them,

which has been discovered in Art. 259. If we represent

by z and z' the respective co-ordinates of the cone and hy-

perboloid, we shall have

2 ^My + M"x^
^,2

_ My + M"^2 __ L

1

M M

which gives

2'=.
M (2? + z')
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The sign of this difference will depend upon that of L ;

hence, the cone will be interior to the hyperboloid, when L
is positive, and exterior to it, when L is negative. The dif-

ference z — z^ will constantly diminish, as z and z' increase,

hence the cone will continually approach the hyperboloid,

without ever coinciding with it.

>
Of Surfaces cf the Second Order which have no Centre^

372. Let us resume the equation

M22 + My + K"x^ + Hz + H'y + }l"x = 0. (2).

We have seen (Art. ),
that this equation represents

surfac^ which have no centre when M, M', or M'' is zero.

As tKese three quantities cannot be zero at the same, since

the equation would then reduce to that of a plane (Art. 112),

we may distinguish two cases ;

1st case, M" equal to zero.

2nd case, M" and M' equal to zero.

Case I.—M" equal to zero.

373. The above equation under this supposition reduces to

Mz2 + My + Hz + H'y + Wx = 0.

If we refer this equation to a new system of co-ordinates

taken parallel to the old, we may give such values to the

independent constants, as to cause the co-efficients H' and

H" to disappear, (Art. 350). The equation will then be-

come
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Mz2 + My + R'z ^ 0.

374. The sections parallel to the co-ordinate planes are,

Mz^ + My + H"a =
o,

'

Mz^ + Wx +M'/32=o,

My + Wx + Mf = 0.

The two first represent parabolas, and ^re always real.

The third equation will represent an ellipse . or hyperbola,

according to the sign of M and M'. ^'^^

375. The principal sections are

• M2;2+My =
o, M2;2 + H"a: = o, My+ H"a:=:o.

The first of these equations will represent a point, or two

straight lines, according to the sign of M'. The two others

represent parabolas.

376. Let us suppose M and M' positive, the sections

parallel to the plane of yz, and whose equation is

Mz2 + My + H"a = 0,

will only be real when H" and a have contrary signs. The

surface, therefore, will extend indefinitely on the positive

side of the plane of yz, when H' is negative, and on the

negative side when H' is positive.

377. If M' be negative, the equations of the principal sec-

tions are

M%2_My =
o, Mz2 + H"x = o, My— H"a: = o.

The two last represent parabolas, having their branches

extending in opposite directions, and their vertex at the
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origin A. The sections parallel to the plane of y%, will be

the hyperbolas B,B',B", C,C',C".

Tb^ surfaces which we have just discussed are called

Paraboloids.

Case II.—M' and M" equal to %ero.

378. Equation (2) under this supposition reduces to

Mz2 + Hz 4- H'y + H":2? = 0.

Moving the origin of co-ordinates so as to cause the term

1A.Z to disappear, this equation becomes

Mz2 + HV + H"^ = 0.

The principal sections of this surface are

M22 + H'2/ = o, Mz2 + H"a; = o, H't/ + H"a: = o,

and the sections parallel to the co-ordinate planes
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Mz^ + H'y + H"a =^0,

H'y -f ii"x + M72 = 0.

The two first equations of the parallel sections represent

parabolas which are equal and parallel to the corresponding

principal sections. The sections parallel to the plane of ary,

are two straight lines parallel to each other and to intersec-

tion of the surface by this plane. The surface is, therefore,

that of a cylinder with a parabolic base, whose elements are

parallel to the plane of xi/. The projections of these ele-

ments on the plane of xy, make an angle with the axis of x,

H"
the trigonometrical tangent of which is — -tt-

Of Tangent Planes to Surfaces of the Second Order.
"^

379. A tangent plane to a curved surface at any point is

the locus of all lines drawn tangent to the surface at this

point.

380. Let us seek the equation of a tangent plane to sur-

faces of the second order. Resuming the equation

Az''+Ay+A"x''+Byz+'B'xz+'B''xy+Cz-{-C'y+C"x+F^o,

and transforming it, so as to cause the terms containing the

rectangle of the variables to disappear, we have

Az^ + Ay + A"x^ + Cz + C'y + C"x + F = 0. (L)

Let x", y", z", be the co-ordinates of the point of tangen-

cy, they must satisfy the equation of the surface, and we
have
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Az"2 + A'y"^+ A"ar"2 ^ Q2;" + C'y" + C"x" + F = 0.

The equations of any straight line drawn through this

point are (Art. ),

x — x"=: a (z
—

z"), y — y" = h{z-^ z").

For the points in which this line meets the surface, these

equations subsist at the same time with that of the surface.

Combining them, we have

A(z + z") (z
-

z") + A'
(2/ + y") (y

-
y") + A" (x + x")

(x-^x") + C {z
— z")+C' (y-~3/")-|-C"(a;

—
a;")=o.

Putting for y — y" and x — x", their values drawn from

the equations of the straight line, we have

S A(z -|4") + A'b {y + y") + A"a {x + x") + C + C'6 + C"a\

{z
— z")=o.

This equation is satisfied when z — z" = 0, which gives

z = z", X = x"f and y =
y". Suppressing {z

—
2"), we

have

A{z+ 2") +A'b(]/-h y") -j- A"a {x+ a:") -f C + C'6 + C"a = 0.

This equation determines the co-ordinates of the second

point in which the line meets the surface. But if this line

.
becomes a tangent, the co-ordinates of the second point will

be the same as those of the point of tangency, we shall have

therefore

X = x", y - y, z — z"j

which gives

2Az" + 2A'by'' + 2A"ax" + C + C'b + C"a = 0,

27
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for the condition that a straight line be tangent to a surface of

the second order. Since this equation does not determine

the two quantities a and />, it follows that an infinite number

of lines may be drawn tangent to this surface at any point.

If a and h be eliminated by means of their values taken

from the equations of the straight line, the resulting equation

will be that of the locus of these tangents. The elimination

gives

(2Az" + C) {z
^

z") 4- (2Ay' -f- C) {y
-

y")

+ (2AV' + C") {x-^x") = o;

and since this equation is of the first degree with respect to

Xy y and z, the locus of these tangents is a plane which is

itself tangent to the surface.

381. Developing this last equation, and making use of

equation (1), the equation of the tangent plane may be put

under the form

(2Az" + C) z + (2Ay' + C) y + (2A"^" + C") x

+ Cz" + Cy + C":c" + 2F = 0.

382. For surfaces which have a centre, C, C, C", are

zero, and the equation of their tangent plane becomes

Azz" + A'?/z/" + A"a:x" + F = o.

^



Appendix.] ANALYTICAL GEOMETRY. 211

J

APPENDIX.

TRIGONOMETRICAL FORMULiE.

* . "D Sin a
1. tang a —K

cos a

3. cotanga=R 22!^.
sin a

R2
3*. sec. «=

cos a

W. co-sec a = —
sin a

5. sin {a + b)
= sin a cos 6 -|- sin 6 cos a.

6. cos {a -{- b)
— cos a cos 6 — sin 05 sin b.

7. sin {a
—

b)
= sin « cos b — sin 5 cos a.

8. cos {a
—

b)
= cos a cos b + sin a sin &*

9. tang(a+ 6)
= tang a + tangj__

1 — tang a tang 6

10. tang (a-b)= tang a - tang 6

1 + tang a tang 6

, , , ^ 2 tanff «
1 L tang 2a — ?

1 — tang^ <z

- ^ sin a + sin & _ tang ^ (a -}- b)

sin « — sin & tang ^ («
—

b)

,o -21 1 — cos a
13. sin^ *a =^

2

I . 2 1 1 + COS a
14. cos^ ia = !^

2
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cos a i
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