
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2012-06

Cloud-based Communications Planning

Collaboration and Interoperability

Pepin, Joni W.; Giersch, Tarrell

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7400

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CLOUD-BASED COMMUNICATIONS PLANNING
COLLABORATION AND INTEROPERABILITY

by

Joni W. Pepin
Tarrell Giersch

June 2012

 Thesis Co-Advisors: ManTak Shing
 John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704–0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

June 2012

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE Cloud-based Communications Planning

Collaboration and Interoperability

5. FUNDING NUMBERS

6. AUTHOR(S) Joni W. Pepin and Tarrell Giersch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ___N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

 A

13. ABSTRACT (maximum 200 words) Communications planning is a key part of the Marine Corps
operational planning process. The ability to design and analyze communication network plans efficiently
and accurately has a direct impact on the ability of commanders to command and control actions on the
battlefield. Portions of the current process of communications network planning for military exercises and
operations in the Marine Corps are unnecessarily inefficient and susceptible to human error.
 At the heart of network planning is the creation of accurate high-level diagrams that depict the
details of the planned network topology for use in network installation, maintenance and operation. These
diagrams are referenced at all levels in the planning, installation, operation and maintenance of the
resultant communications architecture. Development and iterative refinement of these high-level network
diagrams is a fragmented manual process. Despite the heavy reliance on network diagrams in the planning
process, no software application currently exists that is designed specifically for their creation.

This thesis proposes a cloud-based application for communications planning. It describes the
benefits achievable through automation, collaboration and application interoperability, and provides
recommendations for development of such a system. It concludes by presenting an implementation of
these recommendations via a proof of concept application.

14. SUBJECT TERMS Communications Planning, Cloud Computing, Real Time

Collaboration, Interoperability, Automation

15. NUMBER OF
PAGES

151

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 8–98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CLOUD-BASED COMMUNICATIONS PLANNING
COLLABORATION AND INTEROPERABILITY

Joni W. Pepin
Captain, United States Marine Corps

B.S., University of South Carolina, 2002

Tarrell Giersch
Major, United States Marine Corps

B.S., Hawaii Pacific University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2012

Authors: Joni W. Pepin
 Tarrell Giersch

Approved by: Man-Tak Shing
Thesis Co-Advisor

 John Gibson
 Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Communications planning is a key part of the Marine Corps operational planning

process. The ability to design and analyze communication network plans

efficiently and accurately has a direct impact on the ability of commanders to

command and control actions on the battlefield. Portions of the current process of

communications network planning for military exercises and operations in the

Marine Corps are unnecessarily inefficient and susceptible to human error.

 At the heart of network planning is the creation of accurate high-level

diagrams that depict the details of the planned network topology for use in

network installation, maintenance and operation. These diagrams are referenced

at all levels in the planning, installation, operation and maintenance of the

resultant communications architecture. Development and iterative refinement of

these high-level network diagrams is a fragmented manual process. Despite the

heavy reliance on network diagrams in the planning process, no software

application currently exists that is designed specifically for their creation.

This thesis proposes a cloud-based application for communications

planning. It describes the benefits achievable through automation, collaboration

and application interoperability, and provides recommendations for development

of such a system. It concludes by presenting an implementation of these

recommendations via a proof of concept application.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND ... 1
B. PROBLEM STATEMENT ... 2
C. THESIS ORGANIZATION .. 3

II. BACKGROUND .. 5
A. THE MARINE CORPS COMMUNICATION PLANNING PROCESS ... 5
B. THE CURRENT STATE OF NETWORK PLANNING SOFTWARE..... 7
C. ENABLING A MORE EFFICIENT PLANNING PROCESS 10

1. Automation ... 10

2. Collaboration .. 12
3. Interoperability ... 12

4. Access To Centralized Equipment Specification and
Availability Information ... 14

D. CLOUD COMPUTING .. 14
E. BENEFITS OF PROPOSED SYSTEM ... 15

F. SYSTEM STAKEHOLDER DESCRIPTION 16
1. Demographics .. 16
2. Stakeholder (Non-users) Summary 17

3. Stakeholder High-level Goals ... 17
4. User Summary ... 18

5. User High-level Goals .. 18

6. User Environment .. 18

G. OBJECTIVES AND SUCCESS CRITERIA .. 19
1. Indirect objectives: .. 19

2. Direct objectives: ... 19
H. USE CASES ... 20
I. CCP SYSTEM DOMAIN MODEL ... 21

J. CONCLUSION ... 22

III. SOFTWARE DESIGN CONSIDERATIONS FOR CLOUD-BASED
COLLABORATION ... 25
A. INTRODUCTION .. 25
B. COLLABORATION AND COORDINATION REQUIREMENTS IN

COMMUNICATIONS PLANNING .. 25

C. CURRENT COLLABORATION TOOLS USED IN
COMMUNICATIONS PLANNING .. 28

D. SOFTWARE DESIGN PATTERNS FOR CLOUD-BASED
COMMUNICATIONS PLANNING .. 32
1. The Proxy Pattern .. 32
2. The Data Transfer Object Pattern ... 36
3. The Observer Manager Pattern ... 38
4. Architectural Software Design Patterns 42

 viii

E. LOGICAL ARCHITECTURE .. 49

1. Model .. 50
2. View .. 51

3. Controller.. 51
F. CONCLUSION ... 54

IV. ENABLING INTEROPERABILITY OF COMMUNICATIONS PLANNING
SOFTWARE SYSTEMS.. 55
A. BACKGROUND ... 55

1. Scope .. 56
B. INTEROPERABILITY ... 57
C. OVERVIEW OF ENABLING TECHNOLOGY FOR LEGACY

SYSTEMS INTEROPERABILITY... 59

1. Information Oriented Approach .. 59
2. Integration Server/ Repository ... 59

3. XML ... 60
4. XSL .. 62

5. XSLT Processor ... 63
D. SAMPLE APPLICATION OF THE ENABLING TECHNOLOGY 64

1. Information Oriented Approach .. 64

2. Integration Server/ Repository ... 68
3. XML ... 69

4. XSLT ... 79
E. NETWORK PLANNING AND OPERATIONS TAXONOMY 83
F. CONCLUSION ... 89

V. PROOF OF CONCEPT OVERVIEW ... 91
A. INTRODUCTION .. 91

B. TECHNOLOGIES USED .. 91
1. Programming Environment ... 91

2. Server Environment ... 92
C. APPLICATION FEATURES ... 92

1. Network Diagram Tabs .. 93

2. Global and Specialized Menus ... 94
3. Project Tree .. 95
4. Project Information Area ... 95
5. Forms .. 96
6. Project Export .. 96

VI. CONCLUSION .. 99
A. SUMMARY OF WORK ... 99
B. CONTRIBUTIONS .. 99
C. RECOMMENDATIONS FOR FUTURE WORK 100

APPENDIX A: SAMPLE TRANSMISSION DIAGRAM 103

APPENDIX B: CCP USE CASE DESCRIPTIONS .. 105
A. UC-1: CREATE NEW PROJECT ... 105

 ix

Actors .. 105

Description .. 105
B: UC-2: EDIT EXISTING PROJECT ... 105

Actors .. 105
Description .. 105

C. UC-3: IMPORT FROM THIRD-PARTY APPLICATION 106
Actors .. 106
Description .. 106

D. UC-4: EXPORT TO THIRD-PARTY APPLICATION 106
Actors .. 106
Description .. 106

E: UC-5: VIEW NETWORK DIAGRAMS .. 107
Actors .. 107

Description .. 107
F. UC-6: SET USER PERMISSIONS ... 107

Actors .. 107

Description .. 107
G. UC-7: ADD/REMOVE USER ACCOUNTS 108

Actors .. 108

Description .. 108
H. UC-8: EDIT EQUIPMENT DATABASE .. 108

Actors .. 108
Description .. 108

APPENDIX C: THE PROJECT CLASS .. 109

APPENDIX D: THE PROJECT DTO CLASS .. 115

APPENDIX E: THE OBSERVER MANAGER CLASS 119

APPENDIX F: THE ISOBSERVABLE CLASS ... 121

APPENDIX G: THE OBSERVER INTERFACE ... 123

APPENDIX H: CCP SCHEMA ... 125

LIST OF REFERENCES .. 129

INITIAL DISTRIBUTION LIST ... 131

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. The Marine Corps Planning Process (MCPP). From [1] 6
Figure 2. Relationship between network diagrams and network applications 13
Figure 3. CCP use cases diagram ... 20
Figure 4. CCP communications planning system domain model 21

Figure 5. CCP collaboration and interoperability ... 22
Figure 6. Version control and update discrepancy .. 30
Figure 7. Passing Project using the proxy pattern ... 33
Figure 8. The Project object .. 35
Figure 9. ProjectDTO .. 38

Figure 10. Applying the traditional Observer pattern ... 39
Figure 11. Comparison of adding observers to new project 40

Figure 12. Observer Manager class diagram .. 41
Figure 13. Polling versus long polling .. 48

Figure 14. Generic model-view-controller logical architecture. From [20]. 50
Figure 15. CCP model-view-controller architecture ... 53

Figure 16. Information flow of current communications planning process 56
Figure 17. Information flow of proposed communications planning process 57
Figure 18. Relationship between SGML, XML, HTML, and XHTML 61

Figure 19. XSLT conversion process .. 63
Figure 20. Points of commonality, translation, and addition 65

Figure 21. Snippet of the CCP schema file ... 68

Figure 22. CCP XML File .. 70

Figure 23. SPEED XML File .. 72
Figure 24. Systems Attributes (Platform) XML .. 74

Figure 25. Systems Attributes (Radio) XML .. 76
Figure 26. Net Attributes XML ... 78
Figure 27. MilUnits XML .. 79

Figure 28. Snippet of the CCP to SPEED Style Sheet .. 82
Figure 29. Enabling Technologies Applied .. 82

Figure 30. Network Planning and Operations Taxonomy .. 84
Figure 31. Taxonomy Example Showing Three Microwave Links (Service Alias:

Circuit) .. 87
Figure 32. Network Planning and Operations Taxonomy (Equipment Alias:

SystemType) Unique Characteristics ... 88

Figure 33. Network Planning and Operations Taxonomy (Common
Characteristics) .. 88

Figure 34. CCP main project editing window ... 93
Figure 35. Network diagram tabs .. 93
Figure 36. Menu bar File and Edit menus ... 94
Figure 37. Site and Link right-click menus ... 94
Figure 38. Expandable project tree ... 95
Figure 39. Project information area ... 95

 xii

Figure 40. Sample CCP forms .. 96

Figure 41. Sample project XML output .. 97

 xiii

LIST OF TABLES

Table 1. Mapping CCP equipment to SPEED equipment in repository 69
Table 2. CCP CML file definitions .. 71
Table 3. System attributes (platform) definitions .. 73
Table 4. System attributes (radio) definitions ... 75

Table 5. Net attributes definitions ... 77
Table 6. MilUnits definitions ... 79
Table 7. CCP to SPEED data mappings .. 80
Table 8. Additional SPEED data requirements handled by XSLT 81
Table 9. Additional SPEED data requirements for SPEED processing 81

Table 10. Network planning and operations taxonomy definitions 86

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AJAX Asynchronous Javascipt and XML

CCP Common Communication Picture

COMMCON Communications Control

COTS Commercial Off-the-Shelf

DISA Defense Information Systems Agency

GOTS Government Off-the-Shelf

GSORTS Global Status of Resources and Training System

GUID Global Unique Identifier

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JCSS Joint Communication Simulation System

MAGTF Marine Air Ground Task Force

MARCORSYSCOM Marine Corps Systems Command

MCPP Marine Corps Planning Process

MCWP Marine Corps Warfighting Publication

MEF Marine Expeditionary Force

SaaS Software as a Service

SOA Service Oriented Architecture

SPE Systems Planning and Engineering

SPEED Systems Planning Engineering and Evaluation Device

SYSCON Systems Control

TCP/IP Transmission Control Protocol/Internet Protocol

TECHCON Technical Control

 xvi

W3C World Wide Web Consortium

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

 xvii

ACKNOWLEDGMENTS

This thesis would not have been possible without the support of many

people. We would like to express our sincere appreciation to our advisors, Dr.

Man-Tak Shing and Professor John Gibson, for their guidance, mentorship and

patience throughout the time spent on this thesis. Your input and “rudder steer”

have been an invaluable part of the entire experience.

Joni Pepin

I hope to one day be able to somehow reciprocate the level of support and

understanding that I have received from my wife and kids over the last year. This

has truly been a team effort, and for that, I am eternally grateful.

I would also like to thank Captain Le Nolan, USMC, and Captain Drew

Abell, USA, for their input in the software engineering process. Your contributions

are greatly appreciated.

Tarrell Giersch

Special thanks to my friends and colleagues, especially group members

of: Team Searching, Team Wolfpack, and Team Avengers for sharing their

experience and invaluable assistance.

Finally, I would also like to thank my family for the support they provided

me throughout my life and in particular, I would like to acknowledge my mother,

Carolyn Giersch, whose love and encouragement continues to guide and

motivate me each and every day.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Communication enables and supports command and control therefore

communications planning must be detailed, accurate, and flexible enough to

respond to a rapidly changing battlespace. The relationship between command

and control and communication is complex. For a Commander, command and

control is the critical process by which mission objectives are delineated,

allocated to subordinates, and monitored for compliance. Information is critical to

this process because it informs everyone throughout the chain of command of

their role and responsibilities and develops their situational awareness, allowing

better decisions to be made, and better execution of tasks. Information is

essential to a more complete cycle of assessment and adjustment. This complete

cycle, to include information flow, is the basis of command and control.

The main element that adversely affects command and control is

uncertainty; enabling commanders to better deal with this uncertainty is the goal

of planning. The flexibility and agility of the planning process enables planners to

adapt to changes in either the mission objectives or the operational environment.

Efficient information exchange contributes greatly to achieving this flexibility and

agility in the planning process, allowing the commander to focus on more

important operational opportunities or constraints. Communications planning, like

other forms of planning, is sequential, concurrent, repetitive, distributed, and

continuous. It runs concurrent to, and in conjunction with, the overall planning

effort.

Development of the communications plan is based on the overall concept

of operations, and directly supports mission accomplishment. Like all planning,

communications planning should not be conducted without consideration for, and

interaction with, other planning domains (such as supply, logistics, and

 2

maintenance). The inputs and outputs of communication planning derive from,

and are fed into, the overall plan, respectively.

The current process of communications network planning for military

exercises and operations in the Marine Corps are unnecessarily inefficient and

susceptible to human error. Software applications currently used by Marine

Corps communications planners and operators can be divided into two distinct

categories: network modeling and simulation, and network monitoring. Network

modeling and simulation software takes input from the user, such as

geographical terrain data and transmission system specifications, and predicts

the ability of equipment to transmit effectively between operation locations.

Network monitoring software assists in the optimization of deployed networks,

maintains real-time network status, and assists in troubleshooting network

problems. The applications currently used by the Marine Corps communications

network planners and operators to perform these functions represent multiple

software tools throughout the development, analysis, implementation, and

monitoring of communications networks. Unfortunately, many of these tools are

not interoperable, thereby compounding or confounding the planning and

monitoring process.

B. PROBLEM STATEMENT

There is currently no work directly related to the development of a cloud-

based application as a means to improve collaboration between Marine Corps

communications planners and operators, decrease communications plan errors,

and reduce generation time in the planning process. While there exists powerful

modeling and simulation applications designed to determine if a network link can

feasibly work and network monitoring tools that tell the user if a link will actually

work as expected in real world operation, there are no applications that assist in

the creation of the plan on which these two rely. Additionally, no application

exists that provides a conduit through which the existing planning and monitoring

tools can exchange information, the absence of which results in duplication of

 3

effort, increased vulnerability to human error, and a slower planning cycle. The

goal of the proposed research is to demonstrate the potential utility of a cloud-

computing Software as a Service (SaaS) application to improve processes and

products in the field of Marine Corps communications planning through

automation, collaboration, and interoperability of communications planning and

monitoring tools.

C. THESIS ORGANIZATION

Chapter II provides some background on the Marine Corps Planning

Process (MCPP) and how it relates to current network planning processes,

specifically in the areas of automation, collaboration, and interoperability. It

introduces the idea of using the Software as a Service (SaaS) model to develop

a cloud-based communications planning application, and it discusses the

benefits of the proposed application. Additionally, it identifies the stakeholders

and their goals, clearly outlines the objectives and success criteria, and

introduces the key use-cases required to meet the objectives. Chapter III

identifies the requirements necessary for collaboration and coordination in

communications planning, the tools currently used to achieve them, and the

shortfalls inherent to the planning process. It specifically addresses designing

software for collaboration between communications planners in a cloud

environment and proposes the software design patterns best suited to

accomplish this task. Chapter IV covers how a more efficient planning process

can be achieved by removing some of the redundant manual work that results

from lack of interoperability between communications planning and monitoring

software systems. It identifies some industry accepted, enabling technologies

that can be leveraged to provide a means to achieving interoperability. It

presents a method of implementation that enables interoperability between

existing and future systems through identification and sharing of redundant

communications planning and monitoring system entities and information sets.

Chapter V provides an overview of the resultant proof-of-concept application, the

Common Communication Picture (CCP). It demonstrates the ability of

 4

communications planners to collaborate in near-real time in the communications

planning process and enables interoperability between the CCP application and

other existing network planning and operation tools. Chapter VI presents a

conclusion, identifies contributions, and recommends areas for future work.

 5

II. BACKGROUND

A. THE MARINE CORPS COMMUNICATION PLANNING PROCESS

Marine Corps Warfighting Publication (MCWP) 5–1 defines the three

tenets of the Marine Corps Planning Process (MCPP) (Figure 1) as: “top-down

planning, single-battle concept, and integrated planning” [1]. Top-down planning

places the responsibility of planning on the commander, who provides guidance

to planners through his concept of operations. As part of the Problem Framing

phase of operational planning, communications planners analyze the

commander’s intent, as well as all specified, implied and essential tasks, and

develop a mission statement based on information such as task organization and

resource availability. Led by their respective G-6/S-6, communications planners

use this initial analysis in the engineering of communications networks that

support the possible courses of action derived in the Course of Action

Development phase of the MCPP.

The single-battle concept is derived from the observation that all actions in

the battle space have the ability to affect other areas or functions in the battle

space. This is equally true for tactical networks, which grow and transform

dynamically as an operation evolves. Changes in one aspect of the network can

have far-reaching effects on other aspects of the network. For example,

movement of a single satellite link from one site to another can have a direct

impact on the provision of communications services at each site, and thus affects

a commander’s ability to command and control.

Communications planning runs concurrent to, and in conjunction with, the

overall planning effort. Development of the communications plan is based on the

overall concept of operations, and in support of mission accomplishment. Like all

planning, communications planning should not be conducted without

consideration for, and interaction with, other planning considerations (such as

supply, logistics, and maintenance). Typically led by the G-6, communications

 6

planning is accomplished through application of the MCPP by communication

units. The inputs and outputs of communication planning are derived from, and

fed into, the overall plan, respectively.

Figure 1. The Marine Corps Planning Process (MCPP). From [1]

Portions of the current process of communications network planning for

military exercises and operations in the Marine Corps are unnecessarily

inefficient and susceptible to human error. At the heart of network planning is the

creation of accurate high-level diagrams that depict the details of the planned

network topology for use in network installation, maintenance and operation.

Development and iterative refinement of these high-level network diagrams is a

fragmented manual process, wherein multiple planners work individually on their

respective subsections, which include both subordinate and adjacent commands

and, within each command, all required sub-network diagrams. Planners typically

 7

use Microsoft Visio or PowerPoint to create and update network diagrams. These

diagrams are aggregated by a central figure (usually the lead planner at higher

headquarters, such as the Marine Expeditionary Force (MEF) G-6) and

distributed accordingly. In the event of an error (such as an erroneous bandwidth

allocation) or a change in network infrastructure, the diagrams are again edited,

aggregated, and redistributed. Every piece of the network diagram, from the

pictures representing hardware, to the text annotating available bandwidth, is

entered manually. This increases the likelihood of human error. Through multiple

planning meetings, the errors are flushed out, and the diagrams are cycled as

before, until they are eventually finalized. Additionally, because there are multiple

versions of the plan stored and distributed throughout the planning and

implementation process, it is commonplace to experience network problems due

to installers and maintainers using outdated versions of network diagrams when

installing and troubleshooting the network.

In addition to following the tenets of the Marine Corps Planning Process,

communications planning, like other forms of planning, is “sequential, concurrent,

repetitive, scalable, and continuous” [2]. It stands to reason, then, that the

software tools used in the planning process should be designed in a manner that,

understanding the dynamic nature of communications planning, enhances a

planner’s efficiency and accuracy, while minimizing the repetitive nature of the

process through the use of automation whenever feasible.

B. THE CURRENT STATE OF NETWORK PLANNING SOFTWARE

Software applications currently used by Marine Corps communications

planners can be divided into two distinct categories: network modeling and

simulation, and network monitoring. Given information such as geographical

terrain data and transmission system specifications, modeling and simulation

applications can predict the ability of equipment to transmit effectively between

two locations. Once a network has been installed, network monitoring tools are

used by planners for not only maintaining real-time network status, but to also

 8

assist in troubleshooting efforts, and in the identification of possible network

optimizations (for instance, identifying under and/or over-utilized network links,

and possible alternate routes).

In the Marine Corps, the modeling and simulation tool used by System

Planning Engineer Officers (SPEOs) is known as the Systems Planning

Engineering and Evaluation Device (SPEED) [3]. SPEED is a Government Off-

the-Shelf (GOTS) program maintained by Marine Corps Systems Command

(MARCORSYSCOM) that is used by Marine Corps communications planners for

modeling and simulation of transmission systems and frequency spectrum

analysis. According to MARCORSYSCOM, SPEED has been “selected by other

services/agencies as the best (Radio Frequency) RF link engineering tool,” and

is used by the Army, Air Force, and other Federal Agencies. SPEED was initially

fielded in 1990 by the Marine Corps as a communications planning tool for use in

garrison and tactical environments. It provides network planners with the ability to

perform transmission link analysis and engineering. In addition to link analysis,

SPEED is capable of producing radio guard charts, satellite access request

forms, and communications equipment cut-sheets. SPEED is a modular system,

maintained as a program of record by MARCORSYSCOM, and is updated

regularly to include all current communications transmission systems in use in

the Marine Corps. It is intended for use in all elements of the MAGTF by the G-6

and respective communications unit (communications battalion, squadron and

company) systems planning engineers and other communications planners.

Collaboration support is built-in via file import and export, providing higher

echelons of command the ability to combine plans from lower echelons. SPEED

requires the Microsoft Windows delete all trademark symbols operating system,

and can be used as either a standalone application or as a C2PC Injector.

Within the Department of Defense, the Joint Communication Simulation

System (JCSS) [4] is a desktop application similar to SPEED that “provides

modeling and simulation capabilities for measuring and assessing the information

flow through the strategic, operational, and tactical military communications

 9

networks” [4]. Formerly called NETWARS, JCSS was initiated in 1996 by the

director of C4, J-6, based on his concern that the contingency systems

developed by the J-6 planners could “collapse” in a fully operational environment.

According to the Defense Information Systems Agency (DISA), who is

responsible for maintaining the JCSS program, JCSS is the current standard for

modeling military communications systems within the Department of Defense.

While SPEED primarily focuses on the modeling and simulation of radio-

frequency-based transmission equipment, JCSS takes the next step by also

modeling back-end network equipment, such as commercial and tactical data

and voice/telephony. It also provides the ability to run simulations and conduct

load testing of simulated networks.

There are several commercial network monitoring tools available for use

on military networks. Of these, Solarwinds’ Orion [5] and Ipswitch’s WhatsUp

Gold [6] are two examples of applications that are currently in use on both

training and operational Marine Corps tactical networks. They provide the real-

time connectivity status of the network through the use of SNMP and IP

monitoring. Unlike modeling and simulation tools which are used early in the

planning process to determine if communication is feasible between two sites

(i.e., what can be done), network monitoring tools are utilized after the network

has been installed. In contrast to SPEED and JCSS, which are used primarily by

the communication unit’s systems planning and engineering (SPE) section, tools

such as Orion and WhatsUp Gold are used by systems control (SYSCON) and

technical control (TECHCON) to provide the ability for the real-time monitoring of

live networks (i.e., what is being done).

Working as mutually symbiotic functional areas of communications control

(COMMCON), the operational SYSCON uses the network diagrams developed

by the SPE section, in concert with the real-time information provided by tools

such as Orion and WhatsUp Gold, in the real-time management of the

operational network. For example, if while monitoring the network the SYSCON

watch officer is alerted by Orion that a link between two sites has failed, he can

 10

quickly reference the network diagrams produced during network planning to

determine what effect the outage has on the network as a whole by validating

redundant communications links, calculating available bandwidth, and possibly

determining the source of the problem. If required in response to the outage, the

SPE section will modify the network topology (and as a result, the network

diagrams), provide all functional areas the updated plan, and oversee the

implementation of any changes.

C. ENABLING A MORE EFFICIENT PLANNING PROCESS

A lot of time has been put into powerful modeling and simulation

applications designed to determine if a network link could feasibly work, and

network monitoring tools that tell the user if a link actually works as expected in

real world operation. However, no applications are available to assist in the

creation of the plan on which these two rely. Additionally, no application provides

a conduit through which the existing planning and monitoring tools can exchange

information, resulting in duplication of effort and a slower planning cycle. The

need for such an application, coupled with the benefits provided by a cloud-

based system and the mandate to centralize DoD systems, leads to the logical

conclusion that research should be conducted to determine the requirements of a

cloud-based software solution, and to outline how such a system would be

engineered in light of these requirements.

In order to create a software solution that enables a more efficient

communications planning process, the proposed software must address three

key areas: automation, collaboration between communications planners, and

interoperability of communications planning and monitoring tools.

1. Automation

It is understood that the responsibilities of the communications planners

do not end at the completion of the pre-operation planning phase. As a function

of the command and control of the network, in addition to network planning, the

controlling communications agency is also responsible for the installation,

 11

operation, and maintenance of the network, and all that is entailed in each of

these areas. In the Marine Corps, these COMMCON responsibilities are typically

divided into the three functional areas already mentioned: systems planning and

engineering, operational systems control, and technical control [7]. In addition to

the network modeling and analysis completed by the network planners using

tools like SPEED, some of the most important products to come out of the

planning process are the diagrams depicting the network topology (see Appendix

A). Developed based on equipment availability and capabilities, and in support of

the chosen course of action, these high-level diagrams are keystone documents

used in all successive phases of installation, operation and maintenance. Similar

to the manner in which maps and tactical overlays can be used to provide a

common operational picture, network diagrams provide a common

communications picture by ensuring a common understanding of the “big picture”

by all communications elements.

The task of automating the Marine Corps communications planning

process is still in its infancy. As part of the overall military planning process at all

levels of warfare, from tactical to strategic, the ability to design, analyze and

monitor communications networks in the most efficient way has a direct impact

on the military commander’s ability to exercise command and control on the

battlefield.

Despite the importance of these network diagrams in the planning,

installation, operation and maintenance of communications networks, there is no

available software specifically designed to assist communications planners in

their creation. This thesis defines a software system that is designed to enable

collaboration between planners, and to be used in concert with, and as a bridge

between, the two previously identified categories of network software. One of the

goals of the proposed system is to enable a more efficient communications

planning work-flow through the automation of repetitive tasks in network design

(such as bandwidth allocation and verification, equipment compatibility, etc.), and

by eliminating redundant tasks involved in the use of multiple disparate planning

 12

tools. Automation will minimize the possibility of human error in creation of the

high-level network diagrams, and the transfer of information between systems.

2. Collaboration

The second goal of the proposed system is to enable a more efficient

communications planning work flow through provision of the near real-time

collaboration between planners that a cloud-based solution could provide. As a

simple illustration of one of the possible benefits of a cloud-based

communications planning application, consider the previous example, wherein

the SPE section makes changes to the active network topology in response to

some type of network outage. If, in making the required changes to the network

topology, the network planners were able to use a cloud-based application for the

production of network diagrams, it would enable the near real-time availability of

any updated network plans not only to the local SYSCON and TECHCON, but to

all other units operating in the battle space (keeping in mind the single-battle

concept). Due to the fluid and dynamic nature of war, real-time updates of the

network plan to all concerned parties could lead to minimized down-time, and

thus, minimize the effect that the network outage has on the commander’s ability

to command and control his forces throughout the battle space. Enabling a

common communications picture would benefit not only those units in the area of

operations, but also any unit that has a need to know the network topology. An

apt example of this is a unit training for eventual assumption of network control.

Having access to the most up-to-date network diagrams provides the incoming

unit the ability to conduct scenario-based training on similar network topologies

prior to deployment, and could result in a more seamless transfer of control.

3. Interoperability

The applications described above are representative of the multiple

software tools used by the Marine Corps throughout the planning process in the

development, analysis, implementation and monitoring of networks. Like the

planning process itself, these software tools are fragmented, with limited ability to

 13

exchange data between them. While information exchange is technically possible

due to the ability for most available tools to import and export information using

the Extensible Markup Language (XML) standard, the lack of standardization

across applications results in incompatibilities when attempting to seamlessly

move and utilize the information from each other. The result is the duplication of

effort and enhanced vulnerability to human error as network information is

migrated manually between the different software systems. For example, a

network topology modeled by system planners using SPEED must be manually

entered into Orion, effectively doubling the amount of time and effort required. In

order to eliminate this redundancy, the proposed system would serve as a bridge

between the tools used in design, modeling, and monitoring phases of

communications planning (Figure 2).

Figure 2. Relationship between network diagrams and network applications

 14

4. Access To Centralized Equipment Specification and
Availability Information

A common requirement among all previously mentioned planning tools,

including the one proposed in this thesis, is information regarding the technical

specifications and availability of communications equipment. Currently, each

existing application maintains equipment capability information in flat files on the

user’s system, which are updated as capabilities change or new equipment is

acquired. It is incumbent on the user to ensure that the information being used is

the most current. As opposed to the flat file systems currently in use, the

proposed system model would access a centralized equipment database,

designed to be universally accessible by all communications planning systems.

Storing equipment information in a centralized, universally accessible manner

would enable the instant update of information for all users, and delegates the

responsibility of maintaining current technical capability data to the database

maintainer. The centralization of this information would further assist in the

minimization of human error in the planning process.

In addition to equipment capabilities and limitations, information regarding

the availability of equipment could also be incorporated to provide planners

instant knowledge of available resources, further speeding up the planning

process. The reporting of equipment status and availability is already

accomplished through the Joint Staff directed requirement for all units to use the

Global Status of Resources and Training System (GSORTS) [8]. Units are

required to update this status every 30 days (or more frequently as required).

This information is used for crisis response planning and deliberate or peacetime

planning [9]. Integration of these systems with the equipment specification

database would provide a robust capability for future communications planning.

D. CLOUD COMPUTING

On February 8, 2011, U.S. Chief Information Officer, Vivek Kundra,

published the “Federal Cloud Computing Strategy” [10], in which he stated that

 15

the “Federal Government’s current Information Technology (IT) is characterized

by low asset utilization, a fragmented demand for resources, duplicative systems,

environments which are difficult to manage, and long procurement lead times.”

The document outlines the role of cloud computing in addressing these

deficiencies. As one of the largest sectors, and expenses, of the Federal

Government, the Department of Defense has a vested interest in capitalizing on

the efficiencies afforded by migrating processes to a cloud environment. By

utilizing the Software as a Service (SaaS) model, a cloud-based communications

planning application may provide an efficient, centralized alternative to the

current communications network planning tools and processes used in the

Marine Corps and throughout the Department of Defense.

E. BENEFITS OF PROPOSED SYSTEM

Due to the dynamic nature of communications planning, and the

responsibility of maintaining the expeditionary nature of Marine Corps operations,

it is important that the tools used in the communications planning process are

easily accessible, globally available, and platform independent. Implementation

of such an application would allow communications planners to focus more on

the product—a communications plan that best enables command and control -

and less on the tool.

The proposed application, known as the Common Communication Picture

(CCP) network planning tool, would provide the features listed below. While each

of the individual features listed may not be mutually exclusive to this application,

their aggregation in a single communications planning system is:

 Universally accessible, with no client install required

o Interaction with server through web browser

o Operating system and web browser independent

 Centralized planning environment

o Multiple users able to edit existing plan concurrently

 16

o Updates viewable immediately by others

 Automated error checking

o Hardware and configuration compatibility

o Proper resource and bandwidth allocation

 Version control

o Save and view multiple versions of plan during planning

process

o Serve as a planning references for future networks

o Access to previous versions of a plan could be extended to

serve as a rolling network change log for live networks

 Templating

o Plan can be saved for use in future exercises or operations

 Role-based permission hierarchy

 Portability

o The ability to install separate instances on multiple networks

(e.g. NIPR and/or SIPR)

o Use of standard software means that existing server

architectures can be used

 System administration of plans and user accounts

F. SYSTEM STAKEHOLDER DESCRIPTION

1. Demographics

Communications network Planning, Installation, Operation and

Maintenance (PIOM) is a highly technical field. Typical system users will be

trained in multiple communications specialties. PIOM of a complete network that

encompasses all critical capabilities (including data, telephone, satellite, single-

 17

channel radio, multi-channel radio, multiplexing and encryption assets) involves

the collaboration of each of these specialty areas in order to produce a robust

and reliable communications infrastructure. The beneficiaries of this process are

the leaders and personnel who rely on these networks in the execution of their

assigned tasks.

2. Stakeholder (Non-users) Summary

The primary non-user stakeholders are unit commanders and personnel at

all levels. Unit commanders require reliable and on-demand communications in

order to command and control actions in the battle space. Likewise, all unit

personnel rely on communications for internal and external coordination, and as

a backbone over which a common operational picture is established and

maintained.

Non-user stakeholders also include:

 External organizations and agencies that rely on the communications

infrastructure in the execution of their respective tasks.

 The Defense Information System Agency (DISA), as the approving

authority for a large portion of the communications architecture, has a

strict timeline for submission of requests for resources, such as

satellite access and data network Interim Approval To Operate (IATO).

 Errors in submission hamper this process and cause unnecessary

delays.

3. Stakeholder High-level Goals

 Timely and accurate common operational picture of the battle space

 Reliable, robust and on-demand ability to communicate internally and

externally

 Seamless ability to complete tasks that require the use of

communications networks

 Accuracy in communication resource requests to external agencies

 18

4. User Summary

System users can be divided into four categories:

 System Administrators:

Responsible for maintaining the software system and administering

user accounts and permissions.

 Network Planners:

Those persons that are involved in planning the communications

infrastructure.

 Plan Implementers:

Those persons that use the network plan to install and maintain the

infrastructure.

 Need To Know:

Those persons that require knowledge of the infrastructure for future

and/or adjacent planning and coordination.

5. User High-level Goals

 Common knowledge of the most current network plan, as well as

previous versions of the network topology

 Asynchronous and synchronous collaboration between planners

 Better accuracy and efficiency in the planning process

 Easily create, modify and delete planning projects

6. User Environment

Users will be operating in both garrison and deployed environments. In

both cases, access to the network server on which the application is installed is

required for its use. Because of the uncertainty and variation in the speed and

 19

reliability of deployed communication networks, the application must also be

designed so that it minimizes bandwidth use without negatively affecting the

application usability.

G. OBJECTIVES AND SUCCESS CRITERIA

 The system should be designed to achieve the following objectives:

1. Indirect objectives:

 Enhance the common operational picture of the battle space by enabling a

common knowledge of the communications network.

 Enable planning of networks that provide reliable, robust and on-demand

ability to communicate internally and externally, as well as the seamless

ability to complete tasks that require the use of communications networks.

 Accuracy in communication resource requests to external agencies.

2. Direct objectives:

 Consistent knowledge of the most current network plan, as well as

previous versions of the network topology, in order to enable a common

understanding of the network by all stakeholders.

 Centralized planning environment providing asynchronous and

synchronous collaboration between communications planners.

 Enhanced accuracy and efficiency in the planning process.

 Ability to easily create, modify and delete communications planning

projects.

 Minimize error inherent in the current manual process.

 Portability through the ability to install multiple versions on separate

networks (e.g., NIPR and/or SIPR)

 Ability to efficiently and effectively administrate system.

 20

H. USE CASES

Analysis of the system objectives presented in the previous section

provides a basis on which to determine expected use-case scenarios for the

CCP system. Based on this analysis, we identified eight key use cases that

represent the functionality required to meet these system objectives. These use

cases are depicted in Figure 3. (See Appendix B for descriptions of each Use

Case.)

Figure 3. CCP use cases diagram

 21

I. CCP SYSTEM DOMAIN MODEL

There are specific domain entities inherent in all communications networks

which are included in all software designed to operate in the domain of

communications network planning and monitoring. While their names may differ

slightly from one product to the next, the underlying concepts do not.

A communications network can be broken down into five primary entities:

Site, Link, Circuit, Equipment and User. All networks consist of a unique

combination of Sites, Links, Circuits and Equipment. The domain model for the

CCP system was designed with this understanding. Figure 4 shows a conceptual

model that is robust enough to meet our desired goals, yet generic enough to

enable ease of information sharing between any number of communications

planning and monitoring systems.

Figure 4. CCP communications planning system domain model

 22

J. CONCLUSION

As previously stated, the goal of this thesis is to model a software system

that enables a more efficient communications planning process by addressing

the areas of automation, collaboration between planners and interoperability of

software applications. We have identified the need for a system that automates

the process of collaboratively creating communications network diagrams in

order to reduce the time a planner currently spends creating these diagrams

manually, with the added benefit of minimizing human error. The following two

chapters discuss in more detail the design and implementation factors that

should be taken into consideration in the software engineering process.

Figure 5. CCP collaboration and interoperability

Chapter III specifically addresses designing software for collaboration

between communications planners in a cloud environment. It proposes software

design patterns best suited for the context of cloud-based communications

planning collaboration. Likewise, Chapter IV covers how a more efficient planning

process can be achieved by removing some of the redundant manual work that

 23

results from lack of interoperability between communications planning and

monitoring software systems. It presents a method of implementation that

enables interoperability between existing and future systems through

identification and sharing of redundant communications planning and monitoring

system entities and information sets.

As shown in Figure 5, CCP is designed to encapsulate these techniques

in a single system. Chapter V provides an overview of the resultant proof-of-

concept application.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

III. SOFTWARE DESIGN CONSIDERATIONS FOR CLOUD-
BASED COLLABORATION

A. INTRODUCTION

By leveraging current technology and software design techniques, coupled

with the availability and prevalence of high-speed networks, it is possible to

develop an application that enables a more efficient communications planning

workflow. Part of this increased efficiency comes as a result of streamlining

collaboration between planners, thus reducing or removing redundant activities in

the planning workflow and resulting in a faster planning cycle. For cloud-based

near real-time collaboration to occur in an operational environment, the

application must be designed so that its speed is comparable to desktop-based

solutions, yet is efficient in terms of both network usage and server load. This

chapter describes the recommended design patterns and implementation

techniques best suited to meet these criteria.

B. COLLABORATION AND COORDINATION REQUIREMENTS IN
COMMUNICATIONS PLANNING

Planning communications networks is inherently a cooperative and

collaborative process. Throughout the iterative planning cycle, there are multiple

types of collaboration that must occur in order to ensure an implementable and

feasible solution. The first, and most obvious, type of collaboration that occurs is

between planners of the same unit. Working on their specific portion of the

network, subject matter experts of different plan areas work together to ensure a

network plan that is both cohesive and feasible. For instance, a single network

link has the capability of containing multiple distinct circuits, for example: NIPR,

SIPR, and voice. Because each circuit type is its own specialized type, each

requires a planner knowledgeable in that field. In our example, two members of

the SPE cell, the Data Officer and the Telephone Officer, would hold the

responsibility of planning the NIPR and SIPR, and voice circuits, respectively. In

order to plan properly, each planner must know details of the other’s circuit (such

 26

as the amount of bandwidth used). In a more complicated network, such as one

where the voice circuits are routed over the data network (such as a VOIP

circuit), the level of required coordination is dramatically increased. It is for this

reason that the members of the SPE cell generally share a common office space.

The second type of collaboration that occurs is between planners from

different units. This relationship is normally between senior and subordinate

units, or supported and supporting units, but can occasionally occur between

adjacent units. In a senior/subordinate relationship, the senior unit provides the

subordinate unit with the information needed for the subordinate unit to plan its

portion of the network. This information usually consists of equipment types,

bandwidth, and allocation of IP addresses and telephone numbers. It is important

to note that this coordination is not one-way. If the senior unit were to dictate the

plan without coordination, the resulting plan could be flawed due to outdated

information. The subordinate unit participates throughout the plans development

phase by providing information on equipment and personnel availability and plan

feasibility. Coordination between adjacent units is needed in troubleshooting a

link between them. In the event of adjacent units, one of the units is designated

as the link establishing agency, and one is designated the link terminating

agency. The establishing agency assumes the responsibility for maintaining the

link, and directs all troubleshooting actions.

The third type of collaboration is between locations. This is often the case

once the network has been installed, and is being monitored by SYSCON and

TECHCON watch personnel. Because communications networks in operational

environments are dynamic in nature, with units regularly changing locations, as

well as equipment changes and upgrades, it is important that units on both ends

of all network links have a common knowledge of the network topology and

configuration. In the event of a planned or unexpected change to the network

plan, everyone on that particular network should be notified of the change. Once

notified, each respective location must then review the updated network plan and

make changes accordingly. The action of actually changing the network is

 27

controlled by the senior SYSCON and TECHCON agency, and is outside the

scope of this document. However, in order to facilitate the required changes,

everyone involved must have a common knowledge of the post-change

architecture. This common knowledge is provided through the information

represented on network diagrams produced as an output of the planning

process.

The common thread that ties the various types of coordination together is

the necessity for all parties to maintain a constant and common knowledge of the

current network plan. This can prove to be difficult in such a dynamic

environment due to the pace and number of changes. When this common

operating picture is lost, problems begin to manifest themselves. One of the

simplest examples of what could happen is the use of outdated diagrams. At first

glance, a simple solution could be to hold off on distributing the plan until it has

been finalized, and only then provide the plan to the personnel responsible for

actual installation and operation of the network. This approach has two problems:

first, by not providing draft plans as they become available, you deny personnel

at all levels the time needed to conduct the required adjacent planning and

coordination needed for actual implementation, such as submitting requests for

materials, finalizing any maintenance actions, and advising planners early if a

portion of the plan is untenable. In this respect, draft network diagrams serve as

a type of warning order. The second problem with not distributing draft plans is

that even in the best situations, the plan often changes after it has been

“finalized” due to unforeseen events. In essence, the understanding is that

network plans, and the diagrams that depict them, are living documents that

require constant tweaking. Providing draft copies as they become available serve

a similar purpose as the Warning Order does in the operational planning cycle.

Because of the multi-layered, multi-threaded nature of collaboration in the

communications planning process, a certain level of overhead in planning time is

induced. By focusing on the reduction of duplicated efforts and the use of

automation to remove human interaction where possible and feasible, the

 28

planning process can be streamlined to a level of efficiency more suitable to the

fast-paced nature of modern-day military operations.

C. CURRENT COLLABORATION TOOLS USED IN COMMUNICATIONS
PLANNING

As operational planning is time constrained, organizations must employ

techniques that reduce the overall time required to complete the planning

process [11]. The goal of improving efficiency through the incorporation of

emerging technology as it becomes available is not new to the Marine Corps.

The widespread availability of personal computers resulted in a great leap

forward in planning efficiency by eliminating the inefficiencies of creating and

updating hand-drawn diagrams. Development and implementation of computer

networks resulted in the ability to distribute planning documents more efficiently

in terms of both time and space. Both of these advances helped to speed up the

planning process, at the same time enabling a better-coordinated plan. Many of

the techniques that were adopted in the last two decades to improve planning

efficiency are still in use today. The use of these techniques has improved the

flow of information, both within and among Marine Corps organizations and

support improved situational awareness and collaborative planning. The use of

networking has also provided the ability for electronic reach-back, which can

result in reduced deployed staff size through the use of geographically distant

personnel assets [12].

Due of the continually changing nature of the network plan, several tools

are used to facilitate the required collaboration and sharing of information

between planners. The three most common tools used by Marine Corps planners

today are e-mail, shared network folders, and server-based document

management tools such as Microsoft SharePoint [13]. Each provides the ability

for planners to collaborate asynchronously throughout the planning process,

have undoubtedly improved the ability of planners to collaborate, and in turn

have enhanced the overall efficiency of the planning process. Each provides

distinct advantages and disadvantages.

 29

Collaboration via e-mail is the most basic, most fragmented and most

used of the three techniques. It is also the method most likely to result in

duplication of effort and version control errors. In a typical scenario, planners

work on their portion of the network plan individually, and e-mail their updated

versions to either a central planner (who maintains the “master” copy on which all

changes are applied), or to all other planners. In the context of communications

planning, this process is the least desirable of the collaboration methods. It

succeeds in allowing multiple planners to work simultaneously. However, it is

inefficient in terms of both workflow and resources. It also requires manual

version control and discrepancy detection.

The next level of collaboration is the use of network-based shared folders.

Providing all involved planners access to a shared network resource resolves

some of the inefficiency inherent in e-mail-based collaboration. In particular, each

planner’s portion of the plan can be saved in a central location, and is viewable

by everyone with access to the shared folder. This method still requires a

designated person to combine all of the plan subsections into a master

document, and to ensure that the most up-to-date version of each section is

represented. Instead of each planner maintaining and updating a separate file for

his portion of the plan, another method used is for all planners to edit the same

document. This can be accomplished by either creating a local copy of the

document, making changes, and replacing the shared document with the edited

version, or directly editing the document (the problem with editing local copies is

discussed further below). If directly editing the shared copy, only one planner at a

time has the ability to make any changes, with all other planners having read-

only access to the file. The inability for multiple planners to work on the plan

simultaneously is inefficient, making this technique less desirable.

Improving on the shared network folder technique, file management

software such as Microsoft’s web-based SharePoint formalizes the concept of

version control and centralized storage, reduces the number of required e-mails

and the overall duplication of effort. Built in version control helps to alleviate

 30

situations where multiple versions of the plan are in distribution. It also prevents

planners from editing the document directly from the shared resource, thereby

avoiding the inefficient single-threaded workflow seen above. As the source

document cannot be edited directly, there is still a requirement for the planner to

download a local copy of the file in order to make any changes.

Network folders and SharePoint both share a problem with simultaneous

editing manifested by requiring planners to edit files locally. Take, for example,

the following scenario: two planners need to make changes to their respective

portions of the plan. The changes being made do not require the planners to

coordinate with each other because they do not affect one another directly. Both

planners download local copies of the most current version of the plan from the

SharePoint server, make their respective changes, and then each uploads their

edited version. The version uploaded last will be represented on the server as

the most current. However, any changes made by the first planner will have been

overwritten, as seen in Figure 6.

Figure 6. Version control and update discrepancy

 31

Though not enabled by default, SharePoint attempts to alleviate this

problem through the use of “pessimistic” concurrency control by introducing the

notion of “checking out” documents for editing. Documents that are being edited

are marked as “checked out” on the server, and other users are not able to edit

the document until it has been “checked in” again. Also, users that wish to view

the file will not see any changes made until it has been checked-in. While

effective at preventing the situation described above, it creates the same

inefficient work flow that we saw with network folders because the document can

only be edited by a single user at a time, and those edits are not visible until the

planner has finished. It also creates a new problem scenario where-in the

planner that has checked out a document forgets to check it back in the

repository for an extended period of time, thereby inadvertently denying other

planners the ability to do any kind of work on the document.

A more ideal planning software application takes the next logical step in

enabling collaboration. By allowing multiple planners the ability to edit different

portions of a document simultaneously, with updates visible to all connected

users in near real time, the inefficiencies of the “check-out” process are

eliminated. One way in which this can be accomplished is through the use of a

cloud-based solution. All users not only see changes in near real time, but are

actually collaborating on the same instance of the document residing on the

server.

As opposed to using strictly pessimistic locking, preventing multiple

planners from working on the project at the same time, or optimistic concurrency

control, wherein the most recent change is always applied, a better design choice

for cloud-based systems is a combination of the two. This method allows two

planners to make changes simultaneously, and in the event of a conflict the most

recent change takes precedence. While this presents a problem similar to the

versioning problem discussed above (see Figure 6), since each client is pushed

updates in near real-time as they occur, the level of granularity is much finer.

Instead of a planner possibly losing all changes made since he began the editing

 32

process, only the most recent change has the possibility of being overwritten.

Even in this instance, it would require that two planners happen to update the

same portion of the document by calling the same update method at exactly the

same time. This possibility can be prevented through the use of functionality

provided in modern programming languages. For example, in Java, adding the

“synchronized” keyword to a class method allows only one thread on the server

to execute the method, blocking all other threads from executing that same

method until completion [14]. Calls to other methods are still possible, and may

occur in other threads.

D. SOFTWARE DESIGN PATTERNS FOR CLOUD-BASED
COMMUNICATIONS PLANNING

While cloud-based solutions are similar to standard desktop applications

in many ways, enabling simultaneous editing, collaboration and near real-time

updating for multiple users presents many new challenges that must be

addressed in the design of the software. There are certain structural design

patterns that can be used in their standard form regardless of whether the

application is desktop-based or web-based. For example, the Factory pattern

could be used for the creation of any required graphical forms [15]. There is no

discernible difference between the implementation requirements of the Factory

pattern for either application platform. However, there are some patterns that are

more appropriate choices than others for cloud-based applications. Furthermore,

due to technological limitations and constraints, some design patterns require

extension or modification in order to optimize their use and operate in a more

efficient manner when designing for the cloud.

1. The Proxy Pattern

Without the use of a proxy, the process of updating the information for all

attached clients each time a Project (see Appendix C) is updated by any of the

clients is highly inefficient. The client proxy object, which is the remote proxy, is a

remote representation of the object residing on the server, and implements the

 33

same interface as the actual object on the server. When a client makes changes

to the project, the remote proxy is invoked as if it were the actual object residing

on the client. The remote proxy handles the task of communicating with the

server, invoking the required remote method, and returning any results. In the

case of a project change, the remote proxy is used to facilitate the process of

updating the server, which in turn updates any underlying data store (database,

XML file, etc.) and all other connected clients (Figure 7).

Figure 7. Passing Project using the proxy pattern

Used in this manner, the remote proxy provides a clean and seamless

method of accessing and referencing objects and functionality on the server

through the client interface. Accessing and updating remote objects could be

accomplished without using a remote proxy, but doing so would result in a more

cumbersome and less flexible design.

In order to take full advantage of the efficient communication mechanism

that the remote proxy design enables, it is necessary to minimize the amount of

 34

information transmitted between the client and the server. As an example,

consider the use case of a client updating the project. Propagating the changes

to the server, and to all other clients, can be accomplished using several

techniques, each with its own advantages and disadvantages.

The first technique that can be used to minimize transmission size is to

create specialized methods for each possible change. Using this technique,

several methods must be written to account for all possible changes. When a

change occurs on the client, the respective method is triggered, initiating an

update on the server, which is then propagated to all other clients. This method

necessitates the programming of complex logic in both client and server-side

code that must be updated in the event of any change to the application structure

by the software designers. Due to the number of methods that would be required

in a non-trivial application, the result would be a large amount of specialized

code, reducing re-usability and dramatically increasing testing and maintenance

requirements. While understanding the implementation is fairly simple, the

design, programming and testing processes can be very time-consuming, and do

not guarantee that the software designer has captured all possible change

scenarios.

The second technique simplifies the update process by removing the

requirement for writing complex logic. This is accomplished by simply distributing

the updated object each time the Project is modified. There are at least two

problems with this technique in our particular scenario. First, it is highly

inefficient. Even a minor alteration, such as a name change, results in the entire

object being transmitted, including all of the information that has not been

altered. In a cloud environment, minimizing the required bandwidth of the

application has a direct effect on throughput speed and server load, each of

which directly affects the user experience. Sending the entire object every time a

change is made results in unnecessary bandwidth usage because of the

transmission of superfluous data. Secondly, because the application relies on a

graphical user interface (GUI), each time the project is modified, the GUI must

 35

also be updated accordingly. In order to implement this functionality efficiently,

the observer pattern is implemented, such that the Project is observed by the

GUI items, and notifies them of any changes (Figure 8). The Project object

extends the abstract IsObservable class, and maintains a collection of associated

observers. By passing around the entire Project object between the server and

clients, a problem manifests itself when the project needs to be transmitted to the

server. Since the project maintains a list of local observers (GUI elements), and

the entire object is being transmitted, this observer list will also be sent as part of

the Project object. Other clients will receive the updated Project object from the

server, with the Project’s collection of observers pointing to the GUI objects from

the originating client. In addition to inaccurate pointers, sending the entire Project

with all observers incurs additional overhead. Passing entire objects around as

opposed to using specialized methods makes for simpler code and easier

testing. Unfortunately, the lack of efficiency counters these benefits. To avoid

both of these problems, all subscribed observers can be removed from the

Project before being sent, requiring all other clients to re-attach their list of local

observers to the updated Project object each time an updated Project object is

received.

Figure 8. The Project object

 36

2. The Data Transfer Object Pattern

The use of a proxy to marshal information between client and server

provides the benefit of an efficient communication technique that we would like to

take advantage of to generate code that is easy to understand, test, maintain and

reuse. As discussed, it is more difficult to achieve these benefits using the

multiple specialized methods technique. We can achieve these benefits by

passing around the entire object, but we incur additional overhead and

unnecessarily waste transmission time and resources. The inefficiency inherent

in the latter technique can be partially resolved through the use of the Data

Transfer Object (DTO) pattern. In the DTO pattern, a helper class known as a

Data Transfer Object (DTO) provides a streamlined capsule for transmitting an

object’s critical information without needing to transfer the entire object. A

secondary benefit of the DTO technique is that it also alleviates other problems

that manifest themselves when passing around objects, such as the need to

serialize multiple class objects and the need for continuously attaching and

detaching observers from the Project object.

In its most basic form, the DTO object serves as a simple means of

marshalling data between server and client, and vice-versa. The DTO contains

the same fields as the object to be updated. Additionally, it has the respective

“getter” and “setter” methods for updating these values. However, the DTO is

void of any logic present in the object it represents, resulting in a smaller file size,

meaning less bits that need to be transmitted. In order to accomplish this, there

must be additional logic in the application to create and update the DTO. Use of

the DTO pattern results in a degree of code redundancy because there are

effectively two classes representing the same data. Whether the efficiency

gained by using a DTO negates the redundancy is a consideration that the

designer must take into account when deciding whether to use the DTO pattern.

In the context of our application, the benefits provided by the use of the

DTO pattern in terms of reducing network and server load outweigh the concerns

regarding redundant code. Moreover, a slight modification to the DTO pattern

 37

can result in even more efficiency while requiring only slightly more logic. Similar

to the way that the DTO is more efficient due to the smaller size as compared to

the entire object, use of a partial DTO is more efficient than sending an entire

DTO object. Used in this manner, the DTO provides nearly the simplicity of the

second technique, coupled with the time and space efficiency of the first, without

the extraneous code bloat. The concept driving the use of a partial DTO is that

even the DTO carries extra information that can be trimmed. By using the DTO

object as a shell to transmit only the fields that are relevant to a particular update,

we further increase efficiency (see Appendix D).

To demonstrate the efficiency of using a partial DTO, let us examine the

case where-in one of the application user clients makes a single change to the

Project, such as changing an object’s position on the diagram. In the least

efficient case, the entire Project object, including its lists of Site and Link objects

and all of their respective elements (Figure 8), is sent to the server, who then

sends it to all connected clients. Each client must update its Project object to

match the newly received one (which can be accomplished by pointing to the

new object). A more efficient technique is to send the Project’s DTO instead of

the whole object (Figure 9). Now, instead of sending the entire object, only the

Project’s information is encapsulated in a DTO, which is then transmitted to the

server and distributed to all other clients. However, there is still a level of

unnecessary inefficiency, because we are only concerned with the changes that

were made, and the DTO contains all of the project’s information. While all of the

unnecessary code has been stripped off in the DTO, it still has all of its fields

populated. In order to send only changes, the Project DTO can still be used, but

this time only as a shell. Instead of populating all fields of the DTO when the

Project is modified, only those fields that have changed are populated. All other

fields are left null. On receipt of the DTO, the server updates its stored Project

object to reflect the new values contained in the DTO, and in turn sends all

 38

attached clients the minimal DTO object so that they can update their local

Project objects in the same manner. The result is that only the changes have

been transmitted.

Figure 9. ProjectDTO

3. The Observer Manager Pattern

The Observer pattern (also known as publisher/subscriber) is used

extensively in many GUI-oriented designs as a means of updating GUI elements

in response to changes to the underlying data. This minimizes the level of

coupling required. Each GUI element that needs to be updated registers itself

with the object of concern. This object, having extended the observable class

(which we have named IsObservable in our application), maintains a list of

 39

observers, and contains a method to notify all observers in the event of a

change. Once notified, the observer’s update method is triggered (Figure 10).

Figure 10. Applying the traditional Observer pattern

The traditional Observer pattern works well in situations wherein the object

that serves as the source of the underlying data does not change. However, if the

source of the data has the ability to change there is no clean method of updating

all observers so that they reference the new object. For example, in our

application, there exists a scenario in which the planner could decide to work on

a different project. At the point where the application initializes the new Project

object, all GUI elements still reflect the information from the previous Project, and

are still registered observers of the old Project object. The task of populating the

new Project’s collection of observers is tedious, requiring all objects to re-register

as observers of the new object. This problem can be alleviated through the

creation of a class that specializes in the management of observer relationships

(Figure 11).

By using an expert class to control observer relationships, we create a

more loosely coupled observer structure, allowing the project that is being

worked on by the user to be changed without having to update all other project

elements that are observing it. As shown in Figure 12, the managing class

maintains a mapping of observers to observables. Updating the GUI to reflect a

 40

new or different project only requires a remapping of observers to the new

observed expert object at run-time, without having to modify any observer or

observable code or introduce complex conditional statements and redundant

code throughout the application.

Figure 11. Comparison of adding observers to new project

The expert class in this case is called the Observer Manager (see

Appendix E). The manager does not alter the well-established and defined

traditional Observer pattern. Instead, it extends it and adds a layer of abstraction

that results in more modular code. A key feature of the manager is that it relies

on multiple inheritance, extending the IsObservable class (see Appendix F) and

also implementing the Observer interface1 (see Appendix G). An object that has

implemented the Observable interface registers itself with the manager via the

manager’s addObserver() method, passing in the IsObservable object that it

1 Because the manager is also an IsObservable object, it is technically possible for it to

“manage” itself. For our application, this behavior is not needed or desirable, so all references to
IsObservable objects being mapped by the manager explicitly exclude the manager itself.

 41

wishes to observe as a parameter. The new observer object is added to the list of

objects that are observing a given IsObservable, maintained as a map by the

observer manager. If the manager does not already have a map entry for the

IsObservable object, the manager creates the entry and also registers itself as an

observer of the object. When an IsObservable object other than the manager is

modified, instead of triggering the update of all its observers, it merely notifies the

manager, which in turn calls the update method of the observers that are

mapped to the object that triggered the update.

Figure 12. Observer Manager class diagram

Additionally, the observer manager contains a special method called

replaceObservedObject(). This method can be called whenever an IsObservable

object is replaced by a new object. Instead of requiring all observers to re-

register with the new object, the observer manager simply updates the

IsObservable-Observer map to reflect the change. Since the observers are

observing the manager and not directly observing the desired IsObservable

object, the swap is simple and instantaneous, requiring no further code.

 42

The final required addition to the Observer pattern is the use of a Boolean

flag in the notifyObservers() method to indicate whether the update was triggered

from a change on the server, or from a change by the user on the local

application. This is important because one of the goals of our application design

is to structure the application in a manner that facilitates collaboration amongst

planners working simultaneously on the same project.

The benefit of using this update source flag can be easily demonstrated

with a simple example. In our application, updating observers occurs in two

dimensions: sending and receiving updates to and from the server, and updating

the local display. Without a flag indicating the update source, the application

would enter an endless loop of updating.

4. Architectural Software Design Patterns

There are many architectural considerations that need to be made when

designing collaborative software that relies on near real-time updates for all

users. Several methods exist that provide this capability, such as Java’s Remote

Method Invocation (RMI). Many of these products make use of the Transmission

Control Protocol/Internet Protocol (TCP/IP) for establishing and maintaining a

persistent connection between the client and server in the form of a socket. By

establishing a socket between the client desktop application and the server, each

is able to invoke methods on the other, providing the capability to “push” updates

in real time as they occur.

In designing a cloud-based application, one of the goals is that the

application is accessible from any computer, without the requirement to

download or install additional software. This allows the planner to access the

application and collaborate with other planners from any location, and from

almost any device. It also allows the application to run on networks that block

certain types of TCP/IP traffic without having to add additional access control

rules. This can be accomplished on modern-day computers through the use of

the Internet as a network backbone, using the web browser as the user interface.

 43

Today’s web browsers are capable of providing robust applications that rival their

desktop counterparts in functionality. Through the use of Asynchronous

JavaScript and XML (AJAX) development techniques, dynamic applications can

be designed to perform much of the program’s logic on the client machine,

reducing overall server load and accomplishing one of our design goals.

One of the key distinctions between using a browser-based application

and a standard desktop application is not one of processing power, but of

protocol limitations. By their definition, web browsers are designed to implement

the Hypertext Transfer Protocol (HTTP). This presents a problem that directly

affects the architectural design decisions that need to be made.

Unlike TCP/IP, HTTP does not currently provide the ability to maintain a

persistent communications socket between clients and servers. At the time of this

writing, the World Wide Web Consortium (W3C) is in the process of developing

standards for a new protocol known as WebSocket, which will provide the ability

to establish TCP sockets, and thus real-time communication between client and

server, through web browsers [16]. However, no modern browsers officially

support this functionality, and the standard has yet to be finalized. Thus, in order

to take advantage of the benefits provided by a web-browser based application,

our application is bound by the restrictions imposed on it by the current HTTP

protocol.

The key restriction that will affect our design decisions is that HTTP only

supports a server sending responses to client requests. This means that the

server cannot “push” information to the client in real time without some type of

client invocation. This is not a problem for most browser applications, because

most do not require real-time updating. A good example of this that is common

today is a news aggregator. Several websites provide the ability to retrieve and

display new stories from sources of the user’s choice. The news feeds are

updated periodically based on the client application settings. The lack of an

ability for the server to update the news feeds in real time as the source changes

is inconsequential. If the instance arises where the user wants to get the latest

 44

articles and the application has not updated recently, the user can usually click a

button to initiate an update. Through the use of AJAX, the client application

makes an asynchronous HTTP request to the server, which executes the request

and responds to the client with updates.

Before proceeding further, it is necessary to discuss the importance of this

asynchronous call to the server because it highlights another factor that affects

design considerations. The JavaScript language on which we rely to provide

client-side code execution is not multi-threaded. If the server call were

synchronous, the application would freeze until the server completed its task and

returned a response. This type of event is referred to as “blocking” because it

prevents any other event from executing until it is complete. By making an

asynchronous call, the event is no longer blocking. The client sends the HTTP

request to the server and executes the next programmed event without waiting

for the server to respond. The server maintains a reference to the requesting

client and returns a response when it is ready. The client acts on the response

when it is received. As mentioned in the previous paragraph, server-initiated

communication to a browser-based client is not supported by the current HTTP

protocol; the browser-based client must periodically send requests to the server

for updates.

The process of periodically checking the server for updates is known as

polling. By specifying a polling interval, the software designer can manipulate

how often the client is updated. The length of the polling interval is directly

proportional to the amount of latency in updating. Any changes that are made on

the server will not be manifested on the client until the client polls the server for

an update. We can implement a design that approximates real-time updates by

merely reducing the polling interval to a point that the updates appear to the

client in near real-time, such as every second. This technique is simple to

implement and understand. However, it presents two major concerns. First, it

 45

wastes a lot of network resources by requiring every client to continuously poll

the server every second regardless of whether the server has been updated.

Second, it strains server resources.

While this may not be a concern for network applications where the user

base is small, it does not scale well for applications with a large user base. The

following example illustrates the problem. Assume a web-based application that

simulates near real-time updates by polling the server once per second is

accessed by 1000 users. If all users were using the application at the same time,

they would generate 1000 server requests a second. If each request were 128

bytes in size, the network bandwidth usage would total nearly 1 megabit per

second (Mbps):

128 Bytes per user = 1024 bits per user

1024 bits per user x 1000 users = 0.976 megabits

This is significant considering the fact that many of the tactical networks

that are in use today in operational environments have a total bandwidth of 1–2

Mbps. It would be infeasible and ill-advised to host the application server on a

tactical network with this level of network overhead. Doing so could have an

obvious negative impact on other command and control systems relying on the

same network.

Since simple polling as described above is so inefficient, we must examine

other methods for updating the client. Ideally, the client and server would only

communicate when needed, either by the client sending updates to the server, or

the server pushing updates to the clients. Desktop applications that use this

functionality typically implement the observer pattern such that the client

application observes the server, which notifies the client of any changes through

the client’s update() method. Until a protocol is agreed-upon and finalized that

provides web browsers with a full-duplex socket implementation (such as

WebSocket), this is not an option for browser-based applications. Fortunately, we

can apply some specific techniques that take advantage of the properties of

 46

HTTP in order to closely approximate a socket using polling, while minimizing the

network overhead to a manageable, if not unnoticeable, level. The result is a

similar observer pattern implementation.

One technique that can be used to implement polling in a more efficient

manner relies on the use of a simple algorithm that adjusts the client’s polling

interval based on client and/or server activity. One popular example was written

by Neil Fraser of Google, and is implemented by the Google MobWrite

application [17]. Here is a sample Java implementation of the algorithm:

protected void computeSyncInterval() {

 int range = maxSyncInterval - minSyncInterval;

 if (clientChanged) {

 // Client-side activity.

 // Cut the sync interval by 40% of the min-max range.

 syncInterval -= range * 0.4;

 clientChanged = false;

 }

 if (serverChanged) {

 // Server-side activity.

 // Cut the sync interval by 20% of the min-max range.

 syncInterval -= range * 0.2;

 serverChanged = false;

 }

 if (!clientChanged && !serverChanged) {

 // No activity.

 // Let interval grow by 10% of the min-max range.

 syncInterval += range * 0.1;

 }

 // Keep the sync interval constrained between min and max.

 syncInterval = Math.max(minSyncInterval, syncInterval);

 syncInterval = Math.min(maxSyncInterval, syncInterval);

}

 47

The algorithm works by incrementally increasing and decreasing the

polling interval between the preset minimum and maximum time intervals. This

technique provides a significant savings in bandwidth when little to no updates

are made. Setting a maximum polling interval of ten seconds (as opposed to the

one second interval used in the example above) results in a 90% decrease in

unnecessary network usage.

The adaptive polling method is more efficient than simple polling, but since

we’ve increased the maximum polling interval, it now suffers from the same

problem we saw in Figure 6, albeit on a smaller scale. If an update has not been

made in a while, and the polling interval is at or near the predefined maximum,

we increase the possibility of conflict if more than one user decides to make an

update within the same update interval. The last change made before the next

polling event would be propagated to all other users, who would lose any

changes that they may have made during the same interval.

In order to effectively implement the observer pattern to enable near real-

time collaboration within the confines of polling, the time between the server

being updated and the client being notified must be as small as technically

possible. We can accomplish this by taking advantage of the features of the

HTTP protocol through a technique called “long-polling.” Using HTTP, the server

can only respond to a request sent by a client. However, once a request is

received the server maintains the reference to the client until it has sent its

response. We can take advantage of this property by delaying the server

response until an update is available. If the client sends a request and there are

updates available on the server, the server responds immediately. However, if

there are no updates available, the application can suspend the thread on the

server for a set period of time (which would in turn put the client on hold if we

were not using AJAX). If the server is updated or the time period expires, the

thread is unsuspended and the appropriate response is sent to the client. On

receipt of the server response, the client acts on the response appropriately by

making any required updates and sends another update request to the server. By

 48

always maintaining an open connection with the server, the time between the

server receiving an update and all connected clients being notified is reduced to

the speed of the network.

Figure 13. Polling versus long polling

The use of long-polling allows us to achieve near real-time update

capability, while still enjoying the benefits afforded to us through the use of an

HTTP-based web application. Of course, the choice of implementation is based

on many factors. One factor that may affect the choice to use long-polling is a

result of another technical constraint. The server requires one thread per waiting

client. In a normal HTTP application, this is not a problem because the length of

time for one client request is so small. Thus, in a larger application where a large

number of users can be expected to access the application simultaneously, the

use of long-polling requires changes to the server configuration to adjust the

number of possible threads. Additionally, many server software installations now

provide options that, when enabled, modify their thread-handling methods in

order to provide scalability for applications that have large user bases and use

techniques such as long-polling [18].

 49

Further efficiency gains were realized via updates to the HTTP protocol.

Through version 1.0, the HTTP protocol allowed only a single request/response

pair per connection [19]. Version 1.1 introduced the concept of persistent

connections, allowing multiple requests and responses over a single connection

in order to the reduce latency incurred by having to renegotiate TCP connections.

E. LOGICAL ARCHITECTURE

In designing the logical architecture of the proposed system, the

overarching goal is to improve the communications planning and collaboration

process, thus enhancing and improving the ability of communications personnel

to enable command and control. As discussed previously, this goal is achievable

by taking advantage of the benefits provided by developing a cloud-based

system.

The proposed system uses the Model-View-Controller (MVC) software

design pattern, which was developed in the late 1970s for the Smalltalk platform

and has since been included as an integral part of most modern user interface

frameworks [20]. MVC frameworks are built around three main components: the

Model provides an interface with the database, the View provides the graphical

presentation to the system user, and the Controller establishes and enforces the

rules and actions that take place in response to user input. Decoupling the

system’s roles into these three distinct objects as shown in Figure 14 allows us to

design a system that is more easily developed, tested, updated and maintained.

 50

Figure 14. Generic model-view-controller logical architecture. From [20].

1. Model

The model of the proposed system consists of two parts: a client model

and a server model (Figure 15). The server model is the Project object

maintained on the server. It also provides an interface to the server data store

(e.g., a relational database). Upon connection to the server, each client

references the server’s instantiation of the Project object representing the desired

project. If the desired Project is not instantiated (because it is not currently being

worked on by another system user), the server retrieves the Project information

from the data store and instantiates a new Project. All clients working on a

specific project reference and update the same Project object.

A change made to the Project object (the model) by one of the clients is

transmitted to the server, which persists the change in the data store, and

propagates it to all other connected clients. On the client, the model data is

represented as a Project object, which is viewed and manipulated by the system

user in the creation of a network plan. An important feature of the model is that it

requires no knowledge of the view or controller. This allows the information

stored in the model to be represented in different ways by any number of views,

presenting only the information relevant to a particular context. For example, in

the CCP system, the view presented to the planner differs based on which

portion of the plan he is working on. A view of the transmission diagram will be

 51

different from a view of the multiplexing diagram. However, they will both

reference the same model. Likewise, two planners working on the same project

simultaneously are manipulating the same model data on two physically separate

views.

2. View

The View presents an interface with which the application user can view

and edit data contained in the model. The client view is linked to the client model

by implementation of the Observer Manager class presented in section D3.

Changes to the model result in changes to the GUI elements that are observing

the model data in a specific view. For example, if the client application receives

an update from the server indicating the a new Site has been added to the

Project, updating the local Project object to reflect the changes triggers the

update() method of all observing GUI elements.

3. Controller

When a user interacts with a view, the controller is responsible for

determining what should be done in response to user input. In most cases, this

input results in changes to model data. The controller translates these

interactions by providing the logic involved in validating the request and applying

all requested change to the model. In essence, the controller serves as the

“middle man” between the view and the model.

In the proposed system, the controller has two parts: the client side and

the server side. All interaction between the client and server occurs in the scope

of the client controller and server controller, which communicate via the Proxy

class discussed in section D1. The client side of the controller is responsible for

validating user input and making appropriate changes to the model (the Project

object). As stated before, these changes trigger the update method of the

Observer Manager, which in turn triggers updates of all registered GUI elements.

In addition to updating the local model, the client controller is also responsible for

sending these updates, packaged in a partial DTO, to the server controller via

 52

remote proxy, and receiving updates from the remote proxy to update the client’s

local model data. Like the View, the Controller observes the model via the

Observer Manager and responds to model changes through Observer update()

methods. The server controller is responsible for ensuring that the server model

is always up to date, and that all clients are notified appropriately.

 53

Figure 15. CCP model-view-controller architecture

 54

F. CONCLUSION

The choice of appropriate software design patterns and logical

architecture has a direct impact on the ability of planners to collaborate in a

cloud-based environment. Leveraging the benefits of a web-based application by

extending time-tested software designs in order to meet our specific system

needs results in a system that is both efficient and scalable, and which enables

the near-real time collaboration of communications planners.

In the next chapter, we discuss requirements for interoperability between

disparate communications planning and monitoring systems, and present a

technique that reduces the amount of manual labor involved in the repetition of

redundant processes among systems. Reduction of this redundancy through the

enabling of information sharing is another key feature in creating a more efficient

communications planning workflow.

 55

IV. ENABLING INTEROPERABILITY OF COMMUNICATIONS
PLANNING SOFTWARE SYSTEMS

A. BACKGROUND

Software applications currently used by Marine Corps communications

planners and operators can be divided into two distinct categories: network

modeling and simulation, and network monitoring. Network modeling and

simulation software takes input from the user such as geographical terrain data

and transmission system specifications and predicts the ability of equipment to

transmit effectively between two locations. Network monitoring software assists

in the optimization of a network, maintains real-time network status, and assists

in troubleshooting network problems.

The applications used to perform the functions described above represent

the multiple software tools used by the Marine Corps throughout the process of

the development, analysis, implementation, and monitoring of networks. There

are four significant problems with these software tools:

 Limited ability to exchange data between them (automatically or

manually).

 Lack of standardization across applications, which results in

incompatibilities when attempting to exchange information between

them.

 PC based rather than server based, limiting access to the

information to the local PC/users.

 Information must be manually entered into some systems.

Based on our technical experience and use of the above mentioned tools,

we find that the above problems result in significant duplication of effort and an

increased vulnerability to human error in the current sequential process flow

shown in Figure 16.

 56

Figure 16. Information flow of current communications planning process

1. Scope

The focus of this chapter is to present a viable approach to addressing

interoperability of legacy communications planning systems. We will explore the

commonly accepted information-oriented approach. Information-oriented

integration typically deals with simple data exchanges between two or more

systems; this can be accomplished either through data replication, data

federation, or interface processing. The use of enabling technologies such as an

integration server/repository, Extensible Markup Language (XML) and Extensible

Stylesheet Language Transformations (XSLT) will also be explored. Through

literature surveys and some limited experimentation, we investigated the use of

the above tools to demonstrate how they could provide a valid and useful means

for solving the problems outlined in the background section by enabling

interoperability between legacy systems, as shown in Figure 17, which

represents the proposed overlapping process flow. We will present a network

planning and operations taxonomy as a means to achieve interoperability

between the network planning, analysis, and monitoring systems.

 57

Figure 17. Information flow of proposed communications planning process

B. INTEROPERABILITY

The industry standard meaning of interoperability as defined by IEEE is:

 “the ability of two or more systems or components to exchange

information and to use the information that has been exchanged. See

also: compatibility” [21].

Compatibility is defined as:

 “(1) The ability of two or more systems of components to perform their

required functions while sharing the same hardware or software

environment. (2) The ability of two or more systems or components to

exchange information” [21].

The Department of Defense defines interoperability as:

 “the ability of systems, units or forces to provide data, information,

materiel, and services, to and accept the same from other systems,

units, or forces and to use the data, information, materiel, and services

so exchanged to enable them to operate effectively together” [22].

 58

In addition to these definitions, it’s common to look at interoperability from

three distinct levels: physical, syntactic, and semantic.

 Physical interoperability is the ability to connect systems at the level of

electrical signals, such as USB to USB.

 Syntactic interoperability is the ability to communicate with another

system through data exchange of a common format. A prerequisite of

this is to identify common data elements and communication protocols

between systems. XML and SQL are standards among the available

tools to accomplish this.

 Semantic interoperability is the ability to share unambiguous meaning.

To do this, systems must refer to a common information exchange

reference model. An example of this would be the creation of a vector

data model using a system like Global Information Network

Architecture (GINA) [23].

These definitions provide a baseline understanding of what we’re trying to

achieve as we explore this project and DoD’s doctrine of Net-centric warfare

necessitates effective collaborative communications planning and monitoring.

Net-centric warfare depends on a seamless exchange of data from various

systems. In 2006, the DoD Chief Information Officer published the “Net-Centric

Services Strategy” to provide guidance for evolving the DoD net-centric

environment to a Service Oriented Architecture. In the document, the DoD states

that:

“As the threats facing the DoD evolve, and as new threats begin to

emerge, a new level of responsiveness and agility is required from our forces.

The DoD cannot transform its operations to support a net-centric force by merely

maintaining and expanding the status quo. Patching stovepipes together is a

temporary solution; however, this leads to a fragile environment, which will

eventually crumble under the high demands and unpredictable needs of the

users. The current DoD network consists of information silos that cannot

 59

communicate with each other unless they are pre-wired to do so. In addition,

these silos cannot scale to accommodate the levels of interaction that will exist.

The DoD’s current stovepipe-based information environment must shift to a more

robust and agile information environment that can support and enable net-centric

operations” [24].

C. OVERVIEW OF ENABLING TECHNOLOGY FOR LEGACY SYSTEMS
INTEROPERABILITY

1. Information Oriented Approach

Information-oriented integration deals with data exchanges between multiple

systems, accomplished through data replication, data federation, or interface

processing. Data replication moves data from system to system with no changes.

Data federation integrates data into one master system. Interface processing

uses Application Programming Interfaces (API) to integrate multiple applications.

Once you determine the type of data exchange required for your domain, you

identify the candidate systems and determine what information from them is

required for functionality [25].

2. Integration Server/ Repository

An integration server is commonly used in today’s industry to facilitate

interaction between applications, both internally and externally networked. They

provide a number of benefits when it comes to dealing with differences in

application semantics, data base schemas, and data transformations. They act

as a bridge between different platforms and applications routing information

through a number of interface mechanisms. They provide a number of extremely

helpful services such as: transformation, intelligent routing, rules processing,

message warehousing, flow, control, repository services, directory services,

management APIs, and adapters [26]. An example of a transformation service

might be that system A uses dates in “9/10/72” format, i.e., mm/dd/yy, while

system B uses “September 10, 1972,” an integration server would facilitate the

conversion from one system to the other, perhaps through an indexed table. The

 60

biggest advantages of integration servers are that they allow the existing systems

to stay in place, both physically and with respect to ownership, and they provide

the means to exchange data indirectly through the integration server or

repository.

3. XML

Standards are an essential in defining common elements for interfaces,

representation of data, and protocols for data exchange. They help in achieving

interoperability because they are widely accepted by vendors and they increase

the likelihood that diverse systems from various sources will be able to exchange

useful information. While adherence to standards doesn’t guarantee

interoperability, it’s a step in the right direction. For this project we explored and

applied two industry standards: Extensible Markup Language (XML) and

Extensible Stylesheet Language Transformations (XSLT).

Programming languages, in our opinion, are created with two main goals

in mind: to be unambiguous and to facilitate the creation of reliable, human

readable programs. With today’s rapidly changing and evolving computing

environment, they must also be interoperable to stay relevant. Given the number

of programming languages currently in existence, the challenge of achieving

interoperability seems unlikely. However, through the use of XML the individual

programming languages themselves no longer need to be interoperable with

each other, they simply need to use the XML standards developed by the World

Wide Web Consortium (W3C) to exchange data. XML was created so that highly

structured documents could be used over the web, it’s the core building block for

a wide range of other technologies, and it enables interoperability.

Alternatives to XML are Hyper Text Markup Language (HTML) and

Extensible Hyper Text Markup Language (XHTML); both have their advantages

and disadvantages but neither of these standards were suitable for this project

because the systems being studied currently use XML. XML, HTML, and XHTML

are all based on Standard Generalized Markup Language (SGML), an

 61

International Organization for Standardization (ISO) standard for markup

languages developed in 1986. Figure 18 shows the relationship between these

standards and the other standards discussed in this project.

Figure 18. Relationship between SGML, XML, HTML, and XHTML

XML is a markup language, meaning that information about the data is

embedded in the document with the data itself. As a result of this, XML is self-

describing; you can easily determine what the data is representing, for example a

person’s name might be expressed clearly as a tag that looks like <name>; this is

one of the key attributes that makes it easy to understand and great for data

interchange. The main characteristics that set XML apart from the other markup

languages are: its emphasis on descriptive rather than procedural markup, its

document type concept, and its independence from any one hardware or

software system [27]. XML can be used for a wide variety of things, such as

document representation (e.g., vector graphics), data structure (e.g., database),

and message exchange (e.g. SOAP, WSDL). The basic structure of XML

consists of three main components: XML Document Type Definition (DTD), a

 62

grammar for describing the structure of the data; XML Schema, a set of rules that

represents how an XML document models its data and defines its elements,

attributes, and relationships between elements; XSL (Stylesheet), a family of

languages that specifying the formatting and styling of an XML document.

XML is widely recognized as an enabler for system interoperability and

integration because it can be used as a data transport format within and between

applications or it can be used as a data bridge within and between applications.

The Department of Navy (DON) is well aware of this and its guidance since 2002

regarding Extensible Markup Language has been “to fully exploit XML as an

enabling technology to achieve interoperability in support of maritime superiority”

[28]. Even more currently, in 2009 the USD AT&L issued the following guidance

in its report, “to maximize DoD’s ability to utilize commercial technology, all

commercial vendors should consider the incorporation of Suite B (including the

use of extensible markup language (XML) standards) in their products” [29].

4. XSL

Extensible Stylesheet Language is a family of languages that specify the

formatting and styling of an XML document. It was initiated to bring the

functionality of Document Style Semantics and Specification Language (DSSSL)

to XML. In December 1997, the W3C established a working group for XSL and it

produced a working draft specification on 18 August 1998. This specification is

split into three parts:

 XSLT (Transformation): Designed to be used independently of XSL; it

describes how a document is transformed into another document using

a set of rules. It is commonly used to translate between different XML

schemas, convert XML data into another document, or create printed

output through XSL Formatting Objects. XSLT became a W3C

“recommendation” on 16 November 1999.

 XSL-FO (Formatting Objects): A markup language for specifying

formatting semantics. There are two parts to working with XSL-FO: an

 63

XML document and a means of transforming that document into an

output format (readable, printable, or both, e.g. PDF, Braille) [30]. XSL-

FO became a W3C recommendation on 15 October 2001.

 XPath (XML Path Language): A query language for selecting specific

parts of an XML document. In addition, XPath may be used to compute

values (e.g., strings, numbers, or Boolean values) from the content of

an XML document [31]. XPath became a W3C recommendation on 16

November 1999.

5. XSLT Processor

The XSLT processor takes an XML document and an XSLT stylesheet,

and produces a new document using the rules provided by the XSLT stylesheet,

as represented in Figure 19. The XSLT stylesheet, along with XPath, provide the

instruction set for the processor to produce the resultant document. While the

processor can be implemented on either the client-side or server-side it is most

commonly done on the server-side through a standalone processor, such as

Apache’s Xalan or Saxon XSLT, or a component of software.

Figure 19. XSLT conversion process

 64

D. SAMPLE APPLICATION OF THE ENABLING TECHNOLOGY

1. Information-Oriented Approach

We believe these enabling technologies are a viable approach to

addressing legacy system interoperability and integration of communication

planning and analysis tools. This section focuses on the proposed application of

these tools as related to our specific problem. We specifically addressed

syntactic interoperability and used interoperability as defined by the IEEE to help

form the problem space. We determined that our best approach was an

information-oriented one that focused on data federation. A few reasons for this

were: all the systems being explored import/export XML, they only need to

exchange existing data, there didn’t appear to be any complex behavior, and this

approach was the most direct when compared to other approaches.

The first step in the process of data integration is to identify the data. We

begin by identifying the candidate systems and determining what information is

required for each system to function properly. A network planning and operations

taxonomy as proposed in section E of this chapter provides us the ability to cross

reference synonymous terms in the domain and accurately determine what data

is required. During this process we can determine what information is common,

this includes both commonly named and commonly understood. Additionally, we

need to identify any information that may need to be generated by an

intermediate source in order to allow the next system to carry out its tasks.

Finally, because the systems we are studying are XML based, we can map

common data through the schemas associated with them and identify any

additional data deficiencies. For this research, we used data models from the

Network Planning and Operation Domain, a Cloud-based Collaborative Planning

(CCP) tool developed in conjunction with this project, and the Systems Planning

Engineering and Evaluation Device (SPEED), a Government off-the-shelf

(GOTS) program-of-record. Figure 20 represents an abstract view of the

common data elements that can be passed directly from each system, the

elements that must be interpreted from one system to the other using an

 65

intermediate source, and any additional elements that may be required by the

receiving system. This overall picture serves as incentive for exploring this

project because it shows that through data integration and manipulation, we can

optimize workflow and use the data more efficiently.

Figure 20. Points of commonality, translation, and addition

The second step in the process of data integration is to determine what

information is required for functionality. We did this by taking a look at the steps

involved with each process and extracting the data points that were either

common, need to be some translated to some degree, or need to be created.

The processes are described below.

The basic process flow for designing a network in CCP:

 66

1. Select the menu option to create “New Project.”

2. Select the menu option to create “New Site.”

a. Set “Site Name”

b. Set “Unit name.”

c. Set “Location.”

d. Position Site on diagram.

3. Select the menu option to create a Link.

a. Set “Link Designator.”

b. Set “Start Site” and “End Site.”

c. Select Link “Equipment.”

d. Set “Bandwidth.”

e. Set “Start Location” and “End Location” (Latitude/Longitude).

4. Select the menu option to “Add Circuit.”

a. Set “Circuit Designator.”

b. Select “Link” that carries Circuit.

c. Select “Type” (Transmission, Data, Wire, etc).

d. Select “Equipment.”

e. Set Circuit “Bandwidth.”

5. Repeat Steps 2–4 as required.

The basic process flow for analyzing a network in SPEED:

1. Move to proper map area.

2. Place new System.

a. Right click “Systems,” select “New.”

b. Select “Radio Type.”

 67

c. Set “Name.”

d. Select position.

3. Set system properties.

a. Right click “System,” select “Properties.”

b. Modify “Frequencies,” “Antenna,” “Environment,” etc.

c. Select “Cryptographic Type,” if applicable.

4. Create Radio Nets.

a. Right click, “Radio Nets,” select “New.”

b. Set “Name” and choose “Participating Systems.”

c. Assign net “Control System,” as required.

d. Change “Frequency,” as required.

5. Place new Military Unit.

a. Right click/place “New.”

b. Set “Name” and select position.

c. Select unit “Properties.”

d. Assign “Participating Systems” to unit.

6. Analyze Nets.

a. Select “Nets/Analyze Nets.”

b. Select “All Nets” to be analyzed.

c. Click “Analyze.”

Finally, we used the schemas associated with the systems to map

common data and determine if there were any additional data requirements for

the receiving system that the sending system may not have provided. Figure 21

represents a snippet of the CCP schema file, the actual file can found in

Appendix H (CCP SCHEMA).

 68

Figure 21. Snippet of the CCP schema file

2. Integration Server/ Repository

For the purpose of this research, we explore the use of a repository and

defer the use of an actual integration server as future work. A repository is

central storage location that contains information about source and target

applications. It provides a means to maintain information about message

schema, metadata, enabling technology, transformation, processing rules/logic,

etc., and it will serve as a master directory for the communications planning

domain, linking all the systems to each other.

The repository will need to be able to join equivalent data and maintain

application specific rules. An example of why this is necessary can be seen in the

following: SPEED uses a hash as a key value (e.g. 0DF0CEF1–6E60–4566-

A8E2–0E9A805F2C79) when referring to equipment and CCP uses a standard

naming convention such as MRC-142C. A repository would maintain a master

table that would link these two data elements. A design possibility is to maintain

this table by a key value of National Stock Number (NSN); this will allow a

smooth integration with other systems outside of the communications domain

without requiring a fully-meshed naming correlation. Table 1, represents the

repository and shows how the information is tied together.

 69

National

Stock

Number

Nomenclature Equipment

Name

(CCP)

System

SystemTypeID

(SPEED)

SystemType

(SPEED)

5820–

01–545–

6691

Digital

Wideband

Transmission

System

AN/MRC-142C

MRC-142C
0DF0CEF1–
6E60–4566-
A8E2–
0E9A805F2C79

MRC-142C

5895–

01–354–

7601

Radio Terminal

Set,

AN/TRC-170

(V5)

TRC-170

(V5)

B9C77F7B-
06D4–48A5–
9DF6–
728FEC99772A

TRC-170 (V5)

Table 1. Mapping CCP equipment to SPEED equipment in repository

The repository is responsible for maintaining schema information and

transformation style sheets; however, an external processor (e.g. Saxon) will do

the actual transformation, as outlined later.

3. XML

The use of standards was essential to the success of this project. All the

systems being explored imported and exported XML; this simplified the

integration process. The following discussion will define the XML elements along

with their attributes and provide examples of the XML files used in CCP and

SPEED, as defined in the SPEED XML Description Document provided by

Northrop Grumman. Figure 22 is the basic structure of a CCP XML File and

Table 2 is the definition of each of the elements used in the file.

 70

Figure 22. CCP XML File

 71

 Description

Project The root element for the entire Project.

Observers Auto-generated element identifying the use of the Observer
Pattern to identify changes to the project.

Name The user assigned name of the project.

CreationDate The date the project was created.

ModifiedDate The date the project was last modified.

DiagramCanvas An auto-generated unique ID.

Sites The root element for all Site instances contained in CCP.

Site A particular area of interest.

ID A unique identifier assigned to a site.

Name The name assigned to this Site by the user

UnitName The name assigned to this Unit by the user.

Links The root element for all Link instances contained in CCP.

Link A piece of equipment used to link two nodes.

ID A unique identifier assigned to a Link.

LinkDesignator The Link Designator as defined by MCWP 6–22.

StartSite Identifies the starting site in this network.

EndSite Identifies the ending site in this network.

StartLocation Identifies the starting location of the Equipment.

Latitude A geographic coordinate that specifies the north-south position
of a point on the Earth’s surface.

Longitude A geographic coordinate that specifies the east-west position
of a point on the Earth’s surface.

EndLocation Identifies the ending location of the Equipment.

Equipment Devices facilitating the use of a computer network (e.g.,
gateways, routers, network bridges, switches, hubs, repeaters,
multilayer switches, protocol converters, bridge routers, proxy
servers, firewalls, network address translators, multiplexers,
network interface controllers, wireless network interface
controllers, modems, ISDN terminal adapters, line drivers,
wireless access points, networking cables, etc.).

ID A unique identifier assigned to Equipment.

Name The name of the Equipment as defined by the FEDLOG
System.

ImageSrc The image source files used by CCP to graphically display the
equipment.

Type Identifies the specific type of equipment (e.g., transmission).

Bandwidth A rate of data transfer, bit rate or throughput, measured in bits
per second (bps).

Circuits A dedicated communications channel for the links to
communicate that guarantees bandwidth.

Table 2. CCP CML file definitions

 72

Figure 23 is an example of a basic SPEED XML File. The

SpeedXMLRun is the root node, followed by the SPEED Path Profiler Model

(SPPModel) node. Both of these nodes are placeholders and merely enforce the

document structure. The Document node has four child nodes; each of the child

nodes will be further defined in the below figures and tables. For the purpose of

this project we will not need to use or discuss the MapCenter, Graphics,

ActiveDataSets, MapModel, SnapIns and ObjectGraphics elements.

Figure 23. SPEED XML File

 73

The first of the of Document’s child nodes is the Systems node. A system

can be a defined as a platform or radio, Table 3 defines the System Attributes.

When a system is created, a new Global Unique Identifier (GUID) is generated

and saved. This GUID ensures that the new system is uniquely identified. The

SystemTypeID refers to the system type that can be found in the SPEED

Database; this database contains the system type common names (e.g. MRC-

142C) and any specifications for the equipment.

 Description

Systems The Document or root element for all system instances
contained in the SPEED run.

System The main XML element containing the parameters of a
system.

ID The globally unique identifier (GUID) for the actual instance of
a system.

Name The user assigned name for the system instance.

ParentSystemID The globally unique identifier (GUID) for the actual instance of
a system that contains this system instance.

SystemTypeID The globally unique identifier (GUID) assigned to the type of
system.

Notes The user assigned notes concerning a system instance.

IsActive For external record keeping of system, set to 1.

Radius A user assigned value for use in visually displaying a circle on
map at a set radius from the system.

IsRadiusVisible Used to show visibility of radius on or off, set to 1 for on and 0
for off.

MilUnitID The globally unique identifier (GUID) for the Military Unit
associated with the system.

NetID The globally unique identifier (GUID) for the Net associated
with the system.

MapPlaceableID The globally unique identifier (GUID) for the map graphic
object of the system.

Refractivity The refractivity of the system, valid integer values are 200–
450 (inclusive).

GroundType The ground type of the environment of the system.

Humidity The humidity type of the environment of the system.

ElectroMag The electromagnetic noise type for the environment of the
system.

Table 3. System attributes (platform) definitions

 74

Figure 24 is an example of a Systems node (Platform) within SPEED Path

Profiler Model (SPPModel) Document:

Figure 24. Systems attributes (platform) XML

Table 4 defines the basic radio attributes, denoted “System Attributes

(Radio).” This system is separate from platforms because radios contain unique

attributes that other systems do not have. Within the SPEED database, radios

have several tables associated with each other to complete the system (e.g.,

type, antenna). The tables use IDs to link the tables.

 75

 Description

TransceiverTypeID The globally unique identifier (GUID) assigned to the type
of Transceiver.

Power The power for the transmitter of Transceiver.

PowerUnits The unit of measure for the power of Transceiver.

TXFreq The frequency of the transmitter for Transceiver.

RXFreq The frequency of the receiver for Transceiver.

Mode The selected mode for the Transceiver.

Band The selected band for the Transceiver.

AntennaHeight The height of the antenna for the Transceiver.

AntennaTypeID The globally unique identifier (GUID) for the type of
antenna for the Transceiver.

AntennaPolarization

The polarization of the antenna for the Transceiver.

NetID The globally unique identifier (GUID) for the Net
associated with the system.

CryptoType The type of crypto associated with the Transceiver.

DataRate The data rate for the Transceiver.

TRCSigQuality The signal quality for the Transceiver.

Modulation The current modulation setting.

IsData Using data setting, set 1 for true, 0 for false.

Table 4. System attributes (radio) definitions

Figure 25 is an example of a Systems node (Radio) within SPEED Path

Profiler Model (SPPModel) Document:

 76

Figure 25. Systems Attributes (Radio) XML

A net is defined as a grouping of radios communicating. Table 5 defines

the Net attributes:

Table 5. Net attributes definitions

 Description

ID The globally unique identifier (GUID) assigned
to this Net instance.

Name The name assigned to this Net by the user or
auto-generated by SPEED.

EmmisionDesignator The emissions designator for the Net.

Band The band of the net (HF, VHF, UHF, SHF, or
EHF).

NetTypeID The globally unique identifier (GUID) for the

 77

Net type.

Frequency The frequency used by the Net.

SOP SOP for the Net.

Provision The provision value for the Net.

Restoratioin The restoration value for the Net.

UpLink The uplink value for the Net in MHz.

DownLink The downlink value for the Net in MHz.

NetModeFlag Flag value for the Net model.

IsTacSatNet Tactical Satellite Net status set to 1 for True, 0
for false.

TacSatAccessType Tactical Satellite access type (if applicable).

TacSatBandwidth Tactical Satellite bandwidth (if applicable).

TacSatDataRateBps Tactical Satellite data rate (if applicable).

TacSatConfigCode Tactical Satellite configuration code (if
applicable).

TacSatDMarkNum Tactical Satellite demarcation number (if
applicable).

TacSatOW Tactical Satellite preset channel for OW key (if
applicable).

TacSatHomeChannel Tactical Satellite home channel (if applicable).

TacSatChannel Tactical Satellite channel (if applicable).

TacSatelliteType Tactical Satellite type (if applicable).

TacSatGuardAddress Tactical Satellite guard address (if applicable).

MembersCount Number of member systems in the Net.

MemberDn The globally unique identifier (GUID) of a
member system. The n represents a
sequentially incremented number.

MemberDAndAffiliation The globally unique identifier (GUID) of a
member system flowed by a colon’:’ and its
affiliation ‘n’ is a sequentially incremented
number.

AffiliationCount Number of distinct affiliation records.

TacSatPropsCount Number of valid Tactical Satellite properties.

TransceiverMapRadion The globally unique identifier (GUID) of a
member system. The n represents a
sequentially incremented number.

TransceieverMapTransceiverIDn The globally unique identifier (GUID) of a
member system’s transceiver. The n
represents a sequentially incremented
number.

TransceiverMapCount Number of transceivers utilized by the Net.

Table 5. Net attributes definitions

 78

Figure 26 is an example of the Nets node within SPEED Path Profiler

Model (SPPModel) Document:

Figure 26. Net attributes XML

SPEED supports the placement of military unit symbols on the displayed

network. Radios that support the military units can be associated with their

respective military unit symbols. Movement of a military unit symbol

simultaneously causes the associated radios to move along with the military unit

symbol. Table 6 defines the MilUnits attributes:

 79

 Description

ID The globally unique identifier (GUID) assigned to this MilUnit
instance.

Name The name assigned to this MilUnit by the user or auto-
generated by SPEED.

Notes The user assigned notes concerning a MilUnit instance.

SymbolCode The character representation for the symbol used for MilUnit
icon.

IsCollapsed Should MilUnit be displayed collapsed, 1 for collapsed, 0 for
expanded.

MembersCount Total number of contained systems.

SymbolSet The symbol set containing the MilUnit icon graphic.

MapPlaceableID The globally unique identifier (GUID) for the map graphic
object of the system.

MemberIDn The globally unique identifier (GUID) for the contained system.
The n represents a sequentially updated number.

Table 6. MilUnits definitions

Figure 27 is an example of the MilUnits node within SPEED Path Profiler

Model (SPPModel) Document:

Figure 27. MilUnits XML

4. XSLT

The first step in defining a style sheet is to map the existing common data

elements. For example, the <site> <name> in CCP needs to map to

<System><Name> in SPEED. Knowing this enables us to map the movement

from source system to target system. In addition to the data mapping, we need to

 80

track where the information is physically located, any security restrictions, what

enabling technology is used, and what data transportation requirements are

required. In this particular case, we are keeping the problem space relatively

small by using only two systems, so information can be kept locally on the same

computer, thereby mitigating security restrictions; XML is the enabling technology

for both systems, and data transportation isn’t required.

Table 7 is a complete list of common data mappings:

CCP SPEED

<site> <name> <System><Name>

<equipment><ID> <System><ID>

<site><unitName> <MilUnit><Name>

<link><ID> <Net><ID>

<link><linkDesignator> <Net><Name>

<link><location><latitude> <MapPlaceable><Latitude>

<link><location><longitude> <MapPlaceable><Longitude>

<link><bandWidth> <System><DataRate>

Table 7. CCP to SPEED data mappings

Table 8 is a list of additional data requirements for processing by XSLT,

these elements exist in both systems but are represented by different names.

They simply need to be identified and mapped to the correct target element.

 81

CCP SPEED

<equipment> <name> <System><SystemTypeID>

Table 8. Additional SPEED data requirements handled by XSLT

Table 9 is a list of additional SPEED data requirements for processing by

XSLT, these elements exist only in SPEED and are required for the XML file to

process. For this project, we addressed this by creating the unique identifier in

CCP and passing the value through the CCP XML file. In the future, this

functionality would be better represented as either a plugin that resides on the

repository for each system that requires a hash code or implemented through the

XSLT hashing function.

CCP SPEED NOTES

N/A <MilUnit<ID> Randomly Generated

Hash

N/A <MapPlaceable><MapPlaceableID> Randomly Generated

Hash

Table 9. Additional SPEED data requirements for SPEED processing

The result of the above data mapping aids us in producing an XSLT Style

Sheet. Figure 28 represents a snippet of the CCP to SPEED Style Sheet file.

 82

Figure 28. Snippet of the CCP to SPEED Style Sheet

An abstract view showing how all the enabling technologies work together

is provided in Figure 29.

Figure 29. Enabling Technologies Applied

 83

E. NETWORK PLANNING AND OPERATIONS TAXONOMY

Taxonomy is the practice and science of classification; it can be used as a

means to achieve interoperability by identifying commonality between different

domains and defining the relationships between different entities. Ultimately, it

provides a clear understanding of the domain and shows a common

representation of all the smaller domains within it.

In this section we present a taxonomy for network planning and

operations, as shown in Figure 30. The base for this taxonomy are the four

essential characteristics for a MAGTF Communications Network, as defined by

Marine Corps Warfighting Publication 3–40.3. These characteristics are

transmission, service, multiplexing, and switching, shown underlined in the

diagram. A tactical communications network is the technical means by which

different methods of communication are linked together. The network is designed

to satisfy information exchange requirements and provide access to networked

services such as voice, imagery, and data. A network consists of at least one or

multiple transmissions between various sites and equipment. A transmission has

several characteristics that will be defined during the Marine Corps Planning

Process (MCPP). One of these characteristics is service, the method by which a

user interacts with information and how information is presented, accessed,

used, and exchanged. A service can either be provided through a single signal or

through combining two or more discrete signals into a single, higher capacity

signal (multiplexing). Another characteristic is the type of transmission media

used, either guided (wired, cable, or fiber) or unguided (wireless). This

characteristic will be further defined by equipment. The bold entities in Figure 30

(e.g. SHF) represent the use of equipment; those pieces of equipment will later

be represented by the actual data in the XML files. The key to this taxonomy is in

its ability to show commonality between the terminologies of different systems.

We show this in Figure 30, by providing the aliases that may be used by the

other systems involved (e.g., a service will be referred to as a circuit in the design

 84

process). This maintains the integrity and understanding of the basic

communications network structure from domain to domain.

Figure 30. Network Planning and Operations Taxonomy

Table 10 provides the definitions of the terminology used in Figure 30.

Table 10. Network planning and operations taxonomy definitions

 Description

MAGTF
Communications
Network

The Marine Air Ground Task Force (MAGTF)
communications network supports information exchange
requirements—voice, data, video, and imagery—both
internal and external to the MAGTF.

Transmission Transmission is the process of conveying a signal from
point to point along a path.

Guided Guided transmission media use physical conductors.

Wire The most widely used medium for telecommunication (e.g.,

 85

twisted pair wire).

Cable Widely used for cable television systems, office buildings,
and other work-sites for local area networks (e.g., coaxial
cable).

Fiber A glass fiber that uses pulses of light to transmit data (e.g.,
fiber optic).

Unguided Unguided transmission media use electromagnetic waves
that propagate through the atmosphere, but are not guided
down a specific path.

Single Channel
Radio

Single Channel Radios typically operate at half-duplex,
meaning that a user may transmit or receive at any given
instant, but may not do both simultaneously. They primarily
provide the ability to exchange voice, but may also
exchange data.

HF High Frequency 2–9.9999 MHz

VHF Very High Frequency 30–88 MHz

Multi-Channel
Radio

Multi-Channel Radios operate at full-duplex; information
can be transmitted and received simultaneously. They
provide multiple channels over a single pathway,
accommodating multiple users and services
simultaneously.

UHF Ultra High Frequencies 225MHz-3GHz

SHF Super High Frequencies 3GHz – 30GHz

EHF Extremely High Frequencies 30–300GHz

Multiplexing Multiplexing is the process of combining two or more
discrete signals into a single, higher capacity signal.

Data Data is information.

Bandwidth The difference between the limiting frequencies of a
continuous frequency band expressed in hertz (cycles per
second). The term bandwidth is also loosely used to refer to
the rate at which data can be transmitted over a given
communications circuit. In the latter usage, band- width is
usually expressed in either kilobits per second or megabits
per second.

NIPR Non-Secure Internet Protocol Router Network used for
unclassified information.

SIPR Secure Internet Protocol Router Network used for classified
information (up to SECRET).

Switching Switching provides the ability to connect many users and
their terminal devices in a way that permits on-demand
exchange with other users and terminal devices without
having to link them individually.

Circuit Switch Circuit switching is the process of interconnecting a specific
circuit to provide a direct connection between calling and
called stations, and is historically used for telephone

 86

networks.

Packet Switch Packet switching shares a communications path,
information is broken up into smaller units, or packets, that
are routed to the destination independent of each other. At
the receiving end, the packets are reassembled into the
original information.

Voice Communication by word of mouth.

DSN Defense Switched Network used for unclassified voice
network.

DRSN Defense Red Switched Network used for classified voice
network.

Table 10. Network planning and operations taxonomy definitions

An example using this taxonomy along with the transmission diagram

provided in Appendix A is shown in Figure 31. The transmission diagram has

three Microwave links but for this example we will focus on System Link

Designator (SLD) MZZ03, which has two sites and one transmission element.

Alpha Company, at Red Beach 1, needs to establish a communication link

consisting of various services (alias: circuits) with Alpha Forward, at Red Beach

2. The services required are a NIPR data circuit, which will operate at a

bandwidth (alias: data rate) of 512 Kbps, a SIPR data circuit which will operate at

a bandwidth (alias: data rate) of 512 Kbps, a Digital Trunk (or Transmission)

Group (DTG) voice circuit which will operate at a bandwidth (alias: data rate) of

288 Kbps, and a partial-T1 voice circuit which will operate at a bandwidth (alias:

data rate) of 144 Kbps.

 87

Figure 31. Taxonomy Example Showing Three Microwave Links (Service Alias:
Circuit)

This communication link is physically implemented using equipment (alias:

SystemType). A piece of equipment has several characteristics, both unique and

common characteristics. Unique characteristics are those that are particular to a

unique and specific piece of equipment (e.g. Serial Number: 1234), as shown in

Figure 32, and common characteristics are those that are common to devices of

a particular family, such as all TRC-170s (e.g. Spectrum: Microwave Frequency

between 4.4 and 50 GHz), as shown in Figure 33. This example uses a TRC-

170 at both locations, which is an unguided, Super High Frequency, Multi-

Channel Radio that uses a digital signal to transmit information. Additionally, it

provides a multiplexing capability allowing both data and voice communications

to use the same equipment, assuming appropriate traffic load management. As

stated earlier, the key to this taxonomy is in its ability to show commonality

between the terminologies of different systems, the above example will assist us

in understanding how mapped items relate to one another from one system to

 88

the next, ensuring that the meaning of the data remains the same as it is

exchanged. Using Figure 32 as an example, we clearly see that a TRC-170 in

CCP is referred to as Equipment while in SPEED it is referred to as SystemType,

knowing and physically seeing this in our taxonomy validates that our process of

mapping items is correct as seen in Table 1.

Figure 32. Network Planning and Operations Taxonomy (Equipment Alias:
SystemType) Unique Characteristics

Figure 33. Network Planning and Operations Taxonomy (Common Characteristics)

 89

As an extension to our taxonomy, the characteristic data in Figure 33

could be expanded to provide additional information such as range, power,

maximum data rates, and channel capacity, etc., further enhancing the overall

picture. This taxonomy is fully extensible; it can be expanded to show capabilities

and limitations, represent other domains within Network Planning and

Operations, and link to other non-communications-oriented related domains,

such as Logistics, providing another level of interoperability.

F. CONCLUSION

An information-oriented approach that uses technology enablers like XML

and XSLT will help us achieve interoperability and is a solid foundation for SOA

and cloud computing. It considers the guidance and future growth of DoD and

avoids many of the common pitfalls of SOA adoption by using the industry

standard XML, which is also an acceptable common format to allow applications

within or between enterprises to exchange information. Additionally, it provides

some immediate results such as being loosely coupled; meaning that its

designed and developed code is easily adaptable to new devices/applications

and it requires limited and/or no development effort for new devices/applications.

XSLT on the other hand, provides a standard XML document transformation

mechanism that ensures a common language for transformation, a common

standard for representing transformation behaviors, and a common input/output

document structure. The use of a repository will enable us to join equivalent data

and maintain application specific rules. The network planning and operations

taxonomy presented serves as a means to achieve interoperability between the

network planning, analysis, and monitoring systems. Together, through the use

of XML, XSLT, a centralized repository, and a common understanding of the

domain, we can provide a feasible and acceptable means of achieving

interoperability within the domain of network planning and increase efficiency

through the reduction of duplicate, manual processes. The next section validates

our assumptions through analysis and a detailed proof-of-concept.

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

V. PROOF OF CONCEPT OVERVIEW

A. INTRODUCTION

This chapter provides an overview of the proof of concept application that

was developed in conjunction with this thesis. The primary goal of the proof of

concept was to successfully implement the software design patterns and

techniques presented in Chapters II and III in the form of a working model. The

result was a cloud-based SaaS application capable of demonstrating the ability

for communications planners to collaborate in near-real time in the

communications planning process. It also demonstrated the ability to enable

interoperability between the CCP application and other communications planning

and monitoring applications using XSL transformations.

B. TECHNOLOGIES USED

1. Programming Environment

Being a web browser based application, CCP relies heavily on Javascript

for the provision of AJAX services. In order to develop the application within the

time constraints given, we decided on the open source product Google Web

Toolkit (GWT) [32] as an appropriate development framework. GWT provided

several benefits, including:

 The GWT software development kit is provided as a plug-in to the

open-source Eclipse Integrated Development Environment (IDE).

 The entire application can be written in a single programming language

(Java). The GWT compiler compiles client-side code into Javascript

that is already optimized for efficiency and cross-browser compatibility.

Server-side code is packaged in a standard Java WAR file, ready for

deployment on the Java web server of choice.

 GWT provides built-in client server communication via remote proxy,

reducing the amount of time required for programming this interface.

 92

2. Server Environment

 Ubuntu 10.10 with Linux kernel 2.6.35

 Apache HTTP server 2.2.16

 Apache Tomcat server 6.0.28

 Java Virtual Machine 1.6

 MySQL client version 5.1.61

C. APPLICATION FEATURES

The main client screen (Figure 34) presents a modularized view of all

aspects of the project to the user. Each of these view modules is highlighted

below. Because of the modular nature of the design, the ability to move, replace,

or add a view is trivial, with the final design decision left to the stakeholders. The

network diagram canvas area displays Sites, Links and Circuits in the standard

format used by Marine Corps communications planners. Each element can be

repositioned within the view based on the planner’s preferences by dragging the

element with the mouse. Sites can also be resized using the mouse. Connector

lines and Link information boxes are automatically drawn and updated as

required. All changes made by a planner on one client are propagated to the

server, which updates all other connected clients in near-real time (as described

in Chapter II).

 93

Figure 34. CCP main project editing window

1. Network Diagram Tabs

Each Circuit type requires its own diagram (i.e., all NIPR circuits will be

represented on the NIPR diagram). Tabs provide a simple and logical way to

present the various network diagrams associated with a given project (Figure

35). Tabs also assist in enabling multiple planners edit different diagrams

simultaneously.

Figure 35. Network diagram tabs

 94

2. Global and Specialized Menus

Menus are the main method of interacting with the user interface to initiate

a change. A global menu is provided via the menu bar (Figure 36).

Figure 36. Menu bar File and Edit menus

Element-specific menus are provided for Site, Link and Circuit network

entities. They are available by right clicking with the mouse on the entities

respective GUI element (Figure 37). Selection of a menu option will result in the

appropriate form being displayed for use action.

Figure 37. Site and Link right-click menus

 95

3. Project Tree

An expandable tree chart enables a simplified overview of the project

(Figure 38).

Figure 38. Expandable project tree

4. Project Information Area

The information area displays the project’s name, creation date, and the

date and time that the project was last modified (Figure 39). It also provides

confirmation that any changes made by the planner have been successfully

transmitted to the server by noting “All Changes Saved.” This message reads

“Saving Changes…” when an update is in progress.

Figure 39. Project information area

 96

5. Forms

Forms provide the interface for creating and editing project elements

(Figure 40).

Figure 40. Sample CCP forms

6. Project Export

Selecting the “Save As” menu option from the menu bar enables the user

to save a local copy of the project in XML format as shown in Figure 41.

 97

Figure 41. Sample project XML output

The “Export” option in the global menu is meant to provide a means for the

user to download the project information in pre-formatted form to be imported into

a third-party application. For our proof of concept, we chose to demonstrate this

by converting the CCP XML format to SPEED XML format. The user was able to

import the resultant XML file into SPEED, removing the work involved in

manually re-entering redundant network information. While demonstrated using

SPEED, this capability is extensible to other applications that are able to import

information in XML format.

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

VI. CONCLUSION

A. SUMMARY OF WORK

Communications planning is an iterative, time-dependent process that

benefits greatly from technologies that enable collaboration between planners

and information sharing between planning and monitoring applications. Current

collaboration techniques have undoubtedly enhanced the planning process, and

have allowed planners to meet the high demands of the modern-day operating

environment. However, an examination of the current planning workflow reveals

that there is still much room for improvement. By reducing redundant tasks and

automating processes, as demonstrated in this thesis, the time required to

complete the planning cycle can be further reduced, and the end result more

accurate.

This thesis identified inefficiencies in the current communication planning

process that can be resolved using a cloud-based application. Tools and

techniques for designing and developing web browser-based applications have

advanced to the point that their capabilities rival equivalent standalone desktop

applications. By making deliberate software design decisions, we can enable

near real-time planning and collaboration in a ubiquitous environment,

independent of user platform or geographic location. Additionally, the ability of

applications to interoperate through the enabling of information sharing further

reduces the amount of time required to complete the planning cycle by

eliminating redundant tasks. We have shown that, when done correctly, cloud-

based communications planning is not only possible, but is advantageous, and

the changes in workflow that occur can result in a more efficient communications

planning process.

B. CONTRIBUTIONS

The main contribution of this thesis is a high-level design for a cloud-

based application called the Common Communication Picture (CCP). As

 100

demonstrated in the proof of concept, the CCP application enables near-real time

collaboration between communications planners, and provides a bridge for

enabling interoperability between communications planning and monitoring tools.

This thesis provides analysis and recommendations for the use of existing

software design patterns. It presents variations in the implementation of these

patterns that result in more efficient network usage (e.g., the partial DTO

pattern), a characteristic which is critical of network software operating on tactical

networks. It also introduces a new pattern, called the Observer Manager, which

extends the well-known Observer pattern, resulting in a more loosely coupled

and modular software design. Finally, this thesis analyses the ability to enable

interoperability between existing and future communications planning and

monitoring tools, and provides a feasible technical solution using XML and XSLT.

C. RECOMMENDATIONS FOR FUTURE WORK

The high-level design presented in this thesis provides a foundation on

which to develop a fully capable system through the iterative development

process resulting in a working prototype that can be thoroughly tested and

evaluated by organizations that may be interested in the resultant capability,

such as MCTSSA and MARCORSYSCOM. The following are some

recommendations for future work in the development of a cloud-based

communication planning tool:

 Conduct real-world usability and feasibility testing of a working prototype with

a representative subset of communications planners. Incorporation of their

feedback and recommendations is crucial to ensure success in the

operational environment.

 Project what the scalability requirement will be for CCP. Determining a

realistic upper bound on the number of simultaneous planners will assist in

determining server requirements in real-world operation, and could result in

changes to design pattern recommendations in order to provide greater

scalability.

 101

 Incorporate a centralized equipment database. Currently, the proof of concept

application uses hard-coded equipment specifications to demonstrate the

ability to automate diagram creation. In order to provide the level of

interoperability and error checking required of a fully-functional system, CCP

should be modified or extended to access a centralized database during the

project editing process.

 Access to, and incorporation of data from, the GSORTS database. This will

further reduce errors in the planning process by ensuring that only equipment

that belongs to a specific unit, is currently available and is in an operational

status are incorporated in a network plan.

 Recommended additional CCP features:

 Add the ability for users to upload reference documents and associate
them with a project.

 Add ability to import from file. Currently, CCP can only export a project
in XML format, but not import. Incorporating this feature will allow users
to create a new project from an existing project by importing an XML
file.

 Extend CCP to provide information (such as documents and application

specific XML files) in the form of Web services to current and future

communication planning and monitoring applications.

 Extend CCP to provide a mobile user interface, in order to enable referencing

of diagrams and documents by network installers and operators on a mobile

device in the field.

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

APPENDIX A: SAMPLE TRANSMISSION DIAGRAM

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX B: CCP USE CASE DESCRIPTIONS

A. UC-1: CREATE NEW PROJECT

Actors

Lead Communications Planner (Primary), Server Administrator

Description

The lead communications planner logs into the Common Communications

Picture (CCP) planning tool and creates a new communications network project

via options in the user interface. The lead planner assigns the project a name,

and identifies users who are able to edit the project (or a subsystem therein).

 During project creation, the lead planner specifies the types of networks to be

planned (data, wire, single-channel radio, multi-channel radio, etc.) based on the

mission requirements and equipment availability of an operation or exercise. He

is able to create initial network diagram frameworks for each subsystem through

the project creation dialog for later editing by him or other communications

planners that have permission to edit the project (or a given subsystem). As

required, the server administrator can perform the initial steps of creating a new

project and assigning the appropriate level of permission for editing and sharing

to the planners involved.

B. UC-2: EDIT EXISTING PROJECT

Actors

Lead Communications Planner (Primary), Communications Planner

Description

Editing a plan involves adding and removing network entities and

changing allocated resources (bandwidth, frequencies, block of IP addresses or

phone numbers, etc.). Planners select an entity (site, link or circuit) from a

selection box to add to a diagram, and can connect it to an existing object in the

 106

diagram. The planning tool will display an error if a connection between two

objects cannot be made due to a conflict. Any resource shared between the two

objects, such as bandwidth, is annotated appropriately. On completion of editing,

the planner can choose to save the plan or exit, discarding changes. If saved, the

edited plan becomes the “current” version. The previous “current” version is still

viewable at a later date. All saved previous versions of the plan can be viewed as

needed by planners. Previous versions can also be deleted by planners with the

appropriate permission level.

C. UC-3: IMPORT FROM THIRD-PARTY APPLICATION

Actors

Lead Communications Planner (Primary), Communications Planner

Description

The system allows for the importing of XML-formatted text files that have

been exported from supported third-party applications (such as SPEED). The

planner selects the option to import a file from the application menu, indicating

the source application. Once the selected file has been uploaded to the server,

the CCP application converts the contents of the imported file into CCP format

and displays the results to the planner as a newly created Project.

D. UC-4: EXPORT TO THIRD-PARTY APPLICATION

Actors

Lead Communications Planner (Primary), Communications Planner

Description

The system allows for the exporting of a text file pre-formatted so that it

can be imported into a supported third-party application (such as SPEED). The

planner selects the option to export a file from the application menu, indicating

the target application format. The CCP application creates an XML-formatted file

 107

and populates it with relevant information from the current Project. The file is

downloaded to the planner’s local computer for import into the target application.

E. UC-5: VIEW NETWORK DIAGRAMS

Actors

Lead Communications Planner (Primary), Communications Planner, End

User

Description

The end result of the planning process is a set of network diagrams that

can be used by network installers and maintainers (end users in this case) in the

execution of their assigned tasks. To view the diagrams for a plan, the end user

must have the appropriate permission level. After logging in to the system

through the log-in interface, all projects for which a user has permissions are

displayed. The user can select the appropriate project from those displayed, and

view all associated diagrams. Other end users are those persons or units that

have a need to know the current network topology, such as a unit training to take

over the network. Only the most recent network diagrams are displayed for the

end users with view-only permission. Viewers with the proper permission level

can write comments pertaining to the project for other users to read.

F. UC-6: SET USER PERMISSIONS

Actors

Server Administrator (Primary), Lead Communications Planner

Description

There are multiple levels of permission, ranging from not being able to

view a project, to the ability to create and edit a project. The server administrator

has the ability to assign permissions at all levels, usually at account creation

time. The lead planner is one who has the ability to create a new project. Once a

project has been created (UC-1), the project can be edited by all users at the

 108

appropriate permission level, and saved for later viewing or further editing. The

lead planner specifies, via a user permissions dialogue, whether a subordinate

planner is able to edit the whole plan, or a portion thereof. Communications

planners have the ability to edit only those portions of the project that their

permissions allow.

G. UC-7: ADD/REMOVE USER ACCOUNTS

Actors

Server Administrator (Primary)

Description

The server administrator has the ability to add and remove user accounts

through the administrator interface. Requests for new accounts are sent by users

via a request dialog on the tool’s main user interface. The server administrator,

upon validating the request, sets the appropriate permission level for the user.

Likewise, the server administrator has the ability to remove a user account

through the same interface. Both transactions involve manipulating data stored in

the CCP back-end database.

H. UC-8: EDIT EQUIPMENT DATABASE

Actors

Database Administrator (Primary)

Description

The system allows for the addition, deletion and modification of existing

hardware specifications (such as the ability to communicate with a new system).

The database administrator edits an existing piece of equipment through the

database administration interface. This interface communicates with the server’s

database to store the edited hardware specification. Specifications include

hardware identification number, hardware compatibility, bandwidth limits,

capabilities and limitations (such as number of interfaces).

 109

APPENDIX C: THE PROJECT CLASS

package com.pepinonline.ccp.shared.project;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.Date;

import java.util.Iterator;

import java.util.List;

import com.pepinonline.ccp.shared.IsObservable;

import com.pepinonline.ccp.shared.util.Printer;

public class Project extends IsObservable implements Serializable {

 /**

 * Need to Serialize Object to save to file, and to pass

 * over RPC.

 */

 private static final long serialVersionUID = 1L;

 private static Project currentProject = null;

 private String name;

 private Date creationDate;

 private Date modifiedDate;

 private String diagramCanvas;

 /**

 * This field is a List that must always contain Sites.

 *

 * @gwt.typeArgs <Site>

 */

 private List<Site> sites;

 /**

 * This field is a List that must always contain Links.

 *

 * @gwt.typeArgs <Link>

 */

 private List<Link> links;

 //------------- CONSTRUCTORS --------------//

 private Project() {

 // required for GWT

 }

 private Project(String name) {

 this.name = name;

 this.creationDate = new Date();

 this.modifiedDate = this.creationDate;

 this.sites = new ArrayList<Site>();

 110

 this.links = new ArrayList<Link>();

 }

 /**

 * Returns the singleton object, but does not

 * create on if it doesn’t exist.

 * @return

 */

 public static Project getProject() {

 return currentProject;

 }

 /**

 * Singleton object initialized lazily, on first demand.

 * Synchronized singleton initializer prevents creation of

multiple

 * instances of class object if called by two clients at the

 * same time.

 * @param name

 * @return

 */

 public static synchronized Project getProject(String name) {

 // if the project exist

 if (currentProject == null) {

 Printer.printDebug(“Creating new Project object”);

 currentProject = new Project(name);

 }

 return currentProject;

 }

 //--------- Setters ------------------

 public void setName(String name) {

 this.name = name;

 this.modifiedDate = new Date();

 notifyObservers(false);

 }

 public void updateModifiedDate() {

 this.modifiedDate = new Date();

 }

 public void updateDiagramCanvas(String diagramDetails) {

 diagramCanvas = diagramDetails;

 this.modifiedDate = new Date();

 updateProjectDTO(1);

 notifyObservers(false);

 Printer.printDebug(“updateDiagramCanvas client: “ +

 this.modifiedDate.hashCode());

 }

 //--------- Getters ------------------

 public String getName() {

 111

 return this.name;

 }

 public Date getCreationDate() {

 return this.creationDate;

 }

 public Date getModifiedDate() {

 return this.modifiedDate;

 }

 public List<Site> getSites() {

 return this.sites;

 }

 public List<Link> getLinks() {

 return this.links;

 }

 public String getDiagramCanvas() {

 return diagramCanvas;

 }

 //------- Other modifier methods ---------------

 public void addSite(Site siteName) {

 Printer.printDebug(“Project.addSite site: “ +

 siteName.toString());

 // add site to sites list if not already on it

 if (!sites.contains(siteName)){

 sites.add(siteName);

 updateModifiedDate();

 updateProjectDTO(0);

 notifyObservers(false);

 }

 }

 public void addLink(Link newLink) {

 // add link to links list if not already on it

 if (!links.contains(newLink)){

 links.add(newLink);

 updateModifiedDate();

 updateProjectDTO(0);

 notifyObservers(false);

 }

 }

 public void removeSite(Site siteName) {

 Printer.printDebug(“Project.removeSite site: “ +

 siteName.toString());

 if(sites.remove(siteName)) {

 // remove all links associated with the site

 // being removed

 Iterator<Link> iter = links.iterator();

 while (iter.hasNext()) {

 112

 Link l = iter.next();

 if (l.getStartSite() == siteName ||

 l.getEndSite() == siteName) {

 iter.remove();

 }

 }

 updateModifiedDate();

 updateProjectDTO(0);

 notifyObservers(false);

 }

 }

 public void removeLink(Link linkName) {

 links.remove(linkName);

 updateModifiedDate();

 updateProjectDTO(0);

 notifyObservers(false);

 }

 //---------- DTO Methods -------//

 public ProjectDTO getCompleteDTO() {

 return toCompleteDTO();

 }

 private ProjectDTO toCompleteDTO() {

 ProjectDTO dto = ProjectDTO.getDto();

 dto.setName(this.name);

 dto.setCreationDate(this.creationDate);

 dto.setModifiedDate(this.modifiedDate);

 dto.setSites(this.sites);

 dto.setLinks(this.links);

 dto.setDiagramCanvas(this.diagramCanvas);

 return dto;

 }

 public void fromDtoUpdate(ProjectDTO dto) {

 // update Project fields with non-null DTO values

 if (dto.getName() != this.name) {

 this.name = dto.getName();

 }

 if (dto.getCreationDate() != null) {

 this.creationDate = dto.getCreationDate();

 }

 if (dto.getModifiedDate() != this.modifiedDate) {

 this.modifiedDate = dto.getModifiedDate();

 }

 if (dto.getSites() != null) {

 Printer.printDebug(“fromDtoUpdate sites updated from

DTO”);

 this.sites = dto.getSites();

 }

 if (dto.getLinks() != null) {

 Printer.printDebug(“fromDtoUpdate links updated from

DTO”);

 113

 this.links = dto.getLinks();

 }

 if (dto.getDiagramCanvas() != null) {

 Printer.printDebug(“fromDtoUpdate diagramCanvas

updated from DTO”);

 this.diagramCanvas = dto.getDiagramCanvas();

 }

 notifyObservers(true);

 }

 /**

 * Create new Project object from an existing ProjectDTO

 * @param proxy

 */

 public static Project fromDtoNew(ProjectDTO dto) {

 if (currentProject == null) {

 currentProject = new Project();

 }

 currentProject.fromDtoUpdate(dto);

 return currentProject;

 }

 /**

 * Update the DTO based on the element that was changed.

 * Options are: 0 = the project object was modified, such

 * as adding or removing a site or link. 1 = the diagramCanvas

 * was modified, as in changing the canvas location of an

element.

 * The result is a DTO that contains only the pertinent data

 * that can be sent more efficiently.

 *

 * @param elementChanged - Flag indicating which part of the

Project

 * has been modified

 */

 public void updateProjectDTO(int elementChanged) {

 ProjectDTO dto = ProjectDTO.getDto();

 // empty all current DTO fields

 dto.clear();

 dto.setName(currentProject.getName());

 dto.setModifiedDate(currentProject.getModifiedDate());

 switch(elementChanged) {

 // must update both sites and links arrays in order

 // to maintain proper link-site pointers

 case 0: dto.setSites(currentProject.getSites());

 dto.setLinks(currentProject.getLinks());

 Printer.printDebug(“updateProjectDTO: DTO sites and

 links updated”);

 // don’t break because a change in sites or links

 // necessitates a change in the diagram that depicts

 // the project

 case 1:

dto.setDiagramCanvas(currentProject.getDiagramCanvas());

 Printer.printDebug(“updateProjectDTO: DTO

 diagramCanvas updated”);

 114

 break;

 }

 }

 /**

 * Check to see if the project contains a site with the given

name.

 */

 public boolean containsSite(String siteName) {

 for (Site s: this.sites) {

 if (s.getName().equals(siteName)) {

 return true;

 }

 }

 return false;

 }

 /**

 * Check to see if the project contains a link

 * with the given designator.

 */

 public boolean containsLink(String linkDesignator) {

 for (Link l: this.links) {

 if (l.getLinkDesignator().equals(linkDesignator)) {

 return true;

 }

 }

 return false;

 }

}

 115

APPENDIX D: THE PROJECT DTO CLASS

package com.pepinonline.ccp.shared.project;

import java.io.Serializable;

import java.util.Date;

import java.util.List;

public class ProjectDTO implements Serializable {

 private static final ProjectDTO projectDto = new ProjectDTO();

 /**

 * Needed to Serialize Object to save to file, and to pass

 * over RPC.

 */

 private static final long serialVersionUID = 1L;

 private String name;

 private Date creationDate;

 private Date modifiedDate;

 /**

 * String representation of diagram

 */

 private String diagramCanvas;

 /**

 * This field is a List that must always contain Sites.

 *

 * @gwt.typeArgs <Site>

 */

 private List<Site> sites;

 /**

 * This field is a List that must always contain Links.

 *

 * @gwt.typeArgs <Link>

 */

 private List<Link> links;

 private ProjectDTO() {

 // required for GWT

 }

 public static ProjectDTO getDto() {

 return projectDto;

 }

 //--------- Setters ------------------

 public void setName(String name) {

 this.name = name;

 }

 116

 public void setCreationDate(Date created) {

 this.creationDate = created;

 }

 public void setModifiedDate(Date modified) {

 this.modifiedDate = modified;

 }

 public void setSites(List<Site> sites) {

 this.sites = sites;

 }

 public void setLinks(List<Link> links) {

 this.links = links;

 }

 public void setDiagramCanvas(String diagramDetails) {

 this.diagramCanvas = diagramDetails;

 }

 //--------- Getters ------------------

 public String getName() {

 return this.name;

 }

 public Date getCreationDate() {

 return this.creationDate;

 }

 public Date getModifiedDate() {

 return this.modifiedDate;

 }

 public List<Site> getSites() {

 return this.sites;

 }

 public List<Link> getLinks() {

 return this.links;

 }

 public String getDiagramCanvas() {

 return diagramCanvas;

 }

 /**

 * Nullify all DTO fields.

 */

 public void clear() {

 this.name = null;

 this.creationDate = null;

 this.modifiedDate = null;

 this.sites = null;

 117

 this.links = null;

 this.diagramCanvas = null;

 }

}

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

APPENDIX E: THE OBSERVER MANAGER CLASS

package com.pepinonline.ccp.shared;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.LinkedHashMap;

import java.util.List;

import com.pepinonline.ccp.shared.IsObservable;

import com.pepinonline.ccp.shared.Observer;

import com.pepinonline.ccp.shared.util.Printer;

public class ObserverManager extends IsObservable implements

Serializable, Observer {

 private static final long serialVersionUID = 1L;

 private static ObserverManager manager;

 private LinkedHashMap<IsObservable, List<Observer>> observerMap =

 new LinkedHashMap<IsObservable, List<Observer>>();

 private ObserverManager() {

 // Singleton object

 }

 public static ObserverManager getObserverManager() {

 if(manager == null){

 manager = new ObserverManager();

 }

 return manager;

 }

 public void replaceObservedObject(IsObservable oldObject,

 IsObservable newObject) {

 List<Observer> observers = observerMap.get(oldObject);

 observerMap.put(newObject, observers);

 observerMap.remove(oldObject);

 }

 //-------------- Extends IsObservable ---------------------//

 @Override

 public void addObserver(IsObservable i, Observer o) {

 if(observerMap.get(i) != null) {

 // if the IsObservable is already being observed,

 // add observer to its mapped List of observers.

 observerMap.get(i).add(o);

 } else {

 // if the IsObservable is not already being observed,

 // make the observer manager an observer of the new

 // IsObservable

 i.addObserver(this);

 120

 // create a list of observers to map to the

isObservable

 List <Observer> temp = new ArrayList<Observer>();

 // add the Observer parameter as the first list item

 temp.add(o);

 // create the map entry

 observerMap.put(i, temp);

 }

 }

 @Override

 public void removeObserver(IsObservable i, Observer o) {

 if(observerMap.get(i) != null) {

 observerMap.get(i).remove(o);

 }

 }

 @Override

 public void notifyObservers (IsObservable i, boolean remote) {

 // Notify each observer for this IsObservable Object

 List<Observer> observers = observerMap.get(i);

 if (observers == null || observers.isEmpty()){

 return;

 }

 for (Observer o: observers) {

 try{

 o.update(i, remote);

 } catch (Exception e){

 Printer.printDebugErr(“ObserverManager

notifyObservers: “

 + e.getMessage());

 }

 }

 }

 //-------------- Implements Observer ---------------------//

 @Override

 public void update(IsObservable i, boolean remote) {

 notifyObservers(i, remote);

 }

}

 121

APPENDIX F: THE ISOBSERVABLE CLASS

package com.pepinonline.ccp.shared;

import java.util.ArrayList;

import java.util.List;

public abstract class IsObservable {

 private List<Observer> observers = new ArrayList<Observer>();

 public void addObserver(Observer o) {

 observers.add(o);

 }

 public void addObserver(IsObservable io, Observer o) {

 if (io.equals(this)) {

 observers.add(o);

 }

 }

 public void removeObserver(Observer o) {

 observers.remove(o);

 }

 public void removeObserver(IsObservable io, Observer o) {

 if (io.equals(this)) {

 observers.remove(o);

 }

 }

 public void notifyObservers(boolean remote) {

 for (Observer o: observers) {

 o.update(this, remote);

 }

 }

 public void notifyObservers(IsObservable io, boolean remote) {

 if (io.equals(this)) {

 for (Observer o: observers) {

 o.update(this, remote);

 }

 }

 }

}

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

APPENDIX G: THE OBSERVER INTERFACE

package com.pepinonline.ccp.shared;

public interface Observer {

 public void update(IsObservable o, boolean remote);

}

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

APPENDIX H: CCP SCHEMA

<?xml version=“1.0” encoding=“utf-16”?>

<xsd:schema attributeFormDefault=“unqualified” elementFormDefault=“qualified”
version=“1.0” xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

 <xsd:element name=“project”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“observers” type=“xsd:string” />

 <xsd:element name=“name” type=“xsd:string” />

 <xsd:element name=“creationDate” type=“xsd:string” />

 <xsd:element name=“modifiedDate” type=“xsd:string” />

 <xsd:element name=“diagramCanvas” type=“xsd:string” />

 <xsd:element name=“sites”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs=“unbounded” name=“site”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“ID” type=“xsd:string” />

 <xsd:element name=“name” type=“xsd:string” />

 <xsd:element name=“unitName” type=“xsd:string” />

 </xsd:sequence>

 </xsd:complexType>

 126

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=“links”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“link”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“ID” type=“xsd:string” />

 <xsd:element name=“linkDesignator” type=“xsd:string” />

 <xsd:element name=“startSite”>

 <xsd:complexType>

 <xsd:attribute name=“reference” type=“xsd:string” />

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=“endSite”>

 <xsd:complexType>

 <xsd:attribute name=“reference” type=“xsd:string” />

 </xsd:complexType>

 </xsd:element>

 127

 <xsd:element name=“startLocation”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“latitude” type=“xsd:decimal” />

 <xsd:element name=“longitude” type=“xsd:decimal” />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=“endLocation”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“latitude” type=“xsd:decimal” />

 <xsd:element name=“longitude” type=“xsd:decimal” />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=“equipment”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“ID” type=“xsd:string” />

 <xsd:element name=“name” type=“xsd:string” />

 <xsd:element name=“imageSrc” type=“xsd:string” />

 <xsd:element name=“type” type=“xsd:string” />

 128

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=“bandWidth” type=“xsd:int” />

 <xsd:element name=“circuits” type=“xsd:string” />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

 129

LIST OF REFERENCES

[1] United States Marine Corps, MCWP 5–1 Marine Corps Planning Process
(w/Chg 1), 2010, pp. 1–5 - 1–6.

[2] United States Marine Corps, MCWP 3–40.3 MAGTF Communications
System, 8 January 2010, pp. 6–1.

[3] MARCORSYSCOM, “Systems Planning Engineering and Evaluation Device
(SPEED)l,” [Online]. Available:
http://www.marcorsyscom.usmc.mil/sites/cins/NSC/TEAM%20EXPEDITION
ARY%20COMMUNICATIONS/SPEED.html.

[4] Defense Information Systems Agency, “Joint Communication Simulation
System,” [Online]. Available: http://www.disa.mil/jcss/about.html.

[5] SolarWinds, “Solarwinds Orion,” [Online]. Available:
http://www.solarwinds.com/products/network-management/network-
monitoring.aspx.

[6] IpSwitch, “WhatsUp Gold,” [Online]. Available:
http://www.whatsupgold.com.

[7] United Stated Marine Corps, “Marine Corps Warfighting Publication
(MCWP) 3–40.3,” pp. 6–5.

[8] CJCS, CJCSI 3401.02A, GLobal Status of Resources and Training System
(GSORTS), 2008.

[9] United Stated Marine Corps, “Marine Corps Order 3000.13,” in Marine
Corps Reporting Standard Operating Procedures (SOP), 30 July 2010, pp.
1–2.

[10] V. Kundra. (8 February 2011). “Federal Cloud Computing Strategy,”
[Online]. Available http://www.cio.gov.

[11] United States Marine Corps, in MCWP 6–22 Communications and
Information Systems, 16 November 1998, pp. 6–2.

[12] United Stated Marine Corps, in MCWP 3–40.3 MAGTF Communications
Systems, 8 January 2010, pp. 2–4.

[13] United Stated Marine Corps, in MCWP 3–40.3 MAGTF Communications
Systems, 8 January 2010, pp. 5–6.

[14] Oracle, “Concurrency,” [Online]. Available:
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html.

[15] E. e. Gamma, Design Patterns: Elements of Reusable Object-Oriented
Software. Boston: Addison-Wesley, 1995.

[16] World Wide Web Consortium (W3C), “The WebSocket API,” [Online].
Available: http://dev.w3.org/html5/websockets/.

[17] Google, “Google MobWrite,” [Online]. Available:
http://code.google.com/p/google-mobwrite.

 130

[18] C. Daily, “Comet Maturity Guide” [Online]. Available:
http://cometdaily.com/maturity.html.

[19] The Internet Engineering Task Force (IETF), “HTTP/1.1, part 1: URIs,
Connections, and Message Parsing” [Online]. Available:
http://www.ietf.org/id/draft-ietf-httpbis-p1-messaging-18.txt.

[20] M. Fowler, Patterns of Enterprise Application Architecture. Boston: Addison-
Wesley Professional, 2002.

[21] Institute of Electrical Engineers, IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Glossaries. IEEE Press, New York, 1990.

[22] Department of Defense, DoD Directive 5000.01, “The Defense Acquisition
System,” 2007.

[23] R. Tudor, The Global Information Network Architecture (GINA) Technology
Framework,Dept. Computer Science Naval Postgraduate School,
Monterey, CA, Rep. NPS-GSBPP-07-015, 2007.

[24] Department of Defense Chief Information Officer, ““DoD Net Centric
Services Strategy: Evolving the DoD Net-Centric Environment to an
Enterprise Service Oriented Architecture,” 2006.

[25] D. S. Linthicum, in Next Generation Application Integration. Boston,
Pearson Education Inc., 2004, pp. 25–53.

[26] D. S. Linthicum, in Next Generation Application Integration. Boston,
Pearson Education, Inc., 2004, pp. 191–214.

[27] The TEI Consortium, “Text Encoding Initative” [Online]. Available:
http://www.tei-c.org/release/doc/tei-p4-doc/html/SG.html#SG17.

[28] Department of Defense, Department of the Navy, “Department of the Navy’s
Vision for Extensible Markup Language (XML),” 2002.

[29] Office of the Under Secretary of Defense for Acquisition, Technology, and
Logistics, “Final Report of teh Defense Science Board Task Force on
Achieving Interoperability in a Net-Centric Environment,” 2009.

[30] W3C, “XSL-FO” [Online]. Available: http://www.w3.org/wiki/Xsl-fo.

[31] W3C, “XML Path Language (XPath)” [Online]. Available:
http://www.w3.org/TR/xpath/.

[32] Google, “Google Web Toolkit” [Online]. Available:
https://developers.google.com/web-toolkit/.

 131

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

7. Professor Man-Tak Shing
 Naval Postgraduate School
 Monterey, California

8. Professor John Gibson
 Naval Postgraduate School
 Monterey, California

9. Professor Gurminder Singh
 Naval Postgraduate School
 Monterey, California

