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ABSTRACT 

Interest in radar imaging has been growing for the past decades because of its 

long range sensing capabilities. It’s continued utility and applications in wide-ranging 

areas is fundamentally dependant on the ability to produce high-quality, artifact-free 

imagery. The use of radar to identify and image moving targets remains of great interest 

for both commercial and military usage. However, when imaging moving targets, there 

will be issues of incorrect positioning or streaking, as the unknown target velocity gives 

rise to image artifacts. Many techniques have been developed to handle moving objects, 

however, these techniques make use of the so-called start-stop approximation in which 

target motion is assumed to be momentarily stationary, while it is being interrogated by a 

radar pulse.  

A new linearized imaging theory that combines spatial, temporal and spectral 

aspects of scattered waves has been developed. This thesis considers the performance of 

these techniques and compared to existing imaging schemes. It is shown that the new 

imaging scheme provides better localization, and is translation invariant in phase-space. 

It is also shown that the imaging scheme is dependent on the aperture geometry. 
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I. INTRODUCTION  

A. RADAR IMAGING HISTORY 

Radar imaging is a technology that has been developed mainly within the 

engineering community. Radar is a sensor system that is widely used to detect, locate and 

identify targets at great distances in all kinds of weather. Radar’s ability to perform such 

functions unlike many optical sensor systems has made it a proven and well-recognized 

system for the past 70 years. The fundamental reason for radar’s usefulness is its ability 

to interpret and extract information from the echo signals, and the fact that wavelengths 

of radar signals makes them relatively unaffected by atmospheric and weather-induced 

attenuation. However, this behavior causes problems when using radar for imaging: 

Image resolution depends on signal wavelength. Radar systems generally use longer 

wavelengths and hence suffer reduced image resolution compared with other systems. 

Nevertheless, radar is still sensitive to objects whose length scales range from centimeters 

to meters. This is because radar waves scatter from objects whose size is on the same 

order as the transmitted signal wavelength or larger, and many objects of interest are in 

this range.  

Radar programs started in the 1930s and much research and development work 

has been done to improve the use of radar for imaging. Many radar imaging techniques 

have also been developed to increase the resolution of radar-based imaging. Examples of 

the key inventions are the Synthetic-Aperture Radar (SAR) and Inverse Synthetic-

Aperture Radar (ISAR), which were developed due to interest in operational concepts. 

The key goal in both of these applications is the ability to produce high-quality, artifact-

free imagery.  

B. IMAGING TECHNIQUES TO CREATE ARTIFACT FREE IMAGERY 

Radar-based imaging techniques have evolved considerably over many decades. 

One common objective among these developments is to obtain an artifact free image. 

Many implicit assumptions are embedded in these techniques which are discussed in 
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many journal papers. Among these assumptions, the start-stop approximation is common 

to all existing imaging techniques and this is central to the thesis and holds the 

fundamental difference between the new imaging scheme developed in [2] and current 

techniques.  

1. Linearized Scattering Model by Means of the Born Approximation 

 Scattering models in the past have been built upon a foundation that views targets 

as being composed of simple, non-interacting point scatters. When the imaging scene 

consists of multiple targets, multiple scattering occurs and accounting for this makes the 

problem extremely complex. For this reason, the “weak scatterer” or Born approximation 

is used. This approximation is very useful because it makes the imaging problem linear 

and manageable. 

However, the Born approximation has its limitations that may result in image 

artifacts due to its neglect of the multiple-scattering terms. Actual multiple-scattered 

waves return to the radar later than expected from the single-scattering model. These 

waves are then interpreted as having come from an object farther from the radar. In 

addition, increased capabilities in radar resolution and sensitivity and parallel 

advancements in computational technology have exposed the inadequacies of such simple 

scattering models. With the ability of radar systems to resolve and image the components 

(subscatterers) that lie within the support of a traditional target, it is inevitable that new 

radar target models that can describe these multiple scattering effects accurately, whether 

multiple targets or multiple components of a single target are required.  Current 

approaches typically utilize correction techniques to enhance imaging algorithms based 

on the low order “weak scatterer” model. 

2. Bandwidth Limited Radar Systems 

All real systems are bandwidth limited. In addition, radar data is often corrupted 

by noise. Consequently these limitations induce unwanted image artifacts and reduce 

image resolution. 
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3. “Start-Stop” Approximation 

In practice, modern pulsed radar systems do not usually measure the Doppler 

shift. Instead they estimate velocity from the phase difference between returns from 

successive pulses. Hence, the waveform commonly used by modern radars is a train of 

high-range resolution pulses that enable pulse-to-pulse velocity estimation. Such 

waveforms inherently invoke a start-stop approximation, which assumes that the target is 

stationary during the time the radar pulse illuminates the target and moves only between 

pulses. Because the individual pulses are short and targets of interest are small and move 

slowly compared to the speed of light, this is almost always a good approximation. Using 

this approximation, good velocity estimates are based on range-rate (two accurate range 

measurements, separated by a time interval). However, no Doppler shift measurements 

are actually measured by the system. From the measured range and range-rate data, 

spatial images are then formed.   

However, in practice there is a limit to the how short a pulse can go. In order to 

achieve a relatively good signal-to-noise (SNR) ratio by coherent integration, long pulse 

trains are required. As a result, when the returned pulses are coherently processed at the 

receiver, the stationary target assumption may no longer hold. The scatterer may move to 

a different position within that pulse interval or resolution cell and result in a blurred 

image.   

C. MOTIVATION–IMAGING MOVING TARGETS 

To date, there have been a number of attempts to develop imaging techniques that 

can handle moving targets. For example space-time adaptive processing (STAP) is a 

signal processing technique that was originally developed for detecting slow-moving 

targets via airborne radars. Multiple-element antenna array together with real-aperture 

imaging techniques to produce ground moving target indicator (GMTI) images [24] were 

the key features in STAP. The technique described in [25] together with SAR (designed 

to image stationary scenes) and GMTI processing develop a new techniques for detecting 

slow-moving surface targets that exhibit start-stop maneuvers. Another method described 

in [12] discusses the extension to non-sideways looking array radar.  
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The concept of velocity synthetic aperture radar (VSAR) is another development 

described in [10]. VSAR is essentially a multi-element SAR system involving 

conventional processing to form an image at each element. Here, the image phases are 

preserved and compared to deduce target velocity. However, VSAR processing assumes 

that the scatterers remain in a single resolution cell throughout the integration time.  

Time-frequency methods are also very useful in the area of image generation. 

This method, when used for signal analysis, allows decomposition of the frequency 

spectrum of time-varying signals in shorter time frames and provides an added dimension 

for examining the dynamic behavior of the signal as it varies over time. The size and 

shape of the weighting window function can be altered to fit the specific analysis 

requirement for the signal. Recently, this method was combined with ISAR to improve 

imaging, motion compensation and micro-Doppler target vibration studies [8 20 and 21]. 

It was reported in [20] that the time-frequency transform (TFT) was used to construct 

inverse synthetic aperture radar (ISAR) images of targets with high rotation rate by 

helping to overcome the migration of individual scattering points from one range cell to 

another.  

However, all these imaging techniques make a common approximation that a 

target in motion is assumed to be momentarily stationary while interrogated by a radar 

pulse. Therefore, it is apparent that the need for an imaging scheme that can 

accommodate target motion during imaging process is necessary and this constitutes a 

main focus of this thesis.     

D. OBJECTIVE 

The objective of this project is to study a linearized imaging theory developed by 

Professors Cheney and Borden [2] for an imaging scene containing moving targets and 

this will be done in four parts. Part 1 analyses the Point Spread Function (PSF) focusing 

on imaging a static point scatterer. This was completed in a previous thesis [3]. Part 2, 

which is the main focus of this thesis, develops the new imaging code based on a static 

point scatterer. Part 3 and 4 will further develop the code to cater for different waveforms 

and applications to real data. In this thesis, the physics involved and the approach for 
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addressing image artifacts common to targets moving in an unknown fashion will be 

discussed. The study of the new image model through correlation of the image data to the 

radar model will also be analyzed and developed via Matlab simulation. This image 

model will be compared with the corresponding point-spread function to examine the 

localization in phase-space (position-velocity). The behavior of the imaging model will 

also be examined under different aperture geometries.    

E. THESIS ORGANIZATION 

The thesis is organized in the following manner: 

Chapter II illustrates the development of radar imaging theory by looking at the 

basic building blocks necessary for imaging—radar operating principles, scattering 

models, correlation reception—and how these components translate to imagery. Finally, 

the thesis includes an overview of the inverse nature of the radar imaging problem to 

provide better appreciation of issues pertaining to practical measurement systems and 

how information is extracted from measurements to obtain the best estimates of the 

object. 

Chapter III applies the concepts put forth in Chapter II to the imaging scenario. 

The discussion here is based on the work of Cheney and Borden [2] in imaging moving 

targets from scattered waves. The effects of multiple moving targets on the scattering 

model are described. The approximations invoked, specifically slow-moving, narrow-

band, and far-field, are examined. A scattering model to be used in the simulation 

program will be presented.  

Chapter IV will discuss the radar ambiguity function and the relationship between 

estimation errors and the transmitted waveform. Particular emphasis will be given to 

image quality analysis and the derivation of the point-spread function to quantify the 

performance of the imaging scheme developed in Chapter V. 

Chapter V examines further implications of the transmitted waveform through the 

pulse compression perspective. In particular, the Chirp signal is discussed. 
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Chapter VI demonstrates the behavior of the imaging scheme. A simple 

simulation program is developed and the results of the simulation, specifically the effect 

of different aperture geometries, are discussed. This chapter also summarizes the major 

findings of the thesis work and provides recommendations for future work.  
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II. IMAGING THEORY 

In Chapter II, we will look at some of the basics in imaging theory and examine 

how spatial images are formed. We begin by examining the physics behind extracting 

range and Doppler shift (range-rate) information using a radar system. The chapter 

concludes with a brief look at the inverse nature of the imaging problem and 

characteristics of measurement systems and some of the issues and challenges pertaining 

to radar imaging.   

A. RADAR SYSTEMS 

Radar systems can be classified by two main designs, namely stepped-frequency 

and pulsed. Most of the fielded radar systems are pulsed systems, as opposed to stepped-

frequency systems. There are two key measurements that radar systems make: the 

strength of the backscattered field and the round-trip delay time of transmitted signal 

pulse reflected from distant targets. The range from the radar to the target is determined 

by measuring the time delay (round trip) for the radar pulse to travel to the reflecting 

target and back. Because the radar pulse travels at the speed of light we can determine the 

range R from   R = cτ / 2  where τ is the round trip time delay. 

There are several aspects in understanding how radar signals provide information 

for imaging. Firstly, is the kind of waveforms that radar uses to transmit a signal. Radar 

signals are real-valued functions of time but it is convenient to express the waveforms as 

complex-valued functions. The radar system is able to measure both the amplitude and 

phase of these signals as functions of time and so a radar signal is of the form ( )( ) i tA t e φ  

the function ( )tφ  is the “phase” and provides the phase information. The function ( )A t is 

the “amplitude” and provides the magnitude of the waveform.  

All radar waves are electromagnetic waves governed by Maxwell’s equations and 

satisfy the wave equation and radiation condition. Essential target information such as 

range, speed, and bearing can be extracted from the waveforms.  
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The resolution in the down-range direction is determined by the pulse duration 

and the pulse bandwidth. A typical carrier frequency lies in bands which coincide with a 

low atmospheric attenuation window—1-40GHz. Larger bandwidth will imply finer 

resolution for imagery in the range direction. The concept of resolution will be addressed 

in Chapter III. 

B. SCATTERING OF ELECTROMAGNETIC WAVES 

In this section, we look at the behavior of electromagnetic waves and, in 

particular, the propagation and scattering of these waves. Knowing the properties of such 

waves provides important information about the transmitted and received signals and also 

provides target information. The following two sections will further develop these ideas.  

From the discussion in [18], a simple one-dimensional scattering model for a 

moving PEC1 plate in free space is a commonly used approximation for a typical radar 

echo wave. From Maxwell’s equations, it can be shown that an electromagnetic wave in 

the far-field consists of the electric field
~
E , magnetic field 

~
H , and wave vector (direction 

of propagation)
^
k . These three vectors are mutually perpendicular. For a transmitted 

wave with its field component orthogonal to the x-direction with k x
∧ ∧

= , the boundary 

condition on the PEC results in the following relationship between the scattered and 

transmitted electric field:  

~ ~
( ( ) / ) ( ( ) / )scatt incE g t R t c E f t R t c+ = − −  

This scattered field consists of a left traveling wave (moving in the negative x
∧

-direction) 

where position of a phase-front is given by ( ) ( )x t R t= . Consider a plate that moves 

linearly in the x-direction, so that R(t) = x + vt x=R(at boundary) . By making use of 

substitution  u = t + R(t) / c , we can solve for t in terms of u at the boundary: 

                                                 
1 A perfect electrical conductor (PEC) allows the charges to move freely and instantaneously in 

response to a field; consequently the fields inside a PEC are zero.  The resulting boundary conditions are: 
the tangential components of the electric field must be zero and the tangential components of the magnetic 
field are related to currents flowing on the surface of the PEC. 
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t =
u − R / c
1+ v / c

 

and obtain the expression for the scattered field: 

[ ]
~ ~

( ( ) / ) ( / / ) /scatt incE g t R t c E f t x c R c R cα+ = − + − −         (2.1) 

where α  is the Doppler scale factor: 

α =
1− v / c
1+ v / c

         (2.2) 

  

 For a transmitted field consisting of a signal waveform s(t)  mixed with a carrier 

wave   cos(ω0t) , the scattered signal received at the antenna (x = 0) is:   

  
prec (t) ≈ s(t − 2R / c)cos ω0 (1− 2v / c)(t − R / c) − R / c⎡⎣ ⎤⎦( )        (2.3) 

This result is based on the assumption that the argument α(t − R / c) − R / c  ≈    t − 2R / c . 

We also assumed that the scatterer is moving slowly so that υ / c is small. In addition, we 

can expand the denominator of Equation 2.2 in a geometric series and approximate α  by 

  1− 2v / c . The multiplier of t in the argument of the cosine function is the carrier 

frequency (relative to the transmitted carrier frequency) shifted by an amount 

υ = −
2v
c
ω0             (2.4) 

This is the Doppler shift. As in the stationary scatterer case, the received signal is time-

delayed, but there is also a Doppler-shifted version of the transmitted signal.  

 

C. CORRELATION RECEPTION–RADAR DATA MODEL 

One of the fundamental requirements for effective radar operation is detection of 

signals in noise. Radar detects the presence of an echo signal reflected from a target and 

extracts information about the target for imaging. The conservation of energy requires 



 10

that the wave intensity from a finite-sized antenna decreases in strength as the inverse 

square of the distance. As a result, the round trip signal power received by the radar 

decays by a factor of   1 / R4  relative to the signal that was transmitted. For example, at 

typical radar operating distances, the received power can be as low as 10-18 Watts. This 

problem is further complicated by the presence of thermal noise at the receiver and may 

result in poor image formation.   

There are many ways to overcome this problem for example, increasing the power 

of the transmitter can help to increase the signal-to-noise ratio (SNR), but there are 

practical limits to relying solely on this approach. Coherent integration of multiple pulses 

is another method, but the main practical effect of an increased pulse repetition frequency 

decreases during the maximum unambiguous range, and the fact that targets motion 

during data collection and pulse integration alters the phase of the scattered field. Hence, 

the subsequent discussion examines the idea of correlation comparison performed 

coherently so that the phase of the transmitted signal is preserved in the reference signal.  

One way to allow coherent correlation is to transmit long coded pulses, together 

with appropriate signal processing techniques called matched filtering or correlation 

reception. This is known as pulse compression (see Chapter V). The correlation receiver 

or matched filter is an important example of a radar signal processor for detection of 

desired signals. The output of the matched filter is the cross-correlation function of the 

received signal and the expected received signal, corresponding to the transmitted signal. 

Hence, there will be a mathematical equivalence between the correlation receiver and the 

match filter receiver, and it is possible to implement the matched filter as a correlation 

process. 

Correlation reception introduces an intuitive approach for developing the standard 

radar data model used in imaging and the result is optimal detection in additive noise. For 

example, with a presence of Gaussian noise, correlation reception will select the best-

guess estimate for the radar signal associated with the field reflected from a target, the 

scattered signal   sscatt (t) . From [19], we can see that such processing, when averaged over 

all time reduces to finding a function sscatt (t) that minimizes:     
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srec (t ')

2
dt '+ sscatt (t ')

2
dt '− 2Re srec (t ')sscatt

∗ (t ')dt
−∞

∞

∫ '
−∞

∞

∫
−∞

∞

∫            (2.5) 

The key to this approach is to determine sscatt (t)  from the random measurements 

of   srec (t) . The first two terms are system-scenario specific. Searching for the best 

minimizing function hinges on the last term and can be made more efficient by restricting 

the search to a few parameters derived from some model. In this case, the natural model 

is based on the scattering interaction between the interrogating field and the target. If 

  sinc (t) denotes an incident pulse transmitted by the radar, then the linear radar (weak-

scatterer) scattering model follows by superposition  

 
  
sscatt (t) = ∫∫

−∞

∞

ρ(υ,τ )sinc (t − τ )eiυ (t−τ )dτdυ  (2.6) 

where  ρ(υ,τ )  is the target reflectivity density for a radar system that measures two 

parameters, range and radial velocity. This reflectivity density is defined in such a way 

that   ρ(υ,τ )dτdυ  is proportional to the field reflected from the target at range between 

  cτ / 2 and   c(τ + dτ ) / 2 with Doppler shift between υ  and υ + dυ . 

From Equation 2.6, the scattered field is naturally modeled by the two parameters 

τ  and υ . The search space will be parameterized by the time shift τ  and the frequency 

shift υ . Considering the last term of Equation 2.5 and maximizing for all τ , υ  in the 

scattered model, the correlation integral is: 

 
  
η(υ,τ ) = srec (t ')sinc

* (t '− τ )e− iυ (t '−τ )dt '
−∞

∞

∫  (2.7) 

This correlation integral seeks out the component of the received signal that “matches” 

the time-delayed, frequency-shifted version of the transmitted signal. Unlike signals will 

be suppressed and, consequently, correlation receivers attempt to find the τ  and υ  that 

maximize the real part of Equation (2.7). The expected output of the correlation receivers 

is obtained by substituting Equation (2.6) into the correlation integral of Equation (2.7). 
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η(υ,τ ) = ∫∫∫

−∞

∞

ρ(υ ',τ ')sinc(t '− τ )sinc
* (t '− τ ')eiυ (t '−τ )e− iυ (t '−τ ')dt 'dτ 'dυ '  (2.8) 

Notice that in Equation 2.8 the correlation noise term has been suppressed. The 

correlation noise term, which is the correlation integral between random noise and the 

time-delayed, frequency-shifted version of the transmitted signal measures how well the 

scattered signal matched the random noise will usually be small for coherent systems. 

Rearranging Equation 2.8, 

 
  
η(υ,τ ) = ∫∫

−∞

∞

ρ(υ ',τ ')χ(υ −υ ',τ − τ ')e
i
1
2

(υ+υ ')(τ −τ ')
dτ 'dυ '  (2.9) 

where 

 
  
χ(υ,τ ) = sinc (t '−

1
2
τ )sinc

* (t '+
1
2
τ )

−∞

∞

∫ eiυt 'dt '  (2.10) 

Equation 2.9 is the standard radar data model and it describes the output of the correlation 

receiver as the convolution of ρ  and χ  up to a phase factor. The function  χ(υ,τ )  

defined by Equation 2.10 is the radar ambiguity function.  Radar imaging is closely 

related to the radar ambiguity function that characterizes the accuracy of the target 

position and radial velocity from the radar data (see Chapter III). 

D. ONE-DIMENSIONAL (HIGH RANGE RESOLUTION) IMAGING 

One-dimensional imaging involves the generation of range profiles, which can be 

used to describe target substructure. For high range resolution (HRR) techniques, the 

transmitted pulse’s instantaneous range resolution is smaller than that of the target. As it 

sweeps across the target it sequentially excites the target’s scattering sub-elements which 

re-radiate energy back to the receiver. When these scattering sub-elements are non-

interacting and point-like, the scattered pulse will be a sum of damped and blurred 

images of the incident pulse, which are shifted by time-delays that are proportional to the 

sub-element’s range [1]. Figure 1 shows an example of one-dimensional images created  
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the HRR radar systems. It can be observed that the profile displays additional peaks 

outside of the target support, clear evidence of the problem associated with a single, non-

interacting scatterer approximation. 

 

 

Figure 1.   Example of a range profile from a B-727 jetliner.  The top view (with 
orientation at time of measurement) is displayed beneath. From [1]. 

 

The signal received from a distribution of non-interacting, stationary targets can 

be modeled as  

 
  
srec (t) = ρ(τ ')sinc (t − τ ')dτ '+ n(t)

−∞

∞

∫  (2.11) 

where   n(t)  represents an additive and random noise term. Application of a matched filter 

to obtain the radar data model used for imaging 
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η(τ ) = srec (t ')sinc
∗ (t '− τ )dt ' = sinc

∗ (t '− τ )
−∞

∞

∫ ρ(τ ')sinc (t '− τ ')dτ 'dt '
−∞

∞

∫    +   noise term
−∞

∞

∫

= ∫∫
−∞

∞

sinc
∗ (t '− τ )sinc (t '− τ ')dt 'ρ(τ ')dτ '    +   noise term

 

Making the substitution   t" = t '− τ '  and neglecting the noise term (negligible with 

matched filtering) gives 

 
  
η(τ ) = χ(τ − τ ')ρ(τ ')dτ '

−∞

∞

∫  (2.12) 

where χ is the autocorrelation 

 
  
χ(τ ) = s∗(t"− τ )s(t")dt" =

−∞

∞

∫ s∗(t ')s(t '+ τ )dt '
−∞

∞

∫  (2.13) 

Equation 2.12 represents a one-dimensional image and shows how the true distribution ρ 

is related to the radar data model. The image is the convolution of ρ with χ, which in 

high-range resolution imaging is also commonly referred to as the point-spread function 

(PSF).  The point spread function obtains its name from the fact that if ρ consists of a 

single point δ(t), then the image is η(t) = χ(t − t ')δ (t ')d∫ t ' = χ(t) .  Thus, χ quantifies the 

degree to which a single point appears spread out in the HRR image. 

The down-range profile can be affected by a variety of factors such as the target 

aspect angle, position of the scatterers, or masking of scatterers by other parts of the 

target. Additionally, while the use of short pulses enhances the resolution, it concurrently 

leads to large bandwidth requirements.  Wide bandwidths can increase system complexity 

and increase the likelihood of interference from other emitters in the electromagnetic 

spectrum. A short-pulse waveform also provides less accurate radial velocity 

measurement, a natural consequence from the properties of the radar ambiguity function 

(More details on radar resolution and the ambiguity function in Chapter III). An 

important implementation limitation in practical radar applications is the required high 

peak power to transmit short pulses over long ranges. High peak power transmission can 
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be problematic, especially at high frequencies due to the small waveguide dimensions 

and the small area of the anodes of the microwave sources. 

Radar target recognition using only range profiles has limited applications. This is 

because a range profile will not be able to distinguish cross-range target structures. All 

scatterers located at the same distance from the radar will reflect energy back to the radar 

with the same time delay. Hence, when the radar illuminates many distinct targets at any 

instant, meaningful interpretation of on-scene target (multiple) disposition cannot be 

derived based on a set (single) of range-only data. 

E. TWO-DIMENSIONAL IMAGING 

In order to interpret a target more effectively, additional information is needed on 

top of the range profile. This information can be in the form of a high-resolution cross-

range profile, a Doppler profile, or simply the “triangulation” of range profiles. 

As a simple illustration for extension of the radar imaging concept to two 

dimensions, “triangulation” of different sets of range profiles will be explained (Figures 2 

and 3). This approach enables the determination of cross-range target structures while 

using only HRR radar systems and relies on collecting multiple sets of range profiles 

from different target orientations, processing them, and subsequently synthesizing a two-

dimensional image.  

A simple example is used to illustrate this approach. Consider a set of three point 

targets with the radar located at the same distance from target 2 and 3 in Figure 2. When 

the geometry is oriented as shown, the return echo will only indicate two targets. Hence, 

ambiguity exists when targets lie along the bands of constant range from the radar.  
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Figure 2.   Ambiguous scenario from a single radar pulse. From[19]. 

Using multiple sets of data taken from different directions, triangulation will 

allow for gradual buildup of the relative positions of the three targets, as shown in Figure 

3. The range profiles are swept in the cross-range direction to form bands of constant 

range from the radar; these bands represent the possible locations of the target scatterers. 

The crossing points of these bands are used to determine the scattering center locations. 

The success of such an imaging scheme hinges fundamentally on the ability to correlate 

or correctly superimpose the various constant range bands. Otherwise, the intersection of 

the swept lines will be mistaken, resulting in image artifacts.  

 

Figure 3.   Cross-range information obtained from range profiles. From [19]. 
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When a radar system is used for imaging a moving target, the received signal is a 

time-delayed and Doppler-shifted version of the transmitted signal. The measured echo 

signal from a single point-like moving target can be expressed as  

   srec (t) = ρsinc (t − τ )e− iυ (t−τ ) + n(t)  (2.14) 

Because there are two unknown parameters to estimate, namely the delay τ  and 

the Doppler shift υ , a single matched filter will no longer be enough. A set of matched 

filters, one for every possible Doppler shift, will have to be applied as   

  
η(τ ,υ) = hυ (t − t ')

−∞

∞

∫ srec (t ')dt ' = ρ hυ (t − t ')
−∞

∞

∫ sinc (t '− τ )e− iυ (t '−τ )dt '   +  noise term   

in order to estimate τ  and υ . Estimated values occur where |η |  takes on its maximum.  

For a distribution of non-interacting moving targets, the output from the filter bank is 

  

η(τ ,υ) = sinc
∗ (t '− τ )e− iυ (t '−τ )

−∞

∞

∫ srec(t ')dt '

= sinc
∗ (t '− τ )e− iυ (t '−τ )

−∞

∞

∫ ∫∫
−∞

∞

ρ(τ ',υ ')sinc (t '− τ ')e− iυ '(t '−τ ')dτ 'dυ 'dt '

= ∫∫∫
−∞

∞

sinc
∗ (t '− τ )e− iυ (t '−τ )sinc (t '− τ ')e− iυ '(t '−τ ')dt 'ρ(τ ',υ ')dτ 'dυ '

= ∫∫∫
−∞

∞

sinc
∗ (t"+ τ '− τ )e− iυ (t "+τ '−τ )sinc(t")e− iυ '(t ")dt"ρ(τ ',υ ')dτ 'dυ '

= ∫∫
−∞

∞

χ(τ − τ ',υ −υ ')e− iυ '(τ −τ ')ρ(τ ',υ ')dτ 'dυ '

 (2.15) 

where 

  
χ(τ ,υ) = sinc

∗ (t"+ τ )e− iυ (t ")s(t")dt" =
−∞

∞

∫ sinc
∗ (t '+ τ )sinc (t ')e− iυt 'dt '

−∞

∞

∫  (2.16) 

is the radar ambiguity function. Similar to the one-dimensional case, the ambiguity 

function can be interpreted as an imaging point-spread function for range-Doppler 

imaging. Analysis of the ambiguity function determines the fidelity of the range-Doppler 

imaging process and consequently the accuracy of target range and velocity estimation. 
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1. Range-Doppler Spatial Image 

Range and range-rate measured from radar returns can be interpreted to form 

spatial images. The following example will illustrate this, provided the relative motion 

between the antenna and the target is known. Consider a simplified two-dimensional 

geometry between the radar and target as shown in Figure 4. The target is assumed to 

have translational and rotational motion only in the two-dimensional plane relative to a 

stationary radar platform.   

Consider a rotating target [18]. For simplification, assume that any overall 

translational motion is removed. 

 

Figure 4.   The geometry for locating a point target known to be rotating. From [18]. 

A point target rotates counter-clockwise in geometry in which the antenna is in 

the plane of rotation (Figure 4). The coordinate origin coincides with the center of 

rotation and the center of rotation is a large distance R0  from the radar antenna. The large 

range approximation means that the incident wave is approximately a plane wave. 



 19

Consequently, all horizontal points are approximately at the same range. If the target is 

positioned at   (x, y) = a(cosθ ,sinθ) , then its range is  

  R = R0 + y = R0 + asinθ     (2.17) 

If its angular velocity is /d dtθ θ=
g

, then its velocity vector is ( sin ,cos )aθ θ θ−
g

, its 

tangential speed is | | aυ θ=
g

, and the down-range (y) component of the velocity is 

| | cos cosR aυ θ θ θ= =
g g

. However, since x = acosθ , this down-range velocity can be 

written R xθ=
g g

, where x is the cross-range component of the position. Note that for 

  x > 0 , the down-range velocity is negative, whereas for x < 0 , it is positive. 

This means that because a radar system can measure range (R0 + y)  and range-

rate ( )R xθ=
g g

, it can determine the (x, y)  location of the point in space provided &θ  is 

known.  In particular, the radar measures the time delay τ = 2R / c  and the Doppler shift 

 0 0
2 2

D
R x

c c
θυ υ υ= − = −

g g

  

which means that the coordinates of the point are given by 

 0
0

( , ) ( ,  )
22

D c cx y Rυ τ
υ θ

= − −g  (2.18) 

This example shows how the range-rate radar measurements can be used to 

estimate Doppler and cross-range information. Further, the simple example highlights the 

difficulties in practical implementation of the radar scattering model. Estimates of the 

scattered field require any variations in range R
∧

 to be estimable. While it is reasonable to 

assume in the one-dimensional imaging methods that R
∧

 is constant over the data set, this 

is not true for the two-dimensional imaging schemes. R
∧

 will generally vary due to the 

target (translational) motion that occurs during measurements made while the target 
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rotates. The effect of failing to correctly account for this translational motion will be the 

introduction of phase errors into these data and a source of image corruption. 

F. RADAR IMAGING—AN INVERSE PROBLEM 

A discussion of imaging theory will not be complete without addressing the 

inverse nature of the imaging problem and its associated issues. As this thesis is focused 

primarily on developing and analyzing the point spread function rather than imaging, the 

intent of this section is to highlight the key characteristics of such inverse problems—

issues pertaining to practical measurement systems and how information is typically 

extracted from measurements to obtain the best estimates of the target object. 

Radar scattering can be well-approximated by a linear, shift-invariant system. 

This is an important characteristic, as it states that the object function   f (x)  at each point 

x has a corresponding output image m(x) . Further, the system will measure objects the 

same no matter when they start or, equivalently, where they are located. Radar imaging 

will not be meaningful if the delayed version of the target looks different for different 

delays. A general formulation of the imaging problem can be achieved by considering an 

imaging system represented by the functional operator or “kernel” κ  that describes how 

the measurement system works 

m =κ f       (2.19) 

The direct problem in radar imaging refers to the mapping from the target to the 

quantities that can be measured by the radar. Consequently, the inverse problem is 

concerned with “reproducing” the original target from given data and knowledge of the 

direct problem; in the case of radar imaging, it will be radar measurements and 

knowledge of the scattering model. 

1. Well-Posed and Ill-Posed Problems 

One of the issues for inverse problems is their ill-posed nature. An ill-posed 

problem is one whose solution is not unique and/or does not exist for any data and/or 

does not depend continuously on the data. In the case of a band-limited system, the 
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solution of the inverse problem is not unique. This is because the imaging system does 

not transmit information about the target at frequencies outside the band of the measuring 

system. 

Consider discretized measurement systems in which the measurements are 

collected at specific points, and so Equation 2.19 can be written in matrix form. The basic 

goal of getting a good estimate f  from the measurements m can be notionally 

represented as 

 f =κ −1m  (2.20) 

It can be observed that κ , which represents the measurement system, imposes certain 

properties on the measurement system. In general, the matrix κ  is N × M ( M > N ) as 

the object function is infinitely dimensional and will not be confined to the limitations of 

the measurement system. Consequently, Equation 2.20 has more unknowns than there are 

linearly independent equations and so the system cannot have a unique solution. 

Since the object space (M-dimensional) is typically larger than the measurement 

space (N-dimensional), there exists what is known as the nullspace which consists of all 

vectors  f −κ f  or, physically, all the things that cannot be measured. Null space 

accounts for measurement artifacts and is determined by the kernel κ . 

The accepted approach for solving inverse problems that are ill-posed is to search 

for approximate solutions satisfying additional constraints based on the physics of the 

problem [22].  This set of approximate solutions corresponding to the same data function 

is the set of objects with images close to the measured one and is expressed in what are 

known as the “normal equations” 

 κ Tκ f =κ T m  (2.21) 

2. Data Reconstruction—Regularization 

Equation 2.21 specifies the set of conditions that must be satisfied by the least-

squares solution  f  which can be rewritten as 
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 f = (κ Tκ )−1κ T m  (2.22) 

Recall that the measured data suffers from finite dimension and noise contamination. 

These are problems since   (κ
Tκ )  is poorly conditioned and the effect of noise is 

magnified (i.e. errors increase) as the dimensionality of the problem gets larger. Two 

techniques will be highlighted here, namely the singular value decomposition (SVD) and 

Tikhonov regularization, to mitigate the effects of noise when estimating  f . 

From linear algebra methods, the matrix (κ Tκ )−1κ T  can be expressed in terms of 

its SVD [19]: 

 (κ Tκ )−1κ T =UDV T  (2.23) 

where the matrices U, V contain the eigenvectors of (κ Tκ ) , and D will have diagonal 

elements of the form   1 / λi  (where λi  are the corresponding, non-zero eigenvalues). A 

consequence of the kernel κ  being bounded is that the eigenvalues necessarily form a 

sequence that gets arbitrarily close to zero as the number of measurements increase. The 

diagonal elements of D get large when higher dimensional data are used, and if the data 

are contaminated by noise, it follows from Equations 2.22 and 2.23 that noise will also be 

multiplied by a large value. Hence, one simple approach to mitigate the noise effect is to 

truncate the SVD representation when λi  falls below some chosen threshold value. The 

corresponding diagonal element is set to zero. This method is known as the truncation 

filter. 

Tikhonov regularization modifies (κ Tκ )−1κ T  to a matrix with better condition 

number by adding a fixed scalar α  to the original normal equations.  Equation 2.22 can 

then be rewritten in the form 

 f = (κ Tκ +α I )−1κ T m  (2.24) 

When  α = 0 , the original normal equations are returned and so it can be expected that 

small values of α  will not change the system description too much. 
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After introducing α , the diagonal elements of D in Equation 2.23 become 

 Dii =
λi

λi +α
 (2.25) 

when iλ α>> ,   Dii ≈ 1 / λi  (as before). When λi = α , however, Dii ≈ λi /α  and will 

not become arbitrarily large. Consequently, the noise problem is moderated. 
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III. IMAGING DATA MODEL 

So far we have discussed the different types of imaging theories and techniques 

used for radar imaging. This chapter will make use of these ideas and concepts to develop 

an approach to imaging moving targets from scattered waves. We will also be looking at 

the three-dimensional case in order to develop the imaging model.  

A. INTEGRAL EQUATION APPROACH TO SCATTERING 

From the previous chapter, we have seen that for the one-dimensional scattering 

problem from a moving plate, the signal that returns to the radar is a time-delayed and 

frequency-shifted version of the transmitted signal. This is also the case for three-

dimensional scattering from a moving, point-liked target. A point target is the traditional 

model used for developing imaging analysis and will also be used for the thesis. The 

representation of a target as points is appropriate because for high-frequency waveforms 

scattered from smooth conducting surfaces, the net scattering effects from the surface is 

equivalent to the contribution from the entire series of points known as specular points 

[19]. 

Applying traditional electromagnetic approaches to scattering will typically 

involve solving a differential wave equation and imposing the appropriate boundary 

conditions at the surface of the scatterer. However, for realistic radar targets, this process 

is difficult to implement because there is no coordinate system that can represent the 

boundary conditions for complex targets.  

Therefore it is convenient to reformulate the scattering problem. From the 

mathematical approach, it turns out that there is an equivalent integral equation for every 

differential equation, and this integral equation can inherently incorporate any boundary 

conditions in the solution. 
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This concept can be explained as follows: take a scattering object to be located in 

free space with an index of refraction n(x) . Using a monochromatic wave, with harmonic 

time dependence to illuminate on a object. The reduced wave equation of the field 

becomes 

   ∇
2Ψ(x) + k 2n2(x)Ψ(x) = 0           (3.1) 

This is also known as the Helmholtz equation and k is the wave number in free space. 

Note also that   n(x) ≠ 1 on the scatterer. By splitting the field Ψ into the incident field 

 Ψ inc  which is the incoming wave, and the scattered field Ψscatt , Equation 3.1 can be 

simplified to  

( )
( )

2 2 2 2( ) ( ) (1 ( )) ( ) ( )

( ) ( ) ( )
scatt scatt inc scatt

inc scatt

x k x k n x x x

x x xρ

∇ Ψ + Ψ = − Ψ +Ψ

≡ Ψ +Ψ
      (3.2) 

where the scattering density ρ(x) = k 2 1− n2(x)( ) is a source factor completely 

determined by the index of refraction of the scatterer and is zero outside of the scatterer. 

The solution to Equation (3.2) can be obtained based on the application of Green 

functions, and we can write the solution as 

 
  
Ψscatt (x) = Gk (x ',x)ρ(x ')

D∫∫∫ Ψ inc (x ') + Ψscatt (x ')( )d 3x '  (3.3) 

This is a Lippmann-Schwinger equation. It can be observed that the problem of solving 

Equation 1.1 has been reduced to finding the Green function Gk (x ',x)  in free space (k 

denotes a specific frequency). The scattered field is also written as an integral over the 

scatterer D since ρ(x) = 0  otherwise, and hence automatically satisfies the required 

boundary conditions for a known target. 

It is also important to note that there are several aspects to the Lippmann-

Schwinger equation: 
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(1) There are generally many functions that can serve as Green functions 

  Gk (x ',x)  in free space.  While there are no bounding surfaces other than those defined by 

the scattering object, we are interested in Gk (x ',x)  that obey the Sommerfeld radiation 

condition 
  
lim
r→∞

Gk (x ',x) ∝
1
r

as this is more applicable to the typical radar operations. 

(2) The inverse scattering problem, i.e. that of determining ρ  given  Ψ inc  and 

 Ψscatt , can also be approached using the Lippmann-Schwinger equation as a model for 

 Ψscatt . 

B. LINEARIZED DATA MODEL (TIME-VARYING SYSTEMS) 

Besides using the integral equation approach to solve the scattering problem, there 

is also a need to make the appropriate approximation in order for the radar model to be 

tractable. By enforcing the Born or “weak scatterer” approximation, where the object 

distribution (cell) is not self-interacting, multiple scattering events are treated as 

negligible in comparison with the primary scattering events. The result of this is a 

linearized (approximate) data model as follows: 

  
Ψscatt (x) = Gk (x ',x)ρ(x ')

D∫∫∫ Ψ inc (x ')d 3x '          (3.4) 

Equation 3.4 turns out to be a solution for Helmholtz’s equation. A typical radar 

operation is a time-varying problem, and so the time-dependent wave equation and the 

time-domain Green function will have to be incorporated with the model 

  
Gk (x ', x)→ g(x ', x;t ',t) =

δ (t − t '− | x '− x | /c)
4π | x '− x |

 (3.5) 

With a signal 
  
sy (t) transmitted from position y at starting time −Ty , the incident field at x 

is  

  
ψ inc (x,t) = −

sy (t + Ty− | x − y | /c)
4π | x − y |

  (3.6) 
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Substituting the incident field (Equation 3.6) and the time-domain Green function 

(Equation 3.5) to Equation 3.4, we get the scattered field  ψ scatt ( y, z,t)  at time t and 

position z  

 3( ' | ' | / )( ' | ' | / )( , , ) ( ') ' '
4 | ' | 4 | ' |

y y
scatt

S t T x y ct t z x cy z t x d x dt
z x x y

δψ ρ
π π

+ − −− − −
=

− −∫∫
gg

 (3.7) 

where yS
gg

 denotes the second time derivative of incident signal sy (t)  and enters as a 

consequence of the second time derivative in the wave equation. Hence, as a result of the 

Born approximation and the usage of time-domain Green function, we obtain a linearized 

data model (Equation 3.7) 

C. REFLECTIVITY FUNCTION FOR MOVING TARGETS 

Recall that the reflectivity functions ρ(x) , or scattering density function first 

introduced in Equation 3.2 is determined by the target. It is a scale factor of the received 

signal strength and an important characteristic of radar imaging. For a moving target, a 

time-varying reflectivity function ρ(x,t)  will be used. When the imaging scene contains 

multiple moving targets or scatterers, the scattering model can be modified as follows: 

Let   ρv (x − vt)d 3xd 3v be the scatterers in the volume element   d 3xd 3v of phase 

space centered at position x and velocity v. Choose Ty , the time when the signal is first 

send out, to be such that the scattering densityρv = ρv (x) . This means that all the targets 

in the scene moves with velocity v at time t=0 (i.e, the signal is transmitted from the 

transmitter antenna at time 
 
t = −Ty ). As a result, the spatial scatterer density centered at 

time t and position x is 

 ρ(x) = ρv (x − vt)∫ d 3v  (3.8) 

and the scattered field becomes 
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3 3( ' | ' | / )( ' | ' | / )( , , ) ( ' ') ' '
4 | ' | 4 | ' |

y y
scatt v

S t T x y ct t z x cy z t x vt d vd x dt
z x x y

δψ ρ
π π

+ − −− − −
= × −

− −∫∫∫
gg

    (3.9) 

In order to simplify the problem, making a change in variables x '→ x = x '− vt '  can 

change the frame of reference in which the scatterer ρv  is fixed. As a result the scattered 

field is modified to   

3 3( ' | ' | / )( ' | ' | / )( , , ) ( ) '
4 | ' | 4 | ' |

y y
scatt v

S t T x vt y ct t x vt z cy z t x d vd xdt
x vt z x vt y

δψ ρ
π π

+ − + −− − + −
= ×

+ − + −∫∫∫
gg

(3.10) 

The data model, or scattered field, is now modified to incorporate moving targets. The 

physical interpretation to Equation 3.10 is that the wave that emanates from radar 

transmitter position y at time 
 
−Ty encounters a target at time t ' . This target, during the 

interval  [0,t '] , has moved from x to x + vt ' . The wave scatters with strength   ρv (x)  and 

then propagates from position   x + vt '  to z, arriving at time t. 

To further simplify the equation, let 

, ( ) ,         | |,         /x z t x vt z R R
∧

= + − = =R R R R   

Substituting this to the scattered field Equation 3.10 gives 

,, 3 3

, ,

( ' ( ') / )( ' ( ') / )
( , , ) ( ) '

4 ( ') 4 ( ')
y y x yx z

scatt v
x z x y

S t T R t ct t R t c
y z t x d vd xdt

R t R t
δ

ψ ρ
π π

+ −− −
= ×∫∫∫

gg

 (3.11) 

The variable t’ in the argument of the delta function appears in several terms making it 

difficult to carry out the integral over t’. To address this, let t ' = tx ,υ (t)  denote the implicit 

solution of 

  
t − t '− Rx ,z (t ') / c = 0,           i.e.,   t − tx ,v (t) − Rx ,z (tx ,v (t)) / c = 0   

Then, performing the integration over t '  yields 
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( ), , , 3 3

2
, , , ,

( ) ( ( )) /
( , , ) ( )

(4 ) ( ( )) ( ( ))
y x v y x y x v

scatt v
x z x v x y x v

S t t T R t t c
y z t x d vd x

R t t R t t
ψ ρ

π
+ −

= ∫∫
gg

  

Substituting 
  
tx ,v (t) = t − Rx ,z (tx ,v (t)) / c  for the first occurrence of tx ,v (t)  in this last 

equation allows for a more symmetric version 

( ), , , , 3 3
2

, , , ,

( ( )) / ( ( )) /
( , , ) ( )

(4 ) ( ( )) ( ( ))
y y x z x v x y x v

scatt v
x z x v x y x v

S t T R t t c R t t c
y z t x d vd x

R t t R t t
ψ ρ

π
+ − −

= ∫∫
gg

 (3.12) 

D. FURTHER SIMPLIFYING APPROXIMATIONS 

Equation 3.12 applies to very general scenarios. It applies to rapidly moving 

targets without the need for start-stop approximation, and it is appropriate for any 

transmitted waveforms. 

However, this model still has “retarded-time” problems. These problems arise as a 

consequence of the definition of retarded time tx ,v (t) , which is the delay between the 

scattered fields reflected from the target to the radar receiver. The retarded time is 

expressed as 
  
tx ,v (t) = t − Rx ,z (tx ,v (t)) / c  where t is the time when the scattered field 

reached the radar receiver. Hence, a more accurate result can be obtained when the 

scatterers are known to be moving in such a way that Rx ,z (t)  can be expanded in a Taylor 

series around t=0 and approximated by retaining only the terms linear in t— i.e., when 

the scatterer is “slow moving”.   

1. Slow-Mover Approximation 

Assume that   (| v | t)  and (| v |2 t2 ×ωmax / c)  are much less than   | x − z |  and 

  | x − y |, where  ωmax  denotes the maximum angular frequency of the transmitted 

signal
 
sy .  In this case, 

,, ,( ) | ( ) | (0) (0) ...x zx z x zR t z x vt R vt
∧

= − − = + +gR   
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where 
   
Rx ,z (0) = x − z , 

   
Rx ,z (0) =| Rx ,z (0) | , and , , ,(0) (0) / (0)x z x z x zR

∧

=R R . Substituting 

this result into the definition of retarded time yields 

,
,, , ,

,

(0) /
( ) (0) (0) ( ) /

1 (0) /

x z
x zx v x z x

x z

t R c
t t t R t t c

c
υ

∧

∧

−⎛ ⎞≈ − + ≈⎜ ⎟
⎝ ⎠ +

g
g

R v
R v

  

Inserting this approximation into the result for ψ scatt ( y, z,t)  yields 

( ), , , 3 3
2

, ,

(0) / (0) /
( , , ) ( )

(4 ) (0) (0)
y x v x z x y y

scatt v
x z x y

S t R c R c T
y z t x d vd x

R R

α
ψ ρ

π

⎡ ⎤− − +⎣ ⎦= ∫∫
gg

 (3.13) 

where 

,
,

,

1 (0) /

1 (0) /

x y
x v

x z

c

c
α

∧

∧

−
≡

+

g

g

R v

R v
  (3.14) 

is the Doppler scale factor.  Similar to the traditional Doppler shift, it is closely related to 

the velocity component in target-transmitter direction. 

2. Slow-Mover and Narrow-Band Approximation 

Typical systems are narrow-band for which the transmitted signal is of the form  

~
( ) ( ) yi t

yys t S t e ω−=    

where 
~

( )yS t  is slowly varying (as a function of t) in comparison with  e
− iω y t , where ω y  is 

the carrier frequency for the transmitter at position y. In this case, the time derivatives of 

 
sy  are dominated by the  e

− iω y t  factor, and 
~

2( ) ( ) yi t
y yyS t S t e ωω −≈ −

gg
. Moreover, because 

~
( )yS t  is slowly varying, further approximations can be made 

, ,
~ ~

,( ) ( )y x v y x vi t i t
y yx vS t e S t eω α ω αα − −≈   (3.15) 

Equation 3.13, under the slow-mover and narrow-band then becomes 
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( )

,,2

2
, ,

~
3 3

, ,

( , , )
(4 ) (0) (0)

( (0) (0)) / ( )

y x vx v i ti
y

scatt
x z x y

y y x z x y v

e e
y z t

R R

S t T R R c x d vd x

ω αϕω
ψ

π

ρ

−

= −

× + − +

∫∫
 (3.16) 

where 

  
ϕ x ,v ≡ ω y

2 Rx , y (0) − cTy +α x ,v Rx ,z (0)⎡⎣ ⎤⎦ / c  (3.17) 

 

3. Slow-Mover, Narrow-Band and Far-Field Approximation 

When the transmitter-to-target and target-to-receiver distances are large in 

comparison with the scene dimensions, then | x + vt |  and | x + vt |2 ×ωmax / c  can be 

assumed to be much less than either | z |  or | y | . And the expansion 

 , ( ) | ( ) | | | ( ) ...x zR t z x vt z z x vt
∧

= − − = − + +g   

can be applied and similarly for Rx , y (t) . Substituting the expansions into previous 

approximations Equation (3.16) then yields 

 

,,

2

2

~
3 3

( , , )
(4 ) | || |

  (| | | | ) / ( )

y x vx v i tiy
scatt

y y v

y z t e e
z y

S t T z z y y c x d vd x

ω αϕω
ψ

π

ρ

−

∧ ∧

−
≈

⎛ ⎞× + − − + −⎜ ⎟
⎝ ⎠

∫∫

g gx x
 (3.18) 

where now 

 , | | (| | ) /x v y y vy y cT z z cϕ ω α
∧ ∧⎡ ⎤≡ − − + −⎢ ⎥⎣ ⎦
g gx x  (3.19) 

Note that in Equation 3.16, the expansions for Rx ,z (t) , Rx , y (t)  are used differently. In the 

amplitude factor, the approximation Rx ,z (t) =| z − (x + vt) |≈| z |  holds since 

| | | ( ) |z z x vt
∧

+? g ; in the phase factor, however, the product max( / )z cω
∧

×gx  can still be a 
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large fraction of  2π , and must be retained. In addition, the signal envelope 
~
S  can still 

vary significantly over | |z z
∧

− gx  despite being slowly varying, hence the first order term 

is retained. 

The Doppler scale factor also reduces to 

 1 / 1 ( ) /
1 /

y c y z c
z c

υα
∧

∧ ∧

∧

−
≈ ≈ − +

+

g g
g

v v
v

 (3.20) 

where the binomial expansion is used since | | / 1c =v .  The quantity 
 
ω y × βv  is the 

Doppler shift (where ( ) /v y z cβ
∧ ∧

≡ − + gv ) and is observed to be dependent on the “bistatic” 

vector ( y z
∧ ∧

+ ). 

Inserting 
  
Ty =| y | /c  and setting ky ≡ ω y / c  

, | | ( ) ( ( )) /x v y yk k y z z cϕ
∧ ∧ ∧⎡ ⎤≡ − + + −⎢ ⎥⎣ ⎦

g gz x z x v                                                        (3.21) 

E. IMAGING VIA A FILTERED ADJOINT 

In developing the correlation receiver, it was observed that the “fit” between two 

complex-valued functions is given by the cross correlation.  For correlation reception, the 

correlation integral seeks out the component of received signal that “matches” the time-

delayed, frequency-shifted version of the transmitted signal. Large values of the 

correlation integral indicate a strong resemblance, while small values indicate weak 

resemblance. The values of the time-delay and Doppler shift parameters, which 

maximized the correlation integral, were also the parameters most likely to represent the 

target. 

Using the same notion, imaging can be achieved by determining the position and 

velocity parameters that represent the best “fit” to the measured data. These will also be 

the parameters that localize the position and velocity of the unknown scatterers in phase 

space (position-velocity) space. Cross correlation in the time domain, is multiplication in 
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the Fourier transform domain (Fourier correlation theorem), hence the association with 

filtering since filters are multiplication operators in the Fourier transform domain. 

The model developed for ψ scatt ( y, z,t)  depends on the position of the scatterer 

   x = (x1,x2 ,x3)  and its velocity   v = (v1,v2 ,v3) . Using this form for ψ scatt ( y, z,t)  to build a 

six-parameter scattering model based on the arbitrary position p = ( p1, p2 , p3)  and 

arbitrary velocity    u = (u1,u2 ,u3) , the objective will be to determine the values of p and u 

that maximize the cross correlation between the arbitrary model and the measured data. 

In terms of the Doppler shift, the scattered field from known scatterers    ρv (x)  with 

positions x and velocities v is 

 
{ }

( | |/ )2

2

~
3 3

( , , ) exp ( ) [ ( ( ) / )]
(4 ) | || |

                             (| | ( ) ) / ( )

yi t z c
y

scatt y

y v

e
y z t ik y z x v t z z x c

z y

S t z y z x c x d vd x

ωω
ψ

π

ρ

− −
∧ ∧

∧ ∧

−
≈ − + − − −

⎛ ⎞× − − +⎜ ⎟
⎝ ⎠

∫∫ g g

g
  

The effect of data shifted in time is an image that is translated in range. Because 

this has no bearing on the imaging process, the scattered field result can be simplified by 

substituting   t ' = t− | z | /c  which yields 

 
{ }

'2

2

~
3 3

( , , ') exp ( ) [ ( ' / )]
(4 ) | || |

                          ' ( ) / ( )

yi t
y

scatt y

y v

e
y z t ik y z x v t z x c

z y

S t y z x c x d vd x

ωω
ψ

π

ρ

−
∧ ∧ ∧

∧ ∧

−
≈ − + − +

⎛ ⎞× + +⎜ ⎟
⎝ ⎠

∫∫ g g

g
  (3.22) 

Ignoring the intensity prefactor, a parametric model representing the field from an 

unknown point source is 

 
{ }'

~

( , , ') exp ( ) [ ( ' / )]

          ' ( ) /

yi t
y

y

y z t e ik y z p u t z p c

S t y z p c

ωψ
∧ ∧ ∧

−

∧ ∧

= − − + − +

⎛ ⎞× + +⎜ ⎟
⎝ ⎠

g g

g
 (3.23) 

And the image is created as follows: For each p and u, determine the function 



 35

  
I( p,u) = ψ scatt ( y, z,t ')ψ ∗( y, z,t ')∫∫∫ dt 'd m yd nz  (3.24) 

where m, n depends on the configuration of the transmitter(s)/receiver(s), and the 

integrals are over all values of   t ' , y and z for which measured data is available. 

  
I( p,u) = ψ scatt ( y, z,t ')ψ ∗( y, z,t ')Q(ω ,t ', p,u, y, z)∫∫∫ dt 'd m yd nz  

( ) ( ' / )
'

~

( , ) ( , ', , , , )

' ( ) / ( , , ') '

y
y

ik y z p u t z p c
i t

m n
y scatt

I p u Q t p u y z e e

S t y z p c y z t dt d yd z

ωω

ψ

∧ ∧ ∧⎡ ⎤
+ − +⎢ ⎥

⎣ ⎦

∗ ∧ ∧

= −

⎛ ⎞× + +⎜ ⎟
⎝ ⎠

∫∫∫
g g

g
 (3.25) 
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IV. IMAGING POINT SPREAD FUNCTION 

This chapter begins by looking at the radar ambiguity function its relationship to 

the transmitted waveform, and the accuracy with which target range and velocity can be 

estimated. The imaging point-spread function (PSF) is also derived based on the new 

imaging scheme. 

A. RADAR AMBIGUITY FUNCTION 

For a stationary target, the output of the correlation receiver is the cross 

correlation between (1) the received signal plus noise and (2) the transmitted signal. In 

many radar applications, however, the target is moving and so its echo signal has a 

Doppler frequency shift. The output is therefore a cross correlation between the received 

signal and the Doppler-shifted transmitted signal. 

The nature of the correlation receiver output as a function of both time and 

Doppler frequency is important for understanding the properties of a radar waveform. In 

particular, the choice of waveform affects measurement accuracy, target resolution, and 

ambiguities in range and radial velocity. These aspects of the correlation receiver output 

will be examined in turn. 

When the received echo signal is large compared to noise, the output of the 

correlation receiver may be written as (see Equations 2.15 and 2.16) 

 
  
η(υ,τ ) = ∫∫

−∞

∞

ρ(υ ',τ ')χ(υ −υ ',τ − τ ')e
i
1
2

(υ+υ ')(τ −τ ')
dτ 'dυ '   

where  χ(υ −υ ',τ − τ ')  is the radar ambiguity function. The problem of radar imaging is 

concerned with estimating the location and strength of the point scatterers that are 

assumed to make up the target. Consequently, understanding χ  is essential as the end 

state involves “inverting” the radar data model. By definition, we have 

 
  
χ(υ −υ ',τ − τ ') = sinc t '−

1
2

(τ − τ ')
⎛
⎝⎜

⎞
⎠⎟−∞

∞

∫ sinc
∗ t '+

1
2

(τ − τ ')
⎛
⎝⎜

⎞
⎠⎟

ei(υ−υ ')t 'dt '  (4.1) 



 38

1. Basic Properties 

For simplicity, the origin is chosen to be the true target time-delay and frequency-

shift. This assumption will be carried throughout the rest of the discussion. Some key 

properties that follow from Equation 4.1 [Refs. 14, 18 and 19] are listed 

     
  
Signal energy :   χ(υ,τ ) ≤ χ(0,0)  (4.2) 

 
   
Ambiguity volume :   ∫∫

−∞

∞

χ(υ,τ )
2

dτdυ = 1      (normalized signal)  (4.3) 

     
  
Symmetry :   χ(−υ,−τ ) = χ(υ,τ )  (4.4) 

    
   
Frequency - domain :   χ(υ,τ ) =

1
2π

sinc (ω −
1
2
υ)sinc

∗ (ω +
1
2
υ)

−∞

∞

∫ e− iωτdω  (4.5) 

Equation 4.2 states that the maximum value of the ambiguity function occurs at the origin 

(true target time-delay and frequency-shift). Equation 4.3 asserts that the total volume 

under the ambiguity surface is a constant. This gives rise to a radar uncertainty principle: 

choosing a signal   s(t)  so that the ambiguity surface will be narrow in one dimension will 

cause it to be correspondingly wide in the other dimension. In the case of range-Doppler 

imaging, a waveform with good range resolution has poor Doppler resolution and vice 

versa. 

2. Range Resolution 

Equation 4.5 presents an intuitive look at range resolution. Consider a fixed target 

 (υ = 0)  and rewrite Equation 4.5 as 

 
  
| χ(0,τ ) |=

1
2π

| sinc (ω ) |2
−∞

∞

∫ e− iωτdω  (4.6) 

Recognize the form of Equation 4.6 as the inverse Fourier transform of the transmitted 

power spectral density. Then, in order for | χ(0,τ ) |  to have high resolution in τ  

measurements (ideally a delta function), the power spectral density has to be identically 
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one; such a signal will be broadly supported in the Fourier domain. Hence, it is clear that 

better range resolution is obtained when the signal bandwidth is large. 

A more rigorous study of estimation errors in the presence of Gaussian noise is 

developed in [1] by examining the behavior of the ambiguity function in the 

neighborhood of its main peak. This study shows that estimation error of υ  and τ  is 

described by an ellipse, and that time-domain resolution is inversely proportional to 

frequency-domain bandwidth. Hence, bandwidth is inherently important to problems in 

radar target imaging. A further interesting result makes uses of the definition of 

bandwidth in terms of the second moments (probabilistic variance) of the power spectrum 

for a narrow-band signal   s(t) = a(t)eiΦ(t ) . We can write 

 
  
β 2 =

1
2

da(t ')
dt '

2

dt '
−∞

∞

∫ +
1
2

dΦ(t ')
dt '

⎛
⎝⎜

⎞
⎠⎟

2

| a(t ') |2 dt '
−∞

∞

∫ −ω0
2  (4.7) 

where β  represents bandwidth. This useful relationship illustrates that a nonlinear Φ(t)  

(phase modulation) will increase the bandwidth in comparison with signals that are 

modulated in amplitude only. This is the basis for pulse compression (see Chapter V), a 

technique of practical importance because it allows for the creation of fine range-

resolution waveforms that are also of long duration with sufficient energy on target. 

3. Doppler Resolution 

To study Doppler resolution, consider a target whose range is known. Thus, 

setting  τ = 0  in Equation 4.1 yields 

 
  
| χ(υ,0) |= | sinc (t ') |2

−∞

∞

∫ eiυt 'dt '  (4.8) 

It is evident that better Doppler resolution is obtained from a long duration signal. This is 

in stark contrast to range resolution requirements. In addition, the Doppler resolution is 

determined only by the amplitude modulation of the signal and not by the phase.  
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B. IMAGE ANALYSIS 

From Chapter III, an explicit form for the image is 

 

( ) ( ' / )
'

~

( , ) ( , ', , , , )

              ' ( ) / ( , , ') '

y
y

ik y z p u t z p c
i t

m n
y scatt

I p u Q t p u y z e e

S t y z p c y z t dt d yd z
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ψ
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⎣ ⎦

∗ ∧ ∧

= −

⎛ ⎞× + +⎜ ⎟
⎝ ⎠

∫∫∫
g g

g
 (4.9) 

To examine the performance of the imaging scheme, the ideal (expected) data are 

inserted back into the image equation. Substituting for ψ scatt ( y, z,t ')  yields 
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g g g
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 (4.10) 

The distances   | z |  and   | y |  are scaling amplitude factors and not essential for 

imaging purposes. Thus, choose  

 
  
Q(ω ,t ', p,u, y, z) =

(4π )2 | z || y |
ω y

2 J ( p,u, y, z)  (4.11) 

where   J ( p,u, y, z)  depends on the geometry and is chosen to compensate for a Jacobian 

that results from the integral of the variable t’ 

 { }

~ ~ ( ) ( ) '

3 3

( , ) ' ( ) / ' ( ) /

              exp ( ) [ ( ) / ( ) / ]

              ( , , , ) ( ) '

yik y z u v t
y y
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v

I p u S t y z p c S t y z x c e

ik y z p x u z p c v z x c

J p u y z x dt d vd xd yd zρ

∗ ∧ ∧ ∧ ∧
− + −

∧ ∧ ∧ ∧

⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

× + − − +

×

∫∫∫ ∫∫ gg g

g g g  (4.12) 

Equation 4.12 can be written as 

  
I( p,u) = K( p,u, y, z)ρv (x)d 3vd 3x∫∫   (4.13) 
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where 

{ }
~ ~ ( ) ( ) '

( , , , ) exp ( ) [ ( ) ( )] /

         ' ( ) / ' ( ) / '

                     ( , , , )

y

y

ik y z u v t
y y
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K p u y z ik y z u z p v z x c

S t y z p c S t y z x c e dt

J p u y z d yd z

∧ ∧

∧ ∧ ∧ ∧

∗ ∧ ∧ ∧ ∧
− + −

= − + −

⎛ ⎞ ⎛ ⎞× + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
×

∫∫

∫ g

g g g

g g  (4.13) 

is the point-spread function describing the behavior of the imaging system. Equation 4.12 

caters for multiple transmitters and receivers where y and z represent the transmitter and 

receiver location respectively. The corresponding superscript m and n accounts for the 

total number of transmitter and receivers. Apply the change of variables 

1' ( ) ( ) /
2

t t y z p x c
∧ ∧

= + + +g  and set ( ) ( ) /y z p x cτ
∧ ∧

≡ + −g  to obtain   
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∞ ∗
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= − + −

⎧ ⎫× + − + − + +⎨ ⎬
⎩ ⎭
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∫∫

∫ g

g g g

g g  (4.14) 

The integral in square brackets is the radar ambiguity function 

 
~ ~1 1( , )

2 2
i t

y yS t S t e dtυχ υ τ τ τ
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−
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⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫   

χ  is determined by the transmitted signal and | χ |  attains its maximum value at  p = x , 

 u = v  for general configurations of transmitters/receivers. So the imaging PSF can be 

written as 
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 (4.15) 
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V. PULSE COMPRESSION 

Detection of signals in noise and resolving capability are both fundamental to 

radar imaging. As discussed in Chapter II and IV, the use of correlation reception and a 

transmitted waveform with nonlinear phase modulation provides means to enhance 

performance in detection and resolution. Pulse compression is a technique that fuses 

these concepts and involves transmitting long coded pulses, together with signal 

processing methods such as correlation reception.  This is of practical importance 

because it allows for the creation of fine range-resolution waveforms that are also of long 

duration. This increases radiation energy directed on target without relying solely on 

boosting radar transmitted power. This chapter gives a physical interpretation of pulse 

compression and looks at a specific phase-coded signal known as the chirp. 

A. REVISITING CORRELATION RECEPTION 

Recall that in Chapter II we showed that the output of the correlation receiver is a 

correlation integral between the received signal and a time-delayed, Doppler-shifted 

version of the transmitted signal. It is illustrative to explain the phenomenon of pulse 

compression with a graphical example. Using the simple one-dimensional imaging case 

in Equation 2.12, the correlation receiver output can be written as 

 
  
η(t) = s∗(t ')srec (t '+ t)dt '

−∞

∞

∫  (5.1) 

which is a correlation between s and srec . If s = srec  (reflectivity function is 1), Equation 

5.1 is called an autocorrelation. In Figure 5.  the signal at the top represents the 

transmitted waveform. The lower graphs represent the received signal for different shifts, 

according to Equation 5.1. When a signal shifted by t is multiplied by the waveform at 

the top and the product is integrated over t’, the resulting number is plotted at position t 

on the graph to the right. 
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Figure 5.   Phenomenon of pulse compression where the energy is concentrated at a 
single delay time. From [18]. 

Figure 5 shows that although the output signal has a longer time duration than the 

original signal s, its energy is more concentrated at a single delay time. It is a 

consequence of the Cauchy-Schwarz inequality that the highest peak occurs when the 

signals are not shifted relative to each other. The smaller peaks, called sidelobes, are 

undesirable and an open problem is to design pulses whose autocorrelations have the 

lowest and fewest sidelobes. 

B. PHASE CODING—CHIRPS 

A radar system makes the most efficient use of power when it transmits a 

constant-amplitude waveform. Consequently, most radar waveforms are designed with 

variations only in the phase of the signal. The most important and most commonly-used 

radar waveform is the chirp.  A chirp is a constant-amplitude signal whose instantaneous 

frequency varies linearly with time; chirps are therefore also called Linearly Frequency  
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Modulated (LFM) waveforms. Linear variation of the instantaneous frequency implies 

that   dφ / dt = ωmin + γ t . The coefficient γ  is called the angular chirp rate.  A chirp is thus 

of the form 

 s(t) = e
i(ωmin t+

1
2
γ t2 )

u 0,T⎡⎣ ⎤⎦
(t)  (5.2) 

where 
  
u[0,T ](t)  is 1 in the interval [0, T] and 0 otherwise. 

A chirp with positive chirp slope is called an upchirp; one with a negative chirp 

slope is a downchirp.  The instantaneous (angular) frequency of the chirp varies from 

 ωmin  to   ωmax = ωmin + γ t , with a center frequency of ω0 = ωmin + γ t / 2 . Thus the 

instantaneous frequency of the chirp varies over the interval ω0 − Tγ / 2,ω0 + Tγ / 2⎡⎣ ⎤⎦ .  

The power spectrum of a chirp is roughly constant over the frequency band 

  
ω0 − Tγ / 2,ω0 + Tγ / 2⎡⎣ ⎤⎦ , thus the angular frequency bandwidth Tγ  can be estimated 

by looking at the range of instantaneous frequencies (see Figure 6). 

 

 

Figure 6.   Spectrum for a chirp pulse of length τ . From [1]. 

Chirps are very commonly used in radar imaging. Pulse compression for chirps 

has the following intuitive interpretation: When the pulse is transmitted, different parts of  
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the pulse are coded with different instantaneous frequencies. In the pulse compression 

process, the different frequencies are delayed by different amounts of time, so that all the 

energy emerges at the same time [18]. 

C. AMBIGUITY FUNCTION FOR COMMON WAVEFORMS 

From the preceding discussion, the “ideal” ambiguity function will typically 

consist of a single peak of infinitesimal thickness at the origin and be zero everywhere 

else. It will closely approximate an impulse function, and have no ambiguities in range or 

Doppler frequency shift. The infinitesimal thickness at the origin will permit the time 

delay and/or frequency shift to be determined simultaneously to as high a degree of 

accuracy as desired. Such a highly desirable ambiguity function, however, is not 

theoretically allowed. The properties of the ambiguity function implicitly mandate that 

trade-offs exist between the measured dimensions. 

In practice, other than the trade-offs in dimension resolution, waveforms also 

generally have significant responses outside the narrow region in the near vicinity of the 

origin, i.e. there are many possible ambiguous (blind) range and Doppler. Ambiguities 

are a consequence of discontinuous waveforms, such as in a pulse train. The resolution 

for single rectangular pulse, single chirp and coherent pulse trains will be discussed next. 

1. Resolution for a Single Rectangular Pulse 

Time domain impulses have infinite bandwidth; hence they are idealized signals.  

More realistic waveforms can be modeled, for example, as 

 
  
sinc (t) =

1                if 0 < t ≤ T,
0                  otherwise.
⎧
⎨
⎩

 (5.3) 

for which   sinc (t −1 / 2τ )sinc
∗ (t +1 / 2τ )  is non-zero in the interval t ∈(|τ | /2,  T− |τ | /2) . 

The ambiguity function is then 



 47

 

  

χ(υ,τ ) = sinc (t '−
1
2
τ )sinc

∗ (t '+
1
2
τ )

−∞

∞

∫ eiυt 'dt ' = eiυt 'dt '
|τ |/2

T − |τ |/2

∫

=
1
iυ

eiυ (T / 2) eiυ (T / 2− |τ |/2) − e− iυ (T / 2− |τ |/2)⎡⎣ ⎤⎦

= (T− |τ |)eiυT / 2sinc
1
2
υ(T− |τ |)

⎡

⎣
⎢

⎤

⎦
⎥

 (5.4) 

For  υ = 0 , then the delay resolution (by the peak-to-first-null measure) as 

observed from the ambiguity surface | χ(0,τ ) |2 , is ∆τ = T  (zero-crossing at  τ = T ), 

which corresponds to a range resolution of ∆R = cT / 2 . For τ = 0 , the ambiguity surface 

 | χ(υ,0) |2  yields   ∆υ = 1 / T  because the first zero of the sinc function occurs when its 

argument is π . The Doppler shift is related to down-range relative velocity by 

  υD = −2vυ0 / c  (see Equation 2.4), and the corresponding velocity resolution is 

  ∆v = λ0 / 2T . 

2. Resolution for a Single Chirp 

A chirped signal provides another example of a ridge-type ambiguity function 

produced by linearly frequency modulating a rectangular pulse over a bandwidth β . The 

pulse width T is large compared to 1 / β .  The frequency modulation increases the 

spectral bandwidth of the pulse so that 1Tβ ? . Because the pulse width T and the 

bandwidth β  can be chosen independent of one another, the time-delay and frequency 

accuracies are independent of the other. 

The chirp signal is one whose frequency changes linearly with time 

 

  

sinc (t) =
exp −i

1
2
γ t2⎛

⎝⎜
⎞
⎠⎟

                if 0 < t ≤ T,

0                                      otherwise.

⎧

⎨
⎪

⎩
⎪

 (5.5) 

The constant γ  is known as the chirp rate. The ambiguity function is then 
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χ(υ,τ ) = sinc (t '−
1
2
τ )sinc

∗ (t '+
1
2
τ )

−∞

∞

∫ eiυt 'dt ' = ei(υ+γτ )t 'dt '
|τ |/2

T − |τ |/2

∫

=
1

i(υ + γτ )
ei(υ+γτ )T / 2 ei(υ+γτ )(T / 2− |τ |/2) − e− i(υ+γτ )(T / 2− |τ |/2)⎡⎣ ⎤⎦

= (T− |τ |)ei(υ+γτ )T / 2sinc
1
2

(υ + γτ )(T− |τ |)
⎡

⎣
⎢

⎤

⎦
⎥

 (5.6) 

Observe that a chirp leads to an ambiguity function that is a sinc-function in both the time 

and frequency domain. It is instructive to examine this property again by looking at the 

signal resolution. 

For  τ = 0 , a similar result of ∆υ = 1 / T  is obtained as in the case of the 

rectangular pulse. This is because the amplitude modulation is identical in both cases. 

Consequently, Doppler resolution is the same. However, with phase modulation, it is 

expected that the delay resolution, and therefore resolution will be enhanced. 

For  υ = 0 , when  τ > 0  the first null occurs when π = (T − τ )γτ / 2 . Reference 

[19] shows that the expression π = (T − τ )γτ / 2  has a quadratic equation form with a 

solution   ∆τ = 2π / γT , which corresponds to a range resolution of   ∆R = c / β  where 

  β = 2πγT  is the bandwidth in Hertz. For τ = 0 , ∆υ =| χ(υ,0) |2= 1 / T  because the first 

zero of the sinc function occurs when its argument is π .  The Doppler shift is related to 

down-range relative velocity by υD = −2vυ0 / c  (see Equation 2.4), and the 

corresponding velocity resolution ∆v = λ0 / 2T . 

The pulse compression ratio is defined as the product of pulse spectral bandwidth 

β  and the uncompressed pulsewidth T. Comparing the range resolution between the 

single rectangular pulse and single chirp, 

 
  

∆Rrectangular

∆Rchirp

=
cT / 2
c / β

=
βT
2

 (5.7) 

In other words, phase modulation improves the range resolution by a factor of one half 

the time-bandwidth product. 
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3. Resolution for Coherent Pulse Trains 

Following the analysis given in [18], a train of N identical pulses is considered: 

 s(t) =
1
N

u(t − nTR )
n=0

N −1

∑  (5.8) 

where  TR  is the pulse repetition interval, which might be on the order of 1ms. The 

reciprocal   1 / TR  is called the pulse repetition frequency (PRF). 

The ambiguity function for the pulse train is 

 

  

χ(υ,τ ) =
1
N

u∗(τ + τ '− mTR )∫
m=0

N −1

∑
n=0

N −1

∑ u(τ '− nTR )eiυτ 'dτ '

=
1
N

χu τ − (n − m)TR ,υ( )
m=0

N −1

∑
n=0

N −1

∑ eiυnTR

 (5.9) 

where  χu  denotes the ambiguity function for u and where we have used the substitution 

  t" = τ '− nTR . A lengthy calculation involving rearrangement of the order of summation 

and the summing of a geometric series results in 

 
  
χ(υ,τ ) =

1
N

χu
p=−( N −1)

N −1

∑ (τ − pTR ,υ)eiυTR ( N −1− | p |) sin πυTR (N− | p |)⎡⎣ ⎤⎦
sin(πυTR )

 (5.10) 

If the pulses u are sufficiently well-separated so their ambiguity functions  χu  do not 

overlap, then we take the absolute value of Equation 5.13 to obtain 

 
  
| χ(υ,τ ) |=

1
N

| χu
p=−( N −1)

N −1

∑ (τ − pTR ,υ) |
sin πυTR (N− | p |)⎡⎣ ⎤⎦

sin(πυTR )
 (5.11) 

Such an ambiguity function has a “bed of nails” appearance (see Figure 7), with peaks at 

 τ = pTR ,   p = −(N −1),−(N − 2),...,0,1,...,(N −1)  and υ  such that 

  πυTR N = (m +1 / 2)π ,   m = 0,1,2,...  
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Figure 7.   Ambiguity Function for a train of pulses. From [2] 

Following the previous analysis, consider the υ = 0  cut of the ambiguity surface 

to estimate the range resolution yields 

 
  
| χ(0,τ ) |=

1
N

| χu
p=−( N −1)

N −1

∑ (τ − pTR ,0) | (N− | p |)  (5.12) 

where we have used the fact that lim
x→0

[sin bx] / sin x = b . We see that the range resolution 

of the main peak is the same as the range resolution of the individual pulse u, but that we 

now have range ambiguities due to the extraneous peaks at τ = pTR . 

To estimate the Doppler resolution, consider the τ = 0  cut of Equation 5.11 and 

for well-separated pulses, only the p=0 term contributes 

 
  
| χ(υ,0) |=

1
N

| χu
p=−( N −1)

N −1

∑ (0,υ) |
sin[υTR N ]
sin[υTR ]

 (5.13) 

Consider the numerator argument because it varies much faster. It shows that the Doppler 

resolution is   1 / NTR , and hence the Doppler resolution of the pulse train is higher than 

that of a single pulse.  
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The many ambiguities produced by a pulse train may appear to lead to a poor 

radar waveform. The time-delay measurement accuracy, determined by pulsewidth T and 

the frequency accuracy (determined by the pulse repetition interval TR ) can be selected 

independently. If pulse repetition interval TR  is such that no radar echoes are expected 

with a time delay greater than  TR , and no Doppler-frequency shifts are expected greater 

than   1 / TR , then the effective ambiguity function reduces to just a single spike at the 

origin whose dimensions are determined by T and TR . In practice, ambiguities can also be 

resolved with different PRF, and many radars employ this type of waveform. 
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VI. RESULTS AND CONCLUSION 

This chapter shows how the new imaging algorithm (Equation 3.25) is 

implemented and analyzed. Recall from Chapter III that the image is formed when the 

correlation receiver observed a “fit” between the scattering model (Equation 3.22) and 

the parametric radar model (Equation 3.23). For correlation reception, the correlation 

integral seeks out the component of the received signal that “matches” the time-delayed, 

frequency-shifted version of the transmitted signal. Large values of the correlation 

integral indicate a strong resemblance while small values indicate a weak resemblance. 

The values of the time-delay and Doppler shift parameters that maximized the correlation 

integral were also the parameters most likely to represent the target. Using the same 

notion, three sets of Matlab programs were used for the implementation: 

1. The Scattering model (Equation 3.22) 

Scattering Model   ψ scatt ( y, z,t)  is basically the measured data from the scatterer. It 

provides all the information of the scatterer position x = (x1,x2 , x3)  and velocity 

   v = (v1,v2 ,v3) . A code is built (refer to Appendix) numerically based on a six-parameter 

scattering model and capable for different types of waveforms.  

2. The Radar Model (Equation 3.23) 

Using the same form as the scattering model, a similar set of code is built (refer to 

Appendix) numerically based on arbitrary position p = ( p1, p2 , p3)  and arbitrary velocity 

   u = (u1,u2 ,u3) . The objective will be to determine the values of p  and u  that maximize 

the cross correlation between the arbitrary model and the measured data.  

3. The Image Model (Equation 3.24) 

The image model forms the main routine of the code (refer to Appendix). It calls 

the parametric radar model as a sub-routine and cross correlated it to the scattering 

model.    
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As part of the development effort to build the full scale imaging algorithm, this 

thesis will focus on imaging a single static point scatterer. The result of the image is also 

used for comparison with the point spread function image. Equation 3.24 does not restrict 

the choice of transmitted waveform nor the transmitter/receiver configuration. The 

objective here is to study the behavior of the new imaging scheme with a single pulse 

waveform and under different transmitter/receiver configuration. 

Figure 8 shows the transmitter/receiver geometries for the simulation performed. 

The receivers are denoted by “∆ ” while the transmitter is denoted by “+ ”. Figure 8(a) 

and (b) are used to show the straight line receiver configuration while Figure 8(c) shows 

the circular receiver configuration.   

 

 

 

(a) (b) 
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(c) 

Figure 8.   Transmitter/Receiver configurations 

A. IMAGING A STATIC POINT TARGET FOR SINGLE RECTANGULAR 
PULSE 

The transmitted waveform used is a single rectangular pulse defined in Equation 

5.6. This waveform is substituted into Equation 3.24 and implemented in Matlab. 

Equation 3.24 is capable of determining a three-dimensional distribution of position in 

space and the corresponding three-dimensional velocities (i.e. a six-dimensional phase 

space image). However, to study the effects of transmitter/receiver geometry and 

translation in position on the imaging scheme, the use of two-dimensional plots of the 

target image in position space will suffice.  

1. Localization of Point-Scatterer in Position Space 

The point target or scatterer is located at position (x1,x2 ) = (0,0) . Two 

dimensional plots of the target image in position space for 4, 9, 36 and 180 receivers are 

given in Figures 9(a)–(d) respectively. It is shown that the point scatterers are localized in 

position space about the scatterer position (0,0). However, under the different geometries,  
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the point scatterer is represented differently; this is shown in Figure 10(a)–(d) and 11(a)–

(d); it can be observed that the geometry of the transmitters/receivers plays an important 

role in shaping the target image. 

 

Figure 9.   2-D Localization of point-scatterer in position space (for rectangular pulse). 

 

 

(a) (b) 

(c) 

 

(d) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10.   Transmitter/Receiver in linear (horizontal) configurations 

 

 
(a) 

 
(b) 
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Figure 11.   Transmitter/Receiver in linear (vertical) configurations 

2. Comparison with PSF Image 

When compared with a PSF image, both the images show that the point scatterer 

localized in position space; however it is observed that the PSF gives a smoother spread 

compared to the imaging code. This could be due to the fact that the PSF code is built 

based on an analytical approach where as the imaging code is built based on the 

numerical approach, and as a result there will be some round off errors.  

 
(a) 

(b) 

Figure 12.   Comparison with PSF (target at (x1,x2 ) = (0,0) ) 

 

(c) 

 

(d) 
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B. CONCLUSIONS 

Image artifacts result when motion in the imaging scene is not addressed. In 

recent years, a number of attempts to develop imaging techniques that can handle moving 

objects have been proposed. However, all of these techniques rely on making the 

approximation that a target in motion is assumed to be momentarily stationary while it is 

being interrogated by a radar pulse. This thesis is a study of the new imaging approach 

developed by Cheney and Borden [2] that can accommodate target motion during the 

imaging process. 

In this thesis, the subject of radar imaging from scattered waves is explored and 

applied to the new imaging approach.  The simulation result using Matlab obtained 

showed that the new imaging scheme is well behaved; specifically, it localizes the target 

in space and is translation invariant. In addition, it is apparent that the geometry of the 

transmitters and receivers disposition affects the behavior of the imaging system. 

This work represents the early stages of development of a full imaging algorithm 

applicable to moving targets in a multistatic environment. Follow-on work will include 

further simulation efforts. This thesis used single pulse radar waveforms and a single 

transmitter, but in reality, fielded radar systems typically utilize pulse compression 

techniques and send out long, coded pulse trains. Neither need the multistatic radar 

system be restricted to one transmitter. In this case, the imaging scheme has to be 

adjusted to incorporate more realistic radar waveforms and optimize the 

transmitter/receiver geometries for implementing the imaging algorithm. These will be 

used to support the development of the eventual imaging algorithm. Finally, real world 

target data can then be applied to the developed imaging algorithm to assess its 

performance. 
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APPENDIX:  MATLAB CODES 

IMAGING CODE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This Program evaluates the Image of a single point 
target 
  
% The program uses the approach, techniques on imaging from 
Professor Borden, Brett 
% The Waveform adopted is a 1 x 11 Rect Signal. 
% The Program load the sample_data.mat from the Make_Data.m 
and correlate it to radar model in predict.m subroutine.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
  
load sample_data.mat Rx Ry Tx Ty w k_y T delta_T D N 
  
N=length(Rx); 
NN=length(Tx); 
  
J=1; %Set Jacobian to 1 
  
% Define the area of the Scene (10km by 10km) 
p_x_start=-20;  
p_x_end=20; 
p_y_start=-20; 
p_y_end=20; 
  
res_p=0.5; %Nyquist Sampling rate.  
p_x=p_x_start:res_p:p_x_end; 
p_y=p_y_start:res_p:p_y_end; 
nx=length(p_x); 
ny=length(p_y); 
  
I=zeros(nx,ny); 
  
for py=1:ny 
for px=1:nx 
P=10^3*[p_x_start+((py-1)*res_p);p_y_end-((px-1)*res_p)]; 
expect=predict(P,Rx,Ry,Tx,Ty,N,NN,w,k_y,T,delta_T); 
for n=1:N 
I(px,py)=I(px,py)+D(n,:)*expect(n,:)'*J; 
end 
end 
end 
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%% Output Plot 
colormap(gray) 
imagesc(p_x,p_y,flipud(abs(I))) 
%colorbar 
xlabel({'\fontsize{12} x-component (km)','\fontsize{12} 
(position)'}) 
ylabel({'\fontsize{12} y-component (km)','\fontsize{12} 
(position)'}) 
title('\bf \fontsize{14} \fontname{tahoma} Image of Point 
Scatterer in Position Space (2-D)') 
text(Tx(1)/10^3,Ty(1)/10^3,'\bf \fontsize{14} +') 
  
for i=1:N 
text(Rx(i)/10^3,Ry(i)/10^3,'\bf \fontsize{9} \Delta') 
end 

 

SAMPLE DATA MODEL CODE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This Program Create sample data set 
% The program uses the approach, techniques on imaging from 
Professor Borden, Brett 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%circular receiver configuration 
r=10; 
a=0:1.5:360; 
b=a*pi/180; 
N=241; 
Rx=10^3*r*cos(b); 
Ry=10^3*r*sin(b); 
  
% transmitter locations 
M=1; % number of transmitters 
Tx=10^3*[-7]; % x-coords 
Ty=10^3*[0]; % y-coords 
  
% transmitter locations monostatic case 
%M=N; % number of transmitters 
%Tx=Rx; % x-coords 
%Ty=Ry; % y-coords 
  
% point targets 
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NN=1; % one target 
XX=10^3*[0]; % x-coords 
YY=10^3*[0]; % y-coords 
  
% waveform employed (all transmitters use same waveform) 
w=zeros(1,11); 
w(4:8)=1; % step  
%W=fftshift(fft(w)); % sinc function 
  
%%%%%%%%%% make appropriate data %%%%%%%%%%%%%% 
% Define Variables  
c=3*10^8;               % Speed of Light 
k_y=2*pi*(10^10)/c;     % wave vector @f=10 GHz 
%k_y=1; 
T=2e-3; % Total Data length in sec  
  
delta_T=T/100; % Data resolution 
D=zeros(N,1000); % large enough to absorb overlap of W and 
the target scene size 
  
for n=1:N % number of receivers (currently, set up as 
monostatic) 
for nn=1:NN % number of targets 
R1=sqrt((Tx(1)-XX(nn))^2+(Ty(1)-YY(nn))^2); 
R2=sqrt((Rx(n)-XX(nn))^2+(Ry(n)-YY(nn))^2); 
tau=(R1+R2)/c; 
m=ceil(tau/delta_T); 
D(n,m+1:m+11)=D(n,m+1:m+11)+w; % superposition principle 
end 
end 
  
save sample_data.mat Rx Ry Tx Ty w k_y T delta_T D N 
  
imagesc(abs(D)) 
% read with: load "sample_data.mat" Rx Ry Tx Ty W k_y T 
delta_T D 
 

PREDICTED DATA MODEL CODE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% This Program creates the subrountine for the radar 
model. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% 
function d=predict(p,Rx,Ry,Tx,Ty,N,NN,w,k_y,T,delta_T) 
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c=3*10^8; 
d=zeros(N,1000); 
  
for n=1:N % number of receivers (currently, set up as 
monostatic) 
R1=sqrt((Tx(1)-p(1)).^2+(Ty(1)-p(2)).^2); 
R2=sqrt((Rx(n)-p(1)).^2+(Ry(n)-p(2)).^2); 
tau=mod((R1+R2)/c,1000); 
m=ceil(tau/delta_T); 
d(n,m+1:m+11)=d(n,m+1:m+11)+w; 
end 
  
   

POINT SPREAD FUNCTION CODE 

 
%%%%%%%%%%%%%%%%% 
%  This program evaluates the Point Spread Function (PSF) 
%  The program uses the approach, techniques on imaging from 
Professor Borden, %  Brett 
  
%  It is a six-parameter scattering model based on arbitrary 
position 
%  p=(p_x,p_y,p_z) & velocity u=(u_x,u_y,u_z) 
%%%%%%%%%%%%%%%%% 
  
clear all 
  
%%  Variables to be specified 
x=(10^3)*[0;0;0];             % actual target 
v=[0;0;0];                   % actual target velocity 
y1=[2;0;0];                  % transmitter_1 
z1=[-5;5;0];                  % receiver_1 
z2=[15;15;0];                 % receiver_2 
z3=[-2;-15;0];                % receiver_3 
z4=[-10;10;0]; 
z5=[0;14.1;0]; 
z6=[10;10;0]; 
z7=[14.1;0;0]; 
z8=[10;-10;0]; 
u=[0;0;0]; 
pulse=10^(-4); 
  
%%  Parameters Defined 
Y1=(1/sqrt(y1(1)^2+y1(2)^2+y1(3)^2)).*y1; 
Z1=(1/sqrt(z1(1)^2+z1(2)^2+z1(3)^2)).*z1; 
Z2=(1/sqrt(z2(1)^2+z2(2)^2+z2(3)^2)).*z2; 
Z3=(1/sqrt(z3(1)^2+z3(2)^2+z3(3)^2)).*z3; 
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Z4=(1/sqrt(z4(1)^2+z4(2)^2+z4(3)^2)).*z4; 
Z5=(1/sqrt(z5(1)^2+z5(2)^2+z5(3)^2)).*z5; 
Z6=(1/sqrt(z6(1)^2+z6(2)^2+z6(3)^2)).*z6; 
Z7=(1/sqrt(z7(1)^2+z7(2)^2+z7(3)^2)).*z7; 
Z8=(1/sqrt(z8(1)^2+z8(2)^2+z8(3)^2)).*z8; 
J=1;                         % Jacobian 
c=3*10^8; 
k_y=2*pi*(10^10)/c;          % wave vector @f=10 GHz 
  
%%  PSF Range Defined 
p_x_start=-20; 
p_x_end=20; 
p_y_start=-20; 
p_y_end=20; 
res_p=0.1;                    % resolution of p 
p_x=p_x_start:res_p:p_x_end;  % define vector of x-axis 
values 
p_y=p_y_start:res_p:p_y_end;  % define vector of y-axis 
values 
  
%%  PSF Velocity Defined 
u_x_start=-200; 
u_x_end=200; 
u_y_start=-150; 
u_y_end=150; 
res_u=1; 
u_x=u_x_start:res_u:u_x_end; 
u_y=u_y_start:res_u:u_y_end; 
  
%%%%%%%%%%%%%%%%% 
Localization in Position-Space 
%%%%%%%%%%%%%%%%% 
 
nx=length(p_x);              % length of x = columns in K 
ny=length(p_y);              % length of y = rows in K 
K=zeros(ny,nx);               % initialize K matrix 
K1=zeros(ny,nx); 
K2=zeros(ny,nx); 
K3=zeros(nx,ny); 
K4=zeros(nx,ny); 
K5=zeros(nx,ny); 
K6=zeros(nx,ny); 
K7=zeros(nx,ny); 
K8=zeros(nx,ny); 
  
for m=1:ny                 
    for n=1:nx 
        p=(10^3)*[p_x_start+((n-1)*res_p);p_y_end-((m-
1)*res_p);0]; 
    
   % for receiver_1 

  arg1_1=((Y1+Z1).')*((u*((Z1.')*p))-(v*((Z1.')*x))); 
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        phase1_1=exp(-i*k_y*arg1_1/c); 
        arg2_1=((Y1+Z1).')*((p-x)+(0.5*(u-
v)*(((Y1+Z1).')*(p+x))));             
        phase2_1=exp(i*k_y*arg2_1/c); 
        tau_1=1/c*(((Y1+Z1).')*(p-x)); 
        neu_1=k_y*(((Y1+Z1).')*(u-v)); 
   %rectangular pulse 
        amb_1=pi*(pulse-abs(tau_1))*exp(-
i*0.5*neu_1*pulse)*sinc((0.5/pi)*(-neu_1)*(pulse-
abs(tau_1))); 

  K1(m,n)=phase1_1*phase2_1*amb_1*J; 
         
   % for receiver_2 
        arg1_2=((Y1+Z2).')*((u*((Z2.')*p))-(v*((Z2.')*x))); 
        phase1_2=exp(-i*k_y*arg1_2/c); 
        arg2_2=((Y1+Z1).')*((p-x)+(0.5*(u-
v)*(((Y1+Z2).')*(p+x))));                           
        phase2_2=exp(i*k_y*arg2_2/c); 
        tau_2=1/c*(((Y1+Z2).')*(p-x)); 
        neu_2=k_y*(((Y1+Z2).')*(u-v)); 
        amb_2=pi*(pulse-abs(tau_2))*exp(-
i*0.5*neu_2*pulse)*sinc((0.5/pi)*(-neu_2)*(pulse-
abs(tau_2))); 
        K2(m,n)=phase1_2*phase2_2*amb_2*J; 
         
   % for receiver_3 
        arg1_3=((Y1+Z3).')*((u*((Z3.')*p))-(v*((Z3.')*x))); 
        phase1_3=exp(-i*k_y*arg1_3/c); 
        arg2_3=((Y1+Z3).')*((p-x)+(0.5*(u-
v)*(((Y1+Z3).')*(p+x))));                           
        phase2_3=exp(i*k_y*arg2_3/c); 
        tau_3=1/c*(((Y1+Z3).')*(p-x)); 
        neu_3=k_y*(((Y1+Z3).')*(u-v)); 
        amb_3=pi*(pulse-abs(tau_3))*exp(-
i*0.5*neu_3*pulse)*sinc((0.5/pi)*(-neu_3)*(pulse-
abs(tau_3))); 
        K3(m,n)=phase1_3*phase2_3*amb_3*J; 
        % for receiver_4         
        arg1_4=((Y1+Z4).')*((u*((Z4.')*p))-(v*((Z4.')*x))); 
        phase1_4=exp(-i*k_y*arg1_4/c); 
        arg2_4=((Y1+Z4).')*((p-x)+(0.5*(u-
v)*(((Y1+Z4).')*(p+x))));                           
        phase2_4=exp(i*k_y*arg2_4/c); 
        tau_4=1/c*(((Y1+Z4).')*(p-x)); 
        neu_4=k_y*(((Y1+Z4).')*(u-v)); 
        amb_4=pi*(pulse-abs(tau_4))*exp(-
i*0.5*neu_4*pulse)*sinc((0.5/pi)*(-neu_4)*(pulse-
abs(tau_4))); 
        K4(m,n)=phase1_4*phase2_4*amb_4*J; 
         
   % for receiver_5         
        arg1_5=((Y1+Z5).')*((u*((Z5.')*p))-(v*((Z5.')*x))); 
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        phase1_5=exp(-i*k_y*arg1_5/c); 
        arg2_5=((Y1+Z5).')*((p-x)+(0.5*(u-
v)*(((Y1+Z5).')*(p+x))));                           
        phase2_5=exp(i*k_y*arg2_5/c); 
        tau_5=1/c*(((Y1+Z5).')*(p-x)); 
        neu_5=k_y*(((Y1+Z5).')*(u-v)); 
        amb_5=pi*(pulse-abs(tau_5))*exp(-
i*0.5*neu_5*pulse)*sinc((0.5/pi)*(-neu_5)*(pulse-
abs(tau_5))); 
        K5(m,n)=phase1_5*phase2_5*amb_5*J; 
         
   % for receiver_6 
        arg1_6=((Y1+Z6).')*((u*((Z6.')*p))-(v*((Z6.')*x))); 
        phase1_6=exp(-i*k_y*arg1_6/c); 
        arg2_6=((Y1+Z6).')*((p-x)+(0.5*(u-
v)*(((Y1+Z6).')*(p+x))));                           
        phase2_6=exp(i*k_y*arg2_6/c); 
        tau_6=1/c*(((Y1+Z6).')*(p-x)); 
        neu_6=k_y*(((Y1+Z6).')*(u-v)); 
        amb_6=pi*(pulse-abs(tau_6))*exp(-
i*0.5*neu_6*pulse)*sinc((0.5/pi)*(-neu_6)*(pulse-
abs(tau_6))); 
        K6(m,n)=phase1_6*phase2_6*amb_6*J; 
         
   % for receiver_7 
        arg1_7=((Y1+Z7).')*((u*((Z7.')*p))-(v*((Z7.')*x))); 
        phase1_7=exp(-i*k_y*arg1_7/c); 
        arg2_7=((Y1+Z7).')*((p-x)+(0.5*(u-
v)*(((Y1+Z7).')*(p+x))));                           
        phase2_7=exp(i*k_y*arg2_7/c); 
        tau_7=1/c*(((Y1+Z7).')*(p-x)); 
        neu_7=k_y*(((Y1+Z7).')*(u-v)); 
        amb_7=pi*(pulse-abs(tau_7))*exp(-
i*0.5*neu_7*pulse)*sinc((0.5/pi)*(-neu_7)*(pulse-
abs(tau_7))); 
        K7(m,n)=phase1_7*phase2_7*amb_7*J; 
         
   % for receiver_8 
        arg1_8=((Y1+Z8).')*((u*((Z8.')*p))-(v*((Z8.')*x))); 
        phase1_8=exp(-i*k_y*arg1_8/c); 
        arg2_8=((Y1+Z8).')*((p-x)+(0.5*(u-
v)*(((Y1+Z8).')*(p+x))));                           
        phase2_8=exp(i*k_y*arg2_8/c); 
        tau_8=1/c*(((Y1+Z8).')*(p-x)); 
        neu_8=k_y*(((Y1+Z8).')*(u-v)); 
        amb_8=pi*(pulse-abs(tau_8))*exp(-
i*0.5*neu_8*pulse)*sinc((0.5/pi)*(-neu_8)*(pulse-
abs(tau_8))); 
        K8(m,n)=phase1_8*phase2_8*amb_8*J; 
                    
K(m,n)=(abs(K1(m,n)+K2(m,n)+K3(m,n)+K4(m,n)+K5(m,n)+K6(m,n)+
K7(m,n)+K8(m,n))).^2; 
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    end 
end 
 
%%%%%%%%%%%%%%%%% 
Localization in Velocity-Space 
%%%%%%%%%%%%%%%%% 
 
nx=length(u_x);              % length of x = columns in K 
ny=length(u_y);              % length of y = rows in K 
K=zeros(ny,nx); 
K1=zeros(ny,nx); 
K2=zeros(ny,nx); 
K3=zeros(ny,nx); 
K4=zeros(ny,nx); 
K5=zeros(ny,nx); 
K6=zeros(ny,nx); 
K7=zeros(ny,nx); 
K8=zeros(ny,nx); 
  
for m=1:ny 
    for n=1:nx 
        u=[u_x_start+((n-1)*res_u);u_y_end-((m-1)*res_u);0]; 
  
   % for receiver_1 
        arg1_1=((Y1+Z1).')*((u*((Z1.')*p))-(v*((Z1.')*x))); 
        phase1_1=exp(-i*k_y*arg1_1/c); 
        arg2_1=((Y1+Z1).')*((p-x)+(0.5*(u-
v)*(((Y1+Z1).')*(p+x))));             
        phase2_1=exp(i*k_y*arg2_1/c); 
        tau_1=1/c*(((Y1+Z1).')*(p-x)); 
        neu_1=k_y*(((Y1+Z1).')*(u-v)); 
        amb_1=pi*(pulse-abs(tau_1))*exp(-
i*0.5*neu_1*pulse)*sinc((0.5/pi)*(-neu_1)*(pulse-
abs(tau_1))); 
        K1(m,n)=phase1_1*phase2_1*amb_1*J; 
              
   % for receiver_2    
        arg1_2=((Y1+Z2).')*((u*((Z2.')*p))-(v*((Z2.')*x))); 
        phase1_2=exp(-i*k_y*arg1_2/c); 
        arg2_2=((Y1+Z1).')*((p-x)+(0.5*(u-
v)*(((Y1+Z2).')*(p+x))));                           
        phase2_2=exp(i*k_y*arg2_2/c); 
        tau_2=1/c*(((Y1+Z2).')*(p-x)); 
        neu_2=k_y*(((Y1+Z2).')*(u-v)); 
        amb_2=pi*(pulse-abs(tau_2))*exp(-
i*0.5*neu_2*pulse)*sinc((0.5/pi)*(-neu_2)*(pulse-
abs(tau_2))); 
        K2(m,n)=phase1_2*phase2_2*amb_2*J; 
             

  % for receiver_3 
        arg1_3=((Y1+Z3).')*((u*((Z3.')*p))-(v*((Z3.')*x))); 
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        phase1_3=exp(-i*k_y*arg1_3/c); 
        arg2_3=((Y1+Z3).')*((p-x)+(0.5*(u-
v)*(((Y1+Z3).')*(p+x))));                           
        phase2_3=exp(i*k_y*arg2_3/c); 
        tau_3=1/c*(((Y1+Z3).')*(p-x)); 
        neu_3=k_y*(((Y1+Z3).')*(u-v)); 
        amb_3=pi*(pulse-abs(tau_3))*exp(-
i*0.5*neu_3*pulse)*sinc((0.5/pi)*(-neu_3)*(pulse-
abs(tau_3))); 
        K3(m,n)=phase1_3*phase2_3*amb_3*J; 
                 
   % for receiver_4 
        arg1_4=((Y1+Z4).')*((u*((Z4.')*p))-(v*((Z4.')*x))); 
        phase1_4=exp(-i*k_y*arg1_4/c); 
        arg2_4=((Y1+Z4).')*((p-x)+(0.5*(u-
v)*(((Y1+Z4).')*(p+x))));                           
        phase2_4=exp(i*k_y*arg2_4/c); 
        tau_4=1/c*(((Y1+Z4).')*(p-x)); 
        neu_4=k_y*(((Y1+Z4).')*(u-v)); 
        amb_4=pi*(pulse-abs(tau_4))*exp(-
i*0.5*neu_4*pulse)*sinc((0.5/pi)*(-neu_4)*(pulse-
abs(tau_4))); 
        K4(m,n)=phase1_4*phase2_4*amb_4*J; 
  

  % for receiver_5 
        arg1_5=((Y1+Z5).')*((u*((Z5.')*p))-(v*((Z5.')*x))); 
        phase1_5=exp(-i*k_y*arg1_5/c); 
        arg2_5=((Y1+Z5).')*((p-x)+(0.5*(u-
v)*(((Y1+Z5).')*(p+x))));                           
        phase2_5=exp(i*k_y*arg2_5/c); 
        tau_5=1/c*(((Y1+Z5).')*(p-x)); 
        neu_5=k_y*(((Y1+Z5).')*(u-v)); 
        amb_5=pi*(pulse-abs(tau_5))*exp(-
i*0.5*neu_5*pulse)*sinc((0.5/pi)*(-neu_5)*(pulse-
abs(tau_5))); 
        K5(m,n)=phase1_5*phase2_5*amb_5*J; 
             
   % for receiver_6 
        arg1_6=((Y1+Z6).')*((u*((Z6.')*p))-(v*((Z6.')*x))); 
        phase1_6=exp(-i*k_y*arg1_6/c); 
        arg2_6=((Y1+Z6).')*((p-x)+(0.5*(u-
v)*(((Y1+Z6).')*(p+x))));                           
        phase2_6=exp(i*k_y*arg2_6/c); 
        tau_6=1/c*(((Y1+Z6).')*(p-x)); 
        neu_6=k_y*(((Y1+Z6).')*(u-v)); 
        amb_6=pi*(pulse-abs(tau_6))*exp(-
i*0.5*neu_6*pulse)*sinc((0.5/pi)*(-neu_6)*(pulse-
abs(tau_6))); 
        K6(m,n)=phase1_6*phase2_6*amb_6*J; 
             

  % for receiver_7 
        arg1_7=((Y1+Z7).')*((u*((Z7.')*p))-(v*((Z7.')*x))); 
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        phase1_7=exp(-i*k_y*arg1_7/c); 
        arg2_7=((Y1+Z7).')*((p-x)+(0.5*(u-
v)*(((Y1+Z7).')*(p+x))));                           
        phase2_7=exp(i*k_y*arg2_7/c); 
        tau_7=1/c*(((Y1+Z7).')*(p-x)); 
        neu_7=k_y*(((Y1+Z7).')*(u-v)); 
        amb_7=pi*(pulse-abs(tau_7))*exp(-
i*0.5*neu_7*pulse)*sinc((0.5/pi)*(-neu_7)*(pulse-
abs(tau_7))); 
        K7(m,n)=phase1_7*phase2_7*amb_7*J; 
             

  % for receiver_8 
        arg1_8=((Y1+Z8).')*((u*((Z8.')*p))-(v*((Z8.')*x))); 
        phase1_8=exp(-i*k_y*arg1_8/c); 
        arg2_8=((Y1+Z8).')*((p-x)+(0.5*(u-
v)*(((Y1+Z8).')*(p+x))));                           
        phase2_8=exp(i*k_y*arg2_8/c); 
        tau_8=1/c*(((Y1+Z8).')*(p-x)); 
        neu_8=k_y*(((Y1+Z8).')*(u-v)); 
        amb_8=pi*(pulse-abs(tau_8))*exp(-
i*0.5*neu_8*pulse)*sinc((0.5/pi)*(-neu_8)*(pulse-
abs(tau_8))); 
        K8(m,n)=phase1_8*phase2_8*amb_8*J; 
            
K(m,n)=(abs(K1(m,n)+K2(m,n)+K3(m,n)+K4(m,n)+K5(m,n)+K6(m,n)+
K7(m,n)+K8(m,n))).^2; 
 
    end 
end 
 
%%%%%%%%%%%%%%%%% 
3-D Slice Plot for Position-Space 
%%%%%%%%%%%%%%%%% 
 
p_x_start=-20; 
p_x_end=20; 
p_y_start=-20; 
p_y_end=20; 
p_z_start=-20; 
p_z_end=20; 
res_p=0.5; 
p_x=p_x_start:res_p:p_x_end;   % define vector of x-axis 
values 
p_y=p_y_start:res_p:p_y_end;   % define vector of y-axis 
values 
p_z=p_z_start:res_p:p_z_end; 
  
nx=length(p_x);               % length of x = columns in K 
ny=length(p_y);               % length of y = rows in K 
nz=length(p_z);               % length of z = pages in K 
K=zeros(ny,nx,nz);            % initialize K matrix 
K1=zeros(ny,nx,nz); 
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K2=zeros(ny,nx,nz); 
  
for a=1:nz 
    for m=1:ny 
        for n=1:nx 
             
            p=(10^3)*[p_x_start+((n-1)*res_p);p_y_end-((m-
1)*res_p);p_z_start+((a-1)*res_p)]; 
 
  % for receiver_1  
            arg1_1=((Y1+Z1).')*((u*((Z1.')*p))-
(v*((Z1.')*x))); 
            phase1_1=exp(-i*k_y*arg1_1/c); 
            arg2_1=((Y1+Z1).')*((p-x)+(0.5*(u-
v)*(((Y1+Z1).')*(p+x))));             
            phase2_1=exp(i*k_y*arg2_1/c); 
            tau_1=1/c*(((Y1+Z1).')*(p-x)); 
            neu_1=k_y*(((Y1+Z1).')*(u-v)); 
            amb_1=pi*(pulse-abs(tau_1))*exp(-
i*0.5*neu_1*pulse)*sinc((0.5/pi)*(-neu_1)*(pulse-
abs(tau_1))); 
            K1(m,n,a)=phase1_1*phase2_1*amb_1*J; 
             
  % for receiver_2     
            arg1_2=((Y1+Z2).')*((u*((Z2.')*p))-
(v*((Z2.')*x))); 
            phase1_2=exp(-i*k_y*arg1_2/c); 
            arg2_2=((Y1+Z1).')*((p-x)+(0.5*(u-
v)*(((Y1+Z2).')*(p+x))));                           
            phase2_2=exp(i*k_y*arg2_2/c); 
            tau_2=1/c*(((Y1+Z2).')*(p-x)); 
            neu_2=k_y*(((Y1+Z2).')*(u-v)); 
            amb_2=pi*(pulse-abs(tau_2))*exp(-
i*0.5*neu_2*pulse)*sinc((0.5/pi)*(-neu_2)*(pulse-
abs(tau_2))); 
            K2(m,n,a)=phase1_2*phase2_2*amb_2*J; 
         
            K(m,n,a)=(abs(K1(m,n,a)+K2(m,n,a))).^2; 
  
        end 
    end 
end 
 
%%%%%%%%%%%%%%%%% 
Ambiguity Implementation for Chirp Signal 
%%%%%%%%%%%%%%%%% 
 
        amb_1=pi*(pulse-abs(tau_1))*exp(i*0.5*(-
neu_1+(gamma*tau_1))*pulse)*sinc((0.5/pi)*(-
neu_1+(gamma*tau_1))*(pulse-abs(tau_1))); 
 
%%%%%%%%%%%%%%%%% 
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Output Plot 
%%%%%%%%%%%%%%%%% 
 
clear all 
image(p_x,p_y,64*K/max(max(K))) 
hold on 
plot(2,0,'+k',-5,5,'^k',15,15,'^k',-2,-15,'^k',15,-
15,'^k','linewidth',2) 
hold off 
xlabel({'\fontsize{11} x-component','\fontsize{11} 
(position)'}) 
ylabel({'\fontsize{11} y-component','\fontsize{11} 
(position)'}) 
title({'\fontsize{12} Transmitter/Receiver Geometry 1'}) 
 
% Slice Plot  
norm=max(max(max(K))); 
[UX,UY,UZ]=meshgrid(u_x,u_y,u_z); 
slice(UX,UY,UZ,K/norm,[0],[0],[0]) 
colorbar 
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