

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1990-06

A Circuit Model for an Inductive Strip in Homogeneous Finline

Morua, Michael L.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/34814

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL Monterey, California

AD-A238 001

THESIS

A CIRCUIT MODEL FOR AN INDUCTIVE STRIP IN HOMOGENEOUS FINLINE

by:

Michael L. Morua

June 1990

Thesis Advisor

91-04477

51

Jeffrey B. Knorr

JUL 1 1 1391

Approved for public release; distribution is unlimited.

Inclassified

ecurity classification of this page

				REPORT DOCU	MENTATION PAGE	
1a Report Security Classification Unclassified				1b Restrictive Markings		
2a Security Classification Authority					3 Distribution Availability of Report	
2b Declas	sification Dow	ngrading Sched	ule		Approved for public release; distribution is unlimited.	
4 Perform	ung Organizati	on Report Nur	nber(s)		5 Monitoring Organization Report Number(s)	
6a Name of Performing Organization Naval Postgraduate School (if applica				6b Office Symbol (<i>if applicable</i>) 33	7a Name of Monitoring Organization Naval Postgraduate School	
6c Address (city, state, and ZIP code) Monterey, CA 93943-5000					7b Address (city, state, and ZIP code) Monterey, CA 93943-5000	
8a Name of Funding Sponsoring Organization 8b Office 8 (if applica)			lization	8b Office Symbol (if applicable)	9 Procurement Instrument Identification Number	
8c Addres	s (clty, state, a	nd ZIP code)			10 Source of Funding Numbers	
					Program Element No Project No Task No Work Unit Accession No	
11 Title (include security	classification)	A CIR	CUIT MODEL FO	R AN INDUCTIVE STRIP IN HOM	IOGENFOUS FINLINE
12 Persor	al Author(s) N	fichael L. N	lorua			
13a Type of Report13b Time CoveredMaster's ThesisFromTo			3b Time from	Covered To	14 Date of Report (year, month, day) June 1990	15 Page Count 112
16 Supple sition of	mentary Notat the Depart	ion The view ment of Def	rs expre ense or	ssed in this thesis are the U.S. Governme	e those of the author and do not reflect nt.	the official policy or po-
17 Cosati Codes 18 Subject Terms (continue or			oject Terms (continue on	reverse if necessary and identify by block number	r)	
Field	Group	Subgroup	Finline, Discontinuity, Inductive, Strip.			
19 Abstra This	et (continue or thesis descr	reverse ij nece ibes a CAD	ssary and compa	t identify by block number tible circuit model fo) or an infinitesimally thin inductive strip	centered in homogeneous

This thesis describes a CAD-compatible circuit model for an infinitesimally thin inductive strip centered in homogeneous finline for $0.1 \le \frac{h}{D} \le 1.0$. The model is shown to predict scattering data which agrees with data computed using the spectral domain method. *b* Results were generated for strips of length $T \ge 10$ mills in X-band. By applying the scaling principle, the model is valid for any waveguide band over the normal frequency range for the dominant TE_{10} mode.

20 Distribution Availability of Abstract 🖾 unclassified unlimited 🗌 same as report	DTIC users	21 Abstract Security Classification Unclassified	
22a Name of Responsible Individual Jeffrey B. Knorr		22b Telephone (include Area code) (408) 646-2815 2082	L2c Office Symbol EC Ko
DD FORM 1473.84 MAR	83 APR edition ma All other ed	y be used until exhausted ations are obsolete	security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

A Circuit Model for an Inductive Strip in Homogeneous Finline

by

Michael L. Morua Lieutenant, United States Navy B.S., University of California, Berkeley 1982

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June 1990

ABSTRACT

This thesis describes a CAD-compatible circuit model for an infinitesimally thin inductive strip centered in homogeneous finline for $0.1 \le \frac{w}{b} \le 1.0$. The model is shown to predict scattering data which agrees with data computed using the spectral domain method. Results were generated for strips of length $T \ge 10$ mils in X-band. By applying the scaling principle, the model is valid for any waveguide band over the normal frequency range for the dominant TE_{10} mode.

Acussion For
WITT GRANI NI
DTIC TAB
Unamergiand Th
Justification
B.f
Pistribution/
Aveilability Codes
Avail and/or
Dist Special
H-1

TABLE OF CONTENTS

L

.

I. INTRODUCTION	1
A. BACKGROUND	1
B. OBJECTIVE	1
C. RELATED WORK	2
II. A MODEL FOR HOMOGENEOUS FINLINE	4
A. CONCEPT	4
B. DETERMINING Aeq AND Beq	4
C. ANALYTICAL EXPRESSIONS FOR Aeq AND Beq	5
III. SCATTERING DATA FOR AN INDUCTIVE STRIP IN FINLINE 14	4
A. CONCEPT	4
B. SPECTRAL DOMAIN PROGRAM	4
C. MODIFICATION TO PROGRAM	5
IV. A MODEL FOR AN INDUCTIVE STRIP IN HOMOGENEOUS FINLINE 2	2
A. CONCEPT	2
B. CIRCUIT MODEL	5
C. RESULTS	8
V. SCALING TO OTHER WAVEGUIDE BANDS	2
A. CONCEPT	2
B. IMPLEMENTATION AND RESULTS	4
VI. SUMMARY	5
A. CONCLUSIONS	5
B. RECOMMENDATIONS	5
APPENDIX A. COMPUTER-GENERATED FINLINE DATA FOR WR(28)	
AND WR(90)	7

APPENDIX B. INDUCTIVE STRIP IN FINLINE MODEL
APPENDIX C. COMPUTER-GENERATED SCATTERING DATA FOR IN- DUCTIVE STRIPS
APPENDIX D.INDUCTANCE, CAPACITANCE, AND ERROR FOR IN- DUCTIVE STRIPS70
APPENDIX E. FINLINE FILTER MODEL
APPENDIX F. COMPUTER-GENERATED SCATTERING DATA FOR SCALED MODEL
APPENDIX G. MAGNITUDE, PHASE, SMITH CHART PLOT OF SCALED MODEL AND DATA
APPENDIX H. ERROR FOR SCALED MODEL
LIST OF REFERENCES
INITIAL DISTRIBUTION LIST

LIST OF TABLES

Þ

Table	1.	Aeq AND Beq FOR WR(28), $W/B = 0.01, 0.02, 0.03 \dots 37$
Table	2.	Aeq AND Beq FOR WR(28), $W/B = 0.04, 0.05, 0.06, 0.07 \dots 38$
Table	3.	Aeq AND Beq FOR WR(28), $W/B = 0.08, 0.09, 0.1, 0.2$
Table	4.	Aeq AND Beq FOR WR(28), $W/B = 0.3, 0.4, 0.5, 0.6$
Table	5.	Aeq AND Beq FOR WR(28), $W/B = 0.7, 0.8, 0.9, 1.0$
Table	6.	Aeq AND Beq FOR WR(90), $W/B = 0.01, 0.02, 0.03, 0.04 \dots 42$
Table	7.	Aeq AND Beq FOR WR(90), $W/B = 0.05, 0.06, 0.07, 0.08, 0.09 \dots 43$
Table	8.	Aeq AND Beq FOR WR(90), $W_B = 0.1, 0.2, 0.3, 0.4, 0.5$
Table	9.	Aeq AND Beq FOR WR(90), $W/B = 0.6, 0.7, 0.8, 0.9, 1.0$
Table	10.	SCATTERING DATA FOR $W/B = 1.0$, $T = 10$, 20, 30, 40, 50, 60 MILS 48
Table	11.	SCATTERING DATA FOR $W/B = 1.0$, $T = 70$, 80, 90, 100, 200, 300,
		400, 500 MILS 49
Table	12.	SCATTERING DATA FOR W/B = 0.9 , T = 10 , 40, 80 MILS 50
Table	13.	SCATTERING DATA FOR W/B = 0.9 , T = 100 , 200, 300, 400, 500
		MILS
Table	14.	SCATTERING DATA FOR $W/B = 0.8$, $T = 10, 20, 30, 40, 50, 60$ MILS 52
Table	15.	SCATTERING DATA FOR W/B = 0.8 , T = 70, 80, 90, 100, 200, 300,
		400, 500 MILS
Table	16.	SCATTERING DATA FOR W/B = 0.7 , T = 10 , 40 , 80 MILS $\dots 54$
Table	17.	SCATTERING DATA FOR W/B = 0.7 , T = 100 , 200, 300, 400, 500
		MILS
Table	18.	SCATTERING DATA FOR $W/B = 0.6$, $T = 10$, 40, 80 MILS 56
Table	19.	SCATTERING DATA FOR W/B = 0.6 , T = 100 , 200, 300, 400, 500
		MILS
Table	20.	SCATTERING DATA FOR W/B = 0.5 , T = 10, 20, 30, 40, 50, 60 MILS 58
Table	21.	SCATTERING DATA FOR W/B = 0.5 , T = 70, 80, 90, 100, 200, 300,
		400, 500 MILS
Table	22.	SCATTERING DATA FOR $W/B = 0.4$, $T = 10$, 40, 80 MILS 60
Table	23.	SCATTERING DATA FOR W/B = 0.4, T = 100, 200, 300, 400, 500
		MILS
Table	24.	SCATTERING DATA FOR W $B = 0.3$, T = 10, 40, 80 MILS

Table 25. SCATTERING DATA FOR $W/B = 0.3$, T = 100, 200, 300, 400, 500
MILS
Table 26. SCATTERING DATA FOR W/B = 0.25, T = 10, 20, 30, 40, 50, 60 MILS 64
Table 27. SCATTERING DATA FOR $W/B = 0.25$, $T = 70$, 80, 90, 100, 200, 300,
400, 500 MILS 65
Table 28. SCATTERING DATA FOR $W/B = 0.2$, T = 10, 20, 30, 40, 50, 60 MILS 66
Table 29. SCATTERING DATA FOR $W/B = 0.2$, $T = 70$, 80, 90, 100, 200, 300,
400, 500 MILS 67
Table 30. SCATTERING DATA FOR $W/B = 0.1$, $T = 10, 20, 30, 40, 50, 60$ MILS 68
Table 31. SCATTERING DATA FOR $W/B = 0.1$, $T = 70$, 80, 90, 100, 200, 300,
400, 500 MILS
Table 32. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 1.0$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 70$
Table 33. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.9$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 71$
Table 34. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.8$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 72$
Table 35. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.7$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 73$
Table 36. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.6$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 74$
Table 37. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.5$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 75$
Table 38. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.4$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 76$
Table 39. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.3$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 77$
Table 40. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.25$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 78$
Table 41. INDUCTANCE, CAPACITANCE, AND ERROR FOR $W/B = 0.2$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 79$
Table 42. INDUCTANCE, CAPACITANCE. AND ERROR FOR $W/B = 0.1$,
$T = 10 \text{ TO } 500 \text{ MILS} \dots 80$
Table 43. SCATTERING DATA FOR WR(42), W/B= 0.5, T = 40 MILS \dots 85
Table 44. SCATTERING DATA FOR WR(28), W/B = 1.0 , T = 15 MILS 86

,

Table 45. SCATTERING DATA FOR WR(19), W/B = 0.25, T = 20 MILS 87 Table 46. SCATTERING DATA FOR WR(12), W/B = 0.5, T = 3 MILS 88 Table 47. SCATTERING DATA FOR WR(8), W/B = 1.0, T = 30 MILS 89 Table 48. SCATTERING DATA FOR WR(5), W/B = 0.25, T = 2 MILS 90 Table 49. ERROR FOR WR(42), WR(28), WR(19), WR(12), WR(8), WR(5) 97

LIST OF FIGURES

Figure	1.	Cross-sectional view of a finline
Figure	2.	Cut away view of an inductive strip in a finline cavity
Figure	3.	Homogeneous finline and equivalent rectangular waveguide
Figure	4.	MATLAB program used for elliptical curve fitting
Figure	5.	Aeq/A vs. W/B for WR(28) 10
Figure	6.	Beq/B vs. W/B for WR(28)
Figure	7.	Aeq/A vs. W/B for WR(90) 11-
Figure	8.	Beq/B vs. W/B for WR(90). \ldots 11
Figure	9.	Error for Aeq/A vs. W/B for WR(28)
Figure	10.	Error for Beq/B vs. W/B for WR(28). $\dots \dots \dots$
Figure	11.	Error for Aeq/A vs. W/B for WR(90). $\dots \dots \dots$
Figure	12.	Error for Beq/B vs. W/B for WR(90). $\dots \dots \dots$
Figure	13.	Convergence of scattering data (magnitude) vs. matrix order 17
Figure	14.	Convergence of scattering data (phase) vs. matrix order
Figure	15.	Computer system time vs. matrix order and w/b 19
Figure	16.	Search routine from STRIP 20
Figure	17.	Results from the modified version of STRIP 21
Figure	18.	Equivalent circuit models 23
Figure	19.	Equivalent circuit models (cont.)
Figure	20.	Inductance vs. Strip Length
Figure	21.	Error vs. Strip Length
Figure	22.	Insertion and Return Loss of Model and Actual Filter
Figure	23.	Inductive Strip in Finline Model TOUCHSTONE Program
Figure	24.	Inductive Strip in Finline Model TOUCHSTONE Program (cont.) 47
Figure	25.	Finline Filter Model TOUCHSTONE Program
Figure	26.	Finline Filter Model TOUCHSTONE Program (cont.)
Figure	27.	Finline Filter Model TOUCHSTONE Program (cont.)
Figure	28.	Finline Filter Model TOUCHSTONE Program (cont.)
Figure	29.	Plots for WR(42), W/B = 0.5, T = 40 mils
Figure	30.	Plots for WR(28), W/B = 1.0, T = 15 mils
Figure	31.	Plots for WR(19), W/B = 0.25, T = 20 mils

Figure	32.	Plots for WR(12), W/B = 0.5, T = 3 mils.	
Figure	33.	Plots for WR(8), W/B = 1.0, T = 30 mils.	
Figure	34.	Plots for WR(5), W/B = 0.25, T = 2 mils.	

ACKNOWLEDGMENTS

I would like to thank my wife. Susan, for her patience and understanding, my parents for the sense of achievement that they have always encouraged in me, and my thesis advisor, Prof. Knorr, for his support and guidance.

I. INTRODUCTION

A. BACKGROUND

Finline, in its most general form, consists of metal fins printed on a dielectric substrate which is mounted along the E-plane of a rectangular waveguide. The advantages of this structure are low-attenuation, single mode operation, containment of spurious emissions, ease of production, and compatibility with integrated circuit technology. In conjunction with the inductive strip, filters and resonators can be constructed. For these reasons, finline has been used extensively for constructing millimeter wave circuits.

The design process for microwave devices has undergone a revolutionary change since the recent development of Computer Assisted Design (CAD) programs. CAD's ability to streamline the design process and improve flexibility has saved time and money. Numerical methods can be used to generate scattering data for an inductive strip in finline, but this process is extremely slow and not suited for CAD applications. Therefore, a simple circuit model, which is compatible with existing general purpose CAD software, is required. Knorr presented such a model for the case of $\frac{w}{b} = 1.0$ in 1988 [Ref. 1]. However, prior to this thesis no such circuit model had been fully developed for the case of $\frac{w}{b} < 1.0$.

For filters, the inductive strip in finline is the basic building block. The geometry of finline and the inductive strip are illustrated in Figs. 1 and 2 on page 3. Figure 1 shows the cross-sectional view of a finline waveguide. Figure 2 shows a 3-dimensional view of an inductive strip of length T centered in a finline cavity. As Fig. 2 illustrates, the inductive strip couples two finline resonant cavities. A filter consists of a number of inductive strips joined by finline. The transfer characteristics are controlled by choosing the number and lengths of the inductive strips, and the lengths of the finline joining them. Therefore, several inductive strip circuit models can be cascaded with finline sections to model the transfer characteristics of a filter. As a result, the filter designer can have the capability of accurately determining the transfer characteristics before the filter is actually built.

B. OBJECTIVE

The objective of this thesis is to describe an equivalent circuit model for an infinitesimally thin inductive strip in homogeneous, lossless finline when $\frac{w}{b} \leq 1.0$. Homogeneous finline has no dielectric in its structure. The model is valid for WR(90)

waveguide where $\frac{b}{a} = \frac{4}{9}$ and the frequency range is 8 to 12 GHz. Using the scaling principle, the model can be modified for use in other waveguide bands. If the scaling principle is violated, such as when $\frac{b}{a} = \frac{1}{2}$, the model can be used with only a slight increase in error. Furthermore, the model produces an error of less than 2.5% and is compatible with *TOUCHSTONE*, a PC-based microwave CAD program developed by *EESOF*.

C. RELATED WORK

Finline was first described by Meier in 1974 [Ref. 2]. This work discussed the advantages of finline as a transmission medium for millimeter wave integrated circuits. Under Knorr, further work on finline was conducted at the Microwave Lab of the Naval Postgraduate School. An analysis of finline using the spectral domain method was completed by Knorr and Shayda in 1980 [Ref. 3,4]. This work resulted in a Fortran program called *IMPED* which calculates the impedance and wavelength in a finline waveguide. In 1984, Kim reformulated the finline field equations to achieve better numerical stability [Ref. 5]. In 1980, Miller began work on the inductive strip in finline by experimentally measuring the scattering coefficients of various strip lengths. In 1984, Knorr and Deal completed an analysis of the inductive strip in finline using the spectral domain method. They validated their results by comparing them to Miller's experimental data [Refs. 6,7]. This work resulted in a Fortran program called STRIP which calculates the S_{11} and S_{12} scattering coefficients for an inductive strip in finline. In 1988, Knorr proposed a circuit model for an inductive strip in finline when $\frac{w}{h} = 1.0$ [Ref. 1: pp. 11-15]. Bush and Karaminas continued Knorr's work in order to develop a circuit model for the case when $\frac{w}{h} \le 1.0$ [Refs. 8,9].

This thesis describes a circuit model based on data generated by *IMPED* and *STRIP* for the case when $\frac{w}{b} \le 1.0$. The model incorporates ideas from Knorr, Bush, and Karaminas as well as original ideas. The resulting model significantly improves accuracy. Knorr discusses the evolution of this circuit model in Ref. 10.

Figure 1. Cross-sectional view of a finline.: [From Ref. 1: p. 22.]

Figure 2. Cut away view of an inductive strip in a finline cavity.: [From Ref. 1: p. 22.] A metal strip of length T spans the space between the fins at the center of the cavity. The dielectric substrate is the shaded region next to the strip. The surrounding non-shaded region is metal.

II. A MODEL FOR HOMOGENEOUS FINLINE

A. CONCEPT

To model an inductive strip in finline, one must first develop a finline model. Bush describes the process of modeling homogeneous finline in Ref. 8: pp. 12-14. With $\varepsilon_r = 1$, a finline is just a homogeneous cylindrical waveguide. Thus, the electrical characteristics of homogeneous finline are identical to those of a rectangular waveguide having the same wavelength and impedance. Figure 3 on page 5 compares homogeneous finline to a rectangular waveguide of width a_{eq} and height b_{eq} . Furthermore, a unique value of a_{eq} and b_{eq} exists for each finline value of $\frac{w}{b}$, where $\frac{w}{b}$ is the ratio of the fin gap to finline height.

To calculate a_{eq} and b_{eq} , the finline wavelength and impedance must be calculated numerically. *IMPED* was used for this purpose. It calculates $\frac{\lambda'}{\lambda_o}$ and Z_{ov} for various values of $\frac{w}{b}$, where λ' is the finline wavelength, λ_o is the free-space wavelength, and Z_{ov} is the finline characteristic impedance. Therefore, a finline model can be generated by: (1) using *IMPED* to determine a_{eq} and b_{eq} for various values of $\frac{w}{b}$, and (2) creating an analytical expression which describes a_{eq} and b_{eq} as a function of $\frac{w}{b}$.

B. DETERMINING Aeq AND Beq

Equations for a_{eq} and b_{eq} can be derived from the following wavelength and impedance equations for homogeneous finline:

$$\frac{\dot{\lambda}'}{\dot{\lambda}_o} = \frac{1}{\sqrt{1 - \left(\frac{\dot{\lambda}}{\dot{\lambda}_{cf}}\right)^2}}$$
(1)

$$Z_{ov} = \frac{2b_{eq}}{a_{eq}} \eta_o \left(\frac{\lambda'}{\lambda_o}\right)$$
(2)

where λ_{ef} is the finline cutoff wavelength and η_o is the intrinsic impedance of free space [Ref. 8. pp. 15-16]. First, a_{eq} and b_{eq} are expressed in terms of the normalized equivalent width $\frac{a_{eq}}{a}$ and the normalized equivalent height $\frac{b_{eq}}{b}$. The normalized equivalent width is derived by relating a_{eq} to the finline cutoff wavelength as follows:

b)

Figure 3. Homogeneous finline and equivalent rectangular waveguide.: a) homogeneous finline and b) equivalent rectangular waveguide of width a_{eq} and height b_{eq}

$$\frac{a_{eq}}{a} = \frac{2a_{eq}}{2a} = \frac{\lambda_{ef}}{\lambda_{eg}}$$
(3)

where λ_{cf} and λ_{cg} are the cutoff wavelengths of the finline and rectangular waveguides, respectively. The finline cutoff wavelength λ_{cf} can be derived from Eq. (1) and is as follows:

$$\lambda_{cf} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda_o}{\lambda'}\right)^2}} \,. \tag{4}$$

Combining Eqs. (3) and (4), the result is an expression for the normalized equivalent width:

$$\frac{a_{eq}}{a} = \frac{\lambda}{2a\sqrt{1 - \left(\frac{\lambda_o}{\lambda'}\right)^2}}.$$
(5)

The normalized equivalent height is derived by rearranging Eq. (2) as follows:

$$b_{eq} = \frac{Z_{ov} a_{eq}}{2\eta_o \left(\frac{\lambda'}{\lambda_o}\right)} \,. \tag{6}$$

Multiplying the right side by $\frac{a}{a}$ and regrouping results in the following:

$$b_{eq} = \frac{Z_{ov}}{\eta_o \left(\frac{\dot{\lambda}'}{\dot{\lambda}_o}\right)} \left(\frac{a_{eq}a}{2a}\right). \tag{7}$$

Normalizing b_{eq} to b, the result is an expression for the normalized equivalent height:

$$\frac{b_{eq}}{b} = \frac{Z_{ov}}{\eta_o \left(\frac{\lambda'}{\lambda_o}\right)} \left(\frac{a_{eq}}{a}\right) \left(\frac{a}{2b}\right). \tag{8}$$

IMPED was originally programmed to calculate only $\frac{\lambda'}{\lambda_o}$ and Z_{ov} . However, it has been reprogrammed to calculate $\frac{c_{eq}}{a}$ and $\frac{b_{eq}}{b}$ directly, permitting quick and accurate calculations of the data. *IMPED* was used extensively to generate data points in order to find analytical expressions for $\frac{a_{eq}}{a}$ and $\frac{b_{eq}}{b}$ as a function of $\frac{w}{b}$.

C. ANALYTICAL EXPRESSIONS FOR Aeq AND Beq

Data from WR(28) and WR(90) waveguides were used to develop analytical expressions for $\frac{a_{eq}}{a}$ and $\frac{b_{eq}}{b}$. WR(28) has an aspect ratio $\frac{b}{a}$ of $\frac{1}{2}$ which is the same for all other millimeter waveguides. However, all of the experimental data was obtained

with WR(90) which has an aspect ratio of $\frac{4}{9}$. For these reasons, an analytical expression was sought which was valid for both aspect ratios.

IMPED was used to calculate $\frac{a_{eq}}{a}$ and $\frac{b_{eq}}{b}$ for nineteen values of $\frac{w}{b}$. Appendix A lists the resulting *IMPED* output for *WR(28)* and *WR(90)*. This approach ensured that sufficient data was available for an accurate curve fit. Bush was unsuccessful in his attempt to find an accurate analytical expression for $\frac{a_{eq}}{a}$ and $\frac{b_{eq}}{b}$ because he failed to use a sufficient number of data points (only 7 points at irregular intervals). After the data points were plotted, it was observed that the curves resemble the arc of an ellipse. Therefore, an elliptical curve fit was attempted.

The first step in the elliptical curve-fitting process is to start with the equation for an ellipse. The general equation for an ellipse is:

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1.$$
(9)

Solving for y results in:

$$y = k \pm \sqrt{a^2 - a^2 \frac{(x-h)^2}{b^2}}$$
(10)

where (h,k) is the center of the ellipse, and a, b are the major and minor axes, respectively. The positive term refers to the upper half of the ellipse, while the negative term refers to the lower half.

For WR(28), Knorr discovered that the curve for $\frac{a_{eq}}{a}$ vs. $\frac{w}{b}$ resembles the arc of a unit circle with center at (1,2). Using Eq. (9) with h = 1, k = 2, a = 1, and b = 1, the result is:

$$\frac{a_{eq}}{a} = 2 - \sqrt{1 - \left(1 - \frac{w}{b}\right)^2}.$$
 (11)

Equation (10) works well for $\frac{w}{b} \ge 0.1$, but is not very accurate for values less than 0.1. Accuracy was improved by adding the following term to Eq. (10):

$$0.221 \left(1 - \frac{w}{b}\right)^{28}.$$
 (12)

This term was found by trial and error. Its purpose is to increase $\frac{a_{eq}}{a}$ for the smaller values of $\frac{w}{b}$.

The same curve fitting method was used to find analytical expressions for $\frac{b_{eq}}{b}$ vs. $\frac{w}{b}$ for WR(28), and $\frac{a_{eq}}{a}$, $\frac{b_{eq}}{b}$ vs. $\frac{w}{b}$ for WR(90). For both waveguides, the center of the ellipse is (1, 2) for $\frac{a_{eq}}{a}$ and (1, 0.6) for $\frac{b_{eq}}{b}$. As a result, an expression for $\frac{a_{eq}}{a}$ and $\frac{b_{eq}}{b}$ in terms of $\frac{b}{a}$ involves only the lengths of the major and minor axes of the ellipse.

For a particular curve, a fit can be found by simply adjusting the lengths a and b in Eq. (9). Once an approximate fit is found, the coefficient and exponent in Eq. (12) can be adjusted to decrease the error. The curve fit is conducted on a trial-and-error basis until the error at each data point is reduced to an acceptable level. The error at each point is defined as:

$$Error = \left(\frac{\mid Model \ value \ - \ IMPED \ Value \mid}{IMPED \ Value}\right) 100.$$
(13)

The *MATLAB* program in Fig. 4 on page 9 was used to graph the results and determine the error.

The following equations were derived from the elliptical curve fitting process for WR(28) and WR(90):

$$\frac{a_{eq}}{a} = 2 - \sqrt{1 - \left(\frac{2b}{a}\right)^{0.77} \left(1 - \frac{w}{b}\right)^2} + 0.221 \left(\frac{2b}{a}\right)^{-3.61} \left(1 - \frac{w}{b}\right)^{28}$$
(14)

$$\frac{b_{eq}}{b} = 0.6 + \sqrt{0.16 - 0.1347 \left(\frac{2b}{a}\right)^{1.35} \left(1 - \frac{w}{b}\right)^2} - 0.170 \left(\frac{2b}{a}\right)^{-1.15} \left(1 - \frac{w}{b}\right)^{10}$$
(15)

where $\frac{b}{a}$ is the aspect ratio and $\frac{w}{b}$ is the fin gap ratio. The error from these equations is less than 1.3% for $0.01 \le \frac{w}{b} \le 1.0$. Figures 5 and 6 on page 10 and Figs. 7 and 8 on page 11 show the plot of $\frac{a_{eq}}{a}$ and $\frac{b_{eq}}{b}$ vs. $\frac{w}{b}$ for WR(28) and WR(90), respectively. The analytical equations are plotted with solid lines and the data from *IMPED* is plotted with circles. Figures 9 and 10 on page 12 and Figs. 11 and 12 on page 13 show how the the error at each data point changes with $\frac{w}{b}$. The solid line in each graph merely connects the data points.

In conclusion, homogeneous finline can be modeled with just an analytical expression for $\frac{a_{eq}}{a}$ and $\frac{b_{eq}}{b}$ because these parameters define a unique finline wavelength and impedance. These analytical expressions are of an elliptical form and are functions of $\frac{w}{b}$ and $\frac{b}{a}$. As a result, finline in any waveguide with $\frac{b}{a} = \frac{1}{2}$ or $\frac{4}{9}$ can be modeled. The model can be applied to other values of $\frac{b}{a}$, but with less accuracy. Additional tests

have shown that the error only increases by a maximum of 0.3% for values of $\frac{b}{a} = 0.25$ and 0.6.

```
% MATLAB program for elliptical curve fitting
% Enter data W = w/b D = data
W = [0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0.07 \ 0.08 \ 0.09 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ \dots
0.5 0.6 0.7 0.8 0.9 1.0 ];
D = [ 1.951 1.831 1.751 1.702 1.654 1.620 1.587 1.557 1.529 1.506 ...
1.343 1.248 1.175 1.120 1.078 1.047 1.022 1.005 1.000 ];
% Enter waveguide width,a, and height,b
a = 9;
b = 4;
% Enter coefficients to adjust fit m-extends curve left/right
                                                n-adjusts tail of curve up/down
۶.
m = 0.77;
n = -3.61;
x = 0.0:.001:1.0;
y = 2 - \operatorname{sgrt}(1 - (2*b/a). \hat{m}.*(1-x). \hat{2}) + 0.221*(2*b/a). \hat{n}.*(1-x). \hat{2}8;

y1 = 2 - \operatorname{sgrt}(1 - (2*b/a). \hat{m}.*(1-W). \hat{2}) + 0.221*(2*b/a). \hat{n}.*(1-W). \hat{2}8;
8 Calculates error at each data point
p1 = (y1 - D)./D. * 100
% Plots data points and graphs function
clq
axis([ 0 1.0 1.0 2.1 ])
plot(x,y,W,D,'o')
title('Aeq/A vs W/B for WR(90)')
xlabel(' W/B '),ylabel(' Aeq/A '),grid
pause
print
```

Figure 4. MATLAB program used for elliptical curve fitting.: Program plots data points, graphs analytical equations, and computes error at each data point.

1

Figure 5. Aeq/A vs. W/B for WR(28).

Figure 6. Beq/B vs. W/B for WR(28).

Figure 7. Aeq/A vs. W/B for WR(90).

Figure 8. Beq/B vs. W/B for WR(90).

Figure 9. Error for Aeq/A vs. W/B for WR(28).

Figure 10. Error for Beq/B vs. W/B for WR(28).

Figure 11. Error for Aeq/A vs. W/B for WR(90).

Figure 12. Error for Beq/B vs. W/B for WR(90).

III. SCATTERING DATA FOR AN INDUCTIVE STRIP IN FINLINE

A. CONCEPT

Having obtained a finline model, the next step in the development of an equivalent circuit model is to obtain accurate scattering data for various lengths of inductive strips. The scattering data can be generated either experimentally or numerically. In the latter case, *STRIP* uses the spectral domain method to accurately predict scattering data [Ref. 7: pp. 76-82]. *STRIP* was used to provide scattering data for $0.1 \le \frac{w}{b} \le 1.0$ and strip lengths of $10 \le T \le 500$ mils.

Scattering data was generated for X-band frequencies because measuring equipment for WR(90) is readily available. In addition, the comparison of STRIP to X-band experimental scattering data is well-documented [Ref. 7: pp. 83-138]. The accuracy of the circuit model can also be validated by building X-band filters and resonators, and comparing their insertion and return loss with that predicted by the model. This process is simpler and less time consuming than directly measuring the scattering data from the inductive strips.

B. SPECTRAL DOMAIN PROGRAM

In general, *STRIP* is a Fortran program which uses the spectral domain method to solve the field equations for an inductive strip in finline. Deal describes this method in detail in Ref. 7: pp. 62-71. In essence, the electric field is approximated by a finite summation of sines and cosines. The Fourier transform is taken because field integrals are reduced to multiplication in the spectral domain. By applying Galerkins' method, an iterative search is used to find the odd and even resonant cavity lengths which cause a matrix of inner product terms to go to zero. Next, the scattering parameters are determined by making the assumption that the inductive strip can be represented by a lossless, reciprocal, symmetric, two-port network. Using the odd and even resonant cavity lengths, the scattering parameters are calculated.

STRIP consists of two nested 'Do' loops, three embedded search routines, and seven subroutines. The first loop iterates over the strip lengths of interest for a particular value of $\frac{w}{b}$ while the second loop iterates over the frequency band of interest. Within the second loop, there are three search routines. The first one finds the normalized finline wavelength $\frac{\lambda'}{\lambda}$. This search routine consists of a modified bisectional search for the wavelength which causes the inner product of the G_{11} Dyadic Greens's function and the square of the x-component of the x-directed field to go to zero. The second and third search routines use the value of $\frac{\lambda'}{\lambda}$ to find the even and odd mode resonant cavity lengths, respectively. These search routines consist of simple bisectional searches for the cavity lengths which cause the determinant of a matrix of inner product terms to go to zero. The inner product terms consist of the G_{11} Dyadic Greens's function, the square of the x-component of the x-directed field, the *m*th z-component of the x-directed field, and the *m*th and *n*th spatial shift functions for the z-component field functions. The scattering parameters are then calculated from the even and odd mode cavity lengths. [Ref. 7: pp. 62-71]

The accuracy of STRIP is dependent upon the matrix order of the inner product terms which can be specified by the user. The scattering data converges as the matrix order is increased, but at the increase of computation time. Figure 13 on page 17 and Fig. 14 on page 18 show how accuracy is improved in magnitude and phase by increasing the matrix order. Most of the convergence has taken place by matrix order 10. The increased computation time is due to the increased number of matrix elements and determinant operations.

Computation time is also dependent on $\frac{w}{b}$. The limits of summation in the electric field calculations increase as $\frac{w}{b}$ decreases. Typical computation times for a VAX computer system are shown in Fig. 15 on page 19. The pendent shows computer system time as matrix order and $\frac{w}{b}$ is varied. The actual run times are much larger and are dependent on computer load.

As a result, a tradeoff exists between accuracy, $\frac{w}{o}$, and computation time. *STRIP* allows data to be run in batch mode where up to 8 strip lengths and 8 data sets may be queued into the computer. However, the results may take several weeks to be completed. If computer time is expensive, the matrix order may be adjusted to give acceptable computation times. In this thesis, a matrix order of 10 was chosen as a suitable compromise between accuracy and computation time. Typical run times encountered for a single strip length for five different frequencies was 2 hours for $\frac{w}{b} = 1.0$ and 30 hours for $\frac{w}{b} = 0.1$.

C. MODIFICATION TO PROGRAM

STRIP was recently modified to run on a VAX computer vice an IBM 3033 mainframe computer. Upon testing STRIP, it was noticed that the program gave erroneous results for matrix orders greater than 4. Deal wrote STRIP to be able to handle matrix orders of up to 20. Therefore, a serious problem existed which severely limited

the accuracy of *STRIP*. After an exhaustive search, it was discovered that *STRIP* contained a routine which caused the numerical handling capabilities of the VAX to be exceeded.

The faulty routine was traced to the search routines which determine the odd and even resonant cavity lengths. These search routines take the determinant of the inner product terms for the left and right endpoints of the current search interval. For the next iteration, the search interval is moved to the left or the right, depending if the product of the left and right determinant is positive or negative, respectively. However, the object of the search routine is to drive the value of the determinant to zero. Therefore, as the determinant approaches zero, the product of the left and right determinant becomes extremely small. These small values can exceed the numerical handling capability of the computer and result in an underflow error. The error alters the search pattern and causes the search routine to converge on the wrong value.

The faulty routine was corrected by using conditional statements to determine the sign of the product rather than multiplying the two determinants outright. This technique eliminates the extremely small numbers which caused the underflow error. The program was modified as shown in Fig. 16 on page 20 and tested. The results of the test demonstrated that matrix orders greater than 4 were allowed and that results identical to Deal's could be achieved. In some cases, the results were closer to the experimental data than Deal's results, demonstrating that the original program was producing occasional underflow errors on the IBM mainframe. An example of the improved results is shown in Fig. 17 on page 21. The modified version of *STRIP* now produces the most accurate results possible under the constraints of the program.

Figure 13. Convergence of scattering data (magnitude) vs. matrix order.: Scattering data from $\frac{w}{b} = 0.5, 0.25, 0.2, 0.1$ is plotted as the matrix order is varied. The solid lines merely connect the data points.

Figure 14. Convergence of scattering data (phase) vs. matrix order.: Scattering data from $\frac{w}{b} = 0.5, 0.25, 0.2, 0.1$ is plotted as the matrix order is varied. The solid lines merely connect the data points.

Figure 15. Computer system time vs. matrix order and w/b.: Typical system time for a VAX computer as matrix order and $\frac{w}{b}$ are varied. The solid lines merely connect the data points.

C calculates determinant CALL DTERM(ORDER,LLE,DETLE,ROWDIM) YLE = DETLE CALL DTERM(ORDER,LRE,DETRE,ROWDIM) YRE = DETRE SIGNE = YLE*YRE IF (SIGNE.GE.0.0) XLE = XRESTE IF (SIGNE.LT.0.0) XRE = XRESTE EPSLNE = .5*DABS(XLE-XRE) CONTINUE

a)

C calculates determinant CALL DTERM(ORDER,LLE,DETLE,ROWDIM) YLE = DETLE CALL DTERM(ORDER,LRE,DETRE,ROWDIM) YRE = DETRE IF ((YLE.LT.0.0) .AND. (YRE.LT.0.0)) GOTO 53 IF ((YLE.GE.0.0) .AND. (YRE.GE.0.0)) GOTO 53 XRE = XRESTE GOTO 54 53 XLE = XRESTE 54 EPSLNE = .5*DABS(XLE-XRE) CONTINUE

<u>b)</u>

Figure 16. Search routine from STRIP.: a) original and b) modified search routines. The modified routine uses 'IF' statements vice taking the product outright.

Figure 17. Results from the modified version of STRIP.: Results from the original and modified versions of STRIP are compared with the experimental data for T = 0.05 inch, $\frac{w}{b} = 0.25$.

IV. A MODEL FOR AN INDUCTIVE STRIP IN HOMOGENEOUS FINLINE

A. CONCEPT

Combining the finline model with accurate computer-generated strip scattering data, an equivalent circuit model for an inductive strip centered in finline can now be developed. Knorr describes three such models in Ref. 10: pp. 10-12 which are shown in Fig. 18 on page 23 and Fig. 19 on page 24. Model I is Knorr's original model; models 2 and 3 were created by Knorr during the experimental phase of this thesis. Model 3 is the most accurate and is the basis of this thesis.

From a physical point of view, the inductive strip in finline consists of a strip region, a discontinuity region, and a finline region. Using discrete components from *TOUCHSTONE*, one can piece together a circuit model which simulates the physical aspects of these regions. In addition, the model represents a lossless, reciprocal, symmetric, two-port network. Therefore, S_{i1} completely characterizes the network behavior.

The strip region is modeled by two below-cutoff pieces of waveguide of length T, width $\frac{a}{2}$, and height b, where T is the strip length, a is the finline width, and b is the finline height. The width $\frac{a}{2}$ allows the waveguide sections to remain below cutoff so that fields from the TE_{10} mode can be reflected. It was initially assumed that the below-cutoff pieces of waveguide were of width $\frac{a_{eq}}{2}$ and height b_{eq} so that the finline characteristics could be represented. This assumption was made in Karaminas's model [Ref. 9: p. 16]. However, it was discovered that the below-cutoff condition could not be maintained for $\frac{w}{b} < 1.0$ as T became greater than 500 mils. The result was a large dip in the magnitude and phase of S_{11} in the 11 to 12 GHz range as the TE_{10} mode propagated through the below-cutoff pieces of waveguide. These results were unsatisfactory. Consequently, $\frac{a}{2}$ and b were substituted for $\frac{a_{eq}}{2}$ and b_{eq} as the width and height of the below-cutoff sections of waveguide.

The discontinuity region is modeled by an inductor and capacitor. These discrete elements represent the higher-order mode magnetic and electric fields induced by the discontinuity. The energy is stored in the evanescent fields near the ends of the strips. As a result, the reflections from the strip region are modified by the value of inductance and capacitance. Model I uses only an inductor because the stored magnetic energy is the dominant effect. However, it was discovered that the addition of a small amount

a)

b)

Figure 18. Equivalent circuit models.: a) Model 1 (inductance only), b) Model 2 (inductance and capacitance).

Figure 19. Equivalent circuit models (cont.).: Model 3 (inductance, capacitance, and impedance transformer).

of capacitance (0.003 pF compared to 20 nH) produced a better match between the S_{11} parameters of the model and the data. Two elements also allow two degrees of freedom in which to best match the magnitude and angle of the actual scattering data.

The finline region is modeled by an ideal impedance transformer with turns ratio n which is equal to the square root of the ratio of the finline impedance to unloaded guide impedance. This impedance transformer implies that an impedance step exists between the finline and strip regions. It was discovered that the addition of this ideal transformer significantly reduced the error between the model and the data. As a result, models 1 and 2 assume that the strip is terminated in the finline impedance for $\frac{w}{b} \leq 1.0$. Model 3, on the other hand, effectively terminates the strip in the finline impedance for $\frac{w}{b} = 1.0$

B. CIRCUIT MODEL

The TOUCHSTONE program used to simulate the circuit model is shown in Appendix B. The program basically simulates an equivalent circuit model identical to model 3. The model inductance and capacitance equations which are valid for WR(90) and $0.1 \le \frac{w}{h} \le 1.0$ are as follows:

$$L = A' + \frac{B'}{1 + \exp\left(\frac{T - N}{10}\right)} nH$$
(16)

$$C = 0.003 \left(\frac{w}{b}\right) pF \tag{17}$$

where

$$A' = 13.75 - 10.32 \left(1 - \frac{w}{b}\right)^{1.60}$$
$$B' = 9.46 - 6.36 \left(1 - \frac{w}{b}\right)^{3.78}$$
$$C' = 1.54 - 1.10 \left(1 - \frac{w}{b}\right)^{4.73}$$
$$N = 500 - 241 \left(1 - \frac{w}{b}\right)^{1.74}.$$

The inductance and capacitance equations were developed by varying inductance and capacitance until the S_{11} parameters of the model and the data were matched. Generally, a best fit in magnitude is not always the best fit in phase. This discrepancy is greater with models 1 and 2. However with model 3, it is possible without incurring significant error to determine an inductance and capacitance which produce equal error in magnitude and phase. The error is defined as follows:

$$Error = \left(\frac{\mid Model \ value \ - \ STRIP \ Value \mid}{STRIP \ Value}\right) 100.$$
(22)

The matching process was completed first for $\frac{w}{b} = 1$ at fourteen different strip lengths. It was observed that the capacitance could remain fixed while the inductance was varied to match the S_{11} parameters of the strip lengths. This fact greatly simplified the matching process. Next, values of inductance and capacitance were found for $\frac{w}{b} = 0.8, 0.5, 0.25, 0.2, \text{ and } 0.1$. Again, it was discovered that a match occurred when the capacitance remained fixed while the inductance was varied. Thus, a characteristic of the inductive strip is that its discontinuity capacitance varies only with $\frac{w}{b}$, while its discontinuity inductance varies with $\frac{w}{b}$ and T.

Another characteristic of the inductive strip is that the S_{11} parameters approach a constant value as the strip lengths become longer. This occurs because the transmission of incident signals decreases significantly at the longer strip lengths. The model then becomes similar to two inductors separated by a fixed length of cutoff waveguide. The result is total reflection with a constant phase shift. For WR(90), this phenomenon occurs at 500 mils and decreases slightly as $\frac{w}{b}$ decreases. As a result, the model inductance becomes constant at long strip lengths.

The next step is to determine the relationship between inductance and strip length T for a specific value of $\frac{w}{b}$. Using a curve-fitting routine which uses linear regression to find coefficients for exponential, logarithmic, power and linear functions, the following equation was derived for the inductance:

$$L = A' + (B' - C' \ln T)$$
(23)

where A' is the inductance when S_{11} becomes constant, and B', C' are the coefficients from the curve-fitting routine. However, in this form, the equation does not allow the inductance to remain constant for strip lengths greater than 500 mils. To account for this fact, the inductance equation was modified as follows:

$$L = A' + \frac{B' - C' \ln(T)}{1 + \exp\left(\frac{T - N}{10}\right)}$$
(24)

where N = 500. This equation puts a break point into the curve at 500 mils where the *exp* term equals 1. For strip lengths greater than 500 mils, A' becomes dominant as the right hand terms go to zero. However, the break point occurs at lower values of T as $\frac{w}{b}$ decreases. Therefore, N needs to be described as follows:

$$N = 500 - 241 \left(1 - \frac{w}{b}\right)^{1.74}.$$
 (25)

To determine how the coefficients A', B', and C' vary with $\frac{w}{b}$, they must be determined for many values of $\frac{w}{b}$. As a result, coefficients were determined for $\frac{w}{b} = 0.9$, 0.7, 0.6, 0.4, and 0.3. This time only eight strip lengths vice fourteen were used. Accurate coefficients could still be obtained if the 8 strips were of lengths 10, 40, 80, 100, 200, 300, 400, and 500 mils. This reduction in the number of strip lengths reduced the computation time considerably. Using the same curve-fitting routine as before, an equation of the following form was found for each coefficient:

$$a = a_1 - a_2 \left(1 - \frac{w}{b}\right)^{a_3}$$
(26)

where a_1 is the value of a when $\frac{w}{b} = 1.0$, and a_2 , a_3 are the coefficients from the curvefitting routine. The resulting equations are as follows:

$$A' = 13.75 - 10.32 \left(1 - \frac{w}{b}\right)^{1.60}$$
⁽²⁷⁾

$$B' = 9.46 - 6.36 \left(1 - \frac{w}{b}\right)^{3.78} \tag{28}$$

$$C' = 1.54 - 1.10 \left(1 - \frac{w}{b}\right)^{4.73}.$$
(29)

Figure 20 on page 29 compares the values from the inductance equation with that of the inductance obtained from the matching process as $\frac{w}{b}$ and T are varied. The model inductance equation increases the error by only a maximum of 0.7%.

Determining a capacitance equation was much easier. Since capacitance is independent of strip length, it is only a function of $\frac{w}{h}$. In addition, capacitance is linearly

proportional to $\frac{w}{b}$ with a value of 0.003 pF at $\frac{w}{b} = 1.0$. Therefore, the capacitance equation is as follows:

$$C = 0.003 \left(\frac{w}{b}\right). \tag{30}$$

In summary, this circuit model accounts for three important features of the inductive strip in finline: (1) inductance decreases with increasing T and decreasing $\frac{w}{b}$, (2) the inductance approaches a constant value for very large values of T, and (3) the capacitance decreases with decreasing $\frac{w}{b}$. Appendix C lists the computer-generated S_{11} coefficients for all strip lengths. Appendix D lists the values of inductance, capacitance, and maximum error obtained from the matching process and the model equations.

C. RESULTS

The best indicator of the success of a model is the error it generates. In all cases, the error is less than 2.5%. In general, the error increases with strip length, reaching a peak at 200 mils. After the peak, the error steadily decreases and becomes constant at 500 mils. The exception to this behavior is at $\frac{w}{b}$ near 1.0 where $|S_{11}|$ is so low (0.3 - 0.4) that small deviations result in large errors. Figure 21 on page 30 shows how the error from model 1 and model 3 compare for $\frac{w}{b} = 0.5$. As the graph illustrates, model 3 reduces the error by 1% to 5%.

Another way of measuring the error is to compare the insertion and return loss of an actual finline filter with that of a filter model based on the inductive strip in finline model. The filter of interest has four inductive strips and $\frac{w}{b} = 1.0$. The *TOUCHSTONE* program for such a filter is listed in Appendix E. Figure 22 on page 31 shows the insertion and return loss of the actual finline filter and the model. Comparing these results, it is clear that they closely match in shape and center frequency. However, the actual filter has dissipative losses, while the model does not. The actual filter was built by Knorr and is described in Ref. 1: pp. 15-16. This example demonstrates how valuable the inductive strip in finline model is in designing finline filters. Although testing of more finline filters is required in order to completely check accuracy, this example proves that reasonable accuracy can be obtained from the model.

Figure 20. Inductance vs. Strip Length: The inductance given by the model equation is plotted vs. strip length. The circles indicate the actual inductance. Curves are plotted for $\frac{w}{b} = 1.0, 0.8, 0.5, 0.2, \text{ and } 0.1.$

Figure 21. Error vs. Strip Length.: The error vs. strip length is plotted for $\frac{w}{b} = 0.5$ The solid lines merely connect the data points

,

Figure 22. Insertion and Return Loss of Model and Actual Filter.: The insertion and return loss of a 4 strip finline filter where $\frac{w}{b} = 1.0$. a) model b) actual filter.

V. SCALING TO OTHER WAVEGUIDE BANDS

A. CONCEPT

It has been shown that the model is accurate for WR(90), but it would be more useful if it could be applied to other waveguides bands. In particular, the millimeter wave frequencies are currently of high interest. In Ref. 10: pp. 14 - 16, Knorr describes a method of using the scaling principle to scale the model to various waveguide bands. The scaling principle states that when the wavelength and all dimensions are scaled by the same factor, the electrical characteristics remain unchanged.

In this application, the scaling principle requires that the normalized reactance remain constant while the structure is scaled in size. Thus, the following needs to be true:

$$\frac{\omega_c L\left(T, \frac{w}{b}\right)}{Z_{ov}} = K_l \tag{31}$$

$$\frac{1}{\omega_c C\left(\frac{w}{b}\right) Z_{ov}} = K_c \tag{32}$$

where K_i , K_c are constants, ω_c is the cutoff frequency, and $L(T, \frac{w}{b})$, $C(\frac{w}{b})$ are the model equations for inductance and capacitance. Since Z_{ov} is proportional to $\frac{a}{b}$, this results in the following:

$$\omega_c L\left(T, \frac{w}{b}\right) \propto \frac{b}{a} \tag{33}$$

$$\omega_c C\left(\frac{w}{b}\right) \propto \frac{a}{b}.$$
(34)

Moving ω_{ϵ} to the right side, the following is obtained:

$$L\left(T,\frac{w}{b}\right) \propto \frac{b}{a\omega_c} \tag{35}$$

$$C\left(\frac{w}{b}\right) \propto \frac{a}{b\omega_c}$$
 (36)

Since $\frac{1}{\omega_{\epsilon}}$ is proportional to *a*, the result is:

$$L\left(T,\frac{w}{b}\right) \propto b \tag{37}$$

$$C\left(\frac{w}{b}\right) \propto \frac{a^2}{b}.$$
(38)

In addition, the scattering coefficients vary with $\frac{T}{a}$. Thus, combining these two scaling factors into the model equations results in the following:

$$L = \left(\frac{b}{400}\right) A' + \frac{B' - C' \ln\left(T(\frac{900}{a})\right)}{1 + \exp\left(\frac{T - N}{10}\left(\frac{900}{a}\right)\right)} nH$$
(39)

$$C = \left(\frac{4}{8100}\right) \left(\frac{a^2}{b}\right) \left[0.003 \left(\frac{w}{b}\right)\right] pF.$$
(40)

For the case of $\frac{w}{b} = 1.0$, the electrical characteristics are independent of height b. Therefore, $\frac{b}{a}$ may change, and the model equations will predict the correct scattering coefficients. The model was tested at $\frac{w}{b} = 1.0$ as $\frac{b}{a}$ was varied from 0.1 to 0.5. The results showed that the scattering coefficients were identical in all cases, proving the independence of b. Since TOUCHSTONE picks the larger of the two waveguide dimensions as the a dimension, the CAD software limits the model to a maximum value of $\frac{b}{a} = \frac{1}{2}$ when the library element RWG is used.

For the case of $\frac{w}{b} < 1.0$, the electrical characteristics are dependent on height *b*. Therefore, $\frac{b}{a}$ will affect the scattering coefficients. This was tested by using *STRIP* to calculate scattering coefficients for $\frac{b}{a} = \frac{4}{9}$ and $\frac{3}{9}$ using WR(90). The results showed that the scattering coefficients differed by no more than 0.5 degrees in phase and 0.005 in magnitude. As a result, only another 0.3% to 0.5% of error is incurred by making the assumption that the scattering coefficients are independent of $\frac{b}{a}$. For the waveguides of interest, WR(90) to WR(5), there are only 3 different values of $\frac{b}{a}$: $\frac{b}{a} = 0.444$ for WR(90), $\frac{b}{a} = 0.405$ for WR(42), and $\frac{b}{a} = 0.5$ for WR(28) to WR(5). This narrow range of $\frac{b}{a}$ values makes it reasonable to assume that the scattering coefficients are effectively independent of $\frac{b}{a}$. To measure the effect of $\frac{b}{a}$, the inductance and capacitance equations would need to be tested for a $\frac{b}{a}$ dependance. This could be done by replicating the work done for WR(90) with WR(28). Therefore, a model would exist for $\frac{b}{a} = \frac{4}{9}$ and another for $\frac{b}{a} = \frac{1}{2}$. If there are enough similarities, the two models may be merged and a single one formed.

B. IMPLEMENTATION AND RESULTS

The model was scaled to WR(42), WR(28), WR(19), WR(12), WR(8), and WR(5) at various values of $\frac{w}{b}$ and strip lengths. Appendix F lists the computergenerated S_{11} coefficients. Appendix G shows the magnitude, phase, and Smith chart plots which compare the model with the data. Appendix H lists the maximum error found in each case. The results show that the model is remarkably accurate as frequency and waveguide dimensions are scaled. In addition, the error is not significantly increased by making the assumption that $\frac{b}{a}$ is constant.

In conclusion, the model's scaling ability is its most powerful feature. With it, any millimeter waveguide and any strip (with the limitation that $\frac{T}{a} \ge \frac{10}{900}$) can be represented by the model with a maximum of 2.5% error in the scattering coefficients. Furthermore, millimeter wave finline filters can be easily modeled with high accuracy in those cases where conductor thickness *t* is negligibly small $(\frac{t}{a} \to 0)$.

VI. SUMMARY

A. CONCLUSIONS

In summary, an equivalent circuit model which describes an inductive strip in homogeneous finline has been derived which produces less than 2.5% error. The model is based on a homogeneous finline model and scattering data from a spectral domain computer program. The requirement of an accurate spectral domain program is essential in order to test the model under all conditions. In addition, the model describes most of the physical features of an inductive strip in finline. This was accomplished by carefully using curve-fitting techniques to minimize any additional error. This allows the model to work well under a variety of conditions. Good data gathered in the matching process will be wasted if accurate curve-fitting techniques are not used. The work in this thesis resulted in a range of validity for the finline model of $0.01 \le \frac{w}{b} \le 1.0$ and for the inductive strip in finline model of $0.1 \le \frac{w}{b} \le 1.0$ where $\frac{T}{a} \ge \frac{10}{900}$

Model accuracy may be tested in two ways: (1) comparing the S_{11} parameters of the model against actual measurements or computer-generated data, and (2) comparing the insertion and return loss of a finline filter model (constructed with the inductive strip in finline model) against an actual finline filter. It is easier to experimentally measure the latter. Although the spectral domain program is more flexible, it makes many assumptions (e.g., infinitely thin strips, no loss, etc.) which may be invalid for the case in question.

Finally, the ability to scale the model is its most powerful feature. The model can be scaled to all millimeter wave frequencies and applied to the design of millimeter wave finline filters. As a result, the circuit model presented in this thesis has wide applications, yet maintains enough simplicity to generate accurate results in a matter of seconds.

B. RECOMMENDATIONS

Although this model generates very accurate results, it would be useful to investigate the following:

- 1. The effect of resistance in a waveguide below cutoff.
- 2. The effect of strips with finite metal thickness.
- 3. Extending the model to the case of $\frac{w}{h} < 0.1$ and T < 10 mils for WR(90) waveguide. This will involve validating the spectral domain program under these conditions.

4. Developing a model for inhomogeneous finline and inductive strips in inhomogeneous finline.

In conclusion, other means of improving accuracy should be investigated with the eventual goal of developing a model for an inductive strip in inhomogeneous finline.

APPENDIX A. COMPUTER-GENERATED FINLINE DATA FOR WR(28) AND WR(90)

Table 1. Aeq AND Beq FOR WR(28), W/B = 0.01, 0.02, 0.03: Output from *IMPED*. Results include $\frac{\lambda'}{\lambda}$, Z_{or} , k_{off} , and Z_{∞} . Frequency is in GHz and impedance is in Ohms.

		Dielec Thic Normalized Normalized waveguide h septum widt nmbr of dif Dielec. con Dielec. con Dielec. con Upper freq Lower freq Freq increm	kness D (m H1/D - H2/D - eight B/D h S/B - . W/B (max s region 1 s region 2 s region 3 limit GHz limit GHz -	<pre>hil) 1.0000 140.0000 139.0000 - 140.0000 0. 8) 7.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 26.0000 - 200000</pre>		
W / B		·				
0.0100						
FREQ	L"/L	Zov	K eff	Z inf	Aeq / A	Beq / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.0900 1.0759 1.0645 1.0560 1.0504 1.0447 1.0391 1.0334	122.0114 120.4365 119.1899 118.2394 117.5462 116.9043 116.3204 115.8009	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	111.9360 111.9448 111.9644 111.9647 111.9082 111.9002 111.9480 112.0585	2.0386 2.0422 2.0504 2.0505 2.0273 2.0241 2.0436 2.0910	0.6053 0.6064 0.6089 0.6090 0.6018 0.6008 0.6008 0.6068 0.6215
W / B						
0.0200						,
FREQ	L"/L	2 ov	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1042 1.0872 1.0759 1.0645 1.0560 1.0504 1.0447 1.0391	138.4195 136.3173 134.8417 133.4875 132.4525 131.6830 130.9847 130.3657	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	125.3613 125.3861 125.3952 125.4235 125.3669 125.3779 125.4653	1.9132 1.9198 1.9061 1.9222 1.9299 1.9147 1.9176 1.9414	0.6362 0.6385 0.6337 0.6394 0.6421 0.6367 0.6377 0.6461
W / B						
0.0300						
FREQ	L"/L	Z OV	K eff	Z inf	Aeg / A	Beq / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1155 1.0957 1.0815 1.0730 1.0617 1.0560 1.0504 1.0447	152.1625 149.5297 147.6125 146.2971 144.9118 144.0093 143.1884 142.4600	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	136.4091 136.4730 136.4864 136.3407 136.4899 136,3670 136.3205 136.3620	1.8307 1.8432 1.8458 1.8177 1.8465 1.8227 1.8139 1.8217	0.6624 0.6672 0.6683 0.6574 0.6685 0.6593 0.6559 0.6589

W / B						
0.0400						
FREQ	L"/L	Z OV	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1240 1.1042 1.0900 1.0787 1.0674 1.0589 1.0532 1.0475	163.5707 160.6853 158.5556 156.8443 155.3138 154.1307 153.2147 152.4028	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	145.5282 145.5267 145.4625 145.4029 145.5114 145.5611 145.4739 145.4851	1.7768 1.7765 1.7668 1.7579 1.7742 1.7818 1.7685 1.7702	0.6859 0.6858 0.6817 0.6780 0.6848 0.6880 0.6880 0.6824 0.6831
W / B						
0.0500						
FREQ	L"/L	ZOV	K eff	2 inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1325 1.1127 1.0957 1.0815 1.0730 1.0645 1.0560 1.0504	173.8649 170.7288 168.1436 166.0600 164.5846 163.2634 162.1168 161.2179	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	153.5270 153.4426 153.4617 153.5434 153.3836 153.3661 153.5136 153.4852	1.7284 1.7180 1.7203 1.7305 1.7108 1.7086 1.7267 1.7232	0.7039 0.6992 0.7003 0.7048 0.6960 0.6951 0.7031 0.7016
W / B						
0.0600						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1410 1.1183 1.1013 1.0872 1.0759 1.0674 1.0589 1.0532	183.3215 179.6601 176.8816 174.6284 172.8303 171.4026 170.1649 169.1751	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	160.6726 160.6521 160.6068 160.6252 160.6443 160.5849 160.7038 160.6279	1.6848 1.6826 1.6779 1.6798 1.6818 1.6757 1.6881 1.6801	0.7180 0.7170 0.7148 0.7157 0.7167 0.7138 0.7196 0.7159
W / B						
0.0700						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1495 1.1240 1.1070 1.0900 1.0787 1.0702 1.0617 1.0560	192.2167 188.0161 185.0413 182.4123 180.4951 178.9581 177.6257 176.5395	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	167.2242 167.2772 167.1564 167.3491 167.3284 167.2200 167.3026 167.1709	1.6451 1.6499 1.6391 1.6564 1.6545 1.6447 1.6522 1.6404	0.7297 0.7321 0.7268 0.7353 0.7344 0.7296 0.7332 0.7274

Table 2. Aeq AND Beq FOR WR(28), W/B = 0.04, 0.05, 0.06, 0.07

W / B						
0.0800						
FREQ	L"/L	Z OV	K eff	Z inf	Aeg / A	Beq / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1551 1.1296 1.1098 1.0957 1.0843 1.0730 1.0645 1.0589	200.3378 195.9017 192.4864 189.9177 187.8341 186.0330 184.6015 183.4131	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	173.4352 173.4196 173.4384 173.3345 173.2230 173.3723 173.4106 173.2154	. 1.6206 1.6194 1.6209 1.6128 1.6042 1.6157 1.6187 1.6037	0.7456 0.7449 0.7457 0.7415 0.7371 0.7430 0.7446 0.7368
W / B						
0.0900						
FREQ	L"/L	Z OV	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1636 1.1353 1.1155 1.0985 1.0872 1.0759 1.0674 1.0589	208.4340 203.4376 199.8159 196.8669 194.6558 192.7447 191.2091 189.9335	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	179.1272 179.1926 179.2138 179.0466 179.1546 179.1413 179.3733	1.5865 1.5910 1.5866 1.5925 1.5810 1.5884 1.5875 1.6037	0.7538 0.7562 0.7539 0.7570 0.7570 0.7548 0.7543 0.7630
W / B						
0.1000		,				
FREQ	L"/L	2 ov	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.1693 1.1410 1.1211 1.1042 1.0900 1.0787 1.0702 1.0617	215.9153 210.6722 206.8374 203.6966 201.1661 199.1411 197.4958 196.1254	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	184.6582 184.6442 184.4872 184.4874 184.5543 184.6142 184.5418 184.7271	1.5653 1.5644 1.5545 1.5545 1.5589 1.5589 1.5582 1.5582 1.5696	0.7667 0.7662 0.7609 0.7607 0.7632 0.7652 0.7652 0.7628 0.7691
W / B						
0.2000						
FREQ	L"/L	Z OV	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.2344 1.1919 1.1608 1.1381 1.1183 1.1042 1.0900 1.0815	283.1277 273.4150 266.2852 260.9028 256.5936 253.1782 250.4790 248.0957	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	229.3690 229.3912 229.4023 229.2376 229.4461 229.2940 229.7951 229.3957	1.3837 1.3843 1.3846 1.3803 1.3857 1.3818 1.3948 1.3844	0.8419 0.8423 0.8425 0.8393 0.8434 0.8404 0.8502 0.8424

Table 3. Aeq AND Beq FOR WR(28), W/B = 0.08, 0.09, 0.1, 0.2

Table 4. Aeq AND Beq FOR WR(28), W/B = 0.3, 0.4, 0.5, 0.6

W / B

0.3000						
FREQ	L"/L	Z OV	K eff	Z inf	Aeq / A	Beg / B
26.0000 28.0000 30.0000 32.0000 24.0000 36.0000 38.0000 40.0000	1.2938 1.2400 1.1976 1.1664 1.1438 1.1268 1.1098 1.0985	342.5876 327.9518 317.0459 309.0069 302.8224 297.7991 293.9612 290.5319	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	264.7875 264.4692 264.7394 264.9147 264.7526 264.2852 264.8716 264.4800	1.2784 1.2778 1.2777 1.2803 1.2779 1.2779 1.2712 1.2797 1.2740	0.8979 0.8936 0.8973 0.8997 0.8975 0.8975 0.9911 0.8991 0.8938
₩ / B .						
0.4000						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.3589 1.2852 1.2344 1.1976 1.1693 1.1466 1.1296 1.1127	399.7240 378.2077 363.2450 352.2457 343.8067 337.1990 331.6964 327.8269	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	294.1467 294.2497 294.2741 294.1320 294.0353 294.0797 293.6301 294.6345	1.1980 1.1990 1.1992 1.1979 1.1970 1.1974 1.1933 1.2026	0.9347 0.9358 0.9361 0.9346 0.9336 0.9336 0.9341 0.9294 0.9399
W / B						
0.5000						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.4269 1.3363 1.2740 1.2287 1.1947 1.1664 1.1466 1.1296	454.8902 425.6771 405.6564 391.1611 380.2219 372.0155 365.0417 359.4962	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	318.8041 318.5534 318.4101 318.3497 318.2448 318.9325 318.3620 318.2396	1.1372 1.1356 1.1347 1.1343 1.1336 1.1380 1.1344 1.1336	0.9617 0.9596 0.9584 0.9579 0.9570 0.9628 0.9580 0.9569
W / B						
FREQ	L"/L	ZOV	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.4976 1.3844 1.3080 1.2570 1.2174 1.1863 1.1636 1.1438	507.6295 469.1109 443.6118 425.5640 412.1272 401.9366 393.3824 386.8616	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	338.9548 338.8541 339.1593 338.5494 338.5329 338.8283 338.0710 338.2267	1.0897 1.0892 1.0907 1.0878 1.0877 1.0891 1.0855 1.0862	0.9798 0.9790 0.9812 0.9769 0.9767 0.9785 0.9734 0.9745

W / B						
0.7000						
FRED	L"/L	ZOV	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.5712 1.4325 1.3448 1.2825 1.2372 1.2032 1.1778 1.1551	556.8206 507.7754 476.4986 454.8299 439.0472 426.9690 417.0474 409.8824	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	354.3851 354.4616 354.3336 354.6436 354.8696 354.8498 354.1015 354.8407	1.0517 1.0520 1.0515 1.0527 1.0535 1.0535 1.0506 1.0534	0.9886 0.9891 0.9883 0.9903 0.9917 0.9916 0.9868 0.9915
₩ / B						
0.8000						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beg / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.6335 1.4750 1.3731 1.3051 1.2570 1.2174 1.1891 1.1664	598.4049 539.7807 503.0155 478.0200 459.6460 446.4958 435.5678 426.6892	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	366.3317 365.9564 366.3408 366.2585 365.6626 366.7641 366.3050 365.8049	1.0259 1.0247 1.0259 1.0257 1.0238 1.0273 1.0273 1.0258 1.0242	0.9969 0.9947 0.9969 0.9965 0.9930 0.9994 0.9994 0.9967 0.9938
W / B						
0.9000						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beq / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.6930 1.5090 1.3986 1.3250 1.2712 1.2315 1.2004 1.1749	631.4192 563.0791 521.7743 493.8659 473.8665 458.6316 446.8446 437.8122	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	372.9696 373.1583 373.0804 372.7405 372.7782 372.4032 372.2440 372.6278	1.0053 1.0058 1.0056 1.0047 1.0048 1.0038 1.0033 1.0034	0.9946 0.9956 0.9952 0.9934 0.9936 0.9915 0.9915 0.9907 0.9927
W/B						
1.0000						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beq / B
26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000	1.7099 1.5203 1.4070 1.3306 1.2740 1.2344 1.2032 1.1778	644.6556 573.1610 530.J048 501.1732 480.8591 465.0375 452.7038 443.1579	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	377.0059 377.0107 376.7492 376.6463 377.4386 376.7388 376.2377 376.2711	1.0000 1.0001 0.9994 0.9991 1.0012 0.9993 0.9980 0.9981	1.0001 1.0001 0.9987 0.9982 1.0024 0.9987 0.9960 0.9960 0.9962

Table 5. Aeq AND Beq FOR WR(28), W/B = 0.7, 0.8, 0.9, 1.0

,

		Dielec Thick Normalized H Normalized H waveguide he septum width nmbr of dif. Dielec. cons Dielec. cons Dielec. cons Dielec. cons Dielec. cons Dielec. cons Freq increme	ness D (mi. 1/D - 2/D - ight B/D - S/B - W/B (max H region 1 - region 2 - region 3 - imit GHz - imit GHz -	1) 1.0000 449.0000 450.0000 0. 8) 6.0000 1.0000 1.0000 12.0000 8.0000 1.0000		
W / B						
0.0100						
FREQ	L"/L	Z OV	K eff	Z inf	Aeq / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1013 1.0787 1.0617 1.0504 1.0419	119.9015 117.3959 115.5738 114.3300 113.4013	1.0000 1.0000 1.0000 1.0000 1.0000	108.8694 108.8321 108.8569 108.8462 108.8421	1.9576 1.9446 1.9532 1.9495 1.9480	0.6360 0.6315 0.6345 0.6332 0.6327
W / B						
0.0200						
FREQ	L"/L	ZOV	K eff	Z inf	Aeq / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1183 1.0900 1.0702 1.0589 1.0475	135.8013 132.3641 130.0040 128.4977 127.2242	1.0000 1.0000 1.0000 1.0000 1.0000	121.4336 121.4338 121.4769 121.3533 121.4493	1.8322 1.8322 1.8421 1.8142 1.8358	0.6639 0.6640 0.6678 0.6570 0.6653
W / B						
0.0300						
FREQ	L"/L	ZOV	K eff	Z inf	Aeg / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1296 1.0985 1.0787 1.0645 1.0532	148.8423 144.7279 142.0432 140.1118 138.6385	1.0000 1.0000 1.0000 1.0000 1.0000	131.7608 131.7501 131.6815 131.6180 131.6341	1.7634 1.7616 1.7501 1.7397 1.7423	0.6933 0.6926 0.6877 0.6833 0.6844
W / B						
0.0400						
FREQ	L"/L	2 ov	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1410 1.1070 1.0843 1.0674 1.0560	159.8889 155.0981 151.9012 149.5963 147.9698	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	140.1350 140.1074 140.0852 140.1548 140.1174	1.7035 1.6998 1.6969 1.7061 1.7011	0.7124 0.7107 0.7094 0.7136 0.7113

₩ / B						
0.0500						
FREQ	L"/L	ZOV	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1523 1.1127 1.0900 1.0730 1.0589	169.8614 164.1416 160.6626 158.1199 156.2037	1.0000 1.0000 1.0000 1.0000 1.0000	147.4126 147.5223 147.3955 147.3589 147.5245	1.6508 1.6628 1.6490 1.6451 1.6631	0.7262 0.7320 0.7253 0.7234 0.7321
W / B						
0.0600						
FREQ	L"/L	ZOV	K eff	Z inf	Aeq / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1608 1.1211 1.0928 1.0759 1.0617	178.7356 172.5986 168.4105 165.6826 163.6221	1.0000 1.0000 1.0000 1.0000 1.0000	153.9792 153.9480 154.1033 154.0006 154.1128	1.6153 1.6125 1.6268 1.6173 1.6277	0.7422 0.7408 0.7481 0.7432 0.7486
W / B						
0.0700						
FREQ	L"/L	ZOV	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1693 1.1268 1.0985 1.0787 1.0645	187.0554 180.2519 175.7720 172.6772 170.4609	1.0000 1.0000 1.0000 1.0000 1.0000	159.9762 159.9666 160.0105 160.0808 160.1272	1.5827 1.5819 1.5854 1.5910 1.5947	0.7556 0.7552 0.7570 0.7600 0.7620
W / B						
0.0800						
FREQ	L"/L	2 ov	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1778 1.1325 1.1042 1.0815 1.0674	194.9232 187.4415 182.6614 179.2047 176.8261	1.0000 1.0000 1.0000 1.0000 1.0000	165.5030 165.5155 165.4296 165.6973 165.6660	1.5526 1.5535 1.5476 1.5662 1.5639	0.7668 0.7673 0.7640 0.7744 0.7732
W / B						
0.0900						
FREQ	L"/L	2 ov	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1834 1.1381 1.1070 1.0872 1.0702	202.1476 194.2826 189.0214 185.4672 182.8288	1.0000 1.0000 1.0000 1.0000 1.0000	170.8159 170.7030 170.7518 170.5948 170.8369	1.5338 1.5269 1.5298 1.5203 1.5351	0.7818 0.7778 0.7795 0.7740 0.7826

Table 7. Aeq AND Beq FOR WR(90), W/B = 0.05, 0.06, 0.07, 0.08, 0.09

W / B						
0.1000						
FREQ	L"/L	ZOV	K eff	Z inf	Aeg / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.1919 1.1438 1.1098 1.0900 1.0730	209.3881 200.8223 195.0781 191.3220 188.5158	1.0000 1.0000 1.0000 1.0000 1.0000	175.6735 175.5757 175.7737 175.5231 175.6861	1.5073 1.5020 1.5128 1.4991 1.5080	0.7902 0.7869 0.7935 0.7852 0.7906
W / B						
0.2000						
FREQ	L"/L	ZOV	K eff	Z inf	Aeq / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.2627 1.1891 1.1466 1.1155 1.0957	271.5700 255.9433 246.5003 240.0435 235.4061	1.0000 1.0000 1.0000 1.0000 1.0000	215.0737 215.2439 214.9791 215.1917 214.8509	1.3434 1.3475 1.3411 1.3462 1.3330	0.8622 0.8655 0.8603 0.8645 0.8579
W / B						
0.3000						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.3278 1.2315 1.1749 1.1381 1.1127	325.5548 302.1625 288.3362 279.2545 272.8339	1.0000 1.0000 1.0000 1.0000 1.0000	245.1855 245.3523 245.4068 245.3620 245.2096	1.2468 1.2491 1.2499 1.2493 1.2471	0.9122 0.9146 0.9153 0.9147 0.9126
W / B						
0.4000						
FREQ	L"/L	Zov	K eff	Z inf	Aeq / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.3957 1.2740 1.2061 1.1608 1.1296	376.2543 343.5753 324.8664 312.7967 304.5048	1.0000 1.0000 1.0000 1.0000 1.0000	269.5759 269.6810 269.3597 269.4716 269.5591	1.1757 - 1.1767 1.1737 1.1748 1.1756	0.9458 0.9470 0.9435 0.9447 0.9456
W / B						
0.5000						
FREQ	L"/L	Zov	K eff	Z inf	Aeq / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.4665 1.3165 1.2344 1.1806 1.1466	424.5219 381.0218 356.9354 341.9166 331.2670	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	289.4808 289.4276 289.1626 289.6143 288.9062	1.1214 1.1210 1.1193 1.1222 1.1176	0.9687 0.9682 0.9658 0.9699 0.9635

Table 8. Aeq AND Beq FOR WR(90), W/B = 0.1, 0.2, 0.3, 0.4, 0.5

W / B						
0.6000						
FREQ	L"/L	Z ov	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.5401 1.3561 1.2599 1.2004 1.1608	470.1929 414.2647 384.7084 366.4448 354.0174	1.0000 1.0000 1.0000 1.0000 1.0000	305.3017 305.4832 305.3598 305.2669 304.9828	1.0785 1.0794 1.0788 1.0783 1.0769	0.9826 0.9840 0.9830 0.9823 0.9801
W / B						
0.7000						
FREQ	L" /L	Zov	K eff	Z inf	Aeg / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.6109 1.3929 1.2825 1.2174 1.1721	511.6850 442.8350 407.9390 386.6221 372.3983	1.0000 1.0000 1.0000 1.0000 1.0000	317.6471 317.9240 318.0815 317.5822 318.1452	1.0462 1.0473 1.0480 1.0459 1.0483	0.9917 0.9937 0.9948 0.9913 0.9952
W / B						
0.8000						
FREQ	L"/L	Zov	K eff	Z inf	Aeg / A	Beg / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.6760 1.4269 1.3051 1.2315 1.1834	547.3323 465.9814 425.8634 402.1650 386.6313	1.0000 1.0000 1.0000 1.0000 1.0000	326.5771 326.5772 326.2961 326.5530 326.7057	1.0221 1.0221 1.0211 1.0220 1.0225	0.9961 0.9961 0.9943 0.9959 0.9959
W / B						
0.9000						
FREQ	L"/L	Zov	K eff	Z inf	Aeg / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.7297 1.4523 1.3193 1.2429 1.1919	574.4741 482.4052 438.4726 412.4967 395.7210	1.0000 1.0000 1.0000 1.0000 1.0000	332.1140 332.1571 332.3530 331.8909 332.0041	1.0052 1.0054 1.0060 1.0045 1.0049	0.9963 0.9965 0.9977 0.9949 0.9956
W / B						
1.0000						
FREQ	L"/L	Zov	K eff	Z inf	Aeg / A	Beq / B
8.0000 9.0000 10.0000 11.0000 12.0000	1.7467 1.4608 1.3250 1.2457 1.1947	585.5476 489.3806 444.1296 417.6120 400.0270	1.0000 1.0000 1.0000 1.0000 1.0000	335.2243 335.0011 335.2025 335.2430 334.8216	1.0004 1.0001 1.0002 1.0004 0.9993	1.0007 0.9998 1.0005 1.0008 0.9984

Table 9. Aeq AND Beq FOR WR(90), W/B = 0.6, 0.7, 0.8, 0.9, 1.0

APPENDIX B. INDUCTIVE STRIP IN FINLINE MODEL

! FILE: FINTEST.CKTS

```
MIKE MORUA
! USER:
               22 MAY 90
! DATE:
! CIRCUIT: MODEL OF INDUCTIVE STRIP IN HOMOGENEOUS FINLINE
               FOR 0.1 <= W/b <= 1.0, 10 <= T <= 500 MILS,
AND STRIP CENTERED. MODEL SCALES TO ALL WAVEGUIDE
1
.
               BANDS.
1
! COMMENT: S-PARAMETERS FOR THE STRIPS ARE IN DATA FILES
               AND WERE TAKEN FROM STRIP SPECTRAL DOMAIN PROGRAM.
1
DIM
  FREQ GHZ
  RES OH
IND NH
  CAP PF
  LNG MIL
  TIME PS
  COND /OH
  ANG DEG
VAR
   A = 900
   B = 400
   Wovb \approx 1.0
   T = 100
   pi = 3.14159
EQN
  Tov_2 = T/2
! FINLINE MODEL
  M = 2 \star B/A
  N = 1 - Wovb
  Aov2 = A/2
  Aeq1 = 2 - (1 - M**0.77 * N**2)**0.5
Aeq2 = 0.221 * (1/M)**3.61 * N**28
  Aeq = (Aeq1 + Aeq2) * A
  Beq1 = 0.6 + (0.16 - 0.1347 * M**1.35 * N**2)**0.5
Beq2 = -0.17 * (1/M)**1.15 * N**10
  Beq = (Beq1 + Beq2) * B
! IMPEDANCE TRANSFORMER
  Lamda = (30000/2.54)/FREQ
  LpovL1 = 1/(1-(Lamda/(2*Aeq))**2)**0.5
LpovL2 = 1/(1-(Lamda/(2*A))**2)**0.5
  21 = 120*pi*(2*Beg/Aeg)*LpovI1
  22 = 120*pi*(2*B/A)*LpovL2
  X1 = (Z1/Z2) * *0.5
! INDUCTANCE COEFFICIENTS
  A1 = 13.75 - 10.32*(1 - Wovb)**1.60
B1 = 9.46 - 6.36*(1 - Wovb)**3.78
  C1 = 1.54 - 1.10*(1 - Wovb)**4.73
```

.

٠

.


```
! INDUCTANCE EQUATION
  Tp = 900 \star T/A
   \begin{array}{l} 1p - 500 - 241*(1-Wovb)**1.74 \\ N1 = 500 - 241*(1-Wovb)**1.74 \\ L1 = B1 - C1*1n(Tp) \\ L2 = 1 + exp((T - N1)*90/A) \\ L = (B/400)*(A1 + (L1/L2)) \end{array} 
! CAPACITANCE EQUATION
  C = (4/8100) * (A**2/B) * (Wovb*0.003)
СКТ
! HALF LENGTH OF WAVEGUIDE BELOW CUTOFF W/ CAP AND IND
            1 0 C C
1 0 L L
    CAP
    IND
    RWG
                      A^Aov2 B^B L^Tov2 ER=1.0 RHO=1
            1
                  2
   DEF2P 1
                     STRIP
                  2
! COMPLETE CIRCUIT MODEL
                     0 0 N^X1
   XFER
            1
                2
   STRIP 2
                  3
   STRIP
            2
                  3
   STRIP 4
                  3
   STRIP 4
                  3
                      0 0 N^X1
   XFER
            5
                  4
   DEF2P 1
                  5
                     STRIPMOD
! EXPERIMENTAL OR COMPUTER GENERATED DATA
   S2PA 1 2 0 W100T10.S2P
DEF2P 1 2 STRIPDAT
                                            ! FILE NAME
! WEDGE TERMINATION
   RWGT
                  A^Aeq B^Beq ER=1 RHO=1
            1
   DEF1P 1
                      WEDGE
TERM
      STRIPMOD WEDGE WEDGE
PROC
OUT
      STRIPMOD S11 SC2
     STRIPMOD SII SC2
STRIPMOD ANG[SI1] GRI
STRIPDAT SII SC2
STRIPDAT MAG[SI1] GRI
STRIPDAT ANG[SI1] GRI
FREQ
  SWEEP 8.0 12.0 0.5
GRID !SET UP GRID SCALING
  RANGE 7 13
                       1
          0.00 1.00 0.05
  GR1
  GR1A
           90
                180
                        5.0
```

Figure 24. Inductive Strip in Finline Model TOUCHSTONE Program (cont.).

APPENDIX C. COMPUTER-GENERATED SCATTERING DATA FOR INDUCTIVE STRIPS

3

.

-14000 100 - 5000100 00000 00000 0000000000	Table	10.	SCATTERING DATA	FOR W/B =	= 1.0, T = 1	0, 20, 30	. 40. 50	, 60 MIL
---	-------	-----	-----------------	-----------	--------------	-----------	----------	----------

Dielec Thic Normalized Normalized waveguide h fin gap wid number of d Dielec. com Dielec. com Dielec. com Upper freq Lower freq Freq increm Matrix orde	thess D (mil) H1/D = H2/D = H2/D = Hth W/B = Hif. T/D = Is region 1 = Is region 2 = Is region 3 = Hmit GHz = Himit GHz = Himit GHz = er =	<pre>L) 100.0000</pre>			
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.7440 0.6033 0.5046 0.4323 0.3767	136.9688 125.3672 118.1426 113.0274 109.0196	0.6681 0.7975 0.8634 0.9017 0.9263	46.9688 35.3672 28.1426 23.0274 19.0196	$\begin{array}{c} 0.1000 \\ 0.1000 \\ 0.1000 \\ 0.1000 \\ 0.1000 \\ 0.1000 \end{array}$
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.7872 0.6590 0.5622 0.4878 0.4306	139.5528 127.6875 119.9356 114.1876 109.5469	0.6167 0.7522 0.8270 0.8729 0.9025	49.5528 37.6875 29.9356 24.1875 19.5469	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Fhase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8190 0.7021 0.6099 0.5353 0.4749	141.3458 129.3750 121.2012 114.9258 109.6524	0.5738 0.7121 0.7925 0.8447 0.8800	51.3457 39.3750 31.2012 24.9258 19.6524	0.3000 0.3000 0.3000 0.3000 0.3000
FREQUENCY	S11 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8440 0.7379 0.6492 0.5751 0.5117	142.7696 130.8516 122.2032 115.3477 109.4415	0.5363 0.6750 0.7606 0.8181 0.8591	52.7696 40.8516 32.2032 25.3477 19.4415	0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8651 0.7693 0.6835 0.6099 0.5453	144.0352 132.0117 122.9415 115.6114 109.1778	0.5017 0.6389 0.7299 0.7925 0.8382	54.0352 42.0118 32.9415 25.6114 19.1778	0.5000 0.5000 0.5000 0.5000 0.5000
FPEQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8829 0.7951 0.7138 0.6408 0.5743	145.0899 132.9083 123.5742 115.7696 108.8614	0.4695 0.6065 0.7004 0.7677 0.8186	55.0899 42.9082 33.5743 25.7696 18.8614	0.6000 0.6000 0.6000 0.600) 0.6000

Table 11. SCATTERING DATA FOR W/B = 1.0, T = 70, 80, 90, 100, 200, 300, 400, 500 MILS

.

FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8 0000 9.0000 10.0000 11.0000 12.0000	0.8980 0.8174 0.7410 0.6686 0.6026	145.9337 133.6993 124.0489 115.8750 108.4395	0.4400 0.5761 0.6716 0.7436 0.7981	55.9337 43.6993 34.0489 25.8750 18.4395	0.7000 0.7000 0.7000 0.7000 0.7000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9106 0.8371 0.7640 0.6942 0.6273	146.6719 134.3321 124.4708 115.8750 108.0176	0.4134 0.5471 0.6452 0.7198 0.7788	56.6719 44.3321 34.4707 25.8750 18.0176	0.8000 0.8000 0.8000 0.8000 0.8000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9213 0.8547 0.7855 0.7170 0.6499	147.2520 134.9649 124.8399 115.8223 107.5958	0.3889 0.5191 0.6189 0.6971 0.7600	57.2520 44.9649 34.8399 25.8223 17.5957	0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9310 0.8701 0.8050 0.7385 0.6713	147.7794 135.4395 125.1035 115.8223 107.1212	0.3650 0.4929 0.5932 0.6743 0.7412	57.7794 45.4395 35.1035 25.8223 17.1211	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9790 0.9553 0.9223 0.8777 0.8195	150.4688 138.0762 126.5274 115.0313 103.0078	0.2038 0.2956 0.3864 0.4792 0.5730	60.4688 48.0762 36.5274 25.0313 13.0079	2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9934 0.9843 0.9688 0.9426 0.8988	151.2071 138.8673 127.0020 114.4512 100.3711	0.1148 0.1767 0.2477 0.3340 0.4383	61.2071 48.8672 37.0020 24.4512 10.3711	3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9978 0.9943 0.9874 0.9730 0.9426	151.4708 139.1309 127.1602 114.0821 98.7364	0.0662 0.1066 0.1586 0.2308 0.3340	61.4708 49.1309 37.1602 24.0821 8.7364	4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9993 0.9979 0.9949 0.9875 0.9674	151.5235 139.2364 127.2129 113.9239 97.8926	0.0377 0.0644 0.1011 0.1576 0.2531	61.5235 49.2364 37.2129 23.9239 7.8926	5.0000 5.0000 5.0000 5.0000 5.0000

Dielec Thic Normalized Waveguide h fin gap wid number of d Dielec. con Dielec. con Dielec. con Upper freq Lower freq Freq increm Matrix orde	kness D (mil H1/D - H2/D - eight B/D - th W/B - if. T/D - s region 1 - s region 2 - s region 3 - limit GH2 - limit GH2 - ent GH2 - r -) 100.0000 4.5000 3.5000 4.0000 0.9000 8.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	,		
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.7538 0.6186 0.5220 0.4471 0.3929	137.4961 126.4746 118.9864 114.2930 109.8106	0.6571 0.7857 0.8530 0.8945 0.9196	47.4961 36.4747 28.9864 24.2930 19.8106	0.1000 0.1000 0.1000 0.1000 0.1000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8504 0.7489 0.6638 0.5885 0.5259	143.1387 131.8008 122.9942 116.6133 110.2852	0.5262 0.6626 0.7479 0.8085 0.8505	53.1387 41.8008 32.9942 26.6133 20.2852	0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9140 0.8440 0.7746 0.7047 0.6387	146.8301 135.1758 125.2090 117.1407 108.8614	0.4058 0.5363 0.6325 0.7095 0.7695	56.8301 45.1758 35.2090 27.1407 18.8614	C.8000 O.8000 O.8000 C.8000 O.8000 O.8000

Table 13. SCATTERING DATA FOR W/B = 0.9, T = 100, 200, 300, 400, 500 MILS

FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9333 0.8759 0.8137 0.7477 0.6822	147.8321 136.2305 125.7364 117.0352 107.9649	0.3590 0.4825 0.5813 0.6640 0.7312	57.8321 46.2305 35.7364 27.0352 17.9649	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Flase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9799 0.9575 0.9262 0.8829 0.8263	150.4161 138.7090 127.1075 116.2969 104.0098	0.1993 0.2885 0.3770 0.4695 0.5632	60.4161 48.7090 37.1075 26.2969 14.0098	2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9935 0.9847 0.9702 0.9450 0.9024	151.1544 139.4473 127.5294 115.7169 101.3731	0.1139 0.1740 0.2424 0.3271 0.4309	61.1543 49.4473 37.5294 25.7168 11.3731	3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9979 0.9946 0.9879 0.9743 0.9447	151.3653 139.7110 127.6876 115.3477 99.8438	0.0644 0.1038 0.1549 0.2254 0.3279	61.3653 49.7110 37.6875 25.3477 9.8438	4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9993 0.9980 0.9952 0.9879 0.9688	151.4707 139.7637 127.6876 115.2422 98.9473	0.0368 0.0625 0.0983 0.1549 0.2477	61.4707 49.7637 37.6875 25.2422 8.9473	5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

Dielec Thickness D (mil) 100.0000 Normalized H1/D = 4.5000 Normalized H2/D = 3.5000 4.0000 waveguide height B/D = fin gap width W/B = number of dif. T/D =8.0000 1.0000 Dielec. cons region 1 = Dielec. cons region 2 = 1.0000 Dielec. cons region 3 -1.0000 Upper freq limit GHz = Lower freq limit GHz = 12.0000 8.0000 1.0000 Freq increment GHz -10.0000 Matrix order = S12 Mag. S12 Phase T OVER D FREQUENCY S11 Mag. S11 Phase ____ 48,8145 0.1000 0.7675 138.8145 0.6410 8.0000 9.0000 0.6429 127.8458 0.7660 37.8457 0.1000 0.5469 121.2012 0.8372 31.2012 0.1000 10.0000 25.5586 0.1000 115.5587 0.8800 0.4749 11.0000 0.9088 21.5508 0.1000 111.5508 12.0000 0.4173 S12 Phase Sll Phase S12 Mag. T OVER D FREQUENCY Sll Mag. 141.1876 0.5895 51.1876 0.2000 8.0000 0.8078 0.7185 40.1133 0.2000 0.6955 130.1133 9.0000 0.7975 33.0469 0.2000 0.6033 123.0469 10.0000 116.7715 0.8471 26.7715 0.2000 11.0000 0.5314 22.1836 0.2000 12.0000 0.4700 112.1836 0.8826 S12 Phase T OVER D FREQUENCY Sll Mag. S11 Phase S12 Mag. ------_____ 8.0000 0.8365 142.8223 0.5479 52.8223 0.3000 0.6777 41.6954 0.3000 9.0000 0.7354 131.6954 0.7618 0.3000 34.3126 10.0000 0.6478 124.3126 0.3000 0.5766 117.5626 0.8171 27.5625 11,0000 112.3419 0.8577 22.3418 0.3000 12.0000 0.5141 S11 Phase S12 Phase T OVER D FREQUENCY S12 Mag. Sll Mag. _____ 0.8595 0.5112 54.1407 0.4000 8.0000 144.1407 9.0000 0.7681 133.0664 0.6403 43.0665 0.4000 35.2618 27.9844 125.2618 0.7274 0.4000 10.0000 0.6862 11.0000 0.6150 117.9845 0.7885 0.4000 112.2364 0.8352 22.2364 0.4000 0.5499 12.0000 S11 Phase S12 Mag. S12 Phase T OVER D FREQUENCY Sll Mag. ---------_____ -------0.5000 145.1953 0.4776 55.1954 8.0000 0.8786 0.6043 44.1211 0.5000 9.0000 0.7968 134.1211 0.6964 36.0000 0.5000 10.0000 0.7177 126.0001 0.7624 28.2481 0.5000 0.6471 118.2481 11.0000 22.0254 0.5000 112.0255 0.8123 12,0000 0.5833 S12 Phase T OVER D S11 Phase S12 Mag. FREQUENCY Sll Mag. 0.4466 0.8947 146.1446 56.1446 0.6000 8.0000 0.8195 134.9649 9.0000 0.5730 44.9649 0.6000 126.5274 36.5274 0.6000 0.6668 10.0000 0.7453 0.6768 28.4063 21.7090 0.6000 11.0000 118.4063 0.7362 12,0000 0.6114 111.7090 0.7914 0.6000

.

•

٠

Table 15. SCATTERING DATA FOR W/B = 0.8, T = 70, 80, 90, 100, 200, 300, 400, 500 MILS

FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9087 0.8401 0.7699 0.7028 0.6372	146.9356 135.5977 127.0020 118.4590 111.2872	0.4175 0.5425 0.6382 0.7114 0.7707	56.9356 45.5977 37.0020 28.4590 21.2872	0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9198 0.8571 0.7917 0.7266 0.6603	147.5684 136.1778 127.4239 118.5117 110.9180	0.3923 0.5152 0.6109 0.6871 0.7510	57.5684 46.1778 37.4239 28.5117 20.9180	0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9296 0.8728 0.8110 0.7477 0.6822	148.0957 136.7052 127.6876 118.5117 110.4962	0.3685 0.4881 0.5851 0.6640 0.7312	58.0957 46.7051 37.6875 28.5117 20.4961	0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9376 0.8864 0.8284 0.7675 0.7021	148.5176 137.1797 127.9512 118.4590 110.0743	0.3478 0.4630 0.5602 0.6410 0.7121	58.5176 47.1797 37.9512 28.4590 20.0743	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9814 0.9611 0.9327 0.8927 0.8381	150.8380 139.3419 129.1641 117.7207 106.2774	0.1921 0.2762 0.3608 0.4507 0.5456	60.8379 49.3419 39.1641 27.7207 16.2774	2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9940 0.9862 0.9730 0.9500 0.9090	151.5235 140.0274 129.4805 117.1407 103.8516	0.1093 0.1658 0.2308 0.3122 0.4167	61.5235 50.0274 39.4805 27.1407 13.8516	3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	S11 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9980 0.9951 0.9890 0.9765 0.9489	151.6817 140.2911 129.5860 116.8770 102.3751	0.0625 0.0992 0.1476 0.2155 0.3157	61.6817 50.2911 39.5860 26.8770 12.3750	4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9994 0.9982 0.9956 0.9890 0.9708	151.7344 140.3438 129.6387 116.7188 101.5313	0.0359 0.0598 0.0937 0.1476 0.2397	61.7344 50.3438 39.6387 26.7188 11.5313	5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

Dielec Thic Normalized Normalized waveguide h fin gap wid number of d Dielec. con Dielec. con Dielec. con Upper freq Lower freq Freq increm Matrix orde	kness D (mil H1/D - H2/D = eight B/D = th W/B = if. T/D = s region 1 = s region 2 = s region 3 = limit GHZ = limit GHZ = ent GHZ = r =) 100.0000 4.5000 3.5000 4.0000 0.7000 8.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000			
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.7832 0.6700 0.5781 0.5062 0.4455	140.2383 130.2188 123.2578 117.5098 113.5547	0.6217 0.7424 0.8160 0.8624 0.8953	50.2383 40.2188 33.2578 27.5098 23.5547	0.1000 0.1000 0.1000 0.1000 0.1000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8705 0.7895 0.7138 0.6450 0.5803	145.4063 135.3340 127.3712 120.1993 114.5567	0.4921 0.6138 0.7003 0.7642 0.8144	55.4063 45.3340 37.3711 30.1992 24.5567	0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9269 0.8719 0.8131 0.7514 0.6869	148.5176 138.2872 129.3750 120.8321 113.3965	0.3753 0.4897 0.5821 0.6599 0.7268	58.5176 48.2872 39.3750 30.8321 23.3965	0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

Table 17. SCATTERING DATA FOR W/B = 0.7, T = 100, 200, 300, 400, 500 MILS

,

FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9435	149.4142	0.3314	59.4141	1.0000
9.0000	0.8984	139.1309	0.4392	49.1309	1.0000
10.0000	0.8470	129.9024	0.5316	39.9024	1.0000
11.0000	0.7900	120.8321	0.6131	30.8321	1.0000
12.0000	0.7266	112.6055	0.6871	22.6055	1.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9831	151.4708	0.1830	61.4708	2.0000
9.0000	0.9658	141.0821	0.2593	51.0821	2.0000
10.0000	0.9407	131.0098	0.3392	41.0098	2.0000
11.0000	0.9048	120.1466	0.4259	30.1465	2.0000
12.0000	0.8528	109.1251	0.5222	19.1250	2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9945	151.9981	0.1047	51.9981	3.0000
9.0000	0.9879	141.6094	0.1549	51.6094	3.0000
10.0000	0.9763	131.2735	0.2164	41.2735	3.0000
11.0000	0.9556	119.5665	0.2947	29.5663	3.0000
12.0000	0.9184	106.8575	0.3957	16.8575	3.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9982	152.1563	0.0598	62.1563	4.0000
9.0000	0.9957	141.8204	0.0928	51.8204	4.0000
10.0000	0.9905	131.3262	0.1376	41.3262	4.0000
11.0000	C.9794	119.2501	0.2020	29.2500	4.0000
12.0000	0.9540	105.5391	0.3000	15.5391	4.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9994	152.2618	0.0340	62.2617	5.0000
9.0000	0.9985	141.8731	0.0552	51.8731	5.0000
10.0000	0.9962	131.3790	0.0873	41.3790	5.0000
11.0000	0.9904	119.1446	0.1385	29.1446	5.0000
12.0000	0.9736	104.7481	0.2281	14.7481	5.0000

Dielec Thic Normalized Normalized waveguide h fin gap wid number of d Dielec. con Dielec. con Dielec. con Upper freq Lower freq Freq increm Matrix orde	kness D (mil H1/D - H2/D - eight B/D - th W/B - lif. T/D - s region 1 - s region 2 - s region 3 - limit GHz - limit GHz - ent GHz -	<pre>) 100.0000 4.5000 3.5000 4.0000 0.6000 8:0000 1.0000 1.0000 12.0000 8.0000 1.0000 10.0000</pre>			
FREQUENCY	S11 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8001 0.6988 0.6135 0.5415 0.4814	141.8204 132.3809 125.3672 119.8828 115.4532	0.5999 0.7153 0.7897 0.8407 0.8765	51.8203 42.3809 35.3672 29.8829 25.4532	0.1000 0.1000 0.1000 0.1000 0.1000
FREQUENCY	S11 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8834 0.8126 0.7446 0.6788 0.6164	146.7247 137.3380 129.5333 122.7832 116.7188	0.4687 0.5828 0.6675 0.7343 0.7874	56.7247 47.3379 39.5332 32.7832 26.7188	0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	U.9346 O.8885 O.8365 O.7804 O.7189	149.6251 140.0801 131.5372 123.5216 115.7696	0.3556 0.4589 0.5479 0.6253 0.6951	59.6251 50.0801 41.5372 33.5215 25.7695	0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

Table 19. SCATTERING DATA FOR W/B = 0.6, T = 100, 200, 300, 400, 500 MILS

FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9494 0.9121 0.8669 0.8147 0.7556	150.3633 140.8712 132.0117 123.5215 115.0840	0.3140 0.4100 0.4985 0.5798 0.6550	60.3633 50.8711 42.0118 33.5215 25.0840	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9851 0.9708 0.9494 0.9180 0.8710	152.1036 142.4532 132.9610 122.9415 111.9200	0.1722 0.2397 0.3140 0.3965 0.4913	62.1036 52.4532 42.9610 32.9415 21.9200	2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9952 0.9897 0.9799 0.9621 0.9283	152.5255 142.9278 133.1192 122.4668 109.9161	0.0974 0.1431 0.1993 0.2726 0.3719	62.5254 52.9278 43.1192 32.4668 19.9161	3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	S1] Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9985 0.9963 0.9919 0.9824 0.9598	152.7364 143.0860 133.2247 122.1505 108.7032	0.0552 0.0855 0.1267 0.1867 0.2806	62.7364 53.0860 43.2247 32.1504 18.7032	4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	511 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9995 0.9987 0.9967 0.9917 0.9917	152.7364 143.1387 133.2247 122.0450 107.9649	0.0313 0.0515 0.0809 0.1285 0.2128	62.7364 53.1387 43.2247 32.0450 17.9649	5.0000 5.0000 5.0000 5.0000 5.0000

.

.

. .

.

.

Dielec Thickness D (mil) 100.0000 Normalized H1/D = 4.5000 Normalized H2/D = 3.5000 4.0000 waveguide height B/D = fin gap width W/B = 0.5000 number of dif. T/D = B.0000 Dielec. cons region 1 = 1.0000 Dielec. cons region 2 = 1.0000 Dielec. cons Dielec. cons region 3 = 1.0000 Upper freq limit GHz = 12.0000 Lower freq limit GHz = 8.0000 Freq increment GHz -1.0000 Matrix order = 10.0000 S12 Mag. S12 Phase T OVER D FREQUENCY Sll Mag. Sll Phase _____ 0.5715 0.1000 53.4024 8.0000 0.8206 143.4024 0.7316 134.8594 0.6817 44.8594 0.1000 9.0000 0.7576 37.9512 10.0000 0.6527 127.9512 0.1000 32.8887 11.0000 122.8887 0.8133 0.1000 0.5818 27.9844 0.1000 12.0000 0.5212 117.9844 0.8534 FREQUENCY Sll Mag. S11 Phase S12 Mag. S12 Phase T OVER D -----------0.2000 0.2000 8.0000 0.8552 145.5645 0.5183 55.5645 0.7775 0.6289 137.0743 47.0743 0.2000 9.0000 0.2000 39.9551 0.7054 0.6372 0.5773 0.7088 129.9551 10.0000 0.7707 34.4707 11.0000 124.4708 0.2000 12.0000 118.9864 0.8165 28.9864 0.2000 S12 Mag. S12 Phase FREQUENCY T OVER D Sll Mag. Sll Phase ------------------0.4776 56.9883 **8.000**0 0.8786 146.9884 0.3000 48.5508 0.8110 C.7453 O.6808 138.5509 0.5851 0.6668 0.7324 0.3000 0.3000 0.3000 9.0000 10.0000 131.2735 125.4727 35.4727 11.0000 0.7840 29.4610 12.0000 0.6208 119.4610 0.3000 Sll Mag. Sll Phase S12 Mag. S12 Phase T OVER D FREQUENCY _____ _____ _____ -----0.8972 58.0430 8.0000 148.0431 0.4416 0.4000 0.8381 0.7780 0.5456 0.6282 9.0000 139.7110 49.7110 0.4000 0.4000 10.0000 132.2754 42.2754 11.0000 126.0528 0.6984 36.0528 0.4000 0.7157 29.5664 12.0000 0.6562 119.5664 0.4000 S12 Mag. S12 Phase FREQUENCY Sll Mag. Sll Phase T OVER D 0.9125 8 0000 148.9395 0.4092 0.5000 58.9395 9.0000 0.8599 140.6075 0.5104 50.6075 0.5000 0.8039 10.0000 132.9083 0.5947 42.9083 126.4219 119.5664 36.4219 11.0000 0.7453 0.6668 0.5000 12.0000 0.6862 0.7274 29.5664 0.5000 FREQUENCY S11 Mag. S11 Phase S12 Mag. S12 Phase T OVER D **e**.0000 0.9248 149.6778 0.6000 0.3804 59.6778 141.2403 0.4784 9.0000 0.8781 51.2403 0.6000 0.8258 0.7699 10.0000 0.5640 0.6382 43.3828 36.6856 0.6000 133.3829 11.0000 126.6856 29.3555 12,0000 0.7112 119.3555 0.7030 0.6000

Table 21. SCATTERING DATA FOR W/B = 0.5, T = 70, 80, 90, 100, 200, 300, 400, 500 MILS

FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9350 0.8927 0.8450 0.7917 0.7335	150.2051 141.7677 133.8048 126.7911 119.1973	0.3547 0.4507 0.5347 0.6109 0.6797	60.2051 51.7676 43.8047 36.7911 29.1973	0.7000 0.7000 0.7000 0.7000 0.7000
FREQUENCY	Sll Mag.	S11 Phase	512 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9435 0.9056 0.8613 0.8099 0.7538	150.5743 142.1895 134.1211 126.8438 118.9337	0.3314 0.4242 0.5080 0.5865 0.6571	60.5743 52.1895 44.1211 36.8438 28.9336	C.8000 O.8000 O.8000 O.8000 O.8000 O.8000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9506 0.9166 0.8759 0.8274 0.7716	150.9961 142.5586 134.3321 126.8965 118.6172	0.3105 0.3999 0.4825 0.5617 0.6361	60.9961 52.5586 44.3321 36.8965 28.6172	0.9000 0.9000 0.9000 0.9000 0.9000
FREQUENCY	Sll Mag.	S11 Phase	512 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9567 0.9262 0.8881 0.8416 0.7872	151.3126 142.8223 134.5430 126.8965 118.3536	0.2912 0.3770 0.4597 0.5402 0.6167	61.3125 52.8223 44.5430 36.8965 28.3535	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9874 0.9759 0.9585 0.9313 0.8897	152.6837 144.2462 135.3340 126.4220 115.5587	0.1586 0.2182 0.2850 0.3642 0.4564	62.6837 54.2461 45.3340 36.4219 25.5586	2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9960 0,9916 0.9838 0.9686 0.9391	153.1055 144.5626 135.4395 125.8946 113.7657	0.0892 0.1294 0.1794 0.2486 0.3435	63.1055 54.5625 45.4395 35.8946 23.7657	3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9987 0.9970 0.9934 0.9854 0.9658	153.2110 144.7208 135.4922 125.7364 112.7110	0.0506 0.0772 0.1148 0.1704 0.2593	63.2110 54.7207 45.4922 35.7364 22.7110	4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9996 0.9989 0.9974 0.9932 0.9805	153.2637 144.7208 135.4922 125.5782 112.0782	0.0294 0.0460 0.0726 0.1166 0.1966	63.2637 54.7207 45.4922 35.5782 22.0782	5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
Dielec Thic Normalized Normalized waveguide h fin gap wid number of d Dielec. con Dielec. con Dielec. con Upper freq Lower freq Freq increm Matrix orde	kness D (mi) H1/D = H2/D = eight B/D = th W/B = if. T/D = s region 1 = s region 2 = s region 3 = limit GHz = ent GHz = r =	<pre>1) 100.0000 4.5000 3.5000 4.0000 0.4000 8.0000 1.0000 1.0000 12.0000 8.0000 1.0000 1.0000</pre>			
---	---	--	--	---	--
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8435 0.7681 0.6968 0.6308 0.5690	145.7755 138.2344 131.4844 126.2110 121.5704	0.5371 0.6403 0.7172 0.7759 0.8223	55.7754 48.2344 41.4844 36.2110 31.5704	0.1000 0.1000 0.1000 0.1000 0.1000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9128 0.8651 0.8131 0.7586 0.7001	150.0469 142.8751 135.7032 129.4805 123.5215	0.4083 0.5017 0.5821 0.6515 0.7140	60.0469 52.8750 45.7032 39.4805 33.5215	0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9531 0.9231 0.8868 C.8430 0.7906	152.3145 145.0899 137.4434 130.3243 123.0997	0.3026 0.3847 0.4622 0.5378 0.6123	62.3145 55.0899 47.4434 40.3243 33.0996	0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

Table 23. SCATTERING DATA FOR W/B = 0.4, T = 100, 200, 300, 400, 500 MILS

FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9643	152.8946	0.2646	62.8946	1.0000
9.0000	0.9404	145.6172	0.3401	55.6172	1.0000
10.0000	0.9098	137.8125	0.4150	47.8125	1.0000
11.0000	0.8705	130.4297	0.4921	40.4297	1.0000
12.0000	0.8211	122.5723	0.5708	32.5723	1.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9897	154.0020	0.1431	64.0020	2.0000
9.0000	0.9810	146.7247	0.1939	56.7247	2.0000
10.0000	0.9672	138.4454	0.2540	48.4454	2.0000
11.0000	0.9450	129.9551	0.3271	39.9551	2.0000
12.0000	0.9083	120.1993	0.4184	30.1993	2.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9968	154.2657	0.0800	64.2657	3.0000
9.0000	0.9935	146.9356	0.1139	56.9356	3.0000
10.0000	0.9872	138.4981	0.1595	48.4981	3.0000
11.0000	0.9751	129.5860	0.2218	39.5860	3.0000
12.0000	0.9497	118.6700	0.3131	28.6700	3.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9990	154.3712	0.0451	64.3711	4.0000
9.0000	0.9977	147.0410	0.0681	57.0411	4.0000
10.0000	0.9950	138.5508	0.1002	48.5508	4.0000
11.0000	0.9885	129.3750	0.1513	39.3750	4.0000
12.0000	0.9717	117.7735	0.2361	27.7735	4.0000
FREQUENCY	Sli Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000	0.9996	154.3712	0.0267	64.3711	5.0000
9.0000	0.9992	147.0410	0.0405	57.0411	5.0000
10.0000	0.9980	138.5509	0.0635	48.5508	5.0000
11.0000	0.9947	129.3224	0.1029	39.3223	5.0000
12.0000	0.9839	117.2461	0.1785	27.2461	5.0000

.

٠

.

٠

-

Dielec Thickness D (mil) 100.0000 Normalized H1/D = Normalized H2/D = 4.5000 3.5000 4.0000 waveguide height B/D = 0.3000 fin gap width W/B = 8.0000 number of dif. T/D =Dielec. cons region 1 = Dielec. cons region 2 = 1.0000 1.0000 Dielec. cons region 3 = Upper freq limit GHz = 1.0000 12.0000 Lower freq limit GHz = 8.0000 1.0000 Freq increment GHz = 10.0000 Matrix order = S12 Mag. S12 Phase T OVER D FREQUENCY Sll Mag. Sll Phase _____ 0.1000 58.7813 8.0000 0.8714 148.7813 0.4905 9.0000 0.8105 142.2950 0.5858 52.2950 0.1000 10.0000 0.7489 136.3360 0.6626 46.3360 0.1000 130.8516 0.7261 40.8516 0.1000 11.0000 0.6875 0.1000 12.0000 0.6287 125.8419 0.7777 35.8418 S11 Phase S12 Mag. T OVER D FREQUENCY S12 Phase Sll Mag. ------_____ ------_____ 0.3659 0.9307 152.5782 62.5782 0.4000 8.0000 9.0000 0.8939 146.4610 0.4482 56.4610 0.4000 0.8518 140.3438 0.5238 50.3438 0.4000 10.0000 0.8045 0.4000 134.1211 0.5940 44.1211 11.0000 0.7514 38.0040 12.0000 128.0040 0.6599 0.4000 FREQUENCY Sll Mag. Sll Phase S12 Mag. Sl2 Phase T OVER D ___ ____ -----_____ - -8.0000 0.9634 154.3712 0.2682 64.3712 0.8000 0.9413 148.3067 0.3375 58.3067 9.0000 0.8000 10.0000 0.9128 141.8204 0.4083 51.8204 0.8000 0.8768 134.9649 0.4808 44.9649 0.8000 11.0000 127.7403 0.5571 37.7403 0.8000 12.0000 0.8304

Table 25. SCATTERING DATA FOR W/B = 0.3, T = 100, 200, 300, 400, 500 MILS

,

FREQUENCY	Sll Mag.	Sll Phase	S12 Mag .	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9726 0.9548 0.9313 0.8992 0.8561	154.7930 148.7286 142.1368 135.0176 127.3184	0.2326 0.2973 0.3642 0.4375 0.5167	64.7930 58.7286 52.1368 45.0176 37.3184	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9923 0.9858 0.9757 0.9580 0.9279	155.6368 149.5196 142.6114 134.7012 125.3673	0.1239 0.1676 0.2191 0.2868 0.3727	65.6368 59.5196 52.6114 44.7012 35.3672	2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9976 0.9952 0.9906 0.9812 0.9606	155.8477 149.7305 142.6641 134.4376 124.1544	0.0690 0.0983 0.1367 0.1930 0.2779	65.8477 59.7305 52.6641 44.43 ⁻⁵ 34.1543	3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9992 0.9983 0.9962 0.9914 0.9779	155.9532 149.7833 142.6641 134.2266 123.3633	0.0396 0.05£9 0.0873 0.1312 0.2092	65.9532 59.7832 52.6641 44.2266 33.3633	4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9997 0.9994 0.9985 0.9959 0.9959 0.9876	155.9532 149.7833 142.6641 134.1739 122.9415	0.0230 0.0350 0.0543 0.0901 0.1567	65.9532 59.7832 52.6641 44.1739 32.9415	5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

Table 26. SCATTERING DATA FOR W/B = 0.25, T = 10, 20, 30, 40, 50. 60 MILS

Dielec Thic Normalized Normalized Waveguide h fin gap wid number of d Dielec. con Dielec. con Dielec. con Upper freq Lower freq Freq increm Matrix orde	kness D (mil H1/D = H2/D = eight B/D = th W/B = lif. T/D = s region 1 = s region 2 = s region 3 = limit GHz = limit GHz = t = t GHz = t =	<pre>) 100.0000 4.5000 3.5000 4.0000 0.2500 5.0000 1.</pre>			
FREQUENCY	S11 Mag.	Sll Phase	S12 Ma g.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.8872 0.8345 0.7792 0.7221 0.6652	150.7852 144.2989 138.7090 133.5410 128.3731	0.4614 0.5510 0.6268 0.6918 0.7467	60.7852 54.2989 48.7090 43.5410 38.3731	0.1000 0.1000 0.1000 0.1000 0.1000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9117 0.8683 0.8201 0.7693 0.7151	152.5255 146.0919 140.5020 135.1758 129.6915	0.4108 0.4961 0.5723 0.6389 0.6990	62.5255 56.0918 50.5020 45.1758 39.6914	0.2000 0.2000 0.2000 0.2000 0.2000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9279 0.8914 0.8499 0.8034 0.7520	153.5274 147.3048 141.7149 136.2305 130.3770	0.3727 0.4532 0.5269 0.5955 0.6592	63.5274 57.3047 51.7149 46.2305 40.3770	0.3000 0.3000 0.3000 0.3000 0.3000 0.3000
TREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	C.9398 C.9090 O.8728 O.8299 O.7804	154.2657 148.1485 142.5060 136.7578 130.5880	0.3418 0.4167 0.4881 0.5579 0.6253	64.2657 58.1485 52.5059 46.7579 40.5879	0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9497 0.9234 0.8902 0.8504 0.8034	154.8458 148.7286 142.9278 137.1270 130.6407	0.3131 0.3838 0.4556 0.5262 0.5955	64.8457 58.7286 52.9278 47.1270 40.6407	0.5000 0.5000 0.5000 0.5000 0.5000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9577 0.9340 0.9044 0.8674 0.8227	155.3204 149.0977 143.2970 137.3380 130.6407	0.2876 0.3573 0.4267 0.4977 0.5685	65.3204 59.0977 53.2969 47.3379 40.6407	0.6000 0.6000 0.6000 0.6000 0.6000

Table 27. SCATTERING DATA FOR W/B = 0.25, T = 70, 80, 90, 100, 200, 300, 400, 500 MILS

FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9639 0.9429 0.9162 0.8821 0.8381	155.6368 149.4142 143.6661 137.4962 130.5352	0.2664 0.3331 0.4007 0.4711 0.5456	65.6368 59.4141 53.6661 47.4962 40.5352	0.7000 0.7000 0.7000 0.7000 0.7000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9691 0.9506 0.9259 0.8943 0.8523	155.8477 149.7305 143.8243 137.5489 130.3770	0.2468 0.3105 0.3779 0.4474 0.5230	65.8477 59.7305 53.8243 47.5489 40.3770	0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9730 0.9567 0.9343 0.9044 0.8641	156.0587 149.9414 143.9825 137.6C16 130.2188	0.2308 0.2912 0.3565 0.4267 0.5033	66.0586 59.9415 53.9825 47.6016 40.2188	0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9765 0.9621 0.9420 0.9136 0.8750	156.2169 150.0997 144.0880 137.6016 130.0079	0.2155 0.2726 0.3357 0.4066 0.4841	66.2169 60.0997 54.0880 47.6016 40.0079	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	511 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9935 0.9884 0.9796 0.9646 0.9379	156.9551 150.7325 144.5098 137.3380 128.3204	0.1139 0.1522 0.2011 0.2638 0.3470	66.9551 60.7325 54.5098 47.3379 38.3204	2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9980 0.9960 0.9922 0.9841 0.9663	157.1133 150.8907 144.5098 137.0215 127.1602	0.0635 0.0892 0.1248 0.1776 0.2575	67.1133 60.8907 54.5098 47.0215 37.1602	3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9994 0.9986 0.9969 0.9927 0.9810	157.1133 150.9434 144.5098 136.8633 126.4747	0.0359 0.0534 0.0791 0.1203 0.1939	67.1133 60.9434 54.5098 46.8633 36.4747	4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9998 0.9995 0.9988 0.9966 0.9893	157.1661 150.9434 144.5098 136.8106 126.1055	0.0202 0.0313 0.0497 0.0827 0.1458	67.1661 60.9434 54.5098 46.8106 36.1055	5.0000 5.0000 5.0000 5.0000 5.0000

Dielec Thic Normalized I Normalized I waveguide he fin gap wid number of d Dielec. con Dielec. con Dielec. con Upper freq Lower freq Freq increm Matrix orde	kness D (mil H1/D = H2/D = eight B/D = th W/B = if. T/D = s region 1 = s region 2 = s region 3 = limit GHz = limit GHz = ent GHz = r =	<pre>) 100.0000 4.5000 4.0000 0.2000 8.0000 1.0000 1.0000 1.0000 8.0000 8.0000 1.0000 1.0000</pre>			
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8,0000 9,0000 10,0000 11,0000 12,0000	0.9044 0.8604 0.8121 0.7598 0.7060	153.2110 147.3047 141.3985 136.6524 131.3789	0.4267 0.5096 0.5836 0.6501 0.7082	63.2110 57.3047 51.3985 46.6524 41.3789	0.1000 0.1000 0.1000 0.1000 0.1000
FREQUENCY	Sil Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9255 0.8893 0.8489 0.8028 0.7526	154.7403 148.9395 143.0860 138.1817 132.6446	0.3787 0.4573 0.5285 0.5962 0.6585	64.7403 58.9395 53.0860 48.1817 42.6446	0.2000 0.2000 0.2000 0.2000 0.2000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9395 0.9090 0.8746 0.8335 0.7866	155.5840 149.9414 144.0880 139.1309 133.2774	0.3427 0.4167 0.4849 0.5525 0.6174	65.5840 59.9415 54.0880 49.1309 43.2774	0.3000 0.3000 0.3000 0.3000 0.3000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9500 0.9245 0.8943 0.8561 0.8121	156.2696 150.6798 144.8262 139.6583 133.4883	0.3122 0.3813 0.4474 0.5167 0.5836	66.2696 60.6797 54.8262 49.6583 43.4883	0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9583 0.9366 0.9090 0.8741 0.8320	156.7969 151.2071 145.1953 139.9219 133.5938	0.2859 0.3504 0.4167 0.4857 0.5548	66.7969 61.2071 55.1954 49.9219 43.5938	0.5000 0.5000 0.5000 0.5000 0.5000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9651 0.9456 0.9209 0.8893 0.8484	157.1661 151.5762 145.5118 140.1856 133.5411	0.2620 0.3253 0.3898 0.4573 0.5293	67.1661 61.5762 55.5118 50.1856 43.5411	0.6000 0.6000 0.6000 0.6000 0.6000

Table 29. SCATTERING DATA FOR W/B = 0.2, T = 70, 80, 90, 100, 200, 300, 400, 500 MILS

FREQUENCY	Sll Mag.	Sll Phase	Sl2 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9702 0.9528 0.9310 0.9016 0.8627	157.3770 151.8399 145.7755 140.2911 133.4356	0.2424 0.3035 0.3650 0.4325 0.5057	67.3770 61.8399 55.7754 50.2911 43.4356	0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9743 0.9593 0.9395 0.9117 0.8746	157.6407 152.0508 145.9864 140.2911 133.3301	0.2254 0.2823 0.3427 0.4108 0.4849	67.6407 62.0508 55.9864 50.2911 43.3301	0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9777 0.9646 0.9462 0.9209 0.8847	157.7989 152.2090 146.0919 140.3438 133.1719	0.2101 0.2638 0.3236 0.3898 0.4662	67.7989 62.2090 56.0918 50.3438 43.1719	0.9000 0.9000 0.9000 0.9000 0.9000
FREQUENCY	S11 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9807 0.9691 0.9523 0.9283 0.8943	157.9044 152.3672 146.1446 140.3966 133.0137	0.1957 0.2468 0.3052 0.3719 0.4474	67.9043 62.3672 56.1446 50.3965 43.0137	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9946 0.9905 0.9834 0.9711 0.9477	158.4844 152.8419 146.5137 140.0801 131.4844	0.1038 0.1376 0.1812 0.2388 0.3192	68.4844 62.8418 56.5137 50.0801 41.4844	2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9983 0.9968 0.9937 0.9869 0.9715	158.5899 153.0001 146.5137 139.8692 130.4825	0.0580 0.0800 0.1121 0.1613 0.2370	68.5899 63.0000 56.5137 49.8692 40.4825	3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	S11 Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9995 0.9989 0.9975 0.9940 0.9839	158.6426 153.0528 146.4610 139.7110 129.9024	0.0331 0.0478 0.0708 0.1093 0.1785	68.6426 63.0528 56.4610 49.7110 39.9024	4.0000 4.0000 4.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9998 0.9996 0.9990 0.9972 0.9909	158.6426 153.0000 146.4610 139.6583 129.5860	0.0184 0.0285 0.0451 0.0754 0.1349	68.6426 63.0000 56.4610 49.6583 39.5860	5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

٠

.

Dielec Thic Normalized Normalized waveguide h fin gap wid number of d Dielec. cor Dielec. cor Dielec. cor Upper freq Lower freq Freq increm Matrix orde	thess D (mil H1/D = H2/D = Hight B/D = Hth W/B = Hif. T/D = His region 1 = His region 2 = Himit GHz = Himit GHz = Himit GHz = Himit GHz =	1) 100.0000 4.5000 3.5000 4.0000 0.1000 8.0000 1.0000 1.0000 12.0000 8.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000			
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9429 0.9177 0.8864 0.8504 0.8072	158.6954 154.0020 150.2579 145.1426 140.8184	0.3331 0.3974 0.4630 0.5262 0.5903	68.6953 64.0020 60.2578 55.1426 50.8184	0.1000 0.1000 0.1000 0.1000 0.1000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9564 C.9359 C.9098 O.8790 D.8401	159.6973 155.1094 151.4180 146.1974 141.7149	0.2920 0.3522 0.4150 0.4768 0.5425	69.6973 65.1094 61.4180 56.1973 51.7149	0.2000 0.2000 0.2000 0.2000 0.2000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9646 0.9474 0.9259 0.8988 0.8637	160.2247 155.6895 152.0508 146.8829 142.1895	0.2638 0.3201 0.3779 0.4383 0.5041	70.2247 65.6895 62.0508 56.8829 52.1895	0.3000 0.3000 0.3000 0.3000 0.3000
FREQUENCY	S11 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9708 0.9567 0.9382 0.9136 0.8799	160.5938 156.1641 152.5255 147.1993 142.2950	0.2397 0.2912 0.3461 0.4066 0.4752	70.5938 66.1641 62.5255 57.1993 52.2950	0.4000 0.4000 0.4000 0.4000 0.4000
FREQUENCY	Sli Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9759 0.9639 0.9471 0.9248 0.8935	160.9102 156.4805 152.7891 147.3575 142.2950	0.2182 0.2664 0.3210 0.3804 0.4491	70.9102 66.4805 62.7891 57.3575 52.2950	0.5000 0.5000 0.5000 0.5000 0.5000
FREQUENCY	511 Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9799 0.9691 0.9542 0.9340 0.9044	161.1739 156.6915 152.9473 147.5157 142.3477	0.1993 0.2468 0.2991 0.3573 0.4267	71.1739 66.6915 62.9473 57.5157 52.3477	0,6000 0.6000 0.6000 0.6000 0.6000

Table 31. SCATTERING DATA FOR W/B = 0.1, T = 70, 80, 90, 100, 200, 300, 400, 500 MILS

.

.

FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9828 0.9732 0.9598 0.9413 0.9132	161.2794 156.8497 153.1055 147.5684 142.1895	0.1848 0.2299 0.2806 0.3375 0.4075	71.2793 66.8497 63.1055 57.5684 52.1895	0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9851 0.9769 0.9651 0.9480 0.9213	161.3848 156.9551 153.1583 147.5684 142.0840	0.1722 0.2137 0.2620 0.3183 0.3889	71.3848 66.9551 63.1582 57.5684 52.0840	0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9872 0.9799 0.9691 0.9531 0.9276	161.4903 157.0606 153.2110 147.5684 141.9786	0.1595 0.1993 0.2468 0.3026 0.3736	71.4903 67.0606 63.2110 57.5684 51.9786	0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9889 0.9826 0.9726 0.9577 0.9337	161.5958 157.1133 153.3165 147.6212 141.8731	0.1486 0.1858 0.2326 0.2876 0.3582	71.5957 67.1133 63.3164 57.6211 51.8731	1.0000 1.0000 1.0000 1.0000 1.0000
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9969 0.9947 0.9906 0.9831 0.9672	161.8594 157.3770 153.4219 147.3575 140.7657	0.0782 0.1029 0.1367 0.1830 0.2540	71.8594 67.3770 63.4219 57.3575 50.7657	2.0000 2.0000 2.0000 2.0000 2.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9991 0.9982 0.9963 0.9923 C.9821	161.9649 157.4297 153.4219 147.1993 140.0801	0.0432 0.0598 0.0855 0.1239 0.1885	71.9649 67.4297 63.4219 57.1993 50.0801	3.0000 3.0000 3.0000 3.0000 3.0000
FREQUENCY	Sll Mag.	Sll Phase	512 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9997 0.9994 0.9985 0.9965 0.9901	161.9649 157.4297 153.4219 147.0938 139.7110	0.0248 0.0359 0.0543 0.0837 0.1404	71.9649 67.4297 63.4219 57.0938 49.7110	4.0000 4.0000 1.0000 4.0000 4.0000
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
8.0000 9.0000 10.0000 11.0000 12.0000	0.9999 0.9998 0.9994 0.9984 0.9984	161.9649 157.4297 153.4219 147.0410 139.5001	0.0138 C.0212 0.0340 0.0570 0.1056	71.9649 67.4297 63.4219 57.0411 49.5001	5.0000 5.0000 5.0000 5.0000 5.0000

APPENDIX D. INDUCTANCE, CAPACITANCE, AND ERROR FOR INDUCTIVE STRIPS

Strip Length (mils)	Inductance (nII) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error (%)
10	19.70	2.4	19.66	2.4
20	18.60	2.0	18.60	2.0
30	17.90	1.5	17.97	1.9
40	17.45	1.2	17.53	1.6
50	17.05	0.8	17.19	1.3
60	16.65	0.8	16.90	1.1
70	16.40	0.7	16.67	1.2
80	16.15	0.9	16.46	1.3
90	15.95	1.0	16.28	1.4
100	15.85	1.0	16.11	1.4
200	14.95	1.3	15.05	1.5
300	14.40	1.2	14.43	1.2
400	14.05	0.9	13.98	1.0
500	13.75	0.8	13.69	0.7
Capactance	(pE) = 0.0030			

Table 32. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 1.0, T = 10 TO 500 MILS: Listed are the discontinuity inductance and capacitance associated with each inductive strip. Results were obtained from the matching process and the model. The error listed is the maximum error in S_{11} .

Table 33. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.9, T = 10 TO 500 MILS

Strip Length (mils)	Inductance (nH) (Matching)	Max Error (%)	Inductance (nH) (Model)	$\frac{\text{Max Error}}{(^{6}\alpha)}$
10	19.50	1.7	19.40	2.1
40	17.25	0.6	17.27	0.6
80	16.05	0.8	16.20	1.0
100	15.70	1.0	15.86	1.2
200	14.80	1.5	14.79	1.5
300	14.20	1.4	14.17	1.4
400	13.87	1.0	13.72	1.1
500	13.50	0,6	13.45	0.6
Capacitance	(pF) 0.0027			

Strip Length (mils)	Inductance (nH) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error
10	19.00	1.2	18.86	1.6
20	17.90	0.8	17.80	1.3
30	17.20	0.6	17.17	0.6
-40	16.65	0,4	16.73	0.6
50	16.20	0.4	16.39	0.7
60	15.95	0.6	16.11	0.9
70	15.70	0.7	15.87	1.0
<u>80</u>	15.50	0.9	15.66	1.1
90	15.30	1.0	15.48	1.2
100	15.20	1.1	15.32	1.3
200	14.25	1.6	14.25	1.6
300	13.70	1.4	13.63	1.4
400	13.25	1.0	13.19	1.1
500	12.95	0.7	12.94	0.7
Capacitance (pF) 0.0024			

Table 34.	INDUCTANCE,	CAPACITANCE,	AND	ERROR	FOR	W/B =	0.8,
	T = 10 TO 500 N	AILS				·	

Table 35. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.7, T = 10 TO 500 MILS

Strip Length (mils)	Inductance (nH) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error
10	18.20	0.5	18.10	0.8
40	15.80	0.5	15.97	0.7
\$Ô	14.70	0.9	14.91	1.2
100	14.35	1.1	14.56	1.3
200	13.50	1.6	13.50	1.6
300	12.90	1.4	12.88	1.4
- <u>100</u>	12.45	1.0	1.0 12.43	
500 12.10		0.6	12.24	0.8
Capacitance	(pF) 0.0021			

Table 36. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.6, T = 10 TO 500 MILS

Strip Length (mils)	Inductance (nII) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error
10	17.20	0.3	17.12	0.6
40	14.80	0.3	15.00	1.0
80	13.75	0.8	13.94	1.1
100	13.45	1.0	13.60	1.3
200	12.50	1.5	12.55	1.5
300	12.00	1.4	11.93	1.4
400	11.55	0.9	11.49	0.9
500	11.30	0.6	11.37	0.6
Capacitance (r	F) 0.0018	1		

Strip Length (mils)	Inductance (nH) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error
10	16.00	0.6	15.89	1.2
20	15.00	0.6	14.85	0.8
30	14.25	0.7	14.25	1.0
-40	13.70	0.7	13.81	1.0
50	13.25	0.7	13.48	1.1
60	13.00	0.7	13.21	1.1
70	12.80	0.8	12.98	1.1
80	12.55	0.9	12.78	1.2
90	12.35	1.0	12.60	1.3
100	12.25	1.1	12.44	1.4
200	11.35	1.6	11.40	1.7
300	10.85	1.3	10.89	1.4
400	10.45	0.9	10.36	0.9
500	10.35	0.9	10.35	0.9

Table 37. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.5, T = 10 TO 500 MILS

Table 38. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.4, T = 10 TO 500 MILS

Strip Length (mils)	Inductance (nH) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error (%)
10	14.65	0.8	14.41	1.8
40	12.45	0,9	12.41	1.0
80	11.35	0.9	11.41	1.0
100	11.00	1.1	11.09	1.2
200	10.20	1.5	10.09	1.7
300	9.65	1.3	9.51	1.4
400	9.35	1.0	9.14	1.2
500	9.30	1.0	9.19	1.1
Capacitance	(pF) 0.0012			

Table 39. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.3, T = 10 TO 500 MILS

Strip Length (mils)	Inductance (nH) (Matching)	Max Error	Inductance (nH) (Model)	Max Error
10	13.00	1.1	12.65	1.9
40	10.95	1.1	1.1 10.80	
<u>80</u>	9.90	1.2	9.87	1.2
100	9.60	1.3	9.57	1.3
200	8.75	1.6	8.65	1.7
300	8.25	1.2	8.10	1.4
400	8.10	1.2	7.91	1.4
500	8.05	1.3	7.91	1.3
Capacitance (pF) 0,0009			

) Max Error (%)	Inductance (nH) (Model)	Max Error	Inductance (nH) (Matching)	Strip Length (mils)
1.8	11.66	1.0	11.95	10
1.5	10.79	1.0	11.05	20
1.3	10.27	1.1	10.50	30
1.2	9.91	1.0	10.05	40
1.1	9.63	0.9	9.75	50
1.0	9.40	0.9	9.45	60
1.2	9.21	1.1	9.25	70
1.3	9.04	1.1	9.10	80
1.4	8.89	1.3	8.95	90
1.5	8.76	1.4	8.85	100
1.7	7.89	1.6	8.00	200
1.3	7.38	1.2	7.55	300
1.3	7.23	1.2	7.40	400
1.3	7.24	1.2	7.35	500
	7.38 7.23 7.24	1.2 1.2 1.2	7.55 7.40 7.35 (pE) 0.00075	300 400 500 Capacitance

Table 40. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.25, T = 10 TO 500 MILS

Strip Length (mils)	Inductance (nH) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error
10	10.80	1.0	10.59	1.4
20	10,00	0.9	9.79	1.2
30	9.50	1.0	9.32	1.2
40	8.95	1.1	8.98	1.0
50	8.70	1.1	8.73	1.0
60	8,60	0.9	8.51	1.2
70	8,40	1.0	8.34	1.2
80	8.25	1.1	8.18	1.1
90	8.10	1.2	8.04	1.4
100	8,00	1.3	7.92	1.6
200	7.25	1.5	7.12	1.7
300	6.80	1.2	6.65	1.3
400	6.65	1.0	6.53	1.2
500	6,60	1.1	6.53	1.1

Table 41. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.2, T = 10 TO 500 MILS

Strip Length (mils)	Inductance (nH) (Matching)	Max Error (%)	Inductance (nH) (Model)	Max Error
10	8.15	1.0	8.21	1.3
20	7.55	1.0	7.61	1.0
30	7.20	1.0	7.26	1.1
40	6.85	1.0	7.00	1.3
50	6.65	1.1	6.81	1.4
60	6.50	1.2	6.65	1.5
70	6.35	1.3	6.52	1.6
80	6.25	1.4	6.40	1.7
90	6.15	1.4	6.30	1.8
100	6.05	1.5	6.21	1.9
200	5,40	1.4	5.60	1.9
300	5.00	1.0	5.14	1.3
400	4.95	1.1	5.03	1.2
500	4.90	1.1	5.03	1.3
Capacitance	(pF) 0.0003			

Table 42. INDUCTANCE, CAPACITANCE, AND ERROR FOR W/B = 0.1, T = 10 TO 500 MILS

APPENDIX E. FINLINE FILTER MODEL

! FILE: FINFIL.CKT

```
! USER:
              MIKE MORUA
! DATE:
              22 MAY 90
 ! CIRCUIT: FINLINE FILTER MODEL WHICH IS BASED ON INDUCTIVE STRIP
              IN HOMOGENEOUS FINLINE MODEL. VALID FOR
T.
              0.1 <= W/b <= 1.0, 10 <= (900T/A) <= 500 MILS,
- 1
              AND STRIPS CENTERED. MODEL SCALES TO ALL WAVEGUIDE
1
              BANDS.
1
! COMMENT: THIS CIRCUIT FILE IS A SIMULATION OF A THREE SECTION
              4 STRIP SYMMETRIC FINLINE FILTER.
1
DIM
  FREQ GHZ
  RES OH
  IND NH
  CAP PF
  LNG MIL
  TIME PS
  COND /OH
  ANG DEG
VAR
   A = 900
   B = 400
   Wovb = 1.00
   T1 = 90
                   ! STRIP LENGTHS
   T2 = 250
   T3 = 240
   T4 = 90
   R1 = 558
                   ! FINLINE LENGTHS
   R2 = 540
   R3 = 540
   pi = 3.14159
EQN
   Lg1 = T1/2
   Lg2 = T2/2
   Lg3 = T3/2
   Lg4 = T4/2
! FINLINE MODEL
  M = 2 * B/AN = 1 - Wovb
  Aov2 = A/2
 Aeq1 = 2 - (1 - M**0.77 * N**2)**0.5
Aeq2 = 0.221 * (1/M)**3.61 * N**28
Aeq = (Aeq1 + Aeq2)*A
  Beq1 = 0.6 + (0.16 - 0.1347 * M**1.35 * N**2)**0.5
Beq2 = -0.17 * (1/M)**1.15 * N**10
  Beq = (Beq1 + Beq2) * B
```

Figure 25. Finline Filter Model TOUCHSTONE Program.

```
! IMPEDANCE TRANSFORMER
  Lamda = (30000/2.54)/FREQ
  LpovL1 = 1/(1-(Lamda/(2*Aeq))**2)**0.5
LpovL2 = 1/(1-(Lamda/(2*A))**2)**0.5
  21 = 120*pi*(2*Beg/Aeg)*LpovL1
  22 = 120*pi*(2*B/A)*LpovL2
  X1 = (Z1/Z2) * * 0.5
! INDUCTANCE COEFFICIENTS
  A1 = 13.75 - 10.32*(1 - Wovb)**1.60
  B1 = 9.46 - 6.36*(1 - Wovb)**3.78
  Cl = 1.54 - 1.10*(1 - Wovb)**4.73
  N1 = 500 - 241*(1-Wovb)**1.74
! INDUCTANCE EQUATIONS
! 1ST INDUCTOR
  Tp1 = 900 * T1/A
  L11 = Bl - Cl * ln(Tp1)
  L21 = 1 + \exp((T1 - N1) * 90/A)
Ld1 = (B/400) * (A1 + (L11/L21))
! 2ND INDUCTOR
  Tp2 = 900*T2/A
L12 = B1 - C1*1n(Tp2)
L22 = 1 + exp((T2 - N1)*90/A)

Ld2 = (B/400)*(A1 + (L12/L22))

! 3RD INDUCTOR
  Tp3 = 900 * T3/A
  L13 = B1 - Cl*ln(Tp3)
L23 = 1 + exp((T3 - N1)*90/A)
  Ld3 = (B/400) * (A1 + (L13/L23))
! 4TH INDUCTOR
  Tp4 = 900 * T4/A
  L14 = B1 - C1*ln(Tp4)

L24 = 1 + exp((T4 - N1)*90/A)

Ld4 = (B/400)*(A1 + (L14/L24))
! CAPACITANCE EQUATION
  C = (4/8100) * (A**2/B) * (Wovb*0.003)
CKT
   RWG 1 2 A^Aov2 B^B L^Lg1 ER=1 RHO=1
   IND 1 0 L'Ld1
CAP 1 0 C'C
   DEF2P 1 2 A
   1ST STRIP
I.
   XFER 1
                2
                     0
                          0
                               N'X1
   Α
           2
                3
   Α
           2
                3
   Α
           4
                3
   Α
           4
                3
   XFER 5
                    0
                          0
                               N^X1
                4
   DEF2P 1
                5 STRIP1
   RWG 1 2 A^Aov2 B^B L^Lg2 ER=1 RHO=1
IND 1 0 L^Ld2
   CAP 1 0 C^C
   DEF2P 1 2 B
```

.

.

Figure 26. Finline Filter Model TOUCHSTONE Program (cont.).

! 2ND STRIP XFER 1 2 0 0 N^X1 В 2 3 В 2 3 В 4 3 В 4 3 XFER 5 0 0 N^X1 4 5 STRIP2 DEF2P 1 RWG 1 2 A^Aov2 B^B L^Lg3 ER=1 RHO=1 IND 1 0 L^Ld3 CAP 1 0 C^C DEF2P 1 2 C ! 3RD STRIP XFER 1 2 0 0 N^X1 С 2 3 с 2 3 С 4 3 С 4 3 XFER 5 0 0 N'X1 4 DEF2P 1 5 STRIP3 RWG 1 2 A`Aov2 B`B L`Lg4 ER=1 RHO=1 IND 1 0 L`Ld4 CAP 1 0 C`C DEF2P 1 2 D 4TH STRIP ! XFER 1 2 0 0 K^X1 D 2 3 D 2 3 D 4 3 D 4 3 XFER 5 N'X1 4 0 0 DEF2P 1 5 STRIP4 ! FINLINE LENGTHS RWG 1 2 A'Aeg B'Beg L'R1 ER=1 RHO=1 DEF2P 1 2 RES1 RWG 1 2 A^Aeg B^Beg L^R2 ER=1 RHO=1 DEF2P 1 2 RES2 RWG 1 2 A^AAeg B^BBeq L^{R3} ER=1 RHO=1 DEF2P 1 2 RES3 RWGT 1 A^Aeq B^Beq ER=1 RHO=1 DEF1P 1 WEDGE

Figure 27. Finline Filter Model TOUCHSTONE Program (cont.).

ì

! FINLINE FILTER MODEL STRIP1 1 2 RES1 2 3 STRIP2 3 4 RES2 4 5 STRIP3 5 6 RES3 6 7 STRIP4 7 8 DEF2P 1 8 FINFIL1 TERM FINFIL1 WEDGE WEDGE PROC OUT FINFIL1 DB[S21] GR1 FINFIL1 DB[S11] GR1 FREQ SWEEP 8 12 .1 SWEEP 9.5 10.5 .01 GRID
 RANGE
 8
 12
 0.4

 GR1
 -60
 20
 10

Figure 28. Finline Filter Model TOUCHSTONE Program (cont.).

APPENDIX F. COMPUTER-GENERATED SCATTERING DATA FOR SCALED MODEL

.

Table 43. SCATTERING DATA FOR WR(42), W/B = 0.5, T = 40 MILS

.

•

Dielec Thick Normalized H Normalized H waveguide he fin gap widt number of di Dielec. cons Dielec. cons Dielec. cons Upper freq 1 Lower freq 1 Freq increme Matrix order 1st t/d valu 3rd t/d valu 3rd t/d valu 3rd t/d valu 5th t/d valu 6th t/d valu 8th t/d valu	ness D (mil 1/D = 2/D = ight B/D = h W/B = f. T/D = region 1 = region 2 = region 3 = imit GHz = imit GHz = e e e e e e e e e e) 10.0000 21.0000 20.0000 17.0000 1.0000 1.0000 1.0000 26.0000 18.0000 1.0000 0.0000 4.0000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000			
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER D
18.0000 19.0000 20.0000 21.0000 22.0000 23.0000 24.0000 26.0000	0.9333 0.9162 0.8968 0.8773 0.8552 0.8310 0.8061 0.7514	147.4102 143.3496 139.9747 135.8614 132.275 128.7422 124.8926 118.0899	0.3590 0.4007 0.4425 0.4800 0.5183 0.5563 0.5917 0.6599	57.4102 53.3497 49.9747 45.8614 42.2754 38.7423 34.8926 28.0899	4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000

Dielec Thickness D (mil) 10.0000

Normalized	HI/D =	14.0000			
Normalized	H2/D =	13.0000			
waveguide h	eight B/D =	14.0000			
fin gap wid	th W/B =	1.0000			
number of d	if. T/D =	1.0000			
Dielec. con	s region l =	1.0000			
Dielec. con	s region 2 =	1.0000			
Dielec. con	s region 3 =	1.0000			
Upper freq	limit GHz =	40.1000			
Lower freq	limit GHz =	26.1000			
Freq increm	ent GHz =	2.0000			
Matrix orde	r =	10.0000			
1st t/d val	ue	1.5000			
2nd t/d val	ue	0.			
3rd t/d val	ue	0.			
4th t/d val	ue	0.			
5th t/d val	ue	0.			
6th t/d val	ue	0.			
Th t/d val	le	٥.			
Sth t/d val	ue	0.			
FREQUENCY	Sll Mag.	S11 Phase	S12 Mag.	S12 Phase	T OVER I
26,1000	0.8494	141 7676	0 5277	51 7676	
28.1000	0.7883	134 1739	0.5277	JL./0/0	1.5000
30.1000	0.7316	128.3203	0 6817	38 3204	1.5000
32.1000	0.6795	122.6251	0 7337	30.3204	1.5000
34.1000	0.6323	117.8790	0 7748	27 8700	1.5000
36.1000	0.5878	114.1348	0 8090	21.0/90	1.5000
38.1000	0.5476	110.2852	0 8367	21,1240	1.5000
			0.030/	20.2032	T.2000

.

.

.

۰.

Dielec Thic Normalized I Normalized I waveguide hu fin gap wid number of di Dielec. con Dielec. con Dielec. con Upper freq Freq increme Matrix order 1st t/d valu 3rd t/d valu 5th t/d valu 5th t/d valu 7th t/d valu	kness D (mil H1/D = H2/D = eight B/D = th W/B = if. T/D = s region 1 = s region 2 = s region 3 = limit GHz = limit GHz = nt GHz = r = ue ue ue ue ue ue ue) 10.0000 9.4000 8.4000 0.2500 1.0000 1.0000 1.0000 60.0000 2.0000 10.0000 2.0000 0. 0. 0. 0. 0. 0. 0. 0. 0.			
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
40.0000 42.0000 44.0000 46.0000 50.0000 52.0000 54.0000 56.0000 58.0000 60.0000	0.9706 0.9643 0.9572 0.9491 0.9491 0.9296 0.9177 0.9036 0.8876 0.8701 0.8484	154.0020 151.1016 148.9922 146.4083 143.8770 141.2403 138.2872 135.7032 132.4864 129.5333 126.6856	0.2406 0.2646 0.2894 0.3148 0.3409 0.3685 0.3974 0.4284 0.4605 0.4929 0.5293	64.0020 61.1016 58.9922 56.4082 53.8770 51.2403 48.2872 45.7032 42.4864 39.5332 36.6856	2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

Dielec Thick Normalized H Normalized H waveguide he fin gap widt number of di Dielec. cons Dielec. cons Dielec. cons Dielec. cons Upper freq 1. Freq increme: Matrix order 1st t/d value 3rd t/d value 3rd t/d value 5th t/d value 7th t/d value 8th t/d value	hess D (mil) l/D = 2/D = ight B/D = h W/B = f. T/D = region 1 = region 3 = imit GHz = imit GHz = nt GHz = e e e e e e e) 10.0000 6.1000 5.1000 6.1000 1.0000 1.0000 1.0000 90.0000 60.0000 3.0000 10.0000 0.3000 0. 0. 0. 0. 0. 0. 0. 0. 0.			
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
60.0000 63.0000 69.0000 72.0000 75.0000 81.0000 84.0000 87.0000 90.0000	0.8480 0.8174 0.7872 0.7586 0.7297 0.7014 0.6754 0.6485 0.6237 0.5996 0.5758	144.5625 141.0821 137.8653 134.6485 131.9590 129.4278 126.6328 124.7872 122.3087 120.4630 118.4590	0.5301 0.5761 0.6167 0.6515 0.6837 0.7127 0.7374 0.7612 0.7817 0.8003 0.8176	54.5625 51.0821 47.8653 44.6485 41.9590 39.4278 36.6328 34.7872 32.3086 30.4629 28.4590	0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

.

Dielec Thickness D Normalized H1/D - Normalized H2/D - waveguide height B fin gap width W/B number of dif. T/D Dielec. cons regio Dielec. cons regio Upper freq limit G Lower freq limit G Freq increment GH2 Matrix order - 1st t/d value 3rd t/d value 3rd t/d value 5th t/d value 5th t/d value 6th t/d value 8th t/d value	(mil) 10.0000 4.0000 3.6000 4.0000 - 1.0000 n 1 - 1.0000 n 2 - 1.0000 n 3 - 1.0000 Hz - 140.0000 Hz - 90.0000 5.0000 0. 0. 0. 0. 0. 0. 0. 0. 0			
FREQUENCY SI1 M	ag. Sll Phase	S12 Mag.	S12 Phase	T OVER D
90.0000 0. 95.0000 0. 100.0000 0. 105.0000 0. 110.0000 0. 120.0000 0. 125.0000 0. 130.0000 0. 135.0000 0. 140.0000 0.	9956151.36539933145.67009901140.02749862134.85959808130.00799741124.04899653118.61729540112.50019382106.5411918499.6856891492.3555	0.0937 0.1157 0.1404 0.1658 0.1948 0.2263 0.2611 0.3000 0.3461 0.3957 0.4532	61.3653 55.6700 50.0274 44.8594 40.0079 34.0489 28.6172 22.5001 16.5411 9.6856 2.3555	3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

.

Dielec Thickness D (mil) Normalized H1/D - Normalized H2/D - waveguide height B/D - fin gap width W/B - number of dif. T/D - Dielec. cons region 1 - Dielec. cons region 2 - Dielec. cons region 3 - Upper freq limit GHz - Lower freq limit GHz - Freq increment GHz - Matrix order - 1st t/d value 2nd t/d value 3rd t/d value 5th t/d value 5th t/d value 7th t/d value 8th t/d value		10.0000 2.5500 1.5500 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 10.0000 10.0000 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.0000 1.0000 1.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000		X	
FREQUENCY	Sll Mag.	Sll Phase	S12 Mag.	S12 Phase	T OVER D
140.0000 150.0000 160.0000 170.0000 180.0000 190.0000 200.0000 210.0000 220.0000	0.9350 0.9169 0.8976 0.8538 0.8294 0.8028 0.7734 0.7440	153.6856 150.7325 147.5684 143.6661 140.6602 137.3380 134.0685 131.4317 127.7930	0.3547 0.3991 0.4408 0.4816 0.5207 0.5586 0.5962 0.6339 0.6681	63.6856 60.7325 57.5684 53.6661 50.6602 47.3379 44.0684 41.4317 37.7930	0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000

APPENDIX G. MAGNITUDE, PHASE, SMITH CHART PLOT OF SCALED MODEL AND DATA

L

Figure 29. Plots for WR(42), W/B = 0.5, T = 40 mils.

1

a

Figure 30. Plots for WR(28), W/B = 1.0, T = 15 mils.

•

Figure 31. Plots for WR(19), W/B = 0.25, T = 20 mils.

1

1

ĸ.

ş

ł

.

Figure 32. Plots for WR(12), W/B = 0.5, T = 3 mils.

Figure 33. Plots for WR(8), W/B = 1.0, T = 30 mils.

ì

1

t

ł

.

Figure 34. Plots for WR(5), W/B = 0.25, T = 2 mils.

APPENDIX H. ERROR FOR SCALED MODEL

Table 49. ERROR FOR WR(42), WR(28), WR(19), WR(12), WR(8), WR(5): The error listed is the maximum error in S_{11} .

Waveguide Type	Freq (GHz)	W/B	Strip Length (mils)	Max Error (%)
WR(42)	16-26	0.5	40	1.2
WR(28)	26-40	1.0	15	1.4
WR(19)	40-60	0.25	20	2.2
WR(12)	60-90	0.5	3	0.7
WR(8)	90-140	1.0	30	1.8
WR(5)	140-220	0.25	2	1.8

LIST OF REFERENCES

1. Knorr, J. B., A CAD model for the inductive strip in finline, Technical report NPS 62-88-013, Naval Postgraduate School, Monterey, CA, Aug. 1988.

٦

ſ

- 2. Meier, P. J., Integrated fin-line millimeter components, IEEE Trans. Microwave Theory and Tech., vol. MTT-22, pp. 1209-1216, Dec. 1974.
- 3. Knorr, J. B. and Shayda, P. M., *Millimeter-wave fin-line characteristics*, IEEE Trans. Microwave Theory and Tech., vol. MTT-28, pp. 737-742, Jul. 1980.
- 4. Shayda, P. M., Spectral domain analysis of finline, M.S. thesis, Naval Postgraduate School, Monterey, CA, Dec. 1979.
- 5. Kim, B., A computation of fin-line impedance, M.S. thesis, Naval Postgraduate School, Monterey, CA, Dec. 1984.
- 6. Knorr, J. B. and Deal, J. C., Scattering coefficients of an inductive strip in a fin-line: theory and experiment, IEEE Trans. Microwave Theory and Tech., vol. MTT-33, pp. 1011-1017, Oct. 1985.
- 7. Deal, J. C., Numerical computation of the scattering coefficients of an inductive strip in a fin-line, M.S. thesis, Naval Postgraduate School, Monterey, CA, Mar. 1984.
- 8. Bush, T., An equivalent rectangular waveguide model for finline, M.S. thesis, Naval Postgraduate School, Monterey, CA, Dec. 1989.
- 9. Karaminas, G., Circuit models for inductive strips in fin-line, M.S. thesis, Naval Postgraduate School, Monterey, CA, Dcc. 1989.
- Knorr, J. B., CAD models for inductive strips in homogeneous finline: the methodology, Technical report NPS 62-90-007, Naval Postgraduate School, Monterey, CA, Mar. 1990.

INITIAL DISTRIBUTION LIST

•

		No. Copies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5002	2
3.	Chairman, Code EC Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5000	1
4.	Professor Jeffrey B. Knorr, Code EC/Ko Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5000	4
5.	R. Janaswamy, Code EC/Js Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California 93943-5000	1
6.	Commanding Officer Microwave Millimeter Wave Branch (Attn: Dave Rubin, Code 753) Naval Ocean Systems Center San Diego, California 92152	i
7.	Commanding Officer RF Development Section (Attn: Joe Mosko, Code 35203) Naval Weapons Center China Lake, California 93555	1
8.	LT Michael L. Morua, USN 40134 Davis St. Fremont, California 94538	4