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AEROELASTIC STUDY OF A SIMPLE MODEL

ABSTRACT

This thesis concerns the study of a two dimensional model subjected to

gust loads. The model consists of a wing attached to a fuselage of infinite

moment of inertia by means of a tension-compression spring and a torsion

spring.

The equations of motion were developed using two-dimensional thin airfoil

theory for incompressible flow and they are solved on an electronic analogue

computer. Although the equations are set up to handle a gust of any arbitrary

gradient, the analysis was made for a sharp-edged gust and comparison then

made with gusts of finite gradient.

It was found that stresses in the wing were reduced by locating the center

of gravity near the elastic center and by reducing the radius of gyration of the

wing. There were two oscillatory modes, one primarily bending and the other

primarily torsion. The frequencies of oscillation could be lowered by locating the

center of gravity near the elastic center, by increasing the radius of gyration

or by increasing the wing to fuselage mass ratio.

The mode primarily characterized by torsion had a relatively high frequency

at low flight velocity. The two frequencies approached each other as flight

velocity increased and damping was improved in each mode until flutter was

imminent, when the lower frequency (bending) mode very suddenly became un-

stable. It was found that neglecting the unsteady effects yielded a highly con-

servative estimate of flutter speed in this particular case.

Increase in altitude has little effect but to lessen the damping in each mode.





This investigation was performed by Lt. Raymond L. Miller USN at the

University of Michigan in 1955-6. It was done under the supervision of

Associate Professor Gabriel Isakson.





AEROELASTIC STUDY OF A SIMPLE MODEL

INTRODUCTION

The purpose of the present thesis was the investigation of the response to

gust loads of a two-dimensional model with three degrees of freedom; particu-

larly, the effect upon such response of changes in environmental and model

parameters.

The present thesis was submitted at the University of Michigan in partial

fulfillment of the requirements for the degree of Master of Science in Aero-

nautical Engineering. The subject was suggested by Associate Professor

Gabriel Isakson of the Aeronautical Engineering Department and performed

under his supervision. The approach to the problem was patterned after an

earlier report by Professor Isakson (Ref. 1), but, with solution of the equations

performed by means of electronic analogue computers, rather than analytically.

The problem to be investigated is that of aeroelastic effects on a two-

dimensional wing-fuselage combination in incompressible flow. The wing has

freedom in twist and bending; the fuselage is free to plunge vertically, but is

restrained in pitch.





THEORY

1. The Problem

The two-dimensional model consists of a fuselage and thin wing of constant

cross section connected by a tension-compression spring and a torsion spring,

representing the elastic constraints of the wing in bending and torsion re-

spectively, as shown in Figure 1. Zw and Zf are vertical displacements of

the wing and fuselage respectively, relative to fixed axes, and & is the

rotation of the wing chord about the elastic center. All are positive in the

directions shown and are measured from the initial steady state position.
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The angles °<
, and the changes in angle of attack due to gusts and due

to vertical velocity of the wing Z w are assumed to be small and the cosines of

these angles are taken to be unity in evaluating aerodynamic lift and moment.

The gust acting upon the model is taken to be normal to the velocity vector, U,

of the undisturbed free stream.

2. The Equations of Motion

The equations of motion of the system are:

mw Zw + R9 -r k(Zw - Z
f ) = -L (1)

RZW + I 9 + K 9 - M (2)

m Zj - k(Zw - Z
f)

= (3)

where:

k - spring constant of tension-compression spring.

K s spring constant of torsion spring.

I s mass moment of inertia of airfoil section about the elastic center.

= leg + mw<lCg
C >

2

Ic
- mass moment of inertia of airfoil section about the center of gravity.

L - instantaneous value of aerodynamic lift per unit span, as afdeparture

from the initial steady state value, positive up.

M = instantaneous value of aerodynamic moment per unit span, as a departure

from the initial steady state value, positive in the direction of 9.

m
f

= mass of fuselage per unit span

n^ = mass of wing per unit span

R s static mass moment about the elastic center.

= aVlcg *





It is convenient to change from a time variable, t, to a variable, s,

where-.

s r U
t

= distance travelled in half-chords.

_ 2U = Ut; = velocity of flight in half-chords per unit of time.

Under this transformation:

d _ d

d2 * d2 •

dt2=
U S&-

Denoting differentiation with respect to s by prime marks:

mwU Zw + RU26" + k(Zw - Z
f)

= -L(s) (4)

RU2ZW + IU2 9 " +K0 = M<s) (5)

m
f
D2Z ,

f
' - k(Zw - Z

f)
- (6)

These equations are now put in non-dimensional form:

Zw , r\ " Zw "f L
Cg T B' C C

' " m 2
C <7 >

w

Zw 2 q m ^ M
CS C T m u cw

m
f _5f *•

z» z
f

TT - KB«-TT! cM " ° <9 >

where:

.jl/H
C y m r radius of gyration as a fraction of the chordmw

k kC2
Kg r =2 = ~~2

tt2 = bending stiffness parameter
W 1™

K K^ =
~m—D^c2 = 4m u2

— = torsion stiffness parameter





3. Aerodynamic Force and Moment

Four types of force and moment act on the airfoil as a departure from

initial steady state values:

1) Gust effect

2) Wake effect

3) "Quasi-steady" forces - forces which would be produced by the

instantaneous velocity of the airfoil in the absence of wake effect.

4) Apparent mass effect

The last three forces listed are results of the disturbed motion of the

airfoil. The quasi-steady forces and the wake effect can be accounted for

simultaneously; thus, lift and moment each consist of three components:

L r L
g

+ Lm + Lma ( 10)

M = \ + Mm + Mma <U >

Lg = lift due to gust effect.

Lm = lift due to quasi-steady forces and wake effect resulting from

airfoil motion.

Lma r lift due to apparent mass effect.

M z moment due to gust effect.

Mm = moment due to quasi-steady forces and wake effect resulting from

airfoil motion.

Mma = moment due to apparent mass effect.

Lift and moment are computed by thin airfoil theory.

3. 1. Gust effect

For sharp-edged gusts, the change in lift coefficient is a function of time

(or distance in half-chords):





dC

L " d

Jt . . W , .

where w is the gust velocity, positive up, and ^(s) is the Kussner function

for build-up of lift due to change of angle of attack in a sharp-edged gust, the

value of this function approaching unity with increase is s.

A gust of arbitrary gradient can be considered to be made up of a series of

infinitesimal sharp-edged gusts as shown in Fig. 2. The lift coefficient can be

computed for each infinitesimal gust by the formula above and all the values

summed by integration. Thus the change of lift coefficient becomes a function

\N'i<f\

Fig. 2

of (s - a"), where o- is the value of s at the time of origin of the particular

infinitesimal gust (4w):

2 IT

L " U
& w ^(s - o-)

Summing the effects of all the infinitesimal gusts:

2 FT (-—
f
w(o)Y'(s) + ]> AvAr(cr)y^(s -cr)

)





2 TT J .x/,,, ^f ^vv/b-

or, in the limit as Acr-»0:

1JL jw<o) y/(s) + jvsr(o-)y/(s -cr) c/cr (12)C
L

This is the Duhamel, or superposition, integral. An equivalent form is found

by integration by parts:

CL = —^j— U( 8)^(0) + j

S
w<<r) Y'(B-(r)dcrj (13)

It will be shown later that \£/(0) = 0, thus:

s

c
L

= 2 77 |
w(cr)

yy»(s-^r) d<r

L
g = -f CU2 CL = 4" C3U2CL

/ w
L
g
(s) = -^— U2C3

J
~^^ \l>'is-*r>d<

o

(14)

In two-dimensional thin airfoil theory for incompressible flow, the aero-

dynamic center is at the 25% chord point:

*ac = ^5

M
g
(s) = -Oac

C)L
g
(s) (15)

3. 2 Quasi-Steady Forces and Wake Effect

The sum of the quasi-steady forces and wake effect is a function not only of

the instantaneous disturbed motion of the airfoil, but also of the time history of

that motion. These forces build up with time in much the same fashion as

change in forces due to a gust and are handled in similar fashion. It can be

shown that the terms which are functions of the time history of the disturbed
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motion are all related to the quantity:

<ZW + U0 +175 C9)

(R ef. 2, page 282). This quantity can be seen to be the instantaneous vertical

velocity of the three-quarter chord point and is equal to the angle of attack at

that point times the flight velocity, U. Thus, by resolving velocities at the three-

quarter chord point, the quasi-steady forces and wake effect can be accounted

for simultaneously The lift due to these forces can be found by a process

analogous to that due to the gust effect:

Lm - -j?- uV J
<S-<r)^

5
(o-) dcr (16)

where:

°(
15M = 9W + —fj— Q <l >

+ -JT ZwW

Z'
0(
75

<s) = 9(b) + 21
?5

0'(s) + 2-^-
(17 )

o( is the angle of attack at the three-quarter chord point, measured as a

departure from the initial steady state value, and ^(s) is the Wagner function

for build up of lift coefficient following a sudden change of angle of attack. Like

the Kussner function, the Wagner function is defined to approach unity with

increasing s.

The above equation is a form of the Duhamel integral as in equation (12),

but with <*
?5 (0) = 0.

The lift due to the quasi-steady forces and the wake effect acts at the 25%

C 2
chord point, except for that part of the quasi-steady lift, equal to 777° (—

^
— ) (U 9),

which is due to the rotational velocity of the airfoil and acts at the 50% chord

point (Ref, 3, page 104). This, then, must be subtracted from the moment:





X rrai c
v
2 u2c n,/ v

ITP 1x2^4 « ,, >

TTP{-2~) —2~ O'(s) = -^— U C <9'(s)

Mm <s > = " *ac
Lm - TT u2°4 @ '<s > (l8 >

3.3. Apparent Mass

The apparent mass lift due to the disturbed motion of the airfoil may be

thought of as the force associated with the acceleration of a cylinder of air

C 2
with diameter equal to the wing chord. It is equal to the product of H7° ( r' )

and the instantaneous acceleration of the 50% chord point. In addition a pure

TfP C 4
couple is acting on the airfoil equal to the product of —3— (~r~ ) an(^ the

instantaneous rotational acceleration of the airfoil (lief. 2, page 263).

The distrubed velocity of the 50% chord point relative to the free stream is:

and the acceleration of the point is:

Thus;

Zw + U0+15O C0

Lma = "ir- c2 £w + ue+i50 ce)

fT

Zw . 1Uf_ D2C3 (
_JY. + __ e , + ^ &n)

(19)

M = - lcn CL - H£ JL £ma 50 ma 8 16

= - 1 CL
ac ma -^iPc*{^t^fl- + (Wf> »•'>•>

summing equations 14, 16, 19 and 15, 18, 20 for total lift and moment:
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L<8) Z ^-U
2
C
3

j
j-^-(cr) y/'(s -cr)do' -•- j<#» -«r )tf^ <cr)d<r

t-f- +±-e %

+ i 50 e
M

> <21 >

M(s) S -1M CL(B) - 4^- U2C4 -^ + ©' + ^50 + ~^ 9 " (22)

*2 ^ 2
Dividing equation (21) by in TJ C and equation (22) by n^U C :w

s

L<s > l If™ (A^U2C = -]7|j-[r(^)>'(8-cr)dcr -r J0(s -<r)°^
5
«r)d<r

* 4^ + 4" a
'

4 ^ e
"v

(23>

M(s) 1 ac
L(S)

i (z; i

(o-)^(s-cr)dcr + J0(s - tf

/* /{ U 75

rfrm£- + T-'* + <
1»+-S->*"}™

where:

M - ~/c\ts> z relative density

- ratio of mass of wing to mass of a cylinder of air with

diameter equal to wing chord.

Now these expressions for lift and moment can be substituted into the equations

of motion, (7) and (8):
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H* ~^}e" + n^ + ^jZ'-t his' + «r a

+ !*l fy(<r)fi'(S~v/dcr + C$(s-cr)*'73 «r)J*\- O (26)

4. Wagner and Kussner functions

The exact forms of the Wagner and Kussner functions for incompressible

flow involve Bessel functions (Ref. 2, page 285, 287):

$(s) = -jjt f-^ sin ks dk = 1 + -£-
J
-^ cos ks dk

o

y, 2_ f
[FG(k) - GG(kj sinks sink

r(6) =
77

J
k

dk

where:
(2)

Hi (k)

F(k) + , G(k) = C (k) = rzi t2\X W
Hx

<*\k) * i H W(k)

(2)
Hn = Jn " «

Yn

FG(k) + iGG(k) = C(k) [j (k) - .J^k)] 1- .J^k)

Jn = Bessel function of the first kind of order n

Y = Bessel function of the second kind of order n
n

Since these functions are too complex for analytical use, it is necessary to use

the following approximations:

0(s) = 1 - 0.165 e
-0 - 04558 - 0.335e" ' 35

(27)

y^(s) = 1 - 0.500 e-°- 130s - 0„500e"s <28)

These equations show that a sudden change in angle of attack due to an instan-

taneous disturbed motion of the airfoil immediately causes a change in lift

coefficient then increases asymptotically to the ultimate steady state value;
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whereas, a sharp-edged gust causes no initial change in lift coefficient, but then

causes the lift coefficient to increase asymptotically to its ultimate steady state

value.

Using the approximate equations, (27) and (28), for the Wagner and Kussner

functions, the equations of motion can be solved, either analytically or by means

of the analogue computer.
t

5. Dynamic Overstrees Factors

The dynamic overstress factor is defined as the ratio of the maximum stress

the wing of the elastic model is subjected to by a given gust to the maximum stress

the corresponding rigid model (K/j. = Kg = o ) would be subjected to by the same

gust.

Dynamic overstress factor in bending

_
K t-rr - tt-) elastic . &1 > e iM tin

K<J^-ii_) rigid TzT) HiEr
C C

Dynamic overstress factor in torsion

(K 9 ) elastic

"
( K 9 ) rigid

From equations (8) and (24):

Ofcr©) rigid* -^fe - IcgTT
W 6

M
= -^ |-f(cr)^'<s-<r)d<r * jjfts -a)<ty 5 <<r) dcr

^50 Zw
/* c
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thus;

<K
T e> rigid = - -~ T JTf(a>^»(B-cr)d(r + j/6<s - <r )cr^<r)d<r

j

•50 ^^
-

( 7- +1cg>— <29 >

PROCEDURE

Representative values of the various parameters were selected to serve

as a standard or basis of comparison in observing gust and flutter effects. The

standard values of these parameters were selected arbitrarily, but were intended

to represent a transport or trainer type of aircraft. Standard values and range

considered are shown in Table I.

The stiffness parameters, KR and K~, were selected to correspond to un-

coupled frequencies of approximately 200 cycles per minute in bending and 475

cycles per minute in torsion:

v k C2 . .2 C2K
B = m^ 1U2- =^B TfJ«-

K C " 2 A% = -m^ iu2- =c^ T Tu2
"

2U
"J b = ^~ v% = 193 °ycleB/mijl '

2U
L*Ji ~ ~r2v ^T - ^7 ^ cycles/ 111^-

The effects of individual model parameters were investigated while holding

all other parameters fixed. Similarly, the effect of altitude and flight velocity

were investigated. Dynamic overstress factors were determined by measuring
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the maximum acceleration of the fuselage and twist of the wing under a step

input representing a sharp-edge gust. The period, damping time and mode

shape of each of the oscillatory modes were determined by adjusting initial

conditions to separate the modes.

ELECTRONIC CIRCUITS

1. General

The computer primarily used for solution of the problem was a Reeves

Electronic Analogue Computer (REAC Mod. C 101). Traces were made on a

Brush Oscillograph recorder (Model BL-928) using a Brush Dual Channel D-C

Amplifier (Model BL-202).

The complete circuit diagrams are shown in Figs. 5 and 6.

2. Scaling

It was found convenient to speed up the solution by scaling. Under the

transformation, s s . 2s, the equations become:

SL. 25K 5w_(^_^L_,
,30)c B mf C C

CT 75** +
•
4,

75
e ' +

*^T <31>

^=_ = -(W+ *ao >e
- - -%f& - -J"ttiM-^_ - ^-)

-—fyl/—<°">K'<
S -o-)d°- + p(s-<r-)«^

s
(cr)dcr

|
(32)

-2.bK^y9 -25lac j|w-(<r)^
, (8-r)d<r +|^'(s

1
-<r)<X/

5 ( -,d<r ( (33)





-0.2276* -1.5 s,
(p(s

t
) = 1 - 0.165 e

Y(a,) - 1 -0.500 e"
5s'- 0.500 e*

' 658 '
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(34)

(35)

(K
T 9) rigid = - (-

leg + W/* .

Z 'w *

3. Symbols

25

ac

/*

s,

^<cr)Y/(s -cr)d<r

+ J0(s-cr)c< 1

j 5
<or)der j (36)

sumner and
scale changer

G

gain

integrator resistor (in

megohms

)

I

R
v/VN/^—

t

capacitor (in

microi*arads

)

amplifier without
feedback

amplifier with i

megohm feedback

4. Convolution Integrals

The analytic solution of the convolution integrals requires an integration

for each exponential term; similarly the computer solution requires an integrator

for each exponential term. Consider the following circuit:

K3H
N (t)

ma> X
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The differential equation for this circuit is:

dx

dt
+ ax = - AN(t)

and the solution is:

x = - Ae"

= - Ae"at J e
aT

N<r) dr

at
(e

at
N(t)dt

= - A
J

t_a(t-r)
N(T)dr

Thus the Kussner function can be developed by the circuit shown in Fig. 3.

~r<*)Y>'(s>
-'')<b'

Fig. 3. Kussner Function Circuit

It is possible, by the use of an external circuit, to develop the convolution

integral with only one amplifier. In order to conserve integrators, the Wagner

function was handled in such a manner.

e, -
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The above circuit can be shown to satisfy the differential equation:

e
o

"•" Ciq
e
o

—

-

L- e!
R, l
H

and its solution is:

e
o = " R

e CR,R
i I

and, by the use of helipots, more than one exponential can be handled with a

single amplifier:

e,

^

*V

— e.

where:

e
Q

; -A
R
f

/* __1 (t - T) -

f ^ . -L^(t -r) •
,^ e TW ej (T)dr - B—

J

e C
2
R2

* e^dr

The circuit for the Wagner function is as shown in Fig. 4.

-V-,s(s,)

(s,-<r) °/ys (<r)cJ<r

Fig. 4. Wagner Function Circuit
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RESULTS AND DISCUSSION

1. Accuracy of data

The accuracy in measurement of amplitudes was less limited by the computer

than by the recorder, which was accurate within about 4%. This produced good

results in determination of dynamic overstresses and smooth curves were obtained

in all cases. Determination of mode shapes was quite difficult, not primarily

due to any inherent inaccuracy in the computer, but due to the difficulty encountered

in obtaining the modes in pure form; by averaging over several cycles, consistent

values were obtained in most cases. (Mode shapes were measured in bending and

torsion amplitudes only, phase angle changes were too small to be measured

except near flutter speed. ) The same difficulty was encountered measuring the

damping of the oscillatory modes and the averaging procedures were somewhat

less successful.

2. Behavior of the Model in the Standard Configuration

In the standard configuration the elastic center is . 35 chord lengths from

the leading edge, the center of gravity is . 45 chord lengths from the leading

edge, the radius of gyration is equal to . 25 chord lengths and the wing to fuselage

mass ratio is .333; the model has a relative density of 50 at sea level with a

flight velocity of 380 feet per second. The model experiences dynamic overstress

factors of 1. 90 in bending and 2. 35 in torsion under the action of a sharp-edged

gust. There are two oscillatory modes, one primarily involving bending and the

other primarily involving torsion. The "bending" mode has a frequency of 222

cycles per minute and damps to one-half amplitude in 3. 7 cycles. The torsion

mode has a frequency of 589 cycles per minute and damps to one half amplitude
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in 5. 7 cycles. The mode shapes are:

Zw" Z
f(—

^

) he dine = 3 * 69 chord lengths/radian

(

w ~ f
)torsion = -0.108 chord lengths/radian

where the minus sign indicates that the bending and torsional displacements

are approximately 180° out of phase.

3. Effect of the Location of the Elastic Center and Center of Gravity

The effect of the elastic center and center of gravity locations on the

dynamic overstress factors under the action of a sharp-edged gust is shown in

Fig. 7; neither has any appreciable effect on the dynamic overstress in bending;

however, the dynamic overstress in torsion increases as the elastic center and

the center of gravity move apart.

Effects of the elastic center and center of gravity location upon frequencies,

damping and mode shapes are shown in Figs. 8-10; in interpreting these curves,

it should be remembered that the elastic center is initially at the . 35 chord point

and the center of gravity at the . 45 chord point and each parameter is adjusted

individually, not simultaneously. Fig. 8 shows that the frequency of the torsion

mode is at a minimum when the elastic center is coincident with the center of

gravity and increases rapidly as the elastic center moves ahead of the center of

gravity. The frequency of the bending mode is little affected by the elastic center

or center of gravity location and is not shown in Fig. 8.

The damping constants obtained in investigating the effect of varying the

elastic center location were somewhat erratic, but it is apparent from Fig. 9

that the damping of the torsional mode decreases as the center of gravity moves
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aft and as the elastic center moves toward the center of gravity. The damping

of the bending mode is a minimum when the center of gravity is located near the

. 35 chord point, although the effect on damping of either center of gravity or

elastic center location is quite small.

As seen in Fig. 10, the bending mode is free from any influence of torsion

when the center of gravity is located just slightly ahead of the elastic center,

and the torsion mode is free from any influence of bending when the elastic

center is just slightly ahead of the center of gravity. The slight coupling that

occurs when the elastic center and center of gravity are coincident is due to the

apparent mass aerodynamic effect.

4. Effect of the Radius of Gyration

Effect of the radius of gyration on dynamic overstress factors and mode

characteristics is plotted in Figs. 11-12. The dynamic overstress factor in

torsion increases as the radius of gyration increases. This is consistent with

increases in dynamic overstress factor as the elastic center and center of

gravity move apart.

Again in this case, the damping constants were somewhat erratic, but damping

of the torsion mode was seen to improve as the radius of gyration decreased; the

frequency of the torsion mode increases as the radius of gyration decreases. The

influence of torsion in the bending mode increases as the radius of gyration becomes

smaller. The frequency and damping of the bending mode and the mode shape of

the torsion mode are little affected by the radius of gyration and these effects are

not shown in Fig. 12.

5. Effect of Wing to Fuselage Mass Ratio

The effect of changing the fuselage mass, while holding the wing mass fixed
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is shown in Figs. 13-15. The dynamic overstress factors are increased some-

m
what as the mass ratio,

w
/nif, is increased. The frequency of the bending

mode increases and the damping decreases as the fuselage becomes lighter.

The frequency and damping of the torsion mode is not noticeably affected and is

not shown. Coupling between the two modes is at a minimum at a mass ratio of

about . 30.

6. Effect of Flight Velocity

The effects of flight velocity on behavior of the model are shown in Figs. 16-

18. The flutter speed for the model was found to be 1142 feet per second (com-

pressibility effects neglected). As the flutter speed is approached the frequencies

of the two modes approach each other as would be expected (Ref. 4, page 222)

and the damping improves in each mode until very near the flutter speed, where

the damping of the bending mode drops off sharply. This sudden deterioration of

damping also might be expected; a study of a three dimensional wing of large

aspect ratio produced frequency and damping characteristics very similar to

those of Fig. 17 (Ref. 2, pages 552-3). Torsion becomes more predominant in

each mode with increase in speed.

The dynamic overstresses increase gradually at first with increase in flight

velocity, and then rise sharply at the flutter speed; this is especially true of the

dynamic overstress in torsion.

7. Effect of Altitude

Figs. 19-20 show the effect of altitude or relative density on dynamic over-

stress factors and damping. As the altitude is increased above sea level (or

density reduced), it was found that frequencies of the modes are not discernably

changed, nor are the mode shapes significantly affected; thus frequencies and

mode shapes are not plotted. The damping is decreased in both modes; this
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decrease in damping does not mean that the flutter speed would be reduced; in

fact, it is shown in Ref. 2 (page 542) by analysis of an airfoil model with freedom

in bending and torsion, that increase in the relative density (above a fairly small

figure) increases the flutter speed. This is logical since damping is improved

with increased airspeed. Dynamic overstress factors are not greatly affected

by the value of the relative density, except for values of relative density

approaching zero.

8. Neglect of Unsteady Forces

Substitution of quasi-steady forces for the unsteady forces is accomplished

by replacing the Wagner function with unity; this gives a slightly conservative

estimate of dynamic overstresses and a very conservative estimate of flutter

speed - 498 ft/sec. as compared to 1142 ft/sec. It is of interest, however,

that flutter occurs in the torsion mode, not in the bending mode as with the un-

steady forces included. An analysis of a jet transport wing (Ref. 2, pages 567-8)

produced similar results, except that flutter occurs in the torsion mode for both

unsteady and quasi-steady theory.

On the basis of a constant derivative analysis, in order for energy to be

extracted from the air the following criterion must be met.

WC < 1.56

U

(Ref. 5, page 64). Flutter of this model under quasi-steady analysis occurs at

a frequency of 58. 7 radians per second; i. e.

:

«^- = 1.40
U

9. Gust Gradient

A gust with a finite gradient would cause lower stresses on the wing than
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a sharp-edged gust. Fig. 21 shows the effect on the stresses as function of

time required for the gust to build up to its maximum value.
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CONCLUSIONS

It was found that, for this two-dimensional model, dynamic overstresses

caused by a sharp-edged gust could be reduced by locating the center of gravity

close to the elastic center or by reducing the radius of gyration of the wing. The

frequencies of the oscillatory modes were increased by locating the center of

gravity near the elastic center, by increasing the radius of gyration or by in-

creasing the wing to fuselage mass ratio. Damping of the torsion model is best

when the center of gravity and elastic center are coincident, but damping of the

bending mode is improved by moving the center of gravity and elastic center

apart - also by decreasing the wing to fuselage mass ratio.

As flight velocity increases the dynamic overstresses increase and the two

oscillatory modes approach each other in frequency; each mode becoming more

highly damped until one of the modes very suddenly becomes unstable and flutter

occurs. Neglecting the unsteady forces yields a highly conservative estimate of

flutter speed in the present case.

Increasing altitude at constant velocity decreases the damping in each mode.

This study has been concerned with changes in only one parameter at a time.

Further study might well be done on the interactions of two or more parameters:

for example, the influence of the various parameters on flutter speed. Another

problem of interest would be the behavior of the model under periodic gust loads.

This procedure could be adapted to study of three-dimensional models by

dividing the wing into segments. The feasibility of such a solution would be

increased by use of the one-amplifier circuits for the unsteady forces.
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Parameter Standard

Value

Range

elastic center location

(fraction of chord)

.35 .25-. 50

center of gravity location

(fraction of chord)

.45 .30-. 50

radius of gyration . 25

(fraction of chord)

.20-. 40

mass ratio, wing to

fuselage

.333 .15-. 75

standard altitude

(feet)

S. L. 0-30, 000

flight velocity

(ft/sec.

)

330 100-1200

relative density \jj ) 50

wing chord (C) 11.9

bending stiffness

parameter (KR)

.1

torsion stiffness

parameter (K^)

.05

Table I. Model Parameters
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