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1. Summary
We derive new approximate representations of the Lommel
functions in terms of the Scorer function and approximate
representations of the first derivative of the Lommel functions
in terms of the derivative of the Scorer function. Using
the same method, we obtain previously known approximate
representations of the Nicholson type for Bessel functions and
their first derivatives. We study also for what values of the
parameters our representations have reasonable accuracy.

2. The main results
Solving problems in mechanics of discrete media [1,2], we derived
the following asymptotic formulae that are not available in the
literature [3–14], but probably are of general interest

s0,n(ct) ≈ − π

2(ct/2)1/3 Gi
[

n − ct
(ct/2)1/3

]
, (n = 2k) (2.1)

and

s′
0,n(ct) ≈ π

2(ct/2)2/3 Gi′
[

n − ct
(ct/2)1/3

]
, (n = 2k), (2.2)

where s0,n is the Lommel function, Gi is the Scorer function, c and
t are positive real numbers, and n and k are positive integers.
Prime denotes the derivative with respect to the argument. Each
of formulae (2.1) and (2.2) holds true provided that n � 1 or ct � 1.

3. Motivation of our research
In [1,2], the method of integral transformations was used to
solve two-dimensional problems of wave propagation in discrete
periodic media. In the process of solving those problems, it was
necessary to find the functions u and v, provided that their
Laplace–Fourier transforms are given by the formulae

uLF(p, q) = p

p2 + 4c2 sin2(q/2)
(3.1)
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and

vLF(p, q) = sin(q/2)

p2 + 4c2 sin2(q/2)
, (3.2)

where c is the velocity of the propagation of disturbances, the superscript L denotes the Laplace
transform (of parameter p) with respect to time t and the superscript F denotes the discrete Fourier
transform (of parameter q) with respect to k:

f L(p) =
∫∞

0
f (t)e−pt dt and gF(q) =

k=∞∑
k=−∞

gkeiqk.

Formally, the solution to the problem can be written as follows:

vk(t) = 1
4π2i

∫π

−π

∫ iα+∞

iα−∞
vLF(p, q)ept−iqkdpdq. (3.3)

A similar formula holds true for uk(t).
Inverting the Laplace transform [15], we obtain the following solutions:

uF(t) = cos
[
2ct sin

( q
2

)]
(3.4)

and

vF(t) = 1
2c

sin
[
2ct sin

( q
2

)]
. (3.5)

Inverting the discrete Fourier transform in formulae (3.4) and (3.5), we get

uk(t) = 2
π

∫π/2

0
cos(2zk) cos(2ct sin z) dz = J2k(2ct) (3.6)

and

vk(t) = 1
πc

∫π/2

0
cos(2zk) sin(2ct sin z) dz = 1

πc
s0,2k(2ct), (3.7)

where J2k is the Bessel function of the first kind.
In the problems of mechanics [1,2], it is important to be able to evaluate the behaviour of perturbations

in the vicinity of the quasi-front k = ct (quasi-front is a zone, where perturbations change from zero to
maximum). Being motivated by this problem, we look for asymptotic representations of the Bessel and
Lommel functions for k � 1.

In order to evaluate the behaviour of function (3.6), we use the following asymptotic representation
of the Bessel function:

Jn(ct) ≈ 1
(ct/2)1/3 Ai

[
n − ct

(ct/2)1/3

]
. (3.8)

This formula is valid for n � 1 and is known as the Nicholson-type formula (see [8, p. 142] or [14, pp. 190
and 249]). Here,

Ai(z) = 1
π

∫∞

0
cos

(
zy + y3

3

)
dy

is the Airy function.
We define

z = n − ct
(ct/2)1/3 . (3.9)

Observe that it follows from (3.8) that the amplitude of Jn(ct) in the neighbourhood of the point ct = n
(according to (3.9), this point can also be written as z = 0) decreases as t−1/3 (or n−1/3) as t → ∞ (or n →
∞). Note also that the size of the zone, where Jn(ct) increases from zero to the first maximum, increases
as t1/3 (or n1/3).

Return to our mechanical problem. Substituting (3.8) into (3.6), we obtain the desired asymptotic
representation for the function uk(t)

uk(t) ≈ 1
(ct)1/3 Ai

[
2(k − ct)
(ct)1/3

]
. (3.10)

Below we derive formulae (2.1) and (2.2) and study the limits of applicability of formulae (2.1), (2.2)
and (3.8).
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4. Derivation of formula (2.1)
Using the Slepyan method [16] of combined asymptotic (t → ∞) inversion of the integral Laplace–
Fourier transforms of long-wave disturbances in the vicinity of the ray x = ct, we can find the asymptotic
behaviour for vk(t) that is similar to (3.10).

Applying the Slepyan method, we make the substitution p = s + iq(c + c′) and k = (c + c′)t, where
c′ → 0 and defines the vicinity of the ray k = ct, in the inner integral (3.3). This yields

vk(t) = 1
4π2i

∫π

−π

∫ iα+∞

iα−∞
vLF(s + iq(c + c′), q)estdpdq.

We expand the numerator and denominator of the function vLF(s + iq(c + c′), q) in the Taylor series in a
small neighbourhood of the point q = 0 as s → 0 and c′ → 0:

vk(t) ≈ 1
4π2i

∫ ε

−ε

∫α+i∞

α−i∞
sign(q)

2ic(s + iqc′ + iq3c/24)
est dsdq,

where ε > 0 is small enough. Successively integrating and taking into account, that c′ = (k − ct)/t, we
obtain the following asymptotic formula that is similar to (3.10):

vk(t) ≈ − 1
4πc

∫ ε

0
sin

(
qc′t + q3ct

24

)
dq ≈ − 1

2c(ct)1/3 Gi
[

2(k − ct)
(ct)1/3

]
, (4.1)

where

Gi(z) = 1
π

∫∞

0
sin

(
zy + y3

3

)
dy

is the Scorer function.
Comparing (3.7) and (4.1), we get the following approximate representation of the Lommel function

s0,n for n � 1 in terms of the Scorer function Gi that is similar to (3.8):

s0,n(ct) ≈ − π

2(ct/2)1/3 Gi
[

n − ct
(ct/2)1/3

]
. (4.2)

Observe that the Lommel function s0,n is defined for even values of n only (i.e. for n = 2k). It follows from
(4.2) that the amplitude of s0,n(ct) in the neighbourhood of the point ct = n decreases as t−1/3 (or n−1/3) as
t → ∞ (or n → ∞). Note also the size of the zone, where s0,n(ct) decreases from zero to the first minimum,
increases as t1/3 (or n1/3).

Finally, note that above we derived formula (3.10) from formula (3.8) of the Nicholson type solely for
the sake of brevity. In fact, (3.10) can be obtained by using the Slepyan method of combined asymptotic
inversion of the integral Laplace–Fourier transforms, just as we got above formula (4.1).

The approximate representation (4.2) of the Lommel function s0,n for n � 1 in terms of the Scorer
function Gi is similar to the following formula (11.11.17) in [5]:

A−ν (ν + aν1/3) ≈ 21/3

ν1/3 Hi(−21/3a) + O(ν−1),

which gives an asymptotic expansion of the associated Anger–Weber function A−ν (z) = 1/π
∫∞

0 exp(νy −
z sinh y) dy for ν → +∞ in terms of the Scorer function Hi(z) = 1/π

∫∞
0 exp(zy − y3/3) dy.

5. Derivation of formula (2.2)
Observe that, in the following formula, the term (n − ct)/(3t) can be neglected in a neighbourhood of the
point n = ct as t → ∞:

dz
dt

=
(

2
ct

)1/3 (
−c − n − ct

3t

)
≈ −c

(
2
ct

)1/3
. (5.1)

Differentiating (4.2) with respect to time, we get

ds0,n(ct)
dt

≈ −π

2
d
dt

[
Gi(z)

(ct/2)1/3

]
= −π

2

(
2
ct

)1/3 [dGi(z)
dz

dz
dt

− Gi(z)
3t

]
.

Using (5.1) and assuming t → ∞, we obtain the following asymptotic representation for the first
derivative s′

0,n for n � 1:

s′
0,n(ct) ≈ π Gi′(z)

2(ct/2)2/3 . (5.2)
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Figure 1. Plots of the functions: Jn(t)—blue line; F1(n, t)—red line.
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Figure 2. Plots of the functions: J′n(t)—blue line; F2(n, t)—red line.

Similarly, we derive the following asymptotic representation for the first derivative J′n for n � 1:

J′n(ct) ≈ − Ai′(z)
(ct/2)2/3 . (5.3)

From (5.2) and (5.3), we conclude that, in a neighbourhood of the point n = ct, the functions J′n(ct) and
s′

0,n(ct) decrease as t−2/3 (or n−2/3) when t (or n) increases. Note also the size of the zone, where J′n(ct) and
s′

0,n(ct) varies from zero to the first extremum, increases as t1/3 (or n1/3).

6. Numerical experiments
In order to determine the accuracy of the asymptotic representations (2.1), (2.2), (3.8) and (5.3), we plot
the graphs of the functions that appeared in (2.1), (2.2), (3.8) and (5.3). All figures given below are plotted
for the case c = 1.

Let us use the following notations for the right-hand sides of formulae (2.1), (2.2), (3.8) and (5.3):

F1(n, t) = 1
(t/2)1/3 Ai

[
n − t

(t/2)1/3

]
, F2(n, t) = − 1

(t/2)2/3 Ai’
[

n − t
(t/2)1/3

]
,

F3(n, t) = − π

2(t/2)1/3 Gi
[

n − t
(t/2)1/3

]
and F4(n, t) = π

2(t/2)2/3 Gi’
[

n − t
(t/2)1/3

]
.

In figures 1–4, we present the plots of the functions of the variable t, which appear in the left- and
right-hand sides of formulae (2.1), (2.2), (3.8) and (5.3) for various values of n. The step of the variable t
is equal to 0.1. The dashed vertical lines correspond to the coordinates t∗ = n or z = 0.
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Figure 3. Plots of the functions: s0,n(t)—blue line; F3(n, t)—red line.
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Figure 4. Plots of the functions: s′0,n(t)—blue line; F4(n, t)—red line.

Let us find the values of n, for which the accuracy of the asymptotic representations is reasonable. Let
max |Jn(t)| denote the maximum of the modulus of the function Jn(t) calculated in a neighbourhood of the
point circled in figure 1. The expressions max |J′n(t)|, max |s0,n(t)|, max |s′

0,n(t)|, max |F1(n, t)|, max |F2(n, t)|,
max |F3(n, t)| and max |F4(n, t)| are defined similarly with the help of figures 2–4. Introduce the notation

δ1 =
(

1 − max |F1(n, t)|
max |Jn(t)|

)
100%, δ2 =

(
1 − max |F2(n, t)|

max
∣∣J′n(t)

∣∣
)

100%,

δ3 =
(

1 − max |F3(n, t)|
max

∣∣s0,n(t)
∣∣
)

100% and δ4 =
⎛
⎝1 − max |F4(n, t)|

max
∣∣∣s′

0,n(t)
∣∣∣
⎞
⎠ 100%.

In tables 1 and 2, we give the values of the relative errors δ1, δ2, δ3 and δ4, calculated for the values
of n, specified in figures 1–4. From tables 1 and 2 it follows that the relative errors δ1, δ2, δ3 and δ4
monotonically decrease as n increases.

From figures 1–4, for every pair of the functions, we see that, as n increases, the matching of the
amplitudes of all local extrema get better, not only of the circled ones. From figures 1–4, we see also
that, for every pair of the functions, the matching of the oscillation frequencies get better as n increases.
For each pair of functions, the best approximation is achieved in a neighbourhood of the point n = t (or
z = 0). Note that, in the problems of mechanics, this neighbourhood corresponds to the quasi-front of the
propagating wave.
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Table 1. Relative errors δ1 and δ2.

n 2 6 10 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ1 (%) 4.7 2.7 2.1 1.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ2 (%) 7.4 5.2 4.1 2.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Relative errors δ3 and δ4.

n 6 10 20 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ3 (%) 9.7 7.4 5.0 3.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ4 (%) 6.2 5.1 3.6 1.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Besides, we compared the plots of the functions (treated as functions of the variable n), which appear
in the left- and right-hand sides of formulae (2.1), (2.2), (3.8) and (5.3), for various fixed values of t. That
comparison showed that, for every pair of the functions, the plots agree best of all in a neighbourhood
of the point n = t, that formulae (2.1), (2.2), (3.8) and (5.3) can be used starting from t ≈ 6, and that
the agreement gets better as t increases. For every pair of the functions, the distinction appears at a
sufficiently large distance from the point n = t. Moreover, this distinction appears in the frequency of
oscillations only. The maximal amplitudes of oscillations do not differ very much even at large distances
from the point n = t.

7. Conclusion
As a result of the study of the asymptotic representations (2.1), (2.2), (3.8) and (5.3), it is shown that:

— the amplitudes of s0,n(ct) and Jn(ct) in the neighbourhood of the point ct = n decrease as t−1/3 (or
n−1/3) as t → ∞ (or n → ∞);

— the amplitudes of s′
0,n(ct) and J′n(ct) in the neighbourhood of the point ct = n decrease as t−2/3 (or

n−2/3) as t → ∞ (or n → ∞);
— the size of the zone, where s0,n(ct), Jn(ct), s′

0,n(ct) and J′n(ct) varies from zero to the first extremum,
increases as t1/3 (or n1/3) as t → ∞ (or n → ∞); and

— representations (2.1), (2.2), (3.8) and (5.3) have reasonable accuracy starting from relatively small
values of n (namely, n ≈ 6) or t (namely, ct ≈ 6).

8. Comparison of the results for the function Jν(ct) described in [6]
and this paper

Both [6] and this paper focus on the study of the behaviour of the Bessel functions Jν (ct) when the
argument ct and order ν are nearly equal. However, in this article, the emphasis is on the smallest values
of ν = n and ct, for which the asymptotic formula (3.8) has reasonable accuracy for solving the problems
of discrete periodic media [1,2]. This differs in our paper from [6], where the authors are looking for
the values of Jν (ct) for large values of ν and ct. In particular, Jentschura & Lötstedt [6] present, via
apparently heroic numerical efforts, the following value Jν (ct) = 0.002614463954691926 for ν = 5000000.2
and ct = 5000000.1. In this formula, the values of the argument ct and order ν of the Bessel function
are the largest ones for which we know the value of the Bessel function from the scientific literature.
For ν = 5000000.2 and ct = 5000000.1, the asymptotic formula (3.8) yields Jν (ct) = 0.002614463961695188.
Hence, eight significant figures are in agreement with the exact numerical result given in [6].

In figure 5, we plot the graph of the function F1(ν,t) for ν = 2000000.2, which, according to formula
(3.8), is asymptotically equivalent to the function Jν (ct). From fig. 4 in [6] and figure 5, we see that the
behaviour of the plots is the same.

Numerical experiments, discussed in this section, show that formula (3.8) is valid not only for the
Bessel function Jn(ct) of a positive integer order n, but also for the case where the order is a positive real
number.
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Figure 5. Plot of the function F1(ν , t) for ν = 20000000.2.

The problems associated with the confluence of the saddle points in the cusp region explained in [6]
do not appear in our paper, because we use another method.

9. Comparison of the results for Bessel functions described in [9,12]
and this paper

Note that formulae (3.8) and (5.3) present the leading terms of the following complete asymptotic
expansions of Bessel functions and their first derivatives (see pp. 281 and 287 in [12]):

Jν (y) ≈
∞∑

k=0

(−1)k
(y

2

)(−(2k+1)/3) [
Pk(ξ )Ai(ξ ) + Qk(ξ )Ai′(ξ )

]
(9.1)

and

J′ν (y) ≈
∞∑

k=0

(−1)k+1
(y

2

)(−(2k+2)/3)
[P̄k(ξ )Ai(ξ ) + Q̄k(ξ )Ai’(ξ )]. (9.2)

Here, ξ = (ν − y)(y/2)−1/3, y → ∞, |arg y| ≤ π − ε, y − ν = O(y1/3), ν is a positive real number, the
coefficients Pk(ξ ), Qk(ξ ), P̄k(ξ ), Q̄k(ξ ) are polynomials in ξ described in [12] (for example, P0(ξ ) = 1,
Q0(ξ ) = 0, P̄0(ξ ) = 0 and Q̄0(ξ ) = 1).

Besides formulae (3.8) and (5.3), (9.1) and (9.2), there are other asymptotic expansions of Bessel
functions and their first derivatives for large values of the order. We mean the following formulae
(10.19.8) and (10.19.12) in [5] (the same formulae are available on p. 414 in [9]):

Jν (ν + aν1/3) ≈ 21/3

ν1/3 Ai(−21/3a)
∞∑

k=0

Pk(a)
ν2k/3

+ 22/3

ν
Ai′(−21/3a)

∞∑
k=0

Qk(a)
ν2k/3

(9.3)

and

J′ν (ν + aν1/3) ≈ − 22/3

ν2/3 Ai′(−21/3a)
∞∑

k=0

Rk(a)
ν2k/3

+ 21/3

ν4/3 Ai(−21/3a)
∞∑

k=0

Sk(a)
ν2k/3

, (9.4)

where a is a fixed complex number; ν is a complex number, such that ν → ∞ and its argument satisfies the
inequality |arg ν| ≤ 1

2 π − δ with some δ > 0; the coefficients Pk(a), Qk(a), Rk(a) and Sk(a) are polynomials
in a, in particular, P0(a) = 1, Q0(a) = 3/10a2, R0(a) = 1 and S0(a) = 3/5a3 − 1/5.

At first glance, formulae (9.1) and (9.2) are similar to formulae (9.3) and (9.4). But in fact, they differ
radically, because in (9.3) and (9.4) the expansion is carried out in powers of the order ν of the functions,
whereas in formulae (9.1) and (9.2) the expansion is carried out in the powers of the argument of the
functions.
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