
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Azfar AK, Kasim MF, Lokman

IM, Rafaie HA, Mastuli MS. 2020 Comparative

study on photocatalytic activity of transition

metals (Ag and Ni)-doped ZnO nanomaterials

synthesized via sol–gel method. R. Soc. open sci.

7: 191590.
http://dx.doi.org/10.1098/rsos.191590

Received: 30 September 2019

Accepted: 30 January 2020

Subject Category:
Chemistry

Subject Areas:
materials science/nanotechnology

Keywords:
photocatalyst, doped ZnO, sol–gel,

methyl orange, TPD-CO2

Author for correspondence:
M. F. Kasim

e-mail: muhdfir@uitm.edu.my
© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
This article has been edited by the Royal Society

of Chemistry, including the commissioning, peer

review process and editorial aspects up to the

point of acceptance.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

4860603.
Comparative study on
photocatalytic activity of
transition metals (Ag and Ni)-
doped ZnO nanomaterials
synthesized via sol–gel
method
A. K. Azfar1,2, M. F. Kasim1,2, I. M. Lokman1,2,

H. A. Rafaie3 and M. S. Mastuli1,2

1Centre for Nanomaterials Research, Institute of Science, Level 3 Block C, and
2School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
3Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul
Razak, Jengka, Pahang, Malaysia

MFK, 0000-0003-3217-1413

Ag and Ni/ZnO photocatalyst nanostructures were successfully
synthesized by a sol–gel method. In this work, the
photocatalyst sample was systematically studied based on
several factors affecting the performance of photocatalyst,
which are size, morphology, band gap, textural properties
and the number of active sites presence on the surface of
the nanocatalyst. X-ray diffraction revealed that Ag/ZnO
nanomaterials experienced multiple phases, meanwhile for
Ni/ZnO the phase of nanomaterials were pure and single
phase for stoichiometry less than 5%. Field emission
scanning electron microscope (FESEM) showed almost all of
the synthesized nanomaterials possessed a mixture of
nanorods and spherical-like shape morphology. The Ag/
ZnO showed high photocatalytic activity, producing at least
14th trials of nanocatalyst reusability on degradation of
methyl orange under UV irradiation. Interestingly, this
phenomenon was not observed in larger surface area of Ni/
ZnO nanomaterials which supposedly favour photocatalytic
activity, but instead producing poor photocatalytic
performance. The main reasons were studied and exposed
by temperature-programmed desorption of carbon dioxide
(TPD–CO2) which showed that incorporation of Ag into
ZnO lattice has enhanced the number of active sites on the
surface of the nanocatalyst. Whereas incorporation of Ni in
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ZnO has lowered the number of active sites with respect to undoped ZnO. Active sites measurement

is effective and significant, providing opportunities in developing an intensive study as an additional
factor.
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1. Introduction
Photocatalysis refers to the process that uses light irradiation to activate catalyst in order to initiate
chemical reaction. This process aids in degradation of organic pollutants on daily basis and is
beneficial for wastewater treatment system. Industrial effluent produces dyes, such as textiles,
ceramics, paints, and pulps and papers industries, which multiply the level of toxicity in water
streams. Extensive studies on photocatalysis work have covered a range of aspects, including the
introduction of photocatalyst, ways of enhancing photodegradation efficiency, essential variables
associated with photocatalytic efficiency, as well as advancement and photocorrosion [1]. This
large scope has a counterbalance on environmental security as photocatalysis offers a general
solution to address the pressing water pollution issue [2]. Semiconductor photocatalysts, such as
zinc oxide (ZnO), titanium dioxide (TiO2) and iron(ΙΙΙ) oxide (Fe2O3), have been widely applied
for their functionality on photodegradation [1]. Oxide-based materials possess high photocatalytic
activity, thus giving better photocatalytic efficiency [3]. ZnO possesses a large and direct band
gap, thus requiring massive amount of energy of incident beam (photons) to generate
photoexcitation. Some of the charge carriers cannot participate in photocatalytic activity due to
recombination phenomenon that results in dissipation of absorbed energy in the form of lattice
vibration (heat) and photon generation (light). The rapid recombination of photogenerated
electron and hole pairs deteriorates the performance of ZnO as a photocatalyst. Hence, in order
to overcome this barrier, efficient transportation and separation of charge carriers in
photocatalyst need to be emphasized by introducing dopants as electron scavengers [4]. To be
precise, doping contributes in three ways: (i) narrowing band gap and promoting adsorption, (ii)
improving conductivity of ZnO and mobility of charge carriers and (iii) altering the conduction
band (CB) position and valence band (VB) of ZnO. Doping with other element in ZnO
semiconductors has attracted attention of many researchers due to the higher amount of charge
trap, hence reducing bulk recombination, as well as separating photogenerated electrons and
holes more efficiently [4–6].

Various methods have been applied to synthesize doped ZnO, such as sol–gel [7–9], hydrothermal
[10–12], combustion [13–15] and chemical vapour deposition [16,17]. However, all of these methods
except sol–gel require severe reaction conditions such as high temperature, sophisticated techniques,
high purity of gas, adjustable gas flow rate, expensive raw materials and so on. Thus, in this work,
sol–gel method has been chosen due to simple operation, mild conditions and excellent crystalline
structure of particles [18].

Previous works have proven that the photocatalytic activity of ZnO is significantly affected by its
morphology [19], crystal size [20], crystal orientation [21] and also optical properties [22]. But,
discussion on active sites analysis is still vague and most of the literature provides only light
amount of study [23–27]. Though, the latest study by Xiao et al. reported in detail that larger
specific surface area and more catalytic active sites led to improved performance of photocatalytic
activity [28]. Meanwhile Yuan et al. discussed that active species scavengers influenced
photogenerated holes and •OH radical which play an important role in photocatalysis [29]. In
regard to these conditions, it is very crucial to investigate the number of active sites present in the
surface of nanomaterials. This is because the presence of greater number of active sites will promote
formation of active radicals. The goal in this work accounted in the present paper aims at bridging
the information between fundamental and application work which attempt on proving active sites
as an additional factor that should be notified. Thus, in this work, the prepared photocatalyst were
extensively studied in terms of size, morphology, band gap, textural properties and the number of
active sites present on the surface of the nanocatalyst. The materials were characterized via X-ray
diffraction (XRD), field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller
(BET) surface analysis, temperature-programmed desorption of carbon dioxide (TPD-CO2) and UV–
Vis spectrophotometer. The investigation of photodegradation was performed under UV-light
irradiation.
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2. Experimental

2.1. Materials
Zinc acetate dihydrate was purchased from R&M chemicals with 99.5% purity. Silver(ΙΙ) acetate and
nickel(ΙΙ) acetate were purchased from Aldrich with 99% purity. These starting materials were mixed
with absolute ethanol AnapuR.

2.2. Synthesis of materials
Ag and Ni/ZnO nanoparticles were synthesized at different stoichiometry values (x=1%, 3%, 5%, 7%
and 10%). Zinc acetate dihydrate and silver acetate/nickel(ΙΙ) acetate were dissolved under absolute
ethanol and was stirred for 2 h to gain a homogeneous mixture. Base (ammonium hydroxide) was
added to increase the pH value to pH 9, and this was followed by a heating process at 80°C. The
materials underwent slow drying process and grey precursors were obtained within 24 h. For
comparison, a control sample (undoped ZnO) was prepared by mixing zinc acetate dihydrate with
absolute ethanol and processed with the similar procedure as above. The precursors were annealed at
400°C for 3 h. Next, structural studies on crystallinity were carried out after the annealing process
using XRD (PANanalytical) X’pert Pro powder diffraction equipment. The morphology of the
materials was assessed under FESEM (JEOL JSM-7600F). The band gap study, which in detail depicts
light absorption properties, was performed under reflectance (%R) mode using Perkin Elmer Lambda
950 UV–Vis-NIR Spectrophotometer. The surface area was assessed using BELSORP-mini ΙΙ
instrument from BEL Japan Inc. The specific surface areas of undoped, Ag and Ni/ZnO were plotted
under BET plot. Measurement of active sites were determined using TPD-CO2.

2.3. Photocatalytic activity
The photocatalytic activity on Ag and Ni/ZnO nanoparticles was measured by determining the
decomposition of methyl orange on each interval at constant room temperature. The catalyst loading
was 100 mg of Ag and Ni/ZnO catalyst, in a medium beaker containing 100 ml of methyl orange
solution with 10 ppm as the initial concentration. The UV-light irradiation was turned on at 352 nm
wavelength and 8 W. The dye solution was extracted out at every 40min interval. The photocatalytic
analysis was performed using UV–Vis spectrophotometer under absorbance, (A), mode. The methyl
orange absorption peak was measured at 464 nm. Photodegradation efficiency (%) was measured in
regard to the maximum photodegradation collected at each interval. Photodegradation rate constant,
k, was calculated for all the samples. Absorption controlled graph was produced prior to
photodegradation by excluding UV-light irradiation.
3. Results and discussion
3.1. Phase studies
Figure 1a,b illustrates the XRD pattern ranged between 20° and 90° for Ag and Ni/ZnO nanostructures,
respectively. Good crystallinity was achieved as the diffracted peaks displayed good match with the
ICDD reference no. 01-089-0510 of ZnO wurtzite hexagonal with a space group of P63mc. As for the
Ag/ZnO (figure 1a), diffraction peaks of Ag metal were detected at (111), (200), (220) and (311) crystal
plane in correlation with standard Ag ICDD reference no. 01-087-0717. This occurrence is attributed to
the huge variance in terms of ionic size between Ag+ ions and Zn2+ ions in the ZnO system. With
that being mentioned, the existence of Ag metal seemed to affect the fabrication of ZnO [30,31]. Based
on the XRD pattern, no shifting was observed in the peak position for Ag/ZnO samples. This
indicates that the existence of Ag particles were not slotted into the lattice, but squeezed in the grain
boundaries of ZnO crystallites [30]. For Ni/ZnO, as shown in figure 1b, it was revealed that the
materials have single phase of ZnO wurtzite hexagonal structure for the Ni content less than 5%. But
as Ni content exceeds 5%, multiphases were observed corresponding to NiO and Ni metals at (200)
and (111) plane with standard Ni ICDD reference nos. 01-073-1519 and 00-001-1266, respectively.
Although the XRD peak position did not exhibit any changes, some alteration was noted for peak
intensity and width. In this case, introduction of Ag/Ni did not move the peak to a lower position, as
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Figure 1. The XRD pattern of (a) various amount of Ag-doped ZnO and (b) various amount of Ni-doped ZnO materials.
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reported by Mohammadzadeh et al. and Goswami & Sahai [32,33]. In fact, the impurities for peak
intensity for Ag metal increased as the stoichiometry increased at peak position (111).
3.2. Morphology and elemental composition analysis
Figures 2 and 3 illustrate the morphology of Ag and Ni/ZnO with varied stoichiometry values,
respectively. The morphology of Ag/ZnO (figure 2) reflected similarly as undoped ZnO nanorod-
like-shaped structure in all stoichiometry. By contrast, the morphology above 3% Ni/ZnO (figure 3)
exhibited a mixture of spherical and short nanorod-like-shaped structures. The morphology for
materials for 10% Ni content in ZnO solely exhibited a spherical shape. Summarization of
morphologies, crystallite dimensions (length and diameter) and aspect ratio (length over diameter) of
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Ag and Ni/ZnO are tabulated in electronic supplementary material, table S1. By doping Ag into ZnO, it
did not show much change in terms of morphology and crystal dimension as compared to undoped
ZnO. By contrast, by doping Ni into ZnO (figure 3), the morphology started to become spherical-
like shape as the Ni content increases and average length decreases, but only slight changes are noted
in crystal’s dimension when compared with undoped ZnO. For this reason, size and morphology
does not take much role in affecting photocatalysis in this work due to its resemblance in both Ag
and Ni/ZnO.

Further characterization on elemental composition was performed using EDS for Ag and Ni/ZnO
nanomaterials (see electronic supplementary material, figures S1 and S2). The EDS results show (see
inset figures 2 and 3) that all the synthesized material have good agreement with the stoichiometry
calculation.

3.3. Band gap determination
Band gaps are evaluated by plotting Tauc plot from the absorption edges of the reflectance spectra shown
in figures 4a and 5a for Ag and Ni/ZnO respectively. The Tauc relation was applied via equation below

(ahv) ¼ C(hv � Eg)n: ð3:1Þ
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From the Tauc relation, α represents the absorption coefficient of the material, h denotes Planck’s
constant, v reflects the frequency of light, C is the proportionality constant, Eg refers to the band gap
energy and n=½ (for direct transition mode materials), since ZnO is classified under direct band gap
semiconductor [34,35]. The absorption coefficient in this study was determined by

a ¼ k ln
Rmax � Rmin

R� Rmin

� �
: ð3:2Þ

Based on the absorption coefficient, k represents a constant, Rmax stands for the maximum reflectance
and Rmin refers to the minimum reflectance. Equations (3.1) and (3.2) produce the following:

(ahv)2 ¼ C
0
(hv� Eg): ð3:3Þ

Extrapolation was derived from the graph of (αhv)2 against hv, while band gap energy was
determined once it met the line of x-axis, abscissa. The Tauc plot graph and the extrapolation are
illustrated in figures 4b and 5b for Ag and Ni/ZnO, respectively. The band gap values are tabulated
in electronic supplementary material, table S1. It was revealed that the band gap of Ag/ZnO did not
consistently change with increment of Ag content, and this is happened because Ag+ ions do not take
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the place of the Zn2+ ions in the lattice crystal, which means that Ag+ ions do not contribute in the VB of
ZnO materials. It is believed that the Ag+ ions only existed on the surface of the ZnO materials. This
works well-agreed with other researchers [5,36–38]. By contrast, for the Ni/ZnO, the Eg value
increased with increment of Ni content. The change in band gap happened due to the substitution of
Ni2+ on Zn2+ site in the crystal lattice. The electrons of Ni2+ ions are contributed in the valence region
of the ZnO and thus lead to the changes in band gap. The increased Ni content in the ZnO system
led to the presence of NiO phase due to incomplete substitution. This situation weakened the bonding
of Zn-O, but induced the growth of Ni-O. The changes noted in band gap values for Ag- and Ni-
doped ZnO are attributable to grain size, structural parameter and carrier concentration [33,39]. Band
gap has a significant role in determining the performance of photocatalysis. This work proves that
other factors, as mentioned, may topple band gap as the main factor for photodegradation of methyl
orange, as elaborated in the following section.
3.4. Surface area analysis
Electronic supplementary material, figures S3 and S4 illustrate N2 adsorption–desorption and pore size
distribution on undoped, Ag and Ni/ZnO. All the adsorption isotherms can be classified as Type ΙΙ
based on the classification standard of International Union of Pure and Applied Chemistry (IUPAC).
The porosity under Type ΙΙ criteria displays its macroporous nature. The specific surface area, the total
pore volume and the average pore diameter of undoped, Ag and Ni/ZnO were determined by
constructing BET plot (see electronic supplementary material, figures S5 and S6). The textural
properties for all samples are tabulated in electronic supplementary material, table S1. It was found
that Ni/ZnO samples have the largest specific surface area, followed by undoped and Ag/ZnO. By
having larger specific surface area, it will give an advantage in the performance of photocatalytic
activity. Nevertheless, Ni/ZnO failed to generate better photocatalytic activity, when compared with
either undoped or Ag/ZnO. In this case, it is believed that the sites of Ni/ZnO are less active or
inactive towards photocatalytic reaction [40,41].
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3.5. Photocatalytic activity
The photodegradation of undoped, Ag and Ni/ZnO nanomaterials had been determined by assessing
each interval (40 min) of the degradation of 10 ppm methyl orange aqueous solution under 352 nm
8 W UV light irradiation. Electronic supplementary material, figures S7(a) and S7(b) portray that
photocatalysis only occurred with the presence of light as the primary source and catalyst. This means
no photodegradation would occur without the presence of light and catalyst, resulting in nil changes
on the absorption spectra. Electronic supplementary material, figures S8 and S9 show the time-
dependent absorbance spectra for Ag and Ni/ZnO from 350 to 550 nm for 160 min with the presence
of UV light irradiation. Based on the plot, the characteristic peak, λmax, for methyl orange was at
464 nm. All the stoichiometry of Ag/ZnO displayed promising photodegradation with total clarity
after 160 min, while Ni/ZnO generated low photocatalytic efficiency, wherein 1% gave the best output
amongst other stoichiometry.

From the graph, photodegradation efficiency (%) was evaluated based on the measured absorbance
from each interval. The photocatalytic degradation efficiency (%) is expressed in equation (3.4),
as follows:

(C0 � C)
C0

� �
� 100 ¼ A0 � A

A0

� �� �
� 100: ð3:4Þ

From the equation, C0 represents the initial dye concentration, while C denotes the dye concentration
on each interval in terms of time (minutes). Meanwhile, A0 stands for the initial absorbance, whereas A
refers to the absorbance on each interval at specific absorption wavelength of methyl orange, which is at
464 nm [42,43].

Figure 6a,b shows the photocatalytic activity of Ag and Ni/ZnO, respectively. It was found that 5% of
Ag content in ZnO resulted in the best degradation efficiency with 99.93%, when compared with 1%, 3%,
7% and 10%, which gave 98.65%, 98.00%, 98.59% and 97.47% degradation efficiency, respectively.
Meanwhile, low photocatalytic degradation efficiency was recorded for Ni/ZnO with only 1% of Ni
content in ZnO giving the best outcomes amongst the respective stoichiometry with 31.68%. No
appreciable photodegradation efficiency was observed for 3%, 5%, 7% and 10% with 11.12%, 15.07%,
12.11% and 13.44%, respectively.

The photodegradation rate constant, k, of Ag and Ni/ZnO had been assessed using the kinetic model
suggested by Langmuir–Hinshelwood, which is pseudo-first kinetics model of photocatalysis [44], as
given in equation (3.5) below:

ln
C
C0

� �
¼ �kt , ð3:5Þ

From the equation, C0 represents the initial concentration of methyl orange, C refers to the concentration
of methyl orange on each interval and t is the irradiation time. The graph of ln (C/C0) against t exhibits a
linear relationship in figure 7a,b, and followed by pseudo-first-order reaction kinetics. The pseudo-
first-order rate constant, k, and linear regression, R2, are tabulated in electronic supplementary
material, table S1 for Ag and Ni/ZnO, respectively. Five per cent of Ag content and 1% of Ni content
in ZnO gave the highest k values amongst their respective stoichiometry. These results show that



(b)(a)

irradiation time (min)

0 50 100 150 0
0

–0.2

–0.4

–0.6

–0.8

50 100 150

–8

–6

–4

–2

ln
 (

C
/C

0)

0

irradiation time (min)

undoped ZnO

ZnAgO (5%)

ZnAgO (1%)

ZnAgO (7%)

ZnAgO (3%)

ZnAgO (10%)

undoped ZnO

ZnNiO (5%)

ZnNiO (1%)

ZnNiO (7%)

ZnNiO (3%)

ZnNiO (10%)

Figure 7. The curves of ln (C/Co) versus time for photodegradation of methyl orange on different stoichiometry of (a) Ag/ZnO and
(b) Ni/ZnO nanomaterials.

Table 1. Basic sites of Ag- and Ni/ZnO determined by TPD-CO2.

sample temperature (°C) amount of CO2 desorbed (µmol g
−1) total amount of basicity (µmol g−1)

undoped ZnO 465

754

57.92

61.85

119.77

10% Ag/ZnO 140

494

19.35

147.18

166.53

10% Ni/ZnO 428

599

34.08

27.30

61.38
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doping Ag into ZnO improved the photocatalytic performance with respect to undoped ZnO. By
contrast, doping Ni into ZnO caused detrimental effects to the photocatalytic performance. Even
though BET results (see electronic supplementary material, table S1) showed that Ni/ZnO has larger
specific surface area over undoped and Ag/ZnO, which supposedly give an advantage to the
photocatalytic performance, but yet it turned out the photocatalytic test in poor performance. Since
there is not much difference in crystal dimensions and band gap among the materials, it is believed
that these factors do not play a vital role in the performance of photocatalyst nanomaterials.

3.6. Active sites measurement
Further characterization on the number of active sites present on the surface of the materials are carried
out via temperature-programmed desorption of carbon dioxide (TPD-CO2). TPD profiles portrayed the
interaction between CO2 molecules and photocatalyst surfaces tabulated in table 1. Desorption of CO2

happened at temperatures ranging between 300°C and 550°C, which shows all samples consist of high
basic centres. Both undoped ZnO and Ag/ZnO showed strong desorption peak at temperature above
350°C. Ag/ZnO possessed the highest total amount of basicity (figure 8), which gave the highest
active sites on photocatalyst surface. Therefore, Ag/ZnO is a likely-looking spot to initiate a better
photocatalytic performance compared to Ni/ZnO. Asymmetrical, weak and decreasing in desorption
peak was noted on Ni/ZnO may be due to diffusion limitation and decompostion of carbonates
species. Diffusion limitation caused by narrow pore size distribution of dopant Ni resulted in low
total amount of active sites. As being related to surface area analysis, though the pore size of both Ag
and Ni/ZnO (see electronic supplementary material, table S1) having a slight resemblance, the sites in
Ni are believed to be less active. Therefore, the coverage of reactive adsorbed species on photocatalyst
surfaces will be less, thus leading to inefficient photocatalytic performance [45–47].

Photocatalytic activity for Ni/ZnO displayed that 1% of Ni content gave the highest photocatalytic
performance, when compared with other stoichiometry in Ni classes. Technically, increment in the
stoichiometry of Ni content resulted in lower photocatalytic activity. Interestingly, this case does not
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apply on Ag/ZnO nanomaterials, as all of its stoichiometry turned out to give a good development on
photocatalysis. Comparison between the highest content of Ag and Ni/ZnO suggests that active sites
control photocatalytic activity in this work, and this has been proven through TPD-CO2 result in
table 1. The TPD-CO2 result answered the observed photocatalytic behaviour of both doped samples
that greater number of active sites will enhance the photocatalytic activity by promoting more
formation of active oxidant species [45,48].
3.7. Mechanism of photocatalysis
Basically, the process of photocatalysis (figure 9) takes place when energy is higher than source, in
comparison to the energy gap of a semiconductor, which is ZnO in this study. Thus, electrons excited
from VB jump to CB to form positively hole and electron on the surface of ZnO (equation (3.6)).
These electron-hole pairs involved in redox reaction as shown in equations (3.7) and (3.8) producing
hydroxyl radicals. The dopants (Ag and Ni) serve as electron scavenger (equations (3.9) and (3.10)) to
trap excited electron that intercepts the recombination between the pair of photogenerated holes, thus
resulting in increased life span of the excited electron. This gives more time for both excited electron
and holes to react with H2O and generate exceptional oxidant species (•O2

−, and H2O2), which later
degrades the dyes (equations (3.11)–(3.14)). The oxidant species is non-selective and is highly reactive
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that has the ability to degrade pollutants by breaking down organic bonds, including destroying the
aromatic rings of dye molecules [3,49]. Generating more oxidant species enhances the photocatalytic
performance. The possible mechanism of photocatalytic activity of Ag and Ni/ZnO are proposed as
follows:

ZnO + hn ! ZnO (e �
CB þ h �

VB Þ, ð3:6Þ
ZnO(h þ

VB Þ þH2O ! ZnO + Hþþ†OH, ð3:7Þ
ZnO(h þ

VB Þ þOH� ! ZnOþ †OH, ð3:8Þ
ðe�CBÞ þ ðAgþ, Ni2þÞ ! ðAg, NiþÞ, ð3:9Þ

ðAg, NiþÞ þO2 ! ðAgþ, Ni2þÞ þ †O�
2 , ð3:10Þ

†O�
2 þHþ

aq ! HO2†, ð3:11Þ
HO2†þHO2† ! H2O2 þ O2 , ð3:12Þ
H2O2 þ e�CB ! †OHþOH� ð3:13Þ

and †OH=h�
VB þMO dye ! degradation products + CO2 þH2O: ð3:14Þ

3.8. Photostability and reusability
Reusability of the catalyst is one of the advantages for photocatalysis system [50]. This work produced an
experimental continuation for its catalyst reusability. Five per cent Ag/ZnO has been tested and
displayed a prominent character for photocatalysis, which suits the advantage of semiconductors.
Results in this work are tabulated in table 2, conjoint with previous similar works on photocatalytic
performance-wise. Figure 10 illustrates the reusability on 5% Ag content that had undergone 14
consecutive attempts without removing the catalyst powder batches upon batches. The degraded
methyl orange was discarded and replaced with new but similar initial methyl orange batch at
10 ppm. The Ag/ZnO appears to be completely stable and could hardly deactivate even after the 14th
attempt. Therefore, this material can be further conducted and used umpteenth trials due to absence
of inhibitors and poison mainly from physical and chemical reactions.
4. Conclusion
All in all, photocatalysis operation and performance conclude fundamental and application work.
Synthesis using modified sol–gel method was performed on Ag and Ni/ZnO nanomaterials from
varying stoichiometry values (x= 1%, 3%, 5%, 7% and 10%). This paper disclosed that only Ag/ZnO
exerts greater performance on photocatalysis, but this does not apply to Ni/ZnO, which has larger
surface area. The photocatalytic performance showed that 5% of Ag content in ZnO exhibited the
most degradation at 99.93%, which refers to satisfactory outcome in total degradation. To date,
without a doubt, factors such as band gap, surface area and crystallite size have been proven
thoroughly in influencing photocatalytic activity. However, active sites measurement could arguably
be an additional factor and might be a greater choice in substituting photocatalysis features. This
work suggested that active sites of catalyst are significant in affecting photocatalytic activity as Ni/
ZnO is believed to be less active than Ag/ZnO. Hence, active sites measurement should be
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intensively studied and included in photocatalysis work. Catalyst reusability on 5% Ag/ZnO showed an
amazing outcome with 14 cycles done with no negative effect on the performance. Therefore, Ag/ZnO
which has been well researched can undergo series of larger wastewater treatment system in real work
due to its photostability feature.
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