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The Atacama Large Millimetre/submillimetre Array (ALMA) is
currently in the process of transforming our view of
star-forming galaxies in the distant (z * 1) universe. Before
ALMA, most of what we knew about dust-obscured star
formation in distant galaxies was limited to the brightest
submillimetre sources—the so-called submillimetre galaxies
(SMGs)—and even the information on those sources was
sparse, with resolved (i.e. sub-galactic) observations of the
obscured star formation and gas reservoirs typically restricted
to the most extreme and/or strongly lensed sources. Starting
with the beginning of early science operations in 2011, the last 9
years of ALMA observations have ushered in a new era for
studies of high-redshift star formation. With its long baselines,
ALMA has allowed observations of distant dust-obscured star
formation with angular resolutions comparable to—or even far
surpassing—the best current optical telescopes. With its
bandwidth and frequency coverage, it has provided an
unprecedented look at the associated molecular and atomic gas
in these distant galaxies through targeted follow-up and
serendipitous detections/blind line scans. Finally, with its leap
in sensitivity compared to previous (sub-)millimetre arrays, it
has enabled the detection of these powerful dust/gas tracers
much further down the luminosity function through both
statistical studies of colour/mass-selected galaxy populations
and dedicated deep fields. We review the main advances
ALMA has helped bring about in our understanding of the dust
and gas properties of high-redshift (z * 1) star-forming galaxies
during these first 9 years of its science operations, and we
highlight the interesting questions that may be answered by
ALMA in the years to come.
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1. Introduction

1.1. State of the field prior to ALMA
When newly formed stars and their surrounding HII regions exist in the presence of cosmic dust grains, a
fraction of the short-wavelength emission may be absorbed by those grains and re-emitted in the
far-infrared (FIR). This basic fact has long been a hindrance to the development of a complete picture of
high-redshift star formation, which has been largely pioneered by studies in the rest-frame UV/optical.
In particular, in the two decades since the now iconic image of the Hubble Deep Field (HDF; [1]) was
released by the Hubble Space Telescope (HST), studies of the high-redshift galaxies detected in the HDF
and its deeper successors have converged on a general picture for both when and how that star
formation occurred. The majority of the Universe’s stars appear to have been formed during the peak in
the cosmic star formation rate (SFR) density, at redshifts between z∼ 1− 3 (e.g. [2]). Moreover, a tight
relation has been observed between a galaxy’s star formation rate and stellar mass, and the persistent
lack of scatter in the relation observed out to redshifts of at least z∼ 6 has been used to argue that the
peak in the cosmic SFR density is primarily due not to the increased rate of mergers/interactions
during this period—as was previously thought—but rather due to continuous gas accretion (e.g. [3–9]).
However, it has also been known since the launch of the first infrared sky surveys, e.g. by the Infrared
Astronomical Satellite (IRAS; [10]), and the Cosmic Background Explorer (COBE; [11]), that a substantial
fraction of the Universe’s high-redshift star formation is heavily enshrouded by dust (e.g. [12]). As the
dust-reprocessed starlight emitted in the far-infrared (FIR) is redshifted to (sub-)millimetre wavelengths
at high-redshift (figure 1), telescopes sensitive to this long-wavelength emission are required in order to
detect the bulk of the star formation in distant galaxies. Understanding the prevalence and nature of
this dusty star formation over the lifetime of the Universe has remained a challenge.

This review is about the Atacama Large Millimetre/submillimetre Array (ALMA; e.g. [15]) and the
huge impact it has made—and will continue to make—toward our understanding of dust-obscured star
formation in the distant (z > 1) Universe. The success of ALMA builds on the huge progress made by
earlier long-wavelength telescopes, including (far-)infrared satellites such as the Spitzer [16] and
Herschel [17] space telescopes, radio interferometers like the Karl G. Jansky Very Large Array (VLA
[18,19]), single-dish submillimetre telescopes such as the James Clerk Maxwell Telescope (JCMT; [20]),
the IRAM 30-metre telescope [21], the Atacama Submillimetre Telescope Experiment (ASTE; [22]), the
Atacama Pathfinder EXperiment (APEX; [23]), and the South Pole Telescope (SPT; [24]), and earlier
(sub-)millimetre interferometers such as the Submillimetre Array (SMA; [25]) and the Plateau de Bure
interferometer (PdBI; [26] now succeeded by the NOrthern Extended Millimetre Array, NOEMA). These
facilities have already revolutionized our view of high-redshift dusty star formation, from discovering
submillimetre galaxies (SMGs) in the first extragalactic surveys with single-dish submillimetre
telescopes, to quantifying the relative contribution of dusty star formation over much of cosmic time.
Thanks to these facilities, it is now understood that, during the peak of the cosmic SFR density, the
power emitted in the ultraviolet (UV) by young stars was an order of magnitude smaller than that
emitted in the infrared (IR) due to dust reprocessing (e.g. [27–31]), with Herschel detections alone
accounting for 50% of all stars ever formed [8]. Moreover, in addition to being dustier during the peak
epoch of star formation, we now know that galaxies also had higher molecular gas fractions than local
galaxies (e.g. [32–35]), highlighting the critical importance of studies of the cool interstellar medium (ISM).

However, despite the significant progress made in the pre-ALMA era, a large gap in our knowledge
of the dust and gas reservoirs of high-redshift star-forming galaxies has persisted. This gap was largely
due to the limited capabilities of pre-ALMA era facilities. In particular, only the bright so-called
‘SMGs’ could be detected in the distant universe by pre-ALMA era single-dish submillimetre
telescopes (e.g. [36]), and at the highest redshifts (z > 5), only the most extreme and highly star-
forming of those could be studied. Detections of the associated cool gas reservoirs of distant
star-forming galaxies were similarly limited, with the majority of the detections resulting from
targeted observations of the brightest SMGs and quasi-stellar object (QSO) host galaxies (e.g. [37–41]).
In addition, while Herschel has contributed significantly to our understanding of the cosmic
importance of dust-obscured star formation (e.g. [27,42]), its poor angular resolution (approx. 1800 at
250 μm and approximately 3600 at 500 μm) leads to significant source blending. Single-dish
(sub-)millimetre telescopes have faced a similar challenge, with a typical resolution of the order of
approximately 1500 to greater than 3000 (equivalent to greater than 100 kpc at z∼ 2). Far from allowing
detailed studies of the dusty star formation in distant galaxies, this blending gives rise to the more
fundamental challenge of reliably identifying the individual galaxies in the first place. Finally, despite
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Figure 1. (a) Redshift evolution of the observed flux density of a galaxy at various wavelengths from the ultraviolet to the radio. We
use the median spectral energy distribution (SED) of the ALESS submillimetre galaxies obtained by da Cunha et al. [13], with an infrared
luminosity of LIR ¼ 3:6� 1012 L�, and plot the brightest far-infrared/submillimetre cooling lines and CO lines for illustrative
purposes. This clearly shows the effect of the negative k-correction at (sub-)millimetre wavelengths, where the cosmological
dimming of more distant sources is ( partially) compensated by the peak of the SED shifting into the wavelength range.
(b) Galaxy dust SEDs at z = 2 compared with the ALMA frequency band ranges, indicated by the grey shaded regions. We plot
two template SEDs from Rieke et al. [14], which are based on local dusty star-forming galaxies, one with LIR ¼ 1010 L�, in blue,
and one with LIR ¼ 1012 L�, in red (note that these templates are plotted here to indicate the approximate expected (sub-
)millimetre flux densities for similar dust luminosities at z = 2; high-z galaxies may not have the same relation between infrared
luminosity and dust temperature, i.e. SED peak). The right-hand axis shows the indicative integration time required to obtain a
3σ detection with ALMA in Band 6 at 230 GHz (using 50 antennas and standard precipitable water vapour conditions).
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concerted efforts with interferometers such as the PdBI, SMA and VLA (e.g. [35,43–46]), resolved (sub-
galactic-scale) studies of the dusty star formation and gas have been largely restricted to a handful of the
very brightest (e.g. GN20; [47–49]) or most strongly magnified sources (e.g. the ‘Cosmic Eyelash’; [50,51]).
All of these pre-ALMA-era limitations meant that the nature of dust-obscured star formation at high-
redshift—including the morphology, associated gas content, dynamics, efficiency, obscured fraction,
contribution to the infrared background, or even what sources host it—remained largely unknown.
1.2. The unique capabilities of ALMA
The advent of ALMA has ushered in a new era for studies of high-redshift star formation. ALMA is
situated on the Chajnantor plateau at over 5000m (16 000 feet) above sea level, where atmospheric
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Figure 2. Point source sensitivity at 230 GHz (1.3 mm) achievable in 8 h on-source versus maximum angular resolution for existing
and planned (sub-)millimetre interferometers. Point source sensitivity estimates were calculated assuming 3 mm of precipitable
water vapour (PWV), a mean target elevation of 45°, the full available bandwidths and typical receiver temperatures as
published on the websites. A PWV of less than or equal to 3 mm occurs approximately 10%, approximately 35%,
approximately 65% and approximately 80% of the time for CARMA, the PdBI/NOEMA, the SMA and ALMA, respectively. The
dotted/dashed lines show the maximum FIR size of local galaxies (dotted; e.g. [52]) and galactic giant molecular clouds
(dashed; GMCs; e.g. [53]). Also shown are the single-dish resolutions and confusion limits at 850 μm for the SCUBA-2 camera
on the JCMT and the LABOCA camera on APEX. The top and right-hand axes convert these quantities to physical scale and IR
luminosity at z = 2 assuming the standard cosmology (see §1.3) and an Arp 220 (i.e. local ultra-luminous infrared galaxy;
ULIRG) SED. For an M100 (local spiral) SED, the IR luminosities on the right-hand axis would be a factor of approximately 3
higher (because of the cooler average dust temperature). Note that the IR luminosities (right axis) implied by a given flux
density are approximately constant over a large range in redshift z > 1 due to the negative k-correction (figure 1). Similarly,
the physical scale on the top axis is approximately correct over 1 < z < 3 due to the geometry of the Universe. We caution
that for all interferometers (including ALMA), there is an inherent trade-off between spatial resolution and surface brightness
sensitivity, which is not reflected in this figure.
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conditions are exceptionally dry. The amount of precipitable water vapour (PWV) in the atmosphere is
less than 1.0 mm for over 50% of the time during the best-weather months (June to November1). ALMA
has 66 antennas in total: fifty 12m antennas in its main reconfigurable array, plus twelve 7m antennas in
the Atacama Compact Array (ACA), and an additional four 12m antennas in the Total Power Array
(TPA). ALMA started scientific operations in 2011, with full operations started in 2013, and in the
relatively short time since then, we are already witnessing its transformative power thanks to a
number of key capabilities:

— Angular resolution. The configurations offered for ALMA’s 12m array provide angular resolutions
ranging from a few arcseconds down to approximately 10milli-arcseconds, corresponding
to physical scales as small as a couple hundred parsecs for an unlensed galaxy at z∼ 2 (figure 2).
Even at the low-resolution end, this is a huge increase in resolution over single-dish telescopes.
For example, already in the first early science cycle (Cycle 0), the most compact (i.e. ‘low’-
resolution) configuration provided 1.500 resolution at 345 GHz (i.e. 870 μm; Band 7), approximately
200× better in area than the LABOCA instrument on the APEX single-dish telescope at the same
frequency. At the high-resolution end, it is also a significant improvement over previously existing
(sub-)millimetre interferometers. For example, the maximum angular resolution of the PdBI
ranged from approximately 100 at 85 GHz to a few tenths of an arcsecond at 230 GHz. ALMA’s
1ALMA Cycle 7 Proposer’s Guide: https://protect-us.mimecast.com/s/2IQgC0RBYBiGqyL9IrGeJNV?domain=almascience.org.

https://protect-us.mimecast.com/s/2IQgC0RBYBiGqyL9IrGeJNV?domain=almascience.org
https://protect-us.mimecast.com/s/2IQgC0RBYBiGqyL9IrGeJNV?domain=almascience.org
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resolution has increased with each new cycle and particularly following the success of the 2014 Long

Baseline Campaign [54], with the full resolution already offered at 230 GHz in Cycle 5 using the
approximately 16 km baseline pads (providing a resolution of 18mas). Longer baseline expansions
are already being discussed in the community as a possible future upgrade, aiming at an angular
resolution of 0.00100–0.00300.2 Even within the currently scoped project, ALMA’s superb resolution
allows observers to not only detect the dust-obscured star-formation and star-forming gas in
individual high-redshift galaxies without blending, but also to resolve the dusty star-forming
regions within individual galaxies on scales similar to—or even significantly better than—existing
optical telescopes.

— Frequency coverage. The 10 bands nominally planned for the full ALMA offer near-continuous
frequency coverage from 35 to 950 GHz; eight of these bands are already operating, with Band 1
(35–50 GHz) currently in production, and Band 2 (65–90 GHz) foreseen to start in the next couple of
years. The frequency range covered by the ALMA bands probes the thermal dust spectrum in high-
redshift galaxies, from the long-wavelength Rayleigh–Jeans tail to the SED peak and even
shortward for the highest-redshift galaxies (figure 1). In addition to the dust, this wavelength range
makes ALMA sensitive to a variety of molecular, atomic and ionization emission lines, which can be
the only/best way to confirm redshifts and study the dynamics of dusty high-redshift galaxies.
They also provide information on the total quantity and characteristics of the ISM in these sources.
Coupled with progress in, e.g. large-scale hydrodynamic simulations (e.g. EAGLE; [55,56]), this
allows theoretical predictions about the gas content of galaxies (e.g. [57–59]) to be tested.

— Bandwidth. The simultaneous (complementary) frequency coverage within (across) the ALMA bands
allows spectral scans to identify the redshifts of dusty galaxies directly in the (sub-)millimetre. As
mentioned above, this can be the only way to determine redshifts for the dustiest galaxies, as well
as to confirm the redshifts of the highest-redshift sources. Combined with ALMA’s sensitivity, the
simultaneous bandwidth also provides the opportunity for serendipitous emission line searches
for sources within the field of view.

— Sensitivity (continuum and line). Another area where ALMA breaks new ground is in terms of
sensitivity. ALMA has a point source sensitivity 10–100× better than previous telescopes covering
the same wavelength range in the continuum, and it is 10–20× more sensitive for spectral lines. For
detection experiments, this huge jump in sensitivity means that ALMA can detect galaxies much
further down the luminosity function than previous (sub-)millimetre telescopes. An increase in
angular resolution of a factor of R requires an R2 improvement in sensitivity to conserve surface
brightness sensitivity, so this increased sensitivity is also necessary for (resolved) imaging studies.
We note that, like all interferometers, ALMA is still limited by the unavoidable trade-off between
spatial resolution and surface brightness sensitivity. ALMA offers the ACA to help improve the
imaging of extended structures, but this limitation should nevertheless be kept in mind, particularly
for observations with the most extended configurations.
1.3. This review
In this review, we will summarize some of the ways in which these unique capabilities have allowed
ALMA to advance our understanding of star formation at high-redshift. Of course, it is impossible to
speak about the progress of one facility in isolation. ALMA’s discoveries complement the discoveries
that many other facilities continue to make. Moreover, other new telescopes and instruments have
allowed the pace of these discoveries to accelerate further. For example, the Submillimetre Common-
User Bolometer Array 2 (SCUBA-2) on the JCMT [60] is providing wide-area surveys of high-redshift
dusty star formation, with a mapping speed 100–150× faster than the previous SCUBA instrument
[61]. Then there is the PdBI, which—with the addition of the seventh antenna in 2014—officially
began its transformation into the NOrthern Extended millimetre Array (NOEMA; at the time of
writing ten 15m antennas are available). These telescopes have and will continue to contribute
substantially to studies of distant dusty star formation in the era of ALMA.

This review will be divided into three sections based on the three methods typically used to select
star-forming galaxies in ALMA’s wavelength range. We begin in §2 with ‘classic’ SMGs: the
luminous, dusty sources detected in single-dish (sub-)millimetre surveys, and thus the first dusty
high-redshift galaxies to be studied in detail. Thanks largely to ALMA’s sensitivity, as well as stacking
studies, it is now increasingly possible to study the submillimetre emission from galaxies initially
2See http://alma-intweb.mtk.nao.ac.jp/diono/meetings/longBL2017/.

http://alma-intweb.mtk.nao.ac.jp/diono/meetings/longBL2017/
http://alma-intweb.mtk.nao.ac.jp/diono/meetings/longBL2017/
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selected at other wavelengths. We therefore discuss the dusty star formation in colour- and mass-selected
galaxies in §3. In §4, we discuss the results from the latest blind (sub-)millimetre continuum and line
surveys with ALMA, which aim to circumvent the inevitable bias that comes with pre-selection at
other wavelengths. Section 5 contains some concluding remarks.

We acknowledge that this separation of different galaxies and survey types is somewhat artificial. As
shown in figure 3, the 1.2mm number counts are continuous, and the separation into different flux
density regimes is historical and driven by the capabilities of available (sub-)mm facilities. The SMG
realm at flux densities above 1mJy was the first to be explored thanks to single-dish experiments, but
the advent of more sensitive interferometers (first the PdBI, then ALMA) enabled surveys targeting
fainter sources pre-selected in stellar mass or star formation rate, down to approximately 0.1 mJy.
Now with the deepest ALMA surveys, using 150 h of deep integration in the deepest extragalactic
deep field (ASPECS; e.g. [78]), or using strong gravitational lensing towards massive galaxy clusters
(the Frontier Fields; e.g. [71,79]), we are probing a previously unexplored regime of faint sources, well
below 0.1mJy. As we start linking these flux density regimes with ALMA, we start connecting galaxy
populations that were historically studied by different communities, e.g. SMGs and low-mass UV/
optically selected sources. In fact, the field is currently going through growing pains, as ALMA’s
ability to detect submillimetre emission in more ‘normal’ galaxies is forcing the submillimetre
community and the general high-redshift community to merge, and, as we will see in what follows,
the terminology is not yet completely aligned. This may seem like a simple question of semantics,
but it is important to note, as our classifications have historically guided our physical interpretation.
We will return to this in §2.4.

Finally, we note that it is impossible for this review to be complete with the avalanche of new results
currently coming in. There are many topics related to those discussed in this review that we have decided
not to cover, including (but not limited to) results on the role or host galaxies of active galactic nuclei
(AGN), measurements of outflows and the large-scale environments of galaxies. For other recent
reviews on the topics of dusty star-forming galaxies (i.e. SMGs), and dust and molecular gas in
distant galaxies, we point the reader to Carilli & Walter [33], Casey et al. [80], Combes [81] and
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Salim & Narayanan [82]; for a theoretical overview of models of early galaxy formation, see Dayal &

Ferrara [83]. Here, we have simply attempted to highlight some of the main advances in the first
several years of ALMA operations concerning (mostly dust-obscured) star formation at high-redshift,
as well as the interesting questions for the next few years.

Where applicable we assume a concordance, flat ΛCDM cosmology of H0 = 71 km s−1 Mpc−1,
ΩΛ = 0.73 and ΩM = 0.27 [84,85]. Unless otherwise stated, AB magnitudes are adopted.
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The line between what is considered an ‘SMG’ or not is blurring as ALMA probes deeper down the
luminosity function, and it is the subject of continued debate. In this section, we focus primarily on
the integrated properties of the original, single-dish detected sources selected at approximately
850 μm, as well as the strong lens candidates followed up by ALMA. For a comprehensive review on
these and other IR-selected galaxies, which are also sometimes more generally referred to as dusty
star-forming galaxies (DSFGs), we direct the reader to Casey et al. [80]. For a discussion of the
resolved work on high-redshift galaxies (including SMGs) with ALMA in general, we refer the reader
to §3.2. Here, we begin with a brief background on traditional SMGs to place the recent ALMA
results into context.

2.1. Background
Thanks to the pioneering observations of the extragalactic background light (EBL) since the 1980s and
1990s by early infrared satellites like the Infrared Astronomical Satellite (IRAS) and the Cosmic Background
Explorer (COBE), it is well known that the cosmic infrared background (CIB) has an intensity similar to
the optical background, implying that there is a comparable amount of light absorbed by dust and re-
radiated in the (rest-frame) FIR as there is observable directly in the UV/optical [86,87]; see Cooray [88]
for a recent review. Observations with ground-based, single-dish submillimetre telescopes (e.g. SCUBA)
were the first to resolve this CIB into distinct sources, revealing a population of distant star-forming
galaxies known as submillimetre-selected galaxies with 850 μm flux densities of greater than a few mJy
(e.g. [89–92]); extremely infrared-bright galaxies had first been hinted at by IRAS observations [93].
In the subsequent years, multiwavelength campaigns, as well as deeper, large-area, blind surveys at
(sub-)millimetre and IR wavelengths—including FIR efforts such as the Herschel Multi-tiered
Extragalactic Survey (HerMES; [94]) and the Herschel Astrophysical Terahertz Large Area Survey
(H-ATLAS; [95])—have gradually revealed the nature of these uniquely selected galaxies.

In general, these single-dish-detected SMGs appear to be massive (stellar mass approx. 1011 M�),
ultraluminous (approx. 1012 L�) dusty galaxies with extreme SFRs (approx. 102–103 M� yr�1; [36]).
Thanks to the so-called ‘negative k-correction’ at submillimetre wavelengths, the cosmological dimming
that affects high-redshift sources is almost exactly offset by the shifting of their dust peak into the
observed band, resulting in a flux density that can be close to constant across a large (z �1�10) redshift
range (figure 1). The first spectroscopic follow-up campaigns of the submillimetre-selected sources
revealed a number density that peaked at z∼ 2.5 [96,97].

Despite hosting such copious star formation, SMGs can be very faint or even invisible in rest-frame
optical/UV data—even where very deep imaging exists (e.g. [48,98,99])—due to significant dust
obscuration at those wavelengths. Their associated large (rest-frame) infrared luminosities are one
reason why they are often referred to in the literature as the high-redshift analogues of local ultra-
luminous infrared galaxies (ULIRGs), although we shall see that there is increasing evidence that the
picture is not so simple. Moreover, their number density at high-redshift is orders-of-magnitude
higher than local ULIRGs (approx. 400 ×; e.g. [100]), and they appear to contribute significantly to
both the volume—averaged cosmic star formation rate density at z ¼ 2�4 (approx. 20%) and the
stellar mass density (approx. 30�50%; e.g. [101]). As their peak redshift (z∼ 2.5) is also the peak of
AGN activity (e.g. [102,103]), their enhanced star formation is thought to be tied to the evolution of
QSOs (e.g. [104,105]) and ultimately to the build-up of massive elliptical galaxies (e.g. [106–109]).

While there has been substantial progress in understanding these galaxies in the approximately
20 years since they were first discovered, a large number of open questions regarding their nature
remain. In particular, hierarchical galaxy formation models have found it difficult to simultaneously
reproduce the number density and other observed properties (e.g. colours) of these high-redshift
sources along with the local luminosity function in a ΛCDM universe (e.g. [110–113]). As a result,
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various theoretical models have invoked a range of mechanisms to explain this population, including

starburst-dominated major mergers (e.g. [114]), major+minor mergers with a flat (top-heavy) initial
mass function (IMF) [110], a prolonged stage of mass build-up in early-Universe proto-clusters [115],
the most massive extension of the normal (z > 2) star-forming galaxy population (e.g. [116–119]), or a
combination of starbursts and isolated disc galaxies (e.g. [120]), with some models also including the
effect of galaxies blended by the poor resolution of single-dish telescopes ([121–123], and see Casey
et al. [80] for a summary of the strengths and weaknesses of the various theoretical models). Suffice it
to say that the challenge these galaxies pose to modellers makes them a particularly interesting
population for constraining theoretical models of galaxy formation.

The outstanding questions about the SMG population, in combination with their large submillimetre
flux densities—making them (relatively) easy to observe—has also made them prime targets for
observations with ALMA. In some cases, these new ALMA observations have increased the angular
resolution achievable by factors of greater than 100 000 in area from the original single-dish
observations, allowing not only the precise identification of previously blended galaxies, but also a
detailed look at their sub-galactic ISM and dusty star formation properties. The lessons subsequently
learned about the star formation process and ISM physics can inform our understanding of the
star-forming ISM in the more general galaxy population, and in this way, these intrinsically bright
(and/or strongly lensed) sources serve as laboratories for studying star formation at high-redshift (see
also §3). In the following, we will discuss some of the key areas where ALMA has contributed—and
will continue to contribute—to our understanding of this galaxy population.

2.2. Resolving single-dish submillimetre galaxies

2.2.1. Precise location and counterpart identification

One of the first results to come out of early ALMA observations was the precise location of submillimetre-
emitting galaxies. In particular, SMGs are sufficiently rare (approx. 200 per deg2 down to S870μm = 5 mJy)
that the best way to find them is through surveys using wide-field single-dish telescopes with
instruments such as, for example, the Submillimetre Common-User Bolometer Array 2 (SCUBA-2, or
its predecessor SCUBA), the Large APEX BOlometer CAmera (LABOCA; [124]), the Astronomical
Thermal Emission Camera (AzTEC; [125]), or the Spectral and Photometric Imaging Receiver (SPIRE;
[126]). Surveys using these instruments have built up large samples of hundreds of SMGs with
angular resolutions of approximately 1500 to even greater than 3000. Such low resolutions mean that
there may be several to tens of galaxies visible in the ancillary multi-wavelength (e.g. optical) data,
depending on its depth and the exact resolution, making it difficult to identify the counterpart(s) to
the submillimetre-emitters. Identifying multi-wavelength counterparts is crucial for studying the
SMGs, as this is how photometric (and sometimes spectroscopic) redshifts are targeted and derived.
Without redshifts, or with the wrong redshifts, it is clearly difficult to place these galaxies and their
implied physical properties in the broader context of hierarchical galaxy assembly.

Prior to ALMA, this relatively straightforward observational limitation posed a significant challenge to
the field. While interferometric follow-up observations at approximately arcsecond resolution were
possible with the SMA and PdBI, sensitivity limitations, and thus the observing time required, limited
the observations to small numbers of sources (e.g. [127–131]). Various probabilistic techniques
exploiting empirical correlations with the multi-wavelength data have been explored to circumvent this
challenge. For example, Ivison et al. [132] used cross-matching with radio and/or 24 μm catalogues to
identify counterparts to SMGs, estimating the likelihood of the sources being random chance
associations to the submillimetre sources with the corrected Poissonian probability (p-statistic;
[133,134]). Biggs et al. [135] expanded this method to include a S/N-dependent search radius. Other
identification methods take into account the very red optical-infrared colours observed for these sources
(e.g. [98,136–138]). An obvious limitation to such methods is the reliance on empirical correlations with
other wavelengths, which may have significant scatter and may miss the faintest/highest-redshift
counterparts in wavebands (radio, IR) that do not benefit from the negative k-correction.

With ALMA, even the most compact configurations allow the submillimetre-emitting galaxies to be
accurately located at 850 μm, with an angular resolution of ∼100 (figure 4; [74,140–142], and note that
angular resolutions were slightly coarser in some Early Science configurations). Moreover, ALMA’s
huge increase in sensitivity over both single-dish (sub-)millimetre telescopes and previous generation
interferometers (figure 2) means that all ‘classical’ SMGs can be detected in only a couple of minutes
per source at submillimetre frequencies, allowing large samples to be followed up. Table 1 lists some



(a) (b)
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Figure 4. False-colour images (approx. 2600 × 2600) of four single-dish submillimetre sources from the LESS survey [139] targeted
with ALMA by the ALESS survey [140], including 1.4 GHz VLA data (red), Spitzer/MIPS 24 μm data (blue) and ALMA 870 μm data
(green contours). ALMA contours start at ±2σ and are in steps of 1σ. ALMA’s synthesized beam (i.e. angular resolution) is shown in
the bottom left-hand corner of each map (the typical angular resolution of these observations is 1.600). The solid circle shows ALMA’s
primary beam FWHM, which is approximately equivalent to the angular resolution of the original LABOCA (single-dish) observations
from Weiß et al. [139]. The dashed circle indicates the search radius used by Biggs et al. [135] to statistically identify radio and mid-
infrared counterparts to the LESS sources [139], and the white squares indicate the positions of the predicted ‘robust’ counterparts.
This figure shows examples of fields where the previously identified ‘robust’ counterparts were correct (a), incorrect (b), partially
correct due to multiplicity (c; §2.2.2), and missed entirely due to the search radius used (d ). Figure adapted from Hodge et al. [140].
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of the largest SMG interferometric follow-up campaigns to date, where the ALMA campaigns were each
completed in a matter of a few hours.

The availability of large samples of interferometrically observed SMGs, provided in a large part by
ALMA, has allowed the completeness and reliability of previous methods for single-dish survey
counterpart identification to be tested (figure 4).

This is important not only to understand the accuracy of past results based on such methods, but also
for the continued use of such methods for wide-area single-dish surveys where interferometric follow-up
may not be available, but which are still the best way to discover large samples of these bright but rare
sources. Here, ‘reliability’ (sometimes also called ‘accuracy’) refers to the likelihood that a given multi-
wavelength counterpart is actually a counterpart to the submillimetre emission, which can be defined as:

reliability ¼ Npred, true

Npred
, (2:1)

where Npred, true refers to the number of predicted counterparts that were verified as true counterparts,
and Npred refers to the number of total counterparts predicted. The ‘completeness’ then refers to the
ability of the method to identify all true counterparts, and can be defined as:

completeness ¼ Npred, true

Ntrue
, (2:2)

where Npred, true again refers to the number of predicted counterparts that were verified as true
counterparts, and Ntrue refers to the total number of true counterparts discovered in the interferometric
follow-up.

One of the main results of this interferometric follow-up has been the finding that single-dish
counterpart identification methods were relatively reliable, but not necessarily complete. For example,
follow-up of single-dish sources above a approximately a few mJy observed with an approximately
15–2000 beam find that the radio+mid-infrared (MIR) methods have a reliability of approximately 80%
[136,140,147], but a completeness as low as approximately 50% [128,136,137,140,141,147] when only
‘robust’ counterparts are considered (typically defined as having a corrected Poissonian probability



Ta
bl
e
1.
(S
ub
-)m

illi
m
et
re
in
te
rfe
ro
m
et
ric
all
y
ob
se
rv
ed

SM
G
su
rv
ey
sa .

na
m
e

sin
gl
e
di
sh
sa
m
pl
e
pr
op
er
tie
s

in
te
rfe
ro
m
et
ric

fo
llo
w
-u
p

ca
ta
lo
gu
e
pa
pe
r

in
str
um

en
t/t
ele
sc
op
e

λ
re
so
lu
tio
n

S ν
lim
itc

N s
ou
rc
es

te
les
co
pe
/λ

de
pt
h

—
—

—
—

(m
Jy
be
am

−
1 )

—
—

(m
Jy
be
am

−
1 )

—

GO
OD
S-
N

SC
UB
A-
2/
JC
M
T

85
0
μm

14
.5
00

3.
3

15
SM
A/
86
0
μm

0.
7–
1.
5

Ba
rg
er
et
al
.[
12
7]

CO
SM
OS

LA
BO
CA
/A
PE
X

87
0
μm

19
.2
00

5.
2

28
Pd
BI
/1
.3
m
m

0.
46

Sm
ol
čić

et
al
.[
12
8]

AL
ES
S

LA
BO
CA
/A
PE
X

87
0
μm

19
.2
00

3.
6

12
4

AL
M
A/
87
0
μm

0.
4

Ho
dg
e
et
al
.[
14
0]

SP
T

SP
T/
SZ

1.
4
m
m

1.
05

0
25

47
AL
M
A/
87
0
μm

0.
4

Sp
ilk
er
et
al
.[
14
3]

UK
ID
SS

UD
S

SC
UB
A-
2/
JC
M
T

85
0
μm

14
.5
00

5
30

AL
M
A/
87
0
μm

0.
2

Sim
ps
on

et
al
.[
14
2]

He
rM
ES

SP
IR
E/
He
rsc
he
l

50
0
μm

b
36

00
50

29
AL
M
A/
87
0
μm

0.
2

Bu
ss
m
an
n
et
al
.[
14
4]

CO
SM
OS

Az
TE
C/
JC
M
T

1.
1
m
m

18
00

4.
2

15
SM
A/
89
0
μm

1.
0–
1.
5

Yo
un
ge
re
ta
l.
[1
30
,1
31
]

00
00

00
00

00
15

Pd
BI
/1
.3
m
m

0.
2

M
iet
tin
en

et
al
.[
14
1]

CO
SM
OS

Az
TE
C/
AS
TE

1.
1
m
m

34
00

3.
5

12
9

AL
M
A/
1.
25
m
m

0.
15

Br
isb
in
et
al
.[
14
5]

AS
2U
DS

SC
UB
A-
2/
JC
M
T

85
0
μm

14
.5
00

3.
4

71
6

AL
M
A/
87
0
μm

0.
25

St
ac
h
et
al
.[
74
]

BA
SIC

SC
UB
A-
2/
JC
M
T

85
0
μm

14
.5
00

1.
6

53
AL
M
A/
87
0
μm

0.
09
5–
0.
32

Co
w
ie
et
al
.[
14
6]

a H
er
e
we

lis
tc
on
tin
uu
m
su
rv
ey
s
of
(su
b-
)m
illi
m
et
re
-se
lec
te
d
so
ur
ce
s,
so
m
e
of
w
hi
ch
in
clu
de

str
on
g
gr
av
ita
tio
na
lly

len
se
d
so
ur
ce
s
as
di
sc
us
se
d
in
§2
.3
.

b N
ot
e
th
e
He
rM
ES
-se
lec
te
d
sa
m
pl
e
wa
s
als
o
ob
se
rv
ed

at
25
0
an
d
35
0
μm

.T
he

SP
IR
E
re
so
lu
tio
n
at
25
0
μm

is
18
.1
00 .

c L
im
iti
ng

sin
gl
e
di
sh
fl
ux

de
ns
ity

ab
ov
e
w
hi
ch
so
ur
ce
s
we
re
se
lec
te
d
fo
ri
nt
er
fe
ro
m
et
ric

fo
llo
w
-u
p
(d
eb
oo
ste
d
va
lu
es
re
po
rte
d
fo
ra
ll
sa
m
pl
es
ex
ce
pt
fo
rS
im
ps
on

et
al
.[
14
2]
).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200556
10



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200556
11
p < 0.05 in a given waveband). The completeness is higher for brighter (at approx. arcsecond-resolution)

sources, as well as if only the ‘dominant’ (brightest) submillimetre interferometric component is
considered [140,148]. The latter point has led to a lively debate in the community about the importance
of those fainter submillimetre counterparts in various contexts (see e.g. §2.2.2 on ‘Multiplicity’). Finally,
the completeness is also higher if a fixed search radius is used instead of a S/N-dependent radius [140],
and if counterparts identified as only ‘tentative’ (typically defined as p < 0.1) are considered as well,
though the resultant decrease in reliability in this case is still debated [136,137,140].

These results have also led to the development and calibration of new and refined methods for
single-dish source counterpart identification. For example, using an ALMA training set on a SCUBA-2
selected sample, Chen et al. [137] presented an Optical-IR Triple Color (OIRTC) technique that takes
advantage of the fact that dusty, high-redshift galaxies like SMGs are generally red in optical-near-
infrared (OIR) colours such as i–K, J–K or K–[4.5] (e.g. [149–152]). This results in counterparts with a
similar reliability to the traditional radio/MIR p-value technique (approx. 80%) but with a higher
completeness (69%). More recently, An et al. [136] used supervised machine-learning algorithms to
identify SMG counterparts from optical/near-infrared-selected galaxies. They used a two-step
approach combining a simple probability cut to select likely radio counterparts and then a machine-
learning method applied to multi-wavelength data. This combined approach leads to a reported 85%
completeness and greater than 62% precision [136]. While the reliability and completeness of such
methods may be adequate for certain statistical studies, these results also highlight the continued
importance of interferometric follow-up with telescopes such as ALMA, which are the only way to
obtain a truly accurate view of the SMG counterparts.

2.2.2. Multiplicity

The speed at which ALMA can perform arcsecond-scale observations also enabled the confirmation of
multiplicity in statistically significant samples [72,74,140,142]. Previous studies on smaller numbers of
sources with the SMA [127,129,153] and PdBI [128], as well as even earlier in the radio [154], already
indicated that some single-dish submillimetre sources could be blends of more than one galaxy. In the
first years of ALMA, there has been an explosion in studies quantifying this multiplicity. The fraction
of single-dish submillimetre sources3 reported to show multiplicity varies based on the study, with
reported values ranging from approximately 10 to 80% (e.g. [74,136,137,140–142,147,148,155]). An
example of a single-dish source which was resolved into multiple distinct submillimetre sources with
ALMA can be seen in figure 4c.

While some of the discrepancy may be due to small number statistics, much can be explained due to a
number of factors which vary between studies, including resolution of the single-dish observations,
submillimetre-brightness and S/N of the single-dish sources, submillimetre-brightness of the primary
galaxy and depth of the follow-up interferometric observations (determining the dynamic range for
detection of additional sources), size of the interferometric primary beam compared with the single-
dish resolution (and whether sources are counted if the former is larger), wavelength of the follow-up
observations and field-to-field variations in the global density of the extragalactic fields. For example,
samples selected using 850 μm SCUBA-2 observations (14.500 beam) find that the impact of multiplicity
(defined as the number of interferometric sources which contributed to the original single-dish flux) is
smaller than for, e.g. 870 μm LABOCA sources (19.200 beam), suggesting that the higher SCUBA-2
resolution results in fewer blended sources in the original single-dish imaging [142,146,148]. There are
also a number of studies reporting that the multiplicity is a function of flux density, with a higher
multiplicity for brighter single-dish sources ([74,142,144], but cf. Miettinen et al. [141]). When these
factors are controlled for, the ALMA results suggest that for S850 μm > 4 mJy single-dish sources with
follow-up ALMA observations sensitive to S850 μm = 1 mJy sources across the whole ALMA beam, the
true multiple fraction is likely to be higher than approximately 40% (e.g. [74]).

A continued uncertainty in the exact fraction of multiples is the existence of ‘blank’ maps. These are
single-dish sources in which the follow-up interferometric observations fail to detect any sources. Such
maps are present in large numbers in multiple surveys [74,140–142] despite the expectation that only
a small fraction of the single-dish sources should be spurious (e.g. [139]). The depth reached by the
ALMA observations would sometimes imply a large number (N > 3) of blended sources in order for
them to be individually undetected (e.g. [74,140]), which would have repercussions for the
submillimetre number counts. Deeper ALMA observations constraining the source multiplicity as a
3For a study of the multiplicity of Herschel-selected sources, e.g. Bussmann et al. [144].
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function of observed flux density will be important for constraining theoretical models for the formation
of SMGs (e.g. [156], and see §2.2.3).

2.2.3. Relation of multiples

An interesting question raised by the ALMA observations is the relation of the galaxies in multiples that
were previously blended. In particular, while some may be chance projections along the line of sight,
others may be merging pairs or sources in the same halo, where an interaction between the
companions may have triggered their starbursts. While the simulations make varying predictions for
the relative importance of these populations—for example, Cowley et al. [156] suggest that most
secondary SMGs should be line-of-sight projections with Δz∼ 1, while Hayward et al. [122] predict a
more significant physically associated population—the observations are still limited. Photometric
redshifts do not have the required accuracy to test these scenarios, and spectroscopic observations
require more than one spectroscopic redshift per pointing. The latest ALMA results using
spectroscopic (UV/optical or CO) redshifts suggest that the majority (greater than 50�75%) of the
SMGs in blended submillimetre sources are not physically associated,4 though these results are still
plagued by small number statistics (figure 5; [158,160,161]).

In the absence of spectroscopic redshifts, some ALMA studies have used photometric redshifts to
approach the question from a statistical point of view. For example, Simpson et al. [142] found that the
number density of S870mm * 2mJy SMGs in ALMA maps that target single-dish submillimetre sources
was approximately 80 times higher than that derived from blank-field counts, suggesting a significant
proportion of multiples are indeed physically associated, and Stach et al. [74] used a similar analysis
to derive a lower limit on the fraction of physically associated pairs of at least 30%. An analysis of
the distribution of separations between galaxies in the multiples also suggests a dependence on
submillimetre source brightness, with the counterparts of brightest sources tending to lie significantly
closer together ([144], though note the significant fraction of lensed sources in that sample). An excess
of sources at small separations is not predicted in current theoretical models [123,156,162] and could
indicate a more significant contribution from interacting/merging systems, but it could also be due to
projection effects. As with the remaining uncertainties regarding the redshift distribution, the definitive
4See Gómez-Guijarro et al. [157] for a study of the relation of high-multiplicity Herschel-selected sources, where they reach a different
conclusion.
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answer to this question will require complete samples of SMGs followed up with dust-unbiased
(sub-)millimetre spectroscopy, where higher spectroscopic completeness is possible [158,163].

2.2.4. Number counts

One of the main reasons the topic of multiplicity in SMGs has generated so much interest is because
of the implications for the submillimetre number counts, which have historically been very challenging
to fit with hierarchical galaxy formation models, and are therefore one of the most important constraints
for such models (e.g. [110–113,120,164–168]). Various simulations have suggested that the blending
caused by multiplicity may help alleviate this tension (e.g. [123]). ALMA has contributed significantly
in this area by demonstrating that, while the single-dish sources are indeed affected by multiplicity, the
interferometrically derived number counts are still broadly consistent (within approx. 30�40%;
[72,74,142]) with those inferred from earlier single-dish surveys (figure 6). These two seemingly
contradictory statements can be reconciled by understanding that the primary (i.e. brightest) component
detected interferometrically typically accounts for the bulk (approx. 80�90%) of the single-dish flux
density [72,74,142].

The ALMA confirmation of the overall normalization of the submillimetre number counts is
significant as it means that the tension with theoretical models remains. Various theoretical studies
have thus worked on tackling this from the simulation side. In particular, Cowley et al. [156]
presented some predictions from an updated version of the GALFORM semi-analytic galaxy
formation model [110]. This model, described in detail in Lacey et al. [166], still requires a top-heavy
IMF to match the SMG number counts, but with a less extreme slope (close to Salpeter). Some recent
ALMA studies (e.g. [142]) report broad agreement between this model and the ALMA-derived
number counts. Other works using both semi-analytic and semi-empirical models (e.g. [120,123,171])
have argued that IMF variation is not necessarily needed at all to match the number counts, given
different assumptions about the radiative transfer calculations, merger evolution, cosmological context
and other physical processes such as stellar feedback. We direct the reader to Casey et al. [80] for a
thorough review of the strengths/limitations of the different classes of theoretical models and their
implications for the SMG population.

2.2.5. A bright-end flux cut-off?

One area of continued debate relates to the multiplicity (and thus number counts) of the very brightest
submillimetre sources. In particular, one of the first results on ALMA-derived submillimetre number
counts [72] found that all of the brightest greater than 12 mJy single-dish sources were composed of
multiple sources when viewed with ALMA (in marked contrast with previous SMAwork by Younger et al.
[131]), with individual 850 μm flux densities less than or equal to 9 mJy. Karim et al. [72] suggested that this
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implies a physical limit to the SFRs of less than 1000 M� yr�1, which could be due to a limited gas supply or
feedback fromstar formation/AGN.This also suggests that the numberof thebrightest submillimetre sources
(S870mm * 9mJy) may have been overestimated in single-dish studies, and that the true space density of the
most massive z > 1 galaxies should be small5: sources with gas masses greater than5� 1010 M� would be
less than10�5 Mpc�3. Support for an SFR cut-off also comes from the simulated infrared dusty extragalactic
sky (SIDES) simulation [77], which is based on an updated version of the 2SFM (two star-formation
modes) phenomenological galaxy evolution model [172], and where they are able to rule out the model
without an SFR limit as already exceeding the single-dish counts of [169]. While some of the subsequent
ALMA/interferometric results supported the finding that the number counts decline sharply at the
brightest flux densities, implying the existence of an SFR cut-off in the range 1000�2000 M� yr�1 (e.g.
[72,142,153]), the more recent AS2UDS survey of approximately 700 SMGs finds no evidence for a steep
drop-off in the counts at the bright end as suggested by the first ALMA follow-up of SMGs over smaller
areas ([74], figure 6). These latest results suggest that very luminous (S850mm�15�20mJy) SMGs such as,
e.g. GN20 [173,174] and HFLS3 [175], while still rare, may not be as exceptional as otherwise implied.
Soc.Open
Sci.7:200556
2.2.6. Redshift distribution

One of the other big implications of the robust counterpart identifications allowed by ALMA is for the
redshift distribution of SMGs, N(z). This has historically been measured by determining the likely optical
counterpart through radio/MIR matching and then calculating photometric redshifts or obtaining
spectroscopic redshifts with optical spectroscopy of those counterparts (e.g. [97,176]). Such results may
thus be biased against the faintest and/or highest redshift sources—which do not benefit from the
negative k-correction in the other wavebands—in addition to being dependent on the reliability and
completeness of the probabilistic counterpart identification in the first place (§2.2.1).

The precise identifications of large samples of sources with ALMAhas allowed the correct counterparts
to be targeted, eliminating at least one of these unknowns. This has led to a number of photometric and/or
spectroscopic studies of the redshift distribution of SMGs (e.g. [74,107,141,145,147,160,177]). These studies
suggest an 850 μm redshift distribution which peaks at z � 2:3�2:65, only slightly higher than the
distributions based on single-dish observations (e.g. [97,176]). However, the median redshift shifts to
somewhat higher values if redshift estimates for the approximately 20�30% of sources that are too faint
to be seen in the optical/IR are included (approx. 2:5�2:9; e.g. [13,107,177,178]). Evidence that these
undetected sources lie at higher redshifts comes from near- and mid-IR detections with Spitzer/IRAC
and Herschel (e.g. [107]), as well as their redder UV/optical colours [13].

One variable that must be taken into account when comparing different studies is the submillimetre-
brightness of the sample, as some studies have suggested that brighter sources tend to reside at higher-
redshift ([128,145,154], cf. [177–179]). A dependence on selection wavelength is also expected—both these
effects are demonstrated in figure 7. The wavelength dependence may indeed be the main driver for the
difference in median redshift observed between unlensed and lensed samples (e.g. [163,194,195], and see
§2.3.1). However, the observational constraints on such models are still limited by selection effects. In
particular, the (targeted) interferometric follow-up surveys are typically observed to show lower flux
density limits than the parent single-dish surveys, complicating the definition of the flux limit. More
importantly, even with the correct SMG counterpart(s) identified through interferometry, obtaining
spectroscopic redshifts in the optical/IR is still very challenging due to the faintness/dust-obscured
nature of the galaxies, resulting in completeness rates for unlensed SMG samples of less than 50% for
even the most well-studied extragalactic fields (e.g. [160,196], and to further illustrate the point, note
that only 44/707 sources (6%) from the AS2UDS sample of Dudzevičiūtė et al. [178] have
spectroscopic redshifts). Such optical/IR spectroscopic studies still also miss sources in the so-called
‘redshift desert’ (1.4 < z < 2; e.g. [97]). This highlights the importance and necessity of measuring
redshifts through other means, such as blind spectral scans with ALMA (e.g. [163,197]).

Despite the incompleteness in SMG redshift distributions due to the continued reliance on optical/IR
redshifts for the ALMA-identified sources, the ALMA-based results suggest the presence of a high-
redshift ‘tail’ in the redshift distribution, with approximately 20�30% of 870 μm-selected SMGs lying
at z . 3�4 [107,148,160,178]. An increasing number of SMGs have been confirmed to lie at z > 5
(e.g. [99,163,198–202]) and even z > 6 (e.g. [175,191,203–207]), demonstrating that these massive, highly
5Note that this hypothesis is regarding the intrinsically bright sources, and not the bright end sources in ultra-wide field surveys which
are found to be dominated by lensed sources. The latter, however, can also help inform the debate if the lensing magnification factors
are well-constrained (see §2.3.1).
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star-forming sources were already present when the universe was less than 1 Gyr old. Although their
space densities appear to be low (e.g. [202]), their existence nevertheless challenges the hierarchical
picture of galaxy growth, which would have been in its very early stages. Moreover, the large
amounts of dust in these systems challenge models of chemical evolution, which need to account for
the dust enrichment in these very young systems (e.g. [208]). We discuss this further for SMGs in
§2.2.7, and for general star-forming galaxies in the epoch of reionization in §3.3.
2.2.7. Physical properties of the global SMG population

The final implication of the precise locations and counterpart identification for SMGs now possible in
large numbers with ALMA is that the physical properties of these sources can be reliably studied for



Table 2. Observational constraints shown in figure 7.

reference number of sources λobs
a Slim

a zmedian
b follow-up

(μm) (mJy)

Berta et al. [184] 5360 100 9 0.52 —

Béthermin et al. [185] 2517 250 20 0.97 —

Geach et al. [186] 60 450 5 1.4 —

Casey et al. [187] 78 450 13 1.95 —

Chapman et al. [97] 73 850 3 2.2 —

Wardlow et al. [176] 72 850 4 2.5 —

Simpson et al. [107] 77 850 4 2.3 ALMA

da Cunha et al. [13] 99 850 4 2.7 ALMA

Simpson et al. [177] 35 850 8 2.65 ALMA

Cowie et al. [146] 53 850 2 2.74 ALMA

Dudzevičiūtė et al. [178] 707 850 3.6 2.61 ALMA

An et al. [155] 897 850 1.6 2.3 —

Smolčić et al. [128] 17 1100 4 3.1 SMA

Michałowski et al. [188] 95 1100 1 2.2 —

Yun et al. [189] 27 1100 2 2.6 —

Miettinen et al. [141,190]c 37 1100 3 3.1 PdBI/SMA

Brisbin et al. [145] 152 1100 3 2.48 ALMA

Strandet et al. [163], Reuter et al. [191] 81 1400 25 3.9 ALMA

Staguhn et al. [192] 5 2000 0.24 2.91 —

Magnelli et al. [193] 3 2000 1 4.1 —
aBoth the observed wavelength and flux density limit are given for the original single-dish survey, even in the case where the
sources were identified interferometrically. The limiting flux density refers either to the flux density above which targets were
selected for follow-up (if originally single-dish-selected) or the faintest sources in the sample (if not).
bMedian redshift estimates for the samples are usually heavily reliant on photometric redshifts for individual sources—see §2.2.6.
cThe median redshift listed is the revised value from Brisbin et al. [145].

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200556
16
the first time. ALMA has therefore enabled an explosion in such studies in its early years. In general, such
studies confirm the previously held picture that SMGs are massive (stellar masses approx. 1010�1011 M�;
e.g. [13,107]) galaxies with high (approx. 102�103 M� yr�1; e.g. [13,209]) star formation rates, large
(greater than or equal to 108 M�) dust reservoirs, and a low (approx. 20%) X-ray AGN fraction (e.g.
[13,107,160,179,190,209–211]). Da Cunha et al. [13] provide templates from their MAGPHYS SED
fitting of the 870 μm-selected ALESS SMGs—see the median template in figure 1 (see also [160,178]).

Unsurprisingly, the average physical parameters observed for the SMGs appear to depend on
selection wavelength [179]. The average characteristic dust temperatures are approximately 30�40K,
with some studies also reporting a dependence on redshift (e.g. [209,212]; but see Dudzevičiūtė et al.
[178], who use a large sample of approximately 700 SMGs from the AS2UDS sample to show that a
redshift–temperature relation does not exist at constant infrared luminosity). The SMGs are highly
obscured, with average V-band dust attenuation values of AV∼ 2 ([13]; cf. Simpson et al. [177] who
extrapolate from line-of-sight dust measurements in the infrared and obtain AV∼ 500). Their star
formation histories/stellar ages are notoriously difficult to constrain due to this large amount of dust
obscuration, though a composite spectrum of the optically detected ALESS sources suggests that they
are young (100 Myr old) starbursts observed at 10Myr [160]. Danielson et al. [160] also find evidence
for velocity offsets of up to 3000 km s−1 between nebular emission lines (i.e. Hα, [OII] λλ3726, 3729,
[OIII] λλ4959, 5007, Hβ) and Lyα or UV-ISM absorption lines in ALESS SMGs, suggesting that many
are driving winds/galaxy-scale outflows.

While SMGs selected at a particular wavelength tend to have relatively uniform infrared properties
(e.g. [13,178])—due no doubt to their selection—sources with similar total FIR luminosities show a
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wide variety of UV/optical/near-IR and mid-IR characteristics [160,178]. SED modelling by da Cunha

et al. [13] showed that the optically faint SMGs tend to have similar overall properties to the optically
brighter sources in their sample, but with significantly higher values of dust attenuation. This could
indicate that these sources (which also seem to lie at higher average redshift) are either more compact
[178], or more likely to be edge-on than the optically brighter sources.

In comparison with local ULIRGS, da Cunha et al. [13] find that the average properties of SMGs are
generally similar. Their average intrinsic SED is also similar to local ULIRGS in the infrared range,
though the stellar emission of the average SMG is brighter and bluer. This difference suggests a lower
average dust attenuation despite similar dust masses (e.g. [213]), which could be due to the fact that
high-redshift SMGs may be more extended than local ULIRGs and/or the dust and stellar
distributions are not co-located (e.g. [214]). This interpretation would also be consistent with the lower
characteristic dust temperatures found for similarly luminous 870 μm-selected sources [177,209]. These
differences demonstrate that local ULIRGs are not perfect analogues of the high-redshift SMG
population—a claim that is still repeated quite frequently in the literature.

Global radio/CO properties. Although the gas fractions implied for SMGs are large (approx. 40%; e.g.
[178,179,209]), these are still derived mainly through the dust mass (assuming a constant gas-to-dust
ratio; §3.1.2) for statistically significant samples. Follow-up work on CO-based gas masses still suffers
from the lack of spectroscopic redshifts for many of the sources (e.g. [160]), requiring more time-
intensive spectral scans (though those spectral scans can often deliver both the redshifts and CO lines
at once; e.g. [215,216]). In the radio, studies of SMG counterparts report a median synchrotron spectral
index of α∼−0.8 (e.g. [190,217,218]), consistent with the canonical synchrotron value. Those studies
find a median FIR-radio correlation parameter of qIR�2:2�2:6 (depending on the selection), with no
evidence for evolution with redshift, at slight odds with results for less-extreme star-forming galaxies
(e.g. [219]) and theoretical predictions [220]. Thomson et al. [218] also report the first observational
evidence that α and qIR evolve in a co-dependent manner with stellar age, which is the behaviour
predicted for starburst galaxies [221]. More detailed studies of the resolved properties of these sources
in the various tracers will be discussed in the context of §3.2.

SMGs on the so-called ‘main sequence’? In the light of the growing statistical samples and more robustly
derived physical parameters thanks to the reliable counterpart identification, there has been a significant
amount of ongoing debate in the literature on the position of SMGs with respect to the so-called ‘main
sequence’ of star-forming galaxies, i.e. the correlation between stellar mass and star formation rate
observed for (mainly mass-selected) galaxy samples from low-redshifts to z > 3 (e.g. [4,7]). Placing
individual SMGs accurately on the main sequence is challenging because of the large systematic
uncertainties associated with deriving their stellar masses from very faint and often poorly sampled
rest-frame SEDs. Uncertainties associated with unknown star formation histories and dust
obscurations alone can change stellar masses by up to a factor of 10 (e.g. [13,178,222]). A relatively
smaller uncertainty in SFR comes from potential dust heating by relatively old stellar populations,
which could affect the SFRs derived directly from IR luminosities by a factor of approximately 2 (e.g.
[13,115]). Uncertainties in the output by young massive stars, the IMF and possible contribution by
AGN could increase uncertainties further. These errors are important to keep in mind when trying to
establish if an individual SMG is offset from the main sequence by a factor of 3 or so—the typical
factor often used in such studies to define ‘starbursts’, i.e. outliers with significantly higher SFRs for
their stellar masses. Additional uncertainties come into play if the redshift of the source is not known
robustly, since the normalization of the main sequence evolves with redshift (e.g. [223–226]). Finally,
another important caveat of these comparisons is that the location of the main sequence itself at
different stellar masses for a given redshift is not uniquely established (see §3.1.2). For example, some
studies measure a downturn of the SFR-stellar mass relation at high masses (e.g. [225]), while others
do not (e.g. [223]; figure 12). Even taking into account all of these uncertainties, and despite the
popularity of the main sequence in the recent literature, the true connection between galaxies’
evolutionary drivers (i.e. mergers versus secular evolution) and their position on this particular plot
has yet to be robustly established either observationally or theoretically.

Nevertheless, some recent studies have attempted to take samples of SMGs for which the counterparts
are robustly identified thanks to ALMA, and place them on the star-forming main sequence (figure 8; e.g.
[13,148,160,179]). This is partly motivated by hydrodynamic simulations suggesting that SMGs simply
make up the most massive end of the high-redshift star-forming main sequence (e.g. [115,116]). Bearing
in mind the uncertainties described above, these studies find that SMGs generally show a spread in
properties, with some being on the main sequence (typically at the high-mass end), and some being
outliers (with higher SFRs than main sequence galaxies of the same stellar mass, in the regime often
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attributed to starbursts)—again indicating a non-homogenous population. There is also some evidence that
the fraction of SMGs on the main sequence increases with redshift (e.g. [13,148,178,227]; but cf. Miettinen
et al. [179]). On the other hand, there is still disagreement even within SMG samples about where the
galaxies lie (e.g. Danielson et al. [160] examine the subset of ALESS SMGs with spectroscopic redshifts
and conclude, unlike da Cunha et al. [13], that they lie a factor of 5 above the main sequence on average).
This discrepancy is probably due to a combination of the systematics discussed above and selection
effects, and it emphasizes the skepticism with which current plots of SMGs in relation to the ‘main
sequence’ should be viewed. Future near-/mid-IR observations of the obscured stellar populations with
the James Webb Space Telescope (JWST) will hopefully shed light on the stellar masses of these galaxies,
and thus their actual relation to the general population of less dust-obscured galaxies.

Hierarchical context. Finally, the more robust physical parameters derived for the interferometrically
located SMGs has enabled their global comparison with other galaxy populations in order to try to
place them in the broader context of massive galaxy evolution. In particular, an evolutionary pathway
has been suggested wherein SMGs evolve into local elliptical galaxies via z∼ 2 compact quiescent
galaxies (e.g. [108,228–231]). By making assumptions about the length of the SMG phase and the
subsequent evolution of the stellar populations, Simpson et al. [107] calculated their expected H-band
luminosity distribution and space density at z = 0, finding general agreement with a morphologically
classified sample of local elliptical galaxies. A similar analysis of the spheroid mass and space density
of SMG descendants led Simpson et al. [177] to conclude that SMGs must be the progenitors of local
elliptical galaxies (as proposed much earlier by Eales et al. [90] and Lilly et al. [229]). Meanwhile,
Garcia-Vergara et al. [159] used an ALMA-observed sample of SMGs to re-examine their connection to
these populations via clustering. As the latest piece to the puzzle, high-resolution ALMA imaging
allows this question to be addressed using the physical extent of the submillimetre emission and the
size–mass relation. This will be discussed further in §3.2.
2.3. Strongly lensed sources

2.3.1. Confirmation of lenses en masse

So far in this review, we have been primarily discussing unlensed SMG samples. However, it has long
been suspected that some of the brightest submillimetre sources detected at long wavelengths
(λ > 500 μm) are experiencing strong gravitational lensing by massive foreground galaxies and clusters
[232]. This is due both to their high redshifts and the steepness of the intrinsic SMG number counts.
The former means that SMGs have an increased probability of being in alignment with a massive
foreground object, and the latter means that a cut in flux density alone should efficiently select these
lensed sources once low-redshift galaxies (z < 0.1) and radio-bright AGN at higher-redshift are taken
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into account (e.g. [233]). Although such bright objects are quite rare (e.g. the space density of SPT-SZ
sources is approximately 1 per 30 deg2; [234]), wide-area surveys with Herschel (e.g. H-ATLAS,
HerMES), the South Pole Telescope and the Planck mission have returned large numbers of these
extreme sources with relatively fast survey speeds [163,197,233,235–237], which, based on the
luminosity function of SMGs, should then efficiently select strongly lensed sources (e.g. [232,238]).

The strongly lensed nature of a small number of these SMGs was confirmed already using imaging
with pre-ALMA interferometers [233,239–243], or inferred indirectly through comparison with, e.g. the
empirical luminosity–linewidth relationship [244]. However, one of the biggest results from early
ALMA observations of distant galaxies was the confirmation of lensed SMGs en masse. In particular,
early 0.500-resolution ALMA imaging of SPT sources revealed ring-like structures in a high fraction of
sources, showing that they have a high probability of being strongly lensed [143,237,245]. The few
intrinsically very bright (unlensed) sources that do exist appear to be associated with SMG mergers
(e.g. [246,247]). Spectral scans with ALMA were then used to determine CO-based redshifts for
the sources, demonstrating ALMA’s utility as a redshift machine for bright dusty sources
([163,197,191,237], see figure 9 for the latest compilation of SPT spectra).

High (less than 100) resolution imaging from either optical/UV observations or submillimetre
interferometry is necessary in order to make accurate lensing models of strongly lensed sources.
However, (sub-)millimetre bright sources can be very dim in the optical/UV due to extinction.
Consequently, the sub-arcsecond-resolution ALMA imaging of strong lens candidates has allowed lens
models to be derived for dozens of sources for the first time (e.g. [143,144,245]). For the SPT sample, the
median magnification factor is μ = 6.3 for all sources with resolved ALMA data available, with the most
extreme sources magnified by μ > 30 [143]. The Herschel sources were already known (thanks to SMA) to
have an average magnification factor of only approximately 6 [240], meaning that they are also
intrinsically bright. These magnification factors are at odds with model predictions assuming the
intrinsic number counts based on ALESS [240]. This discrepancy may be partly reconciled by more
recent measurements of the 870 μm number counts over larger areas (figure 6) and/or the suggestion—
based on the significantly higher resolution ALMA imaging of SDP.81—that lens models based on



royalsocietypublishing.org/journal/rsos
R.

20
lower-resolution data may underestimate the magnification factors by a factor of less than approximately 2
[248–250]; even a factor of 2 can be important given the steepness of the bright end of the number counts.

Before taking into account lensing corrections, the ALMA spectral scans of the SPT sample
demonstrated that the sources lie at very high redshift on average, with a median of z = 3.9 ± 0.4
[163,197]. This has prompted a lot of discussion in the literature, as it is significantly higher than the
median redshift found for unlensed samples (§2.2.6). There have been various explanations proposed
for this discrepancy which invoke a combination of the selection wavelength (e.g. [36], figure 7),
survey depth and the redshift-dependent probability of strong lensing, where the latter may
theoretically be affected further by size evolution (e.g. [197,251]). While the number of high-redshift
(z > 4) sources with size measurements is still small, the best current studies do not find evidence for
significant size evolution [107,252,253,254]. A phenomenological model by Béthermin et al. [194]
suggested that the higher median redshift of the SPT sample could be explained by a combination of
lensing probability and selection wavelength (figure 7)—a theory which is supported by the latest SPT
redshift distribution results [163].
Soc.Open
Sci.7:200556
2.3.2. High-redshift ISM physics

Strong lensing in the (sub-)millimetre provides a unique opportunity to study the dusty star formation
and star-forming ISM in distant galaxies in unprecedented detail. In particular, the physics of lensing
magnification by a factor of μ provides a boost of μ in total brightness and

ffiffiffiffi

m
p

in (physical) angular
resolution. This has allowed studies with ALMA to move beyond the typical molecular and atomic
gas tracers studied in high-redshift sources (e.g. CO, [CII]) and on to other (fainter) emission/
absorption lines in the (sub-)millimetre which are generally too challenging to detect/resolve in
unlensed sources. The wealth of spectral features detectable in high-redshift sources with ALMA was
first demonstrated by Spilker et al. [255] using the stacked spectrum of SPT sources, which boasts a
total of 16 S/N > 3 spectral lines and places the first constraints on many other molecular species at
high-redshift (for previous Herschel studies at shorter wavelengths, e.g. [256,257]).

The detection of ‘non-traditional’ spectral lines at high-redshift opens up an entirely new window
into the ISM properties of distant star-forming galaxies. Here, we briefly summarize some of the
classes of spectral lines detectable with ALMA. We have chosen to discuss these lines in the context of
strongly lensed sources, as real progress on detailed studies of many of these lines will continue to be
feasible in only the brightest and/or strongly lensed star-forming galaxies at high redshift, even with
the full ALMA capabilities. However, we note that ALMA has also allowed some of these lines to be
detected for the first time in unlensed star-forming galaxies (see §3.2.9).

— Dense gas tracers. While CO is typically the most easily detectable molecule in high-redshift star-
forming galaxies, the relatively low critical density required to collisionally excite the lower-J
transitions (nH2 �102�103 cm�3) implies that CO is not a reliable tracer of the dense molecular
cloud cores where star formation actually occurs. Molecules with higher critical densities (n >
104 cm−3; e.g. HCN, HNC, HCO+, CN, etc.) are thought to be much more robust tracers of the
molecular gas ultimately fuelling star formation, with some studies suggesting that the ratio of
HCN to SFR remains linear over more than eight decades in HCN luminosity [258–260]. Such
dense gas tracers have been previously detected at high-redshift prior to ALMA, but only two
objects had been detected in multiple transitions/species—both strongly lensed quasars: the
‘Cloverleaf’ quasar at z = 2.56 [261–266], and the APM 08279+5255 quasar at z = 3.91 [267–270].
Although they are typically 1–2 orders of magnitude fainter than CO lines (e.g. [258,271–273])
such lines will become increasingly important in the ALMA era thanks to ALMA’s increased
sensitivity and large bandwidth. In particular, several recent multi-line studies of strongly lensed
star-forming galaxies with ALMA use these line ratios to constrain the typical density, temperature
and excitation conditions within the star-forming ISM (e.g. [255,274]).

— H2O. While technically also a dense gas tracer, water (H2O) holds a special significance, as it is
thought to be one of the most abundant molecules in molecular clouds (either locked up in icy
dust grain mantles or in the gas phase depending on local conditions; [275]) and it is an
important ISM line in dust-obscured galaxies (e.g. [276]). High excitation water lines (up to 500 K
above the ground state) can be as luminous as CO lines in the same frequency range; they are
radiatively excited by the local infrared radiation field (in the 50–200mm range), and therefore
they are a tracer of the local radiation field intensity and colour [276]. Water line observations of
the brightest lensed SMGs started with the PdBI/NOEMA with studies by Omont et al. [277,278]
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and Yang et al. [279] (see also Riechers et al. [175], for a multi-observatory detailed study of a

maximum-starburst galaxy at z = 6.34, where multiple H2O lines are detected, allowing for a
detailed study of its excitation mechanisms). Recently, ALMA has enabled high-resolution
observations of this molecule. A high-resolution observation of thermal H2O in an extragalactic
source was achieved with the 0.900 detection in the strongly lensed source SDP.81 during the
ALMA 2014 Long Baseline Campaign [280], recently superseded with approximately 0.400-
resolution observations of the strongly lensed merger G09v1.97 at z = 3.63 by Yang et al. [281].
Other work with ALMA is in progress to calibrate H2O as a resolved star formation tracer (e.g. [282]).

— CO isotopologues. CO isotopologues 13CO and C18O are typically more optically thin than 12CO,
making them useful as tracers of the total molecular column density. In addition, the carbon and
oxygen isotopes have different formation pathways, and the ratio of these lines with 12CO can
then provide insight into high-redshift nucleosynthesis. As with the dense gas tracers, detections
of multiple transitions/species in the pre-ALMA literature are sparse (e.g. [283,284]). However,
based on the multiple transitions from 13CO detected in their stacked spectrum, Spilker et al. [255]
estimate that ALMA will be able to detect (and even resolve) these faint lines in an (admittedly
bright) LIR ¼ 5� 1013 L� galaxy in only 30 min per line. This could open up a new window into
the cosmic isotope enrichment history, including providing a dust-insensitive probe of the stellar
initial mass function (IMF; as proposed by Romano et al. [285,286]). Indeed, Zhang et al. [287] find
low 13CO/C18O abundance ratios for a sample of four strongly lensed SMGs at z ≃ 2�3 observed
with ALMA and, based on the models of Romano et al. [285,286], argue that these ratios imply
top-heavy IMFs in high-redshift SMGs. This would be consistent with the results from the earliest
attempts at modelling SMGs in the cosmological context [110], though more recent models can
reproduce submillimetre number counts without the need to invoke a top-heavy IMF [120]. We
note, however, that linking CO isotopologue line observations to isotope abundances and thus
conclusions about the stellar IMF relies on several assumptions (e.g. about line excitation, stellar
yields, etc.) and more work would be helpful to confirm these results.

— Atomic fine structure lines. The class of atomic fine structure lines includes some of the brightest FIR
emission lines in a star-forming galaxy’s spectrum, many of which have also been detected in
unlensed galaxies (see table 1 of [33] for a summary of IR fine structure lines). Singly ionized
carbon ([CII] at 158 μm), in particular, is often the strongest line in the long-wavelength spectrum
of star-forming galaxies, and it is now routinely detected and resolved with ALMA in both lensed
(e.g. [288]) and unlensed (e.g. [212,289,290]) star-forming galaxies. ALMA has also allowed the
first detections of [NII] and [OIII] 88 μm in unlensed high-redshift galaxies (e.g. [291–294], and see
§3.4). The [OIII] 88 μm line further holds the promise that in low-metallicity galaxies (Z , 1=3Z�),
it can be approximately up to three times brighter than [CII] [295]. Aside from the implications for
the highest-redshift (primeval) galaxies, which are discussed further in §3.2.9, strong lensing has
allowed some of the first statistical studies of these important tracers. For example, Bothwell et al.
[296] presented a study of the ground-state transition of atomic carbon ([CI]) in 13 strongly lensed
SPT sources in the range 2 < z < 5. As [CI] has been proposed as a good tracer of the cold
molecular ISM (e.g. [297–301]), it has been suggested to be an excellent proxy for the
(unobservable) H2 mass. Bothwell et al. [296] used this assumption to derive [CI]-based gas
masses in their sources, finding significant tension with low-J CO-based estimates that would
suggest a denser, more carbon-rich medium in these sources than observed in local starbursts.

— Molecular absorption lines. Since the strength of molecular absorption lines is not diluted with
distance—depending only on the brightness of the background source—such lines are very
sensitive to small amounts of molecular gas along the line of sight. As such, they can be
important tracers of the molecular ISM and signposts of molecular outflows. As of a decade ago,
there were only five sources detected in absorption beyond the local universe, and these absorbers
were all still at z < 1 [302]. Herschel/SPIRE enabled a few pre-ALMA detections of OH absorption
in some of the brightest lensed high-redshift SMGs (e.g. [257,303]). Thanks to the capabilities of
ALMA, molecular absorption studies are now possible at increasingly high redshifts (e.g. [304]).
For example, molecular absorption has now been detected and spatially resolved via the rest-
frame 119 μm ground-state doublet transition of the hydroxyl molecule, OH, within a strongly
lensed starbursting galaxy at z = 5.3 [305]. This detection provides evidence for self-regulating
feedback, with the fast molecular outflow indicated by the OH observation capable of removing a
large fraction of the star-forming gas. Moreover, ALMA studies of strongly lensed sources have
also enabled the detection of new molecules at high-redshift, such as the ground-state transition of
the methylidyne cation, CH+, which was detected in both absorption and emission in six z∼ 2.5
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Figure 10. Detection of the methylidyne cation, CH+, in both absorption and emission in six z∼ 2.5 lensed starbursts. The
combination of ALMA’s sensitivity and strong gravitational lensing has allowed this molecule to be detected in the high-
redshift universe for the first time, highlighting the role of turbulence in the gas reservoirs of these galaxies. Figure reproduced
from Falgarone et al. [306].
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lensed starbursts (figure 10; [306]). This unique observation highlights the role of turbulence in
regulating star formation and suggests that feedback, when coupled to this turbulence, extends the
starburst phase rather than quenching it. ALMA has also recently detected the ground-state
transitions of OH+ and H2O

+ in absorption towards two z∼ 2.3 lensed SMGs, which can be used
to measure the rate of cosmic ray ionization in their extended gaseous halos, and from that infer
the ionization rate in dense star-forming regions, closer to the sites of cosmic ray acceleration [307].

2.3.3. kpc- and pc-scale studies

In addition to the boost in brightness that allows many different gas tracers to be detected at high-
redshift, strongly lensed sources experience a

ffiffiffiffi

m
p

boost in physical resolution. Combined with the
high angular resolutions already provided by ALMA, this can result in image-plane resolutions as
high as tens of parsecs. The technical feasibility of such observations was first demonstrated during
the ALMA 2014 Long Baseline Campaign with the multi-band imaging of the z = 3.4 SMG SDP.81,
which resulted in visually impressive Einstein rings at an unprecedented angular resolution of 23
milliarcseconds (figure 11; [248,249,280,308]). We note that all of the targets for the Long Baseline
Campaign were chosen specifically to demonstrate the suitability of the long baseline capability [54],
and that even despite the relatively compact size of SDP.81’s Einstein ring (θE∼ 1.500), a large amount
of total observing time was required (approx. 9�12 h per band) in order to achieve good uv-coverage
[280]. As a result, high-resolution ALMA imaging of this quality is still relatively uncommon.

From the source plane reconstructions, ALMA imaging of strongly lensed sources with sufficiently
good image quality allows detailed investigations of the dusty star formation and ISM on scales that
are rarely achieved outside of local galaxy studies. For example, in SDP.81, various analyses of the
Long Baseline Campaign data suggest a non-uniform dust distribution with clumps on scales of
approximately 200 pc situated in a more extended cold gas disc [248,249,308], and with an offset from
the near-infrared emission similar to that previously seen in the z = 4.05 SMG GN20 [48,49]. Dye et al.
[248] and Swinbank et al. [309] argue that the disc is rotationally supported, while Rybak et al. [308]
report evidence from a kinemetry analysis for significant asymmetry at large radii, suggesting a
perturbed disc with multiple velocity components. The low value derived for the Toomre stability
parameter (Q∼ 0.3; [248,309]) suggests an unstable disc. Swinbank et al. [309] compare the scaling
relations observed between luminosity, line-widths and sizes, finding evidence for an offset from local
molecular clouds that can be attributed to an external hydrostatic pressure for the interstellar medium
that is approximately 104 × higher than the typical pressure in the Milky Way, and Rybak et al. [310]
use photon-dominated region (PDR) models to further constrain the physical conditions of the star-
forming gas. The unprecedented SDP.81 data also allowed a study of dark matter substructure in the
foreground lens halo itself [311], which is a separate topic beyond the scope of this review.
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Figure 11. ALMA band 6/7 continuum imaging and source-plane reconstruction of the strongly lensed z = 3.4 SMG SDP.81 from
Dye et al. [248]. The highest angular resolution reached is 31 × 23 mass for the Band 7 data, corresponding to an un-magnified
spatial scale of 180 pc, and representing a factor of approximately 20–80 increase compared with previous SMA and PdBI imaging
of this source. The white lines in the right-hand panels represent the lensing caustic. Figure reproduced from Dye et al. [248].
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One area of significant interest in observations of high-redshift star formation is the use of resolved
(sub-galactic) data to study the relative efficiency at which gas (traced by CO) is transformed into stars
within individual galaxies (i.e. ‘Kennicutt–Schmidt’ relation; [312–314]). A handful of such studies have
been done in very bright and/or lensed galaxies using other radio/(sub-)millimetre facilities
[49,51,283,315–319], and ALMA observations of lensed sources have pushed these studies further (e.g.
[320–325]), in some cases to individual star-forming ‘clumps’. For example, Sharda et al. [324] used the
high-resolution ALMA data on SDP.81, along with one of the individual resolved star-forming regions
identified by Swinbank et al. [309], to test various star formation models, arguing that a multi-freefall
(turbulence) model [326] best fits the data. They found similar results in the more recent analysis of
two star-forming clumps in the bright (unlensed) AzTEC-1 SMG at z≃ 4.3 [323], suggesting that the
high SFR in high-redshift starbursts is sustained by an interplay between gravity and turbulence.
Meanwhile, Dessauges-Zavadsky et al. [321] used 30 pc ALMA mapping of the CO(4–3) emission in
the z = 1.036 ‘Cosmic Snake’ to identify 17 molecular clouds in this Milky Way progenitor. They
measured the masses, surface densities and supersonic turbulence implied by these clouds, reporting
values 10–100 times higher than present-day analogues, and bringing into question the universality of
GMCs. It is important to note that the Cosmic Snake has one of the largest magnification factors
known for a giant arc (80 ± 10; [327]), making this sort of study rare even in the era of ALMA.

Given its brightness and rest frequency, the [CII] line can be significantly easier to detect and resolve in
high-redshift galaxies with ALMA than the CO lines. This includes those magnified by strong gravitational
lensing, and it means that progress has recently been made in understanding the origin of the so-called
‘[CII] deficit’, where the L[CII]/LFIR ratio can show a marked decrease for galaxies with a total LFIR*1011L�
(e.g. [328–331]). In a first step, Spilker et al. [143] looked at the integrated properties of strongly lensed SPT
sources, finding that they followed the same relation between L[CII]/LFIR and ΣFIR as local galaxies from
Díaz-Santos et al. [332]. Thanks to ALMA’s sensitivity and angular resolution, work in this and other areas
pertaining to the ISM physics and resolved properties of high-redshift galaxies has been complemented by
advances in studies of unlensed galaxies and will be discussed more generally in §3.2.
2.3.4. Source reconstruction techniques and lensing systematics

Concurrently with the progress in strong lensing observations, the field has seen advancement in source
reconstruction techniques. In particular, in addition to modelling ALMA data of lensed sources in the
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image plane (e.g. [248]), various groups have developed codes to do the lens modelling directly in the uv-

plane [240,245,249,308]. The latter has the advantage that it includes self-calibration-like antenna phase
corrections as part of the model optimization, thus incorporating the full range of uncertainty present in
the measurements. The exact way this reconstruction is done differs between the codes, with Hezaveh
et al. [245] and Bussmann et al. [240] assuming a parametric form for the background source (multiple
Gaussian or Sérsic profiles), and Rybak et al. [249,308] using a Bayesian pixellated reconstruction
technique that extends earlier work by Vegetti & Koopmans [333] to interferometric data (see also
[311,334]). The latter technique can help capture the complex surface brightness distributions revealed
by high-resolution ALMA data.

Regardless of the technique, it is important to note that differences in the size and structure of a
source at different wavelengths can lead to differential magnification (e.g. [335,336]). This was
demonstrated, for example, by Spilker et al. [337], who used ALMA and Australia Telescope Compact
Array (ATCA) observations to show that the difference in extent between 870 μm dust continuum
emission and cold molecular gas traced by low-J CO in their sources (see also §3.2.1) causes up to
50% differences in the respective magnification factors. It is also good to keep in mind that
gravitational lensing preserves surface brightness. Thus, even though (flux-limited) lensed samples are
expected to be biased toward more compact sources to begin with ([251], cf. [143,288]), reaching the
highest resolutions possible with ALMA still requires good surface brightness sensitivity, and thus
correspondingly good uv-coverage. It is for this reason that much of the highest-resolution work on
lensed sources still focuses on SDP.81, at least until large time allotments are granted to other sources.
0556
2.4. What defines an SMG in the ALMA era?
This section would not be complete without a discussion of what constitutes an SMG in the ALMA era.
On the one hand, this is simply and purely an argument of semantics. On the other hand, since many
people have the tendency to associate labels with the underlying physical properties, even a semantics
argument can hold importance. And the semantics in question here could use some clarification.

In particular, many of the ALMA studies presented in this section that began by targeting single-dish-
selected sources have continued to refer to the new ALMA-detected sources as SMGs, even in cases
where the ALMA flux limit is significantly fainter than the original single-dish detection limit (e.g.
[140,145]). These ‘faint SMGs’, which can have 870 μm flux densities down to approximately 1 mJy,
are analysed along with the rest of the population in terms of redshift distribution and detailed source
properties. At the same time, ALMA studies that have initially selected their sample in other ways
(via stellar mass, multi-wavelength colours, or e.g. ‘compactness’) may detect galaxies that are as
equally submillimetre-bright as (or brighter than) the ‘faint SMGs’ from other studies, but they are not
referred to as ‘SMGs’ given their different initial selection (e.g. [64,76,338]). There can be significant
overlap between these populations, both in terms of physical parameters (high SFRs, significant dust
obscuration), as well as literal overlap (for example, three of the Franco et al. [64] sources are also
identified as ALESS SMGs in Hodge et al. [140]).

While the overlap itself is not a problem, the confusion comes when the use of the term ‘SMG’ (or lack
thereof) is equated with the starburst-vs-main-sequence dichotomy. As was shown in §2.2.7, the galaxies
referred to as SMGs do not necessarily lie above the main sequence, at least within the significant
uncertainties inherent in such a plot. Taken at face value, a significant fraction of the SMGs are also
‘main sequence’ galaxies. Conversely, using the term ‘main sequence’ to describe a bright, massive
ALMA-detected galaxy initially selected in some other way does not mean that it could not also be
identified as an ‘SMG’ based solely on its submillimetre brightness. It is for this reason that, following
a discussion of samples selected in other ways, we discuss resolved properties of ALMA-detected
star-forming galaxies altogether in §3.2, regardless of their original selection.

For future reference, we propose that the term ‘SMG’ is used based on a purely observational
definition: i.e. an SMG is a galaxy with a high submillimetre flux density: S850mm * 1mJy. One should not
attach any ‘a priori’ physical meaning to this definition, particularly in terms of whether these sources
are on the main sequence or not, as discussed above, and what that means in terms of physical
processes shaping their evolution. Within this definition, SMGs may be on the main sequence or they
may equally be outliers, and they may also have been previously detected at other wavelengths; if the
flux density in the submillimetre is brighter than about 1 mJy, it is an SMG. This is simply a qualifier
that tells us about submillimetre brightness, and it does not necessarily preclude a galaxy to be
classified in other ways based on additional data (e.g. an SMG can be found to be a massive galaxy, a
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merger, an AGN). Incidentally, we note that following this definition, SMGs are a rare enough population

that they are not typically detected in random ALMA pointings.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200556
3. ISM properties of galaxies at cosmic noon and beyond
Prior to ALMA, studies of the molecular gas content and resolved properties of z > 1 star-forming galaxies
were typically carried out with the IRAM Plateau de Bure Interferometer (PdBI) and the Karl G. Jansky
Very Large Array (VLA) on select samples targeted either as SMGs, or via colour- or mass-selection
(e.g. the IRAM Plateau de Bure HIgh-z Blue Sequence Survey (PHIBSS) 1 and 2 surveys; [45,339]).
ALMA is now enabling increasingly detailed studies of the dust and molecular content in the overall
high-redshift galaxy population, including through large targeted surveys of galaxies over a wide
redshift range, (sub-)kpc imaging of the ISM in galaxies at cosmic noon, and dust continuum and
ionized gas detections well into the epoch of reionization. In this section, we review some of the most
important recent results enabled by ALMA on both statistical and resolved studies of star-forming
galaxies from z≃ 1 to the epoch of reionization. For other recent reviews of cool gas in high-redshift
galaxies, we direct the reader to Carilli & Walter [33] and Combes [81].

3.1. Statistical studies of the molecular gas content
Deep optical and infrared surveys in the last few decades have allowed us to measure the star formation
rate and stellar masses of large samples of galaxies out to high redshifts. A major result arising from these
surveys is the measurement of the assembly of galaxies across cosmic time via the evolution of the cosmic
star formation rate density as a function of redshift (e.g. [2]). We know from this measurement that the
star formation rate density of the Universe ramps up from the epoch of reionization (cosmic dawn) to the
cosmic epoch at around z≃ 2 (cosmic noon), where we see a peak in cosmic density of star formation,
meaning that this was a key epoch of galaxy formation and evolution. From then, the overall cosmic
star formation rate density slowly declines to z = 0.

In addition, as previouslymentioned, observations indicate that thebulkof star-forminggalaxies at a given
redshift seem to followa tight relation in the stellarmass versus star formation rate plane, in the sense thatmore
massive galaxies are forming stars at higher rates, the so-called ‘star-forming main sequence’6 (e.g. [340–342],
figure 12a). The normalization of this relation evolves with redshift out to at least z≃ 5 (e.g. [7,223,347,348],
figure 12b), in the sense that the overall specific star formation rate (sSFR) of galaxies increases towards
higher redshifts. There is also an indication that the slope of the main sequence may vary with time [223],
and as a function of stellar mass, with a possible turnover to shallower slopes at high stellar masses (e.g.
[224,225,343]). At all redshifts, outliers to this tight relation are observed (typically around 2% of mass-
selected populations; [6,349]); in these galaxies, often denoted ‘starbursts’, the observed SFR is enhanced
relative to the main sequence at their stellar mass. A major goal of current studies is to link these observed
behaviours of the galaxy population as a whole across cosmic time with the current picture where galaxy
evolution is governed by gas consumption and stellar mass growth via star formation, and gas ejection via
feedback processes, with the gas supply coming either from steady accretion from the cosmic web, major
and minor mergers, or a combination of these processes [350]. It has been suggested that the tightness of
the main sequence (if real; we note that the real dispersion of the relation is still under debate, as it depends
significantly on selection effects and measurement methods) implies that the star formation rates of galaxies
in that sequence are governed by steady gas accretion. Outliers (starbursts) could be explained by more
violent stochastic processes such as major gas-rich mergers where the gas is rapidly channelled to feed a
central starburst via loss of angular momentum, or they could obey a different star formation law, or
present higher star formation efficiencies, or a combination of all these factors.

A key quantity that needs to be measured in order to shed light on this topic is the gas content, which
enables investigations of the gas fraction and star formation efficiency (or depletion time) in galaxies as a
function of redshift, stellar mass and star formation rate. Thanks to its sensitivity and frequency coverage,
ALMA is the prime instrument for this, although significant work in this field was pioneered using the
IRAM/PdBI (e.g. [35,39,351–354]), with parallel efforts using Herschel (e.g. [355–357]). Here we briefly
review ongoing efforts with ALMA to obtain the gas content and scaling relations for large samples
of star-forming galaxies selected from deep optical/near-infrared fields.
6Despite reservations on the usefulness of the main sequence as a means to understand the physics of galaxies (see §2.2.7 for example),
this parameter space has been used as a tool to understand the statistical properties of galaxy populations.
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Figure 12. The star formation rates of ‘main-sequence’ galaxies as a function of stellar mass and redshift. These relations are the
starting point for the scaling relations shown in figure 13. (a) The main sequence as a function of redshift. The solid lines show the
main sequence fit by Speagle et al. [223], while the dotted lines show the main sequence derived by Whitaker et al. [225], which
shows a flattening towards high stellar masses. The dashed green line shows the main sequence fit obtained by Lee et al. [343]. In
their scaling relations work, Scoville et al. [344] use a combination of the Speagle et al. [223] and Lee et al. [343] main sequence
fits, while Tacconi et al. [345] use Speagle et al. [223]. (b) The evolution of the typical specific star formation rate of a main-
sequence galaxy with redshift. The solid lines show the evolution from Speagle et al. [223], used in the scaling relation work
discussed in this section. The dotted lines show the evolution from Whitaker et al. [225], to highlight that studies of the main
sequence have not yet converged on its normalization at high redshifts and low stellar masses (see also, appendix A of [346]).
Both studies rely heavily on extrapolations at high redshift. For comparison, the dashed black line shows the evolution
measured by Tasca et al. [347] using approximately 4500 galaxies with spectroscopic redshifts from the VIMOS Ultra-Deep
Survey (VUDS), which contains spectroscopically confirmed sources out to z≃ 5.5.
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An alternative and complementary approach is to measure the evolution of the cosmic molecular
gas content with redshift using blind surveys. An advantage of this approach is that it does not rely
on pre-selecting galaxies at shorter wavelengths, and thus it may give a more unbiased view of the
gas content in galaxies. We will discuss efforts carried out with ALMA towards this goal in §4.
Nevertheless, targeted studies have the advantage of not needing to survey large areas of the sky, and
are valuable to understand the emerging scaling relations in samples of stellar mass-selected, star-
forming galaxies, provided that selection effects are properly accounted for (e.g. [345]).
3.1.1. Methods for measuring the molecular gas content of high-z galaxies

The total mass of molecular gas in galaxies is challenging to determine observationally, since the H2

molecule does not have a permanent dipole moment, and quadrupole transitions require high
excitation temperatures (e.g. [358]). Since most of the molecular gas is in a cold phase, this makes it
very difficult to observe the bulk of H2 in galaxies directly, and thus indirect tracers must be used,
such as the continuum far-infrared/sub-mm emission by cold dust, submillimetre CO rotational lines
or some submillimetre fine structure lines, all of which can be ideally observed by ALMA. Here we
summarize the main methods used in the literature to obtain molecular gas masses of high-redshift
galaxies, and briefly list their main advantages and limitations.

(i) CO(1–0) line. This method relies on the fact that carbon monoxide (CO) is the second most
abundant molecule in cold molecular gas after H2. The rotational transition CO(1–0) from the
first excited state (J = 1 to J = 0, at a frequency of 115.27 GHz) is easily detectable in the
submillimetre and radio (particularly at z < 0.5 with current ALMA capabilities; e.g. [33,359]).
— Advantages: (Almost) direct tracer of cold molecular gas.
— Limitations: Very faint line, so it requires long integration times. Need to assume a conversion

factor (denoted αCO or XCO) to convert from CO luminosity to H2 mass, which is uncertain
and may depend on galaxy properties such as metallicity (e.g. [360]); see Bolatto et al. [361]
for a review. Possible existence of CO-dark molecular gas at low metallicities (e.g.
[362,363]). CO is easily destroyed in environments with strong cosmic ray energy densities,
such as starbursts (e.g. [364,365]). Detectability may be severely affected by the cosmic
microwave background (CMB) at high (z > 2) redshift [366].
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(ii) J > 1 CO lines. Transitions from higher-excitation rotational states of CO (J→ J− 1, with J≥ 2, at

frequencies ≃115.27 × J GHz) are prime targets with ALMA, as they are brighter, and they can be
observed at any redshift beyond z = 1 with currently offered frequency bands (e.g. [216,359]). CO(2–1),
CO(3–2) and CO(4–3) were some of the first lines targeted for studies of the molecular gas reservoir of
galaxies near the peak of cosmic star formation (at 1:5 & z & 3), using the PdBI 1, 2 and 3 mm receiver
bands (e.g. [35,39,40,351,352,354,367]). ALMA has the capability to extend these pioneering studies
both in the redshift and luminosity/mass ranges probed, and in the number of objects targeted.
— Advantages: Easily observable with ALMA out to high redshifts (e.g. [359]). Can cover a wide

wavelength range (e.g. [33]).
— Limitations: Need to correct for CO excitation in order to infer CO(1–0) from J > 1 lines (e.g.

[41,368]). The limitations of using CO(1–0) described above also apply.
(iii) Fits to the dust spectral energy distributions (SEDs) in the far-infrared. This technique is based on deriving

dust masses from fits to multi-band observations in the far-infrared/submillimetre, sampling the
peak of the dust emission (e.g. [369]). The cold gas masses are then derived by assuming a gas-to-
dust ratio, which may be fixed, or dependent on the gas-phase metallicity if available (e.g.
[95,356,357,360]).
— Advantages: The far-infrared dust peak is bright and easily detectable at least out to z≃ 2.5 with

Herschel (e.g. [370,371]). Can use large statistical samples with multi-band measurements from
available Herschel surveys (e.g. [357,372]).

— Limitations: Need to assume gas-to-dust ratio (which depends on metallicity; e.g. [357]). Gas-to-
dust ratio dependence on metallicity may vary with redshift (e.g. [373]). Possibly biased towards
warmer dust which does not include bulk of the cold gas mass (e.g. [374]). Need well-sampled
infrared SEDs to obtain good constraints on dust temperature and/or dust emissivity index
(e.g. [375]). The absolute opacity of dust grains (or emissivity per unit dust mass) needs to be
assumed or calibrated; this quantity is model-dependent and can be uncertain by at least a
factor of a few (e.g. [376–379]).

(iv) Single-band sub-mm/mmcontinuum.Empirical calibrationsbetween single-bandsub-mm/mmcontinuum
and gas masses have been proposed by Scoville et al. [380] and Groves et al. [381]. They rely on tight
empirical relations between the submillimetre flux of galaxies (in the Rayleigh–Jeans (RJ) tail of the
dust emission) and gas masses measured using CO (or CO+HI in the case of [381]). The physical basis
for these correlations is described in detail in Scoville et al. [374]. In short, the argument is that the
submillimetre emission is optically thin and optimally traces the colder dust in galaxies, which traces
the cold molecular gas reservoirs; the RJ continuum emission per gas mass should be fairly constant
as it does not depend strongly on the dust heating in the galaxy, but rather on the total amount of dust.
— Advantages: Very efficient observationally with ALMA, as the continuum emission in a single

band can be obtained in much shorter integration times (minutes) than lines or multiple
bands (hours). Enables the study of large samples, over a wide redshift range (e.g. [344]),
with no need for a priori precise redshift measurements. Less sensitive to dust SED fitting
uncertainties and degeneracies than method iii.

— Limitations: Calibrated using CO line observations (see limitations of methods i and ii). Assumes
single gas-to-dust ratio (solar metallicity); empirical relations break at sub-solar metallicity
[381,382]. Assumes single temperature for cold dust, with no redshift evolution (possibly
contradicted by Magnelli et al. [383] and Schreiber et al. [384]). Relies on extrapolations from
lower rest-frame observations to the (sub-)millimetre range (usually 850 μm where the
relations are calibrated), which can introduce systematic errors (see discussion in [346]).
Continuum emission and CO emission may not be co-located/have the same physical extent,
therefore they may not trace each other accurately (e.g. [385], see §3.2.3).

Given the obvious advantage of using continuumobservationswithALMA instead ofmore time-consuming
spectroscopic observations, thismethod is becoming increasingly popular to study themolecular gas content
of intermediate- and high-redshift star-forming galaxies (e.g. [386–388]). However, up until very recently this
method had not been directly tested on the same galaxies it has been mostly used for. The recent study of
Kaasinen et al. [389] aimed to remedy this situation by directly comparing the gas masses measured from
CO(1–0) observations of a dozen z∼ 2 galaxies with the Very Large Array with those inferred from the
dust continuum observed with ALMA. They find that the two gas mass measurements agree within a
factor of 2, and that factor of 2 uncertainty is probably due to uncertainties in dust models that are needed
to extrapolate the observed ALMA dust emission to a rest-frame continuum measurement at 850 μm.
A factor of 2 uncertainty compares well with uncertainties in the conversion factor from CO(1-0) to a
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molecular gas mass (e.g. [361]). They conclude that the single-bandmethod is therefore reliable to obtain the

gas masses of massive, star-forming galaxies at z∼ 2. While these are promising results, more extensive tests
on larger samples spanningwidermetallicity and star formation ranges are essential (as discussed also in Liu
et al. [346]; see also the test on low-redshift galaxies by Hughes et al. [390]). Of course, it is worth noting that
while observationally cheaper, this dust continuummethoddoes not provide the dynamical information that
observations of CO lines do.
(v) [CI] fine structure lines. The fine structure lines of atomic carbon [CI] at 492 and 809 GHz were first

suggested as reliable tracers of molecular gas in galaxies by Papadopoulos & Greve [299], who
challenged the long-held view that [CI] is only distributed in a narrow region at the interface
between [CII] and CO in far-UV illuminated molecular clouds, a view that was also starting to be
challenged observationally by imaging of [CI] in molecular clouds. Papadopoulos & Greve [299]
suggested that under typical ISM conditions, [CI] is ubiquitous in molecular clouds thanks to
dynamic processes such as turbulent mixing, non-equilibrium chemical states and cosmic rays
(see also theoretical work by, e.g. [365,391–394]). Papadopoulos & Greve [299] argue that in sites
of intense star formation and low-metallicity, the production of [CII] starts diminishing the
capability of [CI] to trace molecular gas (and indeed it has been suggested that at some point
[CII] might become an even better tracer of the molecular gas reservoir; e.g. Madden et al. [363]),
but nevertheless even in those cases, [CI] should still perform better than CO.

— Advantages: Observed frequencies for high-redshift (z > 1) galaxies ideally matched with
atmospheric windows (and ALMA passbands), and thus easier to observe than low-J CO
transitions. The [CI] lines are optically thin in most environments. If used in conjunction with
other lines such as CO lines, can be used to derive the physical properties of the gas (e.g.
temperature, density) using large-velocity gradient (LVG) or photo-dissociation region (PDR)
models (as done in e.g. [296,315,395–399]).

— Limitations: Theoretically, the [CI]-to-H2 conversion depends on complicated physical processes
and is very sensitive to modelling aspects, such as physics of cosmic rays and cloud evolutionary
states (e.g. [365,391], though arguably the same can be said of our theoretical understanding of
the CO conversion factor). Observationally, we still do not have a systematic calibration of [CI] as
a molecular gas tracer that can be applicable to all types of galaxies, including main sequence
galaxies, at various redshifts (though see some efforts by e.g. [298,300,400,401]).

We also note that [CII] has been suggested as another potential molecular gas tracer for high-redshift
galaxies, especially at low metallicities (e.g. [363]). Indeed, recent theoretical ISM models find that
*70% of [CII] emission in galaxies can come from molecular regions [402,403], and an empirical
study using [NII] to differentiate the ionized from neutral regions finds that up to 80% of [CII] comes
from neutral gas in local star-forming galaxies, though note the difference between neutral and
molecular gas [404]; see also [405,406], for supporting results in ULIRGs. Using ALMA observations
of 10 z∼ 2 main sequence galaxies, Zanella et al. [407] find that the [CII] luminosity correlates well
with the molecular gas. However, this is still a controversial method because [CII] emission has been
traditionally seen as a tracer of the star formation rate in galaxies (e.g. [408,409]), so whether such a
correlation could simply be the result of uniform star formation efficiency is unclear. It is also
important to bear in mind that studies of the [CII] deficit in star-forming galaxies show that this line
depends strongly on the radiation field and metallicity in galaxies (e.g. [410,411]). It is fair to say that
more work would need to be done in this area, to avoid the risk of using the conveniently bright
[CII] line to measure both the star formation and the molecular gas reservoir of high-redshift galaxies.

3.1.2. Scaling relations between stellar mass, SFR, gas content and redshift

While the first studies of molecular gas in star-forming galaxies at the peak of cosmic star formation with
IRAM/PdBI targeted CO in a few of the brightest sources (e.g. [353,412]), it has become clear in recent
years that, in order to disentangle the effects of different physical parameters driving galaxy evolution
and properly account for selection effects, large statistical studies, similar to those routinely carried
out using deep observations in the optical and near-infrared, are needed. To understand the factors
that regulate the gas reservoirs and star formation rates of star-forming galaxies as a function of
redshift, recent studies are focusing on increasingly larger samples of (mostly) mass-selected galaxies
that are chosen to be as representative as possible of the general star-forming population at all
redshifts up to z≃ 3 (so far). These are enabled by improvements in sensitivity with the PdBI and
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ALMA, as well as refinements to the techniques used to derive molecular gas masses described in §3.1.1.

Here we will focus mainly on the most recent results obtained since ALMA has been in operation (which
includes also additional data from the PdBI).

An interesting approach is to derive scaling relations that relate the main parameters thought to affect
the evolution of star-forming galaxies: cosmic time (redshift), star formation rate, stellar mass, distance
from the main sequence, gas fraction and gas depletion time (e.g. [344–346,413]). These parameters
enable phenomenological descriptions of gas flows and consumption in galaxies (e.g. [349,414]), as
well as quantitative measurements that can be confronted with predictions from theoretical models
(e.g. [58,59,415]). The goal is to understand how the gas reservoir affects the star formation and stellar
mass growth as a function of redshift and, specifically, how the star formation is regulated by gas
fraction and star formation efficiency. These scaling relations are used to address some of the
following questions:

— What drives the evolution of the cosmic star formation rate and gas reservoirs with stellar mass and
redshift? Is there a varying star formation mode, i.e. different star formation efficiencies and star
formation laws? What star formation mode dominates the cosmic star formation history?

— What drives the systematic increase of specific star formation rate (for a given stellar mass) with
redshift? I.e. why does the normalization of the main sequence increase?

— At each redshift, why are main sequence outliers (sometimes called ‘starbursts’) forming stars at
much higher rates than main sequence galaxies of the same stellar mass? Is it because they have
larger gas reservoirs, or are they more efficient at forming stars? What is the role of mergers?

The starting point of establishing these scaling relations is to trace the evolution of star formation rate,
stellar mass and specific star formation rate (i.e. the star formation main sequence). These quantities
are relatively well-measured by deep optical/near-infrared surveys (see [2], for a review). Molecular
gas surveys with ALMA and the PdBI (e.g. [344,345,388]) aim to understand the peak of star
formation rate at 1:5 & z & 3 in terms of the gas reservoir and star formation evolution of galaxies
that contribute the most to this peak (i.e. ‘normal’ galaxies). In figure 12, we plot the evolution of the
typical star formation rate of main-sequence galaxies as a function of redshift and stellar mass. We
highlight that while various surveys find that the evolution of the specific star formation rate of mass-
selected galaxies on the main sequence (MS) at z < 3 seems to be well described by a power-law,
sSFRMS∼ (1 + z)3 (e.g. [223,340]), the slope of the evolution at z > 3 is still debated. Similarly, several
studies seem to point to a flattening of the MS at high (*5� 1010 M�) stellar masses at all redshifts
(e.g. [224,225,343]), although the exact turnover masses and slopes are still debated and may be
strongly affected by selection effects (e.g. [416]). Recently, Katsianis et al. [417] showed that different
methods used to estimate star formation rates in different observational studies contribute to
obtaining ‘main sequence’ relations that do not agree with each other or with theoretical predictions.
This has to be kept in mind when performing quantitative comparisons and inferences from such
relations.

We use the following definitions routinely used in scaling relation studies:

— The offset from the main sequence is defined as:

DsSFRMS ¼ sSFR
sSFRMS(z, M�)

, (3:1)

where sSFRMS(z, M�) is the average specific star formation rate of a main sequence galaxy of stellar
mass M� at redshift z.

— The depletion time, tdep, and the star formation efficiency, SFE, are defined as:

tdep ¼ 1
SFE

¼ Mgas

SFR
, (3:2)

where Mgas is the molecular gas mass (usually measured using one or more of the methods detailed
in §3.1.1). This is dominated by molecular hydrogen, but it is common to correct for the helium
contribution to this mass by multiplying the derived H2 mass by a factor of 1.36. We note that this
quantity is at times denoted differently in the literature, e.g. as MISM [344,374,380], or Mmol [349].
The molecular gas is considered the same as the total gas mass in the following, since the
contribution by atomic hydrogen to the total baryonic mass is found to be negligible at high
redshifts (e.g. [345,418]).



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200556
30
— The molecular gas fraction, fgas, is defined as:

fgas ¼
Mgas

Mgas þM�
: (3:3)

In the following, we focus on the largest studies of scaling relations at the time of writing, carried out
by Scoville et al. [344], Tacconi et al. [345] and Liu et al. [346], which parametrize the evolution of the gas
fraction and depletion time in galaxies as a function of cosmic age (or redshift), stellar mass and specific
SFR. Scoville et al. [344] estimated the total ISM masses (i.e. molecular gas masses with a correction for
He) using ALMA observations of the long wavelength dust continuum in a sample of 708 galaxies from
z = 0.3 to z = 4.5 in the COSMOS field. Tacconi et al. [345] compiled a larger sample of 1444 star-forming
galaxies between z = 0 and z = 4 for which molecular gas estimates were derived using three methods:
direct CO measurements from IRAM (PHIBSS survey) and ALMA; dust SED modelling and 1 mm
continuum (including the sample by Scoville et al. [344]). They analysed the systematics between these
methods and find that after calibration and benchmarking they converge to consistent scaling
relations. Recently, Liu et al. [346] performed the largest ever study of this kind in terms of both
sample size and dynamical range, by combining a dataset of approximately 700 galaxies at 0.3 < z < 6
from the A3COSMOS survey, a systematic mining of the ALMA archive in the COSMOS field [419],
with an additional sample of approximately 1000 CO-observed galaxies at 0 < z < 4. This large sample
allows them to compare and calibrate different gas mass estimate conversions, as well as to explore
the parameter space of star formation properties, gas content and redshift in more detail. They also
propose a new functional form for the scaling relations which accounts for different evolutions of
galaxies of different stellar mass, which implies down-sizing (faster evolution of more massive
galaxies) and mass-quenching effects (gas consumption slows down with cosmic time for massive
galaxies but speeds up for low-mass galaxies).

What becomes apparent from these studies is that the larger the samples, the more complex the
scaling relations become, with more high-order dependencies between physical properties, making
direct comparisons quite challenging. This also highlights the complex physical processes at play, and
that while scaling relations can be useful tools in quantifying the overall evolution of the properties of
galaxies, as well as how they depend with one another, the physics of galaxy formation is a complex
and multi-variate problem in itself. Here we try to briefly make sense of the main results in the recent
literature highlighted above.

Evolution of the gas content. A common conclusion from all the scaling relation studies is that the
molecular gas mass at fixed stellar mass (and hence the gas fraction) of main sequence galaxies
increases with redshift, and therefore at higher redshift, a galaxy of a given stellar mass simply has
more fuel available to form new stars. Figure 13a,b compares the redshift evolution of Mgas and fgas
derived by Scoville et al. [344], Tacconi et al. [345] and Liu et al. [346]: while the qualitative behaviour
is similar, a few quantitative differences are noticeable. At fixed redshift, the total gas mass depends
more strongly on stellar mass in the Tacconi et al. [345] scaling relation (Mgas � M0:65

� ) than in the
Scoville et al. [344] and Liu et al. [346] relations (Mgas � M0:3

� ). At fixed stellar mass, Scoville et al. [344]
find that the gas mass evolves as (1 + z)1.84, while Liu et al. [346] find a somewhat slower evolution
with redshift, and Tacconi et al. [345] find that an additional downturn at higher redshifts fits their
data better (figure 13a). The difference is probably attributable to different samples used. Despite
these differences, a clear trend seems to arise: the increasing gas fractions with increasing redshifts (at
fixed stellar masses) go a long way in explaining the rise of the typical star formation rates of main
sequence galaxies. These higher gas fractions are attributed to more efficient accretion of gas from the
cosmic web at high redshift (as described in e.g. [422]; see also the recent review by Tacconi et al.
[423]). Galaxies that are above the main sequence seem to have slightly higher gas fractions that are
not sufficient to explain their enhanced SFRs, implying that higher star formation efficiencies are
needed to explain these objects (though we note that Liu et al. [346] find a stronger correlation where
the higher above the main sequence a galaxy is, the larger its gas fraction). While all scaling relations
agree that the gas fraction increases towards higher redshifts at all stellar masses, the three studies
disagree somewhat on how fast the gas fractions increase for different stellar masses (figure 13b). The
better agreement is found at stellar masses around 1011 M� and z < 3, where there are more
observations; however, at low masses and high-redshifts, there are significant differences that can only
be addressed by obtaining more measurements for galaxies in those regions of the parameter space.

Evolution of depletion time. In figure 13c, we show the redshift evolution of depletion time from Scoville
et al. [344] (solid lines), Tacconi et al. [345] (dotted lines) and Liu et al. [346] (dot-dashed lines); the lines
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Figure 13. Scaling relations between star formation rate, stellar mass, gas content and redshift derived by Scoville et al. [344] (solid
lines), Tacconi et al. [345] (dotted lines) and Liu et al. [346] (dotted-dashed lines). Here we focus in particular on the redshift
evolution of the gas content (via the gas mass in (a) and the gas fraction in (b)) and depletion time (c), and colour-code the
lines according to the main secondary property they depend on (stellar mass or distance from the main sequence). The small
symbols show the measurements compiled and ‘benchmarked’ by Tacconi et al. [345]: circles show stacked measurements
(mostly using dust continuum) and crosses show individual measurements. Larger symbols show additional notable individual
results from the literature: Scoville et al. [380]: stack measurements based on ALMA continuum of 107 stellar-mass selected
COSMOS galaxies at 0.2 < z < 2.5 with M� � 1011M�; Scoville et al. [374]: stack measurements based on ALMA continuum of
145 star-forming galaxies at 〈z〉 = 1.1, 2.2 and 4.4, with M� * 2� 1010M�, with sources both on and above the main
sequence; Schinnerer et al. [388]: individual ALMA continuum measurements of 45 main sequence galaxies at z∼ 3.2 in the
COSMOS field with M� � 5� 1010M�; Tacconi et al. [45]: IRAM PHIBSS CO(3-2) detections of 52 main sequence galaxies at
z≃ 1.2 and z≃ 2.2 and M� * 2:5� 1010M�; Saintonge et al. [420]: 222 CO(1–0) measurements of z∼ 0 galaxies with
M� � 2:5� 1010M� from the IRAM COLD GASS survey; Dessauges-Zavadsky et al. [421]: IRAM CO measurements of five
z∼ 1.5− 3 lensed galaxies with low stellar masses (M� , 2:5� 1010M�) and low star formation rates (SFR , 40M� yr�1).
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are shown for a fiducial stellar mass of 5� 1010 M�, and colour-coded according to offset from the star-
forming main sequence. The depletion times depend weakly on stellar mass in the scaling relations of
Scoville et al. [344] and Tacconi et al. [345], meaning perhaps that at each redshift all main sequence
galaxies seem to have a similar star formation mode. However, Liu et al. [346] predict a stronger
evolution, in the sense that in high-mass galaxies the depletion time increases 20-fold from early
cosmic times to present, while low-mass galaxies show faster depletion times at later cosmic times.
This could be indicative of downsizing, where more massive galaxies evolve at earlier times (see
discussion in [346]). All scaling relations predict a slow decrease of the depletion time (or increase of
the star formation efficiency) with redshift, though it is important to note that there are some
significant offsets between the different derivations at z = 0, and the depletion time decreases faster
with redshift for Scoville et al. [344] [tdep∼ (1 + z)−1.04] than for Tacconi et al. [345] [tdep∼ (1 + z)−0.62]
and Liu et al. [346] (tdep almost constant with redshift for a fixed stellar mass). Tacconi et al. [345] and
Liu et al. [346] attribute these differences at least in part to the different datasets used by the two
studies to anchor the relation at z = 0, but Tacconi et al. [345] also note that their method obtains
steeper slopes when only dust continuum measurements are used (i.e. excluding CO), so some of the
difference could come from different measurement methods as well. Earlier studies with limited
ALMA samples seemed to show that the increase in specific SFR of the main sequence with redshift
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was due solely to the increase in gas fraction of galaxies, and not to a change in star formation efficiency/

depletion time (e.g. [374,380,388]; see also [45,413]). It is important to note that [374,380] relied mostly on
a stacking analysis of the continuum emission for relatively small (less than 100) samples. Small statistics
are also a problem for Schinnerer et al. [388]. The evolution of tdep with redshift is crucial to our
understanding of the small-scale star formation processes in galaxies and how they evolve. If the
depletion time of galaxies in the main sequence essentially does not evolve with redshift (as also
found previously by Schinnerer et al. [388] and Genzel et al. [413]), then this would imply that the
rapid increase of cosmic SFR density towards z≃ 2 is caused by a larger availability of molecular gas
(thanks to, for example, increased accretion through gas flows and mergers), rather than a
fundamental change in the small-scale physics of star formation in galaxies. On the contrary, the
Scoville et al. [344] results support the idea that a change in the star formation efficiency at high
redshift is also required. With the current samples, which scenario is more likely is still hard to
establish; more direct ALMA (and NOEMA) measurements of the gas content of galaxies in samples
spanning a wide range in redshift, star formation rate and stellar mass, using both targeted and blind
surveys, will be needed to address these discrepancies. Regardless of the behaviour in the main
sequence, Scoville et al. [344], Tacconi et al. [345] and Liu et al. [346] all find that galaxies above the
main sequence at a given redshift seem to be forming stars at higher efficiencies than main sequence
galaxies at the same redshift (tdep � DsSFR�0:70

MS , tdep � DsSFR�0:44
MS and tdep � DsSFR�0:57

MS , respectively).
The favoured interpretation is that these outliers (starbursts) are forming stars more efficiently,
presumably as a result of major gas-rich mergers (e.g. [344]).
0556
3.2. Resolved studies
While statistical studies of SMGs (§2) and the global FIR galaxy population (§3.1) with ALMA’s most
compact configurations have already dramatically affected our understanding of high-redshift galaxy
assembly, with its more extended configurations, ALMA has been delving into almost completely
uncharted territory. The sub-arcsecond resolution configurations make it possible to resolve individual
high-redshift sources, allowing sub-galactic studies of the dust-obscured star formation and ISM in
star-forming galaxies on scales down to less than or equal to 1 kpc, even for unlensed sources. Only a
handful of the very brightest (e.g. [37,46,48,49]) and/or most strongly lensed star-forming galaxies
(e.g. [50,51]) had previously been studied on these scales. This has led to an avalanche of new results
on the resolved dust/gas properties of distant (z > 1) galaxies. We note that due to surface brightness
sensitivity limitations, much of the most detailed/highest-resolution work with ALMA has necessarily
still focused on submillimetre-bright sources (i.e. S850mm * 1mJy), regardless of how those sources
were initially selected (see §2.4). Here we review some of the main applications and results that this
leap in observational capabilities has enabled.
3.2.1. Source sizes/profiles in rest-frame FIR continuum emission

One of the first results from ALMA on the resolved properties of z≃ 1 star-forming galaxies has been on
the spatial extent of the (rest-frame) FIR continuum emission, which was previously largely unknown.
Specifically, high-resolution (less than or equal to 0.200) ALMA observations have revealed compact
(approx. 1–5 kpc FWHM) dusty cores in submillimetre continuum imaging of z∼ 2 galaxies (e.g.
[252,214,338,424–430]), substantiating earlier claims from lower-resolution data (e.g. [46]) and sparsely
sampled uv-data on the high-redshift tail of SMGs [431]. Interestingly, this observation—which has
been proffered as evidence for bulge growth and morphological transformation (§3.2.2)—appears not
to depend strongly on either merger state [424] or relation to the ‘main sequence’, with similarly
compact ‘cores’ reported in everything from ‘main sequence galaxies’ [338]7 to the brightest SMGs
[252,214]. Only a handful of the most extreme early-stage mergers have been observed to show clear
evidence for distinct merging components in the FIR, and even then, the individual merging galaxies
show evidence for compact FIR emission (e.g. [202]). Nevertheless, these observations are consistent
with previous suggestions from other tracers (e.g. radio synchrotron emission, the [CII]/FIR ratio;
[154,290,329]) that the FIR regions in luminous high-redshift sources are more extended than the even
more compact FIR regions frequently observed in local ULIRGs (e.g. [432]).
7We note, however, that according to our proposed definition in §2.4, this source is an SMG, because of its bright submillimetre flux,
regardless of how it was originally selected.
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While the overall trend is for compact FIR emission, and while the sizes of the brightest FIR sources

appear to be roughly consistent with expectations from the (optically thick) Stefan–Boltzmann law
relating size, luminosity and dust temperature (e.g. [177,214,253]), a few studies probing galaxies
further down the luminosity function report slightly more extended emission (e.g. [428,433]). This is
in contrast to the size-luminosity relation measured for all Band 6/7 resolved sources from the ALMA
Archive [424], where the authors found evidence for larger FIR sizes at high luminosities [Re(FIR)
/LaFIR, with α = 0.28 ± 0.07], in agreement with UV measurements of star-forming galaxies (e.g. [434]).
The normalization of this relation is also found to evolve with redshift, suggesting that (like in the
UV), sources are smaller at higher-redshift. We note that the archival study assumes a single dust
temperature for all galaxies and, at any rate, shows a very large scatter among individual
measurements, but it demonstrates the ever-growing size and potential of the ALMA Archive,
enabling statistical studies of resolved properties of high-redshift galaxies.

Taking the extent of the FIR emission as a proxy for the extent of the dusty star formation, one of the
immediate implications of the measured FIR sizes is for the global SFR surface densities (ΣSFR) of high-
redshift sources. (We note that the assumption is generally made that the FIR emission is heated
primarily by star formation, with negligible AGN contribution; this could be wrong especially for the
most massive sources.) This is of particular interest for the brightest FIR sources, where the high SFRs
could potentially lead to values of ΣSFR exceeding the Eddington limit for a radiation pressure
supported starburst (approx. 1000 M� yr�1 kpc�2; [435], though note that the precise value depends
on the physical conditions of the source, including optical depth). While the ALMA results and earlier
efforts suggest that some of the brightest and most extreme sources (including quasar hosts) may
approach this limit (e.g. [99,252,175,202,426,436,437]), the statistically significant samples of deblended
and resolved sources provided by ALMA suggest that such cases are indeed rare, with median values
that are typically sub-Eddington even for the FIR-brightest sources (e.g. 100 M� yr�1 kpc�2; [252],
figure 14). Making the simplistic assumption that variations in the single-band submillimetre flux
density correlate with variations in the local star formation rate, resolved (sub-galactic) observations
suggest that the star formation remains sub-Eddington on approximately 500 pc scales (e.g. [439]),
though even higher-resolution (approx. 150 pc) observations find evidence for more extreme (greater
than 1000 M� yr�1 kpc�2) SFR surface densities ([427], though they caution that an AGN contribution
cannot be ruled out). At the same time, ALMA has allowed global values of ΣSFR to be measured for
sources much further down the luminosity function, reaching values as low as ,1 M� yr�1 kpc�2

(e.g. [428]).
In addition to constraining FIR sizes for high-redshift sources, in cases with enough S/N per beam (or

with stacking), ALMA has allowed the profile of the FIR emission to be fit. As with the measurements of
source sizes, the current ALMA results suggest uniformity in the profiles, with Sérsic fits returning Sérsic
indices near unity (e.g. [214,253,338,429,440,441]). These results suggest that the FIR profiles of high-
redshift sources are consistent with exponential discs (Sérsic index n = 1) over a large range in source
properties. Such low Sérsic indices, even for the most FIR-bright sources, suggest that even the most
massive sources observed with ALMA are still in the process of building their bulges (§3.2.2).

Resolving the FIR emission also allows the possibility of constraining the (global) optical depth of the
sources. This is possible as resolved observations provide a measurement of the brightness temperature
(TB), which is the equivalent temperature that a blackbody would have in order to be as bright. In this
way, Simpson et al. [177] constrain the typical optical depth within the half-light radius for their SMGs of
τ = 1 at λ0≥ 75 μm. Compared with local ULIRGs (e.g. [52]), this limit suggests that high-redshift SMGs
remain optically thick to longer wavelengths than similarly luminous local sources. Such analyses—now
made possible by ALMA—also serve as a reminder to treat the stellar masses of such dusty galaxies
(§2.2.7) with considerable caution.

3.2.2. Comparison with rest-frame optical emission/stellar mass

For the ALMA continuum sources initially selected as single-dish submillimetre sources, the angular
resolution of ALMA has allowed studies not only of the detailed submillimetre morphologies, but
also the first detailed rest-frame optical/UV morphologies via reliable counterpart identification.
Many of the FIR-bright sources show irregular rest-frame optical/UV morphologies (e.g. [442,443]),
with little correlation between the detailed (approx. kpc-scale) ALMA and HST morphologies (e.g.
[214]). Some ALMA-identified continuum sources are not detected at all in deep HST imaging (e.g.
approx. 20% of the SMGs in H160-band imaging with a median sensitivity of 27.8 mag [442]),
including those in ‘blind’ ALMA surveys [64]. These ‘HST-dark’ sources are not a new phenomenon,
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having been known to exist for some time based on pre-ALMA-era interferometry (e.g. [98,99,150], see
also §2.4), although some of the newly discovered examples can be up to an order of magnitude
fainter in the (sub-)millimetre (e.g. [444]). Other ALMA-identified continuum sources can show
significant offsets between the ALMA centroid and the bulk of the rest-frame optical/UV emission,
even after astrometric corrections have been applied. This is true not only in FIR-bright continuum
sources (e.g. [141,440,442]), but also between FIR lines and optical/UV emission in lower-luminosity
z > 5 galaxies (e.g. [63,291,445,446]), where Carniani et al. [291] argue that the latter does not correlate
with SFR. Such offsets could indicate either complex morphologies (e.g. distinct physical components
such as major/minor mergers or accretion events) or differential dust obscuration. In either scenario,
this observation may have implications for commonly used SED fitting routines that implicitly assume
the dust is co-located with the optical/near-IR continuum emission in order to perform energy
balance (e.g. [13,447–449]).

For the FIR-bright sources (both in ‘classical’ SMG samples and otherwise), multiple studies report
that the newly resolved FIR continuum emission is more compact on average than the rest-frame
optical/UV imaging (e.g. [252,214,338,385,424,425,429,450], figure 15). For these sources, this size
discrepancy between the existing stellar populations and the active, dusty star-forming regions has
been interpreted as evidence for ongoing bulge formation. Other studies have reported that this
difference may not exist for FIR-fainter galaxies, which may therefore be in a state that precedes bulge
formation [428]. Note that some of these studies focus on the existing rest-frame optical imaging
directly, while others attempt to derive the underlying stellar mass distributions, which are typically
found to be more compact than the optical imaging alone (e.g. [338,425,450]). In this way, Barro et al.
[338] and Lang et al. [450] found that the stellar mass profiles of their galaxies were more extended
than the ALMA-traced FIR emission, still consistent with the interpretation of bulge growth, while
Nelson et al. [425] found that the underlying stellar mass distribution was actually more compact than
the FIR emission in their target, which was classed as a z = 1.25 ‘Andromeda progenitor’. These
studies typically rely on an empirical correlation between the stellar mass-to-light ratio and a two-
band optical colour, and are thus limited by the optical imaging and high central column densities of
dust, emphasizing the importance of future near-IR imaging campaigns with JWST.

In the sources where evidence for bulge growth has been reported, the intense central star formation
implied by the relatively compact FIR emission has been further used to argue for rapid morphological
transformation (timescales of less than approx. a few hundred Myr), which can help place the ALMA-
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detected galaxy populations in the broader cosmological context. In particular, while SMGs
have previously been linked to local elliptical galaxies via z∼ 2 compact quiescent galaxies (e.g.
[107,108,228–230]), including based on their interferometrically confirmed global physical properties
(§2.2.7), the constraints that now exist on their FIR sizes and light profiles have helped further
investigations of this connection. Indeed, Chen et al. [442] argue that the difference in average physical
extent and Sérsic index between SMGs and z∼ 2 quiescent galaxies requires significant structural
evolution before the star formation is quenched, which Simpson et al. [252] show is possible for their
SMG sample (on average) based on the current bursts of star formation. Hodge et al. [214] further argue
that the expected sizes, stellar masses and gas surface densities of the z∼ 0 SMG descendants are
consistent with the most compact, massive early-type galaxies observed locally. Miettinen et al. [179],
meanwhile, find that while the evolution of z > 3 SMGs into z = 2 compact quiescent galaxies is
plausible, their z < 3 SMGs (which are more massive than some other SMG samples) would not fit into
a scenario where they evolve into lower-mass compact quiescent galaxies, highlighting the fact that not
all SMG samples are equal. Finally, Barro et al. [338] examine the potential connection between z = 2
compact quiescent galaxies and massive z = 2.5 dusty star-forming galaxies which are specifically
selected to be compact in the rest-frame optical (e.g. [451]), arguing that the structural evolution implied
by the ALMA-observed nuclear starbursts supports a dissipation-driven formation scenario.
3.2.3. Comparison with other tracers

In addition to revealing the sizes and profiles of the FIR continuum in high-redshift galaxies, the advent
of ALMA has also led to advances in resolved studies of their molecular and atomic gas. While some
such high-resolution studies had been carried out previously using pre-ALMA-era radio and
(sub-)millimetre interferometers (e.g. [35,37,48,412,452]), resolved CO studies are particularly time-
intensive due to the brightness of the lines and the more limited bandwidths over which they are
observable (compared with the dust continuum), and this remains true even with ALMA. We also
caution that conclusions drawn from resolved CO studies probably depend on the rotational
J-transition considered, with higher-J lines tracing denser and more highly excited gas that may have a
significantly different spatial extent (e.g. [337,368,453,454]).

With this caveat in mind, one of the general findings for FIR-bright sources has been the difference in
effective radius between the dust continuum and the cool gas traced by J≤ 3 CO (e.g. [385,430,440],
figure 16). In particular, these studies find that the cool gas is more extended than the FIR continuum,
as was previously suggested by some of pre-ALMA results (e.g. [368,412]). Naively, such a result could
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be taken to imply that the dust is more concentrated than the molecular gas, which would then suggest a
varying dust-to-gas ratio across the sources, as has been observed in some local spiral galaxies (e.g.
[455–457]). However, joint radiative transfer modelling of the dust continuum and CO demonstrates
that this effect can also be achieved through radial variations in the dust temperature and optical depth
[206]. Following the same radiative transfer calculations (originally presented in [270]), Calistro Rivera
et al. [440] show that such a model successfully reproduces the apparent size difference observed
between CO(3–2) and dust continuum emission in stacked radial profiles of SMGs (figure 16). The
importance of dust temperature gradients was also recognized by Cochrane et al. [458], whose radiative
transfer modelling of galaxies from the FIRE-2 simulations demonstrated that, due to dust heating, the
spatial extent of the observed dust continuum emission is sensitive to the scale of recent star formation.
On the other hand, the multi-band continuum imaging of the resolved z = 3 source SDP.81 shows no
evidence for a varying dust temperature across the source [310]. Nevertheless, caution should be
exercised when using the FIR continuum to trace the cool gas (§3.1.1) in a resolved sense without taking
into account potential variations in dust temperature and gas column density.

The relatively compact size of the FIR continuum emission in FIR-bright sources also appears to hold
with respect to the [CII] 158 μm emission (e.g. [310,329,426,459,460]), where the latter is now routinely
detected (including serendipitously; e.g. [290,426]) and resolved with ALMA. As an extremely bright
FIR line, [CII] has delivered on its promise of being a workhorse line in the era of ALMA, including for
lower star formation rate galaxies (e.g. [461]) and at the highest redshifts (§3.4) where low-J CO emission
is affected by the CMB (e.g. [366]). The physical origin of the [CII] is more difficult to constrain, in
general, as it may arise from multiple different phases of the ISM—from photodissociation regions (e.g.
[462]) to cold atomic gas (e.g. [363])—as well as being enhanced by shocks (e.g. [463]). This may explain
why recent ALMA studies have reported evidence for both extended, low-surface-brightness emission
(e.g. [253,329,460]) as well as compact cores less than or equal to 1 kpc in radius [410], suggesting a
different surface brightness distribution than either the FIR continuum or low-J CO emission.

Finally, while the tight and almost universal radio-FIR correlation (e.g. [219]) suggests that the FIR
continuum and radio synchrotron emission from galaxies are closely linked on global scales, ALMA’s
superb angular resolution has allowed this correlation to be tested on both unresolved (e.g. [428], see
also §2.2.7) as well as resolved scales. The latter report that the FIR continuum sizes measured are
smaller, on average, than the radio continuum sizes for FIR-bright sources (e.g. [252,464]). Simpson
et al. [252] suggest that the discrepant sizes may be due to cosmic ray diffusion, although Miettinen
et al. [464] argue that the short cooling time of cosmic ray electrons rules out this explanation.
Another possibility is that mergers have perturbed the magnetic fields, stretching them out to larger
spatial scales (e.g. [465]). This possibility was considered unlikely by Miettinen et al. [464] due to the
observed agreement between the radio and mid/high-J CO sizes, though they cautioned that their
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analysis relied on measurements from different SMG samples. Alternatively, the discrepancy could again

be due to a radially varying dust temperature (or a two-component ISM; [464]), where the spatially
extended gas component is traced by the low/mid-J CO and radio continuum emission. Recently,
Thomson et al. [466] confirmed that the VLA radio sizes of 41 SMGs for the S2CLS survey are about a
factor of 2 larger than the cool dust emission traced by ALMA at 870 μm. Thanks to multi-frequency
radio data at 610 MHz, 1.4 GHz and 6 GHz, they were able to obtain radio spectral shapes for their
sources, which they explain using a combination of weak magnetic field strength and young starburst
ages. Their modelling also supports the idea that the mismatch between radio and far-infrared sizes
may indicate production of low-energy secondary cosmic ray electrons in the extended gas disc, due
to the interaction of cosmic rays produced in the central starburst with baryons in the circumnuclear
region. Note that Rujopakarn et al. [428] do not find any evidence for a size difference between the
ALMA and VLA sizes of their FIR-fainter sources, consistent with the agreement they reported
between the FIR continuum and rest-frame optical/UV sizes. This could be consistent with a picture
where the star formation is occurring over a larger portion of the disc in such sources, but further
work is needed to determine the actual distribution of the star formation itself in the various
populations (through resolved, multi-frequency ALMA observations), as well as the relevant galaxy
parameters (beyond selection wavelength) on which these trends depend.

3.2.4. The star formation law

Taking the observed extents of the FIR continuum and CO emission to trace the star formation and/or
molecular gas extents, some studies have attempted resolved (i.e. sub-galactic) analyses of the SFR
surface density versus the molecular gas surface density. The relationship between these quantities
describes the relative efficiency with which gas is transformed into stars in different environments,
and is thus used to study the star formation law (i.e. ‘Kennicutt–Schmidt’ relation; [312–314]). In the
pre-ALMA era, most high-redshift studies had been limited to unresolved studies—in many cases,
with the same global size assumed when calculating both the total SFR and gas surface density—with
resolved studies limited to a handful of the most extreme SMGs or strongly lensed galaxies (e.g.
[44,49,317,318]).

The advent of ALMA has allowed such resolved studies on an increasing variety of sources (see also
§2.3.3 for studies of individual star-forming clumps using strong gravitational lensing). For example,
Chen et al. [385] studied an unlensed z = 2.2 SMG in resolved CO(3–2) emission, finding that the
central region has a gas consumption timescale that agrees with local ULIRGs and SMGs, while the
gas consumption timescales seen in the outskirts are more consistent with local and z∼ 2 star-forming
galaxies. Meanwhile, Cibinel et al. [433] presented resolved CO(5–4) imaging of a z = 1.5 ‘main
sequence’ galaxy, arguing that the more centrally concentrated CO(5–4) emission observed (compared
with other star formation tracers) could again be evidence for a radially varying star formation
efficiency. While such a result may be expected based on resolved studies of local galaxies (e.g. [467]),
the high-redshift studies are still plagued by uncertainties in e.g. the CO-to-H2 conversion factor, CO
excitation ratio, lack of high-resolution low-J observations and use of single-band submillimetre
continuum emission to trace the resolved SFR surface density (in addition to small number statistics;
see §3.1.1). Ultimately making progress in this area will require systematic studies of larger samples
where these factors can be better constrained, including through dynamical constraints on the CO-to-
H2 conversion factor (§3.2.6), observations of lower-J CO lines, and multi-band continuum studies to
better constrain the distribution of SFR. Such studies are possible with ALMA (typically using higher-J
CO lines) but require more observing time than has typically been allocated thus far. Resolving the
lower-J CO lines in larger samples of high-redshift sources will require the ALMA Band 1/2 receivers
and the proposed next-generation VLA (ngVLA).

3.2.5. The [CII]/FIR deficit

Thanks to the high angular resolution achievable by ALMA in both the [CII] line and FIR continuum
emission of high-redshift galaxies, progress has recently been made in studies of the ‘[CII] deficit’,
where the (global) L[CII]/LFIR ratio can show a marked decrease for galaxies with a total LFIR * 1011

L� (e.g. [328,330,331]). Using the size measurements obtained with ALMA for their strongly lensed
SPT sources, Spilker et al. [143] showed that the [CII]/FIR luminosity ratio is a strong function of FIR
surface density, extending the result found by Díaz-Santos et al. [332] for low-redshift galaxies by
another two orders of magnitude (figure 17).
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Subsequent studies have expanded the investigation to z > 5 galaxies (e.g. [468]) as well as to kpc and
even sub-kpc scales. For example, Lamarche et al. [469] and Litke et al. [470] use the persistence of the
deficit in sub-galactic measurements of strongly lensed galaxies to conclude that if there is a physical
scale where the deficit emerges, it must be sub-kpc. This suggests a local origin for the deficit, as
argued previously for nearby galaxies by e.g. Smith et al. [411]. A similar conclusion was reached by
Gullberg et al. [329] and Rybak et al. [410], who used the capabilities of ALMA to extend such
resolved studies to unlensed SMGs. Rybak et al. [310,410] further argue that the slope of the deficit in
the L[CII]/LFIR-versus-ΣSFR plane is consistent with thermal saturation of the [CII] line at high gas
temperatures. This explanation was proposed previously by Muñoz & Oh [471], but was not found to
hold for the source studied by Litke et al. [470]. It would also be inconsistent with the low gas
temperatures found in local galaxies [405]. Further work is needed to determine whether this
explanation holds for the high-redshift galaxy population in general.

3.2.6. Dynamical studies

When a line such as CO (or [CII]) is resolved with sufficient signal-to-noise per beam, this also allows the
kinematic properties to be investigated through the fitting of dynamical models. Such studies were again
carried out already prior to ALMA (e.g. [35,48,452,472,473]). However, they have been increasing in
frequency thanks to the relative speed at which ALMA can resolve these emission lines—even into the
epoch of reionization (§3.4)—and there are now too many to list comprehensively here. Due to its
brightness, the [CII] line can be imaged particularly quickly, sometimes serendipitously (e.g. [290,426])
or at exquisite (less than or equal to 1 kpc) resolution (figure 18; e.g. [329,410,474]).

Most such studies find signatures of disc-like rotation, and they then attempt to quantify the rotation
dominance using various dynamical modelling tools (e.g. DYSMAL, GALPAK3D,3DBAROLO; [475–477]). As one
of the goals of these studies is often to search for evidence of a merger origin, it is important to note that the
presence of significant disc rotation alone is not a sufficient condition to rule out a merger scenario, as
gas-rich mergers at high-redshift are thought to quickly reform rotating gas discs after final coalescence
[478–480], and late-stage mergers can be mistaken for rotation depending on data quality (e.g. [470]).
This has also been demonstrated observationally using an ALMA (+CARMA/SMA/PdBI) CO imaging
study of optically selected merger remnants in the local universe, where some of the CO discs were
even found to approach the size of the Milky Way disc [481]. Those authors suggest that deep, rest-
frame K-band imaging at high resolution is necessary to understand the true nature of high-redshift
sources, emphasizing the important role to be played by JWST.

One application of the CO dynamical modelling increasingly made possible with ALMA is the ability to
dynamically constrain the CO-to-H2 conversion factor, αCO [361], which is notoriously uncertain for high-
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redshift galaxies. This usually entails subtracting the stellar mass and likely dark matter fraction from the
dynamical mass (or neglecting their potentially significant contributions to derive an upper limit), and then
taking the ratio of the remaining mass and CO luminosity, assuming the remaining mass is molecular (e.g.
[202,430]). Calistro Rivera et al. [440] employed a similar technique, but they used a Bayesian approach to
explore the covariance between αCO and the stellar mass-to-light ratio, which is often highly uncertain for
dusty, strongly star-forming galaxies. Note that despite ALMA’s relative speed compared with other
facilities, resolving the low-J transitions of CO with sufficient resolution and S/N to carry out such analyses
still requires non-negligible time investment, even for CO-bright sources like SMGs. Nevertheless, such
studies remain one of the best ways to constrain the molecular gas mass in high-redshift galaxies—as well
as the physical conditions that may be driving changes in αCO (e.g. [482–484])—and the application of the
Bayesian technique laid out by Calistro Rivera et al. [440] to larger samples of galaxies with higher-quality
data has the potential to accurately constrain multiple key galaxy parameters simultaneously.

3.2.7. Spatially resolved gas excitation and dust mapping

While there have been a handful ofmulti-frequency studies using ALMA to investigate the CO spectral line
energy distribution (SLED) (e.g. [474]) and dust SED (e.g. [460]; da Cunha et al. [375]) in high-redshift star-
forming galaxies, such studies are still quite limited, even in the global sense. These multi-band
investigations will be key for constraining the gas excitation conditions and dust properties of various
populations. In particular, dust temperatures are often assumed for high-redshift galaxies based on
single-band measurements, despite the fact that an incorrectly assumed dust temperature can change
the derived FIR luminosity (and thus implied SFR) by an order of magnitude or more (figure 19).
Clearly, multi-band global studies are the first necessary step.

For CO- and FIR-bright sources, ALMA further has the ability to easily resolve multi-band
measurements on approximately kpc or even sub-kpc (for the dust continuum) scales. For the dust
continuum, such studies will be important for determining how the dust SED changes within individual
galaxies, which can cause the resolved star formation rate to differ from that implied using the typical
method of simply scaling the global dust SED based on a resolved single-band continuum measurement
(§3.2.1). For CO, resolved multi-line studies could help shed light on the dominant excitation sources
(e.g. SF versus AGN) as well as test physical prescriptions between CO excitation and e.g. ΣSFR (e.g.
[485]), as Sharon et al. [319] attempt on a strongly lensed source using SMA and VLA data. Note that
depending on the redshift of the source(s), multi-line CO studies still typically require lower-frequency
observations than are possible with the current ALMA bands in order to anchor the CO SLED at low-J
transitions. This is therefore an area that is ripe for future work, not just with the current ALMA, but
also with the future Band 1/2 receivers, the VLA, the proposed ngVLA, and the SKA [486].

3.2.8. Detailed morphological studies

In the brightest high-redshift sources, the resolution achieved by ALMA has allowed studies of their
resolved (kpc, or even sub-kpc) structure. This has enabled searches for e.g. the approximate kpc-scale
‘clumps’ first reported in observations of the rest-frame optical/UV emission of z≥ 1 galaxies (e.g.
[487–490]) and then in Hα line emission (e.g. [491–493]), CO (e.g. [35,48]) and even (in rare cases) the
dust continuum and gas emission in strongly lensed sources [51,249]. These massive star-forming
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regions have long been discussed as a ubiquitous feature not only inmerging/interacting systems, but also
in the gas-rich turbulent discs that are more common at high redshift (e.g. [247,494–496]). However, the
nature and importance of these candidate GMCs in the line and/or continuum emission is still debated,
in part because they appear less prominent or even invisible in the derived stellar mass maps [497].

ALMA has now allowed searches for such clumps in the line and dust continuum emission of high-
redshift galaxies in unprecedented detail. For example, Dessauges-Zavadsky et al. [321] reported the
discovery of 17 GMCs in the CO(4–3) emission of the z = 1.036 Milky Way progenitor the ‘Cosmic
Snake’. This is an exceptionally strongly lensed galaxy, providing a source-plane resolution as high as
30 pc, and allowing the GMCs to be studied at a resolution comparable to CO observations of nearby
galaxies. Beyond such rare cases, ALMA’s resolving power has also allowed candidate clumps to be
identified in an increasing number of unlensed sources. For example, Iono et al. [498] reported two
approximately 200 pc clumps in the 860 μm dust continuum imaging of the SMGs AzTEC4 and
AzTEC8, as well as approximately 40 > 3σ clumps in AzTEC1. We note that the latter were apparently
embedded in a smooth, more extended (3–4 kpc) emission region, which Hodge et al. [214] and
Gullberg et al. [329] demonstrate may appear clumpy due to the noise inherent in interferometric
maps, and must therefore be treated with caution. Subsequent 550 pc-resolution work by Tadaki et al.
[325] has confirmed that the two brightest off-centre clumps in AzTEC1 are detected in both dust
continuum emission and CO(4–3)—a rare example of clumps detected in multiple tracers—where the
CO kinematics also suggest that the underlying rotationally supported disc is gravitationally unstable.
Meanwhile, studies of other unlensed SMGs in the dust continuum have also confirmed sub-kpc-scale
clump-like emission [427,439], while the evidence in IR-fainter sources is still lacking [499]. This could
indicate either a different mode of star formation, or insufficient surface brightness sensitivity.

A continued challenge with understanding the properties and importance of these sub-galactic
structures has been the lack of correlation between the ALMA ‘clumps’ and those observed in the rest-
frame optical/UV. In particular, no correlation has yet been observed between sub-galactic clumpy
structure observed in the UV and that observed in the dust continuum (figure 20; [439]), nor have CO
clumps been detected at the position of (off-centre) UV (stellar) clumps (e.g. [321,433]).8 The lack of
co-spatial dust and UV continuum emission suggests that commonly used global SED fitting routines
8There have been several studies reporting [CII] ‘clumps’ aligned with UV clumps in z > 5 galaxies (e.g. [500–502]), but note that the
term ‘clump’ is used there to refer to distinct components in what are probably merging systems as opposed to substructure within an
extended disc.



Figure 20. ALMA 870 μm dust continuum in high-redshift SMGs from Hodge et al. [439] shown as 1.300 × 1.300 panels with natural
weighting (left column); with robust weighting and zoomed-in to the white dashed boxes (middle column); and as red contours on
400 × 400 HST false-colour images. The resolution achieved in the middle column corresponds to approximately 500 pc at the redshifts of
these sources, allowing a detailed view of these dust-obscured galaxies. The robust dusty substructure observed in these sources with
ALMA is uncorrelated with the unobscured stellar populations traced by the HST imaging. Figure adapted from Hodge et al. [439].
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that assume the dust and observed optical/near-IR emission are co-located are too simplistic. Meanwhile,
detecting clumps in CO emission can be even more time-consuming for all but the most strongly lensed
sources, and is fraught with uncertainties such as the excitation correction and CO-to-H2 conversion
factor, and thus the current limits implying, e.g. high star formation efficiencies for the UV clumps [433]
are still not particularly constraining. Dessauges-Zavadsky et al. [321] report comparable mass
distributions for their (CO-identified) GMCs and stellar clumps as those seen in (respectively) the
gravitationally bound gas clouds and stellar clumps produced by simulations of fragmenting gas-rich
discs [503]; however, the GMCs and stellar clumps are still not co-located. Due to the observational
expense of such endeavours even for the most gas-rich galaxies, characterizing the molecular gas (or
even dust) properties of the UV clumps (if real) in even fainter galaxies will remain challenging.
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For the high-redshift galaxies that do have detected substructure with ALMA, the interpretation of
the substructure is not limited to clumps. Based on the global morphologies of the SMG substructure
detected in the dust continuum by Hodge et al. [214] and then Hodge et al. [439], they argued that the
ALMA observations could be revealing evidence for bars, rings and spiral arms. Using a geometric
analysis of an independent SMG sample, Gullberg et al. [253] also argued for the existence of bars.
While these claims still require kinematic confirmation, observing such non-axisymmetric structures in
SMGs would be consistent with the view that these sources are affected by interactions and could
help explain the very high star formation rates implied by their long wavelength SEDs (e.g. [80,209,504]).

In another study, Litke et al. [470] observed the strongly lensed z = 5.7 galaxy SPT0346-52 with ALMA
in [CII] and identified two spatially (approx. 1 kpc) and kinematically (approx. 500 km s−1) separated
components connected by a gas ‘bridge’, which they argue suggests a major merger. Other
observations with ALMA of known mergers/interacting systems have also revealed potential evidence
for ‘bridges’ on larger scales. For example, Carilli et al. [461] report evidence for extended [CII]
emission between the quasar and SMG in the z = 4.7 gas-rich merger system BRI 1202-0725, which
they tentatively interpret as a ‘bridge’, and Oteo et al. [426] detect elongated CO(5–4) emission in the
z = 4.425 pair of interacting starbursts SGP38326. Finally, in an impressive example of ALMA’s
capabilities, Díaz-Santos et al. [505] observed the z = 4.6 multiple merger event (and dust-obscured
quasar) W2246-0526 in dust continuum and found three galaxy companions connected by streams of
dust like tidal tails (figure 21). Studies such as these illustrate the incredible power of ALMA for
detailed morphological studies of galaxies in the distant universe.

3.2.9. Multi-line studies and other gas tracers

When multiple gas tracers are detected, a comparison of the observed line ratios with theoretical models
that take into account the chemistry, radiative transfer and thermal balance of the ISM can provide
valuable information on its physical and chemical properties. This includes a comparison with photo-
dissociation region (PDR) models (e.g. [506–508]) and X-ray-dominated region (XDR) models (e.g.
[509,510]), which ALMA observations have now expanded beyond the typical global studies of
submillimetre-selected sources. For instance, Popping et al. [511] used ALMA observations of
[CI](1–0), CO(3–2), CO(4–3) and the FIR continuum in a z = 2.2 ‘compact star-forming galaxy’ (cSFG)
to put constraints on its gas density and UV radiation field strength, deriving starburst-like ISM
properties despite its location on the ‘main sequence’. Meanwhile, Rybak et al. [310] used the angular
resolution provided by ALMA in multiple tracers in combination with strong lensing to map these
parameters within the z = 3 source SDP.81 on approximately 200 pc scales.

In addition to detections in strongly lensed galaxies, ALMA has also allowed the detection of an
increasing number of less common molecular and atomic gas tracers (§2.3.2) in high-redshift galaxies
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in general. In particular, there are an increasing number of detections of fine-structure lines beyond [CII]

158 μm (see also §3.4). This observational progress has been accompanied by progress in high-resolution
radiative transfer modelling of FIR line emission (e.g. [512–515]). These diagnostic lines become
particularly important at very high (z > 4) redshifts, where most of the commonly used optical/UV
nebular lines shift into the mid-infrared and become inaccessible to current instrumentation. The fine
structure lines are also less affected by dust extinction, and—due to their brightness—may even be
resolved by ALMA within individual unlensed galaxies. For example, Lu et al. [516] used ALMA to
resolve the [NII] 205 μm emission in the z = 4.7 interacting system BRI 1202-0725, following an earlier
detection of [NII] in that system with the IRAM interferometer [517]. They then used the ratio of [NII]
to CO(7–6) to constrain the dust temperature, using the steep dependence of that ratio on the rest-
frame FIR colour Sν (60 μm)/Sν (100 μm) (e.g. [518]). The [NII]/[CII] ratio can also help constrain the
gas-phase metallicity in HII regions [257,293], though other studies use this ratio to constrain the
fraction of [CII] attributable to PDRs, as [CII] comes from both the ionized and neutral medium,
while [NII] comes only from the ionized medium. Tadaki et al. [460] used this method, along with
their resolved observations of [CII] and [NII] in the unlensed z = 4.3 SMG AzTEC1, to estimate the
fraction of [CII] coming from PDRs in the central 1–3 kpc region. They then used the ratio of [OIII]
88 μm to [NII] to constrain its gas-phase metallicity, finding a value consistent with the extrapolation
of the z = 3–4 mass-metallicity relation (e.g. [519]). They also attempted a first look at a radial
metallicity gradient using resolved ratios, but find no evidence for a positive gradient with the present
data. Studies such as these demonstrate the growing utility of the fine structure lines in the ALMA
era. In the future, sensitive, high-resolution observations of these line ratios will help disentangle the
contributions from the different ISM phases, which may differ from those in local galaxies,
particularly at the highest redshifts (e.g. [294]).

3.3. The dusty ISM at early epochs
To obtain a complete view of star formation of galaxies, we must account for the fraction of starlight from
newborn stars that is obscured by dust (see also [82], for a recent review on the dust attenuation law in
galaxies). We know that the fraction of obscured star formation in typical star-forming galaxies is
significant out to at least z∼ 2.5 [520]. However, due to observational limitations—namely the fact that
the Herschel space telescope has large PSFs and becomes severely confusion-limited at high redshift
(e.g. [521])—directly observing the dust emission from galaxies beyond the peak of cosmic star
formation and into the epoch of reionization before ALMA was extremely challenging. The notable
exceptions are the rare, bright SMGs (§2) easily detected out to high redshifts with both submillimetre
bolometers and Herschel (e.g. [80]). But apart from those cases, which may not be representative of the
high-redshift galaxy population, the dust content of more typical, low-mass galaxies and the
contribution of dust-obscured star formation to the cosmic SFR density at z > 3 remained largely
unknown until the advent of ALMA. In this section, we briefly review the early ALMA results on
dust emission in the very highest-redshift (z > 5) galaxies.

3.3.1. ALMA observations of Lyman-break galaxies: are the infrared excesses low?

The leap in sensitivity and angular resolution enabled by ALMA means that we can now carry out the
deepest continuum observations ever achieved at (sub-)millimetre wavelengths, and attempt to detect
(rest-frame far-IR) dust emission in low-mass, optical/near-IR-selected galaxies that are thought to be
the dominant contributors to the cosmic SFR density at z > 5, notably Lyman-break galaxies (LBGs;
e.g. [522,523]).

Since direct observations of the dust emission in high-redshift LBGswere completely unavailable before
ALMA, the most widely usedmethod to correct for dust attenuation in rest-frame UV/optical observations
of these galaxies and obtain dust-corrected UV luminosities (and hence total SFRs) has been to infer the
infrared excess of galaxies (IRX = LIR/LUV) from their ultraviolet spectral slope (β, defined from fl / lb,
where fl is the galaxy UV spectrum), the so-called ‘IRX-β relation’. The clear advantage of this method is
that dust attenuation can be directly inferred from the observed UV slope, which is easily accessible with
HST (e.g. [522,524,525]). This method relies on the tight correlation between IRX and β found for local
starburst galaxies [526], which are thought to be analogous (at least to some extent) to young galaxies in
the high-redshift Universe. The tight relation found for these sources is explained by the fact that they
have similar intrinsic UV slopes (young stellar populations), and their location in the IRX-β plot is set
only by their total dust attenuation: the more dust they have, the redder their observed UV slopes, and
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the higher their infrared excess. Galaxies populate this relation in theway that would be expected if we take
a screen geometry of Milky Way-like dust [527].

The accuracy with which this IRX-β calibration can correct for dust attenuation in high-redshift
galaxies has been recently called into question by the first deep ALMA observations of high-redshift
LBGs. In particular, observations by Capak et al. [445] and Bouwens et al. [528] using ALMA Band 6
(approx. 1 mm) find that the infrared luminosities of z * 4 LBGs measured using ALMA are
significantly lower than what would be predicted from their UV slopes using the local Meurer
relation. Indeed, they seem to be more consistent with an SMC-like dust extinction curve ([529],
figure 22). These results are tantalizing because they may indicate a rapid evolution of the dust
content and/or dust properties of star-forming galaxies in the first billion years of cosmic history, and
they have generated a good amount of discussion in the community and in the recent literature.

For example, Bowler et al. [530] obtained Band 6 (1.3 mm) ALMA observations of six z≃ 7 LBGs; they
detect only one of the sources, but using that detection and upper limits, and assuming a dust
temperature Tdust = 40–50 K, they conclude that the infrared excess in their sources is consistent with a
Calzetti-like attenuation law, contrary to the findings of Capak et al. [445], Bouwens et al. [528], and
also Barisic et al. [531], who reanalysed the sample of Capak et al. [445] (figure 22). Part of the
disagreement might be due to a different selection of targets (e.g. Capak et al. [445] also included
narrow-band selected LAEs in their sample). Their results appear to disagree strongly with the
Bouwens et al. [528] result, and Bowler et al. [530] argue that the disagreement might be due, at least
in part, to the fact that stacks on β bins tend be biased towards low IRX values, as described by
McLure et al. [532]. We delve into the measurement uncertainties plaguing the IRX-β diagram below.

The impact of measurement uncertainties. Measurement uncertainties and biases may indeed be quite
significant in understanding this problem. McLure et al. [532] offer what they call a not definitive but
plausible explanation for some of the results that seem to fall below the SMC curve: that this is due to
uncertainties in measuring the UV slope (see also [533]). They argue that a combination of β
measurement uncertainties, with the shape of the mass function, plus the steepness of the IRX-β
relation at blue UV slopes, means that a given β bin may be easily contaminated by bluer galaxies,
which can lead to a lower stacked IR luminosity and hence lower derived IRX for that bin. Popping
et al. [399] also explore the effect of poor photometric sampling of the rest-frame UV spectra on the
measurements of the UV slope using their models and find that this can cause significant artificial
scatter in the IRX-β plane; they conclude that to measure β reliably we need a filter combination that
at least probes the rest-frame FUV (approx. 1250 Å) and rest-frame NUV (approx. 3000 Å)
wavelengths. The importance of accurate UV slope measurements is also highlighted by the analysis
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presented in Barisic et al. [531], where the UV slopes of the z∼ 5.5 LBGs from the Capak et al. [445] sample

were re-measured using HST/WFC3 imaging. They measure systematically bluer UV slopes than those
found by Capak et al. [445] using lower-resolution, ground-based data, which brings some of the sources
closer to the canonical local starburst IRX-β relation, but several sources are still more consistent with an
SMC-like dust curve, or fall below it. Barisic et al. [531] stack rest-UV Keck spectra of those sources and
find that they show weak UV absorption features which could be indicative of low metal and dust
content in these galaxies, which would presumably explain why their IR excesses are low. Finally,
Saturni et al. [534] offered another possible source of contamination of the measured UV slopes: weak
unresolved AGN that would affect the distribution of UV continuum slopes without altering the IR
excess. They find that AGN with bolometric luminosities from 1043 to 1048 erg s−1 populate the same
region of the IRX-β diagram as high-redshift LBGs observed with ALMA. However, more
observations would be needed to confirm the AGN nature of these sources.

Another large source of uncertainty in placing observed high-redshift galaxies on the IRX-β plot is the
measurement of the total infrared luminosity from a single ALMA continuum measurement. The deep
ALMA observations of high-redshift LBGs have been carried out in Band 6, at around 1mm, which
samples the rest-frame dust emission at approximately 160 μm (some of these observations have targeted
the [CII] line at 158 μm; e.g. [445]). To derive the total IR luminosity, typically the assumption is made
that the dust emits as an optically thin, single-temperature modified black body, Sn � nbemþ2Bn(Tdust),
where βem is the dust emissivity index, and Tdust is the dust temperature. The total IR luminosity is then
taken to be the integral of this function, normalized to the observed flux in Band 6 (or any other ALMA
band). Since there is usually only one data point available, a choice must be made for the parameters βem
and Tdust, which can result in large systematic uncertainties of the inferred LIR, which is particularly
sensitive to the choice of dust temperature (e.g. figure 19). A natural choice adopted by Capak et al. [445]
and Bouwens et al. [528] was to adopt dust temperatures similar to the typical dust temperatures of local
galaxies with SFRs close to those of LBGs, i.e. Tdust�25�45K. However, as discussed by e.g. Bouwens
et al. [528] and Faisst et al. [535], assuming a hotter dust temperature (Tdust � 50�70K) would increase
the LIR inferred from the same observed millimetre flux by factors of at least a few, and up to an order of
magnitude, which could place the z > 5 LBGs closer to the local IRX-β relation. Herschel observations of
other samples of galaxies at lower redshifts (z < 4) support a trend of increasing dust temperatures (due
to stronger radiation fields) with redshift for star-forming galaxies (e.g. [180,182,384]), which could
potentially continue until the epoch of reionization (we note, however, that the stellar mass ranges
probed are different and there might be selection effects at play, as shown by e.g. [178]). Moreover,
Faisst et al. [535] find luminosity-weighted temperatures for three z∼ 0.3 analogues of high-z LBGs of
about 80 K. Higher dust temperatures at high redshift find some additional support from high-resolution
radiative transfer simulations (e.g. [167,536–539]).

At the same time, Casey et al. [540] argue that not including a mid-infrared component in the dust
spectral energy distributions, which contributes around 10–30% of the total IR luminosity, may severely
underestimate the IRX, and that including such a component may reconcile observations with the local
IRX-β relation without the need to resort to very high dust temperatures. They also make the important
point that the widely used ‘local calibration’ of Meurer et al. [526] is offset towards bluer colours due to
differences in aperture sizes of the UV and IR measurements, and that using the aperture-corrected
calibration obtained by Takeuchi et al. [541] for the same sample of local starbursts results on
approximately 0.3 dex lower IR luminosities. Both factors could go a long way in reconciling the
observed ALMA observations of LBGs with the standard Calzetti Law, but tensions still exist.

This is clearly an open issue that will need additional deep multi-band ALMA observations of the dust
emission of LBGs at high-redshift, including at higher frequencies, to sample the dust emission peak. Larger
samples spanning awide range ofUV slopes andpossibly stellarmasses are also highly desirable to not only
establish if there is a correlation between the UV slopes and the IR excess at high redshift, but also to
determine its scatter (we know that there is large scatter in the IRX-β relation when more diverse
samples are included at both low and intermediate-redshift, and that there is a stellar-mass dependence
on the infrared excesses; e.g. [80,203,542–544]), and ultimately its physical drivers.

Theoretical interpretations. These puzzling new ALMA results on the IRX-β relation have led to a
revisiting of the physical drivers of this relation by several theoretical studies. Popping et al. [399]
used idealized simulations of a screen of dust in front of a stellar population, and explored changing
the properties of the dust screen and the stellar population in a controlled setting. Narayanan et al.
[539] used modern cosmological simulations with radiative transfer to explore the various parameters
affecting the positions of galaxies in the IRX-β plane. Both studies demonstrate that we can expect a
tight relation between the UV slope and the IR excess of galaxies that follows approximately the
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empirical Meurer et al. [526] relation if we consider a young stellar population (with intrinsically blue UV
slope) behind a uniform screen of dust that has an extinction curve like the Milky Way. Scatter and
deviations from this relation can be explained by (see also figure 23):

— older stellar populations that drive galaxies to redder UV slopes at fixed infrared excess (due to the
fact that the UV slopes of older stellar populations are intrinsically redder; see also, e.g. [545,546]);

— complex stars/dust geometries that drive galaxies towards bluer UV slopes due to optically thin lines
of sight (e.g. Koprowski et al. [227], who find the IRX varies by more than a factor of 3 across a
spatially resolved galaxy at z = 3 due to the complex morphologies of UV and IR-emitting regions);

— shallower extinction curves (such as the SMCextinction curve) that lead to lower infrared excess at fixed
β due to lower near-infrared to far-infrared extinction ratios, i.e. lower total energy absorbed by dust.

We know that, even for local galaxies, the IRX-β relation becomes much less tight—with galaxies
populating the various regions of the IRX-β plane—when different selections are applied. Therefore, at
least some of these effects are important even at low redshift.

In another study, Mancini et al. [547] post-process hydrodynamical models of galaxy formation with
chemical evolution and dust formation/destruction. Interestingly, they find that in their models, young,
low-mass galaxies, where dust grains are mostly from stellar sources, fall below the Meurer et al. [526]
relation in the IRX-β diagram, indicating an intrinsically steeper dust extinction curve. Meanwhile,
more massive galaxies with efficient ISM dust growth introduce scatter to the relation and shift
towards the Meurer et al. [526] line at z & 6. This demonstrates how dust growth processes in early
galaxies might be affecting their large-scale observables.

A different theoretical explanation comes from Ferrara et al. [548], who proposed that the IR emission
deficit at high redshifts could be explained by larger molecular gas fractions of high-z galaxies. In these
galaxies, a large fraction of the dust mass would be embedded in dense gas and remain cold, therefore
not contributing to increasing the infrared luminosity. Somewhat counterintuitively, this model leads to
the suggestion that this far-IR deficit might provide a new way of finding galaxies with large molecular
gas fractions at high-redshift, which remains to be confirmed by actual CO observations.

3.3.2. Robust z≃ 8 continuum detections with ALMA

In contrast with the apparently lower-than-expected IR luminosities in the studies described above, there
have been a few notable examples of very robust detections of the dust continuum of primordial galaxies



Table 3. The highest-redshift dust continuum detections of LBGs with ALMA to date.

source z SFR/ M� yr−1 M�/M� Mdust/M� reference

A1689-zD1 7.5 9 2 × 109 4 × 107 Watson et al. [550]

MACS0416_Y1 8.31 60 2 × 108 4 × 107 Tamura et al. [552]

A2744_YD4 8.38 20 2 × 109 6 × 106 Laporte et al. [551]
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well into the epoch of reionization with ALMA. In these cases, the detected galaxies seem to follow a
Milky Way-like relation in the IRX-β plot, which is perhaps indicative of a range of galaxy dust
properties at high redshift similar to that seen at low redshift (e.g. [530,549]). The highest-redshift
continuum detections of star-forming galaxies with ALMA at the time of writing are A1689-zD1 at
z = 7.5 [550], A2744_YD4 at z = 8.38 [551] and MACS0416_Y1 at z = 8.31 [552]. All of these galaxies are
LBGs identified using the drop-out technique that are strongly gravitationally lensed by massive
foreground clusters (see also [553], for a strong dust continuum detection in a z = 7.5 quasar host).
These sources are characterized by surprisingly high dust masses of approximately 107 M� (table 3).
Their measured dust-to-stellar mass ratios are as high as, or even in excess of, those measured in
present-day galaxies (e.g. [213]), which presents a challenge to chemical enrichment and dust
formation models.

Dust grains form mainly via condensation of heavy elements in dense and cool regions such as
supernovae remnants and the envelopes of evolved stars, namely asymptotic giant branch (AGB) stars,
and they can further grow via accretion in dense molecular clouds (e.g. [554–558]). Supernova dust starts
contributing as soon as the first type II SNe explode in galaxies, on short timescales of around 10 Myr;
AGB stars start contributing at about 1 Gyr. At z≃ 8, the Universe is less than 1 Gyr old, and hence,
according to current models, AGB stars cannot be a major contributor to the large dust masses measured
with ALMA. Modelling shows that in order to explain those dust masses, high SNe rates are needed
(thanks to high star formation rates and/or more top-heavy IMFs), combined with high SNe dust yields
(or low destruction rates), but given current estimates of SNe yields, fast and efficient dust growth in the
dense interstellar medium is also required (e.g. [208,377,559,560]). Chemical enrichment and dust growth
models have shown that dust growth in the dense ISM is a major contributor to the dust mass of the
Milky Way [554,558]. However, in the epoch of reionization, this poses a problem, because models show
that ISM dust growth only starts being efficient after a critical metallicity has been reached in the ISM
[557,561]; we note that models like these are still relatively uncertain because of large uncertainties in
sticking coefficients, growing mechanisms and destruction rates. Therefore, a rapid metal enrichment in
the ISM of these z≃ 8 galaxies would be required. Furthermore, Ferrara et al. [562] make the point that at
high redshifts, ISM dust growth may be problematic due to the higher ISM temperatures and densities;
they argue that grain growth can occur in the cooler dense molecular clouds where they are more
sheltered, but the icy mantles do not survive in the diffuse ISM.

Along with the still large uncertainties in dust formation and growth modelling, there are still many
observational uncertainties, including the star formation histories and chemical enrichments of galaxies
at the epoch of reionization. Current HST and Spitzer data only probe the rest-frame UV of these galaxies,
and therefore their stellar masses and past star formation histories are still quite uncertain. Tamura et al.
[552] argue that their observations are consistent with the existence of an underlying older (300Myr)
stellar population in the galaxy that does not contribute to its UV SED but could imply a higher
stellar mass (and hence lower dust-to-stellar mass ratio). Such a stellar population would have
provided early chemical enrichment of the ISM and dust growth. This hypothesis needs to be tested
with rest-frame optical/near-infrared observations that will soon be enabled with JWST, which will
also enable more accurate measurements of the gas-phase metallicity, a crucial ingredient in grain
growth. Observations with JWST also have the promising potential of constraining dust attenuation
more precisely at those redshifts, which could be used to test models that predict the grain optical
properties and size distributions in the context of dust formation models (e.g. [547,563,564]).

At the same time, current dust mass measurements are still highly uncertain, as they are often based on
only one or twoALMA fluxmeasurements. Assuming the simple case of cool isothermal, optically thin dust
contributing the majority of the dust mass, most single-band measurements still need to include at least
three parameters: the dust temperature, the dust emissivity spectral index and the dust emissivity
normalization. Typically, the dust emissivity properties at high-redshifts are assumed to be similar to
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those measured in the local Universe, simply because we lack empirical measurements. However, both

theoretical models and laboratory studies indicate that different types of dust grains could have widely
different emissivity properties (e.g. [565]). For example, different chemical compositions and structures of
young dust grains can lead to different opacities per unit mass (e.g. [378], and Appendix B of [566]). It is
not far-fetched to consider that dust grains in primordial galaxies could be significantly different in their
physical properties than dust grains in the present-day Milky Way, given the potentially different
physical conditions in the ISM, metals available, and dominant formation mechanisms. The dust
emissivity indices and temperatures are still uncertain and have not been directly measured for high-
redshift sources of this kind. This requires multi-frequency ALMA observations (e.g. da Cunha et al.
[375]). It is crucial to obtain better constraints on these properties, as they can introduce significant
systematic uncertainties in the derived dust masses. As an example, assuming βem = 1.5 instead of βem = 2
can lead to dust masses between 5 and 10 times higher depending on the temperature; assuming Td =
80 K instead of Td = 30 K can lead to dust masses between 100 and 300 times higher depending on the
emissivity index. Additionally, CMB effects become crucial at those redshifts: da Cunha et al. [366] show
that ignoring the effect of the CMB on dust heating and (sub-)mm observations can lead to severe
overestimation of the dust emissivity index and underestimation of the dust mass at z > 5. Finally, even
the optically thin assumption can introduce severe systematic biases, with models that consider more
general opacity scenarios retrieving typically higher dust temperatures and lower dust masses than
optically thin models (e.g. [375,567]).

3.4. ALMA spectroscopy at the high-redshift frontier
Thanks to its sensitivity and frequency range, ALMA has been considered a promising ‘redshift machine’
for the very distant Universe (though the modest bandwidth and large overheads still imply a significant
time investment for all but the brightest sources). One of the most promising lines to target is the [CII]
fine structure line at 158 μm. [CII] is one of the main ISM cooling lines and the brightest far-infrared line
in most star-forming galaxies, carrying typically around 1% of their total infrared luminosity (e.g. [568]).
[CII] has the advantage of being observable even towards neutral sightlines in the epoch of reionization
(contrary to Lyα). Moreover, it has also been considered a promising tracer of the star formation rate of
galaxies, and because it is typically a bright line, it can additionally be used to trace their gas dynamics.

Early studies with ALMA targeted the [CII] line in known z > 6 bright Lyman-α emitters (LAEs). These
galaxies are known to have high star formation rates, and their redshifts are known thanks to the Lyα line,
making themprime targets. However, the first studieswith ALMA surprisingly failed to detect the [CII] line
(e.g. [569–571]). This implied that these sources might not follow the local correlation between [CII]
luminosity and star formation rate (or infrared luminosity); i.e. these bright LAEs seem to have a [CII]
deficit (see also, e.g. [436,572,573], §3.2.5). Indeed, the large statistical study of approximately 1000 LAEs
of Harikane et al. [574], which includes ALMA [CII] measurements for a subsample of 34 sources, shows
that there is an anti-correlation between the [CII]-to-SFR ratio and the Lyα equivalent width (see also
Pentericci et al. [575], who successfully detected [CII] emission in z∼ 7 LAEs with fainter Lyα emission).
This is probably a consequence of low metallicities, high ionization parameters, and strong radiation
fields in high-redshift galaxies with very prominent Lyα emission and/or the [CII] emission coming
from very high-density photodissociation regions in these galaxies (see discussion in Harikane et al.
[574]; see also modelling efforts by Vallini et al. [515] and Lagache et al. [576]).

Other studies have focused on searching for [CII] in more ‘normal’ star-forming galaxies where no
bright Lyα emission is detected, selected with the Lyman-break technique (i.e. Lyman-break galaxies).
Capak et al. [445] and Willott et al. [446] targeted small samples of LBGs with prior spectroscopic
redshifts and successfully detected the [CII] line in those sources, in contrast to LAE studies. They
found that their LBGs had bright [CII] emission but low IR luminosities (most were undetected in the
continuum; see §3.3), implying [CII]-to-IR ratios similar or even higher than found for local galaxies.
This could presumably be because the ISM conditions in those sources are more similar to local
galaxies; however, it is still puzzling that they seem to have lower IR luminosities than expected, as
discussed in §3.3. Nevertheless, even though the physical origin of the [CII] in these galaxies is still a
matter of debate, its brightness in LBGs means that it can be used to pinpoint the redshift and
measure the dynamics of these distant sources with ALMA. Smit et al. [289] demonstrated this by
using ALMA to measure the redshift of two LBGs at z≃ 6.8 that had been selected on the basis of
their photometric redshifts alone and had no previous spectroscopic redshifts from other instruments
(figure 24). The strong [CII] detections (and the less than approx. arcsec angular resolution enabled by
ALMA) allowed them to make the first dynamical maps of ‘normal’ galaxies at the epoch of
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reionization, which seem to indicate rotation in these sources (although at the current angular resolution,
mergers cannot be excluded). Higher resolution follow-up with ALMA will provide valuable additional
information in the near future; see also the 0.300 resolution study of a Lyman-break galaxy at z = 7.15 by
Hashimoto et al. [549], that finds dynamical evidence for a major merger-induced starburst.

Another promising line in studies of very high redshift objects with ALMA is the [OIII] fine structure
line at 88 μm, which is observable in Band 7 at 8 & z & 11. The [OIII] 88 μm line is predicted to be very
bright in young galaxies, easily outshining [CII] in sources with intense radiation fields and low
metallicities (see [513,577–580], for theoretical predictions); high [OIII]-to-[CII] ratios are also observed
in local low-metallicity dwarf galaxies (e.g. [295,581]). This makes the [OIII] line more easily
detectable than [CII] in sources such as LAEs. The first detection of [OIII] at high redshift with ALMA
was of a LAE at z = 7.212 by Inoue et al. [292]. Since then, various other detections have been made,
demonstrating that [OIII] is often more easily detectable than [CII] in z > 7 sources (e.g.
[549,551,552,582]; see also, e.g. [583] for an ALMA study of the [OIII] emission in a high-redshift
quasar host galaxy). These sources with high [OIII]-to-[CII] luminosity ratios are thought to have very
little neutral gas ([OIII] arises mainly from HII regions while [CII] arises mainly from the neutral
ISM/photodissociation regions), and ionizing photons are able to escape their ISM, making them
potentially important sources of cosmic reionization [292]. Multi-tracer studies can dissect the multi-
phase ISM as well as material inflows/outflows of such sources by analysing the spatial distribution
and velocity offsets of Lyα, [OIII] and [CII] emission (when detected) with resolved observations (e.g.
[204,291,459,549,572,584,585]).

The use of [CII] and [OIII] lines to not only confirm sources at the epoch of reionization but also study
their detailed physical properties is only starting. The importance of this topic has been recently
recognized by the ALMA community with a Cycle 7 Large Programme, REBELS (An ALMA Large
Programme to Discover the Most Luminous [CII]+[OIII] Galaxies in the Epoch of Reionization; PI:
Bouwens), which is building a large statistical sample of 40 UV-bright star-forming galaxies with
photometric redshifts 6.5 < z < 9.5. Preliminary results at the time of writing are showing the power of
ALMA spectral scans to efficiently obtain spectroscopic redshifts for these distant sources; detailed
studies of these emission lines will also bring new insight into their physical properties and kinematic
structure, as demonstrated in Smit et al. [289]. Importantly, REBELS is also detecting the dust
continuum at the epoch of reionization, which will be crucial to understand the ISM evolution and
dust growth in the early Universe. Such a sample holds promising targets for future follow-up with
the JWST.

We have truly entered the era of ALMA spectroscopic studies of galaxies at frontier distances. The
current redshift record holder is the detection of the [OIII] line in MACS1149-JD1, a gravitationally
lensed, 109 M� stellar mass galaxy at z = 9.1 ([582], figure 25).
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3.5. The effect of the cosmic microwave background in high-redshift observations
Observational studies of the cool interstellar medium at high redshifts have the potential of being
severely impacted by the cosmic microwave background (CMB), whose temperature approaches or
even exceeds that of the ISM components being studied at those redshifts. This concern specifically
affects observations of the (cold) dust continuum, CO lines and potentially also [CII] lines.

Da Cunha et al. [366] summarize the effect of the CMB in high-redshift (sub-)millimetre observations
of the dust continuum and also CO lines (though we note the latter have also been treated before, with
the effect often being taken into account in line modelling studies; e.g. [586–589]). Essentially, the CMB
affects the observed (sub-)millimetre dust continuum and the line emission in two ways: first, it provides
an additional source of (both dust and gas) heating, and second, it is a non-negligible background against
which the line and continuum emission are measured. Da Cunha et al. [366] quantify how these two
competing processes affect ALMA (or any (sub-)millimetre) measured fluxes and provide correction
factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the
CMB as a function of frequency, redshift and temperature. They also discuss how the physical
interpretation of ALMA observations is affected: for example, the inferred dust and molecular gas
masses can be severely underestimated, while dust emissivity indices and temperatures can be
overestimated if the impact of the CMB is not properly taken into account. The effect on the inferred
dust emissivity indices is discussed in Jin et al. [201] for a sample of four galaxies at z = 3.62–5.85 in
the COSMOS field. They find that, when ignoring the effect of the CMB on the dust SEDs, the
Rayleigh–Jeans slopes are unusually steep (with inferred dust emissivity indices βem∼ 2.4–3.7), while
they become consistent with ‘normal’ (i.e. typical measurements, mostly obtained for low-redshift
galaxies, βem≃ 2), when the effect of the CMB is taken into account. They argue that this is the first
direct evidence of the impact of the CMB on galaxy observables at high redshifts. Indeed the CMB
effect cannot be ignored especially as we move to sampling higher-redshift galaxies in the RJ regime;
however, the possibility that the emissivity indices are different at high-redshift (which could be the
case if dust grains have different properties) cannot be ruled out with existing data.

Zhang et al. [590] extended the analysis of the effect of the CMB on (sub-)millimetre observations to
spatially resolved observations. They point out that, in galaxies with dust (and gas) temperature
gradients, the different contrast between the galaxy emission and the CMB in different regions (due to
different temperatures), can significantly affect resolved imaging and dynamical studies. For example,
in galaxies where the dust temperature decreases with radius, the cool dust in the outer regions might
not be visible against the CMB background, and therefore the size of the dust-emitting region might
be underestimated (this is true for galaxies at any redshift, but particularly relevant for ALMA
observations at high redshifts).

The CMB also provides extra heating and background for cool gas emission lines such as CO and
[CII], though the situation is further complicated by the need to know the excitation temperatures
(Texc) of the different lines, because the contrast of a given line against the CMB background is set by
the difference between its Texc and the CMB temperature at that redshift (e.g. [366]). For CO, in the
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local thermodynamic equilibrium (LTE) case (where we can assume that the excitation temperature of all

lines is the same and equal to the kinetic temperature), the fraction of intrinsic line (velocity-integrated)
flux that is recoverable against the background decreases monotonically with increasing redshift and
decreasing J; since the magnitude of the effect is not exactly the same for all J transitions, the shape of
the spectral line energy distribution can be distorted (e.g. [366,591]). For non-LTE cases, the Texc and
optical depth of each transition must be computed using detailed models (e.g. LVG modelling; [592]),
and while the behaviour with redshift is still similar, in the sense that all CO lines become harder to
observe at higher redshifts, the way different transitions are affected depends strongly on the physical
properties of the gas (see examples in [366]).

Similarly for [CII] lines, we must model their excitation in detail, though this is further complicated
by the fact that [CII] originates from ISM phases with vastly different ISM conditions, from ionized gas to
diffuse neutral gas to PDRs (e.g. [593]). Vallini et al. [515] perform detailed calculations of the [CII]
excitation (or ‘spin’) temperature in the context of high-resolution, radiative transfer cosmological
simulations at z≃ 7. They obtain Texc∼ 30–120 K in PDRs (with SFR� 0:1�100M�yr�1), and Texc ∼
22–23 K in the cold neutral medium (CNM). They conclude that the CMB has a negligible effect on
the [CII] emission from galaxies at z & 4:5, but e.g. at z∼ 7, the emission from the CNM is strongly
attenuated due to the strong CMB background, which has a temperature close to Texc in that
component. Therefore, even at high redshifts, the [CII] emission from star-forming regions is mostly
robust against CMB effects, but we might lose the ability to detect an extended cooler gas component
using that line. Lagache et al. [576] use a semi-analytic model to predict the [CII] luminosity functions
from z = 4 to z = 8 from galaxy-wide properties, and they find that the CMB systematically reduces
their normalizations by approximately 25–35% (though note that they only include the PDR component).
4. Blind surveys with ALMA
4.1. Motivation and summary of existing surveys
Pre-selection of galaxy samples from deep surveys at optical/near-infrared wavelengths as discussed in
the previous section has the disadvantage that we might be biasing our view of galaxy evolution by
using only specific subsets of the more general population, or even missing a potentially important
population of gas-rich galaxies that are not included in those samples for being too optically faint
(e.g. [99,594]). If such a population is important, this could make it very challenging to, for example,
reliably trace the evolution of dust and CO luminosity functions, understand the cosmic evolution of
the gas content of galaxies, and test the predictions of galaxy formation models (e.g. [595–597]).

This motivates the execution of blind surveys with ALMA which aim to detect the continuum and
CO/[CII] lines of galaxies in an unbiased and complete way, and without suffering from the effects of
source confusion of other instruments. Given the relatively small fields-of-view achievable with one
single pointing (the ALMA primary beam FWHM ranges from about 9 arcsec in Band 9 to about 1
arcmin in Band 3), it is challenging to execute blind surveys over large, cosmologically important
areas. Even so, given how important/necessary blind surveys are, significant time has been invested
in executing a few of these surveys since the start of ALMA operations (table 4), which we summarize
in this section.

These (continuum and line) deep surveys have so far focused on:

— Pushing down the continuum detection limits in the (sub-)millimetre in order to constrain the faint
end of the number counts, to resolve and characterize the sources responsible for the extragalactic
background light (EBL), and to measure their contribution to the cosmic star formation history.

— Measuring the dust and molecular gas content of high-redshift galaxies in an unbiased way (i.e.
without prior pre-selection at lower wavelengths).

— Measuring the H2 mass function at various redshifts (through measurements of CO luminosity
functions), and tracing the evolution of the cosmic density of H2.

— Characterizing the ISM of galaxies near the epoch of reionization through searches for dust
continuum and [CII] emission at z > 4 by leveraging the very high sensitivity achieved with
ALMA and/or high magnifications enabled by strong gravitational lensing towards galaxy clusters.

We focus on recent results from the main deep blind surveys executed to date, which are summarized in
table 4, and which we briefly describe here:



Table 4. Summary of blind extragalactic surveys executed so far with ALMA.

survey description
area
(arcmin2) 1-σ depth

resolution
(arcsec)

ASPECS Pilot

Walter et al. [216]

full frequency scans 1.0 L0CO � 2� 109 K km s�1 pc2

B3 (3 mm): 1 pointing 3.8 μJy beam−1 2.8

B6 (1.2 mm): 7 pointings 12.7 μJy beam−1 1.3

ASPECS Large Programme

Decarli et al. [78]

González-López et al. [598]

full frequency scans 4.6 L0CO � 2� 109 K km s�1 pc2

B3 (3 mm): 17 pointings 3.8 μJy beam−1 1.8

B6 (1.2 mm): 85 pointings 9.3 μJy beam−1 1.5

HUDF Continuum Image

Dunlop et al. [599]

B6 (1 mm): 45 pointings 4.5 35 μJy beam−1 0.7

ALMA-SXDF

Kohno et al. [600]

B6 (1.1 mm): 19 pointings 1.5 55 μJy beam−1 0.5

ALMA Frontier Fields

González-López et al. [79]

B6 (1.1 mm): 3 × 126

pointings

Abel 2744 4.6 55 μJy beam−1 0.6

MACSJ0416 4.6 59 μJy beam−1 1.2

MACSJ1144 4.6 71 μJy beam−1 1.1

SSA22/ADF22A

Umehata et al. [69]

B6 (1.1 mm):

103 pointings

FULL/LOWRES 7.0 75 μJy beam−1 1.0

DEEP/HIRES 5.8 60 μJy beam−1 0.7

SSA22/ADF22B

Umehata et al. [601]

B6 (1.1 mm):

133 pointings

13 73 μJy beam−1 0.53

GOODS-ALMA

Franco et al. [64]

B6 (1.13 mm):

846 pointings

69

native 110 μJy beam−1 0.24

tapered 182 μJy beam−1 0.6

ASAGAO

Hatsukade et al. [66]

B6 (1.2 mm): 9 × 90

pointings

26 61 μJy beam−1 0.5
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ASPECS. The ALMA SPECtroscopic Survey (ASPECS) started with a pilot programme that targeted a
≃1 arcmin2 region in the Hubble Ultra-Deep Field (UDF), which was then extended as a Large Programme
to mosaic an area about five times larger (≃4.6 arcmin2 covering most of the Hubble eXtreme Deep Field;
[602]) to similar depths, and also coinciding with deep MUSE ancillary data in the UDF [603]. ASPECS
consists of full frequency scans in ALMA Bands 3 and 6, continuously covering the frequency ranges
from 84 to 115 GHz and from 212 to 272 GHz at approximately uniform CO line sensitivity
L0CO � 2� 109 K km s�1 pc2; see Walter et al. [216] for a full pilot survey description; see also Decarli
et al. [78], González-López et al. [62,598] for descriptions of the large programme. The frequency
ranges and depth were chosen to maximize the redshift coverage of the survey with various CO lines
and sample the knee of the predicted CO luminosity functions, as well as possibly detecting [CII] at
the highest redshifts (6 < z < 8). This is the deepest blind field performed to date with ALMA, with
continuum noise levels achieved of 3.8 μJy beam−1 in Band 3 (≃3 mm) and 9.3 μJy beam−1 in Band 6
(≃1.2 mm).

HUDF Continuum Image. This survey [599] performed a 45-pointing mosaic with Band 6 of the Hubble
Ultra Deep Field (HUDF) over ≃ 4:5 arcmin2. They obtain a contiguous and homogeneous 1.3 mm image
reaching a depth of 35 μJy beam−1 (largely superseded by the ASPECS large programme now). Like
ASPECS, the field was chosen to maximize the overlap with the exquisite deep coverage available at
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other wavelengths (specifically with HST and Spitzer), in order to confirm and characterize the blind

continuum detections, as well as to enable deep stacking of optical/near-infrared-selected samples.
The choice of band and sensitivity was designed to maximize detections of z > 3 dusty galaxies while
keeping the survey feasible (more details in [599]).

ALMA-SXDF. This survey [600,604] covers a 1.5 arcmin2 rectangular region in the Subaru/XMM-
Newton Deep Survey Field [605], where deep ancillary multi-wavelength observations are available
from the X-rays to the radio. The targeted region is chosen to include a bright 1.1mm source detected
with AzTEC, and 12 Hα-bright star-forming galaxies at z≃ 2.5 detected using narrow-band imaging.

ALMA Frontier Fields Survey. This survey, described in González-López et al. [79], targeted three
strong-lensing galaxy clusters from the Hubble Frontier Fields [606]: Abel 2744, MACSJ0416 and
MACSJ1149. The goal is to combine the sensitivity of ALMA with the strong gravitational lensing
magnifications towards these clusters to reach the faintest dusty star-forming galaxies, and thus probe
the low-luminosity regime as well as to detect very high-redshift sources (e.g. [551]). Each cluster was
covered using a 126-pointing mosaic in Band 6 (1.1 mm), reaching sensitivities of 55, 59 and 71 μJy
beam−1, respectively (with the Abel 2744 field having the deepest and most uniform data).

ALMA Deep Field in SSA22 (ADF22). This survey first mosaicked a �2� 3 arcmin2 area with Band 6
at 1.1 mm (ADF22A region, [69]), targeting the core region of a protocluster at z = 3.09, which had been
previously identified via overdensities of Lyman-break galaxies [607] and Lyman-α emitters [608]. One of
the main goals was to detect and characterize dusty star formation in the protocluster. This survey
detected 18 SMGs at greater than 5σ, 10 of which are spectroscopically confirmed at the redshift of
the protocluster. A follow-up mapped a contiguous area, ADF22B to a similar depth, bringing the
combined area of the SSA22 ALMA coverage to 20 arcmin2 (71 co-moving Mpc2 at the protocluster
redshift; [601]). This combined ADF22 area contains a total of 35 SMGs at >5σ, with star formation
rates approximately 100–1000M� yr�1. This is a clear overdensity of millimetre sources in the
protocluster core (by a factor of 3–5 compared with blank-field number counts), suggesting that
intense dusty star formation may be enhanced by the large-scale environment, as also found in other
studies (e.g. [609]).

GOODS-ALMA. This survey [64] targeted the largest contiguous area surveyed by ALMA so far, a
69 arcmin area in GOODS-South using 846 pointings in Band 6 (1.13mm). The observations were taken at
0.24 arcsec resolution to a mean depth of 110 μJy beam−1; however, the main source extraction and
science analysis in Franco et al. [64] are done using a map tapered to 0.60 arcsec (to reduce the number of
independent beams) with an RMS sensitivity of 182 μJy beam−1. The targeted area was chosen to match
the deepest H-band imaging of the GOODS-South field, enabling identification of the counterparts. One
finding from this survey is that about 20 percent of the ALMA detections are HST-dark galaxies, which
could be at z > 4 (see also §3.2.2 and [610,611]).

ALMA 26 arcmin2 survey of GOODS-S at 1 mm (ASAGAO). This survey [66] targeted again the
GOODS-South field in Band 6 (1.2 mm). An area of 26 arcmin2 was covered in using nine tiles of
approximately 90 pointings each, and a resolution of about 0.5 arsec and a depth of 61 μJy beam−1

were reached. Hatsukade et al. [66] also combined their observations with previous deep observations
of GOODS-South at similar resolutions from the HUDF [599] and GOODS-ALMA [64] to obtain a
deeper 1.2 mm map that reaches a sensitivity of approximately 26 μJy beam−1 in the central area
(essentially the area covered by the Dunlop et al. [599] observations).

Archival surveys. Along with these targeted fields, another productive approach has been to mine the
public ALMA Science Archive for existing observations to obtain deep measurements over large
combined areas in sometimes random areas of the sky, which helps overcome cosmic variance. The
ALMACAL survey [612] exploits observations of ALMA calibration fields in various frequency bands
and array configurations. Using observations of 69 calibrators, they reached depths of approximately
25 μJy beam−1 at sub-arcsec resolution, and detected 8 and 11 faint dusty star-forming galaxies at greater
than or equal to 5σ in Bands 6 and 7, respectively (another interesting application of the ALMACAL
survey is the work by Klitsch et al. [304], who measured upper limits on the cosmic molecular gas
density using CO absorption towards distant quasars). Others search for all deep ALMA pointings in
certain bands available from the archive. Fujimoto et al. [70] combined 120 pointings in Band 6 to
study faint dusty star-forming galaxies and push the 1.2mm number counts down to 0.02 mJy partly
thanks to gravitational lensing. Similarly, Zavala et al. [182] used over 130 individual ALMA continuum
pointings at 3mm (Band 3) towards three extragalactic legacy fields, achieving an effective survey area of
200 arcmin2; their derived 3mm number counts imply that the contribution of dusty star-forming
galaxies to the cosmic star formation rate density at z > 4 is non-negligible. More recently, Liu et al. [346]
presented the automated mining of the ALMA archive in the COSMOS field (A3COSMOS), which



0.01 0.10 1.00 10.00
0.1

1.0

10.0

100.0

in
te

gr
at

ed
 f

lu
x 

de
ns

ity
 (

S v>
S vlim

) 
(J

y 
de

g–2
)

COBE
Planck

1

10

100

%
 o

f 
(P

la
nc

k)
 E

B
L

1.2 mm, lensed

1.2 mm, blind

1.2 mm, serendipitous

1.1 mm, blind
1.1 mm, serendipitous

0 0.5 1.0 1.5 2.0 2.5

log (area) (arcmin−2)

Sv
lim (mJy)

Figure 26. Integrated flux density of sources above various flux density limits Slimn , derived by recent ALMA surveys at 1.1 mm (open
symbols) and 1.2 mm (filled symbols). The circles show the results from blind field surveys [62,64,66,69,617,619,620], and the
squares are the results from serendipitous detections in fields around targeted sources [67,70,621,622] and in ALMA calibration
fields [68]. The star shows the results from the ALMA survey of the Hubble Frontier Fields, i.e. using gravitational lensing [71].
Each point is colour-coded according to the survey area. For reference, the horizontal regions show the range of values of the
EBL at 1.2 mm from COBE (in yellow), and Planck (in red). We compute the fraction of EBL recovered by the different surveys
(right-hand y-axis) using the Planck value of 14.2 ± 0.6 Jy deg−2 [619]. The light teal line shows the integration of the best-
fit Schechter function to the number counts from these surveys obtained by Hatsukade et al. [66]; the dark teal line shows
integration of the triple power-law fit to the number counts by González-López et al. [62].

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200556
54
includes a number of tools to automatically and continuously mine the science archive for continuum
imaging observations and perform automated source extraction and counterpart association. Using these
tools, they obtain approximately 1000 (sub-)mm detections from over 1500 individual ALMA pointings
in the COSMOS field. Given the wealth of available multi-wavelength information in the COSMOS field,
they obtain the redshifts and SEDs of the majority of these sources from matching with multi-
wavelength counterparts, and they use this large sample to study the evolution of the stellar and gas
content of galaxies with cosmic time (§3.1.2, [346,419]).

The clear advantage of this approach is that blind deep fields over large areas can be obtained from
publicly available data, enhancing the scientific benefit of already-executed ALMA observations. These
studies achieve effective areas orders-of-magnitude larger than those achieved by contiguous fields of
similar depths that represent very significant observatory time investments. However, it must be noted
that combining observations of various depths taken in a variety of configurations to study, e.g.
number counts, where quantifying completeness is important, is non-trivial: the total survey area
depends on the RMS achieved, the synthesized beam (i.e. the surface brightness sensitivity), and the
primary beam attenuation. In addition, the selection function of PI-led programmes is difficult to
quantify (see discussion in Liu et al. [346]).
4.2. Faint (sub-)millimetre sources and their contribution to the extragalactic background light
One of the many goals of the ALMA deep fields described above is to characterize the sources that make
up the (sub-)mm extragalactic background light (EBL), measured by the Cosmic Background Explorer
(COBE) satellite [86,87], and more recently by the Planck satellite [613]. This involves detecting the
faint sources, i.e. the ‘normal’ star-forming galaxies that have lower infrared luminosities than the
bright SMGs. These faint sources make up the bulk of the cosmic star formation rate density and
therefore are thought to be more representative of star-forming galaxies at high-redshifts. Even before
ALMA, various studies found that bright SMGs only contribute a relatively small fraction to the total
EBL (e.g. [139,151,614,615]). Specifically, SMGs brighter than approximately 1mJy constitute & 20% of
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the (sub-)millimetre EBL (e.g. [209,616–618], figure 26). However, single-dish studies were limited in

sensitivity and also potentially biased due to source blending (e.g. [623]). ALMA surveys can
capitalize on the unprecedented sensitivity and spatial resolution of ALMA to detect and resolve dust
emission in faint dusty star-forming galaxies directly. To push down even more in luminosity, studies
are taking advantage of the rich ancillary data available in those fields to obtain the (sub-)mm flux
densities of samples of galaxies stacked in, e.g. optical colour, stellar mass and SFR (e.g. [599,619,624]).

Current surveys are deep enough to resolvemost of—if not all—the sources of extragalactic background
light at approximately 1 mm. The exact fraction of the EBL recovered in various studies depends on the
assumed value for the total EBL at approximately 1 mm, which can vary widely (e.g. discussions in
[62,619,621]). For example, at 1.2mm, Fujimoto et al. [70] obtain a total EBL value of 22þ14

�8 Jy deg2 from
the fit to COBE observations by Fixsen et al. [86], while Aravena et al. [619] adopt an EBL of 14.2 ±
0.6 Jy deg2 from the recent Planck observations [613], which they argue are more accurate because the
COBE spectrum is highly uncertain at frequencies below 350GHz due to Galactic contamination. Cosmic
variance due to the small area of the ALMA deep observations so far (table 4) is also a source of
uncertainty (e.g. [625]). In figure 26, we compile the results on the integrated flux densities at 1.1–1.2mm
as a function of limiting flux density for all of the ALMA deep field studies so far. We also include the
results from serendipitous detections of faint sources obtained by searching for sources in the fields
around main targets in archival ALMA data [67,70,621,622] and in the calibration fields [68]. Figure 26
shows that there is still quite a significant spread in total integrated flux density obtained by different
surveys at similar flux density limits (possibly due at least to some extent to cosmic variance, given how
small the deep fields are, and also to the fact that some studies are based on lensing, which could carry
some uncertainties); this is where calibration fields have an advantage, with a large combined area
spread out in random locations on the sky, along with thousands of hours of total integration time. The
uncertainty in the real value of the EBL adds further to uncertainties in determining how deep ALMA
surveys have to go to resolve all the sources of the EBL. Furthermore, at the faint end, a significant
number of recent measurements rely on serendipitously detected sources in ALMA fields targeting
different sources, which could be biased if there is significant clustering around the main targets. At
Sn & 0:03mJy, it is interesting to note the difference between the serendipitous archival results of
Fujimoto et al. [70] and the ASPECS results of Aravena et al. [619] and González-López et al. [62], which
could be due to such overdensities in the archival fields (see also the Frontier Field results of Muñoz
Arancibia et al. [71], though their errors are larger). Given the small area of the ASPECS Pilot field,
differences could have been attributable to cosmic variance. However, the discrepancy remains when
using the five times larger area of the ASPECS Large Programme field; González-López et al. [62] argue
(based on modelling by Popping et al. [75]), that cosmic variance alone is not enough to reconcile their
results with previous studies.

If we extrapolate the integral of the Schechter-function fit to a compilation of 1.2mm number counts by
Hatsukade et al. [66], which include most of the studies plotted in figure 26, the EBL measured by Planck is
fully recovered by going down to approximately 0.04mJy. However, the faint end number counts are
mainly driven by the relatively steep faint-end number counts from the serendipitous-detection studies
of Fujimoto et al. [70] and Carniani et al. [621], and in contrast with the faint-end stacking results from
Aravena et al. [619] (note also that Carniani et al. [621] obtain a shallower slope at the faint end). The
integral of the triple power law of González-López et al. [62] (dark teal line) accounts for a much flatter
low faint-end of the number counts, and produces a different result: that even down to 0.01mJy, the total
EBL is not yet fully recovered. More deep blank fields over larger areas will be needed to constrain the
faint end of the number counts more robustly and less dependently of clustering and cosmic variance
(the ongoing ‘ALMA Lensing Cluster Survey’ Large Programme (PI: Kohno) will address this). However,
the uncertainty on the exact value of the total EBL at approximately 1mm remains, as discussed above.

Nevertheless, it is clear that with ALMAwe are very close to resolving most—if not all—of the sources
that contribute to the EBL at current depths; going much deeper is not likely to yield a new population of
significant sources. The next step is then to look at the properties of the individual galaxies, including their
stellar masses and redshifts, by matching with their optical/near-infrared counterparts. Using the deep
ASPECS Large Programme observations, González-López et al. [62] find that the 1mm number counts
are dominated by sources at 1 < z < 3. They find that there is a continuum in galaxy properties as we
move in flux density: the bright number counts (S1:2mm * 1mJy) are dominated by massive
(M� * 1011 M�), highly star-forming (SFR � 100�1000 M�yr�1), dusty sources (Mdust * 109 M�); at
intermediate flux densities 0:1 & S1:2mm & 1mJy, we find galaxies with typical M� � 1010�1011 M�,
SFR � 10�100M�yr�1, and Mdust � 108�109 M�; at the faintest flux density levels probed by ALMA
(S1.2 mm < 0.1 mJy), the number counts are dominated by the very low-mass (M� & 109 M�), low-star
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formation rate (SFR , 10 M� yr�1), least dusty (Mdust � 107�108 M�) sources, that require the deepest data
from HST/Spitzer to be detected in the rest-frame UV/optical.

4.3. Blind CO detections and the evolution of the cosmic molecular gas density
With its sensitivity and bandwidth, ALMA is a prime instrument to perform deep spectroscopic
surveys of CO. However, even with its approximately 8 GHz bandwidth, this is a time-intensive task,
and so far only one survey, ASPECS [216], has carried out a blind spectroscopic search for CO across
the full range of frequencies (and thus redshifts) allowed by ALMA. ASPECS used the full combined
bandwidth of Bands 3 and 6 to search for (low- and mid-J) CO emission from sources at redshifts
0 < z < 5 in a 1 arcmin2 region in the Hubble Ultra Deep Field (Pilot survey), and later on an area
five times larger (Large Programme). They reached CO line sensitivities of approximately
L0CO � 2� 109 K km s�1 pc2.

The pilot ASPECS survey yielded a total of 11 blind CO detections in the 1 and 3mm bands [215], i.e.
sources that were found purely from searching for lines in the data cube without a priori knowledge from
other observations. The large programme robustly detected 16 CO sources so far in the 3mm map
([78,598,626], 1 mm dataset is ongoing at the time of writing). The blind CO detections show a
remarkable diversity in their properties [626–628]. These sources are found at z∼ 1–4 and have a
broad range of stellar masses (M� � 0:03�4� 1011 M�), star formation rates (SFR approximately
0� 300 M� yr�1), and molecular gas masses (MH2 � 5� 109�1:1� 1011 M�). Aravena et al. [626]
show that they follow the scaling relations between gas content and star formation rate/stellar mass
found for stellar mass/SFR-selected samples ([345], §3.1). The CO-detected sources extend the
previously established relations in the gas depletion timescales and gas fractions probed, and in some
cases significant outliers are found. In particular, the ASPECS blind scan is capable of detecting
galaxies below the main sequence that have significant molecular gas reservoirs.

The blind CO detections obtained by ASPECS ([78,215], Decarli et al. [629]) allow for the
characterization of CO luminosity functions out to z∼ 4. By integrating the luminosity functions (and
assuming CO excitation corrections and a CO-to-H2 conversion factor), one can trace the evolution of
the cosmic density of molecular gas, ρH2(z), in an unbiased way out to those redshifts. Overall, the
ASPECS survey shows that the CO luminosity functions evolve significantly through cosmic time [78].
As shown in figure 27, the molecular gas density of the Universe peaked at z∼ 1–3 (coincident with
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the peak of cosmic SFR density; e.g. [2]), when it was between three and seven times higher (depending

on the adopted CO-to-molecular gas conversion factor). A complementary effort using over 300 h of VLA
time to measure low-J CO transitions over a 60 arcmin2 area by the COLDz team [630] finds a similar
result. Figure 27 also shows the evolution of ρH2(z) obtained using the targeted molecular gas and
dust continuum surveys discussed §3.1.2 (PHIBSS, A3COSMOS, and the survey by Scoville et al.
[344]). All these surveys show a similar qualitative redshift evolution, though the A3COSMOS survey
seems to obtain systematically higher gas masses. The differences are probably due to different
methodological approaches, e.g. different stellar mass regimes used to integrate the CO/molecular gas
functions, different assumptions about the shape and evolution of the star-forming main sequence,
and/or different assumptions regarding the CO conversion factor (R. Decarli 2020, private
communication). A quantitative analysis of these differences would be extremely beneficial to the field
but is outside the scope of this review; for now we focus on the similar qualitative evolution of ρH2(z)
obtained by the different studies. The quantitatively coincident evolution of SFR density and
molecular gas density seems to indicate that the SFR density of the Universe since at least z∼ 3 is
mostly dominated by the available molecular gas supply to form new stars, rather than an evolution
of the star formation efficiency in galaxies. Despite consistency with this overall picture, detailed
comparisons with cosmological galaxy formation models [183] show that those models struggle to
reproduce the redshift evolution of molecular gas density, and the number of gas-rich galaxies.
Popping et al. [183] show that the tensions between models and observations can be alleviated to
some extent by changing the assumed CO excitation and conversion factor, and that they cannot be
fully explained by cosmic variance. They argue that the current underestimation of the molecular gas
reservoirs in z > 1 galaxies in theoretical models—as compared with the ASPECS measurements—
could be linked to broader problems in modelling the gas accretion and feedback in galaxies that also
make matching the SFRs challenging. That study demonstrates clearly that improved empirical
constraints on the full baryonic content of galaxies and their star formation rates, including molecular
gas reservoirs, are crucial to test current models, in particular their sub-grid physics.

4.4. Continuum and [CII] line searches at high redshift
Deep blind surveys have also attempted to detect galaxies well into the epoch of reionization via their
[CII] and dust continuum emission (e.g. [633–635]). The deepest of these surveys so far was the
ASPECS Pilot survey [619]. The frequency range of the ASPECS ALMA Band 6 covers [CII] emission
at 6 < z < 8. Aravena et al. [636] find 14 [CII] line candidates at greater than 4.5σ in the ASPECS Pilot
region of the UDF, two of which are blind detections, i.e. with no counterparts in the optical/near-
infrared HST imaging. None of those line candidates are detected in the dust continuum, consistent
with the study of Lyman-break galaxies of Capak et al. [445]. These observations are a first step
toward determining the evolution of the [CII] luminosity functions at high-z, as well as testing how
local relations between [CII] and infrared luminosity/star formation rate evolve into the epoch of
reionization. Using blind detections rather than following up known samples (such as LBGs) helps
provide an unbiased census of the [CII] emission at high-z. These blind detections suggest that the
typical [CII]-to-IR luminosity ratio might be much lower at 6 < z < 8 than in the local Universe,
somewhat in tension with the results of Capak et al. [445] discussed in §3.4. However, this particular
study acknowledged a relatively high rate of potentially spurious sources (60%; see also [637] for a
report of spurious [CII] detections in SSA22), and deeper observations over larger areas are needed to
improve on the statistics of the luminosity functions and SFR calibrations. Recent work on the full
ASPECS [638] shows that none of the previous [CII] detections of Aravena et al. [636] are recovered,
highlighting the very high rate of spurious sources. From the theoretical side, models that predict the
number counts of [CII] sources (e.g. [576,639]) predicted ASPECS should essentially see less than one
galaxy in [CII], consistent with the latest results.

Targeted studies such as the ALMA Large Programme to INvestigate [CII] at Early times (ALPINE)
survey (e.g. [584,640–644]) are a more promising way to detect [CII] emission at high-redshift. ALPINE
targeted a sample of 118 spectroscopically confirmed star-forming galaxies at 4.4 < z < 5.9 with a typical
beam size of 0.7 arcsec (≃6 kpc). They detect 64% of their targets, and show that their detections are
diverse in terms of morphology and kinematics, including rotating discs and mergers. ALPINE is only
starting to produce results at the time of writing, but it is already demonstrating how ALMA can take
advantage of the brightness of [CII] in star-forming galaxies to trace their detailed structure and
kinematics [642], and even detect gas outflows and metal enrichment of the circumgalactic medium in
the early Universe [584].
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5. Concluding remarks

In this review, we have described some of the ways in which ALMA is revolutionizing our understanding
of high-redshift star formation and galaxy evolution in general. ALMA’s unprecedented sensitivity
allows us to extend studies beyond the bright, starbursting sources, and toward the more ‘normal’
star-forming galaxies that contribute the most to both the far-infrared/millimetre extragalactic
background light and the cosmic star formation rate over the history of the Universe. The exquisite
spatial resolution of ALMA allows us to disentangle different galaxy components and, crucially,
observe the processes that shape galaxy evolution down to the relevant physical scales. The frequency
coverage has opened up a new realm of line tracers of the multi-phase interstellar medium, allowing
studies of the detailed dynamics, chemical composition and physical conditions from dense molecular
clouds to the diffuse ionized medium, and in sources from the peak of cosmic star formation rate at
z≃ 2 to the epoch of reionization. This review has attempted to capture the most exciting science
results enabled by these new capabilities in the less than 10 years since the start of operations;
however, many open questions still remain, and some of the new observations have uncovered a new
set of puzzles to solve in both the short and longer term. Here we highlight a few.

While ALMA has allowed large samples of single-dish-selected SMGs to be reliably identified for the first
time—enabling a plethora of studies on their physical properties—most of the samples studied still lack
complete redshift distributions. Even with reliably identified counterparts, optical/near-infrared
spectroscopic redshifts are challenging (or impossible) to obtain due to the high levels of dust obscuration
in these galaxies. ALMA should be the redshift machine for such sources, where a frequency scan would
have the added benefit of yielding multiple lines with which to study the physical conditions and
chemistry of the interstellar medium. However, such a survey requires multiple frequency settings across
multiple bands, and has so far only been attempted in bright, strongly lensed sources [163,191,237].
A complete, unbiased redshift distribution of SMGs (including those now resolved into multiple distinct
sources) is necessary not only for distinguishing between different theoretical models for SMG formation,
but also for determining the prevalence of massive, dusty galaxies at early cosmic epochs. This has to be
combined with more systematic searches for dusty high-redshift sources using, e.g. surveys at longer
wavelengths (e.g. [540]) in order to get the true infrared luminosity function and dust corrections to the
high-redshift star formation rate density of the Universe. Such studies will be complemented by next-
generation facilities like the SPace Infrared-telescope for Cosmology and Astrophysics (SPICA; [645])
satellite, which will not only detect dust-obscured galaxies and AGN (which can then be followed up
efficiently with ALMA) out to high redshifts through wide-area photometric surveys, but will help
uniquely characterize the composition of the dust in these galaxies through IR spectroscopy.

Concurrently with progress in identifying the brightest submillimetre sources, the dust content of the
very earliest galaxies—close to and even within the epoch of reionization—is now being measured for the
first time thanks to input from optically selected samples and the unique sensitivity of ALMA. This is
partly thanks to an explosion in studies of the [CII] line, which has delivered on its promise of being
a work-horse line in the era of ALMA. A puzzling picture has emerged wherein some low-mass
galaxies at z > 4 seem to have lower dust contents and potentially different dust attenuation curves
than what is usually assumed. However, at the same time, vast amounts of dust (exceeding 107 M�)
have been detected in other high-redshift low-mass star-forming galaxies and in quasar hosts (e.g.
[550,551,553]). These observations challenge our usual assumptions about dust at high redshifts, and
they highlight the need for multi-frequency ALMA observations in order to get the most accurate dust
temperatures, luminosities and masses. At the same time, JWST observations will be crucial to
measure metal enrichments, star formation histories, and dust attenuations for these early galaxies, all
of which are crucial to piece together the picture of how dust is forming and evolving in these
systems. Observational progress in understanding the emergence and evolution of cosmic dust in the
earliest galaxies will have to go hand-in-hand with advances in theoretical modelling. A promising
avenue is the detailed modelling of the stellar and gas/dust distribution in zoom-in hydrodynamical
simulations, including radiative transfer, that can inform on the way observables are affected by
different dust intrinsic properties and spatial distributions (e.g. [167,536,539,646]); see also the review
by Dayal & Ferrara [83] and references therein. Additionally, models tracing the formation and
growth of dust grains from supernova and evolved star envelopes to the dense ISM in the
cosmological context are becoming ever more sophisticated (e.g. [208,556,647–650]).

The unmatched spatial resolution achievable with ALMA has allowed studies to resolve the dust
continuum and gas distributions in previously unresolved high-redshift galaxies on kpc and even
sub-kpc scales, revealing the gas/dust continuum sizes, profiles and sometimes even morphologies
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of many high-redshift sources for the first time. While the highest resolution imaging possible with ALMA

will necessarily remain limited to select sources due to the inherent trade-off between spatial resolution and
surface brightness sensitivity, a handful of strongly lensed sources have even been mapped on scales of
approximately 10 s of pc (though we note that such cases are still rare). In some cases, the dust
continuum emission seen with ALMA is uncorrelated with the existing stellar populations revealed by
deep HST images, and there are often spatial offsets between the dust emission and the (rest-frame
ultraviolet and optical) stellar emission probed by HST. In these cases, we still need to understand how
the observed anti-correlations/offsets affect the interpretation and globally derived properties for the
high-redshift sources. The highest fidelity sub-kpc mapping of unlensed sources has revealed robust
substructure in some galaxies—including structures resembling bars, rings, and spiral arms (e.g. [439])—
but currently only for a handful of the brightest SMGs. The evidence for such galactic structures still
needs to be assessed in the broader SMG population, as well as the theoretical implications for the
mechanisms governing their evolution. Meanwhile, the lack of evidence for such structure in IR-fainter
sources needs to be investigated further. Ultimately, a complete understanding of the structure of high-
redshift, dusty sources will also require kinematic tracers (using, e.g. [CII] or CO lines) observed at high
spatial resolution, and, in the near future, deep high-resolution near- and mid-infrared imaging with the
JWST, which will pierce through the dust to reveal the underlying stellar populations.

The relationship between star formation and stellar mass (the so-called ‘star-forming main sequence’
of galaxies) has become a fundamental relation with which astronomers try to understand galactic
evolution. Despite this fact, its nature and driving mechanisms are still poorly understood, especially
at high-redshifts. ALMA has enabled progress in this area by beating the confusion limit of the
Herschel Space Telescope, easily detecting the dust emission from non-submillimetre-selected ‘main
sequence’ star-forming galaxies at z > 3. This feat has effectively forced the submillimetre community
and the general high-redshift community to merge, leading to some confusion in the terminology.
More critically, without multi-frequency observations—including high-frequency ALMA bands—there
are still large (order of magnitude) uncertainties in the total infrared luminosity (and hence star
formation rates) inferred from low-frequency, single-band ALMA measurements. Future multi-band
observations with ALMA could address this problem, while rest-frame near-infrared imaging with the
JWST will further help reduce uncertainties on stellar mass estimates of dusty star-forming galaxies at
high redshift, particularly for the classically studied SMGs and other ALMA-detected sources that lack
an optical counterpart (HST-dark). It is crucial to note, however, that placing galaxies accurately in the
star formation–stellar mass parameter space is not sufficient for understanding their nature. ALMA
has access to additional information on their molecular gas content and neutral gas kinematics, which
can be complemented with integral field unit (IFU) observations of their ionized gas (currently
available with KMOS and MUSE, e.g. [627], and in the future with extremely large telescopes (ELTs)),
and/or high-resolution imaging with the JWST. Synergies with such facilities will be crucial
to disentangle the detailed physical processes shaping the so-called main sequence and other
scaling relations.

ALMA has revealed the molecular gas reservoirs of unprecedentedly large samples of galaxies at
high redshifts, including blindly selected samples from deep fields (e.g. ASPECS; [216]). This is crucial
to understand how star formation is fuelled in galaxies, and what determines the star formation
history and efficiency in galaxies. However, there are still open questions about what is the best
method to measure the molecular gas mass in early galaxies. CO measurements with ALMA at high-
redshifts rely heavily on excitation corrections and the CO-to-H2 conversion factor αCO, both of which
may carry significant systematic uncertainties. One way to overcome the excitation corrections is to
target the ground-state CO(1–0) line with the VLA (e.g. COLDz; [630]), or in the future with the
planned ALMA low-frequency bands (Band 1 at 35–50 GHz, currently being built, and Band 2 at
65–90 GHz), the proposed next generation VLA (ngVLA), and the Square Kilometre Array (SKA);
however, one still must contend with the uncertainty in αCO (as well as the increasing effect of the
cosmic microwave background at the highest redshifts). This is where better calibrations of αCO from
local studies for a range of metallicities and star-forming environments could be helpful (e.g.
[457,651]), in tandem with theoretical modelling (e.g. [484]). Alternatively, more work needs to be
done to investigate and calibrate other proposed molecular gas tracers at high-redshift, such as dust
continuum, [CI], or even [CII], for a wide range of galaxy properties (e.g. [380,652]).

In addition to the (now) ‘typical’ molecular and atomic gas tracers studied in high-redshift sources
(e.g. CO, [CII]), ALMA’s sensitivity and frequency coverage have allowed novel new studies of
additional emission/absorption lines in the (sub-)millimetre regime, including new results on
(typically higher-J) dense gas tracers, CO isotopologues, a variety of atomic fine structure lines, and
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molecular absorption lines. Such studies have the potential to open up an entirely new window into the

ISM properties of distant star-forming galaxies. However, aside from studies targeting [CII] and other
bright fine structure lines—which have exploded, particularly at the highest redshifts—many of these
lines are still too faint to detect/resolve in all but the brightest/most strongly lensed sources. This is
another area where future radio/millimetre facilities (ALMA Bands 1 and 2, the ngVLA and the SKA)
will play a fundamental role through the detection (and imaging) of low-J transitions of dense gas
tracers and potentially even radio recombination lines at high-redshift (e.g. [486,653]).

The current capabilities of ALMA have not yet been exploited to their full potential to address the
issues described above and other open questions. There are bound to be more exciting results in the
coming years. Looking ahead, further improvements in ALMA’s capabilities are being proposed as
part of the ALMA Development Roadmap [654]. The ‘Origins of Galaxies’ is one of the three
fundamental science drivers for ALMA in the next decades, namely to ‘trace the cosmic evolution of
key elements from the first galaxies (z > 10) through the peak of star formation (z = 2–4) by detecting
their cooling lines, both atomic ([CII] and [OIII]) and molecular (CO), and dust continuum, at a rate of
1–2 galaxies per hour’. With this in mind, current upgrade priorities are to broaden the receiver
instantaneous bandwidth, and to upgrade the associated electronics and correlator. Such an
improvement—as recently highlighted by the high-performance wideband correlators deployed on
NOEMA (PolyFiX) and the SMA (SWARM; [655])—would enable faster spectral scans (including
redshift surveys), and deeper and wider continuum surveys. This would allow for large statistical
samples of galaxies at high redshifts, sampling the parameter space down to low luminosities and
high-redshifts, and for more efficient spectroscopic studies. These capabilities, combined with the
future facilities of the 2020s and 2030s such as the JWST and ELTs, hold exciting promise for the
future of multi-wavelength studies of galaxy evolution out to the earliest cosmic epochs.
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