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ABSTRACT

Some battlefield models have a component in them which models the time it takes

for an observer to detect a target. DifTerent observers may have different mean detection

times due to various factors such as the type of sensor used, environmental conditions,

fatigue of the observer, etc. Two parametric models for the distribution of time to target

detection are considered which can incorporate these factors. Maximum likelihood esti-

mation procedures for the parameters are described. Results of simulation experiments

to study the small sample behavior of the estimators are presented.
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I. INTRODUCTION

Some battlefield models have a component in them which models the time it takes

for an observer to detect a target. A common model is that the time to detect a target

is a random variable having a distribution P„(l — e'^'), [Ref 1]. However different ob-

servers may have different mean detection times due to various factors such as the type

of sensor used, environmental condition, fatigue of the observer, etc. In this thesis we

will consider two parametric models for the distribution of the time to detection which

can incorporate these factors.

Suppose there are M observers, such as tank crews. Observer / is presented with .V,

targets. In Chapter 2, observer / has a parameter A, which reflects the ability of the

observer to detect a target. The parameters of the M observers, A^, A^, A^ , ... , Ay; , are

assumed independent, having a comnion gamnia distribution. Given A„ the detection

times of observer / are conditionally independent, having WeibuU distributions. In

chapter 2 the parameters of the conditional Weibull distributions are assumed known

and interest is in estimating the parameters of the gamma distribution.

In chapter 3 observer / has explanatory^ variables x,,,, x„2, x,^^, ... , .r,,^ relating to his

J"' target representing factors which influence his time to detection. The detection times

for the observers are independent random variables having Weibull distributions. The

location parameter of the Weibull distribution for the detection time of the/'' target by

the i"' observer is of the form n,j
= e'-ri where x..p_ = Z.x,^A ; the shape parameter is of

the form e^^: Interest is in estimation of {/?*) and {i:,}.

In both chapters the data for the observers can be censored. The /"' observer has an

opportunity time O,. to detect his/' target. If the/' target is not detected in time 0„, the

time to detection is cen-^ored. Data for the /'' observer consist of { possibly censored )

times to detect the .V, targets.

Chapter 2 and 3 present iterative procedures based on maximum likelihood to esti-

mate the parameters. Results from simulation studies of small sample size behavior of

the estimators are given.

These models and estimation procedures should be of eventual use in the Army

M.ANPRINT program, an objective of which is to better understand the human con-

tribution to battlefield performance [Ref 2).



II. A HIERARCHICAL MODEL FOR TIMES TO DETECTION

A. MODEL
Suppose there are M observers who attempt to detect targets on a battlefield. Ob-

server / has a parameter A, ,
/= 1.2,3,...,M, which reflects the ability of the observer to

detect a target. Observer / is presented with ;V, targets. The targets are presented one at

a time. Let U,j be the time it takes for observer / to detect target J. Assume, given

A, = 6 , the L'tj, J = 1,2,3,...,A''„ are conditionally independent random variables with

Weibull distributions

P{L-^< / M, = ^} = 1 - exp {
- 0(//m/'''] />0 (2.1)

independent of other observers.

Further, assume the parameters A„ i = 1,2.3 M. are independent identically dis-

tributed having a Gamma distribution with density function as follows:

g{e)=
\-^^

e-^' (2.2)

where ^ > 0. The A, variations are introduced to represent individual observer differ-

ences. Now let

Zii = In Uii .

It follows that

= l-exp{-6'[exp(z-lnMy)]'"
(2.3)

Hence, the conditional density function of Z,^, given A, = 6 , is

fz„
I
a(^ i

^) = ^ exp{(z - In /ly^" ''}e-
'' exp{ - e( exp{(z - In n,j)e- '})] . (2.4)

When the /''' observer is presented with his/' target, he gets a length of time called

opportunity time 0„ to detect it. An observer either successfully detects the target within

this time or is unsuccessful. Data for the i''' observer consist of times of detections for



the successes and the lengths of opportunity times for the failures. For each /
=

1.2.3 M . ; = 1.2.3....,.V .let

})j = min( In l)j, In Oy) (2.5)

and

. _fl if Uy<Oy

[0 otherwise .

The }' are the censored In-detection times and A„ is an indicator of whether or not the

In-time to detect the/ target by the /"' observer is censored. Let

C'=Z^i/- (2.7)

be the number of targets detected by observer /.

In this Chapter we will assume [fi,,] and {i,} are known constants. We are interested

in estimating the parameters rj and Pq with a = e' and -^ = ^^o using maximum likelihood.

These parameter estimates can be used to predict future times to detection for an ob-

server given his past performance. In the next section we describe a Nevnon - Raphson

procedure for solving the likelihood equations, [ Ref 3]. [ Ref 4]. In the final section of

this chapter we describe a simulation experiment to study the small sample properties

of the estimators. Results of the simulation are also presented.

B. ESTI.MATION

I. The Likelihood Equation and Maximum Likelihood Estimates

Given A = . it follows from equation (2.3) and (2.4) that the conditional hke-

lihood function for observer / using the censored In-times y,j is

L,(M. i; 6) = n[aA-'^'^'>"^-^]^ exp[ - 0.<^..' " ^ -v>"
']

(2.8)

Let



S, = ^exp[CK^-lnM/y)^-^'] . (2.9)

7=1

Rewriting equation (2.8)

In Liix, i, >y, /?o)
= In A',- + e''^% - (Q + e''^ ^'>) ln(S,- + e'')

c-i

+ Yjlnie"^^ ^' + k)

(2.10)
L,(/x, i; ^) = e^- exp

j
^A^.[(>;^ - In /i^^" ^' - ^,] i exp( - OS,)

= e^'Ki exp( - eSi)

where

/:, = expj 2]a^[Cv^ - In n^j)e- ^' - <^,] l (2.11)

The unconditional likelihood for observer / is

L,.(Ai, 1, oc, y) = f^L/M-i;^) g{e)dd

^ ' ^ A-=o

C,-l
y

If C, = 0, then n (y + /c) = 1. Recall the parametrization a = e" and — = e^o . The un-
k =

conditional In-likelihood function for observer / can be rewritten as

(2.13)

where if C, = 0, then X ln(^''*^o + k) = 0. Since the observers are independent, the un-

conditional In-likelihood for all M observers is

L = £i In A, + e''^ ^7 - (Q + e''^ ^°) ln(S, + e") + J] Me^^
^° + k)



(2.14)

The derivative of the In-likelihood with respect to ?/ is

L''+% + ^'/+^o_^'7+/?oin(5. + ^'')-
a + e^-

Si + e"

(2.15)

The derivative with respect to ^o is

(2.16)

We are assuming (^, } and {l,} are known. The problem is to find the maximum likeli-

hood estimates of tj and /?o ; that is, find rj and p^ such that -^r— = and ^ JI
^ = 0.

Note that

epo

r In i

(2.17)

Thus, if -^-T-,— = 0, then to solve the equation —:;; = , we need to solve the
c/Jq 01]

equation



5,+ ."

'^ _ ^2»7+y?o

[e'^S-.-O]
e'-

S, + <

(=1

The derivatives ofy(?/, po) with respect to >/ and j^o are as follows :

= ^>,/?o) ;

(2.18)

(2.19)

MnL
Solving the equation ——— = is equivalent to solving the equation

M C,-\

= g(,,W-^[.-ln(S, +O+^^^

The derivatives o^ g{r], /?o) with respect to rj and ^o are

ii-= vri _—ll__ v_i!i!^

(2.20)

(2.21)

(2.22)



where if C, = 0, then the sum involving C, - 1 is zero. A Newion procedure to solve the

cL cL
equations -:— = and -rr- = would use the foUowine equations

=Av . Po) +—T-— {n-v ) +—Jj; (/^o
-

(^o) (2-24)

= g{n , /^o)
+

:: ('/ - ^ )
+ TT (/?o

-
/^o) (2-25)

c;/ cpo

where r/° and ^o are current values for rj and ^o- However note that \ff[}u Po) = 0, then

cf
-rr- = 0. Hence, a Ne\non procedure that is more stable numericallv would use the
O]

equations

0=V./J2) + ^^7^Wo-/!2) (2.26)

= ^(V , /?o)
+ ^ i^-V ) (2.27)

which results in

k-el- T/"'^"' (2.28)

2. Initial Condition

In this subsection, we describe a rough way to provide initial estimates oft] and



Po to Start the iterative Ne^^lon procedure of the previous section.

The uncensored random variable U,^ has the same distribution as

LV = M/;(^r (2.30)

where W,j is unit exponential random variable. Let

Zij = In l)j

= In ^ij + e^' In IVy —e'-' In A^ :

(2.31)

then

£[ln H'^] = - 0.5772 (2.32)

2

VARl\nWij]=^ . (2.33)

[ Ref. 5: p. 943 ]. An approximation to the moments of In A, is given by the first two

terms of a Taylor expansion o[\n{A,) about the mean ElA^ = —

\n{A,) ^ ln( -f ) + -|— (^, -^ ); (2.34)

£[ln/ij^lny-lna ; (2.35)

VARl\nAi']^{Y)^^ARlAi']

=(tW (2.36)

thus

Let

Hence,

= In W. - In A,
(2.37)



£[r'..] = -0.5772 - ( In y - In a) (2.38)

VARll];] = VARl In W^] + VARl In A,j] - 2cov{ In W)j, In A,)

~
6 > •

Rough estimates of the first and second moments of V^j are given by

M 'V-

yX =
''^''^'

,^ V (2.40)

and

•"2 = """
„ V

• (2-41)

Recall the parametrization

Thus

and

(2.42)

(2.43)

(2.44)

£[K^.] = _0.5772-lny + lna

= -0.5772 -lrj + p,-] + ri (2.45)

= -0.5772 -i?o ;



^^

(2.46)

= JI_ i ^- (V+ ^o)

6

Equating the rough estimates of the moments of F,^ with the mean and variance of V,j

we obtain initial estimates

P^ = - M, _ 0.5772
; (2.47)

(2.48)

-
/?o . The latter condition usually occurs in the

simulations indicating that a better initial condition might be found.



3. Implementation in Simulation

The following flow diagram describes one replication of a simulation exper-

SET CONSTANTS

X
GENERATE RANDOM VARIABLES

EXPONENTIAL ( M, ), GAMMA { A, )

' = I,2J M

J = 1.2.3 N,

COMPUTE UNCENSORED DETECT ION TIME

COMPl'TE INITIAL \ ALL'E

a<! in Eg (2.40) ajid (2. -4 1)

p„ = - //, - 0.5772

7^=-ln\ -/Ij

COMPl'TE n and /?, as in EO (2.2.S) and (2.29)



C. SIMULATION PROCEDURES AND RESULTS

1. Simulation

All simulations were carried out on an IBM 3179 G computer at the Naval

Postgraduate School using the APL GRAFSTAT random number package [Ref. 6].

Histograms of simulated estimates were produced by an experimental APL package

GRAFSTAT which the Naval Postgraduate School is using under a test agreement with

IBM Watson Research center, Yorktown, Height, NY. The simulation is replicated for

R = 100 replications. Each simulation experiment of 100 replications starts with the

same random number seed. The mean bias (M.B) and its standard error ( S.E(M.B) ),

mean square error (M.S.E) and its standard error ( S.E{M.S.E) ) from R = 100 repli-

cations are computed as follows :

R

M.B = -^y (p,-li) (2.49a)

(2.49^)

R

M.S.E = -j^y {l-py (2.50a)

S.E{M.S.E)= U^^-^\(ifJ.- pf - M.S.Ef {2.50b)

i=\

where /?, is the point estimate of the true value /? for the /th replication and R is the

number of replications.

The simulation experiment to study the sampling properties of the estimators

of 7/ and (Iq is as follows.

1. Give arbitrary- constants for ix,j and ^, ( //,^
= 4.2 , (^,

= )

2. Set the same opportunity time , 0,„ for M observers, / = 1,2,3....,M,7 = 1,2,3....,

A',. The constant opportunity time is changed to give different censoring levels. The
different values for 0„ are 10, 25, 40.



3. Generate gamma random variables for M observers ( A1A2, A^^A^ with shape pa-
rameter ) = 1.5, scale parameter a = 6.5 ).

4. Generate independent exponential random variables with mean 1 ( \V\j, i
=

1,2,3,.. .,M,; = 1,2,3,..., A', ).

5. Compute the detection time L\j for observer / to detect target y

Ai

6. Compare In L',, with In O,^, then choose the smaller one for the data

Yij = min( In Uij^ In 0,y)

and compute the censoring indicator A,, as in equation (2.6)

7. Compute the moments M^ and .\/, for the observations that are not censored as in

equation (2.40) and equation (2.41).

8. Compute the initial value for >/ and /?o as in equation (2.47) and equation (2.48)

9. Use equation (2.28) and (2.29) to fmd new values for ri and ^0

10. Iterate the procedure until the differences between successive values of?/ and /?o

are small. ( less than lO"" ).

2. Results

In this section results from the simulation experiments will be reported. Simu-

lation experiments were done for various numbers of observers and targets and values

of the opportunity time. The numbers of observers considered are M = 5, 15, and 30.

The numbers of targets considered are A' = 5, 15. 30, and 50 for each observer, For all

simulation experiments, the ^,..
= 4.2. c, = 0. y = 1.5 and a = 6.5. From equations

(2.42) and (2.44) the true values of t] and po are found to be 1.8718 and -1.4663.

Histograms of the diflerence between the estimates and the true values, rj, - rj and Pq
-

00 are shown in Figures 1 through 18 of Appendix A. For Figures 1 through 6, 0,j
=

10; for Figures 7 through 12, 0„ = 25; for Figures 13 through 18, 0,j = 40. The fraction

of detected level or uncensoring level ( UC ) for R replications of each simulation is de-

termined by following equation

R M

^^C = -f^S (2.51)



where C,{r) is numbers of targets detected by observer / in the r'* replication, N^r) is the

number of targets presented to observer / in the r"" replication. The UC's for the simu-

lations using the same opportunity time are then averaged to obtain the mean UC for

that opportunity time. For each Figure of Appendix A and B, the mean uncensoring

level for the opportunity time is given in parenthesis. Mean bias and mean square error

are recorded in tables 1 through 9 for each of the estimators; their standard errors appear

in parenthesis below. Tables 1, 4 and 7 present all of the means and standard errors for

different opportunity times. The other tables present the same results in a more con-

venient fashion; the mean biases are displayed with the mean square error in parenthesis.

For each Table, the opportunity time(O) and average uncensoring level(L'C) for that

opportunity time are given at the top of table.

• Results for >/

The histograms of fj - rj are centered about with a shght amount of
skewness to the right. Increasing the opportunity time, which results in less cen-

soring, has very little effect on mean bias and mean square error. Increasing the

number of targets for a fixed number of observers has some tendency to decrease

the mean square error and bias. Increasing the number of observers for a fixed

number of targets has the greatest effect on decreasing the mean bias and mean
square error.

• Results for po

The histograms of /?o
-

/?o are centered around with some skewness to the

left. Once again changing the opportunity time has little effect on mean bias and
mean square error. Changing the number of targets for a fixed number of observ-

ers also has little effect. Increasing the number of observers for a fixed number of

targets has the greatest effect on decreasing the mean bias and mean square error.



Table EAN BIAS, MEAN SQUARE ERROR AND STANDARD ERROR AT
= 10 AND UC=37%

Number of

Observers
Number of
Targets

V /?o

M.B
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

5

5
0.79

(0.12)

2.04

(0.17)

-0.07

(0.06)

0.36

(0.09)

15
0.58

(0.11)

1.33

(0.15)

-0.08

(0.05)

0.25

(0.05)

30
0.42

(0.09)

0.97

(0.12)

-0.12

(0.04)

0.19

(0.03)

50
0.43

(0.07)

0.68

(O.OS)

-0.05

(0.04)

0.14

(0.03)

15

^ 0.19

(0.09)

O.Sl

(O.IO)

-0.02

(O.03)

0.12

(0.02)

15
0.19

(O.OS)

0.72

(0.01)

-0.01

(0.03)

0.07

(0.01)

30
0.09

(0.04)

0.20

(0.03)

-0.07

(0.03)

0.07

(0.01)

5i)
0.14

(0.05)

0.23

(0.04)

-0.02

(0.03)

0.06

(0.01)

30

5
0.29

(O.o~)

0.54

(0.10)

-0.03

(0.02)

0.05

(0.01)

15
0. 1

3

(0.05)

0.21

(0.04)

-0.01

(0.02)

0.03

(0.01)

30
O.OS

(0.03)

0.10

(0.01)

-0.04

(0.02)

0.03

(0.01

)

5<>
O.oi

(0,03)

0.09

(0.01 )

+ 0.OO4

(0.02)

0.02

(0.003)



Table 2. MEAN BIAS AND MEAN SQUARE ERROR AT
UC=37%

0=10 AND

M.BiM.S.E) for n \

5TGT 15 TGI 30 TOT 50 TOT
5 0BS 0.79(2.04) 0.58(1.3) 0.42(0.97) 0.43(1.68)

15 CBS 0.19(0.81) 0.19(0.72) 0.09(0.20) 0.14(0.23)

30OBS 0.29(0.54) 0.13(0.21) 0.08(0.09) 0.01(0.09)

Table 3. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 37%

0=10 AND

M.BiM.S.E) for k \

5 TOT 15 TGI 30 TGT 50 TGT
5 DBS -0.07(0.36) -0.08(0.25) -0.12(0.19) -0.05(0.14)

15 OBS -0.02(0.12) -0.009(0.07) -0.07(0.07) -0.02(0.06)

30 DBS -0.03(0.05) -0.01(0.03) -0.04(0.03) -0.004(0.02)



Table 4. M
O
EAN BIAS. M
= 25 AND UC

EAN SQUARE ERROR AND STANDARD ERROR AT
= 62%

Number of

Observers
Number of

Targets

'/
;5o

MB
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

5

5
0.S3

(0.13)

2.23

(0.23)

-0.06

(0.05)

0.25

(0.07)

15
0.52

(O.OS)

0.97

(0.14)

-0.08

(0.05)

0.20

(0.04)

30
0.47

(0.01)

1.00

(0.14)

-0.12

(0.04)

0.18

(0.03)

50
0.47

(0.07)

0.76

(0.10)

-0.05

(0.04)

0.13

(0.02)

15

5
O.20

(0.07)

0.55

(O.OS)

-0.01

(0.03)

0.09

(0.01)

15
0. 1

5

(0.05)

0.29

(0.05)

-0.01

(0.03)

0.07

(0.01)

3')
0.10

(0.04)

0.20

(0.03)

-0.06

(0.03)

0.06

(0.01)

5()
0.16

(0.05

»

0.23

(0.04)

-0.12

(0.03)

0.06

(0.01)

30

5
0.17

(0.06)

0.37

(0.12)

-0.03

(0.02)

0.04

(0.01)

15
0.13

(0.()4)

O.IS

(0.03)

-0.005

(0.02)

0.03

(0.01)

30
0.09

(0.03)

0.09

(0.01)

-0.03

(0.02)

0.03

(0.01)

5t)
o.ol

(0.03)

0.10

(0.0 1)

0.02

(0.02)

0.02

(0.01)



Table 5. MEAN BIAS AND MEAN SQUARE ERROR AT
UC=62%

= 25 AND

M.B{M.S.E} for v \

5TGT 15 TGI 30 TOT 50 TOT
5 0BS 0.83(2.20) 0.52(0.97) 0.47(1.00) 0.47(0.76)

15 0BS 0.20(0.55) 0.15(0.29) 0.10(0.20) 0.16(0.22)

30OBS 0.17(0.37) 0.13(0.18) 0.09(0.08) 0.008(0.10)

Table 6. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 62ro

= 25 AND

M.B(M.S.F) for P, \

5 TGI 15TGT 30 TGI 50TGT
5 DBS -0.06(0.25) -0.08(0.20) -0.12(0.18) -0.05(0.13)

15 DBS -0.01(0.09) -0.007(0.07) -0.06(0.06) -0.02(0.01)

30 DBS -0.03(0.04) -0.005(0.03) -0.03(0.03) 0.02(0.02)



Table 7. MEAN BIAS, MEAN SQUARE ERROR AND STANDARD ERROR AT
= 40 AND UC = 75%

Number of

Observers
Number of

Targets

V (^0

MB
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

5

5
0.S9

(0.12)

2.22

(0.28)

-0.06

(0.05)

0.20

(0.04)

15
0.55

(0.09)

1.08

(0.16)

-0.06

(0.04)

0.18

(0.03)

30
0.49

(0.09)

1.03

(0.16)

-0.12

(0.04)

0.18

(0.03)

50
0.61

(0.12)

1.71

(0.17)

-0.05

(0.04)

0.13

(0.02)

15

5
0.24

(O.OS)

0.70

(0.18)

-0.01

(0.03)

0.09

(0.01)

15
o.l"

(<).(i5)

0.29

(0.05)

-0.01

(0.03)

0.07

(0.01)

?<>
0.12

('>.( 14)

0.20

(0.03)

-0.06

(0.03)

0.06

(0.01)

50
0.35

(0.()4)

0.19

(0.03)

-0.03

(0.03)

0.06

(0.01)

30

5
<). 1

3

(<J.05)

0.24

(0.03)

-0.02

(0.02)

0.04

(0.01)

15
().2i)

(().(>")

0.55

(0.03)

-0.01

(0.02)

0.04

(0.01)

30
0.16

(O.OS)

0.68

(0.03)

-0.04

(0.02)

0.03

(0.01)

50
0.02

(0.()3)

0.09

(0.01)

+ 0.01

(0.02)

0.02

(0.01)



Table 8. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 75%

= 40 AND

M.B{M.S.E) for n

5TGT 15TGT 30TGT 50 TOT
5 DBS 0.89(2.20) 0.55(1.1) 0.49(1.00) 0.61(1.70)

15 DBS 0.24(0.70) 0.17(0.29) 0.12(0.20) 0.35(2.00)

30OBS 0.13(0.24) 0.20(0.55) 0.16(0.68) 0.02(0.09)

Table 9. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 75%

= 40 AND

M.BiM.S.E) for k
5 TGI 15 TGT 30 TGT 50 TGT

5 0BS -0.06(0.20) -0.06(0.18) -0.12(0.18) -0.05(0.13)

15 OBS -0.007(0.09) -0.009(0.07) -0.06(0.06) -0.03(0.06)

30 OBS -0.02(0.04) -0.01(0.04) -0.04(0.03) -0.01(0.02)



III. A WEIBL LL REGRESSION MODEL

A. MODEL
Suppose :here are M cbseners. Each observer is presented with .V targets. Let l\.

be the time it takes for observer / to detect target^ . Let x,r^ , x,^ , .r,,^ ,..., x,„ be the values

of explanatorv' variables which may effect l] ( e.g., terrain, atmospheric conditions, fa-

tigue etc. t

Assume that i\ are uidependen: random variables with Weibull distributions

/>{r. < f} = 1 - exp[ - ire-^-^y'^']

= l-expr-(r:u/"']
(3.1)

where n = e^l with

^§. = Y/^jkfik. (3-2)

Il follows from equation (3.1 ) that the distribution of the In-detection time is

= l-exp{-(.^.-^^r"'} (3.3)

= 1 - expf - exp[(f - x,j§)e- '']} .

The derivative of equation ( 3.3 ) with respect to t is following

P{ In v. e di) = exp' - exp"(7 - .x^;^)e '-
; exp|(: — Xy^)e ' ]e

= exp-; - exp]( t - x-£)e~ ']]• exp{(: - Xi£)e~ '' -
<

(3.4)

^"hen the /* observer is presented uith his /* target, he gets a length of time called an

opponunitv- lime O. to detect it. The obsener either successfully detects the target

within the opponunity time or is unsuccessful. Data for the /* obser\er consist of times

of deteaions for the successes and the lengths of opponunity- times for the failures. For

each / = 1.2.3... ..M . ./ = 1.2.3 V . let

}^ = min( In r^-, In 0,y) (3.5)



\i=\
^

(3.6)

(0 otherwise .

The Yij are the censored In-detection times and A,^ is an indicator of whether or not the

In-time to detect the/'' target by the /"' observer is censored. Let

q = Y.Ay (3.7)

be the number of targets detected by observer /. The next section of this chapter will

discuss estimation of the parameters {^^} \_Ref. 4]. These parameter estimates might be

used to predict future times to detection for an observer given his past performance. In

the last section of the chapter results of a simulation study of the estimation precedure

will be given.

B. ESTIMATION

1. The likelihood Equation and Maximum Likelihood Estimators.

The likelihood for the /"' observer is

.V.

The In likelihood for the /''' observer is

In L,(^, i) = 2^{A^.[(j- - xy§)e- - - Q - exp[CKy - ^,j§)e- ^']} . (3.9)

Since the observers are assumed to be independent, the In likelihood for all observers is



lnL(^,l) = ^lnL,(^,C)

A/ \

a. iSewton's Procedure to solve for /?^

The partial derivative of equation (3.10) with respect to /?^ is

-t|- In m, =
2^ yj\[{ - ^ijk)e- ^'] - exp[Cv^. - x,ji)e- -]( - x^j^e' ^•)]

=
2^ 2^{

- A,^. + exp[C>- - x^jP)e- =']).Xy;,^- - .

(3.10)

A Nevnon procedure to solve equation (3.1 1) for ^ assuming [t] known uses the second

derivatives

r|7- = XZ-''^Pfcv-^yi^)^ ^'hjh^ Ske ^'
. (3.12)

Let

"Uh^^Uh^'^'^^'U (3.14)

The Newton procedure to solve equations (3.1 1) for ^ can be written as



..^,.,,,.IIL^

-^ Yj Yj^^^^'~^'^^'^'~
-'[^/c - ^a (3-15)

/=i ;=i h=\

^zz{^^^"S"''''°-S'''^'

which are of the form of the normal equations for Least Squares regression with de-

pendent variables

——— + /_^"ijhPh (3.16)

and independent variables

^ijk = '^ij^Uk^~^' • (3.17)

b. Newton Procedure to solve for c,

The partial derivative of equation (3.10) with respect to <f, is

a;

-^ In UP, i,) = Y.[{^lb'y - ^S'~ ''( - 1) - 1]}

-
{ exp[Cvv- - XijB^~ ^']CvV - ^Se~ H - 1)}] (3.18)

= - Q + X^V - ^S^~ "{ - ^7 + exp[(j;^- - x^-^)^" '']}

y=i

A Ne\non procedure to solve equation (3.15) for ^t asuming §_ known uses the second

derivative



-^ In m,^ = - ^Cvv - xy§)e- =
{
- A^. + exp[Cvv; - x^j§)e- ^']}

A",

+
T.^'ij - -^s^~ ''{ e^p[c^-</- - ^s^' ^%j - ^S'~ ''( - 1)}

A',

= - Q -
2^(JV

- =^//-^)'^"''' exp[C>- - ^,jP)e- ^']

(3.19)

if -rrr- In L,(^, iJ = 0. Therefore the Neuion equation for ^, is

= -^ In A/^. £) = - q + V AyCv^ - x^P)e- '{ - A^ + exp[(>- - x,jp)e- ^']]

A',

+
(
- Q - ^{[OV - ^(/A)^- 'f exp[C>^ - ^,^).- -JjV ^^ - ^?]

(3.20)

where ^l' is the current value of ^,. Solving results in the equation

+ q- Y,(Sij
- ^d)e~ ':[ - A,y + expjCVy - XyP)e- ^'}] t

^1-^"! = - ^^-r (3.21)

^i-\{byiJ--^S^ --f exp[C>--i^.^)^ =']}

2. Initial Condition

In this subsection, we describe a rough way to provide initial estimates of ^,^^

to start the iterative Ne\^ion procedure of the previous section. It follows from equation

(3.1) that



= l-exp[-(A-^>'^y''] (3.22)

Hence,

and

£[(^,r-] = (.-<«'-")

^^jP'~

(3.23)

\u^{Uf''']=X;£e-^' (3.24)

As a result, for all the observed L',^ censored or uncensored, we will put

^'' In Ly = ^,.,/ (3.25)

We will take <f? = for convenience. Thus the initial value of ^,_,^° for each observation

u,j is

xi£ = In u;j (3.26)

3. Recursive Procedure to find {^J and ^,

1. Put ;, = for/ = 1,2,3.-,M

2. Compute the initial value

Xijf = e'-\nUij (3.27)

3. Iteration

a. Compute dependent and independent variables for regression

Wy = Vexp{(>^-^/).-='} (3.28)

"ijk
— ^^ y ^ijk

^~ " {dependent variable)

Zij
= —

V WijXij§_ {independent variable)

y

Let



b. Compute regression estimates

c. Recompute the initial value

L^ =

"in "112

"121 "122

"lA-,1 "l.V,2

"211 "212

"2.V,1 "2A22

",V/ll "W12

".V/:Vwl "mAV2 ••• ".V/

[
= {LyiT'Lrz

^jl = /_J^'J'<^'^

"2.V>

"Wlp

(3.29)

(3.30)

d. L'pdate >?, as in equation (3.21)

^,-rf =-
} +q-y(^y.j-x,jP)e 'i-A^ + ^xp{(jij-Xij§)e ^'j]

- Q - )![(>•(/ - ^i)^ '"f exp[(j-,y - X,yj,/?)e

7=1

e. Put

f. Return to step 3

4. Iterate until the following conditions are satisfied

maxi •'
"

"
J<l£-4, k= 1,2,3,. ..,p

l4l



maxi ^ 1< l£-4, /= 1,2,3,.. .,M.

4. Implementation in Simulation

The following flow diagram describes one replication of a simulation experiment.

SET CONSTANTS
O, and ^

GENERATE RANDOM VARIABLES

NORMAL ( X,^ ) and EXPONENTIAL ( \V„ )

I = 1.2.3 M.

j = I.2.3,...,A;

k = l,2,:v..,p

C^STOP ^^



C. SIMULATION PROCEDURE AND RESULTS

1. Simulation

The number of replications for each simulation experiment is 100. Each simulation ex-

periment of 100 replications starts with the same random number seed. The mean bias.its standard

error and mean square error, standard error of mean square error from R = 100 replications are

computed as in equations (2.49a) through (2.50b). In each of the experiments the number of

covariates for each obser\'er is 2.

The simulation experiment to study the sampling properties of the estimators of (/?^) and

^, is as follows.

1. Give arbitrar\- constant values for the true values of ^i, and ^,. In all the simulations ^i
=

0.2, /?j = 0.3 and ^, = 0.

2. The same opportunity time, 0„. i = 1,2.3 M, andy = 1,2, 3,..., A',, is used for M obser\'ers.

The values of the constant opportunity time are 1.3, 2.5, 4.0.

3. Generate random numbers

a. Generate independent normal random numbers with mean 1 and variance 0.5, x„i. /' =

1.2.3 M.y = 1.2,3,. ..,.V,

b. Generate independent normal random numbers with mean 2 and variance 1 , .x,,-2, /
=

1.2.3....,M.y = 1.2.3 V,

c. Generate exponential random numbers with mean 1, W,„ i = 1,2,3 M, j = 1,2,3,...,

.V.

4. Compute ^,. as follows :

My = exp(i5i.Xy, +^2^^.2)- (3-31)

5. Compute the detection time U,. that it takes for observer / to detect target y as

i^ = ^.^/^v/' . (3.32)

6. Compare hi i',. with In O, , then choose smaller one for the data

})j = min( In i)j^ ]n Oij)

and compute A as equation (3.7)

7. Compute the initial value as in equation (3.27)

S. Compute the values of the regression variables , z,^ and u,.^ as in equation (3.16) and (3.17)

9. Compute regression estimates as in equation (3.29)

10. Recompute the initial value with new ^ value as in equation (3.30)

11. Compute (J, as in equation (3.21)

12. Iterate the procedure until the differences between successive values of ^,, ^^ and ^, are small,

( less than 10-*
).

2. Results

In this section resuhs from the simulation experiments will be reported. For R repli-

cations, the uncensoring level ( UC ) for an experiment is computed as follows :



uc=-
11m
R M

where C,{r) is the number of the targets detected by observer / in replication r and A',(^) is the

number of targets presented to observer / in replication r. The UC's for the simulations using the

same opportunity time are then averaged to obtain the mean UC for that opportunity time. Figures

19 through 45 show histograms of ( jff, - /?, ), A: = 1,2 and ( J, - O- Tables 10 through 21 show

mean square errors and mean biases for each of the estimates, their standard errors appear in pa-

renthesis below. Tables 10, 14 and 18 present all the simulation results for different values of op-

portunity times. The other tables present the same results in a more convenient fashion. The mean

biases are displayed with the mean square error in parenthesis; for each table, the opportunuty

time(O) and average uncensoring(UC) for that are given at the top of table.

• Results for ^i and ^2

The histograms for /?, - /?, and /Jj - ^2 ^erid to be somewhat centered around 0. For
small numbers of targets and observers the histograms tend to be slightly skewed to the left.

Increasing the observation time has little effect on the mean bias and mean square error. In-

creasuig the number of obseners for a fixed number of targets tends to decrease the mean
square error but has less effect on the mean bias. Increasing the number of targets for a fixed

number of obser> ers decreases the mean bias and mean square error. The standard errors of
the mean biases mean square errors are large.

• Resuhs for c,

The liistograms of ^, - ?, tend to be centered about 0. There is a tendency for slight

skewness to the right for small numbers of observers and targets. Changing the opportunity
time has httle effect on the mean bias and mean square error. The more targets there are for

observer i, the smaller the mean bias and mean square error for c,- The standard errors of the

mean biases and mean square errors are large.



Table 10. MEAN BIAS, MEAN SQUARE ERROR AND STANDARD ERROR AT
0= 1.3 AND LC = 45%

Number of

Observers

Number of

Targets

/^i k . 1

MB
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

MB
(S.E)

M.S.E
(S.E)

5

5
-0.06

(0.03)

0.07

(0.01)

-0.02

(0.02)

0.03

(0.01)

-0.05

(0.01)

0.02

(0.01)

15
-0.02

(0.02)

0.02

(0.01)

-0.02

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.01

(0.001)

30
-0.003

(0.01)

0.02

(0.01)

-0.02

(0.01)

0.01

(0.002)

-0.03

(0.01)

0.01

(0.001)

50
-0.01

(0.001)

0.01

(0.001)

-0.01

(0.01)

0.003

(0.001)

-0.01

(0.01)

0.004

(0.001)

15

5
-0.05

(0.01)

0.02

(0.003)

-0.04

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.01

(0.001)

15
-0.03

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.003

(0.001)

-0.01

(0.01)

0.002

(0.0003)

30
-0.01

(0.01)

0.01

(0.001)

-0.01

(0.004)

0.002

(0.001)

-0.01

(0.004)

0.002

(0.0002)

50
-0.01

(0.001)

0.003

(0.0004)

-0.01

(0.003)

0.001

(0.0004)

-0.01

(0.004)

0.001

(0.0002)

30

5
-0.05

(0.01)

0.01

(0.002)

-0.04

(0.01)

0.005

(0.001)

-0.02

(0.005)

0.003

(0.001)

15
-0.02

(0.01)

0.003

(0.0004)

-0.02

(0.003)

0.001

(0.0002)

-0.01

(0.003)

0.001

(0.0002)

30
-0.01

(0.01)

0.003

(0.0004)

-0.01

(0.003)

0.001

(0.0001)

-0.004

(0.003)

0.001

(0.0001)

5U
-0.01

f0.nn4)

0.002

(0.0002)

-0.01

(0.003)

0.001

(0.0001)

-0.01

(0.002)

0.001

(0.0001)



Table 11. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 45%

0=1.3 AND

M.BiM.S.E) for i, \

5TGT 15TGT 30TGT 50 TOT
SOBS -0.04(0.06) -0.02(0.02) -0.004(0.02) -0.003(0.01)

150BS -0.05(0.02) -0.02(0.007) -0.01(0.005) -0.01(0.003)

30OBS -0.008(0.01) -0.05(0.003) -0.006(0.003) -0.01(0.002)

Table 12. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 45%

0=1.3 AND

M.BiM.S.E) for jS,
|

5 TOT 15 TOT 30 TOT 50 1 GT
5 DBS -0.03(0,02) -0.02(0.007) -0.02(0.005) -0.01(0.002)

15 0BS -0.04(0.007) -0.009(0.003 -0.01(0.002) -O.OlfO.OOl)

30 OBS -0.04(0.004) -0.01(0.001) -0.01(0.001) -0.009(0.0006)

Table 13. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 45%

0=1.3 AND

M.BiM.S.E) for I

5 TGT 15 TGT 30 TGT 50 TGT
5 OBS -0.05(0.14) -0.02(0.007) -0.02(0.005) -0.006(0.004)

15 OBS -0.01(0.005) -0.009(0.002) -0.005(0.002) -0.008(0.001)

30 OBS -0.02(0.002) -0.01(0.001) -0.004(0.0007) 0.008(0.0006)



Table 14. MEAN BIAS, MEAN SQUARE ERROR AND STANDARD ERROR AT
= 2.5 AND UC = 75%

Number of

Ohseners
Number of

Targets

/?2 . 1

MB
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

5

5
-0.04

(0.02)

0.06

(0.01)

-0.03

(0.01)

0.02

(0.003)

-0.05

(0.01)

0.14

(0.01)

15
-0.02

(0.02)

0.02

(0.003)

-0.02

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.01

(0.001)

30
-0.004

(0.01)

0.02

(0.003)

-0.02

(0.01)

0.005

(0.001)

-0.02

(0.01)

0.01

(0.001)

50
-0.003

(0.01)

0.01

(0.001)

-0.01

(0.01)

0.002

(0.0003)

-0.01

(0.01)

0.004

(0.001)

15

5
-0.05

(0.01)

0.02

(0.003)

-0.04

(0.01)

0.01

(0.001)

-0.01

(0.01)

0.005

(0.001)

15
-0.02

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.003

(0.0004)

-0.01

(0.01)

0.002

(0.0(11)3)

30
-0.01

(0.01)

0.01

(0.001)

-0.01

(0.004)

0.002

(0.0002)

-0.01

(0.004)

0.002

(0.0002)

50
-0.01

(0.01)

0.003

(0.0004)

-0.01

(0.003)

0.001

(0.0002)

-0.01

(0.003)

0.001

(0.0002)

30

5
-0.01

(0.01)

0.01

(0.001)

-0.04

(0.01)

0.004

(0.001)

-0.02

(0.01)

0.003

(0.0004)

15
-0.05

(0.01)

0.003

(0.0004)

-0.02

(0.003)

O.OOI

(0.0002)

-0.01

(0.003)

0.001

(0.0002)

3U
-0.01

(0.01)

0.003

(0.0003)

-0.01

(0.003)

0.001

(0.0001)

-0.004

(0.003)

0.001

(0.0001)

50
-0.01

(0.004)

0.0012
(0.00n2)

-0.01

(0.002)

0.001

(0.0001)

-0.01

(0,002)

0.001

(0.0001)



Table 15. MEAN BIAS AND MEAN SQUARE ERROR AT
UC=75%

= 2.5 AND

M.B(M.S.E) for ^, |

5TGT 15TGT 30TGT 50TGT

SOBS -0.06(0.07) -0.02(0.20) -0.003(0.02) -0.005(0.01)

15 0BS -0.05(0.02) -0.03(0.007) -0.01(0.006) -0.008(0.003)

30OBS -0.05(0.01) -0.02(0.003) -0.006(0.003) -0.01(0.002)

Table 16. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 75%

= 2.5 AND

Af.BiM.S.F) for /S,

5 1 GT 15TGT 30 TGT 50 TG

T

5 0BS -0.02(0.03) -0.02(0.007) -0.02(0.005) -0.009(0.003)

15 OBS -0.04(0.007) -0.02(0.003) -0.01(0.002) -0.01(0.001)

30 OBS -0.04(0.004) -0.02(0.001) -0.01(0.001) -0.009(0.001)

Table 17. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 75%

= 2.5 AND

M.B{M.S.E) for t,
\

5TGT I5TGT 30 TGT 50 TGT
5 OBS -0.046(0.02) -0.03(0.008) -0.03(0.004) -0.006(0.004)

15 OBS -0.02(0.01) -0.01(0.002) -0.006(0.002) -0.009(0.001)

30 OBS -0.02(0.003) -0.01(0,001) -0.004(0.0008) -0.009(0.0006)



Table 18. MEAN BIAS. MEAN SQUARE ERROR AND STANDARD ERROR AT
= 4.0 AND LC = 89%

Number of

Observers

Number of

Targets

^. i^2 . 1

M.B
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

M.B
(S.E)

M.S.E
(S.E)

5

5
-0.03

(0.01)

0.02

(0.003)

-0.03

(0.02)

0.03

(0.01)

-0.07

(0.01)

0.02

(0.003)

15
-0.01

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.01

(0.001)

30
-0.01

(0.01)

0.01

(0.001)

-0.02

(0.01)

0.01

(0.001)

-0.03

(0.01)

0.004

(0.001)

50
-0.002

(0.01)

0.01

(0.001)

-0.01

(0.01)

0.004

(0.001)

-0.01

(0.01)

0.003

(0.0004)

15

-0.03

(0.01)

0.01

(0.001)

-0.04

(0.01)

0.01

(0.001)

-0.04

(0.01)

0.01

(0.001)

15
-0.02

(0.01)

0.003

(0.0004)

-0.02

(0.001)

0.004

(0.0001)

-0.02

(0.0004)

0.002

(0.0003)

30
-0.01

(0.1)01)

0.002

(0.0003)

-0.01

(0.001)

0.002

(0.0003)

-0.01

(0.004)

0.001

(0.0002)

5n
-0.01

(0.004)

0.002

(0.0002)

-0.01

(0.04)

0.002

(0.0002)

-0.01

(0.003)

0.001

(0.0002)

30

-0.03

(0.01)

0.004

(0.001)

-0.04

(0.01)

0.006

(0.001)

-0.04

(0.01)

0.004

(0.001)

15
-0.01

(0.004)

0.002

(0.0002)

-0.02

(0.004)

0.002

(0.0003)

-0.02

(0.003)

0.001

(0.0002)

30
-0.03

(0.0003)

0.001

(0.00)

-0.01

(0.0004)

0.001

(0.00)

-0.01

(0.0003)

0.001

(0.00)

5ri
-0.01

(0.0003)

0.001

(0.00)

-0.01

(0.003)

0.001

(0.0001)

-0.01

(0.002)

0.001

(0.0001)



Table 19. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 89%

= 4.0 AND

M.BiM.S.F) for ^, |

5TGT 15TGT 30TGT 50 TOT
SOBS -0.03(0.02) -0.009(0.008) -0,01(0.008) -0.002(0.005)

15 0BS -0.03(0.01) -0.02(0.003) -0.008(0.002) -0.006(0.002)

30OBS -0.03(0.004) -0.01(0.002) -0.003(0.001) -0.008(0.0008)

Table 20. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 89%

= 4.0 AND

M.BiM.S.E) for ^^
\

5 TOT 15 TOT 30 TOT 50 IGl

5 0BS -0.03(0.03) -0.02(0.01) -0.02(0.008) -0.008(0.004)

15 0B.S -0.04(0.009) -0.02(0.004) -0.01(0.002) -0.0074(0.002)

30 OBS -0.04(0.004) -0.02(0.002) -0.0097(0.001) -0.008(0.0007)

Table 21. MEAN BIAS AND MEAN SQUARE ERROR AT
UC = 89%

= 4.0 AND

M.B(M.S.E) for I \

5TGT 15TGT 30TGT 50 TGT
SOBS -0.07(0.02) -0.02(0.008) -0.03(0.004) -0.0005(0.003)

IS OBS -0.04(0.004) -0.02(0.002) -0.01(0.001) -0.011(0.001)

30 OBS -0.04(0.004) -0.02(0.001) -0.008(0.0006) -0.011(0.0006)



IV. CONCLUSION

This thesis considers two models for the times until detection of targets. Each model has M
obseners. The /'" observer is presented with A', targets. In the model of Chapter 2, obser\'er / has a

random variable A, which reflects his ability to detect a target. The random variables {A,] are inde-

pendent identically distributed having a gamma distribution. Given A„ the times to target detections

for observer / are conditionally independent Weibull random variables with known parameters.

Simulation experiments indicate that increasing the number of obser\'ers for a fixed number of tar-

gets provides the greatest decrease in the mean bias and mean square error of the estimates of the

parameters of the gamma distribution that describes the variation between individuals. This is not

surprising, since observing more individuals sampled from a fixed population should better estimate

properties of that population. The model of Chapter 3 is a Weibull regression model. In this case

the simulation experiments indicate that increasing the number of targets for a fixed number of

obser\ers provides the greatest decrease in the mean bias and mean square error of the estimators.

A topic for future investigation is to combine the two models and estimation procedures to

provide estimates for a hierarchical gamma Weibull regression model. Another topic is to investi-

gate using the fitted hierarchical model to predict future performance of the observers.
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APPENDIX A. HISTOGRAMS FOR THE ESTIMATED GAMMA
PARAMETERS

5 OBSERVERS ( UC : 37 PERCENT )

Q
ETA - E7A TRUE

30 TARGETS

ETA - ETA TRUE ETA - ETA TRUE

Figure 1. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=10,

UC = 37%): 5,15,30,50 targets for 5 observers [rj - rj)



5 OBSERVERS ( UC : 62 PERCENT )

5 TARGETS

-

u,

5
3 O

y

1 1 1 \

c

, ,-2-10123
EJA - ETA TRUE

30 TARGErrs

1
rrA - ETA TRUE

50 TARGETS

ETA - ETA TRUE ETA - ETA TRUE

Figure 2. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 25,

UC = 62%): 5,15,30,50 targets for 5 observers (^ - tj)



5 OBSERVERS ( UC : 75 PERCENT )

ETA - ETA TRUE

30 TARGETS

ETA - ETA TRUE

ETA - ETA TRUE

50 TARGETS

ETA - ETA TRUE

Figure 3. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 40,

UC = 75%): 5,15,30,50 targets for 5 observers (^ - >/)



15 OBSERVERS ( UC : 37 PERCENT )

ETA - ETA TRUE

50 TARGETS

ETA - ETA TRUE ETA - ETA TRUE

Figure 4. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=10,

UC= 37%): 5,15,30,50 targets for 15 observers {rj - rj)



15 OBSERVERS ( UC : 62 PERCENT )

HA - ETA TRUE

30 TARGETS

in
ETA - ETA TRUE

th^
ETA - ETA TRUE

50 TARGETS

J]
ETA - ETA TRUE

Figure 5. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 25,

UC=62%): 5.15,30,50 targets for 15 observers {fj - >/)
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15 OBSERVERS ( UC : 75 PERCENT )

H.
ETA - ETA TRUE

50 TARGETS

8

fe5

a

t

8

—1_ 1 1-1 J - .

.

ETA - ETA TRUE ETA - ETA TRUE

Figure 6. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 40,

UC = 75%): 5,15,30,50 targets for 15 observers (^ - rj)



30 OBSERVERS ( UC : 37 PERCENT )

E7A - ETA TRUE ETA - ETA TRUE

Figure 7. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=10,

UC= 37%): 5,15,30,50 targets for 30 observers (^ - ?/)



30 OBSERVERS ( UC : 62 PERCENT )

^

r-

is

r—

^_
ETA - ETA TRUE

30 TARGETS

L
ETA - ETA TRUE ETA - ETA TRUE

Figures. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 25,

UC = 62%): 5,15,30,50 targets for 30 observers {fj - tj)



30 OBSERVERS ( UC : 75 PERCENT )

ETA - ETA TRUE

30 TARGETS

ETA - ETA TRUE

9

ETA - ETA TRUE

50 TARGETS

ETA - ETA TRUE

Figure 9. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 40,

UC = 75''/o): 5.15,30,50 targets for 30 observers {rj - t])
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5 OBSERVERS ( UC : 37 PERCENT )

BETA - BETA TRUE BETA - BETA TRUE

Figure 10. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=10,

UC= 37%): 5,15,30,50 targets for 5 observers (^o - Po)

48 .



5 OBSERVERS ( UC : 62 PERCENT )

BEJA - BETTA TRUE

30 TARGETS

id
BETA - BETA TRUE

Xkfl
BETA - BETA TRUE

50 TARGErrS

JILA L
BHA - BnA TRUE

Figure 11. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 25,

UC = 62%): 5,15,30,50 targets for 5 observers {h- Po)

49



5 OBSERVERS ( UC : 75 PERCENT )

J=d] r^ .

BETA - BETA TRUE

30 TARGETS

BETA - BETA TRUE

Al
BETA - BETA TRUE

50 TARGETS

-EH
BETA - BETA TRUE

Figure 12. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 40,

UC = 75%): 5,15,30,50 targets for 5 observers (^o - ^o)



15 OBSERVERS ( UC ; 37 PERCENT )

BETA - BEJA TRUE BE:TA - BETA TRUE

Figure 13. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=10,

UC = 37%): 5,15,30,50 targets for 15 observers (h- Po)



15 OBSERVERS ( UC : 62 PERCENT )

» -

"

s

£ o

r

n

"

1 1 r 1., , ,

BEJA - BETA TRUE

30 TARGETS

^M\] .

BETA - BETA TRUE

50 TARGETS

BETA - BEJA TRUE BEJA - BETA TRUE

Figure 14. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 25,

UC = 62%): 5,15,30,50 targets for 15 observers (^o - Po)



15 OBSERVERS ( UC : 75 PERCENT )

BETTA - BEJA TRUE

30 TARGETS

Jm
BETTA - BE:TA true BETA - BETA TRUE

Figure 15. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 40,

L)C = 75%): 5,15,30,50 targets for 15 observers {p^- Po)



30 OBSERVERS ( UC : 37 PERCENT )

s ° -

BETA - BETA TRUE

30 TARGETS

BETA - BETA TRUE

BETA - BETA TRUE

50 TARGETS

J
BETA - BETA TRUE

Figure 16. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=10,

UC = 37%): 5, 1 5,30,50 targets for 30 observers (^o - Po)



30 OBSERVERS ( UC : 62 PERCENT )

BErrA - BOA TRUE

30 TARGETS

BETA - BETA TRUE

BETA - BETA TRUE

50 TARGETS

BETA - BETA TRUE

Figure 17. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 25,

UC=62%): 5,15,30,50 targets for 30 observers (^o - /^o)



30 OBSERVERS ( UC : 75 PERCENT )

BCTA - BETA TRUE

50 TARGETS

BETA - BETA TRUE BETA - BETA TRUE

Figure 18. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 40,

UC = 75%): 5,15,30,50 targets for 30 observers (^^ - /?o)



APPENDIX B. HISTOGRAM FOR THE WEIBULL REGRESSION

PARAMETERS

5 OBSERVERS ( UC : 45 PERCENT )

z

a

BETAI - BETTAI TRUE

30 TARGETS

12 -08
BETAI - BETAI TRUE

—I I 1_
-1.2 -0.8

Ekn.
BETAI - BETAI TRUE

50 TARGETS

EU. _c£l

BETAI - BHAI TRUE

Figure 19. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15, 30, 50 targets for 5 observers (^, - /?,)



5 OBSERVERS ( UC : 75 PERCENT )

BETA1 - BETA1 TRUE

30TARGnS

. .m
-o.e -0.4

n
BETA1 - BErrAI TRUE

a^
BETA1 - BETA1 TRUE

50TARGETS

-08 -0.4̂

BETA1 - BETAl TRUE

Figure 20. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.5,

UC = 75%): 5, 15, 30, 50 targets for 5 observers (^, - /?,)



5 OBSERVERS ( UC : 89 PERCENT )

BETA1 - BE:TA) true

30 TARGETS

HI
BETAl - BE:TA1 true

I

BETAl - BETAl TRUE

50 TARGETS

BETAl - BETAl TRUE

Figure 21. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 4.0,

UC = 89%): 5, 15, 30, 50 targets for 5 observers (^, - A)



15 OBSERVERS ( UC : 45 PERCENT )

JZlil a
BETA1 - BETA1 TRUE

30 TARGETS

1 \k
BETA1 - BETA1 TRUE

nHllll^i
BETA1 - BETAI TRUE

50 TARGETS

^ ttL

BETAI - BETAI TRUE

Figure 22. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15, 30, 50 targets for 15 observers (^, - A)

60 .



15 OBSERVERS ( UC : 75 PERCENT )

,-rn.

BETA1 - BErrAI TRUE

30 TARGOS

BETTAI - BHAI TRUE

0.6 -0.8
Jlllll

BETA1 - BETAI TRUE

50 TARG05

BETA1 - BETA1 TRUE

Figure 23. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.5,

UC = 75%): 5, 15, 30, 50 targets for 15 observers (^, - /?,)



15 OBSERVERS ( UC : 89 PERCENT )

t.

^
B̂ETA1 - BCTA1 TRUE

30 TARGETS

V

-

3°

-

o

. 1 . r 1 1 1 1

J L
BEJA1 - be:tai true

50 TARGETS

BETA1 - BETAl TRUE

Figure 24. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 4.0,

UC = 89%): 5, 15, 30, 50 targets for 15 observers {//, - ^,)



30 OBSERVERS ( UC : 45 PERCENT )

Xfl Dn.
BE:TA1 - BETTAI TRUE

30 TARGETS

BrrAI - BETAl TRUE

z

Qi-

BETAl - BETAl TRUE

50 TARGETS

BETAl - BETA) TRUE

Figure 25. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15, 30, 50 targets for 30 observers (^, - /?,)



30 OBSERVERS ( UC : 75 PERCENT )

. ^IIIIL
BETTAI - BETAI TRUE

30 TARGETS

-0.8 -0.4

BETAI - BETAI TRUE

BETAI - BETAI TRUE

50 TARGETS

JIl
BETAI - BOAl TRUE

Figure 26. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.3,

UC = 75%): 5, 15, 30, 50 targets for 30 observers (^, -J,)



30 OBSERVERS ( UC : 89 PERCENT )

i
BETTAI - BETTAI TRUE

30 TARGETS

. . .nllllllh.

BETAI - BETTAI TRUE

BETAI - BErTAI TRUE

50 TARGETS

rlll llllll ,

BE7A1 - BETA1 TRUE

Figure 27. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 4.0,

UC= 89%): 5, 15, 30, 50 targets for 30 observers (^, - ^,)



5 OBSERVERS ( UC : 45 PERCENT )

.

5 -

d^

g
ea

1— .. 1 .. I

h

BE1A2 - BETA2 TRUE

30 TARGETS

ttk.
BETA2 - BETA2 TRUE

BCTA2 - BETA2 TRUE

50 TARGETS

_!_£

BETA2 - BETA2 TRUE

Figure 28. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15, 30, 50 targets for 5 observers (^^ - p^)



5 OBSERVERS ( UC : 75 PERCENT )

BE:fA2 - be:ta2 true

30 TARGETS

BETA2 - BETA2 TRUE

BETA2 - BETA2 TRUE

50 TARGETS

BETA2 - BETA2 TRUE

Figure 29. COMPARISON BET\VEEN DIFFERENT ESTIMATES (0 = 2.5,

UC = 75%): 5, 15, 30, 50 targets for 5 observers {ji^ - /?:)



5 OBSERVERS ( UC : 89 PERCENT )

BETA2 - BrrA2 TRUE

30 TARGETS

BE:TA2 - BETA2 TRUE

ca
BETA2 - BE:TA2 TRUE

50 TARGETS

-0.4 -0.2

BETA2 - BETA2 TRUE

Figure 30. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 4.0,

UC = 89%): 5, 15, 30, 50 targets for 5 observers (^^ - /?:)



15 OBSERVERS ( UC : 45 PERCENT )

_._
BE:TA2 - BCTA2 TRUE

30 TARGETS

IJlL
BErrA2 - BEJA2 TRUE

BE:rA2 - BCTAa TRUE

50 TARGETS

BETA2 - BETA2 TRUE

Figure 31. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15, 30, 50 targets for 15 observers {p, - (J,)



15 OBSERVERS ( UC : 75 PERCENT )

5 TARGETS 15 TARGOS

9r

. rlllllll^.

BETA2 - BEnA2 TRUE

30 TARGETS

BETA2 - BETA2 TRUE

6

BETA2 - BnA2 TRUE

50 TARGETS

BETA2 - BETA2 TRUE

Figure 32. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.5,

UC = 75%): 5, 15, 30, 50 targets for 15 observers {p^ - P2)



15 OBSERVERS ( UC : 89 PERCENT )

U7] ,

BnA2 - BrrA2 TRUE

30 TARGETS

I Dcx-

BETA2 - BCTA2 TRUE

mlllllii
BETA2 - BnA2 TRUE

50 TARGETS

_Uili

BETA2 - BE:TA2 TRUE

Figure 33. COMPARISON BETAVEEN DIFFERENT ESTIMATES (0 = 4.0,

UC=89%): 5, 15, 30, 50 targets for 15 observers {P2- Pi)



30 OBSERVERS ( UC : 45 PERCENT )

n-rn i

BE:TA2 - BCTA2 TRUE

30 TARGETS

BETA2 - BETA2 TRUE

BETA2 - BETA2 TRUE

50 TARGETS

BETA2 - BrrA2 TRUE

Figure 34. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15, 30, 50 targets for 30 observers {ji, - P,)



30 OBSERVERS ( UC : 75 PERCENT )

JU
8eTA2 - BCTA2 TRUE

30 TARGETS

1

5C TAHGETTS

_i
;
- ="A2 T=.E BeT*2 - eE7A2 TH'j;

Figure 35. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.5,

UC = 75' o): 5. 15. 30. 50 targets for 30 observers (^j - /?,)



30 OBSERVERS ( UC : 89 PERCENT )

6

M V
BEJA2 - BE:rA2 TRUE

30 TARGETS

_J

be:ta2 - be:ta2 true

50 targets

-0.4 -0.2

BETA2 - BnA2 TRUE

Figure 36. COMPARISON BETAVEEN DIFFERENT ESTIMATES (0 = 4.0,

UC = 89%): 5, 15, 30, 50 targets for 30 observers [ft,
- p,)

74



5 OBSERVERS ( UC : 45 PERCENT )

THAI - THAI TRUE

30 TARGETS

J
THAI - THAI TRUE

sn
THAI - THAI TRUE

50 TARGETS

ZL
THAI - THAI TRUE

Figure 37. COMPARISON BETAVEEN DIFFERENT ESTIMATES (0= 1.3,

UC = 45%): 5, 15, 30, 50 targets for 5 observers {l,- ^,)



5 OBSERVERS ( UC : 75 PERCENT )

I"-

-0.4 -0.2

THAI - THAI TRUE

30 TARGETS

-0.4 -0.2
L

THAI - THAI TRUE

, rTl
-0.4 -0.2

LL.
THAI - THAI TRUE

50 TARGETS

-0.4 -0.2

THAI - THAI TRUE

Figure 38. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.5,

UC = 75%): 5, 15, 30, 50 targets for 5 observers (l - i,)



5 OBSERVERS ( UC : 89 PERCENT )

.!=
THA) - THA.! TRUE

30 TARGETS

THAI - THAJ TRUE

rTM II I h
THAI - THAI TRUE

50 TARGETS

IL
THAI - THAI TRUE

Figure 39. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 4.0,

UC = 89%): 5, 15, 30, 50 targets for 5 observers (^, - i^,)



15 OBSERVERS ( UC : 45 PERCENT )

hD_
THAI - THAI TRUE

30 TARGOS

iL

THAI - THAI TRUE

50 TARGOS

THAI - THAI TRUE THAI - THAI TRUE

Figure 40. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15, 30, 50 targets for 15 observers {l,-Q



15 OBSERVERS ( UC : 75 PERCENT )

nTl Diu
THAI - THAI TRUE

30 TARGOS

. .J
-0.4 -0.2

THAI - THAI TRUE

50 TARGETS

0.2 04
THAI - THAI TRUE THAI - THAI TRUE

Figure 41. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.5,

UC = 75%): 5, 15, 30, 50 targets for 15 observers (l-l)



15 OBSERVERS ( UC : 89 PERCENT )

s

A L_
THAI - THAI TRUE

30 TARGETS

0.2 0.4

THAI - THAI TRUE THAI - THAI TRUE

Figure 42. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 4.0,

UC = 89%): 5, 15, 30, 50 targets for 15 observers (l-^^)



30 OBSERVERS ( UC : 45 PERCENT )

mlllll^

THAI - THAI TRUE

30 TARGOS

THAI - THAI TRUE

THAI - THAI TRUE

50 TARGOS

THAI - THAI TRUE

Figure 43. COMPARISON BETWEEN DIFFERENT ESTIMATES (0=1.3,

UC = 45%): 5, 15. 30, 50 targets for 30 observers {l,
-

<^,)



30 OBSERVERS ( UC : 75 PERCENT )

. rdllllh. .

0.2 0.4

THAI - THAI TRUE

30 TARGHS

-0.2 0.2 0.4

THAI - THAI TRUE

-0.4 -0.2 0.2 0.4

THAI - THAI TRUE

50 TARGETS

' I
I I rillllllll I i_

-0.2 0.2 04
THAI - THAI TRUE

Figure 44. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 2.3,

UC = 75%): 5, 15, 30, 50 targets for 30 observers {I - I)



30 OBSERVERS ( UC : 89 PERCENT )

J
THA.I - THAI TRUE

30 TARGOS

THAI - THAI TRUE

THAI - THAI TRUE

50 TARGETS

THAI - THAI TRUE

Figure 45. COMPARISON BETWEEN DIFFERENT ESTIMATES (0 = 4.0,

UC = 89%): 5, 15, 30, 50 targets for 30 observers (l - ^,)



APPENDIX C. SIMULATION PROGRAM FOR THE ESTIMATION

OF GAMMA PARAMETERS

VBAELUIV
V R^M BAE NiMUiTAiHiEiLiOBSiWiGliGiYiCiDELiSi
Ml',M2iNIN;LiV;F;A;BiINiJNiCl

[1] MU^U.2
[2] TA<-0
[3] IN^NIN^JN^2pO
[4] OBS-^nO
C5] W^iM,N)p(M^N) EXPRAND 1

C6] Gl'^^(N,M)pG^M GAMRAND 1.5 0.154
C7] Y^®MUx(W^Gl)*(*TA)
C8] Cl'<r + /C^ + /DEL'<rY^®OBS
[9] J-^yL®OBS
[10] S^ +/S1^-^H^(Y-®MU)^*~1^TA
Cll] Ml'«-(+/ + /i5£'Lxff)*(L-^ + /C)
[12] W2'^(+/ + /DELx(«*2))^L
[13] 7^(W2-(W1*2))-((o1)*2)t6
[14] J/V[2]^("lxMl)-0.5772
[15] -^A2xi(7>0)
[16] V^l
[17] A2:INLi:\^(~l^®V)-INL2l
[18] ^L7
[19] L6:IN^NIN
[20] L7:yVJA7[2]^I/V[2] + ("lx + /(A-C)+5)+(+/(A-^(*J^[2] )xS) +

(S^S+*JA7[1] ))
[21] JN^INL11,NIN121
[22] F-f-C 5yW c7/V

[23] NINLll^INLll + ri^ +/UN\:il-(®B))+FLill )*
(+/(l-*J/V[l]rB)-F[;2] )

[24] ^L6xi ((

I

UNLll-NINLll )tINL11 )>0.0001)a
((

I

(INL21-NINL21 )^INL21 )>0.0001)
[2 5] U^NIN
[26] R<-(NIN+Cl.S7 2 1 . 4665 ) ) , (Cl*MxA?)

V
VSUMLUIV
V R<-C SUM IN',DD;BBiAAiDl;D2;I

[1] DD^iO
[2] J^l
[3] L3:^L4xi(c[J]=0)
[4] Dl<- + / i CAA^*INL11 +INL21 )+BB-«-( iC[J] )-l
[5] Z)2-^+MAt(AA+SS)*2
[6] ->L5

[7] L4:Z?l-^r2-f-0

[8] L5:DD^DD,D1,D2
[9] ^L3xi(pC)^J^J+l
[10] /?-^Z?I?^((pC),2)pZ5Z)



V
VTHESISim
V R^K THESIS J;IiRES;M;N

[1] nRL'<rn6bB017^7
C2] W-^ltJ
[3] N-^'l^J

C5]
C6] RES^iK, 3)p0
[7] LO:/?ESCI;]-^M Bi^E N
[8] ^LOxii^^I-s-J + i

[9] /?^i?ES
V



APPENDIX D. SIMULATION PROGRAM FOR THE ESTIMATION

OF REGRESSION PARAMETERS

V R^M BAE2 NiOBSiBOiBN;WiUliMliM2;MUiZZiRRiT0iTliSi
Y',C',IViWliXliX2;DELiTiAiT2',Cl

[I] OBS'<rn.O
[2] J^l
[3] Tl^T2^'Si(N ,M)pT'(-TO<rMpO
[4] BO'<rBN'<r2pO

[5] Xl^iM,N)Q(M^N) NORRAND 1 0.5
[6] X2-^(M,A7)p(MxA/) NORRAND 2 1

[7] W^(M,N)p(M>^N) EXPRAND 1

[8] ai^*((0.2xXl)+0.3xX2)
[9] Y^®U1>^W*(*T2)
[10] DEL^Y^®OBS
[II] C1^ + /C<- + /D£'L
[12] Y^Yl®OBS
[13] J7-^(*r2)xy
[14] LLiBO^BN
[15] ro^r
[16] r2-^ri
[17] A^i^(*((y-j7)x*(-ixr2)))*o.5
[18] Ml^J/lxXlx*(-lx2'2)
[19] M2^Jv'lxX2x*( 1x^2)
[20] MU^fSi(2,(MyN))pi,Ml),(,M2)
[21] Z^^,Z^(Wl>^IV) + (rixDEL)+Wl*2)iWl
[22] BN<-(^(mU)+.xMU)+.x({mU) + .xZ)
[23] J7^(XlxBA7[l] ) + (X2xB/V[2] )

[24] i?i?-e-(y-J7)x*(-lxr2)
[2 5] 2'i-^Js}(A7,w)pri'^r^,r-^r+(c-+/i?/?x((-ixz?EL)+*/?;?))*
((lxC)- + /(i?/?*2)x*/?/?)

[26] A^ir /\(BN-BO)tBN)>0. 0001
[27] s-^Uro-Drr
[28] ^L£'xi3 00<t7-^c7 + l

[29] ->LLxi (^v(r/S)>0.0001)
[30] LE'.R^iBN-^BN- 0.2 . 3 ) , (CI* (MxA^) ) , ( (+/r)*W)

V
vteesiszd:\
V R^K thesis JiIiRESiMiN

[1] D;?L^466801747
[2] M-f-licZ

[3] A?-^"l+J
[4] 1^1
[5] i?ES^(i^,4)pO
[6] LO:i?£'S[J;]-^M BAE2 N
[7] ^LOxii^^l^J+i
[8] R^RES



V
VSTATLDl
V R^STAT Ki DF iANS I II iJJ I KKiTRiMS

[I] II-^JJ^KK^l
[2]
[3] DF-f- 5 10 20 30 40 50
[4] TR<r 10 20 50
[5] ANS'^iiipDF)x(pTR)),K,U)pO
C6] MSE^i((pDF)^(pTR)), 7)p0
[7] LOiANSLIIiil^MS-^rK THESISiDFLJJl ,TRLKK1)
[8] WS£:CJJ;]-e((+/MS)*X),((+/>J5C; 1 2 4]*2)*K)
[9] JJ-^JJ + 1

[10] *LO^\(pTR)^KK'^KK+l
[II] ^LOxi (pDF)^Jt7-^e7t7+i^i^-^l

[12] R<-ANS
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