
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-09

Pseudorandom number generators for mobile

devices: an examination and attempt to

improve randomness

Larsson, Ola

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/37657

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

PSEUDORANDOM NUMBER GENERATORS FOR
MOBILE DEVICES: AN EXAMINATION AND ATTEMPT

TO IMPROVE RANDOMNESS

by

Ola Larsson

September 2013

Thesis Advisor: Pantelimon Stanica
Co-Advisor: Zachary Peterson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
PSEUDORANDOM NUMBER GENERATORS FOR MOBILE DEVICES: AN
EXAMINATION AND ATTEMPT TO IMPROVE RANDOMNESS

5. FUNDING NUMBERS

6. AUTHOR(S) Ola Larsson
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis examines the quality of pseudorandom number generation for cryptographic purposes in general and the
generation of such numbers in a mobile device (Android phone), in particular, since we expected to find non-random
properties in these.

Initially, the need for random numbers for encryption purposes is discussed from a perspective of Information
Warfare. Thereafter, ways of testing a bit string for random properties as well as some pseudorandom number
generating algorithms are presented. This also includes the shrinking and the self-shrinking generator normally used
to improve the random properties of the output m-sequence of linear feedback shift registers. A couple of possible
attacks on pseudorandom number generators are also briefly presented.

Finally, we generate and analyze some pseudorandom bit strings in three different ways using the NIST test suite,
both before and after the self-shrinking generator has been applied to them. The strings generated by the Android
phone passed the NIST test suite, and it is difficult to claim any improvement in random properties by applying the
self-shrinking generator. On a bit string with poor random properties, however, the self-shrinking generator improves
randomness from the perspective of linear dependency and complexity, but not from the perspective of bit frequency.

14. SUBJECT TERMS
Pseudorandom number generator, PRNG, Random number, Random bit, Self-shrinking generator,
SSG, Encryption, Mobile device, Android

15. NUMBER OF
PAGES

77
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

 iii

Approved for public release; distribution is unlimited

PSEUDORANDOM NUMBER GENERATORS FOR MOBILE DEVICES:
AN EXAMINATION AND ATTEMPT TO IMPROVE RANDOMNESS

Ola Larsson
Major, Swedish Army

M.S., Chalmers University of Technology, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION WARFARE SYSTEMS ENGINEERING

AND

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Ola Larsson

Approved by: Pantelimon Stanica
Thesis Advisor

Zachary Peterson
Co-Advisor

Raymond Buettner
Second Reader

Dan Boger
Chair, Department of Information Sciences

Carlos Borges
Chair, Department of Applied Mathematics

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis examines the quality of pseudorandom number generation for cryptographic

purposes in general and the generation of such numbers in a mobile device (Android

phone), in particular, since we expected to find non-random properties in these.

Initially, the need for random numbers for encryption purposes is discussed from

a perspective of Information Warfare. Thereafter, ways of testing a bit string for random

properties as well as some pseudorandom number generating algorithms are presented.

This also includes the shrinking and the self-shrinking generator normally used to

improve the random properties of the output m-sequence of linear feedback shift

registers. A couple of possible attacks on pseudorandom number generators are also

briefly presented.

Finally, we generate and analyze some pseudorandom bit strings in three different

ways using the NIST test suite, both before and after the self-shrinking generator has

been applied to them. The strings generated by the Android phone passed the NIST test

suite, and it is difficult to claim any improvement in random properties by applying the

self-shrinking generator. On a bit string with poor random properties, however, the self-

shrinking generator improves randomness from the perspective of linear dependency and

complexity, but not from the perspective of bit frequency.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. INFORMATION WARFARE ..2

1. Psychological Operations ..3
2. Deception ..3
3. Electronic Warfare ..4
4. Destruction..4
5. Operational Security ..4

B. PROTECTION OF INFORMATION ...4
C. RANDOM NUMBERS ..7

II. TESTING FOR RANDOMNESS ...11
A. THE NIST TEST SUITE ..11

1. The Frequency (Monobit) Test ...12
2. The Frequency Test within a Block ..12
3. The Runs Test ...12
4. The Test for the Longest-Run-of-Ones in a Block12
5. The Binary Matrix Rank Test ..13
6. The Discrete Fourier Transform (Spectral) Test13
7. The Non-overlapping Template Matching Test13
8. The Overlapping Template Matching Test13
9. Maurer’s “Universal Statistical” Test ..13
10. The Linear Complexity Test ...13
11. The Serial Test..14
12. The Approximate Entropy Test ..14
13. The Cumulative Sums (Cumsums) Test ..14
14. The Random Excursions Test ...14
15. The Random Excursions Variant Test ...14

B. PRESENTATION OF TEST RESULTS USING THE NIST TEST
SUITE..15

C. OTHER RANDOM NUMBER TESTS ...16

III. GENERATING RANDOM NUMBERS ..17
A. CRYPTOGRAPHIC HASH FUNCTIONS ...17
B. MODERN PSEUDORANDOM NUMBERS GENERATORS18

1. The Linear Feedback Shift Registers ...19
a. Galois LSFRs ..19
b. Fibonacci LSFRs ..20

2. The Linear Congruential Generator ..22
3. The Blum-Blum-Shub Generator ...24
4. Other Generators ...25

C. IMPROVING RANDOMNESS IN SEQUENCES25
1. The Shrinking Generator ..25
2. The Self-shrinking Generator ...27

 vii

D. ENTROPY ..28

IV. ATTACKS ..31
A. ATTACKS ON SHRINKING AND SELF-SHRINKING

GENERATORS..31
1. Attack on Short Sequence Linear Feedback Registers Using

the Self-Shrinking Generator..31
2. The Backtracking Algorithm ..32

B. OTHER ATTACKS ...32
1. The Berlekamp-Massey Algorithm ..33

V. TEST RESULTS ..39
A. PERFORMANCE OF THE TESTS ..39
B. TESTING A STRING GENERATED BY AN ANDROID PHONE.........40

1. Results before Applying the SSG..40
2. Results after Applying the SSG ..41

C. TESTING A STRING GENERATED BY LINUX41
D. TESTING A STRING WITH POOR RANDOM PROPERTIES42

1. Creating a Bit String with Poor Random Properties42
2. Test Results ...43

VI. CONLUSIONS ...45
A. TESTED STRINGS ...45
B. TEST ALGORITHM AND THE SELF-SHRINKING GENERATOR ...45
C. SUGGESTIONS FOR FURTHER RESEARCH ..47

APPENDIX A. MATHEMATICAL FIELDS ...49

APPENDIX B. FIELD EXTENSION ..51

APPENDIX C. PYTHON SCRIPT FOR CONVERTING A BINARY FILE TO
BINARY ASCII REPRESENTATION ...53

APPENDIX D. PYTHON SCRIPT FOR APPLYING THE SELF-SHRINKING
GENERATOR TO A STRING ...55

LIST OF REFERENCES ..57

INITIAL DISTRIBUTION LIST ...59

 viii

LIST OF FIGURES

Figure 1. Plain text and encryption key used as an input to an encryption algorithm
resulting in an encrypted text. ..6

Figure 2. Example of a presentation of NIST test suite results.16
Figure 3. Galois Linear Feedback Shift Register (LSFR) for the generating function

() 4 1f x x x= + +20

Figure 4. Fibonacci Linear Feedback Shift Register (LSFR) for the generating
function () 4 1f x x x= + +21

Figure 5. The shrinking generator and an example of an output.26
Figure 6. The self-shrinking generator and an example of an output..............................27

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. List of combinations for Galois and Fibonacci LSFRs using the generating
function () 4 1f x x x= + + . ..22

Table 2. Checking applicability of the function ()Nf x for steps ()9 20N = 37

Table 3. Polynomials and their coefficients for the extended field ()32GF51

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF ACRONYMS AND ABBREVIATIONS

ASCII American Standard Code for Information Interchange

BBS Blum-Blum-Shub (pseudorandom number generator)

DoD Department of Defense

EA Electronic Attack

EP Electronic Protection

ES Electronic Warfare Support

EW Electronic Warfare

GF Galois Field

IW Information Warfare

LSFR Linear Feedback Shift Register

MAC Message Authentication Code

MISO Military Information Support Operations

NIST National Institute for Standards and Technology

OPSEC Operational Security

PRBG Pseudorandom Bit Generator

PRNG Pseudorandom Number Generator

PSYOP Psychological Operations

XOR Exclusive or (mathematical operation)

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGMENTS

First of all, I want to thank my advisors, Pantelimon Stanica and Zachary

Peterson, who helped me turn my early thesis idea into a suitable project and who also

helped guide me along the way, giving me useful feedback and comments, even at the

very end with tight time constraints. Your patience, time and effort have been highly

appreciated, thank you! I also want to thank Mark Gondree for invaluable help at a

critical moment at a late stage. The support from my second reader, Raymond Buettner,

and my two Program Officers, William Robinette and Thor Martinsen, have also been a

great help. But really, all the professors and lecturers that I’ve had the privilege to study

with during my time at the Naval Postgraduate School have become a part of me, through

my studies and this thesis, and now in earning my degrees.

Finally, my studies would have been so much tougher without having you by my

side, Frida. Thank you for keeping me afloat when the waters have been rough!

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. INTRODUCTION

When the average man thinks about war and warfare, the first thing that comes

into his mind might be images of traditional wars like World War II. Wars in which

battles were fought on a distinct battleground, where man fought against man, tank

against tack, airplane against airplane and ship against ship. Battles like these are easy to

understand. The way to defeat your opponent is to destroy him through physical means,

and it is easy to see who walks away from a duel a winner, and who the loser. What many

might tend to forget is that there was a long series of events and processes leading up to

every battle. Battles were never fought by coincidence, at least one side had knowledge

of what was about to happen and believed it could gain from it; we typically call this

knowledge intelligence.

Intelligence has always played an important role in warfare. With knowledge of

your own forces, and good and reliable intelligence regarding your opponent, you can

choose when and where to engage with him in a battle. You also know what to expect

from your opponent, what resources he has, the morale of his troops, his ideas, tactics and

operational skills, his strengths and his weaknesses; in short, you know everything that

affects his possibility to fight you. Sun Tzu said in one of his most famous quotes: “So it

is said that if you know others and know yourself, you will not be imperiled in a hundred

battles; if you do not know others but know yourself, you win one and lose one; if you do

not know others and do not know yourself, you will be imperiled in every single battle.”1

Of course, intelligence is not always easily collected. Perhaps even more importantly, as

Clausewitz stated, it is not always easily interpreted and used.2 A military power that can

use intelligence to its advantage, and also control the opponent’s access to intelligence,

has a big advantage and can successfully conduct large-scale war-changing operations

like the invasion in Normandy 1944. Through superior intelligence capabilities, the

1 Sun Tzu, The Art of War, Trans. Thomas Cleary (Boston, MA: Shambhala Publications, 1991), 24.
2 Carl von Clausewitz, Om Kriget, Trans. Hjalmar Mårtensson, Klaus-Richard Böhme and Alf W

Johansson (Stockholm, Sweden: Bonnier Fakta Bokförlag AB, 2002) 77–78.

1

advantage in information available and possibilities to plant false intelligence into the

German intelligence service, the Allied forces could deceive Hitler, thereby creating

favorable preconditions for an amphibious landing and taking a big step towards ending a

war that had been tormenting Europe for five years.3

Kinetic destruction, as in World War II, still plays an important role in today’s

warfare. But with the introduction of modern technology the possibilities for gaining

intelligence have changed dramatically. This technology makes it possible for us to

collect and get access to important intelligence to a greater extent than ever before. This

also means, however, that our opponent has the same possibilities. We therefore have to

protect our own sensitive data and information carefully. This might be more difficult

than one would first think, since almost all information regarding our forces‒‒their

capabilities, equipment, locations, actions and interactions‒‒could be of interest to an

adversary. Certainly, information has become one of the cornerstones of modern warfare.

A. INFORMATION WARFARE

To better explain the importance of information in today’s military, the term

Information Warfare (IW) has been introduced. One definition of Information Warfare by

the United States Department of Defense (DoD) is as follows:

“Information warfare includes actions taken to preserve the integrity of one’s own

information systems from exploitation, corruption, or disruption, while at the same time

exploiting, corrupting, or destroying an adversary’s information systems and the process

achieving an information advantage in the application of force.”4

Furthermore, information warfare can be described as a structure with five pillars

with a common foundation of intelligence. The five pillars consist of Psychological

Operations (PSYOP), Deception, Electronic Warfare (EW), Destruction and Operational

3 William B. Breuer, Hoodwinking Hitler, the Normandy Deception (Westport, CT: Praeger
Publishers, 1993).

4 Edward Waltz, Information Warfare, Principles and Operations (Norwood, MA: Artech House, Inc,
1998), 20.

2

Security (OPSEC).5 These are five free standing columns, but they can often be used in

interaction with each other.

1. Psychological Operations

Psychological operations are the operations to try to affect an opponent by

influencing his emotions, reasoning and behavior. This is done through our own troops

actively spreading information favorable to us but misleading to an adversary, reinforcing

his misinterpretations and misleading him in his estimations about what damages he has

caused us. PSYOP is often conducted through traditional open source media like radio,

TV and printed news, but can also be more directed through leaflets and media

campaigns in conflict areas. PSYOP is often directed at the adversary’s civilian

population to try to disrupt the people’s support of their leaders or to encourage them to

revolt.6

2. Deception

Deception is the military act of actively misleading an enemy, putting him in a

situation where he believes that he has a correct image of the situation while the correct

image really is very different. This has been done by armies throughout history; some

have managed better and some worse. To be successful one has to perform a deception

that gives an adversary information inputs from multiple sources, all confirming each

other. But one also has to make sure that information revealing the true image is not

accessible. The purpose of deception is to create a situation where the opponent is

engaged in actions that will not interfere with ours and restrain him from taking actions

on our movements and attacks.

5 David L. Adamy, EW102, A Second Course in Electronic Warfare (Boston, MA: Artech House
Publishers, 2004), 5–6.

6 The term “Psychological Operations” have been changed to “MISO – Military Information Support
Operations.” The older term is however still commonly used. United States Joint Chiefs of Staff, Joint
Publication 3–13.2. Military Information Support Operations. (Washington, DC, 2011).

3

3. Electronic Warfare

Electronic Warfare is the use of the electromagnetic spectra for military success.

It is divided into three subgroups: Electronic Attack (EA), Electronic Warfare Support

(ES) and Electronic Protection (EP). EW includes techniques and activities such as

analysis of the electromagnetic spectra (i.e., what frequencies are being used and for

what), analysis of how an opponent’s wireless communication network is constructed,

attacking weapons and sensor systems that actively or passively are used in the

electromagnetic spectra and also protecting ourselves against similar actions and attacks.

4. Destruction

Destruction in this context refers to the destruction of information warfare

capabilities. Destruction of information and intelligence, electromagnetic structures like

radar systems, communication nodes and other means of communication. Destruction can

be accomplished not only through kinetic energy at relatively close distance but also

through non-kinetic energy at great distances, e.g., through cyber-attacks on computer

networks to erase and destroy crucial data.

5. Operational Security

Operational security is intended to protect information about our resources, aims,

intentions, etc., from falling into the hands of our adversary. Just as we try to get as much

information about our opponent, he tries just as hard to get to know about us. To conduct

successful operations with a minimum of losses we have to make sure that our opponent

is denied this information. Maintaining a high operational security is of the utmost

importance to achieve our goals.

B. PROTECTION OF INFORMATION

From what has previously been discussed it is clear that in information warfare,

protection of information is of great importance. Looking at the five pillars of

information warfare, at least two pillars, Deception and OPSEC, have a direct need to

have the means of protecting information. Protecting information can be accomplished in

4

many ways, one of which is making it non-accessible by locking it into a vault. But we

not only want to protect information from falling in the hands of an enemy, we also want

to share the same information within our forces and to friendly forces. Thus, we need

ways to securely communicate information. The means of doing so is called cryptology.

Cryptology (or cryptography, from Greek: cryptos = “hidden/secret” and –logia =

“study” or graphein = “writing”) has been used for military purposes for a long time.

Early encryption methods are the transposition cipher where letters are rearranged or the

substitution cipher where every letter is represented by another letter making the message

unreadable if you do not know the method used (the key). Some examples of these

classical cryptology schemes are the Caesar and the Vigenère ciphers.7 Today we use

more sophisticated methods of encryption but the basic idea is still the same; we want to

transmit a plain text message securely by applying an encryption algorithm. When it

comes to the message, we want to be able to transmit any plain text message without

limitations; i.e., we do not want to have to adjust our plain text message to fit the

encryption algorithm in any way. For the encryption algorithm itself we nowadays

assume “Kerckhoff’s principle,” assuming that the algorithm itself is commonly known

and cannot be used as the sole means of protecting the message.8 Since we now have two

entities, none of which we can modify to gain protection we use a third entity to do so,

namely the encryption key.

7 For an excellent overview of the history and development of encryption, see Simon Singh, The Code
Book (New York, NY: Random House 1999).

8 Douglas R. Stinson, Cryptography Theory and Practice, 3rd ed. (Boca Raton, FL: Chapman &
Hall/CRC, 2006), 26.

5

Figure 1. Plain text and encryption key used as an input to an encryption algorithm
resulting in an encrypted text.

The encryption key is what the encryption algorithm uses as an initial input to

start encrypting the plain text. One can see the key being the initial settings of a number

of variables in a very complicated machine that for each iteration changes according to

their previous values. All changes to the settings are deterministic and depend on their

current value, and the plain text is entered so it is only the initial value that affects the

changes. Therefore, it is of utmost importance that the key (or the initial setting) is

chosen in such a way that no one can guess or gain access to it. If a human would be

given the responsibility to choose an encryption key, he would most likely choose a key

that would be easy to remember (e.g., for decryption purposes), just like most people do

when they choose a password for their online services. Just as passwords can be broken

using regular dictionary lookups, password dictionary lookups,9 or trying simple

substitution methods (like using common words but changing the letter “O” to a zero)

encryption keys chosen by humans could be broken just as easily. To prevent this we

choose numerical encryption keys randomly. Since a human is not good at picking

random numbers we have to rely on machines to create random numbers or strings of

random numbers.

9 Online you can find dictionaries with passwords that have been broken or in other ways obtained
through attacks on numerous databases. Any password that has ever been broken, therefore, has just as bad
reliability as any dictionary word.

Plain text

Encryption key

Encryption
algorithm

Encrypted text

6

C. RANDOM NUMBERS

To most people, creating random numbers might seem to be one of the easiest

tasks there is. You do not have to think, just pick a number from among several others.

However, on the contrary, it is extremely difficult to do so. By randomness, we normally

mean non-predictable; i.e., among a given number of alternative outcomes (where only

one can occur) all outcomes should have the same likeliness of happening. A person

participating in a raffle, for example, would expect to have the same chance of winning

the grand prize as anyone else. In a raffle, randomness is often achieved by tickets being

mixed in a container with the winning ticket being drawn by an official. But what if the

tickets are not properly mixed and instead are just put in a jar as they are being sold?

What if the lottery tickets have different sizes, weights, paper quality or colors? This does

not automatically mean that a winning ticket cannot be drawn at random, but the chances

of the raffle official being influenced by such factors and thereby biased increases. If the

raffle official knows ahead of time that the tickets differ and also knows which type of

tickets belong to which participants he has a greater possibility to affect the outcome of

the raffle. This would not elect the winner of the raffle randomly, and the lottery would

not be considered fair.

In the situation described in the previous paragraph, the raffle official drawing the

winning ticket is clearly a great risk to biasing the outcome. Therefore, mechanical raffle

and lottery machines are widely used in state arranged lotteries like the Mega Millions,

Powerball and Lotto. Mechanical lottery machines normally just draw numbers

identifying the winning ticket/tickets and use either gravity or air flow to pick a ball

indicating a number in the appropriate range. Depending on the type of lottery, the drawn

ball is either put aside or put back to make it possible to be drawn again. This is an

illustrative way of picking numbers and given that each number is represented on one of

the balls, all balls are of the same weight and size and are properly mixed, this is a fair

way to pick random numbers.

Even if mechanical machines are good from a perspective of picking random

numbers in a fair way, they are not very practical when it comes to computer

7

applications. They are just too large and too slow, and of course do not produce a usable

digital output. In the early days of computer programming users started to search for

efficient ways to generate random numbers using computers. John von Neumann created

the “middle-square” method, one of the first methods to be used. In this method a random

number is generated by taking the previous random number, squaring it and extracting

the middle digits of the result. Von Neumann used 10 digits, while others suggested both

more and fewer digits.10 The problem with the “middle-number” method is that it is not a

very good random number generator; the numbers achieved just appear to be random.

When analyzed mathematically, it is clear that they lack important properties of random

numbers. Furthermore the randomness of the output greatly depends on which input is

being used. There are many examples of inputs that quite soon will “loop” and get back

to an already used “random” number; i.e., they have a very short period. Others do,

however, result in random numbers that pass appropriate statistical tests.

Random numbers are today used in a number of different areas such as

simulation, sampling, numerical analysis, computer programming and recreation. This

thesis will focus on the generation and use of random numbers for encryption purposes.

Since we normally use computers for encryption it is not necessary to create random

decimal numbers; binary bit strings will do just fine. All that is needed is an electronic

“coin tosser” creating random “heads and tails” interpreted as 1’s and 0’s, or in other

words; something that “assigns a numerical value to the outcome of the random

experiment.”11 To be able to implement such a feature in a computer or a mobile device

we have to make it computable; i.e., we need an algorithm to do this for us. Such an

algorithm will give us a pseudorandom number generator (PRNG). A PRNG is said to be

pseudorandom since the output is not actually random; it is the result of a mathematical

computation performed by a deterministic machine operating under given circumstances.

A truly random number generator would not use any computations at all, thereby being

10 Donald E. Knuth, The Art of Computer Programming, Volume 2/Seminumerical Programming, 2nd
ed. (Reading, MA: Addison-Wesley Pub. Co., 1981), 3–4.

11 Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed.
(Reading MA: Addison-Wesley Pub. Co., 1994), 84.

8

totally unpredictable. By choosing good algorithms with proper complexity, a PRNG can

be created whose output has the properties of being random. So even if by using a PRNG

we compute a string of random bits, thereby making the output predictable, this string has

(or should have) the same properties of a truly random string. The output depends on the

input and the algorithms used. The challenge is to create a PRNG that creates bit strings

with properties of random numbers and also does not reveal any information on the data

used as the input creating these strings.

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

II. TESTING FOR RANDOMNESS

Testing to see whether a bit string is random or not can be challenging since there

are many ways in which non-randomness can appear. A string having approximately the

same number of ones and zeroes is perhaps an obvious test for a random bit string, but

one also has to take into consideration other aspects such as repeating patterns, length of

runs (repeating bits), linear dependency, etc.

A. THE NIST TEST SUITE

The U.S. National Institute for Standards and Technology (NIST) has developed a

suite of random number generation tests. This test suite is available for download at the

NIST homepage12 together with a thorough description on how the tests work, how they

should be applied and how the results can be interpreted. The suite consists of 15

different tests examining different aspects of randomness of a binary sequence. The

purpose of these tests is to support the user in deciding whether a sequence is random or

not. NIST does not claim that a sequence passing the tests in the suite really is random; it

is always up to the user to interpret the test results and make that decision himself or

herself based on the results.

To run the tests the user needs a chosen number of generated bit strings of equal

lengths to be tested for randomness. Each such string is to be treated as being one

sequence in a longer file of sequences. Therefore, the test suite needs both the sequence

length and the number of sequences to be tested as an input. No recommendations

regarding number of sequences is given, but for the test results presented later 100 bit

strings were used. The 15 tests in the NIST test suite are presented here and briefly

explained13:

12 http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.
13 Andrew Rukhin et al., A Statistical Test Suite for Random and Pseudorandom Number Generators

for Cryptographic Application (National Institute of Standards and Technology (NIST) Special Publication
800–22 Rev. 1a), (Gaithersburg, MD: U.S. Department of Commerce, 2010).

11

1. The Frequency (Monobit) Test

This test checks the occurrence of “1” and “0” throughout the full sequence. In a

truly random sequence we would expect about half of the bits to be 1 and the other half to

be 0. This test checks if the test sequence diverges too far from this. The test is the most

basic test of the fifteen. If a bit string does not pass this test, it is barely worth running the

other tests. It can be seen as serving as a basis for all other tests in the test suite.

2. The Frequency Test within a Block

This tests the occurrence of 1 and 0 within blocks of the same size. In a truly

random sequence we would expect about half of the bits in each block to be “1” and the

other half to be “0.” This test is the same test as the previous one; it is just limited to

blocks of a given size M. The block size M can be chosen by the user.

3. The Runs Test

This tests the length of runs in the full sequence. A run is defined as an unchanged

sequence of bits bounded by differing bits. In other words, it could be described as the

rate at which the bits alternate within the sequence. The statistical possibility of a bit

being the same as the previous one is ½ in a truly random sequence. The chance at any

given time of having a run of length n is (½)n.

4. The Test for the Longest-Run-of-Ones in a Block

This tests the length of runs of “1” in blocks of the same size M. The block size

tested depends on the length of the total sequence and can be chosen to be one of three

different preset sizes. Even if the test only checks for runs containing “1” an indicated

lack of randomness of the number of runs of “1” indicates an equivalent lack of

randomness for the number of runs of “0.”

12

5. The Binary Matrix Rank Test

This test divides the sequence into matrices of a given size and checks these

matrices individually for linear dependencies. To pass the test the created matrices must

have a high level of linear independency.

6. The Discrete Fourier Transform (Spectral) Test

This test checks the peaks in the Discrete Fast Fourier Transform of the full

binary sequence. Doing so makes it possible to identify frequency patterns that would

indicate non randomness in the sequence.

7. The Non-overlapping Template Matching Test

The test divides the sequence into blocks and bitwise checks each block for the

number of occurrences of pre-specified target strings. Once a target string is found, the

test continues searching for the next string after the last bit in the string found. Any target

string should appear equally often in all blocks.

8. The Overlapping Template Matching Test

This test is similar to the previous test, but once a target string is found, the test

starts to search for the next target string on the following bit (i.e., it does not skip to the

bit following the last one in the target string). Any target string should appear equally

often in all blocks.

9. Maurer’s “Universal Statistical” Test

This test checks the number of bits between matching patterns. This gives an

indication of how much the sequence can be compressed. If it is possible to highly

compress a sequence, then it might be non-random.

10. The Linear Complexity Test

This test identifies linear dependence in a sequence; do parts of the sequence have

a linear dependency on other parts? The test is based on the Berlekamp-Massey

13

Algorithm for Linear Feedback Shift Registers (LFSRs) described in Chapter IV, Section

B of this thesis. A highly complex LSFR (long LSFR) indicates a higher level of

randomness.

11. The Serial Test

The test takes a number of m-bit strings and checks the occurrence of these in the

tested sequence. In a truly random string all different m-bit strings should occur about

equally as often. This test is similar to the Frequency Test (1) but for strings instead of

single bits.

12. The Approximate Entropy Test

This test works as the serial test (11) but instead of looking at the whole sequence

it looks at two adjacent blocks of the sequence and compares the occurrence of strings in

these blocks. The strings are expected to occur about the same number of times in both

the blocks.

13. The Cumulative Sums (Cumsums) Test

The test counts “1” as +1 and “0” as -1. Then it checks the cumulative sum of

strings of increasing size as it steps through the tested sequence. This test is performed

both forward and backwards in the sequence. For the tested sequence to be considered

random, its cumulative sums should not deviate too far from zero.

14. The Random Excursions Test

The test checks the value of the cumulative sum in each cycle (a cycle being the

period between two cumulative sums being equal to zero). In how many cycles does it hit

exactly one of eight given values? Either each sum should be hit very frequently or all

sums should be hit just as frequently. Any deviations from this indicate non-randomness.

15. The Random Excursions Variant Test

This test is similar to the previous one when it checks the value of the cumulative

sum in each cycle (a cycle being the period between two cumulative sums being equal to

14

zero). Now this test instead checks how often the cumulative sum hits one of the 18

predefined defined values.

B. PRESENTATION OF TEST RESULTS USING THE NIST TEST SUITE

Each test is a statistical hypothesis test in which the null hypothesis (H0) is that

the tested bit string really is random. A test statistic is calculated from the data resulting

from the test, and this test statistic is then used to calculate a P-value summarizing the

test.14 The P-value indicates the probability for a truly random number generator

generating a sequence less random than the tested one for that specific test. A low P-

value (below 0.01 in the test results later presented) means that the null hypothesis should

be rejected; i.e., the bit string is not random.

An example of the presented results can be seen in Figure 2. The rightmost

column “Statistical test” states to which test the result refers. The column “Proportion”

shows how many of the tested strings pass the test. Note that all strings do not have to

pass a test for the whole sequence to pass. (True randomness must allow for something to

sometimes appear nonrandom.) With the significance level set to 0.01, 1% of the strings

can be expected to fail the test. In the result presented in Figure 2 we can see that 500

strings have been tested and depending on which test we look at, somewhere between

491 and 499 strings have passed the tests.

Another way to interpret the results is to look at the distribution of the P-values.

Columns “C1” through “C10” indicate ten subintervals of the interval 0 to 1. A P-value is

calculated for each tested string (500 in the following example). All P-values fall within

one of the ten subintervals and is presented accordingly. For the full sequence of strings

to be random, the P-values should be evenly distributed; i.e., there should be about as

many in each subinterval. A P-value of this distribution is also calculated and presented

14 For a more thorough explanation, see Andrew Rukhin et al., A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Application (National Institute of Standards and
Technology (NIST) Special Publication 800–22 Rev. 1a), (Gaithersburg, MD: U.S. Department of
Commerce, 2010).

15

in the column “P-value.” Any value exceeding 0.0001 indicates the distribution can be

considered evenly distributed.

If a sequence of strings should not pass a test this would be indicated by an

asterisk (*) in the “Proportion” and/or “P-value” column. As mentioned earlier, it is

ultimately up to the user to decide whether a sequence should be considered to be random

or not. The NIST test suite is just an aid to make that decision.

Figure 2. Example of a presentation of NIST test suite results.

C. OTHER RANDOM NUMBER TESTS

For the purpose of testing randomness there are a number of software packages

available; NIST, DieHard, DieHarder, TestU01 and ENT are some commonly used. Most

of these consist of a test suite in which each test measures a specific aspect of

randomness in a bit string. Some tests are the same for the different software packages

while others are unique for every test suite. It is up to each creator of the test suite to

decide which tests should be included or not as there is no set standard.

16

III. GENERATING RANDOM NUMBERS

There are many different ways to generate random numbers, from mechanical to

computational. Different methods also differ in result; some generate numbers with good

random properties while others generate numbers that are not always so random.

Depending on how they are to be used, these lesser random numbers can still be

acceptable depending on what we want to use them for. Some methods have the sole

purpose of generating random numbers while others are not primarily meant to be used

for this purpose but can still be quite usable to generate random numbers that do not

necessarily have to be cryptographic secure (e.g., for simulation purposes).

A. CRYPTOGRAPHIC HASH FUNCTIONS

A common function resulting in a string with properties of being random is the

cryptographic hash function. It is often used for confirming that two files/texts/passwords

are identical without comparing them character by character (e.g., for storing digital

passwords for online services or for detecting if a text has been modified). A

cryptographic hash function takes a clear text as an input to a standardized computation

and outputs a fixed length, so-called digest, that appears to be random and in no way

reveals the text used as the input.15

The strengths of these cryptographic hash functions are that any input results in a

fixed length output string of bits. Also, a small change in the input results in a large

change in the output (the so called “Avalanche Effect”) it is therefore easy to generate a

new string with other random properties. Since the result of a cryptographic hash function

should have the properties of a random number/string it may be used as a key for an

encryption algorithm. The problem is however that we may want longer key strings of

pseudorandom data than a hash function alone can provide. To receive a long string of

random numbers we instead use pseudorandom number generators.

15 William Stallings and Lawrie Brown, Computer Security, Principles and Practice (Upper Saddle
River, NJ: Pearson Educational, 2008), 54–56.

17

B. MODERN PSEUDORANDOM NUMBERS GENERATORS

Encryption algorithms are, just like computers, deterministic in that sense that

given the same input and using the same algorithms we will always receive the same

result. The output of an encryption depends on the inputs: the clear text and the

encryption key. Therefore, there are three variables: the plain text, the encryption key and

the encryption algorithm. The encryption of the plain text lies in its computation through

the encryption algorithm using a specific key. According to Kerckhoff’s principle16 the

encryption algorithm is assumed to be commonly known, this is an assumption made for

all encryption algorithms. This then results in the only two unknown variables being the

plain text and the encryption key. The protection of the encrypted plain text, therefore,

solely lies in the encryption key, and it is of utmost importance that the encryption key is

chosen in a proper way to ensure the secrecy of the encrypted plain text.

The best way of creating a usable encryption key is to use a random number

generator. Since computers use binary numbers a simple coin toss with a fair coin (where

heads result in a “1” and tails result in a “0”) would be a cryptographically good way to

create an encryption key. However, in reality this is, of course, not practically usable

since we want a long string of random bits, and we also want it generated quickly. Instead

we take a random number and use this as an input to a pseudorandom number/bit

generator which creates a longer string of bits that we can use for the encryption key.

The pseudorandom number/bit generator is, just as the encryption algorithm, also

a deterministic algorithm; given a certain input the same output is always achieved.

However, with a good enough pseudorandom number/bit generator a relatively small

input of random bits will result in a much longer output that might not be completely

random but has most (or, hopefully, all) of the characteristics a truly random bit string

has. If an output can be achieved where the likeliness of telling the achieved bit string

from a truly random string is less than half the achieved bit string is as good as random

and can be used for cryptographic purposes.

16 Stinson, Cryptography Theory and Practice, 26.

18

There are a number of pseudorandom number/bit generators available. In general,

they can be divided into two groups, cryptographic secure and cryptographic insecure.

The insecure generators can still be very useful in other areas since they are often easier

to implement and faster than the secure generators

1. The Linear Feedback Shift Registers

Although they are linear and thereby predictable and not considered

cryptographically secure, LFSRs are still commonly used as pseudorandom number

generators. The main reason for this is that they are easily implemented in hardware and

therefore very fast to use. With an LSFR, an irreducible (or, better yet, primitive)

polynomial17 is used to create a register. For each clock cycle the bits in the register are

moved over one step with the bit in the last position looping back to the first position. At

given positions in the register bit information is extracted or inserted to affect the result in

the register. There are two main ways to construct LSFR, the Galois and the Fibonacci

configurations.

a. Galois LSFRs

In this configuration, the register’s positions are numbered from the right

to the left. It is started with a seed of all “0’s” except for one “1” (in the leftmost

position). At each clock cycle the bits are moved over to the right, and the rightmost bit is

looped back to the leftmost position. When this rightmost bit is looped back it is XORed

with bits from other positions (positions given by the irreducible polynomial) affecting

the resulting bits in other positions of the register. Every clock cycle will create a new

register content until all possible combinations have been achieved. Using an irreducible

polynomial ensures that no combinations are missed (except all “0’s” that will generate

nothing else but “0’s”).

17 See Appendix B.

19

Figure 3. Galois Linear Feedback Shift Register (LSFR) for the generating function
() 4 1f x x x= + + .

b. Fibonacci LSFRs

In this configuration, the register’s positions are numbered from the left to

the right. It is started with a seed of all “0’s” except for one “1” (in the leftmost position).

At each clock cycle the bits are moved over to the right, and the rightmost bit is looped

back to the leftmost position. As the bits are shifted over to the right they are at given

positions (positions given by the irreducible polynomial) extracted and XORed with the

rightmost bit as it is being looped back to the leftmost position. Every clock cycle will

create a new register content until all possible combinations have been achieved. Using

an irreducible polynomial ensures that no combinations are missed (except all “0’s” that

will generate nothing else but “0’s”).

0

1

2

3

20

Figure 4. Fibonacci Linear Feedback Shift Register (LSFR) for the generating function
() 4 1f x x x= + + .

The result of the registers being run until their content is repeated can be

presented as a list of all possible combinations of the bit positions in the registers where

the columns represent the different numbered positions in the register, and the rows

represent the clock cycles (see Table 1). All these columns are alike, although they are

shifted. Any column can now be used as an m-sequence with properties of a

pseudorandom bit string. The order of “1’s” and “0’s” in the m-sequence depends on

which irreducible polynomial was chosen for the initial construction of the register. Since

all possible combinations of the bits in the registers are generated there will be just as

many “1’s” as “0’s” in the m-sequence with an exception of one zero. Since all “0’s” will

never appear in the registers there will always be one more “1” than “0’s” in the m-

sequence.

3

2

1

0

21

Galois LSFR

Iteration # Position

 3 2 1 0

1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 0 0 1 1
6 0 1 1 0
7 1 1 0 0
8 1 0 1 1
9 0 1 0 1
10 1 0 1 0
11 0 1 1 1
12 1 1 1 0
13 1 1 1 1
14 1 1 0 1
15 1 0 0 1

Fibonacci LSFR

Iteration # Position
 0 1 2 3

1 1 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 1 0 0
5 1 0 0 1
6 0 0 1 1
7 0 1 1 0
8 1 1 0 1
9 1 0 1 0
10 0 1 0 1
11 1 0 1 1
12 0 1 1 1
13 1 1 1 1
14 1 1 1 0
15 1 1 0 0

Table 1. List of combinations for Galois and Fibonacci LSFRs using the generating
function () 4 1f x x x= + + .Note the reverse order of the positions but how the

m-sequences (shaded) are equal. Also note how in the Fibonacci LSFR the
sequences at the different positions are the same, just shifted.

2. The Linear Congruential Generator

The linear congruential generator is a fast, widely used generator that is however

insecure. It was introduced in 1949 by D. H. Lehmer and was for a long time the most

popular random number generator.18 The generator uses two constants, a and b, within a

defined interval, a modulus, M, and a randomly chosen seed, x. The first random number

is achieved by multiplying the constant a by the seed x, adding the constant b and taking

the result modulo M.

18 Knuth, The Art of Computer Programming, 9.

22

M, a real number

a and b, constants such that 1 , 1a b M≤ ≤ −

x, seed such that 0 1x M≤ ≤ −

()1 modx a x b M= ⋅ +

From this computation the least significant bit is used as the first random bit

(which is the same thing as taking the result modulo 2). For the following bit the number

of the computation in the previous step is used instead of the seed. This process is

repeated until required number of bits has been achieved.

 ()1 modi ix a x b M+= ⋅ +

Further limitations for the generator are that the seed should be a bit string of

length no longer than length k and no pseudo random bit strings longer than length l

should be generated where k and l are defined as follows:

 21 logk M= +   

 1 1 1k M+ ≤ ≤ −

The resulting generator is then called a (k,l)-linear congruential generator

The linear congruential generator is not considered secure enough and should be

avoided for cryptographic purposes since it can be predictable.19 Since it is easy to

compute and implement and also very fast, though, it is widely usable in other areas

where security is of lesser importance (e.g., games, simulations, etc.). The linear

congruential generator repeats itself (i.e., it is periodic) after a certain number of

iterations, and some seeds result in a shorter repetition period than others.

19 Wade Trappe and Lawrence C. Washington, Introduction to Cryptography with Coding Theory, 2nd
ed. (Upper Saddle River, NJ: Pearson Prentice Hall, 2006), 42.

23

3. The Blum-Blum-Shub Generator

The Blum-Blum-Shub20 (BBS) secure pseudorandom bit generator (PRGB) is one

of the most popular and widely used secure PRBGs. Named after Lenore Blum, Manuel

Blum and Michael Shub, it is sometimes also referred to as the quadratic residue

generator.21 The base for the BBS is two large primes, p and q, that both are congruent to

3 modulo 4 and a randomly chosen number, x, which is relatively prime to the product n

of the two primes. This random number is used to generate a seed to the generator by

squaring it and taking the result modulo n.

() (), 3 mod 4 , and are large primesp q p q≡

n p q= ⋅

, realatively prime to x n

2
0 mod , generates as seedx x n=

Pseudorandom bits are then generated by taking the square of the seed modulo n

and using the least significant bit (which is the same thing as taking the result modulo 2).

For the following bit the resulting number of the computation in the previous step is used

instead of the seed. This process is repeated until required number of bits has been

achieved.

()2
1 mod mod 2i ix x n−=

The BBS generator is considered to be a generator secure for cryptographic

purposes. Compared to other generators it is, however, slow since it uses complex

calculations with large numbers. Its security is based on the Composite Quadratic

Residues problem.22

20 Leonore Blum, Manuel Blum and Michael Shub, “A Simple Unpredictable Pseudo-Random
Number Generator,” SIAM Journal on Computing, 15 (May. 1986) 364–383.

21 Trappe and Washington, Introduction to Cryptography with Coding Theory, 42.
22 Stinson, Cryptography Theory and Practice, 338.

24

4. Other Generators

There are a number of other pseudorandom number/bit generators available. Two

examples of generators considered to be secure for cryptographic purposes are the RSA

pseudorandom bit generator23 and the Micali-Schnorr pseudorandom bit generator.24 The

ANSI X9.17 pseudorandom bit generator25 and the FIPS 186 pseudorandom number

generator for DSA private keys26 are considered insecure for cryptographic purposes but

are still useful for many other areas, such as simulation, gaming, etc.

C. IMPROVING RANDOMNESS IN SEQUENCES

As previously mentioned, not all ways of generating random numbers are good

enough. There are, however, ideas for improving the randomness of the output from a

pseudorandom number generator using different types of techniques. Two such

techniques are the shrinking and the self-shrinking generator. These are normally used in

combination with linear feedback shift registers, but we will later apply the self-shrinking

generator on some strings of other, pseudorandomly, generated bit strings.

1. The Shrinking Generator

The concept of the shrinking generator was first published in 1993 by

Coppersmith, Krawczyk and Mansour.27 The main idea is to run two LSFRs (R1 and R2)

in parallel using the same clock so that their outputs are generated at the same time. The

two LSFRs are however using different irreducible polynomials28 in their construction

and therefore generate outputs independent from each other. If at any clock cycle the

output bit from LSFR R1 is a “1,” the corresponding output bit from LSFR R2 is used as

23 Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone, Handbook of Applied
Cryptography (Boca Raton, FL: CRC Press, 1997), 185–186.

24 Ibid.
25Menezes et al., Handbook of Applied Cryptography, 173–175.
26 Ibid.
27 Don Coppersmith, Hugo Krawczyk and Yishay Mansour, “The Shrinking Generator,” Advances in

Cryptology - CRYPTO ‘93 (Lecture Notes in Computer Science (LNCS), Vol. 773), Santa Barbara, CA:
Springer 1993), 22–39.

28 See Appendix B.

25

an output of the shrinking generator. If the output bit from LSFR R1 instead is a “0,” the

corresponding output bit from LSFR R2 is discarded and not used as an output of the

shrinking generator.29 A simpler, but maybe not so random way, to achieve this is to

create a random string of “1’s” and “0’s” and use this as a template. When this template

is used as an overlay to an output of a LSFR (or any string) every bit in the generated

string corresponding to the position of a “1” in the template is used as an output from the

shrinking generator while bits corresponding to the positions of the “0’s” are discarded.

The result of the shrinking generator will be a string shrunken to about half its

original length since half of the output bits from the LSFR R1 are “1’s” and the other half

are “0’s” (or actually one more “1” than “0’s”30). The properties of the resulting output

from the shrinking generator might however be different since any patterns or statistical

properties in the output of LSFR R2 now have been changed.

LSFR R1: 1101000110010111011001101100110111010111
LSFR R2: 0110100101101001011010010110100101101001
Output: 10 0 1 00 0 1 11 0 0 10 1 1 10 0 1

Figure 5. The shrinking generator and an example of an output.

29 Menezes et al., Handbook of Applied Cryptography, 211–212.
30 See Linear Feedback Shift Registers in Chapter III, Section B. 1.

LSFR R1

LSFR R2

cn = an if bn (a0,a1,a2,a3,…)

(b0,b1,b2,b3,…)

(c0,c1,c2,c3,…)

Shrinking
generator

26

2. The Self-shrinking Generator

Closely related to the shrinking generator is the self-shrinking generator. The

latter differs from the first in the way that it uses only one LSFR instead of two.

However, it still results in an output depending on the positions of the “1’s” in the string.

In the self-shrinking generator the input string is being partitioned into pairs of

bits. These pairs will then be one of the following combinations: “00,” “01,” “10” or

“11.” If the first bit in these pairs is a “1” the second bit will be used as an output of the

generator. On the other hand, if the first bit is a “0” the second bit will be discarded.31 All

the first bits are used in the decision-making only and will be discarded. If an LSFR is

used as an input to the self-shrinking generator the likeliness of the four bit combinations

is equal since “1’s” and “0’s” appear at the same rate in the output of the LSFR. The

output of the self/shrinking generator might however have different statistical properties.

LSFR: 11 01 00 01 10 01 01 11 01 10 01 10 11 00 11 01 11 01
Output: 1 0 1 0 0 1 1 1

Figure 6. The self-shrinking generator and an example of an output.

31 Menezes, et al., Handbook of Applied Cryptography, 221.

LSFR

cn = an+1 if an

(a1,a3,a5,a7,…)

(a0,a2,a4,a6,…)
(c0,c1,c2,c3,…)

Self-Shrinking
generator

27

D. ENTROPY

As mentioned above, all pseudorandom number generators need an input, or a

seed, to start generating numbers. If this input is not chosen at random the whole

sequence generated is also not random, since any pseudorandom number generator is

deterministic. If the input is known (or can be guessed) the output will also be known

(i.e., the generated bit string lacks random properties). Therefore, it is important to use

truly random numbers as input. This is done through the use of entropy.

Entropy can be defined as a level of uncertainty of predicting a value or as NIST

states: “Entropy is defined relative to one’s knowledge of X prior to an observation and

reflects the uncertainty associated with predicting its value‒‒the larger the entropy, the

greater the uncertainty in predicting the value of an observation.”32 We therefore need a

source that can take a number of different states; these states can then be discretized and

used as a random input. If the number of possible states is low we will receive very low

entropy. The same goes if the likeliness of the source taking a certain state differs a lot

from the other states; then the entropy will also be low. One can compare it to a raffle

with numbered tickets in it. If there are only a five tickets in it one is more likely to

predict which ticket will be drawn than if there are 500 tickets (i.e., the entropy is higher

with more tickets). In a similar way; if there were 500 tickets in a raffle but 250 of them

had the same number one would be more likely to be able to predict the winning number

(i.e., the entropy decreases if the probabilities for the outcomes are not equal). The

recommendations on an entropy source according to NIST are as follows:33

To create an entropy source we need first and foremost a noise source. The reason

for utilizing noise is that it is often the only truly non-deterministic source we have

available. The noise can be achieved from a number of different sources such as capacitor

discharging time, time differences between key strokes and mouse movements. In mobile

devices sources like the camera lens, the accelerometer and radio signal strength could be

32 Elaine Barker and John Kelsey, Recommendation for the Entropy Sources Used for Random Bit
Generation (National Institute of Standards and Technology (NIST) DRAFT Special Publication 800–
90B), (Gaithersburg, MD: U.S. Department of Commerce, 2012), 19.

33 Ibid.

28

used. The noise source then needs to be digitalized to be of any use in a computational

algorithm, but this is often easily done.

After the noise source has been digitalized one can choose to apply a conditioning

component. This component helps to avoid the output being biased and increases the

entropy rate. The use of this conditioning component is not required but might be needed

depending on the noise source and its characteristics. For further discussions regarding

the conditioning component, please read the NIST special publication.34

The last important part of an entropy source is health testing. We trust the entropy

source to give us random output, but we still have to check that it is working the way it is

supposed to. Therefore, a health test on the entropy source must be performed. These

tests can be performed as startup tests, continuous tests and on-demand tests and should

not only check the noise source itself but also the digitalization and the conditioning

component (if applicable). Since we put so much trust in the entropy source we have to

be able to detect any deviations, biases or malfunctions as soon as possible and with high

probability. Health tests can also help us identify common failure modes and make it

possible to correct for these using, for example, a conditioning component.

So, if we now have an entropy source that supplies us with as pure random

numbers as possible, why do we bother using pseudorandom number generators? Why

not use the output of the entropy source? The answer is quite simply time. While an

entropy source requires quite some time to collect a usable amount of data a

pseudorandom number generator can generate the same amount much faster. As

previously mentioned, however, it requires a truly random input, or seed, to generate a bit

string that has properties that are random enough.

34 Barker and Kelsey, Recommendation for the Entropy Sources Used for Random Bit Generation.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

IV. ATTACKS

As soon as a new encryption method is presented it is seen as a challenge to find

feasible attacks on it. The same goes for bit strings generated by pseudorandom number

generators. With an attack we mean to find a way to predict the output of the generator. It

is also important to understand that the definition of an attack being successful is not

necessarily that it is easy to predict an outcome but that the outcome can be predicted

with higher probability than someone would need just by guessing. Strictly speaking, a

lottery with 100 tickets ranging from the numbers 1 through 100 can be considered

successfully attacked if we can show that no three-digit number can be drawn as the

winning number, even if there then are 99 possible winning numbers left. Some possible

attacks on pseudorandom number generators are presented here.

A. ATTACKS ON SHRINKING AND SELF-SHRINKING GENERATORS

A number of attacks have been developed on both the shrinking and the self-

shrinking generator. Two of them are presented in the following sections. Others have

been developed through the work of Kitae Jong35 et al., Simon R. Blackburn36 and Bin

Zhang and Dengguo Feng37 just to mention some.

1. Attack on Short Sequence Linear Feedback Registers Using the Self-
Shrinking Generator

This attack uses the knowledge that the original (unknown) bit string is grouped

into pairs of two bits; this is then compared to the output bit string (known). As

mentioned in the discussion regarding the self-shrinking generator38 we have four

35 Kitae Jeong et al., “Improved Fast Correlation Attack on the Shrinking and Self-shrinking
Generators,” Progress in Cryptology - VIETCRYPT 2006 (Lecture Notes in Computer Science (LNCS),
Vol. 4341), (Hanoi, Vietnam: Springer, 2006), 260–270.

36 Simon R. Blackburn, “The Linear Complexity of the Self-Shrinking Generator,” IEEE Trans. Inf.
Theory, 45 (September 1999), 2073–2077.

37 Bin Zang and Denggou Feng, “New Guess-and-Determine Attack on the Self-Shrinking Generator,”
Advances in Cryptology - ASIACRYPT 2006 (Lecture Notes in Computer Science (LNCS), Vol. 4284),
(Shanghai, China, Springer: 2006), 54–68.

38 For more information regarding the self-shrinking generator, see Chapter III, Section C. 2.

31

alternatives for each pair: 00, 01, 10, 11, each approximately just as possibly likely.

When we know the first output bit, say 1, we also know that the first two bits for sure are

not 10 (which would have given 0 as the first output bit). Furthermore we know that the

probability for the very first bit to be 0 is equal to the probability for it to be 1. This

combined leads us to the conclusion for the following probabilities for the first two bits:

p(00) = ¼ , p(01) = ¼, p(10) = 0, p(11) = ½. This is then repeated for all pairs of bits and

we can thereby assume an original bit string with higher probability than by just

guessing.39

2. The Backtracking Algorithm

Another attack on LSFRs is the Backtracking Algorithm.40 This algorithm

requires that the feedback polynomial of the LSFR is known. It is based on an attack on

the shrinking generator where the inner state of LSFR R2 is guessed and used to create

the R2 sequence. Through this single bits of the R1-sequence can be reconstructed which

all gives a linear equation. When enough bits have been recreated we can solve the linear

equations and find the inner state of R1. This can then be double checked by running the

two LSFRs and checking the output using the shrinking generator. A similar method can

be applied to the self-shrinking generator. Now, however, since all even bits serve as the

equivalent of the R2-sequence in the case with the shrinking generator and they are not

the complete output of an LSFR, they are not necessarily linearly dependent (i.e., they

have to be guessed bit by bit). This makes the attack on the self-shrinking generator more

complicated and not so straightforward.

B. OTHER ATTACKS

There are also attacks that focus not on a specific algorithm or method but instead

work directly with the string of random bits. One such powerful, and quite fascinating

39 Erik Zenner, Matthias Krause, Stefan Lucks, “Improved Cryptanalysis of the Self-Shrinking
Generator,” Australasian Conference on Information Security and Privacy (ACISP) 2001 (Lecture Notes in
Computer Science (LNCS), Vol. 2119), (Sydney, Australia: Springer, 2001), 21–35.

40 Ibid.

32

algorithm, is the Berlekamp-Massey algorithm that finds a linear dependence in a string

of apparently random bits.

1. The Berlekamp-Massey Algorithm

A string of “0’s” and “1’s” placed “randomly” may seem very random indeed.

However, there is always a function that will express a linear dependency between the

bits in any given string, even the truly random ones. In “poor” random strings such a

function can easily be created to predict/compute the next bit. In a really poor random

sting this equation is very simple; in not so poor random strings it is a bit more

complicated. Such a function can also be created for the really good random strings.

However, in the cases of the really good random strings, the equation needs the input of

all the previous bits in the strings to predict/compute the very last bit.

The algorithm to create these “predicting functions” is called the “Berlekamp-

Massey algorithm.”41 Given a binary output sequence, the Berlekamp-Massey algorithm

is used to find the simplest linear feedback shift register that creates this very same

sequence. This algorithm walks through the binary string bit by bit, adding complexity to

the function when needed to create the target bit string. An example of how it can be

applied is presented as follows:42

Assume the bit string zn of length 20 is observed; zn = 11010110010001111010. It

is very difficult to intuitively say whether or not the bits in this string have a linear

dependency, but we will see that they are indeed linearly dependent and in a not too

complex way. For the computations in the algorithm we need to keep track of a number

of variables:

 N The current index, or the number of bits “taken into operation”

 NL The complexity at a given index N

 m The largest index such that m NL L<

41 Menezes et al., Handbook of Applied Cryptography, 200–202.
42 An online calculator of the Berlekamp-Massey algorithm is available at http://bma.bozhu.me/

33

 ()Nf x The current function used

For every step in the algorithm the function ()Nf x is kept unchanged unless it no

longer gives a correct result for the last bit. When ()Nf x must be recomputed the

complexity NL also must be recomputed and used as an input. The new complexity and

function are computed using the following formulas for 1NL + and ()1Nf x+ :

 ()()1 max , 1N N NL L N L+ = + −

 () () ()1 1
1

N N N mL L L N m L
N N mf x x f x x f x+ +− − + −
+ = ⋅ + ⋅

To initiate the Berlekamp-Massey algorithm the first step is to at index 0N =

setting the complexity to 0 (0 0L =) and the function to 1 (()0 1f x =). Thereafter at index

1N = computing the complexity and setting the function to be 1x + , (()1 1f x x= +):

 0N = z =∅ 0 0L =

 ()0 1f x =

 1N = 1z = () ()0 0 0max ,1 max 0,1 1L L L= − = =

()1 1f x x= +

We will now try to find a function ()f x that generates all the following bits. In

this function we want terms to solve the binary equation () 0f x = where the powers of x

indicates the indexes of the last bits in the string, e.g., in the string 110010, 4 0x = 3 1x =

2 0x = 1 0x = 0 1x = . (Note that index 0 represents the term 0x , in the functions that

follows this is simplified to a 1, since 0 1x =). The first bits are not of interest from an

indexation perspective.

34

In the next step the existing function ()1f x still works since 11z = and

()1 1 1 0f x = + = . The function and the complexity remain unchanged; () ()2 1f x f x= and

2 1L L= :

 2N = 11z = 2 1L =

()2 1f x x= +

In the third step the function ()2f x is no longer applicable since 110z = but

()2 0 1 1 0f x = + = ≠ . We recompute the complexity 3L and compute a new function

()3f x by applying the formula as described above:

 3N = 110z = () ()3 2 2max ,3 max 1,2 2L L L= − = =

() () () ()2 1 2 2 0 0 1 0 2
3 2 1 1 1 1f x x f x x f x x x x x x− − + −= ⋅ + ⋅ = ⋅ + + ⋅ = + +

Double checking the function ()3f x above on z gives the result:

2 1 0 1 1 0x x+ + = + + = so it is OK.

In the fourth step, the previous function works since 1101z = and

()3 1 0 1 0f x = + + = . The index N is increased while the complexity, and the function

remains unchanged; 4 3L L= and () ()4 3f x f x= :

 4N = 1101z = 4 2L =

() 2
4 1f x x x= + +

35

In the fifth step we have 11010z = but ()4 0 1 0 0f x = + + ≠ so we have to re-

compute the complexity 5L and the function ()5f x :

 5N = 11010z = () ()5 4 4max ,5 max 2,3 3L L L= − = =

() () () () ()
() ()

3 2 3 4 2 1 1 2 0
5 4 2

3 2 3 2 3 2

1 1

 1 2 1 1

f x x f x x f x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + − + ⋅ + =

= + + + + = + + + = + +

In the sixth step we have 110101z = and ()5 1 0 0 1 0f x = + + = ≠ , Again, the

index N is increased and both complexity 6L and the function ()6f x are recomputed:

 6N = 110101z = () ()6 5 5max ,6 max 3,3 3L L L= − = =

() () () () ()
() ()

3 3 3 5 4 2 0 3 2 0 2
6 5 4

3 2 2 3 2 3

1 1

 1 1 2 2

f x x f x x f x x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + − + ⋅ + + =

= + + + + + = + + + = +

In the seventh step, 1101011z = but ()6 1 0 1 0f x = + = ≠ . Once again we increase

index N and recompute the complexity 7L and the function ()7f x :

 7N = 1101011z = () ()7 6 6max ,7 max 3,4 4L L L= − = =

() () () () ()
() ()

4 3 4 6 4 2 1 3 0 2
7 6 4

4 2 2 4 2 4

1

 1 2 1 1

f x x f x x f x x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + + ⋅ + + =

= + + + + = + + + = + +

36

In the eighth step, 11010110z = while ()7 0 0 1 1 0f x = + + = ≠ . Yet again we

increase the index N and recompute the complexity 8L and the function ()8f x :

 8N = 11010110z = () ()8 7 7max ,8 max 4,4 4L L L= − = =

() () () () ()
() ()

4 4 4 7 6 3 0 4 0 3
8 7 6

4 3 4 3 4 3

1

 1 2 1 1

f x x f x x f x x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + + + ⋅ + =

= + + + + = + + + = + +

In the ninth step, 110101100z = and ()8 1 0 1 0f x = + + = , so the function works

and () ()9 8f x f x= .

In the tenth step, 1101011001z = and ()9 1 0 1 0f x = + + = , so the function works

and () ()10 9f x f x= .

As a matter of fact, we have now found the function that works for the complete

observed bit string. Therefore, no further computation is necessary for either the

complexity NL or the function ()Nf x . Remaining bit values can be controlled with the

function achieved:

N z () 4 3 1f x x x= + +
9 110101100 0 + 0 + 0 = 0
10 1101011001 1 + 0 + 1 = 0
11 11010110010 0 + 1 + 1 = 0
12 110101100100 0 + 0 + 0 = 0
13 1101011001000 0 + 0 + 0 = 0
14 11010110010001 1 + 0 + 1 = 0
15 110101100100011 1 + 1 + 0 = 0
16 1101011001000111 1 + 1 + 0 = 0
17 11010110010001111 1 + 1 + 0 = 0
18 110101100100011110 0 + 1 + 1 = 0
19 1101011001000111101 1 + 0 + 1 = 0
20 11010110010001111010 0 + 1 + 1 = 0

Table 2. Checking applicability of the function ()Nf x for steps ()9 20N =  .

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

V. TEST RESULTS

For the tests a number of bit strings have been used. Time constraints and

difficulties getting access to usable data have made it challenging to get all tests done in

time, and a more thorough examination could be done in the future. The tests performed,

however, show some interesting results.

A. PERFORMANCE OF THE TESTS

The string of pseudorandom bits was run through the NIST test suite. Since the

test suite requires multiple strings to get usable statistics the strings used were divided by

the NIST test program into a number of equally long bit streams. Hereafter the term “bit

string” will be used for the original pseudorandom generated string used as the general

input for the NIST test suite, while the term “bit stream” will be used for the input to the

NIST subtests. The bit streams created were then run through all the tests in the test suite,

and the result was saved. The original bit string was then modified by running it through

a self-shrinking generator.43 The resulting string was then run through the same NIST

tests again. It is important to notice that this new bit string was now shorter than the

original (the SSG is expected to shorten a truly random string to one fourth of its original

length). To get comparable results the new bit string was divided into the same number of

bit streams that were used in the original test. The new bit streams were therefore shorter

than the originals, but they reflected the information retrieved from the full length bit

streams in the original bit string since they were created using them as input. The results

after having run the NIST test suite on the string after having applied the self-shrinking

generator was compared to how the original, non-modified, bit string performed on the

NIST test suite. Depending on which original source was being used, the NIST bit stream

length and the number of bit streams tested varied.

43 See python script for the self-shrinking generator in Appendix D.

39

B. TESTING A STRING GENERATED BY AN ANDROID PHONE

Since not as much work has been put into pseudorandom number generators for

mobile devices as it has for their stationary equivalents, it was expected that some non-

random properties would be discovered. The intention was then to improve the

randomness of the generated bit string by applying the self-shrinking generator (SSG).

Generating bit strings on an Android phone was outside the scope of this thesis, and

access to such strings turned out to be more limited than expected. Further data could

therefore render more information. It was not until very late in the research that the bit

strings needed were made available, and the time available for tests was very limited.

Some tests should be run again with other parameters to see if the results could be

affected.

For these tests (which are described in Chapter II), two strings of random bits

generated on an Android phone were used.44 One was created using the /dev/urandom

block device (hereafter referred to as string A) while the other one came from the

SecureRandom function provided by Java (hereafter referred to as string B). They were

presented in a pure binary file and were therefore converted45 to an ASCII representation

so that they could be modified using the SSG script. The conversion script also cut the

file to a manageable length since the NIST test suite would not accept a too great input.46

For the tests, 100 bit streams of length 106 were used from each string.

1. Results before Applying the SSG

NIST recommendations require a 96% pass rate for the bit streams, and this was

fulfilled for string A, even if not all bit streams passed all subtests. String B passed all

tests with one exception. In Test #7, “The Non-overlapping Template Matching Test,” for

one of the 148 templates tested only 95 of 100 bit streams passed resulting in a 95% pass

rate. However, this must be considered such a rare event that no conclusions of the

44 The strings were made available through another research project.
45 See python script for binary to ASCII conversion in Appendix C.
46 The maximum input used in the test was approx. 750MB. Suspected file size limit is 1GB.

40

original bit string being non-random can be drawn. Both strings must therefore be

considered as fulfilling the NIST recommendations for required randomness. Since non-

random properties were expected, this was a bit of a disappointment. The SSG was

applied anyway to see if the pass rate could be improved further.

2. Results after Applying the SSG

After the SSG had been applied, the bit strings A and B were run through the

NIST test suite again. This time, both bit strings passed all the tests. The SSG can then at

least be considered to have improved the result regarding one matching template in string

B. It is however doubtful whether there was an overall improvement. The pass rate did

improve for some tests, but it remained constant or even deteriorated for others. The

changes in pass rate were so low that no conclusions could be drawn from this test.

C. TESTING A STRING GENERATED BY LINUX

As a reference a pseudorandom bit string generated by the /dev/urandom function

in Linux (hereafter referred to as string C). The /dev/urandom function was chosen in an

attempt to generate a string that lacked some random properties. The /dev/random

function could have been used, but it was expected to perform better in the tests. String C

was also converted to ASCII representation before being run through the NIST test suite

and the SSG. In this test we used 300 bit streams of length 106. The original string was

not as long as the Android strings, and after having applied the SSG, the bit stream length

had to be shortened to 2.5·105 to still be able to test 300 bit streams. The original string C

performed equally well as the Android bit strings and passed all tests with an equivalent

pass rate.

A divergent result was achieved when the bit string was tested after the SSG had

been applied. The string now passed all tests with an acceptable pass rate. However, it

failed to pass Test #9 from the perspective of an even distribution of P-values. It seems

like the test requirements for input variables were not met. This problem has not been

detected with any other string. Why the requirements were not met with this string in this

test is not clear.

41

D. TESTING A STRING WITH POOR RANDOM PROPERTIES

As a reference, a string of “really poor” bits was tested. Even if it is easy to find

or create a string with really poor random properties (e.g., all “1’s” or a repetitive pattern

of a given length) it remains difficult to find a string of bits with some random properties

but still not random enough to be anywhere near to pass the NIST test suite. To create

such a string, we used the U.S. Constitution with its 27 amendments.47

1. Creating a Bit String with Poor Random Properties

The string to be tested was created by letting the characters and spaces of the

Constitution be represented by their 8-bit ASCII representation while all line breaks were

removed. The result was an approximately 350 000 bit long string. This string now had

some random properties while it lacked others. It, for example, passed the linear

complexity test. This is not surprising since the Berlekamp-Massey algorithm48 has

shown us how the full length of a string has to be taken into account to compute the linear

complexity. Since the characters constantly change in a text, this change affects the

complexity. The string created, however, did not pass the most basic test, the frequency

test. This is what could be expected. Letters A-Z are represented by 01000001–01011010

and a-z by 01100001–01111010, (i.e., bit #3 is always is a “0” for majuscule (capital)

letters and a “1” for all minuscule letters). Since there are many more minuscule than

majuscule letters in a regular text this will result in a higher frequency of “1’s” than “0’s”

in the created string. Furthermore, in a regular text the letter “o” (ASCII: 01101111, 6

“1’s” 2 “0’s”) occurs more often than the letter “b” (ASCII: 01100010, 3 “1’s” 5 “0’s”)

resulting in a bias towards a higher frequency of “0’s.”49 These are just two examples of

what affects bit frequency in a string derived from a text. Since all characters are

represented by eight bits and they all start with a zero, the NIST tests will notice this as

in, for example, “The Binary Matrix Rank Test” (Test #6) where smaller matrices created

47 Available at: www.usConstitution.net/const.txt.
48 See Chapter IV, Section B.1.
49 For more information on the distribution of letters in a text search for information on “letter

frequency.”

42

by the string are tested for the linear dependence. Furthermore, in a string of this size you

would expect to find some long runs of “1’s” and “0’s.” But since the character

represented by all “0’s” is the “NUL” and the character represented with all “1’s” is “ÿ”

(both being extremely rare in most texts, especially in the U.S. Constitution) there will

certainly be no run longer than 14 (2·[8–1]) bits.

2. Test Results

For testing the string described in the previous paragraph, it was split into 10 bit

streams, each of length 35 000 bits. In another test 100 bit streams of length 3 500 bits

were also tested, but these bit streams seemed too short to result in any interesting results.

When being run through the NIST test suite, the bit string created, as expected, did not

pass the NIST test for randomness.50 Even after the self-shrinking generator was applied

the bit string did not pass the test suite. It is r interesting, though, to see what

improvements were made and why.

Since the string did not pass the frequency test we could not expect it to pass after

the SSG had been applied. That is because the relative frequency generally is maintained

by the SSG. This also affects the result in the tests directly based on the frequency of bits

(Tests #2 through #5) and makes the string fail those tests as well. However, by applying

the SSG we seem to have improved the result for Test #6, “The Binary Matrix Test.” By

applying the SSG we have to a great extent eliminated the property of the original string

where every character was represented by eight bits. Since characters A-Z in ASCII

representation all start with 0100 or 0101, all bits from the first half of the ASCII

representation are being discarded. For the characters a-z (starting with 0110 or 0111)

however, the second pair of bits results in on bit (1 or 0) in the resulting string. Thus, a

minuscule character will always contribute to one bit more than its majuscule equivalent.

From the second half of the ASCII representation (bits #5 through #8) varying numbers

of bits are maintained. After having applied the SSG no pattern revealing the original 8-

50 We can now say, therefore, that we have proven that the U.S. Constitution was not written at
random (if anyone ever might have suspected it to have been).

43

bit “partition” can be seen. The characters have instead resulted in 0–3 bits in the new bit

string.

By breaking up the 8-bit “partition” we have also made it more difficult for

“Template Matching Tests” to find non-randomness (i.e., it is more difficult to find these

matching templates once we have substituted every 8-bit character representation with 0–

3 bits). All the bit streams of the new string did not pass all matching templates tests, and

the string as such did not pass the test in full. Even so, we can observe a 500%

improvement for the string in passing the subtests after the SSG was applied as compared

to before.

The original string did pass Test #10, “The Linear Complexity Test.” An

improvement of the distribution of the p-values can also be seen. This can be seen as a

result of the SSG “removing” the 8-bit partition of the original string. A string that has

less obvious partitioning will result in more varied complexity.

44

VI. CONLUSIONS

It was expected that pseudorandom bits strings generated on an Android phone

would lack some random properties. An attempt would then be made to improve these

flaws in randomness by applying the self-shrinking generator (SSG).

A. TESTED STRINGS

Tests using the NIST test suite (described in Chapter II) showed that the bit

strings generated on the Android phone passed the NIST tests with a pass rate according

to NIST recommendations. Applying the SSG affects the test results, but no conclusions

can be made whether it is for better or for worse.

The test performance of the Android-generated strings was compared to the

performance of a Linux-generated string. They performed equally well, and no obvious

differences could be identified.

Tests were also run on a string with poor random properties, a plain text in ASCII

representation. This string drastically failed all tests except the linear complexity test.

After having applied the SSG, this string showed improved results in four of the tests: the

“Binary Matrix Rank Test,” “Discrete Fourier Transform (Spectral) Test,” “Non-

overlapping Matching Template Test” and “Overlapping Template Test.” It also still

passed the “Linear Complexity Test.”

B. TEST ALGORITHM AND THE SELF-SHRINKING GENERATOR

After having run the NIST test suite, before and after the SSG had been applied,

on a bit string with poor random properties, such as the plain text string, it was clear that

there are two main aspects of random properties that are being tested by the NIST test

suite: frequency and linear dependency.

In a string with good random properties the frequency of 1’s and 0’s should be

about equal. This is not necessarily true in a string with poor random properties, and

definitely not so in a string based on a binary ASCII representation of an English text.

45

The character frequency in English combined with the binary ASCII representation of the

characters results in a string having the ratio 45/55 of 1’s and 0’s. Since the SSG

compresses the original string with guidance on the occurrence of 1’s as the first bits in a

pair of bits, the probability for the second bit in these pairs being a 1 or a 0 will be

reflected in the new string created. Therefore, the ratio of the frequency of 1’s and 0’s in

the resulting string is not 50/50, it has after the SSG was applied actually changed to a

ratio of 38/62. This change in ratio occurs since the bit combination “10” (resulting in a

single 0 in the SSG output string) is more common than the bit combination “11”

(resulting in a single 1). The reason for this is that minuscules (lower case letters) are in

majority in a text, and the majority, and the most frequently used, of the minuscules (a-o)

are represented by “10” as bits 3 and 4, resulting in a single 0 in the SSG output string.

The SSG is therefore for no much use when trying to improve test results from tests that

are based on an analysis of the frequency of bits.

A string with good random properties is expected to have a great level of linear

independency. A string created from a binary ASCII representation of a text will at every

eighth bit start representing a new letter. This is a pattern, or a linear dependency, that

will easily be detected in a test. The easiest way to understand this is to realize that the

most frequently used characters used in a text are the letters A-z. The binary ASCII

representation of these letters all start with the bits “01,” i.e., two out of eight bits for

every character can be predicted. This creates an obvious linear dependency in longer bit

strings. Applying the SSG removes the two initial bits in the binary ASCII representation

of all letters. It also affects the following bits resulting in an output of 0–3 bits for every

8-bit representation of a letter. After the SSG has been applied to a string, its test results

in the NIST test suite dramatically improves for tests based on linear dependence and

spectral tests, except for the linear complexity test where already the original string

performs well. The reason for this being that in this test the full length of the string is

being analyzed instead of for example the “Binary Rank Matrix Test” where only blocks

of the string are being tested. Applying the SSG on a string can therefore improve

randomness from a perspective of linear dependency in a string.

46

C. SUGGESTIONS FOR FURTHER RESEARCH

Time constraints made it difficult to perform as many tests under varied input

condition as would have been desirable. A more thorough testing and analysis of test

results, before and after having applied the self-shrinking generator could therefore be

recommended to confirm the results presented here. More strings with limited random

properties of various degrees could also be examined to better identify the self-shrinking

generator’s capability of improving randomness in a string. Furthermore, more research

could be focused on the mathematics behind how the self-shrinking generator affects a

string. This thesis inly notes that it affects the randomness of the string, not so much why.

When it comes to the generator used, this thesis only examines the self-shrinking

generator. The shrinking generator is presented but due to time constraints not examined.

A drawback with the self-shrinking generator is that it shortens the input string to approx.

25% of its original length while the shrinking generator shortens it to only approx. 50%.

The drawback with the shrinking generator is that it needs two inputs, a string to be

shrunken, and a string to use as a template for performing this shrinking. There could

however be an improved self-shrinking generator, which for example does not pair the

bits in the input string as the existing self-shrinking generator does but instead uses every

bit as a decision bit to decide whether the following bit should be discarded or be a bit in

the resulting output string. A decision rule that uses multiple bits in the original string to

decide the output could also be applied. This would be like using the string itself as a

template in a shrinking generator and give a greater output string (like the shrinking

generator) without a template sting (like the self-shrinking generator). These types of

expansion of the shrinking generators have not been examined in this thesis but it could

be interesting to do so.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

APPENDIX A. MATHEMATICAL FIELDS

In cryptology we normally use binary numbers and finite fields. A field is defined

as a set S of elements under the operations addition and multiplication fulfilling the

following properties:51,52

Closure If ,a b S∈ , then a b+ and a b S⋅ ∈

Associativity If ,a b S∈ then () ()a b c a b c+ + = + + and () ()a b c a b c⋅ ⋅ = ⋅ ⋅

Commutativity a b b a+ = + and a b b a⋅ = ⋅

Identity 0a a+ = (additive identity)

1a a⋅ = (multiplicative identity)

Inverses () 0a a+ − = (additive inverse)

1 1a a−⋅ = (multiplicative inverse)

Distributivity ()a b c a b a c⋅ + = ⋅ + ⋅

If the number of elements in the field is p (a prime) they form a field under

addition and multiplication modulo p. In cryptology we normally use fields of order two

(2p = , binary), or in other words a Galois Field of degree two, () ()2GF p GF= , or

some of their extensions (see Appendix B).

51 Neal H. McCoy and Gerald J. Janusz, Introduction to Abstract Algebra (Ann Arbor, MI:
Trustworthy Communications, 2009), 3–5.

52 Ibid. 71.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

APPENDIX B. FIELD EXTENSION

A field of order two does not give us many possibilities since it only has two

elements. Therefore, we perform a field extension. By creating a polynomial of degree n

using the elements of the field S as coefficients we achieve a field extension,

() ()2n nGF p GF= .

Example:

Using a polynomial of degree 3n = we achieve an extension ()32GF of the

binary field ()2GF which is represented by the polynomial 2 1 0
2 1 0c x c x c x+ + where the

coefficients nc are in the set { }0,1S = . This polynomial now gives us the possibility to

express eight (32 8=) different polynomials:

Polynomial Polynomial full
format

Coefficients,
nc

0 2 1 00 0 0x x x⋅ + ⋅ + ⋅ 0 0 0
1 2 1 00 0 1x x x⋅ + ⋅ + ⋅ 0 0 1

1 1x+ + 2 1 00 1 0x x x⋅ + ⋅ + ⋅ 0 1 0
1x + 2 1 00 1 1x x x⋅ + ⋅ + ⋅ 0 1 1

2x 2 1 01 0 0x x x⋅ + ⋅ + ⋅ 1 0 0
2 1x + 2 1 01 0 1x x x⋅ + ⋅ + ⋅ 1 0 1
2x x+ 2 1 01 1 0x x x⋅ + ⋅ + ⋅ 1 1 0

2 1x x+ + 2 1 01 1 1x x x⋅ + ⋅ + ⋅ 1 1 1

Table 3. Polynomials and their coefficients for the extended field ()32GF .

A polynomial, ()q x , is irreducible if there does not exist any other two

polynomials, ()p x and ()g x , such that () () ()p x g x q x⋅ = (all polynomials being of

degree greater than 0). The easiest way to check that a polynomial is irreducible is to

check that the polynomials do not result in zero when 0 or 1x = :

51

() ()0 0 and 1 0f f≠ ≠

Remember that in binary 1 1 0+ = . Looking at the polynomials presented in the

example above, 2x x+ is not irreducible (since 21 1 0+ =), while 2 1x x+ + is irreducible

(since 21 1 1 1 0+ + = ≠). The property of a polynomial being irreducible plays an

important role in cryptology. In this example a polynomial of degree 3 has been used.

Normally, polynomials of much greater degree are used.

52

APPENDIX C. PYTHON SCRIPT FOR CONVERTING A BINARY
FILE TO BINARY ASCII REPRESENTATION

This script reads and converts 100 bytes of binary data
and converts it to a binary ASCII string of maximum
length 800MB

import sys, binascii

f = open(sys.argv[1], “rb”) # Open input file

g = open(“result,”“w”) # Open output file

try:

 numbytes = 0 # Set and index

 while True:

 bytes = f.read(100) # Read 100 bytes

 numbytes = numbytes + 100 # Index increment

 if bytes == ‘‘ or numbytes > 10**8:

 # The line above limits output to 800MB

 break

 x = bin(int(‘1’+binascii.hexlify(bytes),16))[3:]

 # The line above converts to binary ASCII

 # The ‘1’+ prevents loosing leading 0’s

 g.write(x) # Write to output file

finally:

 f.close() # Close input file

 g.close() # Close output file

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

APPENDIX D. PYTHON SCRIPT FOR APPLYING THE SELF-
SHRINKING GENERATOR TO A STRING

Opens a file, applies the self-shrinking generator

(if bit #1 is a “1” use bit #2 otherwise don’t use any of

them, repeat for #3 and #4, etc.) and writes the result

to a new file.

import sys, os

file = sys.argv[1]

f = open(file) # Open input file

g = open(file+’mod,’”w”) # Create output file

statinfo = os.stat(file) # Identify string length

z = int(statinfo.st_size)

index = 1 # Limits number of loops

while (index < z): # to file length

 x=f.read(1) # Read first bit

 index = index +1

 if x==“0”: # If bit is 0 don’t

 y=f.read(1) # use next bit

 index = index +1

 elif x==“1”: # If bit is 0 use next bit

 y=f.read(1)

 index = index +1

 g.write(y) # Write to output file

55

 else: # For unexpected inputs

 print “Unexpected input”

 f.close()

 g.close()

 quit()

f.close() # Close input file

g.close() # Close output file

quit()

56

LIST OF REFERENCES

Adamy, David L. 2004. EW102, A second course in electronic warfare. Boston, MA:
Artech House Publishers.

Blackburn, Simon R. ‘The Linear Complexity of the Self-Shrinking Generator.” IEEE
Trans. Inf. Theory, 45 (September 1999).

Blum, Leonore, Manuel Blum and Michael Shub. “A Simple Unpredictable Pseudo-
Random Number Generator.” SIAM Journal on Computing, 15 (May 1986).

Breuer, William B. 1993. Hoodwinking Hitler, the Normandy deception. Westport, CT:
Praeger Publishers.

Clausewitz von, Carl. 2002. Om Kriget. Stockholm, Sweden: Bonnier Fakta Bokförlag
AB.

Coppersmith, Don, Hugo Krawczyk and Yishay Mansour. “The Shrinking Generator.”
Advances in Cryptology - CRYPTO ‘93. Lecture Notes in Computer Science
(LNCS), Vol. 773 (1993).

Jeong, Kitae et al. 2006. “Improved Fast Correlation Attack on the Shrinking and Self-
shrinking Generators.” Progress in Cryptology - VIETCRYPT 2006 Lecture Notes
in Computer Science (LNCS), Vol. 4341.

Knuth, Donald E. 1981. The art of computer programming, volume 2/Seminumerical
programming. Reading, MA: Addison-Wesley.

Leon-Garcia, Alberto. 1994. Probability and random processes for electrical
engineering. Reading, MA: Addison-Wesley.

McCoy, Neal H. and Gerald J. Janusz. 2009. Introduction to abstract algebra. Ann
Arbor, MI: Trustworthy Communications.

Menezes, Alfred J., Paul C. Van Oorschot and Scott A. Vanstone. 1997. Handbook of
applied cryptography. Boca Raton, FL: CRC Press.

Singh, Simon. The code book. 1999. New York, NY: Random House.

Stallings, William and Lawrie Brown. 2008. Computer security, principles and practice.
Upper Saddle River, NJ: Pearson Educational.

Stinson, Douglas R. 2006. Cryptography theory and practice. Boca Raton, FL: Chapman
& Hall/CRC.

57

Trappe, Wade and Lawrence C. Washington. 2006. Introduction to cryptography with
coding theory. Upper Saddle River, NJ: Pearson Prentice Hall.

Tzu, Sun. 1991. The art of war. Boston, MA: Shambhala Publications.

U. S. Department of Commerce. 2012. Recommendation for the Entropy Sources Used
for Random Bit Generation. By Elaine Barker and John Kelsey. National Institute
of Standards and Technology (NIST) DRAFT Special Publication 800–90B.

———. 2010. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Application, By Andrew Ruhkin et al. National
Institute of Standards and Technology (NIST) Special Publication 800–22 Rev.
1a.

U. S. Joint Chiefs of Staff. 2011. Joint Publication 3-13.2. Military Information Support
Operations.

Waltz, Edward. 1998. Information warfare, principles and operations. Norwood, MA:
Artech House, Inc.

Zang, Bin and Denggou Feng. “New Guess-and-Determine Attack on the Self-Shrinking
Generator,” Advances in Cryptology – ASIACRYPT 2006 Lecture Notes in
Computer Science (LNCS), Vol. 4284, (2006).

Zenner, Erik, Matthias Krause, Stefan Lucks. 2001. “Improved Cryptanalysis of the Self-
Shrinking Generator.” Australasian Conference on Information Security and
Privacy (ACISP) 2001 Lecture Notes in Computer Science (LNCS), Vol. 2119.

58

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

59

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Information Warfare
	1. Psychological Operations
	2. Deception
	3. Electronic Warfare
	4. Destruction
	5. Operational Security

	B. Protection of information
	C. Random numbers

	II. Testing for randomness
	A. The NIST test suite
	1. The Frequency (Monobit) Test
	2. The Frequency Test within a Block
	3. The Runs Test
	4. The Test for the Longest-Run-of-Ones in a Block
	5. The Binary Matrix Rank Test
	6. The Discrete Fourier Transform (Spectral) Test
	7. The Non-overlapping Template Matching Test
	8. The Overlapping Template Matching Test
	9. Maurer’s “Universal Statistical” Test
	10. The Linear Complexity Test
	11. The Serial Test
	12. The Approximate Entropy Test
	13. The Cumulative Sums (Cumsums) Test
	14. The Random Excursions Test
	15. The Random Excursions Variant Test

	B. Presentation of test results using the NIST test suite
	C. Other random number tests

	III. Generating random numbers
	A. Cryptographic hash functions
	B. Modern Pseudorandom numbers generators
	1. The Linear Feedback Shift Registers
	a. Galois LSFRs
	b. Fibonacci LSFRs

	2. The Linear Congruential Generator
	3. The Blum-Blum-Shub Generator
	4. Other Generators

	C. Improving randomness in sequences
	1. The Shrinking Generator
	2. The Self-shrinking Generator

	D. Entropy

	IV. Attacks
	A. Attacks on shrinking and self-shrinking generators
	1. Attack on Short Sequence Linear Feedback Registers Using the Self-Shrinking Generator
	2. The Backtracking Algorithm

	B. Other attacks
	1. The Berlekamp-Massey Algorithm

	V. Test results
	A. Performance of the tests
	B. Testing a string generated by an android phone
	1. Results before Applying the SSG
	2. Results after Applying the SSG

	C. Testing a string generated by Linux
	D. Testing a string with poor random properties
	1. Creating a Bit String with Poor Random Properties
	2. Test Results

	VI. conlusions
	A. Tested strings
	B. Test algorithm and the self-shrinking generator
	C. Suggestions for further research

	appendix A. Mathematical Fields
	aPPENDIX B. FIELD EXTENSION
	Appendix c. Python script for converting a binary file to binary ascii representation
	Appendix d. python script for applying the self-shrinking generator to a string
	LIST OF REFERENCES
	Initial Distribution List

