
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-09

Pseudorandom number generators for mobile

devices: an examination and attempt to

improve randomness

Larsson, Ola

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/37657

Downloaded from NPS Archive: Calhoun



 

 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

PSEUDORANDOM NUMBER GENERATORS FOR 
MOBILE DEVICES: AN EXAMINATION AND ATTEMPT 

TO IMPROVE RANDOMNESS 
 

by 
 

Ola Larsson 
 

September 2013 
 

Thesis Advisor:  Pantelimon Stanica 
Co-Advisor: Zachary Peterson 



 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2013 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
PSEUDORANDOM NUMBER GENERATORS FOR MOBILE DEVICES: AN 
EXAMINATION AND ATTEMPT TO IMPROVE RANDOMNESS 

5. FUNDING NUMBERS 

6. AUTHOR(S)  Ola Larsson 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943–5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
 
This thesis examines the quality of pseudorandom number generation for cryptographic purposes in general and the 
generation of such numbers in a mobile device (Android phone), in particular, since we expected to find non-random 
properties in these. 
  
Initially, the need for random numbers for encryption purposes is discussed from a perspective of Information 
Warfare. Thereafter, ways of testing a bit string for random properties as well as some pseudorandom number 
generating algorithms are presented. This also includes the shrinking and the self-shrinking generator normally used 
to improve the random properties of the output m-sequence of linear feedback shift registers. A couple of possible 
attacks on pseudorandom number generators are also briefly presented. 
  
Finally, we generate and analyze some pseudorandom bit strings in three different ways using the NIST test suite, 
both before and after the self-shrinking generator has been applied to them. The strings generated by the Android 
phone passed the NIST test suite, and it is difficult to claim any improvement in random properties by applying the 
self-shrinking generator. On a bit string with poor random properties, however, the self-shrinking generator improves 
randomness from the perspective of linear dependency and complexity, but not from the perspective of bit frequency. 
 
 
 
 
14. SUBJECT TERMS  
Pseudorandom number generator, PRNG, Random number, Random bit, Self-shrinking generator, 
SSG, Encryption, Mobile device, Android 

15. NUMBER OF 
PAGES  

77 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 



 

THIS PAGE INTENTIONALLY LEFT BLANK 

 ii 



 iii

Approved for public release; distribution is unlimited 
 
 

PSEUDORANDOM NUMBER GENERATORS FOR MOBILE DEVICES:  
AN EXAMINATION AND ATTEMPT TO IMPROVE RANDOMNESS 

 
 

Ola Larsson 
Major, Swedish Army 

M.S., Chalmers University of Technology, 2003  
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN INFORMATION WARFARE SYSTEMS ENGINEERING  
 

AND 
 

MASTER OF SCIENCE IN APPLIED MATHEMATICS 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
September 2013 

 
 
 

Author:  Ola Larsson 
 

Approved by:  Pantelimon Stanica 
Thesis Advisor 

 
Zachary Peterson  
Co-Advisor 

 
Raymond Buettner 
Second Reader 
 
Dan Boger  
Chair, Department of Information Sciences 
 
Carlos Borges 
Chair, Department of Applied Mathematics 



 

THIS PAGE INTENTIONALLY LEFT BLANK 

  

 iv 



 

ABSTRACT 

This thesis examines the quality of pseudorandom number generation for cryptographic 

purposes in general and the generation of such numbers in a mobile device (Android 

phone), in particular, since we expected to find non-random properties in these. 

Initially, the need for random numbers for encryption purposes is discussed from 

a perspective of Information Warfare. Thereafter, ways of testing a bit string for random 

properties as well as some pseudorandom number generating algorithms are presented. 

This also includes the shrinking and the self-shrinking generator normally used to 

improve the random properties of the output m-sequence of linear feedback shift 

registers. A couple of possible attacks on pseudorandom number generators are also 

briefly presented. 

Finally, we generate and analyze some pseudorandom bit strings in three different 

ways using the NIST test suite, both before and after the self-shrinking generator has 

been applied to them. The strings generated by the Android phone passed the NIST test 

suite, and it is difficult to claim any improvement in random properties by applying the 

self-shrinking generator. On a bit string with poor random properties, however, the self-

shrinking generator improves randomness from the perspective of linear dependency and 

complexity, but not from the perspective of bit frequency. 
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I. INTRODUCTION 

When the average man thinks about war and warfare, the first thing that comes 

into his mind might be images of traditional wars like World War II. Wars in which 

battles were fought on a distinct battleground, where man fought against man, tank 

against tack, airplane against airplane and ship against ship. Battles like these are easy to 

understand. The way to defeat your opponent is to destroy him through physical means, 

and it is easy to see who walks away from a duel a winner, and who the loser. What many 

might tend to forget is that there was a long series of events and processes leading up to 

every battle. Battles were never fought by coincidence, at least one side had knowledge 

of what was about to happen and believed it could gain from it; we typically call this 

knowledge intelligence. 

Intelligence has always played an important role in warfare. With knowledge of 

your own forces, and good and reliable intelligence regarding your opponent, you can 

choose when and where to engage with him in a battle. You also know what to expect 

from your opponent, what resources he has, the morale of his troops, his ideas, tactics and 

operational skills, his strengths and his weaknesses; in short, you know everything that 

affects his possibility to fight you. Sun Tzu said in one of his most famous quotes: “So it 

is said that if you know others and know yourself, you will not be imperiled in a hundred 

battles; if you do not know others but know yourself, you win one and lose one; if you do 

not know others and do not know yourself, you will be imperiled in every single battle.”1 

Of course, intelligence is not always easily collected. Perhaps even more importantly, as 

Clausewitz stated, it is not always easily interpreted and used.2 A military power that can 

use intelligence to its advantage, and also control the opponent’s access to intelligence, 

has a big advantage and can successfully conduct large-scale war-changing operations 

like the invasion in Normandy 1944. Through superior intelligence capabilities, the 

1 Sun Tzu, The Art of War, Trans. Thomas Cleary (Boston, MA: Shambhala Publications, 1991), 24. 
2 Carl von Clausewitz, Om Kriget, Trans. Hjalmar Mårtensson, Klaus-Richard Böhme and Alf W 

Johansson (Stockholm, Sweden: Bonnier Fakta Bokförlag AB, 2002) 77–78.   
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advantage in information available and possibilities to plant false intelligence into the 

German intelligence service, the Allied forces could deceive Hitler, thereby creating 

favorable preconditions for an amphibious landing and taking a big step towards ending a 

war that had been tormenting Europe for five years.3 

Kinetic destruction, as in World War II, still plays an important role in today’s 

warfare. But with the introduction of modern technology the possibilities for gaining 

intelligence have changed dramatically. This technology makes it possible for us to 

collect and get access to important intelligence to a greater extent than ever before. This 

also means, however, that our opponent has the same possibilities. We therefore have to 

protect our own sensitive data and information carefully. This might be more difficult 

than one would first think, since almost all information regarding our forces‒‒their 

capabilities, equipment, locations, actions and interactions‒‒could be of interest to an 

adversary. Certainly, information has become one of the cornerstones of modern warfare. 

A. INFORMATION WARFARE 

To better explain the importance of information in today’s military, the term 

Information Warfare (IW) has been introduced. One definition of Information Warfare by 

the United States Department of Defense (DoD) is as follows: 

“Information warfare includes actions taken to preserve the integrity of one’s own 

information systems from exploitation, corruption, or disruption, while at the same time 

exploiting, corrupting, or destroying an adversary’s information systems and the process 

achieving an information advantage in the application of force.”4 

Furthermore, information warfare can be described as a structure with five pillars 

with a common foundation of intelligence. The five pillars consist of Psychological 

Operations (PSYOP), Deception, Electronic Warfare (EW), Destruction and Operational 

3 William B. Breuer, Hoodwinking Hitler, the Normandy Deception (Westport, CT: Praeger 
Publishers, 1993). 

4 Edward Waltz, Information Warfare, Principles and Operations (Norwood, MA: Artech House, Inc, 
1998), 20. 
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Security (OPSEC).5 These are five free standing columns, but they can often be used in 

interaction with each other. 

1. Psychological Operations 

Psychological operations are the operations to try to affect an opponent by 

influencing his emotions, reasoning and behavior. This is done through our own troops 

actively spreading information favorable to us but misleading to an adversary, reinforcing 

his misinterpretations and misleading him in his estimations about what damages he has 

caused us. PSYOP is often conducted through traditional open source media like radio, 

TV and printed news, but can also be more directed through leaflets and media 

campaigns in conflict areas. PSYOP is often directed at the adversary’s civilian 

population to try to disrupt the people’s support of their leaders or to encourage them to 

revolt.6 

2. Deception 

Deception is the military act of actively misleading an enemy, putting him in a 

situation where he believes that he has a correct image of the situation while the correct 

image really is very different. This has been done by armies throughout history; some 

have managed better and some worse. To be successful one has to perform a deception 

that gives an adversary information inputs from multiple sources, all confirming each 

other. But one also has to make sure that information revealing the true image is not 

accessible. The purpose of deception is to create a situation where the opponent is 

engaged in actions that will not interfere with ours and restrain him from taking actions 

on our movements and attacks. 

5 David L. Adamy, EW102, A Second Course in Electronic Warfare (Boston, MA: Artech House 
Publishers, 2004), 5–6. 

6 The term “Psychological Operations” have been changed to “MISO – Military Information Support 
Operations.” The older term is however still commonly used. United States Joint Chiefs of Staff, Joint 
Publication 3–13.2. Military Information Support Operations. (Washington, DC, 2011). 
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3. Electronic Warfare 

Electronic Warfare is the use of the electromagnetic spectra for military success. 

It is divided into three subgroups: Electronic Attack (EA), Electronic Warfare Support 

(ES) and Electronic Protection (EP). EW includes techniques and activities such as 

analysis of the electromagnetic spectra (i.e., what frequencies are being used and for 

what), analysis of how an opponent’s wireless communication network is constructed, 

attacking weapons and sensor systems that actively or passively are used in the 

electromagnetic spectra and also protecting ourselves against similar actions and attacks. 

4. Destruction 

Destruction in this context refers to the destruction of information warfare 

capabilities. Destruction of information and intelligence, electromagnetic structures like 

radar systems, communication nodes and other means of communication. Destruction can 

be accomplished not only through kinetic energy at relatively close distance but also 

through non-kinetic energy at great distances, e.g., through cyber-attacks on computer 

networks to erase and destroy crucial data. 

5. Operational Security 

Operational security is intended to protect information about our resources, aims, 

intentions, etc., from falling into the hands of our adversary. Just as we try to get as much 

information about our opponent, he tries just as hard to get to know about us. To conduct 

successful operations with a minimum of losses we have to make sure that our opponent 

is denied this information. Maintaining a high operational security is of the utmost 

importance to achieve our goals. 

B. PROTECTION OF INFORMATION  

From what has previously been discussed it is clear that in information warfare, 

protection of information is of great importance. Looking at the five pillars of 

information warfare, at least two pillars, Deception and OPSEC, have a direct need to 

have the means of protecting information. Protecting information can be accomplished in 
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many ways, one of which is making it non-accessible by locking it into a vault. But we 

not only want to protect information from falling in the hands of an enemy, we also want 

to share the same information within our forces and to friendly forces. Thus, we need 

ways to securely communicate information. The means of doing so is called cryptology. 

Cryptology (or cryptography, from Greek: cryptos = “hidden/secret” and –logia = 

“study” or graphein = “writing”) has been used for military purposes for a long time. 

Early encryption methods are the transposition cipher where letters are rearranged or the 

substitution cipher where every letter is represented by another letter making the message 

unreadable if you do not know the method used (the key). Some examples of these 

classical cryptology schemes are the Caesar and the Vigenère ciphers.7 Today we use 

more sophisticated methods of encryption but the basic idea is still the same; we want to 

transmit a plain text message securely by applying an encryption algorithm. When it 

comes to the message, we want to be able to transmit any plain text message without 

limitations; i.e., we do not want to have to adjust our plain text message to fit the 

encryption algorithm in any way. For the encryption algorithm itself we nowadays 

assume “Kerckhoff’s principle,” assuming that the algorithm itself is commonly known 

and cannot be used as the sole means of protecting the message.8 Since we now have two 

entities, none of which we can modify to gain protection we use a third entity to do so, 

namely the encryption key.  

7 For an excellent overview of the history and development of encryption, see Simon Singh, The Code 
Book (New York, NY: Random House 1999).  

8 Douglas R. Stinson, Cryptography Theory and Practice, 3rd ed. (Boca Raton, FL: Chapman & 
Hall/CRC, 2006), 26. 
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Figure 1.  Plain text and encryption key used as an input to an encryption algorithm 
resulting in an encrypted text. 

The encryption key is what the encryption algorithm uses as an initial input to 

start encrypting the plain text. One can see the key being the initial settings of a number 

of variables in a very complicated machine that for each iteration changes according to 

their previous values. All changes to the settings are deterministic and depend on their 

current value, and the plain text is entered so it is only the initial value that affects the 

changes. Therefore, it is of utmost importance that the key (or the initial setting) is 

chosen in such a way that no one can guess or gain access to it. If a human would be 

given the responsibility to choose an encryption key, he would most likely choose a key 

that would be easy to remember (e.g., for decryption purposes), just like most people do 

when they choose a password for their online services. Just as passwords can be broken 

using regular dictionary lookups, password dictionary lookups,9 or trying simple 

substitution methods (like using common words but changing the letter “O” to a zero) 

encryption keys chosen by humans could be broken just as easily. To prevent this we 

choose numerical encryption keys randomly. Since a human is not good at picking 

random numbers we have to rely on machines to create random numbers or strings of 

random numbers. 

9 Online you can find dictionaries with passwords that have been broken or in other ways obtained 
through attacks on numerous databases. Any password that has ever been broken, therefore, has just as bad 
reliability as any dictionary word. 

 

Plain text 

 

Encryption key 

 

Encryption  
algorithm 

 

Encrypted text 
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C. RANDOM NUMBERS 

To most people, creating random numbers might seem to be one of the easiest 

tasks there is. You do not have to think, just pick a number from among several others. 

However, on the contrary, it is extremely difficult to do so. By randomness, we normally 

mean non-predictable; i.e., among a given number of alternative outcomes (where only 

one can occur) all outcomes should have the same likeliness of happening. A person 

participating in a raffle, for example, would expect to have the same chance of winning 

the grand prize as anyone else. In a raffle, randomness is often achieved by tickets being 

mixed in a container with the winning ticket being drawn by an official. But what if the 

tickets are not properly mixed and instead are just put in a jar as they are being sold? 

What if the lottery tickets have different sizes, weights, paper quality or colors? This does 

not automatically mean that a winning ticket cannot be drawn at random, but the chances 

of the raffle official being influenced by such factors and thereby biased increases. If the 

raffle official knows ahead of time that the tickets differ and also knows which type of 

tickets belong to which participants he has a greater possibility to affect the outcome of 

the raffle. This would not elect the winner of the raffle randomly, and the lottery would 

not be considered fair.  

In the situation described in the previous paragraph, the raffle official drawing the 

winning ticket is clearly a great risk to biasing the outcome. Therefore, mechanical raffle 

and lottery machines are widely used in state arranged lotteries like the Mega Millions, 

Powerball and Lotto. Mechanical lottery machines normally just draw numbers 

identifying the winning ticket/tickets and use either gravity or air flow to pick a ball 

indicating a number in the appropriate range. Depending on the type of lottery, the drawn 

ball is either put aside or put back to make it possible to be drawn again. This is an 

illustrative way of picking numbers and given that each number is represented on one of 

the balls, all balls are of the same weight and size and are properly mixed, this is a fair 

way to pick random numbers. 

Even if mechanical machines are good from a perspective of picking random 

numbers in a fair way, they are not very practical when it comes to computer 
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applications. They are just too large and too slow, and of course do not produce a usable 

digital output. In the early days of computer programming users started to search for 

efficient ways to generate random numbers using computers. John von Neumann created 

the “middle-square” method, one of the first methods to be used. In this method a random 

number is generated by taking the previous random number, squaring it and extracting 

the middle digits of the result. Von Neumann used 10 digits, while others suggested both 

more and fewer digits.10 The problem with the “middle-number” method is that it is not a 

very good random number generator; the numbers achieved just appear to be random. 

When analyzed mathematically, it is clear that they lack important properties of random 

numbers. Furthermore the randomness of the output greatly depends on which input is 

being used. There are many examples of inputs that quite soon will “loop” and get back 

to an already used “random” number; i.e., they have a very short period. Others do, 

however, result in random numbers that pass appropriate statistical tests. 

Random numbers are today used in a number of different areas such as 

simulation, sampling, numerical analysis, computer programming and recreation. This 

thesis will focus on the generation and use of random numbers for encryption purposes. 

Since we normally use computers for encryption it is not necessary to create random 

decimal numbers; binary bit strings will do just fine. All that is needed is an electronic 

“coin tosser” creating random “heads and tails” interpreted as 1’s and 0’s, or in other 

words; something that “assigns a numerical value to the outcome of the random 

experiment.”11 To be able to implement such a feature in a computer or a mobile device 

we have to make it computable; i.e., we need an algorithm to do this for us. Such an 

algorithm will give us a pseudorandom number generator (PRNG). A PRNG is said to be 

pseudorandom since the output is not actually random; it is the result of a mathematical 

computation performed by a deterministic machine operating under given circumstances. 

A truly random number generator would not use any computations at all, thereby being 

10 Donald E. Knuth, The Art of Computer Programming, Volume 2/Seminumerical Programming, 2nd 
ed. (Reading, MA: Addison-Wesley Pub. Co., 1981), 3–4. 

11 Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed. 
(Reading MA: Addison-Wesley Pub. Co., 1994), 84. 
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totally unpredictable. By choosing good algorithms with proper complexity, a PRNG can 

be created whose output has the properties of being random. So even if by using a PRNG 

we compute a string of random bits, thereby making the output predictable, this string has 

(or should have) the same properties of a truly random string. The output depends on the 

input and the algorithms used. The challenge is to create a PRNG that creates bit strings 

with properties of random numbers and also does not reveal any information on the data 

used as the input creating these strings. 
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II. TESTING FOR RANDOMNESS 

Testing to see whether a bit string is random or not can be challenging since there 

are many ways in which non-randomness can appear. A string having approximately the 

same number of ones and zeroes is perhaps an obvious test for a random bit string, but 

one also has to take into consideration other aspects such as repeating patterns, length of 

runs (repeating bits), linear dependency, etc. 

A. THE NIST TEST SUITE 

The U.S. National Institute for Standards and Technology (NIST) has developed a 

suite of random number generation tests. This test suite is available for download at the 

NIST homepage12 together with a thorough description on how the tests work, how they 

should be applied and how the results can be interpreted. The suite consists of 15 

different tests examining different aspects of randomness of a binary sequence. The 

purpose of these tests is to support the user in deciding whether a sequence is random or 

not. NIST does not claim that a sequence passing the tests in the suite really is random; it 

is always up to the user to interpret the test results and make that decision himself or 

herself based on the results. 

To run the tests the user needs a chosen number of generated bit strings of equal 

lengths to be tested for randomness. Each such string is to be treated as being one 

sequence in a longer file of sequences. Therefore, the test suite needs both the sequence 

length and the number of sequences to be tested as an input. No recommendations 

regarding number of sequences is given, but for the test results presented later 100 bit 

strings were used. The 15 tests in the NIST test suite are presented here and briefly 

explained13:   

12 http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html. 
13 Andrew Rukhin et al., A Statistical Test Suite for Random and Pseudorandom Number Generators 

for Cryptographic Application (National Institute of Standards and Technology (NIST) Special Publication 
800–22 Rev. 1a), (Gaithersburg, MD: U.S. Department of Commerce, 2010). 
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1. The Frequency (Monobit) Test 

This test checks the occurrence of “1” and “0” throughout the full sequence. In a 

truly random sequence we would expect about half of the bits to be 1 and the other half to 

be 0. This test checks if the test sequence diverges too far from this. The test is the most 

basic test of the fifteen. If a bit string does not pass this test, it is barely worth running the 

other tests. It can be seen as serving as a basis for all other tests in the test suite. 

2. The Frequency Test within a Block 

This tests the occurrence of 1 and 0 within blocks of the same size. In a truly 

random sequence we would expect about half of the bits in each block to be “1” and the 

other half to be “0.” This test is the same test as the previous one; it is just limited to 

blocks of a given size M. The block size M can be chosen by the user. 

3. The Runs Test 

This tests the length of runs in the full sequence. A run is defined as an unchanged 

sequence of bits bounded by differing bits. In other words, it could be described as the 

rate at which the bits alternate within the sequence. The statistical possibility of a bit 

being the same as the previous one is ½ in a truly random sequence. The chance at any 

given time of having a run of length n is (½)n.   

4. The Test for the Longest-Run-of-Ones in a Block 

This tests the length of runs of “1” in blocks of the same size M. The block size 

tested depends on the length of the total sequence and can be chosen to be one of three 

different preset sizes. Even if the test only checks for runs containing “1” an indicated 

lack of randomness of the number of runs of “1” indicates an equivalent lack of 

randomness for the number of runs of “0.”  
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5. The Binary Matrix Rank Test 

This test divides the sequence into matrices of a given size and checks these 

matrices individually for linear dependencies. To pass the test the created matrices must 

have a high level of linear independency. 

6. The Discrete Fourier Transform (Spectral) Test 

This test checks the peaks in the Discrete Fast Fourier Transform of the full 

binary sequence. Doing so makes it possible to identify frequency patterns that would 

indicate non randomness in the sequence. 

7. The Non-overlapping Template Matching Test 

The test divides the sequence into blocks and bitwise checks each block for the 

number of occurrences of pre-specified target strings. Once a target string is found, the 

test continues searching for the next string after the last bit in the string found. Any target 

string should appear equally often in all blocks. 

8. The Overlapping Template Matching Test 

This test is similar to the previous test, but once a target string is found, the test 

starts to search for the next target string on the following bit (i.e., it does not skip to the 

bit following the last one in the target string). Any target string should appear equally 

often in all blocks. 

9. Maurer’s “Universal Statistical” Test 

This test checks the number of bits between matching patterns. This gives an 

indication of how much the sequence can be compressed. If it is possible to highly 

compress a sequence, then it might be non-random. 

10. The Linear Complexity Test 

This test identifies linear dependence in a sequence; do parts of the sequence have 

a linear dependency on other parts? The test is based on the Berlekamp-Massey 
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Algorithm for Linear Feedback Shift Registers (LFSRs) described in Chapter IV, Section 

B of this thesis. A highly complex LSFR (long LSFR) indicates a higher level of 

randomness.  

11. The Serial Test 

The test takes a number of m-bit strings and checks the occurrence of these in the 

tested sequence. In a truly random string all different m-bit strings should occur about 

equally as often. This test is similar to the Frequency Test (1) but for strings instead of 

single bits. 

12. The Approximate Entropy Test 

This test works as the serial test (11) but instead of looking at the whole sequence 

it looks at two adjacent blocks of the sequence and compares the occurrence of strings in 

these blocks. The strings are expected to occur about the same number of times in both 

the blocks.  

13. The Cumulative Sums (Cumsums) Test 

The test counts “1” as +1 and “0” as -1. Then it checks the cumulative sum of 

strings of increasing size as it steps through the tested sequence. This test is performed 

both forward and backwards in the sequence. For the tested sequence to be considered 

random, its cumulative sums should not deviate too far from zero.  

14. The Random Excursions Test 

The test checks the value of the cumulative sum in each cycle (a cycle being the 

period between two cumulative sums being equal to zero). In how many cycles does it hit 

exactly one of eight given values? Either each sum should be hit very frequently or all 

sums should be hit just as frequently. Any deviations from this indicate non-randomness. 

15. The Random Excursions Variant Test 

This test is similar to the previous one when it checks the value of the cumulative 

sum in each cycle (a cycle being the period between two cumulative sums being equal to 
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zero). Now this test instead checks how often the cumulative sum hits one of the 18 

predefined defined values. 

B. PRESENTATION OF TEST RESULTS USING THE NIST TEST SUITE 

Each test is a statistical hypothesis test in which the null hypothesis (H0) is that 

the tested bit string really is random. A test statistic is calculated from the data resulting 

from the test, and this test statistic is then used to calculate a P-value summarizing the 

test.14 The P-value indicates the probability for a truly random number generator 

generating a sequence less random than the tested one for that specific test. A low P-

value (below 0.01 in the test results later presented) means that the null hypothesis should 

be rejected; i.e., the bit string is not random. 

An example of the presented results can be seen in Figure 2. The rightmost 

column “Statistical test” states to which test the result refers. The column “Proportion” 

shows how many of the tested strings pass the test. Note that all strings do not have to 

pass a test for the whole sequence to pass. (True randomness must allow for something to 

sometimes appear nonrandom.) With the significance level set to 0.01, 1% of the strings 

can be expected to fail the test. In the result presented in Figure 2 we can see that 500 

strings have been tested and depending on which test we look at, somewhere between 

491 and 499 strings have passed the tests. 

Another way to interpret the results is to look at the distribution of the P-values. 

Columns “C1” through “C10” indicate ten subintervals of the interval 0 to 1. A P-value is 

calculated for each tested string (500 in the following example). All P-values fall within 

one of the ten subintervals and is presented accordingly. For the full sequence of strings 

to be random, the P-values should be evenly distributed; i.e., there should be about as 

many in each subinterval. A P-value of this distribution is also calculated and presented 

14 For a more thorough explanation, see Andrew Rukhin et al., A Statistical Test Suite for Random and 
Pseudorandom Number Generators for Cryptographic Application (National Institute of Standards and 
Technology (NIST) Special Publication 800–22 Rev. 1a), (Gaithersburg, MD: U.S. Department of 
Commerce, 2010). 
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in the column “P-value.” Any value exceeding 0.0001 indicates the distribution can be 

considered evenly distributed.  

If a sequence of strings should not pass a test this would be indicated by an 

asterisk (*) in the “Proportion” and/or “P-value” column. As mentioned earlier, it is 

ultimately up to the user to decide whether a sequence should be considered to be random 

or not. The NIST test suite is just an aid to make that decision.  

 

Figure 2.  Example of a presentation of NIST test suite results. 

C. OTHER RANDOM NUMBER TESTS 

For the purpose of testing randomness there are a number of software packages 

available; NIST, DieHard, DieHarder, TestU01 and ENT are some commonly used. Most 

of these consist of a test suite in which each test measures a specific aspect of 

randomness in a bit string. Some tests are the same for the different software packages 

while others are unique for every test suite. It is up to each creator of the test suite to 

decide which tests should be included or not as there is no set standard.   
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III. GENERATING RANDOM NUMBERS 

There are many different ways to generate random numbers, from mechanical to 

computational. Different methods also differ in result; some generate numbers with good 

random properties while others generate numbers that are not always so random. 

Depending on how they are to be used, these lesser random numbers can still be 

acceptable depending on what we want to use them for. Some methods have the sole 

purpose of generating random numbers while others are not primarily meant to be used 

for this purpose but can still be quite usable to generate random numbers that do not 

necessarily have to be cryptographic secure (e.g., for simulation purposes). 

A. CRYPTOGRAPHIC HASH FUNCTIONS 

A common function resulting in a string with properties of being random is the 

cryptographic hash function. It is often used for confirming that two files/texts/passwords 

are identical without comparing them character by character (e.g., for storing digital 

passwords for online services or for detecting if a text has been modified). A 

cryptographic hash function takes a clear text as an input to a standardized computation 

and outputs a fixed length, so-called digest, that appears to be random and in no way 

reveals the text used as the input.15 

The strengths of these cryptographic hash functions are that any input results in a 

fixed length output string of bits. Also, a small change in the input results in a large 

change in the output (the so called “Avalanche Effect”) it is therefore easy to generate a 

new string with other random properties. Since the result of a cryptographic hash function 

should have the properties of a random number/string it may be used as a key for an 

encryption algorithm. The problem is however that we may want longer key strings of 

pseudorandom data than a hash function alone can provide. To receive a long string of 

random numbers we instead use pseudorandom number generators.  

15 William Stallings and Lawrie Brown, Computer Security, Principles and Practice (Upper Saddle 
River, NJ: Pearson Educational, 2008), 54–56. 
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B. MODERN PSEUDORANDOM NUMBERS GENERATORS 

Encryption algorithms are, just like computers, deterministic in that sense that 

given the same input and using the same algorithms we will always receive the same 

result. The output of an encryption depends on the inputs: the clear text and the 

encryption key. Therefore, there are three variables: the plain text, the encryption key and 

the encryption algorithm. The encryption of the plain text lies in its computation through 

the encryption algorithm using a specific key. According to Kerckhoff’s principle16 the 

encryption algorithm is assumed to be commonly known, this is an assumption made for 

all encryption algorithms. This then results in the only two unknown variables being the 

plain text and the encryption key. The protection of the encrypted plain text, therefore, 

solely lies in the encryption key, and it is of utmost importance that the encryption key is 

chosen in a proper way to ensure the secrecy of the encrypted plain text. 

The best way of creating a usable encryption key is to use a random number 

generator. Since computers use binary numbers a simple coin toss with a fair coin (where 

heads result in a “1” and tails result in a “0”) would be a cryptographically good way to 

create an encryption key. However, in reality this is, of course, not practically usable 

since we want a long string of random bits, and we also want it generated quickly. Instead 

we take a random number and use this as an input to a pseudorandom number/bit 

generator which creates a longer string of bits that we can use for the encryption key. 

The pseudorandom number/bit generator is, just as the encryption algorithm, also 

a deterministic algorithm; given a certain input the same output is always achieved. 

However, with a good enough pseudorandom number/bit generator a relatively small 

input of random bits will result in a much longer output that might not be completely 

random but has most (or, hopefully, all) of the characteristics a truly random bit string 

has. If an output can be achieved where the likeliness of telling the achieved bit string 

from a truly random string is less than half the achieved bit string is as good as random 

and can be used for cryptographic purposes.  

16 Stinson, Cryptography Theory and Practice, 26. 
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There are a number of pseudorandom number/bit generators available. In general, 

they can be divided into two groups, cryptographic secure and cryptographic insecure. 

The insecure generators can still be very useful in other areas since they are often easier 

to implement and faster than the secure generators  

1. The Linear Feedback Shift Registers  

Although they are linear and thereby predictable and not considered 

cryptographically secure, LFSRs are still commonly used as pseudorandom number 

generators. The main reason for this is that they are easily implemented in hardware and 

therefore very fast to use. With an LSFR, an irreducible (or, better yet, primitive) 

polynomial17 is used to create a register. For each clock cycle the bits in the register are 

moved over one step with the bit in the last position looping back to the first position. At 

given positions in the register bit information is extracted or inserted to affect the result in 

the register. There are two main ways to construct LSFR, the Galois and the Fibonacci 

configurations. 

a. Galois LSFRs 

In this configuration, the register’s positions are numbered from the right 

to the left. It is started with a seed of all “0’s” except for one “1” (in the leftmost 

position). At each clock cycle the bits are moved over to the right, and the rightmost bit is 

looped back to the leftmost position. When this rightmost bit is looped back it is XORed 

with bits from other positions (positions given by the irreducible polynomial) affecting 

the resulting bits in other positions of the register. Every clock cycle will create a new 

register content until all possible combinations have been achieved. Using an irreducible 

polynomial ensures that no combinations are missed (except all “0’s” that will generate 

nothing else but “0’s”). 

 

 

17 See Appendix B. 
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Figure 3.  Galois Linear Feedback Shift Register (LSFR) for the generating function  
( ) 4 1f x x x= + + . 

b. Fibonacci LSFRs 

In this configuration, the register’s positions are numbered from the left to 

the right. It is started with a seed of all “0’s” except for one “1” (in the leftmost position). 

At each clock cycle the bits are moved over to the right, and the rightmost bit is looped 

back to the leftmost position. As the bits are shifted over to the right they are at given 

positions (positions given by the irreducible polynomial) extracted and XORed with the 

rightmost bit as it is being looped back to the leftmost position. Every clock cycle will 

create a new register content until all possible combinations have been achieved. Using 

an irreducible polynomial ensures that no combinations are missed (except all “0’s” that 

will generate nothing else but “0’s”). 
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Figure 4.  Fibonacci Linear Feedback Shift Register (LSFR) for the generating function  
( ) 4 1f x x x= + + . 

 

The result of the registers being run until their content is repeated can be 

presented as a list of all possible combinations of the bit positions in the registers where 

the columns represent the different numbered positions in the register, and the rows 

represent the clock cycles (see Table 1). All these columns are alike, although they are 

shifted. Any column can now be used as an m-sequence with properties of a 

pseudorandom bit string. The order of “1’s” and “0’s” in the m-sequence depends on 

which irreducible polynomial was chosen for the initial construction of the register. Since 

all possible combinations of the bits in the registers are generated there will be just as 

many “1’s” as “0’s” in the m-sequence with an exception of one zero. Since all “0’s” will 

never appear in the registers there will always be one more “1” than “0’s” in the m-

sequence. 
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Galois LSFR 

 
Iteration # Position 

 3 2 1 0 
     
1 0 0 0 1 
2 0 0 1 0 
3 0 1 0 0 
4 1 0 0 0 
5 0 0 1 1 
6 0 1 1 0 
7 1 1 0 0 
8 1 0 1 1 
9 0 1 0 1 
10 1 0 1 0 
11 0 1 1 1 
12 1 1 1 0 
13 1 1 1 1 
14 1 1 0 1 
15 1 0 0 1 

 

Fibonacci LSFR 
 

Iteration # Position 
 0 1 2 3 
     
1 1 0 0 0 
2 0 0 0 1 
3 0 0 1 0 
4 0 1 0 0 
5 1 0 0 1 
6 0 0 1 1 
7 0 1 1 0 
8 1 1 0 1 
9 1 0 1 0 
10 0 1 0 1 
11 1 0 1 1 
12 0 1 1 1 
13 1 1 1 1 
14 1 1 1 0 
15 1 1 0 0 

Table 1.   List of combinations for Galois and Fibonacci LSFRs using the generating 
function ( ) 4 1f x x x= + + .Note the reverse order of the positions but how the    

m-sequences (shaded) are equal. Also note how in the Fibonacci LSFR the 
sequences at the different positions are the same, just shifted. 

 

2. The Linear Congruential Generator 

The linear congruential generator is a fast, widely used generator that is however 

insecure. It was introduced in 1949 by D. H. Lehmer and was for a long time the most 

popular random number generator.18  The generator uses two constants, a and b, within a 

defined interval, a modulus, M, and a randomly chosen seed, x. The first random number 

is achieved by multiplying the constant a by the seed x, adding the constant b and taking 

the result modulo M. 

 

18 Knuth, The Art of Computer Programming, 9. 
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M, a real number 

a and b, constants such that 1 , 1a b M≤ ≤ −  

x, seed such that 0 1x M≤ ≤ −   

( )1 modx a x b M= ⋅ +   

From this computation the least significant bit is used as the first random bit 

(which is the same thing as taking the result modulo 2). For the following bit the number 

of the computation in the previous step is used instead of the seed. This process is 

repeated until required number of bits has been achieved. 

 ( )1 modi ix a x b M+= ⋅ +   

Further limitations for the generator are that the seed should be a bit string of 

length no longer than length k and no pseudo random bit strings longer than length l 

should be generated where k and l are defined as follows: 

 21 logk M= +      

 1 1 1k M+ ≤ ≤ −   

The resulting generator is then called a (k,l)-linear congruential generator 

The linear congruential generator is not considered secure enough and should be 

avoided for cryptographic purposes since it can be predictable.19 Since it is easy to 

compute and implement and also very fast, though, it is widely usable in other areas 

where security is of lesser importance (e.g., games, simulations, etc.). The linear 

congruential generator repeats itself (i.e., it is periodic) after a certain number of 

iterations, and some seeds result in a shorter repetition period than others. 

 

19 Wade Trappe and Lawrence C. Washington, Introduction to Cryptography with Coding Theory, 2nd 
ed. (Upper Saddle River, NJ: Pearson Prentice Hall, 2006), 42.   
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3. The Blum-Blum-Shub Generator 

The Blum-Blum-Shub20 (BBS) secure pseudorandom bit generator (PRGB) is one 

of the most popular and widely used secure PRBGs. Named after Lenore Blum, Manuel 

Blum and Michael Shub, it is sometimes also referred to as the quadratic residue 

generator.21 The base for the BBS is two large primes, p and q, that both are congruent to 

3 modulo 4 and a randomly chosen number, x, which is relatively prime to the product n 

of the two primes. This random number is used to generate a seed to the generator by 

squaring it and taking the result modulo n. 

( ) ( ), 3 mod 4 ,    and  are large primesp q p q≡   

n p q= ⋅   

,  realatively prime to x n   

2
0 mod ,  generates as seedx x n=   

Pseudorandom bits are then generated by taking the square of the seed modulo n 

and using the least significant bit (which is the same thing as taking the result modulo 2). 

For the following bit the resulting number of the computation in the previous step is used 

instead of the seed. This process is repeated until required number of bits has been 

achieved. 

( )2
1 mod mod 2i ix x n−=   

The BBS generator is considered to be a generator secure for cryptographic 

purposes. Compared to other generators it is, however, slow since it uses complex 

calculations with large numbers. Its security is based on the Composite Quadratic 

Residues problem.22 

20 Leonore Blum, Manuel Blum and Michael Shub, “A Simple Unpredictable Pseudo-Random 
Number Generator,” SIAM Journal on Computing, 15 (May. 1986) 364–383.  

21 Trappe and Washington, Introduction to Cryptography with Coding Theory, 42.   
22 Stinson, Cryptography Theory and Practice, 338. 
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4. Other Generators 

There are a number of other pseudorandom number/bit generators available. Two 

examples of generators considered to be secure for cryptographic purposes are the RSA 

pseudorandom bit generator23 and the Micali-Schnorr pseudorandom bit generator.24 The 

ANSI X9.17 pseudorandom bit generator25 and the FIPS 186 pseudorandom number 

generator for DSA private keys26 are considered insecure for cryptographic purposes but 

are still useful for many other areas, such as simulation, gaming, etc. 

C. IMPROVING RANDOMNESS IN SEQUENCES 

As previously mentioned, not all ways of generating random numbers are good 

enough. There are, however, ideas for improving the randomness of the output from a 

pseudorandom number generator using different types of techniques. Two such 

techniques are the shrinking and the self-shrinking generator. These are normally used in 

combination with linear feedback shift registers, but we will later apply the self-shrinking 

generator on some strings of other, pseudorandomly, generated bit strings. 

1. The Shrinking Generator 

The concept of the shrinking generator was first published in 1993 by 

Coppersmith, Krawczyk and Mansour.27 The main idea is to run two LSFRs (R1 and R2) 

in parallel using the same clock so that their outputs are generated at the same time. The 

two LSFRs are however using different irreducible polynomials28 in their construction 

and therefore generate outputs independent from each other. If at any clock cycle the 

output bit from LSFR R1 is a “1,” the corresponding output bit from LSFR R2 is used as 

23 Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone, Handbook of Applied 
Cryptography (Boca Raton, FL: CRC Press, 1997), 185–186. 

24 Ibid. 
25Menezes et al., Handbook of Applied Cryptography, 173–175. 
26 Ibid. 
27 Don Coppersmith, Hugo Krawczyk and Yishay Mansour, “The Shrinking Generator,” Advances in 

Cryptology - CRYPTO ‘93 (Lecture Notes in Computer Science (LNCS), Vol. 773), Santa Barbara, CA: 
Springer 1993), 22–39.  

28 See Appendix B. 
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an output of the shrinking generator. If the output bit from LSFR R1 instead is a “0,” the 

corresponding output bit from LSFR R2 is discarded and not used as an output of the 

shrinking generator.29 A simpler, but maybe not so random way, to achieve this is to 

create a random string of “1’s” and “0’s” and use this as a template. When this template 

is used as an overlay to an output of a LSFR (or any string) every bit in the generated 

string corresponding to the position of a “1” in the template is used as an output from the 

shrinking generator while bits corresponding to the positions of the “0’s” are discarded. 

The result of the shrinking generator will be a string shrunken to about half its 

original length since half of the output bits from the LSFR R1 are “1’s” and the other half 

are “0’s” (or actually one more “1” than “0’s”30). The properties of the resulting output 

from the shrinking generator might however be different since any patterns or statistical 

properties in the output of LSFR R2 now have been changed. 

 
 
 
 
 
 
 
 
 
 
 
 
LSFR R1:  1101000110010111011001101100110111010111 
LSFR R2:  0110100101101001011010010110100101101001 
Output:      10   0   1  00  0    1  11  0    0  10  1    1  10  0    1 
 

Figure 5.  The shrinking generator and an example of an output. 

29 Menezes et al., Handbook of Applied Cryptography, 211–212. 
30 See Linear Feedback Shift Registers in Chapter III, Section B. 1. 
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2. The Self-shrinking Generator 

Closely related to the shrinking generator is the self-shrinking generator. The 

latter differs from the first in the way that it uses only one LSFR instead of two. 

However, it still results in an output depending on the positions of the “1’s” in the string. 

In the self-shrinking generator the input string is being partitioned into pairs of 

bits. These pairs will then be one of the following combinations: “00,” “01,” “10” or 

“11.” If the first bit in these pairs is a “1” the second bit will be used as an output of the 

generator. On the other hand, if the first bit is a “0” the second bit will be discarded.31 All 

the first bits are used in the decision-making only and will be discarded. If an LSFR is 

used as an input to the self-shrinking generator the likeliness of the four bit combinations 

is equal since “1’s” and “0’s” appear at the same rate in the output of the LSFR. The 

output of the self/shrinking generator might however have different statistical properties.  

 

 

 

 

 

 

LSFR:  11 01 00 01 10 01 01 11 01 10 01 10 11 00 11 01 11 01 
Output:  1                  0             1        0        0   1        1        1  
        

Figure 6.  The self-shrinking generator and an example of an output. 

 

31 Menezes, et al., Handbook of Applied Cryptography, 221. 
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D. ENTROPY 

As mentioned above, all pseudorandom number generators need an input, or a 

seed, to start generating numbers. If this input is not chosen at random the whole 

sequence generated is also not random, since any pseudorandom number generator is 

deterministic. If the input is known (or can be guessed) the output will also be known 

(i.e., the generated bit string lacks random properties). Therefore, it is important to use 

truly random numbers as input. This is done through the use of entropy. 

Entropy can be defined as a level of uncertainty of predicting a value or as NIST 

states: “Entropy is defined relative to one’s knowledge of X prior to an observation and 

reflects the uncertainty associated with predicting its value‒‒the larger the entropy, the 

greater the uncertainty in predicting the value of an observation.”32 We therefore need a 

source that can take a number of different states; these states can then be discretized and 

used as a random input. If the number of possible states is low we will receive very low 

entropy. The same goes if the likeliness of the source taking a certain state differs a lot 

from the other states; then the entropy will also be low. One can compare it to a raffle 

with numbered tickets in it. If there are only a five tickets in it one is more likely to 

predict which ticket will be drawn than if there are 500 tickets (i.e., the entropy is higher 

with more tickets). In a similar way; if there were 500 tickets in a raffle but 250 of them 

had the same number one would be more likely to be able to predict the winning number 

(i.e., the entropy decreases if the probabilities for the outcomes are not equal). The 

recommendations on an entropy source according to NIST are as follows:33 

To create an entropy source we need first and foremost a noise source. The reason 

for utilizing noise is that it is often the only truly non-deterministic source we have 

available. The noise can be achieved from a number of different sources such as capacitor 

discharging time, time differences between key strokes and mouse movements. In mobile 

devices sources like the camera lens, the accelerometer and radio signal strength could be 

32 Elaine Barker and John Kelsey, Recommendation for the Entropy Sources Used for Random Bit 
Generation (National Institute of Standards and Technology (NIST) DRAFT Special Publication 800–
90B), (Gaithersburg, MD: U.S. Department of Commerce, 2012), 19.  

33 Ibid. 
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used. The noise source then needs to be digitalized to be of any use in a computational 

algorithm, but this is often easily done. 

After the noise source has been digitalized one can choose to apply a conditioning 

component. This component helps to avoid the output being biased and increases the 

entropy rate. The use of this conditioning component is not required but might be needed 

depending on the noise source and its characteristics. For further discussions regarding 

the conditioning component, please read the NIST special publication.34 

The last important part of an entropy source is health testing. We trust the entropy 

source to give us random output, but we still have to check that it is working the way it is 

supposed to. Therefore, a health test on the entropy source must be performed. These 

tests can be performed as startup tests, continuous tests and on-demand tests and should 

not only check the noise source itself but also the digitalization and the conditioning 

component (if applicable). Since we put so much trust in the entropy source we have to 

be able to detect any deviations, biases or malfunctions as soon as possible and with high 

probability. Health tests can also help us identify common failure modes and make it 

possible to correct for these using, for example, a conditioning component. 

So, if we now have an entropy source that supplies us with as pure random 

numbers as possible, why do we bother using pseudorandom number generators? Why 

not use the output of the entropy source? The answer is quite simply time. While an 

entropy source requires quite some time to collect a usable amount of data a 

pseudorandom number generator can generate the same amount much faster. As 

previously mentioned, however, it requires a truly random input, or seed, to generate a bit 

string that has properties that are random enough. 

 
 

34 Barker and Kelsey, Recommendation for the Entropy Sources Used for Random Bit Generation.  
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IV. ATTACKS  

As soon as a new encryption method is presented it is seen as a challenge to find 

feasible attacks on it. The same goes for bit strings generated by pseudorandom number 

generators. With an attack we mean to find a way to predict the output of the generator. It 

is also important to understand that the definition of an attack being successful is not 

necessarily that it is easy to predict an outcome but that the outcome can be predicted 

with higher probability than someone would need just by guessing. Strictly speaking, a 

lottery with 100 tickets ranging from the numbers 1 through 100 can be considered 

successfully attacked if we can show that no three-digit number can be drawn as the 

winning number, even if there then are 99 possible winning numbers left. Some possible 

attacks on pseudorandom number generators are presented here. 

A. ATTACKS ON SHRINKING AND SELF-SHRINKING GENERATORS 

A number of attacks have been developed on both the shrinking and the self-

shrinking generator. Two of them are presented in the following sections. Others have 

been developed through the work of Kitae Jong35 et al., Simon R. Blackburn36 and Bin 

Zhang and Dengguo Feng37 just to mention some. 

1. Attack on Short Sequence Linear Feedback Registers Using the Self-
Shrinking Generator 

This attack uses the knowledge that the original (unknown) bit string is grouped 

into pairs of two bits; this is then compared to the output bit string (known). As 

mentioned in the discussion regarding the self-shrinking generator38 we have four 

35 Kitae Jeong et al., “Improved Fast Correlation Attack on the Shrinking and Self-shrinking 
Generators,” Progress in Cryptology - VIETCRYPT 2006 (Lecture Notes in Computer Science (LNCS), 
Vol. 4341), (Hanoi, Vietnam: Springer, 2006), 260–270. 

36 Simon R. Blackburn, “The Linear Complexity of the Self-Shrinking Generator,” IEEE Trans. Inf. 
Theory, 45 (September 1999), 2073–2077. 

37 Bin Zang and Denggou Feng, “New Guess-and-Determine Attack on the Self-Shrinking Generator,” 
Advances in Cryptology - ASIACRYPT 2006 (Lecture Notes in Computer Science (LNCS), Vol. 4284), 
(Shanghai, China, Springer: 2006), 54–68. 

38 For more information regarding the self-shrinking generator, see Chapter III, Section C. 2. 
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alternatives for each pair: 00, 01, 10, 11, each approximately just as possibly likely. 

When we know the first output bit, say 1, we also know that the first two bits for sure are 

not 10 (which would have given 0 as the first output bit). Furthermore we know that the 

probability for the very first bit to be 0 is equal to the probability for it to be 1. This 

combined leads us to the conclusion for the following probabilities for the first two bits: 

p(00) = ¼ , p(01) = ¼, p(10) = 0, p(11) = ½. This is then repeated for all pairs of bits and 

we can thereby assume an original bit string with higher probability than by just 

guessing.39 

2. The Backtracking Algorithm 

Another attack on LSFRs is the Backtracking Algorithm.40 This algorithm 

requires that the feedback polynomial of the LSFR is known. It is based on an attack on 

the shrinking generator where the inner state of LSFR R2 is guessed and used to create 

the R2 sequence. Through this single bits of the R1-sequence can be reconstructed which 

all gives a linear equation. When enough bits have been recreated we can solve the linear 

equations and find the inner state of R1. This can then be double checked by running the 

two LSFRs and checking the output using the shrinking generator. A similar method can 

be applied to the self-shrinking generator. Now, however, since all even bits serve as the 

equivalent of the R2-sequence in the case with the shrinking generator and they are not 

the complete output of an LSFR, they are not necessarily linearly dependent (i.e., they 

have to be guessed bit by bit). This makes the attack on the self-shrinking generator more 

complicated and not so straightforward. 

B. OTHER ATTACKS 

There are also attacks that focus not on a specific algorithm or method but instead 

work directly with the string of random bits. One such powerful, and quite fascinating 

39 Erik Zenner, Matthias Krause, Stefan Lucks, “Improved Cryptanalysis of the Self-Shrinking 
Generator,” Australasian Conference on Information Security and Privacy (ACISP) 2001 (Lecture Notes in 
Computer Science (LNCS), Vol. 2119), (Sydney, Australia: Springer, 2001), 21–35. 

40 Ibid. 
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algorithm, is the Berlekamp-Massey algorithm that finds a linear dependence in a string 

of apparently random bits. 

1. The Berlekamp-Massey Algorithm 

A string of “0’s” and “1’s” placed “randomly” may seem very random indeed. 

However, there is always a function that will express a linear dependency between the 

bits in any given string, even the truly random ones. In “poor” random strings such a 

function can easily be created to predict/compute the next bit. In a really poor random 

sting this equation is very simple; in not so poor random strings it is a bit more 

complicated. Such a function can also be created for the really good random strings. 

However, in the cases of the really good random strings, the equation needs the input of 

all the previous bits in the strings to predict/compute the very last bit.  

The algorithm to create these “predicting functions” is called the “Berlekamp-

Massey algorithm.”41 Given a binary output sequence, the Berlekamp-Massey algorithm 

is used to find the simplest linear feedback shift register that creates this very same 

sequence. This algorithm walks through the binary string bit by bit, adding complexity to 

the function when needed to create the target bit string. An example of how it can be 

applied is presented as follows:42 

Assume the bit string zn of length 20 is observed; zn = 11010110010001111010. It 

is very difficult to intuitively say whether or not the bits in this string have a linear 

dependency, but we will see that they are indeed linearly dependent and in a not too 

complex way. For the computations in the algorithm we need to keep track of a number 

of variables: 

 N   The current index, or the number of bits “taken into operation”  

 NL    The complexity at a given index N 

 m   The largest index such that m NL L<   

41 Menezes et al., Handbook of Applied Cryptography, 200–202. 
42 An online calculator of the Berlekamp-Massey algorithm is available at http://bma.bozhu.me/ 
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 ( )Nf x  The current function used 

For every step in the algorithm the function ( )Nf x  is kept unchanged unless it no 

longer gives a correct result for the last bit. When ( )Nf x  must be recomputed the 

complexity NL  also must be recomputed and used as an input. The new complexity and 

function are computed using the following formulas for 1NL +  and ( )1Nf x+ : 

 ( )( )1 max , 1N N NL L N L+ = + −   

 ( ) ( ) ( )1 1
1

N N N mL L L N m L
N N mf x x f x x f x+ +− − + −
+ = ⋅ + ⋅   

To initiate the Berlekamp-Massey algorithm the first step is to at index 0N =  

setting the complexity to 0 ( 0 0L = ) and the function to 1 ( ( )0 1f x = ). Thereafter at index 

1N =  computing the complexity and setting the function to be 1x + , ( ( )1 1f x x= + ): 

 0N =    z =∅    0 0L =    

 ( )0 1f x =  

 1N =    1z =    ( ) ( )0 0 0max ,1 max 0,1 1L L L= − = =    

( )1 1f x x= +  

We will now try to find a function ( )f x  that generates all the following bits. In 

this function we want terms to solve the binary equation ( ) 0f x =  where the powers of x 

indicates the indexes of the last bits in the string, e.g., in the string 110010, 4 0x =  3 1x =

2 0x = 1 0x = 0 1x = . (Note that index 0 represents the term 0x , in the functions that 

follows this is simplified to a 1, since 0 1x = ). The first bits are not of interest from an 

indexation perspective. 
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In the next step the existing function ( )1f x  still works since 11z =  and

( )1 1 1 0f x = + = . The function and the complexity remain unchanged; ( ) ( )2 1f x f x=  and 

2 1L L=  : 

 2N =    11z =    2 1L =    

( )2 1f x x= +  

 

In the third step the function ( )2f x  is no longer applicable since 110z =  but 

( )2 0 1 1 0f x = + = ≠ . We recompute the complexity 3L  and compute a new function 

( )3f x  by applying the formula as described above: 

 3N =    110z =   ( ) ( )3 2 2max ,3 max 1,2 2L L L= − = =    

( ) ( ) ( ) ( )2 1 2 2 0 0 1 0 2
3 2 1 1 1 1f x x f x x f x x x x x x− − + −= ⋅ + ⋅ = ⋅ + + ⋅ = + +  

Double checking the function ( )3f x  above on z gives the result: 

2 1 0 1 1 0x x+ + = + + =  so it is OK. 

 

In the fourth step, the previous function works since 1101z =  and 

( )3 1 0 1 0f x = + + = . The index N is increased while the complexity, and the function 

remains unchanged; 4 3L L=  and ( ) ( )4 3f x f x= : 

 4N =    1101z =   4 2L =    

( ) 2
4 1f x x x= + +   
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In the fifth step we have 11010z =  but ( )4 0 1 0 0f x = + + ≠  so we have to re-

compute the complexity 5L  and the function ( )5f x : 

 5N =    11010z =   ( ) ( )5 4 4max ,5 max 2,3 3L L L= − = =    

( ) ( ) ( ) ( ) ( )
( ) ( )

3 2 3 4 2 1 1 2 0
5 4 2

3 2 3 2 3 2

1 1

         1 2 1 1

f x x f x x f x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + − + ⋅ + =

= + + + + = + + + = + +
 

 

In the sixth step we have 110101z =  and ( )5 1 0 0 1 0f x = + + = ≠ , Again, the 

index N is increased and both complexity 6L  and the function ( )6f x  are recomputed: 

 6N =    110101z =   ( ) ( )6 5 5max ,6 max 3,3 3L L L= − = =    

( ) ( ) ( ) ( ) ( )
( ) ( )

3 3 3 5 4 2 0 3 2 0 2
6 5 4

3 2 2 3 2 3

1 1

         1 1 2 2

f x x f x x f x x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + − + ⋅ + + =

= + + + + + = + + + = +
 

 

In the seventh step, 1101011z =  but ( )6 1 0 1 0f x = + = ≠ . Once again we increase 

index N and recompute the complexity 7L  and the function ( )7f x : 

 7N =    1101011z =    ( ) ( )7 6 6max ,7 max 3,4 4L L L= − = =    

( ) ( ) ( ) ( ) ( )
( ) ( )

4 3 4 6 4 2 1 3 0 2
7 6 4

4 2 2 4 2 4

1

         1 2 1 1

f x x f x x f x x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + + ⋅ + + =

= + + + + = + + + = + +
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In the eighth step, 11010110z =  while ( )7 0 0 1 1 0f x = + + = ≠ . Yet again we 

increase the index N and recompute the complexity 8L  and the function ( )8f x : 

 8N =    11010110z =    ( ) ( )8 7 7max ,8 max 4,4 4L L L= − = =    

( ) ( ) ( ) ( ) ( )
( ) ( )

4 4 4 7 6 3 0 4 0 3
8 7 6

4 3 4 3 4 3

1

         1 2 1 1

f x x f x x f x x x x x x x

x x x x x x x x x

− − + −= ⋅ + ⋅ = ⋅ + + + ⋅ + =

= + + + + = + + + = + +
 

In the ninth step, 110101100z =  and ( )8 1 0 1 0f x = + + = , so the function works 

and ( ) ( )9 8f x f x=  . 

In the tenth step, 1101011001z =  and ( )9 1 0 1 0f x = + + = , so the function works 

and ( ) ( )10 9f x f x= . 

As a matter of fact, we have now found the function that works for the complete 

observed bit string. Therefore, no further computation is necessary for either the 

complexity NL  or the function ( )Nf x . Remaining bit values can be controlled with the 

function achieved: 

 
N z ( ) 4 3 1f x x x= + +  
9 110101100 0 + 0 + 0 = 0 
10 1101011001 1 + 0 + 1 = 0 
11 11010110010 0 + 1 + 1 = 0 
12 110101100100 0 + 0 + 0 = 0 
13 1101011001000 0 + 0 + 0 = 0 
14 11010110010001 1 + 0 + 1 = 0 
15 110101100100011 1 + 1 + 0 = 0 
16 1101011001000111 1 + 1 + 0 = 0 
17 11010110010001111 1 + 1 + 0 = 0 
18 110101100100011110 0 + 1 + 1 = 0 
19 1101011001000111101 1 + 0 + 1 = 0 
20 11010110010001111010 0 + 1 + 1 = 0 

 

Table 2.   Checking applicability of the function ( )Nf x  for steps ( )9 20N =  . 
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V. TEST RESULTS 

For the tests a number of bit strings have been used. Time constraints and 

difficulties getting access to usable data have made it challenging to get all tests done in 

time, and a more thorough examination could be done in the future. The tests performed, 

however, show some interesting results. 

A. PERFORMANCE OF THE TESTS 

The string of pseudorandom bits was run through the NIST test suite. Since the 

test suite requires multiple strings to get usable statistics the strings used were divided by 

the NIST test program into a number of equally long bit streams. Hereafter the term “bit 

string” will be used for the original pseudorandom generated string used as the general 

input for the NIST test suite, while the term “bit stream” will be used for the input to the 

NIST subtests. The bit streams created were then run through all the tests in the test suite, 

and the result was saved. The original bit string was then modified by running it through 

a self-shrinking generator.43 The resulting string was then run through the same NIST 

tests again. It is important to notice that this new bit string was now shorter than the 

original (the SSG is expected to shorten a truly random string to one fourth of its original 

length). To get comparable results the new bit string was divided into the same number of 

bit streams that were used in the original test. The new bit streams were therefore shorter 

than the originals, but they reflected the information retrieved from the full length bit 

streams in the original bit string since they were created using them as input. The results 

after having run the NIST test suite on the string after having applied the self-shrinking 

generator was compared to how the original, non-modified, bit string performed on the 

NIST test suite. Depending on which original source was being used, the NIST bit stream 

length and the number of bit streams tested varied.  

43 See python script for the self-shrinking generator in Appendix D. 
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B. TESTING A STRING GENERATED BY AN ANDROID PHONE 

Since not as much work has been put into pseudorandom number generators for 

mobile devices as it has for their stationary equivalents, it was expected that some non-

random properties would be discovered. The intention was then to improve the 

randomness of the generated bit string by applying the self-shrinking generator (SSG). 

Generating bit strings on an Android phone was outside the scope of this thesis, and 

access to such strings turned out to be more limited than expected. Further data could 

therefore render more information. It was not until very late in the research that the bit 

strings needed were made available, and the time available for tests was very limited. 

Some tests should be run again with other parameters to see if the results could be 

affected. 

For these tests (which are described in Chapter II), two strings of random bits 

generated on an Android phone were used.44 One was created using the /dev/urandom 

block device (hereafter referred to as string A) while the other one came from the 

SecureRandom function provided by Java (hereafter referred to as string B). They were 

presented in a pure binary file and were therefore converted45 to an ASCII representation 

so that they could be modified using the SSG script. The conversion script also cut the 

file to a manageable length since the NIST test suite would not accept a too great input.46 

For the tests, 100 bit streams of length 106 were used from each string. 

1. Results before Applying the SSG 

NIST recommendations require a 96% pass rate for the bit streams, and this was 

fulfilled for string A, even if not all bit streams passed all subtests. String B passed all 

tests with one exception. In Test #7, “The Non-overlapping Template Matching Test,” for 

one of the 148 templates tested only 95 of 100 bit streams passed resulting in a 95% pass 

rate. However, this must be considered such a rare event that no conclusions of the 

44 The strings were made available through another research project. 
45 See python script for binary to ASCII conversion in Appendix C. 
46 The maximum input used in the test was approx. 750MB. Suspected file size limit is 1GB. 
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original bit string being non-random can be drawn. Both strings must therefore be 

considered as fulfilling the NIST recommendations for required randomness. Since non-

random properties were expected, this was a bit of a disappointment. The SSG was 

applied anyway to see if the pass rate could be improved further. 

2. Results after Applying the SSG 

After the SSG had been applied, the bit strings A and B were run through the 

NIST test suite again. This time, both bit strings passed all the tests. The SSG can then at 

least be considered to have improved the result regarding one matching template in string 

B. It is however doubtful whether there was an overall improvement. The pass rate did 

improve for some tests, but it remained constant or even deteriorated for others. The 

changes in pass rate were so low that no conclusions could be drawn from this test. 

C. TESTING A STRING GENERATED BY LINUX  

As a reference a pseudorandom bit string generated by the /dev/urandom function 

in Linux (hereafter referred to as string C). The /dev/urandom function was chosen in an 

attempt to generate a string that lacked some random properties. The /dev/random 

function could have been used, but it was expected to perform better in the tests. String C 

was also converted to ASCII representation before being run through the NIST test suite 

and the SSG. In this test we used 300 bit streams of length 106. The original string was 

not as long as the Android strings, and after having applied the SSG, the bit stream length 

had to be shortened to 2.5·105 to still be able to test 300 bit streams. The original string C 

performed equally well as the Android bit strings and passed all tests with an equivalent 

pass rate.  

A divergent result was achieved when the bit string was tested after the SSG had 

been applied. The string now passed all tests with an acceptable pass rate. However, it 

failed to pass Test #9 from the perspective of an even distribution of P-values. It seems 

like the test requirements for input variables were not met. This problem has not been 

detected with any other string. Why the requirements were not met with this string in this 

test is not clear.  
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D. TESTING A STRING WITH POOR RANDOM PROPERTIES 

As a reference, a string of “really poor” bits was tested. Even if it is easy to find 

or create a string with really poor random properties (e.g., all “1’s” or a repetitive pattern 

of a given length) it remains difficult to find a string of bits with some random properties 

but still not random enough to be anywhere near to pass the NIST test suite. To create 

such a string, we used the U.S. Constitution with its 27 amendments.47  

1. Creating a Bit String with Poor Random Properties 

The string to be tested was created by letting the characters and spaces of the 

Constitution be represented by their 8-bit ASCII representation while all line breaks were 

removed. The result was an approximately 350 000 bit long string. This string now had 

some random properties while it lacked others. It, for example, passed the linear 

complexity test. This is not surprising since the Berlekamp-Massey algorithm48 has 

shown us how the full length of a string has to be taken into account to compute the linear 

complexity. Since the characters constantly change in a text, this change affects the 

complexity. The string created, however, did not pass the most basic test, the frequency 

test. This is what could be expected. Letters A-Z are represented by 01000001–01011010 

and a-z by 01100001–01111010, (i.e., bit #3 is always is a “0” for majuscule (capital) 

letters and a “1” for all minuscule letters). Since there are many more minuscule than 

majuscule letters in a regular text this will result in a higher frequency of “1’s” than “0’s” 

in the created string. Furthermore, in a regular text the letter “o” (ASCII: 01101111, 6 

“1’s” 2 “0’s”) occurs more often than the letter “b” (ASCII: 01100010, 3 “1’s” 5 “0’s”) 

resulting in a bias towards a higher frequency of “0’s.”49 These are just two examples of 

what affects bit frequency in a string derived from a text. Since all characters are 

represented by eight bits and they all start with a zero, the NIST tests will notice this as 

in, for example, “The Binary Matrix Rank Test” (Test #6) where smaller matrices created 

47 Available at: www.usConstitution.net/const.txt. 
48 See Chapter IV, Section B.1. 
49 For more information on the distribution of letters in a text search for information on “letter 

frequency.” 
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by the string are tested for the linear dependence. Furthermore, in a string of this size you 

would expect to find some long runs of “1’s” and “0’s.” But since the character 

represented by all “0’s” is the “NUL” and the character represented with all “1’s” is “ÿ” 

(both being extremely rare in most texts, especially in the U.S. Constitution) there will 

certainly be no run longer than 14 (2·[8–1]) bits. 

2. Test Results 

For testing the string described in the previous paragraph, it was split into 10 bit 

streams, each of length 35 000 bits. In another test 100 bit streams of length 3 500 bits 

were also tested, but these bit streams seemed too short to result in any interesting results. 

When being run through the NIST test suite, the bit string created, as expected, did not 

pass the NIST test for randomness.50 Even after the self-shrinking generator was applied 

the bit string did not pass the test suite. It is r interesting, though, to see what 

improvements were made and why.  

Since the string did not pass the frequency test we could not expect it to pass after 

the SSG had been applied. That is because the relative frequency generally is maintained 

by the SSG. This also affects the result in the tests directly based on the frequency of bits 

(Tests #2 through #5) and makes the string fail those tests as well. However, by applying 

the SSG we seem to have improved the result for Test #6, “The Binary Matrix Test.” By 

applying the SSG we have to a great extent eliminated the property of the original string 

where every character was represented by eight bits. Since characters A-Z in ASCII 

representation all start with 0100 or 0101, all bits from the first half of the ASCII 

representation are being discarded. For the characters a-z (starting with 0110 or 0111) 

however, the second pair of bits results in on bit (1 or 0) in the resulting string. Thus, a 

minuscule character will always contribute to one bit more than its majuscule equivalent. 

From the second half of the ASCII representation (bits #5 through #8) varying numbers 

of bits are maintained. After having applied the SSG no pattern revealing the original 8-

50 We can now say, therefore, that we have proven that the U.S. Constitution was not written at 
random (if anyone ever might have suspected it to have been). 
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bit “partition” can be seen. The characters have instead resulted in 0–3 bits in the new bit 

string. 

By breaking up the 8-bit “partition” we have also made it more difficult for 

“Template Matching Tests” to find non-randomness (i.e., it is more difficult to find these 

matching templates once we have substituted every 8-bit character representation with 0–

3 bits). All the bit streams of the new string did not pass all matching templates tests, and 

the string as such did not pass the test in full. Even so, we can observe a 500% 

improvement for the string in passing the subtests after the SSG was applied as compared 

to before. 

The original string did pass Test #10, “The Linear Complexity Test.” An 

improvement of the distribution of the p-values can also be seen. This can be seen as a 

result of the SSG “removing” the 8-bit partition of the original string. A string that has 

less obvious partitioning will result in more varied complexity. 

  

 
 

44 



 

VI. CONLUSIONS 

It was expected that pseudorandom bits strings generated on an Android phone 

would lack some random properties. An attempt would then be made to improve these 

flaws in randomness by applying the self-shrinking generator (SSG).  

A. TESTED STRINGS 

Tests using the NIST test suite (described in Chapter II) showed that the bit 

strings generated on the Android phone passed the NIST tests with a pass rate according 

to NIST recommendations. Applying the SSG affects the test results, but no conclusions 

can be made whether it is for better or for worse.  

The test performance of the Android-generated strings was compared to the 

performance of a Linux-generated string. They performed equally well, and no obvious 

differences could be identified. 

Tests were also run on a string with poor random properties, a plain text in ASCII 

representation. This string drastically failed all tests except the linear complexity test. 

After having applied the SSG, this string showed improved results in four of the tests: the 

“Binary Matrix Rank Test,” “Discrete Fourier Transform (Spectral) Test,” “Non-

overlapping Matching Template Test” and “Overlapping Template Test.” It also still 

passed the “Linear Complexity Test.” 

B. TEST ALGORITHM AND THE SELF-SHRINKING GENERATOR 

After having run the NIST test suite, before and after the SSG had been applied, 

on a bit string with poor random properties, such as the plain text string, it was clear that 

there are two main aspects of random properties that are being tested by the NIST test 

suite: frequency and linear dependency. 

In a string with good random properties the frequency of 1’s and 0’s should be 

about equal. This is not necessarily true in a string with poor random properties, and 

definitely not so in a string based on a binary ASCII representation of an English text. 
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The character frequency in English combined with the binary ASCII representation of the 

characters results in a string having the ratio 45/55 of 1’s and 0’s. Since the SSG 

compresses the original string with guidance on the occurrence of 1’s as the first bits in a 

pair of bits, the probability for the second bit in these pairs being a 1 or a 0 will be 

reflected in the new string created. Therefore, the ratio of the frequency of 1’s and 0’s in 

the resulting string is not 50/50, it has after the SSG was applied actually changed to a 

ratio of 38/62. This change in ratio occurs since the bit combination “10” (resulting in a 

single 0 in the SSG output string) is more common than the bit combination “11” 

(resulting in a single 1). The reason for this is that minuscules (lower case letters) are in 

majority in a text, and the majority, and the most frequently used, of the minuscules (a-o) 

are represented by “10” as bits 3 and 4, resulting in a single 0 in the SSG output string. 

The SSG is therefore for no much use when trying to improve test results from tests that 

are based on an analysis of the frequency of bits. 

A string with good random properties is expected to have a great level of linear 

independency. A string created from a binary ASCII representation of a text will at every 

eighth bit start representing a new letter. This is a pattern, or a linear dependency, that 

will easily be detected in a test. The easiest way to understand this is to realize that the 

most frequently used characters used in a text are the letters A-z. The binary ASCII 

representation of these letters all start with the bits “01,” i.e., two out of eight bits for 

every character can be predicted. This creates an obvious linear dependency in longer bit 

strings. Applying the SSG removes the two initial bits in the binary ASCII representation 

of all letters. It also affects the following bits resulting in an output of 0–3 bits for every 

8-bit representation of a letter. After the SSG has been applied to a string, its test results 

in the NIST test suite dramatically improves for tests based on linear dependence and 

spectral tests, except for the linear complexity test where already the original string 

performs well. The reason for this being that in this test the full length of the string is 

being analyzed instead of for example the “Binary Rank Matrix Test” where only blocks 

of the string are being tested. Applying the SSG on a string can therefore improve 

randomness from a perspective of linear dependency in a string.  
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C. SUGGESTIONS FOR FURTHER RESEARCH  

Time constraints made it difficult to perform as many tests under varied input 

condition as would have been desirable. A more thorough testing and analysis of test 

results, before and after having applied the self-shrinking generator could therefore be 

recommended to confirm the results presented here. More strings with limited random 

properties of various degrees could also be examined to better identify the self-shrinking 

generator’s capability of improving randomness in a string. Furthermore, more research 

could be focused on the mathematics behind how the self-shrinking generator affects a 

string. This thesis inly notes that it affects the randomness of the string, not so much why. 

When it comes to the generator used, this thesis only examines the self-shrinking 

generator. The shrinking generator is presented but due to time constraints not examined. 

A drawback with the self-shrinking generator is that it shortens the input string to approx. 

25% of its original length while the shrinking generator shortens it to only approx. 50%. 

The drawback with the shrinking generator is that it needs two inputs, a string to be 

shrunken, and a string to use as a template for performing this shrinking. There could 

however be an improved self-shrinking generator, which for example does not pair the 

bits in the input string as the existing self-shrinking generator does but instead uses every 

bit as a decision bit to decide whether the following bit should be discarded or be a bit in 

the resulting output string. A decision rule that uses multiple bits in the original string to 

decide the output could also be applied. This would be like using the string itself as a 

template in a shrinking generator and give a greater output string (like the shrinking 

generator) without a template sting (like the self-shrinking generator). These types of 

expansion of the shrinking generators have not been examined in this thesis but it could 

be interesting to do so. 
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APPENDIX A. MATHEMATICAL FIELDS  

In cryptology we normally use binary numbers and finite fields. A field is defined 

as a set S of elements under the operations addition and multiplication fulfilling the 

following properties:51,52 

 

Closure If ,a b S∈ , then a b+  and a b S⋅ ∈   

Associativity If ,a b S∈  then ( ) ( )a b c a b c+ + = + +  and ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅   

Commutativity a b b a+ = +  and a b b a⋅ = ⋅   

Identity 0a a+ =  (additive identity)  

1a a⋅ =  (multiplicative identity) 

Inverses            ( ) 0a a+ − =  (additive inverse)  

1 1a a−⋅ =  (multiplicative inverse) 

Distributivity  ( )a b c a b a c⋅ + = ⋅ + ⋅   

 

If the number of elements in the field is p (a prime) they form a field under 

addition and multiplication modulo p. In cryptology we normally use fields of order two 

( 2p = , binary), or in other words a Galois Field of degree two, ( ) ( )2GF p GF= , or 

some of their extensions (see Appendix B). 

  

51 Neal H. McCoy and Gerald J. Janusz, Introduction to Abstract Algebra (Ann Arbor, MI: 
Trustworthy Communications, 2009), 3–5.  

52 Ibid. 71.  
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APPENDIX B. FIELD EXTENSION 

A field of order two does not give us many possibilities since it only has two 

elements. Therefore, we perform a field extension. By creating a polynomial of degree n 

using the elements of the field S as coefficients we achieve a field extension, 

( ) ( )2n nGF p GF= . 

Example: 

Using a polynomial of degree 3n =  we achieve an extension ( )32GF  of the 

binary field ( )2GF  which is represented by the polynomial 2 1 0
2 1 0c x c x c x+ +  where the 

coefficients nc  are in the set { }0,1S = . This polynomial now gives us the possibility to 

express eight ( 32 8= ) different polynomials: 

 

Polynomial Polynomial full 
format 

Coefficients, 
nc   

0   2 1 00 0 0x x x⋅ + ⋅ + ⋅  0 0 0 
1  2 1 00 0 1x x x⋅ + ⋅ + ⋅  0 0 1 

1 1x+ +  2 1 00 1 0x x x⋅ + ⋅ + ⋅  0 1 0 
1x +  2 1 00 1 1x x x⋅ + ⋅ + ⋅  0 1 1 

2x  2 1 01 0 0x x x⋅ + ⋅ + ⋅  1 0 0 
2 1x +  2 1 01 0 1x x x⋅ + ⋅ + ⋅  1 0 1 
2x x+  2 1 01 1 0x x x⋅ + ⋅ + ⋅  1 1 0 

2 1x x+ +  2 1 01 1 1x x x⋅ + ⋅ + ⋅  1 1 1 
 

Table 3.   Polynomials and their coefficients for the extended field ( )32GF . 

A polynomial, ( )q x , is irreducible if there does not exist any other two 

polynomials, ( )p x  and ( )g x , such that ( ) ( ) ( )p x g x q x⋅ =  (all polynomials being of 

degree greater than 0). The easiest way to check that a polynomial is irreducible is to 

check that the polynomials do not result in zero when 0 or 1x = : 
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( ) ( )0 0 and 1 0f f≠ ≠   

Remember that in binary 1 1 0+ = . Looking at the polynomials presented in the 

example above, 2x x+  is not irreducible (since 21 1 0+ = ), while 2 1x x+ +  is irreducible 

(since 21 1 1 1 0+ + = ≠ ). The property of a polynomial being irreducible plays an 

important role in cryptology. In this example a polynomial of degree 3 has been used. 

Normally, polynomials of much greater degree are used.  
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APPENDIX C. PYTHON SCRIPT FOR CONVERTING A BINARY 
FILE TO BINARY ASCII REPRESENTATION 

# This script reads and converts 100 bytes of binary data  
# and converts it to a binary ASCII string of maximum  
# length 800MB  

 

import sys, binascii 

f = open(sys.argv[1], “rb”)  # Open input file 

g = open(“result,”“w”)   # Open output file 

   

try: 

  numbytes = 0     # Set and index 

  while True: 

    bytes = f.read(100)   # Read 100 bytes 

    numbytes = numbytes + 100  # Index increment 

    if bytes == ‘‘ or numbytes > 10**8:  

      # The line above limits output to 800MB 

      break 

    x = bin(int(‘1’+binascii.hexlify(bytes),16))[3:]  

      # The line above converts to binary ASCII 

      # The ‘1’+ prevents loosing leading 0’s 

    g.write(x)     # Write to output file 

 

finally: 

  f.close()     # Close input file 

  g.close()     # Close output file 
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APPENDIX D. PYTHON SCRIPT FOR APPLYING THE SELF-
SHRINKING GENERATOR TO A STRING 

# Opens a file, applies the self-shrinking generator  

# (if bit #1 is a “1” use bit #2 otherwise don’t use any of  

# them, repeat for #3 and #4, etc.) and writes the result  

# to a new file. 

 

import sys, os 

 

file = sys.argv[1] 

f = open(file)   # Open input file 

g = open(file+’mod,’”w”) # Create output file 

 

statinfo = os.stat(file) # Identify string length 

z = int(statinfo.st_size) 

 

index = 1    # Limits number of loops  

while (index  < z):  # to file length  

 

  x=f.read(1)   # Read first bit 

  index = index +1 

 

  if x==“0”:   # If bit is 0 don’t  

    y=f.read(1)  # use next bit   

    index = index +1 

  elif x==“1”:   # If bit is 0 use next bit 

    y=f.read(1) 

    index = index +1 

    g.write(y)   # Write to output file 
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  else:    # For unexpected inputs 

    print “Unexpected input”  

    f.close() 

    g.close() 

    quit() 

 

f.close()    # Close input file 

g.close()    # Close output file 

quit()     
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