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Introductory Remarks. 

THE former Essay* contained a general method for reducing all the most important 
problems of dynamics to the study of one characteristic function, one central or ra- 
dical relation. It was remarked at the close of that Essay, that many eliminations 
required by this method in its first conception, might be avoided by a general trans- 
formation, introducing the time explicitly into a part S of the whole characteristic 
function V; and it is now proposed to fix the attention chiefly on this part S, and to 
call it the Principal Function. The properties of this part or function S, which were 
noticed briefly in the former Essay, are now more fully set forth; and especially its 
uses in questions of perturbation, in which it dispenses with many laborious and cir- 
cuitous processes, and enables us to express accurately the disturbed configuration of 
a system by the rules of undisturbed motion, if only the initial components of veloci- 
ties be changed in a suitable manner. Another manner of extending rigorously to 
disturbed motion the rules of undisturbed, by the gradual variation of elements, in 
number double the number of the coordinates or other marks of position of the 
system, which was first invented by LAGRANGE, and was afterwards improved by 
POISSON, is considered in this Second Essay under a form perhaps a little more ge- 
neral; and the general method of calculation which has already been applied to 
other analogous questions in optics and in dynamics by the author of the present 
Essay, is now applied to the integration of the equations which determine these ele- 
ments. This general method is founded chiefly on a combination of the principles of 
variations with those of partial differentials, and may furnish, when it shall be ma- 
tured by the labours of other analysts, a separate branch of algebra, which may be 
called perhaps the Calculus of Principal Functions; because, in all the chief applica- 
tions of algebra to physics, and in a very extensive class of purely mathematical 

questions, it reduces the determination of many mutually connected fuinctions to the 
search and study of one principal or central relation. When applied to the integration 
of the equations of varying elements, it suggests, as is now shown, the consideration 

* Philosophical Transactions for the year 1834, Second Part. 
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of a certain Function of Elements, which may be variously clhosen, and may either 
be rigorously deterimined, or at least approached to, with an indefinite accuracy, 
by a corollary of the general method. And to illustrate all these new general 
processes, but especially those which are connected with problems of perturbation, 
they are applied in this Essay to a very simple example, suggested by the motions of 

projectiles, the parabolic path being treated as the undisturbed. As a more important 
example, the problem of determining the motions of a ternary or multiple system, 
with any laws of attraction or repulsion, and with one predominant mass, which was 
touched upon in the former Essay, is here resumed in a new way, by forming and inte- 

grating the differential equations of a new set of varying elements, entirely distinct 
in theory (though little differing in practice) from the elements conceived by LA- 

GRANGE, and having this advantage, that the differentials of all the new elements for 
both the disturbed and disturbing masses may be expressed by the coefficients of one 

disturbing function. 

lTransformations of the Differential Equations of Motion of an attracting or Repelling 
System. 

1. It is well known to mathematicians, that the differential equations of motion of 

any system of free points, attracting or repelling one another according to any func- 
tions of their distances, and not disturbed by any foreign force, may be comprised in 
the following formula: 

. m (x x + y" y - " ) - U: ....... (1.) 

the sign of summation 2 extending to all the points of the system; m being, for any 
one such point, the constant called its mass, and x y z being its rectangular coordi- 

nates; while x"y" z" are the accelerations, or second differential coefficients taken 
with respect to the time, and x, y, 6 z are any arbitrary infinitesimal variations of 
those coordinates, and U is a certainforce-function, introduced into dynamics by LA- 

GRANGE, and involving the masses and mutual distances of the several points of the 

system. If the number of those points be ?t, the formula (1.) may be decomposed into 
3 n ordinary differential equations of the second order, between the coordinates and 
the time, 

U sU a mu 
mx".= ; my= - . .... .. (2.) 

-i- x; i i 
- 

i ; mi -zi 

and to integrate these differential equations of motion of an attracting or repelling 
system, or some transformations of these, is the chief and perhaps ultimately the only 
problem of mathematical dynamics. 

2. To facilitate and generalize the solution of this problem, it is useful to express 
previously the 3 n rectangular coordinates xy z as functions of 3 n other and more 

general marks of position 1m 2 ... , ; and then the differential equations of motion 

take this more general form, discovered by LAGRANGE, 
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d 8 T T uU 
dt 6 q, - q i ~ * . . . *. 

in which 
T = M 

(X'2 + yt2+ Z12 T= ~mi2. qy-2+z'2) . .... 

For, from the equations (2.) or (1.), 
6U ~ m y ay a z 

d-= d m.' m Ti yY 8Ia + i"- 

wm 
, d x , d ay ,d 8z\ 

wmhihdta,ij+Y'dtnji+ dt?i; 
in which 
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* . . . . . (3.) 

* ..... (4.) 

. (5.) 

. . . . . (6.) 

and 
,d ax , d iy , d az 

= . .m V t'-ri + y dt~- + d-t -, 
6~' (7.) 
.( yt ' dt a t a iT 

-- a ra( y, i 
' 

a,z') aT 
T being here considered as a function of the 6 n quantities of the forms a/ and ^ ob- 
tained by introducing into its definition (4.), the values 

ax x I x 
~=- S rV'+ + -- + sn . .. . . (8.) 

A different proof of this important transformation (3.) is given in the Mecanique 
Analytique. 

3. The function T being homogeneous of the second dimension with respect to the 
quantities v', must satisfy the condition 

2T= . T;, . ................ (9.) 

and since the variation of the same function T may evidently be expressed as follows, 

Tw T ='+-S8 ), . ........... . (10.) 
we see that this variation may be expressed in this other way, 

T= (' 
- . ...... 

. 
(11.) 

If then we put, for abridgement, 
aT aT (1 

^--= %T ,= n . (12.) 
MDCCCXXXV 0>^f 3^ 

I. m 
I 

+ 
ax 

-ca +~ 
a 

) \~ +Y, 1 G, a V :i 

anti + yl 6vif ^T = 
wi~ - 
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and consider T (as we may) as a function of the following form, 
T = F (1,, W2 . ' * g, 3 ,,2 . . . *$ , . ...n (13.) 

we see that 
aF 8 F(14.) 
^^^*1 **1 8 tre t sn . ............ (14.) 

and 
a F aT aF T 

I-=- * 3 - , . *......... (15.) 

and tlherefore that the general equation (3.) may receive this new transformation, 

dw- _ (U - F) I - . . . . . . . . . . . . . (16.) dt ^i 

If then we introduce, for abridgement, the following expression H, 
H = F - U = F (i, 22, . . . 3 1, 2, * * * n ) -- U (1, 2, - * 3n), (17.) 

we are conducted to this new manner of presenting the differential equations of 
motion of a system of n points, attracting or repelling one another 

dl, aH dh 6_ H 

d-t d- ; dt n- 

d%2 aH dw2 aH 

_ ds . 

_ 

a_i 

dt - D; dt ~ 
r1sn J 

3,, _ ^H _ d H 

~sdt 3 n^ -dt - 

In this view, the problem of mathematical dynamics, for a system of n points, is to 

integrate a system (A.) of 6 n ordinary differential equations of the first order, be- 
tween the 6 n variables ni vi and the time t; and the solution of the problem mliust 
consist in assigning these 6 n variables as functions of the tirne, and of their own 
initial values, which we may call e. p,. And all these 6n functions, or 6 n relations 
to determine them, may be expressed, with perfect generality and rigoulr, by the 
method of the former Essay, or by the following simplified process. 

Integration of the Equations of Motion, by means of one Principal Function. 

4. If we take the variation of the definite integral 

S j C . - d-H)dt . ... ......* (18.) 

without varying t or dt, we find, by the Calculus of Variations, 

8S =fo 
' S' . 

d, 

. . . . . . . . . . . . . . . ( 19) 
in which 

s'S E .- -H, .. .. ......... . (20.) 
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and therefore 

$ :S'= E(n r w- ^ ), . .......... . (21.) 

that is, by the equations of motion (A.), 

( dtf .+d )=d * ; *... .. . d(22.) 

the variation of the integral S is therefore 
S = 2 (, 3v - p - e), ..e.d.. . e . . . . . . . (23.) 

(p and e being still initial values,) and it decomposes itself into the following 6 n ex- 

pressions, when S is considered as a function of the 6 it quantities i e., (involving also 
the time,) 

aS aS 1 
21= , ; P2 = a e ; 

a s a s 
2 - ,^ 2 = ; e2 > . . . 

' 
...... (B.) 

-TSn Sn ; P3n e= - n 
J 

which are evidently forms for the sought integrals of the 6 n differential equations of 
motion (A.), containing only one unknown function S. The difficulty of mathema- 
tical dynamics is therefore reduced to the search and study of this one function S, 
which may for that reason be called the PRINCIPAL FUNCTION of motion of a system. 

This function S was introduced in the first Essay under the form 

S =t (T + U) dt, 

the symbols T and U having in this form their recent meanings; and it is worth 

observing, that when S is expressed by this definite integral, the conditions for its 
variation vanishing (if the final and initial coordinates and the time be given) are 

precisely the differential equations of motion (3.), under the forms assigned by LA- 
GRANGE. The variation of this definite integral S has therefore the double property, 
of giving the differential eqtuations of m[notion for any transformed coordinates when 
the extreme positionls are iregarded as fxed, and of giving the integrals of those dif- 

ferential equations when the extreme positions are treated as varying. 
5. Although the ftunction S seems to deserve the name here given it of Principal 

Function, as serving to express, in what appears the simplest way, the integrals of the 

equations of motion, and the differential equations themselves ; yet thle same analy- 
sis conducts to other functions, which also may be used to express the integrals of 

the same equations. Thus, if we put 

Q=j'(- Z?.~ +H)+ 
d t,........... . Q =J0 - + (- 84 +-I) 1 dt, .**********(24.) 

and take the variation of this integral Q without varying t or dt, we find, by a simi- 
lar process, 

Q=--( s'-e p) ; . ....... ..... (25.) 
o 2 
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so that if we consider Q as a function of the 6 n quantities w. p. and of the time, we 
shall have 6 n expressions 

aQ aQ = + , ei=-p- , ........ (26.) 

which are other forms for the integrals of the equations of motion (A.), involving tlle 
function Q instead of S. We might also employ the integral 

V =J. dt= J dd ^ . ....... . .(27.) 

which was called the Characteristic Function in the former Essay, and of which, when 
considered as a function of the 6 n + 1 quantities ;i e. H, the variation is 

V = (r-pse) + t H . ........ . . (28.) 
And all these functions S, Q, V, are connected in such a way, that the forms and 

properties of any one may be deduced from those of any other. 

Investigation of a Pair of Partial Differential Equations of theJirst Order, which the 

Principal Function must satisfy. 

6. In forming the variation (23.), or the partial differential coefficients (B.), of the 
Principal Function S, the variation of the time was omitted; but it is easy to calcu- 

S 
late the coefficient - corresponding to this variation, since the evident equation 

d S aS - aS d 
dt 8+ 2 - 

t (29.) dt aH n d t * 

gives, by (20.), and by (A.), (B.), 
a S a H 

=t .S 2. =- H. ...o... .. (30.) 

It is evident also that this coefficient, or the quantity - H, is constant, so as not 
to alter during the motion of the system; because the differential equations of mo- 
tion (A.) give 

dH sH dn SH d\ 
dLl _ E d dt ++ i dJt = . . . ,- . . . (31.) dtdt H+a d t 

If, therefore, we attend to the equation (17.), and observe that the function F is neces- 
sarily rational and integer and homogeneous of the second dimension with respect to 
the quantities wt, we shall perceive that the principal function S must satisfy the two 
following equations between its partial differential coefficients of the first order, 
which offer the chief means of discovering its form: 

aS , /s as as I 
~ + F S, a% , ..* n.~-, 

* 
- -U 3(, 2 * *I 3) 

as + s a S , U (, e) 
at +P aell ae-, el, e2, . . . 

e3)= 
U (e, e2, . . en). j 
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Reciprocally, if the forn of S be known, the forms of these equations (C.) can be 
deduced from it, by elimination of the quantities e or n between the expressions of its 

partial differential coefficients; and thus we can return from the principal function S 
to the functions F and U, and consequently to the expression -I, and the equations 
of motion (A.). 

Analogous remarks apply to the functions Q and V, which must satisfy the partial 
differential equations, 

a /Q _aQ QQ aQ_ TQ s aQ6 Q n 
-"-st F '1,\ 2 ,'n ,, %g,1 aW . = ...U , 

aQ_ jQ a( sQ a ̂Q 'QQ s ^Q 
>( 

Q 
32.) 

-'w+ 
F 

P1P2~, P:,, U.a , "I - * 
P:3 a t F P P -i' -- "P2 ' * ' P2' 

. 
p n2 

and 

F (v v Iv - + U (1 )2 1 
/1 18n , n 1,... 1%,v *, a,... 

% -- H q- Uvl, 2, n .sn ) 

F ' 8," * el e2,* * * e) -H + U (el, e2, .. . e). 

General Method of improving an approximate Expression or the Principal Function 
in any Problem of Dynamics. 

7. If we separate the principal function S into any two parts, 
S1 + S2- S, ..... . . (34.) 

and substitute their sum for S in the first equation (C.), the function F, fromn its 
rational and integer and homogeneous form and dimension, may be expressed in this 
new way, 

F(7S sS F( /6Si ,16 S 1 
aF IF 1,n..a V,)= n 

' Fs s ' ( ln) s sn) 

+Fl' ++, ". + n) 2 SJ 

F' (da) =S Fl' taS> - F' (8tR2) . . . . . . . . .' . (35.) 

and 

I.8 F'S1 
.- 
F (83S) 

and 

2 s f = 
.,.%~ ; . ? (37.) 

and since, by (A.) and (B.), 
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PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 

a s a H d -i 
' )=F=F= -= = . ... (i) :,(38.) 

we easily transform the first equation (C.) to the following, 
dS, 8Si, S1 +1 6 /S S1 ,.S1 3 )\ +SI) (D S 2 

t =-+TJ 
(F,,,) 

. a .s n) + F, 

wYhich gives rigorously 

2 

-=+- 6 t + U ((1 * * $n) 
' 

( * ,3 S,- * *r 3 n 

d t 

+Jo F ( St 6 8 7^^ 8 t31 +^ p ' 9s) ). J (E.) 

supposing only that the two parts 1S, 32, like the whole principal function S, are 
chosen so as to vanish with the time. 

This general and rigorous transformation offers a general method of improving at 
approximate expression for the principal function S, in any problem of dynamics. 
For if the part S, be such an approximate expression, then the remaining part S2 will 
be small; and the honmogeneous function F involving the squares and products of the 
coefficients of this small part, in the second definite integral (E.), will be in general 
also small, and of a higher order of smallness; we may therefore in general neglect 
this second definite integral, in passing to a second approximation, and may in general 
improve a first approximate expression S1 by adding to it the following correction, 

81 =J {--l +U (;*.1) -F- \ ''" d t**; (F.) 

in calculating which definite integral we may employ the following approximate forms 
for the integrals of the equations of motion, 

as, a S, a 3. Pl =- ~elP2 
= e- * Ps n a-e e3, 

... (39.) 

expressing first, by these, the variables ni as functions of the timee and of the 6 n con- 
stants ei p, and then eliminating, after the integration, the 3 n quantities pi, bythe same 
approximate forms. And when an improved expression, or second approximnate value 

S, + A S,, for the priticipal function S, has been thlus obtained, it. may be substituted 
in like manner for the first approxirmate value SI, so as to obtain a still closer ap- 
proximation, and the process may be repeated indefinitely. 

An analogous process applies to the indefinite itnmpovemuent of a first approxinmate 
expression for the function Q or V. 

Rigorouts Theory of Perturbations, founzded on the Properties of the Disturbing Part 
of the whole Principal Function. 

8. If we separate the expression H (17.) into any two parts of the same kind, 
H1+ 2=SH, ..... ...... ....... (40.) 

102 
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in which 
H1- F1 ('1, '2,''. n, Vlt , 721, 3 J*)- Ul (, 11," ,), ? . 3 (41.) 

and 
H - 

F2 (=, 2 l * , % * * n) - u2 (2, n, . * I - * .,. * (42.) 

the functions F1 F2 U 2 U2 being such that 

F, + F2 +F F, U +U2= U; ... . (43.) 
the differential equations of motion (A.) will take this form, 

di iHT aHa dH- 8H, 
I 

d t' a +8'~) dt - 6. . . (G.) 

and if the part 1H and its coefficients be small, they will not differ much from thes 
other differential equations, 

di _- H d_I 8a H1 
dtd- 6 i' dt =- ' (H.) 

so that the rigorous integrals of the latter system will be approximate integrals of 
the former. Whenever then, by a proper choice of the predominant term H,, a 
system of 6 n equations such as (H.) has been formed and rigorously integrated, 
giving expressions for the 6 n variables 7 mw as functions of the time t, and of their 
own initial values ei pi, which may be thus denoted: 

=i a= (t, eV, .. es , p,, P2.. .p) .......... t (44.) 
and 

i -)-.i (t, el, e2, es n, Pl P2 ,") .P.. (45.) 

the simpler motion thus defined by the rigorous integrals of (H.) may be callled the 
undisturbed motion. of the prposed system of n points, and the more complex motion 
expressed by the rigorous integals of (G.) may be called by contrast the disturbed 

mlotion of that systenm; and to pass fromi the one to the other, may be called a Pro- 

blem of Perturbation. 
9. To accomplish tllis passage, let us observe that the differential equations of un- 

disturbed motion (H.), being of the same form as the original equations (A.), may 
have their integrals simiilarly expressed, that is, as follows; 

Zai = 1i Pi = .n * . ._ .. . . . . . .. . (I.) 

81, being here the principalfunction of undisturbed notion, or the definite integral 

81 ( .r , -H) .dt ..... .. . (46.) 

considered as a function of the time and of the quantities v ei. In like manner if we 

represent by S1 + S2 the whole principal function of disturbed motion, the rigorous 
integrals of (G.) may be expressed by (B.), as follows: 

as, a S , S2 

i . ae. (K. 
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Coimparing the forms (44.) with the second set of equations (I.) for the integrals of 
undisturbed motion, we find that the following relations between the functions , S8 
must be rigorously and identically true: 

i- ti , el , e2 3 , 
. . es , ' - - .. . (47.) 

and therefore, by (K.), that the integrals of disturbed motion may be put under the 
following forms, 

ni = ,i (te, e2, S n P 8+ 
S 

+ + S)( 

We may therefore calculate rigorously the disturbed variables y, by the rules of un- 
disturbed motion (44.), if without altering the time t, or the initial values ei of those 

variables, which determine the initial configuration, we alter (in general) the initial 
velocities and directions, by adding to the elements Pi the following perturbational 
terms, 

AP = , A P2 - e2' A 3n : ' ......... (M.) 

a remarkable result, which includes the whole theory of perturbation. We might 
deduce from it the differential coefficients ti^, or the connected quantities 8, which 
determine the disturbed directions and velocities of motion at any time t; but a 
similar reasoning gives at once the general expression, 

+ 
S 

t, e, e2 , . , 
S S 

Sp )' .S ( 
i =a + i Vt e e * * Sn Pi + 

aen 
P2 + ae .. 

. P3s X j7~;, 
* 

(N.n 

implying, that after altering the initial velocities and directions or the elements p. as 

before, by the perturbational terms (M.), we may then employ the rules of undisturbed 
motion (45.) to calculate the velocities and directions at the time t, or the varying 
quantities rz, if we finally apply to thlese quantities thus calculated the following new 
corrections for perturbation: 

Aw1 = n ' = 2 
S - .. A = . .. ..... (o.) 

Approximate expressions deducedfrom the foregoing rigorous Theory. 

10. The foregoing theory gives indeed rigorous expressions for the perturbations, 
in passing from the simpler motion (H.) or (I.) to the more complex motion (G.) or 
(K.) : bt it may seem that these expressions are of little use, because they involve an 
unknown disturbing function S2, (namely, the perturbational part of the whole princi- 
pal function S,) and also unknown or disturbed coordinates or marks of position ,. 
However, it was lately shown that whenever a first approximate form for the princi- 
pal function S, such as here the principal function S1 of undisturbed motion, has been 
found, the correction 82 can in general be assigned, with an indefinitely increasing 
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accuracy; and since the perturbations (M.) and (0.) involve the disturbed coordi- 
nates i. only as they enter into the coefficients of this small disturbing function 82, it 
is evidently permitted to substitute for these coordinates, at first, their undisturbed 
values, and then to correct the results by substituting more accurate expressions. 

11. The function S, of undisturbed motion must satisfy rigorously two partial dif- 
ferential equations of the form (C.), namely, 

aS1 + FI (1' * 

a S 
5 n . * . 

n) = u U 
( *1 '7- n)i S1 __ 

t + F1 (ee,. e, e. . . e,n = U1 (e, ... e - 3 w J 
and therefore, by (D.), the disturbing function S2 must satisfy rigorously the following 
other condition: 

d=U2 ( n) F3 2a 
a 

* i, Is n) + Fl S2 
a 

. . ), (Q.) 

and may, on account of the homogeneity and dimension of F, be approximately ex- 

pressed as follows: 

SU2 {, U2 (1)- 3n) -F2** , 
a 

Si, 
)} * * *t- (R.) 

or thus, by (I.), 

tS2 ==/ {UU2 (, . 73) - F2 (?i, * - zgSn 01 * * 7 ) )} d, * * * * (S.) 

that is, by (42.), 

S=2 - H2 dt. .. .............. (T.) 

In this expression, H2 is given immediately as a function of the varying quantities 

yi 1i, but it may be considered in the same order of approxinmation as a known func- 

tion of their initial values ei p, and of the time t, obtained by substituting for y.i . 

their undisturbed values (44.) (45.) as functions of those quantities; its variation 
may therefore be expressed in either of the two following ways: 

6bII2,=2( 8 8+_8v8), . . . .... (48.) 

or 

-+- H )...H2 e t . (49.) 

Adopting the latter view, and effecting the integration (T.) with respect to the 

time, by treating the elements e. p o as constant, we are aftewards to substitute for 

the quantities pi their undisturbed expressions (39.) or (I.), and then we find for the 

variation of the disturbing function S2 the expression 

S,=2 - -H2 t + (- e 2 d t + .S t 8 H2 d, . (50.) ( 0-,,P(.o MDccxxxv ---Pt-~-a 7dqa~g'o-2d 5. 
MDCCCXXXV. P 
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which enables us to transform the perturbational terms (M.) (0.) into the following 
approximate forms: 

ap~ Vo =dt $- ^ * * * -- * (U.) 
and 

2 SI ft a H~ 
Aa = - e. +eio 

- dt, . ..... .... . (V.) 

containing only functions and quantities which may be regarded as given, by the 
theory of undisturbed motion. 

12. In the same order of approximation, if the variation of the expression (44.) for 
an undisturbed coordinate v. be thus denoted, 

.t a e q . ( 
- 'e Z, ......... (51. 

the perturbation of that coordinate may be expressed as follows: 

= i p; . . . . . . . . . . . . ( .) p 
that is, by (U.), 

-- 2 
= 

-- 
_ 

:?18_ d t -- 2 - d t- - i e dt '4- \ ;f2 dia, ij o - e n 

?1 

- 
V 8 ^ 

- 
T 

g ^ 1e ^e j J S p , ? 
? ( 5?. ) 

a rS1 ai ps ai _ 
2 SI H da 

+ ( eE+ 4p8 ,e,88 +a e * 
8p,; PJIes o s2 dt. 

Besides, the identical equation (47.) gives 
Z = Xi 8a aS2 a Si p S, n8 82 SI 

8 1pk 8 pl e8 l + aP2 88 ..e.' (53.) 

the expression (52.) may therefore be thus abridged, 
a ni t 6 el d ta * a8 _ t a H, dt 1 . LAZ i - d t -... - 8 2 dt t 
arl170p,J' -4- fsao eI s Ie3 I 

a ni6t a +ni 0( . . ) a pi p se,J,3 'P'Se n 

and shows that instead of the rigorous perturbational terms (M.) we may approxi- 
mately employ the following, 

i ........t 8 H.) -S -p _t, .......... (Y.) 

in order to calculate the disturbed configuration at any time t by the rules of undis- 
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turbed motion, provided that besides thus altering the initial velocities and directions 
we alter also the initial configuration, by the formula 

A=d ....... (Z.) 

It would not be difficult to calculate, in like manner, approximate expressions for the 
disturbed directions and velocities at any time t; but it is better to resume, in an- 
other way, the rigorous problem of perturbation. 

Other Rigorous Theory of Perturbation, founded on the properties of the disturbing 
part of the constant of living force, and giving formulac for the Variation of Ele- 
ments more analogous to those already known. 

13. Suppose that the thleory of undisturbed motion has given the 6n constants 
e. pi or any combinations of these, Z, X2 ... nZ. as functions of the 6 n variables 

zi w, and of the time t, which may be thus denoted: 

Zi= Xi (t, 1, ,'' s ,,' , 25, * * *sn5) ....... (4.) 

and which give reciprocally expressions for the variables . wri in terms of these ele- 

inents and of the time, analogous to (44.) and (45.), and capable of being denoted 

similarly, 
~i = ;^ (tn, Z, Z2 * *X,n)-. % , ~ ,ki (t, X1, -2, * n? Z la.); * (55.) 

then, the total differential coefficient of every such element or function zi, taken with 

respect to the time, (both as it enters explicitly and implicitly into the expressions 
(54.),) must vanish in the undisturbed motion; so that, by the differential equations 
of such motion (H.), the following general relation must be rigorously and identically 
true: 

~gi \(~a s S1 
r s ; " *< H1 

' 

- 

xt + : X ~ - _ H ........ (56.) 

In passing to disturbed motion, if we retain the equation (54.) as a definition of the 

quantity zi, that quantity will no longer be constant, but it will continue to satisfy 
the inverse relations (55.), and may be called, by analogy, a varying element of the 

motion; and its total differential coefficient, taken with respect to the time, may, by 
the identical equation (56.), and by the differential equations of disturbed motion 

(G.), be rigorously expressed as follows: 
d xi. (Si Ha Hi 8H2Al) d . I(Al.) dt \ u 8 ; / . . . . . . . . . * 

14. This result (Al.) contains the whole theory of the gradual variation of the ele- 
ments of disturbed motion of a system; but it may receive an advantageous trans- 
formation, by the substitution of the expressions (55.) for the variables i z. as func- 

tions of the time and of the elements; since it will thus conduct to a system of 6 n 
P 2 
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rigorous and ordinary differential equations of the first order between those varying 
elements and the time. Expressing, therefore, the quantity H2 as a function of these 
latter variables, its variation HI12 takes this new form, 

H2= . + t t, . ........ (57.) 

and gives, by comparison with the form (48.), and by (54.), 

i H_ N b H2 ax _ a HaH2 a m (58.) 
r r r r 

and thus the general equation (A1.) is transformed to the following, 
d x a H, a H, a H 
d77 t ai, x + ai, 

+ + - ai, 6 n a (B ) 

in which 

"i,S =_ E V __ _ -- ,s _ _s . . 9F S ,.* (Cl.) 

so that it only remains to eliminate the variables z r from the expressions of these 
latter coefficients. Now it is remarkable that this elimination removes the symbol t 

also, and leaves the coefficients ai,s expressed as functions of the elements z alone, not 

explicitly involving the time. This general theorem of dynamics, which is, perhaps, 
a little more extensive than the analogous results discovered by LAGRANGE and by 
POISSON, since it does not limit the disturbing terms in the differential equations of mo- 
tion to depend on the configuration only, may be investigated in the following way. 

15. The sign of summation Z in (C1.), like the same sign in those other analogous 
equations in which it has already occurred without an index in this Essay, refers not 
to the expressed indices, suchl as here i, s, in the quantity to be summned, but to an 
index which is not expressed, and which may be here called r; so that if we intro- 
duce for greater clearness this variable index and its limits, the expression (C'.) be- 
coines 

a3n . . . . . . . (59. ai, =s 6ulr^ --^2 
*****I - 

r a <r r a r a .r 

and its total differential coefficient, taken with respect to the time, may be separated 
into the two following parts, 

d - \3n /( r 3 Xi d x s xs d ax 1 dt ' ~ - 
) \ i 

s 

ai.__8 
a _ 

= dt~ i,s (r)l trd 8r r >r r > (60.) 

n a f8X, d axi axi d ax 
+ aw dt,^H a/ dt ' 

?(r)1 7, r d nr J 
which we shall proceed to calculate separately, and then to add theln together. By 
the definition (54.), and the differential equations of disturbed motion (G.), 

d Xi. x 3ni 
, /; H H -I\__ a/2)c /. nI _ H( 

dt a tr (u) I n 8aw a w atWu u 8 (61.) 
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in which, by the identical equation (56.), 
8sgi - - 

I____ - __ ~ 3n (xi a HI 

we have therefore 

d ax. sn 
.d _(_ 3 dt 86 (~)1 

8 xi 8 Hi' 
U O,, ) ; 

(63.) 
/ Xi 8 H2 

%% r u 

d a s and d s Inay be found from this, by merely changing i to s: so that 
r 

s(n8 Xi d x 

(r)1 8 d t ?r 

3 n, 3n 

(r, u) 1, 1 

x. 8ax 

+( r a 
and similarly, 

Sn / 

(r) 1 a 

Sn,Sn S 

(r, u) 1, I 

d sxi 

rdt 8 r 

'x s)d x. 

r dt v *r r 

a H2 SH 
'u 

- r u rW 

(64.) a nr 

(x 8 x. s i 

1S xlt 

S . S \ I s 

a' 1r 
6 

1u r u 

i2-a>H t r . 

a x. a2 x 
_ _ 

axs ax ) ar u r 

dr s 

OKx 0- K \ 
_ _f _____ 

S It 
6 

r 2wz J'i 

a H2 
M, 6'U 

_8 8xs _ :s 8gi 8aH, [(s 
8 

_ gi H:) 
8SH 

* 
r ? u ?6 8r 8 u 8 / u 6w 8^. WI. 8 ̂  r 8 sr 8a 8 r 8 J 

Adding, therefore, the two last expressions, and making the reductions 
sent themselves, we find, by (60.), 

d _ 3n (A(U) H 
d-- ai, (=)1 

A s- U ^^~~~~u i's^ \ /, la 

(D'.) + 
() 8 H2 

i,'s ' 8 
w U 

in which 

i, s (')1 T (8 T 8~ iT 

(u) sn ax 8, X. 

i, s (r) 1 'Sr u 8 r 

a x. 62 y 

s S 

r u r 

ax. S ^ Sx 6-x 8-" x. 

S S b___ 
'wr t Zir 'r u r 

a 1r a (u 8r a7r a4 awr ; 

d 
and since this general form (D'.) for 3-/ ai,s contains no term independent of the dis- 

turbing quantities 
a 

, ~ 
H~ it is easy to infer from it the important consequence 

already mentioned, namely, that the coefficients ai ,, in the differentials (B'.) of the 

elements, may be expressed as functions of those elements alone, not explicitly in- 

volving the time. 
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. (62.) 

x ? 2 x. 
S z 

(_f___L_ 
- 

a Xs V"xi xi 82XsH2 .( . _ _ 
r sr ,i 

r8^8^ ^ ST^I^)^/ w 
(65.) 

hich pe- 
which pre- 

I 

I 
(66.) 

8A i 8 H2 8 xi al H, a x' 2 7H 
Sl 

1 
8 1 M 

1 
u r' 6 rl? w 5r 

n 
u 6 au 8?;r 

I 

o x 
s _ 

an 8~rr 

/8 X. ~ x 
.r ____-, 

\^ - s 8 a r 6w an 
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It is evident also, that these coefficients ai,, have the property 

as,,= - - e , S.......... . (67.) 
and 

a = 0; ............. (68.) 

d i the term proportional to --X disappears therefore from the expression (B1.) for -,; 

and the term 
a a H2 . n H dxi 
a xi * x, a x dt 

destroys the term 

aH, H2. a H2 d xs 
Sx, '' i n Xs dt t 

when these terms are added together; we have, therefore, 

r-o ........... (E.) 
or 

dH2_ H2. (F1)i H dt t (F'.) 

that is, in taking the first total differential coefficient of the disturbing expression H2 
with respect to the time, the elements may be treated as constant. 

Sirnpltfication of the differential equations which determine these gradually varying 
elements, in any problem of Perturbation; and Integration of the simpljfied equations 

by means of certain Functions of Elements. 

16. The mrost natural choice of these elements is that which makes them corre- 

spond, in undisturbed motion, to the initial quantities ei pi. These quantities, by the 
differential equations (IH.), may be expressed in undisturbed motion as follows, 

ei = vi --Jo a-i dt, Pi i +dt. . . . . .. (69.) e*="-./^l<"* ?=''*+/ti^*d-"- 
***** (69.) 

and if we suppose them found, by elimination, under the forms 

ei = ,i + - I (t, v1I, 2,- . . s n; z1, 2, . ? n), 1 
(70.) 

Pi = Vi + "Yi (t, l 1, 2 * n *12" 1' t2 12 ... 3 n)7 i 

it is easy to see that the following equations must be rigorously and identically true, 
for all values of ;i ri 

0 =- ( 
(0), l, 2, .. ? 7.n a. *1, *? ? ? Z3n), 

(71.) 
O = ir (o, 41i, 2, . . * Sn 1, 2, * * . Sn) . 

When, therefore, in passing to disturbed motion, we establish the equations of defi- 
nition, 
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xi == + 'Di (t, ,~, , ... , , 2 p, W 2, ... . 

xi = Zi + 'i (t, 1, 7 * -* 273n, * * 8.. n) 

introducing 6 n varying elements xi x, of which the set xi would have been represented 
in our recent notation as follows: 

Xi=. n +i; ... .. ..... ..... (73.) 
a X , x. a A. 0 

we see that all the partial differential coefficients of the forms tin x, -, , vanish 

when t = 0, except the following: 

flci...... ...-;.. .(74.) = = _ 2, _ 1.. . . . . . 

and, therefore, that when t is made 0, in the coefficients ai, (59.), all those coeffi- 
cients vanish, except the following: 

ar,snfr=l, asn+r=-- 1. . ....... . . I (75.) 

But it has been proved that these coefficients as , when expressed as functions of 
the elements, do not contain the time explicitly; and the supposition t = 0 introduces 
no relation between those 6 n elements z Xi, which still remain independent: the co- 

efficients a,,, therefore, could not acquire the values 1, 0, -1, by the supposition 
t = 0, unless they had those values constantly, and independently of that supposition. 
The differential equations of the forms (B'.), may therefore be expressed, for the pre- 
sent system of varying elements, in the following simpler way: 

d,i _ H di_ aH _1 

d7t 8- . ; d-t- X ; ........... 
e D( ) 

and an easy verification of these expressions is offered by the formula (E1.), which 
takes now this form, 

,8 H, dx 6 H, d X 
~S Sh ... ...? ..... .(H .) 

17. The initial values of the varying elements xi Xi are evidently ej pi, by the defi- 
nitions (72.), and by the identical equations (71.); the problem of integrating rigo- 
rously the equations of disturbed motion (G.), between the variables 7i m and the 

time, or of determining these variables as functions of the time and of their own 
initial values ei pi, is therefore rigorously transformed into the problem of integrating 
the equations (G1.), or of determining the 6 n elements xi ?x as functions of the time 
and of the same initial values. The chief advantage of this transformation is, that if 
the perturbations be small, thle new variables (namely, the elements,) alter but little: 
and that, since the new differential equations are of the same form as the old, they 
may be integrated by a similar method. Considering, therefore, the definite integral 

E =Jt ( * _ 2 . .......... (76.) 
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as a function of the time and of the 6n quantities xi, 2, ... r , el, e2, ... 3 ,,,, and 

observing that its variation, taken with respect to the latter quantities, may be shown 

by a process sinlilar to that of the fourth number of this Essay to be 

E = _. ( . -p p e), . .. . . . (I1.) 

we find that the rigorous integrals of the differential equations (G1.) may be ex- 

pressed in the following manner: 
a E 6 E 

i -= sx Pi - ... .(K'.) 

in which there enters only one unknown function of elements E, to the search and 

study of which single function the problem of perturbation is reduced by this new 
method. 

We might also have put 

C= (-f Q . Z ?2+ H12) dt, . ........ .(77.) 

and have considered this definite integral C as a function of the time and of the 6 n 

quantities .j pi; and then we should have found the following other forms for the in- 

tegrals of the differential equations of varying elements, 
a c c 

Zi= +- + e -- .....(Li.) 
z ^i 

And each of these functions of elements, C and E, must satisfy a certain partial differ- 
ential equation, analogous to the first equation of each pair mentioned in the sixth 
number of this Essay, and deduced on similar principles. 

18. Thus, it is evident, by the form of the function E, and by the equations (K1.), 
(G'.), and (76.), that the partial differential coefficient of this function, taken with 
respect to the time, is 

aE dE aE dx 
t - dt ' t dt 2; . . . (M .) 

and therefore that if we separate this function E into any two parts 
E1 + E E, ...... ......... .(N'.) 

and if, for greater clearness, we put the expression H2 under the form 

H2= H2 (t, Zl, 2, ) 3 n * XI x 2 ...Sn), . (01.) 

we shall have rigorously the partial differential equation 
aE, ~_~t aE~ E E1 aEE E E aE 0 s1 + s+ + 

2 - . 

whlich gives, approximately, by (G'.) and (K1.), when the part E2 is small, and when 
we neglect the squares and products of its partial differential coefficients, 

0 =" dE* I1, E+ + E(t). .. .... ( .) 
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Hence, in the same order of approximation, if the part E1, like the whole function E, 
be chosen so as to vanish with the time, we shall have 

E2 -= _ t{ &E- + -I 2 t,zl, ...zs ', l . * , } (R'.) 

and thus a first approximate expression E1 can be successively and indefinitely cor- 
rected. 

Again, by (L1.) and (G1.), and by the definition (77.), 
aC dC 8C dh 
at 'd- t 

- t 8A dt 2; ...... .... .) 

the function C rmust therefore satisfy rigorously the partial differential equation, 

2C _ 2( C aC 4 

8 
-- 51 . ? 5 n *l . . .n ......t 

and if we put 
C = C + C, . .. ........ 

and suppose that the part C2 is small, then the rigorous equation 

C1 afC 
2 C1 CH C1 C + 

at 2- - 
tt H t, + -tA...S 

-* + BA- 1... 3n 
3 n 3 n 

becomes approximately, by (G1.) and (L1.), 
d C2 _ Ci _1 C C1 a, ci 

dt - t 2 ,. " A" 3 
- 

A' n 

and gives by integration, 

2 - { 
- 

at- + -H2 (t , , * * * % h 
' * * 3n) } d t . 

(T'.) 

. . . . (ul.) 

. . . . (V .) 

. .* (WVI.) 

(XI.) 

the parts C1 and C2 being supposed to vanish separately when t -= 0, like the whole 
function of elements C. 

And to obtain such a first approximation, E1 or C,, to either of these two functions 
of elements E, C, we may change, in the definitions (76.) (77.), the varying elements 
x, X, to their initial values e, p, and then eliminate one set of these initial values by 

the corresponding set of the following approximate equations, deduced from the for- 
mulae (G1.): 

. . . . 0 (y'.) 

and 

(Zi.) -iA- 2Pdt. . . fz 
It is easy also to see that these two functions of elements C and E are connected 

with each other, and with the disturbing function S2, so that the form of any one 

may be deduced from that of any other, when the function S1 of undisturbed motion 
is known. 
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Analogous formulce for the motion of a Single Point. 

19. Our general method in dynamics, though intended chiefly for the study of 

attracting and repelling systems, is not confined to such, but may be used in all 

questions to which the law of living forces applies. And all the analysis of this 

Essay, but especially the theory of perturbations, may usefully be illustrated by the 
following analogous reasonings aind results respecting the motion of a single point. 

Imagine then such a point, having for its three rectangular coordinates x y z, and 

moving in an orbit determined by three ordinary differential equations of the second 
order of forms analogous to the equations (2.), namely, 

,,_au ,,_ JU a U au x _ Y y y - ; *= .* (78.) 
U being any given function of the coordinates not expressly involving the time: and 
let us establish the following definition, analogous to (4.), 

T= (2 + y2 + 2), . . . . . . ... (79.) 

r' y' z' being the first, and x" y" z" being the second differential coefficients of the 

coordinates, considered as functions of the time t. If we express, for greater gene- 
rality or facility, the rectangular coordinates x y z as functions of three other marks of 

position '1 '22 '23, T will become a homogeneous function of the second dimension of 
their first differential coefficients '1l 4'22 '3 taken with respect to the timne and if we 

put, for abridgement, 
aT AT sT 

1~ = 
7 , 2 = 

~2, ~ =3 , . . e * e (80.) 

T may be considered also as a function of the form 

T = F (li, 2' "r3, v, ' 2, )3), . . . . ...... . (81.) 

which will be homogeneous of the second dimension with respect to r ~2 3. We 

may also put, for abridgement, 
F (1, 2, 3a 12, '22, '3) - U (n '2, 43) = H; I 

* . . . . . . (82.) 

and then, instead of the three differential equations of the second order (78.), we may 
employ the six following of the first order, analogous to the equations (A.), and ob- 
tained by a similar reasoning, 

d_rl_ H dHv_ 6 H d43_+ H I 
dt s dt dt dt - - 

dl __ H d _s H d z __ H I 
dt -~ ,' dt ~ 

- 2) dt -- 3 J 

20. The rigorous integrals of these six differential equations may be expressed 
under the following forms, analogous to (B.), 

as as as S _ 8S 6S - 1 

= I ~2 =; . . . 
,, (84.) 

1=8V 2 8S3 ~S S l 

as as as 
P1= -Se' P2=- be2 P3 - Je J 
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in which e, e2 e3 PI P2 p3 are the initial values, or values at the time 0, of 41 a2 '3 

mw1 2 3; and S is the definite integral 

S =,,q( 8H 
_s=j( +1 + t - 3-- )dt, ........ (85. 

considered as a function of . 2 13 e1 e e3 and t. The quantity H does not change 
in the course of the motion, and the function S must satisfy the following pair of 

partial differential equations of the first order, analogous to the pair (C.), 

8S (8S S S (86.) 
t--+F ,;, ~'~ , a--, 1 

' B3 - -' i =U (J1, n2, 43); 
}.3 

41) V-2 (86.) 
8t - +F ( , 8 e, 8,, e- e2, e3 U (el, e2, e3). 

This iimportant function S, which may be called the principalfunction of the motion, 
may hence be rigorously expressed under the following form, obtained by reasonings 
analogous to those of the seventh number of this Essay: 

s -S +J + U (40 ;2) 43)- dtF 

- a,-' F8S _ SI S 8S BS 8S1 \1 | 
n 

+/o N1 8(1 X )e i^s 6- n3d J 

S1 being any arbitrary function of the same quantities '1 '12 1s3 el e2 e3 t, so chosen as 
to vanish with the time. And if this arbitrary function S1 be chosen so as to be a 
first approximate value of the principal function S, we mlay neglect, in a second ap- 
proximation, the second definite integral in (87.). 

21. A first approximation of this kind can be obtained, whenever, by separating 
the expression H, (82.), into a predominant and a smaller part, H1 and H2, and by 
neglecting the part H,2 we have changed the differential equations (83.) to others, 
namely, 

d -, a Hi d2 = a H1I dq3 a I1 1 
dt = 8?; 7 dt = 8j2) dt - 8w3 I 

dt - 81h' dt ~ 8 dt 8 J 

and have succeeded in integrating rigorously these simplified equations, belonging to 
a simpler motion, which may be called the undisturbed motion of the point. For the 

principal function of such undisturbed motion, namely, the definite integral 

S1 =Ij (1 - l +.2 2 - + 3 -3 8 -a- H1) d t. . (89.) 

considered as a function of 1 r2 e e3 el t, will then be an approximate value for the 

original function of disturbed motion S, which original function corresponds to the 
more complex differential equations, 

Q2 
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d _(, a HI, a IlH d a H, auH2d3 a_H, a Ho 

d_l_ 8aH 8 H d 8 Hi aH2 d 3 8 Hi 8 Hg 
dt - - ~- -- +' dt -- +- ~2 - a 2) dt - 83 - 83 

' 

The function S1 of undisturbed motion must satisfy a pair of partial differential 
equations of the first order, analogous to the pair (86.); and the integrals of undis- 
turbed motion may be represented thus, 

_ S' S 1 81 S1 q 
OT! -" 811' W2 - 3^ 3 8 

S= a,8 *** ' ( =) 
as2, aS Is,) a ,j(91.) 

Pi = e = 8 e, P3 = - 
e3 

: 

while the integrals of disturbed motion may be expressed with equal rigour under the 

following analogous forms, 
aS, Sa 2 s, aSl _ S1 ? S, _ 

+ a1 ? + =3 = 63 

aS1 aS2 as, as s2 as, aS2 
P1 -- ~' - e p2 se - se 3 e3 ~ae3 J 

if 82 denote the rigorous correction of S1, or the disturbing part of the whole principal 
function S. And by the foregoing general theory of approximation, this disturbing 
part or function S2 may be approximately represented by the definite integral (T.), 

S2=-- H2dt; ................ (93.) 

in calculating which definite integral the equations (91.) may be employed. 
22. If the integrals of undisturbed motion (91.) have given 

41 = '1P (t, el, e2, e3, P, P2, P3), 

v2 == 2 (t, el, e2, e3) P, P3) ............ (94.) 

/3 = P3 (t, el, e2, e3, Pi, P2 P3), 
and 

Vtl = 41 (t, e1, e2, e3 P'1 P2' P3)' 

W2 = 2 (t, el, e2, ^ Pe P3, P2 ...... .... . (95.) 
=2 - =3 (t, el, e2, 3, P1, P2, P3), 

= (t, e3 e, e2e3p + <P +, 3, pe2,P + pe, ), / e e,) ea 

2 = P2 (t, el, e2,e, e2, pi + -' P2 + p + (96.) 

73 -= 3 (, e,, e2 , ,p + ae' P2 + a Se' P3 + e]' J =3 (ee.,p ? ' P2?a e2 P3+ej j 
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and 
a S + ], 

a 
/a,, 

SS , S , S ' 1 
+ = 8 f + 1 (ti,(el, e3, e3, + P, + , e / Pe + e), 

WU2 = nS + _82 (5 P2 + P e 3 + 3 > ' (97.) 

l S, ayt, e , l, ? SS2 s3 + (t , e,, 
e 

e3, + I + P2 + 3 + , )' J 

S2 being here the rigorous disturbing function. And the perturbations of position, at 
any time t, may be approximately expressed by the following formula, 

aIIJ ot aH2 dt + 'jt H 
d t+ JJ t a d H 

- ae1 a--P1o 81 ed do t-e 
' 

2 2 dt3 J 
together with two similar formulae for the perturbations of the two other coordinates, 
or marks of position 42, 3. In these formule, the coordinates and H2 are supposed 
to be expressed, by the theory of undisturbed motion, as functions of the time t, and 
of the constants e1 e2 e3 pi P2 P3 

23. Again, if the integrals of undisturbed motion have given, by elimination, ex- 

pressions for these constants, of the forms 

e - fl1 + (l (t, , 41 
' 

24, 313 
' 

2' 2' '3), 

e2= 42 + ?2 (t,1 4 42, 43, 1, 2, 23), . . . . (99). 

e - 43 + (3 (t, ql 2, 273, '1, 2', '23), J 
and 

pi = w1 + "y1 (t, 1), 42,n 3,) , W2,5 3), 

P2 = -2 + ''2 (t, t1, 42, 43, '3, 2, '3), . ... .(100.) 

P3 -= 3 + '3 (t, 41, 42, 43), Wl, 2 3) J 

and if, for disturbed motion, we establish the definitions 

Z1 = -1 + (1) (t, 412, 2, 43, l, 2, 3), 1 

Z2 = "2 + ('2 (t, '1, 2, 35, 13 , 
212, 25 3) . . .. (101.) 

3 3 + (3 (t, ,1) ?2' 43, l, v'2, 3), J 
and 

xi = i + T1 (t. 1.5 . 2 , 43. , 2' ' 3) 1 

= 2 = 2 '+ 2 (t, 1, 42, 43, 1), 2, '3), > .... (102.) 

.3 = '3 + -3 (t, 1, 4 2, 3, i1', 2, '3) J 
we shall have, for such disturbed motion, the following rigorous equations, of the 
forms (94.) and (95.), 

11 = P1 (t, Z1, "2, Z3 ' 2, 1 X2 X3), 1 

72 = 2 (t, Z1, Z2, Z3, A1, 2 3), > . (103.) 

]73 = 3 (t1, Z1 2'3,1 , 2' l 3), J 
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and 
z1 = 1 (t, 1), -29 P3, 19, 29, ,3), 1 

a2 = ~2 ( t,l, 2, 3)' 1' 2, k 3), > . ... .. (104.) 

23 - +3 (t, X1, X2, X3) 4l 12 23) j 

and may call the quantities ' Z2 X3 1 X2 3 the 6 varyinng el ts of the motion. To 
determine these six varying elements, we may employ the six following rigorous equa- 
tions in ordinary differentials of the first order, in which H2 is supposed to have been 

expressed by (103.) and (104.) as a function of the elements and of the time: 
dx1 ~ H2 dY 9a Ha dX a H2 1 
dt- a,1 ' dt %' dt (105.) 

dXl 8H dh _ 8H Ha. (105a')H 
dt -- l dt - ~ 

8x2' dt - s 

and the rigorous integrals of these 6 equations may be expressed in the following 
manner, 

8 E _ 8E E 1 

(106.) aE aE aE > 
e e 

* E *1 

Pi =P s e 2 = 8 e,- P3 e 
- 

J 

the constants el e e3 p2, p3 iretaining their recent meanings, and being therefore the 

initial values of the elements x 1s X h2 ?-3 h; while the function E, which may be 

called thefunction of elements, because its form determines the laws of their variations 
is the definite integral 

E=ft'(xj~ A2+x2~ +a H2 )H t . . dt. . . ,(107.) Jo VAL I+ G+ A3 S-I{a * * * * ( 107) 

considered as depending on x, xa e3 e2 e3 and t. The integrals of the equations (105.) 

tay also be expressed in this other way, 

t1- 
T+ 

= " e2 = - 
+ 

83 = + 

XsC 8 (: 8 (: t * * * * X e (I a08.) e e--- _C _C el - - 
e--2 

1 e,3 = 

C being the definite integral 

H a H,2 a, H UH. aH 
2 d t, =C - ( X + 'TX2 + : X-H12) d t,... . * (10.) 

regarded as a function of XA 2a 23 Pi P2 P33 and t: and it is easy to prove that each of 
these two functions of elements, C and E, must satisfy a partial differential equation 
of the irst order, which can be previously assigned, and which may assist in disco- 

veing the forms of these two functions, and especially in improving an approximate 
expression for either. All these results for the motion of a single point, are analogous 
to the results already deduced in this Essay, for an attracting or repelling system. 
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Mathematical Example, suggested by the motion of Projectiles. 
24. If the three marks of position 1l a2 13 of the moving point are the rectangular 

coordinates themselves, and if the function U has the form 

U= - g {P (12 + 22) + *2 2}, ...... .. (110.) 

g, p{, v, being constants; then the expression 
H =1 + (,+,2 _{ 22 + 2) + . g {3 ' -1 1 p{2 (12 + q2.2) v2 3 . (111.) 

is that which must be substituted in the general forms (83.), in order to form the 6 
differential equations of motion of the first order, namely, 

dt l dd = 312 d 
ade =dt1, d ri,r%t a d 3dl g 2Y * . * (112A) 

a ' r, = dR29 %, 
~ 
aI 

dt d--'- 7l, V t 
--g, d 

2 

These differential equations have for their rigorous integrals the six following, 

1l = el cos .I t + - sin p t, 

2 = e2cospt+t sintp, . .t . (113.) 

=eI3 cosv t -+ -P sin vt -- 
2 vers v t, 

and 
w : p, cos t t - tp eq sin p t, 1 

2: P2 COS th t - th e2sin/ p t, ( I2=p2Cos -pesinpg . ... (114.) 

3 =p3 cos t- -( e+ -) sin t; 

e e3 Pl P 2P3 being still the initial values of 1, ' 3 O1 2 73, 

Employing these rigorous integral equations to calculate the function S, that is, by 
(85.) and (110.) (111.), the definite integral 

(115.) (.......+.)d ............... (115.) 

we find 

(W12 + 22 + 32) {p2 +p 2 +2 + 2(e + e) + (e3+ g ) 4 Pi 2 + 
2 

e1 
6 

+ 1 {p2 + p22 - p (e12 + e22)} cos 2 pt t - (elpl + e2P2) sin 2 / t (116. 

d I{p32 - (ve3+ --) }cos2r t-}(ee32+ -g)p sin2vt, 
and 

u=- g 4{p l2+p22+p32 + (ei2 + 2)+ (3 + e)2 } 

+ t {Pi2 + p2 - (e12 + e22)} cos 2 P t - ~ (elpI + e2p2) sin 2 t (117.) 

i {p32-- (ve+ }cos2v,- i (e +-g) sin2yt; 

and therefore, 
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g" t = t+ {l2 + p22 - 2 2 (el2 + e22) } - - (el1+e22)vers2p 
(ll 18.) 

-+ {p32 4- (e 
2 

-} 
sin 

1 e3}, - ) vers 2 t. 

In order, however, to express this fuinction S, as supposed by our general method, in 
terrms of the final and initial coordinates and of the time, we must employ the analo- 

gous expressions for the constants p, P2 p33 deduced from the integrals (113.), namely, 
the following: tP. -A el cos t 

p g2 - (Y e, cos p t 
P1 sin I (9.) 

V3+ e3 + vCOS 
P3 - sint ' J 

and then we find 

s - 2(t -(-eJl) + - (-e2)+ V (2 ej e3) 1 
- +2 * sitan f t 2 * tanvt 1. 

-p ( el + 2 e2) tan 23 -v (3e3 + )) tan . 
This principal fnct`io S sti ( +)e+ 

This principalfunction S satisfies the following pair of partial differential equations 
of the first order, of the kind (86.), 

aS . 1 C/8SV" , /SY \"2 i /8S aS 8 / 2 y 
iT+ 

{ (84) +^ ) + 
(8(3) } =-&83-e (812 + e 2) _ ^ 2 

ts 
. 

(1 - el +s (-e ) 
Y 

}, - e3 (e I el+ 2/ 2+3 

and if its form had been previously found, by the help of this pair, or in any other 

way, the integrals of the equations of motion might (by our general method) have bee?n 

deducedfrom it, under the forms, 

r( 1 -= 1 - e cotan pt 
- ~ 

el tan 
t 

72 = 
S 
- (= 2- e2) cotan p t - e2 tan ?, > . (12a.) 

3- e = P (- e3) cotan vt - ( e3 + ) tan ~ 
a ~ 3 "4 - ( I 

j0P =--== p (, - el) cotan i t + jV i tan t,1 

P2 ==-e -= h(2( - e2) cotan t t + ;I12 tan--, > (123.) 

P3 =- _ 
= 

_ (e- e3) cotan vt + (P 3 + 
g 

) tan Vt I 
3 ( 

the last of these two sets of equations coinciding with the set (119.) o 13.) , and 

conducting, when combined with the fist set, (122.), to the other ftrmer set, or inte- 

grals, (114.). 
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25. Suppose now, to illustrate the theory of perturbation, that the constants (b, v 

are small, and that, after separating the expression (111.) for H into the two parts, 
H I - 

(_a,2 + 22 -2) . ...... (124.) 
and 

H2 = I {p2 (412 + 22) + y22} ..... (125.) 

we suppress at first the small part H2, and so form, by (88.), these other and simpler 
differential equations of a motion which we shall call undisturbed: 

dr d,d 3 _d3 1 

d ZaI >.. 
da.. - 3(126.) _ _ d^ _o dre __r 

dt =l ' dt - 
' dt 

These new equations have for their rigorous integrals, of the forms (94.) and (95.) 

71 = el p+ Pt, 2 = e2- + P2 t, 3 = e3 p3 t - g t2, . . . (127.) 
and 

Tl =pPI , = J, 3=P3 - gt; . . . . . . . . (128.) 

and the principalfunction SI of the same undisturbed motion is, by (89.), 

t 2 + 2+ 2 
S J=/o J ( 2 -g )dt 

otI (2P2 Pt-P_g -ge3-2gp3 t + g2t2dt . . . (129.) 

= 12 
+ 

22 
+ p 

e3 )- g3t2 + 
- 3 

g2 t3, 

or finally, by (127.), 

(1-e) + 
( 2) I (3e3) g t ( i3 + e3)- 4 g2 . (130.) 

This function satisfies, as it ought, the following pair of partial differential equa- 
tions, 

aSe, 1 f S1\2 i S1, a , s\2 S1 
6t + Inw 

' 
^ '- +2 t 

. . . . l(131.) 
8Si 1 / S1\S /SSA2+ 8S121 
at7+ {() + ( Se) + QSi) } g 3 

And if by the help of this pair, or in any other way, the form (130.) of this principal 
function S1 had been found, the integral equations (127.) and (128.) might have been 
deduced from it, by our general method, as follows: 

_ S,i -- el 

St . - .. . . (132.) 

if(3-V ^3 = - g t, 

121 
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and 
aS1 _ S e____ -- 

e1 
- t 

1 

= S - , . . . . (133.) 
a S, e q-- -.? ( a. 

P3 =- --- = t + gut; 
the latter of these two sets coinciding with (127.), and the former set conducting to 
(128.). 

26. Returning now from this simpler motion to the more complex motion first 
mentioned, and denoting by S2 the disturbing part or function which must be added 
to S, in order to make up the whole principal function S of that more complex mo- 
tion; we have, by applying our general method, the following rigorous expression 
for this disturbing function, 

S2 =-_J H2 d t + {(s, + (s\a } t, . (134.) 

in which we may, approximately, neglect the second definite integral, and calculate 
the first by the help of the equations of undisturbed motion. In this manner we find, 
approximately, by (125.) (127.), 

-H2 =- - (el -+3 P t,2 + (e2 + P2 t2 
}- g t2)2, (135.) 

and therefore, by integration, 

S2 = ---2 {p2 (e12 + e22) + v2 e32} t -- {O2 (el pl + e2 P2) + V2 e3 p3} t2 1 3i 

1 
> (136.) 

{p2 (p12 +P22) + y2 (p32 -ge3)} t3+ -- 82P3 t4- 420 
r2 

or, by (133.), 

82 I S . =- 6 (?12 + el rl + el2 -+ 22 + e2 2 + e22) ] 

Vt / 2 1 4 - {32e- 3 3 {2 + , (3 +t2 + e3) + 4 t4} 

the error being of the fourth order, with respect to the small quantities ,, v. And 

neglecting this small error, we can deduce, by our general method, approximate forms 
for the integrals of the equations of disturbed motion, from the corrected function 
S1 + S2, as follows: 

Sl + aS 2 t 
-el_ __t ( 1 el) 

8 SI, S 1 
+ 812 b 2 (t 2 2. (38 

aS,+ aS2 , -- -e3 g 3 ( +2e3 +- ; jI 
'3-3a n3 a 3 t 

122 
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and 
a SI6 S e, +^f 1 

Pl--- a e l el t '-- el +-4-~-V , 

6 S, ~S^._)2-e o /x~t ( 
1 

), pS, _8 ̂  8S-+-3 _7e+2-- , 
-e 

(139.) P2 a ae2 e2 2 2 

SP3 
S 

S- -3 
- e, 1g t 

v 
(e3 + 3 + - t2) 

or, in the same order of approximation, 

1 = el + Pi t -~ p2 t2 el + -3Pi t 

2= e2 + 2 t - pt2(e2 + 3 
P2t), > (140.) 

3= 3 - e 3 t - 
- 

g t2 - 2 t2 e3 + 3 t-t g 2 

and 

1 _= Pi - P2 t(el + , plt), 

U2=P2- f2t(e2 + P2 t), 
t>. (141.) 

3 p 3 -P-gt -vt (e3 + -p3t- Pg t2). 

Accordingly, if we develope the rigorous integrals of disturbed motion, (113.) and 

(114.), as far as the squares (inclusive) of the small quantities p{ and V, we are con- 
ducted to these approximate integrals; and if we develope the rigorous expression 
(120.) for the principal function of such motion, to the same degree of accuracy, we 
obtain the sum of the two expressions (130.) and (137.). 

27. To illustrate still further, in the present example, our general method of suc- 
cessive approximation, let S3 denote the small unknown correction of the approximate 
expression (137.), so that we shall now have, rigorously, for the present disturbed 
motion, 

S = S12 + S3 ............. (142.) 

S1 and S2 being here determined rigorously by (130.) and (137.). Then, substituting 
SI + S2 for Si in the general transformation (87.), we find, rigorously, in the present 
question, 

S3 . . t l { (8 Sf2 +( S2) + ((8 
2 d t 

j {(8S3)2+ (S3/2 )2+ a2} dt: 

and if we neglect only termns of the eighth and higher dimensions with respect to 
the small quantities v, Y, we may confine ourselves to the first of these two definite 
integrals, and may employ, in calculating it, the approximate expressions (140.) for 

R2 
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the coordinates of disturbed motion. In this manner we obtain the very approximate 
expression, 

4t418f t KS3-- t2 1 + el + ;72 + e2 dt 

-iJ-t2 n -3 -+ -e3 +- 
g t2) d t 

-= 360 - (4 12+ - 7 l el + 4 e2 + 42 +72e2+ 4 e2) 

(144,) 
V4 13 y4o 5 17 v4 

g t7' - 
60 (4 32 + 7 3 e3 + 4 e32) - 40 (+3 + e3) - 

40Ot0 

/x6t5 ( 
9- 

2 + '81 el + el12 + ,2 + 2 e2 + e2 

__ts + 2 31 
, ,2) gt7t( + 3) gf+t1 ; 

945 3 +- 16 3e3 '+ e3 J- 403'20 725760 

which is accordingly the sum of the terms of the fourth and sixth dimensions in the 
development of the rigorous expression (120.), and gives, by our general method, 
correspondingly approximate expressions for the integrals of disturbed motion, under 
the forms 

8 S S 8 S3 

WI= 8S + ,8 + 883 

aS, a S2 a S3 
P 2=' + ~ ' .............. (145.) 

S, 8 S2 _ Ss3 

and 
a Si a S a Se3 

PI= ae, 6el deel 

a. SiW S2 a . (I 46.) 

IS, aS2 S3 
P3 a--e -a _ ^3-~ 

^-3 ^3 ^^3 

28. To illustrate by the same example the theory of gradually varying elements, 
let us establish the following definitions, for the present disturbed motion, 

a1 
= - 

'1 
t, 2 - 2 ~ n t: 3 = 1 

- 
'03t- v 

- t f t 2, 

~1 -- '1, ?'2 - Y2, 3 - - % + g t, 

and let us call these six quantities z, X2 Z3 xi XA2 3 the varyzinag elements of that motion, 
by analogy to the six constant quantities el e2 e3 Pl P2 p3, which may, for the un- 
disturbed motion, be represented in a similar way, namely, by (127.) and (128.), 
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e, = 21 -- w t , e2 =2 -- 2 t, e3 = 3 - ( 14.) 

P1-1) P2=g2, p3=(3+gIt J Pi = l, 1 P2 - w, P 3 -= '3 + g t. J 

We shall then have rigorously, for the six disturbed variables v1 r2 v3 l w32 , ex- 
pressions of the same forms as in the integrals (127.) and (128.) of undisturbed 
motion, but with variable instead of constant elements, namely, the following: 

71 += 1 + i2 t, = 3 = x3 + X3 t - g t2, 

WlJ == hl~ W2 ==" 25 Z3 -= 3-- g t; 

and the rigorous determination of the six varying elements z1 X2 X3 XI X3, as func- 
tions of the time and of their own initial values el e2 e3 PI P2 p3, depends on the in- 

tegration of the 6 following equations, in ordinary differentials of the first order, of 
the forms (105.): 

d t = A = 2 t (x2 + t), 

dx2 
= 

-2 t (2 + t), ... . ... . (150.) 

dt 8 hg2 ' 

and 
dx j H_ _ d 

X= H2 2 (- + X It), 

_ =a - (x3 
+ ?2 t- 

2) 

dt = 
- = (2 2+ 

dh,i 
x:3 _ ~ H~ _ _ v3 q- X3 t - 

- 
g t 

dt- - a 2,g 

H2 being here the expression 

(1 H2 =2 g (Xi + !2 t)2}2 (3+ 
Xt 

t t .23 (152.) 

which is obtained fiom (125.) by substituting for the disturbed coordinates w1 42 83 

their values (149.), as functions of the varying elements and of the time. It is not 
difficult to integrate rigorously this system of equations (150.) and (151.); and we 
shall soon have occasion to state their complete and accurate integrals: but we shall 
continue for a while to treat these rigorous integrals as unknown, that we may take 
this opportunity to exemplify our general method of indefinite approximation, for all 
such dynamical questions, founded on the properties of the functions of elements C 
and E. Of these two functions either may be employed, and we shall use here the 
function C. 

29. This function, by (109.) and (152.), may rigorously be expressed as follows: 

125 
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C = o2 (X12 t2 - + X2 2 _ - 2) dt Q A2 
I 

(l rV 

+ -T , { A3 t2)2 }X d j 
and has therefore the following for a first approximate value, obtained by treating 
the elements z %2 Z3 1i X2 X3 as constant and equal to their initial values e1 e2 e3 PI Ps P3, 

C = 2 ( + e22) + - p2 (pl2 + p22) + ,232 

(154.) 
t4 ta 

--82gP3 + 4v2g2 J 

In like manner we have, as first approximations, of the kind expressed by the ge- 
neral formula (Z1), the following results deduced from the equations (151.), 

Xh 3- 2(e3t+1 p3 t2 g t3, , 

and therefore, as approximations of the same kind, 
1 A --pl e = ---- pi t - - -2t 

e2 
- 

2a f-2t - 

. . . . (155.) 

e . . ((156.) 

1 I t2 -1 p 
e3 - p3t + 6 g 2 - 32 t 

Substituting these values for the initial constants e1 e2 e, in the approximate value 

(154.) for the function of elements C, we obtain the following approximate expres- 
sion C1 for that function, of the form supposed by our theory: 

c,= _ { (XI1 l)2 + (A2 -P2)+' -- ..P:3). } 

-- 
_t ((1 P) Pl + ( 2 - P2) P2 + (3 -3) (3 - g t)} (1I 57.) 

+4- {2 (pl2 p2 2) + V2p32} J2 p + 
2 

2 g2. 

The rigorous function C must satisfy, in the present question, by the principles of the 
eighteenth number, the partial differential equation, 

aC t { c C a) 2 ( a c 2 

- 2 ax{ I' + F A2 + - i2 - t } - 
- + 3t -- 2 g t2) (158 .) + hi+ )2+ (^)2} ~(sC, 

and if it be put under the form (U'.), 
C = Cl + C2, 

C, being a first approximation, supposed to vanish with the time, then the correction 
C2 must satisfy rigorously the condition 

126 
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c2f - + ( 'l +XA1 t +2 A + X2 t) 
2 

2 ( A 
1gt2)2}dtl 

>(159.) 
-sJ1,t I/6C\2 ,C2d J 

-/2{{ AsI2) + 2 A2 + 2 AJ 

In passing to a second approximation we may neglect the second definite integral, 
and may calculate the first by the help of the approximate equations (155.); which 
give, in this manner, 

C2= --t(1- l)2+ (X2-p2)2+ (3-P3)2} dt 

+ 
~Jo {x (x -Pi) + A`2 (2 P2)} dt 

t + -t 3- gt) (X3-p3) t2d t 

{(x - pl)2 + (2 - p)2 + ( p3)2} . (160.) 

+ 24 {&P1 (h -Pi) P+ i2P2 (2 - P2) + 
Jp3 (- P3)} 

g4 2t5 
4 v g (X - P3) + 24 (4Pl2 + b4 p22 + 4P32) 

tG t7 
-40 ~ y4 g P3 + 45 v4 g2 . 

We might improve this second approximation in like manner, by calculating a new 
definite integral C3, with the help of the following more approximate forms for the 
relations between the varying elements A l2 X3 and the initial constants, deduced by 
our general method: 

e2~ = - -C ~ -- t 1 + 6 - 24 / 2 \1 + 12 +i .\ 6 P 

e2=- _ 7p_2+_ 2 2t 6 j+ 24 J e + 6 

_ -A3p3 t2 v.4I^4 s t p3 .> )(161.) 
e3---Sp38s3 =- 

~ 
tvf 6 2414 2 1 Q-12 + 60y 4 

+ 
9t ( + 

7 Yt2 4 
4 t 

, 

+ *6 6o * 40/ 7 

in which we can only depend on the terms as far as the second order, but which 
acquire a correctness of the fourth order when cleared of the small divisors, and give 
then 

ik =p -2t (ei+ plt) + 4 t3 (ei + 41 t), II --Pi1 -- 102 I+e -T Pi 6 Pi 

X2= P2- 2 t +t e2 t)- + t 4t3( e2 + P2t, . (162.) 

=p3- t (e3 + 3 t- 2) + 4t3(e3 +t p3 t- ). 
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But a little attention to the nature of this process shows that all the successive cor- 
rections to which it conducts can be only rational and integer and homogeneous 
functions, of the second dimension, of the quantities X1 AX3 Ph 1p p3 g, and that they 
may all be put under the following form, which is therefore the form of their sum, 
or of the whole sought function C; 

C = 2a (i - 
pl)2 + bP1 (X - i) + p2 c2 

+ pU (2 - p2)2 + CP2 ( -P2) + 'z22 C | . 

t > . g . . (163.) 
+ 2 a, (x - p^)2 + b (X3 - p3) + 2 c,p32 

+fg (h - P) + 2 hygp3 + 2 , J 
the coefficients a a, &c. being functions of the small quantities 4p, v, and also of the 

time, of which it remains to discover the forms. Denoting therefore their differen- 

tials, taken with respect to the time, as follows, 

da- = d t, da, a,dt, &c., . ........ ( 64.) 

and substituting the expression (163.) in the rigorous partial differential equation 

(158.), we are conducted to the six following equations in ordinary differentials of 
the first order: 

2 a' (2 a, + 2 t)2; b', -(2 a, + 2 t) (b +t); t c, - (b + )2; 

f' = (2 + 2 t) (f h' (b, + t) (f, - t i' = , 
( -2 t)2; (J 6.) 

along with the 6 following conditions, to determine the 6 arbitrary constants intro- 
duced by integration, 

1 

b-t t_ t3 t34 1 

o 
= --- ; bo = -- - 

;0 = -; Co = - a ; h- =-- h ;o 
= 

5 6' (1 66.) 

In this manner we find, without difficulty, observing that a, b4 c may be formed 
from a, by c, by changing v to p, 

ay -- -- Y2 t - cotan y , t = - v2 t - cotan p t, 
b = -t ++vtan (b, -t + , tan 1 1 

t I vt t l Pt 
c. = --B q- + "i tan -,2 v.+ tan , 

g = 12 _7 + - 
|otand,t7 * (167.) jfdy -- -??--~ t2 - cotan Y t, 

t tr t = - --- - cotan vt. 

The form of the function,C is therefore entirely known, and we have for thisunc- 
timon of elements the following rigorous expression, 



PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 129 

C = _ (( -X p-)2 + (2 - p2) (- ps) 
2 tan t 2vtan v t 

- 
{(h - pL)2 + (2 - 2)2 + (x3 - p3)2} 

- t {P1 (Xh - p) + P2 (h - P2) + p3 (x3- 3)} 
I 1(h 1 vi 

+- {pl (xl - Pi) + P2 ( - 
P2)} tan + v -3 (X3 - P3) tan - 

tE~~~~~ t(168.) 

(p2 + p2 2+r P32) + (Pl2 + P22) tan + P32 tan I 

- + cotan g ( - 3) + (- tan V) 

+ - -_ cotan -t)- 

whichi may be variously transformed, and gives by our general method the following 
systems of rigorous integrals of the differential equations of varying elements, (150.), 
(151.): 

el - - C _ - -Pi _ P1 lan t ) 1 ~ 
PI 

~ 
sinFt ta 2 

e2=-- sin- -7 tan , >. . (169.) 

C3 vsinvt _ _t - - 
(sin t V__ J 

and - ana 

1 - =-(x - Pi) t + cotant P (-t + tan ), 

sc -%-p1 t+ 
= - (=? - P2) (+ cotanpt) + 

a(-t+ + tan ) 

^ =: --G = _ (A3--p3) t- + cotan t ) +p3 (-t + tan ) 

+-g (- - - + cotanvt) J 
that is, 

1 - Pl cos pt - elp sin t, 1 

x2 = P2 cos 
p! t - e s sin t t. 71 

- =p3cosYvt- e3vsinvt+g(t- t- sin t) 

and 

zx =- e (cos p t + p~ t sin P t) + Pi - sin p t - t cos p t, 

X = e3 (cos pt + t sin vtp ) +P sin t - t cos 

3 = e (cos v t -+ t sin t) + sin v t - t os 
t ers - snv . \ -- g--sin t + . 

MDCCCXXXV. s 



PROFESSOR HAMILTON ON A GENERAL METHOD IN DYNAMICS. 

Accordingly, these rigorous expressions for the 6 varying elements, in the present 
dynamical question, agree with the results obtained by the ordinary methods of inte- 

gration from the 6 ordinary differential equations (150.) and (151.), and with those 
obtained by elimination from the equations (113.) (114.) (147.). 

Remarks on the foregoing Example. 
30. The example which has occupied us in the last six numbers is not aitogether 

ideal, but is realised to some extent by the motion of a projectile in a void. For if 
we consider the earth as a sphere, of radius R, and suppose the accelerating force of 

gravity to vary inversely as the square of the distance r from its centre, and to be 
1 R2 = g at the surface, this force will be represented generally by - - and to adapt 

the differential equations (78.) to the motion of a projectile in a void, it will be suffi- 
cient to make 

U=g R - ) . .... ..... . (173.) 

If we place the origin of rectangular coordinates at the earth's surface, and sup- 
pose the semiaxis of + z to be directed vertically upwards, we shall have 

r= J(R + z)2 + y2, . ...... ... (174.) 
and 

YT-2 g +ss ^+.2) 
U= ---g g (xi+. .. . a e . * (175.) 

neglecting only those very small terms which have the square of the earth's radius 
for a divisor: neglecting therefore such terms, the force-function U in this question 
is of that form (110.) on which all the reasonings of the example have been founded; 

the small constants p, v, being the real and imaginary quantities /, / -- 

respectively. We may therefore apply the results of the recent numbers to the 
motions of projectiles in a void, by substituting these values for the constants, and 

altering, where necessary, trigonometrical to exponential functions. But besides the 
theoretical facility and the little practical importance of researches respecting such 

projectiles, the results would only be accurate as far as the first negative power (in- 

clusive) of the earth's radius, because the expression (110.) for the force-function U 
is only accurate so far; and therefore the rigorous and approximate investigations of 
the six preceding numbers, founded on that expression, are offered only as mathe- 
matical illustrations of a general method, extending to all problems of dynamics, at 
least to all those to which the law of living forces applies. 

Attracting Systems resumed: Differential Equations of internal or Relative Motion; 
Integration by the Principal Function. 

31. Returning now from this digression on the motion of a single point, to the 
more important study of an attracting or repelling system, let us resume the differen- 
tial equations (A.), which may be thus summed up: 
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d t 2 - (dras - -dS); ....). (A2.) 
and in order to separate the absolute motion of the whole system in space from 
the motions of its points among themselves, let us choose the following marks of 
position: 

X.m x 2.my .mznz 
/-- m n .Y- .'m z m~' .* .. . (176.) 

and 
= Zi xi-n xi = Yi y, =i -y zi = -z ; . . (177.) 

that is, the 3 rectangular coordinates of the centre of gravity of the system, referred 
to an origin fixed in space, and the 3 n-3 rectangular coordinates of the n- 1 masses 
mI m2 ... m _ 1, referred to the nth mass mn, as an internal and moveable origin, but 
to axes parallel to the former. We then find, as in the former Essay, 
T (x', 2 + y' /2 + z',,2) >S m 

+ 1 . M (e12 + rt2 + 2) {( . m )2 + (,. )+ (. m )2, . 
7 

the sign of summation 2, referring to the first n - 1 masses only; and therefore, 

T -Q2m{ a(l,,) + (LT +2 ( } 1 

I T /8T\2 8ST\ 2 /ST\2_ 
11 1 ( {/2+ \2 + T + /am(2+ + - {,'m {g) + (T)2 + (- m -sT)2} > f . .. (179*) 

+_M1 " ( T (2 
a 

T\2 (aT T2 

If then we put for abridgement, 
i 1 i T , Z.m' 1 -- m 8a'-- -- ~m ' 

y ,1 ST , Z,.mq 
] 

yI m =1' ( imx >.. d ' + . e d + d (180.) 

_ aT Z,_ m |' 
'- m ~'- - m ' J 

we shall have the expression 
H = (,r b2 + yJ 6 2 + z,i2) +- 2z,. m (x' 2 + y'2 + Zt,2) 

in order to form, by our general process, 6 n differential equations of motion of the 
first order, between the 6 n quantities x,,y, z,, x', Y2z',,w 1 ? ̂  y', % and the time . In 

pends only on the 3 n - 3 internal coordinates d - d, being of the form 
s 2 
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U= m(m1f +m2f2+ .+ m,1fn-) . (D_2.) 
+ ml m2fl,2 + ml m3f,3 + .. + m,_ 2 n-, f 2,n- 1 

in whichfi is a function of the distance of mi from mn, andf', k is a function of the 
distance of mi from mk, such that their derived functions or first differential coeffi- 

cients, taken with respect to the distances, express the laws of mutual repulsion, being 
negative in the case of attraction; and then we obtain, as we desired, two separate 
groups of equations, for the motion of the whole system of points in space, and for 
the motions of those points among themselves; namely, first, the group 

d x,, =- x', d t. d x',, - 0, 

dy, = y',, d t, d y', , .. . (81 .) 
d %, = z', d t dzl' =0, 

and secondly the group 

d = ('+i d,.m )x',) d f, dx' 
1 

d t, 

n J 

d = .vI+ l. d ,I-d- t d z d. d 

The six differential equations of the first order, (181.), between x,, ',, y',, zf', 
and t, contain the law of rectilinear and uniform motion of the centre of gravity of the 

system ; and the 6n -6 equations of the same order, (182.), between the 6n - 6 
variables T x',y', ', and the time, are forms for the differential equations of internal 
or relative motion. We might eliminate the 3 n- 3 auxiliary variables x',y, z', betweenr 
these last equations, and so obtain the following other group of 3 n - 3 equatios of 
the second order, involving only the relative coordinates and the time, 

- m a + mn :E 
IF 

1 a U I au 

1 FU 1 Eu J 
L>? - m a + m+ El a n. 

but it is better for many purposes to retain them under the forms (182.), omitting, 
however, for simplicity, the lower accents of the auxiliary variables x', y', z',, because it 
is easy to prove that these auxiliary variables (180.) are the components of centrobaric 
velocity, and because, in investigating the properties of internal or relative motion, 
we are at liberty to suppose that the centre of gravity of the system is fixed in space, 
at the origin of xy z. We may also, for simplicity, omit the lower accent of 2,, un- 
derstanding that the summations are to fall only on the first n - 1 masses, and de- 
noting for greater distinctness the nth mass by a separate symbol M; and then we 
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mnay comprise the differential equations of relative motion in the following simplified 
formula, 

dtH-= . m (dx d'- dx + dr y'- dy'6 + d z'-dz' . (E2.) 
in which 

H =12_ m (X/2 +y'2 + z12) + m- {( . x')2 + ( . my')2 + (+ . mz')2} - U. (F2.) 

And the integrals of these equations of relative motion are contained (by our gene- 
ral method) in the formula 

S- = 2.m( ~-m -a'Q+- y' s- b'a+ -z'- c'y), . . (G2.) 
in which (3 y a' b c' denote the initial values of ? v a ! y' z', and S is the principal 

function of relative motion of the system; that is, the former function S, simplified by 
the omission of the part which vanishes when the centre of gravity is fixed, and which 
gives in general the laws of motion of that centre, or the integrals of the equations (181.). 

Second Example: Case of a Ternary or Multiple System with one Predominant Mass; 
Equations of the undisturbed motions of the other masses about this, in their seve- 
ral Binary Systems; Differentials of all their Elements, expressed by the coeffi- 
cients of one Disturbing Function. 

32. Let us now suppose that the n - 1 masses m are small in comparison with the 
nth mass M; and let us separate the expression (F2.) for H into the two following parts, 

HI = 2i.i (1+ M)(x2 + y2 +1-'2)-M . mf, 

-H2 M (x I x 2 +y z2 - Mfl 2) +... 2. . ? . (H2.) 

Mi mkC 

+-~-(x'ix'~.+y ' +' + +z' -MJ I)+ ... ~+ t (ZZ + ~YiYT'Y' + ii k M 
f.'+" 

of which the latter is small in comparison with the former, and may be neglected in 
a first approximation. Suppressing it accordingly, we are conducted to the following 
6n - 6 differential equations of the 1st orlder, belonging to a simpler motion, which 
nay be called the undisturbed: 

d- 14. 1r dy' 1 H_ 16171 1 dt m x ~6 H I r ~ m xl a ' n a = l1 + l x2; =M 

dt 
~ 

m Sy 
- MJY dt a m 6' * * a') 

d ~ 1 8 H //m\ dyt 1 H1 _f 
dt - m 8t -- 1 -' M S d m - -J; J 

These equations arrange themselves in n - 1 groups, corresponding to the n - 

binary systems (m, M); and it is easy to integrate the equations of each group sepa- 
rately. We may suppose, then, these integrals found, under the forms, 

~ = W(1) (t, , , , x', y, Z'), V = (4) (t, 4 
, , X, I', y', z'), 

= X(2) (t , Y, , y', Y', '), = - X(5) (t, K, ), $, ~, y, '), . . (K.) 
-D zX(3) (t , , , 4 x', y', z'), = -(6) (t , t, ~, , ,', y', z'),J 
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the six quantities z X v 7 
I being constant for the undisturbed motion of any one 

binary system; and therefore the six functions %(1), X2), X(), ), X(5) %(6), or p, , , 

, s , being such as to satisfy identically the following equation, 

ax ax H1 ix 8 HI1 H, w 8x 8 EH xI 8aH x 8 H 
0-mn+, g -a x x,y a ++ y - -1 +an ; 2' a z' ' r (L2.) 

with five other equations analogous, for the five other elements x, , v, v, w, in any one 
binary system (n, M). 

33. Returning now to the original multiple system, we may retain as definitions 
the equations (K2.), but then we can no longer consider the elements x. X. p. u. r. . of 

the binary system (m., M) as constant, because this system is now disturbed by the 

other masses m,; however, the 6n - 6 equations of disturbed relative motion, when 

put under the forms 

d a H, a H d' x H1 a H2 

d a H! a H d. a HI, a Ho 
m dt- yl + y m - a 

. (M2.) 

di aH, +aH2 dz' aH, aHI 
m dr += ... 

~Y + 
~-T"_ 1 -. . ' 

t dt~ - z1 8 T 8/ 8 
" dt 

~ 
H. ~ "- 8 ' 

nd combined with the identical equations of the kind (L2.), give the following simple 
expression for the differential of the element x, in its disturbed and variable state, 

dx axaH2 aXaH ax aHo axaH ax a ax aH 
i -_ _ _ _ _1 _ 1 - - a 2 
m'2 t- a- a ~- ax, a an a3y~ -sy an - 1 ag -Zi a~ < a * -N) 

together with analogous expressions for the differentials of the other elements. And 
if we express d 7 a y' z', and therefore H2 itself, as depending on the time and on 
these varying elements, we may transform the 6 n- 6 differential equations of the 
1st order, (M2.), between 7 ! xy' z' t, into the same number of equations of the 
same order between the varying elements and the time; which will be of the forms 

dn{z { } S} 8 HX} +{ } { Ho , { } , 8 H,2 

m dt= { z} a Xa + { ap}^ + { } + {a r} + { } I- 

d at v H 8 H a n 8 H H 8 2.) 
m {, } + {, z+ } aT + {V, I} a, + {p, } aT + {<, p WIa} 

d 8 Ht H a } 8 Ha 8 Hz, 

d w. H2 8a H, + a 8 HH 
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if we put, for abridgement, 
8x 0A ax axA +i ax ax ax8 Sa hax aA 

and form the other symbols {x, p}, {x, 1, &c., from this, by interchanging the letters. 
It is evident that these symbols have the properties, 

{X, I} _-- {, X}, {XI} = 0; . ... . .... (184.) 
and it results from the principles of the 15th number, that these combinations {x, }, 
&c,, when expressed as functions of the elements, do not contain the tiIne explicitly. 
There are in general, by (184.), only 15 such distinct combinations for each of the 
n - 1 binary systems; but there would thus be, in all, 15 n - 15, if they admitted 
of no further reductions: however, it results from the principles of the 16th number, 
that 12 n- 12 of these combinations may be made to vanish by a suitable choice of 
the elements. The following is another way of effecting as great a simplification, at 
least for that extensive class of cases in which the undisturbed distance between the 
two points of each binary system (m, M) admits of a minimum value. 

Siimplfication of the Differential Expressions by a suitable choice of the Elements. 
34. When the undisturbed distance r of m from M admits of such a minimum q, 

corresponding to a time r, and satisfying at that time the conditions 

r O r > 0 e, , . . . . o . o. . . . . . (185.) 
then the integrals of the group (12.), or the known rules of the undisturbed motion of 
m about M, may be presented in the following manner: 

- = {(iy ^ 8 - 2 + ( z- y')2 + ( 
I - ; )2} 

= DI+m (X'2 + y z2 + 2'2)-Mf (r); 

=tan- .' z g 

\/ M dr ^d (Q20) 

r = t- /^ V , +m d __) _ dr 
r,= 

P-E-s-. x/+mm 
drd 

x 

- -.v -sin-l _r,- _ 

, 

v M 'J,/d-- - 'd 

tshe minimum distance q being a function of the two elements z, p, whicd must satsfy 
the conditions 

r+2Mf(g-( M) = 0 MJ72 (q + (1 + Im) x > O; ( 2and sn) s, tan-qMt being + used) (186.) 

and sin- ' s, tan- 't, being used (according to Sir JOHN HERSCHEL'S notation) to ex- 
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press, not the cosecant and cotangent, but the inversefunctions corresponding to sine 
and cosine, or the arcs which are more commonly called arc (sin = s), arc (tan = t). 

dr 
It must also be observed that the factor ,- which we have introduced under the 

signs of integration, is not superfluous, but is designed to be taken as equal to posi- 
tive or negative unity, according as d r is positive or negative; that is, according as 
r is increasing or diminishing, so as to make the element under each integral sign 
constantly positive. In general, it appears to be a useful rule, though not always 
followed by analysts, to employ the real radical symbol J/R only for positive quan- 

tities, unless the negative sign be expressly prefixed; and then , will denote posi- 
tive or negative unity, according as r is positive or negative. The arc given by its 
sine, in the expression of the element w, is supposed to be so chosen as to increase 
continually with the time. 

35. After these remarks on the notation, let us apply the formula (P2.) to calculate 
the values of the 15 combinations such as {z, X}, of the 6 constants or elements (Q2.). 

Since 
r== (2 +,+ . + .2 . . . . (187.) 

it is easy to perceive that the six combinations of the 4 first elements are as follows: 

{, X}- = 0, {z, )p} 0, {z,v} = 0, {X)- p-0, {x) , } = 1, {P,v} = 0. . (188.) 
To form the 4 combinations of these 4 first elenlents with r, we may observe, that 

this 5th element r, as expressed in (Q2.), involves explicitly (besides the time) the 
distance r, and the two elements z, fp; but the combinations already determined 
show that these two elements may be treated as constant in forming the four combi- 
nations now sought; we need only attend, therefore, to the variation of r, and if we 
interpret by the rule (P2.) the symbols {z,r} {X,r} {&, r} {v, r}, and attend to the 
equations (I2.), we see that 

dr 
{, r} = 0, {;, r} = 0, {c, r} = -- -' {v, r} = 0, . . . (189.) 

dr 
-d being the total differential coefficient of r in the undisturbed motion, as determined 

by the equations (I2.); and, therefore, that 

{z(, } = 0, , , {v,r} = , . . . . . (190.) 
and 

'r dr dt dr 
{, } = -- r dt= + = 

t *- * * i.. ....... . (191.) 

observing that in differentiating the expressions of the elements (Q2.), we may treat 
those elements as constant, if we change the differentials of n ai' y' z' to their undis- 
turbed values. It remains to calculate the 5 combinations of these 5 elements with 
the last element w; which is given by (Q2.) as a function of the distance r, the coor- 
dinate ~, and the 4 elements , X, V, y; so that we may employ this formula, 

{e, } =- 7 {e,r} -+ 
e {e,} - + - {e,z} +- e- { + {e,&} + -, { e,p} + {e,v}, (192.) 
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in which, if e be any of the first five elements, or the distance r, 
I a e ae le ae 

{e, r} =- -r ( -' + -Y- + C a' ), {e } = -- ez ,{e,, z} = 0,. (193.) 
and 

w _ Ax)\1 ax w dg w 8o 
a t^ ) 8r = - rT^ y^= 1$;. 

. . . . . . . . (194.) 

the formula (192.) may therefore be thus written: 

ae aee? + 

tt +>Y+^' -^'J^ 
7 

xl |.. (195.) 

+ {e, v} + 8x {e, } + - {e, }. J 

We easily find, by this formula, that 
dr aow 

{%x,} =-1; {k,o} = 0; {(,c} = 0; {r,o )= dt . . . (196.) 
and 

a v 8<O Xco 

{,.} .=- r?.8 4i= -?-- * ** * .. .* .. *~. .(197.) 

The formula (195.) extends to the combination {r, w} also; but in calculating this 
last combination we are to remember that r is given by (Q2.) as a function of x, , r, 
such that 

BT dt 

r.. 
= -- d; *.. * *. ** (198.) 

and thus we see, with the help of the combinations (196.) already determined, that 

{,=- o} = ---- = - / d r + - J r dr, ..... (199.) 

if we represent for abridgement by 0, and Q,r the coefficients of d r under the integral 
signs in (Q2.), namely, 

OrVM +v{2pj+2Mf(r)- M?r^}n 
J 

M\/.M { 
2 

+ M _M m 
x} -i+J 

* 
r M(200.) 

These coefficients are evidently connected by the relation 
80 8X2 

f+ T- = o0, .............. . (201.) 

which gives 

x: rdr+1f Q dr-0, . ....... . . (202.) 

r, being any quantity which does not vary with the elements x and ,; we might 
therefore at once conclude by (199.) that the combination {r, W} vanishes, if a diffi- 
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culty were not occasioned by the necessity of varying the lower limit q, which de- 

pends on those two elements, and by the circumstance that at this lower limit the 
coefficients 0, C, become infinite. However, the relation (202.) shows that we may 

express this combination ({, w} as follows: 

^ = ' + jfrdr j+rdr, . . . . . . . (203.) 

r, being an auxiliary and arbitrary quantity, which cannot really affect the result, 
but may be made to facilitate the calculation; or in other words, we may assign to 
the distance r any arbitrary value, not varying for infinitesimal variations of z, , 

which may assist in calculating the value of the expression (199.). We may there- 
fore suppose that the increase of distance r- q is small, and corresponds to a small 

positive interval of time t - r, during which the distance r and its differential coeffi- 
cient r' are constantly increasing; and then after the first moment s, the quantity 

, = .. .................. (204.) 

will be constantly finite, positive, and decreasing, during the same interval, so that 
its integral must be greater than if it had constantly its final value; that is, 

t-'f = r d r > (r-q) ..........(205.) 

Hence, although @r tends to infinity, yet (r - q) ,r tends to zero, when by dimi- 

nishing the interval we make r tend to q; and therefore the following difference 

rr* M+nMx r M +m n r Kx x\ 
J lr,dr- M Jf d,dr- M= m, \-- )O,.rdr, . (206.) 

will also tend to 0, and so will also its partial differential coefficient of the first order, 
taken with respect to t. We find therefore the following formula for {r, w}, (re- 
membering that this combination has been shown to be independent of r,) 

{fo} r { ordr + dr . (207.) 

the sign implying that the limit is to be taken to which the expression tends 
r 

when r tends to q. In this last formula, as in (199.), the integralJf Or dr may be 

considered as a known function of r, q, p, , or simply of r, q, z, if pJ be eliminated 

by the first, condition (186.) ;, and since it vanishes independently of X when r = q, it 

may be thus denoted: 

f"e,r -=(r, q, ) -p (q ), . .. ....... (208.) 

the form of the function p depending on the law of attraction or repulsion. This 
integral therefore, when considered as depending on z and p, by depending on z 
and q, need not be varied with respect to z, in calculating {r, w} by (207.), because 
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its partial differential coefficient ( O dr), obtained by treating q as constant, 

vanishes at the limit r = q; nor need it be varied with respect to q, because, by (186.), 

S +x + M _ o = ' . ' .. . ............ (209.) 

it may therefore be treated as constant, and we find at last 

{ , } == o . . . . . . . . . . . . . . . . . . (210.) 

the two terms (199.) or (203.) both tending to infinity when r tends to q, but always 
destroying each other. 

36. Collecting now our results, and presenting for greater clearness each combi- 
nation under the two forms in which it occurs when the order of the elements is 

changed, we have, for each binary system, the following thirty expressions: 

{bX} =- O, (, }) = 0, {(0 {} =0, {(r,} 0 , {(, } - 10, 

{ , X} = o, {, , {,, r} = 0, I, ,} = , {, , {} = 0 

(V, )} = 0, ({r, i} =- 1, {r, } I= - , {{, } 0, { } = 0, 
{~, x) = o, ({, A} - o, ({, }0) - - l , (i, Y} - o, (C, ~} = o, J 
({ } -= 1, {c, X} = , {,, c} = 0, {)} = 0, {, =} = 0; 

so that the three combinations 

{d,7} {S ) ,} {X ,V} 

are each equal to positive unity; the three inverse combinations 

{V', t} Q{X4)} {v, } 

are each equal to negative unity; and all the others vanish. The six differential 

equations of the first order, for the 6 varying elements of any one binary system 
(m, M), are therefore, by (02.), 

dyp l Hi dr 8l H ~ 

d _ _ , -dc _ _. 

dt 

, 

dt-- 8, m X.. 

d a a Ha d Y r Ha M Ay 5 H2 _ 

m-dr - - a 
, 

- - (S--) 

m dt -- ,, 7 dt - B A ' J 

and, if we still omit the variation of t, they may all be summed up in this form for 
the variation of H2, 

S H2 = - . m ('- '8- d + ' S -- + -'8 v -' ), . . (T2.) 
which single formula enables us to derive all the 6 n - 6 differential equations of the 
first order, for all the varying elements of all the binary systems, from the variation 
or from the partial differential coefficients of a single quantity Hz, expressed as a 
function of those elements. 

T2 
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If we choose to introduce into the expression (T2.), for S H2, the variation of the 
time t, we have only to change 6 r to r - S t, because, by (Q2.), S t enters only so 

accompanied; that is, t enters only under the form t- i, in the expressions of 

i i% 'i y' ' as functions of the time and of the elements ; we have, therefore, 

a =H -S^ _ - =a _ E.mf>; ?.,... . . . .2. . (211.) 

and since, by (H2.), (Q2.), 

HI= M, . m *, (212.) 
we find finally, 

d l. (H2.) 
dt = at (2.) 

This remarkable form for the differential of I-I, considered as a varying element, 
is general for all problems of dynamics. It may be deduced by the general method 
from the formulae of the 13th and 14th numbers, which give 
dHi allg aH l ax, f + l8x8xr a HI a X6 n a H, ax6ni 

dt ax1 \ a a3 aiB a1 n 6\a w 6w s . 

_+ J i-X, 6 at, 6 E^z 6 xz 6 '1~E, 6 x,,(213.) _ a H2 a x 1+a H2a X2 + H2 a6n _ a H2 
- x, a t ax2 Tt 

" 
+ a6n t tJ 

z z2 . . .6 n being any 6 n elements of a system expressed as functions of the time and 
of the quantities n z ; or more concisely by this special consideration, that HI + H2 is 
constant in the disturbed motion, and that in taking the first total differential coeffi- 
cient of H2 with respect to the time, the elements may by (F1.) be treated as constant. 
It is also a remarkable corollary of the general principles just referred to, but one not 

difficult to verify, that the first partial differential coefficient t- of any element x,, 

taken with respect to the time, may be expressed as a function of the elements alone, 
not involving the time explicitly. 

On the essential distinction between the Systems of Varying Elements considered in this 
Essay and those hitherto employed by mathematicians. 

37. When we shall have integrated the differential equations of varying elements 
(S2.), we can then calculate the varying relative coordinates a 4 &, for any binary sy- 
stem (m, M), by the rules of undisturbed motion, as expressed by the equations (I2.), 
(Q2.), or by the following connected formulae: 

= r (cos O + - sin(O -v) sin , ) 

Xv=r (sin 0 - sin (d-v) cos v), L ......... (V2.) 

= xr /2 AX - X2 sin (0 -- Y) 
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in which the distance r is determined as a function of the time t and of the elements 
z, Z, (, by the 5th equation (Q2.), and in which 

/M+ m dr xd 
r, /g,M r2 r2 

V 2pr +2 Mf(r)-- N~i x'( 

q being still the minimum of r, when the orbit is treated as constant, and being still 
connected with the elements z, (, by the first equation of condition (186.). In astro- 
nomical language, M is the sun, m a planet, M ; t are the heliocentric rectangular co- 
ordinates, r is the radius vector, 0 the longitude in the orbit, w the longitude of the 
perihelion, v of the node, 0 - w is the true anomaly, 0- y the argument of latitude, 
lp the constant part of the half square of undisturbed heliocentric velocity, diminished 
in the ratio of the sun's mass (M) to the sum (M + m) of masses of sun and planet, 

; is the double of the areal velocity diminished in the same ratio, x is the versed sine 

of the inclination of the orbit, q the perihelion distance, and r the time of perihelion 
passage. The law of attraction or repulsion is here left undetermined; for NEWTON'S 

law, p, is the sun's mass divided by the axis major of the orbit taken negatively, and 
z is the square root of the semiparameter, multiplied by the sun's mass, and divided 

by the square root of the sum of the masses of sun and planet. But the varying 
ellipse or other orbit, which the foregoing formulae require, differs essentially (though 
little) from that hitherto employed by astronomers: because it gives correctly the 
heliocentric coordinates, but not the heliocentric components of velocity, without dif- 

ferentiating the elements in the calculation; and therefore does not touch, but cuts, 
(though under a very small angle,) the actual heliocentric orbit, described under the 
influence of all the disturbing forces. 

38. For it results from the foregoing theory, that if we differentiate the expressions 
(V2.) for the heliocentric coordinates, without differentiating the elements, and then 

assign to those new varying elements their values as functions of the time, obtained 
from the equations (S2.), and deduce the centrobaric components of velocity by the 
formulae (I2.), or by the following: 

_M__ ,_M l _ M M 

X'--M+ m Y =M+m' * 
. 

' 
. . (214.) 

then these centrobaric coniponents will be the same functions of the time and of the 
new varying elements which might be otherwise deduced by elimination from the in- 
tegrals (Q2.), and will represent rigorously (by the extension given in the theory to 
those last-mentioned integrals) the components of velocity of the disturbed planet m, 
relatively to the centre of gravity of the whole solar system. We chose, as more 
suitable to the general course of our method, that these centrobaric components of 

velocity should be the auxiliary variables to be combined with the heliocentric co- 
ordinates, and to have their disturbed values rigorously expressed by the formulae 
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of undisturbed motion; but in making this choice it became necessary to modify 
these latter formulae, and to determine a varying orbit essentially distinct in theory 
(though little differing in practice) from that conceived so beautifully by LAGRANGE. 

The orbit which he imagined was more simply connected with the heliocentric mo- 
tion of a single planet, since it gave, for such heliocentric motion, the velocity as well 
as the position; the orbit which we have chosen is perhaps more closely combined 
with the conception of a multiple system, moving sibout its common centre of gravity, 
and influenced in every part by the actions of all the rest. Whichever orbit shall be 
hereafter adopted by astronomers, they will remember that both are equally fit to 

represent the celestial appearances, if the numeric elements of either set be suitably 
determined by observation, and the elements of the other set of orbits be deduced 
from these by calculation. Meantime mathematicians will judge, whether in sacri- 

ficing a part of the simplicity of that geometrical conception on which the theories of 
LAGRANGE and POISSON are founded, a simplicity of another kind has not been intro- 

duced, which was wanting in those admirable theories; by our having succeeded in 

expressing rigorously the differentials of all our own new varying elements through 
the coefficients of a single function: whereas it has seemed necessary hitherto to em- 

ploy one function for the Earth disturbed by Venus, and another function for Venus 
disturbed by the Earth. 

Integration of the Simpljfied Equations, which determine the new varying Elements. 

39. The simplified differential equations of varying elements, (S2.), are of the same 
form as the equations (A.), and may be integrated in a similar manner. If we put, 
for abridgement, 

(r,7) f{+ ( + Z- + Y )- H2 d dt, . . (X2.) 

and interpret similarly the symbols (p, w, ?), &c., we can easily assign the variations 
of the following 8 combinations, (r, %, v) (p, 0, ;) (p, z, v) (r, %, X) (r, , v) (P, z, x) 

(r, , k) (p., ), v) namely, 

( ( ,z, v) = 0 . m (. S - p0 + x0- z0 o0 + v . -- v0o Po) - H 12 t, 

3(p,ox)- E ? 
m (p-0j0+ TO - p rq-wo0 0- z+ -X0- 1)-1H2t, I 

(tP', x)) = . m (Po 6 To - i r + z ~ - co 6 wo + po ~ - xo Po) - H2 t, 
(r, ,?) == 2 . M (, r p - ro S po + wo 6 zo - wy 3x + Xo h ^o - x h ) - 

H2 Y 2) 

B (r,6/,) == 2 . m (r^ip. - ?^ a0 '- <C o + Xv y. - Xo^o) - HI2 t, 
( (~,Z,,) = E . m (r ~ -- o So + - o o + - o 6 o -- x 6 ) - HP S t, 

6 (,w,^ ) -= 2 . m (o + r o -- r + o o -- + +- oo) - H1 2 t, 

zo o 1po Po To wo being the initial values of the varying elements X X p. v r w. If, then, 
we consider, for example, the first of these 8 combinations (r, x, v), as a function of 
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all the 3 n - 3 elements 'i wi i, and of their initial values po, i w, i %, iinvolving also 

in general the time explicitly, we shall have the following forms for the 6 n - 6 

rigorous integrals of the 6 n- 6 equations (S2.): 

i"i -- 8i (8 , , "); M no, i = 
--Z 

(, 
m,T); o 

Mi p =o ,i , 

m 
-ii); 

m ao, J--,-- - nz, i Z.0 P',i 

and in like manner we can deduce forms for the same rigorous integrals, from any 
one of the eight combinations (y2.). The determination of all the varying elements 
would therefore be fully accomplished, if we could find the complete expression for 

any one of these 8 combinations. 
40. A first approximate expression for any one of them can be found from the form 

under which we have supposed H2 to be put, namely, as a function of the elements 
and of the time, which may be thus denoted: 

~~~~~~~H2 ~~~~= HIt2~~~~ ( 1 4 1* -?n) (A3.) 

by changing in this function the varying elements to their initial values, and em- 

ploying the following approximate integrals of the equations (S2.), 

Io l t 
= 

H dt, 
a 

= o 
a H2 dt, 

= + w +o + S = z - d t, 
- o dt, . . (B3.) 0 z Imo a X - m o owB 

1 t^B Hdt, 1 J 
0 a mo OQ o Ao 

For if we denote, for example, the first of the 8 combinations (Y2.) by G, so that 

G = {r, , ............... ... (C3.) 

we shall have, as a first approximate value, 

G1=Jo a- 
a 

? _o - 0- o 2-H j d t;. (D3.) 

and after thus expressing G as a functionof the time, and of the nd initial elements, we 

can eliminate the initial quantities of the forms T zo vP, and introduce in their stead 

the final quantities p w X, so as to obtain an expression for G1 of the kind supposed 
in (Z2.), namely, a function of the time t, the varying elements p w X, and their initial 

values p Wo %. An approximate expression thus found may be corrected by a pro- 
cess of that kind, which has often been employed in this Essay for other similar pur- 

poses. For the function G, or the combination (r, , v), must satisfy rigorously, by 
(Y2.) (A3.), the following partial differential equation: 
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a I1 aG l a G 1 aG 1 GG (EG 
-?=t + H2 t,- ml-, 

0 ^ A,' ml- 81' (E .) 
and each of the other analogous functions or combinations (Y2.) must satisfy an 

analogous equation: if then we change G to G1 + G2, and neglect the squares and 

products of the coefficients of the small correction G2, Gl being a first approximation 
such as that already found, we are conducted, as a second approximation, on prin- 
ciples already explained, to the following expression for this correction G2: 

t aG i a GI I a GI i a GI 1 ( .) -G2=-o {= G- 1 + H2(t mt, I 
t11, d (F31 

which may be continually and indefinitely improved by a repetition of the same pro- 
cess of correction. We may therefore, theoretically, consider the problem as solved; 
but it must remain for future consideration, and perhaps for actual trial, to determine 
which of all these various processes of successive and indefinite approximation, de- 
duced in the present Essay and in the former, as corollaries of one general Method, 
and as consequences of one central Idea, is best adapted for numeric application, and 
for the mathematical study of phenomena. 

144 


